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Abstract

Functions in finite dimensional spaces are, in general, not smooth enough to be differen-

tiable in the classical sense and “recovered” versions of their first and second derivatives

must be sought for certain applications. In this work we make use of recovered derivatives

for applications in finite element schemes for two different purposes. We thus split this

Thesis into two distinct parts.

In the first part we derive energy-norm aposteriori error bounds, using gradient recovery

(ZZ) estimators to control the spatial error for fully discrete schemes of the linear heat

equation. To our knowledge this is the first completely rigorous derivation of ZZ estimators

for fully discrete schemes for evolution problems, without any restrictive assumption on

the timestep size. An essential tool for the analysis is the elliptic reconstruction technique

introduced as an aposteriori analog to the elliptic (Ritz) projection.

Our theoretical results are backed up with extensive numerical experimentation aimed

at (1) testing the practical sharpness and asymptotic behaviour of the error estimator

against the error, and (2) deriving an adaptive method based on our estimators.

An extra novelty is an implementation of a coarsening error “preindicator”, with a

complete implementation guide in ALBERTA (versions 1.0–2.0).

In the second part of this Thesis we propose a numerical method to approximate

the solution of second order elliptic problems in nonvariational form. The method is of

Galërkin type using conforming finite elements and applied directly to the nonvariational

(or nondivergence) form of a second order linear elliptic problem. The key tools are an

appropriate concept of the “finite element Hessian” based on a Hessian recovery and a

Schur complement approach to solving the resulting linear algebra problem. The method

is illustrated with computational experiments on linear PDEs in nonvariational form.

We then use the nonvariational finite element method to build a numerical method for
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fully nonlinear elliptic equations. We linearise the problem via Newton’s method resulting

in a sequence of nonvariational elliptic problems which are then approximated with the

nonvariational finite element method. This method is applicable to general fully nonlinear

PDEs who admit a unique solution without constraint.

We also study fully nonlinear PDEs when they are only uniformly elliptic on a certain

class of functions. We construct a numerical method for the Monge–Ampère equation

based on using “finite element convexity” as a constraint for the aforementioned nonvari-

ational finite element method. This method is backed up with numerical experimentation.
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Chapter 1

Introduction

The study of partial differential equations (PDEs) began in the 18th century with the work

of Euler, Lagrange, Laplace and d’Alembert who modelled various physical phenomena.

The analysis of these models has remained a major part of mathematical study up to

the present day. There are a variety of methods by which a PDE can be solved by hand.

However, it is not currently possible to solve every PDE using such methods. This is

especially true when we look at the solutions of nonlinear PDEs. In fact there is no

general procedure available to solve nonlinear PDEs.

A powerful methodology used to approximate the solution of PDEs in general comes

from numerical analysis techniques, such as finite difference, finite volume or finite element

schemes. Currently it is probably the fastest developing area of numerical analysis, made

possible by the rapid increase in the speed of personal computers.

Finite difference approximations have a long history, for example Bernoulli, Newton

and Euler all made use of them, but numerical methods in general were virtually unknown

before 1950. In a finite difference method we generate a structured (uniform) grid over

the domain in which we are interested. The partial derivatives are then approximated

by finite difference operators. Finite volume methods are constructed using a similar

grid (although it no longer has to be structured). In this case we consider integrals of

divergence terms from the PDE and, making use of the divergence theorem, consider

them as surface integrals over small “volumes” of the nodes.

This Thesis details work we have undertaken relating to finite element methods. As

with the finite difference and finite volume schemes, we require the domain to be divided
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2

into a finite number of regions or elements which then constitute a mesh, although unlike

finite difference schemes the mesh is not necessarily regular. We may take these elements

to be triangles or quadrilaterals in the plane or tetrahedrons or hexahedrons in space.

The solution is approximated with functions over each of the elements and the local

contributions are assembled over the entire problem domain. The result is a linear system

which can be solved using existing linear algebra techniques.

The mathematical basis of the finite element method comes from the work of Rayleigh

and Ritz who introduced the variational calculus procedures fundamental to the method

in 1877–1909.

Finite element methods (FEM) arguably constitute one of the most successful method

families in numerically approximating second order elliptic PDEs that are given in vari-

ational (also known as divergence) form. The reasons behind the finite element methods

success in such a framework are twofold: (1) the weak form is suitable to apply functional

analytic frameworks (Lax–Milgram Theorem e.g.), and (2) the discrete functions need to

be differentiated only once at most.

We are particularly interested in the concept of recovery methods and how we may

apply them in the finite element framework. We use the term recovery methods to describe

the representation of derivatives of a piecewise polynomial function in a higher regularity

space than they naturally exist. The extra regularity is aimed at either obtaining a higher

approximation order, for example the gradient recovery class of aposteriori estimators, or

representing an object that would not otherwise exist as a function, like Hessian recovery.

Broadly this Thesis can be read in two parts. In §2 and §3, we are concerned with recov-

ery operators and their use as aposteriori estimators for elliptic and parabolic problems

respectively. In §4 and §5, we detail a finite element method for nonvariational second

order elliptic problems from the case of the linear problem to the fully nonlinear problem.

In §2 we give an introduction to the concept of recovery operators as aposteriori es-

timators for linear elliptic problems. We begin by introducing the core notation used

throughout the Thesis. We introduce the finite element method for the model elliptic

problem and review some basic convergence properties. We then briefly look at aposteri-

ori estimation for elliptic problems from the gradient recovery point of view.

In §3 we move onto studying recovery operators on parabolic problems. The aim of
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this chapter is to bridge the gap between the practical use of ZZ estimators in adaptivity

for evolution equations [ZW98, Pic03] and the rather mature error control theory via

recovery for stationary equations. We focus on the linear heat equation as a model prob-

lem. Leykekheman & Wahlbin [LW06] are to our knowledge the only researchers to have

explored this issue in depth. While obtaining satisfactory error bounds for spatially dis-

crete schemes, they must assume unrealistically small timesteps for the fully discrete case.

In this chapter we thoroughly analyse the fully discrete backward Euler schemes. More

specifically, we provide reliable error bounds. The efficiency and asymptotic exactness of

the bounds is dealt with computationally.

Our main analytical tool to tackle the fully discrete scheme’s difficulties is the elliptic

reconstruction [LM06], which provides a way to take advantage of elliptic aposteriori error

estimates based on gradient recovery following Ainsworth & Oden’s exposition [AO00].

The elliptic reconstruction technique, introduced under this name by Makridakis &

Nochetto [MN03], involves the splitting the error into two parts; a parabolic error and

an elliptic error, through the use of the elliptic reconstruction of the discrete solution,

defined in (3.25). This allows us to utilise existing elliptic aposteriori estimators for the

elliptic part and standard parabolic energy estimates to control the second part. Despite

this technique being initially introduced to derive sharp bounds for lower order spatial

error norms, such as L2(Ω) [MN03, LM06, LMP10] and L∞(Ω) [DLM09], we apply it

here as an analysis tool in an energy-norm framework, where a direct approach leads to

a highly complicated analysis for the fully discrete scheme.

In fact, the single most interesting feature of the elliptic reconstruction is that the

parabolic error’s energy norm term is of a higher order (with respect to the spatial mesh-

size parameter) than the elliptic error [LM06]. In this chapter we show, rigorously, that

the full energy error can be accounted for only by the elliptic error, as long as data and

timestep are resolved sufficiently well (cf. Lemma 3.4.1.1). This crucial observation was

also used by Georgoulis & Lakkis to obtain residual aposteriori estimates for nonconform-

ing methods [GL09]. Note that it is part of the adaptive methods practitioner’s folklore

to employ heuristic versions of this argument. By way of example, we quote Ziukas &

Wiberg: “the [full parabolic] discretisation in energy norm can be bounded by the [ellip-

tic error] estimator” [ZW98].
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Although we treat the case of the heat equation for simplicity in this chapter, our

results can be extended to cover more general elliptic operators, even time-dependent

ones, by using appropriate elliptic gradient recovery techniques [FV06] and a more careful

time-step analysis [GL09, cf.].

In §4 we move onto studying how we may use recovery methods to approximate the

Hessian of a finite element function. We make use of this notion by departing from the

basis set out in §2 and considering second order elliptic boundary value problems (BVPs)

in nonvariational form

find u such that A:D2u = f in Ω and u|∂Ω = g, (1.1)

for which one may not always be successful in applying the standard FEM (with reference

to §4.1 for the notation). Indeed, the use of the standard FEM requires (1) the coefficient

matrix A : Ω → Rd×d to be (weakly) differentiable and (2) the rewriting of the second

order term in divergence form, an operation which introduces an advection (first order)

term:

A:D2u = div A∇u−(div A)∇u. (1.2)

Even when coefficient matrix A is differentiable on Ω, this procedure could result in

the problem becoming advection–dominated and unstable for conforming FEM, as we

demonstrate numerically using Problem (4.146).

Our main motivation for studying linear elliptic BVPs in nonvariational form is their

important role in pure and applied mathematics. Important examples of nonvariational

problems include the fully nonlinear BVP that is approximated via a Newton method,

which becomes an infinite sequence of linear nonvariational elliptic problems [Boh08], or

the Kolmogorov equations arising in the area of stochastics [SST08].

In this chapter, we propose and test a direct discretisation of the strong form (1.1) that

makes no special assumption on the derivative of A. The key concept is an appropriate

definition of a finite element Hessian given in §4.1.3. The finite element Hessian has been

used earlier in different contexts, such as anisotropic mesh generation [AV02, CSX07,

VMD+07] and finite element convexity [AM09]. The finite element Hessian is related also

to the finite element (discrete) elliptic operator appearing in the analysis of evolution

problems, see §3.3 and [Tho06] for details.
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The method we propose is quite straightforward, and we are surprised that it is not

easily available in the literature. It consists of discretising, via a Galërkin procedure, the

BVP (1.1) directly without writing it in divergence form.

The main difficulty of our approach is having to deal with a somewhat involved linear

algebra problem that needs to be solved as efficiently as possible (this is especially im-

portant when we apply this method in the linearisation of nonlinear elliptic BVPs). We

overcame this difficulty in §4.2, by combining the notion of the distributional Hessian of

a piecewise smooth function v,〈
D2v |φ

〉
= −

∫
Ω
∇v ⊗∇φ+

∫
∂Ω
∇v ⊗ nφ ∀ φ ∈ C∞(Ω), (1.3)

with equation (1.1) resulting in a system of equations that are larger, but easier to handle

numerically, once discretised.

It is worth noting that there are alternatives to our approach, most notably the stan-

dard finite difference method and its variants. The reason we are interested in a Galërkin

procedure is the ability to use an unstructured mesh, essential for complicated geome-

tries where the finite difference method leads to complicated, and sometimes prohibitive

modifications (especially in dimension 3 and higher), and the potential of dealing with

adaptive methods using available finite element code. Furthermore, our method has the

potential to approach the iterative solution of fully nonlinear problems where finite dif-

ference methods can become clumsy and demanding [KT92, LR05, Obe08, CS08].

We make use of relatively standard techniques to derive an apriori bound in the H−1(Ω)

norm. We numerically demonstrate convergence in this norm by making use of Lemma

3.9 from [LP10d] on the computation of H−1(Ω) norms. This observation (also given in

Lemma 4.7.0.15) allows us to compute the H−1(Ω) norm of a function with as much

accuracy as a (standard) finite element method allows for its energy norm.

We also study the scheme from an aposteriori framework. In this case we again find

that ’standard’ techniques yield a bound in the H−1(Ω) norm provoking the observation

that this is the natural norm for the problem. To make computations simpler in this case

we are able to apply a duality argument to derive L2(Ω) aposteriori bounds.

To finish this chapter we give a brief interlude on the numerical approximation of

quasilinear PDEs in nonvariational form. We do this to make the method in §5 more

accessible.
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In §5 we make further use of the finite element Hessian by using it in a method to

approximate fully nonlinear elliptic PDEs.

Fully nonlinear PDEs arise in many areas, including differential geometry (Monge–

Ampère equation), mass transportation (Monge–Kantorovich problem), dynamic pro-

gramming (Bellman equation) and fluid dynamics (geostrophic equations).

It is difficult to pose numerical methods for fully nonlinear equations for three main

reasons. The first more obvious one is the strong nonlinearity on the highest order deriva-

tive. The second is the fact that a fully nonlinear equation does not always admit a

classical solution even if the problem data is sufficiently smooth. The third is that the

problem may not admit a unique solution, but multiple, then even if we can construct a

numerical approximation it is difficult to know which solution we are approximating.

Regardless of the problems, numerical simulation of fully nonlinear second order elliptic

equations have been the brunt of much recent study, particularly for the case of Monge–

Ampère of which [DG06, FN08b, LR05, Obe08, OP88] are selected examples.

For general fully nonlinear equations some methods have been presented. In [Boh08]

the author presents a C1 finite element method and goes to great lengths to show stability

and consistency of the scheme. The basis of this argument comes from Stetter [Ste73]. The

practical relavence of this approach is questionable, however, since the C1 finite elements

are complicated and computationally expensive, the minimal order of the polynomial basis

that falls under the framework is 5, using the Argyris element for example. In addition

the C1 finite elements are only available in 2D.

In [FN07, FN08b, FN08a] the authors give a method in which they approximate the

general second order fully nonlinear PDE by a sequence of fourth order quasilinear PDEs.

These are nonlinear biharmonic equations which allow the authors to numerically discre-

tise via mixed finite elements for example. In fact for the Monge–Ampère equation, which

admits two solutions, one convex and one concave, this methods allows for the approxi-

mation of both solutions via the correct choice of a parameter. Although computationally

less expensive than C1 finite elements, the mixed formulation still results in an extremely

large algebraic system and perhaps the method can be further numerically improved.

There is also the possibility of developing a new concept of “weak solution” for the fully

nonlinear PDE, which the authors have named the “vanishing moment method”. A major
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advantage to this method over the current viscosity solution technique is the constructive

nature of the procedure.

The method we propose in §5 consists of applying a Newton linearisation to the fully

nonlinear PDE. This results in a sequence of linear nonvariational PDEs. At this point

the problem falls under the framework of the finite element method proposed in §4.

We numerically study various problems that are specifically constructed to be uniformly

elliptic.

The major problem with our technique is the nonuniqueness of the problem. The

method itself breaks down unless some constraints are passed down from the continuous

level. It was observed numerically that at the discrete level the convexity constraint is

violated and the sequence of linear operators lose ellipticity.

We solve this problem by formulating each Newton step as a semidefinite program-

ming problem [VB96]. This is an optimisation problem which includes the areas of linear

programming and convex quadratic programming with convex constraints.

We study the Monge–Ampère equation and give various numerical examples showing

the method with added constraint is robust.

We finish in §6 with a summary of work and possible future directions the aforemen-

tioned projects may take.



Chapter 2

Recovery operators in linear

elliptic problems

In this chapter we will present a brief summary of the conforming finite element method

applied to a model elliptic PDE. We will provide a notion of aposteriori estimation in

this simple case using gradient recovery estimators.

We will show analytically under certain assumptions that these estimators are asymp-

totically exact and give examples of when these estimators should not be used or should

be supplemented by additional data [FV06].

The material presented in this chapter is well known and is meant as an introduction

to the chapters studied hereafter.

2.1 Elliptic model problem

Let Ω ⊂ Rd be a bounded d-dimensional domain with boundary ∂Ω. Consider the linear

second order partial differential equation (PDE) supplemented with Dirichlet boundary

conditions

L u := −div A∇u = f in Ω

u = 0 on ∂Ω,
(2.1)

where f : Ω → R and A : Ω → Rd×d. We assume that the matrix A(x) is bounded and

uniformly positive definite, that is for each ξ ∈ Rd 6 {0} and x ∈ Ω there exists a λ > 0

8
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such that

ξᵀA(x)ξ ≥ λ |ξ|2 . (2.2)

This is a strict ellipticity condition. We introduce the vector space C∞(Ω) of infinitely

differentiable functions. In this space differentiability is understood in the classical sense.

Also the vector subspace C∞0 (Ω) of C∞(Ω) of functions with compact support on Ω.

The standard methodology of finite elements then requires us to construct a weak

formulation of (2.1). With this in mind we introduce the Sobolev space notation [Cia78,

Eva98] with q ∈ [1,∞)

Lq(Ω) :=
{
φ :

∫
Ω
|φ|q <∞

}
, (2.3)

L∞(Ω) :=
{
φ : sup

x∈Ω
|φ(x)| <∞

}
, (2.4)

Wk
q (Ω) = {φ ∈ Lq(Ω) : Dαu ∈ Lq(Ω) for |α| ≤ k} , (2.5)

Wk
∞(Ω) = {φ ∈ L∞(Ω) : Dαu ∈ L∞(Ω) for |α| ≤ k} , (2.6)

Hk(Ω) := Wk
2(Ω), (2.7)

where α = {α1, ..., αd} is a multi-index, |α| =
∑d

i=1 αi, derivatives Dα are understood in

a weak sense and by integrability is meant Lesbegue. We pay particular attention to the

space L2(Ω) which is equipped with the inner product

〈v, w〉 :=
∫

Ω
vw. (2.8)

This induces the norm

‖v‖2 := ‖v‖2
L2(Ω) = 〈v, v〉 . (2.9)

The Hilbert spaces Hk(Ω) are equipped with norms and semi-norms

‖v‖2
k := ‖v‖2

Hk(Ω) =
∑
|α|≤k

‖Dαv‖2 (2.10)

and |v|2k := |v|2Hk(Ω) =
∑
|α|=k

‖Dαv‖2 (2.11)

respectively. Note that for each k ∈ N, Hk(Ω) is the Banach completion of C∞(Ω) with

respect to its norm ‖·‖k. With that in mind we denote the spaces Hk
0(Ω) to be the Banach

completion of C∞0 (Ω) with respect to the norm ‖·‖k, that is

Hk
0(Ω) := C∞0

∣∣
‖·‖k

. (2.12)
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Further, we wish to make use of the corresponding dual spaces of Hk
0(Ω). To that end

we define D(Ω), the space of distributions to be the dual space of C∞0 (Ω). We associate

with these spaces a duality pairing between d ∈ D(Ω) and φ ∈ C∞0 (Ω) which we denote

〈d |φ〉. In fact, if d is locally integrable then we can represent d by

〈d |φ〉 =
∫

Ω
dφ (2.13)

and we see that 〈· | ·〉 is nothing but an extension of the standard L2(Ω) inner product.

Now we may define

H−k(Ω) := dual Hk
0(Ω) (2.14)

and equip it with the norm

‖v‖−k := ‖v‖H−k(Ω) = sup
0 6=φ∈Hk

0(Ω)

〈v |φ〉
|φ|k

. (2.15)

2.2 Weak formulation and discretisation

Henceforth we will use the convention that the vector of partial derivatives, Du, of a

function u : Ω → R is a row vector, while the gradient of u, ∇u is the derivative’s

transpose, i.e., ∇u = (Du)ᵀ. We will make use of the slight abuse of notation as is

standard practice in the literature and denote the Hessian of a function D2u := ∇Du to

be a d× d matrix.

To make the transition to the weak formulation we test (2.1) with a smooth function

φ ∈ H1
0(Ω) over the domain of interest. Applying Green’s Theorem (A.1.0.7) and noting

that both u, φ ∈ H1
0(Ω), gives the problem: Find u ∈ H1

0(Ω) such that∫
Ω

DφA∇u =
∫

Ω
fφ ∀ φ ∈ H1

0(Ω). (2.16)

The term weak formulation heuristically refers to the fact we have “weakened” the differ-

entiability requirements on u to solve the problem. For simplicity of notation we introduce

the following shorthand:

a(u, φ) =
∫

Ω
DφA∇u, (2.17)

l(φ) =
∫

Ω
fφ. (2.18)
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With this new notation, (2.16) becomes: Find u ∈ H1
0(Ω) such that

a(u, φ) = l(φ) ∀ φ ∈ H1
0(Ω). (2.19)

In fact we may induce a norm from the bilinear form ‖v‖2
a := a(v, v) called the energy

norm which for our problem is equivalent to the norm ‖v‖1, that is there exist constants

α, β such that

β1/2 ‖v‖1 ≤ ‖v‖a ≤ α1/2 ‖v‖1 . (2.20)

Note for clarity of presentation we are restricting ourselves to homogeneous Dirichlet

boundary conditions however this can be extended to non-trivial boundary values. Indeed,

if we are provided with additional problem data u(x) = g(x) on ∂Ω we “shift” the space

in which we seek the solution to H1
g(Ω) := H1

0(Ω) + g.

In order to construct a finite element approximation of the problem (2.19) we employ

a conforming h-version Galërkin procedure whereby we replace H1
0(Ω) by a finite dimen-

sional subspace V ⊂ H1
0(Ω) consisting of continuous piecewise polynomials of degree p on

a partition of Ω.

To that end we let T be a conforming, not necessarily quasi-uniform, triangulation of

Ω, that is,

1. K ∈ T means K is an open simplex (segment for d = 1, triangle for d = 2 or

tetrahedron for d = 3),

2. for any K,J ∈ T we have that K ∩ J is a full subsimplex (i.e., it is either ∅, a

vertex, an edge, a face, or the whole of K and J) of both K and J and

3.
⋃

K∈T K = Ω.

The shape regularity of T is defined as the number

µ(T ) := inf
K∈T

ρK

hK
, (2.21)

where ρK is the radius of the largest ball contained inside K and hK is the longest side

of K.

2.2.0.1 Example (shape regularity of elements). The shape regularity of a triangle is

merely the ratio ρK
hK

. On the left we have an isotropic triangle with a relatively high shape
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regularity. In the following figure on the right is an anisotropic triangle with a relatively

low shape regularity.

hK

ρK

hK

ρK

An indexed family of triangulations {Tk}k is called shape regular if

µ := inf
k
µ(Tk) > 0. (2.22)

We will use henceforth the usual convention where h : Ω → R denotes the meshsize

function of T , i.e.,

h(x) := hT (x) := max
K3x

hK . (2.23)

With a triangulation T as described above, and an integer p ≥ 1 fixed, we may now

consider the finite element space

V :=
{
Φ ∈ H1

0(Ω) : Φ|K ∈ Pp ∀K ∈ T
}

; (2.24)

where Pk denotes the linear space of polynomials in d variables of total degree no higher

than a positive integer k. The finite element approximation to (2.1) is the function

U ∈ V such that

a(U,Φ) = 〈f,Φ〉 ∀ Φ ∈ V. (2.25)

2.3 Apriori analysis

This small section is a brief compilation of standard results for the standard conforming

h-version finite element method of degree p (2.25).

2.3.0.2 Lemma (Galërkin orthogonality). Let u ∈ H1
0(Ω) be the weak solution of (2.19)

and U ∈ V be the finite element solution of (2.25). Then

a(u− U,Φ) = 0 ∀ Φ ∈ V. (2.26)
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Proof of 2.3.0.2. Note that (2.19) holds for each Φ ∈ V ⊂ H1
0(Ω). Taking the difference

of (2.19) and (2.25) yields the desired result.

2.3.0.3 Lemma (quasioptimality of the FE approximation). Let u and U be defined as

in Lemma 2.3.0.2 then

‖u− U‖a ≤ min
V ∈V

‖u− V ‖a . (2.27)

Proof of 2.3.0.3. Due to the Galërkin orthogonality result of Lemma 2.3.0.2

‖u− U‖2
a ≤ a(u− U, u− U)

≤ a(u− U, u)

≤ a(u− U, u− V )

≤ ‖u− U‖a ‖u− V ‖a ∀ V ∈ V.

(2.28)

dividing through by ‖u− U‖a and noting that V is arbitrary yields the desired result.

2.3.0.4 Definition (Lagrange interpolant). A given function with sufficient regular-

ity, v ∈ Hp+1(Ω) for example may be approximated by the Lagrange interpolant ΛV :

Hp+1(Ω) → V. This is achieved by representing v as a continuous piecewise polynomial

function, ΛVv, which coincides with v at the Lagrange nodes xi. Moreover the interpolant

satisfies the following error bounds∥∥v − ΛVv
∥∥ ≤ Chp+1 |v|p+1∣∣v − ΛVv
∣∣
1
≤ Chp |v|p+1 .

(2.29)

2.3.0.5 Lemma (energy norm apriori error bound). Let u ∈ H1
0(Ω) be the weak solution

of (2.19) and U ∈ V be the finite element solution of (2.25). Then

‖u− U‖a ≤ Chp |u|p+1 . (2.30)

Proof Choosing V = ΛVu in Lemma 2.3.0.3 and using the properties of the Lagrange

interpolant from Definition 2.3.0.4 yields the desired result.

2.3.0.6 Remark (H1(Ω) apriori error bound). Due to the equivalence of the energy norm

and the H1(Ω) norm it follows that

‖u− U‖1 ≤ Chp |u|p+1 . (2.31)
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2.3.0.7 Lemma (L2(Ω) apriori error bound). Let u and U be defined as in Lemma 2.3.0.5

then the following error bound holds

‖u− U‖ ≤ Chp+1 |u|p+1 . (2.32)

Proof The proof is an Aubin–Nitsche duality argument. We introduce the dual problem

of (2.1): Given a generic g ∈ L2(Ω) find w ∈ H1
0(Ω) such that

a(φ,w) = 〈g, φ〉 ∀ φ ∈ H1
0(Ω). (2.33)

Since L2(Ω) = dual L2(Ω), i.e., L2(Ω) is its own dual we can represent the norm in the

following form

‖v‖ = sup
φ∈L2(Ω)

〈v, φ〉
‖φ‖

. (2.34)

Indeed by virtue of Cauchy–Bunyakovsǩi–Schwarz inequality

sup
φ∈L2(Ω)

〈v, φ〉
‖φ‖

≤ sup
φ∈L2(Ω)

‖v‖ ‖φ‖
‖φ‖

≤ ‖v‖ , (2.35)

also

sup
φ∈L2(Ω)

〈v, φ〉
‖φ‖

≥ 〈v, v〉
‖v‖

≥ ‖v‖ . (2.36)

Let W ∈ V be the finite element solution to the dual problem (2.33). Testing the error

with a generic function g and using the definition of the dual solution and the Galërkin

orthogonality property from Lemma 2.3.0.2 we have

〈u− U, g〉 = a(w, u− U)

= a(w −W,u− U)

≤ α ‖w −W‖1 ‖u− U‖1

≤ Ch |w|2 h
p ‖u‖p+1

≤ Chp+1 ‖u‖p+1 ‖g‖ ,

(2.37)

where we have used the regularity result

|w|2 ≤ C ‖g‖ (2.38)

from Theorem A.1.0.11. Dividing through by ‖g‖ and noting g was generic yields the

desired result.
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2.4 Recovery operators as aposteriori estimators

2.4.1 A general introduction to aposteriori estimation

The content of §2.3 allows us to infer rates of convergence on the error committed by

the finite element solution. However the upper bound itself is uncomputable (in general)

due to the dependence on the exact solution. The aim of aposteriori analysis is to derive

bounds for the error which are explicitly computable from the problem data, which for

our model problem consists of A, f and Ω, that is we wish to find an estimator functional

E such that

‖u− U‖X ≤ E [U,A, f,X ,V] , (2.39)

where X is the space in which we wish to estimate the error. From the literature on

elliptic aposteriori estimation [AO00, BR78, Cia78, Ver96, BX03a, ZZ87] there is a variety

of ways to compute upper (and lower) bounds for the error in the norm ‖·‖X of some

function space X (e.g., H1
0(Ω), L2(Ω) and L∞(Ω)).

This estimate of the error can then be decomposed into local contributions and used

to drive adaptive algorithms. This is achieved by either refining the mesh in a local

neighbourhood of where the estimate is high, h–adaptivity, locally increasing the degree

of polynomial used in the approximation, p–adaptivity, or some combination of both,

hp–adaptivity.

2.4.2 Recovery operators

One way of deriving an estimator functional consists of applying a gradient postprocessing

operator (postprocessor), say G, to the approximate solution U and then proving that

‖G[U ]−∇U‖ is equivalent to the error ‖∇u−∇U‖. Gradient recovery operators form a

subclass of gradient postprocessors.

Gradient recovery aposteriori error estimators have been widely used since their dis-

semination in the engineering and scientific computation community by Zienkiewicz &

Zhu [ZZ87], for which we will often refer to them shortly as ZZ estimators. Since their

introduction they have constituted the most serious rival to residual estimators intro-

duced earlier on [BR78]. The key to the ZZ estimators success is their implementation’s

simplicity, mild dependence upon the problem’s data, and striking superconvergence and
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asymptotic exactness properties. On the other hand, residual estimators are a bit more

involved in implementation and cost more to compute, but they are easier to handle from

the mathematical analysis view-point in deriving rigorous upper and lower bounds.

Recovery operators can be built in a variety of ways such as local weighted averag-

ing (where the gradient is sampled from neighbouring elements) [Pic03], discrete L2(Ω)-

projection (using least squares fitting) [ZZ87] or global L2(Ω)-projection (where a full

discrete problem is solved) [BX03a]. The fundamental idea behind these approaches is

to build an approximation G[U ] of ∇u which is more regular than the piecewise discon-

tinuous gradient ∇U ; the extra regularity is aimed at obtaining a higher approximation

order.

2.4.2.1 Definition (stars and patches). Given a triangulation T of Ω we may wish to

study localised neighbourhoods of elements, to that end we introduce the notion of stars

and patches. Given an element K, the patch of K which we denote K̂ is defined as the

set of all elements sharing a common subsimplex with K. In symbols

K̂ =

{ ⋃
L∈T

L : L ∩K 6= ∅

}
(2.40)

A star is associated to a given degree of freedom xi of V and is (at least in the conforming

case) the set of all elements sharing that degree of freedom. In symbols

x̃i =

{ ⋃
K∈T

K : xi ∈ K

}
(2.41)

2.4.2.2 Definition (gradient recovery operator [AO00]). A gradient recovery operator

on V is a linear operator G : V→ Vd which enjoys the following properties:

Consistency we have, with ΛV : C0(Ω) → V denoting the Lagrange interpolant (see

Definition 2.3.0.4),

G[ΛVv]
∣∣
K

= ∇v|K ∀ v ∈ Pp+1, K ∈ T . (2.42)

Local bound there exists a CG > 0 such that

‖G[V ]‖L∞(K) ≤ CG ‖∇V ‖L∞(K̂) ∀ V ∈ V, K ∈ T , (2.43)

where K̂ is the patch generated by K (2.40).
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For simplicity, we assume that the operator is only locally dependent on ∇U , noting

nonetheless, that global methods, such as the global L2(Ω)-projection proposed by Bank

& Xu [BX03a, BX03b], do exist and can be covered by the theory.

Under certain regularity assumptions recovery estimators are shown to be asymptot-

ically exact. For instance, Zlámal [Zlá77] shows that if w ∈ Hp+1(Ω), with reference to

(2.1) and (2.25), its finite element approximation W ∈ V satisfies the following supercon-

vergence property : ∥∥∇(W − ΛVw)
∥∥ = O(hp+ζ) for some ζ ∈ (0, 1] . (2.44)

A review of superconvergence results is given in [KN87]. If (2.44) is satisfied then the

recovered gradient also satisfies the following superconvergence property [AO00]:

‖∇w −G[W ])‖ = O(hp+ζ) for some ζ ∈ (0, 1] . (2.45)

The reach of Zlámal’s result is appreciated by stating the following consequence.

2.4.2.3 Lemma (gradient recovery aposteriori estimate [AO00]). Let V be the finite

element space defined in (2.24) and G : V→ Vd a gradient recovery operator according to

Definition 2.4.2.2. If u, U are the solutions of (2.19) and (2.25), respectively, and (2.45)

holds then the recovery operator is asymptotically exact, in the sense that

lim
hT →0

‖∇U −G[U ]‖
‖∇(U − u)‖

= 1. (2.46)

Thus, there exist δ0 ≥ 0, such that δ0(h) → 0 as h→ 0 and

(1− δ0) ‖∇u−G[U ]‖ ≤ ‖∇(U − u)‖ ≤ (1 + δ0) ‖∇u−G[U ]‖ (2.47)

for all partitions T of Ω satisfying hT < h0.

