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On the intrinsic control properties of muscles and reflexes
Exploring the interaction between neural and musculoskeletal dynamics in the
framework of the equilibrium-point hypothesis

Thomas Buhrmann

Summary

The aim of this thesis is to examine the relationship betweenthe intrinsic dynamics of the body and
its neural control. Specifically, it investigates the influence of musculoskeletal properties on the
control signals needed for simple goal-directed movementsin the framework of the equilibrium-
point (EP) hypothesis. To this end, muscle models of varyingcomplexity are studied in isolation
and when coupled to feedback laws derived from the EP hypothesis. It is demonstrated that the
dynamical landscape formed by non-linear musculoskeletalmodels features a stable attractor in
joint space whose properties, such as position, stiffness and viscosity, can be controlled through
differential- and co-activation of antagonistic muscles.The emergence of this attractor creates a
new level of control that reduces the system’s degrees of freedom and thus constitutes a low-level
motor synergy. It is described how the properties of this stable equilibrium, as well as transient
movement dynamics, depend on the various modelling assumptions underlying the muscle model.

The EP hypothesis is then tested on a chosen musculoskeletalmodel by using an optimal
feedback control approach: genetic algorithm optimisation is used to identify feedback gains that
produce smooth single- and multijoint movements of varyingamplitude and duration. The impor-
tance of different feedback components is studied for reproducing invariants observed in natural
movement kinematics. The resulting controllers are demonstrated to cope with a plausible range
of reflex delays, predict the use of velocity-error feedbackfor the fastest movements, and suggest
that experimentally observed triphasic muscle bursts are an emergent feature rather than centrally
planned. Also, control schemes which allow for simultaneous control of movement duration and
distance are identified.

Lastly, it is shown that the generic formulation of the EP hypothesis fails to account for the
interaction torques arising in multijoint movements. Extensions are proposed which address this
shortcoming while maintaining its two basic assumptions: control signals in positional rather than
force-based frames of reference; and the primacy of controlproperties intrinsic to the body over
internal models. It is concluded that the EP hypothesis cannot be rejected for single- or multijoint
reaching movements based on claims that predicted movementkinematics are unrealistic.
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Chapter 1

Introduction

The following section provides a brief overview of the aims and methods of investigation used in

this thesis. This is followed by a short description of the contents of each chapter and a list of

original contributions.

1.1 Overview

The aim of this thesis is to examine the relationship betweenthe intrinsic dynamics of the body

and its control. Specifically, it investigates the influenceof musculoskeletal properties on the con-

trol signals needed for simple goal-directed movements in the framework of the equilibrium-point

(EP) hypothesis. The EP hypothesis suggests that coordinated movement can be produced with-

out the need for internal models by relying on the intrinsic dynamics of the body. This notion is

challenged by proponents of the force-control hypothesis,who suggest that the central nervous

system uses internal simulations of the body and its environment to explicitly calculate the muscle

forces required for a desired movement. Much of their criticism regarding the EP hypothesis is

based on simplified models of the motor apparatus. However, the importance of the body in shap-

ing the behaviour of an agent is now well established in both the fields of biomechanics (Gribble

et al., 1998) and cognitive science, with the introduction of concepts such as embodiment (Beer,

2009), passive dynamics (McGeer, 1990), and the dynamical systems approach (Gelder, 1997).

This thesis investigates whether the neuromusculoskeletal system (i.e. the skeleton, the muscles

that actuate it, and the networks of neurons innervating them) possesses intrinsic control proper-

ties that facilitate coordinated movement. To this end, muscle models of varying complexity are

studied in isolation and when coupled to different feedbacklaws derived from the EP hypothesis.

Their steady state and transient dynamics are compared to natural kinematics and several criticisms

brought forward by proponents of the force-control hypothesis are addressed. These include, for

example, the (in-)ability to deal with reflex delays or interaction torques, and the suggestion that

observed biomechanical invariants must be the result of central planning. The results suggest that

the EP hypothesis cannot be rejected on the basis of such claims. They also stress that predictions

about motor control signals are sensitive to assumptions regarding the musculoskeletal system.
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Finally, extensions to the simplest instantiation of the EPhypothesis are proposed, which address

its limitations in the context of multijoint movements.

1.2 Thesis organisation

Chapter 2 places the research undertaken in this thesis in the context of the controversy between

force- and position-based theories of motor control. First, it details the various problems en-

countered in any motor control task, such as redundancy, signal noise or feedback delay. It then

summarises the arguments for and against the two dominant, and conflicting, approaches to motor

control: the force-control hypothesis and the equilibrium-point hypothesis. Parallels are drawn to

notions of embodiment, situatedness and the dynamical system perspective in cognitive science,

and their influence on the methodology used in this thesis is described.

Chapter 3 provides some background about the physiology of skeletal muscles and details the

approach taken in modelling musculoskeletal dynamics. This is followed by an analysis of the

steady state and transient dynamics of antagonist muscles with static control signals. Specifically,

it is studied whether the dynamical landscape formed by muscle models features a stable attractor

in joint space, and if so, whether properties of this equilibrium, such as position, stiffness and

viscosity, can easily be controlled through simple adjustments of muscle activations. This is a

prerequisite of the equilibrium-point hypothesis. The chapter also investigates how modelling as-

sumptions underlying various components of the muscle model influence its dynamical properties.

It ends with a demonstration of the benefits of muscle material properties when open-loop control

signals are learnt using a genetic algorithm.

In chapter 4, the EP hypothesis is tested on a chosen musculoskeletal model by using an optimal

feedback control approach: genetic algorithm optimisation is used to identify the feedback gains

and control signals which produce the smoothest single- andmultijoint movements of varying

amplitude and duration. The importance of different feedback components in reproducing natural

kinematics is studied and it is asked whether the resulting controllers correctly predict the response

to reflex delays and the experimentally observed triphasic burst patterns in muscle activity. The

chapter also aims to identify the form of control signals required for simultaneous control of both

movement duration and distance.

A lumped neuromuscular model is introduced in chapter 5 which combines the convergent dynam-

ics of muscle and reflexes into a single equation of force production at the joint level. Experiments

are carried out to test whether this model, which is essentially an extended non-linear proportional

derivative controller, can approximate the behaviour observed in the detailed muscle-reflex model.

In chapter 6 the lumped model is then used to study extensionsof the EP hypothesis which aim

to solve the problem of interaction torques arising during multijoint movements. A long-standing

critique of equilibrium-point models is that they do not account for such torques, and it is often ar-

gued that internal models alone can solve this problem. Thisis challenged here with a proposal for

an extension of the EP hypothesis that couples the feedback control laws of neighbouring joints.

The last chapter summarises the results of this investigation, discusses its implications and pro-

poses work that could be undertaken to address remaining questions.
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1.3 Summary of contributions

The contributions of this thesis can be summarised as follows.

It is shown in chapter 3 that the stability of joint equilibria and other steady-state characteristics

created by antagonistic muscles depend on assumptions about muscle paths and moment arms, the

inclusion of series elasticity and the modelling of chemical dynamics. It is also demonstrated that

a setup consisting of two monoarticular muscles can qualitatively, and in some respects quantita-

tively, approximate the steady-state and transient behaviour of a system that also includes biartic-

ular muscles.

It is shown in the second part of chapter 3 that the material properties of muscles allow for flexible

motor control (e.g. freedom concerning the energy requirements of a movement), and that they

might facilitate motor learning by smoothing and linearising the space of possible control signals.

Chapter 4 confirms that an extended version of theλ-formulation of the EP hypothesis can repro-

duce the kinematics and force patterns of natural single-joint movements when driven by simple

monotonic control signals. It is shown that the range of static musculoskeletal properties repre-

sented in the controller needs to be extended to account for movements of arbitrary speeds. It is

further demonstrated that velocity error feedback is crucial for high velocity movements without

oscillations, and open-loop co-contraction for dealing with feedback delays. The results suggests

that experimentally observed movement invariants are not necessarily centrally planned, but can

emerge from the interaction of reflex components and the dynamics of the body.

A lumped model of neuromuscular dynamics is developed in chapter 5 that can approximate the

kinematic data of a detailed muscle-reflex model during single-joint movements. While other

simple models, such as mass-spring systems, have been shownto necessitate complex control

signals, the nonlinear model proposed requires only a simple monotonic shift in desired position.

Crucially though, the model is shown to predict different control signals than the detailed muscle

model.

Most importantly, it is shown in chapters 3-5, that in an equilibrium-point framework smooth mul-

tijoint movements do not result from independent control ofeach joint. Intersegmental dynamics

lead to perturbations that are not rejected at realistic stiffness level. Two mechanisms are therefore

proposed in chapter 6, which couple the control of individual joints so that interaction torques are

compensated for. The two models make specific predictions about the spinal circuits required for

their implementation.
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Background

The following chapter provides an overview of the computational and dynamical approaches to

motor control. After summarising the complexities involved in controlling a body that exhibits

strong redundancy, complex internal interactions, and non-linear material properties, the force-

control and equilibrium-point hypotheses are introduced as conflicting paradigms for addressing

them. The methodology employed in this thesis is then placedin the context of these research

avenues, as well as in the broader field of embodied cognition.

2.1 The problem of motor control

To study behaviour is to study the patterns of interaction between an agent and its environment.

From the perspective of the agent, this interaction forms a continuous and closed sensorimotor

loop: motor commands initiated by the agent have physical consequences in its environment;

these are perceived via sensory feedback, and together withproprioceptive signals influence future

motor commands. The field of motor control is concerned with the question of how an agent can

consistently produce stable coordinated movement patterns in a complex and constantly changing

environment.

Though humans and other animals perform most of their movements seemingly without effort or

particular attention to their actions, complex unconscious processes, involving the interaction of

many anatomical and neural structures, are needed to produce appropriately coordinated motion.

Coordination, in the context of motor control, is understood with respect to a particular task,

or movement objective. For an agent, to realise a motor task means to produce changes in its

many biomechanical degrees of freedom (DOFs) that are coordinated in space and time such as to

achieve a given objective.

Redundancy

To illustrate the complexity of an apparently simple motor task, consider the act of positioning

your hand at a given point in space. Even in this simple case there are an infinite number of

different paths along which the hand can move from its initial to the desired position. And for
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each path there are an infinite number of possible velocity profiles. Even if a single spatiotemporal

trajectory has been chosen, each location of the hand can be realised by an infinite number of joint

angle combinations. While the task is described by only three independent variables (the spatial

coordinates of the desired hand position), the arm containsmany more degrees of freedom. One

can, for example, swivel the elbow up and down, or tilt one’s torso forward and back, both without

changing the position of the hand in space. The problem is therefore underdetermined, and the

system said to be redundant with respect to the task. What is more, several different muscles

act across each skeletal joint, and infinitely many muscle activation patterns produce the same

joint configuration (it is possible, for instance, to stiffen the arm without moving the hand). The

system is not only redundant in joint space, but also in muscle space. Even if each muscle is for

simplicity assumed to be either contracted or relaxed, thenthe 700 or so muscles in the human

body would allow on the order of 10210 different muscle activation patterns. Equally, assuming

about 200 joints in the body, and for simplicity only one rotational degree of freedom each (many

have three), then each movement would have to be described ina 400 dimensional state space if

we wanted to account for position and velocity only (disregarding accelerations, inertia, muscle

forces, etc.). The combinatorial explosion does not end there, as each muscle is innervated by

between 10 and 1000 alpha motor neurons, with many differentfiring patterns generating the

same muscle force. Not only does any proposed motor control scheme have to address this “curse

of dimensionality” (Bellman, 1961) encountered when transforming a single spatial location into

activations of about 200 000 alpha motor neurons forming theso-calledfinal common pathway.

The relationship between a motor command and the resulting motion of the body (and vice versa)

is also described by highly complicated and non-linear equations. For example, the effect that the

activation of a muscle has on the change in angle of the joint it acts on depends on the orientation

of the body segment with respect to gravity, the current poseof the limb, the current length and

velocity of contraction of the muscle, its state of fatigue,and the forces that arise from the physical

interaction of connected body segments, to name just a few.

Although redundancy might seem a curse from the viewpoint ofcontrol theory, it also provides

advantages in terms of flexibility and adaptability. The abundance of solutions for a given task

implies that different strategies can be chosen depending on secondary constraints in the system.

In a reaching task, for example, the elbow position can be varied to avoid obstacles that would

be encountered otherwise. Humans can also exploit muscle properties to modulate the effective

stiffness at the hand such as to better resist perturbationscoming from certain directions (without

changing the hand position), thereby tuning the passive dynamics of the arm for a specific context

(Gomi and Osu, 1998).

Every sufficiently complex organism, and consequently any approach to motor control, thus faces a

trade-off between an internal reduction of degrees of freedom to simplify control, and preservation

of redundancy as a means to flexibly respond to different secondary task requirements. Bernstein,

arguably the founder of modern biomechanics, was among the first to be concerned with this

problem (Turvey, 1990). He asked how a large number of independent variables might be regulated

without ascribing excessive responsibility to a single centralised system. According to Bernstein,

the solution involves reducing the effective number of independent variables by appropriately

organising the control of the motor apparatus. Turvey givesan illustrative example of this approach
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(Turvey, 1990). Imagine a marionette in which each individual body segment is controlled via a

dedicated wire that is manipulated by a puppeteer. Here, theresponsibility of coordinating the

various moving parts is attributed utterly and exclusivelyto the puppeteer who, in a homuncular

fashion, has to determine the state of all variables over time. Now consider a second marionette,

one in which internal wires connect some of the parts to each other so that they move together

in a coordinated manner. Pulling a certain wire, here, mightfor example produce a stepping

movement in the puppet’s legs. Clearly, the burden of control for the puppeteer is reduced. The

number of wires under his control is smaller, as he now controls a few internal mechanisms rather

than each individual part. Bernstein called these internal, dimensionality-reducing mechanisms

coordinative structures, orsynergies. He was fast to realise that these are not to be confused

with reflexes, which could be considered hard-wired mechanisms of coordination. In Bernstein’s

view, synergies constitute context-dependent muscle-linkages whose functions can be configured

for the task at hand. Central pattern generators can be considered examples of synergies. Here,

a neural network innervates a group of muscles that act across many different joints, and creates

coordinated movement patterns that achieve a specific goal such as swimming or stepping.

Delays

In addition to redundancy, the control of the motor system iscomplicated by the presence of

various delays in its neural circuits. It is easy to see that these can potentially have detrimental

effects on the performance of feedback-controlled motor circuits. In the extreme case, where a

movement is faster than the overall delay, feedback would not be available at all during the actual

motion. But accuracy can also be negatively affected for movements on a time scale larger than

the delay. The faster the system moves (and the longer the delay), the greater the distances covered

before the feedback signal arrives. Many control systems with inherent feedback delay therefore

have to deal with a trade-off between speed and accuracy. Another potential problem is that of

co-registering actions with their consequences when thesesignals are separated in time by several

hundred milliseconds. Hidler and Rymer (2001) have demonstrated the destabilising effect of high

transport delays on ankle stability using a model of the stretch reflex.

One source for feedback delay in neural circuits is the time it takes for a presynaptic action po-

tential to arrive at the input site of the postsynaptic cell.This so-called synaptic delay has been

estimated at 1–2 ms (Sabatini and Regehr, 1996). Another source is the conduction delay along

the axon of a neuron, which ranges between 1 and 20 ms, depending on the length of the axon

and whether or not it is myelinated (Carr and Konishi, 1988; Burke et al., 1994; Macefield and

Gandevia, 1992). Resistance and capacitance properties ofdendrites can also cause a wide range

of delays, with durations depending on the topology of the dendritic tree (Agmon-Snir and Segev,

1993).

It is difficult to measure the overall delay in the motor circuit of an animal. Estimates range from

14 ms for a short spinal reflex to 200–300 ms for a response involving the visual system. St-Onge

et al. (1997), for example, have estimated a spinal reflex delay of 14–18 ms by measuring the time

between the unloading of an initially loaded elbow, and the first sign of reflex activity as indicated

by a change in the electromyographic (EMG) activity generated by the muscles.
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Noise

Noise, present on all levels of the sensorimotor hierarchy,can be another source of complication

for motor control. In proprioceptors and muscles, for example, noise is generated by the transduc-

tion of a continuous mechanical signal into a discrete spiketrain (Read and Siegel, 1996). Synaptic

variability (Allen and Stevens, 1994) and complex network dynamics (van Vreeswijk and Som-

polinsky, 1996) can further increase the variance in neuralfiring rates. In the cortex, it is possible

that information is nevertheless transmitted reliably, not in temporal spike patterns of individual

neurons, but via rate coding in ensembles of neurons. This was shown to allow for reliable rate

estimates within a single interspike interval (10–50 ms), assuming that post-synaptic neurons re-

ceive a balanced amount of excitatory and inhibitory inputs(Shadlen and Newsome, 1994, 1998).

Ensemble coding is not available in the motor periphery, however, where a single motorneuron in-

nervates many muscle fibres. Many approaches to motor control therefore operate on the premise

that the standard deviation of a motor signal is proportional to its magnitude, which means that

noise levels are signal-dependent. This is supported empirically by the finding that the standard

deviation of isometric force production is proportional tothe mean force (Schmidt et al., 1979;

Meyer et al., 1988), which is itself the result of the distribution of individual motor unit recruit-

ment thresholds and muscle fibre twitch amplitudes (Jones etal., 2002). Noise in the sensorimotor

system implies that state estimation (for example of one’s current hand position) is unreliable and

that actual movements might differ from intended ones. According to the framework of “task op-

timisation in the presence of signal-dependent noise” (vanBeers et al., 2002), the central nervous

system (CNS) aims to minimise the detrimental consequencesof noise in the motor system by

planning movements so that the redundancy of the motor system can help minimise endpoint vari-

ability. Movements predicted within this framework are found to closely resemble those observed

in human experiments.

Biomechanical invariants

Despite the vast number of redundancies in the human motor apparatus, most types of movements

show high regularity, both across repetitions by the same individual as well as across different

individuals. These invariants are often seen as indicatorsof the organisational structure underlying

motor control by the CNS.

Morasso (1981), for example, first discovered that the hand follows an approximately straight

line path in point-to-point reaching movements, while the tangential velocity along the path is

characterised by a symmetric bell-shape. Individual jointtrajectories, in contrast, follow more

complex profiles. This observation led to the hypothesis that such movements are planned in

external Cartesian coordinates rather than in terms of joint angles or muscle lengths. The later dis-

covery that reaching movements show in fact systematic deviation from the straight line (Atkeson

and Hollerbach, 1985; Soechting and Lacquaniti, 1981; Uno et al., 1989) and that the symmetry

of the velocity profile varies with movement speed (Bullock and Grossberg, 1988) led to further

elaboration of this hypothesis based on the principles of optimal control (see below).

Lacquaniti et al. (1983) discovered in rhythmic drawing movements, and others later confirmed in

different experiments (e.g. Flash and Sejnowski, 2001), that the relationship between the angular

velocity of the hand and the curvature of its path follows a power law with an exponent of 2/3.
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Physically, there is no reason that movement kinematics andgeometry should be related according

to this so-called 2/3 power law. Its existence may reflect a principle of movement organisation in

itself, or might be a by-product of other processes involved. A study by Sternad and Schaal

(1999) suggests that it might indeed be an epiphenomenon. Inunconstrained rhythmic movements,

systematic violations of the law were observed which were best explained by a system favouring

smooth trajectories produced by a pattern generator in joint space.

Rapid aiming and reaching movements are characterised by a trade-off between speed and accu-

racy. Quantitatively, the movement time of reaching for a target depends logarithmically on the

ratio of movement distance and required accuracy (target size), and is described by Fitt’s Law

(Fitts, 1954). Plausible explanations link the phenomenonto optimisation principles regulating

a noisy (Meyer et al., 1990), or delayed (Beamish et al., 2008) motor apparatus. Though it is

often used to validate models of motor control, many different approaches readily produce the

speed-accuracy trade-off, which has thus limited scope forresolving conflicting proposals.

An important and open question is whether any of the observedinvariants reflect a strategy used

by the CNS to deal with redundancy, noise or delays, or whether they are epiphenomena reflecting

properties of the neuromusculoskeletal system and physical laws.

Optimal control

Optimal control approaches aim to explain the existence of movement invariants in the presence

of high redundancy by stipulating that the motor system is constrained by optimisation principles.

More specifically, it proposes that the motor system operates at the minimum of a cost function

that measures global quantities such as smoothness, efficiency or accuracy. In this framework it

would be plausible, for example, to propose that the hand follows trajectories that minimise energy

expenditure. One would then employ an optimisation algorithm (such as dynamic programming,

Bryson and Ho, 1975) to produce trajectories conforming to the chosen constraint. Any observed

invariants are then merely a reflection of the underlying optimisation principle, but can be com-

pared against those found in natural movements to validate the model. It is worth noting that

most theories concerned with optimal control do not necessarily suggest that actual movements

are the results of a computational optimisation process in the nervous system. The actual mecha-

nisms producing the optimal motor output and their origin are typically outside the scope of these

theories.

Most optimal control models proposed for reaching movements fall into one of two classes: kine-

matic or dynamic optimisation. Kinematics-based models are concerned only with effector posi-

tions or joint angles and their derivatives, and employ costfunctions that depend on geometrical

or time-based properties of the desired motion. An example is the minimum jerk model (Hogan,

1984; Flash and Hogan, 1985). Based on the observation that hand paths are normally smooth

in Cartesian space, it suggests that natural movements minimise the square of the first derivative

of acceleration, also called jerk. It predicts straight-line hand trajectories and symmetric veloc-

ity profiles in accordance with data on rapid movements executed without accuracy requirements.

Observed deviations from these invariants, as described above, were attributed to imperfect exe-

cution of the movement plan (rather than to a lack of accounting for arm dynamics, posture, or

external forces). The model, when applied to movements along constrained paths such as figure
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eights, was also found to approximate the solution described by the 2/3 power law. However, in

Gribble and Ostry (1996) it was shown that the same law could emerge simply as a consequence

of the viscoelasticity of the muscles. Apart from the shortcomings of this particular model, it is

not clear a priori why smoothness of trajectories should be an important property in itself.

Kinematic optimisation models directly specify the positions and velocities of the moving sys-

tem and assume the existence of a separate process responsible for achieving them. A dynamic

model, in contrast, is concerned directly with variables such as joint torques, hand forces or muscle

tension, and its solution consists of the actual motor commands necessary to achieve the desired

movement. The separation of movement planning and execution is thus avoided.

The dynamic equivalent of smoothness optimisation is the minimum (commanded) torque change

model (Uno et al., 1989; Nakano et al., 1999), which has been found to account for several of the

shortcomings in the minimum jerk model, such as curvilinearpaths in large range motion and in

the presence of external forces. However, it shares with theminimum jerk model the question of

why it is useful to optimise smoothness. Also, movement duration cannot be selected in either

model, but is instead a free parameter.

A model based on a cost function that is biologically more relevant than the above is the minimum

variance theory (Harris and Wolpert, 1998). It is based on the assumption that noise in motor

commands causes trajectories to deviate from the desired path. Accumulated over the duration of a

movement, these errors lead to variability in the final position. As noise is assumed to increase with

signal strength, rapid movements, which require large control signals, would therefore result in

large end point variability. Accuracy would be improved by using small amplitude control signals,

but the resulting movements would then be slow. According tothe minimum variance model,

motor commands are selected so as to minimise variance in thefinal position, while maximising

the speed of motion as much as is compatible with the accuracyrequirements of a particular task.

Smooth trajectories are the result of this approach, ratherthan its assumption. This is because

abrupt changes in velocity, which require large changes in the control signal, would generate more

noise and are therefore avoided. The model also predicts thespeed-accuracy trade-off described

by Fitt’s law, reproduces the 2/3 power law, and its predictions about eye and arm movements are

robust to changes in the dynamics of the body.

The above models make no claim as to the actual neural and biomechanical mechanisms produc-

ing the predicted motor commands, but employ a purely open-loop optimisation directly on motor

commands or limb trajectories. In contrast, stochastic optimal feedback control (Todorov and

Jordan, 2002) explicitly takes into account the feedback nature of the sensorimotor loop. In this

approach, an estimate of the current state of the system, based on afferent feedback and internal

forward modelling (see below), forms the basis for modifications of a task-specific feedback con-

trol law that aims to maximise a performance index such as endpoint variability. An important

aspect of optimal feedback control is the minimum intervention principle, according to which de-

viations from the average trajectory (the system behaves stochastically) are corrected only when

they interfere with task performance. Thus, variability due to noise is not eliminated, but allowed

to accumulate in redundant, that is task-irrelevant, dimensions (also called the uncontrolled man-

ifolds, Scholz and Schöner, 1999). Importantly, the theory shows that this is in fact the optimal

behaviour for a stochastic system. This prediction is observable in human motor coordination. In
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goal-directed pointing movements, for example, such as shooting with a laser gun, fluctuations of

joint configurations that affect pointing accuracy are muchreduced when compared to fluctuations

that do not affect this variable (Scholz et al., 2000). Unfortunately, the mathematics required for

constructing optimal feedback controllers are so involvedthat the motor systems studied have to

be significantly simplified in most cases. Linearisation of the complex dynamics of the muscu-

loskeletal system, however, has been shown to invalidate predictions regarding its control (Gribble

et al., 1998).

Controlled variables and neural correlates

As the variety of different motor control models above illustrate, there is no consensus as to which

variables of a movement the nervous system controls. As easily as one can find a model to support

the idea of planning in hand coordinates, joint angles or muscle forces, one can find areas in the

nervous system whose neural activity correlates with the variable of one’s choice. For example,

activity in the primary motor cortex (M1) was shown to predict hand direction (Georgopoulos

et al., 1982), velocity (Schwartz, 1993), or movement distance (Fu et al., 1995). However, hand

motion could equally be predicted from neurons than encode different quantities of the motor

performance, such as muscle activity or joint motion (Mussa-Ivaldi, 1988; Todorov, 2000). Also,

some neurons in M1 and other motor areas correlate not with hand-related coordinates, but with

patterns of muscle activity (Holdefer and Miller, 2002; Bennett and Lemon, 1996) or arm geometry

in redundant degrees of freedom (Scott et al., 1997). Recentevidence indicates that these different

neural correlates are not mutually exclusive, but rather reflect a more complicated organisation

of the motor cortex than previously assumed (Graziano, 2006). Through stimulation of motor

cortex sites in the monkey on the time scale of behavioural responses1, Graziano and colleagues

revealed that the known large-scale somatotopic cortical map is locally distorted by clusters of

neurons that are tuned to complex motor patterns including many muscles and joints, and which

reflect the behavioural repertoire of the animal (e.g. hand to mouth movements, or reaching out

and grasping). Furthermore, this tuning is not fixed but can change instantaneously on the basis

of feedback from the motor periphery. For example, pulse stimulation of a point on the primary

cortex led to biceps activity if the elbow was extended, but to triceps activity when flexed. When

the same site was stimulated with an extended train of pulses, the elbow moved to a particular

intermediate angle and stabilised there. This implies thatthe use of feedback allows for tuning of

individual cortical neurons to higher-order parameters such as a desired elbow angle.

In summary, it seems unlikely that a single control variableexists that explains all types of ob-

servable movements. Rather, cortical networks can be dynamically configured to regulate almost

any (combination of) high- or low-level movements parameters in such a way as is appropriate for

the task at hand. It is hence important to critically approach any physiological evidence support-

ing a model of motor control based on simple neural correlates (such as preferred direction) and

artificial experimental setups.

1stimulation trains of about 500 ms, as opposed to short pulses of about 0.2 ms, which elicit only muscle twitches
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2.2 Two motor control paradigms

The following sections aims to summarise the controversy between the computational and the

dynamical systems perspective on motor control. The formerhas its roots in engineering and is

represented by theories which are based on internal models of the body and its environment. The

latter originates in biomechanical studies that have identified inherent control properties (stable

equilibria) in the coupled dynamics of the skeleton, muscles and reflexes.

2.2.1 The force-control hypothesis

According to computational theories of motor control, the problem of movement generation is

essentially one of coordinate transformations. Typically, a desired movement is first defined in

spatial coordinates and then transformed into the requiredforces or torques to be applied at the

joints by the muscles. In order to compute these variables, the system uses internal representations

of the geometry as well as the dynamical equations of motion of the body. The former can be

used to calculate inverse kinematics, that is the joint angles required to position the end-effector

at a particular point in external Cartesian space. The latter is used in an inverse dynamics pro-

cess to calculate the joint torques or muscle forces necessary to drive to the desired joint angles.

These processes are inverse in the sense that they revert thenatural causality of motion, from

muscle forces to changes in position. In addition to these inverse internal models, computational

approaches often employ forward internal models to predictthe consequences of a motor com-

mand. A forward model mimics the actions of the motor apparatus, that is the causal relationship

between its inputs (e.g. muscle activations) and outputs (e.g. joint torques). When driven by a

copy of the motor command (efference copy), it can thereforepredict the sensory consequences

this command would elicit. It has been argued that forward models are necessary, for example, to

adjust control signals on the basis of anticipated sensory consequences rather than actual sensory

feedback, in order to mitigate the detrimental effect of delays in the latter.

For a typical example of using forward and inverse models, consider the task of a goal-directed

arm movement while the hand is grasping an object between index finger and thumb (Kawato,

1999). The problem involves the control of a grip force that is just sufficient to prevent the object

from slipping. Here, an inverse model of the combined dynamics of arm and grasped object would

be used to calculate the motor commands necessary for achieving a desired hand trajectory. These

commands would then be sent to the arm muscles, and as an efferent copy to a forward dynamics

model. Based on the predicted trajectory of the arm, an expected load force could be calculated

that would act on the grasped object. Taking into account load, friction and safety margins, a grip

force could then be determined that would prevent the objectfrom slipping, and appropriate motor

commands sent to the hand muscles.

Theories of motor control such as the one described, summarised from here on under the notion

of the force control hypothesis (Ostry and Feldman, 2003), are based on three assumptions: the

brain centrally specifies forces to be applied to the body; these forces are derived using an internal

inverse dynamics model; the motor system makes use of predictive mechanisms based on internal

forward models.
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Force control

The idea that the brain directly calculates and controls theforces required to produce desired

movements is supported by many studies showing systematic relationships between joint torques,

muscle activity, kinematics and task variables (Gottlieb et al., 1990; Corcos et al., 1989; Gottlieb

et al., 1996). It has also been demonstrated that torques at the shoulder and elbow joints follow a

linear relationship under many conditions (Gribble and Ostry, 1999), and that subjects are capable

of judging force output over a wide range of magnitudes (Jones, 1989). Further support is lent

by electrophysiological data. Activity of neurons in cortical area 4, for example, has been shown

to correlate with the direction of required force output (Georgopoulos et al., 1992). Also, certain

cerebellar lesions lead to problems that seem to indicate a failure to control the interaction torques

arising in one joint as a result of motion in another (Bastianet al., 1996).

A theoretical limitation of the force control hypothesis, however, is its inability to resolve the “von

Holst paradox” (Ostry and Feldman, 2003). In their classic paper, Holst and Mittelstaedt (1950)

drew attention to the fact that the body is in any posture stabilised by neuromuscular mechanisms

that generate forces in order to resist external perturbations. Yet clearly the organism is also able

to intentionally move from one pose to another. The posture-movement problem is the question

of how this is possible without triggering resistance by postural reflexes. In force control models

it is typically assumed that desired forces are encoded in the group activity of motoneurons as

reflected in measured EMG signals. EMG signals, however, cannot predict posture. Recordings

from point to point movements show that EMG activity is zero at the initial and final position, and

by extension, whenever the system is at rest2 (Suzuki et al., 2001). Different postures can there-

fore not be encoded by motoneuron activity or forces directly, but must be controlled by other

variables. If it were assumed that forces are specified directly only to transition between different

postures, then the stabilising mechanisms would have to be completely or partially suppressed.

However, experimental observations do not support this idea. Instead, even intermediate postures,

that is to say, any point on the trajectory from initial to final pose, seem to be stabilised by re-

sisting actions (Won and Hogan, 1995). More elaborate versions of the force control hypothesis,

which include muscle properties and reflexes, for example, must equally counteract their posture-

stabilising effect, instead of utilising it (see Ostry and Feldman 2003 for a more detailed analysis).

This failure to establish different poses without inducingresistance, and the resulting mismatch

between predicted and empirically observed EMG signals, indicate conceptual gaps in the force

control hypothesis.

Inverse models

Most force control models are formulated such that trajectories planned in kinematic coordinates

are transformed into necessary torques by an inverse dynamics computation. Typically, the inverse

model neither explicitly accounts for the dynamics of the neurons innervating the muscles, nor

for the non-linear dynamics of force generation by the muscles themselves. It directly provides

trajectories of joint torques over time that will produce the desired movements when applied to the

mechanical system. This coordinate transformation allowsinverse models to implement open-loop

motor control schemes that do not rely on error-correcting feedback. The fact that deafferented

2It is also easily observed that one can relax ones arm musclesin any possible joint configuration
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monkeys, meaning those whose sensory feedback is eliminated surgically, can still reach a target

with their hands (though more crudely) seems to indicate that under such laboratory conditions

movements can indeed be executed in a preplanned and purely feedforward manner (Bizzi et al.,

1984).

The existence of inverse models is further supported by experiments in which subjects execute

reaching movements while exposed to an external force field (Shadmehr and Mussa-Ivaldi, 1994).

Such fields, usually generated by a robotic manipulandum, alter the effective dynamic characteris-

tics of the arm by applying forces that depend on its positionand velocity. When arm movements

are carried out in a force field, observed hand trajectories are initially distorted when compared

to natural straight-line paths. Over repeated trials, however, subjects adapt to the load and even-

tually restore their normal hand paths. If the force field is then suddenly removed, trajectories

become distorted once again, but in the opposite direction of the previously applied perturbations.

The explanation, according to the force control hypothesis, is that kinematically planned reaching

movements are realised by an inverse dynamics model of the arm. This model initially fails to

account for the externally applied forces, but over time adapts to their stable characteristics. The

resulting model of combined arm and force field dynamics thenmisrepresents the actual situation

when the field is later removed. The idea of an internal model combining arm and load dynamics

is supported by experiments with monkeys in which it was shown that neurons in area 4 change

their tuning properties with changes in load (Gribble and Scott, 2002). However, neither the be-

havioural nor the physiological evidence rule out alternative explanations. They merely show that

humans (and monkeys) can take loads into account when performing arm movements. Gribble

and Ostry (2000) have demonstrated in a framework of position control that load adaptation is

possible without representation of forces, inverse dynamics or forward predictive simulation.

