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Abstract 

The discovery of the novel thermal cyclization of enediyne molecules within the 

Parsons group during studies directed towards the total synthesis of lactonamycin has 

stimulated an intense research into the cyclization of the enediynes.                                                                                                            

In this research different functionalised enediynes were synthesised to investigate:- 

 (i) the scope and limitations of the thermal cyclization reactions,  

(ii) the proposed biradical mechanism for the cyclization reactions,  

(iii) the intermolecular trappings of the proposed biradical, and  

(iv) the effect of sterically demanding groups on the rate of cyclization.  

In the process of testing these objectives, we have been able to synthesize highly 

functionalised heterocyclic rings by simple thermal cyclization reactions without using 

any metal catalyst. We have discovered that the cyclizations may have involved free 

radical mechanism or an ene reaction, followed by a Diels – Alder cycloaddition 

reactions. Interestingly the cyclised compound 2.1 shows two stereogenic centres at C2 

and C4 with an absolute configuration of R and S respectively. An in-depth exploration 

of the stereochemistry of these reactions may increase their application in controlling 

the stereochemistry of ring systems through simple metal free thermal cyclization 

reactions. Confirmation of the specific mechanism constitutes an ongoing research 

within the Parsons group.  Conclusively cyclization of highly functionalised enediynes 

had been proved to be a versatile route to the synthesis of diverse heterocyclic 

compounds. The ease of cyclizations of a majority of the enediynes in this study has 

shown that functionalisation and diversification of the core enediyne systems could be 

utilized in the synthesis of pharmaceutically important antitumour drugs.  
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1.1 Cyclization Reactions.             

 The transformation of (Z)-3-ene-1,5 diynes into reactive 1,4-benzene biradical 

reactions (also known as Cope‟s rearrangement
1
 or cycloaromatization reactions

2
) has 

found applications in areas ranging from anticancer drug design, sequence specific 

DNA mapping tools as well as organic and polymer synthesis
3,4. 

This reaction which 

was first reported by Bergman et al., in 1972,
5
 is now known as the Bergman 

cyclization (BC).    

 

 reagents and conditions; (a)  200
o
C, 1,4-CHD      

Scheme 1.1: Bergman Cyclization of (Z)-3-ene-1, 5-diyne  

 

The BC is at the heart of the chemistry of the enediynes and is primarily responsible for 

their biological activities
2
. However, even though the chemistry of the enediynes and 

some other unsaturated systems had began to be unfolded in the 1960s by 

Sondheimer,
6,7  

Masamune
8 

and Bergman,
5,9 

not much attention was paid to it, largely 

due to the high temperature necessary to induce the rearrangement. However the 

discovery and isolation of naturally occurring enediynes in the 1980s sparked off 

remarkable and renewed interest in the thermal biradical cyclization of enediynes, 

enyne, cumulenes and enyne allenes over the last few years.
2, 10

 This is due to the 

fascinating mechanism of these systems operative in the natural antitumor antibiotics as 

well as their potential in the synthesis of carbocyclic systems
10.

 This, coupled with the 

pharmaceutical demand for cytotoxic antitumor drugs, has also stimulated detailed  
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scrutiny of the cyclization reactions of polyunsaturated hydrocarbons yielding 

biradicaloid intermediates.
 
Today, the BC has become a powerful tool in synthetic 

chemistry.    

In addition to the well known Bergman ring closure, the Myers-Saito, the Schimittel, 

and the Schreiner cyclizations are fundamentally important
11

. 

 This section will attempt to give a brief discussion of these different modes of 

cyclizations and their relevance to synthetic chemistry.   

          

1.1.1 Pre-Bergman Cyclization    

Prior to the work of Bergman et al., on the biradical cyclization reactions many studies 

have been carried out on the annulene systems
12, 13

 (a cyclic system with alternating 

saturated and unsaturated bonds) because of their potentially aromatic character. 

Sondheimer et al.,
6,7,13,14

 carried out extensive studies on the synthesis of 

dehydro[14]annulenes
,
 by base induced elimination of 3,5,10,12-cyclotetradecatetrayne-

1,8-diol dimethanesulphonate 1.7. He discovered that the reaction, in addition to the 

expected product 1,5,9-cyclotridehydro[14]annulene 1.9, gave an unusual bicyclic 

compound 1.5, as the major product. 
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 reagents and conditions: KOH, MeOH, ∆ 

 Scheme 1.2: Formation of the bicycle
6
 

 

Compound 1.5 was seen as an analogue of azulene 1.6, formally derived from this 

compound by insertion of two acetylenes into the seven-membered ring. 

                                      1.6  

                        Figure 1.1    Azulene 

When this reaction was carried out under more vigorous conditions (refluxing), using 

annulene 1.7, a tricyclic structure 1.8 was obtained.  It was then proposed that the 

transformation of 1.7 to the tricyclic 1.8 with base involves the addition of two atoms of 

hydrogen. The bicycle 1.5 produced under the milder conditions may have been the 

intermediate upon which there was a hydride ion transfer from the methoxide, followed 

by ring closure to 1.10 and protonation, forming formaldehyde. The other by-product, 

1.11 is presumably formed by a similar mechanism, the anion 1.10 reacting with the 

formaldehyde prior to protonation.  
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reagents and conditions:  (a)7% KOH, 95% aqueous MeOH, reflux, 15 min 

Scheme 1.3 Formation of tricyclic 1.8, 1.11, 1.12a and 1.12b
14 

 

 

Compound 1.12a and 1.12b could also be formed from 1.5 by normal nucleophilic 

attack by methoxide ion, again followed by ring closure and protonation. 

Continued studies on the annulene chemistry also carried out by Masamune
8, 15 

and his 

co-workers, focusing on the synthesis of the [10] annulene. Their work also produced 

results which deviated from the expected dehydro- annulene products. Treatment of the 

dimesylate 1.13 with sodium methoxide produced both the bicyclic and tricyclic 

compounds, 3,4-benzocyclodec-3-ene 1.15 and 1,2,3,4-tetrahydroanthracene 1.16 as 

shown in scheme 1.4 below 
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reagents and conditions :(a)  NaOMe, MeOH                                                  

Scheme 1.4   Masamune work on [10] annulene
 16 

 

 

The reaction was speculated to have proceeded through a Cope-like rearrangement 

involving electron pair movement, via a di-cumulene intermediate 1.17 which is a 

resonance form of  [10] annulene 1.14.                 

1.14 1.151.17  

Scheme 1.5:  Postulated mechanism
15

 

Further investigation using an aromatic dimesylate 1.18 for the formation of 1,5-

didehydro-3,4-benz[10]annulene 1.19 produced only anthracene. The use of deuterated 

solvents showed that the additional hydrogen atoms were inserted into the 9 and 10 

positions. This reaction is thought to have proceeded through an analogue mechanism to 

scheme 1.5 and then followed by decomposition. (scheme1.6)   
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reagents and conditions: (a) NaOMe 

Scheme 1.6: Formation of anthracene 

 

Even though Masamune
15,16 

could not
 
provide a clear and an acceptable mechanism for 

the formation of these unexpected results, light was later thrown upon these reactions by 

Bergman after his discovery of the biradical mechanism.
5, 17. 

Bergman postulated that 

the formation of the products in scheme 1.4 must have occurred through the biradical 

intermediate 1.20 instead of the di-cumulene 1.17. The biradical could then be quenched 

by abstraction of a hydrogen atom from the hydrogen donor to form 1.16 or collapsed to 

form 1.15. 

 reagents and conditions: (a) NaOMe, MeOH  

 Scheme 1. 7:  Bergman cyclization in Masamune’s tetrahyroanthracene synthesis 

 

Similar explanation was also given for the exclusive formation of anthracene in the 

aromatic analogue. 
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reagents and conditions: (a) NaOMe, MeOH 

Scheme1:8  Bergman cyclization in Masamune’s anthracene synthesis 

 

1.2 Bergman Cyclization 5, 17. 

Bergman et al.,
5,17

 in 1972 reported that cis-1,5-hexadiyne undergoes a striking 

thermal degenerate rearrangement though the p-benzyne moiety. Further investigative 

studies confirmed the p-benzyne as the intermediate in the thermal isomerisation 

reaction of the cis-1,5-hexadiyne (Scheme 1:1) and results from such studies  have 

provided insights into the hitherto unresolved rearrangements of the annulene system, 

(Schemes.1.7 and 1.8).  Reactions involving deuterium-proton transfer on the 

acetylenic carbons produced molecules containing only zero or two deuterium atoms, 

indicating that the interconversion is only between 1.24 and 1.25, with no single 

exchanged product (1.25a and 1.25b) formed. 
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Scheme 1.9: Thermal equilibrium of cis-1,5-hexadiyne-3-ene. 

This result required that 1.24 be transformed via an intermediate or transition state 1.26 

in which C1, C3, C4, and C6 are chemically equivalent, thus suggesting a p-benzyne as 

the intermediate.                                      

                                                          

                              Figure 1.2: p-benzyne or 1,4-dehydrobenzene 

The p-benzyne was further confirmed to be the intermediate through intermolecular 

trappings by external reagents. When 1.26 is kept sufficiently dilute (<0.01M), it can be 

heated to 200
o
C without decomposition. When heated in hydrocarbon solvent, pristane 

(2, 6, 10, 14-tetramethylpentadecane), benzene (1.31) was formed. This suggested that 

1.26 is capable of abstracting hydrogen atoms from a donor solvent. The use of other 

solvents such as, tetrachloromethane, toluene and methanol produced 1,4-

dichlorobenzene 1.30, diphenylmethane 1.29 and benzyl alcohol 1.32 and benzene 1.31 

respectively (scheme 1.10). These results confirmed that the reaction occurred through 

the p-benzyne intermediate in a typical free radical mechanism. 
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reagents and conditions: (a) ∆, (b) pristane, (c) toluene, (d) CCl4, (e) MeOH 

Scheme 1.10: Biradical trappings 

 

Even when the intermediate is given a choice of behaving as a polar or radical species, 

the intermediate selected the latter, thus the reaction in methanol at 200
o
C gives mostly 

benzene and some benzyl alcohol, but no anisole. 

Following the acceptance of the BC, extensive studies into the application, limitation 

and ways of controlling the cyclization have been initiated and are still ongoing. 

Consequently, apart from the simple enediyne 1.27, numerous derivatives of the 

enediyne systems have been developed for use in the study of the mechanism of these 

systems.                         
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 Figure 1.3: Some examples of enediynes that undergo the BC
3 

1.2.1. Nicolaou Distance Theory. 

As a result of his extensive studies, Nicolaou et al., 
1, 18, 19 

discovered that the distance of 

the acetylene carbons forming the new bond may be related to the activation barrier for 

ring closure, in other words the stability of the enediyne moiety depends largely on the 

distance (cd) between the terminal acetylenic carbons (C-1 and C-6) (scheme 1.11) of 

the enediyne group.  He concluded that the crucial turning point from stability to 

spontaneous cyclization must be in the cd range of 3.31-3.20 Å (now popularly known 

as the distance theory). Recent calculations appear to have extended this range to 2.8-

3.4 Å.  Compounds with lower than 3.20 cd values have been claimed as transition 

intermediates, suffering spontaneous cyclization to benzenoid systems; while 

compounds with higher cd values may need higher temperatures. He has also shown 

that by tethering the two acetylenes into a 10-membered ring, there is a lowering of the 

activation energy for the Bergman cyclization
20.

  

When compared with the cyclic ones, acyclic enediynes have a comparatively high cd-

distance, which is much greater than the critical distance range required for spontaneous 

cyclization.
22

 Therefore cyclic enediynes are more reactive than the acyclic ones. The  
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10-membered strained ring structure, cyclodeca-3-ene-1,5-diyne (1.34) (cd = 3.25) 

cyclised in the presence of cyclohexa-1,4-diene through BC to give tetralin(1.42) and 

the two adduct (1.43). However at 37
o
C the cyclization proceeded with a half- life (t / 2) 

of 18h and a rate constant (k,) of 6.4 X 10-4/min. The structure 1.34, may serve as a 

useful “warhead” in damaging molecular or cellular structures such as DNA and tumour 

cells without further activation
18

. 

 

Scheme 1.11: Cyclization of cyclodeca-3-ene-1,5-diyne
18 
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Entry Compound Ring 

Size 

Strain Energy 

(Kcal\mole) 

ab 

(Å) 

Cd 

(Å) 

Stability 

1 

2 

3 

4 

5 

6 

7 

8 

 

9 

10 

 
1.184 

 

1.183 

 

 

 

10 

10 

10 

10 

10 

10 

10 

_ 

_ 

12 

21.20 

19.71 

16.50 

15.52 

16.42 

22.67 

23.25 

0.43 

5.38 

2.79 

2.51 

2.54 

16.50 

2.56 

2.65 

2.55 

2.65 

2.86 

2.76 

2.74 

2.99 

3.01 

3.03 

3.17 

3.36 

3.16 

3.35 

4.12 

3.94 

3.77 

spontaneous cyclization 

spontaneous cyclization 

spontaneous cyclization 

should be stable at 25
o
C         

should be stable at 25
o
C                

cyclization 

stable at 25
o
C 

stable at 25
o
C 

stable at 25
o
C 

stable at 25
o
C 

 

 

     

11 

12 

13 

14 

15 

16 

17 

18 

n = 1 

n = 2 

n = 3 

n = 4 

n = 5 

n = 6 

n = 7 

n = 8 

9 

10 

11 

12 

13      

14 

15 

16 

14.80 

11.40 

  8.96  

  7.60 

  7.37  

  8.21 

  8.39    

11.35 

2.51 

2.60 

2.72 

2.80 

2.87 

2.87 

2.93 

2.88 

2.84 

3.25 

3.61- 

3.90 

4.14 

4.15 

4.33 

4.20 

should cyclise 

cyclises at 25
o
C 

stable at 25
o
C 

stable at 25
o
C 

stable at 25
o
C 

stable at 25
o
C 

stable at 25
o
C 

stable at 25
o
C 

                      

                       Table1.1: MM2 calculations using Macromodel. 

                                   (Reported by Nicolaou et-a.l
18

) 

 

1.2.2 Magnus and Snyder Strain Theory19, 23
 

An alternate theory based on differential molecular strain between the GS and TS was 

proposed by Magnus and Snyder. Qualitative
 
investigation led to the proposal that an  
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overall change in strain energy from enediyne to cycloaromatized adduct furnishes the 

closure driving force. Computational evidence has been given to prove that factors 

controlling the ease of cycloaromatization are directly related to strain energy in the 

transition state rather than to proximity of the acetylenic carbon atoms in the ground 

state. They concluded that the cyclization rates of bicyclic enediynes are best interpreted 

as governed by strain–energy modulation in the pseudocyclic transition state. In a 

broader context, it is the difference in strain energy between enediyne and the 

biradicaloid that determines the closure tendency. Although the strain theory appears to 

be more precise and is of general applicability, especially for strained cyclic systems, 

the distance theory has gained popularity and is more exploited because of its simplicity 

and user friendliness. Moreover, a recent DFT-based calculation suggests a correlation 

between the spontaneity of BC and the cd.  

 

1.2.3 Controlling the rate of the Bergman cyclization. 

In the design of analogues, considerable effort has been expended in determining and 

controlling the factors contributing to the ease of the cyclization step. Reducing the 

distance between terminal carbon atoms of the diyne (by the use of transition metal-ion 

complexation
1,2

 and build- up of strain in the reactant are two strategies which have 

been successfully employed for improving the rate of BC. Other factors which have 

been indicated in the reactivity of the enediyne moiety include electronic effects
4, 24 

(effects of substitution at the alkynic and vinyl
 
positions) which have been found to play 

a crucial role in the BC,
 
steric strain which can lower the activation energy and make 

cyclization possible at body temperature, ring size and concentration of the H atom 

donor
25

. 
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1.2.4 Substitution at the Terminal Alkyne Position1, 26
 

The four-electron repulsion of two π bonds of the alkynes in the same plane 

necessitated large activation energy for the enediyne cyclization. It was predicted that 

electron-withdrawing groups in the alkynic position of an enediyne should reduce the 

electron- density of the alkyne π–orbitals, and lower the repulsion and activation barrier 

of the reaction. This prediction was confirmed by Schmittel et al., in the reaction of 1.44 

(Scheme 1.12). Replacing the electron-donating methoxy substituents in 1.45 by 

electron-accepting nitro substituents in 1.46 led to a decrease in the activation enthalpy 

of the cyclization reaction. It is presumed that the cycloaromatization is accelerated by 

electronic stabilisation of the reaction intermediate.    

                  

. 

reagents and conditions: (a)  240
o
C, 1,4-CHD, diphenylether 

Scheme 1: 12: Substituent effect at the alkynic position  

 

Schreiner et al.,
19

 showed that the intermediate is “X-aromatic” and therefore, 

substituents that influence the sigma-framework of a molecule are the most effective in 

reducing the relative energies of the BC. Comparison of 1,4-benzyne (1.26) and 2,3- 
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dimethyl-1,4-benzyne (1.50) shows that alkyl substituents at the alkynyl position have a 

large effect on the endothermicity of the BC (increases by about 12 kcal/mol) and 

stabilises the enediyne alkynes and disfavours a cyclization reaction. However ring 

strain in cyclic enediynes can overcome this effect
19, 22, 27 

 

                          

                 

   Figure 1.4: Substituted and unsubstituted p-benzyne 

 

Electron-withdrawing substituents will however lower the cyclization barrier, thus if the 

methyl group is functionalised with a hydroxyl
 
group in cyclic, benzo-fused systems, a 

small, but significant activation of the reaction is observed experimentally. The parent 

compound 1.52, has a half- life of 24h at 84
o
C while the alcohol 1.51, decays with a t1/2 

= 4.5h, and the ketone,1.53, is even far reactive with a half life  less than 1h at the same 

temperature
27

. Even though compound 1.54, where the hydroxyl group is in the β- 

position to the triple bond is less reactive than 1.51, however it is still more reactive 

than 1.52        
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Reactivity: 1. 52 <1.51 <1.53,   1.54 < 1.51, 1.54 >1.51,   

Figure 1.5:  Functionalized cyclic 10-membered enediynes  

 

Halogenated and nitro derivatives of benzo-annulated enediynes also undergo 

cycloaromatization with ease when compared with the unsubstituted system. It was 

however noted that in addition to the electron-withdrawing effects of the halogen.          

 

reagents and conditions: (a) 1,4-CHD, 180
o
C, 70% 

Scheme 1.14: BC of Halogenated benzo-annulated enediyne 
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reagents and conditions: (a) 1,4-CHD, 141
o
C, 24 h 

 Scheme 1.15: BC of benzo-annulated enediyne sulphonamide 

 

In another work Grissom et al.,
20, 21

 carried out kinetic studies on the effect that substi- 

tution on the acetylene would have on the rate of cyclization. They found that the  inco-

rporation of one acetylenic substituent has a moderate effect of slowing the rate of the 

BC. 

 

                        

reagents and conditions: (a)1,4-CHD, PhCl, ∆, 98% 

 Scheme 1. 16; BC cyclization of substituted enediyne 

 

The addition of a second acetylenic tether had a substantial effect on the rate of the BC. 

Both the „cd-theory‟ and the Magnus theory may not adequately explain this 

observation. It is therefore assumed that steric factors would affect the rate of this  

cyclization. They argued that the acetylenic substituent may either push the acetylenes  
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apart or and distort the enediyne system from planarity; both effects will increase the 

energy of activation of the enediyne cyclization. This effect would be most pronounced 

for the substrate with two acetylenic substituents.                       

 

     

reagents and conditions: (a)1,4-CHD,PhCl, ∆, 99% 

Scheme 1.17: BC cyclization of highly substituted enediyne: 

 

1.2.5 Substitution at the Vinyl position 
1, 22, 24, 27-29                                                       

 

Jones et al., carried out studies on the effect of vinyl substitution on cycloaromatization 

of  the enediynes, the summary of the data obtained indicated that strongly σ-electron-

withdrawing groups increase the cyclization barrier, thus inhibiting BC while σ-

electron-donating groups decrease the cyclization barrier, π conjugation, especially 

donation, has little effect.
1 

In a key example the bicyclic enediyne 1.64, a highly 

reactive molecule cyclises spontaneously at room temperature while the introduction of 

phenylmethylether, an electron donor  group was shown to retard cycloaromatization, 

possibly by stabilizing the ground state of the enediyne.
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                     Figure 1.6: Alkene substitution in cyclic enediyne  

 

 This observation prompted further research into the effect of heteroatoms directly 

attached to the vinyl position
29. 

 It could be expected that the combination of inductive 

and electronegative effects may exert a unique influence on cycloaromatization, either 

by destabilizing the ground state or stabilizing the transition state of the process.  

                                                                                         

 

reagents and conditions: (a).CHD       

Scheme 1.18:  Thermal BC of Cyclic Haloalknyl Enediynes 

 

As illustrated in scheme 1.18, substitution of the vinyl bond with chlorine (halogens) 

(1.68) causes a decrease in the rate of cyclization. Cycloaromatization of the C-9 

enediyne has a half-life of 8h at 0
o
C despite the fact that the unsubstituted parent 

molecule cyclised spontaneously at room temperature. The same is found for the C-10  
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enediyne series: the rate of cyclization is slower for the chloro-substituted than the 

unsubstituted molecule. Addition of a second chlorine molecule such as in 1.70 has an 

additive effect which significantly retards the reaction rate further.  

The origins of the stabilizing effect are presumably electronic in nature, since molecular 

modelling (PM3) of 1.68 and 1.70 reveals essentially no difference in intermolecular cd 

distances. (3.298 Å and 3.297 Å, respectively and 3.293 Å for the unsubstituted 

enediyne.) This effect is most pronounced in C-9, 1.66, with a cd distance of 2.864 Å, it 

is expected to undergo spontaneous cyclization in the absence of an electronic 

stabilizing effect. Jones et al., gave three possible factors that could be responsible for 

these observations:  

(1) the cyclization barriers are higher for the chloro-substituted compounds,  

(2) the p-benzyne ring opening barriers are lower for the chloro- substituted cases, and 

(3) the chloro- substituted p-benzynes are relatively more stable to H atom abstraction 

which extends their half-life, thus increasing the likelihood of cycloreversion. 