Proof Utilising the lower triangle inequality and (2.45) we see∣∣∣ ‖∇U −G[U ]‖ − ‖∇(U − u)‖
∣∣∣ ≤ ‖∇u−G[U ]‖

=O(hp+ζ).
(2.48)

Note that from Remark 2.3.0.6 ‖∇(U − u)‖ = O(hp) so

‖∇U −G[U ]‖
‖∇(U − u)‖

− 1 =
‖∇U −G[U ]‖ − ‖∇(U − u)‖

‖∇(U − u)‖

=
O(hp+ζ)
O(hp)

= O(hζ),

(2.49)
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giving the desired result.

2.4.2.4 Remark (recovery in absence of regularity). Lacking Zlámal’s regularity assump-

tion, recovery-based estimators are empirically observed to be efficient, reliable estimators,

even on meshes with low shape-regularity [Car04a].

For more details about recovery-based estimators we refer to the available litera-

ture [BX03a, BX03b, XZ04, LZ99, AO00].

2.4.2.5 Example (a simple recovery estimator for d = 1 [AO00, §4.1]). For clarity we

give a simple example extracted from the Ainsworth Oden book [AO00]. Let V be a

continuous piecewise linear function as follows

0.0
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0.5

0.75

1.0
U

It follows that the gradient of the function, ∇U , is a discontinuous piecewise constant

function
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1.0 ∇U

The recovered gradient is built by taking the values of the gradient at the barycenter of

the elements.
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At each element node we then sample the average of the gradients of the two elements

common to this node.

−1.0

−0.75

−0.5

−0.25

0.0

0.25

0.5

0.75

1.0 ∇U

We now have enough information to construct a continuous piecewise linear approxima-

tion G[U ] of ∇U .
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G[U ]
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2.4.2.6 Definition (gradient recovery aposteriori estimator functional). Lemma 2.4.2.3

then justifies the use of the recovery estimator in the H1
0(Ω)-norm (and by equivalence

the energy norm) by defining, for the next two chapters, the gradient recovery aposteriori

estimator functional

E [V ] := E
[
V,H1

0(Ω),V
]

:= ‖G[V ]−∇V ‖ , for V ∈ V, (2.50)

where G is a gradient recovery operator given in Definition 2.4.2.2.

As a recovery estimator—in contrast with residual estimators—generally depends only

on operator data (see §3.94 for example), we drop the term f from the estimator functional

arguments.

2.4.3 Limitations of recovery estimators

We must be cautious using these estimators since there are certain cases where the re-

covery estimator E [U ] = ‖G[U ]−∇U‖ is not reliable.

2.4.3.1 Example (L2(Ω) orthogonal f [FV06]). Consider the case when f is L2(Ω)-

orthogonal to V. In this case then the finite element solution U = 0 hence ∇U = 0 and

G[U ] = 0. The estimate

‖∇u−∇U‖ ≤ C ‖∇U −G[U ]‖ (2.51)

then yields

‖∇u‖ ≤ 0 (2.52)

which in general cannot be true.

This unreliability is due to the fact that

〈∇u−∇U,∇φ〉 = 〈∇u−G[U ],∇φ〉+ 〈G[U ]−∇U,∇φ〉 . (2.53)

By considering the recovery estimator alone we ignore the term ‖∇u−G[U ]‖. This term

should be superconvergent in many cases however in this example above would be non-

zero.

In the paper [FV06], Fierro and Veeser give analytical upper and lower bounds on the

term ‖∇u−G[U ]‖. In most cases this is of a higher order.



2.4 Recovery operators as aposteriori estimators 21

2.4.3.2 Example (under resolution of data). This problem usually arises in the context

of adaptivity (see §3.7).

Suppose a function u solves the PDE (2.1) and is non zero only on a very small area

of the domain. If we were to calculate the finite element solution of the PDE on an under

resolved (coarse) finite element space we may find our finite element solution U = 0 which

would again give ∇U = 0 and hence G[U ] = 0. The recovery estimator E [U ] = 0 and

hence an automated adaptive algorithm would terminate immediately.

2.4.3.3 Example (oversmoothing of ∇U). Suppose u, which is again the solution of

(2.1), has a discontinuous gradient. In this case the recovery procedure would smear the

discontinuity “polluting” a localised neighbourhood and in this case we may find that

G[U ] is a worse approximation of ∇u than ∇U .



Chapter 3

Recovery operators as aposteriori

estimators for linear parabolic

problems

3.1 Introduction

In contrast to the large amount of work on recovery operators used in stationary elliptic

problems, as described in §2.4, very little progress has been made on evolution problems

with the one notable exception by Leykekhman and Wahlbin [LW06] who must make

impractical assumptions on the timestep for the fully discrete schemes.

In this chapter we will rigorously analyse the finite element approximation of the heat

equation from an aposteriori viewpoint employing gradient recovery ZZ estimators. We

will study both semidiscrete and fully discrete schemes and show that the recovery esti-

mators introduced from §2 can be justifiably used.

We will numerically show the estimators arising from the fully discrete analysis are

asymptotically exact, as opposed to the residual based estimators which greatly overes-

timate the error. We will also propose an adaptive algorithm based on the arising esti-

mators from Theorem 3.5.2.4 and numerically demonstrate the efficiency of the explicit

and implicit timestepping schemes. We also give a thorough implementation guide of a

coarsening estimator in ALBERTA which arises from the analysis.

This chapter is organised as follows. In §3.2 we introduce the model problem, and

22
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its discretisations via conforming finite elements in space and backward Euler in time.

In §3.3 we review a well known apriori error analysis showing convergence rates for the

spatial energy norms in the semidiscrete scheme. In §3.4 we prepare the aposteriori anal-

ysis by introducing the elliptic reconstruction technique and illustrating its use for the

spatially semidiscrete problem. This paves the way to tackle the fully discrete problem

in §3.5, where our main results are given in Theorem 3.5.2.4. In §3.6, using numerical

tests, we study the practical behaviour of the estimators and in §3.7 we explore the

adaptive schemes based on our estimators. As we have used the finite element toolbox

ALBERTA [SS05] for the tests, we have taken the opportunity to implement a coarsen-

ing preindicator, arising from the fully discrete analysis, previously unavailable and fully

described in §3.8. This estimator predicts the “information loss” error that will occur

under coarsening of the mesh at each timestep of the adaptive method and is crucial in

an adaptive code to control information loss during coarsening.

3.2 Set up

3.2.1 The model problem

Let Ω ⊂ Rd be a bounded polyhedral domain and consider the Laplace operator with

homogenous Dirichlet boundary conditions denoted by

A : H1
0(Ω) → H−1(Ω)

u 7→ A u := −∆u := −div∇u = −
∑d

i=1 ∂
2
i u.

(3.1)

With reference to §2.1 for notation. In addition we make use of the standard notation for

spaces of functions whose smoothness differs in the x and t variables [Eva98].

We let T > 0, the model parabolic problem consists in finding a function u ∈ L2(0, T ; H1
0(Ω))

and ∂tu ∈ L2(0, T ; H−1(Ω)) such that

∂tu(t) + A u(t) = f(·, t), for all t ∈ (0, T ] ,

u(x, 0) = u0(x), for x ∈ Ω,

u(x, t) = 0, for (x, t) ∈ ∂Ω× (0, T ] .

(3.2)

We consider the case where u0 ∈ L2(Ω) and f ∈ L2(0, T ; L2(Ω)) for which the problem

(3.2) admits a unique solution [Eva98].
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Problem (3.2) is understood in the following weak form

〈∂tu(t), φ〉+ a(u(t), φ) = 〈f(t), φ〉 ∀ φ ∈ H1
0(Ω), t ∈ (0, T ]

u(·, 0) = u0(·),
(3.3)

where a(φ, ψ) := 〈∇φ,∇ψ〉. The form a(·, ·) is clearly bounded

a(φ, ψ) ≤ β ‖φ‖1 ‖ψ‖1 ∀ φ, ψ ∈ H1
0(Ω) (3.4)

and coercive

a(φ, φ) ≥ α ‖φ‖2
1 ∀ φ ∈ H1

0(Ω), (3.5)

where α = (1+C2
P)−1 and CP is the Poincaré constant. From §2 the bilinear form defines

an inner product on H1
0(Ω) and hence we can denote the energy norm ‖·‖2

a := a(·, ·).

These observations justify our use of ‖·‖a (instead of ‖·‖H1(Ω)) as the norm of H1
0(Ω) to

be with the implied dual norm on H−1(Ω).

3.2.2 Spatial discretisation

As in §2 let T be a conforming, not necessarily quasiuniform, triangulation of Ω, fix an

integer p ≥ 1, and consider the finite element space

V :=
{
Φ ∈ H1

0(Ω) : Φ|K ∈ Pp ∀K ∈ T
}

; (3.6)

The spatially discrete finite element solution in V, is the function U : [0, T ] → V such that

〈∂tU,Φ〉+ a(U,Φ) = 〈f,Φ〉 ∀ Φ ∈ V,

U(x, 0) = U0 := ΠVu0(x) ∀ x ∈ Ω,
(3.7)

where ΠV : L2(Ω) → V is a suitable projector (or an interpolator if the data u0 is in a

higher regularity subspace of L2(Ω), e.g., T -wise continuous).

3.2.2.1 Definition (discrete Laplacian). The discrete Laplacian, A : V → V is defined,

through the Riesz representation in V, by

〈AV,Φ〉 = a(V,Φ) ∀ Φ ∈ V, (3.8)
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3.2.2.2 Definition (L2(Ω)-projection operator). Let v ∈ L2(Ω) then the L2(Ω)-projection

operator, PV : L2(Ω) → V, is defined through the following〈
PVv,Φ

〉
= 〈v,Φ〉 ∀ Φ ∈ V, (3.9)

that is PVv − v ⊥ V.

We will often write the scheme (3.7) in its pointwise form

∂tU +AU = PVf and U(0) = U0. (3.10)

The pointwise form is convenient as it allows for a more compact notation.

3.2.3 Fully discrete scheme

We subdivide the time interval [0, T ] into a partition of N consecutive adjacent subinter-

vals whose endpoints are denoted t0 = 0 < t1 < . . . < tN = T . The n-th timestep is defined

as τn := tn− tn−1. In this chapter we will consistently use the shorthand Fn(·) := F (·, tn)

for a generic time function F . A similar notation is used for time dependant function

spaces.

The backward Euler method consists in finding a sequence of functions, Un ∈ Vn, such

that for each n = 1, . . . , N we have:

1
τn

〈
Un − ΛnUn−1,Φ

〉
+ a(Un,Φ) = 〈fn,Φ〉 ∀ Φ ∈ Vn,

U0 = Π0u0,

(3.11)

where ΛV : C0(Ω) → V denotes the Lagrange interpolation operator (see Definition

2.3.0.4), Λn := ΛV
n
, and Π0 is defined as ΠV. Note our nonrestrictive use of the La-

grange interpolator as a “data-transfer” operator from a finite element space to the next.

We do this to reflect exactly what we do in practical computations (where interpolation

is faster than averaging). All our analysis applies, however to a different data-transfer

operator, including the L2(Ω) projector, if necessary.

As with the semidiscrete scheme the fully discrete scheme can be written in a pointwise

form as follows:

Un − ΛnUn−1

τn
+AnUn = Pnfn and U0 = Π0u0, (3.12)

where An = AV
n

and Pn = PV
n

(cf. (3.8)).
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3.3 Apriori analysis

Before submerging ourselves in the aposteriori error analysis we give an apriori analog to

the method we employ in the aposteriori case.

We begin this section by introducing the Ritz projection, a crucial operator in the

apriori analysis of the model problem.

3.3.0.1 Definition (Ritz (elliptic) projection). Given v ∈ H1
0(Ω), the Ritz projection

Rhv : H1
0(Ω) → V is nothing but the finite element solution of the corresponding elliptic

problem, that is,

a
(
Rhv,Φ

)
= a(v,Φ) ∀ Φ ∈ V. (3.13)

3.3.0.2 Remark (error bound for the Ritz projection). Given v ∈ Hs(Ω) ∩ H1
0(Ω) for

some s ∈ 1, . . . , p + 1, (recall p is the degree of V) from §2.3 it is clear that the Ritz

projection satisfies the following apriori error bound∥∥∥Rhv − v
∥∥∥

a
≤ Chs−1 |v|s . (3.14)

3.3.0.3 Theorem (apriori error bound for the semidiscrete scheme). Let u and U be

the solutions of (3.3) and (3.7) respectively then the following error bound holds, given

that u ∈ Hs(Ω) ∩H1
0(Ω) for some s ∈ 1, . . . , p+ 1

‖(U − u)(t)‖2 +
∫ t

0
‖(U − u)(s)‖2

a ds ≤ Ch2s−2 ‖u‖2
L2(0,t;Hs(Ω)) . (3.15)

Proof We begin by splitting the error into two parts via the Ritz projection, the parabolic

(ρ) and elliptic (ε), that is

e(t) = (u− U)(t) = ρ(t)− ε(t) = (Rhu− U)(t)− (Rhu− u)(t). (3.16)

Using the pointwise form of the schemes

∂tρ+Aρ = ∂t[Rhu−U ]+A[Rhu−U ] = ∂tR
hu+ARhu−PVf = ∂t[Rhu−u] = ∂tε. (3.17)

This readily implies that

∂te+Ae = Aε. (3.18)
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Testing (3.18) with e gives
1
2

dt ‖e‖2 + ‖e‖2
a = a(ε, e) . (3.19)

Applying Young’s inequality and integrating from 0 to t we see

‖e‖2 +
∫ t

0
‖e‖2

a ≤
∫ t

0
‖ε‖2

a

≤
∫ t

0

∥∥∥Rhu− u
∥∥∥2

a

≤ Ch2s−2 ‖u‖2
L2(0,t;Hs(Ω)) ,

(3.20)

as claimed.

3.3.0.4 Remark (optimality of Theorem 3.3.0.3 in L2(0, t; L2(Ω))). Note that for long

integration times this method of apriori analysis leads to suboptimal estimates in the

pointwise in time L2(Ω) error. In this work we are not concerned with estimation in

this norm we are interested in H1
0(Ω) estimates. This method provides us with with an

“optimal” constant, in the sense it only depends on the “elliptic error”. The reasoning

for which will become apparent in the next section.

3.4 Semidiscrete aposteriori estimate

To make the link between the parabolic problem and the elliptic recovered gradient esti-

mates from §2.4 we utilise the elliptic reconstruction technique [MN03, LM06]. To make

the discussion more accessible, we first do this for the spatially semidiscrete scheme. We

divide the error into two parts—one called the elliptic error the other parabolic error—

via the elliptic reconstruction of the discrete solution. This is an aposteriori analog of the

apriori analysis already presented in §2.3.

3.4.0.5 Assumption (elliptic aposteriori error estimates). We will consider henceforth

the blanket assumption that for a fixed h0, there are some c0 < C0, such that for any V

with mesh-size h < h0, for w and W solutions of the corresponding elliptic problem, find

w ∈ H1
0(Ω) such that

a(w, φ) = 〈g, φ〉 ∀ φ ∈ H1
0(Ω) (3.21)

and its finite element approximation, find W ∈ V such that

a(W,Φ) = 〈g,Φ〉 ∀ Φ ∈ V (3.22)
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and E defined in Definition 2.4.2.6 the following bounds are true

c0E [W ] ≤ ‖∇[W − w]‖ ≤ C0E [W ] . (3.23)

Optionally, we will assume asymptotic exactness, in which case

C0 ≤ 1 +B(h0) and c0 ≥ 1 + β(h0), (3.24)

for some continuous functions B and β that vanish at 0.

3.4.0.6 Remark (efficiency of the elliptic estimator). The lower bound in (3.23) is not

needed for the theory to be developed herein, as we will prove only upper bounds.

Nonetheless, this property is required for the efficiency of the parabolic estimators in

practical situations.

Because the elliptic error can be directly bounded under the blanket Assumption

3.4.0.5, it is enough to show that the full error can be bounded in terms of the elliptic

error only. This result is in accordance with the fact that the parabolic error on uniform

meshes is of higher h-order in the energy norm with respect to the elliptic (and thus the

full) error, as observed by Lakkis & Makridakis [LM06].

3.4.0.7 Definition (elliptic reconstruction). The elliptic reconstruction operator is de-

fined as R : V→ H1
0(Ω) such that

A [RV ] = AV, (3.25)

where A is the discrete elliptic operator defined in (3.8). In weak form, equation (3.25)

reads

a(RV,Φ) = 〈AV,Φ〉 ∀ Φ ∈ H1
0(Ω), (3.26)

and it is well defined in virtue of the elliptic problem’s well posedness. We will refer to the

function RV as the elliptic reconstruction of V , while the elliptic reconstruction operator

R will be called the reconstruction operator (or just the reconstructor) from V.

If U(t) denotes the solution of (3.10) at time t, we shall indicate by ω(t) its reconstruc-

tion RU(t).

Thus, setting g(t) := AU(t), we then see U(t) is the finite element solution correspond-

ing to the elliptic problem of finding ω(t) ∈ H1
0(Ω) such that A ω(t) = g(t).
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3.4.1 The error and its splitting

For the whole of this section we shall consider u to be the solution of (3.2), understood in

the weak sense, and U its semidiscrete approximation given by (3.10). The corresponding

semidiscrete error is defined by

e(t) := U(t)− u(t), (3.27)

and can be split, using the elliptic reconstruction ω = RU from Definition 3.4.0.7, as

follows:

e(t) = (ω(t)− u(t))− (ω(t)− U(t)) =: ρ(t)− ε(t). (3.28)

We shall refer to ε and ρ here defined as the elliptic (reconstruction) error and the

parabolic error respectively.

Using this notation we have the estimate

‖∇[U − u] (t)‖ ≤ ‖∇ρ(t)‖+ ‖∇ε(t)‖ , (3.29)

where, following the remarks made in Definition 3.4.0.7 and Assumption 3.4.0.5, the

elliptic error can be bounded by the computable elliptic aposteriori estimator functional

E :

‖ε(t)‖a = ‖∇ε(t)‖ ≤ C0E [U(t)] . (3.30)

It is therefore sufficient to bound the error’s energy norm using the elliptic error’s energy

norm.

3.4.1.1 Lemma (elliptic energy bound for parabolic semidiscrete error). If e, ε are de-

fined as in §3.4.1 then, for each t ∈ [0, T ], we have

‖e(t)‖2 +
∫ t

0
‖e(s)‖2

a ds ≤ ‖e(0)‖2 +
∫ t

0
‖ε(s)‖2

a + 2
〈
PVf(s)− f(s), e(s)

〉
ds. (3.31)

Proof From the the exact problem (3.2), the semidiscrete scheme (3.10), and the splitting

(3.28) we have

∂te+ A ρ = ∂t[U − u] + A [ω − u] = ∂tU +AU − ∂tu−A u = PVf − f. (3.32)
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Testing with e we obtain

〈∂te, e〉+ a(ρ, e) =
〈
PVf − f, e

〉
(3.33)

and thus
1
2

dt‖e‖2 + ‖e‖2
a =

〈
PVf − f, e

〉
− a(ε, e) , (3.34)

where we use dt = d
dt . Integration from 0 to t yields

‖e(t)‖2 + 2
∫ t

0
‖e‖2

a = ‖e(0)‖2 + 2
∫ t

0

〈
PVf − f, e

〉
− 2

∫ t

0
a(ε, e) ∀ t ∈ [0, T ] . (3.35)

Hence, by Young’s inequality on a(ε, e), we have

‖e(t)‖2 + 2
∫ t

0
‖e‖2

a ≤ ‖e(0)‖2 + 2
∫ t

0

〈
PVf − f, e

〉
+
∫ t

0
‖e‖2

a +
∫ t

0
‖ε‖2

a , (3.36)

whereby the claim is verified.

3.4.1.2 Proposition (L2 simplification rule). If a,b ∈ RN , N ∈ N, c ∈ R and f, g ∈

L2(D), for some measurable domain D, are such that

|a|2 + ‖f‖2 ≤ c2 + aᵀb +
∫

D
fg, (3.37)

then (
|a|2 + ‖f‖2

)1/2
≤ |c|+

(
|b|2 + ‖g‖2

)1/2
, (3.38)

where all the vector norms are Euclidean, and the function norms L2(D).

Proof

Denote by α := (|a| , ‖f‖) and β := (|b| , ‖g‖).

If |α| ≤ |β| then (3.38) is trivially satisfied. Otherwise we have |α| > |β| whereby

(3.37) and the Cauchy–Bunyakovsǩi–Schwarz inequality imply that

|α|2 ≤ c2 + |a| |b|+ ‖f‖ ‖g‖+ |β|(|α| − |β|)

≤ c2 + 2 |α| |β| − |β|2 .
(3.39)

Hence (|α| − |β|)2 ≤ c2, and thereby

|α| ≤ |c|+ |β| , (3.40)

as claimed.
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3.4.1.3 Theorem (aposteriori semidiscrete error estimate). With u and U as defined by

(3.2) and (3.7), respectively, and an estimator functional E as defined in (2.50), we have(
‖U(t)− u(t)‖2 +

∫ t

0
‖U − u‖2

a

)1/2

≤ ‖U(0)− u(0)‖+ C0 ‖E [U ]‖L2[0,T ] + 2
∥∥PVf − f

∥∥
L2(0,T ;H−1(Ω))

. (3.41)

Proof Using Lemma 3.4.1.1 we have

‖e(t)‖2 +
∫ t

0
‖e‖2

a ≤ ‖e(0)‖2 +
∫ t

0
‖ε‖2

a + 2
∫ t

0

〈
PVf − f, e

〉
. (3.42)

Using Proposition 3.4.1.2, we obtain(
‖e(t)‖2 +

∫ t

0
‖e‖2

a

)1/2

≤
(
‖e(0)‖2 +

∫ t

0
‖ε‖2

a

)1/2

+ 2
(∫ t

0

∥∥PVf − f
∥∥2

H−1(Ω)

)1/2

. (3.43)

Assumption (3.23) and the discussion in §3.4.1 ensure then that(
‖e(t)‖2 +

∫ t

0
‖e‖2

a

)1/2

≤
(
‖e(0)‖2 + C2

0

∫ t

0
E [U ]2

)1/2

+ 2
(∫ t

0

∥∥PVf − f
∥∥2

H−1(Ω)

)1/2

,

(3.44)

which implies the claim.

3.4.1.4 Remark (short versus long integration times). The bound for the pointwise in

time L2(Ω) error, ‖e(t)‖, appearing on the left-hand side of (3.41), is tight only for very

short times. For example, it is well-known that on a uniform mesh of size h → 0 on a

convex domain Ω the energy term
(∫ t

0 ‖e‖
2
a

)
1/2

is O(hp), while ‖e(t)‖ is O(hp+1).

3.4.1.5 Remark (dealing with the H−1(Ω) norm). If we are lacking apriori information,

the last term in (3.41) may be replaced using the Poincaré inequality

2
∥∥PVf − f

∥∥
L2(0,T ;H−1(Ω))

≤ 2CP(Ω)
∥∥PVf − f

∥∥
L2(Ω×(0,T ))

. (3.45)

It is also possible to obtain bounds by using the Cauchy–Bunyakovsǩi–Schwarz in-

equality for L2(Ω) on the term
〈
PVf − f, e

〉
—rather than the (H−1,H1

0) duality—and

“absorb” the resulting sup[0,t] ‖e‖ into the first term on the right hand side of (3.41).

However, whenever possible, we shy away from this procedure as it incurs artificially

higher constants and an L1 [0, T ] accumulation on the right-hand side while the energy

term on the left-hand side accumulates like L2 [0, T ]. This time-accumulation disparity
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between the error and the estimator is likely to result in an error–estimator ratio bound

that has the order of
√
T , that is, although having the right order of convergence, the

estimator will overestimate the error over long integration times.

3.4.1.6 Remark (sharper versions of Theorem 3.4.1.3). The error estimate (3.41) can

be tightened further to(
1
2
‖e(t)‖2 +

∫ t

0
‖e‖2

a

)1/2

≤ 1√
2
‖e(0)‖+

(∫ t

0

∥∥PVf − f
∥∥

H−1(Ω)
+ C2

0E [U ]2
)1/2

. (3.46)

But this estimate becomes noticeably better only when one of the terms ‖e(0)‖ or∥∥PVf − f
∥∥

H−1(Ω)
dominates the E [U ] term, which should not be allowed to happen.

So there is no need to lengthen the discussion by insisting on such tight bounds, as long

as it is possible to obtain the elliptic aposteriori estimate constant C0 in the leading term

on the right-hand side.

3.5 Fully discrete aposteriori estimate

The main result of this section is the aposteriori error bound, stated in Theorem 3.5.2.4,

on the error between the approximate solution U of the fully discrete problem (3.12) and

that of the exact problem (3.2).

The analysis in this section follows narrowly the one we performed in §3.4, albeit with

the complications that the fully discrete scheme brings. We will first extend the discrete

solution sequence to a continuous-time function. Then we derive an error identity on

which we mimic the energy techniques of §3.4 to bound the error’s energy norm in terms

of some residual terms and the elliptic error’s energy norm, which is finally controlled via

gradient recovery estimators.

3.5.1 Time extension of the discrete solution

Recalling the fully discrete scheme (3.12), the fully discrete solution is the sequence of

finite element functions Un ∈ Vn defined at each discrete time tn, n = 0, . . . , N . Define

the piecewise linear (affine) extension

U(t) :=
N∑

n=0

Unln(t), (3.47)
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where we use the one-dimensional piecewise linear continuous Lagrange basis functions,

defined for t ≥ 0, as

ln(t) :=


(t− tn−1)/τn, for t ∈ (tn−1, tn] (and n > 0),

(tn+1 − t)/τn+1, for t ∈ (tn, tn+1]

0, otherwise.

(3.48)

We warn the reader that we use the same symbol, U , to indicate the fully discrete solu-

tion’s extension to [0, T ], as the one we used for its semidiscrete counterpart in §3.4.

3.5.2 Elliptic reconstruction and error splitting

Next we define the elliptic reconstruction, needed for the following analysis, similarly to

that of the semidiscrete scheme (cf. (3.25)). For each n ∈ [0 : N ], with the discrete elliptic

operator An as in §3.2.3, we define the corresponding elliptic reconstruction operator

Rn : Vn → H1
0(Ω), for each V ∈ Vn, by solving for RnV the elliptic problem

A RnV = AnV, (3.49)

which can be read in the weak form as

a(RnV,Φ) = 〈AnV,Φ〉 ∀ Φ ∈ H1
0(Ω). (3.50)

We denote

ωn := RnUn, for each n = 0, . . . , N, (3.51)

and this sequence’s piecewise linear extension by ω : [0, T ] → H1
0(Ω), i.e.,

ω(t) :=
N∑

n=0

ωnln(t). (3.52)

As in the semidiscrete analysis we introduce symbols for the full error e := U − u, the

elliptic error ε := ω − U and the parabolic error ρ := ω − u, whereby

e = ρ− ε, (3.53)

and, based on the Assumption 3.4.0.5,

‖ε(t)‖a ≤ C0E
[
Unln(t) + Un−1ln−1(t)

]
≤ C0

(
E [Un] ln(t) + E

[
Un−1

]
ln−1(t)

)
for t ∈ [tn−1, tn] .

(3.54)
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The last step is guaranteed by the linearity of the operators G and ∇, hence the homo-

geneity E [λV ] = |λ| ‖GV −∇V ‖, and by the triangle inequality.

3.5.2.1 Lemma (parabolic error identity). For each n = 1, . . . , N and each t ∈ (tn−1, tn)

we have

∂te(t) + A ρ(t) = (ΛnUn−1 − Un−1)/τn + A [ω(t)− ωn] + Pnfn − f(t). (3.55)

Proof By the definition of U , (3.47), for each n = 1, . . . , N and t ∈ (tn−1, tn) we have

∂tU(t) = Unl′n(t) + Un−1l′n−1(t) = (Un − Un−1)/τn (3.56)

and using the fully discrete scheme (3.12), we have

∂tU(t) + A ωn = (ΛnUn−1 − Un−1)/τn + (Un − ΛnUn−1)/τn +AnUn

= (ΛnUn−1 − Un−1)/τn + Pnfn.
(3.57)

Hence

∂tU(t) + A ω(t) = (ΛnUn−1 − Un−1)/τn + A [ω(t)− ωn] + Pnfn (3.58)

and, using the exact PDE (3.2), we get

∂te(t) + A ρ(t) = ∂tU(t) + A ω(t)− ∂tu(t)−A u(t)

= (ΛnUn−1 − Un−1)/τn + A [ω(t)− ωn] + Pnfn − f(t),
(3.59)

as stated.

3.5.2.2 Definition (aposteriori error indicators). The notation we introduce here will

be valid for the rest of this section.

elliptic error indicator via recovery

εn := E
[
Un,H1

0(Ω),Vn
]

= C0 ‖∇Un −Gn[Un]‖ , (3.60)

with the functional E as defined in §2.4.2.6, and1

ε̃2n :=
1
3
(
ε2n + ε2n−1 + εnεn−1

)
≤ 1

2
(
ε2n + ε2n−1

)
. (3.61)

1In the numerical experiments we use (ε2
n + ε2

n−1)/2 instead of ε̃n.
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time-discretisation error indicators

θn :=
1√
3


∥∥Pnfn − Λn∂Un −

(
Pn−1fn−1 − Λn−1∂Un−1

)∥∥
H−1(Ω)

for n ≥ 2,∥∥P 1f1 − Λ1∂U1 −A0U0
∥∥

H−1(Ω)
for n = 1,

(3.62)

where ∂Un := (Un − Un−1)/τn, (cf. Lemma 4.7.0.15), also possible to use in its

alternative (faster to compute but not as sharp) version

θ̃n := Cµ

∥∥Un−1 − Un
∥∥

a
, (3.63)

where Cµ is dependent on the shape regularity µ of the family of triangulations

defined in (2.22).

mesh-change (coarsening) error indicators a main mesh-change indicator

γn := τ−1
n

∥∥ΛnUn−1 − Un−1
∥∥

H−1(Ω)
, (3.64)

and a higher order mesh-change indicator

γ̃n := Cµ
′


∥∥ĥn

(
Pnfn − Λn∂Un − Pn−1fn−1 + Λn−1∂Un−1

)∥∥ , n ≥ 2,∥∥ĥ1

(
P 1f1 − Λ1∂U1 −A0U0

)∥∥ , n = 1,
(3.65)

where ĥn(x) = max {hn−1(x), hn(x)} for x ∈ Ω and a constant C ′µ.

data approximation error indicator

βn := τ−1
n

∫ tn

tn−1

‖Pnfn − f(t)‖H−1(Ω) dt. (3.66)

3.5.2.3 Remark (computing H−1(Ω) norms). Clearly the H−1(Ω) norms appearing in

Definition 3.5.2.2 cannot be computed in practise. The corresponding indicators can be

replaced by upper bounds using the (dual) Poincaré inequality

‖φ‖H−1(Ω) ≤ CP ‖φ‖ . (3.67)

Other alternatives will be described in Lemma 4.7.0.15 and are possible but will not be

discussed further here.
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3.5.2.4 Theorem (aposteriori estimate for fully discrete scheme). Let the sequence

(Un)n∈[0:N ], U
n ∈ Vn, be the solution of the fully discrete problem (3.11) and U its

piecewise linear time-extension as in (3.47). Let u be the exact solution of the exact

problem (3.2) then(∥∥UN − u(T )
∥∥2

2
+
∫ T

0
‖U(t)− u(t)‖2

a dt

)1/2

≤‖U(0)− u(0)‖√
2

+ ηN (3.68)

where the (global) error estimator is given by the following discrete L2(0, T ) summation

of the error indicators defined in §3.5.2.2:

η2
N =

N∑
n=1

(ε̃n + γn + βn + θn)2 τn. (3.69)

Proof The proof shadows that of Lemma 3.4.1.1 and Theorem 3.4.1.3, but we must

take into account the complications arising from the time discretisation. For the reader’s

convenience we divide it into steps.

