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Abstract

Let Ω ⊂ Rn be a bounded Lipschitz domain and consider the energy functional

F[u,Ω] :=

∫
Ω

F(∇u(x)) dx,

over the space Ap(Ω) := {u ∈ W 1,p(Ω,Rn) : u|∂Ω = x, det∇u > 0 a.e. in Ω}, where the integrand
F : Mn×n → R is quasiconvex, sufficiently regular and satisfies a p-coercivity and p-growth for some
exponent p ∈ [1,∞[. A motivation for the study of above energy functional comes from nonlinear
elasticity where F represents the elastic energy of a homogeneous hyperelastic material and Ap(Ω)
represents the space of orientation preserving deformations of Ω fixing the boundary pointwise. The
aim of this thesis is to discuss the question of multiplicity versus uniqueness for extremals and
strong local minimizers of F and the relation it bares to the domain topology. Our work, building
upon previous works of others, explicitly and quantitatively confirms the significant role of domain
topology, and provides explicit and new examples as well as methods for constructing such maps.

Our approach for constructing strong local minimizers is topological in nature and is based on
defining suitable homotopy classes in Ap(Ω) (for p ≥ n), whereby minimizing F on each class results
in, modulo technicalities, a strong local minimizer. Here we work on a prototypical example of a
topologically non-trivial domain, namely, a generalised annulus, Ω = {x ∈ Rn : a < |x| < b}, with
0 < a < b < ∞. Then the associated homotopy classes of Ap(Ω) are infinitely many when n = 2
and two when n ≥ 3. In contrast, for constructing explicitly and directly solutions to the system
of Euler-Lagrange equations associated to F we introduce a topological class of maps referred to as
generalised twists and relate the problem to extremising an associated energy on the compact Lie
group SO(n). The main result is a surprising discrepancy between even and odd dimensions. In
even dimensions the latter system of equations admits infinitely many smooth solutions, modulo
isometries, amongst such maps whereas in odd dimensions this number reduces to one. Even more
surprising is the fact that in odd dimensions the functional F admits strong local minimizers yet no
solution of the Euler-Lagrange equations can be in the form of a generalised twist. Thus the strong
local minimizers here do not have the symmetry one intuitively expects!
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Notation

In Identity matrix of size n

O(n) Orthogonal group

SL(n) Special linear group

SO(n) Special orthogonal group

Z2 Cyclic group of order 2

Z Group of integers

C Field of complex numbers

Rn Euclidean real n-space

Cn Euclidean complex n-space

Mn×n Algebra of n-by-n matrices

θ Unit normal vector

B Unit open ball in Rn

Sn−1 Unit sphere in Rn

Ln Lebesgue measure

ωn Ln(B):= The Lebesgue measure of B

Hn−1 (n− 1)-dimensional Hausdorff measure

Lp(X,Y ) Lp space

W 1,p(X,Y ) Sobolev space

‖ · ‖Lp Lp norm

‖ · ‖W 1,p W 1,p norm

C(X,Y ) Space of continuous functions from X to Y

Cc(X,Y ) Space of functions in C(X,Y ) with compact support

1E Characteristic function of E

∇u Gradient of u

div u Divergence of u

∆u Laplacian of u
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∆pu p-Laplacian of u

At Transpose of A

trA Trace of A

A : B Inner product of matrices A and B

detA Determinant of A

cof A Cofactor of A

eA Exponential of A

〈x, y〉 Inner product of vectors x and y

x⊗ y Tensor product of vectors x and y

{e1, . . . , en} Standard basis of Rn

∂Ω Frontier or boundary of Ω

Ω̄ Closure of Ω

πl[X] l-th homotopy group of X

bqc Floor of q



Chapter 1

Introduction

Alarge number of problems in mathematics, physics and engineering sciences naturally lead to

minimizing an energy functional F : A → R over a set A. Problems of this type appear in

a variety of areas ranging from analysis and geometry, e.g., harmonic maps, minimal surfaces and

their higher dimensional counterparts to more applied branches in economy, optimization, materials

science, e.g., nonlinear elasticity, optimal-shape design, modeling of solid-solid phase transitions and

liquid crystals.

A general strategy for proving existence of a minimizer is the direct methods of the calculus of

variations. It is based on the observation that if the set A admits a topology τ with respect to

which the following two properties hold:

[i] F is τ -coercive, 1

[ii] F is τ -lower semicontinuous, 2

then there exists an a ∈ A such that F(a) = infA F[·].

1.1 Background

In continuum theories of solid mechanics, specifically elasticity theory, the response of a hyperelastic

material subject to external excitations, in the form of applied forces: body and surface forces, as

well as boundary displacement, is described by minimization of the total elastic energy

F[u,Ω] :=

∫
Ω

F(∇u(x)) dx. (1.1)

1For every t ∈ R there exists a τ -compact set Kt ⊂ A such that {a ∈ A : F(a) ≤ t} ⊂ Kt.
2For every t ∈ R the set {a ∈ A : F(a) ≤ t} is τ -closed.

1



Chapter 1. Introduction 2

Here Ω ⊂ Rn is the region occupied by the body 3, u : Ω→ Rn represents the deformation which is

described on parts or whole of the boundary ∂Ω, ∇u : Ω→ Mn×n is the deformation gradient and

F : Mn×n → R is the stored energy density. As matter can not interpenetrate itself the deformation

is taken orientation preserving and thus locally invertible, that is, det∇u > 0 (almost) everywhere

in the domain. Moreover to comply with physics and to avoid unrealistic hypotheses the stored

energy density F is taken quasiconvex or often polyconvex but strictly non-convex. (See Ball [6], [7]

or Dacarogna [22].)

The aim of this thesis is to investigate the effect of domain topology and geometry on multiplicity

versus uniqueness of minimizers (local or global) as well as extremals of F. The earliest example

of non-uniqueness of extremals for energies of the type described and over spaces of deformations

keeping the boundary pointwise fixed, i.e., agreeing with the linear map identity, is a heuristic

example of John [41] and [42]. Indeed John considers a two dimensional annulus as the underlying

domain and argues that by considering deformations, where a typical representative of each is one

keeping the inner boundary fixed while rotating the outer boundary by an integer multiple of 2π,

one can define infinitely many distinct classes of non-homotopic self-maps of the annulus and thus

arrive at multiple equilibria, see the work by John [41] and [42]. 4

Figure 1.1: The image of a line segment under a self map of the annulus that keeps the inner
boundary fixed and rotates the outer boundary anti-clockwise by 2π.

A more rigorous treatment of this example is due to Post & Sivalogonathan [52] where the

authors use the notion of winding number of planar curves to define suitable homotopy classes

in the corresponding Sobolev spaces and then proceed by minimizing the energy on each such

homotopy class. It is important to note that the use of winding numbers although works well in

this example can not be immediately extended to more complicated plane geometries as well as to

higher dimensions as faced and expressed by the authors. The difficulty stems from the fact that

in higher dimensions a simply connected domain (i.e., one in which every closed curve is homotopic
3Realistically n = 2 or 3, however, in this exposition and throughout this thesis, unless otherwise specified, we do

not restrict the dimension to these two integers.
4The example of the two dimensional annulus and its infinite homotopy classes of self-maps was known to topol-

ogists much earlier in the century (cf. Dehn [23]). These are nowadays known as Dehn-twists and are instrumental
in the study of mapping class groups of surfaces.
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to a point) can still have a non-trivial topology as far as the space of self-maps of the domain is

concerned and so the device of winding number of curves is not capable of confronting the task.

(See the work by Taheri [70] and [72] where these problems are discussed and resolved.)

x

y

z

Figure 1.2: An example of a smooth simply connected domain in R3 whose spaces of self-maps
admits multiple homotopy classes.

In contrast to the non-uniqueness results expressed above there are also examples where by im-

posing stringent conditions on the domain one can arrive at uniqueness of minimizers and extremals.

The first result in this direction is the work of Knops & Stuart [44] where for similar type of ener-

gies subject to the domain being starshaped any linear map is the unique minimizer as well as the

unique extremal of the energy subject to its own boundary condition. That is any other sufficiently

regular extremal must coincide with the latter map. (See Taheri [71] for a different proof and for

an analogous result for strong local minimizers. Also Ball [2] and Spadaro [61].)

In this thesis we aim to analyze this distinction more closely and examine a particular geometry,

with no restriction on the dimension, where the energy functional F admits infinitely many smooth

extremals as well as multiple local minimizers. Indeed, the thesis can be divided into roughly two

parts: the first half focuses on domains Ω with a non-trivial topology, and as a prototype example

of such domains, we restrict to generalised annuli, that is, domains in the form Ω = {x ∈ Rn :

a < |x| < b} with 0 < a < b < ∞. We proceed by introducing a class of maps, referred to as

generalised twists (see Definition 3.1.1) and examine them as possible solutions to the system of

Euler-Lagrange equations associated with F (both in the so-called compressible and incompressible

cases); the second half focuses on the other extreme, that is, domains Ω with a trivial topology,

where, here, the prototype example are starshaped domains. We address the question of uniqueness

of extremals and strong local minimizers using a method reminiscent of that in [71] by Taheri.
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1.2 Outline of the Thesis

To outline in more detail the plan of the thesis and a discussion of the results. In the second chapter

bring together some basic properties of the space of self-maps of generalised annuli that are required

for the development of the thesis. In the third chapter, we take Ω ⊂ Rn such annulus and consider

the energy functional (1.1) over the space of admissible maps

Ap(Ω) :=

{
u ∈W 1,p

ϕ (Ω,Rn) : det∇u = 1 a.e. in Ω

}
, (1.2)

where

W 1,p
ϕ (Ω,Rn) =

{
u ∈W 1,p(Ω,Rn) : u|∂Ω = ϕ

}
.

Here W 1,p(Ω,Rn) is the standard Sobolev space of vector valued Lp integrable functions defined on

Ω, having Lp integrable distributional derivatives, and equipped with the norm

‖u‖pW 1,p := ‖u‖pLp + ‖∇u‖pLp .

Our terminology throughout is in agreement with that used by Adams [1] and Ziemer [79]. The

boundary map ϕ is taken linear; indeed the case ϕ = x (identity) is of particular interest to us.

With regards to the integrand F we assume F : Mn×n → R to be continuous and to satisfy the

following set of hypotheses:

[H1] (Growth condition) There exists c1 > 0 such that for all ξ ∈Mn×n we have that

|F(ξ)| ≤ c1(1 + |ξ|p).

[H2] (Coercivity condition) There exists c2 > 0 such that for all ξ ∈Mn×n we have that

c2|ξ|p − c1 ≤ F(ξ).

[H3]ξ (Quasiconvexity at ξ) For fixed ξ ∈Mn×n and all φ ∈ C∞c (Ω,Rn) we have that

∫
Ω

(
F(ξ +∇φ(x))− F(ξ)

)
dx ≥ 0.

If, additionally, the inequality is strict for φ 6= 0 then F is referred to as being strictly quasiconvex

at ξ. (If the subscript ξ is omitted F is taken quasiconvex everywhere.)

In Chapter 3 we are primarily concerned with the problem of extremising the energy functional
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(1.1) over the space (1.2) and examining a class of maps of topological significance as solutions to

the associated system of Euler-Lagrange equations


divS[x,∇u(x)] = 0 x ∈ Ω,

det∇u(x) = 1 x ∈ Ω,

u(x) = ϕ(x) x ∈ ∂Ω,

(1.3)

where, we have set

S[x, ξ] = Fξ(ξ)− p(x)ξ−t

=: T[x, ξ]ξ−t, (1.4)

for x ∈ Ω, ξ ∈Mn×n satisfying det ξ = 1 and p a suitable Lagrange multiplier while

T[x, ξ] = Fξ(ξ)ξ
t − p(x)In. (1.5)

In the language of elasticity, the tensor fields (1.4) and (1.5) are referred to as the Piola-Kirchhoff

and the Cauchy stress tensors respectively and the Lagrange multiplier p is better known as the

hydrostatic pressure i.e., see Ciarlet [20].

While the linear map u = ϕ serves as the unique minimizer of F over Ap(Ω) little is known

about the structure and features of the solution set to this system of Euler-Lagrange equations [e.g.,

multiplicity versus uniqueness, existence of strong local minimizers, partial regularity, the nature

and form of singularities, symmetries, etc. (see, e.g., [4], [8], [9], [24], [44], [52], [55], [68]).

We contribute towards understanding aspects of these questions by way of presenting multiple

solutions to the above system of equations. For most of Chapter three we specialise to F(ξ) = p−1|ξ|p

(p > 1), that is, the so-called p-Dirichlet energy and proceed by introducing a class of maps, referred

to as generalised twists, characterised and defined by

u(x) = Q(r)x,

where Q ∈ C([a, b],SO(n)) and r = |x|. To ensure admissibility, i.e., u ∈ Ap(Ω) it suffices to impose

a further p-summability on Q̇ := dQ/dr along with Q(a) = Q(b) = In. Restricting the p-energy to

the space of such twists we can write

Ep[Q] :=pFp[Q(r)x,Ω]
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=

∫ b

a

E(r, Q̇)rn−1 dr,

where the integrand itself is given through an integral over the unit sphere, i.e.,

E(r, ξ) :=

∫
Sn−1

(n+ r2|ξθ|2)
p
2 dHn−1(θ).

Here, the Euler-Lagrange equation can be shown to be the second order ordinary differential equation

d

dr

{
rn−1

[
Eξ(r, Q̇)Qt −QEtξ(r, Q̇)

]}
= 0.

Now in order to characterise among solutions to the above equation, all those which grant a

solution to the Euler-Lagrange equations associated with Fp over Ap(Ω) we are confronted with the

task of obtaining necessary and sufficient conditions on the vector field

[∇u]t∆pu = ∇s +

{
rsA2 − r2s〈Aθ, Ȧθ〉In+

1

rn
d

dr
(rn+1sA) +

1

rn−1

d

dr
(rn+1s|Aθ|2)In

}
θ,

with A = QtQ̇ and s = (n+r2|Q̇θ|)
p−2
2 for it to be a gradient, specifically, to coincide with ∇p. This

analysis occupies a major part of this chapter and is fully settled in Theorem 3.4.2 and Theorem

3.4.3.

	x
jy

6
z

	x

jy

6
z

Figure 1.3: A schematic of how a generalised twist deforms a vertical plane in a three dimensional
annulus.

The conclusion that the above analysis bares on to the original Euler-Lagrange equations turns

to be a surprising discrepancy between even and odd dimensions. Indeed it follows that in even di-

mensions the latter system of equations admits infinitely many smooth solutions, modulo isometries,

in the form of generalised twists whilst in odd dimensions this number severely reduces to one.
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In Chapter 4, we consider Ω ⊂ Rn to be a bounded starshaped domain and the energy functional

(1.1) over the space of admissible maps (1.2) when p ∈ [1,∞[ and while ϕ = ξ̄x and ξ̄ ∈Mn×n with

det ξ̄ = 1. Here the integrand F : Mn×n → R is of class C1 and for future reference we associate

with it the set of hypotheses [H1], [H2], [H3]ξ and

[H4]ξ (Rank-one convexity at ξ) For fixed ξ ∈Mn×n and all rank-one ζ ∈Mn×n the function

R 3 t 7→ F(ξ + tζ) ∈ R,

is convex at t = 0. If the subscript ξ is omitted F is taken rank-one convex everywhere. 5

Here we are primarily concerned with the question of uniqueness for solutions to the system of

Euler-Lagrange equations (1.3), associated with the energy functional (1.1) over the space of (1.2),

as well as that for its strong local minimizers (see Definition 2.2.1).

Indeed, the former, under the stated C1 regularity assumption on F, the question of uniqueness

of solutions to the associated system of Euler-Lagrange equations [subject to linear boundary con-

ditions] was established in a seminal paper of Knops & Stuart (see [44]). There it is shown that

subject to F being of class C2, rank-one convex everywhere and strictly quasiconvex at ξ̄ any smooth

solution u in a starshaped domain satisfying det∇u = 1 in Ω and u = ξ̄x on ∂Ω satisfies u = ξ̄x on

Ω̄.

In this short chapter we give a new proof of the aforementioned uniqueness result of Knops &

Stuart [44]. This is based on firstly removing the measure preserving condition det∇u = 1 and

considering instead a suitable unconstrained functional [with the aid of the Lagrange multiplier p]

and secondly utilising the so-called stationarity condition followed by comparison with homogeneous

degree-one extensions as introduced in [71] by Taheri. This approach has the advantage of extending

the uniqueness result to all weak solutions u of class C1 satisfying the weak form of the stationarity

condition (see (4.4) below).

Finally we prove a new uniqueness result for strong local minimizers of F over Ap(Ω) to the effect

that subject to [H1], [H3]ξ̄ alone any such u ∈ Ap(Ω) satisfies F[u,Ω] = F[ξ̄x,Ω] and therefore

subject to the additional strictly quasiconvexity of F at ξ̄ it must be that u = ξ̄x on Ω̄! We note

that in this chapter for technical reasons one needs to restrict to p ∈ [n,∞[ for the multiplicity

result relating to strong local minimizers and to p ∈]1,∞[ for the one relating to smooth solutions.
5For a comprehensive treatment of the convexity notions [H3], [H4] and their significance in the Calculus of

Variations we refer the interested reader to the books [11], [17], [22] and [30]-[32].
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In the final Chapter, we return to the domain Ω in Chapter 3, i.e., generalised annulus, and

consider the integral functionals F given by

F[u,Ω] :=

∫
Ω

[
1

2
|∇u|2 + φ(det∇u)

]
dx, (1.6)

over the space of admissible maps

A(Ω) =

{
u ∈W 1,2

ϕ (Ω,Rn) : det∇u > 0 a.e. in Ω

}
, (1.7)

where

W 1,2
ϕ (Ω) :=

{
u ∈W 1,2(Ω;Rn) : u|∂Ω = ϕ

}
,

and where ϕ is the identity map.

Regarding the function φ appearing in the energy functional F we make the following set of

hypotheses.

[h1] φ :]0,∞[→ [0,∞[,

[h2] φ is convex,

[h3] φ ∈ C2(]0,∞[),

[h4] φ has the two limiting behaviours

lim
s↓0

φ(s) = lim
s↑∞

φ(s)

s
=∞,

[h5] there exists β > 0 and δ > 0 such that for all s ∈]0,∞[ and α > 0 satisfying |α − 1| < δ we

have that

|sφ′(αs)| ≤ β[φ(s) + 1]. (1.8)

We are primarily concerned with the task of extremising the energy functional F over the space

A(Ω) and examining a special class of maps as solutions to the corresponding system of Euler-

Lagrange equations which can formally be written as


∆u+∇

[
φ′(det∇u) cof ∇u

]
= 0 in Ω,

det∇u > 0 in Ω,

u = ϕ on ∂Ω.
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Again we proceed by introducing a class of maps, referred to as generalised twists, characterised

and defined by

u(x) = G(r)θ,

with

G(r) = f(r)Q(r),

where r = |x|, θ = x/|x|, Q ∈ C([a, b],SO(n)) and f ∈ C[a, b]. In addition, to ensure admissibility,

i.e., u ∈ A(Ω) it suffices to impose a further L2-summability on ḟ := df/dr and Q̇ := dQ/dr along

with ḟ > 0 L1-a.e. on ]a, b[ while f(a) = a, f(b) = b and Q(a) = Q(b) = In.

Next by restricting the energy functional F to the space of such twists we can write

E[Q, f ] :=
2

ωn
F[u,Ω] =

∫ b

a

{
f2

[
n(n− 1)

1

r2
+ |Q̇|2

]
+ nḟ2+

2nφ(ḟ(
f

r
)n−1)

}
rn−1 dr,

and the corresponding Euler-Lagrange equations can again be formally shown to be the second order

system of ordinary differential equations



d
dr

[
rn−1f2Qt d

drQ

]
= 0,

d
dr

[
rn−1ḟ + fn−1φ′

]
= (n− 1)[rn−3f + ḟfn−2φ′]+

1
nr

n−1f |Q̇|2,

on ]a, b[ where φ′ = φ′(ḟ( fr )n−1).

Now in order to characterise among solutions to the above system all those which grant a solution

to the Euler-Lagrange equations associated with F over A(Ω) we are confronted with the of task of

verifying the necessary and sufficient condition Q̇(r) ∈ RSO(n) on ]a, b[. This analysis occupies a

major part of the chapter and is fully settled in Theorem 5.5.3 and Theorem 5.6.3.

Again the conclusion that this analysis bares on to the original Euler-Lagrange equations turns to

be a similar type of discrepancy between even and odd dimensions as that arose from the model in

Chapter 3. Indeed it follows that in even dimensions the latter system of equations admit infinitely

many smooth solutions, modulo isometries, in the form of generalised twists whilst in odd dimensions

this number severely reduces to one.
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We end by noting following in dealing with the polyconvexity in the last chapter.

[1] It is convenient to extend φ to the entire real line by setting φ(s) =∞ for s ∈]−∞, 0]. Evidently

with this convention for any u ∈W 1,2
ϕ (Ω,Rn) we have that

F[u,Ω] <∞ =⇒ det∇u > 0 Ln-a.e. in Ω.

However notice that the reverse implication, in general, need not be true.

[2] The system of Euler-Lagrange equations associated with F for any solution of class C2 can

alternatively be expressed as (see Definition 5.6.2)


[∇u]t∆u+ det∇u∇

[
φ′(det∇u)

]
= 0 in Ω,

det∇u > 0 in Ω,

u = ϕ on ∂Ω.

This being a consequence of the so-called Piola’s identity (see, e.g., Morrey [48] pp. 122) and the

pointwise invertibility of the gradient matrix.



Chapter 2

Continuous self-maps of annuli

The aim of this chapter is to describe the topology of the space of orientation preserving Sobolev

maps on n-dimensional annuli that are required for the development of the thesis. At the heart

of this investigation lies the profound problem of enumerating the path-connected components of

its associated space of self-map. The material in this chapter is taken from Shahrokhi-Dehkordi &

Taheri [60] and Taheri [68].

Assume to begin that Ω = {x ∈ Rn : a < |x| < b} with 0 < a < b < ∞ and that the boundary

data ϕ in (1.2) is taken ϕ = x, the identity map. Then it can be shown that the space of Sobolev

maps

Ap(Ω) :=

{
u ∈W 1,p(Ω,Rn) : det∇u > 0 a.e. in Ω, u|∂Ω = x

}
,

with p ≥ n embeds continuously and compactly into the space of self-maps of Ω, that is

A(Ω) :=

{
φ ∈ C(Ω̄, Ω̄) : φ(x) = x for x ∈ ∂Ω

}
. (2.1)

Here A := A(Ω) is equipped with the topology of uniform convergence. The reader is referred to

Morrey [48] for this last statement or Taheri [67], [70] and [73] for further details and proofs.

