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Abstract 

Modern vehicles incorporate an increasing number of electronic systems. These systems 

consist of multiple embedded devices in order to replace already existing mechanical or 

hydraulic solutions or introduce new functionalities. The demand of using electronic systems 

for the military land vehicles is continuously increasing and much higher than in the 

commercial sector.  For these electronic devices to intercommunicate and provide the desired 

service, embedded networks have to be used. 

These networks need to be compliant to the minimum requirements set by their intended use. 

Some of these requirements are determinism, high bandwidth, flexibility, durability and cost. 

There are networks that provide some of the above mentioned characteristics, but rarely all of 

them. One solution for this; is to improve an already existing embedded network to provide 

the extra desired functionality and also keep the system complexity minimal. 

This study represents an investigation to expand the functionalities to an existing military 

protocol by adding reconfiguration for Through Life Capability Management (TLCM) and fault-

tolerant capabilities for high operational system availability. The network that is used for this 

research is MilCAN which is software based protocol based on CAN. MilCAN stands for Military 

CAN and is a deterministic data transfer protocol used in control systems. For this research 

MilCAN A is used which uses 29bit Identifier and allows both periodic and event driven data to 

be transmitted. These extra functionalities need to be software based to provide flexibility and 

upgradability without hardware restrictions. The devices with the added capabilities need to 

be compatible with older devices, to provide the flexibility to the system designer to choose 

when he will use them. To verify the operation and performance of the added functionalities 

two testbeds have been developed, the first testbed is used for development and operation 

verification where the second testbed is used for operation verification and performance 

measurements while emulating the operation of a vehicle. 

The output of this research is accepted by the MilCAN Working Group (MWG) as an addition to 

the MilCAN protocol specifications. The MWG was formed in 1999 when a need was 

recognised to standardise the implementation of CANbus within the military vehicles 

community. The additional functionalities are included as optional enhancements in the 

MilCAN protocol specifications which gives the system designer the flexibility to decide 

depending his system requirements.  
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Chapter 1 Introduction 

1.1 Prologue 

Modern vehicles incorporate an increasing number of electronic systems. The demand of using 

electronic systems for the military vehicles is increasing over the years. The vehicles are fitted 

with various systems to provide additional functionalities to the driver and advantages in 

electronic warfare. In passenger vehicles, the electronic systems to assist the driver are 

becoming more popular over the years. 

These electronic systems require inter-communication between their components. Depending 

the use of the system there are different requirements such as determinism, high bandwidth, 

flexibility, durability and cost. Because different networks fulfil different requirements, in a 

system, there may be more than one type of network available. This affects the cost of the 

system. For example weapon control systems require safety critical systems and sensors 

require deterministic systems. 

The objective of this research is to enhance the network availability and the Through Life 

Capability Management (TLCM), of an already existing low cost protocol targeted for military 

vehicles. Availability refers to the property of the system or a system resource being accessible 

and usable upon demand by an authorized system entity, according to performance 

specifications for the system [Stallings'06]. Reliability is defined as the ability of a system or 

component to perform its required functions under stated conditions for a specified period of 

time [Iee'90]. The protocol that is used is a real time CAN based; called MilCAN. MilCAN stands 

for Military CAN and is a software based non-fault tolerant deterministic protocol. There are 

two variations of MilCAN, MilCAN A and MilCAN B. For this research MilCAN A is used, which 

uses a 29 bit Identifier compared to MilCAN B which uses an 11 bit identifier. MilCAN on its 

own is not suitable for applications that have safety integrity requirements. MilCAN is best 

suited for control applications that require determinism and not safety critical. 

The first functionality that is added is MilCAN Reconfiguration, which allows the system 

maintainer to have more control and variety of actions. The second functionality is the MilCAN 

Fault Tolerance, which allows the MilCAN network to continue normal operation for longer 

when errors and faults are introduced into the system as a result increasing the availability of 

the system. Fault tolerance is the attribute that enables a system to achieve fault-tolerant 

operation and a fault-tolerant system is one that can continue to correctly perform its 

specified tasks in the presence of hardware failures and software errors [Johnson'88]. The 
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development of the MilCAN additions was a two way process. Firstly, they were developed on 

a one segment desktop testbed; using of the self-test equipment. Secondly, on a three 

segment testbed designed to emulate the operation of a vehicle.  

The objectives of the research presented in this thesis are to add the two extra functionalities 

to the already existing MilCAN protocol trying to address its shortfalls. The requirements for 

the projects are: 

 Through Life Capability Management 

 Increase the network availability 

 Easy configuration procedure 

 Node compatibility between Fault Tolerant and non-Fault Tolerant Devices 

 Hardware independent operation 

 Flexible MilCAN bus configuration 

 Fault recovery 

The output of this research is both theoretical and practical development. The MilCAN 

protocol specifications are vital for this research, thus studied in detail. Key missing 

characteristics are identified and contributed to provide the targeted additional functionalities. 

Additionally, the output of this research is provided to the MilCAN working group, as an 

addition to the MilCAN specification.  

The MilCAN reconfiguration is developed to be able to remotely reconfigure MilCAN devices. 

This is achieved by using a custom bootloader which is hardware platform dependant and was 

developed to provide all the desired reconfiguration capabilities. To control the bootloader the 

VSI Graphical User Interface (GUI) software is used, which provides to the user the means of 

controlling the bootloader’s operations. The communication of the device’s internal 

bootloader with the VSI GUI is achieved through a newly developed protocol; that ensures 

uninterrupted execution of the reconfiguration operations. 

The MilCAN Fault Tolerance Layer is developed to be able to withstand a big variety of faults 

and errors introduced into the system. The developed algorithm is coded between the MilCAN 

layer and the Application layer to provide seamlessly multi bus support. Additionally, it 

provides advanced error detection and bus recovery techniques, which are not currently 

present in the MilCAN protocol. The communication between the Fault Tolerant Layer of 

different devices is established again with a newly developed protocol; that ensures the 

synchronised operation of all Fault Tolerant devices. Additionally, to closely monitor the 
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operation of the FT Layer, an internal monitoring system is developed, which works in 

collaboration with a monitoring computer. 

Evaluation and verification of the High Availability MilCAN is achieved through two testbeds. 

The first testbed includes one MilCAN segment connected to a desktop computer, which 

provides a controlled environment appropriate to be used during the development and later 

to verify the operation of the system. The testbed is constructed by using Commercial Off-the-

Shelf Equipment (COTS). The second testbed includes three MilCAN segments and a pair of 

MilCAN and Ethernet backbones. This testbed emulates a real-life military vehicle and provides 

the means to conduct certain operation and latency tests. The second testbed is also 

constructed with COTS. 

1.2 Previous work at the Vetronics Research Centre 

The Vetronics Research Centre (VRC) is part of the Communications department of University 

of Sussex. Previous work developed at the VRC used in this research is the Vetronics System 

Integration (VSI) Bridge and the VSI Graphical User Interface (GUI). 

The VSI Bridge is a highly configurable bridge/router, which interconnects different MilCAN 

segments and evaluates their operation. It is designed to interconnect the MilCAN segments 

through a pair of MilCAN and Ethernet backbones. The functionalities that it provides are 

configurable routing operations, remote monitoring and management of the internal system 

and the attached MilCAN segments. The VSI Bridge is described in detail in Dr Charchalakis 

thesis [Charchalakis'05]. 

The VSI GUI provides the configuration capabilities to the VSI Bridge. It connects to the VSI 

Bridge through the Ethernet backbones, providing an easy way to configure and maintain the 

VSI Bridge. The VSI GUI had to be modified in order to provide the extra functionalities 

required by the High Availability MilCAN. More details can be found in Dr Valsamakis thesis 

[Valsamakis'06]. 

The MilCAN segments that are interconnected by the VSI Bridges were developed and 

constructed during the author’s master’s project. The microcontrollers that were initially used 

were C167CR offering a single CAN bus. During the author’s PhD the microcontrollers were 

upgraded to the C167CS that offer dual CAN bus, which are suitable for this research. 
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1.3 Thesis layout 

Chapter 2 provides an overview on fieldbuses used in the industry for control and automation 

and focus in their use in vehicle electronics. A brief history of the fieldbuses is presented 

followed by the existing networks available and focusing more on the vehicle oriented ones. 

Furthermore the architecture of a couple of fault tolerant enabled networks is briefly analysed. 

Chapter 3 describes the specifications of the two protocols CAN and MilCAN. The research 

work presented in this thesis is based on the MilCAN protocol. It is very important for the 

reader to understand the protocol in order to recognise the limitations that this thesis is trying 

to address. Additionally the output of this research is provided to the MilCAN working group, 

as proposed additions for the MilCAN specification. 

Chapter 4 is the first contribution chapter. It describes in detail the MilCAN Reconfiguration 

and its components. The operation procedure of the MilCAN Reconfiguration is also described. 

Chapter 5 is the second contribution chapter. It presents the MilCAN Fault Tolerant Layer 

which is part of the High Availability MilCAN. Again in this chapter the components and 

operation of the layer are presented. 

Chapter 6 is the third contribution chapter presenting the performance and operation of the 

High Availability MilCAN components. The evaluation of the components is established with 

the use of the appropriate vetronics testbeds. The design and layout of the testbeds are 

discussed, along with the test scenarios followed. 

Chapter 7 concludes the thesis with the discussion of the research work contained in the 

previous chapters, the lessons learned during the development and potential future work. 
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Chapter 2 Vetronic networks 

2.1 Introduction 

Fieldbuses are widely used in embedded systems where their main applications are industrial 

and automation control. Main advantage of the fieldbuses is their capability of multiple 

devices to be integrated on a single network which reduces the topology complexity and cost 

of design, build and maintenance of the network. Fieldbuses simplify the task of modifying the 

network which makes future expansions less troublesome. Vehicles have an increasing number 

of electronic devices that need to be integrated together, and the fieldbuses are the main 

candidates for this use. 

This chapter introduces the fieldbus technology and its use in the automotive industry as a 

real-time communication network. Initially the history of fieldbuses is presented and their real 

world application uses, followed by the actual fieldbuses that are used in different 

applications. A detailed view on commonly used fault tolerant architectures is provided. 

2.2 Fieldbuses history 

The first fieldbus created was the Factory Instrumentation Protocol (FIP) fieldbus in mid 1980s 

by the French Italian FIP club. The second were the Germans with the Profibus which is based 

on the Programmable Logic Controllers (PLC). Third fieldbus was the Foundation Fieldbus 

developed by the United States. Since then there have been more and more fieldbuses been 

developed in order to allow different devices to communicate with each other. 

Because there was an increasing number of fieldbuses there was a need for standardisation of 

the specifications and conformance test-suites to verify the device compliance to the 

specifications. Standardisation organisations such as the Institute of Electronic and Electrical 

Engineering (IEEE) and Instrumentation, Systems, and Automation society (ISA) in the United 

States, Cenelec in Europe, and International Electrotechnical Commission (IEC) worldwide, 

assisted to the standardisation [Pinceti'04]. 

2.3 Fieldbuses networks 

There is a large number of fieldbuses being developed by various companies since there is a 

need in industrial automation and control, vehicle electronics networks to connect field 

devices such as drive controllers, sensors, regulators and more [Pierre Thomesse'99]. With the 

use of fieldbuses the use of wires to connect the devices is reduced and there are individual 

applications that communicate with a common protocol [Glanzer'96]. 
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Distributed systems require real-time communication capabilities, which are offered by a 

range of fieldbuses. Since there is a wide range of fieldbuses the selection of the right protocol 

depends on the intended operation of the developed system. The following criteria distinguish 

the various options available [Patzke'98]: 

 Physical data transmission quality. 

 Data coding and transmission type. 

 Physical communication channel sharing. 

The typical characteristics of a fieldbus protocol are [Schumny'98a]: 

 Serial bus topology with multi-point interfaces. 

 Software controlled interface management and data transfers. 

 Data transfers could be: 

o Asynchronous and code-dependent. 

o Synchronous and code-dependent or independent. 

 Network layer and presentation layer functions are merged with data-link and 

application layer functions respectively. 

 Channel access and transmission control functions are based on the application 

requirements, such as real-time operation, and in case of cyclic sampling of digitised 

data they must fulfil the Shannon Theorem. 

2.4 Fieldbuses structure 

According to the Open Systems Interconnection (OSI) model the fieldbuses have a layered 

structure as can be seen in table 2.1 [Zimmermann'80]. Data from each layer are passed to 

layer below that encapsulates them within their own data starting from the top layer. The 

layered approach provides flexibility into the ways a packet could be processed but the data 

packet sizes and the processing required from the devices affects the real-time operation of 

the network when using embedded devices with limited resources. Because of these 

overheads the fieldbuses moved from the OSI model to the Enhanced Performance 

Architecture (EPA) model which has only three layers as can be seen in table 2.2 

[Schumny'98a]. Although the layers have been reduced from seven (OSI) to three (EPA), 

functionalities have not been discarded but absorbed by the Application and Data Link layers. 

This way overall system latencies are reduced since the protocol organisation is more efficient 

with less processing overheads imposed to the application. 
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Table 2.1: Open Systems Interconnection (OSI) model 

Layer # Description 

7 Application layer 

6 Presentation layer 

5 Session layer 

4 Transport layer 

3 Network layer 

2 Data Link layer 

1 Physical layer 

 

Table 2.2: Enhanced Performance Architecture (EPA) model 

Layer # Description Functionality 

3 Application layer 

Complete definition of functions to guarantee communication between 
partners. 
 
Example: Real-time or random access; cyclic or interrupt driven 
transport; time-variant or invariant field signals; samples or message 
oriented signals. 

2 Data Link layer 

Channel Access; Medium Access Control (MAC); synchronisation and 
coding; Logical Link Control (LLC); error control. 
 
Example: Deterministic (e.g. polling, token-passing) or probabilistic 
access (e.g. CSMA/CD); synchronous or asynchronous character transfer; 
code-dependent or independent(transparent) approach; hardware or 
software control. 

1 Physical layer 

Organising of bit-stream transfer by definition of electrical 
characteristics, connectors, and topology of the system. 
 
Example: Balanced or unbalanced electrics with or without galvanic, 
shielded or unshielded; point-to-point or multipoint topology with 
parallel or serial character transfer, interface close to processor or to 
peripherals. 

 

2.5 Automotive fieldbus networks 

Modern vehicles incorporate an increasing number of electronic systems. The typical 

mechanical and hydraulic solutions for braking and steering for example, are now replaced by 

electronic systems controlled by software. There are various systems to assist the vehicle 

operation such as ABS for intelligent breaking, Engine Management Units (EMU) for the 

engine, air-bags for passenger safety, GPS for driver assist and sound and video player for 

entertainment [Powers'00]. 

Since the electronic devices used in a vehicle have increased over the years, the cabling also 

increased from 45 meters used in 1955 to 4km at present time. When using networks to 

interconnect the devices less wires are required, this simplifies the layout of the system and 

reduces the weight of the car. In figure 2.1 a modern vehicle that uses multiple networks for its 



8 
 

 

sub-systems. There are many different vehicle buses available but currently the most popular 

one is CAN. 

 

 

Figure 2.1: Modern vehicle's network architecture [Leen'02] 

 

2.6 Vehicle bus technologies 

Further classification to vehicle buses can be done based on the targeted application areas of 

their technologies. These groups are [Charchalakis'05]: 

 Multimedia buses High speed networks for devices serving multi-media content. 

 Diagnostics buses Standardised protocols to provide diagnostics to the internal 

devices of the vehicle. 

 Safety-critical buses Highly deterministic, real-time, and fault-tolerant networks used 

for interconnection of devices associated in systems that control the vehicle and can 

thus affect the safety of the passengers. 

 Sub-system buses Interconnecting the main systems of the vehicle. 

 Consumer buses Proprietary networks that have been developed for specific 

applications. 
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2.6.1 Multimedia buses 

MOST The Media Oriented Systems Transport (MOST) bus is designed for multimedia 

applications within the vehicle that require high speed data transfers. It is based on point-to-

point connections in ring, star, or daisy-chain topology using fiber-optic links. Within the MOST 

specifications all the associated layers are specified, such as the Physical, Medium Access 

Control, Network, and Application layers. Transmission and reception of data is done by 

converting TTL signals to and from option, using appropriate converters. 

MML Bus The Mobile Multimedia Link (MML) Bus is a high-speed multimedia bus structured as 

a star topology through optical fiber. It’s a fault tolerant Master and Slave bus with 100Mbps 

bandwidth and plug-and-plat capabilities. 

D2B bus The Domestic Digital Data Bus (D2B) is a high-speed optical multimedia bus for audio, 

video, and data applications. Structured as a ring or star topology it offers speeds up to 

20Mbps with a maximum bus length of 10 meters. 

SMARTwireX The SMARTwireX protocol is an addition physical layer for D2B buses to provide 

up to 25Mbps bandwidth over standard UTP cables within the EMC limits for automotive. It 

also extends the maximum bus length up to 150 meters. 

2.6.2 Diagnostics buses 

SAE J1850 The SAE J1850 protocol is used as a diagnostics and application data bus. It supports 

two physical layers, a Pulse Width Modulated (PWM) differential connection with 41.5Kbps 

bandwidth, and a Variable Pulse Width (VPW) connection with 10.4Kbps bandwidth. 

OBD2 The On-Board Diagnostics II (OBD2) bus is a diagnostics protocol for vehicles with a 

predefined standard connection. It is used as a standardised protocol to monitor vehicle 

emissions of passenger cars. 

SAE J1939 The SAE J1939 is a protocol used in communication and diagnostics within heavy 

duty trucks. It is based on CAN2.0b and operates with a customised arbitration field. The 

specification contains standardised message sets with identifiers assigned to specific functions 

that should be supported by compliant devices. [Fredriksson'02] 

2.6.3 Safety-critical buses 

TTP The TTP bus is a time-triggered protocol developed for highly deterministic real-time 

applications with error detection and fault tolerance requirements. 
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ByteFlight The ByteFlight bus is a high-speed bus for safety-critical applications. It uses Time 

Division Multiple Access (TDMA) over 2/3 wire optical-fibre lines to provide 10Mbps 

bandwidth. Available topologies are Start and Cluster with an information update rate of 

250uS. The Master and Slave configuration using message-oriented transmission allows 

broadcasting of data to multiple devices simultaneously. [Hammett'03] 

FlexRay The FlexRay bus, an extension of ByteFlight, is a high-speed serial communication bus 

over Unshielded or Shielded Twisted Pair (UTP/STP). A point-to-point or star topology offers 

10Mbps bandwidth with time-triggered operation making it fault-tolerant and deterministic. 

FlexRay was designed for safety-critical applications such as steer-by-wire and brake-by-wire. 

DSI Bus The Distributed Systems Interface (DSI) bus is another protocol developed by Motorola 

for safety applications. It provides a two wire serial communication between sensors and 

safety actuators such as air-bags. The connection is between Master and Slave devices at 

150Kbits with a 4bit CRC. 

BST Bus The Bosch-Siemens-Temic (BST) bus is a safety bus with a two-wire connection at 

250Kbps using Manchester encoding with either Parity or CRC error correction and detection. 

Intellibus The Intellibus bus is similar to CAN bus, originally developed for military avionics. It 

supports higher speeds up to 12.5Mbps and is used in the automotive area for drive-by-wire 

applications. With a Master and Slave multi-drop topology it supports up to 30 meter UTP/STP 

cables with 64 nodes at 12.5Mbps. As a safety-critical bus it provides parity and CRC error 

detection. 

2.6.4 Sub-system buses 

MI Bus The Motorola Interconnect (MI) Bus is a single wire serial communication protocol 

supporting a single master and multiple slave devices. It’s a simple protocol for basic low-

speed networked applications such mirror control, windows control, etc. 

IE Bus The Inter Equipment (IE) bus is a low-speed half duplex asynchronous communication 

protocol. With two operational modes, one at 3.9kbps and one at 17kbps or 18kbps, 

depending on the oscillator frequency, up to 50 nodes can be connected on a bus with a 

maximum length of 50 meters. 

LIN Bus The Local Interconnect Network (LIN) is a simple serial bus for interconnection 

between sensors and actuators. It supports speeds up to 19.2kbps over a maximum bus length 

of 40 meters. 
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CAN bus The Controller Area Network (CAN) bus is high-speed bus used in a wide range sub-

system applications. It’s an asynchronous broadcast communication bus supporting up to 

1Mbps bandwidth. 

SAE J1708 The SAE J1708 is a serial bus for communication between microcomputer systems 

within a heavy-duty vehicle. Based on the RS-485 electrical layer, it provides 9.6Kbps 

bandwidth with a cable up to 40 meters. 

2.6.5 Consumer buses 

IDB-1394 The IDB-1394 is an implementation of the Firewire (IEEE 1394) for the automotive. It 

provides high-speed serial communication over UTP multidrop cables, based on the CAN 2.0B 

physical layer, for consumer applications. 

2.7 Fault tolerant architectures 

The reason TTP and FlexRay are used for safety critical applications, is because both are fault 

tolerant, deterministic and high bandwidth.  

2.7.1 TTP/C 

TTP/C is a time-triggered communication protocol for safety critical distributed real-time 

control systems. As a time-triggered protocol the messages are transmitted periodically. 

2.7.1.1 Network Structure 

The TTP/C network consists of electronic modules (nodes) interconnected by two separate 

broadcast busses which can have speeds up to 10Mb/s. These two buses are called channel 0 

or channel A and channel 1 or channel B. 

Host

CNI

TTP/C

Host

CNI

TTP/C

Host

CNI

TTP/C

Host

CNI

TTP/C

CNI Communication Network Interface within a Node
 

Figure 2.2: Example of TTP/C network 
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The Communication Network Interface (CNI) consists of a memory area that allows 

simultaneous random access for the host CPU and the TTP/C controller figure 2.2. The TTP/C 

can operate in different network topologies. The most common are the bus topology as seen 

in figure 2.3, star topology figure 2.4 and multi-star topology figure 2.5. The star topology uses 

central star-coupler devices which operate as a central bus guardian and provide a better fault 

tolerant network. 

Node Node Node Node

 

Figure 2.3: TTP/C bus topology 
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Figure 2.4: TTP/C star topology 
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Figure 2.5: TTP/C multi-star topology 
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Messages from fault tolerant nodes are transmitted on both buses. In case of a message loss 

the message is not retransmitted. Each clock on the system cannot be perfectly synchronized. 

That is why the receiver resynchronizes by comparing the received time of a message and the 

expected received time. 

2.7.1.2 Medium Access 

The medium access is based on a Time Division Multiple Access (TDMA) scheme. The data 

transport between nodes is not point to point oriented but broadcast; this implies that every 

node receives all data transmissions available on the bus. Each node is allowed to transmit 

messages only in a predefined TDMA slot called SRU slot. Because the slots that the messages 

are transmitted are predefined, overload conditions cannot occur. The sequence of the SRU 

slots is called TDMA round. The TDMA rounds are equal but the length of the messages in the 

slots may differ. Several TDMA rounds executed after one another until the pattern is repeated 

are called a Cluster Cycle. The Cluster Cycle is repeated periodically throughout the execution 

of the system. In TTP/C there is no need for a message identifier because the messages can be 

identified by the point of time in which they transmit in the TDMA system. In the assigned slot 

a node sends frames on both channels, the frames on channel 1 and channel 2 may differ in 

their frame types, lengths and contents. The message overhead consists only from a 4bit 

header and 16bit CRC [TUW'97]. 

