

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

High Availability MilCAN

by Panagiotis Ioannis Oikonomidis

Submitted in the fulfilment of the
requirements for the degree of

Doctor of Philosophy

School of Science and Technology
Department of Engineering and Design

University of Sussex, Brighton UK
September 2010

ii

To my sweet mother Elisabeth

iii

Declaration

I hereby certify that the attached thesis is my own work, except where indicated. I have

identified my resources and in particular I have put in quotation marks any passages stated

word for word and identified their origins. I also declare that this thesis has not been

submitted, either in the same or different form, to this or any other University for a degree.

The VSI GUI mentioned in chapter 4 and 6 was developed by G. Valsamakis. The MilCAN

Reconfiguration protocol used for the communication of the bootloader with the VSI GUI was

a combined work between the author of this thesis and G. Valsamakis. The VSI Bridge used in

the VSI testbed mentioned in chapter 6, was developed by P. Charchalakis.

Panagiotis Ioannis Oikonomidis - 2010

iv

Abstract

Modern vehicles incorporate an increasing number of electronic systems. These systems

consist of multiple embedded devices in order to replace already existing mechanical or

hydraulic solutions or introduce new functionalities. The demand of using electronic systems

for the military land vehicles is continuously increasing and much higher than in the

commercial sector. For these electronic devices to intercommunicate and provide the desired

service, embedded networks have to be used.

These networks need to be compliant to the minimum requirements set by their intended use.

Some of these requirements are determinism, high bandwidth, flexibility, durability and cost.

There are networks that provide some of the above mentioned characteristics, but rarely all of

them. One solution for this; is to improve an already existing embedded network to provide

the extra desired functionality and also keep the system complexity minimal.

This study represents an investigation to expand the functionalities to an existing military

protocol by adding reconfiguration for Through Life Capability Management (TLCM) and fault-

tolerant capabilities for high operational system availability. The network that is used for this

research is MilCAN which is software based protocol based on CAN. MilCAN stands for Military

CAN and is a deterministic data transfer protocol used in control systems. For this research

MilCAN A is used which uses 29bit Identifier and allows both periodic and event driven data to

be transmitted. These extra functionalities need to be software based to provide flexibility and

upgradability without hardware restrictions. The devices with the added capabilities need to

be compatible with older devices, to provide the flexibility to the system designer to choose

when he will use them. To verify the operation and performance of the added functionalities

two testbeds have been developed, the first testbed is used for development and operation

verification where the second testbed is used for operation verification and performance

measurements while emulating the operation of a vehicle.

The output of this research is accepted by the MilCAN Working Group (MWG) as an addition to

the MilCAN protocol specifications. The MWG was formed in 1999 when a need was

recognised to standardise the implementation of CANbus within the military vehicles

community. The additional functionalities are included as optional enhancements in the

MilCAN protocol specifications which gives the system designer the flexibility to decide

depending his system requirements.

v

Acknowledgements

I would like to thank my supervisor Dr Elias Stipidis. I am grateful for his directness, his ideas

and encouragement during this project. Thank you for showing patience all these years and

providing me with both professional and personal guidance.

Personally, I would also like to thank my second supervisor Dr Falah Ali and my research

colleagues and friends at the Vetronics Research Centre; Dr P. Charchalakis, Dr G. Valsamakis,

J. Melentis, Dr O. Obi, Dr I. Colwill, Dr M. Fowler, D. Summers, T. Webber, S. Gabrovsek, D.

Abdulmasih, A. Despande and G. Thomeczek.

Additionally I would like to thank my friends that provided me with moral support during the

difficult times A. Kimoundris and G. Mamalis.

I owe my deepest gratitude to my family, especially my mother Elisabeth Oikonomidou and my

late fathers Konstantinos Oikonomidis and Dr Alexantros Tsokos for guiding me and made this

possible. This thesis would not have been possible without you. Also I would like to thank my

sweet fiancée Konstantina Stamogianni for her faithful support and patience during this work.

Finally I would like to acknowledge the UK MoD (Ministry of Defence) and MilCAN Working

Group for their financial support and feedback in completing this work.

vi

Contents

Declaration .. iii

Abstract ... iv

Acknowledgements .. v

Contents .. vi

List of Figures .. xi

List of Tables ... xiii

List of Acronyms & Abbreviations .. xv

Chapter 1 Introduction .. 1

1.1 Prologue .. 1

1.2 Previous work at the Vetronics Research Centre ... 3

1.3 Thesis layout ... 4

Chapter 2 Vetronic networks ... 5

2.1 Introduction .. 5

2.2 Fieldbuses history ... 5

2.3 Fieldbuses networks ... 5

2.4 Fieldbuses structure .. 6

2.5 Automotive fieldbus networks .. 7

2.6 Vehicle bus technologies .. 8

2.6.1 Multimedia buses .. 9

2.6.2 Diagnostics buses .. 9

2.6.3 Safety-critical buses .. 9

2.6.4 Sub-system buses .. 10

2.6.5 Consumer buses .. 11

2.7 Fault tolerant architectures .. 11

2.7.1 TTP/C ... 11

2.7.2 FlexRay .. 14

2.8 Conclusion ... 16

vii

Chapter 3 CAN and MilCAN protocol ... 17

3.1 Introduction .. 17

3.2 Controller Area Network ... 17

3.2.1 CAN Error detection .. 18

3.3 MilCAN specifications ... 20

3.4 Physical layer ... 21

3.4.1 Physical Topology .. 21

3.4.2 Connector gender assignments .. 22

3.4.3 Maximum bus length and number of devices .. 23

3.4.4 Cable requirements ... 23

3.4.5 Transceiver characteristics .. 24

3.4.6 Bit timing ... 24

3.5 Data Link layer ... 24

3.5.1 Media Access Control .. 24

3.5.2 Logical Link Control ... 25

3.6 Application layer ... 29

3.6.1 Communication architecture .. 29

3.6.2 System modes ... 33

3.6.3 Data distribution architecture .. 34

3.6.4 Command distribution architecture ... 34

3.7 Conclusion ... 35

Chapter 4 MilCAN Reconfiguration.. 36

4.1 Introduction .. 36

4.2 Design .. 36

4.3 MilCAN Bootloader ... 39

4.3.1 Memory allocation .. 39

4.3.2 Dynamic interrupt vector .. 40

4.3.3 Message configuration .. 41

viii

4.3.4 RAM Functions .. 42

4.3.5 Program flash memory ... 43

4.4 MilCAN Reconfiguration Protocol ... 43

4.4.1 Enter programming mode ... 44

4.4.2 Software reset ... 44

4.4.3 Status & Version check ... 44

4.4.4 Node ID & speed change ... 45

4.4.5 Message configuration .. 46

4.4.6 Flashing application firmware ... 46

4.5 VSI GUI .. 47

4.5.1 Network View .. 48

4.5.2 Message configuration .. 50

4.6 Conclusion ... 51

Chapter 5 MilCAN Fault Tolerance Layer ... 52

5.1 Introduction .. 52

5.2 Design .. 52

5.3 MilCAN FT Layer components ... 54

5.3.1 MilCAN FT Master ... 54

5.3.2 MilCAN FT Master Frame .. 55

5.3.3 MilCAN Alive Message Extended .. 57

5.4 MilCAN FT Layer operation ... 59

5.4.1 Error detection .. 60

5.4.2 Bus switching .. 63

5.4.3 Error recovery ... 66

5.5 Babbling idiot .. 69

5.5.1 Message filtering ... 69

5.5.2 FT BI report ... 70

5.5.3 FT BI warning ... 70

ix

5.5.4 FT BI hard-reset ... 71

5.5.5 FT BI hard-kill... 71

5.5.6 Watchdog .. 71

5.6 Conclusion ... 71

Chapter 6 Testbed for vetronics evaluation and verification .. 73

6.1 Introduction .. 73

6.2 Development testbed layout and components .. 73

6.2.1 Hardware devices .. 73

6.3 VSI testbed components and layout ... 75

6.3.1 Hardware devices and components ... 75

6.3.2 Network layout ... 77

6.4 Software .. 80

6.4.1 CANoe ... 80

6.4.2 CANoe Log analyser .. 82

6.4.3 CANstress .. 82

6.4.4 Real-time monitoring system .. 84

6.5 MilCAN Reconfiguration performance.. 86

6.5.1 Utilities segment (SEGU) ... 88

6.5.2 Automotive segment (SEGA)... 89

6.5.3 Testbed measurements .. 90

6.5.4 Latency Measurements ... 92

6.5.5 Automotive segment .. 94

6.6 MilCAN Fault Tolerance performance .. 98

6.6.1 Non FT Master node loses connection to CAN0 ... 99

6.6.2 FT Master node loses connection to CAN0 ... 100

6.6.3 Non FT Master node loses connection to CAN1 ... 102

6.6.4 FT Master node loses connection to CAN1 ... 103

x

6.6.5 FT Master node loses connection to CAN0 / Non FT Master node loses

connection to CAN1 .. 103

6.6.6 CAN0 split in half ... 104

6.6.7 CAN1 split in half ... 106

6.6.8 CAN0 increased capacitance ... 106

6.6.9 CAN0 error injection ... 107

6.7 Conclusion ... 107

Chapter 7 Conclusion and future work .. 109

7.1 Conclusion ... 109

7.1.1 MilCAN Reconfiguration.. 109

7.1.2 MilCAN Fault Tolerance Layer ... 110

7.2 Future work ... 110

References .. 112

Bibliography .. 115

Appendix ... 121

xi

List of Figures

Figure 2.1: Modern vehicle's network architecture [Leen'02].. 8

Figure 2.2: Example of TTP/C network ... 11

Figure 2.3: TTP/C bus topology ... 12

Figure 2.4: TTP/C star topology .. 12

Figure 2.5: TTP/C multi-star topology ... 12

Figure 2.6: TTP/C medium access scheme .. 13

Figure 2.7: FlexRay bus topology .. 15

Figure 2.8: FlexRay star topology .. 15

Figure 2.9: FlexRay medium access scheme ... 15

Figure 2.10: FlexRay Network node .. 16

Figure 3.1: CAN error states .. 19

Figure 3.2: Linear multi-drop topology [MWG'09] ... 21

Figure 3.3: Linear multi-drop topology using bifurcated cables [MWG'09] 21

Figure 3.4: Daisy-chain topology [MWG'09] ... 22

Figure 3.5: CAN frame format [MWG'09] ... 25

Figure 3.6: MilCAN frame identifier format [MWG'09] .. 26

Figure 3.7: MilCAN Multi-frame structure [MWG'09] .. 29

Figure 3.8: Response to Sync Frame [MWG'09] ... 32

Figure 3.9: Asynchronous message triggering [MWG'09] .. 32

Figure 3.10: System modes [MWG'09] ... 34

Figure 4.1: Node software memory allocation ... 37

Figure 4.2: Flow of configuration mode .. 38

Figure 4.3: Dynamic interrupt vector .. 40

Figure 4.4: Bootloader's message configuration flow .. 42

Figure 4.5: VSI Network Topology GUI View ... 49

Figure 4.6: VSI GUI flooding information grid view .. 50

Figure 4.7: VSI GUI overview ... 51

Figure 5.1: MilCAN Fault Tolerant design ... 53

Figure 5.2: MilCAN FT Layer design .. 60

Figure 5.3: Error detection operation ... 60

Figure 5.4: Bus switching - MilCAN FT Master device ... 63

Figure 5.5: Bus switching - MilCAN FT Slave device .. 64

Figure 5.6: Weighted Bus Selection .. 65

xii

Figure 5.7: Error recovery block .. 67

Figure 6.1: Development testbed topology .. 74

Figure 6.2: Remote controlled vehicle .. 76

Figure 6.3: VSI testbed layout ... 77

Figure 6.4: CANoe User Interface ... 81

Figure 6.5: CANoe message defining .. 82

Figure 6.6: CANstress device ... 83

Figure 6.7: CANstress configuration software .. 83

Figure 6.8: Serialterm mod ... 85

Figure 6.9: Status GUI ... 86

Figure 6.10: Testbed layout .. 88

Figure 6.11: SEGA to BBONE message latencies per priority distribution 95

Figure 6.12: SEGA to BBONE message latencies per priority .. 95

Figure 6.13: SEGA to ETH message latencies per priority distribution 96

Figure 6.14: SEGA to ETH message latencies per priority ... 96

Figure 6.15: SEGA to BBONE message latencies per priority distribution 97

Figure 6.16: SEGA to BBONE message latencies per priority .. 97

Figure 6.17: SEGA to ETH message latencies per priority distribution 98

Figure 6.18: SEGA to ETH message latencies per priority ... 98

Figure 6.19: Non FT Master node loses connection to CAN0 ... 99

Figure 6.20: FT Master node loses connection to CAN0 ... 101

Figure 6.21: Non FT Master node loses connection to CAN1 ... 102

Figure 6.22: FT Master node loses connection to CAN1 ... 103

Figure 6.23: FT Master node loses connection to CAN0 / Non FT Master node loses connection

to CAN1 ... 104

Figure 6.24: CAN0 segmented in half ... 104

Figure 6.25: CAN1 split in half ... 106

xiii

List of Tables

Table 2.1: Open Systems Interconnection (OSI) model .. 7

Table 2.2: Enhanced Performance Architecture (EPA) model .. 7

Table 4.1: Node's memory map .. 39

Table 4.2: Configuration protocol Enter programming mode .. 44

Table 4.3: Configuration protocol Software reset .. 44

Table 4.4: Configuration protocol Status check (result) ... 45

Table 4.5: Configuration protocol Version check (result) ... 45

Table 4.6: Configuration protocol Node ID change .. 45

Table 4.7: Configuration protocol Node speed change .. 45

Table 4.8: Configuration protocol Message configuration ... 46

Table 4.9: Configuration protocol Message configuration save ... 46

Table 4.10: Configuration protocol Erase application sector ... 46

Table 4.11: Configuration protocol Address set ... 47

Table 4.12: Configuration protocol Programming data .. 47

Table 4.13: VSI GUI flooding information grid view parameters .. 49

Table 5.1: FT Master frame structure ... 55

Table 5.2: Master ID field of the FT Master frame ... 55

Table 5.3: Active bus field of the FT Master frame ... 56

Table 5.4: Bus status field of the FT Master frame ... 56

Table 5.5: Bus speed field of the FT Master frame ... 57

Table 5.6: Weight of bus field of the FT Master frame ... 57

Table 5.7: FT msg counter field of the FT Master frame... 57

Table 5.8: Alive Message frame structure .. 58

Table 5.9: Device status field of the alive message .. 58

Table 5.10: EWRN flag field of the alive message ... 58

Table 5.11: Weight of node field of the alive message ... 59

Table 5.12: Mishap severity categories .. 62

Table 5.13: Failure mode analysis results for general purposes ... 62

Table 5.14: FT BI report ... 70

Table 5.15: Master ID field of the FT Master frame ... 70

Table 5.16: FT BI warning .. 70

Table 5.17: FT BI hard-reset .. 71

Table 5.18: FT BI hard-kill .. 71

xiv

Table 6.1: Infineon C167CS specifications .. 73

Table 6.2: Computer systems specifications ... 74

Table 6.3: Computer systems specifications ... 76

Table 6.4: Utilities segment message set .. 89

Table 6.5: Automotive segment message set ... 89

Table 6.6: Automotive MilCAN bus 1000kbit, high HRT low SRT/NRT 90

Table 6.7: Utilities MilCAN bus 1000kbit, high HRT low SRT/NRT .. 90

Table 6.8: Automotive MilCAN bus 500kbit, high HRT low SRT/NRT ... 91

Table 6.9: Utilities MilCAN bus 500kbit, high HRT low SRT/NRT .. 91

Table 6.10: Automotive MilCAN bus 1000kbit, low HRT high SRT/NRT 91

Table 6.11: Utilities MilCAN bus 1000kbit, low HRT high SRT/NRT .. 91

Table 6.12: Automotive MilCAN bus 500kbit, low HRT high SRT/NRT 92

Table 6.13: Utilities MilCAN bus 500kbit, low HRT high SRT/NRT .. 92

Table 6.14: Automotive segment message latencies SEGA to SEGU (ms) 93

Table 6.15: Utilities segment message latencies SEGA to SEGU (ms) .. 93

Table 6.16: Automotive segment message latencies SEGA to SEGU (ms) 93

Table 6.17: Utilities segment message latencies SEGA to SEGU (ms) .. 94

Table 6.18: Automotive segment message latencies SEGA to SEGU (ms) 94

Table 6.19: Utilities segment message latencies SEGA to SEGU (ms) .. 94

Table 6.20: Non FT Master node loses connection to CAN0 collected data (ms) 100

Table 6.21: Non FT Master node loses connection to CAN0 average values (ms) 100

Table 6.22: FT Master node loses connection to CAN0 collected data (ms) 101

Table 6.23: FT Master node loses connection to CAN0 average values (ms) 102

Table 6.24: CAN0 segmented in half collected data (ms) ... 105

Table 6.25: CAN0 segmented in half average values (ms) .. 106

xv

List of Acronyms & Abbreviations

µC Microcontroller

AIVF Application Interrupt Vector Forwarders

API Application Programming Interface

BI Babbling Idiot

BIT Build In Test

BIVF Bootloader Interrupt Vector Forwarders

BST Bosch Siemens Temic

CAN Controller Area Network

CNI Communication Network Interface

D2B Domestic Digital Data Bus

DSI Distributed Systems Interface

EML Error Management Logic

EMU Engine Management Units

EPA Enhanced Performance Architecture

EWRN Error Warning Status

FIP Factory Instrumentation Protocol

FMEA Failure Modes and Effects Analysis

FT Fault Tolerance

GUI Graphical User Interface

HRT Hard Real Time

HUMS Health and Usage Monitoring Systems

IE Inter Equipment

IEC International Electrotechnical Commission

IEEE Electronic and Electrical Engineering

IHSDB-UG International High Speed Data Bus Users Group

ISA Instrumentation, Systems, and Automation society

LIN Local Interconnect Network

xvi

LLC Logical Link Control

MAC Medium Access Control

MEDL Message Descriptor List

MI Motorola Interconnect

MML Mobile Multimedia Link

MOST Media Oriented Systems Transport

MWG MilCAN Working Group

NMS Network Management System

NRT Non Real Time

OBD2 On-Board Diagnostics II

OSI Open Systems Interconnection

PLC Programmable Logic Controllers

PTU Primary Time Unit

PWM Pulse Width Modulated

REC Receive Error Counter

SRT Soft Real Time

STP Shielded Twisted Pair

TDMA Time Division Multiple Access

TEC Transmit Error Counter

TLCM Trough Life Capability Management

TTP Time Triggered Protocol

UTP Unshielded Twisted Pair

VPW Variable Pulse Width

VRC Vetronics Research Centre

VSI Vetronics System Integration

WBS Weighted Bus Selection

1

Chapter 1 Introduction

1.1 Prologue

Modern vehicles incorporate an increasing number of electronic systems. The demand of using

electronic systems for the military vehicles is increasing over the years. The vehicles are fitted

with various systems to provide additional functionalities to the driver and advantages in

electronic warfare. In passenger vehicles, the electronic systems to assist the driver are

becoming more popular over the years.

These electronic systems require inter-communication between their components. Depending

the use of the system there are different requirements such as determinism, high bandwidth,

flexibility, durability and cost. Because different networks fulfil different requirements, in a

system, there may be more than one type of network available. This affects the cost of the

system. For example weapon control systems require safety critical systems and sensors

require deterministic systems.

The objective of this research is to enhance the network availability and the Through Life

Capability Management (TLCM), of an already existing low cost protocol targeted for military

vehicles. Availability refers to the property of the system or a system resource being accessible

and usable upon demand by an authorized system entity, according to performance

specifications for the system [Stallings'06]. Reliability is defined as the ability of a system or

component to perform its required functions under stated conditions for a specified period of

time [Iee'90]. The protocol that is used is a real time CAN based; called MilCAN. MilCAN stands

for Military CAN and is a software based non-fault tolerant deterministic protocol. There are

two variations of MilCAN, MilCAN A and MilCAN B. For this research MilCAN A is used, which

uses a 29 bit Identifier compared to MilCAN B which uses an 11 bit identifier. MilCAN on its

own is not suitable for applications that have safety integrity requirements. MilCAN is best

suited for control applications that require determinism and not safety critical.

The first functionality that is added is MilCAN Reconfiguration, which allows the system

maintainer to have more control and variety of actions. The second functionality is the MilCAN

Fault Tolerance, which allows the MilCAN network to continue normal operation for longer

when errors and faults are introduced into the system as a result increasing the availability of

the system. Fault tolerance is the attribute that enables a system to achieve fault-tolerant

operation and a fault-tolerant system is one that can continue to correctly perform its

specified tasks in the presence of hardware failures and software errors [Johnson'88]. The

2

development of the MilCAN additions was a two way process. Firstly, they were developed on

a one segment desktop testbed; using of the self-test equipment. Secondly, on a three

segment testbed designed to emulate the operation of a vehicle.

The objectives of the research presented in this thesis are to add the two extra functionalities

to the already existing MilCAN protocol trying to address its shortfalls. The requirements for

the projects are:

 Through Life Capability Management

 Increase the network availability

 Easy configuration procedure

 Node compatibility between Fault Tolerant and non-Fault Tolerant Devices

 Hardware independent operation

 Flexible MilCAN bus configuration

 Fault recovery

The output of this research is both theoretical and practical development. The MilCAN

protocol specifications are vital for this research, thus studied in detail. Key missing

characteristics are identified and contributed to provide the targeted additional functionalities.

Additionally, the output of this research is provided to the MilCAN working group, as an

addition to the MilCAN specification.

The MilCAN reconfiguration is developed to be able to remotely reconfigure MilCAN devices.

This is achieved by using a custom bootloader which is hardware platform dependant and was

developed to provide all the desired reconfiguration capabilities. To control the bootloader the

VSI Graphical User Interface (GUI) software is used, which provides to the user the means of

controlling the bootloader’s operations. The communication of the device’s internal

bootloader with the VSI GUI is achieved through a newly developed protocol; that ensures

uninterrupted execution of the reconfiguration operations.

The MilCAN Fault Tolerance Layer is developed to be able to withstand a big variety of faults

and errors introduced into the system. The developed algorithm is coded between the MilCAN

layer and the Application layer to provide seamlessly multi bus support. Additionally, it

provides advanced error detection and bus recovery techniques, which are not currently

present in the MilCAN protocol. The communication between the Fault Tolerant Layer of

different devices is established again with a newly developed protocol; that ensures the

synchronised operation of all Fault Tolerant devices. Additionally, to closely monitor the

3

operation of the FT Layer, an internal monitoring system is developed, which works in

collaboration with a monitoring computer.

Evaluation and verification of the High Availability MilCAN is achieved through two testbeds.

The first testbed includes one MilCAN segment connected to a desktop computer, which

provides a controlled environment appropriate to be used during the development and later

to verify the operation of the system. The testbed is constructed by using Commercial Off-the-

Shelf Equipment (COTS). The second testbed includes three MilCAN segments and a pair of

MilCAN and Ethernet backbones. This testbed emulates a real-life military vehicle and provides

the means to conduct certain operation and latency tests. The second testbed is also

constructed with COTS.

1.2 Previous work at the Vetronics Research Centre

The Vetronics Research Centre (VRC) is part of the Communications department of University

of Sussex. Previous work developed at the VRC used in this research is the Vetronics System

Integration (VSI) Bridge and the VSI Graphical User Interface (GUI).

The VSI Bridge is a highly configurable bridge/router, which interconnects different MilCAN

segments and evaluates their operation. It is designed to interconnect the MilCAN segments

through a pair of MilCAN and Ethernet backbones. The functionalities that it provides are

configurable routing operations, remote monitoring and management of the internal system

and the attached MilCAN segments. The VSI Bridge is described in detail in Dr Charchalakis

thesis [Charchalakis'05].

The VSI GUI provides the configuration capabilities to the VSI Bridge. It connects to the VSI

Bridge through the Ethernet backbones, providing an easy way to configure and maintain the

VSI Bridge. The VSI GUI had to be modified in order to provide the extra functionalities

required by the High Availability MilCAN. More details can be found in Dr Valsamakis thesis

[Valsamakis'06].

The MilCAN segments that are interconnected by the VSI Bridges were developed and

constructed during the author’s master’s project. The microcontrollers that were initially used

were C167CR offering a single CAN bus. During the author’s PhD the microcontrollers were

upgraded to the C167CS that offer dual CAN bus, which are suitable for this research.

4

1.3 Thesis layout

Chapter 2 provides an overview on fieldbuses used in the industry for control and automation

and focus in their use in vehicle electronics. A brief history of the fieldbuses is presented

followed by the existing networks available and focusing more on the vehicle oriented ones.

Furthermore the architecture of a couple of fault tolerant enabled networks is briefly analysed.

Chapter 3 describes the specifications of the two protocols CAN and MilCAN. The research

work presented in this thesis is based on the MilCAN protocol. It is very important for the

reader to understand the protocol in order to recognise the limitations that this thesis is trying

to address. Additionally the output of this research is provided to the MilCAN working group,

as proposed additions for the MilCAN specification.

Chapter 4 is the first contribution chapter. It describes in detail the MilCAN Reconfiguration

and its components. The operation procedure of the MilCAN Reconfiguration is also described.

Chapter 5 is the second contribution chapter. It presents the MilCAN Fault Tolerant Layer

which is part of the High Availability MilCAN. Again in this chapter the components and

operation of the layer are presented.

Chapter 6 is the third contribution chapter presenting the performance and operation of the

High Availability MilCAN components. The evaluation of the components is established with

the use of the appropriate vetronics testbeds. The design and layout of the testbeds are

discussed, along with the test scenarios followed.

Chapter 7 concludes the thesis with the discussion of the research work contained in the

previous chapters, the lessons learned during the development and potential future work.

5

Chapter 2 Vetronic networks

2.1 Introduction

Fieldbuses are widely used in embedded systems where their main applications are industrial

and automation control. Main advantage of the fieldbuses is their capability of multiple

devices to be integrated on a single network which reduces the topology complexity and cost

of design, build and maintenance of the network. Fieldbuses simplify the task of modifying the

network which makes future expansions less troublesome. Vehicles have an increasing number

of electronic devices that need to be integrated together, and the fieldbuses are the main

candidates for this use.

This chapter introduces the fieldbus technology and its use in the automotive industry as a

real-time communication network. Initially the history of fieldbuses is presented and their real

world application uses, followed by the actual fieldbuses that are used in different

applications. A detailed view on commonly used fault tolerant architectures is provided.

2.2 Fieldbuses history

The first fieldbus created was the Factory Instrumentation Protocol (FIP) fieldbus in mid 1980s

by the French Italian FIP club. The second were the Germans with the Profibus which is based

on the Programmable Logic Controllers (PLC). Third fieldbus was the Foundation Fieldbus

developed by the United States. Since then there have been more and more fieldbuses been

developed in order to allow different devices to communicate with each other.

Because there was an increasing number of fieldbuses there was a need for standardisation of

the specifications and conformance test-suites to verify the device compliance to the

specifications. Standardisation organisations such as the Institute of Electronic and Electrical

Engineering (IEEE) and Instrumentation, Systems, and Automation society (ISA) in the United

States, Cenelec in Europe, and International Electrotechnical Commission (IEC) worldwide,

assisted to the standardisation [Pinceti'04].

2.3 Fieldbuses networks

There is a large number of fieldbuses being developed by various companies since there is a

need in industrial automation and control, vehicle electronics networks to connect field

devices such as drive controllers, sensors, regulators and more [Pierre Thomesse'99]. With the

use of fieldbuses the use of wires to connect the devices is reduced and there are individual

applications that communicate with a common protocol [Glanzer'96].

6

Distributed systems require real-time communication capabilities, which are offered by a

range of fieldbuses. Since there is a wide range of fieldbuses the selection of the right protocol

depends on the intended operation of the developed system. The following criteria distinguish

the various options available [Patzke'98]:

 Physical data transmission quality.

 Data coding and transmission type.

 Physical communication channel sharing.

The typical characteristics of a fieldbus protocol are [Schumny'98a]:

 Serial bus topology with multi-point interfaces.

 Software controlled interface management and data transfers.

 Data transfers could be:

o Asynchronous and code-dependent.

o Synchronous and code-dependent or independent.

 Network layer and presentation layer functions are merged with data-link and

application layer functions respectively.

 Channel access and transmission control functions are based on the application

requirements, such as real-time operation, and in case of cyclic sampling of digitised

data they must fulfil the Shannon Theorem.

2.4 Fieldbuses structure

According to the Open Systems Interconnection (OSI) model the fieldbuses have a layered

structure as can be seen in table 2.1 [Zimmermann'80]. Data from each layer are passed to

layer below that encapsulates them within their own data starting from the top layer. The

layered approach provides flexibility into the ways a packet could be processed but the data

packet sizes and the processing required from the devices affects the real-time operation of

the network when using embedded devices with limited resources. Because of these

overheads the fieldbuses moved from the OSI model to the Enhanced Performance

Architecture (EPA) model which has only three layers as can be seen in table 2.2

[Schumny'98a]. Although the layers have been reduced from seven (OSI) to three (EPA),

functionalities have not been discarded but absorbed by the Application and Data Link layers.

This way overall system latencies are reduced since the protocol organisation is more efficient

with less processing overheads imposed to the application.

7

Table 2.1: Open Systems Interconnection (OSI) model

Layer # Description

7 Application layer

6 Presentation layer

5 Session layer

4 Transport layer

3 Network layer

2 Data Link layer

1 Physical layer

Table 2.2: Enhanced Performance Architecture (EPA) model

Layer # Description Functionality

3 Application layer

Complete definition of functions to guarantee communication between
partners.

Example: Real-time or random access; cyclic or interrupt driven
transport; time-variant or invariant field signals; samples or message
oriented signals.

2 Data Link layer

Channel Access; Medium Access Control (MAC); synchronisation and
coding; Logical Link Control (LLC); error control.

Example: Deterministic (e.g. polling, token-passing) or probabilistic
access (e.g. CSMA/CD); synchronous or asynchronous character transfer;
code-dependent or independent(transparent) approach; hardware or
software control.

1 Physical layer

Organising of bit-stream transfer by definition of electrical
characteristics, connectors, and topology of the system.

Example: Balanced or unbalanced electrics with or without galvanic,
shielded or unshielded; point-to-point or multipoint topology with
parallel or serial character transfer, interface close to processor or to
peripherals.

2.5 Automotive fieldbus networks

Modern vehicles incorporate an increasing number of electronic systems. The typical

mechanical and hydraulic solutions for braking and steering for example, are now replaced by

electronic systems controlled by software. There are various systems to assist the vehicle

operation such as ABS for intelligent breaking, Engine Management Units (EMU) for the

engine, air-bags for passenger safety, GPS for driver assist and sound and video player for

entertainment [Powers'00].