2.1 Degree of continuous self-maps on annuli

Definition 2.1.1. (Homotopy)

A pair of maps φ0, φ1 ∈ A are referred to as homotopic if and only if there exists a continuous map

h : [0, 1]× Ω̄→ Ω̄ such that

11
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[1] h(0, x) = φ0(x) for all x ∈ Ω̄,

[2] h(1, x) = φ1(x) for all x ∈ Ω̄,

[3] h(t, x) = x for all t ∈ [0, 1] and x ∈ ∂Ω.

The collection of all maps homotopic to φ ∈ A is referred to as the homotopy class of φ and

denoted by [φ]. In order to give a characterisation of the homotopy classes {[φ] : φ ∈ A}, below, we

consider the cases n = 2 and n ≥ 3 separately.

The case (n = 2). Fix φ ∈ A. Then, using polar coordinates, for θ ∈ [0, 2π] (fixed) the S1-valued

curve

γθ(r) =
φ

|φ|
(r, θ) : [a, b]→ S1,

has a well-defined index or winding number about the origin. Furthermore, in view of continuity

of φ, this is independent of the particular choice of θ ∈ [0, 2π]. The latter correspondence will be

denoted by

φ 7→ deg(
φ

|φ|
).

Note that this integer also agrees with the Brouwer degree of the map resulting from identifying

S1 ∼= [a, b]/{a, b}, justified as a result of γθ(a) = γθ(b). On the other hand for a differentiable curve

(taking advantage of S1 ⊂ C) we specifically have the formula

deg(
φ

|φ|
) =

1

2πi

∫
γ

dz

z
.

Theorem 2.1.2. Let n = 2. Then, the map

deg(·) :

{
[φ] : φ ∈ A

}
→ Z,

is a bijection. Moreover, for a pair of maps φ0, φ1 ∈ A, we have that

[φ0] = [φ1] ⇐⇒ deg(
φ0

|φ0|
) = deg(

φ1

|φ1|
).

The case (n ≥ 3). Fix φ ∈ A. Then, using the identification Ω̄ ∼= [a, b]× Sm, with m = n− 1, it is

plain that the map

ω[r](·) =
φ

|φ|
(r, ·) : [a, b]→ Cϕ(Sm,Sm),

uniquely defines an element of the group π1[Cϕ(Sm,Sm)]. Where ϕ denoted as identity map of

the m-sphere and Cϕ(Sm,Sm) is the path-connected component of C(Sm,Sm) containing ϕ. By

considering the action of SO(n) on Sm (viewed as its group of orientation preserving isometries, i.e.,
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through

Φ[·] : SO(n) 7→ C(Sm,Sm),

where Φ[ξ](x) = ξx for x ∈ Sm) it can be shown that the latter induces an isomorphism between

π1[SO(n)] ∼= Z2 and π1[Cϕ(Sm,Sm)]. Thus, we are naturally lead to the correspondence

φ 7→ deg2(
φ

|φ|
) ∈ Z2.

Theorem 2.1.3. Let n = 3. Then, the map

deg2(·) :

{
[φ] : φ ∈ A

}
→ Z2,

is a bijection. Moreover, for a pair of maps φ0, φ1 ∈ A, we have that

[φ0] = [φ1] ⇐⇒ deg2(
φ0

|φ0|
) = deg2(

φ1

|φ1|
).

Remark 2.1.4. In the case of a punctured ball, say, Ω = B\{0} for any pair of maps φ0, φ1 ∈ A :=

{φ ∈ C(Ω̄, Ω̄) : φ = ϕ on ∂Ω = {0} ∪ ∂B} the continuous path [0, 1] 3 t 7→ φt := (1− t)φ0 + tφ1 lies

within A and joins φ0 to φ1. Therefore, here, A consists of a single component only!

2.2 Homotopy characterisation and strong local minimizers

Let Ω as before be an n-dimensional annulus and Ap(Ω) the space defined in (1.2). When p ∈ [n,∞[

by taking advantage of the embedding Ap(Ω) ⊂ A(Ω) it follows that every u ∈ Ap := Ap(Ω) has a

representative (again, denoted u) in A. Hence, we can set,

[1] (n = 2) for each m ∈ Z,

cm[Ap] :=

{
u ∈ Ap : deg(

u

|u|
) = m

}
. (2.2)

As a result the latter are pairwise disjoint and that

Ap =
⋃
m∈Z

cm[Ap].

[2] (n ≥ 3) for each α ∈ Z2 = {0, 1},

cα[Ap] :=

{
u ∈ Ap : deg2(

u

|u|
) = α

}
. (2.3)
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As a result, again, the latter are pairwise disjoint and that

Ap =
⋃
α∈Z2

cα[Ap].

Definition 2.2.1. (Strong local minimizer)

A map ū ∈ Ap(Ω) is a strong local minimizer of the functional F, given by (1.1), if and only if there

exists δ = δ(ū) > 0 such that F[ū,Ω] ≤ F[u,Ω] for all u ∈ Ap(Ω) satisfying ‖ū− u‖L1 < δ.

Over the next two propositions, we will show that the homotopy classes of c?[Ap] are sequentially

weakly closed, hence by minimizing F on each homotopy class we arrive at a strong local minimizer.

Note that when p ∈ [1, n[ this argument encounters two serious obstacles, firstly, there is no em-

bedding of Ap(Ω) into A(Ω), and secondly, the determinant function fails to be sequentially weakly

continuous.

Proposition 2.2.2. Let Ω = {x ∈ Rn : a < |x| < b} be a generalised annulus and F an integrand

satisfying [H2]. Fix p ∈ [n,∞[, and consider the classes c?[Ap] as defined either by (2.2) or (2.3).

Then,

[1] c?[Ap] is W 1,p-sequentially weakly closed,

[2] for u ∈ c?[Ap] and s > 0 there exists δ = δ(u, s) > 0 such that


v ∈ Ap,

‖v − u‖L1 < δ,

F[v,Ω] < s,

 =⇒ v ∈ c?[Ap].

Proof. [1] Let (uj)j∈N ⊂ c?[Ap] and uj ⇀ u in W 1,p(Ω,Rn). Then, as a result of p ≥ n, by passing

to a subsequence (not re-labaled) we have

det∇uj
∗
⇀ det∇u,

inM(Ω) and so u ∈ Ap. Moreover, in view of uj → u uniformly on Ω̄, an application of Theorem

2.1.2 or Theorem 2.1.3 gives u ∈ c?[Ap]. This justifies [1].

[2] Assume the contrary. Then, there exists u ∈ c?[Ap], s > 0 and (vj)j∈N such that


vj ∈ Ap,

‖vj − u‖L1 → 0,

F[vj ,Ω] < s,
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while vj /∈ c?[Ap]. However the above imply that by passing to a subsequence (not re-labeled)

vj ⇀ u in W 1,p(Ω,Rn) and as in [1], vj → u uniformly on Ω̄. Hence, again either by Theorem 2.1.2

or Theorem 2.1.3,

deg?(
vj
|vj |

)→ deg?(
u

|u|
).

As the above quantities are integers (and the one on the right being a constant) it follows that for

j large enough vj ∈ c?[Ap] which is a contradiction. This completes the proof. �

In view of the sequential weak lower semicontinuity of the energy functional F, an application of

the direct methods of the calculus of variations leads us to the following conclusion.

Proposition 2.2.3. Let Ω = {x ∈ Rn : a < |x| < b} be a generalised annulus and F an integrand

satisfying [H1], [H2] and [H3]. Fix p ∈ [n,∞[ and consider the classes c?[Ap] as defined either by

(2.2) or (2.3). Then, there exists

ū = ū(x; a, b, ?) ∈ c?[Ap],

such that

F[ū,Ω] = inf
c?[Ap]

F[·,Ω]. (2.4)

In addition, for each such ū there exists δ = δ(ū) > 0 such that

F[ū,Ω] ≤ F[v,Ω], (2.5)

for all v ∈ A satisfying ‖ū− v‖L1 < δ.

Proof. Let (vj)j∈N ⊂ c?[Ap] be an infimizing sequence, F[vj ,Ω] ↓ α := infc?[Ap] F[·,Ω]. Then as

α < ∞ it follows that by passing to a subsequence (not re-labeled) vj ⇀ ū in W 1,p(Ω,Rn) where

by [1] in Proposition 2.2.2, ū ∈ c?[Ap]. As a result we can write

α ≤ F[ū,Ω] ≤ lim inf
j↑∞

F[vj ,Ω] ≤ α,

and so ū is a minimizer as required.

To establish the final assertion, fix ? and ū as above and with s = 1 + F[ū,Ω] pick δ > 0 as [2]

in Proposition 2.2.2. Then, any v ∈ Ap satisfying ‖ū − v‖L1 < δ also satisfies (2.5). Otherwise

F[v,Ω] < F[ū,Ω] < s implying that v ∈ c?[Ap] and hence in view of ū being a minimizer, F[v,Ω] ≥

F[ū,Ω] which is a contradiction. �



Chapter 3

Measure-preserving maps and

generalised twists

In this chapter we introduce a class of maps referred to as generalised twists and examine them in

connection with the Euler-Lagrange equations associated with the p-Dirichlet energy

Fp[u,Ω] := p−1

∫
Ω

|∇u(x)|p dx, (3.1)

with p ∈]1,∞[, over the space of measure preserving maps (1.2). The main result is an interesting

discrepancy between even and odd dimensions. Here we show that in even dimensions the latter

system of equations admits infinitely many smooth solutions, modulo isometries, amongst such

maps. In odd dimensions this number reduces to one. The result relies on a careful analysis of

the full versus the restricted Euler-Lagrange equations where a key ingredient is a necessary and

sufficient condition for an associated vector field to be a gradient. The material in this chapter is

taken from Shahrokhi-Dehkordi & Taheri [59], [60] and partly [69] by Taheri.

3.1 Generalised twists

We begin this section by introducing a class of maps, referred to as generalised twists and then

proceed to study some properties of these maps.

Definition 3.1.1. (Generalised twists)

Let Ω = {x ∈ Rn : a < |x| < b}. A map u ∈ C(Ω̄, Ω̄) is referred to as a generalised twists if and

16
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only if it can be expressed as

u(x) = G(r)θ, (3.2)

with

G(r) = f(r)Q(r),

where r = |x|, θ = x/|x|, Q ∈ C([a, b],SO(n)) and f ∈ C[a, b].

When n = 2 and f ≡ r a generalised twist can be shown to take, in polar coordinates, the

alternative form

(r, θ) 7→ (r, θ + g(r)), (3.3)

for a suitable g ∈ C[a, b]. Maps of the type (3.3) frequently arise in the study of mapping class

groups of surfaces and are better known as Dehn-twists, e.g., see Dehn [23]. In higher dimensions,

by contrast, no such simple representation of (3.2) is feasible in generalised spherical coordinates,

however, the terminology here is suggested by analogy with (3.3) when n = 2. The continuous

function G in the above definition will be referred to as the twist path. When additionally G(a) =

G(b) we refer to G as the twists loop.

Notice that as a result of the basic requirement det∇u = 1 a.e. in Ω built into the definition of a

generalised twists it follows in particular we assume f ≡ r in [a, b], see equation (5.2) in Proposition

5.1.1. Therefore along this chapter we assume always f(r) = r on [a, b].

Proposition 3.1.2. Let Ω = {x ∈ Rn : a < |x| < b}. A generalised twist u lies in Ap = Ap(Ω)

with p ∈ [1,∞[ provided that the following hold.

[1] Q ∈W 1,p([a, b],SO(n)),

[2] Q(a) = Q(b) = In.

Thus, in particular, when a generalised twist u lies in Ap its corresponding twist path forms a

loop in the pointed space (SO(n), In).

Proof. Assume that u is a generalised twist. Then u ∈ Ap(Ω) if and only if the following hold.

(i) u = x on ∂Ω,

(ii) det∇u = 1 in Ω, and,

(iii) ‖u‖W 1,p(Ω) <∞.

Evidently [2] gives (i). Moreover, a straight-forward calculation gives

∇u = Q + rQ̇θ ⊗ θ
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= Q(In + QtQ̇θ ⊗ θ), (3.4)

where r = |x|, θ = x/|x| and Q̇ := dQ/dr. Hence in view of detQ = 1 we can write

det∇u = det(Q + rQ̇θ ⊗ θ)

= det(In + rQtQ̇θ ⊗ θ)

= 1 + 〈QtQ̇θ, θ〉

= 1 + 〈Q̇θ,Qθ〉 = 1,

where in the last identity we have used the fact that 〈Qθ,Qθ〉 = |θ|2 = 1 for all θ ∈ Sn−1 and so as

a result
d

dr
〈Qθ,Qθ〉 = 〈Qθ, Q̇θ〉+ 〈Q̇θ,Qθ〉 = 0.

This therefore gives (ii). Finally, to justify (iii) we first note that

|∇u|2 = tr

{
[∇u][∇u]t

}
= tr

{
(Q + rQ̇θ ⊗ θ)(Qt + rθ ⊗ Q̇θ)

}
= tr

{
In + rQθ ⊗ Q̇θ + rQ̇⊗Qθ + r2Q̇θ ⊗ Q̇θ

}
= n+ 2r〈Qθ, Q̇θ〉+ r2〈Q̇θ, Q̇θ〉.

Therefore as a result of 〈Qθ, Q̇θ〉 = 0 for any p ∈ [1,∞[ we have that

|∇u|p = (n+ r2|Q̇θ|2)
p
2 . (3.5)

Hence in view of |u| = r
√
〈Qθ,Qθ〉 = r we can write

∫
Ω

|u|p + |∇u|p =

∫ b

a

∫
Sn−1

{
rp + (n+ r2|Q̇θ|2)

p
2

}
rn−1 dHn−1(θ)dr,

and so referring to [1] the conclusion follows. �

Proposition 3.1.3. Suppose that u is a generalised twist with the associated twist path Q ∈

C2(]a, b[,SO(n)). Then for p ∈ [1,∞[ we have that

∆pu :=div(|∇u|p−2)∇u

=Q

[
∇s⊗ θ +

1

rn
d

dr

(
rn+1sA

)
+ rsA2

]
θ,
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where A = QtQ̇ and s = s(r, θ) := (n+ r2|Aθ|2)
p−2
2 .

Proof. [1] (p = 2) Referring to Definition 3.1.1 and using the notation u = (u1, u2, . . . , un) we can

write with the aid of (3.4) in Proposition 3.1.2 that

∆ui =

n∑
j=1

∂

∂xj

{
Qij + r

n∑
k=1

Q̇ikθkθj

}

=

n∑
j=1

{
Q̇ijθj + θj

n∑
k=1

Q̇ikθkθj + r

n∑
k=1

Q̈ikθjθkθj+

n∑
k=1

Q̇ik(δkj − θjθk)θj +

n∑
k=1

Q̇ikθk(1− θjθj)
}

=2

n∑
j=1

Q̇ijθj + r

n∑
j=1

Q̈ijθj + (n− 1)

n∑
j=1

Q̇ijθj

=(n+ 1)

n∑
j=1

Q̇ikθk + r
n∑
j=1

Q̈ijθj .

As this is true for 1 ≤ i ≤ n going back to the original vector notation and using the substitutions

Q̇ = QA and Q̈ = Q[Ȧ + A2] we have that,

∆u = [(n+ 1)Q̇ + rQ̈]θ

= Q[(n+ 1)A + rȦ + rA2]θ

= Q

[
1

rn
d

dr
(rn+1A) + rA2

]
θ,

which is the required result for p = 2. [Note that in this case s = s(r, θ) ≡ 1.]

[2] (p ∈ [1,∞[) According to definition we have that

∆pu = div(|∇u|p−2∇u)

= div(s∇u) = ∇u∇s + s∆u.

Now a straight-forward differentiation gives

∇s = ∇(n+ r2|Q̇θ|2)
p−2
2

= ∇(n+ r2|Aθ|2)
p−2
2

= β

[
rAtA + r2〈Aθ, Ȧθ〉In

]
θ, (3.6)
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where β = β(r, θ, p) := (p− 2)(n+ r2|Aθ|2)
p−4
2 . Thus we can write

∆pu =∇u∇s + s∆u

=Q

[
In + rAθ ⊗ θ

]
∇s + sQ

[
(n+ 1)A + rȦ + rA2

]
θ

=Q∇s + rβQ

[
Aθ ⊗ θ

][
rAtA + r2〈Aθ, Ȧθ〉In

]
θ+

sQ

[
(n+ 1)A + rȦ + rA2

]
θ.

In order to further simplify the second term on the right in the last identity we first notice that

sr :=
∂s

∂r
=

∂

∂r
(n+ r2|Aθ|2)

p−2
2

= β

[
r|Aθ|2 + r2〈Aθ, Ȧθ〉

]
,

and consequently

rsrQAθ = rβQ

[
r|Aθ|2 + r2〈Aθ, Ȧθ〉

]
Aθ

= rβQ

[
Aθ ⊗ θ

]
×
[
rAtA + r2〈Aθ, Ȧθ〉In

]
θ.

Therefore substituting back gives

∆pu =Q

[
∇s⊗ θ + rsrA + (n+ 1)sA + rsȦ + rsA2

]
θ

=Q

[
∇s⊗ θ +

1

rn
d

dr
(rn+1sA) + rsA2

]
θ,

which is the required conclusion. �

Proposition 3.1.4. Suppose that u is a generalised twist with the associated twist path Q ∈

C2(]a, b[,SO(n)). Then for p ∈ [1,∞[ we have that

[∇u]t∆pu = ∇s +

{
rsA2 − r2s〈Aθ, Ȧθ〉In+

1

rn
d

dr
(rn+1sA) +

1

rn−1

d

dr
(rn+1s|Aθ|2)In

}
θ, (3.7)

where A = QtQ̇ and s = s(r, θ) = (n+ r2|Aθ|)
p−2
2 .
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Proof. In view of (3.4) we have that

[∇u]t = [Q + rQ̇θ ⊗ θ]t = [Qt + rθ ⊗ Q̇θ] = [In + rθ ⊗Aθ]Qt.

Therefore by substituting for [∇u]t and ∆pu (from the previous proposition) we arrive at

[∇u]t∆pu =

[
In + rθ ⊗Aθ

]
×
[
∇s⊗ θ +

1

rn
d

dr
(rn+1sA) + rsA2

]
θ

=

[
∇s⊗ θ +

1

rn
d

dr
(rn+1sA) + rsA2

]
θ+[

r〈∇s,Aθ〉+
1

rn−1
〈 d
dr

(rn+1sA),Aθ〉+ r2s〈A2θ,Aθ〉
]
θ.

However, in view of A being skew-symmetric it can be easily verified that 〈A2θ,Aθ〉 = 0 and in a

similar way referring to (3.6)

〈∇s,Aθ〉 = 〈β
[
rAtA + r2〈Aθ, Ȧθ〉In

]
θ,Aθ〉

= βr

{
〈A3θ, θ〉+ r〈Aθ, Ȧθ〉〈Aθ, θ〉

}
= 0.

Thus summarising, we have that

[∇u]t∆pu = ∇s +

{
rsA2 +

1

rn
d

dr
(rn+1sA)+

1

rn−1
〈 d
dr

(rn+1sA),Aθ〉In
}
θ

= ∇s +

{
rsA2 − r2s〈Aθ, Ȧθ〉In +

1

rn
d

dr
(rn+1sA)+

1

rn−1

d

dr
(rn+1s|Aθ|2)In

}
θ.

The proof is thus complete. �

3.2 The p-energy restricted to the loop space

For a generalised twist u referring to (3.5) we have for any p ∈ [1,∞[ that

∫
Ω

|∇u|p =

∫ b

a

∫
Sn−1

(n+ r2|Q̇θ|2)
p
2 rn−1 dHn−1(θ)dr.
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Motivated by the above representation in this section we introduce the energy functional

Ep[Q] :=

∫ b

a

E(r, Q̇)rn−1 dr

where the integrand itself is given through the integral

E(r, ξ) =

∫
Sn−1

(n+ r2|ξθ|2)
p
2 dHn−1(θ).

Associated with the energy functional Ep and in line with Proposition 3.1.2 we introduce the space

of admissible loops

Ep :=

Q = Q(r) :
Q ∈W 1,p([a, b],SO(n)),

Q(a) = Q(b) = In.


Our primary objective here is to obtain the Euler-Lagrange equation associated with the energy

functional Ep over the space of loops Ep. In doing so the following observation will prove useful.

Proposition 3.2.1. Let Q ∈ SO(n) and R ∈Mn×n. Then the following are equivalent:

[1] RQt + QRt = 0,

[2] R = (F− Ft)Q for some F ∈Mn×n.

Moreover, F in [2] is unique if it is assumed skew-symmetric, i.e., Ft = −F.

Proof. The implication [2] =⇒ [1] follows from a direct verification. For the reverse implication it

suffices to assume Ft + F = 0 and then take 2F = RQt. �

Proposition 3.2.2. Let p ∈ [1,∞[. Then the Euler-Lagrange equation associated with Ep over Ep

takes the form
d

dr

{
rn−1

[
Eξ(r, Q̇)Qt −QEtξ(r, Q̇)

]}
= 0. (3.8)

Proof. Fix Q ∈ W 1,p([a, b],SO(n)) and pick a variation H ∈ C∞0 ([a, b],Mn×n). For ε ∈ R put

Qε = Q + εH. Then,

QεQ
t
ε = [Q + εH][Q + εH]t

= In + ε[HQt + QHt] + ε2HHt.

Hence for Qε to take values on SO(n) to the first order it suffices to have

HQt + QHt = 0,
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on [a, b]. In view of Proposition 3.2.1 this is equivalent to assuming that for some F ∈ C∞0 ([a, b],Mn×n)

the variation H has the form

H = (F− Ft)Q.

With this assumption in place we examine the vanishing of the first derivative of the energy, i.e.,

that indeed

0 =
d

dε
Ep[Qε]

∣∣∣∣
ε=0

=
d

dε

∫ b

a

E(r, Q̇ε)r
n−1 dr

∣∣∣∣
ε=0

=

∫ b

a

{
∂E

∂ξ
(r, Q̇ε) :

d

dε
Q̇ε

}
rn−1 dr

∣∣∣∣
ε=0

=

∫ b

a

{
∂E

∂ξ
(r, Q̇) :

[
(Ḟ− Ḟt)Q + (F− Ft)Q̇

]}
rn−1 dr

=: I + II.