Further neurophysiological evidence for internal inversemodels is based on firing patterns recorded

in cerebellar Purkinje cells (Gomi et al., 1998; Shidara et al., 1993). During reflexive eye move-

ments, their neural activity can be reconstructed from a linear combination of eye position, veloc-

ity and acceleration in a way that reflects the relationship between these variables in an inverse

dynamics representation of the eye. As Ostry and Feldman (2003) have pointed out, however, cor-

relation does not equal causation. It is not entirely surprising that neural activity correlating with

mechanical variables can be identified in a system that couples mechanical, sensorial and neural

components. Also, the less than 10 ms lead of Purkinje cell activation over movement initiation

failed to account for the observation that antagonist deactivation starts 30–40 ms before reflexive

eye movements. In the same experiments, climbing fibres feeding in to the cerebellum were found

to carry sensory error signals in coordinates of the motor command. This observation was used to

support the so-called cerebellar feedback-error-learning model, in which the error produced by a

feedback loop is used to train an inverse model that functions a feed-forward controller (Kawato

et al., 1987). Identifying similar relationships between neural activity and movement variables for

arm movements however has so far been less successful.

On theoretical grounds, current inverse models are also incapable of resolving the redundancy

problem. Even if EMG signals are determined by inverse dynamics computations, for a full ac-

count of motor control it would be necessary to determine themotoneuron inputs that produce the

desired EMG output. However, non-linearities such as threshold and plateau-potentials cannot be
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reversed without significant simplification of the relevantdynamics. As is true for the equations

describing force production by the muscles, such simplifiedmodels produce questionable results

(Gribble et al., 1998; Zajac et al., 2002).

Forward models

Forward dynamics models can be used to predict both the actual movement of the system and its

sensory consequences (Karniel, 2002). For example, an efference copy of the motor command

could be used in conjunction with a forward dynamics model topredict and cancel out the sen-

sory effect (re-afference) of self-induced motion. This control scheme has been suggested, for

example, as a mechanism for stabilising visual space against movements of the head and the eyes

(Jeannerod, 1997). Forward models can also be used to implement open-loop control when placed

in an internal feedback look (Jordan, 1993).

Another suggested role is the use of forward models to provide internal feedback about the pre-

dicted consequences of a motor command when the delay of actual sensory feedback would other-

wise lead to instability. An extension of this idea, known toengineers as a Smith predictor, delays

the output of the forward model to cancel out the predictablecomponents from the actual feed-

back. This allows for a feedback system that only corrects the remaining unpredictable, and likely

small, errors that cannot be anticipated by the internal model. The cerebellum has been proposed

to act as a Smith predictor, for example (Miall et al., 1993).

Forward models have also been implied in a theory of sensorimotor integration based on the

Kalman filter (Kalman, 1960), which is a formal solution to the problem of optimal state esti-

mation. In a Kalman filter, the future state of a system is estimated by a forward model that

receives as input both a copy of the motor command and the current state estimate. At the same

time, a prediction of sensory feedback based on the system’scurrent state is compared with actual

feedback. The resulting sensory error is then used to correct the state as predicted by the forward

model. In essence, the Kalman filter uses motor commands, sensory feedback and a model of the

motor system to reduce uncertainty in its state estimate. Ithas been proposed, for example, as

an explanation for experiments in which subjects estimate the position of their arm after having

performed a movement in the dark (Wolpert et al., 1995).

Further evidence for the idea that the nervous system takes body dynamics into account comes

from anticipatory postural adjustment and grip force modulation. Rapid arm movements, for

example, are usually preceded by adjustments in the rest of the body that mitigate the effect of

upcoming interaction torques (Belenkii et al., 1967). Also, when moving their arms while grasping

an object in precision grip, subjects make anticipatory adjustments to grip force that cancel the

effect of load forces arising due to self-generated movement (Flanagan and Wing, 1997). This

grip-force/load-force coupling can be explained in a framework incorporating both inverse and

forward models as described above (see paragraph 2 in section 2.2.1). Here, the prediction of

load force by the forward model compensates for the delay in sensory detection of the load, which

would be too long to prevent slip. Differential neural activity in the cerebellum during anticipatory

grip force modulation has been suggested as evidence for theexistence of forward models in the

brain (Wolpert et al., 2003).

Neurophysiological support for forward models was presented in experiments investigating the
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fact that self-produced tactile stimuli are perceived as less ticklish than the same stimuli generated

externally (Blakemore et al., 1998). Here it was found that apart of the cerebellar cortex was

selectively inhibited by self-produced movements that resulted in tactile stimulation, but signifi-

cantly activated by externally produced stimuli. The authors reasoned that the predicted sensory

consequence of the motor command (predicted tactile stimulation) is used to cancel the percept of

the actual tactile stimulus.

Because they affect motor output only indirectly, evidencefor forward models is more difficult

to establish than for inverse models. This is crucial, because for output prediction every model-

based controller can in theory be replaced with a direct control scheme that has exactly the same

input-output function (Mehta and Schaal, 2002). Direct controllers map sensory signals to motor

commands without the intermediate step of internal models and have been suggested as a model

for motor learning in the cerebellum (Barto et al., 1999). Because of their equivalence, none of

the studies suggesting the involvement of internal models mentioned above can rule out the use of

a non-model based controller for output prediction. Forward models can however be used to fill in

missing sensory input, and among a set of different control schemes were shown to best explain the

performance of subjects in a pole-balancing task with visual blank-outs (Mehta and Schaal, 2002).

The same experiments allowed for further distinction between different use-cases for forward

models. The Smith predictor, for example, was rejected formally for control of mechanically

unstable systems, of which human balancing is just one example, as it would provably become

unstable itself. The most successful model was similar to the Kalman filter proposed for explaining

the performance of subjects estimating their arm position after movements in the dark (Wolpert

et al., 1995). However, Ostry and Feldman (2003) note that the same data can be explained by an

alternative hypothesis that does not involve an internal model.

There is no doubt that human motor control features predictive or anticipatory mechanisms that

can detect and compensate for the effects of self-induced motion or novel sensorimotor environ-

ments. It is a valid question, though, whether these are implemented in the nervous system as

internal models, that is to say detailed and accurate predictive simulations of the body and/or the

external world. For example, even a simple feedback mechanism can be described as a predictor if

the target state is interpreted as both motor command and expected future state. Also, even com-

paratively simple animals such as crickets and other insects exhibit anticipatory behaviours and

can distinguish between self- and externally produced stimuli (Webb, 2004). Evidence suggests

that this can often be achieved through simple sensory gating by an appropriately delayed motor

signal. In other words, sometimes a simple scaling (and delaying) of the motor signal provides an

accurate enough estimate of its sensory consequence.

2.2.2 The equilibrium-point hypothesis

An alternative to force and internal model based theories ofmotor control is the equilibrium-point

hypothesis. Its origins are found less in formal engineering than in the history of neurophysiolog-

ical research on muscle and reflex dynamics.
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Posture-movement paradox

As early as 1926, Wachholder and Altenburger wondered if humans were able to relax their mus-

cles at different joint positions. It was already known thatmuscles exhibited spring-like proper-

ties, and easy to see that two muscles acting against each other could be in equilibrium at a single

position only. By confirming that muscles are indeed relaxedat different positions, it could be

concluded that the nervous system modified the spring-like properties of the muscles during vol-

untary movement. This was in line with Sherrington’s findingof reciprocal innervation, that is the

inverse proportional activation of antagonist muscle groups, which explained why activation of a

muscle does not trigger a resisting stretch reflex in its antagonists. It also supported his idea of

reflexes as tunable mechanisms rather than hardwired responses, and his general view of motor

control via modulation of reflex parameters. Holst and Mittelstaedt (1950) addressed a similar

problem, namely the posture-movement paradox of how voluntary movement to a new position

can occur without triggering resistance from posture-stabilising reflexes. Their solution, the reaf-

ference principle, proposed that an efferent copy of the motor command changes the reference

point relative to which sensory feedback is measured in the posture-stabilising action. This means

that stabilising reflexes are re-addressed to a new position, rather than simply inhibited. The phys-

iological basis of this resetting mechanism was demonstrated in experiments by Matthews (1959),

in which he showed that stimulation of the spinal cord in the decerebrate cat was associated not

with changes in muscle length, activation or force, but witha constant relation between force and

length. Muscles would produce force as a function of length along a characteristic non-linear

curve that was shifted by the level of stimulation (invariant characteristic). In other words, muscle

and reflexes together acted like a non-linear spring whose setpoint was determined by descending

inputs. The equilibrium-point (EP) hypothesis was established when Feldman demonstrated sim-

ilar torque-angle characteristics in elbow movements by non-decerebrate humans, and suggested

that central motor commands can change a component (λ) of the threshold length beyond which

a muscle becomes activated (Feldman, 1966). The posture-movement paradox was thus resolved.

In the EP framework, a change in muscle activation thresholds means that the current position

becomes a deviation from the newly specified one, and the posture-stabilizing reflexes will ensure

that the system moves to the new target.

Theλ-model

To elaborate, the EP hypothesis suggests that when a motor system is at rest, theα-motoneurons

innervating the relevant muscles are in a state that is just below their threshold for activation.

This is confirmed by the observation that EMG signals before and after a movement are zero, but

that muscles become immediately activated when perturbed externally. The observation of sub-

threshold states at any desired pose implies that muscle activation thresholds are reset in voluntary

movements. The proposed motor control scheme is thus one of threshold control. It distinguishes

itself from the force-control hypothesis by the fact that itimplies a positional coordinate frame.

This is becauseα-motoneurons receive not only the descending motor commands λ, but are also

the target of muscle length dependent feedback from the tonic stretch reflex. Therefore, a muscle

activation threshold specifies the length of a muscle below which it is silent. If the muscle is

stretched beyond the threshold length, the tonic stretch reflex will activate it in proportion to the

difference between actual and threshold length as sensed byproprioceptors. Activation of the
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muscle in turn will produce contraction, thus bringing its length closer to the threshold value. The

continuous interaction of neural and muscular elements will thus drive the system towards a state

of minimal activation. However, since the body is usually exposed to external forces (gravity,

environment interaction), it will typically reach equilibrium where muscle force equals external

load, that is not necessarily at zero activation or exact threshold length. A distinction is therefore

made explicitly in the EP hypothesis between the virtual equilibrium as determined by muscle

thresholds, and the actual equilibrium at which the system comes to rest.

The EP hypothesis has been extended to account for many features observed in natural limb move-

ments. To explain the coordination of multiple muscles for simultaneous control of position and

stiffness, for example, it was suggested that theλ command could be formed by a combination of

two components: a reciprocal signal that moves the thresholds of antagonist muscles in the same

direction, and therefore activating one, but relaxing the other muscle; and a co-contraction signal

that moves the two thresholds in opposite directions, leading not to a change in joint position but

a stiffening of it (St-Onge and Feldman, 2004; Feldman, 1993).

To produce smooth voluntary movements it was suggested thatcentral commands specify simple

monotonic (e.g. ramp-shaped) shifts of threshold lengths.In other words, instead of specifying a

new virtual equilibrium position directly, a virtual trajectory is used to move smoothly from the

current to the desired position. The implication is that anypoint along the trajectory should be a

stable equilibrium. This has been confirmed in experiments in which the hand position of subjects

was perturbed in the middle of an arm movement (Won and Hogan,1995). Measurements showed

that resisting forces were directed not at the target, but towards the intended trajectory.

Theλ-formulation of the EP hypothesis has also been successfully employed as a tool for study-

ing the problem of redundancy (Balasubramaniam and Feldman, 2004), vertical posture stability

(Micheau et al., 2003), human walking (Guenther and Ruder, 2003), sense of effort (Feldman and

Latash, 1982), and in relating kinematics, dynamics and EMGpatterns in point to point reaching

movements (Feldman et al., 1990; Latash, 1993; Gribble et al., 1998).

Criticism and clarifications

A crucial proposition of the EP hypothesis is that no inversedynamics model is required to cal-

culate the EMG signals or forces required for goal directed movements. Instead, these variables

emerge from the spring-like dynamics of the combined muscle-reflex system. In other words, by

changing the lambda component of the stretch reflex, motor commands set up an equilibrium point

(or trajectory) and a force field around it. Movement, in thisframework, is simply the relaxation

of the system towards the specified attractor. The often-used mass-spring analogy for describing

muscle-reflex dynamics, when taken too literally, has led many to wrong conclusions about the

validity of the EP hypothesis. It is therefore worth to clarify some of the more subtle points of the

hypothesis here.

One important point is that central commands modify the equilibrium position, but they do not do

so exclusively. For example, velocity-dependent proprioceptive signals and inter-muscle reflexes

also terminate on motoneurons and affect their thresholds.Therefore, the central contribution to

threshold values should not be considered an internal representation of the motor goal — it is just

the means by which the nervous system can produce movement. Feldman stresses that the target
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of a movement is specified in physical variables relevant to the task and environment and does not

need to be represented in other internal coordinates (Feldman and Latash, 2005).

The λ-model suggests that smooth movements are created by simplemonotonic EP shifts. This

was questioned, however, by Gomi and Kawato (1996), who estimated stiffness and damping val-

ues of the arm from measured perturbations and used it to calculate the shifts in virtual equilibrium

necessary to produce the observed movements. They concluded that this shift is not monotonic but

follows a rather complex N-shaped trajectory. This suggested that even in the EP hypothesis, arm

dynamics have to be accounted for in planning the correct EP trajectory. However, the experiment

assumed that force production by the muscles was a linear function of position, which constitutes

a major simplification of the motor system. Gribble et al. (1998) demonstrated that when an ad-

equate muscle model is used instead, simple monotonic EP shifts are in fact sufficient to explain

Gomi and Kawato’s data.

Other oversimplifications, such as the assumption that the dynamic characteristics of the motor

system are the same during movement and at rest, have been used in claims that the EP hypothesis

incorrectly predicts values of damping (Gomi and Osu, 1996). Feldman pointed out, though, that

when the damping properties of muscles and velocity-dependent feedback components are taken

into account the data is in fact consistent with the theory (Feldman et al., 1998; Gribble et al.,

1998).

Another controversy regarding predictions of the EP hypothesis concerns the level of joint stiffness

during voluntary movements. It has been suggested by several authors that the EP hypothesis

requires relatively high levels of joint stiffness (or large mechanical and neural feedback gains) to

generate forces large enough to account for fast movements (Kawato, 1999; Wolpert et al., 1995).

The observation that stiffness is instead rather low (Gomi and Kawato, 1996), was then argued to

conflict with the EP hypothesis (Popescu et al., 2003). However, as Feldman pointed out (Feldman

and Latash, 2005), the EP hypothesis has in fact no unique requirement for the levels of stiffness

or damping. It is only restricted by physical laws accordingto which a stable system has to reject

perturbations with stiffness and damping coefficients thatare larger than those of the external load.

The same physical laws equally apply to the force control hypothesis, however. Claims that it

requires lower stiffness levels than the EP hypothesis are again the result of misrepresenting major

properties of the neuromuscular system (for a more detailedanalysis see Feldman and Latash,

2005). Difficulties in reliably measuring the stiffness of amoving system mean that conclusive

experiments comparing predicted and actual stiffness haveyet to be conducted for both the force

hypothesis as well as the EP hypothesis. However, it has beenshown recently that an EP model

in conjunction with a realistic muscle model can produce fast and smooth single joint movements

with EMG signals resembling those measured in human subjects (Kistemaker et al., 2006).

Another argument brought against the EP hypothesis concerns the property of equifinality, that is

the assumption that with constant command signals the system should always settle at the same

equilibrium point after transient perturbations have ceded. The finding of positional errors in arm

movements as the result of coriolis forces3 seemed to violate this principle (Lackner and Dizio,

3The coriolis force, like the centrifugal force, is an example ofpseudo forces, which result from the effect of inertia
in a rotating frame of reference. They can be observed, for example, when movements are carried out on a rotating
platform.
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1994). As these forces are velocity-dependent they should be transient and not affect the final EP.

However, this assumes that control signals remain constant. It can be argued, though, that coriolis

forces belong to a class of perturbations that are actively opposed by changes in motor commands

such as to ensure stability at the expense of positional error (Feldman et al., 1995, 1998). Even

in the simple case where external forces are absent, naturalvariability in non-central components

of muscle activation thresholds mean that equifinality cannot be guaranteed. Only on average

will the system settle to the same EP if all other things are equal. Observation of violations of

equifinality in healthy humans (Feldman, 1979) or theλ-model are therefore consistent with the

EP hypothesis.

The fact that subjects can adapt their movement strategy to external force fields (see above) is

often claimed to support the idea of force control and internal models. Although they provide a

possible explanation, an alternative approach based on theλ-formulation of the EP hypothesis has

been demonstrated to achieve load adaption without the needfor inverse dynamics calculations

or coordinate transformations between positional error and correcting forces (Gribble and Ostry,

2000). Anticipatory grip force-load force modulation, themost cited evidence for internal models,

has also been successfully simulated in a model based on threshold control (Pilon et al., 2007).

Again, no calculation of required forces or EMG signals was necessary.

One of the proposed roles for internal forward models is their use in a control scheme that oper-

ates on predicted rather than actual sensory feedback. This, it is argued, mitigates the detrimental

effects of delays on the stability of the motor system. Such concerns about the destabilising effect

of sensory delays might not be justified, however. Firstly, intrinsic viscoelastic muscle properties

generate instantaneous stabilizing forces in response to changes in position or velocity, a mecha-

nism termed preflex (Brown and Loeb, 2000). Also, use of both position and velocity feedback, as

is the case in sensory input to the motoneurons, can help to minimise instabilities caused by delays

(Ali et al., 1998). A model incorporating both preflexes as well as position and velocity feedback

was demonstrated to be sufficiently stable for arm movementswith reflex delays within the em-

pirically observed range (St-Onge et al., 1997). More recently, (Pilon and Feldman, 2006) have

emphasised that the central components of threshold modulation are best viewed as feedforward

commands that influence the state of the reflex system prior toactivation of the muscles. Conse-

quently, it contributes to muscle activation immediately,not just after an initial lag period. Their

model confirmed that threshold control of fast arm movementsis indeed stable for proprioceptive

delays that cover both spinal as well as transcortical reflexloops.

2.2.3 Summary

The force control hypothesis offers mathematical constructs that provide plausible explanations

for many observed aspects of human movements, and its assumption that the nervous system im-

plements internal inverse and forward models is consistentwith a number of experimental studies.

However, it has failed so far to resolve the posture-movement paradox, and it is in conflict with

well-known EMG patterns. The possibility of completing theinverse transformation from desired

outcome to required motor commands, including non-linear neural and musculoskeletal dynam-

ics, still has to be demonstrated. Meanwhile, simplified representations of the motor apparatus

limit confidence in its predictions. Neurophysiological data is often ambiguous and behavioural
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evidence, such as force field learning or anticipatory behaviour, can equally be explained by alter-

native theories that do not require internal models.

The equilibrium-point hypothesis offers an alternative that is grounded in neuromuscular physiol-

ogy, solves the posture-movement problem and correctly reflects observed EMG signals. It has so

far resisted attempts at falsification (most of which are based on misinterpretations of the theory

or overly simplified models) and has provided alternative solutions to many problems in motor

control thought to require internal models. While the EP hypothesis cannot currently be rejected,

challenges remain. Accurate stiffness predictions and validations, as well as experimental tools

for measuring the hypothesised control signals (motoneuron threshold offsets) are still lacking.

Also, potential mechanisms are needed to explain how these control signals are produced for a

given task and context. It is hoped that this thesis will contribute towards an understanding of

how control signals in the EP theory depend on the desired movement and the dynamics of the

underlying musculoskeletal system.

2.3 Embodied cognition

The two conflicting motor control hypotheses reflect a broader controversy in the field of cognitive

science. This is the question of whether a computational or adynamical perspective is better suited

for studying cognitive agents.

Computationalism

According to traditional views, cognition and behaviour are best understood in a computational

framework. The physical symbol system hypothesis (Newell and Simon, 1976), for example,

claims that cognitive agents are essentially problem solvers that algorithmically manipulate inter-

nal representations of the world via operations on static symbol structures. Such formal systems

were claimed to have “the necessary and sufficient means for general intelligent action” (Newell

and Simon, 1976). The theory assumes that the world can be divided into discrete objects, actions

and states, each of which can be referred to by a symbol. The nature of variables describing such

systems is hence discrete and its basic operations are discrete state transitions. Time is represented

in this theory only in so far as the system is updated at certain points in time. Events thus have

a temporal ordering, but there is no temporal continuity upon which a system’s behaviour can

depend. What matters is notwhenthe system occupies a certain state, butwhichstates it passes

through and in what order. The computational view focuses more on the internal structure of the

system’s overall state (e.g. syntax) than on how it is achieved. Proponents of this theory were

mainly concerned with abstract thought and rational problem solving. Most work was aimed at

explanations of isolated, high-level and disembodied cognitive faculties, such as decision making,

knowledge representation or logical reasoning. While the approach led to important advances in

computer science (e.g. expert systems and logic programming), its limitations were recognised

both on philosophical grounds and whenever attempts were made to apply it to robots acting in

the real world. Theoretical issues identified include but are not limited to the frame problem (Den-

nett and Pylyshyn, 1987), symbol grounding (Harnad, 1990),and the binding problem (Revonsuo

and Newman, 1999). With respect to robotics, it was recognised that many adaptive skills, such
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as balance, locomotion or object discrimination, do not always require symbolic processes and

sometimes are more easily explained and reproduced withoutthem (Brooks, 1990).

Embodiment and dynamicism

A shift in perspective followed, in which the importance of embodiment and dynamicism were

emphasised in explaining the adaptive behaviours of agentsin continuous coupling with their en-

vironment. Behaviour-based robotics (Brooks, 1990), for example, was aimed at understanding

all aspects of simple, but complete adaptive behaviours instead of isolating individual components

or aiming for general intelligence. It attempts to avoid unrealistic assumptions about the agent

or its environment by requiring a robot to interact in real-time with the real world. The approach

opposes the computationalist assumption that the brain constructs internal representations of the

world, which a homuncular subsystem acts upon. Instead, it claims that for a situated and em-

bodied agent “the world is its own best model” (Brooks 1995),and thus advocates the primacy

of perception over internal models. The concept of embodiment refers to the idea that an agent’s

behaviour depends non-trivially on the unique perceptual and motor capabilities that its particu-

lar body affords (Thelen et al., 2001; Beer, 2009). The material properties and morphology of

the motor apparatus and its sensory interface both empower and constrain the interactions that an

embodied agent is capable of. Notions like morphological computation (Pfeifer and Iida, 2005),

cheap design (Iida, 2005), and passive dynamics (McGeer, 1990) further emphasise that the phys-

ical properties of an agent’s body can be adaptive in the sense that they make behaviours more

efficient and robust or simplify its control. Examples of this approach include passive dynamic

walkers that exploit gravity for locomotion without actuators and control systems (McGeer, 1990);

a fish-like robot that exploits body shape to navigate in three dimensions despite being equipped

only with a one degree of freedom actuator (Pfeifer and Iida,2005); and a robotic hand that grasps

arbitrary objects without visual analysis or control by using elastic tendons and deformable finger-

tips (Pfeifer and Iida, 2005).

The shift towards an understanding of behaviour as the continuous unfolding over time of the in-

teraction between a physical agent and its environment necessitates a corresponding language to

describe it. Computationalism deals with discrete orderedevents and algorithms only, and cannot

account for the real-time dynamics that many behaviours critically depend on. The Dynamical

Hypothesis in cognitive science (Gelder, 1997) proposes instead that cognitive agents instantiate

dynamical systems (nature hypothesis) and that they are therefore best understood by using the

language of dynamical systems theory (knowledge hypothesis). Dynamical systems describe the

evolution over time of quantitative variables according tolaws that are usually expressed as dif-

ferential or difference equations. In contrast to the language of computation, it can thus be used to

describe any physical process, including the continuous interaction between an agent’s brain, body

and environment. A dynamical systems approach to behaviourtypically involves the modelling

of agent and environment as coupled dynamical systems and/or the analysis of such systems in

terms of quantitative and qualitative properties of the resulting state space. Particular behavioural

features observed experimentally are often explained geometrically by reference to stable and un-

stable limits sets and basins of attraction, or changes to these dynamical entities as the system’s

parameters are varied (bifurcations)4.

4For a comprehensive overview of analytical and geometricalmethods in nonlinear dynamics see Strogatz (1994)
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A cornerstone of the dynamical approach to motor control is the Haken-Kelso-Bunz (HKB) model

(Haken et al., 1985). It is based on experiments by Kelso (1984) in which subjects were instructed

to produce bimanual tapping movements in synchrony with a pacing metronome. As the desired

frequency was slowly increased, several interesting features could be observed in the pattern of co-

ordination between the two hands: if subjects start with an anti-phase pattern they spontaneously

switch to in-phase movements at a certain critical frequency; when the frequency is subsequently

decreased, subjects maintain the symmetrical pattern and do not switch back to anti-phase (hys-

teresis); such a transition is not observed when subjects start in the symmetric mode. In the HKB

model it was shown that these observations could be derived directly from a simple differential

equation that describes the change in relative phase between the hands as a function of frequency

(which serves as a control parameter). Analysis confirmed, and the equation was devised so that

the two different patterns corresponded to the only fixed point attractors of the system. Bifurca-

tion analysis further showed that both attractors are stable at low frequencies (bistability), while

at the critical frequency a phase transition occurs beyond which only the in-phase pattern is sta-

ble. The observed hysteresis and absence of transitioning when starting with in-phase movement

is explained by the fact that the system is already in a stableequilibrium which is not affected

by changes in the frequency parameter. In the HBK model, the equation describing these phase

dynamics were then derived from the coupled dynamics that describe individual limb oscillations.

It thereby not only provided a complete quantitative description of the observed phenomenon, but

also provided an explanation in terms of the relation between the two levels of description.

The work by Thelen and colleagues on Piaget’s classic A-not-B task (Thelen et al., 2001) can be

regarded as a second milestone of the dynamical systems approach. In this task, 7-12 months-old

infants, who have repeatedly managed to uncover a toy at location A, continue to reach for it even

when they have watched the toy being hidden in a different butnearby location B. Traditional

explanations refer to the infant’s incomplete or fragile object representations, or problems with

spatial coding, as explanations for this error. Thelen et al., in contrast, were less interested in

what infants seem to know than in how they behave. In their dynamic field theory of infant perse-

verative reaching they demonstrated that the A-not-B errorcan be understood as the result of the

coupled multiple timescale dynamics of actions such as looking, planning, reaching and remem-

bering. The work showed that the same language could be used to describe the time-evolution of

both cognitive processes and bodily movement, and that onlythe history of interactions between

the various subsystems could explain the observed behaviour. The idea of cognitive embodiment

was further supported by findings that perseveration is tightly linked to developing reaching abil-

ities and that the error disappears when infants adopt different poses between the A and B trials.

Smith and Thelen (1993) also used a dynamical systems approach to study the development of

motor skills in infants. They demonstrated that the disappearance and subsequent reappearance of

kicking behaviour in infants can be explained simply by the fact that their legs become heavier.

As the weight increases, the kicking behaviour ceases to be astable oscillatory pattern. When the

infant’s muscles grow stronger, however, they compensate for the weight gained. In other words,

an infant’s leg weight operates as a control parameter whosechange can lead to a bifurcation that

results in qualitatively different motor behaviours.

and Abraham and Shaw (1992).
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Evolutionary robotics

Embodiment and dynamicism often play a strong role in evolutionary robotics (ER) experiments

(Nolfi and Floreano, 2000). Here, algorithms inspired by natural evolution are used to automati-

cally find robot controllers (Floreano and Mondada, 1994), and sometimes morphologies (Harvey

et al., 1994), that maximise a given fitness function. Starting with a random population of candi-

date robots, individuals are assigned a fitness value based on their performance in the desired task.

In a process of selection, this fitness measure determines how variations (“offspring”) of the better

performing individuals replace the worse ones. Variability is introduced by applying operations

such as mutation and recombination to the robot instances. Over many iterations of selection and

variation, the population of robots is hoped to converge towards maximum fitness.

The main motivation for an ER methodology is that human intuition often fails to anticipate or

comprehend the complex interactions required in a given task between a robot’s brain, body and

environment. A design approach to robotics thus easily introduces unnecessary or wrong assump-

tions about the kind of control mechanisms or robot morphologies needed. Such preconceptions

can be minimised if aspects of an agent’s “brain” and body areallowed to evolve, instead of be-

ing specified by the experimenter. By not restricting the kinds of environment interactions that

a robot can engage in, one often finds that evolved solutions can exploit unforeseen properties

of the body or the environment that allow for simpler controlmechanism than those an engineer

might have synthesised. This was strikingly demonstrated by Harvey et al. (1994), who evolved

continuous-time recurrent neural networks (CTRNNs) (Beer, 1995b) for real-time control of a

camera equipped gantry robot. By using an active exploration strategy, the evolved networks were

able to distinguish between triangular and rectangular targets using only two pixels (or receptive

fields) of the camera’s video image.

Beer (1995a) demonstrated the strength of a dynamical and embodied approach by evolving and

analysing CTRNN controllers that produce locomotion behaviour when coupled to a six-legged

simulated robot. Although successfully evolved networks showed no significant functional organ-

isation, a state space analysis offered insight into the specific dynamics that gave rise to different

walking patterns. Specifically, Beer found limit cycles whose projections into motor space caused

single legs to rhythmically alternate between stance and swing motion in a fashion appropriate

to walking. The limit cycles were produced by periodic bifurcations that in turn were triggered

by the current state of the leg. If the leg was in the stance phase, a bifurcation would lead to the

appearance of an attractor, the relaxation to which produced a swinging motion. Conversely, in the

swing phase a different bifurcation would produce an attractor that pulled the system back into the

stance phase. The parameter changes necessary for these bifurcations to occur were produced by

sensory signals that indicated whether or not a leg was in contact with the ground. The observed

walking behaviour, therefore, could not be attributed to the agent’s brain, body or environment

individually, but only to the coupled system as a whole. In a series of experiments on minimally

cognitive behaviours (Beer, 1996; Slocum et al., 2000), Beer showed how the same approach can

be applied to study cognitive performances such as visual orientation, object recognition, selective

attention, perception of self-motion, planning of sequential behaviours and learning.
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2.4 Approach in this thesis

The methods used in this thesis to model and analyse the interaction between muscles and neural

control, as well as the kind of questions asked, are both examples of a dynamical and embod-

ied view of motor control. Firstly, the thesis is concerned with the equilibrium-point hypothesis.

This hypothesis is by nature dynamicist, as it suggests thatcontrol of motor behaviours is done

by changing parameters of the coupled neuro-musculoskeletal system, while theexecutionof a

motor behaviour is simply the relaxation of its dynamics towards a stable equilibrium. Secondly,

the tools used for describing and analysing the models in this thesis are those common to the dy-

namical systems approach. The behaviour of skeleton, muscles and neural control in this thesis

are simulated as coupled dynamical systems described by differential equations. The behaviour

of these systems is analysed in terms of the long-term (steady-state) and short-term (transient)

features of its phase space. It is shown, for example, that the interaction of antagonistic muscles

can produce stable as well as unstable equilibrium points injoint space. Properties of this equilib-

rium are studied as parameters of the system are varied. Transients, that is individual trajectories

that have not yet settled to an equilibrium, are compared to those observed in natural human arm

movements.

One aim of this thesis is to identify the kind of control signals that are required to generate natural

goal-directed arm movements. An important finding is that this depends crucially on assumptions

about the material properties of the muscles. A simplified model, for example, is shown to pre-

dict different control signals than a more realistic model.In this way the thesis highlights the

importance of embodiment when studying the dynamics of motor control. It also employs evo-

lutionary robotics techniques. Throughout the thesis, genetic algorithms are used to evolve the

neural systems controlling individual muscle activations. In most experiments, the neural activity

of the stretch reflex is described simply by a lumped model in which muscle activity is calculated

directly from a linear combination of various feedback components. This is in essence an opti-

misation of the standard (λ-) model of the equilibrium-point hypothesis for the task athand. In

other experiments, however, dynamical neural networks areevolved as reflex controllers. These

experiments, which extend the standard lambda-model, explore the forms of control possible when

assumptions about its structure are relaxed.
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Muscle dynamics

“Behaviour is regular, but there are no regulators” (J. Gibson)

3.1 Introduction

A distinguishing feature of all animals is their ability to move and interact with their environment

in complicated and goal-directed ways. The dexterity, robustness and efficiency of movements

by even the simplest animal easily surpasses the abilities of current robots. In mammals, skeletal

muscles are the sole initiators of movement. They transformenergy into motion through contrac-

tion and transmit the resulting forces to the skeleton. Hence, to understand the principles of animal

movement it is necessary to study the mechanical propertiesand dynamics of force production by

the muscles, their interaction with the skeleton as well as their neural coordination. In this chap-

ter I will use the Hill-type muscle model in conjunction witha physical simulation of a planar

two-jointed arm as a tool for studying natural movement dynamics.

Skeletal muscles are different from current robotic actuators in that the force they produce is not

simply a linear function of its input. The non-linear relationship between muscle force, length,

velocity and activation, a result of intrinsic material properties, play a crucial role, for example, in

fast but precisely damped movements or implementation of so-called pre-flexes, a zero lag resis-

tance to perturbations (Brown and Loeb, 2000). The importance of anecological balancebetween

material properties of the body, its morphology and controlwhen interacting with an environment

has received much attention recently (Pfeifer, 2007). Throughmorphological computation, agents,

whether natural or robotic, can exploit physical dynamics to achieve higher efficiency and simpli-

fied control, while maintaining a sufficient level of behavioural diversity (Pfeifer and Iida, 2005).