A

A

B C

CB

D

D

A

A

C

C

SRU Slot

TDMA Round

Cluster Cycle

Bus 0

Bus 1

SRU 0 SRU 1 SRU 2 SRU 0 SRU 1 SRU 2

 

Figure 2.6: TTP/C medium access scheme 

In figure 2.6 the slot allocation from the messages transmitted from the A, B, C, D and E nodes 

is shown. Nodes A and B are fault tolerant that’s why the messages are transmitted on both 

buses.  

2.7.1.3 Message Description List 

The slots used for data transmission are all predefined and the attributes of the messages sent 

and received are described in the Message Descriptor List (MEDL) which is saved at the Flash 

EEPROM. Also, the MEDL may contain node-local information and special setup data required 
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for internal purposes of specific TTP/C controller implementations. All the nodes must have 

the complete MEDL downloaded in the controller and not only the node relevant information. 

The system will only work if all nodes agree on the order of the messages, the correct 

membership status of the nodes in the system, the integrity of the data, and the correct notion 

of global time. 

2.7.1.4 Fault Tolerance 

TTP/C supports three different ways to deal with faults that may occur on the nodes and 

network [Bannatyne'98]. 

 TTP/C supports active replication for fault tolerance nodes that are required to have 

guaranteed continuous operation. In the case that a fault occurs the node is replicated 

with an identical node. 

 Another type of protection is the bus guardian. The bus guardian is an independent 

hardware device connected between the node and the bus. Only during the 

predefined transmission slot the bus guardian will allow the node to transmit to the 

bus. In this way, cases where the node starts broadcast continually a message 

(babbling-idiot) are avoided. 

 To be able to manage faulty nodes the voting strategy is used. A fault tolerant unit 

consists of three independent nodes where the result of these three nodes are 

compared and analyzed. At the end there is only one verifiable result. 

2.7.2 FlexRay 

FlexRay is a deterministic and fault tolerant protocol that is targeted to be used in car 

applications. FlexRay is a result of a cooperation of BMW and Daimler Crysler for x-by-wire 

systems because of its fault-tolerant characteristics and redundant message transmission on 

two channels [Kopetz'01] [Consortium'04]. 

Important characteristics of FlexRay are the synchronous and asynchronous frame transfer, 

multi-master clock synchronization, guaranteed frame latency times and jitter during 

synchronous transfer, prioritization of frames during asynchronous transfer, error detection 

and signalling, error containment on the physical layer through an independent bus guardian 

device, and scalable fault tolerance [FlexRay'05, FlexRay'04]. 

2.7.2.1 Network Structure 

The FlexRay supports data rates up to 10Mbit/s for each channel and can use two physically 

separated lines as a result giving a gross data rate of up to 20Mbit/s. FlexRay can be used in 

two different network topologies. The most common one is the classic bus topology which is in 
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figure 2.7 and has = 1Mbit/s data rate per bus. The other kind of topology that can be used is 

the star topology represented in figure 2.8, where the nodes are connected point-to-point 

with the help of the active star couplers. This topology supports data rates above 1Mbit/s. 

 

Figure 2.7: FlexRay bus topology 

 

Figure 2.8: FlexRay star topology 

2.7.2.2 Medium Access 

To achieve maximum efficiency of the bandwidth a fault tolerant synchronized global time 

base is used. The nodes connected to the network use precise auto adjustable clocks which 

process with special algorithms the synchronization messages that are sent in the static 

segment of the transmission cycle as seen in figure 2.9. Because FlexRay supports synchronous 

and asynchronous data transmission, the transmission cycle is divided into the static and 

dynamic segments. FlexRay works according to the TDMA where the components have 

predefined time slots. In the static segment fixed time slots are allocated for predefined 

components to be transmitted. At the dynamic segment the slots are being created 

dynamically for maximum bandwidth efficiency and used by asynchronous data [FlexRay'04]. 
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Figure 2.9: FlexRay medium access scheme 
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2.7.2.3 Fault Tolerance 

To provide fault tolerant communication a FlexRay network node consists of a host processor, 

FlexRay controller, bus guardian and bus driver. As can be seen from figure 2.10 the bus driver 

connects the communication controller to the bus and monitors access to the bus. The bus 

guardian is instructed by the host processor the specific time slot that has to be used and 

allows the FlexRay controller transmit access only in these time slots. In addition the bus 

guardian can provide error detection feedback to the host processor to prevent further failure. 

Host

μC

Communication

Controller

BG

BD BD

Channel 1

Channel 2

 

Figure 2.10: FlexRay Network node 

2.8 Conclusion 

This chapter starts with the background research of the thesis with an investigation of the 

fieldbuses, their history and characteristics. The structure of the fieldbus has been presented 

and the fieldbuses that have been adopted by the automotive industry. A more in depth 

analyses has been provided for TTP and FlexRay since both are modern communication 

protocols that can be characterised as fault tolerant, deterministic and high bandwidth.  
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Chapter 3 CAN and MilCAN protocol 

3.1 Introduction 

This chapter provides a brief insight in the Controller Area Network (CAN) and a more detailed 

analysis of the MilCAN protocol, where the later is an extension to the CAN protocol. MilCAN 

provides some advantages over CAN by offering a synchronised and deterministic data-link 

layer for time critical applications. The error detection capabilities of CAN are described, along 

with the technical aspects of the MilCAN specifications. Even though Controller Area Network 

provides a certain level of determinism and prioritization, it does not provide any scheduling to 

the operation of the network and neither higher layer control to the communication of the 

nodes. Because of these MilCAN is more suitable for military applications or other fully 

deterministic applications. MilCAN has been created by the MilCAN working group, to add 

determinism in the Transport layer of a CAN network without any hardware additions or 

modifications. 

The MilCAN Working Group was established as a sub-group of the International High Speed 

Data Bus Users Group (IHSDB-UG) in 1999. Its target was to create a CAN based protocol that 

will be used for Military Land Vehicle subsystems communication. MilCAN provides 

deterministic and synchronised communication to the application layer and is located on top 

of the CAN network. MilCAN is capable to coexist on the same CAN bus with other CAN based 

protocols with no problems. 

3.2 Controller Area Network 

The Controller Area Network (CAN) is a high speed, serial communication protocol that was 

originally developed during the late 1980’s for the automotive industry. Its main characteristics 

are high bit rate, high level of security, high immunity to electrical interface, low-cost 

multiplexed wiring and an ability to detect any errors produced. Due to these features the CAN 

serial communications bus has become widely used throughout the automotive, 

manufacturing, CAN powered devices include engine control units, sensors, anti-skid system, 

lamps, electric windows and others. Also there are other industry-standard protocols that are 

based on CAN, such as Allen-Bradley’s DEVICENet, designed for the networking of PLCs and 

intelligent sensors [ODVA'04, Hitex'95]. 

The CAN communication protocol describes the method by which information is passed 

between devices, by broadcasting packets on the bus. Each packet defines a message frame 

that is sent by a node and received by the rest of the nodes connected to the segment. There 
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are supported two types of message data frame formats by CAN, the Standard and Extended 

format. Different sizes of the Identifier field are the difference between the two, which is 11 

bits for the Standard and 29 bits for the Extended. At the physical layer two complementary 

logical values are defined, dominant and recessive, but no logical values, like voltage levels, are 

specified. This adds flexibility into the specific implementation of the CAN bus, such as using 

electrical signal lines or optical fibre lines. The only requirement is that on a simultaneous 

transmission of a dominant and a recessive bit, the resulting bus value will be dominant. 

The predominant CAN properties are: 

 prioritisation of messages 

 guarantee of latency times 

 configuration flexibility 

 multicast reception with time synchronisation 

 system wide data consistency 

 multimaster 

 error detection and signalling 

 automatic retransmission of corrupted messages as soon as the bus is idle again 

 distinction between temporary errors and permanent failures of nodes 

 autonomous switching off of defecting nodes 

3.2.1 CAN Error detection 

The error detection capabilities are based on the CAN controller’s: 

 Error Management Logic (EML) 

 Receive Error Counter (REC) 

 Transmit Error Counter (TEC) 

To distinguish between temporary and permanent failures every CAN bus controller has two 

Error Counters, the REC and the TEC. The counters are incremented upon detected errors 

respectively are decremented upon correct transmissions or receptions. Depending on the 

counter values the state of the node is changed. The initial state of a CAN bus controller is 

Error active that means the controller can send active Error Flags. The controller gets in the 

Error passive state if there is an accumulation of errors. On CAN bus controller failure or an 

extreme accumulation of errors there is a state transition to Bus Off. The controller is 

disconnected from the bus by setting it in a state of high-resistance. The Bus Off state should 

only be left by a software reset. In figure 3.1 the three error state are shown, and the 
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requirements for changing between them. After software reset the CAN bus controller has to 

wait for 128 x 11 recessive bits to transmit a frame. This is because other nodes may pend 

transmission requests. It is recommended not to start a hardware reset because the wait time 

rule will not be followed then [softing'05]. 

Error

passive

Bus

off

Error

active

REC > 127

or TEC >127

REC < 128

and TEC < 128

TEC > 255

REC = Receive error counter

TEC = Transmit error counter  

Figure 3.1: CAN error states 

CAN controllers can be in one of the three states, depending on the error counter levels 

[ISO'93]: 

Error active - An “error active” node can normally take part in bus communication and send an 

active error flag when an error has been detected. The active error flag consists of six 

dominant consecutive bits and violates the rule of bit stuffing and all fixed formats. 

Error passive - An “error passive” node shall not send an active error flag. It takes part in bus 

communication, but when an error has been detected a passive error flag is sent. The passive 

error flag consists of six recessive consecutive bits. After transmission, an “error-passive” node 

will wait some additional time before initiating a further transmission. 

Bus off - A node is in the state “bus off” when it is switched off from the bus due to a request 

of fault confinement entity in the “bus off” state, a node can neither send nor receive any 

frames. A node can leave the “bus off” state only upon a user request. 

For detecting errors the MAC sub layer provides five mechanisms: 

 Monitoring (transmitters compare the bit levels to be transmitted with the bit levels 

detected on the bus) 
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 15-bit cyclic redundancy check 

 Variable bit stuffing with a stuff width of 5 

 Frame check 

 Acknowledgement check 

There are five different error types that can be detected in CAN. These error types are not 

mutually exclusive: 

Bit error – When a node is transmitting a bit, it also monitors the bus. If the bit value sent is 

different from the one being monitored, then a bit error is detected at that bit time. 

Stuff error – Since the frame field is coded by the method of bit stuffing, when there are six 

consecutive equal bit level a stuff error is detected at that bit time. 

CRC error – The transmitter calculates the CRC sequence of the frame and is appended in the 

end of the frame. The receiver is also calculates the CRC in the same way as the transmitter did 

and compares the two. When they do not mach a CRC error is detected. 

Form error – When a fixed-form bit field contains one or more illegal bits a form error is 

detected. 

Acknowledgement error – The acknowledgement error is detected by the transmitter 

whenever it does not monitor a dominant bit during ACK slot. 

3.3 MilCAN specifications 

The MilCAN protocol is defined by three parts, the Physical Layer, the Data Link Layer and the 

Application Layer which are the same for both MilCAN A and B. 

Physical Layer – The Physical Layer defines the physical connectivity between MilCAN devices 

and the topology of MilCAN networks.  It includes the requirements for the segments bus, such 

as cable lengths and signal assignments and connector specifications. Also in the Physical Layer 

it defines the node transceiver characteristics and bit timing. 

Data Link Layer – The Data Link Layer defines message types, frame format, node addressing 

of the network, message filtering and priority based bus access. The latest is one of the most 

important characteristics of MilCAN. Also here are defined the error detection capabilities and 

fault confinement. 
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Application Layer – The Application Layer is the highest layer where various MilCAN 

functionalities are defined such as message payload data byte order, message identifier 

assignment, deterministic transmission support, command distribution architecture and the 

various operational modes of MilCAN. 

These three layers are described in a set of three working documents [MWG'03a] [Group'03] 

[MWG'03b] which now have been combined into one [MWG'09]. 

3.4 Physical layer 

3.4.1 Physical Topology 

There are two are two recommended physical topologies: 

 Linear multi-drop 

 Daisy chain 

 

Figure 3.2: Linear multi-drop topology [MWG'09] 

 

Figure 3.3: Linear multi-drop topology using bifurcated cables [MWG'09] 
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With the Linear multi-drop topology each device is linked to a bus with the use of a drop cable 

and a T-piece connector as can be seen in figure 3.2. To avoid the use of the T-piece connector 

another method can be used by replacing it with bifurcated cables as can be seen in figure 3.3. 

For both solutions the device is required to have only one bus connector. 

 

Figure 3.4: Daisy-chain topology [MWG'09] 

With the Daisy chain topology the devices are connected to each other in series forming a 

chain. Each device has an input connector and an output connector. The output connector of 

one device is connected by cable to the input of another device; as a result this topology 

requires each of the devices to have two connectors as can be seen in figure 3.4. The two 

unused connectors at the two ends of the chain are terminated with a CAN bus terminator as 

instructed by the CAN protocol. Devices supporting the daisy-chain topology are capable of use 

in the multi-drop topology, utilising only the input bus connector. Equal cable length between 

devices is avoided to minimise standing waves. Similarly, drop cable lengths should not 

generally be equal. The optional implementation of in-cable power supply should fees into one 

end of the bus via a female connector, such that no male connectors carry live power or signal 

when exposed. [MWG'09] 

3.4.2 Connector gender assignments 

For the topologies shown in previous figures the recommended gender assignments are: 

Cables Male one end and female other end 
Devices, multi-drop Male 
Devices, daisy-chain Male input to female output 
T-pieces, multi-drop Male input to two female outputs 
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3.4.3 Maximum bus length and number of devices 

Both the maximum bus length and the number of devices are specified in the ISO 11898 

specification requirements. 

3.4.4 Cable requirements 

MilCAN specifications, group the bus cables according to their functionality. CAN Signal A 

group includes the lines required for the primary CAN bus. CAN Signal B group include the lines 

for the second CAN bus. It is recommended that the cables used must be shielded. It is up to 

the system designer to decide the specific details, depending the system requirements. It is 

recommended that there should be dedicated shields for CAN Signal and power pairs. When 

implemented the in-cable power is provided by the use of shielded twisted pair. The current 

rating of the cables is based on the systems requirements, whilst satisfying the power signal 

specification. Any lines designated as reserved are not be used by system designers, as they 

may be assigned a specification in future revisions. 

The recommended connector for MilCAN systems is MIL-DTL-38999. A set of four connector 

configurations are suggested by the MilCAN specifications to allow a system developer to 

select a suitable connector for his application and thereby maintain compatibility by 

implementing the MilCAN configuration of that connector. 

The configurations are: 

MIL-DTL-38999-A Dual CAN Bus with In-Cable power 

MIL-DTL-38999-B Dual CAN Bus without In-Cable power 

MIL-DTL-38999-C Single CAN Bus with In-Cable power 

MIL-DTL-38999-D Single CAN Bus without In-Cable power 

The Bus termination is based on the ISO-11898 requirements with the following additions; 

Terminating resistors must be embedded inside a bus connector. Terminating resistors may be 

embedded into the network device only where a mechanism for switching them into and out 

of the network is also implemented either externally or internally. 

The in-cable power supply is optional, depending the system design and it must comply with 

the MIL-Std-1275B. The output voltage is in the range of 18V to 32V and there is only a single 

input to the bus. Each device connected on the bus is required to have maximum current 

consumption of 500mA and be electrically isolated from all other external signals. If the above 

recommendations of individual shielding is used in the bus cables, these shields are suggested 
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to be connected to the digital ground of the device, while the overall shield is connected to an 

earth connection (if exists) or the case. 

3.4.5 Transceiver characteristics 

CAN transceivers used by MilCAN devices and the resistance to electrical bus faults should 

conform to the physical medium attachment sub-layer as specified in ISO 11898.The CAN 

signal can be opto-isolated from the CAN controller and gets powered by isolated power 

supplies. Any additional propagation delays imposed by the opto-isolators are accounted and 

be chosen such that the maximum round trip interface delay time for a device comply with the 

bit timing requirements of MilCAN. 

3.4.6 Bit timing 

MilCAN devices can operate in one of these bit rates: 

 1Mbps 

 500Kbps 

 250Kbps 

The selection mechanism for a device is described in the System Management Layer 

specification. MilCAN bit timing parameters are required to provide capability with other CAN 

based protocols by following the CANopen specifications and SAE J1939/11. The bit time 

oscillator tolerance is better than ± 0.1% in order to be allowed to operate on compliant 

MilCAN segment. For the 1Mbps the bit sample point shall be ≥ 75% of the bit time, preferably 

above 80%. For the 500Kbps and 250Kbps the bit sampling should be ≥ 87.5% of the bit time or 

later. The synchronisation jump width should be 1-time quanta, the sampling mode to single 

sampling and synchronisation to be “recessive to dominant” edges only. The round trip 

propagation time of a CAN interface, is less than 210ns at 1 Mbps and 300ns at 500Kbps and 

250Kbps. 

3.5 Data Link layer 

3.5.1 Media Access Control 

MilCAN provides a priority based bus access with an arbitration process that ensures the 

highest priority message will be transmitted first. When two nodes have a message to be 

transmitted, the one with the highest priority will be transmitted first. The process ensures no 

bus access conflicts occur that could result into loss of data and time. The transmitters of 

multiple nodes simultaneously transmit and receive one bit at a time, which they later 

compare to detect when another node is trying to transmit a message with higher priority. 
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When the message with higher priority has been sent and the bus is free, the arbitration 

procedure starts again for the following pending messages. 

There are four types of frames that are used for message and status transfers. The Data Frame 

is the main type used for transferring data between nodes. The Remote Frame is used to 

trigger the transmission of the Data Frame from another node with the same identifier. The 

Error Frame is generated on bus errors. The Overload Frame is generated between successive 

Data Frames or Remote Frames to provide extra delay between their transmissions. 

There are two types of Data Frames and Remote Frames, the Standard and Extended. The 

Standard has an 11 bits Identifier and the Extended has 29 bits (figure 3.5). When a frame is 

successfully transmitted or received an acknowledgement is accomplished during the 

transmission sequence of a frame. When no errors have occurred until the end of transmission 

of the frame’s EOF field, the transmitted message is considered valid. When an error occurs 

there is an automatic retransmission, which is not allowed by the MilCAN specification and 

should be disabled. Communication errors can optionally be reported and handled by a higher 

layer when detected by the CAN controller. All CAN controllers are required to keep error 

counters, one for transmit and one for receive. They are incremented and decremented based 

on a set of rules. 

Arbitration Field (32 bits)
Control Field 

(6 bits)
Data Field (0-64 bits) CRC Field (16 bits)

End of 

Frame

(7 bits)

Start of Frame 

(1 bit)
ACK Field

(2 bits)  

Figure 3.5: CAN frame format [MWG'09] 

3.5.2 Logical Link Control 

The 29-bit frame identifier is formatted as shown in figure 3.6. The source address of the node 

generated the frame is identified by the first eight bits (bits 0 to 7). This address is assigned to 

each node and it is unique. This allows the identification of the node that generated each 

message on the bus. The source address 0x00 is reserved and cannot be used by any node. The 

second and third bytes of the MilCAN frame identifier (bits 8-15 and 16-23) represent the 

secondary and primary type MilCAN identifiers respectively. Messages are grouped according 

their primary type based on their function and are also assigned a unique secondary type. The 

24th bit is used to denote if the frame is either a request message (bit = 1) or a 

status/command message (bit = 0). Since the CAN bus can be shared by MilCAN and SAE J1939 

devices, the Protocol Type (bit 25) is used to distinguish between the two protocols. For 
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MilCAN frames the bit is 1 and for the SAE J1939 frames is 0. Bits 26 to 28 store the priority of 

the MilCAN frame and are used when transmitting the frame. Based on the CAN media access 

control protocol, a frame has higher priority when the field is 0 and lowest priority when the 

field is 7. The priority assignment mechanism is defined in the Application Layer specification. 

Source AddressMessage Sub-TypeMessage Primary-TypePriority

Protocol Type Request

28 26 25 24 23 16 15 8 7 0

 

Figure 3.6: MilCAN frame identifier format [MWG'09] 

When any errors occur on the CAN bus during operation, they may be reported to the 

application layer. The application then may execute the corrective procedures appropriately. 

No further actions are taken against any of these errors at the link layer. Where appropriate 

software is used to detect hardware errors of the network interface and then report them to 

the application layer. The application executes the appropriate procedure depending the error 

condition. No further actions are taken against any of these errors at the link layer. 

The messages are classified only based on their primary-type and sub-type conveyed in the 

message identifier. The source address field is not used for functional distinction. For non-

operational messages, a custom identifier that includes a destination address for the message 

can be used. 

There are four operational message types: 

 Status/Command messages – During normal operation these message types are the 

primary mode of communication. These type of messages are either periodic or event 

triggered. 

 Request messages – Specific MilCAN messages can be requested from a remote device 

for a specific message primary-type and sub-type. The frame is distinguished from the 

Request bit (bit 24) of the identifier that is set to 1. 

 Non-operational messages – Physically addressed messages use a fixed value of 0x31 

as a primary-type. The sub-type identifier stores the physical address of the 

destination device. To broadcast the message to all the devices the 0x00 destination 

address is used. 
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 Sync frame message – The synchronous operation of MilCAN is controlled by the Sync- 

Frame message, to provide a coherent timing source to all the nodes. The generation 

of the Sync Frame is by the current elected Sync Master node. There is always a 

potential Sync Master per bus segment. When there are more than one potential Sync 

Masters, an election process is triggered. The election procedure is described in the 

Application Layer. The Sync Frame must have priority set to 0, the primary-type set to 

0x00 and sub-type set to 0x80. The payload of the Sync Frame is a Sync Slot counter, 

which ranges between 0 and 1023. This counter is incrementing at each Sync Frame 

transmission and the generation frequency is system specific. Recommended values 

are 512Hz for 1Mbps CAN bus, 128Hz for 500Kbps and 64Hz for 250kbps CAN bus. The 

frequency change is described in the System Management specifications. 

There are two message types related to the system configuration mode: 

 Enter configuration mode message – The nodes on the bus can be requested to 

suspend operational mode and enter the configuration mode by using the Enter 

Configuration Mode message. During this mode the node can receive any required 

application specific reconfigurations. The message has a single byte data payload for 

the first, second and third message with payload the ASCII character ‘C’ , ‘F’ and ‘G’ 

respectively. The message has the highest priority ‘0’, primary-type 0x00 and sub-type 

0x81. 

