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On the intrinsic control properties of muscles and reflexes
Exploring the interaction between neural and musculoskel&l dynamics in the
framework of the equilibrium-point hypothesis

Thomas Buhrmann

Summary

The aim of this thesis is to examine the relationship betviieeimtrinsic dynamics of the body and
its neural control. Specifically, it investigates the influae of musculoskeletal properties on the
control signals needed for simple goal-directed movemiartise framework of the equilibrium-
point (EP) hypothesis. To this end, muscle models of vargmgplexity are studied in isolation
and when coupled to feedback laws derived from the EP hypisthdt is demonstrated that the
dynamical landscape formed by non-linear musculosketatadels features a stable attractor in
joint space whose properties, such as position, stiffnedsvscosity, can be controlled through
differential- and co-activation of antagonistic musclée emergence of this attractor creates a
new level of control that reduces the system’s degrees etltnn and thus constitutes a low-level
motor synergy. It is described how the properties of thiblstaquilibrium, as well as transient
movement dynamics, depend on the various modelling assomspinderlying the muscle model.

The EP hypothesis is then tested on a chosen musculoskeletil by using an optimal
feedback control approach: genetic algorithm optimisaisoused to identify feedback gains that
produce smooth single- and multijoint movements of varndmplitude and duration. The impor-
tance of different feedback components is studied for @yxring invariants observed in natural
movement kinematics. The resulting controllers are detnatesl to cope with a plausible range
of reflex delays, predict the use of velocity-error feedbfackhe fastest movements, and suggest
that experimentally observed triphasic muscle bursts mer@ergent feature rather than centrally
planned. Also, control schemes which allow for simultarsecontrol of movement duration and
distance are identified.

Lastly, it is shown that the generic formulation of the EP diyyesis fails to account for the
interaction torques arising in multijoint movements. Eiens are proposed which address this
shortcoming while maintaining its two basic assumptiomsitiol signals in positional rather than
force-based frames of reference; and the primacy of coptaperties intrinsic to the body over
internal models. It is concluded that the EP hypothesis atalba rejected for single- or multijoint
reaching movements based on claims that predicted movekimembatics are unrealistic.
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Chapter 1

Introduction

The following section provides a brief overview of the ainm&l anethods of investigation used in
this thesis. This is followed by a short description of thateats of each chapter and a list of
original contributions.

1.1 Overview

The aim of this thesis is to examine the relationship betwherintrinsic dynamics of the body
and its control. Specifically, it investigates the influen€enusculoskeletal properties on the con-
trol signals needed for simple goal-directed movementsarframework of the equilibrium-point
(EP) hypothesis. The EP hypothesis suggests that cocedimabvement can be produced with-
out the need for internal models by relying on the intringjoamics of the body. This notion is
challenged by proponents of the force-control hypothesi® suggest that the central nervous
system uses internal simulations of the body and its enwigami to explicitly calculate the muscle
forces required for a desired movement. Much of their gsiticregarding the EP hypothesis is
based on simplified models of the motor apparatus. Howeweintportance of the body in shap-
ing the behaviour of an agent is now well established in blo¢hfields of biomechanics (Gribble
et al., 1998) and cognitive science, with the introductibcancepts such as embodiment (Beer,
2009), passive dynamics (McGeer, 1990), and the dynamystéms approach (Gelder, 1997).
This thesis investigates whether the neuromusculoskedgstem (i.e. the skeleton, the muscles
that actuate it, and the networks of neurons innervatinjimossesses intrinsic control proper-
ties that facilitate coordinated movement. To this end, aleusrodels of varying complexity are
studied in isolation and when coupled to different feeddawks derived from the EP hypothesis.
Their steady state and transient dynamics are comparetuiahliinematics and several criticisms
brought forward by proponents of the force-control hypsih@re addressed. These include, for
example, the (in-)ability to deal with reflex delays or istetion torques, and the suggestion that
observed biomechanical invariants must be the result dfalgrlanning. The results suggest that
the EP hypothesis cannot be rejected on the basis of suchsclahey also stress that predictions
about motor control signals are sensitive to assumptiogardéng the musculoskeletal system.
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Finally, extensions to the simplest instantiation of theHyPothesis are proposed, which address
its limitations in the context of multijoint movements.

1.2 Thesis organisation

Chapter 2 places the research undertaken in this thesig icotiitext of the controversy between
force- and position-based theories of motor control. Fitstletails the various problems en-
countered in any motor control task, such as redundanayakigise or feedback delay. It then
summarises the arguments for and against the two dominahtanflicting, approaches to motor
control: the force-control hypothesis and the equilibripaint hypothesis. Parallels are drawn to
notions of embodiment, situatedness and the dynamicatrayperspective in cognitive science,
and their influence on the methodology used in this thesiessribed.

Chapter 3 provides some background about the physiologkedétal muscles and details the
approach taken in modelling musculoskeletal dynamics.s Thiollowed by an analysis of the
steady state and transient dynamics of antagonist musdlestatic control signals. Specifically,
it is studied whether the dynamical landscape formed by tausodels features a stable attractor
in joint space, and if so, whether properties of this eqriilitm, such as position, stiffness and
viscosity, can easily be controlled through simple adjestta of muscle activations. This is a
prerequisite of the equilibrium-point hypothesis. Theptka also investigates how modelling as-
sumptions underlying various components of the muscle hofiigence its dynamical properties.
It ends with a demonstration of the benefits of muscle materigerties when open-loop control
signals are learnt using a genetic algorithm.

In chapter 4, the EP hypothesis is tested on a chosen mukeldtzd model by using an optimal
feedback control approach: genetic algorithm optimisatioused to identify the feedback gains
and control signals which produce the smoothest single-nanitijoint movements of varying
amplitude and duration. The importance of different feefl@mponents in reproducing natural
kinematics is studied and it is asked whether the resultimgrollers correctly predict the response
to reflex delays and the experimentally observed triphasistipatterns in muscle activity. The
chapter also aims to identify the form of control signalsuieeg for simultaneous control of both
movement duration and distance.

A lumped neuromuscular model is introduced in chapter 5 wb@nbines the convergent dynam-
ics of muscle and reflexes into a single equation of forceywrtidn at the joint level. Experiments
are carried out to test whether this model, which is esdgnéia extended non-linear proportional
derivative controller, can approximate the behaviour plesin the detailed muscle-reflex model.
In chapter 6 the lumped model is then used to study extensibtie EP hypothesis which aim
to solve the problem of interaction torques arising duringtijoint movements. A long-standing
critique of equilibrium-point models is that they do not agnt for such torques, and it is often ar-
gued that internal models alone can solve this problem. i$luisallenged here with a proposal for
an extension of the EP hypothesis that couples the feedlmmtkotlaws of neighbouring joints.

The last chapter summarises the results of this investigatiscusses its implications and pro-
poses work that could be undertaken to address remainirsiiong.
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1.3 Summary of contributions

The contributions of this thesis can be summarised as fsllow

It is shown in chapter 3 that the stability of joint equilidrand other steady-state characteristics
created by antagonistic muscles depend on assumptionsrabedle paths and moment arms, the
inclusion of series elasticity and the modelling of cherhéymamics. It is also demonstrated that

a setup consisting of two monoarticular muscles can qtigblg, and in some respects quantita-

tively, approximate the steady-state and transient bebawf a system that also includes biartic-

ular muscles.

Itis shown in the second part of chapter 3 that the mater@ignties of muscles allow for flexible
motor control (e.g. freedom concerning the energy requer@mof a movement), and that they
might facilitate motor learning by smoothing and lineargsthe space of possible control signals.

Chapter 4 confirms that an extended version oftiermulation of the EP hypothesis can repro-
duce the kinematics and force patterns of natural singig-jnovements when driven by simple
monotonic control signals. It is shown that the range ofistatusculoskeletal properties repre-
sented in the controller needs to be extended to accountdeements of arbitrary speeds. It is
further demonstrated that velocity error feedback is aluir high velocity movements without
oscillations, and open-loop co-contraction for dealinghvieedback delays. The results suggests
that experimentally observed movement invariants are eocessarily centrally planned, but can
emerge from the interaction of reflex components and therdigsaof the body.

A lumped model of neuromuscular dynamics is developed iptehab that can approximate the
kinematic data of a detailed muscle-reflex model duringleijmint movements. While other

simple models, such as mass-spring systems, have been shovecessitate complex control
signals, the nonlinear model proposed requires only a simyainotonic shift in desired position.

Crucially though, the model is shown to predict differenbizol signals than the detailed muscle
model.

Most importantly, it is shown in chapters 3-5, that in an éftium-point framework smooth mul-
tijoint movements do not result from independent contratath joint. Intersegmental dynamics
lead to perturbations that are not rejected at realisfiinsss level. Two mechanisms are therefore
proposed in chapter 6, which couple the control of indivigoiats so that interaction torques are
compensated for. The two models make specific predictioostahe spinal circuits required for
their implementation.
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Background

The following chapter provides an overview of the compotadi and dynamical approaches to
motor control. After summarising the complexities invalvim controlling a body that exhibits
strong redundancy, complex internal interactions, andlmaar material properties, the force-
control and equilibrium-point hypotheses are introducead@nflicting paradigms for addressing
them. The methodology employed in this thesis is then plécdtde context of these research
avenues, as well as in the broader field of embodied cognition

2.1 The problem of motor control

To study behaviour is to study the patterns of interactiomvben an agent and its environment.
From the perspective of the agent, this interaction formsrdicuous and closed sensorimotor
loop: motor commands initiated by the agent have physicakeguences in its environment;
these are perceived via sensory feedback, and togetheprgphioceptive signals influence future
motor commands. The field of motor control is concerned withquestion of how an agent can
consistently produce stable coordinated movement pattera complex and constantly changing
environment.

Though humans and other animals perform most of their mortsTsemingly without effort or
particular attention to their actions, complex unconsgiptocesses, involving the interaction of
many anatomical and neural structures, are needed to prapmwopriately coordinated motion.
Coordination, in the context of motor control, is understamith respect to a particular task,
or movement objective. For an agent, to realise a motor tas&knsi1to produce changes in its
many biomechanical degrees of freedom (DOFs) that are itwded! in space and time such as to
achieve a given objective.

Redundancy

To illustrate the complexity of an apparently simple motaskt, consider the act of positioning
your hand at a given point in space. Even in this simple casethre an infinite number of
different paths along which the hand can move from its ihttathe desired position. And for
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each path there are an infinite number of possible velocifjlps. Even if a single spatiotemporal
trajectory has been chosen, each location of the hand cazaliged by an infinite number of joint
angle combinations. While the task is described by onlyelimneependent variables (the spatial
coordinates of the desired hand position), the arm contasrsy more degrees of freedom. One
can, for example, swivel the elbow up and down, or tilt onefs® forward and back, both without
changing the position of the hand in space. The problem iethee underdetermined, and the
system said to be redundant with respect to the task. Whabig,nseveral different muscles
act across each skeletal joint, and infinitely many musctivaion patterns produce the same
joint configuration (it is possible, for instance, to stiffthe arm without moving the hand). The
system is not only redundant in joint space, but also in neusphce. Even if each muscle is for
simplicity assumed to be either contracted or relaxed, then700 or so muscles in the human
body would allow on the order of 2& different muscle activation patterns. Equally, assuming
about 200 joints in the body, and for simplicity only one titaal degree of freedom each (many
have three), then each movement would have to be descriteedd0 dimensional state space if
we wanted to account for position and velocity only (disrdgay accelerations, inertia, muscle
forces, etc.). The combinatorial explosion does not entethes each muscle is innervated by
between 10 and 1000 alpha motor neurons, with many diffédieng patterns generating the
same muscle force. Not only does any proposed motor comtneinse have to address this “curse
of dimensionality” (Bellman, 1961) encountered when tfamsing a single spatial location into
activations of about 200 000 alpha motor neurons formingstiealledfinal common pathway
The relationship between a motor command and the resultotgpmof the body (and vice versa)
is also described by highly complicated and non-linear gous. For example, the effect that the
activation of a muscle has on the change in angle of the joattts on depends on the orientation
of the body segment with respect to gravity, the current mdshe limb, the current length and
velocity of contraction of the muscle, its state of fatigaed the forces that arise from the physical
interaction of connected body segments, to name just a few.

Although redundancy might seem a curse from the viewpoirdoottrol theory, it also provides
advantages in terms of flexibility and adaptability. Theratance of solutions for a given task
implies that different strategies can be chosen dependingeoondary constraints in the system.
In a reaching task, for example, the elbow position can b&ddo avoid obstacles that would
be encountered otherwise. Humans can also exploit musofegies to modulate the effective
stiffness at the hand such as to better resist perturbatimméng from certain directions (without
changing the hand position), thereby tuning the passivamtjcs of the arm for a specific context
(Gomi and Osu, 1998).

Every sufficiently complex organism, and consequently gapy@ach to motor control, thus faces a
trade-off between an internal reduction of degrees of fsaetb simplify control, and preservation

of redundancy as a means to flexibly respond to differentratany task requirements. Bernstein,
arguably the founder of modern biomechanics, was among ttetdi be concerned with this

problem (Turvey, 1990). He asked how a large number of inciggeat variables might be regulated
without ascribing excessive responsibility to a singleti@ised system. According to Bernstein,
the solution involves reducing the effective number of peledent variables by appropriately
organising the control of the motor apparatus. Turvey gareflustrative example of this approach
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(Turvey, 1990). Imagine a marionette in which each indigidoody segment is controlled via a
dedicated wire that is manipulated by a puppeteer. Herereonsibility of coordinating the
various moving parts is attributed utterly and exclusivielthe puppeteer who, in a homuncular
fashion, has to determine the state of all variables oveg.tiNow consider a second marionette,
one in which internal wires connect some of the parts to edlebrso that they move together
in a coordinated manner. Pulling a certain wire, here, mfghtexample produce a stepping
movement in the puppet’s legs. Clearly, the burden of cofdrothe puppeteer is reduced. The
number of wires under his control is smaller, as he now ctstrdew internal mechanisms rather
than each individual part. Bernstein called these interiahensionality-reducing mechanisms
coordinative structures, @ynergies He was fast to realise that these are not to be confused
with reflexes, which could be considered hard-wired meamsiof coordination. In Bernstein’s
view, synergies constitute context-dependent musckadjas whose functions can be configured
for the task at hand. Central pattern generators can bedsyesi examples of synergies. Here,
a neural network innervates a group of muscles that act aonasy different joints, and creates
coordinated movement patterns that achieve a specific goalas swimming or stepping.

Delays

In addition to redundancy, the control of the motor systersdmplicated by the presence of
various delays in its neural circuits. It is easy to see thasé¢ can potentially have detrimental
effects on the performance of feedback-controlled motauds. In the extreme case, where a
movement is faster than the overall delay, feedback wouldeavailable at all during the actual
motion. But accuracy can also be negatively affected foranmnts on a time scale larger than
the delay. The faster the system moves (and the longer thg)dtie greater the distances covered
before the feedback signal arrives. Many control systentis wherent feedback delay therefore
have to deal with a trade-off between speed and accuracythAnpotential problem is that of
co-registering actions with their consequences when thigeals are separated in time by several
hundred milliseconds. Hidler and Rymer (2001) have dematest the destabilising effect of high
transport delays on ankle stability using a model of thedtresflex.

One source for feedback delay in neural circuits is the timakies for a presynaptic action po-
tential to arrive at the input site of the postsynaptic c&his so-called synaptic delay has been
estimated at 1-2 ms (Sabatini and Regehr, 1996). Anotheécesdsithe conduction delay along
the axon of a neuron, which ranges between 1 and 20 ms, degeadithe length of the axon
and whether or not it is myelinated (Carr and Konishi, 1988rke et al., 1994; Macefield and
Gandevia, 1992). Resistance and capacitance propertéEndfites can also cause a wide range
of delays, with durations depending on the topology of theddiéic tree (Agmon-Snir and Segev,
1993).

It is difficult to measure the overall delay in the motor citaf an animal. Estimates range from
14 ms for a short spinal reflex to 200—300 ms for a responsdvingpthe visual system. St-Onge
et al. (1997), for example, have estimated a spinal reflexydsfl 14—18 ms by measuring the time
between the unloading of an initially loaded elbow, and tts §ign of reflex activity as indicated

by a change in the electromyographic (EMG) activity gereztdtty the muscles.
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Noise

Noise, present on all levels of the sensorimotor hierarchg, be another source of complication
for motor control. In proprioceptors and muscles, for exlnpoise is generated by the transduc-
tion of a continuous mechanical signal into a discrete spéa (Read and Siegel, 1996). Synaptic
variability (Allen and Stevens, 1994) and complex netwoykamics (van Vreeswijk and Som-
polinsky, 1996) can further increase the variance in ndiriag rates. In the cortex, it is possible
that information is nevertheless transmitted reliably, ingdemporal spike patterns of individual
neurons, but via rate coding in ensembles of neurons. Thesslvawn to allow for reliable rate
estimates within a single interspike interval (10-50 ms¥uaing that post-synaptic neurons re-
ceive a balanced amount of excitatory and inhibitory ing8tsadlen and Newsome, 1994, 1998).
Ensemble coding is not available in the motor periphery,dvax, where a single motorneuron in-
nervates many muscle fibres. Many approaches to motor ¢tnér@fore operate on the premise
that the standard deviation of a motor signal is proportiomats magnitude, which means that
noise levels are signal-dependent. This is supported aralbjr by the finding that the standard
deviation of isometric force production is proportionaltt® mean force (Schmidt et al., 1979;
Meyer et al., 1988), which is itself the result of the diatitibn of individual motor unit recruit-
ment thresholds and muscle fibre twitch amplitudes (Jonals, &002). Noise in the sensorimotor
system implies that state estimation (for example of ongfsenit hand position) is unreliable and
that actual movements might differ from intended ones. Adiog to the framework of “task op-
timisation in the presence of signal-dependent noise” Bears et al., 2002), the central nervous
system (CNS) aims to minimise the detrimental consequeotesise in the motor system by
planning movements so that the redundancy of the motormysa® help minimise endpoint vari-
ability. Movements predicted within this framework areriduo closely resemble those observed
in human experiments.

Biomechanical invariants

Despite the vast number of redundancies in the human moparajus, most types of movements
show high regularity, both across repetitions by the sardw&iolual as well as across different
individuals. These invariants are often seen as indicatiditee organisational structure underlying
motor control by the CNS.

Morasso (1981), for example, first discovered that the hatidwWs an approximately straight

line path in point-to-point reaching movements, while taegential velocity along the path is

characterised by a symmetric bell-shape. Individual jtiajectories, in contrast, follow more

complex profiles. This observation led to the hypothesis shi@h movements are planned in
external Cartesian coordinates rather than in terms df gigles or muscle lengths. The later dis-
covery that reaching movements show in fact systematiatieni from the straight line (Atkeson

and Hollerbach, 1985; Soechting and Lacquaniti, 1981; Ura.£1989) and that the symmetry
of the velocity profile varies with movement speed (Bullocki&rossberg, 1988) led to further
elaboration of this hypothesis based on the principles tifra control (see below).

Lacquaniti et al. (1983) discovered in rhythmic drawing miments, and others later confirmed in
different experiments (e.g. Flash and Sejnowski, 200&Y, tie relationship between the angular
velocity of the hand and the curvature of its path follows av@olaw with an exponent of 2/3.
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Physically, there is no reason that movement kinematicgyanchetry should be related according
to this so-called 2/3 power law. Its existence may reflectiaciple of movement organisation in

itself, or might be a by-product of other processes involved study by Sternad and Schaal
(1999) suggests that it might indeed be an epiphenomenamchmstrained rhythmic movements,
systematic violations of the law were observed which west beplained by a system favouring
smooth trajectories produced by a pattern generator it piace.

Rapid aiming and reaching movements are characterised fagle-off between speed and accu-
racy. Quantitatively, the movement time of reaching forrgeéa depends logarithmically on the
ratio of movement distance and required accuracy (targed,sand is described by Fitt's Law
(Fitts, 1954). Plausible explanations link the phenometwaptimisation principles regulating
a noisy (Meyer et al., 1990), or delayed (Beamish et al., p008tor apparatus. Though it is
often used to validate models of motor control, many diffiér@pproaches readily produce the
speed-accuracy trade-off, which has thus limited scopesfwlving conflicting proposals.

An important and open question is whether any of the obsenxediants reflect a strategy used
by the CNS to deal with redundancy, noise or delays, or whetiey are epiphenomena reflecting
properties of the neuromusculoskeletal system and pHyaiga.

Optimal control

Optimal control approaches aim to explain the existence @mfament invariants in the presence
of high redundancy by stipulating that the motor system istrained by optimisation principles.
More specifically, it proposes that the motor system opsratéhe minimum of a cost function
that measures global quantities such as smoothness, mffjoie accuracy. In this framework it
would be plausible, for example, to propose that the haovisltrajectories that minimise energy
expenditure. One would then employ an optimisation algori{such as dynamic programming,
Bryson and Ho, 1975) to produce trajectories conformindnéodhosen constraint. Any observed
invariants are then merely a reflection of the underlyingnoistation principle, but can be com-
pared against those found in natural movements to validetertodel. It is worth noting that
most theories concerned with optimal control do not necigsauggest that actual movements
are the results of a computational optimisation proceskémervous system. The actual mecha-
nisms producing the optimal motor output and their origim tgpically outside the scope of these
theories.

Most optimal control models proposed for reaching moveméaitinto one of two classes: kine-
matic or dynamic optimisation. Kinematics-based modetscancerned only with effector posi-
tions or joint angles and their derivatives, and employ fwsttions that depend on geometrical
or time-based properties of the desired motion. An exangthdé minimum jerk model (Hogan,
1984; Flash and Hogan, 1985). Based on the observation dmak paths are normally smooth
in Cartesian space, it suggests that natural movementsnisiihe square of the first derivative
of acceleration, also called jerk. It predicts straightlihand trajectories and symmetric veloc-
ity profiles in accordance with data on rapid movements erelcwithout accuracy requirements.
Observed deviations from these invariants, as describedealwere attributed to imperfect exe-
cution of the movement plan (rather than to a lack of accagntor arm dynamics, posture, or
external forces). The model, when applied to movementgyatonstrained paths such as figure
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eights, was also found to approximate the solution destiiyethe 2/3 power law. However, in
Gribble and Ostry (1996) it was shown that the same law conldrge simply as a consequence
of the viscoelasticity of the muscles. Apart from the shamings of this particular model, it is
not clear a priori why smoothness of trajectories shouldrbigrgortant property in itself.

Kinematic optimisation models directly specify the pasis and velocities of the moving sys-
tem and assume the existence of a separate process remdnsdchieving them. A dynamic
model, in contrast, is concerned directly with variableshsass joint torques, hand forces or muscle
tension, and its solution consists of the actual motor contlmaecessary to achieve the desired
movement. The separation of movement planning and execigtihus avoided.

The dynamic equivalent of smoothness optimisation is thermim (commanded) torque change
model (Uno et al., 1989; Nakano et al., 1999), which has beend to account for several of the
shortcomings in the minimum jerk model, such as curvilinggths in large range motion and in
the presence of external forces. However, it shares witiminénum jerk model the question of

why it is useful to optimise smoothness. Also, movement titmacannot be selected in either
model, but is instead a free parameter.

A model based on a cost function that is biologically moreveaht than the above is the minimum
variance theory (Harris and Wolpert, 1998). It is based anaksumption that noise in motor
commands causes trajectories to deviate from the desitbdAecumulated over the duration of a
movement, these errors lead to variability in the final positAs noise is assumed to increase with
signal strength, rapid movements, which require largerobstgnals, would therefore result in
large end point variability. Accuracy would be improved tsing small amplitude control signals,
but the resulting movements would then be slow. Accordinghtominimum variance model,
motor commands are selected so as to minimise variance findieposition, while maximising
the speed of motion as much as is compatible with the accueagyirements of a particular task.
Smooth trajectories are the result of this approach, rdtiear its assumption. This is because
abrupt changes in velocity, which require large changesdrcontrol signal, would generate more
noise and are therefore avoided. The model also predictspised-accuracy trade-off described
by Fitt's law, reproduces the 2/3 power law, and its preditdiabout eye and arm movements are
robust to changes in the dynamics of the body.

The above models make no claim as to the actual neural ancebl@nical mechanisms produc-
ing the predicted motor commands, but employ a purely opep-bptimisation directly on motor
commands or limb trajectories. In contrast, stochastiémmgitfeedback control (Todorov and
Jordan, 2002) explicitly takes into account the feedbadkreaof the sensorimotor loop. In this
approach, an estimate of the current state of the systerad masafferent feedback and internal
forward modelling (see below), forms the basis for modifara of a task-specific feedback con-
trol law that aims to maximise a performance index such aspemut variability. An important
aspect of optimal feedback control is the minimum interi@mprinciple, according to which de-
viations from the average trajectory (the system behawehastically) are corrected only when
they interfere with task performance. Thus, variabiliteda noise is not eliminated, but allowed
to accumulate in redundant, that is task-irrelevant, dsimTs (also called the uncontrolled man-
ifolds, Scholz and Schoner, 1999). Importantly, the thesirows that this is in fact the optimal
behaviour for a stochastic system. This prediction is olzd®e in human motor coordination. In
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goal-directed pointing movements, for example, such astsigwith a laser gun, fluctuations of

joint configurations that affect pointing accuracy are mwedtuced when compared to fluctuations
that do not affect this variable (Scholz et al., 2000). Unfoately, the mathematics required for
constructing optimal feedback controllers are so involileat the motor systems studied have to
be significantly simplified in most cases. Linearisationta tomplex dynamics of the muscu-
loskeletal system, however, has been shown to invalidaigirons regarding its control (Gribble

et al., 1998).

Controlled variables and neural correlates

As the variety of different motor control models above ithase, there is no consensus as to which
variables of a movement the nervous system controls. Aly/easone can find a model to support
the idea of planning in hand coordinates, joint angles oraleu®rces, one can find areas in the
nervous system whose neural activity correlates with tm@bke of one’s choice. For example,
activity in the primary motor cortex (M1) was shown to preadiand direction (Georgopoulos
et al., 1982), velocity (Schwartz, 1993), or movement dista(Fu et al., 1995). However, hand
motion could equally be predicted from neurons than encdffierent quantities of the motor
performance, such as muscle activity or joint motion (Messédi, 1988; Todorov, 2000). Also,
some neurons in M1 and other motor areas correlate not with-helated coordinates, but with
patterns of muscle activity (Holdefer and Miller, 2002; Beit and Lemon, 1996) or arm geometry
in redundant degrees of freedom (Scott et al., 1997). Reséaence indicates that these different
neural correlates are not mutually exclusive, but rathéecea more complicated organisation
of the motor cortex than previously assumed (Graziano, 00®&rough stimulation of motor
cortex sites in the monkey on the time scale of behaviousgaeses, Graziano and colleagues
revealed that the known large-scale somatotopic cortiGg e locally distorted by clusters of
neurons that are tuned to complex motor patterns includiagynmuscles and joints, and which
reflect the behavioural repertoire of the animal (e.g. hanehduth movements, or reaching out
and grasping). Furthermore, this tuning is not fixed but deange instantaneously on the basis
of feedback from the motor periphery. For example, pulseugttion of a point on the primary
cortex led to biceps activity if the elbow was extended, butiteps activity when flexed. When
the same site was stimulated with an extended train of puteeselbow moved to a particular
intermediate angle and stabilised there. This impliestti@tse of feedback allows for tuning of
individual cortical neurons to higher-order parametechsas a desired elbow angle.

In summary, it seems unlikely that a single control variadtésts that explains all types of ob-
servable movements. Rather, cortical networks can be dgadiynconfigured to regulate almost
any (combination of) high- or low-level movements paramsebe such a way as is appropriate for
the task at hand. It is hence important to critically apphoaay physiological evidence support-
ing a model of motor control based on simple neural correlédach as preferred direction) and
artificial experimental setups.

Istimulation trains of about 500 ms, as opposed to short gatsabout 0.2 ms, which elicit only muscle twitches
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2.2 Two motor control paradigms

The following sections aims to summarise the controverdywéen the computational and the
dynamical systems perspective on motor control. The fofmasrits roots in engineering and is
represented by theories which are based on internal mofitie body and its environment. The
latter originates in biomechanical studies that have iledtinherent control properties (stable
equilibria) in the coupled dynamics of the skeleton, musaled reflexes.

2.2.1 The force-control hypothesis

According to computational theories of motor control, thelgem of movement generation is
essentially one of coordinate transformations. Typi¢calylesired movement is first defined in
spatial coordinates and then transformed into the requioests or torques to be applied at the
joints by the muscles. In order to compute these varialhessystem uses internal representations
of the geometry as well as the dynamical equations of motfahe body. The former can be
used to calculate inverse kinematics, that is the jointesgtquired to position the end-effector
at a particular point in external Cartesian space. Therl&tased in an inverse dynamics pro-
cess to calculate the joint torques or muscle forces negessdrive to the desired joint angles.
These processes are inverse in the sense that they reveratimal causality of motion, from
muscle forces to changes in position. In addition to thegerge internal models, computational
approaches often employ forward internal models to pratietconsequences of a motor com-
mand. A forward model mimics the actions of the motor appasahat is the causal relationship
between its inputs (e.g. muscle activations) and outputs (eint torques). When driven by a
copy of the motor command (efference copy), it can therefweglict the sensory consequences
this command would elicit. It has been argued that forwardef®are necessary, for example, to
adjust control signals on the basis of anticipated sensomgaquences rather than actual sensory
feedback, in order to mitigate the detrimental effect obgislin the latter.

For a typical example of using forward and inverse modelssicter the task of a goal-directed
arm movement while the hand is grasping an object betweesxifidger and thumb (Kawato,
1999). The problem involves the control of a grip force tlsguist sufficient to prevent the object
from slipping. Here, an inverse model of the combined dymarf arm and grasped object would
be used to calculate the motor commands necessary for adheedesired hand trajectory. These
commands would then be sent to the arm muscles, and as aen¢ffepy to a forward dynamics
model. Based on the predicted trajectory of the arm, an éggddoad force could be calculated
that would act on the grasped object. Taking into accoumt, Ivaction and safety margins, a grip
force could then be determined that would prevent the ofijeat slipping, and appropriate motor
commands sent to the hand muscles.

Theories of motor control such as the one described, sursathffom here on under the notion

of the force control hypothesis (Ostry and Feldman, 200&),based on three assumptions: the
brain centrally specifies forces to be applied to the bodyséHorces are derived using an internal
inverse dynamics model; the motor system makes use of pixedinechanisms based on internal

forward models.
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Force control

The idea that the brain directly calculates and controlsfihees required to produce desired
movements is supported by many studies showing systenedaitonships between joint torques,
muscle activity, kinematics and task variables (Gottlieblg 1990; Corcos et al., 1989; Gottlieb
et al., 1996). It has also been demonstrated that torquée ahbulder and elbow joints follow a
linear relationship under many conditions (Gribble and¥<€t999), and that subjects are capable
of judging force output over a wide range of magnitudes (3pt889). Further support is lent
by electrophysiological data. Activity of neurons in codli area 4, for example, has been shown
to correlate with the direction of required force output ¢@&mpoulos et al., 1992). Also, certain
cerebellar lesions lead to problems that seem to indica#uad to control the interaction torques
arising in one joint as a result of motion in another (Bastéaal., 1996).

A theoretical limitation of the force control hypothesiswever, is its inability to resolve the “von
Holst paradox” (Ostry and Feldman, 2003). In their classipgy, Holst and Mittelstaedt (1950)
drew attention to the fact that the body is in any postureiligald by neuromuscular mechanisms
that generate forces in order to resist external pertuhstiYet clearly the organism is also able
to intentionally move from one pose to another. The postuogement problem is the question
of how this is possible without triggering resistance bytpr reflexes. In force control models
it is typically assumed that desired forces are encodeddrgtbup activity of motoneurons as
reflected in measured EMG signals. EMG signals, howevenataoredict posture. Recordings
from point to point movements show that EMG activity is zertha initial and final position, and
by extension, whenever the system is at¥¢Suzuki et al., 2001). Different postures can there-
fore not be encoded by motoneuron activity or forces digedtlit must be controlled by other
variables. If it were assumed that forces are specifiedtiirenly to transition between different
postures, then the stabilising mechanisms would have tobwletely or partially suppressed.
However, experimental observations do not support thia.ittestead, even intermediate postures,
that is to say, any point on the trajectory from initial to fipmse, seem to be stabilised by re-
sisting actions (Won and Hogan, 1995). More elaborate aessof the force control hypothesis,
which include muscle properties and reflexes, for examplestrmqually counteract their posture-
stabilising effect, instead of utilising it (see Ostry areldfman 2003 for a more detailed analysis).
This failure to establish different poses without inducnegistance, and the resulting mismatch
between predicted and empirically observed EMG signatficate conceptual gaps in the force
control hypothesis.

Inverse models

Most force control models are formulated such that trajgesgplanned in kinematic coordinates
are transformed into necessary torques by an inverse dgeaimimputation. Typically, the inverse
model neither explicitly accounts for the dynamics of th@noees innervating the muscles, nor
for the non-linear dynamics of force generation by the nmesthemselves. It directly provides
trajectories of joint torques over time that will produce ttesired movements when applied to the
mechanical system. This coordinate transformation aliowerse models to implement open-loop
motor control schemes that do not rely on error-correctegpback. The fact that deafferented

2|t is also easily observed that one can relax ones arm muiscies possible joint configuration
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monkeys, meaning those whose sensory feedback is elirdisatgically, can still reach a target
with their hands (though more crudely) seems to indicaté uhder such laboratory conditions
movements can indeed be executed in a preplanned and peeelfofward manner (Bizzi et al.,
1984).

The existence of inverse models is further supported byrereats in which subjects execute
reaching movements while exposed to an external force filddmehr and Mussa-Ivaldi, 1994).
Such fields, usually generated by a robotic manipulanduer, e effective dynamic characteris-
tics of the arm by applying forces that depend on its posiéiod velocity. When arm movements
are carried out in a force field, observed hand trajectoniedrtially distorted when compared
to natural straight-line paths. Over repeated trials, Manesubjects adapt to the load and even-
tually restore their normal hand paths. If the force fieldhient suddenly removed, trajectories
become distorted once again, but in the opposite direcfitimegpreviously applied perturbations.
The explanation, according to the force control hypothasithat kinematically planned reaching
movements are realised by an inverse dynamics model of the &his model initially fails to
account for the externally applied forces, but over timepésito their stable characteristics. The
resulting model of combined arm and force field dynamics thérepresents the actual situation
when the field is later removed. The idea of an internal modeilining arm and load dynamics
is supported by experiments with monkeys in which it was shtvat neurons in area 4 change
their tuning properties with changes in load (Gribble andt6@002). However, neither the be-
havioural nor the physiological evidence rule out alteugagxplanations. They merely show that
humans (and monkeys) can take loads into account when penigrarm movements. Gribble
and Ostry (2000) have demonstrated in a framework of positintrol that load adaptation is
possible without representation of forces, inverse dyoarar forward predictive simulation.

