

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Supporting Policy-Based Contextual

Reconfiguration and Adaptation in Ubiquitous

Computing

Lachhman Das Dhomeja

l.d.dhomeja@sussex.ac.uk

November, 2010

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of

Philosophy (DPhil) in the School of Informatics, University of Sussex, Brighton, UK

mailto:y.a.malkani@sussex.ac.uk

ii

Abstract

In order for pervasive computing systems to be able to perform tasks which support us

in everyday life without requiring attention from the users of the environment, they need to

adapt themselves in response to context. This makes context-awareness in general, and context-

aware adaptation in particular, an essential requirement for pervasive computing systems. Two

of the features of context-awareness are: contextual reconfiguration and contextual adaptation in

which applications adapt their behaviour in response to context. We combine both these features

of context-awareness to provide a broad scope of adaptation and put forward a system, called

Policy-Based Contextual Reconfiguration and Adaptation (PCRA) that provides runtime

support for both.

The combination of both context-aware reconfiguration and context-aware adaptation

provides a broad scope of adaptation and hence allows the development of diverse adaptive

context-aware applications. However, another important issue is the choice of an effective

means for developing, modifying and extending such applications. The main argument forming

the basis of this thesis is that we advocate the use of a policy-based programming model and

argue that it provides more effective means for developing, modifying and extending such

applications.

This thesis addresses other important surrounding issues which are associated with

adaptive context-aware applications. These include the management of invalid bindings and the

provision of seamless caching support for remote services involved in bindings for improved

performance. The bindings may become invalid due to failure conditions that can arise due to

network problems or migration of software components, causing bindings between the

application component and remote service to become invalid. We have integrated reconfiguration

support to manage bindings, and seamless caching support for remote services in PCRA.

This thesis also describes the design and implementation of PCRA, which enables

development of adaptive context-aware applications using policy specifications. Within PCRA,

adaptive context-aware applications are modelled by specifying binding policies and adaptation

policies. The use of policies within PCRA simplifies the development task because policies are

expressed at a high-level of abstraction, and are expressed independently of each other. PCRA

also allows the dynamic modification of applications since policies are independent units of

execution and can be dynamically loaded and removed from the system. This is a powerful and

useful capability as applications may evolve over time, i.e. the user needs and preferences may

change, but re-starting is undesirable. We evaluate PCRA by comparing its features to other

systems in the literature, and by performance measures.

iii

Acknowledgements

First of all, I would like to thank my supervisors, Dr. Dan Chalmers and Dr. Ian

Wakeman for their valuable guidance over the past four years. I am particularly grateful to Dan

Chalmers, whose constructive criticism and countless meetings with him helped me both to

structure my thoughts and to keep myself focused on such an interesting research topic, which

eventually led to this thesis.

Many thanks to other members of the Foundations of Software System Group,

particularly Dr. Des Watson, Yasir Arfat Malkani, Roya Feizy, Stephen Naicken, Aeshah

Alsiyami, Renan Krishna, Ben Horsfall and Dr. Eskindir Asmare. Special thanks to Simon

Fleming, Danny Matthews and James Stanier from this group for proof-reading this thesis. I

would also like to extend my thanks to my past colleagues, Dr. Jon Robinson, and Dr. Jian Li,

and also to Dr. Kevin Twiddle, senior research fellow at Imperial College, London for

answering my emails about Ponder2.

 I am greatly indebted to my parents for being so supportive and loving throughout my

life. My sincere thanks are due to my wife for being very understanding, caring, loving and

helpful. Thanks to my children – Maanta Dhomeja and Ronat Dhomeja for being source of

entertainment and recreation during difficult times of my research.

http://www.sussex.ac.uk/informatics/people/peoplelists/person/215279
http://www.sussex.ac.uk/informatics/people/peoplelists/person/215279
http://www.sussex.ac.uk/informatics/people/peoplelists/person/162468
http://www.informatics.sussex.ac.uk/users/bgh21/
http://www.sussex.ac.uk/informatics/people/peoplelists/person/244459

v

Contents

ABSTRACT .. - 2 -
ACKNOWLEDGEMENTS .. - 3 -
DECLARATION .. - 4 -
CONTENTS .. - 5 -
LIST OF FIGURES ... - 8 -
LIST OF TABLES .. - 11 -

CHAPTER 1. INTRODUCTION .. - 1 -

1.1 MOTIVATION... - 1 -

1.2 CONTRIBUTIONS ... - 4 -

1.3 THESIS OUTLINE ... - 6 -

CHAPTER 2. BACKGROUND .. - 8 -

2.1 A DEFINITION OF CONTEXT ... - 9 -

2.2 USES OF CONTEXT ... - 10 -

2.3 ADAPTIVE CONTEXT-AWARE APPLICATIONS .. - 12 -

2.4 ADAPTATION APPROACHES ... - 14 -

2.4.1 DYNAMIC ASSOCIATION AND DISASSOCIATION OF NON-FUNCTIONAL CONCERNS/LOW-LEVEL

SERVICE .. - 14 -
2.4.2 COMPONENT RECONFIGURATION ... - 15 -
2.4.3 DYNAMIC RECONFIGURATION OF APPLICATION CODE ... - 15 -
2.4.4 DYNAMIC RECONFIGURATION OF REMOTE METHOD INVOCATION .. - 16 -
2.4.5 CODE MOBILITY ... - 16 -
2.4.6 DISCUSSION AND SUMMARY .. - 17 -

2.5 RECONFIGURATION TO MANAGE BINDINGS .. - 17 -

2.6 POLICIES AND CONTEXT-AWARENESS ... - 19 -

2.6.1 BACKGROUND .. - 19 -
2.6.2 POLICY SYSTEMS ... - 21 -

2.6.2.1 Ponder .. - 21 -
2.6.2.2 PDL .. - 22 -
2.6.2.3 Ponder2 .. - 22 -

2.6.3 CHOOSING A POLICY SYSTEM ... - 25 -

2.7 SUMMARY ... - 26 -

CHAPTER 3. SUPPORTING CONTEXTUAL RECONFIGURATION AND ADAPTATION - 29 -

3.1 SYSTEM ARCHITECTURE OF PCRA .. - 29 -

3.1.1 DESIGN CONSIDERATIONS OF PCRA SYSTEM ... - 31 -

3.2 CONTEXTUAL RECONFIGURATION ... - 32 -

3.3 CACHING SUPPORT FOR IMPROVED PERFORMANCE ... - 36 -

3.4 RECONFIGURATION TO MANAGE BINDINGS .. - 38 -

3.5 CONTEXTUAL ADAPTATION ... - 40 -

3.6 SEQUENCE OF MESSAGES IN POLICY-BASED RECONFIGURATION - 43 -

- ii -

- iii -

- iv -

- v -

- viii -

- xi -

vi

3.7 SEQUENCE OF MESSAGES IN POLICY-BASED ADAPTATION - 43 -

3.8 SUMMARY ... - 44 -

CHAPTER 4. HYPOTHETICAL EXAMPLE SCENARIOS .. - 45 -

4.1 PROTOTYPE HIGH-LEVEL EXAMPLE SCENARIOS .. - 46 -

4.1.1 PCRA EXAMPLE SCENARIOS ... - 46 -
4.1.1.1 A Home Lighting Example Scenario .. - 46 -
4.1.1.2 The Light and Air-conditioning Scenario ... - 50 -
4.1.1.3 Extended Telephone, Light and Music Scenario .. - 52 -

4.1.2 SCOOBY EXAMPLE SCENARIOS .. - 54 -
4.1.2.1 Scenario 1: Simple printer service composition .. - 54 -
4.1.2.2 Scenario 2: Follow Me Service .. - 56 -
4.1.2.3 Scenario 3: The home coffee machine, fridge and cooker ... - 59 -
4.1.2.4 Scenario 4: The home environment .. - 62 -
4.1.2.5 Scenario 5: The music & telephone scenario ... - 64 -

4.2 SCOOBY DESCRIPTION OUTLINE .. - 66 -

4.3 DISCUSSION AND SUMMARY .. - 68 -

CHAPTER 5. PROTOTYPE IMPLEMENTATION ... - 70 -

5.1 SYSTEM UTILITY .. - 71 -

5.2 SIMULATED CONTEXT MONITORS ... - 76 -

5.2.1 USER PRESENCE CONTEXT MONITOR ... - 76 -
5.2.2 LIGHT INTENSITY CONTEXT MONITOR ... - 78 -
5.2.3 TEXT CLOCK .. - 79 -
5.2.4 PHONE MONITOR.. - 80 -

5.3 SETTING UP THE ENVIRONMENT ... - 81 -

5.4 IMPLEMENTATION OF THE HOME LIGHTING SCENARIO - 81 -

5.5 SUMMARY ... - 89 -

CHAPTER 6. EVALUATION .. - 90 -

6.1 HIGH-LEVEL ANALYSIS .. - 91 -

6.1.1 LANGUAGE COMPARISONS ... - 91 -
6.1.2 SOURCE CODE SPECIFICATION LINES .. - 94 -
6.1.3 EXPRESSIVENESS .. - 95 -

6.2 QUALITATIVE EVALUATION .. - 100 -

6.2.1 MODIFIABILITY .. - 100 -
6.2.2 EXTENSIBILITY ... - 102 -
6.2.3 USER INVOLVEMENT .. - 104 -

6.3 PERFORMANCE EVALUATION ... - 105 -

6.3.1 TEST ENVIRONMENT ... - 107 -
6.3.2 TEST RESULTS .. - 109 -

6.3.2.1 Local Setting .. - 109 -
6.3.2.2 Distributed Setting ... - 111 -

6.4 SUMMARY ... - 112 -

CHAPTER 7. RELATED WORK .. - 114 -

7.1 APPROACHES TO DEVELOPING ADAPTIVE CONTEXT-AWARE APPLICATIONS - 114 -

7.1.1 API-BASED APPROACH ... - 114 -
7.1.1.1 Enactor model .. - 114 -
7.1.1.2 Odyssey ... - 116 -
7.1.1.3 One.World .. - 119 -

vii

7.1.2 SPECIFICALLY DESIGNED LANGUAGES.. - 120 -
7.1.2.1 RCSM ... - 121 -
7.1.2.2 Scooby ... - 122 -

7.1.3 POLICY-BASED APPROACH ... - 123 -
7.1.3.1 Towards a framework for self-adaptive component-based applications - 123 -
7.1.3.2 SCaLaDE ... - 124 -
7.1.3.3 POEMA .. - 125 -
7.1.3.4 Chisel .. - 126 -
7.1.3.5 CASA .. - 127 -

7.1.4 SUMMARY .. - 128 -

7.2 APPROACHES TO UPDATING INVALID REFERENCES .. - 129 -

7.3 SUMMARY ... - 130 -

CHAPTER 8. CONCLUSION .. - 133 -

8.1 RECAPITULATION .. - 133 -

8.1.1 MOTIVATION .. - 133 -
8.1.2 SUMMARY OF CONTRIBUTIONS .. - 134 -
8.1.3 SUMMARY OF RESULTS .. - 135 -

8.2 FUTURE WORK .. - 135 -

BIBLIOGRAPHY .. - 138 -

viii

List of Figures

Figure 2.1: Demonstration of an ECA policy ……………..………………………………… -19-

Figure 3.1: High-level System Architecture of PCRA……………………………………… -30-

Figure 3.2: Bindings to the light service and air-conditioning service in room1 and the light

service in room2 ……………………………………….……….……….……….…..……..... -33-

Figure 3.3: The binding policy in the light and air-conditioning example …………..……….-33-

Figure 3.4: Policy-based reconfiguration ……………..……….…………………………….. -36-

Figure 3.5: Seamless caching support of virtual stubs ……………….……………………. ..-38-

Figure 3.6: Reconfiguration to manage bindings …………………………….……………... .-39-

Figure 3.7: The time policy in the light and air-conditioning example …………………..-41-

Figure 3.8: Policy-based contextual adaptation ………………………………….…………. - 42-

Figure 3.9: Message sequence diagram for policy-based reconfiguration ……………….. …-43-

Figure 3.10: Message sequence diagram for policy-based adaptation ……………………… -44-

Figure 4.1: The home lighting example scenario ………………………………….……..-48-

Figure 4.2: PCRA source code for the home lighting example scenario ……………………-49-

Figure 4.3: The light and air-conditioning scenario ………………………………….…..- 51-

Figure 4.4: PCRA source code for the light and air-conditioning scenario ……………….. .-51-

Figure 4.5: Extended telephone, light and music scenario ………………………………… ..-53-

Figure 4.6: PCRA source code for extended light, music and telephone scenario ………….. -53-

Figure 4.7: Printer and converter scenario …………………….……….…………………… -54-

Figure 4.8: PCRA source code for printer-converter scenario …………………………….... -55-

Figure 4.9: Scooby source code for printer-converter scenario ……………………………... -56-

Figure: 4.10: Follow me service scenario ……………………………………….………..... ..-57-

Figure 4.11: PCRA source code for follow me scenario …………………………………... ..-58-

Figure 4.12: Scooby source code for follow me scenario ………………………………... …- 58-

Figure 4.13: The home coffee machine, fridge and cooker …………………………………. -59-

Figure 4.14: PCRA source code for the home coffee machine, fridge and cooker …………. -61-

Figure 4.15: Scooby source code for the home coffee machine, fridge and cooker ………….-62-

Figure 4.16: Home environment scenario ……………………………….……….…………. .-63-

Figure 4.17: PCRA source code for home environment scenario …………………………....-63-

Figure 4.18: Scooby source code for home environment scenario …………………………...-64-

Figure 4.19: The music & telephone scenario ……………………………….…………….. ..-65-

Figure 4.20: PCRA source code for the music & telephone scenario ……………………......-65-

Figure 4.21: Scooby source code for the music & telephone scenario ……………………. ...-66-

Figure 4.22: Binding variable declaration block ……………………………….…………… -66-

Figure 4.23: Service characteristics declaration block ……………………………….. …......-67-

Figure 4.24: Variables declaration block …………………………………….……….….. ….-67-

ix

Figure 4.25: Notification handlers ………………………….……….……………………..... -68-

Figure 4.26: Binding exception code block ……………………………….………………… -68-

Figure 5.1: GUI of the system utility ……………………………………….………............ - 71-

Figure 5.2: First part of system_utility.p2 code …………………………….………………...-73-

Figure 5.3: The second part of the system_utility.p2 source code ………………………… .-75-

Figure 5.4: User presence context monitor ………………………………….…………….. . -77-

Figure 5.5: Code snippet to create user presence event and to give it to the presence context

monitor …………………………………….……….……….……….……….……….….. ….-77-

Figure 5.6: Operation method to create and send the user presence event …………………. .-78-

Figure 5.7: Light intensity context monitor ……………………………….……………….. .-78-

Figure 5.8: Operation method to create and send the light intensity event ……………….. ...-79-

Figure 5.9: Text clock ……………………………………….……….……….……….……. .-79-

Figure 5.10: Code snippet to create time event and to give it to the text clock …………….. .-80-

Figure 5.11: Phone monitor ……………………………………….……….……….……... ...-80-

Figure 5.12: Code for the event part of the home lighting scenario ………………………... -82-

Figure 5.13: Binding policy in the home lighting scenario …………………………………..-83-

Figure 5.14: createBinding method of reconfiguration manager ……………………….....…- 83-

Figure 5.15: First user policy in the home lighting scenario ………………………………. .-85-

Figure 5.16: Adaptation messages of PCRA ………………………………….…….……..... -85-

Figure 5.17: Two variants of getRemoteFieldValue message ……………………………… .-85-

Figure 5.18: Demonstration of 2
nd

 variant of getRemoteFieldValue message …………….... -86-

Figure 5.19: Three variants of perfromAdaptation message ………………………………... -86-

Figure 5.20: PCRA adaptation interface …………………………………….……….…….....-87-

Figure 5.21: Light policy for the home lighting scenario ………………………………….. .-87-

Figure 5.22: Reading policy in the home lighting scenario ……………………………….... -88-

Figure 5.23: The user leaving policy in the home lighting scenario ……………………….... -88-

Figure 6.1: Expressing a reconfiguration message in PCRA …………………………….. ….-97-

Figure 6.2: Expressing service bindings in Scooby …………………………….………….....-98-

Figure 6.3: A single PCRA reconfiguration message expressing multiple services with the same

search criteria ……………………………………….……….……….……….………... ……-98-

Figure 6.4: The Scooby code expressing multiple services with the same search criteria … ..-98-

Figure 6.5: The part of the Scooby code for telephone & music scenario ………………….-101-

Figure 6.6: The attending call policy in the telephone & music scenario …….…………....-101-

Figure 6.7: The code snippet for creating a time event template, loading the timer and giving it

the time event type ………………………………….……….…….……….………….…… -103-

Figure 6.8: The time policy to record a message ……………………….……………….…. -103-

Figure 6.9: Reconfiguration time without cache sequence diagram ……………………... ...-106-

Figure 6.10: Reconfiguration time with cache sequence diagram ………………………..... -106-

Figure 6.11: Adaptation sequence diagram………………………………………………….-107-

Figure 6.12: PCRA local setting configuration……………………………………………...-108-

Figure 6.13: PCRA distributed setting configuration …. …………………………………...-108-

Figure 6.14: Reconfiguration time in local setting…………………………………………..-110-

x

Figure 6.15: Adaptation time in local setting..……………………………………………....-111-

Figure 6.16: Comparative analysis of reconfiguration and adaptation time between local and

distributed settings…………………………………………………………………………...-112-

Figure 7.1: Type-specific operation in Odyssey……………………………………………..-117-

Figure 7.2: Adaptation interface in PCRA…………………………………………………...-117-

xi

List of Tables

Table 6.1: Language comparisons ………………………………………………………….. -92-

Table 6.2: Source code specification comparisons …………………………………………. -94-

Table 6.3: Expressiveness comparisons …………………………………………………….. -96-

Table 6.4: Binding constructs comparisons …………………………………………….........-97-

Table 6.5: Effectiveness of approach comparisons ………………………………………... -112-

Table 7.1: Adaptation scope comparisons ………………………………………………..... -128-

Table 7.2: Programming approach comparisons………………………………………........ -129-

- 1 -

Chapter 1

Introduction

1.1 Motivation

In 1991, Mark Weiser outlined his vision of ubiquitous computing [85], now also

known as pervasive computing, in which he predicted that computing would no longer be

confined to desktops, but become ubiquitous and invisible to the user. Discussing Weiser‘s

vision, Satyanarayanan [86] defined invisibility as the “complete disappearance of pervasive

computing technology from a user’s consciousness” and approximated this to ―minimal user

distractions”. In order for pervasive computing systems to be able to perform tasks which

support us in everyday life with minimal or no user distraction, they need to adapt themselves in

response to context. This makes context-awareness in general and context-aware adaptation in

particular, an essential requirement for pervasive computing systems.

There have been a number of definitions of context and context-aware computing

(context-awareness) proposed within the literature (we discuss in chapter 2). Two of the

categories of context-awareness identified and discussed by the researchers are contextual

reconfiguration and contextual adaptation. These categories identify that an application can

modify (adapt) its behaviour in response to context and thus any applications belonging to these

categories can be considered to be adaptive context-aware applications. The other context-aware

applications that belong to the other two categories (contextual sensing and contextual

augmentation in existing terminology) cannot be considered to be adaptive context-aware

applications because these applications don‘t adapt themselves in response to context; instead

either contextual information describing the current context (e.g., temperature, location, etc.) is

presented to a user, or context is associated with data (e.g. records of objects surveyed can be

associated with location, meeting notes can be associated with people in the meeting, etc.).

Based on the above discussion we argue that adaptive context-aware applications are a subset of

context-aware applications. Efstratiou [2] has also made similar arguments while defining

adaptive context-aware applications.

- 2 -

Contextual reconfiguration is the process of restructuring or reconfiguring the software

components of the applications to realize new behaviour which may be required to fulfil user

needs or to enrich the user experience. This can be achieved by discovering service(s) based on

context and binding them to application components. For example, a user may want to have her

messages displayed or printed to the nearest rendering device to her location. This requires

discovering a device based on the location of the user and binding to it, and then sending

messages to the bound device. As another example, contextual reconfiguration may be used to

enrich the experience of a mobile user by providing her with a service of interest with respect to

her changed location without requiring any cooperation from her. For instance, when the user is

standing near a cinema, a movie information service could send information about the movies

being exhibited in that cinema.

Unlike contextual reconfiguration where adaptation is achieved by reconfiguring

application code (e.g. by discovering service(s) based on context and binding them to

application component), contextual adaptation is the process of modifying the application

behaviour through the modification of the behaviour of the component/service involved in the

binding, in response to context. Chalmers [5] has separated two cases in contextual adaptation:

(1) when context is involved in triggering an action and (2) when context is involved in

modifying the actions, which have been caused separately. As a result of this distinction, he has

divided contextual adaptation into two forms: context-triggered actions [4] and contextual

mediation—using context to modify a service. In the context of Chalmers‘s work, adaptation

which involves modifying a service based on context is contextual mediation where the best

variant of data elements is selected based on context of use. Using context to modify a service

may involve other processes than contextual mediation. For example, in a simple home lighting

scenario the light service may be modified to adjust the light value to some user-preferred value

based on the user‘s activity. Regardless of what kind of adaptation the modification of actions

serve, an important point to note is that triggering actions based on context (context-triggered

actions) and modifying these actions based on context (e.g. contextual mediation) are two

separate tasks, thus two separate cases. Our work on contextual adaptation is inspired by

Chalmers‘s philosophical view on contextual adaptation and thus includes both context

triggered actions and modifications of these actions.

The field of context-aware adaptation has been widely studied and applied in mobile

environments to address inherent limitations of mobile technology (such as varying network

quality, limited battery life), where the service is adapted in response to context (such as

resource variation, small screen size, limited battery power, etc.) to retain the usefulness of

mobile applications without any intervention from users. While there has been much work on

- 3 -

contextual adaptation in mobile environments where mobile applications adapt to resource

variability, we focus on a set of applications in other pervasive computing environments (e.g.

domestic environment), where contextual adaptation is required to be performed in response to

other context triggers, such as environmental context (light level, noise level, temperature level,

etc.) and user context (user presence, user activity, etc.).

 We believe that both the contextual reconfiguration and contextual adaptation features

of context-awareness are interesting, as applications in these categories adapt their behaviour

according to context, thus helping to minimise user distractions. Both of these adaptive features

of context-awareness provide different kinds of adaptations and can individually satisfy the

adaptation requirements of various adaptive context-aware applications. However, we envision

many adaptive context-aware scenarios (see chapter 4 for various adaptive context-aware

applications that we have implemented) whose adaptation requirements cannot be satisfied by

either of these features alone. In order to provide a broad scope of adaptation, we combine both

features of context-awareness—contextual reconfiguration and contextual adaptation and

present a system, called Policy-Based Contextual Reconfiguration and Adaptation (PCRA),

which provides runtime support for both. As discussed before, we consider two separate cases

in contextual adaptation: context-triggered actions and modification of these actions in response

to context. Contextual adaptation support integrated within PCRA employs a parameter

adaptation approach for modifying triggered actions in response to context, where the service

behaviour is modified through parameter adjustments. In chapter 2, we have identified and

discussed various adaptation approaches used in the literature to achieve dynamic adaptation,

and the service parameter adaptation is one of these.

An important issue associated with adaptive context-aware applications is that of the

invalidity of bindings. There come times when bindings, created by reconfiguration support,

become invalid for reasons including sudden non-availability of the bound service (due to

power failure at the hosting device where the bound service is running), or the bound service

has been moved to some other location over the network for load-balancing purposes, or it has

been moved closer to the entity accessing the bound service, in order to save bandwidth. In all

these situations, the real proxy/stub of the bound service becomes invalid, causing all the

bindings to this service to become invalid. Adaptive context-aware applications are complex to

develop, maintain and modify, and the issue of managing these binding failures further

complicates development efforts. In order to reduce the complexity involved in developing,

maintaining and modifying adaptive context-aware applications, we propose to relieve the

application developer from the responsibility for managing bindings and to delegate this to our

system, PCRA.

- 4 -

One of the steps in the reconfiguration process involves a remote lookup to discover the

service(s) based on context. This remote lookup process provides the largest contribution to

reconfiguration time. This is due to fact that the remote calls are much slower than local calls. In

adaptive context-aware applications, this may turn out to be undesirable in terms of user

experience. Moreover, other distributed applications using the network may be affected as every

remote method call decreases the amount of bandwidth available on the network. To address

this problem we propose and implement seamless caching support of virtual stubs (we discuss

virtual stubs in chapter 3) within PCRA for improved performance.

The provision of a broader scope of adaptation satisfies different adaptation

requirements of the applications and hence allows the development of diverse adaptive context-

aware applications. However, another core issue is the simplification of development and

dynamic modification of applications. Many research efforts [21,22,24,25,69,77] focus on this

and provide means to simplify development. The approaches offered by these systems are in the

form of Application Programming Interface (API) or the development of specially designed

languages, which include high-level constructs to code adaptive context-aware applications. Our

evaluation results (chapter 6) and review of various related systems (chapter 7) suggest that the

specifically designed languages contribute better towards the goal of simplifying development,

though APIs provide a more flexible model but at the cost of ease of use. While approaches

based on specifically designed languages simplify the development task due to the use of high-

level adaptation directives, these approaches have one limitation in that adaptation directives are

hard-coded inside the applications. This limitation introduces inflexibility in the sense that it

does not allow dynamic modification. To modify the application, it needs to be stopped,

modified and then restarted. To address this limitation, we advocate and present a policy-based

programming approach for developing, modifying and extending such applications, and use a

specialized declarative policy system, Ponder2 [26,80,94], for specifying binding and adaptation

policies. In the evaluation chapter, we show that the policy-based programming approach

provides a more effective means for developing adaptive context-aware applications than an

API-based approach or specifically designed languages.

1.2 Contributions

In this thesis, we present the Policy-based Contextual Reconfiguration and Adaptation

(PCRA) system that enables rapid development and maintenance of adaptive context-aware

applications and also allows dynamic modification of the applications. To provide a broader

- 5 -

scope of adaptation and to simplify the task of developing, maintaining and modifying adaptive

context-aware applications, PCRA provides several features:

 Scope of adaptation: In order to provide a broader scope of adaptation, PCRA supports

following types of adaptation.

o Context-aware reconfiguration of bindings: PCRA system provides runtime

support for context-aware reconfiguration of bindings. This runtime support

responds to binding policies and performs reconfiguration activities. These

activities involve discovering service(s) based on context and then creating bindings

between the user and discovered service(s).

o Context-aware adaptation of service: PCRA provides runtime support for

context-aware adaptation of service, which involves both triggering the behavior of

the bound service in response to context (i.e., context-triggered actions) and

modifying the triggered behavior of that service in response to context. PCRA uses

parametric adaptation for realizing the latter. The policies are written to encode

adaptation behavior, and service adaptation runtime support respond to these

policies and realize adaptation.

o Reconfiguration to manage invalid bindings: The bindings created by

reconfiguration of bindings runtime support can become invalid for various reasons.

PCRA also provides reconfiguration support to manage invalid bindings. This

reconfiguration support relieves an application developer from the responsibility for

managing invalid bindings, thus contributing towards simplifying the task of

developing, maintaining and modifying the adaptive context-aware applications.

 Support for caching of virtual stubs for improved performance: PCRA provides

runtime support for caching virtual stubs for improved performance, where, as a part of the

reconfiguration process, the remote service is discovered, a virtual instance created and

initialized with the discovered service and then cached locally. When the application needs

to create the binding to this service again, the corresponding virtual stub is obtained from

the local cache directly without the need for a remote call. This significantly reduces

reconfiguration time, hence improves the system performance.

- 6 -

 Use of the policy-based programming approach: We advocate and propose a policy-

based programming approach to reconfiguration and adaptation. We argue that the policy-

based approach is an efficient way of developing, modifying and extending adaptive

context-aware applications as opposed to specifically designed languages, which provide

high-level languages constructs for adaptation and an API-based approach, where

adaptation support is provided through an API. The effectiveness of the policy-based

approach comes from: (1) policies are expressed declaratively at a high-level of abstraction

(i.e., application developers are not required to know low level details of reconfiguration /

adaptation mechanisms) and independently of each other, thus simplifying development and

(2) policies allow dynamic modification of adaptive context-aware applications as policies

are independent units of execution and can be dynamically loaded and unloaded from the

system. This is a powerful and useful feature of the policy-based approach as applications

may evolve over time (i.e., the user needs and preferences may change) but re-starting is

undesirable, unlike both specifically designed languages and API-based approaches that do

not support dynamic modification of adaptive context-aware applications.

1.3 Thesis Outline

Chapter 2 presents the background to this work. We review the literature relating to two

parts of our research problem—context-awareness and policies. We also identify from the

literature various adaptation approaches used to realize dynamic adaptation. From the literature

review, we set the scope of research work and establish its place in the field.

Chapter 3 provides an introduction to PCRA, where we provide its high-level

architecture and briefly describe various elements of it. We provide a description of each of our

contributions supported by PCRA and provide an architectural overview of each, and then

discuss how each contribution is realized through the architectural components involved.

Chapter 4 provides a high-level description of various hypothetical example scenarios

that we have designed and implemented. These scenarios are used to examine our contributions

as well as a basis for the evaluation of our approach to the development of adaptive context-

aware applications and its comparison with Scooby and One.World.

Chapter 5 describes the prototype implementation of our reconfiguration and adaptation

infrastructure integrated within PCRA. We describe the design and implementation of our GUI-

based system utility. This chapter also provides a description and implementation of various

simulated context monitors that are used in the implementation of example scenarios.

- 7 -

Chapter 6 provides the evaluation of PCRA. In this chapter we evaluate our policy-

based programming approach and compare it to a specifically designed language for service

composition/reconfiguration (Scooby) and an API-based approach (One.World). We also study

the performance of two main features of PCRA: contextual reconfiguration and contextual

adaptation.

Chapter 7 provides an overview of related systems. We describe various core concepts

involved in each system, and which adaptation approaches have been used by these systems to

realize dynamic adaptation. This chapter also discusses which approach is provided by these

systems to develop adaptive context-aware applications, and then briefly compare it with our

approach. We also review some of the approaches used in the systems to handle the issue of

updating invalid references and compare with them our approach to handling this issue.

Chapter 8 summarizes the contributions of this research work and explores directions

for future work.

- 8 -

Chapter 2

Background

Context awareness, in general and context-aware adaptation in particular, is a central

aspect of mobile and ubiquitous computing applications, characterizing their ability to adapt and

perform tasks based on context. Context-aware computing was pioneered by researchers at

Xerox PARC Laboratory [37-39] under the vision of ubiquitous computing [40], also known as

pervasive computing. Since then, this area has been widely studied and many context-aware

systems have been built to demonstrate the usefulness of this research area. A summary of

contributions made in this area can be found in [3,9]. Context-aware computing is a computing

paradigm in which applications can discover and take advantage of contextual information (such

as user presence, user activity, user location, device characteristics, resource variation, time,

light and noise levels, etc.). For example, in mobile computing it is used to help deal with the

technological limitations (such as low CPU power, small display, low battery, and low

communication bandwidth) so that the usefulness of an application is retained under various

circumstances. Due to the availability of new environment monitoring technologies (location

tracking, service discovery etc.), it is possible to enrich the experience of a mobile user by

providing her with information of interest based on her current location. For instance, when the

user is standing near a cinema, a movie information service should send information about the

movies being exhibited in that cinema etc.

 The smart home is a place which adapts in order to improve comfort, safety, security

and resource use to its occupants. In smart environments such as smart homes, it is the context-

awareness that makes a home smart. This is achieved by interconnecting sensors, computing,

appliance and services. While some benefits may come from a programmed home, ―smartness‖

arises from context-awareness where a reprogrammable home adapts to context (occupancy,

activities, weather, etc.).

Recently context-awareness has been applied in body sensor networks [41,42] to

provide continuous monitoring of medical conditions of a patient such as heart-rate and glucose

level, and to provide alerts to healthcare personnel or the patient herself to suggest a course of

action in case of abnormal conditions.

This chapter is organised as follows. Section 2.1 and 2.2 give an overview of definition

of context and context-aware computing given by various researchers. Section 2.3 discusses

- 9 -

adaptive context-aware applications. Section 2.4 gives an overview of various adaptation

approaches used in the literature to realize dynamic adaptation. Section 2.5 presents and

describes our reconfiguration approach to managing bindings. Section 2.6 provides an overview

of policies and context-awareness. Finally, section 2.7 gives a summary of this chapter.

2.1 A Definition of Context

There has been much debate on the definition of context and context-aware computing

in the research community and that has given rise to a variety of definitions of context and

consequently context-aware computing.

Schilit et al. [4] define context by enumerating examples of context and claim that

important aspects of context are: where are you, who you are with and what resources are

nearby. They define context to be constantly changing execution environment such as

communication bandwidth, processors available for a task, etc. They divide context into three

categories:

 Computing context, such as communication bandwidth, network connectivity, available

processors, communication costs, and nearby resources such as printers, and displays.

 User context, such as the user location, the user‘s profile, people nearby.

 Physical context, such as lighting, noise levels, traffic conditions, and temperature.

Brown et al. [43] also define context by examples and describe it as location, the time of

the day, temperature, etc.

Chen and Kotz [9] argue that context in mobile computing has two different aspects.

One aspect is about the characteristics of surrounding environment that determine the behaviour

of an application, while the other aspect of context is relevant to an application but not critical,

where it is not necessary for the application to adapt its behaviour to the context except to

display them to interested users. Based on this observation they define context as “Context is

the set of environmental states and settings that either determines an application’s behaviour or

in which an application event occurs and is interesting to the user”. Furthermore, they divide

context into two categories based on these two different aspects of context: active context,

which directly influences the application behaviour; and passive context that is relevant but not

critical to the application.

Based on the definition of context in the oxford dictionary (1995), which defines

context to be “the circumstances relevant to something under consideration”, Chalmers [5]

takes computing oriented view of this definition and considers “something under

- 10 -

consideration” to be some interaction with a computing device, and then define context to be

―Context is the circumstances relevant to the interaction between a user and their computing

environment‖.

Dey and Abowd [3] define context to be ―Any information that can be used to

characterise the situation of an entity. An entity is a person, place, or object that is considered

relevant to the interaction between a user and an application, including the user and the

applications themselves‖.

It can be observed from the above discussion that out of all the definitions of context

given by various researchers, the definition of context given by Chalmers [5] and Dey and

Abowd [3] is broader in the sense that it can include any information that characterizes the

situation of a participant in an interaction, be that resource variation, mobility aspects, user

location, preferences of the user, user activity, lighting, noise level, temperature, etc.

2.2 Uses of Context

Context-aware computing was first discussed by Schilit and Theimer [39], where they

define context-aware computing to be software that ―adapts according to its location of use, the

collection of nearby people, as well as changes to those objects over time‖. Since then, there

have been a number of definitions of context-aware computing in the literature by various

researchers, such as Pascoe [8], Chen and Kotz [9], Chalmers [5] and Dey and Abowd [3]. In

order to help identify and define core features of context-awareness, these researchers have

categorized its features.

Schilit et al. [4] divided context-aware application into four categories: Proximate

Selection, Automatic Contextual Reconfiguration, Contextual Commands and Context-triggered

Actions.

Pascoe [8] proposed a taxonomy of context-aware features as follows: Context Sensing,

Contextual Adaptation, Contextual Resource Discovery and Contextual Augmentation.

Dey and Abowd [3] combines the ideas from both these taxonomies and takes into

account some differences, and proposes categorization as follows:

(1) presentation of information and services to a user;

(2) automatic execution of a service; and

(3) tagging of context to information for later retrieval

The first category is the combination of Schilit‘s proximate selection and contextual

commands, and it also includes Pascoe‘s contextual sensing. The second category is the same as

- 11 -

Pascoe‘s contextual adaptation and Schilit‘s context-triggered actions. And the third category is

the same as Pascoe‘s contextual augmentation. The important point to note is that Dey and

Abowd‘s proposed categorization does not explicitly have a separate category that could map

Schilit‘s contextual reconfiguration and Pascoe‘s contextual resource discovery. They consider

resource exploitation or resource discovery no different from choosing a service based on

context. They argue that resource exploitation or resource discovery can be the presentation of

resource information (e.g., list of printers) to the user based on context or automatic execution

of a service (e.g., printer service) for the user based on context. In the former it falls into the

first category and in the latter it falls into the second category. This indicates that the second

category, in addition to being the same as Schilit‘s context-triggered actions and Pascoe‘s

contextual adaptation, implicitly includes Schilit‘s contextual reconfiguration and Pascoe‘s

contextual resource discovery.

