University of Sussex

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://eprints.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

The Geometry of the Plane of Order Seventeen and its Application to Error-Correcting Codes

Najm Abdulzahra Makhrib Al-Seraji

A thesis submitted for the degree of Doctor of Philosophy

University of Sussex

August 2010

DECLARATION

I hereby declare that the work presented in this thesis is entirely my own, unless otherwise stated, and has not been presented for examination, in whole or in part, to this or any other university or institution.

Signature:

ABSTRACT

The aim of the thesis is to classify certain geometric structures, called arcs, in a particular setting, namely the projective plane of order seventeen. The main computing tool is the mathematical programming language GAP.

First, subsets of the line PG(1, 17) are classified. The results on the line PG(1, 17) classify sets of points on the conic on PG(2, 17), since there is a one-to-one correspondence between a set of points on PG(1, 17) and a set of the same size on a conic in PG(2, 17).

In the plane PG(2, 17) the important arcs are called complete and are those that cannot be increased to a larger arc. So far, all arcs up to and including size eight have been classified, as have complete 10-arcs, 11-arcs, 12-arcs, 13-arcs and 14-arcs. In the plane of order seventeen, the maximum size is eighteen.

Each of these arcs gives rise to an error-correcting code that corrects the maximum possible number of errors for its length.

Cubic curves and the related (k; 3)-arcs in PG(2, 17) are also considered. A classification of both complete and incomplete curves is determined.

CONTENTS

1.	INT	$TRODUCTION \dots \dots$
2.	BA	CKGROUND
	2.1	Finite fields
	2.2	Roots of an element
	2.3	Projective Spaces
	2.4	The fundamental theorem of projective geometry
	2.5	Conics
	2.6	Cubics
	2.7	B-points
	2.8	Useful results from group theory 10
	2.9	Links with Coding Theory
0	ΤΠ	$= DD \cap I = C(1, 15) $
J.	1H. 9.1	$E PROJECTIVE LINE PG(1,17) \dots \dots$
	ა.1 ი ი	Introduction
	3.2 2.2	The restate 19
	ა.ა ე_4	The base de
	3.4 25	The herteda
	ე.ე ე.ც	The neptads
	3.0 2.7	The octads
	১.1 ৫০০	The nontitions of $DC(1, 17)$ 25
	0.0 2.0	The partitions of $FG(1, 17)$
	ა.ყ ვ_10	Links with Coding Theory 29
	5.10	Links with Couning Theory
4.	TH	$E PROJECTIVE PLANE PG(2, 17) \dots \dots$
	4.1	Introduction
	4.2	Stabilizer of the frame
	4.3	The 5-arcs
	4.4	The 6-arcs
	4.5	The 6-arcs on a conic
	4.6	The 7-arcs
	4.7	The 7-arcs on a conic
	4.8	The 8-arcs
	4.9	The 8-arcs on a conic
	4.10	The 9-arcs on a conic
	4.11	The algorithm to calculate k-arcs, $k \leq 18 \dots $

	4.12	Links with Coding Theory	67
5.	$\begin{array}{c} CUH\\ 5.1\\ 5.2\\ 5.3\\ 5.4\\ 5.5\\ 5.6\end{array}$	BIC CURVES OVER A FINITE FIELD	68 68 70 72 73 75 76
6.	App	endix 1	77
	6.1	Computing the points of $PG(2, 17)$	77
	6.2	Classifying heptads in $PG(1, 17)$	77
	6.3	Computing the transformations between the 5-arcs	79
	6.4	Computing the transformations between the 6-arcs	80
	6.5	Computing the transformations between the 7-arcs	82
	6.6	Computing the transformations between the 8-arcs	84
	6.7	Computing the transformations between the 9-arcs	86
	6.8	Computing the transformations between the 10-arcs	88
	6.9	Computing the transformations between the 11-arcs	90
	6.10	Computing the transformations between the 12-arcs	93
	6.11	Computing the transformations between the 13-arcs	95
	6.12	Computing the transformations between the 14-arcs	98
	6.13	Computing the complete $(k; 2)$ -arcs $\ldots \ldots \ldots$	01
	6.14	Computing the complete $(k; 3)$ -arcs $\ldots \ldots \ldots$	02
7.	App	endix 2 $\ldots \ldots 1$.03

V

LIST OF TABLES

2.1	Group of order up to 24	12
3.1	The pentads	19
3.2	The distinct pentads	20
3.3	The stabilizers of hexads	21
3.4	The distinct hexads	21
3.5	The additional points to the hexads	23
3.6	The stabilizers of heptads	24
3.7	The distinct heptads	24
3.8	The additional points to the heptads	26
3.9	The stabilizers of octads	27
3.10	The distinct octads	28
3.11	The additional points to the octads	31
3.12	The stabilizers of nonads	32
3.13	The distinct nonads	33
3.14	The classification of complementary nonads	34
3.15	Partitions of $PG(1, 17)$ into two nonads	36
3.16	The parameters n, k, d and e on $PG(1, 17)$	38
4.1	The stabilizer of the frame	40
4.2	The distinct 5-arcs	43
4.3	The orbits	44
4.4	The points of index zero	45
4.5	Distinct 6-arcs	47
4.6	The distinct 6-arcs on a conic	50
4.7	The B -points \ldots \ldots \ldots \ldots \ldots \ldots	51
4.8	(c_0, c_3)	54
4.9	The size of orbits	55
4.10	The stabilizers of 7-arcs	56
4.11	The distinct 7-arcs on a conic	57
4.12	The stabilizers of 8-arcs	58
4.13	The distinct 8-arcs on a conic	58
4.14	The distinct 9-arcs on a conic	60
4.15	The numbers of the complete k -arcs \ldots \ldots \ldots \ldots \ldots \ldots	64
4.16	The stabilizers of the complete 10-arcs	54
4.17	The stabilizers of the complete 11-arcs	35
4.18	The stabilizers of the complete 12-arcs	35
4.19	The stabilizers of the complete 13-arcs	66

4.20	The stabilizer of the complete 14-arc
4.21	The parameters n, k, d and e for k -arcs $\ldots \ldots \ldots$
5.1	The canonical forms with three rational inflexions
5.2	The canonical forms with one rational inflexion
5.3	The canonical forms with no rational inflexions
5.4	The stabilizers of the complete non-singular cubic curves
5.5	The parameters n, k, d and e for $(k;3)$ -arcs $\ldots \ldots \ldots$
7.1	The points of $PG(2, 17)$ generated by $(010, 001, -310)$

To my Parents

ACKNOWLEDGMENTS

I am most indebted to my supervisor, Professor J.W.P. Hirschfeld for his help, time and patience. Without his guidance and support, this work would not have been completed.

I would like to thank the staff in the Department of Mathematics at University of Sussex, with special thanks to Mr Tom Armour, Dr Ali Taheri, Dr Omar Lakkis, Mr Tristan Pryer, Mrs Uduak George, Miss Louise Wintes, Mr Chandrashekar Venkataraman.

Also I would like to thank my friends in UK, with special thanks to Mr Ebrahim, and Mr Mohd Faizul Iqmal with their families.

Finally, I want to thank my family and relatives, and express my most sincere and unlimited thanks to my mother, the most important person in my life and the most effective person in any success that I have achieved, for her support and help.

Thanks are extended to Ministry of Higher Education and Research in my country Iraq for the grant.

1. INTRODUCTION

A projective plane is an incidence structure of points and lines with the following properties.

(P1) Every two points are incident with a unique line.

(P2) Every two lines are incident with a unique point.

(P3) There are four points, no three collinear.

A Desarguesian projective plane PG(2,q) has as points one-dimensional subspaces and as lines two-dimensional subspaces of a three-dimensional vector space over the finite field \mathbb{F}_q of q elements. A k-arc in PG(2,q) is a set of k points no three of which are collinear. A k-arc is complete if it is not contained in a (k + 1)-arc. A (k; 3)-arc in PG(2,q) is a set of k points in which no four points but some three points are collinear.

The main aims of this thesis

- (1) To classify arcs of all sizes in projective plane PG(2, 17).
- (2) To classify those arcs which are contained in a *conic*.
- (3) To classify cubic curves in PG(2, 17), to determine which of them are complete as (k; 3)-arcs, and for each incomplete (k; 3)-arc to find the largest complete (k; 3)-arc which contains it.
- (4) Each of these arcs gives rise to an error-correcting code that corrects the maximum possible number of errors for its length.

Arcs in PG(2,q) for q = 2, 3, 4, 5, 7, 8, 9, 11, 13 have been classified; see [10, chapter 14]. We are looking at the plane of order seventeen, as it is the next in the sequence.

Outline of the Chapters

Chapter 2 is devoted to basic definitions and well-known results on finite fields, roots of an element, projective spaces, the fundamental theorem of projective geometry, conics, cubics, *B*-points, useful results from group theory and links with coding theory.

Chapter 3 contains the classification of all subsets of the projective line of order seventeen. The basic tool is the fundamental theorem of projective geometry; there is a unique projectivity of the projective line transforming three points to any three other points.

Chapter 4 contains the classification of complete k-arcs in PG(2, 17). The main theme of chapter 4 is to classify subsets that are k-arcs. In particular, we are interested in the values of k for which the arcs are complete. For k = 4, 5, 6, 7, 8, the k-arcs are

completely classified. For all k with $k \leq 18$ there is a classification of complete k-arcs. The basic tool is the fundamental theorem of projective geometry; there is a unique projectivity of PG(2, 17) transforming four points no three on a line to any other four no three on a line. The parameters of the corresponding codes C are found; for each C, the length n, the dimension k and the minimum distance d are found.

Chapter 5 contains the classification of cubic curves in PG(2,q) and for PG(2,17) in particular. The expression "complete cubic curve" means that the associated (k; 3)-arc is complete. We answer the question of which non-singular cubic curves in PG(2,17) are complete as (k; 3)-arcs.

Appendix 1 contains a list of the programs written in GAP.

Appendix 2 contains the tables of the points of PG(2, 17) written in numeral and vector forms.

A brief history

Associated to any topic in mathematics is its history. Arcs were first introduced by Bose (1947) in connection with designs in statistics. Further development began with Segre in (1954); he showed that every (q + 1)-arc in PG(2, q) is a conic. An important result is that of Ball, Blokhuis and Mazzocca showing that maximal arcs cannot exist in a plane of odd order. In 1981 Goppa found important applications of curves over finite fields to coding theory. As to geometry over a finite field, it has been thoroughly studied in the major treatise of Hirschfeld 1979-1985 and of Hirschfeld—Thas 1991.

2. BACKGROUND

2.1 Finite fields

Definition 2.1. A *field* is a set K closed under two operations +, \times such that

- (1) (K, +) is an abelian group with identity 0;
- (2) (K^*, \times) is an abelian group with identity 1, where $K^* = K \setminus \{0\}$;
- (3) $x \times (y+z) = x \times y + x \times z$, $(x+y) \times z = x \times z + y \times z$ for all x, y, z in K.

Definition 2.2. A *finite field* is a field with only a finite number of elements.

The characteristic of a finite field K is the least positive integer p, and hence a prime, such that

$$pz = \underbrace{z + \dots + z}_{p} = 0$$

for all z in K.

Definition 2.3. The set denoted by \mathbb{F}_p , with p prime, consists of the residue classes of the integers modulo p under the natural addition and multiplication.

Theorem 2.4. The set \mathbb{F}_p is a finite field with p elements.

Proof See [10, chapter 1].

Definition 2.5. Given an irreducible polynomial F(t) of degree h over \mathbb{F}_p , we define the set \mathbb{F}_q , $q = p^h$ with p prime, as

$$\mathbb{F}_{q} = \mathbb{F}_{p}[t]/(F) \\
= \{a_{0} + a_{1}t + \dots + a_{h-1}t^{h-1} \mid a_{i} \in \mathbb{F}_{p}, F(t) = 0\}.$$

Theorem 2.6. For any given q, the set \mathbb{F}_q satisfies the following properties :

- (1) the set \mathbb{F}_q , where $q = p^h$, is a field of characteristic p;
- (2) the elements x of \mathbb{F}_q satisfy $x^q x = 0$;
- (3) there exists s in \mathbb{F}_q such that $s^{q-1} = 1$ and

$$\mathbb{F}_q = \{0, 1, \dots, s^{q-2}\};$$

such an s is called a primitive element or primitive root of \mathbb{F}_p ;

(4) the additive structure of \mathbb{F}_q is given by the group isomorphism

$$\mathbb{F}_q \cong \underbrace{Z_p \times \cdots \times Z_p}_h;$$

(5) the multiplicative structure of \mathbb{F}_q is given by the group isomorphism

$$\mathbb{F}_q \setminus \{0\} \cong Z_{q-1}.$$

Proof See [10, chapter 1].

Definition 2.7. Let $\mathbf{f}(x) = x^n - a_{n-1}x^{n-1} - \cdots - a_0$ be a polynomial of degree *n* over \mathbb{F}_q . Then its *companion matrix* $\mathbf{C}(\mathbf{f})$ is the $n \times n$ matrix given by

$$\mathbf{C}(\mathbf{f}) = \begin{pmatrix} 0 & & & \\ \vdots & & I_{n-1} & \\ 0 & & & \\ a_0 & a_1 & \dots & a_{n-1} \end{pmatrix}$$

Definition 2.8. Let λ be a root of **f**. Then **f** is *primitive* if the smallest power *s* of λ such that $\lambda^s = 1$ is $s = q^n - 1$. It is *subprimitive* if the smallest power *s* of λ such that $\lambda^s \in \mathbb{F}_q$ is $s = q^{n-1} + \cdots + q + 1$.

Definition 2.9. An *automorphism* σ of \mathbb{F}_q is a permutation of the elements of \mathbb{F}_q such that

- (1) $(x+y)\sigma = x\sigma + y\sigma$,
- (2) $(xy)\sigma = (x\sigma)(y\sigma)$ for all x, y in \mathbb{F}_q .

2.2 Roots of an element

To solve the equation $x^n = c$ in \mathbb{F}_q , let d = (n, q - 1), e = (q - 1)/d and let s be a primitive element of \mathbb{F}_q .

- (1) $x^n = 1$ has d solutions in \mathbb{F}_q namely $x = 1, s^e, s^{2e}, \dots, s^{(d-1)e}$.
- (2) $x^n = 1$ has the unique solution x = 1 when d = 1.
- (3) $x^n = 1$ has *n* solutions when n|(q-1); these are $x = 1, s^{(q-1)/n}, \dots, s^{(n-1)(q-1)/n}$.
- (4) $x^n = c$ has a unique solution when d = 1; this is $x = c^r$ where $r, r' \in Z$ and

$$rn + r'(q-1) = 1.$$

(5) $x^n = c$ has *n* solutions when n|(q-1) and $c^{(q-1)/n} = 1$.

2.3 Projective Spaces

Let K be a field and V be the (n + 1)-dimensional vector space K^{n+1} over K, with origin O. Let $V_0 = V \setminus \{O\}$. Two elements $X, Y \in V_0$ are related if X and Y belong to the same one-dimensional subspace of V. This relation defines an equivalence relation on V_0 . Let (X) be the equivalence class of $X \in V_0$, which is the set of tX where $t \in K \setminus \{0\}$. The set of equivalence classes, denoted by PG(n, K), is the *n*-dimensional projective space over K. If $K = \mathbb{F}_q$, then we will use the notation PG(n, q).

The equivalence class (X), which is also denoted by $\mathbf{P}(X)$, is called a *point* of PG(n, K), and X is called a *vector representing* $\mathbf{P}(X)$. If $X = (x_0, \ldots, x_n)$, and x_i is the first nonzero coordinate of X, then $\mathbf{P}(X)$ will be written as

$$(\underbrace{0,\ldots,0}_{i},1,x_{i+1}/x_i,\ldots,x_n/x_i).$$

Let W(m+1, K) be an (m+1)-dimensional subspace of V; then the set

$$\pi_m = \{ \mathbf{P}(X) \mid X \in W \}$$

is an *m*-dimensional subspace, or *m*-space, of PG(n, K). A 1-dimensional subspace π_1 is a *line*; a π_2 is a *plane* and a π_3 is a *solid*. The largest proper subspaces π_{n-1} are hyperplanes or primes.

Let $u = (u_0, \ldots, u_n) \in K^{n+1} \setminus \{0\}$; therefore there exists *i*, where $0 \le i \le n$, such that $u_i \ne 0$. Hence the solutions of the equation

$$u_0 x_0 + u_1 x_1 + \dots + u_n x_n = 0$$

form a prime, which is denoted by $\pi(u)$. The vector $u = (u_0, \ldots, u_n)$ is called the coordinate vector of the prime.

Definition 2.10. In PG(n,q), consider the points $U_i = (0, \ldots, 0, 1, 0, \ldots, 0)$, and $U = (1, \ldots, 1)$. The set $\{U_0, \ldots, U_n\}$ is the simplex of reference which together with U forms the frame $\{U_0, \ldots, U_n, U\}$, where a frame is a set of n+2 points in PG(n,q), no n+1 in a prime.

In this work we mainly consider the case where n = 2 and q = p = 17.

2.4 The fundamental theorem of projective geometry

Denote by S and S' two spaces PG(n, K).

Definition 2.11. A collineation $\xi : S \to S'$ is a bijection which preserves incidence; that is, if $\Pi_r \subset \Pi_s$, then $\Pi_r \xi \subset \Pi_s \xi$. where Π_r and Π_s are subspaces of PG(n, K). The group of collineations of PG(n, K) is denoted by $P\Gamma L(n+1, K)$.

Definition 2.12. A projectivity $\beta : S \to S'$ is a bijection given by a matrix **T**, necessarily nonsingular, where $\mathbf{P}(X') = \mathbf{P}(X)\beta$ if $tX' = X\mathbf{T}$, with $t \in K^*$. Write $\beta = \mathbf{M}(\mathbf{T})$; then $\beta = \mathbf{M}(\lambda \mathbf{T})$ for any λ in K^* . The group of projectivities of PG(n, K) is denoted by PGL(n+1, K). **Definition 2.13.** With respect to a fixed basis of V(n+1, K), an automorphism σ of K can be extended to an automorphic collineation σ of PG(n, K); this is given by $\mathbf{P}(X)\sigma = \mathbf{P}(X\sigma)$ where $X\sigma = (x_0\sigma, x_1\sigma, \ldots, x_n\sigma)$.

Note the following properties.

- (1) If $\xi : S \to S$ is a collineation, then $\xi = \sigma\beta$, where σ is an automorphic collineation, given by a field automorphism σ , and β is a projectivity.
- (2) If $\{\mathbf{P}_0, \dots, \mathbf{P}_{n+1}\}$ and $\{\mathbf{P}'_0, \dots, \mathbf{P}'_{n+1}\}$ are both subsets of PG(n, K) such that no n+1 points chosen from the same set lie on a prime, then there exists a unique projectivity β such that $\mathbf{P}'_i = \mathbf{P}_i\beta$ for all $i = 0, \dots, n+1$.
- (3) For n = 1, the previous statement simplifies: there is a unique projectivity transforming any three distinct points on a line to any other three.
- (4) When $K = \mathbb{F}_2$, it suffices to give the images of $\mathbf{P}_0, \ldots, \mathbf{P}_n$ to determine β . Similarly, for the case n = 1, the images of two points determine the projectivity.

Definition 2.14. Given a homogenous polynomial F in three variables x_0, x_1, x_2 over \mathbb{F}_q , a curve \mathcal{F} is the set

$$\mathcal{F} = \nu(F) = \{ \mathbf{P}(X) \mid F(X) = 0 \}$$

where $\mathbf{P}(X)$ is the point of PG(2, q) represented by $X = (x_0, x_1, x_2)$.

If F has degree two, that is,

$$F = a_0 x_0^2 + a_1 x_1^2 + a_2 x_2^2 + b_2 x_0 x_1 + b_1 x_0 x_2 + b_0 x_1 x_2,$$

then \mathcal{F} is called a *quadric*. For q odd, the *discriminant* of a quadric \mathcal{F} is the determinant

$$D = \begin{vmatrix} 2a_0 & b_2 & b_1 \\ b_2 & 2a_1 & b_0 \\ b_1 & b_0 & 2a_2 \end{vmatrix}$$

A quadric \mathcal{F} is *non-singular* if its discriminant D is non-zero.

Definition 2.15. For q even, a conic C in PG(2,q) has a canonical form

$$\nu(x_0^2 + x_1x_2),$$

that is

$$\mathbf{C} = \{ \mathbf{P}(t, -1, t^2) \mid t \in \mathbb{F}_q \cup \mathbf{P}(0, 0, 1) \}.$$

Definition 2.16. A *conic* C is a non-singular quadric \mathcal{F} .

Lemma 2.17. Every conic in PG(2,q) is a (q+1)-arc.

Proof See [10, chapter 7].

Corollary 2.18. A conic in PG(2,q) has other canonical forms as follows:

- (1) $\nu(x_0^2 + x_1x_2)$, all q;
- (2) $\nu(x_0^2 x_1 x_2)$, all q;
- (3) $\nu(a_0x_0^2 + a_1x_1^2 + a_2x_2^2)$, with $a_0a_1a_2 \neq 0$, q odd;
- (4) $\nu(x_0^2 + x_1^2 + x_2^2), q \text{ odd.}$

Proof See [10, chapter 7].

Corollary 2.19. The projective group PGO(3,q) of a conic has order

$$|PGO(3,q)| = |PGL(3,q)| / (q^5 - q^2)$$

= $q(q^2 - 1)$
= $|PGL(2,q)|.$

Proof See [10, chapter 7].

Corollary 2.20. In PG(2,q) with $q \ge 4$, there is a unique conic through a 5-arc.

Proof See [10, chapter 7].

Corollary 2.21. $PGO(3,q) \cong PGL(2,q)$.

Proof See [10, chapter 7].

2.6 Cubics

Definition 2.22. Given a homogenous polynomial F in three variables x_0, x_1, x_2 over \mathbb{F}_q , a curve \mathcal{F} is the set

$$\mathcal{F} = \nu(F) = \{\mathbf{P}(X) : F(X) = 0\}$$

where $\mathbf{P}(X)$ is the point of PG(2,q) represented by $X = (x_0, x_1, x_2)$.

If F has degree three, that is,

$$F = a_0 x_0^3 + a_1 x_1^3 + a_2 x_2^3 + a_3 x_0^2 x_1 + a_4 x_0^2 x_2 + a_5 x_1^2 x_0 + a_6 x_1^2 x_2 + a_7 x_2^2 x_0 + a_8 x_2^2 x_1 + a_9 x_0 x_1 x_2,$$

then \mathcal{F} is called a *cubic*. The multiplicity of P on \mathcal{F} , denoted $m_P(\mathcal{F})$, is the minimum of intersection multiplicities of the line ℓ and \mathcal{F} at P, denoted $m_P(\ell, \mathcal{F})$, for all lines ℓ through P. Then P is a singular point of \mathcal{F} if $m_P(\mathcal{F}) > 1$ and a non-singular point of \mathcal{F} if $m_P(\mathcal{F}) = 1$. The cubic \mathcal{F} is called *singular* or *non-singular* (smooth) according as \mathcal{F} does or does not have a singular point.

Definition 2.23. A non-singular point P of \mathcal{F} is a point of inflexion of \mathcal{F} if

$$I(P, \ell_P \cap \mathcal{F}) \geq 3.$$

Here, P is also called an inflexion; the tangent ℓ_P at P is the inflexional tangent.

$2.7 \quad B$ -points

Definition 2.24. Let K be a k-arc and P a point of $PG(2,q)\setminus K$. Then if exactly i bisecants of K pass through P it is said to be a point of index i. The number of these points is denoted by c_i .

Lemma 2.25. The constants c_i of a k-arc K in PG(2,q) satisfy the following equations with the summation taken 0 to n for which $c_i \neq 0$:

$$\sum c_i = q^2 + q + 1 - k, \qquad (2.1)$$

$$\sum i c_i = k(k-1)(q-1)/2, \qquad (2.2)$$

$$\sum i(i-1)c_i/2 = k(k-1)(k-2)(k-3)/8.$$
(2.3)

Proof See [10, chapter 9].

Definition 2.26. Let K be a 6-arc and P a point of $PG(2,q) \setminus K$. Then, if exactly 3 bisecants of K pass through P, it is said to be a *B*-point or point of index 3.

Definition 2.27. The maximum value of k for a k-arc to exist is denoted by m(2,q), and a k-arc with this number of points is an *oval*.

2.8 Useful results from group theory

Definition 2.28. A group G acts on a set Λ if there is a map $\Lambda \times G \to \Lambda$ such that given g, g' elements in G and 1 its identity, then

- (1) x1 = x,
- (2) (xg)g' = x(gg')for any x in Λ .

Definition 2.29. The orbit of x in Λ under the action of G is the set

$$xG = \{xg \mid g \in G\}$$

Definition 2.30. The stabilizer of x in Λ under the action of G is the group

$$G_x = \{g \in G \mid xg = x\}.$$

Remark 2.31. The orbit of x is a subset of Λ , whereas the stabilizer of x is a subset of G.

Definition 2.32. The action of G on Λ is *transitive* if given any two elements x, y in Λ there exists g in G such that y = xg. In that case, there is only one orbit. The action is *regular* if it is transitive and $G_x = \{1\}$ for all x in Λ .

The action of G on Λ is *k*-transitive if there is some element of G transforming any ordered k-tuple of distinct elements of Λ to any other such k-tuple.

Definition 2.33. Let the group G act on the set Λ .

(1) If y = xg, for x, y in G, then

(a)
$$yG = xG;$$

(b)
$$G_y = g^{-1}G_xg.$$

(2)
$$|G_x| = |G|/|xG|.$$

In Table 2.1 a list of groups of order up to 24 is given.

Order	Number	Groups
1	1	Ι
2	1	\mathbf{Z}_2
3	1	\mathbf{Z}_3
4	2	$\mathbf{Z}_4, \mathbf{Z}_2 imes \mathbf{Z}_2$
5	1	\mathbf{Z}_5
6	2	$\mathbf{Z}_6, \mathbf{S}_3$
7	1	\mathbf{Z}_7
8	5	$\mathbf{Z}_8, \mathbf{Z}_4 imes \mathbf{Z}_2, \mathbf{Z}_2 imes \mathbf{Z}_2 imes \mathbf{Z}_2, \mathbf{D}_4, \mathbf{Q}_4$
9	2	$\mathbf{Z}_9, \mathbf{Z}_3 \times \mathbf{Z}_3$
10	2	$\mathbf{Z}_{10},\mathbf{D}_{5}$
11	1	\mathbf{Z}_{11}
12	5	$\mathbf{Z}_{12}, \mathbf{Z}_6 \times \mathbf{Z}_2, \mathbf{D}_6, \mathbf{Q}_6, \mathbf{A}_4$

Tab. 2.1: Group of order up to 24

13	1	\mathbf{Z}_{13}
14	2	$\mathbf{Z}_{14}, \mathbf{D}_7$
15	1	\mathbf{Z}_{15}
16	14	$\mathbf{Z}_{16}, \mathbf{Z}_8 imes \mathbf{Z}_2, (\mathbf{Z}_4)^2, \mathbf{Z}_4 imes (\mathbf{Z}_2)^2, (\mathbf{Z}_2)^4, \mathbf{D}_8, \mathbf{Q}_8$
		$\mathbf{D}_4 \times \mathbf{Z}_2, \mathbf{Q}_4 \times \mathbf{Z}_2, H_1 \cong \mathbf{Z}_8 \rtimes \mathbf{Z}_2, H_2 \cong \mathbf{Z}_8 \rtimes \mathbf{Z}_2$
		$\mathbf{Z}_4 \rtimes \mathbf{Z}_4, H_3 \cong (\mathbf{Z}_4 \times \mathbf{Z}_2) \rtimes \mathbf{Z}_2, H_4 \cong (\mathbf{Z}_4 \times \mathbf{Z}_2) \rtimes \mathbf{Z}_2$
17	1	\mathbf{Z}_{17}
18	5	$\mathbf{Z}_{18}, \mathbf{Z}_6 \times \mathbf{Z}_3, \mathbf{D}_9, \mathbf{S}_3 \times \mathbf{Z}_3, (\mathbf{Z}_3 \times \mathbf{Z}_3) \rtimes \mathbf{Z}_2$
19	1	\mathbf{Z}_{19}
20	5	$\mathbf{Z}_{20}, \mathbf{Z}_{10} imes \mathbf{Z}_2, \mathbf{D}_{10}, \mathbf{Q}_{10}, \mathbf{Z}_5 times \mathbf{Z}_4$
21	2	$\mathbf{Z}_{21}, \mathbf{Z}_7 \rtimes \mathbf{Z}_3$
22	2	$\mathbf{Z}_{22}, \mathbf{D}_{11}$
23	1	\mathbf{Z}_{23}
24	15	$\mathbf{Z}_{24}, \mathbf{Z}_{12} imes \mathbf{Z}_2, \mathbf{Z}_6 imes (\mathbf{Z}_2)^2, \mathbf{S}_4, \mathbf{D}_{12}, \mathbf{Q}_{12}, \mathbf{D}_6 imes \mathbf{Z}_2$
		$\mathbf{A}_4 imes \mathbf{Z}_2, \mathbf{Q}_6 imes \mathbf{Z}_2, \mathbf{D}_4 imes \mathbf{Z}_3, \mathbf{Q}_4 imes \mathbf{Z}_3, \mathbf{S}_3 imes \mathbf{Z}_4$
		$SL(2,3), \mathbf{Z}_3 \rtimes \mathbf{Z}_8, \mathbf{Z}_3 \rtimes \mathbf{D}_4$
1	1	

The types of group that occurs are listed below.