Since the electronic devices used in a vehicle have increased over the years, the cabling also

increased from 45 meters used in 1955 to 4km at present time. When using networks to

interconnect the devices less wires are required, this simplifies the layout of the system and

reduces the weight of the car. In figure 2.1 a modern vehicle that uses multiple networks for its

8

sub-systems. There are many different vehicle buses available but currently the most popular

one is CAN.

Figure 2.1: Modern vehicle's network architecture [Leen'02]

2.6 Vehicle bus technologies

Further classification to vehicle buses can be done based on the targeted application areas of

their technologies. These groups are [Charchalakis'05]:

 Multimedia buses High speed networks for devices serving multi-media content.

 Diagnostics buses Standardised protocols to provide diagnostics to the internal

devices of the vehicle.

 Safety-critical buses Highly deterministic, real-time, and fault-tolerant networks used

for interconnection of devices associated in systems that control the vehicle and can

thus affect the safety of the passengers.

 Sub-system buses Interconnecting the main systems of the vehicle.

 Consumer buses Proprietary networks that have been developed for specific

applications.

9

2.6.1 Multimedia buses

MOST The Media Oriented Systems Transport (MOST) bus is designed for multimedia

applications within the vehicle that require high speed data transfers. It is based on point-to-

point connections in ring, star, or daisy-chain topology using fiber-optic links. Within the MOST

specifications all the associated layers are specified, such as the Physical, Medium Access

Control, Network, and Application layers. Transmission and reception of data is done by

converting TTL signals to and from option, using appropriate converters.

MML Bus The Mobile Multimedia Link (MML) Bus is a high-speed multimedia bus structured as

a star topology through optical fiber. It’s a fault tolerant Master and Slave bus with 100Mbps

bandwidth and plug-and-plat capabilities.

D2B bus The Domestic Digital Data Bus (D2B) is a high-speed optical multimedia bus for audio,

video, and data applications. Structured as a ring or star topology it offers speeds up to

20Mbps with a maximum bus length of 10 meters.

SMARTwireX The SMARTwireX protocol is an addition physical layer for D2B buses to provide

up to 25Mbps bandwidth over standard UTP cables within the EMC limits for automotive. It

also extends the maximum bus length up to 150 meters.

2.6.2 Diagnostics buses

SAE J1850 The SAE J1850 protocol is used as a diagnostics and application data bus. It supports

two physical layers, a Pulse Width Modulated (PWM) differential connection with 41.5Kbps

bandwidth, and a Variable Pulse Width (VPW) connection with 10.4Kbps bandwidth.

OBD2 The On-Board Diagnostics II (OBD2) bus is a diagnostics protocol for vehicles with a

predefined standard connection. It is used as a standardised protocol to monitor vehicle

emissions of passenger cars.

SAE J1939 The SAE J1939 is a protocol used in communication and diagnostics within heavy

duty trucks. It is based on CAN2.0b and operates with a customised arbitration field. The

specification contains standardised message sets with identifiers assigned to specific functions

that should be supported by compliant devices. [Fredriksson'02]

2.6.3 Safety-critical buses

TTP The TTP bus is a time-triggered protocol developed for highly deterministic real-time

applications with error detection and fault tolerance requirements.

10

ByteFlight The ByteFlight bus is a high-speed bus for safety-critical applications. It uses Time

Division Multiple Access (TDMA) over 2/3 wire optical-fibre lines to provide 10Mbps

bandwidth. Available topologies are Start and Cluster with an information update rate of

250uS. The Master and Slave configuration using message-oriented transmission allows

broadcasting of data to multiple devices simultaneously. [Hammett'03]

FlexRay The FlexRay bus, an extension of ByteFlight, is a high-speed serial communication bus

over Unshielded or Shielded Twisted Pair (UTP/STP). A point-to-point or star topology offers

10Mbps bandwidth with time-triggered operation making it fault-tolerant and deterministic.

FlexRay was designed for safety-critical applications such as steer-by-wire and brake-by-wire.

DSI Bus The Distributed Systems Interface (DSI) bus is another protocol developed by Motorola

for safety applications. It provides a two wire serial communication between sensors and

safety actuators such as air-bags. The connection is between Master and Slave devices at

150Kbits with a 4bit CRC.

BST Bus The Bosch-Siemens-Temic (BST) bus is a safety bus with a two-wire connection at

250Kbps using Manchester encoding with either Parity or CRC error correction and detection.

Intellibus The Intellibus bus is similar to CAN bus, originally developed for military avionics. It

supports higher speeds up to 12.5Mbps and is used in the automotive area for drive-by-wire

applications. With a Master and Slave multi-drop topology it supports up to 30 meter UTP/STP

cables with 64 nodes at 12.5Mbps. As a safety-critical bus it provides parity and CRC error

detection.

2.6.4 Sub-system buses

MI Bus The Motorola Interconnect (MI) Bus is a single wire serial communication protocol

supporting a single master and multiple slave devices. It’s a simple protocol for basic low-

speed networked applications such mirror control, windows control, etc.

IE Bus The Inter Equipment (IE) bus is a low-speed half duplex asynchronous communication

protocol. With two operational modes, one at 3.9kbps and one at 17kbps or 18kbps,

depending on the oscillator frequency, up to 50 nodes can be connected on a bus with a

maximum length of 50 meters.

LIN Bus The Local Interconnect Network (LIN) is a simple serial bus for interconnection

between sensors and actuators. It supports speeds up to 19.2kbps over a maximum bus length

of 40 meters.

11

CAN bus The Controller Area Network (CAN) bus is high-speed bus used in a wide range sub-

system applications. It’s an asynchronous broadcast communication bus supporting up to

1Mbps bandwidth.

SAE J1708 The SAE J1708 is a serial bus for communication between microcomputer systems

within a heavy-duty vehicle. Based on the RS-485 electrical layer, it provides 9.6Kbps

bandwidth with a cable up to 40 meters.

2.6.5 Consumer buses

IDB-1394 The IDB-1394 is an implementation of the Firewire (IEEE 1394) for the automotive. It

provides high-speed serial communication over UTP multidrop cables, based on the CAN 2.0B

physical layer, for consumer applications.

2.7 Fault tolerant architectures

The reason TTP and FlexRay are used for safety critical applications, is because both are fault

tolerant, deterministic and high bandwidth.

2.7.1 TTP/C

TTP/C is a time-triggered communication protocol for safety critical distributed real-time

control systems. As a time-triggered protocol the messages are transmitted periodically.

2.7.1.1 Network Structure

The TTP/C network consists of electronic modules (nodes) interconnected by two separate

broadcast busses which can have speeds up to 10Mb/s. These two buses are called channel 0

or channel A and channel 1 or channel B.

Host

CNI

TTP/C

Host

CNI

TTP/C

Host

CNI

TTP/C

Host

CNI

TTP/C

CNI Communication Network Interface within a Node

Figure 2.2: Example of TTP/C network

12

The Communication Network Interface (CNI) consists of a memory area that allows

simultaneous random access for the host CPU and the TTP/C controller figure 2.2. The TTP/C

can operate in different network topologies. The most common are the bus topology as seen

in figure 2.3, star topology figure 2.4 and multi-star topology figure 2.5. The star topology uses

central star-coupler devices which operate as a central bus guardian and provide a better fault

tolerant network.

Node Node Node Node

Figure 2.3: TTP/C bus topology

Node

Node

Node

Node

SC

SC

Figure 2.4: TTP/C star topology

Node

Node

Node

Node

SC

SC

Node

Node

Node

Node

SC

SC

Figure 2.5: TTP/C multi-star topology

13

Messages from fault tolerant nodes are transmitted on both buses. In case of a message loss

the message is not retransmitted. Each clock on the system cannot be perfectly synchronized.

That is why the receiver resynchronizes by comparing the received time of a message and the

expected received time.

2.7.1.2 Medium Access

The medium access is based on a Time Division Multiple Access (TDMA) scheme. The data

transport between nodes is not point to point oriented but broadcast; this implies that every

node receives all data transmissions available on the bus. Each node is allowed to transmit

messages only in a predefined TDMA slot called SRU slot. Because the slots that the messages

are transmitted are predefined, overload conditions cannot occur. The sequence of the SRU

slots is called TDMA round. The TDMA rounds are equal but the length of the messages in the

slots may differ. Several TDMA rounds executed after one another until the pattern is repeated

are called a Cluster Cycle. The Cluster Cycle is repeated periodically throughout the execution

of the system. In TTP/C there is no need for a message identifier because the messages can be

identified by the point of time in which they transmit in the TDMA system. In the assigned slot

a node sends frames on both channels, the frames on channel 1 and channel 2 may differ in

their frame types, lengths and contents. The message overhead consists only from a 4bit

header and 16bit CRC [TUW'97].

A

A

B C

CB

D

D

A

A

C

C

SRU Slot

TDMA Round

Cluster Cycle

Bus 0

Bus 1

SRU 0 SRU 1 SRU 2 SRU 0 SRU 1 SRU 2

Figure 2.6: TTP/C medium access scheme

In figure 2.6 the slot allocation from the messages transmitted from the A, B, C, D and E nodes

is shown. Nodes A and B are fault tolerant that’s why the messages are transmitted on both

buses.

2.7.1.3 Message Description List

The slots used for data transmission are all predefined and the attributes of the messages sent

and received are described in the Message Descriptor List (MEDL) which is saved at the Flash

EEPROM. Also, the MEDL may contain node-local information and special setup data required

14

for internal purposes of specific TTP/C controller implementations. All the nodes must have

the complete MEDL downloaded in the controller and not only the node relevant information.

The system will only work if all nodes agree on the order of the messages, the correct

membership status of the nodes in the system, the integrity of the data, and the correct notion

of global time.

2.7.1.4 Fault Tolerance

TTP/C supports three different ways to deal with faults that may occur on the nodes and

network [Bannatyne'98].

 TTP/C supports active replication for fault tolerance nodes that are required to have

guaranteed continuous operation. In the case that a fault occurs the node is replicated

with an identical node.

 Another type of protection is the bus guardian. The bus guardian is an independent

hardware device connected between the node and the bus. Only during the

predefined transmission slot the bus guardian will allow the node to transmit to the

bus. In this way, cases where the node starts broadcast continually a message

(babbling-idiot) are avoided.

 To be able to manage faulty nodes the voting strategy is used. A fault tolerant unit

consists of three independent nodes where the result of these three nodes are

compared and analyzed. At the end there is only one verifiable result.

2.7.2 FlexRay

FlexRay is a deterministic and fault tolerant protocol that is targeted to be used in car

applications. FlexRay is a result of a cooperation of BMW and Daimler Crysler for x-by-wire

systems because of its fault-tolerant characteristics and redundant message transmission on

two channels [Kopetz'01] [Consortium'04].

Important characteristics of FlexRay are the synchronous and asynchronous frame transfer,

multi-master clock synchronization, guaranteed frame latency times and jitter during

synchronous transfer, prioritization of frames during asynchronous transfer, error detection

and signalling, error containment on the physical layer through an independent bus guardian

device, and scalable fault tolerance [FlexRay'05, FlexRay'04].

2.7.2.1 Network Structure

The FlexRay supports data rates up to 10Mbit/s for each channel and can use two physically

separated lines as a result giving a gross data rate of up to 20Mbit/s. FlexRay can be used in

two different network topologies. The most common one is the classic bus topology which is in

15

figure 2.7 and has = 1Mbit/s data rate per bus. The other kind of topology that can be used is

the star topology represented in figure 2.8, where the nodes are connected point-to-point

with the help of the active star couplers. This topology supports data rates above 1Mbit/s.

Figure 2.7: FlexRay bus topology

Figure 2.8: FlexRay star topology

2.7.2.2 Medium Access

To achieve maximum efficiency of the bandwidth a fault tolerant synchronized global time

base is used. The nodes connected to the network use precise auto adjustable clocks which

process with special algorithms the synchronization messages that are sent in the static

segment of the transmission cycle as seen in figure 2.9. Because FlexRay supports synchronous

and asynchronous data transmission, the transmission cycle is divided into the static and

dynamic segments. FlexRay works according to the TDMA where the components have

predefined time slots. In the static segment fixed time slots are allocated for predefined

components to be transmitted. At the dynamic segment the slots are being created

dynamically for maximum bandwidth efficiency and used by asynchronous data [FlexRay'04].

A1

Dynamic SegmentStatic Segment

Communication Cycle

Channel 0

Channel 1
A2

B1 C1

C1

B2

D1

A3

A4

E1

E1

B3

D2

B4

A5

E2

Figure 2.9: FlexRay medium access scheme

16

2.7.2.3 Fault Tolerance

To provide fault tolerant communication a FlexRay network node consists of a host processor,

FlexRay controller, bus guardian and bus driver. As can be seen from figure 2.10 the bus driver

connects the communication controller to the bus and monitors access to the bus. The bus

guardian is instructed by the host processor the specific time slot that has to be used and

allows the FlexRay controller transmit access only in these time slots. In addition the bus

guardian can provide error detection feedback to the host processor to prevent further failure.

Host

μC

Communication

Controller

BG

BD BD

Channel 1

Channel 2

Figure 2.10: FlexRay Network node

2.8 Conclusion

This chapter starts with the background research of the thesis with an investigation of the

fieldbuses, their history and characteristics. The structure of the fieldbus has been presented

and the fieldbuses that have been adopted by the automotive industry. A more in depth

analyses has been provided for TTP and FlexRay since both are modern communication

protocols that can be characterised as fault tolerant, deterministic and high bandwidth.

17

Chapter 3 CAN and MilCAN protocol

3.1 Introduction

This chapter provides a brief insight in the Controller Area Network (CAN) and a more detailed

analysis of the MilCAN protocol, where the later is an extension to the CAN protocol. MilCAN

provides some advantages over CAN by offering a synchronised and deterministic data-link

layer for time critical applications. The error detection capabilities of CAN are described, along

with the technical aspects of the MilCAN specifications. Even though Controller Area Network

provides a certain level of determinism and prioritization, it does not provide any scheduling to

the operation of the network and neither higher layer control to the communication of the

nodes. Because of these MilCAN is more suitable for military applications or other fully

deterministic applications. MilCAN has been created by the MilCAN working group, to add

determinism in the Transport layer of a CAN network without any hardware additions or

modifications.

The MilCAN Working Group was established as a sub-group of the International High Speed

Data Bus Users Group (IHSDB-UG) in 1999. Its target was to create a CAN based protocol that

will be used for Military Land Vehicle subsystems communication. MilCAN provides

deterministic and synchronised communication to the application layer and is located on top

of the CAN network. MilCAN is capable to coexist on the same CAN bus with other CAN based

protocols with no problems.

3.2 Controller Area Network

The Controller Area Network (CAN) is a high speed, serial communication protocol that was

originally developed during the late 1980’s for the automotive industry. Its main characteristics

are high bit rate, high level of security, high immunity to electrical interface, low-cost

multiplexed wiring and an ability to detect any errors produced. Due to these features the CAN

serial communications bus has become widely used throughout the automotive,

manufacturing, CAN powered devices include engine control units, sensors, anti-skid system,

lamps, electric windows and others. Also there are other industry-standard protocols that are

based on CAN, such as Allen-Bradley’s DEVICENet, designed for the networking of PLCs and

intelligent sensors [ODVA'04, Hitex'95].

The CAN communication protocol describes the method by which information is passed

between devices, by broadcasting packets on the bus. Each packet defines a message frame

that is sent by a node and received by the rest of the nodes connected to the segment. There

18

are supported two types of message data frame formats by CAN, the Standard and Extended

format. Different sizes of the Identifier field are the difference between the two, which is 11

bits for the Standard and 29 bits for the Extended. At the physical layer two complementary

logical values are defined, dominant and recessive, but no logical values, like voltage levels, are

specified. This adds flexibility into the specific implementation of the CAN bus, such as using

electrical signal lines or optical fibre lines. The only requirement is that on a simultaneous

transmission of a dominant and a recessive bit, the resulting bus value will be dominant.

The predominant CAN properties are:

 prioritisation of messages

 guarantee of latency times

 configuration flexibility

 multicast reception with time synchronisation

 system wide data consistency

 multimaster

 error detection and signalling

 automatic retransmission of corrupted messages as soon as the bus is idle again

 distinction between temporary errors and permanent failures of nodes

 autonomous switching off of defecting nodes

3.2.1 CAN Error detection

The error detection capabilities are based on the CAN controller’s:

 Error Management Logic (EML)

 Receive Error Counter (REC)

 Transmit Error Counter (TEC)

To distinguish between temporary and permanent failures every CAN bus controller has two

Error Counters, the REC and the TEC. The counters are incremented upon detected errors

respectively are decremented upon correct transmissions or receptions. Depending on the

counter values the state of the node is changed. The initial state of a CAN bus controller is

Error active that means the controller can send active Error Flags. The controller gets in the

Error passive state if there is an accumulation of errors. On CAN bus controller failure or an

extreme accumulation of errors there is a state transition to Bus Off. The controller is

disconnected from the bus by setting it in a state of high-resistance. The Bus Off state should

only be left by a software reset. In figure 3.1 the three error state are shown, and the

19

requirements for changing between them. After software reset the CAN bus controller has to

wait for 128 x 11 recessive bits to transmit a frame. This is because other nodes may pend

transmission requests. It is recommended not to start a hardware reset because the wait time

rule will not be followed then [softing'05].

Error

passive

Bus

off

Error

active

REC > 127

or TEC >127

REC < 128

and TEC < 128

TEC > 255

REC = Receive error counter

TEC = Transmit error counter

Figure 3.1: CAN error states

CAN controllers can be in one of the three states, depending on the error counter levels

[ISO'93]:

Error active - An “error active” node can normally take part in bus communication and send an

active error flag when an error has been detected. The active error flag consists of six

dominant consecutive bits and violates the rule of bit stuffing and all fixed formats.

Error passive - An “error passive” node shall not send an active error flag. It takes part in bus

communication, but when an error has been detected a passive error flag is sent. The passive

error flag consists of six recessive consecutive bits. After transmission, an “error-passive” node

will wait some additional time before initiating a further transmission.

Bus off - A node is in the state “bus off” when it is switched off from the bus due to a request

of fault confinement entity in the “bus off” state, a node can neither send nor receive any

frames. A node can leave the “bus off” state only upon a user request.

For detecting errors the MAC sub layer provides five mechanisms:

 Monitoring (transmitters compare the bit levels to be transmitted with the bit levels

detected on the bus)

20

 15-bit cyclic redundancy check

 Variable bit stuffing with a stuff width of 5

 Frame check

 Acknowledgement check

There are five different error types that can be detected in CAN. These error types are not

mutually exclusive:

Bit error – When a node is transmitting a bit, it also monitors the bus. If the bit value sent is

different from the one being monitored, then a bit error is detected at that bit time.

Stuff error – Since the frame field is coded by the method of bit stuffing, when there are six

consecutive equal bit level a stuff error is detected at that bit time.

CRC error – The transmitter calculates the CRC sequence of the frame and is appended in the

end of the frame. The receiver is also calculates the CRC in the same way as the transmitter did

and compares the two. When they do not mach a CRC error is detected.

Form error – When a fixed-form bit field contains one or more illegal bits a form error is

detected.

Acknowledgement error – The acknowledgement error is detected by the transmitter

whenever it does not monitor a dominant bit during ACK slot.

3.3 MilCAN specifications

The MilCAN protocol is defined by three parts, the Physical Layer, the Data Link Layer and the

Application Layer which are the same for both MilCAN A and B.

Physical Layer – The Physical Layer defines the physical connectivity between MilCAN devices

and the topology of MilCAN networks. It includes the requirements for the segments bus, such

as cable lengths and signal assignments and connector specifications. Also in the Physical Layer

it defines the node transceiver characteristics and bit timing.

Data Link Layer – The Data Link Layer defines message types, frame format, node addressing

of the network, message filtering and priority based bus access. The latest is one of the most

important characteristics of MilCAN. Also here are defined the error detection capabilities and

fault confinement.

21

Application Layer – The Application Layer is the highest layer where various MilCAN

functionalities are defined such as message payload data byte order, message identifier

assignment, deterministic transmission support, command distribution architecture and the

various operational modes of MilCAN.

These three layers are described in a set of three working documents [MWG'03a] [Group'03]

[MWG'03b] which now have been combined into one [MWG'09].

3.4 Physical layer

3.4.1 Physical Topology

There are two are two recommended physical topologies:

 Linear multi-drop

 Daisy chain

Figure 3.2: Linear multi-drop topology [MWG'09]

Figure 3.3: Linear multi-drop topology using bifurcated cables [MWG'09]

22

With the Linear multi-drop topology each device is linked to a bus with the use of a drop cable

and a T-piece connector as can be seen in figure 3.2. To avoid the use of the T-piece connector

another method can be used by replacing it with bifurcated cables as can be seen in figure 3.3.

For both solutions the device is required to have only one bus connector.

Figure 3.4: Daisy-chain topology [MWG'09]

With the Daisy chain topology the devices are connected to each other in series forming a

chain. Each device has an input connector and an output connector. The output connector of

one device is connected by cable to the input of another device; as a result this topology

requires each of the devices to have two connectors as can be seen in figure 3.4. The two

unused connectors at the two ends of the chain are terminated with a CAN bus terminator as

instructed by the CAN protocol. Devices supporting the daisy-chain topology are capable of use

in the multi-drop topology, utilising only the input bus connector. Equal cable length between

devices is avoided to minimise standing waves. Similarly, drop cable lengths should not

generally be equal. The optional implementation of in-cable power supply should fees into one

end of the bus via a female connector, such that no male connectors carry live power or signal

when exposed. [MWG'09]

3.4.2 Connector gender assignments

For the topologies shown in previous figures the recommended gender assignments are:

Cables Male one end and female other end
Devices, multi-drop Male
Devices, daisy-chain Male input to female output
T-pieces, multi-drop Male input to two female outputs

23

3.4.3 Maximum bus length and number of devices

Both the maximum bus length and the number of devices are specified in the ISO 11898

specification requirements.

3.4.4 Cable requirements

MilCAN specifications, group the bus cables according to their functionality. CAN Signal A

group includes the lines required for the primary CAN bus. CAN Signal B group include the lines

for the second CAN bus. It is recommended that the cables used must be shielded. It is up to

the system designer to decide the specific details, depending the system requirements. It is

recommended that there should be dedicated shields for CAN Signal and power pairs. When

implemented the in-cable power is provided by the use of shielded twisted pair. The current

rating of the cables is based on the systems requirements, whilst satisfying the power signal

specification. Any lines designated as reserved are not be used by system designers, as they

may be assigned a specification in future revisions.

The recommended connector for MilCAN systems is MIL-DTL-38999. A set of four connector

configurations are suggested by the MilCAN specifications to allow a system developer to

select a suitable connector for his application and thereby maintain compatibility by

implementing the MilCAN configuration of that connector.

The configurations are:

MIL-DTL-38999-A Dual CAN Bus with In-Cable power

MIL-DTL-38999-B Dual CAN Bus without In-Cable power

MIL-DTL-38999-C Single CAN Bus with In-Cable power

MIL-DTL-38999-D Single CAN Bus without In-Cable power

The Bus termination is based on the ISO-11898 requirements with the following additions;

Terminating resistors must be embedded inside a bus connector. Terminating resistors may be

embedded into the network device only where a mechanism for switching them into and out

of the network is also implemented either externally or internally.

The in-cable power supply is optional, depending the system design and it must comply with

the MIL-Std-1275B. The output voltage is in the range of 18V to 32V and there is only a single

input to the bus. Each device connected on the bus is required to have maximum current

consumption of 500mA and be electrically isolated from all other external signals. If the above

recommendations of individual shielding is used in the bus cables, these shields are suggested

24

to be connected to the digital ground of the device, while the overall shield is connected to an

earth connection (if exists) or the case.

3.4.5 Transceiver characteristics

CAN transceivers used by MilCAN devices and the resistance to electrical bus faults should

conform to the physical medium attachment sub-layer as specified in ISO 11898.The CAN

signal can be opto-isolated from the CAN controller and gets powered by isolated power

supplies. Any additional propagation delays imposed by the opto-isolators are accounted and

be chosen such that the maximum round trip interface delay time for a device comply with the

bit timing requirements of MilCAN.

3.4.6 Bit timing

MilCAN devices can operate in one of these bit rates:

 1Mbps

 500Kbps

 250Kbps

The selection mechanism for a device is described in the System Management Layer

specification. MilCAN bit timing parameters are required to provide capability with other CAN

based protocols by following the CANopen specifications and SAE J1939/11. The bit time

oscillator tolerance is better than ± 0.1% in order to be allowed to operate on compliant

MilCAN segment. For the 1Mbps the bit sample point shall be ≥ 75% of the bit time, preferably

above 80%. For the 500Kbps and 250Kbps the bit sampling should be ≥ 87.5% of the bit time or

later. The synchronisation jump width should be 1-time quanta, the sampling mode to single

sampling and synchronisation to be “recessive to dominant” edges only. The round trip

propagation time of a CAN interface, is less than 210ns at 1 Mbps and 300ns at 500Kbps and

250Kbps.

3.5 Data Link layer

3.5.1 Media Access Control

MilCAN provides a priority based bus access with an arbitration process that ensures the

highest priority message will be transmitted first. When two nodes have a message to be

transmitted, the one with the highest priority will be transmitted first. The process ensures no

bus access conflicts occur that could result into loss of data and time. The transmitters of

multiple nodes simultaneously transmit and receive one bit at a time, which they later

compare to detect when another node is trying to transmit a message with higher priority.

25

When the message with higher priority has been sent and the bus is free, the arbitration

procedure starts again for the following pending messages.

There are four types of frames that are used for message and status transfers. The Data Frame

is the main type used for transferring data between nodes. The Remote Frame is used to

trigger the transmission of the Data Frame from another node with the same identifier. The

Error Frame is generated on bus errors. The Overload Frame is generated between successive

Data Frames or Remote Frames to provide extra delay between their transmissions.

There are two types of Data Frames and Remote Frames, the Standard and Extended. The

Standard has an 11 bits Identifier and the Extended has 29 bits (figure 3.5). When a frame is

successfully transmitted or received an acknowledgement is accomplished during the

transmission sequence of a frame. When no errors have occurred until the end of transmission

of the frame’s EOF field, the transmitted message is considered valid. When an error occurs

there is an automatic retransmission, which is not allowed by the MilCAN specification and

should be disabled. Communication errors can optionally be reported and handled by a higher

layer when detected by the CAN controller. All CAN controllers are required to keep error

counters, one for transmit and one for receive. They are incremented and decremented based

on a set of rules.

Arbitration Field (32 bits)
Control Field

(6 bits)
Data Field (0-64 bits) CRC Field (16 bits)

End of

Frame

(7 bits)

Start of Frame

(1 bit)
ACK Field

(2 bits)

Figure 3.5: CAN frame format [MWG'09]

3.5.2 Logical Link Control

The 29-bit frame identifier is formatted as shown in figure 3.6. The source address of the node

generated the frame is identified by the first eight bits (bits 0 to 7). This address is assigned to

each node and it is unique. This allows the identification of the node that generated each

message on the bus. The source address 0x00 is reserved and cannot be used by any node. The

second and third bytes of the MilCAN frame identifier (bits 8-15 and 16-23) represent the

secondary and primary type MilCAN identifiers respectively. Messages are grouped according

their primary type based on their function and are also assigned a unique secondary type. The

24th bit is used to denote if the frame is either a request message (bit = 1) or a

status/command message (bit = 0). Since the CAN bus can be shared by MilCAN and SAE J1939

devices, the Protocol Type (bit 25) is used to distinguish between the two protocols. For

26

MilCAN frames the bit is 1 and for the SAE J1939 frames is 0. Bits 26 to 28 store the priority of

the MilCAN frame and are used when transmitting the frame. Based on the CAN media access

control protocol, a frame has higher priority when the field is 0 and lowest priority when the

field is 7. The priority assignment mechanism is defined in the Application Layer specification.

Source AddressMessage Sub-TypeMessage Primary-TypePriority

Protocol Type Request

28 26 25 24 23 16 15 8 7 0

Figure 3.6: MilCAN frame identifier format [MWG'09]

When any errors occur on the CAN bus during operation, they may be reported to the

application layer. The application then may execute the corrective procedures appropriately.

No further actions are taken against any of these errors at the link layer. Where appropriate

software is used to detect hardware errors of the network interface and then report them to

the application layer. The application executes the appropriate procedure depending the error

condition. No further actions are taken against any of these errors at the link layer.

The messages are classified only based on their primary-type and sub-type conveyed in the

message identifier. The source address field is not used for functional distinction. For non-

operational messages, a custom identifier that includes a destination address for the message

can be used.

There are four operational message types:

 Status/Command messages – During normal operation these message types are the

primary mode of communication. These type of messages are either periodic or event

triggered.

 Request messages – Specific MilCAN messages can be requested from a remote device

for a specific message primary-type and sub-type. The frame is distinguished from the

Request bit (bit 24) of the identifier that is set to 1.

 Non-operational messages – Physically addressed messages use a fixed value of 0x31

as a primary-type. The sub-type identifier stores the physical address of the

destination device. To broadcast the message to all the devices the 0x00 destination

address is used.

27

 Sync frame message – The synchronous operation of MilCAN is controlled by the Sync-

Frame message, to provide a coherent timing source to all the nodes. The generation

of the Sync Frame is by the current elected Sync Master node. There is always a

potential Sync Master per bus segment. When there are more than one potential Sync

Masters, an election process is triggered. The election procedure is described in the

Application Layer. The Sync Frame must have priority set to 0, the primary-type set to

0x00 and sub-type set to 0x80. The payload of the Sync Frame is a Sync Slot counter,

which ranges between 0 and 1023. This counter is incrementing at each Sync Frame

transmission and the generation frequency is system specific. Recommended values

are 512Hz for 1Mbps CAN bus, 128Hz for 500Kbps and 64Hz for 250kbps CAN bus. The

frequency change is described in the System Management specifications.

There are two message types related to the system configuration mode:

 Enter configuration mode message – The nodes on the bus can be requested to

suspend operational mode and enter the configuration mode by using the Enter

Configuration Mode message. During this mode the node can receive any required

application specific reconfigurations. The message has a single byte data payload for

the first, second and third message with payload the ASCII character ‘C’ , ‘F’ and ‘G’

respectively. The message has the highest priority ‘0’, primary-type 0x00 and sub-type

0x81.

 Exit configuration mode message – This message shall be used to terminate the

Configuration Mode. The message has a three byte data payload with value the three

characters ASCII ‘OPR’. The priority is ‘0’, primary-type 0x00 and sub-type 0x82.

The alive message indicates the status of a node and it is required to be sent by all the nodes.