Chalmers identifies five uses of contextual information in pervasive computing

environments, drawing from Dey and Abowd and Schilit et al.: contextual sensing, contextual

augmentation, contextual resource discovery, context-triggered actions and contextual

mediation.

Chalmers [5] has separated two cases in contextual adaptation: 1) when context is

involved in triggering an action and 2) when context is involved in modifying the actions, which

have been caused separately. As a result of this distinction, Chalmers has divided contextual

adaptation into two forms: context-triggered actions [4] and contextual mediation—using

context to modify a service. In the context of Chalmers‘s work, adaptation which involves

modifying a service based on context is contextual mediation where the best variant of data

elements is selected based on context of use. Using context to modify a service may involve

other than contextual mediation. For example, in a simple home lighting scenario the light

service may be modified to adjust the light value to some user preferred value based on the

user‘s activity; or in some other context-aware scenario the TV volume may be reduced when

someone is talking on the phone. Irrespective of what kind of adaptation the modification of

actions serve, an important point to note is that triggering actions based on context (context-

triggered actions) and modifying these actions based on context(e.g., contextual mediation) are

two separate tasks thus two separate cases.

Following the above discussion, we argue that when context is involved in triggering an

action it is acting as an input to a context-aware system and when it is involved in modifying

these actions it is acting as a modifier to the context-aware system. The difference between

context-triggered actions and modification of these actions can be understood through this

simple example. When the user enters the room, the light is turned ON (context-triggered

- 12 -

action—the light is turned ON in response to the user presence context) and then the light is

adjusted to some value based on the user‘s activity (modification of action----the light value is

adjusted to a certain value in response to activity context). In this example user presence context

is an input since it is involved here to trigger the action (turning the light ON), while activity

context is a modifier since it is involved in modifying the action (adjusting the light value). Our

work on contextual adaptation is inspired by Chalmers‘s philosophical view on contextual

adaptation and thus includes both context triggered actions and modifications of these actions.

Many researchers have attempted to provide the definition of context and context-aware

computing. A summary definition of context-aware computing is given by Dey and Abowd,

which states:

“A system is context-aware if it uses context to provide relevant information

and/or services to the user, where relevancy depends on the user’s task.”

2.3 Adaptive Context-Aware Applications

Dey and Abowd‘s second category of context-awareness identifies that an application

can modify (adapt) its behaviour in response to context and thus any application in this category

can be considered to be an adaptive context-aware application. As discussed earlier, contextual

reconfiguration/contextual resource discovery has been explicitly defined by other researchers

as a separate context-aware feature, while Dey and Abowd argue that reconfiguration/discovery

is no different from automatic execution of a service, as discussed earlier. We would like to

explicitly mention that applications belonging to this category can be considered to be adaptive

context-aware applications in the sense that application behaviour is modified by discovering a

service based on context and then binding with it to realize new behaviour based on context.

Context-aware applications that belong to the other two categories (contextual sensing and

contextual augmentation in existing terminology) cannot be considered to be adaptive context-

aware applications because applications don‘t adapt themselves in response to context, but

either contextual information describing the current context(e.g., temperature, location, etc.) is

presented to a user or context is associated with data(e.g. records of objects surveyed can be

associated with location, meeting notes can be associated with people in the meeting, etc.). The

above discussion reveals that adaptive context-aware applications are a subset of context-aware

applications, but not vice versa. Efstratiou [2] has also made a distinction between adaptive

context-aware applications and context-aware applications and has made similar arguments.

The field of context-awareness is broad and there has been much work on all categories

of context-awareness. Contextual adaptation in mobile environments is used to handle inherent

- 13 -

restrictions of mobile technology and other issues such as heterogeneity of clients/devices,

where the service is modified in response to context (such as resource variation, limited battery

power, small screen size, etc.) to retain the usefulness of applications without any intervention

from the users of the applications [1,2,10-17,44,45,96-98]. While early research focused on

contextual adaptation where applications were required to adapt to resource variability, there

are other pervasive computing environments (e.g., domestic environment) where applications

are required to adapt to other contextual triggers such as environmental context(light level, noise

level, temperature level) and user context (user presence, user activity, etc.). We focus on a set

of applications scenarios where contextual adaptation is required to be carried out in response to

environmental context and user context.

In contrast to contextual adaptation, contextual reconfiguration involves restructuring or

reconfiguring the structural parts of the application, in order to achieve new behaviour of the

application required in the current operating environment. The field of dynamic reconfiguration

is broad and has been widely studied and applied in research domains such as stationary

distributed systems [46-49] and mobile and pervasive applications [1, 23,50-52]. In stationary

distributed systems this has been applied to achieve load-balancing, fault-tolerance, to improve

performance or to harden security in response to attack, without taking the system offline.

Reconfiguration is an important approach to apply in distributed systems where the high

availability of the system is an important requirement. In mobile and pervasive systems

contextual reconfiguration may be used to enrich the experience of a mobile user by providing her

with a service of her interest with respect to her changed location without requiring any

cooperation from her.

We believe that contextual reconfiguration and contextual adaptation features of

context-awareness are more interesting as applications in these categories adapt their behaviour

according to context, thus helping to eliminate unnecessary user cooperation, making

technology as ―calm‖ as possible. While there has been much work on both contextual

reconfiguration and contextual adaptation individually, we envision many adaptive context-

aware applications that involve both these features of context-awareness and focus on

combining both context-aware features. We put forward a system that provides runtime support

for both contextual reconfiguration and contextual adaptation.

In the next section, we review various adaptation approaches that have been used in the

field of mobile and ubiquitous computing to realize dynamic adaptation.

- 14 -

2.4 Adaptation Approaches

After a review on the literature [6,28,53,54,92], we have found the following adaptation

techniques that have been studied and applied in various research domains. Each of these

adaptation approaches enables powerful adaptations.

 Dynamic Association and Disassociation of Non-functional/Low-level Services

 Component Reconfiguration

 Dynamic Reconfiguration of Application Components

 Dynamic Reconfiguration of Remote Method Invocation

 Code Mobility

2.4.1 Dynamic Association and Disassociation of Non-

functional Concerns/Low-level Service

This is the one of the adaptation approaches used for dynamic adaptation in response to

a change in context. This approach is based on the separation of concerns principle [36,93]

where non-functional concerns, also called crosscutting concerns, of an application are

implemented separately from core application concerns. The core behaviour of applications is

sometimes referred to as business logic. Both the non-functional concerns and functional

concerns, and low-level services exist independently of each other. This separation facilitates

development, maintenance and also software components reuse. The examples of non-

functional concern are access control, persistence management etc., and examples of low-level

services are caching service, encryption service and data compression services etc. Traditionally,

these services are offered by the underlying middleware and used by the applications.

The core idea behind this approach is the separation between what depends on changing

context, which may be non-functional concern or a low-level service of the underlying

middleware and what does not, which is the core functional concern. The application is then

adapted by dynamically associating the non-functional/low-level service with the core

functional concern in response to changing context. An example of dynamically associating the

non-functional concern with the core application component would be associating persistence

with a mobile client in response to the battery of the device running low so that data is

preserved in case of power failure. An example of associating a low-level service with the core

application component would be associating the caching service with the mobile client when

bandwidth runs low so that fields of remote service could be used locally, in order to save the

limited bandwidth.

- 15 -

A field which is closely related to the dynamic adaptation achieved through this

adaptation approach is Aspect Oriented Programming Approach) (AOP) [55,56]. Hence, these

approaches are commonly referred as AOP approaches. In these approaches, the non-functional

concern is implemented as an aspect and the application is adapted by weaving and unweaving

aspects into and from core functional concerns. However, there are other systems [12,13,18],

which exploit this adaptation approach, using reflection and meta-programming techniques [57]

to enable adaptations.

2.4.2 Component Reconfiguration

This is another powerful adaptation technique, which is also referred to as service

parameter adaptation in the literature [6,92]. In this approach, the dynamic adaptation is

achieved by tuning the behaviour of the service through an adjustment of its parameter(s) in

response to a change of context. The classical example, which is most commonly used in the

literature, is of the TCP protocol and the way it modifies its behaviour by changing values that

control the congestion window management and retransmission in response to network

conditions. Other examples of this approach would be changing the light level of a room in

response to user activity, e.g., sleeping, reading etc.; changing the size of the cache and reducing

the frame-rate or resolution of an image in response to decreasing bandwidth. This adaptation

technique has been applied in many systems to achieve dynamic adaptation in response to

context, for instance [12,14-16,22,52].

2.4.3 Dynamic Reconfiguration of Application Code

Unlike other adaptation approaches as discussed above, where adaptation is achieved by

adapting the functional concerns of an application, low-level service or a service/component

through parameters, this approach involves adapting application code itself by adding, removing

and replacing core application components. Several approaches for reconfiguration of an

application have been proposed that target both stationary distributed systems and mobile and

pervasive systems, and we have mentioned some systems in section 2.3 that use this technique.

Depending on the type of applications targeted, application reconfiguration can be carried out in

the following two ways: (1) Application configurations are already specified through some

means, e.g., through markup languages (such as XML [89], ADML [87]), general purpose

modelling notations (such as UML [88]) and Architectural Description Languages (such as

Acme [91], Darwin [90]), which are suited to particular contextual information. In response to

context, a configuration is selected and implemented through reconfiguration actions (addition,

removal or replacement of components). The core idea behind this is to make runtime change in

- 16 -

response to context through any of reconfiguration actions (addition, removal or replacement of

components) without taking the system offline, while ensuring consistency. (2) In this, bindings

are created dynamically by discovering the service(s) and binding these services to application

based on context. We focus on a set of scenarios that require the support of application

reconfiguration, which is achieved by the latter.

In mobile and pervasive systems the application behaviour can be adapted through

application reconfiguration, in order to provide a more relevant service with respect to changed

location information (for example, when the user changes location from a shopping mall to a

cinema, she should be provided with the service, which enables the user to access information

about movies being exhibited in that cinema) or to deal with resource variability (e.g. changing

the component that sends video information with a component that provides a text version of the

video in response to a large drop in bandwidth). Other examples may be changing a filter

component that forwards all messages to the user with one that forwards only important

message when the user is at a meeting or replacing the light component of room1 with the light

component of room2 when the user has moved in room2.

2.4.4 Dynamic Reconfiguration of Remote Method Invocation

This adaptation approach involves intercepting remote method invocations, and

redirecting or modifying these invocations dynamically as a part of dynamic adaptation. The

systems that employ this adaptation technique include QUO [33,34], ACT [32] and [35]. The

main idea behind these approaches is the use of interception of a remote method call and then to

perform actions, such as sending a request different from original, forwarding the request with

modified parameters, redirecting the request to the different target etc. The interception is

achieved through a redirection that can be implemented by an interceptor component or a

wrapper. For example, ACT employs an interceptor to intercept the request and a proxy

component to perform adaptation, while QUO employs a wrapper (or delegate), which wraps

the stub, to intercept the request and to perform adaptation.

2.4.5 Code Mobility

Code mobility involves dynamically moving program code from one location to

another. This technique has been studied and applied in research domains, such as traditional

distributed systems and mobile computing. Many systems [10,11,29] focusing on mobile

computing employ code mobility to support or enhance service provisioning to mobile

users/devices. In addition, resource-limited devices can take advantage of this approach by

- 17 -

dynamically downloading software components only when needed in order to save their

resources. Another use of code mobility is to achieve load-balancing, where a component or

service running on an overloaded machine is moved to an under-loaded machine. Distributed

middlewares, such as RMI [30] and JINI [31] provide the support for code mobility in that

classes and stubs are downloaded dynamically by the Java virtual Machine when not found

locally. This capability allows new types and behaviours to be introduced into a remote Java

Virtual Machine, thus dynamically extending the behaviour of distributed applications. This

capability gives RMI and JINI a significant advantage over their counterparts CORBA [59] and

DCOM [60].

2.4.6 Discussion and Summary

Each of the adaptation approaches discussed above uses a different technique and can

realize powerful adaptations. Adaptations realized by each approach can fulfil the adaptation

needs of a particular set of applications. The selection of which adaptation approach to use

depends on what kind of adaptive applications are targeted. We mentioned and discussed

examples in each adaptation category and that may help choose suitable adaptation approach(s)

for targeted context-aware applications. We target a set of adaptive context-aware applications

which are required to discover the service(s) and bind with them based on context (contextual

reconfiguration), and the bound services modify their behaviour in response to context

(contextual adaptation). We combine both application reconfiguration to realize contextual

reconfiguration and component/service reconfiguration to realize contextual adaptation, and put

forward a system, which provides runtime support for supporting both context-aware features.

2.5 Reconfiguration to manage bindings

Our primary focus is to provide runtime support for both contextual reconfiguration and

contextual adaptation in order to provide a broad scope of adaptation, and to provide a high-

level means to simplify the task of developing and modifying adaptive context-aware

applications. However, various failure conditions can arise during the execution of such

applications, making bindings between application and bound services invalid. To this end we

propose and implement a simple design approach to reconfiguration to manage bindings. An

application may fail to function correctly due to failures in locating the required service during a

reconfiguration process; or when the reconfiguration process successfully discovered a service

and created a binding between the application and the found service based on context, an

interaction between an application component and the bound service can be affected due to

- 18 -

network-induced problems, such as time-outs, temporary network failure or power failure at the

hosting device where the bound service is running. When these kinds of network-induced

problems occur, remote exceptions are generated. These are traditionally handled by having an

exception handler at the client that would try to invoke bound service a few times, and if it does

not succeed it would attempt to discover a new service. The problem of power failure at the

hosting device where the bound service is running is different because the bound service

becomes unavailable, causing the binding to become invalid. The binding is said to be invalid

when the reference (real proxy/stub) to the bound service becomes invalid. Even if the power of

the hosting device is restored and the same service is run again, the reference to the bound

service obtained before the power failure is no longer valid, causing all the bindings to this

service to become invalid. Any interaction with the service through an invalid stub would result

in a remote exception being generated.

There are other situations that may cause bindings to become invalid, for an instance,

when the bound service is moved to another location over a network for load-balancing

purposes, or it has been moved closer to an entity accessing that bound service in order to

improve service provisioning or to save bandwidth. In these situations a reference to the bound

service becomes invalid upon its migration to a new location, causing all the bindings between

software components and the moved service to become invalid. The above discussion shows

that there are two primary causes of invalidating a binding: one is due to power failure at the

hosting device where the bound service is running and other is the migration of a bound service

to a new location. The solution to this problem requires updating the invalid reference to the

bound service. This problem can be solved by any of two design approaches: (1) the client itself

must be responsible for handling this issue. When the bound service becomes unavailable or is

migrated, the old reference to this service is no longer valid and if the client uses invalid

reference to this service, an exception will be thrown. The client has to handle the exception, for

example, updating the reference and repeating the call. (2) The system must be responsible for

handling this issue where updating a reference is carried out by the system. In the former, the

burden is on the client and such reconfiguration is not application transparent, while in the latter

it is done by the system and such a reconfiguration is application transparent.

There are various research efforts focusing on this issue and provide system level

approach to maintain a reference with a moving object, for an instance, [62,63]. Other systems

that provide application transparent support for managing references upon component migration

or replacement include [47,64]. There are other research efforts that provide high-level

programming model for developing adaptive context-aware applications also consider failure

conditions causing binding to become invalid, and these include [61,69]. We advocate an

- 19 -

application transparent reconfiguration to manage invalid bindings and suggest a simple design

approach, in which an application component communicates with a bound service not directly

by using a real stub of the bound service, but by using a virtual stub. We discuss our design

approach to managing bindings in chapter 3.

2.6 Policies and Context-Awareness

2.6.1 Background

A policy can be defined as “a rule that defines a choice in the behaviour of a system”

[27]. Policies can take the following rule-based format as suggested by [65]:

IF { condition(s) }

THEN { action(s) }.

This means that if the condition is true, an action is taken. One of the main aspects of

context-aware adaptation is a process of making an adaptation decision, which is when to

perform what adaptation. Based on this observation, it can be seen that there is notional

equivalence between the definition of a policy and the adaptive context-aware application. To

help convey this meaning, we can use a scenario in which we consider a simple context-aware

application that controls an air-conditioning unit (AC) that is activated when the ambient room

temperature rises above a certain level. This scenario can be represented through an Event-

Condition-Action (ECA) policy. Different policy systems provide different syntax to express an

ECA policy, although similar structure. For example, in Ponder2 [26,80,94], above scenario can

be represented through an ECA policy in figure 2.1.

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/tempevent.

3. policy condition: [:temp |(temp > 20)].

4. policy action:[tempnontroller on.]

…….

…….

Figure 2.1: Demonstration of an ECA policy

The above ECA policy says that when a temperature event occurs (line 2) and the room

temperature is above 20 (line 3), an AC unit should be turned on (line 4).

As can be noted, the policy description is a suitable way to express or define a context

aware application. Policy-based approaches have been used to support dynamic adaptation in

- 20 -

various fields. For example, polices have been exploited in network and system management to

define context-awareness (how the system should adapt in response to context, such as failures

or change in application requirements etc.). By specifying context-awareness (adaptation)

separately and through a policy specifications provides a separation of concerns between

adaptation concerns and the rest of the system. This separation of concerns provides an

opportunity to dynamically change the adaptation policies without changing the implementation

and interrupting the system.

Policy-based techniques have also been used in middlewares, such as Services with

Context-awareness and Location-awareness for Data Environments (SCaLaDE) [10] and

Context-and Location-based Middleware for Binding Adaptation (Colomba) [51]. These

middleware focus on mobile environments and support mobility-enabled resource bindings in

addition to other things such as disconnection support, adaptation of service results to fit

specific device characteristics etc. In these middlewares, a mobile terminal/mobile proxy can

refer information resource through various types of binding strategies (resource movement

strategy, copy movement strategy, remote reference strategy and rebind strategy [54]). The

decision of which binding strategy should be used between a mobile terminal/mobile proxy and

required resources when the mobile terminal/mobile proxy moves is based on deployment

conditions, such as terminal capabilities (e.g., CPU power, memory space etc.) and available

bandwidth etc. These binding strategy decisions are expressed explicitly through high-level

policy specifications, thus providing a separation of concerns between binding management

concerns and application logic. This separation of concerns reduces the complexity involved in

development of mobility-enabled scenarios and allows dynamic programmability of binding

strategies. Context-awareness here captures the binding management concerns where, in

response to context (migration of a mobile component), a particular binding strategy is selected

based on deployment conditions, and it is explicitly defined through a policy specification that has

ECA (Event-Condition-Action) format.

In the field of code mobility the policy-based approach has been used to define choices

regarding when, where and which components to move in response to context (e.g., user

mobility, low battery power, etc.), for instance [66]. Context-awareness here captures migration

strategies and is expressed explicitly through the policy specification in ECA format. In these

systems, mobility concerns are explicitly expressed via high-level policy specifications that

separate mobility concerns from application functionality. This separation reduces complexity

involved in developing mobile-code applications, and also allows dynamic modification of

mobility concerns, thus allowing dynamic reconfiguration of mobile-code applications.

- 21 -

Other research efforts that employ a policy-based programming approach for achieving

dynamic adaptation include [12,13,18,20,67]. These systems use a policy specification in ECA

format to define dynamic adaptation where the core application behaviour is modified in

response to context.

Recently policy-based techniques have been applied in body sensor networks [41,42],

where polices are used to define behaviours such as monitoring medical conditions of a patient

(e.g., glucose level, heart-rate, etc.) and providing alerts or suggesting a course of action to the

patient in event of abnormal conditions. For example, a ―glucose high‖ policy may be defined to

detect the glucose level of the patient and inject an appropriate dose of insulin when glucose

level crosses, for example, 180.

The above discussion shows that the policy-based approach is an effective means of

supporting context-awareness as adaptation concerns are captured declaratively in ECA rules as

explicit policies. Adaptation concerns may be in the form of binding management concerns,

migration concerns, network or system management concerns or core application behaviour

modification. As policies are explicit components, they provide a separation of concerns

between adaptation concerns and application logic. This separation of concerns and the

declarative nature of policies offer these benefits: (1) it reduces the complexity involved in

developing adaptive context-aware applications and (2) it allows modification of adaptation

concerns (thus extending and modifying the applications) without changing the application code

and interrupting the system.

2.6.2 Policy Systems

In this section, we review some popular existing policy systems that have been used in

various domains, such as system and network management, mobile and pervasive computing.

2.6.2.1 Ponder

The Ponder policy language [27], developed at Imperial College London, is a

declarative, object-oriented programming language that can be used to specify both security and

management policies for distributed object systems. Ponder supports four policy types:

obligation, authorization, refrain and delegation policies. The basic design of Ponder policies

involves subject and target. The subject can be seen as an access controller or adaptation

controller depending on what it controls, and target as an entity that can model resources or

service providers. The Ponder supports a Domain idea. Domains provide a means of grouping

objects to which policies apply and can be used to partition the objects in a large system

according to geographical boundaries, object type, responsibility and authority. Obligation

- 22 -

policies are event-triggered condition-action rules that can be used to specify what actions the

subject must perform on the target when a certain event occurs. In system management,

obligation policies can be used to define behaviours, such as when to perform backups, register

new users in the system, or install new software etc. In mobile computing the obligation policies

can be used to define binding management concerns (e.g., which binding strategy to apply in

response to mobile entity migration) and mobility concerns (e.g., which component to move

when and where in response to context). Furthermore, in pervasive computing scenarios the

obligation policies can be used to define reconfiguration directives which involve creating

bindings in response to context, and adaptation concerns that involve modifying the behaviour

of the system through parameter adjustments in response to context.

Authorization polices are used to specify which resources or services (target objects) a

subject (e.g., management agent, user etc.) can access. A positive authorization policy is used to

define the actions the subject is permitted to perform on target objects, while a negative

authorization policy specifies the actions the subject is forbidden to perform on target objects.

Refrain policies are used to define what actions a subject is not permitted to invoke.

Refrain policies are similar to negative authorization, but the main difference between the two is

that refrain policies are enforced by a subject, while negative authorization policies are enforced

by a target object. Refrains are used where a target is not trusted. Delegation policies are used to

permit the subjects of an authorization policy to delegate some or all of their access rights to

new subjects.

2.6.2.2 PDL

The Policy Description Language (PDL) is a declarative policy language [68]. Policies

in PDL take the event-condition-action rule format and are similar to Ponder obligation policies.

However, PDL does not support authorization policies. The policy rules defined in PDL has the

following format:

event causes action if condition

The above obligation policy format says that when an event occurs and the condition is

true the action should be performed. The actions may be in the form of a local call or a remote

method call.

2.6.2.3 Ponder2

Ponder2 [26,80,94] is a re-design and re-implementation of Ponder, which is used by

many in both academia and industry. Ponder2 is a light-weight, self-contained, extensible and

- 23 -

scalable policy system for specifying and enforcing policies, and can be used at different levels

of scale from small resource-constrained devices (e.g., PDA and mobile phones) to complex

environments.

Ponder2 is implemented using the concept of a Self Managed Cell (SMC) [102]. An

SMC is an architectural pattern for implementing ubiquitous systems which require self-

configuration and adaptation in response to changing conditions. An SMC allows grouping a set

of hardware and software components to form systems / domains capable of configuring and

adapting themselves in response to changing conditions, e.g., device failures, availability or loss

of services, change in context (e.g., user activity, clinical conditions of patients in e-health

scenarios, etc). These autonomous systems are called SMCs. The SMC‘s core design includes a

publish/subscribe event notification system, which is used by the services within the SMC to

interact with each other, although other forms of communication (e.g., RPC) can take place. For

example, a context monitor service (e.g., timer) generates an event and the policy responds to

this event, and the policy action may use remote procedure call on the managed resource (e.g.,

light service). The event system forwards events produced by the services (e.g., monitors such

as a timer) to interested parties (e.g., policies) within the SMC who have subscribed to receive

the event. The event-based interaction method provides a decoupling between the services as an

event producer does not need to know about the receivers of that event, thus providing the

flexibility that new services can be added to the SMC without disturbing the behavior of

existing services. Another SMC‘s core design component is the policy service, which provides

an infrastructure within the SMC for specifying and enforcing policies for self-configuration

and adaptation. To summarize, SMC‘s support for self-configuration and adaptation is achieved

through the use of an event system in combination with a policy-based service.

 Ponder2 SMC allows specifying and enforcing policies, grouping components of a

SMC in domains for management purposes and also provides the ability to dynamically load

new functionality into the SMC. Policies can be written to control various functions within the

SMC. For example, in the domestic environment the SMC may include various services (e.g.,

the light service, TV service, air-conditioning service, etc) and the binding policy may involve

discovering various services and binding to them based on location of the user and other search

criteria; the adaptation policy may involve modifying the behavior of the service (e.g., the light

service) in response to user activity context; the management policy may involve adding and

removing users from the environment; policies may be defined for the management (i.e.,

loading, removal, activation) of the policies themselves. Ponder2 SMC‘s core services that

constitute the functionality of Ponder2 SMC include a policy service, an event service and a

domain service, and Ponder2 SMC is instantiated by starting these services. Ubiquitous systems

- 24 -

which have been implemented using the concept of the SMC include body-sensor networks [41,

42] and unmanned autonomous vehicles [103].

Ponder2 is a general-purpose object management system and comprises Events,

Policies, an Obligation Policy Interpreter, Authorization Policy Interpreter, Command

Interpreter and Domain Service. The Domain Service provides a means of grouping managed

objects (we will discuss this later) into a hierarchical structure for managing objects. The

Obligation Policy Interpreter handles Event, Condition and Action rules, while the

Authorization Policy Interpreter caters for both positive and negative authorization policies.

The Command Interpreter accepts commands written in a high-level configuration language

called PonderTalk, which may perform invocations on managed objects (we discuss

PonderTalk later).

A managed object is an entity in Ponder2 capable of receiving and replying to

PonderTalk message keywords, and can also receive messages from within and send them to

other managed objects. The managed object is written in Java and its methods can be annotated

(i.e. @Ponder2op ("performAdaptation :")) to establish the links between PonderTalk message

keywords and Java methods. A Java method in a managed object is annotated as above can be

called via the performAdaptation PonderTalk message keyword. Managed objects can be used

to represent monitors (e.g., user presence, timer, and activity), local services (e.g., light service,

temperature controller service, and alarm clock service) and adaptors or proxies to external

remote objects.

 Ponder2 has several pre-defined managed objects such as Policy (obligation and

authorization), Event, and Domain. Policy-based systems based on Ponder2 may require

developing other managed objects and those may be created in the Java language by following

the Ponder2 requirement for any java object to be a managed object (e.g. implementing the

ManagedObject interface).

 Ponder2 uses a factory object concept to create instances of a managed object.

Ponder2 has built-in factory objects for all pre-defined managed objects and these are created

through their corresponding factory objects. For any other managed object, a factory object

needs to be created and then its instances can be created through that factory object. The

Ponder2 system provides a means (i.e. PonderTalk load keyword) for creating a factory object

for a managed object in that the managed object is loaded into memory and its corresponding

factory object is created. This is the same as any object-oriented system where a class has to be

loaded before its instances are created. Creating the instances of managed object through its

corresponding factory object provides Ponder2 with the ability to load all the code needed on

demand, thus making Ponder2 extensible.

- 25 -

 As discussed above that one of the core services of Ponder2 is an event service and

services within Ponder2 SMC interacts with each other by means of an event. An event is used

to disseminate contextual information such as user presence, environmental temperature, light

etc. into the Ponder2 environment. An event of a particular type can be created and associated

with a monitor where the monitor interacts with physical sensors to obtain contextual data and

pass it to the event. Once the event has received contextual data, polices that have subscribed to

that event would get triggered and perform adaption as dictated by the action part of the policies

when a condition is true. For example, the user presence event can be created by sending the

event factory a create command with an array of attribute names (user and location) that the user

presence event will carry (upevent: = root/factory/event create: #("user" "location").) and be

given to a UserPresenceMonitor.

The Ponder2 policy system currently supports two policy types: Obligation Policies and

Authorization Policies. Obligation polices are Event-Condition-Rules(ECA) that specify what

actions must be performed when an event occurs and condition is true, while authorization

policies specify what actions must be performed when a condition is true to protect the

resources and services from unauthorized access. Obligation policies are created by sending the

policy factory a create command (e.g., policy: = root/factory/ecapolicycreate.).

 The Ponder2 system has a PonderTalk language, a high-level configuration language

and is used to control and configure the Ponder2 system. In Ponder2 everything is a managed

object, and managed objects make up a Ponder2 System. All managed objects, including

Ponder2‘s predefined (Policy, Event, Domain) and others a developer writes for developing

Ponder2-based systems, are instantiated, controlled and interacted with through PonderTalk.

Generally, in all policy languages policies are specified declaratively, thus reducing the

complexity involved in developing adaptive context-aware applications using policies.

However, the PonderTalk provides higher-level abstractions to specify policies for adaptive

context-aware applications and this provides better user transparency.

2.6.3 Choosing a policy system

In section 2.6.1, we discussed the use of policy-based approaches in the literature to

define context-awareness in event-condition-rule format as a separate, explicit policy

component, and the advantages offered by this approach. In section 2.6.2, we reviewed three

successful policy systems, Ponder, PDL and Ponder2, and it can be noted that all support the

ECA model, thus fulfilling the basic requirement for supporting context-awareness.

- 26 -

Although as discussed before Ponder and PDL make use of ECA rules for adaptation,

these are primarily aimed at the management of large distributed systems and network elements

and don‘t scale down to small devices. In contrast to Ponder and PDL, Ponder2 is a light-

weight, self-contained and extensible policy system that can be used at different levels of scale

from small resource-constrained devices (e.g., PDA and mobile phones) to complex

environments. In addition, although the Ponder and PDL systems provide high-level

abstractions to specify ECA rules, a developer is still required to know low-level details of

reconfiguration actions. However, Ponder2 uses a higher-level configuration language called

PonderTalk to specify event-condition-action rules. The use of PonderTalk provides better

transparency to the developers in the sense that reconfiguration actions in policy specifications

have to be specified at higher-level of abstractions.

Together with its ability to be used in the environments ranging from small devices to

distributed systems and the use of PonderTalk for policy specifications make Ponder2 an ideal

choice as a Policy system. Based on the above observations we chose the Ponder2 policy system

and build our system on top of it.

2.7 Summary

We have reviewed features of context-awareness defined and discussed by various

researchers, and argued that both contextual reconfiguration and contextual adaptation are more

interesting context-aware features as these involve adapting the application behaviour based on

context, thus helping to eliminate unnecessary user cooperation and making technology as

―calm‖ as possible. We have discussed and argued that applications belonging to these two

context-aware features can be considered to be adaptive context-aware applications and are a

subset of context-aware applications, but not vice versa. We have mentioned various research

efforts focusing on contextual adaptation and contextual reconfiguration individually. However,

we envision many adaptive context-aware application scenarios that involve both context-aware

features and thus we focus on combining both.

We have gone on to review and discuss various adaptation approaches that have been

used in the literature to realize dynamic adaptation. Selection of which adaptation approach to

use depends on what kind of applications are targeted. In order to support both contextual

reconfiguration and contextual adaptation we combine both the application reconfiguration

approach to realize contextual reconfiguration and component/service reconfiguration to realize

contextual adaptation.

- 27 -

An important issue related to providing support for adaptive context-aware applications

is that of considering failure conditions that can arise due to network problems and migration of

software component to some other location over the network. We have briefly discussed these

conditions and our application transparent reconfiguration approach to address this issue, and

compared it with other approaches. We have made an argument that providing reconfiguration

support to manage bindings at system level relieves a developer from the task of handling such

problems and enables her to focus on real requirements of adaptive context-aware applications,

thus contributing towards simplifying the task for developing adaptive context-aware

applications.

We have provided an overview of policy-based approaches for supporting context-

awareness and argued that the policy-based approach is an effective means for supporting

context-awareness as adaptation concerns are captured declaratively in ECA rule as explicit

components, thus providing separation of concerns between adaptation concerns and application

logic. Benefits arising out of the separation of concerns and declarative nature of policies are a

reduction in complexity involved in developing adaptive context-aware applications and

allowing modification of adaptation concerns without changing application code and

interrupting the system.

We have reviewed three successful policy systems, Ponder, PDL and Ponder2, and have

noted that all three support ECA policies, thereby satisfying the basic requirement for

supporting context-awareness. However, out of these three, we have chosen Ponder2 to build

our system supporting contextual reconfiguration and contextual adaptation on top of it due to

these reasons— that it can be used at different levels of scale from small resource-constrained

devices (e.g., PDA and mobile phones) to complex environments, and it uses the PonderTalk

configuration language for policy specifications. PonderTalk provides better transparency to

developers in that reconfiguration actions in policy specifications have to be specified at higher-

level of abstractions.

To provide a broad scope of adaptation and to simplify the task of developing and

modifying adaptive context-aware applications, we combine contextual reconfiguration and

contextual adaptation and provide runtime support for both, and provide a policy-based

programming technique using Ponder2. We have built our system, PCRA on top of Ponder2,

thus providing policy-based support for contextual reconfiguration and contextual adaptation.

Ponder2 provides basic support for policy specifications and triggering of policies in response to

context, while our reconfiguration and adaptation infrastructure within PCRA provides broad

runtime adaptation support. Moreover, we have integrated application transparent

reconfiguration support in PCRA to handle the issue of managing bindings. We have also

- 28 -

integrated caching support in PCRA for improved performance, where virtual stubs holding

references to real proxies are cached. When establishing a binding between an application

component and a remote service in response to context, the system gets a virtual stub for that

remote service from a cache if available and gives it to the application component without doing

lookup. We have not come across any research efforts in the literature that supports both

context-aware features (contextual reconfiguration and contextual adaptation) where both forms

of adaptation are controlled with policies using a specialized policy language (e.g., Ponder2),

and also considers failure conditions causing bindings to become invalid and provide

application transparent reconfiguration support to address this issue.

- 29 -

Chapter 3

Supporting Contextual

Reconfiguration and Adaptation

In the previous chapter, we have established an argument of this thesis in which we

combine both contextual reconfiguration and contextual adaptation, two adaptive features of

context-awareness, to provide a broader scope of adaptation, and the use of a policy-based

approach as a programming model to simplify the task of developing, modifying and extending

adaptive context-aware applications. As a proof of concept, we have designed and implemented

a system, PCRA and various hypothetical adaptive context-aware scenarios to support the main

arguments of this thesis. As discussed in the previous chapter, there are other important

surrounding issues that we address which are associated with adaptive context-aware

applications. These include managing invalid bindings, providing caching support and personal

conflicts. The bindings may become invalid for various reasons, such as non-availability of the

services due to power failure at the hosting device where the bound service is running, or the

bound service being moved or replaced. We provide caching support of virtual stubs in order to

improve system performance where virtual stubs holding references to real proxies are cached.

A user conflict issue arises when there are multiple users in the environment with a different set

of preferences for different services. We would like to mention here that our main focus is not

addressing the issue of user conflicts, which is a separate, vast and interesting research area.

There are various research efforts such as [73-75] focusing on this research issue. However, we

embed a simple solution to this problem in the system, which is priority-based— the older the

user, the higher the priority. We will discuss this briefly in chapter 5 in which we provide

implementation details of the proposed system through an example scenario that involves

multiple users. In this chapter, we present a high-level system architecture of PCRA and discuss

briefly its main elements, and then discuss how contextual reconfiguration, contextual

adaptation, reconfiguration to managing bindings and caching support are supported within the

system.

3.1 System Architecture of PCRA
In the following sections, we discuss the high-level concepts of each contribution using

system diagrams in which the interaction of components is presented and described. The overall

- 30 -

architecture of PCRA that provides the support for all the contributions is comprised of three

parts as shown below in figure 3.1: the Ponder 2 System, our reconfiguration and adaptation

infrastructure and Java RMI.

Adaptation

Controller

Reconfiguration

Manager

Virtual Stub

Cache Manager

Remote

Registry

Virtual StubUser

Ponder 2 System

Reconfiguration and Adaptation Infrastructure

Figure 3.1: High-level System Architecture of PCRA

We have briefly discussed the Ponder2 system in chapter 2. It is a general-purpose

object management system and provides the support for both obligation policies and

authorization policies, and has Events, Policies, an Obligation Policy Interpreter, Authorization

Policy Interpreter, Command Interpreter and Domain Service. Our reconfiguration and

adaptation infrastructure provides runtime support for contextual reconfiguration, contextual

adaptation, reconfiguration to manage invalid bindings and seamless support for virtual stubs, as

discussed previously. RMI is a distributed middleware that provides the means for developing

remote services and remote method communication between these services and their clients. All

three parts of the overall architecture work together to provide the system, PCRA, in which

adaptive context-aware applications can be developed using polices. As can be noted from

above discussion, PCRA architecture provides infrastructure for specifying and enforcing

policies via Ponder2 system, and also provides a broader support of adaptation (contextual

reconfiguration, contextual adaptation and reconfiguration support to recover from invalid

bindings) through our reconfiguration and adaptation infrastructure. All the developer or end

user is required to do for developing adaptive context-aware application is to express binding

policies and adaptation policies in Ponder2 specifications.