Computational work using DFT established that the observed decrease in the rate of 

chloro-substituted compounds is based on their higher cyclization barriers. It is 

important to note that apart from serving as cycloaromatization modulators, the 

presence of the halovinyl substituent offers potential in the synthesis of substituted 

arene products
27

. 
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1.2.6 Benzo-Annulation1, 4, 25, 26, 27
 

Benzo-annulation is another form of vinyl substitution which resulted in a marked 

increase in the cyclization barrier, that is, a lower reactivity than in the parent chain, 

especially for cyclic enediynes. 

      

Figure 1.7. Simple and benzannulated enediynes.  

 

In the example above 1.27 (Ea = 28.2kcal/mol) is more reactive than 1.52 as expected, 

however confusion exists regarding the effects of simple benzannulation since 1.33 is 

found to cyclise more rapidly (Ea = 25.1kcal/mol) than 1.27. Many factors are 

responsible for this observation; paramount is the fact that the hydrogen abstraction step 

is especially important in benzannulated enediynes where the BC is approximately 10 

kcal/mol more endothermic than that of the parent enediyne and thus the barrier for the 

retro-Bergman ring opening of p-benzyne is small. This led the author to suggest that 

the apparent rate of cyclization for benzannulated enediynes depends on the 

concentration of an H-atom donor which may vary from one investigation to the other. 

To circumvent this problem, investigations could be carried out in large concentration 

of an H-atom donor or using a very reactive H- atom donor. Semmelhack et al.,
25, 26

 in a 

separate study also confirmed the dependence of the cyclization on the concentration of 

the trapping reagent, 1, 4- CHD as shown in Scheme 1.19 and table 1.2 below; 
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  .  

reagents and conditions: (a)1,4-CHD 

Scheme 1.19: Study of dependence of rate on H atom donor concentration 

 

 

 

 

 

 

Table 1.2: Dependence of rate on concentration of H atom donor. 

 

Entry 1,4-CHD conc (M) t½ 

1 0.00 129 

2 0.25 39 

3 0.50 24 

4 10.50 (neat) 10.5 

Frank et al.,
4 

developed a simple kinetic model (eq 1, Scheme 1.20), that describes the 

effects of the rate of H atom abstraction on the rate of disappearance for the enediyne 

reactant.   

                               keff  =   k1       k2 [HD] 

                                                    k2 [HD] + k-1                                 Eq.1                     

      

reagents and conditions: (a) 1,4-CHD 

Scheme 1.20: Kinetic Model of BC of Ortho Substituted Enediyne. 
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The presence of heteroatoms within the aromatic ring interestingly showed inconsistent 

effects on the rate of cyclization reactions, pyridine, 1.78 was more reactive, (Ea = 

21.5Kcal/mol), while quinoxaline, 1.79 was less reactive, (Ea = 33.6 kcal/mol) than     

1.33 and pyrimidine 1.80, was even more reactive, (Ea = 16.1kcal/mol) 

    

 Figure 1.8: Examples of enediynes with hetero-atoms.  

 

In conclusion, substitutions in the terminal alkyne position generally affect enediyne 

cyclization more than substitutions in the vinyl positions. The effect of benzo-fusion on 

the thermal reactivity of enediynes is inconsistent. While benzo-fused acyclic enediynes 

are activated for cyclization, in cyclic enediynes the reaction is disfavored. Substitution 

of the fused benzene ring has very slight effect on reactivity. Complex heterocyclic syst- 

ems however showed poor correlations.    

   

1.3   Myers-Saito Cyclization Reaction 

1.3.1 Myers Reaction31-35
 

The discovery of the biradical mechanism in neocarzinostatin eventually leading to an 

effective DNA cleavage emphasized the importance of the enyne [3] cumulene core A 

in the reactive form of this natural antitumor antibiotic. This discovery prompted Myers 

et al., into further investigations into the enyne-allenes. The first order thermal 
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cycloaromatization of (Z)-1,2,4-heptatriene-6-yne 1.81produced an intermediate that 

could be represented as α,3-dehydrotoluene biradical through a C
2
-C

7 
cyclization. 

 

  reagents and conditions: (a) ∆ 

 Scheme 1. 21: Myers-Saito cyclization 

 

Mild thermolysis of 1.81 (0.003M) in deoxygenated 1,4-cyclo-hexadiene produced 

toluene 1.83 and combination products 1.84 and 1.85. Heating the compound in carbon 

tetrachloride solution at 100 
o
C produced the adduct 1-chloro-3-(2,2,2-trichloroethyl) 

benzene 1.86 and 3-chlorobenzyl chloride 1.87, in a combined yield of 15-25%. The 

low yield here may be due to the poor trapping of the intermediates by carbon 

tetrachloride leading to competitive radical- induced polymerization of 1.81. Pyrolysis 

experiment of 1.81 in methanol (0.003M, 100 
o
C, 30 min) led to the formation of 

products consistent with both polar (methyl benzyl ether 1.89, 35%) and the free radical 

(2-phenylethanol, 10%, bi-phenyl, 2%) reaction pathways. When compound 1.81 was 

heated in deuterated methanol (0.003 M), methyl-d3 benzyl ether was formed 

exclusively in 70% yield. 
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 reagents and conditions: (a), 1,4-cyclohexadiene,(b) CCl4, ∆ (c) MeOH, ∆ (d) CD3OH,∆ 

Scheme 1.22: Biradical trappings in the Myers reaction.
33

 

 

1.3.2 Saito et al. reaction.36-38
 

Saito et al., stimulated by the involvement of BC in DNA cleavage of the natural 

antitumor antibiotics, consequently studied the design of a simplified DNA cleaving 

molecule which mimics the mechanism of the action of these antibiotics. They 

postulated that if one of the acetylenes in acyclic enediyne system is replaced by allene 

(acetylene equivalent), the distance between the two acetylenes could be reduced to a 

range close enough for spontaneous cyclization at ambient temperature. The success of 

such reactions would facilitate the formation of new antibiotics by lowering the 

activation energy of cyclization (and therefore biradical formation and DNA scission) to 

physiologically relevant values. Consequently eneyne allenes activated with 

diphenylphosphonate group were targeted for synthesis. The allenyl part was introduced 

into the molecule by using [2, 3]-sigmatropic rearrangement of propargylic phosphite or  
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phosphinite to allenyl phosphonate or phosphine oxide. The first attempt to obtain the 

eneyne-allenyl phosphonate 1.95 failed and instead a mixture of cyclised compounds 

(1.93 & 1.94) was obtained (Scheme 1.23). 

         

 reagents and conditions: (a), CCl4, 45
o
C, 1.5 h 

 Scheme 1.23: Saito reaction. 

 

It however appeared that both 1.93 and 1.94 were formed from biradical 1.92 which 

might have been formed by Bergman type cyclization of the allenyl phosphonate 1.95. 

Compound 1.97 was obtained from the treatment of 1.96 with chlorodiphenylphosphine 

and triethylamine in hexane at -78
o
C to 0

o
C. In order to confirm whether the eneyne-

allene system actually undergoes spontaneous cyclization to generate biradical 1.92, 

1.97 was heated at 37
o
C in benzene in the presence of 1,4-CHD. The reaction produced 

the expected aromatised products 1.98, 1.99 and 1.100 after 5 h. Deuterated studies 

using 5:1 THF-d8 – H2O at 60
o
C confirmed that the reaction actually proceeded through 

the formation of the biradical intermediate, in analogy with the cases of antibiotics, 

neocarzinostatin, esperamicin and calicheamicin. 
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The importance of the Saito reaction lies in the fact that compound 1.97;  

 could readily be constructed by a simple three step operation,  

 is stable enough to be handled at ambient temperature but at body temperature 

generates reactive biradical species in an appreciable rate,  

 is structurally simple, and this might allow suitable modification of its 

substituents for the design of a DNA cleaving molecule. 

 

reagents and conditions: (a) chlorodiphenylphosphine, triethylamine, -78 - 0
o
C, (b) 1,4-CHD,   37

o
C, 5 h. 

Scheme 1:24 Radical quenching in Saito 
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1.4 The Schmittel Reaction39-65
 

 The synthetic potential of thermal enyne-allenes reactions was extended when 

Schmittel and co-workers found quite unexpectedly that the simple attachment of an 

aryl group or sterically bulky groups (e.g, tBu, SiMe3) to the terminus of the enyne 

allenes caused a complete switch from the Myers-Saito C2 - C7 cyclization to a C2 - C6 

cyclization, giving rise to a formal ene and Diels-Alder products. Simple replacement of 

the H atom at the acetylene end of 1.102 with a phenyl group in 1.103 switched the 

reaction (Scheme 1.25) from Myers-Saito to Schmittel cyclization. 

 

            Scheme 1.25: Switch from Myers – Saito to Schmittel cyclization. 

Upon investigation of the reaction, further additional bulky groups were introduced at 

the allene and alkyne units, e.g. alkyl chains and or aryl groups at C1 and C7. 

Rearrangements of the propargyl alcohols (1.106, 1.110, and 1.114) with 

chlorodiphenylphosphine afforded the enyne-allenes (1.107, 1.111, and 1.115) with the 

sterically encumbering diphenylphosphinoxide units at C7 unit. These were heated with 

excess of 1,4-CHD in toluene for several hours. The thermal rearrangement of 1.107 

produced the naphthalene derivative 1.109 in a typical Myers cyclization (C
2
-C

7
) at  

50
o
C (t½ = 1 h), while 1.111 rearranges at 84

o
C (t½ = 1 h) in a typical Schmittel 

cyclization (C
2
 – C

6
). Even though compound 1.115 could not be isolated, the indene  
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1.117 was obtained on warming up to room temperature. Initially it was thought that the 

switch in the mode of the reaction is as a result of the stabilising effect of the aryl group 

on the vinyl radicals, further investigation clearly shows that replacement of the 

hydrogen at the acetylene unit by a phenyl group raises the barrier of the Myers 

cyclization significantly, presumably by steric hindrance and ground state stabilization 

of the acetylene moiety. 
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reagents and conditions: (a) PClPh2/NEt3, -78 
o
C, (b) 1,4 CHD, (c) PClPh2/LDA, -78 

o
C 

Scheme 1.26: Thermal reactions of enyne-allenes (1.107, 1.111, 1.115) 
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A similar investigation on the effect of steric hindrance was carried out by Rodriguez et 

al. 
42

 .They demonstrated that the incorporation of the TMS group on the acetylene unit 

of an enyne [3] cumulenals selectively favoured Schmittel cyclization over the Myers– 

Saito cyclization.  

 

reagents and conditions: (a)  toluene, 110 
o
C, (b) K2CO3, MeOH,  (c) toluene, 1,4 –CHD, 60 

o
C, (d) 

toluene, MeOH, 60 
o
C  

Scheme 1.27: Effect of steric hindrance on mode of cyclization  

 

According to Gillmann et al.,
45,50,51,62 

enyne allene bearing electron-withdrawing 

substituents seems to be able to initiate DNA cleavage not only by radical mediated 

steps but also by way of alkylation. An ester function may also provide the molecules  

with a flexible site that allows for an attachment of DNA recognition elements. This 
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 dual mode of action prompted further investigation into the enyne allene esters and the 

compounds appeared to be promising substrates for the elaboration into anticancer 

drugs operating by either mechanism. Thermolysis of 1.124 (0.02 M) in chlorobenzene 

in the presence of 1,4-CHD (1.0 M) for 3h at 70
o
C yielded the cycloaromatization 

products 1.125 8% and 1.126 (9%, mixture of regioisomers) in accordance with Myers 

cyclization. 

               

reagents and conditions: (a) 1,-4 CHD, Chlorobenzene, 70
o
C, 3 h 

Scheme 1.28: Allene ester work by Gillmann et al. 

 

However heating the silyl derivative 1.127 (0.02 M) in chlorobenzene in the presence of 

1,4-CHD (1.0 M) for 3 h at 70
o
C resulted in the formation of the tricyclic product 1.129 

in 62%  which is an isomer of 1.127. Therefore hydrogen atom donor is not required for 

the reaction.  

                             

 

 reagents and conditions: (a) 1,-4 CHD, Chlorobenzene, 70
o
C, 3 h,  62% 

 Scheme 1.29: Allene ester work by Gillmann et al. 
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Further work by Schmittel et al., also showed that the biradical intermediate could 

easily lead to ene- and Diels-Alder type products
43

 depending on the nature of the R2 in 

1.103, that is the biradical intermediate can react in an intramolecular way to give 

formal [4+2] or [2+2] cycloadducts and ene products. It is therefore a versatile 

intermediate for the construction of various ring systems. 

 

 

 reagents and conditions: (a) 1,4-CHD, Toluene,60-70 
o
C, 63% 

Scheme 1.30: Intramolecular trapping of radicals 

 

The synthetic value of the reaction was increased by replacing the CHn groups in the 

enyne allene by heteroatoms.
56   
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reagents and conditions:  (a) Ph3P, Br2, NEt3, CH2Cl2,  

 Scheme 1.31: Synthesis of benzocarbazole, 1.139 

 

Schmittel et al.,
56, 57

 proved theoretically through DFT calculations that the enyne-

ketenimines can undergo either C2 – C7 and C2 –C6 cyclizations and suggested that a 

change in the regioselectivity of enyne-ketenimine cyclizations is a function of the  

substituents (R) attached to the alkyne terminus. To probe this prediction, many enyne-

ketenimines were prepared in addition to 1.135. Cyclization of 1.135 gave the expected 

product 1.139 (Scheme 1.31). Similar cyclization was also reported by Ghosez and 

Differding.
58

 In order to demonstrate experimentally that biradical 1.137 is an 

intermediate, both phenyl groups in enyne-ketenimine 1.136b were replaced by mesityl 

substituents (Scheme 1.32). It is well established that concerted Diels – Alder reactions 

are prevented by ortho-alkyl substituents because of steric hinderance,
59,60 ,61

 therefore 

the only option is a stepwise formal Diels-Alder cycloaddition. Transformation of 1.141 

to 1.144 gave strong evidence for the existence of the biradical intermediate 1.142.  
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reagents and conditions: (a) Florisil, P2O5, 1,4-CHD, pyridine, reflux, 30 h (61% of 1.140 recovered)                           

Scheme 1.32: Synthesis of benzocarbazole, 1.144. 

Removal of the bulky phenyl on the acetylene terminus gave the C2 – C7 type 

cyclization products 1.148 and 1.149.  The latter being a product of addition of biradical 

intermediate 1.147 to the hydrogen atom donor present (1,4-cyclohexadiene, 1,4-CHD).  

 

reagents and conditions: (a)  Florisil, P2O5, 1,4 CHD, pyridine, reflux, 3 h 

Scheme 1.33: Effect of the removal of bulky group 



 

A Novel Cyclization for the Construction of fused Rings                                                                            Introduction                                                                                             

37 

 

A similar switch in regioselectivity of biradical cyclization from a C2- C7 to C2 – C6 

was again demonstrated with the use of enyne-carbodiimides 1.149 (Scheme 1.34)  

         

reagents and conditions: (a) a, R = 1,4-CHD, toluene, reflux,6 h:  b, R = 1,4-CHD, mesitylene, reflux, 18h  

Scheme 1.34: Cyclization of enyne carbodiimide 

This reaction (scheme 1.34) is not particularly good proof of the occurrence of a 

biradical cyclization, since the product could also have been formed in a concerted 

Diels-Alder reaction by skipping 1.151 To add further credence to the biradical 

cyclization, the phenyl group at the carbodiimide terminus was replaced by a 2,6-

dimethyl phenyl group giving an ortho- alkyl substituted compound 1.154. The product 

1.157 is a confirmation of the C2-C6 biradical cyclization.  
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reagents and conditions: (a) 1,4-CHD, toluene, reflux, 2 h. 

Scheme 1.35 Cyclization of ortho-alkyl substituted carbodiimide 

 

The effect of substituent on the mode of cyclization was again tested, and it was also 

found that replacement of the bulky group at the alkyne terminal again switched the 

reaction mode from C2-C6 to C2-C7 (Myers- Saito cyclization).  

   

reagents and conditions: 1,4-CHD, toluene, 90-100 
o
C, 20h 

 Scheme 1.36: Switch to C
2
-C

7
 mode of cyclization 
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1.5 Photochemical Induced Cyclization Reaction66-72,178-182.
 

It has long been recognised that the emergence of photochemical reactions of the 

enediyne systems could offer a number of interesting features, both of mechanistic and 

biological significance
66, 67

. Direct irradiation of an enediyne functionality to afford a 

Bergman-type of product was first carried out by Turro et al.,
66

 in 1994. 

             

        reagents and condition: (a) Solvent or other radical 

     Scheme 1.37: Photochemical analogue of BC. 

 

Positive results were obtained for a good number of enediynes used and they concluded 

that the photochemical reactions differs from the thermal analogue mainly in that the 

former seems to arise as a result of excitation of an acetylenic unit rather than of a 

conjugate effect
67

. They determined that their result was of potential relevance to the 

design of photochemical analogues of the thermally active antibiotic antitumor natural 

products which would possess an advantage of being stable over a large temperature 

range, and could be structurally tailored to specific site delivery and specific spatial 

excitation by optical fiber techniques.  

Funk and co-workers
68

 prepared various dialkynylarenes (1.164 - 1.168) (Scheme 1.38) 

to test the effectiveness of the photochemical reactions against the thermal Bergman 

reaction. All the compounds except 1.166 underwent photochemical cycloaromatization  
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upon irradiation in the presence of 1,4-CHD. Cyclization of 1.164 is the most efficient 

and could actually be affected in sunlight (CH3CN, 3 h, Pyrex) in quantitative yield. The 

rate of transformation is highly dependent on the concentration of the hydrogen donor. 

Terminal acetylenic compounds (9,10-diethynylhenanthrene and 4,5-diethynylpyrene 

did not undergo photochemical cycloaromatization. 

 

reagents and conditions: 1,4-CHD, CH3CN or Et2O or CH3COCH3 

Scheme 1.38: Photochemical cyclization 

 

 

Hirama and co workers,
69

 extended the application of photochemical cyclization to non-

benzenoid enediynes. It was observed that enediynes possessing bulky substituents 

trimethylsilyl (TMS) and phenyl at the alkyne terminals did not undergo any 

cycloaromatization reaction and that the photo-cycloaromatization took place in a 

variety of solvents (but not in MeOH). 
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reagents and conditions: (a) hv (254nm), n-C6H14, 3.6 mM, RT 

Scheme 1.39: Photoreaction of 1,2-diethynylcyclopentene 

 

Substrate (170) R Yield (%) 

 

Time    (t) 

      a Ph no reaction    18 

      b TMS no reaction    18 

      c H 3      6 

     d Me 71     18 

 

Table 1:3 Effects of substituent groups on cyclization. 

 

The strained ten-membered cyclic enediyne also cyclised when irradiated with a low 

pressure mercury lamp at room temperature for 3 h. 

                     

  reagents and conditions: hv (254 nm), solvent, 3 h, RT. 

 Scheme 1.40: Photoreaction of a strain ring       
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Jones et al.,
72

 also studied the photochemical activity of some enediynes, however they 

also deviated from using benzenoid enediynes but rather used designed alicyclic 

enediynes (1.176). 

      

reagents and conditions: (a)  hv,   (b) 1,4 CHD or i-PrOH 

Scheme 1.41: Photochemical cyclization of alicyclic enediynes 

 

Consistent with other studies, 1.176 also undergoes photochemical cyclization, even 

though it is stable at room temperature. Optimal yields of cycloaromatization product 

were obtained using iso-propanol. 

Schmittel and co workers
40

 also carried out extensive studies on the photochemical 

reactions of enyne-carbodiimides and enyne- ketenimines. They observed that 1.178 

cycloaromatized partially when exposed to sunlight for a very long period. 

Consequently the photochemical activity of various substituted carbodiimides was 

examined in different solvents and it was proposed that such cyclization provided 

evidence for a triplet cyclization.  
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Scheme 1.42 : Photocyclization of enyne-carbodiimide 

 

1.178 a b c d e f g 

R1 Ph H NO2C6H4 p-NCC6H4 p-MeOC6H4 TMS Ph 

R2 H H H H H H NO2 

 

Table 1.4: R1 and R2 in Compound 1.178a-g 

The importance of photochemical inducement in the BC - DNA cleavage cannot be over 

emphasized. Of recent, Tanaka et al.,
180

 found out that the attachment of a 

photosensitive triggering moiety to an enediyne led to a sharp increase (100 fold) in its 

potency for DNA cleavage in an in-vitro assay compared to the enediyne without the 

triggering moiety. They also found out that photopromoted cycloaromatization is an 

effective way to control the biradical formation of enediynes. Poloukhtine et al.,
181

 and 

Genovia et al.,
182

 both concluded that photochemical BC is a common strategy 

employed to selectively activate enediynes and also allows a spatial selectivity of 

antibiotic action.  

 

1.6 The Natural Antitumor Antibiotics81-85, 178, 182. 

In the mid to late 1980s, it became clear that an emerging series of naturally occurring 

antitumor antibiotics, calicheamicin, esperamicin, dynemicin,  kedarcidin chromophore 

and C-1027 chromophore, all possess the enediyne core and mostly operated through 

the BC
1,2,11,24-26

. In addition to the five above, neocarzinostatin (NCS) chromophore 
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which does not contain the classical conjugated enediyne system also demonstrated very 

similar DNA cleavage mechanism once activated
31

 The enediynes per se are 

biologically inactive
72

 but undergo cycloaromatization reactions after being activated by 

a triggering reaction. For example, the strain imposed by the double bond in 

calicheamicin or by the epoxide in dynemicin imparts stability to the system
2
. 

Cycloaromatization of these natural products then give rise to cytotoxic diyl radicals 

which are capable of inducing DNA strand scission at low concentration. 

Cycloaromatization of the enediyne and hydrogen atom abstraction especially from  

DNA by the resultant biradical have been suggested to be responsible for the DNA 

cleaving capability of these compounds. The phenomenal biological profile of the 

calicheamicin and esperamicins includes
18

:  

 subpicogram potency against Gram positive bacteria,  

 activity in the biochemical induction assay at very low concentrations,  

 high potency against a number of animal tumor models and,  

 induction of double-stranded DNA cleavage with minimal concurrent single-

stranded breakage. 

These natural antitumor antibiotics could be grouped under three classes: 

 The Calicheamicins and Esperamicins. 

 The Dynemicins 

 The Chromophore types; Kedarcidin chromophore, C-1027 and Neocarzinostatin. 