The first payload of the payload when is ‘1’ indicates a normal operation and when ‘0’ faulty

operation. The remaining 7 bytes of the data field may be used if required by the system

design. The Alive message has a primary-type of 0x62 and the sub-type is used as a unique

identifier to every node. The valid range for the node ID is 1 to 255. The system designer may

use the source address to the node ID field. The transmission frequency of the alive message is

1 Hz.

For the generation and transmission of synchronous messages the Sync Frame Messages and

the value of the sync counter need to be reported to the application layer. Nodes that are

operating asynchronously are Sync Frame aware in order to transition between the system

modes as defined in the Application Layer. Nodes that transmit asynchronous periodic

28

messages, is their responsibility to control and maintain their triggering rate. Every periodic

asynchronous message is required to have a priority of 2 or lower. The Sync Frame message

and the Enter & Exit Configuration mode message are exempt which have a priority of 0.

Messages are transmitted depending their priority, the higher priority messages are

transmitted before the lower priority messages. New messages with higher priority are queued

before previously queued messages of lower priority. This requirement also applies to the CAN

controller transmit buffers. This prevents “priority inversion” where lower priority messages

are transmitted while higher priority ones are pending. When a MilCAN bus reaches a heavy

busload or disruption, some queued messages could become invalid before being transmitted.

To avoid this all the messages have a mortal attribute, which specifies if and when the

message should be destroyed. When the mortal attribute is set to “TRUE” it is accompanied

with a “time to live” value that defines the maximum time the specific message can be in a

pending before it gets destroyed. When the mortal attribute is set to “FALSE” then the

message is never be removed from the queue.

To reduce unnecessary load from the nodes CPU, filtering may be applied to the incoming

messages that are not used by the node. The LLC layer of the CAN controller must not

generate the “overload” frame of the ISO11898 CAN standard. CAN controllers selected for

MilCAN use need to support disabling the “overload” frame. The LLC layer of the ISO11898

CAN standard supports the retransmission of frames that fail to be transmitted due to bus

errors. This can result in uncontrollable continuous access to the bus, which could result to

multiple transmissions of the same frame. In case of a disrupted CAN frame transmission, the

application layer may execute the corrective procedures defined by the system design.

Additionally the Remote Frame Request provided by the ISO11898 is not compatible with

MilCAN’s logically addressed system and must not be used.

When the communication requires more than 8 bytes to be transferred, then the Multi-frame

messages are used. The Multi-frame messages are a group of single frame messages that have

the data required to be transmitted; fragmented in to multiple application payloads. Such

frames can consist up to 251 individual single-frame messages. The transmission and reception

of multiple Multi-frame messages at the same is allowed as long as they have different

message identifier. Multi-frame messages are divided into three segments, the first,

intermediate and last frame. The structure of a Multi-frame message can be seen in figure 3.7.

29

0

Byte No

1 2 3 4 5 6

0

1

249

250

Message

Count

Message

Count

Message

Count

Message

Count

Byte Count Reserved

Data

CRC

(Optional)

Data

Data

Reserved

F
ra

m
e

 N
o

Figure 3.7: MilCAN Multi-frame structure [MWG'09]

Message Count – Represents the sequence number of the multi-frame message. The range of

values that can have is from 0 to 250 to allow maximum of 251 frames per multi-frame

message.

Byte Count – indicates the size of the multi-frame message and the range of values that it can

get are 0 to 16449535 and the data is stored in Little Endian format.

CRC – is optional and provides an 8 or 16 bit CRC of the application data transferred by the

Intermediate frames.

3.6 Application layer

3.6.1 Communication architecture

The payload bytes that are transmitted are in Intel format, where byte 0 is the first byte

received and 7 the last byte. The bits within payloads bytes are transmitted with the most

significant bit first and least significant bit last. Additionally MilCAN devices do not require

sending an acknowledgement message. This will reduce unnecessary traffic on the bus.

Depending the application and the system design, an appropriate mechanism is implemented

to confirm the successful reception of the message.

The main objective of MilCAN is to provide deterministic communications to the devices that

are connected to the network, while also to support non-deterministic communication. The

Prioritised Bus Access with Bounded Throughput protocol will achieve the need for

30

deterministic communication for the devices that require it and provides sufficient flexibility to

accommodate those devices that do not.

The primary deterministic characteristics for MilCAN are:

 The message priority is assigned to each message depending the required delivery

deadline of each message. Thus the message with the shortest delivery deadline is

assigned the highest priority.

 The Sync frame is delivered by a Sync Master at a rate controlled by the shortest

delivery deadline.

 There are multiple Sync Master devices and only one is elected as an active Sync

Master which can output Sync Frames. To ensure there is only one active Sync Master,

an election protocol is used which will elect a new master when the current Sync

Frame Master fails.

 Every message has a minimum inter-arrival rate that is greater than or equal to the

Primary Time Unit (PTU).

 When the messages and their inter-arrival times in a system are known, then the

messages are pre-allocated to numbered slots during the design stage.

 The protocol accommodates three message priority categories, Hard Real Time (HRT),

Soft Real Time (SRT) and Non Real Time (NRT).

 Since each node is responsible for its own message triggering and there will be some

timing inaccuracies, the protocol allows these timing inaccuracies.

 In the event of failures, the protocol supports fault recovery.

MilCAN message frames are not generated more than once per PTU. That includes single-

frame and multi-frame messages, where the application is responsible for this. Additionally

depending the required delivery deadline of each message, different priority is assigned to

them. The highest priority (lowest value) guarantee sorter delivery deadline. The available

priorities are the following:

 Priority 0 (HRT0) – This priority messages gain immediate access to the bus. When a

message from another node is transmitted, the HRT0 transmission is delayed till the

transmission is complete. If two nodes have queued an HRT0 message, the one with

the lowest CAN node identifier is transmitted first. The Sync Frame, EnterConfigMode

and ExitConfigMode messages are the only messages defined by MilCAN to use HRT0

priority.

31

 Priority 1 (HRT1) – This priority messages have maximum latency of 1 PTU. All

scheduled HRT1 messages of a network do not exceed the available bandwidth of 1

PTU from the one they were scheduled on.

 Priority 2 (HRT2) – This priority messages have maximum latency of 8 PTU. All

scheduled HRT2 messages of a network do not exceed the available bandwidth of 8

PTU from the one they were scheduled on.

 Priority 3 (HRT3) – This priority message have maximum latency of 64 PTU. All

scheduled HRT3 messages of a network do not exceed the available bandwidth of 64

PTU from the one they were scheduled on.

 Priority 4 (SRT1) – For this priority message the delivery latency is not guaranteed.

Messages with this priority have high probability of being transmitted within 8 PTUs.

These messages are transmitted on the available bus time not used by HRT0, HRT1,

HRT2 and HRT3 messages, during 8 PTU period.

 Priority 5 (SRT2) – For this priority message the delivery latency is not guaranteed.

Messages with this priority have high probability of being transmitted within 64 PTUs.

These messages are transmitted on the available bus time not used by HRT0, HRT1,

HRT2 and HRT3 messages, during 64 PTU period.

 Priority 6 (SRT3) – For this priority message the delivery latency is not guaranteed.

Messages with this priority have high probability of being transmitted within 1024

PTUs. These messages are transmitted on the available bus time not used by HRT0,

HRT1, HRT2 and HRT3 messages, during 1024 PTU period.

 Priority 7 (NRT) – Messages with this priority do not have any latency requirements.

Synchronous messages are triggered upon reception of the Sync Frame message that indicates

the slot number of the MilCAN major cycle that each message had been scheduled on. The

processing time of the Sync Frame on the device is taken into consideration, and the a fixed

amount of time equal to the worst case response time is reserved in each PTU to ensure that

all messages allocated to a particular slot are transmitted in that slot. The worst case scenario

is calculated (figure 3.8) for the chosen hardware and software and ensure that this time is

reserved in each slot when designing the message schedule.

An asynchronous event triggered message can be triggered in any slot. The required

bandwidth is allocated at every slot to accommodate the possibly generated messages.

Because this will waste bandwidth, event driven messages are reduced and even eliminated,

and lower priority for event driven messages are used to minimise affecting delays. Devices

32

with asynchronous messages (figure 3.9) although they do not need to associate the

transmission of the asynchronous messages with the Sync Frame, they still need to receive and

process it in order to detect operational mode changes of the network such as the initial

transition from pre-operational to operational mode. When messages are transmitted

periodically triggered from an internal timer, the period is equal or longer than one PTU. Based

on the Data Link Layer asynchronous devices are restricted to the transmission of messages

with priority 2 or lower.

Figure 3.8: Response to Sync Frame [MWG'09]

Figure 3.9: Asynchronous message triggering [MWG'09]

Military vetronic systems require deterministic message transfer to achieve predictable

performance. This requires a synchronised operation between all the available devices and this

is achieved within MilCAN by employing one of the network nodes as a Sync Frame message

generator to provide this co-ordination. A single Sync Master makes the system vulnerable to

its failure, a scheme of multiple nodes capable to assume Sync Master roles as a failover

solution was established. Potential Sync Masters monitor the reception of the Sync Frame

message, and when it is not receipt within a maximum timeout period a potential Sync Master

takes over to transmit the Sync Frame message containing the next Sync Frame counter value.

33

The timeout period is greater than one PTU plus the time to transmit two messages of

maximum length.

When a Potential Sync Master receives a Sync Frame message from a node with lower source

address, it maintains the role of the Potential Sync Master. When a Potential Sync Master

receives a Sync Frame message from a node with higher source address, it assumes the role of

Sync Master and forcibly takeover by generating the next Sync Frame at a slightly smaller PTU.

When a Sync Master receives a Sync Frame message from a node with lower source address, it

assumes the role of Potential Sync Master and stops the transmission of the Sync Frame

message. This procedure ensures that the node with the highest priority will eventually

become the system Sync Master.

3.6.2 System modes

Three system modes are defined in the MilCAN protocol and are implemented in all devices.

These modes are the Pre-Operational mode, Operational mode and System Configuration

mode. The modes transitions are shown in figure 3.10.

 Pre-operational mode - Devices after power up, reset, loss of Sync Frames and upon

exiting system configuration modes enter Pre-operational mode. During this mode

only Sync Frame and Enter/Exit configuration messages are transmitted. Devices in

Pre-operational mode will switch to Operational mode only when a Sync Frame is

received, and when an enter system configuration mode message is received they

switch to System Configuration mode.

 Operational mode - Devices enter Operational mode from Pre-operational mode upon

reception of a valid Sync Frame. The devices exit Operational mode and enter Pre-

operational mode following a reset or no Sync Frame message has been received

within 8PTUs. The devices exit Operational mode and enter System Configuration

mode upon reception of a valid enter system configuration message.

 System configuration mode - All devices enter System Configuration mode on request

by a Configuration Master node. During this mode only system configuration mode

messages are used, all operational messages, including Sync Frames, are suspended.

The Enter System Configuration message is a sequence of three messages with same

ID but with different payload for each message. The Enter System Configuration

message is transmitted within 400ms. All devices connected to the bus, suspend

Operational mode and enter System Configuration mode. The sequence of the

message is received in the correct order. The enter System Configuration message is

34

transmitted every 1 second to notify devices that just came on-line after the segment

has entered the System Configuration mode. The devices exit System Configuration

mode and enter Pre-operational mode upon reception of the exit System

Configuration mode message.

Power OFF

Pre-operational

Operational

System Configuration

Sync Frame

message not

received for

8 PTUs

Sync

Frame

message

Reset

Reset

Enter

configuration

mode

message

sequence

Exit

configuration

mode

message

or

Enter

configuration

mode

message

sequence not

received for 8s±1s

Power On

Figure 3.10: System modes [MWG'09]

3.6.3 Data distribution architecture

The communication between MilCAN devices is based on publisher/user basis. The nodes

when they receive messages, will filter them based their message identifier and process only

the ones required by the application layer.

3.6.4 Command distribution architecture

There are two forms of commands, the implicit and the system mode commands. The implicit

commands indicate in the payload the change of the status of a parameter from a system

function. The system mode commands indicate how the implicit commands are interpreted by

the nodes, such as selection of data source when multi-instance addressing is used. Most of

the command messages used in the system are implicit.

35

3.7 Conclusion

MilCAN is a protocol enhancement of the CAN protocol, which is developed by the military

industry. Since MilCAN is a software based solution, is compatible with all already existing CAN

enabled embedded microcontrollers and devices. By being compatible with all already existing

CAN hardware is a flexible and affordable solution for real-time distributed systems. MilCAN is

a deterministic, distributed real-time network which provides prioritised communication and

direct synchronisation of all nodes. The frames that are transmitted on the bus by different

nodes are synchronised and with the help of the arbitration mechanism of CAN the delivery

latencies are guaranteed according to their priority. Since the network synchronisation is

based on the MilCAN Master which in case of failure will be replaced by another potential

master, the network operation resumes with minimal disruption.

Since the High Availability MilCAN is designed to operate on MilCAN nodes, it is very important

its design to be based on the MilCAN protocol to assure capability between all the devices. The

main characteristics of the High Availability MilCAN are based on the MilCAN internal

components to provide the desired functionality.

36

Chapter 4 MilCAN Reconfiguration

4.1 Introduction

When there is the need to maintain a MilCAN node already installed in a vehicle, then the

engineer has to spend time to access the node physically and may need to remove it. The

above approach is time consuming and requires the knowledge and the tools to disassembly

the node in order to gain access to it. Also during this operation the rest of the network is

utilised unusable.

By using MilCAN Reconfiguration, many disadvantages of node maintenance are eliminated

and through life capability management is provided. Node Reconfiguration covers the software

side of the maintenance, like configuring the message set for every node and upgrading the

firmware. With the Node Reconfiguration it’s possible to connect to different vehicles and

access the nodes remotely from a central location. In case a node has to be added or removed

or just a software upgrade to many vehicles, by using a MilCAN Node Reconfiguration the

software part of the modification could be completed automatically.

This chapter discuss the design of MilCAN Reconfiguration and explains the operation of its

components. Each of the components are vital for the operation of the MilCAN

Reconfiguration, which provides the functionality to remotely reconfigure and maintain any

device connected on the MilCAN network without the need to reprogram the firmware on the

nodes.

4.2 Design

Without the MilCAN Reconfiguration there was no ability to upload to a MilCAN node new

firmware through the network. That makes it long and tedious operation for an engineer to

develop and maintain an application. The MilCAN Reconfiguration although it can be used

during operational mode, it is not advised since this will result in lost configuration messages

and unexpected results. It should be used during configuration mode, where the operation of

all the connected devices will be halted, and the network will be available only for the

configuration commands.

The MilCAN Node Reconfiguration design consist three parts:

 Bootloader

 Communication protocol

 VSI GUI

37

Bootloader – The bootloader is located at the beginning of the firmware of the

microcontroller, and is responsible for all the operations supported by the MilCAN Node

Reconfiguration.

Communication protocol – The communication protocol allows the VSI GUI to communicate

with the bootloader in the nodes.

VSI GUI – The VSI GUI is the front end that the user has to use to control the various

operations the reconfiguration provides. The VSI GUI sends commands to the bootloader using

the communication protocol.

To achieve this, the VSI GUI has to be able to send the firmware through the VSI Bridge to the

nodes. Every node has the bootloader software at the beginning of the memory which is

responsible to deal with receiving and saving the application firmware on the ROM memory of

the node.

The bootloader is independent from the application firmware and allocated at the beginning of

the ROM memory. For this reason the ROM memory is split in to two areas, the area that the

bootloader is allocated and the area that application’s firmware is allocated as seen in figure

4.1.

Bootloader Interrupt Vector (0x0602 – 0x0801)

Application Interrupt Vector (0x10000 –0x101FF)

Application MilCAN messages

Interrupt Vector

Bootloader temporary message alloc.

Hardware Interrupt Vector (0x0000 – 0x01FF)

B
o

o
tl
o

a
d

e
r

A
p

p
lic

a
ti
o

n

R
A

M
R

O
M

R
u

n
-t

im
e

D
a

ta

Figure 4.1: Node software memory allocation

After a node reset the bootloader does a checksum verification to check the integrity of the

application firmware, if it passes the check then the application firmware is executed by

38

jumping the program counter at the beginning of the application firmware. From that point on

the application is executed as normal.

Node Start/Reset

Check

configuration

mode

Yes

No

Application normal

operation

Go to

configuration

mode

Set configuration

mode flag.

Reset node.

Yes

No

Bootloader normal

operation

Copy to RAM:

 AIVF

Copy to RAM:

 BIVF

 RAM Functions

 msg set sector

Bootloader

Application

Jump to App

Figure 4.2: Flow of configuration mode

The configuration of the nodes has been adapted to include a unique identification number

(serial number) for each device, decoupling the system from the use of the MilCAN Source

Address to identify the individual nodes. This makes the development compliant with the

MilCAN specification requirements. The feature that need to be supported are the following:

 Node software reset

 Node status checking (MilCAN mode, node mode)

 Configuration version checking

 Node ID and serial change

 MilCAN bus speed change

 Message set configuration

39

4.3 MilCAN Bootloader

4.3.1 Memory allocation

The microcontrollers that are used for the implementation are the phyCORE-167CS, where the

ROM is allocated from 0x00000 to 0x3FFFF and RAM from 0x40000 and 0x7FFFF. Specific

memory locations have been allocated for the operation of the bootloader and the

applications which are shown at table 4.1.

Table 4.1: Node's memory map

Memory address Description

0x00000-0x001FF Hardware interrupt vector

0x00200-0x003FF Bootloader interrupt vector forwarders

0x00400-0x005FF Application interrupt vector forwarders

0x00602-0x00801 Bootloader interrupt vector

0x00802-0x009A9 RAM functions initial location

0x009AA-0x08000 Bootloader

0x10000-0x101FF Application interrupt vector

0x101FF -0x2FFFF Application

0x30000-0x30AFF Application’s message set allocation

0x30B00-0x3FFFF Application

0x40000-0x401FF RAM interrupt vector

0x40200-0x403A8 RAM functions final location

0x403A9-0x6FFFF RAM

0x70000-0x70AFF Bootloader’s temporary message set allocation

0x70B00-0x7FFFF RAM

Hardware interrupt vector – The hardware specific interrupts are pointing to this memory

address.

Bootloader interrupt vector forwarders – Hardware interrupt forwarders used by the

bootloader.

Application interrupt vector forwarders – Hardware interrupt forwarders used by the

application.

Bootloader interrupt vector – Actual hardware interrupt vector for the bootloader.

RAM functions initial location – The location that the RAM functions are stored before are

being copied to the RAM.

Bootloader – The location where the bootloader resides.

Application interrupt vector – Actual hardware interrupt vector for the application.

Application – The location where the application resides.

40

RAM interrupt vector – The location that the interrupt vector forwarders will be copied.

RAM functions final location – The location that the RAM functions will be copied.

RAM – This is unallocated RAM memory for general use.

Bootloader’s temporary message set allocation – Is the location that the bootloader will copy

the message set to edit it before it saves it back in ROM.

Additionally on these microcontrollers there is also an additional EEPROM connected through

an I2C bus. On this memory the configuration of the node is saved. That includes the node ID,

node serial and bus speed. This allows the bootloader to edit these settings without changing

anything on the main ROM.

4.3.2 Dynamic interrupt vector

The nodes that are MilCAN Reconfiguration enabled have both a bootloader and an

application. To ensure normal operation of the bootloader or the application the interrupt calls

should be forwarded appropriately. The bootloader and the application require different

interrupt vectors which are going to be allocated by the compiler when configured

appropriately. To be able to have a dynamic interrupt vector and the interrupt calls to be

forwarded to the bootloader or the application during runtime, the RAM is used as a dynamic

forwarder as seen in figure 4.3.

Hardware Interrupt

Vector

RAM Interrupt

Vector

(BIVF or AIVF)

Bootloader

Interrupt

Vector

Application

Interrupt

Vector

Figure 4.3: Dynamic interrupt vector

To achieve that, custom interrupt vectors forwarders were created with the help of assembly

programming and the use of the JMPS instruction which what it does is an unconditional jump

to any target [ARM'04]. These three interrupt vectors are the Hardware Interrupt Vector,

Bootloader Interrupt Vector Forwarders (BIVF) and the Application Interrupt Vector

Forwarders (AIVF). When the device is restarted the bootloader copies to the RAM the

appropriate interrupt vector forwarders. When the bootloader needs to be executed then the

BIVF is copied to the RAM and if the application needs to be executed then the AIVF needs to

be copied to the RAM. When an interrupt occurs then it jumps from the Hardware Interrupt

41

Vector to the RAM Interrupt Vector from where again it is forwarded by the BIVF or AIVF as

can be seen in figure 4.3. All the interrupts are dynamically forwarded except the reset

interrupt which is always forwarded to the bootloader’s interrupt vector, in order to execute

the bootloader every time the node is reset.

4.3.2.1 Hardware interrupt vector

The Hardware Interrupt Vector is located at the beginning of the ROM and is allocated in the

memory address range 0x00000 to 0x001FF. Each memory address in this range represents an

interrupt. At this location a custom interrupt vector is created that redirects any call to the

corresponding address in the RAM interrupt vector with the use of the VECTAB Linker Directive

which allows you to specify a starting address (offset) for the interrupt vector table. By default,

the starting address is 0000h [ARM'05]. The RAM interrupt vector is located in 0x40000 to

0x401FF memory address.

4.3.2.2 Bootloader Interrupt Vector Forwarders (BIVF)

The BIVF is located in the memory address range 0x00200 to 0x003FF and it is pointing to the

Bootloader’s Interrupt Vector located in memory address range 0x00602 to 0x00801.

Depending the device operation, this interrupt is copied in the pre-allocated location on RAM

which has address range of 0x40000 to 0x401FF.

4.3.2.3 Application Interrupt Vector Forwarders (AIVF)

The AIVF is located in the memory address range 0x00400 to 0x005FF which is pointing to the

Application’s Interrupt Vector located in memory address range 0x10000-0x101FF. As the BIVF,

the AIVF will be copied in the pre-allocated RAM area in order to forward any calls to the

Application Interrupt Vector located in 0x10000 to 0x101FF.

4.3.3 Message configuration

When a node needs to be reconfigured without flashing a new firmware the VSI GUI can with

the appropriate commands reconfigure the message list with the help of the bootloader. The

bootloader is responsible to make the correct changes permanently on the applications

firmware. To achieve that, the application’s message list must be located in to a predefined

location on the ROM in order for the bootloader to know the exact location that need to be

modified. That location is in the memory range of 30000h to 30AFFh for the specific device

that is used. Since the hardware ROM does not allow to edit specific location in the memory,

the whole sector needs to be deleted before it is rewritten, the bootloader loads that sector

data in to the RAM where it edits it and applies any changes that have been received by the

user through the VSI GUI. The sector data include both the message set and part of the

42

applications data. When the whole configuration is complete and the user decides to save the

changes, then the bootloader deletes the sector that the message list is located in the ROM

which has memory range of 0x30000 to 0x40000. When the ROM sector is deleted

successfully, it copies the data stored in the RAM to the ROM. After the completion of the

operation, the bootloader will verify the operation by comparing the written data to ROM with

the ones stored in RAM. If the verification is successful then it will wait for further commands

otherwise it will try to rewrite the data. The whole process can be seen in figure 4.4.

Bootloader normal

operation

Erasing msg set

sector in ROM.

Copy sector from

RAM to ROM

Verify written

data

Msg config

cmd Rx
Msg config

save cmd Rx

Changing msg set

on RAM according

to msg config cmd

Yes Yes

False

Correct

VSI GUI

commands

Figure 4.4: Bootloader's message configuration flow

4.3.4 RAM Functions

The above operations have a major restriction brought by the device. When any ROM

operations are carried such as deleting or writing the operation must be executed from the

RAM. It is not possible to write or delete to the ROM with the instructions being located in the

same ROM. For these operations, a specific set of instructions that manage the ROM are

generated. These instructions are named RAM Functions and located in a predefined location

in the memory address 0x00802 to 0x009A9 in the ROM. These instructions although are

43

located to the memory location mentioned above, are not able to be executed from there. The

reason is that the compiler is configured to reallocate them as if they are located in the

memory address range 0x40200 to 0x403A8 which is in the RAM. When the device goes in to

configuration mode, the bootloader copies the RAM Functions in to the appropriate locations

in to the RAM which from there are going to be able to be executed. This way when there is a

need to edit a sector in ROM the RAM functions will take care of the operation without the

execution to be located in ROM. When the RAM Functions are executed the rest operations of

the device are coming to a halt.

The functions located in the RAM are:

 Data polling (compares the data from ROM to RAM)

 Erase chip (deletes the content of the whole chip)

 Erase sector (deletes a specific sector)

 Program flash (copies data to ROM)

4.3.5 Program flash memory

In order to save the application firmware on the node it has to be saved on the ROM memory.

There is one difficulty to do this; the flash memory cannot be program with code located in the

same flash memory. This means that the flash programming algorithms must be copied to and

executed in the internal RAM. To manage this, the functions that are used to write on the ROM

are copied on the RAM just after the interrupt vector that is placed on the RAM

(ram_functions). Specific settings on the compiler allow code to be executed from the RAM.

These settings, compile the ROM programming functions as if they were placed on the Ram in

the first place.

4.4 MilCAN Reconfiguration Protocol

A specific protocol has being designed for the Node Reconfiguration operations in order to

utilize all the functionalities that the bootloader can provide. It is a new protocol that insures

proper MilCAN Reconfiguration operation. It provides a wide range of operations, where each

of them is verified with the use of acknowledgment messages. The whole protocol can be

found in the appendix. The operations that the bootloader provides are:

 Enter programming mode

 Software reset

 Status check

 Version check

44

 Node ID change

 Node speed change

 Message configuration

 Erasing app sectors (erase the sectors that are allocated for the application)

 Erasing chip (erase the whole ROM chip including the bootloader)

 Address set

 Programming data

 Checksum (after completing programming the checksum for the application)

4.4.1 Enter programming mode

When the application is operating normally the Enter programming mode command will leave

the application and execute the bootloader for the node to become ready for configuration.

The application of the node has to recognise this command. The structure of the command can

be seen in table 4.2. When the node receives this command before the switch, it sends back an

acknowledge message with message ID 0xBE25.

Table 4.2: Configuration protocol Enter programming mode

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0xBE24 Slave ID

4.4.2 Software reset

When the Software reset command is received during normal node operation the node will be

restarted. Before the restart of the node it will transmit back an acknowledge message with

message ID 0xBE2B and the same payload. The structure of the command can be seen in table

4.3.

Table 4.3: Configuration protocol Software reset

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0xBE2A Slave ID

4.4.3 Status & Version check

The Status check command can be used for checking the operation mode that MilCAN is in and

if the node is in the bootloader or the application. The status request should have message ID

0xBE2E and Payload 0 the slave ID that the status is requested from. The structure of the result

message that will be sent from the node can be seen in table 4.4.

45

Table 4.4: Configuration protocol Status check (result)

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0xBE2F Slave ID
MilCAN
mode

Node
mode

The Version check command checks the version of the application in the node. The request

should have message ID 0xBE30 and Payload 0 the slave ID that the status is requested from.

The structure of the result message that will be sent from the node can be seen in table 4.5.

Table 4.5: Configuration protocol Version check (result)

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0xBE31 Slave ID Version Version Version Version Version Version Version

4.4.4 Node ID & speed change

Every MilCAN node has a unique ID. This ID can be changed with the Node ID change

command. For this operation the unique serial that every node has, will be used. In table 4.6

the structure of this command is shown. To acknowledge the command the node retransmits

the same message but with message ID 0xBE33.

Table 4.6: Configuration protocol Node ID change

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0xBE32 Slave ID
MILCAN
ID1

MILCAN
ID2

NODE
SERIAL

NODE
SERIAL

NODE
SERIAL

NODE
SERIAL

NODE
SERIAL

The MilCAN operational speed can be changed with the Node speed change command. The

structure of the command can be seen in table 4.7. After the reception of the command the

node need to acknowledge the reception of the command by sending the same message with

message ID 0xBE35.

Table 4.7: Configuration protocol Node speed change

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0xBE34 Slave ID
NODE
SPEED
A_1

NODE
SPEED
A_1

NODE
SPEED
A_1

NODE
SPEED
A_1

46

4.4.5 Message configuration

To be able to configure the list of messages on the node the Message configuration need to be

used. By using this command the priority, message ID, start frame and frequency of a MilCAN

message can be changed. The structure of the command can be seen in table 4.8. After the

reception of the command the node acknowledge with the transmission of the same payload

but with message ID 0xBE51.

Table 4.8: Configuration protocol Message configuration

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0xBE50 Slave ID
Primary
ID

Secondary
ID

New
Priority

New
Primary
ID

New
Secondary
ID

New
Start
Frame

New
Cycle

After the completion of the message configuration in order to save the configuration the

Message configuration save command is used, which can be seen in table 4.9. As an

acknowledgement the node sends the same message but with message ID 0xBE53.

Table 4.9: Configuration protocol Message configuration save

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0xBE52 Slave ID

4.4.6 Flashing application firmware

Before the actual firmware is transferred to the node the flash memory needs to be prepared.

To do so the Erase application sector needs to be used. During this command only the

application section of the flash memory is erased. The structure of the command can be seen

in table 4.10. After reception the node sends an acknowledgement with message ID 0xBE27

and the same payload. When the command is completed, the flash is ready to be

reprogrammed with a new firmware remotely.

Table 4.10: Configuration protocol Erase application sector

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0xBE526 Slave ID

To load a new firmware to the nodes through the network the following commands need to be

used. The binary file that has been generated from the compiler is based to the Intel HEX file

format [Wikipedia'10a].

47

1. Start code, one character, an ASCII colon ':'.

2. Byte count, two hex digits, one of byte (hex digit pairs) in the data field

3. Address, four hex digits, a 16-bit address of the beginning of the memory position for

the data. Limited to 64 kilobytes, the limit is worked around by specifying higher bits

via additional record types. This address is big-endian.

4. Record type, two hex digits, 00 to 05, defining the type of the data field.

5. Data, a sequence of n bytes of the data themselves, represented by 2n hex digits.

6. Checksum, two hex digits - the least significant byte of the two's complement of the

sum of the values of all fields except fields 1 and 6 (Start code ":" byte and two hex

digits of the Checksum).

To follow the same format for the communication protocol the Address set command is send

first from the server to the node (table 4.11). The node has to reply to the server with an

acknowledge message which has the same payload and message ID 0xBE21. After the address

is set, the server will transmit the data with the Programming data command (table 4.12).

Again the node is responsible to acknowledge the reception of the command by transmitting

back to the server a message with the same payload and message ID 0xBE23.

