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SUMMARY: Maintenance of the intracellular NADH/NAD+ redox poise is vital 

for energy generation in cells. Gram-positive bacteria, including the antibiotic-

producing organism, Streptomyces coelicolor, have evolved a regulatory protein 

Rex that both senses this ratio and mediates an adaptive response to changes 

in it.  Rex is a dimeric redox-sensitive transcriptional repressor. It is capable of 

binding to both NAD+ and NADH, although only NADH is an effector, causing 

dissociation of the protein from operator (ROP) sites. As NADH levels rise 

during oxygen limitation Rex dissociates from its target genes allowing 

expression, which helps to restore the NADH/NAD+ ratio. Microarray-based 

expression studies had suggested that Rex regulated only a small number of 

genes. In this work, however, ChIP-on-chip analyses revealed 38 genes that 

are potential regulon members. Analysis of the Rex binding sites in S. coelicolor 

revealed new insights into the mode of binding and show that Rex can bind with 

low affinity to incomplete half sites. This work also focused on characterising 

two key Rex targets, ndh and nuoA-N, that encode non-proton-translocating 

and proton translocating NADH dehydrogenases, respectively. Whereas nuoA-

N is not essential and was not expressed in liquid media, ndh was essential for 

growth. Depletion of NDH from growing cells led to the induction of Rex target 

genes confirming that ndh and Rex play key roles in maintaining redox 

homeostasis. Structure-based dissection of Rex, via a close homologue in 

Thermus aquaticus, identified a key interaction between the NADH- and DNA-

binding domains of Rex. An R29-D203’ salt-bridge, that traverses the NADH 

binding and DNA binding domains of Rex, appeared to stabilise the DNA-bound 

form of Rex, but is ‘broken’ in the presence of NADH. In the NADH-bound form 

of Rex, D203 alternatively interacts with Y111, which in turn interacts with the 

nicotinamide ring of NADH.  In order to assess the importance of individual 

subunits in the dimeric Rex, a single-chain derivative was constructed and the 

NADH binding and DNA binding domains individually disrupted.  
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Introduction 

 

 

“The greater our knowledge increases, the greater our ignorance unfolds.” 

John F. Kennedy (1917-1963) 
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Section 1.1 – Overview 
 

ree-living bacteria are faced with a range of environmental challenges, 

necessitating the need for sensory regulatory pathways in order to switch 

on adaptive responses. Nutrient and oxygen limitation are classical problems 

faced by such organisms, requiring global changes in the metabolic profiles in 

order to thrive in these conditions. Such changes in growth conditions are 

detected by a wide variety of sensors that somehow transduce this signal to 

alter gene expression. The primary sensor and regulator might be encoded on a 

single polypeptide chain, or they might be encoded on separate proteins. This 

study focuses on the Rex regulator of Streptomyces coelicolor that both senses 

changes in the NADH/NAD+ ratio that accompany oxygen limitation, and 

controls the transcription of target genes in response to these changes. This 

chapter discusses the biological context of this protein, along with its previous 

characterisation and gene target identification.  

 

    

Section 1.2 – Streptomyces coelicolor 
 

he actinomycete family of bacteria includes several medically and 

industrially important genera including the mycobacteria, corynebacteria, 

and the streptomycetes.  The Mycobacterium genus is probably best known for 

Mycobacterium tuberculosis, a pathogen responsible for infecting one person 

per second and causing >1 million deaths per year. Corynebacteria, particularly 

Corynebacterium glutamicum, are extensively used in industry as they are fast 

growing and are capable of fermentation. They are most notably used for L-

amino acid production. The Streptomyces genus is unusually morphologically 

and physiologically complex. Members have intricate colony structures with 

hyphae delving deep into the substrate and spore chains reaching into the air. 

Importantly, they produce an array of secondary metabolites, e.g. 

chloramphenicol (antibacterial), daunorubicin (antitumor) and rapamycin 

(immunosuppressant). S. coelicolor itself is so named for the blue colour of its 

most noted secondary metabolite, actinorhodin, with „coelicolor‟ translating as 

F 

T 
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„sky colour‟ in latin. The following section provides an overview of the genome 

structure, life cycle and metabolism of S. coelicolor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Streptomyces coelicolor life cycle. The involvement of different regulatory genes at 

each stage is also shown. Figure adapted from that of Kieser et al. (Kieser et al., 2000).  

 

 

   Section 1.2.1 – Life-cycle 
 

The life-cycle of S. coelicolor is complex (Figure 1.1), with aspects often more 

familiar to fungal or even plant development, and is heavily regulated (Flärdh 

and Buttner, 2009). Starting with germination, a single spore will produce 

Spore 

Germ tube 

Aerial 

hyphae 

Spore 

chain 

bldABCDGHIK 

whiABGJ whiHI 

whiDE 
sigF 

Vegetative growth 
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multiple germ tubes in response to certain environmental cues, e.g. nutrient 

supply (Flärdh and Buttner, 2009). Upon emergence, the germ tubes begin to 

replicate rapidly by tip extension, without forming septa (Chater and Losick, 

1996). They begin to form branch points, quickly establishing vegetative growth 

(Chater and Losick, 1996). As they do they begin to limit the surrounding 

nutrient supply, which corresponds with aerial hyphae formation (Flärdh and 

Buttner, 2009). Branch points occur at or near the colony surface and continue 

to spread upwards, supplied with nutrients from its base (Kieser et al., 2000). In 

the later stages of spore development the septa form, as does the thick cell wall 

and grey spore pigment that protects the mature spores from desiccation 

(Kieser et al., 2000). Sporulation is the final stage of development and only 

forms a small proportion of the total colony mass (Chater, 1998). Sporulation 

and the mechanisms that regulate it have been studied extensively through use 

of a number of „white‟ and „bald‟ mutants, unable to form mature spores or 

unable to form aerial hyphae at all. Subsequent identification of the genes 

responsible for these phenotypes revealed a range of whi (white phenotype) 

and bld (bald phenotype) genes that regulate S. coelicolor development. The 

first of the bld genes, bldA, is actually a leucyl tRNA gene, which recognises the 

rare UUA codon, and is essential for aerial hyphae and antibiotic production 

(Leskiw et al., 1993). Regulation by bldA requires the inclusion of the TTA 

codon within the target genes; thus their expression is dependent upon 

expression of bldA. Other bld genes are transcriptional regulators; for example 

bldD has been shown to recognise sites upstream of several genes, including 

sigma factors bldN and whiG (Elliot et al., 2001). BldD is characterised as a 

global regulator of development, and while it is not essential for viability it is 

essential for sporulation and antibiotic production (Elliot et al., 2001, Elliot et al., 

2003). It appears to act as a repressor, allowing the expression of its target 

genes (developmental σ factors and regulators) only at the onset of sporulation, 

when they are required (Elliot et al., 2001). BldD is primarily dimeric, with each 

subunit able to coordinate one half-site of its binding site via a helix-turn-helix 

motif (Kim et al., 2006). This system demonstrates some of the complexity 

commonly associated with S. coelicolor gene regulation, with a transcriptional 

regulator having targets that regulate other transcriptional regulators causing a 

cascade of changes throughout the colony. 
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   Section 1.2.2 – Genes and genome 
 

The 8,667,507 bp Streptomyces coelicolor genome was released in full in 2002, 

and contained 7,825 genes (Bentley et al., 2002). Unusual for bacteria, S. 

coelicolor has a linear, not circular, chromosome. Its ends are protected by 

terminal proteins, attached to each 5‟ end, and these appear to be essential for 

DNA replication and propagation of the chromosome (Bao and Cohen, 2001). 

Just as with Eukaryotes, bacterial chromosomes also require compaction. A 

number of classes of nucleoid-associated proteins exist with this function in 

bacteria, including: Lrp, HU, Lsr2 and SMC (Luijsterburg et al., 2008). Again just 

as with Eukaryotes these proteins are implicated in regulation of gene 

expression. The leucine responsive protein (Lrp) is common to both gram-

positive (including S. coelicolor) and gram-negative bacteria, and is able to wrap 

the DNA around its multimeric form (Luijsterburg et al., 2008). As its name 

would suggest Lrp is sensitive to leucine, which destabilises the DNA complex - 

allowing expression of targets such as rrn operons (Pul et al., 2007). S. 

coelicolor have two copies of the HU protein encoded in their genome, one of 

which (hupS) has been shown to be developmentally regulated (Salerno et al., 

2009). HupS appears to localise to the nucleoid of developing spores, with 

mutants being pigmentation deficient and more heat labile than their wild type 

counterparts (Salerno et al., 2009). Lsr2 of M. tuberculosis appears to have 

multiple functions, not only regulating gene expression but also protecting the 

cell from reactive oxygen species produced by the host (Colangeli et al., 2009). 

Lsr2 also has two potential homologues in S. coelicolor. The structural 

maintenance of chromosomes (SMC) proteins appear to be involved in 

chromosome condensation during septation in sporulating aerial hyphae 

(Dedrick et al., 2009, Kois et al., 2009). Regulation of gene expression is a 

major theme of the S. coelicolor genome, with 65 sigma factors and 965 

regulatory genes (Bentley et al., 2004). Protein synthesis is mediated by six 

rRNA (16S, 23S and 5S rRNA) operons and 63 tRNAs (Bentley et al., 2002). S. 

coelicolor is a high G+C gram-positive bacterium with a G+C content of ~72% 

(Bentley et al., 2002). Interestingly its promoter regions are characterised by 

their AT-rich sequences aiding their identification, whereas the coding regions 

themselves show a clear GC-bias (Jaurin and Cohen, 1985). The Streptomyces 
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genus is also intimately associated with natural product biosynthesis; thus 

another notable feature of the genome is the presence of 22 gene clusters, 

encoding enzymes characteristic of their biosynthesis (Bentley et al., 2002). As 

mentioned previously, S. coelicolor produces actinorhodin, a pH-sensitive 

antibiotic (Wright and Hopwood, 1976). In addition to this, they produce 

undecylprodigiosin and the calcium-dependent antibiotic (CDA), as well as the 

polyketide synthase expressed from the whiE cluster (Chong et al., 1998, Davis 

and Chater, 1990, Hopwood et al., 1995). The Streptomyces genus accounts 

for ~80% of all identified secondary metabolites, having various purposes and 

potencies (Challis and Hopwood, 2003). They are generally induced when 

growth slows and their functions range from antimicrobial, to limit the 

competition for dwindling resources, to intercellular signalling, acting as 

secreted hormones to influence colony development (Challis and Hopwood, 

2003). Genes involved in the production of the secondary metabolites 

coelibactin and γ-butyrolactone were also identified in the genome of S. 

coelicolor, products whose inhibitory effect on surrounding colonies is a 

secondary effect (Bentley et al., 2002). Coelibactin is a non-ribosomal peptide 

thought to function as a Zn2+ siderophore (Hesketh et al., 2009, Kallifidas et al., 

2010). Expression of the cluster is regulated by both the antibiotic synthesis 

regulator, AbsC, and the Zn2+  uptake regulator, Zur, in order to keep Zn2+ levels 

at sufficient but non-toxic levels within the cells (Hesketh et al., 2009, Kallifidas 

et al., 2010). The γ-butyrolactones are signalling molecules that regulate 

expression of other secondary metabolites; actinorhodin, undecylprodigiosin 

and cryptic polyketide type I (Cpk), as well as development (Takano, 2006). 

One type SCB1 has been shown to inhibit the DNA-binding ability of polyketide 

regulator ScbR (Takano et al., 2005). This is yet another example of the 

complexity of Streptomyces gene regulation. 

 

 

Section 1.3 – Global control of respiration 
 

Members of the Streptomyces genus are, by definition, aerobic. As soil bacteria, 

they have to cope with extremely variable dissolved oxygen concentrations; 
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fluctuating from 9.5mg/L to as low as 0.1mg/L (Alberic et al., 2009). 

Streptomycetes have evolved to thrive in both environments, with substrate 

hyphae delving deep into the often anoxic conditions of the soil and aerial 

hyphae repelling water to reach out into the air (Claessen et al., 2003, van 

Keulen et al., 2007, van Keulen et al., 2003). 

 
   Section 1.3.1 – Overview of the respiratory chain 
 

It is a widely accepted theory that eukaryotic mitochondria have prokaryotic 

origins. Whilst a large amount of gene transfer and alteration has occurred 

during evolution the structural similarities between the respiratory chains of the 

distinct super-kingdoms have remained (Andersson et al., 2003). Thus a 

number of conclusions can be made about bacterial respiration from their 

phylogenetically diverse cousins. The mitochondrial respiratory chain consists 

of 4 complexes (I, II, III and IV) which generate a proton motive force (PMF) and 

an ATP synthase, which uses the proton gradient to generate ATP. Complex I is 

a proton-translocating NADH dehydrogenase, which passes the electrons from 

NADH oxidation to the quinone pool. Complex II is a succinate dehydrogenase, 

which although not contributory to the PMF also produces a reduced quinone. 

Complex III is the cytochrome bc1 complex, which uses the energy from 

quinone oxidation to reduce the electron carrier cytochrome C, with concomitant 

proton translocation. Complex IV is the cytochrome C oxidase or terminal 

oxidase, using oxygen as the terminal electron acceptor, re-oxidising 

cytochrome C and further increasing the PMF. Finally Complex V or ATP 

synthase, reduces the electrochemical gradient across the mitochondrial 

membrane by allowing protons back through; it uses the energy this releases to 

phosphorylate ADP to ATP (Figure 1.2). Glycolysis and the TCA cycle produce 

reduced NADH and FADH2, which act as electron carriers for oxidative 

phosphorylation. For every ATP generated 4H+ must be translocated across the 

membrane. Each NADH results in the translocation of 12H+, yielding 3 ATP, 

whereas each FADH2 results in 2 ATP. FADH2 produces a lower yield as it 

forms part of Complex II, which is non-proton translocating thus only 

contributing to the PMF indirectly by reducing quinone. The total yield possible 

from aerobic respiration is 38 ATP. In contrast the maximum yield stated for
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Figure 1.2: Overview of the respiratory chain. The individual reactions of Complex I (NADH dehydrogenase), II (Succinate dehydrogenase), III (cytochrome bc 

complex), IV (cytochrome bo terminal oxidase) and V (ATP synthase) are indicated. The glycolytic reactions are also represented in a summarised form. Note 

that Complex II is also shown as part of the TCA cycle in the bottom diagram. Glycolytic yields stated are correct for one molecule of glucose, the electron 

transport chain values are stated per NADH molecule produced by glysolysis. 
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fermentation is 2 molecules of ATP per molecule of glucose. This is because 

fermentation relies on glycolysis alone to generate ATP and subsequent 

reactions to re-oxidise the reduced cofactors (Figure 1.3) (Hoogerheide, 1975). 

Therefore there is a clear difference in the potential yield of each form of energy 

generation. However, in both cases the NADH, reduced during glycolysis, must 

be recycled to allow continued ATP synthesis. Inability to recycle the cofactor 

results in redox stress, i.e. a build up of reduced NADH compared to oxidised 

NAD+, and is generally associated with oxygen limitation. When this occurs the 

cells can either adapt their aerobic respiratory chains to cope or can switch to 

anaerobic pathways. 

 
   Section 1.3.2 – Life with little oxygen 
 

Bacteria have branched respiratory chains, with different components recruited 

for different growth conditions. Two such branches feature prominently within 

this study: cytochrome bd terminal oxidase and NADH dehydrogenase type II. 

The terminal oxidase has two forms bo- (cyo) and bd-type (cyd). Functionally 

they are very similar; both are capable of reducing oxygen to water, proton- 

translocation and cytochrome C oxidation, however these proteins are unrelated 

(Junemann, 1997). The bo-type have a haem-copper core, whereas the bd-type 

have multi-haem (b-type and d-type) redox centres (Junemann, 1997). The bd-

type has a higher affinity for oxygen giving it an obvious function during oxygen 

limitation (Poole and Cook, 2000). It is also less sensitive to respiratory 

inhibitors such as cyanide, IC50 of 10µM (bo-type) and 2mM (bd-type) (Kita et 

al., 1984). However, its limitation is that it translocates fewer protons than the 

bo-type (1H+ instead of 2H+) and therefore contributes fewer H+ to the PMF 

(Calhoun et al., 1993). The bo-type is therefore not surprisingly most associated 

with aerated growth, whereas cyd tends to be induced by oxygen-limitation 

(Tseng et al., 1996). The respiratory NADH dehydrogenases are likewise 

functionally similar but structurally diverse. S. coelicolor have at least one type I 

(NDH-1) and type II (NDH-2) NADH dehydrogenase. Type I is commonly 

referred to as Complex I of the respiratory chain and is proton-translocating. 

While NDH-1 is a multimeric, transmembrane complex, NDH-2 is formed of a 

single membrane-associated subunit. NDH-2 is incapable of protein 



10 

Chapter 1 

translocation but still able to pass electrons to the quinone pool. Thus NDH-2 

can recycle reduced NADH but is less energy-efficient compared to NDH-1. 

However, it appears that NDH-2 may be quicker at re-oxidising the cofactor 

than NDH-1 (Esterhazy et al., 2008, Jaworowski et al., 1981). Thus NDH-2 may 

yield less ATP but can potentially relieve redox stress quicker than its 

counterpart. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 1.3: Overview of some of the different branches of the respiratory chain in prokaryotes, 
including the Type II NADH dehydrogenase (NDH-2), respiratory nitrate reductase (NAR) and 
cytochrome bd terminal oxidase (CYD). The glycolytic reactions are also represented in a 
summarised form, showing the fermentation pathways branching off from pyruvate. Note that 
yields are not indicated on this figure. 
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1988). As mentioned previously, glycolysis produces a net yield of 2 ATP per 

mole of glucose, with the limitation of producing reduced cofactors requiring re-

oxidation. However, during fermentation the end product of glycolysis, pyruvate 

can be reduced to waste products such as lactate or acetate with both 

pathways re-oxidising the NADH, allowing NAD+ to feed back into glycolysis 

(Figure 1.2). Although it is not as high yielding as aerobic respiration it does 

provide a continued source of ATP when oxygen is scarce. Conditions can vary 

widely and change rapidly, thus a rapid response to oxygen limitation is 

essential, and requires specific sensors that can either directly or indirectly 

sense this stress.  

 

   Section 1.3.3 – Bacterial oxygen sensors and stress regulators 
 
Branching of the respiratory chain is regulated by a number of different sensors 

and regulators. The following section discusses the various regulators of 

aerobic and anaerobic respiration and the regulons which they control. 

ArcAB: The ArcAB system of E. coli senses the redox poise under oxygen 

limitation, detecting the presence of oxidised versus reduced quinones in the 

cell membrane, and regulates expression of cyd (Green and Paget, 2004). ArcA 

is a response regulator, whereas ArcB is a sensor kinase. Under anaerobic 

conditions ArcA appears to repress expression of genes linked to aerobic 

respiration and metabolism (Kwon et al., 2000). ArcB is a multi-domain protein 

(Figure 1.4), containing a membrane association domain, a PAS domain, a 

transmitter domain, a receiver domain and a phosphotransfer domain (Malpica 

et al., 2004). PAS (Per, ARNT, Sim) domains are commonly associated with 

histidine sensor kinases and occur, without exception, on the N-terminal side of 

the phosphotransferase domain of the containing protein (Ponting and Aravind, 

1997). ArcB is able to autophosphorylate, a common feature among proteins 

containing PAS domains (Georgellis et al., 1997). However, the ability of ArcB 

to do this is determined by the presence or absence of two disulphide bonds 

between the PAS domains of the dimer (Malpica et al., 2004). Under aerobic 

conditions the quinone pool will be predominantly in the oxidised form, in which 

state they are proposed to react with the cysteine residues in the PAS domain 

oxidising them to form disulphide  
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Figure 1.4 ArcB is embedded in the cell membrane, consisting of a PAS domain (indicated by 
S/SH), a transmitter domain (yellow), a receiver domain (green) and a phosphotransfer domain 
(blue). The presence of quinones determines the presence or absence of two disulphide bonds 
of ArcB, reduction of which results in full kinase activity. This protein is then able to 
phosphorylate ArcA, which recognises specific regions within the promoters that it regulates. 
Figure adapted from that of (Malpica et al., 2004). 

 

bridges (Malpica et al., 2004). Under anaerobiosis the quinone pool changes so 

that the reduced form dominates, under these conditions the disulphide is 

reduced (Malpica et al., 2004). This breakage is thought to permit a large 

structural change that activates the kinase activity of ArcB (Malpica et al., 

2004). ArcB is then able to transfer a phosphoryl group to ArcA (Iuchi et al., 

1990). It has recently been shown that ArcB is sensitive to both ubiquinone and 

menaquinone, with the former being more closely associated with regulation 

during high aeration (Bekker et al., 2010). As the ratio of each can vary at 

different oxygen concentrations it gives ArcB the ability to sense changes to the 

quinone pool over a wide range of conditions, allowing the system to fine-tune 

the switch between aerobic and anaerobic growth (Bekker et al., 2010). In 

Salmonella, the ArcAB system has been shown to not only be involved in 

regulating the switch between aerobic and anaerobic metabolism, but also 

appears to be important for coping with reactive oxygen species (Loui et al., 
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2009). In a recent study it was shown that ArcA was constitutively induced if all 

three terminal oxidases and the quinol monooxygenase were lost from E. coli, 

which resulted in a strain unable to switch away from anaerobic metabolism 

regardless of oxygen abundance (Portnoy et al., 2010). This is in accordance 

with the model for ArcB activation as under these conditions the re-oxidation of 

quinones would be blocked, thus the reduced form would predominate. This 

would keep the cysteines of ArcB reduced and thus maintain its kinase ability. 

ArcA itself has been shown to regulate the expression of dehydrogenases, 

terminal oxidases (including cyd) and TCA enzymes, among others (Alexeeva 

et al., 2003). This allows the induction of branched respiratory chain 

components under oxygen limitation alone, as their use under aerated 

conditions is inefficient. It should be noted however that ArcA is not essential for 

anaerobic growth, its function is to modulate gene expression in the transition 

between aerobic and anaerobic growth (Alexeeva et al., 2003).  

 
DosR-DosS-DosT: DosR is a dormancy response regulator in M. tuberculosis, 

essential for persistence during latent infections (Leistikow et al., 2010). The 

DosR system involves three components; DosR (response regulator), S and T 

(sensor kinases) (Kumar et al., 2007). The dormancy regulon is composed of 48 

genes (Voskuil et al., 2003). Dormancy is induced by both oxygen limitation and 

nitric oxide (Voskuil et al., 2003). Nitric oxide is a result of the host organisms‟ 

immune response, produced by the nitric oxide synthases of the macrophages 

(MacMicking et al., 1997). At low levels NO acts as a reversible inhibitor of the 

cytochrome c terminal oxidase, competing with oxygen for binding to the active 

site (Brown, 2001). Both signals essentially indicate that the conditions have 

become oxygen-limited, thus a switch to alternate pathways is required. Both 

sensor kinases, DosS and DosT, are haem-containing proteins allowing them to 

sense changes in O2, NO or CO concentration via their prosthetic groups 

(Figure 1.5) (Kumar et al., 2007). DosS is termed the redox sensor of the Dos 

regulon, as its activity is modulated by a switch between Fe3+ and Fe2+ states 

(Kumar et al., 2007). On the other hand, DosT is termed the hypoxia sensor as 

it is inhibited by O2 (Kumar et al., 2007). In each case the proteins exist in the 

Fe2+ state when active, being stabilised in their active forms by NO or CO 

ligands (Kumar et al., 2007). The reason for the lack of O2 associated with 
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DosS in its inactive state is thought to be that the domain organisation around 

the haem prevents it access (Cho et al., 2009). Both DosS and DosT contain 

tandem GAF domains, followed by a histidine kinase domain. It is the GAF 

domains that co-ordinate the haem, and so confer their sensing ability – just as 

the PAS domain of ArcB does (Sardiwal et al., 2005). Members of the dormancy 

regulon include genes encoding nitrate reductase (e.g. narX), nitrite/nitrate 

transport system (narK2), as well as an oxygen-independent form of the 

ribonucleotide reductase (nrdZ), all of which are typically associated with 

oxygen limitation (Voskuil et al., 2003). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.5: The DosRST system of M. tuberculosis. Sensor kinases DosS and DosT change 
the oxidation state of their haem centres in response to environmental cues. This then results in 
auto-phosphorylation and phosphotransfer to DosR. Figure adapted from that of (Kumar et al., 
2007). 

 
Fnr: The E. coli fumarate nitrate reduction regulator (Fnr) acts as a key sensor 

of oxygen limitation, regulating the switch to anaerobic pathways (Becker et al., 

1996). Unlike the other systems discussed in this chapter, Fnr contains both the 

sensory and regulatory domains within the same protein. The formation ofactive 

Fnr is however still reliant on other proteins, namely the isc operon encoded 

iron-sulphur cluster synthesis and incorporation proteins (Mettert et al., 2008). 
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Fnr is an iron-sulphur cluster (Fe-S) containing protein (Lazazzera et al., 1996). 

It is constitutively expressed but is normally kept at low levels (Tolla and 

Savageau, 2010). In its DNA-bound or active state the protein is dimeric and 

contains 2[4Fe-4S] clusters but these are subject to oxidation in the presence of 

oxygen, destabilising the protein (Figure 1.6) (Lazazzera et al., 1996). The 

protein will then either be reconstituted or degraded by ClpXP, keeping the level 

of active Fnr low but constant in the cell (Mettert and Kiley, 2005). Under anoxic 

conditions the active form predominates allowing it to regulate gene expression 

(Tolla and Savageau, 2010). Fnr is also sensitive to nitric oxide, as well as 

oxygen (Crack et al., 2008). In B. subtilis Fnr has been shown to positively 

regulate expression of arfM (anaerobic modulator), narK (nitrite extrusion) and 

narGHJI (nitrate reductase) (Reents et al., 2006). S. coelicolor also has Fnr-like 

proteins, however these lack the ability to co-ordinate the iron-sulphur clusters 

that would normally permit oxygen sensing (as in their E. coli homologues) (van 

Keulen et al., 2007). 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Overview of the Fnr system of E. coli. Active Fnr is generated when it dimerises in 
the presence of 2[4Fe-4S] clusters, with the aid of Isc. Inactivation is induced by oxygen, 
producing monomeric Fnr. The monomers are either converted back to active Fnr or are 
targeted for degradation via the ClpXP system. Figure derived from that of (Tolla and 
Savageau, 2010). 
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ResDE: The ResDE system of B. subtilis is a two component sensor kinase and 

response regulator of anaerobic respiration. ResD and ResE are expressed 

from the resABCDE cytochrome biogenesis operon, with the first three genes of 

the operon being essential (Sun et al., 1996). Expression from the resA 

promoter appears to be ResD-dependent, with resD being expressed at low 

levels from its own promoter within the operon (Sun et al., 1996). ResD also 

appears to regulate ctaA (haem biosynthesis) and petCBD (cytochrome bf 

complex) expression, as well as fnr (Esbelin et al., 2009, Sun et al., 1996). 

ResE senses both oxygen limitation and nitric oxide in order to modulate the 

activity of ResD, allowing the cells to switch from oxygen to nitrate as the 

terminal electron acceptor (Geng et al., 2007). ResE, like ArcB, is a PAS-

domain containing protein, although unlike ArcB, ResE only contains one PAS 

domain (Baruah et al., 2004). This domain is responsible for signal sensing, 

however the mechanism must be different to that of ArcB as there are no 

cysteine residues contained in the sequence of the ResE PAS domain (Baruah 

et al., 2004). ResE is able to both phosphorylate and dephosphorylate its target 

ResD in order to modulate the activity of this transcriptional regulator (Baruah et 

al., 2004). 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Overview of the 
cross-talk between regulators 
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limitation. Figure adapted 
from: (Reents et al., 2006). 

 

fnr 

ResD 

Fnr 

narGHJI 

Nar 

NAD+ 

NADH 

NO2
- 

NO3
- Rex 

cydABCD 

ArcA 

O2 

NO DosR 



17 

Chapter 1 

Bacterial genomes contain a plethora of different sensors, with a range of 

sensing mechanisms. There does however appear to be a lot of cross-talk 

between these systems (Figure 1.7). This allows a high level of control of 

respiration, ensuring that the most energy-efficient option is applied to each 

growth condition and that branches of the respiratory chain are kept silenced 

when not required. The sensory proteins have evolved to incorporate natural 

redox sensors; such as haem (DosST), iron-sulphur clusters (Fnr) and 

disulphide bonds (ArcB). The Rex system of S. coelicolor however, appears to 

be unique in that it is able to detect the physical difference between the reduced 

and oxidised form of redox indicator NAD/H in order to modulate its own activity. 

 

    

Section 1.4 – Rex – the story so far 
 

s mentioned previously, a rapid response to oxygen limitation is vital for 

maintaining cell growth and a key indicator of oxygen limitation is redox 

stress. This section covers the identification of a novel redox sensor, Rex, in S. 

coelicolor and details current understanding of its structure, function and 

regulon. 

 
   Section 1.4.1 – Discovering Rex 
 

Rex was originally identified indirectly through its ability to repress expression of 

the cytochrome bd terminal oxidase operon (Figure 1.8) (Brekasis, 2005, 

Brekasis and Paget, 2003). Analysis of the cydABC operon revealed two 

promoters; a constitutive and an anoxia-induced promoter (Brekasis, 2005, 

Brekasis and Paget, 2003). By mutating the entire promoter region of cyd a 

putative operator site was identified (TGTGAACGCGTTCACA), which caused 

an increase in the expression of the operon (Brekasis, 2005, Brekasis and 

Paget, 2003). Using this site as a template other potential operators were 

identified upstream of the nuoA-N and hemACD operons (Figure 1.9), with the 

latter also encoding a putative DNA-binding protein; SCO3320 (Brekasis, 2005, 

Brekasis and Paget, 2003). Overexpression of this gene produced a protein 

A 



18 

Chapter 1 

capable of binding to the cyd operator site (Brekasis, 2005, Brekasis and Paget, 

2003). 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Organisation of the cydABCD operon of S. coelicolor, including the two promoter 
regions. The S1 nuclease protection assay for this region is also shown, taken from: (Brekasis, 
2005, Brekasis and Paget, 2003). 

 

It was further confirmed that this protein was responsible for this response as its 

deletion resulted in constitutive expression of the cydA gene (Brekasis, 2005, 

Brekasis and Paget, 2003). The sequence of this putative repressor contained 

within it a Rossmann fold, a protein fold closely associated with the binding of 

pyridine nucleotides. The responsiveness of the SCO3320 protein to NAD/H 

and NADP/H was assessed by EMSA and it was found that NADH alone could 

affect DNA binding, inhibiting it (Brekasis, 2005, Brekasis and Paget, 2003). As 

the concentration of NADH in bacterial cells has been shown to vary depending 

on growth conditions it seemed unlikely that SCO3320 was sensing this alone 

(van Keulen et al., 2007). As expected the inhibitory effect of NADH on DNA 

binding could be lessened by the inclusion of NAD+ in the binding assay, 

allowing it to sense the redox poise of the cell via the NADH/NAD+ ratio; the 

protein was therefore designated Rex (redox regulator) (Brekasis, 2005, 
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Brekasis and Paget, 2003). Since its discovery, Rex binding sites have been 

identified upstream of ndh, atpI, wblE and SCO4281 (Brekasis, 2005). 

 

 

 

Figure 1.9: Organisation of the rex-hemACD operon of S. coelicolor. The autoregulation of Rex 

on its own promoter is also indicated. 

 

   Section 1.4.2 – The structure and function of Rex 
 

There are numerous Rex homologues in other species although it is limited to 

gram-positive bacteria. Interestingly, Rex is not limited to aerobic bacteria but is 

present in facultative (e.g. staphylococci) and obligate (clostridia) anaerobes. 

Although the structure of the S. coelicolor protein (S-Rex) has not been solved, 

the structure of a homologue in Thermus aquaticus has proven extremely useful 

in studying S-Rex (Sickmier et al., 2005). Thermus aquaticus Rex (T-Rex) is a 

homodimer consisting of three domains; a DNA-binding domain, a NADH-

binding domain and a domain-swapped helix (Figure 1.10) (Sickmier et al., 

2005). It has 42% identity to S-Rex and has even been shown to recognise the 

same S-Rex operator site (Sickmier et al., 2005). The DNA binding domain is 

located in the N-terminal region of Rex and is characterised by a winged-helix 

motif, with the entire domain consisting of four α-helices and two β-strands 

(Sickmier et al., 2005). The NADH binding domain is centrally located in the 

protein sequence, formed of four α-helices and seven β-strands arranged into a 

Rossmann fold, with characteristic GXGXXG motif (Sickmier et al., 2005). The 

fold co-ordinates NADH and NAD+ and therefore acts as the sensory domain for 

Rex (McLaughlin et al., 2010, Sickmier et al., 2005). It should be noted that Rex 

does not directly influence the redox poise, i.e. it cannot re-oxidise NADH itself, 

as indicated by the lack of the appropriate reactive residues and the presence 

of Y98 blocking the substrate access channel (Sickmier et al., 2005). At the C-

terminus is a final α-helix which slots in between the other two domains on the 

opposing subunit (Sickmier et al., 2005). As previously mentioned Rex is a 

redox sensor, not just sensitive to the NADH concentration but to the 
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NADH/NAD+ ratio (Brekasis, 2005, Brekasis and Paget, 2003, Sickmier et al., 

2005). How it is able to sense the charge difference between the two cofactors 

will be addressed during this study. 

 

Figure 1.10: Structure of NADH-bound Thermus aquaticus Rex. The three functional domains 
are indicated above (coloured by domain), with the two NADH molecules shown in stick form at 
the dimer interface. 

 

   Section 1.4.3 – Project aims 
 

The Rex regulon: 

Several putative Rex binding sites had been identified by bioinformatic analysis 

prior to this project. However, most genes thought to be controlled by these 

sites were not upregulated when the transcriptome of a wild-type strain was 

compared to that of a rex mutant. It was therefore decided to take a more direct 

approach to define the Rex regulon.  As such the aims were as follows: 

 Design and characterise an epitope-tagged rex strain 

 Optimise the ChIP-on-chip method for use with this strain 

 Use ChIP-on-chip to identify ROP sites in vivo 

 Validate binding to these target in vitro and, if possible, investigate 

their regulation by Rex 
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The respiratory NADH dehydrogenases: 

The two types of respiratory NADH dehydrogenases (nuoA-N; NDH-1 and ndh; 

NDH-2) of S. coelicolor were present within the list of known Rex targets but 

only the regulation of ndh could be detected (Brekasis, 2005). Therefore the 

aims of this section of the project were as follows: 

 Investigate the potential regulation of both ndh and nuo by Rex 

 Generate ndh and nuo disruption strains 

 Investigate the impact of these mutations on the ability of Rex to repress 

its targets 

 

Rex structure/function relationship: 

Previous work had characterised Rex as a redox-sensitive repressor, able to 

bind to DNA when the NADH/NAD+ redox poise was low and dissociate when it 

was high (Brekasis, 2005, Brekasis and Paget, 2003). With the structure of a 

close homologue in T. aquaticus available it was possible to model S-Rex 

mutations using the T-Rex structure, but a number of questions still remained 

about the function of Rex: 

 How does NADH binding to one domain trigger DNA-dissociation in 

another? 

 Why doesn‟t NAD+ have the same effect as NADH on DNA-binding? 

 What factors are required for DNA-binding? 

 Can a protein with only one functional DNA-binding domain still bind to 

DNA? 

 Are one or both NADH molecules required to dissociate DNA-bound 

Rex? 
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The results that follow are designed to meet these objectives and hopefully 

further our knowledge of this unique transcriptional repressor.  
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Materials and Methods 

 

 

“Do something. If it works, do more of it. If it doesn’t, do something else.” 

Franklin D. Roosevelt (1882-1945) 
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Section 2.1 – Chemicals, reagents, enzymes and strains 
 

he suppliers for all of the chemicals, reagents and enzymes used in this 

study are listed in the following sections. Any specialist equipment used is 

also detailed. All of the primers were obtained from MWG-Biotech but the 

sequences and modifications, were applicable, and are listed in full within this 

chapter. 