Gribble et al. (1998) e.g. has shown that the non-linearities of biological muscles can simplify the

control signals necessary to generate smooth shifts in the position of an arm. He showed that if too

simplified a muscle model is used, complex N-shaped inputs signals are needed to drive an arm

linearly from one position to another. By including the non-linear relationships on the other hand,

the same movement can be achieved with a simple monotonic ramp signal.
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In this chapter the material properties of antagonistic muscles are studied for their ability to create

an equilibrium-point at the joint level that allows for control of position, stiffness and velocity.

This has been demonstrated before (e.g. Kistemaker et al. 2007a). Here, however, a muscle model

is studied that is at the same time more complicated than abstract lumped models (Barto et al.,

1999), but simpler than those aiming for high levels of biological accuracy (Kistemaker et al.,

2007a). This intermediate level was chosen, because the goal of this chapter is not primarily to

reproduce human movements quantitatively, but to identifythose components of a muscle model

that are fundamental for achieving flexible control of a joint’s equilibrium position. Care is taken,

nevertheless, to ensure a reasonable level of biological relevance. To this end, the steady-state and

transient behaviour of various muscle models is analysed and compared to natural human move-

ments. The results determine whether the chosen level of model detail is sufficient for studying

the assumptions and implications of the EP hypothesis in thenext chapter.

3.2 Methodology: Modelling skeletal muscle

The following sections provide an overview of the anatomy and physiology of skeletal muscles

and explain their force-generating mechanism. The well known Hill-type muscle model (see e.g.

Zajac, 1989) is then introduced as a tool for studying their dynamics under open-loop control.

3.2.1 Muscle physiology

Muscles create motion by transmitting contraction forces to the skeleton via tendons. Their struc-

ture is hierarchical. The body of a muscle, surrounded by connective tissue called epimysium,

consists of many bundles (fascicles) of muscle fibres. Hundreds of thousands of these contractile

muscle cells are controlled by about a hundred motor neurons. A single motor neuron along with

all the muscle fibres it innervates is called amotor unit. Muscle fibres themselves are composed

of manymyofibrils. The latter contain the units ultimately producing contraction, thesarcomeres.

Large numbers of these are connected in series through non-contractile components from which

they are separated by so called Z disks. From the disks thin filaments containing actin monomers

project inward, while thick filaments, made from myosin molecules, float in the middle of the

sarcomere. It is the interaction between the thick and thin filaments that generate contraction of

the muscle through a mechanism known as the “sliding filamenthypothesis” (see below).

3.2.2 From action potential to force output

Every contraction starts with the transmission of an actionpotential from the motor neuron to

the muscle fibre via a chemical synapse called the end-plate.The action potential then travels

along the muscle cell membrane and will eventually trigger the release of calcium from an internal

compartment (see figure 3.1). The free calcium ions can now bind to a troponin molecule, which

in turn leads to a conformational change in the connected tropomyosin molecule covering the

actin filament. A now exposed binding site allows the head part of the myosin molecule to bind

to the actin filament and form a so-calledcross-bridge. With the cross-bridge in place, the myosin

head bends and performs thepower-stroke: it pulls the actin filament in the direction of increased
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Figure 3.1: Illustration of the sliding filament hypothesis. Calcium released through an action potential

triggers ATP powered actin-myosin cross bridge cycling.

overlap, thereby shortening the muscle fibre. During the stroke, the myosin head releases ADP

and phosphate. This allows for the binding of ATP instead, which leads to the termination of

the stroke. Energy gained from the breakdown of ATP to ADP andphosphate is used to return

the myosin head to its initial position. This process is repeated, leading to asynchronous cross

bridge cycling at many different binding sites simultaneously. At the end of the action potential,

calcium is pumped back into the compartment, actin-myosin binding sites are once more covered

by tropomyosin, and the muscle fibre relaxes.

3.2.3 The Hill-type muscle model

One of the most widely used models of biological muscle is theso-called Hill-type model (Zajac,

1989). Here, muscles are treated as input-output systems comprising a contractile element in par-

allel and in series with a varying number of springs and viscous dampers. A common configuration

is shown in figure 3.2.

The model behaviour is described by experimentally observed relationships between the different

kinetic and kinematic variables in the form of constitutiverelationships. Specifically, these ide-

alised lumped elements describe empirically how a muscle’sforce output depends on its length,

velocity and activation. In this way it differs from models that start from first principles, such as

the Huxley-Zahalak equation, which quantitatively modelsthe action-myosin interaction (Zaha-

lak, 1981). The Hill-type model was chosen here because it captures key features of real muscles

while computationally being relatively cheap. The following section will explain in detail the

different constitutive relationships and their implementation.
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Figure 3.2: Musculotendon unit: a tendon (or series elastic element, SE) is connected in series with a

muscle. The latter consists of an active contractile element (CE), a passive elasticity (PE) and a viscous

damper.

3.2.4 Activation dynamics

Responsible for the release of sufficient Ca2+ to enable the sliding process of thick and thin fila-

ments is an action potential travelling along the surface ofa muscle fibre. A single action potential

will not allow for all possible cross-bridges to form and hence will produce only relatively little

contraction. Consecutive action potentials however can add to the number of active cross bridges

if they occur before the re-uptake of Ca2+. Thus, the amount of force produced by a muscle is

proportional to the frequency of action potentials. Calcium release and its subsequent uptake are

two separate processes and lead to different time courses inthe rise and fall of active tension dur-

ing muscle contraction. In the muscle model, excitation-activation (a) dynamics limit the time

course of force production. Effectively, activationa implements a filter on neural excitation (u),

interpreted as firing rate, with different activation and deactivation rates:

ȧ = fa(a,u) = (u−a)/τ⋆ (3.1)

whereτ⋆ = τac = 0.04s if u≥ a andτ⋆ = τde = 0.07s if u < a.

In reality, the rates of calcium release and re-uptake themselves have been shown to depend on

stimulation frequency, muscle fibre length and velocity (Brown et al., 1999). Also, different types

of muscle fibres (fast and slow twitch) show different rates of activation and deactivation. Here, for

simplicity, time constants are assumed to be constant throughout a movement, and represent the

lumped effect of a range of different fibre types. Also, wheremuscle parameters are optimised in

this thesis, these constants are excluded. This is a limitation of the work presented here, and could

be addressed in future work. The fixed rates specified above fall into the midrange of reported

values. Activation rates as low as 10–20 ms and deactivationrates as high as 200 ms have been

used in the literature (e.g. Pandy et al. 1990; Pilon and Feldman 2006).

3.2.5 Ca2+ dynamics

Another, often neglected, aspect of Ca2+ dynamics is that muscle fibres become more sensitive

to Ca2+ as sarcomere length increases (Konhilas et al., 2002). In other words, force production

by the muscle is not only dependent on the amount of calcium released as a result of stimulation,

but also on muscle length. In this thesis we modelled this aspect of Ca2+ dynamics following the

approach detailed in (Kistemaker et al., 2007a), itself based on (Hatze, 1981). In this new scheme,
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Figure 3.3:Muscle activation dynamics. Muscle activationa is a low-pass filtered version of neural input

signalu with different activation and de-activation rates.

the activation levela, described above, is now interpreted as the free Ca2+ concentration resulting

from muscle stimulation. The final active stateq of the muscle, however, that is the amount of

Ca2+ bound to troponin, now depends on botha as well as on muscle length viaρ:

ρ = cη
k−1

k− L̃M
L̃M (3.2)

q =
q0 +(aρ)3

1+(aρ)3 (3.3)

wherec, η, k andq0 are constants. The effect of calcium dynamics on the muscle’s force-length

relationship is shown in figure 3.4. Mechanically, the addedCa2+ sensitivity adds to the stiffness

of the muscle at lower activations, and captures the experimentally observed shift of its optimum

length (Balnave and Allen, 1996; Roszek et al., 1994).

3.2.6 Active force-length relationship

The number of cross bridges formed during a contraction, andhence the force produced, not only

depends on the exposing of binding sites through sufficient calcium release, but also on the spatial

overlap of thick and thin filaments. As a muscle is stretched,this overlap decreases until no force

can be generated when there are no adjacent filaments. Conversely, as a muscle shortens overlap

increases and more force can be generated. Beyond the mid-region however, actin filaments start

interfering with each other until eventually they are pressed against the Z disks. Increasingly this

will oppose the contractile force until at this extreme force can no longer be generated either.

The region where active muscle force can be generated is usually modelled as 0.5LM
0 < LM <

1.5LM
0 . HereLM

0 , the optimal muscle fibre length or resting length, is the length at which ac-

tive muscle force reaches its maximumFM = FM
0 . The following function describes the active

generation of force at different muscle lengths:

F̃M
a (L̃M) = 1− (

L̃M −1
0.5

)2 (3.4)

For the rest of this thesis variables decorated with a tilde are normalised. Here it means̃LM =

LM/LM
0 andF̃M = FM/FM

0 . A superscript M will refer to a muscle variable, and a superscript T

to the tendon. Plots of the active force-length relationship are shown in figure 3.4. It is usually

assumed that activation levela scales the active force curve, but not the passive.
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Figure 3.4:Active force-length relationship for muscle activations from 0.05 to 1.0 in steps of 0.05. On

the left without, on the right including the effect of calcium dynamics. Notice the change of optimum

muscle length when calcium dynamics are modelled as well as its higher stiffness at low activations (for

comparison force curves at activation level 0.25 are markedby thick lines).

3.2.7 Passive force-length relationship

In parallel with the active contractile apparatus, severalelastic elements passively generate force

in a muscle fibre. Connectins, which keep thick and thin filaments aligned, the connective colla-

gen tissue surrounding each muscle fibre as well as the fascicles and the muscle as a whole, all

contribute to a springlike restoring force when a muscle is stretched beyond its slack length while

being inactive. The combined effect is modelled as a lumped spring with non-linear toe region and

linear tail:

F̃M
p (L̃M) =











( kml
kme

)(ekme(L̃M−L̃M
s )−1) L̃M

s ≤ L̃M < L̃M
c

kpm(L̃M − L̃M
c )+FM

c L̃M > L̃M
c

0 otherwise

(3.5)

whereL̃M
s denotes normalised muscle slack length (at less than which no force is generated),̃LM

c

the normalised length of transition from the linear to the non-linear regime (1.5),FM
c the offset of

force produced by muscle at transition length (0.66), andk denote form parameters with values

kml = 0.4, kme= 6.0 andkpm= 6.5. Figure 3.5 shows how passive elasticity and active force-length

characteristics combine additively. It should be noted that many different models exist describing

force production by the passive elastic element. It can alsobe modelled, for example, using an

exponential increase without linear tail, or even simpler,a quadratic curve. However, since in most

experiments carried out in this thesis the muscles will be working mostly in their midrange, rather

than at their extreme lengths, the exact shape should not have a significant effect on the overall

dynamics. This remains to be confirmed in future work however.

3.2.8 Force-velocity relationship

Not only the number of cross bridges formed determines net force, but also the ability of each

individual cross bridge to produce force. The constitutiverelationships described above assume

an isometric muscle, i.e. a muscle at a fixed length. Naturally however, muscles work against loads

and will shorten if the load is less than the contractile force (concentric work) or lengthen if the



Chapter 3. Muscle dynamics31

0.5 1 1.5

0.5

1

1.5

−1 0 1

0.5

1

1.5

2
natural range lengthening shortening

Fp

Fa

Fa + Fp

Length ( L )
~

Velocity ( v )
~

Fo
rc
e
 (
 F
 )

~

Figure 3.5:The net force-length relationship (thick solid line, left)is formed by addition of an exponential-

to-linear elasticity resisting lengthening of the muscle (slash-dotted) and a hyperbolic function with a max-

imum at resting length describing the active generation of force (thin solid). The curve represents the case

of maximum excitation. The force-velocity relationship (right) describes how force production drops with

increasing shortening velocity and increases when actively lengthening.

load is larger (eccentric work). Now, the faster a muscle shortens, and the faster the cross bridges

are cycling, the less force it can generate. Eventually, contractile force reaches zero at a velocity

of vM
0 . Muscles that are actively lengthening, on the other hand, can produce more force than those

contracting isometrically. This experimentally observedforce-velocity relationship affects overall

force output in addition to and independently of the force-length relationship.

For concentric contractions (shortening) the total effectof reduced cross bridge forces and other

sources of internal friction can be modelled as a viscous damper in a mechanical system. Math-

ematically, the following hyperbolic relationship, first formulated by Hill (1938) with regard to

muscle thermodynamics, describes the relationship between force and velocity:

F̃vconc =
FM

0 b−avM

vM +b
(3.6)

whereFM
0 is the maximum isometric force anda,b are parameters for whichvM

0 = bFM
0 /a, and

which usually are fitted to experimental data. Here we model an average muscle withvM
0 = 10L0/s

(Zajac, 1989). The resulting force-velocity curve is shownin figure 3.6. Damping is the result of

force resisting change in velocity. This can be seen in the negative slope of the curve, which

leads to decreasing force levels with increasing positive velocities (shortening). Also, due to the

non-linearity, the slope itself decreases with faster shortening, indicating that damping decreases

for faster movements. The curve can also be interpreted wheninverted, meaning that muscles can

shorten more rapidly against light loads than they do against heavier ones (in other words, heavier

loads will be lifted more slowly than lighter ones).

When eccentrically contracting, i.e. when the load imposedon the muscle exceeds its force and

thus leads to stretch rather then flexion, the muscle can generate forces greater than its isometric

maximum. The same equation as above can be used with following parameter substitution:

a : a′, b : b′ =
b
s
(
1+a′

1+a
) (3.7)
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Heres is the slope of the eccentric curve atvM = 0 and is expressed as a multiple of the slope

of the concentric curve at the same point. It determines the level of discontinuity at rest, and is

usually modelled as a factor of two. Parametera′ determines the asymptote limv→−∞. Reported

values, fitted to experimental data, range from 1.4 to 1.8.
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Figure 3.6:Force-velocity relationship. Left: for different levels of muscle activation (0–100% in steps

of 10%) with damping parametersa = b = 0.3. Right: tetanic activation (100%) and damping parameters

a = b∈ [0,1]. With parameter values increasing, the slopes of the curve around zero velocity increase too.

Such models will therefore have stronger internal damping properties.

The force-velocity relationship is crucial for the dynamicbehaviour of the muscle model. The

steep slope of the curve around the resting state, for example, leads to instantaneous rejection of

perturbations and can help stabilise the muscle (the so-called preflex). Equally desirable is the

model’s inherent property of being only lightly damped during fast movements and more strongly

damped at slow speeds. The changing slope of the force-velocity curve determines the extent

of internal damping and hence the time course of muscle contractions. In section 3.3.4 I will

compare muscles having different damping characteristicswith respect to the kind of trajectories

they produce (also see figure 3.6).

3.2.9 Tendon

Skeletal muscles are not connected to the bone directly. Instead, muscle fibres are arranged at

an angle with respect to the muscle’s line of pull and held together by connective tissue. This

aponeurosis transmits the collective force of all muscle fibres to the tendon, which in turn connects

to the bone. Both these in-series elastic elements, especially when long compared to the muscle,

can store mechanical energy during muscle contraction. During isometric contractions, tension in

the tendon reflects a lengthening of the series element and aninternal shortening of the contractile

element.

For modelling purposes tendon force is often expressed in terms of strain, i.e. the normalised

distance from its slack length. Here, the stress-strain curve is modelled as an exponential to linear

function (also see figure 3.7):

σ̃T = F̃T(εT) =

{

F̃t
ekt −1(ekt εT/εt −1) εT ≤ εt

klin(εT − εt)+ F̃t εT > εt
(3.8)
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whereεT is tendon strain,εT = (LT −LT
s )/LT

s , εt the strain at the transition from the nonlinear toe

region to the linear regime,̃Ft the corresponding force,klin the slope in the linear regime andkt

a form parameter. Withε0 = 0.04 describing the strain at which the corresponding force equals

the normalized maximum isometric muscle force (i.e.F̃T = F̃M
0 at εT = ε0), following parameter

values are used:εt = 0.609ε0, F̃t = 0.33 andklin = 1.712/ε0. It will also be useful to express the

inverted relationship between tendon force and strain:

εT(F̃T) =

{

log( F̃T(ekt −1)
F̃t

) 1
kt εt

F̃T ≤ F̃t

(F̃T − F̃t)/klin + εt F̃T > F̃t

(3.9)

Many experiments in thesis will not actually include the tendon; partly because it constitutes a

considerable computational cost (see section 3.2.11), andpartly because it does not always affect

movement dynamics in a significant way. This is because the length change in tendon is negligible

compared to the change in muscle length if the tendon is relatively short, as is the case with elbow

muscles for example (Zajac, 1989).
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Figure 3.7:Tendon force-stress relationship. Tendon force equals maximum isometric muscle force at 4%

strain, and the transition from non-linear to linear occursat 2.4% strain.

3.2.10 Muscle path

It has been shown in sensitivity studies of similar muscle models that the path of the muscle, from

its point of origin to the arc around the joint and eventuallyits insertion point, is a critical factor

for determining its dynamic response. This is because the path determines how the length of the

muscle, and its moment arm with respect to the centre of the joint, change as a function of joint

angle. This in turn influences where on the force-length and force-velocity curve a muscle resides.

There are different ways of calculating muscle length giventhe current kinematic situation. The

simplest is to assume a straight line between origin and insertion. In certain conditions, however,

this would lead to a path unrealistically crossing through the bone structure. A more precise

method takes into account the arc of the muscle path around the joint. Here though, in order to

minimise computational cost, we use dimensionless curves fitted to data from an average type of

muscle.

Figure 3.8 shows muscle length and moment arm as functions ofjoint angle under four different

assumptions. For better comparison, all curves have been normalised to the same range. Most
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muscles, although many exceptions exist, are connected to the skeleton such that they are mainly

using the ascending limb of the force-length curve (Garner and Pandy, 2003). According to the

authors, the monoarticular1 elbow flexors brachialis and brachioradialis, for instance, have a natu-

ral range of approximately 60% to 110% of their resting length. This is also the range used for all

muscles in this thesis.
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Figure 3.8: Muscle length and moment arm as functions of joint angle. Thick solid lines: Bullock’s

symmetric model. Thin solid lines: Kistemaker model. Dashed lines: Lemay and Crago model.

For the angle to muscle length mapping a linear curve is compared to two functions that were

polynomially fitted to anthropomorphic data (Lemay and Crago, 1996; Kistemaker et al., 2007a),

as well as an idealised symmetric setup (Bullock and Grossberg, 1991). For moment arms, a

linear curve, a fitted polynomial (Lemay and Crago, 1996) andan idealised bell-shaped function

(Bullock and Grossberg, 1991) are considered. Also, a constant moment arm, as is present in the

triceps elbow extensor for example, is used for comparison.I will show in section 3.3.1 how these

different modelling assumptions qualitatively affect theoverall landscape of muscle dynamics.

3.2.11 Simulation

The simultaneous dependence of muscle force on length, velocity and activation can be visualised

by the surface:

F̃M = f (L̃M , ṽM ,a(τ)) (3.10)

= a(τ)FM
0 FM

a (L̃M)FM
v (ṽM)+FM

0 FM
p (L̃M) (3.11)

Here velocity and active force exhibit a multiplicative relation scaled by muscle activation, while

passive muscle force is unaffected by the activation level.Another way of reading this is to say

that active force, scaled by activation, is used to determine the zero intercept of the velocity curve

(i.e. the maximum isometric forces are matched). All variables here are dimensionless. As men-

tioned before, muscle lengthLM is normalised by its resting lengthLM
0 , velocity vM by maximum

shortening velocityvM
0 and forceFM by maximum isometric forceFM

0 . This has the advantage

that many different types of muscles can be modelled simply by choosing different parameter val-

ues for the normalisation, while all constitutive relationships operate over the same dimensionless

range. The corresponding surface is shown in figure 3.9 for different levels of activation.

1spanning a single joint only
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Figure 3.9:Muscle surfaces. Force is represented as a surface over length and velocity for different muscle

activations. Red lines indicate the parts of the surface where the muscle is at resting length (1.0) or at zero

velocity. It can be seen that higher activation not only leads to larger absolute forces but also to steeper

slopes in both length as well as velocity dependent forces. This in turn results in both higher stiffness (slope

of f-l) and stronger damping (slope of f-v).

During natural movements, both the length and velocity of a muscle change continuously. As a

result, force output will also be altered even if neural activation is constant (although this will

rarely be the case, as neural activation is strongly modulated by spinal neuron circuits). Even

more, the slopes of the surface, i.e. stiffness and damping,will change as well throughout a single

movement. It would thus be reasonable to assume that rather complex dynamics would result

from such a system and that it would be difficult to control. I will show in the following sections

however, that this is not the case. On the contrary, the non-linear muscle properties seem to have

been adapted such that they allow for rather simple forms of control.

Model integration

Without tendon, a simple integration scheme (figure 3.10A) can be used to calculate muscle force

according to the model described by equation 3.11. When a tendon is included, the scheme is

different, as there is no longer a unique mapping between joint angle and muscle length. Instead,

for any length of the combined musculotendon unit (which is unique for every joint angle), the rel-

ative length of the muscle and the tendon depends on the forcewith which the muscle is currently

contracting. Hence an algorithm as shown in figure 3.10B is used for integration.
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Figure 3.10:Musculotendon unit (MTU) flow chart. A) without tendon: joint angles, readily available

in the rigid body physics simulator ODE, are mapped to musclelengths directly. Velocity, the derivative

of muscle lengths, and activation, the input, are used to calculate muscle force. B) including tendon: the

length of the tendon can be derived from the inverse of the tendon force-length curve given the current force

output. This can be used to calculate muscle length and subsequently its velocity. The same steps are then

taken to get force output.

Once the force output has been calculated for a given muscle,it is multiplied by its moment arm

and applied as torque to the joint it spans. The resulting motion of the body, i.e. the articulated

chain of rigid bodies, is then handled by a physics simulator2 that takes into account the effects

of gravity, inertia, friction and collisions. In the following time step the new positions of the body

segments are then used again for the integration of the modelequations as described above.

3.3 Results: Muscle dynamics

A muscle never functions in isolation but always interacts with a load. The load can be static, as in

holding a weight against gravity, or dynamic. In the latter case the muscle accelerates or deceler-

ates a load that has inertial and possibly viscoelastic properties. This is the case for example when

two muscles are arranged antagonistically, each providinga load to the other. As muscles can only

pull, they usually come in pairs to actuate a joint (usually in higher numbers though, especially for

joints with more than one degree of freedom). In the elbow, for instance, the triceps straightens the

joint, while the biceps flexes it (as do brachialis and brachioradialis). In the following experiments

this is the setup used, with all muscle properties being symmetrical (including their insertion into

the bone).

CE
SE

PE

Figure 3.11:Example of an antagonistically arranged pair of muscles. Inthis thesis, muscles are attached

to the skeleton in a symmetrical fashion instead.

2ODE - Open Dynamics Engine: http://www.ode.org/
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One way of looking at the behaviour of such a system of coupleddynamics is to identify its

equilibrium points (EP). These are the states where the force producing characteristics of the two

muscles (and external loads) intersect so as to cancel each other out. As a result, no movement

occurs at an EP: it defines the points at which the system is at rest. Figure 3.12 shows the force-

length curves of an antagonistic muscle pair at different activation levels. Both are plotted as

producing positive forces although their effect on the skeleton is of opposite sign. The force-

velocity curve need not be considered for now, as the velocity at the EP is zero by definition.
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Figure 3.12:Behaviour of an antagonistic muscle setup acting on a hinge joint. Arrangement is symmetric,

joint angles in[−π/2,π/2] and lengths of both muscles vary between 0.6L̃M and 1.1L̃M. Co-activation of

the antagonistic muscles changes the slope of both force-length curves at the EP and increases the overall

stiffness (the difference in force as a function of distancefrom the EP increases). A shift in the difference

between activations however, shifts the position of the equilibrium.

When neither muscle is activated, the joint acts completelypassive in its mid-region and only

lightly resists movement at its extremes (due to passive elasticity). With small and equal activa-

tions however, an EP appears to which the joint will convergefrom any starting point in its range.

It will resist perturbations away from this EP with a force that equals the difference between the

two curves, which in turn is determined by the slopes at the EP(shaded grey). The equilibrium is

therefore stable, i.e. an attractor. It is easily observed that due to the non-linearity of the curves, in-

creasing co-activation of the muscles (simultaneous and ofequal amount) leads to higher stiffness

of the joint. Differential activation of the muscles on the other hand, does not primarily change

the stiffness of the system, but the position of its equilibrium.

Muscles are often assumed to be primarily spring-damper systems. But although they do have

viscoelastic properties, their dynamics can be quite different from simple springs. With respect

to equilibrium points, compare the above model to the linearspring setup depicted in 3.13. Here

the system consists of two antagonistic springs whose resting lengths can be controlled via input

signals. Although the intersection of their force-length curves also create an EP whose position

can be controlled, its stiffness is always the same. No matter how the individual resting points are

modulated, the overall stiffness is always determined by the individual spring constants.

The fact that muscle non-linearities create an equilibriumpoint whose position and stiffness can

be modulated centrally, suggests a particular form of control. With respects to posture, i.e. the
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Figure 3.13:Linear spring model of a muscle actuator. Co-activation, i.e. the shift of resting lengths by

equal amounts but in opposite directions, increases the force output of individual springs, but doesn’t affect

their difference. The overall stiffness is thus determinedsolely by the individuals spring constants.

maintenance of a body configuration, it offers stability forfree. If muscle activations are such as

to produce a given posture, any perturbation will be rejected automatically. There is no need for

the explicit calculation of forces that need to be produced by each muscle to oppose a perturba-

tion. Voluntary movement, in such an EP control scheme, corresponds simply to a shift in posture.

Instead of using an internal model of body dynamics to infer the correct forces needed to move the

body segments in a desired fashion, a simple shift of the EP issufficient to induce movement to

the target position. This is why the EP-hypothesis offers a solution to the posture-movement para-

dox: there is no clash between dedicated autonomous systemsstabilizing a posture and voluntary

movements. Both are aspects of the same system.

For goal-directed movements a mapping between desired joint configuration and muscle lengths is

required, but this is considerably simpler than the formation of an internal dynamics model. Also,

there exists the possibility that segmental reflex connections develop such as to mirror the anatom-

ical organisation of the muscles (Feldman and Levin, 1995).This would mean that no explicit

geometrical representation of the motor apparatus is needed to “map” a desired joint configuration

to required muscle length thresholds. Instead, a centrallyspecified joint reference configuration is

distributed to all involved muscles via appropriately organised reflex connections such that their

threshold lengths correspond to the desired joint angle.

It is clear, however, that motor control using only static activation levels, as illustrated above, is

neither biologically plausible nor energetically efficient. EMG measurements show that at the end

of most movements muscle activation goes to zero. A lot of energy would be wasted if for every

posture all muscles would be constantly contracting. This is why theλ-formulation of the equi-

librium hypothesis proposes that the EP is the result of the combined effect of muscle properties

and reflex activity, the latter of which resets the setpoint beyond which muscles start contracting.

Another solution would be the creation by the muscles of an EPto induce movement, followed

by a gradual decline of activation once the desired positionis achieved; or a combination of such

an open-loop control-law and reflex activity. But whatever the form of control, the dynamics

of an antagonistic muscle pair will always have a significanteffect on the movement generated.

The following sections will therefore analyse how the dynamical landscape depends on the var-

ious components of the muscle model in open-loop mode. The next chapter will then deal with

closed-loop control.



Chapter 3. Muscle dynamics39

−1.5 −1 −0.5 0 0.5 1 1.5

−60

−40

−20

0

20

40

60

80

−1.5 −1 −0.5 0 0.5 1 1.5

−50

−40

−30

−20

−10

0

10

20

30

Joint angle  ( rad ) Joint angle  ( rad )

To
rq

u
e

  (
 N

m
 )

Figure 3.14:Net torque curve of joint at full isometric activation for LCmodel (left). Right: extensor

activation fixed to 0.5 and flexor ranging from 0 to 1.

3.3.1 Steady-state equilibrium points

The equilibrium points of a single hinge-joint actuated by an antagonistic muscle pair can be

found where the amounts of torque produced by both muscles are equal. Muscle torque in turn

is a function of joint angle: indirectly via the muscle’s force-length relationship and directly via

changing moment arm. Figure 3.14 plots the torque of each muscle as a function of joint angle

for different static activation levels. Since the muscles pull in opposite direction, their torque

curves are of opposite sign. Also shown is net joint torque, given by the sum of the two muscle

torque curves (thick line). Since the setup is symmetric, the equilibrium point, the point at which

net joint torque is zero, can be found in the middle of the joint range. The slope at the same

point determines if the point is an attractor or repellor. Here, the flexor (thin solid line) pulls the

joint towards negative, the extensor (thin dashed line) towards positive angles. A positive slope

thus defines an attracting equilibrium point, as is the case in figure 3.14. While the left part of

the picture shows the condition of both muscles being maximally activated, the right shows the

movement of the EP with extensor activation fixed at 0.5 and flexor activation ranging from 0.0 to

1.0. It can be observed that the slope at the EP, i.e. the jointstiffness, changes with activation as

well.

The same technique of identifying EPs and estimating stiffness from the slope of the net torque

curves can be used to fully characterise the steady-state behaviour of the system. In figure 3.15

this was used to display EPs and stiffness over all possible muscle activation pairs. Several salient

features of these surfaces are interesting. Firstly, EPs exist for every possible joint angle. Hence

any position of the joint can be maintained in a stable fashion and movement between any two

positions is possible via a shift in muscle activation. Secondly, each equilibrium position can be

achieved with different combinations of muscle activations. In fact, the joint position isocurves

(drawn below the surface), that is the curves along which joint position is constant despite changes

in activation, form straight lines. The isocurve for joint angle θ = 0 for example is found where

MFlex = MExt, while all other isocurves correspond to fixed ratios between flexor and extensor acti-

vation. From a control perspective this is a desirable feature because no complex mapping between

desired joint position and muscle activation is needed. This is amplified by properties found in the
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Figure 3.15:EPs and corresponding stiffness in isometric condition as functions of flexor activation (MExt)

and extensor activation (MFlex). Muscles have a linear length function and constant momentarm. EPs exist

for each joint angle in the range. Stiffness increases as passive elasticity comes into play.

stiffness map. Here, red lines indicate joint stiffness along the positional isocurves. These too

form straight lines. Hence a single number, the flexor-extensor activation ratio, determines joint

position while their absolute values determine joint stiffness. A simple strategy for independent

control of these variables could therefore be implemented in a straightforward manner.

Above analysis represents a muscle model in which moment arms are constant and muscle lengths

change linearly. As mentioned in section 3.2.10 though, each of these can be modelled in various

ways. Figure 3.16 summarises the steady-state behaviour oftwelve different models. The labels

identify each model, with the first letter referring to the muscle length mapping (L = linear, S =

sigmoidal), and the second referring to the moment arm function (C = constant, L = linear, A =

asymmetric bell-shape). Additionally, the two top rows differ from the two bottom rows in that

they do not include calcium dynamics. It was found that the other modelling options mentioned in

section 3.2.10 produce results almost identical to the onesshown here. The more realistic muscle

length approximation, for example, was not significantly different from linearity, and the bell-

shaped moment arm function is equivalent to a constant moment arm if the muscles are arranged

symmetrically.

From figure 3.16 it is clear that the model is only slightly sensitive to the shape of the muscle

length function. Comparing rows 1 and 2, or 3 and 4, the only difference between a linear and a

sigmoidal function is a steeper slope towards the extreme joint angles. More significant is the effect

of the moment arm. By using the linear or non-linear functions almost all surfaces are changed

such that a wide region in the middle becomes practically uncontrollable. A slight variation in

activation will move the joint towards one of the two extremes. Only the LL and SL models with

calcium dynamics seem to be well behaved (smooth in the central region). Calcium dynamics

itself is another major factor in shaping the surfaces. While not disrupting the emergence of EPs,

it leads to non-linear EP isocurves. Consequently these models do not allow for a trivial mapping

of equilibrium position to a fixed ratio of agonist-antagonist activation.
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Figure 3.16:Surfaces of equilibrium position over muscle activation pairs comparing different muscle

length and moment arm functions as well as the effect of calcium dynamics. The first initial of each label

refers to the length mapping: L for linear, S for sigmoidal. The second letter identifies the moment arm

mapping: C for constant (0.04 cm), L for linear, and A for the asymmetric bell shape (Lemay and Crago,

1996). The top two rows do not include calcium dynamics, the bottom ones do. For units of axes refer to

previous figure.
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Figure 3.17:EPs and corresponding stiffness determined from isometriccondition. Muscles have a linear

length function, constant moment arm and calcium dynamics.Note that inclusion of the latter implies

that near maximal force production can be achieved in the region below activation levels of 50% (compare

figure 3.4), i.e. the flat region in the observed surfaces would fall outside the range of natural human

movements.

We can explain the differences observed between the variousmodels by looking more closely

at individual EP surfaces and net torque curves. These are shown in figures 3.17 for a model

with linear muscle length, constant moment arm and calcium dynamics. Compared to the model

without calcium dynamics (figure 3.15), the surface of EPs becomes more nonlinear, resulting in

a flat surface beyond activations of approximately 0.5. Thisis due to the force-length relationship

saturating at much lower activations (see figure 3.4). Nevertheless, all positions are attainable with

activations below that range. Stiffness also shows a different characteristic and no longer increases

linearly along the EP isocurves. It is still a controllable variable, as the same EP can be achieved

with different levels of co-contraction, but in a less simplistic fashion.

The position and type of equilibrium points is directly related to the position of peaks in individual

muscle torque curves. In both models with linear muscle length and constant moment arm these

peaks occurred somewhere between the centre and that extreme at which a muscle is at its longest.

As the curves were monotonic and symmetric, the resulting net joint torque was close to being

linear. If, however, the muscle torques peak at shorter muscle lengths, and the curves become

non-monotonic, the net torque can cross zero several times and hence produce several equilibria.

An example of this is the model with sigmoidal muscle length and non-linear moment arm shown

in figure 3.18. Here, the system exhibits three equilibria. The two EPs located at the ends of the

joint range are attractors, while the EP in the centre is a repellor. This explains why the central

region is uncontrollable. Depending on initial conditions, or small random perturbations, the joint

will always be pushed into either of the peripheral attractors. From a control point of view this

is undesirable. In open-loop mode the system can not be controlled, and if feedback control was

used, the gains would have to be so high as to overcome the system’s inherent pressure away from

the centre. High gains however can easily cause instabilitythemselves.
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Figure 3.18:Net torque curve of joint at full isometric activation for SAmodel (left). Right: extensor

activation fixed to 0.5 and flexor ranging from 0 to 1.