We now proceed by evaluating each term separately. Indeed, with regards to the first term we have

that

I =

∫ b

a

{
∂E

∂ξ
(r, Q̇) : (Ḟ− Ḟt)Q

}
rn−1 dr

=

∫ b

a

{
∂E

∂ξ
(r, Q̇)Qt : (Ḟ− Ḟt)

}
rn−1 dr

=

∫ b

a

{
− d

dr

[
rn−1 ∂E

∂ξ
(r, Q̇)Qt

]
: (F− Ft)

}
dr.

Note that in the third line we have used integration by parts which together with the boundary

conditions F(a) = F(b) = 0 gives

0 =rn−1 ∂E

∂ξ
(r, Q̇)Qt : (F− Ft)

∣∣∣∣b
a

=

∫ b

a

rn−1 ∂E

∂ξ
(r, Q̇)Qt : (Ḟ− Ḟt) dr+∫ b

a

d

dr

[
rn−1 ∂E

∂ξ
(r, Q̇)Qt

]
: (F− Ft) dr.

On the other hand for the second term a direct verification reveals that

II =

∫ b

a

{
∂E

∂ξ
(r, Q̇) : (F− Ft)Q̇

}
rn−1 dr

=

∫ b

a

∫
Sn−1

p(n+ r2|Q̇θ|)
p−2
2 〈Q̇θ, (F− Ft)Q̇θ〉 rn+1 dr = 0,
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as a result of the pointwise identity 〈Q̇θ, (F− Ft)Q̇θ〉 = 0. Thus, summarising, we have that

d

dε
Ep[Qε]

∣∣∣∣
ε=0

=

∫ b

a

{
− d

dr

[
rn−1 ∂E

∂ξ
(r, Q̇)Qt

]
: (F− Ft)

}
dr = 0.

As this is true for every F ∈ C∞0 ([a, b],Mn×n) it follows that the skew-symmetric part of the tensor

field in the brackets in the equation above is zero. This gives the required conclusion. �

Proposition 3.2.3. The Euler-Lagrange equation associated with Ep over Ep can be alternatively

expressed as ∫ b

a

∫
Sn−1

〈{ d

dr
(rn+1sA)

}
θ, (F− Ft)θ

〉
dHn−1(θ)dr = 0,

for all F ∈ C∞0 (]a, b[,Mn×n) where A = QtQ̇ and s = (n+ r2|Aθ|)
p−2
2 .

Proof. Referring to the proof of Proposition 3.2.2 and making the substitutions described above for

A and s we can write

0 =
d

dε
Ep[Qε]

∣∣∣∣
ε=0

=: I

=

∫ b

a

{
∂E

∂ξ
(r, Q̇) : (Ḟ− Ḟt)Q

}
rn−1 dr

=

∫ b

a

∫
Sn−1

p〈rn+1sAθ, (Ḟ− Ḟt)θ〉 dHn−1(θ)dr

=

∫ b

a

∫
Sn−1

−p
〈{ d

dr
(rn+1sA)

}
θ, (F− Ft)θ

〉
dHn−1(θ)dr,

which is the required conclusion. �

Any twist loop forming a solution to the Euler-Lagrange equation associated with Ep over Ep (as

described in the above proposition) will be referred to as a p-stationary loop.

Remark 3.2.4. In view of Proposition 3.2.3 a sufficient condition for an admissible loop Q ∈ Ep

to be p-stationary is the stronger condition

d

dr
(rn+1sA) = 0. (3.9)

Interestingly for p = 2 the latter is equivalent to the Euler-Lagrange equation described in Propo-

sition 3.2.3 (see [60]). However, in general, i.e., for p 6= 2, this need not be the case as in the

original Euler-Lagrange equation the function s depends on both r and θ. In fact, if, s were to be

independent of θ then the Euler-Lagrange equation described in Proposition 3.2.3 could be easily

shown to be equivalent to (3.9).
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3.3 Minimizing p-stationary loops

Consider as in the previous section for p ∈ [1,∞[ the energy functional

Ep[Q] =

∫ b

a

E(r, Q̇)rn−1 dr,

with the integrand

E(r, ξ) =

∫
Sn−1

(n+ r2|ξθ|2)
p
2 dHn−1(θ),

over the space of admissible loops

Ep :=

Q = Q(r) :
Q ∈W 1,p([a, b],SO(n)),

Q(a) = Q(b) = In.


According to an elementary version of Sobolev embedding theorem any Q ∈ Ep has a continuous

representative (again denoted Q). Thus each such Q represents an element of the fundamental

group π1[SO(n)] which is denoted by ]Q[. As is well-known (see, e.g., Bredon [16])

π1[SO(n)] ∼=

 Z when n = 2,

Z2 when n ≥ 3,

and so these facts combined enables one to introduce the following partitioning of the loop space Ep.

[1] (n = 2) for each m ∈ Z put

cm[Ep] :=

{
Q ∈ Ep : ]Q[= m

}
.

As a result the latter are pairwise disjoint and that

Ep =
⋃
m∈Z

cm[Ep].

[2] (n ≥ 3) for each α ∈ Z2 = {0, 1} put

cα[Ep] :=

{
Q ∈ Ep : ]Q[= α

}
.

As a result, again, the latter are pairwise disjoint and that

Ep =
⋃
α∈Z2

cα[Ep].
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When p > 1 an application of the direct methods of the calculus of variations to the energy func-

tional Ep together with the observation that the homotopy classes c?[Ep] ⊂ Ep are sequentially weakly

closed gives the existence of [multiple] minimizing p-stationary loops. Note that the sequential weak

closedness of the homotopy classes c?[Ep] is a result of SO(n) having a tubular neighbourhood that

projects back onto itself and this in turn follows from SO(n) being a smooth compact manifold.

The only missing ingredient in this regard is the following statement implying the coercivity of Ep

over Ep.

Proposition 3.3.1. Let p ∈ [1,∞[. Then there exists c = c(n, p) > 0 such that

∫
Sn−1

|Fθ|p dHn−1(θ) ≥ c|F|p,

for every F ∈Mn×n.

Proof. Fix F ∈Mn×n. Then the non-negative symmetric matrix FtF is orthogonally diagonalisable,

that is, FtF = PtDP where D = diag(λ1[FtF], . . . , λn[FtF]) and P ∈ O(n). As a result for

θ ∈ Sn−1 we can write

|Fθ| = |〈Fθ,Fθ〉| 12 = |〈FtFθ, θ〉| 12 = |〈PtDPθ, θ〉| 12 = |〈DPθ,Pθ〉| 12 .

Setting w := Pθ and noting that O(n) acts as the group of isometries on Sn−1, an application of

Jensen’s inequality followed by Hölder’s inequality on finite sequences (see, e.g., [53] or [25]) gives

{
−
∫
Sn−1

|Fθ|p dHn−1(θ)

} 1
p

≥ −
∫
Sn−1

|Fθ| dHn−1(θ)

≥ −
∫
Sn−1

{ n∑
j=1

λj [F
tF]w2

j (θ)

} 1
2

dHn−1(θ)

≥ 1√
n

n∑
j=1

λ
1
2
j [FtF]−

∫
Sn−1

|wj(θ)| dHn−1(θ)

≥ αn√
n

{ n∑
j=1

λj [F
tF]

} 1
2

=
αn√
n
|F|.

Hence the conclusion follows with the choice of

c = αpnn
1− p2ωn = min

1≤j≤n
θj 6=0

{
−
∫
Sn−1

|θj | dHn−1(θ)

}p
n1− p2ωn > 0.

�
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Proposition 3.3.2. Let p ∈ [1,∞[. Then there exists d = d(n, p,Ω) > 0 such that

Ep[Q] ≥ d‖Q‖pW 1,p ,

for all Q ∈ Ep.

Proof. In view of Proposition 3.3.1 it is enough to note that for Q ∈ Ep we can write

Ep[Q] =

∫ b

a

∫
Sn−1

(n+ r2|Q̇θ|2)
p
2 rn−1 dHn−1(θ)dr

≥
∫ b

a

∫
Sn−1

rp+n−1|Q̇θ|p dHn−1(θ)dr

≥ c
∫ b

a

rp+n−1|Q̇|p dr,

and so the conclusion follows by an application of Poincaré inequality. �

Theorem 3.3.3. Let p ∈]1,∞[. Then the following hold.

[1] (n = 2) for each m ∈ Z there exists Qm ∈ cm[Ep] such that

Ep[Qm] = inf
cm[Ep]

Ep,

[2] (n ≥ 3) for each α ∈ Z2 there exists Qα ∈ cα[Ep] such that

Ep[Qα] = inf
cα[Ep]

Ep.

In either case the resulting minimizers satisfy the corresponding Euler-Lagrange equations (3.8).

We return to the question of existence of multiple p-stationary loops having specific relevance

to the original energy functional Fp over the space Ap towards the end of the paper. Before this,

however, we pause to discuss in detail the implications that the original Euler-Lagrange equations

[see Definition 3.4.1 below] will exert upon the twist loop associated with a generalised twist.

3.4 Generalised twists as classical solutions

The aim of this section is to give a complete characterisation of all those p-stationary loops Q ∈ Ep

whose resulting generalised twist

u = Q(r)x,
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furnishes a solution to the Euler-Lagrange equations associated with the energy functional Fp over

the space Ap. To this end we begin by clarifying the notion of a [classical] solution.

Definition 3.4.1. (Classical solution)

A pair (u, p) is said to be a classical solution to the Euler-Lagrange equations associated with the

energy functional (3.1) and subject to the constraint (1.2) if and only if

[1] u ∈ C2(Ω,Rn) ∩C(Ω̄,Rn),

[2] p ∈ C1(Ω) ∩C(Ω̄), and

[3] (u, p) satisfy the system of equations 1


[cof ∇u(x)]−1∆pu(x) = ∇p(x) x ∈ Ω,

det∇u(x) = 1 x ∈ Ω,

u(x) = x x ∈ ∂Ω.

In view of Proposition 3.1.4 the task outlined at the start of this section amounts to verifying that

under what additional conditions would the vector field described by the expression on the right in

(3.7) be a gradient. The answer to this question is given by the following two theorems.

Theorem 3.4.2. Let Ω = {x ∈ Rn : a < |x| < b} and consider the vector field v ∈ C1(Ω,Rn)

defined in spherical coordinates through

v =

{
rsA2 − r2s〈Aθ, Ȧθ〉In +

1

rn
d

dr
(rn+1sA) +

1

rn−1

d

dr
(rn+1s|Aθ|2)In

}
θ,

where r ∈]a, b[, θ ∈ Sn−1, A = A(r) ∈ C1(]a, b[,Mn×n) is skew-symmetric and

s = s(r, θ)

=: (n+ r2|Aθ|2)
p−2
2 , (3.10)

with p ∈ [1,∞[. Then the following are equivalent.

[1] v is a gradient,

[2] A2 = −σIn for some σ ∈ C1]a, b[ with σ ≥ 0 and

d

dr
(rn+1sA) = 0. (3.11)

1Note that ∆pu := div(|∇u|p−2∇u).
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Proof. [2] =⇒ [1]

Assuming A to be skew-symmetric and A2 = −σIn it follows that

s = (n+ r2|Aθ|2)
p−2
2

= (n− r2〈A2θ, θ〉)
p−2
2

= (n+ σr2)
p−2
2 ,

and so in particular s = s(r). Now referring to (3.11) we can write

0 =
1

rn
〈 d
dr

(rn+1sA)θ,Aθ〉

= (n+ 1)s|Aθ|2 + rsr|Aθ|2 + rs〈Aθ, Ȧθ〉

=
1

rn
d

dr
(rn+1s|Aθ|2)− rs〈Aθ, Ȧθ〉. (3.12)

As a result the vector field v can be simplified and hence re-written in the form

v =rsA2θ = −(n+ σr2)
p−2
2 σθ.

Denoting now by F a suitable primitive of f(r) := −(n+ σr2)
p−2
2 σ it is evident that

v = ∇F,

and so v is a gradient. This gives [1].

[1] =⇒ [2]

For the sake of clarity and convenience we break this part into two steps. In the first step we

establish (3.11) and in the second one the particular diagonal form of A2. Thus it is important to

note that in the first two steps the function s depends on both r and θ!

Step 1. [Justification of (3.11)] We begin by extracting a gradient out of v and hence rewriting it

in the form

v = ∇t +

{
1

rn
d

dr
(rn+1sA) +

1

rn−1

d

dr
(rn+1s|Aθ|2)In

}
θ,

where t = −p−1(n+ r2|Aθ|2)
p
2 .
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To the vector field v = (v1, . . . , vn) we now assign the differential 1-form ω = v1dx1 + · · ·+vndxn.

Then in view of v being a gradient, for any closed path γ ∈ C1([0, 2π],Sn−1) it must be that

0 =

∫
rγ

ω

=

∫ 2π

0

〈v(rγ(t)), rγ′(t)〉 dt

=
1

rn

∫ 2π

0

〈 d
dr

[
rn+1s(r, γ(t))A

]
γ(t), rγ′(t)〉 dt+

1

rn−1

∫ 2π

0

〈 d
dr

[
rn+1s(r, γ(t))|Aγ(t)|2

]
γ(t), rγ′(t)〉 dt

=
1

rn

∫ 2π

0

〈 d
dr

[
rn+1s(r, γ(t))A

]
γ(t), rγ′(t)〉 dt, (3.13)

where in concluding the last line we have used the pointwise identity 〈γ, γ′〉 = 0 which holds as a

result of γ taking values on Sn−1 and consequently implying that

0 =

∫ 2π

0

〈 d
dr

[
rn+1s(r, γ(t))|Aγ(t)|2

]
γ(t), rγ′(t)〉 dt

=

∫ 2π

0

d

dr

[
rn+1s(r, γ(t))|Aγ(t)|2

]
r〈γ(t), γ′(t)〉 dt.

Anticipating on (3.11) we first note that in view of A being skew-symmetric it can be orthogonally

diagonalised, i.e., 2

A = PDPt, (3.14)

where P = P(r) ∈ SO(n) and D = D(r) ∈Mn×n is in special block diagonal form, i.e.,

[1] (n = 2k)

D = diag(d1J2, d2J2, . . . , dkJ2),

[2] (n = 2k + 1)

D = diag(d1J2, d2J2, . . . , dkJ2, 0),

with {±d1i,±d2i, . . . ,±dki} or {±d1i,±d2i, . . . ,±dki, 0} denoting the eigen-values of the skew-

symmetric matrix A [as well as D] respectively. We emphasize that nowhere in this proof have

we assumed continuity or differentiability of P = P(r) or D = D(r) with respect to r. These in

general need not even be true! [see, e.g., [43], Chapter five.]
2At this stage the reader is encouraged to consult the Appendix at the end of the thesis where some notation as

well as basic properties related to the matrix exponential as a mapping between the space of skew-symmetric matrices
and the special orthogonal group is discussed.
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With the aid of (3.14) and for the sake of convenience we now introduce the skew-symmetric

matrix

F = F(r, θ) := Pt
d

dr
(rn+1sA)P. (3.15)

Then a straight-forward differentiation shows that

F = Pt
d

dr
(rn+1sA)P

= Pt
{
rn[(n+ 1)s + rsr]A + rn+1sȦ

}
P

= Pt
{
rn[(n+ 1)s + rsr]PDPt + rn+1sȦ

}
P

= rn[(n+ 1)s + rsr]D + rn+1sPtȦP. (3.16)

Evidently establishing (3.11) is equivalent to showing that

F(r, θ) = 0, (3.17)

for all r ∈]a, b[ and all θ ∈ Sn−1.

On the other hand for each fixed r ∈]a, b[ setting ω := Ptγ [also a closed path in C1([0, 2π],Sn−1)]

in (3.13) we have that expressed as

0 =

∫ 2π

0

〈 d
dr

(rn+1sA)γ, γ′〉 dt

=

∫ 2π

0

〈 d
dr

(rn+1sA)Pω,Pω′〉 dt

=

∫ 2π

0

〈Pt d
dr

(rn+1sA)Pω, ω′〉 dt

=

∫ 2π

0

〈Fω, ω′〉 dt,

where in the above s = s(r,Pω) and F = F(r,Pω). Thus the necessary condition (3.13) can be

equivalently expressed as ∫ 2π

0

〈F(r,Pω)ω, ω′〉 dt = 0, (3.18)

for every closed path ω ∈ C1([0, 2π],Sn−1).

With this introduction the conclusion in step 1 now amounts to proving the implication (3.18) =⇒

(3.17). This will be established below in a componentwise fashion. Note that in view of the skew-

symmetry of F it suffices to justify the latter in the form Fpq(r, θ) = 0 only when 1 ≤ p < q ≤ n.
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Indeed consider a parameterised family of closed paths ρ ∈ C∞([0, 2π],Sn−1) given by

ρ : [0, 2π] 3 t 7→ ρ(t) ∈ Sn−1 ⊂ Rn, (3.19)

with 

ρ1 = sin t sinφ2 sinφ3 . . . sinφn−1,

ρ2 = cos t sinφ2 sinφ3 . . . sinφn−1,

ρ3 = cosφ2 sinφ3 . . . sinφn−1,

...

ρn−1 = cosφn−2 sinφn−1,

ρn = cosφn−1,

where φj ∈ [0, π] for all 2 ≤ j ≤ n− 1. For fixed 1 ≤ p < q ≤ n we introduce the matrix Γpq as that

obtained by simultaneously interchanging the first and p-th and the second and q-th rows of In, i.e.,

Γpqej =



ep if j = 1,

e1 if j = p,

eq if j = 2,

e2 if j = q,

ej otherwise,

where {e1, e2, . . . , en} denotes the standard basis of Rn. In view of Γpq ∈ O(n) setting ω = Γpqρ it

is clear that ω is a closed path in C∞([0, 2π],Sn−1).

Claim 1. For any skew-symmetric matrix F ∈Mn×n and ω = Γpqρ as above we have that

∫ 2π

0

〈Fω(t), ω′(t)〉 dt = 2π(ρ2
1 + ρ2

2)Fpq.

The proof of this claim follows by direct verification noting that here

ω′(t) = Γpqρ′(t) = Γpq(ρ2,−ρ1, 0, . . . , 0).

We now proceed by substituting ω as described above into (3.18) and then considering the fol-

lowing two distinct cases.

[1] (p = 2j − 1, q = 2j for some 1 ≤ j ≤ k = bn/2c) In this case by utilising the special block
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diagonal form of D a straight-forward calculation shows that

s = s(r,Pω(t))

= (n− r2〈D2ω(t), ω(t)〉)
p−2
2

= (n− r2〈D2Γpqρ(t),Γpqρ(t)〉)
p−2
2

= (n+ r2[d2
1ρ

2
p + d2

1ρ
2
q + · · ·+ d2

j (ρ
2
1 + ρ2

2) + · · · ])
p−2
2 ,

is indeed independent of the t variable [as ρ2
1 + ρ2

2 does not depend on t]. Hence the same is true of

F(r,Pω) and so referring to (3.18) and utilising claim 1 we can write

0 =

∫ 2π

0

〈F(r,Pω)ω, ω′〉 dt

=

∫ 2π

0

〈F(r,PΓpqρ(t))Γpqρ(t),Γpqρ′(t)〉 dt

= 2π(ρ2
1 + ρ2

2)Fpq(r,Pω),

which in turn for ρ2
1 + ρ2

2 6= 0 gives 3

Fpq(r,Pω) = 0. (3.20)

Now to get (3.17) for the latter choice of p, q pick θ ∈ Sn−1 and set α = [Γpq]tPtθ. Then α ∈ Sn−1

and thus can be written in generalised spherical coordinates as



α1 = sinφ1 sinφ2 sinφ3 . . . sinφn−1,

α2 = cosφ1 sinφ2 sinφ3 . . . sinφn−1,

α3 = cosφ2 sinφ3 . . . sinφn−1,

...

αn−1 = cosφn−2 sinφn−1,

αn = cosφn−1,

where φ1 ∈ [0, 2π] and φj ∈ [0, π] for all 2 ≤ j ≤ n− 1. Considering now the closed path ρ in (3.19)

for the latter choice of parameters φ2, φ3, . . . , φn−1 a straight-forward calculation gives

s(r, θ) = (n+ r2|Aθ|2)
p−2
2

= (n+ r2|DΓpqα|2)
p−2
2

= (n+ r2|DΓpqρ|2)
p−2
2

3Note that (ρ21 + ρ22) =
∏

2≤j≤n−1 sin2 φj and so ρ21 + ρ22 = 0 ⇐⇒
∑

3≤j≤n ρ
2
j = 1 ⇐⇒ φj ∈ {0, π} for some

2 ≤ j ≤ n− 1. This set is a copy of Sn−3 lying in Sn−1.
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= (n+ r2|APω|2)
p−2
2

= s(r,Pω),

and so referring to (3.20) for ρ2
1 + ρ2

2 6= 0 we obtain

Fpq(r, θ) = Fpq(r,Pω) = 0,

as required.

[2] (p, q not as in [1]) Unlike the case with [1] here s depends explicitly on the t variable [yet in

a specific manner (see below)] whilst Dpq = 0 as can be verified by inspecting its block diagonal

representation.

Now referring, again, to (3.18) and noting that the p-th and q-th components of ω′ are given by

ω′p = ρ′1 = ρ2 and ω′q = ρ′2 = −ρ1 [with all the remaining derivatives vanishing] we can write using

F = F(r,Pω)

0 =

∫ 2π

0

〈Fω, ω′〉 dt

=

∫ 2π

0

{ n∑
j=1

Fpjωjω
′
p +

n∑
j=1

Fqjωjω
′
q

}
dt

=

∫ 2π

0

{
(Fpqρ

2
2 − Fqpρ

2
1) + ρ2

n∑
j=1
j 6=q

Fpjωj − ρ1

n∑
j=1
j 6=p

Fqjωj

}
dt

=I + II− III. (3.21)

In order to evaluate the above terms we first observe that here s takes the form

s = s(r,Pω(t))

= (n− r2〈D2ω(t), ω(t)〉)
p−2
2

= (n− r2〈D2Γpqρ(t),Γpqρ(t)〉)
p−2
2

= (n+ r2[d2
1ρ

2
p + d2

2ρ
2
q + · · ·+ d2

ξρ
2
1 + · · ·+ d2

ζρ
2
2 + · · · ])

p−2
2

=: s(sin2 t, cos2 t). (3.22)

Returning to (3.21) we have that

II =

∫ 2π

0

ρ2

n∑
j=1
j 6=q

Fpjωj dt
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=

∫ 2π

0

ρ2

n∑
j=1
j 6=q

[
Pt

d

dr
(rn+1sA)P

]
pj
ωj dt

=

n∑
j=1
j 6=q

[
Pt

d

dr

(
rn+1

{∫ 2π

0

ρ2s dt

}
A
)
P
]
pj
ωj ,

and in a similar way

III =

∫ 2π

0

ρ1

n∑
j=1
j 6=p

Fqjωj dt

=

∫ 2π

0

ρ1

n∑
j=1
j 6=p

[
Pt

d

dr
(rn+1sA)P

]
qj
ωj dt

=

n∑
j=1
j 6=p

[
Pt

d

dr

(
rn+1

{∫ 2π

0

ρ1s dt

}
A
)
P
]
qj
ωj ,

where in concluding the last line in both equalities we have used the fact that the only components

of ω depending explicitly on the t variable are ωp = ρ1 and ωq = ρ2 where in each case one is

excluded from the summation sign and the other has a zero coefficient in view of the skew-symmetry

of the matrix preceding it.