Step 1. Using the notation from Lemma 3.5.2.1 and identity (3.55) therein we have that

∂te(t) + A e(t) = A ε(t) + (ΛnUn−1 − Un−1)/τn

+A [ω(t)− ωn] + Pnfn − f(t).
(3.70)

Testing this with e we obtain

1
2

dt ‖e(t)‖2 + ‖e(t)‖2
a = a(ε(t), e(t)) +

〈
(ΛnUn−1 − Un−1)/τn, e(t)

〉
+ 〈A [ω(t)− ωn] , e(t)〉+ 〈Pnfn − f(t), e(t)〉 ,

(3.71)

for all t ∈ (tn−1, tn) and each n = 1, . . . , N . Integrating over [0, T ] gives

∥∥eN∥∥2
/2 +

∫ T

0
‖e(t)‖2

a dt =
∥∥e0∥∥2

/2 +
∫ T

0
a(ε(t), e(t)) dt

+
N∑

n=1

∫ tn

tn−1

(〈
(ΛnUn−1 − Un−1)/τn, e(t)

〉
+ a(ω(t)− ωn, e(t)) + 〈Pnfn − f(t), e(t)〉

)
dt

=: B1 + B2 + B3 + B4 +
∥∥e0∥∥2

/2.

(3.72)

We proceed by bounding each of the terms Bj , j = 1, . . . , 4, appearing in the right-hand

side of (3.72).
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Step 2. The first term to be bounded in (3.72) yields the spatial discretisation error

indicator as follows:

B1 =
∫ T

0
a(ε(t), e(t)) dt =

N∑
n=1

∫ tn

tn−1

a(ε(t), e(t)) dt

≤
N∑

n=1

(∫ tn

tn−1

‖ε‖2
a

)
1/2
(∫ tn

tn−1

‖e‖2
a

)
1/2

≤
N∑

n=1

ε̃nτ
1/2
n

(∫ tn

tn−1

‖e‖2
a

)
1/2

(3.73)

where we have used (3.61) and in view of (3.54) and (3.61), we may write∫ tn

tn−1

‖ε‖2
a ≤ ε2n−1

∫ tn

tn−1

l2n−1 + 2εn−1εn

∫ tn

tn−1

ln−1ln + ε2n

∫ tn

tn−1

l2n = ε̃2nτn. (3.74)

The second term in (3.72) contains mesh-change term which we bound as follows:

B2 =
N∑

n=1

∫ tn

tn−1

〈
(ΛnUn−1 − Un−1)/τn, e(t)

〉
dt

≤
N∑

n=1

∥∥ΛnUn−1 − Un−1
∥∥

H−1(Ω)
τ−1
n

∫ tn

tn−1

‖e(t)‖a dt

≤
N∑

n=1

γnτ
1/2
n

(∫ tn

tn−1

‖e‖2
a

)
1/2

(3.75)

where γn is defined by (3.64).

Similarly the data error term is bounded as follows

B4 =
∫ T

0
〈Pnfn − f(t), e(t)〉 dt ≤

N∑
n=1

βnτ
1/2
n

(∫ tn

tn−1

‖e‖2
a

)
1/2

, (3.76)

where βn is defined in (3.66).

Step 3. The third term in (3.72) yields a time discretisation term and is a bit more

involved to estimate. Using the definition of ωn, ω and Rn, given in (3.49) and (3.52), we
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observe that

B3 =
N∑

n=1

∫ tn

tn−1

a(ω − ωn, e(t)) dt

=
N∑

n=1

∫ tn

tn−1

a
(
ln−1(t)Rn−1Un−1 + ln(t)RnUn −RnUn, e(t)

)
dt

=
N∑

n=1

∫ tn

tn−1

ln−1(t)a
(
Rn−1Un−1 −RnUn, e(t)

)
dt

=
N∑

n=1

∫ tn

tn−1

ln−1(t)
〈
An−1Un−1 −AnUn, e(t)

〉
dt

≤
N∑

n=1

∥∥An−1Un−1 −AnUn
∥∥

H−1(Ω)

(∫ tn

tn−1

l2n−1

)
1/2
(∫ tn

tn−1

‖e‖2
a

)
1/2

≤
N∑

n=1

θnτ
1/2
n

(∫ tn

tn−1

‖e‖2
a

)
1/2

,

(3.77)

where in the last passage we use the discrete scheme (3.12) for the substitution

AnUn = (ΛnUn−1 − Un)/τn + Pnfn for n ≥ 1. (3.78)

Step 4. Grouping together (3.72), (3.73), (3.75), (3.76) and (3.77), we obtain

∥∥eN∥∥2
/2 +

∫ T

0
‖e(t)‖2

a dt

≤
∥∥e0∥∥2

/2 +
N∑

n=1

(ε̃n + γn + βn + θn) τ1/2
n

(∫ tn

tn−1

‖e‖2
a

)
1/2

. (3.79)

Using an L2(Ω) simplification (cf. §3.4.1.2), we conclude that(∥∥eN∥∥2

2
+
∫ T

0
‖e(t)‖2

a dt

)1/2

≤
∥∥e0∥∥
√

2
+

(
N∑

n=1

(ε̃n + γn + βn + θn)2 τn

)1/2

. (3.80)

Referring to the notation in (3.47) and Definition 3.5.2.2, we obtain the result.

3.5.2.5 Remark (the alternative time indicator). Assuming there is no mesh change

from time tn−1 to time tn, then the discrete Laplacians An−1 and An, defined in (3.8),

coincide. Thus the time discretisation error indicator θn, which is part of the estimator

ηN in Theorem 3.5.2.4, can be written as

θn =
1√
2

∥∥AnUn −An−1Un−1
∥∥

H−1(Ω)
=

τn√
2
‖An∂tU‖H−1(Ω) . (3.81)
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Using the form given in (3.62) and using the dual Poincaré inequality (3.67), this indicator

is easily bounded.

In the next result we show that the indicator θn is equivalent, up to higher order terms,

to the alternative time indicator θ̃n, defined in (3.63), which requires only an energy norm

computation. This alternative time indicator, which is more common in energy estimates

[Pic98, e.g.], θ̃n is also more “natural”, as it measures the time derivative in the energy

norm as opposed to the H−1 norm of the time derivative of AU . Due to mesh-change

effects, this simpler indicator comes at the (affordable) price of having to add the higher

order mesh change term γ̃n to the otherwise simpler γn.

3.5.2.6 Theorem (alternative time estimator). With the same assumptions and notation

of Theorem 3.5.2.4 we have(∥∥UN − u(T )
∥∥2

2
+
∫ T

0
‖U(t)− u(t)‖2

a dt

)1/2

≤‖U(0)− u(0)‖√
2

+ η̃N (3.82)

where the (alternative global) error estimator is given by the following discrete L2(0, T )

summation of the error indicators defined in §3.5.2.2:

η̃2
N :=

N∑
n=1

(
ε̃n + γn + γ̃n + βn + θ̃n

)2
τn. (3.83)

Proof We proceed similarly to the proof of Theorem 3.5.2.4, in steps. The notation is

the same and steps 1 and 2 are identical.

Step 3. This step starts similarly to its homologue in the proof of Theorem 3.5.2.4 by

observing that

B3 =
N∑

n=1

∫ tn

tn−1

ln−1(t)
〈
An−1Un−1 −AnUn, e(t)

〉
dt. (3.84)

The function An−1Un−1−AnUn belongs to Vn +Vn−1, but in general it is in neither of Vn

nor Vn−1). Thus, to proceed, we use the L2(Ω)-projection and the Clément–Scott–Zhang

interpolator denoted respectively by

P̌n : L2(Ω) → V
n + V

n−1 and Π̂
n

: L2(Ω) → V
n ∩ Vn−1. (3.85)

We recall that the operators Π̂
n

and P̌n are both known [SZ90, Car02, resp.] to enjoy
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the following stability properties for all n = 0, . . . , N :∥∥∥Π̂n
φ
∥∥∥

a
≤ C1,µ ‖φ‖a ∀ φ ∈ H1(Ω), (3.86)∥∥P̌nφ

∥∥
a
≤ C2,µ ‖φ‖a ∀ φ ∈ H1(Ω), (3.87)

where µ is the shape-regularity of the triangulation family {T n}n=0,...,N defined in (2.22).

Furthermore, the following interpolation inequality is valid [LM06, §B.3]∥∥∥(ψ − Π̂
n
ψ)/ĥn

∥∥∥ ≤ C3,µ ‖ψ‖a ∀ ψ ∈ H1
0(Ω), n = 1, . . . , N, (3.88)

where ĥn := max {hn, hn−1}.

Step 4. Using these operators, we derive that

B3 =
N∑

n=1

∫ tn

tn−1

〈
An−1Un−1 −AnUn, P̌ne(t)

〉
ln−1(t) dt

=
N∑

n=1

∫ tn

tn−1

(〈
An−1Un−1 −AnUn, P̌ne(t)− Π̂

n
P̌ne(t)

〉
+
〈
An−1Un−1 −AnUn, Π̂

n
P̌ne(t)

〉)
ln−1(t) dt

≤
N∑

n=1

∫ tn

tn−1

(∥∥ĥn

(
An−1Un−1 −AnUn

)∥∥ ∥∥ĥ−1
n

(
P̌ne(t)− Π̂

n
P̌ne(t)

)∥∥
+ a
(
Un−1 − Un, Π̂

n
P̌ne(t)

) )
ln−1(t) dt.

(3.89)

Using inequalities (3.86), (3.87) and (3.88), we get the bound

B3 ≤
N∑

n=1

∫ tn

tn−1

(
C3,µ

∥∥ĥn(An−1Un−1 −AnUn)
∥∥∥∥P̌ne(t)

∥∥
a

+ C1,µ

∥∥Un−1 − Un
∥∥

a

∥∥P̌ne(t)
∥∥

a

)
ln−1(t) dt

≤
N∑

n=1

(
C3,µ

∥∥ĥn(An−1Un−1 −AnUn)
∥∥+ C1,µ

∥∥Un−1 − Un
∥∥

a

)
× C2,µ

∫ tn

tn−1

‖e(t)‖a ln−1(t) dt

≤
N∑

n=1

(
γ̃n + θ̃n

)
τ1/2
n

(∫ tn

tn−1

‖e‖2
a

)
1/2

(3.90)

by taking Cµ := C1,µC2,µ/3, Cµ
′ := C3,µC2,µ/3 in (3.63) and (3.65) for the last step.

We may now conclude exactly like the last step in the proof of Theorem 3.5.2.4, albeit

with θn replaced by γ̃n + θ̃n.
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3.6 Numerical experimentation: convergence rates

In this section and in §3.7 we study the numerical behaviour of the error indicators and

estimators and compare this behaviour with the true error on three model problems. The

C code that we used includes the adaptive FEM library ALBERTA [SS05]. The quadrature

formal error is made negligible with respect to other error by using overkill quadrature

formulas (exact on polynomials of degree 17 and less).

3.6.1 Benchmark problems

Consider three benchmark problems, the solution of which is known. Namely, take d = 2,

each problem’s data f, u0 is then chosen such that the exact solution to 3.2 is given by:

u(x, t) = sin (πt) exp
(
−10 |x|2

)
(3.91)

u(x, t) = sin (20πt) exp
(
−10 |x|2

)
(3.92)

u(x, t) = t sin
(

2 arctan (x2/x1)
3

)
|x|2/3 exp

(
−1

1− |x|2

)
. (3.93)

The domain Ω for Problems (3.91) and (3.92) is the square S := (−1, 1)×(−1, 1). Problem

(3.93), whose solution’s gradient is singular at the origin, is considered on the L shaped

domain Ω = S r [0, 1] × [−1, 0]. The benchmark problems (3.91) and (3.92) have been

chosen such that they can be compared with previous numerical studies [LM06].

For all Problems (3.91)–(3.93), we take zero initial condition, u0 = 0 to avoid dealing

with the initial adaptivity which is a side issue here.

The solution (3.92) has a time dominant discretisation error, while (3.93) was con-

structed to have a dominant spatial error. It is the product of a linear function in time, a

well known solution to Laplace’s equation producing the spatial singularity and a mollifier.

Problem (3.91) is used to test asymptotic behaviour of the indicators under uniform

space-time refinements further in §3.6.3. Problems (3.93) and (3.92) will be used to test

the adaptive strategies in §3.7.
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3.6.2 Gradient recovery implementation

We take Gn to be the recovery operator defined by the ZZ local weighted averaging. It is

built in the following way: fixing V ∈ Vn, for each degree of freedom x, we define

Gn[V ](x) :=
∑

K∈T n:x∈K |K| ∇V |K (x)∑
K∈T n:x∈K |K|

, (3.94)

3.6.3 Indicator’s numerical asymptotic behaviour

In the following convergence rate tests we discuss the practical realisation of Theo-

rems 3.5.2.4 and 3.5.2.6, to which we refer for notation.

3.6.3.1 Definition (experimental order of convergence). Given two sequences a(i) and

h(i) ↘ 0, i = l, . . . ,, we define experimental order of convergence (EOC) to be the local

slope of the log a(i) vs. log h(i) curve, i.e.,

EOC(a, h; i) :=
log(a(i+ 1)/a(i))
log(h(i+ 1)/h(i))

. (3.95)

3.6.3.2 Definition (effectivity index). The main tool deciding the quality of an estimator

is the effectivity index (EI) which is the ratio of the error and the estimator, i.e.,

EI(tn) := ηn/‖U − u‖L2(0,tn;H1
0(Ω)). (3.96)

If EI(tn) → 1 as supx,n hn(x) → 0 then we say the estimator is asymptotically exact.

We use a uniform timestep and uniform meshes that are fixed with respect to time.

Hence for each test we have Vn = V0 = V and τn = τ(h) for all n = 1, . . . , N . For each

test we fix the polynomial degree p and two parameters k, c and then compute a sequence

of solutions with h = h(i) = 2−i/2, and τ = chk for a sequence of refinement levels

i = l, . . . , L.

Due to the finite element space invariance in time, the coarsening indicator γn vanishes

and is thus not computed (this indicator will be discussed in §3.7).

The initial value being zero makes the initial error U(0) − u(0) zero. Thus we do not

need to calculate this term in the estimator.

For all solutions the boundary values are not exactly zero, but of a negligible value,

hence little interpolation error is committed here (nonetheless some care is taken when



3.6 Numerical experimentation: convergence rates 43

dealing with very small errors). Finally, the data approximation error term, βn, though

important for highly oscillatory data, will not be studied here given the regularity of our

data.

What we compute on a space-time uniform mesh are the indicators εn and θn (or

θ̃n,γ̃n), defined in §3.5.2.2, and the corresponding cumulative indicators (En)n=1,...,N and

(Θn)n=1,...,N defined by:

E2
m :=

m∑
n=1

(
ε2n + ε2n−1

)
τn/2 (for space) ,

and Θ2
m :=

m∑
n=1

θ2
nτn or

m∑
n=1

(
θ̃2
n + γ̃2

n

)
τn (for time) .

(3.97)

From the Theorems 3.5.2.4 and 3.5.2.6, we know that

‖Um − u(tm)‖2 ≤ E2
m +Θ2

m +
m∑

n=1

β2
nτn. (3.98)

Our results and the comments are reported in the captions of figures.

In Figures 3.1–3.4 we visualise the results and comment on them, for Problem (3.91)

for conforming finite elements of polynomial degree p = 1, . . . , 4, respectively. Having

fixed p, k, c such that τ = chk, for each level i, we plot Θm and Em, ‖U − u‖L2(0,tm;H1
0(Ω)),

their experimental order of convergence, EOC, and the effectivity index EI(tm) versus

(discrete) time tm = 0, . . . , T . Each level i is realised as a curve in each of the Figures

3.1–3.4. These curves are coloured such that they darken (on the greytone scale) as i

increases.

The conclusion is that the estimator is sharp and reliable, but to achieve asymptotic

exactness (or close) the time indicator must be made smaller than the space indicator by

taking τ � hp. In all these tests we used the first form for Θm appearing in (3.97).

In Figure 3.5 we summarise a comparison between the two time indicators θn and θ̃n,

showing that the latter yields a much sharper bound, but with the added cost of having

to compute the higher order term γ̃n.
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Figure 3.1: Numerical Results for Problem (3.91) with P1 elements and h = h(i) = 2−i/2,

i = 4, . . . , 9 (details in §3.6.3).
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(a) Mesh-size is h and timestep τ = 0.1 h. On top we plot the EOCs of the single

cumulative indicators E and Θ. Below we plot their logs. Both indicators have

EOC → 1, but the cumulative time error indicator Θm is dominant. The estimator

is reliable and sharp, but not asymptotically exact and results in EI � 1.
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(b) Timestep is τ = 0.1 h2. This choice leads to EOC[Θm] → 2 and EOC[Em] ≈ 1,

i.e., the time indicator Θm is of higher order than the spatial indicator Em which

leads the estimator’s order. Thus we obtain asymptotic exactness EI → 1, as

expected from ZZ estimators for p = 1.
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Figure 3.2: Numerical Results for (3.91) with P2 elements and h = h(i) = 2−i/2 with

i = 3, . . . , 8. We compute the same quantities as in Figure 3.1.

0 0.5 1
0

1

2

3

4

5

EOC[||e||
L

2
(0,t

m
,H

1

0
)
]

0 0.5 1
0

1

2

3

4

5

EOC[E
m

]

0 0.5 1
0

2

4

6

EOC[Θ
m

]

0 0.5 1
−10

−8

−6

−4

−2

0

Θ
m

0 0.5 1
−10

−8

−6

−4

−2

0

E
m

 + Θ
m

0 0.5 1
−10

−8

−6

−4

−2

0

||e||
L

2
(0,t

m
,H

1

0
)

0 0.5 1
−10

−8

−6

−4

−2

0

E
m

0 0.5 1
0

2

4

6

EI(t
m

)

(a) Timestep τ = 0.1 h2. The cumulative time error indicator Θm is dominant

with EOC[Θm] → 2, but EI � 1.
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(b) Timestep is τ = 0.1 h3. The spatial is dominant (EOC ≈ 2) showing the

estimator is sharp and reliable for higher order polynomials as well, and close to

asymptotically exact (EI just smaller than 1).



3.6 Numerical experimentation: convergence rates 46

Figure 3.3: Numerical Results for (3.91) with P3 elements for mesh-sizes h(i) = 2−i/2,

i = 2, . . . , 6.. We compute the same quantities as in Figures 3.1 and 3.2.
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(a) Timestep is τ = 0.1 h3. Again, the time indicator is dominant and

EOC[Θm] → 3, but EI � 1.
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(b) Timestep is τ = 0.1 h4. The elliptic error is dominant (EOC[Em] → 3) and

the estimator is sharp and reliable with very good EI.
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Figure 3.4: Results for (3.91) with P4 elements and h(i) = 2−i/2, i = 2, . . . , 6. We compute

the same time accumulation quantities as in Figures 3.1–3.3.
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(a) Mesh-size is τ = 0.1 h4. Again, the time indicator is dominant with order

EOC[Θm] → 4) and a quite good EI in this case.
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(b) Mesh-size is τ = 0.1h5. The spatial error is dominant and EOC[Em] → 4.

Effectivity index improves slightly over previous case.
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Figure 3.5: For each m = 1, . . . , N we plot values and EOCs of two alternative time

indicators
(∑m

n=1 τnθ̃
2
n

)
1/2

(above) and
(∑m

n=1 τnθ
2
n

)
1/2 (below) and the alternative mesh-

change indicator
∑m

n=1 τnγ̃
2
n (above-right). All quantities are plotted against time. We

took a uniform timestep τ = 0.1h and mesh-size h = 2−i, i = 4, . . . , 9. The numerical

results show (1) that the two time indicators are equivalent in order, as expected, and

(2) that the term
∑m

n=1 τnγ̃
2
n is indeed a higher order term and can be safely ignored in

most practical schemes. The indicators θ̃n have a better effectivity index.
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3.7 Numerical experimentation: adaptive schemes

We present now an adaptive algorithm based on the error indicators defined in §3.5.2.2.

As with many adaptive methods for time-dependent problems [Pic98, SS05, CJ04], we

perform space and time adaptivity separately. Adaptivity is controlled via the indicators

ηn (or η̃n)—see Theorems 3.5.2.4 and 3.5.2.6—which are kept under a given tolerance,

tol.

Namely, at each timestep tn−1 → tn, we use adaptive schemes for elliptic problems as to

minimise the indicators ε̃n and βn. There are different strategies to perform the timestep

adaptivity, all geared towards minimising θn (or θ̃n). Finally, the coarsening estimator

γn is minimised by precomputing it and performing only one coarsening operation at the

beginning of each timestep.

Note that it is not in the scope of this section to prove any rigorous result about

the adaptive algorithm and, based on heuristic arguments only, we use it for illustration

purposes.

3.7.1 Spatial adaptivity via maximum strategy

At each timestep an elliptic problem is solved. For linear elliptic problems, convergence

of adaptive schemes is reasonably well understood [MNS02a, BDD04] so we follow the

criteria given therein, namely the Maximum Strategy.

The algorithm we used can be pseudocoded as follows.

3.7.2 Space Adapt

Require: (Uold,Vold, tolε, kmax, t, τ, ξ, tolγ)

Ensure: (Unew,Vnew) solution of (3.11)

. Coarsening step:

γ = (γK)K∈T := Coarsening Preindicator(Uold,Vold) (cf. [LP10d, §A]).

T := Mesh(Vold)

find C ⊂ T such that
∑

K∈C (γK)2 ≤ tol2γ

T := Coarsen(T ,C ) using [SS05, §1.1.2–1.1.3]

. Refinement loop using Maximum Strategy [SS05]:

k := 0
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compute εn using (3.60)

R := ∅ . refinement set

while εn > tolε and k ≤ kmax do

for all K ∈ T n do

if ε2K,n ≥ ξmaxL∈T n ε2L,n then

R := {K} ∪R . mark K for refinement

end if

end for

T := Refine(T ,R) using [SS05, §1.1.1] . update (Uold,V)

set ΛnUn−1 := Uold, τn = τ , tn = t and solve for Un in (3.12)

U := Un

compute εn using (3.60)

k := k + 1

end while

return (U,V)

3.7.3 Coarsening

In time-dependent problems mesh coarsening, which is not to be confused with the coars-

ening needed in proving optimal complexity for adaptive schemes [BDD04], is used to

reduce the DOFs that become redundant in time.

Mesh coarsening is a delicate procedure and should be used sparingly as to avoid

needless overhead computing time. In Algorithm 3.7.2, coarsening is performed only once,

at the beginning, for each time-step.

The coarsening strategy we propose is based on predicting the effect of a possible re-

moval of degrees of freedom. The reason for this is that in ALBERTA (and many other

finite element codes) upon coarsening, all DOF-dependent vectors (encoding finite ele-

ment function coefficients) are “coarsened” via interpolation. This makes it possible to

compute the effect of coarsening, and the coarsening estimator γn defined in (3.64), before

mesh-change occurs. The details of this procedure are discussed in § 3.8.
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3.7.4 Timestep control

Timestep control can be achieved using two different strategies.

An implicit timestep control strategy is ready implemented in ALBERTA [SS05] using

Algorithm 3.7.2 upon each timestep.

Here we propose an explicit timestep control strategy which we have implemented

in ALBERTA. The reason for this is that the implicit strategy, though better in terms of

timestep determination, is very time-consuming as it requires the repeated solution of the

timestep. In contrast, the explicit strategy has a rougher—nonetheless still satisfactory—

control over the timestep, but it is much faster. The conclusion is that the ideal control

should be a smart implicit/explicit-switching algorithm.

The explicit strategy can be described as follows.

3.7.5 Explicit Timestep Adapt

Require: (τ0, t0, T,T 0, u0, tolε, kmax, ξ, tolγ , tolθ,min, tolθ)

Ensure: (τn,Vn, Un)n=1,...,N satisfying (3.11) and possibly
∫ T
0 ‖U − u‖2 ≤ tol2

(U0,V0) = Initial Space Adapt(T 0, u0, kmax, ξ, κ) . data interpolation

n := 1

τn := τn−1

tn := tn−1 + τn

while tn ≤ T do

(Un,Vn) := Space Adapt(Un−1,Vn−1, tolε, kmax, τn, tn, ξ, tolγ)

compute θn

if θn > tolθ then

τn+1 := τn/
√

2

else if θn ≤ tolθ,min then

τn+1 :=
√

2τn

end if

tn+1 := tn + τn+1

n := n+ 1

end while

return (Un)n=1,...,N ,
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where the global tolerance tol is given by the relation

tol2 = T
(
tol2θ +tol2ε +tol2γ

)
. (3.99)

Note that this algorithm does not guarantee reaching a tolerance, unlike more sophisti-

cated ones found in the literature [CJ04, e.g.], but it guarantees termination in reasonable

CPU times.

3.7.6 Numerical results

In Tables 3.1–3.3 we compare the implicit timestep control strategy described by algo-

rithm 3.7.5 with a uniform timestep scheme. For the uniform strategy we take a stationary

mesh in time and set τ = 0.04h2. We calculate the error for various numerical simulations

using differing values of h using the uniform strategy and set those values as tolerances

for the adaptive scheme varying ξ appropriately.

Each column displays results for either the uniform strategy or the adaptive strategy

using various thresholds. These columns are further subdivided into two, the first con-

taining
∑N

n=1 dimVn (i.e., the total number of degrees of freedom from all meshes over

time) which we denote DOF and the second containing CPU time (seconds) for all model

problems (3.91)–(3.93). An entry of OOM ( out of memory) indicates a lack of memory

to complete the simulation.

Uniform Adaptive

ξ = 0.65 ξ = 0.70 ξ = 0.75

tol DOF’s CPU DOF’s CPU DOF’s CPU DOF’s CPU

0.573 232,290 3 24,080 4 22,792 5 22,240 4

0.295 3,489,090 49 42,042 8 39,414 8 38,630 6

0.149 54,097,020 598 82,172 15 77,932 15 76,452 16

0.0625 OOM OOM 206,709 39 195,810 37 191,650 37

Table 3.1: Implicit timestep control with various spatial maximum strategy thresholds for

Problem (3.91). The adaptive method clearly saves DOF and CPU time over the uniform

method.
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Uniform Adaptive

ξ = 0.65 ξ = 0.7 ξ = 0.75

tol DOF’s CPU DOF’s CPU DOF’s CPU DOF’s CPU

0.296 3,489,090 47 12,092 5 11,430 5 11,498 5

0.21 13,940,289 196 17,038 7 16,140 8 16,201 7

0.104 54,097,020 602 106,188 32 100,058 29 22,597 10

0.03125 OOM OOM 513,694 120 460,637 118 449,568 115

Table 3.2: Implicit timestep control with various spatial maximum strategy thresholds

for spatial-error dominant Problem (3.93). Adaptivity saves DOF and CPU.

Uniform Adaptive

ξ = 0.7 ξ = 0.75

tol DOF’s CPU DOF’s CPU DOF’s CPU

1.000 925,809 12 159,070 43 127,610 58

0.569 3,489,090 49 237,960 142 204,376 180

0.295 54,097,020 605 471,733 755 471,542 920

0.149 OOM OOM 940,618 1410 940,138 1850

Table 3.3: Implicit timestep control with various spatial maximum strategy thresholds for

spatial-error dominant Problem (3.92). Adaptivity saves DOF (even better than explicit

control) but the CPU time grows very quickly due to overhead.

3.7.6.1 Remark (implicit timestep control on fast oscillating solutions). We take note

of the CPU times from the results for Problem (3.92) given in Table 3.3. These show

that implicit timestep control is undesirable for fast oscillating functions. This is because

the timestep searching becomes computationally inefficient. Numerical simulations for

an explicit timestep control strategy are given in Table 3.4. This algorithm is described

in detail in the ALBERTA manual [SS05] section 1.5.4. The results show although for a

method with low tolerance we use more degrees of freedom we make a substantial gain

on the CPU time.

We then fix a value of ξ and compare an adaptive strategy with uniform for a single
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Uniform Adaptive

ξ = 0.7 ξ = 0.75

tol DOF’s CPU DOF’s CPU DOF’s CPU

1.000 925,809 12 135,788 5 127,004 4

0.569 3,489,090 49 198,628 7 194,311 8

0.295 54,097,026 605 397,716 15 395,876 16

0.149 OOM OOM 2,177,666 79 2,079,081 76

Table 3.4: Explicit timestep control with various spatial maximum strategy thresholds

for time-error dominant Problem (3.92)

value of tol. This is to illustrate how the number of degrees of freedom of the mesh

change over time, and how the implicit timestep control affects the timestep size for all

test problems in Figures 3.6.

3.7.7 Incompatible data-singular solution

We close this section by testing the adaptive algorithm on an example with incompatible

initial and boundary conditions, which is the type of situation where adaptivity is really

needed in practise. Consider problem (3.2) with Ω = (0, 1) × (0, 1), f = 0 and u0 = 1.

The initial conditions are thus incompatible with the homogeneous Dirichlet boundary

conditions valid for all positive times. The exact solution u, though singular at all points

of ∂Ω × {0}, can be readily evaluated “by hand” and may be represented in terms of

Fourier series of the Laplacian’s eigenvalues. Namely, we have

u(x, t) =
∞∑

m,n=1

Cm,n exp(−
(
m2 + n2

)
π2t) sin (mπx1) sin (nπx2) , for t > 0, (3.100)

where the constant Cm,n is given by

Cm,n =
4

nmπ2
(1− cos (mπ)− cos (nπ) + cos (nπ) cos (mπ)) . (3.101)

Since the solution (3.100) is an infinite Fourier series it cannot be computed exactly, but

its rapid decay allows for an early truncation with machine-epsilon precision.

In order to generate a reference tolerance, which is common for the uniform and the

adaptive scheme we couple h = 0.05τ and run the uniform refinement code. We use then
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Figure 3.6: Adaptive (green) against uniform (red) degrees of freedom and timestep sizes.

In each pair of graphs we plot the (log of) the DOF against time on the left, and the

timestep against time on the right.
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(a) Implicit timestep control for Problem (3.91).

The explicit timestep control yields the same re-

sults (but is much more CPU efficient), thus it is

not shown.
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(b) Implicit timestep control for Problem (3.92),

where the spatial error dominates. The explicit

timestep control yields the same meshes and time-

steps, thus not shown.
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(c) Explicit timestep control for Problem (3.93),

where the time discretisation error dominates. In-

teresting when compared with Figure 3.7(d).
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(d) Implicit timestep control for Problem (3.93).

Comparing with Figure 3.7(c) shows that the

implicit timestep control yields more efficient

timestep and meshes, but at a much higher CPU

cost (cf. Tables 3.3 and 3.4).
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Figure 3.7: The adaptive scheme for (3.100) using implicit timestep control.

(a) Solution at time tn = 0.007544 with dim(Vn) =

894, 677

(b) Solution at time tn = 0.033302 with dim(Vn) =

98, 773

(c) Solution at time tn = 0.127492 with dim(Vn) =

18, 613

(d) Solution at time tn = 0.393893 with dim(Vn) =

3, 525

the error computed as a tolerance for the adaptive scheme, results of this are shown in

Figure 3.7. In Figure 3.8 we visualise the adapted FE mesh for Problem (3.100) at various

times.
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Figure 3.8: The adaptive scheme for (3.100) using implicit timestep control.

(a) Mesh at time tn = 0.007544 with dim(Vn) =

894, 677

(b) Mesh at time tn = 0.033302 with dim(Vn) =

98, 773

(c) Mesh at time tn = 0.127492 with dim(Vn) =

18, 613

(d) Mesh at time tn = 0.393893 with dim(Vn) =

3, 525
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3.8 Building a coarsening estimator into ALBERTA

We describe next a practical implementation of the coarsening error preindicator (we use

this term to emphasise the fact that this indicator can be computed apriori, as opposed

to the other indicators involved in the adaptive strategy). Since we used ALBERTA for

our computations, this section relies substantially on the principles described in the man-

ual [SS05]. We briefly describe these principles in the next paragraph, in order to expose

the main idea behind the coarsening preindicator.

3.8.1 Refinement, coarsening and interpolation in ALBERTA

Mathematically, a simplicial mesh (or partition, or triangulation) is a set of disjoint open

simplexes, the union of the closure of which is Ω. A mesh into a new mesh is refined

by bisecting a subset of its simplexes, following a special procedure which ensures mesh

conformity (e.g., no hanging nodes) and does not deteriorate shape-regularity (on fully

fitted polygonal domains). A mesh is thus represented as a binary tree, where each node

represents a simplex. The children of each simplex are thus the 2 subsimplexes obtained

by bisection. Hence, from a coding view-point, refinement means growing the binary tree.