 Exit configuration mode message – This message shall be used to terminate the 

Configuration Mode. The message has a three byte data payload with value the three 

characters ASCII ‘OPR’. The priority is ‘0’, primary-type 0x00 and sub-type 0x82. 

The alive message indicates the status of a node and it is required to be sent by all the nodes. 

The first payload of the payload when is ‘1’ indicates a normal operation and when ‘0’ faulty 

operation. The remaining 7 bytes of the data field may be used if required by the system 

design. The Alive message has a primary-type of 0x62 and the sub-type is used as a unique 

identifier to every node. The valid range for the node ID is 1 to 255. The system designer may 

use the source address to the node ID field. The transmission frequency of the alive message is 

1 Hz. 

For the generation and transmission of synchronous messages the Sync Frame Messages and 

the value of the sync counter need to be reported to the application layer. Nodes that are 

operating asynchronously are Sync Frame aware in order to transition between the system 

modes as defined in the Application Layer. Nodes that transmit asynchronous periodic 
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messages, is their responsibility to control and maintain their triggering rate. Every periodic 

asynchronous message is required to have a priority of 2 or lower. The Sync Frame message 

and the Enter & Exit Configuration mode message are exempt which have a priority of 0. 

Messages are transmitted depending their priority, the higher priority messages are 

transmitted before the lower priority messages. New messages with higher priority are queued 

before previously queued messages of lower priority. This requirement also applies to the CAN 

controller transmit buffers. This prevents “priority inversion” where lower priority messages 

are transmitted while higher priority ones are pending. When a MilCAN bus reaches a heavy 

busload or disruption, some queued messages could become invalid before being transmitted. 

To avoid this all the messages have a mortal attribute, which specifies if and when the 

message should be destroyed. When the mortal attribute is set to “TRUE” it is accompanied 

with a “time to live” value that defines the maximum time the specific message can be in a 

pending before it gets destroyed. When the mortal attribute is set to “FALSE” then the 

message is never be removed from the queue. 

To reduce unnecessary load from the nodes CPU, filtering may be applied to the incoming 

messages that are not used by the node. The LLC layer of the CAN controller must not 

generate the “overload” frame of the ISO11898 CAN standard. CAN controllers selected for 

MilCAN use need to support disabling the “overload” frame. The LLC layer of the ISO11898 

CAN standard supports the retransmission of frames that fail to be transmitted due to bus 

errors. This can result in uncontrollable continuous access to the bus, which could result to 

multiple transmissions of the same frame. In case of a disrupted CAN frame transmission, the 

application layer may execute the corrective procedures defined by the system design. 

Additionally the Remote Frame Request provided by the ISO11898 is not compatible with 

MilCAN’s logically addressed system and must not be used. 

When the communication requires more than 8 bytes to be transferred, then the Multi-frame 

messages are used. The Multi-frame messages are a group of single frame messages that have 

the data required to be transmitted; fragmented in to multiple application payloads. Such 

frames can consist up to 251 individual single-frame messages. The transmission and reception 

of multiple Multi-frame messages at the same is allowed as long as they have different 

message identifier. Multi-frame messages are divided into three segments, the first, 

intermediate and last frame. The structure of a Multi-frame message can be seen in figure 3.7. 
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Figure 3.7: MilCAN Multi-frame structure [MWG'09] 

Message Count – Represents the sequence number of the multi-frame message. The range of 

values that can have is from 0 to 250 to allow maximum of 251 frames per multi-frame 

message. 

Byte Count – indicates the size of the multi-frame message and the range of values that it can 

get are 0 to 16449535 and the data is stored in Little Endian format. 

CRC – is optional and provides an 8 or 16 bit CRC of the application data transferred by the 

Intermediate frames. 

3.6 Application layer 

3.6.1 Communication architecture 

The payload bytes that are transmitted are in Intel format, where byte 0 is the first byte 

received and 7 the last byte. The bits within payloads bytes are transmitted with the most 

significant bit first and least significant bit last. Additionally MilCAN devices do not require 

sending an acknowledgement message. This will reduce unnecessary traffic on the bus. 

Depending the application and the system design, an appropriate mechanism is implemented 

to confirm the successful reception of the message. 

The main objective of MilCAN is to provide deterministic communications to the devices that 

are connected to the network, while also to support non-deterministic communication. The 

Prioritised Bus Access with Bounded Throughput protocol will achieve the need for 
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deterministic communication for the devices that require it and provides sufficient flexibility to 

accommodate those devices that do not. 

The primary deterministic characteristics for MilCAN are: 

 The message priority is assigned to each message depending the required delivery 

deadline of each message. Thus the message with the shortest delivery deadline is 

assigned the highest priority. 

 The Sync frame is delivered by a Sync Master at a rate controlled by the shortest 

delivery deadline. 

 There are multiple Sync Master devices and only one is elected as an active Sync 

Master which can output Sync Frames. To ensure there is only one active Sync Master, 

an election protocol is used which will elect a new master when the current Sync 

Frame Master fails. 

 Every message has a minimum inter-arrival rate that is greater than or equal to the 

Primary Time Unit (PTU). 

 When the messages and their inter-arrival times in a system are known, then the 

messages are pre-allocated to numbered slots during the design stage. 

 The protocol accommodates three message priority categories, Hard Real Time (HRT), 

Soft Real Time (SRT) and Non Real Time (NRT). 

 Since each node is responsible for its own message triggering and there will be some 

timing inaccuracies, the protocol allows these timing inaccuracies. 

 In the event of failures, the protocol supports fault recovery. 

MilCAN message frames are not generated more than once per PTU. That includes single-

frame and multi-frame messages, where the application is responsible for this. Additionally 

depending the required delivery deadline of each message, different priority is assigned to 

them. The highest priority (lowest value) guarantee sorter delivery deadline. The available 

priorities are the following: 

 Priority 0 (HRT0) – This priority messages gain immediate access to the bus. When a 

message from another node is transmitted, the HRT0 transmission is delayed till the 

transmission is complete. If two nodes have queued an HRT0 message, the one with 

the lowest CAN node identifier is transmitted first. The Sync Frame, EnterConfigMode 

and ExitConfigMode messages are the only messages defined by MilCAN to use HRT0 

priority. 



31 
 

 

 Priority 1 (HRT1) – This priority messages have maximum latency of 1 PTU. All 

scheduled HRT1 messages of a network do not exceed the available bandwidth of 1 

PTU from the one they were scheduled on. 

 Priority 2 (HRT2) – This priority messages have maximum latency of 8 PTU. All 

scheduled HRT2 messages of a network do not exceed the available bandwidth of 8 

PTU from the one they were scheduled on. 

 Priority 3 (HRT3) – This priority message have maximum latency of 64 PTU. All 

scheduled HRT3 messages of a network do not exceed the available bandwidth of 64 

PTU from the one they were scheduled on. 

 Priority 4 (SRT1) – For this priority message the delivery latency is not guaranteed. 

Messages with this priority have high probability of being transmitted within 8 PTUs. 

These messages are transmitted on the available bus time not used by HRT0, HRT1, 

HRT2 and HRT3 messages, during 8 PTU period. 

 Priority 5 (SRT2) – For this priority message the delivery latency is not guaranteed. 

Messages with this priority have high probability of being transmitted within 64 PTUs. 

These messages are transmitted on the available bus time not used by HRT0, HRT1, 

HRT2 and HRT3 messages, during 64 PTU period. 

 Priority 6 (SRT3) – For this priority message the delivery latency is not guaranteed. 

Messages with this priority have high probability of being transmitted within 1024 

PTUs. These messages are transmitted on the available bus time not used by HRT0, 

HRT1, HRT2 and HRT3 messages, during 1024 PTU period. 

 Priority 7 (NRT) – Messages with this priority do not have any latency requirements. 

Synchronous messages are triggered upon reception of the Sync Frame message that indicates 

the slot number of the MilCAN major cycle that each message had been scheduled on. The 

processing time of the Sync Frame on the device is taken into consideration, and the a fixed 

amount of time equal to the worst case response time is reserved in each PTU to ensure that 

all messages allocated to a particular slot are transmitted in that slot. The worst case scenario 

is calculated (figure 3.8) for the chosen hardware and software and ensure that this time is 

reserved in each slot when designing the message schedule. 

An asynchronous event triggered message can be triggered in any slot. The required 

bandwidth is allocated at every slot to accommodate the possibly generated messages. 

Because this will waste bandwidth, event driven messages are reduced and even eliminated, 

and lower priority for event driven messages are used to minimise affecting delays. Devices 



32 
 

 

with asynchronous messages (figure 3.9) although they do not need to associate the 

transmission of the asynchronous messages with the Sync Frame, they still need to receive and 

process it in order to detect operational mode changes of the network such as the initial 

transition from pre-operational to operational mode. When messages are transmitted 

periodically triggered from an internal timer, the period is equal or longer than one PTU. Based 

on the Data Link Layer asynchronous devices are restricted to the transmission of messages 

with priority 2 or lower. 

 

Figure 3.8: Response to Sync Frame [MWG'09] 

 

Figure 3.9: Asynchronous message triggering [MWG'09] 

Military vetronic systems require deterministic message transfer to achieve predictable 

performance. This requires a synchronised operation between all the available devices and this 

is achieved within MilCAN by employing one of the network nodes as a Sync Frame message 

generator to provide this co-ordination. A single Sync Master makes the system vulnerable to 

its failure, a scheme of multiple nodes capable to assume Sync Master roles as a failover 

solution was established. Potential Sync Masters monitor the reception of the Sync Frame 

message, and when it is not receipt within a maximum timeout period a potential Sync Master 

takes over to transmit the Sync Frame message containing the next Sync Frame counter value. 
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The timeout period is greater than one PTU plus the time to transmit two messages of 

maximum length. 

When a Potential Sync Master receives a Sync Frame message from a node with lower source 

address, it maintains the role of the Potential Sync Master. When a Potential Sync Master 

receives a Sync Frame message from a node with higher source address, it assumes the role of 

Sync Master and forcibly takeover by generating the next Sync Frame at a slightly smaller PTU. 

When a Sync Master receives a Sync Frame message from a node with lower source address, it 

assumes the role of Potential Sync Master and stops the transmission of the Sync Frame 

message. This procedure ensures that the node with the highest priority will eventually 

become the system Sync Master. 

3.6.2 System modes 

Three system modes are defined in the MilCAN protocol and are implemented in all devices. 

These modes are the Pre-Operational mode, Operational mode and System Configuration 

mode. The modes transitions are shown in figure 3.10. 

 Pre-operational mode - Devices after power up, reset, loss of Sync Frames and upon 

exiting system configuration modes enter Pre-operational mode. During this mode 

only Sync Frame and Enter/Exit configuration messages are transmitted. Devices in 

Pre-operational mode will switch to Operational mode only when a Sync Frame is 

received, and when an enter system configuration mode message is received they 

switch to System Configuration mode. 

 Operational mode - Devices enter Operational mode from Pre-operational mode upon 

reception of a valid Sync Frame. The devices exit Operational mode and enter Pre-

operational mode following a reset or no Sync Frame message has been received 

within 8PTUs. The devices exit Operational mode and enter System Configuration 

mode upon reception of a valid enter system configuration message. 

 System configuration mode - All devices enter System Configuration mode on request 

by a Configuration Master node. During this mode only system configuration mode 

messages are used, all operational messages, including Sync Frames, are suspended. 

The Enter System Configuration message is a sequence of three messages with same 

ID but with different payload for each message. The Enter System Configuration 

message is transmitted within 400ms. All devices connected to the bus, suspend 

Operational mode and enter System Configuration mode. The sequence of the 

message is received in the correct order. The enter System Configuration message is 



34 
 

 

transmitted every 1 second to notify devices that just came on-line after the segment 

has entered the System Configuration mode. The devices exit System Configuration 

mode and enter Pre-operational mode upon reception of the exit System 

Configuration mode message. 
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Figure 3.10: System modes [MWG'09] 

3.6.3 Data distribution architecture 

The communication between MilCAN devices is based on publisher/user basis. The nodes 

when they receive messages, will filter them based their message identifier and process only 

the ones required by the application layer. 

3.6.4 Command distribution architecture 

There are two forms of commands, the implicit and the system mode commands. The implicit 

commands indicate in the payload the change of the status of a parameter from a system 

function. The system mode commands indicate how the implicit commands are interpreted by 

the nodes, such as selection of data source when multi-instance addressing is used. Most of 

the command messages used in the system are implicit.  
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3.7 Conclusion 

MilCAN is a protocol enhancement of the CAN protocol, which is developed by the military 

industry. Since MilCAN is a software based solution, is compatible with all already existing CAN 

enabled embedded microcontrollers and devices. By being compatible with all already existing 

CAN hardware is a flexible and affordable solution for real-time distributed systems. MilCAN is 

a deterministic, distributed real-time network which provides prioritised communication and 

direct synchronisation of all nodes. The frames that are transmitted on the bus by different 

nodes are synchronised and with the help of the arbitration mechanism of CAN the delivery 

latencies are guaranteed according to their priority. Since the network synchronisation is 

based on the MilCAN Master which in case of failure will be replaced by another potential 

master, the network operation resumes with minimal disruption. 

Since the High Availability MilCAN is designed to operate on MilCAN nodes, it is very important 

its design to be based on the MilCAN protocol to assure capability between all the devices. The 

main characteristics of the High Availability MilCAN are based on the MilCAN internal 

components to provide the desired functionality. 
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Chapter 4 MilCAN Reconfiguration 

4.1 Introduction 

When there is the need to maintain a MilCAN node already installed in a vehicle, then the 

engineer has to spend time to access the node physically and may need to remove it. The 

above approach is time consuming and requires the knowledge and the tools to disassembly 

the node in order to gain access to it. Also during this operation the rest of the network is 

utilised unusable. 

By using MilCAN Reconfiguration, many disadvantages of node maintenance are eliminated 

and through life capability management is provided. Node Reconfiguration covers the software 

side of the maintenance, like configuring the message set for every node and upgrading the 

firmware. With the Node Reconfiguration it’s possible to connect to different vehicles and 

access the nodes remotely from a central location. In case a node has to be added or removed 

or just a software upgrade to many vehicles, by using a MilCAN Node Reconfiguration the 

software part of the modification could be completed automatically. 

This chapter discuss the design of MilCAN Reconfiguration and explains the operation of its 

components. Each of the components are vital for the operation of the MilCAN 

Reconfiguration, which provides the functionality to remotely reconfigure and maintain any 

device connected on the MilCAN network without the need to reprogram the firmware on the 

nodes. 

4.2 Design 

Without the MilCAN Reconfiguration there was no ability to upload to a MilCAN node new 

firmware through the network. That makes it long and tedious operation for an engineer to 

develop and maintain an application. The MilCAN Reconfiguration although it can be used 

during operational mode, it is not advised since this will result in lost configuration messages 

and unexpected results. It should be used during configuration mode, where the operation of 

all the connected devices will be halted, and the network will be available only for the 

configuration commands. 

The MilCAN Node Reconfiguration design consist three parts: 

 Bootloader 

 Communication protocol 

 VSI GUI 
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Bootloader – The bootloader is located at the beginning of the firmware of the 

microcontroller, and is responsible for all the operations supported by the MilCAN Node 

Reconfiguration. 

Communication protocol – The communication protocol allows the VSI GUI to communicate 

with the bootloader in the nodes. 

VSI GUI – The VSI GUI is the front end that the user has to use to control the various 

operations the reconfiguration provides. The VSI GUI sends commands to the bootloader using 

the communication protocol. 

To achieve this, the VSI GUI has to be able to send the firmware through the VSI Bridge to the 

nodes. Every node has the bootloader software at the beginning of the memory which is 

responsible to deal with receiving and saving the application firmware on the ROM memory of 

the node. 

The bootloader is independent from the application firmware and allocated at the beginning of 

the ROM memory. For this reason the ROM memory is split in to two areas, the area that the 

bootloader is allocated and the area that application’s firmware is allocated as seen in figure 

4.1. 
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Figure 4.1: Node software memory allocation 

After a node reset the bootloader does a checksum verification to check the integrity of the 

application firmware, if it passes the check then the application firmware is executed by 
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jumping the program counter at the beginning of the application firmware. From that point on 

the application is executed as normal. 
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Figure 4.2: Flow of configuration mode 

The configuration of the nodes has been adapted to include a unique identification number 

(serial number) for each device, decoupling the system from the use of the MilCAN Source 

Address to identify the individual nodes. This makes the development compliant with the 

MilCAN specification requirements. The feature that need to be supported are the following: 

 Node software reset 

 Node status checking (MilCAN mode, node mode) 

 Configuration version checking 

 Node ID and serial change 

 MilCAN bus speed change 

 Message set configuration 
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4.3 MilCAN Bootloader 

4.3.1 Memory allocation 

The microcontrollers that are used for the implementation are the phyCORE-167CS, where the 

ROM is allocated from 0x00000 to 0x3FFFF and RAM from 0x40000 and 0x7FFFF. Specific 

memory locations have been allocated for the operation of the bootloader and the 

applications which are shown at table 4.1. 

Table 4.1: Node's memory map 

Memory address Description 

0x00000-0x001FF Hardware interrupt vector 

0x00200-0x003FF Bootloader interrupt vector forwarders 

0x00400-0x005FF Application interrupt vector forwarders 

0x00602-0x00801 Bootloader interrupt vector 

0x00802-0x009A9 RAM functions initial location 

0x009AA-0x08000 Bootloader 

0x10000-0x101FF Application interrupt vector 

0x101FF -0x2FFFF Application 

0x30000-0x30AFF Application’s message set allocation 

0x30B00-0x3FFFF Application 

0x40000-0x401FF RAM interrupt vector 

0x40200-0x403A8 RAM functions final location 

0x403A9-0x6FFFF RAM 

0x70000-0x70AFF Bootloader’s temporary message set allocation 

0x70B00-0x7FFFF RAM 

 

Hardware interrupt vector – The hardware specific interrupts are pointing to this memory 

address. 

Bootloader interrupt vector forwarders – Hardware interrupt forwarders used by the 

bootloader. 

Application interrupt vector forwarders – Hardware interrupt forwarders used by the 

application. 

Bootloader interrupt vector – Actual hardware interrupt vector for the bootloader. 

RAM functions initial location – The location that the RAM functions are stored before are 

being copied to the RAM. 

Bootloader – The location where the bootloader resides. 

Application interrupt vector – Actual hardware interrupt vector for the application. 

Application – The location where the application resides. 



40 
 

 

RAM interrupt vector –  The location that the interrupt vector forwarders will be copied. 

RAM functions final location – The location that the RAM functions will be copied. 

RAM – This is unallocated RAM memory for general use. 

Bootloader’s temporary message set allocation – Is the location that the bootloader will copy 

the message set to edit it before it saves it back in ROM. 

Additionally on these microcontrollers there is also an additional EEPROM connected through 

an I2C bus. On this memory the configuration of the node is saved. That includes the node ID, 

node serial and bus speed. This allows the bootloader to edit these settings without changing 

anything on the main ROM. 

4.3.2 Dynamic interrupt vector 

The nodes that are MilCAN Reconfiguration enabled have both a bootloader and an 

application. To ensure normal operation of the bootloader or the application the interrupt calls 

should be forwarded appropriately. The bootloader and the application require different 

interrupt vectors which are going to be allocated by the compiler when configured 

appropriately. To be able to have a dynamic interrupt vector and the interrupt calls to be 

forwarded to the bootloader or the application during runtime, the RAM is used as a dynamic 

forwarder as seen in figure 4.3.  

Hardware Interrupt 

Vector

RAM Interrupt 

Vector

(BIVF or AIVF)

Bootloader 

Interrupt

Vector

Application 

Interrupt

Vector

 

Figure 4.3: Dynamic interrupt vector 

To achieve that, custom interrupt vectors forwarders were created with the help of assembly 

programming and the use of the JMPS instruction which what it does is an unconditional jump 

to any target [ARM'04]. These three interrupt vectors are the Hardware Interrupt Vector, 

Bootloader Interrupt Vector Forwarders (BIVF) and the Application Interrupt Vector 

Forwarders (AIVF). When the device is restarted the bootloader copies to the RAM the 

appropriate interrupt vector forwarders. When the bootloader needs to be executed then the 

BIVF is copied to the RAM and if the application needs to be executed then the AIVF needs to 

be copied to the RAM. When an interrupt occurs then it jumps from the Hardware Interrupt 
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Vector to the RAM Interrupt Vector from where again it is forwarded by the BIVF or AIVF as 

can be seen in figure 4.3. All the interrupts are dynamically forwarded except the reset 

interrupt which is always forwarded to the bootloader’s interrupt vector, in order to execute 

the bootloader every time the node is reset. 

4.3.2.1 Hardware interrupt vector 

The Hardware Interrupt Vector is located at the beginning of the ROM and is allocated in the 

memory address range 0x00000 to 0x001FF. Each memory address in this range represents an 

interrupt. At this location a custom interrupt vector is created that redirects any call to the 

corresponding address in the RAM interrupt vector with the use of the VECTAB Linker Directive 

which allows you to specify a starting address (offset) for the interrupt vector table. By default, 

the starting address is 0000h [ARM'05]. The RAM interrupt vector is located in 0x40000 to 

0x401FF memory address. 

4.3.2.2 Bootloader Interrupt Vector Forwarders (BIVF) 

The BIVF is located in the memory address range 0x00200 to 0x003FF and it is pointing to the 

Bootloader’s Interrupt Vector located in memory address range 0x00602 to 0x00801. 

Depending the device operation, this interrupt is copied in the pre-allocated location on RAM 

which has address range of 0x40000 to 0x401FF. 

4.3.2.3 Application Interrupt Vector Forwarders (AIVF) 

The AIVF is located in the memory address range 0x00400 to 0x005FF which is pointing to the 

Application’s Interrupt Vector located in memory address range 0x10000-0x101FF. As the BIVF, 

the AIVF will be copied in the pre-allocated RAM area in order to forward any calls to the 

Application Interrupt Vector located in 0x10000 to 0x101FF. 

4.3.3 Message configuration 

When a node needs to be reconfigured without flashing a new firmware the VSI GUI can with 

the appropriate commands reconfigure the message list with the help of the bootloader. The 

bootloader is responsible to make the correct changes permanently on the applications 

firmware. To achieve that, the application’s message list must be located in to a predefined 

location on the ROM in order for the bootloader to know the exact location that need to be 

modified. That location is in the memory range of 30000h to 30AFFh for the specific device 

that is used. Since the hardware ROM does not allow to edit specific location in the memory, 

the whole sector needs to be deleted before it is rewritten, the bootloader loads that sector 

data in to the RAM where it edits it and applies any changes that have been received by the 

user through the VSI GUI. The sector data include both the message set and part of the 
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applications data. When the whole configuration is complete and the user decides to save the 

changes, then the bootloader deletes the sector that the message list is located in the ROM 

which has memory range of 0x30000 to 0x40000. When the ROM sector is deleted 

successfully, it copies the data stored in the RAM to the ROM. After the completion of the 

operation, the bootloader will verify the operation by comparing the written data to ROM with 

the ones stored in RAM. If the verification is successful then it will wait for further commands 

otherwise it will try to rewrite the data. The whole process can be seen in figure 4.4. 