- 31 -

3.1.1 Design considerations of PCRA system

The current design of PCRA involves local communication between Ponder2 system

and reconfiguration and adaptation Infrastructure and hence both have to reside on the same

machine. As a result, PCRA does not allow distribution of PCRA components (i.e. Ponder2

system and reconfiguration and adaptation infrastructure) across multiple machines and thus the

reconfiguration and adaptation infrastructure can not be instantiated over multiple machines,

hence the centralized PCRA architecture. An instantiation of PCRA system would result in an

instantiation of Ponder2 system and an instantiation of reconfiguration and adaptation

infrastructure, which means one instance of PCRA comprises of one instance of Ponder2 system

and one instance of reconfiguration and adaptation infrastructure. The one instance of PCRA

provides the overall support for policy-based reconfiguration and adaptation infrastructure,

where Ponder2 instance supports specification and enforcement of policies while

reconfiguration and adaptation infrastructure instance, in addition to other functionality, is

responsible for establishing bindings to various services in the environment in response to

policy evaluation. As reconfiguration and adaptation infrastructure can not be instantiated across

multiple machines, there would be just one instance of reconfiguration and adaptation

infrastructure available to provide the support for reconfiguration and adaptation.

 The one instance of reconfiguration and adaptation infrastructure may suffice in the

pervasive computing environments, such as domestic environments where the number of

bindings required to different services is assumed to be reasonably smaller. However in other

environments such as an airport and large-sized offices the scalability issue would come up and

require considering the distributed design of PCRA. In the distributed design of PCRA, the

reconfiguration and adaptation infrastructure would be instantiated across multiple machines

and the responsibility of creation of bindings would be distributed to different instances of

reconfiguration and adaptation infrastructure, thus improving the scalability of PCRA.

However, there are challenges and trade-offs involved in the distributed design of PCRA, which

may include:

 The reconfiguration and adaptation infrastructure will work as a remote system, where its

system components (reconfiguration manager, adaptation controller and user) will be remote

services. In order for Ponder2 to interact with remote reconfiguration and adaptation

infrastructure there would require implementing corresponding adapters for reconfiguration

manager, adaptation controller and use. Moreover, distributed design of PCRA would

require system component(s) for monitoring load on various instances of the reconfiguration

and adaptation infrastructure and distributing the request for creation of bindings to them,

hence additional code required.

- 32 -

 Ponder2 system would interact with the reconfiguration and adaptation infrastructure

through RPC (remote procedure calls), and a remote method call is a far slower than a local

call, thus affecting the system performance.

We have chosen the centralized design of PCRA as we target domestic environments

and, as discussed before, the number of bindings required to various services is assumed to be

smaller. Thus, the one instance of reconfiguration and adaptation infrastructure will reasonably

be sufficient. Moreover, Ponder2 would interact with reconfiguration and adaptation

infrastructure via local calls unlike via RPCs in distributed design of PCRA, hence improved

system performance.

3.2 Contextual Reconfiguration
As discussed in chapter 2, contextual reconfiguration is one of the features of context-

awareness and that applications under this category can be considered to be adaptive context-

aware applications in the sense that the application behaviour is adapted by discovering a

service based on context and then binding with it to realize new behaviour. In this section, we

discuss our approach to contextual reconfiguration. The approach is a policy-based in which a

policy is specified declaratively in an ECA (Event-Condition-Action) format. Policies are

written to respond to context events. When an event occurs and the condition is true, the

appropriate policy will be triggered. This will cause the system to establish bindings between

application components and the remote service(s) as dictated by the action part of the policy.

We take one of the applications scenarios we have implemented and demonstrate our contextual

reconfiguration approach through this.

Consider the scenario that when a user enters a particular room, say room1, the system

turns ON the light in the room1 and sets the light level to its last used level. The system also

turns ON the air-conditioning unit in room1 and sets the air-conditioning setting to its last used

value. Furthermore, the system turns ON the light in adjoining rooms (e.g., room2) and set their

light level to some low value. If the user stays in the room1 for some time (e.g., for a minute),

the light level in that room1 is set to the user-preferred value for the light and air-conditioning

setting is set to the user-preferred value for air-conditioning, and the lights in adjoining rooms

(e.g., room2) are turned OFF.

In this scenario the context involved is a user presence and the bindings that system

needs to establish would be to a light service in room1, air-conditioning service in room1 and

the light service in room2. Our system design includes the user component, the architectural

component that models the user of the environment and includes other functionalities, such as

- 33 -

allowing the users to set their preferences for different services. We discuss the user component

in detail in chapter 5. Based on which user is in the environment, the system will create an

instance of that user, and based on the name of services, contextual information and other search

information, the system discovers the remote services and binds them to the user instance. In the

above scenario, if the user, ―Maanta‖, enters room1, the system discovers the light service in

room1, the air-conditioning service in room1 and light service in the adjoining room (room2),

and binds them to the user instance for Maanta. This is illustrated in figure 3.2 below.

Light Service

AC Service

Light Service

Maanta

User

Room 1

Room 2

b1

b2

b3

Figure 3.2: Bindings to the light service and air-conditioning service in room1 and the

light service in room2

The implementation of this example scenario includes a binding policy and other

policies. The following code snippet is the binding policy involved in this example scenario,

and the complete code listing of this scenario can be found in chapter 4.

// A binding policy

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/upevent.

3. policy condition: [:user :location :enter_or_left|

 (enter_or_left == "enter")].

4. policy action:[:user :location |

5. theUser := users at: user.

6. configurator createBinding: #(theUser location "LightService" "ACService").

7. configurator createBinding: #(theUser "room2" "LightService" "otherLocation").

 ………

 ………

 ………

].

8. root/policy at: "bindingpolicy" put: policy.

9. policy active: true.

Figure 3.3: The binding policy in the light and air-conditioning example

The binding policy subscribes to the user presence context event (line 2 in figure 3.3)

and its action part includes reconfiguration messages (line 6 and line 7), which provide means to

interact with one of the system components called the reconfiguration manager. This component

is in charge of performing reconfiguration. When the user presence context occurs, the binding

- 34 -

policy is triggered and reconfiguration messages cause the reconfiguration manager to create

bindings between the user and the remote services as shown in figure 3.2.

There are other system components that the reconfiguration manager interacts with to

realize the overall process of policy-based reconfiguration: the virtual stub and virtual stub

cache manager. Although these components are core design components for other features that

the system supports, such as reconfiguration for managing bindings and providing caching

support for bindings and hence will be discussed in the sections where we discuss these

features, they are involved in the overall process of reconfiguration and therefore we introduce

them here. The virtual stub wraps the real proxy of the service, thereby adding a level of

indirection to method calls on the actual service. While adapting the behaviour of the service

based on context, the system does not directly communicate with the service, but through its

corresponding virtual stub. The virtual stub cache manager is responsible for performing RMI

lookups for discovering services, creating and initializing virtual stub instances and caching

them. We discuss in section 3.3 our approach to caching virtual stubs for improved

performance. Having introduced these two components, we discuss the steps and the interaction

involved between the reconfiguration manager and these components in carrying out contextual

reconfiguration.

 When the user presence context event occurs (the user being detected in a specific location—

this context includes two attributes: the user ID and location), the binding policy is triggered

and its action part is executed. The first message (line 5) in action part is reproduced below.

theUser: = users at: user.

The users in the above message is a domain, which was created when the PCRA system was

started and run (we will return to this in chapter 5), contains various user instances. The user

instances are created, added to and removed from the users domain dynamically through a

GUI-based system utility that we have implemented (again discussed in chapter 5). The user

in above message is a user ID attribute coming from user presence context event. The at:

message takes user as an attribute and returns the user instance (theUser) for the user. For

example, if the user attribute of the user presence context has the value ―Maanta‖, the user

instance for ―Maanta‖ will be returned. The other two messages (line 6 and 7) in action part

of the binding policy are reconfiguration messages. The first reconfiguration message (line

6) has four attributes: (1) theUser, the user instance returned (line 5), (2) location attribute of

the user presence context event, (3) and (4) are the service names (LightService and

ACService). This reconfiguration message is mapped into a method call to the

reconfiguration manager, and this method call discovers the light service and air-

- 35 -

conditioning service in room1 (location = ―room1‖) and binds them to the user instance

(theUser). Similarly, the second reconfiguration message (line 7) causes reconfiguration

manager to discover the light service in room2 and bind it to the same user instance. The

second argument of the reconfiguration message generally indicates both the current location

of the user and also the location of the services. However, the second reconfiguration

message (line 7), which is ―room2‖ only indicates the location of the light service as

informed by the last argument of this message (―otherLocation‖). This is tag information to

reconfiguration manager to consider the second argument as related to location of the

services, not current user location. The following steps discuss which other components the

reconfiguration manager interact to establish bindings between the user instance and remote

services.

 The reconfiguration manager communicates with the virtual stub cache manager and asks

for the virtual stub for each of the services (the light service for the room1, air-conditioning

service for room1 and the light service for room2).

 The virtual stub cache manager searches its caches to determine if it has the required virtual

stubs. If available, it hands them to the reconfiguration manager and then the

reconfiguration manager delivers them to the user instance. If not found in the cache, it

performs a lookup to discover the real proxy for each of the services and cache them.

 In order to discover the remote services, the virtual stub cache manager communicates with

the RMI remote registry and performs the following actions:

 It discovers the real proxy for each of the remote services,

 It creates an instance of a virtual stub for each of the services and initializes it with the

corresponding real proxy, and now each of the virtual stubs wraps/holds the real proxy of the

corresponding remote service. Now there is a virtual stub for the light service in room1, a

virtual stub for the air-conditioning in the room1 and a virtual stub for the light service in

room2.

 It caches all these virtual stubs and then hands them to the reconfiguration manager.

 When the reconfiguration manager has received the virtual stubs, it hands them to the user

instance. Once the user instance has the virtual stubs, this means that the bindings have been

created between the user and the remote services, and now the user has bindings with the

light service in room1, air-conditioning service in the room1 and the light service in the

room2. Figure 3.4 shows policy-based reconfiguration process.

- 36 -

Reconfiguration and Adaptation

Infrastructure

Remote

Registry

Binding

Policy

User

Presence

Context

VS1
LightService

in Room 1
RP1

VS2

RP2

VS3

RP3

ACService

in

Room 1

LightService

in Room 2

RP1: Real Proxy for LightService in Room 1

VS1: Virtual Stub holding RP1

RP2: Real proxy for ACService in Room 2

VS: Virtual Stub holding RP2

RP3: Real Proxy for LightService in Room2

VS3: Virtual Stub holding RP3

RAI: Reconfiguration and Adaptation

Infrastrucure

User

Instance

1. trigger binding policy

2. interact with RAI

3. discover services

4. create virtual stubs VS1,VS2

and VS3, and initialize ithem

with corresponding real proxies

RP1,RP2 and RP3

5. hand over virtual stubs

VS1,VS2 and VS3 to the user

instance

1

2

3

4 and 5
Sequence of Actions

 Figure 3.4: Policy-based reconfiguration

3.3 Caching support for improved performance
One of the features of the proposed system, as discussed before is the seamless caching

support of virtual stubs in order to improve system performance. As discussed in section 3.2, the

virtual stub holds a reference to the real proxy of the remote service and the user has a binding

with the remote service through the virtual stub. If we look at the binding process, one of the

steps involved is performing a remote lookup to discover the remote service in response to

context. This remote lookup process provides the largest contribution to the overall binding time

and this is due to the fact that the remote method calls are much slower than local calls, at least

1000 times slower [58]. In adaptive context-aware applications, it turns out to be undesirable in

terms of user experience. For example, in the example scenario, introduced in section 3.2, the

user experience may get affected when the user enters room1 and light or air-conditioning in

room1 is not turned on and adjusted to user‘s preferred value immediately. In the context of

other distributed systems, this may affect other applications running on the network as every

remote method call decreases the amount of bandwidth available on the network for all the

applications using the network. To this end we propose and implement a seamless caching

technique to improve system performance in which virtual stubs are cached locally and when

these are required during reconfiguration, these are obtained locally if at all possible. During the

- 37 -

binding process when the system discovers a particular remote service for first time, it takes

longer since it involves a remote lookup. When the binding to the same service is required

again, the system takes less time since the service is obtained from the local cache directly

without the need for a remote call. For example, in our scenario, when the first user enters

room1, the binding time taken by the system would be far higher as the light service and air-

conditioning services are discovered by performing remote lookups. When this user leaves

room1, the light service and air-conditioning services are turned off and after some time other

user enters the room1, the system would create the bindings between the user instance for the

new user and both the light service and air-conditioning in the room1, and the binding time

taken by the system would be greatly reduced in comparison to what it would be in the former

case since both light service and air-conditioning services are obtained locally. In chapter 6 we

show that the caching technique significantly reduces reconfiguration time and hence improves

user experience.

The design component in charge of providing support for seamless caching of virtual

stubs is the virtual stub cache manager. We briefly introduced the actions the virtual stub cache

manager performs in section 3.2; here these are discussed in more detail.

 The reconfiguration manager communicates with the virtual stub cache manger by invoking

getVirtualStub(serviceDescription) and this method returns the virtual stub.

 The virtual stub cache manager has a hashtable named virtualStub_Table where virtual

stubs for different services are cached. In order to return the requested virtual stub to the

reconfiguration manager, it checks whether it is in virtualStub_Table by invoking

virtualStub_Table.get(serviceDescription). If available, it is returned to the reconfiguration

manager.

 If the virtual stub cache manager does not find it, it invokes its

doLookup(serviceDescription) method and this, in turn, communicates with the remote

registry to obtain the real proxy/stub of the remote service.

 After obtaining the real proxy of the service, the virtual stub cache manager creates an

instance of the virtual stub and initializes it with the found proxy through

createVirtualStubInstance (serviceDescription, remoteStub) method.

 The instance of virtual stub is then cached into the table through a method call

virtualStub_Table.put (serviceDescription, virtualStub) and then returned to the

reconfiguration manager.

The figure 3.5 below shows the interaction between the architectural components to

provide seamless caching support for virtual stubs.

- 38 -

Virtual Stub

Cache

Manager

caches

Reconfiguration

Manager

Virtual Stub

Remote

Registry

1. getVirtualStub (ServiceDescription)

3. If (virtualStub not in caches)

 doLookup(ServiceDescription)
2. if (virtualStub in caches)

 Virtual Stub Returned

4. Real Proxy returnned

5. createVirtualStubInstance(serviceDescription,remoteStub)
6.cached

7. Virtual Stub Returned

Figure 3.5: Seamless caching support of virtual stubs

3.4 Reconfiguration to manage bindings
We have described our approach to context-aware reconfiguration and caching of

virtual stubs for improved performance, but there may arise situations during the execution of

adaptive context-aware applications that may cause bindings to become invalid and so require

reconfiguration to update them. The bindings may become invalid due to many reasons, such as

sudden non-availability of the bound service (due to power failure at the hosting device where

the bound service is running), or the bound service has been moved to some other location over

the network for load-balancing purposes, or it has been moved closer to the entity accessing the

bound service in order to save bandwidth. In all these situations, the real proxy of the bound

service becomes invalid, causing all the bindings to this service to become invalid. In our

approach to reconfiguration for managing bindings, when the binding becomes invalid due to

any of these reasons and a method call is made on an invalid reference, an exception is thrown

in the virtual stub. In response to the exception, the virtual stub immediately performs the

reconfiguration to update the invalid reference and repeats the call.

The concept of the virtual stub, also called smart proxy has been used as a design

component to address various issues, and some of the research efforts that make use of this

component include [47,70-72]. The virtual stub/smart proxy wraps the real proxy of the remote

service and provides more functionality than the real proxy does (forwarding remote calls from

a client to remote service), depending on the requirements of the system. For example, it may

be required to perform client-side validation before calling actual methods of a target object; it

may be desirable to perform client-side caching to save the remote calls; it may be desirable that

in case of any remote exception the client should not handle the exception, but instead smart

proxy, so that the client is free to deal with real requirements of the applications, etc. Other

additional responsibilities performed by the smart proxy may include performing security (e.g.

- 39 -

not giving access to certain remote objects according to IP address) and load-balancing. The

use of virtual stubs as a design component in our system is that it is in charge of handling an

exception which is generated when attempting to call the method of real proxy that it holds

which has become invalid due to any reasons (for whatever reason), providing an application

transparent solution to managing bindings.

The virtual stub in the PCRA, in addition to forwarding remote calls to the remote

service, has additional responsibility of performing reconfiguration to rebind to the service by

updating an invalid reference to the real proxy of the service, sending an updated copy of itself

so that the virtual stub cache manager always has an up-to-date copy of the virtual stub. In

response to an exception thrown as a result of a remote method call on an invalid proxy, the

virtual stub performs the following actions:

 It invokes its invalidreference (), which performs a remote lookup to obtain a new copy of

the real proxy and the invalid proxy is replaced by new one, thus updating the invalid

reference.

 The virtual stub Cache Manager still has the virtual stub saved which contains invalid proxy.

The virtual stub communicates with the virtual stub cache manager and sends a copy of

itself, which now contains the updated proxy. The virtual stub cache manager replaces the

old copy with new one into cache.

 It then repeats the remote call.

The figure 3.6 below shows interaction between system components to support

reconfiguration to manage bindings.

Figure 3.6: Reconfiguration to manage bindings

Virtual Stub

Real Proxy

Exception

Handler

invoke(args)

....

….

Service

Remote

Registry

1. Method

 Invocation

3. lookup(ServiceDescription)

2. Exception

 Virtual Stub

Cache Manager

Caches

4. Real Proxy Returned

6. Updated Virtual Stub Cached

1. Method

 Invocation

5. Updating Real Proxy

- 40 -

As invalid bindings are managed by the virtual stub, which is a system component, not

by the application developer, this approach contributes to reducing the development efforts for

developing adaptive context-aware applications.

3.5 Contextual Adaptation
We consider two separate cases in contextual adaptation as discussed in chapter 2: (a)

context-triggered actions and (b) modification of these actions in response to context, hence the

contextual adaptation support the system provides incorporates both. In chapter 2, we have

listed and discussed various adaptation approaches used in the literature to realize the adaptation

each of which enables powerful adaptations. Selection of which adaptation approach to use

depends on what kind of adaptation is required. For the contextual adaptation support for

modifying the actions in response to context, we employ an adaptation approach called

service/component parameter adaptation in which the service/component behaviour is modified

through parameter adjustments.

Our approach to contextual adaptation is policy-based where adaptations are specified

through policies. The bindings between the user instance and remote service are created by

policy-based reconfiguration support, and adaptation policies are specified to adapt the

behaviour of the remote services involved in the bindings to satisfy the user needs, such as

modifying the light value to the user‘s preferred value through a light value parameter, lowering

down or increasing the volume of a TV/music service through a volume parameter, etc., without

requiring any attention from the user. The adaptation policy subscribes to the context event and

when that context event occurs, the policy gets triggered and if the condition is true, the policy

performs the adaptation in terms of modifying the behaviour of the service through parameter

adjustment, as dictated by the action part of the policy. We discuss our approach to contextual

adaptation in detail through an example scenario which was also used to discuss our approach to

contextual reconfiguration in section 3.2. The contextual adaptation involved in this scenario is

that when the user stays in room1 for a minute, the light value in the room1 is modified to the

user‘s preferred value, the air-conditioning setting is modified to user‘s preferred value and the

light in room2 is turned OFF. The policy which implements this functionality is shown below

(figure 3.7), and the complete code listing of this scenario can be found in chapter 4.

- 41 -

// A policy that if the user stays a 1 min in the room, then switches off the light in

//adjacent room(e.g. room2), adjusts the light value and the ac setting to the user preferred values.

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/timeEvent.

3. policy action: [

4. location:= configurator getCurrentLocation.

5. theUser:= configurator getHighestPriorityUser: location.

6. otherLocation:= configurator getOtherLocation.

7. preferredLightValue :=theUser getPreferredValue: "LightService".

8. preferredAcSetting :=theUser getPreferredValue: "ACService".

9. adaptation performAdaptation:#("LightService" location "adjust" preferredLightValue).

10. adaptation performAdaptation:#("ACService" location "adjust" preferredAcSetting).

11. adaptation performAdaptation:#("LightService" otherLocation "off").].

12. root/policy at: "timepolicy" put: policy.

13. policy active: true.

Figure 3.7: The time policy in the light and air-conditioning example

This policy subscribes to the time context event (line 2), and action part of this policy

includes various messages, including three adaptation messages (line 9, 10, 11). The message

(line 7) obtains the user‘s preferred value for the light service, and the message (line 8) obtains

the user‘s preferred value for the air-conditioning service. These users‘ preferred values are

already set by the user. One of the features of PCRA is that it allows the users to dynamically

customize their preferences for various services through our GUI-based system utility (we

discuss this in chapter 5). The time context monitor notes the time and if it has been a minute

since the user had entered room1, the time context monitor would generate the time context

event. In response to time context event, the time policy (figure 3.7) would get triggered and

each adaptation message (line 9, 10, 11) would be mapped into a corresponding method call

void performAdaptation(P2Object args). This one argument, i.e., args of P2Object type (we

discuss P2Object in chapter 5) will hold all the attributes of the message, and this argument is

converted into P2Object array and then all attributes of the message are retrieved from this

array. The first void performAdaptation(P2Object args) call modifies light value in room1 by

invoking the adjust method with parameter preferredLightValue (obtained through the message,

line 7) , the second call modifies the air-conditioning setting in room1 by invoking the adjust

method with parameter preferredAcSetting (obtained through the message, line 8) and the third

call turns the light off in room2. The void performAdaptation(P2Object args) is one of the

methods of an adaptation controller, which is one of the system components.

The adaptation controller has another method called P2Object getRemoteField

(P2Object args). The void performAdaptation(args) and P2Object getRemoteField(args)

methods of adaptation controller make a generic adaptation interface of the system (we discuss

this in chapter 5). The former can be used to perform context-triggered actions or modification

of these actions by performing remote method invocations on any bound service. Similarly, the

latter can be used to perform remote invocations on any remote services in order to access their

remote fields. As can be recalled from discussion before, the user instance holds bindings to the

- 42 -

remote services through their corresponding virtual stubs. Any adaptation through above

methods on the remote service is performed through its corresponding virtual stub. The

functionality of void performAdaptation(P2Object args) involves getting the required binding

(i.e., the virtual stub) from the user and invoking the virtual stub method that, in turn,

reflectively calls a required method of the real proxy that it holds to perform adaptation on the

remote service. Similarly, the P2Object getRemoteField(args) involves obtaining the required

binding (i.e., virtual stub) from the user and invoking a method of virtual stub that, in turn, calls

the required method of the real proxy to get the remote field of the remote service. We

summarize the brief discussion above into steps that capture the interaction involved between

the adaptation controller and other system components to realize the contextual adaptation as

follows:

 When the context change event occurs, the adaptation policy is triggered and adaptation

messages in the action part of the policy are mapped into performAdaptationt(args) method

calls of the adaptation controller.

 The adaptation controller through void performAdaptation (P2Object args) interacts with

the user component and obtains the required binding (i.e., virtual stub).

 Once the adaptation controller has obtained the virtual stub, it interacts with the virtual stub

and invokes the method of the virtual stub called invokeMethod (args). This method, in turn,

reflectively calls the method of a real proxy to perform adaptation on the remote service.

The figure 3.8 below shows how contextual adaptation is achieved in above example

scenario.

VS1 LightService

in Room 1RP1

VS2

RP2

VS3

RP3

ACService in

Room 1

LightService

in Room 2

Adaptation

Policy

Time

Context

User

Reconfiguration and Adaptation

Infrastructure

Adaptation

Controller

Other system components

Figure 3.8: Policy-based contextual adaptation

- 43 -

3.6 Sequence of Messages in Policy-based

Reconfiguration
The message sequence diagram below (figure 3.9) captures the sequence of messages

involved in achieving policy-based reconfiguration within PCRA.

getVirtualStub(srvDescription)

Binding

Policy User
Reconfiguration

Manager

Virtual Stub

Cache Manager Virtual Stub Registry

createBinding(srvDescription)

virtualStub returned

setBinding(vStub)

doLookup(srvDescription)

Real Proxy returned

createVStubInstance(srvDesc,remoteStub)

vStubCached()
virtualStub returned

setBinding(vStub)

[Virtual stub in cache?]

[Else]

[Alt]

Figure 3.9: Message sequence diagram for policy-based reconfiguration

The sequence of messages in policy-based reconfiguration starts from the point the

binding policy has been triggered until the establishment of the binding between the user

instance and the remote service.

3.7 Sequence of Messages in Policy-based Adaptation
The diagram below (figure 3.10) captures the sequence of messages involved in

achieving policy-based adaptation within PCRA.

- 44 -

Adaptation

Policy
Adaptation

Controller
User

Reconfiguration

Manager Virtual Stub Real Proxy Service

performAdaptation(service,methodName,param)

getUser()

User instance returned

getBinding(srvDescrip.)

vStub returned

invokeMethod(methodName,param)

method.invoke(remoteStub)

Real proxy calls method on service

Figure 3.10: Message sequence diagram for policy-based adaptation

The sequence of messages in policy-based adaptation starts after the binding has been

established, and it starts from the point the adaptation policy has been triggered until the

adaptation is achieved in terms of modifying the behaviour of the service involved in the

binding.

3.8 Summary
We have designed and implemented the system, PCRA that provides runtime support

for our contributions: contextual reconfiguration, contextual adaptation, reconfiguration to

manage invalid bindings and caching of virtual stubs for improved performance. In this chapter,

we have discussed our approach to contextual reconfiguration and contextual adaptation with

the help of one of the example scenarios we have implemented, and also shown architectural

components involved in realizing both of these. The core feature of our approach to both

contextual reconfiguration and contextual adaptation is the use of policy-based programming

approach in which the binding policies and adaptation polices are specified to realize the

behaviour of adaptive context-aware applications.

We also address other surrounding issues as related to providing the support for

adaptive context-aware applications and these include managing bindings and caching support

for virtual stubs to improve system performance. In this chapter, we have discussed our

approach to these issues and also shown the system components involved and their interaction

in realizing the support for these issues. We have also shown the message sequence diagram for

the system which shows the sequence of messages involved in realizing policy-based contextual

reconfiguration and policy-based adaptation.

- 45 -

Chapter 4

Hypothetical Example Scenarios

In the previous chapter, we discussed the high-level concepts behind the PCRA and our

approach to achieving them through one of the example scenarios we have implemented. While

discussing our approach to each of our contributions, the system components involved and their

interaction in achieving each contribution was presented and described. In order to show that the

proposed system provides a broader scope of adaptation (by combining and providing the

support for both contextual reconfiguration and contextual adaptation) and also to justify the

argument that a policy-based programming approach provides an effective means for

developing, modifying and extending applications, we have implemented several hypothetical

example scenarios, including all five that have been implemented in Scooby [69]. These five

scenarios have been used in Scooby as the basis for comparing their approach to service

composition / reconfiguration to One.World [76-78,84]. Our work and Scooby share similar

research goals in the sense that we both advocate the use of high-level means to perform service

composition/reconfiguration to simplify the development task. However, we use different

approach to achieving this. Scooby‘s main idea is that a dedicated domain specific language is a

more effective way of performing service composition in which composed services can be

developed using high-level binding directives to discover and bind services rather than

traditional approaches that use an API, whilst in contrast we advocate that the use of a policy-

based programming model provides effective means for carrying out context-aware

reconfiguration. In order to compare our approach to that of Scooby, we follow the same

comparison methodology that Scooby has used to compare their approach to One.World by

implementing five scenarios on both Scooby and One.World and using these scenarios as the

basis for comparison. In addition, we extend Scooby‘s scenario 5 (section 4.1.2.5: the music &

telephone scenario), and will show in evaluation chapter how this modification can be achieved

within both the PCRA and the Scooby. In this chapter, we provide high-level description of all

the example scenarios we have implemented, including all five from Scooby and also provide

the code for each of the scenarios along with their description.

- 46 -

4.1 Prototype High-level Example Scenarios
Five scenarios have been reused from Scooby [69] and used for comparison. Three

variants on these were developed in PCRA alone to best explore its features. Therefore, we

divide all scenarios in two categories: PCRA high-level scenarios and Scooby high-level

scenarios.

4.1.1 PCRA Example Scenarios

In this section we introduce and describe high-level example scenarios that we have

implemented within our proposed system, PCRA. Each example scenario involves both

contextual reconfiguration and contextual adaptation.

4.1.1.1 A Home Lighting Example Scenario

The scenario is that if a person enters the room, the system turns on the light and the

light level is set to what it was when the light was last turned off. The system senses the light

level and if it is less than 90 % of user-preferred value or greater than 110 % of user-preferred

value, it is adjusted to the user-preferred value. The system also monitors the activity of the user

(e.g., reading, sleeping, watching TV) and adjusts the light value to the user‘s preferred value

for that activity. Further, the same process is repeated when a person is moving between rooms.

We now elaborate this scenario further with an example.

Let us suppose that there is no one in room1 and now the user, ―Maanta‖ enters

room1, the user presence context widget detects her presence and sends the user presence event

(user = ―Maanta‖, location = ―room1‖ enter_or_left= ‖enter‖). As a response to this event, the

system obtains the user instance for her from previously created user instances in the system,

discovers a light service in room1 and binds it to the user instance, and then turns the light in

room1 on and adjusts the light value to its last used value. The light intensity measuring widget

provides data regarding the light intensity in room1 and the system responds to it as follow. It

obtains her preferred value for the light from user preferences, which are saved in the system,

and if the light value is less than 90% of preferred value or greater than 110% of preferred

value, the light value in room1 is adjusted to her preferred value.

Now another user, ―Yasir‖ enters room1, the user presence context widgets detects his

presence and sends the user presence event (user = ―Yasir‖ location = ―room1‖ enter_or_left =

―enter‖). As a response to this event, the system gets his user instance, the light service for

room1 from cache (when the light service in room1 was discovered previously, it was also

cached to avoid lookup when it was needed again) and binds it to his user instance. Now users,

- 47 -

Maanta and Yasir are in room1 and the light value is already set to Manta‘s preferred value. The

light intensity measuring widget senses the light intensity in room1, which is, at the moment,

Maanta‘s preferred value and sends it to the application. In response to this, the application

checks with the system about the highest-priority user (currently we have a simple personal

conflicts solution based on a priority of the users and that is, the older the user, the higher the

priority) and the application gets the one. If the highest priority user is not the one who has just

entered (Yasir), the system leaves the light value in room1 unmodified as it is already set to the

preferred value of the highest-priority user (Maanta). And if the highest-priority user is the one

who has just entered (Yasir), then application obtains his light preferred value. If the light value

is less than 90% of his preferred value or greater than 110% of his preferred value, the light

value is adjusted to his preferred value. The same process is repeated for any new users in

room1.

As any of the users in room1 moves to other location, for example, in room2, the user

presence context changes (user = ―Maanta‖ location = ―room2‖ enter_or_left = ―enter‖). In

response to this event, the system discovers a light service in room2 and updates the user‘s

binding with the light service in room1 to the light service in room2. If Maanta is the first user

in the room2, the light is turned on and light value is adjusted to what it was when the light was

last turned off in the room2. If there are other users already present in the room2, the light value

in the room2 would already be adjusted to the preferred value of the highest-priority user. The

light intensity measuring widget senses light intensity in room2 and sends it to the application.

As a response to this event, the application gets the highest-priority user from the system.

The activity context monitor monitors the activity of the highest-priority user and

generates an activity event based on what she is doing (e.g., reading, sleeping, watching tv, etc).

In response to this event, the system, based on her activity, modifies the light value to her

preferred value for that activity. For example, there are three users, Roya, Yasir and Maanta in

room1 and the highest-priority user is Roya, and the light value is already set to Roya‘s general

preferred value for the light. Now Roya is reading, and the activity context monitors this activity

and sends activity event (activity = ―reading‖ location = ―room1‖). As a response to this event,

the system modifies the light value to Roya‘s preferred value for reading. If another user enters

room1 and she has the highest-priority, the light value is modified to her preferred value if the

light value is less than 90% or greater than 110% of her preferred value.

If any user is leaving room1/room2 and she is the highest-priority user, the light value

in room1/room2 is adjusted to the user preferred value of next highest-priority user in

room1/room2. For example, users, Maanta, Yasir and Roya are in room1 and the light value in

the room1 is adjusted to Roya‘s preferred value as she is the highest-priority user. Now Roya

- 48 -

leaves room1, the user presence context widget detects her leaving and sends the user presence

event (user = ―Roya‖ location = ―room1‖ enter_left = ―left‖). In response to this event, the

system removes her from a list of users in room1 and gets the next highest-priority user, which

is Yasir and then adjusts light value to his preferred value. As users keep leaving room1 and

when the last user leaves the room1, the system turns the light off in room1. This scenario is

illustrated in figure 4.1 below.

User presence

monitor
binding policyus

er
 p

re
se

nc
e

 e
ve

nt

Reconfiguration and

Adaptation Infrastructure

Other system

components

User LightService

Light Intensity

Monitor

light policy

Activity Monitor

firstuser policy

reading policy

sleeping policy

watchingtv policy

Li
gh

t i
nt

en
si

ty
 e

ve
nt

S
le

ep
in

g
ev

en
t

R
ea

di
ng

 e
ve

nt
W

at
ch

in
gt

v
ev

en
t

removebinding

policy

us
er

 le
ft

ev
en

t

first user event

Adaptation

Controller

Figure 4.1: The home lighting example scenario

The source code that realizes this scenario within the PCRA is shown in figure 4.2.

- 49 -

Figure 4.2: PCRA source code for the home lighting example scenario

lMAssEvent lMEvent: #("UserPresenceContext" "userpresence" "user" "location" "enter_or_left").

lMAssEvent lMEvent: #("LightIntensityContext" "lightintensity" "location" "lightSensed").

lMAssEvent lMEvent: #("ActivityContext" "activityevent" "location" "activity").

//create an event type for the first user policy

event:= root/factory/event create: #("location").

root/event at: "firstuserevent" put:event.

// A binding policy

policy := root/factory/ecapolicy create.

policy event: root/event/userpresence.

policy condition: [:user :location :enter_or_left|(enter_or_left == "enter")].

policy action:[:user :location |

 theUser := users at: user.

 configurator createBinding: #(theUser location "LightService").

 root/event/firstuserevent create: #(location).].

root/policy at: "bindingpolicy" put: policy.

policy active: true.

//The first user policy

policy:=root/factory/ecapolicy create.

policy event: root/event/firstuserevent.

policy condition: [:location|

 IsFirstUser:=configurator IsFirstUser: #(location).

 (IsFirstUser)].

policy action:[:location |

 adaptation performAdaptation:#("LightService" location "on").

 previousLightValue:= adaptation getRemoteFieldValue: #("LightService" location "getLightLevel").

 adaptation performAdaptation:#("LightService" location "adjust" previousLightValue).].

root/policy at: "firstuserpolicy" put: policy.

policy active: true.

// A policy to modify the light value to the user preferred value if the light sensed is lesser

//than 90% of the user preferred value or greater than 110% of the user preferred value.

policy := root/factory/ecapolicy create.

policy event: root/event/lightintensity.

policy condition: [:location :lightSensed |

 theUser:= configurator getHighestPriorityUser: #(location).

 preferredLightValue := theUser getPreferredValue: "LightService".

 IsUserSetEnabled:= theUser getExposed.

 (IsUserSetEnabled)&(lightSensed < ((90/100)*preferredLightValue)) |(lightSensed > ((110/100)*preferredLightValue))].

policy action:[:location :lightSensed |

 theUser:= configurator getHighestPriorityUser: #(location).

 preferredLightValue := theUser getPreferredValue: "LightService".

 adaptation performAdaptation:#("LightService" location "adjust" "userPreferredValue").].

root/policy at: "lightpolicy" put: policy.

policy active:true.

// policy to modify the behaviour of light service when the user is reading

policy := root/factory/ecapolicy create.

policy event: root/event/activityevent.

policy condition: [:location :activity |(activity=="reading")].

policy action: [:location :activity |

 theUser:= configurator getHighestPriorityUser: #(location).

 prefValReadActivity := theUser getPreferredValue: "LightService_reading".

 adaptation performAdaptation:#("LightService" location "adjust" prefValReadActivity).].

root/policy at: "readingpolicy" put: policy.

policy active: true.