 

 
   Section 2.1.1 – Chemicals 
 

 Acrylamide solutions – Severn 

Biotech Ltd 

 Ammonium persulphate – Sigma 

 Ampicillin – Melford 

 Apramycin – Duchefa Biochemie 

 Bromophenol blue – Amersham 

Biosciences 

 Casamino acids – Difco 

 Chloramphenicol – Melford 

 Chloroform – Fisher 

 dNTPs – New England Biolabs 

 Glycogen – Fisher 

 Hepes (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) – 

Fisher 

 IPTG (Isopropyl-β-D-

thiogalactopyranoside) – Melford 

 Isoamyl alcohol – Sigma 

 Kanamycin – Melford 

 Malt extract - Oxoid 

 Nalidixic acid – Duchefa Biochemie 

 Nicotinamide adenine dinucleotide 

(NAD+, NADH) – Melford 

 Nutrient agar - Difco 

 PEG 1000 (Polyethylene glycol) – 

BDH 

 Peptone - Difco 

 Phenol – Fisher Scientific 

 PMSF (Phenylmethylsufonyl fluoride) 

– Sigma 

 Pronase – Roche 

 Radionuclides ([γ-32P]-ATP / [α-32P]-

dCTP) – Perkin Elmer 

 SDS (Sodium dodecyl sulphate) 

– Fisher Scientific 

 Spectinomycin – Duchefa 

Biochmie 

 TEMED (Tetramethyl-

ethylenediamine) – Fisher 

 TES (N-

[tris(hydroxymethyl)methyl]-2-

aminoethanesulfonic acid) – 

Fisher Scientific 

T 
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 Tris (2-Amino-2-hydroxymethyl-

propane-1,3-diol) – Fisher 

Scientific 

 Tryptone – Difco 

 TSB (Tryptone soya broth) – 

Oxoid 

 X-gal (5-bromo-4-chloro-3-

indolyl- beta-D-

galactopyranoside) – Melford 

Laboratories Ltd 

 Yeast extract - Oxoid 

 
 
  Section 2.1.2 – Enzymes 

 
DNA/RNA restriction enzymes: 

Restriction endonucleases – New England Biolabs 

S1 Nuclease – Invitrogen 

RQ RNAse-free DNAse - Promega 

Ribonuclease A – Sigma Aldrich 

 

Polymerases: 

Accuzyme – Bioline 

Klenow fragment – New England Biolabs 

Phusion – New England Biolabs 

Reverse transcriptase (iScript) – Bio-Rad 

Taq DNA polymerase – New England Biolabs 

QuantiTect SYBR green PCR Kit – QIAGEN 

 

DNA modifying enzymes: 

Shrimp alkaline phosphatase - Promega 

T4 DNA ligase – New England Biolabs 

T4 polynucleotide kinase – New England Biolabs 
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pIJ6902
7340 bp

EcoRI - 345 - G'AATT_C
KpnI - 361 - G_GTAC'C

BamHI - 366 - G'GATC_C
XbaI - 372 - T'CTAG_A
HindIII - 396 - A'AGCT_T
NdeI - 403 - CA'TA_TG

HindIII - 5623 - A'AGCT_T

HindIII - 6592 - A'AGCT_T

HindIII - 7315 - A'AGCT_T

In
te

g
ra

se

ThioR

A
p

rR

tipA

pET15b
5708 bp

BamHI - 319 - G'GATC_C
XhoI - 324 - C'TCGA_G

NdeI - 331 - CA'TA_TG
NcoI - 389 - C'CATG_G

XbaI - 428 - T'CTAG_AlacZ'

la
c
I

A
m

pR

O
ri

pBlueScript II SK+
2961 bp

SacI - 657 - G_AGCT'C
SacII - 664 - CC_GC'GG
BstXI - 665 - CCAn_nnnn'nTGG

NotI - 670 - GC'GGCC_GC

EagI - 670 - C'GGCC_G
XbaI - 677 - T'CTAG_A
SpeI - 683 - A'CTAG_T
BamHI - 689 - G'GATC_C

SmaI - 697 - CCC'GGG
PstI - 705 - C_TGCA'G
EcoRI - 707 - G'AATT_C

EcoRV - 715 - GAT'ATC
HindIII - 719 - A'AGCT_T

ClaI - 726 - AT'CG_AT
SalI - 734 - G'TCGA_C
AccI - 735 - GT'mk_AC
HincII - 736 - GTy'rAC
XhoI - 740 - C'TCGA_G
EcoO109I - 749 - rG'GnC_Cy

ApaI - 753 - G_GGCC'C
KpnI - 759 - G_GTAC'C

f1 (+) ori

la
c
Z

'

pUC ori

A
m

p
R

pRSF Duet I
3829 bp

NcoI - 69 - C'CATG_G
BamHI - 106 - G'GATC_C

EcoRI - 112 - G'AATT_C
HindIII - 143 - A'AGCT_T

NdeI - 298 - CA'TA_TG
BglII - 305 - A'GATC_T

EcoRV - 319 - GAT'ATC
XhoI - 354 - C'TCGA_G

la
cI

RSF ori

K
a

n
R

T7

T7

   Section 2.1.3 – Vectors used in this study: 

 
 
Vector maps: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vectors generated in this study: 

Name Details Section 

pBS::ermE*::FLAG pBlueScript II SK+ derivative containing the ermE* 

promoter and the FLAG-tag (DYKDHDGDDYKDHDI 

DYKDDDDK) encoding sequence, flanked by HindIII 

and XhoI sites. (M. Paget, personal communication). 

 

pLST920::wt P
ndh

 
pLST920 derivative containing the ndh promoter 

region, isolated from pSX414 as a KpnI fragment. 

4.3.3 

pLST920::ΔROP1 
pSX418 derivative containing the mutated ndh 4.3.3 
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P
ndh

 promoter region from pSX415. 

pLST920::ΔROP2 

P
ndh

 

pSX418 derivative containing the mutated ndh 

promoter region from pSX416. 

4.3.3 

pLST920::ΔROP1+2 

P
ndh

 

pSX418 derivative containing the mutated ndh 

promoter region from pSX417. 

4.3.3 

pSX400 Suicide vector generated from pIJ6902, integrase 

disrupted by HindIII digest and subsequent religation. 

Contains part of the nuo operon fused to a tmRNA 

degradation signal, under the control of the tipA 

promoter. 

4.4.1 

pSX401 

 

pBlueScript derivative containing the rex promoter and 

the entire coding region translationally fused to the 

3XFLAG sequence (introduced into the EcoRV site). 

3.2.1 

pSX402 pSET152 derivative containing a NotI – XhoI (end-

filled) isolate of pSX401, cloned into NotI – EcoRV cut 

pSET152. Conjugative vector containing the rex
FLAG

 

gene. 

3.2.1 

pSX403 pBlueScript derivative containing the ndh gene, 

isolated using primers SCO3092Complete_For and 

_Rev, introduced as a blunt-end fragment into the 

vectors’ EcoRV site. 

4.3.6 

pSX404 pSX403, containing a proteolytic cleavage tag 

(annealed primers Ndh_deg_a and Ndh_deg_b) ligated 

as a SphI/EcoRI fragment. 

4.3.6 

pSX405 pIJ6902 derivative containing the ndh
deg

 region from 

pSX404, isolated as an NdeI/EcoRI fragment. 

4.3.6 

pSX406 pSX405 lacking an intact integrase gene, removed by 

complete HindIII digestion and subsequent self-ligation. 

4.3.6 

pSX407 pIJ6902 containing the NdeI-BamHI rex fragment from 

pSX142. 

3.4.1 

pSX408 pRSF-Duet1 vector containing the synthetic rex 

sequence (from pUC57::rex
synth

) introduced as a 

BglII/HindIII fragment into the BamHI/HindIII cut vector. 

5.5.1 

pSX409 pSX408 derivative containing the rex sequence (from 

pSX142) introduced as an NdeI/BamHI fragment. 

5.5.1 

pSX410 pSX409 derivative where the two rex genes had been 

fused together with an (SG4)2-linker sequence, 

introduced as a HindIII/NdeI fragment. 

5.5.1 

pSX411 pET15b derivative containing rex
SC

 from pSX410, 5.5.1 
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introduced as an NcoI/HindIII fragment. 

pSX412 pBlueScript derivative containing the EcoO109I rex
synth

 

fragment from pSX411. 

5.5.2 

pSX413 pBlueScript SK+ derivative containing PCR-amplified 

nuoA, nuoB and 625 bp of nuoC, flanked by NdeI and 

BamHI/SphI restriction sites. 

4.4.1 

pSX414 pBlueScript SK+ derivative containing a 414 bp 

segment of the ndh promoter introduced into the 

EcoRV site, in the reverse orientation. 

4.3.2 

pSX415 pSX414 derivative containing the ndh promoter region 

with its upstream ROP site mutated. 

4.3.2 

pSX416 pSX414 derivative containing the ndh promoter region 

with its downstream ROP site mutated. 

4.3.2 

pSX417 pSX414 derivative containing the ndh promoter region 

with both ROP sites mutated. 

4.3.2 

pSX418 The entire ndh open reading frame and ~105 bp of its 

promoter region, amplified with primers 

SCO3092_ROP1 and SCO3092_REV, ligated into 

EcoRV-cut pBlueScript II SK+. 

4.3.5 

pSX419 EcoRI fragment from pSX418 ligated into same site of 

pHJL401. 

4.3.5 

pSX420 pIJ6902 derivative with the apramycin resistance 

cassette replaced with a strep/spec cassette from 

pIJ778. 

4.3.6 

Table 2.1: Table of vectors generated during the course of this study and the corresponding 

sections in which they were used. 

 
  Section 2.1.4 – Primers used in this study: 
 
Mutagenesis primers: 

Name Sequence (5’ to 3’) Section 

A56F_F2 GGTCAACTCCTTCAAGCTGCGCAAG 5.3.2 

A56F_R2 CTTGCGCAGCTTGAAGGAGTTGACC 5.3.2 

D203A_F CTGCAGATCCTCGCCTTCCACGAGCAG 5.4.1 

D203A_R CTCGATGGAGAGGGCGACCTTGCGCACG 5.4.1 

D203R_F CGCAAGGTCCGCCTCTCCATCG 5.4.1 

D203R_R CGATGGAGAGGCGGACCTTGCG 5.4.1 

D203S_F GAGCTGCAGATCCTCGCCTTC 5.4.1 
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D203S_R GATGGAGAGGGAGACCTTGCGC 5.4.1 

FLAG_Rev GGAAGCTTTGCCGGCATCACGGC 3.2.1 

FLAG-ROP_For GGTCTAGAGCGTGTGAACGAGGAAC 3.2.1 

G102A_SC_F GTTATTGTGGGCATTGCGAATCTGGGCG 5.5.2 

G102A_SC_R CGCCCAGATTCGCAATGCCCACAATAAC 5.5.2 

K60A GCGAAGCTGCGCGCGGACTTCTCCTAC 5.3.2 

K60A_SC_F GCCAAATTACGTGCCGATTTTAGCTATC 5.5.2 

K60A_SC_R GATAGCTAAAATCGGCACGTAATTTGGC 5.5.2 

K60-R GGAGTTGACCCCCGCGGCGGCCGCCAG 5.3.2 

Ndh_deg_a AATTCTCAGGCGGCCAGGGCGAAGGCCTGCTGGC

TGCTGTCCCGCATG 

4.3.6 

Ndh_deg_b CGGGACAGCAGCCAGCAGGCCTTCGCCCTGGCC

GCCTGAG 

4.3.6 

ndh_SDM1_for AAGTTCTTTGTAAGGAATTGGGC 4.3.2 

ndh_SDM2_rev TGTGAACTTTCCCGACGGGACGTC 4.3.2 

ndh_SDM3_for AAGGGGCGTGTGATCCACCCCCCTC 4.3.2 

ndh_SDM4_rev TGTAAGCTTCGGCGGGTGCTGTGC 4.3.2 

NuoKO_F CCCATATGAACGCGTATGCGCCCATCCTCGTACTG 4.4.1 

NuoKO_R CCGCATGCCGGATCCCAGGGGCCGGGTGATCGT

CGAAGACGATG 

4.4.1 

R29A_F GCTGTCCGAGCGCTCGGTGCCCACG 5.4.1 

R29A_R GCGGTCAGTGCGGCGAGGTACAGCGGAAG 5.4.1 

R29D_F GCTGTACCTCGACGCACTGACC 5.4.1 

R29D_R GGTCAGTGCGTCGAGGTACAGC 5.4.1 

R59A_ii_F CGAAGCTGGCCAAGGACTTCTC 5.3.2 

R59A_ii_R GAGAAGTCCTTGGCCAGCTTCG 5.3.2 

SCO3092Complete_For GGCATATGAGCACCACGGAGCGTCCC 4.3.6 

SCO3092Complete_Rev GGGATATCGGAGGCCTTGGCCTCGGT 4.3.6 

SCO3092_KO_For CGCATCCAGAAGAAGATGCGTTACGGCGAGGCGA

CCGTCATTCCGGGGATCCGTCGACC 

4.3.4 

SCO3092_KO_Rev CGGGAGTCAGGAGGCCTTGGCCTCGGTCTTCTCC

TGCTTTGTAGGCTGGAGCTGCTTC 

4.3.4 

SCO3092_ROP1_FOR CCGAATTCGCCATGATCTCCGTCACGTG 4.3.5 

SCO3092_REV CCGAATTCTGAGTACTGCTCAGTACTA 4.3.5 

Y111F_F GTTTCGCCTCCCGCGGGTTC 5.4.2 

Y111F_R CACCGAAGTTGGCGAGCGCG 5.4.2 

Y111R_F GCTCGCCAACCGCGGTGGTTTC 5.4.2 

Y111R_R GAAACCACCGCGGTTGGCGAGC 5.4.2 
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Table 2.2: The mutagenesis primers used during the course of this study. The underlined 
regions represent restriction sites or parts of restriction sites introduced as part of the primer 
design.  

SPR and EMSA primers: 

Name Sequence (5’ to 3’) Section 

1930_EMSA_F GACGTCCTCCAGCACGGCGC 3.3.2 

1930_EMSA_R CAGCGCGCGGCGATGAAG 3.3.2 

1a *TCCGCTGCGTCCTGTGACCTGCTTCACAGGGCGCCTT 3.3.5 

1b AAGGCGCCCTGTGAAGCAGGTCACAGGACGCAGCGGA 3.3.5 

2370_GS_F CCACGCGCGTGCGCGAGG 3.3.2 

2370_GS_R CCACGCTGTTCCTTCGCTGTCAG 3.3.2 

3101_EMSA_F GTGATCCGCTGGTCGCCGAC 3.3.2 

3101_EMSA_R GACATCCGGCGCACGCTCCAG 3.3.2 

3137_EMSA_F GGATGTCGCCCTCGACGAAC 3.3.2 

3137_EMSA_R GCAAGCTGAAGTTCCTCGCG 3.3.2 

3547_GS_F GCATTCACCCATGTGTCACCCGG 3.3.2 

3547_GS_R CCATTCGTCCTCCTTGACGCTTGG 3.3.2 

3615_GS_F GCACCGCACGCCCCGGG 3.3.2 

3615_GS_R CCACGTGCGCTCCTCGCTC 3.3.2 

3790_GS_F GGAGAGTGAGAATGCCCATG 3.3.2 

3790_GS_R CCAGGATGCGAACCGGACG 3.3.2 

5032_GS_F GCACGTGCTCTCCAAAAACGCAGC 3.3.2 

5032_GS_R CTGGACACTAATAGCTACCTCCGAT 3.3.2 

5207_GS2_F CGACTCGCCCTCCGCGCCCCCTTGTTG 3.3.2 

5207_GS2_R CCTGGCGGAGTGTGTGGGCGGGACCGATG 3.3.2 

5408/9_EMSA_F CTTGAAGTCGGAACATCGCCCAC 3.3.2 

5408/9_EMSA_R GAGCAGACGAGCAGGAGGAG 3.3.2 

5435/6_EMSA_F CTTGGCTTTGGGTGCGGCAG 3.3.2 

5435/6_EMSA_R CTGAACAGCGCGTACCCGAC 3.3.2 

5797_EMSA_F CGTGTTCGACGCGGTGAGCG 3.3.2 

5797_EMSA_R GCTTGGCGTCGGCCTCGTCC 3.3.2 

6168_GS2_F GGAGGGCGCCGGAGAGCCCGGCGCGTT 3.3.2 

6168_GS2_R CACCTTCGGTCGTTCCCCAGCCAGAACCAG 3.3.2 

6218_half_For GACATTGTGAAGATTGCATGAGAAAT 3.3.5 

6218_half_Rev ATTTCTCATGCAATCTTCACAATGTC 3.3.5 

6239_half_For GCGATAGTGAATGGAGGAGGAACGCC 3.3.5 

6239_half_Rev GGCGTTCCTCCTCCATTCACTATCGC 3.3.5 

6280_GS_F CCTCAGGGTCACCGACGCTC 3.3.2 

6280_GS_R CGAAAGCGCATAACTCCCCCAG 3.3.2 
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6917_EMSA_F CACCGGTTGGCACACAGGCT 3.3.2 

6917_EMSA_R GTTTCTGAGCTTCGCTCGGCCC 3.3.2 

6917_half_For GACTTTGTGAATTGAAACCGCCGAGG 3.3.5 

6917_half_Rev CCTCGGCGGTTTCAATTCACAAAGTC 3.3.5 

7697_GS_F CGTCAACTCCCCGAGGGGCAGG 3.3.2 

7697_GS_R GGTGAACACCAGGGTCGCCG 3.3.2 

E68.18ci GGCGACGGTGGCCTCGGGAATC 3.3.2 

Full_26_For TCCATTGTGAACTGCTGCACATGGTT 3.3.5 

Full_26_Rev AACCATGTGCAGCAGTTCACAATGGA 3.3.5 

Half_26_For TCCATTGTGAACTATCATGTGCGGTT 3.3.5 

Half_26_Rev AACCGCACATGATAGTTCACAATGGA 3.3.5 

Nca CTGCGTCCCTAGGCACCCGGCGGTGGGC 3.3.4 

Ncb GCCCACCGCCGGGTGCCTAGGGACGCAG 3.3.4 

ndh_414_for CGGTACCGGTAGCGGTCTGAGCAGGAC 4.3.2 

ndh_414_rev CATCGAGTATCCACCCGGTTGAGG 4.3.2 

Nuo-4F CTGCGTCCTGTGACCTGCTTCACAGGGC 3.3.4 

Nuo-4R GCCCTGTGAAGCAGGTCACAGGACGCAG 3.3.4 

NuoF CTGCGTCTTGTGACCTGCTTCACATGGC 3.3.4 

NuoR GCCATGTGAAGCAGGTCACAAGACGCAG 3.3.4 

Ran_Bio_F *GGAGCGCCGCCTTCGGCCCCCCTGCCGCCGGCGACGT 3.3.5 

NUOROP1 AGTTGGGCTTGTGACCTGCTTCACATGTTCGCGATCT 3.3.4 

NUOROP2 
*
AGATCGCGAACATGTGAAGCAGGTCACAAGCCCAACT 3.3.4 

Random_R ACGTCGCCGGCGGCAGGGGGGCCGAAGGCGGCGCTCC 3.3.5 

Random26_F TCCAATGGGGCTGGCCGACCTCGGTT 3.3.5 

Random26_R AACCGAGGTCGGCCAGCCCCATTGGA 3.3.5 

rexGSrev2 CGATGAGTGAGGAACGAGAGTACG 3.3.2 

SCO4461_For CTTCGGCGATCCTGCGGAAG 3.3.2 

SCO4461_Rev GTCACGGATGTCCGGAGTGC 3.3.2 

SCO5013_For CTCACCACCCGGCACGACAA 3.3.2 

SCO5013_Rev CTGCGCTGCGGCGAGGGC 3.3.2 

SCO5810_For GAGTACGACCATGAGTTGGCAG 3.3.2 

SCO5810_Rev GTTCCAGCCGACGGTCCCG 3.3.2 

SCO6218_For CTTCTCGGTAGCGGGACGT 3.3.2 

SCO6218_Rev GAGGTGGATTCCGGCCGTCAG 3.3.2 

SCO6239_For GATGTCGCTCTGCCATGACTG 3.3.2 

SCO6239_Rev CACTCTGGCTGACCGCGGAG 3.3.2 

SCO6383_For CGAGTTCAGCGCGCACAACC 3.3.2 

SCO6383_Rev CAACTGTCGAGGTGTCTAC 3.3.2 

Table 2.3: Primers used to amplify EMSA probes and primers annealed to generate SPR test 

fragments. The *indicates the presence of a biotin addition at the 5’ end of a primer. 
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RT/qPCR primers: 

Name Sequence (5’ to 3’) Section 

16S_QF CACTAGGTGTGGGCAACATTC 3.4.1 

16S_QR GTCGAATTAAGCCACATGCTC 3.4.1 

AHPC_RT_F TCCAGCAGATCAACCACAAG 3.4.1 

AHPC_RT_R GCACACGAAGGTGAAGTCCT 3.4.1 

Cyd_qPCR_F CTGTTGAAGTTCCGGCAGAG  3.2.3 

Cyd_qPCR_R GGTTTGAGCGTGTTTGTCAC 3.2.3 

Cyd_RT_F CTGTCGGCGTACTTCATCCT 3.4.1 

Cyd_RT_R CTGGTTGAGGGTGGTGTTCT 3.4.1 

HrdB1a CCGGTCAAGGACTACCTCAA 3.2.3 

HrdB1b TGGATGAGGTCCAGGAAGAG  3.2.3 

Ndh_qPCR_F GGTACCGGTAGCGGTCTGAG 3.2.3 

Ndh_qPCR_R GAAACCCCAAAAGGGTCAAC 3.2.3 

Ndh_RT_F GGTCTACCTGTCCACCTCCA 3.4.1 

Ndh_RT_R CACACGATGGTGTTGGAGTC 3.4.1 

ResA2_RT_F GATTACAAGGGCAAGGTCGT 3.4.1 

ResA2_RT_R GGTCCTTGACGTCCTGGTAG 3.4.1 

Table 2.4: The primers used for qPCR and RT-qPCR during this study. 

 
   Section 2.1.5 – Cell-lines and strains: 
 
Genus/species Strain Genotype Reference 

Escherichia coli DH5α F’ Φ80 dlacZ ΔM15 Δ(lacZYA-
argF) U169 recA1 endA1 
hsdR17 (r

-
 m

-
) supE44 medλ

-
 

thi-1 gyrA relA1 

Invitrogen 

 BL21(DE3)pLysS F
’
 ompT hsdSB (rB

-
 mB

-
) dcm gal 

λ(DE3) pLysS Cm
r
 

Novagen 

 BW25113 Δ(araD-araB)567 
ΔlacZ4787(::rrnB-4) lacIp-
4000(lacIQ)  λ

-
 rpoS369(Am) 

rph-1 Δ(rhaD-rhaB)568 
hsdR514 

(Datsenko and 
Wanner, 2000) 

 ET12567 dam-13:: Tn9 dcm-6 hsdM Cm
r
 (MacNeil et al., 

1992) 

Streptomyces 
coelicolor A3(2) 

M145 SCP1
-
 SCP2

-
 (Bentley et al., 

2002) 

 S106 Δrex M145 (Brekasis and 
Paget, 2003) 

Table 2.5: List of E. coli and S. coelicolor strains used in this study. 
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Section 2.2 – Common media, buffers and solutions 
 

ithin the following section is all the recipes of growth media, buffers and 

solutions used in this study. Note that where the buffer used was 

provided by a manufacturer it is not listed below. 

 

   Section 2.2.1 – Growth media: 
 
Lennox broth (LB): 

The following were dissolved in 1L of dH20: 

10g Difco bacto tryptone 

5g Oxoid yeast extract 

5g NaCl 

1g Glucose 

 

Difco nutrient agar (DNA): 

Each 250ml Erlenmeyer flask contained 2.3g Difco Nutrient agar in 100ml 
distilled water. 

 

NMMP: 

The following were made up in 800ml distilled water: 

2g (NH4)2SO4 

5g Difco Casamino acids 

0.6g MgSO4.72O 

50g PEG 6000 

1ml NMMP Minor Elements 

 

NMMP Minor Elements: 

1g/L ZnSO4.7H2O 

W 
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1g/L FeSO4.7H2O 

1g/L MnCl2.4H2O 

1g/L anhydrous CaCl2 

 

Prior to use this media was supplemented with 15mM phosphate buffer (from 

100mM NaH2PO4/K2HPO4, pH6.8) and 0.5% glucose (from 20% glucose). 

 

SOB: 

20g tryptone 

5g yeast extract 

2.5ml of 1M KCl 

10ml of 1M MgCl2 

10ml of 1M MgSO4 

Made up to 1L with distilled water 

 

Tryptone soya broth (TSB): 

30g tryptone soya broth powder 

Made up to 1L in distilled water 

YEME liquid medium: 

3g yeast extract 

5g Difco bacto-peptone 

3g malt extract 

10g glucose 

340g sucrose 
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Made up to 1L with distilled water 

 

2xYT: 

16g Difco bacto tryptone 

10g yeast extract 

5g NaCl 

Made up to 1L in distilled water 

 

Mannitol Soya Flour (MS) agar: 

To each 250ml Erlenmeyer flask the following were added and twice 

autoclaved: 

1g agar 

1g soya flour 

100ml 2% mannitol (dissolved in tap water) 

 

Minimal Media (MM) Agar: 

The following were combined and pH adjusted to 0.7-0.72: 

0.5g L-asparagine 

0.5g K2HPO4 

0.2g MgSO4.7H2O 

0.01g FeSO4.7H2O 

 

200ml of this solution were then added to 250ml Erlenmeyer flask, containing 

2g agar. After autoclaving each flask was supplemented with 1% glucose and 

200μl NMMP minor elements. 
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MYMTE media: 

4g Maltose 

4g Yeast extract 

10g Malt extract 

20g Difco bacto agar 

2ml R2YE trace elements 

Made up to 1 litre with RO water 

 

R2YE trace elements: 

40mg ZnCl2 

200mg FeCl3.6H2O 

10mg CuCl2.2H2O 

10mg MnCl4.4H2O 

10mg Na2B4O7.10H2O 

10mg (NH4)6Mo7O24.4H2O 

Made up to 1 litre with RO water 

 

R5 agar: 

The following were made up 1L in distilled water, and 100ml aliquoted into each 

250ml Erlenmeyer flasks containing 2.2g Difco bacto agar: 

103g sucrose 

0.25g K2SO4 

10.12g MgCl2.6H2O 

10g glucose 
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0.1g difco casamino acids 

2ml R2YE trace elements 

5g yeast extract 

5.73g TES buffer 

 

At time of use the following were added to each flask: 

1ml KH2PO4 (0.5%) 

0.4ml CaCl2.2H2O (5M) 

1.5ml L-proline (20%) 

0.7ml NaOH (1M) 

 

Supplemented Minimal Medium Solid (SMMS): 

The following solution was made-up and 200ml were added to 250ml 

Erlenmeyer flasks, containing 3g agar: 

2g Difco casamino acids 

5.73g TES buffer 

Made up in 1L of water and pH adjusted to 7.2 

At time of use the following were added to each flask: 

2ml 50mM NaH2PO4/K2HPO4* 

1ml 1M MgSO4 

3.6ml 50% glucose 

200μl trace elements 

*The volume of this was altered for phosphate limitation studies. 
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Trace elements (per litre): 

0.1g ZnSO4.7H2O 

0.1g FeSO4.7H2O 

0.1g MnCl2.4H2O 

0.1g CaCl2.6H2O 

0.1g NaCl 

 
   Section 2.2.2 – Antibiotics and growth media additives 
 
Name Stock 

concentration 

Stock solution made 

up in: 

Working 

concentration 

(liquid) 

Working 

concentration 

(solid) 

Ampicillin 100mg/ml 50% ethanol 100μg/ml 100μg/ml 

Apramycin 50mg/ml dH2O (filter sterilised) 20-50μg/ml 20-50μg/ml 

Chloramphenicol 25mg/ml 80% ethanol 25μg/ml 25μg/ml 

IPTG 1M dH2O (filter sterilised) 1mM 1mM 

Kanamycin 50mg/ml dH2O (filter sterilised) 25-50μg/ml 25-50μg/ml 

Nalidixic acid 25mg/ml 150mM NaOH N/A 25g/ml 

Spectinomycin 25mg/ml dH20 (filter sterilised) 50μg/ml 50μg/ml 

Thiostrepton 50mg/ml DMSO 1-12.5μg/ml 0.5-12.5μg/ml 

X-gal 40mg/ml 
N, N-dimethyl-

formamide 
N/A 40μg/ml 

Table 2.6: List of additives for growth media, including their stock and usage concentrations. 

 

   Section 2.2.3 – Buffers and solutions: 

 
TE Buffer: 

10mM Tris/HCl, pH 8 

1mM EDTA 

 

10 x Primer annealing buffer: 

100mM Tris-HCl, pH8.0 
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150mM NaCl2 

10mM EDTA 

 

STE buffer: 

75mM NaCl 

25mM EDTA, pH8.0 

20mM Tris-HCl, pH7.5 

 

P-buffer: 

103g sucrose 

0.25g K2SO4 

2.02g MgCl2.6H2O 

2ml R2YE trace elements 

Made up to 800ml in distilled water and split into 80ml aliquots for autoclaving. 

 

At time of use the following were added: 

1ml KH2PO4 (0.5%) 

10ml CaCl2.2H2O (3.68%) 

10ml TES buffer (5.73%, pH7.2) 

 

Phenol/chloroform: 

25ml phenol 

24ml chloroform 
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1ml isoamyl alcohol 

 

Kirby buffer: 

1% (w/v) sodium-triisopropylnapthalene sulphonate (TPNS) 

6% (w/v) sodium 4-amino salycilate 

6% (v/v) phenol 

Made up in 50mM Tris-HCl, pH8.3 

 
 
 

Section 2.3 – Methods 
 

ll of the methods used in this study are listed in the following section. Any 

method with an unedited protocol is listed in full, whereas methods with 

changeable parameters are mentioned briefly here and detailed in their 

appropriate sections. 

 
   Section 2.3.1 – General DNA manipulation methods 
 
Annealing primers destined for vectors: 

Equimolar amounts of each primer mixed with 10 x annealing primer buffer 

(diluted to 1 x in reaction). Made up to volume with ddH20, heated to >95ºC for 

2 min then allowed to cool to 50ºC slowly. Placed on ice  until use or stored 

at -20ºC. 

 

Polymerase chain reaction: 

Each reaction consisted of 1µl 50ng/µl template DNA, 5µl 10x polymerase 

buffer, 1.5µl 10mM dNTPs, 5µl 10pmol/µl of each primer, 1µl polymerase made 

up to 50µl with ddH20. Reactions were also supplemented with either 2.5µl 

A 
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100% DMSO or 5µl 50% glycerol when appropriate. The polymerase used was 

determined by the intended purpose of the product. 

 Thermocycler conditions: 

 Initial denaturation: 2 min at 95°C 

 Denaturation: 30 sec at 95°C 

 Annealing:  30 sec at 50-68°C 

 Extension:  ~30 sec/kb of product at 72°C 

 Final extension: 5 min at 72°C 

    Hold at 4°C 

 The conditions of the annealing and extension phases were varied  to 

 optimise the reaction for each primer and template combination. 

 

Restriction digest: 

All restriction digests in this study contained approximately 1μg DNA, 2μl 10X 

restriction buffer, ~10U of each enzyme, in a total volume of 20μl. Digestion was 

allowed to progress for 2h at the temperature recommended by the 

manufacturer of the enzyme. 

 

Partial digests: 

Where a partial digest was necessary to isolate an intact fragment the reaction 

was carried out as follows: 5μg vector DNA, ~10U restriction enzyme, 4μl 10X 

restriction buffer, made up to 40μl with ddH2O. The reaction was started by the 

addition of the restriction enzyme, taking 4.5μl samples into 1μl of 0.5M EDTA 

(on ice) across a 60 min time-course. All samples were analysed via agarose 

gel electrophoresis, the samples producing the desired fragment sizes were 

combined and used to isolate the segment via gel extraction. 

30 cycles 
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Klenow 3’ end filling: 

To the cut vector the following were added: 10μl 5X Klenow buffer, 1μl Klenow 

fragment, 4μl 1mM dNTPs, to 50μl with ddH2O. The reaction mixture was 

incubated at room temperature for 15 min, 50μl ddH2O were added and 

immediately stopped with 50μl phenol:chloroform. The samples were then 

extracted and purified by isopropanol precipitation. 

 

Phosphorylation of DNA primers: 

Each primer was phosphorylated as follows: 4μl 200pmol/μl primer, 2μl 10X 

kinase buffer, 2μl 10mM ATP, 1μl T4 polynucleotide kinase, made up to 20μl 

with ddH2O. Incubated at 37°C for 20 min and then used as normal for PCR. 

 

Dephosphorylation of DNA: 

To inhibit self-ligation of digested vectors the 5’ ends were dephosphorylated as 

follows: 1μl shrimp alkaline phosphatase, cut vector, 3.5μl phosphatase buffer, 

made up to 35μl with ddH2O. Incubated at 37°C for 30 min, then heat 

inactivated at 65°C for 20 min. 

 

Ligation: 

Each ligation reaction consisted of 100ng vector DNA, the appropriate quantity 

of insert DNA (see equation below), 1μl 10X T4 DNA ligase buffer, 1μl T4 DNA 

ligase, in a total volume of 10μl. The reaction was then allowed to proceed at 

either 4°C for 16h or 16°C for 4h. 

 Equation 1: Calculating the amount of insert to use per ligation reaction, 

 with a 3:1 insert:vector ratio. 
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   Section 2.3.2 – DNA extraction methods 
 
Small scale plasmid DNA extraction: 

For each purification a 3ml cell-pellet was resuspended in 200μl 50mM Tris/HCl, 

pH 8, 10mM EDTA. Immediately 400μl of 200mM NaOH, 1% SDS were added, 

mixed by inverting, followed by 300μl of 3M potassium acetate, pH 5.5. The 

contaminating RNA was degraded by the addition of 1μl 10mg/ml RNAse, 

followed by a 10 min incubation at room temperature. The samples were 

centrifuged at 16,100 x g for 5 min and the supernatant extracted with 150μl 

phenol/chloroform. The mixtures were vortexed for 2 min, centrifuged as before 

and precipitated with 600μl isopropanol. The samples were incubated on ice for 

10 min and centrifuged as before. The pellet was washed with 70% ethanol and 

finally resuspended in 30μl TE buffer. 

 

Large scale plasmid DNA extraction: 

For large-scale DNA purifications the QIAgen Plasmid Midiprep kit was utilised, 

as detailed by the manufacturer. Each preparation required a cell pellet from 

50ml of culture, producing ~100μg of plasmid. 

 

Chromosomal DNA extraction from S. coelicolor: 

For each strain 1ml of culture was harvested by centrifugation at 16,100 x g for 

3 min. The pellets were washed with 1ml 10.3% sucrose and centrifuged as 

before. The final pellet was resuspended in 250µl STE buffer, containing 

2mg/ml lysozyme, and incubated at 37°C for 30 min. To this mixture 330µl kirby 

buffer were added, vortexed and centrifuged for 5 min at 16,100 x g. The upper 

phase was extracted with 250µl phenol/chloroform, vortexed and spun as 

before. The DNA was precipitated with 400µl isopropanol, 40µl 3M sodium 



44 

 

 Chapter 2 

acetate and incubated at -20°C for 2h. The DNA was pelleted by centrifugation, 

washed with 70% ethanol and resuspended in TE buffer. The DNA was treated 

with 10µg/ml RNAse at 37°C for 30 min, extracted with 100µl 

phenol/chloroform, then precipitated with an equal volume of isopropanol and 

1/10 volume of 3M sodium acetate. Following centrifugation, as before, the 

pellet was washed and finally resuspended in TE buffer. 

 
   Section 2.3.3 – RNA extraction methods 
 
RNA extraction from liquid cultures: 

For each sample 15ml of culture were centrifuged at 3,824 x g for 1 min and 

immediately resuspended in 800µl Kirby buffer. The samples were sonicated for 

2 x 3 sec at 30% (Vibracell, Sonics & Materials Inc.) and 600µl 

phenol/chloroform added. The samples were vortexed and centrifuged for 5 min 

at 16,100 x g. The upper phase was extracted with 800µl phenol/chloroform, 

vortexed for 2 min and centrifuged for 5 min at 16,100 x g. The upper phase 

(900 µl) was mixed with 90μl 3M sodium acetate (pH5.2) and 900μl isopropanol, 

and placed at -20˚C for 1h. The samples were centrifuged for 10 min at 16,100 

x g, the supernatant discarded and pellets washed with 100μl 70% ethanol. The 

pellets were resuspended in 200μl 1x DNAse buffer, 0.5μl DNAse was added 

and samples were incubated at 37˚C for 30 min. To each sample 200μl RNAse-

free water were added, along with 200μl phenol/chloroform. This was vortexed 

for 2 min and centrifuged for 5 minutes at 16,100 x g. The upper phase was 

mixed with 40μl sodium acetate and 400μl isopropanol. The samples were 

placed at -20˚C for 1h and centrifuged for 10 min at 16,100 x g. The 

supernatant was removed and each pellet washed with 100μl 70% ethanol. The 

pellets were air dried and resuspended in 50μl RNAse-free water. Each sample 

was quantified on a NanodropTM and the 260/280 ratio recorded. The samples 

were stored at -80˚C prior to use. 

