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Summary 
 

It is estimated that in the European Union 2 million deaths each year (42% of total) are 

as a result of cardiovascular disease, of which atherosclerosis is a major underlying 

factor. In 2006 this was estimated to cost the European Union an astonishing €192 

billion. Once considered a lipid storage disorder it is becoming apparent that 

atherosclerosis is in fact due to an inflammatory dysfunction, with a number of 

endogenous and exogenous activators coming to light. The process of atheroma 

formation is poorly understood. This study seeks to discover the underlying 

mechanisms of plaque development with the view to develop novel therapeutics for this 

disease.  

 

Our results demonstrate a modulatory role of endogenous low density lipoprotein 

(LDL), “bad cholesterol”, on bacterial infections. Using primary human umbilical vein 

endothelial cells (HUVECs) I have shown that “non-self” oxidised LDL can reduce cell 

surface expression of pattern recognition receptors (PRRs) of the innate immune 

system, causing modulation of the cellular response directed towards atherosclerosis-

associated bacterial pathogen-associated molecular patterns (PAMPs). Triple label 

fluorescent confocal microscopy of HUVECs revealed altered trafficking and targeting 

of PRRs of the innate immune system when endogenous LDL were combined with a 

bacterial infection in comparison to infection alone, indicating a source of the 

inflammatory dysfunction observed in this disease. This study illustrates that 

oxidatively modified LDL has a profound effect on bacterial infection, dramatically 

altering cellular response which may begin to explain the root cause of atherosclerosis. 

Through experimentation with human embryonic kidney (HEK) transfectants and 

HUVEC PRR silencing this study uncovered lipid raft dependant Toll-like receptors 

(TLRs) as fundamental culprits of this multi-factorial disease, with emphasis on TLR2 

and TLR4. Future therapy designed for atherosclerosis will unquestionably involve the 

manipulation of TLR signalling. 
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Chapter 1: 

 

Introduction 
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1.1: Atherosclerosis 

It is estimated that in the European Union 2 million deaths each year (42% of total) are 

as a result of cardiovascular disease (2008 statistics)
1
, of which atherosclerosis is a 

major underlying factor. In 2006 this was estimated to cost the European Union an 

astonishing €192 billion, this includes the cost of health care at €110 billion and €82 

billion on lost productivity and informal patient care
1
. In the Western world 

atherosclerosis gives rise to the majority of cardiovascular disease, and more global 

deaths than any other pathology except infection. Atherosclerosis is a multi-factorial 

disease that is characterized by the formation of lesions (plaques) in medium and large 

arterial blood vessel walls which can restrict and eventually cut off blood flow to vital 

organs. Early stages of plaque formation are asymptomatic allowing them to grow 

insidiously unbeknown to an individual. Over time plaques mature and can become 

unstable, if these rupture they will inevitably cause thrombosis resulting in vascular 

occlusion leading to tissue damage such as myocardial infarction. 

 

Increase in plaque size reduces essential oxygen supply to vital organs such as to the 

cardiac muscle. If the oxygen demand is not met the muscle can become ischemic when 

the requirement for oxygen is raised, for example during exercise. A 50% reduction in 

luminal diameter will produce a 70% reduction of the luminal cross-sectional area 

which is sufficient for symptoms of ischemic heart disease to be experienced
2
. 
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Figure 1.1: The normal (A) and atherosclerotic artery (B). The presence of plaque in the arterial 

wall effects blood flow (B). Increase in plaque size reduces oxygen supply to vital 

organs causing adverse conditions such as ischemic heart disease. Adapted from 

www.nhlbi.nih.gov/health/dci/Diseases/Atherosclerosis/Atherosclerosis_WhatIs.html 

(28/05/10). 

 

Severe constricting chest pain, known as angina pectoris, is the most common symptom 

of ischemic heart disease and can be “stable” (experienced on exertion only) or 

“unstable” (experienced at rest) depending on the stage of plaque development. Plaque 

formation within coronary arteries can lead to myocardial infarction and sudden death if 

left untreated. 

 

There are many components that are involved in the development of the atherosclerotic 

plaque from the early fatty streak to the more problematic mature lesion that is 

associated with increased risk of organ damage. These components include lipoproteins, 

crystalline cholesterol, cholesterol esters, phospholipids, extracellular matrix, collagen, 

foam cells, macrophages, mast cells, dendritic cells, T-cells and smooth muscle cells
3,4

. 
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Due to the nature of plaque development the proportions of these factors alters over 

time giving rise to varied levels of severity ranging from asymptomatic (fatty streak) to 

life threatening (mature/complicated lesion). 

 

 

Figure 1.2: Composition of the mature atherosclerotic plaque. The atherosclerotic plaque has a core 

containing lipids (which include cholesterol esters and crystalline cholesterol) and 

debris from dead cells. Surrounding it, a fibrous cap containing smooth muscle cells, 

collagen fibres and extracellular matrix stabilize the plaque. Immune cells including 

macrophages, foam cells, T-cells and mast cells populate the plaque, and are frequently 

in an activated state. An intact endothelium covers the plaque unless rupture or erosion 

occurs. Göran K. Hansson and Peter Libby (2006)
4
. 

 

Once considered a lipid storage defect, atherosclerosis is now widely accepted to be due 

to a chronic inflammatory disease influenced by both genetic and environmental factors. 

However, hindered by the slow persistent nature of atherosclerosis exactly why and how 

this comes about remains unclear. 

 

1.1.1: Activators of atherosclerosis 

Recognised risk factors that can influence ones susceptibility to atherosclerosis include 

family history, smoking, hypertension, hypercholesterolemia, high plasma 

concentrations of low density lipoprotein (LDL), low plasma concentrations of high 
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density lipoprotein (HDL), lack of exercise, diabetes mellitus, obesity and autoimmune 

diseases such as rheumatoid arthritis and systemic lupus erythematosus
5-7

. The analysis 

of plaque composition revealed localised bacterial products and a significant 

upregulation of a number of components of the immune system, pulling inflammation 

into the limelight as a causative mechanism
8,9

. 

 

There have been a number of ligands associated with atherosclerosis. Recognised risk 

factors provide many endogenous activators (such as LDL and cholesterol), however a 

number of exogenous factors have more recently been associated with atherogenesis 

including those originating from bacterial and viral sources. It is proposed that these 

exogenous ligands cause inflammation in the arterial wall leading to, or initiating, 

plaque formation.  

 

Surprisingly, infection has been implicated with atherosclerosis for more than 50 years. 

In 1960 Anitschkow et al.
10

 identified macrophages and lymphocytes in the 

atherosclerotic plaque. This early identification of inflammation in atherosclerosis 

sparked little interest until sometime later. It was almost two decades after 

Anitschkow’s discovery when Fabricant et al. (1978)
11

 suggested a link between herpes 

virus and atherosclerosis.  Fabricant et al. infected chickens with a poultry herpes virus 

named Marek’s disease virus (MDV). It was shown that infection alone gave visible 

atherosclerotic lesions in large coronary arteries, aortas, and major aortic branches. In 

1986 Jonasson et al.
9
 published a paper demonstrating the presence of the immune cells 

macrophages and T-cells in the human atherosclerotic plaque which was still a novel 

concept, however this paper got a lot more interest that Anitschkow’s in 1960. A 

number of studies have since confirmed a role for infection in the development of 



6 

 

atherosclerosis. For example, Lehr et al. (2001)
12

 have demonstrated that repeated 

intravenous injection of Escherichia coli (E.coli) lipopolysaccharide (LPS) into 

hypercholesterolemic (atherosclerosis prone) rabbits accelerates the formation of 

atherosclerotic lesions. It is accepted now that elevated blood C-reactive protein (CRP), 

an acute phase protein that indicates inflammation, is indicative of increased risk of 

cardiovascular events
13,14

. Evidence for infection as a causative agent in plaque 

development is now overwhelming. In a large population study it was found that 

chronic infections such as those of the respiratory system, urinary tract and gums are 

linked with increased risk of atherosclerotic plaque development in the common carotid 

artery
15

. More specifically Porphyromonas gingivalis (P.gingivalis), Helicobacter 

pylori (H.pylori), Chlamydia pneumoniae (C.pneumoniae), herpes simplex virus (HSV), 

cytomegalovirus (CMV) and Epstein-Barr virus (EBV) have all been linked to 

atherosclerosis
16-25

. While the evidence for infectious inflammation is compelling, it has 

been shown that germ free mice can still develop atherosclerotic plaques
26

. This study 

could highlight the presence of non-infectious initiators of inflammation. Although 

infection may not be required for plaque formation, it is clear that it accelerates this 

process dramatically.  

 

Consolidating a role for the immune system in atherogenesis are studies showing that 

immunization and vaccination against endogenous and exogenous factors respectively 

are associated with reduced disease state. Mice that were immunized with oxidised LDL 

were shown to have reduced atherosclerotic lesion development
27,28

. Also, mice that 

were immunized with peptides of apolipoprotein B-100, an important component of 

LDL, were observed to have reduced lesion area in comparison to controls
29

. In human 



7 

 

subjects a decreased probability of patients experiencing a second myocardial infarction 

(MI) was attributed to vaccination against influenza
7
. 

 

1.1.2: Atherosclerosis management 

Although it is now widely accepted that atherosclerosis is an inflammatory disorder 

interestingly its treatment does not seem to address this. Patients at high risk of 

cardiovascular disease would be advised on life style changes, such as to stop smoking 

and increase exercise, and given “primary treatment”. Primary treatment focuses only 

on the risk factors that are presented such as hypertension, raised serum lipids or 

hyperglycemia. For example, a GP will advise a patient on how and why they should 

reduce their serum cholesterol levels so they can reach an accepted target level set out in 

medical guidelines. (Optimal LDL cholesterol ≤100mg/dL {National Institutes of 

Health Publication No. 01-3670, May 2001}). Patients are closely monitored and the 

drug dose and selection is tailored for the individual. 

 

Following an event such as a stroke or heart attack “secondary treatment” is 

commenced. The main difference from primary treatment being that all major risk 

factors are now treated, regardless of whether they are evident or not. For example, 

angiotensin-converting enzyme (ACE) inhibitors will be administered, regardless of 

blood pressure, as a protective measure and also statins (HMG-CoA reductase 

inhibitors) are administered regardless of blood cholesterol levels. Beta-blockers to 

reduce the prevalence of cardiac arrhythmias (a common cause of death following an 

event) and aspirin, which is not used in primary treatment due to its risk of 

gastrointestinal haemorrhage, used for its many properties such as blood thinning are 

also administered. 
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1.2: The immune system 

Throughout life the human body is being constantly exposed to countless harmful 

pathogens that threaten health and survival.  These organisms attempt to enter the body 

through epithelial surfaces such as the skin, respiratory tract, gastro-intestinal tract and 

genitourinary tract. The fast and efficient removal of these invading pathogens is 

performed by the immune system. This process is vital for existence in an environment 

full of potential hazards. The human immune system can be viewed as two delicately 

intertwined, yet functionally different, processes named the innate and adaptive immune 

systems. 

 

1.2.1: Innate immune system 

The innate immune system primarily involves anatomical barriers (skin), secreted 

antibacterial substances (such as lysozyme in tears/saliva), ciliary activity (such as cilia 

of the trachea which sweep mucus-caught foreign bodies out of the lungs), coughing 

and vomiting. The more complex role of the innate immune system involves germ-line 

encoded receptors that are able to recognise invading pathogens causing activation of 

inflammatory signalling cascades. Innate immunity is present from birth and does not 

improve in efficiency due to repeated exposure to a certain pathogen, as seen with 

adaptive immunity. The innate immune response is very fast where activation can be 

recorded within minutes; this reflects the rate at which a bacterium can colonise an 

environment. Bacteria that have a short proliferation rate have the potential of causing 

huge colony sizes in just one day, even from a single bacterium. Such infections could 

not be managed by the adaptive immune response for this requires at least four days for 

activation, by which time a bacterial colony for example could become well established 

with highly detrimental effects. 
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The innate immune system detects pathogens through molecular patterns that are 

expressed by, and unique for, infectious agents. These highly conserved motifs are 

named pathogen-associated molecular patterns (PAMPs) and are recognised as foreign 

to the body. PAMPs typically are molecular structures that are essential for survival and 

proliferation of a pathogen, thus their presence and recognition is inevitable. An 

example of some well established PAMPs are shown below. 

 

  PAMP    Origin 

Lipopolysaccharide  Bacteria  

Peptidoglycan   Bacteria  

Lipoteichoic acid   Bacteria 

CpG DNA   Virus 

ssRNA    Virus 

 

In conjunction with exogenous infectious agents it has been found that a number of non-

infectious endogenous molecules are able to initiate an immune response causing sterile 

inflammation. Endogenous agents recognised by innate receptors include products of 

tissue stress released during necrotic cell death, oxidised LDL and products produced 

from extracellular matrix degradation. These ligands that are capable of mounting an 

immune response have been named damage-associated molecular patterns (DAMPs), 

for they are non-infectious and are often associated with injury. 

 

PAMPs and DAMPs are detected through the germ-line encoded pattern recognition 

receptors (PRRs) which include Toll-like receptors
30

 (TLRs), NOD-like receptors
31

  

(NLRs) and RIG-I-like receptors
32,33

 (RLRs), the so called “trinity of innate sensors”. 

Binding of a PAMP or DAMP by a PRR causes the activation of intracellular signalling 

cascades that ultimately lead to the release of inflammatory cytokines that orchestrate 

pathogen removal, tissue repair and help induce an adaptive immune response.  
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1.2.2: Adaptive immune system  

The adaptive immune response, in contrast to an innate immune response, is specific for 

a particular pathogen. This branch of the immune system mainly involves B-cells, T-

cells and dendritic cells. This system works via generating a huge number of individual 

B-cell receptors and T-cell receptors through V-gene recombinations in the gene of the 

receptor that is expressed on the relevant cell. This system creates a vast arsenal of cells 

where one will inevitably have specificity for a PAMP expressed on an invading 

pathogen. When a B-cell detects an antigen the individual cell proliferates and generates 

plasma cells and memory cells. Plasma cells release antibodies relevant to the antigen 

recognised to orchestrate its clearance, whilst memory cells persist in the system ready 

for a second exposure to the same pathogen. From initial detection to a substantial 

immune response, via the generation and maturation of plasma and memory cells, it 

takes approximately four days. During secondary exposure the adaptive response is 

much faster, for memory cells to the particular antigen exist which expand immediately 

on pathogen recognition.  

 

1.2.3: Immune system dysfunction 

Although the immune system strives to protect the individual there are a number of 

cases where it does quite the opposite. Both Gram-positive and Gram-negative bacteria 

are able to cause the life threatening condition known as sepsis which is associated with 

systemic inflammation, circulatory failure and multiple organ dysfunction syndrome 

(MODS)
34,35

. Sepsis is the cause of the majority of deaths in surgical intensive care 

units
36

. A plethora of autoimmune diseases also have adverse effects. An autoimmune 

disease is where the immune system recognizes self antigens as foreign and thus attacks 

healthy tissue as it would if a PAMP was detected. Examples include; multiple 
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sclerosis, Graves’ disease and Hashimoto’s thyroiditis. The development of arterial 

atherosclerotic plaques in atherosclerosis is another example where the immune system 

does not function correctly. 

 

1.3: Toll-like receptors  

TLRs, one of the “trinity of innate sensors” (TLRs, NLRs and RLRs) are of great 

importance in pathogen recognition. There are ten known human TLRs which are type 1 

transmembrane germ-line encoded protein receptors of the innate immune system. 

These receptors serve to recognise the vast array of molecular patterns expressed by 

invading pathogens and orchestrate their immediate removal.  

 

The field of TLR research is relatively new and rapidly expanding. The emergence of 

the many roles of TLRs in a number of diseases and disorders has made them exciting 

therapeutic targets. The discovery of TLRs has enabled researchers to answer many 

questions in the area of infection and immunity, but in doing so has created many more. 

 

1.3.1: A history of TLRs 

In 1985 Dr. Nüesslein-Volhard screened Drosophila melanogaster for embryonic 

polarity genes
37

. She found one receptor that was clearly involved in the establishment 

of the dorsal-ventral axis of the developing embryo named Toll. Embryos that lacked 

Toll gene activity lost their dorsal-ventral distinction and appeared “toll”, which loosely 

translated from German to English means “weird”. When searching for proteins similar 

to D.melanogaster Toll, Gay et al.(1991)
38

 found homology between the cytoplasmic 

domains of Toll and the human interleukin-1 receptor (hIL-1R). The reason for the 135 

amino acid homology seen between a receptor involved in fly embryo development 

(Toll) and one involved in human inflammation (hIL-1R) was a mystery. Here Gay et 
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al. (1991)
38

 also described the extracellular portion of Toll as containing leucine-rich 

repeats (LRRs). In 1996 Lemaitre et al.
39

 found a direct role for Toll in D.melanogaster 

immunity to fungal infection. Lemaitre et al. infected Toll deficient adult flies with 

Aspergillus fumigates and observed 100% mortality within 3 days. Wild-type and un-

infected Toll deficient adult flies had ~10% mortality, this study demonstrated the direct 

importance of Toll in protecting the fly against infection.  

 

 

 
Figure 1.6: Scanning electron micrograph of germinating hyphae of A.fumigates on a dead 

D.melanogaster succumbed to the infection (200X magnification). Lemaitre et al. 

(1996)
39

. 
 

It was in 1997 when Medzhitov & Janeway discovered a human Toll homologue 

sharing homology with D.melanogaster Toll over the entire length of the protein 

chain
40

. The next year Rock et al. (1998)
41

 described 5 human Tolls which were coined 

here as TLRs, and named them TLR1-5. In 1998 LPS of Gram-negative bacteria was 

discovered to be a ligand for TLR4 by Poltorak et al.
42

. It was found that mice with a 

missense mutation in TLR4 survived fatal LPS induced sepsis, linking TLRs and 

infection. TLR6 was discovered the following year by Takeuchi
43

. Human TLR7, TLR8 

and TLR9 were described in 2000 by Chuang
44

, who further discovered Human 

TLR10
45

 the following year.  
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1.3.2: The TLR  

TLRs are expressed on cells in areas that encounter invading organisms. These 

receptors are abundantly expressed by macrophages, neutrophils, dentritic cells and the 

epithelial cells lining the lung and gut. The activation of TLRs in multicellular 

organisms causes an inflammatory response via the activation of the transcription 

factors of the nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) 

and interferon regulatory factor (IRF) families which regulate the transcription of 

inflammatory mediators. This process orchestrates the immune response and helps 

induce an acquired immune response. The pattern of TLR activation is representative of 

the pathogen present. This signal is translated across the plasma membrane in such a 

way allowing appropriate action against the type of pathogen that has been identified. 

 

1.3.2.1: TLR structure  

 

 

Figure 1.7: TLR family basic structure. The extracellular domain consists of 18-24 LRRs at the N-

terminus. The cytoplasmic domain contains the Toll/interleukin-1 receptor homology 

domain (TIR) at the C-terminus. The LRRs form a right-handed super helix that creates 

the binding site for a PAMP or DAMP. 
 

TLRs have between 18 and 24 multiple LRRs and a cysteine-rich domain (60 amino 

acids) which is proximal to the cell membrane in their extracellular domain at the N-

terminus. The cytoplasmic domain contains a region of ~200 amino acids named the 

Toll/interleukin-1 receptor (TIR) homology domain, which is involved in signal 

transduction at the C-terminus
46

. The LRRs in the extracellular domain are around 20-
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29 amino acids in size, with a conserved pattern of hydrophobic amino acids. The LRRs 

form a right-handed super helix that forms a horse shoe shaped surface of the 

extracellular domain, which is thought to create the binding site for PAMPs and 

DAMPs. 

 

 

 

Figure 1.8: TLR protein structure. All of the TLRs are Type 1 transmembrane proteins possessing a 

variable number (18-24) of N-terminal LRRs followed by a cysteine-rich domain, a 

transmembrane domain, and an intracellular TIR domain. The variation in amino acid 

number and molecular weight of the different TLRs is most significantly contributed by 

differences in the numbers of LRRs. Chromosomal locations for each of the TLRs are 

also given. Adapted from: R&D Systems Catalog (01/01/04). 

 

1.3.2.2: TLR distribution 

TLR homodimers and heterodimers recognise a large array of PAMPs and DAMPs. 

TLRs 1, 2, 4, 5, 6 and 11 are all present on the cell surface membrane with their LRR 

domain facing into the extracellular space. TLRs 3, 7, 8 and 9 are present in the 

endosomal membrane with their LRR domain facing into the endosomal compartment. 

TLR homo- and heterotypic associations are summarized below in Figure 1.9 with 

example ligands. For a comprehensive list of TLR ligands see Section 1.3.4. 
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Figure 1.9: Summary of the TLRs and their ligands. Different TLRs recognise different PAMPs. 

Some form heterodimers to facilitate PAMP recognition. TLRs 1, 2, 4, 5, 6 and 11 are 

all present on the cell surface membrane. TLRs 3, 7, 8 and 9 are present in the 

endosomal membrane, with the intracellular domain in the cytosol, and extracellular 

domain in the endosome.  

 

1.3.3: Individual TLRs 

Since the discovery of the first human Toll homologue by Medzhitov & Janeway in 

1997
40

, and the subsequent discovery of the remaining members of  the human TLR 

family
41,43-45

, much research has gone into their structure, ligands and functional 

significance in a vast range of diseases and disorders. Information obtained from such 

research has proven fruitful with the creation of a number of successful TLR based 

therapeutics. For example, TLR targeted molecules have been used to combat basal cell 

carcinoma
47

 and as an adjuvant in a Hepatitis B vaccine
48

. 
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The evolutionary relationship, or family clustering, of TLRs seems to directly relate to 

their ligands and associations with one another. The cluster of TLRs 1, 2, 6 and 10, with 

the exception of TLR10 for which a ligand and use has yet to be uncovered, coincides 

with their heterotypic associations. TLRs 3, 7, 8 and 9 are closely related and so are 

their localisation and ligands. 

 

 

Figure 1.10: TLR relationships. A) Evolutionary relationships of TLRs represented by a 

phylogenetic tree derived from whole-sequence comparisons of all 10 TLRs. Chuang et 

al. (2001)
45

. B) Family clustering of TLRs. Takeda et al. (2003)
49

. 
  

The field of TLR research is relatively young with new mechanisms of action, ligands 

and interactions being continuously discovered and scrutinised. The TLRs have been 

extensively researched uncovering many potential therapeutic targets.  

 

1.3.3.1: TLR2, TLR1 and TLR6 

TLR2 is capable of forming heterodimers with TLR1 and TLR6. TLR2 has also been 

shown to interact with receptors that are not in the TLR family such as dectin-1, CD14 

and CD36
50,51

. The ability of TLR2 to form heterodimers with other receptors allows it 
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to have a wide range of molecular components that it can recognize. TLRs 2, 1 and 6 

are expressed on the cell surface. 

 

TLR2, in conjunction with TLR1 or 6, recognizes a large number of different PAMPs 

and DAMPs, including lipoteichoic acid (LTA) from Gram-positive bacteria cell walls 

such as Staphylococcus aureus (S.aureus) and Streptococcus pneumoniae 

(S.pneumoniae)
52

, peptidoglycan (PG) from S.aureus
53

, lipopeptides and lipoproteins
54

, 

host heat shock protein 70 (HSP70), lipoarabinomannan from mycobacteria, 

glycosylphosphatidylinositol anchors, phenol-soluble modulin, zymosan and 

glycolipids. Recently it has been shown that TLR2 can also bind the unconventional 

LPS found on the Gram-negative bacteria P.gingivalis
51

, H.pylori
55

 and 

C.pneumoniae
19

, LPS is otherwise a well established TLR4 agonist. 

 

Subtle changes in ligand have been shown to alter TLR2 heterodimers illustrating the 

sensitivity of the innate sensing of pathogens through TLR2. The TLR2/TLR1 

heterodimer can recognise mycoplasma-derived diacyl lipopeptides but does not 

recognise triacyl lipopeptides
50

. In contrast the TLR2/TLR6 heterodimer can recognise 

triacyl lipopeptides but do not recognise diacyl lipopeptides
50

. 

 

In 2007 the crystal structure of the human TLR2/TLR1 heterodimer, bound to the tri-

acylated lipopeptide Pam3CSK4, was uncovered in Korea by Jin et al.
56

. This discovery 

confirmed many hypotheses about signal transduction. Using the crystal structure Jin et 

al. propose that the formation of the heterodimer brings the intracellular TIR domains in 

close proximity therefore promoting dimerization and activation of these domains 

allowing initiation of the intracellular signalling cascade. 
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Figure 1.11: The structure of the human TLR2 (blue)/TLR1 (green) heterodimer ectodomains 

associated with the tri-acylated lipopeptide Pam3CSK4 (red). TLRs have amino-

terminus (N-term) LRRs for ligand binding and a carboxy-terminus (C-term) 

intracellular TIR homology domain for signal transduction. pdb-2Z7X.. Jin et al. 

(2007)
56

. 
 

1.3.3.2: TLR3 

TLR3 is located in the endosomal membrane with the LRR domain inside the endosome 

and TIR domain in the cytosol (Figure 1.9). This endosomal receptor is involved in the 

recognition of double-stranded ribonucleic acid (dsRNA). Alexopoulou et al. (2001)
57

  

demonstrated that mice deficient in TLR3 had a lowered ability to respond to dsRNA. 

Recently it has been found that TLR3 can also recognise viral single-stranded RNA 

(ssRNA) produced during the replication of dsRNA viruses
58

. A synthetic analogue of 

dsRNA named polyinosinic-polycytidylic acid (poly {I-C}) is recognised by TLR3 and 

is widely used in TLR research, this molecule is also being analysed for its potential as 

a therapeutic agent
59

. 

 

In 2008 Liu et al.
60

 determined the crystal structure of the extracellular domains of a 

mouse TLR3 dimer bound with dsRNA, to a 3.4Å resolution (Figure 1.12). Both the C- 
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and N-terminal of each TLR3 in the dimer interact with dsRNA bringing the C-

terminals together possibly causing the intracellular TIR domains to become in close 

proximity initialising signalling. 

 

 

 

Figure 1.12: The binding of the ectodomains of the mouse TLR3 homodimer associated with double 

stranded RNA (dsRNA). A) Side view: TLR3 homodimer in green and cyan, dsRNA in 

blue and red. B) Top view: TLR3 homodimer in red and cyan, dsRNA in blue and 

green. pdb-3CIG. Adapted from Liu et al. (2008)
60

. 
 

1.3.3.3: TLR4 

TLR4 is well researched and documented in the recognition of LPS
42,61

, a component of 

the Gram-negative bacteria cell wall (Section 1.3.3.1.2). LPS recognition via TLR4 

involves LPS-binding protein (LBP)
62

, CD14
63

 and MD-2
64

. LBP binds LPS and 

transfers it to CD14, CD14 then facilitates the transfer of LPS to the TLR4 signalling 

complex
65

. In response to LPS, TLR4 has been shown to associate in receptor clusters 

with proteins such as MD2, HSP70, CD11b/CD18 and CXCR4
66-69

. TLR4 is also 
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involved in the recognition of ligands such as the envelope protein of mouse mammary 

tumour virus
70

 and glycoinositolphospholipids from Trypanosoma. It has long been 

thought that TLR4 does not associate with other TLRs. However, Stewart et al. (2010)
71

 

have recently proposed a TLR4/TLR6 heterodimer, which involves the scavenger 

receptor CD36
72

, in response to oxLDL
73

. 

 

Due to the strength of LPS as an immune-activator only very small concentrations 

(pg/ml) are required for a response via TLR4, for this reason LPS contamination is not 

unknown. It is suspected that TLR4 is responsible for detecting endogenous ligands 

such as fibrinogen and HSP60 (Table 1.1). However, data concerning TLR4 activation 

via endogenous ligands has to be carefully analyzed. Endogenous ligands are required 

in high concentrations to activate a response via TLR4, the concentrating and 

expression of proteins in bacteria greatly increases risk of LPS contamination. It has 

been shown that studies observing the activation of TLR4 by endogenous ligands, such 

as HSP60 and HSP70, could be inaccurate due to LPS contamination, even in 

commercial preperations
74

.  

 

In 2007 Kim et al.
75

 published the crystal structure of mouse TLR4 ectodomain as a 

heterodimer with MD-2, in a 1:1 ratio, bound to Eritoran in the journal Cell. In this 

paper a model of LPS induced TLR4-MD-2/TLR4-MD-2 homodimerization is proposed 

which induces intracellular signalling. Eritoran is a lipid A (the immunogenic 

component of LPS, see section 1.3.3.1.2) derivative which acts as a TLR4 antagonist. 
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Figure 1.13: The structure of mouse TLR4 ectodomain bound to MD-2 in a 1:1 ratio. The amino-

terminus (N-term), central, and carboxy-terminus (C-term) domains of TLR4 are 

coloured in blue, cyan, and green, respectively. MD-2 is shown in pink and red, and the 

LRRs modules of TLR4 are numbered. C-term is proximal to the membrane. pdb-2Z64. 

Kim et al. (2007)
75

.  
 

1.3.3.4: TLR5 

TLR5 is responsible for the recognition of flagellin, a protein component of the flagella 

present on motile bacteria
76

. TLR5 is expressed on the basolateral side of intestinal 

epithelial cells, intestinal endothelial cells of the sub-epithelial compartment and on 

lung epithelial cells
76,77

. 

 

1.3.3.5: TLR7 and TLR8 

TLR7 and TLR8 are very similar in structure and are located in the endosomal 

membrane with the LRR domain inside the endosome and TIR domain in the cytosol 

(Figure 1.9). These receptors are both responsible for the detection of viral (uridine-

rich) single stranded RNA
78,79

 (ssRNA). More specifically it is proposed that human 

TLR7 (hTLR7) and hTLR8 are involved in sequence specific recognition of ssRNA 

where uridine location rather that quantity is recognized
80

. It is also proposed that 
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hTLR7 is the main sensor of ssRNA with hTLR8 having a regulatory role on this 

detection
80

. 

 

TLR7 and TLR8 recognise the small synthetic immune modulating agents 

imidazoquinolines
81,82

. An imidazoquinoline named Imiquimod, which is marketed by 

3M Pharma, has been highly successful in the treatment of papilloma-induced genital 

warts and basal cell carcinoma
47

. 

 

1.3.3.6: TLR9 

TLR9 recognizes foreign deoxyribonucleic acid (DNA), this receptor is located in the 

endosomal membrane with the LRR domain inside the endosome and TIR domain in 

the cytosol (Figure 1.9). Studies of TLR9 knock-out mice have shown that TLR9 is 

responsible for the recognition of cytosine-phosphate-guanosine (CpG) DNA motifs 

that are found in the DNA of bacteria and DNA viruses, but not in humans
83

. The CpG 

motif consists of unmethylated dinucleotide CpG flanked by two 5` purine residues and 

two 3` pyrimidines. It is proposed that due to the high methylation of DNA in 

vertebrates TLR9 is not activated by “self” DNA. However in 2006 it was published in 

Nature Immunology by Medzhitov et al.
84

 that the localisation of TLR9, rather than 

CpG motif specificity, allowed discrimination between “self” and “non-self” nucleic 

acids. It was proposed that host DNA does not come into contact with TLR9 for it is 

expressed in endosomal compartments. Fusion of TLR9 extracellular domain with 

TLR4 transmembrane and cytosolic domain caused expression of TLR9 (extracellular 

domain) on the cell surface which could be activated by endogenous “self” DNA
84

. This 

demonstrates that TLR9 can in fact bind “self” DNA but is physically kept away from 

it, through evolution, for this very reason. 
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Hemozoin, a hydrophobic haeme polymer which is derived from the digestion of 

haemoglobin by malaria parasites, is also capable of cellular activation through TLR9. 

Macrophages and dentritic cells are activated by hemozoin through TLR9 causing 

inflammatory cytokine and chemokine release
85

. 

 

1.3.3.7: TLR10 

TLR10 is expressed in humans but not in mice. The ligand for, and cascade activated 

by, TLR10 is unknown. 

 

1.3.3.8: TLR11 

TLR11 is expressed in mice but not in humans. TLR11 is the most recently identified 

TLR. TLR11 is involved in the resistance to infection by uropathogenic bacteria in 

mice
86

. The ligand for this receptor has not yet been identified, nor has a human 

homologue. It is theorised that TLR11 in humans was unnecessary due to environmental 

factors and thus lost through evolution. 
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1.3.4: TLR ligands 

TLRs homodimerize and heterodimerize to recognize a vast array of PAMPS and 

DAMPs (Table 1.1).  

 

 

Table 1.1: The TLRs, their ligands and ligand source. *Ligand preparations could have been 

contaminated with LPS. Adapted from Akira and Takeda (2004)
87

. 
 

1.3.4.1: Bacterial PAMPs 

Bacteria are unicellular prokaryote microorganisms consisting of many members of 

various shapes and sizes. However, all bacteria display PAMPs that can be recognised 

by TLRs. 
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Figure 1.14: Schematic diagram of bacterial shapes and names (not to scale). Adapted from: 

www.merck.com/mmhe/sec17/ch190/ch190a.html?qt=bacterial%20shapes&alt=sh 

(19/06/10). 
 

Bacteria can be split into two main groups; Gram-positive and Gram-negative. This 

separation is due to the composition of their cells walls as determined by the Gram stain 

test
88

. Gram-positive bacteria cells have a characteristic thick cellular wall due to a large 

amount (50-90%) of PG (Figure 1.15) in comparison to the 5-10% found in Gram-

negative bacteria cell walls (Figure 1.17). Gram-positive bacteria are so called due to a 

positive result from the Gram’s staining method. The large amount of PG in the Gram-

positive bacteria cell wall retains the stain giving rise to a positive (purple) result. 

Gram-negative bacteria cell walls contain less PG and as a result are less capable of 

retaining the stain giving a negative (pink) result. 

 

Gram-positive and Gram-negative bacteria can differ considerably. These can cause 

different types of infections, and different types of antibiotics are effective against them. 

Thus it is very important to determine which type of bacteria has caused an infection in 

a patient. The prototypic PAMPs found on Gram-positive and Gram-negative bacteria 

are LTA and LPS respectively. 
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1.3.4.1.1: Lipoteichoic acid 

LTA is an immunostimulatory PAMP found on Gram-positive bacteria cell walls. The 

cell wall is also made up of LTA, PG, polysaccharides, teichoic acid and other proteins. 

These serve the purpose of membrane transport regulation, cell shape and expansion of 

the bacterium. The components of Gram-positive bacteria that have been shown to 

cause an inflammatory response are PG and LTA
52

. 

 

 

 
 

Figure 1.15: The Gram-positive bacteria cell wall. The cell wall is made up of LTA, PG, teichoic 

acid, polysaccharides and other proteins. These serve the purpose of membrane 

transport regulation, cell shape and expansion of the bacterium. Both LTA and PG are 

recognised by the innate immune system and are immunostimulatory. 

www.classes.midlandstech.edu/carterp/Courses/bio225/chap04/ss 4.htm (04/04/10). 

 

LTA is an amphiphillic molecule that is hydrophobically anchored to the membrane of 

the cell-surface of Gram-positive bacteria
52

. There are a number of different LTAs 

found on different bacteria; however these are all structurally related macroamphiphiles. 

LTA toxin is released by Gram-positive bacteria, mainly due to bacteriolysis (the 

breakdown of bacteria cells) and cell growth/expansion. 

 

All LTAs share a common structure; they have a diacylglycerol-containing glycolipid 

anchor and a covalently coupled polymeric backbone. The polymeric backbone consists 

of repeating units and is the cause of the variance of LTA found in different strains of 

Gram-positive bacteria. The polymeric backbone of LTA observed on the prototypic 
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Gram-positive bacteria S.aureus consists of repeated units of D-alanine (75-80%) and 

alpha-D-N-acetylglucosamine (≤10%) linked to a central linear 1,3-linked 

polyglycerophosphate chain of 25 glycerophosphates
89,90

. The polymeric backbone is 

covalently linked to a diacylglycerol-containing glycolipid anchor
91

. 

 

 

Figure 1.16: LTA from S.aureus. The polymeric backbone (D-alanine shown here as Ala {75-80%} 

and alpha-D-N-acetylglucosamine {≤10%} linked to a central linear 1,3-linked 

polyglycerophosphate chain of 25 glycerophosphates) is covalently linked to a 

diacylglycerol-containing glycolipid anchor. Fischer (1994)
90

. 
 

1.3.4.1.2: Lipopolysaccharide 

LPS is an immunostimulatory PAMP found on Gram-negative bacteria cell walls. 

Gram-negative bacteria cell walls contain LPS, PG, lipoproteins, phospholipids and 

other proteins. LPS is highly immunogenic even at pg/ml concentrations. 

 

 

 

Figure 1.17: The Gram-negative bacteria cell wall. The cell wall is made up of LPS, PG, lipoproteins 

and other proteins. These serve the purpose of membrane transport regulation, cell 

shape and expansion of the bacterium. Both LPS and PG are recognised by the innate 

immune system and are immunostimulatory. www.classes.midlandstech.edu/carterp/ 

Courses/bio225/chap04/ss4.htm (04/04/10). 
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LPS molecules consist of a lipid component covalently attached to a polysaccharide. 

The lipid component is named lipid A (endotoxin), it is hydrophobic and thus 

membrane bound anchoring the LPS molecule to the membrane. Lipid A is relatively 

conserved in comparison to the highly variable O-specific chain (O-antigen) of the 

attached polysaccharide (Figure 1.18). Interestingly the membrane bound lipid A has 

been shown to be the immunogenic component of the LPS molecule, not the projecting 

polysaccharide
92

. The hydrophilic polysaccharide unit is composed of a core and O-

specific chain. The core contains an oligosaccharide and can contain phosphates, amino 

acids and sugars such as 2-keto-3-deoxyoctulosonic acid (Figure 1.18). The O-specific 

chain is highly variable giving rise to different Gram-negative bacterial strains. For 

example, more than 160 different O-specific chain structures have been identified in 

various E.coli strains alone
93

. 

 

 

Figure 1.18: Schematic diagram of Gram-negative LPS. Abbreviations: Glucosamine (GlcN), 2-

keto-3-deoxyoctulosonic acid (Kdo), L-glycero-D-manno-heptose (Hep), phosphate (P), 

ethanolamine (EtN) and zig-zag lines represent fatty acids. Adapted from Caroff et al. 

(2002)
94

. 
 

1.3.4.2: Host DAMPs 

There are a number of non-infectious endogenous molecules capable of initiating an 

immune response. These molecules are often associated with injury and cause sterile 

inflammation in much the same manner as PAMPs. The non-infectious nature of these 
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molecules, but similarities to PAMPs, has led them to be named DAMPs. DAMPs 

recognised by receptors of the innate immune system include products of tissue stress 

released during necrotic cell death, oxidised LDL and products produced from 

extracellular matrix degradation. The DAMP of interest in this study of the molecular 

cause of atherosclerosis is LDL and its oxidised derivatives.   

 

1.3.4.2.1: Low density lipoprotein 

Lipoproteins allow the transport of water insoluble cholesterol and triglycerides within 

the blood. These have a non-polar core with a coating of amphiphillic molecules that 

allow the transport of water insoluble components. There are five main groups of 

lipoproteins named chylomicrons, very low density lipoprotein (VLDL), intermediate 

density lipoprotein (IDL), LDL and high density lipoprotein (HDL).  

 

LDLs are the main carriers of cholesterol through the blood system. LDL particles are 

known as “bad cholesterol” for they are responsible for the deposition of cholesterol in 

arterial walls, which can lead to atherosclerosis. HDL on the other hand is known as 

“good cholesterol” for these transport cholesterol from the plasma to the liver for its 

catabolism and clearance, reducing the chance of plaque formation. For this reason 

elevated LDL serum levels and low HDL levels are two risk factors associated with 

atherosclerosis, and are routine checks for inquiring clinicians.  

 

LDLs are structured particles with an average diameter of 20nm and a weight within 

1.019-1.063g/ml
95

. The LDL core consists of approximately 5% triglyceride, 40% 

cholesteryl ester and 10% unesterifed cholesterol. The surface layer of LDL consists of 

approximately 20% phospholipid molecules and a single copy of apolipoprotein B-100 
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(apoB-100)
95,96

. Like all apolipoproteins, apoB-100 is an amphipathic molecule in that it 

has both hydrophobic and hydrophilic regions. A single copy of apoB-100 encircles the 

LDL particle, this protein is responsible for binding the LDL receptor that is expressed 

on cells that require cholesterol
97

. 

 

 

Figure 1.19: Schematic model of LDL at body temperature. LDL has an average diameter of 20 nm, 

with composition of 20% protein, 20% phospholipids, 40% cholesteryl ester (CE), 10% 

unesterifed cholesterol (UC), and 5% triglyceride (TG) on average. Sphingomyelin 

(SM), phosphatidylcholine (PC), lysophosphatidylcholine (LYSO-PC). LDL particles 

have a single copy of apoB-100. The molecular components of the particle are drawn in 

both the correct percentages and size ratios. Hevonoja et al. (2001)
96

. 
 

Under physiological conditions LDL can undergo oxidative modification
98

 forming 

minimally modified LDL (mmLDL) and/or oxidised LDL (oxLDL). oxLDL has been 

shown to be immunogenic being associated with atherosclerosis and more specifically 

foam cell (lipid laden macrophage) formation; a major component of the atherosclerotic 
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plaque (Figure 1.2)
99

. It has been shown that human monocyte-derived macrophages 

respond to oxidised LDL but not to native LDL, causing upregulation of TLR4
100

. 

CD36 scavenger receptors (SRs) expressed on macrophages bind modified lipids and 

are involved in their endocytic internalization which, if dysregulated, can result in foam 

cell formation as seen in the atherosclerotic plaque
73,101,102

. However, some studies have 

suggested a protective role for oxLDL where it can reduce ligand activation of TLRs 2 

and 4
103,104

.  

 

Another receptor for oxLDL is named lectin-like oxidized LDL receptor-1 (LOX-1) 

which is expressed primarily on endothelial cells.  LOX-1 expression is upregulated by 

a number of factors such as oxLDL itself
105

. This endothelial receptor is involved in the  

binding, internalization and degradation of oxLDL
106

. 

 

Due to the size and composition of LDL its oxidised counterpart can contain large 

numbers of modified structures, termed “oxidation specific” epitopes
107

. When 

oxidised, these structures can turn from endogenous “self antigens” to “non-self” 

rendering them immunogenic. Since these ligands are capable of mounting an immune 

response yet, unlike a PAMP, they are non-infectious they are classed as DAMPs. As 

well as a major source of cholesterol, LDL is also a major source of extracellular 

phospholids which can become modified. Phospholipids, which make up 20% of LDL, 

can become oxidised forming molecules such as oxidized 1-palmitoyl-2-arachidonoyl-

sn-glycero-3-phosphorylcholine (OxPAPC) and 1-palmitoyl 2-(59-oxovaleroyl) 

phosphatidylcholine (POVPC)
99

. It is these that are thought to cause the DAMP 

qualities of LDL. It has been shown that protein (such as apoB-100) as well as lipid 
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components of oxidised LDL are also recognised by macrophages
108

, it has been 

demonstrated that these interactions act primarily through CD36
109

 (Section 1.3.5.2). 

 

1.3.5: TLR extracellular adapter molecules  

Although TLRs are the principle detectors of PAMPs, they require adapter molecules 

for their effective activation. The efficacy of TLR activation is greatly enhanced by the 

presence of these adapter molecules. Receptor clusters can be vast, for example TLR4, 

CD14, CD36, CD11b/CD18, CD55, CD16a, CD32, CD64, Fcy RIIIa and CD81 have all 

been shown to cluster in response to both LPS and LTA
110

. 

 

Two well documented adapter molecules are CD14 and CD36 SR. CD14 is involved in 

the detection of Gram-negative
63

 and Gram-positive
111

 bacteria, CD36 is involved in the 

recognition of an array of diverse ligands.  

 

1.3.5.1: CD14 

CD14 is an adapter molecule for both TLR2 and TLR4 signalling that can be either 

membrane bound (mCD14) or in a soluble form (sCD14). mCD14 is a 

glycosylphosphatidylinositol (GPI)-anchored protein and thus, unlike the TLRs, does 

not have an intracellular domain from which it can signal. The sCD14 form lacks a GPI-

anchor but is otherwise identical to mCD14.  

 

mCD14 has a molecular weight of 52-55kDa, soluble CD14 which lacks the GPI-anchor 

has a lower molecular weight of 48-50kDa
112

. Kim et al. (2005)
113

 have determined the 

crystal structure of mouse CD14 to a 2.5Å resolution. It was shown that the CD14 

monomer contains 13 β strands. 11 of these β strands (β 3-13) overlap with conserved 
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LRRs drawing close similarities with the TLR family. CD14 exists as a dimer in 

solution and also in the crystallographic asymmetric unit (Figure 1.20). 