 $\begin{aligned} \mathbf{Z}_n &= \text{ cyclic group of order } n; \\ \mathbf{S}_n &= \text{ symmetric group of degree } n; \\ \mathbf{A}_n &= \text{ alternating group of degree } n; \\ \mathbf{D}_n &= \text{ dihedral group of order } 2n \\ &= \langle r, s \mid r^n = s^2 = (rs)^2 = 1 \rangle; \\ \mathbf{Q}_n &= \text{ dicyclic group of order } 2n \\ &= \langle r, s \mid r^n = 1, r^{n/2} = s^2 = (sr^{-1})^2 \rangle; \\ G \times H &= \text{ the direct product of } G \text{ and } H; \\ G \rtimes H &= \text{ a semi-direct product of } G \text{ with } H, \text{ where } H \\ &= \text{ is a normal subgroup.} \end{aligned}$

Lemma 2.34. Subgroups of order 16 in Table 2.1 are distinguished in pairs as follows:

- (1) H_1 has three elements of order 2;
- (2) H_2 has five elements of order 2;
- (3) the subgroup of squares in H_3 is isomorphic to \mathbb{Z}_2 ;
- (4) the subgroup of squares in H_4 is isomorphic to $\mathbf{Z}_2 \times \mathbf{Z}_2$.

Proof See [10, chapter 2].

2.9 Links with Coding Theory

The geometrical objects considered in this work can be viewed and studied as linear codes defined over a finite field. Hence, results on their geometry can be translated to results in Coding Theory. In order to understand these results, we introduce the basic concepts and results concerning this theory.

An $(n, M, d)_q$ code C is a set of M words, each with n symbols taken from an alphabet of size q, such that any two words differ in at least d places. A code $(n, M, d)_q$ has the following desirable properties:

- (1) small n: fast transmission;
- (2) large M: many messages;
- (3) large d: correct many errors.

If the code is *linear*, it can more easily be used for encoding and decoding; in this case, $M = q^k$ for some positive integer k, the dimension of the code, and C is called an $[n, k, d]_q$ code. The Main Coding Theory problem is to find codes optimising one parameter with the other two fixed. Mathematically, such a code can also be viewed as a set of n points in PG(k-1,q) with at most n-d points in a subspace of dimension k-2. **Definition 2.35.** An (n, M) code C over \mathbb{F}_q is a subset of \mathbb{F}_q^n of size M. A linear $[n, k]_q$ code over \mathbb{F}_q is a k-dimensional subspace of \mathbb{F}_q^n and size $M = q^k$. The vectors in the linear code C arc called *codewords* and we denote them by $\mathbf{x} = x_1 x_2 \dots x_n$, where $x_i \in \mathbb{F}_q$.

Definition 2.36. A generator matrix G for an $[n, k]_q$ code C is any $k \times n$ matrix G whose rows form a basis for C. For any set of k independent columns of a generator matrix G, the corresponding set of coordinates forms an information set for G. If the first k coordinates form an information set, the code has a unique generator matrix of the form $[I_k|A]$ where I_k is the $k \times k$ identity matrix; such a generator matrix is in standard form.

Definition 2.37. The ordinary *inner product* of vectors $\mathbf{u} = u_1 \dots u_n, \mathbf{v} = v_1 \dots v_n$ in \mathbb{F}_q^n is defined by

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i.$$

Definition 2.38. The *dual* of the code C is the $[n, n - k]_q$ linear code C^{\perp} defined as

$$C^{\perp} = \{ \mathbf{v} \in \mathbb{F}_q^n \mid \mathbf{u} \cdot \mathbf{v} = 0 \ \forall \mathbf{u} \in C \}.$$

Definition 2.39. A parity check matrix H of a linear $[n, k]_q$ code C is defined to be an $(n-k) \times n$ generator matrix of C^{\perp} .

Remark 2.40. From the previous definition, we deduce that

$$C = \{ \mathbf{x} \in \mathbb{F}_q^n \mid H\mathbf{x}^T = 0 \}.$$

Theorem 2.41. If $G = [I_k|A]$ is a generator matrix for C in standard form, then $H = [-A^T|I_{n-k}]$ is a parity check matrix for C^{\perp} .

Proof See [10, chapter 2].

Definition 2.42. The (*Hamming*) distance $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x}, \mathbf{y} in \mathbb{F}_q^n is defined to be the number of coordinates in which \mathbf{x} and \mathbf{y} differ. The distance d is a metric. The minimum distance d of a code C is the smallest distance between any pair of distinct codewords.

Definition 2.43. The (*Hamming*) weight $w(\mathbf{x})$ of a vector \mathbf{x} in \mathbb{F}_q^n is the number of its nonzero coordinates.

Therefore, if C is a linear code, the minimum distance d is the same as the minimum weight of a nonzero codeword. When the minimum distance d of an $[n, k]_q$ code C is known, we refer to C as a linear $[n, k, d]_q$ code.

Let A_i be the number of codewords of weight *i* in a code *C*.

Definition 2.44. The list A_i for $0 \le i \le n$ is called the weight distribution of C.

Theorem 2.45. A linear code has minimum distance d if and only if its parity check matrix has a set of d linearly dependent columns but no set of d-1 linearly dependent columns.

Proof See [10, chapter 2].

Corollary 2.46. For any $[n, k, d]_q$ code we have

$$d \le n - k + 1.$$

Proof See [10, chapter 2].

Definition 2.47. A code is maximum distance separable (MDS) when

$$d = n - k + 1.$$

3. THE PROJECTIVE LINE PG(1, 17)

3.1 Introduction

The 18 points of PG(1, 17) are $\mathbf{P}(x_0, x_1), x_i \in \mathbb{F}_{17}$. So

$$PG(1,17) = \{U_0 = \mathbf{P}(1,0)\} \cup \{\mathbf{P}(x,1) \mid x \in \mathbb{F}_{17}\}.$$

Each point $\mathbf{P}(x_0, x_1)$ with $x_1 \neq 0$ is determined by the non-homogeneous coordinate x_0/x_1 ; the coordinate for U_0 is ∞ . Then, with $\mathbb{F}_{17} \cup \{\infty\}$, each point of PG(1, 17) is represented by a single element of $\mathbb{F}_{17} \cup \{\infty\}$. Thus

$$PG(1,17) = \{ \mathbf{P}(t,1) \mid t \in \mathbb{F}_{17} \cup \{ \infty \};$$

here, $\mathbf{P}(\infty, 1) = \mathbf{P}(1, 0)$. A projectivity $\xi = \mathbf{M}(\mathbf{T})$ of PG(1, 17) is given by $Y = X\mathbf{T}$, where $X = (x_0, x_1), Y = (y_0, y_1)$ and

$$\mathbf{T} = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

Let $s = y_0/y_1$ and $t = x_0/x_1$; then s = (at + c)/(bt + d). If $Q_i = P_i\xi$ for i = 2, 3, 4 and P_i and Q_i have the respective coordinates t_i and s_i , then ξ is given by

$$\frac{(s-s_3)(s_2-s_4)}{(s-s_4)(s_2-s_3)} = \frac{(t-t_3)(t_2-t_4)}{(t-t_4)(t_2-t_3)}.$$

3.2 The tetrads

There are 18 points on the line PG(1, 17) and they have non-homogeneous coordinates

$$\infty, 0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 7, -7, 8, -8.$$

The cross-ratio of four ordered points P_1, P_2, P_3, P_4 with coordinates t_1, t_2, t_3, t_4 is

$$\{P_1, P_2; P_3, P_4\} = \{t_1, t_2; t_3, t_4\} = \frac{(t_1 - t_3)(t_2 - t_4)}{(t_1 - t_4)(t_2 - t_3)}.$$

If P_1, P_2, P_3, P_4 are distinct points, then P_1 and P_2 separate P_3 and P_4 harmonically, written $h(P_1, P_2; P_3, P_4)$, if

$$\{t_1, t_2; t_3, t_4\} = -1.$$

So,

$$h(P_1, P_2; P_3, P_4) \Longleftrightarrow h(P_2, P_1; P_3, P_4)$$

In this case, the permutations of the points only give three values of the cross-ratio, -1, 2, 1/2. Let ω be the cross-ratio of a tetrad in a given order. The tetrad is called *harmonic* (H) if $\omega = 1 - \omega$, $\omega = \omega/(\omega - 1)$ or $\omega = 1/\omega$. It is called *equianharmonic* (E) if $\omega = 1/(1 - \omega)$ or $\omega = (\omega - 1)/\omega$, and it is neither harmonic nor equianharmonic (N) if the cross-ratio is another value. Consider the tetrad $\{\infty, 0, 1, t\}$ with $t \in \mathbb{F}_{17} \setminus \{0, 1\}$. Let

$$X_1 = \{ \text{ class of } H \text{ tetrads} \}, \\ X_2 = \{ \text{ class of } E \text{ tetrads} \}, \\ X_3 = \{ \text{ class of } N \text{ tetrads} \}.$$

Since $17 \not\equiv 0,1 \pmod{3}$, there are no equianharmonic tetrads. So X_2 is empty. The tetrad $\{\infty, 0, 1, a\} \in X_1$ for a = -1, 2, -8. The tetrad $\{\infty, 0, 1, c\} \in X_3$ for

$$c = -2, 3, -3, 4, -4, 5, -5, 6, -6, 7, -7, 8.$$

As a tetrad of type N has six possible values of its cross-ratio, the class X_3 is partitioned into two subclasses C_2 with

$$c = -2, 3, -5, 6, -7, 8.$$

and the other C_3 with

$$c = -3, 4, -4, 5, -6, 7.$$

If we now call the three classes C_1 , C_2 and C_3 where $C_1 = X_1$, $C_2 \cup C_3 = X_3$, then the tetrads within each class C_i are projectively equivalent. So there are three projectively distinct tetrads : one of type H and two of type N, called N_1 and N_2 .

- 1. Consider the tetrad $H = \{\infty, 0, 1, -1\}$ chosen from the class C_1 . Then the projective group of H is isomorphic to dihedral group of order 8.
- 2. The tetrad $N_1 = \{\infty, 0, 1, -2\}$ chosen from the class C_2 . Then the projective group of N_1 is isomorphic to the direct product of \mathbf{Z}_2 and \mathbf{Z}_2 .
- 3. The tetrad $N_2 = \{\infty, 0, 1, -3\}$ chosen from the class C_3 . Then the projective group of N_2 is isomorphic to the direct product of \mathbf{Z}_2 and \mathbf{Z}_2 .

3.3 The pentads

Under the group $G(H) = \langle b, d \rangle$, where $b = \frac{1}{x}, d = \frac{x-1}{x+1}$, the points of $PG(1, 17) \setminus H$ are partitioned into three orbits; they are

$$\{2, -2, 3, -3, 6, -6, 8, -8\}, \{4, -4\}, \{5, -5, 7, -7\}.$$

Under the group $G(N_1) = \langle f, h \rangle$, where $f = \frac{x+2}{x-1}$, $h = \frac{-2}{x}$, the points of $PG(1, 17) \setminus N_1$ are partitioned into four orbits; they are

$$\{-1, 2, 4, 8\}, \{3, 5, 6, -6\}, \{-3, -4, -5, -8\}, \{7, -7\}$$

Finally $G(N_2) = \langle k, l \rangle$, where $k = \frac{x+3}{x-1}, l = \frac{-3}{x}$, and the points of $PG(1, 17) \setminus N_2$ are partitioned into four orbits; they are

$$\{-1,3\},\{2,-4,5,7\},\{-2,-6,-7,-8\},\{4,-5,6,8\}.$$

Adding one point from each orbit to the corresponding tetrad gives eleven pentads to be

 $\{a_1, a_2, a_3, a_4\}, \{a_1, a_2, a_3, a_5\}, \{a_1, a_2, a_4, a_5\}, \{a_1, a_3, a_4, a_5\}, \{a_2, a_3, a_4, a_5\}.$ So we get Table 3.1.

No.	The pentads	CR of tetrads	Types of tetrad	Stabilizer
1	$\{\infty, 0, 1, -1, 2\}$	-1, 2, -2, 8, -4	$H H N_1 N_1 N_2$	$\mathbf{Z_2} = \langle \frac{1-x}{1} \rangle$
2	$\{\infty,0,1,-1,4\}$	-1, 4, -4, 7, -6	$H N_2 N_2 N_2 N_2 N_2$	$\mathbf{Z_4} = \langle rac{x-1}{x+1} angle$
3	$\{\infty, 0, 1, -1, 5\}$	-1, 5, -5, -2, -3	$H N_2 N_1 N_1 N_2$	$\mathbf{Z_2} = \langle rac{1-x}{1+x} angle$
4	$\{\infty, 0, 1, -2, -1\}$	-2, -1, -8, -5, 7	$N_1 H H N_1 N_2$	$\mathbf{Z_2} = \langle \frac{-x-1}{1} \rangle$
5	$\{\infty, 0, 1, -2, 3\}$	-2, 3, 7, 5, 8	$N_1 N_1 N_2 N_2 N_1$	$\mathbf{Z_2} = \langle \frac{1-x}{1} \rangle$
6	$\{\infty, 0, 1, -2, -3\}$	-2, -3, -7, 7, -1	$N_1 N_2 N_1 N_2 H$	$\mathbf{Z_2} = \langle \frac{-x-2}{1} \rangle$
7	$\{\infty, 0, 1, -2, 7\}$	-2, 7, 5, -2, 3	$N_1 N_2 N_2 N_1 N_1$	$\mathbf{Z_2} = \langle rac{-2}{x} angle$
8	$\{\infty, 0, 1, -3, -1\}$	-3, -1, 6, -8, -7	$N_2 H N_1 H N_1$	$\mathbf{Z_2} = \langle rac{x+3}{x-1} angle$
9	$\{\infty,0,1,-3,2\}$	-3, 2, 5, 4, -6	$N_2 H N_2 N_2 N_2$	$\mathbf{Z_4} = \langle rac{2x-2}{x} angle$
10	$\{\infty, 0, 1, -3, -2\}$	-3, -2 - 5, 5, -1	$N_2 N_1 N_1 N_2 H$	$\mathbf{Z_2} = \langle \frac{-x-2}{1} \rangle$
11	$\{\infty, 0, 1, -3, 4\}$	-3, 4, -7, -5, 8	$N_2 N_2 N_1 N_1 N_1 N_1$	$\mathbf{Z_2} = \langle rac{1-x}{1} angle$

Tab. 3.1: The pentads

According to the types of the five tetrads, the pentads fall into four sets,

 $\{1,4,8\},\{2,9\},\{3,6,10\},\{5,7,11\}.$

The pentads 6 and 10 are the same. Transformations can be carried out as follows:

(1) $1 \longrightarrow 4$ by $\frac{-x}{1}$, (2) $1 \longrightarrow 8$ by $\frac{1+x}{1-x}$, (3) $2 \longrightarrow 9$ by $\frac{x+1}{x}$,

- (4) $3 \longrightarrow 6$ by $\frac{x+1}{8x-6}$,
- (5) $5 \longrightarrow 7$ by $\frac{x+2}{5x+2}$,
- (6) $5 \longrightarrow 11$ by $\frac{7x-3}{1}$.

This gives the following conclusion.

Theorem 3.1. On PG(1, 17) there are precisely four projectively distinct pentads, given in Table 3.2.

No.	New symbol	Canonical form	Stabilizer
1	P_1	$\{\infty, 0, 1, -1, 2\}$	$G(P_1) \cong \mathbf{Z}_2 = \langle \frac{1-x}{1} \rangle$
2	P_2	$\{\infty, 0, 1, -1, 4\}$	$G(P_2) \cong \mathbf{Z_4} = \langle \frac{x-1}{x+1} \rangle$
3	P_3	$\{\infty, 0, 1, -1, 5\}$	$G(P_3) \cong \mathbf{Z_2} = \langle \frac{1-x}{1+x} \rangle$
5	P_4	$\{\infty, 0, 1, -2, 3\}$	$G(P_4) \cong \mathbf{Z_2} = \langle \frac{1-x}{1} \rangle$

Tab. 3.2: The distinct pentads

3.4 The hexads

1. The group $G(P_1)$ partitions the set $PG(1, 17) \setminus P_1$ into seven orbits; they are

$$\{-2,3\}, \{-3,4\}, \{-4,5\}, \{-5,6\}, \{-6,7\}, \{-7,8\}, \{-8\}.$$

2. The group $G(P_2)$ partitions the set $PG(1,17) \setminus P_2$ into four orbits; they are

$$\{-2, 3, -6, -8\}, \{2, 6, -3, -8\}, \{-4\}, \{5, -5, -7, 7\}.$$

3. The group $G(P_3)$ partitions the set $PG(1, 17) \setminus P_3$ into seven orbits; they are $\{2, -6\}, \{-2, -3\}, \{3, 8\}, \{4, -4\}, \{-5, 7\}, \{6, -8\}, \{-7\}.$

4. The group $G(P_4)$ partitions the set $PG(1, 17) \setminus P_4$ into seven orbits; they are

$$\{-1,2\}, \{-3,4\}, \{-4,5\}, \{-5,6\}, \{-6,7\}, \{-7,8\}, \{-8\}$$

Therefore, 25 hexads can be formed (the total number of all orbits) by adding one point from each orbit to the corresponding pentad.

Remark 3.2. The numbers of hexads and their stabilizers are given in Table 3.3.

Tab. 3.3: The stabilizers of hexads

Stabilizer	Ι	$\mathbf{Z_2} imes \mathbf{Z_2}$	\mathbf{Z}_2	\mathbf{S}_{3}	D_4	\mathbf{S}_4
Number	6	4	12	1	1	1

According to the types of the six pentads, the hexads fall into ten sets. This gives the following conclusion.

Theorem 3.3. On PG(1,17) there are precisely 10 projectively distinct hexads, given in Table 3.4.

Symbol	Canonical form	Types of pentad	Stabilizer
H_1	$\{\infty, 0, 1, -1, 2, -2\}$	$P_1P_1P_1P_1P_3P_3$	$\mathbf{Z_2} imes \mathbf{Z_2} = \langle \frac{-x}{1}, \frac{2}{x} angle$
H_2	$\{\infty, 0, 1, -1, 2, -3\}$	$P_1P_1P_2P_4P_3P_4$	$I = \langle x \rangle$
H_3	$\{\infty, 0, 1, -1, 2, -4\}$	$P_1P_2P_3P_1P_3P_2$	$\mathbf{Z_2} = \langle rac{2x+2}{x-2} angle$
H_4	$\{\infty, 0, 1, -1, 2, -6\}$	$P_1P_1P_3P_4P_4P_3$	$\mathbf{Z_2} = \langle rac{1-x}{1+x} angle$
H_5	$\{\infty, 0, 1, -1, 2, -7\}$	$P_1 P_3 P_1 P_4 P_3 P_4$	$\mathbf{Z_2} = \langle rac{x-2}{x-1} angle$
H_6	$\{\infty, 0, 1, -1, 2, -8\}$	$P_1P_1P_1P_1P_1P_1$	$\mathbf{D_6} = \langle rac{1+x}{2-x}, rac{2-x}{x+1} angle$
H_7	$\{\infty, 0, 1, -1, 4, -4\}$	$P_2P_2P_2P_2P_2P_2$	$\mathbf{S_4} = \langle rac{1+x}{4-4x}, rac{x+1}{1-x} angle$
H_8	$\{\infty, 0, 1, -1, 4, 5\}$	$P_2P_3P_2P_4P_4P_3$	$\mathbf{Z_2} = \langle rac{1-x}{1+4x} angle$

Tab. 3.4: The distinct hexads

Symbol	Canonical form	Types of pentad	Stabilizer
H_9 H_{10}	$\{\infty, 0, 1, -1, 5, -5\}$ $\{\infty, 0, 1, -2, 3, -6\}$	$P_{3}P_{3}P_{3}P_{3}P_{4}P_{4}$ $P_{4}P_{4}P_{4}P_{4}P_{4}P_{4}P_{4}$	$\mathbf{Z_2} \times \mathbf{Z_2} = \left\langle \frac{-x}{1}, \frac{5}{x} \right\rangle$ $\mathbf{S_3} = \left\langle \frac{x+2}{x-1}, \frac{x+6}{6x-1} \right\rangle$

3.5 The heptads

- 1. The group $G(H_1)$ partitions the set $PG(1, 17) \setminus H_1$ into four orbits; they are $\{3, -3, 5, -5\}, \{4, -4, 8, -8\}, \{6, -6\}, \{7, -7\}.$
- 2. The group $G(H_2)$ partitions the set $PG(1, 17) \setminus H_2$ into 12 orbits; they are $\{-2\}, \{3\}, \{4\}, \{-4\}, \{5\}, \{-5\}, \{6\}, \{-6\}, \{7\}, \{-7\}, \{8\}, \{-8\}.$
- 3. The group $G(H_3)$ partitions the set $PG(1, 17) \setminus H_3$ into six orbits; they are $\{-2, -8\}, \{3, 8\}, \{-3, -6\}, \{4, 5\}, \{-5, 6\}, \{7, -7\}.$

4. The group $G(H_4)$ partitions the set $PG(1, 17) \setminus H_4$ into seven orbits; they are $\{-2, -3\}, \{3, 8\}, \{4, -4\}, \{5\}, \{-5, 7\}, \{6, -8\}, \{-7\}.$

- 5. The group $G(H_5)$ partitions the set $PG(1, 17) \setminus H_5$ into seven orbits; they are $\{-2, 7\}, \{3, -8\}, \{-3\}, \{4, -5\}, \{-4, 8\}, \{5\}, \{6, -6\}.$
- 6. The group $G(H_6)$ fixes the set $PG(1, 17) \setminus H_6$.
- 7. The group $G(H_7)$ fixes the set $PG(1, 17) \setminus H_7$.
- 8. The group $G(H_8)$ partitions the set $PG(1,17) \setminus H_8$ into six orbits; they are

$$\{2, -2\}, \{3, -8\}, \{-3, -5\}, \{-4, -6\}, \{6, -7\}, \{7, 8\}.$$

- 9. The group $G(H_9)$ partitions the set $PG(1, 17) \setminus H_9$ into three orbits; they are $\{2, -2, 6, -6\}, \{3, -3, 4, -4\}, \{7, -7, 8, -8\}.$
- 10. The group $G(H_{10})$ partitions the set $PG(1, 17) \setminus H_{10}$ into two orbits; they are $\{-1, -5, 5, 6, 8, -8\}, \{2, -3, 4, -4, 7, -7\}.$

Therefore, 49 heptads can be formed (the total number of all orbits) by adding one point from each orbit to the corresponding hexad. In Tables 3.5 we list the additional points to the hexads.

Symbol	Types of pentad	The additional points
H_1	$P_1P_1P_1P_1P_3P_3$	-3, -8, 6, -7
H_2	$P_1P_1P_2P_4P_3P_4$	[-2], 3, 4, -4, 5, -5, 6, -6, 7, -7, 8, -8
H_3	$P_1P_2P_3P_1P_3P_2$	-2, 3, -6, 4, -5, -7
H_4	$P_1P_1P_3P_4P_4P_3$	[-3], 3, [-4], 5, -5, 6, -7
H_5	$P_1P_3P_1P_4P_3P_4$	[-2], 3, [-3], 4, [-4], 5, [-6]
H_6	$P_1P_1P_1P_1P_1P_1$	[-2]
H_7	$P_2P_2P_2P_2P_2P_2$	5
H_8	$P_2P_3P_2P_4P_4P_3$	2, 3, -5, [-4], 6, 7
H_9	$P_3P_3P_3P_3P_4P_4$	2, [4], 7
H_{10}	$P_4P_4P_4P_4P_4P_4P_4$	-1, 2

Tab. 3.5: The additional points to the hexads

So far, the number of heptads constructed is 39, since each point in square brackets gives an identical heptad to one already included.

Remark 3.4. The numbers of heptads and their stabilizers are given in Table 3.6.

Tab. 3.6: The stabilizers of heptads

Stabilizer	Ι	\mathbf{Z}_2
Number	17	22

According to the types of the seven hexads, the heptads fall into ten sets. This gives the following conclusion.

Theorem 3.5. On PG(1, 17) there are precisely 10 projectively distinct heptads, given in Table 3.7.

Symbol	Canonical form	Types of hexad	Stabilizer
T_1	$\{\infty, 0, 1, -1, 2, -2, -3\}$	$H_1H_2H_1H_3H_2H_3H_4$	$\mathbf{Z_2} = \langle -x - 1 \rangle$
T_2	$\{\infty, 0, 1, -1, 2, -2, -8\}$	$H_1H_6H_4H_2H_3H_2H_4$	$I = \langle x \rangle$
T_3	$\{\infty, 0, 1, -1, 2, -2, 6\}$	$H_1H_2H_4H_2H_4H_8H_8$	$\mathbf{Z_2} = \langle rac{2}{x} angle$
T_4	$\{\infty, 0, 1, -1, 2, -2, -7\}$	$H_1H_4H_4H_4H_4H_9H_9$	$\mathbf{Z_2} = \langle rac{-2}{x} angle$
T_5	$\{\infty, 0, 1, -1, 2, -3, 4\}$	$H_2H_2H_2H_2H_4H_4H_4$	$\mathbf{Z_2} = \langle 1 - x \rangle$
T_6	$\{\infty, 0, 1, -1, 2, -3, -4\}$	$H_2H_3H_3H_8H_4H_9H_2$	$I = \langle x \rangle$
T_7	$\{\infty, 0, 1, -1, 2, -3, 5\}$	$H_2H_3H_2H_7H_8H_3H_8$	$\mathbf{Z_2} = \langle rac{x+3}{x-1} angle$
T_8	$\{\infty, 0, 1, -1, 2, -3, 6\}$	$H_2H_2H_4H_8H_{10}H_9H_8$	$I = \langle x \rangle$

Tab. 3.7: The distinct heptads

Symbol	Canonical form	Types of hexad	Stabilizer
T_9 T_{10}	$\{\infty, 0, 1, -1, 2, -3, -7\}$ $\{\infty, 0, 1, -1, 2, -4, -7\}$	$H_{2}H_{4}H_{4}H_{2}H_{10}H_{4}H_{10}$ $H_{3}H_{4}H_{8}H_{4}H_{4}H_{3}H_{8}$	$\mathbf{Z_2} = \langle \frac{x-2}{x-1} \rangle$ $\mathbf{Z_2} = \langle \frac{2x-3}{x-2} \rangle$

3.6 The octads

1. The group $G(T_1)$ partitions the set $PG(1, 17) \setminus T_1$ into six orbits; they are

$$\{3, -4\}, \{4, -5\}, \{5, -6\}, \{6, -7\}, \{7, -8\}, \{8\}.$$

2. The group $G(T_2)$ partitions the set $PG(1, 17) \setminus T_2$ into eleven orbits; they are {3}, {-3}, {4}, {-4}, {5}, {-5}, {6}, {-6}, {7}, {-7}, {8}.

3. The group $G(T_3)$ partitions the set $PG(1, 17) \setminus T_3$ into six orbits; they are

$$\{3, -5\}, \{-3, 5\}, \{4, -8\}, \{-4, 8\}, \{-6\}, \{7, -7\}.$$

4. The group $G(T_4)$ partitions the set $PG(1, 17) \setminus T_4$ into six orbits; they are

 $\{3,5\}, \{-3,-5\}, \{4,8\}, \{-4,-8\}, \{6,-6\}, \{7\}.$

5. The group $G(T_5)$ partitions the set $PG(1, 17) \setminus T_5$ into six orbits; they are

$$\{-2,3\}, \{-4,5\}, \{-5,6\}, \{-6,7\}, \{-7,8\}, \{-8\}.$$

6. The group $G(T_6)$ partitions the set $PG(1, 17) \setminus T_6$ into eleven orbits; they are

$$\{-2\}, \{3\}, \{4\}, \{5\}, \{-5\}, \{6\}, \{-6\}, \{7\}, \{-7\}, \{8\}, \{-8\}$$

7. The group $G(T_7)$ partitions the set $PG(1,17) \setminus T_7$ into six orbits; they are

$$\{-2, -6\}, \{3\}, \{4, 8\}, \{-4, 7\}, \{-5, 6\}, \{-7, -8\}$$

8. The group $G(T_8)$ partitions the set $PG(1, 17) \setminus T_8$ into eleven orbits; they are

$$\{-2\}, \{3\}, \{4\}, \{-4\}, \{5\}, \{-5\}, \{-6\}, \{7\}, \{-7\}, \{8\}, \{-8\}.$$

9. The group $G(T_9)$ partitions the set $PG(1, 17) \setminus T_9$ into six orbits; they are

$$\{-2,7\},\{3,-8\},\{4,-5\},\{-4,8\},\{5\},\{6,-6\}.$$

10. The group $G(T_{10})$ partitions the set $PG(1, 17) \setminus T_{10}$ into six orbits; they are

$$\{-2, 6\}, \{3\}, \{-3, -5\}, \{4, -6\}, \{5, 8\}, \{7, -8\}.$$

Therefore, 75 octads can be formed (the total number of all orbits) by adding one point from each orbit to the corresponding heptad. In Tables 3.8 we list the additional points to the heptads.