Further neurophysiological evidence for internal inversmlels is based on firing patterns recorded
in cerebellar Purkinje cells (Gomi et al., 1998; Shidaraletl®93). During reflexive eye move-
ments, their neural activity can be reconstructed fromealircombination of eye position, veloc-
ity and acceleration in a way that reflects the relationsigfwben these variables in an inverse
dynamics representation of the eye. As Ostry and FeldmdiBj2tave pointed out, however, cor-
relation does not equal causation. It is not entirely saipgi that neural activity correlating with
mechanical variables can be identified in a system that esuplechanical, sensorial and neural
components. Also, the less than 10 ms lead of Purkinje ctlladion over movement initiation
failed to account for the observation that antagonist destzin starts 30—40 ms before reflexive
eye movements. In the same experiments, climbing fibregfgéulto the cerebellum were found
to carry sensory error signals in coordinates of the motorroand. This observation was used to
support the so-called cerebellar feedback-error-legrmiodel, in which the error produced by a
feedback loop is used to train an inverse model that funstefeed-forward controller (Kawato
etal., 1987). Identifying similar relationships betweerural activity and movement variables for
arm movements however has so far been less successful.

On theoretical grounds, current inverse models are alsapatde of resolving the redundancy
problem. Even if EMG signals are determined by inverse dyosmmomputations, for a full ac-

count of motor control it would be necessary to determinarbé&neuron inputs that produce the
desired EMG output. However, non-linearities such as tolglsand plateau-potentials cannot be
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reversed without significant simplification of the relevaghamics. As is true for the equations
describing force production by the muscles, such simplifiediels produce questionable results
(Gribble et al., 1998; Zajac et al., 2002).

Forward models

Forward dynamics models can be used to predict both thelantmament of the system and its
sensory consequences (Karniel, 2002). For example, areeffe copy of the motor command
could be used in conjunction with a forward dynamics modgiredict and cancel out the sen-
sory effect (re-afference) of self-induced motion. Thisitcol scheme has been suggested, for
example, as a mechanism for stabilising visual space agamegements of the head and the eyes
(Jeannerod, 1997). Forward models can also be used to iraptepen-loop control when placed
in an internal feedback look (Jordan, 1993).

Another suggested role is the use of forward models to peoiiternal feedback about the pre-
dicted consequences of a motor command when the delay @l aetusory feedback would other-
wise lead to instability. An extension of this idea, knowretwineers as a Smith predictor, delays
the output of the forward model to cancel out the predictablmponents from the actual feed-
back. This allows for a feedback system that only corre@sdimaining unpredictable, and likely
small, errors that cannot be anticipated by the internalehdthe cerebellum has been proposed
to act as a Smith predictor, for example (Miall et al., 1993).

Forward models have also been implied in a theory of senstoinintegration based on the
Kalman filter (Kalman, 1960), which is a formal solution teetproblem of optimal state esti-
mation. In a Kalman filter, the future state of a system isnestied by a forward model that
receives as input both a copy of the motor command and therdustate estimate. At the same
time, a prediction of sensory feedback based on the systanrent state is compared with actual
feedback. The resulting sensory error is then used to ddirecstate as predicted by the forward
model. In essence, the Kalman filter uses motor commandsoiefeedback and a model of the
motor system to reduce uncertainty in its state estimatbadtbeen proposed, for example, as
an explanation for experiments in which subjects estimfagepbsition of their arm after having
performed a movement in the dark (Wolpert et al., 1995).

Further evidence for the idea that the nervous system tabayg dynamics into account comes
from anticipatory postural adjustment and grip force matah. Rapid arm movements, for
example, are usually preceded by adjustments in the resiedbady that mitigate the effect of
upcoming interaction torques (Belenkii et al., 1967). Alsben moving their arms while grasping
an object in precision grip, subjects make anticipatorystdjents to grip force that cancel the
effect of load forces arising due to self-generated movér(fdanagan and Wing, 1997). This
grip-force/load-force coupling can be explained in a framk incorporating both inverse and
forward models as described above (see paragraph 2 inrsétfdl). Here, the prediction of
load force by the forward model compensates for the delagrisary detection of the load, which
would be too long to prevent slip. Differential neural aityivn the cerebellum during anticipatory
grip force modulation has been suggested as evidence fextbence of forward models in the
brain (Wolpert et al., 2003).

Neurophysiological support for forward models was presgrih experiments investigating the
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fact that self-produced tactile stimuli are perceived as teeklish than the same stimuli generated
externally (Blakemore et al., 1998). Here it was found thate of the cerebellar cortex was
selectively inhibited by self-produced movements thatilted in tactile stimulation, but signifi-
cantly activated by externally produced stimuli. The amh@asoned that the predicted sensory
consequence of the motor command (predicted tactile stitionl) is used to cancel the percept of
the actual tactile stimulus.

Because they affect motor output only indirectly, evidefmeforward models is more difficult
to establish than for inverse models. This is crucial, bsedor output prediction every model-
based controller can in theory be replaced with a directrobetheme that has exactly the same
input-output function (Mehta and Schaal, 2002). Directtoalers map sensory signals to motor
commands without the intermediate step of internal modedsteave been suggested as a model
for motor learning in the cerebellum (Barto et al., 1999).c8sse of their equivalence, none of
the studies suggesting the involvement of internal modelstioned above can rule out the use of
a non-model based controller for output prediction. Fodvaodels can however be used to fill in
missing sensory input, and among a set of different conttesies were shown to best explain the
performance of subjects in a pole-balancing task with Vislaak-outs (Mehta and Schaal, 2002).
The same experiments allowed for further distinction betwdifferent use-cases for forward
models. The Smith predictor, for example, was rejected &ignfor control of mechanically
unstable systems, of which human balancing is just one elearap it would provably become
unstable itself. The most successful model was similarad@iman filter proposed for explaining
the performance of subjects estimating their arm posititer amovements in the dark (Wolpert
et al., 1995). However, Ostry and Feldman (2003) note tleas#ime data can be explained by an
alternative hypothesis that does not involve an internaleho

There is no doubt that human motor control features prediair anticipatory mechanisms that
can detect and compensate for the effects of self-inducdagmor novel sensorimotor environ-
ments. It is a valid question, though, whether these areeémehted in the nervous system as
internal models, that is to say detailed and accurate pgieglisimulations of the body and/or the
external world. For example, even a simple feedback meshraoan be described as a predictor if
the target state is interpreted as both motor command aret&gfuture state. Also, even com-
paratively simple animals such as crickets and other insexhibit anticipatory behaviours and
can distinguish between self- and externally produceduti(iVebb, 2004). Evidence suggests
that this can often be achieved through simple sensorygaiiran appropriately delayed motor
signal. In other words, sometimes a simple scaling (andydeja of the motor signal provides an
accurate enough estimate of its sensory consequence.

2.2.2 The equilibrium-point hypothesis

An alternative to force and internal model based theorieaatbr control is the equilibrium-point
hypothesis. Its origins are found less in formal enginggtitan in the history of neurophysiolog-
ical research on muscle and reflex dynamics.
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Posture-movement paradox

As early as 1926, Wachholder and Altenburger wondered ifangwere able to relax their mus-
cles at different joint positions. It was already known thaiscles exhibited spring-like proper-
ties, and easy to see that two muscles acting against eashaathid be in equilibrium at a single
position only. By confirming that muscles are indeed relaaedifferent positions, it could be
concluded that the nervous system modified the spring-likpgaties of the muscles during vol-
untary movement. This was in line with Sherrington’s findaigeciprocal innervation, that is the
inverse proportional activation of antagonist muscle gspwvhich explained why activation of a
muscle does not trigger a resisting stretch reflex in itsgomssts. It also supported his idea of
reflexes as tunable mechanisms rather than hardwired espoand his general view of motor
control via modulation of reflex parameters. Holst and NBteedt (1950) addressed a similar
problem, namely the posture-movement paradox of how vaitynhovement to a new position
can occur without triggering resistance from postureibsaty reflexes. Their solution, the reaf-
ference principle, proposed that an efferent copy of theomecbmmand changes the reference
point relative to which sensory feedback is measured in tiséupe-stabilising action. This means
that stabilising reflexes are re-addressed to a new pogsititimer than simply inhibited. The phys-
iological basis of this resetting mechanism was demormstrizt experiments by Matthews (1959),
in which he showed that stimulation of the spinal cord in teeatebrate cat was associated not
with changes in muscle length, activation or force, but wittonstant relation between force and
length. Muscles would produce force as a function of lendgtimgra characteristic non-linear
curve that was shifted by the level of stimulation (invatieharacteristic). In other words, muscle
and reflexes together acted like a non-linear spring whapeis¢ was determined by descending
inputs. The equilibrium-point (EP) hypothesis was esdi@d when Feldman demonstrated sim-
ilar torque-angle characteristics in elbow movements hy-aecerebrate humans, and suggested
that central motor commands can change a componémf the threshold length beyond which
a muscle becomes activated (Feldman, 1966). The postuermemnt paradox was thus resolved.
In the EP framework, a change in muscle activation thresholdans that the current position
becomes a deviation from the newly specified one, and theisstabilizing reflexes will ensure
that the system moves to the new target.

TheA-model

To elaborate, the EP hypothesis suggests that when a matensys at rest, tha-motoneurons
innervating the relevant muscles are in a state that is jelswbtheir threshold for activation.
This is confirmed by the observation that EMG signals befokafter a movement are zero, but
that muscles become immediately activated when perturkiednally. The observation of sub-
threshold states at any desired pose implies that musdkatimh thresholds are reset in voluntary
movements. The proposed motor control scheme is thus omeesthiold control. It distinguishes
itself from the force-control hypothesis by the fact thairiplies a positional coordinate frame.
This is becausei-motoneurons receive not only the descending motor comaygriolit are also
the target of muscle length dependent feedback from the sirétch reflex. Therefore, a muscle
activation threshold specifies the length of a muscle beldvchvit is silent. If the muscle is
stretched beyond the threshold length, the tonic stretibxravill activate it in proportion to the
difference between actual and threshold length as sensguiopyioceptors. Activation of the
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muscle in turn will produce contraction, thus bringing #éadth closer to the threshold value. The
continuous interaction of neural and muscular elementsthwis drive the system towards a state
of minimal activation. However, since the body is usuallyp@sed to external forces (gravity,
environment interaction), it will typically reach equitibm where muscle force equals external
load, that is not necessarily at zero activation or exaetstmold length. A distinction is therefore
made explicitly in the EP hypothesis between the virtualildium as determined by muscle
thresholds, and the actual equilibrium at which the systemes to rest.

The EP hypothesis has been extended to account for manydeatoserved in natural limb move-
ments. To explain the coordination of multiple muscles foridtaneous control of position and
stiffness, for example, it was suggested thatXttemmand could be formed by a combination of
two components: a reciprocal signal that moves the thrdshafl antagonist muscles in the same
direction, and therefore activating one, but relaxing ttieepmuscle; and a co-contraction signal
that moves the two thresholds in opposite directions, fepdbt to a change in joint position but
a stiffening of it (St-Onge and Feldman, 2004; Feldman, 1993

To produce smooth voluntary movements it was suggesteaématal commands specify simple
monotonic (e.g. ramp-shaped) shifts of threshold lendtihsther words, instead of specifying a
new virtual equilibrium position directly, a virtual traj@ry is used to move smoothly from the
current to the desired position. The implication is that point along the trajectory should be a
stable equilibrium. This has been confirmed in experimantghich the hand position of subjects
was perturbed in the middle of an arm movement (Won and Hdd#85). Measurements showed
that resisting forces were directed not at the target, wirtds the intended trajectory.

TheA-formulation of the EP hypothesis has also been succegsmiployed as a tool for study-
ing the problem of redundancy (Balasubramaniam and Feld2@04), vertical posture stability
(Micheau et al., 2003), human walking (Guenther and Rud#3® sense of effort (Feldman and
Latash, 1982), and in relating kinematics, dynamics and FitBerns in point to point reaching
movements (Feldman et al., 1990; Latash, 1993; Gribble €1298).

Criticism and clarifications

A crucial proposition of the EP hypothesis is that no invaetgeamics model is required to cal-
culate the EMG signals or forces required for goal directedements. Instead, these variables
emerge from the spring-like dynamics of the combined musaflex system. In other words, by
changing the lambda component of the stretch reflex, motontands set up an equilibrium point
(or trajectory) and a force field around it. Movement, in thémework, is simply the relaxation
of the system towards the specified attractor. The ofted-us&ss-spring analogy for describing
muscle-reflex dynamics, when taken too literally, has ledhyrta wrong conclusions about the
validity of the EP hypothesis. It is therefore worth to dasome of the more subtle points of the
hypothesis here.

One important point is that central commands modify theldmitim position, but they do not do
so exclusively. For example, velocity-dependent progptive signals and inter-muscle reflexes
also terminate on motoneurons and affect their threshditisrefore, the central contribution to
threshold values should not be considered an internalgeptation of the motor goal — it is just
the means by which the nervous system can produce moven@dinén stresses that the target
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of a movement is specified in physical variables relevartiéaask and environment and does not
need to be represented in other internal coordinates (Feldnd Latash, 2005).

The A-model suggests that smooth movements are created by singpletonic EP shifts. This
was questioned, however, by Gomi and Kawato (1996), whmastid stiffness and damping val-
ues of the arm from measured perturbations and used it tolatdahe shifts in virtual equilibrium
necessary to produce the observed movements. They codc¢hatehis shift is not monotonic but
follows a rather complex N-shaped trajectory. This suggk#tat even in the EP hypothesis, arm
dynamics have to be accounted for in planning the correct&&ctory. However, the experiment
assumed that force production by the muscles was a lineatidmnof position, which constitutes
a major simplification of the motor system. Gribble et al.98pdemonstrated that when an ad-
eguate muscle model is used instead, simple monotonic BB ahé in fact sufficient to explain
Gomi and Kawato’s data.

Other oversimplifications, such as the assumption that yinardic characteristics of the motor

system are the same during movement and at rest, have bekimg&gms that the EP hypothesis

incorrectly predicts values of damping (Gomi and Osu, 198@€)dman pointed out, though, that

when the damping properties of muscles and velocity-degreni@edback components are taken
into account the data is in fact consistent with the theosidman et al., 1998; Gribble et al.,

1998).

Another controversy regarding predictions of the EP hygsihconcerns the level of joint stiffness
during voluntary movements. It has been suggested by dematfzors that the EP hypothesis
requires relatively high levels of joint stiffness (or larmechanical and neural feedback gains) to
generate forces large enough to account for fast movem€atsato, 1999; Wolpert et al., 1995).
The observation that stiffness is instead rather low (Gardilkawato, 1996), was then argued to
conflict with the EP hypothesis (Popescu et al., 2003). Hewes Feldman pointed out (Feldman
and Latash, 2005), the EP hypothesis has in fact no uniquéreeaent for the levels of stiffness
or damping. Itis only restricted by physical laws accordingvhich a stable system has to reject
perturbations with stiffness and damping coefficients sinatarger than those of the external load.
The same physical laws equally apply to the force controlottygsis, however. Claims that it
requires lower stiffness levels than the EP hypothesisgaimahe result of misrepresenting major
properties of the neuromuscular system (for a more detaifedysis see Feldman and Latash,
2005). Difficulties in reliably measuring the stiffness ofr@ving system mean that conclusive
experiments comparing predicted and actual stiffness hatvto be conducted for both the force
hypothesis as well as the EP hypothesis. However, it has $lemmn recently that an EP model
in conjunction with a realistic muscle model can produce &&sl smooth single joint movements
with EMG signals resembling those measured in human sbigcstemaker et al., 2006).

Another argument brought against the EP hypothesis caostkenproperty of equifinality, that is
the assumption that with constant command signals theraysteuld always settle at the same
equilibrium point after transient perturbations have ckdehe finding of positional errors in arm
movements as the result of coriolis fortesemed to violate this principle (Lackner and Dizio,

3The coriolis force, like the centrifugal force, is an exampf pseudo forceswhich result from the effect of inertia
in a rotating frame of reference. They can be observed, famgke, when movements are carried out on a rotating
platform.
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1994). As these forces are velocity-dependent they shautchbsient and not affect the final EP.
However, this assumes that control signals remain condtas#n be argued, though, that coriolis
forces belong to a class of perturbations that are activghpsed by changes in motor commands
such as to ensure stability at the expense of positional @feldman et al., 1995, 1998). Even
in the simple case where external forces are absent, naamability in non-central components
of muscle activation thresholds mean that equifinality carbe guaranteed. Only on average
will the system settle to the same EP if all other things amgakgObservation of violations of
equifinality in healthy humans (Feldman, 1979) or Mmodel are therefore consistent with the
EP hypothesis.

The fact that subjects can adapt their movement strategytéonal force fields (see above) is
often claimed to support the idea of force control and irdbmodels. Although they provide a
possible explanation, an alternative approach based oxfilienulation of the EP hypothesis has
been demonstrated to achieve load adaption without the fioedndverse dynamics calculations
or coordinate transformations between positional error@nrecting forces (Gribble and Ostry,
2000). Anticipatory grip force-load force modulation, thest cited evidence for internal models,
has also been successfully simulated in a model based ahthdecontrol (Pilon et al., 2007).
Again, no calculation of required forces or EMG signals wasassary.

One of the proposed roles for internal forward models isrthgé in a control scheme that oper-
ates on predicted rather than actual sensory feedback, iTisimrgued, mitigates the detrimental
effects of delays on the stability of the motor system. Sumiterns about the destabilising effect
of sensory delays might not be justified, however. Firstitrimsic viscoelastic muscle properties
generate instantaneous stabilizing forces in responseatoges in position or velocity, a mecha-
nism termed preflex (Brown and Loeb, 2000). Also, use of bo#itjpn and velocity feedback, as
is the case in sensory input to the motoneurons, can helpriionigie instabilities caused by delays
(Ali et al., 1998). A model incorporating both preflexes adlae position and velocity feedback
was demonstrated to be sufficiently stable for arm movemaitksreflex delays within the em-
pirically observed range (St-Onge et al., 1997). More rédge(Pilon and Feldman, 2006) have
emphasised that the central components of threshold ntamulkare best viewed as feedforward
commands that influence the state of the reflex system priactteation of the muscles. Conse-
quently, it contributes to muscle activation immediatelgt just after an initial lag period. Their
model confirmed that threshold control of fast arm movemisnitsdeed stable for proprioceptive
delays that cover both spinal as well as transcortical rédleps.

2.2.3 Summary

The force control hypothesis offers mathematical consdrtitat provide plausible explanations
for many observed aspects of human movements, and its assarttgat the nervous system im-

plements internal inverse and forward models is consistéhta number of experimental studies.
However, it has failed so far to resolve the posture-movemaradox, and it is in conflict with

well-known EMG patterns. The possibility of completing theerse transformation from desired
outcome to required motor commands, including non-linearal and musculoskeletal dynam-
ics, still has to be demonstrated. Meanwhile, simplifiedesentations of the motor apparatus
limit confidence in its predictions. Neurophysiologicatal# often ambiguous and behavioural
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evidence, such as force field learning or anticipatory bieliayvcan equally be explained by alter-
native theories that do not require internal models.

The equilibrium-point hypothesis offers an alternativattis grounded in neuromuscular physiol-
ogy, solves the posture-movement problem and correctlgatsfobserved EMG signals. It has so
far resisted attempts at falsification (most of which areedasn misinterpretations of the theory
or overly simplified models) and has provided alternativieitsans to many problems in motor
control thought to require internal models. While the EPdtiipsis cannot currently be rejected,
challenges remain. Accurate stiffness predictions anidiatidns, as well as experimental tools
for measuring the hypothesised control signals (motometimceshold offsets) are still lacking.
Also, potential mechanisms are needed to explain how thestot signals are produced for a
given task and context. It is hoped that this thesis will dbote towards an understanding of
how control signals in the EP theory depend on the desirecement and the dynamics of the
underlying musculoskeletal system.

2.3 Embodied cognition

The two conflicting motor control hypotheses reflect a broadatroversy in the field of cognitive
science. This is the question of whether a computationablgnamical perspective is better suited
for studying cognitive agents.

Computationalism

According to traditional views, cognition and behavioue #est understood in a computational
framework. The physical symbol system hypothesis (Newedl §8imon, 1976), for example,
claims that cognitive agents are essentially problem ssltreat algorithmically manipulate inter-
nal representations of the world via operations on staticksy} structures. Such formal systems
were claimed to have “the necessary and sufficient meansefwrgl intelligent action” (Newell
and Simon, 1976). The theory assumes that the world can lEediinto discrete objects, actions
and states, each of which can be referred to by a symbol. Ttheenaf variables describing such
systems is hence discrete and its basic operations aretdistate transitions. Time is represented
in this theory only in so far as the system is updated at cefaints in time. Events thus have
a temporal ordering, but there is no temporal continuityrupdiich a system’s behaviour can
depend. What matters is n@henthe system occupies a certain state, Wwhich states it passes
through and in what order. The computational view focusesema the internal structure of the
system'’s overall state (e.g. syntax) than on how it is agdevProponents of this theory were
mainly concerned with abstract thought and rational probé®lving. Most work was aimed at
explanations of isolated, high-level and disembodied itigrfaculties, such as decision making,
knowledge representation or logical reasoning. While fhi@@ach led to important advances in
computer science (e.g. expert systems and logic prograg)mis limitations were recognised
both on philosophical grounds and whenever attempts wedertaapply it to robots acting in
the real world. Theoretical issues identified include betrast limited to the frame problem (Den-
nett and Pylyshyn, 1987), symbol grounding (Harnad, 198),the binding problem (Revonsuo
and Newman, 1999). With respect to robotics, it was receghtkat many adaptive skills, such
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as balance, locomotion or object discrimination, do notaglsvrequire symbolic processes and
sometimes are more easily explained and reproduced withent (Brooks, 1990).

Embodiment and dynamicism

A shift in perspective followed, in which the importance ehlgodiment and dynamicism were
emphasised in explaining the adaptive behaviours of agertntinuous coupling with their en-
vironment. Behaviour-based robotics (Brooks, 1990), f@neple, was aimed at understanding
all aspects of simple, but complete adaptive behavioutsasof isolating individual components
or aiming for general intelligence. It attempts to avoidaalistic assumptions about the agent
or its environment by requiring a robot to interact in reale with the real world. The approach
opposes the computationalist assumption that the braistremts internal representations of the
world, which a homuncular subsystem acts upon. Insteadaiins that for a situated and em-
bodied agent “the world is its own best model” (Brooks 19%8)d thus advocates the primacy
of perception over internal models. The concept of embonimefers to the idea that an agent’s
behaviour depends non-trivially on the unique perceptadlraotor capabilities that its particu-
lar body affords (Thelen et al., 2001; Beer, 2009). The nigt@roperties and morphology of
the motor apparatus and its sensory interface both empawlecanstrain the interactions that an
embodied agent is capable of. Notions like morphologicahmatation (Pfeifer and lida, 2005),
cheap design (lida, 2005), and passive dynamics (McGe@60)Iarther emphasise that the phys-
ical properties of an agent’s body can be adaptive in theesthat they make behaviours more
efficient and robust or simplify its control. Examples ofstldipproach include passive dynamic
walkers that exploit gravity for locomotion without actaeg and control systems (McGeer, 1990);
a fish-like robot that exploits body shape to navigate indhdienensions despite being equipped
only with a one degree of freedom actuator (Pfeifer and R@85); and a robotic hand that grasps
arbitrary objects without visual analysis or control byngselastic tendons and deformable finger-
tips (Pfeifer and lida, 2005).

The shift towards an understanding of behaviour as themamtis unfolding over time of the in-
teraction between a physical agent and its environmentssiates a corresponding language to
describe it. Computationalism deals with discrete ordesezhts and algorithms only, and cannot
account for the real-time dynamics that many behavioutgcally depend on. The Dynamical
Hypothesis in cognitive science (Gelder, 1997) proposstead that cognitive agents instantiate
dynamical systems (nature hypothesis) and that they areftine best understood by using the
language of dynamical systems theory (knowledge hypaheBiynamical systems describe the
evolution over time of quantitative variables accordindaws that are usually expressed as dif-
ferential or difference equations. In contrast to the lagguof computation, it can thus be used to
describe any physical process, including the continucgsdntion between an agent’s brain, body
and environment. A dynamical systems approach to behatypigally involves the modelling
of agent and environment as coupled dynamical systems rati/@nalysis of such systems in
terms of quantitative and qualitative properties of thelltésy state space. Particular behavioural
features observed experimentally are often explained gearally by reference to stable and un-
stable limits sets and basins of attraction, or changesetgetblynamical entities as the system’s
parameters are varied (bifurcatiohs)

4For a comprehensive overview of analytical and geometrigathods in nonlinear dynamics see Strogatz (1994)
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A cornerstone of the dynamical approach to motor contrdiesHaken-Kelso-Bunz (HKB) model
(Haken et al., 1985). It is based on experiments by Kelso4LBBwhich subjects were instructed
to produce bimanual tapping movements in synchrony withcingametronome. As the desired
frequency was slowly increased, several interesting featcould be observed in the pattern of co-
ordination between the two hands: if subjects start withrgirghase pattern they spontaneously
switch to in-phase movements at a certain critical frequewben the frequency is subsequently
decreased, subjects maintain the symmetrical pattern amdbidswitch back to anti-phase (hys-
teresis); such a transition is not observed when subjeatsistthe symmetric mode. In the HKB
model it was shown that these observations could be derivedtly from a simple differential
eguation that describes the change in relative phase betivedrands as a function of frequency
(which serves as a control parameter). Analysis confirmed tlae equation was devised so that
the two different patterns corresponded to the only fixedtpaitractors of the system. Bifurca-
tion analysis further showed that both attractors are stablow frequencies (bistability), while
at the critical frequency a phase transition occurs beyohidiwonly the in-phase pattern is sta-
ble. The observed hysteresis and absence of transitiortieq wtarting with in-phase movement
is explained by the fact that the system is already in a stedplélibrium which is not affected
by changes in the frequency parameter. In the HBK model, qoateon describing these phase
dynamics were then derived from the coupled dynamics thetrites individual limb oscillations.

It thereby not only provided a complete quantitative dgsinn of the observed phenomenon, but
also provided an explanation in terms of the relation betwhe two levels of description.

The work by Thelen and colleagues on Piaget’s classic ABnatsk (Thelen et al., 2001) can be
regarded as a second milestone of the dynamical systemsaapiprin this task, 7-12 months-old
infants, who have repeatedly managed to uncover a toy aidoca, continue to reach for it even
when they have watched the toy being hidden in a differentniearby location B. Traditional
explanations refer to the infant’s incomplete or fragilgeab representations, or problems with
spatial coding, as explanations for this error. Thelen gtimlcontrast, were less interested in
what infants seem to know than in how they behave. In theiagya field theory of infant perse-
verative reaching they demonstrated that the A-not-B eraorbe understood as the result of the
coupled multiple timescale dynamics of actions such asitapkplanning, reaching and remem-
bering. The work showed that the same language could be asisstribe the time-evolution of
both cognitive processes and bodily movement, and thattbelistory of interactions between
the various subsystems could explain the observed behraviibe idea of cognitive embodiment
was further supported by findings that perseveration igliidimked to developing reaching abil-
ities and that the error disappears when infants adoptreiffeqposes between the A and B trials.
Smith and Thelen (1993) also used a dynamical systems agptoastudy the development of
motor skills in infants. They demonstrated that the disapgece and subsequent reappearance of
kicking behaviour in infants can be explained simply by taet fthat their legs become heavier.
As the weight increases, the kicking behaviour ceases toskatbée oscillatory pattern. When the
infant's muscles grow stronger, however, they compensatthé weight gained. In other words,
an infant’s leg weight operates as a control parameter wtiosege can lead to a bifurcation that
results in qualitatively different motor behaviours.

and Abraham and Shaw (1992).
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Evolutionary robotics

Embodiment and dynamicism often play a strong role in eimhairy robotics (ER) experiments
(Nolfi and Floreano, 2000). Here, algorithms inspired byuratevolution are used to automati-
cally find robot controllers (Floreano and Mondada, 1994y sometimes morphologies (Harvey
et al., 1994), that maximise a given fitness function. Stgrivith a random population of candi-
date robots, individuals are assigned a fitness value bastetio performance in the desired task.
In a process of selection, this fitness measure determinvesdniations (“offspring”) of the better
performing individuals replace the worse ones. Variabiktintroduced by applying operations
such as mutation and recombination to the robot instancest @any iterations of selection and
variation, the population of robots is hoped to convergeatols maximum fitness.

The main motivation for an ER methodology is that human tidnioften fails to anticipate or
comprehend the complex interactions required in a givanhasveen a robot’s brain, body and
environment. A design approach to robotics thus easilpihtces unnecessary or wrong assump-
tions about the kind of control mechanisms or robot morpfiet® needed. Such preconceptions
can be minimised if aspects of an agent’s “brain” and bodya#ioeved to evolve, instead of be-
ing specified by the experimenter. By not restricting thedkinf environment interactions that
a robot can engage in, one often finds that evolved solutiansegploit unforeseen properties
of the body or the environment that allow for simpler contra@chanism than those an engineer
might have synthesised. This was strikingly demonstraieHdrvey et al. (1994), who evolved
continuous-time recurrent neural networks (CTRNNSs) (B&8©5b) for real-time control of a
camera equipped gantry robot. By using an active explaratiategy, the evolved networks were
able to distinguish between triangular and rectangulgetarusing only two pixels (or receptive
fields) of the camera’s video image.

Beer (1995a) demonstrated the strength of a dynamical abhda@isd approach by evolving and
analysing CTRNN controllers that produce locomotion béhavwhen coupled to a six-legged
simulated robot. Although successfully evolved netwotk@ged no significant functional organ-
isation, a state space analysis offered insight into theispelynamics that gave rise to different
walking patterns. Specifically, Beer found limit cycles wh@rojections into motor space caused
single legs to rhythmically alternate between stance aridgsmotion in a fashion appropriate
to walking. The limit cycles were produced by periodic bifations that in turn were triggered
by the current state of the leg. If the leg was in the stancegha bifurcation would lead to the
appearance of an attractor, the relaxation to which pratiacvinging motion. Conversely, in the
swing phase a different bifurcation would produce an atbrathat pulled the system back into the
stance phase. The parameter changes necessary for thesattihs to occur were produced by
sensory signals that indicated whether or not a leg was itacowith the ground. The observed
walking behaviour, therefore, could not be attributed ® #lgent’s brain, body or environment
individually, but only to the coupled system as a whole. Iredes of experiments on minimally
cognitive behaviours (Beer, 1996; Slocum et al., 2000)rBaewed how the same approach can
be applied to study cognitive performances such as visigttation, object recognition, selective
attention, perception of self-motion, planning of seqigttehaviours and learning.
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2.4 Approach in this thesis

The methods used in this thesis to model and analyse thadtitam between muscles and neural
control, as well as the kind of questions asked, are both pkesrof a dynamical and embod-
ied view of motor control. Firstly, the thesis is concerneithwhe equilibrium-point hypothesis.
This hypothesis is by nature dynamicist, as it suggestscitratirol of motor behaviours is done
by changing parameters of the coupled neuro-musculogkedgstem, while thexecutionof a
motor behaviour is simply the relaxation of its dynamicsaots a stable equilibrium. Secondly,
the tools used for describing and analysing the models éntkigsis are those common to the dy-
namical systems approach. The behaviour of skeleton, esscid neural control in this thesis
are simulated as coupled dynamical systems described teyatifial equations. The behaviour
of these systems is analysed in terms of the long-term (gistatie) and short-term (transient)
features of its phase space. It is shown, for example, tleaintieraction of antagonistic muscles
can produce stable as well as unstable equilibrium poirjtsnin space. Properties of this equilib-
rium are studied as parameters of the system are variedsi€ras, that is individual trajectories
that have not yet settled to an equilibrium, are comparetided observed in natural human arm
movements.

One aim of this thesis is to identify the kind of control sitgéat are required to generate natural
goal-directed arm movements. An important finding is thiet depends crucially on assumptions
about the material properties of the muscles. A simplifiediehofor example, is shown to pre-
dict different control signals than a more realistic modki.this way the thesis highlights the
importance of embodiment when studying the dynamics of moaatrol. It also employs evo-
lutionary robotics techniques. Throughout the thesisegeralgorithms are used to evolve the
neural systems controlling individual muscle activatiolmsmost experiments, the neural activity
of the stretch reflex is described simply by a lumped modelhictvmuscle activity is calculated
directly from a linear combination of various feedback camgnts. This is in essence an opti-
misation of the standard\{) model of the equilibrium-point hypothesis for the taskhand. In
other experiments, however, dynamical neural networkseeot/ed as reflex controllers. These
experiments, which extend the standard lambda-modelpextie forms of control possible when
assumptions about its structure are relaxed.
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Muscle dynamics

“Behaviour is regular, but there are no regulators” (J. Gif)s

3.1 Introduction

A distinguishing feature of all animals is their ability tcore and interact with their environment
in complicated and goal-directed ways. The dexterity, stiiess and efficiency of movements
by even the simplest animal easily surpasses the abilifiegroent robots. In mammals, skeletal
muscles are the sole initiators of movement. They transfmargy into motion through contrac-

tion and transmit the resulting forces to the skeleton. ldetacunderstand the principles of animal
movement it is necessary to study the mechanical propemiéslynamics of force production by
the muscles, their interaction with the skeleton as welhag theural coordination. In this chap-

ter | will use the Hill-type muscle model in conjunction withphysical simulation of a planar

two-jointed arm as a tool for studying natural movement dyica.