Table 4.11: Configuration protocol Address set

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0xBE20 Slave ID
Sequence
Number

Data
Size

Address
Upper
Bytes

Address
Lower
Bytes

Checksum

Table 4.12: Configuration protocol Programming data

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0xBE22 Slave ID
Sequence
Number

Data
Upper
Bytes

Data Data Data Data
Data
Lower
Bytes

4.5 VSI GUI

To utilise the network related data, a user interface has been developed. The original VSI GUI

has the ability to deal with high-level operations of a VSI network (controlling VSI Bridge) as

well as the sub-system level; transmitting and receiving MilCAN frames from selected

segments. The purpose of the VSI GUI is to provide a user interface for viewing the VSI

48

network from a higher level of abstraction, and to provide tools for MilCAN specific

investigation.

The VSI GUI has the ability to store a copy of a live database, to be used as a project file when

the GUI is not connected to the network. Since the database can have detailed information of

the network, the user is able to store many different configurations on an off-line basis for all

the components of the VSI network, including bridge configurations, message flooding,

statistics and node firmware [Valsamakis'06].

Specifically, the following features and services are provided by the VSI GUI:

 On/Off line topology view of interconnected VSI Bridges and their adjacent segments.

 Saving/Loading different VSI system databases.

 Controlling VSI bridge, segment and node status.

 Retrieving firmware information from MilCAN nodes anywhere in the network

 Retrieving MilCAN flooding from network

 Reconfiguring VSI NEC MilCAN nodes with new firmware while connected.

 Simulating message generation of a MilCAN cycle for individual bridges, segments and

nodes.

 Reconfiguring message parameters for individual nodes.

Following the VSI standard guidelines, the preferred programming language used was C++. The

VSI GUI is inheriting its implementation from the VSI-System COM/ATL library, which supports

VSI GUI as a client application, in the same way as the VSI GUI has been supported. To take

advantage of modern workstation desktop capabilities, this GUI supports docking windows,

allowing the user interface to be setup as user prefers, and to support multiple screen displays.

4.5.1 Network View

The VSI GUI is capable of analysing the Flooding and VSI bridge tables of the VSI storage, to

create a tree structure of the connected network. Figure 4.5 shows an example layout of a VSI

network. The items are populated according to the VSI object hierarchy up to sub-system level

(Vehicle, interconnected VSI Bridges and their current configuration), and then on system-

level, with node objects existence and position is derived from the flooding information.

49

Figure 4.5: VSI Network Topology GUI View

When selecting an object such as a segment or node, the flooding information grid view of the

specific object is displayed in the GUI. The flooding information grid view displays the

parameters shown in table 4.13.

Table 4.13: VSI GUI flooding information grid view parameters

iFaceID The adjacent interface – segment where the message is generated or received.

nodeID The node identifier of the node where the messages is generated or received.

RX/TX ID bit Whether a message is transmitted or received by the specific node.

MsgID The unique identifier of the message.

Priority Message MilCAN priority.

StartSlot MilCAN cycle slot when periodic message begins.

PeriodSlot Period in MilCAN message transmission cycle slots.

Description Text description for this message.

The VSI GUI flooding information grid view is shown in figure 4.6. The displaying grid is editable

by the user, where the fields MsgID, Priority, StartSlot, PeriodSlots and message description

can be changed and saved.

50

Figure 4.6: VSI GUI flooding information grid view

4.5.2 Message configuration

To manage an uninterrupted reconfiguration of a node the following routine needs to be

followed. The VSI GUI needs to establish connection to the segment that the desired node is

connected and retrieve the network topology as displayed in the left part of figure 4.7. After

successfully retrieving the topology the following steps need to be followed as shown in figure:

1. The desired CAN interface of the node that will be reconfigured needs to be selected.

2. Put the node in configuration mode by loading the bootloader by pressing the MilCAN

Configuration Mode button. (The button will change and inform the user that the

node is configuration mode after it receives the acknowledgement message. The

acknowledgement will show also in the History log.)

3. Edit the desired message with the new settings by clicking on the existing value and

type a new one. (Only the fields MsgID, Priority, StartSlot, PeriodSlots and message

description are editable.)

4. Press the Send Message Configuration button to send the configuration to the node.

Immediately after that the acknowledgement message will be displayed in the History

log. (Steps 3 and 4 can be repeated if more messages need to be configured.)

5. Press the Save Message Configuration button in order to permanently save the

messages in the ROM.

51

1

2

3

4

5

Network topology

Flooding information grid

History log

Figure 4.7: VSI GUI overview

When the configuration is complete the node needs to be taken to operational mode by

turning the configuration mode OFF.

4.6 Conclusion

The MilCAN Reconfiguration provides many advantages on maintenance process of a system.

It gives the opportunity to a user without any programming knowledge to be able to repair a

system and adjust it according to the present requirements. The Node Reconfiguration covers

the software side of the maintenance like configuring the message set for every node and

upgrading the firmware without the need to utilise the whole network unusable.

The MilCAN Reconfiguration is consisted by three parts, the bootloader that is located in the

device’s software which then communicates through the Reconfiguration Protocol with the VSI

Network Management System that provides control functionalities for all the available

operations. Because of the Node Reconfiguration it’s possible to connect to different vehicles

and access the nodes remotely from a central location.

52

Chapter 5 MilCAN Fault Tolerance Layer

5.1 Introduction

Safety critical applications depend on networks that provide continuity of service which

require redundant network architectures. To provide high level redundancy with COTS CAN

equipment is hard. For CAN to become deterministic, MilCAN is introduced which is located

between the application layer and the physical layer with no need for any modification to the

latest. For the same reason to add continuity of service the Fault Tolerance layer is used, which

is located between the application layer and the MilCAN layer.

The design of the MilCAN Fault Tolerant (FT) layer is based on the ability to transparently inter-

connect the application layer to multiple buses using a common interface. To achieve inter-

operability between all the FT enabled devices proposed MilCAN protocol additions were

created. These additions include also the proposed expansion of an already existing MilCAN

message for the FT layer use. Additionally, to provide different level of service depending the

device and system configuration, the Fault Tolerant operation needs to be broken in to three

different blocks. Since MilCAN Fault Tolerance is a software solution, a software protection

had to be designed to offer the benefits of a hardware gateway, without the use of any extra

hardware.

In this chapter the overall Fault Tolerant layer design is discussed. The individual components

for establishing communication between the FT layers of different devices are described, and

their functionality is presented. The approach followed to break the FT layer operation into

different individual blocks is discussed, along with the additions required to offer Bubbling

Idiot protection. [Oikonomidis'08]

5.2 Design

The purpose of the MilCAN (FT) layer is to manage and operate the physical connections of the

device to the MilCAN network. The FT layer is transparent to the application layer and

manages and is operating the two or more MilCAN buses in order to achieve continuous

operation. The application layer is interfaced to the FT layer following a predefined Application

Programming Interface (API) which acts as a single virtual MilCAN bus as can be seen in figure

5.1. This allows the use of more than two buses without the affecting the application on the

device. The best operational condition is influenced by the working environment of the buses

and the physical condition of the network at a given time. In an ideal environment everything

should work flawlessly according to the theoretical specification, but in practice and under

53

stressful and demanding conditions this is not the case. Another main design characteristic of

the FT layer is that devices that have the FT layer are compatible and can operate with other

devices that do not have the FT layer.

Fault Tolerance

Layer

MilCAN Layer

App Layer

Virtual MilCAN bus

MilCAN

bus 1

MilCAN

bus 2

CAN bus 1 CAN bus 2

Figure 5.1: MilCAN Fault Tolerant design

Most fault tolerant protocols are using dual bus redundancy to provide more stability on the

network. It is therefore proposed as an optional enhancement for MilCAN, depending on the

intended application, to have a dual bus where one of the buses can be operating as a primary

bus (P-bus) (1Mbps) and the other as a secondary bus (S-bus) (250Kbps, 500Kbps, 1Mbps). In

case there is malfunction (physical or data link layers) with the P-bus the S-bus should take

over. Because the S-bus is to be used for fail safe solutions it is very important to be able to

operate under different conditions. Fail safe is when a component directly reaches a safe state

or is brought to a safe state by a special action [Isermann'02]. Where fail silent is when a

component exhibits quiet behaviour externally and therefore does not wrongly influence other

components [Isermann'02]. A problem that arises through this technique is that when using a

bus with four times less bandwidth from the primary, it could result in messages having to be

reallocated to new slots in order to keep the same transmitting periods, and the increase in

the load would not allow all the messages to be transmitted at the intended time. If this is to

be resolved, then smart algorithms should be used in order to filter messages, before they are

transmitted by the node, to ensure the reduction of the required bandwidth.

54

Other fault tolerant systems use bus guardians. The transmitting node informs the bus

guardians as soon as the synchronous messages are to be transmitted. This way they are able

to know when to allow the node to transmit over the bus. As MilCAN is a purely software

based protocol solution on generic CAN hardware, the use of bus guardians will have to be

hardware independent. Using the “flooding” methodology at power up and at regular intervals

an independent node can monitor each of the buses to detect any possible faults propagating

on the bus. In an integrated architecture, this node would be the bridge connecting the dual

bus segment. Using this methodology coupled with rescheduling plug-n-play makes fault

tolerance possible. [Oikonomidis'09]

5.3 MilCAN FT Layer components

To be able to add the FT functionality to the MilCAN various new components had to be

designed. The main new component is the MilCAN FT Master which plays the role of the

MilCAN coordinator. It is responsible of the whole MilCAN FT operation and is dynamically

selected. The MilCAN FT Master is capable of controlling the rest of the devices with the use of

the MilCAN FT Master Frame which is capable of changing various key settings in the FT layer

configuration such as bus selection and speed. For the MilCAN FT Master to have an

operational overview of the devices that are connected the MilCAN Alive Message has to be

extended the required information. The new extended Alive Message is transmitted by all the

devices, to inform the FT Master of their status.

5.3.1 MilCAN FT Master

The MilCAN FT Master is responsible on collecting FT information transmitted by the rest of

the MilCAN FT devices connected on the same network with the help of the extended MilCAN

Alive Message. According to these information the MilCAN FT Master is coordinating the

operation of the FT layer on all the devices in the same network. To manage the operational

coordination, the FT Master Frame is used. This frame contains the commands that the rest of

the devices must follow.

The number of nodes designated as potential MilCAN FT Master within a system is in the

responsibility of the system designer. There shall be at least one potential MilCAN FT Master

per bus segment. The MilCAN FT Master should not be considered the same as the MilCAN

Sync Master. The MilCAN FT Master follows the same election technique as the MilCAN Sync

Master but the system designer may choose different potential MilCAN FT Masters from the

potential MilCAN Sync Masters.

55

Following a reset, each device designated as a potential MilCAN FT Master must wait for the

receipt of a MilCAN FT Master Frame. If a MilCAN FT Master Frame is not received within a

timeout period then this node shall assume the role of MilCAN FT Master and transmit an FT

Frame Message. The FT Master Frame timeout period is application specific and is

recommended to be double the FT Master Frame period. The system designer should specify

the actual value of the FT Master Frame timeout period.

The protocol that will let other nodes to assume the role of the FT Master, must ensure that

the potential FT Master with the highest priority will eventually become the FT Master. If the

FT Master with the highest priority is non-functional then the next highest priority potential FT

Master will become the system FT Master.

5.3.2 MilCAN FT Master Frame

The operation of fault tolerant nodes shall be co-ordinated by the FT Master Frame message.

The FT Master Frame is transmitted by the FT Master node only, to all operational buses.

Devices connected on the network should adjust their bus configuration according to FT

Master Frame. The information that the FT Master frame carries are the master ID, active bus,

bus status, bus speed, weight of bus and FT msg counter. The structure of the frame can be

seen in table 5.1.

Table 5.1: FT Master frame structure

Header Payload

Msg ID 0 1 2 3 4 5

0x0090 Master ID Active bus Bus status Bus speed
Weight of
bus

FT msg
counter

Master ID Field – this field (payload byte 0) shall be used to identify the Master node that

transmits the FT Master Frame. When there is a message been transmitted the source ID

address is included in the header of the frame according to the MilCAN specifications. But if

there is a bridge or router that retransmits the frame on the bus and changes the header Node

ID, the Master node ID in the payload reassures us that the nodes are going to receive the

correct message. According to the MilCAN specifications any node can take values from 0x01

till 0xFF, the same restrictions apply for the value of master ID field (table 5.2).

Table 5.2: Master ID field of the FT Master frame

Data Byte No No. Bits Limits/ Range Comments

Master ID 0 8 0x01 – 0xFF Can take any value from 0x01 to
0xFF as MilCAN node ID restriction
apply.

56

Active bus field – this field (payload byte 1) shall be used to identify the active bus that carries

on the communication. When a device receives a FT Master frame with a different active bus

than the one that is currently using, it should switch immediately to the new bus instructed by

the FT Master. The value of the active bus field depends on how many MilCAN buses are

available on any system configuration. The FT Master decides the best available active bus

according to its weighted bus selection algorithm. If the Active bus value is equal to 0 then that

means that there none active buses present (table 5.3).

Table 5.3: Active bus field of the FT Master frame

Data Byte No No. Bits Limits/ Range Comments

Active bus 1 8 0 - 8 Can take any value from 1 to as
many available buses are available
but less or equal to 8.

Bus status field – this field (payload byte 2) shall be used to identify the status of the available

MilCAN buses according to the FT Master. Each bit of the field represents each bus, where the

value 1 means operational and value 0 non-operational. For example a system with 3 MilCAN

buses where bus 1 is non-operational, bus 2 is non-operational and bus 3 operational the Bus

status field will be equal to 4. The purpose of this value is to report the status of the buses at

any given time for system monitoring and diagnostic table 5.4.

Table 5.4: Bus status field of the FT Master frame

Data Byte No No. Bits Limits/ Range Comments

Bus status 2 8 0 - 255 Can take any value from 1 to 255
for 8 healthy buses.

Bus speed field – this field (payload byte 3) shall be used to specify the speed of each bus

available in the system. Each bus is represented by 2 bits which can have the following values:

 1000kbaud = 3

 500kbaud = 2

 250kbaud = 1

For example at a system that has 3 MilCAN buses when bus 1 operates at 1000kbaud, bus 2

operates at 500kbaud and bus 3 operates at 250kbaud the bus status field will be equal to 27.

When a device receives a FT Master frame and the Bus speed field indicates a different

operating speed for the specific bus, then it is required by the device to change to the

indicated speed as soon as possible (table 5.5).

57

Table 5.5: Bus speed field of the FT Master frame

Data Byte Order No. Bits Limits/ Range Comments

Bus speed 3 8 0 – 255 1000kbaud = 11 (3)
500kbaud = 10 (2)
250kbaud = 01 (1)
Can take any value from 0 to 255.

Weight of bus – this field (payload byte 4) shall be used to identify the weight of the

transmitting bus. This value is provided by the FT Master after adding the weight value of each

active device connected to the specific bus (table 5.6).

Table 5.6: Weight of bus field of the FT Master frame

Data Byte Order No. Bits Limits/ Range Comments

Weight of bus 4 8 0 – 255 Can take any value from 1 to 255.

FT msg counter field – this field (payload byte 5) shall be a counter that operates in the range

0 to 255. When the counter overflows, it shall be reset to 0. This counter must be used to

count how many FT Master Frames have been transmitted in order to detect any messages

that have been lost or received in the wrong order. Only the latest message will be kept and

older ones will get discarded (table 5.7).

Table 5.7: FT msg counter field of the FT Master frame

Data Byte No No. Bits Limits/ Range Comments

FT msg counter 5 8 0 – 255 Can take any value from 0 to 255.
On reaching the value 255 the
counter will be reset to 0 for the
next frame.

The minimum transmission frequency of the FT Master Frame by the FT Master shall be 1 Hz.

In case of any change in the status of the buses an asynchronous FT Master Frame shall be

transmitted in order to continue the normal operation of MilCAN by instantly coordinating the

rest of the nodes. The FT Master message must be transmitted on all available operational

buses. If the bus is not operational then there should be no attempt to transmit on that bus.

5.3.3 MilCAN Alive Message Extended

All nodes on the bus shall transmit an Alive message to indicate the overall status of the node

according to the MilCAN specifications. There have been some modifications on the Alive

message payload in order to provide some extra information required for the MilCAN FT

operation. The extended version of the MilCAN Alive message is based on the MilCAN Alive

58

Message with seven extra payloads. Since the structure of the Message is based on the original

MilCAN Alive Message, the extended version remains compatible with non FT devices. The

Alive message structure share similarities with the FT Master frame except the ones

mentioned below (table 5.8).

Table 5.8: Alive Message frame structure

Header Payload

Msg ID 0 1 2 3 4 5 6 7

0x62XX
Device
status

Master
ID

Active
bus

Bus
status

Bus
speed

EWRN
flag

Weight
of node

msg
counter

Msg ID field – this field has primary-type 0x62 and the node ID as a sub-type according to the

MilCAN specifications.

Device status – this field (payload byte 0) shall be used to inform the status of the transmitting

node on the network. The values that allowed for this payload can be seen in table 5.9. This

field is defined by the MilCAN specifications.

Table 5.9: Device status field of the alive message

Data Byte No No. Bits Limits/ Range Comments

Device status 0 2 0 – 3 Disabled = 00
Enabled = 01
Error indicator = 10
Not available or not installed = 11

Master ID Field – this field (payload byte 1) shall be used to identify the Master node for the

specific node which transmits the alive message.

EWRN field – this field (payload byte 5) shall be used to inform about the current status of the

Error Warning Status (EWRN) flags of each bus individually. Each bit of the field represents

each bus, where the value 1 means EWRN flag on and value 0 EWRN flag off. The EWRN

indicates that at least one of the error counters in the EML has reached the error warning limit

of 96. EWRN is reset, if both error counters are less than the error warning limit [Infineon'00].

This indication helps in the prevention of any bus failures (table 5.10).

Table 5.10: EWRN flag field of the alive message

Data Byte No No. Bits Limits/ Range Comments

EWRN flag 5 4 0 – 15 Can take any value from 1 to 15 for
4 healthy buses.

59

Weight of node – this field (payload byte 6) shall be used to inform the weight of the

transmitting node on the network. The FT Master node takes into consideration the weight of

every device connected on the network and uses this information in the weighted bus

selection algorithm to choose the active bus when there is a bus failure (table 5.11).

Table 5.11: Weight of node field of the alive message

Data Byte No No. Bits Limits/ Range Comments

Weight of node 6 8 0 – 255 Can take any value from 1 to 255.

The minimum transmission frequency of the Alive message by each node shall be 1 Hz. In case

there are changes on the nodes status, the node should transmit asynchronous an Alive

message including the new status information. The Alive message must be transmitted on all

available operational buses. If the bus is not operational then there should be no attempt to

transmit on that bus.

5.4 MilCAN FT Layer operation

The main aspect of the design is the use of multiple hardware platforms and being able to

operate on networks with FT enabled devices and FT disabled devices. Because the FT Layer

requirements are minimal it is compatible with most CAN enabled devices. Not all the devices

on a network are required to have the FT Layer, but it is expected for them to be able to

communicate with each other (FT and non-FT). Although they are capable on communicating

with each other, in a case of fault the non-FT devices will not be able to guarantee a

continuous operation since they are missing the FT capabilities.

The advantages that the MilCAN FT layer provides are separated in to three blocks (figure 5.2):

bus error detection, error recovery and bus switching. The error detection and the error

recovery are available on all devices using the MilCAN FT layer that meet the MilCAN FT

requirements. The bus switching capability is only available on devices that are connected on

more than one MilCAN bus that are managed by the MilCAN FT layer. As a result even devices

that are connected to a single MilCAN bus have an advantage over the devices that do not

have the MilCAN FT layer.

60

Error detection

block

Bus switching

block

Bus recovery

block

Figure 5.2: MilCAN FT Layer design

5.4.1 Error detection

The Error detection operation is based on two parts. The 1st part is located in every device that

has the FT layer and the 2nd part is active only in the potential MilCAN FT Masters. In order for

the Error detection of the FT layer to operate properly, these two parts need to be

synchronised. For the synchronisation of these parts the Alive Message is used, by informing

the potential FT Masters; the current operational status of the devices present in the network.

The Alive Message must always be transmitted over all operational buses available. The error

detection operation can be seen in figure 5.3.

Detect errors on

connected buses

Store updated

information to

Database

Node Database

All devices Potential FT Masters

Transmit status

update

Receive status

update

Figure 5.3: Error detection operation

61

5.4.1.1 Error monitors

To detect errors on the connected buses, the FT layer monitors continuously the CAN

controller and the MilCAN layer. The error detection capabilities of the CAN controller are

based on the Error Management Logic (EML), Receive Error Counter (REC) and the Transmit

Error Counter (TEC) of the CAN controller. When the TEC errors become more than 255 then

the CAN controller gets in the Bus Off state, where the controller is disconnected from the bus

and become non-operational. When this happens the FT layer immediately detects the change

and flags the bus as non-operational and tries to resolve the problem accordingly.

Additionally, there is the bit EWRN in the Status Register, which is set if at least one of the

error counters equals or exceeds the error warning limit of 96. EWRN is reset, if both error

counters are less than the error warning limit. The EWRN status is included in the Alive

message transmitted by the FT enabled devices and helps to forecast potential bus problems.

The Weighted Bus Selection (WBS) algorithm at the FT Master node takes the EWRN flag into

consideration, when the FT layer is trying to resolve any faults on the bus.

Since the communications is carried with the MilCAN protocol controlled by the MilCAN layer

is very important the operation of the MilCAN layer to be overlooked and checked. The

MilCAN protocol has three modes: Pre-Operational Mode, Operational Mode and System

Configuration Mode. When a device is in Pre-Operational Mode means that a valid Sync Frame

message is required is order for the device to resume back to normal operation. When a

device is in Pre-Operational Mode the MilCAN FT Layer assumes that the bus is not operational

and treats the bus as a faulty one. These information are gathered by the FT Layer which is

responsible to act accordingly by informing the potential FT Masters with the use of the Alive

Message.

5.4.1.2 Node Database

Every potential FT Master device is required to keep a database of all available nodes in the

network. In this database the latest status update of each node is stored; to be evaluated by

the WBS algorithm to decide the possible available solution. If the MilCAN FT node seize to

exist/operate, the next available potential MilCAN FT node will be voted and start acting as the

MilCAN FT Master. The new Master needs to be prepared to operate with the least possible

delays. To achieve that the Node Database needs to be already populated with the latest

status updates. For this reason all potential MilCAN FT Masters need to store the received

updates. The data stored on the database, are the data received with the Alive message.

62

5.4.1.3 Failure Mode and Effect Analysis (FMEA)

To cover any potential failures of a MilCAN network the Failure Modes and Effects Analysis

(FMEA) table in table 5.13 was constructed. The FMEA identifies all components, failures,

causes, and effects within a system for classification by the severity and likelihood of the

failures [Isermann'02]. In table 5.13 are included some of the possible faults that may occur on

a MilCAN node and bus. For every fault has specified probability of occurrence and system

severity. Also it is specified how these faults are going to be detected, and how to recover

them.

Table 5.12: Mishap severity categories

Description Category

Catastrophic Class I

Critical Class II

Marginal Class III

Negligible Class IV

Table 5.13: Failure mode analysis results for general purposes

Faults Failures

Criticality

Detection Recovery Probability of
Occurrence

Severity to
System

Cable broken Non responsive Medium Class I
Alive message/
Isolated node
status

Use other bus

Cable shorting Invalid data Medium Class I
CAN error
counters

Use other bus

Loose cable
connection

Invalid data/
Undelivered
data

Medium Class I
CAN error
counters/ Alive
message

Use other bus

External
interference

Invalid data Medium Class II
CAN error
counters

Bus speed
change/ Use
other bus

Message
corruption

Invalid data Medium Class II
CAN error
counters

Bus speed
change/ Use
other bus

Power down Non responsive Low Class I Alive message Not defined

Node
dysfunction

Babbling idiot Low Class I

High frequency
transmission

Remote nodes
ignore msgs

Restart/
Shutdown

Alive msg
counter not
incremented

Watchdog

Transceiver
dysfunction

Babbling idiot Low Class I
High frequency
transmission

Restart/
Shutdown

Application
software bugs

Application does
not refresh data

Medium Class I
Alive msg
counter not
incremented

Remote nodes
ignore msgs

Babbling idiot Low Class I Watchdog
Restart/
Shutdown

63

5.4.2 Bus switching

Depending the system design, if there is more than one bus available, then the Bus switching

mechanism must be active. If there is only one bus available then only the Bus recovery

mechanism shall be active.

When there is problem with any of the buses, the nodes are responsible to transmit the new

updated status to the potential FT Masters. This message should be send through all available

MilCAN buses. The Alive message should contain the up-to-date status of the node and the

value “0” for the active bus field. Upon reception of the Alive message only the FT Master

should coordinate the switch, with the use of FT Master Frame. The FT Master must decide the

next active bus according to the results from the WBS algorithm.

Received updated

status

Process new

status through

WBS

Bus different

than current?

CMD devices to

change bus

Continue

operation
No

Yes

Figure 5.4: Bus switching - MilCAN FT Master device

When the result of the WBS algorithm is different than the current active bus, then the FT

Master node commands the FT Slave nodes to change to that bus by sending the MilCAN FT

Master Frame. The transmission of this frame will be asynchronous over all the available buses

and will be directly after WBS came with the new result. If there is no change on the active bus

then there must be no asynchronous transmission of the FT Master Frame. The FT Master

Frame is periodic during normal operation, to prevent any synchronisation issues that may

arise between the devices during the switching operation. It also prevents any devices that

64

powered on or reset to start using the correct bus. The operation of the FT Master device can

be seen in figure 5.4.

When a FT Slave device receives the command (FT Master Frame), it switches to the new bus if

different from the current one. The switch must be immediate if the suggested bus is

operational, otherwise it should remain to the previous bus if operational. By doing so, in case

the bus is split, the device will be able to reach a smaller number of devices instead of none.

The operation of FT Slave devices can be seen in figure 5.5.

Received CMD

Bus different

than current?

Change bus

Continue

operation
No

Bus

operational?

Yes

Yes

No

Figure 5.5: Bus switching - MilCAN FT Slave device

5.4.2.1 Weighted Bus Selection (WBS) algorithm

When according to the predefined conditions there is a need to change the active bus then the

weighted bus selection algorithm determines which bus will be the next active. This selection

follows the conditions at this specific order (figure 5.6):

1. Importance of nodes connected on the bus (weight of node).

2. Level of errors on the bus (EWRN).

3. Operating speed of the bus.

At any given time all the potential FT Master nodes are responsible to be aware of the above

information.

65

Select buses with

highest weight

Select buses with

EWRN flag off

Number

buses >0

Number

operational

buses >0

Select buses with

highest speed

Yes

Select buses with

EWRN flag on
No

Yes

Exit WBS

Enter WBS

Return 0No

Return selected

bus number

Figure 5.6: Weighted Bus Selection

1. The importance of the nodes is defined by the system designer by assigning different

weight values to every node, with the highest value to represent the highest priority.

In case of emergency and with no fully operational buses available to the majority of

the nodes, the bus with the highest score will be selected. The system will continue its

operation with that till another bus is detected / recovered, where the weighted bus

selection algorithm will determine if the active bus should change.

66

2. The level of errors of the future active bus must be low in order to assure that there

are less chances of the bus under heavy load to become faulty. The EWRN flag indicate

if there will be a rise of errors on the bus, which will help the WBS to choose a more

suitable bus.

3. The system designer may choose the secondary buses to operate on different bus

speeds or to have variable bus speeds which will change during the recovery process.

Higher priority is given to the buses with higher operational speed and lower error

level.

5.4.3 Error recovery

When a bus becomes non-operational, the FT layer tries to recover it back to fully operation by

initiating the bus recovery mechanism. During this process the following procedure should be

followed.

1. Disable MilCAN on that bus.

2. Enable MilCAN on that bus.

3. Inject test frames on the bus and expect response from the FT Master. (ping-pong)

4. Monitor error level on the bus.

To follow the above procedure and archive an operational bus that will be capable on working

properly at any conditions, the error recovery mechanism is broken down to three

mechanisms. In case more than one bus needs to be recovered then the Bus recovery

mechanism will operate on all the faulty buses at the same time. The operation of the error

recovery can be found in figure 5.7.

5.4.3.1 Bus restart

When the number of errors in the Transmit error counter becomes higher than 255 then the

CAN controller goes to a Bus off state where is completely disconnected from the bus. To get

the CAN controller back to the Error active state, it needs to be restarted. The MilCAN FT layer

is controlling this operation to revert the bus back to operational mode. To restart the CAN

controller, it restarts MilCAN for the specific bus by deactivating it and activating back again.

During this procedure the MilCAN bus is reinitialised. Between the deactivation and activation

the operational speed of MilCAN may change according to the bus speed change part of the

Error recovery algorithm. It is suggested that the time delay between the deactivation and

activation should be 200ms, but it is up to the system designer to decide any other more

appropriate value for a specific system.

67

Bus healthy?

Disable bus

Counter = 0

200ms delay

Counter = 3?

Bus drop one level

speed

Bus speed at

lowest?

Stay at lowest

speed

Enable bus

200ms delay

Test bus

Counter +1

no

yes

no

yes

no

yes

Figure 5.7: Error recovery block

5.4.3.2 Bus speed change

When the bus is not recoverable then the bus recovery mechanism could try to drop the

operational speed of the bus. When the bus is operates under lower speed it becomes less

sensitive on external interferences as a result the bus can become operational again by

68

working at lower bus speeds. Every three restart attempts the bus should drop speed. This is

up to the system designer, depending the operation of the system.

It is very important to have a synchronised operation between all the nodes connected to the

bus. All the nodes connected to the specific bus need to change to the same operating speed.

When a node is operating on different bus speed then it will introduce error frames on the

bus. To avoid this, the FT Master is responsible to transmit the speed change command to all

the connected nodes. The transmissions should happen through all available healthy buses

with the use of the FT Master Frame. To avoid any missed transmissions, the message needs to

be transmitted three consecutive times. This covers the case that the nodes that are

connected to the faulty bus have at least one other fully operational bus that will receive the

command messages from.

In the case that the node is not connected to any other healthy bus or is operating on a single

bus, the bus speed must not be changed. If the devices start rotating to the available operating

speeds, they will get unsynchronised and impossible to find a common operational speed

between all of them. It is suggested for some configurations the system designer must

configure one bus always to operate at a low constant speed to be used as a backup bus and

for the FT Master Frames to be transmitted from.

5.4.3.3 Scheduling

In order to recover the bus back to operational mode the CAN speed may change, so the bus

becomes less sensitive. However, this could affect the scheduling of the application, because

at lower speeds the MilCAN cycle becomes longer and the messages that are synchronous and

assigned to specific slots will be transmitted with delays since MilCAN messages are scheduled

according the sync frame. If there is going to be a bus speed change then the schedule should

change also to ensure real time communication. To overcome this problem there are various

options and is up to the developer to choose which one fits him better. The system designer

has three options to follow in case of bus speed drop:

 Use different schedules for every given CAN speed hardcoded.