It should be emphasised at this point, that the muscle setup used in all experiments here is rather

abstract when compared to real musculoskeletal morphologies. In humans for example, four mus-

cles are involved in elbow flexion (biceps, brachialis, brachioradialis, pronator teres) and two in

extension (triceps, anconeus). All have different torque-angle curves and contribute forces to dif-

ferent degrees depending on the particular movement carried out. The properties of the antagonist

muscles modelled in this thesis are not supposed to correspond to any of those real muscles in

isolation, but should rather be seen as an abstraction of thewhole elbow system. Correspond-

ingly, the dynamics exhibited by the model are assumed to be asubset only of the dynamics of the

real system. Models that lead to unstable dynamics, for example, are not studied any further in

this thesis, without claiming that natural systems never exhibit such behaviour3. Validation of the

lumped two-muscle model, i.e. assurance of biological plausibility and relevance, is based on both

qualitative and quantitative assessment. A qualitative feature of movement dynamics considered

crucial, for example, is the ability to independently control joint position and stiffness across the

full range of joint angles. Quantitatively the model is considered plausible if it reproduces features

observed in natural kinematics, such as bell-shaped velocity profiles.

3.3.2 Co-contraction and stiffness

So far it has become clear that even with static open-loop control signals, antagonistic muscles can

create a dynamic landscape that allows for the control of joint position via equilibrium points. Fur-

thermore, different combinations of muscle activations can lead to the same equilibrium position.

How is co-contraction, i.e. the amount of contraction shared by two muscles, related to the stiff-

ness of the joint? Control of stiffness is directly connected with the stability of a system, and it is

usually assumed that co-contraction of antagonists increases the stiffness at the joint. Figure 3.19

plots stiffness, measured as before by the slope of the net torque-angle curve, against the level of

co-contraction. Irrespective of whether the model includes or excludes calcium dynamics, stiffness

increases indeed with co-contraction. In the former case itchanges linearly, and in the latter case

non-linearly and non-monotonically with a peak at submaximal muscle activation. The maximum

3they might do in fact, as demonstrated in (Akazawa and Okuno,2006)



Chapter 3. Muscle dynamics44

0 0.2 0.4 0.6 0.8 1

5

10

15

20

25

Co−contraction

S
ti
ff
n
e
ss
 (
 N
m
 /
 r
a
d
 )

5

10

15

20

25

30

35

40

Co−contraction

0 0.2 0.4 0.6 0.8 1

Figure 3.19: Stiffness along EP isocurves as a function of co-contraction. On the left the LC model

without, and on the right with calcium dynamics is shown. In both cases some areas are omitted because of

numerical inaccuracies in estimating stiffness from torque-angle slopes.

stiffness observed in the model varies between 18 and 45 Nm/rad, depending on the equilibrium-

angle. This is within the physiological range, reported as being 14 to 126 Nm/rad (Kistemaker

et al., 2007a). The shape of the stiffness curve for the modelincluding calcium-dynamics matches

that reported in (Kistemaker et al., 2007a) for a model composed of six individual muscles.

3.3.3 Tendon and EP

In the previous analyses the tendon was omitted from simulations. In the case of the elbow this

can be justified by the fact that the ratio of tendon to muscle length is such that the effect of the

tendon is minimal (Zajac, 1989). Only when the tendon is comparatively long does it add enough

series elasticity to store a significant amount of energy. Nevertheless, in order to test the effect

of a short tendon on the dynamic landscape of the antagonist system, the previous analysis was

repeated with a tendon present. The musculotendon length was modelled as varying between 7 and

14 cm (Pigeon et al., 1996), withLM
0 = 9cm (Garner and Pandy, 2003), andLT

s = 3cm= 0.33LM
0 .

With this setup, the muscle length measured over the same joint range as above varies between

0.5 and 1.2LM
0 . This is similar to (Lemay and Crago, 1996) whereLT

s was set such that̃LM = 1.2

when activationa = 0 and musculotendon lengthLMT at maximum physiological length. As

figures 3.20 and 3.21 show, inclusion of a tendon does not change the main features of the joint’s

equilibrium surface. The main difference, similar to the model including calcium dynamics, is

that for high activation the EP surface becomes flat. Most change occurs when either activation

is low. Also, an effect of change in the range of muscle lengths can be observed. Now between

0.5 and 1.2LM
0 , force output drops to zero at the joint extreme for the muscle that is at its shortest

here. Stiffness increases smoothly with co-contraction asin the models described above, but in a

non-linear fashion. As the inclusion of the tendon increases the complexity of the model, but does

not affect the properties of interest here, the decision is made to not include it in the rest of this

thesis.
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Figure 3.20:EPs and corresponding stiffness determined from isometriccondition. Muscle has a linear

length function, constant moment arm as well as a tendon element. EPs exist for each joint angle in the

range.
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Figure 3.21:Net torque curve of joint at full isometric activation for tendon model (left). Right: extensor

activation fixed to 0.5 and flexor ranging from 0 to 1.
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3.3.4 Transient dynamics

So far we have only looked at the steady-state behaviour of the antagonist system, i.e. the states at

which it comes to rest (EP) and their local properties (stiffness). Of equal interest is the system’s

transient behaviour, that is the kinematic features of the actual movement as it leads to the EP.

Passive load response

For the same desired movement, the main factor influencing kinematics in the Hill-type muscle

model is the viscosity implemented by the force-velocity relationship. Figure 3.22 compares mus-

cle models with and without this viscosity in response to a transient load of 10 N and changing

co-contraction. Not surprisingly, the effect of the viscous element is the damping of the perturba-

tions. Also, this damping is stronger for increasing co-contraction. The lack of viscosity, on the

other hand, leads to underdamped oscillations around the equilibrium point. It is worth noting that

the equilibrium point of the musculoskeletal system now also depends on the load. The equilib-

rium hypothesis acknowledges that control signals can not directly encode the actual EP, but that

the latter emerges from the interaction between an internal, or virtual, EP and external loads.
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Figure 3.22:Response of joint actuated by antagonist muscles to transient loads of 10 N. Left: the model

with viscosity term produces damped movements towards the equilibrium point, now also determined by

the load. Right: without viscosity movements are highly underdamped.

It should be noted that the model described above does not include passive damping or joint

friction. While it has been shown that passive viscosity cancontribute significantly to overall joint

dynamics in insects (Zakotnik et al., 2006; Dudek and Full, 2006), its effect in humans is likely

small compared to active muscle viscosity and reflex contributions4. As Hooper et al. (2009)

suggest, this difference might result from a general scaling effect. While muscle passive force

varies with muscle cross-sectional area, limb mass varies with limb volume. In large limbs passive

forces are hence dominated by inertia and gravity. Since most studies using Hill-type muscle

models omit passive viscosity terms (compare, for example,Gribble et al. 1998), the same was

done here. While one could speculate that the addition of passive damping could improve stability

slightly where oscillations occur at the final position of a movement, this was not investigate in

this thesis.
4Winters and Stark (1985), for example, report a value of 0.2 Nms/rad
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Central control of viscosity

More interesting than the passive properties of the antagonist system when responding to a load

is whether joint velocity can be controlled independently from position and whether the observed

kinematics bare resemblance with biological data. Intuitively, it would seem that in order to control

the velocity of a movement the control system would have to modulate the time course of mus-

cle activations. In this section however, we will ask if movement velocity can also be influenced

only by choosing different static open-loop activations. In the following experiments, the simplest

model that successfully produced the desired steady-statebehaviour (linear muscle length, con-

stant moment arm) is used and the kinematics recorded while the joint produces movements with

an amplitude of 100 degrees. All movements are aimed at the same position, but activation of the

muscle pair is varied along the EP isocurve. Therefore, the same EP is reached but with different

amounts of co-contraction. The resulting time course of joint position and velocity is shown in

figure 3.23. It is easily seen that movements caused by higherco-contractions tend to be faster

than those with low co-contraction. The absolute value of peak velocity increases and is reached

earlier. Consequently, movement duration decreases with co-contraction. This demonstrates that

it is possible to control joint velocity without changing the position of the equilibrium. Also, it

can be seen that the damping property changes, as lower co-contraction produces more oscilla-

tion around the equilibrium point. Overall, the velocity profiles exhibit a bell shape with slight

asymmetry when approaching the EP. The system seems slightly overdamped near zero velocity,

especially for the highest levels of co-contraction. Interestingly, such deviations from perfectly

symmetric velocity profiles are indeed observed in human movements (Bullock and Grossberg,

1988).

Parameters shaping the damping characteristic

The factors that determine the kinematics of a movement are those influencing the force-velocity

curve, i.e. the damping parameters shaping the convexity ofthe curve for shortening, and the

asymptote for lengthening velocities. Figure 3.24 and table 3.3.4 summarise the effect of variation

in those parameters. Movement kinematics are characterised by three measurements: i) peak

velocityvpeak; ii) time to peak velocitytvpeak: the time between the instant that the joint reaches 5%

of the total distance to be covered, and the instant at which peak velocity is reached; iii) movement

durationT: the time needed to move the joint from 5% to 95% of the total distance to be covered.

Two important observations can be made. Firstly, the asymptote for muscle lengthening velocities

modulates the asymmetry of the bell shaped velocity profile.This is due to a steeper slope of the

force-velocity curve around zero velocity. With a value of 1.4 and high activations the profile is

very close to a perfect Gaussian, while at lower activationsthe asymmetry when approaching rest

becomes more pronounced. With an asymptote of 1.8 however, the asymmetry is very strong even

at high activations. Secondly, also due to the steeper slopeof the force-velocity curve, damping

is increased with a higher asymptote. As a result, peak velocity drops, and movement duration

increases. While the asymptote affects damping in the lengthening muscle, parametersa,b shape

the damping of the shortening muscle. With higher values thecurve becomes more linear. Con-

sequently, the slope of the force-velocity curve is reducedand less damping is observed. Higher

values fora,b thus lead to faster movements. But although the resulting movement kinematics can
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Figure 3.23:Movement kinematics for different muscle activations thatlead to the same EP. Darker plots

correspond to higher co-contraction and stiffness. With increasing stiffness, peak velocity increases, occurs

earlier and movement duration is shorter. The lower the joint’s stiffness, the less damped the movements.

Damping parameters are:a = b = 1.0, and asymptotea′ = 1.4.

be tuned using these parameters, they do not correspond wellto human data. Kistemaker et al.

(2006) reports mean peak velocities of 975 degree/s, time topeak velocity of 0.077 s and move-

ment duration of 0.118 s for movements over 100 degrees. Clearly, the movements produced in

simulation with open-loop control only are too slow when compared to human data. In chapter

4 other forms of control are explored that have the potentialto produce more realistic kinematic

data.
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Figure 3.24:Movement kinematics for different damping parametersa = b∈ {0.2,0.4,0.6,0.8,1.0}. The

top row uses an asymptote for muscle lengthening velocity of1.4, the bottom row uses a value of 1.8.

Damping increases with larger asymptote and decreases withlarger values ofa,b.

ah,bh T(s) tvpeak(s) vpeak(deg/s) asymptote

0.2 1.135 0.035 310.51

1.4

0.4 0.670 0.060 425.57

0.6 0.480 0.060 491.13

0.8 0.370 0.060 532.26

1.0 0.290 0.065 561.92

0.2 1.325 0.025 248.88

1.8

0.4 0.815 0.040 356.55

0.6 0.610 0.050 420.39

0.8 0.495 0.050 461.87

1.0 0.430 0.060 491.81

human 0.118 0.077 975 human

Table 3.1: Kinematic features of joint movements over 100 degrees for different Hill-type damping

parameters.
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3.4 Results: Open-loop control

Before moving on to feedback control in the framework of the EP hypothesis, the following sec-

tions demonstrate the usefulness of non-linear muscle properties in an open-loop control scheme.

3.4.1 Pulse-step muscle activation

The damping characteristics of muscles have interesting consequences for the optimisation of

control signals. To illustrate this point, we implemented asimple control strategy that activates

each of two antagonistic muscles using rectangular pulses of amplitudesa1,2 and durationsd1,2,

with a parametert2 specifying the onset latency of antagonist activation (seefigure 3.25). Pulse

control has been used in several studies to reproduce various types of human movements (Barto,

1999; Barto et al., 1999; Karniel and Inbar, 1999).

time
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t 2

a 2
a 1

agonist antagonist

Figure 3.25:Parameters used to describe open loop pulse activation: amplitudesa1,2, durationsd1,2, and

antagonist latencyt2.

The relatively small number of control variables allows foran exhaustive evaluation of all possible

control strategies against an optimality criterion orfitness function. The resulting search space,

hereafter referred to asfitness landscape, can then be analysed in terms of features like ruggedness

or linearity of the regions of best performance. Also, an evolutionary algorithm can be used to

identify the globally optimal control strategy in this fitness landscape. The particular evolutionary

search algorithm used in this thesis is described in the following section.

3.4.2 Evolutionary algorithm

A simple, spatially distributed genetic algorithm (GA) wasused to evolve the parameters of mus-

cles, reflex models and other control mechanisms, such as thepulse-step commands in the fol-

lowing experiments. The algorithm is simple. From a given neighbourhood in a two dimensional

array of real-valued genomes, three are randomly chosen andranked in a tournament according to

their fitness. The two best ones create an “offspring” through recombination and mutation. This

new genome then replaces the loser of the tournament with a probability for elitism. At maxi-

mum elitism the loser is replaced only if the fitness of the newoffspring exceeds its own. With
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decreasing elitism the probability of the losing genome to be replaced irrespective of its fitness in-

creases. Recombination is realised with a two-point crossover operator, and mutation as a random

Gaussian vector displacement of the real-valued genomes. Both, the probability of mutation for

an individual gene, as well as the maximum displacement, areparameters of the GA. Components

subject to mutation are clipped to values within the interval [0,1].

An incremental approach to evolution is used in some experiments. Firstly, muscles and control

systems were sometimes evolved to produce solutions to a series of increasingly complex evalua-

tion tasks. For example, the task might initially require the production of movements of only one

amplitude and speed. Once this is achieved, the task is then expanded to include several different

amplitude and speed conditions. Equally, a system can be optimised for single-joint movements

first, and then evolved further for multijoint movements. Secondly, some evolutionary parameters

(mutation probability and amplitude) were automatically decreased over the course of an evolu-

tionary run to allow for the population to converge on and optimise the best solution it had found

so far. The parameters of the genetic algorithm and their ranges are listed in the appendix 3.6.

3.4.3 Flexibility

Figure 3.26 shows a fitness landscape in which the performance criterion consisted of reaching for

and stopping at a target position of 45 degree flexion at any point during a 2 s trial. In order to

show the whole search space, we somewhat arbitrarily fixed the amplitudesa1,2 to values of 0.2,

after initial experiments showed that such a setup still provides for a range of successful control

strategies.
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Figure 3.26:Left: isosurface of fitness landscape at fitness levels of 95%(dark) and 80% (bright). Point

A shows the overall peak of the surface. B corresponds to a movement that maximizes velocity, while C

minimizes energy. Right: slices through the peak of the samefitness landscape.

Several interesting observations can be made from this caseof unconstrained goal-directed move-

ment. Firstly, the region of good performance spans a considerable range in each of the three
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Figure 3.27:Slices through peaks of fitness landscapes for maximising velocity while minimising over-

shoot. The top row includes viscosity, the bottom row does not. Horizontal and vertical axes both measure

time in the interval 0–50 ms. Asymmetries, as observed in thet2 slice for example, are artefacts of the

experimental setup and physics engine. For strong accelerations the joint was able to bounce off one of

its limits and preserve enough energy to still reach the target (after already having passed it once). Since

the fitness function did not punish such behaviour, these control strategies show up as local maxima in the

fitness landscape.

remaining dimensions. One can pick almost any value for one of the parameters and will find a

combination for the other two that produces a good strategy.In other words, there is a continuum

of valid strategies all of which will move the joint towards the desired position, but each having

different kinetic or kinematic properties. Movements willdiffer in terms of velocity, stiffness or

energy required. For example, the point marked B corresponds to the fastest movement in this

space, while point C marks the one using least energy (measured as the integral over muscle acti-

vation). Thus, compared to the stereotypical behaviour of,for example, a PD controller, by using

this model one gains flexibility with respect to the details of a movement, while introducing only

few additional parameters to be chosen (by either a controller or a more constrained optimisation

procedure). Secondly, although the model is highly non-linear in all its properties, good perfor-

mance within the fitness landscape is found along near linearregions. This simple relationship

between parameters would make it easy to create a controllerthat can find and move along the

range of all optimal strategies.

3.4.4 Robustness

In terms of control signal optimisation, the viscous property of the Hill-type muscle model also

shows as increased robustness to noise or increased “searchability” of the fitness landscape, a

property of interest for evolutionary robotics for instance. Figure 3.27 compares the fitness land-

scapes of the muscle model with and without the viscosity term for an optimisation that maximises

velocity while minimising overshoot. The slices shown wereproduced by finding for each model

the global peak in 5-dimensional parameter space (a1,2,d1,2, t2) and subsequently fixing two of the

parameters (amplitudesa1,2) to the values found at the optimum. The resulting slices therefore

show the fitness landscape around the optimum in the remaining three dimensions.
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Figure 3.28:Trajectory resulting from typical control signals evolvedto minimise energy. Top: input

pulses and resulting muscle activations (filled areas). Bottom: joint position. In the highlighted range,

muscles are inactive and the joint swings passively.

As can easily be seen, without viscosity the regions of good fitness are much narrower. For the

optimisation procedure this means increased difficulty of finding the global optimum. It can also

be interpreted as robustness to noise in the control signal.In the viscous model a slight perturbation

away from the optimum will still produce relatively good results, while in the non-viscous case

performance is easily lost completely. Intuitively this iseasy to understand. In the non-viscous

case, the antagonist activation has to be precisely timed and scaled such that at the target position

forces cancel out exactly and the joint comes to a halt. Any remaining forces not counteracted

completely by the antagonist will move the joint away from the target. In the viscous model

however, because of its damping effect, small remaining forces will fade quickly and the joint will

come to a stop near the target position.

3.4.5 Efficiency

Motorised actuators have to be powered throughout a movement. Even compliant actuators will

have to make motors move to simulate a zero force trajectory,i.e. a purely passive swing. Muscles,

however, allow for more efficient movement through bi- or triphasic pulse patterns. Minimal

muscle activations are sufficient to accelerate and decelerate the joint towards a desired position.

This is possible, however, only because antagonistic muscles don’t work like springs. That is,

in their passive state they don’t have to work against each other’s resistance. Figure 3.28 is an

example of control signals optimised for minimal energy use. Clearly, throughout a large part of

the movement neither muscle produces any force and the jointis passively swinging towards its

desired position.

3.4.6 Multijoint movements

The movements and open-loop control signals presented so far are clearly oversimplified when

compared to natural movements involving many interacting joints. It is striking though, that sim-

ple pulse activations, appropriately scaled and timed, allow for well-behaved movement trajec-
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tories when combined with non-linear muscle properties. Inorder to investigate if the increased

robustness and flexibility also translates to more complex scenarios, we used the same approach

of control signal optimisation to generate motions of two joints (elbow and shoulder). We also

enabled gravity and included a static activation level in the control signals that could compensate

for its effect. Figure 3.29 presents optimised trajectories in two different conditions. The elbow

joint is always required to produce a flexion of 45 degrees. However, in scenario 1 the shoulder

moves in the opposite direction, while in scenario 2 it movesin the same direction.
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Figure 3.29:Shoulder and elbow trajectories optimised for maximising velocity while minimising energy.

The first two columns correspond to scenario 1 (synergistic), the last two columns to scenario 2. Top: pulse-

step commands and muscle activations. Middle: muscle forces (solid) and net force (dashed). Bottom:

position and velocity.

Both cases were easily evolved and produced trajectories whose final positions corresponded to the

desired targets. The figure shows that in the first case the velocity profiles resemble smooth bell-

shapes, while they are more jerky in the second case. The reason for this effect are the interaction

torques arising from the mechanical coupling of the two joints. In the first scenario movement of

the shoulder creates interaction torques in the elbow that are ‘synergistic’, i.e. support the intended

movement, while in the second case the torques counteract movement in the desired direction. It is

thus clear that the simple scheme of open-loop control employed here is insufficient for multijoint

movements. In fact, it is one of the big open questions in motor control whether the (human)

central nervous system uses an internal model of the body to calculate control signals that account

for its dynamics, or if a well-designed neuro-musculoskeletal system itself could perform the

necessary ‘morphological computations’. Chapter 4 will look at equilibrium-point control in the

form of theλ-hypothesis to evaluate whether the latter is possible in the case of both single- and
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multijoint movements.

3.5 Discussion

In this chapter it was demonstrated that a musculoskeletal model, controlled in open-loop mode

with static input signals, produces a dynamical landscape in which an equilibrium of joint position

emerges. The stable equilibrium point can be shifted acrossthe range of the joint through differ-

ential muscle activation, and its stiffness can be modulated by varying the level of co-activation.

It was further shown that the same type of inputs allow for control of the damping properties of

the system. Changes in the viscosity affect the system’s stability when responding to external

perturbation as well as the velocity of movement towards theequilibrium. Thus co-activation of

antagonistic muscles simultaneously leads to an increase of stiffness and to faster movements, a

strategy also found to be used by humans (Gribble et al., 2003).

The muscle model implemented in this chapter consisted of two symmetrically arranged antago-

nistic muscles acting on a one degree-of-freedom hinge joint. Although this setup is simpler than

the configuration of muscles in a real elbow joint, the resulting dynamics can be considered a sub-

set of the behaviours a more realistic model could produce. Simplifications, such as the exclusion

of a tendon element, calcium-dynamics, and non-linear moment arms, were justified by comparing

the dynamics of the resulting systems to those of the complete model. In going beyond previous

work in the field, it was shown that the qualitative features described above are not dependent on

the presence of these components. However, various relationships between motor command and

steady-state behaviour were demonstrated to be non-linearwhen they are included. In the simpler

model, EP isocurves and stiffness along those isocurves vary linearly. This could be exploited by

a simple control scheme in which a single number, the flexor-extensor activation ratio, determines

joint position, while their absolute values determine joint stiffness. The question then arises as to

how position and stiffness are controlled when these relationships are non-linear, as is likely the

case in more complex, asymmetrical multi-muscle systems. The traditional explanation would be

that the brain learns to represent these non-linearities using internal models, which can then be

used to adapt the motor commands appropriately. Another possibility is that spinal reflexes are

organised such that these relationships are effectively linearised from the perspective of higher

levels of the control system. Schemes for using reflex connections to ensure independent control

of position and stiffness in the presence of muscle asymmetries or changing moment arms have

been demonstrated in the past (Feldman, 1993; Bullock and Grossberg, 1991).

Qualitatively, the results of this chapter confirm findings by other researchers for both natural

human movements (see e.g. Gribble et al., 2003) and simulated muscle models. Kistemaker et al.

(2007a), for example, studied open-loop control using a Hill-type muscle model that differs from

the one studied here in details of the implementation of the constitutive relationships, and includes

the simulation of not only mono- but also bi-articulate elbow muscles. Also, parameters describing

the lumped muscle models in that study were chosen with the aim of matching the combined effect

of specific human muscles. Despite this difference, their results regarding the existence of stable

equilibria and the relationship between co-activation andstiffness are very similar. Only the shape

of the net-torques and EP maps differs between the models, but not their range. Stable control
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of joint position through statically co-activated opposing muscles was also shown analytically

in (Giesl and Wagner, 2007). Here, the authors used a Hill-type model that is of comparable

complexity to the one presented in this chapter, but modifiedto be twice differentiable. They

determined the basin of attraction of stable equilibria in joint space and found large ranges of

self-stabilisation. The experiments conducted in this chapter extend the aforementioned studies

by identifying model components that are not required to generate the qualitative behaviour, and

by showing how steady-state behaviour varies with changes in moment arm and muscle length

functions.

Comparing the simulations in this chapter to the range of models found in the wider field of biolog-

ical motor control, they are at the same time more complex than lumped muscle models and less

complex than those aiming for higher levels of biological accuracy. For example, Contreras-Vidal

et al. (1997) have studied independent control of joint position and stiffness using a muscle sim-

ulation that only incorporates a quadratic force-length relationship and joint friction, but neither

passive (parallel or serial) elasticity, nor Hill’s equation for velocity-dependent force production.

An equally simple model was used by Barto et al. (1999) to study predictive motor control based

on delayed sensory feedback. Here the authors simulated muscles as spring-like actuators with

non-linear damping in the form of a fractional power law, which was intended to approximate

the combination of non-linear muscle properties and spinalreflex mechanisms. On the other ex-

treme one finds high-fidelity studies such as the one presented in (Garner and Pandy, 2001). Here,

three-dimensional reconstructions of muscles and bones were derived from Computed Tomogra-

phy images and cadaver data to model the complete human upperlimb, including seven bones,

thirteen degrees of freedom and 42 muscle bundles. Also, in-vivo force measurements were used

to estimate the parameters of a full Hill-type model for eachmuscle group simulated. The goal of

this study was anthropometric fidelity itself, that is, to match human data as accurately as possible.

Studying movement control at an intermediate level of detail, as chosen in this thesis, can be ben-

eficial because it ensures that observed features are neither due to oversimplification, nor specific

to human anatomy and physiology.

While qualitative features like the range of stiffness and bell-shaped velocity profiles were success-

fully reproduced in this chapter, this is not true for the kinematic details of movement transients.

This should not come as a surprise, as it is known that naturalmovements are not the result of

static muscle activations. Motor neurons are always modulated by spinal reflex circuits and are

usually silent at the end of a movement. EMG recordings also show that antagonistic muscles

show triphasic burst patterns, whereby a joint is accelerated, decelerated and stabilised by three

consecutive transient activations. The next chapter will therefore explore whether muscles and

simple reflex dynamics can interact to produce more realistic motion.

An interesting finding in this chapter was the sensitivity ofmusculoskeletal dynamics to assump-

tions about the moment arm of the muscles modelled. It was found that for certain functions relat-

ing moment arm to joint angle the system would exhibit unstable dynamics. Such models were not

further considered here or in the following chapters. However, it is an interesting question whether

evolution has shaped the attachment of muscles to the skeleton such that only stable equilibria will

ever emerge. There is some evidence that this is not the case (Akazawa and Okuno, 2006). An

interesting avenue to be explored in future work are the implications of unstable dynamics at the
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muscle level for control systems at a higher level.

On the conceptual side, the emergence of a controllable equilibrium point is relevant for hypothe-

ses about the mechanisms of coordination in complex systemslike the human body. If posture and

movement are seen as the result of joint level EPs and the shifting thereof, then controlarises from

the dynamic organisation of the system rather then beingenforced uponit. One could say that

through musculoskeletal dynamics a new level of description (and control) comes into existence

in the domain of motor behaviour. There is no special mechanism at work, such as a feedback

controller, and no representation of goal states. But whileon the level of muscles one can only

talk about individual muscle forces, in the combined systemmovement can be described by shifts

in equilibrium position. In effect, a new controllable variable is created that reduces the degrees

of freedoms to be considered during coordinated motion (in this case from two force variables to

one positional variable). This is what Bernstein referred to assynergiesor coordinative structures.

Kelso explains:

“During a movement, the internal degrees of freedom of thesefunctional groupings
are not controlled directly but are constrained to relate among themselves in a rela-
tively fixed and autonomous manner. The functional group canbe controlled as if it
had many fewer degrees of freedom than comprise its parts, thus reducing the number
of control decisions required” (Kelso and Tuller 1984, p. 325).

Central commands, in this view,

“serve an organising function by biasing lower-level systems toward producing a class
of actions, but the lower level system can adjust autonomously to varying contextual
conditions” (Kelso and Tuller 1984, p. 330).

Thus, rather than controlling low-level actions directly,central influences are thought to set up and

modulate a dynamic organisation, the result of which is the autonomous evolution over time of

the system’s behaviour. This synergy is functional, i.e. dynamically created for a given task at

hand, rather than fixed once and for all. Only when co-activated, for example, does the antago-

nist system create an EP. Without co-activation the system is loose and could be controlled with

individual pulse signals, as was demonstrated in this chapter. The tuning of synergies provides

flexibility in the execution of an action with minimal amountof additional control. The increase

of co-activation, for example, changes the system’s behaviour around the EP such that perturba-

tions are more efficiently rejected, without explicitly calculating the correct response to a given

perturbation. Finally, equifinality, the property of a system to reach the same position with vary-

ing trajectories from different initial conditions, is theresult of the lower-level musculoskeletal

system having formed an attractor. In this way it provides trajectory “planning” for free, without

burdening a central controller with this problem.

In summary, this chapter has demonstrated that many qualitative features of the steady-state be-

haviour of single-joint movements can be reproduced with a minimal muscle model that incorpo-

rates the most fundamental non-linear characteristics of force production. As the model exhibits

the desired equilibrium behaviour as well as a sufficient level of biological plausibility (correctly

reproducing, for example, levels of joint stiffness as a function of co-contraction), it is considered

appropriate for studying the assumptions and implicationsof the EP hypothesis in the next chapter.
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3.6 Appendix: Genetic Algorithm parameters

The following table summarises the parameters of the spatially distributed genetic algorithm and

their ranges. For an overview of the algorithm see section 3.4.2.

min regular max

number of generations 100 1000 2500

population size 25 100 225

mutation rate 0.1 0.5 1.0

mutation amplitude 0.001 0.1 0.25

recombination rate 0 0.05 0.1

elitism probability 0 0.5 1

Table 3.2:Parameters of the genetic algorithm and their ranges. Wherethe term “rate” is used, this is

equivalent to a probability, i.e. a value in the range [0, 1].

As a rule of thumb, experiments with a larger number of genetically encoded values used larger

populations and were evolved for longer. Also, optimisation occurred in three stages: a short initial

exploration with maximum mutation rate and amplitude (1.0 and 0.25 respectively), followed by

a long period with “regular” mutation rate and amplitude (0.5 and 0.1), and finally a short period

during which the GA was allowed to converge to the peak of the best solution it had found so far

(0.1 and 0.001). The initial exploration and final convergence phases typically lasted for 10% of

the maximum number of generations. Where an experiment diverts from the above values, this

will be stated in the corresponding section.



Chapter 4

Feedback control

This chapter analyses the dynamics of the muscle model developed in the previous chapter when

coupled to a model of the stretch reflex based on theλ-formulation of the EP hypothesis. In

particular, it is studied whether such an EP model can reproduce the kinematics of natural (human)

arm movements under varying speed and amplitude conditions. We specifically investigate the

ability of the coupled system to deal with feedback delays, to produce triphasic muscle burst

patterns despite simple monotonic inputs, and to produce smooth multijoint movements. Also, the

relative importance of various feedback modalities is examined.

4.1 Introduction

It is clear that if muscles were pure force generators, complex muscle activations would be needed

to create the torques that propel a limb to a desired position. Any central command aiming to

specify these torques directly would have to take into account the dynamic properties of the various

muscles involved in the movement, the dynamics of the pools of motor neurons innervating those

muscles, as well as the inertial properties of the limb and any external forces acting on it (the

latter of which depend on the orientation of the limb in space, to complicate the matter further).

It has long been recognised though, that the viscoelastic properties of muscles and reflexes can

serve so as to allow for a different mode of operation, in which muscle dynamics are exploited to

simplify the inverse dynamics problem (Feldman, 1966; Nichols and Houk, 1976). As shown in

the previous chapter, muscle stiffness and length-dependence create an equilibrium position (EP)

at the point where the forces of antagonist muscles cancel each other out. This property has lead

to the formulation of the equilibrium-point hypothesis, which in its simplest form implies that the

central nervous system (CNS) can encode posture, i.e. jointangles, in a single ratio of agonist

to antagonist activation. Several types of equilibrium-point controllers have been suggested as

models for movement production that exploit the viscoelastic properties of muscles.
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4.1.1 Servo-hypothesis

Based on the neurophysiology of the tonic stretch reflex (seefigure 4.1), Merton (1953) proposed

one of the first motor control hypotheses. He suggested that the CNS uses theγ-system to im-

plement a servo-mechanism controlling muscle length. In his servo scheme, descending signals

were thought to modulate the activity ofγ-neurons that innervate stretch sensitive muscle spindles.

Spindles are proprioceptors which convey sensory information about muscle length and velocity

by firing at a rate proportional to the stretch of the intrafusal muscle fibre that their sensory endings

spiral around. This muscle stretch proportional feedback is then transmitted via Ia-interneurons

to the α-motorneurons of the receptor bearing muscle. Activity ofα-neurons in turn leads to

contraction of muscle fibres, which generate force and thereby counteract the stretch that origi-

nally activated the spindles. The closed loop of the tonic stretch reflex therefore acts as a negative

feedback system that minimises muscle stretch. Now, the role of theγ-neurons is to modify the

sensitivity of the muscle spindle, i.e. to increase the probability of action potential firing.γ-neuron

activity therefore has an effect similar to actual stretch of the muscle. Merton suggested that cen-

tral modification of spindle sensitivity viaγ-neurons acts to effectively set a resting length towards

which the tonic stretch reflex will drive the muscle. Crucially, Merton assumed this system to

work as a perfect servo in whichany external load would be balanced by an increase in muscle

force, such that muscle length would not change at all. Although attractive for its simplicity, the

theory had to be abandoned after experiments failed to support two of its assumptions. Initially,

it predicted thatγ-activity should precede that ofα-neurons. It was shown however by Vallbo

(1971) that both are activated simultaneously. As a result,an extension of the model was proposed

in which co-activation of both pathways meant that movementwas initiated via direct control of

α-neuron activity, while the responsibility of theγ-neuron was to keep spindles from becoming

slack, i.e. to maintain sensitivity while the muscle contracted, and to counteract perturbations (this

version is also known as servo-assist). Nevertheless, in order to perfectly reject external loads, the

model relied on a very high feedback gain of the stretch reflex. It was shown however that this

was not the case (Matthews, 1970; Vallbo, 1970).