However in view of the specific manner in which s depends on t [see (3.22)] it follows that both

integrals vanish and so as a result II = III = 0. 4 Hence returning to (3.21) and utilising the

skew-symmetry on F and (3.16) we can write

I =

∫ 2π

0

(Fpqρ
2
2 − Fqpρ

2
1) dt

=

∫ 2π

0

(ρ2
1 + ρ2

2)Fpq dt

=

∫ 2π

0

rn+1(ρ2
1 + ρ2

2)s[PtȦP]pq dt

= rn+1(ρ2
1 + ρ2

2)

{∫ 2π

0

s dt

}
[PtȦP]pq = 0.

Thus as s > 0 for ρ2
1 + ρ2

2 6= 0 it follows that [PtȦP]pq = 0. Since for the latter range of p, q we

have that Dpq = 0 referring to (3.16) it immediately follows that Fpq = 0.
4It can be easily shown that as a result of periodicity the following indentities hold:∫ 2π

0
s(sin2 t, cos2 t) sin t dt = 0,∫ 2π

0
s(sin2 t, cos2 t) cos t dt = 0.
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Hence summarising we have shown that in both cases [1] and [2] for fixed r ∈]a, b[ we have

Fpq(r, ·) = 0 outside a copy of Sn−3. By continuity of Fpq(r, ·) on Sn−1 this gives (3.17) and as a

result (3.11). The proof of step 1 is therefore complete.

Step 2. [A2 = −σIn] Here we establish the remaining part of [2] namely that A2 = −σIn for

some σ ∈ C1]a, b[ with σ ≥ 0. To this end, we first observe that by utilising (3.11) the vector field

v can be considerably simplified and re-written in the form [as in (3.12)]

v = rsA2θ.

Now for v = (v1, v2, . . . , vn) to be a gradient it is necessary that the differential 1-form ω = v1dx1 +

· · ·+ vndxn be closed. In other words dω = 0 which in turn amounts to

∂vq
∂xp
− ∂vp
∂xq

= 0,

for all 1 ≤ p, q ≤ n. Setting F = A2 we have that

∂vq
∂xp

= r
∂s

∂xp
[Fθ]q + rs[Ḟθ]qθp + sFqp,

and in a similar way
∂vp
∂xq

= r
∂s

∂xq
[Fθ]p + rs[Ḟθ]pθq + sFpq.

Thus in view of the symmetry of F for the latter range of p, q we have that

0 =
∂vq
∂xp
− ∂vp
∂xq

=r
∂s

∂xp
[Fθ]q − r

∂s

∂xq
[Fθ]p + rs

{
[Ḟθ ⊗ θ]qp − [Ḟθ ⊗ θ]pq

}
.

Alternatively using tensor notation this can be simplified in the form

0 =∇s⊗ Fθ − Fθ ⊗∇s+

s(θ ⊗ Ḟθ − Ḟθ ⊗ θ)

=
1

2
βr2〈Ḟθ, θ〉(Fθ ⊗ θ − θ ⊗ Fθ)+

s(θ ⊗ Ḟθ − Ḟθ ⊗ θ), (3.23)
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where in concluding the second identity we have used

∇s = ∇(n+ r2|Aθ|2)
p−2
2

= ∇(n− r2〈Fθ, θ〉)
p−2
2

= −β
[

1

2
r2〈Ḟθ, θ〉In + rF

]
θ,

with β = β(r, θ, p) := (p − 2)(n − r2〈Fθ, θ〉)
p−4
2 . Next a straight-forward calculation using (3.11)

gives

Ḟ = −2
(n+ 1

r
+

sr
s

)
F. (3.24)

Therefore substituting this into (3.23) results in

0 =
1

2
βr2〈Ḟθ, θ〉(Fθ ⊗ θ − θ ⊗ Fθ)−

s(Ḟθ ⊗ θ − θ ⊗ Ḟθ)

=

{
2
(n+ 1

r
+

sr
s

)(
s− 1

2
βr2〈Fθ, θ〉

)}(
Fθ ⊗ θ − θ ⊗ Fθ

)
=γ × (Fθ ⊗ θ − θ ⊗ Fθ), (3.25)

where for the sake of convenience we have introduced

γ = γ(r, θ, p)

=: 2
(n+ 1

r
+

sr
s

)(
s− 1

2
βr2〈Fθ, θ〉

)
. (3.26)

Claim 2. Let p ∈ [1,∞[. Then γ = γ(r, θ, p) > 0 for all r ∈]a, b[ and θ ∈ Sn−1.

The proof of this claim follows by direct verification. Indeed here a straight-forward differentiation

gives

sr =
∂s

∂r
=

∂

∂r
(n+ r2|Aθ|2)

p−2
2

=
∂

∂r
(n− r2〈Fθ, θ〉)

p−2
2

= −β
[
r〈Fθ, θ〉+

1

2
r2〈Ḟθ, θ〉

]
.
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Now eliminating the term 〈Ḟθ, θ〉 in the above expression with the aid of (3.24) results in

sr =
nrβs〈Fθ, θ〉

s− r2β〈Fθ, θ〉
.

(See below for a justification that s− r2β〈Fθ, θ〉 6= 0.) Hence referring to (3.26) we can write

γ = 2
(n+ 1

r
+

sr
s

)(
s− 1

2
βr2〈Fθ, θ〉

)
=

(n+ 1)s− r2β〈Fθ, θ〉
r(s− r2β〈Fθ, θ〉)

(
2s− r2β〈Fθ, θ〉

)
=:

I

II
× III.

We now proceed by evaluating each term separately. Indeed with regards to the first term we have

that

I = (n+ 1)s− r2β〈Fθ, θ〉

= (n− r2〈Fθ, θ〉)
p−4
2

[
n(n+ 1)− (n+ p− 1)r2〈Fθ, θ〉

]
,

and in a similar way

II = r(s− r2β〈Fθ, θ〉)

= r(n− r2〈Fθ, θ〉)
p−4
2

[
n− (p− 1)r2〈Fθ, θ〉

]
,

and

III = (2s− r2β〈Fθ, θ〉)

= (n− r2〈Fθ, θ〉)
p−4
2

[
2n− pr2〈Fθ, θ〉

]
.

Now in view of −〈Fθ, θ〉 = 〈AtAθ, θ〉 = |Aθ|2 ≥ 0 for all r ∈]a, b[ and θ ∈ Sn−1 along with p ∈ [1,∞[

it follows that all the terms I, II and III are strictly positive. As a result

γ > 0, (3.27)

and so the claim is justified.

Now returning to the identity (3.25) it follows as a result of (3.27) that necessarily

Fθ ⊗ θ − θ ⊗ Fθ = 0, (3.28)
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for all r ∈]a, b[ and θ ∈ Sn−1. The conclusion in step 2 is now an immediate result of the following

statement.

Claim 3. Let F ∈ Mn×n. Then (3.28) holds for all θ ∈ Sn−1 if and only if there exists −σ ∈ R

such that F = −σIn.

For a proof of claim 3 we refer the interested reader to Proposition B.0.6 in Appendix B. Finally

σ ∈ C1]a, b[ and σ ≥ 0 are consequences of the representation above and the hypothesis of the

theorem. With this the proof of Theorem 3.4.2 is complete. �

Theorem 3.4.3. Let Ω = {x ∈ Rn : a < |x| < b} and consider the vector field v as defined in

Theorem 3.4.2. Then the following are equivalent.

[1] v is a gradient,

[2] A = µJ for some µ ∈ C1]a, b[ with µ ≥ 0, J ∈Mn×n skew-symmetric with J2 = −In and

d

dr
(rn+1sµ) = 0, (3.29)

in ]a, b[. Here s = (n+ r2µ2)
p−2
2 .

Proof. [2] =⇒ [1] The argument here is similar to that in Theorem 3.4.2 and so will be abbreviated.

[1] =⇒ [2] Let v be a gradient. Then according to [2] in Theorem 3.4.2, A2 = −σIn for some

σ ∈ C1(]a, b[) with σ ≥ 0 and so A =
√
σJ where J = J(r) and J2 = −In. The aim is to show

that J is independent of r. Note that in general there is no uniqueness or even finiteness associated

with the choice of a square root of a matrix! Thus an argument purely based on continuity would

not yield the aforementioned claim and it is crucial to additionally utilise (3.11). To this end we

proceed as follows. Indeed according to [2] in Theorem 3.4.2,

d

dr
(rn+1sA) = 0.

Integrating the above equation gives rn+1sA = ξ for some constant ξ ∈Mn×n. Moreover,

− (rn+1s)2σIn = (rn+1sA)2 = ξ2, (3.30)

giving (rn+1s)2σ ≡ c for some non-negative constant c. Thus either σ ≡ 0 in which case A ≡ 0 on

]a, b[ and so the choice µ ≡ 0 gives the conclusion or else σ > 0 on ]a, b[ and so setting

J :=
1√
c
ξ,
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we have as a result of (3.30) that J2 = −In. Furthermore setting

µ :=
1√
c
rn+1sσ,

it follows that µ ∈ C1]a, b[, µ2 = σ and by substitution A = µJ. As a result µ also satisfies (3.29).

The proof of the theorem is thus complete. �

Remark 3.4.4. Referring to the above proof it follows from rn+1sµ = c on ]a, b[ that when p > 1

the function µ remains bounded on ]a, b[.

Theorem 3.4.5. Let Ω = {x ∈ Rn : a < |x| < b} and u ∈ Ap with p ∈]1,∞[ be a generalised twist

whose corresponding twist loop Q ∈ C2(]a, b[,SO(n)). Then the following are equivalent.

[1] u is a classical solution to the Euler-Lagrange equations associated with Fp over Ap,

[2] depending on whether n is even or odd we have that

[2a] (n = 2k) there exist g = g(r) ∈ C[a, b] ∩C2]a, b[ with g(a), g(b) ∈ 2πZ and P ∈ O(n) such that

Q = Pdiag(R(g),R(g), . . . ,R(g))Pt,

whilst g is a solution on ]a, b[ to

d

dr

{
rn+1(n+ r2g′2)

p−2
2 g′

}
= 0, (3.31)

or

[2b] (n = 2k + 1) necessarily u = x on Ω̄.

Proof. [1] =⇒ [2] Let u = Q(r)x be a classical solution to the stated Euler-Lagrange equations.

Then setting A = QtQ̇ an application of Proposition 3.1.4 in conjunction with Theorem 3.4.3 gives

d

dr
Q = µQJ, (3.32)

where µ ∈ C1]a, b[ satisfies (3.29) and J2 = −In. Moreover either µ ≡ 0 or else µ > 0 and bounded

on ]a, b[. (See Remark 3.4.4.) We now consider the cases [2a] and [2b] separately.

[2a] (n = 2k) Let g ∈ C[a, b]∩C2]a, b[ be a primitive of µ satisfying g(a) ∈ 2πZ. (The continuity of g

on [a, b] follows from g being monotone and g′ = µ being bounded on ]a, b[.) Next, a straight-forward

calculation gives

s = (n+ r2|Aθ|2)
p−2
2

= (n+ r2g′2|Jθ|2)
p−2
2
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= (n+ r2g′2)
p−2
2 .

Thus in view of (3.29) g satisfies (3.31) on ]a, b[. An application of Tonelli and Hilbert-Weierstrass

differentiability theorems (see, e.g., [18] pp. 57-61) now gives g ∈ C2[a, b] and so in particular

µ ∈ C1[a, b]. As will be seen in the next section (3.31) is the Euler-Lagrange equation corresponding

to the energy functional Gp over the space Gmp [see (3.33), (3.35)]. In particular it follows that

g ∈ C∞[a, b].

With this introduction now put C = gJ. Then A = g′J = µJ. In particular A and C commute

and so we have that
d

dr
eC = eCA = g′eCJ = µeCJ.

Thus eC is a solution to (3.32). Moreover by bringing C into a block diagonal form we can write

C = gPJnP
t where P ∈ O(n) and Jn = diag(J2,J2, . . . ,J2). As a result

eC = egPJnP
t

= PegJnPt

= Pdiag(R(g),R(g), . . . ,R(g))Pt.

Since g(a) ∈ 2πZ the above shows that eC|r=a = Q(a) = In and so by uniqueness of solutions to

initial value problems Q = eC on [a, b]. Since Q(b) = In it follows in a similar way that g(b) ∈ 2πZ.

[2b] (n = 2k + 1) Here in view of the skew-symmetry of QtQ̇, pre-multiplying (3.32) by Qt and

then taking determinants from both sides, µ ≡ 0 and so Q̇ ≡ 0 on ]a, b[. As Q(a) = Q(b) = In this

gives Q ≡ In on [a, b] and so u = x on Ω̄.

[2] =⇒ [1] For the case [2b] this is trivial and for [2a] it is enough to note that for such u, (3.31) is

equivalent to (3.11). �

3.5 A characterisation of all twist solutions

In section 3.3 we proved the existence of multiple p-stationary loops by directly minimizing the

energy functional Ep over the homotopy classes c?[Ep] of the loop space Ep. By contrast in this

section we focus on the Euler-Lagrange equation itself and present a class of p-stationary loops that

in turn will prove fruitful in discussing the existence of multiple solutions to the Euler-Lagrange

equations associated with the energy functional Fp over the space Ap.
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To this end we consider the case of even dimensions (n = 2k) and for p ∈ [1,∞[ and m ∈ N set

Gmp = Gmp (a, b) :=

{
g = g(r) ∈W 1,p(a, b) : g(a) = 0, g(b) = 2πm

}
. (3.33)

Now for g ∈ Gmp and P ∈ O(n) set

Q = Pdiag(R(g),R(g), . . . ,R(g))Pt. (3.34)

It is then evident that the path Q so defined forms an admissible loop, i.e., lies in Ep. It is thus

natural to set

Gp[g] := Ep[Q] =

∫ b

a

∫
Sn−1

(n+ r2|Q̇θ|2)
p
2 rn−1 dHn−1(θ)dr

= nωn

∫ b

a

(n+ r2g′2)
p
2 rn−1 dr. (3.35)

An application of the direct methods of the calculus of variations and standard regularity theory

(see, e.g., [18] pp. 57-61) leads us to the following statement.

Theorem 3.5.1. Let p ∈]1,∞[ and consider the energy functional Gp over the space Gmp . Then for

each m ∈ N there exists a unique g = g(r;m, a, b) ∈ Gmp such that

Gp[g] = inf
Gmp

Gp.

Moreover g(r;m, a, b) satisfies the corresponding Euler-Lagrange equation

d

dr

{
rn+1(n+ r2g′2)

p−2
2 g′

}
= 0, (3.36)

on ]a, b[. Additionally g ∈ C∞[a, b].

Remark 3.5.2. The Euler-Lagrange equation (3.36) for g is equivalent to equation (3.9) for the

twist loop Q defined through (3.34) and imply the Euler-Lagrange equation (3.9) [or alternatively

that given in Proposition 3.2.3 for A = QtQ̇]. Hence for every P ∈ O(n) and every m ∈ Z the

corresponding Q given by (3.34) with g = g(r;m, a, b) is a p-stationary loop.

Theorem 3.5.3. Let Ω = {x ∈ Rn : a < |x| < b}. Consider the energy functional Fp with p ∈]1,∞[

over the space Ap. Then the set S of all generalised twist solutions to the corresponding Euler-

Lagrange equations can be characterised as follows.
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[1] (n = 2k) S is infinite and any generalised twist u ∈ S can be described as

u = rQ(r; a, b,m)θ

= rPdiag(R(g),R(g), . . . ,R(g))(r)Ptθ,

where P ∈ O(n) and g ∈ C∞[a, b] satisfies

d

dr

{
rn+1(n+ r2g′2)

p−2
2 g′

}
= 0,

with g(a), g(b) ∈ 2πZ,

[2] (n = 2k + 1) S consists of the single map u = x.

Proof. This is an immediate consequence of Theorem 3.4.5 and Theorem 3.5.1. �

Remark 3.5.4. Is it possible to consider generalised twists u whose twist loop lies in other spaces

[than SO(n) already considered] with the hope of finding new classes of classical solutions to the

Euler-Lagrange equations associated with the energy functional Fp over Ap?

Motivated by the requirement det∇u = 1 on such maps the choice of loops in SL(n) ⊃ SO(n)

seems a natural one. 5 However it turns out that the choice SO(n) is no less general than SL(n)!

Claim. Let Ω = {x ∈ Rn : a < |x| < b}. For p ∈ [1,∞[ consider the map u ∈ C(Ω̄, Ω̄) defined via

u = F(r)x,

where r = |x| and F ∈W 1,p([a, b],SL(n)). Then

u ∈ Ap(Ω) =⇒ F ∈W 1,p([a, b],SO(n)).

Proof. A straight-forward calculation as in the proof of Proposition 3.1.2 gives

∇u = F + rḞθ ⊗ θ

= F(In + rF−1Ḟθ ⊗ θ).

5Recall that for every non-negative integer n we have that

SL(n) = SL(R, n) :=

{
F ∈ Mn×n(R) : detF = 1

}
.
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Hence in view of detF = 1 we can write

det∇u = det(F + rḞθ ⊗ θ)

= det(In + rF−1Ḟθ ⊗ θ)

= 1 + r〈F−1Ḟθ, θ〉.

Evidently u ∈ Ap(Ω) provided that

(i) u = x on ∂Ω,

(ii) det∇u = 1 in Ω, and,

(iii) ‖u‖W 1,p(Ω) <∞.

Now again referring to the proof of Proposition 3.1.2 we have that

(i) ⇐⇒ F(a) = F(b) = In,

whilst

(ii) ⇐⇒ 〈F−1Ḟθ, θ〉 = 0 for all θ ∈ Sn−1 ⇐⇒ F−1Ḟ + ḞtF−t = 0.

However, anticipating on the latter, we can write

F−1Ḟ + ḞtF−t = 0 ⇐⇒ Ḟ + FḞtF−t = 0,

⇐⇒ ḞFt + FḞt = 0

⇐⇒ d

dr
(FFt) = 0.

This together with (i) and the continuity of F on [a, b] gives FFt = In and so the conclusion follows.

3.6 Limiting behaviour of the generalised twists as the inner

hole shrinks to a point

In this section we consider the case where b = 1 and a = ε > 0 with the aim of discussing the limiting

properties of the generalised twists from Theorem 3.5.3 as ε ↓ 0. This is particularly interesting since

in the limit (the punctured ball), by Remark 2.1.4, all components of the function space collapse to

a single one and so it is important to have a clear understanding as to how the twist solutions and

their energies [for each fixed integer m] behave.



Chapter 3. Measure-preserving maps and generalised twists 45

To this end, let Ωε := {x ∈ Rn : ε < |x| < 1} where n = 2k and for each m ∈ Z let uε ∈ Ap

denote the generalised twist from [1] in Theorem 3.5.3, that is, with the notation x = rθ,

uε = rQ(r; ε, 1,m)θ

= rPεdiag(R(gε),R(gε), . . . ,R(gε))P
t
εθ,

where Pε ∈ O(n) and gε(r) = g(r; ε, 1,m).

In order to make the study of the limiting properties of uε more tractable, we fix the domain to

be the unit ball and extend each map by identity off Ωε. [In what follows, unless otherwise stated,

we speak of uε in this extended sense.] Thus, here, we have that

uε : (r, θ) 7→
(
r,Gε(r)θ

)
, (3.37)

where

Gε(r) = Pεdiag(R(gε),R(gε), . . . ,R(gε))P
t
ε,

and

gε(r) =

 0 r ≤ ε,

g(r; ε, 1,m) ε ≤ r ≤ 1.

In discussing the limiting properties of uε it is convenient to introduce a so-called comparison

map. Indeed, fix m ∈ Z and consider the generalised twist

vε : (r, θ) 7→ (r,Hε(r)θ). (3.38)

where

Hε(r) = Pεdiag(R(hε),R(hε), . . . ,R(hε))P
t
ε,

and

hε(r) :=


0 r ∈ (0, ε),

2mπ( rε − 1) r ∈ (ε, 2ε),

2mπ r ∈ (2ε, 1).

Proposition 3.6.1. Let p ∈]1,∞[. The family of generalised twists (vε) enjoys the following prop-

erties.

[1] vε → x in W 1,p(B,Rn),

[2] vε → x uniformly on B̄.
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Figure 3.1: The function hε associated with the extended twist loop Hε.

Proof. [1] Using (3.38) and a straight-forward calculation we have that,

‖vε − x‖pW 1,p
0

=

∫
B
|∇vε − In|p

=

∫
B2ε\Bε

|∇vε − In|p ≤ 2p−1

∫
B2ε\Bε

|∇vε|p + |In|p.

Furthermore, referring to Proposition 3.1.2 [see (3.5)] we can write

∫
B2ε\Bε

|∇vε|p =

∫ 2ε

ε

∫
Sn−1

(n+ r2|Ḣεθ|2)
p
2 rn−1 dHn−1(θ)dr

= nωn

∫ 2ε

ε

(n+ r2h′2ε )
p
2 rn−1 dr

≤ ωn(2n − 1)εn[n+ 4(2mπ)2]
p
2 . (3.39)

The above estimates when combined give [1] as a result of Poincaré inequality.