// policy to modify the behaviour of light service of the room the user is sleeping

policy := root/factory/ecapolicy create.

policy event: root/event/activityevent.

policy condition: [:location :activity | (activity=="sleeping")].

policy action: [:location :activity |

 theUser:= configurator getHighestPriorityUser: #(location).

 prefValSleepActivity := theUser getPreferredValue: "LightService_sleeping".

 adaptation performAdaptation:#("LightService" location "adjust" prefValSleepActivity).].

root/policy at: "sleepingpolicy" put: policy.

policy active: true.

// policy to modify the behaviour of light service when the user is watchingTV

policy := root/factory/ecapolicy create.

policy event: root/event/activityevent.

policy condition: [:location :activity |(activity=="watchingtv")].

policy action: [:location :activity |

 theUser:= configurator getHighestPriorityUser: #(location).

 prefValWatchTVActivity := theUser getPreferredValue: "LightService_watchingtv".

 adaptation performAdaptation:#("LightService" location "adjust" prefValWatchTVActivity).].

root/policy at: "watchingtvpolicy" put: policy.

policy active: true.

// user leaving policy

policy := root/factory/ecapolicy create.

policy event: root/event/userpresence.

policy condition: [:user :location :enter_or_left|(enter_or_left=="left")].

policy action: [:user :location :enter_or_left |

 configurator removeBinding: #(user location).

 adaptation performAdaptation:#("LightService" location "adjust" "userPreferredValue").].

root/policy at: "userleavingpolicy" put: policy.

policy active: true.

- 50 -

4.1.1.2 The Light and Air-conditioning Scenario

This scenario has already been presented in chapter 3 to describe our approach to both

contextual reconfiguration and contextual adaptation. In this section, we describe this scenario

in detail along with source code.

When a user enters a particular room, the system turns on the light in the room and sets

the light level to its last used level. The system also turns on the air-conditioning unit in the

room and sets the air-conditioning setting to its last used value. Furthermore, the system turns

on the light in adjoining rooms and set their light level to some low value. If the user stays in the

room for some time (e.g., for a minute), the light level in that room is set to the user-preferred

value for the light and air-conditioning setting is set to the user-preferred value for the air-

conditioning, and the light in adjoining rooms are turned off. When the user leaves the room, the

light and air-conditioning are turned off. We elaborate this application scenario in detail with an

example.

The user, ―Maanta‖ enters room1, the user presence context widget detects her presence

and sends the user presence event (user = ―Maanta‖ location = ―room1‖ enter_or_left = "enter").

As a response to this event, the system creates the user instance for her, discovers a light service

and air-conditioning service in room1 and a light service in an adjoining room (e.g. room2) and

binds them all to the user instance. The system then turns on the light and air-conditioning in

room1 and adjusts the light level and air-conditioning setting to their last used levels. The

system also turns on the light in room2 and adjusts its level to some low value. At this point of

time the system signals the timer to start counting time. If she stays longer than a minute in

room1, the time event is fired. In response to this event, the system adjusts the light value and

air-conditioning setting in the room1 to her preferred value for light and air-conditioning

respectively and also turns off the light in room2. If she leaves room1, the user presence context

widget detects this and sends the user presence event (user = ―Maanta‖, location = ―room1‖

enter_or_left="left"). In response to this event, the system turns off the light and air-

conditioning in room1, and removes bindings that she has with the light service and air-

conditioning in room1 and the light service in room2. This scenario is illustrated in figure 4.3,

while the source code for implementation of above scenario within the PCRA is given in figure

4.4.

- 51 -

User presence

monitor
binding policy

u
s
e

r
p

re
s
e

n
c
e

e

v
e

n
t

Reconfiguration and

Adaptation

Infrastructure

Other system

components

LightService in

room1

time policy

turn light and ac off in

room1,then remove bindings

with these services

User

Component

Time Monitor

ti
m

e
 e

v
e

n
t

LightService in

room2

ACService in

room1

Adaptation

Controller

removebinding

policy

u
s
e

r
le

ft

e

v
e

n
t

 set the light in room1

to last used value

 set AC setting in room1

to last used value

set light in room2 to

low value

adjust light in room1 to

user’s preferred value

adjust AC setting in room1 to

user’s preferred value

turn off light in room2

Figure 4.3: The light and air-conditioning scenario

lMAssEvent lMEvent: #("UserPresenceContext" "upevent" "user" "location" "enter_or_left").

lMAssEvent lMEvent: #("Timer" "timeEvent").

// A binding policy

policy := root/factory/ecapolicy create.

policy event: root/event/upevent.

policy condition: [:user :location :enter_or_left| (enter_or_left == "enter")].

policy action:[:user :location |

 theUser := users at: user.

 configurator createBinding: #(theUser location "LightService" "ACService").

 configurator createBinding: #(theUser "room2" "LightService" "otherLocation").

 adaptation performAdaptation:#("LightService" location "on").

 adaptation performAdaptation:#("ACService" location "on").

 previousLightValue:=adaptation getRemoteFieldValue:#("LightService" location "getLightLevel").

 previousAcSetting:=adaptation getRemoteFieldValue:#("ACService" location "getCurrentSetting").

 adaptation performAdaptation:#("LightService" "room2" "on").

 adaptation performAdaptation:#("LightService" location "adjust" previousLightValue).

 adaptation performAdaptation:#("ACService" location "adjust" previousAcSetting).

 adaptation performAdaptation:#("LightService" "room2" "adjust" 10).

 Timer sendEvent: 1.].

root/policy at: "bindingpolicy" put: policy.

policy active: true.

// policy that if the user stays a 1 min in e.g. room1, then switches off the light in adjacent

// room(e.g. room2), adjusts the light and the ac setting to the user preferred values in room1.

policy := root/factory/ecapolicy create.

policy event: root/event/timeEvent.

policy action: [

 location:= configurator getCurrentLocation.

 theUser:= configurator getHighestPriorityUser: location.

 otherLocation:= configurator getOtherLocation.

 preferredLightValue:= theUser getPreferredValue: "LightService".

 preferredAcSetting := theUser getPreferredValue: "ACService".

 adaptation performAdaptation:#("LightService" location "adjust" preferredLightValue).

 adaptation performAdaptation:#("ACService" location "adjust" preferredAcSetting).

 adaptation performAdaptation:#("LightService" otherLocation "off").].

root/policy at: "timepolicy" put: policy.

policy active: true.

// user leaving policy

policy := root/factory/ecapolicy create.

policy event: root/event/upevent.

policy condition: [:user :location :enter_or_left|(enter_or_left=="left")].

policy action: [:user :location |

 Timer sendEvent: 0.

 adaptation performAdaptation:#("LightService" "room1" "off").

 adaptation performAdaptation:#("ACService" "room1" "off").

 adaptation performAdaptation:#("LightService" "room2" "off").

 configurator removeBinding: #(user location).].

root/policy at: "userleavingpolicy" put: policy.

policy active: true.

Figure 4.4: PCRA source code for the light and air-conditioning scenario

- 52 -

4.1.1.3 Extended Telephone, Light and Music Scenario

We have another application scenario which has been taken from Scooby [69] and

slightly modified to add a little more complexity to it. Let us imagine that a user is sitting in a

living room and listening to her favourite music in a CD player in dim light. Suddenly the phone

starts ringing. A device is attached to the telephone, which generates the signals that indicate if

the user has picked up the receiver to attend the call; the user has put down the receiver after the

conversion is over or the user does not want to attend the call (the device either counts the

number of beeps or notes the time). If the phone is not picked up within a certain number of

beeps or within certain time period (e.g., 5 seconds), it is assumed that the user does not wish to

attend the call. When the user picks up the receiver and attends the call, the system causes the

light level to be returned to normal and for the volume in the CD player to be reduced. Once the

user has finished talking and the receiver is placed back on the phone, the system modifies the

light value to the previous level, and modifies the volume to what it was prior to the phone call.

If the user does not attend the call, a voice message is recorded on the answering machine. We

demonstrate this example scenario in more detail with an example.

The user, ―Maanta‖ enters the living room, the user presence context widget detects her

presence and sends the user presence event (user = ―Maanta‖ location = ―livingroom‖). As a

response to this event, the system creates the user instance for her, discovers a light service and

CD player service in the living room and binds them to the user instance. The system then plays

her favourite music in CD player, and the light value is set to some low value (dim light). When

the phone starts ringing and she attends the call, the phone monitor event (attendingcall =

―true‖) is fired. In response to this event, the system saves the current values of the light and

music volume and then adjusts the light value to normal and the music volume to a very small

value. When she finishes the conversion and places the receiver back on the phone, the phone

monitor event (callfinished = ―true‖) is fired. In response to this event the system modifies the

light value and music volume to what they were before the phone call. If she does not pick the

phone within a minute after the phone started ringing, the time event is fired. In response to this

event, a voice message is recorded on the answering machine. When she leaves the living room,

the user presence event (user = ―none‖ location = ―none‖) is fired. As a response to this event,

the system turns off the light and the music, and removes bindings with these services.

We use this modified scenario in the qualitative part of evaluation chapter and show

how modification and extensibility can be achieved both within the PCRA and within Scooby.

This scenario is illustrated in figure 4.5 and the source code for implementation of above

scenario within the PCRA is given in figure 4.6

- 53 -

User presence

monitor

binding policy

u
s
e

r
p

re
s
e

n
c
e

e

v
e

n
t

Reconfiguration and

Adaptation

Infrastructure

Other system

components

LightService

Telephone

monitor

callfinished policy

MusicService

attendingcall

policy

adjust light value

back

adjust music vol. back

a
tt
e

n
d

in
g

 c
a

ll
e

v
e

n
t

User

Component

adjust light to brightness

Answering

Machine c
a

ll
fi
n

is
h

e
d

 e
v
e

n
t

Time Monitor

time policy

ti
m

e
 e

v
e

n
t

Adaptation

Controller

reduce

music vol.

record a message

Figure 4.5: Extended telephone, light and music scenario

lMAssEvent lMEvent: #("UserPresenceContext1" "upevent" "user" "location").

lMAssEvent lMEvent: #("PhoneMonitor" "phoneEvent" "attendingcall" "callfinished").

lMAssEvent lMEvent: #("Timer" "timeEvent").

// The below line of code links the Timer (generates timeEvent)to the PhoneMonitor.

root/PhoneMonitor sendTimer: root/Timer.

// A binding policy to discover a light service, music service and answering machine service based on user's

//location and bind them to the user instance of the user in the location , and adjusts the light to dim

// value and plays music.

policy := root/factory/ecapolicy create.

policy event: root/event/upevent.

policy action:[:user :location |

 theUser := users at: user.

 configurator createBinding: #(theUser location "LightService" "MusicService" "AnsweringMachine").

 adaptation performAdaptation:#("LightService" location "adjust" 15).

 adaptation performAdaptation:#("MusicService" location "play").].

root/policy at: "bindingpolicy" put: policy.

policy active: true.

//A policy to change light value and volume of the music when the user attends a call.

policy := root/factory/ecapolicy create.

policy event: root/event/phoneEvent.

policy condition: [:attendingcall :callfinished | (attendingcall)].

policy action: [

 musicVol:= adaptation getRemoteFieldValue:#("MusicService" "livingroom" "getVolume").

 lightVal:= adaptation getRemoteFieldValue:#("LightService" "livingroom" "getLightLevel").

 // The variableSaver is the managed object that is used to save variables so that these variables

 // can later be obtained and used. The variables below (musicVol and lightVal) are saved in the

 //variableSaver object. These variables are later obtained from variableSaver object and used in

 //callfinshed policy below.

 variableSaver setLightValue: lightVal.

 variableSaver setMusicVolume: musicVol.

 adaptation performAdaptation:#("LightService" "livingroom" "adjust" 70).

 adaptation performAdaptation:#("MusicService" "livingroom" "setVolume" 0).].

root/policy at: "attendingcall" put: policy.

policy active: true.

//A policy to bring the light value and volume of the music back to what they were before user attended

//the call, when the user finishes talking and places receiver back on the phone.

policy := root/factory/ecapolicy create.

policy event: root/event/phoneEvent.

policy condition: [:attendingcall :callfinished |(callfinished)].

policy action: [

 lightVal:= variableSaver getLightValue.

 musicVol:= variableSaver getMusicVolume.

 adaptation performAdaptation: #("LightService" "livingroom" "adjust" lightVal).

 adaptation performAdaptation: #("MusicService" "livingroom" "setVolume" musicVol).].

root/policy at: "callfinshed" put: policy.

policy active: true.

//A policy to allow recording voice message if the phone is not attended within some time period(e.g., 5 sec)

// after the phone started ringing.

policy := root/factory/ecapolicy create.

policy event: root/event/timeEvent.

policy action: [

 adaptation performAdaptation: #("AnsweringMachine" "livingroom" "recordMessage" "message").].

root/policy at: "timepolicy" put: policy.

policy active: true.

Figure 4.6: PCRA source code for extended light, music and telephone scenario

- 54 -

4.1.2 Scooby Example Scenarios

In this section we introduce and describe high-level example scenarios that have been

designed and implemented within the Scooby system [69]. As mentioned before, we have also

taken the same scenarios and implemented them within the PCRA to make comparison. Scooby

describes that each scenario is intended to build on the complexity of the preceding one; hence

the last one is the most complex. In this section we reproduce the description of all five Scooby

scenarios and then discuss how these scenarios are implemented within the PCRA along with

the code.

4.1.2.1 Scenario 1: Simple printer service composition

The high-level description of the simple printer service composition is reproduced from

the Scooby [69] and presented below.

“A user would like to print a PDF document on a printer. The required printer must be able to

print with the following characteristics: print in colour, double-sided and print onA4-sized

paper.”

The requirement for this scenario involves discovering a printer service with above

characteristics and document converter service, which can convert a given document in a PDF

format, and binding them to the user instance. If the document is in a PDF format, it is directly

sent to the printer service for printing. And if it is in other than a PDF format, it is sent to the

converter service and then the converted PDF document returned by this service is sent to the

printer service for printing. The realization of this scenario within the PCRA is illustrated in the

following figure 4.7.

User presence

monitor

binding policy

User presence

event

Reconfiguration

and Adaptation

Infrastructure

Other system

components

User

Printer

Document

converter fileEvent

pdfprint policy

convertprint

policy

PDF file event

DOC file event
Print a file

Convert a doc file

to pdf

Returns a pdf file

Print a file

Adaptation

Controller

Figure 4.7: Printer and converter scenario

- 55 -

As can be seen in above diagram, the binding policy responds to user presence event

(user, location) and discovers a printer service based on user‘s location (and other search

attributes, colour, size, etc.) and a document converter service. There are two policies—pdfprint

policy and convertprint policy that subscribe to the fileEvent. The convertprint policy checks if

the document is a PDF file, it sends this file to the printer service to print. The printconvert

policy checks if the document is not a PDF file (e.g., doc type), it sends this document to the

converter service and the file is converted into PDF format and returned by this service, and

then the policy sends the converted document to the printer service to print.

The source code that realizes this scenario within the PCRA is shown in figure 4.8, and

Scooby source code (reproduced from Scooby thesis) for this scenario is shown in figure 4.9

lMAssEvent lMEvent: #("UserPresenceContext1" "userpresence" "user" "location").

root/event at: "fileEvent" put:(root/factory/event create: #("file" "fileType")).

// A binding policy that discovers and binds to printer and converter service.

policy := root/factory/ecapolicy create.

policy event: root/event/userpresence.

policy action:[:user :location |

 theUser := users at: user.

 configurator createBinding: #(theUser location "Printer" "color" "A4" "serviceAttributes").

 configurator createBinding: #(theUser "Converter").

 root/event/fileEvent create: #("fileData" "pdf").

 root/event/fileEvent create: #("fileData" "doc").].

root/policy at: "bindingpolicy" put: policy.

policy active: true.

// A policy that sends a document to the printer to print if it is in a PDF format.

policy := root/factory/ecapolicy create.

policy event: root/event/fileEvent.

policy condition: [:file :fileType |(fileType=="pdf")].

policy action: [:file :fileType |

 adaptation performAdaptation: #("Printer" "sendMessage" file).].

root/policy at: "PDFprintpolicy" put: policy.

policy active: true.

// A policy that checks if the document is not in a PDF format, sends this to the converter

//service and then sends the converted PDF document to the printer service to print.

policy := root/factory/ecapolicy create.

policy event: root/event/fileEvent.

policy condition: [:file :fileType | (fileType!="pdf")].

policy action: [:file :fileType |

 converted:= adaptation getRemoteFieldValue: #("Converter" "convert" file).

 adaptation performAdaptation: #("Printer" "sendMessage" converted).].

root/policy at: "convertprintolicy" put: policy.

policy active: true.

Figure 4.8: PCRA source code for printer-converter scenario

- 56 -

service PDFPrinter decorates ptr: printer, converter: pdf2ps {

 bind ptr match { location : "5a22" & colour : "yes" & doublesided : "yes" &

 papersize : "a4"

}

{

 public void print(blob file) {

 // print the file if it is a PDF

 if(file is "PDF") {

ptr.print(file)

 }

 else {

// convert the file

file = converter.convert(file)

ptr.print(file)

 }

 }

}

} when bindexception {

 reporterror("error occurred")

 terminate

}

Figure 4.9: Scooby source code for printer-converter scenario

4.1.2.2 Scenario 2: Follow Me Service

The high-level description of the follow me service is reproduced from the Scooby [69]

and presented below.

“In this scenario, we propose a more complex set of interactions between services to provide

the overall goal of directing information to a user, based on their proximity to a device. Let us

imagine that: -

A user has configured a stock monitoring service to inform them when a stock price

reaches a certain point. The service is configured to display the stock price on the closest

available smart device to the user. This could be in the form of a message on a screen, printout,

sms or email message, depending on the location of the user within the smart environment. It is

assumed that the user may walk around within this environment and alter their location.‖

The requirement of this scenario involves discovering the closest rendering device

service based on the location of the user and binding it to the user instance, and then sending the

stock price information to the bound service of the closest available rendering device to the user.

Figure 4.10 shows the realization of this scenario within the PCRA.

- 57 -

user presence

monitor

binding policy

user presence event

Reconfiguration

and Adaptation

Infrastructure

Other system

components

User

Printer

 Screen
stock price

monitor

stockprice policy

stock price event

SMS

 location=5c110

location=5c11

No rendering device

Adaptation

Controller

Figure: 4.10: Follow me service scenario

As can be seen in above diagram, there is a binding policy which responds to user

presence context (user, location). The user presence monitor detects the user presence in terms

of the user‘s ID and location and generates a user presence event. In response to this event, this

policy discovers the service for the rendering device based on the location of the user and binds

it to the user instance. For example, a printer is located in room ―5c11‖ and smart screen is fixed

in room ―5c10‖. If the user, ―Maanta‖ enters room ―5c11‖, the user presence context monitor

detects her ID and location, and generates user presence event (user = “Maanta” location

=“5c11”). As a response to this event, the binding policy discovers the service for the printer in

room ―5c11‖ and binds it to the user instance. Similarly if she moves to room ―5c10‖, the

binding policy responds to user presence event (user = “Maanta” location =“5c10”) and

discovers the smart screen service in room ―5c10‖ and binds it to the user instance. The stock

price monitor monitors the stock price and when it reaches a certain point, it generates the stock

price event. In response to this event, the stockprice policy sends the stock price to the device

based on location of the user. If the current location of the user is room ―5c10‖, the stockprice

policy sends stock price to the smart screen. If the current location of the user is room ―5c11‖,

the stockprice policy sends the stock price to the printer. If the user is somewhere where there is

no rendering device available, the stockprice policy sends an sms/email to the user.

 The source code for implementation of this scenario within the PCRA is shown in

figure 4.11 and Scooby source code (reproduced from Scooby thesis) for this scenario is shown

in figure 4.12

- 58 -

lMAssEvent lMEvent: #("UserPresenceContext1" "userpresence" "user" "location").

lMAssEvent lMEvent: #("StockService" "stockpriceevent" "stockprice").

// A binding policy that discovers a rendering device based on location of the user

//and binds it to the user.

policy := root/factory/ecapolicy create.

policy event: root/event/userpresence.

policy action:[:user :location |

 theUser := users at: user.

 configurator createBinding: #(theUser location "bindingWithRenderingDevices").].

root/policy at: "bindingpolicy" put: policy.

policy active: true.

// A policy that responds to stock price event and sends stock price information

// to the rendering device closest to user location.

policy := root/factory/ecapolicy create.

policy event: root/event/stockpriceevent.

policy action: [:stockprice |

 location:=configurator getCurrentLocation.

 service:= configurator renderingService: #(location).

 adaptation performAdaptation: #(service location "sendMessage" stockprice).].

root/policy at: "stockpricepolicy" put: policy.

policy active: true.

Figure 4.11: PCRA source code for follow me scenario

service stockmonitor decorates cp : printer, cs: screen, sr : sms, em: email {

 // need to bind to an event which contains the current location of

 // the user. could have an ref id tag attached and associated service

 bind userlocation as event match { location: userloc }

 // we need to bind to relevant devices (printer, screen, sms)

 // depending on the location of the user

 bind cp match { location: printerloc }

 bind cs match { location: screenloc }

 bind stockservice as event match { price: stockprice }

 {

 int userpreference = 1

 }

{

// only fire when we get an event from the stock service

on notification(stockservice) {

 // we need to call a relevant device depending on the location

 if(userloc == printerloc) {

 cp.sendmessage(stockprice)

 }

 else {

 if(userloc == screenloc) {

 cs.sendmessage(stockprice)

 }

 else {

 // depending on what the user wants, they will put code here to send

 // to email or sms

 if(userpreference) { sr.sendmessage(stockprice) }

 else {

 em.sendmessage(stockprice)

 }

 }

 }

 }

 }

} when bind exception() {

 reporterror("Error in binding.")

}

Figure 4.12: Scooby source code for follow me scenario

- 59 -

4.1.2.3 Scenario 3: The home coffee machine, fridge and cooker

The high-level description of the home coffee machine, fridge and cooker is reproduced

from the Scooby [69] and presented below.

“A user initially informs the alarm clock of the time they wish to be woken. Depending

on their policy, the alarm clock will inform the coffee machine a few minutes before the alarm is

to go off, to tell it to start preparing the coffee, so that it is ready when the user wakes. In doing

so, the coffee machine must request that there is enough milk from the fridge. The fridge will

check the availability and will reply whether there is enough milk or not. If not, the fridge will

inform the shopping list service by requesting it to add milk to the current list of items needing

to be picked up next time a shopping run is scheduled. The coffee machine will then prepare the

coffee and will then inform the cooker service that it needs to start preparing for breakfast. At

this point the cooker is required to consult with the fridge to make sure that the components of

the breakfast (in this case, bacon, eggs and bread) are available. Again, the fridge will check

the availability of these items, and will add them to the shopping list if required. The cooker will

then proceed in preparing the breakfast.”

The realization of this scenario within the PCRA is illustrated in the following figure

4.13.

Alarm Clock

binding policy

time event
Reconfiguration and

Adaptation Infrastructure

Adaptation Controller

Other system

components

User

Cooker

Coffee

 itemEvent

makecoffee

policy

shoppinglist

policy

Allows a user to set alarm time and

generates a time event when it reaches

set alarm time

Fridge

Shopping list

service

Checks availability of milk

Returns availability status of milk

Make coffee

m
ilk

 a
va

ila
bl

e
ev

en
t

m
ilk

 n
ot

 a
va

ila
bl

e
ev

en
t

Creates an itemEvent for

availability status of milk

Checks availability of breakfast items

Ret. Avail. status of breakfast items
breakfastitems

cookbreakfast

Add item to a shopping list

cookbreakfast

policy

Creates a breakfastitems

event

Figure 4.13: The home coffee machine, fridge and cooker

- 60 -

We have coded a managed object which is a GUI-based text clock. It also allows a user

to set alarm time. When it reaches set alarm time, it generates a time event. The binding policy

in this scenario as shown in figure 4.5 above responds to the time event. In response to time

event, the binding policy discovers a coffee service, fridge service, cooker service and shopping

list service and binds them all to the user instance. After the bindings have been established, the

binding policy contacts the fridge service and checks the availability of the milk. It then creates

an itemEvent (item itemAvailability) by filling in the name of the item and availability status of

the item (item = ―milk‖ itemAvailability = ―true/false‖). There are two policies that subscribe to

this event: a makecoffee and shoppinglist. In response to this event, both the makecoffee and

shopinglist policies get triggered and the one whose condition is true would be executed. If milk

is available, the makecoffee policy would execute and issue a command to the coffee machine to

start making coffee. If milk is not available, the shoppinglist policy would execute and add milk

in the shopping list. After the makecoffee policy has issued the command to prepare coffee, it

would contact the fridge service and get the availability status of each of breakfast items (e.g.,

eggs, bacon and bread). If the breakfast item is not available, the shoppinglist policy would be

executed and add the breakfast item to the shopping list. After the makecoffee policy has the

availability status of each of the breakfast items, it creates breakfastitems (isBaconAvail

isEggsAvail isBreadAvail) event. In response to this event, the cookbreakfast policy gets

triggered and checks if the breakfast items are available. If available, it issues a command to the

cooker to start preparing breakfast.

The source code for implementation of this scenario within the PCRA is shown below

in figure 4.14, and Scooby source code (reproduced from Scooby thesis) for this scenario is

shown in figure 4.15.

- 61 -

lMAssEvent lMEvent: #("TextClock" "timeevent").

root/event at: "itemEvent" put: (root/factory/event create: #("item" "itemAvailability")).

root/event at:"breakfastitems" put:(root/factory/event create:#("isBaconAvail" "isEggsAvail" "isBreadAvail")).

//A binding policy that discovers FirdgeService, CoffeeMachine, CookerService and ShoppingList in

//the kitchen and binds them to the user instance when the alarm clock starts ringing.

policy := root/factory/ecapolicy create.

policy event: root/event/timeevent.

policy action:[

 theUser := users at: "yasir".

 configurator createBinding: #(theUser "kitchen" "FridgeService" "ShoppingList"

 "CoffeeMachine""CookerService").

 isMilkAvail:= adaptation getRemoteFieldValue: #("FridgeService" "kitchen" "checkAvailability" "milk").

 root/event/itemEvent create: #("milk" isMilkAvail).].

root/policy at: "bindingpolicy" put: policy.

policy active: true.

// A policy to make coffee if milk is available in the fridge

policy := root/factory/ecapolicy create.

policy event: root/event/itemEvent.

policy condition: [:item :itemAvailability |(item=="milk")&(itemAvailability)].

policy action: [:item :itemAvailability |

 adaptation performAdaptation:#("CoffeeMachine" "kitchen" "prepare").

 isBaconAvail:= adaptation getRemoteFieldValue: #("FridgeService" "kitchen" "checkAvailability" "bacon").

 root/event/itemEvent create: #("bacon" isBaconAvail).

 isEggsAvail:= adaptation getRemoteFieldValue: #("FridgeService" "kitchen" "checkAvailability" "eggs").

 root/event/itemEvent create: #("eggs" isEggsAvail).

 isBreadAvail:= adaptation getRemoteFieldValue: #("FridgeService" "kitchen" "checkAvailability" "bread").

 root/event/itemEvent create: #("bread" isBreadAvail).

 root/event/breakfastitems create: #(isBaconAvail isEggsAvail isBreadAvail).].

root/policy at: "makecoffee" put: policy.

policy active: true.

// A policy to add a food item in the shopping list if not available in the fridge

policy := root/factory/ecapolicy create.

policy event: root/event/itemEvent.

policy condition: [:item :itemAvailability |(itemAvailability not)].

policy action: [:item :itemAvailability |

 adaptation performAdaptation:#("ShoppingList" "kitchen" "addToShoppingList" item).].

root/policy at: "shoppinglist" put: policy.

policy active: true.

// A policy to make breakfast if breakfast food items are available in the fridge

policy := root/factory/ecapolicy create.

policy event: root/event/breakfastitems.

policy condition: [:isBaconAvail :isEggsAvail :isBreadAvail |(isBaconAvail)&(isEggsAvail)&(isBreadAvail)].

policy action: [:isBaconAvail :isEggsAvail :isBreadAvail |

 adaptation performAdaptation:#("CookerService" "kitchen" "cookBreakfast").].

root/policy at: "cookbreakfast" put: policy.

policy active: true.

Figure 4.14: PCRA source code for the home coffee machine, fridge and cooker

- 62 -

service coffeeMachine decorates fs: fridge, sls: shoppinglist, cs: cooker {

 bind fs match { location: "kitchen" }

 bind cs match { location: "kitchen" }

 {

 location: "kitchen"

 }

 {

 public void prepare() {

 if(fs.checkAvailability("milk")) {

 display("Preparing coffee...")

 cs.cookBreakfast()

 } else {

 display("There is not enough milk in the fridge, so need to order some!")

 sls.order("milk")

 }

 }

 }

} when bindexception {

 reporterror("Bind exception occurred...")

 }

service cooker decorates fs: fridge, sls: shoppinglist {

 bind fs match { location: "kitchen" }

 {

 location: "kitchen",

 cooker_type: "electric"

 }

 {

 public void cookBreakfast() {

 if(fs.checkAvailability("bacon")) {

 if(fs.checkAvailability("eggs")) {

 if(fs.checkAvailability("bread")) {

 display("Making breakfast...")

 }

 else { sls.order("bread") }

 } else { sls.order("eggs") }

 } else { sls.order("bacon") }

 }

 }

} when bindexception {

 reporterror("Unable to bind...")

}

Figure 4.15: Scooby source code for the home coffee machine, fridge and cooker

4.1.2.4 Scenario 4: The home environment

The high-level description of this scenario is reproduced from Scooby [69] and

presented below.

“The user is in their car, returning home from work. A PDA is present within the car and is

connected to a GPS system allowing a calculation of the time remaining before the user reaches

home. Ten minutes before arriving, the PDA signals the home, telling it of the user’s imminent

arrival. Upon doing this, devices in the home activate. The heating device turns on so that the

house is warm and hot water is available. The lights are turned on in the garage and entrance

hall of the house. The curtains are automatically drawn and the coffee machine starts preparing

some fresh coffee. As soon as the user reaches home and enters the house, the garage lights turn

off as they leave the garage, motion detectors track the user’s movements in the house, turn on

the living room lights and start playing their chosen piece of music in the CD player.”

This scenario involves discovering various services at home, binding them and

performing various actions on these services in order to realize this scenario when the arrival

time of the user at home falls below 10 minutes. The figure 4.16 below illustrates the realization

of this scenario within the PCRA.

- 63 -

Reconfiguration and

Adaptation Infrastructure

Time Calculator

home policy

time event

Other system

components

User

CurtainService

HeatingService

 generates a time event when the

arrival time of the user falls below

10 minutes

LightService

CoffeeMachine

Adaptation

Controller

Figure 4.16: Home environment scenario

We have simulated this part of the scenario ―Ten minutes before arriving, the PDA

signals the home, telling it of the user’s imminent arrival” by coding a managed object. This

managed object is a GUI-based time calculator which takes the arrival time of the user as an

input and generates a time event when the arrival time falls below 10 minutes. In response to

time event, the home policy is triggered and discovers a coffee service, heating service, curtain

service and light service and binding them all to the user instance. Once bindings have been

created, the home policy performs invocations on the bound services to realize the behaviour of

this scenario. The source code for realization of this scenario within the PCRA is shown in the

figure 4.17, while the Scooby source code (reproduced from Scooby thesis) for this scenario is

shown in figure 4.18.

lMAssEvent lMEvent: #("TimeCalculator" "time").

policy := root/factory/ecapolicy create.

policy event: root/event/time.

policy action:[

 user := users at: "Yasir".

 configurator createBinding:#(user "frontroom" "CurtainService" "LightService" "noUserLocation").

 configurator createBinding:#(user "bedroom" "CoffeeMachine" "noUserLocation").

 configurator createBinding: #(user "45Lansdowne" "HeatingService" "noUserLocation").

 adaptation performAdaptation:#("LightService" "frontroom" "on").

 adaptation performAdaptation:#("HeatingService" "45Lansdowne" "on").

 adaptation performAdaptation:#("CurtainService" "frontroom" "closeCurtains").

 adaptation performAdaptation:#("CoffeeMachine" "bedroom" "prepare").].

root/policy at: "homepolicy" put: policy.

policy active: true.

Figure 4.17: PCRA source code for home environment scenario

- 64 -

service myPolicy decorates lighting: lightingcontroller, curtains:

curtaincontroller, heating: heatingcontroller, coffee: coffeemachine {

 bind eta as event match { arrivaltime: "10" }

 bind curtains match { location: "frontroom" }

 bind coffee match { location: "bedroom" }

 {

 // this service is kicked off by an event, so put in handler

 on notification(eta) {

 lighting.turnLightsOn()

 curtains.closeCurtains()

 heating.turnOnHeating()

 coffee.prepare()

 }

 }

} when bindexception {

 reporterror("Bind exception occurred...")

}

Figure 4.18: Scooby source code for home environment scenario

4.1.2.5 Scenario 5: The music & telephone scenario

The high-level description of this scenario is reproduced from the Scooby [69] and

presented below.

“The user is sitting in a dimly lit living room, listening to music. Suddenly the phone

starts ringing. Connected to the phone is a device that detects an incoming call. This

automatically causes the lighting levels to be returned to normal (if previously dimmed) and for

the volume in the CD player to be reduced. The user picks up the phone and begins to talk.

Once the conversation has finished, and the receiver is placed back on the phone, the lighting is

returned to the previous levels, and the volume returns to what it was before the phone call.”

In order to simulate that whether the phone is ringing and being attended and the

conversion has finished (receiver is placed back on the phone), we have implemented a

managed object which is a GUI-based component and acts as a phone monitor. This component

generates a phone event when a button for a particular action is pressed (e.g., by pressing a

―Call Finished‖ button). This scenario involves a binding policy which responds to the user

presence context event and discovers the music service and light service and binds them to the

user instance. The other two policies involved are attendingcall and callfinsished policies and

both of these respond to phone event context. The attendingcall policy modifies the light value

and the volume of the music when the user is attending the call, while the callfinished policy

brings the light value and the volume of the music back to what they were before the user

attended the call, once the user has finished the conversion and placed back the receiver on the

phone. Figure 4.19 below illustrates the realization of this scenario within the PCRA.

- 65 -

user presence

monitor

binding policy

u
s
e

r
p

re
s
e

n
c
e

e

v
e

n
t

Reconfiguration and

Adaptation

Infrastructure

Other system

components
LightService

telephone

monitor

callfinished policy
MusicService

attendingcall

policy

c
a

ll
fi
n

is
h

e
d

 e
v
e

n
t

reduce music vol.

adjust light value back

adjust music vol. back

a
tt
e

n
d

in
g

 c
a

ll
e

v
e

n
t

User

Component

adjust light to brightness

Adaptation

Controller

Figure 4.19: The music & telephone scenario

The source code for realization of this scenario within the PCRA is shown in the figure

4.20, while the Scooby source code (reproduced from Scooby thesis) for this scenario is shown

in figure 4.21.

lMAssEvent lMEvent: #("UserPresenceContext1" "upevent" "user" "location").

lMAssEvent lMEvent: #("PhoneMonitor1" "phoneEvent" "attendingcall" "callfinished").

// A binding policy that discovers the light service and the music service and bind

// them to the user instance

policy := root/factory/ecapolicy create.

policy event: root/event/upevent.

policy action:[:user :location |

 theUser := users at: user.

 configurator createBinding: #(theUser location "LightService" "MusicService").

 adaptation performAdaptation:#("LightService" location "adjust" 15).

 adaptation performAdaptation:#("MusicService" location "play").].

root/policy at: "bindingpolicy" put: policy.

policy active: true.

//A policy to change the light value and volume of the music when the user attends a call

policy := root/factory/ecapolicy create.

policy event: root/event/phoneEvent.

policy condition: [:attendingcall :callfinished |(attendingcall)].

policy action: [

 musicVol:= adaptation getRemoteFieldValue:#("MusicService" "livingroom" "getVolume").

 lightVal:= adaptation getRemoteFieldValue:#("LightService" "livingroom" "getLightLevel").

 variableSaver setLightValue: lightVal.

 variableSaver setMusicVolume: musicVol.

 adaptation performAdaptation:#("LightService" "livingroom" "adjust" 70).

 adaptation performAdaptation:#("MusicService" "livingroom" "setVolume" 0).].

root/policy at: "attendingcall" put: policy.

policy active: true.