Descending commands

α γ
Ia

muscle spindle

muscle fibre

Figure 4.1:The tonic stretch reflex. Shown are theα-motoneuron that activates the muscle fibre, theγ-
motoneuron modifying spindle sensitivity, and Ia afferents responding to muscle stretch well as its rate of

change.
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4.1.2 α-model

Based on the observation that deafferented monkeys deprived of ongoing visual feedback could

still produce goal-directed arm and head movements, even inthe presence of initial perturbations,

the hypothesis offinal position controlsuggested that the CNS specifies directly and exclusively

the final position of a movement, while the details of the trajectory are the result of the inherent

dynamics of the muscles and limb (Polit and Bizzi, 1979). More specifically, given that the move-

ments were carried out without peripheral feedback, i.e. inthe absence of a functioning stretch

reflex, it was suggested that the final position was defined by setting the spring constants of antago-

nist muscles via direct control ofα-motoneurons. Further experiments (Bizzi et al., 1984) revealed

that the shift in equilibrium position was not in fact instantaneous. Instead, the CNS was found

to specify a continuousvirtual equilibrium trajectory, such that interrupted movements would be

driven towards intermediate positions. According to thisα-formulation of the EP hypothesis, a

central planner directly controls reciprocal and co-activation ofα-motoneurons, the final common

pathway, in order to specify an EP along with a stiffness about that position. Even though the

α-formulation of the EP hypothesis avoids some of the pitfalls faced by the servo-theory, it is not

completely satisfactory either. Although monkeys and humans are able to produce pointing move-

ments without proprioceptive feedback, motor performanceis significantly degraded, with trajec-

tories becoming much more erratic than in normal subjects. Also, subjects were highly trained

to operate under the deafferented condition, and even then only large amplitude movements of

moderate speed and low accuracy were considered. It is therefore clear that reflexes should play

an important role in any model of motor control.

4.1.3 λ-model

While theα-model emphasises the mechanical properties of muscles in establishing an equilibrium

position, theλ-model recognises the importance of reflex contributions. It is based on observations

by Matthews (1959) and Feldman (1966), which showed that a fixed level of descending input

to the spinal cord is associated not with a a corresponding level of muscle activation, length or

force, but rather with an invariant force-length relationship (IC), i.e. a continuous, load-dependent

curve of stable equilibria. Different descending signals,according to these findings, establish

a threshold length at which muscle activity is initiated. Inthe supra-threshold range of muscle

lengths, activation increases non-linearly with the difference between threshold and actual length.

In contrast to theα-model, this non-linear relationship is not attributed solely to muscles however,

but to the combination of muscles and the tonic stretch reflex.

The physiological basis for threshold control is illustrated in figure 4.2. Eachα-MN receives both

descending inputs as well as afferent feedback related to muscle length (also see figure 4.1), and is

recruited when its membrane potential exceeds its electrical threshold. When a muscle is stretched,

the resulting afferent influence will lead to an increase in membrane potential until the muscle

reaches a length at which the threshold is exceeded and the motoneurons starts firing. The resulting

activation produces muscle shortening and thus tends to move it closer to the threshold length. If

central facilitatory input is added, either directly or through interneurons and theγ-pathway, that

threshold will be reached at a shorter muscle length. Through this integration with muscle-length
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dependent feedback at the membrane, descending signals therefore become spatial variables; they

specify a change in muscle threshold lengthλ. It is important to stress the difference between the

α- andλ-model here: while the former suggests that central controls change motoneuronoutput

activity, the latter suggests the modulation of motoneuronexcitability.

Force

Length

Load isotonic

isometric

λ1λ2

EP1EP2a

EP2b

Length

Potential

λ*λ

V *

V0

Figure 4.2:Left: neurophysiological basis of changes in threshold length λ. Central input to theα-MN

means that its potentialV reaches its thresholdV∗ not at muscle lengthsλ∗, but at the shorter lengthλ.

Right: changes inλ shift the invariant characteristic (IC). At the same load level the system reaches a

different equilibrium (EP2a instead of EP1). If muscle length is held constant (isometric condition),the

system reaches EP2b instead.

The effect of threshold control on the steady-state of the muscle-reflex system is illustrated in

4.2. The system is in equilibrium when muscle force equals external load. Any temporary per-

turbation (stretch) of muscle length will be rejected by thereflex and muscle properties that are

responsible for instantiating the IC curve. If the externalload changes while the threshold length

remains constant, both muscle force and length will settle on a different equilibrium point along

the IC, producing involuntary movements as a result. Voluntary movements on the other hand

are produced by a shift in the threshold length required to elicit the stretch reflex. After such a

shift, the previous EP is now a deviation from the newly established EP, and the same mechanism

responsible for stabilizing posture will move the muscle towards a new position.

In the case of multiple muscles, theλ-model proposes a central command that consists of two

components: a reciprocal partR that shifts the reflex threshold of antagonistic muscles in the

same direction (in joint space) to control EP position; and aco-contraction partC that shifts the

thresholds in opposite directions so as to increase or decrease stiffness at the EP. It is important

to note that these two commands do not uniquely specify desired position and stiffness (Feldman

and Latash, 2005). Both can be modulated further by non-centrally specified components of the

stretch reflex. Also, a shift of threshold length can imply both a change in position as well as a

change in force output, if external loads are taken into account (e.g. isometric contraction).

The EP-hypothesis proposes that smooth movements are produced through simple monotonic

(usually ramp-shaped) shifts of threshold lengths. This isone aspect of the model’s attractive-

ness when compared to direct force control. The complex torque patterns needed for certain

movements are thought to be the result of inherent muscle andreflex dynamics and need not be

taken into account in the control of movements. If the required EP shifts were of complex shape,
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not much was gained over alternative hypotheses which claimthat the brain uses internal models

of the body to control muscle forces directly. Several studies have attempted to refute the EP-

hypothesis based on reconstructions of the equilibrium trajectory from experimental data (Latash

and Gottlieb, 1991; Gomi and Kawato, 1996; Bellomo and Inbar, 1997) or from considerations of

optimal control strategies (Hogan, 1984). While some studies concluded that complex N-shaped

equilibrium shifts are necessary to account for empirically observed patterns of multijoint move-

ment, their results are questionable as they used over-simplified musculoskeletal models. In fact,

when non-linear muscle behaviour is taken into account, simple ramp-shaped control signals are

sufficient to produce fast and smooth movements in line with empirical measures (Gribble et al.,

1998). As muscle non-linearities can contribute significantly to movement dynamics (Brown and

Loeb, 2000; van Soest and Bobbert, 1993) other studies usingsimplified linear models (Popescu

et al., 2003) can equally be disregarded as criticism of the EP-hypothesis.

Several clarifications and extensions of theλ-model have been proposed over the years to account

for a range of experimentally observed movement dynamics. The formulation by Feldman (1986),

for example, includes velocity feedback to improve dampingin the system. A co-contraction

command was added to allow for control of stiffness, which also affects movement speed (Gribble

et al., 1998). In order to explain the fastest arm movements,a velocity reference signal was pro-

posed (de Lussanet et al., 2002; McIntyre and Bizzi, 1993), such that the error between a desired

velocity input and actual velocity was added to the threshold offset (similar to the proportional term

in a PID controller). Kistemaker et al. (2006, 2007b) have shown that a detailed muscle model

(including non-linearities and a tendon component) in conjunction with the mentioned extensions

to theλ-model (as well as use of intermittent feedback), is able to produce fast goal-directed arm

movements with stiffness in the range of experimentally observed measures. In this chapter we

compare Kistemaker’s model to increasingly simple abstractions, in order to find the minimal set

of features necessary to reproduce fast movements. The different models are evaluated along three

dimensions: the exploitation of inherent dynamics in feedback control; the simplicity of control

signals required; and their biological plausibility.

4.2 Methods

In order to compare different muscle-reflex models with experimental data, reference trajectories

are created that match kinematic markers extracted from human data (Kistemaker et al., 2006),

such as duration of movement or peak velocity. The assumption used to decide on the form of

the reference trajectory is that movements should be smoothand exhibit the classic bell-shaped

velocity profile observed in human movements (see chapter 2). Consequently, theminimum jerk

criterion (described below), a well established concept inoptimal control theory, is employed as a

reference for the optimisation of muscle model parameters and feedback gains. The optimisation

proceeds as follows: first, a desired movement of given amplitude and duration is chosen and a

corresponding minimum jerk trajectory generated. A muscle-reflex model is then evolved using a

simple GA (see section 3.4.2), in which the difference between minimum jerk and actual trajectory

serves as the fitness criterion. To test whether simple control signals are sufficient to match human

data, a simple linear ramp is used to input the desired joint angles. The minimum jerk trajectory

is used only as the desired output, not as input to a controller. A given model is evaluated on a
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series of different movements to avoid overfitting and individual performances are combined into

an overall fitness.

4.2.1 Minimum jerk

In (Hogan, 1984) dynamic optimisation was used to find the input to an EP-controller that would

produce the smoothest motion from an initial to a final equilibrium position. SmoothnessH of a

trajectoryx(t) was defined by integrating the rate of change of acceleration(jerk) of the motion

over the desired durationT:

H(x(t)) =
1
2

Z T

t=0

...
x2dt (4.1)

The function which corresponds to the minimum of this measure was then used as the input tra-

jectory for an EP-controller. Given initial positionx0, final positionxf , and assuming that at these

positions the system is at rest, the minimum jerk trajectorywas found to be:

x(t) = x0 +(xf −x0)(10(t/T)3−15(t/T)4 +6(t/T)5) (4.2)

The corresponding velocity profile can be found via simple derivation:

v(t) = 30d
t2

T3 −60d
t3

T4 +30d
t4

T5 (4.3)

with substitutiond = xf − x0. In Cartesian space, when calculated for individual spatial compo-

nents, such trajectories form straight-line paths with bell-shaped velocity profiles. For the purpose

of experiments in this chapter, however, minimum jerk-trajectories were used only to maximise

smoothness on the joint level, as we are not concerned with the inverse kinematics problem. Also,

in contrast to (Hogan, 1984), minimum jerk trajectories areused only as a reference for the opti-

misation of muscle-reflex parameters, not as the actual input trajectory. As simple control signals

are desired, input to the EP-controller is always a monotonic ramp shift of given amplitude and

duration.
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Figure 4.3:Minimum jerk trajectories for two movements of 100◦ and 50◦ lasting 0.2 and 0.18 s respec-

tively. Position is shown on the left, and velocity on the right.
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4.2.2 Optimisation algorithm

A simple genetic algorithm1 is used to optimise muscle parameters (shape of the damping func-

tion, maximum isometric force), feedback gains, and the onset of the input ramp relative to the

minimum jerk trajectory. The muscle model used in this chapter is the simplest found in the pre-

vious chapter, which still allowed for EP and stiffness control; namely one with a linear muscle

length mapping, constant moment arm, and without calcium dynamics.

Most experiments in this chapter evaluate a muscle-reflex model on at least two movements of

different amplitude: one covering 100 degrees over a duration of 0.2 seconds, and another of

50 degrees over 0.18 seconds (as measured experimentally byKistemaker et al. (2006) in subjects

instructed to produce fast movements). The quality, or fitnessF, of a muscle-reflex solution was

calculated from the difference between actual and desired (minimum jerk) trajectory, scaled into

the range[0,1]: F = 1− |x− xd|/π. This measure was then averaged over all movements to be

optimised in that experiment.

Each experiment was carried out at least five times with different initial conditions to ensure suf-

ficient confidence in the reliability of acquired data. In each experiment the GA was run for 100-

1000 generations, during the last 10% of which a lower mutation rate was used to let the algorithm

converge on the peak of the best solution found so far. The maximum number of generations was

determined heuristically by running the experiment a few times without restricting the duration

of the optimisation. In all experiments reported here, fitness would eventually plateau around the

same level across repeated runs (with a standard deviation on the order of 10−4% of maximum

fitness), and evolved parameters would show similarly low variation. The number of generations

at which this plateau was reached, plus an additional hundred generations, was then chosen as the

limit for repeated runs that contributed toward statistical results. Since the optimisation procedure

reliably plateaued in the same small area of the fitness landscape, it was assumed that running it

for longer would not have affected the result. This is important when comparing results from two

different experiments. If, for example, two different kinds of models evolve different levels of fit-

ness, we can say with some confidence that this is due to the nature of the controllers themselves,

and not a function of how long the controllers were allowed toevolve (though it is possible that

the fitness landscapes had different properties, such that one was easier to optimise than the other).

The same argument applies to those cases where a satisfactory solution was not found at all. It can

not be ruled out that a solution exists in a part of the fitness landscape that the algorithm failed to

explore. However, the kinds of control models evolved in this thesis are often very similar to each

other, at least in those cases where results are compared directly. They usually differ in only few

terms, such as the form of damping employed, or the amount of feedback delay present. Since they

were also evaluated using the same fitness function, one can reasonably expect that the resulting

fitness landscapes should have similar properties (though this was not explicitly confirmed here).

Differences in the ability to find a fitness optimum are therefore implicitly attributed to the form

of the evolved controllers in the following experiments. The reader should nevertheless be aware

of the above caveats (local minima, differences in fitness landscape properties).

1See sections 3.4.2 for an overview and 3.6 for parameter values.
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4.2.3 Feedback model

In the EP-controller implemented here, muscle activationsare determined from a weighted sum

of different open-loop and feedback components. It incorporates theα-model, i.e. direct input

to α-motoneurons, theλ-model, and the addition of a desired velocity signal. By clamping the

weights of individual components to zero, each of these models can be studied in isolation. Al-

lowing for optimisation of all weights, on the other hand, should find the best combination of these

components. The full model was defined as

A(t) = aol +[kp(L
M(t −δ)−λ)+kv(λ̇−vM(t −δ))−kdvM(t −δ)]10 (4.4)

whereaol is the open-loop command,LM muscle length,vM muscle velocity,λ the EP threshold

offset,δ the feedback transmission delay, andki the different feedback gains. The term in square

brackets constitutes the reflex contribution and contains the classicλ-model(kp(LM −λ)−kdvM)

as well as the error in desired velocity.

Alpha Model

The first and simplest model serves as a control experiment. Muscles are activated using static

activationsaol only. The levels of activation required to achieve a desiredendpoint are determined

using the mapping between differential activation of antagonists and EP positions found in the

previous chapter. A controller of this type therefore relies on the existence of such an inverse map.

As also observed, activation levels are underdetermined byEP position, as co-contraction (and

hence stiffness) has to be chosen as well. This was done usingthe stiffness maps also produced

in the previous chapter. In the case of the muscle model used in this chapter these relationships

turned out to be linear. A given EP could easily be found at a unique ratio of agonist to antagonist

activation, while the sum of activations determined its stiffness. It is worth noting that this inverse

look-up would be much less trivial for muscle models that don’t exhibit linear relationships. When

more than two muscles are considered, the problem of redundancy would have to be solved as well

(Loeb et al., 1999).

Energetically thisα model would be suboptimal, as it necessitates constant non-zero activations

at the final position to achieve stability. It would also not be in accordance with the observation

that EMG levels (and hence muscle activations) are usually zero at the resting pose. Therefore, an

exponential decay was applied to activation levels at resting positions, so that force output is zero

before and after the actual movement.

Lambda Model

For the reflex contribution,λ thresholds were determined by an inverse look-up of the muscle

lengths that correspond to the current point (joint angle) on the virtual EP ramp. The complexity

of this inverse mapping depends on the function that describes muscle length as a function of joint

angle and the current force output. As in this chapter a tendon-less model was chosen, and a

linear angle to muscle length function, this again was simple. In a different model, more complex

computation might be needed, but the problem is fundamentally the same. The redundancy in

muscle activations was solved by picking the pair with the lowest resulting stiffness. Where a

desired velocity reference was employed, it was calculatedas the derivative of the corresponding
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λ threshold. Conduction delays (0–0.025 s) were added to muscle length- and velocity-feedback

with durations depending on the experiment.

The reflex component of the controller on its own, when compared to pure open-loop control,

would energetically be more efficient. It avoids the constant muscle activations at the resting pose.

It introduces a new complication, however, namely potential instability resulting from long signal

delays and large feedback gains (see section 4.3.1). When the reflex component is used along

with the open-loop component, the former can be interpretedas the reciprocal R command in the

multi-muscleλ-model, while the latter implements the co-contraction command C.

4.3 Muscle-reflex EP control

In the following section the dynamics of antagonistic muscles (as developed in the previous chap-

ter) are studied when driven by equilibrium-point controllers based on theλ-model. The next

chapter will then compare this muscle-reflex system with a more abstract model, in which mus-

cles are replaced with a single non-linear spring-damper.

4.3.1 Feedback delays

It is well known that transmission delays can limit the performance of feedback systems by cre-

ating oscillations when feedback gains are large. Hidler and Rymer (2001), for example, used a

model of the stretch reflex to show the destabilising effect of high motoneuron threshold, gain,

and neural transport delays on the ankle. While robotic actuators can be built such that feedback

delays are negligible, in humans the limited speed of actionpotential propagation and the number

of synapses connecting central motor commands to final motoroutput can add up significantly —

St-Onge et al. (1997) estimate 14–18 ms. In this section, a muscle-reflex system with feedback

delays will be studied for its ability to produce fast movement without such oscillations. The full

reflex model is used, including open-loop static activation, error proportional, error derivative and

velocity proportional terms. Muscle and reflex parameters were optimised for both the 100◦ and

50◦ amplitude movements of a single joint. The system was evaluated eight times with different

amounts of feedback delay. For each level, the experiment was repeated five times to produce

reliable results.

Figure 4.4 summarises the effect of increasing feedback delay on the relative strength of individual

reflex terms. The first thing to notice is that standard deviation is low for all measured quantities,

confirming that the optimisation process reliably picked the same optimal solutions. Secondly,

performance does not drop immediately for relatively smalldelays. Although it drops eventually,

performance stays within the 99% range for delays of up to 0.025 s. In fact, optimal performance

is not found at zero delay, but rather at 0.005–0.01 s. Thirdly, a strong correlation can be observed

between the different feedback gains and the length of the delay. The longer the delay, the lower

the actual feedback gains, but the higher the level of co-contraction. For increasing feedback

delays, the system relies more and more on the inherent open-loop dynamics of the muscle rather

than the reflex action.

Figure 4.5 plots the actual joint trajectories for different feedback delays. It confirms that the drop

in performance for larger delays is indeed due to oscillations around the EP. The slightly better
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Figure 4.4:Effect of delayed feedback on performance and resulting feedback gains. Proportional gain

kp, derivative gainkd, velocity reference gainkv and open-loop gainkOL as well as fitness are shown for

increasing feedback delays. Each point corresponds to the mean value over the best individuals from 5

evolutionary runs. A single standard deviation is shown as errorbars at the top and bottom of the gain data

points. In case of fitness, two standard deviations are drawn. Feedback gains are expressed as proportions

of their upper limit.

performance with small delays, on the other hand, seems to bethe result of reduced overdamping

close to the target. Without delay, strong muscle damping around zero velocity (see section 3.2.8)

leads to an approach towards the target that is slower than that described by the minimum jerk

trajectory. The addition of feedback delay, however, implies that the perceived error between

target and actual position is greater than that of the non-delayed controller when approaching the

target. As a result, more accelerating force is produced forlonger (for the length of the time delay),

and the same level of reflex damping is arrived at a little later. When tuned just right, the delay

thereby counteracts the strong viscosity of the muscle without producing undesired oscillations.

The results suggest that feedback delays, to a certain degree, can be “assimilated” into the mus-

culoskeletal dynamics without impairing, and to some extent even improving performance. Even-

tually, however, oscillations are unavoidable and the onlyway to compensate for this effect is to

reduce feedback gains and rely on the muscle’s instantaneous attractor dynamics. Similar results

have been observed in a model of the spine (Franklin and Granata, 2007). The authors found that

reflexes allowed for stability at levels where intrinsic stiffness was insufficient, while also noting

that increasing delays required lower reflex gains and greater co-contraction.
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Figure 4.5:Feedback delays. Joint trajectories (left) and velocity (right) of best evolved hybrid controllers

for varying feedback delays. Lighter plots correspond to larger delays. Best performance is found with a

delay of 0.01 s, with larger values leading to increasing oscillations around the EP.

4.3.2 Feedback modalities

It is still an open question what type of feedback control human spinal reflexes implement, if

that’s indeed their role at all (see McCrea, 1992, for a review of the controversy concerning reflex

circuitry and functionality). Although muscle spindles produce a signal that mixes positional and

velocity information, for example, it is not known how this information is employed in the closed

loop system as a whole, and whether velocity or error in velocity are significant factors. In this

section, experiments are carried out to assess the contribution of the positionalλ term, velocity-

dependent damping, velocity-error feedback and open-loopsignals in the production of fast and

smooth movements. To this effect, three different types of controller are defined that differ in

the combination of reflex components they employ. The closed-loop λ controller only contains

the λ- and simple damping terms. Theλ+ controller extends this model by adding velocity-

error feedback. This is functionally different from basic viscosity in that damping forces are

only produced if the actual movement is too fast when compared to the desired movement. Fast

movements are not necessarily opposed when high speed is desired. Finally, ahybrid closed- and

open-loop controller adds the co-contraction component and therefore constitutes the complete

model. All controllers were optimised for both, small and large, amplitude movements. In a first

set of experiments no delay was used and upper limits for the feedback gains were chosen after

running a few initial tests with the hybrid controller. A model with only velocity reference, but

without simple velocity term, was not considered, as in the initial tests the velocity proportional

term consistently evolved a zero gain. The upper limits for feedback gains chosen werekp = 6.0,

kd = 2.0, kv = 2.0, andkol = 1.0.

The performance of the three different controllers is summarised in table 4.1. The first thing to

observe is that an open-loop co-contraction command significantly improves the speed of move-

ment and hence the matching of the minimum jerk reference. The performance measure shows

that the hybrid model produces the best fit, followed by the lambda model with velocity reference

and finally the pure lambda controller. No experiments were carried out using a lambda plus co-

contraction controller, so it can’t be determined whether co-contraction or velocity reference yield

greater improvements. In terms of kinematic indices, the hybrid controller approaches, but does
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hybrid λ+ λ open-loop min. jerk human

Fitmax[%] 99.73 98.94 98.10

Fitavg[%] 99.72 98.94 98.18

Fitstd[%] 0.14·10−3 0.05·10−3 0

T [s] 0.145 0.175 0.175 0.265 0.125 0.118

tvpeak [s] 0.065 0.065 0.095 0.065 0.06 0.077

vpeak [deg/s] 906 732 650 555 937 975

Table 4.1:Performance and kinematic features of joint movements over100 degrees for different types of

controllers. Kinematic indices are presented for the best evolved controller. Corresponding values from the

idealised minimum jerk trajectory and measured human data are also shown for comparison.

not perfectly match the features of the minimum jerk trajectory or experimental data. It reaches

97% of the reference peak velocity for example, while theλ+ andλ controllers only reach 78%

and 69% respectively. The standard deviation (of fitness as well as evolved parameters, see below)

suggests that the same solutions were found across repeatedruns. Since there is no indication that

the fitness landscapes created by the three types of controllers would be qualitatively different,

the fitness peaks are assumed to reflect the potential of the models, and not a difference in their

“evolvability”.

kp kd kv kol hilla,b hillasymp FM
0 [N] t0 [s]

hybrid mean 5.83 0 0.2 0.28 0.63 1.6 1368 -0.009

λ+ mean 6 0 0.53 - 0.18 1.53 1500 -0.0119

λ mean 6 0.34 - - 0.4 1.55 1500 -0.0500

hybrid std 0.1427 0 0.03 0.02 0.18 0.35 81.5 0.002

λ+ std 0 0 0.02 - 0.09 0.3 0 0.002

λ std 0 0.0001 - - 0.0029 0.1550 0 0

Table 4.2: Means and standard deviation of best evolved parameters for each controller.

Table 4.2 lists average parameters evolved across five evolutionary runs. Not surprisingly, both

positional reflex gain and maximum isometric muscle force tend towards their respective maxima

allowed in this experiment. As we optimised for very fast movements, this is what would be

expected from a PD-like system. In the absence of feedback delay, nothing constrains the range

of these parameters. More surprisingly, for both controllers with velocity-error feedback, the

linear damping term consistently evolved towards zero. A more detailed study of the relationship

between the two forms of damping and the resulting dynamics would be necessary to explain this

observation fully. However, velocity reference on its own allowed for sufficiently fast movements

while still preventing endpoint overshoot (see figure 4.6 below). Any addition of absolute damping

would inevitably lead to slower movement and hence reduced performance. The hybrid controller,

however, relied less on velocity feedback. Instead, it madeuse of the muscles’ intrinsic damping
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by ensuring a sufficient level of co-contraction.

Figure 4.6 plots joint angle and velocity for the different controllers in the case of large ampli-

tude movement. As the data has already shown, the hybrid controller closely resembles a perfect

minimum jerk trajectory, though not quite reaching the desired peak velocity and being slightly

overdamped around the endpoint (likely the result of relatively high muscle damping coefficients;

see table 4.2). Comparing trajectories to those of the pure open-loop system (dashed line) suggests

that at least part of the hybrid controller’s advantage liesin the contribution of co-contraction to

a low latency in the onset of motion. The other two controllers in comparison seem unable to

reach the desired velocity and are not sufficiently damped atthe endpoint. I.e. no compromise

could be found within the limits of the allowed feedback gains, between the required speed and

the damping necessary to prevent oscillations.
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Figure 4.6:Trajectories of fast movements produced by different feedback controllers. Red curves indicate

the minimum jerk trajectory and dashed lines the open-loop controller. Theλ-controller is shown in light

grey,λ+-controller in medium grey and the hybrid controller in black. Only the latter provides a good fit

for the minimum jerk trajectory.

Because in the previous experiment optimisation convergedon the upper limit for the positional

error gain, the same experiments were repeated while allowing for larger limits. In order to prevent

gains from becoming unrealistically high, a feedback delayof 0.01 s was introduced. This should

lead to a performance hit for very large feedback gains by leading to endpoint oscillations.

hybrid λ+ λ open-loop min. jerk human

Fitmax[%] 99.83 99.28 98.56

T [s] 0.125 0.165 0.155 0.265 0.125 0.118

tvpeak [s] 0.065 0.065 0.11 0.065 0.06 0.077

vpeak [deg/s] 940 824 744 555 937 975

Table 4.3: Performance and kinematic features of joint movements over 100 degrees for different

types of controllers and 0.01s feedback delay. Different maximum feedback gains are used.
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Kinematic indices and evolved parameters for these experiments are presented in table 4.3 and

table 4.4. Theλ controller, despite making strong use of the extended limits on feedback gains

(kp = 19.7 compared tokp = 6), showed no major improvement, reaching a fitness of 98.56%

as compared to 98.10% in the previous experiment (and peak velocity increasing fromvpeak =

650 deg/s tovpeak= 744 deg/s). Theλ+ controller also produced larger feedback gains, leading

to an increase in its fitness of 0.034%. Both controllers co-evolved slightly weaker muscles, how-

ever, and different muscle damping characterstics, explaining why the large feedback gains did

not lead to oscillations large enough to impede performance. Also, theλ controller, which evolved

the largest feedback gain, does not employ velocity-error feedback, suggesting that the remaining

feedback components are more resilient to transmission delays. The hybrid controller alone did

not increase its feedback gains. Instead, it compensated for the delay by shifting from propor-

tional feedback to more open-loop co-contraction. Although this did not significantly change the

movement kinematics as measured by the indices, it seemed tostabilize the joint at the endpoint

(trajectories not shown).

kp kd kv kol hilla,b hillasymp FM
0 [N] t0 [s]

hybrid max 3.15 0 0.34 0.53 1.0 1.52 903 -0.0044

λ+ max 8.02 0 0.7 - 0.12 1.48 1103 -0.0016

λ max 19.7 0.56 - - 0.03 1.23 1446 -0.0301

Table 4.4: Best evolved parameters for each controller including feedback delay of 0.01 s and

adaptive maximum feedback gains.

In summary, although none of the models were able to exactly match experimental data, the hybrid

model’s kinematics came very close as measured by the different movement indices. It should

not be surprising that a difference remains, as real elbow movement involves up to six different

muscles, arranged in a complex manner. Here on the other hand, only two symmetric muscles

without tendon were modelled in a simple symmetric setup.

4.3.3 Inherent triphasic muscle bursts

EMG measurements of antagonistic muscle activity during fast limb movements are often char-

acterised by a triphasic alternating burst pattern. In a rapid elbow flexion for instance, one would

typically expect to see an initial burst in biceps activity,followed by a burst in the triceps, and

often, but less reliably, a smaller final burst in the biceps.Since these bursts are translated into

forces by the muscles, the functional consequence is an initial acceleration of the limb towards

the target position, followed by a deceleration that halts the movement. If necessary, such when

the decelerating burst turned out too strong, a third pulse can prevent a reversal and thereby arrest

the motion. Like other invariants observed in voluntary movements (e.g. straight trajectories in

Cartesian space), the existence of this burst pattern has lead some to suggest that it has to be the

result of a centrally computed motor program. In this section we will show that this is not neces-

sarily the case. A triphasic burst pattern does instead readily emerge from the dynamic interaction

between neural reflexes and the musculoskeletal system.
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Bullock and Grossberg (1992) have shown in a spinal reflex model which incorporatesα-γ-
coactivation, reciprocal inhibition of antagonists and Renshaw-interneurons, that triphasic bursts

occur when the ramp shift in desired position is significantly faster than the actual motion (by a

factor of∼2), and when the gain for velocity feedback is significantly larger than the positional

feedback gain (by an order of magnitude). In the following experiments, different rates of thresh-

old shifts are compared and individual reflex components analysed for their relative contribution to

the production of a triphasic burst pattern. To this end, three optimisations of the hybrid controller

with 0.01 s feedback delay were undertaken for a high amplitude movement of 100◦. The rates

of the threshold shifts were varied such that the resulting ramps had durations of 0.2 s, 0.1 s and

0.0 s.
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Figure 4.7:Kinematics and reflex response for evolved 100 degree movements with 0.01 s feedback delay.

The ramp input signal (from left to right column) has a duration of 0.2 s, 0.1 s and 0.0 s respectively. The

top row depicts reflex response (muscle activation) as dashed lines, muscle force as filled areas, and net

force (sum of antagonists) in red. Dark curves represent theflexor, lighter colours the extensor. The bottom

row presents joint angle (solid black), desired minimum jerk trajectory (red), the commanded ramp signal

(grey) and velocity (dashed).

The kinematics of the best evolved controller for each of thethree conditions are shown in figure

4.7. Note how all ramp durations, even a simple step signal, produce a reflex response that shows

three maxima leading to acceleration, deceleration and stabilisation of joint motion. The best

performing controllers achieved a fitness of 99.83%, 99.4% and 99.14% respectively for ramps

of 0.2 s, 0.1 s and 0.0 s. Their kinematics differ in that inputramps which are faster than the

actual movement lead to overshoot, while a ramp of length comparable to the desired movement

duration appears critically damped. Beyond a certain rate of the ramp-shift, however, no significant

difference is found. Evolved parameters showed a clear pattern. Compared to the 0.2 s ramp,

controllers using a 0.1 s ramp evolved smaller velocity error gains (by 57%), but larger muscle
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intrinsic damping (the convexity of the force-velocity relationship for shortening decreased by

90% and the asymptote for lengthening increased by 50%). Thecontroller with step-signal input

was similar to the short ramp, but with a 10% increase in open-loop co-contraction. Together,

these changes signify a shift from reflex control to intrinsic muscle dynamics as the rate of the

threshold shift increases. When the duration of the ramp signal was allowed to evolve as well, it

tended towards the length of the desired movement, and not shorter. This is in contrast to other

studies which suggested shorter threshold ramps (Bullock and Grossberg, 1992; Gribble et al.,

1998).

In order to explain how the bi- and triphasic burst pattern emerges from a simple ramp-shaped

input signal, we analysed the relative contribution of positional and velocity error feedback to

overall muscle activation. Figure 4.8 compares these contributions for ramps shifts of 0.2 s and

0.1 s duration. As a first observation, note how the symmetrical setup of the antagonistic muscles

produce symmetrical error signals for both position and velocity. Because one muscle is supposed

to shorten as much as the other needs to lengthen, the error signals are equal in amount but of

opposite sign. However, in theλ-model muscles become activated only if the overall input to

α-motoneurons exceeds its threshold, i.e. when net reflex output is positive. As a result, the

symmetry of error signals is broken, and flexor and extensor muscle activations differentiate.

Inspecting the controller driven with a 0.2 s ramp, the first pulse occurring in the flexor is com-

prised mostly of the velocity error signal, especially in the beginning, with a smaller and gradual

addition of positional error. This is explained by the fact that the ramp signal implies a gradual

shift in desired position, but an abrupt change in desired velocity. At this stage, only the flexor is

active. In order to reduce the initial error (due to a change in desired position), the extensor would

have to actively lengthen, but theλ-model respects the fact that muscles can only shorten actively.

As the initial burst accelerates the limb, flexor position and velocity error become smaller, eventu-

ally “self-terminating” its activation. The limb soon reaches a velocity greater than desired, which

eventually results in extensor velocity feedback overcoming its negative positional error. This

marks the beginning of the second burst, which decelerates the limb as it approaches the target.

As limb velocity falls below the desired value towards the end, a final smaller burst in the flexor

ensures that the motion is not unnecessarily overdamped. Insummary, the reflex controller pro-

duces a triphasic burst pattern mostly as the result of limb velocity first lagging, then leading, and

finally lagging again the desired velocity. In conjunction with the muscle’s low-pass filter, as well

as stiffness and damping properties, these discrete burst are transformed into a single continuous

minimum jerk trajectory.

By comparing the left and right column in figure 4.8, it becomes clear that a shift in desired

position significantly faster than the desired motion produces a different triphasic burst pattern.