 

RNA extraction from solid-media culture: 
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In all cases MYMTE agar was overlaid with twice boiled cellophane discs and 

inoculated with 50µl water containing 5x107 spores. The cells were harvested in 

liquid nitrogen and were cryogenically ground for 1.5 min at full power (Mixer 

Mill MM301, Reitsch). This stage was repeated for at least 5 cycles, with 2 min 

in liquid nitrogen in between cycles. The material was removed with 5ml 

modified Kirby buffer, and a further 1ml Kirby was used to rinse the remaining 

matter from the cylinder. This suspension was then sonicated for 30 sec at 35% 

(Vibracell, Sonics & Materials Inc.) and 5ml phenol/chloroform were added. This 

was then vortexed for 2 min and centrifuged at 3,824 x g for 10 min. The upper 

phase was extracted with 5ml phenol/chloroform, vortexed and centrifuged as 

before. The upper phase was then precipitated with 7ml isopropanol and 700µl 

3M sodium acetate. This was then placed at -20°C for at least one hour prior to 

centrifugation at 3,824 x g for 10 min. The supernatant was discarded and the 

pellet washed with 1ml 70% ethanol. The pellet was resuspended in 875µl 

ddH2O, 100µl 10x DNAse buffer and 25U DNAse were added. The samples 

were then incubated at 37°C for 1h. 400µl of phenol/chloroform were added, 

vortexed for 2 min and centrifuged for 10 min at 3,824 x g. The upper phase 

(900µl) was taken into 900µl isopropanol and 90µl 3M sodium acetate, this was 

kept at -20°C for at least 1h. The RNA was pelleted at 16,100 x g for 10 min. 

The pellet was washed with 200µl 70% ethanol, air dried and resuspended in 

300µl ddH2O. 

 
   Section 2.3.4 – Southern blot 
 
The southern blot method is a means to detect the presence of a specific DNA 

fragment, by means of a sequence-specific radiolabelled probe, in a sample of 

restriction endonuclease treated chromosomal DNA. This method can be used 

to confirm an insertion or deletion event in the chromosome of an organism 

targeted for mutagenesis. 

20x SSC: 

175.32g NaCl 

88.23g trisodium citrate 
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Made up to 1L with distilled water 

 

Denaturing solution: 

10g NaOH 

43.8g NaCl 

Made up to 500ml in distilled water 

 

Neutralising solution: 

38.5g ammonium acetate 

0.4g NaOH 

Made up to 500ml in distilled water 

 

Pre-hybridisation buffer: 

12.5ml 20x SSC 

5ml 10% blocking agent 

250µl 20% SDS 

Made up to 50ml with distilled water 

 

Southern digests: 

Each digest contained the following: 

~2.5µg chromosomal DNA 

3µl 10x NEB restriction buffer 
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>2.5U of restriction enzyme 

Made up to 30µl with ddH2O and incubated at 37C for ~16h. 

Southern gel: 

All samples were run on a large 0.8% agarose/TBE gel for 10 min at 150V, 

followed by ~16h at 20V. The gel also included 5 or 10µl hyperladder. The gel 

was photographed with ruler adjacent as a marker of ladder band positions. 

 

Labelling the probe: 

The probe was generated using 1l Klenow polymerase, 120ng of denatured 

PCR product (or λ-DNA for labelling the ladder), 1l dATP/dTTP/dGTP mixture, 

2l BSA, 10l Klenow buffer and 4l [-P32] dCTP. This reaction was incubated 

at room temperature for 1h, heated at 95C for 2 min before placing on ice. The 

labelled probe was then purified using a 450 sephadex column and used 

immediately. 

 

Southern blot: 

The blot was assembled as follows: glass plate, gel, Hybond N membrane, two 

wet Whatman papers, two dry Whatman papers, 8-10 cm worth of paper hand 

towels, glass plate and 250g weight. This was left for 4h at room temperature 

before UV cross-linking (120 Joules) the DNA to the nitrocellulose membrane. 

The membrane was placed at 65C in 25ml prehybridisation buffer for 1h before 

the labelled probe was added (along with 5µl of the λ-DNA) and incubated for a 

further 16h. The membrane was washed once with 2xSSC, 0.1% SDS and 

three times with 0.1xSSC, 0.1% SDS (30 min per wash). The membrane was 

then exposed to x-ray film for 16h and the results analysed. 

 
   Section 2.3.5 – Protein purification 
 
Binding buffer: 
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20mM Tris-HCl, pH7.9 

500mM NaCl 

0.1mM PMSF 

  

Charge buffer: 

50mM NiCl2 

 

Wash buffer: 

20mM Tris-HCl, pH 7.9 

0.5M NaCl 

60mM imidazole 

 

Elution buffer: 

20mM Tris-HCl, pH 7.9 

0.5M NaCl 

0.5M or 1M imidazole 

 

Strip buffer: 

20mM Tris-HCl, pH7.9 

0.5M NaCl 

100mM EDTA 
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Gel filtration dialysis buffer: 

20mM Tris, pH7.9 

100mM NaCl 

10mM EDTA 

5% glycerol 

 

Thrombin cleavage buffer: 

200mM Tris-HCl, pH8.0 

1.5M NaCl 

25mM CaCl2 

 

Gel filtration running buffer: 

20mM Tris, pH7.9 

50mM NaCl 

10mM EDTA 

5% glycerol 

  

Overexpression: 

For large-scale protein purifications 500ml of LB were inoculated with the pellet 

of a 5ml overnight culture. The culture was grown at 37C 250rpm to anOD600nm 

of 0.5-0.7. The cultures were then either immediately induced with 1mM IPTG 

(final concentration) and placed at 37C, or were placed in an ice-water bath for 

10 min prior to induction and then grown at 30C (cold-shock). After 3h the 

induced cells were harvested by centrifugation at 3,824 x g for 10 min. 
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Ni2+-affinity chromatography: 

The cell pellets were resuspended in 20ml binding buffer and disrupted by 

sonication at 35% for 6 x 15 sec (Vibracell, Sonics & Materials Inc.). The cell 

debris was pelleted by centrifugation at 23,426 x g for 20 min (4C), and the 

clear cell lysate decanted immediately. A Ni2+ column was generated by 

applying ~1ml IDA-sepharose to a 5ml syringe, containing a glass-wool bung. 

Note that all buffers used on the column were made up in ddH2O and filter 

sterilised. Using a peristaltic pump, driven at a flow rate of ~2ml/min, the column 

was washed with 3 column volumes of ddH2O and charged with 5 column 

volumes of charge buffer. The column was then equilibrated with 5 column 

volumes of binding buffer prior to the addition of the clear cell lysate. The lysate 

was chased with 10 column volumes of binding buffer and 5 column volumes of 

wash buffer. The protein was finally eluted in two steps with ~3ml of 0.5M and 

1M imidazole elution buffers (~6ml total eluate). The column was then cleared 

with 6 column volumes of strip buffer, rinsed with ddH20 and stored in 20% 

ethanol. All fractions from the column were then analysed by SDS-

polyacrylamide gel electrophoresis. Fractions containing the highest protein 

concentration were combined and dialysed, in twice boiled dialysis tubing, into 

3L of gel-filtration dialysis buffer at 4C for ~16h. 

 

Thrombin cleavage: 

Where the 6xHis tag was to be removed from the purified protein the following 

protocol was used: The concentration of the crude protein was estimated using 

an A280nm reading (E280nm for Rex of 14650 M-1 cm-1). This value was then 

converted to mg/ml (MW of Rex 26.7kDa) and finally to total mg of protein. For 

each mg of protein 1U of thrombin was added. The appropriate volume of 

thrombin cleavage buffer was also added and the reaction incubated at room 

temperature for 6h. The reaction was terminated by the addition of 100µM 

PMSF and cleavage confirmed by SDS-polyacrylamide gel electrophoresis. 
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Gel filtration: 

The samples were concentrated down to ~1ml and injected onto a Superdex 

200 HiLoad 16/60 gel filtration column. Prior to loading samples the column was 

rinsed with 2 column volumes of ddH2O, then pre-equilibrated with 2 column 

volumes gel filtration running buffer, run at 0.5-1ml/min. After elution the column 

was washed with 2 column volumes of each both running buffer and ddH2O. 

The column was stored in 20% ethanol. All solutions were filter sterilised prior to 

use and the column was kept at 4C during use. The peaks were detected at 

280nm, collected and analysed by SDS-polyacrylamide gel electrophoresis. 

Fractions containing the desired protein were pooled and concentrated once 

more. The concentration of the protein was assessed at 280nm and 340nm on 

the NanodropTM prior to snap-freezing in liquid nitrogen and storing at -80C. 

 

   Section 2.3.6 – Electromobility shift assay (EMSA) 

 
EMSA analysis is a method used to detect the formation of a complex between 

multiple components, in this case between DNA and protein. One or more of the 

components are radiolabelled, allowed to equilibrate with the other components 

and then run through a gel. The individual radiolabelled components are also 

run individually. Complex formation is then detected as a difference in the 

migration through the gel when compared to the migration of the individual 

components. 

5 x Binding buffer for EMSAs: 

100mM Tris-HCl, pH8.0 

25% glycerol 

5mM MgCl2 

200mM KCl 
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6x Loading dye: 

1% bromophenol blue 

50% glycerol 

 

6% polyacrylamide gel: 

7.925ml 1x TBE 

2ml 30% acrylamide 

50μl 10% APS 

25μl TEMED 

 

Generating the radiolabelled probe: 

PCR was used to generate a DNA probe, which was then purified using the 

QIAgen Gel Extraction kit (as per the manufacturers’ instructions). The labelling 

reaction consisted of 100ng probe, 1.11MBq of γ[32P]-ATP, 1μl  T4 

polynucleotide kinase, 2μl 10 x kinase buffer, made up to 20μl with dH2O. This 

reaction was allowed to proceed at 37˚C for 30 min and the labelled probe 

purified using the QIAgen PCR purification kit. Each probe was quantified on an 

agarose gel and 1ng used in the binding reaction. 

 

EMSA reaction: 

Each probe-only sample consisted of 1ng of γ[32P]-labelled DNA, 2μl of 5x 

binding buffer and 2μl of 6x loading dye. Each binding reaction additionally 

contained a defined amount of Rex, 1μg herring-sperm DNA and NAD/H as 

indicated. The reaction mixtures were incubated at room temperature for 20 min 

prior to running on a 6% TBE-polyacrylamide gel at 120V for 1h 20 min. After 

vacuum drying the gels were analysed either by X-ray film or using a storage-



53 

 

 Chapter 2 

phosphor screen. The length of the exposure was dependent on the strength of 

the radio-labelled probe. 

 

   Section 2.3.7 – Surface plasmon resonance (SPR): 

 

SPR analysis is similar to EMSA analysis in that it too is able to detect protein-

protein or protein-DNA interaction, however SPR is more sensitive and allows 

real-time detection of the interaction. In this case the DNA was attached to the 

sensor surface and the protein injected over the sensor chip. The interaction 

was then indicated by an increase in the response units from the sensor 

surface. 

5 x HBS:  

50mM Hepes, pH 7.4 

750mM NaCl 

17mM EDTA 

 

1 x HBS (SPR running buffer): 

10mM Hepes, pH 7.4 

150mM NaCl 

3.4mM EDTA 

0.005% TWEEN 20 

 

Annealing primers for SPR: 

 Biotinylated primers: 

 In each case only one primer was biotinylated, annealing the primers 

 with a 4-fold excess of the non-biotinylated primer. This was made up in 



54 

 

 Chapter 2 

 1 x HBS buffer (lacking the TWEEN), heated to >95ºC for 2 min, 

 allowed to cool slowly to 50ºC and was finally stored at -20ºC. 

 Non-biotinylated primers: 

 The non-biotinylated (for competing fragments) were annealed in 

 equimolar quantities with the same buffer and reaction conditions as for 

 the biotinylated fragments. 

 

SPR running conditions: 

SPR detects changes in the refracted light caused by alterations to the surface 

Plasmon resonance. SPR is a natural phenomenon that results from 

fluctuations in the localisations of the electron clouds of atoms.  This resonance 

can be altered by changing the interactions that occur on the sensor surface. 

This method allows the interactions between two molecules to be studied and 

quantified. For all SPR assays a BIAcore 2000 system was used in conjunction 

with streptavidin sensor chips. Each new sensor chip was first washed three 

times with 30µl 1M NaCl, 50mM NaOH at a flow rate of 20µl/min. Each chip 

contained 4 flow cells, the first was always left blank for background subtraction, 

the second was used for the non-specific DNA control and the test fragment 

was attached to lane 3. Each 1ng/µl biotinylated fragment was injected onto the 

appropriate lane until the response units had increased by ~250. The chip was 

then twice washed with 30µl of 1M NaCl. The SPR assays were run at a flow 

rate of 30µl/min and the injection constituents varied. The sensor surface was 

then regenerated with 30µl 2M MgCl2. For competitive SPR an additional DNA 

fragment (non-biotinylated) was included in the protein injection and the 

reduction in the response units, compared to protein alone, recorded. 

 

   Section 2.3.8 – Transcriptome analysis methods 

 
RT-qPCR: 

RT-qPCR is a PCR-based method to detect the expression level of a gene 

relative to the expression of a reference gene. RNA samples were converted to 
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cDNA and used as the template for PCR. Each reaction was monitored in real-

time on an Applied Biosystem 7500 instrument using SYBR-green as the 

fluorescent dye. The number of transcripts was then determined through use of 

a gDNA standard curve. 

Additional DNAse step: 

The following were added to an RNAse-free PCR tube: 

1μg RNA 

1μl DNAse buffer 

1μl RNAse-free DNAse 

Made up to 10μl with RNAse-free ddH2O. 

The reaction was incubated at 37˚C for 30 min and stopped by the addition of 

1μl DNAse stop solution, followed by a 10 min 65˚C heat-inactivation. 

 

Reverse transcriptase step: 

To the above solution the following were added: 

4μl 5x iScript buffer 

1μl iScript reverse transcriptase 

4μl ddH2O / 9μl ddH2O (no RT controls) 

This was then incubated as follows: 

25˚C 5 min 

42˚C 30 min 

85˚C 5 min 

Hold at 4˚C 

 

qPCR: 
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To each optical PCR tube the following were added: 

12.5μl 2x QuantiTect SYBR Green PCR Master Mix 

1μl 10pmol/μl forward primer 

1μl 10pmol/μl reverse primer 

5μl template (gDNA or 2μl cDNA+3μl ddH2O) 

5.5μl ddH2O 

 

Cycling conditions (on Applied Biosystems 7500): 

95˚C 15 min 

94˚C 15 sec 

55˚C 30 sec          Cycled 45 times 

72˚C 33 sec* 

95˚C 15 sec 

55˚C 1 min          melting point analysis 

95˚C 15 sec 

*Data acquisition stage. Note that the detection threshold was lowered to 0.02, 

as per the manufacturer’s instructions (QIAGEN QuantiTect SYBR Green PCR 

Kit in combination with the Applied Biosystems 7500 thermal cycler). 

 

Data analysis: 

All qPCR assays included a M145 gDNA standard curve for each set of primers, 

which was used to convert Ct values into copy numbers. When the starting 

material was DNA this was converted to copy number per pg. However, when 

the amount of starting material was unknown, as was the case for cDNA due to 

the conversion from RNA not being 100% efficient, the values were kept as 

copy numbers alone but were normalised to a control gene (16s rRNA). All 

samples were background corrected using a “no template” control for each 

primer set. The samples that had undergone a reverse transcriptase step also 
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had an additional data validation step, using the no RT controls to subtract the 

signal from any gDNA carry-over that had occurred. 

 

S1 nuclease protection assay: 

The S1 nuclease protection assay is a method used to determine the 

expression level of a gene by means of a sequence-specific radiolabelled 

probe. The probe anneals to the transcript of the target gene protecting it from 

S1 nuclease digestion and indicating its position on a polyacrylamide gel. The 

expression level is then indicated by the strength of the signal from that 

fragment on the gel, as this is determined by the number of transcripts that were 

originally present for that gene. 

 

2 x S1 hybridisation buffer: 

2.63g PIPES (made up in ~90ml dH2O) 

1.67ml 0.5M EDTA 

Adjusted to pH7.0 with 5M NaOH 

93.1g NaTCA dissolved in above solution 

Made up to 167.4ml with RNase-free H2O 

 

5 x S1 digestion buffer: 

1.4M NaCl 

150mM Sodium Acetate, pH4.4 

22.5mM Zinc Acetate 

100μg/ml RNase-free herring sperm DNA 

For use: 150U of S1 Nuclease added per 300μl of 1 x digestion buffer 

 

S1 stop Mixture: 
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2.5M Ammonium Acetate 

0.05M EDTA 

 

Formamide loading buffer: 

80% formamide 

10mM NaOH 

1mM EDTA 

0.1% Xylene Cyanol 

0.1% Bromophenol Blue 

 

6% denturing polyacrylamide gel: 

30ml 6% bis-acrylamide (urea/TBE) 

175µl 10% APS 

27.5µl TEMED 

 

Labelling the ΦX174 DNA/HinfI ladder: 

The labelling reaction consisted of 1µl of ΦX174 DNA/HinfI ladder, 1µl of 10x T4 

polynucleotide kinase buffer, 1µl of γ[32P]-ATP, 1µl of T4 polynucleotide kinase 

and 6µl of ddH2O. This was incubated at 37˚C for 30 min, 200µl of loading dye 

were added and the ladder was stored at -20˚C prior to use. 

 

Generating the radiolabelled probe: 

30pmol of the reverse primer (located within the gene) was labelled with 

1.85MBq of γ[32P]-ATP, using ~10U of T4 polynucleotide kinase, in a final 

reaction volume of 40μl. The labelling reaction was allowed to proceed for 30 

min at 37˚C, after which time 4μl 3M sodium acetate, pH6.0, and 80μl 100% 

ethanol were added. The labelled primer was left to precipitate at –80˚C for 

~16h. The primer was pelletted by centrifugation, washed with 100μl 75% 
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ethanol and air-dried. The pellet was then resuspended in PCR reaction 

mixture, containing 20pmol of the forward primer (located within the promoter 

region), and amplified using appropriate cycling conditions for each probe. The 

PCR product was subsequently purified using the QIAgen PCR purification kit, 

eluting in 20μl of RNase-free water, 2μl of which was run on an agarose gel in 

order to quantify the probe. 

 

Hybridisation: 

The amount of RNA used for the hybridisation was varied between 30-40μg, 

depending on the amount available, but was kept constant within each S1 

nuclease experiment. The RNA was mixed with ~10ng of the purified probe, 

and 10μl of 1 x hybridisation mixture, in a flip-top eppendorf tube. The probe 

was denatured at 65˚C for 20 min and allowed to cool slowly to 45˚C, during 

which time the probe would anneal to the RNA. 

 

S1 nuclease digestion: 

To each hybridisation mixture 300μl of 1 x S1 Nuclease digestion buffer was 

added and incubated at 37˚C for 45 min. The reaction was stopped by the 

addition of 75μl S1 stop solution. The RNA was pelleted, with 1μl 20mg/ml 

glycogen and 400μl isopropanol, at -20˚C for 1h. The pellet was washed with 

150μl 70% ethanol, air-dried and finally resuspended in 6μl formamide loading 

dye. The samples were denatured at 95˚C for 2 min prior to running on a 6% 

sequencing gel. Gels were run at 600V and 52.5˚C for 1h 20 min. After vacuum 

drying the gels were either analysed on x-ray film or by phosphor-imager. 

 

   Section 2.3.9 – ChIP-on-chip  

 
 
ChIP-on-chip is a method of detecting the in vivo binding sites of a DNA-binding 

protein using an antibody specific to the protein of interest. In brief the protein is 
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formaldehyde cross-linked to the DNA, samples sonicated to fragment the 

chromosomal DNA, and the protein-DNA complexes purified using a specific 

antibody. The cross-linking was reversed by heat-treatment, the protein 

protease treated and the purified DNA labelled with Cy3 or Cy5 for use on a 

DNA microarray. The same method was also performed on a control sample, 

lacking the antigen for the antibody, and labelled with the opposite Cy-dye to 

the test sample. Any spots on the array that corresponded to a binding site for 

the protein would then be enriched compared to the control sample. 

 
(method adapted from (Efromovich et al., 2008): 
 

Tris buffered saline (TBS): 

20mM Tris-HCl, pH7.5 

150mM NaCl 

 

 

IP lysis buffer: 

10mM Tris-HCl, pH8 

20% sucrose 

50mM NaCl 

10mM EDTA 

20mg/ml lysozyme 

 

 

IP buffer: 

50mM Hepes-KOH, pH7.5 

150mM NaCl 

1mM EDTA 

1% Triton X-100 

0.1% Na-deoxycholate 

0.1% SDS 

 

 

IP salt buffer: 
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50mM Hepes-KOH, pH7.5 

500mM NaCl 

1mM EDTA 

1% Triton X-100 

0.1% Na-deoxycholate 

0.1% SDS 

 

 

IP wash buffer: 

10mM Tris-HCl, pH 8.0 

250mM LiCl 

1mM EDTA 

0.5% Nonidet P-40 alternative 

0.5 % Na deoxycholate 

 

 

IP elution buffer: 

50mM Tris, pH 7.5 

10mM EDTA 

1% SDS 

 
Cryogenic grinding method: 

An alternate means of cell disruption is cryogenic grinding, which was tested 

during the optimisation of the ChIP-on-chip protocol. For this the cell pellet was 

resuspended in 1ml of TBS, containing 1mM PMSF. The solution was then 

dripped into liquid nitrogen and the pellets placed into a grinding cylinder. This 

was then cycled 3 times (Mixer Mill MM301, Reitsch), grinding for 90 sec at full 

power then placing in liquid nitrogen for 2 min. Samples were then removed 

from the cylinders in 4ml IP buffer and sonicated for 11 x 15 sec at 35% 

(Vibracell, Sonics & Materials Inc.). The samples were phenol/chloroform 

extracted, isopropanol precipitated and resuspended in ddH2O before analysing 

on an agarose gel. 

 



62 

 

 Chapter 2 

Formaldehyde cross-linking: 

The spores were germinated for 2h before being used to inoculate 50ml NMMP, 

which was then grown at 30°C 300rpm to an OD450nm of 0.8-1. When the 

cultures were ready to harvest 1.35ml of 37% formaldehyde were added and 

the flasks were incubated at 30°C 300rpm for a further 20 min. The 

formaldehyde was quenched by the addition of 8ml 2.5M glycine, followed by a 

further 5 min incubation. The cells were finally harvested by centrifugation at 

2,245 x g for 5 min at 4°C. The cell pellet was washed twice with TBS, 10ml 

then 5ml, and the final pellet was resuspended in 1ml IP lysis buffer. The lysis 

reaction was left to progress for 30 min at 37°C, vortexing every 10 min to 

ensure complete digestion. Once completed 4ml of IP buffer were added, along 

with 50μl 100mM PMSF (final 1mM). The samples were sonicated at 35% for 13 

x 15 sec with 1 min on ice in between cycles. The cell debris was pelleted by 

centrifugation at 16,100 x g for 30 min at 4°C and the supernatant transferred to 

a fresh tube for the immunoprecipitation step.  

Immunoprecipitation: 

25μl of protein A/G resin (Ultralink) were washed 3 times in 125μl of TBS, 

pelleting the beads at 830 x g after each wash. The supernatant was completely 

removed and the resin resuspended in 800μl of the formaldehyde cross-linked 

sheared chromatin. Finally 5μl of anti-FLAG (Sigma) were added and the 

immunprecipitation left to proceed on a rotating wheel at 4°C for ~16h. The 

beads were harvested at 830 x g for 1 min, resuspended in 750μl IP buffer and 

returned to the wheel for 3 min. The solution was transferred to a Spin-X 

column (Corning Life Sciences) and centrifuged as before. The resin was 

resuspended in 500μl IP buffer, returned to wheel for 3 min and centrifuged as 

before. The column was washed with 1ml IP salt buffer, 1ml wash buffer and 

finally 1ml TE buffer, each time mixing on the rotating wheel for 3 min and 

centrifuging for 1 min. The column was finally transferred to a fresh tube and the 

resin resuspended in 100μl elution buffer. This was incubated at 65°C for 20 

min, to release the chromatin from the protein A/G beads. The chromatin was 

then eluted by centrifugation at 830 x g for 1 min. The sample was transferred 
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to a PCR tube, with 10μl of 40mg/ml Pronase, and heated to 42°C for 2h, then 

65°C for 6h. A total chromatin control was generated by mixing 70μl of unused 

chromatin, 20μl of 5 x elution buffer, and 10μl of 40mg/ml Pronase made up in 

TBS (Roche). The control was heated using the same cycle conditions as the 

immunoprecipitated samples. All samples were purified using the QIAgen PCR 

purification kit (as per the manufacturers’ instructions) eluting in 30μl buffer EB. 

 

Labelling the chromatin for microarray studies: 

Approximately 150ng of chromatin was used for each labelling reaction. The 

reaction mixtures were made up with 20μl 2.5 x random primer (BioPrime kit), 

20μl of sample and 0.25μl dH2O. These were then mixed well and denatured at 

94°C for 3 min. Once this step was completed 5μl dNTP mix (2mM dATP, 2mM 

dGTP, 2mM dTTP and 0.5mM dCTP) were added, followed by 3.75μl of 1mM 

Cy3-dCTP or Cy5-dCTP and 1.5μl of Klenow (BioPrime kit). The labelling 

reaction was left for ~16h at 37°C in the dark. The labelled samples were 

purified using the MinElute PCR purification kit (QIAgen) with a slightly modified 

protocol. The 50μl labelling mixture was mixed with 250μl buffer PB and applied 

to the column. This was then centrifuged at 16,100 x g for 1 min and the flow-

through discarded. The column was washed twice with 500μl, then 250μl of 

buffer PE, followed by a third centrifugation step to remove the residual ethanol. 

The columns were transferred to fresh tubes and the samples eluted in two 15μl 

elution steps. Light exposure was limited throughout the purification to limit dye 

bleaching. 

Hybridisation: 
(This stage was performed at the Streptomyces microarray facility at the 
University of Surrey, Guildford) 
 
The immunoprecipitated samples were hybridised to an OGT 4 x 44 K 60mer 

slides, with 4 separate hybridisation chambers (Bucca et al., 2009). For each 

hybridisation chamber 150ng of both Cy3 and Cy5 labelled samples (denatured 

at 94°C for 3 min) were mixed in a total volume of 120µl hybridisation buffer 

(50mM MES, pH7, 1M NaCl, 20% formamide, 1% Triton X-100) (Bucca et al., 
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2009). Each solution was then pipetted onto one chamber of an Agilent gasket 

slide and the OGT array placed face down onto these solutions. The gasket 

was sealed and placed in an Agilent hybridisation chamber for 60h at 55°C 

(Bucca et al., 2009). The arrays were washed and analysed as detailed by 

Bucca et al. (Bucca et al., 2009). The final data was represented as fold-

enrichment, based on comparison to the no antigen control signal at each 

position on the array. 

 
   Section 2.3.10 – Culturing methods 
 
Mycelial preps: 

5ml of YEME:TSB (50:50), containing the appropriate antibiotic selection, were 

inoculated with 5μl of a fresh high density spore stock and grown for 48h at 

30ºC (300rpm). The 5ml culture was combined with 5ml sterile water and 

centrifuged for 10 min at 1,698 x g. The supernatant was removed and the 

mycelia pellet resuspended in 15ml 10.3% sucrose, which was centrifuged as 

above. The supernatant was again discarded and the pellet washed with 800μl 

20% glycerol. The solution was transferred to a 2ml eppendorf and centrifuged 

at 16,100 x g for 3 min. The final pellet was resuspended in 500μl 20% glycerol 

and stored at -80ºC prior to use. 

 

S. coelicolor protoplast generation: 

25ml of YEME, containing 2.5ml of 20% glycine and 200μl 2.5M MgCl2, were 

inoculated with 50μl spores and grown at 30ºC for 48h. 15ml of the culture were 

mixed with 30ml of H2O and centrifuged at 2,653 x g for 10 min. The 

supernatant was discarded and the pellet was washed twice with 20ml of 10.3% 

sucrose. The pellet was finally resuspended in 4ml P-buffer, containing 1mg/ml 

lysozyme, and incubated at 30ºC for 1h. A further 5ml of p-buffer were added 

and the solution filtered through cotton-wool. The filtrate was centrifuged at 955 

x g for 7 min and the supernatant discarded. The pellet was resuspended in the 

residual volume and an additional 1ml P-buffer were added. 
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   Section 2.3.11 – S. coelicolor genetic manipulation methods 
 
Transformation of S. coelicolor protoplasts: 

For each transformation 50μl of protoplast were added to 1ml P-buffer, this was 

centrifuged at 955 x g for 7 min. The supernatant was discarded and the pellet 

resuspended in the residual volume. 5μl of unmethylated DNA were added to 

the protoplast immediately followed by 500μl 25% PEG (made up in P-buffer). 

100μl of this were plated onto R5 agar and incubated at 30 ºC for ~16h. The 

plates were then overlaid with 1ml of the appropriate antibiotic and incubated at 

30ºC for a further 3 days. 

Conjugation of S. coelicolor: 

For conjugation into S. coelicolor the E. coli strain ET12567/pUZ8002 was used. 

100µl of overnight culture were used to inoculate 10ml LB, containing 25µg/ml 

chloramphenicol, 25µg/ml kanamycin and selection for the conjugative vector. 

This was grown to an OD600nm of 0.4 and cells pelleted by centrifugation at 

3,824 x g for 5 min. The pellet was washed twice with fresh LB to remove any 

residual antibiotics and centrifuged as before. The final pellet was resuspended 

in 1ml LB and 500µl used for each conjugation. 4µl of spores were added to 

500µl 2xYT media and heat shocked at 50ºC for 10 min. The spores were 

allowed to cool and were then mixed with the E. coli cells. The samples were 

centrifuged briefly at 16,100 x g and the supernatant discarded. The pellet was 

resuspended in the residual volume and a dilution series was generated in 

sterile water. 100µl of each dilution was plated onto MS agar, containing 10mM 

MgCl2, and incubated at 30ºC for ~16h. The plates were then overlaid with 1ml 

of water containing the appropriate antibiotic selection as well as 0.5mg nalidixic 

acid to select against the E. coli cells. 

 

   Section 2.3.12 – Generating an in-frame disruption strain in S. coelicolor 

 

This method followed the protocol described by Gust et al. (Gust et al., 2004, 

Gust, 2002). The first stage was the isolation of the cosmid, containing the gene   
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(Gust et al., 2004) used to target genes for 
disruption. Note that the final strain in this 
protocol could not be isolated, but is included to 
illustrate how the procedure should have worked. 
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targeted for disruption, from the S. coelicolor cosmid library. This was 

transformed into electrocompetent E. coli cells, cultured and subsequently 

purified. The second stage was generation of a disruption cassette. In all 

instances during this study the apramycin resistance cassette was chosen, 

contained on pIJ773. Primers were designed to amplify the apramycin 

resistance cassette of pIJ773, also incorporating 39 bp of the DNA surround the 

open reading frame of the targeted gene. The cosmid was transformed into the 

BW25113 E.coli strain containing the λ-Red recombination plasmid (pIJ790). 

The transformant was then grown overnight and used to inoculate 10ml SOB 

media 100µg/ml ampicillin, 50µg/ml kanamycin, 25µg/ml chloramphenicol and 

10mM arabinose to induce λ-Red genes. The λ-Red plasmid contained genes to 

allow recombination of the disruption cassette with the target gene on the 

cosmid. The cultures were grown to an OD600nm ~0.4 at 30ºC. The cells were 

harvested by centrifugation at 1,698 x g for 5 min and the pellets washed twice 

with 10ml then 5ml of 10% glycerol, finally resuspended in the residual volume. 

100ng of the disruption cassette was mixed with 50µl of cells and electroporated 

at 2.5kV. The cells were plated onto L-agar, containing 50µg/ml apramycin, 

50µg/ml kanamycin and 100µg/ml ampicillin, and grown at 37ºC. The 

temperature at this stage was crucial for inducing the loss of the λ-Red plasmid, 

which is temperature sensitive, in order to prevent the disruption cassette being 

recombined back out of the cosmid. The recombinant cosmid was purified from 

the strain and confirmed by restriction analysis. This was then used to transform 

the ET12567/pUZ8002 E. coli strain, which was then conjugated with S. 

coelicolor. The conjugation plates were overlaid with 1ml of water, containing 

0.5mg nalidixic acid and 1.25mg apramycin. The ex-conjugants were then 

screened for AprR/KanS colonies by replica plating onto DNA media. 
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Chapter 3 

Results I: The Rex Regulon 

 

 

“Look deep into nature, and then you will understand everything better.” 

Albert Einstein (1879-1955) 
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Section 3.1 – Overview 
 

s a transcriptional repressor Rex is able to sense changes in the 

NADH/NAD+ redox poise of the cell and alter gene expression 

accordingly, which ensures the maintenance of redox homeostasis. During 

aerobic growth this ratio should remain low, as NADH is continually recycled by 

the respiratory chain components. However, under oxygen limitation this 

pathway slows in the absence of the terminal electron acceptor; oxygen. This 

results in an increase in the NADH/NAD+ ratio resulting in redox stress as the 

NAD+ becomes limiting for other cellular processes. Redox stress responses 

can vary from species to species, especially so considering that the respiratory 

pathways also vary between organisms. Pathogenic bacteria are constantly 

exposed to oxygen limitation as a consequence of the hosts‟ defences. Under 

these conditions bacteria have been shown to switch to alternate terminal 

electron acceptors; such as nitrate, and have even been shown to enter a 

dormant stage to lessen the energy demands on the cells (Rustad et al., 2009, 

Unden and Bongaerts, 1997). As a soil-dwelling bacterium S. coelicolor is 

frequently oxygen limited but this organism cannot grow anaerobically (van 

Keulen et al., 2007, van Keulen et al., 2003). One of the coping mechanisms of 

S. coelicolor has already been identified; the Rex-regulated induction of the 

cytochrome bd terminal oxidase (Brekasis, 2005, Brekasis and Paget, 2003). In 

other bacteria this enzyme has been shown to have an increased affinity for 

oxygen and is therefore able to ensure continued electron flow at low oxygen 

concentrations (Poole and Cook, 2000). Rex is not however limited to obligate 

aerobes, it is also present in facultative and obligate anaerobes – presenting 

alternative options for coping with oxygen limitation. For example 

Staphylococcus aureus also contains a Rex regulator but in this species the 

Rex regulon appears to include genes involved in fermentative pathways; such 

as alcohol dehydrogenase and lactate dehydrogenase (Pagels et al., 2010). 

These enzymes also exist in S. coelicolor but have not been shown to be Rex-

regulated. Other S. coelicolor Rex targets have been identified, including nuoA-

N and ndh  (Brekasis, 2005). However, it was thought that the regulon was still 

not fully characterised in S. coelicolor, potentially missing such genes capable 

A 
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of utilising other energy sources, thus a transcriptomics approach was taken. 

Whilst the method itself proved successful it did not reveal new Rex targets. 

Bioinformatics approaches had however revealed several potential Rex binding 

sites in the S. coelicolor genome, which although absent using the 

transcriptomic approach, were supported by EMSA (D. Brekasis and M. Paget, 

personal communication). Thus in order to fully understand the biological role of 

Rex, this chapter focuses on defining the Rex regulon using a ChIP-chip 

approach to directly identify binding sites. Several new Rex binding sites were 

revealed, which provide new insights into the biological role of Rex. 

Furthermore, the results provide important information on the structure of Rex 

binding sites and reveal that Rex can bind to half-sites, albeit with weaker 

affinity. The potential problems of studying changes in gene expression 

resulting from de-repression alone are discussed. 

 

 
Section 3.2 – Genome-wide identification of ROP sites 
 

n recent years, ChIP-on-chip (chromatin immunoprecipitation-on-chip) has 

emerged as a powerful technique to globally identify targets of DNA binding 

proteins (Negre et al., 2006, Pillai and Chellappan, 2009, Sala et al., 2009). The 

premise of this technique is that DNA binding proteins are chemically cross-

linked to the chromosomal DNA in vivo and the protein of interest is selectively 

immunoprecipitated using a specific antibody. The co-immunoprecipitated DNA 

can then be labelled and used to probe a genome-scale microarray. In the 

absence of poly- or mono-clonal antibodies against the protein of interest, the 

gene that encodes the protein can be modified by the addition of an epitope tag. 

Thus, Rex was engineered with a 3xFLAG tag, allowing immunoprecipitations to 

be performed using an anti-FLAG antibody. 

 

   Section 3.2.1 – RexFLAG construction 
 

Generation of the RexFLAG construct was done in several stages (Figure 3.1). 

 

I 
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Figure 3.1: Diagrammatic view of the Rex
FLAG

 construction for use in ChIP-on-chip experiments. 

The Rex sequence is shown here in purple, while the in-frame FLAG tag is depicted in orange. 