The inverse of refinement is coarsening. Thus coarsening a mesh in ALBERTA consists

in removing pairs of sibling simplexes (both marked for coarsening) and produces the

new—coarsened—mesh where the pairs of siblings are replaced by their parent.

The coarsening preindicator is a real number defined on each simplex, of the triangula-

tion to be coarsened. This estimator can in fact be precomputed with respect to coarsening.

This is in contrast with usual aposteriori error estimators which can be postcomputed

only (i.e., after the discrete solution has been computed). To clarify this point, let us

focus on the particular situation of interest. Let Un−1 be the solution from the previous

timestep; Un−1 ∈ Vn−1, the finite element space with respect to mesh T n−1. The error

due to coarsening appears in the term

Un−1 − ΛnUn−1. (3.102)

This term is nonzero only when simplexes are coarsened.

Furthermore, we assume that the new mesh T n is a refinement of T n
0 , which is a

coarsening of the old mesh T n−1:



3.8 Building a coarsening estimator into ALBERTA 59

T n−1 T n
0

. . . T ncoarsen refine refine

If Λn
0 is the Lagrange interpolant onto the finite element space Vn

0 , relative to the new

coarse mesh T n
0 , it is not very difficult to predict Λn

0U
n−1 without actually computing

it. Therefore this term can be predicted from (a) the simplexes of T n−1 marked for

coarsening which leads to T n
0 and (b) the values of Un−1.

Note that since T n
0 is subsequently refined but not coarsened to produce T n, as de-

picted in (3.8.1), then the additional coarsening error will be zero. Namely, if Λn denotes

the Lagrange interpolant onto Vn, the finite element space over T n, which is a refinement

of T n
0 , then ΛnUn−1 = Λn

0U
n−1, and thus

Un−1 − ΛnUn−1 = Un−1 − Λn
0U

n−1. (3.103)

The coarsening strategy therefore consists in choosing a subset of simplexes of T n−1

which minimises term
∥∥Un−1 − Λn

0U
n−1
∥∥ before producing the new coarse mesh T n

0 .

The rest of this section describes how Un−1 − Λn
0U

n−1 can be precomputed.

3.8.2 Notation

Let K be an element of the new coarse mesh T n
0 resulting from the coarsening of its two

children which we denote by K±. (Note that K+ and K− correspond to child[0] and

child[1] of K in the ALBERTA manual [SS05].) Define the fine space

Y :=
{

Φ|K : Φ ∈ Vn−1
}
. (3.104)

Likewise define the coarse space X to be the local finite element space, i.e.,

X := {Φ|K : Φ ∈ Vn
0} ; (3.105)

simply put we just have X = Pp. We introduce also the fine spaces Y±, defined like Y,

but restricting functions over K±, respectively (so functions in Y± are in fact the same

as X = Pp, albeit with different domains).

Denote by {x0, . . . ,xL} and
{
x±0 , . . . ,x

±
L

}
the set of Lagrange degrees of freedom on

the simplex K and its children K±, respectively. We indicate with
{
π0, . . . , πL

}
and
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{
π0
±, . . . , π

L
±
}

the corresponding Lagrange polynomial bases of X and Y±, respectively,

whereby

πi(xj) = πi
±(x±j ) = δi

j . (3.106)

For short we will write these bases as column vectors π =
(
π0, . . . , πL

)ᵀ, etc. We also

define the (local) coarse-on-fine matrices by

A± :=
(
π(x±0 ) . . . π(x±L )

)
=
(
πi(x±j )

)
i,j=0,...,L

. (3.107)

These matrices are closely related to ALBERTA’s refine-interpolation matrix [SS05, ma-

trix A (1.5) in §1.4.4 ].

3.8.2.1 Proposition (coarse-on-fine matrix properties). The matrices A+ and A− are

independent of K,K+,K− and

π|K± = A±π±. (3.108)

Proof Fix i = 0, . . . , L. Because πi is a polynomial and
{
π0

+, . . . , π
L
+

}
is a polynomial

basis, it follows that

πi =
L∑

j=0

ai
jπ

j
+, (3.109)

for some vector
(
ai

0, . . . , a
i
L

)
. Applying πi to x+

j , and recalling (3.106), we obtain

ai
j = πi(x+

j ), (3.110)

and hence

πi =
[
A+π+

]i
. (3.111)

3.8.2.2 Example (quadratic elements in 2 dimensions). To make the discussion more

accessible, we will illustrate it as we go with the concrete situation where p = 2 (quadratic

elements) and d = 2. Following the ALBERTA conventions the relation between the coarse

and fine triangles is given by the following diagram.

0 1

2

34

5

0

01

1

2 2

5 5

3

34

4

KK+ K− K+ K−refineK

coarsen(K+,K−)
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In this case, the coarse-on-fine matrices are computed as follows (omitting the zeroes

for clarity):

A+ =



1 3/8 −1/8

−1/8 −1/8

1

1/2

1/2 1

1 3/4 1/4


, A− =



−1/8 −1/8

1 −1/8 3/8

1

1/2 1

1/2

1 1/4 3/4


(3.112)

3.8.3 Degrees of freedom and global–local relations

Denote by U the generic finite element function in the old space Vn−1 and let V := Λn
0U .

Then we have

U = uᵀΨ and V = vᵀΦ, (3.113)

where Ψ =
(
Ψ0, . . . ,ΨN

)ᵀ and Φ =
(
Φ0, . . . ,ΦM

)ᵀ, are the columns of nodal Lagrange

piecewise polynomial bases of Vn−1 and Vn
0 , respectively, and u and v are the corresponding

vectors of DOF values.

There are L+ 1 degrees of freedom (DOF) per simplex, e.g., L = 5 for p = 2 = d. The

simplex K in T n
0 comes with a local-to-global index relation g = g

T n
0

K : [0 : L] → [0 : M ]

whereby

Φg(i)
∣∣∣
K

= πi ∀ j = 0, . . . , L. (3.114)

It follows that the finite element function V is locally represented on K by

Y := V |K =
L∑

i=0

vg(i)π
i =: yᵀπ. (3.115)

Similarly we have g± = gT n−1

K± : [0 : L] → [0 : N ] such that

Y ± := U |K± =
L∑

j=0

ug±(j)π
j
± =: y±ᵀ

π±. (3.116)

The relation between the DOF coefficients u and v will be described next.
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3.8.4 Local fine–coarse DOF relations

Some degrees of freedom—that is those depicted in yellow—are removed during coarsen-

ing. The others, which are kept, have their local index change. This information is fully

encoded in the fine-to-coarse index maps c± : D± → C± where

D± :=
{
j = 0, . . . , L : x±j ∈ {x0, . . . ,xL}

}
. (3.117)

and

C± := c±(D±) ⊆ [0 : L] . (3.118)

A basic property of the fine-to-coarse maps is that

C+ ∪ C− = [0 : L] , (3.119)

but C+ and C− need not be disjoint (in fact, for conforming methods these are never

disjoint). The fine-to-coarse maps c± are injective and we denote their inverses, the coarse-

to-fine maps, by d± : C± → D±.

In the example above, p = 2 = d, the fine-to-coarse maps c± : D± → [0 : 5], satisfy

D+ = D− = {0, 1, 2, 5} (though D+ and D− do not generally coincide, as seen for

p = 3, d = 2, e.g.) and evaluated by the schedule

j = 0 1 2 3 4 5,

c+(j) = 2 0 5 − − 4,

c−(j) = 1 2 5 − − 3.

(3.120)

It follows that C+ = {0, 2, 4, 5} and C− = {1, 2, 3, 5} and

i = 0 1 2 3 4 5,

d+(i) = 1 − 0 − 5 2,

d−(i) = − 0 1 5 − 2.

(3.121)

3.8.4.1 Remark (redundancy of the coarse-to-fine maps). The coarse-to-fine maps c±

and their inverses d± are partially redundant with A±. Namely, if j ∈ D±, then j = d±(i)

and i = c±(j), for some i = 0, . . . , L. By definition of c± it follows that x±j = xi. Therefore

[A±]kj = πk(x±j ) = πk(xi) = δk
i . (3.122)

We have thus proved the following result that will be used to compress A± in the sequel.
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3.8.4.2 Proposition (redundant coarse-on-fine columns). If j ∈ D±, then A±’s j-th

column is described by

[A±]kj = δk
c±(j). (3.123)

3.8.5 Precomputing the coarsening error

The coarsening error is the difference between U , to which we have access via u, and its

interpolation on the locally coarser mesh V , to which we have no direct access. Working

locally at the coarsening-marked element K+ (and similarly for K−), all we need is to

compute V |K+ and subtract it from U |K+ .

Recalling that in ALBERTA V = Λn
0U is built by simply “dropping” the coefficients of

the DOF removed by coarsening we have

yᵀπ = Y = V |K =
∑

i∈C+

ug+(d+(i))π
i +

∑
i∈C−rC+

ug−(d−(i))π
i, (3.124)

that is, for j = 0, . . . , L, we set

vg(i) := yi :=


ug+(d+(i)) = y+

d+(i) if i ∈ C+

ug−(d−(i)) = y−d−(i) otherwise .
(3.125)

(Note that the vector y is the same for the two siblings K± and needs to be calculated

only once.) Following the example with p = 2 = d, we see that

y =
(
y+
1 , y

−
0 , y

+
0 , y

−
5 , y

+
5 , y

+
2

)ᵀ
=
(
y+
1 , y

−
0 , y

−
1 , y

−
5 , y

+
5 , y

−
2

)ᵀ
.

(3.126)

To conclude we rewrite the coarse basis, π, in terms of the fine one, π+, using Propo-

sition 3.8.2.1 as follows:

V |K+ = Y |K+ = yᵀ π|K+ = yᵀA+π+. (3.127)

Thus the coarsening error on K+ is calculated as

[U − V ]|K+ = y+ᵀ
π+ − yᵀA+π+ = π+

ᵀ(y+ − A+ᵀ
y
)

=
L∑

j=0

(
y+

j − yᵀ[A+]j
)
π+

j . (3.128)

Recalling Proposition 3.8.4.2, if j ∈ D+ we have

yᵀ[A+]j =
L∑

i=0

ykδ
k
c+(j) = yc+(j) = y+

j , (3.129)
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and thus the coefficient for π+
j is 0, and it needs not be calculated. Proceeding similarly

on K− we may summarise the findings as follows.

3.8.5.1 Theorem (coarsening error calculation). Let U ∈ Vn−1 with the notation of

§3.8.3, to calculate the coarsening error that would result from coarsening the elements

K+,K− ∈ T n−1 into K ∈ T n

(1) calculate y following (3.125) using the coarse-to-fine map d+ defined in §3.8.4,

(2) obtain the error using

[U − Λn
0U ]|K+ =

∑
j∈[0:L]rD+

(
y+

j − yᵀ[A+]j
)
πj

+,

[U − Λn
0U ]|K− =

∑
j∈[0:L]rD−

(
y−j − yᵀ[A−]j

)
πj
−.

(3.130)

3.8.5.2 Remark. Note that the j-th coefficient of the coarsening error’s local DOF

vector is zero when j ∈ D±, respectively. So the calculation needs to be carried out only

for those j 6∈ D±.

Also, the coefficients for the DOF that are common to K+ and K− must be equal, so

they can be in fact computed once.

For example in the case of quadratic elements in d = 2 we have

Y + − Y |K+ = π3
+

(
y+
3 −

3
8
y+
1 +

1
8
y−0 −

3
4
y+
2

)
+ π4

+

(
y+
4 +

1
8
y+
1 +

1
8
y−0 −

1
4
y+
2 −

1
2
y+
5 −

1
2
y−5

)
,

Y − − Y |K− = π3
−

(
y−3 +

1
8
y+
1 +

1
8
y−0 −

1
2
y−5 −

1
2
y+
5 −

1
4
y+
2

)
+ π4

−

(
y−4 +

1
8
y+
1 −

3
8
y−0 −

3
4
y+
2

)
.

(3.131)

3.8.6 Coarsening error algorithm

As seen in §3.8.5, the information needed for the coarsening error computation for La-

grange finite elements of degree p in dimension d, is contained in the coarse-on-fine matri-

ces A± defined by (3.107) and the fine-to-coarse maps, d±, and their domains C± defined

in §3.8.4. This information is independent of the particular pair of simplex siblings K±
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and their parent K and can be included in the code via given index permutations and

efficient matrix-vector multiplication.

With this information at hand and the notation previously introduced in this section,

we formulate an ALBERTA-implementable algorithm to precompute the coarsening error

on all simplexes.

Coarsening Preindicator

Require: (U = uᵀΦ,V,T )

Ensure: γ = (γK : K ∈ T )

for all K ∈ T do

if 2childorder(K) = 0 then

D := D+, D′ := D−, c := c+, c′ := c−, A := A+

else

D := D−, D′ := D+, c := c−, c′ := c+, A := A−

end if

K ′ := siblingK

initialise two local DOF vectors y and r

for all j ∈ D do

yc(j) = ugK(j)

end for

for all j ∈ D′ do

yc′(j) = ugK′ (j)

end for

for all j /∈ D ∪D′ do

rj = ugK(j) − y [TA]j

end for

γK = 0

2The element information in ALBERTA is quite local and to determine whether an element is left

or right child is not trivial. In ALBERTA 1.2 this can be done utilising EL->index which provides a

global indexing of elements. Testing the EL INFO->parent->child[0]->index against EL->index gives

the correct child order of K. In ALBERTA 2.0 EL->index is unavailable so we check the global index of

DOF for both parent and children.
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for all i /∈ D ∪D′ do

for all j /∈ D ∪D′ do

γK = γK + rirj 〈Φi,Φj〉K
end for

end for

end for

3.8.7 Coarsening preindicator matrices

To close, we provide here the information needed to implement Algorithm 3.8.6 for La-

grange piecewise Pp finite elements in dimension d = 2. (For dimension 3 the situation is

complicated by the “types” of tetrahedrons, whereby the matrices A± and the maps c±

may depend on the type and is not covered in this section.)

3.8.8 P
1 elements

The coarse-on-fine matrices (omitting 0 entries for clarity) are given by

A+ =


1 1/2

1/2

1

 ,A− =


1/2

1 1/2

1

 , (3.132)

the fine-to-coarse maps and the coarse-to-fine maps are respectively given by

i = 0 1 2,

c+(i) = 2 0 −,

c−(i) = 1 2 −,

and

i = 0 1 2,

d+(i) = 1 − 0,

d−(i) = − 0 1.

(3.133)

3.8.9 P
2 elements

See the worked example in §3.8.
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3.8.10 P
3 elements

The coarse-on-fine matrices are given by

A+ =



1 −1/16 5/16 1/16 −1/16

−1/16 1/16 1/16 1/16

1

−1/4 −1/8

1/2

1/2 1

−1/4 1 3/8

9/16 15/16 1 −1/16 3/16

9/16 −5/16 −1/16 −3/16

1 1/2 3/4



(3.134)

and

A− =



−1/16 1/16 1/16 −1/16

1 −1/16 1/16 5/16

1 1/16

−1/4 1

1/2 1 −1/8

1/2 −3/16

−1/4 3/16

9/16 −1/16 −5/16 3/8

9/16 −1/16 15/16 1

1/2 1 3/4



(3.135)

the fine-to-coarse maps

i = 0 1 2 3 4 5 6 7 8 9,

c+(i) = 2 0 − − 7 9 − 5 6 −,

c−(i) = 1 2 − − 9 8 − 3 4 −.

(3.136)
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and the coarse-to-fine maps

i = 0 1 2 3 4 5 6 7 8 9,

d+(i) = 1 − 0 − − 7 8 4 − 5,

d−(i) = − 0 1 7 8 − − − 5 4.

(3.137)

3.8.11 P
4 elements

The coarse-on-fine matrices are given by
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A
+

=

                                        

1
35
/1

28
−

5/
12

8
3/

12
8

−
5/

12
8

3/
12

8
−

5/
12

8

−
5/

12
8

3/
12

8
3/

12
8

−
5/

12
8

−
5/

12
8

−
5/

12
8

1

−
1/

16
3/

16
1/

8
1/

16

−
3/

8
−

1/
8

1/
2

1/
2

1

−
3/

8
1

3/
8

−
1/

16
3/

16
1

−
1/

8
5/

16

35
/
32

1
15
/
32

−
3/

32
1/

32
−

1/
32

5/
32

1
−

35
/6

4
45
/
64

9/
64

1/
64

3/
64

15
/
64

7/
32

−
5/

32
−

3/
32

1/
32
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The fine-to-coarse maps are given by

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14,

c+(i) = 2 0 10 − 9 − − 14 − 6 7 8 − − 12,

c−(i) = 1 2 10 − 14 − − 11 − 3 4 5 − − 13.

and the coarse-to-fine maps by

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14,

d+(i) = 1 − 0 − − − 9 10 11 4 2 − 14 − 7,

d−(i) = − 0 1 9 10 11 − − − − 2 7 − 14 4.



Chapter 4

A finite element method for linear

elliptic problems in nonvariational

form

In this chapter we move from recovery techniques for first derivatives of a finite element

function and begin to study applications of second derivative recovery techniques. In

this work we make use of the Hessian recovery to derive a finite element method for

nonvariational form elliptic operators.

Note that the concept of Hessian recovery we use is slightly different to that which

is generally studied in the literature. The Hessian recovery we will be making use of is

a representation of the Hessian of a piecewise smooth object defined in a distributional

sense (see Definition 4.1.3.3). The more commonly used are double applications of recovery

operators, a global L2(Ω) projection [BX03b, Ova07, cf.].

This chapter is set out as follows. In §4.1 we introduce some notation and set out

the model problem. We then present a discretisation scheme for the model problem us-

ing standard conforming finite elements in C0(Ω). In §4.2 we present a linear algebra

technique, inspired by the Schur complement idea, for solving the linear system arising

from the discretisation. In §4.3 we show the system proposed in §4.1.3 is well posed. We

show for the case of the Laplacian (and constant perturbations of it) the nonvariational

finite element method coincides with that of the standard finite element method (cf.

72
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Theorem 4.3.0.5). In §4.4 we propose two methods for the implementation of inhomoge-

neous Dirichlet boundary conditions, the first is a direct enforcement of the boundary

conditions into the problem matrix. The second alters the method proposed in §4.1.3 to

incorporate additional information contained in the boundary degrees of freedom. In §4.5

we summarise extensive numerical experiments on model linear boundary value problems

in nonvariational form. In §4.6 we deal with the analysis of the method deriving both

apriori and residual aposteriori bounds. In §4.7 we numerically demonstrate that these

bounds are of the correct order and apply a heuristic adaptive algorithm based on the

aforementioned residual bounds. Finally, in §4.8 we apply this method to approximate

the solution of general quasilinear problems in nonvariational form.

4.1 Set up

4.1.1 Notation

We recall the notation of §2, in addition we denote by 〈f〉ω the integral of a function f

over the domain ω and drop the subscript if ω = Ω.

We assume for simplicity that Ω is a polygonal domain and consider the following

problem: Find u ∈ H2(Ω) ∩H1
0(Ω) such that

L u = f in Ω,

u = 0 on ∂Ω,
(4.1)

where the data f : Ω → R is prescribed and L is a general linear, second order, uniformly

elliptic partial differential operator. Let A ∈ L∞(Ω)d×d and for each x ∈ Ω let A(x) ∈

Sym+(Rd×d), the space of symmetric, d× d matrices such that the operator

L : H2(Ω) ∩H1
0(Ω) → L2(Ω)

u 7→ L u := A:D2u,
(4.2)

is uniformly elliptic. We use X:Y := trace (XᵀY ) to denote the Frobenius inner product

between two matrices.
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4.1.2 Classical and strong solutions of nonvariational problems (4.1)

In this section we give a brief review of known results for problems of the form

A:D2u = f in Ω

u = 0 on ∂Ω.
(4.3)

4.1.2.1 Definition (Hölder continuity). A function v : Ω → R is uniformly α–Hölder

continuous if for any x,y ∈ Ω

sup
x,y∈Ω

|v(x)− v(y)|
|x− y|α

<∞, (4.4)

where α ∈ (0, 1].

We may view Hölder continuity as a “fractional derivative” of sorts (§A.2). We define

the Hölder spaces, Ck,α(Ω) ⊂ Ck(Ω) to be the space consisting of functions whose k − th

partial derivatives are uniformly α–Hölder continuous. The Hölder norms are defined as

‖v‖Ck,β(Ω) =
∑
|α|<k

‖Dαv‖L∞(Ω) +
∑
|α|=k

sup
x,y∈Ω

|Dαv(x)−Dαv(y)|
|x− y|β

. (4.5)

4.1.2.2 Definition (Hölder domains). A domain Ω ⊂ Rd is said to be a Hölder domain

of class Ck,α if at any point, x ∈ ∂Ω, under an appropriate change of coordinates, the

boundary ∂Ω can be represented as a function, in Ck,α.

4.1.2.3 Definition (classical solution). A classical solution of (4.3) is a function u ∈

C2(Ω) which satisfies the problem (and its boundary conditions) everywhere.

We look at conditions under which the problem (4.3) admits a classical solution via the

Schauder theory [GT83, §6]. The fundamental idea behind such an approach is that if the

model problem (4.3) has Hölder continuous coefficients, then the problem can be treated

(at least in a local sense) as a perturbation of a problem with constant coefficients.

4.1.2.4 Theorem (existence of a classical solution of (4.3) [GT83, Thm 6.14]). Let

Ω ⊂ Rd be a C2,α domain. Suppose that A ∈ C0,α(Ω)d×d and f ∈ C0,α(Ω) are given

functions such that the problem

A:D2u = f in Ω

u = 0 on ∂Ω,
(4.6)
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is uniformly elliptic. Then (4.6) admits a unique solution u ∈ C2,α(Ω). There also exists

a constant independent of u such that

‖u‖C2,α(Ω) ≤ C ‖f‖C0,α(Ω) . (4.7)

We now state a result giving the conditions under which (4.3) admits a strong solution.

4.1.2.5 Definition (strong solution). A strong solution of (4.3) is a function u ∈ H2(Ω)∩

H1
0(Ω), that is a twice weakly differentiable function, which satisfies the problem almost

everywhere.

4.1.2.6 Theorem (existence of a strong solution of (4.3) [GT83, Thm 9.15]). Let Ω ⊂ Rd

be a C1,1 domain. Suppose also that A ∈ C0(Ω)d×d and f ∈ L2(Ω) such that the problem

A:D2u = f in Ω

u = 0 on ∂Ω
(4.8)

is uniformly elliptic. Then (4.8) has a unique solution u ∈ H2(Ω) ∩ H1
0(Ω). There also

exists a constant independent of u such that

‖u‖2 ≤ C ‖f‖ . (4.9)

4.1.2.7 Remark (less regular solutions). Note that the theory of viscosity solutions has

been developed for non classical solutions of (4.1) if A does not satisfy the regularity

assumed above. A brief description of viscosity solutions is given in §A.5.

4.1.2.8 Assumption (regularity of A). From hereonin we will assume that the coefficient

matrix A is sufficiently smooth on Ω such that solutions exist and belong to at least

H2(Ω) ∩H1
0(Ω).

4.1.2.9 Assumption (regularity of Ω). Theorem 4.1.2.6 specifies that Ω must be a C1,1

domain. We must approximate any such domain with one which is only C0,1. We thus

assume that the model problem admits a unique strong solution even when Ω is only C0,1.
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4.1.3 Discretisation

In this chapter we use the following notation for finite element spaces, denoting

V :=
{
Φ ∈ H1(Ω) : Φ|K ∈ Pp ∀K ∈ T

}
, (4.10)

◦
V := V ∩H1

0(Ω), (4.11)

where Pk denotes the linear space of polynomials in d variables of degree no higher than

a positive integer k. We consider p to be a fixed integer and denote by

◦
N := dim

◦
V (4.12)

N := dimV (4.13)
•
N := N −

◦
N. (4.14)

4.1.3.1 Remark (black and white notation). The notation we are using in this chapter

to try to keep things as clear as possible is that a function
◦
φ has a support only on the

“interior of Ω”, i.e.,
◦
φ
∣∣∣
∂Ω

= 0. A function
•
φ has support only “close to ∂Ω”. In practice we

only use this notation for finite element basis functions. If a finite element basis function

has no such accent then it does not have the restrictions described.

In view of Remark 4.1.3.1 we define

◦
Φ := (

◦
Φ1, ...,

◦
Φ ◦

N
)
ᵀ
, (4.15)

Φ := (
◦
Φ1, ...,

◦
Φ ◦

N
,
•
Φ1, ...,

•
Φ •

N
)
ᵀ

and (4.16)
•
Φ := (

•
Φ1, ...,

•
Φ •

N
)
ᵀ

(4.17)

where {
◦
Φ1, ...,

◦
Φ ◦

N
} and {

◦
Φ1, ...,

◦
Φ ◦

N
,
•
Φ1, ...,

•
Φ •

N
} form a basis of

◦
V and V respectively. We

see that
◦
Φ,Φ and

•
Φ are all vectors of basis functions.

4.1.3.2 Remark (algebraic notation). We will use a similar notation convention for

scalars, vectors and matrices. In this case these objects will be associated to functions

satisfying the restrictions above. For example
•
N denotes the number of degrees of freedom

of V lying on ∂Ω.

We also use a separate notation for “geometric” and “numerical” matrices. We denote a

matrix X ∈ Rd×d to be a geometric matrix, where d = 1, 2, 3, notice the slanted notation.
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For example the matrix A is a geometric matrix. We denote a matrix X ∈ RN×N to be

a numerical matrix, where N = dimV, notice the upright notation. For example a mass

matrix M is a numerical matrix.

In the case of numerical matrices we use the “black and white” notation as a method

of quickly assessing the dimension of the matrix, for example the matrix
◦•
B ∈ R

◦
N×

•
N .

This notation becomes especially useful in clarifying the linear algebra arguments in

§4.2.

Testing the model problem (4.1) with φ ∈ C∞(Ω) gives

〈L u, φ〉 =
〈
A:D2u, φ

〉
= 〈f, φ〉 in Ω

u = 0 on ∂Ω.
(4.18)

In order to discretise (4.18) with
◦
V we shall use an appropriate definition of a Hessian of

a finite element function. Such a function may not admit a Hessian in the classical sense,

so we consider it as a distribution (or generalised function) which we recall the definition,

next, and then Riesz–represent it in the FE space itself.

4.1.3.3 Definition (generalised Hessian). Let n : ∂Ω → Rd be the outward pointing

normal of Ω. Given a piecewise smooth and continuous function v its generalised Hessian,

defined in the distributional sense, is given by〈
D2v |φ

〉
= −〈∇v ⊗∇φ〉+ 〈∇v ⊗ nφ〉∂Ω ∀ φ ∈ C∞(Ω), (4.19)

where we are using x ⊗ y := xyᵀ to denote the tensor product between two vectors

x and y, and 〈f〉 =
∫
Ω f as indicated in §4.1.1.

4.1.3.4 Definition (finite element Hessian). We define the finite element Hessian as

follows. Let V ∈
◦
V then

〈H[V ],Φ〉 := −〈∇V ⊗∇Φ〉+ 〈∇V ⊗ n Φ〉∂Ω ∀ Φ ∈ V. (4.20)

It follows that H is a linear operator on
◦
V.

Taking the model problem (4.18) we substitute the finite element Hessian directly,

reducing the space of test functions to
◦
V, we wish to find U ∈

◦
V such that〈

A:H[U ],
◦
Φ
〉

=
〈
f,

◦
Φ
〉

∀
◦
Φ ∈

◦
V. (4.21)
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4.1.3.5 Theorem (nonvariational finite element method (NVFEM)). The nonvariational

finite element solution for the model problem’s discretisation (4.21) is given as U =
◦
Φ

ᵀ
u,

where u ∈ R
◦
N is the solution to the following linear system

◦◦
D

◦
u :=

d∑
α=1

d∑
β=1

◦
BαβM−1

◦
Cαβ

◦
u =

◦
f. (4.22)

Let A = [aαβ ]dαβ=1, the components of (4.22) are then given by

◦
Bαβ :=

〈 ◦
Φ, aαβΦᵀ

〉
∈ R

◦
N×N , (4.23)

M := 〈Φ,Φᵀ〉 ∈ RN×N , (4.24)
◦
Cαβ := −

〈
∂βΦ, ∂α

◦
Φ

ᵀ〉
+
〈
Φnβ, ∂α

◦
Φ

ᵀ〉
∂Ω
∈ RN×

◦
N , (4.25)

◦
f :=

〈
f,

◦
Φ
〉
∈ R

◦
N . (4.26)

Proof Since H[U ] ∈ Vd×d we will denote H[U ] = [Hαβ [U ]]dαβ=1 for each α, β = 1, . . . , d

, Hαβ [U ] = Φᵀhαβ . Then, testing (4.21) with
◦
Φ,

〈
f,

◦
Φ
〉

=
d∑

α=1

d∑
β=1

〈
aαβHαβ [U ],

◦
Φ
〉

=
d∑

α=1

d∑
β=1

〈 ◦
Φ, aαβΦᵀhαβ

〉

=
d∑

α=1

d∑
β=1

〈 ◦
Φ, aαβΦᵀ

〉
hαβ .

=
d∑

α=1

d∑
β=1

◦
Bαβhαβ

(4.27)

Utilising Definition 4.1.3.4 for each α, β = 1 . . . d we can compute hαβ ∈ RN , noting

U =
◦
Φ

ᵀ
u,

〈Φ,Φᵀ〉hαβ = 〈Φ,Hαβ [U ]〉

= −〈∂βΦ, ∂αU〉+ 〈Φnβ, ∂αU〉∂Ω

=
(
−
〈
∂βΦ, ∂α

◦
Φ

ᵀ〉
+
〈
Φnβ, ∂α

◦
Φ

ᵀ〉
∂Ω

)
◦
u.

(4.28)

Using the definition of M (4.24) and
◦
Cαβ (4.25) we see that for each α, β = 1 . . . d, we

have

Mhαβ =
◦
Cαβ

◦
u, (4.29)
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i.e.,

hαβ = M−1
◦
Cαβ

◦
u. (4.30)

Substituting hαβ from (4.29) into (4.27) we obtain the desired result.

To further illustrate the method we present the discretisation of some simple examples.

4.1.3.6 Example (for d = 1 and general A). In this example we consider the problem

a(x)∆u = f in Ω

u = 0 on ∂Ω.
(4.31)

Here we are looking at the case d = 1 to clarify the situation for general operators. In

this instance we discretise the problem by seeking U ∈
◦
V such that〈

f,
◦
Φ
〉

=
〈
a(x)H[U ],

◦
Φ
〉

∀
◦
Φ ∈

◦
V. (4.32)

We proceed by discretising this problem in a similar fashion to the Proof of Theorem

4.1.3.5.
◦
f :=

〈
f,

◦
Φ
〉

=
〈 ◦
Φ, a(x)Φᵀh

〉
=
〈 ◦
Φ, a(x)Φᵀ

〉
h.

(4.33)

Setting
◦
B :=

〈 ◦
Φ, a(x)Φᵀ

〉
(4.34)

the finite element coefficient vector is given as the solution of the following linear system:

Find ◦
u such that

◦
BM−1

◦
C

◦
u =

◦
f. (4.35)

4.1.3.7 Example (for d = 1 and general A). To further clarify the notation we use, we

will follow Example (4.1.3.6) using a more standard notation.

Recall that H[U ] ∈ V so we may write

H[U ] =
N∑

j=1

hjΦj . (4.36)

Also U ∈
◦
V so it follows

U =

◦
N∑

j=1

uj

◦
Φj . (4.37)
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As in the previous example we note that

fi :=
〈
f,

◦
Φi

〉
=

〈
◦
Φi, a(x)

N∑
j=1

hjΦj

〉

=
N∑

j=1

〈 ◦
Φi, a(x)Φj

〉
hj

=:
N∑

j=1

◦
Bi,jhj ∀ i = [1 :

◦
N ],

(4.38)

where now we use
◦
Bi,j to denote the i, j-th component of

◦
B. Now from Definition 4.1.3.4

of the finite element Hessian it is clear〈
Φi,

N∑
j=1

hjΦj

〉
= −

〈 ◦
N∑

j=1

◦
uj∇

◦
Φj ,∇Φi

〉
+

〈 ◦
N∑

j=1

◦
uj∇

◦
Φj ,Φin

〉
∂Ω

∀i = [1 : N ]. (4.39)

Hence we see
N∑

j=1

〈Φi,Φj〉hj =

◦
N∑

j=1

(
−
〈
∇Φi,∇

◦
Φj

〉
+
〈
∇

◦
Φj ,Φin

〉
∂Ω

)
◦
uj ∀ i = [1 : N ]. (4.40)

Which gives us that
N∑

j=1

Mi,jhj =

◦
N∑

j=1

◦
Ci,j

◦
uj ∀ i = [1 : N ]. (4.41)

Combining (4.38) and (4.41) gives the desired result from Example (4.1.3.6).