Skeletal muscles are different from current robotic acitgain that the force they produce is not
simply a linear function of its input. The non-linear retatship between muscle force, length,
velocity and activation, a result of intrinsic material pesties, play a crucial role, for example, in
fast but precisely damped movements or implementation -aibfied pre-flexes, a zero lag resis-
tance to perturbations (Brown and Loeb, 2000). The impo#gani anecological balancédetween
material properties of the body, its morphology and contrieén interacting with an environment
has received much attention recently (Pfeifer, 2007). ighonorphological computatigragents,
whether natural or robotic, can exploit physical dynamacadhieve higher efficiency and simpli-
fied control, while maintaining a sufficient level of behatial diversity (Pfeifer and lida, 2005).
Gribble et al. (1998) e.g. has shown that the non-linearitigbiological muscles can simplify the
control signals necessary to generate smooth shifts indbilign of an arm. He showed that if too
simplified a muscle model is used, complex N-shaped inpgtsats are needed to drive an arm
linearly from one position to another. By including the rlorear relationships on the other hand,
the same movement can be achieved with a simple monotonje samal.
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In this chapter the material properties of antagonisticatassare studied for their ability to create
an equilibrium-point at the joint level that allows for caoltof position, stiffness and velocity.
This has been demonstrated before (e.g. Kistemaker et@a20Here, however, a muscle model
is studied that is at the same time more complicated thamaahbdtimped models (Barto et al.,
1999), but simpler than those aiming for high levels of biidal accuracy (Kistemaker et al.,
2007a). This intermediate level was chosen, because tHeofytias chapter is not primarily to
reproduce human movements quantitatively, but to idemitibse components of a muscle model
that are fundamental for achieving flexible control of a fsirequilibrium position. Care is taken,
nevertheless, to ensure a reasonable level of biologikalanece. To this end, the steady-state and
transient behaviour of various muscle models is analysddcampared to natural human move-
ments. The results determine whether the chosen level othamdail is sufficient for studying
the assumptions and implications of the EP hypothesis imé¢iechapter.

3.2 Methodology: Modelling skeletal muscle

The following sections provide an overview of the anatomg physiology of skeletal muscles
and explain their force-generating mechanism. The welhmBlill-type muscle model (see e.qg.
Zajac, 1989) is then introduced as a tool for studying thgiradnics under open-loop control.

3.2.1 Muscle physiology

Muscles create motion by transmitting contraction forcethé skeleton via tendons. Their struc-
ture is hierarchical. The body of a muscle, surrounded byeotive tissue called epimysium,
consists of many bundles (fascicles) of muscle fibres. Hea®lof thousands of these contractile
muscle cells are controlled by about a hundred motor neurisingle motor neuron along with
all the muscle fibres it innervates is callednator unit Muscle fibres themselves are composed
of manymyofibrils The latter contain the units ultimately producing cortitat, thesarcomeres
Large numbers of these are connected in series throughordractile components from which
they are separated by so called Z disks. From the disks thiméihts containing actin monomers
project inward, while thick filaments, made from myosin nuoles, float in the middle of the
sarcomere. It is the interaction between the thick and tham#nts that generate contraction of
the muscle through a mechanism known as the “sliding filarhgpothesis” (see below).

3.2.2 From action potential to force output

Every contraction starts with the transmission of an acfiotential from the motor neuron to
the muscle fibre via a chemical synapse called the end-plEte. action potential then travels
along the muscle cell membrane and will eventually triggerrelease of calcium from an internal
compartment (see figure 3.1). The free calcium ions can nod toi a troponin molecule, which
in turn leads to a conformational change in the connectgabimyosin molecule covering the
actin filament. A now exposed binding site allows the head plthe myosin molecule to bind
to the actin filament and form a so-callebss-bridge With the cross-bridge in place, the myosin
head bends and performs thewer-stroke it pulls the actin filament in the direction of increased
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Figure 3.1:lllustration of the sliding filament hypothesis. Calciunte@sed through an action potential
triggers ATP powered actin-myosin cross bridge cycling.

overlap, thereby shortening the muscle fibre. During theketrthe myosin head releases ADP
and phosphate. This allows for the binding of ATP insteadictvtieads to the termination of
the stroke. Energy gained from the breakdown of ATP to ADP aimosphate is used to return
the myosin head to its initial position. This process is epd, leading to asynchronous cross
bridge cycling at many different binding sites simultanglgu At the end of the action potential,
calcium is pumped back into the compartment, actin-myosidibg sites are once more covered
by tropomyosin, and the muscle fibre relaxes.

3.2.3 The Hill-type muscle model

One of the most widely used models of biological muscle isstiiealled Hill-type model (Zajac,
1989). Here, muscles are treated as input-output systemgriging a contractile element in par-
allel and in series with a varying number of springs and wisatampers. A common configuration
is shown in figure 3.2.

The model behaviour is described by experimentally obsereationships between the different
kinetic and kinematic variables in the form of constituthetationships. Specifically, these ide-
alised lumped elements describe empirically how a mustdete output depends on its length,
velocity and activation. In this way it differs from modelsat start from first principles, such as
the Huxley-Zahalak equation, which quantitatively modéis action-myosin interaction (Zaha-
lak, 1981). The Hill-type model was chosen here becauseitioas key features of real muscles
while computationally being relatively cheap. The follogisection will explain in detail the
different constitutive relationships and their implenagion.
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Figure 3.2: Musculotendon unit: a tendon (or series elastic elemen},iSEonnected in series with a
muscle. The latter consists of an active contractile elért@Bg), a passive elasticity (PE) and a viscous
damper.

3.2.4 Activation dynamics

Responsible for the release of sufficienfCt enable the sliding process of thick and thin fila-
ments is an action potential travelling along the surfacg mifuscle fibre. A single action potential
will not allow for all possible cross-bridges to form and berwill produce only relatively little
contraction. Consecutive action potentials however cahtadhe number of active cross bridges
if they occur before the re-uptake of €a Thus, the amount of force produced by a muscle is
proportional to the frequency of action potentials. Caitirelease and its subsequent uptake are
two separate processes and lead to different time courdbs iise and fall of active tension dur-
ing muscle contraction. In the muscle model, excitatiotivation (@) dynamics limit the time
course of force production. Effectively, activatiarimplements a filter on neural excitation)(
interpreted as firing rate, with different activation andckivation rates:

a= fa(au) = (u—a)/t* (3.2)

wheret* = T = 0.04sif u> aandt™ =14 = 0.07sif u< a.

In reality, the rates of calcium release and re-uptake thbms have been shown to depend on
stimulation frequency, muscle fibre length and velocityofBn et al., 1999). Also, different types
of muscle fibres (fast and slow twitch) show different ratesativation and deactivation. Here, for
simplicity, time constants are assumed to be constant ghimit a movement, and represent the
lumped effect of a range of different fibre types. Also, whengscle parameters are optimised in
this thesis, these constants are excluded. This is a liontaf the work presented here, and could
be addressed in future work. The fixed rates specified abdivimta the midrange of reported
values. Activation rates as low as 10-20 ms and deactivasitas as high as 200 ms have been
used in the literature (e.g. Pandy et al. 1990; Pilon andriratd2006).

3.2.5 C&*" dynamics

Another, often neglected, aspect of“aynamics is that muscle fibres become more sensitive
to C&* as sarcomere length increases (Konhilas et al., 2002). hier etords, force production
by the muscle is not only dependent on the amount of calcileased as a result of stimulation,
but also on muscle length. In this thesis we modelled thisetspf C&* dynamics following the
approach detailed in (Kistemaker et al., 2007a), itseledam (Hatze, 1981). In this new scheme,
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Figure 3.3:Muscle activation dynamics. Muscle activatiais a low-pass filtered version of neural input
signalu with different activation and de-activation rates.

the activation leveh, described above, is now interpreted as the fre& Gancentration resulting
from muscle stimulation. The final active statef the muscle, however, that is the amount of
C&* bound to troponin, now depends on baths well as on muscle length via

p = an—EML (3.2)
3
q = %"j&% (3.3)

wherec, n, k andqp are constants. The effect of calcium dynamics on the mssfidece-length
relationship is shown in figure 3.4. Mechanically, the ad@eél" sensitivity adds to the stiffness
of the muscle at lower activations, and captures the expatatly observed shift of its optimum
length (Balnave and Allen, 1996; Roszek et al., 1994).

3.2.6 Active force-length relationship

The number of cross bridges formed during a contraction hemde the force produced, not only
depends on the exposing of binding sites through sufficigietuam release, but also on the spatial
overlap of thick and thin filaments. As a muscle is stretchied,overlap decreases until no force
can be generated when there are no adjacent filaments. Gelyers a muscle shortens overlap
increases and more force can be generated. Beyond the giddaleowever, actin filaments start

interfering with each other until eventually they are pessagainst the Z disks. Increasingly this
will oppose the contractile force until at this extreme #Boan no longer be generated either.

The region where active muscle force can be generated islyusoadelled as GLY < LM <
1.5L.M. HereL}, the optimal muscle fibre length or resting length, is thegterat which ac-
tive muscle force reaches its maximuaY! = FM. The following function describes the active
generation of force at different muscle lengths:

M1

AN =1 (T

)2 (3.4)

For the rest of this thesis variables decorated with a tilder@rmalised. Here it meand! =
LM/LM andFM — FM/FM. A superscript M will refer to a muscle variable, and a sugeéps T
to the tendon. Plots of the active force-length relatiomsirie shown in figure 3.4. It is usually
assumed that activation levekcales the active force curve, but not the passive.
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Figure 3.4:Active force-length relationship for muscle activationsrfi 0.05 to 1.0 in steps of 0.05. On
the left without, on the right including the effect of calsiudynamics. Notice the change of optimum
muscle length when calcium dynamics are modelled as wetkdsigher stiffness at low activations (for
comparison force curves at activation level 0.25 are mabietthick lines).

3.2.7 Passive force-length relationship

In parallel with the active contractile apparatus, sevelastic elements passively generate force
in a muscle fibre. Connectins, which keep thick and thin filataaligned, the connective colla-
gen tissue surrounding each muscle fibre as well as the fies@ad the muscle as a whole, all
contribute to a springlike restoring force when a muscléretched beyond its slack length while
being inactive. The combined effect is modelled as a lumpedg with non-linear toe region and
linear tail:

(Ko (hme(@'-LE) _ 1) [M < [M < [M

FY (M) =< kom(fM —IV)+FM DM > Y (3.5)

0 otherwise
where[M denotes normalised muscle slack length (at less than witidbroe is generated),”
the normalised length of transition from the linear to the-tinear regime (1.5)EM the offset of
force produced by muscle at transition length (0.66), kuagnote form parameters with values
kmi = 0.4, kme= 6.0 andkpm = 6.5. Figure 3.5 shows how passive elasticity and active feength
characteristics combine additively. It should be noted thany different models exist describing
force production by the passive elastic element. It can bésmodelled, for example, using an
exponential increase without linear tail, or even simm@aguadratic curve. However, since in most
experiments carried out in this thesis the muscles will bekimg mostly in their midrange, rather
than at their extreme lengths, the exact shape should netaaignificant effect on the overall
dynamics. This remains to be confirmed in future work however

3.2.8 Force-velocity relationship

Not only the number of cross bridges formed determines neefdout also the ability of each
individual cross bridge to produce force. The constitutielationships described above assume
an isometric muscle, i.e. a muscle at a fixed length. Natuhalvever, muscles work against loads
and will shorten if the load is less than the contractile éofconcentric work) or lengthen if the



Chapter 3. Muscle dynamics31

natural range lengthening shortening
1.5 2
w Fa+Fp /
— 1 [ N : .
z /
2 : /' Fp
i /V
0.5 i :
- /
. e Fa
5 -
0.5 1 1.5 -1 0 1
Length (L) Velocity (V)

Figure 3.5:The net force-length relationship (thick solid line, léétformed by addition of an exponential-
to-linear elasticity resisting lengthening of the museslagh-dotted) and a hyperbolic function with a max-
imum at resting length describing the active generatioroafd (thin solid). The curve represents the case
of maximum excitation. The force-velocity relationshifmfrt) describes how force production drops with
increasing shortening velocity and increases when agtlealgthening.

load is larger (eccentric work). Now, the faster a musclateims, and the faster the cross bridges
are cycling, the less force it can generate. Eventuallytraotile force reaches zero at a velocity
of VM. Muscles that are actively lengthening, on the other haaud pcoduce more force than those
contracting isometrically. This experimentally obserdeate-velocity relationship affects overall
force output in addition to and independently of the foreegth relationship.

For concentric contractions (shortening) the total eftdateduced cross bridge forces and other
sources of internal friction can be modelled as a viscouspdarm a mechanical system. Math-
ematically, the following hyperbolic relationship, firgirmulated by Hill (1938) with regard to
muscle thermodynamics, describes the relationship betfozee and velocity:

~ F'b—aM

Veone — W (36)

whereF) is the maximum isometric force aralb are parameters for whicl! = bR} /a, and
which usually are fitted to experimental data. Here we modeh@rage muscle witll = 10Lo/s
(Zajac, 1989). The resulting force-velocity curve is shawfigure 3.6. Damping is the result of
force resisting change in velocity. This can be seen in thyatiee slope of the curve, which
leads to decreasing force levels with increasing positelecities (shortening). Also, due to the
non-linearity, the slope itself decreases with faster temimg, indicating that damping decreases
for faster movements. The curve can also be interpreted wirerted, meaning that muscles can
shorten more rapidly against light loads than they do agasvier ones (in other words, heavier
loads will be lifted more slowly than lighter ones).

When eccentrically contracting, i.e. when the load imposedhe muscle exceeds its force and
thus leads to stretch rather then flexion, the muscle carrgienrces greater than its isometric
maximum. The same equation as above can be used with foligearameter substitution:
b 1+d
a:d, b:b=—( i
s'l+a

) (3.7)



Chapter 3. Muscle dynamics32

Heres is the slope of the eccentric curve\dt = 0 and is expressed as a multiple of the slope
of the concentric curve at the same point. It determinesetel lof discontinuity at rest, and is
usually modelled as a factor of two. Parametedetermines the asymptote ljm_,,. Reported
values, fitted to experimental data, range frodhtb 1.8.
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Figure 3.6:Force-velocity relationship. Left: for different level§ muscle activation (0-100% in steps
of 10%) with damping parameteas= b = 0.3. Right: tetanic activation (100%) and damping parameters
a=b € [0,1]. With parameter values increasing, the slopes of the cunuena zero velocity increase too.
Such models will therefore have stronger internal damprnoggrties.

The force-velocity relationship is crucial for the dynanbehaviour of the muscle model. The
steep slope of the curve around the resting state, for exanrgalds to instantaneous rejection of
perturbations and can help stabilise the muscle (the sedcpiefley. Equally desirable is the
model’s inherent property of being only lightly damped dgrfast movements and more strongly
damped at slow speeds. The changing slope of the forceityelnarve determines the extent
of internal damping and hence the time course of muscle activns. In section 3.3.4 | will
compare muscles having different damping characteristitts respect to the kind of trajectories
they produce (also see figure 3.6).

3.2.9 Tendon

Skeletal muscles are not connected to the bone directitedds muscle fibres are arranged at
an angle with respect to the muscle’s line of pull and heldetiogr by connective tissue. This
aponeurosis transmits the collective force of all muscletio the tendon, which in turn connects
to the bone. Both these in-series elastic elements, edgestzen long compared to the muscle,
can store mechanical energy during muscle contractioninBisometric contractions, tension in
the tendon reflects a lengthening of the series element aimeginal shortening of the contractile
element.

For modelling purposes tendon force is often expressedrinstef strain, i.e. the normalised
distance from its slack length. Here, the stress-straimecisrmodelled as an exponential to linear
function (also see figure 3.7):

|E'l T
6T:ﬁT(eT):{ (/1) €T <

N 3.8
kin(e" —&)+R € >g (3.8)
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wheree' is tendon straing” = (LT —LI)/L{, & the strain at the transition from the nonlinear toe
region to the linear regimdy the corresponding forcdg, the slope in the linear regime atkgd

a form parameter. Witlag = 0.04 describing the strain at which the corresponding foraeaksq
the normalized maximum isometric muscle force (F&.= Ifo'\’I ate™ = &), following parameter
values are used; = 0.60%,, i = 0.33 andkji, = 1.712/¢p. It will also be useful to express the
inverted relationship between tendon force and strain:

€

Fletuy 1 FT<f
T(IET):{IOQ( ke - <h (3.9)

(FT—R)/kin+& FT >R

Many experiments in thesis will not actually include theden; partly because it constitutes a
considerable computational cost (see section 3.2.11)parily because it does not always affect
movement dynamics in a significant way. This is because tigthechange in tendon is negligible

compared to the change in muscle length if the tendon iswelatshort, as is the case with elbow

muscles for example (Zajac, 1989).
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Figure 3.7:Tendon force-stress relationship. Tendon force equalsmuar isometric muscle force at 4%
strain, and the transition from non-linear to linear ocaitr.4% strain.

3.2.10 Muscle path

It has been shown in sensitivity studies of similar musclelet®that the path of the muscle, from
its point of origin to the arc around the joint and eventu@ifyinsertion point, is a critical factor

for determining its dynamic response. This is because ttregeermines how the length of the
muscle, and its moment arm with respect to the centre of thg jchange as a function of joint

angle. This in turn influences where on the force-length anckfvelocity curve a muscle resides.
There are different ways of calculating muscle length gitrencurrent kinematic situation. The
simplest is to assume a straight line between origin andtinge In certain conditions, however,

this would lead to a path unrealistically crossing througgg bone structure. A more precise
method takes into account the arc of the muscle path arownpbitht. Here though, in order to

minimise computational cost, we use dimensionless curttesl fio data from an average type of
muscle.

Figure 3.8 shows muscle length and moment arm as functiojsndfangle under four different
assumptions. For better comparison, all curves have beenatieed to the same range. Most
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muscles, although many exceptions exist, are connectdub tekeleton such that they are mainly
using the ascending limb of the force-length curve (Garmer Randy, 2003). According to the
authors, the monoarticufaelbow flexors brachialis and brachioradialis, for instaf@ve a natu-
ral range of approximately 60% to 110% of their resting lengthis is also the range used for all
muscles in this thesis.
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Figure 3.8: Muscle length and moment arm as functions of joint angle.cRIsolid lines: Bullock’s
symmetric model. Thin solid lines: Kistemaker model. Daklirees: Lemay and Crago model.

For the angle to muscle length mapping a linear curve is comapt two functions that were
polynomially fitted to anthropomorphic data (Lemay and ©raf96; Kistemaker et al., 2007a),
as well as an idealised symmetric setup (Bullock and Gragsdi®91). For moment arms, a
linear curve, a fitted polynomial (Lemay and Crago, 1996) amddealised bell-shaped function
(Bullock and Grossberg, 1991) are considered. Also, a anhshtoment arm, as is present in the
triceps elbow extensor for example, is used for comparibiill show in section 3.3.1 how these
different modelling assumptions qualitatively affect thesrall landscape of muscle dynamics.

3.2.11 Simulation

The simultaneous dependence of muscle force on lengtlgityend activation can be visualised
by the surface:

FM = (MM a(1)) (3.10)
= a(mREMNCMEM (M) + RTFN (M) (3.11)

Here velocity and active force exhibit a multiplicativeatbn scaled by muscle activation, while
passive muscle force is unaffected by the activation lefalother way of reading this is to say
that active force, scaled by activation, is used to detegrttie zero intercept of the velocity curve
(i.e. the maximum isometric forces are matched). All vddalhere are dimensionless. As men-
tioned before, muscle lengtt is normalised by its resting lengtt}!, velocity VM by maximum
shortening velocityw' and forceFM by maximum isometric forc&)!. This has the advantage
that many different types of muscles can be modelled simpighmosing different parameter val-
ues for the normalisation, while all constitutive relasbips operate over the same dimensionless
range. The corresponding surface is shown in figure 3.9 ffardnt levels of activation.

1spanning a single joint only
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Figure 3.9:Muscle surfaces. Force is represented as a surface ovén Emdjvelocity for different muscle
activations. Red lines indicate the parts of the surfacerevtiee muscle is at resting length (1.0) or at zero
velocity. It can be seen that higher activation not only &etallarger absolute forces but also to steeper
slopes in both length as well as velocity dependent forchis i turn results in both higher stiffness (slope
of f-1) and stronger damping (slope of f-v).

During natural movements, both the length and velocity ofusete change continuously. As a
result, force output will also be altered even if neurahadton is constant (although this will
rarely be the case, as neural activation is strongly moedlaly spinal neuron circuits). Even
more, the slopes of the surface, i.e. stiffness and dampiitigzhange as well throughout a single
movement. It would thus be reasonable to assume that ratimeplex dynamics would result
from such a system and that it would be difficult to control.ill ehow in the following sections
however, that this is not the case. On the contrary, the me@l muscle properties seem to have
been adapted such that they allow for rather simple formswtirol.

Model integration

Without tendon, a simple integration scheme (figure 3.1G#) lze used to calculate muscle force
according to the model described by equation 3.11. Whendoters included, the scheme is
different, as there is no longer a unique mapping between gwigle and muscle length. Instead,
for any length of the combined musculotendon unit (whichiigjue for every joint angle), the rel-
ative length of the muscle and the tendon depends on thevatisevhich the muscle is currently
contracting. Hence an algorithm as shown in figure 3.10Bésl digr integration.
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Figure 3.10:Musculotendon unit (MTU) flow chart. A) without tendon: joiangles, readily available
in the rigid body physics simulator ODE, are mapped to mulesigths directly. Velocity, the derivative
of muscle lengths, and activation, the input, are used toutate muscle force. B) including tendon: the
length of the tendon can be derived from the inverse of thedeforce-length curve given the current force
output. This can be used to calculate muscle length and gubedy its velocity. The same steps are then
taken to get force output.

Once the force output has been calculated for a given mus@enultiplied by its moment arm
and applied as torque to the joint it spans. The resultinganaif the body, i.e. the articulated
chain of rigid bodies, is then handled by a physics simulativat takes into account the effects
of gravity, inertia, friction and collisions. In the follang time step the new positions of the body
segments are then used again for the integration of the negdeltions as described above.

3.3 Results: Muscle dynamics

A muscle never functions in isolation but always interacithw load. The load can be static, asin
holding a weight against gravity, or dynamic. In the lattase the muscle accelerates or deceler-
ates a load that has inertial and possibly viscoelasticautigs. This is the case for example when
two muscles are arranged antagonistically, each provigiogd to the other. As muscles can only
pull, they usually come in pairs to actuate a joint (usuallhigher numbers though, especially for
joints with more than one degree of freedom). In the elbowirfstance, the triceps straightens the
joint, while the biceps flexes it (as do brachialis and braadialis). In the following experiments
this is the setup used, with all muscle properties being sgmoal (including their insertion into
the bone).

SE
CE

Figure 3.11:Example of an antagonistically arranged pair of muscleghikthesis, muscles are attached
to the skeleton in a symmetrical fashion instead.

20DE - Open Dynamics Engine: http://www.ode.org/
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One way of looking at the behaviour of such a system of couplathmics is to identify its

equilibrium points (EP). These are the states where the foraducing characteristics of the two
muscles (and external loads) intersect so as to cancel ¢dhehaut. As a result, no movement
occurs at an EP: it defines the points at which the system &sat Figure 3.12 shows the force-
length curves of an antagonistic muscle pair at differetivaiion levels. Both are plotted as
producing positive forces although their effect on the skai is of opposite sign. The force-
velocity curve need not be considered for now, as the vglatitthe EP is zero by definition.
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Figure 3.12:Behaviour of an antagonistic muscle setup acting on a hisige jArrangement is symmetric,
joint angles in[—11/2,1/2] and lengths of both muscles vary betweerig.énd 1.1). Co-activation of
the antagonistic muscles changes the slope of both formgHeurves at the EP and increases the overall
stiffness (the difference in force as a function of distafioen the EP increases). A shift in the difference
between activations however, shifts the position of theldsgium.

When neither muscle is activated, the joint acts complgpalgsive in its mid-region and only
lightly resists movement at its extremes (due to passivatieiy). With small and equal activa-
tions however, an EP appears to which the joint will convérge any starting point in its range.
It will resist perturbations away from this EP with a forcatlequals the difference between the
two curves, which in turn is determined by the slopes at th¢sBRded grey). The equilibrium is
therefore stable, i.e. an attractor. Itis easily obserliatidue to the non-linearity of the curves, in-
creasing co-activation of the muscles (simultaneous aredjoél amount) leads to higher stiffness
of the joint. Differential activation of the muscles on thiner hand, does not primarily change
the stiffness of the system, but the position of its equiilitor.

Muscles are often assumed to be primarily spring-dampdeisyss But although they do have
viscoelastic properties, their dynamics can be quite diffefrom simple springs. With respect
to equilibrium points, compare the above model to the lirggaing setup depicted in 3.13. Here
the system consists of two antagonistic springs whosengeltngths can be controlled via input
signals. Although the intersection of their force-lengthves also create an EP whose position
can be controlled, its stiffness is always the same. No miatke the individual resting points are
modulated, the overall stiffness is always determined byiridividual spring constants.

The fact that muscle non-linearities create an equilibrpoint whose position and stiffness can
be modulated centrally, suggests a particular form of cbniith respects to posture, i.e. the
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Figure 3.13:Linear spring model of a muscle actuator. Co-activatian, the shift of resting lengths by
equal amounts but in opposite directions, increases tloe fautput of individual springs, but doesn't affect
their difference. The overall stiffness is thus determigelgly by the individuals spring constants.

maintenance of a body configuration, it offers stability fime. If muscle activations are such as
to produce a given posture, any perturbation will be refeetetomatically. There is no need for
the explicit calculation of forces that need to be produce@dch muscle to oppose a perturba-
tion. Voluntary movement, in such an EP control schemegsponds simply to a shift in posture.
Instead of using an internal model of body dynamics to ifferdorrect forces needed to move the
body segments in a desired fashion, a simple shift of the BRffgcient to induce movement to
the target position. This is why the EP-hypothesis offerslat®n to the posture-movement para-
dox: there is no clash between dedicated autonomous systahikzing a posture and voluntary
movements. Both are aspects of the same system.

For goal-directed movements a mapping between desirecjoifiguration and muscle lengths is
required, but this is considerably simpler than the fororatf an internal dynamics model. Also,
there exists the possibility that segmental reflex conaestdevelop such as to mirror the anatom-
ical organisation of the muscles (Feldman and Levin, 199%)is would mean that no explicit
geometrical representation of the motor apparatus is getedenap” a desired joint configuration
to required muscle length thresholds. Instead, a censplgified joint reference configuration is
distributed to all involved muscles via appropriately angad reflex connections such that their
threshold lengths correspond to the desired joint angle.

It is clear, however, that motor control using only statithation levels, as illustrated above, is
neither biologically plausible nor energetically effideBEMG measurements show that at the end
of most movements muscle activation goes to zero. A lot ofggnerould be wasted if for every
posture all muscles would be constantly contracting. Thighy theA-formulation of the equi-
librium hypothesis proposes that the EP is the result of dmbined effect of muscle properties
and reflex activity, the latter of which resets the setpoaydnd which muscles start contracting.
Another solution would be the creation by the muscles of andeiRduce movement, followed
by a gradual decline of activation once the desired posii@thieved; or a combination of such
an open-loop control-law and reflex activity. But whatevee form of control, the dynamics
of an antagonistic muscle pair will always have a significaffeéect on the movement generated.
The following sections will therefore analyse how the dyiaahlandscape depends on the var-
ious components of the muscle model in open-loop mode. Tkeamapter will then deal with
closed-loop control.
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Figure 3.14:Net torque curve of joint at full isometric activation for L@odel (left). Right: extensor
activation fixed to 0.5 and flexor ranging from O to 1.

3.3.1 Steady-state equilibrium points

The equilibrium points of a single hinge-joint actuated Iy antagonistic muscle pair can be
found where the amounts of torque produced by both musckesqural. Muscle torque in turn
is a function of joint angle: indirectly via the muscle’s ¢erlength relationship and directly via
changing moment arm. Figure 3.14 plots the torque of eacktlmas a function of joint angle
for different static activation levels. Since the muscled ;n opposite direction, their torque
curves are of opposite sign. Also shown is net joint torqusasrgby the sum of the two muscle
torgue curves (thick line). Since the setup is symmetrie,gfuilibrium point, the point at which
net joint torque is zero, can be found in the middle of thetjoamge. The slope at the same
point determines if the point is an attractor or repellor.réi¢he flexor (thin solid line) pulls the
joint towards negative, the extensor (thin dashed linetow positive angles. A positive slope
thus defines an attracting equilibrium point, as is the cadegure 3.14. While the left part of
the picture shows the condition of both muscles being malkmaativated, the right shows the
movement of the EP with extensor activation fixed at 0.5 anebflactivation ranging from 0.0 to
1.0. It can be observed that the slope at the EP, i.e. thegbffiiess, changes with activation as
well.

The same technique of identifying EPs and estimating ssfnfrom the slope of the net torque
curves can be used to fully characterise the steady-sta@vioeir of the system. In figure 3.15
this was used to display EPs and stiffness over all possibkrla activation pairs. Several salient
features of these surfaces are interesting. Firstly, ER$ fex every possible joint angle. Hence
any position of the joint can be maintained in a stable faskiod movement between any two
positions is possible via a shift in muscle activation. $elty each equilibrium position can be
achieved with different combinations of muscle activagiomn fact, the joint position isocurves
(drawn below the surface), that is the curves along whiaft jedsition is constant despite changes
in activation, form straight lines. The isocurve for jointghe 6 = 0 for example is found where
MEeex = MEex;, While all other isocurves correspond to fixed ratios betwfaxor and extensor acti-
vation. From a control perspective this is a desirable fedtecause no complex mapping between
desired joint position and muscle activation is neededs Eamplified by properties found in the
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Figure 3.15:EPs and corresponding stiffness in isometric conditiomastfons of flexor activationMgx;)
and extensor activatioMgex). Muscles have a linear length function and constant moment EPs exist
for each joint angle in the range. Stiffness increases asvgaslasticity comes into play.

stiffness map. Here, red lines indicate joint stiffnesaglthe positional isocurves. These too
form straight lines. Hence a single number, the flexor-esgemctivation ratio, determines joint
position while their absolute values determine joint sgfs. A simple strategy for independent
control of these variables could therefore be implememeastraightforward manner.

Above analysis represents a muscle model in which momersg arenconstant and muscle lengths
change linearly. As mentioned in section 3.2.10 thoughh e&these can be modelled in various
ways. Figure 3.16 summarises the steady-state behaviduebtfe different models. The labels
identify each model, with the first letter referring to the sole length mapping (L = linear, S =
sigmoidal), and the second referring to the moment arm foimg¢C = constant, L = linear, A =
asymmetric bell-shape). Additionally, the two top rowdealiffrom the two bottom rows in that
they do not include calcium dynamics. It was found that theeoiodelling options mentioned in
section 3.2.10 produce results almost identical to the shes/n here. The more realistic muscle
length approximation, for example, was not significantlffedent from linearity, and the bell-
shaped moment arm function is equivalent to a constant mbamamif the muscles are arranged
symmetrically.

From figure 3.16 it is clear that the model is only slightly siémwe to the shape of the muscle
length function. Comparing rows 1 and 2, or 3 and 4, the orffgidince between a linear and a
sigmoidal function is a steeper slope towards the extremegagles. More significant is the effect
of the moment arm. By using the linear or non-linear functiamost all surfaces are changed
such that a wide region in the middle becomes practicallyontrollable. A slight variation in
activation will move the joint towards one of the two extrem®nly the LL and SL models with
calcium dynamics seem to be well behaved (smooth in the aemgion). Calcium dynamics
itself is another major factor in shaping the surfaces. Whdt disrupting the emergence of EPs,
it leads to non-linear EP isocurves. Consequently theseetmald not allow for a trivial mapping
of equilibrium position to a fixed ratio of agonist-antagsiractivation.
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Figure 3.16: Surfaces of equilibrium position over muscle activatioirpaomparing different muscle

length and moment arm functions as well as the effect of saldynamics. The first initial of each label

S for sigmoidaheTsecond letter identifies the moment arm

refers to the length mapping: L for linear

, and A for tlsgrametric bell shape (Lemay and Crago,

1996). The top two rows do not include calcium dynamics, thiédm ones do. For units of axes refer to

previous figure.

L for linear

mapping: C for constant (0.04 cm)
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Figure 3.17:EPs and corresponding stiffness determined from isomatridition. Muscles have a linear
length function, constant moment arm and calcium dynamidste that inclusion of the latter implies
that near maximal force production can be achieved in thiemdaelow activation levels of 50% (compare
figure 3.4), i.e. the flat region in the observed surfaces a/éall outside the range of natural human
movements.

We can explain the differences observed between the vanmgdels by looking more closely
at individual EP surfaces and net torque curves. These angnshn figures 3.17 for a model
with linear muscle length, constant moment arm and calciynaohics. Compared to the model
without calcium dynamics (figure 3.15), the surface of ER®b®es more nonlinear, resulting in
a flat surface beyond activations of approximately 0.5. #hitue to the force-length relationship
saturating at much lower activations (see figure 3.4). Nbedrss, all positions are attainable with
activations below that range. Stiffness also shows a diffiecharacteristic and no longer increases
linearly along the EP isocurves. It is still a controllabkriable, as the same EP can be achieved
with different levels of co-contraction, but in a less simafit fashion.

The position and type of equilibrium points is directly telto the position of peaks in individual
muscle torque curves. In both models with linear muscletteagd constant moment arm these
peaks occurred somewhere between the centre and that exatemhich a muscle is at its longest.
As the curves were monotonic and symmetric, the resultingama torque was close to being
linear. If, however, the muscle torques peak at shorter ladeogths, and the curves become
non-monotonic, the net torque can cross zero several timeedience produce several equilibria.
An example of this is the model with sigmoidal muscle lengill aon-linear moment arm shown
in figure 3.18. Here, the system exhibits three equilibribe Two EPs located at the ends of the
joint range are attractors, while the EP in the centre is all@p This explains why the central
region is uncontrollable. Depending on initial conditipns small random perturbations, the joint
will always be pushed into either of the peripheral attrexctd-rom a control point of view this
is undesirable. In open-loop mode the system can not beatieatr and if feedback control was
used, the gains would have to be so high as to overcome thasgshherent pressure away from
the centre. High gains however can easily cause instabikignselves.
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Figure 3.18:Net torque curve of joint at full isometric activation for SAodel (left). Right: extensor
activation fixed to 0.5 and flexor ranging from O to 1.