Even though these natural antitumor antibiotics possess phenomenal cytotoxicity 

against tumor cells they are too toxic and indiscriminant for use as drugs, hence efforts 

have been made to synthesize various derivatives of these compounds. A notable 

example is gemtuzumab ozogamicin (Mylotarg), which is a derivative of calicheamicin 
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conjugated to a humanized anti-CD33 antibody; the drug is indicated for the treatment 

of acute myeloid leukemia (AML).
178 

 

1.6.1     Mechanism of DNA cleavage. 

1.6.1.1 Calicheamicins & Esperamicins86-105, 178, 179
 

The Calicheamicins (also known as the LL-E 33288 antibiotics) produced from 

Micromonospora echinospora spp. Calichensis, a bacterium was discovered by May. D. 

Lee et al., in 1987. 
12, 81 

It is the most important member of the enediyne class of natural 

products, and possesses phenomenal cytotoxicity against  murine  tumor cells.  

Esperamicin A1 is also another member of the enediyne family of antibiotics exhibiting 

activity against marine tumor models in the 100ng/kg range. The families of 

Esperamicins were isolated from the bacterial Actinomadura verrucosospora and their 

structure elucidation was reported in 1987
89

.  

 

               Figure 1.9: Calicheamicin          
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           Figure 1.10: Gemtuzumab ozogamicin (Mylotarg)   

              

                             Figure 1.11: Esperamicin 

The antitumor antibiotic drugs, calicheamicin, dynemicin, and esperamicin, all 

possessed an interesting bicyclo[7,3,1]enediyne substructure and  become active p-

benzyne biradical intermediates due to Bergman cyclizations. Precisely the reactive 

intermediate is proposed to be a 1, 4-dehydrobenzene derivative which is suggested to 

arise thermally from (Z)-enediyne in a cyclic version of the Bergman reaction.  
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Andrew G. Myers et al., 
32

 reported that mechanistic studies
 
have revealed that at a  

minimum, three common features are essential to the operation of these antibiotics:  

(1) non-destructive high-affinity binding to DNA, and  

(2) a chemical trigging mechanism leading to a high–energy intermediate capable of, 

(3) rapid biradical formation at physiological temperatures. 

The esperamicins and the calicheamicins both share similar structures and their 

structures possess three distinct domains: an oligosaccharide chain, a trisulphide moiety, 

and an enediyne core. Each of these domains has a specific function in DNA cleavage.
81

 

 The oligosaccharide chain recognises and targets selected base pair sequences in the 

minor groove of DNA, and allows the molecule to bind selectively to the minor 

groove of DNA through hydrophobic and electrostatic interactions (through 

hydrogen bonding of the sugar side chain with DNA). The natural enediynes are 

actually stable until they are bonded to DNA and then become activated. 

 The trisulphide then serves as a molecular trigger and upon reductive activation, the 

resulting thiolate performs an intramolecular Michael addition onto the proximally 

positioned enone moiety to unlock the enediyne warhead. This brings a change in 

the geometry of the molecule (trigonal bridgehead to a tetragonal centre) thus 

reducing „cd‟ distance between the two triple bonds. The decrease has been 

calculated to be from 3.35 to 3.16. A distance close enough for spontaneous 

Bergman cyclization according to Nicolau‟s theory
18

.  

  Bergman cycloaromatization of the enediyne structural motif generates a p-benzyne 

diradical which abstracts hydrogen radicals from DNA backbone. The reaction of 
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the DNA backbone radicals with molecular oxygen results in double strand cuts, 

leading to permanent damage of the genetic material. 

The enediyne systems in both the calicheamicin and esperamicin could easily be 

triggered to aromatize via a free-radical intermediate by cleavage at the methyl trisulfide 

moiety. This aromatization process is responsible for the remarkable DNA damaging 

effects of the calcheamicin and the esperamicins.
12, 18

                     

                       

 Scheme 1.43: Mechanism of DNA cleavage by calicheamicin
2
.  

 

1.6.1.2   Dynemicins 
35, 81, 106-128 

Dynemicin A (DNM-A), the first known member of the family dynemicin A 1.187, was 

isolated from Micromonospora chersina M956-1
109,116

 strain and the recent member 

deoxydynemicin A 1.187b was obtained from Micromoonspora globosa MG331-HF6. 
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Dynemicin contain a bicyclo[7.3.1]enediyne substructure which may be related      

biosynthetically to the cores of calicheamicin and esperamicin.  The dynemicins has a 

striking hybrid structure, containing not only the cyclic enediyne but an anthraquinone 

chromophore and unlike the other members of this class, it exhibits antibacterial and 

antitumor activity with low toxicity
108

.
 
As a result of their intriguing and unique 

structural characteristics, various strategies have been developed to provide a synthetic 

route towards the natural and the non-natural dynemicin.
106 

                                                                     

                          1.187,    R = OH,       1.187b   R = H                                                   

   FIGURE 1.12: Dynemicin A (1) and Deoxydynemicin A (2)    

 

                                          

      FIGURE 1.13: Dynemicin model  

 Nicolaou et al.,
106 

reported the synthesis of the dynemicin model (figure 1.13) to 

illustrate the cyclization reactions of dynemicin A. In this model the critical distance 
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(cd) was found to be 3.59 Å (carbon c and d), a value that agrees with the X-ray 

crystallographic analysis of dynemicin A (3.54 Å).   

The mechanism of the cyclization reaction is outlined below: 

 Protonation of the epoxide group in 1.189 initiates the formation of diol 1.190 

 Spontaneous Bergman cyclization to form benzenoid biradical 1.191. 

 Rapid trapping of the biradical by the hydrogen donor present to give the cyclized 

product 1.192 

This cyclization is analogous to those observed for dynemicin A, The pharmacological 

activity is believed to be related to dynemicin A‟s ability to cleave DNA following its 

intercalation into DNA with its anthraquinone which in actual fact is typical of most 

enediyne cyclization reactions. It is the benzenoid cyclised biradical that is actually 

responsible for the cleavage of the DNA molecule as illustrated in the scheme below, 

(Scheme 1.45). 

                        

Reagents and conditions: (a) 0.05 M in benzene/1,4-cyclohexadiene (4:1), TsOH.H2O  at 25
o
C for 24 h,  

86% 

 Scheme 1.44: Bergman- type cyclization of Dynemicin model 



 

A Novel Cyclization for the Construction of fused Rings                                                                            Introduction                                                                                             

51 

 

     

Scheme 1.45:  Mechanism of biological action of dynemicin
2
     

                

1.6.1.3 Neocarzinostatin chromophore (NCS)
 32, 34,129-134,136

  

NCS the first enediyne antibiotic,
129

 was first isolated from a culture of Streptomyces 

carzinostaticus var. F-41 in 1965. Its potent antibacterial and antitumor activities derive 

from the inhibition of DNA synthesis and DNA degradation in cells.
129 

It is composed 

of a very unstable chromophore and a carrier apoprotein. The neocarzinostatin core is 

slightly different from the basic enediyne structure, it contains the 

bicyclo[7.3.0]dodecenediyne and shows its biological activity through the involvement 

of the allene eneyne system. 
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 FIG 1.14: Neocarzinostatin chromophore A  

 Meyer-Saito cyclization (MSC) has been proposed as the key step in the mechanism of 

action of the antitumor agent neocarzinostatin chromophore
130

 through which it 

produced a 3, 7-dehydroindene derivative as shown below
13, 17

.  

       

 Scheme 1.46: Cyclization of the enediyne core of NCS 
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 reagents and conditions: (a) RSH 

Scheme 1.47: Mechanism of DNA cleavage
2,34 

 

1.6.1.4  C-1027 Chromophore62, 134-142
 

C-1027 is one of the most potent antitumor antibiotic chromoproteins, composed of an 

11-kDa apoprotein and a highly reactive chromophore.  
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 Fig 1.15: C-1027 Chromophore 

The C-1027 chromophore is in equilibrium with its active biradical 1.207 form in the 

apoprotein and unlike NCS does not need nucleophiles or radicals for its activation. The 

p-benzyne biradical 1.207 generated exerts its potent biological activity by abstracting 

hydrogen atoms from the sugar portion of double stranded DNA, which ultimately leads 

to oxidative cleavage. 

 

Reagents and conditions: (a) hydrogen abstraction 

Scheme 1.48: Cycloaromatization process of C-1027 chromophore. 
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1.6.1.5 Kedarcidin62, 143-153 

 

                          

                            Fig 1.16: Kedarcidin chromophore 

Kedarcidin is a new chromoprotein antitumor antibiotic that was isolated from the 

fermentation broth of a novel actinomycete strain. It consists of an apoprotein and a 

cytotoxic, highly labile, non protein chromophore. The apoprotein is water soluble 

while the chromophore is solvent-extractable, cytotoxic and highly unstable.  As with 

NCS, the antitumor activity of kedarcidin is due primarily to the chromophore. The 

enediyne core is activated   by chemical reduction (e.g. sodium borohydride) followed 

by spontaneous cyclization to a biradical intermediate and DNA cleavage. 
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1.7 The Parsons-Board-Walter Cyclization.38,46,47,48 

1.7.1 Retrosynthesis of Lactonamycin 

Lactonymicin, 1.210 a natural product isolated from Streptomyces rishiniensis by 

Matsumoto et al., in 1996,
1 

has been found to possess good antimicrobial activity 

against bacteria including excellent efficacy against Gram- methicillin resistant 

Staphylococcus aureus (MRSA) and vancomycin- resistant Enterococcus (VRE), it was 

also found to possess antitumour activity. Many synthetic approaches have been carried 

out on the construction of the molecule mainly on the partial synthesis of the ABCD and 

the CDEF rings. Recently within the Parsons group effort was made towards the 

synthesis of the ABCD ring. Initial retrosynthesis of the molecule led to 1.213 which 

theoretically should cyclise in the presence of palladium salts or mediated in a radical 

cascade by trialkytin hydride.               

                 
                  FIG 1.17: Lactonamycin                      
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       Scheme 1.49: Retrosynthesis of Lactonamycin 

 

1.7.2 Thermal Cyclization of the Model Systems 

A model system (an enediyne) 1.215 was constructed to evaluate the palladium or 

radical –mediated (tin hydride) cyclization. However it was discovered that the model 

system cyclised when heated alone in toluene to afford the tetracycle 1.216 in 50% 

yield.  

                    

reagents and conditions: (a)PhMe, reflux, 2 h, (50%). 

Scheme 1.50: Thermal cyclization of the model system. 
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 The use of an acid trap 1-epoxyhexene improved the yield of 1.216 to 74%. This led to 

the initial proposal that the reaction may be acid catalysed.         

 

Scheme 1.51: Postulated acid catalysed mechanism 

In order to investigate the mechanism of this finding and increase the versatility of the 

cyclization process, the aromatic portion was removed and the alcohol unit was 

converted to an ether bridge. The new precursor 1.221 was found to cyclise in boiling 

toluene containing 1-epoxyhexene as an acid scavenger, and the tricycle 1.222 was 

obtained in 90% yield  

                   

    reagents and conditions: toluene, reflux, 1 h, 1-epoxyhexene, 90% 

   Scheme 1.52:  Cyclization 
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In order to test the acid catalysed postulate the precursor 1.221 was modified to 1.223 

(removal of the halogen), and neat toluene was used without the acid scavenger. 

Dihydrofuran 1.223 was obtained in 92% yield. The result suggested that the cyclization 

might have been by another mechanism other than acid catalysed and the acid catalysed 

pathway was discounted in favour of a radical process because the cyclization still 

proceeded in the absence of an alkenyl bromide
47

 (Scheme 1.53). 

                      

reagents and conditions: (a) toluene, reflux, 92% 

Scheme 1.53: Cyclization in the absence of an alkenyl bromide
47

 

 

In order to explain this observation it was postulated that the reaction may have been 

initiated by the formation of a diene biradical generated from the two triple bonds. It 

was assumed that the two triple bonds are held closely together in space within a cisoid 

geometry 1.223a enhanced by amide resonance. This causes homolytic cleavage in each 

of the triple bonds to form the biradical intermediate. The radical 1.225 then cyclised 

onto the available terminal alkene to form the second and third rings in one operation. A 

double bond isomerisation occurred to minimise the strain produced in tricycle 1.226 to 

give 1.224                 



 

A Novel Cyclization for the Construction of fused Rings                                                                            Introduction                                                                                             

60 

 

 

Scheme 1.54: Amide resonance 

 

Scheme 1.55: Biradical mechanism 

 

In view of this new biradical mechanism, a number of different substrates were also 

tested and found to undergo thermal induced cyclization (Scheme 1.56). 
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reagents and conditions: (a)  toluene, reflux, epoxyhexene, 13 h, 97% 

                                        (b)  toluene, reflux, 13 h, 89% 

                                        (c)   toluene, epoxyhexene, reflux, 52 h, 76% 

Scheme 1.56: Different thermal cyclizations 

 

These studies have opened up a novel cyclization reaction for the construction of fused 

heterocyclic ring systems, which is metal free and hence environmentally friendly. 
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1.8 Aim of Current Thesis. 

The discovery of the novel thermal cyclization of highly functionalised enediyne 

molecules within the Parsons‟ group is thought to be a great prospect for synthetic 

chemistry. Interest in this type of cyclization is heightened due to the fact that they are 

not metal-catalysed and therefore environmentally friendly. This in essence has 

prompted more research into this type of cyclization.  

The aim of this research work is to:  

 Synthesise different precursors that would be used to investigate the thermal 

cyclization reaction. 

 Investigate the scope and the limitations of the thermal cyclization reactions by 

extending the novel cyclization reaction to the synthesis of diverse 

functionalised heterocyclic rings.  

 Investigate the intermolecular trappings of the proposed biradical formed. 

 Investigate the effect of sterically demanding group on the rate of cyclization. 



 

 

Chapter 2 

 

 

 

             Results and discussion 
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2.1. Retrosynthetic Analysis.  

Investigation into the novel thermal cyclization reactions of the enediyne started with 

the synthesis of the basic precursors which would then be adapted for the synthesis of 

the various functionalised precursors. 

Retrosynthesis of the basic precursors provided us with the disconnection to N-methyl 

propargyl amine 2.8, which could be obtained commercially or from the propargylation 

of methyl amine or methyl amine hydrochloride.  

 

Scheme 2.1: Retrosynthetic Analysis. 
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2.2 Synthesis of the Precursors 2.3 and 2.4.  

 

reagents and conditions: (a) (Boc)2O, DCM, (b) n-BuLi, THF, (CH2O)n, (c) NaH, allyl bromide  

Scheme 2.2: Formation of ether 2.5 

 

2. 2.1 N-Boc Protection and Propargylation of amine  

Initially we started the synthesis with the use of the commercially available N-

methylpropargyl amine. The amine was protected with Boc anhydride and the desired 

product was obtained on distillation in 79% yield as a clean and pure liquid which 

solidified on cooling. (Inset in scheme 2.3). 

We also attempted the synthesis of the Boc protected amine from the less costly 

reagents, methyl amine hydrochloride and methyl amine; 

The first method employed the use of methylamine hydrochloride from which the free 

amine was generated in-situ by its reaction with triethylamine. Subsequent reaction with 

Boc anhydride afforded the protected amine in 33% yield. The protected amine was 

deprotonated with sodium hydride and subsequently treated with propargyl bromide. 

Protection of the amine proved successful even though the yield was small, but the 

expected propargylation did not take place.   

In the second method,
154 

 propargylation of the amine was carried out with the addition 

of propargyl bromide to aqueous methyl amine producing a mixture of N-methyl 

propargyl amine 2.8 and unreacted starting material 2.11 on distillation of reaction 
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mixture. Protection of the amine with excess Boc anhydride was successful. N-N-Di-

methylethylenediamine was used to quench any unreacted Boc anhydride in the 

mixture. The reaction produced a mixture of 2.7 and 2.15 in 35% and 15% yield 

respectively.   

The use of the commercial N-methylpropargyl amine proved to be the best method. 

   

reagents and conditions: (a) THF, Et3N, (Boc)2O, -1 
O
C, 33%. (b) THF, NaH, C3H3Br, H2O, NaHCO3 (c) 

H2O, NaHCO3 (d) Boc, H2O, 0 
O
C 

Scheme 2.3: Preparation of N-methylpropargyl-N-Boc amine. 

 

The amine was N-protected as a tert-butyl carbamate ester (Boc group) to make it 

unreactive in the follow up reactions with nucleophiles and bases. From literature many 

different protecting groups are applicable for amines
155, 156

. For example Paul E 

Zhichkin et al.,
155

 made use of N,N dimethylformamidines as a protecting group for 

amine in the one-pot synthesis of amides from amino acids.(Scheme 2.4). We decided 

to use the Boc anhydride because of the ease of its removal with acids.  
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reagents and conditions: (a) (i) DMF/(COCl)2 (ii) pyridine, ArNH2,  (b) ethylenediamine 

Scheme 2.4: Use of N,N- dimethylformamidine as a protective group. 

 

2.2.2   Formation of the Propargyl alcohol 

Deprotonation of the terminal (alkynyl) proton was carried out by treating with n-                                                                        

butylithium (2.2M in hexanes) in dry THF at -78 
o
C. This was followed by addition of 

parafomaldehyde the reaction afforded the primary alcohol 2.6 in 83% yield. 

 

reagents and conditions: ( i) n-BuLi,  THF, -78 
O
C, (ii) (CH2O)n, 83%. 

Scheme 2.5: Synthesis of propargyl alcohol 

 

2.2.3 Williamson Ether Synthesis. 

Deprotonation of the primary alcohol 2.6 with sodium hydride produced the necessary 

alkoxide ion for the formation of the allyl ether when treated with 3-bromopropene 

through an SN2 mechanism.   
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reagent and conditions: NaH, THF, allyl bromide, 80%. 

Scheme 2.6: Williamson ether synthesis.  

 

2.2.4 Deprotection of Amine 

Deprotection of the amine compound 2.5 was attempted by treatment with 2M solution 

of hydrogen chloride in dichloromethane. This method was successful (84%) on a 50mg 

scale but unsuccessful when scaled up (3g) (Scheme 2.7). 

         

reagents and conditions: 2.0 M HCl in DCM, 84%            

Scheme 2.7: N-Boc deprotection with HCl  

 

Nazih et al.,
157

reported in their study of one-pot conversion of t-butyl carbamate to 

amides with acyl halide-methanol mixtures that the hydrogen chloride acid generated in 

situ has a low acidity which is not enough to accomplish the complete cleavage of the 

Boc group. In order to make the reaction medium more acidic and to improve the yield 

of the deprotection, the reaction was conducted in a medium that would generate 

hydrogen iodide in situ by the addition of sodium iodide. This system worked with good 

yields (62-100%). Trifluoroacetic acid (TFA) was also found to give very good yields 

46, 47, 158
.  
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This latter method was used in this research and the method afforded a complete 

removal of the Boc group in all cases. The TFA salt obtained was used without further 

purification (Scheme 2.8).  

        

reagents and conditions: TFA, DCM,RT. 

Scheme 2.8 N-Boc deprotection of 2.5 with TFA 

 

2.2.5 Formation of Acetylenic Acids. 

The acid 2.9, used for the coupling reaction was prepared from acetylene 2.21 by 

deprotonation with butyllithium or methyllithium followed by addition of carbon 

dioxide gas obtained from dry ice at room temperature and passed through a cannula.  

This method was used for the synthesis of the other acids 2.10, 2.24. 

                                                                                    

 

reagents and conditions: (a) n-BuLi, CO2, HCl. (b) MeLi, CO2, HCl 

Scheme 2.9: Synthesis of acetylenic acids 
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2.2.6 Formation of the amide. 

The last step in the synthesis of the precursor involved the coupling of the free amine 

with the acid. The coupling was carried out in three steps; 

Treatment of the TFA salt 2.20 with triethylamine at 0
o
C generated the free amine 2.25. 

(Scheme 2.10b)  

The acid 2.9 is not nucleophilic enough to couple with the free amine, it is therefore 

activated with a good leaving group by conversion into its reactive but unstable form 

(acyl chloride) 2.26 with the use of Vilsmeier reagent
155

 (in DCM), prepared in situ 

from oxalyl chloride and DMF (cat.). (Scheme 2.10a) Iso-butylchloroformate
159

 is 

another versatile reagent that could be used to activate the carboxylic acid. 

The acyl chloride formed was added to the free amine to form the amide (66%) through 

a nucleophilic attack on the carbonyl carbon of the acid chloride. (Scheme 2.10c) 

 

 

 

reagents and conditions: (a), DCM, oxalyl chloride, DMF,(b) DCM, Et3N, (c) 2.26, 66% (over 2 steps) 

Scheme 2.10: Synthesis of Precursor 2.3 
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Repeating the coupling reaction to generate more of the precursor proved difficult 

resulting in low yields, ranging from as low as 15% to 66% (based on the amine). The 

mechanism of the reaction showed that two equivalents of the amine were necessary for 

one equivalent of the acyl chloride, which constitutes a „waste‟ of the amine.  

 

 

reagents and mechanism: (a) H2O, DCM, NaOH 

Scheme 2.11: Mechanism of amide formation 

To circumvent this problem and conserve the amine, Schotten-Baumann
158

 adopted 

another approach involving the use of a different base in the place of the second amine 

molecule. The hydroxyl ion was used, however in a biphasic mixture of water and 

DCM, to prevent the hydroxyl ion from attacking the acyl chloride. Even though 

Schotten- Baumann recorded 80% yield, the reaction did not work in this particular 

system.   It is assumed that the reason for the failure may be the functionalised nature of 

our substrates.   

2.2.7 Thermal Cyclization Reaction. 

The enediyne 2.3 was heated under reflux in toluene and the progress of the reaction 

was followed by tlc analysis on hourly basis for 5 h, until the starting material was no 

longer visible on the tlc plate. The tetracyclic product was obtained on purification as 

the only product. 
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reagents and conditions: Toluene, Reflux, 5 h, 71 %. 

Scheme 2.12: Cyclization reaction 

 

 

 

 

 

 

 

 

 

Figure 2.1:  Crystal structure of tetracyclic 2.1 

2.2.8 Mechanism of Cyclization 

Based on studies carried out within the Parsons‟ group (section 1.7, scheme 1.55.) the 

mechanism of the thermal cyclization has been proposed to be radical based rather than 

acid based. In this particular study, the cyclization reaction was carried out by refluxing 

in toluene without any added acid trap; this confirmed that the cyclization is not acid 

based. Amide resonance which has been confirmed in the NMR experiments 

contributed to bringing the two alkynes bonds into close proximity thus satisfying the 
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critical distance theory proposed by Nicolaou et al.
18

  It has been suggested that the 

biradical mechanism probably occurred in the following steps; 

 Homolytic cleavage of the two triple bonds in 2.3a to form a biradical 

intermediate 2.31 similar to the Bergman intermediate 1.2 in scheme 1,  

 followed by a 1,5- H atom abstraction and double bond formation in the lactam 

ring to give 2.34, and  

 finally, the addition of the  remaining terminal double bond in 2.34 to give the 

fully cyclised product. 