We refrain from using this notation as it becomes extremely cumbersome especially for

d > 1.

4.1.3.8 Example (for d = 2 and A = −I). In this example we consider the problem

−∆u = f in Ω

u = 0 on ∂Ω.
(4.42)

The discrete formulation of this problem (in view of (4.21) ) is: Find U ∈
◦
V such that〈

− trace H[U ],
◦
Φ
〉

=
〈
f,

◦
Φ
〉

∀
◦
Φ ∈

◦
V. (4.43)

We proceed along the same lines as the previous examples.
◦
f :=

〈
f,

◦
Φ
〉

=
〈
− trace H[U ],

◦
Φ
〉

=
d∑

α=1

〈 ◦
Φ,Φᵀhα,α

〉
=

d∑
α=1

〈 ◦
Φ,Φᵀ

〉
hα,α.

(4.44)
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Recall from (4.30) we have the coefficient vector of the finite element Hessian hα,α explic-

itly given in terms of that of the finite element coefficient vector ◦
u, thus if we define

◦
B:=

〈 ◦
Φ,Φᵀ

〉
(4.45)

we see the finite element coefficient vector is given as the solution of the following linear

system: Find ◦
u such that

d∑
α=1

◦
BM−1

◦
Cαα

◦
u =

◦
f. (4.46)

Note that although the matrix
◦
B resembles the mass matrix M they are not equal since

◦
B ∈ R

◦
N×N but M ∈ RN×N . Although later in this Chapter, specifically in Theorem

4.3.0.5, it will be shown that for simple problems, like the Laplacian, this system is

equivalent to a simpler one, that of the standard finite element stiffness matrix.

4.1.3.9 Example (for d = 2 and general A). For a general elliptic operator of the form

A:D2u = f in Ω

u = 0 on ∂Ω
(4.47)

the formulation (4.22) takes the form(◦
B11M−1

◦
C11 +

◦
B22M−1

◦
C22 +

◦
B12M−1

◦
C12 +

◦
B21M−1

◦
C21

)
◦
u =

◦
f. (4.48)

4.2 Solution of the linear system

4.2.0.10 Remark (solving (4.22) is computationally intense). The system matrix
◦◦
D =∑∑ ◦

BαβM−1
◦
Cαβ (4.22) is generally not sparse, ruling out the use of efficient iterative

solvers.

In this section we will present a method to solve formulation (4.22) in a general setting.

This method makes use of the sparsity of the component matrices
◦
Bαβ ,

◦
Cαβ and M.

4.2.0.11 Remark (diagonalising
◦◦
D). An interesting point of note is that if the mass ma-

trix M were diagonalised, by mass lumping, then for each α and β the matrix
◦
BαβM−1

◦
Cαβ

would still be sparse (albeit less so than the individual matrices
◦
Bαβ and

◦
Cαβ). Hence
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the system can be easily solved using existing sparse methods. However mass lumping

is only applicable to P1 finite elements and since it is a quadrature approximation we

loose resolution for more complicated problems. For higher order finite elements it would

be desirable to exploit the sparse structure of the component matrices that make up the

system.

4.2.1 A generalised Schur complement

We observe the matrix
◦◦
D in the system (4.22) is a sum of Schur complements

◦
BαβM−1

◦
Cαβ .

With that in mind we introduce the (d2 + 1)2 block matrix

E =



M 0 · · · 0 0 · · · 0 0 −
◦
C11

0 M · · · 0 0 · · · 0 0 −
◦
C12

...
...

. . .
...

...
. . .

...
...

...

0 0 · · · M 0 · · · 0 0 −
◦
C1d

0 0 · · · 0 M · · · 0 0 −
◦
C21

...
...

. . .
...

...
. . .

...
...

...

0 0 · · · 0 0 · · · M 0 −
◦
Cdd−1

0 0 . . . 0 0 · · · 0 M −
◦
Cdd

◦
B11

◦
B12 . . .

◦
B1d

◦
B21 . . .

◦
Bdd−1

◦
Bdd 0



. (4.49)

4.2.1.1 Lemma (generalised Schur complement). Given

v =
[
h1,1,h1,2, . . . ,hd,d−1,hd,d,

◦
u

]ᵀ

, (4.50)

b =
[
0, 0 . . . , 0, 0,

◦
f

]ᵀ

, (4.51)

solving the system

◦◦
D

◦
u =

d∑
α=1

d∑
β=1

◦
BαβM−1

◦
Cαβ

◦
u =

◦
f, (4.52)

is equivalent to solving

Ev = b (4.53)

for
◦
u.



4.2 Solution of the linear system 83

Proof The proof is just block Gaussian elimination on E. Left-multiplying the first d2

rows by M−1 yields

I 0 · · · 0 0 −M−1
◦
C11

0 I · · · 0 0 −M−1
◦
C12

...
...

. . .
...

...
...

0 0 · · · I 0 −M−1
◦
Cdd−1

0 0 . . . 0 I −M−1
◦
Cdd

◦
B11

◦
B12 . . .

◦
Bdd−1

◦
Bdd 0





h1,1

h1,2

...

hd,d−1

hd,d

◦
u


=



0

0
...

0

0
◦
f


. (4.54)

Multiplying the i-th row by the i-th entry of the (d2 + 1)-th row for i = 1, . . . , d2

◦
B11 0 · · · 0 0 −

◦
B11M−1

◦
C11

0
◦
B12 · · · 0 0 −

◦
B12M−1

◦
C12

...
...

. . .
...

...
...

0 0 · · ·
◦
Bdd−1 0 −

◦
Bdd−1M−1

◦
Cdd−1

0 0 . . . 0
◦
Bdd −

◦
BddM−1

◦
Cdd

◦
B11

◦
B12 . . .

◦
Bdd−1

◦
Bdd 0





h1,1

h1,2

...

hd,d−1

hd,d

◦
u


=



0

0
...

0

0
◦
f


. (4.55)

Subtracting each of the first d2 rows from the (d2 +1)-th row reduces the system into row

echelon form

◦
B11 0 · · · 0 0 −

◦
B11M−1

◦
C11

0
◦
B12 · · · 0 0 −

◦
B12M−1

◦
C12

...
...

. . .
...

...
...

0 0 · · ·
◦
Bdd−1 0 −

◦
Bdd−1M−1

◦
Cdd−1

0 0 . . . 0
◦
Bdd −

◦
BddM−1

◦
Cdd

0 0 . . . 0 0
◦◦
D





h1,1

h1,2

...

hd,d−1

hd,d

◦
u


=



0

0
...

0

0
◦
f


. (4.56)

4.2.1.2 Remark (structure of the block matrix). In fact this method for the solution

of the system
◦◦
D

◦
u =

◦
f is not surprising given the discretisation presented in the proof of

Theorem 4.1.3.5 is equivalent to the following system:

Find U ∈
◦
V and H[U ] ∈ Vd×d such that

〈H[U ],Φ〉 = −〈∇U ⊗∇Φ〉+ 〈∇U ⊗ n Φ〉∂Ω ∀ Φ ∈ V〈
A:H[U ],

◦
Φ
〉

=
〈
f,

◦
Φ
〉

∀
◦
Φ ∈

◦
V.

(4.57)
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4.2.1.3 Remark (complexity of the block matrix E). Observe E is a (d2 + 1)2 block

matrix. We can use the symmetry of the problem to reduce the dimension of E. Recall

that A ∈ Sym+(Rd×d), this implies for each α, β = 1, . . . , d that
◦
Bαβ =

◦
Bβα. From

Definition 4.1.3.4, H[U ] ∈ Sym+(Rd×d) giving for each α, β = 1, . . . , d that
◦
Cαβ =

◦
Cβα.

Hence the system matrix can be simplified to

◦◦
D

◦
u =

d∑
α=1

◦
BααM−1

◦
Cαα

◦
u + 2

d∑
α=1

d∑
β>α

◦
BαβM−1

◦
Cαβ

◦
u. (4.58)

Upon applying the same Schur complement argument given in the proof of Lemma 4.2.1.1

the size of E is reduced to ((d2 + d)/2 + 1)2.

4.2.1.4 Remark (storage issues). We will be using the generalised minimal residual

method (GMRES) to solve this system. The GMRES, as with any iterative solver, requires

a subroutine to compute a matrix-vector multiplication. Hence we need to store the

component matrices
◦
Bαβ ,

◦
Cαβ and M.

4.3 Invertibility of the system

In this section we will show the system (4.22) and by Lemma 4.2.1.1 the equivalent block

system (5.41) are both well posed.

4.3.0.5 Theorem (equivalence to the standard FEM). In the case that the problem

coefficients in (4.18) are (piecewise) constant then the problem

A:D2u = div A∇u (4.59)

and the nonvariational finite element solution coincides with that of the standard finite

element method. That is
◦
u solves both

◦◦
D

◦
u =

◦
f (4.60)

and
◦◦
S
◦
u =

◦
f. (4.61)

Where
◦◦
S =

d∑
α,β=1

〈
∂β

◦
Φ, aα,β∂α

◦
Φ

ᵀ〉
(4.62)

is the standard finite element stiffness matrix.
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Proof For clarity we will first present the case when d = 1 and A = −I. We work on the

equivalent block system M −
◦
C

◦
B 0

h

◦
u

 =

0
◦
f

 . (4.63)

We are going to assume the matrix is ordered such that we may split the components of

the block system as follows

M =

◦◦
M

◦•
M

•◦
M

••
M

◦
C =

◦◦
C

•◦
C

◦
B = ◦◦

B
◦•
B

Hence the system we will study is given as
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◦◦
M

◦•
M

•◦
M

••
M

◦◦
C

•◦
C

◦◦
B

◦•
B 0

h

◦
u

0

◦
f

=

where our algebraic notation comes from Remark 4.1.3.2 so

◦◦
B,

◦◦
M,

◦◦
C ∈ R

◦
N×

◦
N (4.64)

◦•
B,

◦•
M ∈ R

◦
N×

•
N (4.65)

•◦
M,

•◦
C ∈ R

•
N×

◦
N (4.66)

••
M ∈ R

•
N×

•
N . (4.67)

We begin by reducing the block system
◦◦
M

◦•
M −

◦◦
C

•◦
M

••
M −

•◦
C

◦◦
B

◦•
B 0



◦
h
•
h

◦
u

 =


0

0
◦
f

 (4.68)

into echelon form. Multiplying the first row by
•◦
M

◦◦
M−1 and subtracting the result from

the second row gives
◦◦
M

◦•
M −

◦◦
C

0
••
M−

•◦
M

◦◦
M−1

◦•
M −

•◦
C +

•◦
M

◦◦
M−1

◦◦
C

◦◦
B

◦•
B 0



◦
h
•
h

◦
u

 =


0

0
◦
f

 . (4.69)
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Multiplying the first row by
◦◦
B

◦◦
M−1 and subtracting the result from the third row gives

◦◦
M

◦•
M −

◦◦
C

0
••
M−

•◦
M

◦◦
M−1

◦•
M −

•◦
C +

•◦
M

◦◦
M−1

◦◦
C

0
◦•
B−

◦◦
B

◦◦
M−1

◦•
M

◦◦
B

◦◦
M−1

◦◦
C



◦
h
•
h

◦
u

 =


0

0
◦
f

 . (4.70)

Finally multiplying the second row by
(◦•
B−

◦◦
B

◦◦
M−1

◦•
M
)( ••

M−
•◦
M

◦◦
M−1

◦•
M
)−1

and taking the

result from the third row results in

◦◦
M

◦•
M −

◦◦
C

0
••
M−

•◦
M

◦◦
M−1

◦•
M −

•◦
C +

•◦
M

◦◦
M−1

◦◦
C

0 0
◦◦
B

◦◦
M−1

◦◦
C+(◦•

B−
◦◦
B

◦◦
M−1

◦•
M
)( ••

M−
•◦
M

◦◦
M−1

◦•
M
)−1 (•◦

C−
•◦
M

◦◦
M−1

◦◦
C
)



◦
h
•
h

◦
u

 =


0

0
◦
f

 .
(4.71)

Since A = −I, it follows that

◦◦
B =

〈 ◦
Φ,A

◦
Φ

ᵀ〉
= −

〈 ◦
Φ,

◦
Φ

ᵀ〉
= −

◦◦
M and

◦•
B =

〈 ◦
Φ,A

•
Φ

ᵀ〉
= −

〈 ◦
Φ,

•
Φ

ᵀ〉
= −

◦•
M

(4.72)

from this we deduce that
◦•
B−

◦◦
B

◦◦
M−1

◦•
M = 0 (4.73)

and thus (◦•
B−

◦◦
B

◦◦
M−1

◦•
M
)( ••

M−
•◦
M

◦◦
M−1

◦•
M
)−1 (•◦

C−
•◦
M

◦◦
M−1

◦◦
C
)

= 0. (4.74)

Now the block system is given as follows
◦◦
M

◦•
M −

◦◦
C

0
••
M−

•◦
M

◦◦
M−1

◦•
M −

•◦
C +

•◦
M

◦◦
M−1

◦◦
C

0 0 −
◦◦
C



◦
h
•
h

◦
u

 =


0

0
◦
f

 . (4.75)

The result follows from noticing that since no contribution of
◦◦
C is assembled on ∂Ω and

hence

−
◦◦
C =

d∑
α,β=1

〈
∂β

◦
Φ, ∂α

◦
Φ

ᵀ〉
=

◦◦
S. (4.76)
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The argument for d > 1 and general constant operator A follows the same lines. We

consider the block system

◦◦
M

◦•
M . . . 0 0 −

◦◦
C1,1

•◦
M

••
M . . . 0 0 −

•◦
C1,1

...
...

. . .
...

...
...

0 0 . . .
◦◦
M

◦•
M −

◦◦
Cd,d

0 0 . . .
•◦
M

••
M −

•◦
Cd,d

◦◦
B1,1

◦•
B1,1 . . .

◦◦
Bd,d

◦•
Bd,d 0





◦
h1,1
•
h1,1

...
◦
hd,d
•
hd,d

◦
u


=



0

0
...

0

0
◦
f


(4.77)

and proceed by conducting block Gaussian elimination. Let us define

◦◦
Fαβ :=

(◦•
Bα,β −

◦◦
Bα,β

◦◦
M−1

◦•
M
)( ••

M−
•◦
M

◦◦
M−1

◦•
M
)−1 (•◦

Cα,β −
•◦
M

◦◦
M−1

◦◦
Cα,β

)
, (4.78)

then the resultant system is
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             ◦
◦ M

◦
• M

..
.

0
0

−
◦
◦ C
1
,1

0
•
• M
−

•
◦ M
◦
◦ M
−

1
◦
• M

..
.

0
0

−
•
◦ C
1
,1

+
•
◦ M
◦
◦ M
−

1
◦
◦ C
1
,1

. . .
. . .

. .
.

. . .
. . .

. . .

0
0

..
.

◦
◦ M

◦
• M

−
◦
◦ C
d
,d

0
0

..
.

0
•
• M
−

•
◦ M
◦
◦ M
−

1
◦
• M

−
•
◦ C
d
,d

+
•
◦ M
◦
◦ M
−

1
◦
◦ C
d
,d

0
0

..
.

0
0

∑ d α
=

1

∑ d β
=

1

[ ◦◦ B
α

,β
◦
◦ M
−

1
◦
◦ C
α

,β
+

◦
◦ F
α

β

]                          ◦ h
1
,1

• h
1
,1 . . .

◦ h
d
,d

• h
d
,d ◦ u

             =

             0 0 . . . 0 0 ◦ f             
(4

.7
9)



4.3 Invertibility of the system 90

Recall

A =
[
aα,β

]d
α,β=1

(4.80)

then for each α, β = 1, . . . , d the matrices

◦•
Bα,β = aα,β

◦•
M and (4.81)

◦◦
Bα,β = aα,β

◦◦
M. (4.82)

Thus for each α, β = 1, . . . , d the matrices(◦•
Bα,β −

◦◦
Bα,β

◦◦
M−1

◦•
M
)

= 0 (4.83)

and we see for each α, β = 1, . . . , d
◦◦
Fαβ = 0. (4.84)

Now note

d∑
α=1

d∑
β=1

◦◦
Bα,β

◦◦
M−1

◦◦
Cα,β =

d∑
α=1

d∑
β=1

aα,β
◦◦
M

◦◦
M−1

◦◦
Cα,β

=
d∑

α=1

d∑
β=1

aα,β
◦◦
Cα,β

=
◦◦
S,

(4.85)

which concludes the proof.

We will now state some fundamental results which we will use to prove the invertibility

of E for general elliptic problems.

4.3.0.6 Lemma (invertibility of block matrices and their Schur complements). Given a

matrix P with the block structure

P =

Q R

S T

 (4.86)

where Q is nonsingular. Then P is invertible if and only if its Schur complement

T− SQ−1R (4.87)

is invertible.
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Proof Due to the nonsingular nature of Q it is sufficient to show that

detP = det
(
T− SQ−1R

)
detQ. (4.88)

To show this we use block Gaussian elimination on P. Left–multiplying the first block

row by Q−1 gives  I Q−1R

S T

 . (4.89)

Left–multiplying the first block row by S and subtracting the result from the second block

row gives  I Q−1R

0 T− SQ−1R

 . (4.90)

Thus we see  Q−1 0

−SQ−1 I

Q R

S T

 =

 I Q−1R

0 T− SQ−1R

 . (4.91)

Taking determinants it follows

detQ−1 detP = det
(
T− SQ−1R

)
, (4.92)

concluding the proof.

4.3.0.7 Corollary (invertibility of the principal minor). Given a matrix P with the block

structure

P =

Q R

S T

 . (4.93)

If P is invertible and the Schur complement of P , T− SQ−1R, is also invertible, then Q

is invertible.

Proof The result follows from the proof of Lemma 4.3.0.6.

4.3.0.8 Lemma (invertibility of
••
M−

•◦
M

◦◦
M−1

◦•
M). The term

••
M−

•◦
M

◦◦
M−1

◦•
M (4.94)

appearing on the diagonal of (4.79) is positive definite and hence invertible.



4.3 Invertibility of the system 92

Proof Note that
••
M−

•◦
M

◦◦
M−1

◦•
M (4.95)

is the Schur complement of the block matrix

M =

 ◦◦
M

◦•
M

•◦
M

••
M

 . (4.96)

Recall the mass matrices M and
◦◦
M are both Gram matrices (Definition A.1.0.10) and

thus positive definite hence invertible. The result now follows immediately from Lemma

4.3.0.6.

4.3.0.9 Corollary (invertibility of E for simple problems). If the problem coefficients in

(4.18) are piecewise constant, the problem

A:D2u = div A∇u (4.97)

and the block matrix arising from discretising this problem, E, is invertible.

Proof Upon reducing E is block echelon form, it is sufficient to show each component on

the diagonal is invertible.

From (4.79) in the proof of Theorem 4.3.0.5 we see the only terms on the diagonal of

the reduced matrix echelon(E) are

◦◦
M (4.98)

••
M−

•◦
M

◦◦
M−1

◦•
M and (4.99)

d∑
α=1

d∑
β=1

[◦◦
Bα,β

◦◦
M−1

◦◦
Cα,β +

◦◦
Fαβ

]
. (4.100)

Recall from Theorem 4.3.0.5 for the class of problem we consider in this Corollary for each

α, β = 1, . . . d,
◦◦
Fαβ = 0 and

◦◦
Bα,β

◦◦
M−1

◦◦
Cα,β =

◦◦
S. Both

◦◦
M and

◦◦
S are Grammian matrices

and guaranteed invertible. The term
••
M−

•◦
M

◦◦
M−1

◦•
M is also invertible from Lemma 4.3.0.8,

concluding the proof.

4.3.0.10 Remark (towards showing invertibility of E). Showing invertibility of E directly

for general problems is not a trivial task. This Remark is aimed at demonstrating the

difficulties that arise in the simple case for d = 1.
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Recall from the Proof of Theorem 4.3.0.5 we split the block matrix

E =


◦◦
M

◦•
M −

◦◦
C

•◦
M

••
M −

•◦
C

◦◦
B

◦•
B 0

 . (4.101)

Applying block Gaussian elimination results in

◦◦
M

◦•
M −

◦◦
C

0
••
M−

•◦
M

◦◦
M−1

◦•
M −

•◦
C +

•◦
M

◦◦
M−1

◦◦
C

0 0
◦◦
B

◦◦
M−1

◦◦
C+(◦•

B−
◦◦
B

◦◦
M−1

◦•
M
)( ••

M−
•◦
M

◦◦
M−1

◦•
M
)−1 (•◦

C−
•◦
M

◦◦
M−1

◦◦
C
)

 . (4.102)

To show E is positive definite is equivalent to showing that each element on the diagonal

of (4.102) is positive definite.

We have already shown that
◦◦
M and

••
M −

•◦
M

◦◦
M−1

◦•
M are positive definite in Lemma

4.3.0.8. It remains to show the term

◦◦
B

◦◦
M−1

◦◦
C +

(◦•
B−

◦◦
B

◦◦
M−1

◦•
M
)( ••

M−
•◦
M

◦◦
M−1

◦•
M
)−1 (•◦

C−
•◦
M

◦◦
M−1

◦◦
C
)

(4.103)

is positive definite. First we will study the major component
◦◦
B

◦◦
M−1

◦◦
C and show

◦◦
B

◦◦
M−1

◦◦
C

is the product of positive definite matrices.

Due to the ellipticity of A, there exists an α0 > 0 such that

ξᵀAξ > α0 |ξ|2 ∀ ξ ∈ Rd/0. (4.104)

From this the matrix
◦◦
B is nothing but a perturbation of the mass matrix

◦◦
M. Recall that

◦◦
Bi,j =

∫
Ω

◦
Φi(x)A(x)

◦
Φj(x) dx

>

∫
Ω

◦
Φi(x)α0

◦
Φj(x) dx

> α0

∫
Ω

◦
Φi(x)

◦
Φj(x) dx

> α0

◦◦
Mi,j

(4.105)

and hence
◦◦
B must be positive definite. The term

◦◦
C coincides with the standard finite

element stiffness matrix for the case d = 1 and hence is a Grammian and thus positive

definite.
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At the time of writing we are unable to prove any kind of invertibility on the term(◦•
B−

◦◦
B

◦◦
M−1

◦•
M
)( ••

M−
•◦
M

◦◦
M−1

◦•
M
)−1 (•◦

C−
•◦
M

◦◦
M−1

◦◦
C
)
. (4.106)

The difficulty comes from the fact both

◦•
B−

◦◦
B

◦◦
M−1

◦•
M and (4.107)

•◦
C−

•◦
M

◦◦
M−1

◦◦
C (4.108)

are rectangular. Although the matrix (4.106) does have some nice properties. Notice

(4.106) is itself the Schur complement of the block matrix ••
M−

•◦
M

◦◦
M−1

◦•
M −

•◦
C +

•◦
M

◦◦
M−1

◦◦
C

◦•
B−

◦◦
B

◦◦
M−1

◦•
M 0

 . (4.109)

Also note that the components are themselves Schur complements.

◦•
B−

◦◦
B

◦◦
M−1

◦•
M is the Schur complement of

 ◦◦
M

◦•
M

◦◦
B

◦•
B

 , (4.110)

••
M−

•◦
M

◦◦
M−1

◦•
M is the Schur complement of

 ◦◦
M

◦•
M

•◦
M

••
M

 and (4.111)

•◦
C−

•◦
M

◦◦
M−1

◦◦
C is the Schur complement of

 ◦◦
M

◦◦
C

•◦
M

•◦
C

 . (4.112)

4.3.0.11 Remark (“indirectly” showing invertibility of E). The rectangular nature of the

components discussed in Remark 4.3.0.10 make showing E is invertible at best extremely

difficult. We propose to circumvent this difficulty by making use of Corollary 4.3.0.7,

expanding the matrix E such that each component becomes square and showing that this

enlarged matrix is invertible.

4.3.0.12 Theorem (invertibility of D̃). The matrix

D̃ :=
d∑

α=1

d∑
β=1

BαβM−1Cαβ (4.113)

is positive definite and hence invertible.
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Proof The case for d = 1 follows the same lines as that of Remark 4.3.0.10.

For d > 1 the proof is more delicate. We introduce three block matrices which take the

form

B :=


B11 . . . B1d

...
. . .

...

Bd1 . . . Bdd

 ∈ RdN×dN (4.114)

M := M−1I ∈ RdN×dN (4.115)

C :=


C11 . . . Cd1

...
. . .

...

C1d . . . Cdd

 ∈ RdN×dN. (4.116)

Observe

trace (BMC) =
d∑

α=1

d∑
β=1

BαβM−1Cαβ . (4.117)

We will then proceed with the proof under the observation that if we can show B, M,

C are positive definite matrices then the trace (BMC) must also be positive definite.

From Lemma 4.3.0.8 it is clear that M is a positive definite matrix. From this we know

M−1 is also positive definite and hence M is positive definite.

The matrix C is positive definite since it forms a stiffness matrix.

The matrix B is positive definite due to the ellipticity of A. We will use i, j to denote

the “numerical” components of B, that is, we define

Bij =


B11

ij . . . B1d
ij

...
. . .

...

Bd1
ij . . . Bdd

ij

 . (4.118)

In this case we want to show there exists an α0 > 0 such that

ξᵀBijξ > α0 |ξ|2 ∀ ξ ∈ Rd/{0}, ∀ i, j = 1, . . . N. (4.119)
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Writing B componentwise (geometrically)

ξᵀBijξ =
[
ξ1 . . . ξd

]
B11

ij . . . B1d
ij

...
. . .

...

Bd1
ij . . . Bdd

ij



ξ1
...

ξd



=
[
ξ1 . . . ξd

]
∫
Ω Φj(x)a11(x)Φi(x) dx . . .

∫
Ω Φj(x)a1d(x)Φi(x) dx

...
. . .

...∫
Ω Φj(x)ad1(x)Φi(x) dx . . .

∫
Ω Φj(x)add(x)Φi(x) dx



ξ1
...

ξd

 ,
(4.120)

by the definition of the component matrices Bαβ . Now

ξᵀBijξ =
[
ξ1 . . . ξd

] ∫
Ω

Φj(x)


a11 . . . a1d

...
. . .

...

ad1 . . . add

Φi(x) dx


ξ1
...

ξd



=
∫

Ω
Φj(x)

[
ξ1 . . . ξd

]
a11 . . . a1d

...
. . .

...

ad1 . . . add



ξ1
...

ξd

Φi(x) dx

>

∫
Ω

Φj(x)α0 |ξ|2 Φi(x) dx

> α0 |ξ|2 Mi,j ,

(4.121)

by the ellipticity of A and definition of the mass matrix M. Positivity is guaranteed by

the positivity of the mass matrix.

4.3.0.13 Corollary (invertibility of Ẽ). The block matrix

Ẽ =



M 0 . . . 0 −C11

0 M . . . 0 −C12

...
...

. . .
...

...

0 0 . . . M −Cdd

B11 B12 . . . Bdd 0


(4.122)

is invertible.

Proof The proof is the same calculations as in Lemma 4.2.1.1 to show the system

D̃u = f (4.123)
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is equivalent to the block system

Ẽṽ = b̃ (4.124)

and hence if D̃ is invertible, Ẽ, must also be.

4.3.0.14 Corollary (invertibility of E). Combining the results of Corollary 4.3.0.13 and

Corollary 4.3.0.7 we see the matrix E is always invertible assuring the NVFE solution is

well posed.

Proof The extended block matrix is defined as

Ẽ =

E
•
E

•
E 0

 (4.125)

where

•
E =

[
•
B11, . . . ,

•
Bdd, 0

]ᵀ

(4.126)

•
E =

[
−

•
C11, . . . ,−

•
Cdd, 0

]ᵀ

. (4.127)

Hence we may apply Corollary 4.3.0.7 noticing Ẽ is invertible from Corollary 4.3.0.13 and

D̃, the Schur complement of Ẽ is also invertible.

4.3.0.15 Remark (condition number). The convergence rate of an iterative solver ap-

plied to a linear system Nv = g will depend on the condition number κ(N), defined as

the ratio of the maximum and minimum eigenvalues of N:

κ(N) :=
λmax

λmin
. (4.128)

Numerically we observe the condition number of the block matrix κ(E) ≤ Ch−2 (see

Table 4.1).

4.4 Inhomogeneous Dirichlet boundary values

Given additional problem data g ∈ C0(Ω), to solve

L u = f in Ω,

u = g on ∂Ω,
(4.129)
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it is not immediate how to enforce the boundary conditions.

We have derived two approaches to tackle the implementation of inhomogeneous bound-

ary values.

The first is a direct extension of the method presented in §4.2 for homogeneous bound-

ary conditions. In this case we directly enforce the boundary values into the system matrix.

This method is very practical, in fact many finite element codes enforce boundary data

in an analogous way [SS05].

The second approach is a more natural method, it involves adding singular blocks onto

the system matrix to make each component square analogously to the method used to

prove invertibility in the previous section. In this case boundary conditions are enforced

in a much weaker sense. When the mesh is under resolved we see very mild “oscillations”

over the boundary, as illustrated in Figure 4.1. As the mesh is refined though note these

“oscillations” dissipate. This is very reminiscent of Nitsche’s method.

4.4.1 Method 1 - directly enforcing boundary conditions into the sys-

tem matrix

As before we will illustrate the method with an example for d = 1 and after present the

case for general dimension. We split the matrices as follows

Ev = by
◦◦
M

◦•
M −

◦◦
C

•◦
M

••
M −

•◦
C

◦◦
B

◦•
B 0



◦
h
•
h

◦
u

 =


0

0
◦
f

 .
To enforce the boundary conditions we must add one extra row and column into the

system to account for the values of •
u as follows

◦◦
M

◦•
M −

◦◦
C −

◦•
C

•◦
M

••
M −

•◦
C −

••
C

◦◦
B

◦•
B 0 0

0 0 0 I





◦
h
•
h

◦
u

•
u

 =


0

0
◦
f

•
g

 . (4.130)
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We may then eliminate the bottom row and reduce the system back to one of the same

complexity as the original E as follows
◦◦
M

◦•
M −

◦◦
C

•◦
M

••
M −

◦•
C

◦◦
B

◦•
B 0



◦
h
•
h

◦
u

 =


◦•
C
•
g

••
C
•
g
◦
f

 , (4.131)

setting •
u = •

g upon solution of the system.

In general dimension the linear system resulting from discretising the inhomogeneous

Dirichlet problem (4.129) under this methodology of boundary enforcement would beE
•
E

0 I

v

•
u

 =

b

•
g

 (4.132)

where E, v and b are defined in Theorem 4.1.3.5. Let
•
Φ =

( •
Φ1, . . . ,

•
Φ •

N

)ᵀ
then •

g,
•
E and

its components are defined as follows

•
E =

[
−

•
C1,1, −

•
C1,2, . . . , −

•
Cd,d−1, −

•
Cd,d, 0

]ᵀ
,

•
Cα,β = −

〈
∂βΦ, ∂α

•
Φ

ᵀ〉
+
〈
Φnβ, ∂α

•
Φ

ᵀ〉
∂Ω
∈ RN×

•
N ,

•
gj = g(xj)

•
Φj ∈ R

•
N ,

where xj is the Lagrange node associated with
•
Φj .

Note the block matrix (4.132) can then be solved for v as follows

Ev = b−
•
E
•
g, (4.133)

and then setting •
u = •

g.