[2] By direct verification we have that

|vε − x|2 = |rHε(r)θ − rθ|2

= r2
∣∣∣Pεdiag(R(hε), . . . ,R(hε))P

t
εθ − θ

∣∣∣2
= r2

∣∣∣Pε[diag(R(hε), . . . ,R(hε))− In
]
Ptεθ

∣∣∣2
= r2

∣∣∣[diag(R(hε), . . . ,R(hε))− In
]
ωε

∣∣∣2 (
ωε := Ptεθ

)
=

1

2
r2|R(hε)− I2|2. (3.40)

However a straight-forward calculation gives

|R(hε)− I2|2 = 4(1− coshε) = 8 sin2 hε
2
.
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Thus combining the above and referring to the definition of hε we arrive at the bound

sup
B
|vε − x| = sup

[ε,2ε]

2r
∣∣∣ sin hε

2

∣∣∣ ≤ 4ε,

which gives the required conclusion. �

Let p ∈]1,∞[ and fixm ∈ Z. Then gε, hε ∈ Gmp (ε, 1) [see (3.33)] and so according to the minimizing

property of gε we have that

Fp[uε,B] =
1

p
Ep[Gε] =

1

p
Gp[gε] ≤

1

p
Gp[hε] =

1

p
Ep[Hε] = Fp[vε,B]. (3.41)

This in conjunction with [1] in Proposition 3.6.1 implies the boundedness of (uε) in W 1,p(B,Rn)

and so as a result (uε) admits a weakly convergent subsequence. Indeed more is true!

Theorem 3.6.2. Let Ωε := {x ∈ Rn : ε < |x| < 1}. For p ∈]1,∞[ and m ∈ Z let (uε)ε>0 denote

the family of generalised twists as in (3.37). Then,

[1] uε → x in W 1,p(B,Rn),

[2] uε → x uniformly in B̄.

Before proof we note that here both convergences are in reference to the entire sequence and not

merely a subsequence as was implied in discussing the weak convergence prior to the proposition.

The argument is standard and will be abbreviated.

Proof. [1] Fix m ∈ Z and let vε be as in (3.38). Then referring to (3.41) it follows that by passing

to a subsequence (not re-labeled) uε ⇀ u in W 1,p(B,Rn). Appealing to the sequential weak lower

semicontintuity of Fp and [1] in Proposition 3.6.1 we can write

Fp[x,B] ≤ Fp[u,B] ≤ lim inf
ε↓0

Fp[uε,B]

≤ lim sup
ε↓0

Fp[uε,B]

≤ lim
ε↓0

Fp[vε,B] = Fp[x,B].

This in view of the strict convexity of Fp (on W 1,p) gives u = x. As a result of the uniform

convexity of the p-norm (p > 1) the aforementioned weak convergence can now be improved to

strong convergence and this gives [1].

[2] By [1] we can assume without loss of generality that uε → x Ln-a.e. in B. To justify the

uniform convergence in [2] let gε be as that described in (3.37) and fix σ ∈ (0, 1). Then we claim

that gε → 2mπ uniformly on [σ, 1]. Indeed, (uε) bounded in W 1,p(B,Rn) gives (uε) bounded in
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W 1,p(B\B̄σ,Rn) and so referring to (3.5) and using a calculation similar to that in (3.39) we have

(gε) bounded inW 1,p(σ, 1). Hence, there exists f = fσ ∈W 1,p(σ, 1) so that passing to a subsequence

(not relabeled) 
gε ⇀ f in W 1,p(σ, 1),

gε → f in L∞[σ, 1],

f(1) = 2mπ.

In addition referring again to (3.37) we can assume in view of O(n) being compact, that by passing

to a further subsequence (again, not relabeled) Pε → P for some P ∈ O(n). Hence for Ln-a.e.

x ∈ B\B̄σ we can write

x = rθ = lim
ε↓0

uε(x)

= lim
ε↓0

rGε(r)θ

= lim
ε↓0

rPεdiag(R(gε), . . . ,R(gε))P
t
εθ

= rPdiag(R(f), . . . ,R(f))Ptθ,

giving R(f) = I2 and in turn that f = 2πn(r) for some n(r) ∈ Z. The continuity of f along with

f(1) = 2mπ now gives f = 2mπ on [σ, 1] justifying the assertion. Next, arguing as in (3.40) we can

write

|uε − x|2 =
∣∣rGε(r)θ − rθ

∣∣2
= 2r2(1− cos gε)

= 4r2 sin2 gε
2
.

Thus, to conclude [2] fix δ > 0 and first take σ ∈ (0, 2−1δ] and then ε0 such that | sin(2−1gε)| ≤ 2−1δ

on [σ, 1] for ε < ε0. Then supB |uε − x| ≤ max(2σ, δ) = δ. �

The uniform convergence in [2] above looks at first counter-intuitive, as, how can uε and x be

uniformly close when uε twists m times while the limit x none? Indeed a careful consideration

reveals that the latter twists occur at a distance ε from the origin and within a layer of thickness

O(ε) and this is in no conflict with the stated uniform convergence!



Chapter 4

Quasiconvexity and uniqueness of

stationary points

Throughout this chapter we assume Ω ⊂ Rn to be a bounded starshaped domain and consider the

energy functional

F[u,Ω] :=

∫
Ω

F(∇u(x)) dx,

over the space of measure-preserving maps

Ap(Ω) :=

{
u ∈ ξ̄x+W 1,p

0 (Ω,Rn) : det∇u = 1 a.e. in Ω

}
,

with p ∈ [1,∞[, ξ̄ ∈ Mn×n satisfying det ξ̄ = 1. The hypotheses [H1]-[H3] on the integrand F

here refer to those outline in Chapter 1. We address the question of uniqueness for solutions of

the corresponding system of Euler-Lagrange equations. In particular we give a short and new proof

of the celebrated result of Knops & Sturat [44] using the method based on comparison with the

homogeneous degree-one extension maps. The material in this chapter is taken from Shahrokhi-

Dehkordi & Taheri [58].

4.1 Quasiconvexity and uniqueness in starshaped domain

Let Ω ⊂ Rn be a C1 bounded starshaped domain (with respect to the origin). 1 Without loss of

generality we assume in the sequel that there exists a strictly positive function d : Sn−1 → R of class
1Recall that a set S ⊂ Rn is said to be starshaped with respect to the point x0 ∈ S if and only if whenever the

point x belongs to S, the straight line segment joining x0 to x also lies in S.

49
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C1 such that

∂Ω =

{
ω 6= 0 : |ω| = d(

ω

|ω|
)

}
.

It is then clear that Ω = {0} ∪ {x 6= 0 : |x| < d(x/|x|)}. Moreover the unit outward normal to the

boundary at a point ω ∈ ∂Ω is given by

ν =
1

α(θ)

[
θ − (In − θ ⊗ θ)

∇d(θ)

d(θ)

]
,

where α(θ) = d(θ)−1
√
d(θ)2 + |∇d(θ)|2 − 〈θ,∇d(θ)〉2 and θ = ω/|ω|.

Definition 4.1.1. (Classical solution)

A pair (u, p) is said to be a classical solution to the Euler-Lagrange equations associated with F

over Ap(Ω) if and only if the following hold.

[1] u ∈ C2(Ω,Rn) ∩C1(Ω̄,Rn),

[2] p ∈ C1(Ω) ∩C(Ω̄),

[3] (u, p) satisfy the system of equations


div {Fξ(∇u)− p[cof ∇u]} = 0 in Ω,

det∇u = 1 in Ω,

u = v on ∂Ω.

Although we are primarily concerned with the case v = ξ̄x, for reasons that will become clear

later, we allow v ∈ C1(Ω̄,Rn) to be arbitrary. Now suppose that (u, p) is a classical solution as

described in Definition 4.1.1. We set

G(x, z, ξ) = G(x, z, ξ; p) := F(ξ)− p(x)[det ξ − 1], (4.1)

for all x ∈ Ω, z ∈ Rn and ξ ∈ Mn×n. Next with the aid of G we introduce the Hamilton [or the

energy-momentum] tensor

Tβ
α(x, z, ξ) := ξiαGξiβ

(x, z, ξ)− δβαG(x, z, ξ). (4.2)

Theorem 4.1.2. Let (u, p) be a classical solution to the Euler-Lagrange equations associated with

F over Ap(Ω). Let F be of class C2. Then with G and T as in (4.1) and (4.2) we have that

div{T(x, u,∇u)}+ Gx(x, u,∇u) = 0, (4.3)
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in Ω.

Proof. (By direct verification) Indeed expanding the above identity componentwise we have that

Lα :=

[
div{T(x, u,∇u)}+ Gx(x, u,∇u)

]
α

=
∂Tβ

α

∂xβ
(x, u,∇u) + Gxα(x, u,∇u)

=
∂

∂xβ

{
ui,α

(
Fξiβ − p(x)[cof ∇u]iβ

)}
−

∂

∂xα

{
F− p(x)[det∇u− 1]

}
− ∂p

∂xα
(x)[det∇u− 1].

Therefore taking advantage of det∇u = 1 and by direct differentiation we can write

Lα =ui,αβ

(
Fξiβ − p(x)[cof ∇u]iβ

)
+

ui,α
∂

∂xβ

(
Fξiβ − p(x)[cof ∇u]iβ

)
− Fξiβu

i
,αβ

=− p(x)
∂

∂xα
det∇u+ ui,α

∂

∂xβ

(
Fξiβ − p(x)[cof ∇u]iβ

)
=ui,α

∂

∂xβ

(
Fξiβ − p(x)[cof ∇u]iβ

)
= 0,

which is the required conclusion. �

We note that the equation (4.3) is the so-called stationarity condition in its strong form as opposed

to its weak form given by (4.4) below. For the sake of future reference we next introduce the

unconstrained energy functional

G[u, p; Ω] :=

∫
Ω

G(x, u,∇u) dx

=

∫
Ω

(
F(∇u)− p(x)[det∇u− 1]

)
dx.

Then setting uε(x) := u(x + εϕ) with ϕ ∈ C∞c (Ω,Rn) an application of Theorem 4.1.2 and the

divergence theorem along with a straight-forward calculation gives

d

dε
G[uε, p; Ω]

∣∣∣∣
ε=0

=

∫
Ω

(
Tβ
αϕ

α
,β −Gxαϕ

α

)
dx

=

∫
Ω

(
ui,αGξiβ

ϕα,β − δβαGϕα,β −Gxαϕ
α

)
dx = 0. (4.4)

In the course of the proof of next theorem we make repeated use of the following integration

formula.
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Proposition 4.1.3. For every f ∈ L1(Ω) we have that

∫
Ω

f(x) dx =

∫ 1

0

∫
∂Ω

ρn−1 d(θ)

α(θ)
f(ρω) dHn−1(ω)dρ.

Proof. As d and α are bounded away from zero a straight-forward proof of this assertion follows

from co-area formula (see e.g., [28], Theorem 3.2.12, pp. 249) with the particular choice of f(x) =

|x|/d(x/|x|) there. �

Theorem 4.1.4. Let (u, p) be a classical solution to the Euler-Lagrange equations associated with

F over Ap(Ω). Assume that

[1] F is of class C2,

[2] F satisfies [H4]ξ for all ξ ∈ {∇u(ω) : ω ∈ ∂Ω}.

Then with G and T as in (4.1) and (4.2) we have that

G[u, p; Ω] ≤ G[ū, p̄; Ω], (4.5)

where ū, p̄ denote the homogeneous degree-one and degree-zero extensions of u, p to Ω respectively,

that is,

ū(x) :=
r

d(θ)
u(θd(θ)),

and

p̄(x) := p(θd(θ)),

for x ∈ Ω̄ where r = |x| and θ = x/|x|.

Proof. For the sake of clarity and convenience we present this in the following two steps.

Step 1. (G[u, p; Ω] as a boundary integral) For t ∈ [0, 1] and ε > 0 put

sε(t) =

 1 for 0 ≤ t ≤ 1− ε,

1− t−(1−ε)
ε for 1− ε ≤ t ≤ 1,

and set

ϕ(x) = sε
( |x|
d(θ)

)
x. (4.6)

Then one can easily verify that

∇ϕ(x) = sε(
|x|
d(θ)

)In + |x| 1

d(θ)
s′ε(
|x|
d(θ)

)θ ⊗
(
θ − (In − θ ⊗ θ)

∇d(θ)

d(θ)

)
= sε(

|x|
d(θ)

)In + |x|α(θ)

d(θ)
s′ε(
|x|
d(θ)

)θ ⊗ ν,
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where θ = x/|x| and ν = ν(θd(θ)) is the unit outward normal to ∂Ω. Moreover it is evident that

1Ω = lim
ε↓0

sε(
|x|
d(θ)

), (4.7)

where the limit is being understood both as Ln-a.e. in Ω and strongly in L1(Ω). Now upon

substituting ϕ as given by (4.6) into (4.4) and re-arranging terms it follows after taking into account

(4.7) that

nG[u, p; Ω] = lim
ε↓0

∫
Ω

nsε(
|x|
d(θ)

)G(x, u,∇u) dx

= lim
ε↓0

∫
Ω

{
− α(θ)

d(θ)
|x|(θ · ν)s′ε(

|x|
d(θ)

)G(x, u,∇u)+

sε(
|x|
d(θ)

)〈Gξ(x, u,∇u),∇u〉+

α(θ)

d(θ)
|x|s′ε(

|x|
d(θ)

)〈Gξ(x, u,∇u),∇u θ ⊗ ν〉
}
dx

= lim
ε↓0

{
I + II + III

}
. (4.8)

We now proceed by considering each term separately. Indeed, with regards to the first term we have

that

I = I(ε) =

∫
Ω

−α(θ)

d(θ)
|x|(θ · ν)s′ε(

|x|
d(θ)

)G(x, u,∇u) dx

=

∫
Ω

− 1

d(θ)
|x|s′ε(

|x|
d(θ)

)F(∇u(x)) dx

=

∫ 1

1−ε

∫
∂Ω

1

ε
ρn
d(θ)

α(θ)
F(∇u(ρω)) dHn−1(ω)dρ.

Thus by passing to the limit ε ↓ 0 we have that

lim
ε↓0

I = lim
ε↓0

∫ 1

1−ε

∫
∂Ω

1

ε
ρn
d(θ)

α(θ)
F(∇u(ρω)) dHn−1(ω)dρ

=

∫
∂Ω

d(θ)

α(θ)
F(∇u(ω)) dHn−1(ω).

In a similar way with regards to the second term we have that

II = II(ε) =

∫
Ω

sε(
|x|
d(θ)

)〈Gξ(x, u,∇u),∇u〉 dx

=

∫
Ω

sε(
|x|
d(θ)

)〈Fξ(∇u)− p(x)[cof ∇u],∇u〉 dx.
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Utilising (4.7) and Lebesgue’s theorem on dominated converge, passing to the limit ε ↓ 0 yields

lim
ε↓0

II = lim
ε↓0

∫
Ω

sε(
|x|
d(θ)

)〈Fξ(∇u)− p(x)[cof ∇u],∇u〉 dx

=

∫
Ω

〈Fξ(∇u)− p(x)[cof ∇u],∇u〉 dx

=

∫
∂Ω

〈Fξ(∇u(ω))− p(ω)[cof ∇u(ω)], u(ω)⊗ ν〉 dHn−1(ω),

where in the second identity we have appealed to the divergence theorem along with the fact that

(u, p) is a solution to the Euler-Lagrange equations associated with F over Ap.

Finally with regards to the third term we can write

III = III(ε) =

∫
Ω

α(θ)

d(θ)
|x|s′ε(

|x|
d(θ)

)〈Gξ(x, u,∇u),∇u θ ⊗ ν〉 dx

=

∫
Ω

α(θ)

d(θ)
|x|s′ε(

|x|
d(θ)

)〈Fξ(∇u)− p(x)[cof ∇u],∇u θ ⊗ ν〉 dx

=

∫ 1

1−ε

∫
∂Ω

−1

ε
ρnd(θ)×{

〈Fξ(∇u(ρω))− p(ρω)[cof ∇u(ρω)],∇u(ρω) θ ⊗ ν〉
}
dHn−1(ω)dρ.

Thus by passing to the limit ε ↓ 0 we have that

lim
ε↓0

III = lim
ε↓0

∫ 1

1−ε

∫
∂Ω

−1

ε
ρnd(θ)×{

〈Fξ(∇u(ρω))− p(ρω)[cof ∇u(ρω)],∇u(ρω) θ ⊗ ν〉
}
dHn−1(ω)dρ

=

∫
∂Ω

−d(θ)〈Fξ(∇u(ω))− p(ω)[cof ∇u(ω)],∇u(ω) θ ⊗ ν〉 dHn−1(ω).

Hence referring to (4.8) and summarising the above conclusions we have that

nG[u, p; Ω] =

∫
Ω

nG(x, u,∇u) dx

=

∫
∂Ω

d(θ)

α(θ)
F(∇u(ω)) dHn−1(ω)+∫

∂Ω

〈Fξ(∇u(ω))− p(ω)[cof ∇u(ω)], u(ω)⊗ ν〉 dHn−1(ω)−∫
∂Ω

d(θ)〈Fξ(∇u(ω))− p(ω)[cof ∇u(ω)],∇u(ω)θ ⊗ ν〉 dHn−1(ω). (4.9)

Step 2. (A lower bound on G[ū, p̄; Ω]) Recall that the homogeneous degree-one extension of u to Ω

is given by

ū(x) =
|x|
d(θ)

u(θd(θ)),
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for x ∈ Ω̄ with θ = x/|x|. It can therefore be easily checked that

∇ū(x) =∇u(θd(θ)) +

{(u(θd(θ))

d(θ)
−∇u(θd(θ))θ

)
⊗
(
θ − (In − θ ⊗ θ)

∇d(θ)

d(θ)

)}
=∇u(ω) +

α(θ)

d(θ)

{
[u(ω)− d(θ)∇u(ω)θ]⊗ ν

}
, (4.10)

for x ∈ Ω̄ where ω = θd(θ) ∈ ∂Ω. In particular we have that

det∇ū(x) = det∇u(ω) +
α(θ)

d(θ)
〈[∇u(ω)]−1[u(ω)− d(θ)∇u(ω)θ], ν〉

=1 +
α(θ)

d(θ)
〈[cof ∇u(ω)]t[u(ω)− d(θ)∇u(ω)θ], ν〉. (4.11)

Thus we can write

nG[ū, p̄; Ω] =n

∫
Ω

G(x, ū,∇ū; p̄) dx

=n

∫
Ω

F(∇ū)− p̄(x)[det∇ū− 1] dx

=n

∫ 1

0

∫
∂Ω

ρn−1 d(θ)

α(θ)
×{

F(∇ū(ρω))− p̄(ρω)[det∇ū(ρω)− 1]

}
dHn−1(ω)dρ

=

∫
∂Ω

d(θ)

α(θ)

{
F(∇ū(ω))− p̄(ω)[det∇ū(ω)− 1]

}
dHn−1(ω), (4.12)

where in concluding the last line we have used the identities ∇ū(ρω) = ∇ū(ω) and p̄(ρω) = p̄(ω) for

ρ ∈ [0, 1] and ω ∈ ∂Ω as a consequence of homogeneity.

Now anticipating on the integral on the right in (4.12) we first note that in view of the rank-one

convexity of F at the points ∇u(ω) using (4.10) [with x = ω] we have that

F(∇ū(ω)) = F
(
∇u(ω) +

α(θ)

d(θ)
[u(ω)− d(θ)∇u(ω)θ]⊗ ν

)
≥ F

(
∇u(ω)

)
+
α(θ)

d(θ)
〈Fξ(∇u(ω)), [u(ω)− d(θ)∇u(ω)θ]⊗ ν〉. (4.13)

Hence substituting from (4.11) and (4.13) into (4.12) and making note of the inequality d/α > 0 we

can write

nG[ū, p̄; Ω] =

∫
∂Ω

d(θ)

α(θ)

{
F(∇ū(ω))− p̄(ω)[det∇ū(ω)− 1]

}
dHn−1(ω)

≥
∫
∂Ω

d(θ)

α(θ)
F(∇u(ω)) dHn−1(ω)+
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∫
∂Ω

〈Fξ(∇u(ω)), [u(ω)− d(θ)∇u(ω)θ]⊗ ν〉 dHn−1(ω)−∫
∂Ω

p(ω)〈[cof ∇u(ω)]t[u(ω)− d(θ)∇u(ω)θ], ν〉 dHn−1(ω).

Finally, re-arranging terms and comparing the expression on the right in the above with (4.9)

immediately yields

nG[ū, p̄; Ω] ≥
∫
∂Ω

d(θ)

α(θ)
F(∇u(ω)) dHn−1(ω)+∫

∂Ω

〈Fξ(∇u(ω))− p(ω)[cof ∇u(ω)], u(ω)⊗ ν〉 dHn−1(ω)−∫
∂Ω

d(θ)〈Fξ(∇u(ω))− p(ω)[cof ∇u(ω)],∇u(ω)θ ⊗ ν〉 dHn−1(ω)

≥nG[u, p; Ω],

which is the required conclusion. �

4.2 Uniqueness theorems on starshaped domain

Theorem 4.2.1. (Uniqueness I) Let Ω ⊂ Rn be a C1 bounded starshaped domain and consider the

energy functional F over Ap(Ω). Assume that

[1] F is of class C2,

[2] F satisfies [H1] and [H3]ξ̄,

[3] (u, p) is a classical solution (see Definition 4.1.1),

[4] F satisfies [H4]ξ for all ξ ∈ {∇u(ω) : ω ∈ ∂Ω}.

Then,

F[u,Ω] = F[ξ̄x,Ω] = inf
Ap(Ω)

F[·,Ω].

If, additionally, F is strictly quasiconvex at ξ̄ then u = ξ̄x on Ω̄.

Proof. Evidently ū = ξ̄x and therefore det∇ū = 1 in Ω. It should note that in general det∇ū = 1

is false! [See (4.11)] However, interestingly, subject to u = ξ̄x on ∂Ω as described the latter identity

holds throughout Ω. Hence referring to the estimate (4.5) in Theorem 4.1.4 and the quasiconvexity

of F at ξ̄ we can write

F[ū,Ω] ≤ F[u,Ω] = G[u, p; Ω] ≤ G[ū, p̄; Ω] = F[ū,Ω].
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The remaining assertion is now a trivial consequence of the latter and the strict quasiconvexity of

F at ξ̄. �

Remark 4.2.2. The proof of Theorem 4.1.4 and Theorem 4.2.1 remain unchanged if F is of class C1

and in Definition (4.1.1), [1] is replaced by u ∈ C1(Ω̄,Rn), [2] by p ∈ C(Ω̄) and [3] by (u, p) being

a weak solution to the corresponding system of Euler-Lagrange equation provided that additionally

(4.4) holds.

Theorem 4.2.3. (Uniqueness II) Let Ω ⊂ Rn be a bounded starshaped domain and consider the

energy functional F over Ap(Ω). Assume that

[1] F is of class C,

[2] F satisfies [H1] and [H3]ξ̄,

[3] u ∈ Ap(Ω) is a strong local minimizer of F, i.e., that there exists ρ = ρ(u) > 0 such that

F[u,Ω] ≤ F[w,Ω] for all w ∈ Ap(Ω) with ‖u− w‖L1 ≤ ρ.