 

 

 

Figure 1.20: Overall structure of mouse CD14 dimer. Two monomers of CD14 in the crystal are 

coloured in grey and cyan. Disulfide bridges are shown in orange. pdb-1WWL. 

Adapted from Kim et al. (2005)
113

.  
 

CD14 has been shown to bind LPS
63

 which is supported by work on CD14-deficient 

mice that have been shown to be highly resistant to LPS-induced septic shock
114

. 

Through reducing CD14 expression less LPS is detected avoiding an excessive immune 

response conferring survival in the mice. In addition to LPS from Gram-negative 

bacteria, CD14 has been shown to be involved in the detection of Gram-positive group 

B streptococci
111

. The CD14 receptor has also been shown to bind modified LDL
115

. 

 

The recognition of LPS through TLR4 is thought to involve the binding of LPS by LBP 

which transfers the LPS to CD14
62

, CD14 then facilitates the transfer of LPS to the 

TLR4 signalling complex
65

.  
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1.3.5.2: CD36 

CD36 is a class B SR that has a great array of ligands which include oxLDL, long-chain 

fatty acids, retinal photoreceptor outer segments, Plasmodium falciparum malaria-

parasitized erythrocytes, sickle erythrocytes, anionic phospholipids, apoptotic cells, 

collagen I and collagen IV
72

. This receptor has been implicated in a number of diseases 

such as Alzheimer’s and atherosclerosis
102,116,117

.  

 

SRs were first discovered around 30 years ago. These are cell surface proteins that have 

the ability to recognize an astonishingly large number of diverse ligands. Three main 

families of SRs exist, grouped as A (SR-AI and SR-AII), B (SR-BI and CD36) and C 

(dSR-CI)
118

. Among many other processes SRs have been implicated in “self” and 

“non-self” discrimination, and thus seen key in the immune response. This is reinforced 

by their expression on many immunologically relevant cells and their involvement in 

receptor clusters formed in response to a number of pathogens
51

. Although TLRs and 

SRs both recognise endogenous and exogenous ligands they serve different functions. 

Ligation of TLRs leads to transmembrane signalling which can lead to the activation of 

transcription factors and subsequent secretion of pro-inflammatory cytokines, but 

ligation of SRs causes endocytosis and lysosomal degradation
118,119

.  

 

CD36 has a predicted consistency of 471 amino acids with a total weight of 53kDa
120

. 

There are 27 hydrophobic amino acids in the carboxy-terminus corresponding to the 

transmembrane domain of CD36, the majority of the receptor occurs extracellularly 

with only a 9-13 amino acid cytoplasmic tail
72,121

. It has also been suggested that the 

amino-terminus of the protein is anchored in the membrane. The primary amino acid 

sequence of CD36 has shown hydrophobic regions in the amino-terminus, like in the 

carboxy-terminus, that corresponds to an intracellular domain
120

. It was demonstrated 
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however, that a CD36 mutant truncated at the carboxy-terminus was no longer anchored 

to the membrane. This suggests that the amino-terminus does not reside inside the cell 

membrane
122

. 

 

1.3.6: TLR signalling 

Formation of the TLR/ligand complex causes homodimerization and/or 

heterodimerization of TLRs resulting in a conformational change of the receptors. This 

causes activation of the intracellular TIR domains causing production of intracellular 

signalling cascades that result in the activation of transcription factors. The transcription 

factors are then translocated to the nucleus and cause the upregulation of genes involved 

in the inflammatory and antiviral response; depending on the TLR pathway activated. 

 

TLR signalling can be divided into myeloid differentiation primary response gene 88 

(MyD88)-dependant and MyD88-independant. MyD88 is an intracellular TLR 

signalling adapter protein which is required for TLRs 1, 2, 5, 6, 7, 8 and 9 signalling but 

not for TLR3 signalling. TLR4 can signal in a MyD88-dependant and independent 

manner resulting in an “early” and “late” response respectively. TLR signalling requires 

a number of intracellular adapter proteins to accurately transduce the signal such as 

MyD88, MyD88-adapter-like (MAL), TIR domain-containing adapter inducing IFN-β 

(TRIF) and TRIF related adapter molecule (TRAM). These all contain, and interact 

through, Toll–interleukin 1 receptor (IL-1R) homology domains (TIR domain) as do the 

intracellular domains of all the TLRs (Figure 1.7). Activation of TLR pathways 

ultimately leads to the activation of transcription factors of the NF-κB and IRF families. 

These transcription factors regulate the expression of genes involved in the 

inflammatory and viral response. 
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1.3.6.1: TLR2 MyD88-dependant NF-κB cascade 

NF-κB proteins consist of a family of homodimeric or heterodimeric transcription 

factors of the NF-κB/Rel family. Five members of the NF-κB/Rel family have been 

identified in mammals which are named p65 (RelA), p50 (NF-κB-1), p52 (NF-κB-2), c-

Rel, and RelB
123

. NF-κB proteins contain transcription activation domains (TADs) 

which are responsible for the transcriptional activation of certain inflammatory 

mediators. For example, p65 contains a 120 amino acid carboxy-terminal domain that 

contains at least two potent TADs that are crucial for gene activation
124

. NF-κB proteins 

are held in an inactive form in the cytoplasm by members of the inhibitor of NF-κB 

(IκB) family. To allow the activation of NF-κB it has to be relieved of this association. 

NF-κB is released from this complex by the degradation of IκB caused by activation of 

the intracellular TLR signalling cascade. All TLR pathways activate NF-κB excluding 

TLR3. 

 

TLR2 heterodimerizes with TLR1 or TLR6 (Section 1.3.4.1). Activation of these 

receptor clusters causes the activation of the transcription factor NF-κB. When a 

TLR/ligand complex is formed the TLRs undergo a conformational change causing the 

intracellular TIR domains of the TLRs to associate with the adapter proteins MAL and 

MyD88. MyD88 and MAL also have TIR domains and so associate with the cytosolic 

region of the TLRs via a TIR/TIR interaction. MyD88 recruits interleukin-1 receptor-

associated kinase 4 (IRAK-4) through a death domain (DD)-DD association, this then 

associates with IRAK-1 and IRAK-2 causing IRAK-1 phosphorylation and 

activation
125

. IRAK-1 autophosphorlyates and allows tumour-necrosis-factor receptor-

associated factor 6 (TRAF6) to bind. IRAK-1 bound TRAF6 dissociates from the 

complex and then associates with TAK1-binding protein 1 (TAB1), TAK1-binding 
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protein 2 (TAB2) and then transforming-growth factor-β-activated kinase (TAK1). This 

complex leads to TAK1 activation which phosphorylates the IκB-kinase (IKK) complex 

that is made up of IKK-α, IKK-β and IKK-γ. IκB is phosphorylated by the active IKK 

complex which leads to IκB polyubiquitylation that labels the NF-κB inhibitor for 

proteasomal degradation. NF-κB is relieved from this inhibitory complex and then 

translocates to the nucleus where it upregulates inflammatory genes. 

 

 

Figure 1.21: MyD88 dependant TLR2+TLR1/6 mediated NF-κB activation. TLR2 heterodimer 

activation causes association of MAL (not shown) and MyD88. MyD88 recruits 

interleukin-1 receptor-associated kinase 4 (IRAK-4). IRAK-4 associates with IRAK-1 

and IRAK-2 causing IRAK-1 activation. TRAF6 binds activated IRAK-1. IRAK-

1/TRAF6 dissociates from the complex and associate with TAK1-binding protein 1 

(TAB1), TAK1-binding protein 2 (TAB2) and transforming-growth factor-β-activated 

kinase (TAK1). TAK1 is activated and phosphorylates the IKK (IκB-kinase) complex 

(IKK-α, IKK-β and IKK-γ). Inhibitor of nuclear factor-κB (IκB) is phosphorylated by 

the active IKK complex which leads to IκB polyubiquitylation that labels IκB for 

proteasomal degradation. NF-κB translocates to the nucleus and upregulates 

inflammatory genes. Adapted from Akira and Takeda (2004)
87

. 
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1.3.6.2: Lipid rafts 

Over the last couple of decades evidence has accumulated for the organisation of the 

plasma membrane into lipid-based microdomains or lipid rafts. Lipid rafts are envisaged 

as islands of highly ordered saturated lipids and cholesterol that are laterally mobile in 

the plane of a more fluid disordered bilayer of largely unsaturated lipids
126,127

. Crucial 

receptors and adapter proteins for both innate and acquired immunity oligomerize in 

lipid rafts bringing together intracellular signalling domains causing the activation of 

intracellular signalling cascades. The hallmark of the lipid raft hypothesis is the 

spontaneous partitioning of lipids and proteins in discrete membrane domains, a 

behaviour based on their physico-chemical characteristics. Also these microdomains 

and their associated protein machinery can be recovered as detergent-resistant entities 

using biochemical flotation experiments. Microdomains appear as small dynamic 

structures that can aggregate into larger platforms in response to various stimuli
128

. 

 

 

Figure 1.22: Schematic diagram of a lipid raft within a cell membrane. Lipid rafts are envisaged as 

islands of highly ordered saturated lipids and cholesterol that are laterally mobile in the 

plane of a more fluid disordered bilayer of largely unsaturated lipids. Adapted from: 

www.a-s.clayton.edu/emintzer/ (04/09/10). 
 

Lipid rafts are thought to provide a means to explain the spatial segregation of certain 

signalling pathways emanating from the cell surface. They seem to provide the 

necessary microenvironment in order for certain specialised signalling events to take 
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place. Recent studies have shown the importance of lipid raft formation in the acquired 

immune response. Major histocompatibility complex (MHC)-restricted T-cell activation 

seems to be facilitated by lipid raft formation
129

. Furthermore, it has recently been found 

that mediators of the innate immune response also concentrate in lipid rafts in order to 

facilitate signal transduction thus suggesting that both the acquired and innate immune 

system utilise membrane partitioning as means of activation against invading 

pathogens
130,131

. It has been shown by a number of studies that the innate immune 

response to different ligands is triggered by combinational clustering of receptors
132,133

. 

Crucial receptors for both innate and acquired immunity seem to oligomerize in non-

random membrane structures, bringing together their signalling machinery. The 

accumulation of receptors within these “floating islands”, and thus oligomerization of 

intracellular receptor signalling domains, brings together all the adapter molecules that 

are necessary for signalling from the cell surface to within the cell. 

 

1.3.7: TLR based therapeutics 

The emerging role of TLRs in a wide range of diseases (including infectious, malignant, 

autoimmune and allergic diseases) has made them of great interest as potential 

therapeutic targets. TLR targeted molecules have proven successful in animal models as 

adjuvants (agents that activate innate immunity to induce and direct an adaptive immune 

response to another agent) in vaccines
134,135

. There are now many TLR targeted 

molecules in clinical development for humans as vaccines, vaccine adjuvants and those 

targeting allergic diseases, infectious diseases and even cancer
59,136

. 

 

A couple of TLR adjuvant based vaccine success stories include the hepatitis B vaccines 

Fendrix (GlaxoSmithKline {approved in the EU}) and Supervax
48

 (Dynavax 
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Technologies {approved in Argentina}) which contain TLR4 adjuvants. However, the 

most successful TLR based therapeutic in use today is the small TLR7 agonist 

Imiquimod (Aldara {Imiquimod 5% cream}) produced by 3M Pharma. Aldara has been 

approved for the treatment of papilloma-induced genital warts and basal cell 

carcinoma
47

. 

 

A drug named Eritoran, a TLR4 ligand, is in phase III clinical trials. It is a lipid A 

derivative which acts as a TLR4 antagonist that is being used to combat severe sepsis
137

. 

Severe sepsis can lead to septic shock and subsequently in the majority of cases death. 

The estimated mortality rate for sepsis in the United States of America is 28.6%, or 

215,000 deaths nationally each year
138

. If this drug emerges as successful and is 

approved it would become invaluable to millions of people worldwide. 

 

TLR targeted drugs have undoubtedly already benefited tens of thousands of people 

demonstrating the potential of TLR based therapeutics. Many pharmaceutical 

companies are exploring TLR targeted molecules for their potential in treating various 

conditions, with a large number already in clinical trials. The prospect of drugs such as 

Eritoran and the success of Imiquimod demonstrate the importance and fruitfulness of 

TLR research. The TLR directed molecules in use and those being rigorously tested 

today demonstrate the tip of the iceberg in TLR directed therapeutics; for our 

knowledge of TLR signalling and thus the unravelling of drug targets is ever advancing. 

 

This study explores two molecules for their potential in the prevention/treatment of 

atherosclerosis. These are HSP70 and AMD3100 octahydrochloride (AMD3100). 
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1.3.7.1: Heat shock protein 70 

HSPs are a family of highly conserved proteins found in cells that have traditionally 

been described as intracellular chaperones. Their main functions have been found to be 

concerned with allowing the cell to carry on with normal tasks by assisting in processes 

such as protein folding, degradation, translocation across the membrane and 

disassembly of oligomers
139,140

. Infection along with many other cellular stresses or 

damage causes the production of HSPs. HSPs have been shown to be conserved across 

many species which highlights their importance in survival. Recently the roles of HSPs 

as endogenous modulators of the innate immune response have been explored. HSP70 

has been shown to be involved in a number of processes such as the recognition of 

bacterial LPS
68

 and the dampening of the immune system
141,142

; an cardioprotective role 

has also been suggested
143-145

. 

 

  
Figure 1.23: Human HSP70. HSPs are a family of highly conserved proteins involved in protein 

folding, degradation, translocation across the membrane and disassembly of oligomers. 

pdb-3IUC. Wisniewska et al. (2010)
146

.  

 

 

Studies have demonstrated that  transgenic mice over expressing HSP70 have an 

increased resistance to ischemic heart injury
143,144

. This work is supported by patient 

studies demonstrating a positive correlation between elevated HSP70 levels and low 

coronary artery disease (CAD) risk
145

. The use of exogenous HSP70 has been shown to 

inhibit LPS-induced inflammatory responses in monocytes demonstrating its potential 
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as a therapeutic agent for many disorders
141

. The anti-inflammatory mechanism of 

HSP70 is thought to involve the sequestration of intracellular adapters of TLR 

signalling such as TRAF6
142

. Previous work conducted in the lab of Dr. K. Triantafilou 

has demonstrated the ability of HSP70 to reduce the protein expression of TLRs 2, 4, 6, 

7, 8 and 9 diminishing cellular immune capabilities to TLR agonists
141

.  

 

1.3.7.2: AMD3100 octahydrochloride 

AMD3100 (Chemical Name: 1,1’-[1,4 phenylenebis(methylene)] bis-1,4,8,11-

tetraazacyclotetradecane octahydrochloride {referred to as AMD3100 from here on}) is 

a highly specific CXC chemokine receptor 4 (CXCR4) antagonist
147

  that was 

previously, but unfortunately unsuccessfully, explored for its potential in HIV 

treatment
148

. CXCR4 is a chemokine receptor that belongs to the seven transmembrane-

domain G-protein-coupled receptor family and has been shown to be involved in the 

“LPS-sensing apparatus”
69

. The antagonistic effect of AMD3100 on CXCR4 has 

previously been implicated in the reduction of inflammation
149,150

. 

 

Molecular Formula: C28H62N8Cl8 

Molecular Weight:  794.5 (anhydrous) 

 

 
 

Figure 1.24: The molecular structure of AMD3100 octahydrochloride (Chemical Name: 1,1’-[1,4 

phenylenebis(methylene)] bis-1,4,8,11-tetraazacyclotetradecane octahydrochloride). 

Sigma product information sheet: kaa 5/03 
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The expression of CXCR4 has been shown to increase after exposure to bacterial 

products
151

. In response to LPS, CXCR4 co-clusters with TLR4 and other receptors 

forming the “LPS-sensing apparatus”. The formation of this cluster was found to be 

responsible for triggering LPS-induced responses
69

. Triantafilou et al. (2008)
69

 have 

shown that CXCR4 co-clusters with the LPS receptors TLR4, CD55, HSP70, HSP90 

and CD11b/CD18 on human monocytes and human endothelial cells following LPS 

stimulation. AMD3100 was found to inhibit these CXCR4 heterotypic associations with 

LPS receptors, such as TLR4, suggesting that AMD3100 inhibits the formation of the 

“LPS-sensing apparatus” reducing cellular response to LPS (Dr. K. Triantafilou from 

the University of Sussex {unpublished data}). 

 

The specificity of AMD3100 to CXCR4, and thus the disruption of receptor 

associations required for cellular signalling in response to a pathogen, makes it a very 

interesting molecule. AMD3100 has the effect of attenuating TLR4 signalling. TLR4 

has been implicated in many adverse conditions including sepsis
42

 and 

atherosclerosis
152

. The modification/reduction of TLR4 signalling could prove very 

beneficial for the reduction and/or prevention of plaque formation and sepsis.  

 

1.3.7.3: Immunoregulatory roles of lipids 

Lipids have also been shown to have an immunoregulatory role. Lipid binding to LTA 

from Gram-positive bacteria (Section 1.3.3.1.1) and LPS from Gram-negative bacteria 

(Section 1.3.3.1.2) has been demonstrated in the lab of Dr. K. Triantafilou (University 

of Sussex. Mouratis et al. {submitted}). Inhibition of LPS signalling by OxPAPC has 

been shown to occur up-stream of MyD88, via the competitive binding of the adapter 

molecules CD14, MD2 and LBP
103,153

. OxPAPC is able to prevent LPS-activation of 
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p38 mitogen-activated protein (MAP) kinase, but has no effect on tumor-necrosis 

factor-α (TNF-α) induced activation of MAP kinase, thus prevents TLR4 activation but 

has no effect on TNFα receptor activation. Interleukin-1 receptor (IL-1R) signaling was 

also shown to be unaffected by OxPAPC. These findings illustrate specificity of lipid 

modulation to the TLR signaling cascade
103

. This “lipid immunoregulation” has been 

shown to be restricted to TLRs 2 and 4
153

. 

 

It has been found that a lipid emulsion (GR270773) can in fact mop up LPS and LTA 

with the effect of reducing the inflammatory response in vitro and in vivo
154,155

. 

However, phase II clinical trials (LIPOS study)
156

 performed by GlaxoSmithKline for 

the therapeutic effects of GR270773 in the prevention of sepsis proved fruitless. 

Reasons for failure of efficacy of this therapy have yet to be published. 

It is becoming apparent that lipids in the blood from exogenous and endogenous sources 

play an immunomodulatory role in the immune response. The role of lipid 

immunomodulation in atherosclerosis, once considered a lipid storage disorder, is of 

great interest in this study. 

 

1.4: The innate immune response in atherosclerosis  

In vivo studies on transgenic mice have produced strong evidence for the involvement 

of innate immunity in atherosclerosis. Many of these studies use an atherosclerotic 

mouse model as a basis to their model and then apply genetic manipulations on these, 

such as mutations in a TLR gene. Atherosclerotic models include C57BL/6 mice that 

lack either a functional apolipoprotein E (ApoE
-/-

)
157

 gene or a functional LDL receptor 

(Ldlr
-/-

)
158

 gene. C57BL/6 mice were used for they were found to be most susceptible to 

atherosclerosis. Apolipoprotein E (apoE) is an apolipoprotein found on chylomicron and 

IDL particles, similar to apoB-100 found on LDL (Section 1.3.3.2), which is essential 



45 

 

for the transport and metabolism of lipids. Decrease in functional apoE increases plasma 

cholesterol resulting in spontaneous development of atherosclerotic lesions. The LDL 

receptor removes cholesterol-rich LDL from the plasma. These receptors are 

particularly abundant on liver cells, which are responsible for removing excess 

cholesterol. A deficiency in these receptors increases plasma LDL and thus cholesterol 

levels which results in spontaneous development of atherosclerotic plaques. 

 

Bjorkbacka et al. (2004)
159

 found a significant reduction in early atherosclerosis 

(reduced lesion cross sectional area) in ApoE
-/-

 mice that were also MyD88-deficient 

(ApoE
-/-

MyD88
-/-

) in comparison to  ApoE
-/-

 mice expressing wild-type MyD88. This 

work is supported by Michelsen et al. (2004)
152

. Bjorkbacka and Michelsen demonstrate 

the importance of MyD88 in the progression of atherosclerosis, which indirectly 

highlights the involvement of the germ-line encoded sensors of the innate immune 

system, the TLRs. 

 

Studies on TLR deficient mice confirmed their significance in the development of 

atherosclerosis. Genetic deficiency of TLR4 (Section 1.3.4.3) in the atherosclerosis 

prone ApoE
-/-

 mouse resulted in reduced total lesion area, reduced macrophage 

infiltration and reduced monocyte chemotactic protein-1 (MCP-1) serum concentrations 

in comparison to control wild-type TLR4 ApoE
-/-

 mice
152

. This work not only points out 

that TLR4 is involved in plaque formation but indicates that cytokines produced from 

TLR activation may play a role in the disease such as causing monocyte infiltration into 

the arterial intima.  

 

Similar results were obtained for TLR2 (Section 1.3.4.1). Reduced cytokine levels and 

lesion size were observed with ApoE
+/-

Tlr2
-/-

 mice in comparison to ApoE
+/-

Tlr2
+/+

 mice 
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fed on a high fat diet. The same result was found when these mice were subject to 

P.gingivalis
160

, a Gram-negative TLR2 agonist associated with atherosclerosis. The role 

of an endogenous TLR2 ligand in the progression of atherosclerosis was highlighted by 

Mullick et al. (2005)
161

 who showed that atherosclerosis prone Ldlr
-/-

 mice that do not 

express TLR2 (Ldlr
-/-

Tlr2
-/-

) have reduced lesion size in comparison to Ldlr
-/-

 mice 

expressing TLR2, even in the absence of any exogenous agonist. This data suggests the 

possibility of the presence of an endogenously sourced TLR2 agonist, which could also 

be involved in the progression of disease. 

 

An immunological role for the cause of atherosclerosis in humans has been found. 

There exists two human polymorphisms in TLR4 which impair TLR4 signaling. These 

are TLR4 Asp299Gly and TLR4 Thr399Ile
162

. The TLR4 polymorphism Asp299Gly 

causes the innate immune system of an individual to be hypo-responsive to Gram-

negative bacteria, but seems to display protection from atherosclerosis
163

. This human 

immune dysfunction resulted in lower levels of inflammatory markers and reduced 

intima-media thickness in comparison to wild-type individuals. However, contrasting 

data exists which suggest no association between the Thr399Ile or Asp299Gly 

polymorphisms with myocardial infarction or intima-media thickness respectively in 

large patient samples
164,165

. The discovery that CD14 may be involved in atherosclerosis 

in humans does support a role for TLR4 in this process. It has been shown that a C(-

260)→T nucleotide change in CD14 in humans may be a risk factor for myocardial 

infarction
166

. The CD14 polymorphism results in an increased density of CD14 on 

monocytes, which makes individuals hyper-responsive to LPS.  

 

These findings directly implement the innate immune system in this multi-factorial 

disease, with specific emphasis on TLRs 2 and 4. 
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1.4.1: TLRs in atherosclerosis 

The innate immune system and more specifically TLRs seem to be central to the 

process of plaque formation in the vascular disease atherosclerosis. The majority of 

factors associated with atherosclerosis are known TLR ligands. It seems that the 

inflammatory response is activated through the innate immune system and maintained 

by these factors, via a process yet to be defined, that can cause the slow development of 

atheromatous plaques and the subsequent risk of myocardial or cerebral infarction. 

Studies of mouse and human genetic variations have confirmed a role for TLR 

signalling in atherosclerosis. The emerging pivotal function of TLRs in atherosclerosis 

has led to much research into their functional significance and interactions in order to 

unravel their responsibility in one of the largest contributors of mortality in the Western 

world. 

 

1.4.1.1: TLRs in plaque initiation 

Vascular endothelial cells line the lumen of arteries and are subject to challenge from 

circulating endogenous and exogenous ligands. These cells express an array of TLRs 

and SRs. Vascular endothelial cells are considered to be responsible for the initial steps 

in atherogenesis, the starting point of plaque formation. Augmented TLR expression has 

been observed in the atherosclerotic plaque in comparison to normal artery
8,167

. In 

particular the significant upregulation of TLRs 1, 2 and 4 on endothelial cells and 

macrophages has been shown
8
. Activation of these TLR-expressing cells in the plaque 

has been displayed by positive stain for active NF-κB, a transcription factor downstream 

of TLR signalling (Section 1.3.6), confirming their activation and thus indicating their 

involvement in atheroma formation
8
.  
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The locality of atheroma development has been attributed to differential expression of 

these TLRs on endothelial cells throughout the vascular system. Pryshchep et al. 

(2008)
168

 illustrated heterogeneous TLR expression in the subclavian, mesenteric, iliac, 

and temporal arteries. Differential expression of TLRs would result in varied sensitivity 

to a ligand throughout the vascular network, where one area could be more susceptible 

than another. This has been used to explain why plaques may preferentially form in the 

carotid artery. However, it has also been described that plaques may preferentially form 

at sites of disturbed blood flow. It is suggested that disturbed blood flow experienced in 

the artery creates shear stresses that adversely affects the biology of the arterial wall. 

Such stresses are suggested to increase susceptibility to fatty streak formation, and thus 

initiation of plaque development. The increased susceptibility to fatty streak formation 

has been attributed to increased TLR2 expression as a result of the disturbed flow
169

. 

 

1.4.1.2: TLRs in foam cell formation 

Further TLR responsibility in atherogenesis is their role in foam cell (lipid laden 

macrophage) formation. Foam cells are a major component of the plaque core (Figure 

1.2). Miller et al. (2009)
170

 have demonstrated attenuated mmLDL uptake in 

macrophages of mice that were TLR4 deficient, demonstrating its role in oxidized 

lipoprotein phagocytosis. The expression of TLR4 on human monocyte-derived 

macrophages has been shown to be upregulated by oxidized LDL, but not native 

LDL
100

. This demonstrates that native LDL must be seen as “self” whilst LDL that has 

been oxidized is seen as “non-self”. Macrophage activation via TLR pathways has been 

shown to cause altered gene expression in the macrophage resulting in increased lipid 

uptake thus foam cell formation. Adipocyte fatty acid–binding protein (aP2) is an 

intracellular transport protein strongly associated with lipid accumulation in 
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macrophages where increased aP2 mRNA expression results in increased cholesterol 

and triglyceride levels in the macrophage
171

. It has been described how both E.coli LPS 

and zymosan challenge were able to significantly increase aP2 by factors of ~56 and 

~1500 respectively, greatly increasing lipid accumulation
171

. Zymosan which is far 

more effective at increasing aP2 expression is a TLR2 ligand, simulating macrophage 

response to LTA and the atherosclerosis-associated unconventional LPS from 

P.gingivalis
51

, H.pylori
55

 or C.pneumoniae
19,172

. 

 

1.4.1.2.1: CD36 in foam cell formation  

CD36 SRs expressed on macrophages bind modified lipids and microbial 

diacylglycerides
73,101,173

. CD36 is involved in their internalization resulting in foam cell 

formation
102

, it has been suggested that TLR4 is involved in this recognition
174

. CD36 

has been shown to associate with TLR2
173

. Receptor clusters that form in response to 

atherosclerosis-associated P.gingivalis and H.pylori LPS consist of 

TLR2/TLR1/CD36
51

. This has the potential of directly linking lipoprotein uptake and 

bacterial infection where a receptor cluster can associate with both factors. Potential for 

interplay between these ligands is high and could shed light on the mechanism of foam 

cell and plaque formation.  

 

1.4.1.3: TLRs in plaque stability  

The integrity of the plaque cap is much under the control of macrophage/foam cell 

derived extracellular matrix (ECM) degrading enzymes of the matrix metalloproteinase 

(MMP) family
175

. The fibrous cap of the atherosclerotic plaque consists of smooth 

muscle cells (SMCs) and ECM (Figure 1.2). The ECM is under constant degradation 

and remodelling. Degradation of the ECM by MMPs, which are released by a large 
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number of localised lipid laden macrophages, is thought partly responsible for cap 

rupture linking TLRs and plaque stability. MMPs have been shown to be upregulated in 

human plaque
176,177

. Foam cells present in the plaque, of which TLRs are most part 

responsible for, are the main source of MMPs. Monaco et al. (2009)
178

 have reported 

that blocking TLR2 significantly reduces MMP-1, -2, -3 and -9 production in human 

atheroma cell cultures, TLR4 blockade gave a reduction only in MMP-3 production. 

This work directly illustrates the involvement of TLRs in ECM degradation.  

 

Other than TLRs bacteria themselves can lead to plaque instability. Bacterial biofilms, 

colonies adhered to themselves and a surface, secrete matrix-degrading enzymes in 

order to break down their higher structure to release individual cells and allow dispersal 

for the creation of new colonies
179

. Such colonies present in plaque could lead to ECM 

degradation and plaque rupture. 

 

1.4.1.4: TLRs in thrombosis 

TLRs have also been implicated in the initiation of the coagulation protease cascade. 

Tissue factor (TF), a protein responsible for the first stages of coagulation, has been 

found to be over expressed in the atherosclerotic plaque. Macrophages have been shown 

to produce TF on activation via E.coli LPS
180

 and P.gingivalis
181

 through TLR4 and 

TLR2 respectively. It is proposed that on cap rupture, plaque derived TF comes in 

contact with clotting factors in the blood causing thrombus formation. The subsequent 

dislodging of thrombus can cause blockage of a vital blood vessel leading to vascular 

occlusion. 

 

It has also been suggested that fibrinogen, a glycoprotein involved in the blood 

coagulation cascade, could stimulate macrophages through TLR4 causing release of 
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cytokines and chemokines
182,183

. Fibrinogen is an acute phase protein upregulated at 

sites of infection. This could show a vicious feedback loop where the coagulation 

cascade, leading to thrombosis, exacerbates atherosclerosis. 

 

1.4.2: Inflammatory mediators in atherosclerosis  

Inflammatory mediators have been directly associated with atherosclerosis. TLR 

activation initiates intracellular signalling cascades, which result in the activation of 

transcription factors, that are then translocated to the nucleus and cause the upregulation 

of inflammatory mediators such as cytokines and chemokines (Section 1.3.6). Both 

cytokines and chemokines are involved in all steps of atherosclerosis including plaque 

initiation, foam cell formation, plaque stability and thrombosis highlighting their 

importance in this disease. 

 

Inflammatory cytokines released on cell stimulation give rise to effects such as 

inflammation, apoptosis, inhibition of viral replication, T-cell differentiation, leukocyte 

recruitment, increased permeability and oedema
184

. Both pro- and anti-inflammatory 

cytokines have been shown to be upregulated in the peripheral blood taken from 

patients with atherosclerosis. Profumo et al. (2008)
185

 demonstrated significantly higher 

expression of the pro-inflammatory cytokines tumour necrosis factor (TNF)-α, 

interferon (IFN)-γ, interleukin (IL)-1β, IL-6 and the anti-inflammatory cytokines IL-4 

and IL-10. However, contrasting data exists which suggests a link between reduced 

anti-inflammatory cytokine interleukin-10 (IL-10) serum levels with increased intima 

thickness
186

. IFN-α, an anti-viral cytokine produced by leukocytes, has been shown to 

be capable of up-regulating TLR4 expression increasing cellular sensitivity to TLR4 

atherosclerosis-associated ligands exacerbating plaque development and instability
187

. 
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Chemokines are chemotactic cytokines, when released these direct migration of 

leukocytes into inflamed tissue via interaction with chemokine receptors present on the 

leukocyte cell surface
188

. These small signalling proteins have also been implicated in 

inducing cell proliferation, enzyme secretion, reactive oxygen species and foam cell 

formation
189,190

. Chemokines, such as MCP-1 and IL-8, direct leukocytes to the site of 

inflammation (plaque). Monocytes express chemokine receptor-2 (CCR-2) which binds 

MCP-1
188

. The release of MCP-1 at a site in the arterial vascular wall results in 

monocyte infiltration into that area, through the vascular endothelial wall, from the 

blood stream. Levels of the chemokine IL-8 have been associated with increased risk of 

future coronary artery disease and plaque instability
191,192

. It has been shown how 

elevated peripheral blood IL-8 values can indicate requirement for carotid 

endarterectomy (Section 1.1.3.1) regardless of other risk factors that may show a patient 

at low risk
185

. 

 

It has been demonstrated that the pattern or balance of inflammatory mediators could 

possibly be used as a fingerprint to diagnose and predict clinical outcome of disease 

allowing tailored patient treatment. This could be far more beneficial for the patient, not 

to mention saving time and money.   
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1.5: Aims of this project  

This project is set out to investigate the participation of PRRs in atherosclerosis in view 

of treating, if not preventing, this disorder. Of particular interest is the functional 

significance of TLR associations in response to endogenous and exogenous ligands that 

have been implicated in atherogenesis and the alterations that may be caused to these 

associations when ligands are present at the same time. Ligands of interest in this 

project include LPS and LTA from atherosclerosis-associated bacterial products as well 

as modified endogenous lipoproteins such as oxLDL. This study will look at the 

trafficking and intracellular targeting of these PRR-ligand complexes and investigate the 

contribution of this to innate inflammatory signalling. In addition to this, the role of 

lipid rafts in signalling will be investigated. Ultimately, the in vivo inhibition of the 

atherosclerosis-associated inflammatory response will be explored, through 

manipulation of PRR signalling found to be involved in this disease. 
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2.1: Antibodies 

Primary Antibodies Species Company 

TLR1 Mouse Hycult Biotechnology 

TLR2 Goat Santa Cruz Biotechnology, Inc 

TLR4 Goat Santa Cruz Biotechnology, Inc 

TLR6 Goat Santa Cruz Biotechnology, Inc 

CD14  Mouse Donated by Dr. K. Triantafilou 

CD36 Rabbit Santa Cruz Biotechnology, Inc 

Golgi  Mouse BD Biosciences Pharmingen 

Endosome  Mouse BD Biosciences Pharmingen 

IKappaB-alpha (C-term) Mouse Cell Signalling technology 

Phosho-IKappaB-alpha (Ser32) Rabbit Cell Signalling technology 

   Secondary Antibodies Label Company 

Rabbit anti mouse FITC Dako cytomation 

Rabbit anti goat FITC Dako cytomation 

Swine anti rabbit FITC Dako cytomation 

Donkey anti goat Alexa555 Invitrogen. Molecular probes 

Rabbit anti mouse Cy3 Amersham Biosciences 

Donkey anti rabbit Cy5 Jackson ImmunoResearch Laboratories 

Rabbit anti goat Cy5 Jackson ImmunoResearch Laboratories 

CD14 (26ic). DIRECT PE Donated by Dr. K. Triantafilou 

Lipid raft. DIRECT FITC List Biological Laboratories 

Rabbit anti mouse TRITC Dako cytomation 

Swine anti rabbit TRITC Dako cytomation 

Rabbit anti goat HRP Dako cytomation 

Swine anti rabbit HRP Dako cytomation 

 

Table 2.1: Primary and secondary antibodies used in this study. Secondary antibodies were 

labelled with either a fluorescent fluorochrome (Fluorescein isothiocyanate {FITC}, 

Alexa555, Cyanine 3 {Cy3}, Cyanine 5 {Cy5} and Tetramethyl rhodamine iso-

thiocyanate {TRITC}) or horse radish peroxidase (HRP) for enhanced 

chemiluminescence (ECL). 
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2.2: Cell lines 

 

2.2.1: Tissue Culture 

To ensure sterile conditions during tissue culture a Microflow Advanced Biosafety 

Class II laminar flow hood was used. Plasticware, glassware and solutions were 

autoclaved (180°C) for tissue culture. Hood and equipment was sterilized with 1% 

aqueous Virkon (Antec International). Cells were incubated at 37°C with a 5% CO2 

humidified atmosphere. 

 

2.2.2: Human endothelial vascular cells 

Human endothelial cardiovascular 304 (ECV304) cells were cultured in 25cm
2
 surface 

flasks (Nunc) in Medium 199 + GlutaMAX (GIBCO) supplemented with 10% foetal 

calf serum (FCS {Biosera}). 

 

ECV304 cells were obtained from the European Collection of Animal Cell Cultures 

(ECACC). The ECV304 cell line is a spontaneously transformed cell line derived from 

an umbilical cord from a new born Japanese female. 

 

ECV sub-confluent cultures (70-80%) were split with the use of the proteolytic enzyme 

trypsin (Sigma). Cells were frozen in freezing medium consisting of 10% (v/v) dimethyl 

sulfoxide (DMSO) in FCS. 

 

2.2.3: Primary human umbilical vein endothelial cells 

Primary human umbilical vein endothelial cells (HUVECs) were cultured in 24 well 

plates, with a surface area of 1.9cm
2
 per well, (Nunc) in Medium 200 containing the 

Low Serum Growth Supplement Kit (Cascade Biologics). LSGS Kit contained: Foetal 
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bovine serum, 10ml. EGF, 1ml. bFGF (1.5µg/ml)/Heparin (5mg/ml)/BSA (100µg/ml), 

1ml. Gentamicin/Amphotericin B, 1ml. Hydrocortisone (1mg/ml), 0.5ml.  

 

HUVECs were obtained from the European Collection of Animal Cell Cultures 

(ECACC). These cells were obtained from normal human umbilical vein. Once in 

culture HUVECs can be propagated up to 16 times. 

 

HUVECs were passaged by re-suspending the semi-adherent cells using a pipette, no 

more than 16 times. Cells were frozen in freezing medium consisting of 70% Medium 

200+LSGS/20% FCS/10% (v/v) DMSO. 

 

2.2.4: Human embryonic kidney 293 transfectants 

TLR2/Green Fluorescent Protein (GFP)/human embryonic kidney 293 (HEK293) and 

TLR4/MD-2/GFP/HEK293 cells were cultured in 25cm
2
 surface flasks (Nunc) in 

Dulbecco’s Modified Eagle’s Medium (DMEM) 4600/1000mg/L glucose medium 

(GIBCO) supplemented with 10% FCS (Biosera) with G418 (Sigma) selection 

antibiotic (500g/µml). HUVECs were seeded in 24 well plates (Nunc) with 

DMEM/FCS/G418 growth medium when assayed. TLR2/GFP/HEK293 and 

TLR4/MD-2/GFP/HEK293 cell lines were kindly provided by Dr. D. Golenbock from 

the University of Massachusetts Medical School, United States. 

 

 TLR2/GFP/HEK293 and TRL4/MD-2/GFP/HEK293 cells were passaged by re-

suspending the semi-adherent cells using a pipette. Cells were frozen in freezing 

medium consisting of 70% DMEM 4600/1000mg/L glucose/G418/20% FCS 

(Biosera)/10% (v/v) dimethyl sulfoxide (DMSO). 
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2.2.5: Cryogenic preservation 

Cryogenic preservation (<-100°C) was used to create and maintain reserve cell line 

stocks. Cell lines were placed in a -80°C freezer for 24h and then into liquid nitrogen 

for long-term storage. This step down in temperature allows cells to adjust to the liquid 

nitrogen. 

 

Cells were washed and then re-suspended in 10ml of their growth media by; pipetting 

for semi-adhesive cells, or with the use of the proteolytic enzyme trypsin (Sigma) for 

adhesive cells. Cells were placed in a 15ml tube (Nunc) and spun at 145g RT for 5 

minutes. The supernatant was aspirated off and the pellet re-suspended in 1500µl of 

their specific freezing medium (Table 2.2). Cells in freezing medium were quickly 

placed in cryotubes (Nunc) and then into the -80°C freezer for 24 hours. After 24 hours 

the cryotubes were then removed from the -80°C freezer and placed into liquid nitrogen 

(-196°C). 

 

Cell line Freezing medium 

ECV 10% (v/v) dimethyl sulfoxide (DMSO) in FCS 

HUVEC 70% Medium 200+LSGS/20% FCS/10% (v/v) DMSO 

TLR2/GFP/HEK293 70% DMEM G418/20% FCS/10% (v/v) DMSO 

TRL4/MD-2/GFP/HEK293 70% DMEM G418/20% FCS/10% (v/v) DMSO 

 

Table 2.2: Freezing medium for cell lines. Cryogenic preservation in liquid nitrogen (<-100°C) 

was used to create and maintain reserve cell lines. 

 

2.3: Cell counting 

A haemacytometer is a cell counting device that allows one to obtain an approximation 

of the cell concentration (cells/ml) of a cell suspension. This allows consistence when 

seeding cells especially when growth surface area may be changed to suit the 

experiment.  
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It is, as stated, an approximation and works on the basis of there being an exact known 

volume in the chamber of the hemacytometer (Figure 2.1). A quartz cover slip sits 

precisely 0.1mm above the chamber floor, each grid (counting area highlighted) is 1mm 

by 1mm, thus the volume above each single grid is 0.1mm
3
 (0.1µl). By observing the 

chamber under the microscope and counting the number of cells in a suspension in the 

counting area, one can calculate cell concentration. 

 

Hemacytometer 

 

 

Figure 2.1: Hemacytometer: used to count cells in suspension. It works on the basis of there being 

an exact known volume in the chambers of the hemacytometer. A quartz cover slip sits 

exactly 0.1mm above the chamber floor, each grid (counting area highlighted) is 1mm 

by 1mm, thus the volume above each single grid is 0.1mm
3
 (0.1µl). Number of cells per 

“counting area” = number of cells per 0.1mm
3
. Adapted from: www.vivo.colostate. 

edu/hbooks/pathphys/reprod/ semeneval/ hemacytometer.html (30/12/09). 
 

The number of cells in each grid in the counting area should be recorded and placed in 

the following calculation: 
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2.3.1: Hemacytometer protocol 

Cells were confluent when concentration was determined. Adherent cells were placed in 

suspension by the use of the proteolytic enzyme trypsin, semi-adherent cells were re-

suspended by agitation with a pipette. 

 

Cells were thoroughly re-suspended using a sterile Pasteur pipette, in order to ensure 

single-cell suspensions. A cover slip was placed on the Specialized Neubauer 

hemacytometer. Using a Pasteur pipette the cell suspension was loaded on the edge of 

the cover slip, ensuring that both chambers of the Neubauer hemacytometer were 

flooded. The slide was observed and the cells counted under a light microscope. Cells 

from the central and all corner grids were used. This data was entered into the 

calculation in Section 2.3. 

 

2.4: Viability test 

Trypan blue is a diazo dye that can be used to distinguish between live and dead cells. 

In this study the trypan blue viability test was used to determine cell toxicity of certain 

procedures.  

 

Trypan viability test 

 
Figure 2.2: Trypan blue viability test. Live cells with intact membranes do not allow dye to pass 

into the cell. Dead cells (arrow) have disrupted membranes and thus allow the dye to 

enter and stain the cell dark blue. www.yamato-net.co.jp/english/products/bio/da_sell 

.htm (30/12/09). 
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The trypan blue viability test, also known as the dye exclusion test, works on the basis 

that live cells have intact membranes that are highly selective in their uptake and thus 

will not allow the dye to enter the cell. Dead cells whose membranes have been 

compromised allow the dye to enter the cell through the damaged membrane, and thus 

become stained blue. 

 

Subsequent cell counting using a hemacytometer (Section 2.3) allows cell viability (%) 

to be calculated. 

 

2.4.1: Trypan blue viability test procedure 

Cells were washed with sterile X1 PBS. Enough trypan blue (Sigma) to cover the cells 

was then added and left for 10 minutes. The cells were then washed with sterile X1 

PBS. Cells were analyzed using a Specialized Neubauer hemacytometer (Section 2.3).  

 

2.5: Cell stimulations 

All stimulations were carried out in hybridoma Serum Free Medium (SFM {GIBCO}) 

and incubated at 37°C in a 5% CO2 humidified atmosphere. The use of SFM eliminates 

any effects that medium proteins may have on the experiment. Ligand concentrations 

were kept constant throughout this study (Table 2.3). 

 

Ligand Concentration 

E.coli LPS 100ng/ml 

S.aureus LTA 10µg/ml 

P.gingivalis LPS 10µg/ml 

C.pneumoniae LPS 10µg/ml 

LDL 50µg/ml 

mmLDL 50µg/ml 

oxLDL 50µg/ml 

 

Table 2.3: Ligand concentrations used in this study. All concentrations were kept constant 

throughout. 
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2.5.1: 25cm
2
 Flask stimulation 

ECV304s were stimulated in flasks with a surface area of 25cm
2
 (Nunc). Sterile 

conditions were practiced throughout this procedure. The growth medium was aspirated 

off and the cells were washed with 3ml SFM (GIBCO). 2ml SFM was then added to the 

flask. The cells were then stimulated. 