It is also a possibility that the intermediate 2.32 could collapse to form the allene 2.33 

which could also undergo a Diels-Alder cycloaddition reaction to finally give the 

product 2.1    

             

Scheme 2.13: Mechanism of thermal cyclization 

Compound 2.1 has two stereogenic centres at C2 and C4.  From the X-ray 

crystallography the absolute configuration at the two centres are 2R and 4S, it also 

shows that the hydrogen atoms are trans to one another. Diels-Alder reactions are 
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known to be stereoselective and the substituents on the dienophiles and the dienes retain 

their relative stereochemistry prior to the reaction.  The product being obtained with a 

trans configuration may be an indication of the biradical mechanism, since Diels-Alder 

reactions are known to be stereoselective and the dienes react only in the cisoid 

configuration, thus producing an adduct in which the substituent are in cis position to 

one another.  

    

2.3 Further Studies on the Intramolecular Cyclization Reactions 

Results obtained with the silyl 1.231, and phenyl 2.3 and the unsubstituted (R= SiMe3
47

, 

Ph, and H
47

) moieties during the intramolecular cyclizations prompted us to investigate 

a series of other enediynes, with the view of increasing the versatility of the thermal 

cyclization reactions in synthesis. We aimed to prepare the methyl, ethyl and propyl 

substituted moieties for use in the synthesis of the various heterocycles.  

              

                         Figure 2.2:  Compounds 2.35, 2.36, 2.37 
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2.3.1 Synthesis of the Precursors 2.38, 2.39, and 2.40 

Retrosynthesis of compounds 2.35, 2.36, 2.37 gave the precursors 2.38, 2.39, 2.40 

respectively. 

                   

       2.35             R= CH3, (Me),                         2.38 

                 2.36             R= CH3CH2, (Et),                   2.39 

                 2.37             R= CH3CH2CH2, (nPr)            2.40 

              Scheme 2.14:  Retrosynthesis of Compounds 2.35, 2.36, 2.37. 

 

Each of these precursors was prepared by the coupling reactions of 2.20 with the 

corresponding acyl chlorides which were prepared (in-situ) (scheme 2.15) from the 

corresponding commercial acids. 

                  

                            2.44                R = Me                   2.47                    

                         2.45              R = Et                2.48 

                         2.46              R = n-Pr             2.49   

  
     reagents and condition: (a) (COCl)2, DMF (cat), DCM, 0

O
C, 1 h 

     Scheme 2.15; ‘In situ’ preparation of the acyl chlorides.                
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 reagents and condition: (a) NEt3, 0
o
C,  2.47/2.48/2.49 

Scheme 2.16: Synthesis of acyl chlorides and coupling reactions. 

 

2.3.2 Thermal Cyclization Reactions of 2.38, 2.39, 2.40 

 

The precursors were heated to reflux in dry toluene for forty-eight hours, providing the 

tricycles in moderate yields of 49, 50 and 54%.  

A comparison of the spectra of these compounds compared well with those of similar 

compounds.
46,47,48 

       

  reagents and conditions: (a) toluene, reflux, 48 h. 

Scheme 2.17: Cyclization reactions for compounds 2.38, 2.39 and 2.40     
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When the reactions were repeated under the microwave conditions, the yields improved 

to 62, 64 and 68% respectively. It was also observed that the rate of reactions were 

slower for these enediynes than for the silyl and phenyl moieties. 

 

Substrate Yield (%)conventional heating (48 h) Yield (%) m/w (2 h) 

2.38 49  62 

2.39 50 64 

2.40 54 68 

Table 2.1 Yields of thermal cyclizations. 

This observation agrees with the observation made by Schreiner et al. (section 1.2.4) 

that alkyl substitution at the alkynyl positions increases the endothermicity of the BC 

and stabilizes the alkynes and therefore disfavour cyclization. 

2.4 Investigation of the Biradical Mechanism 

We proceeded to test the proposed biradical mechanism on a different substrate 

employing the use of the cyclopropyl group on one of the terminal alkynes instead of a 

TMS group or a phenyl group. Schmittel  et al.,
10

 observed that simple attachment of an 

aryl group to the alkyne terminus of an enyne allenes has a stabilising effect on vinyl 

radicals and they redirected the reaction from Meyers - Saito mode (C2 –C7) to 

Schimittel  mode (C2 – C6).
10

 (Scheme 1.26.) Rodriguez et al. also observed similar 

redirection on the enyne cumulenal systems. (Scheme 1.27) Summarily, earlier studies 

have established that cyclization reactions are highly affected by the type of substituent 

group on the terminal alkyne.  
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2.4.1 Synthesis of the Precursor  

The cyclopropyl moiety was synthesised starting from the free amine 2.25. Cyclopropyl 

propynoyl chloride was generated in situ, (Scheme 2.18a) and coupled with the free 

amine to produce the expected amide 2.4 in 67% yield. 

 

reagents and conditions: (a) DCM, DMF, oxalyl acid (b) 2.25, 67% 

Scheme 2.18: Synthesis of cyclopropyl precursor  

2.4.2 Thermal Cyclization reaction  

Precursor 2.4 was heated under reflux in toluene, TLC monitoring showed the 

completion of the reaction after 25h. 

 

reagents and conditions: toluene, reflux, 25 h, 83% 

Scheme 2.19: Thermal Cyclization reaction  
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Surprisingly precursor 2.4 also cyclised into a solid compound 2.2 as indicated in the 
1
H 

and 
13

C NMR experiments. 
1
H NMR and correlation data confirmed that the 

cyclopropyl ring remained unopened against expectation. Signals for the protons of the  

cyclopropyl ring which hitherto was observed at 0.9ppm (4H for the two CH2) and 

1.4ppm (1H) in the precursor now showed different signals for which all the five 

protons are coupled together as indicated in the COSY experiment. This is an indication 

that the cyclopropyl ring remains unopened in the product. The coupling observed may 

be due to the rigid structure of the ring system of the cyclised compound. For the same 

reason the splitting observed for the N-methyl and the N-methylene protons in the 

precursors were no longer observed in the cyclised compound.  Unfortunately all 

attempts to obtain crystals for X-ray analysis failed.  

Even though compound 2.2 was formed against our expectation, a closer look showed 

that it did not negate the proposal that the reaction may have occurred through the 

biradical mechanism. 

Detailed study carried out by Schimittel et al.,
10

 (Schemes 2.20 and 2.21) on the C2-C6
 

cyclization using the cyclopropyl- substituted enyne allene pointed to a stepwise 

biradical mechanism for the cyclization reactions. Evidence for the stepwise mechanism 

over a concerted one was also provided by the measurement of activation barriers and 

the lack of solvent effect (polar and non polar) apparently precludes a zwitterion as an 

intermediate. The proposed mechanism is given in scheme 2.21. Two plausible 

explanations were given for the conversion of the biradical into the two diastereomers, 

(i) a coupled bond rotation about the bonds linking the radical centre to the cyclopropyl 

group and to the benzofulvene moiety, and (ii) reversible opening of the cyclopropyl 

ring. 
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reagents and conditions: 1,4-CHD, 80
o
C,  

Scheme 2.20: Thermal reaction of cyclopropyl-substituted enyne allene 

 

In scheme 2.20 above when 2.50a and 2.50b (1.1 mixture of the two trans 

diastereomers) was gently heated, a mixture of 2.51a and 2.51b was obtained. 

Furthermore each of the diastereomers of 2.50 still produced both 2.51a and b when 

heated separately. This ene reaction is not stereospecific, which indicated a stepwise 

mechanism through a biradical intermediate 2.52. 

 

Scheme 2.21: Proposed mechanism (Coupled bond rotation) 



A Novel Cyclization in the Construction of Fused Rings                                                               Result and Discussion 

  

 81 

 

According to Snider and Ron
160

, the ene reactions are mechanically diverse and could 

occur through concerted pericyclic reactions (Scheme 2.22a) or through stepwise 

mechanisms with a zwitterion or biradical as intermediates. The actual mechanism 

followed would depend on the nature of R group. 

 

Scheme 2.22: Ene reaction, concerted and stepwise mechanism. 

Conclusively the formation of compound 2.2 in scheme 2.19 could be explained on the 

basis of reversible opening of the cyclopropyl ring. This could also account for the 

observed slow rate of the cyclization, 25 h as against the 5 h taken for precursor 2.3 to  

cyclise into 2.1. The proposed mechanism for the reversible ring opening of the cyclop 

ropyl group through a stepwise pathway is shown in scheme 2.23. 
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Scheme 2.23: Mechanism of (a) the reversible ring opening of cyclopropyl ring and 

(b) Diels-Alder cycloaddition  

 

2.5 Investigation of Intermolecular Radical Trapping. 

Having proposed the biradical mechanism for the cyclization reactions, we needed to 

investigate the cyclization reaction through an intermolecular radical trapping.  

                                   

Scheme 2.24: Proposed cyclization reaction  
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2.5.1 Cyclization of 2.62 with Allyl Alcohol. 

The investigation involved the use of a diyne and an external ene system provided by 

allyl alcohol. 

Synthesis of the precursor 2.62 followed exactly the same procedure for compound 2.6. 

Thereafter compound 2.6 was deprotonated with sodium hydride and methylated using 

methyl iodide to produce 2.64 followed by Boc removal with TFA.  Triethylamine was 

added to the TFA salt to generate the free amine in solution. Simultaneously the acyl 

chloride of the cyclopropylpropiolic acid was generated in situ (Scheme 2.18a). This 

was coupled with the free amine to produce precursor 2.62.  

 

reagents conditions: (a) THF, NaH, MeI, (b) DCM, TFA, (c) NEt3, DCM,  2.27 (d) toluene, allyl alcohol, 

(i) microwave, 140 
O
C, 5 h, (ii) reflux, 110

O
C, 25 h. 

Scheme 2.25: Investigation of intermolecular trapping. 

 

Thermal cyclization of precursor 2.62 was attempted in refluxing toluene for 25 h, 
1
H 

NMR experiments on the expected product did not give any meaningful signal 

indicating that the starting material has probably been destroyed. The cyclization was 

again attempted in toluene under a microwave condition and the expected product was 

still not obtained after 5 h.  
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reagents and conditions: (a) toluene, reflux, allyl alcohol. 

 

Scheme 2.26. Expected mechanism for the intermolecular cyclization 

Initially we thought that the failure of the cyclization reaction may be due to the 

distance between the radical formed and the allyl alcohol which may have been too far 

apart for the necessary trapping that would lead to the closure of the second and third 

rings. However, Geering
161

 found that the ethoxy analogue 2.70 cyclised in the presence 

of the allyl alcohol into compound 2.71.  

 

reagents and conditions: (a) Toluene, 120 
o
C, microwave  

Scheme 2.27: Thermal cyclization of the ethoxy moiety 

 

The proposed explanation is that the methoxy moiety is less stable than the ethoxy. 

Even though we were able to obtain the cyclised compound from the intermolecular  
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cyclization of the ethoxy moiety, we still cannot rule out the effect of the distance of the 

double bond on cyclization reactions. Findings by Board
38

 (scheme 2.28) and 

Woodford
163 

(scheme 2.29) showed that even when the double bond is within the 

molecule, but separated from the alkyne bond by more than four bonds (2.72) or a 

phenyl ring (2.75 and 2.78), the yield of the cyclised products were very low and 

partially cyclised compounds were obtained as major products.  

 

reagents and conditions:  toluene, reflux 

Scheme 2.28: Complete and partial cyclization of 2.72
162

. 

 

reagents and conditions: toluene, reflux 

Scheme 2.29: Complete and partial cyclization 
163

. 
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2.6 Investigations through Ether Linkage 

To further extend and investigate the capability of the thermal cyclization reactions, we 

proceeded to make some variations to our precursors. 

The amide linkage of compounds 2.62 was replaced with ether linkage and the alkyne 

terminal groups were also replaced to produce precursors 2.80, 2.86 and 2.89. 

Earlier work within the Parsons group has suggested that the presence of the silicon on 

the terminal alkyne of 1.222 has a profound effect on the stability of radicals α to the 

silicon 
46, 47

. Hitherto we have studied cyclization reactions with substrates such as 

phenyl, methyl, ethyl, propyl and cyclopropyl groups, we now introduced the use of the 

TMS group for comparison. 

 

2.6.1 Retrosynthesis of the precursors. 

Scheme 2.30: Retrosynthesis analysis of 2. 80 

2.6.2 Synthesis of Alcohols 2.81 and 2.88 

Treatment of a solution of propargyl alcohol with aqueous sodium hydroxide followed 

by the addition of dimethyl sulphate
164-168 

gave the propargyl ether 2.84. Deprotonation 
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of the alkynic hydrogen of 2.83 with n-butyl lithium and subsequent addition of 

paraformaldehyde produced 4-methoxy propyn-2-ol, 2.81 in 65% yield.  

             

reagents and conditions: (a) NaOH, H2O, Me2SO4, (b) n-BuLi, (CH2O)n, CH3CN 

Scheme 2.31: Synthesis of 2.8 

 

Alternatively an excess (5 eq.) of recrystallised 2-butyn-1, 4-diol 2.82 was heated with 

aqueous sodium hydroxide in the presence of dimethyl sulphate and the mono alkylated 

product 2.81 was obtained in 87% yield. A very small amount of the di-alkylated 

product was also obtained. Another method that has been reported
48 

is the treatment of 

the mono t-butyldimethylsilyl ether of butyne-1, 4 diol with sodium hydride and and the 

subsequent removal of the silyl protecting group with tetrabutylammonium fluoride in 

THF. 

            

reagents and conditions: (a) NaOH, H2O, Me2SO4, 

Scheme 2.32: Alternate synthesis of 2.81 

Even though the alternate method appeared to be more efficient, it however required the 

use of an excess of the starting material which made it to be less economical overall. 

 The reported method was not used so as to avoid the protection and deprotection steps. 
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The synthesis of the ethoxy alcohol was carried out in a similar manner. 

 

reagents and conditions: (a) NaOH, H2O, Et2SO4, (b) n-BuLi, (CH2O)n, CH3CN,  

Scheme 2.33: Synthesis of 4-ethoxypropyn-2,3-ol. 

 

2.6.3 Coupling Reactions.  

The method used for the formation of the amides, that is, coupling of the acyl chloride 

derivative of the acid with the alcohol did not give the expected product for the ester 

moieties. Viseux 
169, 170

 had earlier noted that in the coupling of complex acids and 

alcohols, the use of coupling agents resulting in the formation of acyl chloride and 

isobutyl chloroformate derivatives are quite unsatisfactory, their yields are inconsistent 

and reactions are not clean. Most of the other reagents used also did not give the 

expected products. In most cases there was formation of tar, and generally the results 

were quite unsatisfactory.   

Finally, we resorted to the use of 1,1'-carbonyldiimidazole (CDI)
171

, a coupling reagent 

that acts as an activating agent for acids. Its reactivity is similar to but better than those 

of acyl chlorides. 1-[3-(Dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride 

(EDCl) also proved to be a suitable coupling agent, but less suitable than CDI.  
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reagents and conditions: DCM, CDI. 

Scheme 2.34: Coupling reactions 

 

Alcohol Conditions Yield 

2.81 DCM, oxalyl chloride  Decomposition, SM 

2.81 DCM, Iso-butylchloroformate Decomposition, SM 

2.81 DCM, Thionyl chloride Decomposition 

2.81 DCM, CDI 20% Product, 20% SM 

2.81 DCM, EDCl 25% 

2.81 DCM, EDCl, DMAP Formation of tar 

2.88 DCM, CDI, DMAP Formation of tar 

2.88 DCM, CDI 27% 

 

Table  2.2.    Result of coupling reactions 

 

 

The CDI acts as a double electrophile linking two nucleophiles together by a carbonyl 

group, with the imidazole acting as a leaving group in the reaction. The reaction is 
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driven by the increase in entropy of the system.  A typical reaction of CDI is illustrated 

below; 

Scheme 2.35: Mechanism of CDI based coupling    

2.6.4 Thermal Cyclization Reactions.  

Initially precursor 2.89 was heated under reflux in toluene for 52 hours to give the 

tricycle in 75% yield. A repeat of the cyclization under the microwave condition 

showed completion after 5 h.  

When the methoxy precursors, 2.80 and 2.86 were heated in the microwave for 5h each, 

they did not give the expected cyclization products, but rather decomposition of the 

starting materials was observed from the NMR analysis. Cyclization of 2.89 was also 

attempted in different solvent and the results are shown in table 2.2. 
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reagents and conditions: Toluene, allyl alcohol microwave, 130 
O
C, 75%. 

Scheme 2.36; Thermal reactions of precursors 2.65, 2.71 and 2.74. 

 

Solvent Result  (% yield) 

Toluene, allyl alcohol 75  

d8-toluene, allyl alcohol 66 

100% allyl alcohol Failed reaction 

 

Table 2.3: Cyclization of 2.74 in different solvents. 

 

It was observed that even though precursor 2.89 cyclised to form the tricyclic 

compound 2.95 like the amide analogue, it took a much longer period of 52 h as against 

the 5 h for the amide moiety, this agreed with Waters
48

 result. Accordingly Waters 

explained this observation by proposing that the ether moiety may have assumed the 

transoid (2.96b) geometry which is less favourable than the cisoid (2.96a) geometry for 

cyclization, while the cisoid geometry (2.3b) dominates in the amide moiety.  



A Novel Cyclization in the Construction of Fused Rings                                                               Result and Discussion 

  

 92 

 

 

Scheme 2.37:  Cis and Trans resonance forms of the amide and ester. 

In an earlier study Parker et al
173

 have established the role of geometry in the 

cyclization reactions. They discovered that substrates, 2.97a and 2.97b in which the side 

chain contains an ester moiety are unreactive in an intramolecular Diels-Alder reaction, 

presumably because the molecule prefers the unreactive conformation in which the 

diene and dienophiles are transoid about the ester linkages, thus making it difficult for 

cyclization to occur. The amide moiety 2.98 was found to undergo Diels-Alder reaction 

when heated under reflux in benzene.                                  

 

Figure 2.3: The ester and amide moieties. 

2.6.5 Proposed Mechanism for Intermolecular Cyclization 

The intermolecular cyclization is assumed to have occurred through the biradical 

pathway as proposed for the intramolecular cyclization (scheme 2.13). However after 

the double bond formation in the lactam ring in 2.86, the required double bond for the 
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formation of the 6- membered ring was supplied by an external molecule (allyl alcohol). 

Formation of the second furan ring was accomplished with the lone pair electrons of the 

allyl oxygen. 

 

Scheme 2.38: Proposed mechanism for 2.95 

An alternative mechanism could involve an ene reaction followed by a Diels - Alder 

cycloaddition as shown in scheme 2.39b. 

  

Scheme 2.39: Proposed mechanism for 2.95 via the ene reaction. 
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2. 7 Investigation of the Effect of a Bulky Group and the Use of Various 

Unsaturated Molecules. 

Following the assumption that the cyclization was favoured by the cisoid geometry, it 

was anticipated that the attachment of a sterically demanding group on the nitrogen 

would enhance the cisoid geometry, displace the equilibrium to the right, decrease the 

distance between the two alkynic bonds and hence increase the rate of reaction. An 

isopropyl group was chosen for this study. The study also focused on the intermolecular 

trappings of the biradical formed.  

2.7.1 Retrosynthesis of the precursor. 

Scheme 2.40 Retrosynthesis of Precursor 2.103. 
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2.7.2 Synthesis of the precursor  

The starting material, N-isopropyl amine 2.110, was Boc protected to give 2.109 in 51% 

yield. All attempts at propargylation of the protected amine proved abortive leading to 

the recovery of the starting material.  

 

reagents and conditions: (a) H2O, (Boc2)O, (b) table 2.3 

Scheme 2.41: Propargylation of Boc protected amine 

 

 

Compound    reagents and conditions      results 

2.94   THF, NaH, 0 
o
C, propargyl bromide, rt            SM 

2.94   DMF, KH, 0 
o
C, propargyl bromide

156
 rt         SM 

2.94   DMF, NaH, 0 
o
C, propargyl bromide

164,165
 rt          SM 

2.94  THF,  n-BuLi, -78oC, propargyl bromide          SM 

 

Table 2.4: Reagents and conditions for propargylation of protected amine 

 

Alternatively propargylation of the unprotected amine was carried out using propargyl 

bromide. The amine acts as its own base in the reaction. The mono-substituted amine 

becomes very reactive towards a second substitution with the propargyl bromide. 

Therefore an excess of the amine was used, (5: 1 equivalent) and the propargyl bromide  
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was added very slowly through an addition syringe over a 15 h period. Purification of 

the crude by flash chromatography produced only the di-substituted amine. Therefore 

the crude was purified by distillation to give a mixture of mono and di-substituted N-

isopropyl-N- propargyl amine (b.p, 110-111 
o
C) and toluene (110 

o
C). The desired 

product was inseparable from the mixture. 

 

reagents and conditions: H2O, Propargyl bromide, KOH, reflux. 

Scheme 2.42: Propargylation of the amine 

 

Treatment of 2.108 with Boc anhydride in acetonitrile followed by subsequent 

quenching of unreacted Boc anhydride with triethylamine afforded the protected 

compound 2.107 in 66% yield. Compound 2.107 was deprotonated with butyllithium at 

-78
o
C in THF, addition of paraformaldehyde cleanly afforded the desired alcohol 2.106 

as an orange liquid in 89% yield. Deprotonation of the alcohol with sodium hydride in 

THF followed by alkylation with ethyl iodide produced the ester 2.106 in 80% yield. 

(Scheme 2.43) 

The Boc group was cleanly removed from the compound with the use of TFA in 

dichloromethane and the TFA salt 2.104 of the compound formed was used without 

purification for the subsequent coupling reaction. 
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Reagents and conditions : (a) MeCN, BOC anhydride, Et3N, (b), n-BuLi, THF, Paraformaldehyde. (c) 

NaH, THF. CH3CH2I. (d) TFA, DCM. 