Then,

F[u,Ω] = F[ξ̄x,Ω] = inf
Ap(Ω)

F[·,Ω]. (4.14)

If, additionally, F is strictly quasiconvex at ξ̄ then u = ξ̄x on Ω̄.

Proof. The second identity in (4.14) is a result of [1], [2] and a straight-forward approximation

and so it suffices to justify only the first equality. Indeed for the sake of a contradiction assume

F[u,Ω] > F[ξ̄x,Ω] and for δ ∈ (0, 1] and x ∈ Ω set

uδ(x) :=

 δu(xδ ) x ∈ Ω̄δ,

ξ̄x x ∈ Ω\Ω̄δ,

where Ωδ = δΩ. Then det∇uδ = 1 Ln-a.e. in Ω and so uδ ∈ Ap(Ω). Moreover, a straight-forward

calculation gives

F[uδ,Ω] = F[u,Ω] + (1− δn)

{
F[ξ̄x,Ω]− F[u,Ω]

}
< F[u,Ω],

whilst uδ → u in W 1,p as δ ↑ 1. This contradicts [3] and so the assertion is justified. The final part

is now a trivial consequence of the latter and the strict quasiconvexity of F at ξ̄. �



Chapter 5

Polyconvexity and generalised twists

In this chapter we consider the energy functional F as given by (1.6) over the space of orientation

preserving maps A(Ω) as defined by (1.7) in the first chapter and discuss the question of existence

of multiple strong local minimizers for F. Motivated by their signification in topology and the study

of mapping class groups, we consider a class of maps, referred to as generalised twists as defined

in Chapter 3, and examine them in connection with the corresponding Euler-Lagrange equation

and we show that in even dimensions the latter system of equations admits infinitely many smooth

solutions, modulo isometries, amongst such maps. In odd dimensions this number reduces to one.

The material in this chapter is taken from Shahrokhi-Dehkordi & Taheri [57].

5.1 Generalised twists and the space of orientation preserving

maps

We start this section by recalling the definition of a generalised twist. Let Ω = {x ∈ Rn : a < |x| <

b}. A map u ∈ C(Ω̄, Ω̄) is referred to as a generalised twist if and only if it can be expressed as

u(x) = G(r)θ,

with

G(r) = f(r)Q(r),

where r = |x|, θ = x/|x|, Q ∈ C([a, b],SO(n)) and f ∈ C[a, b].

58
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Notice that as a result of the basic requirement u ∈ C(Ω̄, Ω̄) built into the definition of a generalised

twist it follows in particular that a ≤ |f | ≤ b on [a, b] see (5.5). The continuous function G in the

above definition will be referred to as the twist path. When additionally G(a) = G(b) we refer to

G as the twist loop.

Proposition 5.1.1. Let Ω = {x ∈ Rn : a < |x| < b}. A generalised twist u lies in A(Ω) provided

that the following set of conditions hold.

[1] Conditions on Q :

[1a] Q ∈W 1,2([a, b],SO(n)),

[1b] Q(a) = Q(b) = In,

[2] Conditions on f :

[2a] f ∈W 1,2(a, b),

[2b] ḟ > 0 L1-a.e. on (a, b),

[2c] f(a) = a and f(b) = b.

Proof. Let u be a generalised twists as in Definition 3.1.1. Then u lies in A(Ω) if and only if the

following conditions hold.

(i) u = x on ∂Ω,

(ii) det∇u > 0 Ln-a.e. in Ω, and,

(iii) ‖u‖W 1,2(Ω) <∞.

Evidently [1b] and [2c] together give (i). In addition a straight-forward differentiation reveals

that

∇u =
f

r
Q + (ḟ − f

r
)Qθ ⊗ θ + fQ̇θ ⊗ θ. (5.1)

Here we have denoted ḟ := d
drf and in a similar way Q̇ := d

drQ. Therefore using the latter we can

write

det∇u = det

[
f

r
Q + (ḟ − f

r
)Qθ ⊗ θ + fQ̇θ ⊗ θ

]
= det

[
f

r
Q

]
det

[
In + (

rḟ

f
− 1)Qθ ⊗Qθ + rQ̇θ ⊗Qθ

]
= (

f

r
)n
[
1 + (

rḟ

f
− 1)〈Qθ,Qθ〉+ r〈Q̇θ,Qθ〉

]
= ḟ(

f

r
)n−1, (5.2)
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where in concluding the last identity we have used the fact that 〈Qθ,Qθ〉 = |θ|2 = 1 for all θ ∈ Sn−1

and so as a result

〈Qθ, Q̇θ〉 = 〈Q̇θ,Qθ〉 =
1

2

d

dr
〈Qθ,Qθ〉

=
1

2

[
〈Qθ, Q̇θ〉+ 〈Q̇θ,Qθ〉

]
= 0. (5.3)

Since as a result of [2a], [2b] and [2c] we have that f ∈ C[a, b] and f(r) ∈ [a, b] for all r ∈ [a, b] this

immediately gives (ii). Now to justify (iii) we begin by first noting that

|∇u|2 = tr

{
[∇u][∇u]t

}
= tr

{[
f

r
Q + (ḟ − f

r
)Qθ ⊗ θ + fQ̇θ ⊗ θ

]
×[

f

r
Qt + (ḟ − f

r
)θ ⊗Qθ + fθ ⊗ Q̇θ

]}
= tr

{
f

r

[
f

r
In + (ḟ − f

r
)Qθ ⊗Qθ + fQθ ⊗ Q̇θ

]
+

(ḟ − f

r
)

[
f

r
Qθ ⊗Qθ + (ḟ − f

r
)Qθ ⊗Qθ + fQθ ⊗ Q̇θ

]
+

f

[
f

r
Q̇θ ⊗Qθ + (ḟ − f

r
)Q̇θ ⊗Qθ + fQ̇θ ⊗ Q̇θ

]}
= n(

f

r
)2 + (ḟ2 − (

f

r
)2)〈Qθ,Qθ〉+ 2fḟ〈Qθ, Q̇θ〉+ f2〈Q̇θ, Q̇θ〉

= (n− 1)(
f

r
)2 + ḟ2 + f2|Q̇θ|2. (5.4)

Next it is evident that

|u|2 = 〈G(r)θ,G(r)θ〉 = 〈f(r)θ, f(r)θ〉 = |f |2. (5.5)

Hence by combining the latter we can write 1

‖u‖2W 1,2(Ω) =

∫ b

a

∫
Sn−1

{
f2 + (n− 1)(

f

r
)2 + ḟ2+

f2|Q̇θ|2
}
rn−1 dHn−1(θ)dr

=ωn

∫ b

a

{
f2

[
n+ n(n− 1)

1

r2
+ |Q̇|2

]
+ nḟ2

}
rn−1 dr, (5.6)

1Here we are taking advantage of the identity∫
Sn−1

〈Fθ, θ〉 dHn−1(θ) = ωntrF,

that holds for any given F ∈ Mn×n. A straight-forward proof of this assertion is in Proposition B.0.8, Appendix B.
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and so referring again to [1a] and [2a] the conclusion follows. �

Proposition 5.1.2. Suppose that u is a generalised twist as in Definition 3.1.1. Then subject to

Q ∈ C2(]a, b[,SO(n)) and f ∈ C2(]a, b[) we have that

∆u = [αQ + βQ̇ + fQ̈]θ, (5.7)

where

α := f̈ +
n− 1

r
(ḟ − f

r
),

and

β := 2ḟ +
n− 1

r
f.

Proof. Referring to Definition 3.1.1 and using the notation u = (u1, u2, . . . , un) we can write with

the aid of (5.1) in Proposition 5.1.1 that

∆ui =

n∑
j=1

∂

∂xj

{
f

r
Qij + (ḟ − f

r
)

n∑
k=1

Qikθkθj + f

n∑
k=1

Q̇ikθkθj

}

=

n∑
j=1

{
rḟ − f
r2

Qijθj +
f

r
Q̇ijθj + (f̈ − rḟ − f

r2
)

n∑
k=1

Qikθkθ
2
j+

(ḟ − f

r
)

[ n∑
k=1

Q̇ikθkθ
2
j +

1

r

n∑
k=1

Qik(δkj − θkθj)θj+

1

r

n∑
k=1

Qikθk(1− θ2
j )

]
+ ḟ

n∑
k=1

Q̇ikθkθ
2
j + f

n∑
k=1

Q̈ikθkθ
2
j+

f

r

n∑
k=1

Q̇ik(δkj − θkθj)θj +
f

r

n∑
k=1

Q̇ikθk(1− θ2
j )

}
.

Hence we have that

∆ui =f̈

n∑
k=1

Qikθk +
(n− 1)

r
(ḟ − f

r
)

n∑
k=1

Qikθk+

2ḟ

n∑
k=1

Q̇ikθk + f

n∑
k=1

Q̈ikθk +
(n− 1)

r
f

n∑
k=1

Q̇ikθk

=

[
f̈ +

(n− 1)

r
(ḟ − f

r
)

] n∑
k=1

Qikθk+

[
2ḟ +

(n− 1)

r
f

] n∑
k=1

Q̇ikθk + f

n∑
k=1

Q̈ikθk.
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As this is true for every 1 ≤ i ≤ n using vector notation we can write

∆u =

{[
f̈ +

(n− 1)

r
(ḟ − f

r
)

]
Q +

[
2ḟ +

(n− 1)

r
f

]
Q̇ + fQ̈

}
θ,

which is the required identity. �

5.2 The energy restricted to the space of twists

For a generalised twist u as in Definition 3.1.1 using (5.1) and (5.2) in Proposition 5.1.1 we can

write

F[u,Ω] =

∫
Ω

[
1

2
|∇u|2 + φ(det∇u)

]
dx

=
1

2

∫ b

a

∫
Sn−1

{
(n− 1)(

f

r
)2 + ḟ2 + f2|Q̇θ|2+

2φ(ḟ(
f

r
)n−1)

}
rn−1 dHn−1(θ)dr

=
ωn
2

∫ b

a

{
f2

[
n(n− 1)

1

r2
+ |Q̇|2

]
+ nḟ2+

2nφ(ḟ(
f

r
)n−1)

}
rn−1 dr.

Motivated by the above representation in what follows we introduce the energy functional

E[Q, f ] :=

∫ b

a

{
f2

[
n(n− 1)

1

r2
+ |Q̇|2

]
+ nḟ2+

2nφ(ḟ(
f

r
)n−1)

}
rn−1 dr,

over the space of admissible maps

E :=


(Q, f) :

Q ∈W 1,2([a, b],SO(n)),

Q(a) = Q(b) = In,

f ∈W 1,2[a, b],

ḟ > 0 L1-a.e. on (a, b),

f(a) = a, f(b) = b.


Our primary objective here is to obtain the Euler-Lagrange equations associated with the energy

functional E over the space E . Before that, we recall the Proposition 3.2.1 which in effect gives a
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characterisation of the tangent space to the orthogonal group at an arbitrary matrix Q ∈ SO(n).

This will turn useful in computing the aforementioned Euler-Lagrnage equations.

Proposition 5.2.1. Let (Q, f) ∈ E with Q ∈ C2(]a, b[,SO(n)), f ∈ C2(]a, b[) and ḟ > 0 on ]a, b[.

Then assuming E[Q, f ] < ∞ the Euler-Lagrange equations associated with E over E at (Q, f) take

the form

EL[(Q, f)] = 0,

that is, 
(i) d

dr

[
rn−1f2Qt d

drQ

]
= 0,

(ii) d
dr

[
rn−1ḟ + fn−1φ′

]
= (n− 1)[rn−3f + ḟfn−2φ′] + 1

nr
n−1f |Q̇|2,

on ]a, b[ where φ′ = φ′(ḟ( fr )n−1).

Proof. First fix Q as described and for ε ∈ R put Qε = Q+εQ(F−Ft) where F ∈ C∞0 (]a, b[,Mn×n).

Then by utilising Proposition 3.2.1 we can write

0 =
d

dε
E[Qε, f ]

∣∣∣∣
ε=0

0 =
d

dε

[ ∫ b

a

{
f2

[
n(n− 1)

1

r2
+ |Q̇ε|2

]
+ nḟ2+

2nφ(ḟ(
f

r
)n−1)

}
rn−1 dr

]∣∣∣∣
ε=0

=

∫ b

a

rn−1f2〈QtQ̇, (Ḟ− Ḟt)〉 dr

= −
∫ b

a

〈 d
dr

[rn−1f2QtQ̇], (F− Ft)〉 dr.

Note that in concluding the last line we have used integration by parts together with the boundary

conditions F(a) = F(b) = 0. Now in view of QtQ̇ being skew-symmetric it follows that

d

dr

[
rn−1f2Qt d

dr
Q

]
= 0,

which is the first equation in the system.

Next fix f as described and for ε ∈ R put fε = f + εg where g ∈ C∞0 (]a, b[). As ḟ ∈ C(]a, b[)

and K := supp g ⊂]a, b[ is compact it follows that ḟ ≥ c > 0 on K. Thus for |ε| sufficiently small

(|ε| × sup[a,b] |ġ| < c) we have ḟε > 0 on ]a, b[ and so (Q, fε) ∈ E .
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In addition by choosing ε smaller we have E[Q, fε] <∞. The latter follows from the observation

that ḟε = ḟ on ]a, b[\K, the assumption E[Q, f ] <∞ and the lower and upper bounds

c

2
≤ ḟε = ḟ + εġ ≤ sup

K
ḟ + |ε| sup

]a,b[

|ġ|,

on K provided that c ≥ 2|ε| sup]a,b[ |ġ|.

We can now proceed by considering the variations of E along the path (Q, fε) and as a result we

can write

0 =
d

dε
E[Q, fε]

∣∣∣∣
ε=0

0 =
d

dε

[ ∫ b

a

{
f2
ε

[
n(n− 1)

1

r2
+ |Q̇|2

]
+ nḟ2

ε+

2nφ(ḟε(
fε
r

)n−1)

}
rn−1 dr

]∣∣∣∣
ε=0

=

∫ b

a

{
2fg

[
n(n− 1)

1

r2
+ |Q̇|2

]
+ 2nḟ ġ+

2n

[
(
f

r
)n−1ġ + (n− 1)

1

rn−1
ḟfn−2g

]
φ′
}
rn−1 dr

=

∫ b

a

[
(n− 1)[rn−3f + ḟfn−2φ′] +

1

n
rn−1f |Q̇|2

]
g dr+∫ b

a

[
rn−1ḟ + fn−1φ′

]
ġ dr.

Now using integration by parts on the second term on the right together with the fact that g(a) =

g(b) = 0 we obtain

0 =

∫ b

a

[
(n− 1)[rn−3f + ḟfn−2φ′] +

1

n
rn−1f |Q̇|2

]
g dr−∫ b

a

d

dr

[
rn−1ḟ + fn−1φ′

]
g dr.

As the latter is true for all g ∈ C∞0 (]a, b[) it follows that

d

dr

[
rn−1ḟ + fn−1φ′

]
= (n− 1)[rn−3f + ḟfn−2φ′] +

1

n
rn−1f |Q̇|2,

on ]a, b[ which is the second equation in the system. This completes the proof. �

Any twist loop G = fQ forming a solution to the Euler-Lagrange equations associated with E

over E [i.e., whose corresponding f , Q satisfy (i), (ii) above] will be referred to as a stationary loop.
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5.3 Energy minimizing loops in homotopy classes

Consider as in the previous section the energy functional

E[Q, f ] :=

∫ b

a

{
f2

[
n(n− 1)

1

r2
+ |Q̇|2

]
+ nḟ2+

2nφ(ḟ(
f

r
)n−1)

}
rn−1 dr,

over the space of admissible maps

E :=


(Q, f) :

Q ∈W 1,2([a, b],SO(n)),

Q(a) = Q(b) = In,

f ∈W 1,2[a, b],

ḟ > 0 L1-a.e. on (a, b),

f(a) = a, f(b) = b.


According to an elementary version of the Sobolev embedding theorem any pair (Q, f) ∈ E has a

continuous representative [again denoted (Q, f)]. In particular each such Q represents an element

of the fundamental group π1[SO(n)] denoted ]Q[. As is well-known

π1[SO(n)] ∼=

 Z when n = 2,

Z2 when n ≥ 3,

and these facts together enables one to introduce the following partitioning of the Sobolev space E .

[1] (n = 2) for each m ∈ Z put

cm[E ] :=

{
(Q, f) ∈ E : ]Q[= m

}
.

As a result the latter are pairwise disjoint and that

E =
⋃
m∈Z

cm[E ].

[2] (n ≥ 3) for each α ∈ Z2 = {0, 1} put

cα[E ] :=

{
(Q, f) ∈ E : ]Q[= α

}
.
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As a result, again, the latter are pairwise disjoint and that

E =
⋃
α∈Z2

cα[E ].

An application of the direct methods of the calculus of variations to the energy functional E together

with the observation that the homotopy classes c?[E ] ⊂ E are sequentially weakly closed results in the

existence of [multiple]minimizing stationary loops (See Theorem 5.3.2.). We note that the sequential

weak closedness of the homotopy classes c?[E ] is a result of SO(n) having a tubular neighbourhood

that projects back onto it and this in turn follows from SO(n) being a smooth compact manifold.

We begin by first establishing the following straight-forward lower bound on E amounting to it

being coercive on E .

Proposition 5.3.1. (Coercivity). There exists d = d(n, a, b) > 0 such that

E[Q, f ] ≥ d(‖Q‖2W 1,2 + ‖f‖2W 1,2),

for all (Q, f) ∈ E.

Proof. Since for all (Q, f) ∈ E we have that a ≤ f ≤ b on [a, b] by taking into account that φ ≥ 0

we can write

E[Q, f ] =

∫ b

a

{
f2

[
n(n− 1)

1

r2
+ |Q̇|2

]
+ nḟ2+

2nφ(ḟ(
f

r
)n−1)

}
rn−1 dr

≥
∫ b

a

{
n

[
(n− 1)

1

r2
f2 + ḟ2

]
+ f2|Q̇|2

}
rn−1 dr.

The conclusion now follows by utilising the Poincaré inequality. �

Theorem 5.3.2. (Existence of energy minimizing loops).

Consider the energy functional E over the space of admissible maps E. Then,

[1] (n = 2) for each m ∈ Z there exists (Qm, fm) ∈ cm[E ] such that

E[Qm, fm] = inf
cm[E]

E,

[2] (n ≥ 3) for each α ∈ Z2 there exists (Qα, fα) ∈ cα[E ] such that

E[Qα, fα] = inf
cα[E]

E.
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Proof. First of all we note that each homotopy class c?[E ] ⊂ E admits a pair (Q, f) for which

E[Q, f ] < ∞ follows by taking, e.g., f = r and Q a smooth loop representing the corresponding

element of π1[SO(n)]. Let (Qj , fj) ⊂ c?[E ] denote an infimizing sequence for E over c?[E ]. Then

appealing to Proposition 5.3.1 it follows that by passing to a subsequence (not re-labeled) we have

that 

Qj → Q in C([a, b],SO(n)),

Qj ⇀ Q in W 1,2([a, b],SO(n)),

fj → f in C[a, b],

fj ⇀ f in W 1,2(a, b).

As a result we conclude in particular that a ≤ f ≤ b on [a, b] and additionally

fjQ̇j ⇀ fQ̇

ḟj(
fj
r

)n−1 ⇀ ḟ(
f

r
)n−1,

where both convergences are interpreted as weakly in L2. Therefore by standard lower semicontinuity

results (see, e.g., [18]) we have that

inf
c?[E]

E ≤ E[Q, f ]

≤ lim inf
j↑∞

E[Qj , fj ]

≤ inf
c?[E]

E <∞. (5.8)

The above firstly implies that ḟ > 0 L1-a.e. on ]a, b[ and as a result (Q, f) ∈ E . This in view of the

closedness of the homotopy classes c?[E ] ⊂ E with respect to the topology of uniform convergence

gives

]Q[=]Qj [,

and therefore (Q, f) ∈ c?[E ]. A second appeal to (5.8) now implies (Q, f) to be the required

minimizer on c?[E ]. �

Remark 5.3.3. It can be shown that in [1] and [2] above the resulting minimizers satisfy the

corresponding Euler-Lagrnage equations described in Proposition 5.2.1. The argument here will

follow closely that given in detail in the proof of Theorem 5.4.3 and hence will be abbreviated.
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5.4 Alternative construction of multiple stationary loops

In section 5.3 we proved the existence of multiple stationary loops by directly minimizing the energy

functional E over the homotopy classes c?[E ] of the loop space E . By contrast in this section we focus

on the Euler-Lagrange equation itself and present a class of stationary loops that in turn will prove

fruitful in discussing the existence of multiple solutions to the Euler-Lagrange equations associated

with the energy functional F over the space A(Ω).

Indeed here we establish the existence of multiple (infinitely many) stationary loops G = fQ

where the pair (Q, f) ∈ E , depending on whether the dimension n is even or odd, has one of the

following specific forms.

[1] (n = 2k)

Q = Q[g] := Pdiag(R(g1),R(g2), . . . ,R(gk))Pt,

[2] (n = 2k + 1)

Q = Q[g] := Pdiag(R(g1),R(g2), . . . ,R(gk), 1)Pt,

where P ∈ O(n) is fixed, g = (g1, g2, . . . , gk) ∈ Jm (see below) and the matrix R ∈ M2×2 is given

by

R(s) :=

 cos s sin s

− sin s cos s

 .
Indeed for m = (m1,m2, . . . ,mk) ∈ Zk we put

Jm = Jm(a, b) :=


(g, f) :

g ∈ [W 1,2(a, b)]k,

g(a) = 0,g(b) = 2πm,

f ∈W 1,2(a, b),

ḟ > 0 L1-a.e. on (a, b),

f(a) = a, f(b) = b.


It is thus evident that for each such m and fixed P ∈ O(n) and with Q = Q[g] we have that

(g, f) ∈ Jm ⇐⇒ (Q, f) ∈ E .
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Next for (g, f) ∈ Jm as described above and fixed P ∈ O(n) denoting again Q = Q[g] we introduce

J[g, f ] :=E[Q, f ]

=

∫ b

a

{
f2

[
n(n− 1)

1

r2
+ |Q̇|2

]
+ nḟ2 + 2nφ(ḟ(

f

r
)n−1)

}
rn−1 dr

=

∫ b

a

{
f2

[
n(n− 1)

1

r2
+ 2|ġ|2

]
+ nḟ2 + 2nφ(ḟ(

f

r
)n−1)

}
rn−1 dr

= :

∫ b

a

J(r, ġ, f, ḟ) dr, (5.9)

where we have set |ġ|2 =
∑k
j=1 ġ

2
j whilst

J(r, s, z, p) := n

{
z2

[
(n− 1)

1

r2
+

2

n
|s|2
]

+ p2 + 2φ(p(
z

r
)n−1)

}
rn−1.