Bootloader normal 

operation

Erasing msg set 

sector in ROM.

Copy sector from 

RAM to ROM

Verify written 

data

Msg config 

cmd Rx
Msg config 

save cmd Rx

Changing msg set 

on RAM according 
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Yes Yes

False

Correct

VSI GUI 

commands

 

Figure 4.4: Bootloader's message configuration flow 

4.3.4 RAM Functions 

The above operations have a major restriction brought by the device. When any ROM 

operations are carried such as deleting or writing the operation must be executed from the 

RAM. It is not possible to write or delete to the ROM with the instructions being located in the 

same ROM. For these operations, a specific set of instructions that manage the ROM are 

generated. These instructions are named RAM Functions and located in a predefined location 

in the memory address 0x00802 to 0x009A9 in the ROM. These instructions although are 
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located to the memory location mentioned above, are not able to be executed from there. The 

reason is that the compiler is configured to reallocate them as if they are located in the 

memory address range 0x40200 to 0x403A8 which is in the RAM. When the device goes in to 

configuration mode, the bootloader copies the RAM Functions in to the appropriate locations 

in to the RAM which from there are going to be able to be executed. This way when there is a 

need to edit a sector in ROM the RAM functions will take care of the operation without the 

execution to be located in ROM. When the RAM Functions are executed the rest operations of 

the device are coming to a halt. 

The functions located in the RAM are: 

 Data polling (compares the data from ROM to RAM) 

 Erase chip (deletes the content of the whole chip) 

 Erase sector (deletes a specific sector) 

 Program flash (copies data to ROM) 

4.3.5 Program flash memory 

In order to save the application firmware on the node it has to be saved on the ROM memory. 

There is one difficulty to do this; the flash memory cannot be program with code located in the 

same flash memory. This means that the flash programming algorithms must be copied to and 

executed in the internal RAM. To manage this, the functions that are used to write on the ROM 

are copied on the RAM just after the interrupt vector that is placed on the RAM 

(ram_functions). Specific settings on the compiler allow code to be executed from the RAM. 

These settings, compile the ROM programming functions as if they were placed on the Ram in 

the first place. 

4.4 MilCAN Reconfiguration Protocol 

A specific protocol has being designed for the Node Reconfiguration operations in order to 

utilize all the functionalities that the bootloader can provide. It is a new protocol that insures 

proper MilCAN Reconfiguration operation. It provides a wide range of operations, where each 

of them is verified with the use of acknowledgment messages. The whole protocol can be 

found in the appendix. The operations that the bootloader provides are: 

 Enter programming mode 

 Software reset 

 Status check 

 Version check 
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 Node ID change 

 Node speed change 

 Message configuration 

 Erasing app sectors (erase the sectors that are allocated for the application) 

 Erasing chip (erase the whole ROM chip including the bootloader) 

 Address set 

 Programming data 

 Checksum (after completing programming the checksum for the application) 

4.4.1 Enter programming mode 

When the application is operating normally the Enter programming mode command will leave 

the application and execute the bootloader for the node to become ready for configuration. 

The application of the node has to recognise this command. The structure of the command can 

be seen in table 4.2. When the node receives this command before the switch, it sends back an 

acknowledge message with message ID 0xBE25. 

Table 4.2: Configuration protocol Enter programming mode 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0xBE24 Slave ID        

 

4.4.2 Software reset 

When the Software reset command is received during normal node operation the node will be 

restarted. Before the restart of the node it will transmit back an acknowledge message with 

message ID 0xBE2B and the same payload. The structure of the command can be seen in table 

4.3. 

Table 4.3: Configuration protocol Software reset 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0xBE2A Slave ID        

 

4.4.3 Status & Version check 

The Status check command can be used for checking the operation mode that MilCAN is in and 

if the node is in the bootloader or the application. The status request should have message ID 

0xBE2E and Payload 0 the slave ID that the status is requested from. The structure of the result 

message that will be sent from the node can be seen in table 4.4. 
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Table 4.4: Configuration protocol Status check (result) 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0xBE2F Slave ID 
MilCAN 
mode 

Node 
mode 

     

 

The Version check command checks the version of the application in the node. The request 

should have message ID 0xBE30 and Payload 0 the slave ID that the status is requested from. 

The structure of the result message that will be sent from the node can be seen in table 4.5. 

Table 4.5: Configuration protocol Version check (result) 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0xBE31 Slave ID Version Version Version Version Version Version Version 

 

4.4.4 Node ID & speed change 

Every MilCAN node has a unique ID. This ID can be changed with the Node ID change 

command. For this operation the unique serial that every node has, will be used. In table 4.6 

the structure of this command is shown. To acknowledge the command the node retransmits 

the same message but with message ID 0xBE33. 

Table 4.6: Configuration protocol Node ID change 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0xBE32 Slave ID 
MILCAN 
ID1 

MILCAN 
ID2 

NODE 
SERIAL 

NODE 
SERIAL 

NODE 
SERIAL 

NODE 
SERIAL 

NODE 
SERIAL 

 

The MilCAN operational speed can be changed with the Node speed change command. The 

structure of the command can be seen in table 4.7. After the reception of the command the 

node need to acknowledge the reception of the command by sending the same message with 

message ID 0xBE35. 

Table 4.7: Configuration protocol Node speed change 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0xBE34 Slave ID 
NODE 
SPEED 
A_1 

NODE 
SPEED 
A_1 

NODE 
SPEED 
A_1 

NODE 
SPEED 
A_1 
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4.4.5 Message configuration 

To be able to configure the list of messages on the node the Message configuration need to be 

used. By using this command the priority, message ID, start frame and frequency of a MilCAN 

message can be changed. The structure of the command can be seen in table 4.8. After the 

reception of the command the node acknowledge with the transmission of the same payload 

but with message ID 0xBE51. 

Table 4.8: Configuration protocol Message configuration 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0xBE50 Slave ID 
Primary 
ID 

Secondary 
ID 

New 
Priority 

New 
Primary 
ID 

New 
Secondary 
ID 

New 
Start 
Frame 

New 
Cycle 

 

After the completion of the message configuration in order to save the configuration the 

Message configuration save command is used, which can be seen in table 4.9. As an 

acknowledgement the node sends the same message but with message ID 0xBE53. 

Table 4.9: Configuration protocol Message configuration save 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0xBE52 Slave ID        

 

4.4.6 Flashing application firmware 

Before the actual firmware is transferred to the node the flash memory needs to be prepared. 

To do so the Erase application sector needs to be used. During this command only the 

application section of the flash memory is erased. The structure of the command can be seen 

in table 4.10. After reception the node sends an acknowledgement with message ID 0xBE27 

and the same payload. When the command is completed, the flash is ready to be 

reprogrammed with a new firmware remotely. 

Table 4.10: Configuration protocol Erase application sector 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0xBE526 Slave ID        

 

To load a new firmware to the nodes through the network the following commands need to be 

used. The binary file that has been generated from the compiler is based to the Intel HEX file 

format [Wikipedia'10a]. 
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1. Start code, one character, an ASCII colon ':'. 

2. Byte count, two hex digits, one of byte (hex digit pairs) in the data field 

3. Address, four hex digits, a 16-bit address of the beginning of the memory position for 

the data. Limited to 64 kilobytes, the limit is worked around by specifying higher bits 

via additional record types. This address is big-endian. 

4. Record type, two hex digits, 00 to 05, defining the type of the data field. 

5. Data, a sequence of n bytes of the data themselves, represented by 2n hex digits. 

6. Checksum, two hex digits - the least significant byte of the two's complement of the 

sum of the values of all fields except fields 1 and 6 (Start code ":" byte and two hex 

digits of the Checksum). 

To follow the same format for the communication protocol the Address set command is send 

first from the server to the node (table 4.11). The node has to reply to the server with an 

acknowledge message which has the same payload and message ID 0xBE21. After the address 

is set, the server will transmit the data with the Programming data command (table 4.12). 

Again the node is responsible to acknowledge the reception of the command by transmitting 

back to the server a message with the same payload and message ID 0xBE23. 

Table 4.11: Configuration protocol Address set 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0xBE20 Slave ID 
Sequence 
Number 

Data 
Size 

Address 
Upper 
Bytes 

Address 
Lower 
Bytes 

Checksum   

 

Table 4.12: Configuration protocol Programming data 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0xBE22 Slave ID 
Sequence 
Number 

Data 
Upper 
Bytes 

Data Data Data Data 
Data 
Lower 
Bytes 

 

4.5 VSI GUI 

To utilise the network related data, a user interface has been developed. The original VSI GUI 

has the ability to deal with high-level operations of a VSI network (controlling VSI Bridge) as 

well as the sub-system level; transmitting and receiving MilCAN frames from selected 

segments. The purpose of the VSI GUI is to provide a user interface for viewing the VSI 
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network from a higher level of abstraction, and to provide tools for MilCAN specific 

investigation. 

The VSI GUI has the ability to store a copy of a live database, to be used as a project file when 

the GUI is not connected to the network. Since the database can have detailed information of 

the network, the user is able to store many different configurations on an off-line basis for all 

the components of the VSI network, including bridge configurations, message flooding, 

statistics and node firmware [Valsamakis'06]. 

Specifically, the following features and services are provided by the VSI GUI: 

 On/Off line topology view of interconnected VSI Bridges and their adjacent segments. 

 Saving/Loading different VSI system databases. 

 Controlling VSI bridge, segment and node status. 

 Retrieving firmware information from MilCAN nodes anywhere in the network 

 Retrieving MilCAN flooding from network 

 Reconfiguring VSI NEC MilCAN nodes with new firmware while connected. 

 Simulating message generation of a MilCAN cycle for individual bridges, segments and 

nodes. 

 Reconfiguring message parameters for individual nodes. 

Following the VSI standard guidelines, the preferred programming language used was C++. The 

VSI GUI is inheriting its implementation from the VSI-System COM/ATL library, which supports 

VSI GUI as a client application, in the same way as the VSI GUI has been supported. To take 

advantage of modern workstation desktop capabilities, this GUI supports docking windows, 

allowing the user interface to be setup as user prefers, and to support multiple screen displays. 

4.5.1 Network View 

The VSI GUI is capable of analysing the Flooding and VSI bridge tables of the VSI storage, to 

create a tree structure of the connected network. Figure 4.5 shows an example layout of a VSI 

network. The items are populated according to the VSI object hierarchy up to sub-system level 

(Vehicle, interconnected VSI Bridges and their current configuration), and then on system-

level, with node objects existence and position is derived from the flooding information. 
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Figure 4.5: VSI Network Topology GUI View 

When selecting an object such as a segment or node, the flooding information grid view of the 

specific object is displayed in the GUI. The flooding information grid view displays the 

parameters shown in table 4.13. 

Table 4.13: VSI GUI flooding information grid view parameters 

iFaceID The adjacent interface – segment where the message is generated or received. 

nodeID The node identifier of the node where the messages is generated or received. 

RX/TX ID bit Whether a message is transmitted or received by the specific node. 

MsgID The unique identifier of the message. 

Priority Message MilCAN priority. 

StartSlot MilCAN cycle slot when periodic message begins. 

PeriodSlot Period in MilCAN message transmission cycle slots. 

Description Text description for this message. 

 

The VSI GUI flooding information grid view is shown in figure 4.6. The displaying grid is editable 

by the user, where the fields MsgID, Priority, StartSlot, PeriodSlots and message description 

can be changed and saved. 
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Figure 4.6: VSI GUI flooding information grid view 

 

4.5.2 Message configuration 

To manage an uninterrupted reconfiguration of a node the following routine needs to be 

followed. The VSI GUI needs to establish connection to the segment that the desired node is 

connected and retrieve the network topology as displayed in the left part of figure 4.7. After 

successfully retrieving the topology the following steps need to be followed as shown in figure: 

1. The desired CAN interface of the node that will be reconfigured needs to be selected. 

2. Put the node in configuration mode by loading the bootloader by pressing the MilCAN 

Configuration Mode button. (The button will change and inform the user that the 

node is configuration mode after it receives the acknowledgement message. The 

acknowledgement will show also in the History log.) 

3. Edit the desired message with the new settings by clicking on the existing value and 

type a new one. (Only the fields MsgID, Priority, StartSlot, PeriodSlots and message 

description are editable.) 

4. Press the Send Message Configuration button to send the configuration to the node. 

Immediately after that the acknowledgement message will be displayed in the History 

log. (Steps 3 and 4 can be repeated if more messages need to be configured.) 

5. Press the Save Message Configuration button in order to permanently save the 

messages in the ROM. 
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Figure 4.7: VSI GUI overview 

When the configuration is complete the node needs to be taken to operational mode by 

turning the configuration mode OFF. 

4.6 Conclusion 

The MilCAN Reconfiguration provides many advantages on maintenance process of a system. 

It gives the opportunity to a user without any programming knowledge to be able to repair a 

system and adjust it according to the present requirements. The Node Reconfiguration covers 

the software side of the maintenance like configuring the message set for every node and 

upgrading the firmware without the need to utilise the whole network unusable. 

The MilCAN Reconfiguration is consisted by three parts, the bootloader that is located in the 

device’s software which then communicates through the Reconfiguration Protocol with the VSI 

Network Management System that provides control functionalities for all the available 

operations. Because of the Node Reconfiguration it’s possible to connect to different vehicles 

and access the nodes remotely from a central location. 
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Chapter 5 MilCAN Fault Tolerance Layer 

5.1 Introduction 

Safety critical applications depend on networks that provide continuity of service which 

require redundant network architectures. To provide high level redundancy with COTS CAN 

equipment is hard. For CAN to become deterministic, MilCAN is introduced which is located 

between the application layer and the physical layer with no need for any modification to the 

latest. For the same reason to add continuity of service the Fault Tolerance layer is used, which 

is located between the application layer and the MilCAN layer. 

The design of the MilCAN Fault Tolerant (FT) layer is based on the ability to transparently inter-

connect the application layer to multiple buses using a common interface. To achieve inter-

operability between all the FT enabled devices proposed MilCAN protocol additions were 

created. These additions include also the proposed expansion of an already existing MilCAN 

message for the FT layer use. Additionally, to provide different level of service depending the 

device and system configuration, the Fault Tolerant operation needs to be broken in to three 

different blocks. Since MilCAN Fault Tolerance is a software solution, a software protection 

had to be designed to offer the benefits of a hardware gateway, without the use of any extra 

hardware. 

In this chapter the overall Fault Tolerant layer design is discussed. The individual components 

for establishing communication between the FT layers of different devices are described, and 

their functionality is presented. The approach followed to break the FT layer operation into 

different individual blocks is discussed, along with the additions required to offer Bubbling 

Idiot protection. [Oikonomidis'08] 

5.2 Design 

The purpose of the MilCAN (FT) layer is to manage and operate the physical connections of the 

device to the MilCAN network. The FT layer is transparent to the application layer and 

manages and is operating the two or more MilCAN buses in order to achieve continuous 

operation. The application layer is interfaced to the FT layer following a predefined Application 

Programming Interface (API) which acts as a single virtual MilCAN bus as can be seen in figure 

5.1. This allows the use of more than two buses without the affecting the application on the 

device. The best operational condition is influenced by the working environment of the buses 

and the physical condition of the network at a given time. In an ideal environment everything 

should work flawlessly according to the theoretical specification, but in practice and under 
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stressful and demanding conditions this is not the case. Another main design characteristic of 

the FT layer is that devices that have the FT layer are compatible and can operate with other 

devices that do not have the FT layer. 

Fault Tolerance 

Layer

MilCAN Layer

App Layer

Virtual MilCAN bus

MilCAN

bus 1

MilCAN

bus 2

CAN bus 1 CAN bus 2

 

Figure 5.1: MilCAN Fault Tolerant design 

Most fault tolerant protocols are using dual bus redundancy to provide more stability on the 

network. It is therefore proposed as an optional enhancement for MilCAN, depending on the 

intended application, to have a dual bus where one of the buses can be operating as a primary 

bus (P-bus) (1Mbps) and the other as a secondary bus (S-bus) (250Kbps, 500Kbps, 1Mbps). In 

case there is malfunction (physical or data link layers) with the P-bus the S-bus should take 

over. Because the S-bus is to be used for fail safe solutions it is very important to be able to 

operate under different conditions. Fail safe is when a component directly reaches a safe state 

or is brought to a safe state by a special action [Isermann'02]. Where fail silent is when a 

component exhibits quiet behaviour externally and therefore does not wrongly influence other 

components [Isermann'02]. A problem that arises through this technique is that when using a 

bus with four times less bandwidth from the primary, it could result in messages having to be 

reallocated to new slots in order to keep the same transmitting periods, and the increase in 

the load would not allow all the messages to be transmitted at the intended time. If this is to 

be resolved, then smart algorithms should be used in order to filter messages, before they are 

transmitted by the node, to ensure the reduction of the required bandwidth.  
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Other fault tolerant systems use bus guardians. The transmitting node informs the bus 

guardians as soon as the synchronous messages are to be transmitted. This way they are able 

to know when to allow the node to transmit over the bus. As MilCAN is a purely software 

based protocol solution on generic CAN hardware, the use of bus guardians will have to be 

hardware independent. Using the “flooding” methodology at power up and at regular intervals 

an independent node can monitor each of the buses to detect any possible faults propagating 

on the bus. In an integrated architecture, this node would be the bridge connecting the dual 

bus segment. Using this methodology coupled with rescheduling plug-n-play makes fault 

tolerance possible. [Oikonomidis'09] 

5.3 MilCAN FT Layer components 

To be able to add the FT functionality to the MilCAN various new components had to be 

designed. The main new component is the MilCAN FT Master which plays the role of the 

MilCAN coordinator. It is responsible of the whole MilCAN FT operation and is dynamically 

selected. The MilCAN FT Master is capable of controlling the rest of the devices with the use of 

the MilCAN FT Master Frame which is capable of changing various key settings in the FT layer 

configuration such as bus selection and speed. For the MilCAN FT Master to have an 

operational overview of the devices that are connected the MilCAN Alive Message has to be 

extended the required information. The new extended Alive Message is transmitted by all the 

devices, to inform the FT Master of their status. 

5.3.1 MilCAN FT Master 

The MilCAN FT Master is responsible on collecting FT information transmitted by the rest of 

the MilCAN FT devices connected on the same network with the help of the extended MilCAN 

Alive Message. According to these information the MilCAN FT Master is coordinating the 

operation of the FT layer on all the devices in the same network. To manage the operational 

coordination, the FT Master Frame is used. This frame contains the commands that the rest of 

the devices must follow.  

The number of nodes designated as potential MilCAN FT Master within a system is in the 

responsibility of the system designer. There shall be at least one potential MilCAN FT Master 

per bus segment. The MilCAN FT Master should not be considered the same as the MilCAN 

Sync Master. The MilCAN FT Master follows the same election technique as the MilCAN Sync 

Master but the system designer may choose different potential MilCAN FT Masters from the 

potential MilCAN Sync Masters. 
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Following a reset, each device designated as a potential MilCAN FT Master must wait for the 

receipt of a MilCAN FT Master Frame. If a MilCAN FT Master Frame is not received within a 

timeout period then this node shall assume the role of MilCAN FT Master and transmit an FT 

Frame Message. The FT Master Frame timeout period is application specific and is 

recommended to be double the FT Master Frame period. The system designer should specify 

the actual value of the FT Master Frame timeout period. 

The protocol that will let other nodes to assume the role of the FT Master, must ensure that 

the potential FT Master with the highest priority will eventually become the FT Master. If the 

FT Master with the highest priority is non-functional then the next highest priority potential FT 

Master will become the system FT Master. 

5.3.2 MilCAN FT Master Frame 

The operation of fault tolerant nodes shall be co-ordinated by the FT Master Frame message. 

The FT Master Frame is transmitted by the FT Master node only, to all operational buses. 

Devices connected on the network should adjust their bus configuration according to FT 

Master Frame. The information that the FT Master frame carries are the master ID, active bus, 

bus status, bus speed, weight of bus and FT msg counter. The structure of the frame can be 

seen in table 5.1. 

Table 5.1: FT Master frame structure 

Header Payload 

Msg ID 0 1 2 3 4 5 

0x0090 Master ID Active bus Bus status Bus speed 
Weight of 
bus 

FT msg 
counter 

 

Master ID Field – this field (payload byte 0) shall be used to identify the Master node that 

transmits the FT Master Frame. When there is a message been transmitted the source ID 

address is included in the header of the frame according to the MilCAN specifications. But if 

there is a bridge or router that retransmits the frame on the bus and changes the header Node 

ID, the Master node ID in the payload reassures us that the nodes are going to receive the 

correct message. According to the MilCAN specifications any node can take values from 0x01 

till 0xFF, the same restrictions apply for the value of master ID field (table 5.2). 

Table 5.2: Master ID field of the FT Master frame 

Data Byte No No. Bits Limits/ Range Comments 

Master ID 0 8 0x01 – 0xFF Can take any value from 0x01 to 
0xFF as MilCAN node ID restriction 
apply. 
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Active bus field – this field (payload byte 1) shall be used to identify the active bus that carries 

on the communication. When a device receives a FT Master frame with a different active bus 

than the one that is currently using, it should switch immediately to the new bus instructed by 

the FT Master. The value of the active bus field depends on how many MilCAN buses are 

available on any system configuration. The FT Master decides the best available active bus 

according to its weighted bus selection algorithm. If the Active bus value is equal to 0 then that 

means that there none active buses present (table 5.3). 

Table 5.3: Active bus field of the FT Master frame 

Data Byte No No. Bits Limits/ Range Comments 

Active bus 1 8 0 - 8 Can take any value from 1 to as 
many available buses are available 
but less or equal to 8. 

 

Bus status field – this field (payload byte 2) shall be used to identify the status of the available 

MilCAN buses according to the FT Master. Each bit of the field represents each bus, where the 

value 1 means operational and value 0 non-operational. For example a system with 3 MilCAN 

buses where bus 1 is non-operational, bus 2 is non-operational and bus 3 operational the Bus 

status field will be equal to 4. The purpose of this value is to report the status of the buses at 

any given time for system monitoring and diagnostic table 5.4. 

Table 5.4: Bus status field of the FT Master frame 

Data Byte No No. Bits Limits/ Range Comments 

Bus status 2 8 0 - 255 Can take any value from 1 to 255 
for 8 healthy buses. 

 

Bus speed field – this field (payload byte 3) shall be used to specify the speed of each bus 

available in the system. Each bus is represented by 2 bits which can have the following values: 

 1000kbaud = 3 

 500kbaud = 2 

 250kbaud = 1 

For example at a system that has 3 MilCAN buses when bus 1 operates at 1000kbaud, bus 2 

operates at 500kbaud and bus 3 operates at 250kbaud the bus status field will be equal to 27. 