Scheme: 2. 43: Synthesis of 2.104 

 

The amide which is the precursor for the cyclization was obtained from 2.104 in three 

sequential steps as outlined in section 2.2.6 and the yield over two steps was 35%. 

 

 

reagents and conditions (a) Et3N, DCM, 2.70 

Scheme 2.44: Amide formation 

 

2.7.3 Thermal cyclization reaction              

Allyl alcohol was added to the precursor 2.104 and refluxed in toluene. Tlc analysis and 

visualization under the UV light indicated the completion of the cyclization reaction  



A Novel Cyclization in the Construction of Fused Rings                                                               Result and Discussion 

  

 98 

 

after 2 h. The cyclization reaction occurred at a faster rate than for the N-methyl group 

moiety which took 5 h, and much faster than the ester moiety which took 25 h to 

cyclise.   

The relatively short time taken for the completion of the cyclization reaction in this case 

is an indication of the positive effect of the sterically demanding group on the geometry 

of the molecule. As envisaged a sterically demanding group like the iso-propyl group 

must have favoured the cisoid geometry (scheme 2.37, bringing the two alkynic bonds 

into closer proximity thereby increasing the rate of cyclization reaction. This 

observation is similar to the Thorpe- Ingold effect or gem-dimethyl effect
187

 which is 

the acceleration of cyclization by substituents in the chain and is often used in organic 

synthesis as a ring-closing effect.
188

The Thorpe-Ingold effect caused by the increase in 

the size of two substituents on a tetrahedral centre leads to enhanced reaction between 

the parts of the other two substituents. The effect is attributed to a kinetic effect caused 

by the substituents compressing the angle at the carbon bringing the end groups closer 

together.
189

 Kathleen et al.,
190

 also confirmed that the gem-dimethyl effect actually 

buttress ring formation. We can safely suggest that the introduction of the iso-propyl 

group on the central nitrogen of the precursor 2.103 may have indeed created an effect 

similar to the Thorpe-Ingold effect.   

It is assumed that the mechanism would be identical to that of compounds 2.1 and 2.2. 

(Scheme 2.13) 
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reagents and conditions: (a) toluene, allyl alcohol, reflux, 110
o
C   

Scheme 2.45: Thermal cyclization of 2.104   

 

The success of this cyclization reaction at a faster rate motivated us to investigate the 

use of some other unsaturated compounds, such as methyl acrylate (2.113), maleic 

anhydride (2.115), cyclopent-2-enone (2.116), cyclohex-2-enone (2.117), and 

benzoquinone (2.118) for the intermolecular cyclization. It is envisaged that the success 

of such reactions would be of great application in the synthesis of highly functionalised 

heterocycles. The reactions were carried out following the established typical thermal 

cyclization procedure used above.                               

                                                                                                 

                                                         2.118                

Figure 2.4: Selection of some alkenes           
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Unfortunately only the acyclic alkene, methyl acrylate 2.113, reacted in the 

intermolecular cyclization with the precursor 2.103. All the others failed to react. 

 

 

reagents and conditions: (a) toluene, reflux, 110 
O
C, (b) methyl acrylate (2.113) 

Scheme 2.46  Intermolecular thermal cyclization 
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The expected cyclization reactions are as shown below; 

 

  

             

                                 

                      

 

                                                                                                                                  

reagents and conditions: (a); toluene, reflux, 110 
O
C, 5h (c) 2.115, (d) 2.116, (e) 2.117 (f) 2.118. 

Scheme 2.47 Expected thermal cyclizations 
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 We thus proposed that the failure of these reactions may be attributed to the restricted 

availability of the double bonds or the π-electrons necessary for the intermolecular 

cyclization coupled with the fact that the radical formed may be very short lived, 

leaving  no time for the ringed alkenes to attack. On the other hand, if an allene 

intermediate is involved, the Diels-Alder transition state may be too sterically 

demanding to allow a cyclization to take place. 
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3.1 Conclusion 

The cyclization reactions of enediynes; such as the Bergman cyclization and Myers-

Saito cyclization found to be responsible for the DNA cleavage of the antitumour 

antibiotics have also been found to be versatile reactions in the synthesis of 

pharmaceutical products and in organic synthesis.  

Within the Parsons group highly functionalised enediynes have been discovered to 

undergo thermal cyclization cascade reactions which allows for the formation of 

heterocyclic ring systems in one synthetic operation
48.

  

In this research, efforts were made to diversify the basic structure of the enediyne to 

increase the scope and applicability of these thermal cyclization reactions. Amide and 

ester linkers were incorporated to increase the functionality of the product, thus making 

them relevant to the synthesis of heterocycles. It was found that the amide moiety has a 

higher rate of cyclization than the ester moiety.  The effects of phenyl and cyclopropyl 

groups on the terminal alkynes were studied, and we discovered that the rate of the 

cyclization reactions were dependent on the type of substituent. These results also 

proved that silicon though not having a stabilising effect on the biradical intermediate, 

has a profound positive effect
48

on the rate of cyclization. The rate of cyclization was 

greatly decreased with the attachment of the cyclopropyl group on the terminal alkyne 

than it was for the phenyl and the alkyl groups.  

We also found out that the intramolecular cyclization was more highly favoured than 

the intermolecular cyclization (scheme 2.15 and scheme 2.19). In the intermolecular 

cyclizations, only the acyclic alkenes (schemes 2.40 and 2.42) were able to react with 

the biradical generated in the reaction.  



 

A Novel cyclization in the Construction of Fused Rings.                                                Conclusion and Future Work 

Page 105 

 

Attachment of a sterically demanding group on the nitrogen was found to increase the 

rate of cyclization, reducing the time taken by almost 60%. This result lends credence to 

the fact that the amide linker assumes the cisoid geometry prior to cyclization and that 

this is more favoured than the transoid geometry. (Scheme 2.29) The increase in the rate 

of the reaction is also assumed to be due to an effect similar to the Thorpe-Ingold effect. 

From the discussion so far a number of mechanistic approaches have been proposed. 

These include; 

 the biradical mechanism, 

 a simple ene reaction which would produce an allene that would undergo a 

Diels-Alder cycloaddition reaction. 

Many natural compounds contain a six membered ring system and the control of the 

stereochemistry has been an important issue in synthesis.
183 

If the cyclization reactions 

in these study are confirmed to be through the Diels-Alder cycloaddition, they would 

therefore be of immense value in controlling the stereochemistry of ring systems.  

The discussion is far from been conclusive and the confirmation of the specific pathway 

is still an ongoing investigation within the Parson group.  

 

3.2 Future Work 

In future more investigations should be carried out on the coupling reactions both for 

the amide and the ester moieties. Even though we have successfully used oxalyl 

chloride and CDI respectively, the yields were far from satisfactory. 

It would also be necessary to explore other ways to synthesize N-isopropylpropargyl 

amine in order to increase the yield. 
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The scope of this thermal cyclization should be expanded by further modifications of 

the substrates; 

 the amide and ester linkers could be replaced by sulphur, 

 changing the substituent groups on the two terminals alkynes and  

 introducing highly substituted aromatic groups at both terminals. 

Comparative studies on the rate of reaction should also be carried out by attaching 

bulkier groups to the nitrogen. Studies should be carried out using highly substituted 

and branched chains on the nitrogen atom in other to establish if there is an effect 

comparable to the Thorpe-Ingold effect. The stereochemistry of the various precursors  

should be noted before and after the cyclizations to be able to determine the stereo 

selectivity of the cyclization reactions. 

                                                    



 

 

Chapter 4 
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General Experimental Procedure 

Unless otherwise stated, commercially available reagents were used without purification 

and all reactions were conducted in an inert atmosphere of nitrogen gas. All glassware 

was oven dried and glassware for reactions requiring anhydrous conditions were flame 

dried. 

Tetrahydrofuran and diethyl ether were distilled from sodium using benzophenone as an 

indicator; dichloromethane and acetonitrile were distilled from calcium hydride for 

immediate use. Triethylamine and toluene were distilled from calcium hydride and 

stored over potassium hydroxide.  

Reactions were monitored by tlc using Merck glass backed tlc plates pre-coated with a 

250µm layer of 60 F254 silica gel. Visualization was achieved using potassium 

permanganate and vanillin dips and ultraviolet light at 254 nm where applicable. 

Purification of products were carried out by flash chromatography using Merck Kiesel 

gel 60 silica gel eluting with commercially obtained eluents.  

1
H NMR and 

13
C NMR spectra were recorded using a Bruker advance AC-300 at 300 

MHz and 75 MHz respectively or a Varian-500 at 500 MHz and 125 MHz respectively. 

Samples were run in deuterochloroform at ambient temperature. Chemical shifts were 

quoted in ppm, using residual solvent peaks as internal standards (7.26 ppm for 
1
H and 

77.0 ppm for 
13

C. Correlation experiments were run to provide clarity where necessary. 

Low and high resolution mass spectra were recorded on a Fison VG autospec mass 

spectrometer and or on a Bruker Daltonics Apex III (ESI). 

Infrared spectra (IR) were recorded on a Perkin Elmer 1710 Fourier transform 

spectrometer with sodium chloride plates. 
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N-Methylamine carbamate 2.15                                   

           

The synthesis of compound 2.15 was achieved following an adaptation of the method 

reported by Nanchen S and Pfaltz A.
156

 Methylamine hydrochloride (2g, 29.63mmol) 

was added to THF (20mL). The flask was immersed in an ice /salt bath (-10
o
C). 

Triethylamine (2.99g, 4.13mL, 29.63mmol) and Boc anhydride (6.47g, 29.63mmol) 

were added to the solution and the reaction was stirred for 10min after which the ice/salt 

bath was removed and the reaction was allowed to stir for a further 16 h. The mixture 

was concentrated under reduced pressure and a white solid was obtained. The solid was 

dissolved in diethyl ether, washed with water to dissolve the triethylamine 

hydrochloride. The mixture was extracted with diethyl ether. The organic layer was 

washed with brine, dried over magnesium sulphate and concentrated under reduced 

pressure to give a yellow liquid. The crude product was purified by distillation at 

atmospheric pressure to give a colourless liquid at 170
o
C. (33%)  

IR (NaCl, cm
-1

); 3353, 2977, 2355, 1688, 1524, 1453, 1418, 1391, 1273, 1250,  

1
H NMR (300 MHz, CDCl3) δ; 4.8 (1H, s, H2), 2.60 (3H, d, J = 6.4. H1), 1.38 (9H, s,     

H5) 

13
C NMR (75MHz, CDCl3) δ; 156 (C3), 79 (C4), 28 (C5), 27 (C1). 

HRMS (ESI+) Calc for C6H13NO2Na, m/z = 154.0838, found=154.0840 (1.072 ppm 

error)   
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N-Methyl prop-2-ynylcarbamic acid tert- butyl ester. 46,47,48     2.7  

                                            

(a) To a solution of N-methylpropargylamine (20.48g, 296.70mmol) in CH2Cl2 (150mL) 

was added Boc anhydride (77.7g, 356.10mmol) in small portions at 0
o
C. The reaction 

mixture was stirred at room temperature for 20 h.  N, N’-Dimethylethylenediamine 

(20ml) was added and the reaction was stirred for another 1h at room temperature. The 

mixture was washed with hydrochloric acid (1M, 3 x 150mL),a saturated solution of 

potassium carbonate, and brine (1 x 100mL each). The solution was dried over 

magnesium sulphate, filtered and evaporated under reduced pressure.. Purification of the 

residue by vacuum distillation at 50-60
o
C (at 0.1 mbar) gave the desired product as 

colourless oil. (39.33g, 79%).  

(b) Sodium hydride (0.458g, 11.45mmol) was added into THF (20mL), N-methylamine 

carbamate (1.5g, 11.45mmol) was added and the reaction was left for 1h in an ice bath 

under continuous stirring. Propargyl bromide (1.70g, 11.45mmol) was added slowly and 

the reaction was left overnight to warm up to room temperature. The reaction was 

quenched with water (20mL) and extracted with diethyl ether (30mL). The aqueous 

layer was washed with diether (2 x 20mL) and the combined organic layer was dried 

over magnesium sulphate and concentrated under reduced pressure. Purification by 

column chromatography (33% of ethyl acetate in petroleum ether) gave the desired 

compound as colourless oil.  (50%). 
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(c)   Propargyl bromide (21.24g, 26.55mL, 0.18mmol) was added to a solution of 

methylamine (104.625, 1.35mol) in water. The solution was stirred for 1h and sodium 

hydrogen carbonate (30.24g, 0.36mol) was added and the mixture was filtered. The 

filtrate was distilled to give a colourless distillate at 70-80 
o
C at atmospheric pressure. 

The distillate was a mixture of methylamine and methylpropargyl amine. The mixture 

was added to a solution of Boc anhydride (30.5g, mmol) in water (100mL) and stirred 

for 1 h. The product was extracted with ethyl acetate (3 x 100mL) dried over 

magnesium sulphate and concentrated under reduced pressure to give a light yellow 

liquid.  Purification was by column chromatography (25% of diethyl ether in hexanes). 

Two products were obtained; (i) tert-butyl methyl (prop-2-ynyl) carbamate (11.5g 

35%), and (ii) tert-butyl N-methyl carbamate 2.15 (6.3g, 15%).  The two compounds are 

colourless solutions.  

Analysis conformed to the literature report.
48 

 

IR (NaCl, cm
-1

); 3309, 2981, 2933, 2252, 1798, 1690   

1
H NMR (300 MHz, CDCl3) δ; 4.01 (2H, s, br, H3), 2.89 (3H, s, H4), 2.21 (1H, t, J = 

2.4, H1), 1.40 (9H, s, H7). 

 13
C NMR (75MHz, CDCl3) δ; 155.3 (C5), 80.12 (C6), 79.321 (C1), 72. (C2), 38, (C3), 

34.54 (C4), 28.48 (C7).   

HRMS (ESI+) Calc for C9H15NO2Na, m/z 192.0994, found 192.0996(2.5ppm error)    
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 tert-Butyl 4-hydroxybut-2-ynyl (N-methyl) carbamate 46, 47 2.6.                            

          

To a solution of Boc propargylamine 2.7 (20g, 118.5 mmol) in dry THF (120ml) was 

added n-BuLi (2.5M in hexane) (141.6mmol, 61.56mL) at -78 
o
C

 
under an atmosphere 

of nitrogen and stirred for 1h. Parafomaldehyde (7.18g, 237mmol) was added in one 

portion and the reaction was stirred for 20h to warm up to room temperature .Water 

(200mL) was added and the product was extracted with diethyl ether (300mL). The 

aqueous layer was extracted with diethyl ether (3 x 40mL). The combined organic 

extracts were washed with brine, dried over magnesium sulphate, filtered and were 

concentrated under reduced pressure. Purification by column chromatography (50% of 

petroleum ether in ethyl acetate) gave the desired product 2.6 as a light yellow oil. 

(19.55g, 83%)   

Analysis conformed to the reported literature value. 
46 , 47

 

IR (NaCl, cm
-1

) 3419,  2976,  2932, 2251,  1692,  1367. 

1
HNMR δ (300 MHz, CDCl3) δ;   4.25 (2H, s, H2), 4.00 (2H, s, H5), 3.62 (1H, s, br, H1 

(OH)), 2.80 (3H, s, H6), 1.40 (9H, s, H9)  

13
C NMR δ: (75 MHz, CDCl3) δ  155.7 (C7), 82.4 (C4), 80.0 (C3),  73.0 (C8), 50.2 

(C2), 38.5 (C5), 33.9 (C6), 28.7 (C9). 

HRMS (+ESI): Calcd for C10H17O3N Na, m/z= 222.1098, found, 222.1100 (1.146 ppm 

error) 
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(4-Allyloxy-but-2-ynyl)-N-methyl carbamic acid tert-butyl ester  2.5   

                                   

Sodium hydride (4.82g, 120.60mmol) was put in a flame dried flask and covered with 

dry THF (100mL) under nitrogen and stirring. Compound 2.6 (16.00g, 80.4mmol) was 

added and the reaction left for 1h in an ice bath. Allyl bromide (14.58g, 10.42mL, 

120.60mmol) was added slowly and the reaction left overnight at room temperature. 

The product was extracted with water (100mL) and diethyl ether (200mL) .The 

aqueous layer was washed with diethyl ether (2 x 40mL) and the organic layer was 

washed with brine, dried over magnesium sulphate and concentrated under reduced 

pressure. Purification by column chromatography (10% ethyl acetate in petroleum 

ether) gave compound 2.5 as a pale yellow liquid. (14.5g, 80%).  

IR (NaCl, cm
-1

) 3583, 3518, 3382, 3252, 2978, 2931, 2856, 2545, 2285, 2087, 1995, 

1739, 1691, 1480, 1367, 1245,  

1
H NMR δ (300MHz, CDCl3) δ; 5.80 (1H, m, H2), 5.1-5.2(2H, m, H1) 4.05(2H, s, H3) 

4.0-3.9 (4H, H4 and H7), 2.85 (3H, s, H8), 1.39 (9H, s, H11). 

13
C NMR δ (75MHz, CDCl3) δ; 155(C9), 134. (C1), 118. 7(C2), 82 (C5), 79.2 (C6), 

70.2 (C3), 57. (C4), 38.3 (C7), 33. 5(C8), 28. 2(C11). 

HRMS (ESI+); calcd for C13H21O3NNa. m/z = 262.1414, found=262.1413, Error = 

4.82 ppm   
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3-Phenylpropiolic acid  
46,

 
47, 48

   2.9                   

                                       

Compound 2.9 was prepared by a modification of the procedure reported by Parsons  

et al.,
46,47

 .   To a solution of phenylacetylene (11.16g, 109.3mmol) in dry THF (70mL) 

was added n-BuLi (2.5M in hexane, 52.46mL, 131.16mmol) at -78
o
C. The reaction 

was left for 1h. Dry carbon dioxide gas was bubbled into the reaction for 2h at room 

temperature and hydrochloric acid (1M, 60ml) was added. The mixture was extracted 

with diethyl ether (2×50mL).  

Sodium hydroxide solution (1M, 20mL) was added to the organic layer until alkaline.  

It was again extracted with diethyl ether (50ml). The aqueous layer was acidified with 

hydrochloric acid (1M, 50mL), and extracted with diethyl ether (50mL). The aqueous 

layer was washed with diethyl ether (2×30mL). The combined organic layer was dried 

with MgSO4, filtered and concentrated under reduce pressure to give an off white solid 

which was purified by crystallization (PE/EA) and the product was obtained as 

colourless crystals.  

Melting point, 138
o
C conform to the literature value of 136-138

o
C.

191
 

IR (NaCl, cm
-1

); 2700, 2198, 1668, 1488, 1416, 1302, 1206. 

1
HNMR δ (300 MHz, CDCl3) δ; 7.4, 7.2, 7.1 (Phenyl hydrogens) 

13
C NMR δ (75 MHz, CDCl3) δ; 154 (C2), 133.5 (6), 131 (C8), 128.9 (C7), 119.5 

(C5), 89.1 (C4), 80.4 (C3) 

 m/z (EI+) 146, 129, 102, 76. 
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 N-(4-(Allyloxy)-but-2-ynyl)-N-methyl-3-phenylpropiolamide 2.3. 

                                            

Formation of the  amide 2.3 was carried out in stages, as follows; 

a) a) Removal of the Boc protecting group.  

b) To a solution of the ether 2.5 (164mg, 0.69mmol) in DCM (2mL) was added 

concentrated hydrochloric acid (32%, 1.35mL,13.43mmol) The reaction was left under 

nitrogen with stirring for 47h. Solid K2CO3 was added to neutralise any unreacted 

hydrochloric acid until there was no more effervescence. The mixture was washed 

with DCM (2 x20mL). All the organic extracts were combined and concentrated under 

reduced pressure. The amine salt 2.19 was obtained as a yellow oily liquid and used 

without any purification.  

Alternatively,
 
to a solution of 2.5 (4g, 16.7mmol) in DCM (100mL) was added TFA 

(6.35ml, 83.65mmol) dropwise (over10mins). The solution was left at room 

temperature for 20 h. The solvent was thereafter removed by evaporation under 

reduced pressure.
 48 

The amine salt 2.20 was obtained as a dark brown oily liquid. This 

was used without any purification. 

b) In situ preparation of phenylpropynoyl chloride 2.26                          

To a solution of the phenylpropynoic acid 2.9 (3.09g, 21.23mmol) in DCM (30mL), 

was added oxalyl chloride (1.85ml, 21.23mmol) and 2 drops of DMF(cat) at 0
o
C in an  
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ice bath.  The ice bath was removed after 5min and the reaction was left for 1h at room 

temperature after which it was presumed that the acid has been completely converted 

into the acid chloride 2.26. The acid chloride was used immediately. 

c) Formation of the amide. 

To a solution of the unpurified amine salt 2.20 [(4-allyloxy-but-2-ynyl)N-methylamine 

trifluoroacetate] in DCM (30mL) was added triethylamine (Et3N) (1.01g, 13.96mL, 

10.02 mmol) dropwise over 15min at 0 
o
C under a flow of nitrogen. The freshly 

prepared phenylpropynoyl chloride 2.26 (3.09g, 21.23mmol) in DCM was added into 

the mixture dropwise and stirred for 1h.  

The solution was washed with hydrochloric acid (1M, 50ml), saturated aqueous 

sodium hydrogencarbonate (50mL), H2O (50mL), and brine (50mL), dried over 

magnesium sulphate, filtered and evaporated under reduced pressure. The crude 

product was purified by column chromatography (20% ethyl acetate in petroleum 

ether) to give the expected product, 2.3. (1.60g, 66%, over 2 steps) 

IR (NaCl, cm
-1

); 3583, 2854, 2214, 1634, 1491, 1443, 1398, 1345, 1272, 1210,  

1
H NMR (300MHz, CDCl3) δ; 7.5 (2H, m, H13), 7.3 (3H, m, H14 & 15), 5.9(1H, m, 

H2) 5.2 (2H, m, H1), 4.46 (1H, s, H7), 4.3 (1H,s, H7), 4.2 (2H, m, H3), 4.0 (2H, m, 

H4, 3.3 (1.5H, s, H8), 3.0  (1.5H, s ,H8). 