First of all, the steeper ramp produces a larger initial error in position. Hence the first burst is

not constituted mainly of velocity error anymore. Secondly, the resulting step signal in desired

velocity is now not only shorter, but also larger than the velocity that the limb can achieve. This

results in the first burst not terminating as quickly, because the velocity error does not reverse sign

until the ramp ends and desired velocity returns to zero. Forthe same reason the decelerating

extensor burst is delayed until that same point in time. The resulting overshoot finally leads to a

small burst in the flexor that arrests the motion.
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Figure 4.8:Emergence of triphasic burst pattern. Left column: ramp shift of 0.2 s duration. Right col-

umn: ramp shift of 0.1 s. Top row: commanded joint angle (black) and actual angle (red). Second row:

desired velocity (black) and actual velocity (red). Third and fourth row plot flexor and extensor reflex

components: position error feedback (solid black), velocity error feedback (dashed black) and sum of both

errors, clamped to positive values[kp(LM −λ)+kv(λ̇−vM)]10. The latter corresponds to the combined reflex

contribution of the controller, i.e. without the added co-contraction.

In conclusion, a model of the stretch reflex based on theλ-model can be tuned to produce fast and

smooth movements with a natural triphasic burst pattern using a simple linear shift in threshold

length. This result confirms similar findings obtained with explicit neural models of the stretch

reflex (Bullock and Grossberg, 1992), and suggests that triphasic bursts are not necessarily pre-

programmed. The burst pattern emerges from the system’s dynamics in different ways across a

range of threshold ramp durations. Overshoot in the range found here can be observed in the fastest

movements produced by human subjects. Hence this finding is not sufficient to decide which ramp

duration better reflects reality.

4.3.4 Control of movement distance and velocity

One goal of the EP-hypothesis is a simplified motor control process. St-Onge et al. (1997), there-

fore, suggested that movements of different amplitude and speed could be controlled simply by

varying the duration and rate of a monotonic shift in the stretch reflex threshold. According to this
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model, distance is encoded by the duration of a fixed rate equilibrium shift, while speed of move-

ment depends on the slope of the ramp shift. This control scheme reproduced empirically found

kinematic and electromyographic (EMG) features of fast perturbed and unperturbed movements

when equilibrium shifts were of short duration. Specifically, the time course was chosen such that

the shift ended near peak velocity, i.e. a significant time interval existed between the end of the

EP shift and the end of the movement. In (Gribble et al., 1998), the authors used a similar setup,

with a ramp shift about half the duration of the movement. Other formulations of theλ-model, in

contrast, use EP shifts that are closer to the intended duration of the movement (e.g. Kistemaker

et al. 2006). In addition to the EP shift, St-Onge et al. (1997) varied the gain of the reflex damping

term as well as muscle co-contraction over time. The dampingprofile followed the same time

course as the EP shift (i.e. ramp-shaped), while co-contraction increased linearly to a plateau, and

towards the end decreased slowly to simulate a gradual falloff in tonic EMG level (relaxation).

It was found that damping gain and co-contraction level influenced peak velocity and helped to

reduce terminal overshoot. Overall levels were chosen according to the desired movement.

For movements of different amplitude, a salient feature of the model proposed by St-Onge et al.

(1997) was its production of position and velocity traces which were similar during the initial

phase and then diverged at a point that depended on the desired movement distance. Similar

patterns were observed by Gottlieb (1998). Measuring EMG activity during voluntary single-

joint movements in human subjects, it was found that kinematics and agonist muscle activity were

independent of distance up to peak acceleration (while the area of the agonist burst increased with

distance).

Distance control with fixed rate EP shifts

In a first set of experiments we tested whether movements of different amplitude could be produced

with fixed rate equilibrium shifts of different duration. Different reflex models and rates of EP shift

were studied for their ability to produce kinematics and EMGpatterns that initially follow the same

time course for different amplitudes, in line with the experimental observations described above.

Three different movement amplitudes (55◦, 75◦ and 100◦) were optimised using two different

reflex models (with and without open-loop co-contraction) and two different rates for the EP shift

(300 deg/s and 600 deg/s). In all cases the duration of the minimum jerk trajectory was allowed to

evolve for each movement (as the desired movement duration was unknown) but was constrained

to 100–200% of the duration of the threshold ramp. The onset of exponential muscle relaxation

(to 10% of maximum activation) was also evolved. Feedback transmission delays were set to a

value of 0.015 s, a value in the range reported by St-Onge et al. (1997) .

Figure 4.9 compares the kinematics produced under three different conditions. The hybrid model

with a relatively slow EP shift (left column) produced trajectories most resembling the minimum

jerk case. Trajectories for movements of different amplitude diverged relatively quick however.

This can be explained by the fact that the open-loop muscle activation depends on the final desired

position. Hence, the further the target (i.e. the larger theamplitude of movement), the greater the

open-loop contribution, and consequently the initial acceleration and velocity. This also explains

why the ramp shift did not terminate before the end of the actual movement in all cases. For the

largest amplitude movement the open-loop activation was sufficient to propel the limb such as to
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Figure 4.9:Fixed rateλ shifts of varying distance (55◦, 75◦ and 100◦). Left: hybrid model with slow EP

shift (300 deg/s). Middle: hybrid model with fast EP shift (600 deg/s). Right:λ+ controller with fast EP

shift.

lead the EP shift.

The same reflex model driven by a faster EP shift (middle column) produced slight oscillations

around the end point (within the range observable in human experiments). Because position and

velocity errors are larger initially for faster ramps, the reflex contribution towards overall muscle

activation must be larger too. Thus, while actual trajectories diverge too for this controller, they

do so mostly in response to the desired trajectories diverging. The points of divergence can be

located where the corresponding EP shift reaches its final position plateau.

The final model (right column) lacks open-loop muscle activation. Therefore force production

is fully determined by reflex activity. As all feedback gainsand muscle parameters are constant

across the different movement amplitudes, the corresponding trajectories can only diverge when

the input to the reflex controllers are different. This in turn can only be the case when either the

desired velocity changes (it drops to zero at the end of the ramp), or the desired position changes

(it reaches a plateau for one movement at the end of the ramp, while continuing to ramp down

for others). In the case observed here, reflex gains evolved such that divergence occurred only

when a trajectory overshoots its target and the positional error reverses sign as a result (positional

feedback gain was significantly larger when compared to the other two models). As a result, posi-

tion and velocity traces were bundled together as observed in (St-Onge et al., 1997) and (Gottlieb,

1998). Also, EP shifts ended before the movement reached itspeak velocity. However, the large

positional gain, combined with relatively low damping, produced oscillations that are too large

when compared with experimental or model data reported in these studies.
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In summary, movement distance can be controlled by varying the duration of a constant rate shift

of the reflex threshold, without necessitating the modification of feedback gains. Kinematics and

muscle activities for movements of different amplitude areobserved to be more similar initially

the greater the relative contribution of reflex activity. The fastest EP shifts produced undesirable

oscillations in the model lacking open-loop co-contraction. This difference is likely due to the fact

that in (St-Onge et al., 1997) co-contraction and damping gains depended on movement amplitude,

while here they were not allowed to change between movements. Furthermore, not only did the

overall level of feedback gains differ from movement to movement, they were also dynamically

controlled throughout a movement (ramped up and down). Here, in contrast, gains remained fixed

at a given level for the duration of a movement. This was assumed to be more in line with the goal

of using the simplest possible control signals. With respect to the minimisation of jerk, the best

trajectories were produced by the hybrid model with a comparatively slow EP shift.

Velocity control with variable rate EP shifts

The previous section has shown that movement distance can becontrolled by varying the duration

of a constant rate EP shift. In follow-up experiments we investigated whether the velocity of

movement is also controllable. In aiming for the simplest control process, it would be reasonable

to hope that a change in the rate of the shift would suffice to achieve different speeds, without any

additional changes in reflex gains. To test this hypothesis,we optimised a hybrid reflex controller

to produce three 55◦ minimum jerk movements with durations of 0.18 s, 0.27 s and 0.36 s. A

single set of reflex and muscle parameters was evolved for allthree movements. Only the duration

of the EP shift was allowed to vary across movements (the amplitude was fixed, hence duration

translated directly into rate).
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Figure 4.10:Variable rate EP shifts over 55◦ lasting 0.18 s, 0.27 s and 0.36 s. Red traces are the desired

minimum jerk trajectories. Black lines plot the fastest, grey the moderate, and light grey the slowest move-

ment. Joint angle trajectories are shown on the left, velocities on the right. Note the rather large overshoot

during the fastest, and asymmetric velocity profile during the slowest movement.

The resulting trajectories are shown in figure 4.10. A clear pattern is easily observed. The fastest

EP shift leads to motion which initially lags the desired trajectory and produces significant over-

shoot with quickly decaying terminal oscillations. The slowest shift, in contrast, results in the limb

initially leading the desired position. The deviation is then corrected by the feedback controller
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in a way that is overly damped. The resulting velocity profiledoes not resemble the typical bell

shape. Only the moderately paced EP shift produces the desired minimum jerk trajectory (albeit

not without small oscillations either). Clearly, the optimisation process has not found a single set

of reflex gains that would be optimal for movements of different velocities. The best controller

identified constitutes a trade-off that performs well in theaverage case, but cannot ensure correct

speed and damping for slower or faster movements. The fact that this result is repeatable over

several runs (with the evolutionary algorithm starting from different initial conditions), and that

fitness reliably plateaued in the same region of the fitness landscape, indicates that the failure to

find a solution is a property of the controller and not an artefact of the optimisation procedure. It

can not be ruled out, of course, that the same submaximal local optimum was encountered in each

of the repeated runs. But the fact that this was never observed in previous experiments, which

should have had similar fitness landscapes, supports the conclusion that the speed of movement in

this model can not be controlled by changing reflex gains alone.

Simultaneous control of distance and velocity

Combining the control strategies described above, a final set of experiments was aimed at identify-

ing the minimal set of changes that need to be applied to a reflex controller to achieve simultaneous

control of both, movement distance and velocity. A hybrid reflex controller was therefore opti-

mised to produce four different movements that covered highand low velocities as well as small

and large amplitudes. It was quickly confirmed that a single set of muscle and reflex parameters

was not sufficient to achieve the desired flexibility. As the position-velocity phase plots in figure

4.11 illustrate, fast movements produced undesired oscillations, while slow movements were sig-

nificantly overdamped. This was to be expected after the previous experiment had demonstrated

the difficulty of finding a trade-off in reflex gains that wouldproduce critical damping for move-

ments of different speed.
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Figure 4.11:Phase plots of single gain set controller for fast and slow movements. For fast movements

(left) the controller produces undesirable oscillation, while slow movements (right) are significantly over-

damped. A compromise for the damping characteristics of fast and slow movements was not found with a

single set of fixed reflex gains.
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Consequently, a broad set of experiments was conducted in which different subsets of reflex gains

were systematically chosen and allowed to evolve dependingon the desired type of motion. From

the subsets of controllers that successfully evolved minimum jerk trajectories for large and small

amplitude movements at different speeds, those with the smallest number of necessary parameter

changes were then identified. The trajectories produced by three such controllers are shown as

phase plots in figure 4.12.
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Figure 4.12:Phase space plot of movements generated by different reflex gain models. A: four different

open-loop gains (background co-activation). B: as A, but with ramp shifts being 20% slower. C: only two

different open-loop gains; one for fast one for slow movements. Also uses ramp-shifts that are 20% slower

than maximum. D: two open-loop gains and two velocity proportional (kv) gains.

The first controller (A) uses a different open-loop gain for each movement, i.e. a different level

of muscle co-contraction for each combination of desired distance and velocity. The remaining

reflex- and muscle parameters on the other hand are the same for all movements. The produced tra-

jectories have minimum jerk profiles (99.68% fitness), with slight terminal oscillations. When the

intended movements are slowed down by 20% (B), these oscillations are visibly reduced (99.66%

fitness). Minimum jerk trajectories can also be produced using only two different open-loop gains,

one for fast and another for slow movements (C), albeit with slightly less precision (99.62% fit-

ness). A different but equally successful strategy was found (D), in which two open-loop gains are

combined with two different damping terms for slow and fast movement (99.71% fitness).

To summarise, simple monotonic threshold shifts of different duration and rate can be used to

control both the distance as well as the velocity of movement. However, along with this simple

strategy the viscoelasticity of the system has to be tuned toproduce critically damped movements

at different speeds. A means to achieve this is the ability tovary the muscle-inherent damping

characteristic by choosing an appropriate level of co-contraction. This seems to be a strategy also

utilised by human subjects (Suzuki et al., 2001). Alternatively, or in addition, the reflex contri-

bution to the system’s viscoelasticity can be adapted through selection of appropriate feedback
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gains.

4.3.5 Multijoint movement

In the previous sections it was shown that a variety of single-joint movements can be produced us-

ing simple monotonic EP shifts, and that the resulting kinematic features (such as triphasic bursts,

bell-shaped velocity profile, level of joint stiffness) were similar to those recorded in human exper-

iments. Additional complications could arise however whenmore than a single joint is considered.

During multijoint limb movements, interaction torques arise at one joint as a result of the motion

of limbs around other joints in the chain. Lifting one’s arm at the shoulder, for instance, also gen-

erates rotational forces that tend to extend the elbow. Equally, torques flexing the elbow lead to

equal and opposite torques at the shoulder. This begs the question of whether such torques are au-

tomatically compensated for as an intrinsic part of the muscle-reflex dynamics (given a plausible

level of joint stiffness), or whether control signals need to be predictively adjusted to counteract

the effect of these internal loads.

In the most optimistic formulation of the equilibrium-point hypothesis, no information about limb

dynamics should be necessary at all to smoothly move from oneposition to another. Kinematics

alone (joint angles and velocities, or their muscle equivalents) should suffice. To test whether

this is indeed the case, reflex controllers were evolved for simple targeted movements about two

joints (elbow and shoulder). Analogously to the single-joint experiments, simple monotonic EP

shifts were used as input to two separate reflex models (of thehybrid type), each of which was

controlling an antagonistic muscle pair. The setup therefore treated each joint in isolation without

any interaction between the corresponding reflex controllers. The time course of the two EP shifts

was enforced to be synchronous. Each of the two muscle-reflexsystems was described by its own

set of parameters. They were optimised using two different movements that varied in the relative

direction of elbow and shoulder motion, and hence produced interaction torques of opposite sign.

The first movement involved flexion of both shoulder and elbow, while the second one consisted

of shoulder extension and elbow flexion. The latter therefore constituted a “synergistic” case, in

which the resulting interaction torques assisted the intended motion, while in the former case the

interaction torques created resistance in the other joint.

The joint trajectories of the best evolved controllers are shown as phase plots in figure 4.13. It is

easily seen that the simple strategy of independently but synchronously driving the two joints is

inadequate. Whether feedback delays are present or not, interaction torques generate more per-

turbation in the joints than either of the two muscle-reflex systems can compensate for (given a

biologically plausible level of maximum stiffness). It should be repeated here, that caveats about

the possibility of stagnation in local minima applies to this as it did to the previous experiments in

which no satisfying solution was found. However, the fitnessfunction and model equations (and

hence the resulting fitness landscapes) are very similar to those used in experiments that succeeded

in identifying the desired controllers. It would thereforeseem unlikely that the algorithm should

always have succeeded in one set of experiments, while always failing in another. We hence con-

clude that the inability to compensate for interaction torques is a property of the control strategy,

and not a reflection of the optimisation procedure used.
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Figure 4.13:Phase space plot of multijoint movements with simple synchronousλ-ramps. Desired trajec-

tory in red, actual in black. Initial positions are indicated by a dot. Whether feedback delay is present or

not, interaction torques disrupt the ability to produce smooth movements with bell-shaped velocity profile.

This result is consistent with experiments that have shown that during multijoint arm movements

muscles spanning one joint are activated depending on the motion in another joint. Gribble and

Ostry (1999) for example found that EMG activity in shouldermuscles scaled with the magnitude

and sign of the interaction torque created in that joint by motion of the elbow. If the interaction

torque opposed shoulder movement, muscle activity was stronger than when it assisted movement.

Since interaction torque in the non-focal joint is proportional to the movement of the focal joint,

it follows that a relatively simple strategy seems to be at work during such multijoint movements.

Muscles of the non-focal joint are activated proportionally to muscles of the focal joint. Indeed,

in (Gottlieb et al., 1996) a near linear relationship between non-focal and focal joint torques was

found to be a sufficient rule of coordination to explain observed kinematics during elbow and

shoulder movements. Torques at the two joints varied with load and speed, but always in close

synchrony. This linear synergy was also found to be robust toload perturbations (Debicki and

Gribble, 2004), and to apply even when the non-focal joint was mechanically fixed (Debicki and

Gribble, 2005), in which case no torque would be necessary atall to counteract interaction torques.

So although it seems that the nervous system takes limb dynamics into account when adjusting

control signals to muscles to compensate for interaction torques, a simple mechanism of coor-

dination might be responsible. While a number of researchers have suggested that this “predic-

tive” compensation of limb dynamics is based on internal models (e.g. Wolpert and Ghahramani,

2000), others have shown that adaptation to external and internal loads can be explained within

the equilibrium-point framework (e.g. Flash and Gurevich,1997). In (Gribble and Ostry, 2000),

a simple adaptive mechanism was used in which EP shifts were adjusted in direct proportion to

the positional error between actual and desired movement. After few iterations of this learning

scheme, trajectories produced by the modified EP shifts matched empirical data, without neces-

sitating inverse dynamics calculations or coordinate transformations between positional error and

corrective forces.
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4.4 Discussion

A comparatively simple muscle-reflex model, only incorporating the basic non-linearities, was

demonstrated to produce single-joint movements the kinematics of which are comparable to hu-

man data. Small delays can be accommodated into its dynamics, while larger delays can cause

terminal oscillations as is common to all feedback systems.The combined muscle-reflex sys-

tem can exploit open-loop stability, however, which makes it more resilient to delays than a pure

feedback system. Indeed, open-loop co-contraction was found to be necessary for achieving the

highest velocities when faced with feedback delays. Velocity error feedback equally proved neces-

sary to achieve high speeds without oscillations at the endpoint. When this feedback modality was

available, absolute velocity feedback (i.e. basic viscosity) seemed redundant or even disruptive

and such controllers evolved to minimise the correspondinggain.

The muscle-reflex system studied in this chapter also produces triphasic muscle burst patterns

independent of the length of the input ramp, suggesting thatthis is an emergent feature of the

dynamics rather than centrally planned. Even at the lower limit, i.e. with an instantaneous shift

of virtual EP position, this pattern was observed, althoughresulting dynamics in this case showed

significantly more overshoot. When the duration of the ramp shift is optimised explicitly, it tends

towards the desired duration of the movement. This is in contrast to other experiments which have

suggested that the EP shift could be faster, ending at the point of maximum velocity (Bullock and

Grossberg, 1992; Gribble et al., 1998).

Movement distance can be controlled simply by varying the duration of a fixed rate EP shift in

the model considered here. This is possible without tuning of feedback gains. While open-loop

co-contraction was necessary to produce fast movements without oscillations, it also resulted in

trajectories that quickly diverge. This is in contrast to the strategy used by human subjects (Got-

tlieb, 1998) and results based on a different muscle-reflex model (St-Onge et al., 1997). Control-

ling movement velocity by using different rates for the EP shift turned out to be difficult. A single

set of feedback gains that achieves critically damped movements independent of speed could not

be found. Trajectories become either underdamped or overdamped for most conditions.

For control of both distance and velocity, the smallest subsets of feedback gains were identified

that need to be varied to achieve control of both without losing the minimum jerk quality of

the resulting trajectories. It was found that good results could be achieved either when different

amounts of co-contraction were used for each combination ofdesired distance and velocity, or

when co-contraction and damping terms differed for slow andfast movements. Such tuning of

viscoelastic properties for the task at hand seems to be a strategy also utilised by human subjects

(Suzuki et al., 2001).

With respect to multijoint movements it was found that simple synchronous EP shifts controlling

two joints can not produce fast and smooth movements within realistic limits for maximum force

production and stiffness. Interaction torques are too disruptive to be compensated for by a simple

compliant feedback controller. It can therefore be concluded that interaction torques need to be

accounted for explicitly during multijoint movements. It is an open question, however, whether in-

ternal inverse dynamics models are required or whether a modified adaptive EP model can achieve

the necessary compensation.
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The muscle-reflex model studied in this chapter differs fromother models in its level of com-

plexity. It is arguably the most simple model which still accounts for the non-linear properties

of individual muscles (and was chosen for that reason). As shown in the previous chapters, the

basic non-linearities in muscle viscoelasticity (force-length-velocity characteristics) are necessary

to achieve stability while allowing for flexibility with respect to movement position, stiffness and

velocity. Other details, like anthropomorphic muscle paths and moment arms, accounting for mus-

cle pennation angle, or models of different types of muscle fibres (fast and slow-twitch), were not

required. Other models found in the literature may include calcium dynamics, a tendon element

and bi-articulate muscle pairs (e.g. Kistemaker et al., 2007a), or use anthropomorphic data to

model specific human muscles (Garner and Pandy, 2001). Whilethis is expected to increase fi-

delity in matching experimental data, it was not required tostudy the phenomena of interest in this

chapter. Equally, a simple control model, namely a linear combination of direct state feedback

and static activation levels, was sufficient to reproduce human movement features. Neither were

complicated time-varying reflex gains needed (as in St-Ongeet al., 1997), nor detailed modelling

of sensory organs or neural circuitry (Lan et al., 2005). Thesimplifications used here allowed

for easier and more complete characterisation of the system’s behaviour (such as maps of joint

stiffness at all equilibrium-points) and did not impede thekind of questions asked. The goal was

not to provide an anatomically correct arm model, but to study whether experimentally observed

movement features, such as triphasic muscle burst patterns, can emerge from the non-linear dy-

namics of a muscle-reflex system. To this end the level of modelling proved sufficient. Although

the model can not predict the precise time-course of muscle forces in human arm movements, it

does predict the importance of velocity error feedback (relative vs. absolute damping), the tuning

of viscoelasticity for movements of different speeds, and the need for compensation of interac-

tion torques during multijoint movements. Although individually some of these results have been

demonstrated in both simpler and more complex models, this chapter has shown that the observed

features are neither due to oversimplifications, nor specific to human physiology or anatomy. It

was further demonstrated that equilibrium-point control is feasible for movements of different

speeds and amplitudes with appropriate adjustments of feedback gains, i.e. not limited to any

particular range of movements (Kistemaker et al., 2006; Pilon and Feldman, 2006).

The importance of an open-loop (co-contraction) command for the control of fast movements

highlights an often misunderstood concept of the EP-hypothesis. Namely, that it suggests pure

feedback control; that it is therefore prone to destabilising feedback delays; and that feedback

would arrive too late to contribute to fast movement. But even the lambda signal itself is a feed-

forward command. It shifts motoneuron thresholds prior to the onset of movement, such that

sensory feedback will contribute from the beginning. The co-activation command constitutes an-

other feedforward component. Nevertheless, both components imply that the central control of

movement requires a “representation”, or map, of the relationship between desired angles and

muscle(-tendon) lengths. If such maps were to be understoodas internal models, then one could

argue that the dichotomy between the EP- and the force-control hypothesis is not as strict as is

often presumed. However, the internal maps required by the EP hypothesis are of a very different

nature than those postulated by the force-control hypothesis. The former are essentially repre-

sentations of skeletal geometry, i.e. purely kinematic, while the latter are complete and detailed

“simulations” of the dynamics of force production. While the former are easy to acquire, the lat-
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ter are hard if not impossible (see chapter 2). Equilibrium-point control therefore is not strictly

model-free, but it avoids the pitfalls associated with the inverse dynamics problem.

Several interesting avenues remain to be explored. In this thesis, for example, muscle models were

discarded that can lead to unstable dynamics. There is some evidence, however, that unstable dy-

namics can occur naturally in human arm movements (Akazawa and Okuno, 2006). Further work

should aim to identify whether this is a common feature and study the implications of unstable

dynamics at the joint level for feedback controllers like the λ-model. Even though an unstable

equilibrium might be detrimental to discrete goal-directed actions, for example, a system con-

sisting of a repellor surrounded by two attractors, as identified in the previous chapter, might be

beneficial for oscillatory behaviours.

Further work is needed to assess the relative contribution of inherent muscle properties and reflex

action on the stability of the coupled system. Of particularinterest would be the contribution of

muscles to the compensation for feedback delay, as the effect of the muscle “preflex” can provide

stability where feedback alone is not sufficient. Giesl and Wagner (2007), for example, have ana-

lytically determined the size of the basin of attraction forthe equilibrium produced by antagonistic

muscles in the absence of reflexes (also see Wagner and Blickhan, 1999). It would be interesting

to see whether their technique can be applied in more complicated scenarios. Alternatively one

could determine the relative contribution of muscle and reflex stabilising actions numerically, for

example through “lesion” studies of the reflex controllers.

Finally, extensions to the EP-hypothesis are needed that can account for the effect of interaction

torques during multijoint movements. Chapter 6 proposes two such mechanisms, one of which is

based on force-feedback between neighbouring joints, and the other on feed-forward compensa-

tion.



Chapter 5

Lumped muscle-reflex model

In the previous chapter it was shown that a detailed simulation of antagonistic skeletal muscles

can reproduce the kinematics of simple goal directed movements, albeit not accounting for the

interaction torques arising during multijoint movements.For simulations that include many joints

or degrees of freedom, it would be convenient, with respect to the complexity of simulation and

analysis, if the qualitative dynamics of human movement could be captured in a simpler model.

This chapter investigates if individual muscles need to be modelled at all, or whether a simple

lumped model with attractor dynamics at the joint level might be sufficient.

It might seem surprising that such a simplified muscle model is suggested here, when in previous

chapters it was pointed out that oversimplification is oftenthe cause for misguided criticism of the

EP hypothesis. But as chapter 4 has shown, it is not always necessary to pick the most detailed or

complicated model available either. It might often be sufficient to pick one that readily produces

the phenomenon one wishes to investigate. In chapter 6, for example, we will study possible

mechanisms for the compensation of interaction torques. Such torques appear by necessity in any

multijointed physical system, not just those controlled bymuscles with complex internal dynam-

ics. The model proposed in the following sections will be useful because the reduced number of

parameters makes it easier to analyse the dynamics of the movement it produces. At the chosen

level of detail such a model will not be able to make predictions about details of animal move-

ments, i.e. those actuated by skeletal muscles. But it will suffice as a tool to investigate potential

forms of feedback or feedforward control in abstract.

5.1 Joint model

Many variations can be found in the biomechanics literaturefor m odelling limb motion on the

level of joint attractor dynamics. Most can be described as non-linear extensions of a basic spring,

or equivalently PD control, model. In (Barto et al., 1999; Karniel and Inbar, 1999) for example,

limb control was modelled by a spring-mass system of the formMẍ+ B(ẋ)
1
5 + K(x− xeq) = 0,

wherex is the position of an object of mass M,xeq the equilibrium position, B the damping coef-

ficient, and K the spring stiffness. This model produces trajectories qualitatively similar to human
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wrist movement whenM = 1, B = 3 andK = 30 (Wu et al., 1990). In the following experiments,

different non-linear functions are compared as candidatesfor a joint controller comprising elastic

and viscous forces analogous to the aforementioned spring-mass setup. The resulting systems can

be interpreted as minimal equivalent models of the combinedeffect of nonlinear muscle properties

and the stretch reflex mechanism.

Two options are studied for modelling joint elasticity, namely a linear function of position error

and an exponential function:

Flin = K(θ−λ) (5.1)

Fexp =







Ke(θ−λ)−1 if θ >= λ

−Ke−(θ−λ)−1 if θ < λ
(5.2)

HereK is stiffness,θ the actual joint angle, andλ the desired angle. Linear elasticity was used

in early models, such as the one proposed by Hogan (1984), whoshowed that minimum jerk

optimisation of such models can accurately predict observed kinematic invariants. Exponential

elasticity in contrast was used by several researchers as anapproximation of a muscle’s invariant

characteristic (Gribble et al., 1998; Pilon and Feldman, 2006). Although the combined elasticity of

two muscles in an antagonistic setup would have a different form at the joint level, the exponential

is distinguished from the linear model by the fact that stiffness (tangent of the force function) is

not constant, but increases with the difference between actual and EP position (see figure 5.1).

For viscous forces, a linear model and two different non-linearities are considered:

Flin = Bθ̇ (5.3)

Fasinh = Basinh(θ̇) (5.4)

Fpower = B ·sgn(θ̇) ·
∣

∣θ̇
∣

∣

1/n
n∈ [0,1] (5.5)

where B is the damping gain, andθ̇ joint angular velocity. Non-linear viscosity as describedby a

power law was previously found to allow for fast movements that terminate with little oscillations

in a model of human wrist movements (Barto et al., 1999). As figure 5.1 illustrates, in such a

model effective damping (the slope of the velocity dependent force function) increases sharply as

velocity approaches zero. Hence damping is strongest at rest while dropping quickly for faster

motion. The inverse hyperbolic sine function (asinh) was used, for example, by Martin (2005)

for having the same benefit as the power function. It differs however in that damping drops more

smoothly for increasing velocity. It also has the advantageof not having a discontinuity at zero

velocity (desirable for numerical stability) and of not saturating asymptotically. The similar arc

tangent (atan) function was used in (Gribble et al., 1998) asan approximation of the function which

describes a muscle’s force dependency on lengthening and shortening velocity (see chapter 3). As

it is better suited for numerical simulation, while resembling the overall shape of the power law,

only the asinh function was considered in the following experiments.

Several studies have proposed relative damping of the formFrel = B(λ̇− θ̇) as an improvement

over absolute damping of the formFabs= Bθ̇ (de Lussanet et al., 2002; McIntyre and Bizzi, 1993).

While absolute damping alone was found insufficient for re-producing the fastest human move-

ments (≈ 950 deg/s) at plausible stiffness levels, relative dampingincreased the maximum speed
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Figure 5.1:Different functions chosen as models of non-linear joint elasticity and viscosity. Horizontal

axes measure angular error or velocity [-1,1] and stiffnessor damping gain [0,1]. The resulting force F is

measured on the vertical axis. The first row shows force itself, and the second row the derivative of force

with respect to angular deviation. The linear model is omitted as its resulting surface is flat. For comparison

all surfaces are scaled to a maximum force of 1 N.

achievable. In addition to the different controller non-linearities described above, the following

experiments therefore also compare the effect of relative and absolute damping and their relative

importance in producing fast and smooth movements.

5.2 Single-joint movements

The first experiment was aimed at identifying the combination of elasticity and viscosity models,

as well as damping type and duration of EP shift, that achieves naturally smooth minimum jerk

trajectories at various speeds. The output of each controller was simplyF = Fpos+ Frel + Fabs,

i.e. the result of adding elastic force (Fpos) as well as relative damping (Frel) and absolute damping

(Fabs) terms. For any given controller, the elastic component waseither linear or exponential, while

the damping terms were linear or described by theasinhfunction. All possible combinations were

studied, leading to eight (2x2x2) different types of controller. In three separate sets of experiments

(fast, moderate and slow movement conditions) each type of controller was optimised for both a

large and a small amplitude movement using a genetic algorithm1. A single set of feedback gains

(K, Brel, Babs) was used for both movements, while the duration of the EP shift was allowed to vary

between the two. The fastest desired movements had durations of 0.2 s and 0.18 s for amplitudes

of 100◦ and 50◦ respectively. In the moderate speed condition movements were twice as long

(0.4 s and 0.36 s), and three times as long for slow movements (0.6 s and 0.54 s). Each controller

was evaluated by driving it with an EP shift of evolved duration, and comparing the resulting

1See sections 3.4.2 for an overview of the algorithm and 3.6 for parameter values.
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kinematics with the desired minimum jerk trajectory. Performance was measured by the absolute

difference between the two, scaled to a value in the range [0,1]. Durations of the evolved EP shift

were constrained to vary between 50% and 100% of the minimum jerk duration. Feedback gains

were evolved in the range [0,1] and then scaled by a maximum value to prevent unrealistically

high stiffness or damping. Measures of natural damping gainand dynamic stiffness, i.e. stiffness

during movement rather than at rest, vary considerably in the literature. While older experiments

have suggested stiffness values of up to 126 Nm/rad (Lacquaniti et al., 1982), more recent studies

have found values as low as 14 Nm/rad (Gomi and Kawato, 1997; Bennett et al., 1992). It was

decided to evaluate controllers with relatively low stiffness and the maximum was chosen to be 15

Nm/rad. Maximum damping to stiffness ratios reported in theliterature vary between 0.1 and 0.25.

This value is implicitly constrained by the optimization process, however, which favors minimum

jerk like trajectories and hence penalizes terminal oscillations. It was therefore decided not to

constrain damping gains any further, but allow maximum levels of the same strength as elastic

forces (i.e. damping to stiffness ratio equalled 1 at most).

5.2.1 Optimality of non-linear reflex response

Each of the eight possible controllers was optimised at least five times for each of the three speed

conditions. The performance of the best evolved controllers and the mean performance across

repeated runs were then compared for any significant differences between the various linear and

non-linear modelling functions. While the best performance found can be considered a reflection

of the true potential of the controller (if the genetic algorithm found the global optimum), the

mean and variance in performance rather reflects propertiesof the search space (“evolvability”,

ruggedness of fitness landscape) and the optimisation algorithm.

Table 5.1 summarises the performance of the best evolved controllers. In order to compare the

best performances across the 2x2x2 different controller types an analysis was carried out that is

similar to calculation of marginal means in an ANOVA statistic. A mean value was calculated for

one factor (type of elasticity/viscosity) by averaging across all levels of the other factors. E.g. to

assess the effect of exponential elasticity, the maximum performances of all linearly elastic models

are averaged irrespective of the type of damping function, and compared to the average of maxima

across all exponential models.