VATGRAHRPATRSRGIPEATVARLPLYLRA 
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DFSYLGSYGTRGVGYDVEYLVYQISRELGL 

TQDWPVVIVGIGNLGAALANYGGFASRGFR 

VAALIDADPGMAGKPVAGIPVQHTDELEKI 

IQDDGVSIGVIATPAGAAQQVCDRLVAAGV 

TSILNFAPTVLNVPEGVDVRKVDLSIELQI 

LAFHEQRKAGEEAAADGAAPPVAARKQQRS 

TGSADQGPDGDVPAVMPAKLDYKDHDGDYK 

DHDIDYKDDDDK 
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The first stage was to amplify the rex gene and its corresponding promoter from 

the pBlueScript-derived vector pSX137. The forward (FLAG-ROP_For) and 

reverse primers (FLAG_Rev) included restrictions sites, XbaI and HindIII, 

respectively; the reverse primer also had the function of removing the stop 

codon to allow fusion to the FLAG-tag. The resulting product contained the 

entire coding region of rex, with the exception of the stop codon only, and also 

included 326bp of the promoter region, which contained the ROP site (located 

at -88bp). This ensured that all of the upstream regulatory elements were 

included in the final construct. The PCR product was blunt-end ligated into 

EcoRV-cut pBlueScript II SK+ and the entire region re-isolated as an XbaI-

HindIII fragment. This fragment was introduced into a pBlueScript derivative that 

contained a 3xFLAG-tag sequence (pBS::ermE*::FLAG). Translational fusion 

was mediated by an in-frame HindIII site preceding the tag. This construct was 

then digested with XhoI, end-filled with Klenow, and partially digested with NotI 

to release the entire rexFLAG fragment. This fragment was cloned into NotI-

EcoRV-digested pSET152 and the resultant construct (pSX402) introduced into 

S. coelicolor S106 (rex) strain. The pSET152 vector is an integrative plasmid 

that recombines into the C31 chromosomal attachment site, usually at single 

copy (Bierman et al., 1992). Initially, experiments were performed to ensure that 

the RexFLAG protein was functional in vivo.  RNA was harvested over an oxygen 

limitation time-course, including an aerated sample (time zero), and was used 

for an S1 nuclease mapping study (Figure 3.2). M145 (pSET152) and S106 

(pSET152) were used as positive and negative controls, respectively. The cydA 

promoter region was used as the S1 probe as this region contains both a Rex-

regulated promoter (cydP1) and a constitutive promoter (cydP2), providing an 

internal reference control. In the case of S106 (pSET152) the cydP1 promoter 

remained highly active throughout the time-course, whereas for the M145 

(pSET152) and S106 (pSX402), expression from cydP1 was induced by oxygen-

limitation. This confirmed that the Rex-FLAG is functional in vivo and could 

therefore be used for subsequent ChIP-chip experiments. 
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Figure 3.2:  S1 nuclease protection assay on the cydA promoter region. RNA was harvested 
from S106+pSET152, M145+pSET152 and S106+pSX402 (Rex

FLAG
) S. coelicolor strains. The 

times indicated above each well represent the period of oxygen-limitation prior to harvesting, 
with 0 minutes representing an aerated sampling. The closed arrow shows the position of the 
cyd

P1
 transcript, which is Rex-dependent, whereas the open arrow indicates that of the 

constitutive cyd
P2

 promoter. 

 

   Section 3.2.2 – Optimising the ChIP method for S. coelicolor 

 

The chromatin immunoprecipitation method was performed as described by 

Grainger et al. (Efromovich et al., 2008), however the cell disruption and 

sonication steps required optimisation for S. coelicolor. Two methods of cell 

disruption were attempted; cryogenic grinding and lysozyme treatment (see 

Section 2.3.9 for details). The purified fragments from each method were 

analysed by gel electrophoresis (data not shown), looking for clean fragment 

ranges and a strong signal. The amounts of nucleic acid attained from the 

grinding method, as assessed on a NanodropTM, appeared to be significantly 

higher than those of the lysis method (data not shown), however visual 

inspection of the samples via agarose gel electrophoresis revealed that this was 

not the case. The lysozyme-treated samples were much cleaner and stronger 

than the ground samples. This would suggest that the concentration readings 

taken on the ground samples were enhanced by contamination – most likely 

due to more RNA surviving this method. Given that the main difference between 

the two methods was the presence or absence of an incubation step (lysozyme 

treatment) one explanation is that lysozyme treatment allows time for other 

enzymes to degrade contaminating RNA. The lysis method was used from this 

point forward. 

311bp 

249bp 

200bp 

157bp 

 M     0  15  30   0  15  30   0  15  30 

S106 M145 Rex
FLAG
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The next step for optimisation was sonication – too few cycles and the 

resolution on the array is too low, too many and there is a risk of degrading the 

samples. Sonication was therefore performed on the lysozyme-treated sample, 

taking aliquots after each round and analysing the fragment size ranges on an 

agarose gel. After a single cycle at 35% for 15 seconds (Sonicator model 

Vibracell, Sonics & Materials Inc.) the fragments ranged from >10kb (maximum 

marker size) to 1kb. With successive cycles this gradually dropped to a range of 

1.5-0.5kb but did not appear to drop any further after this point. The sonication 

used for the arrays was therefore set at 10 cycles, the point at which the 

smallest fragment ranges were obtained. Nevertheless, experimental samples 

were checked after sonication to confirm that it had been effective. 

 

   Section 3.2.3 – Chromatin immunoprecipitation 

 

When designing the ChIP-chip experiment a number of control strains were 

considered, including “no antibody” controls and “no antigen” controls. “No 

antibody” controls act as indicators of chromatin contamination, i.e. how much 

DNA is non-specifically purified along with actual IP samples. “No antigen” 

controls also provide this indicator but in addition reveal possible cross-

reactivity of the antibody. For this reason the “no antigen” control method was 

chosen and, as our antigen was the 3XFLAG tag, the control would be a strain 

lacking RexFLAG. The control chosen was S106 (pSET152). S. coelicolor S106 

(pSX402) and S106 (pSET152) were grown to late exponential phase (OD450nm 

~0.7-0.8), formaldehyde cross-linked and sonicated as described in Section 

2.3.9. The samples were then split into either immunoprecipitated (IP) or total 

DNA control, with the former being purified via the anti-FLAG antibody. After all 

the IP washes were performed, both samples were de-crosslinked by heat 

treatment and the DNA purified. 

Before launching into a full scale microarray experiment, the efficiency of the 

cross-linking and specificity of immunoprecipitation was tested using 

quantitative real-time PCR (qPCR). Two known binding regions (cydA and ndh) 

and a negative control (hrdB) were tested for enrichment in the S106 (pSX402) 

test samples. The total DNA control samples were used to generate standard 
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curves from which to determine copy numbers for the test samples. The copy 

numbers for the no-antigen controls were then subtracted from the IP samples, 

and that value divided by the total amount of DNA to give copy numbers per pg 

of DNA (Figure 3.3). The results showed that whilst the hrdB region was not 

significantly enriched in the IP samples (~8 copies per pg), the ndh region was 

present at ~1500 copies and the cyd region was present at ~9000 copies per pg 

of sample. This confirmed that the cross-linking had worked and that the 

regions with ROP sites were enriched compared to non-target regions. The 

average value obtained for hrdB was 8 copies per pg of DNA, this value fell 

outside the detection limits of the experiment, which only went as low as 30-

copies of hrdB per pg. The signal for hrdB is therefore not considered 

significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Enrichment values determined from qPCR experiment on the immunoprecipitated 
DNA using primers for the cydA (Cyd_qPCR_F/R), ndh (Ndh_qPCR_F/R) and hrdB (hrdB1a/b 
(Pascoe, 2009).  
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   Section 3.2.4 – ChIP-on-chip 

 
The OGT microarray slides used for ChIP-on-chip consisted of 4 arrays per 

slide, hybridising each within a separate chamber. The density of each array 

was 44K with 60mer probes covering the complete S. coelicolor genome (Bucca 

et al., 2009). Biological replicates were performed for each strain and each 

resulting DNA sample was labelled with Cy3-dCTP or Cy5-dCTP according to 

the scheme in Table S1. This arrangement of labelling constituted a dye-match, 

and allowed normalisation for any differences observed due to the differing 

labelling efficiencies and intensities of the two Cy-dyes. For each 

oligonucleotide probe on the array the signal from the test strain, S106 

(pSX402), was divided by that of the control, S106 (pSET152), with the ratios 

then indicating the enrichment values at each position. The values across all 

four chambers were then compared to generate average enrichment values and 

to determine the p-values for each hit (Section 2.3.9). A two-way cut-off was 

applied on the data requiring all hits to have a >3-fold enrichment compared to 

the control and to have a p-value <0.05, hopefully eliminating false-positives 

from the dataset. The targets were also manually inspected to remove those  

 

Figure 3.4: Genomic localisation of Rex binding sites. The peaks indicated are as follows; 1, 
SCO1930; 2, SCO3092 (ndh); 3, SCO3320 (rex); 4, SCO3547; 5, SCO3615/6; 6, SCO3790/1; 
7, SCO3945 (cydA); 8, SCO4472 (resA); 9, SCO4562 (nuoA); 10, SCO5207; 11, SCO5240 
(wblE); 12, SCO5366 (atpI); 13, SCO5408/9; 14, SCO6168; and 15, SCO7697 (phyC). 
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SCO 
number  

Gene/comments  Fold-
enrichment 

Gel 
shift? 

SCO3945  cydA; cytochrome bd terminal oxidase  281.9 Yes 

SCO5207  Conserved hypothetical protein  125.9 Yes 

SCO6168  Hypothetical protein  113.9 Yes 

SCO5240  wblE; WhiB related protein  72.35 Yes 

SCO3092  ndh; NADH dehydrogenase type II  55.21 Yes 

SCO4562  nuo; NADH ubiquinone oxidoreductase type I  45.27 Yes 

SCO3320  rex; redox sensing transcriptional repressor  34.2 Yes 

SCO5366  atpI; ATP synthase operon  21.55 Yes 

SCO4472  resA; cytochrome biogenesis operon  20.84 Yes 

SCO3615
#
  ask; aspartokinase  18.5 No 

SCO3616
#
  Hypothetical protein  18.5 No 

SCO3790
#
  Conserved hypothetical protein  16.6 No 

SCO3791
#
  Conserved hypothetical protein  16.6 No 

SCO1930  ABC transport protein  13.1 Yes 

SCO3547  hppA; H
+

-translocating pyrophosphatase 11.9 Yes 

SCO3101  Lipoprotein  11.3 Yes 

SCO7697  phyC; phytase  11.3 No 

SCO5408
#
  Conserved hypothetical protein  11.1 Yes 

SCO5409
#
  “ydzA”; conserved membrane protein  11.1 Yes 

SCO5797  Serine protease lipoprotein  10.0 No 

SCO5810
#
  Transmembrane efflux protein  7.7 No 

SCO5811
#
  Transcriptional regulator  7.7 No 

SCO6280  cpkO; SARP (cryptic type I polyketide)  6.7 No 

SCO3137  galE1; UDP-glucose epimerase  6.4 No 

SCO6917  Hypothetical protein  5.0 No 

SCO5435
#
  dcuS; sensor kinase  4.9 No 

SCO5436
#
  dctA; sodium:dicarboxylate symporter  4.9 No 

SCO6383  Membrane protein  4.1 No 

SCO4461
#
  Transcriptional regulator (TetR-family)  3.9 No 

SCO4462
#
  Membrane protein  3.9 No 

SCO6239  Sigma factor  3.8 No 

SCO5032
#
  ahpC; alkyl hydroperoxidase  3.6 No 

SCO5033
#
  oxyR; peroxide stress regulator  3.6 No 

SCO5013  Secreted protein  3.5 No 

SCO2370
#
  Hypothetical protein  3.4 No 

SCO2371
#
  aceE2; pyruvate dehydrogenase  3.4 No 

SCO6218
#
  Phosphatase  3.4 No 

SCO6219
#
  Serine threonine protein kinase  3.4 No 

Table 3.1: List of potential target genes identified by ChIP-on-chip, including their annotated 
functions and fold enrichment compared to the no-antigen control. Positive results for gel 
retardation assays are also indicated. The # indicates divergent genes, which prevented the 
determination of which gene the peak was for. 
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where the enrichment appeared to come from one probe alone and to remove 

any where the peak did not correspond with the start of a gene, including the 

removal of genes only represented because they neighboured genes with 

strong peaks. The final data set consisted of 29 peaks, encompassing 38 

genes, and is shown as a genomic region view in Figure 3.4 and with 

corresponding enrichment values in Table 3.1. Note that due to the vast 

differences in enrichment values, not all peaks are clearly visible in Figure 3.4, 

therefore all of the sites that met the selection criteria described above are also 

shown as region views in Figure S1 (appendix). 

 

 
Section 3.3 – Binding to target sites 
 

he ChIP-on-chip experiment identified several potential in vivo Rex binding 

regions. Despite, the use of controls, the identification of false positives 

remained a possibility and so it was necessary to confirm Rex binding sites by 

in vitro DNA binding assays. In addition, bioinformatic analyses of sequences 

around the peaks should narrow down the sequences responsible for binding 

and provide insights into the nature of ROP sites. For the purpose of this study 

any genes that had already been identified as Rex targets (Brekasis, 2005) 

have been ignored but are mentioned briefly in the following subsection. 

 
   Section 3.3.1 – Previously identified targets 
 

ChIP-on-chip signals were detected in the promoter regions of several 

previously characterised members of the Rex regulon: cydA; wblE; ndh; nuoA; 

rex; atpI and resA (Table S2) (Brekasis, 2005, Brekasis and Paget, 2003). All of 

these genes featured prominently within the list, especially cydA which headed 

the list with a fold-enrichment value of 281.9. Interestingly one gene previously 

shown to have a ROP site by EMSA, SCO4281, was absent in the ChIP list. 

This gene failed to meet the >3-fold cut-off, only having an enrichment  

value of 2.3 shared across the intergenic region between SCO4281 and 

SCO4280. 

T 
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   Section 3.3.2 – EMSAs on new targets 

 

After removing the known sites from the ChIP-on-chip list there were still 22 

promoter regions that had not previously been shown to have ROP sites (Table 

S2). These regions were therefore subjected to an RSAT (Regulatory sequence 

analysis tool; (Thomas-Chollier et al., 2008) search and visually inspected to 

identify potential ROP sites. This method identified a number of potential sites; 

however the majority of the genes appeared to lack full ROP sites. To ensure 

that no sites had been overlooked during the search, the whole intergenic 

region of each gene, encompassing the enriched DNA, was used for EMSA 

analysis. In each case the region was amplified by PCR, end-labelled with γ32P-

ATP, mixed with Rex and run on a 6% polyacrylamide gel (Figure 3.5).  
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Figure 3.5: EMSA analysis on the newly identified ChIP-on–chip targets and on the positive 
control region rex

P
. In each case lane 1 contains the probe alone, labelled with γ

32
P-ATP. Lanes 

2 to 5 contain both probe and Rex at increasing concentrations, 25nM (lane 2); 100nM (lane 3); 
250nM (lane 4) and 500nM (lane 5). The gels are labelled in order of enrichment in the ChIP-
on-chip study and are as follows: (A) SCO5207; (B) SCO6168; (C) SCO3320 (rex); (D) 
SCO3615/6; (E) SCO3790/1; (F) SCO1930; (G) SCO3547; (H) SCO3101; (I) SCO7697; (J) 
SCO5408/9; (K) SCO5797; (L) SCO5810/1; (M) SCO6280; (N) SCO3137; (O) SCO6917; (P) 
SCO5435/6; (Q) SCO6383; (R) SCO4461/2; (S) SCO6239; (T) SCO5032/3 (oxyR/ahpC); (U) 
SCO5013; (V) SCO2370/1 and (W) SCO6218/9. All primers used to generate the EMSA probes 
are listed in Table 2.3, with the exception of the SCO3320 (rex) probe which was generating 

using primers rexGSrev2 and E68.18ci (Brekasis, 2005). 

 

Band-shifts were obtained for six of the fragments tested, SCO1930; SCO3101; 

SCO3547; SCO5207; SCO5408/9 and SCO6168. The remaining sites failed to 

produce band shifts, possibly due to a low affinity for Rex. The EMSAs are 

shown in order of enrichment in Figure 3.5. Although there is a general trend of 

highly enriched sites giving positive band shift results, there are also several 
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examples where high enrichment is not reflected in binding in vitro (e.g. 

SCO3615/6 (18.5-fold) and SCO3790/1(16.6-fold).  This suggests that other 

factors might influence Rex binding in vivo (see Discussion).  

 

 
   Section 3.3.3 – The classical ROP site 

 
The discovery of new Rex binding sites allowed the refinement of the 

consensus sequence of ROP (Table 3.2 and Figure 3.6). The sequences of all 

identified sites (excluding SCO5207 – explained in section 3.3.4) and their 

neighbouring nucleotides were compiled into an aligned list and run through a 

sequence logo generator (WebLogo (Crooks et al., 2004). The logo confirmed 

that ROP sites have a strong preference for a GTG-n8-CAC sequence and that  

these nucleotide blocks were most frequently surrounded by AT-rich DNA. The 

logo also revealed that the consensus ROP site is actually an 18 bp inverted 

repeat, not 16bp as had previously been reported. There was also a slight 

preference for AT-rich DNA stretching out across 22bp.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Table 3.2 and Figure 3.6: Sequence logo derived from the genomic regions capable of 
generating gel shifts in gel retardation studies. The predicted ROP sites in each region and their 
mid-point positions relative to the translational start sites are indicated in above. *Note that the 
SCO1930 ROP site sits within the translated region of this gene. 

 

Gene Sequence Position 

SCO3945 (cydA)  ATGTGAACGCGTTCACAA -101 
SCO6168  TTGTGAAAACTTTCACCC -91 
SCO5240 (wblE)  TCGTGAAAGCGTTCACAT -52 
SCO3092 (ndh)  TCGTGAAGTTCTTCACAA -315 

TTGTGAAGGGGCGCACGA -43 
SCO4562 (nuoA)  TTGTGACCTGCTTCACAT -116 
SCO3320 (rex)  TTGTGCACGCGTTCACAA -88 
SCO5366 (atpI)  TTGTGATACGGTTCACGA -139 
SCO4472 (resA)  ATGCGAAACTTTTCACAT -8 
SCO1930  TCGTGAAAGCGTGCACAA +25* 
SCO3547  AAGTGAATTCATTCACGA -215 
SCO3101  TTGTGCACCGTCGCACAA -28 
SCO5408/9  TTGTGAACGGAAGCACAA -32 

TTGTGCTTCCGTTCACAA -66 
SCO4281  TTGTGACTTGAGTCACAA -148 
Consensus ttGTGaannnnttCACaa  
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   Section 3.3.4 – The Rex operator is 18 bp in length  

 
To further investigate the length of the ROP site a Surface Plasmon Resonance 

(SPR)-based competition assay was devised for the BIAcore 2000 system (see 

Figure 3.7 for overview). In brief, the BIAcore system uses a polarised light 

beam to excite the surface Plasmon of an electrified sensor chip (thin gold 

plate). The intensity and angle of the reflected light are detected by the 

instrument. The Plasmon resonance of the chip is altered by changing the 

composition of the solution in the flow cell, which resides on the opposite face of 

the sensor surface. Throughout this study the sensor chips used were 

streptavidin-coated, allowing the attachment of a biotinylated ligand – in the 

form of 5‟ biotinylated dsDNA. The interaction of Rex with the attached DNA 

fragment was then observed as an increase in the response units. This change 

in response could be altered by the inclusion of NAD+ or NADH in the injected 

solution, or by the inclusion of a DNA fragment, in the injected Rex solution. 

Test fragments that bind to Rex compete with the sensor chip-bound ROP DNA, 

thereby reducing the signal; fragments that do not bind do not affect the 

maximal signal (Figure 3.7).  

 

In these experiments the chip-bound ROP site was an 18 bp site (annealed 

primers NUOROP1 and NUOROP2 (Brekasis, 2005). Experiments were 

performed using a concentration gradient of competing DNA and compared to 

both a random DNA control and a protein-only injection per assay. The ROP 

sites to be tested (16bp vs 18bp ROPnuo) were based on the natural site 

upstream from the nuoA-N operon (ROPnuo). Each site was placed in the same 

random context, the full sequence of which acted as the random control site 

(primers Nca and Ncb).  The only difference between the two was the presence 

or absence of an additional thymine at the 5‟ and 3‟ ends (based on the native 

ROPnuo).  The results of the competition assays for the 16 bp (primers Nuo-4F 

and Nuo-4R) and 18 bp sites (primers NuoF and NuoR) are shown in Figure 

3.8. The 16 bp site was capable of competing with the biotinylated site on the 

sensor surface. However this competition only became significantly different, 

from the random site, at ROP:Rex molar ratios of >5:1 – giving a %Rmax of ~30. 
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Figure 3.7: Diagrammatic view of the difference between a typical SPR experiment and one 

were competing DNA was co-injected over the sensor surface. The corresponding drop in RU 
was proportional to the strength of each competing fragment and the amount of DNA used. 
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The 18 bp site, however; was able to give the same response at only a 0.5:1 

molar ratio. This meant that in order to reduce the concentration of free Rex in 

the injected sample by 70% you needed 10 times as much of the 16 bp site as 

the 18 bp, a marked difference for only a one nucleotide extension per half-site. 

These data confirm that the 5‟ thymine (position 1/18) is important for Rex 

binding; the structural basis for this is considered in Section 5.3.1.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: SPR competition assay with a 16bp (grey bars) and 18bp (black bars) ROP
nuo

 site 
placed in a random DNA context, the full sequence of which was used for the random control 
(white bars). The Rex concentration was fixed at 90nM (dimeric concentration) and the DNA 
concentration varied between 0nM (ratio of 0:1), 0.9nM (0.01:1), 4.5nM (0.05:1), 9nM (0.1:1), 
45nM (0.5:1), 90nM (1:1), 450nM (5:1) and 900nM (10:1). The %Rmax values were calculated 
using the protein only injections for each run. All injections were done in triplicate. 

 

   Section 3.3.5 – Rex appears to interact with half sites 
 

As mentioned previously, most sites that produced gel shifts all shared a 

common structure; [A/T][A/T]GTG-n8-CAC[A/T][A/T]. However,  the SCO5207 

upstream region, despite showing high enrichment during ChIP-chip and good 

gel-shifts (Figure 3.5), was lacking a key element of the consensus ROP site; 

the sequence (TTGTGAATCCATGAACTA) appeared to be lacking the highly 

conserved cytosine (shown in bold) . Upon closer inspection this site also 

appeared to have an additional half-site (TTGTGAA) directly preceding the 
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  Consensus         TTGTGAACGCGTTCACAA  

      ||||||||||||||||| 

  cydA  TTGTGAATGTGAACGCGTTCACAA 

    ||||||| | |  | |   

  Consensus TTGTGAACGCGTTCACAA 

   

  Consensus         TTGTGAACGCGTTCACAA  

      ||||||||| ||||| | 

  wblE  TTGTGAATGTGAACGCTTTCACGA 

    ||||||| | |  | |   

  Consensus TTGTGAACGCGTTCACAA 

   

  Consensus           TTGTGAACGCGTTCACAA  

       |||||||  | |  || | 

  SCO5207 TTGTGAACTTGTGAATCCATGAACTA 

    ||||||||  ||  |   

  Consensus TTGTGAACGCGTTCACAA 

 

     

                ROP 2       ROP 1     ROP 2       ROP 1 

cydA  T T G T G A A T G T G A A C G C G T T C A C A A 

wblE  T T G T G A A T G T G A A C G C T T T C A C G A 

SCO5207 T T G T G A A C T T G T G A A T C C A T G A A C T A       

ROPSCO5207 sequence. This occurrence has previously been observed in the 

ROPcyd and ROPwblE sites (Brekasis, 2005). However, in these regions there is 

a one base pair overlap of the last nucleotide of the half-site and first base of 

the full site. This gives two overlapping but distinct ROP sites, on different faces 

of the DNA helix, which may explain why the cydA and wblE promoters are 

capable of generating a double shift during EMSA analysis (Brekasis, 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Spacing of the cydA, wblE and SCO5207 ROP sites. The two potential binding sites 
are compared to an ideal ROP site in each case. The main interaction points of Rex and the 
DNA (GTG and CAC) are shown in blue (ROP 2) or yellow (ROP1). Note that the wblE site is 
inverse complemented for ease of comparison. The spacing of the SCO5207 site places the two 
potential binding sites directly adjacent, lacking the 2 bp gap of cydA and wblE. 

 

The SCO5207 promoter only generates one shift. The SCO5207 data 

suggested that it might be possible for Rex to bind to ROP sites that lack one or 

more key elements in one half of the operator. Therefore, having failed to find 

full ROP sites in the remaining target regions, using the consensus sequence, a 

search for half sites ([AT][AT]GTG[AT][AT]) was performed instead. This search 

revealed potential sites in each of the remaining regions that had showed up in 

the ChIP-on-chip list but had failed to generate gel shifts during EMSA analysis. 

An alignment and sequence logo was generated for these sites, which revealed 
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that only the TTGTGAA sequence was well conserved (Table 3.3 and Figure 

3.10). This raised the question of whether Rex could interact with the half-site 

alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3 and Figure 3.10: List of half-site only regions from the ChIP-on-chip targets and 
corresponding sequence logo for these sites. Only the SCO5207 sequence, in this list, was 
capable of generating a gel shift by EMSA. Note that where a divergent gene region is listed the 
position numbering is based on the gene with the lowest SCO number (i.e. the leftmost gene on 
the coelicolor chromosome). *Indicates that the site found was situated within the coding region 

of a gene. 

Gene Sequence  Position  
Half sites:  

SCO7697*  CTTGTGAACGCGTGCACGAG  +13  
SCO5797  CAAGTGAACGCGTGAATGTC  -27  
SCO5810/1  TTAGTGAACGCTCGCGTTCA  -26  
SCO6280  AATGTGAACACACACAGCAC  -92  
SCO3137*  ATAGTGAAAAGTTCCAGGTG  -122  
SCO6917  TTTGTGAATTGAAACCGCCG  -34  
SCO5435/6  ATTGTGAACTAAATGAACGC  -27  
SCO6383  TGAGTGAACGTAATCTCGCC  -71  
SCO4461/2  TTTGTGCATACTCGGTGGGT  -51  
SCO6239  ATAGTGAATGGAGGAGGAAA  -73  
SCO5032/3  TTAGTGAAATAGCTACACTC  -95  
SCO5013*  ACTGTGATGTAGATGGGGAA  +49  
SCO2370/1  ATCGTGTACCTCGCGGGGGC  -185  
SCO6218/9 ATTGTGAAGATTGCATGAGA -172 

Consensus attGTGaA------c-g---  
 

Tandem half-sites: 

SCO5207 CTTGTGAACTTGTGAATCCATGAACTAG -23 

SCO3615/6 CTTGTGAACGTGTGACACACCGCACTTT -186 

SCO3790/1 CTTGTGATCTTGTGCAGGGTCTGGCATG -182 

Consensus CTTGTGAaCtTGTGaa-c--cg-aCttg 
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To test this; an artificial site (primers Full_26_For and Full_26_Rev) was 

generated in a random context based on our observations of what defines a 

ROP site. This same sequence was then altered to generate an artificial half-

site (primers Half_26_For and Half_26_Rev) by transistionally mutating each of 

the nucleotides in the second half of the ROP site. These two fragments were 

then analysed along with the full random sequence (primers Random26_F and 

Random26_R), in which they sat, using the SPR competition assay (Figure 

3.11). The biotinylated fragments used in this case were 16 bp ROPnuo (primers 

1a and 1b) and random control (primers Ran_Bio_F and Random_R), in lanes 3 

and 2 of the sensor surface, respectively. In this experiment the competing 

random control fragment had only a slight affect on binding to the sensor 

surface, decreasing by <5% with a 100-fold molar excess of DNA:Rex. The full 

artificial ROP site was capable of causing a 50% reduction in binding at a 1:1 

ratio of ROP:Rex. The artificial half-site showed a higher level of competition for 

Rex compared to the random control, although a 100-fold excess DNA was 

required to achieve 50% inhibition of chip DNA binding.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: SPR competition assay for various ROP sites; native and artificial. The Rex 
concentration was kept fixed at 90nM (dimeric concentration) and the DNA concentration varied 
between 0nM (ratio of 0:1), 90nM (1:1), 900nM (10:1) and 9µM (100:1). The %Rmax values 
were calculated using the protein only injections for each run. All injections were done in 
triplicate. 
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A selection of natural putative half-sites were also analysed using this method; 

SCO6239 (6239_half_For and 6239_half_Rev), SCO6218/9 (6218_half_For 

and 6218_half_Rev) and SCO6917 (6917_half_For and 6917_half_Rev), all in 

their native contexts (Figure 3.11). The results showed that all three of the 

native sites gave a stronger response than the artificial half-site, however only 

the SCO6917 site gave a response similar to the full ROP site. Analysis of the 

SCO6917 site revealed that one of the highly conserved „CAC‟ residues was 

present in this fragment but lacking in the others. It is most likely this residue 

that was responsible for the strength of the response for this fragment. Overall 

the data indicates that Rex does bind to the natural half-sites, albeit at an 

affinity that is too low to be detected by EMSA. 

 

 
 

Section 3.4 – The Regulon 
 

revious transcriptome studies on Rex compared RNA harvested from the 

M145 and S106 (rex) strains grown under aerobic conditions (D. Brekasis 

and M. Paget, personal communication). This identified only a few genes that 

were >2-fold up-regulated in the Rex null strain, with only two having 

corresponding ROP sites (cydA and ndh). Using the ChIP-on-chip method more 

potential binding sites were identified. However, since most of these genes 

were not upregulated in the rex background, they have not been confirmed as 

members of the Rex regulon. This section covers the attempts to identify such 

regulation and also speculates on the possible roles that the genes have in 

maintaining the redox poise. 

 
   Section 3.4.1 – Investigating repression with a rexG102A strain 
 
The RexG102A protein was described previously due to its inability to sense the 

redox poise (Brekasis and Paget, 2003). This mutation falls on the central 

glycine of the Rossmann fold (GXGXXG) and physically blocks NADH binding. 

The result in vitro is a protein that can bind to DNA but will no longer dissociate 

on cue, which could potentially result in a super-repressor in vivo.  

 

P 
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Figure 3.12: Phenotype analysis of the thiostrepton inducible rex
G102A

 super-repressor strain. 
Each strain was either streaked over MS agar (panels A and B) or spotted onto MM agar 
containing 1% glucose and trace elements (panels C and D), in the presence of 20μg/ml 
apramycin and 12.5μg/ml thiostrepton (panels B and D), or apramycin alone (panels A and C). 
For the MM plates 10μl of spore suspension was spotted at each position, from a serial dilution 
of the spore stock. At each position the following dilution had been made; undiluted stock (1), 
10

2
-fold (2), 10

4
-fold (3), 10

6
-fold (4) and 10

8
-fold (5). The plates were grown at 30˚C for 2 days 

prior to photographing the results. 

 

The expression of such a super-repressor might be useful to confirm regulation 

of target genes by the constitutive down-regulation of promoter activity. In order 

to test this hypothesis the rexG102A fragment was isolated from pSX142::G102A 

(Brekasis and Paget, 2003) using its flanking NdeI and BamHI sites. This was 

then ligated into NdeI/BamHI-cut pIJ6902, along with the rexWT fragment from 

pSX142 to generate vectors pSX407 and pSX407::G102A. The Streptomyces 

plasmid, pIJ6902, is an integrative vector with a multiple cloning site, allowing 

insertion of an open reading frame under the control of the thiostrepton-

inducible tipA promoter. These plasmids were then conjugated into the S106 

(Δrex) strain, along with the vector-only control (pIJ6902). By introducing the rex 

gene into pIJ6902 in this way the negative feedback loop normally observed by 
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rex was bypassed. The resultant strains were grown on media in the presence 

or absence of thiostrepton (Figure 3.12). Spores were either streaked directly 

onto MS agar or diluted and spotted onto MM agar, containing NMMP trace 

elements and 1% glucose. The vector-only control strain and rexWT strain grew 

well in both the presence and absence of thiostrepton. However, the rexG102A 

strain appeared to only grow in the absence of thiostrepton suggesting that the 

resulting protein was toxic to the cells. As the same phenotype was not 

observed for the wild type protein it would appear that it is not simply the level of 

Rex present in the cell that causes the detrimental effect but is in fact the 

constitutive repression of one or more target genes. This further implies that 

one or more Rex target genes are essential for viability – the essentiality of one 

such gene, ndh, is discussed in Chapter 4. 

 

In order to analyse the effect of RexG102A expression on target gene expression, 

RNA was isolated following induction and transcript levels determined by qPCR. 

Cultures were grown in the absence of thiostrepton, to an OD450nm of ~0.7, prior 

to inducing expression of RexG102A. Both the rexWT and pIJ6902 strains were 

treated in the same way to ensure that any differences caused by the late 

addition of the thiostrepton were accounted for in the control strains. A 10ml 

sample was taken just prior to the addition of 12.5μg/ml thiostrepton and then at 

20, 40 and 60 minutes thereafter. All culturing was done in NMMP and was 

performed in triplicate. The resultant samples were pelleted, immediately 

resuspended in Kirby mix and then taken through the RNA purification 

procedure detailed in Section 2.3.3. The concentrations of the purified samples 

were assessed using the NanodropTM and 1μg was taken through an additional 

DNAse step and subsequent reverse transcriptase reaction (Section 2.3.8). For 

qPCR analysis 2μl of ~50ng/μl cDNA (assuming an RT efficiency of 100%) were 

used per 25μl reaction. Standard curves were generated for each test gene 

using S. coelicolor gDNA dilutions, which were then used to convert Ct values 

to copy numbers for each gene. For cross-comparison between samples all 

values were to be normalised to an internal reference gene, 16S rRNA (primers 

16S_QF/QF - A. Tabib, personal communication). An initial run was then 

performed for one of the biological replicates on the 16s rRNA and cydA genes. 
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As the 16s rRNA signal was so much higher than that of cydA the copy 

numbers were scaled down by dividing each 100-fold. The cydA copy number 

was then divided by this to cross compare between each sample; the results 

are shown in Figure 3.13. In the S106 vector only control strain the cydA 

expression appeared to be fairly constant. However, the expression dropped 

greater than 10-fold in the S106 (pIJ6902::rex) and S106 (pIJ6902::rexG102A) 

strains. It appeared that the assay was working therefore the experiment was 

repeated for ndh, ahpC, SCO3547 (H+-translocating pyrophosphatase) and 

cytochrome c biogenesis operon (SCO4472-4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: RT-qPCR results for cydA in the S106+pIJ6902::rex
G102A

 (grey), 
S106+pIJ6902::rex

WT
 (white), and S106 vector only (black) strains. RNA was harvested before 

and after induction with 12.5μg/ml thiostrepton at 0, 20, 40 and 60 minutes. The copy numbers 
were assessed using a gDNA standard curve and were normalised to those of 16s rRNA. 

 

In this case only the 0 and 60 minute time-points were used as this gave the 

largest difference for the cydA gene. The experiment was performed for two 

biological replicates and is shown in Figure 3.14. The SCO3547 signal was 

extremely weak suggesting this gene is not expressed under the conditions 

used, it was therefore excluded from the results. The expression profiles for 

both the ndh and ahpC genes appeared to be unaffected by the presence of 

RexWT and RexG102A. There was however a slight decrease in the expression of 
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SCO4472 when rexG102A was induced, compared to the vector only and rexWT 

strains. The significance of this would need to be further verified either by 

multiple replicates or by in vitro transcript mapping. These data suggest that 

although the expression of a rex super-repressor decreases the expression of 

some target genes, at some promoters the effect is minor and that this 

approach might not be suitable for the general confirmation of regulation. 

 

 

 

 
   Section 3.4.2 – Potential functions of Rex regulon members 
 
Rex was originally identified through its ability to repress the cytochrome bd 

terminal oxidase operon (Brekasis, 2005, Brekasis and Paget, 2003). It was 

observed that under aerobic conditions this operon was repressed and that this 

effect could be bypassed through the deletion of rex, which caused constitutive 

expression (Brekasis, 2005, Brekasis and Paget, 2003). With S. coelicolor being 

an obligate aerobe it would seem that the best course of action during oxygen 

A B 

C 
Figure 3.14: RT-qPCR data for ndh (A), 
ahpC (B) and resA (SCO4472) (C) in 
S106+pIJ6902 (black bars), 
S106+pIJ6902::rex

G102A
 (grey) and 

S106+pIJ6902::rex
WT

 (white) strains. All 
copy numbers were determined from 
gDNA standard curves and normalised 
to 16s rRNA. Standard deviations are 
from two biological replicates. 
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limitation is to make use of what little oxygen is still available. Since its initial 

discovery, other Rex targets were identified that also have a role in the 

respiratory chain and energy generation: NADH dehydrogenases, ndh and nuo; 

cytochrome biogenesis operon (SCO4472-4); and potential ATP synthase gene 

(atpI). The following sections describe some new Rex regulon members with 

possible roles energy generation and/or redox control, phosphate metabolism, 

and antibiotic production. 

Energy generation and/or redox control 

SCO3547: SCO3547 encodes a proton-translocating pyrophosphatase (hppA). 

In the Streptomyces Annotation Server (StrepDB) this gene is listed as similar 

to that of the photosynthetic proteobacterium Rhodospirillum rubrum. The 

proton-translocating pyrophosphatases have the ability to generate a proton-

motive force by utilising the energy released from hydrolysing pyrophosphate 

(Garcia-Contreras et al., 2004). In Rhodospirillum rubrum this enzyme appears 

to be used to generate energy in order to fill the deficit when switching from 

respiration to photosynthesis, under oxygen limitation (Garcia-Contreras et al., 

2004). The S. coelicolor protein has also been characterised as having the 

ability to pump hydrogens, using the energy released from PPi hydrolysis, but 

the biological relevance of this is not yet known (Hirono and Maeshima, 2009). 

wblE:  The wblE gene was previously identified as a potential regulon member 

(Brekasis, 2005); however little is known about this gene. It is named due to its 

similarity to WhiB, which is known to play a key role in differentiation and 

sporulation as its deletion results in a white colony phenotype (Chater, 1972). 