Proposition 5.4.1. There exists L > 0 and σ > 0 so that for all α > 0 satisfying |α − 1| < σ we

have that ∣∣∣∣zJz(r, s, αz, p)∣∣∣∣ ≤ L[J(r, s, z, p) + 1

]
,

for all r ∈ [a, b], s ∈ Rk, z ∈]0,∞[ and p ∈]0,∞[.

Proof. This follows by direct verification and use of [h5]. �

Proposition 5.4.2. For fixed r ∈ [a, b], s ∈ Rk and z ∈]0,∞[ the function Jp has the following

limiting behaviours

lim
p↓0

Jp(r, s, z, p) = −∞,

lim
p↑∞

Jp(r, s, z, p) =∞

Proof. This is an immediate consequence of [h2]-[h4]. �

We are now in a position to state the main result of this section on existence of infinitely many

stationary loops (Q, f) ∈ E for which Q = Q[g].

Theorem 5.4.3. (Existence and regularity of multiple stationary loops).

Consider the energy functional J over the space Jm. Then for each m ∈ Zk there exists (g, f) ∈ Jm

such that

J[g, f ] = inf
Jm

J[·].
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In addition the pair (g, f) satisfies the corresponding Euler-Lagrange equations

EL[g, f ] = 0,

that is, 

d
dr

[
rn−1f2ġ

]
= 0,

d
dr

[
rn−1ḟ + fn−1φ′

]
= (n− 1)[rn−3f + ḟfn−2φ′] + 2

nr
n−1f |ġ|2,

on ]a, b[ where φ′ = φ′(ḟ( fr )n−1) whilst (g, f) ∈ C2[a, b]× · · · ×C2[a, b] and ḟ > 0 on [a, b].

Note that the above Euler-Lagrange equations will be shown to be satisfied by the pair (g, f) as

a result of its minimizing property. One can then verify that the latter equations result from those

in Proposition 5.2.1 upon making the substitution (Q, f) = (Q[g], f). Thus any such (g, f) gives

rise to an associated stationary loop!

Proof. (Existence) Let (gj , fj) ⊂ Jm denote an infimizing sequence for J over Jm. An application

of Proposition 5.3.1 (with Qj := Q[gj ]) gives

∞ > J[gj , fj ] = E[Qj , fj ] ≥ d(‖Qj‖2W 1,2 + ‖fj‖2W 1,2)

≥ d
[
n(b− a) + 2‖ġj‖2L2 + ‖fj‖2W 1,2

]
,

and so as a result (gj , fj) ⊂ Jm is bounded. It thus follows that by passing to a subsequence (not

re-labeled) we have that 

gj → g in C[a, b],

gj ⇀ g in W 1,2(a, b),

fj → f in C[a, b],

fj ⇀ f in W 1,2(a, b).

Hence in particular a ≤ f ≤ b on [a, b] and that

fj ġj ⇀ f ġ

ḟj(
fj
r

)n−1 ⇀ ḟ(
f

r
)n−1,
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where both convergences are interpreted as weakly in L2. Therefore, again, by standard lower

semicontinuity results we have that

inf
Jm

J ≤ J[g, f ]

≤ lim inf
j↑∞

J[gj , fj ]

≤ inf
Jm

E <∞. (5.10)

The above firstly implies that ḟ > 0 L1-a.e. on ]a, b[ which gives (g, f) ∈ Jm and secondly that

(g, f) is the required minimizer.

(Regularity) Let (g, f) ∈ Jm be the minimizer from the previous part. For the sake of clarity and

convenience we present the proof of this in the following three steps.

Step 1 (g ∈ C1[a, b]) Evidently f ∈ C[a, b] and a ≤ f ≤ b on [a, b]. Hence the assertion follows

immediately in view of g minimizing the integral

h 7→
∫ b

a

|ḣ|2f2rn−1 dr,

among all h with (h, f) ∈ Jm.

Step 2 (f ∈ C1[a, b]) The argument here is based upon suitably modifying a well-known technique

from [4], Theorem 7.3. To this end for j ∈ N put

Ej :=

{
r ∈]a, b[: j−1 ≤ ḟ(r) ≤ j

}
.

Then (Ej) is monotone increasing and L1(]a, b[\ ∪∞j=1 Ej) = 0. Now fix j and pick w ∈ L∞(a, b)

such that ∫
Ej

w =

∫ b

a

w1Ej = 0. (5.11)

For ε ∈ R put

fε(r) := f(r) + ε

∫ r

a

w1Ej .

Then we have that

[1] fε(a) = f(a) = a,

[2] fε(b) = f(b) = b,

[3] ḟε(r) = ḟ(r) for L1-a.e. r /∈ Ej ,

[4] ḟε(r) > 0 L1-a.e. on ]a, b[, provided that |ε| × ||w||L∞(a,b) < j−1.
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The aim is now to derive the Euler-Lagrnage equation associated with f as a result of differenti-

ating the energy functional J along fε at ε = 0. To this end consider first the difference quotient

∣∣∣∣J(r, ġ, fε, ḟε)− J(r, ġ, f, ḟ)

ε

∣∣∣∣ ≤∣∣∣∣J(r, ġ, fε, ḟε)− J(r, ġ, fε, ḟ)

ε

∣∣∣∣+∣∣∣∣J(r, ġ, fε, ḟ)− J(r, ġ, f, ḟ)

ε

∣∣∣∣ = I + II.

Then an application of the mean value theorem gives

I =

∣∣∣∣J(r, ġ, fε, ḟε)− J(r, ġ, fε, ḟ)

ε

∣∣∣∣ ≤ c,
where c = c(j) > 0 is independent of ε. [Notice that indeed I = 0 for L1-a.e. r /∈ Ej .] In a similar

way we have that

II =

∣∣∣∣J(r, ġ, fε, ḟ)− J(r, ġ, f, ḟ)

ε

∣∣∣∣
=

∣∣∣∣Jz(r, ġ, f + θ[fε − f ], ḟ)

∣∣∣∣∣∣∣∣fε − fε

∣∣∣∣,
where θ = θ(ε, r) ∈ [0, 1]. However, since

f + θ[fε − f ] = f

[
1 + θ

fε − f
f

]
= f

[
1 + εθ

1

f

∫ r

a

w1Ej

]
,

it follows from Proposition 5.4.1 that upon choosing ε sufficiently small we can write

II =

∣∣∣∣J(r, ġ, fε, ḟ)− J(r, ġ, f, ḟ)

ε

∣∣∣∣
≤ L

[
J(r, ġ, f, ḟ) + 1

] ∫ r

a

w1Ej =: F (r),

where F ∈ L1(a, b) [note that J[g, f ] < ∞]. Hence an application of Lebesgue’s theorem on domi-

nated convergence gives

0 =
d

dε
J[g, fε]

∣∣∣∣
ε=0

= lim
ε→0

∫ b

a

J(r, ġ, fε, ḟε)− J(r, ġ, f, ḟ)

ε
dr

=

∫ b

a

[
Jp(r, ġ, f, ḟ)w1Ej + Jz(r, ġ, f, ḟ)

∫ r

a

w1Ej

]
dr
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=

∫ b

a

w1Ej

[
Jp(r, ġ, f, ḟ)−

∫ r

a

Jz(ρ, ġ, f, ḟ) dρ

]
dr,

where in concluding the last line we have used a convenient form of integration by parts. Therefore

recalling (5.11) it follows from the above (note that arguing as in estimating II above [see Proposition

5.4.1] and taking into account J[g, f ] < ∞ and a ≤ f ≤ b it follows that Jz(r, ġ, f, ḟ) is summable

on ]a, b[)

Jp(r, ġ, f, ḟ)−
∫ r

a

Jz(ρ, ġ, f, ḟ) dρ = cj ,

for L1-a.e. r ∈ Ej . [Here cj is an arbitrary constant.] Now in view of (Ej) being monotone increasing

it follows that cj is independent of j and in view of ∪∞j=1Ej having full measure in ]a, b[ that

Jp(r, ġ, f, ḟ) = c+

∫ r

a

Jz(ρ, ġ, f, ḟ) dρ, (5.12)

for L1-a.e. r ∈]a, b[. As the term on the right is absolutely continuous on [a, b], using [h2] and

Proposition 5.4.2, it follows that by modifying ḟ on an L1-null set, we have ḟ > 0 and equality in

(5.12) holds everywhere on [a, b] (hence Jp(r, ġ, f, ḟ) is continuous on [a, b]). Standard arguments

(see, e.g., [4] pp. 584 or [18] pp. 57-61) now give the continuity of ḟ on [a, b]. A close inspection

of the proof of Theorem 2.6(ii) in [18] reveals that having (5.12) the same conclusion holds if the

assumption J being of class C1 is replaced by Jḟ being of class C. In a similar way the conclusion

of Theorem 2.6(iii) holds if the assumption J being of class C2 is replaced by Jḟ being of class C1.

Step 3 (g ∈ C2[a, b], f ∈ C2[a, b]) The required regularity of g follows using the conclusion in step

2 in step 1 and that of f from the conclusion in step 2 and the Hilbert-Weierstrass differentiability

theorem (see [18]). �

5.5 The restricted versus the full Euler-Lagrange equations

In this section we discuss in detail the implications that the Euler-Lagrange equations associated

with the energy functional F will exert upon the twist loop G = fQ of a generalised twist u ∈ A(Ω).

Theorem 5.5.1. Let Ω = {x ∈ Rn : a < |x| < b} and let u be a generalised twist as in Definition

3.1.1. Assume in addition that the twist loop G = fQ satisfies the following assumptions.

[1] Q ∈ C2(]a, b[,SO(n)),

[2] f ∈ C2(]a, b[),

[3] ḟ > 0 on ]a, b[,

[4] (Q, f) ∈ E.
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Then the following implication holds.

EL[(Q, f)] = 0 =⇒ EL[u] :=[∇u]t∆u+ (det∇u)∇
[
φ′(det∇u)

]
=f

[
1

n
ḟ |Q̇|2In −

f

r
Q̇tQ̇− (ḟ − f

r
)|Q̇θ|2In

]
θ.

Proof. We proceed by evaluating each of the expressions in EL[u] separately. Indeed with regards

to the first term using (5.1) in Proposition 5.1.1 in conjunction with (5.7) in Proposition 5.1.2 we

can write

[∇u]t∆u =

[
f

r
Qt + (ḟ − f

r
)θ ⊗Qθ + fθ ⊗ Q̇θ

][
αQ + βQ̇ + fQ̈

]
θ

=

{
α
f

r
In + β

f

r
QtQ̇ +

f

r

2

QtQ̈+[
α〈Qθ,Qθ〉+ β〈Qθ, Q̇θ〉+ f〈Qθ, Q̈θ〉

]
(ḟ − f

r
)In+[

α〈Q̇θ,Qθ〉+ β〈Q̇θ, Q̇θ〉+ f〈Q̇θ, Q̈θ〉
]
fIn

}
θ

=

{
f

r

[
βQtQ̇ + fQtQ̈

]
+ f(ḟ − f

r
)〈Qθ, Q̈θ〉In + αḟIn+[

β|Q̇θ|2 + f〈Q̇θ, Q̈θ〉
]
fIn

}
θ, (5.13)

where in concluding the last equation we have made repeated use of the identity (5.3).

Now referring to the Euler-Lagrange equations in Proposition 5.2.1 it follows upon expansion of

(i) that

1

rn−1

d

dr

[
rn−1f2QtQ̇

]
=(n− 1)

f2

r
QtQ̇ + 2fḟQtQ̇ + f2Q̇tQ̇ + f2QtQ̈

=f

{[
(n− 1)

f

r
+ 2ḟ

]
QtQ̇ + fQ̇tQ̇ + fQtQ̈

}
=f

[
βQtQ̇ + fQ̇tQ̇ + fQtQ̈

]
= 0. (5.14)

By pre-multiplying (5.14) with Q̇tQ and ignoring the non-zero factor f we can thus conclude that

0 =Q̇tQ

[
βQtQ̇ + fQ̇tQ̇ + fQtQ̈

]
=βQ̇tQ̇ + fQ̇tQQ̇tQ̇ + fQ̇tQ̈.
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However in view of the second term in the last line being skew-symmetric the above equation in

particular implies that for all θ ∈ Sn−1 we have

〈[βQ̇tQ̇ + fQ̇tQQ̇tQ̇ + fQ̇tQ̈]θ, θ〉 =β|Q̇θ|2 + f〈Q̇θ, θQ̈〉

=β|Q̇θ|2 + f〈Q̇θ, Q̈θ〉

=0. (5.15)

In a similar way referring to (5.3) we have that

d

dr
〈Qθ, Q̇θ〉 =〈Q̇θ, Q̇θ〉+ 〈Qθ, Q̈θ〉

=|Q̇θ|2 + 〈Qθ, Q̈θ〉

=0. (5.16)

Therefore by substituting (5.14), (5.15) and (5.16) into (5.13) respectively we arrive at the identity

[∇u]t∆u =

{
f

r

[
βQtQ̇ + fQtQ̈

]
+ f(ḟ − f

r
)〈Qθ, Q̈θ〉In + αḟIn+[

β|Q̇θ|2 + f〈Q̇θ, Q̈θ〉
]
fIn

}
θ,

=

[
− f

r

2

Q̇tQ̇− f(ḟ − f

r
)|Q̇θ|2In + αḟIn

]
θ. (5.17)

Next referring again to the Euler-Lagrange equation in Proposition 5.2.1 it follows upon expansion

of (ii) that

(det∇u)∇
[
φ′(det∇u)

]
=ḟ(

f

r
)n−1 d

dr

[
φ′(ḟ(

f

r
)n−1)

]
θ

=−
[

(n− 1)

r
ḟ2 + ḟ f̈ − (n− 1)

r2
fḟ − 1

n
fḟ |Q̇|2

]
θ

=−
[
αḟ − 1

n
fḟ |Q̇|2

]
θ. (5.18)

Therefore, by combining (5.17) and (5.18), we arrive at

EL[u] =[∇u]t∆u+ (det∇u)∇
[
φ′(det∇u)

]
=[∇u]t∆u+ (det∇u)φ′′(det∇u)∇

[
det∇u

]
=

[
− f

r

2

Q̇tQ̇− f(ḟ − f

r
)|Q̇θ|2In + αḟIn+
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1

n
fḟ |Q̇|2In − αḟIn

]
θ

=

[
1

n
fḟ |Q̇|2In −

f

r

2

Q̇tQ̇− f(ḟ − f

r
)|Q̇θ|2In

]
θ,

which is the required conclusion. �

Theorem 5.5.2. Let Ω = {x ∈ Rn : a < |x| < b} and let u be a generalised twist as in Definition

3.1.1. Assume F[u,Ω] <∞ and that the twist loop G = fQ satisfies the following assumptions.

[1] Q ∈ C2(]a, b[,SO(n)),

[2] f ∈ C2(]a, b[),

[3] ḟ > 0 on ]a, b[,

[4] (Q, f) ∈ E.

Then the following equivalence between the full and the restricted Euler-Lagrange equations holds. 2

EL[u] = 0 ⇐⇒

 (i) EL[(Q, f)] = 0,

(ii) Q̇(r) ∈ RSO(n) for all r ∈]a, b[.


Proof. Let u be a generalised twist and let G = fQ denote its twist loop. Then in view of [1]-[4]

above an application of Theorem 5.5.1 gives

EL[u] = 0 ⇐⇒ [∇u]t∆u+ (det∇u)∇
[
φ′(det∇u)

]
= 0

=⇒
[

1

n
ḟ |F|2In − (ḟ − f

r
)|Fθ|2In −

f

r
FtF

]
θ = 0, (5.19)

with F = Q̇(r). Moreover, we have that

EL[u] = 0 =⇒ EL[(Q, f)] = 0. (5.20)

[This follows, e.g., by arguing as in Proposition 5.2.1 and noting that the equation on the left results

from taking a larger class of variations in F than that on the right.]

With the aid of the equivalence and the implications in (5.19) and (5.20) we now proceed by

establishing the two implications in the conclusion of the theorem separately.

(Sufficiency "⇐=") Fix r ∈]a, b[ and assume that F := Q̇(r) ∈ RSO(n). Then by definition
2Recall that for every non-negative integer n we have that

RSO(n) :=

{
F : F = ρQ where ρ ∈ R,Q ∈ SO(n)

}
.
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there exists ρ = ρ(r) ∈ R and R = R(r) ∈ SO(n) such that

F = ρR.

A straight-forward calculation now gives

0 =

[
ḟρ2 − (ḟ − f

r
)ρ2 − f

r
ρ2

]
In

=

[
1

n
ḟ |F|2In − (ḟ − f

r
)|Fθ|2In −

f

r
FtF

]
=

[
1

n
ḟ |Q̇|2In − (ḟ − f

r
)|Q̇θ|2In −

f

r
Q̇tQ̇

]
.

Therefore if EL[(Q, f)] = 0 an application of Theorem 5.5.1 immediately gives EL[u] = 0.

(Necessity "=⇒") Assume that EL[u] = 0. Fix r ∈]a, b[ and put Q := Q(r) and F := Q̇(r).

Then referring to (5.19) for every θ ∈ Sn−1 we have that

0 = 〈
[

1

n
ḟ |F|2In − (ḟ − f

r
)|Fθ|2In −

f

r
FtF

]
θ, θ〉

=
1

n
ḟ |F|2 − (ḟ − f

r
)|Fθ|2 − f

r
|Fθ|2

= ḟ

[
1

n
|F|2 − |Fθ|2

]
.

In view of the latter being true for all θ ∈ Sn−1 [and that ḟ(r) 6= 0] it follows that F ∈ RO(n).

Indeed fix F ∈Mn×n and put A := FtF. Then it is evident that

1

n
|F|2 = 〈Fθ,Fθ〉 ⇐⇒ 1

n
trA = 〈Aθ, θ〉,

[for all θ ∈ Sn−1]. Since A is symmetric and non-negative its eigen-values are real and satisfy

0 ≤ λ1[A] ≤ · · · ≤ λn[A]. Testing the above identity in turn with corresponding eigen-vectors gives

at once λ1[A] = · · · = λn[A] := λ and so A = λIn. This can now easily be seen to give F ∈ RO(n).

However as QFt is skew-symmetric it follows from Proposition A.0.5 that QFt ∈ RSO(n) and so

F ∈ RSO(n). This together with (5.20) completes the proof. �

Theorem 5.5.3. Let Ω = {x ∈ Rn : a < |x| < b} and let u be a generalised twist as in Definition

3.1.1. Assume F[u,Ω] <∞ and that the twist loop G = fQ satisfies the following assumptions.

[1] Q ∈ C2(]a, b[,SO(n)),

[2] f ∈ C2(]a, b[),

[3] ḟ > 0 on ]a, b[,
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[4] (Q, f) ∈ E.

Then the following equivalence between the full and the restricted Euler-Lagrange equations hold.

EL[u] = 0 ⇐⇒



[a] (n = 2k) there exist g = g(r) ∈ C2[a, b] with

g(a), g(b) ∈ 2πZ and P ∈ O(n) so

that

(i) Q = Pdiag(R(g), ...,R(g))Pt,

(ii) EL[g, f ] = 0.

Moreover we have that

(iii) f ∈ C2[a, b].

[b] (n = 2k + 1)

(i) Q = In,

(ii) EL[0, f ] = 0,

Moreover we have that

(iii) f ∈ C2[a, b].


Note that in [a](ii) and [b](ii) above we have denoted

EL[g, f ] = 0,

as an abbreviation for the second order system



d
dr

[
rn−1f2ġ

]
= 0,

d
dr

[
rn−1ḟ + fn−1φ′

]
= (n− 1)[rn−3f + ḟfn−2φ′] + rn−1fġ2,

where φ′ = φ′(ḟ( fr )n−1) on ]a, b[.

Proof. We establish each of the two implications in the conclusion of the theorem separately.

(Sufficiency "⇐=") We restrict to the case [a] only as for [b] the conclusion is trivially true. Indeed

let g, P and Q be as described. Then a straight-forward differentiation gives

Q̇tQ̇ =[Pdiag(Ṙ(g), . . . , Ṙ(g))Pt]t×

[Pdiag(Ṙ(g), . . . , Ṙ(g))Pt]

=ġ2PInP
t = ġ2In,
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while diag(Ṙ(g), . . . , Ṙ(g)) ∈ RSO(n). Hence Q̇(r) ∈ RSO(n) for all r ∈]a, b[. Next, using the

same expression for Q we can verify that

QtQ̇ =[Pdiag(R(g), . . . ,R(g))Pt]t×

[Pdiag(Ṙ(g), . . . , Ṙ(g))Pt]

=ġPdiag(J2, . . . ,J2)Pt,

and in a similar way that

|Q̇|2 = tr[Q̇tQ̇] = tr[ġ2In] = nġ2.

Therefore referring to Proposition 5.2.1 it follows that

EL[(Q, f)] = EL[g, f ] = 0,

where in concluding the second equality we have appealed to [a](ii) above. The assertion is now

easily seen to follow from Theorem 5.5.2.

(Necessity "=⇒") Assume that EL[u] = 0. Then according to Theorem 5.5.2 we have that


(i) EL[(Q, f)] = 0,

(ii) Q̇(r) ∈ RSO(n) for all r ∈]a, b[.

Now referring to (i) above by integrating the first equation in the corresponding system (see Propo-

sition 5.2.1) we can write

rn−1f2Qt d

dr
Q = A, (5.21)

where A ∈Mn×n is skew-symmetric and by (ii) above A ∈ RSO(n). We now consider the cases [a]

and [b] separately.

[a] (n = 2k) By utilising Proposition A.0.5 there exist α ∈ R, P ∈ O(n) such that we can re-write

the above equation in the more convenient form

d

dr
Q = α

1

rn−1f2
QPdiag(J2,J2, . . . ,J2)Pt

=: µQJ. (5.22)
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Let g ∈ C1[a, b]∩C2]a, b[ be a primitive of µ satisfying g(a) ∈ 2πZ and then fix α so that g(b) ∈ 2πZ.

Then a straight-forward differentiation gives

d

dr
egJ = ġegJJ

= µegJJ,

whilst

egJ = egPdiag(J2,...,J2)Pt

= Peg[diag(J2,...,J2)]Pt

= Pdiag(R(g), . . . ,R(g))Pt.