For the fastest movements these “maximum marginal means” infitnessMF areMFlin = 99.71%

and MFexp = 99.72%, which is not considered different given the low standard deviation (see

below). The maximum marginal means for linear and non-linear relative damping, on the other

hand, areMFlin = 99.63% andMFasinh = 99.79%, indicating a significant effect. For absolute

damping the means wereMFlin = 99.71% andMFasinh = 99.71%. Thus, considering only the

best evolved controllers, it can be concluded that only the non-linearity in relative damping has a

significant effect on the performance of fast movements. A full ANOVA statistic was also carried

out, the results of which are found in the Appendix of this chapter (means are shown in table

5.3 and bar plots of true marginal means in figure 5.5). The mean performances are virtually

identical to the maximum performances (greatest standard deviationstd= 0.0001). Both a one-

way ANOVA (with each of the eight model combination as separate factors) and a 2x2x2 ANOVA

showed a clear effect of relative damping with a significanceof p = 0.
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Model Speed

Fpos Fvel Fdmp fast mod slow mean

lin lin lin 99.62 99.33 99.70 99.55

asinh 99.63 99.39 99.67 99.56

asinh lin 99.79 99.47 99.71 99.66

asinh 99.79 99.47 99.67 99.64

exp lin lin 99.63 99.70 99.77 99.70

asinh 99.62 99.23 99.81 99.55

asinh lin 99.79 99.75 99.77 99.77

asinh 99.80 99.47 99.81 99.70

Table 5.1:Best fitness percentage (across 5 runs for fast and slow movements, and 10 runs for moderate

speed) for all elasticity and viscosity models as well as speed conditions.

For the slowest movements a different significant effect wasfound. Here the maximum marginal

means for elasticity models wereMFlin = 99.69% andMFexp = 99.77%; for relative damping

MFlin = 99.74% andMFasinh= 99.74%; and for absolute dampingMFlin = 99.74% andMFasinh=

99.74%. Hence exponential elasticity seems beneficial for slowmovements while the other non-

linearities have no influence on performance. A 2x2x2 ANOVA confirms that the elasticity func-

tion is a significant main effect (p = 0.03), while the other main- and interaction effects are not

significant (p > 0.26).

For moderately fast movements maximum marginal means wereMFlin = 99.39% andMFexp =

99.52% for elasticity;MFlin = 99.39% andMFasinh= 99.54% for relative damping; andMFlin =

99.54% andMFasinh= 99.39% for absolute damping. I.e. controllers perform slightly better with

exponential elasticity, non-linear relative damping and linear absolute damping. A 2x2x2 ANOVA

confirms a significant main effect for relative damping (p = 0), and a marginally significant effect

for elasticity (p = 0.03).

In summary, for fast and moderate movement speeds non-linear relative damping significantly

improves performance. Non-linear elasticity significantly improves only slow movements, while

moderate movements benefit little. Non-linear absolute damping, in contrast, did not show any

significant effect on movement performance. We chose the model that performed best across the

different speed conditions (exponential elasticity, non-linear relative damping and linear absolute

damping) for further examination in the following sections.

5.2.2 Controlling movement velocity

In the previous experiments, reflex controllers were optimised independently for each of the three

different speed conditions. While allowing different feedback gains to evolve depending on the

required movement means that the system’s dynamics can be optimally tuned for the task at hand,

it also introduces additional control parameters. Since the aim of equilibrium-point approaches is

the simplification of the control process, it would be desirable if there existed a simple relationship
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between desired movement and feedback gains. Table 5.2 compares how each parameter depends

on the intended movement speed for the best (non-linear) andworst (linear) controllers.

model speed K V B T1[%] T1[%]

best fast 0.927 6.15 0 58 66

mod1 0.11 2 0 60 65

mod2 15 0.44 1.57 57 50

slow 9.6 0 1.5 58 50

worst fast 0.225 3 0 68 65

mod1 0.02 1.57 0 68 66

mod2 11.4 0.78 0.78 62 57

slow1 11 0 1.5 55 50

slow2 10.5 0 0.015 97 100

Table 5.2:Average evolved parameters for fast, moderate and slow movements. The first controller (best)

has exponential elasticity, non-linear relative damping and linear absolute damping, while the second con-

troller (worst) comprises only linear terms.

The non-linear model relies mostly on relative damping to achieve the highest desired speeds,

with a small contribution of elasticity but no absolute damping. For moderate movements the

optimisation process found two different strategies. The first consists of a reduction in both po-

sitional gain and relative damping to slow down the movement. The second, in contrast, relies

more heavily on elasticity, but very little on relative damping. Absolute damping is used instead

to avoid overshoot and oscillations. For the slowest movements, relative damping is completely

replaced with significant elastic forces and absolute damping. The optimal duration of EP shifts

is about half the desired movement duration across all speedconditions. The model consisting of

purely linear elastic and viscous forces shows analogous tendencies. Compared to the non-linear

model, optimal gains are significantly smaller, while the duration of EP shifts for fast movements

is longer. Another strategy for slow movements was also found in which the duration of EP shifts

is increased two-fold, while elastic and viscous forces arereduced.

To gain a more detailed picture of the relationship between optimal feedback gains and desired

movement speed the best non-linear model was optimised again for a single 50 degree movement

of durations ranging from 0.15 to 0.85s. To minimise the number of varying parameters, the

duration of the EP shift was constrained to be 60% of desired movement time (i.e. in the optimal

range found in previous experiments). The results are summarized in figure 5.2 (left). Minimum

jerk trajectories were successfully reproduced across alldesired movement durations. The average

performance was 99.81% with a standard deviation of 0.05%. In contrast, a simple linear model

without relative damping (effectively a PD) was able to produce the desired trajectories only for

movements slower than 0.45s (compare figure 5.6 in the Appendix). The change in feedback

gains for different velocities shows a pattern similar to the one found in the previous experiment.

The shorter the movement duration, the more heavily relative damping is used, while for slower

movements elastic and damping forces alone are sufficient. The relative contributions of each

vary non-linearly with desired speed. While the damping gains exhibit nearly monotonos change,
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elasticity quickly increases to a peak around 0.4-0.5s and then slowly drops. This adds significant

complexity to the EP model under consideration. Not only would the central nervous system have

to chose the optimal duration of EP shift, it would also need to acquire a mechanism for tuning

reflex gains to the desired movement speed and amplitude.
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Figure 5.2:Optimal feedback gains. Left: as a function of movement duration with EP shift fixed at 60%

of movement time. Right: as a function of relative EP shift duration, with a desired movement of 0.4 s.

Black lines correspond to feedback gains: solid for elasticity, dotted for relative damping and dashed for

absolute damping. Red lines trace performance (fitness).

In a second set of experiments it was tested whether assumptions about the duration of the EP

shift would affect predictions regarding the amount of stiffness and damping necessary for smooth

movements. The best non-linear controller was repeatedly optimised for a single movement of 50

degrees lasting 0.4 seconds, while varying the duration of the EP shift from 0 to 100% of desired

movement time. Performance and evolved feedback gains are shown in figure 5.2 (right). First,

results confirm that the optimal EP shift for this type of controller ends about halfway through the

actual movement. This is in contrast to the full muscle-reflex model, which performed best with

an EP shift of the same duration as the desired movement. Second, optimal feedback gains vary

dramatically with the duration of the EP shift. For very fastshifts the system relies mostly on

elastic forces, while for the slowest shifts elastic forcesare minimized and replaced with relative

damping. Hence, when simple EP models are used to predict properties of natural muscle-reflex

dynamics, it is important to be aware of the significant effect that the assumed duration of the EP

shift has on predicted feedback gains.

5.2.3 Effect of non-linear reflex response on joint kinematics

The superior performance of the non-linear model (F = 99.79%) when compared to the linear

model (F = 99.62%) is reflected in measured kinematic indices. For the fastest large amplitude

movement (100◦ over 0.2 s) the linear model reaches a peak velocity of 730 deg/s after 0.145 s

(T = 0.15 s), while the non-linear model reaches 950 deg/s after only 0.11 s (T = 0.14 s). For

reference, the target minimum jerk trajectory has a peak velocity of 937 deg/s only 0.06 s into the

movement (T = 0.125 s). Clearly, considering only the fastest movements, the linear model is

incapable of producing the forces necessary to achieve the desired speed. The non-linear model

performs significantly better, but both reach peak velocitylater than the minimum jerk trajectory.
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Figure 5.3:Kinematics and reflex response for two movement strategies (S1, S2) used by the linear and

non-linear models. The top row shows desired trajectory (red), EP shift (dotted) and actual trajectory (sold

black). The second row plots desired and actual velocity profile in red and black respectively. The bottom

row shows individual reflex responses (black) and net torqueapplied to the joint (red). The solid curve

represents elastic force, while absolute damping is drawn slash-dotted and relative damping as a dotted

curve.

For slower movements the differences between the two modelsare more subtle. Figure 5.3 plots

the kinematics and reflex response of the two models for movements of moderate speed. The two

different strategies identified above are shown (compare table 5.2). The first strategy (S1) relies

solely on relative damping to produce the desired trajectory, while the other two feedback gains

are virtually zero. The second strategy (S2), in contrast, makes use of both elastic and viscous

forces. In both cases the non-linear model improves upon thelinear model. It prevents the actual

position from leading the EP during the initial phase, and allows for less damped motion during

the fastest interval, thereby producing higher peak velocity. The combined effect is a velocity

profile that better resembles the desired bell shape.

5.3 Multijoint movements

In a final test of the validity of joint-level EP controllers as models of human motor control mech-

anisms, the non-linear model was optimised for the production of multijoint movements. Only

the arguably simplest extension to the single joint case wasconsidered; namely two hinge joints,

each being driven by a separate controller, and no communication between the two. Control was

implicitly coupled, however, by using synchronous EP shifts of the same duration and velocity.

In order to observe the effect of interaction torques, each controller was optimised for two move-

ments that differed in the direction of motion of the two joints. In the first case elbow and shoulder

joints moved in the same direction, while in the second case the direction of the shoulder was re-
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versed. Analogous to the multijoint experiments using explicit muscle models, the latter condition

constitutes a synergistic case, in which interaction torques assist the motion, while in the former

condition torques oppose the intended movement.

Several approaches were considered for mapping and constraining the individual feedback gains

to be optimised. Options included independent and unconstrained optimisation of all parameters;

constraining of the shoulder stiffness to twice the level ofthe elbow (as it needs to lift a stronger

load); constraining all viscous forces to be at most half of the maximum elastic forces (empiri-

cally, damping forces are significantly lower than stiffness in humans arm movements); allowing

all feedback gains to be twice as high as in the single-joint case (because higher stiffness could

potentially counter interaction torques); enforcing minimum stiffness and maximum damping to

prevent relative damping from dominating the dynamics (this should encourage strategy S2, which

was found to be a better match for human kinematics above); and using a single fixed (but opti-

mised) ratio between elbow and shoulder gains (desirable asa simple control strategy). As the

intention was to test whether simple feedback control is possible without accounting for interac-

tion torques, all experiments used a single set of feedback gains to control the two movements.
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Figure 5.4:Angle-velocity phase plot (top row) and reflex response (bottom row) of an optimised mul-

tijoint EP controller. The first two columns show elbow and shoulder activity when both joints move in

the same direction (assisting interaction torques), whilein the last two columns movement is in opposite

directions (opposing interaction torques). Initial position and velocity are marked by a dot.

Although a few of the resulting controllers differed quantitatively in both performance and kine-

matics, all of them failed to qualitatively reproduce natural minimum jerk trajectories. A typical

controller is shown in figure 5.4. It is obvious that the interaction torques arising in one joint

due to movement in the other prevent the system from producing smooth, natural trajectories.

When movement direction is such as to create movement-opposing interaction torques (first two

columns) the actual position lags the desired trajectory inboth joints. When interaction torques as-
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sist the movement (last two columns), actual position initially leads the equilibrium shift. Tremor-

like oscillations can also be observed during accelerationand deceleration of the arm in the latter

case. Furthermore, follow-up experiments were carried outto investigate whether the inability

to compensate for interaction torques was simply due to the optimisation process having to find

a trade-off in feedback gains between the two different directions of movement. However, even

when optimised for a single direction only, perturbations caused by interaction torques are not

sufficiently rejected. These results confirm the same limitation found in the explicit muscle-reflex

model.

5.4 Discussion

This chapter has shown that a joint-level EP control model with non-linear elastic and viscous

forces produces more natural single-joint movements than alinear model (as measured relative to

a minimum jerk profile). It was found that the optimal duration of the EP shift for this type of

controller is about half that of the intended movement time.This is in contrast to the full muscle-

reflex model, which performed best with an EP shift of the sameduration as the desired movement.

When other EP shift durations were chosen, optimal feedbackgains changed significantly. This

means that the assumed time course of (currently non-observable) control variables such as the EP

shift duration influences predicted reflex gains. This is important to bear in mind when comparing

models of equilibrium-point control that make different assumptions about the time-course of

the control variable; and when comparing predicted reflex gains to stiffness and damping levels

measured in humans. The experiments further highlighted the necessity of tuning EP controllers

for movements of different velocity (confirming results from the previous chapter). The relative

contribution of individual reflex components varied non-linearly with desired speed. The added

complexity of treating reflex gains as non-trivial control variables undermines the EP hypothesis

only in so far as its simplicity is concerned. While reference to the body’s complex dynamics can

still be avoided, it implies that the central nervous systemwould need a mapping between desired

position and speed on one hand, and the appropriate reflex gains on the other. A more significant

limitation of this simple model is exposed when multijoint movements are considered. Here it

failed to qualitatively match natural human performance. At realistic stiffness and damping levels,

interaction torques create perturbations that can not be sufficiently rejected by the controller. It

therefore confirms the results obtained using the explicit muscle model. For multijoint movements,

a control strategy more complex than synchronous EP shifts must be necessary to produce the

smooth trajectories observed empirically. Two potential mechanisms are investigated in the next

chapter.
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5.5 Appendix: ANOVA results

Model Speed

Fpos Fvel Fdmp fast mod slow mean

lin lin lin 99.62 99.23 99.42 99.42

asinh 99.62 99.24 99.42 99.43

asinh lin 99.77 99.45 99.52 99.58

asinh 99.78 99.46 99.42 99.55

exp lin lin 99.62 99.41 99.61 99.55

asinh 99.62 99.22 99.52 99.45

asinh lin 99.78 99.51 99.62 99.63

asinh 99.78 99.45 99.81 99.68

Table 5.3:Mean fitness percentage (across 5 runs for fast and slow movements, and 10 runs for moderate

speed) for all elasticity and viscosity models as well as speed conditions.

0.9965 0.997 0.9975 0.998

EAA

LAA

ELA

LLA

EAL

LAL

ELL

LLL

0.992 0.994 0.996 0.994 0.996 0.998

Performance [ % ]

Fast Moderate Slow

Figure 5.5:Multiple comparison test of 2x2x2 ANOVA results. Shown are all group means with 95%

confidence intervals. Two means are significantly differentif their intervals are disjoint. Groups names

are comprised of three initials indicating the function used for elasticity (L=linear, E=exponential), relative

damping (L=linear, A=asinh) and absolute damping (L=linear, A=asinh) respectively.
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Figure 5.6:Feedback gains as a function of movement duration for a simple PD like controller. Strength of

elasticity (solid black) and absolute damping (dotted black) is shown, as well as the relative duration of the

EP shift (dashed red). The latter is measured as a percentageof desired movement duration. Performance

(fitness) is also displayed (solid red). Note how for fast movements optimal performance can not be achieved

at the given level of maximum stiffness (15 N/rad). For slower movements, the evolved strategy consists of

decreasing elastic forces along with increasing duration of the EP shift.



Chapter 6

Compensation for interaction torques

In the following sections we use the lumped muscle-reflex model developed in the previous chapter

to explore two different strategies for compensating interaction torques during multijoint move-

ments.

6.1 Introduction

Both muscle-reflex models considered in the previous chapters, as well as the model of mus-

cles driven with feedforward pulse-step signals, are able to reproduce the kinematics of human

single-joint reaching movements. While explicitly modelling individual muscles more faithfully

reproduces, for example, the typical bell-shape velocity profile, all approaches fail to cope with

the interaction torques arising during multijoint movements. This calls into question the validity

of the equilibrium-point hypothesis’ claim that movementscan be controlled without explicitly

taking into account the dynamics of the body. Indeed, it would suggest that the central nervous

system needs to predict the interaction torques resulting from an intended movement and appro-

priately adapt the movement “plan” so as to cancel out such perturbations preemptively. For any

such prediction to be accurate, an internal model of the body’s dynamics would be required. Many

researchers therefore conclude that the force-control hypothesis alone, that is forces/torques as

control variables driven by internal models, can explain the production of natural movements.

This does not follow logically. Equally valid would be the suggestion of a position control model

in which the desired position is corrected by predicted interaction torques, and inverse dynamics

calculations that map the required counter-torques onto correcting position offsets. A similar strat-

egy was proposed by Gribble and Ostry (2000). In a model basedon equilibrium-point control, the

authors devised an iterative learning scheme which uses position error to adjust initial control sig-

nals in a manner that eventually restores desired trajectories in the presence of interaction torques.

Even though the system did not require explicit inverse dynamics calculations, it effectively learnt

an internal model in the form of an inverse map from desired position to required control signals.

In this chapter we argue that an even simpler option might exist. The morphology of human limbs
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does not usually change1, and their joint chains are relatively short. The arm consists of only

shoulder, elbow and wrist joint, the latter of which plays a lesser role in dynamics because the

mass of the chain below it (the hand) is relatively small. Crucially, for human arm movements

near linear relationships have been identified between the direction of joint movement, the in-

teraction torques resulting from it, and the actively generated muscle torques in connected joints

(Gottlieb et al., 1996; Gribble and Ostry, 1999; also see section 4.3.5). This suggests that the

central nervous system could acquire a simple heuristic forcontrolling the movement of joints in

a limb. A potential control scheme could take the form of a kinematics-based shift in desired po-

sition (as was used in previous chapters) on which is superimposed a transient corrective position

offset derived according to simple rules from the desired direction of movement. Such a heuristic

would most likely not be accurate. However, the equilibriumpoint created by the muscle-reflex

system would ensure that the desired position is eventuallyreached, even if the modified transients

are temporarily deviating from the desired position or the monotonic shift thereof. Based on this

idea, we propose two strategies for addressing the problem of interaction torques in the framework

of the equilibrium-point hypothesis. The first uses force feedback as an approximation of arising

interaction torques. This is then used in a simple proportional control scheme at neighbouring

joints. The second strategy does not rely on this hypothesised role of force feedback, but uses

instead an approximate “prediction” of the upcoming interaction torque that is based on the de-

sired movement direction and amplitude. Thus the former represents a feedback and the latter a

feedforward compensation scheme.

6.2 Feedback compensation

Experiments in which EMG and torque pulses at the elbow and shoulder were measured have

identified a simple strategy used by human subjects to coordinate the motion of these joints during

pointing movements. It was observed that the torque produced at the shoulder is proportional

to that produced in the elbow and that both follow the same time profile (Gottlieb et al., 1996).

As confirmed by Gribble and Ostry (1999), such alinear synergyhelps reducing the effect of

intersegmental dynamics. If torques at the shoulder vary inproportion with torques at the elbow,

then according to physical laws they must also vary with the interaction torque produced. This

is because the interaction torque experienced at the shoulder joint itself is proportional to the

original torque applied at the elbow. The question then is how the final torque is controlled so

that it is proportional to the interaction torque, particularly in the EP hypothesis, which postulates

position- and not force-control. The simplest approach is to offset the desired position negatively

proportional to the upcoming interaction torque. If, for example, the direction of the interaction

torque is such as to lead to flexion of the elbow, then the desired position at that joint can be offset

in the opposite direction, that is towards extension. In a first set of experiments, we tested whether

such an approach is feasible. As an approximation of the interaction torque at one joint we used

the torque output of the other joint. In short, for each muscle-reflex controller we added to the

monotonic shift in desired position the weighted torque output of the other joint’s controller.

1Except for the duration of development, during which changes in, for example, limb lengths are slow compared to
the time-scales involved in learning to reach.
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6.2.1 Methods

As the problem of interaction torques arises in any articulated rigid body system, not just those

powered by muscle-like actuators, the simpler lumped muscle-reflex model presented in the previ-

ous chapter is used in the following experiments. This modelis in effect a non-linear proportional-

derivative (PD) controller with added velocity error feedback (also called “relative damping”). For

further details see section 5.1.

In the first experiment, controllers were evolved using a GA2 to produce smooth minimum jerk

trajectories with amplitudes of 2π8 , 2.5π
8 and 3π

8 rad at both joints (45◦, 56.25◦, and 67.5◦). For all

amplitudes, the rate of change of the desired EP shift was 225deg/s, leading to ramp durations of

0.2, 0.25 and 0.3 s. For each amplitude condition two trials were performed: one in which shoulder

and elbow joint rotate in opposite directions, and one in which the direction of movement is the

same. Consequently, in the former trial resulting interaction torques support the desired motion,

while in the latter trial they oppose it. Different feedbackgains (stiffness K, velocity error V, and

velocity proportional B) were evolved for the two joints, but the same set was used for all six trials.

Previous experiments found that different viscoelastic properties are necessary only for different

movement speeds, but not amplitudes.

α

α

elbow

shoulder

monotonic EP shifts joint torquesmuscle-reflex model 

(non-linear PD)

EP

EP
+

+

+

+ ⋅
τSe e

⋅
τSs s

Figure 6.1:Torque feedback control scheme: each joint is actuated by a lumped muscle-reflex model, in

effect a non-linear PD controller with relative damping. The controller receives as input the desired position

of the joint, i.e. the virtual EP, and outputs a time-varyingtorque that is applied to the arm model (τe/s for

elbow and shoulder). The desired position of each joint is the result of adding a central command that

monotonically shifts from initial to final position, and thegain-scaled feedback of torque produced in the

other joint (se/s · τe/s).

The control scheme for this experiment is illustrated in figure 6.1. Each controller receives as input

a desired joint angle that monotonically shifts from initial to final position. As described above,

the two joints do not act in isolation, however, but are coupled through the torque feedback they

receive from each other. To be precise, the torque produced in one joint is scaled by a feedback

gain and added to the central signal controlling the other joint. Each virtual EP trajectory is thus

2See sections 3.4.2 for an overview of the genetic algorithm used, and 3.6 for parameter values.
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the result of adding a simple ramp-shaped control signal anda potentially complex time-varying

torque feedback.

For each trial and joint a different torque feedback gain wasevolved as it was not known a priori

how it would depend on the desired amplitude or speed of movement. Both positive and negative

torque feedback gains were allowed. In addition, for each ofthe three different amplitudes the

duration of the minimum jerk trajectory (against which actual trajectories were evaluated) was

optimised. This was because previous experiments had foundthat the relationship between the

rate of change and duration of the monotonic shift in desiredposition on the one hand, and the

duration of the produced minimum jerk trajectory on the other, is not always linear. The range of

the desired duration was constrained to 100–200% of the rampduration to avoid cases in which the

same movement dynamics evolve independent of the input ramp. The particular range was chosen

because experiments in the previous chapter found that the ramp shift is optimal at approximately

half the duration of the desired movement. All in all, each genome encoded for six “ordinary”

reflex gains, twelve torque feedback gains, and three minimum jerk trajectory durations.

Once the controllers had succeeded on this first task, the resulting system was incrementally

evolved for a higher resolution of amplitudes (now including 1.75π
8 , 2.25π

8 and 2.75π
8 rad), as

well as for different speeds (25% faster and 25% slower). Finally, a test for generalisation was

carried out with the best evolved system in which amplitudesvaried between 1π8 and 3π
8 . Also, for

comparison, a control experiment was conducted in which a muscle-reflex system was evolved on

the initial range of movements but without the addition of torque feedback.

6.2.2 Results

The control experiment demonstrates again the failure of simple feedback systems to deal with

interaction torques. Figure 6.2 presents the trajectoriesand velocity profile of the reflex-controller

without torque feedback. In neither the supporting nor the opposing interaction torque condition

does the system exhibit natural dynamics. The velocity profiles are not generally bell-shaped and

feature a non-continuity at peak velocity, which coincideswith the desired position reaching its

plateau.

Compare these trajectories with those produced by the controller featuring torque feedback, shown

in figure 6.3. Although velocity profiles are not perfectly smooth, they much better resemble the

desired minimum jerk trajectory (shown in red). Several interesting features are worth noting in

this data.

Firstly, when intersegmental dynamics support the desiredmotion (first two columns), overall

torques applied are significantly smaller than when they oppose the intended motion (last two

columns). Thus, the system seems toexploit the existence of interaction torques when possible,

and otherwise generates larger forces tocounteractthem. Interestingly, the same pattern is ob-

served in human subjects (Gribble and Ostry, 1999). The effect is particularly striking for the

elbow in the trial with supporting interaction torques (leftmost column). First, note that the ex-

perimental setup is such that positive torques move a joint towards more negative angles. Now, as

the figure demonstrates for the trial in question, the elbow generates torques that would move the

joint not in the desired, but exactly the opposite direction. This means that the interaction torque
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Figure 6.2:Kinematics of the control model (without torque feedback).Shown are angular position (top)

and velocity (bottom) of elbow and shoulder joint during three movements in opposite directions (A, left)

and the same directions (B, right). Amplitudes are 45◦, 56.25◦, and 67.5◦, and EP shift durations 0.2, 0.25

and 0.3 s, respectively.

produced by the shoulder is already driving the elbow in the right direction so strongly that it

needs to actively oppose it, that is, produce a breaking force instead of accelerating in the desired

direction.

Secondly, torque feedback gains have evolved such as to modify the input trajectory (dashed line

in the first row) only in certain cases. To be more specific, thevirtual EP trajectory of the elbow

is modulated by torque feedback only when interaction torques are supportive. The shoulder’s

input trajectory on the other hand is modulated only for opposing interaction torques. In all other

cases torque feedback gains evolved towards zero. Furthermore, the role of torque feedback seems

to differ in the two cases where it is employed. For movementsin opposite directions, the input

trajectory for the elbow is equal to the sum of the linear rampshift and the negative of the torque

produced at the shoulder. The resulting input trajectory initially accelerates more slowly than the

unmodified ramp, but then temporarily overshoots the actualtarget. The effect of this modification

can only be understood when the other feedback modalities are taken into account. When com-

paring the contributions of the different modalities to theoverall force production (bottom left in

figure 6.3), it becomes clear that the result of the input modification is an equalisation of the pro-

portional and derivative components. The time course of theproportional term is now so similar

to that of the damping term (but of opposite sign) that their sum, and therefore the overall torque

produced, becomes very small. The contributions are in factshaped such that a small breaking

force is created instead of an acceleration, as described above. Compare that to the unmodified

input trajectory (third column). The seemingly minor differences in shape of the proportional and

derivative components here lead to significant acceleration rather than deceleration.

Torque feedback at the shoulder joint has a different functionality. Here, the addition of elbow

torque to the shoulder’s input trajectory leads to greater acceleration of the virtual EP when com-

pared to the original input ramp (top of rightmost column). This is followed not by an overshoot,

but by a reversal of direction away from the target position,to which the virtual EP then gradually
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Figure 6.3:Multijoint kinematics of torque feedback model at moderatespeed and medium amplitude.

Shown are angular position (top) and velocity (middle), as well as feedback response (bottom). Red lines

indicate the minimum jerk trajectory in the first two rows, and the dashed line plots the input signal (desired

position ramp plus torque feedback). In the last row, solid black lines correspond to the positional error

term, dashed to velocity error, and dash-dotted to the damping term. The red line plots final torque output.

relaxes. The effect on individual reflex components is equally reversed. Instead of equalising the

proportional and derivative terms, the positional error isexaggerated. The result is a greater force

production than is the case with a normal input ramp (second column). The greater accelerating

torque is then matched by an equally amplified decelerating impulse, which is the result of the

reversal in direction of the input trajectory at that point.Of course, the amplification of torque

applied at the shoulder is exactly what is required to counteract the opposing interaction torque

resulting from elbow motion.

Where torque feedback is used to adjust the original controlsignal, the resulting virtual EP tra-

jectories show similarities with those produced by the learning scheme described in (Gribble and

Ostry, 2000). Generally, they also find a difference in strategy between movements in the same

and those in opposite directions. In particular, both an overshoot followed by reversal of direction,

as well as unmodified monotonic shifts can be observed in bothmodels. But while the learning

scheme seems to produce the latter only at the shoulder in thecase of assisting interaction torques,

they also occur here at the elbow for opposing torques. Visual inspection indicates that the learn-

ing scheme failed to create trajectories as smooth as those produced here with torque feedback.

The authors report that better results could be achieved if their learning algorithm was applied for

more iterations. It would be interesting to know whether thecontrol signals would be more similar

if their trajectories were further optimised.

The results indicate that it would be too simple to view feedback controllers such as the one

demonstrated here merely as damped non-linear springs. Closing the loop between the two joints

leads to a complex dynamical system, which through the interaction of its various subsystems is



Chapter 6. Compensation for interaction torques104

capable of “choosing” different strategies to cope with both supporting as well as opposing inter-

action torques. Furthermore, a simple non-linear feedbackcontroller with added torque feedback

achieves just that without the need for learning an internalmodel or inverse dynamics calculations.

However, although the resulting trajectories are compensated for intersegmental dynamics qual-

itatively, they do show some deviations from the desired minimum jerk trajectory. Even though

not visible in plots of angular position, the velocity profile shows a noticeable kink around peak

velocity. This can be explained as follows. The input trajectory of the joint unaffected by torque

feedback is non-smooth (non-differentiable) where it changes from a ramp to a plateau. The de-

sired velocity input to the controller (not drawn), which isthe piecewise derivative of the desired

position ramp, therefore features a non-continuous step change. It forms a rectangular function

which changes from zero to the constant velocity of the position ramp and then back to zero again.

Both these abrupt changes show up in the different components of the reflex controller and in its

final torque output. Through torque feedback, this effect can then further spread to the other joint,

where it becomes particularly apparent when overall torqueoutput is low (leftmost column). It

is worth emphasising here again that the simple feedback model is not meant to perfectly model

human muscles and reflexes or match experimental data, and itis expected to differ in details

such as the one described. While additions to the model couldarguably help to re-produce natural

kinematics more faithfully (e.g. a low-pass filter on “muscle activation”), the current complexity

of the model seems to be sufficient for studying general principles such as the compensation for

intersegmental dynamics.

The torque feedback model exhibits another interesting feature. Actively produced torques in-

dicate a synergy between the two controlled joints. The timeprofile of torque at the elbow is

effectively a scaled version of the shoulder torque (red lines in bottom row of figure 6.3). This is

the case independently of the direction of interaction torques, hence even where the elbow pro-

duces breaking instead of accelerating forces. This seems to be in line with findings of a linear

synergy during goal-directed arm movements by Gottlieb et al. (1996). Figure 6.4 shows the close

time synchrony of the two joints more clearly by superimposing the normalised torque waveforms

(left) and plotting elbow torque against shoulder torque (right).

Even though the torque waveforms are not as smooth as those extracted from experiments with

human subjects, they qualitatively reproduce the near-linear and figure eight curves reported in

(Gottlieb et al., 1996). These results hint at the possibility that the observed linear synergy consti-

tutes yet another movement feature that emerges from the dynamics of the muscle-reflex system.

Thus, instead of reflecting a strategy used by higher centresto directly plan the torques at each

joint, as proposed by Gottlieb et al. (1996), the results canbe interpreted as evidence for an under-

lying organisation of the motor apparatus that allows higher levels to control multijoint movements

without regard for intersegmental dynamics.

Finally, the proposed torque feedback mechanism seems to befunctional across a range of different

amplitudes and speeds. Figure 6.5 presents kinematic data from the generalisation test, in which

amplitudes vary from 22.5◦ to 67.5◦ and speeds are considered that are 25% faster and slower than

the moderate condition.

As the figure shows, smooth movements are produced in almost all cases. Several observations can

be made, though. Firstly, the kink at peak velocity described above is visible again in the first of
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Figure 6.4:Linear synergy in multijoint movements with torque feedback. On the left, shoulder (red) and

elbow torque (black) are superimposed after normalisationfor amplitude and offset for clarity. The top row

corresponds to movements in the same direction, and the bottom row in opposite direction. In the right

column shoulder torque is plotted against elbow torque.

the two trials for all amplitudes. Secondly, for some of the larger amplitudes, the velocity profile is

unnaturally flattened near peak velocity. This is most likely due to the fact that, apart from torque

feedback, all other feedback gains were held constant across the different amplitude conditions.

Even though this proved sufficient for single-joint movements in the previous chapters, in the case

of multijoint movements the resulting viscoelastic properties do not seem to be always appropriate.

This is connected to another observation. For a constant rate of change of the virtual EP, the

evolved durations for the minimum jerk trajectory (againstwhich the performance is compared)

vary non-linearly as a function of movement amplitude. In other words, for larger amplitudes the

optimal movement duration becomes shorter relative to the input ramp, meaning that the system

“prefers” to move faster the larger the distance to the target. The velocity profiles for different

amplitudes consequently show different peak velocities despite being caused by the same constant

rate shift in desired position. It would therefore be reasonable to assume that better performance

could be expected if the system was allowed different stiffness parameters for different amplitude

and speed conditions. This was in fact observed in previous chapters.

Lastly, the observed kinematics (with exception of the anomaly just mentioned), qualitatively

match those of human subjects instructed to move accuratelyand rapidly to target positions at

variable distances (Gottlieb et al., 1990). In what the authors coined thespeed-insensitive strat-

egy, they found that the initial rate of rise in torque and velocity at the shoulder and elbow are

uniform across different amplitudes. This is evident here in velocity profiles that initially super-

impose almost perfectly, and diverge only past their peak values. They also found that greater

distances cause these variables to rise for longer intervals, and therefore to larger peak values. In

other words, humans prefer to move faster to cover larger distances when not instructed to move

at any particular speed. This, as already mentioned, is reproduced here in the different peak veloc-
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Figure 6.5:Multijoint kinematics of the torque feedback model for a range of amplitudes (22.25◦–67.5◦)

and three different velocities (rate of EP shift is 168.75, 225, and 281.25 deg/s). The first two columns

show the kinematics (position and velocity) of the elbow andshoulder joint during movements in opposite

directions. The last two columns display the same data for movements in the same direction. The first

two rows correspond to slow, the rows in the middle to moderately paced, and the last two rows to fast

movements.

ities observed at different amplitudes. Gottlieb et al. (1990) suggested that this speed-insensitive

strategy is implemented through central control of amplitude invariant motoneuron patterns that

vary in duration and timing. The model proposed here suggests instead that the observed strat-

egy reflects an adaptive organisation of spinal motor circuits that allows for control of movement

distance via simple shifts in joint equilibrium position ata constant rate.