 Remain with the same schedule as in normal operation speeds.

 Increase the frequency of HRT MilCAN frames and drop the frequency of the SRT

MilCAN Frames.

 Increase the frequency of HRT MilCAN frames and drop completely the transmission of

the SRT MilCAN frames.

69

This way there will be bandwidth available for the higher priority messages. If the operation of

a node is not so important, it can stop transmitting messages completely. Any kind of solution

adopted has to make sure that the limit of the bandwidth of the bus is not exceeded. There is a

solution for every operational condition.

5.5 Babbling idiot

In a distributed hard real-time system based on a broadcast bus for inter-node communication

it is important to prevent a single faulty node from monopolizing the communication bus. In a

time-triggered system, in which messages are broadcasted according to a pre-determined

transmission pattern, this kind of failure is characterized by the faulty node transmitting

messages at arbitrary points in time thus corrupting the transmissions on the bus. This type of

failure is known as the babbling idiot failure [Temple'98].

The use of a bus guardian added to each node to protect the communication bus from the

babbling idiot failure, is usually used by safety critical networks. Since the MilCAN FT Layer is a

software solution, the proposed solution has to be software based. The regular transmission

pattern of a time-triggered system is exploited in order to enforce a fail-silent behaviour of the

node in the time domain. Using fail-silent nodes greatly reduces the complexity of designing

distributed fault-tolerant systems.

A node is considered to be fail-silent if it exhibits the following behaviour [Temple'98]:

 The node sends correct messages at specified points in time, that can be verified as

being correct by all non-faulty receivers.

 The node sends corrupt messages at specified points in time, that can be identified as

being corrupt by all non-faulty receivers. These messages are discarded.

 The node sends no messages at all.

5.5.1 Message filtering

By using a message filtering system, devices that start acting as babbling idiots are tried to be

recovered and if that fails then it will stop any communication through MilCAN. To manage

that, each node has a list of the transmitted messages on the system and their transmission

frequency. When the frequency of received messages is higher than the expected one, the

transmitting node is treated as a Babbling Idiot (BI). When the received message is not

included in the list, its frequency has to be less than the default one assigned by the system

designer. When a babbling idiot is detected by a node, it is reported on all healthy buses by

that node using the FT BI report message. The FT master then collects the reports from the

70

nodes and analyses them. According to this information it determines if the problem is on the

originator of the messages or in the node that reported the error. The node is then warned by

the FT Master by transmitting the FT BI warning message and will try to recover by itself by

running a recovery routine. The recovery routine is custom for every node and assigned by the

system designer. When the node is still not operating properly after being warned for a

specific number of times, the FT Master transmits the FT BI hard-reset message. If even after

the hard-reset command the node is not operating properly, then the FT Master transmits the

FT BI hard-kill message. When a node receives the hard-kill command, it should manually

shutoff MilCAN, interrupts and the application. Also as an extra safety measure any messages

received from a babbling idiot node, must not been forwarded to the application layer.

5.5.2 FT BI report

The FT BI report is transmitted by any node, to all operational buses. The FT Master node

collects these reports and after analysing them, determines which node is the Babbling Idiot.

Table 5.14: FT BI report

Header Payload

Msg ID 0 1

0x0094 Node ID BI node ID

BI node ID Field – this field (payload byte 1) shall be used to identify the babbling idiot node.

Table 5.15: Master ID field of the FT Master frame

Data Byte No No. Bits Limits/ Range Comments

BI node ID 1 8 0x01 – 0xFF Can take any value from 0x01 to
0xFF as MilCAN node ID restriction
apply.

5.5.3 FT BI warning

The FT BI warning is transmitted by the FT Master node only, to all operational buses. When a

node with matching BI node ID receives this message, executes the recovery routine that has

been assigned by the system designer.

Table 5.16: FT BI warning

Header Payload

Msg ID 0 1

0x0091 Master ID BI node ID

71

5.5.4 FT BI hard-reset

The FT BI hard-reset is transmitted by the FT Master node only, to all operational buses. When

a node with matching BI node ID receives this message, should reset itself.

Table 5.17: FT BI hard-reset

Header Payload

Msg ID 0 1

0x0092 Master ID BI node ID

5.5.5 FT BI hard-kill

The FT BI hard-kill is transmitted by the FT Master node only, to all operational buses. When a

node with matching BI node ID receives this message, should manually shutoff MilCAN,

interrupts and the application.

Table 5.18: FT BI hard-kill

Header Payload

Msg ID 0 1

0x0093 Master ID BI node ID

5.5.6 Watchdog

The microcontroller’s watchdog is responsible to reassure a continuous error free operation of

the controller. The watchdog is used to detect any application malfunctions during the

operation of the node. The use of the watchdog is suggested but it is up to the system designer

to decide. The FT layer is responsible to reset the watchdog during its operation on predefined

intervals. If it fails to do so, the watchdog will reset the hardware of the microcontroller. When

a hard-kill command is received by the node, the watchdog has to be disabled. By using the

watchdog, the possibility that the device does not receive any MilCAN messages in order to be

controlled by the FT Master is eliminated.

5.6 Conclusion

Within this chapter the overall design of the MilCAN Fault Tolerance Layer is discussed from

the theoretical and conceptual perspective. There is a detailed explanation of the FT layer

design, and how it operates. It also includes the MilCAN FT Layer vital components which are

the communication messages used between MilCAN FT devices. The operation of the layer is

analysed as whole and broken down to block responsible for different parts of the FT

operation. Last is discussed how to solve the Babbling Idiot problem without the aid of

hardware support.

72

The development of a FT layer located between the Application layer and the MilCAN layer is a

key contribution to the development of the High Availability MilCAN. This standardisation

expands the use of Multiple MilCAN buses seamlessly without affecting the application layer.

Furthermore, an expansion is introduced to the MilCAN protocol allowing the communication

between the FT layers of all connected devices. The MilCAN FT layer operation mechanisms

are presented separately, task dependant. These mechanisms are compatible with devices

managing one or more MilCAN buses and can coexist with non FT devices. Additionally a

software solution has been presented, how to resolve babbling idiot problems without the use

of extra hardware. This solution has introduced an additional set of instructions that are used

for the communication of the devices to resolve babbling idiot issues.

73

Chapter 6 Testbed for vetronics evaluation and verification

6.1 Introduction

This chapter the development testbed and VSI testbed are introduced. The High Availability

MilCAN is tested and evaluated on two different testbeds. The components compromising the

complete systems are listed and investigated, to clearly identify the capabilities of the

platforms along with its current status and operations.

The High Availability MilCAN has been developed and evaluated using the testbeds, starting

from its initial construction phase following to the current setup. As a core part of the testbed,

the High Availability MilCAN is benchmarked with the operational conditions that are within

the limits of the testbeds to be simulated. The individual systems that are part of the testbed

add to the overall “complexity” of the model created, upon which the testing vectors are

applied.

The measurements gathered for the performance are based on various traffic scenarios that

are programmed to the system to show the response of the High Availability MilCAN operation

in term of message latencies. The operation of the MilCAN Fault Tolerance has been evaluated

based on various fault scenarios that were introduced in to the system to show the reaction of

the MilCAN High Availability.

6.2 Development testbed layout and components

The development testbed is a single MilCAN segment connected to two desktop computers. It

provides a controlled environment appropriate to be used during the development and later

to verify the operation of the system. The testbed is constructed by using of the self

equipment.

6.2.1 Hardware devices

The testbed includes devices that can be categorised as embedded systems and computer

systems. The embedded systems are four microcontrollers and the computer systems are two

workstation PCs.

Table 6.1: Infineon C167CS specifications

Family Siemens C166

Arch 16bit RISC

Core speed 20MHz

FLASH 128kb

RAM 64kb

Features Dual CAN (onchip)

74

The embedded development boards are phyCORE167 platforms bearing the Infineon C167CS

processor (C167CS, table 6.1). The computer platforms consist primarily of commercial

workstations, their specifications range from low-profile embedded systems to high- end

systems (table 6.2).

Table 6.2: Computer systems specifications

Operation CANoe Data login

Family i386

Arch 32bit 64bit

CPU Pentium 4 Quad Core 2

FPU Yes

Core(s) speed 1.70GHz 2.40GHz

Memory 1GB 4GB

Memory speed 133MHz 333MHz

Flash N/A

Network 10/100Mbit-FDX Ethernet

The CANoe computer is connected straight on the two CAN buses with a CANcardXL (CAN

card). Its purpose is to collect data from the two CAN buses and display them. The Data login

computer is connected straight on the microcontrollers with the serial RS-232 interface. The

microcontrollers export vital operational information through the serial port and the Data

login computer collects and display them. The configuration and layout can been seen on

figure 6.1. The Data login computer is also connected on the two CAN buses with a

CANstressDR in order to introduce problem and errors on the buses.

CAN0

CAN1

Node 1 Node 2 Node 3 Node 4

CANoeCANstressDR

Figure 6.1: Development testbed topology

75

6.3 VSI testbed components and layout

The Vetronics Research Centre (VRC) prepared a testbed that is a platform that evaluates

vetronic and embedded networks. It is being used to develop, test and demonstrate current

and future technologies. The testbed accommodates three different segments Automotive,

Utilities and Multimedia which are based on MilCAN. The three segments are interconnected

through MilCAN and Ethernet using the VSI Bridge which is configured through the VSI GUI. For

the VSI testbed custom software and hardware has been developed, except the large number

of off-the-shelf hardware that has been used.

6.3.1 Hardware devices and components

The testbed includes devices that can be categorised as embedded systems and computer

systems. For demonstration purposes a remote controlled vehicle which is connected

wirelessly to the testbed is developed and built. A large number of the hardware components

are off-the-self, but also specialised hardware has been developed by the VRC for the VSI

Bridge.

6.3.1.1 Embedded systems

The embedded development boards are the phyCORE167 platforms bearing the Infineon

C167CS processor (C167CS, table 6.1). The devices are modified to support in-cable power

provided by the MilCAN bus. The modification provides DC-DC voltage regulation and filtering.

The two nodes attached to the VSI Bridges are based on the C167CS-USB.

6.3.1.2 Computer systems

The computer systems used for the testbed, consist primary of of-the-self workstations and

the specification range from low to high end systems as can be seen in table 6.3. The BRG-

E100LX and BRG-ITX are connected to the C167CS-USB and are responsible to interconnect the

MilCAN segments and the backbone. These computers are running instances of the VSI Bridge

which is remotely configured by the VSI GUI. The Crew station is an industrial computer

equipped with a touch-screen display. Also two additional displays are attached to the

computer. It is used to display the VSI GUI and video stream coming from the Video server. The

Video server is a computer responsible in capturing, encoding and serving the two stream

input videos. The two sources are a USB webcam with pan and tilt capabilities and a S-Video

input. The video are encoded and streamed to the clients.

76

Table 6.3: Computer systems specifications

Operation BRG-E100LX BRG-ITX Crew station Video server

Family CRIS i386

Arch 32bit

CPU 100LX C3 Nemiah Athlon XP Pentium 4

FPU No Yes

Core(s) speed 100MHz 1GHz 1.47GHz 1.8GHz

Memory 32MB 128MB 256MB 256MB

Memory speed 50MHz 133MHz 133MHz 133MHz

Flash 8MB N/A

Network 10/100Mbit-FDX Ethernet

6.3.1.3 Remote controlled vehicle

For the visual demonstration of the testbed a remote controlled vehicle controlled via motor

controllers through an on-board C167CS was constructed. The C167CS is connected through a

RF link to a node in the testbed which is responsible to transmit the control commands. The

control commands generated from the testbed are transmitted to the remote controlled

vehicle. An on board camera with pan and tilt functionalities is transmitting the video to the

video server which is transmitted to the crew station. Since the remote controlled vehicle is

battery powered, it can be completely independent and remotely controlled. It can move

forward, backwards and turn left and right. All these controls are transmitted from the

steering wheel and pedals devices on the testbed. Additionally the camera movement is

controlled by the joystick controller attached on the steering wheel. In case of signal loss the

vehicle halts and waits for the next valid command.

Figure 6.2: Remote controlled vehicle

77

6.3.1.4 Cabling

For the physical MilCAN network connections a coaxial cable with five wires is used. One pair is

used by CAN data lines, one pair for power, and a separate cable for earth grounding.

Following the MilCAN specifications the two pairs, data and power are individually shielded

and with an overall shield for the whole cable. The connectors used are manufactured for

DeviceNet applications, which is a CAN based protocol. To connect the segments to the

backbone T-piece connectors are used, and for the nodes in the segments drop-boxes which

are connected only by power to the backbone. The nodes are connected to the drop boxes

through custom cables that convert the DeviceNet screw terminal to a DB9 plug.

6.3.2 Network layout

The VSI testbed has three MilCAN segments grouping the MilCAN devices according their

functionality as can be seen in figure 6.3. The three segments are:

 Utilities segment (SEG-U)

 Automotive segment (SEG-A)

 Multimedia segment (SEG-M)

RF (C)

Camera

RF (C)

RF (A)

RF (A)

RF (D)
RF (D)

USB

Accelerometer

USB

Steering wheel

Pedals

USB

Camera controll

etheth

eth
eth

eth eth

Switch

Etrax

Router

Laptop

Router
Etrax

Router

eth
USB

Video

Encoder
Switch

Laptop

VSI-GUI / CANoe

eth
Switch

Bridge Bridge C167

Lights

Engine

Wheels

Automotive

Vehicle RF

GPS receiver

Accelerometer

Power monitor

Utilities Multimedia

Figure 6.3: VSI testbed layout

All segments are connected to the MilCAN backbone to provide power to the segments with a

power only connection bit the CAN bus lines are not connected. SEG-U and SEG-A are

connected to the MilCAN and Ethernet backbone with the use of VSI Bridges. SEG-M is only

78

connected to the MilCAN backbone through a node acting as a MilCAN-to-MilCAN cut-through

bridge.

6.3.2.1 Utilities segment

Electronic devices that are not related to the motion or control of the vehicle are placed in the

Utilities segment. The nodes included in the Utilities segment are:

 Power monitor

 GPS

 Accelerometer

 Vehicle RF

The Power monitor node is responsible to measure the amount of power being drawn by the

MilCAN devices by using an external current transducer. It is important for vehicle systems to

be able to measure the current consumption since electronics may drain the battery of the

vehicle.

The GPS node gets the exact coordinates from the GPS receiver which is connected through

serial interface to the node. The protocol that has been used for the communication with the

device is NMEA.

The Accelerometer monitors vibration and acceleration off the vehicle, a scheme that allows

the prediction of possible mechanical failures due to the extreme operating conditions. The

accelerometer and the power monitor node are responsible for the internal monitoring of the

vehicle.

The Vehicle RF node acts as a link with the remote controlled vehicle which is used to

demonstrate the operation of the vehicle network. The node receives the control messages

from the steering wheel, and pedals nodes and retransmits them to the remote controlled

vehicle. The vehicle transmits to the testbed accelerometer readings taken by the remote

controlled vehicle sensors. The communication is established by the use of a custom

bidirectional communication protocol through digital RF transceivers. This protocol is

bidirectional allowing the control of the vehicle but also the collection of data from the on-

board sensors on the vehicle.

6.3.2.2 Automotive segment

Devices that are directly related with the movement of the vehicle are placed in the

Automotive segment. The nodes included in the Automotive segment are:

79

 Wheels

 Lights

 Engine

 Steering wheel

 Pedals

The Wheels and Lights are demonstrated by virtual means (LEDs) which show the status of the

nodes. The Wheels node represent the wheel movement of the vehicle is displayed with the

use of a row of LEDs that indicate the current wheel position. The Lights node shows the state

of the head lights, break lights and indicators by turning the representing LEDs ON/OFF.

The Engine node represents the throttle control on the engine. For demonstration purposes

the node is connected to an external speaker where the output sound changes according to

the throttle position and gear selected. Low revolutions are represented with a low frequency

output, where high revolutions are represented with a high frequency.

The Steering wheel and the Pedals are essential for controlling the vehicle. The nodes are

connected to external pedals and a steering wheel. The steering wheel also includes a set of

buttons, joysticks and flaps. The buttons are used to control the lights on the vehicle; the

joysticks control the camera movement on the remote vehicle and the webcam located on the

testbed. The flaps control the gears as can been seen in semi-automatic vehicles.

6.3.2.3 Multimedia segment

Devices that are oriented towards the control of audio and visual applications are placed in the

multimedia segment. The nodes included in the Multimedia segment are:

 Camera control

 Dot Matrix Display

The Camera control node is connected to the web camera and can give the commands to

move the camera up/down and left/right. The commands are received from the steering

wheel and are relayed to the webcam through a serial link.

The Dot Matrix Display node is connected to a Dot Matrix monochrome display unit. This

displays status information from the sub-systems of the testbed such as GPS coordinates,

pedals status, engine status, steering wheel direction and power consumption of the system.

80

6.3.2.4 Backbones

The three segments in the testbed intercommunicate through two backbone networks which

are a MilCAN bus and a high-speed (100Mbit) full-duplex switched Ethernet. The MilCAN

network offers deterministic operation and the Ethernet offers high-speed networking. The

MilCAN backbone operates to speeds up to 1Mbit and it is terminated in both ends without

reaching the maximum length of 40 meters. The operational speed for the Ethernet backbone

is 100Mbit. The centre of the Ethernet backbone is a full-duplex Ethernet switch where a

number of devices are connected to it such as VSI Bridges, crew station, video server and a

WiFi access point. [Charchalakis'03]

6.4 Software

Both the development and VSI testbeds required some extra custom or commercial software

to be used during the evaluation and measurement period. To analyse the testbed operation

CANoe from Vector is used and to introduce faults and disturbances CANstress also from

Vector is used. To analyse the log file output taken from CANoe and determine message

latencies a custom software written in C++ is developed. In order to evaluate the testbed

operation a real time monitoring system is developed. This system consists of three parts, the

status transmission system located in the devices with the Fault Tolerant layer, the raw status

collector located in the Data login computer and the status GUI used to display the status of

the connected devices with the help of a GUI.

6.4.1 CANoe

CANoe is an all-round tool for the development, testing and analysis of entire networks. It

supports the user during the entire development process; from planning to start-up of entire

distributed systems. CANoe’s versatile functions and configuration options are used by

network designers, development engineers and test engineers at OEMs and suppliers. The

CANoe user can test and analyse the multi-bus communication and complete systems at the

development work place, during the system integration as well as in the vehicle. By using

hardware data logger during test drives, the logged bus traffic can be evaluated with all CANoe

functions at a later date [Vector'06a].

CANoe was used all the way through the development and measurement stages and it was of

great aid. As can be seen in figure 6.4 CANoe is capturing the raw CAN data transmitted on the

two buses. While capturing the columns that are of interest are the Time, Chn, ID, Name, DLC

and Data.

81

Figure 6.4: CANoe User Interface

Time - What will be displayed in the Time column is configurable between two choices the

time passed since the beginning of the capturing and the time passed since the last message

received with the same ID.

Chn - Represents the channel number of the CANoe probe. As can be seen in figure 6.4 there

are messages received on channel 1 and 2.

ID - Since CANoe is not support MilCAN specifically, the displayed information are treated as

CAN data. In the ID field can be seen the whole header of the MilCAN frame where the priority,

primary ID, secondary ID and other MilCAN header information are included.

Name – In CANoe you are allowed to assign names on predefined messages and process the

real-time data received according to your configuration. Figure 6.5 shows the FT_Master_5

message where individual message characteristics are analysed and presented in an easier

understandable format. As is shown in the figure the CAN0_speed is 1000 which is being

derived from the data of the message.

82

Figure 6.5: CANoe message defining

DLC – The DLC column shows how many bytes are transmitted in the payload of the specific

message.

Data – In the data column the actual data that are being received and are shown separated in

byte sizes.

Except capturing data from the CAN buses CANoe has the ability to inject data to the bus. The

triggering for the injection can vary; the one used during testing was with the press of a

button. Different messages were assigned to different buttons on the computer keyboard.

These messages where used to operate the testing firmware when collecting performance

measurements.

6.4.2 CANoe Log analyser

While capturing data with CANoe, the collected data except being displayed real-time, they

can be also saved in a file in a space separated format. When measuring the performance of

the High Availability MilCAN, the latencies of messages being transmitted and received were

measured. To be able to have as accurate results as possible, thousands of messages were

captured by the two probes of CANoe. In order to be able to find the time difference between

thousands of transmitted and received messages, a custom software that was able to read the

CANoe file format, identify the messages and calculate the time difference was required.

This software is programmed with the C++ programming language and does not have a GUI.

The input will accept a CANoe log file and the output will be a file with the calculated results.

While creating the software, it was realised that C++ is not the most appropriate language for

mathematical calculations with numbers that have many decimal places. For that reason,

decimal numbers have been multiplied with 10.000 to convert it to an integer number. This

way the calculations that follow provide an accurate output that is not affected by the C++

decimal issues.

6.4.3 CANstress

CAN networks are highly tolerant in respect of disturbances of the bus communication and

failures. In order to test whether a system is behaving properly in case of disturbances or

83

failures, a device used to disturb the CAN bus, its physical properties and the logical levels

(recessive and/or dominant) in a targeted, reproducible way. CANstress is a standalone

hardware module that is inserted directly onto the CAN bus. It contains various triggering

conditions and disturbance logics.[Vector'06b]

Figure 6.6: CANstress device

Figure 6.7: CANstress configuration software

In figure 6.6 the actual CANstress device is shown, it has a USB connector that is then

connected to the computer. On the computer using the CANstress configuration software

(figure 6.7) the user is capable to configure the CANstress device to introduce specific

84

disturbances and when to be triggered. There is a wide range of faults that can be generated

with the device, which proves very helpful in order to test the MilCAN Fault Tolerant Layer for

various scenarios and cases.

6.4.4 Real-time monitoring system

During the development period of the High Availability MilCAN it was vital to have a real-time

monitoring / debugging system. The compilers that were used to develop the software for the

devices provide such functionality, but with serious performance and compatibility issues.

Because of that, a custom high efficiency real-time monitoring system is developed. The goal

of this system was to transmit through the serial port data in real time. Also it has the option

to store these data temporary in memory and when requested to transmit all of them in a

burst. The first option is used while debugging and the second when collecting performance

statistics for better accuracy. This system consist three custom software; the first is located in

the actual MilCAN Fault Tolerant layer, the second and third is located in the Data login

computer.

6.4.4.1 Status transmission

The status transmission system is located in the MilCAN FT Layer. On every crucial operation or

decision of the FT layer, the status of every important parameter inside the firmware is

transmitted or saved in the RAM of the device depending the current configuration. The goal is

to use the minimum amount of data and processing power as possible when the data are

transmitted over the serial port to the computer. This is achieved by transmitting as less as

possible and not to convert the actual data values to the ASCII format. The conversion is done

on the computer side were the performance is not an issue. As a result HyperTerminal and

other similar software are not capable to capture the incoming data to the computer correctly.

For this reason a modified version of a serial terminal program is used.

Additionally in the status transmission system there is also included a performance capturing

system, which is used when capturing performance measurements. The performance of the

various operations is captured by creating internal performance counters, which are capable to

measure various internal operations very accurately. There are four commands for these

counters: enable, disable, reset and print. To use these commands in real-time, the node has

to receive a predefined CAN message. For this operation CANoe is being used by having each

of these messages assigned to be triggered on specific key presses. The enable command

enables the performance counters, the disable command disables the counters, the reset

command resets the counters to zero and the print command sends the captured time

measurements to the Serialterm. The reset command helps to synchronise the performance

85

counters across all the connected nodes, where the high priority of the command reassures

that it is processed immediately by the node.

6.4.4.2 Serialterm mod

On the Data login computer a modified version of the open source software Serialterm is used.

Serialterm is a program developed by Albrecht Schmidt of Lancaster University. It is a

command line tool that was developed for debugging microcontroller hardware that is

connected to the PC via serial line. The program reads characters from the keyboard and sends

them to the selected com-port. At the same time it reads characters from the serial port and

displays them on the screen in ASCII, decimal or hexadecimal style. For this software to be

used in the current system, some modifications had to be made. The program had to be

modified to be able to receive messages from the status transmission system on the devices.

Another modification that had to be made was to add the capability for inter-process

communication, in order to communicate with the Status GUI.

Figure 6.8: Serialterm mod

In figure 6.8 the Serialterm mod window is shown displaying raw status data from the node. A

new line is added periodically and every time an important action is taken. Some of these

86

information are collected and send to the Status GUI which then displays the information in a

more user friendly format.

6.4.4.3 Status GUI

The status GUI shows the most important status information for every node on the

development testbed. The information on the GUI, are received in real time from the

Serialterm mod and also displayed real time.

Figure 6.9: Status GUI

In figure 6.9 the status GUI is displayed. The GUI area is separated in 4 parts that each

represents a node. The application shows; which is the active bus and idle bus, the bus status

of both buses for each node. It also displays if the node is the FT Master node. The

concentrated easy to read information are very important during the development and

demonstration of the system allowing the user to have a quick understanding of the status of

the system.

6.5 MilCAN Reconfiguration performance

The MilCAN Reconfiguration has been tested on the VSI testbed to verify the correct operation

of the added capabilities and to check if the performance of the devices has been affected. To

87

verify the operation of the Reconfiguration, all the functions are tested and verified, by

following step by step all the procedures and checking for errors. Since the reconfiguration is

not happening during operational mode but in reconfiguration mode, the performance is not

important. Performance is important for the operation of the devices that have the

reconfiguration capabilities since there are added functions in all the devices and the firmware

has been modified by the bootloader, the performance and operation of the devices may have

been affected.

To test the reconfiguration capabilities, the devices need to go to configuration mode and then

enter the bootloader mode. Since this operation is not meant to happen during operation

mode, but during maintenance all the devices enter the configuration mode. From the VSI GUI

the targeted device enters the bootloader mode. When it enters the bootloader the status and

version is been checked successfully. The status indicates that the targeted node is in

configuration mode and in bootloader mode. After that the message configuration, node ID

and speed change procedure has been verified successfully according to the response was

received from the device. After the completion of all procedures the node was commanded to

change back to the application and operational mode. The device then was operating how it

was expected according to the new changes. The above procedures were always successful.

The flashing of the application firmware was not tested because the VSI GUI was never fully

implemented for this operation, although the devices were programmed to support that.

For the evaluation of the performance of the VSI testbed with MilCAN Reconfiguration; various

configuration scenarios are followed using part of the testbed. These scenarios include

different combination of the MilCAN backbone speeds (250kbit, 500kbit and 1000kbit), MilCAN

segments speeds (250kbit, 500kbit and 1000kbit), routing configurations (MilCAN backbone,

Ethernet backbone and MilCAN backbone for hard real-time (HRT) & Ethernet backbone for

soft real-time (SRT)/ non real-time (NRT)) with different priority distributions (high HRT & low

SRT/NRT and low HRT & high SRT/NRT).

The message set of the nodes at the VSI testbed consist of synchronous messages which are

transmitted by the nodes with the aim to simulate a drive-by-wire system. These messages,

transmitted by each node, are relevant with the operation assigned to them and as a result

some are active and some are passive, depending on the circumstances. The role of the active

nodes is to transmit and sometimes to receive messages whereas the passive ones only

receive. Apart from the messages that are defined by the message set there are also SYNC

Frames that assist the synchronisation of the MilCAN. Moreover, the alive messages which are

88

transmitted from all the active nodes that are connected to the bus. Such messages are

transmitted with a frequency of 512 sync frames and depending if the bus speed is 1000mbit,

500mbit or 250mbit they have a period of 1.024s, 2.048s or 4.096s respectively.

For simplicity purposes the test layout used for the results presented here is based on two

MilCAN segments; the utilities and the automotive segments (figure 6.10). The above

mentioned segments are interconnected through a MilCAN and an Ethernet backbone via two

gateways. Two VSI Bridges have been used as gateways. The application of routing rules to the

VSI Bridges leads to the different routing.

MilCAN Backbone

USB

Router

Power Management
Steering Wheel

Pedals
GPS

RF Master

etheth

Switch

Laptop

Bridge

Sensor Engine

Wheels

Lights

Utilities Segment

Automotive Segment

USB
Bridge

Router

Figure 6.10: Testbed layout

6.5.1 Utilities segment (SEGU)

The utilities segment includes four nodes three of which are active and one passive. The active

ones are the GPS node, power management node and the sensor node whereas the passive

node is the RF master node. The message set for the active nodes of the utilities segment is

demonstrated in table 6.4. Three different frequency configurations exist: a) the normal, b) the

high HRT low SRT/NRT, and c) the low HRT high SRT/NRT. The normal is being used during the

89

normal operation of the testbed. Contrarily, the high HRT low SRT/NRT and low HRT high

SRT/NRT are for testing scenarios. By modifying the generation frequency of synchronous

messages, different traffic profiles are achieved. The period indicated on the tables bellow is

the slot period of MilCAN.

Table 6.4: Utilities segment message set

 Normal
High HRT,
low SRT

Low HRT,
high SRT

Tag ID Prio Payload Description Period (Slots)

MUGPS1 0x5501 HRT1 8 GPS Position 256 128 512

MUGPS2 0x5502 HRT1 4 GPS Time 256 128 512

MUGPS3 0x5503 HRT1 2 GPS Satellites 256 128 512

MUPWR1 0x5030 SRT1 3 Power load 50 100 25

MUSNS1 0x5936 SRT1 3 X/Y Acceleration 5 10 3

MUSNS2 0x5938 SRT1 3 Vibration 5 10 3

6.5.2 Automotive segment (SEGA)

In the automotive segment consists of five nodes, namely the steering wheel, the pedals, the

engine, the wheels and the lights which are all active apart from the lights. The message set for

the automotive segment is presented in table 6.5. In accordance with the utilities segment,

again, three different frequency configurations exist: a) the normal, b) the high HRT low

SRT/NRT, and c) the low HRT high SRT/NRT.

Table 6.5: Automotive segment message set

 Normal
High HRT,
low SRT

Low HRT,
high SRT

Tag ID Prio Payload Description Period (Slots)

MAPED1 0x3e30 HRT2 2 Brake 5 3 10

MAPED2 0x3e32 HRT2 2 Throttle 5 3 10

MAPED3 0x5e30 SRT2 2 Brake light 25 50 12

MASTR1 0x3e34 HRT2 2 Steering wheel position 10 5 20

MASTR2 0x3e36 HRT3 2 Gear 10 5 20

MASTR3 0x5830 SRT1 2 Flaps Position 50 100 25

MASTR4 0x5832 SRT1 2 Joystick #2 movement 50 100 25

MASTR5 0x5834 SRT1 2 Joystick #1 movement 50 100 25

MASTR6 0x4430 HRT3 2 Engine status 25 12 50

MAWHE1 0xd220 HRT2 3 Tracks/Tires status 50 25 100

MAWHE2 0xd221 HRT2 3 Tracks/Tires RPM 20 10 40

MAENG1 0xf020 HRT2 2 Engine RPM 10 5 20

MAENG2 0xf021 HRT2 2 Engine temperature 30 15 60

MAENG3 0xf022 HRT3 3 Engine status 30 15 60

90

6.5.3 Testbed measurements

With the help of CANoe, the traffic dump is collected which later are processed by CANoe Log

analyser. Additionally, with the aid of VSI GUI the data was collected from the VSI Bridge. The

measurements were approximately 20s long with a 100ms sampling period because of

hardware restrictions.