The wblE gene however does not appear to have such a vital role in sporulation 

as its deletion had no discernible impact on differentiation (Homerova et al., 

2003). This gene is still of interest though considering that its namesake is a 

potential transcriptional regulator (Davis and Chater, 1992). The closest wblE 

homologue in M. tuberculosis is WhiB1, a gene whose expression is regulated 

by the cAMP-receptor protein (CRP) (Agarwal et al., 2006). The WhiB family of 

proteins has been shown to contain a 4Fe-4S cluster in both Streptomyces and 

M. tuberculosis (Jakimowicz et al., 2005, Singh et al., 2007). The work of Singh 

et al. suggested that this iron-sulphur cluster provides some form of oxygen and 
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nitric-oxide sensing within the protein (Singh et al., 2007). There are four 

conserved cysteine residues in each member of the WhiB family to help co-

ordinate the cluster; these residues are also present in WblE (Jakimowicz et al., 

2005). This may mean that it too may be redox sensitive but responding to an 

alternative signal than Rex. 

SCO5207:  The second most highly enriched site in the ChIP-on-chip list was 

SCO5207. The function of this protein is unknown, however it does appear to 

consist of two tandem cystathionine β-synthase (CBS) domains, also known as 

Bateman domains (Bateman, 1997). The CBS domains are renowned for their 

ability to interact with adenosyl moieties, which allows them to act as „energy-

sensing modules‟ within multi-domain proteins (Scott et al., 2004). The function 

of CBS-only proteins is still unclear, however it appears that a CBS domain 

expressed separately from its usual accompanying subunits can still regulate 

the function of that protein (Pimkin et al., 2009), so perhaps these domains act 

as regulators for other proteins in the cell. In ATU1752 from Agrobacterium 

tumefaciens the CBS domain has been shown to co-ordinate an NADH 

molecule (PDB ID: 3fhm). It therefore seemed plausible that SCO5207 may act 

as a type of NADH sensing module in the cell. The gene was therefore 

amplified by PCR and introduced into pET15b for overexpression. A wavelength 

scan was performed on the resultant protein, looking for the signature 340nm 

peak of NADH, however only a 280nm peak was obtained (protein) with a slight 

shoulder at 260nm (data not shown). The 260nm peak could possibly represent 

NAD+; this would be confirmed by converting the dinucleotide to NADH via 

reduction by alcohol dehydrogenase and rescanning for a 340nm peak. This 

reaction was performed but no 340nm peak was obtained, even when the 

protein was heat-denatured to ensure release of the bound cofactor (data not 

shown). If there is indeed a cofactor present in SCO5207 then it is neither 

NADH nor NAD+. 

oxyR/ahpC: Rex appears to bind in the intergenic region between oxyR and 

ahpCD, the peroxide-sensitive transcriptional regulator and alkyl 

hydroperoxidase genes. OxyR was originally identified to be a redox-sensitive 

transcriptional activator, using the formation or reduction of a disulphide bridge 
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to activate or de-activate the protein, respectively (Zheng et al., 1998). The 

crystal structure of Escherichia coli OxyR has since been solved in both its 

oxidised and reduced forms (Choi et al., 2001). In S. coelicolor OxyR also acts 

as a positive regulator, requiring H2O2 activation, and its regulon includes the 

ahpCD operon as well as its own gene (Hahn et al., 2002). Alkyl 

hydroperoxidases are able to reduce peroxides in the cell by use of internal 

cysteine residues, which are then re-reduced by other proteins. The ahpC gene 

of S. aureus has been deleted with no discernible effect on growth (Cosgrove et 

al., 2007). However, in combination with a katA deletion (encoding a catalase) 

the cells grew poorly in aerated cultures, with wild-type growth levels 

recoverable by reduced aeration (Cosgrove et al., 2007). The two genes 

apparently have differing functions, with ahpC deletion causing sensitivity to 

organic peroxides and katA deletion inhibiting the response to H2O2; 

nevertheless both genes appear to be important for the peroxide stress 

response (Cosgrove et al., 2007). The S. coelicolor AhpC has four well 

conserved cysteine residues. In Salmonella typhimurium these residues allow 

an inter-subunit disulphide bond to form within the protein, during peroxide 

stress, which is reduced by a combination of NADH and AhpF (Poole, 1996). S. 

coelicolor lacks an annotated aphF. M. tuberculosis also lacks AhpF; however it 

seems that in this species AhpC may be reduced by AhpD, the product of the 

second gene in the ahpCD operon (Bryk et al., 2002) so perhaps this is also the 

case in S. coelicolor. The overlap of the -10 and -35 boxes of the divergent 

oxyR/ahpCD genes, and the position of the potential ROP site, would suggest 

that if Rex does indeed regulate these genes then it would regulate both (Figure 

3.15). 

 

 

 

 

 

 

Figure 3.15: The intergenic region between the oxyR and ahpC genes. The -10 and -35 boxes 
and transcriptional start sites are indicated (Hahn, et al., 2002). The position of the predicted 
ROP site is highlighted in blue, overlapping the -35 of the ahpC and -10 of the oxyR gene. 

 

 

                  oxyR 

    -35     -10 

ATGGGTTGGACGTTAGTGATGTTGGCACAGGGTGCATTGATTAGTGAAATAGCTACACTCGGTCG 

TACCCAACCTGCAATCACTACAACCGTGTCCCACGTAACTAATCACTTTATCGATGTGAGCCAGC 

    -10     -35 

    ahpC         ROP site 
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Phosphate metabolism 

Within the list of possible targets are three genes that form part of the PhoP 

regulon; SCO3790, SCO3791 and SCO7697 (Sola-Landa et al., 2008). 

SCO3790 is a conserved hypothetical protein, which is targeted for export via 

the twin-arginine secretion system (Widdick et al., 2006). Little is known about 

the function of SCO3791 and SCO7697, although the latter is noted as a 

secreted phytase due to similarity to the B. subtilis 3-phytase precursor. 

Continuing the phosphate utilisation theme are other genes such as SCO3547 

and SCO6218, both phosphatases. Although the exact function of these genes 

is not clear it would seem that phosphate uptake and utilisation is somehow 

linked to the function of Rex. If this was the case then there might be a 

response to phosphate limitation in the S106 (Δrex) or S106 

(pSET152::rexG102A) strains. These strains were therefore inoculated onto 

SMMS agar, along with M145, S106 (pSET152::rex) and S106 (pSET152), 

under phosphate limited and phosphate- replete conditions (Figure 3.16). There 

was no obvious growth delay for the S106 (Δrex) strains under phosphate 

limitation, however they did appear to produce more actinorhodin under these 

conditions. Interestingly the S106 (pSET152::rexG102A) strain had the opposite 

result, producing more actinorhodin in the presence of phosphate. 

 

 

 

 

 

 

 

 

 

Figure 3.16: Phenotype analysis of the rex
G102A

 super-repressor strain and S106 rex null strain. 
Each strain was streaked over SMMS agar containing 1mM (A) or 15mM (B) phosphate. The 

plates were grown at 30˚C for 2 days prior to ammonium fuming and photographing the results. 
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Antibiotic production 

SCO6280 was originally referred to as kasO, a potential regulator of a type I 

polyketide synthesis cluster (Takano et al., 2005). This gene has however been 

subsequently renamed to cpkO, cryptic polyketide O (Gottelt et al., 2010, Pawlik 

et al., 2007). The cpkO gene forms part of a larger polyketide cluster, with 

deletion of cpkO having a negative effect on the expression of other members 

of the cluster (Takano et al., 2005). The cpkO gene is itself regulated by the γ-

butyrolactone receptor, ScbR, with two distinct binding sites in the cpkO 

promoter region (Takano et al., 2005). The binding of ScbR to these regions 

was inhibited by γ-butyrolactone molecule SCB1, with addition of SCB1 having 

a positive effect on expression of cpkO (Takano et al., 2005). The predicted 

ScbR sites in this promoter are centred at ~230bp and ~20bp upstream of the 

transcriptional start, with the second site overlapping the -35 and -10 regions 

(Takano et al., 2005). The predicted Rex binding site for cpkO would lie in 

between these two operators, ~55 bp upstream of the transcriptional start site. 

Given the effect that ScbR has on expression of cpkO it would appear that any 

attempts to study the affect Rex has on this gene would require that the other 

repressor was first silenced by promoting SCB1 production. More recent work 

on cpkO has focused on promoting expression of the polyketide synthase that it 

is thought to regulate (Gottelt et al., 2010, Pawlik et al., 2007). A recent study 

showed that it may in fact be ScbR2, a homologue of ScbR contained within the 

cpk cluster, that regulates expression of polyketide synthesis from cpk (Gottelt 

et al., 2010). It appears that CpkO itself may act as an activator for the cluster, 

which includes scbR2, with ScbR2 then acting to repress expression of both 

cpkO and other cluster members in S. coelicolor (Gottelt et al., 2010). This work 

has also managed to identify a yellow-pigmented product, of this cluster, that 

has antibacterial properties (Gottelt et al., 2010). It is however not yet clear why 

Rex would regulate the expression of cpkO. 

 

 

 

C 
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Section 3.5 – Conclusions 
 

he ChIP-on-chip data revealed a large number of potential ROP sites in 

vivo. However, only a handful of the sites appeared to generate stable 

Rex:ROP complexes in vitro (as judged by EMSA). In many cases, putative 

binding regions that failed to generate EMSA shifts lacked a conventional dyad 

symmetrical ROP site ([A/T][A/T]GTG-n8-CAC[A/T][A/T]) but did contain a 

highly conserved half-site (TTGTGAA). By using an SPR competition assay it 

was possible to observe a weak interaction between the 3 half-sites tested; 

SCO6239, SCO6218/9 and SCO6917, as well as the artificial half-site. The 

strength of the interactions with each of these sites appeared to vary, 

suggesting that there are other determinant factors at these sites that alter the 

affinity of Rex. Not much can be determined at a sequence level from such a 

small number of sites; however the region that gave the highest level of 

competition (SCO6917) had one sequence element in the other half of the 

operator that the others lacked; the first cytosine of the inverted repeat usually 

associated with a ROP site (ttCACaa). None of the other second-half sequence 

elements were present in this region. The SCO6239 region contained the two 

terminal adenosines and yet this site performed no better than the artificial ROP 

site in the SPR experiment. Given that these residues are less highly conserved 

in high affinity binding sites (those that gave gel shifts) than the „CAC‟ motif it 

would appear that these residues only act to aid binding, not prohibit it when 

absent. Although none of the “half-sites” gave gel shifts with Rex, they were 

overrepresented in the ChIP-chip data. One possibility is that other components 

or factors might be present in vivo to help stabilise bound Rex that are absent in 

vitro. Factors such as DNA availability, conformation and co-operativity between 

other DNA-binding proteins have the potential to drastically affect the binding of 

transcriptional regulators (Minchin and Busby, 2009). Histones are a common 

occurrence in eukaryotic nucleoid structures and their various modifications are 

well characterised due to their potential to silence their neighbouring genes. 

Histone-like proteins are similarly associated with the bacterial nucleoid but their 

function is less well characterised. HU was originally identified in E. coli, and 

was observed to improve transcription from a λ–DNA template in vitro 

T 
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(Rouviere-Yaniv and Gros, 1975). In S. coelicolor two histone-like proteins have 

been identified, HupA and HupS, the former being expressed in vegetative 

growth whereas the latter appears to be limited to just aerial hyphae, with a 

potential role in spore maturation (Salerno et al., 2009). Transcriptional 

regulator CRP is also renowned for its ability to alter the DNA conformation 

upon binding, thus altering the way in which that region is presented to other 

DNA-binding proteins (e.g. RNA polymerase) (Chen et al., 2001).  

Potential Rex operator sites occur upstream of a range of genes but the 

strongest sites have a clear role in respiration, such as cyd, ndh and nuo. The 

regulation of potential targets has been less apparent than their binding sites, 

even with the use of the super-repressor RexG102A. It would seem that whilst 

Rex may well bind to many loci, it has only a minor role in regulation of the 

majority of these genes. The Rex regulon has also been studied in 

Staphylococcus aureus and Bacillus subtilis (Pagels et al., 2010, Wang et al., 

2008). In both of these species lactate dehydrogenase and lactate permease 

feature prominently, both of which are lacking from the S-Rex regulon but not 

from the S. coelicolor genome. Within StrepDB there is annotated both a 

putative lactate permease and at least one lactate dehydrogenase. However the 

ldh genes appear to be specific to D-lactate, which is not the stereoisomer 

recognised by the S. aureus and B. subtilis enzymes. Lactate dehydrogenase is 

an enzyme capable of converting pyruvate (from glycolysis) to lactate, with the 

additional benefit of recycling the reduced NADH produced by substrate-level 

phosphorylation (KEGG enzyme 1.1.1.27). The lactate permease is a 

symporter; in this context it is used to excrete the fermentative product lactate. 

However; S. coelicolor does not ferment. Borodina et al. analysed (in silico) the 

biochemical pathways that exist in S. coelicolor and found that the main limiting 

factor for fermentation was most likely the means by which they transported 

glucose into the cell, they use a proton symporter (Borodina et al., 2005). They 

speculate that this method of glucose uptake would never be sufficient during 

fermentation as it would require that the proton-motive force was preserved for 

the purposes of providing the substrate for glycolysis (Borodina et al., 2005). 

They also point out that in species capable of anaerobic growth the glucose 

symporter is replaced by other means of uptake that do not detract from the 
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proton-motive force of the respiratory chain (Borodina et al., 2005). Thus 

fermentation alone may not be the most energy efficient option for S. coelicolor, 

they could however combine pathways for energy generation. 

S. coelicolor cannot grow anaerobically but the genome encodes a number of 

options for surviving prolonged periods of oxygen limitation: (1) a lactate 

dehydrogenase, as well as phosphate acetyltransferase and acetate kinase, 

together capable of generating ATP through substrate level phosphorylation, (2) 

the ResDE and DosRS two-component systems for regulating gene expression 

under oxygen limitation, and most importantly (3) three copies of the narGHJI 

operon, each encoding a respiratory nitrate reductase (van Keulen et al., 2007). 

The ResDE system of B. subtilis is an anaerobic control system involving the 

sensor kinase ResE and response regulator ResD (Geng et al., 2007). This 

system uses both oxygen limitation and nitric oxide as the signal to effectively 

switch from oxygen to nitrate as the terminal electron acceptor (Geng et al., 

2007). The DosRS system of M. tuberculosis is akin to the ResDE system in 

that it too consists of a sensor kinase (DosS) and response regulator (DosR), 

and it too is induced by both anoxia and nitric oxide, however the DosRS 

system is a little more complex including both a third component DosT and a 

third signal carbon monoxide (Kumar et al., 2007). The DosR regulon of M. 

tuberculosis is essential for persistence during latent Mtb infection (Leistikow et 

al., 2010). The cells respond to the harsh environmental conditions provided by 

the host by ceasing cell division and maintaining cellular energy levels 

(Leistikow et al., 2010). There are 48 genes associated with the DosR system, 

including a nitrate reductase (narX) and nitrite extrusion protein (nark2) (Voskuil 

et al., 2003). Respiratory nitrate reductases are able to perform an analogous 

function to Complex I (NDH-1) but with the concomitant reduction of nitrate. 

Apparently all three respiratory nitrate reductases are active in S. coelicolor, 

with the ability to reduce nitrate to nitrite (Fischer et al., 2010). This reduction 

cannot be continued to reduce nitrite to ammonium but the reduction of nitrate 

itself is potentially enough to reduce the load on the quinone pool, coupling 

NADH oxidation to nitrate reduction, under oxygen limitation (Fischer et al., 

2010). None of the nar genes appear in the ChIP-chip list thus Rex does not 
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appear to directly regulate their expression but it seems likely that these genes 

also play a role during redox stress.  

The appearance of the peroxide response regulator gene; oxyR, in the ChIP-

chip list was an interesting surprise. As peroxide production is generally 

associated with hyperoxia, instead of anoxia, it was not immediately apparent 

why this would be Rex regulated. However, the NDH-2 (ndh) of S. coelicolor 

also appears to be Rex-regulated (Brekasis, 2005, Brekasis and Paget, 2003). 

This enzyme is reportedly the main source of respiratory produced H2O2 in E. 

coli (Messner and Imlay, 1999, Seaver and Imlay, 2004). The flavin core of 

NDH-2 is highly reactive. When NDH-2 cannot immediately pass the electrons, 

obtained from NADH oxidation, to the quinone pool it will react with oxygen 

instead to produce peroxide (Messner and Imlay, 1999, Seaver and Imlay, 

2004). Thus it would seem that any potential regulation of the peroxide stress 

response genes oxyR/ahpCD by Rex may in fact be to counter the effects of 

ndh induction.  
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Results II: The NADH Dehydrogenases 

 

 

“When you‟re finished changing, you‟re finished.” 

Benjamin Franklin (1706-1790) 
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Section 4.1 – Overview 
 

ADH is ubiquitous in nature, involved in a multitude of cellular activities. 

This cofactor is particularly important for respiration where it acts as a 

shuttle to pass high energy electrons, released during substrate oxidation, to 

the respiratory chain. NAD(H) is constantly cycled between its reduced and 

oxidised states, a process which must constantly be maintained in order to 

support life. As both a substrate (NAD+) and product (NADH) of redox reactions 

this cofactor has a key role in energy generation by acting as an electron 

carrier. The electrons that it transfers, in its reduced state, are passed to the 

quinone pool, a process requiring the membrane-associated NADH ubiquinone 

oxidoreductases. This chapter covers the investigation of the two main 

respiratory NADH dehydrogenases in S. coelicolor; NADH ubiquinone 

oxidoreductase (from the nuo operon) and NADH dehydrogenase (from ndh). 

Both are possible Rex targets and have the potential to directly influence the 

redox poise. A greater understanding of the regulation and expression of these 

genes should increase our understanding of how redox poise is maintained in 

vivo, and provide insights into the role of Rex. Whilst one might expect the 

purpose of all Rex regulon members is to respond to redox stress and ultimately 

restore the ratio, none have the potential for such a direct effect on the 

NAD+/NADH redox poise as the NADH dehydrogenases. However, the 

differential roles of different classes of NADH dehydrogenases in S. coelicolor 

are poorly understood and so the relevance of their apparent control by Rex to 

cellular redox control is not currently understood. 

In S. coelicolor the ndh gene appears to be essential, whereas its proton-

pumping counterpart; nuo, is not. In fact it appears that expression of nuo is 

limited to just growth on solid media, with no detectable transcripts in liquid 

cultures. Through use of an inducible disruption strain it has been possible to 

deplete ndh from the cells, resulting in the derepression of the Rex target gene, 

cydA. It would appear that ndh has a key role to play in maintaining the redox 

poise of the cell. 

N 



104 

 

Chapter 4 

 

Section 4.2 – The NADH dehydrogenases 
 

hree types of membrane-associated NADH dehydrogenase exist in nature; 

Type I is proton-translocating, whereas Type II is not. Note that from this 

point forward the two classes of enzyme will be referred to as NDH-1 (Type I) 

and NDH-2 (Type II), however the genes from which these proteins are 

expressed will be referred to as nuo and ndh, respectively. The third type (NQR) 

is most similar to NDH-1 as it alters the membrane potential but instead of 

translocating protons it pumps sodium (Kerscher et al., 2008). Both Type I and 

II NADH:quinone oxidoreductases appear in the list of ChIP-chip targets, 

whereas there does not appear to be a version of NQR in the S. coelicolor 

genome. The biological roles of the different types is not that clear (Kerscher et 

al., 2008). However, in bacteria, there appears to be a link between anaerobic 

respiration and nuo (Tran et al., 1997). NDH-1 is the equivalent of Complex I 

found in the mitochondrial electron transport chain. In E. coli it is this form of 

NADH dehydrogenase that is expressed under anaerobic growth, coupling the 

oxidation of NADH with generation of a proton-motive force (Unden and 

Bongaerts, 1997). In S. coelicolor NDH-1 is expressed from the 14 gene nuoA-

N operon (SCO4562-75) operon. The crystal structure from Thermus 

thermophilus indicates the presence of a prosthetic group in the form of FMN, 

and also multiple iron-sulphur clusters. This protein complex includes multiple 

membrane-spanning helices, with the NADH-binding site positioned within the 

cytosol (Efremov et al., 2010). NDH-2 is simple by comparison, consisting of a 

single protein expressed from the ndh gene (SCO3092). The protein also 

contains a flavin moiety (Bandeiras et al., 2002). This section covers the gene 

and protein domain organisation, and what little is known about the potential 

regulation of these two NADH dehydrogenases. 

 
    Section 4.2.1 – The potential function of the NADH dehydrogenases 
 
The type I NADH:quinone oxidoreductase is represented twice in the S. 

coelicolor genome but only once as a complete operon (Table 4.1 and Figure 

4.1). The second copy of this operon is lacking genes nuoD2, nuoE2, nuoF2 

T 
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and nuoG2. Furthermore, the third gene in the nuoA2-N2 operon is only 

distantly related to nuoC (13% identity). The nuoD2 gene is not contained within 

the operon; it is instead located ~1.2Mbp upstream of nuoA2. The nuoB2, 

nuoL2 and nuoM2 genes appear to be quite well conserved among other 

actinomycetes, however the rest of the nuoA2-N2 operon appears to be lacking 

in most species (using the STRING functional protein association networks tool 

(Jensen et al., 2009)). Interestingly the full length nuo operon of Mycobacterium 

sp. JLS is most similar to the nuoA2-N2 operon of S. coelicolor, with its 

equivalent of nuoA-N lacking a large number of genes. This arrangement does 

not appear to be shared amongst other mycobacterial species. The lack of 

conservation of a complete nuoA2-N2 operon in other species would suggest 

that either the individual components have other functions within the cell or that 

it is purely a remnant of a duplication event. It is only the start of the nuoA-N 

operon that appears in the ChIP-chip list and only the nuoA promoter region 

that contains a ROP site (Table 4.1 and Figure 4.1). In the recent structure of 

the Thermus thermophilus NDH-1 (PDB ID: 3M9S) (Efremov et al., 2010) seven 

of the 14 subunits are present; nuoB, C, D, E, F, G and I. The flavin moiety 

(FMN) is attached to the equivalent of the S. coelicolor nuoF subunit (chain A of 

PDB), along with an iron-sulphur cluster. There is a Rossmann fold present in 

this chain, as may be expected given its interaction with FMN, and a 

characteristic GXGXXG motif (Gly-Arg-Gly-Gly-Ala-Gly). This motif is 

completely conserved within the equivalent subunit (nuoF) of S. coelicolor NDH-

1. The membrane spanning domain shown in the T. thermophilus PDB is 

actually that of E. coli (PDB ID: 3M9C) formed from NuoA, J, K, L, M, and N 

(Efremov et al., 2010). It is this portion that allows NDH-1 to act as a proton 

pump. 

 The type II NADH:quinone oxidoreductases are often referred to as alternative 

or uncouplers due to their ability to carry out the redox reaction without 

generating a charge differential across the membrane (Bertsova et al., 1998) 

(Camougrand et al., 1983). This appears wasteful, because it reduces ATP 

synthesis. However, although NDH-2 re-oxidises NADH without proton-

translocation it still passes electrons to the quinone pool. These quinones can   
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Table 4.1 and Figure 4.1: The two Type I NADH:quinone oxidoreductase operons in S. 
coelicolor. Like-for-like comparison (ClustalW scores) of the genes from each operon is shown in 
the table and organisation is shown in the figure below. Note that nuoE2, nuoF2 and nuoG2 are 
completely absent. nuoD2 is present in the genome but is separate from the second nuo operon 
and is on the complementary strand. The unlabelled gene (depicted in maroon) is there simply to 
emphasize that nuoD2 is completely isolated from the other genes. The operon annotated as 
nuoA-N (rather than nuoA2-N2) is the operon represented within the ChIP-chip data. An alignment 
of the promoter regions is also shown, with the ROP

nuo
 site indicated in bold and underlined. 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

  

Gene Length Gene Length Score (%) 

NuoA 119 NuoA2 146 31 

NuoB 184 NuoB2 232 39 

NuoC 255 NuoC2 453 13 

NuoD 440 NuoD2 383 37 

NuoE 290 NuoE2 - - 

NuoF 449 NuoF2 - - 

NuoG 843 NuoG2 - - 

NuoH 467 NuoH2 322 37 

NuoI 211 NuoI2 197 28 

NuoJ 285 NuoJ2 197 29 

NuoK 99 NuoK2 130 42 

NuoL 654 NuoL2 664 31 

NuoM 523 NuoM2 534 29 

NuoN 552 NuoN2 515 30 

A B C E D F G H I J K L M N 

A2 B2 C2 H2 I2 J2 K2 L2 M2 N2 D2 

NuoP            GGAGATCACAAAGCTTGTGTAATACCCCGTGTCGCAGATCACAGAGCGTCGGGCATAGGA 60 

Nuo2P           -------GTCATACACGT-CAGCGTGCCGTGCGGCGCGACGCCGCGCCATGAG-GTGGAC 51 

                          *  *  **  *     *****  **    * * * **   * *  * *   

 

NuoP            TGCGAGGCAGTTGGGCTTGTGACCTGCTTCACATGTTCGCGATCTTCGTCGGGACGGGCG 120 

Nuo2P           CGCCGGGATCCACTGAGGAAAACCCCACCCCCGCGTCT-CGAGGGGCGACGGGCTGCTTA 110 

                 **  **       *      ***     * *  **   ***    ** ****  *     

 

NuoP            GGGCTCGTGGGGCTG--TTGGGGCGGCTGTGAGTCCAGTGCAACCGCCAGCAGT-----C 173 

Nuo2P           CCGTCTCTTTATCAGGCTCTAGACTCCCGTGCGTACGGATCGTCGAACCGCAGCGTTCAC 170 

                  *    *    * *  *   * *  * *** ** * *  *  *   * ****      * 

 

NuoP            AGTGCCGACTGAGAGGAGCGAGGAGCG--- 200 

Nuo2P           GAGGTTCACGACAGGGAGCGAGGGGCGCAC 200 

                   *   **     ********* ***    
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then be recycled by cytochrome terminal oxidases, which in some cases 

translocate protons. As mentioned previously there appears to be a link 

between nuo and oxygen limitation in E. coli (Tran et al., 1997), making NDH-1 

a key source of the proton motive force in the absence of oxygen, whereas this 

role is taken up by the terminal oxidase under aerated growth. As with nuo, ndh 

(SCO3092) is not the only putative Type II NADH dehydrogenase in the S. 

coelicolor genome, there are four paralogues with % identities >30%. In a study 

of the B. subtilis NDH-2 it was shown that out of three putative type II NADH 

dehydrogenases only one (ndh) had a detrimental effect on growth when 

mutated (Gyan et al., 2006). It is interesting that the other genes are not able to 

compensate for loss of ndh in B. subtilis; it appears that the same is true of the 

S. coelicolor homologues as ndh depletion prevents cell growth (Section 4.3.7). 

This presents two possibilities: either the homologues are unable to carry out 

the same function as NDH-2 or they are not expressed, and are therefore 

unable to compensate. Nevertheless it is only the ndh promoter that contains a 

Rex binding site and thus it is this gene that this study will focus on.  

 

    

Section 4.3 – Regulation and expression of ndh 
 

s mentioned previously, the NADH dehydrogenases potentially have a 

direct influence on the NAD+/NADH redox poise. If this is the case then 

loss of that enzyme activity would cause the ratio to shift, causing Rex to 

dissociate and de-repress its targets. To investigate the role of ndh in 

maintaining the NAD+/NADH redox poise, two approaches were taken: (1) the 

ndh gene was disrupted to see the effect on expression of the regulon; (2) the 

ndh gene was overexpressed to confirm that it encoded an enzyme with NADH 

dehydrogenase activity. 

 
   Section 4.3.1 – The ndh promoter 
 

The ndh gene is one of the few genes to be upregulated in the S106(Δrex) 

strain (Brekasis, 2005). The promoter region also appears to be highly enriched 

A 
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in the ChIP-on-chip data (Section 3.2.4). Analysis of the ndh promoter had 

identified two potential ROP sites, one centred at -43bp 

(TTGTGAAGGGGCGCACGA) and one at -315bp (TCGTGAAGTTCTTCACAA). 

Note that the ROP positions are numbered based on the experimentally 

determined coincident transcription and translation start site of ndh; this is 

located ~84bp upstream of the current annotated start site (D. Brekasis, 

personal communication). From looking at the positions of the two ROP sites 

one would expect that Rex would best exert control by binding to the promoter-

proximal site, which potentially overlaps the -35 promoter region. However, 

sequence analysis revealed that the promoter-distal site conformed better to the 

consensus ROP site, with a high proportion of conserved sequence elements 

(Table 4.2). To study the relative importance of the two ROP sites, each was 

mutated, individually and in combination, and the promoter regions analysed in 

vitro by EMSA and in vivo using the reporter plasmid pLST920. 

 

 

 

 

Table 4.2: The sequences of the two ROP sites within the ndh promoter, ROP1 (-43 bp) and 
ROP2 (-315 bp) upstream from the translational start site. Also shown are the sequences of the 
mutated ROP sites at each position that were used for both EMSA analysis and for the neo 
reporter assay. Only the highly conserved „GTG‟ and „CAC‟ of each site (shown in bold) was 
mutated (underlined regions), with each nucleotide having undergone a transition mutation. 

 
   Section 4.3.2 – Rex binds preferentially to the upstream ndh ROP site 
 

In order to study the ndh promoter the entire region was amplified by PCR using 

primers ndh_414_for and ndh_414_rev to generate a 414 bp fragment. This 

fragment was ligated into EcoRV-cut pBlueScript II SK+, selecting for colonies 

that had the desired orientation of the fragment for subsequent isolation with 

KpnI (pSX414). The resulting vector was used as a template for PCR-mediated 

mutagenesis of the two ROP sites. The -315 bp site was mutated using primers 

ndh_SDM1_for and ndh_SDM2_rev (ΔROP2), and the -43 bp site mutated with 

primers ndh_SDM3_for and ndh_SDM4_rev (ΔROP1), generating vectors 

Fragment Position Sequence 

ROP1 -43 bp TTGTGAAGGGGCGCACGA 

ΔROP1 -43 bp TTACAAAGGGGCGTGTGA 

ROP2 -315 bp TCGTGAAGTTCTTCACAA 

ΔROP2 -315 bp TCACAAAGTTCTTTGTAA 

Consensus ROP  ttGTGaannnnttCACaa 
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pSX415 and pSX416. Each nucleotide of the conserved „GTG‟ and „CAC‟ of 

each ROP was altered by a transition mutation (Table 4.2). A double mutant 

was then generated using the ndh_SDM1_for and ndh_SDM2_rev primers on 

the pSX416 vector; the resultant plasmid was pSX417 (ΔROP1+2). Each of the 

414bp fragments were subsequently amplified for EMSA analysis using primers 

ndh_414_for and ndh_414_rev (Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2: EMSA with S. coelicolor Rex and the ndh (SCO3092) promoter region (414bp). In 

each case 1ng of [γ-
32

P]-labelled probe was incubated with Rex for 30 minutes at 25°C prior to 
running on a 6% non-denaturing polyacrylamide gel. The protein concentration in lane was as 
follows; 0nM (lane 1), 2.5nM (lane 2), 5nM (lane 3), 7.5nM (lane 4), 10nM (lane 5), 25nM (lane 
6), 50nM (lane 7), 75nM (lane 8), 100nM (lane 9), 250nM (lane 10), 500nM (lane 11), 750nM 
(lane 12) and 1µM (lane 13). The open arrows indicate a gel shift, whereas the closed arrows 
indicate the unbound probe. 

 

As had previously been observed, the wild type ndh promoter fragment was 

capable of producing two gel shifts, one at a Rex concentration of ~25nM and 

the other at ~100nM (Brekasis, 2005). As expected the ΔROP1+2 double 

mutant was incapable of producing a gel shift. The two single ROPndh mutants 

ROP1 ndh ROP2 

ROP1 ndh ROP2 

ROP1 ndh ROP2 

ROP1 ndh ROP2 
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were still both capable of generating gel shifts, however to differing extents. The 

ΔROP2 fragment produced a single shift at a Rex concentration of ~5nM, the 

same result with the ΔROP1 fragment required ~250nM of protein. Interestingly 

the ROP1 site produced a stronger signal in the gel shift when the ROP2 site 

was intact than it did in the absence of ROP2. This is suggestive of possible co-

operativity between the two ROP sites; however this was not confirmed. The 

results of the EMSA analysis would confirm our initial assessment, that whilst 

the -43bp site (ROP1) is in a prime location to alter gene expression it is in fact 

the -315bp site (ROP2) that gives the strongest Rex-ROP complex. 

 
   Section 4.3.3 – Reduced expression from the ΔROP2 ndh promoter 
 

In an attempt to confirm the findings of the previous subsection in vivo the 

fragments were isolated with KpnI and introduced into the neo reporter 

construct pLST920 (Stratigopoulos et al., 2002), cut with the same enzyme. The 

pLST920 vector contains a promoterless neo gene, which confers kanamycin 

resistance only upon insertion of an active promoter. The orientation of the 

inserts was confirmed by restriction analysis and the resultant vectors 

conjugated into M145 and S106 (Δrex). Each of the strains was spotted onto 

MM agar, containing increasing concentrations of kanamycin; from 0 to 50μg/ml 

(Figure 4.3). From the EMSA results one would have expected that the M145 

(pLST920::wt Pndh) strain would have the lowest level of kanamycin resistance 

as in this strain Rex would be capable of binding to both ROP sites to inhibit 

expression of the neo reporter gene. One would therefore also expect the M145 

(pLST920::ΔROP1+2 Pndh) double mutant to have the highest level of 

kanamycin resistance. In fact the opposite result was observed; the double 

ROP mutant had a lower level of kanamycin resistance than the wild type ndh 

promoter construct. In fact it appeared that any attempt to disrupt the -315bp 

ROP site had a detrimental effect on expression of the reporter gene, which 

was surprising given its distance from the transcriptional start site. The S106 

(Δrex) strains were all more resistant to kanamycin but the same trend was 

followed as detailed above. 
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Figure 4.3: Kanamycin reporter assay to investigate the effect of disruption of each of the ndh 
ROP sites on gene expression. Each strain was spotted onto MM agar containing the indicated 
amount of Kanamycin. The relative levels of resistance are summarised in the table above. 

 

As the S106 (Δrex) strain lacked Rex it would seem that the reduction in gene 

expression, observed when the promoter-distal ROP site is disrupted, was not 

due to the regulation by Rex. The most likely cause of this phenotype was 

Strain Plasmid Level of resistance Plate position 

M145 pLST920 - 1 
 pLST920::wt P

ndh
 ++ 2 

 pLST920::ΔROP2 P
ndh

 + 3 
 pLST920::ΔROP1 P

ndh
 ++ 4 

 pLST920::ΔROP1+2 P
ndh

 + 5 

S106 pLST920 - 6 
 pLST920::wt P

ndh
 +++ 7 

 pLST920::ΔROP2 P
ndh

 ++ 8 
 pLST920::ΔROP1 P

ndh
 +++ 9 

 pLST920::ΔROP1+2 P
ndh

 ++ 10 

0μg/ml 
Kanamycin 

10μg/ml 
Kanamycin 

20μg/ml 
Kanamycin 

30μg/ml 
Kanamycin 

40μg/ml 
Kanamycin 

50μg/ml 
Kanamycin 

60μg/ml 
Kanamycin 

70μg/ml 
Kanamycin 

6 

7 

8 

1 

2 

3 

10 

9 

5 

4 
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therefore the presence of an activator binding site overlapping the -315bp ROP 

site. The ndh promoter sequence is not that highly conserved in other 

streptomycetes and yet both ROP sites are (Figure 4.4). Clearly both sites have 

an important role in the expression of the ndh gene. 