// A policy to bring the light value and the volume of the music back to what they were before

//the user attended the call, when the user has finished the conversion and placed back the

//receiver on the phone

policy := root/factory/ecapolicy create.

policy event: root/event/phoneEvent.

policy condition: [:attendingcall :callfinished |(callfinished)].

policy action: [

 lightVal:= variableSaver getLightValue.

 musicVol:= variableSaver getMusicVolume.

 adaptation performAdaptation: #("LightService" "livingroom" "adjust" lightVal).

 adaptation performAdaptation: #("MusicService" "livingroom" "setVolume" musicVol).].

root/policy at: "callfinshed" put: policy.

policy active: true.

Figure 4.20: PCRA source code for the music & telephone scenario

- 66 -

service telephone decorates cd: cdplayer, lighting: lightingcontroller {

 bind cd match { location: "5a22" }

 bind lighting match { location: "frontroom" }

 bind noPhone as event match { status: "idle" }

 bind phoneInUse as event match { status: "ringing" }

 {

 location:"5a22"

 }

 {

 int lightingLevel

 int volumeLevel

 }

 {

 on notification(phoneInUse) {

 volumeLevel = cd.getVolume()

 lightingLevel = lighting.getBrightnessLevel()

 cd.setVolume(0)

 lighting.turnLightsOn()

 }

 on notification(noPhone) {

 lighting.setBrightnessLevel(lightingLevel)

 cd.setVolume(volumeLevel)

 }

 }

} when bindexception {

 reporterror("Binding exception occurred...")

}

Figure 4.21: Scooby source code for the music & telephone scenario

4.2 Scooby Description Outline

In the previous section, we provided high-level description of all Scooby scenarios and

the source code for realization of these scenarios on PCRA and on Scooby. In this section we

use the Scooby code for the music & telephone scenario (figure 4.21) and take a look at how a

Scooby composite service is constructed.

The Scooby service has a distinct structure as there are several sections used to describe

specific areas of functionality. We divide the composite service code for the music & telephone

scenario into sections that describe the specific areas of functionality of a Scooby service, and

briefly take a look at each of these sections.

The first section of the Scooby service is a binding variable declaration block where

binding variables are defined and used globally throughout the service. The binding variable

declaration block of above scenario is shown in figure 4.22

// binding variable declaration block

bind cd match { location: "5a22" }

bind lighting match { location: "frontroom" }

bind noPhone as event match { status: "idle" }

bind phoneInUse as event match { status: "ringing" }

Figure 4.22: Binding variable declaration block

- 67 -

One of the core concepts in the Scooby is the use of binding variables which provide

high-level means to discover and bind services based on some search criteria. As can be noted

in figure 4.22, there are four binding variables involved in the music & light example scenario:

two service binding variables and two event binding variables. The service binding variable

provides a link between a service and remote service and the remote service is accessed through

its corresponding binding variable. The event binding variable is used in the service to capture

an event. The high-level language constructs such as binding variables and others have a direct

mapping to the underlying processes present within the Scooby middleware.

What follows the binding variable declaration block is a service characteristics block,

which contains characteristics that will be associated with the service when it sends its service

description and this description is used in the process of service discovery. The service

characteristics block is shown in figure 4.23.

// service characteristics block

{

 location:"5a22"

}

Figure 4.23: Service characteristics declaration block

The characteristics that are defined in this section can be static or dynamic. If the

characteristics of the service never change throughout its lifetime, these would be defined

statically, and those which change throughout the service‘s lifetime would be defined

dynamically.

What follows the service characteristics block in the example scenario is a variables

declaration block. This block contains a list of variables, and these variables are global

variables and are used throughout the service. This block is shown in figure 4.24.

// variables declaration block

{

 int lightingLevel

 int volumeLevel

}

Figure 4.24: Variables declaration block

After these declaration blocks is a main code section and this is used to define any

methods, notification handlers or binding handlers within the Scooby service. The music &

- 68 -

telephone scenario (figure 4.21) does not have any methods. However, methods can be defined

either private or public, and are used to set their visibility as local or external. Event handlers

can be defined in the main section to perform event processing upon the occurrence of an event.

The music & telephone scenario includes two notification handlers as shown in figure 4.25.

on notification(phoneInUse) {

 volumeLevel = cd.getVolume()

 lightingLevel = lighting.getBrightnessLevel()

 cd.setVolume(0)

 lighting.turnLightsOn()

 }

on notification(noPhone) {

 lighting.setBrightnessLevel(lightingLevel)

 cd.setVolume(volumeLevel)

 }

Figure 4.25: Notification handlers

The final section within the Scooby service is an exception-handling block. This block

provides a place to include the code about what to be done if a binding reference becomes

unsatisfied during the life cycle of the service. This block is shown in figure 4.26.

when bindexception {

 reporterror("Binding exception occurred..."

)

Figure 4.26: Binding exception code block

When the binding ultimately fails, this binding exception code block is executed which

allows the developer to specify what action to perform. For example, this may include to

terminate the service, start the discovery process again or to put in additional code to change the

search criteria or something.

4.3 Discussion and Summary

In this chapter we have provided high-level description of several hypothetical example

scenarios that we have implemented along with source code for each scenario. Additionally, we

also discussed briefly implementation of all Scooby scenarios within PCRA, and these scenarios

are used in evaluation chapter for further analysis and comparison with Scooby. As can be

observed from these scenarios, the scenarios involve both adaptive context-aware features of

context-awareness (contextual reconfiguration and contextual adaptation), and their

- 69 -

implementation within PCRA indicates that PCRA combines and provides the support for both,

thereby supporting the first argument of this thesis (i.e., providing a broader scope of adaptation

by combining and providing the support for both contextual reconfiguration and contextual

adaptation).

It is stated in the Scooby thesis that each scenario implemented within the Scooby is

intended to build on the complexity of the preceding one and vary in scope and complexity from

a simple printer composition to more complex ones. As the last scenario is the music &

telephone scenario, this is the complex of all the scenarios. We have extended this scenario to

add more complexity to it and presented in section 4.1.3 as one of PCRA scenarios.

Implementation of all scenarios (PCRA and Scooby) provides enough evidence to argue that the

PCRA can handle diverse and complex scenarios.

 In this chapter we also looked at how a Scooby composite service was constructed and

discussed various sections used within the Scooby service. Each of the sections is used to

describe the specific areas of functionality of a Scooby service (i.e., binding variable block to

define binding variables, service characteristics block to define service characteristics and the

main code section to define any methods, notification handlers and binding handlers).

 Unlike a Scooby service in which various sections are used to describe the specific

areas of functionality, as can be observed from the source code for various example scenarios

implemented within PCRA, there are no dedicated sections. Polices can be described in any

order as these are independent units of execution and are to be executed in response to context.

However, the other code related to creating event templates and associating them with context

monitors have to be defined before the policies that respond to these contexts.

- 70 -

Chapter 5

Prototype Implementation

In the previous chapter, we provided a high-level description of several hypothetical

example scenarios which we have implemented within our proposed system, PCRA, along with

the source code. In this chapter we discuss the implementation of the home lighting example

scenario, which was presented along with source code in the previous chapter (section 4.1.1.1),

to demonstrate our contributions.

 As discussed in chapter 3, the overall architecture of PCRA is comprised of three

elements: the Ponder2 system, our reconfiguration and adaptation infrastructure, and Java RMI.

We have designed and implemented our reconfiguration and adaptation infrastructure within

PCRA as a collection of several Java managed objects (reconfiguration manager, adaptation

controller, user component). The implementation of the reconfiguration and adaptation

infrastructure also includes other system components which are implemented as conventional

Java objects (virtual stub, virtual stub cache manager). The development of adaptive context-

aware applications within PCRA involves the coding of binding and adaptation policies in

Ponder2. In response to these binding and adaptation policies, the Ponder2 system directly

interacts with the managed objects of the reconfiguration and adaptation infrastructure, and the

managed objects interact with non-managed objects of the infrastructure to realize the overall

goal of providing policy-based context-aware reconfiguration and policy-based context-aware

adaptation within PCRA.

We have also designed and implemented a GUI-based system utility that provides

various features that allow performing various tasks that are required before any example

scenario is executed on PCRA. In this chapter, we also discuss PCRA‘s features and

implementation details. Realizing the adaptive context-aware example scenarios, we have

implemented required responding to various contexts, such as a user presence, user activity,

time, phone context, stock price context, etc. In order to provide contextual information

dynamically to the applications, we have implemented various managed objects which act as

simulated GUI-based context monitors. For example, the user presence context monitor is used

to create and send user presence context (user, location). Similarly, the phone monitor is used to

- 71 -

simulate whether the phone is being attended or the user has stopped conversation and placed

the receiver back on the phone. This information is sent to the system by pressing a

corresponding button. For example, contextual information that a user is attending call is sent to

the application by pressing an ―Attending Phone‖ button, and information that the user has

finished talking is sent to the application by pressing a ―Call Finished‖ button. This chapter also

briefly discusses the implementation of some of these context monitors.

5.1 System Utility

In this section, we discuss the features and implementation details of our GUI-based

system utility. This utility offers the following features:

 It allows creating and adding user instances to and removing from the PCRA environment

without stopping or interrupting the system.

 It enables end users to dynamically customize their preferences for various services in the

environment (e.g., the light service, the air-conditioning service, etc.).

 It allows loading and executing example scenarios through the GUI.

Figure 5.1 depicts the GUI of the system utility.

 Figure 5.1: GUI of the system utility

- 72 -

The design of adaptive context-aware applications within PCRA involves the user of the

environment, in which the system discovers remote service(s) based on her location (or her

location and other search criteria) and binds them to her user instance (an instance of user

component). As discussed in chapter 3, the user component, one of the architectural components

of the reconfiguration and adaptation infrastructure, is used to model the users of the

environment. This requires having user instances created and added to the system before

running the example scenarios. The system utility allows this to be done dynamically, and also

allows dynamic removal of user instances from the system through its GUI. As a part of the

functionality of the applications, the user instance is obtained from a list of previously saved

user instances based on her ID, and remote service(s) are discovered and bound to this user

instance. Among other functionality, this component also saves the user preferences for various

services and includes code through which the user can set or customize her preferences

dynamically through the system utility GUI. In order to execute example scenarios, and to

dynamically modify them if required, the system utility also allows loading ponder2 files into

the system dynamically through its GUI.

To develop this utility we have coded a system utility GUI component in Java

(SystemUtility.java) which is a ponder2 managed object, and a ponder2 file called

system_utility.p2. System_Utility.java displays the GUI shown in figure 5.1. By pressing a

button on the GUI, an event is generated and the corresponding policy in the system_utility.p2

file is executed, realizing the required behaviour. For example, by choosing a user from the

―Enter/Select a user‖ combo box and then pressing ―Add User‖ button, an addRemUser event is

generated causing an adduser policy to execute, which creates a user instance for the user and

adds her to the PCRA environment. In addition to ponder 2 code (various event templates and

policy specifications, etc.) related to the functionality of the system utility, the system_utility.p2

file also includes code for loading the reconfiguration and adaptation infrastructure in the

Ponder2 environment. We divide the source code of the system_utility.p2 into two parts: the

first includes code to load our reconfiguration and adaptation infrastructure and to create various

event types (figure 5.2), and the second includes all policies (figure 5.3).

- 73 -

(1)

factoryObject =:root load: “LoadMonitor_AssociateEvent”.

root/factory at: "lMAssEvent" put: factoryObject.

root at: "lMAssEvent" put: root/factory/lMAssEvent create.

(2)

factoryObject := root load: "Configurator".

root/factory at: "configurator" put:factoryObject.

root at: "configurator" put: root/factory/configurator create.

(3)

factoryObject := root load: "AdaptationController".

root/factory at: "adaptationcontroller" put:factoryObject.

root at: "adaptation" put:(root/factory/adaptationcontroller create: root/configurator).

(4)

factoryObject:= root load: "User".

root/factory at: "user" put:factoryObject.

root at: "users" put: root/factory/domain create.

(5)

event := root/factory/event create: #("user" "age" "op").

root/event at: "addRemUser" put: event.

(6)

factoryObject := root load: "System_Utility".

root/factory at: "systemutility" put:factoryObject.

root at: "systemutility" put: (root/factory/systemutility event: root/event/addRemUser).

(7)

event := root/factory/event create: #("user" "service" "value").

root/event at: "setPreferredValue" put: event.

root/systemutility setPreferredValueEvent: root/event/setPreferredValue.

(8)

factory:= root load: "VariableSaving".

root/factory at: "variableSaver" put:factory.

root at: "variableSaver" put: root/factory/variableSaver create.

Figure 5.2: First part of system_utility.p2 code

We briefly explain what each part in the code shown in figure 5.2 does.

1. Load and instantiate the LoadMonitor_AssociateEvent, which is a managed object we

have implemented. This component generates the code behind the scenes that loads

the context monitor, creates an event type and assigns it to the context monitor. We

discuss this later. In Ponder2, the word root denotes top-most domain. The

factoryObject =: root load: “LoadMonitor_AssociateEvent” loads

LoadMonitor_AssociateEvent managed object and returns its corresponding factory

object (see 2.6.2.3 for discussion on factory object concept in Ponder2). In the

root/factory, the factory is a domain, which was created besides other domains when

the Ponder2 system was booted (read the section 5.3 for further details). The at:put:

is the domain keyword message that puts an object in the domain. The root/factory

at: "lMAssEvent" put: factoryObject puts factoryObject into root/factory domain,

giving the name lMAssEvent. This factory instance (root/factory/IMAssEvent) is used

to create the instances of LoadMonitor_AssociateEvent managed object. The root at:

"lMAssEvent" put: root/factory/lMAssEvent create creates an instance of

LoadMonitor_AssociateEvent managed object and puts it into root domain, giving the

- 74 -

name lMAssEvent. Note that root/lMAssEvent is an instance of

LoadMonitor_AssociateEvent manage object, which can be used to send messages to

it, while root/factory/lMAssEvent is the factory object of

LoadMonitor_AssociateEvent manage object, which is used to create its instances.

2. Load the reconfiguration manager code, which is one of the system components of

the reconfiguration and adaptation infrastructure, and create its instance. The

functionality of the reconfiguration manager is accessed through its various messages

(e.g., createBinding (args)).

3. Load the adaptation controller code, another system component of the reconfiguration

and adaptation infrastructure, and create its instance by passing it an instance of the

reconfiguration manager as an argument. The adaptation controller has the

reconfiguration manager as one of its instance variables, which is initialized when an

instance of the adaptation controller is created.

4. Load user component code and create a domain instance called “users”. Domain is

one of the pre-defined types of managed objects in Ponder2, and when Ponder2

environment is loaded all pre-defined Ponder2 managed objects are loaded. It can be

noted that the user component is loaded only and its instance(s) are not created yet.

However, as discussed before, user instances will be created and added to the PCRA

environment through the GUI-based system utility.

5. Create an addRemUser event type for the system utility to send. This event type has

three attributes (user, age, op). The op is an operation type that can be either ―add‖

or ―remove‖.

6. Load the system utility code and give it the addRemUser event template. As

discussed before, System_Utility.java program displays the GUI and generates an

addRemUser event when either the ―Add User‖ or ―Remove User‖ button is pressed.

7. Create a setPreferredValue event type and give it to system utility to send. This event

type has three attributes (user, service, value).

8. Load the VariableSaving class code and create its instance, variableSaver. This is a

simple managed object we have created, which has been used in both versions of

music and telephone scenario (figure 4.6 and 4.20) to save a light value and music

volume so that these can later be obtained and used.

The second part of the source code of system_utility.p2 is shown below in figure 5.3.

- 75 -

(8)

policy := root/factory/ecapolicy create.

policy event: root/event/addRemUser.

policy condition: [:user :age :op | (op=="add")].

policy action: [:user :age :op |

 domainUser := root/factory/user create: #(user age).

 root/users at: user put: domainUser.].

root/policy at: "adduser" put: policy.

policy active: true.

(9)

policy := root/factory/ecapolicy create.

policy event: root/event/addRemUser.

policy condition: [:user :age :op |(op=="remove")].

policy action: [:user :age :op |

 root/users remove: user.].

root/policy at: "removeuser" put: policy.

policy active: true.

(10)

policy := root/factory/ecapolicy create.

policy event: root/event/setPreferredValue.

policy action: [:user :service :value |

 theUser := users at: user.

 theUser setPreferredValue: #(service value).].

root/policy at: "setpreferredvalue" put: policy.

policy active: true.

Figure 5.3: The second part of the system_utility.p2 source code

The second part of the system_utility.p2 source code (figure 5.3) includes specification

of three policies involved in the system utility application. We now briefly explain what

behaviour each policy realizes.

9. The adduser policy subscribes to the addRemUser event type. When the user and her

age are selected from the system utility GUI and the ―Add User” button is pressed,

the GUI creates and sends an addRemUser event. For example, if the user ―James‖ is

selected, his age is set (e.g., 20), and the ―Add User‖ button is pressed, the

addRemUser(user = “James” age = “20” op = “add”) event will be created and

sent. In response to this event, both adduser and removeuser policies will be triggered

as both subscribe to this event and the one whose condition is true will be executed.

In this case the adduser policy will be executed as its condition is true. As a result,

this policy creates a user instance and then puts it into the domain called “users” (the

domain “users” was created previously, refer to (4) in figure 5.2).

10. The removeuser policy removes the user from the domain ―user”. When the user

from an existing list of users is selected and the ―Remove User‖ button is pressed, the

addRemUser event is fired with its operation variable being set to ―remove‖. In

response to this event, the removeuser policy gets executed and removes the selected

user from the domain “users”.

- 76 -

11. The setpreferredvalue policy subscribes to the setPreferredValue event. When a user

from the list of existing users, a service and the preferred value for this service is

selected, and the ―Set Preferred Value‖ button is pressed, the setPreferredValue event

is fired. In response to this event, the setpreferredvalue policy gets executed and

performs the following actions:

 It retrieves the user instance for the selected user

 The setPreferredValue: #(service value) message is mapped into void

setPreferredValue(P2Object args) method call, which is one of the methods of

user component. This one argument (i.e., args of P2Object) will hold all the

attributes of the message (i.e., a service name and a preferred value for this

service). This argument is converted into a P2Object array and then all attributes

of the message are retrieved from this array. The execution of this method call

results in setting up the preferred value for the service in the user instance for the

selected user.

5.2 Simulated Context Monitors

As discussed above, the application scenarios we have implemented involve responding

to various contexts to realize the required behaviour. We have implemented various managed

objects which simulate different context monitors and provide contextual information

dynamically to the applications. As discussed in chapter 2, Ponder2 has an event model in

which an event can be used as a means of passing contextual information to interested parties

(e.g., policies). In order for a context monitor to send contextual information to interested

parties, an event of a particular type with required attributes needs to be created and then given

to the context monitor. The context monitor will then create and send an event by filling in the

attributes of the associated event type with contextual information. The decision to use

simulated context monitors for generating contextual information was made because of the fact

that integrating existing toolkits (e.g., Dey‘s context toolkit [21]) with PCRA was complex as

outside entities must be a Ponder2 managed object. The use of simulated context monitors does

not affect our research objectives. In this section we briefly describe some of the context

monitors we have implemented that send contextual information regarding various contexts

such as user presence, user activity, light intensity, time, etc. to the applications.

5.2.1 User Presence Context Monitor

This context monitor is involved in various example scenarios and simulates user

presence by allowing the selection of a user ID and location from its GUI. Once the user ID and

- 77 -

location are selected and a ―Send Enter Event‖ button is pressed, it creates and sends user

presence event (user, location) to the application. Figure 5.4 depicts a GUI of this monitor.

Figure 5.4: User presence context monitor

We have coded a managed object (UserPresenceContext.java) which acts as the user

presence context monitor. The following Ponder2 code snippet creates the user presence event

type and gives it to the user presence context monitor.

(1)

event := root/factory/event create: #("user" "location").

root/event at: "upevent" put: event.

(2)

userpresence := root load: "UserPresenceContext".

root/factory at: "userpresence" put: userpresence.

(3)

root at: "userpresence" put:(root/factory/userpresence event: root/event/upevent).

Figure 5.5: Code snippet to create user presence event

and to give it to the presence context monitor

The code highlighted as (1) in figure 5.5 creates the user presence event for the user

presence context monitor to send, which has two attributes: user and location. The piece of code

highlighted as (2) loads user presence context monitor code and (3) creates an instance of the

user presence context monitor and gives it user presence event template created in (1). In the

root/factory/userpresence event: root/event/upevent in (3), event is a factory message of the user

presence context monitor, which carries the user presence event template (root/event/upevent) as

an attribute. This message creates an instance of user presence context monitor and initializes

the user presence event template inside the user presence context monitor.

- 78 -

Once the user presence monitor has the user presence event type, and the user and

location are selected from its GUI, and the ―Send Enter Event‖ button is pressed, it creates and

sends the user presence event through a line of Java code as shown in figure 5.6:

anEvent.operation(myP2Object,"create:", P2Object.create(user,location))

Figure 5.6: Operation method to create and send the user presence event

anEvent is the event template managed object for the user presence event type, which

was given to the user presence context monitor (refer to (3) in figure 5.5) and the operation is a

method of the P2Object class which performs operations on behalf of basic managed objects.

The first argument, myP2Object is a Ponder2 managed object for the source of the operation

(the user presence context monitor). The second argument create is the name of a message,

which is one of the annotated methods of the user presence event template. The third argument

is a method call P2Object.create (user, location) which creates a P2Array of P2Objects for user

and location. To summarize, the operation method, when invoked, calls the annotated create

method of the user presence event template which creates and sends a user presence event.

5.2.2 Light Intensity Context Monitor

This context monitor sends data regarding the light value in a given location. It allows

inputting an amount of light value in a text field and choosing a location. When the ―Send‖

button is pressed, it creates and sends the light intensity event (light, location) by setting its

attributes (light and location) to the amount of light inputted and location chosen respectively.

Figure 5.7 depicts a GUI of this monitor.

Figure 5.7: Light intensity context monitor

 This monitor is coded as a Java managed object (LightIntensityContext.java). This

sends the light intensity event through the following line of java code (figure 5.8):

- 79 -

anEvent.operation(myP2Object,"create:", P2Object.create(location,light))

Figure 5.8: Operation method to create and send the light intensity event

We have discussed the working of the above method call in section 5.2.1 (figure 5.6)

and the same discussion applies here except that anEvent is the light intensity event template

which has two attributes (light and location), and the source of the operation is the light

intensity monitor. To summarize, the operation method, when invoked, calls the annotated

create method of the light intensity event template, which creates and sends the light intensity

event.

5.2.3 Text Clock

The text clock has functionality that allows a user to set an alarm time and to generate

an event when the time reaches the set alarm time or some time (e.g., 10 minutes) earlier than

the set alarm time. This was required for implementing Scooby scenario 3 (see section 4.1.2.3in

chapter 4) within PCRA. We have coded a Java managed object (TextClock.java), which is a

GUI-based text clock and provides said functionality. Figure 5.9 depicts the text clock GUI.

Figure 5.9: Text clock

When a user sets the time in the ―Set Alarm‖ text field and a ―Send Event‖ button is

pressed, the text clock creates and sends a time event when the time reaches the set alarm time.

- 80 -

event:=root/factory/event create.

root/event at: "timeevent" put:event.

root/factory at: "TextClock" put:(root load: "TextClock").

root at: "TextClock" put:(root/factory/TextClock event:root event/timeevent).

Figure 5.10: Code snippet to create time event and to give it to the text clock

The code shown in figure 5.10 is similar to the one in figure 5.5 that we have discussed

except that the monitor involved is the text clock, and the event type associated is the time event

type. As can be noted, the event types discussed before (the user presence event type and light

intensity event type) have attributes, while the time event type doesn‘t have any affiliated

attributes. We would like to mention here that above code snippet is produced behind the scenes

by the utility we have implemented (we discuss this later in section 5.4) to reduce the user

written code required for creating an event type, loading and instantiating a context monitor and

giving it the event type.

5.2.4 Phone Monitor

The implementation of Scooby scenario 5 within PCRA (see section 4.1.2.5 of chapter

4) needed information about if the phone is ringing, whether a user is attending a call, or

whether the user has finished talking (the receiver is placed back on the phone). To send this

information we have implemented a Java managed object (PhoneMonitor.java) which is a GUI-

based component, and acts as a simulated phone monitor. Figure 5.11 depicts a GUI for the

phone monitor.

Figure 5.11: Phone monitor

- 81 -

When the ―Attending Call‖ button is pressed, the phone monitor creates and sends a

phone event (attendingcall = ―true‖), signalling that phone is being attended. When the ―Call

Finished‖ button is pressed, the phone monitor sends and creates the phone event (callfinished =

―true‖), signalling that user has finished talking and put back the receiver on the phone.

5.3 Setting up the environment

In order to run the application scenarios on PCRA, the environment needs to be set up.

When ―system-utility.p2” is run from a command prompt with this command “java

net.ponder2.SelfManagedCell –boot system_utility.p2”, Ponder2 environment is loaded first and

then “system_utility.p2” is run. This utility includes the code for loading our reconfiguration

and adaptation infrastructure in the Ponder2 environment, and the GUI-based system utility.

The loading of Ponder2 involves creating domains named policy, event and factory, and

importing factory objects of pre-defined managed objects (i.e., EventTemplate,

ObligationPolicy, etc.). The policy domain is used to hold policy instances, the event domain is

used to hold event instances and the factory domain is used to hold factory objects of managed

objects. The next step is to create and add user instances to the system, as discussed before.

Once user instances are added, the environment setup is complete and any example scenarios

can be executed on PCRA.

5.4 Implementation of the home lighting scenario

In chapter 3, we showed and discussed reconfiguration and adaptation infrastructure

system components involved and their interaction in achieving our contributions. We also

briefly discussed the implementation of these components. In this section we provide insight

into the implementation of our reconfiguration and adaptation infrastructure with the aim of

examining and demonstrating our contributions through the implementation of the home

lighting example scenario (presented in section 4.1.1.1). For discussing this scenario, we take a

corresponding piece of code for each of its parts and discuss what functionality it provides (see

section 4.1.1.1 of chapter 4 for the complete source code).

This scenario behaviour involves responding to three contexts: a user presence context,

light intensity context and activity context. The part of the code which creates event templates

for these contexts and gives them to their corresponding monitors is shown in figure 5.12.

- 82 -

(1)

lMAssEvent lMEvent: #("UserPresenceContext" "userpresence" "user" "location" "enter_or_left").

(2)

lMAssEvent lMEvent: #("LightIntensityContext" "lightintensity" "location" "lightSensed").

(3)

lMAssEvent lMEvent: #("ActivityContext" "activityevent" "location" "activity").

(4)

event:= root/factory/event create: #("location").

root/event at: "firstuserevent" put:event.

Figure 5.12: Code for the event part of the home lighting scenario

In order to reduce the code required for creating an event type, loading an instantiating

context monitor, and giving it created event type, we have implemented a class called

―LoadMonitor_AssociateEvent.java” which generates the code behind the scenes and loads it

dynamically. This component is loaded and instantiated when the system is loaded (see (1) in

figure 5.2). The code line highlighted as (1) in figure 5.12 uses this component to create a user

presence event (userpresence) with two attributes (user and location) and to give it to the user

presence context monitor (UserPresenceContext). The code line marked (2) creates a light

intensity event (lightintensity) and gives it to the light intensity context monitor

(LightIntensityContext) and code line (3) creates an activity event type (activityevent) and gives

it to the activity context monitor (ActivityContext). Figures 5.5 and 5.10, discussed above

contain the code for creating the event type, loading and instantiating context monitor and

giving it the created event type. As can be noted in figures 5.5 and 5.10, the number of source

code lines is 4-5, while using our component for the same task, just 1 line of code is needed.

Providing contextual information regarding user presence, light intensity and activity to the

home lighting example requires 12 lines of source code without using our component, while

using our component, it takes just 3 lines of source code. It can be argued that the use of this

component can significantly reduce the code needed when the application has to respond to

many contexts. The piece of code highlighted as (4) in figure 5.12 is for creating a first user

event type and it has one attribute: location. As we shall see later that the binding policy creates

and sends this event and the first user policy responds to this event.

There are seven policies involved in the home lighting example scenario: a

bindingpolicy, firstuserpolicy, lightpolicy, readingpolicy, sleepingpolicy, watchingtvpolicy and

userleavingpolicy. We shall briefly explain each policy in turn and describe the support

provided by our reconfiguration and adaptation infrastructure to realize the behaviour of each

policy. The code for the bindingpolicy is given in figure 5.13.

- 83 -

// A binding policy

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/userpresence.

3. policy condition: [:user :location :enter_or_left|

4. (enter_or_left == "enter")].

5. policy action:[:user :location |

6. theUser := users at: user.

7. configurator createBinding: #(theUser location "LightService”).

8. root/event/firstuserevent create: #(location).].

9. root/policy at: "bindingpolicy" put: policy.

10. policy active: true.

Figure 5.13: Binding policy in the home lighting scenario

This policy subscribes to the user presence context event (line 2). When a user presence

event is sent by the user presence context monitor, this policy is executed and one of the

messages it invokes is a reconfiguration message (line 7 in figure 5.13) of the reconfiguration

manager. This message is mapped into public void createBinding(P2Object args) method of the

reconfiguration manager as shown in figure 5.14.

1. public void createBinding(P2Object args){

2. try {

3. P2Object[] p2ObjectArray=null;

4. p2ObjectArray = args.asArray();

…..

…..

…..

5. }catch(Ponder2ArgumentException e){

6. e.printStackTrace();

7. }

8. }

Figure 5.14: createBinding method of reconfiguration manager

The attributes—theUser, location and LightService in the reconfiguration message (line

7 in figure 5.13) become available in above method (figure 5.14) via the args of the P2Object.

The args of P2Object is converted into an array of P2Object (line 4 in figure 5.14). The

p2ObjectArray holds all the attributes of the reconfiguration message as P2Objects (i.e.,

theUser, location and LightService). The method public void createBinding(P2Object args)

retrieves these arguments from p2ObjectArray and interacts with the virtual stub cache

manager, one of the system components of the reconfiguration and adaptation infrastructure.

The virtual stub cache manager in turns interacts with the registry component to discover a light

service (the third element of p2ObjectArray) based on contextual information (location of the

user—the second element of p2ObjectArray), creates a virtual stub instance, initializes it with a

real proxy of the discovered light service, caches it locally and then returns it to

- 84 -

createBinding(P2Object args) method. The virtual stub is then handed to the user instance (the

first element of p2ObjectArray), which means that the binding has been created between the

user instance and the light service in particular location represented by its corresponding virtual

stub. The detailed description of how adaptive reconfiguration works is given in section 3.2 and

also figure 3.9 shows the sequence of messages involved in reconfiguration. In this

reconfiguration process, when a service was discovered a virtual stub instance was created,

initialized with a real proxy of the found service and cached by the virtual stub cache manager

so that the next time this service is required its corresponding virtual stub can be obtained from

the cache for improved performance (see sections 3.2 and 3.3 for a detailed discussion). For

example, a user A is in room1 and she has a binding with the light service in room1; hence the

system has a virtual stub instance for the light service in room1 cached. Now user B enters

room1, the user presence context monitor would send and create the user presence event (user =

―user B‖ location = ―room1‖). In response to this event, the binding policy is executed and the

reconfiguration manager (line 7 in figure 5.13) obtains the virtual stub for the light service in

room1 from the local cache directly without the need for a remote call, and delivers it to the user

instance for user B. This significantly improves the performance of the system.

Another functionality of public void createBinding(P2Object args) method, a part of a

simple solution to user conflicts, involves maintaining a list of users in a given location (e.g.,

room1) and sorting this list according to the priority of the users (the older the user, the higher

the priority). Whenever any user enters a given location, after bindings are created and delivered

to the user instance for her, she is added to the list of users in the given location and then this

list is sorted according to the priority of the users. The first user in the list has the highest

priority; the second in the list has the next highest priority and so on.

To summarize, the binding policy triggers our reconfiguration and adaptation

infrastructure which uses its seamless caching support for improved performance in the process

of contextual reconfiguration, and also provides most of the support for simple solution to user

conflicts.

The second policy involved in the home lighting example scenario is the firstuserpolicy,

and its code is shown in figure 5.15.

- 85 -

//The first user policy

1. policy:=root/factory/ecapolicy create.

2. policy event: root/event/firstuserevent.

3. policy condition: [:location|

4. IsFirstUser:=configurator IsFirstUser: #(location).

5. (IsFirstUser)].

6. policy action:[:location |

7. adaptation performAdaptation:#("LightService" location "on").

8. previousLightValue:= adaptation getRemoteFieldValue:#("LightService" location “getLightLevel").

9. adaptation performAdaptation:#("LightService" location "adjust" previousLightValue).].

10. root/policy at: "firstuserpolicy" put: policy.

11. policy active: true.

Figure 5.15: First user policy in the home lighting scenario

The firstuserpolicy subscribes to the first user event and is triggered when this event is

sent by the binding policy. The only attribute associated with the first user event is a location.

This policy checks with the reconfiguration manager (line 4 in figure 5.15) to determine if the

current user in the given location is the first user. If she is the first user in the location, it

interacts with the adaptation controller, a system component of the reconfiguration and

adaptation infrastructure (discussed in chapter 3) through adaptation messages (see line 7, 8 and

9 in figure 5.15) to turn the light on in the location (e.g., room1), to obtain the last used light

value in room1 and then to adjust the light value in room1 to this last used value. The following

two messages (figure 5.16) of the adaptation controller, as discussed in chapter 3, form the

adaptation interface of PCRA.

a. retValue:= adaptation getRemoteFieldValue: #(args)

b. adaptation performAdaptation: #(args)

Figure 5.16: Adaptation messages of PCRA

The first adaptation message (a in figure 5.16) has two variants as follows:

1. retValue:= adaptation getRemoteFieldValue:#(“serName” “loc” “methName”)

2. retValue:=adaptation getRemoteFieldValue:#(“serName” “loc” “methName” parameter)

Figure 5.17: Two variants of getRemoteFieldValue message

The first variant takes three attributes—a service name, location and method name. It

invokes a remote method on the remote service and returns a value. For example, in line 8 in

figure 5.15, it calls a method (―getLightValue‖) of a remote service (―LightService‖) in a

- 86 -

location (e.g., room1) and returns a light value. The second variant has one additional attribute,

which is a parameter of the method. It invokes the method on the remote service with a

parameter and returns a value. For example, the following line in the home coffee machine,

fridge and cooker scenario implementation (see figure 4.12 in chapter 4), invokes the method

(―checkAvailability‖) of the remote service (―FridgeService‖) in the location (―Kitchen‖) with a

parameter (―milk‖), and returns the availability status of the milk in the fridge.

isMilkAvail:= adaptation getRemoteFieldValue: #("FridgeService" "kitchen" "checkAvailability" "milk").

Figure 5.18: Demonstration of 2
nd

 variant of getRemoteFieldValue message

The second adaptation message (b in figure 5.16) has three variants as follows:

1. adaptation performAdaptation:#("serName" “loc” "methName")

2. adaptation performAdaptation:#(“serName" “loc” "methName" parameter)

3. adaptation performAdaptation:#(“serName" “loc” "methName" “userPreferredValue”)

Figure 5.19: Three variants of perfromAdaptation message

The first variant takes three attributes: a service name, location and a method to invoke

on the remote service in response to context, performing context-triggered actions. For example,

in the first user policy, line 7 (figure 5.15 above) turns the light on when the user entering a

particular location (e.g., room1) is the first user. The second variant is used to invoke a method

with a parameter on the remote service to modify the behaviour of the service through

parameter adjustment. The third variant is a special case where the last attribute is tag

information (―userPreferredValue‖). This variant internally gets the highest priority user in a

given location (―loc‖—second attribute), obtains her preferred value for a given service

(―serName‖—first attribute) and modifies the behaviour of the service by invoking a remote

method (―methName‖—third attribute) of the service with a parameter (obtained preferred

value). The adaptation messages (a and b) are mapped into corresponding methods of adaptation

controller, as discussed in chapter 3.

- 87 -

public void performAdaptation(P2Object args)

P2Object getRemoteFieldValue(P2Object args)

Figure 5.20: PCRA adaptation interface

These two methods of adaptation controller form a generic adaptation interface for

PCRA and interact with other components of the reconfiguration and adaptation infrastructure

to realize adaptation.

The other policy involved in the home lighting example is the lightpolicy and its source

code specification is given in figure 5.21.

// A policy to modify the light value to the user preferred value if

// the light sensed is lesser than 90% of the user preferred value or

//greater than 110% of the user preferred value.

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/lightintensity.

3. policy condition: [:location :lightSensed |

4. theUser:= configurator getHighestPriorityUser: #(location).

5. preferredLightValue := theUser getPreferredValue: "LightService".

6. IsUserSetEnabled:= theUser getExposed.

7. (IsUserSetEnabled)&(lightSensed < ((90/100)*preferredLightValue))|

 (lightSensed > ((110/100)*preferredLightValue))].