There are six different traffic profiles for every segment and these profiles are the result of a

combination of three different MilCAN bus speeds with two different priority distributions. No

routing was enabled between the two segments. The characteristics of two of these traffic

profiles are presented on table 6.6 till table 6.13. These tables show the periodicity of each

individual synchronous MilCAN message transmitted on the bus, including the Sync Frame and

Alive messages along with the application messages. The average values are shown to be

according the frequency configurations of the message sets for the two traffic setups.

Table 6.6: Automotive MilCAN bus 1000kbit, high HRT low SRT/NRT

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms)

MAPED1 0x3e30 6.0974 0.30998 3.45 12.16

MAPED2 0x3e32 6.0974 0.44371 3.18 12.16

MAPED3 0x5e30 104.9 14.454 98.24 202.95

MASTR1 0x3e34 10.191 0.64042 8.33 20.3

MASTR2 0x3e36 10.191 0.68979 7.93 20.55

MASTR3 0x5830 207.76 14.479 201.43 251.91

MASTR4 0x5832 207.76 14.482 201.43 251.77

MASTR5 0x5834 207.76 14.474 201.43 251.77

MASTR6 0x4430 24.446 1.5493 19.4 31.1

MAWHE1 0xd220 51.929 7.4039 48.7 98.9

MAWHE2 0xd221 20.391 1.0379 18.47 40.69

MAENG1 0xf020 10.191 0.6507 8.73 20.07

MAENG2 0xf021 30.558 1.0082 29.03 38.58

MAENG3 0xf022 30.558 1.0346 28.86 38.56

Table 6.7: Utilities MilCAN bus 1000kbit, high HRT low SRT/NRT

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms)

MUGPS1 0x5501 259.8 0.36678 258.54 261.24

MUGPS2 0x5502 259.81 0.42403 258.83 261.44

MUGPS3 0x5503 259.81 0.62914 258.44 261.75

MUPWR1 0x5030 217.54 569.93 1.02 1879.01

MUSNS1 0x5936 10.366 1.5177 7.46 20.89

91

Table 6.8: Automotive MilCAN bus 500kbit, high HRT low SRT/NRT

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms)

MAPED1 0x3e30 12.102 0.28938 10.13 16.16

MAPED2 0x3e32 12.102 0.60285 9.86 16.17

MAPED3 0x5e30 206.24 20.991 199.18 298.24

MASTR1 0x3e34 20.228 1.1247 18.89 36.27

MASTR2 0x3e36 20.227 1.1379 18.45 36.15

MASTR3 0x5830 412.68 29.342 402.43 500.05

MASTR4 0x5832 412.68 29.343 402.36 500.05

MASTR5 0x5834 412.68 29.343 402.33 500.05

MASTR6 0x4430 48.547 1.9568 45.22 63.51

MAWHE1 0xd220 103.12 14.967 97.09 197.26

MAWHE2 0xd221 40.454 1.5947 38.87 56.6

MAENG1 0xf020 20.227 1.1525 18.55 36.47

MAENG2 0xf021 60.68 1.9317 59.25 76.58

MAENG3 0xf022 60.681 1.8988 59.2 76.46

Table 6.9: Utilities MilCAN bus 500kbit, high HRT low SRT/NRT

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms)

MUGPS1 0x5501 515.8 0.3363 514.81 516.83

MUGPS2 0x5502 515.8 0.35805 514.79 516.86

MUGPS3 0x5503 515.8 1.4554 512.93 518.65

MUPWR1 0x5030 384.19 1071.2 2.81 3727.5

MUSNS1 0x5936 20.226 1.2379 17.26 36.43

Table 6.10: Automotive MilCAN bus 1000kbit, low HRT high SRT/NRT

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms)

MAPED1 0x3e30 20.373 0.8054 18.57 28.42

MAPED2 0x3e32 20.373 0.88112 18.51 28.16

MAPED3 0x5e30 24.447 13.456 20.58 30.98

MASTR1 0x3e34 40.827 21.242 38.60 81.22

MASTR2 0x3e36 40.827 2.116 39.04 81.06

MASTR3 0x5830 51.874 71.402 48.51 97.87

MASTR4 0x5832 51.874 71.635 48.30 97.85

MASTR5 0x5834 51.874 71.692 48.30 97.85

MASTR6 0x4430 103.75 10.116 99.12 149.88

MAWHE1 0xd220 207.52 14.017 201.95 251.81

MAWHE2 0xd221 83.336 10.542 80.40 162.68

MAENG1 0xf020 40.827 21.136 39.66 80.96

MAENG2 0xf021 122.98 96.619 121.13 243.65

MAENG3 0xf022 122.98 96.658 120.82 243.63

Table 6.11: Utilities MilCAN bus 1000kbit, low HRT high SRT/NRT

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms)

MUGPS1 0x5501 1039.5 0.26349 1038.82 1040.25

MUGPS2 0x5502 1039.5 0.45347 1038.31 1040.76

MUGPS3 0x5503 1039.5 0.54802 1038.17 1040.90

MUPWR1 0x5030 719.66 973.28 7.91 2038.35

MUSNS1 0x5936 10.219 0.84989 8.02 20.33

92

Table 6.12: Automotive MilCAN bus 500kbit, low HRT high SRT/NRT

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms)

MAPED1 0x3e30 40.455 15.734 39.23 56.36

MAPED2 0x3e32 40.454 16.277 39.03 55.67

MAPED3 0x5e30 48.546 19.703 45.78 62.75

MASTR1 0x3e34 80.911 22.203 80.06 97.12

MASTR2 0x3e36 80.911 22.219 79.83 96.93

MASTR3 0x5830 103.12 14.754 98.88 196.20

MASTR4 0x5832 103.12 14.746 98.73 196.05

MASTR5 0x5834 103.12 14.749 98.70 196.04

MASTR6 0x4430 206.24 20.77 199.57 297.67

MAWHE1 0xd220 412.49 28.713 399.51 499.53

MAWHE2 0xd221 164.98 18.816 160.66 257.94

MAENG1 0xf020 80.907 22.603 79.83 97.09

MAENG2 0xf021 242.73 3.855 240.80 258.52

MAENG3 0xf022 242.74 38.429 241.25 258.23

Table 6.13: Utilities MilCAN bus 500kbit, low HRT high SRT/NRT

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms)

MUGPS1 0x5501 2063.3 0.12372 2063.08 2063.42

MUGPS2 0x5502 2063.3 0.12372 2063.08 2063.42

MUGPS3 0x5503 2063.3 0.11128 2063.09 2063.37

MUPWR1 0x5030 1186.1 1866.4 15.93 4029.95

MUSNS1 0x5936 20.225 11.672 17.61 36.97

Some messages show a large difference between their average value and their minimum or

maximum value. This is happens during the transition between two MilCAN cycles, due to the

fact that their assigned periodicity does not overlap with the end of the MilCAN cycle. This

affects messages with periods that do not divide clearly the number 1024, as a result the gap

between two transmissions to increase or decrease.

6.5.4 Latency Measurements

To measure the latencies the CANoe software is being used, as mentioned above. The message

latencies are calculated by monitoring the traffic at each MilCAN bus. At the following tables

the summary of these measurements is presented where in the appendix more detailed

measurements can be viewed. When routing occurs through the Ethernet backbone and the

MilCAN segment speed is 1000kbit the latencies are significantly lower than the other two

configurations (see table 6.14). The same applies for the utilities segment at table 6.15. As

shown on table 6.16 and table 6.17 although the MilCAN backbone has dropped at 250kbit and

the segment’s speed is 1000kbit; the latencies have not been increased. Table 6.18 and table

6.19 verify the previous observations under different speeds.

93

6.5.4.1 MilCAN backbone 1000kbit, MilCAN segment 1000kbit

Table 6.14: Automotive segment message latencies SEGA to SEGU (ms)

 MilCAN backbone Ethernet backbone MilCAN/Ethernet

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x3e30 MAPED1 0.0556 0.0636 0.0368 0.0323 0.0519 0.0592

0x3e32 MAPED2 0.0569 0.0648 0.0384 0.0359 0.0535 0.0597

0x5e30 MAPED3 0.0723 0.0652 0.0469 0.039 0.0396 0.0298

0x3e34 MASTR1 0.0553 0.0647 0.0365 0.0312 0.0518 0.0623

0x3e36 MASTR2 0.0652 0.0686 0.0465 0.0408 0.0644 0.0646

0x5830 MASTR3 0.0644 0.0712 0.0461 0.0383 0.0344 0.0353

0x5832 MASTR4 0.067 0.0712 0.0471 0.0409 0.0366 0.0358

0x5834 MASTR5 0.0696 0.0713 0.048 0.0427 0.038 0.0357

0x4430 MASTR6 0.0655 0.0661 0.0462 0.0412 0.0647 0.0576

0xd220 MAWHE1 0.0562 0.0651 0.0377 0.0337 0.0534 0.0652

0xd221 MAWHE2 0.035 0.0649 0.0354 0.0321 0.0313 0.0631

0xf020 MAENG1 0.0557 0.0652 0.037 0.0325 0.0522 0.0627

0xf021 MAENG2 0.0566 0.0659 0.0385 0.0342 0.0533 0.0638

0xf022 MAENG3 0.0665 0.0682 0.0482 0.0398 0.0663 0.0645

Table 6.15: Utilities segment message latencies SEGA to SEGU (ms)

 MilCAN backbone Ethernet backbone MilCAN/Ethernet

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x5501 MUGPS1 0.0544 0.071 0.0296 0.0252 0.0672 0.0724

0x5502 MUGPS2 0.0567 0.0709 0.0315 0.0387 0.0681 0.0724

0x5503 MUGPS3 0.0587 0.0709 0.0314 0.0402 0.0685 0.0723

0x5030 MUPWR1 0.0596 0.0659 0.0301 0.0403 0.0329 0.0391

0x5936 MUSNS1 0.0685 0.0603 0.0186 0.0252 0.0305 0.0346

6.5.4.2 MilCAN backbone 250kbit, MilCAN segment 1000kbit

Table 6.16: Automotive segment message latencies SEGA to SEGU (ms)

 MilCAN backbone MilCAN/Ethernet

ID Message high HRT low HRT high HRT low HRT

0x3e30 MAPED1 0.0552 0.0641 0.0532 0.0603

0x3e32 MAPED2 0.0567 0.0656 0.0548 0.0609

0x5e30 MAPED3 0.0693 0.0653 0.0377 0.0298

0x3e34 MASTR1 0.0549 0.066 0.0529 0.0615

0x3e36 MASTR2 0.0626 0.0688 0.0608 0.0636

0x5830 MASTR3 0.0608 0.0715 0.0335 0.0352

0x5832 MASTR4 0.064 0.0719 0.0344 0.0353

0x5834 MASTR5 0.0687 0.0719 0.0366 0.0352

0x4430 MASTR6 0.0627 0.0672 0.0612 0.065

0xd220 MAWHE1 0.0555 0.0661 0.0543 0.0665

0xd221 MAWHE2 0.0346 0.0663 0.0315 0.063

0xf020 MAENG1 0.0553 0.0663 0.0535 0.0623

0xf021 MAENG2 0.0564 0.0678 0.0549 0.0628

0xf022 MAENG3 0.0638 0.0687 0.0628 0.0638

94

Table 6.17: Utilities segment message latencies SEGA to SEGU (ms)

 MilCAN backbone MilCAN/Ethernet

ID Message high HRT low HRT high HRT low HRT

0x5501 MUGPS1 0.0515 0.0686 0.0645 0.0709

0x5502 MUGPS2 0.056 0.0687 0.0656 0.0736

0x5503 MUGPS3 0.0586 0.069 0.0667 0.0749

0x5030 MUPWR1 0.0607 0.0619 0.0297 0.0408

0x5936 MUSNS1 0.0665 0.0593 0.029 0.0359

6.5.4.3 MilCAN backbone 500kbit, MilCAN segment 500kbit

Table 6.18: Automotive segment message latencies SEGA to SEGU (ms)

 MilCAN backbone Ethernet backbone MilCAN/Ethernet

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x3e30 MAPED1 0.0626 0.0431 0.0408 0.0318 0.0607 0.0381

0x3e32 MAPED2 0.0639 0.0453 0.0421 0.0347 0.0612 0.0408

0x5e30 MAPED3 0.0738 0.0389 0.0562 0.03 0.0408 0.0158

0x3e34 MASTR1 0.0654 0.0536 0.0462 0.0401 0.0656 0.0469

0x3e36 MASTR2 0.0699 0.0565 0.0534 0.0396 0.0695 0.0513

0x5830 MASTR3 0.069 0.0501 0.0566 0.0423 0.042 0.0247

0x5832 MASTR4 0.0691 0.0502 0.0578 0.0419 0.0421 0.0256

0x5834 MASTR5 0.0693 0.0505 0.0578 0.0356 0.0422 0.0262

0x4430 MASTR6 0.0681 0.0555 0.0523 0.0412 0.0683 0.0476

0xd220 MAWHE1 0.066 0.06 0.0442 0.043 0.0647 0.0555

0xd221 MAWHE2 0.0576 0.0551 0.0474 0.0421 0.0629 0.0481

0xf020 MAENG1 0.0661 0.0539 0.0465 0.0325 0.0662 0.048

0xf021 MAENG2 0.0684 0.0584 0.049 0.034 0.0691 0.0552

0xf022 MAENG3 0.0721 0.0589 0.0546 0.0398 0.0722 0.0555

Table 6.19: Utilities segment message latencies SEGA to SEGU (ms)

 MilCAN backbone Ethernet backbone MilCAN/Ethernet

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x5501 MUGPS1 0.0667 0.0533 0.0212 0.0197 0.0659 0.057

0x5502 MUGPS2 0.0677 0.0532 0.0211 0.02 0.0662 0.0569

0x5503 MUGPS3 0.0666 0.0504 0.0224 0.0155 0.0657 0.0543

0x5030 MUPWR1 0.0699 0.0487 0.0229 0.0176 0.0305 0.0568

0x5936 MUSNS1 0.0642 0.0358 0.0167 0.0125 0.025 0.0268

6.5.5 Automotive segment

Since the measurements from the Utilities segment have similar characteristics as the ones

from the Automotive segment, only the automotive are presented below.

Figure 6.11 and figure 6.12 are generated during the configuration of routing all messages

through the MilCAN backbone. As can been seen in figure 6.11 the latencies of all priorities are

on the same level although the difference of the bandwidth consumption for the low priority

95

messages is higher. Figure 6.12 clearly demonstrates that higher priority messages have

slightly lower latencies.

6.5.5.1 1000kbit MilCAN backbone, 1000kbit MilCAN segment, high HRT and low SRT/NRT

Figure 6.11: SEGA to BBONE message latencies per priority distribution

Figure 6.12: SEGA to BBONE message latencies per priority

Figure 6.13 and figure 6.14 are generated during routing all messages through the Ethernet

backbone. In figure 6.13 it is visible that the latencies are lower than the previous

configuration which also was noticed from the measurements that have been gathered from

the CANoe software. In this figure we can also see the bursts of the Ethernet packets. Figure

6.14 shows again that the high priority messages have lower latencies although such a result

96

was not expected due the non-prioritised buffers of TCP/IP layer. This usually occurs because

of the high traffic output of the segment which fills the TCP/IP packets quicker.

6.5.5.2 1000kbit MilCAN segment, high HRT and low SRT/NRT

Figure 6.13: SEGA to ETH message latencies per priority distribution

Figure 6.14: SEGA to ETH message latencies per priority

The following configuration combines both backbones, the MilCAN backbone for the HRT

messages and the Ethernet for the NRT/SRT messages. In figure 6.15 and figure 6.16 the

output through MilCAN is shown and one could easily draw the assumption that high priority

messages have lower latencies (see figure 6.16).

97

6.5.5.3 1000kbit MilCAN backbone, 1000kbit MilCAN segment, high HRT and low SRT/NRT

Figure 6.15: SEGA to BBONE message latencies per priority distribution

Figure 6.16: SEGA to BBONE message latencies per priority

At figure 6.17 and figure 6.18 the output through the Ethernet backbone is presented. As can

been seen in figure 6.18, the higher priority messages do not have lower latencies than the low

priority ones. This occurs because of the non-prioritised buffers of TCP/IP layer and although

the Ethernet is fast the traffic is not that high to fill the TCP/IP packets quickly enough, which

lead us to the conclusion that Ethernet generates low latencies only if the segment’s traffic is

high. However, it should also be taken into consideration that due to the complexity of the

combined routing (more routing commands) the bridge may generate higher latencies because

of hardware restrictions.

98

6.5.5.4 1000kbit MilCAN segment, high HRT and low SRT/NRT

Figure 6.17: SEGA to ETH message latencies per priority distribution

Figure 6.18: SEGA to ETH message latencies per priority

6.6 MilCAN Fault Tolerance performance

The performance of the Fault Tolerant MilCAN has been evaluated through simulations using

the internal performance counters. Additionally the application layer that has been used for

the tests is specially designed not to affect the operation of the FT layer and provide more

accurate measurements. To emulate a normal MilCAN operation it has been configured to

generate periodic messages at a MilCAN sync frequency of 5.

The main reason of testing the FT MilCAN layer is to study the reaction of the layer during

different fault scenarios. It is important to measure the response and reaction time of the FT

99

layer during these faults. Any missed or delayed scheduled messages should be detected

during testing the various fault scenarios. During these tests the nodes have been assigned

with an equal weight value. Every fault scenario has been repeated twenty times to acquire

more accurate result by calculating their average values.

6.6.1 Non FT Master node loses connection to CAN0

For this scenario a random node loses connection to CAN0 (figure 6.19). When the connection

is lost to CAN0, the node detects the non-availability of the bus and informs the FT master. The

FT master weights the available buses and decides which bus to use as an active bus.

Figure 6.19: Non FT Master node loses connection to CAN0

6.6.1.1 Operation

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active

bus. When node 2 loses connection to CAN0, reports the fault by sending an asynchronous

alive message over CAN1. The FT master nodes (node 1 and node 4), vote according to the

WBS algorithm that CAN1 is the new active bus. Node 4 transmits an asynchronous FT master

frame which commands the nodes to use CAN1 as active bus.

6.6.1.2 Collected data

During this test, eight time measurements have been taken at the following events:

1. Node 2 detects connection problem with CAN0.

2. Node 2 transmits alive message informing the problem.

3. Node 4 receives alive message.

4. Node 4 votes CAN1 as the new active bus.

5. Node 4 sends FT master frame to all nodes.

6. Node 1 receives the FT master frame and uses CAN1 as active bus.

7. Node 2 receives the FT master frame and uses CAN1 as active bus.

8. Node 3 receives the FT master frame and uses CAN1 as active bus.

100

Table 6.20: Non FT Master node loses connection to CAN0 collected data (ms)

Event 1 2 3 4 5 6 7 8 9 10

1 → 2 0.28 0.2784 0.4496 0.2784 0.4496 0.2784 0.28 0.2784 0.2784 0.2784
2 → 3 0.9524 1.0656 2.1328 0.3392 3.7168 1.0656 0.832 1.1401 0.8336 2.1328
3 → 4 0.3808 0.3392 0.1696 0.2672 0.3392 0.168 0.3808 0.168 0.3808 0.1696
4 → 5 0.4064 0.9152 0.2784 0.9152 0.2784 0.2784 0.4064 0.2784 0.2768 0.2768
5 → 6 0.9914 1.048 0.6544 0.6544 1.104 1.1047 1.048 0.7648 0.9914 1.255
5 → 7 1.248 1.1886 1.0512 1.0672 1.0512 1.248 0.9536 0.9561 0.6688 1.1886
5 → 8 1.0654 0.798 0.843 0.9761 0.798 0.978 0.8632 0.9671 0.843 1.0654

1 → 8 3.011 3.3964 3.6848 2.4544 5.582 2.7684 2.7624 2.6297 2.4384 3.923

Event 11 12 13 14 15 16 17 18 19 20

1 → 2 0.4069 0.437 0.3382 0.4465 0.3726 0.4314 0.3565 0.3479 0.3049 0.3119
2 → 3 0.6854 0.7162 2.142 1.2144 0.6714 0.3392 0.9441 3.3179 1.0656 0.9524
3 → 4 0.2377 0.3652 0.1733 0.1853 0.179 0.1719 0.2571 0.3808 0.1755 0.2849
4 → 5 0.4251 0.7043 0.815 0.8001 0.4631 0.7653 0.3356 0.9152 0.3837 0.3993
5 → 6 0.7805 0.955 0.9156 0.8391 1.1597 0.8001 1.1342 0.6579 0.7134 0.7321
5 → 7 0.9476 0.7646 0.7961 0.8194 0.9513 0.8363 1.1427 1.2443 1.1737 1.0524
5 → 8 0.9759 0.9789 0.8288 0.8969 0.8064 0.9977 1.0414 0.8945 0.8483 1.0432

1 → 8 2.5356 2.9873 4.2646 3.4657 2.4925 2.5079 2.9347 5.6197 2.6431 2.6806

Table 6.21: Non FT Master node loses connection to CAN0 average values (ms)

Event Average

1 → 2 0.34417

2 → 3 1.312975

3 → 4 0.258695

4 → 5 0.515855

5 → 6 0.915185

5 → 7 1.017485

5 → 8 0.92546

1 → 8 3.34688

The average time for the whole operation; from detecting the problem till the switch to the

new bus is 3.34688ms with minimum 2.4384ms and maximum 5.582ms (table 6.20 & table

6.21). The average time is low and acceptable, where the maximum value can be explained

due to processing power restrictions.

6.6.2 FT Master node loses connection to CAN0

For this scenario the FT master node of CAN0 loses connection to CAN0 (figure 6.20). When

the connection is lost to CAN0, the node detects the non-availability of the bus and informs

the FT master. The FT master weights the available buses and decides which bus to use as an

active bus.

101

Figure 6.20: FT Master node loses connection to CAN0

6.6.2.1 Operation

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active

bus. When node 1 loses connection to CAN0, reports the fault by sending an asynchronous

alive message over CAN1 and node 2 becomes the FT master of CAN0. The FT master nodes

(node 2 and node 4), vote according to the WBS algorithm that CAN1 is the new active bus.

Node 4 transmits an asynchronous FT master frame which commands the nodes to use CAN1

as active bus.

6.6.2.2 Collected data

During this test, eight time measurements have been taken at the following events:

1. Node 1 detects connection problem with CAN0.

2. Node 1 transmits alive message informing the problem.

3. Node 4 receives alive message.

4. Node 4 votes CAN1 as the new active bus.

5. Node 4 sends FT master frame to all nodes.

6. Node 1 receives the FT master frame and uses CAN1 as active bus.

7. Node 2 receives the FT master frame and uses CAN1 as active bus.

8. Node 3 receives the FT master frame and uses CAN1 as active bus.

Table 6.22: FT Master node loses connection to CAN0 collected data (ms)

Event 1 2 3 4 5 6 7 8 9 10

1 → 2 0.28 0.1072 0.2784 0.2784 0.2784 0.1072 0.2784 0.28 0.2784 0.3344
2 → 3 0.9808 1.0336 1.2016 0.6976 0.6624 2.9872 0.9808 0.672 1 0.0112
3 → 4 0.2672 0.4592 0.168 0.168 0.1696 0.168 0.1696 0.1696 0.2672 0.1696
4 → 5 0.3744 0.2784 0.2784 0.2784 0.2768 0.2784 0.3744 0.376 0.4896 0.2784
5 → 6 0.6832 1.3728 0.3248 0.8272 0.8624 0.6832 0.7712 0.7664 0.7152 1.512
5 → 7 0.8064 0.5536 0.8064 0.9264 1.6112 0.8368 0.7712 0.8368 0.664 0.9344
5 → 8 0.9056 0.752 1 1.1248 1.5744 0.9056 0.7712 0.8976 0.4752 0.9376

1 → 8 2.5856 2.432 2.2512 2.2496 2.2496 4.224 2.5744 2.264 2.5104 1.728

102

Event 11 12 13 14 15 16 17 18 19 20

1 → 2 0.299 0.2784 0.1747 0.1228 0.2238 0.1305 0.2528 0.1145 0.2307 0.3091
2 → 3 0.2925 0.1031 0.1312 1.3531 1.7854 0.7393 0.9295 1.5639 0.0967 1.9333
3 → 4 0.2939 0.2199 0.3137 0.4408 0.3711 0.1831 0.2944 0.2749 0.3329 0.4521
4 → 5 0.4751 0.4172 0.3994 0.4057 0.3741 0.33 0.3384 0.4664 0.4809 0.3005
5 → 6 1.0695 0.7916 1.0614 1.1832 0.8828 1.3438 0.7548 1.4712 1.2909 1.0963
5 → 7 0.6592 1.3961 0.8475 1.0752 0.8106 1.2933 1.5998 1.122 1.4012 1.4655
5 → 8 1.3646 1.3539 1.0436 1.4459 0.9096 0.6752 1.4817 1.0615 1.0626 1.4225

1 → 8 2.0197 1.8102 1.8665 3.3976 3.565 2.0581 2.5699 3.4812 2.2038 4.0913

Table 6.23: FT Master node loses connection to CAN0 average values (ms)

Event Average

1 → 2 0.231855

2 → 3 0.95776

3 → 4 0.26764

4 → 5 0.363545

5 → 6 0.973195

5 → 7 1.02088

5 → 8 1.058255

1 → 8 2.793995

The average time from the time it detects the problem till it switches to the new bus is

2.793995ms with minimum 1.728ms and maximum 4.224ms (table 6.22 table 6.23). The

average time is low, where the maximum value can be explained due to processing power

restrictions.

6.6.3 Non FT Master node loses connection to CAN1

For this scenario a random node loses connection to CAN1 (figure 6.21). When the connection

is lost to CAN1, the node detects the non-availability of the bus and informs the FT master. The

FT master weights the available buses and decides which bus to use as an active bus.

CAN0

CAN1

Node 1 Node 2 Node 3 Node 4

Figure 6.21: Non FT Master node loses connection to CAN1

103

6.6.3.1 Operation

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active

bus. When node 2 loses connection to CAN1, reports the fault by sending an asynchronous

alive message over CAN0. The FT master nodes (node 1 and node 4), vote according to the

WBS algorithm that CAN0 will still remain the active bus. Since there no change nothing is

transmitted between the nodes.

6.6.4 FT Master node loses connection to CAN1

CAN0

CAN1

Node 1 Node 2 Node 3 Node 4

Figure 6.22: FT Master node loses connection to CAN1

For this scenario the FT master node of CAN1 loses connection to CAN1 (figure 6.22). When

the connection is lost to CAN1, the node detects the non-availability of the bus and informs

the FT master. The FT master weights the available buses and decides which bus to use as an

active bus.

6.6.4.1 Operation

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active

bus. When node 1 loses connection to CAN1, reports the fault by sending an asynchronous

alive message over CAN0. The FT master nodes (node 1 and node 4), vote according to the

WBS algorithm that CAN0 will still remain the active bus. Since there no change nothing is

transmitted between the nodes.

6.6.5 FT Master node loses connection to CAN0 / Non FT Master node loses

connection to CAN1

For this scenario the FT master node 1 of CAN0 loses connection to CAN0 and node 2 to CAN1

(figure 6.23). When the connections are lost, the nodes detect the non-availability of the bus

and inform the FT master. The FT masters weights the available buses and decide which bus to

use as an active bus.

104

CAN0

CAN1

Node 1 Node 2 Node 3 Node 4

Figure 6.23: FT Master node loses connection to CAN0 / Non FT Master node loses connection to CAN1

6.6.5.1 Operation

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active

bus. When node 1 loses connection to CAN0, reports the fault by sending an asynchronous

alive message over CAN1 and node 2 becomes the FT master of CAN0. Also when node 2 loses

connection to CAN1, reports the fault by sending an asynchronous alive message over CAN0.

The FT master nodes (node 2 and node 4), vote according to the WBS algorithm that CAN0 will

still remain the active bus since the weight on both buses stays the same. Since there no

change nothing is transmitted between the nodes.

6.6.6 CAN0 split in half

For this scenario CAN0 is been split at half (figure 6.24). The nodes detect the non-availability

of the bus and inform the FT master. The FT masters weights the available buses and decide

which to use as active bus.

Figure 6.24: CAN0 segmented in half

6.6.6.1 Operation

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active

bus. When CAN0 is been split at half, node 1 continue to be the FT master on 1st half of CAN0

and node 3 becomes the FT master on 2nd half of CAN0. Node 4 remains to be the FT master

of CAN1. The FT master nodes (node 1, node 3 and node 4), vote according to the WBS

105

algorithm that CAN1 is the new active bus. Node 4 transmits an asynchronous FT master frame

which commands the nodes to use CAN1 as active bus.

6.6.6.2 Collected data

During this test, eight time measurements have been taken at the following events:

1. Node 3 becomes new master on 2nd half of CAN0.

2. Node 3 transmits the first FT master frame on CAN0.

3. Node 4 detects that node 3 is the new master on CAN0.

4. Node 4 votes CAN1 as the new active bus.

5. Node 4 sends FT master frame to all nodes.

6. Node 1 receives the FT master frame and uses CAN1 as active bus.

7. Node 2 receives the FT master frame and uses CAN1 as active bus.

8. Node 3 receives the FT master frame and uses CAN1 as active bus.

Table 6.24: CAN0 segmented in half collected data (ms)

Event 1 2 3 4 5 6 7 8 9 10

1 → 2 0.4464 0.5088 0.3472 0.448 0.2784 0.5088 0.3744 0.376 0.4816 0.4464
2 → 3 1.3744 1.9872 2.7008 1.3744 1.7696 1.6976 1.9872 1.2496 2.16 2.928
3 → 4 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592
4 → 5 0.1056 0.2768 0.2752 0.2768 0.2752 0.1056 0.1056 0.104 0.4192 0.1056
5 → 6 1.7696 2.3488 1.0416 0.8624 2.2528 2.3488 3.1472 1.808 1.7696 1.9776
5 → 7 2.7808 2.0032 0.9976 0.8848 1.368 2.0032 2.7808 1.792 1.8656 1.6736
5 → 8 1.6048 2.1776 1.6048 1.1696 2.1776 2.4928 3.1888 2.2608 1.0544 1.2976

1 → 8 3.5904 4.8352 4.38 3.0208 3.7504 4.3744 5.3072 3.5808 4.1744 4.8368

Event 11 12 13 14 15 16 17 18 19 20

1 → 2 0.4402 0.2934 0.448 0.4305 0.4174 0.4057 0.2785 0.3472 0.4616 0.444
2 → 3 1.7478 2.8461 2.774 1.416 2.7736 2.8231 1.9185 1.2814 2.4338 1.3089
3 → 4 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592
4 → 5 0.1056 0.2087 0.1329 0.249 0.3879 0.2845 0.2693 0.1056 0.1679 0.2986
5 → 6 2.1472 0.8765 2.2483 1.6715 1.147 1.0194 0.8742 1.0654 1.5728 2.2525
5 → 7 1.121 1.0289 2.1454 2.1573 0.9465 2.3036 1.8761 1.3958 2.4401 1.8078
5 → 8 1.9945 2.1679 2.4209 1.1782 1.3122 2.2707 3.1167 2.5205 1.6878 1.6409

1 → 8 3.4738 4.2839 5.5595 3.3329 4.5846 4.5919 3.3997 2.8588 4.6953 3.7516

The average time for the whole operation, from the re-election of new FT master till the switch

to the new bus is 4.418965ms with minimum 3.0208 and maximum 5.5595ms (table 6.24 table

6.25). The average time is low, where the maximum value can be explained due to processing

power restrictions.