It should be emphasised at this point, that the muscle seteg im all experiments here is rather
abstract when compared to real musculoskeletal morpredodi humans for example, four mus-
cles are involved in elbow flexion (biceps, brachialis, biaradialis, pronator teres) and two in
extension (triceps, anconeus). All have different torgongle curves and contribute forces to dif-
ferent degrees depending on the particular movement datie The properties of the antagonist
muscles modelled in this thesis are not supposed to comdsimany of those real muscles in
isolation, but should rather be seen as an abstraction ofvtimbe elbow system. Correspond-
ingly, the dynamics exhibited by the model are assumed todubset only of the dynamics of the
real system. Models that lead to unstable dynamics, for pignare not studied any further in
this thesis, without claiming that natural systems nevéitgxsuch behaviou?. Validation of the
lumped two-muscle model, i.e. assurance of biologicalglality and relevance, is based on both
qualitative and quantitative assessment. A qualitatie¢ufe of movement dynamics considered
crucial, for example, is the ability to independently cohjpint position and stiffness across the
full range of joint angles. Quantitatively the model is ddesed plausible if it reproduces features
observed in natural kinematics, such as bell-shaped elpcifiles.

3.3.2 Co-contraction and stiffness

So far it has become clear that even with static open-loofralsignals, antagonistic muscles can
create a dynamic landscape that allows for the control of jwbsition via equilibrium points. Fur-
thermore, different combinations of muscle activations lead to the same equilibrium position.
How is co-contraction, i.e. the amount of contraction stidng two muscles, related to the stiff-
ness of the joint? Control of stiffness is directly conndotéth the stability of a system, and it is
usually assumed that co-contraction of antagonists isesethe stiffness at the joint. Figure 3.19
plots stiffness, measured as before by the slope of the riptdeangle curve, against the level of
co-contraction. Irrespective of whether the model inctudieexcludes calcium dynamics, stiffness
increases indeed with co-contraction. In the former caskahges linearly, and in the latter case
non-linearly and non-monotonically with a peak at submatimuscle activation. The maximum

Sthey might do in fact, as demonstrated in (Akazawa and Ok2006)
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Figure 3.19: Stiffness along EP isocurves as a function of co-contracti®n the left the LC model
without, and on the right with calcium dynamics is shown. tnhhcases some areas are omitted because of
numerical inaccuracies in estimating stiffness from terqngle slopes.

stiffness observed in the model varies between 18 and 45adindepending on the equilibrium-
angle. This is within the physiological range, reported emd 14 to 126 Nm/rad (Kistemaker
etal., 2007a). The shape of the stiffness curve for the nmindkiding calcium-dynamics matches
that reported in (Kistemaker et al., 2007a) for a model casrpof six individual muscles.

3.3.3 Tendon and EP

In the previous analyses the tendon was omitted from simuakat In the case of the elbow this
can be justified by the fact that the ratio of tendon to musahgth is such that the effect of the
tendon is minimal (Zajac, 1989). Only when the tendon is caratively long does it add enough
series elasticity to store a significant amount of energywekibeless, in order to test the effect
of a short tendon on the dynamic landscape of the antagorsstrs, the previous analysis was
repeated with a tendon present. The musculotendon lengtimedelled as varying between 7 and
14 cm (Pigeon et al., 1996), witl}! = 9cm (Garner and Pandy, 2003), abfl = 3cm= 0.33LY'.
With this setup, the muscle length measured over the samerpoige as above varies between
0.5 and 1.2Y'. This is similar to (Lemay and Crago, 1996) whedewas set such thdtM = 1.2
when activationa = 0 and musculotendon lengttM™ at maximum physiological length. As
figures 3.20 and 3.21 show, inclusion of a tendon does notgehtire main features of the joint’s
equilibrium surface. The main difference, similar to thed®loincluding calcium dynamics, is
that for high activation the EP surface becomes flat. Moshgbaccurs when either activation
is low. Also, an effect of change in the range of muscle leagdin be observed. Now between
0.5 and 1.2, force output drops to zero at the joint extreme for the neutizat is at its shortest
here. Stiffness increases smoothly with co-contractioim #dse models described above, but in a
non-linear fashion. As the inclusion of the tendon increabe complexity of the model, but does
not affect the properties of interest here, the decisionadero not include it in the rest of this
thesis.
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Figure 3.20:EPs and corresponding stiffness determined from isomedmclition. Muscle has a linear
length function, constant moment arm as well as a tendonezienEPs exist for each joint angle in the
range.
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Figure 3.21:Net torque curve of joint at full isometric activation fomgon model (left). Right: extensor
activation fixed to 0.5 and flexor ranging from O to 1.
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3.3.4 Transient dynamics

So far we have only looked at the steady-state behavioueddtagonist system, i.e. the states at
which it comes to rest (EP) and their local properties (sifs). Of equal interest is the system’s
transient behaviour, that is the kinematic features of theah movement as it leads to the EP.

Passive load response

For the same desired movement, the main factor influencingnkatics in the Hill-type muscle
model is the viscosity implemented by the force-velocitationship. Figure 3.22 compares mus-
cle models with and without this viscosity in response toaagrent load of 10 N and changing
co-contraction. Not surprisingly, the effect of the vissalement is the damping of the perturba-
tions. Also, this damping is stronger for increasing cotwaation. The lack of viscosity, on the
other hand, leads to underdamped oscillations around thikbem point. It is worth noting that
the equilibrium point of the musculoskeletal system nowe @lspends on the load. The equilib-
rium hypothesis acknowledges that control signals can imetttly encode the actual EP, but that
the latter emerges from the interaction between an inteonafirtual, EP and external loads.

Viscosity No Viscosity

Joint angle (rad)

Figure 3.22:Response of joint actuated by antagonist muscles to tratrisizds of 10 N. Left: the model
with viscosity term produces damped movements towardsdhéilerium point, now also determined by
the load. Right: without viscosity movements are highly emthmped.

It should be noted that the model described above does nhidm@assive damping or joint
friction. While it has been shown that passive viscosity camtribute significantly to overall joint

dynamics in insects (Zakotnik et al., 2006; Dudek and FW@W0®), its effect in humans is likely

small compared to active muscle viscosity and reflex camiobs'. As Hooper et al. (2009)

suggest, this difference might result from a general sgadifiect. While muscle passive force
varies with muscle cross-sectional area, limb mass varidivmb volume. In large limbs passive
forces are hence dominated by inertia and gravity. Since stadies using Hill-type muscle

models omit passive viscosity terms (compare, for exan(ptéble et al. 1998), the same was
done here. While one could speculate that the addition afiydamping could improve stability

slightly where oscillations occur at the final position of awement, this was not investigate in
this thesis.

4Winters and Stark (1985), for example, report a value of Gr&skad



Chapter 3. Muscle dynamics47

Central control of viscosity

More interesting than the passive properties of the antageystem when responding to a load
is whether joint velocity can be controlled independenttyri position and whether the observed
kinematics bare resemblance with biological data. Inteliyi it would seem that in order to control
the velocity of a movement the control system would have tolutade the time course of mus-
cle activations. In this section however, we will ask if mmant velocity can also be influenced
only by choosing different static open-loop activatiorstHe following experiments, the simplest
model that successfully produced the desired steady-s&dtaviour (linear muscle length, con-
stant moment arm) is used and the kinematics recorded wigl@int produces movements with
an amplitude of 100 degrees. All movements are aimed at the pasition, but activation of the
muscle pair is varied along the EP isocurve. Therefore, dheesEP is reached but with different
amounts of co-contraction. The resulting time course oftjposition and velocity is shown in
figure 3.23. It is easily seen that movements caused by higheontractions tend to be faster
than those with low co-contraction. The absolute value akpeelocity increases and is reached
earlier. Consequently, movement duration decreases wittontraction. This demonstrates that
it is possible to control joint velocity without changingetiposition of the equilibrium. Also, it
can be seen that the damping property changes, as lowemt@ction produces more oscilla-
tion around the equilibrium point. Overall, the velocityofites exhibit a bell shape with slight
asymmetry when approaching the EP. The system seems glayettdamped near zero velocity,
especially for the highest levels of co-contraction. lestingly, such deviations from perfectly
symmetric velocity profiles are indeed observed in humanemmnts (Bullock and Grossberg,
1988).

Parameters shaping the damping characteristic

The factors that determine the kinematics of a movementhasetinfluencing the force-velocity
curve, i.e. the damping parameters shaping the convexitheoturve for shortening, and the
asymptote for lengthening velocities. Figure 3.24 andt88.4 summarise the effect of variation
in those parameters. Movement kinematics are charaalebgghree measurements: i) peak
velocity Vpeak ii) time to peak velocityty,.,; the time between the instant that the joint reaches 5%
of the total distance to be covered, and the instant at wteek pelocity is reached; iii) movement
durationT: the time needed to move the joint from 5% to 95% of the totstiaglice to be covered.

Two important observations can be made. Firstly, the asgtefior muscle lengthening velocities
modulates the asymmetry of the bell shaped velocity profilés is due to a steeper slope of the
force-velocity curve around zero velocity. With a value of And high activations the profile is
very close to a perfect Gaussian, while at lower activattbesasymmetry when approaching rest
becomes more pronounced. With an asymptote of 1.8 howéeeasymmetry is very strong even
at high activations. Secondly, also due to the steeper sibfiee force-velocity curve, damping
is increased with a higher asymptote. As a result, peak igldcops, and movement duration
increases. While the asymptote affects damping in the hemgtg muscle, parametearsb shape
the damping of the shortening muscle. With higher valuestitee becomes more linear. Con-
sequently, the slope of the force-velocity curve is redumed less damping is observed. Higher
values fora, b thus lead to faster movements. But although the resultingement kinematics can
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Figure 3.23:Movement kinematics for different muscle activations flead to the same EP. Darker plots
correspond to higher co-contraction and stiffness. Withdasing stiffness, peak velocity increases, occurs
earlier and movement duration is shorter. The lower thet'fostiffness, the less damped the movements.
Damping parameters ara:= b = 1.0, and asymptote’ = 1.4.

be tuned using these parameters, they do not correspondonmliman data. Kistemaker et al.
(2006) reports mean peak velocities of 975 degree/s, tinpead velocity of 0.077 s and move-
ment duration of 0.118 s for movements over 100 degrees.rigléae movements produced in
simulation with open-loop control only are too slow when gared to human data. In chapter
4 other forms of control are explored that have the potetigroduce more realistic kinematic
data.
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Figure 3.24:Movement kinematics for different damping parametessb € {0.2,0.4,0.6,0.8,1.0}. The
top row uses an asymptote for muscle lengthening velocity.4f the bottom row uses a value of 1.8.
Damping increases with larger asymptote and decreases$angir values o, b.

ahbh  T(s) ty,.(S) Vpeaddeg's) asymptote

0.2 1.135 0.035 310.51
04 0.670 0.060 425.57
0.6 0.480 0.060 491.13 14
0.8 0.370 0.060 532.26
10 0.290 0.065 561.92

0.2 1.325 0.025 248.88
04 0.815 0.040 356.55
0.6 0.610 0.050 420.39 18
0.8 0.495 0.050 461.87
10 0.430 0.060 491.81

human 0.118 0.077 975 human

Table 3.1: Kinematic features of joint movements over 10ffeles for different Hill-type damping
parameters.
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3.4 Results: Open-loop control

Before moving on to feedback control in the framework of theHypothesis, the following sec-
tions demonstrate the usefulness of non-linear musclespiiep in an open-loop control scheme.

3.4.1 Pulse-step muscle activation

The damping characteristics of muscles have interestimgempences for the optimisation of
control signals. To illustrate this point, we implementedimple control strategy that activates
each of two antagonistic muscles using rectangular pulsamplitudesa; » and durationsly o,
with a parametet, specifying the onset latency of antagonist activation {gpee 3.25). Pulse
control has been used in several studies to reproduce gaypes of human movements (Barto,
1999; Barto et al., 1999; Karniel and Inbar, 1999).

agonist antagonist

d;
<> <>

an

activation

Figure 3.25:Parameters used to describe open loop pulse activatiorlitadgsa; », durationsd; », and
antagonist latenctp.

The relatively small number of control variables allowsdorexhaustive evaluation of all possible
control strategies against an optimality criterionfitmess function The resulting search space,
hereafter referred to digness landscap&an then be analysed in terms of features like ruggedness
or linearity of the regions of best performance. Also, anl@imnary algorithm can be used to
identify the globally optimal control strategy in this fisgelandscape. The particular evolutionary
search algorithm used in this thesis is described in theviatig section.

3.4.2 Evolutionary algorithm

A simple, spatially distributed genetic algorithm (GA) wased to evolve the parameters of mus-
cles, reflex models and other control mechanisms, such gsulke-step commands in the fol-
lowing experiments. The algorithm is simple. From a giveighleourhood in a two dimensional
array of real-valued genomes, three are randomly chosereakdd in a tournament according to
their fithess. The two best ones create an “offspring” thhotegombination and mutation. This
new genome then replaces the loser of the tournament witblkzapility for elitism. At maxi-
mum elitism the loser is replaced only if the fitness of the rdéfspring exceeds its own. With
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decreasing elitism the probability of the losing genomedadplaced irrespective of its fithess in-
creases. Recombination is realised with a two-point crassaperator, and mutation as a random
Gaussian vector displacement of the real-valued genometh, Bhe probability of mutation for
an individual gene, as well as the maximum displacemengpa@meters of the GA. Components
subject to mutation are clipped to values within the intefal].

An incremental approach to evolution is used in some exparim Firstly, muscles and control
systems were sometimes evolved to produce solutions tdes sdrincreasingly complex evalua-
tion tasks. For example, the task might initially require pgroduction of movements of only one
amplitude and speed. Once this is achieved, the task is #j@mded to include several different
amplitude and speed conditions. Equally, a system can liigpt for single-joint movements
first, and then evolved further for multijoint movementsc&uadly, some evolutionary parameters
(mutation probability and amplitude) were automaticalcbased over the course of an evolu-
tionary run to allow for the population to converge on androjste the best solution it had found
so far. The parameters of the genetic algorithm and thegesiare listed in the appendix 3.6.

3.4.3 Flexibility

Figure 3.26 shows a fitness landscape in which the perforeneniterion consisted of reaching for
and stopping at a target position of 45 degree flexion at aiyt ploiring a 2 s trial. In order to
show the whole search space, we somewhat arbitrarily fixe@hplitudesa; » to values of 0.2,
after initial experiments showed that such a setup stilvides for a range of successful control
strategies.
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Figure 3.26:Left: isosurface of fithess landscape at fitness levels of @f#itk) and 80% (bright). Point
A shows the overall peak of the surface. B corresponds to &memut that maximizes velocity, while C
minimizes energy. Right: slices through the peak of the siétmess landscape.

Several interesting observations can be made from thisafageonstrained goal-directed move-
ment. Firstly, the region of good performance spans a cerdide range in each of the three
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Figure 3.27:Slices through peaks of fitness landscapes for maximisitagitg while minimising over-
shoot. The top row includes viscosity, the bottom row dods Horizontal and vertical axes both measure
time in the interval 0-50 ms. Asymmetries, as observed in2hgice for example, are artefacts of the
experimental setup and physics engine. For strong actielesahe joint was able to bounce off one of
its limits and preserve enough energy to still reach theeta@fter already having passed it once). Since
the fitness function did not punish such behaviour, thes&alostrategies show up as local maxima in the
fithess landscape.

remaining dimensions. One can pick almost any value for dribeoparameters and will find a
combination for the other two that produces a good strateggther words, there is a continuum
of valid strategies all of which will move the joint towardsetdesired position, but each having
different kinetic or kinematic properties. Movements wdiffer in terms of velocity, stiffness or
energy required. For example, the point marked B corresptmdhe fastest movement in this
space, while point C marks the one using least energy (medsisrthe integral over muscle acti-
vation). Thus, compared to the stereotypical behavioufoofexample, a PD controller, by using
this model one gains flexibility with respect to the detail@enovement, while introducing only
few additional parameters to be chosen (by either a coatroll a more constrained optimisation
procedure). Secondly, although the model is highly noedmin all its properties, good perfor-
mance within the fithess landscape is found along near liregaons. This simple relationship
between parameters would make it easy to create a conttbieican find and move along the
range of all optimal strategies.

3.4.4 Robustness

In terms of control signal optimisation, the viscous praopaf the Hill-type muscle model also
shows as increased robustness to noise or increased “abditgh of the fithess landscape, a
property of interest for evolutionary robotics for instand-igure 3.27 compares the fitness land-
scapes of the muscle model with and without the viscosity fer an optimisation that maximises
velocity while minimising overshoot. The slices shown wereduced by finding for each model
the global peak in 5-dimensional parameter spage, (1 »,t2) and subsequently fixing two of the
parameters (amplitudes ») to the values found at the optimum. The resulting slicesefloee
show the fitness landscape around the optimum in the rengainiee dimensions.
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Figure 3.28: Trajectory resulting from typical control signals evolvedminimise energy. Top: input
pulses and resulting muscle activations (filled areas).tddat joint position. In the highlighted range,
muscles are inactive and the joint swings passively.

As can easily be seen, without viscosity the regions of ganeds are much narrower. For the
optimisation procedure this means increased difficultyrafifig the global optimum. It can also
be interpreted as robustness to noise in the control signtie viscous model a slight perturbation
away from the optimum will still produce relatively good uits, while in the non-viscous case
performance is easily lost completely. Intuitively thiseiasy to understand. In the non-viscous
case, the antagonist activation has to be precisely timédealed such that at the target position
forces cancel out exactly and the joint comes to a halt. Anyaiaing forces not counteracted
completely by the antagonist will move the joint away frone tlarget. In the viscous model
however, because of its damping effect, small remaininggwill fade quickly and the joint will
come to a stop near the target position.

3.4.5 Efficiency

Motorised actuators have to be powered throughout a movierasen compliant actuators will

have to make motors move to simulate a zero force trajedterya purely passive swing. Muscles,
however, allow for more efficient movement through bi- ophiasic pulse patterns. Minimal

muscle activations are sufficient to accelerate and dexteléne joint towards a desired position.
This is possible, however, only because antagonistic ragsbn’t work like springs. That is,

in their passive state they don’t have to work against ealbristresistance. Figure 3.28 is an
example of control signals optimised for minimal energy. uSkearly, throughout a large part of
the movement neither muscle produces any force and theigopassively swinging towards its
desired position.

3.4.6 Multijoint movements

The movements and open-loop control signals presentedr swdeclearly oversimplified when
compared to natural movements involving many interactiiigt$. It is striking though, that sim-
ple pulse activations, appropriately scaled and timedwafbr well-behaved movement trajec-
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tories when combined with non-linear muscle propertiesortier to investigate if the increased
robustness and flexibility also translates to more comptexarios, we used the same approach
of control signal optimisation to generate motions of twimi® (elbow and shoulder). We also
enabled gravity and included a static activation level end¢bntrol signals that could compensate
for its effect. Figure 3.29 presents optimised trajectitetwo different conditions. The elbow
joint is always required to produce a flexion of 45 degreeswéi@r, in scenario 1 the shoulder
moves in the opposite direction, while in scenario 2 it manebe same direction.

elbow shoulder elbow shoulder

0.4

c
o
= I
= 0
©

-0.2

0.2 —

— e M =

g 0 {\‘“ :’ Toemeens ‘\\ ______ \\"\\ _— ; ,'I S

-0.2
_ %
g 81\ 3 RI \ 3
- 8 & g ®
Q T " - - -
o

0 50 100 0 50 100 0 50 100 0 50 100

time time time time

Figure 3.29:Shoulder and elbow trajectories optimised for maximisialpeity while minimising energy.
The first two columns correspond to scenario 1 (synergjstie)last two columns to scenario 2. Top: pulse-
step commands and muscle activations. Middle: muscle $of®alid) and net force (dashed). Bottom:
position and velocity.

Both cases were easily evolved and produced trajectoriesaviinal positions corresponded to the
desired targets. The figure shows that in the first case theiteprofiles resemble smooth bell-
shapes, while they are more jerky in the second case. Therréasthis effect are the interaction
torques arising from the mechanical coupling of the twotgirin the first scenario movement of
the shoulder creates interaction torques in the elbow tledsgnergistic’, i.e. support the intended
movement, while in the second case the torques counteraenment in the desired direction. Itis
thus clear that the simple scheme of open-loop control eyegldere is insufficient for multijoint
movements. In fact, it is one of the big open questions in mobtmtrol whether the (human)
central nervous system uses an internal model of the bodsl¢alate control signals that account
for its dynamics, or if a well-designed neuro-musculostatlsystem itself could perform the
necessary ‘morphological computations’. Chapter 4 witld@at equilibrium-point control in the
form of theA-hypothesis to evaluate whether the latter is possiblearctise of both single- and
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multijoint movements.

3.5 Discussion

In this chapter it was demonstrated that a musculoskeletale controlled in open-loop mode
with static input signals, produces a dynamical landscapéhich an equilibrium of joint position
emerges. The stable equilibrium point can be shifted adlessange of the joint through differ-
ential muscle activation, and its stiffness can be moddlatevarying the level of co-activation.
It was further shown that the same type of inputs allow fortidrof the damping properties of
the system. Changes in the viscosity affect the systemislistawhen responding to external
perturbation as well as the velocity of movement towardsetipglibrium. Thus co-activation of
antagonistic muscles simultaneously leads to an increfasiffaess and to faster movements, a
strategy also found to be used by humans (Gribble et al.,)2003

The muscle model implemented in this chapter consisted ofsgammetrically arranged antago-
nistic muscles acting on a one degree-of-freedom hinge. jaithough this setup is simpler than
the configuration of muscles in a real elbow joint, the résgltlynamics can be considered a sub-
set of the behaviours a more realistic model could produitepiBications, such as the exclusion
of a tendon element, calcium-dynamics, and non-linear nmbarens, were justified by comparing
the dynamics of the resulting systems to those of the comphetdel. In going beyond previous
work in the field, it was shown that the qualitative featuresatibed above are not dependent on
the presence of these components. However, various maijus between motor command and
steady-state behaviour were demonstrated to be non-kvigam they are included. In the simpler
model, EP isocurves and stiffness along those isocurvedinaarly. This could be exploited by
a simple control scheme in which a single number, the flextersor activation ratio, determines
joint position, while their absolute values determine jaitiffness. The question then arises as to
how position and stiffness are controlled when these mlatiips are non-linear, as is likely the
case in more complex, asymmetrical multi-muscle systerhs.tfaditional explanation would be
that the brain learns to represent these non-linearitiegyusternal models, which can then be
used to adapt the motor commands appropriately. Anothedilplity is that spinal reflexes are
organised such that these relationships are effectivealised from the perspective of higher
levels of the control system. Schemes for using reflex cdiorecto ensure independent control
of position and stiffness in the presence of muscle asyniesetr changing moment arms have
been demonstrated in the past (Feldman, 1993; Bullock andsBerg, 1991).

Quialitatively, the results of this chapter confirm findings diher researchers for both natural
human movements (see e.g. Gribble et al., 2003) and simdutaiscle models. Kistemaker et al.
(2007a), for example, studied open-loop control using &tifile muscle model that differs from
the one studied here in details of the implementation of dmsttutive relationships, and includes
the simulation of not only mono- but also bi-articulate elbmuscles. Also, parameters describing
the lumped muscle models in that study were chosen with the@&imatching the combined effect
of specific human muscles. Despite this difference, thaulte regarding the existence of stable
equilibria and the relationship between co-activation stifthess are very similar. Only the shape
of the net-torques and EP maps differs between the moddis)dbuheir range. Stable control
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of joint position through statically co-activated oppasimuscles was also shown analytically
in (Giesl and Wagner, 2007). Here, the authors used a Hil-tywodel that is of comparable
complexity to the one presented in this chapter, but modifiede twice differentiable. They
determined the basin of attraction of stable equilibriadgimtj space and found large ranges of
self-stabilisation. The experiments conducted in thigptdraextend the aforementioned studies
by identifying model components that are not required toegate the qualitative behaviour, and
by showing how steady-state behaviour varies with changesdment arm and muscle length
functions.

Comparing the simulations in this chapter to the range ofatsofdund in the wider field of biolog-
ical motor control, they are at the same time more complex thamped muscle models and less
complex than those aiming for higher levels of biologicatwacy. For example, Contreras-Vidal
et al. (1997) have studied independent control of joint gsiand stiffness using a muscle sim-
ulation that only incorporates a quadratic force-lengthati@nship and joint friction, but neither
passive (parallel or serial) elasticity, nor Hill's equattifor velocity-dependent force production.
An equally simple model was used by Barto et al. (1999) toyspredictive motor control based
on delayed sensory feedback. Here the authors simulatediesuss spring-like actuators with
non-linear damping in the form of a fractional power law, @hhiwas intended to approximate
the combination of non-linear muscle properties and spiefédx mechanisms. On the other ex-
treme one finds high-fidelity studies such as the one predém{&arner and Pandy, 2001). Here,
three-dimensional reconstructions of muscles and bones eéeived from Computed Tomogra-
phy images and cadaver data to model the complete human liperincluding seven bones,
thirteen degrees of freedom and 42 muscle bundles. Alsdyinforce measurements were used
to estimate the parameters of a full Hill-type model for eauscle group simulated. The goal of
this study was anthropometric fidelity itself, that is, totolehuman data as accurately as possible.
Studying movement control at an intermediate level of dedgichosen in this thesis, can be ben-
eficial because it ensures that observed features are meitbe¢o oversimplification, nor specific
to human anatomy and physiology.

While qualitative features like the range of stiffness aalitshaped velocity profiles were success-
fully reproduced in this chapter, this is not true for thedamatic details of movement transients.
This should not come as a surprise, as it is known that natnoaements are not the result of
static muscle activations. Motor neurons are always maedlby spinal reflex circuits and are
usually silent at the end of a movement. EMG recordings atmavghat antagonistic muscles
show triphasic burst patterns, whereby a joint is accaddradecelerated and stabilised by three
consecutive transient activations. The next chapter wélefore explore whether muscles and
simple reflex dynamics can interact to produce more realsbtion.

An interesting finding in this chapter was the sensitivityraisculoskeletal dynamics to assump-
tions about the moment arm of the muscles modelled. It wasddat for certain functions relat-
ing moment arm to joint angle the system would exhibit urlstdlgnamics. Such models were not
further considered here or in the following chapters. Haveivis an interesting question whether
evolution has shaped the attachment of muscles to the skedath that only stable equilibria will
ever emerge. There is some evidence that this is not the A&xsggwa and Okuno, 2006). An
interesting avenue to be explored in future work are theicapbns of unstable dynamics at the
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muscle level for control systems at a higher level.

On the conceptual side, the emergence of a controllabldileguin point is relevant for hypothe-
ses about the mechanisms of coordination in complex sydtienthie human body. If posture and
movement are seen as the result of joint level EPs and thinghtiiereof, then contrarises from
the dynamic organisation of the system rather then beirfgrced uporit. One could say that
through musculoskeletal dynamics a new level of descripamd control) comes into existence
in the domain of motor behaviour. There is no special medmardt work, such as a feedback
controller, and no representation of goal states. But wdnilehe level of muscles one can only
talk about individual muscle forces, in the combined systeovement can be described by shifts
in equilibrium position. In effect, a new controllable \atvle is created that reduces the degrees
of freedoms to be considered during coordinated motionhfsdase from two force variables to
one positional variable). This is what Bernstein refereddsynergieor coordinative structures
Kelso explains:

“During a movement, the internal degrees of freedom of tliesetional groupings
are not controlled directly but are constrained to relatergnthemselves in a rela-
tively fixed and autonomous manner. The functional grouplmoontrolled as if it
had many fewer degrees of freedom than comprise its paus réaucing the number
of control decisions required” (Kelso and Tuller 1984, p582

Central commands, in this view,

“serve an organising function by biasing lower-level sgsdg¢oward producing a class
of actions, but the lower level system can adjust autonoiydassarying contextual
conditions” (Kelso and Tuller 1984, p. 330).

Thus, rather than controlling low-level actions directigntral influences are thought to set up and
modulate a dynamic organisation, the result of which is th®r@omous evolution over time of
the system’s behaviour. This synergy is functional, i.enadyically created for a given task at
hand, rather than fixed once and for all. Only when co-a@tlafor example, does the antago-
nist system create an EP. Without co-activation the sysgelmose and could be controlled with
individual pulse signals, as was demonstrated in this enagthe tuning of synergies provides
flexibility in the execution of an action with minimal amouwtt additional control. The increase
of co-activation, for example, changes the system'’s behaaround the EP such that perturba-
tions are more efficiently rejected, without explicitly callating the correct response to a given
perturbation. Finally, equifinality, the property of a ystto reach the same position with vary-
ing trajectories from different initial conditions, is thesult of the lower-level musculoskeletal
system having formed an attractor. In this way it providagetitory “planning” for free, without
burdening a central controller with this problem.

In summary, this chapter has demonstrated that many giwaifeatures of the steady-state be-
haviour of single-joint movements can be reproduced withrdamal muscle model that incorpo-
rates the most fundamental non-linear characteristiceroefproduction. As the model exhibits
the desired equilibrium behaviour as well as a sufficientlle? biological plausibility (correctly
reproducing, for example, levels of joint stiffness as acfiom of co-contraction), it is considered
appropriate for studying the assumptions and implicatadriee EP hypothesis in the next chapter.
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3.6 Appendix: Genetic Algorithm parameters

The following table summarises the parameters of the dlyatiistributed genetic algorithm and
their ranges. For an overview of the algorithm see sectiér23.

min regular max

number of generations 100 1000 2500
population size 25 100 225

mutation rate 0.1 0.5 1.0
mutation amplitude 0.001 0.1 0.25
recombination rate 0 0.05 0.1
elitism probability 0 0.5 1

Table 3.2: Parameters of the genetic algorithm and their ranges. Wheréerm “rate” is used, this is
equivalent to a probability, i.e. a value in the range [0, 1].

As a rule of thumb, experiments with a larger number of gea#lyi encoded values used larger
populations and were evolved for longer. Also, optimigatiocurred in three stages: a short initial
exploration with maximum mutation rate and amplitude (In@ 8.25 respectively), followed by

a long period with “regular” mutation rate and amplitudes(@nd 0.1), and finally a short period
during which the GA was allowed to converge to the peak of e bolution it had found so far

(0.1 and 0.001). The initial exploration and final convegephases typically lasted for 10% of
the maximum number of generations. Where an experimenttgifrom the above values, this

will be stated in the corresponding section.



Chapter 4

Feedback control

This chapter analyses the dynamics of the muscle modelam@lin the previous chapter when
coupled to a model of the stretch reflex based onMtfermulation of the EP hypothesis. In

particular, it is studied whether such an EP model can rem®the kinematics of natural (human)
arm movements under varying speed and amplitude conditi@ves specifically investigate the

ability of the coupled system to deal with feedback delagsprioduce triphasic muscle burst
patterns despite simple monotonic inputs, and to produc®gmmultijoint movements. Also, the

relative importance of various feedback modalities is eraoh

4.1 Introduction

It is clear that if muscles were pure force generators, cerpluscle activations would be needed
to create the torques that propel a limb to a desired posithmy central command aiming to
specify these torques directly would have to take into astthe dynamic properties of the various
muscles involved in the movement, the dynamics of the pdatsator neurons innervating those
muscles, as well as the inertial properties of the limb angeaternal forces acting on it (the
latter of which depend on the orientation of the limb in spdaoecomplicate the matter further).
It has long been recognised though, that the viscoelastipepties of muscles and reflexes can
serve so as to allow for a different mode of operation, in Whimuscle dynamics are exploited to
simplify the inverse dynamics problem (Feldman, 1966; Mistand Houk, 1976). As shown in
the previous chapter, muscle stiffness and length-deperdereate an equilibrium position (EP)
at the point where the forces of antagonist muscles cancel @aer out. This property has lead
to the formulation of the equilibrium-point hypothesis, ietnin its simplest form implies that the
central nervous system (CNS) can encode posture, i.e. gagies, in a single ratio of agonist
to antagonist activation. Several types of equilibriuninp@ontrollers have been suggested as
models for movement production that exploit the visco@gstoperties of muscles.
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4.1.1 Servo-hypothesis

Based on the neurophysiology of the tonic stretch reflex figeee 4.1), Merton (1953) proposed
one of the first motor control hypotheses. He suggested ligaCNS uses thg-system to im-
plement a servo-mechanism controlling muscle length. ¢nskrvo scheme, descending signals
were thought to modulate the activity pheurons that innervate stretch sensitive muscle spindles
Spindles are proprioceptors which convey sensory infdonatbout muscle length and velocity
by firing at a rate proportional to the stretch of the intrafuauscle fibre that their sensory endings
spiral around. This muscle stretch proportional feedbadkén transmitted via la-interneurons
to the a-motorneurons of the receptor bearing muscle. Activityoefieurons in turn leads to
contraction of muscle fibres, which generate force and Hyeoeunteract the stretch that origi-
nally activated the spindles. The closed loop of the tomietsh reflex therefore acts as a negative
feedback system that minimises muscle stretch. Now, treeabthey-neurons is to modify the
sensitivity of the muscle spindle, i.e. to increase the pbility of action potential firingy-neuron
activity therefore has an effect similar to actual strettthe muscle. Merton suggested that cen-
tral modification of spindle sensitivity vigheurons acts to effectively set a resting length towards
which the tonic stretch reflex will drive the muscle. CrulsiaMerton assumed this system to
work as a perfect servo in whidmy external load would be balanced by an increase in muscle
force, such that muscle length would not change at all. Adtfoattractive for its simplicity, the
theory had to be abandoned after experiments failed to suppo of its assumptions. Initially,

it predicted thaty-activity should precede that af-neurons. It was shown however by Vallbo
(1971) that both are activated simultaneously. As a reanlextension of the model was proposed
in which co-activation of both pathways meant that movemens initiated via direct control of
a-neuron activity, while the responsibility of theneuron was to keep spindles from becoming
slack, i.e. to maintain sensitivity while the muscle coatea, and to counteract perturbations (this
version is also known as servo-assist). Neverthelessder do perfectly reject external loads, the
model relied on a very high feedback gain of the stretch reflewas shown however that this
was not the case (Matthews, 1970; Vallbo, 1970).