When a device receives a FT Master frame and the Bus speed field indicates a different 

operating speed for the specific bus, then it is required by the device to change to the 

indicated speed as soon as possible (table 5.5). 
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Table 5.5: Bus speed field of the FT Master frame 

Data Byte Order No. Bits Limits/ Range Comments 

Bus speed 3 8 0 – 255 1000kbaud = 11 (3) 
500kbaud = 10 (2) 
250kbaud = 01 (1) 
Can take any value from 0 to 255. 

 

Weight of bus – this field (payload byte 4) shall be used to identify the weight of the 

transmitting bus. This value is provided by the FT Master after adding the weight value of each 

active device connected to the specific bus (table 5.6). 

Table 5.6: Weight of bus field of the FT Master frame 

Data Byte Order No. Bits Limits/ Range Comments 

Weight of bus 4 8 0 – 255 Can take any value from 1 to 255. 

 

FT msg counter field – this field (payload byte 5) shall be a counter that operates in the range 

0 to 255. When the counter overflows, it shall be reset to 0. This counter must be used to 

count how many FT Master Frames have been transmitted in order to detect any messages 

that have been lost or received in the wrong order. Only the latest message will be kept and 

older ones will get discarded (table 5.7). 

Table 5.7: FT msg counter field of the FT Master frame 

Data Byte No No. Bits Limits/ Range Comments 

FT msg counter 5 8 0 – 255 Can take any value from 0 to 255. 
On reaching the value 255 the 
counter will be reset to 0 for the 
next frame. 

 

The minimum transmission frequency of the FT Master Frame by the FT Master shall be 1 Hz. 

In case of any change in the status of the buses an asynchronous FT Master Frame shall be 

transmitted in order to continue the normal operation of MilCAN by instantly coordinating the 

rest of the nodes. The FT Master message must be transmitted on all available operational 

buses. If the bus is not operational then there should be no attempt to transmit on that bus. 

5.3.3 MilCAN Alive Message Extended 

All nodes on the bus shall transmit an Alive message to indicate the overall status of the node 

according to the MilCAN specifications. There have been some modifications on the Alive 

message payload in order to provide some extra information required for the MilCAN FT 

operation. The extended version of the MilCAN Alive message is based on the MilCAN Alive 
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Message with seven extra payloads. Since the structure of the Message is based on the original 

MilCAN Alive Message, the extended version remains compatible with non FT devices. The 

Alive message structure share similarities with the FT Master frame except the ones 

mentioned below (table 5.8). 

Table 5.8: Alive Message frame structure 

Header Payload 

Msg ID 0 1 2 3 4 5 6 7 

0x62XX 
Device 
status 

Master 
ID 

Active 
bus 

Bus 
status 

Bus 
speed 

EWRN 
flag 

Weight 
of node 

msg 
counter 

 

Msg ID field – this field has primary-type 0x62 and the node ID as a sub-type according to the 

MilCAN specifications. 

Device status – this field (payload byte 0) shall be used to inform the status of the transmitting 

node on the network. The values that allowed for this payload can be seen in table 5.9. This 

field is defined by the MilCAN specifications. 

Table 5.9: Device status field of the alive message 

Data Byte No No. Bits Limits/ Range Comments 

Device status 0 2 0 – 3 Disabled = 00 
Enabled = 01 
Error indicator = 10 
Not available or not installed = 11 

 

Master ID Field – this field (payload byte 1) shall be used to identify the Master node for the 

specific node which transmits the alive message. 

EWRN field – this field (payload byte 5) shall be used to inform about the current status of the 

Error Warning Status (EWRN) flags of each bus individually. Each bit of the field represents 

each bus, where the value 1 means EWRN flag on and value 0 EWRN flag off. The EWRN 

indicates that at least one of the error counters in the EML has reached the error warning limit 

of 96. EWRN is reset, if both error counters are less than the error warning limit [Infineon'00]. 

This indication helps in the prevention of any bus failures (table 5.10). 

Table 5.10: EWRN flag field of the alive message 

Data Byte No No. Bits Limits/ Range Comments 

EWRN flag 5 4 0 – 15 Can take any value from 1 to 15 for 
4 healthy buses. 
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Weight of node – this field (payload byte 6) shall be used to inform the weight of the 

transmitting node on the network. The FT Master node takes into consideration the weight of 

every device connected on the network and uses this information in the weighted bus 

selection algorithm to choose the active bus when there is a bus failure (table 5.11). 

Table 5.11: Weight of node field of the alive message 

Data Byte No No. Bits Limits/ Range Comments 

Weight of node 6 8 0 – 255 Can take any value from 1 to 255. 

 

The minimum transmission frequency of the Alive message by each node shall be 1 Hz. In case 

there are changes on the nodes status, the node should transmit asynchronous an Alive 

message including the new status information. The Alive message must be transmitted on all 

available operational buses. If the bus is not operational then there should be no attempt to 

transmit on that bus. 

5.4 MilCAN FT Layer operation 

The main aspect of the design is the use of multiple hardware platforms and being able to 

operate on networks with FT enabled devices and FT disabled devices. Because the FT Layer 

requirements are minimal it is compatible with most CAN enabled devices. Not all the devices 

on a network are required to have the FT Layer, but it is expected for them to be able to 

communicate with each other (FT and non-FT). Although they are capable on communicating 

with each other, in a case of fault the non-FT devices will not be able to guarantee a 

continuous operation since they are missing the FT capabilities. 

The advantages that the MilCAN FT layer provides are separated in to three blocks (figure 5.2): 

bus error detection, error recovery and bus switching. The error detection and the error 

recovery are available on all devices using the MilCAN FT layer that meet the MilCAN FT 

requirements. The bus switching capability is only available on devices that are connected on 

more than one MilCAN bus that are managed by the MilCAN FT layer. As a result even devices 

that are connected to a single MilCAN bus have an advantage over the devices that do not 

have the MilCAN FT layer. 
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Figure 5.2: MilCAN FT Layer design 

5.4.1 Error detection 

The Error detection operation is based on two parts. The 1st part is located in every device that 

has the FT layer and the 2nd part is active only in the potential MilCAN FT Masters. In order for 

the Error detection of the FT layer to operate properly, these two parts need to be 

synchronised. For the synchronisation of these parts the Alive Message is used, by informing 

the potential FT Masters; the current operational status of the devices present in the network. 

The Alive Message must always be transmitted over all operational buses available. The error 

detection operation can be seen in figure 5.3. 

Detect errors on 

connected buses

Store updated 

information to 

Database

Node Database

All devices Potential FT Masters

Transmit status 

update

Receive status 

update

 

Figure 5.3: Error detection operation 
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5.4.1.1 Error monitors 

To detect errors on the connected buses, the FT layer monitors continuously the CAN 

controller and the MilCAN layer. The error detection capabilities of the CAN controller are 

based on the Error Management Logic (EML), Receive Error Counter (REC) and the Transmit 

Error Counter (TEC) of the CAN controller. When the TEC errors become more than 255 then 

the CAN controller gets in the Bus Off state, where the controller is disconnected from the bus 

and become non-operational. When this happens the FT layer immediately detects the change 

and flags the bus as non-operational and tries to resolve the problem accordingly. 

Additionally, there is the bit EWRN in the Status Register, which is set if at least one of the 

error counters equals or exceeds the error warning limit of 96. EWRN is reset, if both error 

counters are less than the error warning limit. The EWRN status is included in the Alive 

message transmitted by the FT enabled devices and helps to forecast potential bus problems. 

The Weighted Bus Selection (WBS) algorithm at the FT Master node takes the EWRN flag into 

consideration, when the FT layer is trying to resolve any faults on the bus. 

Since the communications is carried with the MilCAN protocol controlled by the MilCAN layer 

is very important the operation of the MilCAN layer to be overlooked and checked. The 

MilCAN protocol has three modes: Pre-Operational Mode, Operational Mode and System 

Configuration Mode. When a device is in Pre-Operational Mode means that a valid Sync Frame 

message is required is order for the device to resume back to normal operation. When a 

device is in Pre-Operational Mode the MilCAN FT Layer assumes that the bus is not operational 

and treats the bus as a faulty one. These information are gathered by the FT Layer which is 

responsible to act accordingly by informing the potential FT Masters with the use of the Alive 

Message. 

5.4.1.2 Node Database 

Every potential FT Master device is required to keep a database of all available nodes in the 

network. In this database the latest status update of each node is stored; to be evaluated by 

the WBS algorithm to decide the possible available solution. If the MilCAN FT node seize to 

exist/operate, the next available potential MilCAN FT node will be voted and start acting as the 

MilCAN FT Master. The new Master needs to be prepared to operate with the least possible 

delays. To achieve that the Node Database needs to be already populated with the latest 

status updates. For this reason all potential MilCAN FT Masters need to store the received 

updates. The data stored on the database, are the data received with the Alive message. 
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5.4.1.3 Failure Mode and Effect Analysis (FMEA) 

To cover any potential failures of a MilCAN network the Failure Modes and Effects Analysis 

(FMEA) table in table 5.13 was constructed. The FMEA identifies all components, failures, 

causes, and effects within a system for classification by the severity and likelihood of the 

failures [Isermann'02]. In table 5.13 are included some of the possible faults that may occur on 

a MilCAN node and bus. For every fault has specified probability of occurrence and system 

severity. Also it is specified how these faults are going to be detected, and how to recover 

them. 

Table 5.12: Mishap severity categories 

Description Category 

Catastrophic Class I 

Critical Class II 

Marginal Class III 

Negligible Class IV 

 

Table 5.13: Failure mode analysis results for general purposes 

Faults Failures 

Criticality 

Detection Recovery Probability of 
Occurrence 

Severity to 
System 

Cable broken Non responsive Medium Class I 
Alive message/ 
Isolated node 
status 

Use other bus 

Cable shorting Invalid data Medium Class I 
CAN error 
counters 

Use other bus 

Loose cable 
connection 

Invalid data/ 
Undelivered 
data 

Medium Class I 
CAN error 
counters/ Alive 
message 

Use other bus 

External 
interference 

Invalid data Medium Class II 
CAN error 
counters 

Bus speed 
change/ Use 
other bus 

Message 
corruption 

Invalid data Medium Class II 
CAN error 
counters 

Bus speed 
change/ Use 
other bus 

Power down Non responsive Low Class I Alive message Not defined 

Node 
dysfunction 

Babbling idiot Low Class I 

High frequency 
transmission 

Remote nodes 
ignore msgs 
 
Restart/ 
Shutdown 

Alive msg 
counter not 
incremented 

Watchdog 

Transceiver 
dysfunction 

Babbling idiot Low Class I 
High frequency 
transmission 

Restart/ 
Shutdown 

Application 
software bugs 

Application does 
not refresh data 

Medium Class I 
Alive msg 
counter not 
incremented 

Remote nodes 
ignore msgs 

Babbling idiot Low Class I Watchdog 
Restart/ 
Shutdown 
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5.4.2 Bus switching 

Depending the system design, if there is more than one bus available, then the Bus switching 

mechanism must be active. If there is only one bus available then only the Bus recovery 

mechanism shall be active. 

When there is problem with any of the buses, the nodes are responsible to transmit the new 

updated status to the potential FT Masters. This message should be send through all available 

MilCAN buses. The Alive message should contain the up-to-date status of the node and the 

value “0” for the active bus field. Upon reception of the Alive message only the FT Master 

should coordinate the switch, with the use of FT Master Frame. The FT Master must decide the 

next active bus according to the results from the WBS algorithm. 

Received updated 

status

Process new 

status through 

WBS

Bus different 

than current?

CMD devices to 

change bus

Continue 

operation
No

Yes

 

Figure 5.4: Bus switching - MilCAN FT Master device 

 

When the result of the WBS algorithm is different than the current active bus, then the FT 

Master node commands the FT Slave nodes to change to that bus by sending the MilCAN FT 

Master Frame. The transmission of this frame will be asynchronous over all the available buses 

and will be directly after WBS came with the new result. If there is no change on the active bus 

then there must be no asynchronous transmission of the FT Master Frame. The FT Master 

Frame is periodic during normal operation, to prevent any synchronisation issues that may 

arise between the devices during the switching operation. It also prevents any devices that 
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powered on or reset to start using the correct bus. The operation of the FT Master device can 

be seen in figure 5.4. 

When a FT Slave device receives the command (FT Master Frame), it switches to the new bus if 

different from the current one. The switch must be immediate if the suggested bus is 

operational, otherwise it should remain to the previous bus if operational. By doing so, in case 

the bus is split, the device will be able to reach a smaller number of devices instead of none. 

The operation of FT Slave devices can be seen in figure 5.5. 
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operation
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Bus 
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Yes

Yes

No

 

Figure 5.5: Bus switching - MilCAN FT Slave device 

 

5.4.2.1 Weighted Bus Selection (WBS) algorithm 

When according to the predefined conditions there is a need to change the active bus then the 

weighted bus selection algorithm determines which bus will be the next active. This selection 

follows the conditions at this specific order (figure 5.6): 

1. Importance of nodes connected on the bus (weight of node). 

2. Level of errors on the bus (EWRN). 

3. Operating speed of the bus. 

At any given time all the potential FT Master nodes are responsible to be aware of the above 

information. 
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Figure 5.6: Weighted Bus Selection 

 

1. The importance of the nodes is defined by the system designer by assigning different 

weight values to every node, with the highest value to represent the highest priority. 

In case of emergency and with no fully operational buses available to the majority of 

the nodes, the bus with the highest score will be selected. The system will continue its 

operation with that till another bus is detected / recovered, where the weighted bus 

selection algorithm will determine if the active bus should change. 
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2. The level of errors of the future active bus must be low in order to assure that there 

are less chances of the bus under heavy load to become faulty. The EWRN flag indicate 

if there will be a rise of errors on the bus, which will help the WBS to choose a more 

suitable bus. 

3. The system designer may choose the secondary buses to operate on different bus 

speeds or to have variable bus speeds which will change during the recovery process. 

Higher priority is given to the buses with higher operational speed and lower error 

level. 

5.4.3 Error recovery 

When a bus becomes non-operational, the FT layer tries to recover it back to fully operation by 

initiating the bus recovery mechanism. During this process the following procedure should be 

followed. 

1. Disable MilCAN on that bus. 

2. Enable MilCAN on that bus. 

3. Inject test frames on the bus and expect response from the FT Master. (ping-pong) 

4. Monitor error level on the bus. 

To follow the above procedure and archive an operational bus that will be capable on working 

properly at any conditions, the error recovery mechanism is broken down to three 

mechanisms. In case more than one bus needs to be recovered then the Bus recovery 

mechanism will operate on all the faulty buses at the same time. The operation of the error 

recovery can be found in figure 5.7. 

5.4.3.1 Bus restart 

When the number of errors in the Transmit error counter becomes higher than 255 then the 

CAN controller goes to a Bus off state where is completely disconnected from the bus. To get 

the CAN controller back to the Error active state, it needs to be restarted. The MilCAN FT layer 

is controlling this operation to revert the bus back to operational mode. To restart the CAN 

controller, it restarts MilCAN for the specific bus by deactivating it and activating back again. 

During this procedure the MilCAN bus is reinitialised. Between the deactivation and activation 

the operational speed of MilCAN may change according to the bus speed change part of the 

Error recovery algorithm. It is suggested that the time delay between the deactivation and 

activation should be 200ms, but it is up to the system designer to decide any other more 

appropriate value for a specific system. 
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Figure 5.7: Error recovery block 

5.4.3.2 Bus speed change 

When the bus is not recoverable then the bus recovery mechanism could try to drop the 

operational speed of the bus. When the bus is operates under lower speed it becomes less 

sensitive on external interferences as a result the bus can become operational again by 
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working at lower bus speeds. Every three restart attempts the bus should drop speed. This is 

up to the system designer, depending the operation of the system. 

It is very important to have a synchronised operation between all the nodes connected to the 

bus. All the nodes connected to the specific bus need to change to the same operating speed. 

When a node is operating on different bus speed then it will introduce error frames on the 

bus. To avoid this, the FT Master is responsible to transmit the speed change command to all 

the connected nodes. The transmissions should happen through all available healthy buses 

with the use of the FT Master Frame. To avoid any missed transmissions, the message needs to 

be transmitted three consecutive times. This covers the case that the nodes that are 

connected to the faulty bus have at least one other fully operational bus that will receive the 

command messages from. 

In the case that the node is not connected to any other healthy bus or is operating on a single 

bus, the bus speed must not be changed. If the devices start rotating to the available operating 

speeds, they will get unsynchronised and impossible to find a common operational speed 

between all of them. It is suggested for some configurations the system designer must 

configure one bus always to operate at a low constant speed to be used as a backup bus and 

for the FT Master Frames to be transmitted from. 

5.4.3.3 Scheduling 

In order to recover the bus back to operational mode the CAN speed may change, so the bus 

becomes less sensitive. However, this could affect the scheduling of the application, because 

at lower speeds the MilCAN cycle becomes longer and the messages that are synchronous and 

assigned to specific slots will be transmitted with delays since MilCAN messages are scheduled 

according the sync frame. If there is going to be a bus speed change then the schedule should 

change also to ensure real time communication. To overcome this problem there are various 

options and is up to the developer to choose which one fits him better. The system designer 

has three options to follow in case of bus speed drop: 

 Use different schedules for every given CAN speed hardcoded. 

 Remain with the same schedule as in normal operation speeds. 

 Increase the frequency of HRT MilCAN frames and drop the frequency of the SRT 

MilCAN Frames. 

 Increase the frequency of HRT MilCAN frames and drop completely the transmission of 

the SRT MilCAN frames. 
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This way there will be bandwidth available for the higher priority messages. If the operation of 

a node is not so important, it can stop transmitting messages completely. Any kind of solution 

adopted has to make sure that the limit of the bandwidth of the bus is not exceeded. There is a 

solution for every operational condition. 

5.5 Babbling idiot 

In a distributed hard real-time system based on a broadcast bus for inter-node communication 

it is important to prevent a single faulty node from monopolizing the communication bus. In a 

time-triggered system, in which messages are broadcasted according to a pre-determined 

transmission pattern, this kind of failure is characterized by the faulty node transmitting 

messages at arbitrary points in time thus corrupting the transmissions on the bus. This type of 

failure is known as the babbling idiot failure [Temple'98]. 

The use of a bus guardian added to each node to protect the communication bus from the 

babbling idiot failure, is usually used by safety critical networks. Since the MilCAN FT Layer is a 

software solution, the proposed solution has to be software based. The regular transmission 

pattern of a time-triggered system is exploited in order to enforce a fail-silent behaviour of the 

node in the time domain. Using fail-silent nodes greatly reduces the complexity of designing 

distributed fault-tolerant systems. 

A node is considered to be fail-silent if it exhibits the following behaviour [Temple'98]: 

 The node sends correct messages at specified points in time, that can be verified as 

being correct by all non-faulty receivers. 

 The node sends corrupt messages at specified points in time, that can be identified as 

being corrupt by all non-faulty receivers. These messages are discarded. 

 The node sends no messages at all. 

5.5.1 Message filtering 

By using a message filtering system, devices that start acting as babbling idiots are tried to be 

recovered and if that fails then it will stop any communication through MilCAN. To manage 

that, each node has a list of the transmitted messages on the system and their transmission 

frequency. When the frequency of received messages is higher than the expected one, the 

transmitting node is treated as a Babbling Idiot (BI). When the received message is not 

included in the list, its frequency has to be less than the default one assigned by the system 

designer. When a babbling idiot is detected by a node, it is reported on all healthy buses by 

that node using the FT BI report message. The FT master then collects the reports from the 
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nodes and analyses them. According to this information it determines if the problem is on the 

originator of the messages or in the node that reported the error. The node is then warned by 

the FT Master by transmitting the FT BI warning message and will try to recover by itself by 

running a recovery routine. The recovery routine is custom for every node and assigned by the 

system designer. When the node is still not operating properly after being warned for a 

specific number of times, the FT Master transmits the FT BI hard-reset message. If even after 

the hard-reset command the node is not operating properly, then the FT Master transmits the 

FT BI hard-kill message. When a node receives the hard-kill command, it should manually 

shutoff MilCAN, interrupts and the application. Also as an extra safety measure any messages 

received from a babbling idiot node, must not been forwarded to the application layer. 

5.5.2 FT BI report 

The FT BI report is transmitted by any node, to all operational buses. The FT Master node 

collects these reports and after analysing them, determines which node is the Babbling Idiot. 

Table 5.14: FT BI report 

Header Payload 

Msg ID 0 1 

0x0094 Node ID BI node ID 

 

BI node ID Field – this field (payload byte 1) shall be used to identify the babbling idiot node. 

Table 5.15: Master ID field of the FT Master frame 

Data Byte No No. Bits Limits/ Range Comments 

BI node ID 1 8 0x01 – 0xFF Can take any value from 0x01 to 
0xFF as MilCAN node ID restriction 
apply. 

 

5.5.3 FT BI warning 

The FT BI warning is transmitted by the FT Master node only, to all operational buses. When a 

node with matching BI node ID receives this message, executes the recovery routine that has 

been assigned by the system designer. 

Table 5.16: FT BI warning 

Header Payload 

Msg ID 0 1 

0x0091 Master ID BI node ID 
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5.5.4 FT BI hard-reset 

The FT BI hard-reset is transmitted by the FT Master node only, to all operational buses. When 

a node with matching BI node ID receives this message, should reset itself.  

Table 5.17: FT BI hard-reset 

Header Payload 

Msg ID 0 1 

0x0092 Master ID BI node ID 

 

5.5.5 FT BI hard-kill 

The FT BI hard-kill is transmitted by the FT Master node only, to all operational buses. When a 

node with matching BI node ID receives this message, should manually shutoff MilCAN, 

interrupts and the application. 

Table 5.18: FT BI hard-kill 

Header Payload 

Msg ID 0 1 

0x0093 Master ID BI node ID 

 

5.5.6 Watchdog 

The microcontroller’s watchdog is responsible to reassure a continuous error free operation of 

the controller. The watchdog is used to detect any application malfunctions during the 

operation of the node. The use of the watchdog is suggested but it is up to the system designer 

to decide. The FT layer is responsible to reset the watchdog during its operation on predefined 

intervals. If it fails to do so, the watchdog will reset the hardware of the microcontroller. When 

a hard-kill command is received by the node, the watchdog has to be disabled. By using the 

watchdog, the possibility that the device does not receive any MilCAN messages in order to be 

controlled by the FT Master is eliminated. 

5.6 Conclusion 

Within this chapter the overall design of the MilCAN Fault Tolerance Layer is discussed from 

the theoretical and conceptual perspective. There is a detailed explanation of the FT layer 

design, and how it operates. It also includes the MilCAN FT Layer vital components which are 

the communication messages used between MilCAN FT devices. The operation of the layer is 

analysed as whole and broken down to block responsible for different parts of the FT 

operation. Last is discussed how to solve the Babbling Idiot problem without the aid of 

hardware support. 
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The development of a FT layer located between the Application layer and the MilCAN layer is a 

key contribution to the development of the High Availability MilCAN. This standardisation 

expands the use of Multiple MilCAN buses seamlessly without affecting the application layer. 