106

Table 6.25: CAN0 segmented in half average values (ms)

Event Average

1 → 2 0.409125

2 → 3 2.0276

3 → 4 0.0592

4 → 5 0.21298

5 → 6 1.71006

5 → 7 1.768605

5 → 8 1.966955

1 → 8 4.418965

6.6.7 CAN1 split in half

CAN0

CAN1

Node 1 Node 2 Node 3 Node 4

Figure 6.25: CAN1 split in half

For this scenario CAN1 is been split at half (figure 6.25). The nodes detect the non-availability

of the bus and inform the FT master. The FT masters weight the available buses and decide

which bus to use as an active bus.

6.6.7.1 Operation

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active

bus. When CAN1 is been split at half, node 4 continue to be the FT master on 2nd half of CAN1

and node 2 becomes the FT master on 1st half of CAN1. Node 1 remains to be the FT master of

CAN0. The FT master nodes (node 1, node 2 and node 4), vote according to the WBS algorithm

that CAN0 will remain the active bus.

6.6.8 CAN0 increased capacitance

With the help of CANstress it is possible to increase the capacitance between the CAN high and

CAN low of any CAN bus. This will result the affected bus to be virtually longer. According to

the CAN specifications different operational speeds require different bus lengths to ensure

correct operation. By increasing the capacitance between the CAN high and low of CAN0 will

render the bus in-operational. The FT master will decide which will be the operational speed

for the bus.

107

6.6.8.1 Operation

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active

bus. The operational speed of CAN0 is 1000kbit and for CAN1 is 500kbit. When the capacitance

in CAN0 is increased the bus becomes unusable. When all the nodes connected on the bus

detect the problem, report the fault by sending an asynchronous alive message over CAN1.

Since the bus cannot be repaired by resetting the bus, the CAN0 FT master node (node 1)

decides according to the error recovery algorithm to drop the speed to 500kbit. Node 1

transmits an asynchronous FT master frame over CAN1 which commands the nodes to use

500kbit as an operational speed for CAN0. All the nodes configured themselves to use 500kbit

as the operational speed for CAN0 and it becomes again operational.

6.6.9 CAN0 error injection

With the help of CANstress it is possible to introduce illegal frames in to the CAN bus. For this

test the CRC field of the CAN frame will be corrupted and it will not match with the content of

the frame. According to the CAN specifications this will be detected as an error frame. The FT

masters weights the available buses and decide which to use as active bus.

6.6.9.1 Operation

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active

bus. When the error frames are injected in to CAN0, the nodes report the fault by sending an

asynchronous alive message over CAN1. The FT master nodes (node 1 and node 4), vote

according to the WBS algorithm that CAN1 is the new active bus. Node 4 transmits an

asynchronous FT master frame which commands the nodes to use CAN1 as active bus. When

the error injection stops, CAN0 becomes operational. The FT master nodes (node 1 and node

4), vote according to the WBS algorithm that CAN0 is the new active bus. Node 1 transmits an

asynchronous FT master frame which commands the nodes to use CAN0 as active bus.

6.7 Conclusion

The use of two testbeds provides the capability to have the High Availability MilCAN tested on

a variety of conditions. The development testbed provides the ability to test the operation in

an isolated environment and verify the operation in detail, where the VSI testbed gives ability

to test the High Availability MilCAN in a real life vehicle environment.

The performance of the High Availability MilCAN has been tested on the development testbed

and the VSI testbed using internal performance mechanisms and external monitoring tools to

generate the latencies throughout of the system. The VSI testbed provides the interconnection

108

of the MilCAN segments through various combinations of MilCAN and Ethernet backbones. For

the specific tests three combinations were followed: either routing all messages through

MilCAN or Ethernet backbone or the HRT through MilCAN or SRT/NRT through Ethernet. The

measurements taken are an indication of the performance of the system.

By using non-deterministic backbones such as Ethernet, the performance of the system is

affected as expected. The results from the various test scenarios and traffic policies have

proven close to the theoretical expectations. This proves that the High Availability MilCAN has

not affected the performance of the system.

The close observation of the operation of the Fault Tolerant capabilities under different fault

scenarios has also proven to be what was expected. The reaction times for the measured

operations were acceptable with only a few exceptions that were longer. The reason for these

exceptions is processing power restrictions; causing delays during the operation.

109

Chapter 7 Conclusion and future work

7.1 Conclusion

The work presented in this thesis investigates how to add two extra functionalities to MilCAN,

an already existing real-time communication protocol. Two testbeds are designed and

developed to evaluate the concept and provide an initial feedback for further development.

Throughout the study of fieldbuses used in the industry, the basic principles for the design of

the system were identified. The MilCAN protocol is investigated in more detail to identify any

limitations to address in this research. After completing the background research, the design of

the MilCAN Reconfiguration is provided followed by a detailed explanation of its components

and operation. Additionally the MilCAN Fault Tolerance is then provided followed again by a

detailed explanation of its operation. Concluding this thesis, the two testbeds that were

developed for evaluating the two MilCAN additions are presented, leading to performance

results and operation verification.

7.1.1 MilCAN Reconfiguration

The MilCAN Reconfiguration addition was designed to support the Through Life Capability

Management that is not currently available in the MilCAN protocol. This addition is beneficial

to the engineers while maintaining MilCAN devices by providing the functionality to access and

configure any device remotely. The reconfiguration capabilities cover the software side of the

maintenance like configuring the message set and upgrading the firmware. The devices are

accessed remotely which allows all the operations to be completed from a central location.

To enable the MilCAN Reconfiguration capabilities a set of additional design requirements are

added to the already existing MilCAN protocol. The design consist of three parts; the

bootloader, the reconfiguration protocol and the VSI GUI. The bootloader offers the local

operations on every node, by utilising various techniques to achieve normal operation next to

the application layer. The reconfiguration protocol is used to communicate remotely to the

bootloader and supports all the reconfiguration operations. The VSI GUI provides the user

interface; to control all the bootloader’s operations through the custom communication

protocol.

During the development of the MilCAN Reconfiguration many lessons were learned from

mistakes during the design and implementation period. The development of the bootloader

was particularly difficult because it had to coexist with the application layer. The system was

tested on the VSI testbed, where its operation was verified along with performance

110

measurements. The performance of the MilCAN Reconfiguration enabled node is analysed and

detailed performance graphs have been presented. The results that were gathered, prove that

the MilCAN Reconfiguration has not affected the operation and performance of the testbed.

More specifically, although all the priorities have the same latencies, higher priority messages

have slightly lower latencies. Additionally it was observed that the Ethernet generates low

latencies only if the segment’s traffic is high.

7.1.2 MilCAN Fault Tolerance Layer

The MilCAN Fault Tolerance Layer is meant to provide the additional fault tolerance capability

that is currently missing from the MilCAN protocol in order to enhance the network

availability. With the use of the FT Layer a longer continuity of service can be provided by

overcoming any fault and errors introduced in the network.

To provide the MilCAN FT capabilities the Fault Tolerant requirements are added to the

existing MilCAN protocol. Since it is a software solution it is flexible to be included to existing

MilCAN devices with no modification to the physical layer and additionally be hardware

independent. The design of the layer is divided in three different blocks depend the system

configuration. The three blocks are the error detection, bus switching and error recovery. The

bus switching is only enabled on devices that have more than one bus available. The FT layer is

provides the ability to transparently inter-connect the application layer to multiple buses using

a common virtual interface.

During the development of the MilCAN Fault Tolerance layer many lessons were learned from

mistakes during the design and implementation period. The implementations helped to

identify various weaknesses on the initial designs and provided the feedback required to lead

to a better design. The synchronised operation of the FT enabled nodes has been proven

particularly difficult requiring a fool proof communication between them. The layer has been

tested on the development testbed to verify the operation under different error scenarios. The

results gathered verified the operation of the FT layer.

7.2 Future work

Further work for the High Availability MilCAN will be to be implemented on a mobile

demonstrator that is an actual operational vehicle. The mobile demonstrator is a commercial

of the shelf Buggy vehicle that has been used as the base of various implementations for the

Vetronics Research Centre. The author has already installed a MilCAN single bus network to

control a set of on-board devices. MilCAN provides full control over the engine and lights,

additionally it collects information from the on board sensors speed and engine temperature.

111

The controls are received from a GUI located on a touch screen which is installed on the

vehicle. The single bus implementation has been proven difficult because of space restrictions

and the operational conditions of the vehicle. The space restriction affects the placement of

the required devices and the installation of the bus. The operational conditions are vibrations

and external interferences which have been proven to be a lot different compared to the

previously constructed testbeds. In order to test and verify the operation of the High

Availability MilCAN on the Buggy, a second CAN bus needs to be installed in order to operate

MilCAN in dual bus mode. This will provide us a full functional system in an actual vehicle.

The underlying CANbus protocol has a failure mode called the babbling idiot, whereby a fault

node can gain high priority access to the bus. Although this fault is not common, it would

potentially jeopardise the sync frame broadcast and hence the determinism of the message

delivery schedule of the system. The babbling idiot problem has been addressed in a

theoretical level during this research, but since it is not a common fault it is hard to emulate.

Further research is required in order to be able to emulate accurately the failure and evaluate

the operation of the theoretical proposed solution.

Additionally, it will be useful if MilCAN provides Health and Usage Monitoring Systems (HUMS)

functionalities. HUMS increase the availability of systems whilst reducing the maintenance.

MilCAN already provides some health monitoring functionalities by being able to detect bus

errors. Since High Availability MilCAN has introduced new components, their operation needs

to be monitored and recorded. Furthermore MilCAN should be able to provide Build In Test

(BIT) capabilities. This requires Built In Test Equipment (BITE) to be used with MilCAN devices.

Additionally further investigation is required to provide additional health monitoring

capabilities by monitoring the FT layer. More specifically there have to be counters that

provide information such as; how often the bus goes to bus-off, how long is non-operational,

how often traffic is switched and how often the speed has dropped.

[Charchalakis'05, Valsamakis'06, Pinceti'04, Pierre Thomesse'99, Glanzer'96, Patzke'98, Schumny'98a, Zimmermann'80, Powers'00, Leen'02, TUW'97, Bannatyne'98, Kopetz'01, Consortium'04, FlexRay'05, FlexRay'04, ODVA'04, Hitex'95, softing'05, ISO'93, MWG'03a, Group'03, MWG'03b, MWG'09, ARM'04, ARM'05, Wikipedia'10a, Infineon'00, Temple'98, Rose'96, Fredriksson'02, Bosch'91, Kopetz'98, Çenesİz'04, Koopman'02, Gui Yun'01, Boys'04, Tovar'01 , Bucci'03, Isermann'02, Kunes'01, Hammett, R'03, Stanton'96,

Kyung Chang'03, Ekiz'97, Kunert'97, Sveda'97, Cavalieri'96, Condor'00, Koubias'95, Lind'99, Vitturi'01, Kibler'04, Fleming'01, Cavalier'96, Papadopoulos'99, Giusto'04, Flammini'02, Simonds'03, Schumny'98b, Wood'00, Hammett, RC'99, Heikkila'04, Stipidis'06, Ferreira'02, Haowei'07, Kai'09, Guo'07, Pickard'07, Kopetz'03a, Jianmin'07, Hopkins'78, Valsamakis'04, Izosimov'06a, Charchalakis'03, Oikonomidis'08, Oikonomidis'09, Buja'05, Webber'91, Izosimov'06b, Bolchini'02, Lee'01, Charchalakis'06, Philippi'03, Kopetz'03b,

Karlsson'02] [Avizienis'04, Barron'96, Bauer'00, Boehm'88, Hess'05, Jakovljevic'06, Johannessen'01, Kopetz'94a, Kopetz'04, Kopetz'94b, Kopetz'99 , Lincoln'95, MoD'06, Murray'02, Rushby'96, Rushby'99, White'08, Wideman'03]

112

References

[Charchalakis'05] Periklis Charchalakis, "Integrated vetronic systems - Intelligent
bridging of vehicle networks over high speed backbones," PhD, Engineering and
Design, University of Sussex, Brighton, 2005.

[Valsamakis'06] George Valsamakis, "Vetronic Systems Integration: Network Management and

(Re)Configurability Integration on MilCAN based systems," PhD, Engineering and
Design, University of Sussex, Brighton, 2006.

[Pinceti'04] P. Pinceti, "Fieldbus: more than a communication link," Instrumentation &

Measurement Magazine, IEEE, vol. 7, pp. 17-23, 2004.

[Pierre Thomesse'99] Jean Pierre Thomesse, "Fieldbuses and interoperability," Control

Engineering Practice, vol. 7, pp. 81-94, 1999.

[Glanzer'96] David A. Glanzer and Charles A. Cianfrani, "Interoperable fieldbus devices: a

technical overview," ISA Transactions, vol. 35, pp. 147-151, 1996.

[Patzke'98] Robert Patzke, "Fieldbus basics," Computer Standards & Interfaces, vol. 19, pp.

275-293, 1998.

[Schumny'98a] Harald Schumny, "Fieldbuses in measurement and control," Computer

Standards & Interfaces, vol. 19, pp. 295-304, 1998a.

[Zimmermann'80] H. Zimmermann, "OSI Reference Model--The ISO Model of

Architecture for Open Systems Interconnection," Communications, IEEE Transactions
on, vol. 28, pp. 425-432, 1980.

[Powers'00] William F. Powers and Paul R. Nicastri, "Automotive vehicle control challenges

in the 21st century," Control Engineering Practice, vol. 8, pp. 605-618, 2000.

[Leen'02] G. Leen and D. Heffernan, "Expanding automotive electronic systems,"

Computer, vol. 35, pp. 88-93, 2002.

[TUW'97] TUWVienna University of Technology. (2004, 28/12). TTP/C. Available:

http://www.vmars.tuwien.ac.at/projects/ttp/ttpc.html

[Bannatyne'98] Ross Bannatyne, "Building fault tolerant embedded systems using TTP/C,"

Electronics Engineer, Nov. 1999 1998.

[Kopetz'01] Hermann Kopetz, "A Comparison of TTP/C and FlexRay," ed, 2001.

[Consortium'04] FlexRay Consortium, "FlexRay Communications Systems Protocol

Specification v2.0," ed, 2004.

[FlexRay'05] FlexRayFlexRay Consortium. (2004, 28/12). FlexRay basics. Available:

http://www.flexray.com/about.php?menuID=1

http://www.vmars.tuwien.ac.at/projects/ttp/ttpc.html
http://www.flexray.com/about.php?menuID=1

113

[FlexRay'04] FlexRayIXXAT. (2005, 4/4). FlexRay Introduction. Available:
http://www.ixxat.com/introduction_flexray_en.html

[ODVA'04] ODVA. Open DeviceNet Vendor Association. Available: http://www.odva.org/

[Hitex'95] Hitex. (1995, January 1995) Hitex UK Ltd. Controller Area Networking: The

Future of inductrial Microprocessor Communications. Hitex UK Ltd C51/166
newsletter.

[softing'05] softing. CAN bus. Available: http://www.softing.com/home/en/industrial-

automation/products/can-bus/index.php?navanchor=3010024

[ISO'93] ISO, "ISO 11898," in Road vehicles - Interchange of digital information- Controller area

network (CAN) for high-speed communication, ed: International Organization for
Standardization, 1993.

[MWG'03a] MilCAN Working Group MWG, "MilCAN A Physical Layer Specification IHSDB-

APP-GEN-D-030 Revision 3," ed: MilCAN Working Group, 2003a.

[Group'03] MilCAN Working Group, "MilCAN A Data Link Layer Specification IHSDB-APP-

GEN-D-031 Revision 4," ed: MilCAN Working Group, 2003.

[MWG'03b] MilCAN Working Group MWG, "MilCAN A Application Layer specification

IHSDB-APP-GEN-D-032 Revision 2," ed: MilCAN Working Group, 2003b.

[MWG'09] MilCAN Working Group MWG, "MilCAN A Specification MWG-MILA-001

Revision 3," ed: MilCAN Working Group, 2009.

[ARM'04] ARM. (2010, 26 May). Instruction Set. Available:

http://www.keil.com/support/man/docs/a166/a166_xa.htm

[ARM'05] ARM. (2010, 26 May). VECTAB Linker Directive. Available:

http://www.keil.com/support/man/docs/l166/l166_vectab.htm

[Wikipedia'10a] WikipediaWikipedia, The Free Encyclopedia. (2010, 6 May). Intel HEX.

Available: http://en.wikipedia.org/w/index.php?title=Intel_HEX&oldid=360347177

[Infineon'00] Infineon. (2000). C167CS Derivatives - 16-Bit Single-Chip Microcontroller.

[Wikipedia'10b] WikipediaWikipedia, The Free Encyclopedia. Failure mode and effects analysis.

Available:
http://en.wikipedia.org/w/index.php?title=Failure_mode_and_effects_analysis&oldid
=387361911

[Temple'98] C. Temple, "Avoiding the babbling-idiot failure in a time-triggered

communication system," in Fault-Tolerant Computing, 1998. Digest of Papers. Twenty-
Eighth Annual International Symposium on, 1998, pp. 218-227.

[Vector'06a] Vector. (2006, May). Test with CANoe. Available:

http://www.vector.com/vi_canoe_en.html

http://www.ixxat.com/introduction_flexray_en.html
http://www.odva.org/
http://www.softing.com/home/en/industrial-automation/products/can-bus/index.php?navanchor=3010024
http://www.softing.com/home/en/industrial-automation/products/can-bus/index.php?navanchor=3010024
http://www.keil.com/support/man/docs/a166/a166_xa.htm
http://www.keil.com/support/man/docs/l166/l166_vectab.htm
http://en.wikipedia.org/w/index.php?title=Intel_HEX&oldid=360347177
http://en.wikipedia.org/w/index.php?title=Failure_mode_and_effects_analysis&oldid=387361911
http://en.wikipedia.org/w/index.php?title=Failure_mode_and_effects_analysis&oldid=387361911
http://www.vector.com/vi_canoe_en.html

114

[Vector'06b] Vector. (2006, May). CANstressD and CANstressDR. Available:
http://www.vector.com/vi_canstress_en.html

[Johnson'88] B. W. Johnson, Design & analysis of fault tolerant digital systems. Boston:

Addison-Wesley Longman Publishing Co., 1988.

[Oikonomidis'08] Panagiotis Ioannis Oikonomidis, Elias Stipidis, Periklis Charchalakis, et

al., "MilCAN Fault Tolerance Layer," presented at the 12th International CAN
conference, Barcelona Spain, 2008.

[Oikonomidis'09] Panagiotis Ioannis Oikonomidis, "MilCAN Fault Tolerance Layer

Specifications," presented at the 28th MilCAN Working Group Briefing, Brighton UK,
2009.

[Stallings'06] William Stallings, "Cryptography and network security principles and

practices," ed. Princeton, N.J.: Recording for the Blind & Dyslexic, 2006.

[Iee'90] IEEE, "IEEE Standard Glossary of Software Engineering Terminology," 1990.

[Isermann'02] R. Isermann, R. Schwarz. and S. Stolzl, "Fault-tolerant drive-by-wire systems,"

Control Systems Magazine, IEEE, vol. 22, pp. 64-81, 2002.

[Fredriksson'02] L. B. Fredriksson, "CAN for critical embedded automotive networks,"

Micro, IEEE, vol. 22, pp. 28-35, 2002.

[Hammett'03] R. Hammett, "Flight-critical distributed systems: design considerations

[avionics]," Aerospace and Electronic Systems Magazine, IEEE, vol. 18, pp. 30-36, 2003.

[Charchalakis'03] Periklis Charchalakis, George Valsamakis, R.M. Connor, et al., "MilCAN

and Ethernet," presented at the 9th International CAN coference, Munich Germany,
2003.

http://www.vector.com/vi_canstress_en.html

115

Bibliography

[Rose'96] P. D. Rose, "Automotive and aerospace electronic systems. Dependability

requirements," Microelectronics and Reliability, vol. 36, pp. 1923-1929, 1996.

[Bosch'91] Robert Bosch, "CAN Specification Version 2.0," ed, 1991.

[Kopetz'98] Hermann Kopetz, "A Comparison of CAN and TTP," in In Proc. of the IFAC

Distributed Computer Systems Workshop, 1998, pp. 13--182.

*Çenesİz'04+ Nilüfer Çenesİz and Murat Esin, "Controller area network (CAN) for computer

integrated manufacturing systems," Journal of Intelligent Manufacturing, vol. 15, pp.
481-489, 2004.

[Koopman'02] P. Koopman, "Critical embedded automotive networks," Micro, IEEE, vol. 22,

pp. 14-18, 2002.

[Gui Yun'01] Tian Gui Yun, "Design and implementation of distributed measurement

systems using fieldbus-based intelligent sensors," Instrumentation and Measurement,
IEEE Transactions on, vol. 50, pp. 1197-1202, 2001.

[Boys'04] Robert Boys, "Diagnostics and Prognostics for Military and Heavy Vehicles,"

Dearborn Group Inc2004.

[Tovar'01] Eduardo Tovar and Francisco Vasques, "Distributed computing for the factory-

floor: a real-time approach using WorldFIP networks," Computers in Industry, vol. 44,
pp. 11-31, 2001.

[Bucci'03] G. Bucci and C. Landi, "A distributed measurement architecture for industrial

applications," Instrumentation and Measurement, IEEE Transactions on, vol. 52, pp.
165-174, 2003.

[Kunes'01] M. Kunes and T. Sauter, "Fieldbus-internet connectivity: the SNMP approach,"

Industrial Electronics, IEEE Transactions on, vol. 48, pp. 1248-1256, 2001.

[Stanton'96] Neville A. Stanton and Philip Marsden, "From fly-by-wire to drive-by-wire:

Safety implications of automation in vehicles," Safety Science, vol. 24, pp. 35-49, 1996.

[Kyung Chang'03] Lee Kyung Chang, Kim Man Ho, Lee Suk, et al., "IEEE 1451 based smart

module for in-vehicle networking systems of intelligent vehicles," in Industrial
Electronics Society, 2003. IECON '03. The 29th Annual Conference of the IEEE, 2003, pp.
1796-1801 Vol.2.

[Ekiz'97] H. Ekiz, A. Kutlu. and E. T. Powner, "Implementation of CAN/CAN bridges in

distributed environments and performance analysis of bridged CAN systems using SAE
benchmark," in Southeastcon '97. 'Engineering new New Century'., Proceedings. IEEE,
1997, pp. 185-187.

116

[Kunert'97] O. Kunert and M. Zitterbart, "Interconnecting fieldbuses through ATM," in
Local Computer Networks, 1997. Proceedings., 22nd Annual Conference on, 1997, pp.
538-544.

[Sveda'97] M. Sveda and F. Zezulka, "Interconnecting low-level fieldbusses," in

EUROMICRO 97. 'New Frontiers of Information Technology'., Proceedings of the 23rd
EUROMICRO Conference, 1997, pp. 614-620.

[Cavalieri'96] S. Cavalieri, A. Di Stefano. and O. Mirabella, "Mapping automotive process

control on IEC/ISA FieldBus functionalities," Computers in Industry, vol. 28, pp. 233-
250, 1996.

[Condor'00] Condor, "MIL-STD-1553 Protocol Tutorial," Condor Engineering2000.

[Koubias'95] S. A. Koubias and G. D. Papadopoulos, "Modern fieldbus communication

architectures for real-time industrial applications," Computers in Industry, vol. 26, pp.
243-252, 1995.

[Lind'99] R. Lind, R. Schumacher, R. Reger, et al., "The Network Vehicle-a glimpse into

the future of mobile multi-media," Aerospace and Electronic Systems Magazine, IEEE,
vol. 14, pp. 27-32, 1999.

[Vitturi'01] S. Vitturi, "On the use of Ethernet at low level of factory communication

systems," Computer Standards & Interfaces, vol. 23, pp. 267-277, 2001.

[Kibler'04] Thomas Kibler, Stefan Poferl, Gotthard Böck, et al., "Optical Data Buses for

Automotive Applications," J. Lightwave Technol., vol. 22, p. 2184, 2004.

[Fleming'01] W. J. Fleming, "Overview of automotive sensors," Sensors Journal, IEEE, vol. 1,

pp. 296-308, 2001.

[Cavalier'96] S. Cavalier, A. Di Stefano, L. Lo Bello, et al., "Performance evaluation of FDDI-

based fieldbus interconnection in factory automation environment," in Industrial
Electronics, 1996. ISIE '96., Proceedings of the IEEE International Symposium on, 1996,
pp. 1025-1030 vol.2.

[Papadopoulos'99] Y. Papadopoulos and J. A. McDermid, "The potential for a generic

approach to certification of safety critical systems in the transportation sector,"
Reliability Engineering & System Safety, vol. 63, pp. 47-66, 1999.

[Giusto'04] Paolo Giusto and Thilo Demmeler, "Rapid design exploration of safety-critical

distributed automotive applications via virtual integration platforms," Journal of
Systems and Software, vol. 70, pp. 245-262, 2004.

[Flammini'02] A. Flammini, P. Ferrari, E. Sisinni, et al., "Sensor interfaces: from field-bus to

Ethernet and Internet," Sensors and Actuators A: Physical, vol. 101, pp. 194-202, 2002.

[Simonds'03] C. Simonds, "Software for the next-generation automobile," IT Professional,

vol. 5, pp. 7-11, 2003.

117

[Schumny'98b] Harald Schumny and Norbert Zisky, "A standard interface for site electronics
based on modern fieldbus technology," Computer Standards & Interfaces, vol. 19, pp.
305-312, 1998b.

[Wood'00] G. Wood, "State of play [fieldbus technology]," IEE Review, vol. 46, pp. 26-28,

2000.

[Hammett'99] R. C. Hammett, "Ultra-reliable real-time control systems-future trends,"

Aerospace and Electronic Systems Magazine, IEEE, vol. 14, pp. 31-36, 1999.

[Heikkila'04] H. Heikkila, P. Eskelinen, P. Hautala, et al., "Upgrading armored vehicle sensor

systems," Aerospace and Electronic Systems Magazine, IEEE, vol. 19, pp. 26-32, 2004.

[Stipidis'06] Elias Stipidis, Panagiotis Ioannis Oikonomidis. and George Valsamakis, "2004-

06 Programmes Deliverable Technical Report, RT/COM/4/5008.04-06," ed, 2006.

[Ferreira'02] J. Ferreira, P. Pedreiras, L. Almeida, et al., "Achieving fault tolerance in FTT-

CAN," in Factory Communication Systems, 2002. 4th IEEE International Workshop on,
2002, pp. 125-132.

[Haowei'07] Bai Haowei, "Analysis of a SAE AS5643 Mil-1394b Based High-Speed Avionics

Network Architecture for Space and Defense Applications," in Aerospace Conference,
2007 IEEE, 2007, pp. 1-9.

[Kai'09] Wang Kai, Xu Aidong. and Wang Hong, "Avoiding the babbling idiot failure in a

communication system based on flexible time division multiple access: A bus guardian
solution," in Industrial Electronics, 2009. ISIE 2009. IEEE International Symposium on,
2009, pp. 1292-1297.

[Guo'07] Xiaosong Guo, Xingjie Pan, Chuanqiang Yu, et al., "Design of a CAN Bus Testing

and Control System Based on Fault Tolerant Redundancy," in Electronic Measurement
and Instruments, 2007. ICEMI '07. 8th International Conference on, 2007, pp. 1-888-1-
892.

[Pickard'07] K. Pickard, T. Leopold, P. Muller, et al., "Electronic Failures and Monitoring

Strategies in Automotive Control Units," in Reliability and Maintainability Symposium,
2007. RAMS '07. Annual, 2007, pp. 17-21.

[Kopetz'03a] H. Kopetz, "Fault containment and error detection in the time-triggered

architecture," in Autonomous Decentralized Systems, 2003. ISADS 2003. The Sixth
International Symposium on, 2003a, pp. 139-146.

[Jianmin'07] Duan Jianmin, Xiao Jinjun. and Zhang Mingjie, "Framework of CANopen

Protocol for a Hybrid Electric Vehicle," in Intelligent Vehicles Symposium, 2007 IEEE,
2007, pp. 906-911.

[Hopkins'78] A. L. Hopkins, Jr., T. B. Smith, III. and J. H. Lala, "FTMP - A highly reliable fault-

tolerant multiprocess for aircraft," Proceedings of the IEEE, vol. 66, pp. 1221-1239,
1978.

118

[Valsamakis'04] George Valsamakis, Periklis Charchalakis. and Elias Stipidis, "Management and
configuration for MilCAN vetronic systems," presented at the 10th International CAN
conference, 2004.

[Izosimov'06a] V. Izosimov, P. Pop, P. Eles, et al., "Mapping of Fault-Tolerant Applications with

Transparency on Distributed Embedded Systems*," in Digital System Design:
Architectures, Methods and Tools, 2006. DSD 2006. 9th EUROMICRO Conference on,
2006a, pp. 313-322.

[Buja'05] G. Buja, A. Zuccollo. and J. Pimentel, "Overcoming babbling-idiot failures in the

FlexCAN architecture: a simple bus-guardian," in Emerging Technologies and Factory
Automation, 2005. ETFA 2005. 10th IEEE Conference on, 2005, pp. 8 pp.-468.

[Webber'91] S. Webber and J. Beirne, "The Stratus architecture," in Fault-Tolerant

Computing, 1991. FTCS-21. Digest of Papers., Twenty-First International Symposium,
1991, pp. 79-85.