 

2.5.2: 24 well plate stimulation 

Primary HUVECs and HEK cells were stimulated in 24-well plates with a surface area 

of 1.9cm
2
 per well (Nunc). Sterile conditions were practiced throughout. The growth 

medium was aspirated off and the cells were washed with 1ml SFM (GIBCO). 500µl 

SFM was then added to each well. The cells were then stimulated. 

 

2.5.3: Lab-Tek™ slide stimulation 

For confocal microscopy, primary HUVECs were stimulated on 8 well glass slides 

(Lab-Tek™ Chamber Slide™ System). Each well surface area was 0.8cm
2
. The growth 

medium was aspirated off and the cells were washed with 500µl SFM (GIBCO). 200µl 

SFM was then added to each well. The cells were then stimulated. 

 

2.6: Preparation of low density lipoprotein derivatives 

In order to simulate high cholesterol levels, human LDL (hLDL {3,500 kDa}) obtained 

from Sigma was used. The LDL was prepared from fresh human plasma. The protocol 

for the production of the LDL derivatives was obtained from Miller et al. (2003)
115

 who 

consistently demonstrated the pro-atherogenic affects of their synthesised LDL 

derivatives. 

 

In sterile conditions 1µl 1mM CuSO4 was added to 1ml of 1mg/ml hLDL (Sigma) in an 

eppendorf tube. This was then placed in an incubator shaker at 37˚C at 130RPM for: 1 

hour to produce mmLDL and 12 hours to produce oxLDL. 
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2.7: Immunofluorescence 

Immunofluorescence is the labelling and visualisation of specific molecules with 

fluorescent monoclonal antibodies. Immunofluorescent labelling can be utilised to find 

the relative abundance and localisation of a chosen antigen. Fluorochromes that emit 

light of a set wavelength when excitated, are conjugated to antibodies. The binding of 

the fluorescent antibody to a specific antigen of interest, and thus subsequent emission 

of light at a certain wave length, allows it to be imaged and/or quantified by a number 

of techniques. The development of fluorescent labelling as a research tool has proven 

invaluable. 

 

Fluorescence is emitted from fluorochromes that become excited when exposed to a 

laser beam of the correct wavelength. Electrons in the fluorochrome move into a higher 

energy state when a photon from the laser is absorbed. The atoms are said to change 

from their “ground state” to an “excited state”. After an infinite amount of time the 

electrons jump back to their original position and a photon of a lower wavelength is 

emitted. Here the atom moves back to its “ground state”. The emitted light is detected 

and can be use to shed light on the abundance and/or localisation of a chosen antigen. 

 

There are a number of different fluorochromes available which utilise different 

excitation and emission wavelengths. Such specificity of antibodies coupled with the 

availability of different fluorochrome conjugates allows multiple labelling of molecules 

and/or structures in a single sample at any one time. Multiple labelling of cells with 

more than one type of fluorochrome can be used to uncover their colocalisation and 

trafficking. This study used fluorochrome labels whose emissions are in the visible light 

spectrum (Table 2.4). 
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Fluorochrome Excitation λ  Emission λ  

Alexa 555 555nm 565nm 

Cyanine 3 550nm 570nm 

Cyanine 5 650nm 667nm 

Fluorescein isothiocyanate 495nm 519nm 

Phycoerythrin 488nm 575nm 

Tetramethylrhodamine isothiocyanate  547nm 572nm 

 

Table 2.4: Excitation and emission of fluorochromes used in this study. 

 

Two techniques were used in this study in order to label a specific antigen. These were 

direct and indirect immunofluorescence.  

 

2.7.1: Direct immunofluorescence 

Direct immunofluorescence involves the direct binding of a fluorochrome conjugated 

primary antibody/ligand to the antigen of interest (Figure 2.3). This is a simple 

procedure requiring one specific type of directly labelled antibody/ligand. Direct 

immunofluorescence allows one to examine ligand binding properties as well as label a 

specific antigen.  

 

Direct immunofluorescence 

 
Figure 2.3:  Direct immunofluorescence. Direct binding of a fluorochrome (example shown is 

fluorescein isothiocyanate {FITC}) conjugated monoclonal antibody/ligand to a target 

antigen. On excitation the fluorochrome emits fluorescence that can be detected and 

quantified. 
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When using direct immunofluorescence to label a protein in low abundance a weak 

signal may be achieved. To overcome this indirect immunofluorescence labelling can be 

used.  

 

2.7.2: Indirect immunofluorescence 

Indirect immunofluorescence is slightly more complex than direct immunofluorescence 

in that it requires two compatible antibodies in order to label a target protein. This 

procedure involves the initial binding of a primary antibody to a chosen target. A 

secondary fluorochrome conjugated antibody, specific to the primary antibody used, is 

then added to the sample (Figure 2.4). This will bind the primary and therefore label the 

antigen. The primary and secondary antibody binding is species-specific. If a mouse 

CD36 primary antibody was used for example, an anti-mouse fluorochrome conjugated 

secondary antibody will have to be used with this, such as a goat anti-mouse antibody.  

 

 

Indirect Immunofluorescence 

 
Figure 2.4:  Indirect immunofluorescence: Indirect immunofluorescence involves the binding of a 

primary antibody to a chosen receptor, then the further binding of a fluorochrome 

(example used is fluorescein isothiocyanate {FITC}) conjugated secondary antibody to 

the primary antibody. The antibody binding is species-specific. On excitation the 

labelled fluorochrome emits fluorescence that can be detected and quantified. 
 



66 

 

Indirect immunofluorescence has the advantage of being more sensitive than direct 

immunofluorescence. This is because more than one secondary antibody can bind to any 

one primary antibody, thus giving a stronger signal.  

 

2.8: Fluorescence activated cell sorter  

The flow cytometer, also known as a Fluorescence Activated Cell Sorter (FACS), is 

able to quantify and distinguish between molecules according to their fluorescence and 

physiological structure. In this study fluorescently labelled cells and cytokines were 

analysed using a Becton Dickinson Fluorescent Activated Cell Sorter (FACSCalibur™) 

with CellQuest software also supplied by Becton Dickinson (Figure 2.5). 

 

 

Flow cytometer 

 
Figure 2.5:  Becton Dickinson fluorescent activated cell sorter (FACSCalibur™). The flow 

cytometer can quantify and distinguish between molecules according to their 

fluorescence and physiological structure. www.cochin.inserm.fr/la_recherche/plates-

formestechnologiques/cytometrie_en_flux/equipement-et-methodologie/analyse/images 

/FACSCalibur. jpg (05/01/10). 

 

Fluorescently labelled cells that pass through the FACS are each individually exposed 

to a laser with a single wavelength of light. Fluorescein isothiocyanate (FITC) 

conjugated antibodies were used in this study to label specific receptors (Section 

2.8.2.1). The resulting emitted light from the sample passes through a number of 

different detectors and analysed via the software. Cytokines can be labelled in much the 
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same way using a Cytometric BeadArray (CBA {BD Biosciences}) kit allowing the 

determination of their concentration in a sample (Section 2.8.2.2). 

 

2.8.1: FACS System 

FACS analysis can be divided into three main stages being fluidics, optics and signal 

processing. 

 

2.8.1.1: FACS fluidics 

FACS analysis requires the cells to be individually analyzed. When the cytometer is set 

to “acquire”, the cells run through the chamber at very high speed in single file. This is 

achieved by the fluidics system of the FACS machine, via a process known as 

hydrodynamic focusing (Figure 2.6). Hydrodynamic focusing is achieved by injecting 

the sample from an inner core injector into sheath fluid (saline solution) in an outer 

core, surrounding the injector, which is flowing at a much higher velocity in the same 

direction. 

 

FACS fluidics system 

 
Figure 2.6:  Hydrodynamic focusing of a sample by the fluidics system of the Fluorescence 

Activated Cell Sorter (FACS). The sample is injected from the inner core into sheath 

fluid (saline solution) from the outer core, which is flowing at a much higher velocity in 

the same direction. This causes the sample to exit in single file for analysis. 
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Hydrodynamic focusing results in the cells entering the flow cell in single file to be 

exposed to the optics system individually. 

 

2.8.1.2: FACS optics 

As the cells pass through the flow chamber one after the other they are subject to a laser 

that has a programmed wavelength. The light emitted from the sample will either be in 

the form of forward scattered light (FSC), side scattered light (SSC) or fluorescence 

from an activated fluorochrome label (Figure 2.7). FSC and SSC uncover the cells 

morphology whilst fluorochrome emission is used to quantify a labelled antigen.  

 

FACS optics system 

 
Figure 2.7:  Arrangement of filters and detectors in the fluorescence activated cell sorter (FACS) 

optics system. Fluorescent detection and side scatter (SSC) is achieved at 90˚ to the 

path of the excitation laser beam. Forward scatter (FSC) is detected at 20˚ off the 

excitation laser beam. www.nci.cu.edu.eg/images/flow.jpg (05/01/10). 
 

 

Fluorescence is emitted from fluorochromes that become excited when exposed to a 

laser beam of the correct wavelength (Table 2.4). Florescence is detected at 90˚ to the 

path of the excitation laser beam. The emitted light from a large population of cells, 
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which would have a wavelength specific to the fluorochrome used, is quantified. This 

information can be used to measure the mean quantity of a specific antigen a cell posses 

in a sample. 

 

Scattered light that is given off when cells are subjected to the laser beam allows the 

FACS instrument to distinguish between cells with varied physiological structures. 

There are two types of scattered light that are detected; these are SSC and FSC. SSC 

highlights granules present in the cells and is collected by detectors at 90˚ to the path of 

the excitation laser beam. FSC is relative to cell size and can distinguish between live 

cells and debris. FSC is detected at 20˚ off the excitation laser beam. The result of the 

combination of these two factors is varied between, and can thus distinguish between, 

different cell-types, live/dead cells and different bead sizes in the CBA assay. 

 

2.8.1.3: FACS signal processing 

Signal processing was performed using CellQuest software. This software has complete 

control over the FACS allowing parameters to be refined for each experiment. Photons 

sensed by the photomultiplier tube (PMT) detectors are transformed to voltage and then 

relayed to the software. The combined information from the detectors is quantified, 

saved and displayed on the computer. 

 

2.8.2: FACS application 

Fluorescently labelled cells and cytokines were analysed using a Becton Dickinson 

Fluorescent Activated Cell Sorter (FACSCalibur™) with CellQuest software (Becton 

Dickinson). This was used to detect cellular PRR expression and released cytokine 

concentrations. 
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2.8.2.1: Pattern recognition receptor expression detection 

Indirect immunofluorescence and flow cytometry were utilised in order to elucidate 

expression of TLR1, TLR2, TLR4, TLR6, CD36 and CD14 on ECV, HUVEC and HEK 

cell lines. 

 

To perform the direct immunofluorescence assay, cell samples in 1.5ml eppendorf tubes 

were washed (centrifuged at 135g RT for 2 minutes, re-suspended in 500µl PBS/0.02% 

BSA {Bovine Serum Albumin [Sigma]}/0.02% NaN3 and then centrifuged once again 

at 135g RT for 2 minutes) two times. The cells were then fixed by adding 300µl of 4% 

Paraformaldehyde (PFA {Sigma}) and left to incubate at room temperature for 10 

minutes. Cells were then washed two times. The samples were then re-suspended in 

200µl PBS/0.02% BSA/0.02% NaN3. To this, 2µl of fluorochrome conjugated primary 

antibody was added. Cells were then incubated at room temperature for 4 hours and left 

over night at 4˚C. After incubation the cells were washed two times. The pellet was then 

re-suspended in 500µl PBS/0.02% BSA/0.02% NaN3, and the samples were analysed 

using a Becton Dickinson Fluorescent Activated Cell Sorter (FACS CaliburTM) with 

CellQuest software (Becton Dickinson). 

 

2.8.2.2: Cytokine analysis 

To quantify the inflammatory response of the various cell types used in this study the 

levels of released cytokines were measured. Cytokines are the messengers that co-

ordinate the antibacterial and antiviral response and thus give a direct representation of 

cellular immune output. 

 

In this study the Human Inflammation BD™ Cytometric Bead Array (CBA {BD 

Biosciences}) kit was used to measure cytokine concentrations. The Human 
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Inflammation CBA kit is capable of detecting six cytokines that play important roles in 

the human inflammatory response. These are interleukin-8 (IL-8), IL-1β, IL-6, IL-10, 

IL-12p70 and Tumor Necrosis Factor (TNF). CBA analysis allows the fast and highly 

sensitive quantification of an array of cytokines in any one sample. 

 

In order to bind cytokines in a sample the beads are coated with capture antibodies 

specific for a particular cytokine. In the Human Inflammation BD™ CBA kit there are 

six bead populations with different morphologies, each specific for one of six cytokines. 

Once the beads have bound to the cytokines, a phycoerythrin (PE)-conjugated detection 

antibody mix is added; this is a mixture of PE-conjugated antibodies specific for each 

cytokine bead (Figure 2.8).  

 

Cytometric Bead Array 

 
Figure 2.8:  BD™ Cytometric bead array (CBA) system. A) CBA beads (blue) bind cytokines 

(yellow) in sample. B) Phycoerythrin (PE)-conjugated detection antibody (green) is 

added. Solution is incubated for 3 hours and then the excess washed off. C) Cytokine 

can be seen sandwiched between bead and the PE detection antibody. Adapted from: 

www.bd.com/scripts/resource .aspx?IDX=449 (15/01/10). 
 

The Becton Dickinson Fluorescent Activated Cell Sorter (FACSCalibur™) was used in 

conjunction with CellQuest software (Becton Dickinson) in order to run the samples. 

Beads are distinguished by their morphology through detection of SSC and FSC 

(Section 2.8.1.2). CBA analysis software was used to process the raw data to cytokine 

concentration (pg/ml) using a previously calibrated standard curve. 
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2.8.2.2.1: CBA protocol 

To analyze the inflammatory response of any given sample the medium was tested 

using the Human Inflammation BD™ Cytometric Bead Array (CBA {BD Biosciences}) 

kit.  

 

For each sample, 25µl of bead mixture containing equal volumes of IL-8, IL-1β, IL-6, 

IL-10, IL-12p70 and TNF beads was added to a Falcon flow tube. To this, 25µl of 

sample were added and the mixture vortexed briefly. 25µl of phycoerythrin (PE)-

conjugated detection antibody mixture was then added and vortexed briefly. The 

samples were left out of light to incubate at room temperature for 3 hours, gently 

shaking every 30 minutes. 1ml wash buffer (X1 PBS) was then added to each sample 

which was then centrifuged at 145g RT for 5 minutes. The supernatant was poured off 

leaving the pellet undisturbed. 300µl of wash buffer (BD Biosciences) was added to 

each tube and then vortexed very briefly. The samples were assayed using the Becton 

Dickinson Fluorescent Activated Cell Sorter (FACSCalibur™) used in conjunction with 

CellQuest software (Becton Dickinson). The cytokine concentration (pg/ml) was 

determined by data processing using CBA Analysis Software (Becton Dickinson). 

 

2.9: Confocal Microscopy 

Confocal microscopy was developed in 1955 by Marvin Minsky of Harvard University. 

This imaging technique proved to be far better than light or standard fluorescence 

microscopy. Confocal microscopes are able to produce images with a very high spatial 

and temporal resolution.  
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Confocal microscope 

 

Figure 2.9:  Confocal microscopes are able to filter out background light producing images with a 

resolution far greater than images obtained from conventional fluorescent microscopes. 

www.einstein.yu.edu/aif/instructions/aobs/index.htm (17/01/10). 
 

Conventional microscopes function by exposing the whole sample to light, and then 

recording the light emitted. The image produced from such a technique includes in 

focus and out of focus light emitted from the whole depth of the specimen, from above 

and below the focal plane. This produces a blurred image where focused light is 

overlapped with the unfocused light. Confocal microscopy avoids this noise by 

excluding light from the sample that is not specifically in the focal plane, increasing the 

definition of the image. 

 

The confocal microscope uses two lenses to focus light from the focal point through a 

pinhole aperture to where the light is detected. The pinhole diameter can be manipulated 

to cut out any light outside of the focal plane; as shown by the light blue light path in 

Figure 2.10. Mirrors are used to scan the laser light source across specimen in this 

manner in order to build up a total image. 
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Principle of the confocal microscope 

 
Figure 2.10:  Lens layout of a confocal microscope. Confocal microscopy uses two lenses to focus 

light from the focal point of one lens to a pin hole where the light is detected. This 

method eliminates out of focus light producing a high resolution image. 

www.physics.emory.edu/~weeks/confocal (17/01/10). 
 

Due to the accuracy of the confocal microscope and its ability to cut out unfocused light 

it is capable of three dimensional imaging. Multiple images taken along the Z axis of 

the microscope, through the depth of a sample, can be stacked together (Z-stack) to 

create a revealing three dimensional representation. 

 

Another great advantage of the confocal microscope is that it makes it possible to 

perform live cell imaging at a very high resolution. Live cell imaging is not possible in 

other high resolution microscopy techniques, such as scanning electron microscopy 

(SEM), due to the complications of specimen preparation. 

 

The laser beam passes through the microscope to the sample via a dichroic mirror and 

two motorised rotating mirrors. The motorised mirrors scan the laser beam over the 

sample. The light emitted is focused by two lenses, back in the direction of the original 

laser path, through a pinhole aperture and onto a photomultiplier tube (PMT) detector 

(Figure 2.11). The image points (voxels) collected from scanning the sample are 

processed by computer software into a two dimensional image. 
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Light path in a confocal microscope 

 

Figure 2.11:  Light path in a confocal microscope. Two motorised rotating mirrors are used to scan 

the laser beam over the sample. Emitted light passes back in the direction of the laser 

through a pinhole, ridding of any more undesired light, and onto a photomultiplier tube 

detector. www.physics.emory.edu/~weeks/confocal (17/01/10). 
 

The selective mechanisms used by confocal microscopy, in order to produce the high 

quality images that it is capable of, results in a relatively weak signal. The weak signal 

is overcome by the use of lasers and PMT detectors. The laser produces exceptionally 

bright, low-divergent, light that can be focused and collected with minimal light loss. 

PMT detectors amplify the weakened signal. 

 

The imaging of biological samples with confocal microscopy usually involves the 

binding of fluorochromes to the specimen via direct or indirect immunofluorescence 

(Section 2.7). Fluorescence is emitted from fluorochromes that become excited when 

exposed to a laser beam of the correct wavelength (Section 2.7).  The confocal 

microscope is capable of imaging different emission wavelengths from a single sample. 
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This allows multiple labelling of molecules and/or structures in a sample at any one 

time. Multiple labelling of cells with more than one type of fluorochrome can be used to 

uncover the location, abundance, colocalisation and trafficking of target proteins. 

 

The Confocal microscope utilized in this study was a Zeiss LSM 510 META using a 1.4 

NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 analysis software. 

Cells were cultured on 8 well glass slides (Lab-Tek™ Chamber Slide™ System) which 

were labelled via direct and/or indirect immunofluorescence. 

 

Lab-Tek™ Chamber Slide™ System 

 
Figure 2.12: The Lab-Tek™ Chamber Slide™ System was utilised in this study for the confocal 

imaging of primary HUVECs. Cells are cultured, stimulated and labelled directly on the 

slide. www.nuncbrand.com/page .aspx?ID=234 (18/01/10). 
 

2.9.1: Seeding HUVECs in Lab-Tek™ slides 

HUVECs were cultured in 24 well plates (Nunc) in Medium 200 (Cascade Biologics) 

containing a Low Serum Growth Supplement Kit (LSGS {Cascade Biologics}). When 

the cells became confluent the wells were split (50/50) into fresh 24 well plates and left 

to grow for 48 hours.  

 

To increase adherence of the HUVEC cell line to the 8 well slide surface (Lab-Tek™ 

Chamber Slide™ System) the slides were treated with collagen (type-I from rat tail 

{Sigma}). 250µl of sterile 10% collagen (1ml collagen in 9ml X1 PBS) was added to 
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each well. The slide was then incubated at 37˚C for 120 minutes. The collagen formed a 

thin film on the bottom of the slide and the PBS was carefully aspirated off. 

 

After the two day incubation in 24 well plates the medium was removed from the 

HUVECs and replaced with 1ml fresh Medium 200 + LSGS. The cells were re-

suspended thoroughly. 500µl of Medium 200 + LSGS was added into each collagen 

treated well of an 8 well glass slide (0.8cm
2
 each well). 25µl of cell suspension was 

added to each well. The cell suspensions were homogenized and left to incubate at 37˚C 

with 5% CO2 in a humidified atmosphere for two days. 

 

The cells had grown in such a way that they were mature, spread out and flat. Ideal for 

confocal microscopy. HUVECs were stimulated directly on the slide (Section 2.5.3). 

 

2.9.2: Labelling HUVECs on Lab-Tek™ slides 

Both direct and indirect immunofluorescence (Section 2.7) techniques were used to 

label primary HUVECs on 8 well glass slides (Lab-Tek™ Chamber Slide™ System). 

 

Medium was gently removed with a pipettor and the cells were gently washed two times 

with 500µl PBS/0.02% BSA/0.02% NaN3. 300µl of 4% PFA (Sigma) was then added to 

each well and incubated for 10 minutes at room temperature. The wells were gently 

washed two times with 500µl PBS/0.02% BSA/0.02% NaN3. 100µl of X1 PBS/0.02% 

BSA/0.02% NaN3 (cell surface labelling) or X1 PBS/BSA 0.02% /SAPONIN 

(intracellular labelling) were then added to each well. 5µl of hybridoma or 2µl of 

commercial primary antibodies were added (Table 2.1). The slides were incubated for 4 

hours at room temperature and left at 4˚C for 18 hours. The following day the wells 
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were washed three times with 500µl X1 PBS/0.02% BSA/0.02% NaN3. 100µl of X1 

PBS/0.02% BSA/0.02% NaN3 (cell surface labelling) or X1 PBS/BSA 0.02% 

/SAPONIN (intracellular labelling) were then added to each well. 2µl of the relevant 

secondary antibody (indirect immunofluorescence) or 6µl of direct labelling antibodies 

(direct immunofluorescence) was added. Slides were incubated at room temperature for 

45 minutes. Slides were then washed, antifade treated and sealed. 

 

2.9.2.1: Antifade treatment 

The wells of the Lab-Tek™ slides were then removed and the cells treated with 

SlowFadeR Light Antifade Kit (Molecular Probes, Invitrogen). One drop of 

Equilibration buffer (Molecular Probes, Invitrogen) was placed in each well and left at 

room temperature for 2 minutes and then gently poured off, this step was repeated one 

more time.  The gasket of the Lab-Tek™ slide was then removed and one drop of anti-

fade reagent in glycerol (Molecular Probes, Invitrogen) was placed on each well. Cover 

slips were gently placed on the slide, any excess reagent gently removed, and were 

sealed using nail polish.  

 

Slides were viewed using a Zeiss LSM 510 META confocal microscope with a 1.4 NA 

63x Zeiss objective, used in conjunction with Ziess LSM 2.5 analysis software (Section 

2.9). The colocalisation of images was quantified using Costes’ method through the 

analysis software ImageJ (Version 1.43) with the JACoP plugin (Section 2.9.3) 

 

2.9.3: Quantification of colocalisation in confocal images 

Colocalisation of molecules and/or structures in a cell can be determined by their 

multiple labelling and then detection to see to what extent these labels overlap. 
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Molecules and/or structures in a cell can be labelled with varied fluorochrome 

conjugated antibodies (Table 2.1) that emit light of different wavelengths (Section 2.7). 

Fluorescent microscopy allows the separate collection of these different wavelengths 

emitted from an image which can then be overlaid and analysed for colocalisation. 

Multiple labelling of cells with various fluorochrome conjugated antibodies for antigens 

of interest allows researchers great insight into the biological processes of the cell. 

 

Confocal microscopy (Section 2.9) is commonly used for colocalisation studies due to 

its very high spatial and temporal resolution. These microscopes can be used to excitate 

specific fluorophores and subsequently gate a specific wavelength range of emitted light 

resulting in an image constructed of just, for example, the “green” labelled antigens. 

This image will show the location of the antigen bound by the “green” fluorochrome 

conjugated antibody. Merging this image with those obtained for other fluorochrome 

labelled antigens (red in the example) can allow one to speculate their colocalisation 

(shown as yellow). 

 

 
Figure 2.13: Complete colocalisation of “Green” and “Red” labelled antigens. Since “Green” and 

“Red” images are of equal intensity their colocalisation shown as yellow in the 

“Merged” image is clear. Golgi staining of fixed maize root cells. Boutté et al. 

(2006)
193

. 

 

Qualitative analysis of these images is however rather ambiguous and is not sufficient to 

conclude colocalisation. (After all, the human eye has its own limitations.) For example, 
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in an ideal world both labels (“green” and “red”) would emit light of equal intensities as 

in Figure 2.13. This is, however, often not the case. If complete colocalisation exists but 

the “red” fluorophore is more intense than the “green”, perhaps just due to the nature of 

the fluorophore (some are better than others), the “merged” image would not show a 

50/50 mix of these two, and thus will not display yellow where colocalisation exists. 

This scenario is illustrated in Figure 2.14.  

 

 
Figure 2.14: Complete colocalisation of “Green” and “Red” labelled antigens. Since the “Red” 

image is more intense than the “Green” image their colocalisation in the “Merged” 

image is less clear for the red has overpowered the green. Endoplasmic reticulum 

staining. Kluge et al. (2004)
194

. 

 

Colocalisation however, is independent of intensity. This should not be a factor 

influencing the analysis of colocalisation of two images. A number of other factors 

make the qualitative analysis of colocalisation unreliable and invalid.  Pixels of overlaid 

images may be in close proximity and appear to the human eye as overlapping when 

they are not. Also when an image has a lot of background, due to non-specific binding 

for example, the qualitative analysis of such images can be invalid and thus 

inconclusive. Statistical software has been developed that can quantify colocalisation. 

By considering pixels individually in separately gated images, such programs can 

accurately quantify the amount of colocalisation between two fluorescent labels.  
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In this study the analysis software ImageJ (Version 1.43) with the JACoP plugin (Figure 

2.15) was used
195

. This software allows the analysis of the colocalisation of two images 

using a number of standard analysis methods simultaneously. This study used the 

Costes’ randomization method, which utilises the Pearson’s correlation coefficient, to 

quantify colocalisation of fluorochrome labelled antigens in HUVECs. 

 

ImageJ (Version 1.43) with JACoP plugin 

 

Figure 2.15: The interface of ImageJ (Version 1.43) software with the JACoP plugin. This software 

analyses two images for colocalisation using a number of standard colocalisation 

analysis methods simultaneously, such as the Pearson’s correlation coefficient (Rr) and 

Costes’ method
195

. 
 

 

The Pearson’s correlation coefficient (Rr) is a method that measures the covariance 

between the intensities of corresponding pixels in each gated image. The images are 

both analysed as grey for consistency. This statistical analysis is independent of 

background. Pearson’s correlation coefficient is also independent of pixel intensities for 

thresholds are automatically created for each gated image. The maximum intensity of an 
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image is used to set the image threshold. Results obtained from this analysis range from 

-1 (total negative correlation) to 1 (total positive correlation).  

 

The Costes’ method evaluates the statistical significance of the Pearson’s correlation 

coefficient obtained. This method compares the Rr observed from the original two 

images (r{original} or r{obs}) with an average Rr obtained from comparing scrambled 

(randomized) images of the two original images (r{randomized}) which have been 

created by shuffling pixel blocks
196

. An image that has undergone Costes’ 

randomization can be seen in the bottom right of Figure 2.15. r{randomized} is an 

average of a comparison of 1000 pairs of scrambled original images, it is representative 

of events occurring due to chance. The r{obs} and r{randomized} are then compared to 

obtain a p-value. Results obtained from this analysis range from 0 (total negative 

correlation) to 1 (total positive correlation). 

 

2.9.4: Förster Resonance Energy Transfer 

The Förster (or Fluorescence) resonance energy transfer (FRET) technique allows the 

quantification of the association between fluorescently labelled molecules ≤10nm apart. 

FRET microscopy works by capturing the interaction between labelled molecules when 

they are in close proximity, and then using this to calculate their distance relative to one 

another. Since FRET only occurs if the fluorochromes are ≤10nm apart, its detection 

has the effect of extending the resolution of fluorescence microscopy to the molecular 

level. This uncovers cellular localisations which were previously undetectable.  

 

FRET utilises the non-radiative energy transfer between two specifically selected 

different fluorophores that have been used to label two molecules of interest. These 
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molecules could be present in a number of forms such as in solution or in/on single 

living or fixed cells. Energy transfer occurs from an excited donor fluorophore to an 

appropriate acceptor fluorophore
197

. This transfer of energy from one fluorophore to 

another can only occur when these are ≤10nm apart.  

 

The rate of energy transfer is inversely proportional to the sixth power of the distance 

between the donor and acceptor
198,199

. The efficiency of energy transfer (E) is defined 

with respect to r and R0, the characteristic Förster distance by:  

 

 

E= 1/[ 1 + (r/ R0)
6
]   

Kenworthy et al. (1998)
198

. 

 

R0 is the Förster distance of the donor/acceptor pair. This is a constant that represents 

the distance at which the energy transfer efficiency between the fluorophores is 50%. 

The Förster distance varies between different donor/acceptor pairs. 

 

Due to the nature of FRET the fluorophores have to be carefully selected to achieve an 

appropriate donor and acceptor fluorophore pair, referred to as a donor/acceptor pair. 

The emission wavelength from the donor has to be of the wavelength that excites the 

acceptor, the wavelength the acceptor absorbs, and therefore these have to overlap 

(Figure 2.16).  
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Figure 2.16: Schematic diagram showing the overlapping (yellow) of donor emission (red) and 

acceptor absorption (blue) spectra indicating an appropriate fluorophore pair for FRET. 

The emission wavelength from the donor has to be of the wavelength that excites the 

acceptor, the wavelength the acceptor absorbs, and therefore these have to overlap. 

FRET will only occur when donor and acceptor fluorophores are ≤10nm apart. 
 

The donor fluorophore is excited by a laser which causes emission of light. If the 

acceptor fluorophore is ≥10nm apart from the donor this energy will be released as light 

unaffected by the acceptor. However, if the acceptor is ≤10nm in distance from the 

donor then two scenarios occur. Assuming a donor/acceptor pair, the emission 

wavelength of the excitated donor fluorophore is sufficient to excitate the acceptor 

fluorophore, when these are ≤10nm apart, causing emission of light from the acceptor. 

The emitted light of the acceptor will be of a set known wavelength band and can be 

collected and quantified. Another result of FRET is a reduction in donor fluorophore 

emission on excitation. If donor and acceptor are ≤10nm apart, a portion of the energy 

emitted from the excitated donor fluorophore will be absorbed by the acceptor 

fluorophore. This will also have the effect of reducing the light emission and excited 

state lifetime of the donor fluorophore for the energy has gone into acceptor excitation. 

The change in donor emission can be used to quantify FRET. 

 

In this study, FRET was quantified using a method as previously described
198,199

. FRET 

was calculated by measuring the change in donor (Cy3) emission following acceptor 

(Cy5) bleaching. By bleaching the acceptor you are in effect removing the fluorophore. 
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If the acceptor is bleached (removed) then FRET will no longer occur between the pair 

and thus donor emission will no longer be sequestered. If the donor/acceptor pair are 

≤10nm apart then donor emission will increase after bleaching of the acceptor. The 

association between the donor/acceptor pair was calculated using: 

 

E(%) x 100 = 10,000 x [(Cy3 post-bleach – Cy3 pre-bleach)/Cy3 postbleach] 

Scaling factor of 10,000 was used in order to expand E to the scale of the 12-bit images. 

 

2.9.4.1: FRET Protocol 

HUVECs were seeded on 8 well glass slides (Lab-Tek™ Chamber Slide™ System 

{Section 2.9.1}). Donor acceptor pair used was Cy3 and Cy5 (Table 2.1). Cells labelled 

only with the 26ic-Cy5 probe were used in order to determine the minimum time 

required to bleach Cy5. Cy5 was bleached by continuous excitation with an arc lamp 

using a Cy5 filter set for 5 minutes. Under these conditions, Cy3 was not bleached. The 

cells were rinsed twice in PBS/0.02% BSA/0.02% NaN3, prior to fixation with 4% PFA 

for 15 minutes. HUVECs were labelled with 100µl of a mixture of donor conjugated 

antibody (Cy3) and acceptor conjugated antibody (Cy5). Cells were imaged on a Carl 

Zeiss LSM510 confocal microscope (with an Axiovert 200 fluorescent microscope) 

using a 1.4 NA 63x Zeiss objective used in conjunction with Zeiss LSM 2.5 analysis 

software. Cy3 and Cy5 were detected using the appropriate filter sets. Using typical 

exposure times for image acquisition (less than 5 seconds), no fluorescence was 

observed from a Cy3-labelled specimen using the Cy5 filters, nor was Cy5 fluorescence 

detected using the Cy3 filter sets. Zeiss LSM 2.5 analysis software processed the FRET 

images using:  

E(%) x 100 = 10,000 x [(Cy3 postbleach – Cy3 pre-bleach)/Cy3 postbleach] 
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2.10: Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is used for 

the separation of proteins according to length which is relative to weight. This method 

can be used for many things such as to determine protein abundance, identify a protein, 

determine protein size, find the number of proteins present and find the purity of a 

sample.  

 

The proteins in a sample will have a number of differences including length, shape, 

weight and charge. For SDS-PAGE to work correctly the proteins must be put on a level 

playing field. SDS is an anionic detergent that disrupts the hydrogen bonds and Van der 

Waal's interactions in proteins, and also breaks down cell membranes. This destroys the 

secondary, tertiary and quaternary structures of the protein causing them to become 

linear. The resulting negative charge of any protein is relative to their size, for the 

number of anionic SDS molecules that bind is proportional to the number of amino 

acids in the polypeptide. This acts to calibrate the assay so that you are mostly looking 

at protein size. 

 

The separation of the proteins occurs in the polyacrylamide gel, which is made up of 

many acrylamide monomers that create a sieve like matrix through which the proteins 

have to pass. The negative charge of the proteins are utilised to pull them through the 

gel by application of voltage. The cross-linked matrix makes it difficult for molecules to 

move through the polyacrylamide gel, the smaller proteins have an advantage due to 

their size and thus will move furthest through the gel toward the positive terminal 

(Figure 2.17B). 
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SDS-PAGE apparatus 

 
Figure 2.17: Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) apparatus. 

SDS-PAGE is a technique for separating proteins in relation to size which is relative to 

weight. The application of voltage pulls negatively charged denatured proteins through 

a cross-linked polyacrylamide gel matrix. Smaller proteins have an advantage due to 

their size and move furthest through the gel matrix toward the positive terminal. Larger 

proteins do not migrate as far as smaller proteins, over a set time. Adapted from: 

www.library.csi.cuny.edu/~davis/Bio_327/lectures/protein_nucleicAnal/protein_nucleic

Anal.html (22/03/06). 

 

 

Pore size within the matrix can be manipulated by varying the concentration of 

Acrylamide/Bis in a gel mixture. This allows the selection of a gel that will suit your 

sample. For example, a mixture of small proteins would best suit a higher 

Acrylamide/Bis % gel (smaller pore size) so that they separate effectively and do not 

run off the gel easily. In this study a 10% gel was used. The gel is made up in liquid 

form and can be easily poured into appropriate casts to set. The polymerisation of the 

gel is caused by ammonium persulfate (APS) and N,N,N’,N’-tetra- 

methylethylenediamine (TEMED). Once these chemicals are added the gel forms cross 

links creating the sieve like matrix required. 
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For SDS-PAGE analysis in this study the Mini-PROTEAN 3 apparatus (BioRad) was 

utilised (Figure 2.18).  

 

 

Mini-PROTEAN 3 apparatus (BioRad) 

 

Figure 2.18: The Mini-PROTEAN 3 apparatus (BioRad) was used to run sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE). www3.bio-rad.com/cmc_upload/ 

Literature/44432/4006157B.pdf  (22/01/10). 

 

 

2.10.1: Casting SDS-PAGE gels 

Gels were cast in 1mm width casts. The resolving gel (1.5M Tris-HCL, 10% SDS, 

Acrylamide/Bis {Severn Biotech}, 10% APS {Sigma}, TEMED {Sigma} and dH2O) 

mixture was made up leaving the addition of APS and TEMED until last. Once the APS 

and TEMED were added the liquid gel was immediately placed into the cast leaving 

adequate room for the teeth of the comb (to create the loading wells). On top of this 
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approximately 500µl isobutanol was added to make the gel surface smooth and flat. The 

gel was left to set at room temperature for 45 minutes. The isobutanol was then poured 

off and then the gel was rinsed with distilled water. The 4% stacking gel (0.5M Tris-

HCL, 10% SDS, Acrylamide/Bis, 10% APS, TEMED and dH2O) mixture was made up 

leaving the addition of APS and TEMED until last. This was then placed on top of the 

set resolving gel. A 1mm, 10 teethed comb was placed in the stacking gel mixture to 

create wells for the samples. The gel was left to set at room temperature for 45 minutes. 

 

Once the stacking gel had set, the comb was removed and the gels were placed into the 

electrophoresis tank (BioRad). X1 running buffer solution (25Mm Tris, 192mM glycine 

and 0.1% {w/v} SDS, pH8.3) was then placed into the tank. 

 

2.10.2: Sample preparation 

ECV304 cells were lysed in 25cm
2
 flasks (Nunc) with 1ml X2 reducing sample buffer 

(Appendix) for 4 hours on the work top shaker and then frozen at -20˚C for a minimum 

of one night. Primary HUVECs were lysed in 24-well plates (Nunc) with 200µl X2 

reducing sample buffer for 4 hours on the work top shaker and then frozen at -20˚C for 

a minimum of 24 hours. 

 

2.10.3: Running samples 

50µl of the lysed samples and 21µl of the molecular weight marker (1µl biotinylated 

SDS-PAGE broad range standard {BioRad} in 20µl reducing sample buffer) were 

placed in eppendorf tubes and boiled in a water bath for 10 minutes. Once let to cool for 

approximately 5 minutes, 30µl of the samples were placed in their respective wells in 

the polyacrylamide gel. The gel was run at 200V constant for 45-50 minutes within X1 

running buffer solution (BioRad).  
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Once samples have ran through the polyacrylamide gel it was removed and placed on 

transfer (Section 2.11) so that the proteins migrate into a nitrocellulose membrane. The 

membrane was then labelled and imaged via enhanced chemiluminescence (ECL 

{Section 2.12}). 

 

2.10.4: Coomassie blue staining of SDS-PAGE gel 

Coomassie blue, or coomassie brilliant blue G-250, stain binds non-specifically to 

nearly all proteins through van der Waal`s force interactions with amino acids such as 

histidine, arginine, lysine and tyrosine. Coomassie blue staining is used for a number of 

purposes such as protein concentration determination, via the Bradford protein assay, or 

visualization of protein bands on SDS-PAGE gels. In this study coomassie blue staining 

was used to visualize protein bands separated in SDS-PAGE gels. 

 

2.10.4.1: Coomassie blue protocol  

The SDS-PAGE gel was removed from the electrophoresis glass plates and placed in 

fixing solution (Appendix) overnight. The gel was removed from the fixing solution and 

then submerged in coomassie blue for 60 minutes. The coomassie blue (Appendix) was 

removed and the gel was washed with de-stain (Appendix) with changes at every 10 

minutes until stained protein bands could be observed. The optical densities of the 

bands were quantified using a densitometer (GS-700 imaging densitometer {BioRad}). 

 

 

2.11: SDS-PAGE gel transfer 

Following SDS-PAGE (Section 2.10) the gel is removed and undergoes an electroblot. 

The proteins are transferred into a portion of nitrocellulose membrane in the same 

formation as they were in the gel. The gel transfer mechanism uses the same method as 
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SDS-PAGE to pull proteins, or nucleic acids, out of the polyacrylamide gel matrix and 

into the nitrocellulose membrane (Figure 2.19).  

 

Electroblot layout 

 
Figure 2.19:  Electroblotting layout. Electroblotting is used to pull proteins from a polyacrylamide 

gel onto a nitrocellulose membrane. The direction of transfer/protein movement is 

illustrated by black arrow (left). The protein is pulled out of the polyacrylamide gel 

(yellow) into the nitrocellulose membrane (blue), from a negative to positive charge. 
 

Once in the membrane the sample is accessible to labelling and analysis via a number of 

methods, such as: fluorescent detection, radioactive detection, colorimetric detection 

and chemiluminescence. These techniques allow one to view the position and relative 

concentration of a specific protein.  

 

Transfer apparatus 

 
Figure 2.20: Bio-Rad transfer apparatus. www.bosch.org.au/facilities/molecularbiology/Western 

Blot/WesternBlot.jpg (23/01/10). 
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2.11.1: Transfer protocol 

After SDS-PAGE the poly acrylamide gel was removed and placed on transfer using the 

Mini Transblot system form BioRad. The gel was placed in a transfer cassette on top of 

a porous pad, two pieces of blotting paper and a nitrocellulose transfer membrane 

(Whatman Protran), in that order (Figure 2.20). Two pieces of blotting paper and then a 

porous pad were placed on top of the membrane. All components of the transfer 

construction were previously soaked in transfer buffer (20nM Tris acetate, 0.1% SDS, 

20% isopropanol, pH 8.3). The cassette was closed and placed into the transfer tank. An 

ice block was placed inside the tank along with the cassette and then it was filled to the 

top with transfer buffer. The power pack was set to run at 220mA constant for 55 

minutes.  

 

2.12: Enhanced chemiluminescence 

Enhanced chemiluminescence (ECL) is a very sensitive and fast procedure.  This 

method utilises light emitted from an enzymatic reaction to image a protein of choice. 

After a protein sample has been separated by SDS-PAGE (Section 2.10) and transferred 

onto a solid support (Section 2.11), the target protein is then labelled either directly or 

indirectly with an antibody that is conjugated to an enzyme. Horse radish peroxidase 

(HRP) was used in this study (Table 2.1). The exposure of a luminol based substrate 

(ECL reagents) to the HRP label causes a light emitting reaction that can be visualized 

when exposed to high performance chemiluminescence film. 

 

 

 

 

 



93 

 

 

Enhanced chemiluminescence by indirect labelling 

 

Figure 2.21:  Enhanced chemiluminescence (ECL).  Indirect labelling. The nitrocellulose membrane 

was labelled with primary (yellow) and horse radish peroxidise (HRP {red}) conjugated 

secondary antibody (green). HRP catalyzes the oxidation of luminal and light (blue) is 

emitted and detected (black) on film (grey). Adapted from: www1.gelifesciences 

.com/Images/ps/ figure1t.gif (25/01/10). 

 

NF-κB, the downstream transcription factor of the TLR pathway, is held in an inactive 

form in the cytoplasm by members of the inhibitor of NF-κB (IκB) family. 

Phosphorylation of IκB leads to IκB polyubiquitylation that labels the NF-κB inhibitor 

for proteasomal degradation which in turns releases NF-κB from inhibition which can 

then translocate to the nucleus and upregulate inflammatory genes (Section 1.3.6). Thus 

the presence of phospho-IκB illustrates the activation of the TLR signalling pathway, 

demonstrating an immune response. In this study ECL was utilised to image both 

phospho-IκB and total-IκB. Total-IκB levels were viewed as a control to demonstrate 

equal loading. Indirect immunofluorescence was used to probe the nitrocellulose 

membrane where the secondary antibodies were conjugated to HRP. 

 

2.12.1: Labelling the nitrocellulose membrane 

The nitrocellulose membrane was removed from transfer and rinsed twice with X1 PBS 

TWEEN (Appendix) and then placed in blocking buffer (Appendix) on rotary for 1 

hour. The membrane was then washed for 1 hour in X1 PBS TWEEN with two rinses 
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every 15 minutes. The membrane was then placed in low volume containers and were 

submerged in 9ml 1:1000 of either or Phospho-IKappaB-alpha (Ser 32) rabbit (Cell 

Signalling technology) or IKappaB-alpha (C-term) mouse (Cell Signalling technology) 

primary antibodies in X1 PBS TWEEN (Table 2.1).  The membrane was left on rotary 

at room temperature for 4 hours and left in the fridge overnight. The next day the 

membrane was washed for 30 minutes with X1 PBS TWEEN with two rinses every 15 

minutes. The membrane was then placed in low volume containers and was submerged 

in 9ml 1:2000 HRP-conjugated secondary antibody (DAKO Cytomation) in X1 PBS 

TWEEN (Table 2.1). The membrane was left on rotary at room temperature for 45 

minutes. 30 minutes into the incubation with secondary antibody streptavidin-HRP 

conjugate (GE Healthcare) 1:1500, was added for 15 minute incubation with the 

membrane. At 45 minutes after addition of the swine anti-rabbit HRP secondary 

antibody the membrane was removed and washed for 2 hours in X1 PBS TWEEN with 

two rinses every 15 minutes. After two hours washing, the membrane was ready for 

developing by enhanced chemiluminescence (ECL). 