Furthermore, an expansion is introduced to the MilCAN protocol allowing the communication 

between the FT layers of all connected devices. The MilCAN FT layer operation mechanisms 

are presented separately, task dependant. These mechanisms are compatible with devices 

managing one or more MilCAN buses and can coexist with non FT devices. Additionally a 

software solution has been presented, how to resolve babbling idiot problems without the use 

of extra hardware. This solution has introduced an additional set of instructions that are used 

for the communication of the devices to resolve babbling idiot issues. 
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Chapter 6 Testbed for vetronics evaluation and verification 

6.1 Introduction 

This chapter the development testbed and VSI testbed are introduced. The High Availability 

MilCAN is tested and evaluated on two different testbeds. The components compromising the 

complete systems are listed and investigated, to clearly identify the capabilities of the 

platforms along with its current status and operations. 

The High Availability MilCAN has been developed and evaluated using the testbeds, starting 

from its initial construction phase following to the current setup. As a core part of the testbed, 

the High Availability MilCAN is benchmarked with the operational conditions that are within 

the limits of the testbeds to be simulated. The individual systems that are part of the testbed 

add to the overall “complexity” of the model created, upon which the testing vectors are 

applied. 

The measurements gathered for the performance are based on various traffic scenarios that 

are programmed to the system to show the response of the High Availability MilCAN operation 

in term of message latencies. The operation of the MilCAN Fault Tolerance has been evaluated 

based on various fault scenarios that were introduced in to the system to show the reaction of 

the MilCAN High Availability. 

6.2 Development testbed layout and components 

The development testbed is a single MilCAN segment connected to two desktop computers. It 

provides a controlled environment appropriate to be used during the development and later 

to verify the operation of the system. The testbed is constructed by using of the self 

equipment. 

6.2.1 Hardware devices 

The testbed includes devices that can be categorised as embedded systems and computer 

systems. The embedded systems are four microcontrollers and the computer systems are two 

workstation PCs. 

Table 6.1: Infineon C167CS specifications 

Family Siemens C166 

Arch 16bit RISC 

Core speed 20MHz 

FLASH 128kb 

RAM 64kb 

Features Dual CAN (onchip) 
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The embedded development boards are phyCORE167 platforms bearing the Infineon C167CS 

processor (C167CS, table 6.1). The computer platforms consist primarily of commercial 

workstations, their specifications range from low-profile embedded systems to high- end 

systems (table 6.2). 

Table 6.2: Computer systems specifications 

Operation CANoe Data login 

Family i386 

Arch 32bit 64bit 

CPU Pentium 4 Quad Core 2 

FPU Yes 

Core(s) speed 1.70GHz 2.40GHz 

Memory 1GB 4GB 

Memory speed 133MHz 333MHz 

Flash N/A 

Network 10/100Mbit-FDX Ethernet 

 

The CANoe computer is connected straight on the two CAN buses with a CANcardXL (CAN 

card). Its purpose is to collect data from the two CAN buses and display them. The Data login 

computer is connected straight on the microcontrollers with the serial RS-232 interface. The 

microcontrollers export vital operational information through the serial port and the Data 

login computer collects and display them. The configuration and layout can been seen on 

figure 6.1. The Data login computer is also connected on the two CAN buses with a 

CANstressDR in order to introduce problem and errors on the buses. 

CAN0

CAN1

Node 1 Node 2 Node 3 Node 4

CANoeCANstressDR
 

Figure 6.1: Development testbed topology 
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6.3 VSI testbed components and layout 

The Vetronics Research Centre (VRC) prepared a testbed that is a platform that evaluates 

vetronic and embedded networks. It is being used to develop, test and demonstrate current 

and future technologies. The testbed accommodates three different segments Automotive, 

Utilities and Multimedia which are based on MilCAN. The three segments are interconnected 

through MilCAN and Ethernet using the VSI Bridge which is configured through the VSI GUI. For 

the VSI testbed custom software and hardware has been developed, except the large number 

of off-the-shelf hardware that has been used.  

6.3.1 Hardware devices and components 

The testbed includes devices that can be categorised as embedded systems and computer 

systems. For demonstration purposes a remote controlled vehicle which is connected 

wirelessly to the testbed is developed and built. A large number of the hardware components 

are off-the-self, but also specialised hardware has been developed by the VRC for the VSI 

Bridge. 

6.3.1.1 Embedded systems 

The embedded development boards are the phyCORE167 platforms bearing the Infineon 

C167CS processor (C167CS, table 6.1). The devices are modified to support in-cable power 

provided by the MilCAN bus. The modification provides DC-DC voltage regulation and filtering. 

The two nodes attached to the VSI Bridges are based on the C167CS-USB. 

6.3.1.2 Computer systems 

The computer systems used for the testbed, consist primary of of-the-self workstations and 

the specification range from low to high end systems as can be seen in table 6.3. The BRG-

E100LX and BRG-ITX are connected to the C167CS-USB and are responsible to interconnect the 

MilCAN segments and the backbone. These computers are running instances of the VSI Bridge 

which is remotely configured by the VSI GUI. The Crew station is an industrial computer 

equipped with a touch-screen display. Also two additional displays are attached to the 

computer. It is used to display the VSI GUI and video stream coming from the Video server. The 

Video server is a computer responsible in capturing, encoding and serving the two stream 

input videos. The two sources are a USB webcam with pan and tilt capabilities and a S-Video 

input. The video are encoded and streamed to the clients. 
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Table 6.3: Computer systems specifications 

Operation BRG-E100LX BRG-ITX Crew station Video server 

Family CRIS i386 

Arch 32bit 

CPU 100LX C3 Nemiah Athlon XP Pentium 4 

FPU No Yes  

Core(s) speed 100MHz 1GHz 1.47GHz 1.8GHz 

Memory 32MB 128MB 256MB 256MB 

Memory speed 50MHz 133MHz 133MHz 133MHz 

Flash 8MB N/A 

Network 10/100Mbit-FDX Ethernet 

 

6.3.1.3 Remote controlled vehicle 

For the visual demonstration of the testbed a remote controlled vehicle controlled via motor 

controllers through an on-board C167CS was constructed. The C167CS is connected through a 

RF link to a node in the testbed which is responsible to transmit the control commands. The 

control commands generated from the testbed are transmitted to the remote controlled 

vehicle. An on board camera with pan and tilt functionalities is transmitting the video to the 

video server which is transmitted to the crew station. Since the remote controlled vehicle is 

battery powered, it can be completely independent and remotely controlled. It can move 

forward, backwards and turn left and right. All these controls are transmitted from the 

steering wheel and pedals devices on the testbed. Additionally the camera movement is 

controlled by the joystick controller attached on the steering wheel. In case of signal loss the 

vehicle halts and waits for the next valid command. 

 

Figure 6.2: Remote controlled vehicle 
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6.3.1.4 Cabling 

For the physical MilCAN network connections a coaxial cable with five wires is used. One pair is 

used by CAN data lines, one pair for power, and a separate cable for earth grounding. 

Following the MilCAN specifications the two pairs, data and power are individually shielded 

and with an overall shield for the whole cable. The connectors used are manufactured for 

DeviceNet applications, which is a CAN based protocol. To connect the segments to the 

backbone T-piece connectors are used, and for the nodes in the segments drop-boxes which 

are connected only by power to the backbone. The nodes are connected to the drop boxes 

through custom cables that convert the DeviceNet screw terminal to a DB9 plug. 

6.3.2 Network layout 

The VSI testbed has three MilCAN segments grouping the MilCAN devices according their 

functionality as can be seen in figure 6.3. The three segments are: 

 Utilities segment (SEG-U) 

 Automotive segment (SEG-A) 

 Multimedia segment (SEG-M) 

RF (C)

Camera

RF (C)

RF (A)

RF (A)

RF (D)
RF (D)

USB

Accelerometer

USB

Steering wheel

Pedals

USB

Camera controll

etheth

eth
eth

eth eth

Switch

Etrax

Router

Laptop

Router
Etrax

Router

eth
USB

Video

Encoder
Switch

Laptop

VSI-GUI / CANoe

eth
Switch

Bridge Bridge C167

Lights

Engine

Wheels

Automotive

Vehicle RF

GPS receiver

Accelerometer

Power monitor

Utilities Multimedia  

Figure 6.3: VSI testbed layout 

All segments are connected to the MilCAN backbone to provide power to the segments with a 

power only connection bit the CAN bus lines are not connected. SEG-U and SEG-A are 

connected to the MilCAN and Ethernet backbone with the use of VSI Bridges. SEG-M is only 
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connected to the MilCAN backbone through a node acting as a MilCAN-to-MilCAN cut-through 

bridge. 

6.3.2.1 Utilities segment 

Electronic devices that are not related to the motion or control of the vehicle are placed in the 

Utilities segment. The nodes included in the Utilities segment are: 

 Power monitor 

 GPS 

 Accelerometer 

 Vehicle RF 

The Power monitor node is responsible to measure the amount of power being drawn by the 

MilCAN devices by using an external current transducer. It is important for vehicle systems to 

be able to measure the current consumption since electronics may drain the battery of the 

vehicle. 

The GPS node gets the exact coordinates from the GPS receiver which is connected through 

serial interface to the node. The protocol that has been used for the communication with the 

device is NMEA. 

The Accelerometer monitors vibration and acceleration off the vehicle, a scheme that allows 

the prediction of possible mechanical failures due to the extreme operating conditions. The 

accelerometer and the power monitor node are responsible for the internal monitoring of the 

vehicle. 

The Vehicle RF node acts as a link with the remote controlled vehicle which is used to 

demonstrate the operation of the vehicle network. The node receives the control messages 

from the steering wheel, and pedals nodes and retransmits them to the remote controlled 

vehicle. The vehicle transmits to the testbed accelerometer readings taken by the remote 

controlled vehicle sensors. The communication is established by the use of a custom 

bidirectional communication protocol through digital RF transceivers. This protocol is 

bidirectional allowing the control of the vehicle but also the collection of data from the on-

board sensors on the vehicle. 

6.3.2.2 Automotive segment 

Devices that are directly related with the movement of the vehicle are placed in the 

Automotive segment. The nodes included in the Automotive segment are: 
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 Wheels 

 Lights 

 Engine 

 Steering wheel 

 Pedals 

The Wheels and Lights are demonstrated by virtual means (LEDs) which show the status of the 

nodes. The Wheels node represent the wheel movement of the vehicle is displayed with the 

use of a row of LEDs that indicate the current wheel position. The Lights node shows the state 

of the head lights, break lights and indicators by turning the representing LEDs ON/OFF. 

The Engine node represents the throttle control on the engine. For demonstration purposes 

the node is connected to an external speaker where the output sound changes according to 

the throttle position and gear selected. Low revolutions are represented with a low frequency 

output, where high revolutions are represented with a high frequency. 

The Steering wheel and the Pedals are essential for controlling the vehicle. The nodes are 

connected to external pedals and a steering wheel. The steering wheel also includes a set of 

buttons, joysticks and flaps. The buttons are used to control the lights on the vehicle; the 

joysticks control the camera movement on the remote vehicle and the webcam located on the 

testbed. The flaps control the gears as can been seen in semi-automatic vehicles. 

6.3.2.3 Multimedia segment 

Devices that are oriented towards the control of audio and visual applications are placed in the 

multimedia segment. The nodes included in the Multimedia segment are: 

 Camera control 

 Dot Matrix Display 

The Camera control node is connected to the web camera and can give the commands to 

move the camera up/down and left/right.  The commands are received from the steering 

wheel and are relayed to the webcam through a serial link. 

The Dot Matrix Display node is connected to a Dot Matrix monochrome display unit. This 

displays status information from the sub-systems of the testbed such as GPS coordinates, 

pedals status, engine status, steering wheel direction and power consumption of the system. 
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6.3.2.4 Backbones 

The three segments in the testbed intercommunicate through two backbone networks which 

are a MilCAN bus and a high-speed (100Mbit) full-duplex switched Ethernet. The MilCAN 

network offers deterministic operation and the Ethernet offers high-speed networking. The 

MilCAN backbone operates to speeds up to 1Mbit and it is terminated in both ends without 

reaching the maximum length of 40 meters. The operational speed for the Ethernet backbone 

is 100Mbit. The centre of the Ethernet backbone is a full-duplex Ethernet switch where a 

number of devices are connected to it such as VSI Bridges, crew station, video server and a 

WiFi access point. [Charchalakis'03] 

6.4 Software 

Both the development and VSI testbeds required some extra custom or commercial software 

to be used during the evaluation and measurement period. To analyse the testbed operation 

CANoe from Vector is used and to introduce faults and disturbances CANstress also from 

Vector is used. To analyse the log file output taken from CANoe and determine message 

latencies a custom software written in C++ is developed. In order to evaluate the testbed 

operation a real time monitoring system is developed. This system consists of three parts, the 

status transmission system located in the devices with the Fault Tolerant layer, the raw status 

collector located in the Data login computer and the status GUI used to display the status of 

the connected devices with the help of a GUI. 

6.4.1 CANoe 

CANoe is an all-round tool for the development, testing and analysis of entire networks. It 

supports the user during the entire development process; from planning to start-up of entire 

distributed systems. CANoe’s versatile functions and configuration options are used by 

network designers, development engineers and test engineers at OEMs and suppliers. The 

CANoe user can test and analyse the multi-bus communication and complete systems at the 

development work place, during the system integration as well as in the vehicle. By using 

hardware data logger during test drives, the logged bus traffic can be evaluated with all CANoe 

functions at a later date [Vector'06a]. 

CANoe was used all the way through the development and measurement stages and it was of 

great aid. As can be seen in figure 6.4 CANoe is capturing the raw CAN data transmitted on the 

two buses. While capturing the columns that are of interest are the Time, Chn, ID, Name, DLC 

and Data. 
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Figure 6.4: CANoe User Interface 

Time - What will be displayed in the Time column is configurable between two choices the 

time passed since the beginning of the capturing and the time passed since the last message 

received with the same ID.  

Chn - Represents the channel number of the CANoe probe. As can be seen in figure 6.4 there 

are messages received on channel 1 and 2. 

ID - Since CANoe is not support MilCAN specifically, the displayed information are treated as 

CAN data. In the ID field can be seen the whole header of the MilCAN frame where the priority, 

primary ID, secondary ID and other MilCAN header information are included.  

Name – In CANoe you are allowed to assign names on predefined messages and process the 

real-time data received according to your configuration. Figure 6.5 shows the FT_Master_5 

message where individual message characteristics are analysed and presented in an easier 

understandable format. As is shown in the figure the CAN0_speed is 1000 which is being 

derived from the data of the message. 
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Figure 6.5: CANoe message defining 

DLC – The DLC column shows how many bytes are transmitted in the payload of the specific 

message. 

Data – In the data column the actual data that are being received and are shown separated in 

byte sizes. 

Except capturing data from the CAN buses CANoe has the ability to inject data to the bus. The 

triggering for the injection can vary; the one used during testing was with the press of a 

button. Different messages were assigned to different buttons on the computer keyboard. 

These messages where used to operate the testing firmware when collecting performance 

measurements. 

6.4.2 CANoe Log analyser 

While capturing data with CANoe, the collected data except being displayed real-time, they 

can be also saved in a file in a space separated format. When measuring the performance of 

the High Availability MilCAN, the latencies of messages being transmitted and received were 

measured. To be able to have as accurate results as possible, thousands of messages were 

captured by the two probes of CANoe. In order to be able to find the time difference between 

thousands of transmitted and received messages, a custom software that was able to read the 

CANoe file format, identify the messages and calculate the time difference was required. 

This software is programmed with the C++ programming language and does not have a GUI. 

The input will accept a CANoe log file and the output will be a file with the calculated results. 

While creating the software, it was realised that C++ is not the most appropriate language for 

mathematical calculations with numbers that have many decimal places. For that reason, 

decimal numbers have been multiplied with 10.000 to convert it to an integer number. This 

way the calculations that follow provide an accurate output that is not affected by the C++ 

decimal issues. 

6.4.3 CANstress 

CAN networks are highly tolerant in respect of disturbances of the bus communication and 

failures. In order to test whether a system is behaving properly in case of disturbances or 
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failures, a device used to disturb the CAN bus, its physical properties and the logical levels 

(recessive and/or dominant) in a targeted, reproducible way. CANstress is a standalone 

hardware module that is inserted directly onto the CAN bus. It contains various triggering 

conditions and disturbance logics.[Vector'06b] 

 

Figure 6.6: CANstress device 

 

Figure 6.7: CANstress configuration software 

In figure 6.6 the actual CANstress device is shown, it has a USB connector that is then 

connected to the computer. On the computer using the CANstress configuration software 

(figure 6.7) the user is capable to configure the CANstress device to introduce specific 
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disturbances and when to be triggered. There is a wide range of faults that can be generated 

with the device, which proves very helpful in order to test the MilCAN Fault Tolerant Layer for 

various scenarios and cases. 

6.4.4 Real-time monitoring system 

During the development period of the High Availability MilCAN it was vital to have a real-time 

monitoring / debugging system. The compilers that were used to develop the software for the 

devices provide such functionality, but with serious performance and compatibility issues. 

Because of that, a custom high efficiency real-time monitoring system is developed. The goal 

of this system was to transmit through the serial port data in real time. Also it has the option 

to store these data temporary in memory and when requested to transmit all of them in a 

burst. The first option is used while debugging and the second when collecting performance 

statistics for better accuracy. This system consist three custom software; the first is located in 

the actual MilCAN Fault Tolerant layer, the second and third is located in the Data login 

computer. 

6.4.4.1 Status transmission 

The status transmission system is located in the MilCAN FT Layer. On every crucial operation or 

decision of the FT layer, the status of every important parameter inside the firmware is 

transmitted or saved in the RAM of the device depending the current configuration. The goal is 

to use the minimum amount of data and processing power as possible when the data are 

transmitted over the serial port to the computer. This is achieved by transmitting as less as 

possible and not to convert the actual data values to the ASCII format. The conversion is done 

on the computer side were the performance is not an issue. As a result HyperTerminal and 

other similar software are not capable to capture the incoming data to the computer correctly. 

For this reason a modified version of a serial terminal program is used. 

Additionally in the status transmission system there is also included a performance capturing 

system, which is used when capturing performance measurements. The performance of the 

various operations is captured by creating internal performance counters, which are capable to 

measure various internal operations very accurately. There are four commands for these 

counters: enable, disable, reset and print. To use these commands in real-time, the node has 

to receive a predefined CAN message. For this operation CANoe is being used by having each 

of these messages assigned to be triggered on specific key presses. The enable command 

enables the performance counters, the disable command disables the counters, the reset 

command resets the counters to zero and the print command sends the captured time 

measurements to the Serialterm. The reset command helps to synchronise the performance 
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counters across all the connected nodes, where the high priority of the command reassures 

that it is processed immediately by the node. 

6.4.4.2 Serialterm mod 

On the Data login computer a modified version of the open source software Serialterm is used. 

Serialterm is a program developed by Albrecht Schmidt of Lancaster University. It is a 

command line tool that was developed for debugging microcontroller hardware that is 

connected to the PC via serial line. The program reads characters from the keyboard and sends 

them to the selected com-port. At the same time it reads characters from the serial port and 

displays them on the screen in ASCII, decimal or hexadecimal style. For this software to be 

used in the current system, some modifications had to be made. The program had to be 

modified to be able to receive messages from the status transmission system on the devices. 

Another modification that had to be made was to add the capability for inter-process 

communication, in order to communicate with the Status GUI. 

 

Figure 6.8: Serialterm mod 

In figure 6.8 the Serialterm mod window is shown displaying raw status data from the node. A 

new line is added periodically and every time an important action is taken. Some of these 
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information are collected and send to the Status GUI which then displays the information in a 

more user friendly format. 

6.4.4.3 Status GUI 

The status GUI shows the most important status information for every node on the 

development testbed. The information on the GUI, are received in real time from the 

Serialterm mod and also displayed real time. 

 

Figure 6.9: Status GUI 

In figure 6.9 the status GUI is displayed. The GUI area is separated in 4 parts that each 

represents a node. The application shows; which is the active bus and idle bus, the bus status 

of both buses for each node. It also displays if the node is the FT Master node. The 

concentrated easy to read information are very important during the development and 

demonstration of the system allowing the user to have a quick understanding of the status of 

the system. 

6.5 MilCAN Reconfiguration performance 

The MilCAN Reconfiguration has been tested on the VSI testbed to verify the correct operation 

of the added capabilities and to check if the performance of the devices has been affected. To 
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verify the operation of the Reconfiguration, all the functions are tested and verified, by 

following step by step all the procedures and checking for errors. Since the reconfiguration is 

not happening during operational mode but in reconfiguration mode, the performance is not 

important. Performance is important for the operation of the devices that have the 

reconfiguration capabilities since there are added functions in all the devices and the firmware 

has been modified by the bootloader, the performance and operation of the devices may have 

been affected. 

To test the reconfiguration capabilities, the devices need to go to configuration mode and then 

enter the bootloader mode. Since this operation is not meant to happen during operation 

mode, but during maintenance all the devices enter the configuration mode. From the VSI GUI 

the targeted device enters the bootloader mode. When it enters the bootloader the status and 

version is been checked successfully. The status indicates that the targeted node is in 

configuration mode and in bootloader mode. After that the message configuration, node ID 

and speed change procedure has been verified successfully according to the response was 

received from the device. After the completion of all procedures the node was commanded to 

change back to the application and operational mode. The device then was operating how it 

was expected according to the new changes. The above procedures were always successful. 

The flashing of the application firmware was not tested because the VSI GUI was never fully 

implemented for this operation, although the devices were programmed to support that. 

For the evaluation of the performance of the VSI testbed with MilCAN Reconfiguration; various 

configuration scenarios are followed using part of the testbed. These scenarios include 

different combination of the MilCAN backbone speeds (250kbit, 500kbit and 1000kbit), MilCAN 

segments speeds (250kbit, 500kbit and 1000kbit), routing configurations (MilCAN backbone, 

Ethernet backbone and MilCAN backbone for hard real-time (HRT) & Ethernet backbone for 

soft real-time (SRT)/ non real-time (NRT)) with different priority distributions (high HRT & low 

SRT/NRT and low HRT & high SRT/NRT). 

The message set of the nodes at the VSI testbed consist of synchronous messages which are 

transmitted by the nodes with the aim to simulate a drive-by-wire system. These messages, 

transmitted by each node, are relevant with the operation assigned to them and as a result 

some are active and some are passive, depending on the circumstances. The role of the active 

nodes is to transmit and sometimes to receive messages whereas the passive ones only 

receive. Apart from the messages that are defined by the message set there are also SYNC 

Frames that assist the synchronisation of the MilCAN. Moreover, the alive messages which are 
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transmitted from all the active nodes that are connected to the bus. Such messages are 

transmitted with a frequency of 512 sync frames and depending if the bus speed is 1000mbit, 

500mbit or 250mbit they have a period of 1.024s, 2.048s or 4.096s respectively. 