Symbol	Canonical form	The additional points
T_1	$\{\infty, 0, 1, -1, 2, -2, -3\}$	-4, 4, 5, -7, -8, 8
T_2	$\{\infty, 0, 1, -1, 2, -2, -8\}$	3, [-3], 4, -4, 5, -5, 6, -6, 7, -7, 8
T_3	$\{\infty, 0, 1, -1, 2, -2, 6\}$	3, -3, [-8], -4, -6, -7
T_4	$\{\infty, 0, 1, -1, 2, -2, -7\}$	3, [-3], 4, [-8], [6], 7
T_5	$\{\infty, 0, 1, -1, 2, -3, 4\}$	[-2], 5, 6, -6, -7, -8
T_6	$\{\infty, 0, 1, -1, 2, -3, -4\}$	[-2], 3, 4, 5, -5, 6, -6, 7, -7, 8, -8
T_7	$\{\infty, 0, 1, -1, 2, -3, 5\}$	[-2], 3, [4], [-4], 6, -7
T_8	$\{\infty, 0, 1, -1, 2, -3, 6\}$	[-2], 3, [4], [-4], [5], -5, -6, 7, -7, 8, -8
T_9	$\{\infty, 0, 1, -1, 2, -3, -7\}$	[-2], 3, [4], [-4], [5], [6]
T_{10}	$\{\infty, 0, 1, -1, 2, -4, -7\}$	-2, 3, [-3], 4, 5, 7

Tab. 3.8: The additional points to the heptads

The number of octads constructed is 55, since each point in square brackets gives an identical octad to one already included.

Remark 3.6. The numbers of octads and their stabilizers are given in Table 3.9.

Tab. 3.9: The stabilizers of octads

Stabilizer	Ι	$\mathbf{Z_2} imes \mathbf{Z_2}$	\mathbf{Z}_2	D_4
Number	20	6	27	2

According to the types of the eight heptads, the octads fall into 17 sets. This gives the following conclusion.

Theorem 3.7. On PG(1, 17) there are precisely 17 projectively distinct octads, given in Table 3.10.

Symbol	Canonical form	Type of heptad	Stabilizer
O_1	$\{\infty, 0, 1, -1, 2, -2, -3, -4\}$	$T_1 T_2 T_6 T_1 T_{10} T_2 T_6 T_5$	$\mathbf{Z_2} = \langle rac{-x-2}{1} angle$
O_2	$\{\infty, 0, 1, -1, 2, -2, -3, 4\}$	$T_1 T_2 T_5 T_1 T_2 T_5 T_2 T_2$	$\mathbf{Z_2} = \langle rac{x+3}{-x-1} angle$
O_3	$\{\infty, 0, 1, -1, 2, -2, -3, 5\}$	$T_1 T_1 T_7 T_3 T_7 T_3 T_{10} T_{10}$	${f Z_2}=\langle {2\over x} angle$
O_4	$\{\infty, 0, 1, -1, 2, -2, -3, -7\}$	$T_1 T_4 T_9 T_3 T_6 T_8 T_6 T_8$	$I = \langle x \rangle$
O_5	$\{\infty, 0, 1, -1, 2, -2, -3, -8\}$	$T_1 T_2 T_2 T_4 T_6 T_6 T_1 T_4$	$\mathbf{Z_2} = \langle rac{2x-1}{x-2} angle$
O_6	$\{\infty, 0, 1, -1, 2, -2, -3, 8\}$	$T_1 T_2 T_8 T_2 T_7 T_8 T_7 T_9$	$\mathbf{Z_2} = \langle rac{-x-1}{1} angle$
O_7	$\{\infty, 0, 1, -1, 2, -2, -8, -4\}$	$T_2 T_2 T_2 T_9 T_9 T_9 T_2 T_9 T_9$	$\mathbf{Z_2} \times \mathbf{Z_2} = \langle \frac{-x+2}{x+1}, \frac{x+1}{-8x-1} \rangle$
O_8	$\{\infty, 0, 1, -1, 2, -2, -8, 6\}$	$T_2 T_3 T_2 T_4 T_5 T_6 T_6 T_{10}$	$I = \langle x \rangle$
O_9	$\{\infty, 0, 1, -1, 2, -2, -8, -6\}$	$T_2 T_3 T_2 T_8 T_6 T_6 T_8 T_3$	$\mathbf{Z_2} = \langle rac{-x+2}{-2x+1} angle$
O_{10}	$\{\infty, 0, 1, -1, 2, -2, -8, 7\}$	$T_2 T_4 T_2 T_{10} T_8 T_{10} T_8 T_4$	$\mathbf{Z_2} = \langle rac{x+1}{2x-1} angle$
O_{11}	$\{\infty, 0, 1, -1, 2, -2, -8, 8\}$	$T_2 T_2 T_2 T_2 T_2 T_7 T_7 T_3 T_3$	$\mathbf{Z_2} imes \mathbf{Z_2} = \langle rac{1}{x}, rac{-1}{x} angle$
O_{12}	$\{\infty, 0, 1, -1, 2, -2, 6, -7\}$	$T_3 T_4 T_5 T_9 T_9 T_5 T_8 T_8$	$I = \langle x \rangle$
O_{13}	$\{\infty, 0, 1, -1, 2, -2, -7, 7\}$	$T_4 T_4 T_4 T_4 T_4 T_4 T_4 T_4 T_4$	$\mathbf{D_8} = \langle rac{-x+7}{5x+1}, rac{x+2}{x+1} angle$
O_{14}	$\{\infty, 0, 1, -1, 2, -3, 4, 5\}$	$T_5 T_7 T_6 T_8 T_7 T_8 T_{10} T_6$	$I = \langle x \rangle$
O_{15}	$\{\infty, 0, 1, -1, 2, -3, -4, 5\}$	$T_6 T_7 T_7 T_6 T_7 T_6 T_6 T_6 T_7$	$\mathbf{Z_2} \times \mathbf{Z_2} = \langle \frac{x-5}{-x-1}, \frac{-x+1}{-4x+1} \rangle$
O_{16}	$\{\infty, 0, 1, -1, 2, -3, -4, -7\}$	$T_6 T_9 T_{10} T_{10} T_8 T_9 T_6 T_8$	$\mathbf{Z_2} = \langle rac{x+7}{-x-1} angle$
O_{17}	$\{\infty, 0, 1, -1, 2, -3, 6, 8\}$	$T_8T_8T_8T_8T_8T_8T_8T_8T_8$	$\mathbf{D_4} = \langle rac{x+1}{-x+1}, rac{2x+1}{x-2} angle$

Tab. 3.10: The distinct octads
3.7 The nonads

1. The group $G(O_1)$ partitions the set $PG(1,17) \setminus O_1$ into five orbits; they are

$$\{3, -5\}, \{4, -6\}, \{5, -7\}, \{6, -8\}, \{7, 8\}.$$

2. The group $G(O_2)$ partitions the set $PG(1,17) \setminus O_2$ into six orbits; they are

3. The group $G(O_3)$ partitions the set $PG(1, 17) \setminus O_3$ into six orbits; they are

$$\{3, -5\}, \{4, -8\}, \{-4, 8\}, \{6\}, \{-6\}, \{7, -7\}, \{-6\},$$

4. The group $G(O_6)$ partitions the set $PG(1, 17) \setminus O_6$ into ten orbits; they are

$$\{3\},\{4\},\{-4\},\{5\},\{-5\},\{6\},\{-6\},\{7\},\{8\},\{-8\}$$

5. The group $G(O_5)$ partitions the set $PG(1, 17) \setminus O_5$ into five orbits; they are

 $\{3,5\},\{4,-5\},\{-4,-7\},\{6,7\},\{-6,8\}.$

6. The group $G(O_5)$ partitions the set $PG(1, 17) \setminus O_5$ into five orbits; they are

$$\{3, -4\}, \{4, -5\}, \{5, -6\}, \{6, -7\}, \{7, -8\}, \{6, -7\}, \{7, -8\}, \{6, -7\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{7, -8\}, \{8, -7\}, \{7, -8\}, \{8, -7\}, \{$$

7. The group $G(O_7)$ partitions the set $PG(1,17) \setminus O_7$ into three orbits; they are

$$\{-3, -5, 6, -6\}, \{3, 4, 5, 8\}, \{7, -7\}$$

8. The group $G(O_8)$ partitions the set $PG(1, 17) \setminus O_8$ into ten orbits; they are

$$\{-3\}, \{3\}, \{4\}, \{-4\}, \{5\}, \{-5\}, \{-6\}, \{7\}, \{-7\}, \{8\}.$$

9. The group $G(O_9)$ partitions the set $PG(1, 17) \setminus O_9$ into five orbits; they are

$$\{-3, 8\}, \{3, 7\}, \{4, -7\}, \{-4, -5\}, \{5, 6\}$$

10. The group $G(O_{10})$ partitions the set $PG(1, 17) \setminus O_{10}$ into five orbits; they are

$$\{-3, -7\}, \{3, -6\}, \{4, 8\}, \{-4, 6\}, \{5, -5\}$$

11. The group $G(O_{11})$ partitions the set $PG(1, 17) \setminus O_{11}$ into three orbits; they are

$$\{3, -3, 6, -6\}, \{4, -4\}, \{5, -5, 7, -7\}.$$

12. The group $G(O_{12})$ partitions the set $PG(1, 17) \setminus O_{12}$ into ten orbits; they are $\{3\}, \{-3\}, \{4\}, \{-4\}, \{5\}, \{-5\}, \{-6\}, \{7\}, \{8\}, \{-8\}.$

13. The group $G(O_{13})$ partitions the set $PG(1, 17) \setminus O_{13}$ into two orbits; they are

$$\{3, -3, 4, -4, 5, -5, 8, -8\}, \{6, -6\}$$

14. The group $G(O_{14})$ partitions the set $PG(1, 17) \setminus O_{14}$ into ten orbits; they are $\{-2\}, \{3\}, \{-4\}, \{-5\}, \{6\}, \{-6\}, \{7\}, \{-7\}, \{8\}, \{-8\}.$

15. The group $G(O_{15})$ partitions the set $PG(1, 17) \setminus O_{15}$ into three orbits; they are

$$\{-2, -5, 6, -7\}, \{3, -6, 8, -8\}, \{4, 7\}.$$

16. The group $G(O_{16})$ partitions the set $PG(1, 17) \setminus O_{16}$ into five orbits; they are

$$\{-2,5\},\{3,6\},\{4,8\},\{-5,-8\},\{-6,7\}.$$

17. The group $G(O_{17})$ partitions the set $PG(1, 17) \setminus O_{17}$ into two orbits; they are

$$\{-2, 3, 5, -5, -6, 7, -7, -8\}, \{4, -4\}.$$

Therefore, 95 nonads can be formed (the total number of all orbits) by adding one point from each orbit to the corresponding octad. In Tables 3.11 we list the additional points to the octads.

Symbol	Canonical form	The additional points
O_1	$\{\infty, 0, 1, -1, 2, -2, -3, -4\}$	3, [4], [5], [-8], [8]
O_2	$\{\infty, 0, 1, -1, 2, -2, -3, 4\}$	3, [-4], [5], [8], 6, [-8]
O_3	$\{\infty, 0, 1, -1, 2, -2, -3, 5\}$	3, [-8], [8], 6, -6, [-7]
O_4	$\{\infty, 0, 1, -1, 2, -2, -3, -7\}$	3, 4, [-4], 5, -5, [6], -6, [7], [8], [-8]
O_5	$\{\infty, 0, 1, -1, 2, -2, -3, -8\}$	3, -5, -7, [6], [8]
O_6	$\{\infty, 0, 1, -1, 2, -2, -3, 8\}$	[-4], 4, -6, -7, [-8]
O_7	$\{\infty, 0, 1, -1, 2, -2, -8, -4\}$	[6], 4, [7]
O_8	$\{\infty, 0, 1, -1, 2, -2, -8, 6\}$	-3, 3, 4, -4, 5, -5, [-6], [7], [-7], 8
O_9	$\{\infty, 0, 1, -1, 2, -2, -8, -6\}$	8, [7], -7, -4, 6
O_{10}	$\{\infty, 0, 1, -1, 2, -2, -8, 7\}$	-7, -6, [8], 6, -5
O_{11}	$\{\infty, 0, 1, -1, 2, -2, -8, 8\}$	-3, -4, 7
O_{12}	$\{\infty, 0, 1, -1, 2, -2, 6, -7\}$	3, -3, 4, -4, 5, -5, -6, [7], 8, -8
O_{13}	$\{\infty, 0, 1, -1, 2, -2, -7, 7\}$	-3, 6
O_{14}	$\{\infty, 0, 1, -1, 2, -3, 4, 5\}$	-2, 3, [-4], -5, 6, -6, 7, -7, 8, -8
O_{15}	$\{\infty, 0, 1, -1, 2, -3, -4, 5\}$	[-7], 8, 4
O_{16}	$\{\infty, 0, 1, -1, 2, -3, -4, -7\}$	5, 6, 4, -5, -6
O_{17}	$\{\infty, 0, 1, -1, 2, -3, 6, 8\}$	-5, 4

Tab. 3.11: The additional points to the octads

The number of nonads constructed is 65, since each point in square brackets gives an identical nomad to one already included.

Remark 3.8. The numbers of nonads and their stabilizers are given in Table 3.12.

Stabilizer	Ι	\mathbf{Z}_2	Z_3	\mathbf{Z}_4	$\mathbf{Z_8}$	$\mathbf{S_3}$	D_9
Number	34	24	2	2	1	1	1

Tab. 3.12: The stabilizers of nonads

According to the types of the nine octads, the nonads fall into 17 sets. This gives the following conclusion.

Theorem 3.9. On PG(1, 17) there are precisely 17 projectively distinct nonads.

Remark 3.10. The distinct nonads and the classification of complementary nonads are given in Tables 3.13 and 3.14.

Symbol	Canonical form	Types of octad	Stabilizer
S_1	$\{\infty, 0, 1, -1, 2, -2, -3, -4, 3\}$	$O_1 O_1 O_2 O_5 O_2 O_8 O_5 O_8 O_2$	$\mathbf{Z_2} = \langle rac{-x-1}{1} angle$
S_2	$\{\infty, 0, 1, -1, 2, -2, -3, 4, 6\}$	$O_2 O_4 O_8 O_{12} O_4 O_9 O_{12} O_8 O_9$	$\mathbf{Z_2} = \langle rac{x+3}{-x-1} angle$
S_3	$\{\infty, 0, 1, -1, 2, -2, -3, 5, 3\}$	$O_3 O_1 O_2 O_{11} O_8 O_{14} O_9 O_{10} O_8$	$I = \langle x \rangle$
S_4	$\{\infty, 0, 1, -1, 2, -2, -3, 5, 6\}$	$O_3 O_4 O_4 O_{14} O_{12} O_{14} O_{12} O_{16} O_{16}$	$\mathbf{Z_2} = \langle rac{2}{x} angle$
S_5	$\{\infty, 0, 1, -1, 2, -2, -3, 5, -6\}$	$O_3 O_3 O_3 O_3 O_3 O_3 O_3 O_3 O_3 O_3 $	$\mathbf{D_9} = \langle rac{x-2}{x+2}, rac{-x-1}{1} angle$
S_6	$\{\infty, 0, 1, -1, 2, -2, -3, -7, 3\}$	$O_4 O_1 O_5 O_7 O_9 O_8 O_4 O_{16} O_{12}$	$I = \langle x \rangle$
S_7	$\{\infty, 0, 1, -1, 2, -2, -3, -7, 4\}$	$O_4 O_2 O_{10} O_{12} O_3 O_1 O_{14} O_5 O_6$	$I = \langle x \rangle$
S_8	$\{\infty, 0, 1, -1, 2, -2, -3, -7, 5\}$	$O_4 O_3 O_5 O_6 O_{11} O_{15} O_9 O_8 O_{14}$	$I = \langle x \rangle$
S_9	$\{\infty, 0, 1, -1, 2, -2, -3, 8, 4\}$	$O_6 O_2 O_7 O_{12} O_2 O_{11} O_{12} O_6 O_7$	$\mathbf{Z_2} = \langle rac{-3x-5}{x+3} angle$
S_{10}	$\{\infty, 0, 1, -1, 2, -2, -3, 8, -6\}$	$O_6O_3O_8O_4O_1O_{14}O_{14}O_{15}O_{16}$	$I = \langle x \rangle$
S_{11}	$\{\infty, 0, 1, -1, 2, -2, -3, 8, -7\}$	$O_6 O_4 O_{10} O_{16} O_9 O_{14} O_{17} O_{14} O_{12}$	$I = \langle x \rangle$
S_{12}	$\{\infty, 0, 1, -1, 2, -2, -8, 6, -3\}$	$O_8 O_5 O_4 O_{10} O_{13} O_8 O_4 O_5 O_{10}$	$\mathbf{Z_2} = \langle rac{-2x-5}{x+2} angle$
S_{13}	$\{\infty, 0, 1, -1, 2, -2, -8, 7, 6\}$	$O_{10}O_8O_{12}O_7O_8O_{12}O_{16}O_{16}O_{10}$	$\mathbf{Z_2} = \langle rac{x-1}{3x-1} angle$
S_{14}	$\{\infty, 0, 1, -1, 2, -2, 6, -7, -3\}$	$O_{12}O_4O_4O_{12}O_{12}O_4O_{12}O_4O_{17}$	$\mathbf{Z_4} = \langle rac{4x-7}{1} angle$
S_{15}	$\{\infty, 0, 1, -1, 2, -2, 6, -7, -8\}$	$O_{12}O_8O_8O_8O_{12}O_{12}O_{14}O_{14}O_{14}$	$\mathbf{Z_3} = \langle rac{1}{-x+1} angle$
S_{16}	$\{\infty, 0, 1, -1, 2, -2, -7, 7, 6\}$	$O_{13}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}$	$\mathbf{Z_8} = \langle rac{x+2}{x+1} angle$
S_{17}	$\{\infty, 0, 1, -1, 2, -3, -4, 5, 4\}$	$O_{15}O_{14}O_{14}O_{15}O_{14}O_{14}O_{14}O_{14}O_{14}O_{15}$	$\mathbf{S_3} = \langle rac{x+1}{-6x+7}, rac{-x+2}{6x+1} angle$

Tab. 3.13: The distinct nonads

Symbol	Canonical form	Types of octad complement	Stabilizer
S'_1	$\{4, 5, -5, 6, -6, 7, -7, 8, -8\}$	$O_5 O_2 O_1 O_5 O_8 O_1 O_2 O_8 O_2$	$\mathbf{Z_2} = \langle rac{-x-1}{1} angle$
S'_2	$\{3, -4, 5, -5, -6, 7, -7, 8, -8\}$	$O_2 O_4 O_{12} O_8 O_9 O_4 O_{12} O_9 O_8$	$\mathbf{Z_2} = \langle rac{x+3}{-x-1} angle$
S'_3	$\{4, -4, -5, 6, -6, 7, -7, 8, -8\}$	$O_{10}O_1O_8O_9O_3O_{14}O_{11}O_8O_2$	$I = \langle x \rangle$
S'_4	$\{3, 4, -4, -5, -6, 7, -7, 8, -8\}$	$O_{12}O_{16}O_4O_4O_3O_{14}O_{16}O_{12}O_{14}$	$\mathbf{Z_2} = \langle rac{2}{x} angle$
S_5'	$\{3, 4, -4, -5, 6, 7, -7, 8, -8\}$	$O_3 O_3 O_3 O_3 O_3 O_3 O_3 O_3 O_3 O_3 $	$\mathbf{D_9} = \langle rac{x-2}{x+2}, rac{-x-1}{1} angle$
S_6'	$\{4, -4, 5, -5, 6, -6, 7, 8, -8\}$	$O_4 O_{12} O_7 O_{16} O_4 O_9 O_8 O_1 O_5$	$I = \langle x \rangle$
S'_7	$\{3, -4, 5, -5, 6, -6, 7, 8, -8\}$	$O_1 O_{10} O_2 O_{14} O_{12} O_4 O_6 O_3 O_5$	$I = \langle x \rangle$
S_8'	$\{3, 4, -4, -5, 6, -6, 7, 8, -8\}$	$O_5 O_{14} O_{11} O_3 O_4 O_9 O_{15} O_6 O_8$	$I = \langle x \rangle$
S'_9	$\{3, -4, 5, -5, 6, -6, 7, -7, -8\}$	$O_5 O_{10} O_8 O_8 O_4 O_{13} O_4 O_{10} O_5$	$\mathbf{Z_2} = \langle rac{-3x-5}{x+3} angle$
S'_{10}	$\{3, 4, -4, 5, -5, 6, 7, -7, -8\}$	$O_{15}O_{16}O_{14}O_{14}O_4O_3O_1O_8O_6$	$I = \langle x \rangle$
S'_{11}	$\{3, 4, -4, 5, -5, 6, -6, 7, -8\}$	$O_9 O_6 O_{16} O_{17} O_4 O_{14} O_{14} O_{10} O_{12}$	$I = \langle x \rangle$
S'_{12}	$\{3, 4, -4, 5, -5, -6, 7, -7, 8\}$	$O_6 O_{12} O_7 O_{11} O_2 O_{12} O_7 O_2 O_6$	$\mathbf{Z_2} = \langle rac{-2x-5}{x+2} angle$
S'_{13}	$\{3, -3, 4, -4, 5, -5, -6, -7, 8\}$	$O_8 O_{12} O_{10} O_{10} O_{12} O_{16} O_8 O_7 O_{16}$	$\mathbf{Z_2} = \langle rac{x-1}{3x-1} angle$
S_{14}^{\prime}	$\{3, 4, -4, 5, -5, -6, 7, 8, -8\}$	$O_{12}O_{17}O_{12}O_4O_1O_4O_4O_4O_1O_4$	$\mathbf{Z_4} = \langle rac{4x-7}{1} angle$
S_{15}^{\prime}	$\{3, -3, 4, -4, 5, -5, -6, 7, 8\}$	$O_{14}O_{12}O_8O_{14}O_8O_{12}O_8O_{12}O_{14}$	$\mathbf{Z_3} = \langle rac{1}{-x+1} angle$
S'_{16}	$\{3, -3, 4, -4, 5, -5, -6, 8, -8\}$	$O_{12}O_{12}O_{13}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}O_{12}$	$\mathbf{Z_8} = \langle rac{x+2}{x+1} angle$
S'_{17}	$\left \{-2, 3, -5, 6, -6, 7, -7, 8, -8\} \right $	$O_{15}O_{15}O_{14}O_{15}O_{14}O_{14}O_{14}O_{14}O_{14}O_{14}$	$\mathbf{S_3} = \left< \frac{x+1}{-6x+7}, \frac{-x+2}{6x+1} \right>$

Tab. 3.14: The classification of complementary nonads

3.8 The partitions of PG(1, 17)

The stabilizer $G(S_i)$ of S_i also fixes the complement S'_i . The nonad S_i is projectively equivalent to its complement S'_i , except that S_9 is not equivalent to S'_9 and S_{12} is inequivalent to S'_{12} .

This gives the following result on partitions into nonads.

Theorem 3.11. The projective line PG(1, 17) has 17 projectively distinct partitions into two equivalent nonads given by Table 3.15.

No.	Symbol	Stabilizer of partition
1	$\{S_1;S_1'\}$	$\mathbf{Z_2} \times \mathbf{Z_2} = \langle \frac{8x-6}{x-8}, \frac{-x-1}{1} \rangle$
2	$\{S_2; S_2'\}$	$\mathbf{Z_2} \times \mathbf{Z_2} = \langle \frac{x-3}{4x-1}, \frac{x+3}{-x-1} \rangle$
3	$\{S_3;S_3'\}$	$\mathbf{Z_2} = \langle rac{-x-8}{5x+1} angle$
4	$\{S_4;S_4'\}$	$\mathbf{Z_2} \times \mathbf{Z_2} = \langle \frac{-x-4}{2x+1}, \frac{2}{x} \rangle$
5	$\{S_5;S_5'\}$	$\mathbf{D_{18}} = \langle \frac{5x+2}{7x-5}, \frac{-x-1}{1} \rangle$
6	$\{S_6;S_6'\}$	$\mathbf{Z_2} = \langle rac{-x-6}{2x+1} angle$
7	$\{S_7; S_7'\}$	$\mathbf{Z_2} = \langle rac{x-3}{7x-1} angle$
8	$\{S_8;S_8'\}$	$\mathbf{Z_2} = \langle rac{-x+3}{2x+1} angle$
9	$\{S_9; S'_{12}\}$	$\mathbf{Z_2} = \langle rac{x-3}{4x-1} angle$
10	$\{S_{10}; S'_{10}\}$	$\mathbf{Z_2} = \langle rac{-x-8}{5x+1} angle$
11	$\{S_{11}; S'_{11}\}$	$\mathbf{Z_2} = \langle rac{3x+2}{x-3} angle$
12	$\{S_{12}; S'_9\}$	$\mathbf{Z_2} = \langle rac{x-3}{4x-1} angle$
13	$\{S_{13}; S'_{13}\}$	$\mathbf{Z_2} imes \mathbf{Z_2} = \langle rac{-x+3}{7x+1}, rac{x-1}{3x-1} angle$
14	$\{S_{14}; S'_{14}\}$	$\mathbf{D_4} = \langle rac{8x-6}{x-8}, rac{4x-7}{1} angle$
15	$\{S_{15}; S'_{15}\}$	$\mathbf{S_3} = \langle rac{-x+3}{2x+1}, rac{1}{-x+1} angle$
16	$\{S_{16}; S'_{16}\}$	$\mathbf{D_8} = \langle \tfrac{4x+2}{-x-4}, \tfrac{x+2}{x+1} \rangle$
17	$\{S_{17}; S'_{17}\}$	$\mathbf{D_6} = \big\langle \tfrac{4x+8}{3x+1}, \tfrac{-x+2}{6x+1} \big\rangle$

Tab. 3.15: Partitions of PG(1, 17) into two nonads

Т

In Table 3.15, we note that, for the stabilizer groups which are generated by two elements, the first generator transforms the nonad to its complement, while the second generator fixes the nonad and its complement.

3.9 Transformations between the nonads and their complements

1. $S_1 \longrightarrow S'_1$ by $\frac{8x-6}{r-8}$, 2. $S_2 \longrightarrow S'_2$ by $\frac{x-3}{4x-1}$, 3. $S_3 \longrightarrow S'_3$ by $\frac{-x-8}{5x+1}$ 4. $S_4 \longrightarrow S'_4$ by $\frac{-x-4}{2x+1}$ 5. $S_5 \longrightarrow S'_5$ by $\frac{3x+4}{-2x+1}$ 6. $S_6 \longrightarrow S'_6$ by $\frac{-x-6}{2x+1}$ 7. $S_7 \longrightarrow S'_7$ by $\frac{x-3}{7x-1}$, 8. $S_8 \longrightarrow S'_8$ by $\frac{-x+3}{2x+1}$ 9. $S_9 \longrightarrow S'_{12}$ by $\frac{x-3}{4x-1}$, 10. $S_{10} \longrightarrow S'_{10}$ by $\frac{-x-8}{5x+1}$, 11. $S_{11} \longrightarrow S'_{11}$ by $\frac{3x+2}{x-3}$, 12. $S_{12} \longrightarrow S'_9$ by $\frac{x-3}{4x-1}$, 13. $S_{13} \longrightarrow S'_{13}$ by $\frac{-x+3}{7x+1}$ 14. $S_{14} \longrightarrow S'_{14}$ by $\frac{8x-6}{x-8}$, 15. $S_{15} \longrightarrow S'_{15}$ by $\frac{-x+3}{2x+1}$ 16. $S_{16} \longrightarrow S'_{16}$ by $\frac{4x+2}{-x-4}$ 17. $S_{17} \longrightarrow S'_{17}$ by $\frac{4x+8}{3x+1}$.

3.10 Links with Coding Theory

From Definition 2.47, an [n, k, d] code is maximum distance separable (MDS) when

d = n - k + 1.

In the case that k = 2 and d = n - 1 of an [n, k, d] code, the code C converts to a set K of n points on the line PG(1, q).

The parameters n, k and d for tetrads, pentads, hexads, heptads, octads, and nonads in PG(1, q) and the number e of errors that can be corrected are given in Table 3.16.

Туре	n	k	d	e
tetrad	4	2	3	1
pentad	5	2	4	1
hexad	6	2	5	2
heptad	7	2	6	2
octad	8	2	7	3
nonad	9	2	8	3
heptad octad nonad	7 8 9	2 2 2	6 7 8	2 3 3

Tab. 3.16: The parameters n, k, d and e on PG(1, 17)

4. THE PROJECTIVE PLANE PG(2, 17)

4.1 Introduction

In PG(2, 17), the projective plane of order 17, $\theta_1 = 18$, $\theta_2 = 307$, where

$$\theta_n = |PG(n,q)| = (q^{n+1} - 1)/(q - 1);$$

hence we have 307 points, 307 lines, 18 points on each line and 18 lines passing through each point.