Descending commands

muscle fibre
< U N\ N\ N

muscle spindle

Figure 4.1:The tonic stretch reflex. Shown are themotoneuron that activates the muscle fibre, the
motoneuron modifying spindle sensitivity, and la affesar@sponding to muscle stretch well as its rate of
change.
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4.1.2 a-model

Based on the observation that deafferented monkeys ddpoivengoing visual feedback could
still produce goal-directed arm and head movements, eviireipresence of initial perturbations,
the hypothesis dfinal position controlsuggested that the CNS specifies directly and exclusively
the final position of a movement, while the details of theettsgry are the result of the inherent
dynamics of the muscles and limb (Polit and Bizzi, 1979). &specifically, given that the move-
ments were carried out without peripheral feedback, i.ethénabsence of a functioning stretch
reflex, it was suggested that the final position was define@tiyng the spring constants of antago-
nist muscles via direct control of-motoneurons. Further experiments (Bizzi et al., 1984¢aéad
that the shift in equilibrium position was not in fact instameous. Instead, the CNS was found
to specify a continuousirtual equilibrium trajectory such that interrupted movements would be
driven towards intermediate positions. According to tiiformulation of the EP hypothesia
central planner directly controls reciprocal and co-atton ofa-motoneurons, the final common
pathway, in order to specify an EP along with a stiffness altioat position. Even though the
a-formulation of the EP hypothesis avoids some of the psffdced by the servo-theory, it is not
completely satisfactory either. Although monkeys and husraae able to produce pointing move-
ments without proprioceptive feedback, motor performaaaggnificantly degraded, with trajec-
tories becoming much more erratic than in normal subjectso,Asubjects were highly trained
to operate under the deafferented condition, and even thignlarge amplitude movements of
moderate speed and low accuracy were considered. It iSthereear that reflexes should play
an important role in any model of motor control.

4.1.3 A-model

While thea-model emphasises the mechanical properties of musclesablishing an equilibrium
position, the\-model recognises the importance of reflex contributiotis. dased on observations
by Matthews (1959) and Feldman (1966), which showed thateal figvel of descending input
to the spinal cord is associated not with a a correspondivg tf muscle activation, length or
force, but rather with an invariant force-length relatioips(IC), i.e. a continuous, load-dependent
curve of stable equilibria. Different descending signalscording to these findings, establish
a threshold length at which muscle activity is initiated. tthe supra-threshold range of muscle
lengths, activation increases non-linearly with the défece between threshold and actual length.
In contrast to ther-model, this non-linear relationship is not attributedetpto muscles however,
but to the combination of muscles and the tonic stretch reflex

The physiological basis for threshold control is illustichin figure 4.2. Eacti-MN receives both
descending inputs as well as afferent feedback related szlmlength (also see figure 4.1), and is
recruited when its membrane potential exceeds its elatthiceshold. When a muscle is stretched,
the resulting afferent influence will lead to an increase enthrane potential until the muscle
reaches a length at which the threshold is exceeded and tio@ewuvons starts firing. The resulting
activation produces muscle shortening and thus tends te iholoser to the threshold length. If
central facilitatory input is added, either directly ordbgh interneurons and thyepathway, that
threshold will be reached at a shorter muscle length. Thrdhig integration with muscle-length
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dependent feedback at the membrane, descending signadfotieebecome spatial variables; they
specify a change in muscle threshold lenjtht is important to stress the difference between the
a- andA-model here: while the former suggests that central canttbhnge motoneurooutput
activity, the latter suggests the modulation of motonewexcitability.

Potential Force
A

isometric

Load isotonic
- o> o
A N Length Ao A4 Length

Figure 4.2:Left: neurophysiological basis of changes in thresholgjieir. Central input to thex-MN
means that its potentid reaches its threshoM* not at muscle lengths*, but at the shorter length.
Right: changes i\ shift the invariant characteristic (IC). At the same loadelethe system reaches a
different equilibrium (ER; instead of ER). If muscle length is held constant (isometric conditicing
system reaches EPinstead.

The effect of threshold control on the steady-state of theatedreflex system is illustrated in
4.2. The system is in equilibrium when muscle force equatereal load. Any temporary per-
turbation (stretch) of muscle length will be rejected by teiex and muscle properties that are
responsible for instantiating the IC curve. If the extedoald changes while the threshold length
remains constant, both muscle force and length will setila different equilibrium point along
the IC, producing involuntary movements as a result. Va@gnmovements on the other hand
are produced by a shift in the threshold length required itit éhe stretch reflex. After such a
shift, the previous EP is now a deviation from the newly dghbd EP, and the same mechanism
responsible for stabilizing posture will move the muscle@aods a new position.

In the case of multiple muscles, tihemodel proposes a central command that consists of two
components: a reciprocal paRthat shifts the reflex threshold of antagonistic muscleshan t
same direction (in joint space) to control EP position; armb-aontraction par€ that shifts the
thresholds in opposite directions so as to increase or dserstiffness at the EP. It is important
to note that these two commands do not uniquely specify ek giosition and stiffness (Feldman
and Latash, 2005). Both can be modulated further by norradgnspecified components of the
stretch reflex. Also, a shift of threshold length can implytba change in position as well as a
change in force output, if external loads are taken into aet(e.g. isometric contraction).

The EP-hypothesis proposes that smooth movements aregaedbrough simple monotonic
(usually ramp-shaped) shifts of threshold lengths. Thignie aspect of the model’s attractive-
ness when compared to direct force control. The complexutoqatterns needed for certain
movements are thought to be the result of inherent muscleeftex dynamics and need not be
taken into account in the control of movements. If the resiiEP shifts were of complex shape,
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not much was gained over alternative hypotheses which dlzédtnthe brain uses internal models
of the body to control muscle forces directly. Several stadiave attempted to refute the EP-
hypothesis based on reconstructions of the equilibriujedtary from experimental data (Latash
and Gottlieb, 1991; Gomi and Kawato, 1996; Bellomo and Inb887) or from considerations of

optimal control strategies (Hogan, 1984). While some stwmdoncluded that complex N-shaped
equilibrium shifts are necessary to account for empinjcabbserved patterns of multijoint move-

ment, their results are questionable as they used ovetiadpnusculoskeletal models. In fact,

when non-linear muscle behaviour is taken into accountpleimamp-shaped control signals are
sufficient to produce fast and smooth movements in line witipigcal measures (Gribble et al.,

1998). As muscle non-linearities can contribute signifilyat®o movement dynamics (Brown and

Loeb, 2000; van Soest and Bobbert, 1993) other studies sgimgjified linear models (Popescu

et al., 2003) can equally be disregarded as criticism of fdffpothesis.

Several clarifications and extensions of Mimodel have been proposed over the years to account
for a range of experimentally observed movement dynamiks.fdrmulation by Feldman (1986),
for example, includes velocity feedback to improve damgimghe system. A co-contraction
command was added to allow for control of stiffness, whidoaffects movement speed (Gribble
et al., 1998). In order to explain the fastest arm movement®locity reference signal was pro-
posed (de Lussanet et al., 2002; Mcintyre and Bizzi, 1998 shat the error between a desired
velocity input and actual velocity was added to the thresbffset (similar to the proportional term
in a PID controller). Kistemaker et al. (2006, 2007b) havevah that a detailed muscle model
(including non-linearities and a tendon component) in aongjion with the mentioned extensions
to theA-model (as well as use of intermittent feedback), is ablertalpce fast goal-directed arm
movements with stiffness in the range of experimentallyeolesd measures. In this chapter we
compare Kistemaker's model to increasingly simple abstnas, in order to find the minimal set
of features necessary to reproduce fast movements. Tleeadiffmodels are evaluated along three
dimensions: the exploitation of inherent dynamics in fesmtbcontrol; the simplicity of control
signals required; and their biological plausibility.

4.2 Methods

In order to compare different muscle-reflex models with expental data, reference trajectories
are created that match kinematic markers extracted fromahutiata (Kistemaker et al., 2006),
such as duration of movement or peak velocity. The assumpised to decide on the form of
the reference trajectory is that movements should be smaatrexhibit the classic bell-shaped
velocity profile observed in human movements (see chapte€@psequently, theninimum jerk
criterion (described below), a well established conceptptimal control theory, is employed as a
reference for the optimisation of muscle model parametedsf@edback gains. The optimisation
proceeds as follows: first, a desired movement of given dotdiand duration is chosen and a
corresponding minimum jerk trajectory generated. A museflex model is then evolved using a
simple GA (see section 3.4.2), in which the difference betwainimum jerk and actual trajectory
serves as the fitness criterion. To test whether simple @iasignals are sufficient to match human
data, a simple linear ramp is used to input the desired joigtess. The minimum jerk trajectory
is used only as the desired output, not as input to a controflegiven model is evaluated on a
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series of different movements to avoid overfitting and ifdiral performances are combined into
an overall fitness.

4.2.1 Minimum jerk

In (Hogan, 1984) dynamic optimisation was used to find theting an EP-controller that would
produce the smoothest motion from an initial to a final efilim position. Smoothneds of a
trajectoryx(t) was defined by integrating the rate of change of accelerdj@hk) of the motion
over the desired duratioh:

H(x(t)) = % /t_To 2t 4.1)

The function which corresponds to the minimum of this measuas then used as the input tra-
jectory for an EP-controller. Given initial positiog, final positionxs, and assuming that at these
positions the system is at rest, the minimum jerk trajecteag found to be:

X(t) = Xo + (Xt —Xo) (10(t/T)* — 15(t/T)* + 6(t/T)°) (4.2)

The corresponding velocity profile can be found via simplevdé&on:
t2 t3 t4

v(t) = 30d— — 60d—7 +30d 5 (4.3)
with substitutiond = x; — Xp. In Cartesian space, when calculated for individual spatinpo-
nents, such trajectories form straight-line paths witt-flehped velocity profiles. For the purpose
of experiments in this chapter, however, minimum jerkeic&pries were used only to maximise
smoothness on the joint level, as we are not concerned vétimtierse kinematics problem. Also,
in contrast to (Hogan, 1984), minimum jerk trajectories @sed only as a reference for the opti-
misation of muscle-reflex parameters, not as the actuat ingjectory. As simple control signals
are desired, input to the EP-controller is always a monotosuinp shift of given amplitude and

duration.
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Figure 4.3:Minimum jerk trajectories for two movements of 108nd 50 lasting 0.2 and 0.18 s respec-
tively. Position is shown on the left, and velocity on thehtig
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4.2.2 Optimisation algorithm

A simple genetic algoriththis used to optimise muscle parameters (shape of the dampireg f
tion, maximum isometric force), feedback gains, and theebothe input ramp relative to the
minimum jerk trajectory. The muscle model used in this cea# the simplest found in the pre-
vious chapter, which still allowed for EP and stiffness cohtnamely one with a linear muscle
length mapping, constant moment arm, and without calciurraahjcs.

Most experiments in this chapter evaluate a muscle-refledetnon at least two movements of
different amplitude: one covering 100 degrees over a cwratif 0.2 seconds, and another of
50 degrees over 0.18 seconds (as measured experiment#ligtbynaker et al. (2006) in subjects
instructed to produce fast movements). The quality, or $&ifre of a muscle-reflex solution was
calculated from the difference between actual and desirgadirthum jerk) trajectory, scaled into
the rangg0,1]: F = 1— [x—Xq|/Tt This measure was then averaged over all movements to be
optimised in that experiment.

Each experiment was carried out at least five times with rdiffeinitial conditions to ensure suf-
ficient confidence in the reliability of acquired data. Inteagperiment the GA was run for 100-
1000 generations, during the last 10% of which a lower motatate was used to let the algorithm
converge on the peak of the best solution found so far. Théemmem number of generations was
determined heuristically by running the experiment a fawes without restricting the duration
of the optimisation. In all experiments reported here, ifneould eventually plateau around the
same level across repeated runs (with a standard deviatidheoorder of 10*% of maximum
fitness), and evolved parameters would show similarly loviati@n. The number of generations
at which this plateau was reached, plus an additional hdngieeerations, was then chosen as the
limit for repeated runs that contributed toward statistiegaults. Since the optimisation procedure
reliably plateaued in the same small area of the fithess ¢tapés it was assumed that running it
for longer would not have affected the result. This is imaottwhen comparing results from two
different experiments. If, for example, two different kindf models evolve different levels of fit-
ness, we can say with some confidence that this is due to theerftthe controllers themselves,
and not a function of how long the controllers were allowe@yolve (though it is possible that
the fitness landscapes had different properties, suchiieatas easier to optimise than the other).
The same argument applies to those cases where a satigfealiation was not found at all. It can
not be ruled out that a solution exists in a part of the fitnaeddcape that the algorithm failed to
explore. However, the kinds of control models evolved i thiesis are often very similar to each
other, at least in those cases where results are compassdirThey usually differ in only few
terms, such as the form of damping employed, or the amouetdtfack delay present. Since they
were also evaluated using the same fitness function, oneeeaomably expect that the resulting
fithess landscapes should have similar properties (thdughwias not explicitly confirmed here).
Differences in the ability to find a fithess optimum are therefimplicitly attributed to the form
of the evolved controllers in the following experiments.eTeader should nevertheless be aware
of the above caveats (local minima, differences in fithesddeape properties).

1See sections 3.4.2 for an overview and 3.6 for parameteesalu
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4.2.3 Feedback model

In the EP-controller implemented here, muscle activatimesdetermined from a weighted sum
of different open-loop and feedback components. It incafes then-model, i.e. direct input
to a-motoneurons, tha-model, and the addition of a desired velocity signal. Byrgiéng the
weights of individual components to zero, each of these tsochn be studied in isolation. Al-
lowing for optimisation of all weights, on the other handsh find the best combination of these
components. The full model was defined as

A(t) = aoi + [Kp(LM (t = 8) — A) + ky(A =W (t — 8)) — kg™ (t — 8)]3 (4.4)

whereay is the open-loop commandM muscle lengthyM muscle velocity the EP threshold
offset, 6 the feedback transmission delay, dqdhe different feedback gains. The term in square
brackets constitutes the reflex contribution and contdiesctassio\-model (kp (LM — A) — kqv™)

as well as the error in desired velocity.

Alpha Model

The first and simplest model serves as a control experimeniscids are activated using static
activationsag only. The levels of activation required to achieve a des@medpoint are determined
using the mapping between differential activation of aatasts and EP positions found in the
previous chapter. A controller of this type therefore el the existence of such an inverse map.
As also observed, activation levels are underdetermineBmyosition, as co-contraction (and
hence stiffness) has to be chosen as well. This was done t&@rggiffness maps also produced
in the previous chapter. In the case of the muscle model us#ds chapter these relationships
turned out to be linear. A given EP could easily be found atiguenratio of agonist to antagonist
activation, while the sum of activations determined itBratiss. It is worth noting that this inverse
look-up would be much less trivial for muscle models that'dexhibit linear relationships. When
more than two muscles are considered, the problem of redegpdeould have to be solved as well
(Loeb et al., 1999).

Energetically thisx model would be suboptimal, as it necessitates constanzeanactivations
at the final position to achieve stability. It would also netibh accordance with the observation
that EMG levels (and hence muscle activations) are usually at the resting pose. Therefore, an
exponential decay was applied to activation levels atriggibsitions, so that force output is zero
before and after the actual movement.

Lambda Model

For the reflex contribution) thresholds were determined by an inverse look-up of the lausc
lengths that correspond to the current point (joint angtejhe virtual EP ramp. The complexity
of this inverse mapping depends on the function that deserifuscle length as a function of joint
angle and the current force output. As in this chapter a teielss model was chosen, and a
linear angle to muscle length function, this again was simpl a different model, more complex
computation might be needed, but the problem is fundamgrita same. The redundancy in
muscle activations was solved by picking the pair with thedst resulting stiffness. Where a
desired velocity reference was employed, it was calculatethe derivative of the corresponding
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A threshold. Conduction delays (0-0.025 s) were added tolmietgth- and velocity-feedback
with durations depending on the experiment.

The reflex component of the controller on its own, when comgao pure open-loop control,
would energetically be more efficient. It avoids the constanscle activations at the resting pose.
It introduces a new complication, however, namely potéimgtability resulting from long signal
delays and large feedback gains (see section 4.3.1). Wieeretlex component is used along
with the open-loop component, the former can be interpratethe reciprocal R command in the
multi-muscleA-model, while the latter implements the co-contraction owand C.

4.3 Muscle-reflex EP control

In the following section the dynamics of antagonistic masdls developed in the previous chap-
ter) are studied when driven by equilibrium-point coneall based on th&-model. The next
chapter will then compare this muscle-reflex system with aenadpstract model, in which mus-
cles are replaced with a single non-linear spring-damper.

4.3.1 Feedback delays

It is well known that transmission delays can limit the perfance of feedback systems by cre-
ating oscillations when feedback gains are large. Hidler Rpmer (2001), for example, used a
model of the stretch reflex to show the destabilising effédtigh motoneuron threshold, gain,
and neural transport delays on the ankle. While roboticatota can be built such that feedback
delays are negligible, in humans the limited speed of agimpntial propagation and the number
of synapses connecting central motor commands to final nooitpiut can add up significantly —
St-Onge et al. (1997) estimate 14-18 ms. In this section, scleueflex system with feedback
delays will be studied for its ability to produce fast movermneithout such oscillations. The full
reflex model is used, including open-loop static activatemnor proportional, error derivative and
velocity proportional terms. Muscle and reflex parametessevoptimised for both the 10@nd
50° amplitude movements of a single joint. The system was eteduaight times with different
amounts of feedback delay. For each level, the experimentre@eated five times to produce
reliable results.

Figure 4.4 summarises the effect of increasing feedbaakydel the relative strength of individual
reflex terms. The first thing to notice is that standard dawiats low for all measured quantities,
confirming that the optimisation process reliably picked game optimal solutions. Secondly,
performance does not drop immediately for relatively srdalays. Although it drops eventually,
performance stays within the 99% range for delays of up {2090 In fact, optimal performance
is not found at zero delay, but rather at 0.005-0.01 s. Thiedstrong correlation can be observed
between the different feedback gains and the length of ttey.d€he longer the delay, the lower
the actual feedback gains, but the higher the level of caraotion. For increasing feedback
delays, the system relies more and more on the inherentlopprdynamics of the muscle rather
than the reflex action.

Figure 4.5 plots the actual joint trajectories for diffarégedback delays. It confirms that the drop
in performance for larger delays is indeed due to osciltetiaround the EP. The slightly better
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Figure 4.4:Effect of delayed feedback on performance and resultindidaek gains. Proportional gain
kp, derivative gairky, velocity reference gaik, and open-loop gaiko, as well as fitness are shown for
increasing feedback delays. Each point corresponds to da malue over the best individuals from 5
evolutionary runs. A single standard deviation is shownresrlears at the top and bottom of the gain data
points. In case of fitness, two standard deviations are dr&eadback gains are expressed as proportions
of their upper limit.

performance with small delays, on the other hand, seems tleebresult of reduced overdamping
close to the target. Without delay, strong muscle dampiograt zero velocity (see section 3.2.8)
leads to an approach towards the target that is slower tteirddscribed by the minimum jerk

trajectory. The addition of feedback delay, however, iegplihat the perceived error between
target and actual position is greater than that of the ndewdd controller when approaching the
target. As aresult, more accelerating force is producetbfayer (for the length of the time delay),

and the same level of reflex damping is arrived at a littlerla¥hen tuned just right, the delay

thereby counteracts the strong viscosity of the muscleawitiroducing undesired oscillations.

The results suggest that feedback delays, to a certainajetpa be “assimilated” into the mus-
culoskeletal dynamics without impairing, and to some exésen improving performance. Even-
tually, however, oscillations are unavoidable and the evdy to compensate for this effect is to
reduce feedback gains and rely on the muscle’s instantaregtractor dynamics. Similar results
have been observed in a model of the spine (Franklin and @&22@07). The authors found that
reflexes allowed for stability at levels where intrinsidfatss was insufficient, while also noting
that increasing delays required lower reflex gains and greatcontraction.
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Figure 4.5:Feedback delays. Joint trajectories (left) and velocighf) of best evolved hybrid controllers
for varying feedback delays. Lighter plots correspond tgda delays. Best performance is found with a
delay of 0.01 s, with larger values leading to increasingllasions around the EP.

4.3.2 Feedback modalities

It is still an open question what type of feedback control hanspinal reflexes implement, if
that’s indeed their role at all (see McCrea, 1992, for a k@wéthe controversy concerning reflex
circuitry and functionality). Although muscle spindlesoduce a signal that mixes positional and
velocity information, for example, it is not known how thigermation is employed in the closed
loop system as a whole, and whether velocity or error in vglare significant factors. In this
section, experiments are carried out to assess the cdndribof the positional term, velocity-
dependent damping, velocity-error feedback and open-igmals in the production of fast and
smooth movements. To this effect, three different typesoottroller are defined that differ in
the combination of reflex components they employ. The ckdged A controller only contains
the A- and simple damping terms. The controller extends this model by adding velocity-
error feedback. This is functionally different from basisoosity in that damping forces are
only produced if the actual movement is too fast when contparehe desired movement. Fast
movements are not necessarily opposed when high speedriscddsinally, ahybrid closed- and
open-loop controller adds the co-contraction componedttharefore constitutes the complete
model. All controllers were optimised for both, small andyl, amplitude movements. In a first
set of experiments no delay was used and upper limits forgbdlfack gains were chosen after
running a few initial tests with the hybrid controller. A maddvith only velocity reference, but
without simple velocity term, was not considered, as in titial tests the velocity proportional
term consistently evolved a zero gain. The upper limits éadback gains chosen wégg= 6.0,

kg = 2.0, k, = 2.0, andk, = 1.0.

The performance of the three different controllers is sunised in table 4.1. The first thing to
observe is that an open-loop co-contraction command signifiy improves the speed of move-
ment and hence the matching of the minimum jerk reference peErformance measure shows
that the hybrid model produces the best fit, followed by tinedda model with velocity reference
and finally the pure lambda controller. No experiments wargied out using a lambda plus co-
contraction controller, so it can’t be determined whetteecontraction or velocity reference yield
greater improvements. In terms of kinematic indices, theridycontroller approaches, but does
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hybrid AT A open-loop min. jerk human
Fitmax]%0] 99.73 98.94 98.10
Fitavg|%)] 99.72 98.94 98.18
Fitgg[%] 0.14-10° 0.05-10° 0
T [s] 0.145 0.175 0.175 0.265 0.125 0.118
typea [S] 0.065 0.065 0.095 0.065 0.06 0.077
Vpeak [deg/s] 906 732 650 555 937 975

Table 4.1:Performance and kinematic features of joint movements t@@megrees for different types of
controllers. Kinematic indices are presented for the beslved controller. Corresponding values from the
idealised minimum jerk trajectory and measured human datalao shown for comparison.

not perfectly match the features of the minimum jerk trajector experimental data. It reaches
97% of the reference peak velocity for example, while XieandA controllers only reach 78%
and 69% respectively. The standard deviation (of fitnessedlsaw evolved parameters, see below)
suggests that the same solutions were found across repaatedince there is no indication that
the fitness landscapes created by the three types of censrellould be qualitatively different,
the fithess peaks are assumed to reflect the potential of thelsy@nd not a difference in their
“evolvability”.

hybrid mean  5.83 0 0.2 0.28 0.63 1.6 1368 -0.009
AT mean 6 0 053 - 0.18 153 1500 -0.0119
A mean 6 0.34 - - 0.4 155 1500 -0.0500
hybrid std  0.1427 0 0.03 0.02 0.18 0.35 81.5 0.002
AT std 0 0 0.02 - 0.09 0.3 0 0.002
A std 0 0.0001 - - 0.0029 0.1550 0 0

Table 4.2: Means and standard deviation of best evolvedeas for each controller.

Table 4.2 lists average parameters evolved across fivet@armdny runs. Not surprisingly, both

positional reflex gain and maximum isometric muscle forcel twards their respective maxima
allowed in this experiment. As we optimised for very fast mments, this is what would be
expected from a PD-like system. In the absence of feedbdal,dething constrains the range
of these parameters. More surprisingly, for both contrsllith velocity-error feedback, the
linear damping term consistently evolved towards zero. Aantetailed study of the relationship
between the two forms of damping and the resulting dynam@mdadvbe necessary to explain this
observation fully. However, velocity reference on its ovlowaed for sufficiently fast movements
while still preventing endpoint overshoot (see figure 416Wwe Any addition of absolute damping

would inevitably lead to slower movement and hence redueepnance. The hybrid controller,

however, relied less on velocity feedback. Instead, it mes#eof the muscles’ intrinsic damping
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by ensuring a sufficient level of co-contraction.

Figure 4.6 plots joint angle and velocity for the differewmintrollers in the case of large ampli-
tude movement. As the data has already shown, the hybridatientclosely resembles a perfect
minimum jerk trajectory, though not quite reaching the desipeak velocity and being slightly
overdamped around the endpoint (likely the result of neddii high muscle damping coefficients;
see table 4.2). Comparing trajectories to those of the quea-toop system (dashed line) suggests
that at least part of the hybrid controller's advantage ilethe contribution of co-contraction to
a low latency in the onset of motion. The other two contrgllar comparison seem unable to
reach the desired velocity and are not sufficiently dampeatieaendpoint. I.e. no compromise
could be found within the limits of the allowed feedback gaibetween the required speed and
the damping necessary to prevent oscillations.
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Figure 4.6:Trajectories of fast movements produced by different feeklizontrollers. Red curves indicate
the minimum jerk trajectory and dashed lines the open-lapgroller. TheA-controller is shown in light
grey,A"-controller in medium grey and the hybrid controller in lHa©nly the latter provides a good fit
for the minimum jerk trajectory.

Because in the previous experiment optimisation conveayethe upper limit for the positional

error gain, the same experiments were repeated while altpfer larger limits. In order to prevent
gains from becoming unrealistically high, a feedback defe§.01 s was introduced. This should
lead to a performance hit for very large feedback gains hyihgato endpoint oscillations.

hybrid AT A open-loop min. jerk human

Fitma%] 99.83 99.28 98.56

T[s] 0.125 0.165 0.155  0.265 0.125  0.118
tvpeu [S] 0.065 0.065 0.11  0.065 0.06  0.077
Vpeakldeg/s] 940 824 744 555 937 975

Table 4.3: Performance and kinematic features of joint mmsgts over 100 degrees for different
types of controllers and 0.01s feedback delay. Differertimam feedback gains are used.
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Kinematic indices and evolved parameters for these exjeatinare presented in table 4.3 and
table 4.4. The\ controller, despite making strong use of the extended dimit feedback gains
(kp = 19.7 compared tk, = 6), showed no major improvement, reaching a fitness of 98.56%
as compared to 98.10% in the previous experiment (and pdakityeincreasing fromvpeak =

650 deg/s torpeak = 744 deg/s). Tha™ controller also produced larger feedback gains, leading
to an increase in its fitness of 0.034%. Both controllers\aaved slightly weaker muscles, how-
ever, and different muscle damping characterstics, axiplgiwhy the large feedback gains did
not lead to oscillations large enough to impede performaatso, theA controller, which evolved
the largest feedback gain, does not employ velocity-egedback, suggesting that the remaining
feedback components are more resilient to transmissiayslelThe hybrid controller alone did
not increase its feedback gains. Instead, it compensatetthdadelay by shifting from propor-
tional feedback to more open-loop co-contraction. AlthHothys did not significantly change the
movement kinematics as measured by the indices, it seensdhitize the joint at the endpoint
(trajectories not shown).

hybridmax 3.15 0 034 053 1.0 1.52 903 -0.0044
ATmax 802 O 0.7 - 0.12 1.48 1103 -0.0016
Amax 19.7 0.56 - - 0.03 1.23 1446  -0.0301

Table 4.4: Best evolved parameters for each controlleudinf feedback delay of 0.01 s and
adaptive maximum feedback gains.

In summary, although none of the models were able to exactgmexperimental data, the hybrid
model’s kinematics came very close as measured by the a@fiffenovement indices. It should
not be surprising that a difference remains, as real elbowement involves up to six different
muscles, arranged in a complex manner. Here on the other, bahdtwo symmetric muscles
without tendon were modelled in a simple symmetric setup.

4.3.3 Inherent triphasic muscle bursts

EMG measurements of antagonistic muscle activity durirsg fenb movements are often char-
acterised by a triphasic alternating burst pattern. In arelbow flexion for instance, one would
typically expect to see an initial burst in biceps activiipllowed by a burst in the triceps, and
often, but less reliably, a smaller final burst in the biceBfmce these bursts are translated into
forces by the muscles, the functional consequence is daliaitceleration of the limb towards
the target position, followed by a deceleration that hddesmovement. If necessary, such when
the decelerating burst turned out too strong, a third pudseprevent a reversal and thereby arrest
the motion. Like other invariants observed in voluntary emments (e.g. straight trajectories in
Cartesian space), the existence of this burst pattern hdsstame to suggest that it has to be the
result of a centrally computed motor program. In this secti@ will show that this is not neces-
sarily the case. A triphasic burst pattern does insteadlyeaierge from the dynamic interaction
between neural reflexes and the musculoskeletal system.
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Bullock and Grossberg (1992) have shown in a spinal reflexahnwadhich incorporatesu-y-
coactivation, reciprocal inhibition of antagonists anchBleaw-interneurons, that triphasic bursts
occur when the ramp shift in desired position is significafalster than the actual motion (by a
factor of ~2), and when the gain for velocity feedback is significandlsger than the positional
feedback gain (by an order of magnitude). In the followingexriments, different rates of thresh-
old shifts are compared and individual reflex componenttyaad for their relative contribution to
the production of a triphasic burst pattern. To this endedhoptimisations of the hybrid controller
with 0.01 s feedback delay were undertaken for a high ang@itmovement of 100 The rates
of the threshold shifts were varied such that the resultémgps had durations of 0.2 s, 0.1 s and
0.0s.
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Figure 4.7:Kinematics and reflex response for evolved 100 degree mavisméth 0.01 s feedback delay.
The ramp input signal (from left to right column) has a duratdf 0.2 s, 0.1 s and 0.0 s respectively. The
top row depicts reflex response (muscle activation) as dbkihes, muscle force as filled areas, and net
force (sum of antagonists) in red. Dark curves represerftéker, lighter colours the extensor. The bottom
row presents joint angle (solid black), desired minimunk feajectory (red), the commanded ramp signal
(grey) and velocity (dashed).

The kinematics of the best evolved controller for each oftkinee conditions are shown in figure
4.7. Note how all ramp durations, even a simple step sigmatiyce a reflex response that shows
three maxima leading to acceleration, deceleration arallisetion of joint motion. The best
performing controllers achieved a fitness of 99.83%, 99.4% $0.14% respectively for ramps
of 0.2 s, 0.1 s and 0.0 s. Their kinematics differ in that inparhps which are faster than the
actual movement lead to overshoot, while a ramp of lengthpasable to the desired movement
duration appears critically damped. Beyond a certain rietteecamp-shift, however, no significant
difference is found. Evolved parameters showed a cleaefpattCompared to the 0.2 s ramp,
controllers using a 0.1 s ramp evolved smaller velocity regains (by 57%), but larger muscle
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intrinsic damping (the convexity of the force-velocity agbnship for shortening decreased by
90% and the asymptote for lengthening increased by 50%).c@heoller with step-signal input
was similar to the short ramp, but with a 10% increase in dpep-co-contraction. Together,
these changes signify a shift from reflex control to intingiuscle dynamics as the rate of the
threshold shift increases. When the duration of the rampasiggas allowed to evolve as well, it
tended towards the length of the desired movement, and ootesh This is in contrast to other
studies which suggested shorter threshold ramps (Bullock@rossberg, 1992; Gribble et al.,
1998).

In order to explain how the bi- and triphasic burst patterregyas from a simple ramp-shaped
input signal, we analysed the relative contribution of posal and velocity error feedback to
overall muscle activation. Figure 4.8 compares these ibotitons for ramps shifts of 0.2 s and
0.1 s duration. As a first observation, note how the symnadtsietup of the antagonistic muscles
produce symmetrical error signals for both position andeigy. Because one muscle is supposed
to shorten as much as the other needs to lengthen, the ggr@isiare equal in amount but of
opposite sign. However, in themodel muscles become activated only if the overall input to
o-motoneurons exceeds its threshold, i.e. when net reflgxubus positive. As a result, the
symmetry of error signals is broken, and flexor and extensmuafa activations differentiate.

Inspecting the controller driven with a 0.2 s ramp, the fitgsp occurring in the flexor is com-
prised mostly of the velocity error signal, especially ie theginning, with a smaller and gradual
addition of positional error. This is explained by the fdwattthe ramp signal implies a gradual
shift in desired position, but an abrupt change in desirédcity. At this stage, only the flexor is
active. In order to reduce the initial error (due to a chamggeisired position), the extensor would
have to actively lengthen, but themodel respects the fact that muscles can only shortereactiv
As the initial burst accelerates the limb, flexor positiond &alocity error become smaller, eventu-
ally “self-terminating” its activation. The limb soon rdaes a velocity greater than desired, which
eventually results in extensor velocity feedback overecmyrits negative positional error. This
marks the beginning of the second burst, which deceleratefimb as it approaches the target.
As limb velocity falls below the desired value towards the,em final smaller burst in the flexor
ensures that the motion is not unnecessarily overdampesunmary, the reflex controller pro-
duces a triphasic burst pattern mostly as the result of liglboity first lagging, then leading, and
finally lagging again the desired velocity. In conjunctioithithe muscle’s low-pass filter, as well
as stiffness and damping properties, these discrete herstamsformed into a single continuous
minimum jerk trajectory.

By comparing the left and right column in figure 4.8, it becenutear that a shift in desired
position significantly faster than the desired motion piaua different triphasic burst pattern.
First of all, the steeper ramp produces a larger initial reimgposition. Hence the first burst is
not constituted mainly of velocity error anymore. Seconti resulting step signal in desired
velocity is now not only shorter, but also larger than theoei that the limb can achieve. This
results in the first burst not terminating as quickly, beeathe velocity error does not reverse sign
until the ramp ends and desired velocity returns to zero. tik®rsame reason the decelerating
extensor burst is delayed until that same point in time. Hselting overshoot finally leads to a
small burst in the flexor that arrests the motion.



Chapter 4. Feedback control75

—_ 50
()]
(0]
©
- 0
o
o
C
@ -50

-500

velocity (deg / s)
o

-1000

flexor

extensor

0.1 0.2 0.3 0.1 0.2 0.3

time (s) time (s)

Figure 4.8:Emergence of triphasic burst pattern. Left column: ramjt sifi0.2 s duration. Right col-
umn: ramp shift of 0.1 s. Top row: commanded joint angle (kland actual angle (red). Second row:
desired velocity (black) and actual velocity (red). Thimdafourth row plot flexor and extensor reflex
components: position error feedback (solid black), véjoerror feedback (dashed black) and sum of both
errors, clamped to positive valugig (LM — ) + k\,(}\ —vM)J3. The latter corresponds to the combined reflex
contribution of the controller, i.e. without the added amtraction.