4.4.2 Method 2 - natural enforcement of boundary conditions

In this method we are essentially adding additional data into the problem. Recall from

Remark 4.2.1.2 that the discrete system is:

Find U ∈
◦
V and H[U ] ∈ Vd×d such that

〈H[U ],Φ〉 = −〈∇U ⊗∇Φ〉+ 〈∇U ⊗ n Φ〉∂Ω ∀ Φ ∈ V

〈
A:H[U ],

◦
Φ
〉

=
〈
f,

◦
Φ
〉

∀
◦
Φ ∈

◦
V.

(4.134)
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In this method we enlarge the space of test functions to V, i.e., Find U ∈ V and

H[U ] ∈ Vd×d such that
〈H[U ],Φ〉 = −〈∇U ⊗∇Φ〉+ 〈∇U ⊗ n Φ〉∂Ω ∀ Φ ∈ V

〈A:H[U ],Φ〉 = 〈f,Φ〉 ∀ Φ ∈ V.

(4.135)

We again demonstrate the method with d = 1 for clarity. If we proceed to discretise

(4.135) using the methodology set out in §4.1.3 the result is a linear algebra problem of

the following form: find u ∈ RN such that

D̃u := BM−1Cu = f. (4.136)

Or in its now familiar block structure

Ẽṽ = b̃ (4.137)

◦◦
M

◦•
M −

◦◦
C −

◦•
C

•◦
M

••
M −

•◦
C −

••
C

◦◦
B

◦•
B 0 0

•◦
B

••
B 0 I





◦
h
•
h

◦
u

•
u

 =


0

0
◦
f

•
f + •

g

 . (4.138)

In general dimension the linear system resulting from discretising the inhomogeneous

Dirichlet problem (4.129) under this methodology would be

E
•
E

•
E I

v

•
u

 =

 b
•
f + •

g

 , (4.139)

where

•
E =

[
•
B11, . . . ,

•
Bdd, 0

]ᵀ

(4.140)

•
E =

[
−

•
C11, . . . ,−

•
Cdd, 0

]ᵀ

. (4.141)

4.4.2.1 Remark (comparison of the two methods of boundary enforcement). It can be

shown that Method 1 and Method 2 coincide in the case that A is piecewise constant 1

although this is not true in general.

1This fact and its proof are omitted here, due to their length.
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Figure 4.1: Three successive uniform refinements of the nonvariational finite element

approximation to the PDE given in (4.146). The problem data is chosen such that the

solution of this PDE is given by u(x) = x2
1. We are using the method given in §4.4.2 to

enforce the boundary conditions. Notice the boundary conditions are not enforced exactly.

(a) Iterate 1, dimV = 289. (b) Iterate 2, dimV = 1089.

(c) Iterate 3, dimV = 4225.

Computationally it is clear that Method 2 has a higher complexity than Method 1 since

the resultant matrix is larger. Notice here however that it is not guaranteed that •
u = •

g,

this is observed numerically (Figure 4.1). Both methods yield an optimal convergence

however.



4.5 Numerical applications 102

4.5 Numerical applications

In this section we study the numerical behavior of the scheme presented in Theorem

4.1.3.5. All our computations were carried out in Matlab ©r (code available on request).

We present a set of linear benchmark problems, for which the solution is known. We

take Ω to be the square (−1, 1)2 ⊂ R2 and in tests 4.5.1 and 4.5.2 consider the operator

A(x) =

 1 b(x)

b(x) a(x)

 (4.142)

varying the coefficients a(x) and b(x).

4.5.1 Test problem with a nondifferentiable operator

For the first test problem we choose the operator in such a way that (1.2) does not hold

in the classical sense, that is, the components of A are nondifferentiable on Ω. Namely

we take

a(x) = (x2
1x

2
2)

1/3 + 1 (4.143)

b(x) = 0. (4.144)

A visualisation of the coefficient a(x) is given in Figure 4.2. We choose the problem’s

source term f such that the exact solution to Problem 4.5.1 is given by:

u(x) = exp(−10 |x|2). (4.145)

We discretise the problem given by (4.143) under the algorithm set out in §4.1.3. Exper-

imental convergence rates are shown in Figure 4.4.

4.5.2 Test problem with convection dominated operator

The second test problem demonstrates the ability to overcome oscillations introduced into

the standard finite element when rewriting the operator in divergence form. Take

a(x) = arctan
(
k(|x|2 − 1)

)
+ 2 (4.146)

b(x) = 0 (4.147)
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with k ∈ R+. Rewriting in divergence form gives

A:D2u = div A∇u− div A∇u, (4.148)

where we are using

div A :=
[
∂1 . . . ∂d

]
a1,1(x) . . . a1,d(x)

...
. . .

...

ad,1(x) . . . ad,d(x)

 . (4.149)

The derivatives

∂αa(x) =
dkxα

1 + k
(
|x|2 − 1

) (4.150)

can be made arbitrarily large on the unit circle by choosing k appropriately (see Figure

4.2). We choose our problem’s source term f such that the exact solution to the problem

is given by:

u(x) = sin (πx1) sin (πx2) . (4.151)

We then construct the standard finite element method around (4.148), that is find U ∈
◦
V

such that for each
◦
Φ ∈

◦
V〈

A∇U,∇
◦
Φ
〉
−
〈
div A∇U,

◦
Φ
〉

=
〈
f,

◦
Φ
〉
. (4.152)

If k is chosen small enough the standard finite element method converges optimally. If

we increase the value of k oscillations become apparent in the finite element solution

along the unit circle. Figure 4.6 demonstrates the oscillations arising from this method

compared to discretising using the nonvariational finite element method.

Figure 4.5 shows the numerical convergence rates of the nonvariational finite element

method applied to this problem.

4.5.3 Test problem choosing a solution with nonsymmetric Hessian

In this test we choose the operator such that b(x) is nonzero. To maintain ellipticity in

this problem we must choose a(x) such that the trace of A dominates its determinant.

We choose

a(x) = 2 (4.153)

b(x) = (x2
1x

2
2)

1/3. (4.154)
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We choose the problem data such that the exact solution is given by

u(x) =


x1x2(x2

1−x2
2)

x2
1+x2

2
x 6= 0

0 x = 0.
(4.155)

This function has a nonsymmetric Hessian at the point 0. The nontrivial Dirichlet bound-

ary is dealt with using the direct method described in §4.4.1 2. Figure 4.8 shows numerical

results for this problem.

4.5.4 Test problem for an irregular solution

In this test we choose the operator

a(x) = sin
(

1
|x1|+ |x2|+ 10−15

)
(4.156)

b(x) = 0. (4.157)

Notice the operator oscillates heavily near 0. Figure 4.3 shows a surface plot of the

operator (4.156) and a cross section through x1 = 0 illustrating the oscillations near the

origin.

We choose the problem data such that the solution is given by

u(x) = −
√

2− x2
1 − x2

2. (4.158)

The solution is singular on the corners of Ω and the convergence rates reflect that as can

be seen in Figure 4.9.

2The natural method described in §4.4.2 yields the same results qualitatively
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Figure 4.2: A visualisation of the coefficient of the operators (4.143) (on the left) and

(4.146) (on the right).

(a) The function (x2
1x

2
2)

1/3 + 1 over Ω. Note the

derivatives are singular at x1 = 0 and x2 = 0.

(b) The function arctan
`
5000(|x|2 − 1)

´
over Ω.

Note the derivatives are very large on the unit cir-

cle.

Figure 4.3: A visualisation of the coefficient of the operator from Problem (4.156) and a

cross section through the coordinate axis.

(a) The function sin
“

1
|x1|+|x2|+10−15

”
over Ω. Note

the function oscillates heavily near 0.
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(b) A cross section through the first coordinate axis

demonstrating the oscillations.
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Figure 4.4: Problem 4.5.1. L2(Ω) and H1(Ω) errors and convergence rates for the NVFEM

applied to a nondivergence form operator (4.143), choosing f appropriately such that

u(x) = exp (−10 |x|). The convergence rates are optimal, that is for P1-elements (on the

left) ‖u− U‖ = O(h2) and |u− U |1 = O(h). For P2-elements (on the right) ‖u− U‖ =

O(h3) and |u− U |1 = O(h2).
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Figure 4.5: Problem 4.5.2. L2(Ω) and H1(Ω) errors and convergence rates for the NVFEM

applied to a nondivergence form operator (4.146) with k = 5000, choosing f appropriately

such that u(x) = sin (πx1) sin (πx2). The convergence rates are optimal, that is for P1-

elements (on the left) ‖u− U‖ = O(h2) and |u− U |1 = O(h). For P2-elements (on the

right) ‖u− U‖ = O(h3) and |u− U |1 = O(h2).
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Figure 4.6: Test 4.5.2. On the left we present
∥∥∥u− Ũ

∥∥∥L∞(K) plotted as a function over Ω.

This represents the maximum error of the standard FE solution, Ũ , to problem (4.146)

with 16384 DOFs. Notice the oscillations apparent on the unit circle centered at the

origin. On the right we show ‖u− U‖L∞(K) plotted as a function over Ω, the maximum

error of the NVFE solution, U , to problem (4.146) with 16384 DOFs (h = 1/32).

Figure 4.7: Test 4.5.2. On top we realise the FE solution on the unit circle centered at

the origin as a 1 dimensional function of θ. Below we show the L∞(Ω) error over the same

domain.
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Figure 4.8: Problem 4.5.3. L2(Ω) and H1(Ω) errors and convergence rates for the NVFEM

on an operator (4.153), choosing f appropriately such that u(x) = x1x2(x2
1−x2

2)

x2
1+x2

2
if x 6= 0, or

u(x) = 0 otherwise. The convergence rates are optimal, that is for P1-elements (on the left)

‖u− U‖ = O(h2) and |u− U |1 = O(h). For P2-elements (on the right) ‖u− U‖ = O(h3)

and |u− U |1 = O(h2).
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Figure 4.9: Problem 4.5.4. L2(Ω) and H1(Ω) errors and convergence rates for the NVFEM

on an operator (4.156), choosing f appropriately such that u(x) = −
√

2− x2
1 − x2

2. The

convergence rates are suboptimal due to the singular nature of the solution near the

corners of Ω = (−1, 1)2, that is for both P1 (on the left) and P2-elements (on the right)

‖u− U‖ = O(h1.5) and |u− U |1 = O(h0.5).
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Table 4.1: Problem 4.5.1. On the condition number of E upon discretising problem (4.143)

using P1 finite elements. As claimed in Remark 4.3.0.15 κ(E) ≈ Ch−2.

dimV h κ(E) h2κ(E)

16 0.4714 4.904× 101 10.898

64 0.202 6.594× 102 26.952

256 0.0943 3.665× 103 32.633

1024 0.0456 1.722× 104 35.833

4096 0.0224 6.894× 104 34.737

16384 0.0111 3.383× 105 41.949

65536 0.0055 1.337× 106 40.43

4.6 Error analysis

In this section we analyse the method derived in §4.1.3 in both a apriori and aposteri-

ori sense. We then propose an adaptive algorithm based on the estimator, conducting

numerous numerical experiments in the process.

4.6.0.1 Lemma (Galërkin orthogonality). Let u ∈ H2(Ω)∩H1
0(Ω) be the solution of the

continuous problem (4.1). Suppose also that U ∈
◦
V is the solution of the discrete problem

(4.21). Then 〈
A:(D2u−H[U ]),

◦
Φ
〉

= 0 ∀
◦
Φ ∈

◦
V. (4.159)

Equivalently due to the definition of H[U ] (see Definition 4.1.3.4)〈
A:(D2u−D2U) |

◦
Φ
〉

= 0 ∀
◦
Φ ∈

◦
V. (4.160)

Proof It suffices to note that equation (4.18) holds for each Φ ∈
◦
V ⊂ H1

0(Ω). Taking the

difference between (4.21) and (4.18) restricted to the subspace
◦
V gives the desired result.

4.6.0.2 Lemma (quasioptimality). Let u and U be defined as in Theorem 4.6.0.1 then

∥∥A:
(
D2u−H[U ]

)∥∥ = min
V ∈

◦
V

∥∥A:
(
D2u−H[V ]

)∥∥ . (4.161)
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Proof By Lemma 4.6.0.1 we can write∥∥A:
(
D2u−H[U ]

)∥∥2 =
〈
A:
(
D2u−H[U ]

)
,A:

(
D2u−H[U ]

)〉
=
〈
A:
(
D2u−H[U ]

)
,A:D2u

〉
=
〈
A:
(
D2u−H[U ]

)
,A:

(
D2u−H[V ]

)〉
≤
∥∥A:

(
D2u−H[U ]

)∥∥ ∥∥A:
(
D2u−H[V ]

)∥∥ ,
(4.162)

where we have used the Cauchy–Bunyakovskii–Schwartz inequality. The result follows

after simplification.

4.6.0.3 Lemma (convergence of L2(Ω)-projection in a negative norm). Let v ∈ Hj(Ω)

for some 0 ≤ j ≤ p+1 and PVv denote the L2(Ω)-projection of v onto V then there exists

a C > 0 such that the following bound holds

∥∥v − PVv
∥∥

H−1(Ω)
≤ Chj+1 |v|j . (4.163)

Proof From the definition of the H−1(Ω) norm we have

∥∥v − PVv
∥∥

H−1(Ω)
= sup

0 6=φ∈H1
0(Ω)

〈
v − PVv, φ

〉
|φ|1

. (4.164)

By definition for any v, v − PVv is orthogonal to
◦
V in L2(Ω)

∥∥v − PVv
∥∥

H−1(Ω)
= sup

0 6=φ∈H1
0(Ω)

〈
v − PVv, φ− PVφ

〉
|φ|1

≤ sup
0 6=φ∈H1

0(Ω)

∥∥v − PVv
∥∥∥∥φ− PVφ

∥∥
|φ|1

≤ sup
0 6=φ∈H1

0(Ω)

C1h
j |v|j h |φ|1
|φ|1

≤C1h
j+1 |v|j ,

(4.165)

giving the desired result.

4.6.0.4 Theorem (convergence in a negative norm). Let u and U be defined as in

Theorem 4.6.0.1. Suppose also that f ∈ Hj(W ) for some j = 0, . . . , p+1 then there exists

a constant C depending on V and Ω such that

∥∥A:(D2u−H[U ])
∥∥

H−1(Ω)
≤ Chj+1 |f |j . (4.166)
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Proof Lemma 4.6.0.1 implies

A:H[U ] = PV(A:D2u). (4.167)

The result then follows from Lemma 4.6.0.3 and the PDE (4.18).

4.6.0.5 Definition (dual problem). We will conduct the aposteriori analysis making use

of a duality argument. The dual or adjoint problem to (4.18) is given as follows: find v

such that 〈
D2:[vA] |φ

〉
= 〈g, φ〉 ∀ φ ∈ H1

0(Ω), (4.168)

with D2:[vA] defined as

D2:[vA] :=
d∑

α=1

d∑
β=1

∂α∂β

[
vAα,β

]
. (4.169)

Note that the dual problem satisfies the following identity, given v ∈ H1
0(Ω)〈

D2:(vA) |φ
〉

=− 〈div (vA),∇φ〉

=
〈
v |A:D2φ

〉
∀ φ ∈ H1

0(Ω),
(4.170)

hence we are able to invoke the following regularity result.

4.6.0.6 Theorem (regularity of the dual problem [GT83, Thm 5.8]). Let Ω ⊂ Rd be an

open, bounded, Lipschitz domain. Given g ∈ L2(Ω), A ∈ W1
∞(Ω)d×d such that the dual

problem (4.168) is uniformly elliptic. Then v ∈ H2(Ω) and there exists a C such that

|v|2 ≤ C ‖g‖ . (4.171)

4.6.0.7 Assumption (regularity of the dual problem’s coefficients). To invoke the reg-

ularity result we will assume the dual problem’s coefficients (4.168) are “sufficiently reg-

ular” to rewrite it in divergence form, that is A ∈ W1
∞(Ω)d×d.

4.6.0.8 Lemma (Clément interpolant [Clé75]). We introduce the Clément interpolation

operator Π : H1
0(Ω) → V which under necessary regularity assumptions on φ satisfies the

following local interpolation bounds for each j ≤ p+ 1

‖φ−Πφ‖L2(K) ≤ Chj
K |φ|Hj(K̂) (4.172)

‖φ−Πφ‖L2(S) ≤ Ch
j−1/2
K |φ|Hj(K̂) (4.173)
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where K is a simplex and S is a common wall shared between two simplexes and K̂ is a

localised neighbourhood of K.

4.6.0.9 Lemma (local duality error bound). Let u and U be defined as in Theorem

4.6.0.1. Let the conditions of Assumption 4.6.0.7 hold. Assume also that the conditions

of Theorem 4.6.0.6 hold, then there exists a C > 0 such that

‖u− U‖ ≤ C
∑

K∈T

hK

∥∥A:
(
D2u−D2U

)∥∥
H−1(K)

. (4.174)

Proof Let v be the solution to the dual problem (4.168). Using the Galërkin orthogonality

result for Theorem 4.6.0.1 and the apriori regularity result (Theorem 4.6.0.6)

〈u− U, g〉 =
〈
u− U,D2:(vA)

〉
=
〈
A:D2 (u− U) | v

〉
=
∑

K∈T

∫
K

A:D2 (u− U)v

=
∑

K∈T

∫
K

A:D2 (u− U)(v −Πv)

≤
∑

K∈T

∥∥A:D2 (u− U)
∥∥

H−1(K)
|v −Πv|H1(K)

≤ C
∑

K∈T

hK |v|H2 (K̂)

∥∥A:D2 (u− U)
∥∥

H−1(K)

≤ C ‖g‖L2(Ω)

∑
K∈T

hK

∥∥A:D2 (u− U)
∥∥

H−1(K)
.

(4.175)

The result follows by noting g was a generic test function.

4.6.0.10 Corollary (global duality error bound). We may use the technique in Lemma

4.6.0.9 to derive a global duality error bound. To that end, let u and U be defined as in

Theorem 4.6.0.1 and let the conditions of Assumption 4.6.0.7 hold. Then there exists a

C > 0 such that

‖u− U‖ ≤ Ch
∥∥A:D2u−D2U

∥∥
−1

(4.176)

Proof The proof follows the same lines as that of Lemma 4.6.0.9 with the exception that

the integral is not divided into its elementwise contributions.
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4.6.0.11 Theorem (aposteriori residual upper error bound). Let u and U be defined as

in Theorem 4.6.0.1. then there exists a C > 0 such that∥∥f −A:D2U
∥∥

H−1(Ω)
≤ C

(∑
K∈T

hK ‖R[U,A, f ]‖L2(K) +
∑
S∈S

h
1/2
K ‖J [U,A]‖L2(S)

)
(4.177)

where the interior residual, R[U,A, f ], over a simplex K and jump residual, J [U,A], over

a common wall S = K
+ ∩K−

of two simplexes, K+ and K− are defined as

‖R[U,A, f ]‖2
L2(K) =

∫
K

(
f −A:D2U

)2
, (4.178)

‖J [U,A]‖2
L2(S) = −

∫
S

(
A:
(
∇U

∣∣
K+ ⊗ nK+

)
+ A:

(
∇U

∣∣
K− ⊗ nK−

))2

, (4.179)

with nK+ and nK− denoting the outward pointing normals to K+ and K− respectively.

Proof By the definition of the H−1(Ω) norm it follows〈
f −A:D2U |φ

〉
=
∑

K∈T

∫
K

(
f −A:D2U

)
φ

=
∑

K∈T

∫
K
fφ−D2U :φA

=
∑

K∈T

∫
K
fφ−

d∑
α,β=1

∂α∂βUφAα,β

=
∑

K∈T

∫
K
fφ+

d∑
α,β=1

∂βU∂α

(
φAα,β

)

=
∑

K∈T

∫
K
fφ−

d∑
α,β=1

(
∂α∂βUφAα,β +

∫
∂K\∂Ω

∂βUnαφAα,β

)

=
∑

K∈T

∫
K
fφ−D2U :φA +

∫
∂K\∂Ω

A:
(
∇Unᵀ

K

)
φ.

(4.180)

Utilising the definition of interior and jump residuals and noting from Lemma 4.6.0.1 that

f −A:D2U is polar to V〈
f −A:D2U |φ

〉
=
∑

K∈T

∫
K
R[U,A, f ]φ−

∑
S∈S

∫
S
J [U,A]φ

=
∑

K∈T

∫
K
R[U,A, f ] (φ−Πφ)−

∑
S∈S

∫
S
J [U,A] (φ−Πφ)

≤
∑

K∈T

‖R[U,A, f ]‖L2(K) ‖φ−Πφ‖L2(K)

+
∑
S∈S

‖J [U,A]‖L2(S) ‖φ−Πφ‖L2(S) .

(4.181)
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The properties of Π (4.172) now infer

〈
f −A:D2U |φ

〉
≤ C |φ|1

(∑
K∈T

hK ‖R[U,A, f ]‖L2(K) +
∑
S∈S

h
1/2
K ‖J [U,A]‖L2(S)

)
(4.182)

giving the desired result.

4.6.0.12 Theorem (L2(Ω) aposteriori error bound). We have the following aposteriori

bound on the L2(Ω) error.

‖u− U‖ ≤ Ch

(∑
K∈T

hK ‖R[U,A, f ]‖L2(K) +
∑
S∈S

h
1/2
K ‖J [U,A]‖L2(S)

)
. (4.183)

Proof From Corollary 4.6.0.10 we see

‖u− U‖ ≤ h
∥∥A:

(
D2u−D2U

)∥∥
−1
. (4.184)

Then applying Theorem 4.6.0.11 gives

‖u− U‖ ≤ Ch

(∑
K∈T

hK ‖R[U,A, f ]‖L2(K) +
∑
S∈S

h
1/2
K ‖J [U,A]‖L2(S)

)
, (4.185)

as required.

4.6.0.13 Remark (improving the aposteriori bound). The L2(Ω) bound given in The-

orem 4.6.0.12 can be improved to give one which is more reminiscent of the standard

residual estimators from the FEM if we can find a way to tie Lemma 4.6.0.9 with Theo-

rem 4.6.0.12. To do this we would need a bound of the following form: Given v ∈ H−1(Ω)

there exists a C > 0 such that ∑
K

‖v‖H−1(K) ≤ C ‖v‖−1 . (4.186)

Work has been done to this end, albeit in the context of boundary element methods, by

Faermann [Fae00].

4.6.0.14 Remark (the regularity assumption A ∈ W1
∞(Ω) (Assumption 4.6.0.7)). This

assumption is only necessary for the duality argument from Lemma 4.6.0.9 to hold. The

assumption is not needed to prove the residual bound in H−1(Ω) arising from Theorem

4.6.0.11. In fact as will be numerically demonstrated in §4.7 the estimator (4.183) is both

efficient and reliable even if A /∈ W1
∞(Ω).
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4.7 Numerical experiments

In this section we benchmark the problem with respect to the H−1(Ω) error, to check The-

orem 4.6.0.4. In addition we study the numerical behaviour of the residual error estimator

given in Theorem 4.6.0.12 and compare it with the error on three model problems.

To numerically demonstrate convergence of the error in the norm given in Theorem

4.6.0.4 we make use of the following Lemma, which shows how to practically approximate

the H−1(Ω) norm of an arbitrary given function v ∈ L2(Ω).

4.7.0.15 Lemma (computing the H−1(Ω) norm [LP10d]). Let v ∈ L2(Ω), consider the

function Ψ ∈ V such that

AΨ = P v, (4.187)

where A and P are the discrete Laplacian and the L2(Ω) projection on V, respectively.

Then we have

‖v‖2
H−1(Ω) = ‖Ψ‖2

H1
0(Ω) + ζ[Ψ, v]2, where ζ[Ψ, v] ≤ E [Ψ] (4.188)

where E is a fully computable aposteriori estimator functional (see §2.4 for example).

Proof Let ψ ∈ H1
0(Ω) such that −∆ψ = v and Ψ given in (4.187) we have Φ ∈ V

〈−∆ψ −AΨ |Φ〉 = 〈v − P v,Φ〉 = 0, (4.189)

i.e., that ψ −Ψ is Galërkin-orthogonal to V. Also, we have

‖v‖H−1(Ω) = ‖ψ‖H1
0(Ω) . (4.190)

Indeed, on the one hand

‖v‖H−1(Ω) := sup
φ∈H1

0(Ω)

〈v, φ〉
‖φ‖H1

0(Ω)

= sup
φ∈H1

0(Ω)

〈∇ψ,∇φ〉
‖φ‖H1

0(Ω)

≤ sup
φ∈H1

0(Ω)

‖ψ‖H1
0(Ω) ‖φ‖H1

0(Ω)

‖φ‖H1
0(Ω)

= ‖ψ‖H1
0(Ω) ,

(4.191)

and, on the other hand

‖v‖H−1(Ω) := sup
φ∈H1

0(Ω)

〈∇ψ,∇φ〉
‖φ‖H1

0(Ω)

≥ 〈∇ψ,∇ψ〉
‖ψ‖H1

0(Ω)

= ‖ψ‖H1
0(Ω) . (4.192)
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By the above, Galërkin-orthogonality and Pythagoras’s Theorem, we have

‖v‖2
H−1(Ω) = ‖ψ‖2

H1
0(Ω) = ‖ψ −Ψ‖2

H1
0(Ω) + ‖Ψ‖2

H1
0(Ω) . (4.193)

The term ‖ψ −Ψ‖H1
0(Ω) is the error of a function and its Ritz projection. This can be

easily estimated with a fully computable aposteriori estimator functional E such that

‖ψ −Ψ‖H1
0(Ω) ≤ E [Ψ, v,V] = O(hr

V), (4.194)

where hV is the “mesh-size” of the space V.

4.7.0.16 Remark (our use of Lemma 4.7.0.15). In our case we wish to compute ‖e‖−1 =∥∥A:
(
D2u−H[U ]

)∥∥
−1

which our analysis shows for regular u can be as small as O(hp+2
V

).

To compute ‖e‖−1 effectively we must take r ≥ p + 2. The discrete formulation then

becomes: Find Ψ ∈ H1
0(Ω) such that

AΨ = PWΛe, (4.195)

where Λ : V → W is the Lagrange interpolant. For clarity we give a pseudocode for the

method.

4.7.1 Approximating convergence rates from Lemma 4.6.0.4

Require: (T0, p, r,Kmax)

Ensure: ({‖ek‖−1}
Kmax
k=0 ) a sequence of approximations to the left hand side of (4.166)

k = 0

while k ≤ Kmax do

Vk = Fe Space(Tk, p)

U = NVFEM(Vk,A, f, g)

ek := A:
(
D2u−H[U ]

)
Wk = Fe Space(Tk, r)

Λv := Interpolate(ek,Vk,Wk)

Ek = FEM(Wk,−I, Λe, 0)

‖ek‖−1 := ‖∇Ek‖

Tk+1 = Global Refine(T )

k := k + 1
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end while

We make use of a Matlab ©r code in order to compute the NVFE solution. To numerically

compute the estimated convergence rates of ‖e‖−1 we interface this code with one based on

the adaptive FEM library ALBERTA [SS05]. In all numerical experiments the quadrature

error is made negligible by taking a quadrature which is exact on polynomials of degree

9 and less.

Table 4.2: Numerical results for the apriori convergence given in Theorem 4.6.0.4. We

have applied Algorithm 4.7.1 to compute the H−1(Ω) norm with p = 1, r = 3 and

Kmax = 8. In this problem the data is chosen in such a way that u(x) = exp (−10 |x|2).
dimV dimW

∥∥A:
(
D2u−H[U ]

)∥∥
−1

EOC[
∥∥A:

(
D2u−H[U ]

)∥∥
−1

]

5 25 4.93× 10−1

13 85 9.90× 10−2 2.315135

41 313 1.75× 10−3 5.818990

145 1201 1.06× 10−3 0.726793

545 4705 1.38× 10−4 2.944427

2113 18625 1.72× 10−5 3.001582

8321 74113 2.15× 10−6 3.000756

33025 295681 2.69× 10−7 3.000192

131585 1181185 3.36× 10−8 3.000027

4.7.2 Effectivity of the estimator given in Theorem 4.6.0.12

We test the effectivity of

E [U,A, f ] := h

(∑
K∈T

hK ‖R[U,A, f ]‖L2(K) +
∑
S∈S

h
1/2
K ‖J [U,A]‖L2(S)

)
(4.196)

where the interior and jump residuals are given as

‖R[U,A, f ]‖2
L2(K) =

∫
K

(
f −A:D2U

)2
, (4.197)

‖J [U,A]‖2
L2(S) =

∫
S

(
−A:

(
∇U

∣∣
K+ ⊗ nK+

)
−A:

(
∇U

∣∣
K− ⊗ nK−

))2
. (4.198)

This is an upper bound for the L2(Ω) norm of the error.
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We proceed by conducting the first three tests as performed in §4.5. That is we consider

the operator

A(x) =

 1 b(x)

b(x) a(x)

 (4.199)

and vary the coefficients a(x) and b(x).

4.7.3 Test problem with a nondifferentiable operator

For the first test problem we choose the operator in such a way that (1.2) does not hold,

that is the components of A are non-differentiable on Ω, in this case we take

a(x) = (x2
1x

2
2)

1/3 + 1 (4.200)

b(x) = 0 (4.201)

and take the problem data such that the exact solution is given by

u(x) = exp(−10 |x|2). (4.202)

Figure 4.10 shows numerical results for this problem.

4.7.4 Test problem with convection dominated operator

In this case we choose

a(x) = arctan
(
K(|x|2 − 1)

)
+ 2 (4.203)

b(x) = 0. (4.204)

The operator (4.203) can be rewritten in divergence form however the derivatives can be

arbitrarily large and hence a conforming FEM may be unstable. We choose the problem

data such that the exact solution to the problem is given by:

u(x) = sin (πx1) sin (πx2) . (4.205)

Figure 4.11 shows numerical results for this problem.
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4.7.5 Test problem choosing a solution with nonsymmetric Hessian

We choose

a(x) = 2 (4.206)

b(x) = (x2
1x

2
2)

1/3. (4.207)

We choose the problem data such that the exact solution is given by

u(x) =


x1x2(x2

1−x2
2)

x2
1+x2

2
x 6= 0

0 x = 0.
(4.208)

This function has a nonsymmetric Hessian at the point 0. Figure 4.12 shows numerical

results for this problem.

4.7.6 Adaptivity

The adaptive algorithm we make use of is of standard type, that is

solve estimate mark refine

The solve algorithm is assemblage and solution of the NDFEM discrete system detailed

in §4.1.3 to §4.2. The estimate is the L2(Ω) residual estimator (4.196). The mark ing

strategy we use is the maximum strategy, that is all elements K ∈ T satisfying

η2
K ≥ ξmax

L∈T
η2

L (4.209)

are marked for refinement, where ξ is a user defined constant. We refine using the newest

vertex bisection, as described in [SS05] §1.1 (and summarised in §3.8), where each element

marked for refinement is divided d-times. We pseudocode the algorithm as follows:

4.7.7 ANVFEM

Require: (V0, tol, kmax, ξ)

Ensure: (U,V) solution of (4.21)

T0 := Mesh(V0)
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U0 := Solve(T ,A, f)

k := 0

E := Estimate(A, f,T0)

R := ∅

while E > tol and k ≤ kmax do

for all K ∈ Tk do

if E 2 ≥ ξmaxL∈T E 2 then

R := {K} ∪R

end if

end for

Tk+1 := Refine(Tk,R) using [SS05, §1.1.1]

Uk+1 := Solve(Tk+1,A, f)

E = Estimate(Tk+1,A, f)

k := k + 1

end while

U := Uk

V := Mesh−1(Tk)

return (U,V)

Note we are not incorporating any mesh coarsening into the algorithm as we are not con-

cerned with mesh optimality, or any convergence proofs for the adaptive scheme [BDD04].

4.7.8 Test problem for an irregular solution

In this test we choose

a(x) = sin
(

1
|x1|+ |x2|+ 10−15

)
(4.210)

b(x) = 0. (4.211)

The problem data is chosen such that the solution is given by

u(x) = −
√

2− x2
1 − x2

2. (4.212)

Note that the function has singular derivatives on the boundary. We run the Algorithm

4.7.7 with the given problem data with tol = 0.01 and ξ = 0.5. Figure 4.13 shows a surface
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plot of the ANVFE solution together with the mesh generated. Figure 4.14 demonstrates

we regain optimal convergence under the adaptive strategy.