From Table 7.1, we may choose the points with the third coordinate equal to zero. They form the following difference set:

 $1 \quad 2 \quad 4 \quad 46 \quad 59 \quad 63 \quad 74 \quad 97 \quad 111 \quad 123 \quad 143 \quad 150 \quad 179 \quad 197 \quad 268 \quad 278 \quad 287 \quad 303$

Hence a regular array giving the lines of PG(2, 17) is as follows:

1	2	4	46	59	63	74	97	111	123	143	150	179	197	268	278	287	303
2	3	5	47	60	64	75	98	112	124	144	151	180	198	269	279	288	304
3	4	6	48	61	65	76	99	113	125	145	152	181	199	270	280	289	305
÷	÷	÷	:	•	:	•	:	:	:	:	÷	÷	÷	÷	÷	÷	÷
307	1	3	45	58	62	73	96	110	122	142	149	178	196	267	277	286	302

Each row represents one of the 307 lines of PG(2, 17).

By the Fundamental Theorem of Projective Geometry, any four points, no three collinear, can be mapped projectively to any other four points, no three collinear.

4.2 Stabilizer of the frame

The stabilizer of any 4-arc is the group of 24 projectivities found by shifting the 4-arc to its 24 permutations. Table 4.1 contains the stabilizer (it is isomorphic to \mathbf{S}_4) of the frame for PG(2,q).

The matrix determining each elements of the S_4 is given by its rows. Let the numeral form of the frame for PG(2,q) be a, b, c and d; that is a = (1,0,0), b = (0,1,0), c = (0,0,1) and d = (1,1,1). The stabilizer of the frame are given in Table 4.1.

$\{abcd\}$	1	0	0	0	1	0	0	0	1	
$\{bacd\}$	0	1	0	1	0	0	0	0	1	g_1
$\{cbad\}$	0	0	1	0	1	0	1	0	0	
$\{dbca\}$	1	1	1	0	-1	0	0	0	-1	
$\{acbd\}$	1	0	0	0	0	1	0	1	0	
$\{adcb\}$	-1	0	0	1	1	1	0	0	-1	
$\{abdc\}$	-1	0	0	0	-1	0	1	1	1	
$\{cabd\}$	0	1	0	0	0	1	1	0	0	
$\{dacb\}$	0	-1	0	1	1	1	0	0	-1	
$\{bcad\}$	0	0	1	1	0	0	0	1	0	
$\{dbac\}$	0	0	-1	0	-1	0	1	1	1	
$\{bdca\}$	1	1	1	-1	0	0	0	0	-1	
$\{cbda\}$	1	1	1	0	-1	0	-1	0	0	
$\{adbc\}$	-1	0	0	0	0	-1	1	1	1	
$\{acdb\}$	-1	0	0	1	1	1	0	-1	0	
	1									1

Tab. 4.1: The stabilizer of the frame

$\left\{ dabc \right\}$	0	-1	0	0	0	-1	1	1	1	g_2
$\{c a d b\}$	0	-1	0	1	1	1	-1	0	0	
$\{dcab\}$	0	0	-1	1	1	1	0	-1	0	
$\{bdac\}$	0	0	-1	-1	0	0	1	1	1	
$\{cdba\}$	1	1	1	0	0	-1	-1	0	0	
$\{bcda\}$	1	1	1	-1	0	0	0	-1	0	
$\{b a d c\}$	0	-1	0	-1	0	0	1	1	1	
$\{c d a b\}$	0	0	-1	1	1	1	-1	0	0	
$\bigg \{dcba\}$	1	1	1	0	0	-1	0	-1	0	

The frame points in PG(2, 17) are 1, 2, 3, 254. The two projectivities g_1 and g_2 which generate $\mathbf{S_4}$, the stabilizer of the frame, partitions the points in PG(2, 17) into 21 disjoint orbits as follows.

- (1) 111, 112, 122.
- (2) 1, 2, 3, 254.
- (3) 90, 145, 155, 171, 214, 253.
- (4) 107, 197, 198, 221, 274, 307.
- (5) 4, 5, 63, 64, 73, 74, 132, 133, 211, 222, 230, 286.
- (6) 6, 17, 91, 92, 96, 123, 124, 208, 228, 278, 279, 302.
- (7) 9, 23, 49, 94, 106, 114, 131, 152, 169, 173, 245, 248.
- (8) 19, 28, 41, 50, 81, 147, 184, 210, 227, 233, 262, 289.
- (9) 21, 59, 60, 86, 93, 157, 170, 178, 242, 267, 303, 304.
- (10) 40, 46, 47, 54, 72, 149, 177, 185, 196, 268, 269, 281.
- $(11) \ 44, 52, 71, 153, 156, 159, 191, 207, 225, 260, 294, 301.$
- (12) 45, 66, 74, 75, 82, 179, 180, 190, 194, 234, 246, 277.

- (13) 58, 62, 97, 98, 115, 127, 135, 140, 150, 151, 261, 296.
- (14) 102, 110, 113, 142, 143, 144, 205, 251, 252, 287, 288, 290.
- $(15) \ 7, 33, 39, 55, 68, 85, 95, 119, 125, 126, 128, 139, 175, 192, \\ 193, 213, 218, 235, 255, 270, 276, 280, 293, 299.$
- $(16) \ 8, 16, 20, 22, 26, 27, 48, 51, 57, 65, 67, 77, 78, 83, 87, 116, \\ 161, 195, 217, 240, 241, 256, 272, 300.$
- $(17) \ 10, 11, 15, 29, 36, 43, 61, 100, 108, 117, 118, 134, 148, 160, \\ 162, 165, 166, 212, 236, 243, 244, 271, 295, 298.$
- $(18) \ 12, 14, 32, 42, 53, 70, 89, 104, 120, 146, 167, 176, 183, 187, \\ 188, 200, 219, 247, 259, 263, 264, 283, 291, 305.$
- $(19) \ 13, 31, 38, 69, 79, 80, 101, 121, 129, 138, 154, 158, 172, 199, \\ 203, 215, 216, 231, 232, 237, 239, 266, 285, 306.$

The first orbit consists of *diagonal points* and the second orbit is the set of the *frame* points.

4.3 The 5-arcs

Let K be a k-arc in PG(2,q). For k = 4, the equations in Lemma 2.25 become

$$c_0 = (q-2)(q-3),$$

 $c_1 = 6(q-2),$
 $c_2 = 3;$

Another way of calculating c_0 is by listing the points not on the bisecants of the 4-arc. The points represented by the number c_0 are separated into orbits. Then 5-arcs are constructed by adding one point from each orbit. This gives the following result.

Theorem 4.1. In PG(2, 17) there are precisely four projectively distinct 5-arcs, given in Table 4.2.

Symbol	5-arc	Stabilizer		
A_1	$\{1, 2, 3, 254, 7\}$	\mathbf{Z}_4		
A_2	$\{1, 2, 3, 254, 8\}$	${ m Z}_2$		
A_3	$\{1, 2, 3, 254, 10\}$	Z_2		
A_4	$\{1, 2, 3, 254, 12\}$	\mathbf{Z}_2		

Tab. 4.2: The distinct 5-arcs

4.4 The 6-arcs

The number of the points on the bisecant of any 5-arc is L(5,q) = 10q - 20; that is, 150 for q = 17. Hence there are 307 - 150 = 157 points of the plane not on the bisecants of any of the four 5-arcs. Let K be a k-arc in PG(2,q). For k = 5, the equations in Lemma 2.25 become

$$c_0 = (q-4)(q-5) + 1,$$

$$c_1 = 10(q-4),$$

$$c_2 = 15;$$

Another way of calculating c_0 is by listing the points not on the bisecants of the 5-arc. The points represented by the number c_0 are separated into orbits. Then 6-arcs are constructed by adding one point from each orbit. For a specific 5-arc, points of index zero are divided into orbits by the stabilizer of that 5-arc. The points of index zero for every 5-arc as a number of orbits with the size of the orbits in brackets are given in Table 4.3.

5-arc	<i>c</i> ₀	Orbits
A_1	157	36(4), 6(2), 1(1)
A_2	157	72(2), 13(1)
A_3	157	72(2), 13(1)
A_4	157	72(2), 13(1)

Tab. 4.3: The orbits

We list in Table 4.4 the four distinct 5-arcs and the points added to the corresponding 5-arc chosen from each orbit to construct 6-arcs.

Tab. 4.4:	The	points	of	index	zero
-----------	-----	--------	----	-------	------

5-arc	The additional points
A_1	11, 12, 13, 14, 16, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 35, 37, 39, 42, 43, 48, 56, 71,
	76, 77, 85, 88, 95, 100, 101, 105, 120, 121, 130, 139, 158, 159, 160, 164, 165, 233, 270.
A_2	12, 13, 14, 15, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 41, 44, 48, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50
	50, 51, 61, 71, 76, 77, 78, 79, 84, 87, 89, 90, 94, 99, 101, 105, 106, 114, 116, 125, 128, 137, 138,
	139, 141, 146, 147, 148, 152, 153, 154, 155, 158, 162, 163, 168, 171, 172, 176, 181, 182, 184, 184, 184, 184, 184, 184, 184, 184
	188, 189, 191, 192, 200, 201, 209, 210, 212, 214, 219, 227, 229, 235, 244, 247, 299.
A_3	9, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 24, 27, 28, 29, 30, 33, 35, 37, 38, 41, 43, 44, 49, 51, 55, 56
	61, 67, 68, 70, 71, 77, 79, 81, 83, 84, 87, 95, 99, 100, 106, 109, 114, 118, 121, 125, 126, 131, 134
	137, 152, 154, 155, 158, 159, 160, 161, 162, 164, 165, 167, 172, 175, 176, 181, 183, 184, 187, 188, 188, 188, 188, 188, 188, 188
	189, 193, 204, 210, 215, 224, 225, 236, 249, 250, 253, 256, 263, 275, 292.
A_4	[7], [8], 9, [10], 11, 13, 14, 15, 16, 18, 19, 20, 23, 25, 26, 27, 29, 30, 31, 38, 39, 41, 48, 50, 52, 53, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56
	57, 65, 67, 68, 69, 70, 76, 77, 79, 83, 85, 89, 90, 94, 99, 101, 105, 108, 109, 114, 116, 120, 130, 131
	134, 136, 137, 139, 141, 145, 148, 153, 154, 162, 166, 167, 171, 172, 176, 181, 183, 203, 213, 215
	217, 218, 219, 224, 226, 227, 235, 237, 243, 255, 258, 259, 264, 265.

So far, the number of 6-arcs constructed is 295, since each point in square brackets gives an identical 6-arc to one already included. The method to compute the transformations between the 6-arcs is the following; By use of The Fundamental Theorem of Projective Geometry there is a unique projectivity of PG(2, q) transforming four points no three on a line to any other four points no three on a line. Two 6-arcs K_1 and K_2 are equivalent if $K_1\beta = K_2$ and β is given by a matrix **T** and $\beta = \mathbf{M}(\mathbf{T})$ with

$$\mathbf{M}(\lambda \mathbf{T}) = \mathbf{M}(\mathbf{T}), \, \lambda \in \mathbb{F}_{17} \setminus \{0\}.$$

This gives the following result.

Theorem 4.2. In PG(2, 17) there are precisely 74 projectively distinct 6-arcs, given in Table 4.5.

No.	6-arc	Stabilizer	No.	6-arc	Stabilizer
B_1	$\{1, 2, 3, 254, 7, 14\}$	Z_2	B_{19}	$\{1, 2, 3, 254, 7, 24\}$	Ι
B_2	$\{1, 2, 3, 254, 7, 42\}$	Ι	B_{20}	$\{1, 2, 3, 254, 7, 25\}$	Ι
B_3	$\{1, 2, 3, 254, 7, 85\}$	${ m Z}_2$	B_{21}	$\{1, 2, 3, 254, 7, 26\}$	Ι
B_4	$\{1, 2, 3, 254, 7, 270\}$	$\mathbf{S_4}$	B_{22}	$\{1, 2, 3, 254, 7, 29\}$	Ι
B_5	$\{1, 2, 3, 254, 8, 24\}$	${ m Z}_2$	B_{23}	$\{1, 2, 3, 254, 7, 30\}$	${ m Z}_2$
B_6	$\{1, 2, 3, 254, 8, 34\}$	$\mathbf{Z_2}\times\mathbf{Z_2}$	B_{24}	$\{1, 2, 3, 254, 7, 31\}$	${ m Z}_2$
B_7	$\{1, 2, 3, 254, 8, 99\}$	${ m Z}_2$	B_{25}	$\{1, 2, 3, 254, 7, 37\}$	${ m Z}_2$
B_8	$\{1, 2, 3, 254, 8, 154\}$	$\mathbf{Z_2}\times\mathbf{Z_2}$	B_{26}	$\{1, 2, 3, 254, 7, 39\}$	Ι
B_9	$\{1, 2, 3, 254, 10, 236\}$	D_6	B_{27}	$\{1, 2, 3, 254, 7, 43\}$	Ι
B_{10}	$\{1, 2, 3, 254, 12, 183\}$	$\mathbf{S_3}$	B_{28}	$\{1, 2, 3, 254, 7, 48\}$	${ m Z}_2$
B_{11}	$\{1, 2, 3, 254, 7, 11\}$	Ι	B_{29}	$\{1, 2, 3, 254, 7, 56\}$	Ι
B_{12}	$\{1, 2, 3, 254, 7, 12\}$	Ι	B_{30}	$\{1, 2, 3, 254, 7, 71\}$	Ι
B_{13}	$\{1, 2, 3, 254, 7, 13\}$	${ m Z}_3$	B_{31}	$\{1, 2, 3, 254, 7, 76\}$	${ m Z}_3$
B_{14}	$\{1, 2, 3, 254, 7, 16\}$	Ι	B_{32}	$\{1, 2, 3, 254, 7, 88\}$	Ι
B_{15}	$\{1, 2, 3, 254, 7, 19\}$	Ι	B_{33}	$\{1, 2, 3, 254, 7, 100\}$	Ι
B_{16}	$\{1, 2, 3, 254, 7, 20\}$	Ι	B_{34}	$\{1, 2, 3, 254, 7, 101\}$	${ m Z}_2$
B_{17}	$\{1, 2, 3, 254, 7, 22\}$	Ι	B_{35}	$\{1, 2, 3, 254, 7, 105\}$	Ι
B_{18}	$\{1, 2, 3, 254, 7, 23\}$	Ι	B_{36}	$\{1, 2, 3, 254, 7, 120\}$	${ m Z}_2$

Tab. 4.5: Distinct 6-arcs

		1			
B_{37}	$\{1, 2, 3, 254, 7, 121\}$	Ι	B_{56}	$\{1, 2, 3, 254, 8, 105\}$	A_4
B_{38}	$\{1, 2, 3, 254, 7, 130\}$	\mathbf{S}_3	B_{57}	$\{1, 2, 3, 254, 8, 106\}$	Z_3
B_{39}	$\{1, 2, 3, 254, 7, 139\}$	$\mathbf{S_3}$	B_{58}	$\{1, 2, 3, 254, 8, 141\}$	Ι
B_{40}	$\{1, 2, 3, 254, 7, 158\}$	Ι	B_{59}	$\{1, 2, 3, 254, 8, 152\}$	Z_3
B_{41}	$\{1, 2, 3, 254, 7, 159\}$	Ι	B_{60}	$\{1, 2, 3, 254, 8, 176\}$	Ι
B_{42}	$\{1, 2, 3, 254, 7, 160\}$	\mathbf{Z}_2	B_{61}	$\{1, 2, 3, 254, 8, 181\}$	S_3
B_{43}	$\{1, 2, 3, 254, 7, 165\}$	Ι	B_{62}	$\{1, 2, 3, 254, 8, 182\}$	Z_3
B_{44}	$\{1, 2, 3, 254, 7, 233\}$	Z_2	B_{63}	$\{1, 2, 3, 254, 8, 210\}$	\mathbf{Z}_4
B_{45}	$\{1, 2, 3, 254, 8, 16\}$	Ι	B_{64}	$\{1, 2, 3, 254, 8, 212\}$	Ι
B_{46}	$\{1, 2, 3, 254, 8, 18\}$	Ι	B_{65}	$\{1, 2, 3, 254, 8, 219\}$	Ι
B_{47}	$\{1, 2, 3, 254, 8, 20\}$	Ι	B_{66}	$\{1, 2, 3, 254, 10, 18\}$	Z_3
B_{48}	$\{1, 2, 3, 254, 8, 27\}$	$\mathbf{S_3}$	B_{67}	$\{1, 2, 3, 254, 10, 43\}$	Ι
B_{49}	$\{1, 2, 3, 254, 8, 35\}$	Z_2	B_{68}	$\{1, 2, 3, 254, 10, 81\}$	Z_3
B_{50}	$\{1, 2, 3, 254, 8, 36\}$	Z_3	B_{69}	$\{1, 2, 3, 254, 10, 121\}$	Z_4
B_{51}	$\{1, 2, 3, 254, 8, 50\}$	Ι	B_{70}	$\{1, 2, 3, 254, 10, 164\}$	Z_2
B_{52}	$\{1, 2, 3, 254, 8, 76\}$	Z_3	B_{71}	$\{1, 2, 3, 254, 10, 172\}$	\mathbf{A}_4
B_{53}	$\{1, 2, 3, 254, 8, 77\}$	$\mathbf{S_3}$	B_{72}	$\{1, 2, 3, 254, 10, 263\}$	\mathbf{S}_3
B_{54}	$\{1, 2, 3, 254, 8, 94\}$	Z_2	B_{73}	$\{1, 2, 3, 254, 12, 19\}$	Z_2
B_{55}	$\{1, 2, 3, 254, 8, 101\}$	\mathbf{Z}_4	B_{74}	$\{1, 2, 3, 254, 12, 224\}$	A_4

4.5 The 6-arcs on a conic

The ten distinct hexads on PG(1, 17) can be mapped to ten distinct 6-arcs on a conic. If the points $U_0 = (1, 0, 0), U_1 = (0, 1, 0), U_2 = (0, 0, 1)$ are on the conic, then the general equation of the conic reduces to the following:

$$x_0x_1 + a_0x_0x_2 + a_1x_1x_2 = 0.$$

Therefore, $(a_0, a_1) = (-7, 6), (-3, 2), (-2, 1), (-5, 4)$ are the coefficients of the equations of the conics containing the respective four 5-arcs

where

$$U_3 = (1, 1, 1), U_4 = (-8, -6, 1), U_5 = (-8, 4, 1), U_6 = (-8, -5, 1), U_7 = (-7, 6, 1).$$

Substituting the point of each 6-arc in the corresponding conic shows the ten 6-arcs on a conic as given in Table 4.6.

New symbol	Conic	6-arcs	Stabilizers
B_1	$x_0 x_1 - 7x_0 x_2 + 6x_1 x_2$	$\{1, 2, 3, 254, 7, 14\}$	${ m Z}_2$
B_2	$x_0 x_1 - 7x_0 x_2 + 6x_1 x_2$	$\{1, 2, 3, 254, 7, 42\}$	Ι
B_3	$x_0 x_1 - 7x_0 x_2 + 6x_1 x_2$	$\{1, 2, 3, 254, 7, 85\}$	\mathbf{Z}_{2}
B_4	$x_0 x_1 - 7x_0 x_2 + 6x_1 x_2$	$\{1, 2, 3, 254, 7, 270\}$	$\mathbf{S_4}$
B_5	$x_0 x_1 - 3x_0 x_2 + 2x_1 x_2$	$\{1, 2, 3, 254, 8, 24\}$	\mathbf{Z}_{2}
B_6	$x_0 x_1 - 3x_0 x_2 + 2x_1 x_2$	$\{1, 2, 3, 254, 8, 34\}$	$\mathbf{Z_2}\times\mathbf{Z_2}$
B_7	$x_0 x_1 - 3x_0 x_2 + 2x_1 x_2$	$\{1, 2, 3, 254, 8, 99\}$	\mathbf{Z}_{2}
B_8	$x_0 x_1 - 3x_0 x_2 + 2x_1 x_2$	$\{1, 2, 3, 254, 8, 154\}$	$\mathbf{Z_2}\times\mathbf{Z_2}$
B_9	$x_0 x_1 - 2x_0 x_2 + x_1 x_2$	$\{1, 2, 3, 254, 10, 236\}$	D_6
B_{10}	$x_0x_1 - 5x_0x_2 + 4x_1x_2$	$\{1, 2, 3, 254, 12, 183\}$	$\mathbf{S_3}$

Tab. 4.6: The distinct 6-arcs on a conic

Remark 4.3. For the 74 distinct 6-arcs the *B*-points are given in Table 4.7.

6-arcs	<i>B</i> -points	C_3	6-arcs	<i>B</i> -points	C_3	
B_1	63	1	B_{18}	_	0	
B_2	_	0	B_{19}	111	1	
B_3	122	1	B_{20}	_	0	
B_4	6, 64, 111, 222, 274, 302	6	B_{21}	64	1	
B_5	124	1	B_{22}	_	0	
B_6	211,288	2	B_{23}	64, 112	2	
B_7	4	1	B_{24}	222, 302	2	
B_8	142,228	2	B_{25}	63,288	2	
B_9	74, 93, 180, 230	4	B_{26}	_	0	
B_{10}	45, 112, 246	3	B_{27}	185	1	
B_{11}	_	0	B_{28}	6,102	2	
B_{12}	122	1	B_{29}	112	1	
B_{13}	64, 122, 185	3	B_{30}	149	1	
B_{14}	102	1	B_{31}	6, 112, 149	3	

Tab. 4.7: The B-points

-

B_{15}	252	1	B_{32}	185	1
B_{35}	185	1	B_{16}	111	1
B_{36}	222,302	2	B_{17}	185	1
B_{37}	105	1	B_{33}	252	1
B_{38}	112, 222, 252, 302	4	B_{34}	185,274	2
B_{39}	123, 185, 222, 302	4	B_{57}	124, 150, 211	3
B_{40}	111	1	B_{58}	112	1
B_{41}	—	0	B_{59}	4, 66, 288	3
B_{42}	222,302	2	B_{60}	_	0
B_{43}	185	1	B_{61}	4, 122, 142, 228	4
B_{44}	222,302	2	B_{62}	157, 211, 274	3
B_{45}	—	0	B_{63}	142,228	2
B_{46}	66	1	B_{64}	247	1
B_{47}	—	0	B_{65}	_	0
B_{48}	142, 228, 274, 288	4	B_{66}	111, 180, 290	3
B_{49}	142,228	2	B_{67}	185	1
B_{50}	112, 149, 211	3	B_{68}	122,290,304	3
B_{51}	124	1	B_{69}	122, 149	2
B_{52}	4, 149, 157	3	B_{70}	111,278	2
B_{53}	124, 142, 149, 228	4	B_{71}	74, 93, 112, 149, 274, 290	6
B_{54}	142,228	2	B_{72}	74, 93, 122, 127	4

B_{55}	185,274	2	B ₇₃	135,267	2
B_{56}	66, 112, 142, 150, 185, 228	6	B ₇₄	112, 115, 135, 143, 211, 267	6

4.6 The 7-arcs

Let K be a k-arc in PG(2,q). For k = 6, the equations in Lemma 2.25 become

$$c_0 = (q-7)^2 + 6 - c_3, c_1 = 3\{5(q-7) + c_3\}, c_2 = 3\{15 - c_3\};$$

The constant c_3 and hence c_0 , c_1 and c_2 are calculated. Another way of calculating c_0 is by listing the points not on the bisecants of the 6-arc. The points represented by the number c_0 are separated into orbits. Then 7-arcs are constructed by adding one point from each orbit. The 6-arcs for each pair (c_0 , c_3) are given in Table 4.8.

$1a0. 4.0. (c_0, c_3)$	Tab.	4.8:	(c_0, c_3)	
------------------------	------	------	--------------	--

6-arcs	C3	<i>c</i> ₀
$B_2, B_{11}, B_{18}, B_{20}, B_{22}, B_{26}, B_{33}, B_{41}, B_{45}, B_{47}, B_{60}, B_{65}$	0	106
$B_{1}, B_{3}, B_{5}, B_{7}, B_{12}, B_{14}, B_{15}, B_{16}, B_{17}, B_{19}, B_{21}, B_{27}, B_{29}, B_{30}, B_{32}, B_{35}, B_{37}, B_{40}, B_{43}, B_{46}, B_{49}, B_{51}, B_{58}, B_{64}, B_{67}$	1	105
$B_6, B_8, B_{23}, B_{24}, B_{25}, B_{28}, B_{34}, B_{36}, B_{42}, B_{44}, B_{54}, B_{55}, B_{63}, B_{69}, B_{70}, B_{73}$	2	104
$B_{10}, B_{13}, B_{31}, B_{50}, B_{52}, B_{57}, B_{59}, B_{62}, B_{66}, B_{68}$	3	103
$B_9, B_{38}, B_{39}, B_{48}, B_{53}, B_{61}, B_{72}$	4	102
$B_4, B_{56}, B_{71}, B_{74}$	6	100

For a specific 6-arc, points of index zero are divided into orbits by the stabilizer of that 6-arc. The points of index zero for every 6-arc as a number of orbits with the size of the orbits in brackets are given in Table 4.9.

6-arc	Orbits	6-arc	Orbits	6-arc	Orbits
1	8(1), 49(2)	21	105(1)	41	106(1)
2	106(1)	22	106(1)	42	52(2)
3	9(1), 48(2)	23	52(2)	43	105(1)
4	1(4), 4(12), 2(24)	24	52(2)	44	52(2)
5	9(1), 48(2)	25	52(2)	45	106(1)
6	10(2), 21(4)	26	106(1)	46	105(1)
7	9(1), 48(2)	27	105(1)	47	106(1)
8	10(2), 21(4)	28	52(2)	48	17(6)
9	7(6), 5(12)	29	105(1)	49	52(2)
10	1(1), 8(3), 13(6)	30	105(1)	50	1(1), 34(3)
11	106(1)	31	1(1), 34(3)	51	105(1)
12	105(1)	32	105(1)	52	1(1), 34(3)
13	1(1), 34(3)	33	105(1)	53	17(6)
14	105(1)	34	52(2)	54	52(2)
15	105(1)	35	105(1)	55	26(4)
16	105(1)	36	52(2)	56	1(4), 8(12)
17	105(1)	37	105(1)	57	1(1), 34(3)
18	106(1)	38	17(6)	58	105(1)
19	105(1)	39	17(6)	59	1(1), 34(3)

Tab. 4.9: The size of orbits

20	106(1)	40	105(1)	60	106(1)
61	17(6)	67	105(1)	73	52(2)
62	1(1), 34(3))	68	1(1), 34(3)	74	1(4), 8(12)
63	26(4)	69	26(4)		
64	105(1)	70	52(2)		
65	106(1)	71	1(4), 8(12)		
66	1(1), 34(3)	72	17(6)		

The number of 7-arcs constructed by adding one point from each orbit is

4848 - 604 = 4244.

This gives the following result.

Theorem 4.4. In PG(2, 17) there are precisely 733 projectively distinct 7-arcs.

Remark 4.5. The numbers of 7-arcs and their stabilizers are given in Table 4.10.

Stabilizer	Ι	Z_2	S_3	Z_3
Number	644	75	2	12

Tab. 4.10: The stabilizers of 7-arcs

4.7 The 7-arcs on a conic

The ten distinct heptads on PG(1, 17) can be mapped to ten distinct 7-arcs on a conic.

Substituting the points of each 7-arc in the corresponding conic shows the ten 7-arcs on a conic as given in Table 4.11.

New simple	7-arc	Conic	Stabilizer
C_1	$B_1 \cup \{42\}$	$x_0 x_1 - 7x_0 x_2 + 6x_1 x_2$	Ι
C_2	$B_1 \cup \{85\}$	$x_0 x_1 - 7 x_0 x_2 + 6 x_1 x_2$	Z_2
C_3	$B_1 \cup \{153\}$	$x_0x_1 - 7x_0x_2 + 6x_1x_2$	$\mathbf{Z_2}$
C_4	$B_1 \cup \{168\}$	$x_0 x_1 - 7 x_0 x_2 + 6 x_1 x_2$	$\mathbf{Z_2}$
C_5	$B_1 \cup \{176\}$	$x_0 x_1 - 7 x_0 x_2 + 6 x_1 x_2$	Ι
C_6	$B_2 \cup \{85\}$	$x_0 x_1 - 7 x_0 x_2 + 6 x_1 x_2$	Ι
C_7	$B_2 \cup \{168\}$	$x_0 x_1 - 7 x_0 x_2 + 6 x_1 x_2$	$\mathbf{Z_2}$
C_8	$B_2 \cup \{176\}$	$x_0 x_1 - 7 x_0 x_2 + 6 x_1 x_2$	\mathbf{Z}_{2}
C_9	$B_2 \cup \{206\}$	$x_0x_1 - 7x_0x_2 + 6x_1x_2$	\mathbf{Z}_{2}
C_{10}	$B_5 \cup \{34\}$	$x_0x_1 - 3x_0x_2 + 2x_1x_2$	Z_2

Tab. 4.11: The distinct 7-arcs on a conic

4.8 The 8-arcs

Let K be a k-arc in PG(2,q). For k = 7, the equations in Lemma 2.25 become:

$$c_0 = (q-10)^2 + 20 - c_3,$$

$$c_1 = 3\{7(q-11) + c_3\},$$

$$c_2 = 3(35 - c_3);$$

The constant c_3 and hence c_0 , c_1 and c_2 is calculated. Another way of calculating c_0 is by listing the points not on the bisecant of the 7-arc. The points represented by the number c_0 are separated into orbits. Then 8-arcs are constructed by adding one point from each orbit. This gives the following result.

Theorem 4.6. In PG(2,17) there are precisely 5441 projectively distinct 8-arcs.