[Izosimov'06b] V. Izosimov, P. Pop, P. Eles, et al., "Synthesis of fault-tolerant embedded

systems with checkpointing and replication," in Electronic Design, Test and
Applications, 2006. DELTA 2006. Third IEEE International Workshop on, 2006b, pp. 5
pp.-447.

[Bolchini'02] C. Bolchini, L. Pomante, F. Salice, et al., "A system level approach in designing

dual-duplex fault tolerant embedded systems," in On-Line Testing Workshop, 2002.
Proceedings of the Eighth IEEE International, 2002, pp. 32-36.

[Lee'01] B. H. Lee, "Using Bayes belief networks in industrial FMEA modeling and analysis," in

Reliability and Maintainability Symposium, 2001. Proceedings. Annual, 2001, pp. 7-15.

[Charchalakis'06] Periklis Charchalakis, George Valsamakis, Elias Stipidis, et al., "VSI

embedded network intergrated system for military vehicles," Journal of Defence
Science, vol. 10, April 2005 2006.

[Philippi'03] Stephan Philippi, "Analysis of fault tolerance and reliability in distributed real-

time system architectures," Reliability Engineering & System Safety, vol. 82, pp. 195-
206, 2003.

[Kopetz'03b] H. Kopetz and G. Bauer, "The time-triggered architecture," Proceedings of the

IEEE, vol. 91, pp. 112-126, 2003b.

[Karlsson'02] Annika Karlsson, "X-by-wire systems and time-triggered protocols," Uppsala

University, 2002.

[Avizienis'04] A. Avizienis, J. C. Laprie, B. Randell, et al., "Basic concepts and taxonomy of

dependable and secure computing," Dependable and Secure Computing, IEEE
Transactions on, vol. 1, pp. 11-33, 2004.

[Barron'96] M. B. Barron and W. F. Powers, "The role of electronic controls for future

automotive mechatronic systems," Mechatronics, IEEE/ASME Transactions on, vol. 1,
pp. 80-88, 1996.

119

[Bauer'00] G. Bauer and H. Kopetz, "Transparent redundancy in the time-triggered
architecture," in Dependable Systems and Networks, 2000. DSN 2000. Proceedings
International Conference on, 2000, pp. 5-13.

[Boehm'88] B. W. Boehm, "A spiral model of software development and enhancement,"

Computer, vol. 21, pp. 61-72, 1988.

[Hess'05] R. A. Hess, "From Health and Usage Monitoring to Integrated Fleet

Management - Evolving Directions for Rotorcraft," in Aerospace Conference, 2005 IEEE,
2005, pp. 1-6.

[Jakovljevic'06] M. Jakovljevic and M. Artner, "Protocol-Level System Health Monitoring and

Redundancy Management for Integrated Vehicle Health Management," in 25th Digital
Avionics Systems Conference, 2006 IEEE/AIAA, 2006, pp. 1-7.

[Johannessen'01] Johannessen, "SIRIUS 2001 – A University Drive-by-Wire Project,"

Department of Computer Engineering, Chalmers University of Technology Goteborg,
Sweden2001.

[Kopetz'94a] H. Kopetz, "The design of fault-tolerant real-time systems," in EUROMICRO 94.

System Architecture and Integration. Proceedings of the 20th EUROMICRO Conference.,
1994a, pp. 4-9.

[Kopetz'04] H. Kopetz, "An integrated architecture for dependable embedded systems," in

Reliable Distributed Systems, 2004. Proceedings of the 23rd IEEE International
Symposium on, 2004, pp. 160-161.

[Kopetz'94b] H. Kopetz and G. Grunsteidl, "TTP-a protocol for fault-tolerant real-time

systems," Computer, vol. 27, pp. 14-23, 1994b.

[Kopetz'99] H. Kopetz and D. Millinger, "The transparent implementation of fault tolerance

in the time-triggered architecture," in Dependable Computing for Critical Applications
7, 1999, 1999, pp. 191-205.

[Lincoln'95] P. Lincoln and J. Rushby, "A Formally Verified Algorithm for Interactive

Consistency Under a Hybrid Fault Model," in Fault-Tolerant Computing, 1995, '
Highlights from Twenty-Five Years'., Twenty-Fifth International Symposium on, 1995, p.
438.

[MoD'06] UK Ministry of Defence MoD, "Defence Technology Strategy 2006," 2006.

[Murray'02] C Murray, A Guide to Successful Software Development. NY: Addison-Wesley,

2002.

[Rushby'96] J. Rushby, "Reconfiguration and transient recovery in state machine

architectures," in Fault Tolerant Computing, 1996., Proceedings of Annual Symposium
on, 1996, pp. 6-15.

[Rushby'99] J. Rushby, "Systematic formal verification for fault-tolerant time-triggered

algorithms," Software Engineering, IEEE Transactions on, vol. 25, pp. 651-660, 1999.

120

[White'08] Tony White, "The By-Wire Experience," presented at the TTTech Symposium,
Ultra Electronics, 2008.

[Wideman'03] M Wideman, "Software Development and Linearity," ICFAI PRESS Hyderabad,

2003.

121

Appendix

MilCAN Reconfiguration Protocol

Function
Primary
ID Secondary ID Direction DLC

Start firmware load 0xBE 0x1E M > S 3

Payload Data

Description

0 <Slave ID>

1 <Start Sequence Number>

2 <Firmware Version>

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Start firmware load (ACK) 0xBE 0x1F S > M 3

Payload Data

Description

0 <Slave ID>

1 <Start Sequence Number>

2 <Firmware Version>

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Address set 0xBE 0x20 M > S 6

Payload Data

Description

0 <Slave ID>

1 <Sequence Number>

2 <Data Size>

3 <Address Upper Bytes>

4 <Address Lower Bytes>

5 <Checksum>

6

7

122

Function
Primary
ID Secondary ID Direction DLC

Address set (ACK) 0xBE 0x21 S > M 6

Payload Data

Description

0 <Slave ID>

1 <Sequence Number>

2 <Data Size>

3 <Address Upper Bytes>

4 <Address Lower Bytes>

5 <Checksum>

6

7

Function
Primary
ID Secondary ID Direction DLC

Programming data 0xBE 0x22 M > S 8

Payload Data

Description

0 <Slave ID>

1 <Sequence Number>

2 <Data Upper Bytes>

3

4

5

6

7 <Data Lower Bytes>

Function
Primary
ID Secondary ID Direction DLC

Programming data (ACK) 0xBE 0x23 S > M 8

Payload Data

Description

0 <Slave ID>

1 <Sequence Number>

2 <Data Upper Bytes>

3

4

5

6

7 <Data Lower Bytes>

Function
Primary
ID Secondary ID Direction DLC

Enter programming mode 0xBE 0x24 M > S 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

123

Function
Primary
ID Secondary ID Direction DLC

Enter programming mode
(ACK) 0xBE 0x25 S > M 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Erasing app sectors 0xBE 0x26 M > S 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Erasing app sectors (ACK) 0xBE 0x27 S > M 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

124

Function
Primary
ID Secondary ID Direction DLC

Erasing chip 0xBE 0x28 M > S 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Erasing chip (ACK) 0xBE 0x29 S > M 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Software reset 0xBE 0x2A M > S 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Software reset (ACK) 0xBE 0x2B S > M 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

125

Function
Primary
ID Secondary ID Direction DLC

Checksum 0xBE 0x2C M > S 3

Payload Data

Description

0 <Slave ID>

1 <Checksum upper>

2 <Checksum lower>

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Checksum (ACK) 0xBE 0x2D S > M 3

Payload Data

Description

0 <Slave ID>

1 <Checksum upper>

2 <Checksum lower>

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Status checking 0xBE 0x2E M > S 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

126

Function
Primary
ID Secondary ID Direction DLC

Status checking (result) 0xBE 0x2F S > M 3

Payload Data

Description

0 <Slave ID>

1

<MilCAN
mode>

2 <Node mode>

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Version checking 0xBE 0x30 M > S 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Version checking (result) 0xBE 0x31 S > M 8

Payload Data

Description

0 <Slave ID>

1 <Version>

2 <Version>

3 <Version>

4 <Version>

5 <Version>

6 <Version>

7 <Version>

127

Function
Primary
ID Secondary ID Direction DLC

Node ID change 0xBE 0x32 M > S 7

Payload Data

Description

0 <Slave ID>

1 <MILCAN_ID1>

2 <MILCAN_ID2>

3

<NODE_SERIAL
>

4

<NODE_SERIAL
>

5

<NODE_SERIAL
>

6

<NODE_SERIAL
>

7

Function
Primary
ID Secondary ID

Directio
n DLC

Node ID change (result) 0xBE 0x33 S > M 7

Payload Data

Description

0 <Slave ID>

1 <MILCAN_ID1>

2 <MILCAN_ID2>

3

<NODE_SERIAL
>

4

<NODE_SERIAL
>

5

<NODE_SERIAL
>

6

<NODE_SERIAL
>

7

Function
Primary
ID Secondary ID Direction DLC

Node speed change 0xBE 0x34 M > S 5

Payload Data

Description

0 <Slave ID>

1 <NODE_SPEED_A_1> for 1000 kbits

2 <NODE_SPEED_A_2>

3 <NODE_SPEED_B_1>

4 <NODE_SPEED_B_1>

5

6

7

128

Function
Primary
ID Secondary ID Direction DLC

Node speed change (result) 0xBE 0x35 S > M 5

Payload Data

Description

0 <Slave ID>

1 <NODE_SPEED_A_1>

2 <NODE_SPEED_A_2>

3 <NODE_SPEED_B_1>

4 <NODE_SPEED_B_1>

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Message configuration 0xBE 0x50 M > S 8

Payload Data

Description

0 <Slave ID>

1 <Primary ID>

2 <Secondary ID>

3 <New Priority>

4

<New Primary
ID>

5 <New Secondary ID>

6 <New Start Frame>

7 <New Cycle>

Function
Primary
ID Secondary ID Direction DLC

Message configuration (ACK) 0xBE 0x51 S > M 8

Payload Data

Description

0 <Slave ID>

1 <Primary ID>

2 <Secondary ID>

3 <New Priority>

4

<New Primary
ID>

5 <New Secondary ID>

6 <New Start Frame>

7 <New Cycle>

129

Function
Primary
ID Secondary ID Direction DLC

Message configuration save 0xBE 0x52 M > S 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

Function
Primary
ID Secondary ID Direction DLC

Message configuration save
(ACK) 0xBE 0x53 S > M 1

Payload Data

Description

0 <Slave ID>

1

2

3

4

5

6

7

130

MilCAN Reconfiguration test result

Automotive segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 1000kbit, routing MilCAN backbone

 SEGA to BBONE BBONE to SEGU SEGA to SEGU

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x3e30 MAPED1 0.0343 0.0395 0.0209 0.0255 0.0556 0.0636

0x3e32 MAPED2 0.0357 0.0403 0.0209 0.0259 0.0569 0.0648

0x5e30 MAPED3 0.0455 0.0392 0.0295 0.0273 0.0723 0.0652

0x3e34 MASTR1 0.0342 0.0403 0.021 0.025 0.0553 0.0647

0x3e36 MASTR2 0.0408 0.0427 0.0235 0.0265 0.0652 0.0686

0x5830 MASTR3 0.04 0.0434 0.0233 0.0282 0.0644 0.0712

0x5832 MASTR4 0.0417 0.0435 0.0238 0.0282 0.067 0.0712

0x5834 MASTR5 0.0441 0.0436 0.028 0.0283 0.0696 0.0713

0x4430 MASTR6 0.0404 0.0393 0.0238 0.0278 0.0655 0.0661

0xd220 MAWHE1 0.0347 0.0381 0.0212 0.0255 0.0562 0.0651

0xd221 MAWHE2 0.0269 0.0388 0.0211 0.0244 0.035 0.0649

0xf020 MAENG1 0.0348 0.0404 0.0209 0.0254 0.0557 0.0652

0xf021 MAENG2 0.0356 0.0387 0.021 0.0257 0.0566 0.0659

0xf022 MAENG3 0.0422 0.0395 0.0238 0.0267 0.0665 0.0682

Utilities segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 1000kbit, routing MilCAN backbone

 SEGU to BBONE BBONE to SEGA SEGU to SEGA

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x5501 MUGPS1 0.0181 0.0247 0.0368 0.0457 0.0544 0.071

0x5502 MUGPS2 0.0209 0.0245 0.0376 0.046 0.0567 0.0709

0x5503 MUGPS3 0.0219 0.0245 0.0383 0.0461 0.0587 0.0709

0x5030 MUPWR1 0.0232 0.0256 0.0395 0.0442 0.0596 0.0659

0x5936 MUSNS1 0.0249 0.0197 0.043 0.0429 0.0685 0.0603

Automotive segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 1000kbit, routing Ethernet backbone

 SEGA to SEGU

ID Message high HRT low HRT

0x3e30 MAPED1 0.0368 0.0323

0x3e32 MAPED2 0.0384 0.0359

0x5e30 MAPED3 0.0469 0.039

0x3e34 MASTR1 0.0365 0.0312

0x3e36 MASTR2 0.0465 0.0408

0x5830 MASTR3 0.0461 0.0383

0x5832 MASTR4 0.0471 0.0409

0x5834 MASTR5 0.048 0.0427

0x4430 MASTR6 0.0462 0.0412

0xd220 MAWHE1 0.0377 0.0337

0xd221 MAWHE2 0.0354 0.0321

0xf020 MAENG1 0.037 0.0325

0xf021 MAENG2 0.0385 0.0342

0xf022 MAENG3 0.0482 0.0398

131

Utilities segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 1000kbit, routing Ethernet backbone

 SEGU to SEGA

ID Message high HRT low HRT

0x5501 MUGPS1 0.0296 0.0252

0x5502 MUGPS2 0.0315 0.0387

0x5503 MUGPS3 0.0314 0.0402

0x5030 MUPWR1 0.0301 0.0403

0x5936 MUSNS1 0.0186 0.0252

Automotive segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 1000kbit, routing MilCAN/Ethernet backbone

 SEGA to SEGU

ID Message high HRT low HRT

0x3e30 MAPED1 0.0519 0.0592

0x3e32 MAPED2 0.0535 0.0597

0x5e30 MAPED3 0.0396 0.0298

0x3e34 MASTR1 0.0518 0.0623

0x3e36 MASTR2 0.0644 0.0646

0x5830 MASTR3 0.0344 0.0353

0x5832 MASTR4 0.0366 0.0358

0x5834 MASTR5 0.038 0.0357

0x4430 MASTR6 0.0647 0.0576

0xd220 MAWHE1 0.0534 0.0652

0xd221 MAWHE2 0.0313 0.0631

0xf020 MAENG1 0.0522 0.0627

0xf021 MAENG2 0.0533 0.0638

0xf022 MAENG3 0.0663 0.0645

Utilities segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 1000kbit, routing MilCAN/Ethernet backbone

 SEGU to SEGA

ID Message high HRT low HRT

0x5501 MUGPS1 0.0672 0.0724

0x5502 MUGPS2 0.0681 0.0724

0x5503 MUGPS3 0.0685 0.0723

0x5030 MUPWR1 0.0329 0.0391

0x5936 MUSNS1 0.0305 0.0346

132

Automotive segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 500kbit, routing MilCAN backbone

 SEGA to BBONE BBONE to SEGU SEGA to SEGU

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x3e30 MAPED1 0.0343 0.0394 0.0246 0.0254 0.0547 0.0639

0x3e32 MAPED2 0.0356 0.0401 0.0206 0.0258 0.0562 0.0652

0x5e30 MAPED3 0.044 0.0395 0.0279 0.027 0.0704 0.065

0x3e34 MASTR1 0.0339 0.0412 0.0208 0.0256 0.0546 0.0663

0x3e36 MASTR2 0.0404 0.0432 0.023 0.0268 0.0631 0.0694

0x5830 MASTR3 0.0402 0.0431 0.0229 0.0279 0.0616 0.0701

0x5832 MASTR4 0.0413 0.0434 0.0241 0.0281 0.0641 0.0702

0x5834 MASTR5 0.0423 0.0437 0.0257 0.0281 0.0673 0.0703

0x4430 MASTR6 0.0401 0.0399 0.0229 0.0285 0.0634 0.0659

0xd220 MAWHE1 0.0345 0.0417 0.0205 0.0277 0.0543 0.0671

0xd221 MAWHE2 0.0151 0.0426 0.0207 0.0253 0.0329 0.0642

0xf020 MAENG1 0.0345 0.0416 0.0208 0.0255 0.0552 0.0662

0xf021 MAENG2 0.0356 0.0411 0.0208 0.0262 0.056 0.0677

0xf022 MAENG3 0.0419 0.0418 0.0231 0.0266 0.0646 0.0697

Utilities segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 500kbit, routing MilCAN backbone

 SEGU to BBONE BBONE to SEGA SEGU to SEGA

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x5501 MUGPS1 0.0182 0.0238 0.0367 0.0485 0.055 0.0651

0x5502 MUGPS2 0.0214 0.0238 0.0377 0.0469 0.0593 0.0653

0x5503 MUGPS3 0.0233 0.0242 0.038 0.0469 0.06 0.0652

0x5030 MUPWR1 0.0237 0.0215 0.0379 0.046 0.0593 0.0595

0x5936 MUSNS1 0.0246 0.0201 0.0419 0.042 0.066 0.0597

Automotive segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 500kbit, routing MilCAN/Ethernet backbone

 SEGA to SEGU

ID Message high HRT low HRT

0x3e30 MAPED1 0.0516 0.0593

0x3e32 MAPED2 0.0534 0.0598

0x5e30 MAPED3 0.0382 0.0294

0x3e34 MASTR1 0.0512 0.0608

0x3e36 MASTR2 0.0631 0.0627

0x5830 MASTR3 0.0352 0.0353

0x5832 MASTR4 0.036 0.0354

0x5834 MASTR5 0.0366 0.0353

0x4430 MASTR6 0.0638 0.0623

0xd220 MAWHE1 0.0524 0.0627

0xd221 MAWHE2 0.0306 0.0614

0xf020 MAENG1 0.0521 0.061

0xf021 MAENG2 0.0534 0.0612

0xf022 MAENG3 0.0648 0.0617

133

Utilities segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 500kbit, routing MilCAN/Ethernet backbone

 SEGU to SEGA

ID Message high HRT low HRT

0x5501 MUGPS1 0.0656 0.0671

0x5502 MUGPS2 0.0662 0.0686

0x5503 MUGPS3 0.0665 0.0687

0x5030 MUPWR1 0.0283 0.0294

0x5936 MUSNS1 0.0288 0.0297

Automotive segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 250kbit, routing MilCAN backbone

 SEGA to BBONE BBONE to SEGU SEGA to SEGU

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x3e30 MAPED1 0.0351 0.0398 0.0207 0.0256 0.0552 0.0641

0x3e32 MAPED2 0.0365 0.0408 0.0209 0.0258 0.0567 0.0656

0x5e30 MAPED3 0.0432 0.0399 0.027 0.0277 0.0693 0.0653

0x3e34 MASTR1 0.0348 0.0412 0.0207 0.0256 0.0549 0.066

0x3e36 MASTR2 0.0403 0.0428 0.0232 0.0271 0.0626 0.0688

0x5830 MASTR3 0.0396 0.0432 0.0248 0.0288 0.0608 0.0715

0x5832 MASTR4 0.0406 0.0436 0.0257 0.0285 0.064 0.0719

0x5834 MASTR5 0.0421 0.044 0.0275 0.0283 0.0687 0.0719

0x4430 MASTR6 0.0405 0.0384 0.0238 0.0295 0.0627 0.0672

0xd220 MAWHE1 0.0354 0.041 0.0212 0.0283 0.0555 0.0661

0xd221 MAWHE2 0.0298 0.0416 0.0208 0.0251 0.0346 0.0663

0xf020 MAENG1 0.0352 0.0415 0.0209 0.0256 0.0553 0.0663

0xf021 MAENG2 0.0363 0.041 0.0211 0.0253 0.0564 0.0678

0xf022 MAENG3 0.0416 0.0413 0.0227 0.0261 0.0638 0.0687

Utilities segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 250kbit, routing MilCAN backbone

 SEGU to BBONE BBONE to SEGA SEGU to SEGA

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x5501 MUGPS1 0.0193 0.0262 0.0355 0.0386 0.0515 0.0686

0x5502 MUGPS2 0.0221 0.0266 0.0363 0.0386 0.056 0.0687

0x5503 MUGPS3 0.0233 0.0269 0.0366 0.0382 0.0586 0.069

0x5030 MUPWR1 0.0237 0.0275 0.0346 0.038 0.0607 0.0619

0x5936 MUSNS1 0.0251 0.0207 0.0412 0.0411 0.0665 0.0593

134

Automotive segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 250kbit, routing MilCAN/Ethernet backbone

 SEGA to SEGU

ID Message high HRT low HRT

0x3e30 MAPED1 0.0532 0.0603

0x3e32 MAPED2 0.0548 0.0609

0x5e30 MAPED3 0.0377 0.0298

0x3e34 MASTR1 0.0529 0.0615

0x3e36 MASTR2 0.0608 0.0636

0x5830 MASTR3 0.0335 0.0352

0x5832 MASTR4 0.0344 0.0353

0x5834 MASTR5 0.0366 0.0352

0x4430 MASTR6 0.0612 0.065

0xd220 MAWHE1 0.0543 0.0665

0xd221 MAWHE2 0.0315 0.063

0xf020 MAENG1 0.0535 0.0623

0xf021 MAENG2 0.0549 0.0628

0xf022 MAENG3 0.0628 0.0638

Utilities segment message latencies; MilCAN segment 1000kbit
MilCAN backbone 250kbit, routing MilCAN/Ethernet backbone

 SEGU to SEGA

ID Message high HRT low HRT

0x5501 MUGPS1 0.0645 0.0709

0x5502 MUGPS2 0.0656 0.0736

0x5503 MUGPS3 0.0667 0.0749

0x5030 MUPWR1 0.0297 0.0408

0x5936 MUSNS1 0.029 0.0359

Automotive segment message latencies; MilCAN segment 500kbit
MilCAN backbone 500kbit, routing MilCAN backbone

 SEGA to BBONE BBONE to SEGU SEGA to SEGU

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x3e30 MAPED1 0.0399 0.0253 0.0215 0.0183 0.0626 0.0431

0x3e32 MAPED2 0.0409 0.0263 0.0219 0.0196 0.0639 0.0453

0x5e30 MAPED3 0.0502 0.021 0.0208 0.0182 0.0738 0.0389

0x3e34 MASTR1 0.0435 0.0309 0.0212 0.023 0.0654 0.0536

0x3e36 MASTR2 0.0474 0.0323 0.0215 0.0254 0.0699 0.0565

0x5830 MASTR3 0.0437 0.0293 0.02 0.0211 0.069 0.0501

0x5832 MASTR4 0.0456 0.0295 0.02 0.0212 0.0691 0.0502

0x5834 MASTR5 0.0457 0.0297 0.0206 0.0214 0.0693 0.0505

0x4430 MASTR6 0.0458 0.0327 0.0219 0.0231 0.0681 0.0555

0xd220 MAWHE1 0.0452 0.0363 0.0209 0.0241 0.066 0.06

0xd221 MAWHE2 0.0433 0.0305 0.0216 0.0245 0.0576 0.0551

0xf020 MAENG1 0.0434 0.0314 0.0214 0.0237 0.0661 0.0539

0xf021 MAENG2 0.0444 0.0347 0.0222 0.0246 0.0684 0.0584

0xf022 MAENG3 0.0484 0.0346 0.0224 0.0251 0.0721 0.0589

135

Utilities segment message latencies; MilCAN segment 500kbit
MilCAN backbone 500kbit, routing MilCAN backbone

 SEGU to BBONE BBONE to SEGA SEGU to SEGA

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x5501 MUGPS1 0.0187 0.0235 0.0497 0.0292 0.0667 0.0533

0x5502 MUGPS2 0.0205 0.0236 0.0504 0.0291 0.0677 0.0532

0x5503 MUGPS3 0.0207 0.0209 0.0494 0.029 0.0666 0.0504

0x5030 MUPWR1 0.0182 0.0254 0.0552 0.027 0.0699 0.0487

0x5936 MUSNS1 0.0185 0.0158 0.0471 0.0217 0.0642 0.0358

Automotive segment message latencies; MilCAN segment 500kbit
MilCAN backbone 500kbit, routing Ethernet backbone

 SEGA to SEGU

ID Message high HRT low HRT

0x3e30 MAPED1 0.0408 0.0318

0x3e32 MAPED2 0.0421 0.0347

0x5e30 MAPED3 0.0562 0.03

0x3e34 MASTR1 0.0462 0.0401

0x3e36 MASTR2 0.0534 0.0396

0x5830 MASTR3 0.0566 0.0423

0x5832 MASTR4 0.0578 0.0419

0x5834 MASTR5 0.0578 0.0356

0x4430 MASTR6 0.0523 0.0412

0xd220 MAWHE1 0.0442 0.043

0xd221 MAWHE2 0.0474 0.0421

0xf020 MAENG1 0.0465 0.0325

0xf021 MAENG2 0.049 0.034

0xf022 MAENG3 0.0546 0.0398

Utilities segment message latencies; MilCAN segment 500kbit
MilCAN backbone 500kbit, routing Ethernet backbone

 SEGU to SEGA

ID Message high HRT low HRT

0x5501 MUGPS1 0.0212 0.0197

0x5502 MUGPS2 0.0211 0.02

0x5503 MUGPS3 0.0224 0.0155

0x5030 MUPWR1 0.0229 0.0176

0x5936 MUSNS1 0.0167 0.0125

136

Automotive segment message latencies; MilCAN segment 500kbit
MilCAN backbone 500kbit, routing MilCAN/Ethernet backbone

 SEGA to SEGU

ID Message high HRT low HRT

0x3e30 MAPED1 0.0607 0.0381

0x3e32 MAPED2 0.0612 0.0408

0x5e30 MAPED3 0.0408 0.0158

0x3e34 MASTR1 0.0656 0.0469

0x3e36 MASTR2 0.0695 0.0513

0x5830 MASTR3 0.042 0.0247

0x5832 MASTR4 0.0421 0.0256

0x5834 MASTR5 0.0422 0.0262

0x4430 MASTR6 0.0683 0.0476

0xd220 MAWHE1 0.0647 0.0555

0xd221 MAWHE2 0.0629 0.0481

0xf020 MAENG1 0.0662 0.048

0xf021 MAENG2 0.0691 0.0552

0xf022 MAENG3 0.0722 0.0555

Utilities segment message latencies; MilCAN segment 500kbit
MilCAN backbone 500kbit, routing MilCAN/Ethernet backbone

 SEGU to SEGA

ID Message high HRT low HRT

0x5501 MUGPS1 0.0659 0.057

0x5502 MUGPS2 0.0662 0.0569

0x5503 MUGPS3 0.0657 0.0543

0x5030 MUPWR1 0.0305 0.0568

0x5936 MUSNS1 0.025 0.0268

Automotive segment message latencies; MilCAN segment 500kbit
MilCAN backbone 250kbit, routing MilCAN backbone

 SEGA to BBONE BBONE to SEGU SEGA to SEGU

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x3e30 MAPED1 0.0418 0.0254 0.0231 0.0175 0.0635 0.0446

0x3e32 MAPED2 0.0434 0.0267 0.0233 0.0182 0.0649 0.0462

0x5e30 MAPED3 0.0509 0.0207 0.0236 0.0175 0.0707 0.039

0x3e34 MASTR1 0.0447 0.0305 0.0228 0.0212 0.0664 0.0543

0x3e36 MASTR2 0.0487 0.0324 0.0238 0.023 0.07 0.0575

0x5830 MASTR3 0.0446 0.0293 0.0228 0.0202 0.0638 0.0513

0x5832 MASTR4 0.0453 0.0298 0.0225 0.0205 0.0674 0.0521

0x5834 MASTR5 0.0456 0.03 0.0227 0.0207 0.0692 0.0524

0x4430 MASTR6 0.0472 0.0318 0.024 0.0221 0.0696 0.0554

0xd220 MAWHE1 0.0465 0.0351 0.0228 0.0236 0.0658 0.0588

0xd221 MAWHE2 0.0448 0.0315 0.0233 0.0224 0.0642 0.0574

0xf020 MAENG1 0.0457 0.0313 0.0229 0.0222 0.0669 0.0555

0xf021 MAENG2 0.0468 0.0352 0.0232 0.024 0.0692 0.061

0xf022 MAENG3 0.0502 0.0346 0.0237 0.0247 0.0715 0.0611

137

Utilities segment message latencies; MilCAN segment 500kbit
MilCAN backbone 250kbit, routing MilCAN backbone

 SEGU to BBONE BBONE to SEGA SEGU to SEGA

ID Message high HRT low HRT high HRT low HRT high HRT low HRT

0x5501 MUGPS1 0.0189 0.0205 0.0455 0.0386 0.063 0.062

0x5502 MUGPS2 0.0217 0.0209 0.0471 0.0385 0.0694 0.0621

0x5503 MUGPS3 0.0239 0.0199 0.045 0.0382 0.0699 0.0593

0x5030 MUPWR1 0.0229 0.0128 0.0426 0.0348 0.0691 0.0535

0x5936 MUSNS1 0.0195 0.0153 0.0464 0.021 0.0644 0.037

Automotive segment message latencies; MilCAN segment 500kbit
MilCAN backbone 250kbit, routing MilCAN/Ethernet backbone

 SEGA to SEGU

ID Message high HRT low HRT

0x3e30 MAPED1 0.0621 0.0385

0x3e32 MAPED2 0.0634 0.0401

0x5e30 MAPED3 0.04 0.0162

0x3e34 MASTR1 0.0668 0.0468

0x3e36 MASTR2 0.07 0.0504

0x5830 MASTR3 0.041 0.0238

0x5832 MASTR4 0.0411 0.0243

0x5834 MASTR5 0.0412 0.0245

0x4430 MASTR6 0.0709 0.046

0xd220 MAWHE1 0.0675 0.0525

0xd221 MAWHE2 0.0507 0.049

0xf020 MAENG1 0.0673 0.0484

0xf021 MAENG2 0.0714 0.054

0xf022 MAENG3 0.0735 0.0539

Utilities segment message latencies; MilCAN segment 500kbit
MilCAN backbone 250kbit, routing MilCAN/Ethernet backbone

 SEGU to SEGA

ID Message high HRT low HRT

0x5501 MUGPS1 0.0644 0.0472

0x5502 MUGPS2 0.0706 0.0472

0x5503 MUGPS3 0.071 0.0443

0x5030 MUPWR1 0.0269 0.0319

0x5936 MUSNS1 0.0249 0.0258

	Coversheet
	Oikonomidis, Panagiotis Ioannis