 

        ROP2 

Ssc             GAGGGGTGCTCCGGCGCCCCTCGCCGGCCGTCCGCCGGGAAACTTCGTGAAGTTCTTCAC 60 

Sco             GGGGGGCCTTTCGGGGCCCCTCGGTGACGTCCCGTCGGGAAAGTTCGTGAAGTTCTTCAC 60 

Sav             TGAGGGCCTTCCGGACCCCCTCCGCGGCACACCGCCGGAAAACTTCGTGAAGTTCTTCAC 60 

Sgr             CTGGGCCGTCCGGGGGCCCCTTGGGGGACGCGCCGCGGGAAAGTTCGTGAACTTCTTCAC 60 

Scl             GAACCCCCGCCGGACGGCACCTCGGAGAGCCCCGCGAAGCAAGTTCGTGAAGTTCTTCAC 60 

                            *    * *            *       ** ******** ******** 

 

 

Ssc             AAGAGAATCGGCCCAGTTGAGCGATGTTTTGAGGCTCCGCAGAGCGTTCCGGGGCTTCGG 120 

Sco             AAGGAATTGGGCCCCGTCGGACGACGAAAGCGCGCGC-GTTGACCCTTTTGGGGTTTCAA 119 

Sav             AAGGATTTCGGGCCTGCTGGGCGACGATTCGGTGGGTTGCC--CCCTTCAGGGGGGCTCA 118 

Sgr             AAGGAATTGGGCCCTGTTGGTCGCCGTAGGGGTCCATCGGGTCGGAACCGGCCGCCTCGG 120 

Scl             AAGGAAAAGGCCCCTGATGGGTGCCGCGAAAGGACAAAAGGCCCGCTCCTGGGGGCCATT 120 

                ***      *  ** *  *   *  *                        *  *       

 

 

Ssc             GGGGTCAACGGGGCGTCCCCGAGGGGGTGTCGCGG--GGGTCTCGTCCGTGTGAAACCGA 178 

Sco             CTG-CCGTTTGAACGTGTTCAGGTCGGTGTCGCGGAGGGGGCCTGCGGGGCCCTCGCGGA 178 

Sav             CCAGGTGCGGGAGGGTGCTCAGCGGAGCGTTGCGGGTGTGTTTCCGGCGGGTGGGCGCGG 178 

Sgr             AGG-GTGTCCGCGAGTGC-CGTGCGCGCGTTCCGGGGGCGTTGCGGCCGTATGAAGGGGA 178 

Scl             CGGCCCCAGGGGTGGGGGGCGGGACG--GTCACCGGCACATGTCAGCCGTGTGAACGGCG 178 

                          *   *    *        **  * *             *            

 

 

Ssc             GGGGTGGTCCAGCGCTCCCGGGAGACCGGAACGGCAGTTCACGCGGCCTTGACAACGGTC 238 

Sco             AGGGTGGTCCACCGGTCCCGA-AGCGCGGAGGTGCAGCTCACGCGGCATTGACAACGGGG 237 

Sav             AGGGTGGTTCGGCCCGTTCGAACGACCGGAG-TGCAGCTCACGCGGTGTTGACAACGGTC 237 

Sgr             GGGGTGGTTCACCCGCCCCGAAGGGCCAAGG-TCCAGCTCACAGGCGGTGAACAACGTTT 237 

Scl             CCGGTGGTTCATATGTAAAGAACGGTTA-AGTGCCAGCTCACAGGCCAT-GTCGGGGCGC 236 

                  ****** *         *   *          *** ****  *   *   *   *    

 

 

Ssc             AAACCCACCGGCTGGTTCCCTGGTG-GACCGCGGGTCCCGCCCAAGGGGTCGCGCAGTGT 297 

Sco             TCCTCTACACGCTGGTTCCCTCGCC-CGCCATGATCTCCGTCACGTGGGTGGCGGATGGT 296 

Sav             CGCACCGCGCGGTGGTTCCCCTCCATCGACATGACCTGGGTCACGTGAGCCGCGCAGTGT 297 

Sgr             CCCGCCGTCTCGTGGTTCCCTTTCGTGCCCATGACCTGGGTCACGTGGGCGGCGAAGTGT 297 

Scl             TGGAGGGGGTGGTGGTTCACCCGCTCGGGCGCCTCTTCGGCGCCAAAAGCGGCGCAGTTT 296 

                            ****** *         *         *        *  *** *   * 

 

         ROP1 

Ssc             AGCAGAGGGGGCGAGGAAGCTTGTGAAGGGGCGCACGAGCGACCCCCGGATGGCGGGTAC 357 

Sco             AGCACAGCACCCGCCGAAGCTTGTGAAGGGGCGCACGATCCACCCCCCTCAACCGGGTGG 356 

Sav             AGCAGAGGGCTCACCCAAGCTTGTGAAGGGGCGCACGAGCGACCCCCCTGGGGCGGGTGG 357 

Sgr             AGCAGAGGGTCGGTCAATCCTTGTGAAGGGGCTCACGAGCACCCCCCTGGGGAGGGGTGG 357 

Scl             AGCACGGGTCACCCAACAACATGTGAAGGGGCTCACGAGCACCCCTCCACAGGGGGGTGG 356 

                ****  *            * *********** ***** *  *** *       ****   

 

 

Ssc             ATACTCGATGGCATG 372 

Sco             ATACTCGATGGCATG 371 

Sav             ATACTCGATGGCATG 372 

Sgr             ATACTCGATGGCATG 372 

Scl             ATACTCGATGGCATG 371 

                *************** 

 

 
Figure 4.4: The aligned promoters of the ndh genes from Streptomyces scabiei (Ssc), 
Streptomyces coelicolor (Sco), Streptomyces avermitilis (Sav), Streptomyces griseus (Sgr) and 
Streptomyces clavuligerus (Scl). The purple boxes indicate the positions of the two ROP sites 
and the arrow indicates the translational start site. 
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   Section 4.3.4 - Generating an ndh mutant using the REDIRECT approach  
 

The REDIRECT© method of gene disruption involves the replacement of a 

target gene with an antibiotic resistance cassette, using homologous 

recombination to produce the switch (Figure 2.1) (Gust et al., 2004). This 

method of gene disruption is commonly used for Streptomyces knock-out 

construction (Kallifidas et al., 2010, Dedrick et al., 2009, Bennett et al., 2007, 

Hoskisson et al., 2006). The first stage required the isolation of the S. coelicolor 

cosmid that contained the ndh gene (StE25). The regions upstream and 

downstream of ndh were then incorporated into the sequence of the 5‟ ends of 

primers designed to amplify the apramycin disruption cassette of pIJ773 

(primers SCO3092_KO_For and SCO3092_KO_Rev). The primers were 

designed using the annotated translational start site of ndh in order to generate 

an in-frame deletion; however an alignment of ndh homologues suggests that 

the start site actually resides 84bp upstream of this. Whilst this still results in an 

in-frame deletion it should be noted that instead of leaving the first 8 amino 

acids of NDH-2 intact this disruption would actually express the first 36 amino 

acids of this protein, in addition to the last 10 amino acids incorporated by the 

position of the reverse primer. The disruption cassette included the apramycin 

resistance gene: it also contained an origin of transfer and FLP recognition 

sites, for use later on in this procedure. The disruption cassette, complete with 

homologous ends, was recombined into the StE25 cosmid using the 

recombinogenic BW25113 (λRed) strain. The resultant recombinant cosmid was 

analysed by restriction digest, which confirmed the presence of the apramycin 

cassette in the cosmid (Figure S2). This was subsequently transformed into the 

methylation negative/conjugation positive E.coli strain ET12567 (pUZ8002), 

allowing the cosmid to be conjugated into S. coelicolor M145. The cosmid itself 

contained the neo gene, conferring kanamycin resistance, in addition to the 

apramycin resistance conferred by the disruption cassette. This meant that 

single cross-over strains, where the cosmid had integrated into the genome 

without replacing the ndh gene, would have a KanR/AprR phenotype. Single 

cross-over (KanR/AprR) colonies were isolated and used to screen for double 

cross-over (ndh disruption; KanS/AprR) strains. Unfortunately after screening 

more than 3000 colonies no KanS/AprR strains could be isolated. 
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   Section 4.3.5 – Attempts to induce ndh KO with an additional gene copy 

 

The failure to isolate a double-cross over strain suggested that ndh might be an 

essential gene. If the introduction of a second copy of the gene allowed the 

disruption strategy to work then it would support the idea that the gene was 

essential; this approach was therefore taken with ndh. The entire ndh open 

reading frame and ~105 bp of its upstream region were amplified using primers 

SCO3092_ROP1 and SCO3092_REV. This was ligated into EcoRV-cut 

pBlueScript II SK+ generating pSX418. The ndh gene was then isolated using 

EcoRI sites, that had been incorporated within the primer sequences, and was 

ligated into pHJL401 (Larson and Hershberger, 1986) cut with the same 

enzyme (pSX419). The E. coli/S. coelicolor shuttle vector pHJL401 confers 

resistance to ampicillin and thiostrepton (Larson and Hershberger, 1986), 

allowing it to be used in conjunction with the KanR/AprR disruption cassette 

containing strains. The resultant plasmid was then transformed into S. coelicolor 

protoplasts produced from the single cross-over and M145 strains. The 

resultant spores were then diluted and used to inoculate agar plates to form 

single colonies in order to screen for KanS/AprR double cross-over strains. On 

the first round of screening for M145 ndh::apr (pHJL401::ndh) and on the 

second round of screening for S106 rex ndh::apr (pHJL401::ndh) two 

KanS/AprR/ThioR colonies were isolated. Initial attempts to isolate thiostrepton-

sensitive derivatives that had lost the plasmid-borne ndh proved unsuccessful. It 

would appear that the REDIRECT© method had worked but that perhaps ndh 

was an essential gene in S. coelicolor. 

 
   Section 4.3.6 – Generation of an inducible ndh disruption strain 
 

In order to confirm whether or not ndh was essential in S. coelicolor the gene 

was to be placed under the control of an inducible promoter. If it were essential 

then the resultant strains would only be viable in the presence of the inducer, 

whereas a non-essential gene could be „switched off‟ without killing the cells. 

Ideally this construct would be used to promote the second recombination 

event, as with the M145 ndh::apr (pHJL401::ndh) strain, guaranteeing that the 

only copy of ndh in the cells was under the control of the inducer. Several 
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attempts were therefore made to clone ndh into a derivative of pIJ6902 in which 

the apramycin resistance cassette had been replaced with a strep/spec marker 

(pSX420); in this plasmid ndh would be inducible by thiostrepton and the 

integrative plasmid could be introduced into M145 ndh::apr (pHJL401::ndh) 

allowing the loss of pHJL401::ndh). However, pSX420::ndh could not be 

constructed due to plasmid instability in E. coli, and so an alternative route to a 

null mutant was sought. The principle behind this method was that a single 

cross-over recombination event would place the chromosomal copy under the 

control of an inducible promoter and the resulting second (incomplete) copy of 

ndh would be tagged for degradation (Figure 4.5). The first stage was to 

generate the degradation tagged ndh sequence. The ndh gene was isolated 

using primers SCO3092Complete_For and SCO3092Complete_Rev, 

introducing NdeI and EcoRV sites at the start and just before the stop codon, 

respectively. The fragment was blunt-end ligated into EcoRV-cut pBlueScript II 

SK+ to generate pSX403. Design of the degradation tag was based on the S. 

coelicolor transfer-messenger RNA sequence (tmRNA), incorporating the 

majority of the proteolysis tag normally encoded by the tmRNA (Tu et al., 1995). 

The tmRNA (also referred to as 10Sa RNA) of E. coli was identified from the 

presence of a short peptide sequence in the C-terminus of truncated forms of 

heterologously expressed interleukin-6 (Tu et al., 1995). It was found that this 

peptide was the product of the ssrA gene but was not a transcriptional fusion 

(Tu et al., 1995). The structure of the tmRNA is thought to be similar in 

appearance to tRNA, with an alanine anticodon that shifts translation from the 

original transcript to the tmRNA-encoded transcript (Keiler et al., 1996, Jentsch, 

1996, Felden et al., 1997). The tmRNA-encoded peptide acts as a tag to target 

the truncated protein for degradation by C-terminal specific proteases (Keiler et 

al., 1996). The amino acid sequence used to target ndh for degradation in S. 

coelicolor was RDSSQQAFALAA (from tmRNA website, (Williams and Bartel, 

1998)). This was flanked by sticky ends for SphI and EcoRI, which were formed 

by annealing primers Ndh_deg_a and Ndh_deg_b. The annealed fragment was 

ligated into SphI/EcoRI cut pSX403, to form pSX404.  
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pIJ6902
7340 bp

EcoRI - 345 - G'AATT_C
KpnI - 361 - G_GTAC'C

BamHI - 366 - G'GATC_C
XbaI - 372 - T'CTAG_A
HindIII - 396 - A'AGCT_T
NdeI - 403 - CA'TA_TG

HindIII - 5623 - A'AGCT_T

HindIII - 6592 - A'AGCT_T

HindIII - 7315 - A'AGCT_T
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Figure 4.5: Diagrammatic view of the ndh
deg

 construction. The sequence of the degradation tag 
is shown above, with flanking SphI and EcoRI sticky ends. The pSX405 construct was 
converted to a suicide vector by HindIII digest and subsequent re-ligation, which eliminated the 

majority of the integrase gene. 

  

Degradation tag sequence: 

 

   SphI                                       EcoRI 

5'     CGGGACAGCAGCCAGCAGGCCTTCGCCCTGGCCGCCTGAG     3' 

3' GTACGCCCTGTCGTCGGTCGTCCGGAAGCGGGACCGGCGGACTCTTAA 5' 

    M  R  D  S  S  Q  Q  A  F  A  L  A  A  *              

ndh amplified and 

ligated into EcoRV 

cut pBS SK+ 

ndh
deg

 isolated with 

NdeI/EcoRI, cloned into same 

sites of pIJ6902 

Degradation tag inserted 

as a SphI/EcoRI 

fragment 

M145 gDNA 

pSX403 
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NdeI SphI EcoRI 

ndh       deg 

NdeI SphI EcoRI 

ndh       deg 

Integrase disrupted by HindIII 

digest and subsequent self-

ligation (pSX406) 
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Figure 4.6: Sothern blot of two M145Δndh
deg

 (lanes 3, 4,10 and 11) and S106Δndh
deg

 (lanes 5, 
6, 12 and 13) strains compared to the M145 (lanes 1 and 9) and S106 (lanes 7 and 14) strains, 
containing pIJ6902 alone. The chromosomal DNA in lanes 2 to 7 were cut with XmnI and lanes 
9 to 14 were cut with PvuII. Lanes 1 and 15 contained the standard DNA ladder (Hyperladder) 
and lane 8 contained a HinIII-cut λ ladder. The diagrams above show the expected bands for 

each strain, note that in lanes 3 and 6 the bands were much larger than expected. 
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In this construct, the degradation tag is fused at amino acid position 350 of 

NDH-2 (out of 474 residues). The entire ndhdeg fragment was isolated using the 

NdeI/EcoRI sites and introduced into pIJ6902, cut with the same enzymes 

(pSX405). The final stage was to disrupt the pIJ6902 integrase gene to force a 

homologous recombination event once introduced into S. coelicolor. This was 

done by a complete digestion with HindIII and subsequent self-ligation, leaving 

only the first ~400bp of the integrase gene (pSX406). The final construct was 

then conjugated into M145, and apramycin resistant colonies isolated. Growth 

was carried out in the presence of 12.5μg/ml thiostrepton, the inducer. The 

resultant strains were characterised by Southern blot analysis to confirm the 

presence of the disruption cassette within the S. coelicolor chromosome (Figure 

4.6). The results showed that all of the Δndhdeg strains isolated contained the 

cassette, however only one M145 and one S106 (Δrex) strain contained a 

single disruption cassette (as indicated by the XmnI digest) – these strains were 

therefore taken forward for subsequent analysis.  

 

 

 

 

 

 

 

 

Figure 4.7: Growth of Ndh
deg

 mutants on both MS agar in presence and absence of 10μg/ml 

thiostrepton. All plates also contained 20μg/ml apramycin. The plates were incubated at 30°C 

for 4 days. 

 
   Section 4.3.7 – Characterising the ndhdeg disruption strain 
 
As an initial test the strains were streaked onto MS agar in the presence and 

absence of 10μg/ml thiostepton (Figure 4.7). Whilst the growth of both of the 

ndhdeg strains appeared unaffected by the disruption cassette with the inducer 

(thiostrepton) present, growth in the absence of thiostrepton was severely 
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hindered. In fact the only observable growth for these strains was a few 

colonies where the concentrated spore stock had been applied. The same 

effect was also observed when ~108 spores were spread across MM agar 

lacking inducer and a disc placed centrally containing either 10μl 0.5mg/ml 

thiostrepton (in DMSO) or 10μl DMSO alone (Figure 4.8). Thiostrepton, but not 

DMSO, induced growth in the immediate vicinity of the disc. Towards the edge 

of the agar plates there was no growth, presumably because the concentration 

of thiostrepton was too low to induce ndh. Interestingly, a ring of actinorhodin 

was observed around the region of growth, which suggests that low levels of 

ndh (and high NADH/NAD+ ratio) might induce the production of this antibiotic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Growth of ndh
deg

 mutants on MM agar containing 1% glucose, NMMP minor 
elements and 20μg/ml apramycin. Approximately 10

8
 spores, in 100µl sterile water, were spread 

directly onto the agar. Sterile discs were then placed in the centre of each plate and either 10µl 
DMSO or 10µl 0.5mg/ml thiostrepton (in DMSO) were pipetted onto the disc. Plates were then 
incubated at 30ºC for 3 days prior to ammonium fuming and photographing. 
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In the absence of thiostrepton, some colonies grew, even in the presence of 

apramycin, which maintains selection for the single cross-over recombination 

event. These colonies might be suppressor strains, and if this were the case 

then the suppressor mutation would either be within the disruption vector or 

elsewhere on the chromosome. A selection of putative suppressors were 

isolated and grown on non-selective media, to attain strains that had lost the 

disruption vector. Reintroduction of the original vector into the resultant strains 

would therefore indicate whether the suppression had come from the vector or 

from another locus. Screening for loss of the vector was done by replica plating 

onto DNA media +/- 50μg/ml apramycin. Unfortunately no apramycin sensitive 

colonies could be isolated therefore it is still unclear as to why these colonies 

were able to grow in the absence of thiostrepton. One possibility is that the 

suppressors had mutations that increased basal apramycin resistance thereby 

removing the selective pressure for the disruption mutation.  Regardless, the 

data indicate that thiostrepton is required for growth of the ndhdeg strain, 

suggesting that ndh is essential, at least under the growth conditions tested. 

   
   Section 4.3.8 – Depletion of NDH-2 induces expression from cydP1 
  
In order to investigate the importance of ndh in maintaining the cellular 

NADH/NAD+ redox poise, the level of NDH-2 was depleted in the M145 ndhdeg 

strain by removal of the inducer thiostrepton. The effect of NDH-2 depletion on 

NADH/NAD+ redox state was analysed indirectly by monitoring the expression 

of the cydP1 promoter.  Spores were harvested from MS agar containing 

20μg/ml apramycin and 12.5μg/ml thiostrepton. Initial experiments using spores 

to inoculate NMMP liquid media containing apramycin and thiostrepton were 

unsuccessful because the cultures grew extremely poorly (data not shown). 

Therefore mycelial preparations were generated in YEME media (Section 2.2.1) 

and used to inoculate 60ml NMMP, containing 20μg/ml apramycin and 1μg/ml 

thiostrepton. Note that the level of thiostrepton used was lowered for this 

section of the depletion assay in order to limit the amount of carry-over into the 

depleted samples. Once the cultures had reached an OD450nm of ~0.8-1 a 15ml 

aliquot was taken and treated with Kirby and phenol/chloroform (as described in 
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311bp 

249bp 

200bp 

157bp 

M     +     +      -     +      -     +     - 

0hr      2hr         4hr         6hr 

Section 2.3.3). This sample served as the 0 minute time-point. The remaining 

culture was pelleted at 4,000rpm for 1 minute, washed twice with 50ml of pre-

warmed NMMP and finally resuspended in 5ml of the pre-warmed media. This 

was split evenly between two flasks of pre-warmed NMMP, one containing 

20μg/ml apramycin alone and one containing 20μg/ml apramycin and 10μg/ml 

thiostrepton. The cultures were returned to the incubator, harvesting 15ml 

samples at 2, 4 and 6 hour intervals. The RNA was purified as detailed in 

Section 2.3.3 and analysed by S1 nuclease protection assay (Figure 4.10). The 

S1 nuclease mapping probe was for the cydA gene, which has two promoters 

(indicated by closed and open arrows in Figure 4.10).  

 

 

 

 

 

 

 

 

Figure 4.9: S1 Nuclease mapping of the cyd promoter region for a thiostrepton depletion study 
in an ndh disruption strain. Induction of the ndh gene was achieved by the addition of 10μg/ml 
thiostrepton (+), in the absence of which only a degradation-targeted version of the gene was 
present (-). The initial culture was grown in the presence of thiostrepton (0hr), the cell pellet was 
washed repeatedly and used to inoculate two fresh cultures containing 20μg/ml apramycin and 
10μg/ml thiostrepton, or apramycin alone. The cultures were grown for a further 6 hours 
harvesting at 2 hour intervals. The open arrow indicates expression from the cyd

P2
 promoter, 

whereas the closed arrow is for the cyd
P1

 (Rex regulated) promoter. 

 

Expression from the P2, Rex independent, promoter remained fairly constant 

across the time-course as expected. Expression from the cydP1 promoter at the 

0 hour time point was quite low and remained at a low level for all of the 

thiostrepton-replete samples. The thiostrepton-deplete samples however 

produced a much stronger signal from the cydP1 promoter, which increased over 

time. As the only difference between these two cultures was the presence or 
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absence of the inducer, thiostrepton, the observed effect must be due to 

changes in the expression of ndh. This indicates that depletion of NDH-2 in S. 

coelicolor disrupts the ability of Rex to repress its target genes, presumably by 

increasing the NADH/NAD+ redox state. 

 

    

Section 4.4 – Regulation and expression of nuo 
 

 uo is the bacterial equivalent of Complex I in mitochondria, having the 

ability re-oxidise NADH by passing electrons to the quinone pool and to 

pump protons across the cell membrane, generating a proton motive force. The 

nuo ROP site was highly enriched in the ChIP-chip data and has been used 

extensively for binding studies. However the regulation of nuoA-N by Rex has 

not yet been proven. This section aims to characterise the expression profile of 

nuo, as well as its regulation, in order to understand the potential role that it has 

within the regulon. 

 

   Section 4.4.1 - Generating a nuodeg mutant 
 

In an attempt to disrupt nuoA, the pSX406 suicide vector (see Section 4.3.6) 

was adapted to control expression of the nuo operon in the same manner as 

used for ndh.  

 

 

 

 

 

 

 

 

Figure 4.10: Diagrammatic representation of the disruption scheme used to generate the 
inducible nuo knockout S. coelicolor strains. In brief a suicide vector, containing part of the nuo 
operon, preceded by the tipA promoter, was introduced into the M145 and S106 S. coelicolor 
strains. This placed expression of nuo under the control of the tipA promoter, which is 
thiostrepton inducible. Note that the nuoC gene on the suicide vector (shaded with stripes) is 
truncated and contains a degradation signal at its c-terminus. The two preceding genes on this 
vector, nuoA and nuoB, are intact. 
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In order to ensure single cross-over recombinants, at least 1kb of homology 

was required. However nuoA is only 359 bp in length. The region used to 

generate the disruption cassette was therefore extended to include nuoA, nuoB 

and 625bp of nuoC. This method had the drawback of introducing two functional 

copies of both nuoA and nuoB, which could potentially affect complex assembly 

(Figure 4.10). The nuoA, nuoB and nuoC segment was amplified using primers 

NuoKO_F and NuoKO_R. The resultant 1.5kb fragment was ligated into 

EcoRV-cut pBlueScript II SK+ to generate pSX413. This region was isolated as 

an NdeI-SphI fragment and introduced into the same sites of pSX404, linking 

the degradation tag to the nuo fragment. The entire region was isolated with 

NdeI/EcoRI and ligated into pSX406 cut with the same enzymes. This vector 

was then introduced into the M145 and S106 (Δrex) strains. The initial 

exconjugants were noticeably impaired in growth compared to the vector-only 

control strains (strains containing pIJ6902). At this stage it was not clear 

whether the delay was due to the presence of the thiostrepton in the overlay, 

and therefore the induction of the nuo operon. The strains were restreaked onto 

MS agar in the presence and absence of 10μg/ml thiostrepton (Figure 4.11). 

Unlike the ndhdeg strains no discernable effect of thiostrepton depletion was 

observed for the nuodeg strains. Both disruption strains however still exhibited a 

small colony phenotype that had been observed in the initial exconjugants. It 

would appear that this disruption method had a detrimental effect on the growth 

of these strains and the process was therefore abandoned. 

 

 

 

 

 

 

 

Figure 4.11: Growth of Nuodeg mutants on both MS agar in presence and absence of 10μg/ml 
thiostrepton. All plates also contained 20μg/ml apramycin. The plates were incubated at 30°C 
for 4 days. 
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   Section 4.4.2 – The expression of nuo under different conditions 
 
From the ChIP-on-chip data it was clear that Rex was able to bind to the nuoA 

promoter region in vivo, which confirmed the results from previous binding 

studies (Brekasis, 2005). However, the regulation of nuoA-N has not been 

confirmed; indeed previous attempts to study nuoA-N expression revealed that 

nuoA was not expressed in liquid cultures, which would explain the lack of 

induction in the S106 (Δrex) strain during previous microarray work (D. Brekasis 

and M. Paget, personal communication). One possible explanation for the lack 

of nuoA expression in liquid media is that it is developmentally regulated. The 

expression of nuoA was therefore investigated on solid agar plates. RNA was 

harvested (as detailed in section 2.3.3) over a 72 hour time-course, at 24, 36, 

48 and 72 hours. Samples were then analysed by S1 nuclease mapping with a 

nuoA probe (from primers NuoAS1a/NuoAS1b (Brekasis, 2005)). The assay 

gave a strong band at ~160bp (Figure 4.13), with its strength increasing only 

slightly over the three day time-course. No observable difference between the 

M145 and S106 (Δrex) strains could be distinguished. Thus whilst this 

experiment confirmed that nuo was indeed expressed on solid media, it did not 

appear to be regulated by Rex. The ROP site within the nuo promoter is centred 

~20 bp downstream from the predicted transcriptional start site (Figure 4.14). 

This start site is only approximate, based upon the size of the S1 band and 

position of the reverse S1 primer but nevertheless the locality of Rex within the 

transcript would be consistent with its role as a repressor of the nuo operon. 

 

 

 

 

 

 

Figure 4.12: S1 nuclease protection assay on the nuoA promoter region. RNA was harvested 
over a 72 hour time-course from S. coelicolor cultures grown on MYMTE media. 
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   Section 4.4.3 – Is nuoA-N regulated by BldD? 

 
When a gene is restricted to growth under certain conditions, as is the case for 

nuo, it suggests that a regulator is involved. After scanning the promoter region 

for a possible effector site a potential bldD binding site was identified (Figure 

4.13).  

         NuoAS1a 

 TGAACGCTTCTTGTGTGAAGATCACCGCTCATCCGACTTCATGATCGTTCGTCAGGTGGT 

 ACTTGCGAAGAACACACTTCTAGTGGCGAGTAGGCTGAAGTACTAGCAAGCAGTCCACCA 

 

                    BldD    

 GGAGATCACAAAGCTTGTGTAATACCCCGTGTCGCAGATCACAGAGCGTCGGGCATAGGA 

 CCTCTAGTGTTTCGAACACATTATGGGGCACAGCGTCTAGTGTCTCGCAGCCCGTATCCT 

 

                   Rex 

 TGCGAGGCAGTTGGGCTTGTGACCTGCTTCACATGTTCGCGATCTTCGTCGGGACGGGCG 

 ACGCTCCGTCAACCCGAACACTGGACGAAGTGTACAAGCGCTAGAAGCAGCCCTGCCCGC 

 

 GGGCTCGTGGGGCTGTTGGGGCGGCTGTGAGTCCAGTGCAACCGCCAGCAGTCAGTGCCG 

 CCCGAGCACCCCGACAACCCCGCCGACACTCAGGTCACGTTGGCGGTCGTCAGTCACGGC 

                     

                     V  N  A  Y  A  P  I  L  V  L  G  A  L  G

 ACTGAGAGGAGCGAGGAGCGGTGAACGCGTATGCGCCCATCCTCGTACTGGGAGCCCTCG 

 TGACTCTCCTCGCTCCTCGCCACTTGCGCATACGCGGGTAGGAGCATGACCCTCGGGAGC 

            NuoAS1b 

 

   A  G  F  A  I  F  S  V  V  M  A  T  L  I  G  P  K  R  Y  N 

 GGGCAGGCTTTGCGATCTTCTCCGTGGTGATGGCCACGCTGATCGGTCCGAAGCGGTACA 

 CCCGTCCGAAACGCTAGAAGAGGCACCACTACCGGTGCGACTAGCCAGGCTTCGCCATGT 

 

   R  A  K  L  E  A  Y  E  C  G  I  E  P  T  P  T  P  A  G  G 

 ACCGGGCGAAGCTCGAGGCCTACGAGTGCGGCATCGAGCCGACCCCCACGCCGGCCGGCG 

 TGGCCCGCTTCGAGCTCCGGATGCTCACGCCGTAGCTCGGCTGGGGGTGCGGCCGGCCGC 

 

   G  R  F  P  I  K  Y  Y  L  T  A  M  L  F  I  I  F  D  I  E  

 GCGGGCGCTTCCCCATCAAGTACTACCTGACGGCGATGCTCTTCATCATCTTCGATATCG 

 CGCCCGCGAAGGGGTAGTTCATGATGGACTGCCGCTACGAGAAGTAGTAGAAGCTATAGC 

 

   I  V  F  L  Y  P  W  A  V  T  F  D  A  L  G  I  F  G  L  V 

 AGATCGTCTTCCTCTACCCCTGGGCCGTCACCTTCGACGCCCTGGGGATTTTCGGGCTCG 

 TCTAGCAGAAGGAGATGGGGACCCGGCAGTGGAAGCTGCGGGACCCCTAAAAGCCCGAGC 

 

   E  M  L  L  F  V  L  T  V  F  V  A  Y  A  Y  V  W  R  R  G 

 TGGAGATGCTGCTCTTCGTGCTCACCGTCTTCGTCGCGTACGCGTACGTATGGCGGCGCG 

 ACCTCTACGACGAGAAGCACGAGTGGCAGAAGCAGCGCATGCGCATGCATACCGCCGCGC 

 

   G  L  E  W  D  * 

 GCGGCCTGGAATGGGACTGA 

 CGCCGGACCTTACCCTGACT 

 

Figure 4.13: The nuoA open reading frame and promoter region. The positions of the Rex and 
BldD binding sites are highlighted in gold. The positions of the two primers used to generate the 
probe for the S1 nuclease protection assay are highlighted in grey. The approximate position of 
the transcriptional start site, as assessed by the size of the S1 band (~160bp), is also indicated 
(by the arrow). 
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 ChIP-on-chip data from another group (C. den-Hengst & M. Buttner, personal 

communication) supported this. BldD is generally thought to act as a repressor 

and so it was possible that bldD might repress nuoA-N during liquid growth. To 

test this a bldD mutant strain 1169 (Merrick, 1976) was utilised in order to 

bypass possible BldD repression so that the regulation by Rex could be 

observed. RNA was harvested from liquid culture over a 30 minute oxygen 

limitation time course and used for an S1 nuclease protection assay, again 

using the nuoA probe. The cyd S1 probe was used as the control for the RNA 

sample (Figure 4.14). The results indicated that whilst the bldD mutant 

responded normally to redox stress, with respect to the induction of cyd, nuo 

was still not actively expressed in liquid culture. Rex and BldD may well co-

regulate nuoA-N in vivo, but apparently they are not the only regulators to do 

so. 

 

 

 

 

 

 

Figure 4.14: S1 nuclease protection assay on the nuoA and cydA promoter regions. RNA was 
harvested from S. coelicolor cultures grown in NMMP media. The 0 minute time point was 
harvested under aerobic conditions, whereas the 15 and 30 minute time points were oxygen 
limited prior to harvesting. 

 
   Section 4.4.4 – Reduction in nuo expression in the rexG102A strain 
 
Finally, the super-repressor mutant, RexG102A was used in an attempt to confirm 

regulation of nuo by Rex. RNA was harvested from solid media, over a 72 hour 

time-course, and used for an S1 nuclease protection assay (Figure 4.15). There 

appeared to be a slight difference in the overall expression levels of nuoA in 

S106 (pSET152) and S106 (pSET152::RexG102A). The signal for the super-

repressor strain was slightly lower than that for the rex null strain. However, nuo 
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was still expressed in both strains. This result would suggest that Rex is able to 

repress expression of nuo though the extent to which it does this is not clear 

given that only the NADH unresponsive rexG102A strain showed any discernible 

difference in expression of nuo.       

 

 

 

 

 

 
 
    

Section 4.5 – Discussion 
 

he two types of NADH dehydrogenase represented within the ChIP-chip 

data; nuo and ndh, are expressed under different conditions. Expression of 

nuo is constitutive on solid media but completely lacking in liquid cultures, 

whereas ndh is apparently essential for growth under all conditions tested. The 

ndh promoter region contains two ROP sites, positioned at -43 bp (ROP1) and -

315 bp (ROP2), both of which are capable of producing gel shifts in EMSA 

analysis. Despite the ROP1 site being positioned for maximal effect on 

transcription, Rex appears to bind with higher affinity to the ROP2 site. From 

studies of this promoter in vivo, through use of a neo reporter construct, it 

appears that deletion of the ROP2 site actually has a detrimental effect on 

expression. This result was counterintuitive as one would expect that removal of 

a repressor binding site would enhance expression of a gene. Thus it seems 

that the ROP2 site may be recognised by another transcriptional regulator, as 

well as by Rex. This may explain the presence of a ROP site so far from the 

transcriptional start site of the gene, if Rex actually functions to block the 

binding of a transcriptional activator (or chromatin modifier) rather than directly 

blocking the RNA polymerase. In fact the alignment of the ndh promoter regions 

T 

Figure 4.15: S1 Nuclease 
protection assay of the nuoA 
promoter region in S106+pSET152 
(lanes 1-4) and 
S106+pSET152::rex

G102A
 (lanes 5-

8) strains. The cultures were 
harvested from MYMTE agar over 
a 72 hour time-course, at 24 (lanes 
1+5), 36 (lanes 2+6), 48 (lanes 
3+7) and 72 hours (lanes 4+8). 
The arrow indicates the position of 
the nuoA band. 
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of the streptomycetes (Figure 4.4) reveals a dyad symmetrical site 

(AACTTCGTGAAGTT) overlapping the upstream ROP site, perhaps an 

operator for an unknown regulator. The nuo promoter region is apparently also 

regulated by more than one factor, having binding sites for both Rex and BldD. 

The expression profile of nuo, being limited to cultures grown on solid media, 

suggested that it may under the control of a developmental regulator. Indeed, 

the developmental regulator BldD binds in the nuoA promoter region. However, 

the bldD mutant strain 1169 still failed to express nuo in liquid cultures. Having 

failed to observe any obvious differences in the expression of nuo in all M145 vs 

S106 (Δrex) cultures it had not been possible to confirm that Rex did indeed 

regulate nuo. In a final attempt to show this the S106 (ΔrexG102A) super-

repressor strain was utilised. The results suggested a slight reduction in signal 

for the super-repressor strain, although nuo was still expressed. This result did 

however indicate that Rex is capable of effecting the expression of nuo but that 

the conditions under which Rex represses this promoter are still unknown. 

The Type II NADH dehydrogenase of S. coelicolor, expressed from ndh, is 

essential. In M. tuberculosis ndh is apparently also essential as it is used as a 

target for a class of anti-tubercular drugs (phenothiazines), utilising the fact that 

human mitochondria use only NDH-1 and are therefore unhindered by NDH-2 

inhibitors (Weinstein et al., 2005). Disruption of this gene in B. subtilis caused a 

marked growth delay but the ndh mutant was still viable (Gyan et al., 2006). In 

E. coli ndh disruption is also possible and does not prevent the cells from 

oxidising NADH (Calhoun and Gennis, 1993). Like S. coelicolor, E. coli also 

contains both Type I and Type II NADH dehydrogenase, as well as both 

cytochrome bo and bd terminal oxidases. The work by Calhoun et al. 

demonstrated that NADH oxidation is not limited to just NDH-1 or NDH-2 in E. 

coli, but is instead split between the two enzymes (Calhoun et al., 1993). This 

does not appear to be the case in S. coelicolor as nuo expression appears to be 

completely absent in liquid cultures, perhaps causing the dependence upon ndh 

expression. The results of their work also suggest that in E. coli the combination 

of NDH-2 and cytochrome bd terminal oxidase, as would be expressed in S. 

coelicolor during oxygen limitation, would result in a marked reduction in the 
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proton motive force as NDH-2 is incapable of proton translocation and the bd-

type oxidase is less efficient at it than its bo-type counterpart (Calhoun et al., 

1993). Why then does S. coelicolor not induce nuo under these conditions to 

promote generation of a proton motive force? This would suggest that failure to 

generate a proton motive force was a secondary issue under redox stress, with 

the primary goal of stress responses being the oxidation of NADH. Studying the 

enzymatic function of respiratory NADH dehydrogenases is difficult due to both 

their membrane association and also due to the presence of endogenous NDH 

enzymes in the expression strain. There were however two such studies in the 

literature on the NADH dehydrogenases of E. coli, in which the rate of NADH 

oxidation had been determined. The values were given as 25.1 nmol min-1 mg-1 

for NDH-1 (Esterhazy et al., 2008) and 500-600 µmol min-1 mg-1 for NDH-2 

(Jaworowski et al., 1981). This would indicate that whilst NDH-1 is more 

effective at generating energy, via a proton motive force, NDH-2 is more 

efficient at oxidising NADH.  