Remark 4.7. The numbers of 8-arcs and their stabilizers are given in Table 4.12.

Number

5027

389

Stabilizer	Ι	\mathbf{Z}_2	\mathbf{Z}_4	D_8	D_4	$\mathbf{Z_2} imes \mathbf{Z_2}$	$\mathbf{Z_8}\rtimes\mathbf{Z_2}$

1

3

16

1

4

Tab. 4.12: The stabilizers of 8-arcs

4.9 The 8-arcs on a conic

The seventeen distinct octads on PG(1, 17) can be mapped to seventeen distinct 8-arcs on a conic. The 8-arcs in PG(2, 17) on a conic are given in Tables 4.13.

Conic	8-arc	Stabilizer
$x_0x_1 - 7x_0x_2 + 6x_1x_2$	$C_1 \cup \{85\}$	Ι
$x_0x_1 - 7x_0x_2 + 6x_1x_2$	$C_1 \cup \{136\}$	\mathbf{Z}_{2}
$x_0 x_1 - 7x_0 x_2 + 6x_1 x_2$	$C_1 \cup \{153\}$	Ι
$x_0 x_1 - 7 x_0 x_2 + 6 x_1 x_2$	$C_1 \cup \{176\}$	Z_2
$x_0 x_1 - 7 x_0 x_2 + 6 x_1 x_2$	$C_1 \cup \{186\}$	Ι
$x_0 x_1 - 7x_0 x_2 + 6x_1 x_2$	$C_1 \cup \{206\}$	${ m Z}_2$

Tab. 4.13: The distinct 8-arcs on a conic

Conic	8-arc	Stabilizer
$x_0 x_1 - 7x_0 x_2 + 6x_1 x_2$	$C_1 \cup \{270\}$	$\mathbf{Z_2} imes \mathbf{Z_2}$
$x_0x_1 - 7x_0x_2 + 6x_1x_2$	$C_2 \cup \{168\}$	\mathbf{Z}_2
$x_0x_1 - 7x_0x_2 + 6x_1x_2$	$C_2 \cup \{176\}$	${ m Z_2}$
$x_0x_1 - 7x_0x_2 + 6x_1x_2$	$C_3 \cup \{168\}$	$\mathbf{Z_2}\times\mathbf{Z_2}$
$x_0 x_1 - 7 x_0 x_2 + 6 x_1 x_2$	$C_3 \cup \{176\}$	${ m Z}_2$
$x_0 x_1 - 7 x_0 x_2 + 6 x_1 x_2$	$C_4 \cup \{176\}$	Ι
$x_0x_1 - 7x_0x_2 + 6x_1x_2$	$C_4 \cup \{186\}$	\mathbf{Z}_2
$x_0 x_1 - 7x_0 x_2 + 6x_1 x_2$	$C_5 \cup \{299\}$	D_4
$x_0 x_1 - 7x_0 x_2 + 6x_1 x_2$	$C_6 \cup \{136\}$	\mathbf{Z}_2
$x_0x_1 - 7x_0x_2 + 6x_1x_2$	$C_6 \cup \{176\}$	$\mathbf{Z_2} imes \mathbf{Z_2}$
$x_0x_1 - 3x_0x_2 + 2x_1x_2$	$C_{10} \cup \{241\}$	D_8

4.10 The 9-arcs on a conic

The seventeen distinct nonads on PG(1, 17) can be mapped to seventeen distinct 9-arcs on a conic as given in Table 4.14. The 9-arcs all lie on the conic $\nu(x_0x_1 - 7x_0x_2 + 6x_1x_2)$.

9-arc	Stabilizer
$\{1, 2, 3, 254, 7, 14, 42, 85, 136\}$	Z_2
$\{1, 2, 3, 254, 7, 14, 42, 85, 153\}$	Z_3
$\{1, 2, 3, 254, 7, 14, 42, 85, 168\}$	Ι
$\{1, 2, 3, 254, 7, 14, 42, 85, 176\}$	${ m Z_2}$
$\{1, 2, 3, 254, 7, 14, 42, 85, 186\}$	${ m Z}_2$
$\{1, 2, 3, 254, 7, 14, 42, 85, 188\}$	${ m Z}_2$
$\{1, 2, 3, 254, 7, 14, 42, 85, 206\}$	Ι
$\{1, 2, 3, 254, 7, 14, 42, 85, 270\}$	Ι
$\{1, 2, 3, 254, 7, 14, 42, 85, 301\}$	Ι
$\{1, 2, 3, 254, 7, 14, 42, 136, 188\}$	Ι

Tab. 4.14: The distinct 9-arcs on a conic

9-arc	Stabilizer		
$\{1, 2, 3, 254, 7, 14, 42, 153, 176\}$	Ι		
$\{1, 2, 3, 254, 7, 14, 42, 153, 188\}$	${ m Z_2}$		
$\{1, 2, 3, 254, 7, 14, 42, 153, 270\}$	$\mathbf{S_3}$		
$\{1, 2, 3, 254, 7, 14, 42, 186, 188\}$	${ m Z}_4$		
$\{1, 2, 3, 254, 7, 14, 85, 168, 270\}$	D_9		
$\{1, 2, 3, 254, 7, 14, 153, 168, 176\}$	Z_2		
$\{1, 2, 3, 254, 7, 14, 168, 176, 301\}$	${ m Z_8}$		

Remark 4.8. It was computationally too difficult to classify all 9-arcs. It would have taken approximately 3,000 hours.

4.11 The algorithm to calculate k-arcs, $k \leq 18$

The strategy to compute the complete k-arcs is the following.

- (1) The way of calculating c_0 for (k-1)-arcs is by listing the points not on the bisecants of the (k-1)-arcs.
- (2) The points represented by the number c_0 are separated into orbits.
- (3) The k-arcs are constructed by adding one point from each orbit.
- (4) For a given k-arc K, the set S of points not on the bisecants of K is found.
- (5) If S is empty, then K is complete. Otherwise K is incomplete.
- (6) All possible k-arcs from a given (k-1)-arcs are listed.
- (7) The next step is to select the non-identical complete k-arcs among the total number constructed.
- (8) Calculate the transformations between them. By use of The Fundamental Theorem of Projective Geometry, there is a unique projectivity of PG(2,q) transforming four points no three on a line to any other four points no three on a line. Two k-arcs K_1 and K_2 are equivalent if $K_1\beta = K_2$ and β is given by a matrix \mathbf{T} and $\beta = \mathbf{M}(\mathbf{T})$ with

$$\mathbf{M}(\lambda \mathbf{T}) = \mathbf{M}(\mathbf{T}), \ \lambda \in \mathbb{F}_{17} \setminus \{0\}.$$

A non-singular matrix **T** can be determined as follows.

Let $\mathbf{T} = (t_{ij}), i, j = 0, 1, 2, t_{ij} \in \mathbb{F}_q$. As \mathbf{T} is determined up to a constant, so dividing the matrix by one of its entries leaves us needing only eight conditions to determine the whole matrix. If $x = (x_0 x_1 x_2), y = (y_0 y_1 y_2)$, then the matrix \mathbf{T} which transforms x into y should satisfy the matrix equation $x\mathbf{T} = \lambda y$, where λ is a constant; that is,

$$x_0 t_{00} + x_1 t_{10} + x_2 t_{20} = \lambda y_0, \tag{4.1}$$

$$x_0 t_{01} + x_1 t_{11} + x_2 t_{21} = \lambda y_1, \tag{4.2}$$

$$x_0 t_{02} + x_1 t_{12} + x_2 t_{22} = \lambda y_1. \tag{4.3}$$

By eliminating λ from equations (1) and (2), and from (2) and (3) we get two homogeneous equations for each pair x and y:

$$y_1(x_0t_{00} + x_1t_{10} + x_2t_{20}) - y_0(x_0t_{01} + x_1t_{11} + x_2t_{21}) = 0,$$

$$y_2(x_0t_{01} + x_1t_{11} + x_2t_{21}) - y_1(x_0t_{02} + x_1t_{12} + x_2t_{22}) = 0.$$

The four points give us eight equations in the unknown t_{ij} . They form a system of homogeneous equations. There is always a unique solution of the system which gives the entries of the matrix **T**. The solution of the system of homogeneous equations

is a solution over \mathbb{F}_q . The calculations for finding such solution can be simplified by inserting one middle step; that is, instead of shifting the 4-arc

 $\{(a_0 a_1 a_2), (b_0 b_1 b_2), (c_0 c_1 c_2), (d_0 d_1 d_2)\}$

to the 4-arc

$$\{(a'_0 a'_1 a'_2), \ (b'_0 b'_1 b'_2), \ (c'_0 c'_1 c'_2), \ (d'_0 d'_1 d'_2)\},\$$

we can use the points of the frame

$$\{(100), (010), (001), (111)\}$$

In general the procedure to find a matrix \mathbf{T} which transforms the frame, in the above order, to any given 4-arc, say

$$\{(a_0 a_1 a_2), (b_0 b_1 b_2), (c_0 c_1 c_2), (d_0 d_1 d_2)\}$$

is as follows:

$$(1 0 0)\mathbf{T} = \lambda(a_0 a_1 a_2), (0 1 0)\mathbf{T} = \mu(b_0 b_1 b_2), (0 0 1)\mathbf{T} = \nu(c_0 c_1 c_2),$$

where $\lambda, \mu, \nu \in \mathbb{F}_q$. So

$$\mathbf{T} = \left(egin{array}{cccc} \lambda a_0 & \lambda a_1 & \lambda a_2 \ \mu b_0 & \mu b_1 & \mu b_2 \
u c_0 &
u c_1 &
u c_2 \end{array}
ight).$$

Also $(1 \ 1 \ 1)\mathbf{T} = \rho (d_0 \ d_1 \ d_2), \rho \in \mathbb{F}_q$, which implies that

$$\begin{pmatrix} a_0 & b_0 & c_0 & d_0 \\ a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \end{pmatrix} \cdot \begin{pmatrix} \lambda \\ \mu \\ \nu \\ -\rho \end{pmatrix} = 0$$

The unique solution of the above system is.

$$\frac{\lambda}{A} = \frac{\mu}{B} = \frac{\nu}{C} = \frac{\rho}{D},$$

where $ABCD \neq 0$ and

$$A = \begin{vmatrix} d_0 & b_0 & c_0 \\ d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \end{vmatrix}, B = \begin{vmatrix} a_0 & d_0 & c_0 \\ a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \end{vmatrix}, C = \begin{vmatrix} a_0 & b_0 & d_0 \\ a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \end{vmatrix}, D = \begin{vmatrix} a_0 & b_0 & c_0 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}.$$

Therefore,

$$\lambda = A \frac{\rho}{D}, \quad \mu = B \frac{\rho}{D}, \quad \nu = C \frac{\rho}{D},$$
$$\mathbf{T} = \begin{pmatrix} Aa_0 & Aa_1 & Aa_2 \\ Bb_0 & Bb_1 & Bb_2 \\ Cc_0 & Cc_1 & Cc_2 \end{pmatrix}.$$

This gives the following result.

Theorem 4.9. The numbers of projectively distinct complete k-arcs in PG(2, 17) for $k \ge 10$ are given in Table 4.15.

k	10	11	12	13	14	15	16	17	18
Number	560	2644	553	8	1	_	_	_	1

Tab. 4.15: The numbers of the complete k-arcs

Remark 4.10. The numbers of the complete k-arcs, k = 10, 11, 12, 13, 14 and their stabilizers are given in Tables 4.16, 4.17, 4.18, 4.19, 4.20.

Stabilizer	Ι	Z_2	$\mathbf{A_4}$	D_9	Z_3	$\mathbf{Z_2} imes \mathbf{Z_2}$	S_3	$\mathbf{Z_4}$	$\mathbf{Z_8}\rtimes\mathbf{Z_2}$	\mathbf{Q}_4	$\mathbf{S_4}$
Number	343	178	2	1	9	8	9	7	1	1	1

Tab. 4.16: The stabilizers of the complete 10-arcs

Let K_1 be the complete 10-arc with group isomorphic to \mathbf{D}_9 in Table 4.16. Then $G(K_1)$ is generated by g_1, g_2 where

$$g_1 = \begin{pmatrix} 0 & 0 & 16 \\ 0 & 11 & 0 \\ 15 & 0 & 0 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 13 & 13 & 13 \\ 6 & 13 & 12 \\ 6 & 15 & 13 \end{pmatrix}$$

Then $G(K_1)$ has the following orbits on K_1 : one orbit M_1 of size 9 and one orbit $M_2 = \{p\}$ of size 1. Then K_1 consists of M_1 on a conic **C** and *P* not on **C**. The number of the points on no bisecant of M_1 is $c_0 = 19$. So *P* is not unique and we can select it from any of these ten points not on **C**.
Let K_2 be the complete 10-arc with group isomorphic to $\mathbb{Z}_8 \rtimes \mathbb{Z}_2$ in Table 4.16. Then $G(K_2)$ is generated by g_1, g_2 where

$$g_1 = \begin{pmatrix} 0 & 0 & 1 \\ 15 & 0 & 0 \\ 13 & 3 & 4 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 8 & 0 & 0 \\ 14 & 5 & 16 \\ 12 & 12 & 12 \end{pmatrix}.$$

Then $G(K_2)$ has the following orbits on K_2 : one orbit of size 8 and one orbit of size 2. The group $G(K_2)$ stabilizes a line containing the orbit of size two, and partitions the line into one orbit of size 8, two of size 4, and one orbit of size 2.

Let K_3 be the complete 10-arc with group isomorphic to S_4 in Table 4.16. Then $G(K_3)$ is generated by g_1, g_2 where

$$g_1 = \begin{pmatrix} 0 & 12 & 0 \\ 16 & 2 & 8 \\ 8 & 8 & 8 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 10 & 12 & 1 \end{pmatrix}.$$

Then $G(K_3)$ has the following orbits on K_3 : one orbit of size 6 and one orbit of size 4.

Tab. 4.17: The stabilizers of the complete 11-arcs

Stabilizer	Ι	\mathbf{Z}_2
Number	2569	75

Tab. 4.18: The stabilizers of the complete 12-arcs

Stabilizer	Ι	Z_2	Z_3	$\mathbf{Z_2} imes \mathbf{Z_2}$	\mathbf{Z}_4	S_3	D_4	D_6	\mathbf{S}_4
Number	337	152	17	18	1	20	2	3	3

C.	Stabilizer	Ι	\mathbf{Z}_2	Z_3	\mathbf{Z}_4	S_3
	Number	1	4	1	1	1

Tab. 4.19: The stabilizers of the complete 13-arcs

Tab. 4.20: The stabilizer of the complete 14-arc

Let K_4 be the complete 14-arc with group isomorphic to \mathbf{D}_4 in Table 4.20. Then $G(K_4)$ is generated by g_1, g_2 where

$$g_1 = \begin{pmatrix} 0 & 6 & 0 \\ 3 & 0 & 0 \\ 2 & 12 & 16 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 11 & 1 & 15 \\ 12 & 12 & 12 \\ 0 & 0 & 2 \end{pmatrix}.$$

Then $G(K_4)$ has the following orbits on K_4 : one orbit O_4 of size 8, one orbit O_5 of size 4 and one orbit O_1 of size 2. The group $G(K_4)$ stabilizes a line ℓ containing O_1 on a conic **C**, and partitions the line ℓ into three orbits of size 4 and three orbits O_1, O_2, O_3 of size 2. Then K_4 consists of ten points on **C**, two of them on ℓ , and eight points in $O_4 = \{R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8\}$ on **C**. Let Q_1, Q_2, Q_3, Q_4 be the four points in O_5 not on **C**. Let $O_1 = \{P_1, P_1'\}, O_2 = \{P_2, P_2'\}, O_3 = \{P_3, P_3'\}$ on ℓ , where

$$P_2 = Q_1 Q_3 \cap \ell = Q_2 Q_4 \cap \ell, \ P'_2 = Q_1 Q_4 \cap \ell = Q_2 Q_3 \cap \ell, \ P_3 = Q_1 Q_2 \cap \ell, \ P'_3 = Q_3 Q_4 \cap \ell.$$

The tetrad $O_1 \cup O_2$ is a harmonic and the tetrads $O_1 \cup O_3, O_2 \cup O_3$ are neither harmonic nor equianharmonic. The tangents at P_1 and P'_1 to **C** meet at R. The lines

$$R_1R$$
, R_2R , R_3R , R_4R , R_5R , R_6R , R_7R , R_8R , P_1R , P'_1R ;

are part of a *pencil*. However $O'_4 = \mathbf{C} \setminus (O_2 \cup O_4)$ is inequivalent to O_4 . The other eight lines of the pencil meet \mathbf{C} in O_4 .

4.12 Links with Coding Theory

From Definition 2.47, an [n, k, d] code is maximum distance separable (MDS) when

$$d = n - k + 1.$$

in the case that k = 3 and d = n - 2 of an [n, k, d] code, the code C converts to a set K of n points on the projective plane PG(2, q).

The parameters n, k and d for k-arcs in PG(2, q) up to 14 and the number e of errors that can be corrected are given in Table 4.21.

k-arc	n	k	d	e	k-arc	n	k	d	e
4-arc	4	3	2	1	10-arc	10	3	8	3
5-arc	5	3	3	1	11-arc	11	3	9	4
6-arc	6	3	4	1	12-arc	12	3	10	4
7-arc	7	3	5	2	13-arc	13	3	11	5
8-arc	8	3	6	2	14-arc	14	3	12	5
9-arc	9	3	7	3	18-arc	18	3	16	7

Tab. 4.21: The parameters n, k, d and e for k-arcs

5. CUBIC CURVES OVER A FINITE FIELD

5.1 Introduction

The main goal of this chapter is to answer the question:

Which non-singular cubic curves in PG(2, 17) are complete as (k; 3)-arcs? Over \mathbb{F}_q , plane cubic curves have properties familiar from the classical theory over the real and complex numbers. When $q \equiv 1 \pmod{3}$, their properties resemble those of cubics over the complex numbers; when $q \equiv -1 \pmod{3}$, the real numbers are the better analogy. When $q \equiv 0 \pmod{3}$, there is no suitable classical model.

Cubics with 3, 1, 0 rational inflexions are treated in this order. The main difference from some other treatments is that here two curves are equivalent if there is a projectivity over \mathbb{F}_a between them.

Let P_q be the total number of projectively inequivalent cubics. Let n_i for i = 0, 1, 3, 9 be the number of projectively inequivalent cubics with exactly *i* rational inflexions.

Hence,

$$P_q = n_9 + n_3 + n_1 + n_0.$$

Theorem 5.1.

$$P_q = 3q + 2 + \left(\frac{-4}{q}\right) + \left(\frac{-3}{q}\right)^2 + 3\left(\frac{-3}{q}\right).$$

Proof See [10, chapter 11, section 11].

Put

$$\begin{pmatrix} \frac{x}{3} \end{pmatrix} = \begin{cases} 1 & \text{if } x \equiv 1 \pmod{3}, \\ 0 & \text{if } x \equiv 0 \pmod{3}, \\ -1 & \text{if } x \equiv -1 \pmod{3}; \end{cases}$$
$$\begin{pmatrix} \frac{-4}{c} \end{pmatrix} = \begin{cases} 1 & \text{if } c \equiv 1 \pmod{4}, \\ 0 & \text{if } c \equiv 0 \pmod{2}, \\ -1 & \text{if } c \equiv -1 \pmod{2}, \\ -1 & \text{if } c \equiv -1 \pmod{4}; \end{cases}$$
$$\begin{pmatrix} \frac{-3}{c} \end{pmatrix} = \begin{cases} 1 & \text{if } c \equiv 1 \pmod{3}, \\ 0 & \text{if } c \equiv 0 \pmod{3}, \\ -1 & \text{if } c \equiv -1 \pmod{3}; \end{cases}$$

From the above formulas and Theorem 5.1, the total number of projectively inequivalent cubics over \mathbb{F}_{17} is 52; that is, $P_{17} = 52$. **Theorem 5.2.** There exists a non-singular plane cubic curve over \mathbb{F}_q with nine rational inflexions if and only if $q \equiv 1 \pmod{3}$.

Proof See [10, chapter 11, section 5].

Remark 5.3. From Theorem 5.2, since $17 \not\equiv 1 \pmod{3}$, the number of projective inequivalent curves with exactly nine rational inflexions is zero; that is, $n_9 = 0$.

Lemma 5.4. There are (q-1,3) projectively distinct cubic curves with three collinear rational inflexions such that the inflexional tangents are concurrent. The polynomials are as follows:

 $(1) \ (q-1,3) = 1,$

$$F = XY(X+Y) + Z^3;$$

 $(2) \ (q-1,3) = 3,$

$$F = XY(X+Y) + Z^{3},$$

$$F = XY(X+Y) + \alpha Z^{3},$$

$$F = XY(X+Y) + \alpha^{2}Z^{3},$$

where α is a primitive element of \mathbb{F}_q .

Proof See [10, chapter 11, section 5].

Corollary 5.5. Over \mathbb{F}_{17} , the polynomial $F = XY(X+Y) + Z^3$ has three rational inflexions.

Remark 5.6. When $q \equiv 0 \pmod{3}$ the cubic curve $\mathcal{F} = \nu(F)$ in Lemma 5.4 is singular. When $q \equiv 1 \pmod{3}$, the cubic curve $\mathcal{F} = \nu(F)$ has nine rational inflexions when e = 1 and three rational inflexions when $e = \alpha, \alpha^2$, where α is a primitive element of \mathbb{F}_q .

Theorem 5.7. A non-singular plane cubic over \mathbb{F}_q with three collinear rational inflexions and non-concurrent inflexional tangents has three or nine rational inflexions and polynomial

$$F = XYZ + e(X + Y + Z)^3,$$

 $e \neq 0, -1/27.$

Proof See [10, chapter 11, section 5].

Lemma 5.8. The polynomial $F = XYZ + e(X + Y + Z)^3$ is

- (1) singular and irreducible if e = -1/27;
- (2) equianharmonic if e = -1/24;
- (3) harmonic if $216e^2 + 36e + 1 = 0$, which has two roots when 3 is a square.

Corollary 5.9. Over \mathbb{F}_{17} , the polynomial $F = XYZ + e(X + Y + Z)^3$ is

- (1) singular and irreducible if e = 5;
- (2) equianharmonic if e = -5.

5.2 Non-singular cubics with three rational inflexions

The classification of non-singular cubics with exactly three rational inflexions can be completed on the basis of the previous theorems. From Lemma 5.4, Corollary 5.5, Theorem 5.7, Lemme 5.8 and Corollary 5.9, such a cubic F has polynomial

$$F = XY(X + Y) + Z^3$$
 or $F = XYZ + e(X + Y + Z)^3$

as the three inflexional tangents are concurrent or not.

For a non-singular cubic curve $\mathcal{F} = \nu(F)$, let K_F be a complete $(k_F; 3)$ -arc of largest size containing the points of \mathcal{F} . Table 5.1 lists, for each projectively distinct curve, the polynomial of \mathcal{F} , the size k_F of K_F , the completeness or incompleteness of \mathcal{F} as a (k; 3)-arc, and the type of \mathcal{F} , where G, E, H are respectively the general, equianharmonic, harmonic types when the inflexional tangents are not concurrent, and \overline{E} the type when they are concurrent as described in Table 5.1.

No.	F	k	Description	Type	k_F
1	$XY(X+Y) + Z^3$	18	incomplete	\bar{E}	22
2	$XYZ + (X + Y + Z)^3$	12	incomplete	G	25
3	$XYZ - (X + Y + Z)^3$	21	complete	G	21
4	$XYZ + 2(X + Y + Z)^3$	21	complete	G	21
5	$XYZ - 2(X + Y + Z)^3$	15	incomplete	G	20
6	$XYZ + 3(X + Y + Z)^3$	15	incomplete	G	21
7	$XYZ - 3(X + Y + Z)^3$	12	incomplete	G	22
8	$XYZ + 4(X + Y + Z)^3$	24	incomplete	G	25
9	$XYZ - 4(X + Y + Z)^3$	12	incomplete	G	22
10	$XYZ - 5(X + Y + Z)^3$	18	incomplete	E	24
11	$XYZ + 6(X + Y + Z)^3$	15	incomplete	G	21
12	$XYZ - 6(X + Y + Z)^3$	18	complete	G	18
13	$XYZ + 7(X + Y + Z)^3$	21	complete	G	21
14	$XYZ - 7(X + Y + Z)^3$	18	incomplete	G	22
15	$XYZ + 8(X + Y + Z)^3$	24	complete	G	24
16	$XYZ - 8(X + Y + Z)^3$	24	complete	G	24

Tab. 5.1: The canonical forms with three rational inflexions

So, the number of projectively inequivalent cubics with exactly three rational inflexions is 16; that is, $n_3 = 16$.

5.3 Non-singular cubics with one rational inflexion

The classification of non-singular cubics with exactly one rational inflexions can be completed on the basis of the next theorem.

Theorem 5.10. A non-singular, plane, cubic curve defined over \mathbb{F}_q , with at least one inflexion has the polynomial.

$$F = Z^2 Y + X^3 + cXY^2 + dY^3,$$

where $4c^3 + 27d^2 \neq 0$.

Proof See [10, chapter 11, section 8].

Remark 5.11. The curve \mathcal{F} in Theorem 5.10 is general when $cd \neq 0$, harmonic when $c \neq 0$ and d = 0, equinanharmonic when c = 0 and $d \neq 0$, and singular when $4c^3 + 27d^2 = 0$.

From Theorem 5.10 and Remark 5.11, Table 5.2 lists, for each projectively distinct curve, the polynomial of \mathcal{F} , the size k_F of K_F , the completeness or incompleteness of \mathcal{F} as a (k; 3)-arc, and the type of \mathcal{F} as described in Table 5.2.

Tab. 5.2: The canonical forms with one rational inflexion

No.	F	k	Description	Type	k_F
1	$Z^2Y + X^3 + XY^2 + Y^3$	18	incomplete	G	22
2	$Z^2Y + X^3 + XY^2 - Y^3$	18	incomplete	G	22
3	$Z^2Y + X^3 + XY^2 + 2Y^3$	24	incomplete	G	25
4	$Z^2Y + X^3 + XY^2 - 2Y^3$	24	incomplete	G	25
5	$Z^2Y + X^3 + XY^2 + 3Y^3$	17	incomplete	G	20
6	$Z^2Y + X^3 + XY^2 - 3Y^3$	17	incomplete	G	20
7	$Z^2Y + X^3 + XY^2 + 4Y^3$	14	incomplete	G	21

No.	F	k	Description	Type	k_F
8	$Z^2Y + X^3 + XY^2 - 4Y^3$	14	incomplete	G	23
9	$Z^2Y + X^3 + XY^2 + 5Y^3$	15	incomplete	G	22
10	$Z^2Y + X^3 + XY^2 - 5Y^3$	15	incomplete	G	21
11	$Z^2Y + X^3 + XY^2 + 6Y^3$	20	incomplete	G	21
12	$Z^2Y + X^3 + XY^2 - 6Y^3$	20	incomplete	G	21
13	$Z^2Y + X^3 + XY^2 + 7Y^3$	12	incomplete	G	23
14	$Z^2Y + X^3 + XY^2 - 7Y^3$	12	incomplete	G	22
15	$Z^2Y + X^3 + XY^2 + 8Y^3$	25	complete	G	25
16	$Z^2Y + X^3 + XY^2 - 8Y^3$	25	complete	G	25
17	$Z^2Y + X^3 + XY^2$	16	incomplete	Н	20
18	$Z^2Y + X^3 + 2XY^2$	20	complete	Н	20
19	$Z^2Y + X^3 + 3XY^2$	26	complete	H	26
20	$Z^2Y + X^3 + 6XY^2$	10	incomplete	H	22

So, the number of projectively inequivalent cubics with exactly one rational inflexion is 20; that is, $n_1 = 20$.

5.4 Non-singular cubics with no rational inflexions

In this section, a summary of the results for cubics with no rational inflexions is given.

Lemma 5.12. Over \mathbb{F}_q , $q \equiv -1 \pmod{3}$, a non-singular cubic with no rational inflexions has polynomial

$$F = Z^{3} - 3c(X^{2} - dXY + Y^{2})Z - (X^{3} - 3XY^{2} + dY^{3}),$$

where $X^3 - 3X + d$ is irreducible.

Proof See [10, chapter 11, section 9].

Lemma 5.13. The curve \mathcal{F} in Lemma 5.12 is equianharmonic for c = 0, 2/e, harmonic for $c = (-1 \pm \sqrt{3})/e$, where $e^3 = d^2 - 4$.

Corollary 5.14. Over \mathbb{F}_{17} , the curve \mathcal{F} in Lemma 5.12 is equianharmonic for c = 0, -6.

Remark 5.15. The polynomial $X^3 - 3X + d$ of degree 3 is irreducible over \mathbb{F}_{17} , where $d = \pm 3, \pm 4, \pm 7$.

From Lemma 5.12, Lemma 5.13, Corollary 5.14 and Remark 5.15, Table 5.3 lists, for each projectively distinct curve, the polynomial of \mathcal{F} , the size k_F of K_F , the completeness or incompleteness of \mathcal{F} as a (k; 3)-arc, and the type of \mathcal{F} as described in Table 5.3.