For simplicity purposes the test layout used for the results presented here is based on two 

MilCAN segments; the utilities and the automotive segments (figure 6.10). The above 

mentioned segments are interconnected through a MilCAN and an Ethernet backbone via two 

gateways. Two VSI Bridges have been used as gateways. The application of routing rules to the 

VSI Bridges leads to the different routing. 
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Figure 6.10: Testbed layout 

6.5.1 Utilities segment (SEGU) 

The utilities segment includes four nodes three of which are active and one passive. The active 

ones are the GPS node, power management node and the sensor node whereas the passive 

node is the RF master node. The message set for the active nodes of the utilities segment is 

demonstrated in table 6.4. Three different frequency configurations exist: a) the normal, b) the 

high HRT low SRT/NRT, and c) the low HRT high SRT/NRT. The normal is being used during the 
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normal operation of the testbed. Contrarily, the high HRT low SRT/NRT and low HRT high 

SRT/NRT are for testing scenarios. By modifying the generation frequency of synchronous 

messages, different traffic profiles are achieved. The period indicated on the tables bellow is 

the slot period of MilCAN. 

Table 6.4: Utilities segment message set 

     Normal 
High HRT, 
low SRT 

Low HRT, 
high SRT 

Tag ID Prio Payload Description Period (Slots) 

MUGPS1 0x5501 HRT1 8 GPS Position 256 128 512 

MUGPS2 0x5502 HRT1 4 GPS Time 256 128 512 

MUGPS3 0x5503 HRT1 2 GPS Satellites 256 128 512 

MUPWR1 0x5030 SRT1 3 Power load 50 100 25 

MUSNS1 0x5936 SRT1 3 X/Y Acceleration 5 10 3 

MUSNS2 0x5938 SRT1 3 Vibration 5 10 3 

 

6.5.2 Automotive segment (SEGA) 

In the automotive segment consists of five nodes, namely the steering wheel, the pedals, the 

engine, the wheels and the lights which are all active apart from the lights. The message set for 

the automotive segment is presented in table 6.5. In accordance with the utilities segment, 

again, three different frequency configurations exist: a) the normal, b) the high HRT low 

SRT/NRT, and c) the low HRT high SRT/NRT. 

Table 6.5: Automotive segment message set 

     Normal 
High HRT, 
low SRT 

Low HRT, 
high SRT 

Tag ID Prio Payload Description Period (Slots) 

MAPED1 0x3e30 HRT2 2 Brake 5 3 10 

MAPED2 0x3e32 HRT2 2 Throttle 5 3 10 

MAPED3 0x5e30 SRT2 2 Brake light 25 50 12 

MASTR1 0x3e34 HRT2 2 Steering wheel position 10 5 20 

MASTR2 0x3e36 HRT3 2 Gear 10 5 20 

MASTR3 0x5830 SRT1 2 Flaps Position 50 100 25 

MASTR4 0x5832 SRT1 2 Joystick #2 movement 50 100 25 

MASTR5 0x5834 SRT1 2 Joystick #1 movement 50 100 25 

MASTR6 0x4430 HRT3 2 Engine status 25 12 50 

MAWHE1 0xd220 HRT2 3 Tracks/Tires status 50 25 100 

MAWHE2 0xd221 HRT2 3 Tracks/Tires RPM 20 10 40 

MAENG1 0xf020 HRT2 2 Engine RPM 10 5 20 

MAENG2 0xf021 HRT2 2 Engine temperature 30 15 60 

MAENG3 0xf022 HRT3 3 Engine status 30 15 60 
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6.5.3 Testbed measurements 

With the help of CANoe, the traffic dump is collected which later are processed by CANoe Log 

analyser. Additionally, with the aid of VSI GUI the data was collected from the VSI Bridge. The 

measurements were approximately 20s long with a 100ms sampling period because of 

hardware restrictions. 

There are six different traffic profiles for every segment and these profiles are the result of a 

combination of three different MilCAN bus speeds with two different priority distributions. No 

routing was enabled between the two segments. The characteristics of two of these traffic 

profiles are presented on table 6.6 till table 6.13. These tables show the periodicity of each 

individual synchronous MilCAN message transmitted on the bus, including the Sync Frame and 

Alive messages along with the application messages. The average values are shown to be 

according the frequency configurations of the message sets for the two traffic setups.  

 

Table 6.6: Automotive MilCAN bus 1000kbit, high HRT low SRT/NRT 

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms) 

MAPED1 0x3e30 6.0974 0.30998 3.45 12.16 

MAPED2 0x3e32 6.0974 0.44371 3.18 12.16 

MAPED3 0x5e30 104.9 14.454 98.24 202.95 

MASTR1 0x3e34 10.191 0.64042 8.33 20.3 

MASTR2 0x3e36 10.191 0.68979 7.93 20.55 

MASTR3 0x5830 207.76 14.479 201.43 251.91 

MASTR4 0x5832 207.76 14.482 201.43 251.77 

MASTR5 0x5834 207.76 14.474 201.43 251.77 

MASTR6 0x4430 24.446 1.5493 19.4 31.1 

MAWHE1 0xd220 51.929 7.4039 48.7 98.9 

MAWHE2 0xd221 20.391 1.0379 18.47 40.69 

MAENG1 0xf020 10.191 0.6507 8.73 20.07 

MAENG2 0xf021 30.558 1.0082 29.03 38.58 

MAENG3 0xf022 30.558 1.0346 28.86 38.56 

 
 
 

Table 6.7: Utilities MilCAN bus 1000kbit, high HRT low SRT/NRT 

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms) 

MUGPS1 0x5501 259.8 0.36678 258.54 261.24 

MUGPS2 0x5502 259.81 0.42403 258.83 261.44 

MUGPS3 0x5503 259.81 0.62914 258.44 261.75 

MUPWR1 0x5030 217.54 569.93 1.02 1879.01 

MUSNS1 0x5936 10.366 1.5177 7.46 20.89 
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Table 6.8: Automotive MilCAN bus 500kbit, high HRT low SRT/NRT 

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms) 

MAPED1 0x3e30 12.102 0.28938 10.13 16.16 

MAPED2 0x3e32 12.102 0.60285 9.86 16.17 

MAPED3 0x5e30 206.24 20.991 199.18 298.24 

MASTR1 0x3e34 20.228 1.1247 18.89 36.27 

MASTR2 0x3e36 20.227 1.1379 18.45 36.15 

MASTR3 0x5830 412.68 29.342 402.43 500.05 

MASTR4 0x5832 412.68 29.343 402.36 500.05 

MASTR5 0x5834 412.68 29.343 402.33 500.05 

MASTR6 0x4430 48.547 1.9568 45.22 63.51 

MAWHE1 0xd220 103.12 14.967 97.09 197.26 

MAWHE2 0xd221 40.454 1.5947 38.87 56.6 

MAENG1 0xf020 20.227 1.1525 18.55 36.47 

MAENG2 0xf021 60.68 1.9317 59.25 76.58 

MAENG3 0xf022 60.681 1.8988 59.2 76.46 

 

Table 6.9: Utilities MilCAN bus 500kbit, high HRT low SRT/NRT 

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms) 

MUGPS1 0x5501 515.8 0.3363 514.81 516.83 

MUGPS2 0x5502 515.8 0.35805 514.79 516.86 

MUGPS3 0x5503 515.8 1.4554 512.93 518.65 

MUPWR1 0x5030 384.19 1071.2 2.81 3727.5 

MUSNS1 0x5936 20.226 1.2379 17.26 36.43 

 

Table 6.10: Automotive MilCAN bus 1000kbit, low HRT high SRT/NRT 

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms) 

MAPED1 0x3e30 20.373 0.8054 18.57 28.42 

MAPED2 0x3e32 20.373 0.88112 18.51 28.16 

MAPED3 0x5e30 24.447 13.456 20.58 30.98 

MASTR1 0x3e34 40.827 21.242 38.60 81.22 

MASTR2 0x3e36 40.827 2.116 39.04 81.06 

MASTR3 0x5830 51.874 71.402 48.51 97.87 

MASTR4 0x5832 51.874 71.635 48.30 97.85 

MASTR5 0x5834 51.874 71.692 48.30 97.85 

MASTR6 0x4430 103.75 10.116 99.12 149.88 

MAWHE1 0xd220 207.52 14.017 201.95 251.81 

MAWHE2 0xd221 83.336 10.542 80.40 162.68 

MAENG1 0xf020 40.827 21.136 39.66 80.96 

MAENG2 0xf021 122.98 96.619 121.13 243.65 

MAENG3 0xf022 122.98 96.658 120.82 243.63 

 

Table 6.11: Utilities MilCAN bus 1000kbit, low HRT high SRT/NRT 

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms) 

MUGPS1 0x5501 1039.5 0.26349 1038.82 1040.25 

MUGPS2 0x5502 1039.5 0.45347 1038.31 1040.76 

MUGPS3 0x5503 1039.5 0.54802 1038.17 1040.90 

MUPWR1 0x5030 719.66 973.28 7.91 2038.35 

MUSNS1 0x5936 10.219 0.84989 8.02 20.33 
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Table 6.12: Automotive MilCAN bus 500kbit, low HRT high SRT/NRT 

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms) 

MAPED1 0x3e30 40.455 15.734 39.23 56.36 

MAPED2 0x3e32 40.454 16.277 39.03 55.67 

MAPED3 0x5e30 48.546 19.703 45.78 62.75 

MASTR1 0x3e34 80.911 22.203 80.06 97.12 

MASTR2 0x3e36 80.911 22.219 79.83 96.93 

MASTR3 0x5830 103.12 14.754 98.88 196.20 

MASTR4 0x5832 103.12 14.746 98.73 196.05 

MASTR5 0x5834 103.12 14.749 98.70 196.04 

MASTR6 0x4430 206.24 20.77 199.57 297.67 

MAWHE1 0xd220 412.49 28.713 399.51 499.53 

MAWHE2 0xd221 164.98 18.816 160.66 257.94 

MAENG1 0xf020 80.907 22.603 79.83 97.09 

MAENG2 0xf021 242.73 3.855 240.80 258.52 

MAENG3 0xf022 242.74 38.429 241.25 258.23 

 

Table 6.13: Utilities MilCAN bus 500kbit, low HRT high SRT/NRT 

Message ID Average (ms) Std. Dev. Minimum (ms) Maximum (ms) 

MUGPS1 0x5501 2063.3 0.12372 2063.08 2063.42 

MUGPS2 0x5502 2063.3 0.12372 2063.08 2063.42 

MUGPS3 0x5503 2063.3 0.11128 2063.09 2063.37 

MUPWR1 0x5030 1186.1 1866.4 15.93 4029.95 

MUSNS1 0x5936 20.225 11.672 17.61 36.97 

 

Some messages show a large difference between their average value and their minimum or 

maximum value. This is happens during the transition between two MilCAN cycles, due to the 

fact that their assigned periodicity does not overlap with the end of the MilCAN cycle. This 

affects messages with periods that do not divide clearly the number 1024, as a result the gap 

between two transmissions to increase or decrease. 

6.5.4 Latency Measurements 

To measure the latencies the CANoe software is being used, as mentioned above. The message 

latencies are calculated by monitoring the traffic at each MilCAN bus. At the following tables 

the summary of these measurements is presented where in the appendix more detailed 

measurements can be viewed. When routing occurs through the Ethernet backbone and the 

MilCAN segment speed is 1000kbit the latencies are significantly lower than the other two 

configurations (see table 6.14). The same applies for the utilities segment at table 6.15. As 

shown on table 6.16 and table 6.17 although the MilCAN backbone has dropped at 250kbit and 

the segment’s speed is 1000kbit; the latencies have not been increased. Table 6.18 and table 

6.19 verify the previous observations under different speeds. 
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6.5.4.1 MilCAN backbone 1000kbit, MilCAN segment 1000kbit 

Table 6.14: Automotive segment message latencies SEGA to SEGU (ms) 

 MilCAN backbone Ethernet backbone MilCAN/Ethernet 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x3e30 MAPED1 0.0556 0.0636 0.0368 0.0323 0.0519 0.0592 

0x3e32 MAPED2 0.0569 0.0648 0.0384 0.0359 0.0535 0.0597 

0x5e30 MAPED3 0.0723 0.0652 0.0469 0.039 0.0396 0.0298 

0x3e34 MASTR1 0.0553 0.0647 0.0365 0.0312 0.0518 0.0623 

0x3e36 MASTR2 0.0652 0.0686 0.0465 0.0408 0.0644 0.0646 

0x5830 MASTR3 0.0644 0.0712 0.0461 0.0383 0.0344 0.0353 

0x5832 MASTR4 0.067 0.0712 0.0471 0.0409 0.0366 0.0358 

0x5834 MASTR5 0.0696 0.0713 0.048 0.0427 0.038 0.0357 

0x4430 MASTR6 0.0655 0.0661 0.0462 0.0412 0.0647 0.0576 

0xd220 MAWHE1 0.0562 0.0651 0.0377 0.0337 0.0534 0.0652 

0xd221 MAWHE2 0.035 0.0649 0.0354 0.0321 0.0313 0.0631 

0xf020 MAENG1 0.0557 0.0652 0.037 0.0325 0.0522 0.0627 

0xf021 MAENG2 0.0566 0.0659 0.0385 0.0342 0.0533 0.0638 

0xf022 MAENG3 0.0665 0.0682 0.0482 0.0398 0.0663 0.0645 

 

Table 6.15: Utilities segment message latencies SEGA to SEGU (ms) 

  MilCAN backbone Ethernet backbone MilCAN/Ethernet 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x5501 MUGPS1 0.0544 0.071 0.0296 0.0252 0.0672 0.0724 

0x5502 MUGPS2 0.0567 0.0709 0.0315 0.0387 0.0681 0.0724 

0x5503 MUGPS3 0.0587 0.0709 0.0314 0.0402 0.0685 0.0723 

0x5030 MUPWR1 0.0596 0.0659 0.0301 0.0403 0.0329 0.0391 

0x5936 MUSNS1 0.0685 0.0603 0.0186 0.0252 0.0305 0.0346 

        

 

6.5.4.2 MilCAN backbone 250kbit, MilCAN segment 1000kbit 

Table 6.16: Automotive segment message latencies SEGA to SEGU (ms) 

  MilCAN backbone MilCAN/Ethernet 

ID Message high HRT low HRT high HRT low HRT 

0x3e30 MAPED1 0.0552 0.0641 0.0532 0.0603 

0x3e32 MAPED2 0.0567 0.0656 0.0548 0.0609 

0x5e30 MAPED3 0.0693 0.0653 0.0377 0.0298 

0x3e34 MASTR1 0.0549 0.066 0.0529 0.0615 

0x3e36 MASTR2 0.0626 0.0688 0.0608 0.0636 

0x5830 MASTR3 0.0608 0.0715 0.0335 0.0352 

0x5832 MASTR4 0.064 0.0719 0.0344 0.0353 

0x5834 MASTR5 0.0687 0.0719 0.0366 0.0352 

0x4430 MASTR6 0.0627 0.0672 0.0612 0.065 

0xd220 MAWHE1 0.0555 0.0661 0.0543 0.0665 

0xd221 MAWHE2 0.0346 0.0663 0.0315 0.063 

0xf020 MAENG1 0.0553 0.0663 0.0535 0.0623 

0xf021 MAENG2 0.0564 0.0678 0.0549 0.0628 

0xf022 MAENG3 0.0638 0.0687 0.0628 0.0638 

 



94 
 

 

Table 6.17: Utilities segment message latencies SEGA to SEGU (ms) 

  MilCAN backbone MilCAN/Ethernet 

ID Message high HRT low HRT high HRT low HRT 

0x5501 MUGPS1 0.0515 0.0686 0.0645 0.0709 

0x5502 MUGPS2 0.056 0.0687 0.0656 0.0736 

0x5503 MUGPS3 0.0586 0.069 0.0667 0.0749 

0x5030 MUPWR1 0.0607 0.0619 0.0297 0.0408 

0x5936 MUSNS1 0.0665 0.0593 0.029 0.0359 

 

6.5.4.3 MilCAN backbone 500kbit, MilCAN segment 500kbit 

Table 6.18: Automotive segment message latencies SEGA to SEGU (ms) 

  MilCAN backbone Ethernet backbone MilCAN/Ethernet 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x3e30 MAPED1 0.0626 0.0431 0.0408 0.0318 0.0607 0.0381 

0x3e32 MAPED2 0.0639 0.0453 0.0421 0.0347 0.0612 0.0408 

0x5e30 MAPED3 0.0738 0.0389 0.0562 0.03 0.0408 0.0158 

0x3e34 MASTR1 0.0654 0.0536 0.0462 0.0401 0.0656 0.0469 

0x3e36 MASTR2 0.0699 0.0565 0.0534 0.0396 0.0695 0.0513 

0x5830 MASTR3 0.069 0.0501 0.0566 0.0423 0.042 0.0247 

0x5832 MASTR4 0.0691 0.0502 0.0578 0.0419 0.0421 0.0256 

0x5834 MASTR5 0.0693 0.0505 0.0578 0.0356 0.0422 0.0262 

0x4430 MASTR6 0.0681 0.0555 0.0523 0.0412 0.0683 0.0476 

0xd220 MAWHE1 0.066 0.06 0.0442 0.043 0.0647 0.0555 

0xd221 MAWHE2 0.0576 0.0551 0.0474 0.0421 0.0629 0.0481 

0xf020 MAENG1 0.0661 0.0539 0.0465 0.0325 0.0662 0.048 

0xf021 MAENG2 0.0684 0.0584 0.049 0.034 0.0691 0.0552 

0xf022 MAENG3 0.0721 0.0589 0.0546 0.0398 0.0722 0.0555 

 

Table 6.19: Utilities segment message latencies SEGA to SEGU (ms) 

  MilCAN backbone Ethernet backbone MilCAN/Ethernet 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x5501 MUGPS1 0.0667 0.0533 0.0212 0.0197 0.0659 0.057 

0x5502 MUGPS2 0.0677 0.0532 0.0211 0.02 0.0662 0.0569 

0x5503 MUGPS3 0.0666 0.0504 0.0224 0.0155 0.0657 0.0543 

0x5030 MUPWR1 0.0699 0.0487 0.0229 0.0176 0.0305 0.0568 

0x5936 MUSNS1 0.0642 0.0358 0.0167 0.0125 0.025 0.0268 

 

6.5.5 Automotive segment 

Since the measurements from the Utilities segment have similar characteristics as the ones 

from the Automotive segment, only the automotive are presented below. 

Figure 6.11 and figure 6.12 are generated during the configuration of routing all messages 

through the MilCAN backbone. As can been seen in figure 6.11 the latencies of all priorities are 

on the same level although the difference of the bandwidth consumption for the low priority 
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messages is higher. Figure 6.12 clearly demonstrates that higher priority messages have 

slightly lower latencies. 

6.5.5.1 1000kbit MilCAN backbone, 1000kbit MilCAN segment, high HRT and low SRT/NRT 

 

Figure 6.11: SEGA to BBONE message latencies per priority distribution 

 

Figure 6.12: SEGA to BBONE message latencies per priority 

Figure 6.13 and figure 6.14 are generated during routing all messages through the Ethernet 

backbone. In figure 6.13 it is visible that the latencies are lower than the previous 

configuration which also was noticed from the measurements that have been gathered from 

the CANoe software. In this figure we can also see the bursts of the Ethernet packets. Figure 

6.14 shows again that the high priority messages have lower latencies although such a result 
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was not expected due the non-prioritised buffers of TCP/IP layer. This usually occurs because 

of the high traffic output of the segment which fills the TCP/IP packets quicker. 

6.5.5.2 1000kbit MilCAN segment, high HRT and low SRT/NRT 

 

Figure 6.13: SEGA to ETH message latencies per priority distribution 

 

Figure 6.14: SEGA to ETH message latencies per priority 

The following configuration combines both backbones, the MilCAN backbone for the HRT 

messages and the Ethernet for the NRT/SRT messages. In figure 6.15 and figure 6.16 the 

output through MilCAN is shown and one could easily draw the assumption that high priority 

messages have lower latencies (see figure 6.16). 
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6.5.5.3 1000kbit MilCAN backbone, 1000kbit MilCAN segment, high HRT and low SRT/NRT 

 

Figure 6.15: SEGA to BBONE message latencies per priority distribution 

 

Figure 6.16: SEGA to BBONE message latencies per priority 

At figure 6.17 and figure 6.18 the output through the Ethernet backbone is presented. As can 

been seen in figure 6.18, the higher priority messages do not have lower latencies than the low 

priority ones. This occurs because of the non-prioritised buffers of TCP/IP layer and although 

the Ethernet is fast the traffic is not that high to fill the TCP/IP packets quickly enough, which 

lead us to the conclusion that Ethernet generates low latencies only if the segment’s traffic is 

high. However, it should also be taken into consideration that due to the complexity of the 

combined routing (more routing commands) the bridge may generate higher latencies because 

of hardware restrictions. 
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6.5.5.4 1000kbit MilCAN segment, high HRT and low SRT/NRT 

 

Figure 6.17: SEGA to ETH message latencies per priority distribution 

 

Figure 6.18: SEGA to ETH message latencies per priority 

6.6 MilCAN Fault Tolerance performance 

The performance of the Fault Tolerant MilCAN has been evaluated through simulations using 

the internal performance counters. Additionally the application layer that has been used for 

the tests is specially designed not to affect the operation of the FT layer and provide more 

accurate measurements. To emulate a normal MilCAN operation it has been configured to 

generate periodic messages at a MilCAN sync frequency of 5.  

The main reason of testing the FT MilCAN layer is to study the reaction of the layer during 

different fault scenarios. It is important to measure the response and reaction time of the FT 
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layer during these faults.  Any missed or delayed scheduled messages should be detected 

during testing the various fault scenarios. During these tests the nodes have been assigned 

with an equal weight value. Every fault scenario has been repeated twenty times to acquire 

more accurate result by calculating their average values. 

6.6.1 Non FT Master node loses connection to CAN0 

For this scenario a random node loses connection to CAN0 (figure 6.19). When the connection 

is lost to CAN0, the node detects the non-availability of the bus and informs the FT master. The 

FT master weights the available buses and decides which bus to use as an active bus. 

 

Figure 6.19: Non FT Master node loses connection to CAN0 

6.6.1.1 Operation 

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active 

bus. When node 2 loses connection to CAN0, reports the fault by sending an asynchronous 

alive message over CAN1. The FT master nodes (node 1 and node 4), vote according to the 

WBS algorithm that CAN1 is the new active bus. Node 4 transmits an asynchronous FT master 

frame which commands the nodes to use CAN1 as active bus. 