Previous binding studies with the nuoA-N promoter had revealed a strong ROP 

site, which was confirmed by the ChIP-chip data. Despite the presence of this 

site within the nuoA-N promoter the regulation of this operon by Rex has not yet 

been proven. In this study a number of approaches have been taken to study 

the possible regulation of nuo, as well as attempts to isolate and characterise 

disruption strains in order to identify the role that its product might have in 

responding to redox stress. A disruption cassette was used to place the operon 

under the control of a thiostrepton inducible promoter. Unfortunately the 

targeting cassette itself appeared to have a detrimental effect on growth, as 

strains were affected in both the presence and absence of thiostrepton. The 

genes included on the cassette were nuoA, B and C, which have varying 

purposes and positions within NDH-1. The nuoA and nuoB genes were intact 

and therefore duplicated within the genome of the disruption strains. nuoA 

expression appears to be constitutive on solid media (Section 4.4.2). It is 

possible that constitutive expression of nuoA and nuoB, from the native nuo 

promoter, results in protein aggregation or toxicity when expressed 

independently from the rest of the complex. NuoA is thought to form part of the 
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transmembrane arm of this protein, whereas NuoB and C are located within the 

enzymatic arm in the cytosol (Efremov et al., 2010). It is however also possible 

that the disruption cassette hinders expression even in the presence of the 

inducer. Efforts to confirm that Rex controls nuo were hampered by the absence 

of nuoA expression in liquid cultures, the conditions in which Rex regulation is 

normally investigated. In other species there appears to be a requirement for 

NDH-1 under anaerobic growth conditions (Tran et al., 1997). It is possible that 

whilst the aerial hyphae are exposed to atmospheric oxygen concentrations the 

substrate mycelia, buried within the media and the rest of the culture, are 

oxygen-limited. If this were the case it would explain why Rex failed to repress 

expression from the nuoA promoter under these conditions. Despite a lack of 

differential expression of nuo in the M145 versus S106 (Δrex) strain, the use of 

the S106 (ΔrexG102A) strain has again proven useful in emphasizing the 

repression of Rex. Harvesting of RNA from this strain showed a slight decrease 

in the expression of nuo compared to the S106 (Δrex) strain; however the 

promoter could not be fully silenced by the super-repressor in this study. The 

super-repressor strain is also under the control of the rex promoter, making it 

autoregulated. This may have limited the availability of RexG102A in vivo, as 

emphasized by the lack of lethality that is associated with high levels of this 

protein (Section 3.4.1). It is therefore likely that the low expression levels of 

rexG102A were insufficient to fully silence the expression of nuo. 

Gyan et al. have recently proposed that there is a regulatory feedback loop 

between the Type 2 NADH dehydrogenase of B. subtilis and B-Rex (Gyan et 

al., 2006). This relationship works because each of its partners is regulated by 

the presence or absence of NADH. Under aerobic conditions Rex is able to bind 

to and repress ndh but when NADH levels rise, under oxygen limitation, Rex 

dissociates from the ndh promoter. Expression of ndh results in a reduction of 

cellular NADH, lowering the NADH/NAD+ ratio so that Rex can repress 

expression of ndh once more. This regulatory loop means that ndh is indirectly 

sensitive to the redox poise, tailoring ndh expression to the availability of the 

enzyme‟s substrate. This function is key in maintaining the redox poise of the 

cell.  
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Results III: The Mechanism of Action of Rex 

 

 

“Thunder is impressive, but it is lightning that does the work.” 

Mark Twain (1835-1910) 
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Section 5.1 – Overview 
 

he action of Rex is best observed through its effect on gene expression, 

though it is the interplay between the two dinucleotides, NAD+ and NADH, 

that modulates its DNA binding activity (Brekasis and Paget, 2003). The 

physical mechanism by which NADH alters the DNA binding potential of Rex is 

not fully understood, but can be characterised through a combination of 

structural analysis, mutagenesis, and biochemical approaches. This chapter will 

describe a structure-based site-directed mutagenesis analysis of Streptomyces 

Rex. The overall aim of these studies was to understand how the binding of 

NADH in one part of the protein can ultimately affect the DNA binding potential 

in a separate domain. 

 
 
 
Section 5.2 – Structural overview 
 

arly site-directed mutagenesis studies on Rex relied on sequence-

structure predications. For example, the GXGXXG motif, which is 

characteristic of Rossmann folds, was shown to be essential for NADH binding 

(Brekasis and Paget, 2003). More recent structural studies on Rex homologues 

from Thermus aquaticus (Sickmier et al., 2005), Thermus thermophilus 

(Nakamura et al., 2007), and Bacillus subtilus (Wang et al., 2008), now allow 

structure-based approaches. At the outset of this project, the only available 

structure was that of Thermus aquaticus Rex (Uniprot accession: Q9X2V5.1), in 

its NADH-bound  state (PDB code: 1XCB; Sickmier et al., 2005). During the 

course of the project further T. aquaticus structures became available including 

one in the DNA-bound NAD+-bound state (PDB code: 3IKT) (McLaughlin et al., 

2010). As there is no structure available for S. coelicolor Rex (S-Rex) all 

structural analyses in this chapter was based on T-Rex (42% identical), while all 

mutagenesis was performed on the gene encoding S-Rex protein. Note that 

because of this the residue numbering can be for either protein but wherever a 

residue is mentioned the parental protein will be indicated. For ease of 

comparison a fully numbered alignment of the two proteins is included (Figure 

T 

E 
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S3), which is colour coded to indicate the similarity of the residues at each 

position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Structural overview of NADH- and DNA-bound T-Rex, PDB codes 1XCB and 3IKT, 

respectively. Chains A and B are coloured by domain, with equivalent domains in each chain 

shown as different shades of the same colour. The DNA is shown in the lower panel in purple. 

The NADH or NAD
+
 molecules are depicted in stick form on each structure. 

 

NADH-bound Rex: 

NADH binding domain (green) 

DNA binding domain (blue) 

Swapped helix domain (gold) 

NAD
+
/DNA-bound Rex: 

NADH binding domain (green) 

DNA binding domain (blue) 

Swapped helix domain (gold) 
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   Section 5.2.1 – Structural analysis 
 

All known Rex homologues are dimeric, and have three well-defined domains: 

the DNA-binding domain, the NADH-binding domain and the swapped helix 

domain (Figure 5.1). The NADH-binding domain contains the classical 

Rossmann fold (Rao and Rossmann, 1973), with each domain capable of 

accommodating one NADH molecule giving a final stoichiometry of 2 NADH 

molecules per dimer (Sickmier et al., 2005). From biochemical studies we were 

already aware that NAD+ must also be capable of binding to Rex in order to act 

as a competitive inhibitor, a vital role as it allows Rex to sense the ratio of the 

reduced and oxidised dinucleotides – not just the NADH concentration 

(Brekasis and Paget, 2003). The structure of T-Rex bound to DNA and NAD+ 

confirmed  this as it clearly showed a single NAD+ molecule occupying one of 

the binding domains (McLaughlin et al., 2010). Comparison of the bound NADH 

and NAD+ however revealed that NAD+ adopts a slightly different conformation 

within the DNA-bound structure (Figure 5.2). Whilst the adenosyl moiety of 

NAD+ and NADH appear to share many of the same contacts within Rex, the 

nicotinamide ring is flipped back upon itself in the case of NAD+ when compared 

to NADH (Figure 5.3). Within the NADH-bound structure there is also a major 

asymmetry in the orientations of the two F189 residues (Sickmier et al., 2005). 

This is lacking from the DNA-bound structure, with the F189 adopting a 

conformation preferable to DNA-binding (McLaughlin et al., 2010). With the 

F189 residue no longer positioning itself between the two nicotinamide rings the 

charge on the NAD+ would not be shielded from the presence of a second, 

which would result in electrostatic repulsion (McLaughlin et al., 2010). Also with 

the F189 adopting a different position in the DNA-bound structure there would 

be a steric clash with the NAD+ and this residue, if it did not adopt a different 

conformation than that of NADH (McLaughlin et al., 2010). 

 

The difference between cofactors is important but the most striking difference 

between the two crystal structures is by far the degree of relative rotation of the 

subunits. As had previously been reported, the NADH-bound structure was 

incompatible with DNA binding (Sickmier et al., 2005). In the T-Rex NAD+-

bound structure this steric clash is overcome by a 43º rotation around its axis, 
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repositioning the recognition helix to interact with the major groove of the DNA 

(McLaughlin et al., 2010). This is a massive change in conformation triggered 

by the loss of NADH, a change that NAD+ fails to induce. The DNA-binding 

domain itself is a classical winged-helix-turn-helix motif, with the recognition 

helix positioning itself within the major groove and the wing falling upon the 

minor groove. Individual interactions will be discussed further on in this chapter. 

 

The final element of Rex is the domain-swapped helix. The role of this domain 

was the most uncertain as it consisted of a single helix. The positioning of the 

helix in T-Rex would suggest that it has a role in dimerisation and signal 

transduction, as it packs between the two functional domains of the opposing 

chain. However, in Bacillus subtilis Rex (B-Rex) this domain does not take up 

the same conformation (Wang et al., 2008). It still packs against the NADH-

binding domain of the opposing chain but the DNA-binding domain appears to 

be completely isolated (Wang et al., 2008). They do however note that the C-

terminal domain of this structure is locked in place by the occurrence of crystal 

contacts at the N-terminus. This places the swapped helix in a position that is 

incompatible with NADH occupation of the full dinucleotide binding pocket 

(Wang et al., 2008). 
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Figure 5.2: Structure of the NADH and NAD

+
 binding domains of T-Rex overlayed (A). The 

interactions are also shown in diagrammatic form for both NADH (B) and NAD
+
 (C). The dotted 

lines indicate potential hydrogen bonds on the diagrams, an asterisk indicates that this bond is 
between the backbone of the residue, and the apostrophe distinguishes between the two 
chains. Where the bond is relayed via a water molecule the solvent is shown as a red sphere. 
 

 
 

   Section 5.2.2 – Conservation 
 

In order to identify potentially key residues in the structure and function of Rex, 

following a multiple alignment, the % conservation at each amino acid position 

was plotted against amino acid sequence. Of the 258 amino acids of S. 

coelicolor Rex only 11 were 100% conserved among the 26 homologues 

analysed, which equates to about 5% of Rex (Figure 5.3). Nonetheless, the 

figure reveals several potentially important residues, and the structures of Rex 

in the NADH- and DNA-bound states allow hypotheses to be developed. Note 

that all of the residues discussed below are numbered from the S-Rex protein. 

The conservation of some amino acids is simple to explain in several cases. For 

example, R23, S44, G69, G74, and Y75 are 100% conserved and appear to be 
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involved in DNA binding. R23 and S44 directly interact with the major groove, 

whereas G69, G74 and Y75 are located at the minor groove in the wing of the 

recognition helix.  The wing potentially co-ordinates the first two nucleotides of 

each half of the ROP site (TTGTGAA), thus the preference for A and T at these 

positions (Section 3.3.4) must be caused by the wing. The ROP sequence used 

in the crystallisation of T-Rex lacked the terminal residue of the S-Rex 

consensus (CTGTGAA) in each half. In all available T-Rex structures the wing 

is poorly ordered, which is most likely a consequence of the presence of so 

many flexible glycines in this region. However, it is possible that inclusion of AT-

rich DNA at each end is required to stabilise the wing and hence fix its position 

within the structure. The GXGXXG of the Rossmann fold is highly conserved 

although only the first glycine (G100) is 100% conserved. One residue centred 

at the dimer interface, A107, was completely conserved. This residue appears 

to mediate a hydrogen bond, via a water molecule, with the amine group of the 

nicotinamide ring of the NAD+ molecule. Thus this residue, along with an 

intramolecular hydrogen bond, appears to stabilise the syn orientation of NAD+. 

This residue is also responsible for forcing NADH to adopt an anti, rather than 

syn, conformation as NADH in the syn conformation would clash with the 

alanine. Thus conservation of this residue appears to be key for maintaining the 

structural distinction between NAD+ and NADH. Interestingly, three of the 

conserved residues appeared to be hydrogen bonding with each other, D61, 

R23 and Y27, with the aspartate and arginine forming a salt bridge and the 

tyrosine interacting with the spare oxygen group of the aspartate (Figure 5.4). A 

similar strategy is used elsewhere in the S-Rex protein between residues (R29, 

D203 and Y111 – Section 5.4), although these amino acids are not completely 

conserved. Unlike the R29-D203 salt-bridge, these residues do not alter 

conformation upon DNA-binding. Based on the relative positions of these 

residues it would appear that they are key for the interaction between the 

recognition helix and the stabilisation helix, and therefore the stability of the 

DNA-binding domain.  
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Figure 5.3: Conservation plot of Rex homologues from the following species; Bacillus anthracis 
(YP_081851.1), Bacillus halodurans (NP_241417.1), Bacillus subtilis (NP_388478.1), 
Bacteroides thetaiotaomicron (NP_812793.1), Clostridium perfringens (YP_699563.1), 
Clostridium tetani (NP_782957.1), Deinococcus radiodurans (NP_294663.1), Enterococcus 
faecalis (ZP_05597558.1), Lactococcus lactis (YP_809112.1), Lactobacillus plantarum 
(NP_784480.1), Lactobacillus sakei (YP_394969.1), Listeria monocytogenes (ZP_05294788.1), 
Oceanobacillus iheyensis (NP_691573.1), Porphyromonas gingivalis (YP_001928136.1), 
Rhodopirellula baltica (NP_864826.1), Staphylococcus aureus (ZP_05685717.1), Streptococcus 
agalactiae (ZP_00780168.1), Streptococcus pneumonia (NP_358592.1), Streptococcus 
pyogenes (NP_269274.1), Streptomyces avermitilis (NP_825915.1), Streptomyces coelicolor 
(NP_627530.1), Thermoanaerobacter tengcongensis (NP_622215.1), Thermotoga maritima 
(NP_227984.1) and Thermus aquaticus (Q9X2V5.1). Values indicate the % conservation of the 
S-Rex residue listed at each position in the alignment. The amino acids listed are from the S-
Rex sequence and the secondary structural elements are from the T-Rex structure. 

 

   Section 5.2.3 – Site-directed mutagenesis scheme 
 
The rational for all mutagenesis in this study followed the same three principles: 

(i) use the structure of a homologue (T-Rex) to identify regions of interest for 

any given function, (ii) use the conservation plots of these regions to indicate 

potential involvement of each residue in the function of this domain, and (iii) use 

the structure to guide the choice of amino acid substitution and to predict a 

possible outcome of the mutagenesis. In the case of the DNA binding domain, 

the rational for targeted disruption was also intimately linked to the conservation 

of nucleotide residues within the ROP site. By using both pieces of information it 

was possible to increase the confidence that constructed mutants would have 

altered DNA binding properties. Please note that in all cases the nucleotides of 

the ROP site are numbered from 1 to 18 reading 5‟ to 3‟ on the coding strand of 

the gene whose promoter it falls within, and are labelled 1‟ to 18‟ reading 5‟ to 3‟ 

on the non-coding strand. Likewise the amino acids on each chain are 

distinguishable by the presence or absence of an apostrophe after their one-

letter code and identifier. Note that in all instances the truncated form of S-Rex 

(residues 6-233) is used, due to issues with protein cleavage of the full length 

version (Brekasis, 2005). The functionality of this protein has however been 
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compared in vivo through its ability to complement the S106 (Δrex) strain (data 

not shown). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4: Fully conserved salt-bridge stabilises DNA-binding domain of T-Rex. Bridge forming 
residues R10 and D48, as well as conserved Y14 are indicated above. The recognition and 
stabilisation helices are also shown. 

 

 
Section 5.3 – The Rex-ROP complex 
 

rom the ChIP-on-chip data it appeared that Rex bound to several loci, but 

with differing affinities. What distinguishes one ROP site from another and 

what features of Rex are required for specific binding? This section covers the 

structural analysis used to identify key Rex-ROP interactions and the 

subsequent mutagenesis to confirm the importance of selected residues. Note 

that the wing region within the PDB structure was poorly defined so it was not 

included in this analysis, despite its high conservation and potential role in DNA 

binding. 

 
   Section 5.3.1 – Interactions with the major groove  
 
As mentioned previously the recognition helix of Rex slots into the major groove 

of canonical B-form DNA (McLaughlin et al., 2010). In order to identify which 

residues were required to form this interaction, the structure of DNA-bound T-

Rex was analysed (PDB ID: 3IKT) using the protein structure viewer and 

analysis program UCSF Chimera (Pettersen et al., 2004). The FindHbond tool  
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Figure 5.5: Structural overview of the DNA-binding interactions of T-Rex (A-G) and 
diagrammatic summary of these interactions (H). The blue spheres shown in insert H represent 
water molecules, which appear to bridge a number of the bonds. Note that only one half of the 
protein is shown in this figure as the interactions are conserved in the opposite half of the 
structure. 
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of Chimera was used to predict possible hydrogen bond pairs. These potential 

H-bonds were then manually filtered for those that fell between the DNA and 

Rex, and are shown in Figure 5.5. The first bond identified in this way was 

between S31 of T-Rex (S44 S-Rex), and the phosphate group of Thymine 2 

(Figure 5.5A). Guanine 3 appears to be coordinated by R46 (R59 S-Rex), 

directly via two hydrogen bonds with the side chain, and indirectly via a water 

molecule (Figure 5.5B). Thymine 4 and Cytosine 14‟ are each involved in 

hydrogen bonds between a water molecule and F43 (Figure 5.5C). When F43 

was compared between the NADH-bound and DNA-bound structures (Figure 

5.6) it appeared that this residue adopted a different conformation on binding to 

the ROP site. Upon closer inspection it seemed that this may be due to the 

close proximity of the aromatic ring of F43 to the amine group of Cyt14‟ when in 

the NADH-bound conformation. It would seem that when Rex binds to DNA the 

ring of F43 must adapt its orientation in order to lie parallel with the DNA 

backbone. Interestingly this residue is replaced by an alanine in S-Rex, which 

would still allow for the formation of hydrogen bonds with Thy4 and Cyt14‟, but 

may change the affinity of Rex for ROP. Lysine 47 (K60 S-Rex) interacts with 

both Guanine 5 and Adenine 6 of the ROP site (Figure 5.5D) and the phosphate 

group of Thymine 13‟ appears to interact with T41 of T-Rex (N54 S-Rex) via a 

water molecule (Figure 5.5E). Finally the 5‟ phosphate of Thymine 12‟ has 

potential hydrogen bonds with both Q44 (K57 S-Rex) and R10 (R23 S-Rex), 

Figures 5.5F and G respectively. All of these interactions are summarised in 

diagrammatic form in Figure 5.5G. In summary, while there are a number of 

stabilising interactions, the only specific interactions, between amino acid 

functional groups and nucleotide bases, emanate from Arginine 46 (R59 S-Rex) 

and Lysine 47 (K60 S-Rex). The arginine residue is very highly conserved 

among homologues, whereas the lysine residue appears to be replaceable with 

either an arginine or a glutamine, suggesting that it is the amine group that must 

be maintained for a functional DNA-binding protein. These residues were 

therefore targeted for mutagenesis, along with another residue Phenylalanine 

43 (detailed above). While this residue was neither highly conserved, nor able 

to form a specific base interaction it seemed plausible for this residue to be 

responsible for the marked difference in DNA-binding affinities of T-Rex and S-

Rex, Kd 0.1±0.02nM T-Rex, Kd 2.0±0.6nM S-Rex (McLaughlin et al., 2010), 
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given that it appeared to slot into the major groove within the T-Rex structure 

but was absent in the S-Rex protein. 

 

 
   Section 5.3.2 – Disrupting Rex’s ability to bind to DNA   
 
Site-directed mutagenesis was used to test the importance of three amino acids 

that were predicted to play key roles in DNA binding: A56, R59 and K60. Each 

residue was mutated to alanine using the primers A56F_F2 and A56F_R2, 

R59A_ii_F and R59A_ii_R, and K60A and K60A_R, and vector pSX142 as a 

template. Each gene was subsequently isolated with NdeI/BamHI and cloned 

into pET15b, cut with the same enzymes, generating pSX143::A56F, 

pSX143::R59A and pSX143::K60A. These vectors were then used to 

overexpress each mutant, which were purified via Ni2+-affinity chromatography. 

Both RexR59A and RexK60A failed to give shifts during EMSA analysis (Figure 

5.6), indicating that both mutations have a drastic affect on binding – as 

expected. It had been predicted that an A56F substitution might enhance DNA 

binding (see Section 5.3.1). However, SPR analysis revealed that RexA56F had a 

lower affinity for the DNA than the wild type protein (Figure 5.7). Therefore, this 

residue is not wholly responsible for the increased DNA-binding affinity of T-Rex 

compared to S-Rex.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: EMSA analysis to determine the 
effect of mutagenesis on the DNA binding 
ability of Rex. Reactions consisted of 1ng 

γ32
P-labelled probe (ROP

Rex
), 1µg herring 

sperm DNA, either 10nM (lane 2); 25nM (lane 
3); 50nM (lane 4); 75nM (lane 5); 100nM (lane 
6); 250nM (lane 7); 500nM (lane 8); 750nM 
(lane 9) or 1µM Rex (lane 10) and 1x binding 
buffer. Lane 1 contained probe and binding 
buffer alone. 
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Figure 5.7: SPR analysis of the Rex
A56F

 mutant (open circles), compared to Rex
WT

 (closed 
circles), over a protein concentration range. All response unit values were background and non-
specific binding subtracted. 

 
 
 
Section 5.4 – NADH sensing and the signal relay 
 

aving begun this study with the knowledge that an NADH-bound Rex was 

incompatible with DNA binding we were already aware that a significant 

structural change must occur upon DNA binding (Sickmier et al., 2005). This 

section covers the structural analysis and mutagenesis that have helped us to 

better understand how and why the conformational changes occur. 

 
 
   Section 5.4.1 – The salt-bridge 
 
There are a number of tools available for studying changes in conformation 

between two structures but sometimes just a simple visual inspection can lead 

to these discoveries - this was the case for the R29-D203‟ salt bridge (T-Rex 

residues R16 and D188‟). By applying a surface to the NADH-bound structure in 

Chimera (Pettersen et al., 2004) it appeared that the space between the DNA-

binding domain and the domain swapped helix was extremely solvent 

accessible (Figure 5.8), with one interaction spanning the void on only one 

H 
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plane of the protein – a hydrogen bond between R16-D188‟. The equivalent 

residues; R16‟-D188 on the other side of the dimer did not interact, thereby 

generating one example of asymmetry in the NADH-bound structure. The 

asymmetric unit of the original T-Rex structure contained seven chains, in the 

form of three dimers and one monomer, all saturated with NADH (Sickmier et 

al., 2005). In order to ascertain whether this asymmetry was limited to just one 

of the dimers within the asymmetric unit the others were compared (Figure 5.9).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 5.8: Structural overview of NADH-bound T-Rex with surface (A). The solvent accessible 
amide group of NADH (B) and salt bridge (C) are shown in greater detail below 
 

 
This interaction did not appear to be that essential as it was absent in the other 

two dimers, however there was still a clear difference in the orientations of R16 

and R16‟ in each case. Interestingly this altered conformation corresponded 

with the F189 asymmetry in each case. Strikingly, in the DNA-bound structure 
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R16-D188 interactions were present in both sides of the dimer, and replaced 

the hydrogen bond with a salt bridge. This provides a strong connection 

between the two subunit chains to potentially stabilise the protein in its DNA-

bound form (Figure 5.9). Although this asymmetry was not originally recognised 

(Sickmier et al., 2005), the pronounced asymmetry of F189 at the dimer 

interface had been. As mentioned previously F189 has two conformations in the 

NADH-bound Rex – „flipped in‟ and „flipped out‟. This asymmetry is absent in 

the DNA-bound structure – as is the salt-bridge. With the „flipped in‟ F189 

always appeared in the same side as the „broken‟ salt-bridge (Figure 5.17) it 

suggests that there might be a connection between the two events. For 

example NADH binding to one domain might hinder DNA binding in another via 

the breakage of this salt bridge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.9: Comparison of the three dimers contained within the asymmetric unit of NADH-
bound T-Rex (Sickmier et al., 2005). Residues R16 and D188 are shown, as well as the 
asymmetric F189, „flipped in‟ conformation (left-hand side) and „flipped out‟ (right-hand side). 
The three dimmers are coloured gold, green or blue with chains within each dimer coloured with 
lighter or darker shades of the same colour. The distances between each R16 and D188 is 
shown on one face of the structure in each case. 
 

 

D188 (D203 S-Rex) 

R16 (R29 S-Rex) 

F189 (L204 S-Rex) 
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The two residues involved in the salt bridge, R16 and D188‟ T-Rex (R29 and 

D203 in S-Rex), are highly conserved across the homologues (~80%) thus 

enforcing our interest in them – both were therefore targeted for mutagenesis. 

Initially both residues were mutated to alanine by inverse PCR on the pSX142 

construct, using primers R29A_F/R and D203A_F/R. The rexR29A and rexD203A 

fragments were then isolated by NdeI-BamHI digest and introduced into 

pET15b, cut with the same enzymes. Both proteins were overexpressed and 

purified via Ni2+-affinity chromatography. RexR29A expressed well, but RexD203A 

produced very little soluble protein. The mutation was therefore replaced with 

serine - another polar residue, of similar length, which would be incapable of 

forming the same interaction with R16. The aspartate to serine substitution was 

introduced in the same manner as for RexD203A, with primers D203S_F and 

D203S_R. The abilities of RexR29A, RexD203A and RexD203S to bind to ROP DNA 

were analysed by electromobility shift assay.  

 

 

 

 

 

 

 

 

 

Figure 5.10: EMSA analysis to determine the effect of mutagenesis on the DNA binding ability 

of Rex. Reactions consisted of 1ng γ32
P-labelled probe (ROP

Rex
), 1µg herring sperm DNA, 

either 10nM (lane 2); 25nM (lane 3); 50nM (lane 4); 75nM (lane 5); 100nM (lane 6); 250nM 
(lane 7); 500nM (lane 8); 750nM (lane 9) or 1µM Rex (lane 10) and 1x binding buffer. Lane 1 
contained probe and binding buffer alone. 

 

Strikingly, even though each residue is far from the DNA, each failed to bind to 

the operator even at concentrations of up 1µM protein (Figure 5.10). The 

RexR29A mutant was produced in sufficient quantity to undergo size exclusion 

gel filtration, which confirmed that the protein was still dimeric and indicated that 
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it co-purified with NADH. The RexD203S mutant also appeared to be folded, as 

determined by CD, but did not co-purify with NADH (C. Kielkopf and K. 

McLaughlin, personal communication). This result would suggest that the salt-

bridge does play an important role in stabilising the DNA-bound form of Rex. As 

a further attempt to study the salt bridge a charge inversion was attempted. R29 

was mutated to aspartate and D203 was mutated to arginine in the same 

protein, to generate RexR29D:D203R. In theory this mutant should still be capable 

of forming the salt bridge. The two mutations were introduced independently 

with primers R29D_F/R and D203R_F/R. The two fragments were then 

adjoined using an internal EcoNI site. The resultant protein was analysed by 

EMSA but unfortunately did not give a gel shift (Figure 5.11). This combined 

with our observations for the single mutations would suggest that although the 

salt-bridge is required to stabilise the DNA-bound form of Rex there is an 

additional function carried out by D203. 

 

 

 

 

 

 

Figure 5.11: EMSAs with the ROP
Rex

 γ
32

P labelled fragment. The probe was mixed with protein 
at various concentrations, 50nM (lanes 2 and 7), 100nM (3 and 8), 250nM (4 and 9) and 500nM 
(5 and 10). Lanes 1 and 6 contained the DNA probe alone. 

 
   Section 5.4.2 – The sensory triad 
 
The chemical differences between NADH and NAD+ are slight and yet in Rex 

one completely inhibits DNA binding whereas the other does not (Brekasis, 

2005, Brekasis and Paget, 2003). As mentioned previously, comparison of the 

NADH- and NAD+-bound structures revealed a marked difference in the 

conformations of these two cofactors (Figure 5.2) and also a difference in 

stoichiometry (McLaughlin et al., 2010). The main difference between the 

conformation of NAD+ and NADH in the structures appeared to lie in the 

position of the nicotinamide ring. In the NADH-bound form the rings are buried 

1     2    3    4    5   6    7    8    9   10 
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Figure 5.12: Structural view of the sensory triad and salt-bridge of T-Rex, in both its NADH-

bound (A) and DNA-bound forms (B). In each case one chain is shown in turquoise and the 

other in blue. The NAD
+
 and NADH molecules are depicted in grey. 
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within the protein and packed against the asymmetrical „flipped in‟ F189. In the 

DNA/NAD+-bound structure the nicotinamide ring points upwards towards the 

adenine moiety (syn), occupying a position that potentially hinders binding of a 

second NAD+ molecule. In the NADH-bound Rex each NADH molecule appears 

to close a solvent accessible channel (Figure 5.8), that would otherwise lead to 

the hydrophobic F189, with the binding of both forcing the F189 into its 

alternative conformation to better accommodate the two cofactors. This 

asymmetry was proposed to play a key role in the redox sensing mechanism of 

Rex. However, surprisingly, a F189A T-Rex mutant apparently retained its 

ability to bind ROP DNA and respond to NADH (data not shown). This suggests 

that this residue is not a critical component of the redox sensing mechanism 

and implies that other residues play crucial signalling roles. As mentioned, a 

correlation between the conformation of D188 (D203) in one chain and the 

„flipped in‟ F189 in the other was identified – this suggested a link between 

NADH binding, F189 altering its conformation, and the ability of D188 to form its 

salt bridge. On closer inspection of this region, it appeared that there may be 

another residue involved – Y98 (Y111), due to its close proximity to both the 

F189 and D188 residues (Figure 5.12). The F189 equivalent in S-Rex, L204, 

had previously been substituted with an alanine – a mutation that drastically 

affected the multimeric state of the protein (D. Brekasis, personal 

communication). Mutations of D188 (D203) proved to be similarly problematic 

(Section 5.4.1), and so particular attention was paid to Y98 (Y111). The alanine-

substituted RexY111A had already been successfully generated and appeared to 

be both dimeric and stable (D. Brekasis, personal communication). To 

complement this mutation a more conservative substitution, to phenylalanine, 

was generated which would potentially still allow NADH binding but lacking the 

charge that would normally provide an interaction with D203. Another mutation 

was also generated replacing the tyrosine with an arginine; an arginine might 

still be able to interact with D203 but no longer able to interact with NADH.  It 

was predicted that this would result in an NADH unresponsive protein. The two 

mutations were introduced using primers Y111F_F, Y111F_R, Y111R_F and 

Y111R_R on the pSX142 construct. The resultant fragments were then isolated 

using NdeI/BamHI and ligated into pET15b for overexpression. The RexY111R 

protein did not express well but sufficient quantities were obtained for EMSA 
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analysis. Apparently this protein was folded, as judged by CD (McLaughlin et 

al., 2010), but did not co-purify with NADH and did not bind to ROP (Figure 

5.13). RexY111F and RexY111A however produced a shift akin to that of the wild 

type protein (Figure 5.13).  

 

 

 

 

 

 

 

 

 

 

Figure 5.13: EMSA analysis to determine the effect of mutagenesis on the DNA binding ability 
of Rex. Reactions consisted of 1ng γ

32
P-labelled probe (ROP

Rex
), 1µg herring sperm DNA, 

either 10nM (lane 2); 25nM (lane 3); 50nM (lane 4); 75nM (lane 5); 100nM (lane 6); 250nM 
(lane 7); 500nM (lane 8); 750nM (lane 9) or 1µM Rex (lane 10) and 1x binding buffer. Lane 1 
contained probe and binding buffer alone. 

 

In order to assess whether these mutations had indeed affected the NADH 

sensitivity of Rex an equilibrium-based SPR method was devised. From our 

previous observations of the consensus ROP site it appeared that residues and 

positions 1 and 18 played an important role in stabilising DNA-Rex complexes 

(Section 3.3.3). It was therefore considered that a 16bp ROP site would 

generate a specific interaction with Rex but not a stable one. In an SPR assay, 

this effectively increases the off-rate, allowing the system to reach equilibrium 

during an injection – crucially without saturating the sensor surface. For each 

injection the RU value was recorded at the point of equilibrium. For each Rex 

construct the RU of a protein only injection was taken as the maximum 

response possible. All injections containing NADH were then compared to this 

as a percentage of the maximum response (%Rmax). This method was applied 

to RexWT, RexY111A and RexY111F with NADH concentrations ranging from 180nM 

to 50μM for RexWT and RexY111F, and from 90nM to 150μM for RexY111A. The 
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discrepancy between the initial added NADH concentrations was because as-

purified RexY111A was only half saturated with NADH, whereas the RexY111F and 

wt proteins contained 1:1 stoichiometric NADH. In each case the protein 

concentration was fixed at 180nM and was injected at a flow rate of 30μl/min for 

4 minutes. The resulting curves are shown in Figure 5.14.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: SPR data for Rex
WT

, Rex
Y111F

 and Rex
Y111A

 mutants. The RU values were obtained 
for each across an NADH concentration range, in triplicate, and compared to a protein only 
control. The protein concentration was fixed at 180nM and each cycle consisted of a 120µl 
injection at a rate of 30µl/min, followed by 30µl of 1M NaCl. The minimum NADH concentration 
of each curve was determined by the amount of NADH that had co-purified with each protein; 
180nM for both Rex

WT
 and Rex

Y111F
, and 90nM for Rex

Y111A
. 

 

The curve shapes are near identical for RexWT and RexY111F. However, the 

phenylalanine mutation shifted the curve to the right – indicating that more 

NADH was required to give the same response. The IC50 was read as the mid-

point between the start and end plateaus and gave values of 0.79±0.07 and 

2.46±0.27 M NADH for RexWT and, RexY111F, respectively. In the case of 

RexY111A, although NADH inhibited Rex-ROP interactions, there remained a 

population of protein that would not fully dissociate. This suggested that there 

might be a mixed population of protein conformers, with some binding to DNA in 

a non-responsive form. Nonetheless, the IC50 for RexY111A was predicted to be 

4.57±0.71. Y111 plays an important role in redox sensing. Any attempts to 
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disrupt this residue resulted in a reduced response to NADH (RexY111A and 

RexY111F), or an inability to bind DNA at all (RexY111R). The repositioning of this 

residue, upon NADH binding, places the hydroxyl group in proximity to D203, 

forming a hydrogen bond, breaking the salt-bridge and destabilising the DNA-

bound form. Conversely upon DNA binding Y111 forms a hydrogen bond with 

NAD+, freeing D203 to form a stabilising salt bridge with R23. Thus this residue 

has roles in both forms of Rex. 

 
 
Section 5.5 – A single chain Rex 
 

he structure of Rex bound to NAD+ (and DNA) or NADH revealed 

differences in stoichiometry and in the position of the nicotinamide ring. A 

crucial question is whether the binding of one or two NADH molecules is 

required to dissociate Rex. However, since Rex is dimeric, mutations affect the 

equivalent position in both subunits which impedes the construction of a mutant 

that can only bind a single NADH. One way to solve this problem is to generate 

a single-chain dimer that allows the specific mutation of one “subunit”. Such an 

approach was used to test the importance of stoichiometry in tetracycline 

binding to TetR (Krueger et al., 2003). A single chain mutant would also allow 

more detailed investigation of Rex-ROP interactions at half-sites.  