Tab. 5.3: The canonical forms with no rational inflexions

No.	F	k	Description	Type	k_F
1	$Z^{3} - 3(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	15	incomplete	G	22
2	$Z^{3} + 3(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	24	complete	G	24
3	$Z^{3} - 6(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	15	incomplete	G	21
4	$Z^{3} + 6(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	21	$\operatorname{complete}$	G	21
5	$Z^{3} - 8(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	18	complete	G	18
6	$Z^{3} + 5(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	24	$\operatorname{complete}$	G	24
7	$Z^{3} - 5(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	12	incomplete	G	23
8	$Z^{3} + 2(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	24	complete	G	24
9	$Z^{3} - 2(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	21	complete	G	21
10	$Z^{3} - (X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	15	incomplete	G	22
11	$Z^{3} + (X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	18	complete	E	18
12	$Z^{3} - 4(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	18	complete	G	18

No.	F	k	Description	Type	k_F
13	$Z^{3} + 4(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	21	complete	G	21
14	$Z^{3} - 7(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	12	incomplete	G	23
15	$Z^{3} + 7(X^{2} - 3XY + Y^{2})Z - (X^{3} - 3XY^{2} + 3Y^{3})$	12	incomplete	G	23
16	$Z^3 - X^3 + 3XY^2 - 3Y^3$	18	incomplete	E	22

So, the number of projectively inequivalent cubics with no rational inflexions is 16; that is, $n_0 = 16$.

5.5 Number of rational points on a non-singular cubics

Let $N_q(1)$ be the maximum number of points on a non-singular cubic over \mathbb{F}_q . From [10], the range of the number N_1 of points on a cubic is

$$q + 1 - 2\sqrt{q} \le N_1 \le q + 1 + 2\sqrt{q}.$$

From Tables 5.1, 5.2, 5.3,

$$N_{17}(1) = 26, M_{17}(1) = 10,$$

where $M_{17}(1)$ is the minimum number of points on a non-singular cubic over \mathbb{F}_{17} . So $m_3(2,17) \geq N_{17}(1)$ where $m_3(2,17)$ is the maximum number of points on a (k;3)-arc in PG(2,17).

Theorem 5.16. In PG(2,17) there are precisely 19 projectively distinct complete nonsingular cubic curves.

The numbers of the complete non-singular cubic curves and their stabilizer are given in Table 5.4.

Stabilizer	\mathbf{Z}_2	Z_3	\mathbf{Z}_4	$\mathbf{S_3}$
Number	2	9	2	6

Tab. 5.4: The stabilizers of the complete non-singular cubic curves

5.6 Links with Coding Theory

A linear [n, k, d] code C is called *near-MDS*, or simply *NMDS*, if

d = n - k.

in the case that k = 3 and d = n - 3 of an [n, k, d] code, the code C converts to a set K of n points on the projective plane PG(2, q) with at least one line of the plane containing three points of K.

The parameters n, k and d for k-arcs in PG(2, q) up to 26 and the number e of errors that can be corrected are given in Table 5.5.

(k;3)-arc	n	k	d	e	(k;3)-arc	n	k	d	e
(11·3)-arc	11	3	8	3	(19·3)-arc	19	3	16	7
(12.2)	10	0	0		(10,0) are	10	0	10	•
(12;3)-arc	12	3	9	4	(20;3)-arc	20	3	17	8
(13;3)-arc	13	3	10	4	(21;3)-arc	21	3	18	8
(14;3)-arc	14	3	11	5	(22;3)-arc	22	3	19	9
(15;3)-arc	15	3	12	5	(23;3)-arc	23	3	20	9
(16;3)-arc	16	3	13	6	(24;3)-arc	24	3	21	10
(17;3)-arc	17	3	14	6	(25;3)-arc	25	3	22	10
(18;3)-arc	18	3	15	7	(26;3)-arc	26	3	23	11

Tab. 5.5: The parameters n, k, d and e for (k;3)-arcs

6. APPENDIX 1

Programming

The programs are written in GAP for use on a Windows machine. We classified the types of heptads in PG(1, 17) to compute the projectivities between them. So far, all arcs up to and including size eight on projective plane PG(2, 17) have been classified, as have complete k-arcs, where $k \leq 18$. The complete non-singular cubic curves in PG(2, 17) as (k; 3)-arcs have been classified as well. We checked the programs on the case q = 7.

6.1 Computing the points of PG(2, 17)

$$\begin{split} \mathbf{t} &:= [[0,1,0], [0,0,1], [14,1,0]];;\\ \mathbf{u} &:= [1,0,0];;\\ \text{for i in } [0..306] \text{ do}\\ p &:= u * t^i \mod 17;\\ \text{if } p[3] <> 0 \mod 17 \text{ then } z := p * p[3]^{-1} \mod 17;\\ \text{elif } p[2] <> 0 \mod 17 \text{ then } z := p * p[2]^{-1} \mod 17;\\ \text{elif } p[1] <> 0 \mod 17 \text{ then } z := p * p[1]^{-1} \mod 17;\\ \text{fi};\\ \text{Print}(i+1,p,"\backslash n");\\ \text{od}; \end{split}$$

6.2 Classifying heptads in PG(1, 17)

$$\begin{split} a &:= [3,4,5,-5,6,-6,-8];;\\ A &:= a[1,2,3,4,5,6];;\\ B &:= a[1,2,3,4,5,7];;\\ C &:= a[1,2,3,4,6,7];;\\ D &:= a[1,2,3,5,6,7];;\\ K &:= a[1,2,4,5,6,7];;\\ F &:= a[1,3,4,5,6,7];;\\ G &:= a[2,3,4,5,6,7];;\\ wa &:= [A,B,C,D,K,F,G];;\\ A51 &:= A[1,2,3,4,6];;\\ A52 &:= A[1,2,3,4,6];;\\ A53 &:= A[1,2,4,5,6];;\\ A54 &:= A[1,2,4,5,6];;\\ A55 &:= A[1,3,4,5,6];; \end{split}$$

```
A56 := A[2, 3, 4, 5, 6];;
WA5 := [A51, A52, A53, A54, A55, A56];;
A51 - 41 := A51\{[1, 2, 3, 4]\};;
A51 - 42 := A51\{[1, 2, 3, 5]\};;
A51 - 43 := A51\{[1, 2, 4, 5]\};;
A51 - 44 := A51\{[1, 3, 4, 5]\};;
A51 - 45 := A51\{[2, 3, 4, 5]\};;
WA51 - 4 := [A51 - 41, A51 - 42, A51 - 43, A51 - 44, A51 - 45];;
A52 - 41 := A52\{[1, 2, 3, 4]\};;
A52 - 42 := A52\{[1, 2, 3, 5]\};;
A52 - 43 := A52\{[1, 2, 4, 5]\};;
A52 - 44 := A52\{[1, 3, 4, 5]\};;
A52 - 45 := A52\{[2, 3, 4, 5]\};;
WA52 - 4 := [A52 - 41, A52 - 42, A52 - 43, A52 - 44, A52 - 45];;
A53 - 41 := A53\{[1, 2, 3, 4]\};;
A53 - 42 := A53\{[1, 2, 3, 5]\};;
A53 - 43 := A53\{[1, 2, 4, 5]\};;
A53 - 44 := A53\{[1, 3, 4, 5]\};;
A53 - 45 := A53\{[2, 3, 4, 5]\};;
WA53 - 4 := [A53 - 41, A53 - 42, A53 - 43, A53 - 44, A53 - 45];;
A54 - 41 := A54\{[1, 2, 3, 4]\};;
A54 - 42 := A54\{[1, 2, 3, 5]\};;
A54 - 43 := A54\{[1, 2, 4, 5]\};;
A54 - 44 := A54\{[1, 3, 4, 5]\};;
A54 - 45 := A54\{[2, 3, 4, 5]\};;
WA54 - 4 := [A54 - 41, A54 - 42, A54 - 43, A54 - 44, A54 - 45];;
A55 - 41 := A55\{|1, 2, 3, 4|\};;
A55 - 42 := A55\{[1, 2, 3, 5]\};;
A55-43 := A55\{[1, 2, 4, 5]\};;
A55 - 44 := A55\{[1, 3, 4, 5]\};;
A55-45 := A55\{[2,3,4,5]\};;
WA55 - 4 := [A55 - 41, A55 - 42, A55 - 43, A55 - 44, A55 - 45];;
A56 - 41 := A56\{[1, 2, 3, 4]\};;
A56 - 42 := A56\{[1, 2, 3, 5]\};;
A56 - 43 := A56\{[1, 2, 4, 5]\};;
A56 - 44 := A56\{[1, 3, 4, 5]\};;
A56 - 45 := A56\{[2, 3, 4, 5]\};;
WA56 - 4 := |A56 - 41, A56 - 42, A56 - 43, A56 - 44, A56 - 45|;;
WA - 4 := [WA51 - 4, WA52 - 4, WA53 - 4, WA54 - 4, WA55 - 4, WA56 - 4];;
Print("A - ", A, "\backslash n");
for l in [1..6] do
Print(l, "-", WA5[l], "\backslash n");
od;
for i in [1..6] do
Print(i, " = ", WA5[i]);
```



```
s:=[[[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1], [3, 8, 1]],
       [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1], [2, 4, 1]];;
       w := Size(s);;
       for h in [1 . . w-1] do
       for j in [h+1 \dots w] do
       v := [];;
       for i1 in \begin{bmatrix} 1 \\ . \\ . \\ \end{bmatrix} do
       for i2 in [1 \dots 5] do
       for i3 in [1 \dots 5] do
       for i4 in \begin{bmatrix} 1 \\ . \\ . \\ \end{bmatrix} do
      if i1 \ll i2 and i1 \ll i3 and i1 \ll i4 and i2 \ll i3 and i2 \ll i4 and
       i3 <> i4 then
       n := [s[j][i1], s[j][i2], s[j][i3], s[j][i4]];;
       Add(v,n);
       fi;
       od;od;od;od;
       for i in [1 . . Length(v)] do
       t := v[i];
       a1 := t[4][1] * (t[2][2] * t[3][3] - t[3][2] * t[2][3]);
       a2 := t[2][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
       a3 := t[3][1] * (t[4][2] * t[2][3] - t[2][2] * t[4][3]);
       b1 := t[1][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
      b2 := t[4][1] * (t[1][2] * t[3][3] - t[3][2] * t[1][3]);
      b3 := t[3][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
       c1 := t[1][1] * (t[2][2] * t[4][3] - t[4][2] * t[2][3]);
       c2 := t[2][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
       c3 := t[4][1] * (t[1][2] * t[2][3] - t[2][2] * t[1][3]);
       a := (a1 - a2 + a3) \mod 17;
```

```
b := (b1 - b2 + b3) \mod 17;
c := (c1 - c2 + c3) \mod 17;
T := [[a * t[1]][1] \mod 17, a * t[1]][2] \mod 17, a * t[1]][3] \mod 17],
[b * t[2][1] \mod 17, b * t[2][2] \mod 17, b * t[2][3] \mod 17],
[c * t[3][1] \mod 17, c * t[3][2] \mod 17, c * t[3][3] \mod 17]];
r1:=(s[h][1]*T) \mod 17;
r2:=(s[h][2]*T) \mod 17;
r3:=(s[h][3]*T) \mod 17;
r4:=(s[h][4]*T) \mod 17;
r5:=(s[h][5]*T) \mod 17;
if r1[3] <> 0 \mod 17 then x1 := r1 * r1[3]^{-1} \mod 17;
elif r1[2] <> 0 \mod 17 then x1 := r1 * r1[2]^{-1} \mod 17;
elif r1[1] \ll 0 \mod 17 then x1 := r1 * r1[1]^{-1} \mod 17;
fi;
if r2[3] <> 0 \mod 17 then x2 := r2 * r2[3]^{-1} \mod 17;
elif r2[2] <> 0 \mod 17 then x2 := r2 * r2[2]^{-1} \mod 17;
elif r2[1] <> 0 \mod 17 \tanh 2 := r2 * r2[1]^{-1} \mod 17;
fi;
if r_3[3] <> 0 \mod 17 then x_3 := r_3 * r_3[3]^{-1} \mod 17;
elif r_3[2] <> 0 \mod 17 then x_3 := r_3 * r_3[2]^{-1} \mod 17;
elif r_3[1] <> 0 \mod 17 then x_3 := r_3 * r_3[1]^{-1} \mod 17;
fi;
if r4[3] <> 0 \mod 17 then x4 := r4 * r4[3]^{-1} \mod 17;
elif r4[2] <> 0 \mod 17 then x4 := r4 * r4[2]^{-1} \mod 17;
elif r4[1] <> 0 \mod 17 then x4 := r4 * r4[1]^{-1} \mod 17;
fi;
if r5[3] <> 0 \mod 17 then x5 := r5 * r5[3]^{-1} \mod 17;
elif r5[2] \ll 0 \mod 17 then x5 := r5 * r5[2]^{-1} \mod 17;
elif r5[1] <> 0 \mod 17 then x5 := r5 * r5[1]^{-1} \mod 17;
fi:
if Set([x1, x2, x3, x4, x5]) = Set(s[j]) \mod 17 then
Print(h, T, j, "\backslash n");
fi;
od;od;od;
In above programme |s| = 2, but we can choose |s| = n for any positive integer number
```

n.

6.4 Computing the transformations between the 6-arcs

$$\begin{split} s:=& [[\ [\ 0, \ 0, \ 1 \], \ [\ 0, \ 1, \ 0 \], \ [\ 1, \ 0, \ 0 \], \ [\ 1, \ 1, \ 1 \], \ [\ 9, \ 11, \ 1 \], \ [3,8,1]], \\ & [\ [\ 0, \ 0, \ 1 \], \ [\ 0, \ 1, \ 0 \], \ [\ 1, \ 0, \ 0 \], \ [\ 1, \ 1, \ 1 \], \ [\ 9, \ 11, \ 1 \], \ [10,15,1]]];; \\ & w:=& Size(s);; \\ & for \ h \ in \ [1 \ . \ w-1] \ do \\ & for \ j \ in \ [h+1 \ . \ w] \ do \\ & v:=& [\];; \end{split}$$

for i1 in [1 . . 6] do for i2 in $[1 \dots 6]$ do for i3 in $[1 \dots 6]$ do for i4 in $\begin{bmatrix} 1 & . & 6 \end{bmatrix}$ do if $i1 \ll i2$ and $i1 \ll i3$ and $i1 \ll i4$ and $i2 \ll i3$ and $i2 \ll i4$ and i3 <> i4 then n := [s[j][i1], s[j][i2], s[j][i3], s[j][i4]];;Add(v,n);fi; od;od;od;od; for i in [1 . . Length(v)] do t := v[i];a1 := t[4][1] * (t[2][2] * t[3][3] - t[3][2] * t[2][3]);a2 := t[2][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);a3 := t[3][1] * (t[4][2] * t[2][3] - t[2][2] * t[4][3]);b1 := t[1][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);b2 := t[4][1] * (t[1][2] * t[3][3] - t[3][2] * t[1][3]);b3 := t[3][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);c1 := t[1][1] * (t[2][2] * t[4][3] - t[4][2] * t[2][3]);c2 := t[2][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);c3 := t[4][1] * (t[1][2] * t[2][3] - t[2][2] * t[1][3]); $a := (a1 - a2 + a3) \mod 17;$ $b := (b1 - b2 + b3) \mod 17;$ $c := (c1 - c2 + c3) \mod 17;$ $T := [[a * t[1]][1] \mod 17, a * t[1]][2] \mod 17, a * t[1]][3] \mod 17],$ $[b * t[2][1] \mod 17, b * t[2][2] \mod 17, b * t[2][3] \mod 17],$ $[c * t[3][1] \mod 17, c * t[3][2] \mod 17, c * t[3][3] \mod 17]];$ $r1:=(s[h][1]*T) \mod 17;$ $r2:=(s[h][2]*T) \mod 17;$ $r3:=(s[h][3]*T) \mod 17;$ $r4:=(s[h][4]*T) \mod 17;$ $r5:=(s[h][5]*T) \mod 17;$ $r6:=(s[h][6]*T) \mod 17;$ if $r1[3] <> 0 \mod 17$ then $x1 := r1 * r1[3]^{-1} \mod 17$; elif $r1[2] <> 0 \mod 17$ then $x1 := r1 * r1[2]^{-1} \mod 17$; elif $r1[1] <> 0 \mod 17$ then $x1 := r1 * r1[1]^{-1} \mod 17$; fi; if $r_2[3] <> 0 \mod 17$ then $x_2 := r_2 * r_2[3]^{-1} \mod 17$; elif $r2[2] <> 0 \mod 17$ then $x2 := r2 * r2[2]^{-1} \mod 17$; elif $r2[1] <> 0 \mod 17 \ then x2 := r2 * r2[1]^{-1} \mod 17;$ fi; if $r3[3] <> 0 \mod 17$ then $x3 := r3 * r3[3]^{-1} \mod 17$; elif $r_3[2] <> 0 \mod 17$ then $x_3 := r_3 * r_3[2]^{-1} \mod 17$; elif $r_3[1] <> 0 \mod 17$ then $x_3 := r_3 * r_3[1]^{-1} \mod 17$; fi;

if $r4[3] <> 0 \mod 17$ then $x4 := r4 * r4[3]^{-1} \mod 17$; elif $r4[2] <> 0 \mod 17$ then $x4 := r4 * r4[2]^{-1} \mod 17$; elif $r4[1] \ll 0 \mod 17$ then $x4 := r4 * r4[1]^{-1} \mod 17$; fi: if $r5[3] <> 0 \mod 17$ then $x5 := r5 * r5[3]^{-1} \mod 17$; elif $r5[2] \ll 0 \mod 17$ then $x5 := r5 * r5[2]^{-1} \mod 17$; elif $r5[1] <> 0 \mod 17$ then $x5 := r5 * r5[1]^{-1} \mod 17$; fi; if $r6[3] <> 0 \mod 17$ then $x6 := r6 * r6[3]^{-1} \mod 17$; elif $r6[2] <> 0 \mod 17$ then $x6 := r6 * r6[2]^{-1} \mod 17$; elif $r6[1] <> 0 \mod 17$ then $x6 := r6 * r6[1]^{-1} \mod 17$; fi: if $Set([x1, x2, x3, x4, x5, x6]) = Set(s[j]) \mod 17$ then $\operatorname{Print}(h, T, j, "\backslash n");$ fi; od;od;od;

Here in above programme |s| = 2, but in fact |s| = 74.

6.5 Computing the transformations between the 7-arcs

```
s:=[[ [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1], [9, 11, 1], [3,8,1], [10,15,1]],
      [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1], [9, 11, 1], [10, 15, 1], [5, 14, 1]];
      w := Size(s);;
      for h in [1 . . w-1] do
      for j in [h+1 \dots w] do
      v:=[ ];;
      for i1 in \begin{bmatrix} 1 & . & 7 \end{bmatrix} do
      for i2 in [1...7] do
      for i3 in [1 \dots 7] do
      for i4 in [1 . . 7] do
      if i1 \ll i2 and i1 \ll i3 and i1 \ll i4 and i2 \ll i3 and i2 \ll i4 and
      i3 <> i4 then
      n := [s[j][i1], s[j][i2], s[j][i3], s[j][i4]];;
      Add(v,n);
      fi:
      od;od;od;od;
      for i in [1 . . Length(v)] do
      t := v[i];
      a1 := t[4][1] * (t[2][2] * t[3][3] - t[3][2] * t[2][3]);
      a2 := t[2][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
      a3 := t[3][1] * (t[4][2] * t[2][3] - t[2][2] * t[4][3]);
      b1 := t[1][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
      b2 := t[4][1] * (t[1][2] * t[3][3] - t[3][2] * t[1][3]);
      b3 := t[3][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
      c1 := t[1][1] * (t[2][2] * t[4][3] - t[4][2] * t[2][3]);
```

c2 := t[2][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);c3 := t[4][1] * (t[1][2] * t[2][3] - t[2][2] * t[1][3]); $a := (a1 - a2 + a3) \mod 17;$ $b := (b1 - b2 + b3) \mod 17;$ $c := (c1 - c2 + c3) \mod 17;$ $T := [[a * t[1][1] \mod 17, a * t[1][2] \mod 17, a * t[1][3] \mod 17],$ $[b * t[2][1] \mod 17, b * t[2][2] \mod 17, b * t[2][3] \mod 17],$ $[c * t[3][1] \mod 17, c * t[3][2] \mod 17, c * t[3][3] \mod 17]];$ $r1:=(s[h][1]*T) \mod 17;$ $r2:=(s[h][2]*T) \mod 17;$ $r3:=(s[h][3]*T) \mod 17;$ $r4:=(s[h][4]*T) \mod 17;$ $r5:=(s[h][5]*T) \mod 17;$ $r6:=(s[h][6]*T) \mod 17;$ $r7:=(s[h][7]*T) \mod 17;$ if $r1[3] <> 0 \mod 17$ then $x1 := r1 * r1[3]^{-1} \mod 17$; elif $r1[2] \ll 0 \mod 17$ then $x1 := r1 * r1[2]^{-1} \mod 17$; elif $r1[1] <> 0 \mod 17$ then $x1 := r1 * r1[1]^{-1} \mod 17$; fi: if $r2[3] <> 0 \mod 17$ then $x2 := r2 * r2[3]^{-1} \mod 17$; elif $r2[2] <> 0 \mod 17$ then $x2 := r2 * r2[2]^{-1} \mod 17$; elif $r2[1] <> 0 \mod 17 \ then x2 := r2 * r2[1]^{-1} \mod 17;$ fi; if $r3[3] <> 0 \mod 17$ then $x3 := r3 * r3[3]^{-1} \mod 17$; elif $r_3[2] <> 0 \mod 17$ then $x_3 := r_3 * r_3[2]^{-1} \mod 17$; elif $r_3[1] <> 0 \mod 17$ then $x_3 := r_3 * r_3[1]^{-1} \mod 17$; fi; if $r4[3] <> 0 \mod 17$ then $x4 := r4 * r4[3]^{-1} \mod 17$; elif $r4[2] <> 0 \mod 17$ then $x4 := r4 * r4[2]^{-1} \mod 17$; elif $r4[1] <> 0 \mod 17$ then $x4 := r4 * r4[1]^{-1} \mod 17$; fi; if $r5[3] <> 0 \mod 17$ then $x5 := r5 * r5[3]^{-1} \mod 17$; elif $r5[2] <> 0 \mod 17$ then $x5 := r5 * r5[2]^{-1} \mod 17$; elif $r5[1] <> 0 \mod 17$ then $x5 := r5 * r5[1]^{-1} \mod 17$; fi; if $r6[3] <> 0 \mod 17$ then $x6 := r6 * r6[3]^{-1} \mod 17$; elif $r6[2] <> 0 \mod 17$ then $x6 := r6 * r6[2]^{-1} \mod 17$; elif $r6[1] <> 0 \mod 17$ then $x6 := r6 * r6[1]^{-1} \mod 17$; fi; if $r7[3] <> 0 \mod 17$ then $x7 := r7 * r7[3]^{-1} \mod 17$; elif $r7[2] <> 0 \mod 17$ then $x7 := r7 * r7[2]^{-1} \mod 17$; elif $r7[1] <> 0 \mod 17$ then $x7 := r7 * r7[1]^{-1} \mod 17$; fi; if $Set([x1, x2, x3, x4, x5, x6, x7]) = Set(s[j]) \mod 17$ then

 $Print(h, T, j, "\backslash n");$

fi; od;od;od; Here |s| = 2, but in fact |s| = 733.

6.6 Computing the transformations between the 8-arcs

```
m:=[[0,1,0],[0,0,1],[14,1,0]];;
      u:=[1,0,0];;
      f:=[];;
      for q in [0 . . 306] do
      p := u * m^q \mod 17;
      if p[3] <> 0 \mod 17 then z := p * p[3]^{-1} \mod 17;
      elif p[2] \ll 0 \mod 17 then z := p * p[2]^{-1} \mod 17;
      elif p[1] \ll 0 \mod 17 then z := p * p[1]^{-1} \mod 17;
      fi;
      Add(f,z);
      od:
      s:=[[f[1], f[2], f[3], f[254], f[7], f[14], f[28], f[11]],
      [f[1], f[2], f[3], f[254], f[7], f[14], f[28], f[13]]
       [f[1], f[2], f[3], f[254], f[7], f[14], f[28], f[15]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[28], f[19]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[28], f[20]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[28], f[22]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[28], f[24]],
      [f[1], f[2], f[3], f[254], f[7], f[14], f[28], f[26]]];;
      w:=Size(s);;
      for h in [1 . . w-1] do
      for j in [h+1 \dots w] do
      v := [];;
      for i1 in [1 . . 8] do
      for i2 in [1 \dots 8] do
      for i3 in [1 \dots 8] do
      for i4 in [1 \dots 8] do
      if i1 \ll i2 and i1 \ll i3 and i1 \ll i4 and i2 \ll i3 and i2 \ll i4 and
      i3 <> i4 then
      n := [s[j][i1], s[j][i2], s[j][i3], s[j][i4]];;
      Add(v,n);
      fi;
      od;od;od;od;
      for i in [1 . . Length(v)] do
      t := v[i];
      a1 := t[4][1] * (t[2][2] * t[3][3] - t[3][2] * t[2][3]);
      a2 := t[2][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
      a3 := t[3][1] * (t[4][2] * t[2][3] - t[2][2] * t[4][3]);
      b1 := t[1][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
```

```
b2 := t[4][1] * (t[1][2] * t[3][3] - t[3][2] * t[1][3]);
b3 := t[3][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c1 := t[1][1] * (t[2][2] * t[4][3] - t[4][2] * t[2][3]);
c2 := t[2][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c3 := t[4][1] * (t[1][2] * t[2][3] - t[2][2] * t[1][3]);
a := (a1 - a2 + a3) \mod 17;
b := (b1 - b2 + b3) \mod 17;
c := (c1 - c2 + c3) \mod 17;
T := [[a * t[1]][1] \mod 17, a * t[1]][2] \mod 17, a * t[1]][3] \mod 17],
[b * t[2][1] \mod 17, b * t[2][2] \mod 17, b * t[2][3] \mod 17],
[c * t[3][1] \mod 17, c * t[3][2] \mod 17, c * t[3][3] \mod 17]];
r1:=(s[h][1]*T) \mod 17;
r2:=(s[h][2]*T) \mod 17;
r3:=(s[h][3]*T) \mod 17;
r4:=(s[h][4]*T) \mod 17;
r5:=(s[h][5]*T) \mod 17;
r6:=(s[h][6]*T) \mod 17;
r7:=(s[h][7]*T) \mod 17;
r8:=(s[h][8]*T) \mod 17;
if r1[3] <> 0 \mod 17 then x1 := r1 * r1[3]^{-1} \mod 17;
elif r1[2] <> 0 \mod 17 then x1 := r1 * r1[2]^{-1} \mod 17;
elif r1[1] <> 0 \mod 17 then x1 := r1 * r1[1]^{-1} \mod 17;
fi;
if r2[3] <> 0 \mod 17 then x2 := r2 * r2[3]^{-1} \mod 17;
elif r2[2] <> 0 \mod 17 then x2 := r2 * r2[2]^{-1} \mod 17;
elif r_2[1] <> 0 \mod 17 then x_2 := r_2 * r_2[1]^{-1} \mod 17;
fi;
if r3[3] <> 0 \mod 17 then x3 := r3 * r3[3]^{-1} \mod 17;
elif r_3[2] <> 0 \mod 17 then x_3 := r_3 * r_3[2]^{-1} \mod 17;
elif r_3[1] <> 0 \mod 17 then x_3 := r_3 * r_3[1]^{-1} \mod 17;
fi;
if r4[3] <> 0 \mod 17 then x4 := r4 * r4[3]^{-1} \mod 17;
elif r4[2] <> 0 \mod 17 then x4 := r4 * r4[2]^{-1} \mod 17;
elif r4[1] <> 0 \mod 17 then x4 := r4 * r4[1]^{-1} \mod 17;
fi;
if r5[3] <> 0 \mod 17 then x5 := r5 * r5[3]^{-1} \mod 17;
elif r5[2] <> 0 \mod 17 then x5 := r5 * r5[2]^{-1} \mod 17;
elif r5[1] \ll 0 \mod 17 then x5 := r5 * r5[1]^{-1} \mod 17;
fi;
if r6[3] <> 0 \mod 17 then x6 := r6 * r6[3]^{-1} \mod 17;
elif r6[2] <> 0 \mod 17 then x6 := r6 * r6[2]^{-1} \mod 17;
elif r6[1] <> 0 \mod 17 then x6 := r6 * r6[1]^{-1} \mod 17;
fi;
if r7[3] <> 0 \mod 17 then x7 := r7 * r7[3]^{-1} \mod 17;
elif r7[2] <> 0 \mod 17 then x7 := r7 * r7[2]^{-1} \mod 17;
```

elif $r7[1] <> 0 \mod 17$ then $x7 := r7 * r7[1]^{-1} \mod 17$; f; if $r8[3] <> 0 \mod 17$ then $x8 := r8 * r8[3]^{-1} \mod 17$; elif $r8[2] <> 0 \mod 17$ then $x8 := r8 * r8[2]^{-1} \mod 17$; elif $r8[1] <> 0 \mod 17$ then $x8 := r8 * r8[1]^{-1} \mod 17$; f; if Set([x1, x2, x3, x4, x5, x6, x7, x8])=Set(s[j]) mod 17 then Print($h, T, j, "\setminus n"$); f; od;od;od; Here in above programme |s| = 8, but in fact |s| = 5441.