In conclusion, a model of the stretch reflex based oritheodel can be tuned to produce fast and
smooth movements with a natural triphasic burst pattermnguaisimple linear shift in threshold
length. This result confirms similar findings obtained wiiplit neural models of the stretch
reflex (Bullock and Grossberg, 1992), and suggests thdtasip bursts are not necessarily pre-
programmed. The burst pattern emerges from the systemanaigs in different ways across a
range of threshold ramp durations. Overshoot in the rangedfbiere can be observed in the fastest
movements produced by human subjects. Hence this findirag sufficient to decide which ramp
duration better reflects reality.

4.3.4 Control of movement distance and velocity

One goal of the EP-hypothesis is a simplified motor controtpss. St-Onge et al. (1997), there-
fore, suggested that movements of different amplitude geed could be controlled simply by
varying the duration and rate of a monotonic shift in thetstreeflex threshold. According to this
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model, distance is encoded by the duration of a fixed ratdiledquim shift, while speed of move-
ment depends on the slope of the ramp shift. This controlseheproduced empirically found
kinematic and electromyographic (EMG) features of fastysbed and unperturbed movements
when equilibrium shifts were of short duration. Specifigalhe time course was chosen such that
the shift ended near peak velocity, i.e. a significant timeriral existed between the end of the
EP shift and the end of the movement. In (Gribble et al., 199%) authors used a similar setup,
with a ramp shift about half the duration of the movement.edtbrmulations of thé.-model, in
contrast, use EP shifts that are closer to the intendedidaorat the movement (e.g. Kistemaker
et al. 2006). In addition to the EP shift, St-Onge et al. ()9&iied the gain of the reflex damping
term as well as muscle co-contraction over time. The dampiofjle followed the same time
course as the EP shift (i.e. ramp-shaped), while co-cdigramcreased linearly to a plateau, and
towards the end decreased slowly to simulate a graduafffalldonic EMG level (relaxation).

It was found that damping gain and co-contraction level erilted peak velocity and helped to
reduce terminal overshoot. Overall levels were chosenrdopto the desired movement.

For movements of different amplitude, a salient featurehefrnodel proposed by St-Onge et al.
(1997) was its production of position and velocity tracesolwhwere similar during the initial
phase and then diverged at a point that depended on the dlesoeement distance. Similar
patterns were observed by Gottlieb (1998). Measuring EMi&igcduring voluntary single-
joint movements in human subjects, it was found that kineasand agonist muscle activity were
independent of distance up to peak acceleration (whilerise af the agonist burst increased with
distance).

Distance control with fixed rate EP shifts

In afirst set of experiments we tested whether movementdéfefelit amplitude could be produced
with fixed rate equilibrium shifts of different duration. fi#rent reflex models and rates of EP shift
were studied for their ability to produce kinematics and Ep#&erns that initially follow the same
time course for different amplitudes, in line with the expental observations described above.
Three different movement amplitudes {555 and 100) were optimised using two different
reflex models (with and without open-loop co-contractiondl &vo different rates for the EP shift
(300 deg/s and 600 deg/s). In all cases the duration of thizmaim jerk trajectory was allowed to
evolve for each movement (as the desired movement duratsrunwknown) but was constrained
to 100—-200% of the duration of the threshold ramp. The onsekmonential muscle relaxation
(to 10% of maximum activation) was also evolved. Feedbaaksimission delays were set to a
value of 0.015 s, a value in the range reported by St-Onge €it397) .

Figure 4.9 compares the kinematics produced under thriatit conditions. The hybrid model
with a relatively slow EP shift (left column) produced tretigries most resembling the minimum
jerk case. Trajectories for movements of different amgétuliverged relatively quick however.
This can be explained by the fact that the open-loop mustikation depends on the final desired
position. Hence, the further the target (i.e. the largeratimplitude of movement), the greater the
open-loop contribution, and consequently the initial éa@dion and velocity. This also explains
why the ramp shift did not terminate before the end of theaainovement in all cases. For the
largest amplitude movement the open-loop activation wéi®nt to propel the limb such as to
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Figure 4.9:Fixed rate\ shifts of varying distance (5575 and 100). Left: hybrid model with slow EP
shift (300 deg/s). Middle: hybrid model with fast EP shifodeg/s). RightA™ controller with fast EP
shift.

lead the EP shift.

The same reflex model driven by a faster EP shift (middle caluproduced slight oscillations

around the end point (within the range observable in humaeraxents). Because position and
velocity errors are larger initially for faster ramps, theflex contribution towards overall muscle
activation must be larger too. Thus, while actual trajéesodiverge too for this controller, they
do so mostly in response to the desired trajectories divgrgiThe points of divergence can be
located where the corresponding EP shift reaches its firgdipo plateau.

The final model (right column) lacks open-loop muscle atitva Therefore force production
is fully determined by reflex activity. As all feedback gasrsd muscle parameters are constant
across the different movement amplitudes, the correspgnilajectories can only diverge when
the input to the reflex controllers are different. This imtwan only be the case when either the
desired velocity changes (it drops to zero at the end of thgyaor the desired position changes
(it reaches a plateau for one movement at the end of the rammife wontinuing to ramp down
for others). In the case observed here, reflex gains evolvel that divergence occurred only
when a trajectory overshoots its target and the positiomal eeverses sign as a result (positional
feedback gain was significantly larger when compared to therdwo models). As a result, posi-
tion and velocity traces were bundled together as observésitiOnge et al., 1997) and (Gottlieb,
1998). Also, EP shifts ended before the movement reachgebétk velocity. However, the large
positional gain, combined with relatively low damping, goced oscillations that are too large
when compared with experimental or model data reportedesetistudies.
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In summary, movement distance can be controlled by varyiagluration of a constant rate shift
of the reflex threshold, without necessitating the modificabf feedback gains. Kinematics and
muscle activities for movements of different amplitude abserved to be more similar initially
the greater the relative contribution of reflex activity. eTtastest EP shifts produced undesirable
oscillations in the model lacking open-loop co-contratti®his difference is likely due to the fact
thatin (St-Onge et al., 1997) co-contraction and dampimgsggepended on movement amplitude,
while here they were not allowed to change between moveménitshermore, not only did the
overall level of feedback gains differ from movement to muoeat, they were also dynamically
controlled throughout a movement (ramped up and down). Hemntrast, gains remained fixed
at a given level for the duration of a movement. This was assltm be more in line with the goal
of using the simplest possible control signals. With respethe minimisation of jerk, the best
trajectories were produced by the hybrid model with a cormpaaly slow EP shift.

Velocity control with variable rate EP shifts

The previous section has shown that movement distance caonb®lled by varying the duration
of a constant rate EP shift. In follow-up experiments we @tigated whether the velocity of
movement is also controllable. In aiming for the simplesttoal process, it would be reasonable
to hope that a change in the rate of the shift would suffice hieae different speeds, without any
additional changes in reflex gains. To test this hypothestsoptimised a hybrid reflex controller
to produce three 55minimum jerk movements with durations of 0.18 s, 0.27 s a3 &. A
single set of reflex and muscle parameters was evolved fthralk movements. Only the duration
of the EP shift was allowed to vary across movements (the iardplwas fixed, hence duration
translated directly into rate).
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Figure 4.10:Variable rate EP shifts over 5%asting 0.18 s, 0.27 s and 0.36 s. Red traces are the desired
minimum jerk trajectories. Black lines plot the fastesg\gthe moderate, and light grey the slowest move-
ment. Joint angle trajectories are shown on the left, ve&scon the right. Note the rather large overshoot
during the fastest, and asymmetric velocity profile durimgslowest movement.

The resulting trajectories are shown in figure 4.10. A cledtgon is easily observed. The fastest
EP shift leads to motion which initially lags the desireddctory and produces significant over-
shoot with quickly decaying terminal oscillations. Thevedst shift, in contrast, results in the limb
initially leading the desired position. The deviation igmhcorrected by the feedback controller
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in a way that is overly damped. The resulting velocity profites not resemble the typical bell
shape. Only the moderately paced EP shift produces theedasiinimum jerk trajectory (albeit
not without small oscillations either). Clearly, the opsation process has not found a single set
of reflex gains that would be optimal for movements of différeelocities. The best controller
identified constitutes a trade-off that performs well in 8verage case, but cannot ensure correct
speed and damping for slower or faster movements. The fatthis result is repeatable over
several runs (with the evolutionary algorithm startingnfirdifferent initial conditions), and that
fitness reliably plateaued in the same region of the fitnasdstzape, indicates that the failure to
find a solution is a property of the controller and not an axtedf the optimisation procedure. It
can not be ruled out, of course, that the same submaximdldptiamum was encountered in each
of the repeated runs. But the fact that this was never obdearvprevious experiments, which
should have had similar fitness landscapes, supports tlofustom that the speed of movement in
this model can not be controlled by changing reflex gainseaalon

Simultaneous control of distance and velocity

Combining the control strategies described above, a finalf @&xperiments was aimed at identify-
ing the minimal set of changes that need to be applied to xr&dleroller to achieve simultaneous
control of both, movement distance and velocity. A hybriflese controller was therefore opti-

mised to produce four different movements that covered highlow velocities as well as small

and large amplitudes. It was quickly confirmed that a singteo§ muscle and reflex parameters
was not sufficient to achieve the desired flexibility. As tlusigon-velocity phase plots in figure

4.11 illustrate, fast movements produced undesired atioitis, while slow movements were sig-
nificantly overdamped. This was to be expected after theiguevexperiment had demonstrated
the difficulty of finding a trade-off in reflex gains that woyddoduce critical damping for move-

ments of different speed.
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Figure 4.11:Phase plots of single gain set controller for fast and sloweneents. For fast movements
(left) the controller produces undesirable oscillatiomjles slow movements (right) are significantly over-
damped. A compromise for the damping characteristics ofdfiad slow movements was not found with a
single set of fixed reflex gains.
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Consequently, a broad set of experiments was conductediamwtiferent subsets of reflex gains
were systematically chosen and allowed to evolve deperatirthe desired type of motion. From
the subsets of controllers that successfully evolved mininjerk trajectories for large and small
amplitude movements at different speeds, those with thdleshaumber of necessary parameter
changes were then identified. The trajectories producedht@e tsuch controllers are shown as
phase plots in figure 4.12.
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Figure 4.12:Phase space plot of movements generated by different reflexngodels. A: four different
open-loop gains (background co-activation). B: as A, buhwéamp shifts being 20% slower. C: only two
different open-loop gains; one for fast one for slow movetseAlso uses ramp-shifts that are 20% slower
than maximum. D: two open-loop gains and two velocity preéipoal (k) gains.

The first controller (A) uses a different open-loop gain facle movement, i.e. a different level
of muscle co-contraction for each combination of desiresfagice and velocity. The remaining
reflex- and muscle parameters on the other hand are the saalefmvements. The produced tra-
jectories have minimum jerk profiles (99.68% fitness), wittjhd terminal oscillations. When the

intended movements are slowed down by 20% (B), these dsmiltaare visibly reduced (99.66%
fitness). Minimum jerk trajectories can also be producedgisnly two different open-loop gains,
one for fast and another for slow movements (C), albeit witihy less precision (99.62% fit-

ness). A different but equally successful strategy wasddi), in which two open-loop gains are
combined with two different damping terms for slow and fastvement (99.71% fitness).

To summarise, simple monotonic threshold shifts of diffiérduration and rate can be used to
control both the distance as well as the velocity of movemetlawever, along with this simple
strategy the viscoelasticity of the system has to be tungdaduce critically damped movements
at different speeds. A means to achieve this is the abilityaty the muscle-inherent damping
characteristic by choosing an appropriate level of cotemtion. This seems to be a strategy also
utilised by human subjects (Suzuki et al., 2001). Alterrsdyi, or in addition, the reflex contri-
bution to the system’s viscoelasticity can be adapted tir@election of appropriate feedback
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gains.

4.3.5 Multijoint movement

In the previous sections it was shown that a variety of shjmjl# movements can be produced us-
ing simple monotonic EP shifts, and that the resulting kiagofeatures (such as triphasic bursts,
bell-shaped velocity profile, level of joint stiffness) wesimilar to those recorded in human exper-
iments. Additional complications could arise however where than a single joint is considered.
During multijoint limb movements, interaction torquessariat one joint as a result of the motion
of limbs around other joints in the chain. Lifting one’s artrttee shoulder, for instance, also gen-
erates rotational forces that tend to extend the elbow. IBguarques flexing the elbow lead to
equal and opposite torques at the shoulder. This begs tlstiguef whether such torques are au-
tomatically compensated for as an intrinsic part of the riedseflex dynamics (given a plausible
level of joint stiffness), or whether control signals neede predictively adjusted to counteract
the effect of these internal loads.

In the most optimistic formulation of the equilibrium-poimypothesis, no information about limb

dynamics should be necessary at all to smoothly move fronposiion to another. Kinematics

alone (joint angles and velocities, or their muscle eqeivtd) should suffice. To test whether
this is indeed the case, reflex controllers were evolvedifople targeted movements about two
joints (elbow and shoulder). Analogously to the single¥jaxperiments, simple monotonic EP
shifts were used as input to two separate reflex models (dfiybhad type), each of which was

controlling an antagonistic muscle pair. The setup theesfieated each joint in isolation without
any interaction between the corresponding reflex contll€he time course of the two EP shifts
was enforced to be synchronous. Each of the two muscle-refliems was described by its own
set of parameters. They were optimised using two differemtaments that varied in the relative
direction of elbow and shoulder motion, and hence productstdaction torques of opposite sign.
The first movement involved flexion of both shoulder and elbahile the second one consisted
of shoulder extension and elbow flexion. The latter theeefmmnstituted a “synergistic” case, in
which the resulting interaction torques assisted the @@dmmotion, while in the former case the
interaction torques created resistance in the other joint.

The joint trajectories of the best evolved controllers dravn as phase plots in figure 4.13. Itis
easily seen that the simple strategy of independently thspnously driving the two joints is
inadequate. Whether feedback delays are present or netadtion torques generate more per-
turbation in the joints than either of the two muscle-reflggtems can compensate for (given a
biologically plausible level of maximum stiffness). It siid be repeated here, that caveats about
the possibility of stagnation in local minima applies tcsths it did to the previous experiments in
which no satisfying solution was found. However, the fitnesetion and model equations (and
hence the resulting fitness landscapes) are very similaosetused in experiments that succeeded
in identifying the desired controllers. It would theref@eem unlikely that the algorithm should
always have succeeded in one set of experiments, while alfading in another. We hence con-
clude that the inability to compensate for interaction tmrg|is a property of the control strategy,
and not a reflection of the optimisation procedure used.
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Figure 4.13:Phase space plot of multijoint movements with simple symchush-ramps. Desired trajec-
tory in red, actual in black. Initial positions are indicaitiey a dot. Whether feedback delay is present or
not, interaction torques disrupt the ability to produce sthanovements with bell-shaped velocity profile.

This result is consistent with experiments that have shdwahduring multijoint arm movements
muscles spanning one joint are activated depending on thiemia another joint. Gribble and
Ostry (1999) for example found that EMG activity in shouldauscles scaled with the magnitude
and sign of the interaction torque created in that joint bytiomoof the elbow. If the interaction
torgue opposed shoulder movement, muscle activity wasgdrchan when it assisted movement.
Since interaction torque in the non-focal joint is propamtl to the movement of the focal joint,
it follows that a relatively simple strategy seems to be atwduring such multijoint movements.
Muscles of the non-focal joint are activated proportionati muscles of the focal joint. Indeed,
in (Gottlieb et al., 1996) a near linear relationship betwaen-focal and focal joint torques was
found to be a sufficient rule of coordination to explain oledrkinematics during elbow and
shoulder movements. Torques at the two joints varied wistdl land speed, but always in close
synchrony. This linear synergy was also found to be robusbdad perturbations (Debicki and
Gribble, 2004), and to apply even when the non-focal joins weechanically fixed (Debicki and
Gribble, 2005), in which case no torgue would be necessal @t counteract interaction torques.

So although it seems that the nervous system takes limb dgsanto account when adjusting
control signals to muscles to compensate for interactiogus, a simple mechanism of coor-
dination might be responsible. While a number of reseaschave suggested that this “predic-
tive” compensation of limb dynamics is based on internal et®de.g. Wolpert and Ghahramani,
2000), others have shown that adaptation to external aechaitloads can be explained within
the equilibrium-point framework (e.g. Flash and Gurevit897). In (Gribble and Ostry, 2000),
a simple adaptive mechanism was used in which EP shifts wiustad in direct proportion to
the positional error between actual and desired movemefier few iterations of this learning
scheme, trajectories produced by the modified EP shiftshmdtempirical data, without neces-
sitating inverse dynamics calculations or coordinatesfiamations between paositional error and
corrective forces.
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4.4 Discussion

A comparatively simple muscle-reflex model, only incorpiorg the basic non-linearities, was

demonstrated to produce single-joint movements the kitiemaf which are comparable to hu-

man data. Small delays can be accommodated into its dynawiiite larger delays can cause
terminal oscillations as is common to all feedback systeifise combined muscle-reflex sys-

tem can exploit open-loop stability, however, which makesare resilient to delays than a pure
feedback system. Indeed, open-loop co-contraction wasdfto be necessary for achieving the
highest velocities when faced with feedback delays. Vefaamiror feedback equally proved neces-
sary to achieve high speeds without oscillations at the @ntlp/When this feedback modality was

available, absolute velocity feedback (i.e. basic viggdsieemed redundant or even disruptive
and such controllers evolved to minimise the correspondaig.

The muscle-reflex system studied in this chapter also pexitriphasic muscle burst patterns
independent of the length of the input ramp, suggesting tthiatis an emergent feature of the
dynamics rather than centrally planned. Even at the loweit,li.e. with an instantaneous shift
of virtual EP position, this pattern was observed, althoregulting dynamics in this case showed
significantly more overshoot. When the duration of the rahifi & optimised explicitly, it tends
towards the desired duration of the movement. This is inreshto other experiments which have
suggested that the EP shift could be faster, ending at tim: gbmaximum velocity (Bullock and
Grossberg, 1992; Gribble et al., 1998).

Movement distance can be controlled simply by varying thetilon of a fixed rate EP shift in
the model considered here. This is possible without tuninigedback gains. While open-loop
co-contraction was necessary to produce fast movemertsutipscillations, it also resulted in
trajectories that quickly diverge. This is in contrast te #trategy used by human subjects (Got-
tlieb, 1998) and results based on a different muscle-refledah(St-Onge et al., 1997). Control-
ling movement velocity by using different rates for the ERtghrned out to be difficult. A single
set of feedback gains that achieves critically damped memtsrindependent of speed could not
be found. Trajectories become either underdamped or ovgreld for most conditions.

For control of both distance and velocity, the smallest stgoef feedback gains were identified
that need to be varied to achieve control of both withoutnigsihe minimum jerk quality of
the resulting trajectories. It was found that good resutsiat be achieved either when different
amounts of co-contraction were used for each combinatiotiesired distance and velocity, or
when co-contraction and damping terms differed for slow sl movements. Such tuning of
viscoelastic properties for the task at hand seems to bategyralso utilised by human subjects
(Suzuki et al., 2001).

With respect to multijoint movements it was found that siengynchronous EP shifts controlling
two joints can not produce fast and smooth movements witkafigtic limits for maximum force
production and stiffness. Interaction torques are toagidre to be compensated for by a simple
compliant feedback controller. It can therefore be conetlthat interaction torques need to be
accounted for explicitly during multijoint movements. dtan open question, however, whether in-
ternal inverse dynamics models are required or whether afiedddaptive EP model can achieve
the necessary compensation.
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The muscle-reflex model studied in this chapter differs fratimer models in its level of com-
plexity. It is arguably the most simple model which still aoats for the non-linear properties
of individual muscles (and was chosen for that reason). Asvehin the previous chapters, the
basic non-linearities in muscle viscoelasticity (foreedth-velocity characteristics) are necessary
to achieve stability while allowing for flexibility with rggect to movement position, stiffness and
velocity. Other details, like anthropomorphic muscle pathd moment arms, accounting for mus-
cle pennation angle, or models of different types of musble§ (fast and slow-twitch), were not
required. Other models found in the literature may includieiom dynamics, a tendon element
and bi-articulate muscle pairs (e.g. Kistemaker et al.,72Q0or use anthropomorphic data to
model specific human muscles (Garner and Pandy, 2001). \Winlés expected to increase fi-
delity in matching experimental data, it was not requiresttaly the phenomena of interest in this
chapter. Equally, a simple control model, namely a lineanlzioation of direct state feedback
and static activation levels, was sufficient to reproduceadiu movement features. Neither were
complicated time-varying reflex gains needed (as in St-Gngd, 1997), nor detailed modelling
of sensory organs or neural circuitry (Lan et al., 2005). $meplifications used here allowed
for easier and more complete characterisation of the systeemaviour (such as maps of joint
stiffness at all equilibrium-points) and did not impede kiired of questions asked. The goal was
not to provide an anatomically correct arm model, but tostwtiether experimentally observed
movement features, such as triphasic muscle burst pattesnsemerge from the non-linear dy-
namics of a muscle-reflex system. To this end the level of tlindgroved sufficient. Although
the model can not predict the precise time-course of muscte$ in human arm movements, it
does predict the importance of velocity error feedbaclatie vs. absolute damping), the tuning
of viscoelasticity for movements of different speeds, dma need for compensation of interac-
tion torques during multijoint movements. Although indiually some of these results have been
demonstrated in both simpler and more complex models, tiEpter has shown that the observed
features are neither due to oversimplifications, nor smetfihuman physiology or anatomy. It
was further demonstrated that equilibrium-point contefaasible for movements of different
speeds and amplitudes with appropriate adjustments obéeidgains, i.e. not limited to any
particular range of movements (Kistemaker et al., 200@rPand Feldman, 2006).

The importance of an open-loop (co-contraction) commamdHe control of fast movements

highlights an often misunderstood concept of the EP-hygmi¢h Namely, that it suggests pure
feedback control; that it is therefore prone to destabifjsieedback delays; and that feedback
would arrive too late to contribute to fast movement. Butretle lambda signal itself is a feed-

forward command. It shifts motoneuron thresholds priorhie dnset of movement, such that
sensory feedback will contribute from the beginning. Theactivation command constitutes an-
other feedforward component. Nevertheless, both compsnmply that the central control of

movement requires a “representation”, or map, of the aatiip between desired angles and
muscle(-tendon) lengths. If such maps were to be undersisdadternal models, then one could
argue that the dichotomy between the EP- and the forcealdmgpothesis is not as strict as is
often presumed. However, the internal maps required by Ehbypothesis are of a very different

nature than those postulated by the force-control hypishekhe former are essentially repre-
sentations of skeletal geometry, i.e. purely kinematicilevtine latter are complete and detailed
“simulations” of the dynamics of force production. Whileetformer are easy to acquire, the lat-
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ter are hard if not impossible (see chapter 2). Equilibripmmt control therefore is not strictly
model-free, but it avoids the pitfalls associated with thesrse dynamics problem.

Several interesting avenues remain to be explored. Inhbid, for example, muscle models were
discarded that can lead to unstable dynamics. There is sanfenee, however, that unstable dy-
namics can occur naturally in human arm movements (Akazaaakuno, 2006). Further work
should aim to identify whether this is a common feature andysthe implications of unstable
dynamics at the joint level for feedback controllers like ¥3model. Even though an unstable
equilibrium might be detrimental to discrete goal-directctions, for example, a system con-
sisting of a repellor surrounded by two attractors, as ifledtin the previous chapter, might be
beneficial for oscillatory behaviours.

Further work is needed to assess the relative contributiamherent muscle properties and reflex
action on the stability of the coupled system. Of particutderest would be the contribution of
muscles to the compensation for feedback delay, as the effite muscle “preflex” can provide
stability where feedback alone is not sufficient. Giesl arawér (2007), for example, have ana-
lytically determined the size of the basin of attractiontfa equilibrium produced by antagonistic
muscles in the absence of reflexes (also see Wagner and &tickB99). It would be interesting
to see whether their technique can be applied in more coatpticscenarios. Alternatively one
could determine the relative contribution of muscle anceresitabilising actions numerically, for
example through “lesion” studies of the reflex controllers.

Finally, extensions to the EP-hypothesis are needed timadoeount for the effect of interaction
torques during multijoint movements. Chapter 6 proposessuwch mechanisms, one of which is
based on force-feedback between neighbouring joints, lemdther on feed-forward compensa-
tion.



Chapter 5

Lumped muscle-reflex model

In the previous chapter it was shown that a detailed simarladf antagonistic skeletal muscles
can reproduce the kinematics of simple goal directed momtsnalbeit not accounting for the
interaction torques arising during multijoint movemertsr simulations that include many joints
or degrees of freedom, it would be convenient, with respethe complexity of simulation and

analysis, if the qualitative dynamics of human movemenictbe captured in a simpler model.
This chapter investigates if individual muscles need to logletied at all, or whether a simple
lumped model with attractor dynamics at the joint level nbigé sufficient.

It might seem surprising that such a simplified muscle maglslggested here, when in previous
chapters it was pointed out that oversimplification is oftemcause for misguided criticism of the
EP hypothesis. But as chapter 4 has shown, it is not alwayesssary to pick the most detailed or
complicated model available either. It might often be sidfit to pick one that readily produces
the phenomenon one wishes to investigate. In chapter 6,xEmmple, we will study possible
mechanisms for the compensation of interaction torquesh urques appear by necessity in any
multijointed physical system, not just those controllednyscles with complex internal dynam-
ics. The model proposed in the following sections will befusbecause the reduced number of
parameters makes it easier to analyse the dynamics of themsou it produces. At the chosen
level of detail such a model will not be able to make predidi@bout details of animal move-
ments, i.e. those actuated by skeletal muscles. But it wifice as a tool to investigate potential
forms of feedback or feedforward control in abstract.

5.1 Joint model

Many variations can be found in the biomechanics literafaran odelling limb motion on the
level of joint attractor dynamics. Most can be describedaslimear extensions of a basic spring,
or equivalently PD control, model. In (Barto et al., 1999;riial and Inbar, 1999) for example,
limb control was modelled by a spring-mass system of the fivhi- B()’()% +K(X—Xeq) =0,
wherex is the position of an object of mass My, the equilibrium position, B the damping coef-
ficient, and K the spring stiffness. This model producesttaries qualitatively similar to human
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wrist movement wheiv = 1, B = 3 andK = 30 (Wu et al., 1990). In the following experiments,
different non-linear functions are compared as candidates joint controller comprising elastic
and viscous forces analogous to the aforementioned sprags setup. The resulting systems can
be interpreted as minimal equivalent models of the combaéffett of nonlinear muscle properties
and the stretch reflex mechanism.

Two options are studied for modelling joint elasticity, relyna linear function of position error
and an exponential function:

Rin = K(@-2) (5.1)

- Kel®-2-1 ifO>=A 50

P _Ke0-N-1 jfg < -2
HereK is stiffness,B the actual joint angle, andl the desired angle. Linear elasticity was used
in early models, such as the one proposed by Hogan (1984),sivbaed that minimum jerk
optimisation of such models can accurately predict obsekieematic invariants. Exponential
elasticity in contrast was used by several researchers ap@nximation of a muscle’s invariant
characteristic (Gribble et al., 1998; Pilon and Feldmafg}0Although the combined elasticity of
two muscles in an antagonistic setup would have a diffe@mt fit the joint level, the exponential
is distinguished from the linear model by the fact that s&ffs (tangent of the force function) is
not constant, but increases with the difference betwearabahd EP position (see figure 5.1).

For viscous forces, a linear model and two different noednities are considered:

Fin = BO (5.3)
Fasnh = Basini(6) (5.4)
Foower = B-sgn®)-[8]"" ne0,1] (5.5)

where B is the damping gain, aﬂo]oint angular velocity. Non-linear viscosity as descritigda
power law was previously found to allow for fast movements terminate with little oscillations
in a model of human wrist movements (Barto et al., 1999). Agréich.1 illustrates, in such a
model effective damping (the slope of the velocity dependfance function) increases sharply as
velocity approaches zero. Hence damping is strongest atvigke dropping quickly for faster
motion. The inverse hyperbolic sine functioms{ini was used, for example, by Martin (2005)
for having the same benefit as the power function. It diffensvdwver in that damping drops more
smoothly for increasing velocity. It also has the advantafyeot having a discontinuity at zero
velocity (desirable for numerical stability) and of notwating asymptotically. The similar arc
tangent (atan) function was used in (Gribble et al., 199@napproximation of the function which
describes a muscle’s force dependency on lengthening antésing velocity (see chapter 3). As
it is better suited for numerical simulation, while reseimflthe overall shape of the power law,
only the asinh function was considered in the following ekpents.

Several studies have proposed relative damping of the fegm= B(}\ — é) as an improvement

over absolute damping of the forRaps= BO (de Lussanet et al., 2002; Mclintyre and Bizzi, 1993).
While absolute damping alone was found insufficient for medpicing the fastest human move-
ments & 950 deg/s) at plausible stiffness levels, relative dampiogeased the maximum speed
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Figure 5.1:Different functions chosen as models of non-linear joimisttity and viscosity. Horizontal
axes measure angular error or velocity [-1,1] and stiffriestamping gain [0,1]. The resulting force F is
measured on the vertical axis. The first row shows forcefjtaad the second row the derivative of force
with respect to angular deviation. The linear model is cenlits its resulting surface is flat. For comparison
all surfaces are scaled to a maximum force of 1 N.

achievable. In addition to the different controller nomelarities described above, the following
experiments therefore also compare the effect of relatibadsolute damping and their relative
importance in producing fast and smooth movements.

5.2 Single-joint movements

The first experiment was aimed at identifying the combimatibelasticity and viscosity models,
as well as damping type and duration of EP shift, that ackieaurally smooth minimum jerk
trajectories at various speeds. The output of each coetralas simplyF = Fpos+ Frel + Fabs
i.e. the result of adding elastic forcEygs) as well as relative dampingf€ ) and absolute damping
(Fapg) terms. For any given controller, the elastic componenteither linear or exponential, while
the damping terms were linear or described byasieahfunction. All possible combinations were
studied, leading to eight (2x2x2) different types of colo In three separate sets of experiments
(fast, moderate and slow movement conditions) each typermfaller was optimised for both a
large and a small amplitude movement using a genetic ago'itA single set of feedback gains
(K, Brel, Bapg) Was used for both movements, while the duration of the EfPwhE allowed to vary
between the two. The fastest desired movements had dwaifdh2 s and 0.18 s for amplitudes
of 100 and 50 respectively. In the moderate speed condition movements Wéce as long
(0.4 s and 0.36 s), and three times as long for slow movemerts@nd 0.54 s). Each controller
was evaluated by driving it with an EP shift of evolved dwati and comparing the resulting

1See sections 3.4.2 for an overview of the algorithm and 3.pdoameter values.
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kinematics with the desired minimum jerk trajectory. Parfance was measured by the absolute
difference between the two, scaled to a value in the randé [Durations of the evolved EP shift
were constrained to vary between 50% and 100% of the mininevknduration. Feedback gains
were evolved in the range [0,1] and then scaled by a maximuoewa prevent unrealistically
high stiffness or damping. Measures of natural damping gathdynamic stiffness, i.e. stiffness
during movement rather than at rest, vary considerablyaritarature. While older experiments
have suggested stiffness values of up to 126 Nm/rad (Ladjeaal., 1982), more recent studies
have found values as low as 14 Nm/rad (Gomi and Kawato, 198nétt et al., 1992). It was
decided to evaluate controllers with relatively low stifs and the maximum was chosen to be 15
Nm/rad. Maximum damping to stiffness ratios reported inliteeature vary between 0.1 and 0.25.
This value is implicitly constrained by the optimizatioropess, however, which favors minimum
jerk like trajectories and hence penalizes terminal asailhs. It was therefore decided not to
constrain damping gains any further, but allow maximum lkewé the same strength as elastic
forces (i.e. damping to stiffness ratio equalled 1 at most).

5.2.1 Optimality of non-linear reflex response

Each of the eight possible controllers was optimised at ldastimes for each of the three speed
conditions. The performance of the best evolved contmléerd the mean performance across
repeated runs were then compared for any significant diféere between the various linear and
non-linear modelling functions. While the best performafmund can be considered a reflection
of the true potential of the controller (if the genetic aifom found the global optimum), the
mean and variance in performance rather reflects propetide search space (“evolvability”,
ruggedness of fitness landscape) and the optimisationitélgor

Table 5.1 summarises the performance of the best evolvetodlers. In order to compare the
best performances across the 2x2x2 different controligegyan analysis was carried out that is
similar to calculation of marginal means in an ANOVA statisA mean value was calculated for
one factor (type of elasticity/viscosity) by averagingass all levels of the other factors. E.g. to
assess the effect of exponential elasticity, the maximuriopaances of all linearly elastic models
are averaged irrespective of the type of damping functiod,c@mmpared to the average of maxima
across all exponential models.

For the fastest movements these “maximum marginal mearfghassMF are MR, = 99.71%
and MFexp = 99.72%, which is not considered different given the low stadddeviation (see
below). The maximum marginal means for linear and non-limekative damping, on the other
hand, areMF;, = 99.63% andMFasinn = 99.79%, indicating a significant effect. For absolute
damping the means weldF;, = 99.71% andMFsinh = 99.71%. Thus, considering only the
best evolved controllers, it can be concluded that only thelmearity in relative damping has a
significant effect on the performance of fast movements. IFANOVA statistic was also carried
out, the results of which are found in the Appendix of thisptka (means are shown in table
5.3 and bar plots of true marginal means in figure 5.5). Thennpeformances are virtually
identical to the maximum performances (greatest standewiiibnstd = 0.0001). Both a one-
way ANOVA (with each of the eight model combination as sefmfactors) and a 2x2x2 ANOVA
showed a clear effect of relative damping with a significamicp = 0.
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Model Speed
Fpos Foel Famp fast mod slow mean
lin lin lin 99.62 99.33 99.70 99.55
asinh 99.63 99.39 99.67 99.56
asinh lin 99.79 99.47 99.71 99.66
asinh 99.79 99.47 99.67 99.64
exp lin lin 99.63 99.70 99.77 99.70
asinh 99.62 99.23 99.81 99.55
asinh lin 99.79 99.75 99.77 99.77
asinh 99.80 99.47 99.81 99.70

Table 5.1:Best fitness percentage (across 5 runs for fast and slow netepand 10 runs for moderate
speed) for all elasticity and viscosity models as well agdpmnditions.