 

2.12.2: ECL protocol 

ECL western blotting detection reagents A and B (GE Healthcare) were mixed in a 1:1 

ratio (3ml total for one membrane). A dark room was utilised for film processing. 

Membranes were placed face up on Saran wrap and then covered with the detection 

reagents. The membranes were then incubated at room temperature for 1 minute. Once 

the reaction had commenced the membranes were transferred to a fresh piece of Saran 

wrap, flipped over and wrapped up ensuring only one sheet of Saran wrap was covering 

the face of the membrane. The membrane was placed in a developing cassette where 

high performance chemiluminescence film (Hyperfilm
TM

 from GE Healthcare) was 
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exposed to it. An initial exposure of 2 minutes was performed; film developed, fixed 

and analysed in order to optimise exposure time (repeated if necessary). 

 

2.12.3: Stripping nitrocellulose membrane 

In order to re-probe the membrane with a different primary antibody, it is possible to 

strip the membrane and reprobe. Submerge in stripping buffer (100mM β-

mercaptoethanol, 2% SDS, 62.5mM Tris-HCl, pH 6.7) 10 minutes at 37˚C.  

 

2.13: Transfection  

Cell transfection is the introduction of nucleic acids into a cell using non-viral methods. 

Due to the use of non-viral methods of material transfer the term transformation is also 

widely accepted. This process can be used for a number of purposes such as to change 

the protein expression of a cell (upregulate/downregulate) in order to: elucidate its role 

in cell function, mass produce a protein for therapeutic purposes, mass produce a 

protein for research purposes or introduce a cell marker to a cell line. 

 

There have been a number of different protocols created in order to transform a cell 

line; these can be divided into physical and biochemical methods. Physical methods 

include electroporation where high voltage shock creates temporary holes in the 

membrane allowing nucleic acid entry, heat shock and micro-injection where material is 

directly injected into the cell. Biochemical methods include the use of calcium 

phosphate, DEAE-dextran promoting endocytosis, and liposome mediated introduction 

of nucleic acids through the formation of lipoplexes which fuse with and enter through 

the cell membrane. 

 

Transfections can be either transient or stable. With transient transfections the cell 

phenotype is lost during mitosis, and therefore has a limited effect. In this study the 
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transient transfection of HUVECs was used. Stable transfections involve the integration 

of a gene into a cells genome which is then replicated during mitosis, passing on the 

phenotype to the daughter cells. In this study a number of HEK293 cell lines were used 

that had been stably transfected to express various desirable phenotypes. The 

transfection reagent jetPEI™-HUVEC was used in this study for the transfection of 

primary HUVEC. HUVECS were transformed with CD36 shRNA plasmids in order to 

knockdown their expression by RNA interference (RNAi). The jetPEI™-HUVEC 

reagent has been optimized for the transfection of primary human endothelial cells. 

 

2.13.1: RNA interference 

RNA interference (RNAi) was first described by Fire and Mello in 1998 who later won 

The Nobel Prize in Physiology or Medicine 2006
200

. RNAi involves the control of genes 

at the level of RNA. In this study HUVECS were transformed with TLR2, TLR4 and 

CD36 shRNA plasmid DNA in order to knockdown their expression. The plasmid is 

transcribed producing shRNA, this is processed by the Dicer class of RNase III 

enzymes into siRNA, removing the hairpin and leaving a two nucleotide long 3' 

overhang. The siRNA is then bound by siRNA-induced silencing complex (siRISC) 

which has an RNase component (argonaute), which is activated and sets about 

degrading one of the siRNA strands. The strand left intact, with RISC attached, is 

complimentary to and binds endogenous target mRNA. This complex not only prevents 

translation of the mRNA but also when bound the RNAse component of RISC leads to 

cleavage and degradation of the target mRNA (Figure 2.22).  
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Gene silencing by RNAi 

 

Figure 2.22: Gene silencing by siRNA. Transfection of shRNA plasmid DNA into a mammalian cell 

leads to the cleavage and degradation of the target mRNA causing knockdown of gene 

expression.www.scbt.com/sv/images/en/gene_silencers/shrna_plasmids.png (27/01/10). 
 

2.13.2: Plasmid purification 

The purification of the CD36 plasmids required a number of steps. Initially these were 

transformed into the competent E.coli strain, E.coli GT116. The transformed cells were 

expanded and lysed. The plasmids were then purified from the lysate and then 

concentrated and sterilised. 
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2.13.2.1: Transfection of E.coli GT116 cells 

5µl of plasmid encoding CD36 shRNA {Santa Cruz} was added to 100µl of competent 

E.coli GT116 cells (Autogen Bioclear). These were gently mixed and incubated on wet 

ice for 30 minutes. Cells were heat shocked for 60 seconds at 42ºC in a heat block, and 

immediately placed back on wet ice for 2 minutes. 500µl Luria broth (Appendix) was 

added to the transformed cells and then these were incubated at 37ºC for 60 minutes at 

125RPM. 100µl of transformed cells were then plated on Puromycin (10µg/ml) 

incorporated agar. Plates were left to grow overnight in an incubator shaker at 37ºC at 

125RPM.  

 

2.13.2.2: DNA isolation 

Sterile conditions were practiced throughout this procedure. Eight separate colonies 

were selected with toothpicks from transfected cell agar plates and placed in different 

25ml vials of Puromycin (10µg/ml) incorporated luria broth. These were grown 

overnight 37ºC at 125RPM. The 25ml transformed cells were spun at 1880g 4ºC for 10 

minutes to pellet the cells. The resulting supernatant was poured off, removing as much 

as possible with minimal disruption of the pellet. The pellet was re-suspended in 400µl 

STET buffer (Appendix). The cells were transferred into a sterile 1.5ml eppendorf tube. 

10µl of lysozyme (50mg/ml {Sigma}) was added and the sample was then immediately 

boiled for 60 seconds. The eppendorf tube was then placed on wet ice for 5 minutes. 

The tube was spun for 30 minutes at 135g RT and the resulting pellet removed and 

discarded. 5µl of RNase A (20µg/ml {Sigma}) was placed in the supernatant and then 

the tube was incubated at 42ºC for 30 minutes. 500µl of phenol was added, the mixture 

vortexed and then spun for 15 minutes at 135g RT. The upper aqueous phase was 

removed and placed in a 1.5ml sterile eppendorf tube. 500µl of chloroform lisoamyl 
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alcohol was added, the mixture vortexed and spun for 15 minutes at 135g RT. The 

upper aqueous phase was removed and placed in a 1.5ml sterile eppendorf tube. 20µl of 

2M NaAc and 1000µl of ethanol was added to the tube. The sample was then stored at -

80ºC overnight. The following day the tube was spun for 20 minutes at 135g RT and the 

upper aqueous phase discarded. Another spin of 1 minute at 135g RT was performed 

and any supernatant removed. The DNA pellet was re-suspended in 80µl sterile dH2O. 

Plasmids were stored at -20ºC. 

 

2.13.3: Agarose gel electrophoresis 

Agarose gel electrophoresis is used to separate nucleic acids according to size. Agarose 

is a polysaccharide that forms an inert matrix that can be used as a sieve like medium 

through which molecules may be separated. Application of voltage across the horizontal 

gel pulls the negatively charged nucleic acids towards the anode. Smaller molecules 

have an advantage due to their size and thus will move furthest through the gel toward 

the positive terminal. 

 

Agarose gel cell 

 
Figure 2.24: Diagram illustrating an agarose gel unit. The nucleic acids run horizontally (arrow) 

through the agarose gel (grey). www.icampus.ucl.ac.be/courses/SBIM2520/document/ 

genemol/electrophorese/southern1.jpg (28/01/10). 
 

Agarose gel electrophoresis was used in this study in order to assess the purity of the 

plasmid preparations. 
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2.13.3.1: Agarose gel electrophoresis protocol 

A 1% agarose w/v gel was set in a gel cast. A comb was submerged into the liquid gel 

at one end to create wells for loading samples. The gel was left to set for 45 minutes. 

The comb was removed and the gel was placed in the running tank. The tank was 

topped up with ELFO running buffer (Appendix), covering the gel. 10µl of the sample 

was mixed with 5µl ELFO loading buffer (Appendix) and then pipetted into a well. 5µl 

of the 1Kb DNA ladder (New England BioLabs {500µg/ml}) was mixed with 10µl 

ELFO loading buffer and then pipetted into a well. Samples were run at 100V until dye 

nearly runs off gel. Bands were observed using a Stratagene eagle eye UV imager. 

 

2.13.3.2: Plasmid digestion 

To ensure double bands observed on agarose gels were oligomers not impurities the 

plasmids were digested prior to running the agarose gel. Known restriction sites were 

utilised. In this study HIND III digestion was performed. During digestion the plasmids 

would become linear and the oligomers would dissociate. An agarose gel of a pure 

digested plasmid sample produces one solid band on the imaged gel. 

 

2.13.3.2.1: HIND III digestion 

To an eppendorf tube, 5µl plasmid, 2µl ELFO loading buffer, 12µl dH2O and 1µl HIND 

III enzyme (New England BioLabs) were added. This was left for 1 hour at 37˚C. The 

sample was then run on an agarose gel (Section 2.13.3.1). 

 

2.13.4: HUVEC transfection 

HUVEC cells were transfected with CD36 silencing plasmids. Transfected cells were 

stimulated as normal in order to elucidate their role in the HUVEC immune response. 
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2.13.4.1: Cell seeding 

For optimal transfection efficiency HUVECs were required at 50-60% confluency for 

this procedure. 24 hours prior to transfection a confluent 24 well plate of HUVEC was 

split into two plates using M199 (GIBCO) and RPMI 1640 (GIBCO) medium (v/v), 

supplemented with 30% foetal calf serum (FCS {Biosera}). Cells were incubated for 18 

hours at 37˚C with 5% CO2 in a humidified atmosphere. 

 

2.13.4.2: Preparation of CD36 plasmids  

Plasmid, 4µl, was diluted in 50µl NaCl 150mM, vortexed and then spun down briefly. 

Separately 8µl of jetPEI™-HUVEC was then diluted in 50µl NaCl 150mM, vortexed 

and spun down briefly. The jetPEI™-HUVEC/NaCl was then immediately added to the 

plasmid/NaCl mixture. This was then vortexed and spun down briefly. The mixture was 

incubated at room temperature for 30 minutes prior to transfection. 

 

2.13.4.3: HUVEC Transfection with CD36 plasmid  

Cells were washed with 500µl X1 PBS. 200µl of DMEM-1000 (GIBCO) supplemented 

with 2% FCS (Biosera) was then added to each well. 100µl of the plasmid/jetPEI™-

HUVEC mixture was then added to each well. The plate was gently shaken and then 

incubated at 37˚C with 5% CO2 in a humidified atmosphere for 4 hours. After the 

incubation the transfection medium was removed and then replaced with selection 

media containing the appropriate antibiotic (Medium 200/30% FCS/10µg/ml 

Puromycin). Cells were left in the selection medium for 24 hours. Receptor expression 

assay and stimulations were carried out at 24 hours in 200µl SFM (GIBCO).  

 

2.14: Lipid raft disruption 

The plasma membrane of mammalian cells is discontinuous in that it contains 

microdomains that are involved in the recruitment and concentration of molecules 
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concerned with cellular signalling. These sphingolipid and cholesterol-enriched 

microdomains are known as lipid rafts, and have been shown to be essential for a 

number of cellular signalling cascades. Lipid rafts allow the congregation of receptors, 

co-receptors and their signal transduction machinery required for an appropriate signal 

in response to a stimulus. For this reason the disruption of lipid rafts can be used to 

knockdown a group of cellular signalling cascades to elucidate the role of their up-

stream receptors in the detection of certain ligands. 

 

Lipid raft disruption can be achieved by using raft-disrupting drugs, such as Nystatin or 

methyl-beta-cyclodextrin (MCD). Nystatin and MCD have been shown to disorder 

receptors, co-receptors and their signal transduction machinery
201

. Nystatin is a fungal 

metabolite that binds membrane cholesterol and disrupts raft integrity
202

. MCD works 

by disrupting protein associations with lipid rafts
203

. In this study, PRR signalling was 

disrupted in ECV 304 and primary HUVEC lines using Nystatin. 

 

2.14.1: Lipid raft disruption protocol 

Primary HUVECs seeded in 24 well plates (NUNC) were washed with 1ml sterile X1 

PBS then placed in 500µl SFM (GIBCO). Nystatin (60µg/ml {Sigma}) was added. The 

cells were left to incubate at 37°C in a 5% CO2 in a humidified atmosphere for 10 

minutes. Immediately after the incubation the cells were washed and then stimulated. 

 

HUVECs seeded in 8 well glass slides (Lab-Tek™ Chamber Slide™ System) were 

washed with 500µl sterile X1 PBS then placed in 200µl SFM. Nystatin (60µg/ml) was 

added. The cells were left to incubate at 37°C in a 5% CO2 in a humidified atmosphere 

for 10 minutes. Immediately after the incubation the cells were stimulated. Nystatin 

cytotoxcity was analysed using the trypan blue viability test (Section 2.4). 
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2.15: Affinity chromatography 

Affinity chromatography is a technique which uses reversible biospecific reactions that 

allows the purification, extraction and separation of biologically active material. This 

techniques was introduced in 1968 by Cuatrecasas, Wilchek and Anfinsen who 

illustrated the rapid and complete purification of staphylococcal nuclease, a-

chymotrypsin and carboxypeptidase A
204

. Specific properties of biomolecues such as 

charge, hydrophobicity and ligand specificity are utilised in order to selectively bind 

them from a sample. A selection tool specific for the unique property of the protein of 

choice is coupled to an insoluble chromatography matrix. When the sample is passed 

through the matrix the protein is sequestered from the crude mixture. The interaction 

between the target protein and ligand is reversible as to allow the collection of the 

protein on elution of the column. Elution buffers reverse the biospecific interaction 

between the ligand and chromatography matrix allowing collection of the ligand. 

Ligands used in affinity chromatography include antibodies, metal ions, enzymes, 

hormones and nucleic acids. 

 

Examples of affinity chromatography techniques 

 

Figure 2.25: Affinity chromatography. Allows purification of a biologically active material from a 

crude sample using specific properties such as; (A) charge (B) hydrophobicity and (C0 

ligand specificity. Affinity Chromatography, Principles and Methods. Amersham 

biosciences. 18-1022-29 (07/01/10). 
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2.15.1: His-tagged protein purification 

Immobilized metal ion affinity chromatography (IMAC) using HisTrap™ HP columns 

(GE Healthcare) was used for the purification and concentration of HSP70. IMAC 

works on the basis that immobilized metal ions (Co
2+

, Ni
2+

, Cu
2+

 and Zn
2+

) have 

preferential binding of certain protein properties. These properties can be native or 

introduced into the protein in the form of a tag. Ni
2+

 has a high affinity for histidine 

(His) residues. HSP70 is a His-tagged fusion protein which enhances its selection from 

the crude sample mixture. In this study HisTrap™ HP columns pre-packed with Nickel 

(Ni) Sepharose™ High Performance were used for HSP70 w-t purification. HisTrap™ 

HP columns allow easy high performance purification of His tagged proteins.  

 

HisTrap™ HP columns 

 
Figure 2.26: HisTrap™ HP 1-ml and 5-ml columns. HisTrap columns are used for the purification of 

histidine-tagged proteins.  www4.gelifesciences.com/aptrix/upp01077.nsf/Content/ 

Products?OpenDocument&ModuleId= 165701 (07/01/10). 
 

The crude sample mixture is passed into the equilibrated column which has been pre-

packed with Ni Sepharose™ High Performance. Native and marker His groups have a 

high affinity for, and reversibly bind to, the immobilized metal ion. Elution buffer 

containing an excess of imidazole is passed through the column which displaces the 

His-tag from the Ni
2+

 ion releasing the His-tagged protein. 
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His-tagged protein purification 

 

Figure 2.27: His-tagged protein purification using a HisTrap™ HP column. Ni is immobilized on the 

Sepharose matrix (A). The column is equilibrated (B), the sample is passed through the 

column and the His tag reversibly binds to the immobilised Ni ions (C), elution buffer 

containing imidazole breaks this interaction and releases the His-tagged protein (D). 

http://fachschaft.biochemtech.uni-halle.de/downloads/chromatography/affchr.pdf 

(07/01/10). 

 

2.15.1.1: Expression and extraction of heat shock protein 70 

In sterile glass vials 25µl ampicillin (Fisher BioReagents) was added to 25ml luria broth 

(Appendix) creating selection media. E.coli GT116 (Autogen Bioclear) colonies 

expressing HS70 ({Kindly supplied by Professor C. Lingwood of the University of 

Toronto}), and thus ampicillin resistance, were selected from a pre-cultured agar plate 

with a tooth pick. The tooth pick was then vigorously stirred and dropped into the luria 

broth vial. The vial was then placed into a 37ºC rotatory incubator at 130RPM overnight. 

Two larger luria broths were prepared by adding 500µl ampicillin (Fisher BioReagents) 

and 250µl IPTG (Fisher BioReagents) into autoclaved (180ºC) 500ml luria broth glass 

bottles. Half the 25ml luria broth E.coli GT116 culture was then poured into each of the 

second stage 500ml luria broths. The broths were then placed into a 37ºC rotatory 

incubator at 130RPM for 5 hours. The 500ml broths were then centrifuged at 4970g in a 

4ºC centrifuge for 20 minutes. The pellets were re-suspended in 10ml lysis buffer 

(Appendix) and placed in 50ml tubes, the centrifuge container was washed out with a 
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further 10ml lysis buffer and this was also added to the 50ml tube. The lysed E.coli 

GT116 cells were then frozen (-20ºC) and thawed 6 times. Tubes were vortexed 

vigorously between freezing and thawing. The tubes were then centrifuged at 735g in a 

4ºC centrifuge for 60 minutes. The supernatant was placed in a sterile 50ml tube. The 

pellet was discarded. The supernatant was purified using HisTrap™ HP Columns (GE 

Healthcare). 

 

2.15.1.2: Heat shock protein 70 purification 

Binding buffer (5ml {Appendix}) was passed through the HisTrap™ HP 1ml Columns 

(GE Healthcare) using a sterile 5ml syringe, the waste was discarded. 2mls of HSP70 

lysate was then passed into the column at 1 ml/minute and left to incubate for 2 minutes. 

5ml binding buffer (Appendix) was then passed through the column, the waste was 

discarded. 4mls elution buffer (Appendix) was then passed through the column, the 

elution was collected in sterile glassware. This process was repeated until all lysate had 

been passed through the column. Purified HSP70 w-t was collected and stored in sterile 

glassware at pH7 at 4ºC. Concentration was determined via spectrophotometry. 

 

2.16: Protein concentration 

To concentrate purified proteins 10kDa cut off Centriprep centrifuge concentrators 

(Amicon) were utilised. Centriprep concentrators consist of two tubes, one housed in 

the other (Figure 2.30). The base of the internal tube has a permeable membrane that 

allows molecules through which are 10kDa or smaller, retaining the protein in the 

external tube. During centrifugation the centrifugal force pushes anything that is 

≤10kDa through the membrane into the internal tube. The sample remains in the 
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exterior tube whilst the waste runs through the membrane into the internal tube and is 

discarded.  

 

Centriprep concentrators  

 

Figure 2.30: Centriprep concentrators. During centrifugation (735g 4ºC for 40 minutes) the 

centrifugal force pushes anything that is ≤10kDa through the cut off membrane into the 

internal tube. Internal tube = waste. External tube = purified sample. 

 

2.16.1: Centriprep protocol 

Sterile 10kDa cut off Centriprep concentrators (Amicon) were filled to the “fill point” 

(Figure 2.30) with purified sample. The concentrators were then placed in the centrifuge 

and spun at 735g for 40 minutes at 4ºC. The content of the internal tube was discarded. 

The content of the exterior tube was placed back into the original elution and any 

precipitate re-suspended. This process was repeated until approximately 1-2ml of 

purified and concentrated protein remained. Sterile X1 PBS was used for buffer 

exchange with the protein sample. X1 PBS was filled to the “fill point” and the 

Centriprep concentrator was spun at 735g for 40 minutes at 4ºC. This was performed 

three times with an end sample of approximately 1-2ml. Protein concentration was 

determined by spectrophotometry. 
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2.17: Endotoxin removal 

Bacterial endotoxin contamination has proven a big problem in research, especially in 

the field of immunology. When expressing a protein in an E.coli strain, for example, 

endotoxin from the bacteria can easily contaminate the purified product. Any cell 

stimulations performed with the contaminated protein will have a double effect of the 

protein itself and the contaminant, producing invalid data. To avoid this problem 

endotoxin can be removed by either: ultra-filtration, ion exchange chromatography, two 

phase extraction or ligand specificity chromatography. In this study the Profos 

EndoTrap® blue 10 (Hycult Biotechnology) protocol was used to remove endotoxin 

from purified protein samples, this assay utilizes ligand specificity chromatography. 

 

Profos EndoTrap
®
 blue is an affinity matrix that is designed to remove bacterial 

endotoxins from aqueous solutions, even at low endotoxin concentrations. Pre-packed 

columns have the EndoTrap blue ligand covalently bound to beaded agarose. The 

EndoTrap blue ligand is highly specific for bacterial endotoxin and has very low non-

specific binding, giving high sample yields free of endotoxin. 

 

 

EndoTrap kit 

 

Figure 2.31: Profos EndoTrap
®
 blue 10 (Hycult Biotechnology) kit. Bacterial endotoxin is removed 

from aqueous solution by ligand specific affinity chromatography. www.jki.co.jp/ 

(08/01/10). 
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2.17.1: Endotoxin removal protocol 

Profos EndoTrap
®

 blue 10 assay columns (Hycult Biotechnology) were firstly 

regenerated. 3X the column volume of regeneration buffer (Hycult Biotechnology) was 

passed through the column and the elution discarded, this step was repeated. 3X the 

column volume of equilibration buffer (Hycult Biotechnology) was passed through the 

column and the elution discarded, this step was repeated. 1X the column volume of 

sample was passed into the column; the elute was collected in sterile glassware. 3X the 

column volume of equilibration buffer was then passed through the column and 

collected in the same sterile glassware. Endotoxin free sample was re-concentrated in 

sterile Centriprep concentrators (Section 2.16), to a final volume of 1-2mls. 

 

2.18: Animal model 

Animal models used in animal testing include both non-vertebrates and vertebrates. 

Non-vertebrates include the widely used Drosophila melanogaster and Caenorhabditis 

elegans. Vertebrates include animals such as mice, rats, guinea pigs, cats, dogs, fish, 

amphibians, larger domestic species such as pigs, goats, equines and primates including 

new and old world monkeys. 

 

In the selection of a model organism for a specific experiment a number of factors have 

to be considered. Preliminary in vitro data should be used to help select the model. 

Animal models can come in a number of varieties where they can be tailored for a 

specific experiment. Animals can be out-bred, in-bred, mutants or transgenic. Out-bred 

animals (“stocks”) are from closed undefined genetic colonies. These have good 

fertility, large litter sizes, are easy to mate, have a good growth curve and are usually 

relatively cheap. Inbred mice (“strains”) are compromised in these factors. However, 

their benefit is that they are ~99% homozygous as a result of ≥20 generations of brother 

sister inbreeding. Mutant animals are an out-bred stock with a mutant gene, these are 
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tricky to breed and maintain. Dominant and recessive mutations can have a number of 

effects, such as infertility and high birth mortality. Transgenic mice have had foreign 

DNA permanently incorporated into their genome resulting in, for example, the knock-

out (KO) of genes. These mice often require high levels of maintenance. For example, 

animals whose immune system is compromised may require a germ free environment. 

 

In this study the out-bred CD-1 male mouse was selected for an animal model of sepsis. 

AMD3100 and HSP70 were tested for their ability to reduce inflammation and lethal 

shock in the murine model of sepsis, by protecting or potentially reversing the 

progression of lethal sepsis in mice.  

 

 

2.18.1: The CD-1 mouse 

This study utilised out-bred CD-1 male mice at 6-8 weeks to produce an animal model 

of sepsis: as advised by Professor Mervyn Singer and Dr. Richard Hotchkiss who both 

have well established endotoxin CD-1 mouse models of sepsis. Mice were also selected 

for their good fertility, good growth curve, large litter size and the ease at which they 

can be bred.  

 

The CD-1 mouse 

 
Figure 2.32: The CD-1 mouse. In this study the CD-1 mouse was selected as an animal model of 

sepsis. They have good fertility, a good growth curve, a large litter size and are easy to 

breed. www.criver.com/ENUS/PRODSERV/BYTYPE/RESMODOVER/RESMOD/ 

Pages/CD1Mouse.aspx (02/02/10). 

 

LPS, AMD3100 and HSP70 were administered via intraperitoneal injection. 
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2.18.2: Intraperitoneal injection 

Intraperitoneal (i.p) injection is the injection of a substance into the peritoneal cavity. 

This allows large amounts to be injected producing a massive and rapid systemic 

immune response. The procedure is relatively quick and easy which reduces any stress 

and damage that may be caused to the animal. Reducing these factors also increases 

result validity and reliability. 

 

The mouse is restrained so that its head was facing away and downward with its 

abdomen exposed (Figure 2.33), this allows the intestines to be under less pressure to 

reduce chance of internal damage.  The needle is inserted, at a 30˚ angle, close to the 

midline on the animals right side horizontally in-line with the knees to a depth of 5mm 

(Figure 2.33). Injection to the right side places the needle at the sight of the small 

intestines: again reducing risk of internal damage for the needle is less likely to hit 

smaller structures.  

 

 

Intraperitoneal injection 

 

Figure 2.33: Intraperitoneal (i.p) injection administered to a mouse. The needle is inserted at a 30˚ 

angle, close to the midline on the animals right side horizontally in-line with the knees. 

www.bu.edu/research/compliance/lacu/lacf/sop/injection-techniques/intraperitoneal. 

shtml (02/02/10). 
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2.18.3: Injected substance concentration determination 

The concentrations of substances to be injected were determined with preliminary 

experiments. In order to determine whether HSP70 or AMD3100 protects against 

meningococcal septic shock, a mouse model had to be developed. The septic shock 

mouse model was designed to have 100% mortality at 24 hours post LPS 

administration. HSP70 and AMD3100 were tested to find optimum concentrations for 

protection against LPS endotoxin induced septic shock. 

 

2.18.3.1: Determination of LPS concentration for sepsis model 

Male CD-1 mice (6-8 weeks) were randomly grouped (5-10 mice per group) and 

injected by intraperitoneal (i.p) injection with different concentrations (50, 60, 70, 

80mg/Kg) of E.coli 055 LPS (List Biological Laboratories) using a sterile 1ml syringe 

(BD Plastipak™ {Becton Dickinson}) with a 25 GA1 0.5x25mm needle (BD 

Microlance™ 3 {Becton Dickinson}). The syringe was prepared with the correct 

volume of E.coli 055 LPS to be administered. The mouse was then restrained so that its 

head was facing away and downward with its abdomen exposed (Figure 2.33).  The 

needle was inserted, at a 30˚ angle, close to the midline on the animals right side 

horizontally in line with the knees to a depth of 5mm (Figure 2.33). The needle was 

withdrawn and the mouse returned to the cage. 

 

Once the optimum concentration of LPS required to induce septic shock and death at 24 

hours was determined, it was kept constant throughout the in vivo inhibition studies. 
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2.18.3.1.1: Induction of sepsis in the CD-1 mouse 

Intraperitoneal (i.p) injection of E.coli 055 LPS (60mg/kg) was administered to the CD-

1 mouse (male 6-8 weeks) using a sterile 1ml syringe (BD Plastipak™ {Becton 

Dickinson}) with a 25 GA1 0.5x25mm needle (BD Microlance™ 3 {Becton 

Dickinson}). The syringe was prepared with the correct volume of LPS, relative to 

mouse weight, to be administered. The mouse was then restrained so that its head was 

facing away and downward with its abdomen exposed (Figure 2.33).  The needle was 

inserted, at a 30˚ angle, close to the midline on the animal’s right side horizontally in 

line with the knees to a depth of 5mm (Figure 2.33). The needle was withdrawn and the 

mouse returned to the cage.  

 

2.18.3.2: Determination of optimal HSP70 and AMD3100 concentration 

In order to determine the optimum concentration of HSP70 (Kindly supplied by 

Professor C.Lingwood of the University of Toronto) and AMD3100 (Sigma) that was 

needed to protect mice from LPS-induced septic shock, mice were administered 

different concentrations (100, 200, 300, 500 and 1000µg/mouse) of either and HSP70 or 

AMD3100 by i.p injection 1 hour before LPS administration. Blood (50µl) was 

collected at certain time points after LPS administration (0, 2, 4, 6, 8 hours) from the 

tail vein of mice. The level of TNF-α and IL-1β in the serum was determined using the 

CBA system (Section 2.8.2.2). 

 

2.18.3.2.1: In vivo testing of HSP70 and AMD3100 

I.p injection of HSP70 and AMD3100 was administered to the CD-1 mouse (male 6-8 

weeks) using a sterile 1ml syringe (BD Plastipak™ {Becton Dickinson}) with a 25 GA1 

0.5x25mm needle (BD Microlance™ 3 {Becton Dickinson}). The syringe was prepared 
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with the correct volume of HSP70 or AMD3100 to be administered. The mouse was 

then restrained so that its head was facing away and downward with its abdomen 

exposed (Figure 2.33).  The needle was inserted, at a 30˚ angle, close to the midline on 

the animals right side horizontally in-line with the knees to a depth of 5mm (Figure 

2.33). The needle was withdrawn and the mouse returned to the cage.  

 

 

2.18.4: Cytokine analysis of blood samples 

Blood samples (50µl) were collected at determined time points before and after LPS 

administration. Samples were centrifuged at 132g for 30 minutes and the serum 

removed. Mouse Inflammation cytokine bead array (CBA) system (Becton Dickinson) 

was used in order to determine cytokine concentration (Section 2.8.2.2). 

 

2.19: Statistical analysis 

Statistical analysis was performed using SPSS (Statistical Package for the Social 

Sciences) software version 15.0 (SPSS Inc.). Two sets of data were compared using a 

two tailed, paired t-test. In this study a p-value of less than 0.05 (p<0.05) was 

considered significant.  Throughout this thesis, * = p<0.05. 
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3.1: ECV inflammatory response 

Vascular endothelial cells line the lumen of arteries where they are subject to challenge 

from circulating ligands. These cells are considered to be responsible for the initial steps 

in the inflammatory process of atherogenesis. The increased cytokine release caused by 

the activation, due to atherosclerosis-associated ligands, in vascular endothelial cells is 

thought to instigate the multi-step process of plaque formation. TLRs have been 

suggested as the source of the inflammatory response, but the precise triggers are not 

fully understood. This study was set out to fully characterise the ligand(s) that trigger 

PRRs and the subsequent inflammatory response leading to atherogenesis. 

 

This study utilised human ECV304 (Section 2.2.2) cells to elucidate PRR associations 

with atherosclerosis-associated ligands, and their ability to induce inflammatory 

cytokine release. This study investigated the role of endogenous lipoproteins, bacterial 

products and combinations of these to analyze their capability of initiating atherogenesis 

by activation of an innate immune response in vascular endothelial cells.  

 

3.1.1: PRR association with endogenous LDL  

In order to determine which PRRs are involved in the recognition of endogenous/host 

lipoproteins over time, ECV304 cells were stimulated for 30, 60 and 120 minutes with 

human endogenous LDL and its oxidised derivatives mmLDL and oxLDL (Section 2.6). 

For concentrations see Section 2.5. All stimulations were carried out in 25cm
2
 flasks in 

SFM (GIBCO) (Section 2.5.1). The cell surface receptors TLR1, TLR2, TLR4, TLR6, 

CD36 and CD14 were labelled via indirect immunofluorescence (Section 2.7.2) and 

analyzed by flow cytometry (Section 2.8.2.1).  
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A)      B) 

 
C)      D) 

 
E)      F) 

 

Figure 3.1.1: Cell surface receptor expression of: A) TLR1, B) TLR2, C) TLR4, D) TLR6, E) CD14 

and F) CD36, on human ECV304 cells after stimulation with LDL and its oxidised 

derivatives, mmLDL and oxLDL, over time (0, 30, 60 and 120 minutes). Cells were 

fixed and labelled with a primary antibody against the receptor of interest, followed by 

an appropriate secondary antibody conjugated to FITC. Fluorescence was measured on 

a FACSCalibur (Becton Dickinson), counting 10,000 cells per sample, not gated. Data 

represents mean, ± standard deviation, n=3. *Indicates statistically significant (p<0.05) 

upregulation of receptor expression in comparison to unstimulated cells (Section 2.19). 

 

LDL and its derivatives mmLDL and oxLDL all caused upregulation of TLR2, TLR4, 

TLR6, CD14 and CD36 expression on ECV304 cells (Figure 3.1.1B/C/D/E/F). There was 

no upregulation of TLR1 observed (Figure 3.1.1A). The lipoprotein that caused the 
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greatest upregulation of PRRs, causing the largest response, was LDL. oxLDL was the 

least effective at causing upregulation of PRRs. At 60 minutes TLR4, TLR6, CD14 and 

CD36 expression was ≤50% for oxLDL in comparison to LDL (Figure 3.1.1C/D/E/F). 

Interestingly these results were the reverse to what was expected. Many studies have 

shown that oxLDL is the associated LDL derivative in atherogenesis, thus presumably 

the most immunostimulatory. Due to its inability to cause a large upregulation of PRRs 

in comparison to LDL and mmLDL it was hypothesised that this inability itself may 

allow oxLDL to have a chronic inflammatory effect, by avoiding clearance, 

characteristic of atherosclerosis. 

 

 

3.1.1.1: Inflammatory response to endogenous LDL 

Since endogenous lipoproteins were found to modulate the expression of PRRs, the next 

step in this study was to examine the release of cytokines (the inflammatory mediators) 

caused by ECV304 lipoprotein stimulation to see whether PRR expression mimics the 

inflammatory response induced in vascular endothelial cells. Out of the inflammatory 

cytokines analysed (IL-1β, IL-6, IL-8, IL-10, IL-12p70 and TNF), only the release of 

IL-6 and IL-8 were significantly increased.  

 

ECV304 cells were stimulated for 30, 60 and 120 minutes with human endogenous 

LDL and its oxidised derivatives mmLDL and oxLDL (Section 2.6). For concentrations 

see Section 2.5. All stimulations were carried out in 25cm
2
 flasks in SFM (Section 

2.5.1). The SFM was collected post stimulation for cytokine analysis using the Human 

Inflammation BD™ cytometric bead array system (Section 2.8.2.2). 
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A)      B) 

 
 

Figure 3.1.2: A) Interleukin-6 and B) interleukin-8 release from human ECV304 cells after 

stimulation with human LDL and its oxidised derivatives mmLDL and oxLDL, over 

time (30, 60 and 120 minutes). Interleukin-6 and interleukin-8 were measured in the 

cell supernatant using a flow cytometric cytokine bead array system (Becton 

Dickinson). Negatives subtracted. Data represents mean, ± standard deviation, n=2. 

*Indicates statistically significant (p<0.05) increase in cytokine release in comparison 

to unstimulated cells (Section 2.19).  
 

As expected the cytokine release (Figure 3.1.2) does mimic the PRR expression (Figure 

3.1.1). IL-6 (Figure 3.1.2A) and IL-8 (Figure 3.1.2B) were significantly upregulated. 

Their release increased over time to 120 minutes. IL-8 release was far greater than that 

of IL-6, at 120 minutes the IL-8 concentration for LDL was 300% greater than the IL-6 

concentration recorded (Figure 3.1.2A/B, LDL).  The largest cytokine release was seen 

when ECV304 cells were stimulated with LDL, oxLDL caused the least. This 

demonstrates the ability of endogenous lipoproteins to cause an inflammatory response 

in vascular endothelial cells, and possibly initiating atherogenesis. The same ECV304 

cell line was then exposed to known atherogenic bacterial PAMPs. 

 

3.1.2: PRR association with atherosclerosis-associated bacterial ligands 

Since endogenous lipoproteins were shown to be able to stimulate an inflammatory 

response via specific receptors in human vascular endothelial cells, this study proceeded 

to investigate whether bacterial ligands could also stimulate an inflammatory response 

in these cells. ECV304 cells were stimulated for 30, 60 and 120 minutes with the 

bacterial ligands S.aureus LTA and LPS from E.coli and P.gingivalis. For 

*

*

*

*

*

*

*

*

*

0

20

40

60

80

100

120

140

160

180

30 min 60 min 120 min

C
o

n
ce

n
tr

at
io

n
 (

p
g/

m
l)

Interleukin-6

*

*

*

*

*

*

*

*

*

0

100

200

300

400

500

600

700

30 min 60 min 120 min

C
o

n
ce

n
tr

at
io

n
 (

p
g/

m
l)

Interleukin-8



120 

 

concentrations see Section 2.5. All stimulations were carried out in 25cm
2
 flasks in 

SFM (GIBCO) (Section 2.5.1). The cell surface receptors (TLR1, TLR2, TLR4, TLR6, 

CD36 and CD14) were labelled via indirect immunofluorescence (Section 2.7.2) and 

analyzed by flow cytometry (Section 2.8.2.1).  

 

A)      B) 

 
C)      D) 

 
E)      F) 

 

 

Figure 3.1.3: Cell surface receptor expression of: A) TLR1, B) TLR2, C) TLR4, D) TLR6, E) CD14 

and F) CD36 on human ECV304 cells after stimulation with the atherosclerosis-

associated bacterial ligands S.aureus LTA, E.coli LPS and P.gingivalis LPS over time 

(0, 30, 60 and 120 minutes). Cells were fixed and labelled with a primary antibody 

against the receptor of interest, followed by an appropriate secondary antibody 

conjugated to FITC. Fluorescence was measured on a FACSCalibur (Becton 

Dickinson), counting 10,000 cells per sample, not gated. Data represents mean, ± 

standard deviation, n=3. *Indicates statistically significant (p<0.05) upregulation of 

receptor expression in comparison to unstimulated cells (Section 2.19). 
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S.aureus LTA, E.coli LPS and P.gingivalis LPS were capable of upregulating TLR2, 

TLR4, TLR6, CD14 and CD36 expression on ECV304 cells (Figure 3.1.3B/C/D/E/F). 

There was no upregulation of TLR1 observed (Figure 3.1.3A). P.gingivalis LPS was less 

effective at upregulating the receptors observed in comparison to S.aureus LTA, and 

E.coli LPS. Interestingly the receptor expression profile on ECV304 cells in response to 

LDL and its derivatives (Figure 3.1.1) have a similar profile to that of the bacterial 

PAMPs (Figure 3.1.3) with upregulation of TLR2, TLR4, TLR6, CD14 and CD36, but 

not TLR1. This demonstrates similar responses in this cell line to LDL and bacterial 

PAMPs. 

 

3.1.2.1: Inflammatory response to atherosclerosis-associated bacterial ligands 

Stimulation of ECV304 with atherosclerosis-associated bacterial ligands demonstrated 

that these ligands are able to modulate PRR expression. Therefore the next step in this 

study was to examine the ECV304 cytokine release caused by S.aureus LTA, E.coli 

LPS and P.gingivalis LPS to see whether PRR expression mimics the inflammatory 

response induced in vascular endothelial cells. Here C.pneumoniae LPS in addition to 

S.aureus LTA, E.coli LPS and P.gingivalis LPS was also tested. C.pneumoniae LPS, 

like P.gingivalis LPS, is an unconventional TLR2-associated LPS that is strongly linked 

to atherosclerosis. As found with lipoprotein stimulations ECV304 cells were found to 

release only IL-6 and IL-8 to a significant degree. 

 

ECV304 cells were stimulated for 30, 60 and 120 minutes with S.aureus LTA, E.coli 

LPS, P.gingivalis LPS and C.pneumoniae LPS. For concentrations see Section 2.5. All 

stimulations were carried out in 25cm
2
 flasks in SFM (GIBCO) (Section 2.5.1). The 
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SFM was collected post stimulation for cytokine analysis using the Human 

Inflammation BD™ cytometric bead array system (Section 2.8.2.2). 

 

A)      B) 

 

 

Figure 3.1.4: A) interleukin-6 and B) interleukin-8 release from human ECV304 cells after 

stimulation with the atherosclerosis-associated bacterial ligands S.aureus LTA, E.coli 

LPS, P.gingivalis (P.ging) LPS and C.pneumoniae (C.pneum) LPS over time (30, 60 

and 120 minutes). IL-6 and IL-8 was measured in the cell supernatant using a flow 

cytometric cytokine bead array system (Becton Dickinson). Negatives subtracted. Data 

represents mean, ± standard deviation, n=2. *Indicates statistically significant (p<0.05) 

increase in cytokine release in comparison to unstimulated cells (Section 2.19). 

  

S.aureus LTA, E.coli LPS, P.gingivalis LPS and C.pneumoniae LPS all caused a 

significant increase in release of IL-6 (Figure 3.1.4A) and IL-8 (Figure 3.1.4B). 

P.gingivalis stimulated IL-6 and IL-8 cytokine release at 120 minutes was greater than 

the other unconventional LPS from C.pneumoniae, 173% and 125% greater 

respectively.  

 

The similar receptor expression profiles caused by LDL (Figure 3.1.1) and bacterial 

PAMPs (Figure 3.1.3) may suggest that these ligands are recognised in a similar 

manner, opening the possibility of interference and/or interactions between them. This 

study has demonstrated their individual ability to cause vascular endothelial cell 

activation through increased cytokine release and thus their ability to initiate the 

inflammatory disorder atherosclerosis (Figure 3.1.2/4). These events however would not 
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occur uniquely in the vascular system, they would occur in unison. To see whether these 

ligands have an altered recognition and/or inflammatory response, when exposed to 

vascular endothelial cells at the same time, I went on to test the ECV304 cell line with 

combined stimulations. The cells were exposed to an endogenous lipoprotein and a 

bacterial PAMP one after the other. The combined stimulations were designed to 

simulate a high cholesterol state, a known risk factor, prior to infection. This is the 

sequence of events that would take place in the human vascular system.  

 

3.1.3: PRR association with endogenous LDL and bacterial ligand combined 

The combined stimulations involved a 60 minute pre-incubation with an endogenous 

lipoprotein (human LDL and its oxidised derivatives, mmLDL} and oxLDL) and then 

further 60 minute stimulation with the bacterial ligand (S.aureus LTA, E.coli LPS and 

P.gingivalis LPS). For concentrations see Section 2.5. All stimulations were carried out 

in 25cm
2
 flasks in SFM (GIBCO) (Section 2.5.1). The cell surface receptors (TLR1, 

TLR2, TLR4, TLR6, CD36 and CD14) were labelled via indirect immunofluorescence 

(Section 2.7.2) and analyzed by flow cytometry (Section 2.8.2.1).  
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A)      B) 

 
C)      D) 

 
E)      F) 

 

 

Figure 3.1.5: Cell surface receptor expression of: A) TLR1, B) TLR2, C) TLR4, D) TLR6, E) CD14 

and F) CD36 on human ECV304 cells after 60 minute stimulation with the 

atherosclerosis-associated bacterial ligands S.aureus LTA, E.coli LPS or P.gingivalis 

LPS with pre-incubation (60 minute) with human LDL or either of its oxidised 

derivatives mmLDL and oxLDL. Cells were fixed and labelled with a primary antibody 

against the receptor of interest, followed by an appropriate secondary antibody 

conjugated to FITC. Fluorescence was measured on a FACSCalibur (Becton 

Dickinson), counting 10,000 cells per sample, not gated. Data represents mean, ± 

standard deviation, n=3. *Indicates statistically significant (p<0.05) difference in 

receptor expression in combined stimulations in comparison to PAMP alone (Section 

2.19). 

 

Pre-incubation with LDL reduced receptor expression in the case of the TLR4 agonist 

E.coli LPS with particular emphasis on TLR2 (Figure 3.1.5B) and TLR6 (Figure 3.1.5D) 
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which were reduced by 75% and 54% respectively in comparison to stimulation with 

E.coli LPS alone (Figure 3.1.5B/C). Pre-incubation with LDL had little or no effect on 

the TLR2 agonists S.aureus LTA and P.gingivalis LPS. Pre-incubation with mmLDL 

had a similar effect to LDL pre-incubation but to a lesser extent. With LDL pre-

incubation the E.coli LPS induced receptor expression was reduced but this had little or 

no effect on the TLR2 agonists. The effect of pre-incubation with oxLDL seemed to 

mirror that of LDL pre-incubation. Although having little or no effect on CD14 (Figure 

3.1.5E) or CD36 (Figure 3.1.5F) receptor expression the cell surface expression of 

TLR2, TLR4 and TLR6 (Figure 3.1.5B/C/D) were reduced. Of particular interest is their 

target receptor TLR2 whose expression was reduced dramatically by oxLDL pre-

incubation (Figure 3.1.5B). TLR2 expression observed for S.aureus LTA exposure 

alone dropped by 63% when the cells were pre-incubated with oxLDL (Figure 3.1.5B). 