6.7 Computing the transformations between the 9-arcs

```
m := [0,1,0], [0,0,1], [14,1,0]];;
       u:=[1,0,0];;
       f:=[];;
       for q in [0 \dots 306] do
       p := u * m^q \mod 17;
       if p[3] <> 0 \mod 17 then z := p * p[3]^{-1} \mod 17;
       elif p[2] \ll 0 \mod 17 then z := p * p[2]^{-1} \mod 17;
       elif p[1] \ll 0 \mod 17 then z := p * p[1]^{-1} \mod 17;
       fi;
       Add(f,z);
       od:
       s:=[[f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[85], f[136]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[85], f[153]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[85], f[168]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[85], f[176]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[85], f[186]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[85], f[188]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[85], f[206]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[85], f[270]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[85], f[299]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[85], f[301]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[136], f[85]],
       [f[1], f[2], f[3], f[254], f[7], f[14], f[42], f[136], f[153]]];;
       w := Size(s);;
       for h in [1 . . w-1] do
       for j in [h+1 \dots w] do
       v := [];;
       for i1 in [1...9] do
       for i2 in [1 . . 9] do
       for i3 in [1...9] do
       for i4 in [1 . . 9] do
```

```
if i1 \ll i2 and i1 \ll i3 and i1 \ll i4 and i2 \ll i3 and i2 \ll i4 and
i3 <> i4 then
n := [s[j][i1], s[j][i2], s[j][i3], s[j][i4]];;
Add(v,n);
fi;
od;od;od;od;
for i in [1 . . Length(v)] do
t := v[i];
a1 := t[4][1] * (t[2][2] * t[3][3] - t[3][2] * t[2][3]);
a2 := t[2][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
a3 := t[3][1] * (t[4][2] * t[2][3] - t[2][2] * t[4][3]);
b1 := t[1][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
b2 := t[4][1] * (t[1][2] * t[3][3] - t[3][2] * t[1][3]);
b3 := t[3][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c1 := t[1][1] * (t[2][2] * t[4][3] - t[4][2] * t[2][3]);
c2 := t[2][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c3 := t[4][1] * (t[1][2] * t[2][3] - t[2][2] * t[1][3]);
a := (a1 - a2 + a3) \mod 17;
b := (b1 - b2 + b3) \mod 17;
c := (c1 - c2 + c3) \mod 17;
T := [[a * t[1]][1] \mod 17, a * t[1]][2] \mod 17, a * t[1]][3] \mod 17],
[b * t[2][1] \mod 17, b * t[2][2] \mod 17, b * t[2][3] \mod 17],
[c * t[3][1] \mod 17, c * t[3][2] \mod 17, c * t[3][3] \mod 17]];
r1:=(s[h][1]*T) \mod 17;
r2:=(s[h][2]*T) \mod 17;
r3:=(s[h][3]*T) \mod 17;
r4:=(s[h][4]*T) \mod 17;
r5:=(s[h][5]*T) \mod 17;
r6:=(s[h][6]*T) \mod 17;
r7:=(s[h][7]*T) \mod 17;
r8:=(s[h][8]*T) \mod 17;
r9:=(s[h][9]*T) \mod 17;
if r1[3] <> 0 \mod 17 then x1 := r1 * r1[3]^{-1} \mod 17;
elif r1[2] <> 0 \mod 17 then x1 := r1 * r1[2]^{-1} \mod 17;
elif r1[1] <> 0 \mod 17 then x1 := r1 * r1[1]^{-1} \mod 17;
fi;
if r2[3] <> 0 \mod 17 then x2 := r2 * r2[3]^{-1} \mod 17;
elif r2[2] <> 0 \mod 17 then x2 := r2 * r2[2]^{-1} \mod 17;
elif r2[1] <> 0 \mod 17 \ then x2 := r2 * r2[1]^{-1} \mod 17;
fi;
if r_3[3] <> 0 \mod 17 then x_3 := r_3 * r_3[3]^{-1} \mod 17;
elif r_3[2] <> 0 \mod 17 then x_3 := r_3 * r_3[2]^{-1} \mod 17;
elif r_3[1] <> 0 \mod 17 then x_3 := r_3 * r_3[1]^{-1} \mod 17;
fi;
if r4[3] <> 0 \mod 17 then x4 := r4 * r4[3]^{-1} \mod 17;
```

elif $r4[2] <> 0 \mod 17$ then $x4 := r4 * r4[2]^{-1} \mod 17$; elif $r4[1] <> 0 \mod 17$ then $x4 := r4 * r4[1]^{-1} \mod 17$; fi; if $r5[3] <> 0 \mod 17$ then $x5 := r5 * r5[3]^{-1} \mod 17$; elif $r5[2] <> 0 \mod 17$ then $x5 := r5 * r5[2]^{-1} \mod 17$; elif $r5[1] <> 0 \mod 17$ then $x5 := r5 * r5[1]^{-1} \mod 17$; fi; if $r6[3] <> 0 \mod 17$ then $x6 := r6 * r6[3]^{-1} \mod 17$; elif $r6[2] <> 0 \mod 17$ then $x6 := r6 * r6[2]^{-1} \mod 17$; elif $r6[1] <> 0 \mod 17$ then $x6 := r6 * r6[1]^{-1} \mod 17$; fi; if $r7[3] \ll 0 \mod 17$ then $x7 := r7 * r7[3]^{-1} \mod 17$; elif $r7[2] <> 0 \mod 17$ then $x7 := r7 * r7[2]^{-1} \mod 17$; elif $r7[1] <> 0 \mod 17$ then $x7 := r7 * r7[1]^{-1} \mod 17$; fi; if $r8[3] <> 0 \mod 17$ then $x8 := r8 * r8[3]^{-1} \mod 17$; elif $r8[2] <> 0 \mod 17$ then $x8 := r8 * r8[2]^{-1} \mod 17$; elif $r8[1] <> 0 \mod 17$ then $x8 := r8 * r8[1]^{-1} \mod 17$; fi: if $r9[3] <> 0 \mod 17$ then $x9 := r9 * r9[3]^{-1} \mod 17$; elif $r9[2] <> 0 \mod 17$ then $x9 := r9 * r9[2]^{-1} \mod 17$; elif $r9[1] <> 0 \mod 17$ then $x9 := r9 * r9[1]^{-1} \mod 17$; fi; if $Set([x1, x2, x3, x4, x5, x6, x7, x8, x9]) = Set(s[j]) \mod 17$ then $Print(h, T, j, "\backslash n");$ fi; od;od;od;

6.8 Computing the transformations between the 10-arcs

```
\begin{split} \mathbf{m} &:= [ \ [0,1,0], [0,0,1], [14,1,0] \ ];; \\ \mathbf{u} &:= [1,0,0];; \\ \mathbf{f} &:= [ \ ];; \\ \text{for q in } [0 \ . \ . \ 306] \text{ do} \\ p &:= u * m^q \mod 17; \\ \text{if } p[3] <> 0 \mod 17 \text{ then } z := p * p[3]^{-1} \mod 17; \\ \text{elif } p[2] <> 0 \mod 17 \text{ then } z := p * p[2]^{-1} \mod 17; \\ \text{elif } p[1] <> 0 \mod 17 \text{ then } z := p * p[1]^{-1} \mod 17; \\ \text{fi;} \\ \text{Add}(\mathbf{f}, z); \\ \text{od;} \\ \mathbf{s} &:= [[ \ [ \ 0, 0, 1 \ ], \ [ \ 0, 1, 0 \ ], \ [ \ 1, 0, 0 \ ], \ [ \ 1, 1, 1 \ ], \ [ \ 5, 4, 1 \ ], \\ [ \ 6, 12, 1 \ ], \ [ \ 7, 10, 1 \ ], \ [ \ 9, 11, 1 \ ], \ [ \ 10, 15, 1 \ ], \ [ \ 13, 3, 1 \ ] \ ], \\ [ \ [ \ 0, 0, 1 \ ], \ [ \ 0, 1, 0 \ ], \ [ \ 1, 0, 0 \ ], \ [ \ 1, 1, 1 \ ], \ [ \ 3, 12, 1 \ ], \\ [ \ 5, 8, 1 \ ], \ [ \ 8, 7, 1 \ ], \ [ \ 9, 4, 1 \ ], \ [ \ 13, 15, 1 \ ], \ [ \ 16, 5, 1 \ ] \ ];; \end{split}
```

```
w := Size(s);;
for h in [1 . . w-1] do
for j in [h+1 \dots w] do
v := [];;
for i1 in [1 . . 10] do
for i2 in [1 . . 10] do
for i3 in [1 . . 10] do
for i4 in [1 . . 10] do
if i1 \ll i2 and i1 \ll i3 and i1 \ll i4 and i2 \ll i3 and i2 \ll i4 and
i3 <> i4 then
n := [s[j][i1], s[j][i2], s[j][i3], s[j][i4]];;
Add(v,n);
fi;
od;od;od;od;
for i in [1 . . Length(v)] do
t := v[i];
a1 := t[4][1] * (t[2][2] * t[3][3] - t[3][2] * t[2][3]);
a2 := t[2][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
a3 := t[3][1] * (t[4][2] * t[2][3] - t[2][2] * t[4][3]);
b1 := t[1][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
b2 := t[4][1] * (t[1][2] * t[3][3] - t[3][2] * t[1][3]);
b3 := t[3][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c1 := t[1][1] * (t[2][2] * t[4][3] - t[4][2] * t[2][3]);
c2 := t[2][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c3 := t[4][1] * (t[1][2] * t[2][3] - t[2][2] * t[1][3]);
a := (a1 - a2 + a3) \mod 17;
b := (b1 - b2 + b3) \mod 17;
c := (c1 - c2 + c3) \mod 17;
T := [[a * t[1]][1] \mod 17, a * t[1]][2] \mod 17, a * t[1]][3] \mod 17],
[b * t[2][1] \mod 17, b * t[2][2] \mod 17, b * t[2][3] \mod 17],
[c * t[3][1] \mod 17, c * t[3][2] \mod 17, c * t[3][3] \mod 17]];
r1:=(s[h][1]*T) \mod 17;
r2:=(s[h][2]*T) \mod 17;
r3:=(s[h][3]*T) \mod 17;
r4:=(s[h][4]*T) \mod 17;
r5:=(s[h][5]*T) \mod 17;
r6:=(s[h][6]*T) \mod 17;
r7:=(s[h][7]*T) \mod 17;
r8:=(s[h][8]*T) \mod 17;
r9:=(s[h][9]*T) \mod 17;
r10:=(s[h][10]*T) \mod 17;
if r1[3] <> 0 \mod 17 then x1 := r1 * r1[3]^{-1} \mod 17;
elif r1[2] <> 0 \mod 17 then x1 := r1 * r1[2]^{-1} \mod 17;
elif r1[1] <> 0 \mod 17 then x1 := r1 * r1[1]^{-1} \mod 17;
fi;
```

if $r2[3] <> 0 \mod 17$ then $x2 := r2 * r2[3]^{-1} \mod 17$; elif $r2[2] <> 0 \mod 17$ then $x2 := r2 * r2[2]^{-1} \mod 17$; elif $r2[1] <> 0 \mod 17$ then $x2 := r2 * r2[1]^{-1} \mod 17$; fi: if $r3[3] <> 0 \mod 17$ then $x3 := r3 * r3[3]^{-1} \mod 17$; elif $r_3[2] \ll 0 \mod 17$ then $x_3 := r_3 * r_3[2]^{-1} \mod 17$; elif $r_3[1] <> 0 \mod 17$ then $x_3 := r_3 * r_3[1]^{-1} \mod 17$; fi; if $r4[3] <> 0 \mod 17$ then $x4 := r4 * r4[3]^{-1} \mod 17$; elif $r4[2] <> 0 \mod 17$ then $x4 := r4 * r4[2]^{-1} \mod 17$; elif $r4[1] <> 0 \mod 17$ then $x4 := r4 * r4[1]^{-1} \mod 17$; fi: if $r5[3] <> 0 \mod 17$ then $x5 := r5 * r5[3]^{-1} \mod 17$; elif $r5[2] <> 0 \mod 17$ then $x5 := r5 * r5[2]^{-1} \mod 17$; elif $r5[1] <> 0 \mod 17$ then $x5 := r5 * r5[1]^{-1} \mod 17$; fi; if $r6[3] <> 0 \mod 17$ then $x6 := r6 * r6[3]^{-1} \mod 17$; elif $r6[2] <> 0 \mod 17$ then $x6 := r6 * r6[2]^{-1} \mod 17$; elif $r6[1] <> 0 \mod 17$ then $x6 := r6 * r6[1]^{-1} \mod 17$; fi: if $r7[3] <> 0 \mod 17$ then $x7 := r7 * r7[3]^{-1} \mod 17$; elif $r7[2] <> 0 \mod 17$ then $x7 := r7 * r7[2]^{-1} \mod 17$; elif $r7[1] <> 0 \mod 17$ then $x7 := r7 * r7[1]^{-1} \mod 17$; fi; if $r8[3] <> 0 \mod 17$ then $x8 := r8 * r8[3]^{-1} \mod 17$; elif $r8[2] <> 0 \mod 17$ then $x8 := r8 * r8[2]^{-1} \mod 17$; elif $r8[1] <> 0 \mod 17$ then $x8 := r8 * r8[1]^{-1} \mod 17$; fi; if $r9[3] <> 0 \mod 17$ then $x9 := r9 * r9[3]^{-1} \mod 17$; elif $r9[2] <> 0 \mod 17$ then $x9 := r9 * r9[2]^{-1} \mod 17$; elif $r9[1] <> 0 \mod 17$ then $x9 := r9 * r9[1]^{-1} \mod 17$; fi; if $r10[3] <> 0 \mod 17$ then $x10 := r10 * r10[3]^{-1} \mod 17$; elif $r10[2] \ll 0 \mod 17$ then $x10 := r10 * r10[2]^{-1} \mod 17$; elif $r10[1] \ll 0 \mod 17$ then $x10 := r10 * r10[1]^{-1} \mod 17$; fi; if $Set([x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]) = Set(s[j]) \mod 17$ then $\operatorname{Print}(h, T, j, "\backslash n");$ fi; od;od;od;

6.9 Computing the transformations between the 11-arcs

 $\begin{array}{l} \mathbf{m} := [\ [0,1,0], [0,0,1], [14,1,0] \];; \\ \mathbf{u} := [1,0,0];; \end{array}$

```
f:=[];;
for q in [0 . . 306] do
p := u * m^q \mod 17;
if p[3] <> 0 \mod 17 then z := p * p[3]^{-1} \mod 17;
elif p[2] \ll 0 \mod 17 then z := p * p[2]^{-1} \mod 17;
elif p[1] <> 0 \mod 17 then z := p * p[1]^{-1} \mod 17;
fi;
Add(f,z);
od:
s:=[[[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1], [3, 8, 1],
[9, 11, 1], [10, 15, 1], [11, 10, 1], [13, 4, 1], [14, 16, 1],
[16, 14, 1]],
[ [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, 0, 0 ], [ 1, 1, 1 ], [ 3, 8, 1 ],
[5, 4, 1], [9, 11, 1], [10, 5, 1], [10, 15, 1], [11, 10, 1],
[16, 14, 1]
w := Size(s);;
for h in [1 . . w-1] do
for j in [h+1 \dots w] do
v := [];;
for i1 in [1 . . 11] do
for i2 in [1 . . 11] do
for i3 in [1 . . 11] do
for i4 in [1 . . 11] do
if i1 <> i2 and i1 <> i3 and i1 <> i4 and i2 <> i3 and i2 <> i4 and
i3 <> i4 then
n := [s[j][i1], s[j][i2], s[j][i3], s[j][i4]];;
Add(v,n);
fi;
od;od;od;od;
for i in [1 . . Length(v)] do
t := v[i];
a1 := t[4][1] * (t[2][2] * t[3][3] - t[3][2] * t[2][3]);
a2 := t[2][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
a3 := t[3][1] * (t[4][2] * t[2][3] - t[2][2] * t[4][3]);
b1 := t[1][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
b2 := t[4][1] * (t[1][2] * t[3][3] - t[3][2] * t[1][3]);
b3 := t[3][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c1 := t[1][1] * (t[2][2] * t[4][3] - t[4][2] * t[2][3]);
c2 := t[2][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c3 := t[4][1] * (t[1][2] * t[2][3] - t[2][2] * t[1][3]);
a := (a1 - a2 + a3) \mod 17;
b := (b1 - b2 + b3) \mod 17;
c := (c1 - c2 + c3) \mod 17;
T := [[a * t[1][1] \mod 17, a * t[1][2] \mod 17, a * t[1][3] \mod 17],
[b * t[2][1] \mod 17, b * t[2][2] \mod 17, b * t[2][3] \mod 17],
```

```
[c * t[3][1] \mod 17, c * t[3][2] \mod 17, c * t[3][3] \mod 17]];
r1:=(s[h][1]*T) \mod 17;
r2:=(s[h][2]*T) \mod 17;
r3:=(s[h][3]*T) \mod 17;
r4:=(s[h][4]*T) \mod 17;
r5:=(s[h][5]*T) \mod 17;
r6:=(s[h][6]*T) \mod 17;
r7:=(s[h][7]*T) \mod 17;
r8:=(s[h][8]*T) \mod 17;
r9:=(s[h][9]*T) \mod 17;
r10:=(s[h][10]*T) \mod 17;
r11:=(s[h][11]*T) \mod 17;
if r1[3] <> 0 \mod 17 then x1 := r1 * r1[3]^{-1} \mod 17;
elif r1[2] <> 0 \mod 17 then x1 := r1 * r1[2]^{-1} \mod 17;
elif r1[1] <> 0 \mod 17 then x1 := r1 * r1[1]^{-1} \mod 17;
fi;
if r2[3] <> 0 \mod 17 then x2 := r2 * r2[3]^{-1} \mod 17;
elif r2[2] <> 0 \mod 17 then x2 := r2 * r2[2]^{-1} \mod 17;
elif r2[1] <> 0 \mod 17 then x2 := r2 * r2[1]^{-1} \mod 17;
fi;
if r_3[3] <> 0 \mod 17 then x_3 := r_3 * r_3[3]^{-1} \mod 17;
elif r_3[2] <> 0 \mod 17 then x_3 := r_3 * r_3[2]^{-1} \mod 17;
elif r_3[1] <> 0 \mod 17 then x_3 := r_3 * r_3[1]^{-1} \mod 17;
fi;
if r4[3] <> 0 \mod 17 then x4 := r4 * r4[3]^{-1} \mod 17;
elif r4[2] <> 0 \mod 17 then x4 := r4 * r4[2]^{-1} \mod 17;
elif r4[1] \ll 0 \mod 17 then x4 := r4 * r4[1]^{-1} \mod 17;
fi;
if r5[3] <> 0 \mod 17 then x5 := r5 * r5[3]^{-1} \mod 17;
elif r5[2] <> 0 \mod 17 then x5 := r5 * r5[2]^{-1} \mod 17;
elif r5[1] <> 0 \mod 17 then x5 := r5 * r5[1]^{-1} \mod 17;
fi;
if r6[3] <> 0 \mod 17 then x6 := r6 * r6[3]^{-1} \mod 17;
elif r6[2] <> 0 \mod 17 then x6 := r6 * r6[2]^{-1} \mod 17;
elif r6[1] <> 0 \mod 17 then x6 := r6 * r6[1]^{-1} \mod 17;
fi;
if r7[3] <> 0 \mod 17 then x7 := r7 * r7[3]^{-1} \mod 17;
elif r7[2] <> 0 \mod 17 then x7 := r7 * r7[2]^{-1} \mod 17;
elif r7[1] <> 0 \mod 17 then x7 := r7 * r7[1]^{-1} \mod 17;
fi;
if r8[3] <> 0 \mod 17 then x8 := r8 * r8[3]^{-1} \mod 17;
elif r8[2] <> 0 \mod 17 then x8 := r8 * r8[2]^{-1} \mod 17;
elif r8[1] <> 0 \mod 17 then x8 := r8 * r8[1]^{-1} \mod 17;
fi;
```

if $r9[3] <> 0 \mod 17$ then $x9 := r9 * r9[3]^{-1} \mod 17$;

 $\begin{array}{l} {\rm elif}\; r9[2] <> 0 \; {\rm mod}\; 17 \; {\rm then}\; x9:=r9*r9[2]^{-1} \; {\rm mod}\; 17;\\ {\rm elif}\; r9[1] <> 0 \; {\rm mod}\; 17 \; {\rm then}\; x9:=r9*r9[1]^{-1} \; {\rm mod}\; 17;\\ {\rm fi};\\ {\rm if}\; r10[3] <> 0 \; {\rm mod}\; 17 \; {\rm then}\; x10:=r10*r10[3]^{-1} \; {\rm mod}\; 17;\\ {\rm elif}\; r10[2] <> 0 \; {\rm mod}\; 17 \; {\rm then}\; x10:=r10*r10[2]^{-1} \; {\rm mod}\; 17;\\ {\rm elif}\; r10[1] <> 0 \; {\rm mod}\; 17 \; {\rm then}\; x10:=r10*r10[1]^{-1} \; {\rm mod}\; 17;\\ {\rm fi};\\ {\rm if}\; r11[3] <> 0 \; {\rm mod}\; 17 \; {\rm then}\; x11:=r11*r11[3]^{-1} \; {\rm mod}\; 17;\\ {\rm elif}\; r11[2] <> 0 \; {\rm mod}\; 17 \; {\rm then}\; x11:=r11*r11[2]^{-1} \; {\rm mod}\; 17;\\ {\rm elif}\; r11[1] <> 0 \; {\rm mod}\; 17 \; {\rm then}\; x11:=r11*r11[2]^{-1} \; {\rm mod}\; 17;\\ {\rm fi};\\ {\rm if}\; {\rm Set}([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11]) = {\rm Set}(s[j]) \; {\rm mod}\; 17 \; {\rm then}\; {\rm Print}(h,T,j,"\backslash n");\\ {\rm fi};\\ {\rm od}; {\rm od}; {\rm od};\\ \end{array}$


```
m := [0,1,0], [0,0,1], [14,1,0]];;
     u:=[1,0,0];;
     f:=[];;
     for q in [0...306] do
     p := u * m^q \mod 17;
     if p[3] <> 0 \mod 17 then z := p * p[3]^{-1} \mod 17;
     elif p[2] \ll 0 \mod 17 then z := p * p[2]^{-1} \mod 17;
      elif p[1] <> 0 \mod 17 then z := p * p[1]^{-1} \mod 17;
      fi;
      Add(f,z);
      od;
     s:=[[[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1], [2, 3, 1],
     [3, 8, 1], [4, 2, 1], [6, 5, 1], [8, 7, 1], [9, 11, 1],
     [10, 12, 1], [16, 4, 1]];;
      w := Size(s);;
      for h in [1 . . w-1] do
      for j in [h+1 \dots w] do
      v := [];;
      for i1 in [1 . . 12] do
      for i2 in [1 . . 12] do
      for i3 in [1 . . 12] do
      for i4 in [1 . . 12] do
     if i1 \ll i2 and i1 \ll i3 and i1 \ll i4 and i2 \ll i3 and i2 \ll i4 and
      i3 \ll i4 then
      n := [s[j][i1], s[j][i2], s[j][i3], s[j][i4]];;
      Add(v,n);
      fi;
```

```
od;od;od;od;
for i in [1 . . Length(v)] do
t := v[i];
a1 := t[4][1] * (t[2][2] * t[3][3] - t[3][2] * t[2][3]);
a2 := t[2][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
a3 := t[3][1] * (t[4][2] * t[2][3] - t[2][2] * t[4][3]);
b1 := t[1][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
b2 := t[4][1] * (t[1][2] * t[3][3] - t[3][2] * t[1][3]);
b3 := t[3][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c1 := t[1][1] * (t[2][2] * t[4][3] - t[4][2] * t[2][3]);
c2 := t[2][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c3 := t[4][1] * (t[1][2] * t[2][3] - t[2][2] * t[1][3]);
a := (a1 - a2 + a3) \mod 17;
b := (b1 - b2 + b3) \mod 17;
c := (c1 - c2 + c3) \mod 17;
T := [[a * t[1]]] \mod 17, a * t[1]] \mod 17, a * t[1]] \mod 17, a * t[1]] \mod 17],
[b * t[2][1] \mod 17, b * t[2][2] \mod 17, b * t[2][3] \mod 17],
[c * t[3][1] \mod 17, c * t[3][2] \mod 17, c * t[3][3] \mod 17]];
r1:=(s[h][1]*T) \mod 17;
r2:=(s[h][2]*T) \mod 17;
r3:=(s[h][3]*T) \mod 17;
r4:=(s[h][4]*T) \mod 17;
r5:=(s[h][5]*T) \mod 17;
r6:=(s[h][6]*T) \mod 17;
r7:=(s[h][7]*T) \mod 17;
r8:=(s[h][8]*T) \mod 17;
r9:=(s[h][9]*T) \mod 17;
r10:=(s[h][10]*T) \mod 17;
r11:=(s[h][11]*T) \mod 17;
r12:=(s[h][12]*T) \mod 17;
if r1[3] <> 0 \mod 17 then x1 := r1 * r1[3]^{-1} \mod 17;
elif r1[2] <> 0 \mod 17 then x1 := r1 * r1[2]^{-1} \mod 17;
elif r1[1] <> 0 \mod 17 then x1 := r1 * r1[1]^{-1} \mod 17;
fi;
if r2[3] <> 0 \mod 17 then x2 := r2 * r2[3]^{-1} \mod 17;
elif r2[2] <> 0 \mod 17 then x2 := r2 * r2[2]^{-1} \mod 17;
elif r2[1] <> 0 \mod 17 \ then x2 := r2 * r2[1]^{-1} \mod 17;
fi:
if r_3[3] <> 0 \mod 17 then x_3 := r_3 * r_3[3]^{-1} \mod 17;
elif r_3[2] <> 0 \mod 17 then x_3 := r_3 * r_3[2]^{-1} \mod 17;
elif r_3[1] <> 0 \mod 17 then x_3 := r_3 * r_3[1]^{-1} \mod 17;
fi;
if r4[3] <> 0 \mod 17 then x4 := r4 * r4[3]^{-1} \mod 17;
elif r4[2] <> 0 \mod 17 then x4 := r4 * r4[2]^{-1} \mod 17;
elif r4[1] <> 0 \mod 17 then x4 := r4 * r4[1]^{-1} \mod 17;
```

fi; if $r5[3] <> 0 \mod 17$ then $x5 := r5 * r5[3]^{-1} \mod 17$; elif $r5[2] <> 0 \mod 17$ then $x5 := r5 * r5[2]^{-1} \mod 17$; elif $r5[1] <> 0 \mod 17$ then $x5 := r5 * r5[1]^{-1} \mod 17$; fi; if $r6[3] <> 0 \mod 17$ then $x6 := r6 * r6[3]^{-1} \mod 17$; elif $r6[2] <> 0 \mod 17$ then $x6 := r6 * r6[2]^{-1} \mod 17$; elif $r6[1] <> 0 \mod 17$ then $x6 := r6 * r6[1]^{-1} \mod 17$; fi; if $r7[3] <> 0 \mod 17$ then $x7 := r7 * r7[3]^{-1} \mod 17$; elif $r7[2] <> 0 \mod 17$ then $x7 := r7 * r7[2]^{-1} \mod 17$; elif $r7[1] <> 0 \mod 17$ then $x7 := r7 * r7[1]^{-1} \mod 17$; fi; if $r8[3] <> 0 \mod 17$ then $x8 := r8 * r8[3]^{-1} \mod 17$; elif $r8[2] <> 0 \mod 17$ then $x8 := r8 * r8[2]^{-1} \mod 17$; elif $r8[1] <> 0 \mod 17$ then $x8 := r8 * r8[1]^{-1} \mod 17$; fi; if $r9[3] <> 0 \mod 17$ then $x9 := r9 * r9[3]^{-1} \mod 17$; elif $r9[2] <> 0 \mod 17$ then $x9 := r9 * r9[2]^{-1} \mod 17$; elif $r9[1] <> 0 \mod 17$ then $x9 := r9 * r9[1]^{-1} \mod 17$; fi; if $r10[3] <> 0 \mod 17$ then $x10 := r10 * r10[3]^{-1} \mod 17$; elif $r10[2] \ll 0 \mod 17$ then $x10 := r10 * r10[2]^{-1} \mod 17$; elif $r10[1] \ll 0 \mod 17$ then $x10 := r10 * r10[1]^{-1} \mod 17$; fi; if $r11[3] <> 0 \mod 17$ then $x11 := r11 * r11[3]^{-1} \mod 17$; elif $r_{11}[2] \ll 0 \mod 17$ then $x_{11} := r_{11} * r_{11}[2]^{-1} \mod 17$; elif $r11[1] \ll 0 \mod 17$ then $x11 := r11 * r11[1]^{-1} \mod 17$; fi; if $r_{12}[3] <> 0 \mod 17$ then $x_{12} := r_{12} * r_{12}[3]^{-1} \mod 17$; elif $r_{12}[2] \ll 0 \mod 17$ then $x_{12} := r_{12} * r_{12}[2]^{-1} \mod 17$; elif $r_{12}[1] \ll 0 \mod 17$ then $x_{12} := r_{12} * r_{12}[1]^{-1} \mod 17$; fi; if $Set([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}]) = Set(s[j]) \mod 17$ then $\operatorname{Print}(h, T, j, "\backslash n");$ fi; od;od;od;