Figure 4.10: A numerical study on the performance of the residual estimator given in

(4.196) on a problem with a nondifferentiable operator (4.200) with data chosen such that

u(x) = exp(−10 |x|2).
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Figure 4.11: A numerical study on the performance of the residual estimator given in

(4.196) on a problem with a convection dominated operator (4.203) with data chosen such

that u(x) = sin (πx1) sin (πx2).
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Figure 4.12: A numerical study on the performance of the residual estimator given in

(4.196) on a problem with a convection dominated operator (4.203) with data chosen such

that u(x) = x1x2(x2
1−x2

2)

x2
1+x2

2
if x 6= 0, or u(x) = 0 otherwise.
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Figure 4.13: A plot of the ANDFE approximation to a solution, u, of problem (4.210)

where u /∈ H2(Ω). The singularities occur on the corners of Ω, notice the mesh is well

refined there.
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Figure 4.14: Here we study the adaptive strategy given in Algorithm 4.7.7. We formulate

problem (4.210) and plot the error for the uniform refinement strategy and compare it

to that of the adaptive strategy. Notice under the adaptive strategy we regain optimal

convergence.
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4.8 Quasilinear PDEs in nondivergence form

In this section we are applying the formulation given in §4.1.3 in the context of linear

PDEs to accommodate general quasilinear PDEs.

4.8.0.1 Definition (Quasilinear PDE). A quasilinear PDE is one which is linear with

respect to its highest order derivative.

We consider the problem

A(∇u, u,x):D2u = f(∇u, u,x) in Ω

u = 0 on ∂Ω,
(4.213)

and apply a fixed point linearisation to the problem (4.213). This results in a sequence

of linear PDEs. Given an initial guess u0, for each n ∈ N0 we wish to find un+1 such that

A(∇un, un,x):D2un+1 = f(∇un, un,x) in Ω

u = 0 on ∂Ω.
(4.214)

The discretisation we propose is a simple extension of that set out in §4.1.3. That is,

given an initial guess U0 ∈
◦
V, find Un+1 ∈

◦
V such that〈

A(∇Un, Un,x):H[Un+1],
◦
Φ
〉

=
〈
f,

◦
Φ
〉

∀
◦
Φ ∈

◦
V. (4.215)

As a model problem we use the equation of prescribed mean curvature which is a

quasilinear PDE arising from differential geometry:

√
1 + |∇u|2 div

 ∇u√
1 + |∇u|2

 = f (4.216)

where
√

1 + |∇u|2 is the area element. Here we are using |∇u|2 = Du∇u.

We may work on this problem combining the two nonlinear terms. To do so we must
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first rewrite (4.216) into the form A(∇u, u,x):D2u = f .

f =
√

1 + |∇u|2 div

 ∇u√
1 + |∇u|2


=
√

1 + |∇u|2

 ∆u√
1 + |∇u|2

+
D
(
1 + |∇u|2

)
2
(
1 + |∇u|2

)3/2
∇u


=∆u+

DuD2u∇u
1 + |∇u|2

=
(

I +
∇u⊗∇u
1 + |∇u|2

)
:D2u.

(4.217)

Applying the fixed point linearisation from (4.214), given an initial guess u0 for each

n ∈ N0 we seek un+1 such that(
I +

∇un ⊗∇un

1 + |∇un|2

)
:D2un+1 = f. (4.218)

Discretising the problem is then similar to that set out in §4.1.3. Restricting our at-

tention to
◦
V the problem becomes given U0 = ΛVu0 find Un+1 ∈

◦
V such that〈(

I +
∇Un ⊗∇Un

1 + |∇Un|2

)
:H[Un+1],

◦
Φ
〉

=
〈
f,

◦
Φ
〉
. (4.219)

The equivalent linear algebra problem is: Find ◦
un+1 such that

◦◦
Dn ◦

u :=
d∑

α=1

d∑
β=1

◦
Bαβ

n M−1
◦
Cαβ

◦
un+1 =

◦
f. (4.220)

The component matrixes M and
◦
Cαβ are problem independent,

◦
Bαβ

n are defined as

◦
Bαβ

n =



〈 ◦
Φ,
(
1 + ∂αUn∂βUn

1+|∇Un|2

)
Φᵀ
〉

for α = β,

〈 ◦
Φ,

∂αUn∂βUn

1+|∇Un|2 Φᵀ
〉

for α 6= β.

(4.221)

We pseudocode the algorithm proposed as follows:

4.8.1 The NVFEM for general quasilinear problems

Require: (T0, u
0, p,N,Kmax, tol)

Ensure: (U,V) the NVFE approximation of (4.216)
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k = 0

while k ≤ Kmax do

Vk = Fe Space(Tk, p) (§2)

if k = 0 then

U0 = ΛV0u0

end if

n = 0

while n ≤ N do

Un+1 = NVFEM(Vk,A
n[Un], f) (§4.1.3)

if
∥∥Un+1 − Un

∥∥ ≤ tol then

break

end if

n = n+ 1

end while

Tk+1 = Global Refine(Tk)

k = k + 1

end while

Of course we are able to work on the equation (4.216) in divergence form and make use

of standard FE techniques. We could apply a fixed point linearisation as follows: Given

an initial guess u0 for each n ∈ N0 we seek un+1 such that

div

 ∇un+1√
1 + |∇un|2

 =
f√

1 + |∇un|2
. (4.222)

Applying a standard finite element discretisation of (4.222) yields: Given U0 ∈
◦
V, find

Un+1 ∈
◦
V such that for each

◦
Φ ∈

◦
V〈

∇Un+1√
1 + |∇Un|2

,∇
◦
Φ

〉
=

〈
f√

1 + |∇Un|2
,
◦
Φ

〉
. (4.223)

Table 4.3 compares the two linearisations (4.222) and (4.218). Figure 4.15 show asymp-

totic numerical convergence results for NVFEM applied to (4.218) under Algorithm 4.8.1.



4.8 Quasilinear PDEs in nondivergence form 127

Table 4.3: Test 4.8. Comparison of the fixed point linearisation in variational form

(4.222) and in nonvariational form (4.218). We fix f appropriately such that u(x) =

sin (πx1) sin (πx2). Taking initial guesses U0 = Ũ0 = 0 we discretise problem (4.216) using

a standard FEM and using the NVFEM. Denoting Ui and Ũi to be the NVFE-solution FE-

solution respectively we run both linearisations for until a tolerance ‖Un+1 − Un‖ (resp.∥∥∥Ũn+1 − Ũn

∥∥∥) ≤ h2 is achieved. We compute both the stagnation point—which is the

iteration at which the prescribed tolerance is achieved—and the total CPU time. Notice

there is significant savings in the number of iterations required to reach the stagnation

point using the NVFEM over the standard FEM, however each iteration is computation-

ally more costly using the NVFEM since the system is larger and more complicated to

solve. The CPU cost for the entire algorithm is comparable for each fixed h.
h

√
2/5

√
2/10

√
2/20

√
2/40

√
2/80

√
2/160

FEM Stag. Point 5 13 16 26 32 36

CPU Time 0.50 4.02 17.51 117.58 796.58 5308.81

NDFEM Stag. Point 4 6 7 8 10 12

CPU Time 0.72 3.40 16.49 97.93 838.8 5256.84

4.8.1.1 Lemma (on aposteriori estimation for mean curvature). We may follow the same

error analysis as in Theorem 4.6.0.11. Let

An := I +
∇Un ⊗∇Un

1 + |∇Un|2
. (4.224)

Then the following bound holds

∥∥f −An:D2Un+1
∥∥
−1
≤ C

(∑
K∈T

hK

∥∥Rn[Un+1]
∥∥

L2(K)
+
∑
S∈S

h
1/2
K

∥∥Jn[Un+1]
∥∥

L2(S)

)
,

(4.225)

where the interior residual over a simplex K and jump residual over a common wall S of

two simplexes, K+ and K− are defined as

∥∥Rn[Un+1]
∥∥2

L2(K)
=
∫

K

(
f −An:D2Un+1

)2
, (4.226)∥∥Jn[Un+1]

∥∥2

L2(S)
=
∫

S

(
−An:

(
∇Un+1

∣∣
K+ ⊗ nK+

)
−An:

(
∇Un+1

∣∣
K− ⊗ nK−

))2 (4.227)

with nK+ and nK− denoting the outward pointing normals to K+ and K− respectively.
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Figure 4.15: Test 4.8. Errors and convergence rates for NVFEM applied to (4.216),

a quasilinear PDE under a fixed point linearisation. We fix f appropriately such that

u(x) = sin (πx1) sin (πx2), taking an initial guess u0 = 0. The convergence rates are

optimal, that is for P1-elements (on the left) ‖u− U‖ = O(h2) and |u− U |1 = O(h). For

P2-elements (on the right) ‖u− U‖ = O(h3) and |u− U |1 = O(h2).
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4.8.1.2 Remark (lower bounds to the residual). This estimator is an upper bound but

may not be a lower bound. In the case of the quasilinear mean curvature flow (and in

fact general nonlinear operators) the linearised operator may become degenerate, i.e., in

this case |∇un| → ∞. Hence the estimator may prove unreliable. An idea motivated by

Veeser [FV03] is to add contributions to the estimator that are functions of the element

area.

4.8.1.3 Remark (stopping criterion for the linearisation). In our numerical experiments

we use
∥∥Un+1 − Un

∥∥ ≤ tol as a stopping criterion. This however does not guarantee the

method has converged to the fixed point. Indeed if the linearisation were to stagnate as

depicted in the following sketch
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n

∥∥Un+1 − Un
∥∥

tol

the algorithm would terminate prematurely.

A better approach would be to use the relative error of the aposteriori residual. That

is
E [Un]
E [U0]

≤ tol . (4.228)

This guarantees a reduction in error (due to the upper bound of E from 4.8.1.1).



Chapter 5

A numerical method for second

order fully nonlinear elliptic PDEs

In this chapter we will present a novel method for the approximation of fully nonlinear

second order elliptic PDEs which do not have constraints. This is a Newton linearisation

together with the finite element method developed in §4 for use in nonvariational elliptic

problems.

In the case that the PDE does have constraints we will illustrate the difficulties in

passing these down to the discrete level by considering the Monge–Ampère equation as a

model.

We will make use of the definition of finite element convexity from [AM09] and the

concept of semidefinite programming [VB96] to enforce convexity on the discrete solution

at each Newton iterate.

5.0.1.1 Definition (fully nonlinear PDE). A PDE is fully nonlinear if it is nonlinear

with respect to its highest order derivative, i.e.,

N [u] = F (D2u,∇u, u,x)− f(x) = 0 (5.1)

where F : Sym+(Rd×d)× Rd × R ×Ω → R is nonlinear with respect to its first argument.

The difficulty for fully nonlinear equations is in dealing with the highest order term.

We will not deal with first and zeroth order terms here and we restrict F to be a function

of its first argument, that is

N [u] = F (D2u)− f(x) = 0. (5.2)

130
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Recall from §4.1.2 a function, u ∈ C2(Ω), is a classical solution of (5.2) if the problem

is satisfied pointwise. In a similar context to that of linear equations we call a function

that is a twice weakly differentiable a strong solution of (5.2) if it is satisfied almost

everywhere in Ω.

5.0.1.2 Definition (ellipticity [CC95]). The problem (5.2) is said to be uniformly elliptic

if for any M ∈ Sym+(Rd×d) there exist ellipticity constants λ,Λ > 0 such that:

λ sup
|x|=1

|Nx| ≤ F (M + N)− F (M) ≤ Λ sup
|x|=1

|Nx| ∀N ∈ Sym+(Rd×d) (5.3)

Another more familiar way of considering (5.3) is via the derivative of F . If F is differ-

entiable at a point R ∈ Sym+(Rd×d) we can write

R =


r1,1 . . . r1,d

...
. . .

...

rd,1 . . . rd,d

 (5.4)

and the derivative of F is a matrix valued function

F ′(R) =


∂F (R)
∂r1,1

. . . ∂F (R)
∂rd,1

...
. . .

...
∂F (R)
∂r1,d

. . . ∂F (R)
∂rd,d

 . (5.5)

Then if there exists a constant λ > 0 such that

ξᵀF ′(N)ξ ≥ λ |ξ|2 ∀N ∈ Sym+(Rd×d), ξ ∈ Rd (5.6)

the problem (5.2) is elliptic.

5.0.1.3 Definition (The action of F ′(R) on M). If F is differentiable, the action of the

derivative F ′(R) on an increment M is defined as

F ′(R)M := F ′(R):M . (5.7)

This is crucial in defining Newton’s method correctly (cf. §5.1.1).
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5.1 On the linearisation of fully nonlinear problems

In this work we will study Newton’s method, although noting that fixed point methods

can be used due to the relation between fully nonlinear problems and nonvariational

problems as characterised in the following remark.

5.1.0.4 Remark (fixed point methods). We can rewrite (5.2) into a more familiar form

(a Frobenius product), the fixed point linearisation then follows from this. By the chain

rule and the fundamental theorem of calculus

N [u] =
[∫ 1

0
F ′(tD2u) dt

]
:D2u+ F (0)− f = 0. (5.8)

Setting

N(D2u) =
∫ 1

0
F ′(tD2u) dt, (5.9)

g = f − F (0), (5.10)

then if u solves (5.2), it also solves

N(D2u):D2u = g. (5.11)

A fixed point method would then consist in: finding a sequence (un)n∈N0 such that for

each n ∈ N0

N(D2un):D2un+1 = g, (5.12)

with u0 given.

5.1.1 Newton’s method

Given an initial guess u0, we define the Newton step for (5.2) as: For n ∈ N0 find un+1

such that:

N ′ [un]
(
un+1 − un

)
= −N [un] . (5.13)

Rewriting it in terms of the nonlinear operator.

N ′ [u]v = lim
ε→0

N [u+ εv]−N [u]
ε

= lim
ε→0

F (D2u+ εD2v)− F (D2u)
ε

= F ′(D2u) : D2v

(5.14)
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Combining (5.13) and (5.14) then results in the following nonvariational sequence of linear

PDEs. Given u0 for each n ∈ N find un+1 such that

F ′(D2un) : D2
(
un+1 − un

)
= f − F (D2un). (5.15)

5.1.1.1 Remark (constraints). Many fully nonlinear elliptic PDEs must be constrained

in order to admit a unique solution. For example the Monge–Ampère–Dirichlet (MAD)

problem

det D2u = f in Ω

u = 0 on ∂Ω
(5.16)

admits a unique solution in the cone of convex functions (see A.3). We will study the

MAD problem in further detail in §5.4.

Due to difficulties arising from the passing of these constraints from the continuous

level down to the discrete we will initially study fully nonlinear PDEs which have no such

constraint.

5.2 Unconstrained fully nonlinear PDEs

Before we discretise the model problem (5.2) in general we will illustrate the method we

will propose with a simple example. For this we follow the framework set out in §4.

5.2.0.2 Example (a simple fully nonlinear PDE). We consider the problem

N [u] := |∆u|+ 2∆u− f = 0 in Ω

u = 0 on ∂Ω
(5.17)

which is specifically constructed to be uniformly elliptic. Indeed

F ′(D2u) = (sign (∆u) + 2) I > 0. (5.18)

The Newton linearisation of the problem is then: Given u0 find un+1 such that

(sign (∆un) + 2) I:D2(un+1 − un) = f − |∆un| − 2∆un. (5.19)

Recall the NVFEM was set up in such a way that the finite element Hessian was given as

part of the solution process (see (5.41)). With that in mind we may in fact use the finite
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element Hessian of the previous Newton iterate in the discrete formulation as follows:

Find Un+1 ∈ V such that〈
(sign (∆hU

n) + 2) I:H[Un+1 − Un],
◦
Φ
〉

=
〈
f − |∆hU

n| − 2∆hU
n,

◦
Φ
〉

∀
◦
Φ ∈

◦
V

(5.20)

where we are using ∆hv = trace H[v].

We now present the method for general unconstrained fully nonlinear PDEs.

5.2.0.3 Definition (nonlinear finite element method (NLFEM)). Given a BVP of the

form, finding u ∈ H2(Ω) ∩H1
0(Ω) such that

N [u] = F (D2u)− f = 0 in Ω,

u = 0 on ∂Ω.
(5.21)

Upon applying Newton’s method to solve problem (5.21) we obtain a sequence of functions

(un)n∈N0 solving the following linear equations in nonvariational form

N(D2un):D2un+1 = g(D2un) (5.22)

where

N(X) := F ′(X), (5.23)

g(X) := f − F (X) + F ′(X):X. (5.24)

Recall the notation from §4, the finite element space,
◦
V, is defined in (4.10). The finite

element Hessian, H, is given in Definition 4.1.3.4.

The nonlinear finite element method to approximate (5.22) is defined as finding (Un)n∈N0 ∈
◦
V such that 〈

N(H[Un]):H[Un+1],
◦
Φ
〉

=
〈
g(H[Un]),

◦
Φ
〉

∀
◦
Φ ∈

◦
V. (5.25)

Given Un+1 =
◦
Φ

ᵀ ◦
un+1 the equivalent linear system is given by

◦◦
Dnun+1 :=

d∑
α=1

d∑
β=1

◦
Bαβ

n M−1
◦
Cαβ

◦
un+1 = ◦

gn. (5.26)

The problem dependent components of (5.26) are given by
◦
Bαβ

n :=
〈 ◦
Φ,N(H[Un])α,βΦᵀ

〉
(5.27)

◦
gn :=

〈
g(H[Un]),

◦
Φ
〉
. (5.28)

We now give an algorithm for the general method.
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5.2.1 The NVFEM for fully nonlinear problems

Require: (T0, u
0, p,N,Kmax, tol)

Ensure: (U,V) the NVFE approximation of (4.216)

k = 0

while k ≤ Kmax do

Vk = Fe Space(Tk, p)

if k = 0 then

U0 = ΛV0u0

H[U0] = Hessian Recovery(U0,V0)

end if

n = 0

while n ≤ N do

[Un+1,H[Un+1]] = NVFEM(Vk,N(H[Un]), f)

if
∥∥Un+1 − Un

∥∥ ≤ tol then

break

end if

n = n+ 1

end while

Tk+1 = Global Refine(Tk)

k = k + 1

end while

5.2.1.1 Remark (quasilinear problems). This method (Definition 5.2.0.3 and Algorithm

5.2.1) is reminiscent to that of the quasilinear problems in §4.8 (specifically Algorithm

4.8.1) with the added complication of dealing with the finite element Hessian.

In a general case if we apply a Newton linearisation to the quasilinear problem (4.213)

the result is a sequence of nonvariational linear PDEs whose problem coefficients depend

on the Hessian of the previous iterate as in the fully nonlinear case. This method further

generalises that proposed in §4.8 to general quasilinear PDEs using Newton’s method.
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5.3 Examples

In this section we utilise the method proposed in Theorem 5.2.0.3 for some simple fully

nonlinear equations without constraints.

5.3.0.2 Example. The problem under consideration here is

N [u] := sin (∆u) + 2∆u− f = 0 in Ω,

u = 0 on ∂Ω.
(5.29)

Computing Newton’s Method (5.13) in this case is straightforward. It is easily verified

that the derivative

N ′ [u] v = lim
η→0

1
η

(
N [u+ ηv]−N [u]

)
= lim

η→0

1
η

(
sin (∆u+ η∆v) + 2∆u+ 2η∆v − sin (∆u)− 2∆u

)
= lim

η→0

1
η

(
2 cos

(
2∆u+ η∆v

2

)
sin
(
η∆v

2

)
+ 2η∆v

)

= lim
η→0

(
cos
(

2∆u+ η∆v
2

) sin
(

η∆v
2

)
η∆v

2

∆v + 2∆v
)

=cos (∆u) ∆v + 2∆v.

(5.30)

Setting

N(X) = (cos (trace X) + 2) I, (5.31)

g(X) = f − sin (trace X) + cos (trace X) trace X. (5.32)

Newton’s method applied to this problem then reads: Given u0 for each n ∈ N find un+1

such that

N(D2un):D2un+1 = g(D2un). (5.33)

Using the discretisation from (5.26) given U0 ∈
◦
V for each n = 1, . . . ,M we seek

Un+1 ∈
◦
V such that〈

N(H[Un]):H[Un+1],
◦
Φ
〉

=
〈
g(H[Un]),

◦
Φ
〉

∀
◦
Φ ∈

◦
V. (5.34)

The equivalent linear system can be posed with Un+1 =
◦
Φ

ᵀ ◦
un+1 such that ◦

un+1 ∈ R
◦
N is

the solution to the following linear system
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◦◦
Dn ◦

un+1 :=
(◦
B11

n M−1
◦
C11 +

◦
B22

n M−1
◦
C22

)
◦
un+1 = ◦

gn. (5.35)

The problem dependent components of (5.35) are given by

◦
Bαα

n :=
〈 ◦
Φ, (cos (∆hU

n) + 2)Φᵀ
〉

(5.36)

◦
gn :=

〈
f − sin (∆hU

n)− 2∆hU
n + (cos (∆hU

n) + 2)I:H[Un],
◦
Φ
〉
. (5.37)

Hence from Lemma 4.2.1.1, given

E =


M 0 −

◦
C11

0 M −
◦
C22

◦
B11

n

◦
B22

n 0

 . (5.38)

v =
[
h1,1,h2,2,

◦
un+1

]ᵀ

, (5.39)

b =
[
0, 0,

◦
gn

]ᵀ

, (5.40)

solving the system (5.35) is equivalent to solving

Ev = b (5.41)

for ◦
un+1. Figure 5.1 shows numerical results for the problem.

5.3.0.3 Example. In this example we return to the problem first presented in Example

5.2.0.2

N [u] := |∆u|+ 2∆u− f = 0 in Ω,

u = 0 on ∂Ω.
(5.42)

Recall the discrete linearised problem is : Given U0 find Un+1 such that〈
N(H[Un]):H[Un+1],

◦
Φ
〉

=
〈
g(H[Un]),

◦
Φ
〉

∀
◦
Φ ∈

◦
V, (5.43)

where

N(H[Un]) = (sign (∆hU
n) + 2) I (5.44)

g(H[Un]) = f − |∆hU
n| − 2∆hU

n. (5.45)

We may write the problem as a linear system using the same methodology as in the

previous example.

Figure 5.2 shows numerical results for this problem.
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Figure 5.1: Numerical convergence rates for problem (5.29). Choosing f appropriately

such that u(x) = sin (πx1) sin (πx2). We run Algorithm 5.2.1 with an initial guess u0 = 0

until
∥∥Un+1 − Un

∥∥ ≤ 10−3 upon each Newton step.
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Figure 5.2: Numerical convergence rates for problem (5.42). Choosing f appropriately

such that u(x) = exp
(
−10 |x|2

)
.We run Algorithm 5.2.1 with an initial guess u0 = 0

until
∥∥Un+1 − Un

∥∥ ≤ 10−3 upon each Newton step.
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5.3.0.4 Example. In this example we look at an example of a uniformly elliptic fully

nonlinear PDE whose solution is unknown [Kry95].

The problem is for d = 2

N [u] := (∂11u)2 + (∂22u)2 +
5
2
∂11u∂22u−

1
2

= 0 in Ω

u = 0 on ∂Ω.
(5.46)

The Newton linearisation of the problem is then: Given u0 find (un)n∈N0 such that

N(D2un):D2
(
un+1 − un

)
= g(D2un), (5.47)

where in this case

N(D2un) :=

2∂11u
n + 5

2∂22u
n 0

0 5
2∂11u

n + 2∂22u
n

 (5.48)

g(D2un) :=
1
2
− (∂11u

n)2 − (∂22u
n)2 − 5

2
∂11u

n∂22u
n. (5.49)

We discretise problem (5.50) under the same framework as the previous examples, that

is, given U0 we seek the sequence (Un)n∈N0 such that〈
N(H[Un]):H

[
Un+1 − Un

]
,
◦
Φ
〉

=
〈
g(H[Un]),

◦
Φ
〉

∀
◦
Φ ∈

◦
V. (5.50)

Since the problem (5.50) resembles the equation

(∆u)2 = 1/2 (5.51)

we take the initial guess U0 to be the finite element approximation to ∆u = 1/
√

2. We

fix h =
√

2/64 and show the NLFE solution, (Un)n∈[0:3] at each Newton step. The surface

plots of Un with n = 0, . . . , 3 are given in Figure 5.3.

5.4 Constrained fully nonlinear PDEs - the Monge–Ampère

equation

The Monge–Ampère equation is an important example of a fully nonlinear elliptic PDE

since it is used as a model for other fully nonlinear PDEs. It is derived from differential

geometry. The problem is

N [u] := detD2u− f = 0 in Ω

u = 0 on ∂Ω.
(5.52)
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Figure 5.3: The solution of problem 5.46 under a Newton linearisation. We show the

initial guess and the first three Newton iterates.

(a) The initial guess U0 (b) The first Newton step U1

(c) The second Newton step U2 (d) The third Newton step U3
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This equation is clearly fully nonlinear for d ≥ 2, in fact it is multi-linear with respect

to columns (or rows) of the Hessian. This makes for simpler computations when it comes

to linearising the problem.

There have been numerical studies on this problem in the context of finite differences

by Oliker and Prussner [OP88]. Feng and Neilan [FN07, FN08b, FN08a] propose a mixed

finite element method using sequences of fourth order quasi-linear equations. Despite

these works this is still a tricky problem to formulate correctly. There are restrictions

that must be put in place in order to guarantee ellipticity for example.

We require Ω to be convex and f > 0 for a classical solution to even exist. Monge–

Ampère (5.52) will be uniformly elliptic if D2u is positive definite. If these restrictions

are then satisfied then (5.52) admits a unique convex viscosity solution.

Indeed without the constraint on the Hessian of the solution the problem admits two

solutions, one convex and one concave, in d = 2 for example with homogeneous Dirichlet

boundary both u and −u solve (5.52).

5.4.1 Newton’s method applied to Monge–Ampère

In view of the characteristic expansion of determinant if X,Y ∈ Sym+(Rd×d) then de-

noting Cof X to be the matrix of cofactors of X

det(X + εY ) = det X + ε trace (Cof(X)Y ) + · · ·+ εd det Y (5.53)

and thus

N ′ [u] v = Cof D2u:D2v. (5.54)

We set

N(D2un) = Cof D2un, (5.55)

g(D2un) = δ(f − det D2un) + Cof D2un:D2un, (5.56)

where δ ∈ (0, 1] is a Newton damping factor which although practically is always taken

as δ = 1 is useful in the proof of Lemma 5.5.0.4.

5.4.1.1 Remark (relating cofactors to determinants). Note that for a generic function

v it holds that

d det D2v = Cof D2v:D2v. (5.57)
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Using this formulation we could construct a simple fixed point method for the Monge–

Ampère equation.

Note that in view of Remark 5.4.1.1 g can be further simplified

g(D2un) = δ(f − det D2un) + Cof D2un:D2un

= δ(f − det D2un) + d det D2un

= δ

(
f +

(
d

δ
− 1
)

det D2un

)
.

(5.58)

Newton’s method reads: Given u0 for each n ∈ N find un+1 such that

N(D2un):D2un+1 = g(D2un). (5.59)

We are going to study this problem and demonstrate the difficulties in passing the

preservation of convexity to the discrete level.

The first step to this end is to study the properties of the linearised Monge–Ampère

equation at the continuous level.

5.5 Monge–Ampère at the continuous level

5.5.0.2 Theorem (regularity estimate for the Monge–Ampère equation [Caf90, Theorem

2]). Let u : Ω → R be the classical solution of the Monge–Ampère equation (5.52). Assume

further that the data function f satisfies
∫
Ω f = 1 and that f > 0 and bounded then there

exists a C > 0 such that

‖u‖C2,α(Ω) ≤ C ‖f‖Cα(Ω) . (5.60)

5.5.0.3 Theorem ([LR05]). Let the assumptions of Theorem 5.5.0.2 hold. In addition

assume (un)n∈N is the sequence of functions obtained by solving the linearised Monge–

Ampère equation (5.59). Then for any initial guess u0 there exists a δ > 0 such that

lim
n→∞

‖un − u‖
C2,α′ (Ω)

= 0 ∀ α′ < α. (5.61)

To prove this Theorem we make use of the following Lemmas.
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5.5.0.4 Lemma. Let the assumptions of Theorem 5.5.0.3 hold. Then for each n ∈ N0

there exist constants C1 > 1 and C2 > 0 such that

1
C1
f ≤ det D2un ≤ C1f (5.62)

and
∥∥f − det D2un

∥∥
Cα(Ω)

≤ C2. (5.63)

Proof We restrict ourselves to d = 2 for simplicity. The statements (5.62), (5.63) are

proved by induction.

base case.

Assuming the initial guess is smooth (u0 ∈ C2(Ω)), then there are always constants C1, C2

such that (5.62), (5.63) are satisfied.

inductive step.

Assume (5.62), (5.63) hold for all k ≤ n. Let us denote θn+1 = un+1 − un then it is clear

that θn+1 solves the elliptic problem

Cof D2un:D2θn+1 = δ(f − det D2un). (5.64)

Now

det D2un+1 = det(D2un + D2θn+1)

= detD2un + Cof D2un:D2θn+1 + det D2θn+1

= detD2un + δ
(
f − det D2un

)
+ det D2θn+1.

(5.65)

Since θn+1 solves (5.64) from the Schauder estimate given in Theorem 4.1.2.4 there exists

a constant C3 = C3(C2, C1) such that

∥∥D2θn+1
∥∥

Cα(Ω)
≤ C3δ

∥∥f − det D2un
∥∥

Cα(Ω)
(5.66)

and (5.66) shows there exists a constant C4 = C4(C2, C1) = 2C2
3 such that

∥∥det D2θn+1
∥∥

Cα(Ω)
≤ C4δ

2
∥∥f − det D2un

∥∥2

Cα(Ω)
. (5.67)

From (5.65) we see

det D2un+1 − f = (1− δ)(detD2un − f) + det D2θn+1 (5.68)
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which after combining with (5.67) gives us

∥∥f − det D2un+1
∥∥

Cα(Ω)
≤ (1− δ)

∥∥f − det D2un
∥∥

Cα(Ω)
+ C4δ

2
∥∥f − det D2un

∥∥2

Cα(Ω)
.

(5.69)

By the induction assumption

∥∥f − det(D2un)
∥∥

Cα(Ω)
≤ C2, (5.70)

which substituting into (5.69) gives∥∥f − det D2un+1
∥∥

Cα(Ω)
≤
(
1− δ + C2C4δ

2
) ∥∥f − det D2un

∥∥
Cα(Ω)

≤ κ
∥∥f − det D2un

∥∥
Cα(Ω)

≤ κn
∥∥f − det D2u0

∥∥
Cα(Ω)

≤
∥∥f − det D2u0

∥∥
Cα(Ω)

⇐⇒ δ ≤ 1
C2C4

.

(5.71)

This proves the 2nd part of the Lemma (5.63) if we choose δ small enough. For the lower

bound of the first part (5.62), note

1
C1
f ≤ det D2un

f − det D2un ≤ f(1− 1
C1

).
(5.72)

Now, from equation (5.67), together with the fact f ∈ L∞(Ω) we see there exists a

constant C5 = C5(C1, C2) ∥∥det D2θn+1
∥∥

L∞(Ω)
≤ C5δ

2. (5.73)

Combining (5.68) and (5.73) gives

f − det D2un+1 ≤ (1− δ)(f − det D2un) + C5δ
2

≤ (1− δ)(1− 1
C1

)f + C5δ
2

≤ (1− 1
C1

)f ⇐⇒ δ <
supx∈Ω f(x)(1− 1

C1
)

C5
.

(5.74)

For the upper bound of (5.62) note

det D2un ≤ C1f

det D2un − f ≤ f(C1 − 1).
(5.75)
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Now using the same argument as in (5.74)

f − det D2un+1 ≤ (1− δ)(f − det D2un) + C5δ
2

≤ (1− δ)(C1 − 1)f + C5δ
2

≤ (C1 − 1)f ⇐⇒ δ <
supx∈Ω f(x)(C1 − 1)

C5
.

(5.76)

Hence there exists a δ = δ(supx∈Ω f(x), C1, C2) such that (5.62) and (5.63) are satisfied

for all n ∈ N0.