The same scenario gave an 81% reduction in TLR2 expression in the case of 

P.gingivalis LPS (Figure 3.1.5B). TLR4, TLR6 and CD36 (Figure 3.1.5C/D/E) 

expression due to P.gingivalis LPS stimulation were also reduced dramatically when 

vascular cells were pre-incubated with oxLDL. oxLDL pre-incubation had little or no 

effect on CD14 and CD36 (Figure 3.1.5E/F) expression with S.aureus LTA stimulation.  

 

The reduction of receptor expression on the vascular endothelial cell surface suggests 

immunosuppression, a dampening of the immune response, which would agree with 

previous studies. It was hypothesised that this dampening of the immune system by 

endogenous lipoproteins could be allowing circulating bacteria to cause a chronic 

infection where their clearance is not performed effectively. The chronic nature of such 

an infection could lead to atherosclerosis, where a low level inflammatory state could 

enhance the environment for plaque formation. To see whether the modulation of 
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receptor expression caused by lipoprotein pre-incubation had the same effect on the 

release of inflammatory mediators the supernatant was collected from these stimulations 

and assayed for cytokine concentrations. 

 

3.1.3.1: Inflammatory response to endogenous LDL and bacterial ligand combined  

Cytokine analysis was performed on combined stimulations to see whether PRR 

expression mimics the inflammatory response produced. C.pneumoniae LPS was tested 

in addition to S.aureus LTA, E.coli LPS and P.gingivalis LPS. C.pneumoniae LPS, like 

P.gingivalis LPS, is an unconventional TLR2-associated LPS that is strongly related 

with atherosclerosis. As found with lipoprotein stimulations ECV304 cells were found 

to release only IL-6 and IL-8 to a significant degree. 

 

ECV304 cells were subject to 60 minute pre-incubation with an endogenous lipoprotein 

(human LDL and its oxidised derivatives mmLDL and oxLDL) and then further 60 

minute stimulation with the bacterial ligand (S.aureus LTA, E.coli LPS, P.gingivalis 

LPS or C.pneumoniae LPS). For concentrations see Section 2.5. All stimulations were 

carried out in 25cm
2
 flasks in SFM (GIBCO) (Section 2.5.1). The SFM was collected 

post stimulation for cytokine analysis using the Human Inflammation BD™ cytometric 

bead array system (Section 2.8.2.2). 
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A)      B) 

  

 

Figure 3.1.6: A) interleukin-6 and B) interleukin-8 release from human ECV304 cells after 60 minute 

stimulation with the atherosclerosis-associated bacterial ligands S.aureus LTA, E.coli 

LPS, P.gingivalis (P.ging) LPS or C.pneumoniae (C.pneum) LPS with pre-incubation 

(60 minutes) with human LDL or either of its oxidised derivatives, mmLDL oxLDL. 

IL-6 AND IL-8 was measured in the cell supernatant using a flow cytometric cytokine 

bead array system (Becton Dickinson). Negatives subtracted. Data represents mean, ± 

standard deviation, n=3. *Indicates statistically significant (p<0.05) increase in cytokine 

release in combined stimulations in comparison to PAMP alone (Section 2.19). 
 

 

Interestingly the cytokine results are quite dissimilar to the receptor expression 

alterations observed. The combined stimulations saw an increased cytokine release in 

the human vascular endothelial cells (Figure 3.1.6) even though this study observed 

reduced PRR expression in a number of cases (Figure 3.1.5). LDL pre-incubation 

seemed to cause the greatest cytokine increase. mmLDL and oxLDL were lesser 

immunostimulatory in comparison.  
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3.1.4: Conclusions 

 

 TLR2, TLR4, TLR6, CD14 and CD36 are potentially stimulated by 

atherosclerosis-associated ligands in the vascular system.  

 Endogenous lipoproteins are capable of initiating a response in human ECV304 

cells. The strongest immunostimulant of the lipoproteins is LDL, and the least is 

oxLDL. The association of oxLDL with atherosclerosis may be due to its low 

stimulatory nature preventing its clearance thus allowing chronic inflammation 

characteristic of atherogenesis. 

 IL-6 and IL-8 are the predominant inflammatory cytokines released by human 

ECV304 cells in response to atherosclerosis-associated ligands. 

 Although lipoprotein pre-incubation reduces cell surface PRR expression the 

cytokine concentration released increases. This could indicate alternate/disrupted 

receptor trafficking and/or cellular signalling. 
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3.2: HUVEC inflammatory response 

Previous experimentation with the immortalised human ECV304 cell line showed 

upregulation of PRRs in the response to atherosclerosis-associated ligands. Lipoprotein 

pre-incubation was shown to be able to reduce ECV304 cell surface TLR expression, 

but conversely increase the concentration of IL-6 and IL-8 release. The next step in this 

study was to perform these experiments in a primary human vascular endothelial cell 

line, a more representative model. Cytokine induced expression of cell surface 

molecules has been shown to vary between vascular endothelial cells, be it primary or 

immortilised
205

. These discrepancies could arise from transformation procedures or the 

vascular bed of origin of the primary cell. The role of endogenous lipoproteins, bacterial 

products and combinations of these to analyze their capability of initiating atherogenesis 

by activation of cytokine release from primary HUVECs (Section 2.2.3) was 

investigated. The induced inflammatory response was quantified by cytokine analysis. 

 

3.2.1: HUVEC inflammatory response to atherosclerosis-associated ligands 

HUVECs were subject to 60 minute stimulation with human LDL, mmLDL, oxLDL, 

S.aureus LTA, E.coli LPS, P.gingivalis LPS or C.pneumoniae LPS. For concentrations 

see Section 2.5. All stimulations were carried out in 24 well plates in SFM (GIBCO) 

(Section 2.5.2). The SFM was collected post stimulation for cytokine analysis using the 

Human Inflammation BD™ cytometric bead array system (Section 2.8.2.2). Out of the 

inflammatory cytokines analysed (IL-1β, IL-6, IL-8, IL-10, IL-12p70 and TNF), only 

the release of IL-6 and IL-8 were significantly increased. 
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Figure 3.2.1: Interleukin-6 release from primary HUVECs in response to LDL, mmLDL, oxLDL, 

S.aureus LTA, E.coli LPS, P.gingivalis LPS and C.pneumoniae LPS. IL-6 was 

measured in the cell supernatant using a flow cytometric cytokine bead array system 

(Becton Dickinson). Negatives subtracted. Data represents mean, ± standard deviation, 

n=3. *Indicates statistically significant (p<0.05) increase in interleukin-6 release in 

comparison to unstimulated cells (Section 2.19). 

 

 

 

 

 

Figure 3.2.2: Interleukin-8 (IL-8) release from primary HUVECs in response to LDL, mmLDL, 

oxLDL, S.aureus LTA, E.coli LPS, P.gingivalis LPS and C.pneumoniae LPS. IL-8 was 

measured in the cell supernatant using a flow cytometric cytokine bead array system 

(Becton Dickinson). Negatives subtracted. Data represents mean, ± standard deviation, 

n=3. *Indicates statistically significant (p<0.05) increase in interleukin-8 release in 

comparison to unstimulated cells (Section 2.19). 
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As observed with ECV304 cells (Figure 3.1.2/4), lipoprotein and bacterial stimulation 

of HUVECs caused significant upregulation of only IL-6 and IL-8 out of the 

inflammatory cytokines screened for (Figure 3.2.1/2). HUVEC cytokine release was far 

greater than that recorded with ECV304 cells. The 60 minute HUVEC S.aureus LTA 

stimulation (Figure 3.2.2) induced ~27X more IL-8 than the same stimulation with 

ECV304 cells (Figure 3.1.4). The ability of LDL, mmLDL and oxLDL to induce IL-6 

and IL-8 release differs between ECV304 and HUVECs. In the HUVEC cell line all 

lipoproteins gave a similar response (Figure 3.2.1/2) whilst in ECV304 cells LDL was 

the strongest immunostimulant and oxLDL the least (Figure 3.1.2). HUVECs (Figure 

3.2.1/2) respond to S.aureus LTA, E.coli LPS and P.gingivalis LPS in a similar manner 

as ECVs (Figure 3.1.4) at 60 minutes where S.aureus LTA and E.coli LPS cause a 

similar response whilst P.gingivalis LPS is not as stronger a stimulant. C.pneumoniae 

LPS appears to be more immunostimulatory, relative to other ligands, in the primary 

HUVECs. 

 

As observed with ECV304 cells IL-6 and IL-8 concentrations released were highly 

dissimilar, however this was much more apparent in the HUVECs. The 60 minute 

ECV304 cell S.aureus LTA stimulation gave IL-8 concentrations that were ~4X greater 

than IL-6 (Figure 3.1.4), the same stimulation in HUVECs gave IL-8 concentrations that 

were ~9X greater than IL-6 (Figure 3.2.1/2). 

 

3.2.1.2: HUVEC NF-κB activation in response to atherosclerosis-associated ligands 

TLRs act upstream of NF-κB activation. TLR signalling pathways have been shown to 

ultimately result in the release of NF-κB from its endogenous inhibitor which 
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subsequently causes its nuclear translocation that leads to the transcription of 

inflammatory cytokines (Section 1.3.6)
119

. 

 

In order to determine whether single stimulations with endogenous lipoproteins and 

bacterial products lead to a NF-κB-driven transcription response, HUVECs were subject 

to 60 minute stimulation with human LDL, mmLDL, oxLDL, S.aureus LTA, E.coli 

LPS, P.gingivalis LPS or C.pneumoniae LPS. For concentrations see Section 2.5. All 

stimulations were carried out in 24 well plates in SFM (GIBCO) (Section 2.5.2). The 

medium was removed and the HUVECs were lysed with 200µl X2 reducing sample 

buffer for 4 hours on the work top shaker and frozen (-20˚C) for a minimum of 24 hours 

(Section 2.10.2). Samples were separated using SDS-PAGE (Section 2.10.3) and then 

transferred onto a nitrocellulose membrane (Section 2.11.1). The membrane was probed 

using phospho-IKappaB-alpha or IKappaB-alpha (Section 2.12.1) monoclonal 

antibodies followed by the appropriate secondary antibody conjugated to horse radish 

peroxidase (HRP {Section 2.1}). Membranes were imaged via enhanced 

chemiluminescence (Section 2.12.2). 

 

Phospho-IKappaB-alpha 

 

Figure 3.2.3: Western blot of phospho-IKappaB-alpha from lysates of unstimulated HUVECs and 

those exposed to the atherosclerosis-associated ligands: LDL, mmLDL, oxLDL, 

S.aureus LTA, E.coli LPS, P.gingivalis LPS and C.pneumoniae LPS. Lysates were 

separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and 

transferred onto a nitrocellulose membrane. The membrane was probed for phospho-

IKappaB-alpha specific mAb followed by the appropriate secondary antibody 

conjugated to HRP and imaged via enhanced chemiluminescence. 
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NF-κB activation was evident in all single stimulations (Figure 3.2.3). E.coli and 

P.gingivalis LPS stimulations seemed to have produced the most pronounced NF-κB 

activation, compared to all other stimulations. As a control the membrane was probed 

for total-IκB (IKappaB-alpha) which demonstrated equal loading (data not shown), 

suggesting that the increase in the density of the band for NF-κB activation in response 

to E.coli and P.gingivalis LPS is specific. 

 

3.2.2: Inflammatory response to bacterial ligand with lipoprotein pre-incubation 

The next step in this study was to pre-incubate HUVECs with lipoprotein before 

bacterial stimulus. The combined stimulations were designed to simulate a high 

cholesterol state, a known risk factor for atherosclerosis, prior to infection. This is the 

hypothesised sequence of events that would take place in the human vascular system. 

HUVECs were subject to 60 minute pre-incubation with an endogenous lipoprotein 

(human LDL or its oxidised derivatives mmLDL and oxLDL) and then further 60 

minute stimulation with the bacterial ligand (S.aureus LTA, E.coli LPS, P.gingivalis 

LPS and C.pneumoniae LPS). For concentrations see Section 2.5. All stimulations were 

carried out in 24 well plates in SFM (GIBCO) (Section 2.5.2). The SFM was collected 

post stimulation for cytokine analysis using the Human Inflammation BD™ cytometric 

bead array system (Section 2.8.2.2).  

 

Combined stimulations involved a 60 minute pre-incubation with an endogenous 

lipoprotein and then further 60 minute stimulation with the bacterial ligand to simulate 

the sequence of events that would take place in the human vascular system. Similarly to 

previous findings, only interleukin-6 and interleukin-8 concentrations were significantly 

increased. 
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A) 

 
 

B)      

 

 

Figure 3.2.4: Interleukin-6 (A) and interleukin-8 (B) release from primary HUVECs after 60 minute 

stimulation with the atherosclerosis-associated bacterial ligands S.aureus LTA, E.coli 

LPS, P.gingivalis LPS or C.pneumoniae LPS with pre-incubation (60 minutes) with 

human LDL or either of its oxidised derivatives mmLDL and oxLDL. IL-6 and IL-8 

were measured in the cell supernatant using a flow cytometric cytokine bead array 

system (Becton Dickinson). Negatives subtracted. Data represents mean, ± standard 

deviation, n=3. *Indicates statistically significant (p<0.05) difference in cytokine 

release in combined stimulations in comparison to PAMP alone (Section 2.19). 

 

HUVEC IL-6 levels in response to S.aureus LTA, E.coli LPS and P.gingivalis LPS 

(Figure 3.2.1) were increased significantly when combined with endogenous lipoprotein 

pre-incubation (Figure 3.2.4A), as observed with the immortalised ECV304 cell line 
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(Figure 3.1.6A). LDL, mmLDL and oxLDL pre-incubations all had a similar effect on 

HUVEC IL-6 in response to bacterial ligands (Figure 3.2.4A). 

 

HUVEC IL-8 release in response to S.aureus LTA, E.coli LPS, P.gingivalis LPS and 

C.pneumoniae LPS with endogenous lipoprotein pre-incubation (Figure 3.2.4B) 

contrasted that observed with ECV304 cells (Figure 3.1.6B). HUVEC IL-8 release 

decreased when the cells were pre-incubated with lipoprotein prior to S.aureus LTA, 

E.coli LPS, and C.pneumoniae LPS stimulation (Figure 3.2.4B). The opposite of this 

was observed with the ECV304 cells where lipoprotein pre-incubation augmented the 

response (Figure 3.1.6). The greatest decrease was observed with C.pneumoniae LPS 

versus C.pneumoniae LPS with pre-incubation with mmLDL  where a 36% decrease in 

IL-8 concentration was observed (Figure 3.2.4B). This illustrates an immunoprotective 

role of lipoproteins where they may have the ability to influence cellular immune 

response to bacterial infection. 

 

3.2.2.1: HUVEC NF-κB activation response to atherosclerosis-associated ligands 

In order to determine whether the combination of endogenous lipoproteins and bacterial 

products can lead to NF-κB-driven transcription response, HUVECs were subject to 60 

minute pre-incubation with an endogenous lipoprotein (human LDL or its oxidised 

derivatives mmLDL and oxLDL) and then further 60 minute stimulation with the 

bacterial ligand (S.aureus LTA, E.coli LPS, P.gingivalis LPS or C.pneumoniae LPS). 

For concentrations see Section 2.5. All stimulations were carried out in 24 well plates in 

SFM (GIBCO) (Section 2.5.2). The medium was removed and the HUVECs were lysed 

with 200µl X2 reducing sample buffer for 4 hours on the work top shaker and frozen (-

20˚C) for a minimum of 24 hours (Section 2.10.2). Samples were separated using 
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sodium dodecyl sulphate polyacrylamide gel electrophoresis (Section 2.10.3) and then 

transferred onto a nitrocellulose membrane (Section 2.11.1). The membrane was probed 

for phospho-IKappaB-alpha or IKappaB-alpha (Section 2.12.1). Membranes were 

imaged via enhanced chemiluminescence (Section 2.12.2). 

 

Phospho-IKappaB-alpha 

 

 

Figure 3.2.5: Western blot of phospho-IKappaB-alpha from lysates of unstimulated HUVECs and 

those after 60 minute stimulation with bacterial ligands S.aureus LTA, E.coli LPS, 

P.gingivalis LPS or C.pneumoniae LPS alone (PAMP) and bacterial ligand with 60 

minute pre-incubation with human LDL (PAMP + LDL) or either of its oxidised 

derivatives, mmLDL (PAMP + mmLDL) and oxLDL (PAMP + oxLDL). Lysates were 

separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and 

transferred onto a nitrocellulose membrane. The membrane was probed for phospho-

IKappaB-alpha specific mAb followed by the appropriate secondary antibody 

conjugated to HRP and imaged via enhanced chemiluminescence. 
 

NF-κB activation decreases when HUVECs are pre-incubated with lipoprotein prior to 

E.coli LPS, P.gingivalis LPS and C.pneumoniae LPS (Figure 3.2.5). This effect was 

most evident for C.pneumoniae. The western blot mirrors the cytokine results obtained 

for IL-8 (Figure 3.2.4B) but not for IL-6 (Figure 3.2.4A). As a control the membrane 

was probed for total-IκB (IKappaB-alpha) which demonstrated equal loading (data not 

shown 
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3.2.3: Inflammatory response to altered combined stimulations 

Since this study had already demonstrated that lipoprotein pre-incubation of human 

vascular endothelial cells altered their inflammatory response to the bacterial ligands 

S.aureus LTA, E.coli LPS, P.gingivalis LPS and C.pneumoniae LPS, this study 

proceeded to investigate whether the sequence of introducing these ligands into the 

system would further affect the inflammatory response. 

 

Human vascular endothelial cells were either incubated with an endogenous lipoprotein 

(human LDL or its oxidised derivatives mmLDL and oxLDL) for 60 minutes prior to 

the addition of bacterial products (S.aureus LTA, E.coli LPS, P.gingivalis LPS or 

C.pneumoniae LPS) for 60 minutes, incubated with bacterial products for 60 minutes 

prior to the addition of the lipoprotein for 60 minutes or the lipoproteins and bacterial 

products were added to the HUVECs at the same time for 60 minutes. For 

concentrations see Section 2.5. All stimulations were carried out in 24 well plates in 

SFM (GIBCO) (Section 2.5.2). The SFM was collected post stimulation for cytokine 

analysis using the Human Inflammation BD™ cytometric bead array system (Section 

2.8.2.2).  

 

Pre-incubation with LDL and its derivatives, mmLDL and oxLDL, gave similar results 

in the three different double stimulation protocols. For this reason only the results for 

oxLDL have been displayed, the LDL associated with atherosclerosis and one that 

would most feasibly exist in vivo. Again, only interleukin-6 and interleukin-8 

concentrations were significantly increased. 
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A)      B) 

 

 

Figure 3.2.6: A) interleukin-6  and B) interleukin-8 release from primary HUVECs in response to a 

60 minute stimulation with the atherosclerosis-associated bacterial ligands S.aureus 

LTA, E.coli LPS, P.gingivalis (P.ging) LPS or C.pneumoniae (C.pneum) LPS alone 

(PAMP) or with either oxLDL pre-incubation (oxLDL+PAMP), stimulation of oxLDL 

and PAMP simultaneously (Together) or addition of oxLDL after PAMP stimulation 

(PAMP+oxLDL). IL-6 and IL-8 were measured in the cell supernatant using a flow 

cytometric cytokine bead array system (Becton Dickinson). Negatives subtracted. Data 

represents mean, ± standard deviation, n=3. *Indicates statistically significant (p<0.05) 

difference in cytokine release in combined stimulations in comparison to PAMP alone 

(Section 2.19). 
 

Pre-incubation of HUVECs with oxLDL prior to exposure to bacterial products 

augmented IL-6 release (Figure 3.2.6A, oxLDL+PAMP). Increases of 75% for S.aureus 

LTA, 80% for E.coli LPS, 133% for P.gingivalis LPS and 35% for C.pneumoniae LPS 

in IL-6 release were observed when cells were pre-incubated with oxLDL in 

comparison to PAMP alone. Variation of IL-6 release was least for C.pneumoniae LPS 

(Figure 3.2.6A). Incubation of the ligands when added simultaneously gave a slight 

increase in IL-6 release when the TLR2 agonists (S.aureus LTA, P.gingivalis LPS and 

C.pneumoniae LPS) were added to the HUVECs with oxLDL (Figure 3.2.6A, 

Together). When the bacterial product was added prior to oxLDL a reduction in IL-6 

release, in comparison to single stimulation (PAMP), was seen for S.aureus LTA, E.coli 

LPS and more substantially C.pneumoniae LPS (Figure 3.2.6A, PAMP+oxLDL).  
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As explained in Section 3.2.2, IL-8 release decreased when the cells were pre-incubated 

with low density lipoprotein in comparison to single bacterial stimulations. This was 

more apparent for the PAMP+oxLDL combined stimulation where decrease in IL-8 

release was ~2X greater than that observed when HUVECs were pre-incubated with 

oxLDL (Figure 3.2.6B, oxLDL+PAMP). When HUVECs were incubated with oxLDL 

and bacterial product together another discrepancy between the TLR2 and TLR4 ligands 

was highlighted. Increase in IL-8 concentrations were observed when the TLR2 

agonists (S.aureus LTA, P.gingivalis LPS and C.pneumoniae LPS) were added to 

HUVECs in unison with oxLDL whilst the same stimulation protocol decreased IL-8 

release when E.coli LPS was stimulated alongside oxLDL (Figure 3.2.6B, Together) 

 

The altered responses observed from the three different double stimulation protocols 

signify altered activation of the endothelial cell line. This shows that the sequence of 

events leading to HUVEC activation can have a profound effect on the cellular response 

and thus inflammation in the vascular system. The altered level of activation between 

these stimulations demonstrates that there must be some kind of interaction between 

these ligands, and/or their receptors, affecting their recognition by endothelial cells.  
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3.2.4: Conclusions 

 

 LDL, mmLDL, oxLDL, S.aureus LTA, E.coli LPS, P.gingivalis LPS and 

C.pneumoniae LPS all cause activation of NF-κB in HUVECs. 

 Lipoprotein pre-incubation of HUVECs causes a reduction in NF-κB. 

 HUVECs and ECV304 cells have different inflammatory responses to ligands. 

ECV304 may not be a representative model of inflammation. 

 IL-6 and IL-8 are the predominant inflammatory cytokines released by HUVECs 

in response to atherosclerosis-associated ligands. 

 IL-6 is upregulated when HUVECs are pre-treated with LDL, mmLDL and 

oxLDL. This is in compliance with the ECV304 data. 

 IL-8 is downregulated when HUVECs are pre-treated with LDL, mmLDL and 

oxLDL. This contrasts with ECV304 data. 

 Ratios of IL-6 and IL-8 alter between different combined stimulation protocols. 

This may indicate alternate receptor trafficking and/or cellular signalling. 

 The altered responses observed from the three different double stimulation 

protocols signify altered activation of the endothelial cell line, suggesting that 

the sequence of events leading to HUVEC activation can have a profound effect 

on the cellular response and thus inflammation in the vascular system. 
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3.3: Lipid raft dependant signalling 

Lipid rafts provide the necessary microenvironment in order for certain specialised 

signalling events to take place. It has recently been found that components of the innate 

immune system concentrate in lipid rafts in order to facilitate signal transduction
130,131

.  

 

This study investigated whether membrane partitioning and lipid rafts play a role in the 

innate immune activation observed in atherosclerosis. In order to investigate the 

importance of lipid raft formation, the disruption of lipid rafts was used. Disruption of 

lipid rafts can be utilised in order to knockdown cellular signalling cascades to elucidate 

the role of up-stream receptors in the detection of certain ligands. 

 

Lipid raft disruption in primary HUVECs was achieved with the use of the drug 

Nystatin. Once rafts were disrupted cells were subjected to stimulations with 

lipoproteins, bacterial products as well as combinations of these to analyze the effect of 

the disruption of lipid rafts. The inflammatory response was quantified by cytokine 

release.  

 

3.3.1: Lipid raft dependant signalling to atherosclerosis-associated ligands 

HUVEC lipid rafts were disrupted by addition of Nystatin (60µg/ml) 10 minutes prior to 

cell simulation (Section 2.14). HUVECs were then subject to 60 minute stimulation 

with human LDL, mmLDL, oxLDL, S.aureus LTA, E.coli LPS, P.ging LPS or 

C.pneumoniae LPS (Section 2.5). All stimulations were carried out in 24 well plates in 

SFM (GIBCO) (Section 2.5.2). The SFM was collected post stimulation for cytokine 

analysis (IL-1β, IL-6, IL-8 IL-10, IL-12p70, TNF) using the Human Inflammation 

BD™ cytometric bead array system (Section 2.8.2.2). 
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Figure 3.3.1: Comparison of interleukin-6 release from primary HUVECs with intact (Normal/Dark 

grey) and disrupted (Nystatin/Light grey) lipid rafts in response to LDL, mmLDL, 

oxLDL, S.aureus LTA, E.coli LPS, P.gingivalis LPS and C.pneumoniae LPS IL-6 and 

IL-8 were measured in the cell supernatant using a flow cytometric cytokine bead array 

system (Becton Dickinson). Negatives subtracted. Data represents mean, ± standard 

deviation, n=2. *Indicates statistically significant (p<0.05) difference in interleukin-6 

release between nystatin treated and corresponding controls (Section 2.19). 
 

 

 

 

 

Figure 3.3.2: Comparison of interleukin-8 release from primary HUVECs with intact (Normal/Dark 

grey) and disrupted (Nystatin/Light grey) lipid rafts in response to LDL, mmLDL, 

oxLDL, S.aureus LTA, E.coli LPS, P.gingivalis LPS and C.pneumoniae LPS IL-6 and 

IL-8 were measured in the cell supernatant using a flow cytometric cytokine bead array 

system (Becton Dickinson). Negatives subtracted. Data represents mean, ± standard 

deviation, n=2. *Indicates statistically significant (p<0.05) difference in interleukin-8 

release between nystatin treated and corresponding controls (Section 2.19). 
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HUVECs that were pre-treated with the raft disrupting agent Nystatin showed a 

significant reduction in cytokine release in response to lipoprotein and bacterial ligands 

in comparison to untreated cells (Figure 3.3.1/2). Nystatin did not affect cell viability as 

tested by trypan blue incorporation. All stimulations were modified by raft disruption to 

give similar low level cytokine profiles (Figure 3.3.1/2). These data indicate the 

requirement for lipid rafts for the induction of effective cytokine release. The data 

would suggest that the receptors involved in the recognition of these ligands (TLR2, 

TLR4, TLR6, CD14 and CD36) are lipid raft dependant.  

 

3.3.2: Lipid raft dependant signalling to bacterial ligand with lipoprotein pre-

incubation 

 

Since the data suggested that the innate immune recognition of atherosclerosis-

associated ligands is lipid-raft dependent, this study proceeded to investigate whether 

this is the case when PRRs are challenged with combinations of endogenous 

lipoproteins and bacterial ligands.  

 

HUVEC lipid rafts were disrupted by addition of Nystatin 10 minutes prior to cell 

simulation (Section 2.14). HUVECs were then subject to 60 minute pre-incubation with 

an endogenous lipoprotein (human LDL or its oxidised derivatives, mmLDL and 

oxLDL) and then further 60 minute stimulation with the bacterial ligand (S.aureus LTA, 

E.coli LPS, P.gingivalis LPS and C.pneumoniae LPS) (Section 2.5). All stimulations 

were carried out in 24 well plates in SFM (GIBCO) (Section 2.5.2). The SFM was 

collected post stimulation for cytokine analysis using the Human Inflammation BD™ 

cytometric bead array system (Section 2.8.2.2). 
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A) 

 
 

B) 

 

 
Figure 3.3.3: A) interleukin-6 and B) interleukin-8 release comparison from primary HUVECs after 

60 minute stimulation with the atherosclerosis associate bacterial ligands S.aureus 

LTA, E.coli LPS, P.gingivalis LPS or C.pneumoniae LPS with pre-incubation (60 

minutes) with human LDL or either of its oxidised derivatives, mmLDL and oxLDL 

with intact (dark grey) and disrupted (light grey) lipid rafts by the use of Nystatin. IL-6 

and IL-8 were measured in the cell supernatant using a flow cytometric cytokine bead 

array system (Becton Dickinson). Negatives subtracted. Data represents mean, ± 

standard deviation, n=3. *Indicates statistically significant (p<0.05) difference in 

cytokine release between nystatin treated and corresponding controls (Section 2.19). 
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Lipid raft disruption had a lesser effect on the double stimulations (Figure 3.3.3) in 

comparison to single stimulations (Figure 3.3.1/2); the reduction in cytokine release was 

reduced. Activation of the HUVECs still showed lipid raft dependence. Perhaps the 

ability of lipoprotein and bacterial ligand to form complexes enhances somehow their 

recognition, possibly by involving non-raft resident receptors and thus reducing 

requirement for lipid rafts.  

 

3.3.3: Lipid raft dependant localisation and trafficking of receptors 

Lipid raft dependence has been shown in TLR signalling cascades. This study has 

shown that the disruption of lipid rafts reduces cellular response to endogenous 

lipoproteins, invading pathogens and combinations of these products. Results indicate 

the necessity of TLR signalling in the response to these products and points to their 

possible contribution to the inflammatory disorder of atherosclerosis. To try to 

understand in more detail the effect of lipid raft disruption on cellular activation this 

study employed confocal microscopy to view receptor localisation and trafficking with 

various stimuli in intact and lipid raft disrupted HUVECs.  

 

3.3.3.1: Lipid raft dependant PRR localisation and trafficking 

HUVECs were seeded on collagen treated 8 well glass slides (Section 2.9.1). Lipid raft 

disruption was performed by adding Nystatin (60µg/ml) directly to the slide 10 minutes 

prior to cell stimulation (Section 2.14). The cells were stimulated directly on the slide in 

200µl SFM (GIBCO) (Section 2.5.3). Intact HUVECs and Nystatin treated HUVECs 

were subject to single (lipoprotein or bacterial PAMP) and combined (lipoprotein pre-

incubation then bacterial PAMP exposure) stimulations. Single stimulations involved 60 

minute incubation with LDL, mmLDL, oxLDL, S.aureus LTA, E.coli LPS, P.gingivalis 

LPS or C.pneumoniae LPS (Section 2.5). Combined stimulations involved 60 minute 
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pre-incubation with an endogenous lipoprotein (LDL, mmLDL or oxLDL) and then 

further 60 minute stimulation with the bacterial ligand (S.aureus LTA, E.coli LPS, 

P.gingivalis LPS and C.pneumoniae LPS) (Section 2.5). Both direct and indirect 

immunofluorescence techniques (Section 2.7) were used to label primary HUVECs on 8 

well glass slides (Section 2.9.2).  Slides were viewed using a Zeiss LSM 510 META 

confocal microscope with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss 

LSM 2.5 analysis software (Section 2.9). 

 

 

Figure 3.3.4: Cellular distribution of TLR2 (Red) in relation to Lipid rafts (Green) in intact HUVECs 

(A) and HUVECs treated with Nystatin (B) which have been stimulated with S.aureus 

LTA (60 minutes). The cells were stimulated with the different ligands in the presence 

and absence of Nystatin. They were subsequently fixed and labelled with the 

corresponding primary antibody against the receptor of interest, followed by an 

appropriate secondary antibody. Lipid rafts were labelled using cholera-toxin-FITC. 

Images were acquired using a Zeiss LSM 510 META confocal microscope with a 1.4 

NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 analysis software. The 

image is a representative from a number of independent experiments. 

 

TLR2 is located in lipid rafts in both intact HUVECs (Figure 3.3.4A) and HUVECs 

treated with Nystatin (Figure 3.3.4B) when subject to S.aureus LTA. In the intact raft 

image there is evidence of TLR2 localisation in areas other than lipid rafts, this is not 

apparent with lipid raft disrupted HUVECs (Figure 3.3.4A).  
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In order to determine which sub-cellular organelles TLR2 might be targeted to this 

study proceeded to investigate the colocalisation of TLR2 with different organelles in 

response to its ligand, S.aureus LTA. 

 

 

Figure 3.3.5: Cellular distribution of TLR2 (Red) in relation to Golgi (Green) in intact HUVECs (A) 

and HUVECs treated with Nystatin (B) which have been stimulated with S.aureus LTA 

(60 minutes). The cells were stimulated with S.aureus in the presence and absence of 

Nystatin. They were subsequently fixed and labelled with the corresponding primary 

antibody against the receptor of interest, followed by an appropriate secondary 

antibody. Lipid rafts were labelled using cholera-toxin-FITC. Images were acquired 

using a Zeiss LSM 510 META confocal microscope with a 1.4 NA 63x Zeiss objective, 

used in conjunction with Zeiss LSM 2.5 analysis software. The image is representative 

of a number of independent experiments. 

 

TLR2 was found to be targeted to the Golgi in response to S.aureus LTA in intact 

HUVECs (Figure 3.3.5A). This association was completely lost when lipid rafts were 

disrupted (Figure 3.3.5B).  

 

Lipid raft disruption had similar effects for each stimulation protocol including 

combined stimulations (Figure 3.3.6/7). Nystatin treatment shows obvious distortion of 

lipid raft morphology and disruption of TLR trafficking. 
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Figure 3.3.6: Cellular distribution of TLR2 (Red) in relation to Lipid rafts (Green) in intact HUVECs 

(A) and HUVECs treated with Nystatin (B) which have been stimulated with E.coli 

LPS with pre-incubation (60 minutes) with oxLDL. The cells were stimulated with the 

different ligands in the presence and absence of Nystatin. They were subsequently fixed 

and labelled with the corresponding primary antibody against the receptor of interest, 

followed by an appropriate secondary antibody. Lipid rafts were labelled using cholera-

toxin-FITC. Images were acquired using a Zeiss LSM 510 META confocal microscope 

with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 analysis 
software. The image is representative of a number of independent experiments. 

 

The association of TLR2 and lipid raft in intact HUVECs is less obvious in the E.coli 

stimulation with oxLDL pre-incubation (Figure 3.3.6A) in comparison to S.aureus LTA 

stimulation of intact HUVECs (Figure 3.3.4 A). This displays the altered response of the 

cells as would be expected. However, as observed with S.aureus LTA stimulation of 

lipid raft disrupted HUVECs (Figure 3.3.4B), TLR2 is located in lipid rafts in Nystatin 

treated HUVECs (Figure 3.3.6B).  

 

Investigation of the colocalisation of TLR2 with different organelles in response to 

E.coli stimulation with oxLDL pre-incubation revealed the importance of lipid rafts in 

the targeting not only to the Golgi but also other cellular compartments such as 

endosomes. 
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Figure 3.3.7: Cellular distribution of TLR2 (Red) in relation to Golgi (Green) in intact HUVECs (A) 

and HUVECs treated with Nystatin (B) which have been stimulated with E.coli LPS 

with pre-incubation (60 minutes) with oxLDL. The cells were stimulated in the 

presence and absence of Nystatin. They were subsequently fixed and labelled with the 

corresponding primary antibody against the receptor of interest, followed by an 

appropriate secondary antibody. Lipid rafts were labelled using cholera-toxin-FITC. 

Images were acquired using a Zeiss LSM 510 META confocal microscope with a 1.4 

NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 analysis software. The 

image is representative of a number of independent experiments. 

 

TLR2 was found to be targeted to the Golgi in response to E.coli stimulation with 

oxLDL pre-incubation in intact HUVECs (Figure 3.3.7A). This association was 

completely lost when lipid rafts were disrupted (Figure 3.3.7B).  

 

The disturbance of cellular signalling due to lipid raft disruption is caused through 

altered trafficking of receptors. Lipid rafts are not only required for the formation of 

heterotypic receptor complexes but are also important for receptor internalization and 

targeting to locations such as the Golgi and endosomes. These images show the 

requirement of lipid rafts for appropriate TLR targeting and signalling. 
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3.3.4: Recruitment of TLR2 to lipid rafts following bacterial stimulation with 

lipoprotein pre-incubation 

Confocal data demonstrated that TLR2 is recruited within lipid rafts upon stimulation 

by its ligands. Since it has been previously demonstrated that H.pylori and P.gingivalis 

LPS-induced cellular activation is mediated within lipid rafts
206

, this study proceeded to 

investigate whether lipid rafts play a role in activation in response to lipoproteins and 

lipoprotein/bacterial product combinations. Lipid raft recruitment of receptors in 

response to lipoproteins and lipoprotein/bacterial product combinations was analysed 

using FRET (Section 2.9.4). 

 

3.3.4.1: Lipid raft recruitment of TLR2 

FRET experiments between TLR2 and GM-1 ganglioside (a lipid raft-associated lipid) 

were performed before and after HUVEC single stimulation with lipoprotein (human 

LDL or its oxidised derivatives, mmLDL and oxLDL), bacterial products (S.aureus 

LTA, E.coli, P.gingivalis or C.pneumoniae LPS) or combined stimulations involving 60 

minute pre-incubation with an endogenous lipoprotein (LDL, mmLDL, or oxLDL) and 

then further 60 minute stimulation with the bacterial ligand (S.aureus LTA, E.coli LPS, 

P.gingivalis LPS or C.pneumoniae LPS) (Section 2.5). TLR2 molecules were labelled 

with Cy3-TL2.1 and GM-1 ganglioside was labelled with Cy5-cholera toxin. FRET was 

measured in terms of dequenching of donor fluorescence after complete photobleaching 

of the acceptor fluorophore (Section 2.9.4). Fluorescence was quantified using a Zeiss 

LSM 510 META confocal microscope with a 1.4 NA 63x Zeiss objective, used in 

conjunction with Zeiss LSM 2.5 analysis software (Section 2.9). 

 

The energy transfer efficiency in this system was tested using a positive control, i.e. 

energy transfer between mAbs to different epitopes on CD14 molecules, showing that 

the maximum energy transfer efficiency (E%) was 38 ± 1.0. A negative control between 



151 

 

Cy3-CD14 and Cy5-W6/32 (mAb specific for major histocompatibility complex class I) 

was also used, which revealed no significant energy transfer (7 ± 1.2). 

 

A) 

 
B) 

 
Figure 3.3.8: HUVEC TLR2 lipid raft recruitment in response to (A) single stimulation with 

lipoprotein (LDL, mmLDL, or oxLDL) and bacterial stimulations (S.aureus LTA, 

E.coli LPS, P.gingivalis LPS or C.pneumoniae LPS) or (B) combinations of bacterial 

products with either LDL, mmLDL, or oxLDL. Energy transfer between TLR2 (Cy3) 

and lipid raft (Cy5-cholera toxin) was measured from the increase in donor (Cy3) 

fluorescence after acceptor (Cy5) photobleaching. Data represents mean, ± standard 

deviation, n=3. *Indicates statistically significant (p<0.05) increase in recruitment of 

TLR2 to lipid rafts in the stimulated protocols in comparison to unstimulated controls 

(Section 2.19). 
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It was shown that lipoproteins (LDL, mmLDL and oxLDL) as well as S.aureus LTA, 

P.gingivalis LPS and C.pneumoniae LPS could recruit TLR2 in lipid rafts (Figure 

3.3.8A). Similarly, combinations of these bacterial products with either LDL or mmLDL 

induce the recruitment of TLR2 within lipid rafts (Figure 3.3.8B). In contrast, although 

S.aureus, P.gingivalis and C.pneumoniae on their own can engage and recruit TLR2 to 

lipid rafts, when either PAMP was combined with oxLDL their ability to do so was 

greatly impaired (Figure 3.3.8B). 

 

3.3.5: Receptor associations with and within lipid rafts 

It has been previously shown that human vascular endothelial cell activation by H.pylori 

and P.gingivalis LPS is mediated through TLR2, is lipid-raft dependent and requires the 

formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and 

CD11b/CD18. Therefore this study proceeded to investigate whether similar or different 

activation clusters on human vascular endothelial cells are formed following exposure 

to lipoproteins and combinations of lipoproteins with bacterial products. This study 

proceeded to measure FRET between TLR2 and different receptor molecules that have 

been implicated in TLR2-dependent activation (TLR1, TLR6 and CD36). 

 

3.3.5.1: Lipoprotein/bacterial product-induced receptor clusters 

FRET experiments between TLR2 and TLR1, TLR6 and CD36 when HUVECs were 

exposed to lipoprotein (human LDL or its oxidised derivatives, mmLDL and oxLDL), 

bacterial products (S.aureus LTA, E.coli LPS, P.gingivalis LPS or C.pneumoniae LPS) 

or combined stimulations involving 60 minute pre-incubation with an endogenous 

lipoprotein (LDL, mmLDL or oxLDL) and then further 60 minute stimulation with the 

bacterial ligand (S.aureus LTA, E.coli LPS, P.gingivalis LPS and C.pneumoniae LPS) 

(Section 2.5). TLR2 molecules were labelled with Cy3-TL2.1 whilst TLR1, TLR6 and 
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CD36 were labelled with Cy5. FRET was measured in terms of dequenching of donor 

fluorescence after complete photobleaching of the acceptor fluorophore (Section 2.9.4). 

Energy transfer between TLR2-Cy3 and the various Cy5-labelled molecules was 

measured using a Zeiss LSM 510 META confocal microscope with a 1.4 NA 63x Zeiss 

objective, used in conjunction with Zeiss LSM 2.5 analysis software (Section 2.9). 

 
 

A)          B) 

 
C)          D) 

 

 

Figure 3.3.9: HUVEC TLR2 heterotypic associations in response to lipoproteins, bacterial products 

or combinations of both. Human vascular endothelial cells were stimulated with 

lipoprotein (LDL, mmLDL, or oxLDL) (A), bacterial PAMP (S.aureus LTA, E.coli 

LPS, P.gingivalis LPS or C.pneumoniae LPS) (A) or combinations of bacterial products 

with either LDL (B), mmLDL (C), or oxLDL (D). Energy transfer between TLR2 

(Cy3) and the different receptors (Cy5) was measured from the increase in donor (Cy3) 

fluorescence after acceptor (Cy5) photobleaching. Data represents mean, ± standard 

deviation, n=3. *Indicates statistically significant (p<0.05) increase in association of 

TLR2 with the corresponding receptor in the stimulated protocols in comparison to 

unstimulated controls (Section 2.19). 
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TLR2 was found not to associate with TLR1, TLR6 or CD36 prior to stimulation 

(Figure 3.3.9A). It was shown that TLR2 associates with TLR6 and CD36 after 

lipoprotein (LDL, mmLDL or oxLDL), as well as S.aureus LTA stimulation (Figure 

3.3.9A). Interestingly, P.gingivalis LPS and C.pneumoniae LPS triggered the formation 

of TLR1, TLR2 and CD36 receptor clusters, demonstrating that they induce the 

formation of slightly different activation cluster from S.aureus LTA (Figure 3.3.9A). 

E.coli LPS stimulation alone caused no association of receptors with TLR2 (Figure 

3.3.9A). Combinations of lipoproteins with P.gingivalis LPS or C.pneumoniae LPS 

induce the association of TLR2 with TLR1, TLR6 and CD36 (Figure 3.3.9B/C/D), 

suggesting that P.gingivalis and C.pneumoniae LPS engage TLR2/TLR1 heterodimers 

whereas lipoproteins induce TLR2/TLR6/CD36 associations forming a larger 

cumulative cluster consisting of all receptors. TLR1 was not associated with any double 

stimulations with E.coli LPS Figure (3.3.9B/C/D) nor was it associated with LDL and 

mmLDL pre-incubation with S.aureus LTA (Figure 3.3.9B/C). Interestingly, oxLDL 

pre-incubation reduced TLR2 associations with TLR1, TLR2, CD36 and lipid raft in all 

PAMP stimulations (Figure 3.3.9D) in comparison to PAMP alone (Figure 3.3.9A). 

S.aureus, P.gingivalis and C.pneumoniae induced receptor associations with TLR2 were 

reduced by around 40-50% when HUVECs were pre-incubated with oxLDL (Figure 

3.3.9D).  
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3.3.6: Conclusions 

 

 TLRs are involved in the recognition of endogenous lipoproteins and bacterial 

products that are associated with atherosclerosis. 

 Lipid raft disruption prevents appropriate trafficking of receptors modulating 

cellular response to ligands. Lipid rafts are important for receptor internalization 

and targeting to compartments such as endosomes and organelles such as the 

Golgi. 