For the slowest movements a different significant effect iwaad. Here the maximum marginal
means for elasticity models weMF;, = 99.69% andMFeyx, = 99.77%; for relative damping
MFin = 99.74% andM Faginh = 99.74%; and for absolute dampidgRi, = 99.74% andVIFsinh =
99.74%. Hence exponential elasticity seems beneficial for simvements while the other non-
linearities have no influence on performance. A 2x2x2 ANOAfirms that the elasticity func-
tion is a significant main effectp(= 0.03), while the other main- and interaction effects are not
significant p > 0.26).

For moderately fast movements maximum marginal means Wéig = 99.39% andMFexp =
99.52% for elasticity;MF;n, = 99.39% andMFasinn = 99.54% for relative damping; anbll R, =
99.54% andM Fasinh = 99.39% for absolute damping. l.e. controllers perform sligltter with
exponential elasticity, non-linear relative damping anddr absolute damping. A 2x2x2 ANOVA
confirms a significant main effect for relative damping= 0), and a marginally significant effect
for elasticity (p = 0.03).

In summary, for fast and moderate movement speeds non-lie&ive damping significantly
improves performance. Non-linear elasticity significanthproves only slow movements, while
moderate movements benefit little. Non-linear absolutegagy in contrast, did not show any
significant effect on movement performance. We chose theetrtbdt performed best across the
different speed conditions (exponential elasticity, fioear relative damping and linear absolute
damping) for further examination in the following sections

5.2.2 Controlling movement velocity

In the previous experiments, reflex controllers were opg@diindependently for each of the three
different speed conditions. While allowing different féedk gains to evolve depending on the
required movement means that the system’s dynamics carntibgadlp tuned for the task at hand,

it also introduces additional control parameters. Sineeaiim of equilibrium-point approaches is
the simplification of the control process, it would be dediedf there existed a simple relationship
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between desired movement and feedback gains. Table 5.2acemipow each parameter depends
on the intended movement speed for the best (non-linearyvanst (linear) controllers.

model speed K \% B Ti[%] Ti[%]

best fast 0.927 6.15 0 58 66
modl 0.11 2 0 60 65
mod2 15 044 1.57 57 50
slow 9.6 0 15 58 50

worst fast 0.225 3 0 68 65
modl 0.02 157 0 68 66
mod2 114 0.78 0.78 62 57
slowl 11 0 1.5 55 50
slow2 105 0 0.015 97 100

Table 5.2:Average evolved parameters for fast, moderate and slow mewnts. The first controller (best)
has exponential elasticity, non-linear relative damping Bnear absolute damping, while the second con-
troller (worst) comprises only linear terms.

The non-linear model relies mostly on relative damping thiee the highest desired speeds,
with a small contribution of elasticity but no absolute damgp For moderate movements the
optimisation process found two different strategies. That fionsists of a reduction in both po-
sitional gain and relative damping to slow down the movemdiite second, in contrast, relies
more heavily on elasticity, but very little on relative daimgp Absolute damping is used instead
to avoid overshoot and oscillations. For the slowest moves&elative damping is completely
replaced with significant elastic forces and absolute dagpihe optimal duration of EP shifts
is about half the desired movement duration across all speeditions. The model consisting of
purely linear elastic and viscous forces shows analogmdetecies. Compared to the non-linear
model, optimal gains are significantly smaller, while theation of EP shifts for fast movements
is longer. Another strategy for slow movements was alsoddaorwhich the duration of EP shifts
is increased two-fold, while elastic and viscous forcesradeiced.

To gain a more detailed picture of the relationship betweggtimal feedback gains and desired
movement speed the best non-linear model was optimised &gyaa single 50 degree movement
of durations ranging from 0.15 to 0.85s. To minimise the nemtif varying parameters, the
duration of the EP shift was constrained to be 60% of desiredement time (i.e. in the optimal
range found in previous experiments). The results are suipadkin figure 5.2 (left). Minimum
jerk trajectories were successfully reproduced acrostealted movement durations. The average
performance was 99.81% with a standard deviation of 0.05%&ohtrast, a simple linear model
without relative damping (effectively a PD) was able to proe the desired trajectories only for
movements slower than 0.45s (compare figure 5.6 in the Appendhe change in feedback
gains for different velocities shows a pattern similar te ¢me found in the previous experiment.
The shorter the movement duration, the more heavily reatsmping is used, while for slower
movements elastic and damping forces alone are sufficiehe ré&lative contributions of each
vary non-linearly with desired speed. While the dampinggaixhibit nearly monotonos change,
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elasticity quickly increases to a peak around 0.4-0.5s lagid $lowly drops. This adds significant
complexity to the EP model under consideration. Not only lddlie central nervous system have
to chose the optimal duration of EP shift, it would also needdquire a mechanism for tuning
reflex gains to the desired movement speed and amplitude.

100

99.5

feedback gain

99.0

[ 9% ] @>uew.Joyad

movement duration [ s] relative EP shift duration [ %]

Figure 5.2:0ptimal feedback gains. Left: as a function of movement tiomavith EP shift fixed at 60%
of movement time. Right: as a function of relative EP shiftation, with a desired movement of 0.4 s.
Black lines correspond to feedback gains: solid for elégtidotted for relative damping and dashed for
absolute damping. Red lines trace performance (fitness).

In a second set of experiments it was tested whether assamapdbout the duration of the EP
shift would affect predictions regarding the amount offiséss and damping necessary for smooth
movements. The best non-linear controller was repeatqutlynsed for a single movement of 50
degrees lasting 0.4 seconds, while varying the duratiohe&P shift from 0 to 100% of desired
movement time. Performance and evolved feedback gainshavensin figure 5.2 (right). First,
results confirm that the optimal EP shift for this type of cotier ends about halfway through the
actual movement. This is in contrast to the full muscle-reftedel, which performed best with
an EP shift of the same duration as the desired movement.n8eoptimal feedback gains vary
dramatically with the duration of the EP shift. For very fabifts the system relies mostly on
elastic forces, while for the slowest shifts elastic foraes minimized and replaced with relative
damping. Hence, when simple EP models are used to predipegies of natural muscle-reflex
dynamics, it is important to be aware of the significant dffbat the assumed duration of the EP
shift has on predicted feedback gains.

5.2.3 Effect of non-linear reflex response on joint kinematis

The superior performance of the non-linear mode 99.79%) when compared to the linear
model & = 99.62%) is reflected in measured kinematic indices. For the$asarge amplitude
movement (100 over 0.2 s) the linear model reaches a peak velocity of 730sdsfter 0.145 s
(T =0.15 s), while the non-linear model reaches 950 deg/s after@dll s T = 0.14 s). For
reference, the target minimum jerk trajectory has a peabcitgl of 937 deg/s only 0.06 s into the
movement T = 0.125 s). Clearly, considering only the fastest movements littear model is
incapable of producing the forces necessary to achieveasieed speed. The non-linear model
performs significantly better, but both reach peak veldeitgr than the minimum jerk trajectory.
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Figure 5.3:Kinematics and reflex response for two movement strate@&s$%2) used by the linear and
non-linear models. The top row shows desired trajectory)(teP shift (dotted) and actual trajectory (sold
black). The second row plots desired and actual velocitfilprim red and black respectively. The bottom
row shows individual reflex responses (black) and net toapied to the joint (red). The solid curve
represents elastic force, while absolute damping is drdagshsdotted and relative damping as a dotted
curve.

For slower movements the differences between the two madelsmore subtle. Figure 5.3 plots
the kinematics and reflex response of the two models for mewtsrof moderate speed. The two
different strategies identified above are shown (compdre ta2). The first strategy (S1) relies
solely on relative damping to produce the desired trajgciwhile the other two feedback gains
are virtually zero. The second strategy (S2), in contrastken use of both elastic and viscous
forces. In both cases the non-linear model improves upotirtbar model. It prevents the actual

position from leading the EP during the initial phase, ardvas for less damped motion during

the fastest interval, thereby producing higher peak vgtocrhe combined effect is a velocity

profile that better resembles the desired bell shape.

5.3 Multijoint movements

In a final test of the validity of joint-level EP controllers emodels of human motor control mech-
anisms, the non-linear model was optimised for the prodootif multijoint movements. Only

the arguably simplest extension to the single joint caseagasidered; hamely two hinge joints,
each being driven by a separate controller, and no commtigrichetween the two. Control was
implicitly coupled, however, by using synchronous EP shiff the same duration and velocity.
In order to observe the effect of interaction torques, eactiroller was optimised for two move-

ments that differed in the direction of motion of the two j@inin the first case elbow and shoulder
joints moved in the same direction, while in the second dasalirection of the shoulder was re-
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versed. Analogous to the multijoint experiments using iekphuscle models, the latter condition
constitutes a synergistic case, in which interaction tesgassist the motion, while in the former
condition torques oppose the intended movement.

Several approaches were considered for mapping and coivsgréhe individual feedback gains
to be optimised. Options included independent and unaginsdl optimisation of all parameters;
constraining of the shoulder stiffness to twice the levethef elbow (as it needs to lift a stronger
load); constraining all viscous forces to be at most halfhef inaximum elastic forces (empiri-
cally, damping forces are significantly lower than stiffaés humans arm movements); allowing
all feedback gains to be twice as high as in the single-jaiiseqbecause higher stiffness could
potentially counter interaction torques); enforcing migim stiffness and maximum damping to
prevent relative damping from dominating the dynamicss(giiould encourage strategy S2, which
was found to be a better match for human kinematics above)uaimg a single fixed (but opti-
mised) ratio between elbow and shoulder gains (desirablesisple control strategy). As the
intention was to test whether simple feedback control isibbs without accounting for interac-
tion torques, all experiments used a single set of feedbagisdo control the two movements.

elbow 1 shoulder 1 elbow 2 shoulder 2
> <2
g g
(] o
> gI
-20 0 20 -20 0 20 -20 0 20 -20 0 20
angle [deg ] angle [deg] angle[deg] angle[deg]

torque [Nm]

0 0.2 0.4 06

time[s] time[s] time[s] time[s]

Figure 5.4: Angle-velocity phase plot (top row) and reflex responset(otrow) of an optimised mul-
tijoint EP controller. The first two columns show elbow anauslder activity when both joints move in
the same direction (assisting interaction torques), wihilne last two columns movement is in opposite
directions (opposing interaction torques). Initial pmsitand velocity are marked by a dot.

Although a few of the resulting controllers differed quéatiively in both performance and kine-
matics, all of them failed to qualitatively reproduce natuminimum jerk trajectories. A typical
controller is shown in figure 5.4. It is obvious that the iat&fon torques arising in one joint
due to movement in the other prevent the system from produsimooth, natural trajectories.
When movement direction is such as to create movement-oppogeraction torques (first two
columns) the actual position lags the desired trajectobpth joints. When interaction torques as-
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sist the movement (last two columns), actual positionafiitileads the equilibrium shift. Tremor-
like oscillations can also be observed during acceleraimhdeceleration of the arm in the latter
case. Furthermore, follow-up experiments were carriedtouvestigate whether the inability
to compensate for interaction torques was simply due to fitien@sation process having to find
a trade-off in feedback gains between the two differentativas of movement. However, even
when optimised for a single direction only, perturbatiomsised by interaction torques are not
sufficiently rejected. These results confirm the same ltinitafound in the explicit muscle-reflex
model.

5.4 Discussion

This chapter has shown that a joint-level EP control modéh wbn-linear elastic and viscous
forces produces more natural single-joint movements tHerear model (as measured relative to
a minimum jerk profile). It was found that the optimal duratiof the EP shift for this type of
controller is about half that of the intended movement tififgis is in contrast to the full muscle-
reflex model, which performed best with an EP shift of the sdaration as the desired movement.
When other EP shift durations were chosen, optimal feedigagks changed significantly. This
means that the assumed time course of (currently non-adddejwontrol variables such as the EP
shift duration influences predicted reflex gains. This isantgnt to bear in mind when comparing
models of equilibrium-point control that make differentsasiptions about the time-course of
the control variable; and when comparing predicted reflersgeo stiffness and damping levels
measured in humans. The experiments further highlightedétessity of tuning EP controllers
for movements of different velocity (confirming resultsrfrahe previous chapter). The relative
contribution of individual reflex components varied nomelarly with desired speed. The added
complexity of treating reflex gains as non-trivial contrariables undermines the EP hypothesis
only in so far as its simplicity is concerned. While refereno the body’s complex dynamics can
still be avoided, it implies that the central nervous systeoald need a mapping between desired
position and speed on one hand, and the appropriate refleg gaithe other. A more significant
limitation of this simple model is exposed when multijoinbwements are considered. Here it
failed to qualitatively match natural human performancerealistic stiffness and damping levels,
interaction torques create perturbations that can not fiigisuatly rejected by the controller. It
therefore confirms the results obtained using the expliogaete model. For multijoint movements,
a control strategy more complex than synchronous EP shifist ime necessary to produce the
smooth trajectories observed empirically. Two potentiachanisms are investigated in the next
chapter.
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Appendix: ANOVA results
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Model Speed
Fpos Fel Famp fast mod slow mean
lin lin lin 99.62 99.23 99.42 99.42
asinh 99.62 99.24 99.42 99.43
asinh lin 99.77 99.45 99.52 99.58
asinh 99.78 99.46 99.42 99.55
exp lin lin 99.62 99.41 99.61 99.55
asinh 99.62 99.22 99.52 99.45
asinh lin 99.78 99.51 99.62 99.63
asinh 99.78 99.45 99.81 99.68

Table 5.3:Mean fitness percentage (across 5 runs for fast and slow mestspand 10 runs for moderate
speed) for all elasticity and viscosity models as well agdpmnditions.

Fast Moderate Slow
LLL o
ELL o —— e e
LAL o — N
EAL © —e— ———
LLA | e P e
ELA | iei — —_—
LAA © —e—
EAA ° e S
0.9965 0.997 0.9975 0.998 0.992 0.994 0.996 0.994 0.996 0.998

Performance [ % ]

Figure 5.5: Multiple comparison test of 2x2x2 ANOVA results. Shown aliegaoup means with 95%
confidence intervals. Two means are significantly diffei€titeir intervals are disjoint. Groups names
are comprised of three initials indicating the functiondisar elasticity (L=linear, E=exponential), relative
damping (L=linear, A=asinh) and absolute damping (L=lm@aasinh) respectively.
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Figure 5.6:Feedback gains as a function of movement duration for a sifdpllike controller. Strength of
elasticity (solid black) and absolute damping (dotted kjas shown, as well as the relative duration of the
EP shift (dashed red). The latter is measured as a perceoitagsired movement duration. Performance
(fitness) is also displayed (solid red). Note how for fast emaents optimal performance can not be achieved
at the given level of maximum stiffness (15 N/rad). For slom@vements, the evolved strategy consists of
decreasing elastic forces along with increasing duratfaheEP shift.



Chapter 6

Compensation for interaction torques

In the following sections we use the lumped muscle-reflexehddveloped in the previous chapter
to explore two different strategies for compensating axtdon torques during multijoint move-
ments.

6.1 Introduction

Both muscle-reflex models considered in the previous chapss well as the model of mus-
cles driven with feedforward pulse-step signals, are ableeproduce the kinematics of human
single-joint reaching movements. While explicitly modtgdl individual muscles more faithfully
reproduces, for example, the typical bell-shape veloditfile, all approaches fail to cope with
the interaction torques arising during multijoint movensenThis calls into question the validity
of the equilibrium-point hypothesis’ claim that movemen#n be controlled without explicitly
taking into account the dynamics of the body. Indeed, it Waiggest that the central nervous
system needs to predict the interaction torques resultimg fin intended movement and appro-
priately adapt the movement “plan” so as to cancel out sudufiiations preemptively. For any
such prediction to be accurate, an internal model of the batynamics would be required. Many
researchers therefore conclude that the force-controbthggis alone, that is forces/torques as
control variables driven by internal models, can explai@ phoduction of natural movements.
This does not follow logically. Equally valid would be theggiestion of a position control model
in which the desired position is corrected by predictedrattion torques, and inverse dynamics
calculations that map the required counter-torques ontecting position offsets. A similar strat-
egy was proposed by Gribble and Ostry (2000). In a model baseduilibrium-point control, the
authors devised an iterative learning scheme which uséisgoosrror to adjust initial control sig-
nals in a manner that eventually restores desired trajestor the presence of interaction torques.
Even though the system did not require explicit inverse dyina calculations, it effectively learnt
an internal model in the form of an inverse map from desiregitipm to required control signals.

In this chapter we argue that an even simpler option miglsteXhe morphology of human limbs
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does not usually changeand their joint chains are relatively short. The arm cdssi$ only
shoulder, elbow and wrist joint, the latter of which playseader role in dynamics because the
mass of the chain below it (the hand) is relatively small. dzaily, for human arm movements
near linear relationships have been identified between itleetihn of joint movement, the in-
teraction torques resulting from it, and the actively gatest muscle torques in connected joints
(Gottlieb et al., 1996; Gribble and Ostry, 1999; also sedi@eet.3.5). This suggests that the
central nervous system could acquire a simple heuristicdatrolling the movement of joints in
a limb. A potential control scheme could take the form of sekiratics-based shift in desired po-
sition (as was used in previous chapters) on which is supesed a transient corrective position
offset derived according to simple rules from the desiredation of movement. Such a heuristic
would most likely not be accurate. However, the equilibripoint created by the muscle-reflex
system would ensure that the desired position is eventtedighed, even if the modified transients
are temporarily deviating from the desired position or thenotonic shift thereof. Based on this
idea, we propose two strategies for addressing the problémteoaction torques in the framework
of the equilibrium-point hypothesis. The first uses foroedigack as an approximation of arising
interaction torques. This is then used in a simple propealicontrol scheme at neighbouring
joints. The second strategy does not rely on this hypotbedsisle of force feedback, but uses
instead an approximate “prediction” of the upcoming intéican torque that is based on the de-
sired movement direction and amplitude. Thus the formeresamts a feedback and the latter a
feedforward compensation scheme.

6.2 Feedback compensation

Experiments in which EMG and torque pulses at the elbow awdldbr were measured have
identified a simple strategy used by human subjects to aoatelthe motion of these joints during
pointing movements. It was observed that the torque pratatghe shoulder is proportional
to that produced in the elbow and that both follow the same timofile (Gottlieb et al., 1996).
As confirmed by Gribble and Ostry (1999), suclirear synergyhelps reducing the effect of
intersegmental dynamics. If torques at the shoulder vapraportion with torques at the elbow,
then according to physical laws they must also vary with titeraction torque produced. This
is because the interaction torque experienced at the svojdoht itself is proportional to the
original torque applied at the elbow. The question then ig bwe final torque is controlled so
that it is proportional to the interaction torque, partanly in the EP hypothesis, which postulates
position- and not force-control. The simplest approaclo isftset the desired position negatively
proportional to the upcoming interaction torque. If, fomeple, the direction of the interaction
torque is such as to lead to flexion of the elbow, then the e@giosition at that joint can be offset
in the opposite direction, that is towards extension. Inst §et of experiments, we tested whether
such an approach is feasible. As an approximation of thedatien torque at one joint we used
the torque output of the other joint. In short, for each meiseflex controller we added to the
monotonic shift in desired position the weighted torquepatibf the other joint's controller.

1Except for the duration of development, during which charigefor example, limb lengths are slow compared to
the time-scales involved in learning to reach.
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6.2.1 Methods

As the problem of interaction torques arises in any artitedaigid body system, not just those
powered by muscle-like actuators, the simpler lumped neaseflex model presented in the previ-
ous chapter is used in the following experiments. This mizdeleffect a non-linear proportional-

derivative (PD) controller with added velocity error feadk (also called “relative damping”). For
further details see section 5.1.

In the first experiment, controllers were evolved using a&@aAproduce smooth minimum jerk
trajectories with amplitudes ofg2 2.5 and 3 rad at both joints (45 56.25, and 67.5). For all
amplitudes, the rate of change of the desired EP shift wagl@gks, leading to ramp durations of
0.2, 0.25and 0.3 s. For each amplitude condition two trigsevperformed: one in which shoulder
and elbow joint rotate in opposite directions, and one inclvtthe direction of movement is the
same. Consequently, in the former trial resulting intéoactorques support the desired motion,
while in the latter trial they oppose it. Different feedbagkins (stiffness K, velocity error V, and
velocity proportional B) were evolved for the two joints tilie same set was used for all six trials.
Previous experiments found that different viscoelastapprties are necessary only for different
movement speeds, but not amplitudes.

D
elbow —+>(EAP_)—> © ‘. /\_f
O T

+ '
v N\ :
shoulder - \EP} @ ““‘ \/\

monotonic EP shifts muscle-reflex model joint torques
(non-linear PD)

Figure 6.1:Torque feedback control scheme: each joint is actuated bynpdéd muscle-reflex model, in
effect a non-linear PD controller with relative damping €ldontroller receives as input the desired position
of the joint, i.e. the virtual EP, and outputs a time-varyiagjue that is applied to the arm model ¢ for
elbow and shoulder). The desired position of each joint ésrésult of adding a central command that
monotonically shifts from initial to final position, and tlyain-scaled feedback of torque produced in the
other joint &/s- Te/s)-

The control scheme for this experiment is illustrated inffiggbl.1. Each controller receives as input
a desired joint angle that monotonically shifts from iditia final position. As described above,
the two joints do not act in isolation, however, but are cedghrough the torque feedback they
receive from each other. To be precise, the torque producede joint is scaled by a feedback
gain and added to the central signal controlling the othiet.j&each virtual EP trajectory is thus

2See sections 3.4.2 for an overview of the genetic algoriteetpand 3.6 for parameter values.
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the result of adding a simple ramp-shaped control signalaapatentially complex time-varying
torque feedback.

For each trial and joint a different torque feedback gain exadved as it was not known a priori
how it would depend on the desired amplitude or speed of memnenBoth positive and negative
torque feedback gains were allowed. In addition, for eacthefthree different amplitudes the
duration of the minimum jerk trajectory (against which adttrajectories were evaluated) was
optimised. This was because previous experiments had fthatdhe relationship between the
rate of change and duration of the monotonic shift in desgesition on the one hand, and the
duration of the produced minimum jerk trajectory on the gtienot always linear. The range of
the desired duration was constrained to 100—200% of the damgtion to avoid cases in which the
same movement dynamics evolve independent of the input.r&ihparticular range was chosen
because experiments in the previous chapter found thaathp shift is optimal at approximately
half the duration of the desired movement. All in all, eaclnajae encoded for six “ordinary”
reflex gains, twelve torque feedback gains, and three mimijeuk trajectory durations.

Once the controllers had succeeded on this first task, thétings system was incrementally
evolved for a higher resolution of amplitudes (now inclugih 755, 2.255 and 2757 rad), as
well as for different speeds (25% faster and 25% slower)alBina test for generalisation was
carried out with the best evolved system in which amplitudeged between 3 and 3. Also, for
comparison, a control experiment was conducted in which schatreflex system was evolved on
the initial range of movements but without the addition afjitee feedback.

6.2.2 Results

The control experiment demonstrates again the failureropks feedback systems to deal with
interaction torques. Figure 6.2 presents the trajectameisvelocity profile of the reflex-controller
without torque feedback. In neither the supporting nor thgosing interaction torque condition
does the system exhibit natural dynamics. The velocity leére not generally bell-shaped and
feature a non-continuity at peak velocity, which coinciggth the desired position reaching its
plateau.

Compare these trajectories with those produced by thealtartfeaturing torque feedback, shown
in figure 6.3. Although velocity profiles are not perfectly @mth, they much better resemble the
desired minimum jerk trajectory (shown in red). Severatiiesting features are worth noting in
this data.

Firstly, when intersegmental dynamics support the desinetion (first two columns), overall
torques applied are significantly smaller than when theyosppthe intended motion (last two
columns). Thus, the system seemsiploitthe existence of interaction torques when possible,
and otherwise generates larger forcesaanteractthem. Interestingly, the same pattern is ob-
served in human subjects (Gribble and Ostry, 1999). Theteifeparticularly striking for the
elbow in the trial with supporting interaction torques {hebst column). First, note that the ex-
perimental setup is such that positive torques move a joimatds more negative angles. Now, as
the figure demonstrates for the trial in question, the elbenegates torques that would move the
joint not in the desired, but exactly the opposite directibhis means that the interaction torque
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Figure 6.2:Kinematics of the control model (without torque feedba@)own are angular position (top)
and velocity (bottom) of elbow and shoulder joint duringethmovements in opposite directions (A, left)
and the same directions (B, right). Amplitudes aré,&%.25, and 67.5, and EP shift durations 0.2, 0.25
and 0.3 s, respectively.

produced by the shoulder is already driving the elbow in fghtrdirection so strongly that it
needs to actively oppose it, that is, produce a breakingfmmstead of accelerating in the desired
direction.

Secondly, torque feedback gains have evolved such as tdynbdiinput trajectory (dashed line
in the first row) only in certain cases. To be more specificviteal EP trajectory of the elbow
is modulated by torque feedback only when interaction tesqgare supportive. The shoulder’s
input trajectory on the other hand is modulated only for gipg interaction torques. In all other
cases torque feedback gains evolved towards zero. Furbherthe role of torque feedback seems
to differ in the two cases where it is employed. For movemantgpposite directions, the input
trajectory for the elbow is equal to the sum of the linear rashift and the negative of the torque
produced at the shoulder. The resulting input trajectoitjally accelerates more slowly than the
unmodified ramp, but then temporarily overshoots the atawgét. The effect of this modification
can only be understood when the other feedback modaliteesaien into account. When com-
paring the contributions of the different modalities to therall force production (bottom left in
figure 6.3), it becomes clear that the result of the input fiation is an equalisation of the pro-
portional and derivative components. The time course optbeortional term is now so similar
to that of the damping term (but of opposite sign) that themsand therefore the overall torque
produced, becomes very small. The contributions are indhaped such that a small breaking
force is created instead of an acceleration, as describeebatCompare that to the unmodified
input trajectory (third column). The seemingly minor difeaces in shape of the proportional and
derivative components here lead to significant accelaratither than deceleration.

Torque feedback at the shoulder joint has a different fonetity. Here, the addition of elbow
torque to the shoulder’s input trajectory leads to greateeleration of the virtual EP when com-
pared to the original input ramp (top of rightmost columnhisTis followed not by an overshoot,
but by a reversal of direction away from the target posittorwhich the virtual EP then gradually
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Figure 6.3: Multijoint kinematics of torque feedback model at modersppeed and medium amplitude.
Shown are angular position (top) and velocity (middle), & as feedback response (bottom). Red lines
indicate the minimum jerk trajectory in the first two rowsgdahe dashed line plots the input signal (desired
position ramp plus torque feedback). In the last row, solatk lines correspond to the positional error
term, dashed to velocity error, and dash-dotted to the dagrtprm. The red line plots final torque output.

relaxes. The effect on individual reflex components is dgyualersed. Instead of equalising the
proportional and derivative terms, the positional erraxaggerated. The result is a greater force
production than is the case with a normal input ramp (secohghm). The greater accelerating
torque is then matched by an equally amplified deceleratimauise, which is the result of the
reversal in direction of the input trajectory at that poi@f course, the amplification of torque
applied at the shoulder is exactly what is required to coastethe opposing interaction torque
resulting from elbow motion.

Where torque feedback is used to adjust the original costgmial, the resulting virtual EP tra-
jectories show similarities with those produced by thedesy scheme described in (Gribble and
Ostry, 2000). Generally, they also find a difference in sggtbetween movements in the same
and those in opposite directions. In particular, both amshwot followed by reversal of direction,
as well as unmodified monotonic shifts can be observed in lnattiels. But while the learning
scheme seems to produce the latter only at the shoulder gaieeof assisting interaction torques,
they also occur here at the elbow for opposing torques. Viagpection indicates that the learn-
ing scheme failed to create trajectories as smooth as throseiged here with torque feedback.
The authors report that better results could be achievéniif tearning algorithm was applied for
more iterations. It would be interesting to know whetherdbatrol signals would be more similar
if their trajectories were further optimised.

The results indicate that it would be too simple to view feskbcontrollers such as the one
demonstrated here merely as damped non-linear springsinGlthe loop between the two joints
leads to a complex dynamical system, which through theant&m of its various subsystems is
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capable of “choosing” different strategies to cope withhsipporting as well as opposing inter-
action torques. Furthermore, a simple non-linear feediackroller with added torque feedback
achieves just that without the need for learning an intemmadel or inverse dynamics calculations.

However, although the resulting trajectories are compedstr intersegmental dynamics qual-
itatively, they do show some deviations from the desiredimim jerk trajectory. Even though
not visible in plots of angular position, the velocity preféhows a noticeable kink around peak
velocity. This can be explained as follows. The input tragec of the joint unaffected by torque
feedback is non-smooth (non-differentiable) where it gesnfrom a ramp to a plateau. The de-
sired velocity input to the controller (not drawn), whichtlie piecewise derivative of the desired
position ramp, therefore features a non-continuous stapgsh It forms a rectangular function
which changes from zero to the constant velocity of the rsitamp and then back to zero again.
Both these abrupt changes show up in the different compsrwérihe reflex controller and in its
final torque output. Through torque feedback, this effenttban further spread to the other joint,
where it becomes particularly apparent when overall tormutput is low (leftmost column). It
is worth emphasising here again that the simple feedbaclehi®diot meant to perfectly model
human muscles and reflexes or match experimental data, #m@xpected to differ in details
such as the one described. While additions to the model @gleably help to re-produce natural
kinematics more faithfully (e.g. a low-pass filter on “mueselctivation”), the current complexity
of the model seems to be sufficient for studying general jgies such as the compensation for
intersegmental dynamics.

The torque feedback model exhibits another interestingifea Actively produced torques in-
dicate a synergy between the two controlled joints. The toradile of torque at the elbow is
effectively a scaled version of the shoulder torque (reediim bottom row of figure 6.3). This is
the case independently of the direction of interactionues) hence even where the elbow pro-
duces breaking instead of accelerating forces. This seers in line with findings of a linear
synergy during goal-directed arm movements by Gottlielh. ¢1896). Figure 6.4 shows the close
time synchrony of the two joints more clearly by superimpgghe normalised torque waveforms
(left) and plotting elbow torque against shoulder torqught).

Even though the torque waveforms are not as smooth as thtsetex from experiments with
human subjects, they qualitatively reproduce the neaalirand figure eight curves reported in
(Gottlieb et al., 1996). These results hint at the possitiitiat the observed linear synergy consti-
tutes yet another movement feature that emerges from thentge of the muscle-reflex system.
Thus, instead of reflecting a strategy used by higher cetdregectly plan the torques at each
joint, as proposed by Gottlieb et al. (1996), the resultsteaimterpreted as evidence for an under-
lying organisation of the motor apparatus that allows hidgnels to control multijoint movements
without regard for intersegmental dynamics.

Finally, the proposed torque feedback mechanism seemduot#onal across a range of different
amplitudes and speeds. Figure 6.5 presents kinematic rdatetiie generalisation test, in which
amplitudes vary from 2250 67.5 and speeds are considered that are 25% faster and slower than
the moderate condition.

As the figure shows, smooth movements are produced in althoasas. Several observations can
be made, though. Firstly, the kink at peak velocity describove is visible again in the first of
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Figure 6.4:Linear synergy in multijoint movements with torque feedhaon the left, shoulder (red) and
elbow torque (black) are superimposed after normalisdtioamplitude and offset for clarity. The top row
corresponds to movements in the same direction, and therbatiw in opposite direction. In the right
column shoulder torque is plotted against elbow torque.

the two trials for all amplitudes. Secondly, for some of thiger amplitudes, the velocity profile is
unnaturally flattened near peak velocity. This is most jil@le to the fact that, apart from torque
feedback, all other feedback gains were held constant suthesdifferent amplitude conditions.
Even though this proved sufficient for single-joint moveitsan the previous chapters, in the case
of multijoint movements the resulting viscoelastic prdjgardo not seem to be always appropriate.
This is connected to another observation. For a constaatafathange of the virtual EP, the
evolved durations for the minimum jerk trajectory (agawsiich the performance is compared)
vary non-linearly as a function of movement amplitude. Inestwords, for larger amplitudes the
optimal movement duration becomes shorter relative torthatiramp, meaning that the system
“prefers” to move faster the larger the distance to the tar@de velocity profiles for different
amplitudes consequently show different peak velocitiepitie being caused by the same constant
rate shift in desired position. It would therefore be reada to assume that better performance
could be expected if the system was allowed different gfffnparameters for different amplitude
and speed conditions. This was in fact observed in previbapters.

Lastly, the observed kinematics (with exception of the aalgnjust mentioned), qualitatively
match those of human subjects instructed to move accuratelyrapidly to target positions at
variable distances (Gottlieb et al., 1990). In what the arglroined thespeed-insensitive strat-
egy, they found that the initial rate of rise in torque and vetipéit the shoulder and elbow are
uniform across different amplitudes. This is evident hargélocity profiles that initially super-
impose almost perfectly, and diverge only past their pediiega They also found that greater
distances cause these variables to rise for longer interaatl therefore to larger peak values. In
other words, humans prefer to move faster to cover largéarties when not instructed to move
at any particular speed. This, as already mentioned, isdeped here in the different peak veloc-
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Figure 6.5:Multijoint kinematics of the torque feedback model for agarof amplitudes (22.2567.5)
and three different velocities (rate of EP shift is 168.785,2and 281.25 deg/s). The first two columns
show the kinematics (position and velocity) of the elbow ahdulder joint during movements in opposite
directions. The last two columns display the same data foraments in the same direction. The first
two rows correspond to slow, the rows in the middle to moddygtaced, and the last two rows to fast
movements.

ities observed at different amplitudes. Gottlieb et al9@)¥suggested that this speed-insensitive
strategy is implemented through central control of amgétinvariant motoneuron patterns that
vary in duration and timing. The model proposed here suggastead that the observed strat-
egy reflects an adaptive organisation of spinal motor disdhiat allows for control of movement
distance via simple shifts in joint equilibrium positionaatonstant rate.

With regard to the complexity of adjusting interjoint tomfeedback for a desired type of move-
ment, it can be noted that the corresponding feedback geaimgeel to be constant across different
movement amplitudes. In fact, the gains were also constanss the two slower speed condi-
tions. Only for the fastest movements did the gains evoligh#y different values. Also, the
gains were negative only because the experimental setogveioat counterintuitively, was such
that positive torques accelerate the joint in the directibmegative angles. Negative feedback
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gains therefore imply that torque feedback is in fact pesiti

In summary, the proposed extension of equilibrium-poirggobmodels for multijoint movements
constitutes a simple mechanism that could explain the cosgi®n of interaction torques, the
observed synergy between elbow and shoulder joints, asasgglie speed-insensitive movement
strategy employed by human subjects. The fact that theserésaemerge simultaneously from a
simple non-linear feedback controller with interjointdae feedback suggests that the latter two
might in fact be secondary outcomes of a mechanism that geabarily with intersegmental
dynamics.