With regard to the complexity of adjusting interjoint torque feedback for a desired type of move-

ment, it can be noted that the corresponding feedback gains evolved to be constant across different

movement amplitudes. In fact, the gains were also constant across the two slower speed condi-

tions. Only for the fastest movements did the gains evolve slightly different values. Also, the

gains were negative only because the experimental setup, somewhat counterintuitively, was such

that positive torques accelerate the joint in the directionof negative angles. Negative feedback
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gains therefore imply that torque feedback is in fact positive.

In summary, the proposed extension of equilibrium-point based models for multijoint movements

constitutes a simple mechanism that could explain the compensation of interaction torques, the

observed synergy between elbow and shoulder joints, as wellas the speed-insensitive movement

strategy employed by human subjects. The fact that these features emerge simultaneously from a

simple non-linear feedback controller with interjoint torque feedback suggests that the latter two

might in fact be secondary outcomes of a mechanism that dealsprimarily with intersegmental

dynamics.

6.3 Feedforward compensation

The mechanism proposed in the previous section for compensation of interaction torques relies

on a feedback signal between joints that carries information about net joint torques. A possible

source for this type of feedback are the proprioceptive afferents carrying signals about the tension

in individual muscles (appropriately combined). A different approach could make use of infor-

mation about the intended movement to “predict” instead theupcoming torques. As can be seen

in the previous sections, the waveform of net joint torque has to have a sinusoidal shape with an

accelerating and a decelerating pulse. The magnitude and timing of these pulses in turn is corre-

lated with the desired movement amplitude and speed. If these details are known, an approximate

time course of joint torques could therefore be “predicted”. In this section we test the idea that a

somehow preprocessedversion of the virtual EP trajectory for one joint can be usedto modulate

the input trajectory of another joint such as to cancel out the interaction torques resulting from

the motion of the two. We emphasise here the fact that we do notknow a priori what exactly this

preprocessing needs to achieve. An actual, precise prediction of upcoming torques might not be

required, for example. As the previous section has demonstrated, all that is needed is a signal

that amplifies or suppresses joint torques depending on the direction and magnitude of joint mo-

tion. The only difference is that we want to create this signal here in a feedforward manner, from

information about the intended movement, rather than from proprioceptive feedback.

6.3.1 Methods

The proposed feedforward compensation mechanism works as follows. First, a linear shift in

desired position is generated that moves from the initial tothe desired position at a constant rate

(identical to previous experiments). This constitutes thecentral motor command. Two such input

ramps are in fact produced, one for the elbow and one for the shoulder joint. Now, for each joint we

create a preprocessor. This subsystem receives both the input trajectory for the same joint as well

as that for the other joint as input. Its function is to somehow modulate the original input trajectory

based on information from the other joint’s trajectory so that upcoming interaction torques are

compensated for. Since we do not want to constrain the functionality of the preprocessing stage

in any particular way, we evolve dynamic neural networks forthis purpose. The type of neural

network used is described in the next section.
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Dynamical neural networks

Continuous-time recurrent neural networks (CTRNNs) (Beer, 1995b) are used in the following

experiments as abstract models of spinal reflex circuits. The state of each node in such a network

is described by

τi ẏi = −yi +∑
∀ j

w ji φ j(y j + ϑ j)+gI i(t)

whereyi is the cell potential of that node,τi its time constant,w ji the weights of incoming synapses,

φ the sigmoidal functionφ(x) = 1/(1+e−x) calculating the firing rate,ϑ the threshold of the node

andgI gain-scaled input respectively.

Even though the above equation can be interpreted as a model of biological (non-spiking) neu-

rons and networks, dynamical systems of this type are used here only as proxies for hypothesised

functionality of yet unknown spinal circuits. In other words, these networks should be regarded

proof-of-concept dynamical systems that demonstrate whether or not certain central motor com-

mands can produce a desired movement when combined correctly. As such, they can be used to

make predictions, for example, about the significance of certain types of control signals, but not

about detailed connectivity in biological reflex circuits.CTRNNs were chosen because they are

arguably the simplest non-linear continuous-time neural model and were shown to be universal

approximators (Funahashi and Nakamura, 1993; Nakamura andNakagawa, 2009). Also, because

their dynamics are guaranteed to always converge, independent of the parameters chosen, they are

well suited to evolutionary algorithms (e.g. Beer, 1996).

Used in conjunction with a genetic algorithm, the parameters of each neuron are obtained through

scaling of elements in the genotype (distributed over the range [0,1]). Typically in this chapter,

weights, biases and input gains are scaled to the interval[−12,12], and time constants are con-

strained to be at least twice the integration step size and tocover at most the length of the fitness

evaluation. The Euler method with a time step of 0.005 s was used for integrating the differential

equation (equal to the granularity of the physical simulation).

Experimental setup

The topology of the neural networks evolved to generate modified EP trajectories is illustrated in

figure 6.6. Each network consists of four neurons and two input nodes (filled grey circles). The

latter do not exhibit neural dynamics, but function as simple placeholders relaying the centrally

specified monotonic shifts in desired EP. Each network receives the EP trajectory for the joint it

controls as its first input, and the desired EP of the other joint as its second input. Also, the output

of one of its neurons (black filled circle) constitutes the new desired EP trajectory and is used as

input to the muscle-reflex system instead of the original EP ramp. The neuron’s output was scaled

from the range [0, 1] to the range [-1, 1]. Since the muscle-reflex system works in units of radians,

the networks were therefore able to specify desired angles between -180◦ and +180◦. Notice that

there is no feedback to the networks from the muscle-reflex controller or limb dynamics. The

desired EP trajectories have to be generated in a purely feedforward manner from information

about the intended movement (such as the rate of change and duration of the input ramp).

The evolution of these networks was carried out incrementally. In the first stage, only one network

was evolved to produce single-joint movements at the elbow.Fitness was determined as previously
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Figure 6.6:Elbow (top) and shoulder (bottom) control schemes responsible for compensation of interaction

torques. From left to right: each joint is controlled by a neural network that receives as inputs both its own

desired position, as well as that of the other joint. The desired positions are centrally controlled and shift

monotonically from start to endpoint. Each network outputsa new EP trajectory through a dedicated neuron

(black node), which is used to drive the corresponding joint’s muscle-reflex model in place of the original

input ramp. In other words, each network uses information about the intended movement of the other joint

to transform its simple monotonic input ramp with the aim to preempt the resulting interaction torques. No

feedback is present from the periphery to the network controllers.

from the difference between actual and desired minimum jerktrajectories. Three amplitudes of

22.5◦, 45◦ and 67.5◦ were tested for each network instance, with desired durations of 0.15, 0.3 and

0.45 s. The time span of the monotonic EP shift was also optimised. As in previous experiments,

it was constrained to be at most as long as the desired movement, but not shorter than 25% of

its duration. As at this stage only single-joint movements were evolved, the network received

only one input, namely its own desired EP shift. For each network evaluation, the order of trials

was randomised and the desired movement randomly offset by up to 12◦ (so movements were not

always centred around 0◦). Also, at the beginning of a trial each neural state was reset to random

values from an interval surrounding its bias. This was to avoid networks which perform correctly

only when starting from specific initial conditions.

After the genetic algorithm had converged (no further improvement in fitness), the experiment

transitioned to the second stage. Now movements at both elbow and shoulder joints were evolved.

To this end, the best evolved single-joint network was extended in two ways. Firstly, the second

input neuron was added with initial parameters chosen so that by default it had no influence on the

network dynamics (gain and outgoing weights were set to zero). Secondly, the extended network

was duplicated exactly for a setup as presented in figure 6.6.A genome encoding the extended and

duplicated network was then used to seed a new population from which the GA started evolving

multijoint movements. Parameters for the two subnetworks could from then on evolve indepen-

dently. All in all, each genome encoded for 77 values (34 per neural network, three feedback gains

per muscle-reflex controller, and three EP shift durations).
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6.3.2 Results

Figure 6.7 presents the kinematics, feedback components, and torque output of the best evolved

system during a 45◦ excursion lasting 0.3 s. Clearly, a successful strategy evolved that produces

smooth multijoint movements with natural bell-shaped velocity profiles. Compare these trajecto-

ries to those generated by the uncompensated system in figure6.2. As was the case with feedback

compensation, the resulting system exploits interaction torques when these are supporting the in-

tended movement. The forces applied at the joints in this case are smaller than in the case of

opposing interaction torques (compare the first two columnsto the last two). In fact, the same pat-

tern of breaking rather than accelerating torques can be observed in the elbow. Also, the shoulder

creates larger overall torques than the elbow. This is not surprising either, since the shoulder joint

has to support and move a larger load than the elbow.
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Figure 6.7: Multijoint kinematics of CTRNN model for a medium amplitudemovement. Shown are

angular position (top) and velocity (middle) as well as feedback response (bottom). Red lines indicate the

minimum jerk trajectory in the first two rows, and the dashed line plots the virtual EP trajectory generated

by the neural network. In the last row, solid black lines correspond to the positional error term, dashed to

velocity error, and dash-dotted to the damping term. The redline plots final torque output.

However, several features distinguish the evolved system from the torque feedback model. Firstly,

the neural network initially exhibits relatively large, and later small amplitude oscillations in its

output neuron (and therefore torque output), especially atlow overall output levels (leftmost col-

umn). This is certainly not desired, but does not seem to significantly affect the spatial trajectory.

It would be reasonable to assume that continued optimisation, careful tuning of the fitness func-

tion and network parameter ranges, or the addition of more neurons, could produce a smoother

approximation of the dynamics observed. But since we are notconcerned with absolute accuracy

in matching experimental data, this was not pursued here.

Secondly, the kinematics show no discernible discontinuity at peak velocity. Whereas in the torque

feedback model this discontinuity spread from the ramp-shaped input signal of one joint to the
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torque output of the other, this discontinuity is absorbed here by the neural network dynamics.

Even though the existence of this discontinuity in the previous model merely hints at its simpli-

fications (e.g. no low-pass filter on activation dynamics, which is a standard feature in Hill-type

muscle models), the absence of it in the neural network modelindicates that intuitions about a

desirable and simple central command signal might be misleading. Although a ramp-shaped shift

from initial to target position might seem simple to a human designer, the resulting discontinuity,

especially in higher derivatives, can amplify to undesirable effect. The smooth, continuous output

of a neural network, in contrast, though seemingly more complex, is possibly more appropriate

for many tasks. In fact, there is no reason to assume that the nervous system more easily produces

a linear, monotonic shift in a controlled variable than, say, a non-linear relaxation.

Most importantly, however, the neural network uses a mechanism for the generation of acceler-

ating and decelerating torque pulses that is very differentfrom the one identified in the feedback

model. Firstly, observe that in many cases the desired EP trajectory (dashed in top row) does not

approach the target position (red), yet the actual trajectory does (black). This is only possible,

of course, if the difference between desired and actual position is not the determining factor for

torque production. It can only be explained if velocity error is the main contributor instead. In-

deed, the desired EP trajectory seems to be mostly offset on the angle axis, but its rate of change

is rather similar to that of the minimum jerk trajectory. This is even more evident in the plots of

reflex components. Here, it can easily be seen in the similarity of the two traces that net torque is

mostly caused by velocity error. The whole picture is a little more complex, though. While elbow

feedback gains are such that positional error is indeed negligible, in the shoulder significant forces

are produced in proportion to positional error. Here, the neural network has offset the virtual EP

from the target position by a larger amount. Also, analogousto the torque feedback model, in the

case of opposing interaction torques the virtual trajectory initially accelerates faster, but then re-

verses direction before the joint relaxes towards the target (top row, right column). These changes

to the virtual EP lead to a complex interaction of the three reflex components that is ultimately

responsible for the correct compensation of intersegmental dynamics.

Finally, figure 6.8 presents the trajectories produced by the best evolved network for all six trials.

These consist of three different amplitudes and two different directions. While the shoulder always

moves in the direction of positive angles, the elbow moves either in the same or the opposite

direction. Trajectories are shown only for the time period that the network was evaluated on

in a given trial3. As can be seen in the figure, the performance described aboveextends both to

smaller as well as larger amplitudes. Plots of angle over time are generally smooth, although elbow

velocity profiles exhibit the already mentioned oscillations caused by neural output. Because

the desired duration of each movement was determined from a constant average velocity, peak

velocities are approximately equal. In other words, because the desired speed was fixed, one can

not observe the speed-insensitive strategy that was demonstrated by the torque feedback model.

To conclude, the non-linear reflex controller when driven bya neural network is best not under-

stood as a damped spring model, but as a complex dynamical system that balances various force

components for the task at hand. The added layer of neural “computation” between central motor

commands and reflex dynamics allows higher levels to interact with the motor apparatus without

3Fitness evaluations of smaller amplitude movements were shorter for reasons of computational efficiency.
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Figure 6.8:Multijoint kinematics of ANN model during movements of three different amplitudes.

regard for intersegmental dynamics.

6.4 Discussion

Two mechanisms have been proposed in this chapter for the compensation of interaction torques

during multijoint movements. The first is based on interjoint feedback of net joint torques. Since

intersegmental dynamics are systematically related to actively applied joint torques, information

about the latter can be used to counteract the former. But howcantorquesfunction as corrective

feedback in a motor control framework based onpositionalcontrol? One option would involve

an internal inverse dynamics model that maps required counter-torques onto positional offsets.

Such a mapping can only be correct if it takes into account thegeometry and dynamics of force

generation of the neuromusculoskeletal system. The model developed here suggests instead that

the central motor command which specifies the desired position of one joint can simply be offset

in proportion to the torque created at another. In other words, the “inverse dynamics calculations”

are replaced with a basic linear scaling function. The modelfurther predicts that the virtual EP

of the distal joint (elbow) is modulated by torque feedback only when joints move in opposite

directions. When they move in the same direction, in contrast, only the proximal joint (shoulder)

is affected. In both cases torque feedback is positive.

Translated into animal anatomy and neurophysiology the hypothesised mechanism makes the

following predictions. Firstly, it assumes that active muscle forces can be sensed reliably, and

transformed into either muscle torques first or joint torques directly. Such transformations could

arguably be based on a combination of sensed muscle force with other proprioceptive signals ac-

cording to the geometry of the articulated system (torque atthe joint is equal to force times moment

arm). It further predicts that spinal interneurons exist which receive afferents carrying information
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about forces and which project ontoα-motorneurons such as to modulate the thresholdλ of the

stretch reflex (offset the desired muscle length, see chapter 3). Furthermore, either the activity of

these interneurons, or their synapses ontoα-motorneurons need to be selectively gated depending

on the relative direction of motion of the joints. Lastly, net joint torques need not be represented

explicitly if information about active muscle force or torque is appropriately relayed across other

joints in the chain. The required distribution of afferentscould be the result of the co-development

of the skeleton, the muscles and the spinal circuits innervating them.

The question then arises as to how realistic the assumptionsand predictions of the torque feedback

model are. Force feedback has been used previously as an integral part of other motor control

models. Feldman, for example, hypothesised that it helps linearising the effect of cocontraction

so that stiffness and position can be controlled independently, even when antagonist muscles are

arranged asymmetrically (Feldman, 1993). It was also used to model the myotactic reflex which

protects a muscle when loads exceed a safe threshold (Contreras-Vidal et al., 1997). Indeed, this

was traditionally thought to be the only role of the Ib afferents from force sensing Golgi tendon

organs (references in Cleland and Rymer, 1990). Several findings challenge this idea. Firstly,

it is now clear that Ib afferents are in fact very sensitive toeven small force levels (Jami, 1992).

Secondly, the ensemble activity of Golgi tendon organs accurately encodes force information in the

whole muscle (Mileusnic and Loeb, 2009). And thirdly, Ib afferent activity results in widespread

inhibition as well as excitation of motoneurons innervating muscles acting at the same joint as well

as distant ones (Jankowska et al., 1981; Nichols, 1989; Jankowska, 2001). It is also known that

Ib inhibitory interneurons receive input from Ia afferentsthat carry muscle length and velocity

feedback from muscle spindles. One theory suggests that Ia input confers dynamic sensitivity

to Ib interneurons, which would allow for precise force regulation throughout a wide range of

movements (McCrea, 1992). In conjunction, these findings suggest that force-dependent feedback

could play a role in coordinating the simultaneous motion ofseveral joints. Interestingly, McCrea

(1992) points out that a hypothesis has yet to emerge that explains the widespread distribution of

Ib excitation throughout the limb. The torque feedback model presented in this chapter suggests

that Ib excitation could be the mechanism by which the spinalcord compensates for interaction

torques during multijoint movements.

Further evidence for the use of positive force feedback in the control of movement comes from

studies of invertebrates and cats. It is known, for example,that certain reflexes activating ankle

extensors in the cat switch from being inhibitory during static posture (Harrison et al., 1983) to

excitatory during the stance phase of walking (Pearson and Collins, 1993; Pratt, 1995). Excita-

tory influences were shown to originate in Golgi tendon organs (Conway et al., 1987; Donelan

and Pearson, 2004) and the contribution of this positive force feedback was shown to range from

20% to as much as 50% of total muscle force (Donelan and Pearson, 2004). Regarding its role,

Prochazka et al. (1997) demonstrate in computational models that such positive force feedback

can, somewhat paradoxically, provide stable load compensation when functioning in concert with

inherent muscle viscoelasticity, negative displacement feedback and delays in the afferent path-

way. Positive feedback was also demonstrated as a means for decentralised limb coordination in

the stick insect (Cruse et al., 1995), in the control of leg movements of the locust (Burrows and

Pflueger, 1988), and claw movements in the crayfish (Lindsey and Gerstein, 1977). Experimental
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evidence also exists for load receptor contribution to the control of body equilibrium during stance

in humans (Dietz, 1998).

Last but not least, the feedback model presented in this chapter exhibits the experimentally ob-

served linear synergy between elbow and shoulder torques, and follows the speed insensitive strat-

egy identified in human subjects. Neither of these features were explicitly built into the system.

This suggests that they could be epiphenomena of a mechanismthat is primarily concerned with

intersegmental dynamics. They constitute another exampleof features that need not be centrally

planned, but could emerge from the dynamics of the underlying neuromechanical system.

Further work should address the generality of the proposed compensation mechanism. It would

be interesting to know whether torque feedback gains need tobe adjusted in a complex manner

for a wider range of different movement amplitudes and speeds, for example. Another question

is whether compensation could also be achieved with acceleration feedback instead of torque, as

implicated for example in the control of balance (Welch and Ting, 2009). As acceleration is related

to torque via inertia, feedback about the former, possibly in conjunction with postural feedback or

information about limb characteristics, could potentially achieve the same effect. Also, it would be

important to show that the proposed feedback mechanism works equally on the level of individual

muscles, and not just for a joint-level model as considered in this chapter.

The feedforward model proposed for producing smooth multijoint movements is less able to make

concrete predictions. First of all, since it operates solely on the level of central motor commands,

it could be implemented either in the brain or in spinal reflexcircuits. Further work would be

needed to evolve a neural network that can control multijoint movements under a wider range

of conditions. This could be analysed for specific correlations between neural activity and force

production, which could then be compared to those found in the brain or the spinal cord. One

prediction of the model, however, is its strong reliance on velocity error feedback. Several re-

searchers (e.g. Bullock and Grossberg, 1992; Feldman, 1986) have noted the importance of the

muscle spindle’s high gain response to stretch velocity (Edin and Vallbo, 1990) for the creation of

triphasic muscle bursts in models of the stretch reflex. It isnot clear, however, whether an equally

strong signal of velocityerror is also present in neural activity of the spine. Though thereis no

theoretical argument against it, experimental observation would need to confirm the existence of

such a signal.

In summary, two testable hypotheses have been proposed thatcan explain the compensation for

interaction torques during multijoint movements. It remains to be seen whether the models gener-

alise to the explicit control of individual muscles, and whether future neurophysiological research

will confirm or reject their assumptions.
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Conclusion

The aim of this thesis was to examine the relationship between the material properties and dynam-

ics of muscles and reflexes on the one hand, and the type of control signals required for coordinated

movement on the other. Specifically, the framework of the equilibrium-point hypothesis was used

to test whether simple monotonic shifts in desired positionare sufficient to produce single- and

multijoint movements of varying amplitude and speed that replicate biomechanical invariants ob-

served in human subjects. As described in chapter 2, the EP hypothesis suggests that this can be

achieved without the need for internal models by exploitingthe intrinsic dynamics of muscles and

neural circuits in the spine. Others have argued that motor control based on the viscoelastic proper-

ties of these subsystems is insufficient to account for fast movements and that it predicts complex

control signals. Much of the criticism regarding this theory, however, is based on misconcep-

tions about or oversimplification of the mammalian motor apparatus. It was therefore necessary

to study the implications of various non-linear componentsof the muscle model used, so that any

simplifications could be justified as not being relevant in the context of the experiments carried

out (see chapter 3). Given the chosen level of biological plausibility, the following chapters set

out to test the model’s ability to deal with feedback delays,to produce triphasic burst patterns, to

simultaneously control movement distance and duration, and to coordinate the motion of multiple

joints. Also, a lumped muscle-reflex model, which combines the two components into a single

equation of force production at the joint, was considered asan approximation of the detailed dy-

namical representation. Based on this simpler model, two mechanisms were proposed which aim

to explain the compensation for interaction torques that arise in one body segment as the result of

motion in another.

7.1 Summary of contributions

Properties of stable equilibria in joint space created by antagonistic muscles

The finding that non-linear material properties in skeletalmuscles lead to the emergence of a stable

equilibrium when one muscle acts against another is not new and forms the basis of most EP mod-

els of motor control. Chapter 3, however, illustrates in some detail how joint stability depends on
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assumptions about muscle paths and moment arms, the inclusion of series elasticity (tendon) and

the modelling of chemical dynamics (Ca2+). It also shows that a setup consisting of two monoar-

ticular muscles can qualitatively, and in some respects quantitatively, approximate the steady-state

and transient behaviour of a system that in addition features biarticular muscles. By showing that

at the chosen level of complexity the muscle simulation allows for stable control of joint position,

stiffness and velocity, it justifies its use in the followingchapters. Regarding the bigger picture, the

chapter argues that stable joint equilibria implement synergies at the lowest level of motor control.

They reduce the number of degrees of freedom that need to be controlled (from several muscle

forces to a single joint position), yet allow for flexibilityvia tuning of response characteristics

(stiffness and damping).

Material properties of muscles allow for flexible motor control and might

facilitate motor learning

The second part of chapter 3 explores the implications of material properties for open-loop muscle

control using pulse-step motor commands. Using a genetic algorithm to evolve control strategies,

it is found that the antagonistic setup allows for more flexibility in reaching the same position

than would be possible with a proportional derivative controller. An example is the use of a

passive, i.e. unpowered, swing to move from an initial position to a target. Also, muscle damping

characteristics are shown to smoothen the fitness landscapeof pulse-step controllers. If nervous

systems use such forms of control, then this property could facilitate the learning of appropriate

motor commands.

Muscle-reflex dynamics driven by simple control signals reproduce biomechanical invariants

Chapter 4 introduces theλ-model, an instantiation of the EP hypothesis, and variations thereof

that add velocity error as well as static coactivation components. It demonstrates that the former is

crucial for high velocity movements without oscillations,and the latter for dealing with feedback

delays. It is shown that this reflex model can reproduce natural kinematics of human subjects at

realistic stiffness levels, even when driving a musculoskeletal system that does not feature tendon,

calcium dynamics or biarticular muscles. The chapter also shows how a simple monotonic shift

in desired position interacts with the reflex model to produce experimentally observed triphasic

burst patterns, and allows for control of movement distanceand velocity. For the latter to be

feasible, however, the range of static musculoskeletal properties represented in the controller needs

to be extended. The results confirm that any EP-based motor control scheme requires functions

that relate the desired target not only to appropriate muscle lengths, but also to feedback gains

determining the system’s viscoelasticity.

A lumped model approximation of neuromuscular dynamics

For some purposes it might not be necessary or desired to simulate in detail the dynamics of

several muscles and their reflex control. In chapter 5 an alternative model is developed which

approximates such dynamics with a single equation of force production that exhibits equilibrium

dynamics at the joint level. It is shown that elastic and viscous forces need to be non-linear func-

tions of joint position and velocity in order to reproduce human kinematic data during single-joint
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movements. Crucially, this model demonstrates how assumptions about muscle and reflex dynam-

ics affect predictions about the kind of control signals needed for smooth targeted movements.

While the detailed muscle-reflex simulation produced the smoothest movements with a shift in

desired position as long as the desired movement, the lumpedmodel predicts a shift of only half

the duration.

Compensation for intersegmental dynamics during multijoint movements

The detailed muscle model, driven in feedforward or feedback mode, as well as the lumped

muscle-reflex model, both failed to account for the intersegmental dynamics that occur by ne-

cessity during multijoint movements. Chapters 3–5 demonstrate that it is not sufficient to drive

each joint in isolation when force production is limited to realistic levels. Two mechanisms were

therefore proposed in chapter 6, which couple the control ofindividual joints so that interaction

torques are compensated for correctly. One is based on the distribution of force feedback across

the joints in a limb, and the other on feedforward adjustments of control signals in relation to the

desired movement duration and amplitude. While both show potential in reproducing human per-

formance, the former is simpler and makes more explicit and testable predictions. It also suggests

that experimentally observed elbow-shoulder synergies aswell as the so-called speed-insensitive

movement strategy, might be epiphenomena of a system that isprimarily responsible for the com-

pensation of intersegmental dynamics. Both models are the first to indicate that the nervous system

might not need an internal representation of limb dynamics to achieve this.

7.2 Future work

The work started in this thesis opens many avenues to be explored. One direction to follow con-

cerns the chosen level of realism and model complexity. Although a relatively complete muscle

model was studied in chapter 3, several simplifications weremade in consecutive experiments.

For example, the series elastic element was omitted based onthe fact that the short tendons found

in the human arm should have a negligible effect on its dynamics. Also, calcium dynamics and

biarticular muscles were not included, while muscle paths were assumed to vary linearly with joint

angle and moments arms to be constant. The complete model waspruned this way because it al-

lowed for an easier relationship to be established between agiven target position and the required

muscle lengths. Arguably, the conclusions in this thesis are general enough not to depend on such

details. A logical next step would be to show that this is in fact true.

Another simplification was the omission of the effect of gravity. This is a common technique in

biomechanical studies, and usually implemented by executing movements in the horizontal plane

only. It is justified if one is primarily concerned with the dynamic forces involved in a given

movement, but not with the static forces required for counteracting the effect of gravity on a limb.

Though this was the case here, it would be interesting to examine how control signals need to be

adapted to account for external loads (the fact that EP models can account for internal loads has

been shown in this thesis).

The range of movements studied could also be extended. Here,we only considered movements

involving two hinge joints, each revolving towards a targetangle. Human arm movements, of
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course, involve more joints, many more muscles, and spatialtrajectories in three dimensions.

The models studied in this thesis could be incrementally extended to account for more complex

bodily configurations as well as task requirements. Others have already shown, for example,

that asymmetry in muscle attachment could be compensated for in the spine so that higher levels

only “see” symmetrical structures. Eventually, it would bedesirable to show that an EP model

extended with the mechanisms proposed in this thesis can produce natural multijoint movements

when controlling an anatomically correct arm model in threedimensions and under the effect of

gravity.

Another route for further investigation concerns the neurophysiological evidence for the mech-

anisms proposed in this thesis. Though it was shown that velocity error feedback is crucial for

fast movements, and that force feedback can be used to cancelinteraction torques, it is still un-

clear whether the required circuitry actually exists in thespinal cord. We know of interneurons

that encode the velocity of muscle contraction and tension,but their patterns of connectivity with

other inter- and motorneurons has not yet been fully established. Also, a technique is required

for separating reflex and centrally specified components of shifts in motorneuron thresholds (the

λ command). At different points in this thesis, reflex models predicted monotonic motor com-

mands of either the same duration as the intended movement orof half its duration. If the actual

motor command could be identified, this could help to disambiguate between the different model

assumptions.

Muscle-reflex models were evolved in this thesis based on a fitness function that minimises jerk

in joint angle trajectories. As reviewed in chapter 2, many other optimality criteria have been

proposed that account for the invariants observed in human movements. One advantage of the

evolutionary approach is that the fitness criterion can easily be changed. It would be interest-

ing to test whether different optimality assumptions lead to different types of reflex models or

evolved motor commands. For example, neural network controllers could be modified to include

signal-dependent noise, and evolved to minimise endpoint variance at the arm. According to the

minimum variance theory, resulting trajectories should besmooth as a consequence, since abrupt

changes in motor commands would lead to more variability (error) in the final position. The opti-

mality measure could have significant effects on predicted reflex gains and motor commands. In

this thesis, controllers were evolved to reduce overshoot and oscillations at all cost (as a result of

minimising jerk). But in human subjects these features can in fact be observed, especially during

fast movements. Another question is, therefore, whether the same results are obtained if such

constraints are relaxed.

This thesis has demonstrated that reflex gains need to be adjusted to match the viscoelasticity of the

system to the speed and amplitude requirements of the desired movement. Further work would be

needed to determine whether this adjustment can take place on lower levels of the motor hierarchy,

for example through simple heuristics implemented in spinal circuits, or whether a precise internal

model is required for relating reflex gains to the intended motion. Another problem is how either

of these would be acquired. Models exist for learning forward and inverse internal models of the

body. But an open question is whether spinal circuits co-develop with the body in such a way as to

reflect the dynamical interactions of its segments. An appropriate organisation of feedback in the

spinal cord can in theory compensate for interaction torques, gravity, or the asymmetry of muscle
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attachment (see e.g. Feldman, 1993; Bullock and Grossberg,1991). All this could be tested with

a more detailed neural model of spinal reflexes.

The thesis has also demonstrated that the dynamical systemsapproach is a valid methodology

for studying questions of motor control. As shown throughout the previous chapters, in the EP-

hypothesiscontrol of motor behaviours is best understood as the appropriate selection of param-

eters of a coupled neuro-musculoskeletal system, while theexecutionof a motor behaviour is

simply the relaxation of its dynamics towards a stable equilibrium. While the selection of control

parameters (such as reflex gains) is relatively simple – it does not require an internal model of bod-

ily dynamics – it necessitates kinematic representations of body geometry. The difference between

force-control and EP-control (as implemented here), is thus not whether or not internal models are

used, but rather concerns the nature of the models. The force-control hypothesis requires detailed

computational processes that calculate the inverse transformation from desired movement to indi-

vidual motor neuron firing rates, in other words, detailed and accurate predictive simulations of

the body and the external world. The EP hypothesis, in contrast, suggests that the body (specifi-

cally the neuro-musculoskeletal periphery) is “its own best model” (Brooks, 1991), and responds

to centrally triggered shifts in parameters with the autonomous execution of movements. Further-

more, as argued above, the kind of kinematic representations required by the EP-hypothesis could

in theory be embodied in distributed peripheral networks co-developing with the body. Arguably,

referring to such an organisation of feedback structures as“internal models” would stretch the

meaning of the word.

It is also worth pointing out that kinematic maps were required in this thesis because the experi-

ments, somewhat artificially, defined a movement task as moving from one specific set of angles

to another. Natural movement tasks are usually driven by other goals, and are often defined in

visual space, as when reaching for an object in the environment. In such situations, the EP hy-

pothesis proposes a hierarchical control scheme (Feldman,2010). As described in section 4.1.3,

for multiple muscles it is suggested that shifts in individual threshold lengths are controlled by a

signal comprising two components: a reciprocal part R, the referent configuration, which shifts

the thresholds of antagonistic muscles in the same direction in joint space to control equilibrium

position; and a co-contraction part C that shifts the thresholds in opposite directions in order to

modulate the stiffness of the joint. The referent configuration R, by specifying a basis set of mus-

cle lengths beyond which muscles become activated, essentially establishes the origin of a frame

of reference for muscle activations. For the control of movement at the joint level, the central

nervous system does not need to concern itself with activating individual muscles, but only with

shifting the referent configuration R. In the hierarchical scheme, it is further suggested that the ref-

erent joint configuration does not need to be specified explicitly. Firstly, because ontogenetically

formed neural structures are thought to distribute shifts in threshold lengths such that asymmetries

in muscle configurations are automatically accounted for. In other words, R can be shifted linearly

from one joint angle to another, while the underlying neuralstructures shift muscle thresholds in

relation to the geometry of the musculoskeletal system. Secondly, the joint referent R itself is

controlled within a higher-level frame of reference. For example, when reaching for an object,

the central nervous system establishes as a task goal a shiftof the hand referent position in visual

space. Lower level referents, such as the joint referent, are in turn defined with respect to the
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frame of reference of the hand. In other words, to reach for a particular point in space, a shift in

referent hand position results in a shift of referent joint angles such that the hand moves in the

direction of the target. On this level too, the relationshipbetween the different frames of reference

(how joint referents move in response to shifts in the hand referent) is implemented by ontogenet-

ically formed neural structures. Now, in this thesis the lower level of the hierarchy was studied

in isolation. Experiments evaluated only whether artificially established referent configurations in

joint space (i.e. poses) could be achieved smoothly by different types of controllers. Arbitrary

poses were selected as “tasks” and the referent configuration R determined using a look-up table

of muscle lengths and joint angles. Neither were the neural structures considered that shift muscle

threshold lengths in response to a shift in joint referent, nor the higher-level frames of reference

responsible for establishing task-specific shifts in the joint referent in the first place. One of the

most valuable extensions of the work presented here could therefore investigate if the requirement

for internal kinematic maps can be relaxed in a framework that is based on tasks defined in external

space, and which includes the (neural) implementation of hierarchical frames of reference.

7.3 Conclusion

To conclude, this thesis has demonstrated that the intrinsic material properties of muscles and

the dynamics of low-level reflexes simplify the “computational” problems involved in the control

of limb movements. It has confirmed that equilibrium-point models can account for single- and

multijoint movements of various speeds and amplitudes and thereby refuted claims to the contrary.

Furthermore, it has shown that this can be achieved with simple control signals, and without requir-

ing inverse dynamics calculations. The thesis also demonstrated that the approach of co-evolving

bodily parameters and neural control structures using biomechanically inspired optimality criteria

is a promising avenue that should be further explored. It remains to be seen whether neurophysi-

ological research will verify or falsify the predictions made in this thesis concerning the types of

feedback control employed in human multijoint arm movements.
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