8. policy action:[:location :lightSensed |

9. theUser:= configurator getHighestPriorityUser: #(location).

10. preferredLightValue := theUser getPreferredValue: "LightService".

11. adaptation performAdaptation:#("LightService" location "adjust" "userPreferredValue").].

12. root/policy at: "lightpolicy" put: policy.

13. policy active:true.

Figure 5.21: Light policy for the home lighting scenario

The lightpolicy policy subscribes to the light intensity event. The light intensity context

monitor senses the light in the given location, and then sends and creates a light intensity event

(location lightSensed). As a response to this event, the policy gets the highest priority user in

the given location from the system. It then checks if the highest priority user is the one for

which the light value is already adjusted to her preferred value. If so, it does nothing (leaves the

light value unmodified). If the highest priority user is the other user and her light preferred value

is less than 90% or greater than 110% of the actual light value, the light value is adjusted to her

preferred value.

The policies — readingpolicy, sleepingpolicy and watchingtvpolicy in the home lighting

scenario subscribe to the activity event. The activity context monitor monitors the activity of the

- 88 -

highest priority user in the given location and creates and sends an activity event based on what

she is doing (e.g., reading, sleeping, or watching TV). For example, when the highest priority

user in room1 is reading, the activity monitor creates and sends the activity event (location =

―room1‖ activity = ―reading‖). In response to this event, all three policies are triggered but the

readingpolicy is executed. The policy specification code for the readingpolicy is shown below,

and for the policy specification code of the sleepingpolic y and watchingtvpolicy, see figure 4.2

of chapter 4.

// The policy to modify the behaviour of light service when the user

// is reading.

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/activityevent.

3. policy condition: [:location :activity |

4. (activity=="reading")].

5. policy action: [:location :activity |

6. theUser:= configurator getHighestPriorityUser: #(location).

7. prefValReadActivity := theUser getPreferredValue: "LightService_reading".

8. adaptation performAdaptation:#("LightService" location "adjust" prefValReadActivity).].

9. root/policy at: "readingpolicy" put: policy.

10. policy active: true.

Figure 5.22: Reading policy in the home lighting scenario

When executed, the readingpolicy policy gets a user preferred value for the light service

for the reading activity and modifies the light value in room1 to this value. When the user in

room1 is sleeping, the activity event (location = ―room1‖ activity = ―sleeping‖) is created and

sent. In response to this event, the sleepingpolicy is executed and obtains the user preferred light

value for the sleeping activity, and then modifies the light value to this value. Similarly, when

the user in room1 is watching TV, the activity event (location = ―room1‖ activity =

―watchingtv‖) is created and sent. The watchingtvpolicy is executed and gets the user preferred

light value for this activity and then modifies the light value to this value.

The last policy in the home lighting scenario is the userleavingpolicy and the policy

code specification is shown below.

// The user leaving policy

1. policy := root/factory/ecapolicy create.

2. policy event: root/event/userpresence.

3. policy condition: [:user :location:enter_or_left|

 (enter_or_left=="left")].

4. policy action: [:user :location :enter_or_left |

5. configurator removeBinding: #(user location).

6. adaptation performAdaptation:#("LightService" location "adjust" "userPreferredValue").].

7. root/policy at: "userleavingpolicy" put: policy.

8. policy active: true.

Figure 5.23: The user leaving policy in the home lighting scenario

- 89 -

The userleavingpoliy subscribes to the user presence event (line 2). Let us suppose there

are three users in room1, Maanta, Yasir and Roya, and the light value in room1 is adjusted to

Roya‘s preferred value as she is the highest-priority user. Now Roya leaves room1. The user

presence context monitor detects her leaving, and creates and sends the user presence event

(user = ―Roya‖ location = ―room1‖ enter_left = ―left‖). In response to this event, the

reconfiguration manager (line 5) removes her from the list of users in room1 and then sets a list

of users so that the next highest priority user moves to the top of the list and becomes the

highest priority user. The user, Yasir was second in the list of users (the next highest priority

user) in room1 before Roya was removed and now Yasir has become the highest priority user.

The code (line 6) internally gets the highest priority user, obtains his preferred value for the

light and adjusts the light level in room1 to his preferred value. If the user who left room1 is not

the highest user, this user will simply be removed from the list and the light value in room1 will

remain unmodified.

5.5 Summary

In this chapter, we described the features and discussed the implementation details of

our GUI-based system utility. This utility provides functionality that allows performing various

tasks through its GUI. These include creating and adding user instances to and removing from

the PCRA environment without stopping or interrupting the system; allowing end users to

customize their preferences for various services dynamically, and allowing the loading and

executing of example scenarios through its GUI.

We also discussed briefly the implementation of various context monitors which

provide simulated contextual information regarding various contexts involved in the example

scenarios. We also discussed implementation details of our reconfiguration and adaptation

infrastructure through the implementation of the home lighting example scenario, and

demonstrated our contributions supported by our infrastructure.

We also discussed very briefly how to set up the PCRA environment to be able to run

example scenarios on it. “system_utility.p2”, in addition to other code, includes code for

loading our reconfiguration and adaptation infrastructure into Ponder2 environment. When the

―system_utility.p2” file is run through the command “java net.ponder2.SelfManagedCell –boot

system_utility.p2”, it first loads the Ponder2 environment, and then runs “system_utility.p2”,

loading our reconfiguration and adaptation infrastructure and the system utility in the Ponder2

environment. The source code of PCRA system, including example scenarios has been made

available at http://pcra.usindh.edu.pk/.

http://pcra.usindh.edu.pk/

- 90 -

Chapter 6

Evaluation

The main argument of this thesis is that a policy-based programming model provides an

effective means for developing, modifying and extending adaptive context-aware applications.

The goal of this chapter is to evaluate the effectiveness of our policy-based approach at

developing adaptive context-aware applications. In this chapter we also study the performance

of two main features of our proposed system, PCRA: policy-based contextual reconfiguration

and policy-based contextual adaptation. The advantages offered by our approach are

simplification of development effort, dynamic modification and dynamic extensibility of

adaptive context-aware applications, and support for user involvement. In order to evaluate the

effectiveness of our approach, we divide the evaluation process into three categories: High-level

Analysis, Qualitative Evaluation and Performance Evaluation. The high-level analysis evaluates

the first aspect of effectiveness of our approach — simplification of development efforts, while

qualitative evaluation evaluates other aspects of the effectiveness of approach — dynamic

modification, dynamic extensibility and the support for user involvement. In our performance

evaluation, we study the performance of policy-based reconfiguration and adaptation where we

conduct various tests to determine reconfiguration and adaptation time under both local and

distributed settings.

In the high-level analysis and qualitative evaluation, we evaluate our approach and

compare it with the Scooby [23,69], a specifically designed service composition language. Our

work and Scooby share similar research goals in that we both advocate the use of high-level

means to achieve service composition / reconfiguration to simplify the development task.

However, we use a different approach to achieving this. Scooby‘s main idea is that a dedicated

domain specific language is a more effective way of performing service composition in which

composed services can be developed using high-level binding directives to discover and bind

services rather than traditional approaches that use an API, whilst in contrast we advocate that

the use of a policy-based programming model provides more effective means for carrying out

context-aware reconfiguration. Scooby has compared their approach to One.World [76-78,84]

by implementing five example scenarios on both Scooby and on One.World and using them as

the basis for comparison. In order to compare our approach to both Scooby and One.World, we

follow the same comparison methodology and thus have implemented the same example

- 91 -

scenarios (see chapter 4) on PCRA. In the high-level analysis, we use the same tables and

metrics structure as used by Scooby to compare their work with One.World, and investigate the

effectiveness of PCRA, Scooby and One.World with regard to reduced development efforts.

The qualitative evaluation section evaluates PCRA and Scooby with regard to other aspects of

effectiveness of an approach: dynamic modification, dynamic extensibility and the support for

user involvement.

The low-level analysis in Scooby includes various test comparisons to evaluate the

effectiveness of the Scooby middleware layer with regard to event scaling, event latency,

advertisement latency, late binding latency and a number of services. Scooby uses an event-

based mechanism as a primary form of internal communication and thus is developed upon the

Elvin notification system1. Every form of communication in Scooby such as registration and

discovery of the services, remote method invocation, etc. is event-based and hence the low-level

analysis in Scooby includes event scaling and event latency comparison tests. Although our

research goals are similar to the Scooby in that we advocate and use high-level means through

the use of policy specifications for reconfiguration, while Scooby provides high-level constructs

in the form of binding variables, both systems are conceptually different at the design level. As

our design involves polices and polices use events, this is where the event-based communication

takes place and the rest of the design does not use events as means for communication between

various components of the system. Moreover, we use Ponder2 for specifying polices and

Ponder2 has its own event model. Therefore, we don‘t consider comparison tests such as event

scaling and latency relevant in the context of our system.

6.1 High-level Analysis

This part of our analysis in combination with the qualitative evaluation part in section

6.2 determines if taking a policy-based approach for developing, modifying and extending

adaptive context-aware applications is more effective than the use of a specifically designed

service composition language (Scooby) and that of an API based approach (One.World). We

follow the analysis and points of comparison made by Scooby against One.World.

6.1.1 Language comparisons

One of the comparisons made by Scooby was language principles. We use the same

table as given in Scooby thesis [69] and add our system (PCRA), and examine how the three

systems compare with respect to common traits and concepts they share.

1 Elvin router is no longer available, but Avis router [99] is a completely compatible substitute of Elvin router.

- 92 -

Metric Scooby One.World PCRA
Binding variables

Service Discovery

Service Alteration

Service Descriptions

Remote Invocation

Object Oriented

Keyword Count

Event Handling

Java Extension(API)

Method Delegation

Inheritance

Typing

Exception Handling

Arithmetic Handling

Event Driven

Global Variables

Procedural/Declarative

√

√

√

√

√

√

74

√

x

√

x

Static

Bindings

√

√

√

Procedural

√2

√

x

x

x

√

20 packages,353

classes, rest of java

language

√

√

x

Single

Static

√

√

√3

√4

Procedural

√

√

x

x

√

√

79a

√b

x

x

x

Dynamic

√c (Virtual Stub)

√

√

x

Declarative

Table 6.1: Language comparisons

Any data in table 6.1 for Scooby system and One.World, and any footnotes regarding

One.World are reproduced from Scooby [69]. The superscript marks a, b and c, in the column

for PCRA are defined below.

(a) PCRA is built on top of Ponder2. In Ponder2, as discussed in chapter 2, everything is a

managed object (e.g., Event, Policy, Domain, etc.), and is accessed through message

keywords. As a result, the message keywords of all managed objects are the number of

keywords in the Ponder2 system. The documentation with all the Ponder2 keywords can

be found at: http://www.ponder2.net/doc/pondertalk/ which lists 224 keywords,

including factory messages of all managed objects. The PCRA uses a small set of

Ponder2 keywords (e.g., create, event, condition, action, active, at: , at:put: , load: print:,

remove:, +, - < ==, !=, &, NOT, etc.). These keywords are the ones which are needed

for basic operations such as specifying policies, events, performing some basic domain

operations, boolean operations, string operations. PCRA uses total of 79 keywords. 27

of them are Ponder2 keywords, while the remaining 52 are message keywords of the

managed objects which we have implemented to build our reconfiguration and

adaptation infrastructure.

2 Binding variables found in One.World differ considerably to those found in Scooby. However, the terminology used

is the same.
3One.World provides an API that augments Java with a way to interact with the environment. Used within this

context, One.World is able to achieve similar functionality to that found in Scooby, but requires additional

programming to accomplish this.
4 Global variables can be achieved by using the Java Language. However, these do not strictly adhere to the same

definition as found within Scooby.

http://www.ponder2.net/doc/pondertalk/

- 93 -

(b) PCRA supports event handling in which a policy is an event handler which is triggered

in response to an event to which it is subscribed. This is where the event is used as a

means of communication and the rest of the communication between system

components or with remote bound services does not involve the use of events. However,

within Scooby, as discussed before, every form of communication is event-based.

(c) PCRA supports exception handling in general because both Ponder2 and our

reconfiguration and adaptation infrastructure are implemented in Java. However, one of

our contributions is the management of bindings where the virtual stub is in charge of

handling an exception when a bound service becomes invalid. This reduces the need for

a common class of exception handling in application/deployment code.

From the above table we observe the following:

 PCRA, Scooby and One.World all are event-driven object-oriented systems. However, the

PCRA is a policy-based declarative object-oriented system, while both Scooby and

One.World are procedural object-oriented systems. In PCRA, the program functionality is

implemented through policies and policies contain reconfiguration and adaptation

messages to perform reconfiguration and adaptation. As the policies are specified

declaratively, the complexity involved in developing adaptive context-aware applications is

reduced. Similarly, Scooby provides high-level binding constructs. In Scooby, the main

functionality of any composed services is bindings to services and events, which is

implemented through the use of these high-level abstractions, thus contributing towards

reducing the complexity involved in developing adaptive applications. However, the other

parts of the Scooby code are written in syntax similar to Java, unlike the PCRA where all

application functionality is specified declaratively through policy specifications. Within

One.World, applications are coded using an API, while PCRA and Scooby provide user-

level abstractions to API.

 PCRA is a dynamically typed system, while both Scooby and One.World are statically

typed systems. Both approaches have trade-offs. For example, the statically typed systems

can find type errors at compile time, thus increasing the reliability of the programs

(program correctness). Moreover, the compiled-code executes more quickly as its

execution does not involve type checking. However, from the development perspective,

static typing requires developers to learn and follow the type system, introducing additional

burden on the developer. In contrast, the dynamically typed systems allow typing checking

at runtime, hence may result in runtime errors. However, from the development

perspective, it allows programmers to think and develop programs at a higher level in the

sense that they are not required to concern about the types of data. As the main argument of

- 94 -

PCRA and Scooby is a provision of high-level means to simplify the development task, we

argue, in light of above discussion, that PCRA being dynamically typed contributes better

towards this goal than that of Scooby and One.World.

 The number of keywords within the PCRA is a slightly higher than that of Scooby. This is

due to the fact that the small set of Ponder2 keywords (27) used in PCRA includes

keywords which are related to policy (e.g., condition, action, event, active), domain

operations (e.g., at, at:put:, remove) and factory messages of policy, event and domain

managed objects. As compared to the PCRA and the Scooby, One.World includes a large

number of classes (353) and each of which has subsequent methods, hence a more flexible

programming model. This flexibility is achieved at the cost of ease of use and complexity,

as argued in the Scooby thesis. The reduced syntax of both PCRA and Scooby brings the

ease of use and less complexity.

 Both PCRA and Scooby support remote invocations, but this is not present within

One.World. In Scooby, remote invocations are accommodated through the use of binding

variables, whilst, within PCRA, the remote invocations are achieved through adaptation

messages.

 Scooby provides features such as service alteration, service characteristics, etc. However,

the PCRA does not offer such features because the PCRA is intended to provide the policy-

based support for reconfiguration and adaptation, not writing or describing services.

6.1.2 Source code specification lines

The purpose of the following comparison is to examine PCRA, Scooby and One.World

systems with respect to how much effort is needed to code adaptive context-aware applications.

This effort is measured in terms of source code lines needed to do so. All five Scooby scenarios

(the simple printer service composition, follow me service, home coffee machine, fridge and

cooker, home environment and music & telephone scenario) discussed in chapter 4 are used to

note the number of lines needed to code each of these under all three systems.

Metric Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

PCRA(lines)

Scooby: Composed Service(lines)

Scooby: All Services(lines)

One.World(lines)

27

15

44

366

17

23

62

712

41

41

72

728

14

15

88

724

32

27

91

549

Table 6.2: Source code specification comparisons

- 95 -

We assume the fact that services would be available in the environment and the

developer/end user would only be required to code policy specification or to develop a

composed service to discover the required services and to bind them. Considering this

assumption and also the main argument of Scooby that service composition can be achieved

efficiently by using a dedicated composition language, we compare the Scooby code

specification for the composed service rather than all the services (the composed service and the

ones that the composed service would discover and bind to) with its counterpart policy

specifications in the PCRA. The Scooby source code for composed services for all the example

scenarios and the counterpart PCRA specification code can be found at in chapter 4, for

comparison. The Scooby code for composed services for all scenarios can also be found in

chapter 6 of Scooby thesis [69].

Recall that the numbers for One.World source code lines (table 6.2) for all example

scenarios have been taken and reproduced from Scooby thesis [69]. The number of source code

lines in each scenario is the total of both the source code lines of the composed service and the

source code lines of the services the composed service is composed of. We don‘t have the

One.World source code of example scenarios to separate out the source code lines of the

composed service. However, as can be noted, the number of source code lines for each of the

example scenarios (all services) in One.World is far higher than the Scooby source code (all

services). For example, the number of the One.World source code lines in example scenario 3 is

712, while the number of the Scooby code source lines is 62. This gives enough evidence to

assume that the number of One.World source code lines for the composed service in each of

example scenarios would be higher than the number required by Scooby for corresponding

composed service.

The numbers in the table 6.2 clearly indicate the amount of effort needed to code the

scenarios using an API based approach (One.World) is a far greater than that of a policy-based

approach (PCRA) or a specifically designed service composition language (Scooby). However,

when comparing PCRA and Scooby, the table figures show the amount of efforts needed to

code the scenarios is arguably similar.

6.1.3 Expressiveness

In this section, we examine the expressiveness of PCRA against Scooby and One.World

with regard to the concepts (binding variables, remote invocation, event handling, etc.)

discussed in section 6.1. We use the same set of criteria formulated and used by Scooby to

compare with One.World. Therefore, we add a column for the PCRA in the expressiveness table

used by Scooby and the resulting table 6.3 is shown below. The data for Scooby and One.World

- 96 -

systems in table 6.3 is the same as in original expressiveness table found in Scooby [23] except

an additional metric, which is the ―Lines: composed service‖. In this, we have separated out the

source code lines of the composed service in each example scenario developed using Scooby

from the total number of lines, which is the total of both the number of source code lines in the

composed service and other services that the composed service is composed of.

In table 6.3, the column ‗A‘ represents Scooby coding and ‗B‘ One.World equivalent,

and ‗C‘ PCRA equivalent.

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Metric A B C A B C A B C A B C A B C

Number of services

Lines: Composed

service5

Lines: All services

Variable declarations

Binding constructs6

Binding attributes

Binding variables

Method declarations

Remote invocations

Dynamic

characteristics

Static characteristics

Event handlers

3

1

5

4

4

3

2

2

1

3

2

3

3

0

2

-

366

22

2

2

1

20

0

0

0

4

2

2

7

2

7

0

5

4

2

2

3

0

0

3

3

23

62

0

5

4

4

3

2

2

3

1

3

-

712

41

7

0

0

40

0

0

0

8

3

15

15

0

3

3

3

4

1

0

0

2

4

41

72

2

5

3

0

4

10

0

4

0

4

-

728

56

9

0

0

40

0

0

0

8

3

41

41

0

5

4

1

3

7

0

0

4

4

15

88

1

5

3

0

9

10

0

2

1

4

-

724

44

8

0

0

40

0

0

0

8

4

13

13

2

4

4

1

10

4

0

0

1

3

27

91

5

4

4

0

10

11

0

3

4

3

-

549

72

7

0

0

30

0

0

0

6

2

32

32

4

4

4

1

7

8

0

0

3

Table 6.3: Expressiveness comparisons

In Scooby, in the context of above table, the binding variables are the dynamic

attributes that allow binding constructs to evolve over time. However, the binding variable in

the Scooby thesis is explained as a construct which binds to a service. Scooby provides two

forms of binding constructs: a binding that binds to a service for performing remote method

invocation on this service and this is called the service binding, and another that allows the

service to capture an event.

Within PCRA, the service bindings are resolved when the binding policy is triggered in

response to an event, unlike in Scooby in which service bindings are resolved when the

composed service is executed. As a result, as mentioned in footnote 6, an event binding is

associated with each policy; there would be one additional binding construct involved in each of

the scenarios developed using PCRA.

5As the analysis of One.World is done by the implementer of the Scooby, we don‘t have source code of the example

scenarios to separate out the source code lines of the composed service involved in each of scenarios, hence entries

are left blank.
6In Scooby, the binding constructs count involves both service bindings and event bindings. In PCRA, each policy

responds to an event and thus has a specification to capture an event (e.g., policy event: root/event/eventtype). This

specification can be considered to correspond to an event binding in the Scooby. Therefore, the number of policies in

the example scenarios tells the number of event bindings in each scenario. The reconfiguration message in PCRA

corresponds to a service binding in the Scooby. Therefore, the binding constructs count in PCRA is a total of the

number of policies and reconfiguration messages.

- 97 -

The number of binding constructs involved in all scenarios in both the PCRA and the

Scooby is more or less the same except in example scenario 1 in which the number of binding

constructs for PCRA is 5 and for Scooby only 2. This is due to the fact that (1) there is a

binding policy (resulting in one event binding) in which bindings to the printer and converter

service are resolved and (2) the document and its type are dynamically becoming available

through an event. There are two policies (hence two event bindings) that respond to that event—

one policy checks the document type and if the type is ‗pdf‘ it sends the document to the printer,

and other policy checks if the document type is not ‗pdf‘ it uses the converter service to convert

the document into pdf format and sends the converted document to the printer. However, there

are no event bindings involved in the Scooby code for this scenario because (1) bindings with

both printer and converter service are resolved when the composed service is executed (hence

no event binding), and the document and its type are assumed to be available in the code and

hence have no event bindings.

Binding

Constructs

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

PCRA Scooby PCRA Scooby PCRA Scooby PCRA Scooby PCRA Scooby

Service

bindings 2 2 1 3 1 5 3 4 1 2

Event

bindings 3 0 2 2 4 0 1 1 3 2

Table 6.4: Binding constructs comparisons

The total number of binding constructs is the sum of both the number of service

bindings and event bindings. There are more event bindings involved in all scenarios developed

using PCRA due to the use of policies because there is an event binding associated with each

policy. Even though there are more event bindings involved, the total number of binding

constructs within Scooby and PCRA is almost the same. This is due to the fact that fewer

service binding constructs are involved within PCRA (refer to table 6.4). The reason for this is

that, within PCRA, a single reconfiguration message (service binding construct in Scooby

terminology) can discover and bind to more than one service if the search criterion for these

services is the same. For example, discovering both the music service and the light service in a

living room and binding them can be expressed within the PCRA with a single reconfiguration

message as shown in figure 6.1.

 createBinding: #(theUser location "LightService" "MusicService")

Figure 6.1: Expressing a reconfiguration message in PCRA

- 98 -

Note that the search criterion for both the services is the same, i.e., location (living

room). However, within Scooby, there has to be a separate binding variable for resolving each

service and for the above situation two binding variables have to be coded as follows (figure

6.2):

service telephone decorates music: cdplayer, lighting: lightingcontroller {

 bind cd match { location: "livingroom" }

 bind lighting match { location: "livingroom" }

Figure 6.2: Expressing service bindings in Scooby

This may prove costly if there are many other services in the same living room to be

discovered and bound to, such as a TV service, curtain service, smart screen, etc., and the

search criteria is the location (living room) only. Within PCRA, what is needed to be done is to

add the service names of these services in the reconfiguration message (no additional

reconfiguration message) as under (figure 6.3):

 createBinding: #(theUser location "MusicService" "LightService"

"TVService" "CurtainService" "Screen")

Figure 6.3: A single PCRA reconfiguration message expressing multiple services with the same

search criteria

Whereas within the Scooby, there have to be three binding variables coded each for

three services, resulting in three more service bindings. The total number of service bindings

would be 5 as shown in figure 6.4.

service telephone decorates music: cdplayer, lighting: lightingcontroller,

tv: tvservice, cs: curtainservice, sc: screen {

 bind music match { location: "livingroom" }

 bind lighting match { location: "livingroom" }

 bind tv match { location: "livingroom" }

 bind cs match { location: "livingroom" }

 bind sc match { location: "livingroom" }

Figure 6.4: The Scooby code expressing multiple services with the same search criteria

This clearly shows that the core concept of service bindings can be expressed more

efficiently within PCRA than within Scooby.

- 99 -

The remote invocation support within PCRA is a fundamental part of policy-based

contextual adaptation support in which adaptation messages are used to perform remote method

invocations on bound services to modify the behavior of these services in response to policy

evaluation. There are two types of adaptation messages within PCRA (discussed in chapter 5)

— one that performs remote invocations on the bound services in order to access their remote

fields and another that performs remote method invocations on the bound services to achieve

contextual triggered actions and modification of these actions through parameter adjustments.

Within Scooby, the remote invocations are accommodated through binding variables in which a

method invocation on a remote service takes place through its corresponding binding variable,

and the syntax for this is the same as in Java (e.g., instance.methodName (args)).

Scooby offers both static and dynamic service attributes. However, PCRA does not

offer such features as it is primarily aimed at developing adaptive context-aware applications

through policy specifications, not writing services and their descriptions. Therefore, entries for

static and dynamic service characteristics in all scenarios have 0 values. However, PCRA

considers and addresses other important surrounding issues such as caching virtual stubs for

improved performance and providing a very simple solution to personal conflicts.

To summarize, the figures in table 6.3 for all example scenarios suggest that PCRA and

Scooby are more expressive than One.World with regard to common concepts (e.g., binding

constructs, event handlers, etc.) that all three system share. This fact is supported by the number

of source code lines involved in implementation of example scenarios under three systems (see

table 6.2). The detailed analysis of One.World for the comparison with Scooby can be found in

the analysis chapter of Scooby thesis [69]. The expressiveness comparison between PCRA and

Scooby is hard to make as the number of various constructs involved in each of scenarios is

more or less the same (hence the source code lines in each of scenarios). However, with respect

to some important features, such as policies being declarative and the expressiveness of

reconfiguration messages (service bindings in Scooby terminology); we argue that the PCRA is

more expressive than Scooby.

Based on the results of various tables and arguments presented in this part of analysis,

we argue that both PCRA and Scooby provide effective means of developing adaptive context-

aware applications in the form of a high-level programming model. To further evaluate the

effectiveness of our approach, we consider other important aspects of adaptive context-aware

applications: modifiability, extensibility and the support for user involvement. In next section

we evaluate these parameters and compare with Scooby.

- 100 -

6.2 Qualitative Evaluation

In the previous section we evaluated an effectiveness of an approach used within PCRA

with respect to simplification of development efforts and compared it with Scooby and

One.World. In this section we further evaluate the effectiveness of our approach with respect to

other important parameters: modifiability, extensibility and support for user involvement, and

investigate how it compares with Scooby.

6.2.1 Modifiability

One of the important aspects related to adaptive context-aware applications is their

modifiability. The modifiability may be considered as related to modifying the existing adaptive

behaviour of the application. The application may evolve over time, requiring modification. For

example, user preferences for different service may change over time or the applications may

require modifying their existing adaptive behaviour, for example, the current behaviour of the

applications is that when a user leaves the room, the light is turned OFF, and now it is desirable

that light should not be turned OFF but the light value be set to a dim value instead. We take the

example scenario 5, the telephone & music scenario (discussed in chapter 4) and slightly modify

it, and then show how this modification can be achieved within both the PCRA and the Scooby.

We reproduce the description of this scenario below.

 ―The user is sitting in a dimly lit living room, listening to music. Suddenly the phone

starts ringing. Connected to the phone is a device that detects an incoming call. This

automatically causes the lighting levels to be returned to normal (if previously dimmed) and for

the volume in the CD player to be reduced. The user picks up the phone and begins to talk.

Once the conversation has finished, and the receiver is placed back on the phone, the lighting is

returned to the previous levels, and the volume returns to what it was before the phone call.”

We pick up this scenario from the point that when the phone is ringing and the call is

attended, the lighting levels are returned to normal and the volume in the CD player is reduced.

Below (figure 6.5) is the Scooby code for the functionality of this part, the complete code listing

can be found in chapter 4. The name of the composed service which provides the functionality

of the this scenario is telephone.s

- 101 -

1. on notification(phoneInUse) {

2. volumeLevel = cd.getVolume()

3. lightingLevel = lighting.getBrightnessLevel()

4. cd.setVolume(0)

5. lighting.turnLightsOn()

6. }

Figure 6.5: The part of the Scooby code for telephone & music scenario

The above code snippet (figure 6.5, line 4) shows when the call is being attended; the

volume of the CD is reduced to 0 units. We slightly modify this behavior that the volume in the

CD player is reduced to 10 units instead of 0. In order to make this slight modification in the

application behavior, the following steps need to be performed:

 The whole application should be stopped.

 The line 4 in telephone.s file should be changed to cd.setVolume (10).

 The modified telephone.s file should be recompiled using a Scooby compiler and this

would produce the corresponding telephone.java file.

 The telephone.java file should be compiled with a Java compiler and this would produce

telephone.class.

 The telephone.class should be re-run.

This can be noted from above steps that in order to carry out this modification, the

application was stopped, recompiled and restarted, thereby not allowing dynamic modification

of the application. We show how this modification can be achieved within the PCRA. The

following code snippet (figure 6.6) is the attendingcall policy, the counterpart of Scooby coding

in figure 6.3. The complete code listing of the scenario can be found in chapter 4.

Figure 6.6: The attending call policy in the telephone & music scenario

- 102 -

In order to carry out the same modification within the PCRA, the following steps need

to be performed:

 Change the line 10 in the policy specification in figure 6.4 as under: adaptation

performAdaptation: #("MusicService" "livingroom" "setVolume" 10).

 Load the modified policy into the system. The modified policy can be loaded dynamically

through our GUI-based utility (discussed in chapter 5).

It can be noted from above steps that modification is achieved dynamically without

stopping, recompiling and restarting the application. In One.World, the applications have to be

coded in Java and their modification also require going through the same steps as in Scooby—

stopping, recompiling and restarting the application.

To summarize, PCRA allows dynamic modification of applications, while, within

Scooby and One.World, the application needs to be stopped, recompiled and restarted. Hence

PCRA outperforms Scooby and One.World by being able to make dynamic, rather than static,

modifications to policies.

6.2.2 Extensibility

Another important aspect of adaptive context-aware applications is their extensibility

where they are required to be extended in terms of responding to additional contextual triggers

which were not foreseen when they were initially developed. For example, the light music and

telephone scenario discussed above initially responded to a telephone contextual trigger (phone

being attended/phone receiver placed back)— when the user attended the call, the system

caused the light level to be returned to normal and for the volume in the CD player to be

reduced. Once the user finished talking and the receiver was placed back on the phone, the

system modified the light value back to the previous level and the volume to what it was before

the phone call. Now it is desirable that the application should be extended so that if the user

does not wish to attend the call within some time period (e.g., 5 seconds) after the phone started

ringing, a voice message on an answering machine is recorded. This extension requires adding a

contextual trigger, time and the behavior that would get triggered in response to time context,

allowing the voice message to be recorded on the answering machine.

We have shown before that any change of behavior in the applications developed using

Scooby or One.World requires going through the steps involving stopping, recompiling and

restarting the application. However, we show and discuss how this extensibility is achieved

within PCRA. The following steps need to be performed to extend the example scenario.

- 103 -

 The time event type needs to be created, the timer to be loaded and then the time event to

be given to the timer. The timer would receive a signal from the telephone context monitor

that detects the incoming call (ringing) and whether the call is being attended or the phone

receiver has been placed back. As soon as the phone starts ringing, the timer receives the

signal from the telephone context monitor and starts noting the time.

o If the call is not attended within 5 seconds, the timer creates and sends a time

event. In response to the time event, the policy would get triggered allowing the

voice message to be recorded on the answering machine.

o If the call is attended within 5 seconds, the telephone monitor signals the timer

to stop noting the time.

The following code snippet creates the time event type, loads the timer and gives it the

time event type.

Figure 6.7: The code snippet for creating a time event template,

loading the timer and giving it the time event type.

 This piece of code can be loaded dynamically into the PCRA through our GUI-based

system utility. As a result, a new contextual trigger, time will be loaded into the system

dynamically.

 The remaining part is to specify and load the behavior that would get triggered in response

to time context. The following code snippet (figure 6.8) is a policy which specifies the

required behavior and responds to the time event.

 policy := root/factory/ecapolicy create.

 policy event: root/event/timeEvent.

 policy action: [

 adaptation performAdaptation:#("AnsMachine" "livingroom" "recordMsg" "msg").].

 root/policy at: "timepolicy" put: policy.

 policy active: true.

Figure 6.8: The time policy to record a message

- 104 -

 This policy can dynamically be loaded into the system and would respond to time context

sent by the timer when it has been 5 seconds since the phone started ringing.

It can be noted from the above discussion that the extension to the music and light

scenario in terms of adding the additional contextual trigger and the required behavior was

carried out dynamically without shutting down or interrupting the system. However, dynamic

extensibility is not possible within Scooby and One.World since it would require going through

stopping, recompiling and restarting the application.

6.2.3 User Involvement

The importance of user involvement in specifying and reconfiguring the behavior of

adaptive context-aware applications has been advocated in various research efforts, e.g., [2,22,

79,100,101]. Our system design supports end users to specify and modify the behaviour of

adaptive context-aware applications. The system design includes policies for specifying

adaptive behavior of the applications, and the user component which models the user of the

environment. The user component in addition to other functionality, allows the users to set their

preferences for different services. As discussed (in chapter 5), the system utility we have

developed allows the end users to customize their preferences for different services through a

GUI.

There may come times when the user preferences may change and the user may want to

reconfigure the behaviour of the application accordingly. For example, in a simple home

lighting example when the user enters the room, the light is turned ON and the light value is

adjusted to her preference (for example, 80 units). Now the user preference for the light service

has changed and she would want the light value to be adjusted to 100. In order to customize this

behaviour, all the user needs to do is to change her preference for the light service using our

GUI-based system utility without any change in the code and this does not require any special

technical skill or abilities. However, there may come times when new behaviours may need to

be specified and added or the modification in behaviour may require more than setting up a

preference value. As the applications are to be developed using polices on the PCRA, adaptive

behaviours involved in the applications are to be specified using policies and a policy is

independent unit of execution. This means that complete adaptive context-aware application

would be comprised of polices and each policy implements a particular adaptive behaviour. We

shall see how this feature of policy contributes towards supporting user involvement. In

addition, polices are expressed declaratively unlike procedural languages. These features of

policies — being declarative, the policy implementing a particular adaptive behavior and an

independent unit of execution support user involvement. For example, in section 6.2.1, we saw

- 105 -

that in order to modify the behaviour of the application, the change was only made in that policy

that was implementing the behaviour which was required to be modified and then was loaded

dynamically. Similarly, in order to add an additional adaptive behavior into an application, the

policy needs to be specified implementing this behaviour and loaded dynamically. Doing so

does not require the user to be a technical person. However, this may require providing a little

training on how to express policies using high-level specifications and a little knowledge of how

to dynamically activate, deactivate, load and unload policies.

Although Scooby provides high-level constructs and thus simplifies the task of

developing adaptive applications, this approach still requires the user to have a fair amount of

technical knowledge as the user has to specify not only what to do but also how to do it. Besides

this, as discussed before, to modify the existing adaptive behavior or to add the additional

adaptive behavior requires going through the process of stopping the application, (re)compiling

the Scooby code using Scooby compiler, (re)compiling the Scooby compiler generated Java

code and then restarting the application (i.e., requires fair amount of technical training to the

user for this process). In our high-level analysis (section 6.1), it was evaluated that both PCRA

and Scooby provide high-level means to simplify the development task, while, within

One.World, the applications are developed using an API (i.e., requires knowing low-level

details of the underlying system, making application development hard for the user). As a result,

One.World does not support user involvement in specifying and reconfiguring the behavior of

adaptive context-aware applications. This clearly indicates that Scooby provides better support

for the user involvement than its counterpart, One.World. However, in the light of arguments

presented above, we argue that PCRA provides better support for the user involvement than

Scooby.

6.3 Performance Evaluation

We studied the performance of two main features of PCRA: policy-based contextual

reconfiguration and policy-based contextual adaptation. Tests conducted include reconfiguration

time (binding time) and adaptation time under both a local setting and distributed setting. The

reconfiguration time is the time taken by PCRA when creating a binding between a user

instance and a remote service in response to policy evaluation. The adaptation time is the time

taken by PCRA to adapt the behavior of the service involved in the binding in response to

policy evaluation.