6.3 Feedforward compensation

The mechanism proposed in the previous section for compensaf interaction torques relies
on a feedback signal between joints that carries informadioout net joint torques. A possible
source for this type of feedback are the proprioceptiveraffes carrying signals about the tension
in individual muscles (appropriately combined). A diffetepproach could make use of infor-
mation about the intended movement to “predict” insteadujiieoming torques. As can be seen
in the previous sections, the waveform of net joint torque teehave a sinusoidal shape with an
accelerating and a decelerating pulse. The magnitude euiajgtiof these pulses in turn is corre-
lated with the desired movement amplitude and speed. Iéttetils are known, an approximate
time course of joint torques could therefore be “predictdd’this section we test the idea that a
somehow preprocessegrsion of the virtual EP trajectory for one joint can be usedodulate
the input trajectory of another joint such as to cancel oatititeraction torques resulting from
the motion of the two. We emphasise here the fact that we danmmt a priori what exactly this
preprocessing needs to achieve. An actual, precise pimdiat upcoming torques might not be
required, for example. As the previous section has dematasly all that is needed is a signal
that amplifies or suppresses joint torques depending oniteetidn and magnitude of joint mo-
tion. The only difference is that we want to create this sidnesie in a feedforward manner, from
information about the intended movement, rather than froopiioceptive feedback.

6.3.1 Methods

The proposed feedforward compensation mechanism workellagv$. First, a linear shift in
desired position is generated that moves from the initidhéodesired position at a constant rate
(identical to previous experiments). This constitutesdéetral motor command. Two such input
ramps are in fact produced, one for the elbow and one for thigldér joint. Now, for each joint we
create a preprocessor. This subsystem receives both thietiajgctory for the same joint as well
as that for the other joint as input. Its function is to somvehwodulate the original input trajectory
based on information from the other joint’s trajectory satthpcoming interaction torques are
compensated for. Since we do not want to constrain the fumatity of the preprocessing stage
in any particular way, we evolve dynamic neural networkstfis purpose. The type of neural
network used is described in the next section.



Chapter 6. Compensation for interaction torque$08

Dynamical neural networks

Continuous-time recurrent neural networks (CTRNNSs) (B&665b) are used in the following
experiments as abstract models of spinal reflex circuite state of each node in such a network
is described by

TYi = —Yi+ > W;i®;(yj +9;) +9ri(t)
7]

wherey; is the cell potential of that nodg, its time constanty;; the weights of incoming synapses,
¢the sigmoidal functiorp(x) = 1/(1+ e *) calculating the firing rated the threshold of the node
andgr gain-scaled input respectively.

Even though the above equation can be interpreted as a mbhilagical (non-spiking) neu-
rons and networks, dynamical systems of this type are usedomty as proxies for hypothesised
functionality of yet unknown spinal circuits. In other watdhese networks should be regarded
proof-of-concept dynamical systems that demonstrate veinetr not certain central motor com-
mands can produce a desired movement when combined cgrrAstsuch, they can be used to
make predictions, for example, about the significance dhaetypes of control signals, but not
about detailed connectivity in biological reflex circuit€TRNNs were chosen because they are
arguably the simplest non-linear continuous-time neuratleh and were shown to be universal
approximators (Funahashi and Nakamura, 1993; Nakamuralakagawa, 2009). Also, because
their dynamics are guaranteed to always converge, indepefithe parameters chosen, they are
well suited to evolutionary algorithms (e.g. Beer, 1996).

Used in conjunction with a genetic algorithm, the paransetéreach neuron are obtained through
scaling of elements in the genotype (distributed over timged0,1]). Typically in this chapter,
weights, biases and input gains are scaled to the intén/2, 12], and time constants are con-
strained to be at least twice the integration step size awrduer at most the length of the fithess
evaluation. The Euler method with a time step of 0.005 s wad for integrating the differential
equation (equal to the granularity of the physical simolati

Experimental setup

The topology of the neural networks evolved to generate fisatEP trajectories is illustrated in
figure 6.6. Each network consists of four neurons and twotinpdes (filled grey circles). The
latter do not exhibit neural dynamics, but function as senplaceholders relaying the centrally
specified monotonic shifts in desired EP. Each network veseihe EP trajectory for the joint it
controls as its first input, and the desired EP of the othat g its second input. Also, the output
of one of its neurons (black filled circle) constitutes thevrtesired EP trajectory and is used as
input to the muscle-reflex system instead of the original &Rp. The neuron’s output was scaled
from the range [0, 1] to the range [-1, 1]. Since the musdiexesystem works in units of radians,
the networks were therefore able to specify desired anglagden -180and +180. Notice that
there is no feedback to the networks from the muscle-reflesralter or limb dynamics. The
desired EP trajectories have to be generated in a purelyoleemrd manner from information
about the intended movement (such as the rate of change eatibdwof the input ramp).

The evolution of these networks was carried out incremgntal the first stage, only one network
was evolved to produce single-joint movements at the ellbaiwess was determined as previously
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Figure 6.6:Elbow (top) and shoulder (bottom) control schemes resjpésfir compensation of interaction
torques. From left to right: each joint is controlled by a redmetwork that receives as inputs both its own
desired position, as well as that of the other joint. Theréespositions are centrally controlled and shift
monotonically from start to endpoint. Each network oututew EP trajectory through a dedicated neuron
(black node), which is used to drive the corresponding imtuscle-reflex model in place of the original
input ramp. In other words, each network uses informatiauathe intended movement of the other joint
to transform its simple monotonic input ramp with the aim tegmpt the resulting interaction torques. No
feedback is present from the periphery to the network ctiaten

from the difference between actual and desired minimum tiggjlectories. Three amplitudes of
22.5, 45 and 67.5 were tested for each network instance, with desired dursitad0.15, 0.3 and
0.45 s. The time span of the monotonic EP shift was also ogtithiAs in previous experiments,
it was constrained to be at most as long as the desired movemémot shorter than 25% of
its duration. As at this stage only single-joint movementrevevolved, the network received
only one input, namely its own desired EP shift. For each agtwevaluation, the order of trials
was randomised and the desired movement randomly offsgb by 12 (so movements were not
always centred around’ Also, at the beginning of a trial each neural state wag tesendom
values from an interval surrounding its bias. This was tadimetworks which perform correctly
only when starting from specific initial conditions.

After the genetic algorithm had converged (no further imvproent in fitness), the experiment
transitioned to the second stage. Now movements at botlvelbd shoulder joints were evolved.
To this end, the best evolved single-joint network was edenin two ways. Firstly, the second
input neuron was added with initial parameters chosen sdhdefault it had no influence on the
network dynamics (gain and outgoing weights were set to)z&econdly, the extended network
was duplicated exactly for a setup as presented in figure®6g@nome encoding the extended and
duplicated network was then used to seed a new populatiomrbich the GA started evolving
multijoint movements. Parameters for the two subnetworkddcfrom then on evolve indepen-
dently. Allin all, each genome encoded for 77 values (34 pera network, three feedback gains
per muscle-reflex controller, and three EP shift durations)
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6.3.2 Results

Figure 6.7 presents the kinematics, feedback componamistoaque output of the best evolved
system during a 45excursion lasting 0.3 s. Clearly, a successful strategivedahat produces
smooth multijoint movements with natural bell-shaped ejoprofiles. Compare these trajecto-
ries to those generated by the uncompensated system in @idurAs was the case with feedback
compensation, the resulting system exploits interactiogues when these are supporting the in-
tended movement. The forces applied at the joints in thie eas smaller than in the case of
opposing interaction torques (compare the first two colutarse last two). In fact, the same pat-
tern of breaking rather than accelerating torques can beredd in the elbow. Also, the shoulder
creates larger overall torques than the elbow. This is mprrising either, since the shoulder joint
has to support and move a larger load than the elbow.

(A) elbow (A) shoulder (B) elbow (B) shoulder

angle [ deg ]

vel[deg/s]

feedback

0 01 02 03 0 01 02 03 0 01 02 03 0 01 02 03

time[s] time[s] time[s] time[s]

Figure 6.7: Multijoint kinematics of CTRNN model for a medium amplitusdeovement. Shown are
angular position (top) and velocity (middle) as well as fegek response (bottom). Red lines indicate the
minimum jerk trajectory in the first two rows, and the dastied plots the virtual EP trajectory generated
by the neural network. In the last row, solid black lines espond to the positional error term, dashed to
velocity error, and dash-dotted to the damping term. Thdinedplots final torque output.

However, several features distinguish the evolved system the torque feedback model. Firstly,
the neural network initially exhibits relatively large, datater small amplitude oscillations in its
output neuron (and therefore torque output), especiallpvabverall output levels (leftmost col-
umn). This is certainly not desired, but does not seem tafsigntly affect the spatial trajectory.
It would be reasonable to assume that continued optimisatiareful tuning of the fitness func-
tion and network parameter ranges, or the addition of moveams, could produce a smoother
approximation of the dynamics observed. But since we areomaterned with absolute accuracy
in matching experimental data, this was not pursued here.

Secondly, the kinematics show no discernible discontratipeak velocity. Whereas in the torque
feedback model this discontinuity spread from the rampgpstanput signal of one joint to the
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torque output of the other, this discontinuity is absorbedetby the neural network dynamics.
Even though the existence of this discontinuity in the presimodel merely hints at its simpli-

fications (e.g. no low-pass filter on activation dynamicsijclvhis a standard feature in Hill-type

muscle models), the absence of it in the neural network miodétates that intuitions about a

desirable and simple central command signal might be nusiga Although a ramp-shaped shift

from initial to target position might seem simple to a humasigner, the resulting discontinuity,

especially in higher derivatives, can amplify to undedeadifect. The smooth, continuous output
of a neural network, in contrast, though seemingly more deryps possibly more appropriate

for many tasks. In fact, there is no reason to assume thaetiveus system more easily produces
a linear, monotonic shift in a controlled variable than,, sagon-linear relaxation.

Most importantly, however, the neural network uses a mashaifor the generation of acceler-
ating and decelerating torque pulses that is very diffeiremb the one identified in the feedback
model. Firstly, observe that in many cases the desired Edttoay (dashed in top row) does not
approach the target position (red), yet the actual trajgadoes (black). This is only possible,

of course, if the difference between desired and actuatipnss not the determining factor for

torque production. It can only be explained if velocity eri®the main contributor instead. In-

deed, the desired EP trajectory seems to be mostly offsdtebartgle axis, but its rate of change
is rather similar to that of the minimum jerk trajectory. $lg even more evident in the plots of
reflex components. Here, it can easily be seen in the sityilafithe two traces that net torque is
mostly caused by velocity error. The whole picture is adittiore complex, though. While elbow
feedback gains are such that positional error is indeedgilelg, in the shoulder significant forces
are produced in proportion to positional error. Here, theralenetwork has offset the virtual EP
from the target position by a larger amount. Also, analogouke torque feedback model, in the
case of opposing interaction torques the virtual trajgchoitially accelerates faster, but then re-
verses direction before the joint relaxes towards the tdtgp row, right column). These changes
to the virtual EP lead to a complex interaction of the thrdexecomponents that is ultimately

responsible for the correct compensation of intersegrhegteamics.

Finally, figure 6.8 presents the trajectories produced bybist evolved network for all six trials.
These consist of three different amplitudes and two diffedérections. While the shoulder always
moves in the direction of positive angles, the elbow movéiseeiin the same or the opposite
direction. Trajectories are shown only for the time peribdttthe network was evaluated on
in a given triaf. As can be seen in the figure, the performance described axteeds both to
smaller as well as larger amplitudes. Plots of angle oves ine generally smooth, although elbow
velocity profiles exhibit the already mentioned oscillasocaused by neural output. Because
the desired duration of each movement was determined froonstant average velocity, peak
velocities are approximately equal. In other words, beedle desired speed was fixed, one can
not observe the speed-insensitive strategy that was deratatsby the torque feedback model.

To conclude, the non-linear reflex controller when driverahyeural network is best not under-
stood as a damped spring model, but as a complex dynamidehsylat balances various force
components for the task at hand. The added layer of neuraigatation” between central motor
commands and reflex dynamics allows higher levels to intevih the motor apparatus without

SFitness evaluations of smaller amplitude movements wesetestfor reasons of computational efficiency.
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Figure 6.8:Multijoint kinematics of ANN model during movements of tierdifferent amplitudes.

regard for intersegmental dynamics.

6.4 Discussion

Two mechanisms have been proposed in this chapter for thpamsation of interaction torques
during multijoint movements. The first is based on intetjd@edback of net joint torques. Since
intersegmental dynamics are systematically related tgedgtapplied joint torques, information
about the latter can be used to counteract the former. Butdamtorquesfunction as corrective
feedback in a motor control framework basedpmsitional control? One option would involve
an internal inverse dynamics model that maps required eototques onto positional offsets.
Such a mapping can only be correct if it takes into accounggmmetry and dynamics of force
generation of the neuromusculoskeletal system. The man@laped here suggests instead that
the central motor command which specifies the desired positi one joint can simply be offset
in proportion to the torque created at another. In other gdite “inverse dynamics calculations”
are replaced with a basic linear scaling function. The méakther predicts that the virtual EP
of the distal joint (elbow) is modulated by torque feedbacdkyovhen joints move in opposite
directions. When they move in the same direction, in cohtady the proximal joint (shoulder)
is affected. In both cases torque feedback is positive.

Translated into animal anatomy and neurophysiology theothgsised mechanism makes the
following predictions. Firstly, it assumes that active riasforces can be sensed reliably, and
transformed into either muscle torques first or joint tosydeectly. Such transformations could
arguably be based on a combination of sensed muscle forbeothier proprioceptive signals ac-
cording to the geometry of the articulated system (torquleegjpint is equal to force times moment
arm). It further predicts that spinal interneurons existolilreceive afferents carrying information



Chapter 6. Compensation for interaction torque$13

about forces and which project ontomotorneurons such as to modulate the threshodd the
stretch reflex (offset the desired muscle length, see chapté-urthermore, either the activity of
these interneurons, or their synapses antootorneurons need to be selectively gated depending
on the relative direction of motion of the joints. Lastlytf@nt torques need not be represented
explicitly if information about active muscle force or toigis appropriately relayed across other
joints in the chain. The required distribution of afferectsild be the result of the co-development
of the skeleton, the muscles and the spinal circuits inniexydhem.

The question then arises as to how realistic the assumgimhpredictions of the torque feedback
model are. Force feedback has been used previously as gnainpart of other motor control
models. Feldman, for example, hypothesised that it helygatising the effect of cocontraction
so that stiffness and position can be controlled indepahgaven when antagonist muscles are
arranged asymmetrically (Feldman, 1993). It was also usedadel the myotactic reflex which
protects a muscle when loads exceed a safe threshold (Gamtalal et al., 1997). Indeed, this
was traditionally thought to be the only role of the Ib affesefrom force sensing Golgi tendon
organs (references in Cleland and Rymer, 1990). Severahfiacthallenge this idea. Firstly,
it is now clear that Ib afferents are in fact very sensitiveeten small force levels (Jami, 1992).
Secondly, the ensemble activity of Golgi tendon organsrately encodes force information in the
whole muscle (Mileusnic and Loeb, 2009). And thirdly, Ibeafnt activity results in widespread
inhibition as well as excitation of motoneurons innengtinuscles acting at the same joint as well
as distant ones (Jankowska et al., 1981; Nichols, 1989;00aska, 2001). It is also known that
Ib inhibitory interneurons receive input from la afferetitst carry muscle length and velocity
feedback from muscle spindles. One theory suggests thaiple confers dynamic sensitivity
to Ib interneurons, which would allow for precise force region throughout a wide range of
movements (McCrea, 1992). In conjunction, these findinggsst that force-dependent feedback
could play a role in coordinating the simultaneous motiosaferal joints. Interestingly, McCrea
(1992) points out that a hypothesis has yet to emerge thédiazpghe widespread distribution of
Ib excitation throughout the limb. The torque feedback ngdesented in this chapter suggests
that 1b excitation could be the mechanism by which the spioall compensates for interaction
torques during multijoint movements.

Further evidence for the use of positive force feedback éenddntrol of movement comes from
studies of invertebrates and cats. It is known, for examntplat, certain reflexes activating ankle
extensors in the cat switch from being inhibitory duringtistposture (Harrison et al., 1983) to
excitatory during the stance phase of walking (Pearson aiéh§, 1993; Pratt, 1995). Excita-
tory influences were shown to originate in Golgi tendon osgé@onway et al., 1987; Donelan
and Pearson, 2004) and the contribution of this positiveeféeedback was shown to range from
20% to as much as 50% of total muscle force (Donelan and Rea2864). Regarding its role,
Prochazka et al. (1997) demonstrate in computational mdtiet such positive force feedback
can, somewhat paradoxically, provide stable load compiemsahen functioning in concert with
inherent muscle viscoelasticity, negative displacemeatiback and delays in the afferent path-
way. Positive feedback was also demonstrated as a meansdentdalised limb coordination in
the stick insect (Cruse et al., 1995), in the control of legrements of the locust (Burrows and
Pflueger, 1988), and claw movements in the crayfish (Lindsdy&erstein, 1977). Experimental
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evidence also exists for load receptor contribution to th&rol of body equilibrium during stance
in humans (Dietz, 1998).

Last but not least, the feedback model presented in thistehaghibits the experimentally ob-
served linear synergy between elbow and shoulder torquddpdows the speed insensitive strat-
egy identified in human subjects. Neither of these feature® wxplicitly built into the system.
This suggests that they could be epiphenomena of a mechdmidns primarily concerned with
intersegmental dynamics. They constitute another exanfdeatures that need not be centrally
planned, but could emerge from the dynamics of the undeylgguromechanical system.

Further work should address the generality of the proposegpensation mechanism. It would
be interesting to know whether torque feedback gains neée tadjusted in a complex manner
for a wider range of different movement amplitudes and spefeat example. Another question
is whether compensation could also be achieved with aat&arfeedback instead of torque, as
implicated for example in the control of balance (Welch amdyT2009). As acceleration is related
to torque via inertia, feedback about the former, possiblyanjunction with postural feedback or
information about limb characteristics, could potenfiathieve the same effect. Also, it would be
important to show that the proposed feedback mechanismsreaplally on the level of individual
muscles, and not just for a joint-level model as considenetiis chapter.

The feedforward model proposed for producing smooth naititijmovements is less able to make
concrete predictions. First of all, since it operates gabel the level of central motor commands,
it could be implemented either in the brain or in spinal reftéxuits. Further work would be
needed to evolve a neural network that can control multijoiovements under a wider range
of conditions. This could be analysed for specific corretatibetween neural activity and force
production, which could then be compared to those found énbifain or the spinal cord. One
prediction of the model, however, is its strong reliance etoeity error feedback. Several re-
searchers (e.g. Bullock and Grossberg, 1992; Feldman,) 188@& noted the importance of the
muscle spindle’s high gain response to stretch velocitynBdd Vallbo, 1990) for the creation of
triphasic muscle bursts in models of the stretch reflex. ibisclear, however, whether an equally
strong signal of velocityerror is also present in neural activity of the spine. Though themo
theoretical argument against it, experimental obsematiould need to confirm the existence of
such a signal.

In summary, two testable hypotheses have been proposedathaxplain the compensation for
interaction torques during multijoint movements. It rensaio be seen whether the models gener-
alise to the explicit control of individual muscles, and wier future neurophysiological research
will confirm or reject their assumptions.



Chapter 7

Conclusion

The aim of this thesis was to examine the relationship betwlee material properties and dynam-
ics of muscles and reflexes on the one hand, and the type obtsiginals required for coordinated
movement on the other. Specifically, the framework of thdldgiwm-point hypothesis was used
to test whether simple monotonic shifts in desired positoa sufficient to produce single- and
multijoint movements of varying amplitude and speed thplicate biomechanical invariants ob-
served in human subjects. As described in chapter 2, the g&tigsis suggests that this can be
achieved without the need for internal models by exploitigintrinsic dynamics of muscles and
neural circuits in the spine. Others have argued that motural based on the viscoelastic proper-
ties of these subsystems is insufficient to account for fastaments and that it predicts complex
control signals. Much of the criticism regarding this thednowever, is based on misconcep-
tions about or oversimplification of the mammalian motorapgus. It was therefore necessary
to study the implications of various non-linear componeritdhe muscle model used, so that any
simplifications could be justified as not being relevant ia tdontext of the experiments carried
out (see chapter 3). Given the chosen level of biologicalgitility, the following chapters set
out to test the model’s ability to deal with feedback deldggproduce triphasic burst patterns, to
simultaneously control movement distance and duratioth t@eoordinate the motion of multiple
joints. Also, a lumped muscle-reflex model, which combires tivo components into a single
equation of force production at the joint, was consideredraapproximation of the detailed dy-
namical representation. Based on this simpler model, twchar@sms were proposed which aim
to explain the compensation for interaction torques thiaean one body segment as the result of
motion in another.

7.1 Summary of contributions

Properties of stable equilibria in joint space created byagonistic muscles

The finding that non-linear material properties in skelgtakcles lead to the emergence of a stable
equilibrium when one muscle acts against another is not melfams the basis of most EP mod-
els of motor control. Chapter 3, however, illustrates in eafatail how joint stability depends on



Chapter 7. Conclusion 116

assumptions about muscle paths and moment arms, the otloSseries elasticity (tendon) and
the modelling of chemical dynamics (€3. It also shows that a setup consisting of two monoar-
ticular muscles can qualitatively, and in some respectatifatively, approximate the steady-state
and transient behaviour of a system that in addition feathiarticular muscles. By showing that
at the chosen level of complexity the muscle simulatiorvedléor stable control of joint position,
stiffness and velocity, it justifies its use in the followiolgapters. Regarding the bigger picture, the
chapter argues that stable joint equilibria implement gyies at the lowest level of motor control.
They reduce the number of degrees of freedom that need torttlbed (from several muscle
forces to a single joint position), yet allow for flexibilityia tuning of response characteristics
(stiffness and damping).

Material properties of muscles allow for flexible motor aohtand might
facilitate motor learning

The second part of chapter 3 explores the implications oérietproperties for open-loop muscle
control using pulse-step motor commands. Using a gengjarighm to evolve control strategies,
it is found that the antagonistic setup allows for more flditybin reaching the same position
than would be possible with a proportional derivative colidr. An example is the use of a
passive, i.e. unpowered, swing to move from an initial posito a target. Also, muscle damping
characteristics are shown to smoothen the fithess landstgndse-step controllers. If nervous
systems use such forms of control, then this property caddithte the learning of appropriate
motor commands.

Muscle-reflex dynamics driven by simple control signalsagpce biomechanical invariants

Chapter 4 introduces thlemodel, an instantiation of the EP hypothesis, and vanatitereof
that add velocity error as well as static coactivation congmts. It demonstrates that the former is
crucial for high velocity movements without oscillatiorad the latter for dealing with feedback
delays. It is shown that this reflex model can reproduce abkinematics of human subjects at
realistic stiffness levels, even when driving a muscultetlt system that does not feature tendon,
calcium dynamics or biarticular muscles. The chapter agvs how a simple monotonic shift
in desired position interacts with the reflex model to pradesperimentally observed triphasic
burst patterns, and allows for control of movement distazwoe velocity. For the latter to be
feasible, however, the range of static musculoskeletgdgaties represented in the controller needs
to be extended. The results confirm that any EP-based motdrotscheme requires functions
that relate the desired target not only to appropriate reulseigths, but also to feedback gains
determining the system’s viscoelasticity.

A lumped model approximation of neuromuscular dynamics

For some purposes it might not be necessary or desired tdadenin detail the dynamics of
several muscles and their reflex control. In chapter 5 amnaitize model is developed which
approximates such dynamics with a single equation of forodyction that exhibits equilibrium
dynamics at the joint level. It is shown that elastic and eigcforces need to be non-linear func-
tions of joint position and velocity in order to reproducerfan kinematic data during single-joint
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movements. Crucially, this model demonstrates how assangabout muscle and reflex dynam-
ics affect predictions about the kind of control signalsdezkfor smooth targeted movements.
While the detailed muscle-reflex simulation produced theatmest movements with a shift in
desired position as long as the desired movement, the lumpei@l predicts a shift of only half
the duration.

Compensation for intersegmental dynamics during muttijoiovements

The detailed muscle model, driven in feedforward or feekdbaode, as well as the lumped
muscle-reflex model, both failed to account for the intensexgtal dynamics that occur by ne-
cessity during multijoint movements. Chapters 3-5 dematestthat it is not sufficient to drive
each joint in isolation when force production is limited &alistic levels. Two mechanisms were
therefore proposed in chapter 6, which couple the contrahdiidual joints so that interaction
torques are compensated for correctly. One is based onghéudtion of force feedback across
the joints in a limb, and the other on feedforward adjustmerfitcontrol signals in relation to the
desired movement duration and amplitude. While both shaemtial in reproducing human per-
formance, the former is simpler and makes more explicit asthble predictions. It also suggests
that experimentally observed elbow-shoulder synergieseadisas the so-called speed-insensitive
movement strategy, might be epiphenomena of a system tpatriarily responsible for the com-
pensation of intersegmental dynamics. Both models arertediindicate that the nervous system
might not need an internal representation of limb dynanacschieve this.

7.2 Future work

The work started in this thesis opens many avenues to beregpl®ne direction to follow con-
cerns the chosen level of realism and model complexity. igh a relatively complete muscle
model was studied in chapter 3, several simplifications vneaele in consecutive experiments.
For example, the series elastic element was omitted basttedact that the short tendons found
in the human arm should have a negligible effect on its dynamAlso, calcium dynamics and
biarticular muscles were not included, while muscle patesvassumed to vary linearly with joint
angle and moments arms to be constant. The complete modgrured this way because it al-
lowed for an easier relationship to be established betwegvea target position and the required
muscle lengths. Arguably, the conclusions in this thesssg@neral enough not to depend on such
details. A logical next step would be to show that this is itt faue.

Another simplification was the omission of the effect of dgtywvThis is a common technique in
biomechanical studies, and usually implemented by exagutiovements in the horizontal plane
only. It is justified if one is primarily concerned with the rymic forces involved in a given
movement, but not with the static forces required for cotautiing the effect of gravity on a limb.
Though this was the case here, it would be interesting to eeahow control signals need to be
adapted to account for external loads (the fact that EP rmamal account for internal loads has
been shown in this thesis).

The range of movements studied could also be extended. tterenly considered movements
involving two hinge joints, each revolving towards a targegle. Human arm movements, of
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course, involve more joints, many more muscles, and spetigctories in three dimensions.
The models studied in this thesis could be incrementallgreded to account for more complex
bodily configurations as well as task requirements. Othere lalready shown, for example,
that asymmetry in muscle attachment could be compensatél tioe spine so that higher levels
only “see” symmetrical structures. Eventually, it would desirable to show that an EP model
extended with the mechanisms proposed in this thesis calupeanatural multijoint movements
when controlling an anatomically correct arm model in thd@aensions and under the effect of
gravity.

Another route for further investigation concerns the nphysiological evidence for the mech-
anisms proposed in this thesis. Though it was shown thatiglerror feedback is crucial for

fast movements, and that force feedback can be used to daterglction torques, it is still un-

clear whether the required circuitry actually exists in gpgnal cord. We know of interneurons
that encode the velocity of muscle contraction and tendiahtheir patterns of connectivity with

other inter- and motorneurons has not yet been fully estaddi. Also, a technique is required
for separating reflex and centrally specified componenthiftssn motorneuron thresholds (the
A command). At different points in this thesis, reflex modaisdicted monotonic motor com-
mands of either the same duration as the intended movemefiaif its duration. If the actual

motor command could be identified, this could help to disgymaie between the different model
assumptions.

Muscle-reflex models were evolved in this thesis based omeshtfunction that minimises jerk
in joint angle trajectories. As reviewed in chapter 2, matlyeo optimality criteria have been
proposed that account for the invariants observed in humawvements. One advantage of the
evolutionary approach is that the fitness criterion canhe®#s changed. It would be interest-
ing to test whether different optimality assumptions leadlifferent types of reflex models or
evolved motor commands. For example, neural network cldetsocould be modified to include
signal-dependent noise, and evolved to minimise endpainance at the arm. According to the
minimum variance theory, resulting trajectories shoulgm®oth as a consequence, since abrupt
changes in motor commands would lead to more variabilitso@ein the final position. The opti-
mality measure could have significant effects on predicédiéx gains and motor commands. In
this thesis, controllers were evolved to reduce overshootoscillations at all cost (as a result of
minimising jerk). But in human subjects these features odadt be observed, especially during
fast movements. Another question is, therefore, whethersime results are obtained if such
constraints are relaxed.

This thesis has demonstrated that reflex gains need to b&tedljo match the viscoelasticity of the
system to the speed and amplitude requirements of the desmeement. Further work would be
needed to determine whether this adjustment can take ptelogver levels of the motor hierarchy,
for example through simple heuristics implemented in dgimauits, or whether a precise internal
model is required for relating reflex gains to the intendediomo Another problem is how either
of these would be acquired. Models exist for learning fodhand inverse internal models of the
body. But an open question is whether spinal circuits calbgvwith the body in such a way as to
reflect the dynamical interactions of its segments. An gmiaite organisation of feedback in the
spinal cord can in theory compensate for interaction taggeavity, or the asymmetry of muscle
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attachment (see e.g. Feldman, 1993; Bullock and Grossb2@d,). All this could be tested with
a more detailed neural model of spinal reflexes.

The thesis has also demonstrated that the dynamical systepneach is a valid methodology
for studying questions of motor control. As shown throughttxe previous chapters, in the EP-
hypothesiscontrol of motor behaviours is best understood as the appropriéeti®a of param-
eters of a coupled neuro-musculoskeletal system, whileeXeeutionof a motor behaviour is
simply the relaxation of its dynamics towards a stable dapiim. While the selection of control
parameters (such as reflex gains) is relatively simple —asdmt require an internal model of bod-
ily dynamics — it necessitates kinematic representatibbsdy geometry. The difference between
force-control and EP-control (as implemented here), is tiat whether or not internal models are
used, but rather concerns the nature of the models. The-éortteol hypothesis requires detailed
computational processes that calculate the inverse tnanafion from desired movement to indi-
vidual motor neuron firing rates, in other words, detailed ancurate predictive simulations of
the body and the external world. The EP hypothesis, in cehtsaiggests that the body (specifi-
cally the neuro-musculoskeletal periphery) is “its owntlmedel” (Brooks, 1991), and responds
to centrally triggered shifts in parameters with the autboos execution of movements. Further-
more, as argued above, the kind of kinematic represengatiemuired by the EP-hypothesis could
in theory be embodied in distributed peripheral networksleeeloping with the body. Arguably,
referring to such an organisation of feedback structure$nésrnal models” would stretch the
meaning of the word.

It is also worth pointing out that kinematic maps were reggliin this thesis because the experi-
ments, somewhat artificially, defined a movement task asmgdvom one specific set of angles
to another. Natural movement tasks are usually driven bgragbals, and are often defined in
visual space, as when reaching for an object in the enviratime such situations, the EP hy-
pothesis proposes a hierarchical control scheme (Feld2®d). As described in section 4.1.3,
for multiple muscles it is suggested that shifts in indiatithreshold lengths are controlled by a
sighal comprising two components: a reciprocal part R, #ierent configuration, which shifts
the thresholds of antagonistic muscles in the same direatigoint space to control equilibrium
position; and a co-contraction part C that shifts the thokshin opposite directions in order to
modulate the stiffness of the joint. The referent configaraR, by specifying a basis set of mus-
cle lengths beyond which muscles become activated, eabgmstablishes the origin of a frame
of reference for muscle activations. For the control of nmogat at the joint level, the central
nervous system does not need to concern itself with aatiyatidividual muscles, but only with
shifting the referent configuration R. In the hierarchicdieme, it is further suggested that the ref-
erent joint configuration does not need to be specified axpli¢irstly, because ontogenetically
formed neural structures are thought to distribute shifthtieshold lengths such that asymmetries
in muscle configurations are automatically accounted foather words, R can be shifted linearly
from one joint angle to another, while the underlying nestalictures shift muscle thresholds in
relation to the geometry of the musculoskeletal system.o@#yg, the joint referent R itself is
controlled within a higher-level frame of reference. Foamwple, when reaching for an object,
the central nervous system establishes as a task goal afsthi& hand referent position in visual
space. Lower level referents, such as the joint referemstjraturn defined with respect to the
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frame of reference of the hand. In other words, to reach fartiqular point in space, a shift in
referent hand position results in a shift of referent joinglas such that the hand moves in the
direction of the target. On this level too, the relationdbgtween the different frames of reference
(how joint referents move in response to shifts in the hafeteat) is implemented by ontogenet-
ically formed neural structures. Now, in this thesis thedowevel of the hierarchy was studied
in isolation. Experiments evaluated only whether artifigiastablished referent configurations in
joint space (i.e. poses) could be achieved smoothly byrdiftetypes of controllers. Arbitrary
poses were selected as “tasks” and the referent confignr&tietermined using a look-up table
of muscle lengths and joint angles. Neither were the netmattsires considered that shift muscle
threshold lengths in response to a shift in joint referent,the higher-level frames of reference
responsible for establishing task-specific shifts in thatjoeferent in the first place. One of the
most valuable extensions of the work presented here coetdftbre investigate if the requirement
for internal kinematic maps can be relaxed in a frameworkithaased on tasks defined in external
space, and which includes the (neural) implementationarfinchical frames of reference.

7.3 Conclusion

To conclude, this thesis has demonstrated that the intrimsiterial properties of muscles and
the dynamics of low-level reflexes simplify the “computatid’ problems involved in the control
of limb movements. It has confirmed that equilibrium-poindbdels can account for single- and
multijoint movements of various speeds and amplitudes lamebby refuted claims to the contrary.
Furthermore, it has shown that this can be achieved withlsiggntrol signals, and without requir-
ing inverse dynamics calculations. The thesis also demaiest that the approach of co-evolving
bodily parameters and neural control structures using éaranically inspired optimality criteria
is a promising avenue that should be further explored. laiamto be seen whether neurophysi-
ological research will verify or falsify the predictions d®in this thesis concerning the types of
feedback control employed in human multijoint arm moveraent
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