6.11 Computing the transformations between the 13-arcs

```
 \begin{aligned} \mathbf{m} &:= [ \ [0,1,0], [0,0,1], [14,1,0] \ ];; \\ & \mathbf{u} := [1,0,0];; \\ & \mathbf{f} := [ \ ];; \\ & \text{for q in } [0 \ . \ . \ 306] \ \text{do} \\ & p := u * m^q \ \text{mod} \ 17; \end{aligned}
```

```
if p[3] <> 0 \mod 17 then z := p * p[3]^{-1} \mod 17;
elif p[2] <> 0 \mod 17 then z := p * p[2]^{-1} \mod 17;
elif p[1] <> 0 \mod 17 then z := p * p[1]^{-1} \mod 17;
fi:
Add(f,z);
od:
s:=[[[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1], [2, 3, 1],
[3, 8, 1], [4, 10, 1], [7, 4, 1], [7, 6, 1], [9, 11, 1],
 9, 16, 1, [10, 12, 1], [16, 15, 1],
[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1], [2, 3, 1],
[3, 8, 1], [4, 12, 1], [5, 14, 1], [6, 5, 1], [7, 15, 1],
[9, 11, 1], [11, 10, 1], [14, 16, 1]];;
w := Size(s);;
for h in [1 . . w-1] do
for j in [h+1 \dots w] do
v := [];;
for i1 in [1 . . 13] do
for i2 in [1 . . 13] do
for i3 in [1 . . 13] do
for i4 in [1 \dots 13] do
if i1 \ll i2 and i1 \ll i3 and i1 \ll i4 and i2 \ll i3 and i2 \ll i4 and
i3 <> i4 then
n := [s[j][i1], s[j][i2], s[j][i3], s[j][i4]];;
Add(v,n);
fi;
od;od;od;od;
for i in [1 . . Length(v)] do
t := v[i];
a1 := t[4][1] * (t[2][2] * t[3][3] - t[3][2] * t[2][3]);
a2 := t[2][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
a3 := t[3][1] * (t[4][2] * t[2][3] - t[2][2] * t[4][3]);
b1 := t[1][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);
b2 := t[4][1] * (t[1][2] * t[3][3] - t[3][2] * t[1][3]);
b3 := t[3][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c1 := t[1][1] * (t[2][2] * t[4][3] - t[4][2] * t[2][3]);
c2 := t[2][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);
c3 := t[4][1] * (t[1][2] * t[2][3] - t[2][2] * t[1][3]);
a := (a1 - a2 + a3) \mod 17;
b := (b1 - b2 + b3) \mod 17;
c := (c1 - c2 + c3) \mod 17;
T := [[a * t[1]]] \mod 17, a * t[1]] \mod 17, a * t[1]] \mod 17, a * t[1]] \mod 17],
[b * t[2][1] \mod 17, b * t[2][2] \mod 17, b * t[2][3] \mod 17],
[c * t[3][1] \mod 17, c * t[3][2] \mod 17, c * t[3][3] \mod 17]];
r1:=(s[h][1]*T) \mod 17;
r2:=(s[h][2]*T) \mod 17;
```

```
r3:=(s[h][3]*T) \mod 17;
r4:=(s[h][4]*T) \mod 17;
r5:=(s[h][5]*T) \mod 17;
r6:=(s[h][6]*T) \mod 17;
r7:=(s[h][7]*T) \mod 17;
r8:=(s[h][8]*T) \mod 17;
r9:=(s[h][9]*T) \mod 17;
r10:=(s[h][10]*T) \mod 17;
r11:=(s[h][11]*T) \mod 17;
r12:=(s[h][12]*T) \mod 17;
r_{13}:=(s[h][13]*T) \mod 17;
if r1[3] <> 0 \mod 17 then x1 := r1 * r1[3]^{-1} \mod 17;
elif r1[2] <> 0 \mod 17 then x1 := r1 * r1[2]^{-1} \mod 17;
elif r1[1] <> 0 \mod 17 then x1 := r1 * r1[1]^{-1} \mod 17;
fi;
if r2[3] <> 0 \mod 17 then x2 := r2 * r2[3]^{-1} \mod 17;
elif r2[2] <> 0 \mod 17 then x2 := r2 * r2[2]^{-1} \mod 17;
elif r2[1] <> 0 \mod 17 then x2 := r2 * r2[1]^{-1} \mod 17;
fi:
if r_3[3] <> 0 \mod 17 then x_3 := r_3 * r_3[3]^{-1} \mod 17;
elif r_3[2] <> 0 \mod 17 then x_3 := r_3 * r_3[2]^{-1} \mod 17;
elif r_3[1] <> 0 \mod 17 then x_3 := r_3 * r_3[1]^{-1} \mod 17;
fi;
if r4[3] <> 0 \mod 17 then x4 := r4 * r4[3]^{-1} \mod 17;
elif r4[2] <> 0 \mod 17 then x4 := r4 * r4[2]^{-1} \mod 17;
elif r4[1] <> 0 \mod 17 then x4 := r4 * r4[1]^{-1} \mod 17;
fi;
if r5[3] <> 0 \mod 17 then x5 := r5 * r5[3]^{-1} \mod 17;
elif r5[2] <> 0 \mod 17 then x5 := r5 * r5[2]^{-1} \mod 17;
elif r5[1] <> 0 \mod 17 then x5 := r5 * r5[1]^{-1} \mod 17;
fi;
if r6[3] <> 0 \mod 17 then x6 := r6 * r6[3]^{-1} \mod 17;
elif r6[2] <> 0 \mod 17 then x6 := r6 * r6[2]^{-1} \mod 17;
elif r6[1] <> 0 \mod 17 then x6 := r6 * r6[1]^{-1} \mod 17;
fi;
if r7[3] <> 0 \mod 17 then x7 := r7 * r7[3]^{-1} \mod 17;
elif r7[2] <> 0 \mod 17 then x7 := r7 * r7[2]^{-1} \mod 17;
elif r7[1] <> 0 \mod 17 then x7 := r7 * r7[1]^{-1} \mod 17;
fi;
if r8[3] <> 0 \mod 17 then x8 := r8 * r8[3]^{-1} \mod 17;
elif r8[2] <> 0 \mod 17 then x8 := r8 * r8[2]^{-1} \mod 17;
elif r8[1] <> 0 \mod 17 then x8 := r8 * r8[1]^{-1} \mod 17;
fi;
if r9[3] <> 0 \mod 17 then x9 := r9 * r9[3]^{-1} \mod 17;
```

 $rg[3] <> 0 \mod 17$ then $x9 := r9 * r9[3] \mod 17$; elif $r9[2] <> 0 \mod 17$ then $x9 := r9 * r9[2]^{-1} \mod 17$; elif $r9[1] <> 0 \mod 17$ then $x9 := r9 * r9[1]^{-1} \mod 17$; fi; if $r10[3] <> 0 \mod 17$ then $x10 := r10 * r10[3]^{-1} \mod 17$; elif $r10[2] \ll 0 \mod 17$ then $x10 := r10 * r10[2]^{-1} \mod 17$; elif $r10[1] \ll 0 \mod 17$ then $x10 := r10 * r10[1]^{-1} \mod 17$; fi; if $r11[3] \ll 0 \mod 17$ then $x11 := r11 * r11[3]^{-1} \mod 17$; elif $r_{11}[2] \ll 0 \mod 17$ then $x_{11} := r_{11} * r_{11}[2]^{-1} \mod 17$; elif $r11[1] \ll 0 \mod 17$ then $x11 := r11 * r11[1]^{-1} \mod 17$; fi; if $r_{12}[3] <> 0 \mod 17$ then $x_{12} := r_{12} * r_{12}[3]^{-1} \mod 17$; elif $r_{12}[2] \ll 0 \mod 17$ then $x_{12} := r_{12} * r_{12}[2]^{-1} \mod 17$; elif $r_{12}[1] \ll 0 \mod 17$ then $x_{12} := r_{12} * r_{12}[1]^{-1} \mod 17$; fi; if $r13[3] <> 0 \mod 17$ then $x13 := r13 * r13[3]^{-1} \mod 17$; elif $r_{13}[2] \ll 0 \mod 17$ then $x_{13} := r_{13} * r_{13}[2]^{-1} \mod 17$; elif $r_{13}[1] \ll 0 \mod 17$ then $x_{13} := r_{13} * r_{13}[1]^{-1} \mod 17$; fi; if $Set([x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13]) = Set(s[j]) \mod 17$ then $Print(h, T, j, "\backslash n");$ fi; od;od;od;

6.12 Computing the transformations between the 14-arcs

```
m := [0,1,0], [0,0,1], [14,1,0]];;
     u:=[1,0,0];;
      f:=[];;
      for q in [0 . . 306] do
     p := u * m^q \mod 17;
     if p[3] <> 0 \mod 17 then z := p * p[3]^{-1} \mod 17;
      elif p[2] <> 0 \mod 17 then z := p * p[2]^{-1} \mod 17;
      elif p[1] <> 0 \mod 17 then z := p * p[1]^{-1} \mod 17;
      fi;
      Add(f,z);
      od;
      s:=[[[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1], [2, 16, 1],
      [5, 2, 1], [8, 9, 1], [9, 10, 1], [9, 11, 1], [10, 5, 1],
      [10, 15, 1], [13, 8, 1], [14, 12, 1], [15, 3, 1]],
      [ [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1], [3, 16, 1],
      [5, 13, 1], [6, 7, 1], [8, 2, 1], [9, 11, 1], [9, 12, 1],
      [10, 4, 1], [10, 15, 1], [11, 6, 1], [13, 8, 1]];;
      w := Size(s);;
      for h in [1 . . w-1] do
      for j in [h+1 \dots w] do
```

v := [];;for i1 in [1...14] do for i2 in [1 . . 14] do for i3 in [1 . . 14] do for i4 in [1 . . 14] do if $i1 \ll i2$ and $i1 \ll i3$ and $i1 \ll i4$ and $i2 \ll i3$ and $i2 \ll i4$ and i3 <> i4 then n := [s[j][i1], s[j][i2], s[j][i3], s[j][i4]];;Add(v,n);fi; od;od;od;od; for i in [1 . . Length(v)] do t := v[i];a1 := t[4][1] * (t[2][2] * t[3][3] - t[3][2] * t[2][3]);a2 := t[2][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);a3 := t[3][1] * (t[4][2] * t[2][3] - t[2][2] * t[4][3]);b1 := t[1][1] * (t[4][2] * t[3][3] - t[3][2] * t[4][3]);b2 := t[4][1] * (t[1][2] * t[3][3] - t[3][2] * t[1][3]);b3 := t[3][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);c1 := t[1][1] * (t[2][2] * t[4][3] - t[4][2] * t[2][3]);c2 := t[2][1] * (t[1][2] * t[4][3] - t[4][2] * t[1][3]);c3 := t[4][1] * (t[1][2] * t[2][3] - t[2][2] * t[1][3]); $a := (a1 - a2 + a3) \mod 17;$ $b := (b1 - b2 + b3) \mod 17;$ $c := (c1 - c2 + c3) \mod 17;$ $T := [[a * t[1]][1] \mod 17, a * t[1]][2] \mod 17, a * t[1]][3] \mod 17],$ $[b * t[2][1] \mod 17, b * t[2][2] \mod 17, b * t[2][3] \mod 17],$ $[c * t[3][1] \mod 17, c * t[3][2] \mod 17, c * t[3][3] \mod 17]];$ $r1:=(s[h][1]*T) \mod 17;$ $r2:=(s[h][2]*T) \mod 17;$ $r3:=(s[h][3]*T) \mod 17;$ $r4:=(s[h][4]*T) \mod 17;$ $r5:=(s[h][5]*T) \mod 17;$ $r6:=(s[h][6]*T) \mod 17;$ $r7:=(s[h][7]*T) \mod 17;$ $r8:=(s[h][8]*T) \mod 17;$ $r9:=(s[h][9]*T) \mod 17;$ $r10:=(s[h][10]*T) \mod 17;$ $r11:=(s[h][11]*T) \mod 17;$ $r12:=(s[h][12]*T) \mod 17;$ $r13:=(s[h][13]*T) \mod 17;$ $r14:=(s[h][14]*T) \mod 17;$ if $r1[3] <> 0 \mod 17$ then $x1 := r1 * r1[3]^{-1} \mod 17$; elif $r1[2] \ll 0 \mod 17$ then $x1 := r1 * r1[2]^{-1} \mod 17$; elif $r1[1] <> 0 \mod 17$ then $x1 := r1 * r1[1]^{-1} \mod 17$;

fi;
if $r2[3] <> 0 \mod 17$ then $x2 := r2 * r2[3]^{-1} \mod 17$;
elif $r2[2] <> 0 \mod 17$ then $x2 := r2 * r2[2]^{-1} \mod 17$;
elif $r2[1] <> 0 \mod 17 then x2 := r2 * r2[1]^{-1} \mod 17;$
fi;
if $r3[3] <> 0 \mod 17$ then $x3 := r3 * r3[3]^{-1} \mod 17$;
elif $r_3[2] <> 0 \mod 17$ then $x_3 := r_3 * r_3[2]^{-1} \mod 17$:
elif $r_3[1] <> 0 \mod 17$ then $x_3 := r_3 * r_3[1]^{-1} \mod 17$:
fi:
if $r4[3] <> 0 \mod 17$ then $x4 := r4 * r4[3]^{-1} \mod 17$:
elif $r4[2] <> 0 \mod 17$ then $x4 := r4 * r4[2]^{-1} \mod 17$:
elif $r4[1] <> 0 \mod 17$ then $x4 := r4 * r4[1]^{-1} \mod 17$:
fi:
if $r5[3] <> 0 \mod 17$ then $x5 := r5 * r5[3]^{-1} \mod 17$:
elif $r5[2] <> 0 \mod 17$ then $r5 := r5 * r5[2]^{-1} \mod 17$.
elif $r5[1] <> 0 \mod 17$ then $x5 := r5 * r5[1]^{-1} \mod 17$:
fi
if $r6[3] <> 0 \mod 17$ then $x6 := r6 * r6[3]^{-1} \mod 17$.
elif $r6[2] <> 0 \mod 17$ then $r6 := r6 * r6[2]^{-1} \mod 17$.
elif $r6[1] <> 0 \mod 17$ then $r6 := r6 * r6[1]^{-1} \mod 17$.
f:
if $r7[3] <> 0 \mod 17$ then $r7 := r7 * r7[3]^{-1} \mod 17$
elif $r_7[2] <> 0 \mod 17$ then $r_7 := r_7 * r_7[2]^{-1} \mod 17$.
elif $r_{7[1]} <> 0 \mod 17$ then $r_{7} := r_{7} * r_{7[1]}^{-1} \mod 17$.
fi
if $r8[3] <> 0 \mod 17$ then $r8 := r8 * r8[3]^{-1} \mod 17$
elif $r_8[2] <> 0 \mod 17$ then $r_8 := r_8 * r_8[2]^{-1} \mod 17$.
elif $r_8[1] <> 0 \mod 17$ then $r_8 := r_8 * r_8[1]^{-1} \mod 17$.
fi
if $r9[3] <> 0 \mod 17$ then $r9 := r9 * r9[3]^{-1} \mod 17$
$r_{1} = r_{2} = r_{1} = r_{2} = r_{2} = r_{2} = r_{2} = r_{2} = r_{1} = r_{1$
$r_{1} = r_{1} = r_{2} = r_{1} = r_{2} = r_{2$
f:
if $r10[3] <> 0 \mod 17$ then $r10 := r10 * r10[3]^{-1} \mod 17$.
$r_{10}[0] <> 0 \mod 17 \ \text{then} \ r_{10} := r_{10} * r_{10}[0] \ 1 \mod 17,$ elif $r_{10}[2] <> 0 \mod 17 \ \text{then} \ r_{10} := r_{10} * r_{10}[2]^{-1} \mod 17.$
$\operatorname{elif} r10[1] <> 0 \mod 17 \operatorname{then} r10 := r10 * r10[1]^{-1} \mod 17;$
$\sin 710[1] <> 0 \mod 17 \mod 210 = 710 + 710[1] 1 \mod 17$, f:
if $r_{11}[3] <> 0 \mod 17$ then $r_{11} := r_{11} * r_{11}[3]^{-1} \mod 17$.
$r_{11}[0] <> 0 \mod 17 \tanh r_{11} = r_{11} * r_{11}[0] = 1 \mod 17,$ elif $r_{11}[2] <> 0 \mod 17 \tanh r_{11} = r_{11} * r_{11}[2] = 1 \mod 17.$
elif $r11[1] <> 0 \mod 17$ then $r11 := r11 * r11[1]^{-1} \mod 17$;
$\operatorname{chi} / \operatorname{II}[I] \langle \rangle 0 \operatorname{mod} I / \operatorname{chen} \mathfrak{II} := / \operatorname{II} * / \operatorname{II}[I] \operatorname{I} \operatorname{mod} I / ,$ f.
if $r19[3] <> 0 \mod 17$ then $r19 - r19 + r19[3] - 1 \mod 17$.
$r_1 r_2 r_2 r_3 r_2 r_3 r_1 r_1 r_1 r_1 r_1 r_2 r_1 r_1 r_1 r_1 r_1 r_1 r_1 r_1 r_1 r_1$
elif $r_{12[1]} <> 0 \mod 17$ then $r_{12} = r_{12} * r_{12[2]} \mod 17$.
$c_{11} / 12_{1} > 0 \mod 1 / \inf 12 - / 12 + / 12_{1} \mod 17$, f.
11,
if $r13[3] <> 0 \mod 17$ then $x13 := r13 * r13[3]^{-1} \mod 17$; elif $r13[2] <> 0 \mod 17$ then $x13 := r13 * r13[2]^{-1} \mod 17$; elif $r13[1] <> 0 \mod 17$ then $x13 := r13 * r13[1]^{-1} \mod 17$; f; if $r14[3] <> 0 \mod 17$ then $x14 := r14 * r14[3]^{-1} \mod 17$; elif $r14[2] <> 0 \mod 17$ then $x14 := r14 * r14[2]^{-1} \mod 17$; elif $r14[1] <> 0 \mod 17$ then $x14 := r14 * r14[1]^{-1} \mod 17$; f; if Set([x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14])=Set(s[j]) mod 17 then Print($h, T, j, "\setminus n"$); f; od;od;od;

6.13 Computing the complete (k; 2)-arcs

```
m := [0,1,0], [0,0,1], [14,1,0]];;
u:=[1,0,0];;
f:=[];;
for q in [0 . . 306] do
p := u * m^q \mod 17;
if p[3] <> 0 \mod 17 then z := p * p[3]^{-1} \mod 17;
elif p[2] \ll 0 \mod 17 then z := p * p[2]^{-1} \mod 17;
elif p[1] \ll 0 \mod 17 then z := p * p[1]^{-1} \mod 17;
fi;
Add(f,z);
od:
l := the set of lines
s:=[[[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1], [2, 16, 1],
[5, 4, 1], [6, 2, 1], [7, 12, 1], [9, 11, 1], [11, 7, 1],
[16, 13, 1]
0:=[];;
for i in [1..1] do
10a:=s[i]; vv:=[];;
w:=Difference(f,10a);
for jj in w do
ch:=[];;
11a:=[f[1], f[2], f[3], f[254], 10a[5], 10a[6], 10a[7], 10a[8], 10a[9], 10a[10], 10a[11], jj];
for j in [1..307] do
l3:=l[j];
if Size(Intersection(11a,l3))=3 then
Add(ch,j);
fi;
od:
if Size(ch) = 0 then Add(vv,jj); fi;
od; if Size(vv)=0 then Add(o,10a); fi; od;
```

```
m := [0,1,0], [0,0,1], [14,1,0]];;
u:=[1,0,0];;
f:=[];;
for q in [0 . . 306] do
p := u * m^q \mod 17;
if p[3] \ll 0 \mod 17 then z := p * p[3]^{-1} \mod 17;
elif p[2] \ll 0 \mod 17 then z := p * p[2]^{-1} \mod 17;
elif p[1] \ll 0 \mod 17 then z := p * p[1]^{-1} \mod 17;
fi;
Add(f,z);
od:
l := the set of lines
s:=[[[0, 3, 1], [0, 11, 1], [5, 0, 1], [10, 5, 1], [14, 11, 1],
[10, 2, 1], [10, 11, 1], [3, 16, 1], [14, 7, 1], [15, 6, 1],
[14, 4, 1], [7, 9, 1], [0,0,1], [1,1,0], [1,4,1], [1,8,1], [2,4,1], [3,1,0],
[3,9,1], [3,12,1], [5,13,1], [6,6,1], [7,13,1]];;
o:=[];;
for i in [1..1] do
10a:=s[i]; vv:=[];;
w:=Difference(f,10a);
for jj in w do
ch:=[];;
11a:=[0, 3, 1], [0, 11, 1], [5, 0, 1], [10, 5, 1], [14, 11, 1],
[10, 2, 1], [10, 11, 1], [3, 16, 1], [14, 7, 1], [15, 6, 1],
[14, 4, 1], [7, 9, 1], [0,0,1], [1,1,0], [1,4,1], [1,8,1], [2,4,1], [3,1,0],
[3,9,1], [3,12,1], [5,13,1], [6,6,1], [7,13,1], jj];
for j in [1..307] do
13:=l[j];
if Size(Intersection(11a, l3)) = 4 then
Add(ch,j);
fi;
od:
if Size(ch) = 0 then Add(vv,jj); fi;
od; if Size(vv)=0
then Add(o, 10a);
fi;
od;
```

6.14 Computing the complete (k; 3)-arcs

7. APPENDIX 2

The points of PG(2, 17) in numeral and vector forms

1	100	2	010	3	001	4	-310	5	0 - 31	6	1 - 61
7	-8 - 61	8	-841	9	-5 - 61	10	-8 - 51	11	4 - 21	12	-761
13	8 - 11	14	381	15	6 - 81	16	-6 - 31	17	1 - 41	18	581
19	651	20	-4 - 21	21	-7 - 71	22	-2 - 41	23	5 - 41	24	571
25	2 - 41	26	5 - 51	27	4 - 81	28	-6 - 71	29	-281	30	621
31	7 - 51	32	4 - 51	33	4 - 11	34	3 - 51	35	461	36	8 - 21
37	-741	38	-571	39	2 - 31	40	1 - 11	41	3 - 21	42	-7 - 21
43	-731	44	-1 - 21	45	-701	46	120	47	0 - 81	48	-621
49	761	50	871	51	2 - 61	52	-881	53	6 - 31	54	1 - 81
55	-641	56	-531	57	-1 - 71	58	-201	59	310	60	031
61	-161	62	801	63	-610	64	0 - 61	65	-8 - 31	66	181
67	6 - 41	68	5 - 61	69	-8 - 11	70	371	71	231	72	-111
73	-301	74	-710	75	0 - 71	76	-2 - 51	77	471	78	281
79	6 - 61	80	-8 - 41	81	561	82	811	83	-3 - 81	84	-6 - 41
85	5 - 31	86	1 - 21	87	-7 - 11	88	361	89	8 - 51	90	451
91	-411	92	-3 - 31	93	1 - 51	94	431	95	-1 - 41	96	501

Tab. 7.1: The points of PG(2,17) generated by $\left(010,001,-310\right)$

97	810	98	081	99	6 - 21	100	-751	101	-4 - 81	102	-6 - 61
103	-8 - 21	104	-7 - 51	105	481	106	671	107	211	108	-331
109	-151	110	-401	111	110	112	011	113	-311	114	-3 - 21
115	-711	116	-3 - 61	117	-861	118	8 - 41	119	521	120	731
121	-1 - 31	122	101	123	150	124	071	125	251	126	-441
127	-5 - 51	128	4 - 61	129	-821	130	751	131	-451	132	-4 - 41
133	551	134	-481	135	661	136	841	137	-5 - 21	138	-721
139	7 - 31	140	131	141	-1 - 51	142	401	143	-410	144	0 - 41
145	541	146	-5 - 71	147	-231	148	-1 - 61	149	-801	150	-210
151	0 - 21	152	-781	153	6 - 51	154	421	155	7 - 61	156	-8 - 71
157	-211	158	-3 - 11	159	321	160	721	161	741	162	-521
163	7 - 21	164	-7 - 41	165	5 - 71	166	-241	167	-541	168	-5 - 11
169	341	170	-511	171	-3 - 41	172	5 - 81	173	-6 - 51	174	411
175	-351	176	-431	177	-1 - 11	178	301	179	-510	180	0 - 51
181	4 - 71	182	-2 - 81	183	-6 - 21	184	-7 - 61	185	-811	186	-3 - 71
187	-2 - 71	188	-251	189	-4 - 71	190	-2 - 21	191	-7 - 81	192	-651
193	-4 - 11	194	331	195	-171	196	201	197	1 - 10	198	0 - 11
199	3 - 11	200	3 - 41	201	5 - 11	202	3 - 61	203	-851	204	-421
205	771	206	261	207	8 - 81	208	-611	209	-3 - 51	210	4 - 31

211	141	212	-5 - 81	213	-6 - 81	214	-671	215	2 - 81	216	-661
217	821	218	7 - 41	219	5 - 21	220	-7 - 31	221	121	222	711
223	-381	224	641	225	-561	226	851	227	-4 - 51	228	441
229	-5 - 31	230	171	231	2 - 71	232	-221	233	781	234	611
235	-371	236	271	237	2 - 21	238	-771	239	241	240	-551
241	-461	242	881	243	6 - 11	244	3 - 71	245	-2 - 31	246	161
247	861	248	8 - 71	249	-261	250	8 - 31	251	1 - 31	252	151
253	-4 - 31	254	111	255	-321	256	7 - 11	257	3 - 81	258	-681
259	6 - 71	260	-2 - 11	261	311	262	-341	263	-581	264	681
265	631	266	-181	267	601	268	210	269	021	270	7 - 81
271	-6 - 11	272	351	273	-4 - 61	274	-8 - 81	275	-631	276	-141
277	-501	278	510	279	051	280	-471	281	221	282	7 - 71
283	-2 - 61	284	-831	285	-1 - 81	286	-601	287	350	288	041
289	-5 - 41	290	511	291	-361	292	8 - 61	293	-871	294	2 - 11
295	3 - 31	296	1 - 71	297	-271	298	2 - 51	299	4 - 41	300	531
301	-121	302	701	303	260	304	061	305	831	306	-131
307	-101										

BIBLIOGRAPHY

- A.H. Ali, Classification of Arcs in Galois Plane of Order Thirteen, Ph.D. Thesis, University of Sussex, 1993.
- [2] R. C. Bose. Mathematical theory of the symmetrical factorial design, Sankhyā, 8 (1947), 107-166.
- [3] M. Aghaei, Near Maximum Distance Separable Codes Over The Field of Eleven Elements, Ph.D. Thesis, University of Sussex, 2005.
- [4] S.M. Ball, On Sets of Points in Finite Planes, Ph.D. Thesis, University of Sussex, 1994.
- [5] M.E. Contreras, Arcs and Curves Over a Finite Field and Their Points, Ph.D. Thesis, University of Sussex, 2003.
- [6] V.D. Goppa. Codes on algebraic curves, Soviet Math. Dokl., 24 (1981), 170-172.
- [7] L. Giuzzi, Hermitian Varieties Over a Finite Field, Ph.D. Thesis, University of Sussex, 2000.
- [8] J.W.P. Hirschfeld and J.A. Thas, *General Galois Geometries*, Oxford University Press, Oxford, 1991.
- [9] J.W.P. Hirschfeld, G. Korchmáros and F.Torres, Algebraic Curves Over a Finite Field, Oxford University Press, Oxford, 2007.
- [10] J.W.P. Hirschfeld, Projective Geometries Over Finite Fields, Second Edition, Oxford University Press, Oxford, 555 + xiv pp., 1998.
- [11] J.W.P. Hirschfeld, Complete Arcs, Discrete Math., 174 (1997), 177-184.
- [12] J.W.P. Hirschfeld and A. Sadeh, The Projective Plane Over The Field of Eleven Elements, Mitt. Math. Sem. Giessen, 164 (1984), 245-257.
- [13] R. Hill, A First Course in Coding Theory, Clarendon Press, Oxford 1986.
- [14] S. Packer, On Sets of Odd Type and Caps in Galois Geometries of Order Four, Ph.D. Thesis, University of Sussex, 1995.
- [15] B. Segre. Sulle ovali nei piani lineari finiti, Atti Accad. Naz. Lincei Rend., 17 (1954), 1-2.
- [16] A. Sonnino, Ovals and Arcs in Finite Projective Planes, Ph.D. Thesis, University of Sussex, 2004.

- [17] A.D. Thomas and G.V. Wood, *Group Tables*, Shiva Publishing Limited, 1980.
- [18] H.M. Tabrizi, Pencils of Conics in The Galois Planes of Order q, Ph.D. Thesis, University of Sussex, 1990.
- [19] S.K. Vereecke, Some Properties of Arcs, Caps and Quadrics in Projective Spaces of Finite Order, Ph.D. Thesis, University of Sussex, 1998.
- [20] A.L. Yasin, Cubic Arcs in The Projective Plane of Order Eight, Ph.D. Thesis, University of Sussex, 1986.
- [21] M.O. Yazdi, The Classification of (k; 3)-arcs Over The Galois Field of Order Five, Ph.D. Thesis, University of Sussex, 1983.