13
C NMR (75MHz, CDCl3) δ; 154.65, (C9), 134.25, (C2), 132.70, 130.579, 128.94, 

120.70, (phenyl ring), 118.4, (C1), 91 29, (C10), 81.55,(C11),  81 (C6), 80.55, (C5), 

71.17, (C3),  57.7, (C4),  41.36/35.994,  (C7), 32.21(C8).                                                 

HRMS (ESI
+
); calcd for C17H17NO2Na, m/z 290.1151 found 290.1143 (2.8ppm error). 
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(3aR,5S)-7-Methyl-5-phenyl-4,5,7,8-tetrahydro-3H-furo[3,4-e]isoindol-6-

(3-aH)-eno             2.1 

                                   

A solution of 3-phenylpropynoic acid (4-allyloxy-but-2-ynyl)-methyl-amide  2.3 

(0.660g, 2.472mmol) in dry toluene (10mL) was stirred and heated under reflux at 

110 
o
C for 5 h. Completion of the reaction was determined by tlc monitoring. There 

was no work-up and the solvent was removed under reduced pressure. The reddish 

brown solid obtained was re-dissolved in DCM and purified by column 

chromatography (33% ethyl acetate in petroleum ether). Recrystallisation of the 

brown solid gave colourless crystals 2.1 in 71% yield. 

Melting point 173 
o
C. 

See Appendix 1 for the X-ray 

IR (NaCl, cm
-1

); 2920, 1672 (s), 1639, 1490, 1451, 1418, 1391, 1277, 1235, 1211. 

1
H NMR (300MHz, CDCl3) δ ; 7.2 (2H, m, H13), 7.0, (3H, m, H14 & 15), 6.4, (1H, 

s, H1), 4.5(1H, dd,  J=12.57Hz, H11), 4.1-4.2 (2H, dd, J= 12.6Hz, H4), 4.05, (IH, 

d, J= 8.9Hz, H8), 3.7, (1H, m, H11), 3.2(1H, m, H10),  2.99, (3H, s, H5),  1.8 and 

2.2 (2H, dd, J=7.5Hz, H9), 

13
C NMR (75MHz, CDCl3) δ; 171.2 (C6), 143 (C12), 142 (C3), 141 (C1), 130  
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(C7), 128 (C13 and 14), 126 (C 15), 113 (C2), 76 (C11), 52 (C4), 36 (C9), 37 

(C10), 38 (C8), 30 (C5). 

HRMS (ESI
+
); calcd for C17H17NO2Na, m/z 290.1151 found 290.1143 (2.8ppm 

error). 
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N-(4-(Allyloxy)-but-2-ynyl)-N-methylbut-2-ynamide  2.38 

                                 

To a stirred solution of (4-allyloxy-but-2ynyl)-methyl-carbamic acid tert-butyl 

ester 2.5 (1.0g, 4.17mmol) in DCM (40mL) was added TFA (1.23mL, 8.34mmol) 

dropwise (over 5min) at 0 
o
C. The solution was stirred for a further 15h, after this 

time the resulting solution was concentrated under reduced pressure to yield amine 

TFA salt 2.20 (1.07g, quant.) as a dark oil which was used without further 

purification. 

To a solution of the unpurified amine salt 2.20 in DCM (7mL) was added 

triethylamine (1.86mL, 13.3mmol) via dropwise addition (over 10min) at 0 
o
C. To 

the reaction mixture was added freshly prepared but-2-ynoyl chloride 2.44 (427mg, 

4.17mmol) in DCM (7mL) dropwise and was stirred for a further 30min. The 

solution was washed with hydrochloric acid solution (1M, 15mL), saturated 

aqueous sodium hydrogen carbonate solution (15mL), and water (15mL), dried 

over magnesium sulphate and concentrated under reduced pressure. The yellow oil 

was then purified by flash column chromatography, eluting with 50% diethyl ether 

in hexanes to afford the title compound 2.38 (694 mg, 81%(over 2 steps)) as a 

colourless oil. 

IR (NaCl, cm
-1

), 2922, 2236, 1627, 1045. 

1
H NMR (500MHz, CDCl3) δ; 5.98-5.81 (1H, m, H10), 5.35-5.17 (2H, m H11), 
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4.46-4.20 (4H, m, H8 & H9), 4.19-3.98 (2H, m, H5), 3.26/3.01 (3H, s, H12), 1.96 

(3H, s, H1). 

13
C NMR (125MHz, CDCl3) δ; 154.2 (C4), 133.7 (C10), 118.0 (C11), 98.0 (C2), 

95.5 (C6), 80.8 (C7), 80.2/80.1 (C3), 70.6 (C9), 57.3 (C8), 40.8 (C5), 35.3/31.6 

(12), 1.8 (C1). 

HRMS (ESI
+
); calcd for C12H15O2NNa, m/z = 228.0995, found 228.1004. 
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N-(4-(Allyloxy)-but-2-ynyl)-N-methylpent-2-ynamide 2.39 

                      

To a stirred solution of (4-allyloxy-but-2ynyl)-methyl-carbamic acid tert-butyl 

ester 2.5 (1.0g, 4.17mmol) in DCM (10mL) was added TFA (1.23mL, 8.34mmol) 

dropwise (over 5min) at 0 
o
C. The solution was stirred for a further 15h, after this 

time the solution was concentrated under reduced pressure to yield amine TFA salt 

2.20 (1.07g, quant.) as a dark oil which was used without further purification. 

To a solution of the unpurified amine salt 2.20 (1.07g, 4.17mmol) in DCM (7mL) 

was added triethylamine (1.62mL, 12.6mmol) via dropwise addition (over 10min) 

at 0 
o
C. To the reaction mixture was added freshly prepared pent-2-ynoyl chloride 

2.45 (487mg, 4.17mmol) in DCM (3mL) dropwise and was stirred for a further 30 

min. The solution was washed with hydrochloric acid solution (1M, 15mL), 

saturated aqueous sodium hydrogen carbonate solution (15mL), and water (15mL), 

dried over magnesium sulphate and concentrated under reduced pressure. The 

yellow oil was then purified by column chromatography, eluting with 50% diethyl 

ether in hexanes to afford the title compound 2.39 (733 mg, 80% (over 2 steps)) as 

a colourless oil. 

IR (NaCl, cm
-1

), 2234, 1712, 1630, 1442, 1423, 1397, 1265, 1245, 1124, 1069, 932. 

1
H NMR (500MHz, CDCl3) δ;5.98-5.81 (1H, m, H12), 5.35-5.17 (2H, m, H13), 

4.44-4.22 (4H, m, H10 & H11), 4.20- 3.98 (2H, m, H7), 3.26 (1.5H, s, H6), 3.01 
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(1.5H, s, H6), 2.29 (2H, q, J = 3.6, 7.5Hz, H2), 1.13 (3H, t, J = 6.3Hz, H1) 

13
C NMR (125MHz, CDCl3) δ; 154.2/154.1 (C5), 133.9/133.8 (C12), 117.7/117.6 

(C13), 94.8/94.7 (C3), 80.3/80.2 (C8), 77.0/76.9 (C9), 73.0/72.8 (C4), 70.6/70.5 

(C11), 57.27/57.21 (C10), 40.74 (C7), 35.4/35.3 (C6),31.42 (C2), 12.8/12.7 (C1). 

HRMS (ESI
+
); calcd for C13H17NO2Na, m/z = 242.1157, found 242.1153. 
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N-(4-(Allyloxy)-but-2-ynyl)-N-methylhex-2-ynamide 2.40 

.                       

To a stirred solution of (4-allyloxy-but-2ynyl)-methyl-carbamic acid tert-butyl 

ester 2.5 (1.0g, 4.17mmol) in DCM (40mL) was added TFA (1.23mL, 8.34mmol) 

dropwise (over 5min) at 0 
o
C. The solution was stirred for a further 15h, after this 

time the solution was concentrated under reduced pressure to yield amine TFA salt 

2.20 (1.07g, quant.) as a dark oil which was used without further purification. 

To a solution of the unpurified amine salt 2.20 in DCM (7mL) was added 

triethylamine (1.62mL, 12.6mmol) via dropwise addition (over 10min) at 0 
o
C. To 

the reaction mixture was added freshly prepared hex-2-ynoyl chloride 2.46 (548mg, 

4.2mmol) in DCM (3mL) dropwise and was stirred for a further 30 min. The 

solution was washed with hydrochloric acid solution (1M, 15mL), saturated 

aqueous sodium hydrogen carbonate solution (15mL), and water (15mL), dried 

over magnesium sulphate and concentrated under reduced pressure. The yellow oil 

was then purified by column chromatography, eluting with 50% diethyl ether in 

hexanes to afford the title compound 2.40 (877 mg, 90% (over 2 steps)) as a 

colourless oil. 

IR (NaCl, cm
-1

), 2965, 2233, 1627, 1442, 1396, 1245, 1123, 1073, 916. 

1
H NMR (500MHz, CDCl3) δ; 5.98-5.81 (1H, m, H13), 5.35-5.17 (2H, m, H14), 

4.46-4.22 (4H, m, H11 & H12), 4.19- 3.99 (2H, m, H8), 3.26 (1.5H, s, H7), 3.01 
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(1.5H, s, H7), 2.30-2.22 (2H, m, H3), 1.96 (2H, m, H3) 1.54 (2H, apt. ddd, J = 1.6, 

6.2, 7.0 Hz, H2), 0.94 (3H, t, J = 7.2Hz, H1). 

13
C NMR (125MHz, CDCl3) δ; 154.1 (C6), 133.9/133.8 (C13), 117.7/117.6 (C14), 

93.6/93.5 (C4), 80.3/80.2 (C9), 73.8/73.6 (C10), 70.6/70.5 (C5), 57.3/57.2 (C11), 

40.8 (C8), 35.4/35.3 (C7), 31.5 (C2), 21.2/20.8 (C3), 13.4 (C1). 

HRMS (ESI
+
); calcd for C14H19NO2Na, m/z = 256.1013, found 256.0993. 
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5,7-Dimethyl-4,5,7,8-tetrahydro-3H-furo[3,4-e]isoindol-6(3aH)-one 2.35 

                                               

A solution of N-(4-(allyloxy)-but-2-ynyl)-N-methylbut-2-ynamide 2.38 (500mg, 

2.44mmol) in dry toluene was prepared in a microwave tube. The reaction mixture 

was heated at 120 
o
C, and 1 atm for 2 h. The solvent was removed in vacuo and the 

crude residue was purified by column chromatography using neat diethyl ether to 

afford the title compound 2.35 as a yellow oil. (310mg, 62%). 

IR (NaCl, cm
-1

), 3697, 2973, 2865, 1672, 1644, 1598, 1032. 

1
H NMR (500MHz, CDCl3) δ; 6.52 (1H, s, H5), 4.68 (2H, t, J = 9.0 Hz, H6), 4.02-

3.82 (2H, m, H2), 3.36 (1H, q, J = 10.6Hz H7), 3.01 (3H, s, H1), 2.87-2.80 (1H, m, 

H9), 1.53 (2H, apt, dt, J = 5.6, 12.6Hz, H8), 1.18 (3H, d, J = 6.8Hz, H12) 

13
C NMR (125MHz, CDCl3) δ; 172.9 (C11), 141.9 (C5) 138.8 (C3), 133.8 (C10), 

114.5 (C4), 77.8 (C6), 52.6 (C2), 41.7 (C7), 33.4 (C8), 30.3 (C1), 30.0 (C9), 20.2 

(C12). 

HRMS (ESI
+
); calcd for C12H15O2NNa, m/z, 228.0995, found 228.1002. 
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5-Ethyl-7-methyl-4,5,7,8-tetrahydro-3H-furo[3,4-e]isoindol-6(3aH)-one   

2.36 

                                    

A solution of N-(4-(allyloxy)-but-2-ynyl)-N-methylpent-2-ynamide 2.39 (500mg, 

2.28mmol) in dry toluene (10ml) was prepared in a microwave tube. The reaction 

mixture was heated at 120 
o
C and 1 atm for 2 h. The solvent was removed in vacuo 

and the crude residue was purified by column chromatography using neat diethyl 

ether to afford the title compound 2.36 as a yellow oil. (321mg, 64%). 

IR (NaCl, cm
-1

), 2930, 1673, 1646, 1449, 1421, 1394, 1265, 1092, 1063, 908. 

1
H NMR (500MHz, CDCl3) δ; 6.43 (1H, s, H5), 4.67 (1H, t, J = 8.9Hz, H2a), 4.02-

3.84 (2H, m, H6), 3.78-3.69 (1H, dd, J = 8.7, 12.8 Hz, H2b), 3.38-3.20 (1H, m, 

H7), 2.98 (3H, s, H1), 2.21-2.09 (1H, m, H9) 1.65-1.53 ( 2H, apt, dt, J = 5.8, 

12.4Hz, H8), 1.42-1.31(1H, m, H12), 1.31-1.19(1H, apt, ddd, J = 4.9, 9.7, 18.1,Hz 

H12), 0.98 (3H, t, J = 7.3Hz, H13). 

13
C NMR (125MHz, CDCl3) δ; 171.7 (11), 140.9 (C3), 139.2 (5) 133.5 (10), 113.0 

(C4), 77.3 (C6), 51.4 (C7), 37.3 (C8), 33.5 (C2), 30.3 (C9), 29.75 (C1), 26.7 (C12), 

12.2 (C13). 

HRMS (ESI
+
); calcd for C13H17O2NNa, m/z = 242.1157, found 242.1153 
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7-Methyl-5-propyl-4,5,7,8-tetrahydro-3H-furo[3,4-e]isoindol-6(3aH)-one  

2.37 

                                        

A solution of N-(4-(allyloxy)-but-2-ynyl)-N-methylhex-2-ynamide 2.40 (500mg, 

2.14mmol) in dry toluene (10ml) was prepared in a microwave tube. The reaction 

mixture was heated at 120 
o
C, and 1 atm for 2 h. The solvent was removed in vacuo 

and the crude residue was purified by column chromatography using neat diethyl 

ether to afford the title compound 2.37 as a yellow oil. (340mg,  64%). 

IR (NaCl, cm
-1

), 3054, 2979, 2305, 1682, 1446, 1421, 1265, 1113 

1
H NMR (500MHz, CDCl3) δ; 6.43 (1H, s, H5), 4.67 (1H, t, J = 8.9Hz, H2a), 4.02-

3.84 (1H, m, H2b), 3.78-3.69 (2H, dd, J = 8.7, 12.8 Hz H6), 3.38-3.20 (1H, m, H7), 

2.98 (3H, s, H1), 2.21-2.08 (1H, m, H9), 1.65-1.53 (2H, apt, dt, J = 5.8,12.4 Hz, 

H8), 1.42-1.31 (2H, m, H13), 1.23 (2H, apt, dt, J = 4.91, 9.7, 18.1 Hz, H12), 0.90 

(3H, t, J = 7.3 Hz, H14). 

13
C NMR (125MHz, CDCl3) δ; 171.3 (C11), 140.8 (C3), 139.1 (C5), 133.7 (C10), 

113.0 (C4), 76.7 (6), 51.4 (C7), 37.3 (C12), 36.29 (C8), 31.69 (C1), 30.36 (C8), 

27.5 (C9), 20.8 (C13), 14.1 (C14). 

HRMS (ESI
+
); calcd for C14H19O2NNa, m/z = 256.1013, found 256.0985. 
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3-Cyclopropylpropiolic acid 2.10 

                                            

Compound 2.10 was prepared by a modification of the procedure reported by 

Parsons et al.,
46,47

 . n-BuLi (2.5M in hexane) (158.08mL, 363.6mmol) was added to 

a solution of  cyclopropylacetylene (20g, 303.03mmol) in dry diethyl ether 

(200mL)  at -78 
o
C. The reaction was left for 1h before dry carbon dioxide gas was 

bubbled into the reaction for 2h at room temperature. Hydrochloric acid (1M, 

200mL) was added and the mixture was extracted with diethyl ether (2×100mL). 

Aqueous sodium hydroxide (200mL) was added to the organic layer (until 

alkaline).  And it was again extracted with diethyl ether (100ml). 

The aqueous layer was again acidified with hydrochloric acid (1M, 200mL), the 

mixture was extracted with diethyl ether (150mL). The aqueous layer was washed 

with diethyl ether (2 x 75mL). The combined organic layers were dried with 

magnesium sulphate, filtered and concentrated under reduced pressure. The product 

was purified by recrystallization to give the title compound 2.10 as white crystals in 

82% yield. 

Melting point 52 
o
C (literature m.pt = 55

o
C)

191
 

IR (NaCl, cm
-1

); 2938, 2218, 1167, 1411, 1281. 

1
H NMR (300MHz, CDCl3) δ;   0.95(4H, m, H1), 1.4 (1H, m, H4) 

13
C NMR (75MHz, CDCl3) δ; 158,(C5), 96, (C3), 68, (C4), 1.4, (C2), 0.9, (C1). 

EI+; 110, 93, 77, 66, 44 
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N-(4-(Allyloxy)but-2-ynyl)-N-methyl-3-cyclopropylpropiolamide  2.4 

                                              

The first step involved the in-situ preparation of 3-cyclopropylpropioloyl chloride 

2.10a. To a solution of the cyclopropylpropiolic acid (0.247g, 2.25mmol) in DCM 

(10mL) was added oxalylchloride (0.201ml, 2.25mmol) and 2 drops of DMF at 0 

o
C (ice bath). The ice bath was removed after 5min and the reaction was left for 1h 

at room temperature. Compound 2.10a was obtained and used in situ. 

In the second step, DCM (10mL) was added into a solution of the unpurified amine 

salt 2.20, followed by the dropwise addition of triethylamine (1.366g, 1.88mL, 

13.5mmol) over 15min under a flow of nitrogen at 0 
o
C. The freshly prepared 

phenylpropioloyl chloride in DCM was added dropwise into the mixture above and 

stirred for 1h. 

The mixture was washed with hydrochloric acid (1M), saturated sodium hydrogen 

carbonate, water, and brine, (10mL each). It was dried over magnesium sulphate, 

filtered and concentrated under reduced pressure. The dark yellow oily liquid 

obtained was purified by column chromatography (20% ethyl acetate in petroleum 

ether) to give the compound 2.4 as a light yellow liquid in 67% yield. (over 2 steps) 

IR (NaCl cm
-
1); 2931, 2224, 1627, 149, 1443, 1375, 1341, 1270, 1210. 

1H NMR (500MHz, CDCl3) δ ; 5.82-5.95 (1H, m H2), 5.4 (1H, m, H1), 5.2 (1H, m, 

H1) 4.38 (1H, s, H7), 4.25 (1H,s, H7), 4.15 (2H,d, m, H3), 4.0(2H, J = 8.0 Hz, H4), 
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3.17 (1.5H,  s, H8), 2.9 (1.5, s, H8), 1.39 (1H, dd, J = 7.0, 7.01Hz, H12), 0.9 (4H, 

m, H13). 

13
C NMR (125MHz, CDCl3) δ; 154 (C9), 134 (C2), 118 (C1), 95.8 (C10), 81 

(C11), 80 (C6), 79 (C5), 71 (C3), 57.9 (C4), 41.2 (35.9) (C7), 35 (30) (C8), 10 

(C13), 0.8 (C12). 

HRMS (ESI+), Calc for C14H17NO2Na, m/z = 254.1151, found= 254.1159. 

(3.12ppm error). 
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5-Cyclopropyl-7methyl-4,5,6,7,8-tetrahydro-3H-furo[3,4-e]isoindol-

6(3aH)- one. 2.2 

                                            

To the amide 2.4, (3-cyclopropylpropynoic acid (4-allyloxy-but-2-ynyl)-methyl 

amide) (0.220g, 1.07mmol) was added toluene (10mL) followed with the addition 

of allyl alcohol (0.75g, 1.28mmol). The mixture was heated under reflux at 110 
o
C 

for 25 h under nitrogen with continuous stirring. The solvent was evaporated 

leaving a black reddish solid. The solid was re-dissolved in DCM and purification 

by column chromatography (33% ethyl acetate in petroleum ether) gave the 

product as a yellow tinted solid in 80% yield.  However all efforts at 

recrystallisation failed to produce crystals required for X-ray crystallography. 

Melting point 118 
o
C. 

IR (NaCl cm
-1

); 2921, 1668, 1445, 1169, 1017. 

1
H NMR (500 MHz, CDCl3)δ; 6.56 (1H, s, H1), 4.8 (1H, t, J = 8.9Hz, H11), 4.0 

(2H, d, H4), 3.84 (1H, dd, J = 11.1, 23.5 Hz,  H11), 3.55 (1H, d, J = 11.5Hz, H10), 

3.0 (3H, s, H5), 2.20 (1H, d, J = 7.0 Hz, H9), 2.07 (1H, d, J = 7.0Hz, H8), 1.5 (1H, 

td, J = 5.0 ,12.4, Hz, H9), 0.75 (2H, m, H13), 0.50 (1H, d, J = 7.1Hz, H12), 0.40 

(1H, d, J = 7.1Hz, H12), 0.20 (1H, d, J = 4.4Hz, H12). 

13
C NMR (125 MHz, CDCl3) δ; 160 (C6), 142 (C3), 140 (C1), 134 (C7), 110 (C2), 

63 (C11), 54 (C10), 50 (C4), 43.8 (C8), 36 (C5), 33 (C), 29(C9), 13 (C2), 3.0 (C1). 
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HRMS (ESI+) Calcd for C14H17NO2Na, m/z 254.1151, found, 254.1157 (2.2ppm 

error. 
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tert-Butyl- 4-methoxybut-2-ynyl-N-methylcarbamate 2.64 

                                         

To sodium hydride (2.1g, 52.46mmol) covered with dry THF, was added tert-

butyl- 4- hydroxy but-2-ynyl N-methylcarbamate 2.6 (8.70g, 43.71mmol) under a 

flow of nitrogen gas and stirring. The reaction was left for 1h in an ice bath after 

which methyl iodide (7.40g, 3.24mL, and 52.46mmol) was added slowly and the 

reaction was left overnight at room temperature. The reaction was quenched with 

water (100mL) and the product extracted with diethyl ether (150mL). The aqueous 

layer was washed with diethyl ether (2 x 40mL).The organic layer was washed with 

brine (40mL), dried over magnesium sulphate and concentrated. The crude product 

was purified by column chromatography (20% of ethyl acetate in petroleum ether) 

to give a pale yellow liquid. (7.9g, 85%) 

IR (NaCl cm
-1

), 2979, 2932, 2898, 2252, 1289, 1482, 1455, 1421, 1368, 1251, 

1152, 1123. 