Proof of Theorem 5.5.0.3 [LR05]. Recall from the proof of Lemma 5.5.0.4

∥∥f − det D2un+1
∥∥

Cα(Ω)
= (1− δ)

∥∥f − det D2un
∥∥

Cα(Ω)
+ C4δ

2
∥∥f − det D2un

∥∥2

Cα(Ω)
.

(5.77)

If ∥∥f − det D2un
∥∥

Cα(Ω)
≤ 1

2C4δ
, (5.78)

then we see that ∥∥f − det D2un+1
∥∥

Cα(Ω)
≤ 1− δ

2C4δ
+

1
4C4

≤ 2− δ

4C4δ
.

(5.79)

Hence

lim
n→∞

∥∥f − det D2un
∥∥

Cα(Ω)
= 0. (5.80)

From Theorem 5.5.0.2 the sequence {un}n∈N is bounded in C2,α(Ω) and hence by Theorem

A.1.0.9 {un}n∈N is precompact in C2,α′(Ω) for all α′ < α. Since the solution u is unique

in the set of convex functions, {un}n∈N → u in C2,α(Ω).

5.5.0.5 Remark. Theorem 5.5.0.2 is a generalisation of Schauder estimates to the Monge–

Ampère equation. Caffarelli has also proved generalisations of Caldrón–Zygmund esti-

mates which are of the form:

‖u‖H2(Ω) ≤ C ‖f‖ . (5.81)

With these estimates it should also be possible to prove convergence for strong solutions.

5.5.0.6 Remark (on the initial guess to the linearised Monge–Ampère ). Since we restrict

our solution to the space of convex functions, it is prudent for the initial guess to also

be convex. Moreover we must rule out constant and linear functions over Ω, since the
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Figure 5.4: The Lagrange interpolant of the function (x1 + x2)2 over a regular diagonal

mesh. Notice it is NOT convex by the classical definition.
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Hessian of these objects would be identically zero, destroying ellipticity on the initial

Newton step. Hence we specify that the initial guess to (5.59) must be strictly convex.

5.6 Passing the constraint to the discrete level

The discretisation we initially tested was essentially the one already given in Theorem

5.2.0.3. That is given U0 = Λu0 for each n ∈ [0 : M ] find Un+1 ∈
◦
V such that〈

Cof H[Un]:H[Un+1 − Un],
◦
Φ
〉

=
〈
f − det H[Un],

◦
Φ
〉

∀
◦
Φ ∈

◦
V. (5.82)

However, it soon become apparent that the matrix Cof H[Un] was not remaining pos-

itive definite on the entire domain Ω and hence the problem lost ellipticity.

To overcome this problem we must enforce some form of convexity on the solution

Un+1.

The biggest challenge, yet to be overcome, is in what sense should the constraint of

convexity be enforced in the discrete scheme?

In fact it is not obvious what is meant by convexity of a discrete function. As motivated

by Morin and Aguilera [AM09, AM08] a projection or interpolation of a convex object

need not be convex by the classical definition.

Figure 5.4 gives an example of this. From this is becomes clear that the notion of

convexity cannot be passed in a pointwise (DOF-wise) sense.
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5.6.0.7 Remark (convexity of distributions [AM09]). In the paper by Dudley [Dud77],

it is shown that given a distribution v ∈ D(Ω), if it holds that

〈
D2v |φ

〉
=
〈
v |D2φ

〉
> 0 ∀ φ ∈ C∞0 (Ω) (5.83)

where φ ≥ 0 in Ω, then v is an element of the equivalence class of continuous convex

functions.

From Remark 5.6.0.7 we may define a finite element convex function in a similar frame-

work.

5.6.0.8 Definition (finite element convexity [AM09]). A function, v, is said to be finite

element convex if

〈H[v],Φ〉 ≥ 0 ∀ Φ ∈ V (5.84)

where Φ ≥ 0 on Ω.

5.6.0.9 Remark (on the restriction Φ ≥ 0 on Ω.). In the case of standard Lagrange finite

elements, this immediately restricts us to piecewise linear finite elements. All higher order

Lagrange elements attain negative values somewhere in their support.

5.6.0.10 Remark (limits of finite element convex functions). In fact in [AM09] it is

proven that given an indexed sequence of finite element convex functions that has a limit,

said limit is convex in the classical sense as given in the Theorem 5.6.0.11.

5.6.0.11 Theorem ([AM09] Theorem 3.3). Suppose (Un,
◦
Vn)n∈N is a sequence of finite

element functions and spaces such that

• (Un) converges weakly to a function u in H1(Ω)

Ui ⇀ u (5.85)

• every finite element function is finite element convex, that is, for each Un ∈
◦
Vn

〈H[Un],Φ〉 ≥ 0 ∀ Φ ∈ Vn (5.86)

then u is convex.
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In view of Remark 5.6.0.9 we restrict V to be the space of piecewise linear functions on

Ω. We then set

R[Un+1] = Cof H[Un]:H[Un+1 − Un]− f + det H[Un] (5.87)

to be the residual of the problem. The discrete formulation we become interested in is to

minimise
〈
R[Un+1],

◦
Φ
〉

∀
◦
Φ ∈

◦
V, (5.88)

subject to
〈
H[Un+1],Φ

〉
≥ 0 ∀ Φ ∈ V. (5.89)

This is a semidefinite programming problem [VB96]. In this case (5.88) is the objective

function and (5.89) is the constraint (see §A.4).

5.7 Implementation

The implementation of the numerical scheme (5.88) and (5.89) is done in Matlab ©r. The

finite element component of the code is based on that already developed for the linear

problems described in §4. As for the semidefinite program, we made use of the Matlab

implemented SeDuMi (Self-Dual-Minimization) [Stu99].

In order to make use of SeDuMi we must first pose the semidefinite program in the

form of (A.29), that is, a linear algebra problem. The equivalent system is just

minimise |Ev − b| (5.90)

subject to [Mhα,β]α,β > 0 (5.91)

where recall from §4

Ev − b =



M 0 · · · 0 0 −
◦
C11

0 M · · · 0 0 −
◦
C12

...
...

. . .
...

...
...

0 0 · · · M 0 −
◦
Cdd−1

0 0 . . . 0 M −
◦
Cdd

◦
B11

n

◦
B12

n . . .
◦
Bdd−1

n

◦
Bdd

n 0





h1,1

h1,2

...

hd,d−1

hd,d

◦
u


−



0

0
...

0

0
◦
f


(5.92)
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and we are using

[Mhα,β]α,β =


Mh1,1 Mh1,2 . . . Mh1,d

Mh2,1 Mh2,2 . . . Mh2,d

...
...

. . .
...

Mhd,1 Mhd,2 . . . Mhd,d

 > 0, (5.93)

as our convexity constraint of the NVFE-solution.

5.8 Numerical experiments

In this section we study the numerical behaviour of the scheme presented above.

We present a set of benchmark problems constructed from the problem data such that

the solution to the Monge–Ampère equation is known and construct the method presented

above. We fix Ω to be the square S = [−1, 1]2 or [0, 1]2 and test convergence rates of the

discrete solution to the exact solution.

Figures 5.5–5.8 details the various experiments and shows numerical convergence results

for each of the problems studied. In each of these cases the Dirichlet boundary values are

not zero. We make use of Method 1 proposed in §4.4.1 for the inhomogeneous boundaries.
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Figure 5.5: Numerical results for Monge–Ampère on the square Ω = [−1, 1]2. Choosing f

and g appropriately such that the solution is the radially symmetric function u(x) = e
|x|2
2 .

(a) The FE approximation to the function u(x) =

e
|x|2
2
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(b) Log–log error plot for P1 Lagrange FEs

Figure 5.6: Numerical results for Monge–Ampère on the square Ω = [0, 1]2. Choosing an

f = |x|−1 and g. Notice that it blows up at the boundary, the solution is the function

function u(x) = 2
√

2
3 |x|3/2.

(a) The FE approximation to the function u(x) =

2
√

2
3
|x|3/2
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(b) Log–log error plot for P1 Lagrange FEs



5.8 Numerical experiments 151

Figure 5.7: Numerical results for Monge–Ampère on the square Ω = [−1, 1]2. Choosing

f and g appropriately such that the solution is u(x) = −
√

2− x2
1 − x2

2.

(a) The FE approximation to the function u(x) =

−
p

2− x2
1 − x2

2.
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(b) Log–log error plot for P1 Lagrange FEs.

Figure 5.8: Numerical results for Monge–Ampère on the square Ω = [−1, 1]2. Choosing f

and g appropriately such that the solution is u(x) = |x1|. This is enforced with a “discrete

Dirac function”.

(a) The FE approximation to the function u(x) =

|x1|.
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We also test the ability of the method to approximate functions which can only satisfy

the Monge–Ampère equation in the viscosity sense. To that end consider the Monge–

Ampère equation with problem data as follows:

det D2u = 1 in Ω

u = 0 on ∂Ω.
(5.94)

This equation can have no classical solution. It is found in most of the previous numerical

studies on the equation. We include it here for comparitive purposes.

We fix h =
√

2/64 and show the NLFE solution at each Newton step. Here we take the

initial guess to be the finite element solution to ∆u = 1/
√

2. The surface plots of U i with

i = 0, . . . , 3 are given in Figure 5.9. We also show contour plots of U i with i = 0 . . . 3 in

Figure 5.10. We complete the study of this problem by looking at the convergence rate

of the final residual in the Newton scheme R[UN ] as we refine the mesh, this is given in

Figure 5.11.
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Figure 5.9: The numerical approximation of the solution of the Monge–Ampère equation

(5.94) under a Newton linearisation. We show the initial guess and the first three Newton

iterates. Note convexity (in the classical sense) is violated near the corners of the mesh.

(a) The initial guess U0 (b) The first Newton step U1

(c) The second Newton step U2 (d) The third Newton step U3
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Figure 5.10: Contour plots of the numerical approximation of the solution of the Monge–

Ampère equation under a Newton linearisation. We show the initial guess and the first

three Newton iterates. Note convexity (in the classical sense) is violated near the corners

of the mesh.

(a) The initial guess U0 (b) The first Newton step U1

(c) The second Newton step U2 (d) The third Newton step U3
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Figure 5.11: We numerically study the convergence rates of the residual R[UN ], of the

final Newton step defined in (5.87). Notice it has a linear convergence, i.e.,
∥∥R[UN ]

∥∥ =

O(h).
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5.9 Towards a rigorous error analysis of the nonlinear finite

element method

In this section we give a possible starting point for analysing the method proposed for

general unconstrained fully nonlinear PDEs §5.2.

5.9.0.12 Remark (on the error of the NLFEM). The “full” error of the proposed method

(Definition 5.2.0.3) can readily be split into its linearisation and discretisation errors.

Suppose u solves the continuous nonlinear problem (5.21). Given u0, let (un)n∈N0 be the

sequence of solutions to the continuous linear problems

N(D2un):D2un+1 = g(D2un). (5.95)

Set U0 = Λu0, then let (Un)n∈N0 solve the discrete linear problems〈
N(H[Un]):H[Un+1],

◦
Φ
〉

=
〈
g(H[Un]),

◦
Φ
〉

∀
◦
Φ ∈

◦
V. (5.96)

Then we may write

‖u− Un‖X ≤ ‖u− un‖X + ‖un − Un‖X . (5.97)
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We denote the term ‖u− un‖X to be the linearisation error and ‖un − Un‖X to be the

discretisation error. The linearisation error is well known to be quadratically convergent

in n given a sufficiently “good” initial guess [Kel95]. We will only study the discretisation

error further here.

5.9.0.13 Remark (a “nonvariational” crime). Applying a direct discretisation to

find un+1 such that N(D2un):D2un+1 = g(D2un), (5.98)

gives

find Un+1 such that N(D2un):H[Un+1] = g(D2un). (5.99)

However D2un is not available to us so we approximate it in the problem coefficients with

the finite element Hessian H[Un] and hence commit a nonvariational crime. The extent

of the nonvariational crime is quantified in Theorem 5.9.0.14.

5.9.0.14 Theorem (convergence of the finite element Hessian). Let v ∈ Hj+2(Ω)∩H1
0(Ω),

for some 0 ≤ j ≤ p + 1, be a generic function and V ∈
◦
V. Then there exist constants

C1 and C2 such that the following bound holds

∥∥H[V ]−D2v
∥∥

H−1(Ω)
≤ (1 + C2) |V − v|1 + C1h

j+1 |v|j+2 . (5.100)

Proof Testing H[V ]−D2v with a generic φ ∈ H1
0(Ω) Theorem ?? (the existence of H[V ]

over V) gives 〈
H[V ]−D2v, φ

〉
= 〈H[V ],PV φ〉 −

〈
D2v, φ

〉
=
〈
D2V | PV φ

〉
+ 〈∇v ⊗∇φ〉

=− 〈∇V ⊗∇PV φ〉+ 〈∇v ⊗∇φ〉 .

(5.101)
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Adding and subtracting 〈∇V ⊗∇φ〉 and 〈∇v ⊗∇ (PV φ− φ)〉〈
H[V ]−D2v, φ

〉
= 〈∇V ⊗∇ (PV φ− φ)〉+ 〈∇ (v − V )⊗∇φ〉

= 〈∇ (V − v)⊗∇ (PV φ− φ)〉+ 〈∇ (v − V )⊗∇φ〉

+ 〈∇v ⊗∇ (PV φ− φ)〉

= 〈∇ (V − v)⊗∇ (PV φ− φ)〉+ 〈∇ (v − V )⊗∇φ〉

−
〈
D2v,PV φ− φ

〉
= 〈∇ (V − v)⊗∇ (PV φ− φ)〉+ 〈∇ (v − V )⊗∇φ〉

−
〈
(I − PV)D2v, φ

〉
≤ |v − V |1 (|PV φ− φ|1 + |φ|1) +

∥∥(I − PV)D2v
∥∥

H−1(Ω)
|φ|1

≤ |φ|1
(
(1 + C2) |V − v|1 + C1h

j+1
∣∣D2v

∣∣
j

)
,

(5.102)

where we have made use of the self adjoint property of the L2(Ω) projection, together

with an H1(Ω) stability bound and the convergence result from Lemma 4.6.0.3.

5.9.0.15 Theorem (discretisation error). Let (un)n∈N0 be the sequence of solutions to

the sequence of linear equations

N(D2un):D2un+1 = g(D2un). (5.103)

Let (Un)n∈N0 be the sequence of finite element solutions to the discretisation of 5.103 as

given in Theorem 5.2.0.3. Then the following bound holds∥∥N(D2un):D2un+1 −N(H[Un]):H[Un+1]
∥∥
−1
≤ C

(
hj+1

( ∣∣un+1
∣∣
j+1

+ |un|j+1

)
+ |un − Un|1

)
.

(5.104)

Proof We begin by splitting the error into a “pure” discretisation error (as appearing in

Remark 5.9.0.13) and the “nonvariational” error∥∥N(D2un):D2un+1 −N(H[Un]):H[Un+1]
∥∥
−1
≤
∥∥N(D2un):

(
D2un+1 −H[Un+1]

)∥∥
−1

+
∥∥(N(D2un)−N(H[Un])

)
:H[Un+1]

∥∥
−1

=: δ + ν.

(5.105)
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Where we are using δ to denote the “pure” discretisation error and ν the “nonvariational”.

Now δ can be bounded using the theory of the linear case (see Theorem 4.6.0.4) as follows.

Assume that the continuous solution of the (n+1)-th linearised problem un+1 belongs to

Hj+2(Ω) for some j = 0, . . . , p+ 1 then

δ =
∥∥N(D2un):

(
D2un+1 −H[Un+1]

)∥∥
−1

≤ Chj+1
∣∣g(D2un)

∣∣
j

≤ Chj+1
∣∣un+1

∣∣
j+2

.

(5.106)

By Theorem 5.9.0.14 we have

ν =
∥∥(N(D2un)−N(H[Un])

)
:H[Un+1]

∥∥
−1

≤ C
∥∥D2un −H[Un]

∥∥
−1

≤ C
(
|un − Un|1 + hj+1 |un|j+2

)
,

(5.107)

where C will depend on the coefficient matrix N . Combining the bounds for δ and ν

yields the desired result.

5.9.0.16 Remark (the presence of |un − Un|1). Currently we have no analytical bounds

for the gradient error of the NDFE solution. Although numerically it may be inferred (see

§4.5) that |un − Un|1 = O(hp). This would then yield optimal convergence rates of the

residual under the assumption (un)n∈N0 ∈ H2(Ω).



Chapter 6

Summary and Open Problems

6.1 Part 1

In the first half of this work we rigorously analysed the backward Euler finite element

approximation of linear parabolic equations in an aposteriori sense. In this case we used

the heat equation as a prototype although the analysis can easily be extended to general

linear parabolic operators.

We extensively tested the resultant aposteriori estimate numerically, showing under

the step size condition τ � hp the resultant estimator is asymptotically exact. We also

used the estimator to drive a heuristic adaptive algorithm.

As is always the case this work has generated more questions than answers, we propose

new directions for the research below.

6.1.1 Lower bounds

In §3 we only derive upper bounds of the semidiscrete and fully discrete error. It is possible

to derive lower bounds for the error. In [CJ04] Chen and Feng bound the spatial error

indicators based on the bubble functions introduced by Verfürth for elliptic problems

[Ver94b]. Work of note is that of Bergam, Bernardi and Mghazli [BBM05] who give

lower bounds to their estimators. This is interesting since they provide space and time

estimators that are fully decoupled.
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6.1.2 Rates of convergence for the adaptive scheme

In §3.7 we gave a heuristic adaptive algorithm. We provide no analytical convergence proof

for this algorithm. Convergence of adaptive finite element methods for elliptic problems

is reasonably well understood, [BDD04, MNS02b, MNS00]. For evolution problems some

work has been done on the convergence of the adaptive scheme by Chen and Feng [CF04]

however no rates are given.

6.1.3 Higher order approximation of the time derivative

We analysed the backward Euler approximation of the time derivative in the heat equa-

tion. We may use a higher order approximation. Work has been done on Crank–Nicholson

and general Runge–Kutta schemes approximation of general parabolic problems by Akrivis,

Makridakis and Nochetto [AMN06, AMN09] for residual estimators.

6.2 Part 2

In the second half of this work we derived a finite element method for linear elliptic

problems in nonvariational form. We studied the method numerically and showed the error

converged “optimally”, by which we mean ‖u− U‖ = O(hp+1) and |u− U |1 = O(hp).

6.2.1 Nonconforming finite element approximation

We believe a discontinuous Galërkin finite element method may lend itself to the frame-

work laid out in §4 even better than the conforming method presented. The reason for

this is the mass matrix appearing in the linear system can be decomposed into element-

wise components. This means the linear system itself could be solved locally, resulting in

extremely fast solution time. The added complication in this case would be defining the

Hessian of an object that was still piecewise smooth however no longer continuous.

6.2.2 Numerical apriori analysis

Although apriori analysis is given for the method, we only obtain rates of convergence

for the residual in a dual norm. A more thorough apriori analysis is required for the

method. In particular to show convergence of the fully nonlinear scheme we must first
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derive bounds for the linear case, as noted in Remark 5.9.0.16, we must bound the term

|u− U |1.

6.2.3 Stochastic processes

Stochastic analysis yields many nonvariational form equations. In particular, the forward

Kolmogorov equation (also known as Fokker–Plank equation) is of this form. This area

of research is lacking numerical methods and we believe ours to be a valuable addition to

the field.

6.2.4 Condition number of the block matrix E

We numerically studied E and shown it to have a condition number of O(h−2). No analytic

proof for this observation exists and would be useful. In fact this is a major advantage

to the method we propose in §5 over that proposed in [FN07, FN08b, FN08a] since they

must discretise the biharmonic equation and hence the resultant linear system has at best

a condition number of O(h−4).

6.2.5 Aposteriori analysis

The aposteriori error analysis given in §4.6 is of residual type and as such it should be

possible to prove lower bounds using the bubble functions proposed by Verfürth [Ver94b].

6.2.6 Termination of linearisations

Moving onto the nonlinear cases we studied, as noted in Remark 4.8.1.3 the stopping

criterion we used for the linearisation of both the quasilinear and the fully nonlinear

equations is not ideal. A more thorough investigation is needed into efficient termination

of the iterative solver.

6.2.7 Analysis of the fully nonlinear scheme

A very simple groundwork to this end has already been set out in §5.9. A thorough

analysis of this method hinges on the estimates obtained in the linear case.
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6.2.8 Dealing with constraints generally

Although we have proposed a numerical method for general unconstrained fully nonlin-

ear PDEs, in the general constrained case it is difficult to see how to pass constraints

down to the discrete level. In the case of the Monge–Ampère equation we may formulate

the discrete problem as a semidefinite program. However if the constraint is any “more

nonlinear” than the quadratic there is no obvious way to deal with it.

6.2.9 Approximating every convex function

Since we are restricted in the theory to using test functions which are nonnegative

throughout the domain (see Remark 5.6.0.9), the method proposed for the Monge–Ampère

equation is with piecewise linear finite elements, p = 1. Note, however, with certain prob-

lems the method does not converge to the solution but to some other function (albeit

one not far from the solution). This is due to the observation in [AM09] that the finite

element space consisting of piecewise linear functions is not “rich enough to approximate

every convex function”. A solution may be to create extra degrees of freedom on the ele-

ments and use the quadratic bubble functions defined as standard for P2 elements. These

functions again remain nonnegative through the domain and so this method would fit the

theory set out in Remark 5.6.0.7.

6.2.10 Parabolic fully nonlinear equations

We have provided a novel numerical method for the elliptic Monge–Ampère equation. An

obvious extension is to the parabolic Monge–Ampère equation. In fact to the author’s

knowledge there has been no work done on numerical methods for the parabolic Monge–

Ampère equation and this would make for an interesting field of research.



Appendix A

Interesting things

A.1 Useful theorems and inequalities

A.1.0.1 Definition (dual space). The dual of of a Hilbert space, H, is defined as the

space consisting of all continuous linear functionals from H into R (or C).

A.1.0.2 Theorem (Reisz Representation Theorem). Let (·, ·) be the inner product of a

Hilbert space H. Let Λ : H → R be a continuous, linear functional then there exists a

u ∈ H such that

Λ(v) = (v, u) ∀ v ∈ H. (A.1)

A.1.0.3 Lemma (Lax-Milgram [Cia78]). Let a(·, ·) : H1
0(Ω) × H1

0(Ω) → R be a bilinear

form that is: continuous

a(u, v) ≤ α ‖u‖1 ‖v‖1 (A.2)

and coercive

a(u, u) ≥ β ‖u‖2
1 . (A.3)

Let l(·) : H1
0(Ω) → R be a linear form that is continuous

l(v) ≤ C ‖v‖1 . (A.4)

Then the weak formulation

find u ∈ H1
0(Ω) such that a(u, v) = l(v) ∀ v ∈ H1

0(Ω) (A.5)

has a unique weak solution.
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A.1.0.4 Lemma (Poincaré–Friedrichs Inequality). Let Ω ⊂ Rd be open, bounded and

have Lipschitz boundary. Then there exists a C = C(Ω) such that for any v ∈ H1
0(Ω)

‖v‖ ≤ C ‖∇v‖ (A.6)

or for v ∈ H1(Ω), denoting v̄ = 1
|Ω|
∫
Ω v

‖v − v̄‖ ≤ C ‖∇v‖ . (A.7)

A.1.0.5 Lemma (Young’s Inequality). Given a, b ∈ R+ then for any ε > 0 the following

inequality holds

ab ≤ a2

2ε
+
εb2

2
. (A.8)

A.1.0.6 Lemma (Cauchy–Bunyakovsǩi–Schwarz). Given a normed space N equipped

with an inner product (·, ·)N and norm ‖·‖N . For each x, y ∈ N it holds that

(x, y)N ≤ ‖x‖N ‖y‖N . (A.9)

A.1.0.7 Lemma (Green’s Identity). Let u, v ∈ C1(Ω) then∫
Ω
∇uv = −

∫
Ω
u∇v +

∫
∂Ω
uvn, (A.10)

where n is the outward pointing normal to Ω.

A.1.0.8 Definition (Precompact). A set S is precompact if its closure S̄ is compact.

A.1.0.9 Theorem (Ascoli–Arzelá). Let S ⊂ C(Ω) where Ω ⊂ Rd. Suppose the functions

in S are uniformly bounded

sup
f∈S

‖f‖L∞ <∞ (A.11)

and equicontinuous over Ω

|f(x)− f(y)| ≤ εS(δ) whenever ‖x− y‖ ≤ δ (A.12)

where limδ→0 εs(δ) = 0. Then S is precompact in C(Ω).



A.1 Useful theorems and inequalities 165

A.1.0.10 Definition (Gram matrix). The Gram matrix of a set of vectors v = (v1, . . . , vn)

in an inner product space, X is the matrix of inner products, whose entries are given by

X = 〈v, vᵀ〉X . (A.13)

A.1.0.11 Theorem (regularity of solutions for second order elliptic PDEs in divergence

form). Let u be the solution to

− div A∇u = f. (A.14)

Assume ∂Ω ∈ C1,1(Ω) and the coefficients of problem (A.14) satisfy the following

A ∈ L∞(Ω)d×d,

A(x) ∈ Sym+(Rd×d) ∀ x ∈ Ω,

∃λ > 0 : λ−1 |ξ|2 ≤ ξT Aξ ≤ λ |ξ|2 ∀ ξ ∈ Rd.

(A.15)

Then if f ∈ L2(Ω) it follows that u ∈ H2(Ω) and there exists a constant C = C(d,Ω, λ,V)

such that

|u|2 ≤ C ‖f‖ . (A.16)

A.1.0.12 Theorem ([Gri85] trace theorem for polygonal domains). Let Ω be a Lipschitz

domain, then the trace operator, T ,

T : H1(Ω) → H1/2(∂Ω)

u 7→ Tu := u|∂Ω ,
(A.17)

is bounded, linear and injective, that is there exists a C > 0 such that

‖Tu‖H1/2(∂Ω) ≤ C ‖u‖1 . (A.18)

Moreover there exists an operator T−1 such that given a function g ∈ H1/2(∂Ω)

TT−1g = g. (A.19)

Hence the operator T−1 is a right inverse of T .
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A.2 Fractional order Sobolev spaces

In addition to integer ordered Sobolev spaces like those defined in §2 it is also possible to

define fractional order spaces. Assume k ≥ 0 1 and the relation k = l + m, with l ∈ N0

such that m ∈ (0, 1) holds. Then the space Hk(Ω) can be defined using a integral version

of Hölder continuity as follows

Hk(Ω) = Hl(Ω) ∩

{
φ :

∑
α=l

∫
Ω

∫
Ω

φ(α)(x)− φ(α)(y)

|x− y|d−2m

}
≤ ∞. (A.20)

This is also known as a Sobolev–Slobodeckij space. Its corresponding norm is

‖v‖2
k := ‖v‖2

l +
∑
α=l

∫
Ω

∫
Ω

φ(α)(x)− φ(α)(y)

|x− y|d−2m
. (A.21)

A.3 Classically convex functions

A.3.0.13 Definition (convexity, strict convexity and uniform convexity). A function

φ : Ω → R is convex on Ω if for all x,y ∈ Ω and α ∈ R+

φ(αx + (1− α)y) ≤ αφ(x) + (1− α)φ(y). (A.22)

It is strictly convex if

φ(αx + (1− α)y) < αφ(x) + (1− α)φ(y). (A.23)

It is uniformly convex if there exists a C > 0 such that

φ(αx + (1− α)y) ≤ αφ(x) + (1− α)φ(y)− Cα(1− α) |x− y|2 . (A.24)

If f is a convex, stricly convex or uniformly convex function then −f is a concave,

strictly concave or uniformly concave function respectively.

A.3.0.14 Proposition (linear combination of convex functions). Let {φi}i be a finite

set of convex functions on Ω. Let {αi}i denote a finite set of nonnegative real numbers.

Then ∑
i

αiφi is a convex function on Ω. (A.25)

1but may no longer be in N0.
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A.3.0.15 Proposition (gradient condition of convexity). Let φ : Ω → R be differentiable

then

• φ is convex if and only if

φ(y)− φ(x) ≥ Df(x)(y − x) (A.26)

• φ is strictly convex if and only if

φ(y)− φ(x) > Df(x)(y − x) (A.27)

• φ is uniformly convex if and only if

φ(y)− φ(x) ≥ Df(x)(y − x) + C |y − x|2 . (A.28)

A.3.0.16 Proposition (Hessian condition of convexity). Let φ : Ω → R be twice differ-

entiable then

• φ is convex if and only if D2φ(x) ≥ 0 for each x ∈ Ω.

• φ is strictly convex if and only if D2φ(x) > 0 for each x ∈ Ω.

• φ is uniformly convex if and only if there exists C > 0 such that D2φ(x) ≥ C |x|2

for each x ∈ Ω.

A.4 Semidefinite programming

A semidefinite programming problem is an optimisation problem of the form : Given

a,x ∈ RN , {Ai}M
i=1 ∈ Sym(RM×M )

minimise aᵀx

subject to
N∑

i=1

xiAi ≥ 0.
(A.29)

This is a generalisation of linear programming to include positive semidefinite constraints.

These can be solved efficiently using interior point methods (barrier methods) for example.

We will not discuss this further, instead we direct interested readers to [BGLS06].
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A.5 Viscosity solutions

This section will provide a brief introduction to viscocity solutions of uniformly elliptic

fully nonlinear PDEs of second order of the form

N [u] := F (D2u)− f = 0. (A.30)

Since the weak solution framework cannot be applied in the context of fully nonlinear

equations a different notion of weak solutions must be considered. The paper by Crandall

and Lions [CL83] gives a notion of viscosity solutions for first order Hamilton–Jacobi

type equations. This was later extended to second order PDEs in [CIL92]. The viscosity

solution gives a very useful theory in proving existence of solutions to such equations.

Before introducing explicitly what a viscocity solution is we first give the following

variant of the maximum principle

A.5.0.17 Theorem (maximum principle). A given function u ∈ C2(Ω) is said to be a

classical solution of (5.2) if and only if both the following two conditions hold:

• For each φ ∈ C2(Ω), if x0 is a local maximum of u− φ then

F (D2φ(x0)) ≤ f(x0) (A.31)

• For each φ ∈ C2(Ω), if x0 is a local minimum of u− φ then

F (D2φ(x0)) ≥ f(x0) (A.32)

Note we are assuming no regularity on u, in fact all the smoothness requirements are

on φ.

The heuristic idea of a viscocity solution is to use the two properties given in Theorem

A.5.0.17 and only after do we study the properties (existence, uniqueness, etc.).

A.5.0.18 Definition (viscoscity solution). A viscoscity solution is a notion of weak solu-

tion for nonlinear elliptic (and parabolic) equations. In particular it is used for equations

in non-divergence form. A continuous function u ∈ C0(Ω) is a viscosity supersolution

(resp. viscosity subsolution) when the following holds. Suppose x0 ∈ Ω, φ ∈ C2(Ω) and

u− φ has a local min at x0 then

F (D2φ) ≤ f(x0) (A.33)



A.5 Viscosity solutions 169

(resp. u− φ has a local max at x0 then

F (D2φ) ≥ f(x0) ). (A.34)

If u is both a supersolution and a subsolution it is then called a viscocity solution.
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[AM09] Néstor E. Aguilera and Pedro Morin, On convex functions and the finite

element method, SIAM J. Numer. Anal. 47 (2009), no. 4, 3139–3157. MR

MR2551161

[AMN06] Georgios Akrivis, Charalambos Makridakis, and Ricardo H. Nochetto, A pos-

teriori error estimates for the Crank-Nicolson method for parabolic equations

for parabolic equations, Math. Comp. 75 (2006), no. 254, 511–531 (electronic).

MR MR2196979 (2007a:65114)

[AMN09] , Optimal order a posteriori error estimates for a class of Runge-

Kutta and Galerkin methods, Numer. Math. 114 (2009), no. 1, 133–160. MR

MR2557872

[AO00] Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in fi-

nite element analysis, Pure and Applied Mathematics (New York), Wiley-

Interscience [John Wiley & Sons], New York, 2000. MR MR1885308

(2003b:65001)

170



BIBLIOGRAPHY 171

[Arg01] Ioannis K. Argyros, Local and semilocal convergence theorems for Newton’s
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