- 106 -

The reconfiguration time is measured from a point context is sent by the context

monitor to the policy, which has subscribed to it, until the binding is established in response to

policy evaluation. Figure 6.9 shows sequence diagram for reconfiguration time without cache.

getVirtualStub(srvDescription)

Binding

Policy
User

Reconfiguration

Manager

Virtual Stub

Cache Manager
Registry

createBinding(srvDescription)

doLookup(srvDescription)

Real Proxy returned

createVStubInstance(srvDesc,remoteStub)

vStubCached()
virtualStub returned

setBinding(vStub)

Context

Monitor

Sends context event

Figure 6.9: Reconfiguration time without cache sequence diagram

One of the features of the PCRA (discussed in chapter 3) is a provision of seamless

caching support of virtual stubs for improved performance where, as a part of binding process,

the virtual stub is obtained from a local cache if available for improved performance. To study

the performance of this feature, we measure the reconfiguration time without using the cache

(the remote service is discovered through a remote call to the registry and a virtual stub instance

for this service is created and initialized with the corresponding real proxy and given to a user

instance) and using cache (the virtual stub for the required service is obtained from the local

cache directly without the need for a remote call and given to the user instance). Figure 6.10

shows sequence diagram for reconfiguration time with cache.

getVirtualStub(srvDescription)

Binding

Policy
User

Reconfiguration

Manager

Virtual Stub

Cache Manager

createBinding(srvDescription)

virtualStub returned

setBinding(vStub)

Context

Monitor

Sends context event

Figure 6.10: Reconfiguration time with cache sequence diagram

- 107 -

The adaptation time is measured from the point context is sent by the context monitor to

the policy, which has subscribed to it, until the behavior of the service is adapted (by invoking a

method with a parameter on the service) in response to policy evaluation. Figure 6.11 shows

sequence diagram for adaptation time.

Adaptation

Policy

Adaptation

Controller
User

Reconfiguration

Manager
Virtual Stub Real Proxy Service

getUser()

User instance returned

vStub returned

invokeMethod(methodName,param)

method.invoke(remoteStub)

Real proxy calls method on service

Context

Monitor

Sends context event

performAdaptation(args...)

Figure 6.11: Adaptation time sequence diagram

In order to study how PCRA performs in a local setting and distributed setting, we have

measured both reconfiguration time (with and without caches) and adaptation time under both

settings.

6.3.1 Test environment

We conducted tests under both a local setting and a distributed setting. In the local

setting we used four machines and ran tests on each of them. The four machines used were: (1)

Intel Celeron 501 MHz, 256MB RAM; (2) Intel Pentium 3 734 MHz CPU, 384MB RAM; (3)

Intel P4 2.4GHz, 1GB RAM; and (4) Intel Xeon, 2 GHz, 2GB RAM. All machines were

running windows XP and used JDK1.5. The JDK1.5 or above is the requirement for running

PCRA. As can be noted, machines used range from a less powerful machine to a typical desktop

PC. The purpose of running tests on each of these machines was to investigate how PCRA

scales from less powerful machines to powerful desktops. In the local setting, PCRA (Ponder2

system and reconfiguration and adaptation infrastructure), a RMI registry, remote service

(LightService) and context monitors involved were running on the same machine. The local

setup configuration is shown in figure 6.12.

- 108 -

Context Monitors

 PCRA

Ponder2

Reconfiguration

and Adaptation

Infrastructure

RMI Registry

Machine

RMI Services

LightService

Figure 6.12: PCRA local setting configuration

In a distributed setting, two machines of the same specifications were used. These

machines had the same specifications as that of one (Intel Xeon, 2 GHz, 2GB RAM) used in the

local setting, and were connected through a 1 Gigabit wired network of school of informatics at

University of Sussex. PCRA (Ponder2 and reconfiguration and adaptation infrastructure) and

context monitors were running on one machine, while a RMI registry and remote service

(LightService) were running on other machine. The distributed setup configuration is shown in

figure 6.13.

Context Monitors

PCRA

Ponder2

Reconfiguration

and Adaptation

Infrastructure

RMI Registry

RMI Services

Machine 1 Machine 2

Figure 6.13: PCRA distributed setting configuration

- 109 -

6.3.2 Test Results

Below we present the results obtained for various performance tests under the local

setting and distributed setting.

6.3.2.1 Local Setting

Test 1: Reconfiguration time without cache

To measure this time on each of four machines, the binding policy was triggered 20

times. This policy responds to a user presence event and its action part has a reconfiguration

message to discover and bind the light service to the user instance.

Test 2: Reconfiguration time with cache

To measure this time on each of four machines, the same binding policy used in Test1

was triggered 20 times. In the binding process, the virtual stub was obtained from the local

cache directly without the need for a remote call and delivered to the user instance.

Results: The reported times for test 1 and test 2 are average times and are presented

graphically in figure 6.11 along with standard deviation. Reconfiguration time includes a RMI

lookup time (time to discover a remote service) and this provides the largest contribution to

reconfiguration time. This is due to fact that the remote calls are much slower than local calls, at

least 1000 times slower. As can be noted, reconfiguration time with caches on each of machines

is a far lower than the reconfiguration time without caches. This clearly shows that the seamless

caching support of virtual stubs provided by PCRA significantly reduces reconfiguration time,

hence improves performance. Note that the binding policy triggered in test 1 involves

discovering only one remote service, light service (i.e., the user has a binding with one service),

thus reconfiguration time includes just one remote lookup time. However, the user can have

multiple bindings and each binding involves a remote lookup time. As a result, the

reconfiguration time with each additional binding would increase significantly. As expected, as

shown in figure 6.14, reconfiguration time with and without caches from a less powerful

machine to a powerful machine reduces considerably and vice versa from a powerful machine to

a less powerful machine. This indicates that PCRA can scale down and run on resource-

constrained devices.

- 110 -

Figure 6.14: Reconfiguration time in local setting

Test 3: Adaptation time

In order to measure the adaptation time on each system, the adaptation policy was

triggered 20 times. This policy responds to an activity context event and adapts the behaviour of

a light service through a light value parameter adjustment if the condition is true.

Results: The reported adaptation time on each of the machines is an average time. Adaptation

times on each of the machines are presented graphically in figure 6.15 along with standard

deviation.

0

5

10

15

20

25

30

35

40

45

50

Intel Celeron
501MHz, 256MB

RAM

Intel P3 734 Mhz,
384MB RAM

Intel P4 2.4 GHz,
1GB RAM

Intel Xeon 2GHz,
2GB RAM

T
im

e
 i
n

 m
s

System

Reconfiguration time without cache

Reconfiguration time with cache

- 111 -

Figure 6.15: Adaptation time in local setting

6.3.2.2 Distributed Setting

We conducted the same three tests in a distributed setting. The purpose of running the

tests in a distributed setting was to study the impact of the network.

Results: The results of our tests are shown and compared with the results in the local setting in

a comparative analysis graph in figure 6.16. The reconfiguration time with and without caches,

and adaptation time in distributed settings is a slightly higher than in the local setting. This

indicates that PCRA performs reasonably well in the distributed setting; hence it can be

deployed in the distributed setting.

0

2

4

6

8

10

12

14

Intel Celeron
501MHz, 256MB

RAM

Intel P3 734 Mhz,
384MB RAM

Intel P4 2.4 GHz,
1GB RAM

Intel Xeon 2GHz,
2GB RAM

Ti
m

e
 in

 m
s

Systems

Adaptation Time in Local Settings

- 112 -

Figure 6.16: Comparative analysis of reconfiguration and adaptation time

between local distributed settings

6.4 Summary

In our high-level analysis and qualitative evaluation sections, we conducted various

tests to evaluate our proposition to decide if taking a policy-based programming approach for

developing, modifying and extending adaptive context-aware applications is more effective than

a specifically designed service composition language (Scooby) and the use of an API approach

(One.World). We considered the simplification of development, dynamic modification, dynamic

extensibility and the support for user involvement as important different aspects of effectiveness

of an approach. We evaluated the effectiveness of our approach and compared against Scooby

and One.World with regards to these aspects. We summarize the results of our evaluation in

table 6.5.

Table 6.5: Effectiveness of approach comparisons

4.46

1.45
1.64

4.69

1.97
2.12

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Reconfiguration
time without caches

Reconfiguration
time with caches

Adaptation time

T
im

e
 i
n

 m
s

Test Settings

Local Environment

Distributed Environment

Aspects of Effectiveness PCRA Scooby One.World

Reduced Development Efforts √ √ X

Dynamic Modification √ X X

Dynamic Extensibility √ X X

Support for User Involvement √ Partially X

- 113 -

Performance results show that caching support of virtual stubs provided by PCRA

significantly reduces reconfiguration time and improves system scalability. The overhead of

distribution is small compared to both reconfiguration and adaptation time in local setting.

- 114 -

Chapter 7

Related Work

This chapter provides an overview of various systems that focus on providing

adaptation support in ubiquitous computing environments. We discuss core concepts involved

in each of the systems, adaptation types (i.e. reconfiguration, parameter adaptation, dynamic

association and disassociation of non-functional concerns/low-level services, code mobility)

supported and which approach is provided by these systems to develop adaptive context-aware

applications. The approaches proposed in the literature to developing adaptive context-aware

applications include API-based, specifically designed languages and policy-based. We group

adaptation systems according to type of language used to develop adaptive context-aware

applications and discuss how PCRA differs from these systems with respect to adaptation scope

supported, application domains targeted and the approach to developing adaptive context-aware

applications. This chapter also reviews some of the approaches used in the literature to handle

the issue of updating invalid references in response to migration or replacement of the

component, and compares them with PCRA‘s approach to handling this issue.

7.1 Approaches to developing adaptive context-aware

applications

7.1.1 API-based approach

In this section we review various adaptation systems that provide an API-based

approach to developing adaptive context-aware applications.

7.1.1.1 Enactor model

Dey et al. [21,22] have described systems that support adaptation of application

parameters in response to context events. Their system provides a Java-based environment to

build context-aware applications. In [22], Newberger and Dey have extended context toolkit

[21] by introducing an enactor component to provide monitoring and control of context-aware

applications. The idea behind this component is to encapsulate state information and adaptation

logic of an application, and to allow external access. They have developed a Java API for

- 115 -

developing an enactor component and externally accessing application logic encapsulated in the

enactor. Monitoring and control interfaces allow connection to the enactor via this API and

accessing application logic to monitor and control context-aware applications. The enactor has

three subcomponents: references, parameters and listeners. An enactor receives context input

from context sources (context widgets) through references. Listeners facilitate monitoring,

where they are notified of occurrences within the enactor, such as any actions that are invoked,

contextual data received through references and parameters changed. Listeners send these

occurrences to the monitoring and control interface where the interface changes the

corresponding visual elements to reflect these occurrences. Parameters are various properties of

the context-aware applications. For example, in a home lighting scenario, a light parameter is an

integer value that specifies the light level to which light intensity in the room should be set upon

the entry of the user to the room. The enactor exposes parameters and the user can control

context-aware applications by manipulating these parameters via a monitor and control

interface.

In [22], Newberger and Dey have described various example scenarios of domestic

environments to demonstrate the usefulness of their enactor model approach for developing

context-aware applications. We take one of their demonstration applications and highlight

differences between our approach and theirs. The scenario is described below.

“when a person enters a dark room, its light is initially raised to 75% intensity, and

dark adjoining rooms are raised to 10% intensity; if the person remains in the room for a

certain time period, lights in the adjoining rooms fade slowly back to darkness”.

To implement this functionality one enactor is required. It exposes a number of

parameters, such as an integer specifying the light value to which light intensity is raised upon

user presence, a Boolean type parameter specifying whether or not to turn on the light in

adjoining rooms upon user presence, and the time after which adjoining rooms should go dark.

Upon the user presence in the room, the enactor raises the light intensity of the light in the room

to 75% intensity and the light in adjoining rooms are turned on and set to 10% intensity, and if

the user stays in the room for a certain time period, lights in the adjoining rooms slowly go back

to darkness. This behaviour can be controlled or modified by changing the required parameter

values. For example, the light intensity of the light in the room upon user entrance can be raised

to a value other than 75% intensity by modifying the parameter that specifies the light intensity.

The behaviour of the application that lights in adjoining rooms are turned on upon user presence

can be modified so that light in adjoining rooms are not turned on, by modifying the parameter

of Boolean type (specifying whether or not to turn on the light in adjoining rooms) to false.

Similarly, the parameter (specifying the time after which unoccupied room should go dark) can

- 116 -

be changed to modify the behaviour accordingly. Within PCRA, we have a user component that

corresponds to an enactor component, which contains various parameters, each for a particular

service (e.g. the light service, music service). The users can control or modify the behaviour of

context-aware applications by manipulating these parameters using our GUI-based system

utility (discussed in chapter 5). However, PCRA does not support monitoring of context-aware

applications.

The point worth noting is that an enactor only exposes parameters to control or modify

context-aware applications. However, there may come times when modification or control of

application behaviour may involve more than just setting the parameters. For example, in the

scenario above, it is desirable that the application behaviour may be extended so that when the

user enters the room, in addition to the existing behaviour, the air-conditioning unit is also

turned on and its setting is adjusted to its last value used. In order to achieve this using enactor

model, the application logic that will perform this behaviour has to be added in the enactor. For

this, the source code of the enactor needs to be modified, recompiled and restarted. This

highlights two limitations of enactor model: (1) it affects user involvement in modifying or

controlling the behaviour of the context-aware application in that the enactor is coded in Java

and the user cannot be expected to be a Java developer, and (2) it does not allow dynamic

modification of context-aware applications. In contrast, within PCRA, the application logic is

specified declaratively at a high-level of abstractions as a rule-based policy, which enables end

users to participate in developing and modifying context-aware applications. This improves user

involvement in controlling or modifying context-aware applications. Moreover, polices can be

loaded and unloaded dynamically without restarting the system. This provides the support for

dynamic modification of context-aware applications.

7.1.1.2 Odyssey

Noble et al. [16,17,81] have developed the Odyssey system, which provides

application-aware adaptation support for mobile applications in response to resource variation.

Odyssey is an extension to the operating system, which provides a set of APIs to support

adaptation for mobile applications. Odyssey runs on the client and the service (e.g. video server)

runs on the server, and the client is connected with the service through a wireless link.

Adaptation is achieved by modifying the service (e.g. dynamically selecting a version of content

based on resource availability through parameter changes).

In Odyssey, the adaptation responsibility is shared between both the Odyssey system

and the applications, where the Odyssey system is responsible for monitoring the resources and

notifying the applications when the levels of these resources do not satisfy the resource

- 117 -

requirements. On notification, the applications choose a fidelity level (i.e. quality level) and

send Odyssey the resource requirements for the chosen fidelity level. The fidelity level may be

in the form of choosing a particular version of content out of multiple versions of the same

content (e.g. black and white content for the movie, full colour with lossy JPEG compression,

full colour uncompressed, etc.) or instructing the service through parameters to change the

fidelity level (e.g. reducing frame rate, reducing the resolution of an image, etc.).

Adaptation support is provided by Odyssey through a viceroy and wardens. The viceroy

is responsible for monitoring the resources and acts as a single point for clients‘ interactions

with different wardens, while the warden is in charge of performing adaptations. The

communication between the client and the warden takes place through the viceroy. Odyssey

supports media-specific adaptation (e.g. video, audio), so it requires a specialized warden for

each media type (e.g. a video warden for the video media type and an audio warden for an audio

media type). Odyssey supports this media-specific adaptation through a general mechanism

called ―type-specific operation‖, or tsop. On a resource notification from the viceroy, the

application selects a fidelity appropriate to the new resource variation via a tsop() call. Figure

7.1 shows the syntax of a tsop() call.

tsop(in path, in opcode, in insize, in inbuf, inout outsize, out outbuf)

Figure 7.1: Type-specific operation in Odyssey

The path argument to a tsop() call specifies the path of the corresponding warden and

the opcode argument is the type of operation to be performed by the warden. This tsop() call is

intercepted by the viceroy and invokes the warden, and then the warden performs the

adaptation. Similar to this, we have three variants of adaptation message (Figure 7.2) in PCRA

(discussed in chapter 5), which make up the adaptation interface of PCRA through which PCRA

performs contextual-triggered actions and contextual adaptation by modifying these actions

through parameter adjustments.

1. adaptation performAdaptation:#("serName" “loc” "methName")

2. adaptation performAdaptation:#(“serName" “loc” "methName" para)

3. adaptation performAdaptation:#(“serName" “loc” "methName" “userPreferredValue”)

Figure 7.2: Adaptation interface in PCRA

- 118 -

As discussed above, on notification from Odyssey about resource availability, the

application selects the fidelity appropriate to the new resource situation via a tsop() call. This

means that applications implement adaptation policies which are hard-coded in the application.

The hard-coding of adaptation policies in the application introduces inflexibility in that (1) it

increases the complexity involved in developing applications because adaptation concerns are

mixed up with the application functionality and (2) the adaptation policy of applications cannot

be modified at runtime. This limitation can be addressed by following a separation of concerns

principle in which adaptation policies would be specified separately from the coding of the

application functionality. An interaction between the application and Odyssey would then take

place through the adaptation policy (which is a separate and external component) which would

receive notification from Odyssey and select a fidelity appropriate to the new resource variation

via a tsop() call. With this, (1) legacy applications (e.g. video and audio players, browsers) can

take advantage of application-aware adaptation support of Odyssey without having to modify

their source code; (2) adaptation policies can be modified dynamically, without recompiling and

restarting the Odyssey client and (3) the complexity involved in developing and maintaining

adaptive applications is reduced.

Our work has similarities with Odyssey in that the part of overall adaptation support

provided by PCRA involves modifying the service behaviour through parameter changes in

response to context. Similarly, in Odyssey, adaptation involves modifying the service behaviour

through parameter changes (e.g., selecting different versions of the same content through the

change of parameter). The Odyssey adaptation support is targeted in mobile environments and

supports media-specific adaptation (e.g. video and audio) only, where the media-specific service

is modified in response to a change in resource availability. However, we target a set of

application scenarios in domestic environments, where adaptation is performed in response to

other contextual triggers such as environmental context (light level, noise level, temperature

level) and user context (user presence, user activity, etc.). We believe that wardens can be

implemented for adapting all types of services in response to contexts other than resource

variation. The main difference between PCRA and Odyssey with regard to contextual

adaptation support is that adaptations, within PCRA, are controlled through high-level

declarative policies, while, within Odyssey, adaptation policies are hard-coded within

application code.

- 119 -

7.1.1.3 One.World

Grimm et al. [76-78,84] at the University of Washington have developed One.World,

which provides a platform for building pervasive computing applications. It integrates a set of

services, such as service discovery, Remote Event Processing (REP), migration and check

pointing that help structure pervasive computing applications. It provides programmers with a

Java API to build pervasive computing applications. One.World uses basic abstractions: tuples,

components and environments. Tuples make a uniform data model in which all data, such as

events and queries are tuples. Components define functionality, which import and export

asynchronous event handlers. The Environment serves as a container for tuples, components

and other environments, and each application has at least one environment in which it store

tuples and in which its components are instantiated.

All communications in One.World take place through asynchronous events that are

processed by event handlers. Applications are composed from components that exchange events

through imported and exported event handlers. The REP service provides a communication

model that allows sending events to event handlers. It supports both point-to-point

communication and service discovery, including support of two binding mechanisms: early

binding and late binding. Events are sent to event handlers through these bindings. REP

supports these features through three simple operations: export, send and resolve. In order for

event handlers to be accessible from remote nodes, they need to be exported under symbolic

descriptors (these are tuples), and a client sends events by specifying symbolic receivers. This

exporting is performed by an export operation, establishing a mapping between the symbolic

descriptor and the actual event handler. In early binding, first the resource name is explicitly

resolved to the actual event handler by a resolve operation and then the message is sent to the

event handler by a send operation. As can be noted, the resolve operation performs an early

binding discovery lookup in which it takes a query and returns a matching event handler. The

send operation also supports late binding in which it combines query resolution and event

routing into a single operation. In this late binding process, the discovery service resolves a

query and locates event handler(s) and then routes the event to the located event handler(s). In

early binding, the resource is to be discovered only once and then events are routed to this

discovered resource. Hence this is suitable when an application is required to repeatedly send

events to the same resource. However, at the same time, with early binding, the application

needs to be prepared to rediscover the receiver if its computing context changes. In contrast, in

late binding, the resource is discovered when the event is to be routed to the resource. Late

binding introduces a performance cost for every event sent in that each time the event is sent;

- 120 -

discovery service first resolves a query and locates the resource(s), and then routes event to

these resource(s). The advantage of late binding is that it is the most responsive to change.

Various demonstration applications have been developed by the authors on the top of

One.World and these include a text and audio messaging system, a music sharing system, etc.

Others have also developed adaptive applications on One.World, for example, the Scooby

author has implemented various adaptive applications of domestic environments (see 4.1.2) on

both Scooby and One.World to compare them. PCRA supports context-aware bindings in

which bindings to remote services are established in response to context. Context triggers the

binding operation and can be viewed as late bindings since these are resolved as context occurs.

Once bindings are created, they are used to communicate with bound services and may not

require binding to them each time communication is required. This is similar to early binding in

One.World. However, PCRA also provides application-transparent support for reconfiguration

to manage invalid bindings in that when a binding becomes invalid due to power failure on the

host device or migration of the bound service to another other machine, the system performs

discovery to obtain an up-to-date remote reference of the bound service and updates the invalid

binding.

One of the fundamental design differences between PCRA and One.World is that

PCRA advocates and uses a policy-based programming model in which policies are

declaratively specified to develop adaptive context-aware applications. A policy is a higher

level approach for building applications than that of an API-based approach used by

One.World; hence PCRA considerably reduces the complexity involved in developing adaptive

context-aware applications. Further, the policy-based programming approach allows dynamic

modification of applications. PCRA uses both event and RPC (Remote Procedure Call) models

for communications. One of the aspects involved in developing adaptive context-aware

applications in PCRA is passing contextual information (real-world events) to a policy where

policies react to contextual information to perform adaptations. The event model is a natural fit

for this purpose in which contextual information is wrapped in an event and sent to policy that

subscribes to it, while RPC is used by the policies to communicate with the bound service to

modify its behaviour in response to context.

7.1.2 Specifically designed languages

In this section we review some of the related adaptation systems that advocate the use

of specifically designed languages for developing adaptive context-aware applications.

- 121 -

7.1.2.1 RCSM

Yau et al. [24] have developed the middleware, Reconfigurable Context-Sensitive

Middleware for Pervasive Computing (RCSM) that facilitates the development and runtime

operations of context-aware applications in pervasive computing environments. In RCSM, the

context-aware applications are modelled as context-sensitive objects, which consist of two

parts: a context-sensitive interface and the object implementing the actions (functionality),

which is context-independent. The context-sensitive interface is used to specify the context, its

requirements and actions to be triggered, and the mapping between the specified context and

these actions. RCSM provides a context-aware interface description language (CA-IDL) that

allows the developer to specify a context-sensitive object interface. The CA-IDL compiler

compiles the context-sensitive interface and generates an application-specific adaptive object

container (ADC). The generated ADC is tailored for a particular context-sensitive object and

includes support related to context specified in the context-sensitive interface. Context support

included in the ADC is context data acquisition, monitoring and detection. At runtime, ADC

communicates with the underlying system to obtain context data and also communicates with

object implementation to invoke actions in response to context, performing context-triggered

actions. RCSM also provides transparent support for ad hoc communication in which it

discovers new devices and creates links between them.

The strength of the RCSM approach comes from the use of the CA-IDL language,

which allows the application developer to specify the context requirements at a high-level of

abstractions and the tasks related to context data acquisition and monitoring are performed by

the underlying system. As can be noted from above discussion, RCSM maintains a clean

separation between context-related operations (context data acquisition, monitoring and

detection) and application functionality, where functionality is separately provided by a context

independent application object. These features of RCSM reduce the complexity involved in

developing and maintaining context-aware applications. With this approach, new types of

context and context-aware behaviours can be incorporated by editing context-sensitive

interfaces, making the modification of context-aware applications easier. However, this requires

re-compiling and re-running the application. Similarly, the strength of PCRA comes from the

use of a policy-based programming model which offers two main advantages: (1) adaptive

context-aware applications are modelled as high-level declarative policies, thus reducing the

complexity involved in developing such applications and (2) this allows dynamic modification

of the applications in that the modification is made in the corresponding policy and then

modified policy is dynamically loaded into system without interrupting the system.

- 122 -

7.1.2.2 Scooby

Robinson [23,69,95] has developed a domain specific composition language that

provides a platform for developing pervasive computing applications. The development of

pervasive computing applications in Scooby involves developing composed services using high-

level language constructs. The composed service is compiled by the Scooby compiler, which

produces the corresponding Java source code, and then this Java source code is compiled to

produce Java byte code. The main idea of Scooby is that a dedicated domain specific language

is a more efficient way of performing service composition than traditional approaches that use

an API. One of the core features of the Scooby language is the concept of binding variables,

which are high-level constructs and are used to develop composite services. The use of high-

level language constructs for coding composite services makes their development easier than

other traditional approaches where the composite services are written/developed using an API.

Our work and Scooby share similar research goals in that we both advocate the use of a high-

level means to achieve service composition/reconfiguration to simplify development, however,

we use different approaches to achieving them. The fundamental design difference between the

two is that PCRA uses a policy-based programming approach, where binding policies are

specified declaratively at a high-level of abstraction in which reconfiguration messages (similar

to binding constructs in Scooby) are expressed in the action part of the policy. In response to

context, the policy is executed when its condition is met, causing reconfiguration messages in

its action part to execute and perform reconfiguration.

 In Scooby, binding variables are hard-coded in the composite service, thus introducing

inflexibility in the sense that any change or modification in bindings requires modifying the

source code of the composite service in question, recompiling and then restarting it. In contrast,

in PCRA, reconfiguration messages are expressed in the policy and the policy is an explicit

component which can be dynamically loaded and unloaded. Therefore, any changes in bindings

require modifying the corresponding policy and reloading it dynamically without the need for

shutting down and restarting the system.

 The high-level Scooby constructs, such as binding variables have a direct mapping to

the underlying processes available within the Scooby middleware. So, when the composed

service is run and the binding variable executed, the corresponding thread is created, which is

responsible for establishing a binding with a particular service and managing it throughout the

life cycle of the binding. As a result, there would be as many threads executing as the number

of binding variables involved in the composed service, each for managing the binding with a

particular service. In Scooby, the binding can switch between various states (unresolved,

discovery, connected, suspended and waiting) during its life time depending on whether a

- 123 -

remote service has been identified or not. For example, if the service is successfully discovered

based on the search criteria and bound to, the binding is said to be in a connected state and

allows calls to be made on the bound service. When a call is made on the bound service, the

binding first checks if the bound service is still available by initiating contact with it and if

available, the call is made; and if not, it enters the discovery state. Moreover, the binding

periodically checks to make sure that the bound service is still reachable. If, for some reason, it

is no longer available, the binding enters the discovery state. As can be noted from above

discussion, Scooby provides a flexible binding model that is well suited to the pervasive

computing settings, but at the cost of system performance and which may affect the user

experience. This performance cost is due to the following factors—the concept of bindings

switching in various states, a thread running for each of the bindings (periodically checking

availability of the bound services and switching the binding state accordingly) and before

making a call on the bound service, contacting the bound service to make sure if it is available.

In contrast, PCRA provides a binding model in which the system discovers and binds the

services based on contextual information and other search criteria as specified in reconfiguration

messages. Unlike Scooby where a binding is periodically checked for invalidity, and also prior

to a remote method call, in PCRA, when a remote method call is made on the bound service and

the binding has become invalid, an exception is thrown. In response to this exception, the

system performs reconfiguration to update invalid binding and then repeats the method call. In

addition, PCRA also provides caching support of virtual stubs (discussed in chapter 3) for

improved performance.

7.1.3 Policy-based approach

This section reviews various adaptation systems that advocate the use of policy-based

programming model to develop adaptive context-aware applications.

7.1.3.1 Towards a framework for self-adaptive component-based

applications

David and Ledoux [12] have presented a framework, which enables the development of

self-adaptive component-based applications. Their framework supports two adaptation

mechanisms: reconfiguration and parameter adaptation. The motivation behind this framework

is to enable systematic development of adaptive mobile applications using a ―separation of

concerns‖ principle, where adaptation concerns are separately treated and defined from the core

functionality of an application. The adaptation concerns of the application are defined in an

- 124 -

ECA (Event-Condition-Action) format, called adaptation policies. This separation of concerns

reduces the complexity involved in developing adaptive applications. Further, adaptation

policies can be modified during execution, without stopping and restarting the system, thereby

allowing dynamic modification of applications.

This framework uses policies for controlling both kinds of adaptation mechanisms

(reconfiguration and parameter adaptation), in which adaptation policies respond to events

(representing contextual information) and trigger reconfiguration actions. Reconfiguration

actions may involve the reconfiguration of application architecture or adaptation of the

behaviour of the component through parameter adjustments. Adaptation polices are currently

specified using the Java language. PCRA has a close resemblance with this framework in the

sense that it also supports reconfiguration and parameter adaptation, and a policy-based

approach for controlling adaptations. However, the reconfiguration supported by PCRA is

different in the sense that the system discovers the services based on context (e.g. user presence)

and creates bindings between the user component and these services, unlike the structural

reconfiguration supported by this framework where configurations (which components to bind)

are statically defined. In addition, PCRA also provides reconfiguration support to manage

invalid bindings, thus offering a broader scope of adaptation than this framework. Our approach

also differs from this approach with regard to how the adaptation policies are specified. This

approach currently uses the Java language and plans to develop a domain specific language as

future work to encode adaptation policies, while our approach uses a specialized declarative

policy language, Ponder2 [26,80,94], to specify adaptation policies. The advantage of using

Ponder2 for specifying adaptation policies is that policies are specified declaratively at high-

level of abstraction, thereby simplifying development.

7.1.3.2 SCaLaDE

Bellavista et al. [10] have developed the Services with Context-awareness and

Location-awareness for Data Environments (SCaLaDE) middleware that focuses on mobile

environments and provides the support for reconfiguration of links to information resources in

response to the mobile entity migration. In addition, it also provides adaptation support where

service results are adapted to fit specific device characteristics; and also handles temporary

disconnections during which service requests are carried on. SCaLaDE creates a mobile proxy

(also called a shadow proxy) for each mobile device. It is implemented as a mobile agent with

bindings to information resources. The mobile agent follows the mobile client movements and

updates its bindings with information resources as it migrates due to roaming of mobile clients.

- 125 -

In SCalaDE, a mobile proxy can refer to information resources through various types of

binding strategy: resource movement, copy movement, remote reference and rebind [54]. The

decision of which binding strategy should be used between a mobile proxy and the required

resources when the mobile terminal/mobile proxy moves is based on deployment conditions,

such as terminal capabilities (e.g. CPU power, memory space etc.) and available bandwidth etc.

These binding strategy decisions are expressed explicitly through high-level policy

specifications, thus providing a separation of concerns between binding management concerns

and application logic. This separation of concerns reduces the complexity involved in

development of mobility-enabled scenarios and allows dynamic programmability of binding

strategies. SCaLaDE expresses the binding strategies as Ponder obligation policies [27]. The use

of a policy-based approach to separate binding management concerns from the computational

aspects is the core idea of SCaLaDE.

As can be observed from the above discussion, context-awareness here captures the

binding management concerns where, in response to context (migration of a mobile

component), a particular binding strategy is selected based on deployment conditions and then

the link between the mobile proxy and the needed resource is reconfigured accordingly.

Context-awareness is controlled through a policy specification. Although PCRA supports other

forms of context-awareness: contextual reconfiguration (services are discovered and bound to in

response to context) and contextual adaptation, both PCRA and SCaLaDE advocate and use a

policy-based programming model to reduce complexity involved in developing context-aware

applications. However, PCRA uses Ponder2 for expressing obligation policies, while SCaLaDE

uses Ponder obligation policies.

7.1.3.3 POEMA

Montanari et al. [66] have developed a policy-based framework, Policy-Enabled Mobile

Applications (POEMA) that provides an environment to develop applications that can change

their functionality as well as layout dynamically in response to context (e.g. user mobility, low

battery power, etc.). POEMA exploits code mobility which enables dynamic change of the

application deployment by transferring execution of software components from one device to

another depending on resource availability.

The core argument presented in this work is that mobility complicates development

efforts in the sense that developers are required to define when and where to move which

components under varying operating conditions. As a solution to this problem, a policy-based

programming approach has been advocated and used, where the POEMA platform supports

high-level reconfiguration strategies expressed as ECA rules that separate mobility concerns

- 126 -

from application functionality. Policy specifications express a choice regarding when, where

and which components to move in response to context. Developing mobile code applications

under POEMA requires expressing mobile concerns separately from the coding application

functionality. This separation reduces the complexity involved in developing mobile-code

applications, and also allows dynamic modification of mobility concerns, thus allowing

dynamic reconfiguration of mobile-code applications.

PCRA also advocates and uses a policy-based programming approach for

reconfiguration to simplify the development task and to allow dynamic modification of the

applications. However, the reconfiguration used in PCRA is different from POEMA in that

reconfiguration involves discovering service(s) and binding to them in response to context. In

addition, PCRA also supports policy-based contextual adaptation in which the service behaviour

is adapted through parameter adjustment in response to context. PCRA uses Ponder2 for

specifying binding and adaptation policies, while POEMA uses Ponder for expressing

reconfiguration strategies.

7.1.3.4 Chisel

Keeney and Cahill [13] have developed a policy-driven, context-aware, dynamic

adaptation framework, Chisel, which facilitates the development of context-aware applications

for mobile environments. Chisel uses dynamic association and disassociation of non-functional

concerns with the core functional concerns as an adaptation mechanism. This framework is

based on the idea that particular aspects of the service object which do not provide core

functionality (non-functional concerns) should be separated out into multiple possible

behaviours. The adaptation of service objects is then achieved by associating non-functional

concerns with and disassociating from them at runtime in response to context, without stopping

their execution.

Chisel uses a policy-based programming approach in which policies are specified to

control adaptations. They have developed their own policy-language, which includes constructs

like ON-DO-IF. Policy specifications maintain a clean separation between the decision logic

that determines when to perform what adaptations and actual adaptation actions, thus facilitating

easier and rapid development and maintenance of adaptive applications.

Our work has a resemblance in the sense that we also use policies for controlling

adaptations, but we focus on other adaptation mechanisms—dynamic reconfiguration of an

application, which creates bindings between application components in response to context, and

the parameter adaptation to achieve contextual adaptation.

- 127 -

7.1.3.5 CASA

Mukhija [1,82,83] has developed a Java-based framework, called CASA (Contract-

based Adaptive Software Architecture), which enables the development of dynamically adaptive

applications. The core idea of this framework is a provision of a wider scope of adaptation with

an aim to comprehensively meet the adaptation needs of applications running in dynamic

environments. The broader scope of adaptation is provided by integrating a number of different

adaptation mechanisms, i.e. dynamic reconfiguration of application components, dynamic

association and disassociation of non-functional concerns, dynamic changes of lower-level

services and dynamic changes of application attributes. CASA considers both dynamic changes

of lower-level services and dynamic changes of application attributes as separate adaptation

mechanisms. However, we argue that both can be achieved through parameter adjustments and

therefore can be considered to be a parameter adaptation mechanism. In the following, we refer

to these two as a parameter adaptation mechanism.

The authors [1,82,83] have developed their own approach for dynamic reconfiguration

of components in the CASA framework. For providing dynamic association and disassociation

of non-functional concerns adaptation support, a third party system called PROSE [56] has been

integrated in the CASA framework. Similarly, for providing the support for dynamic changes of

lower-level services, another third party system, Odyssey has been integrated in the CASA

framework. Having integrated these two third party systems and their approach for dynamic

recomposition of application components, the CASA framework provides a wide scope of

adaptation.

In CASA, an adaptation policy of an application is defined in XML that is external to

the application. This provides a separation of concerns between adaptation concerns and core

application functionality. As a result, two major benefits are achieved: (1) it reduces the

complexity involved in developing and maintaining dynamically adaptive applications and (2) it

allows modification of the adaptation policy at runtime.

PCRA also provides a broader scope of adaptation by integrating a number of

adaptation mechanisms: reconfiguration, parameter adaptation and reconfiguration to manage

invalid bindings. Two adaptation mechanisms (application code reconfiguration and parameter

adaptation) supported by both the systems are the same. However, the third adaptation

mechanism supported by CASA is a dynamic association and disassociation of non-functional

concerns, while PCRA supports reconfiguration to recover from invalid bindings. In addition,

PCRA also integrates seamless caching support of virtual stubs for improved performance. As

can be noted from above discussion, CASA uses third party systems for supporting adaptation

- 128 -

of services and other adaptation involving association and disassociation of non-functional

concerns, while we have developed our own approaches for all kinds of adaptation supported by

PCRA. In contrast to CASA where adaptation policies are specified in XML, PCRA uses a

specialized declarative policy language, Ponder2, for encoding adaptation policies. In earlier

versions of Ponder2, XML was used for writing policies but later it was argued that writing

XML was laborious for human and also hard to debug and read. As a result, high-level language

called PonderTalk (see section 2.6.2.3) was developed for expressing Ponder2 policies.