1
HNMR: (500 MHz, CDCl3) δ; 4.05 (4H, s, H2 and H5), 3.35 (3H, s, H1), 2.85 

(3H, s, H6), 1.4 (9H, s, H9) 

13
C NMR: (125 MHz, CDCl3) δ; 155.6 (C7), 82 (C4), 80 (C3), 79 (C8), 60 (C2), 58 

(C1), 38 (C5), 33.8 (C6), 28 (C9). 

HRMS (ESI+) Calcd for C11H19NO3Na, m/z 236.1257, found 236.1255 (7.6 ppm 

error). 



A Novel Cyclization in the Construction of Fused Rings                                                                     Experimental                             

 134 

 

3-Cyclopropyl-N-(4-methoxybut-2-ynyl)- N-methylpropiolamide 2.62 

                                            

To a solution of 2.64 in DCM (150mL) was added TFA (11.64ml, 152.6mmol) 

dropwise (over10mins). The solution was left at room temperature for 16 h. The 

solvent was thereafter removed by evaporation under reduced pressure, and a dark 

brown oily liquid was obtained, 2.65. This was used without any purification. 

A solution of the unpurified amine salt 2.65 was made in  DCM (50mL) followed 

by a dropwise addition of triethylamine (18.52g, 25.51mL, 183mmol) over 20 min 

under a flow of nitrogen at 0
o
C. A freshly prepared cyclopropylpropioloyl chloride, 

2.10a in DCM was added dropwise into the mixture above and stirred for 1h. The 

mixture was washed with hydrochloric acid (1M), saturated sodium hydrogen 

carbonate, water, and brine, (50mL each). It was dried over magnesium sulphate, 

filtered and concentrated under reduced pressure. The dark yellow oily liquid 

obtained was purified by column chromatography (10% of methanol in 

dichloromethane) to give the compound 2.62 as a light yellow liquid in 11% yield 

(over 2 steps). 

IR (NaCl cm
-1

); 3584, 3446, 2933, 2222, 1627, 1449, 1400, 1341, 1278, 1990, 

1124, 1094. 

1H NMR (500MHz, CDCl3) δ; 4.3 (1H, s, H5), 4.18 (1H, s, H5), 4.0 (2H, d, J = 

2.5Hz, H2), 3.25 (3H, d, J = 7.5, H1), 3.1 (1.5H, d, J = 3.5Hz, H6), 2.85 (1.5H, d, J 
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= 3.8Hz, H6), 1.3 (1H, m, H10), 0.75 and 0.85 (4H, m, H11). 

13
C NMR (125MHz, CDCl3) δ; 154 (C7), 97 (C9), 80(C3), 79 (C4), 71 (C8), 60 

(C2), 57.5 (C1), 41 (C5), 35 /31) (C6), 9 (C11), (C 10 not shown) 

HRMS (ESI+), Calc for C12H15NO2Na, m/z = 228.0993 found= 228.0994 

(0.5297ppm error). 
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3-Methoxypropyne 2.83168 

                                                     

Compound 2.83 was prepared by the method reported by Perez et al 
168 

. To a 

mixture of propargyl alcohol (54g, 0,963mmol, and 56.2mL) and water was added 

sodium hydroxide solution (52g, 13M, 100mL) and the mixture was heated under 

reflux for 2 h.  The mixture was allowed to cool down from 70 
o
C to 40

o
C and kept 

at 40 
o
C during the dropwise addition of dimethyl sulphate. The mixture was left to 

reflux for 2h at 60 
o
C. Distillation of the mixture gave the crude at 63-65 

o
C. The 

crude product was purified by fractional distillation at atmospheric pressure to give 

the pure product at 59-61 
o
C (same as in literature) in 65% yield. 

Analysis conformed to the literature.
168 

IR (NaCl cm
-1

); 3284, 2945, 2843, 2129, 2012, 1718, 1453, 1338, 1306. 

1
HNMR: (500 MHz, CDCl3) δ; 4.07 (2H, d, J = 2.4Hz, H2), 3.38 (3H, s, H1), 2.47 

(1H, t, J = 2Hz, H4). 

13
C NMR:

 
(125 MHz, CDCl3) δ; 80 (C3), 74.2, (C4) 60 (C2), 58.8(C1). 

m/z (EI+) 31, 39, 69, 71 
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4-Methoxybutyn-2-ol164-168.   2.81 

                                               

a) To 3-methoxypropyne 2.83 (15g, 214mmol) in THF (10mL) was added n-BuLi 

(102.8mL, 257mmol) at -78 
o
C under nitrogen and continuous stirring. The reaction 

was left for 1 h, after which paraformaldehyde (12.9g, 428.6 mmol) was added and 

the reaction was left overnight (16 h) to warm to room temperature. The reaction 

was quenched with water (50mL) and extracted with diethyl ether (100mL). The 

aqueous layer was washed with diethyl ether (2 x 40mL). The organic layer was 

dried over magnesium sulphate, filtered and evaporated. Purification by flash 

chromatography (50% ethyl acetate) gave the desired product as a yellow oily 

liquid. 18.6g, 41% based on one equivalent of the propargyl alcohol). 

b) Recrystallised 2-butyne-1, 4-diol 2.82 (10g, 0.116mmol) was heated with 

sodium hydroxide (50mL, 13M) at 70 
o
C for 30min, this was followed by dropwise 

addition of a solution of dimethyl sulphate (2.93g,2.2mL, 0.023mol) in water 

(3mL). The reaction was left for 2 h at 60-65 
o
C.  The mixture was distilled at 59-

61 
o
C   to obtain the crude which was purified by fractional distillation at 60 

o
C to 

produce a colourless liquid, 2g, 87% (based on one equivalent of the propargyl 

alcohol). 

IR (NaCl cm
-1

); 3389, 2936, 2825, 2170, 2024, 1735, 1450, 1376, 1356, 1280, 

1241 

1
H NMR: (500 MHz, CDCl3) δ; 4.22 (2H, s, H5), 4.05 (2H, s, H2), 3.38 (3H, s, 
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H1), 3.0 (OH) 

13
C NMR: 

 
(125 MHz, CDCl3) δ; 85 (C3&4), 60 (C2), 57.2 (C1), 50.5 (C5) 

EI+; 31, 69, 99. 
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Trimethylsilanyl-propynoic acid 2.24 46, 47, 48 

                                          

Trimethylsilylacetylene (12.5g, 18.1mL, 128mmol) was put in diethyl ether 

(150mL) under nitrogen and continuous stirring at -50
o
C. Methyllithium was added 

and the reaction was left for 15 min. The reaction was further cooled down to -

65
o
C, excess crushed dry ice pellets were added and it was left overnight to warm 

up to room temperature. The mixture was acidified with hydrochloric acid (1M, 

300mL) to pH 1.The phases were separated and the aqueous fraction was extracted 

with diethyl ether  The combined organic layer was washed with brine and dried 

over magnesium sulphate  and evaporated under reduced pressure. The crude 

yellow tinted solution obtained was purified by short path distillation (bp. 72-74 
o
C, 

0.1mmHg) to give the product as a colourless liquid (17g, 97%). 

All data conformed to the literature
46, 47, 48

. 

IR (NaCl, cm-1), 2965, 2904, 2626, 2178, 1694, 1517, 1404, 1254, 

1
H NMR (500 MHz, CDCl3) δ; 0.25 (9H, s H1); 

13
C NMR (125 MHz, CDCl3) δ; 157.8 (C4), 97.5 (C3), 93.7 (C2), -1.1 (C1), 

HRMS (ESI+) calcd for C6H10O2Na, m/z 165.0342, found 165.0346 (- 90 ppm) 
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4-Methoxybut-2-ynyl-3-(trimethylsilyl) propionate 2.80 

                                            

4-Methoxybutyn-2-ol (1g, 10mmol) and trimethylsilylpropynoic acid, 2.24 (1.42g, 

10mmol) were dissolved in DCM (10mL). A catalytic amount of 4-

(dimethylamino) pyridine (DMAP) (0.025g) was added followed by 1-[3- 

(dimethylamino) propyl]-3- ethyl carbodiimide hydrochloride (EDCI) (1.91g, 10.00 

mmol) in DCM (5mL). The reaction was left to stir for 20 h after which it was 

quenched with saturated sodium hydrogen carbonate (30mL). The crude product 

was extracted with DCM (2 x 15mL). The aqueous layer was washed with water 

and brine (20mL each)  and dried over magnesium sulphate and concentrated under 

reduced pressure The desired compound 2.80 was obtained by purification through 

column chromatography (10% diethyl ether in hexanes) as a yellow liquid in 25% 

yield. 

IR (NaCl cm
-1

) 2931, 1739, 1638, 1455, 1345, 1248, 

1
H NMR (500 MHz, CDCl3) δ; 4.8 (2H, s, H5), 4.1 (2H, s, H2), 3.38 (3H, H1), 0.2 

(9H, s, H9). 

13
C NMR (125 MHz, CDCl3) δ; 153 (C6), 96 (C7), 94 (C8), 83.8 (C4), 79 (C3), 60 

(C2), 57.8 (C5), 53 (C1), (C9, not shown but predicted to be -1.3). 

HRMS (ESI+) calcd for C11H16SiO3Na, m/z 247.0761.found 247.0757, (error 

1.43ppm) 
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4-Methoxybut-2-ynyl-3-cyclopropylpropionate 2.86 

                                             

Cyclopropylpropiolic acid (1.21g, 11.0 mmol) was added into DCM (10mL) under 

a flow of nitrogen followed by a slow addition of carbonyl diimidazole (CDI) 

(1.78g, 11.0mmol). The reaction was left for 1h, the alcohol 2.81 (1.00g, 

10.0mmol) was added and the reaction was left for another 2 h. The reaction was 

quenched with hydrochloric acid (1mL, 10mL), extracted with DCM (2 x 20mL), 

washed with saturated potassium carbonate, and water (10mL each).  The solution 

was dried over magnesium sulphate, filtered and concentrated under reduced 

pressure. The crude product was purified by column chromatography (50% of ethyl 

acetate in petroleum ether) and the desired product was obtained as a brownish 

yellow liquid in 20% yield. 

IR (NaCl cm
-1

); 3680, 3300, 2937, 2224, 1990, 1710, 1434, 1372, 1353, 1247. 

1
H NMR (500 MHz, CDCl3) δ; 4.70(2H, m, H5), 4.12(2H, d, J = 2.5 Hz H2), 3.36 

(3H, s, H1), 1.37(1H, d, J = 7.0 Hz, C9), 0.93 (4H, tdd, J = 4.05, 7.10, 13.86 Hz, 

C10) 

13
C NMR (125 MHz, CDCl3) δ; 152.8 (C6), 94.69 (C7& 8), 83.3 (C4), 79.7 (C3), 

68 (C), 59 (C), 57.65 (C), 53.10 (C), 9.30 (C). 0.61 (C). 

HRMS (ESI+) calcd for C11H12O3Na, m/z, 215.0679, found 215.0669. 
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3-Ethoxyprop-1-yne168. 2.87 

                                                         

Sodium hydroxide pellets (52g, 13M) was dissolved in water (100mL) and 

transferred into a 3-necked flask. It was put under nitrogen with continuous stirring. 

Propargyl alcohol 2.84 was added (54g, 56.075 mL, 0. 96mmol,) dropwise from a 

dropping funnel and the reaction was heated under reflux at 70 
o
C for 1 h. The 

reaction was cooled to 55-60
o
C, and diethyl sulphate was added dropwise. The 

reaction was left for 2 h. The crude product was distilled off the mixture at 80
o
C, 

and purified by fractional distillation at 79
o
C. The product was obtained as a 

colourless liquid in 70% yield (based on one equivalent of the propargyl alcohol). 

IR (NaCl cm
-1

); 3278, 2986, 2936, 2898, 2128, 1725, 1617, 1445, 1372, 1306. 

1
H NMR (500 MHz, CDCl3) δ; 4.10(2H, d, J = 2.4 Hz, H3), 3.52 (2H, dq, J = 6.96, 

13.93Hz,  H2), 2.4 (1H, s, H5), 1.2 (2H, t, J = 7.1, H1) 

13
C NMR (125 MHz, CDCl3) δ; 80 (C4), 74 (C5), 65 (C2), 58 (C3), 15 (C1) 

EI+; 45, 55, 85, 
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4-Ethoxybutyn-2-ol 2.88 164-168 

                                                  

3-Ethoxyprop-1-yne (15g, 178.57mmol) was dissolved in THF (150ML). The 

solution was cooled down to -78
o
C and the reaction was put under nitrogen and 

continuous stirring followed by dropwise addition of n-BuLi (2.5M in hexanes, 

78.57mL).  The reaction was left for 1h at -78
o
C and thereafter warmed up to -20

o
C 

followed by the addition of parafomaldehyde.  The reaction was left overnight, 

quenched with water (200mL) and extracted with ether (300mL). The aqueous 

layer was washed with ether (2 x 80mL). The combined organic layer was dried 

over magnesium sulphate, evaporated under reduced pressure and purified by 

column chromatography (50% ethyl acetate in petroleum ether). The desired 

product 2.88 was obtained as a light yellow liquid in 60% yield. 

IR (NaCl cm
-1

); 3389, 2977, 2867, 2012, 1736, 1443, 1372, 1349, 1242. 

1
H NMR (500 MHz, CDCl3) δ; 4.25 (2H, d, J =5.9 Hz, H6), 4.06 (2H, d, J = 2.5 

Hz, H3), 3.55 (2H, q,  J = 8.0Hz, H2), 1.15 (3H, m, H1) 

13
C NMR (125 MHz, CDCl3) δ; 84.9 (C5), 82 (C4), 61.8 (C2), 57.4 (C3), 50.5 

(C6), 15 (C1) 

EI+; 45, 86, 113. 
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4-Ethoxybut-2-ynyl-3-(trimethylsilyl) propionate 2.89 

                                         

To a solution of trimethylsilylpropynoic acid, 2.24 (1.42g, 10.00mmol) in DCM 

was added carbonyl diimidazole (1.62g, 10.00mmol) slowly. There was 

effervescence and the reaction was left under a flow of nitrogen and stirring for 

45mins, after which the alcohol 2.88 (1.14g, 10mmol) was added and the reaction 

left overnight. The reaction was quenched with hydrochloric acid (1M, 10mL) and 

extracted with DCM; the organic extract was washed with saturated potassium 

carbonate and water (10mL each). It was dried over magnesium carbonate, filtered 

and evaporated, producing a pinkish yellow liquid, which was purified by flash 

chromatography (50% of ethyl acetate in petroleum ether) to give the desired 

product 2.89 as a light yellow liquid in 33% yield. 

IR (NaCl cm
-1

); 2967, 2869, 2172, 1872, 1716, 1439, 1368, 1252, 1202, 1157. 

1
H NMR (500 MHz, CDCl3) δ; 4.85 (2H, s, H6), 4.06 (2H, s, H3), 3.45 (2H, q, J = 

5.0, 6.25Hz, H2), 1.2 (3H, t, J = 5.0, 8.75Hz, H1), 0.20 (9H, s, H10). 

13
C NMR: (125 MHz, CDCl3) δ; 152 (C7), 94.9 (C5), 94 (C4), 84 (C8), 79 (C9), 

65.9 (C2), 58(C3), 53.5(C6), 15 (C1).  (C10 not shown). 

HRMS (ESI+): calcd for C12H18SiO3Na, m/z 261.0917, found 261.0916. (0.39 ppm 

error). 
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8-Ethoxy-4-(trimethylsilyl)-4,5,5a,6,8,8a-hexahydroisobenzofuro 

[5,4-c]furan-3(1H)-one 2.95 

                                                 

The precursor 4-ethoxybut-2-ynyl-3-(trimethylsilyl) propionate 2.89 (200mg, 

0.84mmol) was added in dry toluene (5mL). Allyl alcohol (224mg, 0.285mL, 

4.20mmol) was added to provide the double bond necessary for intermolecular 

cyclization. The reaction was refluxed at 110 
o
C for 25 h.  Completion of the 

reaction was indicated by tlc analysis. The solvent was evaporated off under 

reduced pressure to produce the crude compound as a brown liquid. Purification by 

column chromatography (25% of ethyl acetate in petroleum ether) produced the 

product as a yellow coloured liquid in 75% yield. 

The reaction was repeated under microwave conditions at 130 
o
C and tlc analysis 

revealed the completion of the reaction after 4 h. 

IR (NaCl cm
-1

); 2952, 1748, 1344, 1248, 1932. 

1
H NMR (500 MHz, CDCl3)δ;  5.15 (1H, s, H3), 4.82/4.75 (2H, s,  H6), 3.78 (1H, 

m, H12a), 3.55 (1H, m, H12b), 3.39 (2H, m, H2), 2.5 (1H, s, H4) 2.18 (1H, s, H9), 

1.9 (1H, m, H11), 1.6-1.75 (2H, m, H10) 1.15 (3Ht, J = 5.0, 12.4Hz, H1), 0.20 (9H, 

d, J = 4.4Hz, H13). 

13
C NMR (125 MHz, CDCl3) δ; 173.5 (C7), 156.5/155.5 (C5), 130.0 (C8), 105.5 
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(C3), 91.9/72.5 (C6), 69.5/70.5 (C12), 64 (C2), 50 (C4), 45 (C11), 37.5 (C10), 28 

(C9), 15 (C1). 0.0 (C13). 

HRMS (ESI+): calcd for C15H24O4SiNa, m/z 319.1336, found 319.1333 (0.92ppm 

error). 
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tert-Butyl-N-iso-propylcarbamate 2.109 

                                                    

Iso-propylamine was slowly added to a solution of Boc anhydride in THF 0
o
C. A 

catalytic amount of DMAP was added, the reaction was left to stir at room 

temperature for 19 h. The solvent was evaporated off under reduced pressure to 

give a yellow tinted solid which was redissolved in diethyl ether. The solution was 

washed with water, saturated sodium hydrogen carbonate (100mL each), then dried 

over magnesium sulphate and concentrated under reduced pressure. The solid 

obtained was again redissolved in diethyl ether and purified by column 

chromatography (10% ethyl acetate in hexanes). The product 2.109 was obtained as 

a white solid in 51% yield. 

Melting point 75 
o
C (literature melting point = 69-71

o
C) 

156 

IR (NaCl cm
-1

);
 
3680, 2972, 2844, 2169, 1345. 

1
H NMR (500 MHz, CDCl3) δ; 4.4 (1H, s, br, NH), 3.85 (1H, s, br, H2), 1.4 (9H, s, 

H5), 1.05 (6H, d, J = 6.53 Hz, H1) 

13
C NMR (125 MHz, CDCl3) δ; 158 (C3), 80 (C4), 45 (C2), 28 (C5), 23 (C1). 

HRMS (ESI+): calcd for C8H17O2NNa, m/z =182.1151, found 182.1152 (-0.40 ppm 

error). 
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N- iso-Propyl propargylamine 2.108 

                                                      

To a refluxing (65
o
C) solution of isopropylamine (59g, 1.00mol) in water (50mL) 

was added propargyl bromide (47.56g, 0.40mol) through an addition syringe over 

15 h. The reaction was allowed to reflux for a further 4 h. The reaction mixture was 

cooled down to 10
o
C and  50% aqueous solution of potasium hydroxide was added 

and the  mixture was allowed to reflux for another 1 h.  The white precipitate of 

halide formed was filtered off and the top organic layer was extracted from the 

mixture. The organic layer was washed with brine and dried over magnesium 

sulphate, a brownish yellow liquid was obtained. This was purified by vacuum 

distillation using kugelrohr  distillation unit. The product 2.108 was obtained as a 

colourless mixture with toluene and the disubstituted amine (2.111). (b.p of the 

product is 110-115
o
C, b.p for toluene is 110.6

o
C).   Combined yield was 50% . 

IR (NaCl cm
-1

) ; 2968, 1601, 

1
H NMR (500 MHz, CDCl3) δ; 3.40 (2H, s, H3), 3.05-2.97 (1H, sept, J = 6.2, H2), 

2.20 (1H, t, J = 2.1, H5), 1.05 (6H, d, J = 6.2 Hz, H1), 

13
C NMR (500 MHz, CDCl3) δ; 82.7 ( C4 ). 71.4 ( C5 ), 47.2 ( C2 ), 36.0 (C3), 

22.8 (C1), 

HRMS (ESI+): calcd for C6H11NNa, m/z =120.1151, found 120.1148 (-0.40 ppm 

error). 
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N-iso-Propyl-N-(prop-2-ynyl)prop-2-yn-1-amine  2.111 

                                                      

Compound 2.111 was obtained as a co-product with compound 2.108. However the 

pure compound was obtained by column chromatography of the mixture (33% of 

ethyl acetate in petroleum ether) as a brownish yellow solution. 

IR (NaCl cm
-1

); 3296, 2970, 2817. 

H NMR (500 MHz, CDCl3) δ; 3.5 (4H, s, H3), 2.89 (1H, sept, J = 6.2 Hz, H2), 2.2 

(2H, s, H5), 1.1(6H, d, J = 6.2 Hz, H1) 

13
C NMR(125 MHz, CDCl3) δ; 80 (C4), 73 (C5), 51(C2), 39 (C3), 20 (C1) 

HRMS (ESI+): calcd for C9H14N, m/z = 136.1121, found, 136.1123, (-1.6ppm 

error). 
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tert- iso-Propyl (prop-2-ynyl)carbamate 2.107 

                                             

The amine 2.108 (6.4g, 65.98mmol) was dissolved in acetonitrile and put in a flask 

under nitrogen and stirring at 0
o
C. Boc anhydride (17.27g, 79.17mmol) was also 

dissolved in acetonitrile and added slowly into the amine solution, the reaction was 

left for 15 h at room temperature. Dimethylethylenediamine (3.94mL, 0.5mmol) 

was added to quench any unreacted Boc anhydride and the reaction was left for a 

further 30min. The solvent was evaporated under reduced pressure to give a bright 

yellow liquid. 

Alternatively, the excess Boc anhydride was removed by adding five equivalents of 

imidazole into the reaction mixture at the end of the reaction and the mixture was 

allowed to stir for further 15 min. Chloroform was then added, and the mixture was 

washed with one percent hydrochloric acid (0 - 5
O
C). The mixture was extracted 

and the organic phase was washed with sodium hydrogen carbonate, water and 

brine, (40ml each).The mixture was dried over magnesium sulphate and 

concentrated.
176

 

The pure compound was obtained by column chromatography (20% of diethyl 

ether in hexanes) as a light colourless liquid in 66% yield. 