 Lipid rafts are involved in the recognition of atherosclerosis-associated ligands. 

 Double stimulation of lipoprotein with bacterial PAMP reduces the requirement 

for lipid rafts. 

 Single stimulations with lipoproteins (LDL, mmLDL or oxLDL) as well as S. 

aureus LTA, P.gingivalis LPS and C.pneumoniae LPS recruit TLR2 in lipid 

rafts. 

 Combined stimulus of PAMP with either LDL or mmLDL induces the 

recruitment of TLR2 within lipid rafts. 

 oxLDL pre-incubation reduces recruitment of TLR2 to lipid rafts. 

 S.aureus LTA and lipoprotein (LDL, mmLDL or oxLDL) stimulation cause the 

association of TLR2, TLR6 and CD36 in lipid rafts. 

 P.gingivalis and C.pneumoniae LPS induce the formation of a slightly different 

activation cluster in lipid rafts including TLR2, TLR1 and CD36. 

 Combinations of lipoproteins with P.gingivalis LPS or C.pneumoniae LPS 

induce the association of TLR2, TLR1, TLR6 and CD36. This suggests the 

possibility that different receptor clusters are bought together to form a larger 

cluster, resulting in altered signalling, relevant for the present ligands. 



156 

 

3.4: Elucidation of receptor significance 

The upregulation of PRRs, as observed in plaque by Edfeldt et al. (2002)
8
, has been 

mimicked in this study using ligands thought to be involved in atherogenesis. Cytokine 

release has been observed to coincide with this upregulation, but individual TLR 

involvement has not been deciphered. Previous studies have strongly associated TLR2, 

TLR4 and CD36 with atherosclerosis. These findings combined with data from this 

study directed the next step in this research to elucidate the individual role of these 

receptors in atherogenesis.  

 

3.4.1: Transfected HEK293 response 

Although the role of TLR2 and TLR4 in the recognition of lone PAMPs is recognized, 

their role in combinatorial stimulations with atherosclerosis-associated ligands, more 

importantly lipoproteins and bacterial products, is not. To elucidate the individual role 

of TLR2 and TLR4 in the initiation of atherosclerosis, transformed HEK293 cells 

expressing either TLR2 (HEK TLR2) or TLR4 (HEK TLR4) were utilised. HEK293 

wild-type (HEK w-t) cells do not express cell surface receptors, thus the transformation 

of these allows tailored protein expression. 

 

3.4.1.1: HEK inflammatory response to atherosclerosis-associated ligands 

In order to investigate which TLRs might play a role in lipoprotein and 

lipoprotein/bacterial product activation of human vascular endothelial cells, transfected 

cell lines were used. HEK cells transfected with either TLR2, or TLR4/MD2 were 

utilised. Either HEK TLR2 or HEK TLR4 cells were subject to 60 minute stimulation 

with human LDL, mmLDL, oxLDL, S.aureus LTA, E.coli LPS, P.gingivalis LPS or 

C.pneumoniae LPS (Section 2.5). All stimulations were carried out in 24 well plates in 
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SFM (GIBCO) (Section 2.5.2). The SFM was collected post stimulation for cytokine 

analysis using the Human Inflammation BD™ cytometric bead array system (Section 

2.8.2.2). Out of the inflammatory cytokines analysed (IL-1β, IL-6, IL-8, IL-10, IL-

12p70 and TNF, only the release IL-8 was significantly increased. 

 

 

 

 

Figure 3.4.1: Interleukin-8 release from HEK TLR2 (dark grey) and HEK TLR4 (light grey) in 

response to LDL, mmLDL, oxLDL, S.aureus LTA, E.coli LPS, P.gingivalis LPS and 

C.pneumoniae LPS. IL-8 was measured in the cell supernatant using a flow cytometric 

cytokine bead array system (Becton Dickinson). Negatives (HEK wild-type) subtracted. 

Data represents mean, ± standard deviation, n=3. *Indicates statistically significant 

(p<0.05) increase in interleukin-8 release in comparison to HEK wild-type (Section 

2.19). 

 

 

HEK TLR2 and HEK TLR4 cell lines were both capable of generating a response to 

LDL and mmLDL, but only HEK TLR2 cells were able to generate a significant 

response to oxLDL (Figure 3.4.1). HEK TLR4 gave a stronger response to LDL and 

mmLDL than HEK TLR2, the opposite to what was observed with oxLDL. S.aureus 

LTA, a TLR2 agonist, was detected by HEK TLR2 but not HEK TLR4, results as 

expected. E.coli LPS, a TLR4 agonist, induced cytokine release from the HEK TLR4 

cell line (Figure 3.4.1). A negligible response was seen in the HEK TLR2 cell line to 
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E.coli LPS (Figure 3.4.1). The results obtained for the unconventional LPS bacterial 

ligands of P.gingivalis and C.pneumoniae confirmed their recognition primarily through 

TLR2 and not the endotoxin receptor TLR4. P.gingivalis LPS was capable of inducing a 

response in both HEK TLR2 and, to a lesser extent, HEK TLR4 cells (Figure 3.4.1). 

C.pneumoniae LPS only induced a response in the HEK TLR2 cell line verifying 

unconventional signalling (Figure 3.4.1). 

 

3.4.1.2:HEK inflammatory response to bacterial ligand with lipoprotein pre-

incubation 

In order to determine whether TLR2 or TLR4 is involved in the inflammatory response 

to combinations of endogenous lipoproteins and bacterial ligands, I proceeded to 

stimulate HEK cells transfected with the corresponding receptor with the various 

ligands. Either HEK TLR2 or HEK TLR4 cells were subject to 60 minute pre-

incubation with an endogenous lipoprotein (human LDL or its oxidised derivatives 

mmLDL and oxLDL) and then further 60 minute stimulation with the bacterial ligand 

(S.aureus LTA, E.coli LPS, P.gingivalis LPS or C.pneumoniae LPS) (Section 2.5). All 

stimulations were carried out in 24 well plates in SFM (GIBCO) (Section 2.5.2). The 

SFM was collected post stimulation for cytokine analysis using the Human 

Inflammation BD™ cytometric bead array system (Section 2.8.2.2). Again only 

interleukin-8 concentrations were significantly increased. 
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Figure 3.4.2: Interleukin-8 release from HEK TLR2 (dark grey) and HEK TLR4 (light grey) after 60 

minute stimulation with the atherosclerosis-associated bacterial ligands S.aureus LTA, 

E.coli LPS, P.gingivalis LPS or C.pneumoniae LPS with pre-incubation (60 minutes) 

with human LDL or either of its oxidised derivatives, mmLDL and oxLDL. IL-8 was 

measured in the cell supernatant using a flow cytometric cytokine bead array system 

(Becton Dickinson). Negatives (HEK wild-type) subtracted. Data represents mean, ± 

standard deviation, n=3. *Indicates statistically significant (p<0.05) increase in 

interleukin-8 release in comparison to HEK wild-type (Section 2.19). 

 

Both HEK TLR2 and HEK TLR4 were capable of increased cytokine release in 

response to all combined stimulations (Figure 3.4.2). Interestingly, although oxLDL and 

C.pneumoniae LPS single stimulations were very poor at causing IL-8 release from the 

HEK TLR4 cell line, when these were simultaneously exposed to HEK TLR4 cells a 

significant IL-8 response was observed (Figure 3.4.3). This would suggest that pre-

exposure to lipoproteins enhances sensitivity to bacterial ligands, or that bacterial ligand 

exposure increases sensitivity to lipoproteins, through TLR4. This effect is apparent for 

all stimulations with HEK TLR4 cells, where pre-incubation with LDL, mmLDL and 

oxLDL enhanced the cytokine response to atherosclerotic bacterial ligands (Figure 

3.4.4). Similar results were obtained for HEK TLR2 but to a much lesser extent. Pre-

incubation of HEK TLR2 cells with LDL and oxLDL and then subsequent P.gingivalis 

LPS exposure had little or no effect on IL-8 release (Figure 3.4.3). Pre-incubation with 

mmLDL reduced the HEK TLR2 response to P.gingivalis LPS (Figure 3.4.3). 
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Figure 3.4.3: IL-8 release from HEK TLR2 cells after 60 minute incubation with bacterial PAMP 

(S.aureus LTA, E.coli LPS, P.gingivalis LPS or C.pneumoniae LPS) alone (light grey) 

and 60 minute incubation with bacterial PAMP (S.aureus LTA, E.coli LPS, P.gingivalis 

LPS or C.pneumoniae LPS) with 60 minute pre-incubation with either human LDL, 

mmLDL or oxLDL (dark grey). IL-8 was measured in the cell supernatant using a flow 

cytometric cytokine bead array system (Becton Dickinson). Negatives (HEK wild-type) 

subtracted. Data represents mean, ± standard deviation, n=3. *Indicates statistically 

significant (p<0.05) increase in IL-8 release in comparison to HEK w-t (Section 2.19). 
 

 

 

Figure 3.4.4: IL-8 release from HEK TLR4 cells after 60 minute incubation with bacterial PAMP 

(S.aureus LTA, E.coli LPS, P.gingivalis LPS or C.pneumoniae LPS) alone (light grey) 

and 60 minute incubation with bacterial PAMP (S.aureus LTA, E.coli LPS, P.gingivalis 

LPS or C.pneumoniae LPS) with 60 minute pre-incubation with either human LDL, 

mmLDL or oxLDL) (dark grey). IL-8 was measured in the cell supernatant using a flow 

cytometric cytokine bead array system (Becton Dickinson). Negatives (HEK wild-type) 

subtracted. Data represents mean, ± standard deviation, n=3. *Indicates statistically 

significant (p<0.05) increase in IL-8 release in comparison to HEK w-t (Section 2.19). 
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3.4.2: CD36 silencing on HUVECs 

The accumulation of lipid laden macrophages (foam cells) is a major characteristic of 

plaque formation. CD36 SR is expressed on macrophages where it binds modified 

lipids
173

 and is involved in their internalization causing dysregulation of cellular 

function resulting in foam cell formation
102

. Previous data in this study has shown 

upregulation of CD36 on endothelial cells in response to LDL, mmLDL, oxLDL and 

bacterial products associated with atherosclerosis resulting in cytokine release (Section 

3.1). It was of interest in this study to elucidate the contribution of CD36 SR in the 

immune response to these ligands.  

 

CD36 expression on primary HUVECs was silenced by transfection with CD36 

psiRNA. Reduction in expression was confirmed by direct immunofluorescence and 

flow cytometry (data not shown). I investigated the role of endogenous lipoproteins, 

bacterial products and combinations of these to analyze their capability of activating an 

innate immune response in CD36 silenced primary HUVECs. 

 

3.4.2.1: CD36 purification 

CD36 psiRNA was transformed into a competent E.coli strain (E.coli GT116), which 

was expanded and lysed (Section 2.13.2.1). The plasmids were then purified from the 

lysate, concentrated and sterilised (Section 2.13.2.2). To check purity of the plasmid 

preparations 10µl of the sample was run on a 1% w/v agarose gel at 100V for 45 

minutes (Section 2.13.3.1). 
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Image 3.4.1: Agarose gel of purified CD36 psiRNA. The plasmid is approximately 3000bp. The 

positions of the 1Kb DNA ladder fragments are indicated on the left. The plasmid 

sample was run on a 1% w/v agarose gel for 45 minutes at 100V. Bands were observed 

using a Stratagene eagle eye UV imaging system. (Colour inverted). 
 

Agarose gel analysis of the purified plasmid samples revealed a single band 

representing CD36 plasmid illustrating a very high level of purity (Image 3.4.1). 

 

3.4.2.2: CD36 silenced HUVEC response to atherosclerosis-associated ligands 

Cellular expression of CD36 was reduced by transfecting HUVEC cells with CD36 

shRNA (60% reduction in CD36 expression was achieved) (Section 2.13.4.3). Silenced 

cells were stimulated 24 hours post transfection. CD36 silenced HUVECs were subject 

to 60 minute stimulation with human LDL, oxLDL, S.aureus LTA, E.coli LPS or 

P.gingivalis LPS (Section 2.5). All stimulations were carried out in 24 well plates in 

SFM (GIBCO) (Section 2.5.2). The SFM was collected post stimulation for cytokine 

analysis using the Human Inflammation BD™ cytometric bead array system (Section 

2.8.2.2). Out of the inflammatory cytokines analysed (IL-1β, IL-6, IL-8, IL-10, IL-

12p70 and TNF), only the release of IL-6 and IL-8 were significantly increased. 
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A)      B) 

 

 

Figure 3.4.5: Interleukin-6 (A) and interleukin-8 (B) release from untransfected HUVECs (dark grey) 

and CD36 silenced HUVECs (light grey) in response to LDL, mmLDL, oxLDL, 

S.aureus LTA, E.coli LPS and P.gingivalis LPS. Interleukin-6 and interleukin-8 were 

measured in the cell supernatant using a flow cytometric cytokine bead array system 

(Becton Dickinson). Negatives subtracted. Data represents mean, ± standard deviation, 

n=3. *Indicates statistically significant (p<0.05) decrease in cytokine release from 

CD36 silenced cells in comparison to untransfected controls (Section 2.19). 

 

The silencing of CD36 reduced the IL-6 release from HUVECs in response to 

endogenous and exogenous ligands (Figure 3.4.5A). LDL and oxLDL induced IL-6 

release from CD36 silenced HUVECS was reduced by 76% and 68% respectively in 

comparison to that observed from wild-type cells (Figure 3.4.5A).  This illustrates CD36 

as a lipoprotein receptor favouring LDL over oxLDL. CD36 silenced HUVEC IL-6 

release was also less responsive to PAMPs, the greatest reduction seen with P.gingivalis 

which was diminished by ~50% (Figure 3.4.5A). 

 

As observed with previous data, IL-8 did not follow the same pattern of release as IL-6. 

CD36 silenced HUVECs had a reduced IL-8 release (Figure 3.4.5B) in response to LDL 

and oxLDL, but lesser a reduction as observed with IL-6 release (Figure 3.4.5A). The 

transfected cells had little or no difference in the IL-8 response observed with S.aureus 

LTA, E.coli LPS and P.gingivalis LPS stimulation in comparison to wild-type cells 

(Figure 3.4.5B). 

 

* * * * *

0

10

20

30

40

50

60

70

80

90

100

LDL oxLDL S.aureus E.coli P.gingivalis

C
o

n
ce

n
tr

at
io

n
 (

p
g/

m
l)

Interleukin-6

* *

0

200

400

600

800

1000

1200

LDL oxLDL S.aureus E.coli P.gingivalis

C
o

n
ce

n
tr

at
io

n
 (

p
g/

m
l)

Interleukin-8



164 

 

3.4.2.3:CD36 silenced HUVEC response to bacterial ligand stimulation with 

lipoprotein pre-incubation 

The absence of CD36 was shown to affect the inflammatory response to atherosclerosis-

associated ligands. Thus I proceeded to investigate whether the presence of CD36 was 

also significant for the inflammatory response to combinations of endogenous 

lipoproteins and bacterial ligands. Cellular expression of CD36 was reduced by 

transfection of the HUVEC cell line with CD36 psiRNA (60% reduction in CD36 

expression was achieved) (Section 2.13.4.3). Silenced cells were stimulated 24 hours 

post transfection. HUVECs were subject to 60 minute pre-incubation with an 

endogenous lipoprotein (human LDL or oxLDL) and then further 60 minute stimulation 

with the bacterial ligand (S.aureus LTA, E.coli LPS or P.gingivalis LPS) (Section 2.5). 

All stimulations were carried out in 24 well plates in SFM (GIBCO). The SFM was 

collected post stimulation for cytokine analysis using the Human Inflammation BD™ 

cytometric bead array system (Section 2.8.2.2). As found with the single stimulations of 

CD36 silenced HUVECs, only the release of IL-6 and IL-8 were significantly increased. 

 

A)      B) 

 

 
Figure 3.4.6: Interleukin-6 (A) and interleukin-8 (B) release from untransfected HUVECs (dark grey) 

and CD36 silenced HUVECs (light grey) after 60 minute stimulation with the 

atherosclerosis-associated bacterial ligands S.aureus LTA, E.coli LPS or P.gingivalis 

LPS with pre-incubation (60 minutes) with human LDL or oxLDL. IL-6 and IL-8 were 

measured in the cell supernatant using a flow cytometric cytokine bead array system 

(Becton Dickinson). Negatives subtracted. Data represents mean, ± standard deviation, 

n=3. *Indicates statistically significant (p<0.05) decrease in cytokine release from 

CD36 silenced cells in comparison to untransfected controls (Section 2.19). 
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Both the IL-6 and IL-8 response to all double stimulations were reduced in CD36 

transfected HUVECs in comparison to wild-type HUVECs (Figure 3.4.6). The 

reduction in IL-6 (Figure 3.4.6A) release was greater than that observed with IL-8 

(Figure 3.4.6B). These results show the significance of CD36 in the cellular response to 

these combined stimulations.  

 

CD36 has been shown to form clusters with other receptors in lipid rafts. An association 

of TLR2/1 and CD36 has been observed in response to P.gingivalis LPS
51

. The ability 

of CD36 SR to form such clusters with TLRs presents the possibility of cross talk, or 

some kind of interference. When lipoproteins and bacterial products are exposed to cells 

at the same time they may compete/interact with the same receptor cluster in lipid rafts. 

This could give rise to the modulation of cellular response to bacterial products caused 

by lipoproteins that has been observed in this study. 
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3.4.3: Conclusions 

 

 LDL and mmLDL can signal through TLR2 and TLR4. oxLDL is only 

recognised through TLR2. 

 S.aureus LTA and C.pneumoniae LPS are recognised through TLR2. 

P.gingivalis LPS is recognised by TLR2 and to a lesser extent TLR4. E.coli LPS 

is only recognised by TLR4. 

 The increased cytokine release in response to bacterial ligands (S.aureus LTA, 

E.coli LPS and C.pneumoniae LPS) that was observed when cells were pre-

incubated with lipoprotein occurs through TLR2 and TLR4. This is most 

apparent through TLR4.  

 Pre-incubation of HEK TLR2 cells with LDL and oxLDL and then subsequent 

P.gingivalis LPS exposure had little or no effect on IL-8 release. Pre-incubation 

with mmLDL reduced the HEK TLR2 response to P.gingivalis LPS. 

 CD36 is involved in the recognition of lipoproteins, preferentially binding LDL 

over oxLDL. 

 CD36 has no effect on IL-8 release from HUVECs in response to bacterial 

ligands but is involved in IL-6 release. 

 CD36 is involved in IL-6 and IL-8 release when lipoprotein and bacterial 

product were combined, suggesting a greater involvement in bacterial 

recognition when lipoproteins are present. 
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3.5: PRR association and trafficking 

The initial recognition of the enormous range of varied foreign ligands that can invade 

our bodies requires our innate immune system to react quickly and accordingly for their 

fast and efficient removal. The immune response to a specific ligand is tailored not only 

by recognition by a specific PRR, but also by the associations caused between these 

receptors allowing precise identification. In atherosclerosis this response has become 

dysregulated causing chronic inflammation leading to plaque formation and associated 

clinical outcomes. Increased PRR expression has been shown in the atherosclerotic 

plaque, and associations between these in response to various ligands is well 

established. This study is concerned with the effects that circulating LDL has on this 

tailored response to bacterial ligands. It is becoming apparent that the presence of LDL 

and its derivatives prior to bacterial infection may have the effect of altering cellular 

response to a ligand, through disruption of the appropriate PRR associations normally 

tailored for such a pathogen. 

 

When cells were pre-incubated with lipoprotein prior to bacterial stimulation the 

cytokine release, PRR expression and pattern of receptor associations were altered. In 

this study FRET analysis has shown that oxLDL incubation prior to bacterial exposure 

reduced the recruitment of TLR2 to lipid rafts in comparison to bacterial stimulation 

alone. These data highlight the possible effect of circulating lipids. Work continued on 

these associations using confocal microscopy to image their cell surface interaction, 

internalization and intracellular trafficking. I also imaged the localisation of the 

intracellular TLR signalling adapter MyD88 to investigate whether the localisation of 

this molecule is altered in response to the presence of lipoprotein. 
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3.5.1: Pattern recognition receptor distribution in unstimulated HUVECs 

Initially the intracellular distribution of the PRRs in question was investigated in 

unstimulated HUVEC cells. HUVECs were seeded on collagen treated 8 well glass 

slides (Section 2.9.1). Both direct and indirect immunofluorescence (Section 2.7) 

techniques were used to label primary HUVECs on the 8 well glass slides (Section 

2.9.2).  Slides were viewed using a Zeiss LSM 510 META confocal microscope with a 

1.4 NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 analysis software 

(Section 2.9). Localisation was quantified using Costes’ method in ImageJ version 1.43 

with the JACoP plugin (Section 2.9.3). 

 

Unstimulated 

 

Figure 3.5.1: Cellular distribution of TLR2 (Red {Alexa555}), CD36 (Blue {Cy5}) and CD14 (Blue 

{Cy5}) in relation to Golgi (Green {FITC}) and endosomes (Green {FITC}) in 

unstimulated HUVECs. The cells were fixed and labelled via immunofluorescence. 

Images were acquired using a Zeiss LSM 510 META confocal microscope with a 1.4 

NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 analysis software. The 

images are representative of a number of independent experiments. Localisation was 

quantified using Costes’ method in ImageJ version 1.43 with the JACoP plugin. Scale 

bar, 10µm. 
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In unstimulated HUVECs (Figure 3.5.1) TLR2, CD14 and CD36 localise to the Golgi 

(r{obs} 0.844, 0.860 and 0.923 respectively) and endosomes (r{obs} 0.729, 0.771 and 

0.799 respectively). TLR2, CD14 and CD36 have a preference for the Golgi with 

respective r{obs} values being 16.4% 11.5% and 15.5% greater than those obtained for 

association with endosomal compartments (Figure 3.5.1). 

 

3.5.1.1: PRR association with lipid rafts in unstimulated cells 

In order to determine PRR association with lipid rafts in unstimulated cells, HUVECs 

were seeded on collagen treated 8 well glass slides (Section 2.9.1). The cells were 

stimulated directly on the slide in 200µl SFM (Section 2.5.3). Both direct and indirect 

immunofluorescence (Section 2.7) techniques were used to label primary HUVECs on 8 

well glass slides (Section 2.9.2).  Slides were viewed using a Zeiss LSM 510 META 

confocal microscope with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss 

LSM 2.5 analysis software (Section 2.9). Localisation was quantified using Costes’ 

method in ImageJ version 1.43 with the JACoP plugin (Section 2.9.3). 

 

Unstimulated 

 
Figure 3.5.2: Cellular distribution of: A) TLR2 (Red {Alexa555}) and CD36 (Blue {Cy5}) in 

relation to lipid rafts (Green {Cholera-toxin-FITC}) and B) TLR4 (Red {Cy3}) and 

CD14 (Blue {Cy5}) in relation to lipid rafts (Green {Cholera-toxin-FITC}) in 

unstimulated HUVECs. The cells were fixed and labelled via immunofluorescence. 

Images were acquired using a Zeiss LSM 510 META confocal microscope with a 1.4 

NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 analysis software. The 

images are representative of a number of independent experiments. Localisation was 

quantified using Costes’ method in ImageJ version 1.43 with the JACoP plugin.  Scale 

bar, 10µm. 
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In the unstimulated HUVECs (Figure 3.5.2), TLR2 had a weak association with lipid 

rafts whilst TLR4 did not (r{obs} 0.519 and 0.495 respectively). The SR CD36 was not 

associated with lipid rafts (r{obs} 0.494). It was found that CD14 localised weakly with 

the lipid raft in unstimulated HUVECs (r{obs} 0.547). 

 

3.5.2: Intracellular HUVEC receptor targeting in response to S.aureus LTA and 

S.aureus LTA lipoprotein combined stimulations 

 

It has previously been shown that TLR2 is targeted to the Golgi apparatus in response to 

S.aureus LTA
207,208

. This study was set out to investigate the intracellular targeting of 

PRRs involved in atherosclerosis in response to S.aureus LTA, as well as in response to 

combined stimulations with S.aureus LTA and low density lipoprotein.  

 

HUVECs were seeded on collagen treated 8 well glass slides (Section 2.9.1). The cells 

were stimulated directly on the slide in 200µl SFM (Section 2.5.3). HUVECs were 

subject to S.aureus LTA, S.aureus LTA with LDL pre-incubation or S.aureus LTA with 

oxLDL pre-incubation (Section 2.5). Both direct and indirect immunofluorescence 

(Section 2.7) techniques were used to label primary HUVECs on 8 well glass slides 

(Section 2.9.2). Slides were viewed using a Zeiss LSM 510 META confocal microscope 

with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 analysis 

software (Section 2.9). Localisation was quantified using Costes’ method in ImageJ 

version 1.43 with the JACoP plugin (Section 2.9.3). 
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S.aureus LTA 

 

Figure 3.5.3: Cellular distribution of TLR2 (Red {Alexa555}), CD36 (Blue {Cy5}) and CD14 (Blue 

{Cy5}) in relation to Golgi (Green {FITC}) and endosomes (Green {FITC}) in 

HUVECs that have been stimulated with S.aureus LTA (60 minutes). The cells were 

subsequently fixed and labelled via immunofluorescence. Images were acquired using a 

Zeiss LSM 510 META confocal microscope with a 1.4 NA 63x Zeiss objective, used in 

conjunction with Zeiss LSM 2.5 analysis software. The images are representative of a 

number of independent experiments. Localisation was quantified using Costes’ method 

in ImageJ version 1.43 with the JACoP plugin. Scale bar, 10µm. 

 

Following stimulation of HUVECs with S.aureus LTA (Figure 3.5.3) the receptors 

TLR2, CD14 and CD36 were shown to reside in both the Golgi (r{obs} 0.667, 0.687 

and 0.709 respectively) and endosomes (r{obs} 0.646, 0.820 and 0.721 respectively). 

CD14, in contrast to the unstimulated cell (Figure 3.5.1), was more strongly associated 

with the endosome in comparison to the Golgi (Figure 3.5.3). Both TLR2 and CD36 

were now equally distributed between the Golgi and endosomes in comparison to 

unstimulated cells where a preference for the Golgi was observed (Figure 3.5.3). 

 

 

 



172 

 

 

LDL + S.aureus LTA 

 

Figure 3.5.4: Cellular distribution of TLR2 (Red {Alexa555}), CD36 (Blue {Cy5}) and CD14 (Blue 

{Cy5}) in relation to Golgi (Green {FITC}) and endosomes (Green {FITC}) in 

HUVECs that have been pre-incubated with LDL (60 minutes) and then stimulated with 

S.aureus LTA (60 minutes). The cells were subsequently fixed and labelled via 

immunofluorescence. Images were acquired using a Zeiss LSM 510 META confocal 

microscope with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 

analysis software. The images are representative of a number of independent 

experiments. Localisation was quantified using Costes’ method in ImageJ version 1.43 

with the JACoP plugin. Scale bar, 10µm. 

 

As with S.aureus LTA stimulation, when HUVECs were pre-incubated with LDL prior 

to S.aureus LTA exposure (Figure 3.5.4) the receptors TLR2, CD14 and CD36 were 

shown to reside in both the Golgi (r{obs} 0.689, 0.750 and 0.702 respectively) and 

endosomes (r{obs} 0.771, 0.856 and 0.848 respectively). PRRs were more strongly 

associated with endosomes than the Golgi. Stimulation with a combination of S.aureus 

and LDL promoted PRRs targeting to the endosomes. 
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oxLDL + S.aureus LTA 

 

Figure 3.5.5: Cellular distribution of TLR2 (Red {Alexa555}), CD36 (Blue {Cy5}) and CD14 (Blue 

{Cy5}) in relation to Golgi (Green {FITC}) and endosomes (Green {FITC}) in 

HUVECs that have been pre-incubated with oxLDL (60 minutes) and then stimulated 

with S.aureus LTA (60 minutes). The cells were subsequently fixed and labelled via 

immunofluorescence. Images were acquired using a Zeiss LSM 510 META confocal 

microscope with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 

analysis software. The images are representative of a number of independent 

experiments. Localisation was quantified using Costes’ method in ImageJ version 1.43 

with the JACoP plugin. Scale bar, 10µm. 

 

TLR2, CD14 and CD36 were shown to reside in both the Golgi (r{obs} 0.545, 0.718 

and 0.653 respectively) and endosomes (r{obs} 0.608, 0.700 and 0.668 respectively) 

when HUVECs were pre-incubated with oxLDL prior to S.aureus LTA stimulation 

(Figure 3.5.5). Both TLR2 and CD36 were preferentially localised to the endosomes 

(Figure 3.5.5). Although TLR2 was observed in the Golgi and mainly in the endosomes, 

it is apparent from the confocal image that it is targeted to another distinct cellular 

compartment when cells are pre-incubated with oxLDL, possibly in lysosomes (Figure 

3.5.5).  
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3.5.2.1:PRR lipid raft association in response to S.aureus LTA and S.aureus LTA 

lipoprotein combined stimulations 

 

Lipid rafts have been shown to constitute platforms on the plasma membrane where 

signalling is concentrated. It has been shown that TLRs cluster within lipid rafts from 

where they signal. In this study I set out to investigate the involvement of lipid rafts in 

the internalization and targeting of PRRs involved in atherosclerosis.  

 

HUVECs were seeded on collagen treated 8 well glass slides (Section 2.9.1). The cells 

were stimulated directly on the slide in 200µl SFM (GIBCO) (Section 2.5.3). HUVECs 

were subject to S.aureus LTA, S.aureus LTA with LDL pre-incubation or  S.aureus 

LTA with oxLDL pre-incubation (Section 2.5). Both direct and indirect 

immunofluorescence (Section 2.7) techniques were used to label primary HUVECs on 8 

well glass slides (Section 2.9.2).  Slides were viewed using a Zeiss LSM 510 META 

confocal microscope with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss 

LSM 2.5 analysis software (Section 2.9). Localisation was quantified using Costes’ 

method in ImageJ version 1.43 with the JACoP plugin (Section 2.9.3). 
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Figure 3.5.6: Cellular distribution of TLR2 (Red {Alexa555}) and CD36 (Blue {Cy5}) in relation to 

lipid rafts (Green {Cholera-toxin-FITC}) in HUVECs that have been stimulated with 

S.aureus LTA alone or S.aureus LTA with LDL or oxLDL pre-incubation. The cells 

were subsequently fixed and labelled via immunofluorescence. Images were acquired 

using a Zeiss LSM 510 META confocal microscope with a 1.4 NA 63x Zeiss objective, 

used in conjunction with Zeiss LSM 2.5 analysis software. The images are 

representative from a number of independent experiments. Localisation was quantified 

using Costes’ method in ImageJ version 1.43 with the JACoP plugin. Scale bar, 10µm. 

 

 

TLR2 is present in lipid rafts of HUVECs stimulated with S.aureus LTA (r{obs} 0.699. 

Figure 3.5.6, S.aureus LTA) and, to a lesser extent, S.aureus LTA with LDL pre-

incubation (r{obs} 0.570. Figure 3.5.6, LDL + S.aureus LTA). This association is lost 

when HUVECs were pre-treated with oxLDL (r{obs} 0.430, Figure 3.5.6. oxLDL + 

S.aureus LTA). CD36 SRs weakly associate with lipid rafts with S.aureus LTA 

stimulation (r{obs} 0.523. Figure 3.5.6, S.aureus LTA), this is lost when cells were pre-

incubated with LDL (r{obs} 0.453. Figure 3.5.6, LDL + S.aureus LTA). However, 

when cells were pre-treated with oxLDL prior to S.aureus LTA (Figure 3.5.6. oxLDL + 

S.aureus LTA) it was shown that CD36 was recruited to lipid rafts (r{obs} 0.601). This 

data suggests oxLDL pre-incubation may modulate the immune response, as observed 

with the cytokine data, by diminishing the ability of a cell to recognise a PAMP by 
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reducing cell surface expression of receptors, such as TLR2. While on the other hand, 

recruiting SRs such as CD36 to lipid rafts, in order to internalize the oxidized lipid. 

 

 

 
Figure 3.5.7: Cellular distribution of TLR4 (Red {Cy3}) and CD14 (Blue {Cy5}) in relation to lipid 

rafts (Green {Cholera-toxin-FITC}) in HUVECs that have been stimulated with 

S.aureus LTA alone or S.aureus LTA with LDL or oxLDL pre-incubation. The cells 

were subsequently fixed and labelled via immunofluorescence. Images were acquired 

using a Zeiss LSM 510 META confocal microscope with Zeiss LSM software. The 

images are representative of a number of independent experiments. Localisation was 

quantified with Costes’ method in ImageJ (v1.43) with JACoP plugin. Scale bar, 10µm. 

 

 

S.aureus LTA causes a weak association of TLR4 and CD14 with lipid rafts (r{obs} 

0.517 and 0.516 respectively. Figure 3.5.7. S.aureus LTA). Pre-incubation with LDL 

causes strong recruited of TLR4 to lipid rafts (r{obs} 0.815. Figure 3.5.7. LDL + 

S.aureus LTA). S.aureus stimulation with oxLDL pre-incubation (Figure 3.5.7. oxLDL 

+ S.aureus LTA) causes TLR4 and CD14 recruitment to lipid rafts (r{obs} 0.637 and 

0.744 respectively). 

 

The recruitment of MyD88 to lipid rafts in HUVECs in response to S.aureus LTA alone 

was reduced by 25% when cells were pre-incubated with oxLDL (data not shown). 
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A): S.aureus LTA 

 
B): LDL + S.aureus LTA 

 
C): oxLDL + S.aureus LTA 

 
 

 

Figure 3.5.8: Schematic diagrams of the cellular distribution of TLR2 (Blue), CD14 (Green) and 

CD36 (Yellow) in relation to endosomes and the Golgi, and the cellular distribution of 

TLR2, TLR4 (Red), CD14 and CD36 in relation to lipid rafts in response to S.aureus 

LTA (A), S.aureus LTA with LDL pre-incubation (B) and S.aureus LTA with oxLDL 

pre-incubation (C). Note: The presence of TLR4 in endosomes and the Golgi was not 

imaged. Extracellular domain colour fill represents localisation determined by r{obs}. 
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3.5.3: Intracellular PRR receptor targeting in response to E.coli LPS and E.coli 

LPS lipoprotein combined stimulations 

 

To investigate the intracellular PRR receptor targeting in response to E.coli LPS and 

E.coli LPS lipoprotein combined stimulations, HUVECs were seeded on collagen 

treated 8 well glass slides (Section 2.9.1). These were subject to E.coli LPS or E.coli 

LPS with either LDL or oxLDL pre-incubation (Section 2.5) directly on the slide in 

200µl SFM (Section 2.5.3). Both direct and indirect immunofluorescence (Section 2.7) 

was used to label primary HUVECs on 8 well glass slides (Section 2.9.2).  Slides were 

viewed using a Zeiss LSM 510 META confocal microscope with Zeiss LSM software 

(Section 2.9). Localisation quantified using Costes’ method in ImageJ (Section 2.9.3). 

 

E.coli LPS 

 
Figure 3.5.9: Cellular distribution of TLR2 (Red {Alexa555}), CD36 (Blue {Cy5}) and CD14 (Blue 

{Cy5}) in relation to Golgi (Green {FITC}) and endosomes (Green {FITC}) in 

HUVECs that have been stimulated with E.coli LPS (60 minutes). The cells were 

subsequently fixed and labelled via immunofluorescence. Images were acquired using a 

Zeiss LSM 510 META confocal microscope with a 1.4 NA 63x Zeiss objective, used in 

conjunction with Zeiss LSM 2.5 analysis software. The images are representative of a 

number of independent experiments. Localisation was quantified using Costes’ method 

in ImageJ version 1.43 with the JACoP plugin. Scale bar, 10µm. 
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In HUVECs stimulated with E.coli LPS (Figure 3.5.9) the receptors TLR2, CD14 and 

CD36 were seen to localise with the Golgi (r{obs} 0.659, 0.842 and 0.677 respectively) 

and endosomes (r{obs} 0.814, 0.851 and 0.844 respectively). Both TLR2 and CD36 

were more concentrated in the endosomes (Figure 3.5.9). 

 

LDL + E.coli LPS 

 

Figure 3.5.10: Cellular distribution of TLR2 (Red {Alexa555}), CD36 (Blue {Cy5}) and CD14 (Blue 

{Cy5}) in relation to Golgi (Green {FITC}) and endosomes (Green {FITC}) in 

HUVECs that have been pre-incubated with LDL (60 minutes) and then stimulated with 

E.coli LPS (60 minutes). The cells were subsequently fixed and labelled via 

immunofluorescence. Images were acquired using a Zeiss LSM 510 META confocal 

microscope with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 

analysis software. The images are representative of a number of independent 

experiments. Localisation was quantified using Costes’ method in ImageJ version 1.43 

with the JACoP plugin. Scale bar, 10µm. 

 

LDL incubation prior to E.coli LPS stimulation reduces TLR2 and CD36 targeting to 

the endosomes in comparison to E.coli LPS stimulation alone (Figure 3.5.10). For 

TLR2 and CD36 localisation with endosomal compartments the r{obs} values obtained 
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for E.coli LPS stimulation drop by 17% and 23% respectively when cells are pre-

incubated with LDL. TLR2 and CD36 localise in both the Golgi and endosome (Figure 

3.5.10). CD14 is mainly located in the endosome (r{obs} 0.842) but is also found in the 

Golgi (r{obs} 0.782) (Figure 3.5.10). 

 

oxLDL + E.coli LPS 

 

Figure 3.5.11: Cellular distribution of TLR2 (Red {Alexa555}), CD36 (Blue {Cy5}) and CD14 (Blue 

{Cy5}) in relation to Golgi (Green {FITC}) and endosomes (Green {FITC}) in 

HUVECs that have been pre-incubated with oxLDL (60 minutes) and then stimulated 

with E.coli LPS (60 minutes). The cells were subsequently fixed and labelled via 

immunofluorescence. Images were acquired using a Zeiss LSM 510 META confocal 

microscope with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 

analysis software. The images are representative of a number of independent 

experiments. Localisation was quantified using Costes’ method in ImageJ version 1.43 

with the JACoP plugin. Scale bar, 10µm. 

 

When HUVECs were pre-treated with oxLDL prior to E.coli LPS (Figure 3.5.11), the 

localisation of TLR2 with the Golgi (r{obs} 0.573) and endosomes (r{obs} 0.547) was 

reduced in comparison to E.coli LPS and E.coli LPS with LDL pre-incubation 

stimulations. It is apparent that TLR2 is targeted to other distinct cellular compartments, 
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possibly to lysosomes (Figure 3.5.11). Both CD14 and CD36 were targeted to the Golgi 

(r{obs} 0.677 and 0.666 respectively) (Figure 3.5.11). However, although CD14 was 

targeted to the endosomes (r{obs} 0.701) it was found that oxLDL pre-incubation 

prevents CD36 targeting to the endosomes (r{obs} 0.396) (Figure 3.5.11). It is clear that 

oxLDL greatly disrupts trafficking and targeting of receptors in response to E.coli LPS. 

 

3.5.3.1:PRR association with lipid rafts in response to E.coli LPS and E.coli LPS 

lipoprotein combined stimulations 

 

The role of lipid rafts in cellular signalling and the internalization and targeting of PRRs 

is well documented. PRRs have been shown to concentrate in these cell membrane 

domains resulting in intracellular signalling. In this study I set out to investigate 

whether lipid rafts play a role in the internalization and targeting of PRRs involved in 

atherosclerosis in response to E.coli LPS, and whether lipoprotein pre-incubation has an 

effect on this.  

 

HUVECs were seeded on collagen treated 8 well glass slides (Section 2.9.1). The cells 

were stimulated directly on the slide in 200µl SFM (GIBCO) (Section 2.5.3). HUVECs 

were subject to E.coli LPS, E.coli LPS with LDL pre-incubation or E.coli LPS with 

oxLDL pre-incubation (Section 2.5). Both direct and indirect immunofluorescence 

(Section 2.7) techniques were used to label primary HUVECs on 8 well glass slides 

(Section 2.9.2).  Slides were viewed using a Zeiss LSM 510 META confocal 

microscope with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 

analysis software (Section 2.9). Localisation was quantified using Costes’ method in 

ImageJ version 1.43 with the JACoP plugin (Section 2.9.3). 
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Figure 3.5.12: Cellular distribution of TLR2 (Red {Alexa555}) and CD36 (Blue {Cy5}) in relation to 

lipid rafts (Green {Cholera-toxin-FITC}) in HUVECs that have been stimulated with 

E.coli LPS alone or E.coli LPS with LDL or oxLDL pre-incubation. The cells were 

subsequently fixed and labelled via immunofluorescence. Images were acquired using a 

Zeiss LSM 510 META confocal microscope with a 1.4 NA 63x Zeiss objective, used 

in conjunction with Zeiss LSM 2.5 analysis software. The images are representative of 

a number of independent experiments. Localisation was quantified using Costes’ 

method in ImageJ version 1.43 with the JACoP plugin. Scale bar, 10µm. 

 

HUVEC stimulation with E.coli LPS (Figure 3.5.12, E.coli LPS) results in mild 

recruitment of TLR2 and CD36 to lipid rafts (r{obs} 0.656 and 0.656 respectively). 

When cells are pre-incubated with LDL prior to E.coli LPS (Figure 3.5.12, LDL + 

E.coli LPS) the recruitment of TLR2 to lipid rafts is increased (r{obs} 0.790) whilst 

CD36 is reduced (r{obs} 0.560) in comparison to E.coli LPS alone (Figure 3.5.12, 

E.coli LPS). When cells were pre-incubated with oxLDL prior to E.coli LPS (Figure 

3.5.12, oxLDL + E.coli LPS) the recruitment of the SR CD36 to lipid rafts was 

increased (r{obs} 0.730), whilst TLR2 raft recruitment decreased (r{obs} 0.555) in 

comparison to E.coli LPS alone (Figure 3.5.12, E.coli LPS). 
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Figure 3.5.13: Cellular distribution of TLR4 (Red {Cy3}) and CD14 (Blue {Cy5}) in relation to lipid 

rafts (Green {Cholera-toxin-FITC}) in HUVECs that have been stimulated with E.coli 

LPS alone or E.coli LPS with LDL or oxLDL pre-incubation. The cells were 

subsequently fixed and labelled via immunofluorescence. Images were acquired using a 

Zeiss LSM 510 META confocal microscope with a 1.4 NA 63x Zeiss objective, used in 

conjunction with Zeiss LSM 2.5 analysis software. The images are representative from 

a number of independent experiments. Localisation was quantified using Costes’ 

method in ImageJ version 1.43 with the JACoP plugin. Scale bar, 10µm. 

 

TLR4 and to a greater extent CD14 can be seen in lipid rafts in response to E.coli LPS 

(r{obs} 0.505 and 0.564 respectively) (Figure 3.5.13, E.coli LPS). Pre-incubation with 

LDL prior to E.coli LPS (Figure 3.5.13, LDL + E.coli LPS) reduced TLR4 and CD14 

recruitment to lipid rafts. When cells are pre-incubated with oxLDL and then stimulated 

with E.coli LPS (Figure 3.5.13, oxLDL + E.coli LPS) both TLR4 and CD14 are 

recruited to lipid rafts (r{obs} 0.617 and 0.780 respectively).  

 

When HUVECs were pre-incubated with oxLDL prior to E.coli LPS stimulation the 

lipid raft recruitment of MyD88 was reduced by 26% in comparison to E.coli LPS alone 

(data not shown). 
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A): E.coli LPS 

 
B): LDL + E.coli LPS 

 
C): oxLDL + E.coli LPS 

 
 

 

Figure 3.5.14: Schematic diagrams of the cellular distribution of TLR2 (Blue), CD14 (Green) and 

CD36 (Yellow) in relation to endosomes and the Golgi, and the cellular distribution of 

TLR2, TLR4 (Red), CD14 and CD36 in relation to lipid rafts in response to E.coli LPS 

(A), E.coli LPS with LDL pre-incubation (B) and E.coli LPS with oxLDL pre-

incubation (C). Note: The presence of TLR4 in endosomes and the Golgi was not 

imaged. Extracellular domain colour fill represents localisation determined by r{obs}. 
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3.5.4: Intracellular PRR targeting in response to P.gingivalis LPS and P.gingivalis 

LPS lipoprotein combined stimulations 

 

To investigate the intracellular PRR targeting in response to P.gingivalis LPS and 

P.gingivalis LPS lipoprotein combined stimulations, HUVECs were seeded on 8 well 

glass slides (Section 2.9.1). Cells were subject to P.gingivalis LPS and P.gingivalis LPS 

with either LDL or oxLDL pre-incubation (Section 2.5) directly on the slide in 200µl 

SFM (Section 2.5.3). Both direct and indirect immunofluorescence (Section 2.7) were 

used to label HUVECs on 8 well glass slides (Section 2.9.2).  Slides were viewed using 

a Zeiss LSM 510 META confocal microscope, used with Zeiss LSM software (Section 

2.9). Localisation was quantified using Costes’ method in ImageJ (Section 2.9.3) 

 

P.gingivalis LPS 

 
Figure 3.5.15: Cellular distribution of TLR2 (Red {Alexa555}), CD36 (Blue {Cy5}) and CD14 (Blue 

{Cy5}) in relation to Golgi (Green {FITC}) and endosomes (Green {FITC}) in 

HUVECs that have been stimulated with P.gingivalis LPS (60 minutes). The cells were 

subsequently fixed and labelled via immunofluorescence. Images were acquired using a 

Zeiss LSM 510 META confocal microscope with a 1.4 NA 63x Zeiss objective, used in 

conjunction with Zeiss LSM 2.5 analysis software. The images are representative of a 

number of independent experiments. Localisation was quantified using Costes’ method 

in ImageJ version 1.43 with the JACoP plugin. Scale bar, 10µm. 