As discussed above, CASA integrates Odyssey system for providing support for

adaptation of lower-level services and its adaptation support is limited to media-specific

adaptation (e.g., video and audio) in mobile environments, where media-specific service is

adapted in response to resource availability. In contrast, we target a set of application scenarios

in domestic environments; where service (e.g., light service, cooker service, fridge service, etc)

is adapted in response to other contextual triggers such as user presence, user activity, light

level, noise level, temperature level, etc.)

7.1.4 Summary

In above sections, we discussed core concepts involved, adaptation scope supported,

and the programming approach provided by each reviewed system to develop adaptive context-

aware applications. We summarize our observations in following two tables, where table 7.1

shows adaptation scope supported by each reviewed system, while table 7.2 shows which

programming approach is provided by each of them.

Systems

Adaptation Scope

Reconfiguration/

Binding

Parametric Dynamic Association &

Disassociation of Non-

Functional Concerns

Code

Mobility

Reconfiguration

to update

Bindings

Enactor model √
TFSACBA7 √ √
Odyssey √
CASA √ √ √
One.World √ √
Scooby √ √
SCaLaDE √ √ √
POEMA √ √
Chisel √
RCSM √
PCRA √ √ √

Table 7.1: Adaptation scope comparisons

7Towards a Framework for Self-Adaptive Component-Based Applications.

- 129 -

Table7.2: Programming approach comparisons

7.2 Approaches to updating invalid references

In [61], the authors identify various failure conditions and robustness issues that can

arise in context-aware pervasive computing applications and provide application-level recovery

mechanisms. However, we only focus on binding failures that affect an interaction between an

application and the bound service. The binding failures can be caused by either power-failure

problems, or migration or replacement of the bound service. Although they handle various

failure conditions and hence their solution is comprehensive, their solution is not application

transparent. In contrast, our reconfiguration approach to managing bindings is application

transparent.

Most of the current mobile frameworks use a system level approach to maintain a

reference with a moving target object and they normally solve this problem with one of the two

approaches. The first approach is to continuously maintain a valid reference to the moving

target using a tracking mechanism as done in [62,63]. The tracker is a forwarding pointer. Upon

8 TFSACBA uses the Java programming language to code adaptation policies.

9 CASA uses XML language to encode adaptation policies.

10SCaLaDE uses Ponder to express adaptation policies.

11 POEMA uses Ponder to express adaptation policies.

12 Chisel uses their own developed policy language to express adaptation policies.

13 PCRA uses Ponder2 to express adaptation policies.

Systems API Programming

Language

Policy

Enactor model √

TFSACBA8 √

Odyssey √

CASA9 √

One.World √

Scooby √

SCaLaDE10 √

POEMA11 √

Chisel12 √

RCSM √

PCRA13 √

- 130 -

the migration of a component to other location, the system creates a tracker in the old place. The

method calls are forwarded to the moved target object by that tracker. While this approach

provides an application transparent mechanism to always maintain a valid reference to the

moved component, it is costly in two respects: (1) the system must create a tracker in the old

place and (2) the method calls are first received by the tracker and then forwarded to the moved

object. The second approach is to rebind the reference to the relocated object each time a

method of the target object is called so that the reference to the moved target is always valid.

This approach is very costly from the system performance point of view because each time the

target method is called, a lookup operation is performed and this is very time consuming. In

contrast, our approach does not suffer from these system performance issues.

 Other systems that provide application transparent support for managing references

upon component migration or replacement include [47,64]. These systems use a system design

component called a virtual stub/smart proxy that holds/wraps the real proxy of the target

component. An interaction between the application component and target object takes place

through the virtual stub/smart proxy. In an attempt to call a method on an invalid reference, the

virtual stub/smart proxy performs reconfiguration to update the invalid reference, thus providing

an application transparent reconfiguration. In [64], the smart proxy catches an exception

generated by an attempt to invoke a method on a target object which has since been replaced,

and attempts to update the reference by looking up the replacement object in a naming service.

In [47], a virtual stub updates the invalid reference when asked by the system or in response to

an exception, generated by an attempt to invoke a method call on the target object which has

since been moved or replaced. Our approach is similar to theirs in that our approach also uses a

virtual stub and thus it is application transparent, but it is different in that the virtual stub

reflectively invokes remote methods of the bound service. This allows having a generic virtual

stub definition which can be used to wrap a real proxy to any remote service without knowing a

remote interface implemented by the remote service. This means the same virtual stub definition

is used for each unique remote service without the need for having the definition of each remote

interface implemented by a remote service available locally. This results in a reduction in total

amount of code.

7.3 Summary

In this chapter, we provided an overview of various systems that focus on providing

dynamic adaptation support in pervasive computing environments. We discussed the core

concepts involved, adaptation mechanisms used by these systems to realize dynamic adaptation,

and also their approaches to developing adaptive context-aware applications. Adaptation

- 131 -

mechanisms used by these systems to achieve dynamic adaptation were among the ones we

identified from the literature in chapter 2 (dynamic reconfiguration of application components,

parameter adaptation, dynamic association and disassociation of non-functional concerns, code

mobility).

As discussed in chapter 2, each of the adaptation mechanisms enables powerful

adaptations. Integration of different adaptation mechanisms provides a broader scope of

adaptation to meet the diverse adaptation requirement of the application. Table 7.1 summarises

adaptation scope provided by all reviewed systems by integrating various adaptation

mechanisms. One of the arguments of this thesis is the provision of a broader scope of

adaptation to meet different adaptation needs of applications. Table 7.1 indicates that PCRA

meets this argument. Odyssey provides parameter adaptation support only and target adaptation

of media-specific applications in response to resource variability, while PCRA integrates other

adaptation mechanisms and targets application scenarios in domestic environments. Both

SCaLaDE and POEMA use code mobility to enhance service provisioning to mobile users and

to address the limitation of resource-constrained devices, and both targets mobile environments.

However, SCaLaDE provides a wider adaptation scope than POEMA as it also includes

reconfiguration support for location-dependent services. In contrast to these two, PCRA does

not use code mobility, but it integrates different adaptation mechanisms to provide a wider

scope of adaptation. While Scooby, One.World and PCRA support reconfiguration for

establishing bindings between software components, and reconfiguration support for managing

invalid bindings, PCRA integrates an additional adaptation mechanism—parameter adaptation.

Reconfiguration support in One.World involves discovering event handlers and binding to them,

while in both Scooby and PCRA, it involves discovering services and binding to them. The

other system that comes closer with regard to this is CASA, which also provides a broader

scope of adaptation by integrating three adaptation mechanisms. Two of the adaptation

mechanisms (application reconfiguration / binding and parameter adaptation) supported by both

systems are the same. However, we address an issue of updating invalid references and provide

reconfiguration support to handle this issue, while CASA does not address this issue, but

includes dynamic association and disassociation of non-functional concerns adaptation

mechanism.

The main motivation behind all of the reviewed systems was the provision of an

approach targeted to reduce complexity involved in developing and maintaining context-aware

applications. The approaches used by the systems (see table 7.2) were: a policy-based

programming model, specifically designed language and an API-based approach. While all

systems contributed to this goal, the systems that used the policy-based programming model

- 132 -

allowed dynamic modification of context-aware applications, without the need for recompiling

and restarting the system. It can be argued that the policy-based programming model provides

more effective means for developing, modifying and maintaining context-aware applications

than specifically designed languages and an API-based approach.

- 133 -

Chapter 8

Conclusion

This thesis has provided a description and evaluation of our PCRA system, which

enables the development and operation of adaptive context-aware applications. In this last

chapter, we summarize our research and briefly describe some of the important research

directions for future work.

8.1 Recapitulation

8.1.1 Motivation

Chalmers [5] suggests that context-awareness can manifest itself in a variety of ways.

We are interested in the ways context-aware systems adapt themselves in response to context, in

particular in contextual reconfiguration and contextual adaptation. These provide adaptations

and enable applications to perform tasks which support us in everyday life with minimal user

distractions. One of our motivations in this thesis has been to provide a broader scope of

adaptation to meet the different adaptation needs of applications than existing systems. Each

kind of adaptation to context can individually satisfy some adaptation requirements. However,

we envision many adaptive context-aware applications, which require support for both

reconfiguration and adaptation. Integrating support for both is therefore appropriate. Another

motivation behind this research work has been to provide an effective means to simplify

development of adaptive context-aware applications and to allow dynamic modification of such

applications. Many existing research efforts have focused on this and provide means in the form

of an API or the development of special purpose languages. However, we provide developers

with a policy-based programming approach to simplify the development task and to provide

support for dynamic modification of adaptive context-aware applications. Our evaluation results

(chapter 6) showed that the policy-based programming approach provides simplification of

development and supports dynamic modification of applications.

- 134 -

8.1.2 Summary of Contributions

The resulting effort of our research is the design and implementation of a system,

PCRA, which provides a policy-based platform in which to develop adaptive context-aware

applications. This acts as a proof of concept for the more general questions below:

 The provision for a broader scope of adaptation: PCRA supports three different forms of

adaptation: contextual reconfiguration, contextual adaptation and reconfiguration to

manage invalid bindings. Contextual reconfiguration allows context-aware bindings in

which remote service(s) are discovered based on context and bound to user instances.

Contextual adaptation employs a service parameter adaptation mechanism to achieve

contextual adaptation in which the behaviour of a bound service is adapted through

parameter adjustments in response to context. If a binding become invalid, reconfiguration

support for managing bindings takes charge and updates the binding.

 Seamless caching of virtual stubs for improved performance: We have integrated

seamless caching support of virtual stubs in PCRA for improved performance. As a part of

our context-aware binding process, the remote service is discovered, the virtual stub

created and initialized with the real proxy of the discovered service, and then cached

locally. When a new binding to this service is required again, the corresponding virtual

stub is obtained from the local cache directly without performing a remote look up. This

considerably reduces reconfiguration time and hence improves the system responsiveness.

 Reducing the complexity involved in developing adaptive context-aware applications:

Following detailed research, we decided to use a policy-based programming approach.

PCRA is built on top of Ponder2 system, which provides support for specifying and

enforcing policies. PCRA provides a policy-based programming platform to develop

adaptive context-aware applications in which policies are expressed declaratively at a

high-level of abstraction, thus reducing the complexity involved in developing such

applications. PCRA demonstrates that policies provide an effective way to develop such

applications.

 Runtime modification of applications: Development of adaptive context-aware

applications under PCRA requires specifying both binding and adaptation policies which

can be loaded and unloaded at runtime, allowing dynamic modification of applications

during application execution.

- 135 -

8.1.3 Summary of Results

The two primary objectives of our research are (1) integration of various adaptation

mechanisms to provide a broader scope of adaptation and (2) the provision of an effective

means for developing adaptive context-aware applications. To justify these two main objectives

of our thesis, we have implemented various hypothetical adaptive context-aware applications,

and evaluated our policy-based programming approach and compared it with a specifically

designed language (Scooby) and an API-based approach (One.World). We summarize our

results below.

 The results of our literature survey show that PCRA provides a wider scope of adaptation

by integrating more adaptation mechanisms than that of both Scooby and One.World.

 Our evaluation results show that both PCRA and Scooby reduce the complexity involved

in developing adaptive context-aware applications as was indicated by the number of

source code lines required to implement various example scenarios, while One.World

requires significantly more development effort.

 We demonstrated that PCRA outperforms both Scooby and One.World by being able to

make dynamic, rather than static, modifications to policies.

 We demonstrated that PCRA provides better user involvement support in specifying or

reconfiguring adaptive context-aware applications than both Scooby and One.World.

However, Scooby supports user involvement better than One.World.

 PCRA can handle complex scenarios well. This fact is highlighted by the implementation

of various hypothetical example scenarios which represent real life home scenarios.

 Our performance evaluation results suggest that PCRA is scalable and can scale down to

resource-constrained devices. This feature is inherited from Ponder2 which PCRA is built

on top of.

 Performance evaluation results clearly indicate that caching support integrated within

PCRA significantly reduces reconfiguration time and thus improves system performance.

8.2 Future Work

This thesis addresses research involving two interesting domains: context-awareness

and policies. Consequently, there is a variety of interesting work which is beyond the scope of

this thesis. In the following, we suggest some of the work which is worthy of further

investigation.

- 136 -

User conflicts / Policy conflicts: The main focus of our research has been a provision for a

broader scope of adaptation support, a policy-based programming approach to simplify the

development process and to allow dynamic modification of adaptive context-aware applications.

However, there are other important related issues which we suggest need to be addressed.

Currently, we have embedded a very simple solution to the user conflict problem in PCRA,

which is priority-based (the older the user, the higher the priority). This issue needs to be further

explored and may require investigating various resolution strategies. The resolution strategy

may be that an average of preferred values of multiple users for a particular service be taken and

then checked if the average value is not far more deviated from each user‘s preferred value,

averaged value be used. If the average value is too far deviated from each user‘s preferred value,

then other strategies may be adopted (e.g., a priority-based scheme). The highest priority

scheme may be based on the age or role of the user. In a role-based priority scheme, father or

mother may get higher priority than their children, or in academic environment, faculty

members may get higher priority than students. In priority-based schemes, priority of users

might tie and require considering other factors (e.g., in shared accommodation, the user who has

spent longer than others may get higher priority, etc.). Conflicting situations may also arise in

policy-based systems when multiple policies sharing the same output are triggered and

executed, leading to conflicting actions. In order to exploit the full potential of our policy-based

approach, we suggest that policy conflict issues need to be investigated and its runtime support

be integrated within PCRA.

Increased Generality of the system: PCRA is working and we have implemented various

hypothetical adaptive context-aware example scenarios in domestic environments, and run them

on it. From this we draw the conclusion that it offers reasonably good adaptation support in such

scenarios. However, it is interesting to investigate whether its adaptation support can be

exploited in other environments (e.g., mobile environments). We suggest that it should be tested

in mobile environments and if any particular issues come up, these need to be addressed and

incorporated to provide the necessary functionality. We further suggest that, in order to improve

its generality, other adaptation mechanisms (e.g., dynamic association and disassociation of

non-functional concerns) may be integrated within PCRA to broaden its adaptation scope so that

it can satisfy diverse adaptation needs of applications.

Integration with existing context toolkits: The application scenarios implemented involve

responding to various contexts (e.g., user presence, activity context, time etc.). Currently, we are

using our own GUI components to generate simulated contexts to the applications. However, in

order to deploy PCRA in real world scenarios, existing context toolkits (e.g., Dey‘s context

toolkit [21]) can be used to provide contextual information from real world sensors. PCRA is

- 137 -

built on top of Ponder2 which uses an event model for receiving data from outside through

events. All data sent from outside entities to PCRA must be a Ponder2 managed object. As a

result of this, no existing context toolkits can be used directly with PCRA. Therefore, we

suggest development of software that would enable to integrate PCRA with existing toolkits.

- 138 -

Bibliography

[1] A. Mukhija, "CASA - A Framework for Dynamic Adaptive Applications", Doctoral

Thesis, University of Zurich, 2007.

[2] C. Efstratiou, ―Coordinated Adaptation for Adaptive Context-aware Applications‖, PhD

thesis, Lancaster University, United Kingdom, 2004.

[3] A. K. Dey and G. D. Abowd, ―Towards a Better Understanding of Context and Context-

Awareness‖, Proceedings of Workshop on The What, Who, Where, When, and How of

Context-Awareness, Conference on Human Factors in Computing Systems, The Hague,

The Netherlands, April 2000.

[4] N. B. Schilit, N. Adams, and R. Want, ―Context-Aware Computing Applications‖,

Proceedings of the Workshop on Mobile Computing Systems and Applications, pp. 85-

90, 1994.

[5] D. Chalmers, ―Contextual Mediation to Support Ubiquitous Computing‖, PhD thesis,

Imperial College London, 2002.

[6] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng, ―A Taxonomy of Compositional

Adaptation‖, Technical Report MSUCSE- 04-17, Michigan State University, 2004.

[7] A. K. Dey, ―Understanding and Using Context”, Personal and Ubiquitous Computing,

vol. 5, no. 1, pp. 4–7, 2001.

[8] J. Pascoe, ―Adding Generic Contextual Capabilities to Wearable Computers‖,

Proceedings of 2nd International Symposium on Wearable Computers, pp. 92-99, 1998.

[9] G. Chen and D. Kotz ―A Survey of Context-Aware Mobile Computing Research‖

Dartmouth College Technical Report TR2000-381, November 2000.

[10] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli, ―Policy-Driven Binding to

Information Resources in Mobility-Enabled Scenarios‖, Proceeding of 4
th
International

Conference on Mobile Data Management, 2003.

[11] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli, ―Context-Aware Middleware

for Resource Management in the Wireless Internet‖, IEEE Transactions on Software

Engineering, vol. 29, no. 12, pp.1086–1099, 2003.

[12] P. C. David and T. Ledoux, ―Towards a Framework for Self-Adaptive Component-

Based Applications‖, Proceedings of Distributed Applications and Interoperable

Systems, pages 1-14, 2003.

[13] J. Keeney and V. Cahill, ―Chisel: A Policy-Driven, Context-Aware, Dynamic

Adaptation Framework‖, Proceedings of IEEE 4th International Workshop on Policies

for Distributed Systems and Networks, pp. 3-14, 2003.

[14] J. Sousaand D. Garlan, ―Aura: An Architecture Framework for User Mobility in

Ubiquitous Computing Environments‖, Proceedings of 3rd IEEE Conference on

Software Architecture, pp. 29-43, 2002.

[15] Mobility and Adaptation Enabling Middleware (MADAM), Project Homepage:

www.intermedia.uio.no/display/madam.

[16] B. Noble, ―System Support for Mobile, Adaptive Applications‖, IEEE Personal

Communications, pp. 44–49, 2000.

[17] B. D. Noble and M. Satyanarayanan, ―Experience with Adaptive Mobile Applications

in Odyssey‖, Mobile Networks and Applications, vol. 4, no. 4, pp. 245-254, 1999.

http://www.intermedia.uio.no/display/madam

- 139 -

[18] P. C. David and T. Ledoux, "An Infrastructure for Adaptable Middleware",

Proceeding of the 2002 International Symposium on Distributed Objects and

Applications ,LNCS 2519, Springer-Verlag, pp.773-790, 2002.

[19] L. Capra, W. Emmerich, and C. Mascolo, ―CARISMA: Context-Aware Reflective

Middleware System for Mobile Applications‖, IEEE Transactions on Software

Engineering, vol. 29, no. 10, pp. 929- 945, 2003.

[20] E. Rukzio, S. Siorpaes, O. Falke, and H. Hussmann, ―Policy Based Adaptive Services

for Mobile Commerce‖, 2
nd

 Workshop on Mobile Commerce and, Munich, Germany,

pp. 183-192, July 19, 2005.

[21] A. K. Dey, G. Abowd and D. Salber ―A Conceptual Framework and a Toolkit for

Supporting the Rapid Prototyping of Context-Aware Applications‖, Human-Computer

Interaction, vol. 16 no. 2, pp. 97-166, 2001.

[22] A. Newberger and A. Dey, ―Designer Support for Context Monitoring and Control‖,

Technical Report IRB-TR-03-017, Intel Research, June, 2003.

[23] J. Robinson, I. Wakeman, and D. Chalmers, ―Composing Software Services in the

Pervasive Computing Environment: Languages or APIs?‖, Pervasive and Mobile

Computing, vol. 4 no.4, pp. 481-505, August 2008.

[24] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta, ―Reconfigurable Context-

Sensitive Middleware for Pervasive Computing‖, IEEE Pervasive Computing, vol. 1,

no. 3, pp. 33–40, 2002.

[25] K. Harihar and S. Kurkovsky, ―Using Jini to enable pervasive computing

environments‖, Proceedings of the 43
rd

 Annual Southeast Regional Conference, pp.

188-193, 2005.

[26] Ponder2 Software and Documentation available at: http://www.ponder2.net/.

[27] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, ―The Ponder Specification

Language‖, Workshop on Policies for Distributed Systems and Networks, 2001.

[28] J. Fox and S. Clarke, ―Exploring Approaches to Dynamic Adaptation‖, Proceedings of

the 3rd International DisccoTec Workshop on Middleware-Application interaction, pp.

19-24, 2009.

[29] P. Bellavista, A. Corradi, and C. Stefanelli‖, ―Mobile Agent Middleware for Mobile

Computing”, IEEE Computer, vol. 34, no. 3, March 2001.

[30] Sun Microsystems, ― Remote Method Invocation‖,

http://java.sun.com/products/jdk/rmi/index.html, 2001.

[31] Sun Microsystems, ―Jini Architecture Specification‖,

http://wwws.sun.com/software/jini/specs/jini1.2html/jini-spec.html.

[32] S. M. Sadjadi and P. K. McKinley, ―ACT: An Adaptive CORBA Template to Support

Unanticipated Adaptation‖, Proceedings of the 24
th
 IEEE International Conference on

Distributed Computing Systems, Japan, March 2004.

[33] J. A. Zinky, D. E. Bakken, and R. Schantz, ―Architectural Support for Quality of

Service for CORBA Objects‖, Theory and Practice of Object Systems, vol. 3, no. 1,

1997.

[34] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz, and D. Bakken, ―QuO‘s Runtime

Support for Quality of Service in Distributed Objects‖, Proceedings of Middleware 98,

the IFIP International Conference on Distributed Systems Platform and Open

Distributed Processing, September 1998.

[35] R. Friedman and E. Hadad, ―Client Side Enhancements Using Portable Interceptors‖,

Proceedings of the 6
th
 IEEE International Workshop on Object-oriented Real-time

Dependable Systems, January 2001.

http://www.ponder2.net/

- 140 -

[36] P. Tarr and H. Ossher, Workshop on Advanced Separation of Concerns in Software

Engineering at ICSE, May 2001.

[37] R. Want, A. Hopper, V. Falcao, and J. Gibbons, ―The Active Badge Location System‖,

ACM Transactions on Information Systems, vol. 10 no.1, pp. 91-102, January 1992.

[38] B. Schilit, M. Theimer, and B. Welch, ―Customizing Mobile Applications‖,

Proceedings of the USENIX Mobile and Location-Independent Computing Symposium,

pp. 129-138, Cambridge, Massachusetts, August 1993.

[39] B. Schilit and M. Theimer, ―Disseminating Active Map Information to Mobile Hosts‖,

IEEE Network, vol. 8, no. 5, pp. 22-32, 1994.

[40] M. Weiser, ―Some Computer Science Issues in Ubiquitous Computing‖,

Communications of the ACM, vol.36, pp.75-85, 1993.

[41] S. L. Keoh, K. Twidle, N. Pryce, A. E. Shaeffer-Filho, E. Lupu, N. Dulay, M. Sloman,

S. Heeps, S. Strowes, J. Sventek, and E. Katsiri, ―Policy-Based Management for Body-

Sensor Networks‖, Proceedings of 4
th
 International Workshop on Wearable and

Implantable Body Sensor Networks, pp. 92 – 98, Aachen, Germany, March 2007.

[42] S. L. Keoh, N. Dulay, E. Lupu, K. Twidle, A. E. Schaeffer-Filho, M. Sloman, S. Heeps,

S. Strowes, and J. Sventek, ―Self-Managed Cell: A Middleware for Managing Body

Sensor Networks‖, Proceedings of International Conference on Mobile and Ubiquitous

Systems: Networking and Services, 2007.

[43] P. J. Brown, J. D. Bovey, and X. Chen, ―Context-Aware Applications: From the

Laboratory to the Marketplace‖, IEEE Personal Communications, vol.4 no.5 pp.58-64,

October 1997.

[44] J. Flinn, M. Satyanarayanan, ―Energy-Aware Adaptation for Mobile Applications‖,

Proceedings of the 17
th
 ACM Symposium on Operating Systems and Principles,

December, 1999.

[45] O. Layaida, D. Hagimonte, ―Dynamic Adaptation in Distributed Multimedia

Applications”, INRIA, Technical Report, August 2002.

[46] C. Bidan, V. Issarny, T. Saridakis, and A. Zarras, ― A Dynamic Reconfiguration Service

for CORBA‖, Proceedings of 4
th
 International Conference on Configurable Distributed

Systems, pages 35–42, 1998.

[47] X. Chen and M. Simmons, ―Extending RMI to Support Dynamic Reconfiguration of

Distributed Systems‖, Proceedings of 22
nd

InternationalConference on Distributed

Computing Systems, 2002.

[48] J. Kramer and J. Magee, ―The Evolving Philosophers Problem: Dynamic Change

Management‖, IEEE Transactions on Software Engineering, vo. 16, no. 11, pp. 1293–

1306, 1990.

[49] P. Oreizy, N. Medvidovic, and R. N. Taylor, ―Architecture-based Runtime Software

Evolution‖, Proceedings of 20
th
International Conference on Software Engineering,

Kyoto, Japan, pp. 177-186, 1998.

[50] D. Ayed and Y. Berbers, ―Dynamic Adaptation of CORBA Component-Based

Applications‖, Proceedings of the 2007 ACM symposium on Applied Computing, pp.

580–585, 2007.

[51] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli, ―Dynamic Binding in Mobile

Applications‖, IEEE Internet Computing, vol. 7, no. 2, pp. 34–42, March/April, 2003.

[52] A. Rascheand A. Polze, ―Configuration and Dynamic Reconfiguration of Component-

based Applications with Microsoft .NET”, Proceedings of the 6
th
 IEEE International

Symposium on Object-Oriented Real-Time Distributed Computing, 2003.

- 141 -

[53] A. Carzaniga, G. P. Picco, and G. Vigna, ―Designing Distributed Applications with

Mobile Code Paradigms‖, Proceedings of 19
th
 Conference on Software Engineering, pp.

22–32, 1997.

[54] A. Fuggetta, G.P. Picco, and G. Vigna, ―Understanding Code Mobility‖, IEEE

Transactions on Software Engineering, vol. 24, no. 5, pp. 342–361,1998.

[55] T. Elrad, R. E. Filman, and A. Bader, ―Aspect-Oriented Programming: Introduction‖,

Communication of ACM, vol. 44, no.10, pp. 29-32, October 2001.

[56] A. Nicoaraand G. Alonso, ―Dynamic AOP with PROSE”, Proceedings of the

International Workshop on Adaptive and Self-Managing Enterprise Applications, 2005.

[57] P. Maes, ―Concepts and Experiments in Computational Reflection”, Proceedings of

OOPSLA Conference on Object-oriented Programming Systems and Applications,

pp.147–155, 1987.

[58] ―Seamlessly Caching Stubs for Improved Performance‖,

 http://onjava.com/pub/a/onjava/2001/10/31/rmi.html.

[59] Object Management Group, ―The Common Object Request Broker: Architecture and

Specification‖, http://www.corba.org.

[60] The Component Object Model Specification,

http://www.microsoft.com/com/default.mspx.

[61] D. Kulkarni and A. Tripathi, ―Application-level Recovery Mechanisms for Context-

Aware Pervasive Computing‖, IEEE Symposium on Reliable Distributed Systems,

pp.13-22, 2008.

[62] G. Glass, ―ObjectSpace Voyager Core Package Technical Overview‖, ObjectSpace,

White Paper, 1999.

[63] O. Holder, I. Ben-Shaul, and H. Gazit. ―System Support for Dynamic Layout of

Distributed Applications‖, Proceedings of the 19
th
 International Conference on

Distributed Computing Systems, Austin, TX, USA, pp. 403-411, 1999.

[64] Z. Yu, I. Warren, and B. MacDonald, ―Dynamic Reconfiguration for Robot Software‖,

Proceedings of the 2006 IEEE International Conference on Automation Science and

Engineering, Shanghai, China, pp. 292–297, 2006.

[65] IETF Policy Framework Working Group web page: www.ietf.org/html.charters/policy-

charter.html/.

[66] R. Montanari, E. Lupu, and C. Stefanelli, ―Policy-based Dynamic Reconfiguration of

Mobile-Code Applications‖, Computer, IEEE Computer Society, vol. 37, no. 7, pp. 73-

80, 2004.

[67] T. Zhang, ―An Architecture for Building Customizable Context-Aware Applications by

End-Users‖, Proceedings of 2
nd

 International Conference on Pervasive Computing,

2004.

[68] J. Lobo, R. Bhatia,and S. Naqvi, ―A Policy Description Language‖, Proceedings of

Innovative Applications of Artificial Intelligence, pp. 291–298, 1999.

[69] J. Robinson, ―The Exploration and Design of a Language and Middleware Architecture

Dedicated to Service Composition in a Pervasive Computing Environment‖, Ph.D.

Thesis, School of Informatics, University of Sussex, June 2006.

[70] N. Santos, P. Marques, and L. Silva, ―A Framework for Smart Proxies and Interceptors

in RMI‖, Proceedings of 15
th
 International Conference on Parallel and Distributed

Computing Systems, 2002.

[71] R. Kapitza, M. Kirstein, H. Schmidt, and F. J. Hauck, ―FORMI: An RMI Extension for

Adaptive Applications‖, Proceedings of the 4
th
 Workshop on Reflective and Adaptive

Middleware, New York, NY, USA, 2005.

http://www.ietf.org/html.charters/policy-charter.html/
http://www.ietf.org/html.charters/policy-charter.html/

- 142 -

[72] A. Stevenson and S. MacDonald, ―Smart Proxies in Java RMI with Dynamic Aspect-

oriented Programming‖, Proceedings of the 2008 International Workshop on Java and

Components for Parallelism, Distribution and Concurrency, 2008.

[73] J. Groppe and W. Mueller, ―Profile Management Technology for Smart Customizations

in Private Home Applications‖, Proceedings of International Workshop on Database

and Expert Systems Applications, pp. 226-230, 2005.

[74] C. Shin, A. K. Dey, and W. Woo, "Mixed-Initiative Conflict Resolution for Context-

Aware Applications‖, Proceedings of the International Conference on Ubiquitous

Computing, pp. 262-271, 2008.

[75] G.S. Thyagaraju, S. M. Joshi, U. P. Kulkarni, and S. K. NarasimhaMurthy, ―Conflict

Resolution in Multiuser Context-Aware Environments‖, Proceedings of International

Conference on Computational Intelligence for Modelling Control & Automation, pp.

332-338, 2008.

[76] R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. MacBeth, S. Swanson, T. Anderson,

B. Bershad,G. Borriello, S. Gribble, and D. Wetherall,―Systems Directions for

Pervasive Computing‖, Proceedings of the 8
th
 Workshop on Hot Topics in Operating

Systems ,IEEE Computer Society, pp. 147–151, 2001.

[77] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, S. Gribble, T. Anderson, B.

Bershad, G.Borriello, D. Wetherall, ―Programming for Pervasive Computing

Environments‖, University of Washington, Technical Report UW-CSE-01-06-01, June

2001.

[78] R. Grimm, ―One.World: Experiences with a Pervasive Computing Architecture‖, IEEE

Pervasive Computing, vol. 3, no. 3, pp. 22-30, July-September 2004.

[79] T. Owen, I. Wakeman, B. Keller, J. Weeds, and D. Weir, ―Managing the Policies of

Non-Technical Users in a Dynamic World, IEEE 6
th
 International Workshop on

Policies for Distributed Systems and Networks, Stockholm, Sweden, 2005.

[80] K. Twidle, N. Dulay, E. Lupu, and M. Sloman, ―Ponder2: A Policy System for

Autonomous Pervasive Environments‖ Proceedings of 5
th

International Conference

Autonomic and Autonomous Systems, pp. 330–335, April 2009.

[81] B. D. Noble, M. Price, and M. Satyanarayanan, ―A Programming Interface for

Application-Aware Adaptation in Mobile Computing‖, Proceedings of the 2
nd

Symposium on Mobile and Location-Independent Computing, pp. 57-66, 1995.

[82] A. Mukhija and M. Glinz, ―The CASA Approach to Autonomic Applications‖,

Proceedings of 5
th
 IEEE Workshop on Applications and Services in Wireless Networks,

pp. 173-182, 2002.

[83] A. Mukhija and M. Glinz, ―Runtime Adaptation of Applications through Dynamic

Recomposition of Components‖ Proceedings of 18
th
 International Conference on

Architecture of Computing Systems, pp.124-138, 2005.

[84] R. Grimm and B. Bershad, ―Future Directions: System Support for Pervasive

Applications‖, Proceedings of FuDiCo 2002: International Workshop on Future

Directions in Distributed Computing, Bertinoro, Italy, June 2002.

[85] M. Weiser, ―The Computer for the Twenty-First Century‖, Scientific American, vol.

265, pp. 94–104, September 1991.

[86] M. Satyanarayanan, ―Pervasive Computing: Vision and Challenges‖, IEEE Personal

Communication, pp. 10-17, August 2001.

[87] The Open Group, ―Architecture Description Markup Language (ADML)‖,

http://www.opengroup.org/tech/architecture/adml/adml_home.htm.

[88] Object Management Group, ―Unified Modelling Language Specification‖,

http://www.omg.org/technology/documents.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Umakant%20P.%20Kulkarni
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=S.%20K.%20NarasimhaMurthy.%20A.%20R.%20Yardi
http://www.opengroup.org/tech/architecture/adml/adml_home.htm/
http://www.omg.org/technology/documents

- 143 -

[89] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, ―Extensible Markup Language‖,

http://www.w3.org/TR/1998/REC-xml-19980210, World Wide Web Consortium, March

1998.

[90] J. Magee, J. Kramer, ―Dynamic Structure in Software Architectures‖, Proceedings of

the 4
th
ACM SIGSOFT symposium on Foundations of software engineering, pp. 3-14,

1996.

[91] D. Garlan, R.T. Monroe, D. Wile, ―Acme: Architectural Description of Component-

Based Systems‖, Foundation of Component-based Systems, pp. 47-67, 2000.

[92] P. K. McKinley, S. M. Sadjadi, E. P.Kasten, and B. H. C. Cheng, ―Composing adaptive

software‖, IEEE Computer, pp. 56-64, 2004.

[93] B. Win, F. Piessens, W. Joosen, and T. Verhanneman, ―On the Importance of the

Separation-of-Concerns Principle in Secure Software Engineering‖, Workshop on the

Application of Engineering Principles to System Security Design, 2002.

[94] K. Twidle, N. Dulay, E. Lupu, and M. Sloman, ― Ponder2 - A Policy Environment for

Autonomous Pervasive Systems”, Proceedings of the 2008 IEEE Workshop on Policies

for Distributed Systems and Networks, pp. 245-246, 2008.

[95] J. Robinson, I. Wakeman, and T. Owen, ―Scooby: Middleware for Service Composition

in Pervasive Computing‖, Proceedings of the 2
nd

 Workshop on Middleware for

Pervasive and Ad-hoc Computing, pp. 161-166, 2004.

[96] N. Davies, J. Finney, A. Friday, and A. Scott, ―Supporting Adaptive Video Applications

in Mobile Environments‖, IEEE Communications Magazine, vol. 36, no. 6, pp.138-143,

1998.

[97] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer, ―Adapting to Network and

Client Variation Using Infrastructural Proxies: Lessons and Perspectives‖, IEEE

Personal Communications, 1998.

[98] A. Fox, S. D. Gribble, E. A. Brewer and E. Amir, ―Adapting to Network and Client

Variability via On-Demand Dynamic Distillation‖, Proceedings of 7
th
 International

Conference on Architectural Support for Programming Languages and Operating

Systems, Cambridge, MA, USA, 1996.

[99] Avis Event Router, http://avis.sourceforge.net/index.html.

[100] J. Rimmer, T. Owen, I. Wakeman B. Keller, J. Weeds, and D. Weir, ―User Policies in

Pervasive Computing Environments‖, User Experience Design for Pervasive

Computing, Pervasive Workshop, 2005.

[101] B. Hardian, ―Middleware Support for Transparency and User Control in Context-Aware

Systems”, Proceedings of the 3
rd

International Middleware Doctoral Symposium,

Melbourne, Australia, 2006.

[102] E. Lupu, N. Dulay, M. Sloman, J. S. Sventek, S. Heeps, S. Strowes, K. P. Twidle, S. L.

Keoh and A. E. S. Filho,― AMUSE: Autonomic Management of Ubiquitous e-Health

Systems‖ Concurrency and Computation: Practice and Experience, vol. 20, no. 3, pp.

277–295, 2008.

[103] E. Asmare and M. Sloman, ―Self-management Framework for Unmanned Autonomous

Vehicles‖ Lecture Notes in Computer Science in Springer, vol. 4543, pp. 164–167,

2007.

http://www.w3.org/TR/1998/REC-xml-19980210

	Coversheet
	Dhomeja, Lachhman, Das