IR (NaCl cm
-1

); 3305, 2976, 1688, 1440, 1402, 1365, 1328. 

1
H NMR (500 MHz, CDCl3) δ; 4.20 (1H, s, br, H2), 3.80 (2H, s, H3), 2.08 (1H, s, 

H5), 1.42 (9H, s, H8), 1.18 (6H, d, J = 6.7 Hz, H1). 
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13
C NMR (125 MHz, CDCl3) δ; 155 (6), 82 (C7), 80 (C4), 70 (C5), 48 (C2), 32 (br, 

C3), 28 (C8) 20 (C1) 

HRMS (ESI+): calcd for C8H17O2NNa, m/z = 182.1151, found, 182.1152, (-

0.72ppm error). 
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tert-Butyl-(4-hydroxy-but-2-yn-1-yl)iso-propylcarbamate 2.106 

                                      

tert-Butyl-(4-hydroxy-but-2-yn-1-yl)isopropylcarbamate 2.107 (5g, 25.38mmol) 

was dissolved in THF, put under nitrogen at -78 
o
C. N-BuLi (11.168ml, 

27.92mmol) was added slowly into the reaction mixture and stirred for 30min. 

Parafomaldehyde (1.52g, 50.76mmol) was added in one portion and the reaction 

was allowed to warm up to room temperature overnight. 

The reaction was quenched with water (100mL) and extracted with diethyl ether 

(100mL). The aqueous portion was again extracted  with diethyl ether (40mL x 2). 

The combined organic layers was washed with brine (100mL), dried over 

magnesium sulphate filtered and concentrated under reduced pressure. The crude 

compound was purified by column chromatography (10% methanol in DCM) to 

give the desired product 2.106 as an orange coloured liquid. (3.9g, 89%). 

 

IR (NaCl cm
-1

); 3374, 2975, 1675, 1403, 

1
H NMR (500 MHz, CDCl3) δ; 4.20 (2H, s, H6), 3.80 (2H, s, H3), 2.60 (1H, s, br, 

OH), 1.40 (9H, s, H9), 1.18 (6H, d, J = 6.7 Hz, H1). 

13
C NMR (125 MHz, CDCl3) δ; 155 (7), 82 (C8), 80 (C5), 80 (C4), 51 (C6), 47.5 

(C3), 32 (br, C2), 28 (C9), 20 (C1) 

HRMS (ESI+): calcd for C12H21O2NNa, m/z = 250.1414, found 250.1415, 

(0.35ppm error). 
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tert-Butyl-(4-ethoxy-but-2-yn-1-yl)iso-propylcarbamate 2.105 

                                           

A solution of NaH (60% in mineral oil, 0.77g, 19.16mmol) was prepared in THF 

(60mL), the reaction was put under nitrogen with stirring at 0
o
C. tert-Butyl-(4-

hydroxy-but-2-yn-1-yl) isopropylcarbamate 2.106 (2.9g,12.77mmol) was added 

and the reaction was left to stir for 1h. Ethyl iodide (2.39, 15.33mmol) was added 

slowly into the solution and left overnight (15h) to warm up to room temperature. 

The reaction was quenched with water, and extracted with diethyl ether (10mL). 

The aqueous layer was washed with diethyl ether (50mL x2). The organic layers 

were washed with brine, and dried over magnesium sulphate, filtered and 

concentrated under reduced pressure. Purification of the crude by column 

chromatography afforded the pure compound 2.105 as a bright yellow liquid 

(80%). 

IR (NaCl cm
-1

); 2975, 1691, 

1
H NMR (500 MHz, CDCl3) δ; 4.18 (1H, s, br, H2). 4.02 (2H, s, H6), 3.84 (2H, s 

br, H3), 3.41- 3.47, (2H, q, J = 12.5, 10.0, 2.5 Hz H7), 1.38 (9H, s, H11), 1.13 (3H, 

m, H8), 1.09 (6H, d, J = 6.9 Hz, H1). 

13
C NMR (125 MHz, CDCl3) δ; 155.1 (C9), 84 (C10), 80 (C5), 79 (C4), 65 (C6), 

58 (C7), 47 (C3), 32 (C2), 28 (C11), 20.5 (C1), 15 (C8). 

HRMS (ESI+):  calcd for C14H25NO3Na, m/z 278.1727, found 278.1732. 
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N-(4-Ethoxybut-2-ynyl)-N-iso-propyl-3-(trimethylsilyl)propiolamide 

2.103 

                                            

Trifluoroacetic acid (1.944mL 25.49mmol) was added dropwise into  a solution of 

tert-buty-(4-ethoxy-but-2-yn-l-yl)isopropylcarbamate 2.105 (1.3g, 5.09mmol) over 

5min. The reaction was left to stir overnight at room temperature and the solvent 

was evaporated to give the crude trifluoroacetate 2.104 as a dark oily product. 
1
H 

NMR of the crude showed complete removal of the Boc group.  This product was 

used without any purification. 

To a solution of the trimethylsilanyl propynoic acid (1.04g, 7.35mmol) in DCM 

(10mL) was added oxalylchloride (0.93g, 7.35mmol) and 2 drops of DMF at 0 
o
C. 

The ice bath was removed after 5min and the reaction was left for 1h at room 

temperature. Compound 2.26 was obtained and used in situ. 

To a solution of the crude amine trifluoroacetate salt 2.104 in DCM (10mL) was 

added triethylamine (2.98g) slowly at 0
o
C under nitrogen with continuous stirring. 

The reaction was left to stir for 30min. Freshly prepared 3-(trimethylsilyl) 

propioloyl chloride 2.10a was added in drops to the solution over 10min and the 

reaction was stirred overnight. The reaction was quenched with hydrochloric acid 

(1M), washed with saturated sodium carbonate solution, water and brine (20 mL 

each). The mixture was dried over magnesium sulphate and concentrated under 
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reduce pressure to give a brownish black liquid. Purification by column 

chromatography (33% of diethyl ether in hexanes) gave the product as an orange 

oil in 38% yield (over 2 steps). 

IR (NaCl cm
-1

); 2975, 2200, 1628. 1431, 1408, 1332, 1291. 

1
H NMR (500 MHz, CDCl3) δ; 4.64 (1H, m, H2), 4.28 (1H, s, H3), 4.05 (3H, m, 

H3 and H6), 3.5 (2H, q, J = 14.1 Hz, H7), 1.3 (3H, d, J = 6.8 Hz, H8), 1.18 (6H, d, 

J = 13.5Hz, H1), 0.2 (9H, m, H12) 

13
C NMR (125 MHz, CDCl3) δ; 153.9/153.5 (C9), 97.8/97.4 (C11), 96.2/95.7 (C4), 

82.0/81.9 (C10), 78.5 (C5), 65 (C7), 57.9 (C6), 50.6/45.8 (C2), 34/29 (C3), 20/21 

(C1), 14.5 (C8), (C12 not shown). 

HRMS (ESI+): calcd for C15H25NO2SiH, m/z 280.1727, found- 280.1729, (-

2.09ppm error). 
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Ethoxy-7-iso-propyl-5-(trimethylsilyl)-3,3a,4,5,7,8-hexahydro-1H-

furo[3,4-e]isoindol-6(8bH)-one.        2.112 

                                          

The precursor N-(4-ethoxybut-2-ynyl)-N-isopropyl-3-(trimethylsilyl)propiolamide 

2.103 (200mg, 0.717mmol) was put in dry toluene (5mL). Allyl alcohol (208mg, 

0.244mL, 3.584mmol) was added to provide the double bond necessary for 

intermolecular cyclization. The reaction was heated under reflux at 110 
o
C for 2 h.  

Completion of the reaction was indicated by tlc analysis. The solvent was 

evaporated under reduced pressure to produce the crude compound as a dark 

coloured liquid. Purification by column chromatography (33% of diethyl ether in 

hexanes) produced the product 2.112 as a yellow liquid in 65% yield. 

IR (NaCl cm
-1

); 2966, 2169, 1991, 1671, 1454, 1400, 

1
HNMR (500 MHz, CDCl3) δ; 5.94 (1H, m, H7), 5.3 (1H, d, J =7.0Hz H3), 5.2 

(1H, d, J = 7.0Hz H3), 4.9 (1H, s, H3), 4.4 (1H, m, H2), 4.25 / 4.18 (2H, m,  H2), 

4.0 (1H, dd, J = 12.7,5.9Hz, H14a) 3.7-3.85 (3H, m, 6 & H14b), 2.82(1H, s H4), 

2.3 (1H,dd, J = 10.9,5.6Hz, H13), 1.85(1H, d, J = 8.6Hz  H11)  1.7 (2H, s, H12), 

1.4 (1H, m, H12), 1.15 (6H, d, J = 6.1Hz,  H8), 1.2  (3H, m, H1)  , 0.8 (9H, s, H15) 

13
CNMR (125 MHz, CDCl3) δ; 171 (C9), 145(C5), 136/135 (C10), 107.5/107.2 

(C3), 72/69 (C14), 63.99 (C2), 48 (C6), 45.9 (C4), 42.6/42 (C13), 38 (C7), 27.5 
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(C12), 22.5/23.5 (C11), 21 (C8), 15.8 (C1), 0.1 (C15). 

HRMS (ESI+): calcd for C18H32O3Si, m/z 338.2146, found 338.2153 (-2.14ppm 

error). 
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(Z)-Methyl 4-(ethoxymethylene)-2-iso-propyl-1-oxo-7-(trimethylsilyl)-2, 

 3,4,5,6,7-hexahydro-1H-isoindole-5-carboxylate, 2.114. 

                           

N-(4-Ethoxybut-2-ynyl)-N-isopropyl-3-(trimethylsilyl)propiolamide, 2.103 (100mg, 

0.358mmol) was put in dry toluene (5mL). Methyl acrylate (154mg, 1.792mmol) was 

added to provide the double bond necessary for intermolecular cyclization. The reaction 

was heated under reflux at 110 
o
C for 1 h.  The solvent was evaporated under reduced 

pressure to produce the crude compound as a dark orange liquid. Purification by column 

chromatography (25% of diethyl ether in hexanes) gave the product 2.114 as an orange 

yellow liquid in 25% yield.
  

IR (NaCl cm
-1

); 3412, 2919, 2099, 1643, 1412, 1368, 1245, 1080, 843. 

 

1
HNMR (500 MHz, CDCl3) δ; 6.4 (1H, d, J = 10Hz, H14), 6.10 (1H, d, J = 8Hz, H14), 

4.49 (2H, m, H15), 3.95 ( 1H, m, H2), 3.79 (3H, s, H10),3.65 (2H, s, H11), 3.1 (1H, d,  

J = 7.0Hz, H8), 2.6 (1H, d, J = 7.0Hz, H5), 1.65 (1H, m, H7), 1.05 – 1.20(9H, m, H1 & 

H16), 0.9 (1H, d, J = 7.0,H7), 0.2, (9H, d, J = 12.4Hz, H6).  

 

13
CNMR (125 MHz, CDCl3) δ; 172 (C9), 168 (C3), 143.5 (C12), 138 (C14), 133.8 (C4), 

119.5 (C13), 72.5 (C15), 65 (C15), 52 (C10), 44 (C8), 42 (C11), 41.8(C2), 30/28 (C7), 

22 (C1), 19.5 (C5), 15 5 (C16) 

 

HRMS(ESI+): calcd for C19H32NO4Si, 366.2095 found 366.2103, (-2.22ppm error) 
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7-Methyl-5-phenyl-4,5,7,8-tetrahydro-3H-furo[3,4-e]isoindol-6-(3-aH)-eno                                                                   

2.1 

 

Table 1. Crystal data and structure refinement. 

Identification code    aug 1407 

Empirical formula    C17H17NO2 

Formula weight    267.32 

Temperature     173(2) K 

Wavelength     0.71073Å 

Crystal system     Triclinic 

Space group     P1 (No.2)  

Unit cell dimensions    a = 11.0444(3) Å  ∞ = 109.032(2) 
o
 

      b = 11.5733(4) Å β = 105.344(2)
 o

 

      c = 11.9077(2) Å γ = 90.272(2)
 o

 

Volume     1380.62(6) Å 
3
 

Z      4 
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Density      1.29Mg/m
3
 

Absorption coefficient   0.08mm
-1

 

F(000)      568 

Crystal size     0.35 x 0.30 x 0.20mm
3
 

Theta range for data collection  3.57 to 26.19
o  

 

Index  ranges     -13<=h<=13, -14<=k<=14, -14<=1<=14 

Reflections collected    21825 

Independent reflections   5441 [R (int) = 0.060] 

Reflections with 1>2signals   3992 

Completeness to theta = 26.19
o
  98.4% 

Refinement method    Full-matrix least-squares on F
2
 

Data/ restraints/ parameters   5441 / 0 / 363 

Goodness-of-fit on F
2    

1.005 

Final R indices [I>2sigma(I)]   R1 = 0.047, wR2 = 0.107 

R indices (all data)    R1 = 0.073, wR2 = 0.121 

Largest diff. peak and hole   0.26 and -0.22 e. Å
-3 

 

Data collection Kappa CCD, Program package WinGX, Abs correction not applied. 

Refinement using SHELXL-97, Drawing using ORTEP-3 for windows. 
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Table 2. Atomic coordinates (x 10
4
) and equivalent isotopic displacement parameters 

(Å
2
x10

3
) for aug 1407. U(eq) is defined as one third of the trace of the orthogonalized 

U
ij 

tensor. 

______________________________________________________________________ 

   x  y  z  U(eq) 

 ___________________________________________________________ 

O(1)   6644(1) 1094(1) 2219(1) 46(1) 

O(2)   2969(1) 1825(1) 6375(1) 36(1) 

N   2313(1) 1184(1) 4242(1) 30(1) 

C(1)   7428(2) 1435(2) 3497(2) 42(1) 

C(2)   6552(2) 1974(2) 4297(2) 30(1) 

C(3)   6739(2) 1685(2) 5492(2) 31(1) 

C(4)   5669(2) 2141(2) 6099(2) 27(1) 

C(5)   4416(2) 1739(1) 5128(1) 25(1) 

C(6)   4252(2) 1357(2) 3897(1) 24(1) 

C(7)   5286(2) 1386(2) 3394(2) 27(1) 

C(8)   5429(2) 955(2)  2260(2) 36(1) 

C(9)   2884(2) 929(2)  3229(2) 29(1) 

C(10)   3193(2) 1611(2) 5371(2) 26(1) 

C(11)   1024(2) 741(2)  4068(2) 37(1) 

C(12)   5907(2) 3514(2) 6804(2) 28(1) 

C(13)   6795(2) 3933(2) 7960(2) 42(1) 

C(14)   7125(2) 5175(2) 8601(2) 54(1) 

C(15)   6580(2) 6023(2) 8097(2) 55(1) 

C(16)   5684(2) 5627(2) 6969(2) 49(1) 

C(17)   5340(2) 4375(2) 6321(2) 36(1) 

O(1B)   10039(1) 6414(1) 4172(1) 40(1) 

O(2B)   6957(1) 991(1)  -628(1) 40(1) 

N(1B)   6115(1) 2797(2) 157(1)  35(1) 

C(1B)   10889(2) 5457(2) 3946(2) 35(1) 

C(2B)   10220(2) 4494(2) 2693(2) 27(1) 

C(3B)   10325(2) 3154(2) 2575(1) 27(1) 
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C(4B)   9472(2) 2290(2) 1312(1) 24(1) 

C(5B)   8201(2) 2762(2) 1048(1) 25(1) 

C(6B)   7918(2) 3893(2) 1625(2) 27(1) 

C(7B)   8872(2) 4801(2) 2561(2) 27(1) 

C(8B)   8863(2) 5894(2) 3397(2) 35(1) 

C(9B)   6543(2) 3998(2) 1105(2) 36(1) 

C(10B)  7060(2) 2048(2) 98(2)  30(1) 

C(11B)  4839(2) 2462(2) -646(2) 53(1) 

C(12B)  10091(1) 2118(2) 272(1)  24(1) 

C(13B)  10959(2) 1257(2) 92(2)  28(1) 

C(14B)  11570(2) 1115(2) -818(2) 36(1) 

C(15B)  11313(2) 1823(2) -1574(2) 39(1) 

C(16B)  10438(2) 2670(2) -1415(2) 39(1) 

C(17B)  9837(2) 2821(2) -496(2) 31(1) 
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Table 3.Bond lengths Å and angles      for  aug 1407 

 

O(1)-C(8)    1.366(2) 

O(1)-C(1)    1.460(2) 

O(2)-C(10)    1.231(2) 

N-C(10)    1.366(2) 

N-C(11)    1.449(2) 

N-C(9)     1.454(2) 

C(1)-C(2)    1.530(2) 

C(2)-C(7)    1.514(2) 

C(2)-C(3)    1.528(2) 

C(3)-C(4)    1.552(2) 

C(4)-C(12)    1.519(2) 

C(5)-C(6)    1.346(2) 

C(5)-C(10)    1.471(2) 

C(6)-C(7)    1.428(2) 

C(6)-C(9)    1.503(2) 

C(7)-C(8)    1.331(2) 

C(12)-C(17)    1.381(3) 

C(12)-C(13)    1.392(2) 

C(13)-C(14)    1.383(3) 

C(14)-C(15)    1.373(3) 

C(15)-C(16)    1.373(3) 

C(16)-C(17)    1.397(3) 

O(1B)-C(8B)    1.377(2) 

O(1B)-C(1B)    1.459(2) 

O(2B)-C(10B)    1.231(2) 

N(1B)-C(10B)    1.360(2) 

N(1B)-C(11B)    1.446(2) 

C(1B)-C(2B)    1.529(2) 

C(2B)-C(7B)    1.511(2) 

C(2B)-C(3B)    1.519(2) 

C(3B)-C(4B)    1.553(2) 
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C(4B)-C(5B)    1.501(2) 

C(4B)-C(12B)    1.526(2) 

C(5B)-C(6B)    1.347(2) 

C(5B)-C(10B)    1.475(2) 

C(6B)-C(7B)    1.436(2) 

C(6B)-C(9B)    1.503(2) 

C(7B)-C(8B)    1.333(2) 

C(12B)-C(17B)   1.389(2) 

C(12B)-C(13B)   1.392(2) 

C(13B)-C(14B)   1.389(2) 

C(14B)-C(15B)   1.382(3) 

C(15B)-C(16B)   1.384(3) 

C(16B)-C(17B)   1.389(2) 

 

C(8)-O(1)-C(1)   105.85(14) 

C(10)-N-C(11)   123.47(15) 

C(10)-N-C(9)    112.04(13) 

C(11)-N-C(9)    122.74(14) 

O(1)-C(1)-C(2)   105.49(14) 

C(7)-C(2)-C(3)   110.46(14) 

C(7)-C(2)-C(1)   100.25(13) 

C(3)-C(2)-C(1)   117.27(15) 

C(2)-C(3)-C(4)   110.88(14) 

C(5)-C(4)-C(12)   114.56(14) 

C(5)-C(4)-C(3)   109.17(13) 

C(12)-C(4)-C(3)   110.78(14) 

C(6)-C(5)-C(10)   109.34(14) 

C(6)-C(5)-C(4)   125.19(15) 

C(10)-C(5)-C(4)   125.32(14) 

C(5)-C(6)-C(7)   121.38(15) 

C(5)-C(6)-C(9)   109.67(14) 

C(7)-C(6)-C(9)   128.95(14) 

C(8)-C(7)-C(6)   134.22(16) 
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C(8)-C(7)-C(2)   108.47(15) 

C(6)-C(7)-C(2)   117.26(14) 

C(7)-C(8)-O(1)   114.20(16) 

N-C(9)-C(6)    102.37(13) 

O(2)-C(10)-N    125.13(15) 

O(2)-C(10)-C(5)   128.45(15) 

N-C(10)-C(5)    106.41(13) 

C(17)-C(12)-C(13)   118.009(17) 

C(17)-C(12)-C(4)   123.00(15) 

C(13)-C(12)-C(4)   118.79(17) 

C(14)-C(13)-C(12)   121.4(2) 

C(15)-C(14)-C(13)   120.1(2) 

C(16)-C(15)-C(14)   119.43(19) 

C(15)-C(16)-C(17)   120.8(2) 

C(12)-C(17)-C(16)   120.27(18) 

C(8B)-O(1B)-C(1B)   106.12(13) 

C(10B)-N(1B)-C(11B)  124.42(16) 

C(10B)-N(1B)-C(9B)   112.21(14) 

C(11B)-N(1B)-C(9B)   123.35(15) 

O(1B)-C(1B)-C(2B)   106.23(14) 

C(7B)-C(2B)-C(3B)   111.07(14) 

C(7B)-C(2B)-C(1B)   100.75(13) 

C(3B)-C(2B)-C(1B)   117.13(14) 

C(2B)-C(3B)-C(4B)   111.16(13) 

C(5B)-C(4B)-C(12B)   112.72(13) 

C(5B)-C(4B)-C(3B)   109.37(13) 

C(12B)-C(4B)-C(3B)   111.87(13) 

C(6B)-C(5B)-C(10B)   109.25(15) 

C(6B)-C(5B)-C(4B)   125.97(15) 

C(10B)-C(5B)-C(4B)   124.78(14) 

C(5B)-C(6B)-C(7B)   121.01(15) 

C(5B)-C(6B)-C(9B)   109.60(15) 

C(7B)-C(6B)-C(9B)   129.35(15) 
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C(8B)-C(7B)-C(6B)   134.71(17) 

C(8B)-C(7B)-C(2B)   109.06(15) 

C(6B)-C(7B)-C(2B)   116.22(14) 

C(7B)-C(8B)-O(1B)   113.89(16) 

N(1B)-C(9B)-C(6B)   102.43(14) 

O(2B)-C(10B)-N(1B)   125.52(16) 

O(2B)-C(10B)-C(5B)   127.98(16) 

N(1B)-C(10B)-C(5B)   106.49(14) 

C(17B)-C(12B)-C(13B)  118.13(15) 

C(17B)-C(12B)-C(4B)  121.87(15) 

C(13B)-C(12B)-C(4B)  119.98(14) 

C(14B)-C(13B)-C(12B)  121.09(17) 

C(15B)-C(14B)-C(13B)  120.23(17) 

C(14B)-C(15B)-C(16B)  119.22(16) 

C(15B)-C(16B)-C(17B)  120.51(18) 

C(16B)-C(17B)-C(12B)  120.80(17)      
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