186 

 

When HUVECs were stimulated with P.gingivalis LPS (Figure 3.5.15) the receptors 

TLR2, CD14 and CD36 were shown to reside in both the Golgi (r{obs} 0.685, 0.641 

and 0.747 respectively) and endosomes (r{obs} 0.650, 0.800 and 0.737 respectively). 

Results show that CD14 was preferentially targeted to endosomes.  

 

LDL + P.gingivalis LPS 

 

Figure 3.5.16: Cellular distribution of TLR2 (Red {Alexa555}), CD14 (Blue {Cy5}) and CD36 (Blue 

{Cy5}) in relation to Golgi (Green {FITC}) and endosomes (Green {FITC}) in 

HUVECs that have been pre-incubated with LDL (60 minutes) and then stimulated with 

P.gingivalis LPS (60 minutes). The cells were subsequently fixed and labelled via 

immunofluorescence. Images were acquired using a Zeiss LSM 510 META confocal 

microscope with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 

analysis software. The images are representative of a number of independent 

experiments. Localisation was quantified using Costes’ method in ImageJ version 1.43 

with the JACoP plugin. Scale bar, 10µm. 

 

 

When HUVECs were pre-incubated with LDL prior to P.gingivalis LPS (Figure 3.5.16) 

the recruitment of CD14 and CD36 to the Golgi (r{obs} 0.607 and 0.652 respectively) 

and endosomal compartments (r{obs} 0.651 and 0.600 respectively) was reduced in 

comparison to P.gingivalis LPS stimulation alone (Figure 3.5.15). This was also 
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apparent for TLR2 localisation with the Golgi (r{obs} 0.588). The r{obs} value 

obtained for TLR2 localisation with endosomal compartments indicates little or no 

colocalisation. 

 

oxLDL + P.gingivalis LPS 

 

Figure 3.5.17: Cellular distribution of TLR2 (Red {Alexa555}), CD36 (Blue {Cy5}) and CD14 (Blue 

{Cy5}) in relation to Golgi (Green {FITC}) and endosomes (Green {FITC}) in 

HUVECs that have been pre-incubated with oxLDL (60 minutes) and then stimulated 

with P.gingivalis LPS (60 minutes). The cells were subsequently fixed and labelled via 

immunofluorescence. Images were acquired using a Zeiss LSM 510 META confocal 

microscope with a 1.4 NA 63x Zeiss objective, used in conjunction with Zeiss LSM 2.5 

analysis software. The images are representative of a number of independent 

experiments Localisation was quantified using Costes’ method in ImageJ version 1.43 

with the JACoP plugin. Scale bar, 10µm. 

 

 

When HUVECs were pre-incubated with oxLDL and then further stimulated with 

P.gingivalis LPS (Figure 3.5.17), the receptors TLR2, CD14 and CD36 were shown to 

reside in both the Golgi (r{obs} 0.577, 0.647 and 0.793 respectively) and endosomes 

(r{obs} 0.682, 0.790 and 0.694 respectively). Data shows that TLR2 and CD14 are 
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preferentially located within endosomal compartments rather than the Golgi. The 

opposite was found for CD36. 

 

3.5.4.1:PRR lipid raft association in response to P.gingivalis LPS and P.gingivalis 

LPS lipoprotein combined stimulations 

 

Lipid rafts have been shown to concentrate PRRs involved in cellular signalling. In this 

study I set out to investigate whether these rafts play a role in the internalization and 

targeting of PRRs involved in atherosclerosis in response to P.gingivalis LPS. This 

study also investigated the effect of lipoprotein pre-incubation on the internalization and 

targeting of receptors in response to this bacterial ligand.  

 

HUVECs were seeded on collagen treated 8 well glass slides (Section 2.9.1). The cells 

were stimulated directly on the slide in 200µl SFM (Section 2.5.3). HUVECs were 

subject to P.gingivalis LPS, P.gingivalis LPS with LDL pre-incubation or P.gingivalis 

LPS with oxLDL pre-incubation (Section 2.5). Both direct and indirect 

immunofluorescent labelling (Section 2.7) techniques were used to label primary 

HUVECs on 8 well glass slides (Section 2.9.2).  Slides were viewed using a Zeiss LSM 

510 META confocal microscope with a 1.4 NA 63x Zeiss objective, used in conjunction 

with Zeiss LSM 2.5 analysis software (Section 2.9). Localisation was quantified using 

Costes’ method in ImageJ version 1.43 with the JACoP plugin (Section 2.9.3). 
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Figure 3.5.18: Cellular distribution of TLR2 (Red {Alexa555}) and CD36 (Blue {Cy5}) in relation to 

lipid rafts (Green {Cholera-toxin-FITC}) in HUVECs that have been stimulated with 

P.gingivalis LPS alone or P.gingivalis LPS with LDL or oxLDL pre-incubation. The 

cells were subsequently fixed and labelled via immunofluorescence. Images were 

acquired using a Zeiss LSM 510 META confocal microscope with a 1.4 NA 63x Zeiss 

objective, used in conjunction with Zeiss LSM 2.5 analysis software. The images are 

representative of a number of independent experiments. Localisation was quantified 

using Costes’ method in ImageJ version 1.43 with the JACoP plugin. Scale bar, 10µm. 

 

 

In HUVECs, TLR2 is strongly associated with lipid rafts (r{obs} 0.872) following 

P.gingivalis LPS exposure (Figure 3.5.18, P.gingivalis LPS). This reflects the 

unconventional nature of this LPS. CD36 was not shown to associate with lipid rafts 

(r{obs} 0.444) following P.gingivalis LPS exposure (Figure 3.5.18, P.gingivalis LPS). 

When cells were pre-incubated with LDL prior to P.gingivalis LPS (Figure 3.5.18, LDL 

+ P.gingivalis LPS) both TLR2 (r{obs} 0.958) and CD36 (r{obs} 0.648) were 

associated with lipid rafts. As seen with oxLDL pre-incubation with E.coli LPS (Figure 

3.5.12, oxLDL + E.coli LPS), the pre-incubation of HUVECs with oxLDL prior to 

bacterial PAMP reduces TLR2 recruitment to lipid rafts. In this case TLR2 lipid raft 

recruitment (r{obs} 0.483) was abolished  due to oxLDL pre-incubation (Figure 3.5.18, 

oxLDL + P.gingivalis LPS). CD36 however, was still recruited to lipid rafts (r{obs} 
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0.682) in this stimulation. These data show that the “normal” response a cell produced 

in response to P.gingivalis LPS is disrupted by the presence of oxLDL. 

 

 

Figure 3.5.19: Cellular distribution of TLR4 (Red {Cy3}) and CD14 (Blue {Cy5}) in relation to lipid 

rafts (Green {Cholera-toxin-FITC}) in HUVECs that have been stimulated with 

P.gingivalis LPS alone or P.gingivalis LPS with LDL or oxLDL pre-incubation. The 

cells were subsequently fixed and labelled via immunofluorescence. Images were 

acquired using a Zeiss LSM 510 META confocal microscope with a 1.4 NA 63x Zeiss 

objective, used in conjunction with Zeiss LSM 2.5 analysis software. The images are 

representative of a number of independent experiments. Localisation was quantified 

using Costes’ method in ImageJ version 1.43 with the JACoP plugin. Scale bar, 10µm. 

 

 

TLR4 had a low level of association with lipid rafts (r{obs} 0.573) when cells were 

incubated with P.gingivalis LPS alone (Figure 3.5.19, P.gingivalis LPS). No significant 

recruitment of CD14 to lipid rafts was observed. When HUVECs were pre-incubated 

with LDL (Figure 3.5.19, LDL + P.gingivalis LPS), both TLR4 and CD14 were 

observed to associate with lipid rafts (r{obs} 0.620 and 0.585 respectively). oxLDL pre-

incubation (Figure 3.5.19, oxLDL + P.gingivalis LPS) increased CD14 recruitment to 

lipid rafts (r{obs} 0.762) in comparison to P.gingivalis LPS alone (Figure 3.5.19, 

P.gingivalis LPS) and P.gingivalis LPS with LDL pre-incubation (Figure 3.5.19, LDL + 
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P.gingivalis LPS). The pre-incubation of HUVECs with oxLDL (Figure 3.5.19, oxLDL 

+ P.gingivalis LPS) reduced TLR4 lipid raft recruitment (r{obs} 0.595) in comparison 

to LDL pre-incubation (Figure 3.5.19, LDL + P.gingivalis LPS). 

 

The recruitment of MyD88 to HUVEC lipid rafts in response to P.gingivalis alone was 

reduced by 25% when cells were pre-incubated with oxLDL (data not shown). 
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 A): P.gingivalis LPS 

 
B): LDL + P.gingivalis LPS 

 
C): oxLDL + P.gingivalis LPS 

 

 

Figure 3.5.20: Schematic diagrams of the cellular distribution of TLR2 (Blue), CD14 (Green) and 

CD36 (Yellow) in relation to endosomes and the Golgi, and the cellular distribution of 

TLR2, TLR4 (Red), CD14 and CD36 in relation to lipid rafts in response to 

P.gingivalis LPS (A), P.gingivalis LPS with LDL pre-incubation (B) and P.gingivalis 

LPS with oxLDL pre-incubation (C). Note: The presence of TLR4 in endosomes and 

the Golgi was not imaged. Colour fill of extracellular domain represents localisation 

determined by r{obs}. 
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3.5.4: Conclusions 

 

 LDL pre-incubation can significantly alter receptor targeting in response to 

bacterial ligands. 

 LDL reduces TLR4 recruitment, but increases TLR2 recruitment, to lipid rafts 

when combined with the TLR4 agonist E.coli in comparison to PAMP alone. 

 LDL reduces TLR2 recruitment, but increases TLR4 recruitment, to lipid rafts 

when combined with the TLR2 agonists S.aureus and P.gingivalis in 

comparison to PAMP alone. 

 oxLDL reduces TLR2 and TLR4 lipid raft recruitment when combined with 

S.aureus, E.coli and P.gingivalis in comparison to PAMP alone. 

 oxLDL increases lipid raft recruitment of CD14 and CD36 when combined with 

S.aureus, E.coli and P.gingivalis in comparison to PAMP alone. 

 oxLDL incubation prior to S.aureus and E.coli stimulation reduces targeting of 

TLR2, CD14 and CD36 to endosomes and the Golgi in comparison to PAMP 

alone. 

 oxLDL seems to alter the targeting of TLRs in response to bacterial ligands. 

TLR2 is targeted to other distinct cellular compartments, possibly lysosomes. 

 oxLDL alters preferential targeting of TLR2 from Golgi to endosomes in 

comparison to S.aureus or P.gingivalis alone. 

 The recruitment of MyD88 to lipid rafts in HUVECs in response to S.aureus, 

E.coli and P.gingivalis alone was reduced by 25%, 26% and 25% respectively, 

when cells were pre-incubated with oxLDL. MyD88 interaction with TLR2 is 

unaffected. Signalling may be occurring from compartments other that lipid 

rafts. 
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3.6: In vivo control of the inflammatory response 

This study demonstrates the inflammatory nature of atherosclerosis and the involvement 

of PRRs of the innate immune system in this disease. The control/dampening of this 

inflammatory disorder could prove to be of therapeutic benefit. If one could stop, 

reverse, or better still prevent the dysregulated inflammation seen in the atheromatous 

plaque, tens of thousands of lives could be improved and saved in the U.K alone. Such 

intervention would free up millions of pounds greatly benefiting other areas within the 

National Health Service. 

 

Work in this study including lipid raft disruption (Section 3.3), silencing experiments on 

primary HUVECs (Section 3.4.2) and work on transfected HEK cells expressing known 

TLR patterns (Section 3.4.1), has shown the importance of PRRs in orchestrating an 

appropriate response to atherosclerotic exogenous and endogenous ligands. This work 

has shown that the disruption of innate immune receptor complexes directed at 

atherosclerotic ligands causing a reduction in the inflammatory response, could have 

therapeutic potential. This study went on to explore the blocking of the endogenous and 

microbial sensing apparatus in vivo to determine the beneficial effects, if any, of TLR 

directed therapeutics in the prevention of atherosclerosis. 

 

Taking into account “The three R’s” of in vivo testing (replacement, reduction and 

refinement), this study initially established and tested on a reliable mouse model of 

inflammation. In this model, in vitro blockers of innate immunity established in the lab 

of Dr. K. Triantafilou (University of Sussex) were analysed for their potential in treating 

this disease prior to testing in an atherosclerotic mouse model, which require more 

lengthy and complex protocols. The in vitro blockers of inflammation tested in this 
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study were HSP70 and AMD3100. A mouse model of sepsis, an often fatal over 

reaction of the immune system, was concluded appropriate for the testing of these anti-

inflammatory molecules. 

 

Sepsis is caused by a systemic hyper-inflammatory response which involves the over 

secretion of pro-inflammatory mediators, such as TNF-α, IL-1β and migration 

inhibitory factor (MIF) in response to bacteria or bacterial products, such as LPS. It has 

recently been shown that pharmacological inhibition of endotoxin responses can be 

achieved by targeting TLR4 and MD2
209

. Clinical trials are starting to test the efficacy 

of TLR4 antagonists, such as E5564 (Eritoran), in sepsis and septic shock
210

. A double-

blind placebo-controlled human study recently demonstrated that the TLR4 antagonist 

Eritoran could block the effects of endotoxin in human volunteers
211

. These studies 

show that immune-modulation can be achieved by targeting the receptors of the innate 

immune system and that this is transferable to human subjects, demonstrating the 

potential that mediators of the inflammatory disease atherosclerosis could have. 
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3.6.1: Establishing the sepsis model 

Male CD-1 out-bred mice (6-8 weeks) were randomly grouped (5-10 mice per group) 

and injected by intraperitoneal (i.p) injection (Section 2.18.2) with varied concentrations 

(50, 60, 70, 80mg/Kg) of E.coli 055 LPS (List Biological Laboratories) using a sterile 

1ml syringe (BD Plastipak™) with a 25 GA1 0.5x25mm needle (BD Microlance™ 3).  

 

 

Figure 3.6.1: Determination of LPS-induced sepsis mouse model. Male CD-1 mice (6-8 weeks) were 

randomly grouped (5-10 mice per group) and injected by intraperitoneal (i.p) injection 

with varied concentrations (50, 60, 70, 80mg/Kg) of E.coli 055 LPS. Survival was 

recorded every 4 hours.  

 

LPS-induced death was observed for LPS concentrations of 60, 70 and 80mg/Kg 

(Figure 3.6.1). When 50mg/Kg was administered 100% survival at 72 hours was 

recorded. 70 and 80mg/Kg LPS terminated the mice too early. 60mg/Kg showed 100% 

survival up to 24 hours when the mice succumbed to the infection. For these reasons 

60mg/Kg was chosen for the sepsis mouse model in this study. 
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3.6.2: Heat shock protein 70 

Infection along with many other cellular stresses or damage causes the production of 

HSPs. Their main function has been found to be concerned with assisting the cell to 

carry on with normal tasks, primarily by helping proteins fold
139

. More recently the role 

of HSPs as endogenous modulators of the innate immune response have been explored.  

 

A possible cardioprotective role of HSP70 has been shown through studies 

demonstrating an increased resistance of transgenic mice which over express HSP70 to 

ischemic injury
143,144

. This work is supported by patient studies demonstrating a positive 

correlation between elevated HSP70 levels and low CAD risk
145

. Triantafilou (2008)
141

 

has shown that the use of exogenous HSP70 can inhibit LPS-induced inflammatory 

responses in monocytes demonstrating its potential as a therapeutic agent for many 

disorders. It was demonstrated that HSP70 has the ability of reducing expression of 

TLRs 2, 4, 6, 7, 8 and 9, diminishing cellular immune capabilities. This study has 

established the role of TLRs in the onset of atherosclerosis and thus their modulation is 

of great interest. If TLR expression can be reduced, weakening the inflammatory 

response to atherosclerotic ligands, so could the extent of this inflammatory disorder.  

 

In this study the in vivo immunomodulatory effects of HSP70 was investigated. The 

effect of HSP70 on cytokine levels and survival in our established sepsis model (Section 

3.6.1) were analyzed to explore the possibility of using HSP70 as a therapeutic agent for 

atherosclerosis. HSP70 toxicity was tested.  
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3.6.2.1: HSP70 decreases LPS-induced mortality 

Intraperitoneal (i.p) injection (Section 2.18.2) of HSP70 at 500µg/mouse (Kindly 

supplied by Professor C.Lingwood of the University of Toronto) was administered to 

the CD-1 mouse (out-bred male 6-8 weeks) using a sterile 1ml syringe (BD Plastipak™) 

with a 25 GA1 0.5x25mm needle (BD Microlance™ 3) at 1 hour pre-LPS 

administration (Section 2.18.3.1.1) or 1, 2, 4 and 6 hours post-LPS administration. Mice 

were closely monitored every 4 hours for 72 hours, survival was recorded.  

 

 

 

Figure 3.6.2: Survival of LPS-induced septic shock in CD-1 mice through administration of HSP70. 

CD-1 mice (out-bred male 6-8 weeks) were administered a lethal dose of LPS 

(60mg/kg) by intraperitoneal (i.p) injection. Mice were treated with HSP70 

(500µg/mouse) 1 hour before LPS administration (Pre-1h) or 1, 2, 4 and 6 hours after 

LPS administration (Post-1/2/4/6h). Control mice (LPS) were not treated with HSP70. 

Mice were monitored every 4 hours. 
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Over the 72 hour observation period, all HSP70 treatment protocols conferred survival 

(Figure 3.6.2). HSP70 treatment 1 hour prior to LPS (Pre-1h) administration was the 

least successful protocol with 62.5% survival at 72 hours (Figure 3.6.2). HSP70 was 

most effective when administered post-1, 2, 4 and 6 hours to LPS administration giving 

75%, 87.5%, 87.5% and 75% survival respectively (Figure 3.6.2). These data show that 

administration of HSP70 at 2-4 hours post infection would be most beneficial. 

 

3.6.2.2: HSP70 inhibits LPS-induced inflammatory responses 

Intraperitoneal (i.p) injection of HSP70 at 500µg/mouse (kindly supplied by Professor 

C.Lingwood of the University of Toronto) was administered to the CD-1 mouse (out-

bred male 6-8 weeks) using a sterile 1ml syringe (BD Plastipak™) with a 25 GA1 

0.5x25mm needle (BD Microlance™ 3) at 1 hour pre-LPS administration (Section 

2.18.3.1.1) or 1, 2, 4 and 6 hours post-LPS administration. Blood (50µl) was collected at 

time points (0, 2, 4, 6, 8 and 12 hours) after LPS administration from the tail vein of the 

mice. Inflammatory cytokine levels in the serum were determined using a cytokine bead 

array (CBA) system obtained from Becton Dickinson (Section 2.8.2.2). 
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A)      B) 

 
C)      D) 

 
E) 

  

 

Figure 3.6.3: Comparison of TNF-α concentration in blood samples taken from CD-1 mice at 0, 2, 4, 

6, 8 and 12 hours between LPS control and HSP70 treated LPS sepsis induced mice. 

HSP70 was administered 1 hour previous to LPS (Pre-1h {A}), 1 hour post-LPS (Post-

1h {B}), post-2h (C), post-4h (D) and post-6h (E). CD-1 mice (out-bred male 6-8 

weeks) were administered a lethal dose of LPS (60mg/kg) by intraperitoneal (i.p) 

injection. Mice were treated with HSP70 (500µg/mouse) at times stated. Control mice 

(LPS) were not treated with HSP70. 50µl tail vein blood was collected at each stated 

time point. Inflammatory cytokine levels in the serum were determined using a cytokine 

bead array (CBA) system obtained from Becton Dickinson. Data represents mean, ± 

standard deviation, n=2. 
 

 

Blood samples taken from mice in the HSP70 pre-treated and post-treated protocols at 

different time points after LPS administration showed a significant reduction of plasma 

TNF-α concentration (Figure 3.6.3A-E). This data illustrates HSP70 as an effective 
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immune-modulator with the capability of reducing cytokine levels in response to 

infection through reducing TLR expression. All HSP70 administration protocols 

achieved TNF-α concentrations at 12 hours of ≤34% of the control untreated sepsis 

model (Figure 3.6.3A-E). 

 

3.6.3: AMD3100 octahydrochloride 

Another potential therapeutic for atherosclerosis is AMD3100 octahydrochloride (AMD 

3100). AMD3100 is a CXCR4 antagonist that was previously, but unfortunately 

unsuccessfully, explored for its potential in HIV treatment
148

. CXCR4 is a chemokine 

receptor that belongs to the seven transmembrane domain G-protein-coupled receptor 

family. The expression of CXCR4 has been shown to increase after exposure to 

bacterial products
151

. In response to LPS, CXCR4 co-clusters with TLR4 and other 

receptors forming the “LPS-sensing apparatus”. The formation of this cluster was found 

to be responsible for triggering LPS-induced responses
69

. Triantafilou et al. (2008)
69

 

have shown that, along with TLR4, CXCR4 co-clusters with other LPS receptors such 

as CD55, HSP70, HSP90 and CD11b/CD18 in human monocytes and human 

endothelial cells following LPS stimulation. AMD3100 was found to inhibit these 

CXCR4 heterotypic associations with LPS receptors, such as TLR4, suggesting that 

AMD3100 inhibits the formation of the “LPS-sensing” apparatus (Dr. K. Triantafilou 

{unpublished data}). 

 

TLR4 is the major component of the LPS-sensing apparatus. The disruption of this 

cluster would greatly attenuate TLR4 function. The involvement of TLR4 in the sensing 

of pro-atherogenic ligands makes it an interesting target for the prevention of this 

disease. Inhibition of the ability to respond to exogenous, thus potentially endogenous, 

ligands could have great therapeutic potential. AMD3100 was explored as a novel drug 
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for the treatment and prevention of atherosclerosis through the inhibition of signalling 

through TLR4. AMD3100 toxicity was tested. 

 

3.6.3.1: AMD3100 decreases LPS-induced mortality 

Intraperitoneal (i.p) injection (Section 2.18.2) of AMD3100 (500µg/mouse {Sigma}) 

was administered to the CD-1 mouse (out-bred male 6-8 weeks) using a sterile 1ml 

syringe (BD Plastipak™) with a 25 GA1 0.5x25mm needle (BD Microlance™ 3) at 1 

hour pre-LPS administration (Section 2.18.3.1.1) or 1, 2, 4 and 6 hours post-LPS 

administration. Mice were closely monitored every 4 hours for 72 hours, survival was 

recorded.  

 

 

 
 

Figure 3.6.4: Survival of LPS-induced septic shock in CD-1 mice through administration of 

AMD3100. CD-1 mice (out-bred male 6-8 weeks) were administered a lethal dose of 

LPS (60mg/kg) by intraperitoneal (i.p) injection. Mice were treated with AMD3100 

(500µg/mouse) 1 hour before LPS administration (Pre-1h) or 1, 2, 4 and 6 hours after 

LPS administration (Post-1/2/4/6h). Control mice (LPS) were not treated with 

AMD3100. Mice were monitored every 4 hours. 
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A significant decrease in sepsis-induced mortality was found when AMD3100 was 

administered.  Notably, over the 72 hour observation period 62.5% of the 1 hour pre-

treated mice (Figure 3.6.4, Pre-1h) survived, whereas all untreated mice (Figure 3.6.4, 

LPS) died by 48 hours after LPS administration. AMD3100 conferred 25% protection 

against endotoxic shock when applied 1 hour after LPS injection (Figure 3.6.4, Post-

1h). AMD3100 was more protective when administered 2, 4 or 6 hours post-LPS 

injection conferring 65% protection when administered either 2 hours (Figure 3.6.4, 

Post 2h) or 4 hours (Figure 3.6.4, Post 4h) after LPS injection and 60% protection if 

administered 6 hours (Figure 3.6.4, Post 6h)  after injection. 

 

3.6.3.2: AMD3100 inhibits LPS-induced inflammatory responses 

Intraperitoneal (i.p) injection of AMD3100 (500µg/mouse {Sigma}) was administered 

to the CD-1 mouse (out-bred male 6-8 weeks) using a sterile 1ml syringe (BD 

Plastipak™) with a 25 GA1 0.5x25mm needle (BD Microlance™ 3) at 1 hour pre-LPS 

administration (Section 2.18.3.1.1) or 1, 2, 4 and 6 hours post-LPS administration. 

Blood (50µl) was collected at time points (0, 2, 4, 6, 8 and 12 hours) after LPS 

administration from the tail vein of the mice. Inflammatory cytokine levels in the serum 

were determined using a cytokine bead array (CBA) system obtained from Becton 

Dickinson (Section 2.8.2.2). 
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A)      B) 

 
C)      D) 

 
E) 

  

 

Figure 3.6.5: Comparison of TNF-α concentration in blood samples taken from CD-1 mice at 0, 2, 4, 

6, 8 and 12 hours between LPS control and AMD3100 treated LPS sepsis induced mice. 

AMD3100 was administered 1 hour previous to LPS (Pre-1h {A}), 1 hour post-LPS 

(Post-1h {B}), post-2h (C), post-4h (D) and post-6h (E). CD-1 mice (out-bred male 6-8 

weeks) were administered a lethal dose of LPS (60mg/kg) by intraperitoneal (i.p) 

injection. Mice were treated with AMD3100 (500µg/mouse) at times stated. Control 

mice (LPS) were not treated with AMD3100. 50µl tail vein blood was collected at each 

stated time point. Inflammatory cytokine levels in the serum were determined using a 

cytokine bead array (CBA) system obtained from Becton Dickinson. Data represents 

mean, ± standard deviation, n=2. 
 

 

Analysis of blood samples taken from mice either pre-treated or post-treated with 

AMD3100 at different time points after LPS administration showed a significant 
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reduction of plasma cytokine concentrations. Treatment with AMD3100 1 hour prior to 

LPS (Figure 3.6.5, Pre-1h) injection significantly reduced cytokine levels in comparison 

to the control, giving the lowest levels of TNF-α at 72 hours in comparison to other 

protocols tested (Figure 3.6.5, Post-1h/Post-2h/Post-4h/Post-6h). Interestingly, it seems 

that similarly to the survival studies (Figure 3.6.4), administration of AMD3100 at 2 

hours (Figure 3.6.5, Post-2h), 4 hours (Figure 3.6.5, Post-4h) or 6 hours (Figure 3.6.5, 

Post-6h) after LPS administration is more beneficial than administration after 1 hour 

post-LPS injection (Figure 3.6.5, Post-1h). Plasma cytokine concentration was lower in 

the mice that received AMD3100 later than 1 hour after LPS administration. This data 

indicates optimal time points at which AMD3100 should be employed. 
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3.6.4: Conclusions 

 

 HSP70 administration before and after LPS exposure significantly reduces the 

release of inflammatory cytokines reducing mortality. 

 Treatment of mice with HSP70 2-4 hours after the induction of sepsis gave the 

lowest mortality. 

 HSP70 has great potential as an immunomodulator in atherosclerosis, through 

reducing the dysregulated inflammation of the vascular wall. 

 AMD3100 reduces inflammatory cytokine levels in the sepsis model when 

administered before and after LPS injection. 

 Injection of AMD3100 at 1 hour before or 2, 4 and 6 hours after LPS gave ≥60% 

survival in the sepsis model. AMD3100 injection one hour after sepsis induction 

only gave 25% survival. Therefore treatment should be given at one hour prior 

or no earlier than 2 hours post infection. 

 AMD3100 is capable of reducing inflammatory processes to the point of 

rescuing mice from septic shock. The prospect of using AMD3100 to modulate 

the inflammatory disorder of atherosclerosis is promising. 
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4.1: Atherosclerosis: An inflammatory disorder 

Atherosclerosis is one of the largest contributors of mortality in the Western world. This 

multi-factorial disease is characterized by the formation of plaques in medium and large 

arterial blood vessel walls, which can lead to vascular occlusion resulting in tissue 

damage such as myocardial infarction. There are many factors that have been associated 

with atherosclerosis over the years including smoking, hypercholesterolemia, high 

plasma concentrations of LDL, low plasma concentrations of HDL, hypertension, lack 

of exercise, diabetes mellitus, obesity and autoimmune diseases such as rheumatoid 

arthritis and systemic lupus erythematosus
6,7,212

. When the atherosclerotic plaque was 

analyzed, interestingly it was found that a number of components of the innate immune 

system were upregulated in comparison to normal artery
8,9

. The view that 

atherosclerosis is due to an inflammatory disorder is now at the forefront of 

atherosclerosis research. 

 

Edfeldt et al. (2002)
8
 revealed augmented expression of members of the TLR family in 

the atherosclerotic plaque. TLRs are germ-line encoded PRRs of the innate immune 

system that have evolved to be able to recognize PAMPs that are present on all 

pathogens. PAMPs range from flagellin of flagella to ssRNA. PAMP recognition 

through TLRs causes the activation of intracellular signalling cascades that ultimately 

cause the release of inflammatory mediators. The field of TLR research is relatively 

new with the first human Toll being discovered in 1997 by Medzhitov & Janeway
40

. 

The role of TLRs in pathogen recognition and disease is ever expanding as our 

knowledge of their function increases, making them exciting therapeutic targets. The 

discovery of augmented TLR expression in the atherosclerotic plaque sparked much 

speculation as to why and how this has come about. Within the last decade a role for 



209 

 

TLRs in atherosclerosis has been shown through a number of in vitro and in vivo studies 

on mice and humans. 

 

Much evidence exists supporting a role for infection in plaque development. A large 

population study has demonstrated that chronic infections, such as those of the 

respiratory system, urinary tract and gums, are associated with an increased risk of 

atherosclerotic plaque development
213

. Atherosclerosis-associated exogenous ligands 

include P.gingivalis, H.pylori, C.pneumoniae, HSV, CMV and EBV
18-25,172,214-216

. 

Endogenous ligands are also implicated in atherogenesis. LDL can undergo oxidative 

modification under physiological conditions
98

. The oxidation of LDL seems to have the 

effect of turning this molecule from “self” to “non-self”. oxLDL is bound by CD36 SRs 

on macrophages and is engulfed which can lead to foam cell formation, a major 

component of the atherosclerotic plaque
73,101,102

. Interestingly it was found that the 

immunization of mice with oxLDL reduces atherosclerotic lesion development
27,28

. 

Similarly, a decreased probability of patients experiencing a second MI was attributed 

to vaccination against influenza
7
. 

 

As mentioned, atherosclerosis is now widely accepted to be due to an inflammatory 

disorder. However, oxLDL has been implicated in this disease for many years. Whilst 

some studies have given oxLDL an immunogenic role, linking endogenous ligands and 

inflammation, others have pointed to an immunosuppressive role. oxLDL has been 

shown to be immunogenic
99

 and being capable of causing upregulation of TLR4
100

 on 

human monocyte-derived macrophages. On the other hand, OxPAPC, one of the 

oxidative epitopes of oxLDL, has been shown to inhibit LPS signalling via the 

competitive binding of the adapter molecules CD14, MD2 and LBP which are required 
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for effective LPS recognition through TLR4
103,153

. A protective role of oxLDL to TLR2 

and TLR4 ligands has been shown
103,104

.  

 

This study was interested in the interaction between exogenous and endogenous 

atherosclerosis-associated ligands, with emphasis on PRRs of the innate immune 

system. Although individually the role of these ligands in atherosclerosis has been 

investigated, the cellular effect of the interaction between host lipoproteins and bacterial 

PAMPs, and the consequence of this on the immune response, has not.  

 

In this study the functional significance of PRR associations and signalling in response 

to atherosclerosis-associated endogenous and exogenous ligands and the alterations that 

may be caused to these events when ligands are present at the same time was 

investigated. The atherosclerosis-associated ligands assayed include human endogenous 

LDL and its oxidised derivatives mmLDL and oxLDL, LTA from S.aureus and LPS 

from E.coli, P.gingivalis and C.pneumoniae. 

 

4.2: Stimulations with single ligands 

This study utilised immortalised human ECV304 cells to elucidate PRR expression and 

associations in response to atherosclerosis-associated ligands. Furthermore ECV304 

cells and primary HUVEC inflammatory cytokine release in response to atherosclerosis-

associated ligands was analysed.  

 

Initially PRR expression on ECV304 cells was investigated in response to endogenous 

lipoproteins and bacterial products via indirect immunofluorescence and flow 

cytometry. It was shown that LDL and its derivatives mmLDL and oxLDL as well as 
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LTA from S.aureus and LPS from E.coli and P.gingivalis all caused upregulation of 

TLR2, TLR4, TLR6, CD14 and CD36 expression on ECV304 cells. Increased TLR1 

expression was not observed in any stimulation. Augmented TLR expression has 

previously been observed in the atherosclerotic plaque in comparison to a normal 

artery
8,167

. In particular the significant upregulation of TLRs 1, 2 and 4 on endothelial 

cells and macrophages was shown in plaques obtained from patients who have 

undergone a carotid endarterectomy
8
. The absence of TLR1 expression in the ECV304 

cell line differs from that previously found in the plaque. This could indicate an 

additional in vivo source, other than what was assayed, of vascular endothelial cell 

activation. The lack of involvement of TLR1 but involvement of TLR6 suggests the 

TLR2/TLR6 heterodimer is primarily involved in the recognition of atherosclerosis-

associated ligands in the ECV304 cell line, not the TLR2/TLR1 heterodimer.  

 

When looking at LDL and its oxidised derivatives the greatest PRR upregulation was 

observed with LDL, with oxLDL giving the lowest ECV304 cell surface receptor 

expression. Under physiological conditions “self” LDL can undergo oxidative 

modification forming “non-self” oxLDL
98

. oxLDL has been implicated in 

atherosclerosis and its role in foam cell formation has been well documented. CD36 

SRs expressed on macrophages bind such modified lipids and are involved in their 

endocytic internalization which, if dysregulated, can result in foam cell 

formation
73,101,102

. The lower PRR expression observed in this study on ECV304 cells in 

response to oxLDL in comparison to LDL may illustrate the endocytosis of “non-self” 

oxLDL reducing cell surface expression rather than a lower ligand immunogenicity. In 

contrast to this data Xu et al. (2001)
100

 demonstrated that oxLDL, but not native LDL, 

causes increased expression of TLR4 on human monocyte-derived macrophages. It is 
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hypothesized this gives the “self”/“non-self” discrimination. This study however, has 

shown that both “self” and “non-self” LDL are capable of inducing TLR2, TLR4, 

TLR6, CD14 and CD36 expression in endothelial cells but to different degrees. TLR4, 

like CD36, has been shown to be involved in the uptake of modified LDL. Miller et al. 

(2009)
170

 showed a reduction in uptake of mmLDL in macrophages of mice that were 

TLR4 deficient. Oxidatively modified LDL has been shown to be more resistant to 

lysosomal degradation
217

, which leads to its intracellular accumulation in macrophages 

causing foam cell formation. The reduced expression of receptors that was observed in 

response to oxLDL in comparison to LDL may represent oxLDL holding internalised 

receptors in intracellular compartments, decreasing the possible cell surface PRR 

expression. LDL that is targeted to lysosomes may be cleared effectively allowing 

receptors to be recycled back to the membrane surface. Data from this study 

demonstrates that endothelial cells react to LDL and its oxidized counterparts by 

increasing receptors involved in their uptake, ultimately resulting in their increased 

endocytosis.  

 

Cell surface expression of TLR2, TLR4, TLR6, CD14 and CD36 are augmented in 

ECV304 cells in response to LTA from S.aureus and LPS from E.coli and P.gingivalis. 

At 60 minutes P.gingivalis was notably less capable at increasing TLR2, TLR4, TLR6, 

and CD36 expression. This suggests P.gingivalis is the least immunogenic of the tested 

atherosclerosis-associated ligands, which may permit the establishment of an infection. 

Although LTA from S.aureus
53

 and LPS from P.gingivalis
51

 are TLR2 agonists the 

upregulation of TLR4 was observed. Similarly, although LPS from E.coli
61

 is a well 

documented TLR4 agonist, TLR2 upregulation was observed. This data does not 

assume a role for these receptors in signalling. This data could suggest that ligands for 
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one TLR could in fact upregulate TLRs that may not be specifically involved in the 

recognition of the present ligand. This could indicate that ECV304 cells may not only 

sensitize to the ligand present but this interaction increases their overall immunogenic 

competence. Such a scenario would exacerbate plaque formation, for endothelial cells 

could become sensitized to ligands that may be present in low concentrations, but 

previously tolerated, increasing further cellular immune output in the vascular wall.  

 

To see whether PRR expression mimics the inflammatory response induced in vascular 

endothelial cells in response to atherosclerosis-associated ligands, this study went on to 

look at cytokine release. Formation of the TLR/ligand complex causes homo/hetero-

dimerization of TLRs resulting in activation of the intracellular TIR domains causing 

production of intracellular signalling cascades. Bjorkbacka et al. (2004)
159

 demonstrated 

the involvement of intracellular TLR signalling in atherosclerosis by showing reduced 

plaque area in ApoE
-/-

MyD88
-/- 

mice in comparison to ApoE
-/-

MyD88
+/+

 mice. MyD88 is 

an intracellular TLR signalling adapter protein, which is required for TLR signalling, 

apart from TLR3 signalling. These intracellular cascades result in the release of NF-κB 

from its endogenous inhibitor and subsequent nuclear translocation that leads to the 

transcription of inflammatory cytokines, which modulate the inflammatory and antiviral 

response
119

. Inflammatory cytokine levels were measured in the cell supernatant using a 

flow cytometric cytokine bead array system. Cytokine analysis of ECV304 cells and 

HUVECs in response to modified and native LDL gave a notable increase in IL-6 and 

IL-8 levels in comparison to unstimulated cells. It is known that OxPAPC, a major 

active component of modified LDL, is capable of stimulating endothelial cells
99

. Both 

IL-6
185

 and IL-8
218

 have been implicated in the multi-factorial disease atherosclerosis. 

Profumo et al. (2008)
185

 have shown increased expression of the pro-inflammatory 
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cytokines TNF-α, IFN-γ, IL-1β, IL-6 and the anti-inflammatory cytokines IL-4 and IL-

10 in the peripheral blood of patients with atherosclerosis. Levels of the chemokine IL-8 

have been associated with increased risk of future coronary artery disease and plaque 

instability
219,220

. Data from this work demonstrate that endogenous LDL alone may be 

capable of causing the chronic inflammation observed in atherosclerosis. 

 

Interestingly in ECV304 cells native “self” LDL was more immunogenic that “non-self” 

oxLDL at 60 and 120 minutes. This discrepancy was not observed to a significant 

degree in the HUVEC cell line where each LDL ligand gave similar increased IL-6 and 

IL-8 responses in comparison to unstimulated cells. One would expect that the 

recognition of “non-self” ligands would cause augmented cytokine response in 

endothelial cells in comparison to “self” molecules. The reduced cell surface PRR 

expression that was observed may indicate internalisation of oxLDL which could have 

the effect of reducing cell surface signalling, in effect reducing a cell’s immune 

capabilities. Such a process would suggest that internalisation of “non-self” ligands 

could have an immunosuppressive action, a form of immunoregulation. The 

immunosuppression of this ligand could shed light on its strong association with the 

inflammatory disorder causing atherosclerosis. The suppression of an appropriate 

immune response generated towards it, through reduced PRR expression and reduced 

cytokine release, may attenuate its clearance allowing chronic low level inflammation.  

 

Overall this study demonstrates that the ECV304 cell line and HUVECs are capable of 

recognising and responding to LDL and its oxidised derivatives mmLDL and oxLDL, as 

well as bacterial ligands such as LTA from S.aureus and LPS from E.coli, P.gingivalis 

and C.pneumoniae. TLRs were found to be upregulated in response to the ligands in 
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both cell lines tested. In the ECV304 cell line the upregulation of TLR2, TLR4, TLR6, 

and CD36 expression mimicked the release of IL-6 and IL-8, whereas in HUVECs all 

ligands triggered a similar response. Interestingly, LDL was found to be more 

immunogenic in the ECV304 cells than its oxidized derivative (oxLDL), whereas in 

HUVECs all lipoproteins triggered a similar response, suggesting a cell-type specific 

response to these ligands.  

 

4.3: Stimulations with combined ligands 

Although the involvement of atherosclerosis-associated ligands has been widely 

investigated, the modulation that these ligands may have on one another has not. With 

the great likelihood of the existence of these ligands in unison, their effect on one 

another must be elucidated. Lipid emulsions have been shown to mop up LPS and LTA 

with the effect of reducing the inflammatory response in vitro and in vivo
221,222

. Also, as 

mentioned, lipid binding to LTA and LPS has been demonstrated in the lab of Dr. K. 

Triantafilou (University of Sussex. Mouratis et al. {submitted}). OxPAPC has been 

shown to inhibit LPS-induced MCP-1 and IL-8 release in HAECs
104

. As well as 

interacting with the ligand, modified LDL is thought to sequester signalling adapters. It 

has been proposed that OxPAPC causes inhibition of LPS signalling through the 

competitive binding of CD14, MD2 and LBP; the upstream adapter molecules in LPS 

signalling
103,153

. However, it has also been shown that E.coli LPS binding is enhanced 

by OxPAPC pre-incubation, suggesting greater complexity to lipoprotein regulation 

than adapter sequestration
104

. This “lipid immunoregulation” has been shown to be 

restricted to TLRs 2 and 4
153

, through which atherosclerosis-associated bacteria signal. 

Whether endogenous LDL and/or its oxidised counterparts could have the same effect 

on atherosclerosis-associated bacteria was investigated. 
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PRR expression on ECV304 cells in response to combinations of endogenous 

lipoproteins with bacterial products was analysed via indirect immunofluorescence and 

flow cytometry. The combined stimulations were designed to simulate high plasma 

concentrations of LDL, a known risk factor of atherosclerosis, prior to infection. 

ECV304 cells and HUVECs were pre-incubated with LDL and its oxidised forms prior 

to bacterial exposure. This is the sequence of events that would most feasibly take place 

in the human vascular system. Furthermore, ECV304 cell and HUVEC inflammatory 

cytokine release in response to combinatorial stimulations was investigated using a flow 

cytometric cytokine bead array system. 

 

It was found that LDL pre-incubation reduces cell surface receptor expression in 

response to the TLR4 agonist LPS from E.coli in the ECV304 cell line in comparison to 

PAMP alone. Pre-incubation with oxLDL reduces cell surface receptor expression in 

response to the TLR2 agonists LTA from S.aureus and LPS from P.gingivalis in the 

ECV304 cell line in comparison to PAMP alone. This data demonstrates that lipoprotein 

pre-incubation, a plausible in vivo scenario, can alter the typical pattern of cell surface 

receptor expression in response to a particular pathogen. Reduction in PRR expression 

would be expected to represent a diminished cellular response which would support an 

inhibitory role for LDL and its oxidised forms as shown in previous studies. oxLDL is 

most likely to exist in vivo, this reduces TLR2 expression which would suggest a 

reduction in the recognition of TLR2 bacterial ligands allowing chronic infection.  

 

The capability of combinatorial stimulations of endogenous lipoproteins with bacterial 

products at initiating atherogenesis through activation of an innate immune response in 

ECV304 cells and HUVECs was analyzed. The inflammatory response induced in 



217 

 

vascular endothelial cells was determined by measuring cytokine levels in the cell 

supernatant using a flow cytometric cytokine bead array system and also western blots 

probing for phospho-IκB. 

 

When ECV304 cells were pre-incubated with lipoprotein the inflammatory response 

was increased, this does not seem to mirror receptor TLR expression observed in the 

double stimulations which shows in the majority of cases reduced expression. This 

suggests that cellular signalling is occurring from areas other than the cell surface. 