 
 
   Section 5.5.1 – RexSC design and execution 

 

There are two ways to generate a mixed species homodimer: express both 

copies separately then selectively purify the heterodimer; or translationally fuse 

the two copies together. In this study only the latter approach was taken. In 

each case homologous recombination between closely related sequences  is a 

potential problem that can result in plasmid instability. To overcome this, a 

second copy of rex was redesigned using synonymous codons, which should 

limit recombination, while maintaining optimum codon usage for gene 

expression in E. coli. The sequence of rex was therefore altered using the 

bioinformatic tool Silent Wizard (Damerell, 2007). This tool was run with the   

T 
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                    M  A  H  R  P  A  T  R  S  R  G  I  P  E  A  T  V  A  R  L 

    Rex_Synth       ATGGCGCATCGCCCTGCCACGCGTTCGCGCGGCATCCCGGAAGCGACGGTGGCGCGCCTG 60 

    Rex             ATGGCACACCGACCGGCGACCCGCAGCCGAGGGATTCCCGAGGCCACCGTCGCCAGGCTT 60 

                    ***** ** ** ** ** ** **    ** ** ** ** ** ** ** ** **  * **  

 

                    P  L  Y  L  R  A  L  T  A  L  S  E  R  S  V  P  T  V  S  S 

    Rex_Synth       CCTTTATATCTGCGTGCGTTAACGGCCTTAAGCGAACGTAGCGTTCCGACCGTGAGCAGC 120 

    Rex             CCGCTGTACCTCCGCGCACTGACCGCGCTGTCCGAGCGCTCGGTGCCCACGGTCTCCTCC 120 

                    **  * ** ** ** **  * ** **  *   *** **    ** ** ** **   *  * 

 

                    E  E  L  A  A  A  A  G  V  N  S  A  K  L  R  K  D  F  S  Y 

    Rex_Synth       GAAGAATTAGCCGCGGCGGCCGGCGTGAATAGCGCCAAATTACGTAAAGATTTTAGCTAT 180 

    Rex             GAGGAGCTGGCGGCCGCCGCGGGGGTCAACTCCGCGAAGCTGCGCAAGGACTTCTCCTAC 180 

                    ** **  * ** ** ** ** ** ** **   *** **  * ** ** ** **   ***  

 

                    L  G  S  Y  G  T  R  G  V  G  Y  D  V  E  Y  L  V  Y  Q  I 

    Rex_Synth       CTGGGTAGCTATGGCACGCGTGGCGTGGGTTATGATGTGGAATACCTGGTGTATCAAATT 240 

    Rex             CTCGGCTCCTACGGGACCCGCGGTGTCGGCTACGACGTCGAGTATCTCGTCTACCAGATC 240 

                    ** **   *** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **  

 

                    S  R  E  L  G  L  T  Q  D  W  P  V  V  I  V  G  I  G  N  L 

    Rex_Synth       AGCCGTGAGCTGGGTCTGACGCAAGATTGGCCTGTGGTTATTGTGGGCATTGGTAATCTG 300 

    Rex             TCGCGCGAACTCGGCCTCACCCAGGACTGGCCGGTTGTGATCGTCGGTATCGGCAACCTC 300 

                       ** ** ** ** ** ** ** ** ***** ** ** ** ** ** ** ** ** **  

 

                    G  A  A  L  A  N  Y  G  G  F  A  S  R  G  F  R  V  A  A  L 

    Rex_Synth       GGCGCGGCCCTGGCGAATTATGGCGGCTTTGCGAGCCGTGGCTTTCGTGTGGCGGCCCTG 360 

    Rex             GGTGCCGCGCTCGCCAACTACGGTGGTTTCGCCTCCCGCGGGTTCCGCGTCGCCGCGCTC 360 

                    ** ** ** ** ** ** ** ** ** ** **   *** ** ** ** ** ** ** **  

 

                    I  D  A  D  P  G  M  A  G  K  P  V  A  G  I  P  V  Q  H  T 

    Rex_Synth       ATTGATGCGGACCCTGGCATGGCGGGCAAACCGGTGGCGGGTATTCCTGTTCAACATACG 420 

    Rex             ATCGACGCCGATCCGGGAATGGCCGGAAAGCCCGTCGCCGGCATCCCGGTGCAGCACACC 420 

                    ** ** ** ** ** ** ***** ** ** ** ** ** ** ** ** ** ** ** **  

 

                    D  E  L  E  K  I  I  Q  D  D  G  V  S  I  G  V  I  A  T  P 

    Rex_Synth       GATGAATTAGAAAAAATTATTCAAGATGATGGCGTGAGCATTGGCGTTATTGCCACGCCG 480 

    Rex             GACGAGCTGGAGAAGATCATCCAGGACGACGGTGTCTCGATCGGTGTGATCGCGACCCCC 480 

                     ** **  * ** ** ** ** ** ** ** ** **    ** ** ** ** ** ** **  

 

                    A  G  A  A  Q  Q  V  C  D  R  L  V  A  A  G  V  T  S  I  L 

    Rex_Synth       GCGGGTGCGGCGCAACAAGTGTGTGATCGTCTGGTTGCGGCGGGCGTGACGAGCATTTTA 540 

    Rex             GCCGGCGCCGCCCAGCAGGTCTGCGACCGCCTCGTGGCCGCCGGTGTCACCTCCATCCTG 540 

                    ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **   ***  *  

 

                    N  F  A  P  T  V  L  N  V  P  E  G  V  D  V  R  K  V  D  L 

    Rex_Synth       AATTTTGCCCCTACGGTTTTAAATGTGCCGGAAGGTGTGGATGTTCGTAAAGTGGATCTG 600 

    Rex             AACTTCGCGCCGACCGTGCTGAACGTCCCCGAGGGCGTCGACGTGCGCAAGGTCGACCTC 600 

                    ** ** ** ** ** **  * ** ** ** ** ** ** ** ** ** ** ** ** **  

 

                    S  I  E  L  Q  I  L  A  F  H  E  Q  R  K  A  G  E  E  A  A 

    Rex_Synth       AGCATTGAATTACAAATTCTGGCGTTTCATGAACAACGTAAAGCCGGTGAAGAAGCGGCC 660 

    Rex             TCCATCGAGCTGCAGATCCTCGCCTTCCACGAGCAGCGCAAGGCGGGCGAGGAGGCCGCG 660 

                      *** **  * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **  

  

                    A  D  G  A  A  P  P  V  A 

    Rex_Synth       GCGGATGGTGCGGCGCCTCCGGTGGCG 687 

    Rex             GCCGACGGCGCCGCACCGCCCGTCGCC 687 

                     ** ** ** ** ** ** ** ** **  

 

 

      

             

      L  S  G  G  G  G  S  G  G  G  G  H 

   AAGCTTTCGGGCGGTGGCGGTTCCGGTGGCGGTGGCCATATG 

   TTCGAAAGCCCGCCACCGCCAAGGCCACCGCCACCGGTATAC 

   HindIII           NdeI 

 
 
 
 
 

(SG4)2 linker sequence, 

flanked by sticky ends 

for HindIII and NdeI 
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Figure 5.15: Diagrammatic view of the Rex

SC
 construction. The full sequence of the redesigned 

rex gene (Rex
synth

) is shown on the preceding page as an alignment against the original 

sequence. The sequence of the linker peptide, which joins the two chains, is also shown. 
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option to convert the sequence to one as different as possible with a high 

expression level, using the E. coli K12 codon usage table (Figure 5.15). The 

resulting sequence was then synthesized by GenScript (New Jersey, USA) and 

placed into pUC57. The synthetic rex sequence (rexsynth) was then isolated as a 

BglII/HindIII fragment and introduced into BamHI/HindIII cut pRSF-Duet1, to 

generate pSX408. The original rex fragment was subsequently isolated as an 

NdeI/BamHI fragment from pSX142 and introduced into the equivalent sites in 

pSX408, to create pSX409. Finally, the linker peptide fragment was introduced 

as a HindIII/NdeI fragment, yielding pSX410. The linker chosen was based on 

that of Krueger et al., as they had used the same amino acid repeat pattern 

(Ser-Gly-Gly-Gly-Gly) to successfully generate a TetR fusion (Krueger et al., 

2003). As the gap between the C- and N-termini of Rex (maximum distance of 

~16.6Å) appeared to be much shorter than TetR (~59.1Å, based on 1QPI 

biological assembly) only two repeats were used (SG4)2, instead of the five used 

for TetR. The full sequence of the linker peptide, and of rexsynth, is shown in 

Figure 5.15, along with an overview of the above protocol for the generation of 

the single-chain Rex (RexSC). Overexpression of the fusion gene produced a 

single soluble protein of ~50 kDa (data not shown). An initial test was performed 

on the protein to check that it was still capable of binding to DNA and 

responding to NADH (Figure 5.16).  

 

 

 

 

 

 

Figure 5.16: EMSA analysis of the Rex
SC

 protein. 1ng of γ
32

P-labelled ROP
rex 

was used in each 
reaction (lane 1), along with 1μg of herring sperm DNA. The amount of protein used was 25nM 
(lane 2), 50nM (3), 100nM (4) and 250nM (5). Lane 6 contained 250nM Rex

SC
 and 100μM 

NADH. All reactions were incubated at 25°C for 20 minutes prior to loading onto a 6% 
polyacrylamide gel. The closed arrow shows the position of the probe, whereas the open arrow 
indicates the shift. 

 

The fusion protein produced a gel shift in EMSA analysis and this was almost 

entirely lost upon the inclusion of 100μM NADH in the reaction mixture. It would 

appear that the functionality of Rex was maintained in RexSC. The rexSC 

 1      2       3       4      5       6 



157 

Chapter 5 

fragment was subsequently transferred into pET15b using the NcoI/BamHI 

sites, yielding pSX411, which was more in line with all previous Rex 

overexpression work. 

 

   Section 5.5.2 – RexSC mutagenesis 
 

Can a single NADH can trigger Rex dissociation? In order to assess whether 

a single NADH molecule could trigger Rex dissociation, the G102A super-

repressor mutation was introduced into the RexSC construct as an NdeI-BamHI 

fragment from pSX142::G102A (pSX411::G102A). For mutagenesis of the 

synthetic region, in order to create double site controls, the region had to be 

isolated from pET15b::RexSC using EcoO109I and ligated into pBlueScript II 

SK+ cut with the same enzyme, to generate pSX412. This was then used as a 

template for PCR, with primers G102A_SC_F and G102A_SC_R. The resulting 

fragment was isolated using NcoI/NdeI and introduced into the same sites of 

pSX411::G102A. The single site mutant was annotated as RexSC::G102A and 

double site mutant as RexSC::G102A::G102A. The resultant proteins were expressed 

and purified, including the RexSC wild type protein. The three proteins were then 

analysed by SPR in order to assess their NADH-responsiveness (Figure 5.17).  

 

 

 

 

 

 

 

 

 

 

Figure 5.17: SPR data for the Rex
SC

 mutants: WT; G102A and G102A::G102A. The flow rate 
was kept constant at 30μl/min, with an injection volume of 120μl 180nM Rex, 60μl of 5μM 
NADH and 30μl 2M MgCl2. The points labelled i and ii indicate the beginning and end of the 
protein injections, respectively. Points iii and iv indicate the start and end of the NADH 
injections. Note that the axes labels have been redrawn for clarity but are still to the same scale. 
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The result was a rapid drop in the response up to the point where the injection 

ended. However, whereas RexSC was completely dissociated by NADH 

RexSC::G102A was not. This suggests that the RexSC::G102A is still capable of 

responding to NADH but with reduced affinity for the inhibitor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: SPR data for the Rex
SC

 mutants: WT; K60A and K60A::K60A. (A) Raw data 
showing the response curves for each protein. (B) Binding curves showing the change in 
response units over a protein concentration in each case. The flow rate was kept constant at 
30μl/min, with an injection volume of 120μl of Rex and 30μl 2M MgCl2. The Rex concentrations 
were (A) 180nM and (B) 10, 50, 100, 150, 200, 250, 500, 750 and 1000nM. The points labelled i 
and ii indicate the beginning and end of the protein injections, respectively. Note that the axes 
labels have been redrawn for clarity but are still to the same scale. 
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Can Rex recognise DNA via a single DNA-binding domain? The 

identification of the Rex regulon by ChIP-chip revealed several native binding 

sites that appeared to be comprised of only a half-site. This suggested that Rex 

might be able to bind such sites by invoking only key protein-DNA interactions 

in one major groove. To further test this it was decided to remove a key protein-

DNA interaction in one of the recognition helices. As the K60 residue of Rex 

was shown to be essential for DNA binding (Section 5.3.2) it was used to 

disrupt DNA binding in one half of the Rex “dimer”. The mutagenesis scheme 

was as for RexSC::G102A and RexSC::G102A::G102A, using primers K60A_SC_F and 

K60A_SC_R. The resultant proteins were again analysed by SPR (Figure 5.18).  

As had previously been observed the RexSC protein was capable of binding to 

ROP DNA, and consistent with the RexK60A mutant the single chain K60A 

double mutant was also incapable of binding to DNA. The SPR responses for 

the RexSC::K60A mutant were much lower than those of wild type RexSC, however 

the protein did appear to bind specifically to ROPnuo. This result would suggest 

that although two functional DNA-binding domains are required for stable 

complex formation, a protein with only one active DNA-binding domain can still 

interact with a ROP operator. It was noted that none of the RexSC proteins co-

purified with any discernable NADH; the proteins all nevertheless bound 

specifically to ROP instead of the randomised DNA on a preceding lane of the 

sensor chip. Unfortunately all of the single-chain proteins were slightly unstable, 

possibly due to the lack of NADH or an affect of the fusion itself, as a noticeable 

decline was observed in the response maximum over time. Due to this it has not 

been possible to determine Kds or IC50s for these proteins. This issue would 

need to be addressed before proceeding any further with this system. 

 

 
 
Section 5.6 – Conclusions 
 

ex consists of two DNA-binding domains, which co-ordinate the dyad 

symmetrical repeat (TTGTGAA-n4-TTCACAA). By a combination of 

structural analysis and mutagenesis this study has demonstrated the 

importance of two positively charged residues, R46 and K47 (T-Rex), in forming 

R 
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a tight Rex-ROP complex. However, Rex has also been shown to interact with 

regions lacking a full operator site, containing TTGTGAA alone (Section 3.3.5). 

Through use of a single-chain Rex construct, the ability of a single DNA-binding 

domain to form a specific interaction with ROP DNA was shown. However, this 

interaction was much weaker than its wt counterpart, suggesting that a single 

DNA-binding domain can interact with a target site but that both are required for 

tight binding. NADH-bound Rex adopts a conformation that is incompatible with 

DNA binding (Sickmier et al., 2005). Comparison with the DNA-bound structure 

reveals a 43° rotation, centred at residue D188 (T-Rex), which re-positions the 

DNA-binding domains into adjacent major grooves of the DNA. The structure of 

an NADH-binding mutant, RexR90D, has also been determined (McLaughlin et 

al., 2010). The relative Cα positions of this and DNA-bound T-RexWT were 

identical, with the apo-Rex locked in the DNA-bound conformation. This would 

implicate NADH, not DNA, as the modulator of the structural alterations to Rex. 

The relationship between NADH dissociation and DNA-binding has been a 

major theme of this work. By studying the difference in the NADH- and DNA-

bound structures, a model whereby NADH binding triggers a massive 

conformational change is proposed (Figure 5.19). Several factors are involved 

centring around a sensory triad at the heart of the protein, involving residues 

R16, Y98 and D188 (T-Rex). The mechanism relies on the ability of D188 to 

switch bond partners between R16 (DNA-bound) and Y98 (NADH-bound). 

DNA-/NAD+-bound Rex contains a R16-D188‟ salt bridge on each side of the 

protein, stabilising the Rex-ROP complex. Within this structure one NAD+ 

molecule occupies a single NAD(H) binding site, and adopts a syn 

conformation. This is a conformation NADH is not able to adopt due to a steric 

clash with A94; the same residue is also responsible for the lack of anti NAD+. 

The syn conformation of NAD+ is stabilised by an intra-molecular hydrogen 

bond. The absence of a second NAD+ within DNA-bound Rex is most likely due 

to the electrostatic repulsion that would occur between the two cofactors. 

Conversely the binding of two anti NADH molecules is possible and requires the 

repositioning of F189 between the two cofactors („flipped in‟). Upon NADH 

dissociation, the phenylalanine is permitted to „flip out‟ allowing the structure to 

rotate on its axis. This movement repositions Y98 and D188, breaking the 
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hydrogen bond and freeing D188 to form a salt bridge with R16‟, which has 

drawn closer by the movements. This bond forms on each face and locks Rex 

into its DNA-bound state. Discovery of the sensory triad of Rex has provided a 

unique insight into the redox sensing mechanism of the Rex-family repressors. 

 

 

 

 

 

 

 

 

Figure 5.19: A model for redox sensing in Rex highlighting the importance of sensory triad 

residues: R16; Y98 and D188. The repositioning and alteration in bond partners during the 

switch from DNA- to NADH-bound forms is indicated above. Figure adapted from (McLaughlin 

et al., 2010). 

Studies on the RexSC NADH-binding mutants have proven interesting, despite 

requiring further work. As all of the single chain proteins lack NADH one would 

expect that they must adopt a DNA-bound conformation when purified. They all 

bind specifically to ROP DNA and have comparable natural off-rates, 

suggesting stability on the DNA is unaltered. Upon NADH injection both the 

RexSC wt and RexSC::G102A proteins will dissociate, however rapid dissociation 

appears to require the binding of two NADH molecules (wt). Nonetheless, the 

single site mutant will respond to NADH but is much less sensitive. This 

suggests that the presence of one NADH within the protein is enough to trigger 

the structural changes associated with full NADH-binding. For example, a single 

binding event might break one of the salt-bridges forming an unstable 

intermediate, which cannot bind a second NADH. This would present two 

possible options: (1) succumb to the reduced stability and dissociate from the 

DNA, or (2) await NADH-dissociation and re-form the salt-bridge. Clearly, 

further studies are required; for example it is likely that full NADH-induced 

dissociation is possible for the single binding site mutant at higher NADH 
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concentrations, as this would presumably increase the on-rate of NADH onto 

the protein thus making option two unfeasible. 

Salt-bridges are a common occurrence in transcription factor structures (e.g. 

PhoP, SlyA, DesT, etc). However inter-chain salt-bridges, like the ones in Rex, 

that stabilise the DNA-bound form alone are rare. There was however a recently 

identified example; RAG1. RAG1 is a eukaryotic protein involved in V(D)J 

recombination during lymphocyte development (Yin et al., 2009). RAG1 binds to 

two DNA molecules and, through homo-dimerisation, „tethers‟ them together 

(Yin et al., 2009). This dimerisation requires one of its α-helices to „kink‟ in the 

middle, positioning one end in the major groove of the DNA and the other 

located to interact with the other subunit (Yin et al., 2009). Stabilisation of this 

kink requires the formation of a salt-bridge between an arginine on one subunit 

and a glutamate of the other, deletion of which had a severe effect on DNA-

binding (Yin et al., 2009). 

The triad components are highly conserved across the Rex homologues (R16 ~ 

85%, Y98 ~ 77% and D188 ~ 81%). However, only three homologues have had 

their crystal structures solved: T. aquaticus, T. thermophilus and B. subtilis 

(Nakamura et al., 2007, Wang et al., 2008). The structure of Tth-Rex is 

extremely similar to T-Rex, as is expected from two species of the same genus, 

perhaps especially so given that these are both thermophiles and so any 

divergence in the sequences could potentially have drastic effects on protein 

stability at their native temperatures. The elements of the B-Rex protein are 

conserved but the overall conformation is quite different due to a crystal packing 

issue. Unfortunately T-Rex is the only homologue to have both its NADH- and 

DNA-bound structures determined thus it is not yet possible to compare the 

salt-bridge function in other species. Its conservation would however suggest it 

is also functionally important within these proteins. 
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“From error to error, one discovers the entire truth.” 

Sigmund Freud (1856-1939) 
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Section 6.1 – Overview 
 

acterial respiratory chains can vary greatly, incorporating  components 

akin to those of eukaryotic mitochondria or plant photosystems, and can 

be adapted to use whatever substrates and terminal electron acceptors that are 

available to them. For a strict aerobe such as S. coelicolor, anaerobic growth is 

not an option, posing quite a challenge for a soil-dwelling microbe faced with 

frequent bouts of oxygen limitation (van Keulen et al., 2003). In other bacteria 

oxygen deprivation is a key signal, direct or indirect, to switch from aerobic to 

anaerobic pathways – a much less energy efficient process (Poole and Cook, 

2000, Unden and Bongaerts, 1997). In S. coelicolor it is a signal to adapt the 

aerobic respiratory chain to continue energy generation at lower oxygen 

concentrations. One example of this is induction of the cytochrome bd terminal 

oxidase, which is thought to have a higher affinity for oxygen, allowing aerobic 

respiration to continue at lower oxygen tensions (Poole and Cook, 2000). As 

these alternative pathways are generally less efficient at energy generation it 

would not make sense for the organisms to induce them under aerated 

conditions; thus tight control is important for maximising ATP yield. In order to 

switch these systems on and off, as required, Gram positive bacteria, including 

S. coelicolor  have evolved a novel transcriptional repressor; Rex (Brekasis, 

2005, Brekasis and Paget, 2003). Rex is able to directly sense a shift in the 

NADH/NAD+ redox poise that is caused by oxygen limitation (Brekasis, 2005, 

Brekasis and Paget, 2003). Binding to operators to repress during aeration and 

dissociating when NADH levels rise (Figure 6.1). Other bacterial redox sensors 

exist, e.g. ArcAB, ResDE, Fnr, but Rex appears to be unique in its method of 

redox sensing. Previous work had focused on identifying and characterising this 

protein as a redox-sensitive repressor (Brekasis, 2005, Brekasis and Paget, 

2003, Sickmier et al., 2005). The current study has focused on characterising 

the Rex regulon and dissecting the mechanism through which it conveys the 

binding of NADH in one domain to a distinct DNA-binding domain. 
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Figure 6.1: Overview of the changes in redox poise, and the resultant change in the regulation 

by Rex, that occur when cells switch between aerobic and microaerobic growth. 

 
 
 
   Section 6.1.1 – The Rex operator site 
 

During this study ChIP-on-chip was used to identify 22 new Rex binding sites in 

vivo. The binding to six of these sites was confirmed in vitro by EMSA analysis; 

in the promoters of genes: SCO1930, SCO3101, SCO3547, SCO5207 and 

SCO6168, and in the region between divergent genes: SCO5408 and 

SCO5409. By devising a more sensitive binding analysis method, using SPR, a 

further 3 sites were tested and shown to interact with Rex; SCO6218/9, 

SCO6239 and SCO6917. Analysis of the sequences of all of ChIP-chip sites 

revealed two classes of ROP site; strong and weak binders. Furthermore this 

revealed that the S-Rex recognition site was specific to an 18 bp operator site, 

not 16 bp as had previously been reported. The strong sites were defined by the 

presence of both the „GTG‟ and „CAC‟ elements of the consensus ROP site 

(ttGTGaa-n4-ttCACaa) and by their ability to withstand a gel shift when bound to 
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Rex. Weak sites were lacking all or most of these conserved elements, but 

interestingly only in one half of the ROP site. This finding was further supported 

by use of a single-site DNA-binding mutant. Rex can still interact with specific 

DNA in this form but is unable to form a stable Rex-ROP complex. The 

repression method of these weaker sites remains unclear as one would expect 

that the binding would be too weak for simple promoter occlusion. However it is 

possible that the binding is stabilised by either another protein or simply by the 

DNA topology in vivo, which would explain the enrichment observed for these 

sites during ChIP-on-chip, but failure to bind in vitro. 

Rex is apparently not unique in its ability to recognise half-sites, CtrA is a cell-

cyle regulator of Caulobacter crescentus that is also able to do so (Spencer et 

al., 2009). CtrA is activated by phosphorylation, which increases its affinity for a 

15 bp site (Spencer et al., 2009). However, CtrA can also recognise half-sites 

but with weaker affinity than the full binding site (Spencer et al., 2009). The 

affinity for the half-site is unaltered by phosphorylation of CtrA, and the affinity 

for the full site is comparable when CtrA is in this state, allowing occupation of 

the weaker sites (Spencer et al., 2009). Interestingly other sequence elements 

surrounding the half-site appear to stimulate binding; these elements are 

however not required by the full CtrA site (Spencer et al., 2009).  

It is not yet clear what the function of these sites is due to the weakness of the 

interaction. It would however be interesting to determine the redox sensitivity of 

these sites as this may indicate their purpose, i.e. if they are more sensitive to 

NADH then they may allow for a more rapid derepression of the targets and if 

they were less sensitive then they would allow for differential derepression of 

target genes. 

 
   Section 6.1.2 – Homeostatic redox control 
 

Rex is not an essential gene in S. coelicolor but overexpression of the rexG102A 

super-repressor was lethal. The cause of the toxicity was most likely the inability 

to rapidly de-repress one or more target genes. Given the essential nature of 

ndh this would seem an obvious source of the RexG102A toxicity. However this 

was not supported by the RT-qPCR data. The position of the tightest ROP site 
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in the ndh promoter (~300 bp upstream) would also suggest that this was not 

the target responsible. Another possibility is the rex-hemACD operon. 

Previously it was shown that mutations in rex have a polar effect on the 

downstream hemACD genes resulting in very poor growth (Brekasis and Paget 

2003). Rex also binds upstream of the essential ATP synthase operon although 

it is not clear how tightly this operon is controlled by Rex. As the inhibitory effect 

of the super-repressor was only observed on solid media it is also possible that 

the effect is only caused under these conditions. As nuo (NDH-1) appears to be 

constitutively active during growth on solid media it would seem possible that 

may be responsible, however the growth inhibition for the nuo disruption strain 

(nuodeg) was not as severe as observed for the super-repressor. Another  gene 

potentially linked to growth on solid media is wblE, however this gene has 

successfully been deleted by others without any noticeable effects on growth 

(Homerova et al., 2003). One possible culprit is resA, of the cytochrome 

biogenesis operon. This gene gave a high enrichment by ChIP-on-chip (20.84-

fold), and also produces a gel-shift during EMSA analysis (D. Brekasis, 

personal communication). Interestingly the cytochrome biogenesis operon 

(resABC) of B. subtilis appears to be essential (Sun et al., 1996). 

The ndh gene is not just regulated by Rex; it also plays an important role in the 

regulation of Rex. By depleting ndh from the cells the ability of Rex to repress 

target gene; cydA, was disrupted. Thus by depriving the cells of NDH-2 the 

NADH/NAD+ ratio was altered enough to cause the dissociation of Rex. When 

both Rex and NDH-2 are present in the cell they will act upon each other, with 

Rex regulating ndh expression and NDH-2 maintaining the redox poise at a 

level at which Rex can repress. This importance of this feedback loop has 

already been shown in B. subtilis (Gyan et al., 2006) and has also been 

demonstrated in S. coelicolor through the work in this study. Interestingly both 

B. subtilis and S. aureus appear to lack Rex operators upstream of their rex 

genes, meaning that in these systems rex does not appear to be auto-regulated 

(Gyan et al., 2006, Larsson et al., 2005, Pagels et al., 2010). Systems that 

employ negative auto-regulation have been shown to reach steady-state much 

faster than non-autoregulated systems, due to the production being linked to the 
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product (Rosenfeld et al., 2002). This potentially speeds up the reaction time in 

response to changes in the redox poise within the S. coelicolor system. 

It has been reported previously that Rex acts as a redox sensor, not just an 

NADH sensor, by detecting differences in the NADH/NAD+ redox poise 

(Brekasis and Paget, 2003, Sickmier et al., 2005). Interestingly it appears that 

NADH is the only cofactor capable of modulating the structure of Rex, NAD+ 

has no stabilising effect on DNA-binding (McLaughlin et al., 2010). Thus it 

would seem that NAD+ functions as a competitive inhibitor by blocking the 

NADH-binding site. 

 
   Section 6.1.3 – A conserved salt-bridge is essential for Rex functionality 
 

Rex is a dimeric protein containing three structural domains: (1) DNA-binding, 

(2) NAD(H)-binding and (3) domain-swapped helix (McLaughlin et al., 2010, 

Sickmier et al., 2005). The binding domains for DNA and NADH are physically 

separated by the third domain from the opposing chain, and yet NADH binding 

is able to destabilise DNA-binding. Based on the location of the domain 

swapped helix this had seemed an obvious means of signal relay between 

domains, an assumption that proved to be right. A residue at the base of this 

helix; D188 (T-Rex nomenclature), has a vital role in sensing and responding to 

redox stress (McLaughlin et al., 2010). The D188, along with R16 and Y98 (T-

Rex), form a sensory triad at the centre of Rex. By altering the conformations of 

each of these residues, a salt-bridge between D188 and R16, of the DNA-

binding domain, is formed or broken to stabilise and destabilise the Rex-ROP 

complex, respectively. The sensory triad residues adopt different conformations 

depending on the occupancy of the NADH binding site. This discovery has 

unveiled a mechanistic link between the two functions of Rex; DNA-binding and 

redox-sensing, furthering our understanding of how this novel repressor 

operates in vivo. 

 
   Section 6.1.4 – The regulon 
 

Expansion of the regulon by ChIP-on-chip proved successful; however very little 

is known of the majority of the newly identified targets. In other systems Rex 
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has been shown to regulate genes involved in fermentative pathways, such as 

lactate dehydrogenase and lactate permease (Pagels et al., 2010, Wang et al., 

2008). However, the genes while present in the S. coelicolor genome are not 

present in the Rex regulon. In the B. subtilis system, both ndh and cydABCD 

are also Rex regulated (Gyan et al., 2006, Larsson et al., 2005). The S. aureus 

Rex regulon however appears to be particularly geared towards anaerobic 

growth, in addition to ldh genes it contains nirC, nirR, narG (nitrate/nitrite 

reduction), as well as alcohol dehydrogenases; adh1 and adhE (Pagels et al., 

2010). S. coelicolor does not appear to be capable of anaerobic growth, thus 

perhaps explaining the lack of these genes in the Rex regulon. It is however 

able to survive long bouts of oxygen limitation (van Keulen et al., 2007). 

Interestingly within the list of Rex targets were the genes encoding the oxidative 

stress response regulator, oxyR, and the alkyl hydroperoxidase, ahpC. These 

genes appear to be lacking from the regulons of both SA-Rex and B-Rex. It is 

proposed that NDH-2 is a major source of peroxide in E. coli (Messner and 

Imlay, 1999, Seaver and Imlay, 2004). Therefore OxyR may have a protective 

role during redox stress due to the derepression and subsequent expression of 

ndh. The induction of oxyR in response to Rex de-repression is however yet to 

be confirmed. 

 

    

Section 6.2 – Rex – what’s next? 
 

he regulon has been expanded to include 22 new bindings sites, however 

the regulation of these sites has not been confirmed. The strength of 

binding to each of these sites varies, as does the distance from the annotated 

start sites of the target genes. Despite having a good knowledge of the 

mechanism of action of Rex it is still not known how Rex alters gene 

expression. It is assumed that it blocks polymerase progression but this has not 

been confirmed. It is also possible that Rex precludes the binding of other 

regulators involved in other stress responses. 

 
   Section 6.2.1 – The regulon and its regulation by Rex 
 

T 
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There are a number of approaches that could be used to study the expression 

of genes, e.g. microarrays or RT-qPCR using cDNA, and S1 nuclease 

protection assays using RNA. The limitation of these methods for use with the 

Rex system is that they require the target gene to be expressed in the absence 

of Rex, which as has previously been observed it not always the case. One 

approach attempted in this study was the use of the super-repressor strain 

S106 (rexG102A), to emphasize any repression by Rex; however high level 

expression of this protein was toxic to the cells. The protein does not hinder 

growth when under the control of its own promoter, thus it may still be a useful 

construct that simply requires optimisation. For example the use of this strain in 

combination with other stress inducers may be enough to stimulate expression 

of a number of targets, which would be hindered by the RexG102A protein. It is 

already possible to speculate about the possible inducers of some targets, for 

example: the use of peroxide to induce oxyR/ahpC, or the use of phosphate 

limitation to induce Pho-regulon members; SCO3790, SCO3791 and SCO7697. 

Even general alterations to the carbon or nitrogen sources may impact 

expression by altering the metabolic pathways used. From what is known of 

oxygen limitation sensors one would also expect that nitric oxide or carbon 

monoxide treatment, or even different means of oxygen limitation such as 

displacement with argon gas, may impact the transcription profiles of Rex-

targeted genes, allowing their regulation to be investigated.  

As for how Rex regulates these genes – ideally this requires a combination of 

DNAse footprinting to map the binding site, and S1 nuclease protection assay 

(or RNA-seq) to map the transcriptional start sites of the genes. If Rex binds 

within a transcript then it likely represses by blocking RNAP progression, if 

overlapping potential -10 and -35 boxes then it is promoter occlusion but if the 

ROP site lies further upstream then another means of repression is being 

adopted. Therefore by mapping the ROP site and the transcriptional start site 

one can begin to investigate how Rex alters the gene expression of its target. 

From what has been observed of expression of both type I and II NADH 

dehydrogenases (ndh and nuo) Rex is not always the sole regulator of a gene 

thus another means of studying the regulation would be to map the positions of 

other regulators. By identifying these sites and potentially even characterising 
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the strength of binding of each one could build a picture of when and why a 

gene is induced in vivo. Other sampling methods could also be adopted as the 

majority of RNA harvesting has been done from late-exponential liquid cultures, 

not necessarily providing a full story of the role of Rex in cells. The solid media 

approach worked well for studying nuo expression but ideally harvesting would 

be done for each layer within the cultures (substrate hyphae and aerial mycelia) 

in order to account for the differences in oxygen availability at each layer. With 

the emergence of more sensitive transcriptomic analysis methods such as 

RNA-seq/RT-qPCR this is becoming more feasible as lower sample quantities 

are required. Having already characterised the way in which the Rex protein 

functions the next step is to map the biological role of Rex under all growth 

stages and culture conditions.  
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Supplementary Materials 
 

 

Table S1: The composition of samples used in each hybridisation chamber of the ChIP-on-chip 

microarray slide. For each strain 2 samples were labelled with Cy3 and two with Cy5 – 

constituting a dye match. The samples in chamber 4 were a mixture of biological replicates in 

order to generate a large enough test amount (~150ng). 

Chamber Strain Replicate Label 

1 S106 (pSX402) 1 Cy5 

 
S106 (pSET152) 2 Cy3 

2 S106 (pSX402) 1 Cy3 

 
S106 (pSET152) 2 Cy5 

3 S106 (pSX402) 2 Cy5 

 
S106 (pSET152) 1 Cy3 

4 S106 (pSX402) 1,2,3 Cy3 

 
S106 (pSET152) 2,3 Cy5 



187 

 

Appendix 

Figure S1: Genomic location and signal enrichment for the Rex targets that were identified by 

ChIP-on-chip. Regions were viewed using Chip Browser and the target gene in each case is 

indicated above. 
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Previously identified sites  Newly identified sites 

SCO3945 (cydA) SCO1930  

SCO3092 (ndh) SCO2370/1 (aceE2) 

SCO4562 (nuoA) SCO3101  

SCO5366 (atpI) SCO3137 (galE1) 

SCO5240 (wblE) SCO3547 (hppA) 

SCO3320 (rex) SCO3615/6* (ask) 

SCO4280/1* SCO3790/1*  

SCO4472 (resA) SCO4461/2*  

 
SCO5013  

 
SCO5032/3* (ahpC/oxyR) 

 
SCO5207  

 
SCO5408/9*  

 
SCO5435/6* (dcuS/dctA) 

 
SCO5797  

 
SCO5810/1*  

 
SCO6168  

 
SCO6218/9* 

 
SCO6239  

 
SCO6280 (cpkO) 

 
SCO6383  

 
SCO6917  

 
SCO7697 (phyC) 

 

 

Table S2: Comparison of previously identified ROP sites with newly identified sites, as identified 

by ChIP-on-chip. The * indicates a site present in the intergenic region between two divergent 

genes. 
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Figure S2: Agarose gel electrophoresis of SacI-cut S. coelicolor cosmid StE25 (lane 3) and ndh 
disruption cosmid (lanes 1 and 2). Samples were digested for 3 hours and analysed on a 1% 
agarose-TBE gel alongside a DNA-ladder (HyperLadder I - Bioline). The diagram on the right-
hand side shows the approximate positions of the SacI restriction sites in each cosmid. The 
presence of the apramycin resistance cassette in the recombinant cosmid is indicated by the 
800bp fragment in lanes 1 and 2, generated by internal sites within the apramycin gene.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

S-Rex M A T G R A H R P A T R S R G I P E A T V A R L P L Y

T-Rex - - - - - - - - - - - - - M K V P E A A I S R L I T Y

- - - - - - - - - - - - - 1 2 3 4 5 6 7 8 9 10 11 12 13 14

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

S-Rex L R A L T A L S E R S V P T V S S E E L A A A A G V N

T-Rex L R I L E E L E A Q G V H R T S S E Q L G E L A Q V T

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

S-Rex S A K L R K D F S Y L G S Y G T R G V G Y D V E Y L V

T-Rex A F Q V R K D L S Y F G S Y G T R G V G Y T V P V L K

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

S-Rex Y Q I S R E L G L T Q D W P V V I V G I G N L G A A L

T-Rex R E L R H I L G L N R K W G L C I V G M G R L G S A L

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

S-Rex A N Y G G F A S R G F R V A A L I D A D P G M A G K P

T-Rex A D Y P G F G - E S F E L R G F F D V D P E K V G R P

96 97 98 99 100 101 102 - 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

S-Rex V A G I P V Q H T D E L E K I I Q D D G V S I G V I A

T-Rex V R G G V I E H V D L L P Q R V P G - R I E I A L L T

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 - 140 141 142 143 144 145 146 147
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163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

S-Rex T P A G A A Q Q V C D R L V A A G V T S I L N F A P T

T-Rex V P R E A A Q K A A D L L V A A G I K G I L N F A P V

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

S-Rex V L N V P E G V D V R K V D L S I E L Q I L A F H E Q

T-Rex V L E V P K E V A V E N V D F L A G L T R L S F A I L

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

S-Rex R K A G E E A A A D G A A P P V A A R K Q Q R S T G S

T-Rex N P K W R E E M M G - - - - - - - - - - - - - - - - -

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

S-Rex A D Q G P D G D V P A V M P A

T-Rex - - - - - - - - - - - - - - -

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

=

=

= STRONGLY CONSERVED (:)

= MATCH (*)

NO MATCH

WEAKLY CONSERVED (.)

 
 

 

 

 

 

 

 

 

 

 

 

 Figure S3: Alignment of S. coelicolor Rex versus T. aquaticus Rex, the structural homologue used as a template for mutagenesis design in this 

 study.  The residue numbers are shown for both proteins at each position and their conservation is indicated by the shading of each square, with the 

 darkest  squares being completely conserved and the lighter squares being similar but not identical. 
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MSB and Kielkopf CL (2010) Structural Basis for NADH/NAD+ Redox Sensing 
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