Hence by the uniqueness of solutions to initial value problems [applied to (5.22)] it follows that

Q = egJ on [a, b]. This gives [a](i). Using the latter conclusion [a](ii) follows as in the proof of

the sufficiency part using (i) above. Finally that g, f ∈ C2[a, b] follows by using an adaptation

of the argument in Theorem 5.4.3 along with the well-known Hilbert-Weierstrass differentiability

theorem (See [4] pp. 584 and [18] pp. 57-61). As will be seen in the next section EL[g, f ] = 0 is a

genuine Euler-Lagrange equation [in fact corresponding to the energy functional J over the space

(2πma, 0) + Jmb−ma (see Section 5.6)].

[b] (n = 2k+1) An application of Proposition A.0.5 gives A = 0. Hence referring to (5.21) together

with the boundary conditions Q(a) = Q(b) = In it follows that Q = In on [a, b]. This gives [b](i).

Finally according to (i) above we have that

EL[0, f ] = EL[(In, f)] = 0

which gives [b](ii). The proof is thus complete. �

5.6 A characterisation of all twist solutions

In the previous section we discussed the implications that the Euler-Lagrange equations associated

with the energy functional F exerted upon the twist loop G = fQ corresponding to a generalised

twist u ∈ A(Ω) in order for the latter to furnish a solution to these equations. In this section we

show how this analysis enables one to give a complete characterisation of all such twist solutions.

(See Definition 5.6.2.)
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We begin by considering the case of even dimensions (n = 2k). Here for each fixed m ∈ Z we set

Jm := Jm(a, b) :=


(g, f) :

g ∈W 1,2(a, b),

g(a) = 0, g(b) = 2πm,

f ∈W 1,2(a, b),

ḟ > 0 L1-a.e. on (a, b)

f(a) = a, f(b) = b,


,

and

J[g, f ] :=J[g, f ]

=

∫ b

a

{
f2

[
n(n− 1)

1

r2
+ nġ2

]
+ nḟ2 + 2nφ(ḟ(

f

r
)n−1)

}
rn−1 dr,

where g = (g, g, . . . , g). With the aid of this notations we have the following statement.

Theorem 5.6.1. (Existence and regularity of special stationary loops).

Consider the energy functional J over the space Jm. Then for each m ∈ Z there exist g = g(r; a, b,m)

and f = f(r; a, b,m) with (g, f) ∈ Jm such that

J[g, f ] = inf
Jm

J[·].

Moreover the pair (g, f) satisfies the corresponding Euler-Lagrange equations

EL[g, f ] = 0,

that is, 

d
dr

[
rn−1f2ġ

]
= 0,

d
dr

[
rn−1ḟ + fn−1φ′

]
= (n− 1)[rn−3f + ḟfn−2φ′] + rn−1fġ2,

on ]a, b[ where φ′ = φ′(ḟ( fr )n−1). Additionally (g, f) ∈ C2[a, b]×C2[a, b] and ḟ > 0 on [a, b].

Proof.

The argument here is similar to that used in Theorem 5.4.3 and hence will be abbreviated. �

We now return to the energy functional F defined over the space of admissible maps A(Ω). For

the sake of clarity and future reference we proceed with the following definition.
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Definition 5.6.2. (Classical solution)

An admissible map u ∈ A(Ω) is referred to as a classical solution to the Euler-Lagrange equations

associated with the energy functional (1.6) over the space (1.7) if and only if the following hold:

[1] F[u,Ω] <∞,

[2] u ∈ C2(Ω,Rn) ∩C(Ω̄,Rn),

[3] u satisfies the system of equations


[∇u]t∆u+ det∇u∇

[
φ′(det∇u)

]
= 0 in Ω,

det∇u > 0 in Ω,

u = x on ∂Ω.

Note that when speaking of a classical solution in the form of a generalised twist [i.e., u(x) =

f(r)Q(r)θ] in connection with [2] above we implicitly assume the pair (Q, f) to be of class C2, i.e.,

that f ∈ C2]a, b[ and Q ∈ C2(]a, b[,SO(n)). Moreover, in connection with [3] we have det∇u > 0

in Ω ⇐⇒ ḟ > 0 in ]a, b[. [See (5.2).]

We are now in a position to present the main result of this chapter which is a complete character-

isation of all twist solutions to the Euler-Lagrange equations associated with the energy functional

F.

Theorem 5.6.3. (Characterisation of all twist solutions).

Let Ω = {x ∈ Rn : a < |x| < b} and consider the energy functional F over the space A(Ω). Then the

set S of all classical solutions in the form of generalised twists to the corresponding Euler-Lagrange

equations can be characterised as follows.

[1] (n = 2k) S is infinite and any generalised twist u ∈ S can be described as

u =G(r)θ

=f(r)Pdiag(R(g), . . . ,R(g))Ptθ,

where P ∈ O(n) and f, g ∈ C2[a, b] satisfy the second order system [notation as in Theorem 5.6.1]

EL[g, f ] = 0.

[2] (n = 2k + 1) S consist of the single map u = x.

Proof. [1] That S is infinite follows from Theorem 5.6.1. The remaining assertions follow from [a]

in Theorem 5.5.3.
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[2] Assume u ∈ S. Then referring to [b] in Theorem 5.5.3 it follows that Q = In while f ∈ C2[a, b]

and EL[0, f ] = 0. Evidently f = r is a solution to the latter. An application of the phase-plane

argument in [55] (see pp. 111-117) shows that the latter is indeed the only solution. �

5.7 The limiting behaviour of twists when the inner boundary

converges to a point

In this section we consider the case where b = 1 and a = ε > 0 with the aim of discussing the limiting

properties of the generalised twists from Theorem 5.6.3 as ε ↓ 0. This is particularly interesting

since in the limit (the punctured ball) all components of the function space collapse to a single one

and so it is important to have a clear understanding as to how the twist solutions and their energies

[for each fixed integer m] behave.

To this end, let Ωε := {x ∈ Rn : ε < |x| < 1} where n = 2k and for each m ∈ Z let uε ∈ A(Ω)

denote the generalised twist from [1] in Theorem 5.6.3, that is, with the notation x = rθ, set

uε = G(r; ε, 1,m)θ

= fε(r)Pεdiag(R(gε), . . . ,R(gε))P
t
εθ,

where Pε ∈ O(n), fε(r) = f(r; ε, 1,m) and gε(r) = g(r; ε, 1,m).

In order to make the study of the limiting properties of uε more tractable, we fix the domain to

be the unit ball and extend each map by identity off Ωε. [In what follows, unless otherwise stated,

we speak of uε in this extended sense.] Thus, here, we have that

uε : (r, θ) 7→ (fε(r),Qε(r)θ), (5.23)

where

Qε(r) = Pεdiag(R(gε), . . . ,R(gε))P
t
ε,

and

gε(r) =

 0 r ≤ ε,

g(r; ε, 1,m) ε ≤ r ≤ 1,

while

fε(r) =

 r r ≤ ε,

f(r; ε, 1,m) ε ≤ r ≤ 1.
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In discussing the limiting properties of uε it is convenient to introduce a so-called comparison

map. Indeed, fix m ∈ Z and consider the generalised twist

vε = Hε(r)θ

= rPεdiag(R(hε), . . . ,R(hε))P
t
εθ,

where Pε ∈ O(n) is as above and

hε(r) :=


0 r ∈ (0, ε),

2mπ( rε − 1) r ∈ (ε, 2ε),

2mπ r ∈ (2ε, 1).

Thus in particular we can write

vε : (r, θ) 7→ (r,Rε(r)θ), (5.24)

where

Rε(r) = Pεdiag(R(hε), . . . ,R(hε))P
t
ε.

The following proposition describes some of the basic properties of the family of comparison maps

(vε).

Proposition 5.7.1. The family of comparison maps (vε) enjoys the following properties.

[1] det∇vε = 1 in B,

[2] vε → x in W 1,2(B,Rn),

[3] vε → x uniformly on B̄.

Proof. [1] Evidently vε is a generalised twist with the corresponding twist loop

Hε(r) :=rRε(r)

=rPεdiag(R(hε), . . . ,R(hε))P
t
ε.

An application of (5.2) in Proposition 5.1.1 [with the choice f = r] immediately gives [1].

[2] Indeed referring to the definition of vε we can write

‖vε − x‖2W 1,2
0

=

∫
B
|∇vε − In|2 dx

=

∫
B2ε\Bε

|∇vε − In|2 dx ≤ 2

∫
B2ε\Bε

(
|∇vε|2 + |In|2

)
dx.
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However in view of (5.4) in Proposition 5.1.1 [again with the choice f = r] we have that

|∇vε|2 = n+ r2|Ṙεθ|2.

Therefore we can write

∫
B2ε\Bε

|∇vε|2 dx =

∫ 2ε

ε

∫
Sn−1

(n+ r2|Ṙεθ|2)rn−1 dHn−1(θ)dr

= nωn

∫ 2ε

ε

(n+ r2ḣ2
ε)r

n−1 dr

≤ ωn(2n − 1)[n+ 4(2mπ)2]εn.

The above estimates when combined give [2] as a result of Poincaré inequality.

[3] Again by direct verification we have that

|vε − x|2 = |Hε(r)θ − rθ|2

= r2
∣∣∣Pεdiag(R(hε), . . . ,R(hε))P

t
εθ − θ

∣∣∣2
= r2

∣∣∣Pε[diag(R(hε), . . . ,R(hε))− In
]
Ptεθ

∣∣∣2
= r2

∣∣∣[diag(R(hε), . . . ,R(hε))− In
]
ωε

∣∣∣2 (ωε := Ptεθ)

=
1

2
r2|R(hε)− I2|2. (5.25)

However a straight-forward calculation gives

|R(hε)− I2|2 = 8 sin2 hε
2
.

Thus by substitution and referring to the definition of hε we immediately arrive at the bound

sup
B
|vε − x| = sup

[ε,2ε]

2r| sin hε
2
| ≤ 4ε,

which is the required conclusion. This complete the proof. �

Fixm ∈ Z and let gε := (gε, . . . , gε), hε := (hε, . . . , hε). It is evident that the pairs (gε, fε), (hε, r) ∈

Jm(ε, 1) and so according to the minimizing property of (gε, fε) we have that

2

ωn
F[uε,B] = E[Qε, fε] = J[gε, fε]

≤ J[hε, r] = E[Rε, r] =
2

ωn
F[vε,B]. (5.26)
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This in conjunction with [1], [2] in Proposition 5.7.1 implies the boundedness of (uε) inW 1,2(B,Rn)

and as a result (uε) admits a weakly convergent subsequence. Indeed more is true!

Theorem 5.7.2. (Limiting behaviour of twists).

Let Ωε := {x ∈ Rn : ε < |x| < 1}. For fixed m ∈ Z let (uε) denote the family of generalised twists

as in (5.23). Then we have the following convergences.

[1] uε → x in W 1,2(B,Rn),

[2] uε → x uniformly on B̄.

Proof. [1] Fix m ∈ Z and let vε be as in (5.24). Then referring to (5.26) it follows that by passing

to a subsequence (not re-labeled) we have that

 uε ⇀ u in W 1,2(B,Rn),

uε → u Ln-a.e. in B.

In addition we can write

F[x,B] ≤ lim inf
ε↓0

F[uε,B]

≤ lim sup
ε↓0

F[uε,B]

≤ lim
ε↓0

F[vε,B] = F[x,B]. (5.27)

Now fix σ ∈ (0, 1) and recall the pair (gε, fε) used in expressing (uε). Then (uε) bounded in

W 1,2(B,Rn) gives (uε) bounded inW 1,2(B\B̄σ,Rn) and so as a result (gε, fε) is bounded in [W 1,2(σ, 1)]2.

In particular there exist (g, f) ∈ [W 1,2(σ, 1)]2 such that passing to a subsequence (not re-labeled)

we have that 

gε ⇀ g in W 1,2(σ, 1),

gε → g in C[σ, 1],

fε ⇀ f in W 1,2(σ, 1),

fε → f in C[σ, 1],

g(1) = 2mπ,

f(1) = 1.

As a consequence we have in particular that

fεġε ⇀ fġ,

ḟε(
fε
r

)n−1 ⇀ ḟ(
f

r
)n−1,
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where both convergences are interpreted as weakly in L2(σ, 1). Therefore [using the same notation

as in (5.9)] standard lower semicontinuity results (see, e.g., [18]) give

∫ 1

σ

J(r, ġ, f, ḟ) dr ≤ lim inf
ε↓0

∫ 1

σ

J(r, ġε, fε, ḟε) dr. (5.28)

Now referring to (5.23) we can assume that Pε → P as a result of O(n) being a compact manifold.

Hence with the aid of the above we can write

lim
ε↓0

uε(x) = lim
ε↓0

Gε(r)θ

= lim
ε↓0

fεPεdiag(R(gε), . . . ,R(gε))P
t
εθ

= fPdiag(R(g), . . . ,R(g))Ptθ := w, (5.29)

where the convergence is interpreted as uniformly on B\B̄σ. Recalling the pointwise convergence of

(uε) we thus conclude that u = w Ln-a.e. in B\B̄σ. Hence by combining (5.27) and (5.28) we have

that

F[u,B\B̄σ] = F[w,B\B̄σ]

≤ lim inf
ε↓0

F[uε,B\B̄σ]

≤ lim inf
ε↓0

F[uε,B]

≤ lim sup
ε↓0

F[uε,B] ≤ F[x,B].

Note that the energy functional F[·,Ω] is not sequentially weakly lower semicontinuous on A(Ω).

However (5.28) demonstrates that the same is true if one restricts to generalised twists! An appli-

cation of Lebesgue’s theorem on monotone convergence now gives

F[x,B] ≤ F[u,B] = lim
σ↓0

F[u,B\B̄σ] ≤ F[x,B].

Hence F[x,B] = F[u,B] and this in turn together with the strict quasiconvexity of F gives u = x in

B̄. Finally referring again to (5.27) we have that


uε ⇀ u,

u = x,

F[uε,B]→ F[x,B],

 =⇒ uε → x,

which is the required conclusion in [1].
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[2] In view of the assertion in [1] and the characterisation of the pointwise limit of the family (uε)

in (5.29) we have that

w = f(r)Pdiag(R(g), . . . ,R(g))Pt

= rθ = x,

Ln-a.e. in B. Therefore according to f , g both being continuous on the interval ]0, 1] = ∪σ∈]0,1[[σ, 1]

it follows that

fR(g) = rI2

on ]0, 1]. This gives f = r (e.g., by taking the norm of both sides and noting that f is non-negative)

and R(g) = I2 which in turn gives g(r) = 2πn(r) for some n(r) ∈ Z. Referring to g(1) = 2πm it

follows again by appealing to the continuity of g that g(r) = 2πm on ]0, 1]. Next, arguing as in

(5.25) we can write

|uε − x|2 = |Gε(r)θ − rθ|2

= 2r2(1− cos gε)

= 4r2 sin2 gε
2
.

Thus, to conclude [2] fix δ > 0 and first take σ ∈ (0, 2−1δ] and then ε0 such that | sin(2−1gε)| ≤ 2−1δ

on [σ, 1] for ε < ε0. Then supB |uε − x| ≤ max(2σ, δ) = δ. �



Appendix A

Skew-symmetric matrices and the

orthogonal group

Recall from linear algebra that all eigen-values of a [real] skew-symmetric matrix have zero real

parts. Hence they either appear as purely imaginary conjugate pairs or zero. In particular when n

is odd there is necessarily a zero eigen-value. Thus distinguishing between the cases when n is even

and odd respectively we can bring every skew-symmetric matrix to a block diagonal form. In what

follows we set

J2 :=

 0 1

−1 0

 .
Proposition A.0.3. Let A ∈ Mn×n be skew-symmetric. Then there exist (λj)

k
j=1 ⊂ R and P ∈

SO(n) such that

[1] (n = 2k)

A = Pdiag(λ1J2, λ2J2, . . . , λkJ2)Pt,

[2] (n = 2k + 1)

A = Pdiag(λ1J2, λ2J2, . . . , λkJ2, 0)Pt.

Proof. Indeed, here, A is normal [i.e., it commutes with its transpose At = −A] and so the

conclusion follows from the the well-known spectral theorem. �

We note that by allowing P ∈ O(n) we can additionally arrange for the sequence (λj)
k
j=1 to be

non-negative. On the other hand the choices of P and (λj)
k
j=1 are in general non-unique. Indeed it

is a trivial matter to see that by suitably adjusting P one can replace any λj with −λj .

89
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In what follows we set

R(s) :=

 cos s sin s

− sin s cos s

 .
Proposition A.0.4. Let A ∈ Mn×n be skew-symmetric. Then using the notation in Proposition

A.0.3 we have that

[1] (n = 2k)

esA = Pdiag(R(sλ1),R(sλ2), . . . ,R(sλk))Pt,

[2] (n = 2k + 1)

esA = Pdiag(R(sλ1),R(sλ2), . . . ,R(sλk), 1)Pt.

Proof. A straight-forward calculation gives

esJ =

∞∑
n=0

1

n!
snJn2 = R(s).

The conclusion now follows by noting that eA = ePDPt = PeDPt. �

Proposition A.0.5. Let A ∈ Mn×n be skew-symmetric. Assume in addition that A ∈ RO(n).

Then the following hold.

[1] (n = 2k) there exists α ∈ R and P ∈ O(n) such that

A = αPdiag(J2,J2, . . . ,J2)Pt,

[2] (n = 2k + 1) necessarily A = 0.

Therefore it follows that indeed A ∈ RSO(n).

Proof. In view of A ∈ RO(n) there exists α ∈ R such that AtA = AAt = α2In. In what follows

we proceed by considering each of the cases n = 2k and n = 2k + 1 separately.

[1] Since A is skew-symmetric it follows from [1] in Proposition A.0.3 that there exist (λj)
k
j=1 and

R ∈ O(n) such that A = R diag(λ1J2, λ2J2, . . . , λkJ2)Rt. Hence

AtA =[Rdiag(λ1J2, λ2J2, . . . , λkJ2)Rt]t×

[Rdiag(λ1J2, λ2J2, . . . , λkJ2)Rt]

=Rdiag(λ2
1I2, λ

2
2I2, . . . , λ

2
kI2)Rt

=α2In
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and so λ2
1 = λ2

2 = . . . = λ2
k = α2. In particular there exists (βj)

k
j=1 ⊂ {±1} such that A =

αR diag(β1J2, β2J2, . . . , βkJ2)Rt. The conclusion now follows by post-multiplying R with suitable

orthogonal matrices through an application of the following trivial identity relating −J2 to J2,

 0 −1

1 0

 =

 0 1

1 0

 0 1

−1 0

 0 1

1 0

 .
[2] This is an immediate consequence of detA = 0. �

For more details and basics properties related to the matrix exponential as a mapping between

the spaces of skew-symmetric matrices and the special orthogonal groups, we refer the interested

reader to the books [21], [39] and [54].
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Symmetric matrices and vector fields

Proposition B.0.6. Let F ∈Mn×n be fixed and consider for θ ∈ Sn−1 the identity

Fθ ⊗ θ − θ ⊗ Fθ = 0. (B.1)

Then (B.1) holds for all θ ∈ Sn−1 if and only if there exists σ ∈ R such that F = σIn.

Proof. (Sufficiency) If F = σIn for some σ ∈ R then (B.1) is trivially true for all θ ∈ Sn−1.

(Necessity) Assume that (B.1) holds for all θ ∈ Sn−1. To justify the assertion it suffices to consider

the following steps.

[1] By substituting the choices θ ∈ {e1, e2, . . . , en} (the standard basis) it follows that F must be

diagonal.

[2] Assume now that F = diag(d1, d2, . . . , dn). Then (B.1) is equivalent to the set of equations

θiθj(di − dj) = 0,

for 1 ≤ i, j ≤ n where θ = (θ1, θ2, . . . , θn). It thus follows that d1 = d2 = · · · = dn and so denoting

the common value as σ gives the conclusion. �

Proposition B.0.7. Let Ω = {x ∈ Rn : a < |x| < b} and consider the vector field v = A(r)x in Ω

where A ∈ C1(]a, b[,Mn×n) is symmetric. Then the following are equivalent.

[1] v is a gradient,

[2] A = sIn + K for some s ∈ C1]a, b[ and constant symmetric matrix K ∈Mn×n.

92



Appendix B. Symmetric matrices and vector fields 93

Proof. ([1] =⇒ [2])

If v = (v1, v2, . . . , vn) is a gradient field in Ω then it is necessary that for all 1 ≤ p, q ≤ n,

∂vq
∂xp
− ∂vp
∂xq

= 0.

Substituting for v and denoting r = |x| this means that

0 =
∂

∂xp

n∑
j=1

Aqjxj −
∂

∂xq

n∑
j=1

Apjxj

=

{
r

n∑
j=1

Ȧqjθjθp +

n∑
j=1

Aqjδjp

}
−
{
r

n∑
j=1

Ȧpjθjθq +

n∑
j=1

Apjδjq

}
,

or in view of A being symmetric that

0 =

n∑
j=1

{
Ȧqj(r)θjθp − Ȧpj(r)θjθq

}

=

[
Ȧ(r)θ ⊗ θ − θ ⊗ Ȧ(r)θ

]
qp

,

for r ∈ (a, b) and θ ∈ Sn−1. An application of Proposition B.0.6 [with F = Ȧ(r)] now gives

Ȧ(r) = σ(r)In where σ ∈ C]a, b[. Consequently by integration we arrive at

A = sIn + K,

on ]a, b[ where s ∈ C1]a, b[ is a suitable primitive for σ and K ∈ Mn×n is constant and symmetric.

This gives [2].

([2] =⇒ [1])

Assume now A(r) = s(r)In + K then clearly v = s(r)x + Kx in Ω. To show that v is a gradient

it suffices to consider f(x) := ρ(r) + 1
2 〈Kx, x〉 for some ρ ∈ C2]a, b[ to be determined. Then as K

being a symmetric matrix we have

∇f(x) = ρ̇(r)
x

r
+ Kx,

which in turn gives ρ̇(r) = rs(r). An integration now leads to ρ and so here v = ∇f . �

Proposition B.0.8. Let F ∈Mn×n. Then

∫
Sn−1

〈Fθ, θ〉 dHn−1(θ) = ωntrF,
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where ωn = Ln(B).

Proof. Consider the vector field v := Fx for x ∈ B̄. Then an application of the divergence theorem

gives

∫
∂B
〈Fθ, θ〉 dHn−1(θ) =

∫
∂B
〈v(θ), θ〉 dHn−1(θ)

=

∫
B

divv(x) dx

=

∫
B

n∑
i,j=1

∂

∂xi
(Fijxj) = ωntrF.

�
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