Internalised receptors could be signalling from intracellular compartments. All pre-

incubations with LDL, mmLDL and oxLDL and subsequent exposure to either LTA 

from S.aureus or LPS from E.coli, P.gingivalis and C.pneumoniae gave increased IL-6 

and IL-8 concentrations in comparison to PAMP alone. Both IL-6 and IL-8 remained 

the predominant cytokines released from ECV304 cells. Pre-incubation with LDL 

caused the greatest increase in IL-6 and IL-8 serum concentrations in comparison to 

PAMP alone, whilst mmLDL and oxLDL pre-incubation gave similar results. This data 

indicates no immunoprotective role of LDL and its oxidised derivatives in ECV304 

cells to atherosclerosis-associated bacteria, but further exacerbation of the immune 

response in the vascular wall contrary to previous research. An increased sensitivity to 

bacterial ligands when endogenous lipoprotein is present could perhaps clear an 

infection more efficiently preventing chronic inflammation, which may be 

atheroprotective. This study does however support a lesser immunostimulatory role of 

mmLDL and oxLDL when exposed to cells prior to bacterial PAMP in comparison to 

LDL. Discrepancies highlighted earlier in this work between immortalised ECV304 

cells line and the primary HUVECs led us on to run these experiments in the primary 

cell line. 
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Similar results were obtained for the HUVEC cell line with regards to IL-6 levels 

released in response to the combinatorial stimulations, where attenuated release with 

pre-incubations with LDL, mmLDL or oxLDL prior to S.aureus LTA, E.coli LPS, 

P.gingivalis LPS or C.pneumoniae LPS in comparison to bacterial stimulation alone. 

There was no significant difference between the different LDL pre-incubations; these 

augmented the response to similar degrees. However, the release of the chemokine IL-8 

differed in the HUVEC cell line in comparison to ECV304 cells in response to 

combined stimulations. In the combinatorial stimulations of LDL, mmLDL or oxLDL 

with S.aureus LTA, E.coli LPS and C.pneumoniae LPS the IL-8 serum concentrations 

were significantly reduced. This data obtained in the primary HUVEC cell line supports 

a role for LDL, mmLDL and oxLDL in the reduction of the response through reduced 

IL-8 release. Western blot for phospho-IκB demonstrated a reduction in NF-κB 

activation when cells were pre-incubated with lipoprotein, which would explain the 

reduced IL-8 response observed. Reduced release of the chemokine IL-8 would reduce 

the chemotaxis of immune cells, such as monocytes, to the site of infection (plaque). 

Such a scenario may also allow chronic infection.  

 

Oxidised phospholipids have been shown to bind the adapter molecules CD14, MD-2 

and LBP attenuating TLR4 signalling
103

. Data from this study demonstrates reduced 

E.coli LPS recognition in HUVECs, when LDL is present, supporting this. However, 

this does not explain the reduced signalling through TLR2. This studies data suggests a 

similar scenario may hamper TLR2 signalling, where adapter molecules may be 

sequestered by components of LDL and its modified counterparts. One such scenario 

could involve CD36. CD36 SR binds oxLDL, these receptors are involved in 

macrophage lipoprotein internalisation resulting in the formation of foam 
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cells
72,73,101,102

. Since CD36 is utilised in receptor clusters formed in response to TLR2 

ligands, the binding of oxLDL to CD36 and its subsequent internalisation may reduce 

the abundance of CD36 for bacterial detection. This could cause a reduced sensitivity of 

cells to TLR2 ligands, in much the same manner as oxidised phospholipids attenuate 

LPS-induced responses by binding signalling adapter molecules.  

 

Mouratis et al. (University of Sussex, submitted) have shown that lipids can bind LPS 

and LTA. Such findings may suggest complexes of lipid and PAMPs exist in the 

system. However, experiments where HAECs were rinsed after pre-incubation with 

modified lipoprotein still demonstrate reduced IL-8 response when exposed to E.coli 

LPS in comparison to E.coli LPS alone, suggesting regulation at the cell surface
104

.  

 

Together these data suggest immunoregulation of lipids could occur in solution and at 

the cell surface. My data demonstrates an ability of LDL, mmLDL and oxLDL to 

selectively dampen the release of the chemokine IL-8 in HUVECs, in response to TLR2 

and TLR4 agonists. Western blot analysis of stimulated cell lysate has revealed reduced 

NF-κB activation when lipoprotein is present. These results indicate that high levels of 

LDL in a native or oxidised form can mask a pathogenic ligand reducing cellular 

response for its destruction and removal. The dampening of the cytokine release may 

allow infections to continue for sustained periods of time producing low-level chronic 

inflammation characteristic of atherosclerosis. 

 

4.4: Is inflammation affected by the “sequence” of events? 

To begin to determine the manner of this immunoregulation I investigated whether the 

sequence of introducing these ligands into the system would manipulate the 
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inflammatory response. Cells were either exposed to LDL, mmLDL or oxLDL at the 

same time as the bacterial PAMP (LTA from S.aureus or LPS from E.coli, P.gingivalis 

or C.pneumoniae) or after bacterial exposure. These results were compared with the 

data from the lipoprotein incubations prior to bacterial PAMP exposure. Again, 

alternate results were obtained for IL-6 and IL-8. IL-6 levels in response to S.aureus, 

E.coli, P.gingivalis and C.pneumoniae were increased when cells were pre-incubated 

with lipoprotein as described. However, when lipoprotein and PAMP were exposed to 

HUVECs simultaneously or lipoprotein after PAMP, this augmented IL-6 release was 

lost and levels similar to that observed with PAMP alone were recorded. Both pre- and 

post-incubation with lipoprotein, in relation to PAMP exposure, gave diminished IL-8 

response in comparison to bacterial PAMP alone. Competitive binding of TLR 

signalling adapters can be used to explain why I saw a dampened IL-8 response in 

HUVECs when oxLDL is added prior to PAMP
103

. However the increased IL-6 release 

that was observed in these same stimulations does not fit this theory. The diminished 

IL-8 response in comparison to bacterial PAMP alone in stimulations where PAMP was 

exposed to the cells prior to lipoprotein could also occur through the competitive 

binding of adapter molecules. This does however provoke interest when thinking of 

drug targets for this disease, due to the practicality of intervention. When lipoprotein 

and PAMP were exposed to HUVECs at the same time an increased IL-6 and IL-8 

response was seen in relation to PAMP alone with the exception of oxLDL with E.coli 

LPS. Perhaps here oxLDL has not had sufficient time to competitively inhibit TLR2 

and/or TLR4 signalling, or the PAMP has a higher affinity for the adapter molecules.  
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4.5: Lipid rafts in atherosclerosis 

Lipid rafts are islands of highly ordered saturated lipids and cholesterol present in a 

fluid disordered bilayer of largely unsaturated lipids of the cell membrane. These 

domains have been shown to act as platforms for the concentration and oligomerization 

of mediators of the innate immune system, in order to facilitate signal transduction 

across the membrane
130,131

. In this study the role of lipid rafts in the activation of the 

innate immune response that was observed in HUVECs in response to atherosclerosis-

associated ligands was investigated.  

 

Lipid raft disruption was achieved by incubating HUVECs with 60µg/ml Nystatin for 

ten minutes prior to stimulation. It was found that HUVEC activation via single 

stimulations with atherosclerosis-associated ligands required lipid rafts. Both IL-6 and 

IL-8 serum concentrations were reduced in response to LDL, mmLDL, oxLDL, 

S.aureus LTA, E.coli LPS, P.gingivalis LPS and C.pneumoniae LPS. This supports 

previous work by Triantafilou et al. (2002)
201

 who demonstrate reduced LPS-induced 

TNF-α secretion in human monocytes on lipid raft disruption. Impaired cytokine release 

due to lipid raft disruption has also been demonstrated in response to Pam3CSK4, a 

synthetic bacterial lipoprotein that signals through TLR2/1
223

, which is also in 

compliance with my data. Zeng et al. (2003)
224

 have shown that oxLDL is endocytosed 

in a lipid raft-dependant manner via CD36, suggesting a role for lipid rafts in foam cell 

formation as well as cell signalling. Combined stimulations where HUVECs were pre-

incubated with LDL, mmLDL or oxLDL prior to S.aureus LTA, E.coli LPS, 

P.gingivalis LPS and C.pneumoniae LPS were also found to be lipid raft dependant. 

The reduction in IL-6 and IL-8 concentration was significant in the combined 

stimulations, but was observed to a lesser extent than seen with the lipoprotein or 
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bacterial single stimulation.  This data suggests that double stimulations are less 

dependent on lipid rafts for signal transduction. Perhaps the ability of lipoprotein 

derived lipids and bacterial ligands to form complexes may reduce their dependence on 

lipid rafts. A lipid/PAMP complex may act as a scaffold by interacting with a greater 

number of receptors bringing them together for signal transduction, much like the lipid 

raft.  

 

Confocal microscopy revealed the importance of lipid rafts in the HUVEC innate 

immune mechanisms. Immunofluorescent labelling of PRRs and cellular compartments 

of HUVECs grown on microscope slides demonstrated that the altered cellular 

signalling due to lipid raft disruption that was observed is likely caused through altered 

trafficking of receptors. The trafficking and targeting of receptors in relation to the 

Golgi and lipid rafts was viewed. HUVEC slides were treated with Nystatin as before, 

and then stimulated and then labelled with fluorescent antibodies. S.aureus LTA was 

capable of causing recruitment of TLR2 to lipid rafts and the Golgi as observed using 

confocal microscopy. When Nystatin was used to disrupt lipid rafts on HUVECs, which 

were then subsequently stimulated with S.aureus LTA, any TLR2 association with the 

Golgi was lost. The loss of TLR association with the Golgi observed here was apparent 

for all stimulations in this study, including combined lipoprotein and PAMP 

stimulations. It was found that lipid rafts are essential for receptor internalization and 

targeting to compartments such as endosomes and organelles such as the Golgi. This is 

in compliance with Zeng et al. (2003)
224

 who demonstrate that oxLDL is endocytosed 

from the cell membrane in a lipid raft-dependant manner. 
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4.6: Receptor associations in response to endogenous lipoproteins and bacterial 

ligands 

 

To observe the recruitment of TLR2 to lipid rafts in HUVECs in response to 

atherosclerosis-associated ligands, FRET was utilised. TLR2 molecules were labelled 

with Cy3-TL2.1 and GM-1 ganglioside, a raft-associated lipid, was labelled with Cy5-

cholera toxin. This technique allows one to quantify associations between fluorescently 

labelled molecules if they are ≤10nm apart. The significant recruitment of TLR2 to lipid 

rafts on HUVECs in response to LDL, mmLDL, oxLDL, S.aureus LTA, P.gingivalis 

LPS and C.pneumoniae LPS was shown. There was little recruitment of TLR2 to lipid 

rafts seen with E.coli LPS. To see whether lipoprotein pre-incubation affects TLR2 

recruitment to lipid rafts FRET was performed on combinatorial HUVEC stimulation 

experiments. It was found that LDL and mmLDL pre-incubation gave little change to 

the recruitment of TLR2 to lipid raft domains in comparison to S.aureus LPS, 

P.gingivalis LPS and C.pneumoniae LPS alone. LDL and mmLDL pre-incubation 

caused TLR2 association with lipid rafts when combined with E.coli LPS. However, 

oxLDL pre-incubation prior to S.aureus LTA, P.gingivalis LPS and C.pneumoniae LPS 

exposure was found to significantly reduce TLR2 recruitment to lipid rafts by ≥50%, 

even though the ligands separately were capable of causing significant TLR2 

recruitment. The ability of oxLDL pre-incubation to reduce IL-8 release in HUVECs 

may be explained by its ability to reduce TLR2 recruitment to lipid rafts. Similarly, 

Walton et al. (2003)
104

 found that the LPS-induced recruitment of TLR4 and MD-2 to 

caveolar membrane compartments is reduced when OxPAPC is present reducing 

cellular response. It seems that oxLDL may disrupt the interaction between lipid rafts 

and PRRs, as observed with caveolar and TLR4 and MD-2. Previous data in this study 

illustrates the importance of lipid rafts in cellular response to atherosclerosis-associated 
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ligands. This data demonstrates that oxLDL can distort the interaction between TLR2 

and lipid rafts with the effect of modulating cellular response to a PAMP, through 

reduction of IL-8. I then went on to explore whether the reduced recruitment of TLR2 to 

lipid rafts, due to the presence of oxLDL, affects its heterotypic associations with other 

receptors of the innate immune system. 

 

FRET experiments were performed with HUVECs to quantify the interaction between 

TLR2 and its associated receptors TLR1, TLR6 and CD36 in response to 

atherosclerosis-associated ligands and combinations thereof. TLR2 was labelled with 

Cy3-TL2.1 whilst TLR1, TLR6 and CD36 were labelled with Cy5. In unstimulated cells 

it was found that there was no association between these receptors. In response to LDL, 

mmLDL and oxLDL a TLR2/TLR6/CD36 receptor cluster was formed in lipid rafts, 

this was also the case for S.aureus LTA. It was found that the unconventional LPS 

molecules from P.gingivalis and C.pneumoniae caused a lipid raft-associated 

TLR2/TLR1/CD36 receptor cluster. This data agrees with that demonstrating receptor 

clusters incorporating TLR2/TLR1/CD36 and CD11b/CD18 in human vascular 

endothelial cells in response to the atherosclerosis-associated bacteria P.gingivalis and 

H.pylori
51

. E.coli LPS caused no association of receptors with TLR2.  

 

When HUVECs were pre-incubated with LDL, mmLDL and oxLDL the receptor 

clusters formed in response to further bacterial stimulation were altered in comparison 

to PAMP alone, with the exception of S.aureus LTA. The double stimulations had an 

additional effect on the receptor cluster. For example, P.gingivalis LPS and 

C.pneumoniae LPS similarly cause a TLR2/TLR1/CD36 cluster, when HUVECs were 

pre-incubated with either LDL, mmLDL or oxLDL (which all cause a 
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TLR2/TLR6/CD36 cluster) a receptor cluster of TLR2/TLR1/TLR6/CD36 was 

observed in lipid rafts. This may indicate the recruitment of two separate clusters to the 

lipid raft, or the interaction of a larger number of receptors in a more complex cluster on 

the HUVEC cell surface causing the disruption to cellular signalling observed. This data 

could explain the reduced requirement for lipid rafts that was shown for combined 

stimulations in raft disrupted HUVECs. Interestingly, it was observed that oxLDL pre-

incubation dramatically reduced, and in the case of E.coli LPS almost abolished, TLR2 

interaction with TLR1, TLR6, CD36 and the lipid raft. Again, although oxLDL is 

capable of causing a lipid raft-associated TLR2/TLR6/CD36 cluster, when combined 

with a bacterial PAMP any TLR2 association is dramatically diminished. In the case of 

S.aureus LTA, P.gingivalis LPS and C.pneumoniae LPS single stimulations in 

comparison to these combined with oxLDL the TLR2 association with either TLR1, 

TLR6 or CD36 are reduced by around 40-50%, as seen with the recruitment of TLR2 to 

the lipid raft. This data suggests that a reduction in receptor association due to oxLDL 

requires the presence of a bacterial PAMP; oxLDL alone does not dampen TLR2 

associations with PRRs or lipid rafts. 

 

TLR2 expression, recruitment to lipid rafts and heterotypic associations in response to 

oxLDL pre-incubations begins to shed light on the immune modulation observed. My 

data indicates that TLR2 is involved in the recognition of atherosclerosis-associated 

oxLDL, S.aureus LTA, P.gingivalis LPS and C.pneumoniae LPS. Previous studies have 

shown an involvement of TLR2 in plaque development such as that of Madan et al. 

(2008)
160

 who demonstrated that ApoE
+/-

Tlr2
-/-

 mice had reduced cytokine levels and 

lesion size in comparison to ApoE
+/-

Tlr2
+/+

 mice when fed on a high fat diet, or when 

subject to P.gingivalis. Similar studies have also demonstrated a role for TLR4 in 
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atherosclerosis. The genetic deficiency of TLR4 in the atherosclerosis prone ApoE
-/-

 

mouse resulted in reduced total lesion area in comparison to control wild-type TLR4 

ApoE
-/-

 mice, when both were fed on a high-cholesterol diet
152

. To elucidate further the 

involvement of TLR2 and TLR4 in atherosclerosis, and the modulation that endogenous 

lipoprotein has on their ligand recognition, HEK293 cells expressing either TLR2 or 

TLR4 were employed. 

 

4.7: TLR2, TLR4 and CD36 in atherosclerosis 

Results obtained from experiments on transfected HEK293 cells demonstrate a 

preference of LDL and oxLDL for TLR4 and TLR2 respectively. Mullick et al. 

(2005)
161

 demonstrated that atherosclerosis prone Ldlr
-/-

 mice that do not express TLR2 

(Ldlr
-/-

Tlr2
-/-

) have reduced lesion size in comparison to Ldlr
-/-

 mice expressing TLR2 

(Ldlr
-/-

Tlr2
+/+

) in the absence of any exogenous agonist. This study indicates an 

endogenous activator of plaque formation, signalling through TLR2. My data suggests 

that the endogenous activator of atherosclerosis speculated by Mullick et al. is oxLDL. 

mmLDL seems to signal though both TLR2 and TLR4, this could indicate a 

heterogeneous mixture. 

 

Here this study confirms the unconventional signalling of the LPS molecules from 

P.gingivalis and C.pneumoniae, which were capable of causing augmented cytokine 

release in HEK293 cells expressing TLR2 (HEK TLR2) but not in HEK TLR4 cells. As 

expected the prototypic Gram-positive PAMP S.aureus LTA and Gram-negative PAMP 

E.coli LPS were shown to signal through TLR2 and TLR4 respectively.  
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Both HEK TLR2 and HEK TLR4 were capable of mounting a response to all combined 

stimulations. When HEK TLR2 and HEK TLR4 cells were pre-incubated with 

lipoprotein and then subsequently stimulated with a bacterial ligand the immune 

response, in the form of IL-8 release, was enhanced with the exception of P.gingivalis 

LPS with mmLDL in HEK TLR2 cells. This data conflicts with previous data obtained 

with HUVECs in this study, which showed a protective role of oxLDL. The difference 

in findings could be solely due to the cell line or may indicate that the protective role of 

oxLDL acts via a mechanism involving receptors on HUVECs that were not present on 

the HEK cell line, such as CD36. One ligand could have an adapter role for the other 

much like CD14 in LPS recognition. For example, oxLDL could enhance TLR2 binding 

of S.aureus. However, this theoretical role may be reduced in HUVECs by the 

sequestration of the “adapter” ligand by cellular receptors, such as CD36, that are not 

found on HEK cells. Lipoproteins may enhance PAMP recognition but when CD36 is 

present, for example, the lipoprotein is bound and internalized, possibly with PAMP, as 

a form of immune regulation.  

 

A dramatic difference between single and combined stimulations was seen in the HEK 

TLR4 cell line. For example, HEK TLR4 exposure to either oxLDL or C.pneumoniae 

LPS was very poor at causing IL-8 release, although when these were simultaneously 

exposed to HEK TLR4 cells a significant IL-8 response was observed. A role for TLR4 

in atherosclerosis was shown by Michelsen et al. (2004)
152

 who demonstrated reduced 

total lesion area, reduced macrophage infiltration and reduced monocyte chemotactic 

protein-1 (MCP-1) serum concentrations in the ApoE
-/-

TLR4
-/- 

mouse in comparison to 

control ApoE
-/-

TLR4
+/+ 

mice. My data suggests that lipoproteins enhance cellular 

sensitivity to bacterial ligands in HEK TLR4 cells. 
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To explore the individual role of CD36 in atherosclerosis, silencing technology to 

reduce CD36 cell surface expression on primary endothelial cells was employed. CD36 

expression on primary HUVECs was silenced by transfection with CD36 psiRNA 

plasmid.  

 

CD36 silencing reduced the cellular response to both LDL and oxLDL indicating the 

requirement of CD36 in lipoprotein binding. CD36 SR expressed on macrophages has 

been shown to bind oxLDL, where it is engulfed leading to foam cell formation
73,101,102

. 

Data from this study suggests that CD36 is also involved in the binding of native LDL. 

Interestingly it was found that CD36 favoured LDL over oxLDL. A greater reduction in 

IL-6 and IL-8 concentrations were observed in CD36 silenced HUVECs in response to 

LDL in comparison to oxLDL. CD36 silenced HUVEC IL-6 concentrations were also 

lower in response to S.aureus LTA, E.coli LPS and P.gingivalis LPS demonstrating its 

involvement in PAMP recognition. The greatest reduction was seen with P.gingivalis 

LPS where a reduction of ~50% in IL-6 serum concentration was observed in 

comparison to wild-type HUVECs. CD36 associates with TLR2
173

. These findings 

support previous FRET data and other studies demonstrating CD36 involvement in the 

receptor cluster formed in response to P.gingivalis LPS shown as TLR2/TLR1/CD36
51

 

and S.aureus LTA shown as TLR2/TLR6/CD36
208

. IL-8 concentrations released by 

CD36 silenced and wild-type HUVECs in response to bacterial products were 

unaffected. These results show that CD36 is important in the generation of a response 

via IL-6 for both lipoprotein and bacterial stimuli. This data also highlights that CD36 is 

involved in lipoprotein-induced but not bacterial-induced IL-8 release. When cells were 

pre-incubated with lipoprotein, both IL-6 and IL-8 serum concentrations were reduced 

in CD36 silenced HUVECs in comparison to wild-type HUVECs. The reduction of IL-6 
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was greater than that observed with IL-8. There was no significant difference between 

cytokine reductions between different lipoprotein pre-incubations. My data 

demonstrates the involvement of CD36 in the inflammatory response generated towards 

atherosclerosis-associated ligands and combinations thereof. 

 

Data obtained in this study from HEK293 cells and CD36 silenced HUVECs has 

demonstrated the involvement of TLR2, TLR4 and CD36 in the recognition of 

atherosclerosis-associated ligands and combinations of these. By manipulating receptor 

expression, varied levels of response were observed. The reason for the locality of 

atheroma development is speculated to be due to differential expression of TLRs 

throughout the vascular system, or due to disturbed flow. Pryshchep et al. (2008)
168

 

illustrated heterogeneous TLR expression in the subclavian, mesenteric, iliac, and 

temporal arteries. On the other hand, the increased susceptibility to plaque initiation has 

been attributed to disturbed blood flow in the artery which creates shear stresses that 

adversely affects the biology of the arterial wall
169

. My data has shown that differential 

PRR expression does indeed affect cellular response to atherosclerosis-associated 

ligands. As shown by Pryshchep et al. (2008)
168

, heterogeneous expression of TLRs in 

human arteries exists. This study would support that plaque formation is attributed to 

differential expression of TLRs throughout the vascular system and suggests that this is 

also true for adapters of the TLR family, such as CD36. 

 

Not only has this study implicated the involvement of TLR2, TLR4 and CD36 in 

atherosclerosis, but it has also established that lipid raft-associated receptor clusters 

formed in response to bacterial stimulation are altered when cells are pre-incubated with 

lipoprotein. This has the effect of modifying cellular response, in the form of cytokine 
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release. FRET data from my study has illustrated that pre-incubation with oxLDL 

reduces TLR2 recruitment to lipid rafts and the association of TLR2 with receptors such 

as TLR1, TLR6 and CD36. To image the altered fate of the receptors observed in this 

study, triple label confocal microscopy was employed. 

 

4.8: Intracellular trafficking and targeting in response to endogenous 

lipoproteins and bacterial ligands 

 

Cell surface receptor associations allow a tailored response to an invading pathogen. 

The inflammatory response in atherosclerosis seems to have become dysregulated 

allowing chronic inflammation characteristic of this disease. My data has shown that 

circulating lipoprotein can disrupt the regular cellular response tailored for a specific 

bacterial ligand by altering PRR expression, PRR localisation, NF-κB activation and 

cytokine release. FRET data from this study has shown oxLDL pre-incubation causes 

reduced association of TLR2 with lipid rafts and reduced heterotypic associations of 

TLR2 with TLR1, TLR6 and CD36, suggesting altered trafficking and targeting of 

PRRs. Thus this study proceeded to employ triple label confocal microscopy in order to 

image the effect of lipoprotein pre-incubation on PRR associations, trafficking and 

targeting in the primary HUVEC cell line in response to atherosclerosis-associated 

bacterial ligands and combinations of these. In addition the TLR signalling adapter 

MyD88 was labelled to image the localisation of TLR signalling in these different 

situations. 

 

Confocal imaging uncovered that PRR targeting and localisation in response to bacterial 

PAMP was indeed altered when cells were pre-incubated with lipoprotein. Confocal 

microscopy of HUVECs stimulated with oxLDL alone demonstrated high accumulation 
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of CD36 and TLR2 in endosomes (data not shown). It has been previously 

demonstrated that oxLDL causes CD36 internalisation into endosomal structures, which 

is supported by oxLDL single stimulation images in this study
224

. The pre-incubation of 

HUVECs with oxLDL prior to S.aureus LTA altered TLR2, CD14 and CD36 

localisation in comparison to S.aureus LTA stimulation alone. TLR2, CD14 and CD36 

targeting to the Golgi and endosomal compartments, that was observed with S.aureus 

LTA single stimulation, was significantly reduced when oxLDL was present. 

 

In addition to reducing the PRR intracellular targeting to the Golgi and endosomal 

compartments, oxLDL seemed to target TLR2 to distinct cellular compartment other 

than the Golgi or endosomes. It is possible that these distinct cellular compartments 

may be lysosomes. Although this study did not have enough time to verify this, Itabe et 

al. (2000)
225

 have demonstrated lysosomal accumulation of oxLDL derived products, 

thus suggesting that the distinct cellular compartments that are being observed are most 

likely lysosomes. Itabe et al. (2000) show that the oxLDL derived OxPC colocalised 

with lysosomal markers in murine macrophages. oxLDL products targeted to lysosomes 

may be TLR2 bound resulting in the lysosomal expression of TLR2. Interestingly, I did 

not observe any of these distinct compartments when cells were pre-incubated with 

LDL. This may be due to the fact that LDL targeted to lysosomes can be cleared 

effectively, whereas oxidatively modified LDL has been shown to be more resistant to 

lysosomal degradation than native LDL
217

, a theory behind oxLDL accumulation in 

foam cells. Taking together the effective clearance of LDL from lysosomes and the 

reduced binding of TLR2 with LDL in comparison to oxLDL, one would not expect 

high levels of lysosomal accumulation of TLR2 bound LDL. 
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In contrast to oxLDL, LDL pre-incubation of HUVECs prior to stimulation with 

bacterial ligands had little effect on the intracellular targeting of PRRs in comparison to 

bacterial single stimulation, suggesting that only its fully oxidatively modified 

derivative alters PRR targeting.  

 

The presence of oxidized lipoprotein within a cellular compartment would suggest room 

for error. Bacteria/oxLDL complexes being internalised together may somehow disrupt 

trafficking and normal processing of the bacterial products in intracellular 

compartments along with their associated PRRs with an atherogenic outcome. Not only 

would this altered trafficking affect the accumulation of lipoprotein within a cell, 

leading to foam cell formation, but it would disrupt the signalling emanating from the 

PRRs. 

 

This study also shows altered localisation of MyD88 when cells were exposed to 

oxLDL. The recruitment of MyD88 to lipid rafts on HUVECs in response to S.aureus 

LTA, E.coli LPS and P.gingivalis LPS alone was reduced by 25%, 26% and 25% 

respectively when cells were pre-incubated with oxLDL. This may cause reduction in 

NF-κB activation, as observed. However, oxLDL did not significantly reduce the 

association between MyD88 and TLR2 when exposed to HUVEC prior to PAMP. This 

suggests that TLR signalling may occur from compartments other than lipid rafts when 

lipoprotein and PAMP are present. Intracellular signalling through cell surface receptors 

may lack conventional regulation allowing dysregulated inflammation. 

 

4.9: Current therapeutic interventions 

 

Currently, statins are used widely by physicians to prevent events such as stroke or heart 

attack. These drugs are HMG-CoA reductase inhibitors resulting in reduced cholesterol 
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synthesis and increased LDL receptor (LDLR) expression on liver cells, further 

reducing cholesterol levels by increased uptake of LDL. A number of trials have 

demonstrated how effective statins are at reducing LDL cholesterol with the effect of 

reducing intima media thickness, myocardial infarction, stroke, by-pass graft 

atherosclerosis and overall mortality
226-229

. The success of these drugs is reflected in 

their use in huge numbers in healthcare today. It has been shown that statin therapy also 

has the effect of reducing inflammatory markers such as CRP
229,230

, thus suggesting that 

the secret of their success could lie in their targeting of the inflammatory response.  

 

It is believed that the observation of reduced inflammation may begin to be able to 

explain the pleiotropic effects observed with statin therapy. The reversal of 

atherosclerosis with aggressive lipid lowering (REVERSAL)
229

 trial  demonstrated CRP 

level reductions of 36% in CAD patients after 18 months treatment with 80mg 

Pravastatin daily. Reduced CRP levels in response to statins were also demonstrated in 

the Pravastatin inflammation/CRP evaluation study (PRINCE)
231

, supporting their anti-

inflammatory effect. Rosenson et al. (1999)
232

 demonstrated a 31% and 26% reduction 

in TNFα and IL-6 levels respectively in hypercholesterolemic patients after 

administration of 40mg Pravastatin per day for 7 weeks.  Here, Rosenson speculates that 

reduced plasma lipoproteins would free up PAMPs, thus increasing inflammatory 

markers when individuals are treated with statins. His results along with others 

demonstrate the reverse of this, possibly allowing chronic infection. This study 

demonstrates an immunoregulatory role of oxLDL, as do others. It could be suggested 

that the removal of this immunoregulatory LDL may allow effective clearing of chronic 

infections, rather than allow one to persist. The effective clearing of chronic infections 

would have the effect of reduced inflammatory markers such as IL-6 and CRP, as 
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observed in these statin trials. The use of statins may disrupt the delicate environmental 

niche utilised by atherosclerosis-associated bacteria for survival and proliferation. A 

naturally occurring niche enhanced by the Western life style. 

 

4.10: PRR-based therapeutic interventions 

It seems that for a future therapeutic intervention to be successful the inflammatory 

response triggered either by the endogenous lipoproteins, bacterial pathogens or 

combinations of both must be targeted. With the discovery of PRRs as central to the 

inflammatory response in atherosclerosis, the potential to reduce or even inhibit this 

inflammation seems more achievable. 

 

Throughout this study it has been shown that the disruption of innate immune receptor 

complexes by the presence of lipoprotein can dysregulate the inflammatory response 

generated towards a PAMP; possibly leading to atherosclerosis. oxLDL exposure has 

been shown to reduce PRR cell surface expression with the effect of reducing cellular  

release of the chemotactic cytokine IL-8 in response to a PAMP. Atherosclerosis is an 

inflammatory disorder; a reduction in inflammation would be thought to be 

advantageous. However, whether this reduced inflammation caused by oxLDL is 

atheroprotective is unclear. On one hand, the inflammation is reduced which would 

decrease infiltration of immune cells into the arterial intima reducing the chance of 

plaque formation. On the other hand, a reduction in inflammation through disrupting 

cellular response to a PAMP may allow colonisation of a pathogen by, in effect, 

masking its presence.  

 

It is hypothesised that the modulation of this immune response could have therapeutic 

potential. A number of studies have shown that the deficiency of components of innate 
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TLR signalling in mice, such as MyD88
159

, TLR2
160,161

 and TLR4
152

, is 

atheroprotective. This study went on to explore the blocking of the endogenous and 

microbial sensing apparatus in vivo to determine the possible beneficial effects of TLR 

directed therapeutics in the prevention of atherosclerosis. A male CD-1 out-bred mouse 

model of sepsis was used to test previously established in vitro blockers of innate 

immunity. The sepsis mouse model was chosen for it displays an over-reaction of the 

innate immune response, producing dysregulated inflammation, with a short and clear 

end point. This model has been used in a large number of studies and has proved fruitful 

in the production of drugs transferable to human subjects. The analysis of these in vitro 

blockers in the sepsis mouse model would determine their efficacy in inflammation 

reduction so that this study can go on to test these in a more delicate model of 

atherosclerosis. 

 

The in vitro established blockers of inflammation tested in this study for their potential 

in the treatment of atherosclerosis included HSP70 and AMD3100. Dr. K. Triantafilou 

(University of Sussex) has demonstrated the ability of HSP70 and AMD3100 at 

modulating the innate mechanisms. HSP70 has been shown to reduce the expression of 

TLRs 2, 4, 6, 7, 8 and 9, diminishing cellular immune capabilities. Exogenous HSP70 

has been shown to inhibit LPS-induced inflammatory responses in monocytes
141

. 

AMD3100 has been shown to inhibit the formation of the “LPS-sensing apparatus” 

reducing cellular response to LPS (Triantafilou et al. {unpublished data}). These 

molecules were tested for their efficacy in the prevention of inflammation and 

ultimately mortality in an in vivo model of sepsis. Therapy that is capable of dampening 

or terminating the inflammation seen in atherosclerosis after the condition has been 

discovered is of greatest interest, for practically this is when plaques are discovered. In 

this study these immunomodulators were mainly tested after the induction of 
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inflammation/sepsis in the mouse model in order to analyze their immune regulatory 

capabilities. 

 

Intraperitoneal injection of HSP70 was found to be very effective at decreasing sepsis-

induced mortality in CD-1 male mice. HSP70 administration after LPS exposure gave 

better survival rates than HSP70 treatment prior to the induction of sepsis. HSP70 was 

most effective at preventing septic shock when injected 2 and 4 hours post-sepsis 

induction, where 87.5% survival was observed at 72 hours. Blood sample 

concentrations of TNF-α, IL-12, IFN-γ and IL-10 were all reduced in mice treated with 

HSP70 in comparison to those that were not. At 12 hours all HSP70 administration 

protocols achieved TNF-α concentrations between 27-34% of the control untreated 

sepsis model. Although post 2 and 4 hour i.p injection of HSP70 conferred better 

survival rates this was not necessarily reflected in cytokine levels. However, the 

reduction for each protocol was significant none the less, and all achieved survival.  

 

AMD3100 was found to be effective at conferring survival in sepsis induced CD-1 male 

mice. This molecule was not as successful as HSP70. Interestingly AMD3100, like 

HSP70, was most effective when administered 2 and 4 hours post LPS administration. 

AMD3100 injection at 2 and 4 hours post-LPS gave 65% survival at 72 hours. Post-1 

hour administration of AMD3100 was the least successful giving 25% survival at 72 

hours.  

 

These two molecules can clearly modulate the innate immune response. HSP70 has a 

more general effect by lowering all TLRs rather than just attenuating TLR4 signalling 

as performed by AMD3100. Therefore, both seem excellent candidates in order to be 

tested in an atherosclerotic mouse model in the future.  
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4.11: Concluding remarks 

Atherosclerosis is a multi-factorial disease that is characterized by the formation of 

plaques in arterial blood vessel walls. Early stages of plaque formation are 

asymptomatic allowing them to grow insidiously increasing an individual’s risk of 

stroke or heart attack, unbeknown to them. Once considered a lipid storage defect, 

atherosclerosis is now widely accepted to be due to a chronic inflammatory disorder. 

Inflammation from innate immune mechanisms are implicated in atherogenesis and 

plaque disruption. TLRs have been suggested as the initiators of the inflammatory 

response, but the precise triggers are not fully understood. Triggers, which have been 

suggested include hypercholesterolemia, modified lipoproteins and infections with 

bacterial pathogens such as C.pneumoniae or P.gingivalis. 

 

Previous studies have implicated microbial products in the initiation and/or promotion 

of the inflammatory process in atherosclerosis. My data shows for the first time that 

specific microbial ligands synergize with host-derived lipoproteins for induction of 

dysregulated inflammatory responses, which are dependent on interactions with TLR-

centred receptor clusters in membrane lipid rafts. This study has focused on the 

emerging role of the innate immune system in atherosclerosis, and has uncovered TLRs 

as fundamental culprits of this multi-factorial disease. Future therapy designed for this 

disorder will unquestionably involve the manipulation of TLR signalling. 
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4.11.1: Proposed model 

Based on the findings of this study, a model for the initiation of atherosclerosis is 

proposed. In this model elevated levels of low density lipoprotein, such as oxLDL, 

make us prone to mount a chronic pro-inflammatory response to a bacterial pathogen if 

subsequently infected. Inflammation characteristic of atherosclerosis. TLR2 seems to be 

the central receptor involved in vascular endothelial cell activation in atherosclerosis, 

recognising both endogenous and exogenous atherosclerosis-associated ligands. 

Therefore, disease progression could be due to low-level chronic inflammatory 

responses triggered by microbial infections via TLR2 with engagement of LDL derived 

endogenous ligands, resulting in the formation of atherosclerotic lesions.  

 

An example based on this studies findings proposed in this model is LPS from 

P.gingivalis, a bacteria associated with increased risk of atherosclerosis. It has been 

found that a lipid emulsion can mop up LPS and LTA with effect of reducing the 

inflammatory response in vitro and in vivo
233,234

. For this reason one may hypothesize 

that a complex of LPS or LTA with lipid could exist in the system. Both lipid and 

PAMP are recognised by PRRs that exist on the cell surface. PAMP via TLR and lipid 

via the well described CD36 SR
173

. Data from this study, supporting that from others, 

demonstrates lipid raft-associated receptor complexes formed in response to challenge 

by factors associated with atherosclerosis can contain a number of PRRs including 

associations between TLR2/1 and CD36; receptors that bind P.gingivalis LPS and 

oxLDL respectively
51

. As shown in this study and by others, LPS from P.gingivalis is 

unconventional in that it signals through a receptor complex containing TLR2/1 and 

CD36, not the TLR4 endotoxin receptor, in a lipid raft dependant manner
51,235,236

. Given 

this, one would reasonably expect an LDL/LPS composite to bind the same lipid raft 

linked receptor complex, in a foursome bound formation, where ligands and receptors 
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all interact (Figure 4.1). This may causes the dysregulation observed at the cell surface, 

as previously suggested
104

. The subsequent targeting of receptor/ligand, signalling and 

processing of these factors, when in concert, must be distorted; as observed in this 

study.  

 

 

 

 
 

Figure 4.1: Hypothetical model of LPS/oxLDL and receptor cluster interactions: P.gingivalis 

(purple) binds TLR2 (blue)/CD36 (green) receptor complex. oxLDL (yellow) is bound 

by CD36 SR (green). TLR2/CD36 is localised to lipid rafts (labelled). Hypothesis: 

oxLDL/LPS bind the same receptor complex, which contains TLR2 (LPS) and CD36 

(oxLDL) in a foursome bound formation resulting in the disruption of ligand processing 

and cellular signalling. 
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4.12: Future work 

 

 Elucidate the component of oxLDL that produces the effects on innate immune 

signalling to bacterial PAMPs observed in this study. 

 Look at the cause of combined stimulations on macrophages and whether this 

may lead to foam cell formation. 

 Elucidate the therapeutic potential of HSP70 and AMD3100 in atherosclerosis, 

through in vitro experimentation on primary HUVECs exposed to endogenous 

lipoprotein and bacterial combined stimuli, with the inclusion of either HSP70 

or AMD3100. 

 If HSP70 and AMD3100 demonstrate potential in vitro, then these will be tested 

on C57BL/6 mice that lack a functional LDL receptor (Ldlr
-/-

). Further exposure 

of these mice with atherosclerosis associated bacteria may prove to be an 

excellent model to investigate interventions of atherosclerosis explored in this 

study. 
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Recipes 

 

ECV Medium: Medium 199 + Glutamax from GIBCO. MM-6 Medium: RPMI 1640 

medium (10% FCS, 10ml non-essential amino acids and OPI media supplement) 

Running buffer: BIO-RAD. X1 solution: 25Mm Tris, 192mM glycine and 0.1% (w/v) 

SDS, pH8.3. 10x PBS: NaCl, 50.0g. KCl, 1.25g. Na2HPO4, 7.2g. KH2PO4, 1.25g. dH2O, 

make up to. 500ml. PBS/ 0.02%BSA/ 0.02% NaH3/ 0.02%: X1 PBS, 100ml. BSA, 

0.02g. NaH3, 0.02g. PBS/ 0.02%BSA/ 0.02% NaH3/ 0.02% Saponin: X1 PBS, 100ml. 

BSA, 0.02g. NaH3, 0.02g. Saponin, 0.02g. PFA: Paraformaldehyde, 8.0g. dH2O, 100ml. 

2X PBS, 100ml. X2 SDS-PAGE Reducing Sample Buffer: STOCK, 40ml Final 

Volume. 0.5M Tris (pH 6.8), 20.0ml. 10% SDS, 6.0ml. Glycerol, 5.0g. 14.3 M B-

mercaptoethanol, 4.0ml. Bromophenol Blue, 5.0mg. X2 SDS-PAGE Non-reducing 

Sample Buffer: STOCK, 40ml Final Volume. 0.5M Tris (pH 6.8), 20.0ml. 10% SDS, 

16.0ml. Glycerol, 5.0g. Bromophenol Blue, 5.0mg. Resolving gel 10%: dH2O, 4.02ml. 

1.5 M Tris-HCl (pH 8.8), 2.5ml. 10% (w/v) SDS, 100.0µl. Acrylamide/Bis, 3.33ml. 

10% APS, 50.0µl. TEMED, 5.0µl. Resolving gel 12%: dH2O, 3.5ml. 1.5 M Tris-HCl 

(pH 8.8), 2.5ml. 10% (w/v) SDS, 100.0µl. Acrylamide/Bis, 4.0ml. 10% APS, 50.0µl. 

TEMED, 5.0µl. 4% Stacking gel: dH2O, 3.05ml. 1.5 M Tris-HCl (pH 8.8), 1.25ml. 

10% (w/v) SDS, 50.0µl. Acrylamide/Bis, 0.65ml. 10% APS, 50.0µl. TEMED, 10.0µl. 

Running buffer: Tris, 3.03g. Glycine, 14.4g. SDS, 1.0g. Volume, 1L. X2 Transfer 

Buffer: 20mM Tris-acetate, 4.88g. 0.1% SDS, 20ml. 20% isopropanol, 400ml. dH2O, 

580ml. pH to 8.3, Acetic acid. Fixing solution (for 1000ml): Acetic acid, 200ml. 

Absolute ethanol, 800ml. dH2O, 1000ml. Commasie blue (for 200ml): Methanol, 

100ml. Acetic acid, 20ml. dH2O, 80ml. Commasie blue, 0.6g. De-stain (for 1000ml): 

Ethanol OR IMS, 100ml. Acetic acid, 100ml. dH2O, 800ml. Fixing (1000ml): Ethanol, 

400ml. Acetic acid, 100ml. dH2O, 500ml. Incubation solution: Ethanol, 75ml. Sodium 

acetate, 10.26g. Glutaraldehyde, 1.3ml. Sodium thiosulpate 5H2O, 0.5g. Make up to 

250ml with dH2O. Silver solution: Silver nitrate, 0.25g. Formaldehyde, 50µl. Make up 

to 250ml with dH2O. Developing solution: Sodium carbonate, 6.25g. Formaldehyde, 

25µl. Make up 250ml with dH2O. Stop solution: EDTA Na2 2H2O, 3.65g. Make up 

250ml with dH2O. Collagen: 10% used (1ml in 9ml X1 PBS). BD Biosciences (rat tail 

tendon). Luria broth (1000ml): Bactopeptone, 10g. Yeast extract, 5g. Sodium chloride 

10g. Make up to 1000ml dH2O. Lysis buffer (300ml): Urea, 1.44g. NaCl, 1.7g, Tris-

HCL, 17ml. NaH2PO4, 1.8g. Imidazole, 2g. (pH8). Binding buffer (500ml): NaH2PO4, 

1.2g. NaCl, 14.6g. (pH8). Elution buffer (500ml): NaH2PO4, 1.2g. NaCl, 14.6g. 

Imidazole, 17g. (pH6). STET buffer: Sucrose. Triton. EDTA. Tris-HCL. dH2O. (pH8). 

Cleaving buffer: 50mM Tris-HCL. 150Mm NaCl. 1mM EDTA. 1mM DTT. 0.01% 

Triton. ELFO loading buffer (200ml): Glycerol, 100ml. 50X ELFO, 20ml. dH2O, 

80ml. Bromophenol. 50X ELFO: (2M Tris, 50mM EDTA). Tris, 242g. EDTA (0.5M), 

100ml. pH 7.7 with acetic acid. Make up to 1000ml with dH2O. Agarose gel: Agarose, 

1g. ELFO, 100ml. 
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