6.6.1.2 Collected data 

During this test, eight time measurements have been taken at the following events: 

1. Node 2 detects connection problem with CAN0. 

2. Node 2 transmits alive message informing the problem. 

3. Node 4 receives alive message. 

4. Node 4 votes CAN1 as the new active bus. 

5. Node 4 sends FT master frame to all nodes. 

6. Node 1 receives the FT master frame and uses CAN1 as active bus. 

7. Node 2 receives the FT master frame and uses CAN1 as active bus. 

8. Node 3 receives the FT master frame and uses CAN1 as active bus. 
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Table 6.20: Non FT Master node loses connection to CAN0 collected data (ms) 

Event 1 2 3 4 5 6 7 8 9 10 

1 → 2 0.28 0.2784 0.4496 0.2784 0.4496 0.2784 0.28 0.2784 0.2784 0.2784 
2 → 3 0.9524 1.0656 2.1328 0.3392 3.7168 1.0656 0.832 1.1401 0.8336 2.1328 
3 → 4 0.3808 0.3392 0.1696 0.2672 0.3392 0.168 0.3808 0.168 0.3808 0.1696 
4 → 5 0.4064 0.9152 0.2784 0.9152 0.2784 0.2784 0.4064 0.2784 0.2768 0.2768 
5 → 6 0.9914 1.048 0.6544 0.6544 1.104 1.1047 1.048 0.7648 0.9914 1.255 
5 → 7 1.248 1.1886 1.0512 1.0672 1.0512 1.248 0.9536 0.9561 0.6688 1.1886 
5 → 8 1.0654 0.798 0.843 0.9761 0.798 0.978 0.8632 0.9671 0.843 1.0654 

1 → 8 3.011 3.3964 3.6848 2.4544 5.582 2.7684 2.7624 2.6297 2.4384 3.923 

 

Event 11 12 13 14 15 16 17 18 19 20 

1 → 2 0.4069 0.437 0.3382 0.4465 0.3726 0.4314 0.3565 0.3479 0.3049 0.3119 
2 → 3 0.6854 0.7162 2.142 1.2144 0.6714 0.3392 0.9441 3.3179 1.0656 0.9524 
3 → 4 0.2377 0.3652 0.1733 0.1853 0.179 0.1719 0.2571 0.3808 0.1755 0.2849 
4 → 5 0.4251 0.7043 0.815 0.8001 0.4631 0.7653 0.3356 0.9152 0.3837 0.3993 
5 → 6 0.7805 0.955 0.9156 0.8391 1.1597 0.8001 1.1342 0.6579 0.7134 0.7321 
5 → 7 0.9476 0.7646 0.7961 0.8194 0.9513 0.8363 1.1427 1.2443 1.1737 1.0524 
5 → 8 0.9759 0.9789 0.8288 0.8969 0.8064 0.9977 1.0414 0.8945 0.8483 1.0432 

1 → 8 2.5356 2.9873 4.2646 3.4657 2.4925 2.5079 2.9347 5.6197 2.6431 2.6806 

 

Table 6.21: Non FT Master node loses connection to CAN0 average values (ms) 

Event Average 

1 → 2 0.34417 

2 → 3 1.312975 

3 → 4 0.258695 

4 → 5 0.515855 

5 → 6 0.915185 

5 → 7 1.017485 

5 → 8 0.92546 

1 → 8 3.34688 

 

The average time for the whole operation; from detecting the problem till the switch to the 

new bus is 3.34688ms with minimum 2.4384ms and maximum 5.582ms (table 6.20 & table 

6.21). The average time is low and acceptable, where the maximum value can be explained 

due to processing power restrictions. 

6.6.2 FT Master node loses connection to CAN0 

For this scenario the FT master node of CAN0 loses connection to CAN0 (figure 6.20). When 

the connection is lost to CAN0, the node detects the non-availability of the bus and informs 

the FT master. The FT master weights the available buses and decides which bus to use as an 

active bus. 
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Figure 6.20: FT Master node loses connection to CAN0 

6.6.2.1 Operation 

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active 

bus. When node 1 loses connection to CAN0, reports the fault by sending an asynchronous 

alive message over CAN1 and node 2 becomes the FT master of CAN0. The FT master nodes 

(node 2 and node 4), vote according to the WBS algorithm that CAN1 is the new active bus. 

Node 4 transmits an asynchronous FT master frame which commands the nodes to use CAN1 

as active bus. 

6.6.2.2 Collected data 

During this test, eight time measurements have been taken at the following events: 

1. Node 1 detects connection problem with CAN0. 

2. Node 1 transmits alive message informing the problem. 

3. Node 4 receives alive message. 

4. Node 4 votes CAN1 as the new active bus. 

5. Node 4 sends FT master frame to all nodes. 

6. Node 1 receives the FT master frame and uses CAN1 as active bus. 

7. Node 2 receives the FT master frame and uses CAN1 as active bus. 

8. Node 3 receives the FT master frame and uses CAN1 as active bus. 

Table 6.22: FT Master node loses connection to CAN0 collected data (ms) 

Event 1 2 3 4 5 6 7 8 9 10 

1 → 2 0.28 0.1072 0.2784 0.2784 0.2784 0.1072 0.2784 0.28 0.2784 0.3344 
2 → 3 0.9808 1.0336 1.2016 0.6976 0.6624 2.9872 0.9808 0.672 1 0.0112 
3 → 4 0.2672 0.4592 0.168 0.168 0.1696 0.168 0.1696 0.1696 0.2672 0.1696 
4 → 5 0.3744 0.2784 0.2784 0.2784 0.2768 0.2784 0.3744 0.376 0.4896 0.2784 
5 → 6 0.6832 1.3728 0.3248 0.8272 0.8624 0.6832 0.7712 0.7664 0.7152 1.512 
5 → 7 0.8064 0.5536 0.8064 0.9264 1.6112 0.8368 0.7712 0.8368 0.664 0.9344 
5 → 8 0.9056 0.752 1 1.1248 1.5744 0.9056 0.7712 0.8976 0.4752 0.9376 

1 → 8 2.5856 2.432 2.2512 2.2496 2.2496 4.224 2.5744 2.264 2.5104 1.728 
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Event 11 12 13 14 15 16 17 18 19 20 

1 → 2 0.299 0.2784 0.1747 0.1228 0.2238 0.1305 0.2528 0.1145 0.2307 0.3091 
2 → 3 0.2925 0.1031 0.1312 1.3531 1.7854 0.7393 0.9295 1.5639 0.0967 1.9333 
3 → 4 0.2939 0.2199 0.3137 0.4408 0.3711 0.1831 0.2944 0.2749 0.3329 0.4521 
4 → 5 0.4751 0.4172 0.3994 0.4057 0.3741 0.33 0.3384 0.4664 0.4809 0.3005 
5 → 6 1.0695 0.7916 1.0614 1.1832 0.8828 1.3438 0.7548 1.4712 1.2909 1.0963 
5 → 7 0.6592 1.3961 0.8475 1.0752 0.8106 1.2933 1.5998 1.122 1.4012 1.4655 
5 → 8 1.3646 1.3539 1.0436 1.4459 0.9096 0.6752 1.4817 1.0615 1.0626 1.4225 

1 → 8 2.0197 1.8102 1.8665 3.3976 3.565 2.0581 2.5699 3.4812 2.2038 4.0913 

 

Table 6.23: FT Master node loses connection to CAN0 average values (ms) 

Event Average 

1 → 2 0.231855 

2 → 3 0.95776 

3 → 4 0.26764 

4 → 5 0.363545 

5 → 6 0.973195 

5 → 7 1.02088 

5 → 8 1.058255 

1 → 8 2.793995 

 

The average time from the time it detects the problem till it switches to the new bus is 

2.793995ms with minimum 1.728ms and maximum 4.224ms (table 6.22 table 6.23). The 

average time is low, where the maximum value can be explained due to processing power 

restrictions. 

6.6.3 Non FT Master node loses connection to CAN1 

For this scenario a random node loses connection to CAN1 (figure 6.21). When the connection 

is lost to CAN1, the node detects the non-availability of the bus and informs the FT master. The 

FT master weights the available buses and decides which bus to use as an active bus. 

CAN0

CAN1

Node 1 Node 2 Node 3 Node 4

 

Figure 6.21: Non FT Master node loses connection to CAN1 
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6.6.3.1 Operation 

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active 

bus. When node 2 loses connection to CAN1, reports the fault by sending an asynchronous 

alive message over CAN0. The FT master nodes (node 1 and node 4), vote according to the 

WBS algorithm that CAN0 will still remain the active bus. Since there no change nothing is 

transmitted between the nodes. 

6.6.4 FT Master node loses connection to CAN1 

CAN0

CAN1

Node 1 Node 2 Node 3 Node 4

 

Figure 6.22: FT Master node loses connection to CAN1 

For this scenario the FT master node of CAN1 loses connection to CAN1 (figure 6.22). When 

the connection is lost to CAN1, the node detects the non-availability of the bus and informs 

the FT master. The FT master weights the available buses and decides which bus to use as an 

active bus. 

6.6.4.1 Operation 

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active 

bus. When node 1 loses connection to CAN1, reports the fault by sending an asynchronous 

alive message over CAN0. The FT master nodes (node 1 and node 4), vote according to the 

WBS algorithm that CAN0 will still remain the active bus. Since there no change nothing is 

transmitted between the nodes. 

6.6.5 FT Master node loses connection to CAN0 / Non FT Master node loses 

connection to CAN1 

For this scenario the FT master node 1 of CAN0 loses connection to CAN0 and node 2 to CAN1 

(figure 6.23). When the connections are lost, the nodes detect the non-availability of the bus 

and inform the FT master. The FT masters weights the available buses and decide which bus to 

use as an active bus. 
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CAN0

CAN1

Node 1 Node 2 Node 3 Node 4

 

Figure 6.23: FT Master node loses connection to CAN0 / Non FT Master node loses connection to CAN1 

6.6.5.1 Operation 

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active 

bus. When node 1 loses connection to CAN0, reports the fault by sending an asynchronous 

alive message over CAN1 and node 2 becomes the FT master of CAN0. Also when node 2 loses 

connection to CAN1, reports the fault by sending an asynchronous alive message over CAN0. 

The FT master nodes (node 2 and node 4), vote according to the WBS algorithm that CAN0 will 

still remain the active bus since the weight on both buses stays the same. Since there no 

change nothing is transmitted between the nodes. 

6.6.6 CAN0 split in half 

For this scenario CAN0 is been split at half (figure 6.24). The nodes detect the non-availability 

of the bus and inform the FT master. The FT masters weights the available buses and decide 

which to use as active bus. 

 

Figure 6.24: CAN0 segmented in half 

6.6.6.1 Operation 

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active 

bus. When CAN0 is been split at half, node 1 continue to be the FT master on 1st half of CAN0 

and node 3 becomes the FT master on 2nd half of CAN0. Node 4 remains to be the FT master 

of CAN1. The FT master nodes (node 1, node 3 and node 4), vote according to the WBS 
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algorithm that CAN1 is the new active bus. Node 4 transmits an asynchronous FT master frame 

which commands the nodes to use CAN1 as active bus. 

6.6.6.2 Collected data 

During this test, eight time measurements have been taken at the following events: 

1. Node 3 becomes new master on 2nd half of CAN0. 

2. Node 3 transmits the first FT master frame on CAN0. 

3. Node 4 detects that node 3 is the new master on CAN0. 

4. Node 4 votes CAN1 as the new active bus. 

5. Node 4 sends FT master frame to all nodes. 

6. Node 1 receives the FT master frame and uses CAN1 as active bus. 

7. Node 2 receives the FT master frame and uses CAN1 as active bus. 

8. Node 3 receives the FT master frame and uses CAN1 as active bus. 

Table 6.24: CAN0 segmented in half collected data (ms) 

Event 1 2 3 4 5 6 7 8 9 10 

1 → 2 0.4464 0.5088 0.3472 0.448 0.2784 0.5088 0.3744 0.376 0.4816 0.4464 
2 → 3 1.3744 1.9872 2.7008 1.3744 1.7696 1.6976 1.9872 1.2496 2.16 2.928 
3 → 4 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 
4 → 5 0.1056 0.2768 0.2752 0.2768 0.2752 0.1056 0.1056 0.104 0.4192 0.1056 
5 → 6 1.7696 2.3488 1.0416 0.8624 2.2528 2.3488 3.1472 1.808 1.7696 1.9776 
5 → 7 2.7808 2.0032 0.9976 0.8848 1.368 2.0032 2.7808 1.792 1.8656 1.6736 
5 → 8 1.6048 2.1776 1.6048 1.1696 2.1776 2.4928 3.1888 2.2608 1.0544 1.2976 

1 → 8 3.5904 4.8352 4.38 3.0208 3.7504 4.3744 5.3072 3.5808 4.1744 4.8368 

 

Event 11 12 13 14 15 16 17 18 19 20 

1 → 2 0.4402 0.2934 0.448 0.4305 0.4174 0.4057 0.2785 0.3472 0.4616 0.444 
2 → 3 1.7478 2.8461 2.774 1.416 2.7736 2.8231 1.9185 1.2814 2.4338 1.3089 
3 → 4 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 
4 → 5 0.1056 0.2087 0.1329 0.249 0.3879 0.2845 0.2693 0.1056 0.1679 0.2986 
5 → 6 2.1472 0.8765 2.2483 1.6715 1.147 1.0194 0.8742 1.0654 1.5728 2.2525 
5 → 7 1.121 1.0289 2.1454 2.1573 0.9465 2.3036 1.8761 1.3958 2.4401 1.8078 
5 → 8 1.9945 2.1679 2.4209 1.1782 1.3122 2.2707 3.1167 2.5205 1.6878 1.6409 

1 → 8 3.4738 4.2839 5.5595 3.3329 4.5846 4.5919 3.3997 2.8588 4.6953 3.7516 

 

The average time for the whole operation, from the re-election of new FT master till the switch 

to the new bus is 4.418965ms with minimum 3.0208 and maximum 5.5595ms (table 6.24 table 

6.25). The average time is low, where the maximum value can be explained due to processing 

power restrictions. 
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Table 6.25: CAN0 segmented in half average values (ms) 

Event Average 

1 → 2 0.409125 

2 → 3 2.0276 

3 → 4 0.0592 

4 → 5 0.21298 

5 → 6 1.71006 

5 → 7 1.768605 

5 → 8 1.966955 

1 → 8 4.418965 

 

6.6.7 CAN1 split in half 

CAN0

CAN1

Node 1 Node 2 Node 3 Node 4

 

Figure 6.25: CAN1 split in half 

For this scenario CAN1 is been split at half (figure 6.25). The nodes detect the non-availability 

of the bus and inform the FT master. The FT masters weight the available buses and decide 

which bus to use as an active bus. 

6.6.7.1 Operation 

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active 

bus. When CAN1 is been split at half, node 4 continue to be the FT master on 2nd half of CAN1 

and node 2 becomes the FT master on 1st half of CAN1. Node 1 remains to be the FT master of 

CAN0. The FT master nodes (node 1, node 2 and node 4), vote according to the WBS algorithm 

that CAN0 will remain the active bus. 

6.6.8 CAN0 increased capacitance 

With the help of CANstress it is possible to increase the capacitance between the CAN high and 

CAN low of any CAN bus. This will result the affected bus to be virtually longer. According to 

the CAN specifications different operational speeds require different bus lengths to ensure 

correct operation. By increasing the capacitance between the CAN high and low of CAN0 will 

render the bus in-operational. The FT master will decide which will be the operational speed 

for the bus. 
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6.6.8.1 Operation 

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active 

bus. The operational speed of CAN0 is 1000kbit and for CAN1 is 500kbit. When the capacitance 

in CAN0 is increased the bus becomes unusable. When all the nodes connected on the bus 

detect the problem, report the fault by sending an asynchronous alive message over CAN1. 

Since the bus cannot be repaired by resetting the bus, the CAN0 FT master node (node 1) 

decides according to the error recovery algorithm to drop the speed to 500kbit. Node 1 

transmits an asynchronous FT master frame over CAN1 which commands the nodes to use 

500kbit as an operational speed for CAN0. All the nodes configured themselves to use 500kbit 

as the operational speed for CAN0 and it becomes again operational. 

6.6.9 CAN0 error injection 

With the help of CANstress it is possible to introduce illegal frames in to the CAN bus. For this 

test the CRC field of the CAN frame will be corrupted and it will not match with the content of 

the frame. According to the CAN specifications this will be detected as an error frame. The FT 

masters weights the available buses and decide which to use as active bus. 

6.6.9.1 Operation 

Before fault, node 1 is the FT master on CAN0 and node 4 on CAN1 where CAN0 is the active 

bus. When the error frames are injected in to CAN0, the nodes report the fault by sending an 

asynchronous alive message over CAN1. The FT master nodes (node 1 and node 4), vote 

according to the WBS algorithm that CAN1 is the new active bus. Node 4 transmits an 

asynchronous FT master frame which commands the nodes to use CAN1 as active bus. When 

the error injection stops, CAN0 becomes operational. The FT master nodes (node 1 and node 

4), vote according to the WBS algorithm that CAN0 is the new active bus. Node 1 transmits an 

asynchronous FT master frame which commands the nodes to use CAN0 as active bus. 

6.7 Conclusion 

The use of two testbeds provides the capability to have the High Availability MilCAN tested on 

a variety of conditions. The development testbed provides the ability to test the operation in 

an isolated environment and verify the operation in detail, where the VSI testbed gives ability 

to test the High Availability MilCAN in a real life vehicle environment. 

The performance of the High Availability MilCAN has been tested on the development testbed 

and the VSI testbed using internal performance mechanisms and external monitoring tools to 

generate the latencies throughout of the system. The VSI testbed provides the interconnection 
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of the MilCAN segments through various combinations of MilCAN and Ethernet backbones. For 

the specific tests three combinations were followed: either routing all messages through 

MilCAN or Ethernet backbone or the HRT through MilCAN or SRT/NRT through Ethernet. The 

measurements taken are an indication of the performance of the system. 

By using non-deterministic backbones such as Ethernet, the performance of the system is 

affected as expected. The results from the various test scenarios and traffic policies have 

proven close to the theoretical expectations. This proves that the High Availability MilCAN has 

not affected the performance of the system. 

The close observation of the operation of the Fault Tolerant capabilities under different fault 

scenarios has also proven to be what was expected. The reaction times for the measured 

operations were acceptable with only a few exceptions that were longer. The reason for these 

exceptions is processing power restrictions; causing delays during the operation. 
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Chapter 7 Conclusion and future work 

7.1 Conclusion 

The work presented in this thesis investigates how to add two extra functionalities to MilCAN, 

an already existing real-time communication protocol. Two testbeds are designed and 

developed to evaluate the concept and provide an initial feedback for further development. 

Throughout the study of fieldbuses used in the industry, the basic principles for the design of 

the system were identified. The MilCAN protocol is investigated in more detail to identify any 

limitations to address in this research. After completing the background research, the design of 

the MilCAN Reconfiguration is provided followed by a detailed explanation of its components 

and operation. Additionally the MilCAN Fault Tolerance is then provided followed again by a 

detailed explanation of its operation. Concluding this thesis, the two testbeds that were 

developed for evaluating the two MilCAN additions are presented, leading to performance 

results and operation verification. 

7.1.1 MilCAN Reconfiguration 

The MilCAN Reconfiguration addition was designed to support the Through Life Capability 

Management that is not currently available in the MilCAN protocol. This addition is beneficial 

to the engineers while maintaining MilCAN devices by providing the functionality to access and 

configure any device remotely. The reconfiguration capabilities cover the software side of the 

maintenance like configuring the message set and upgrading the firmware. The devices are 

accessed remotely which allows all the operations to be completed from a central location.  

To enable the MilCAN Reconfiguration capabilities a set of additional design requirements are 

added to the already existing MilCAN protocol. The design consist of three parts; the 

bootloader, the reconfiguration protocol and the VSI GUI. The bootloader offers the local 

operations on every node, by utilising various techniques to achieve normal operation next to 

the application layer. The reconfiguration protocol is used to communicate remotely to the 

bootloader and supports all the reconfiguration operations. The VSI GUI provides the user 

interface; to control all the bootloader’s operations through the custom communication 

protocol. 

During the development of the MilCAN Reconfiguration many lessons were learned from 

mistakes during the design and implementation period. The development of the bootloader 

was particularly difficult because it had to coexist with the application layer. The system was 

tested on the VSI testbed, where its operation was verified along with performance 
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measurements. The performance of the MilCAN Reconfiguration enabled node is analysed and 

detailed performance graphs have been presented. The results that were gathered, prove that 

the MilCAN Reconfiguration has not affected the operation and performance of the testbed. 

More specifically, although all the priorities have the same latencies, higher priority messages 

have slightly lower latencies. Additionally it was observed that the Ethernet generates low 

latencies only if the segment’s traffic is high. 

7.1.2 MilCAN Fault Tolerance Layer 

The MilCAN Fault Tolerance Layer is meant to provide the additional fault tolerance capability 

that is currently missing from the MilCAN protocol in order to enhance the network 

availability. With the use of the FT Layer a longer continuity of service can be provided by 

overcoming any fault and errors introduced in the network. 

To provide the MilCAN FT capabilities the Fault Tolerant requirements are added to the 

existing MilCAN protocol. Since it is a software solution it is flexible to be included to existing 

MilCAN devices with no modification to the physical layer and additionally be hardware 

independent. The design of the layer is divided in three different blocks depend the system 

configuration. The three blocks are the error detection, bus switching and error recovery. The 

bus switching is only enabled on devices that have more than one bus available. The FT layer is 

provides the ability to transparently inter-connect the application layer to multiple buses using 

a common virtual interface. 

During the development of the MilCAN Fault Tolerance layer many lessons were learned from 

mistakes during the design and implementation period. The implementations helped to 

identify various weaknesses on the initial designs and provided the feedback required to lead 

to a better design. The synchronised operation of the FT enabled nodes has been proven 

particularly difficult requiring a fool proof communication between them. The layer has been 

tested on the development testbed to verify the operation under different error scenarios. The 

results gathered verified the operation of the FT layer. 

7.2 Future work 

Further work for the High Availability MilCAN will be to be implemented on a mobile 

demonstrator that is an actual operational vehicle.  The mobile demonstrator is a commercial 

of the shelf Buggy vehicle that has been used as the base of various implementations for the 

Vetronics Research Centre. The author has already installed a MilCAN single bus network to 

control a set of on-board devices. MilCAN provides full control over the engine and lights, 

additionally it collects information from the on board sensors speed and engine temperature. 
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The controls are received from a GUI located on a touch screen which is installed on the 

vehicle. The single bus implementation has been proven difficult because of space restrictions 

and the operational conditions of the vehicle. The space restriction affects the placement of 

the required devices and the installation of the bus. The operational conditions are vibrations 

and external interferences which have been proven to be a lot different compared to the 

previously constructed testbeds. In order to test and verify the operation of the High 

Availability MilCAN on the Buggy, a second CAN bus needs to be installed in order to operate 

MilCAN in dual bus mode. This will provide us a full functional system in an actual vehicle. 

The underlying CANbus protocol has a failure mode called the babbling idiot, whereby a fault 

node can gain high priority access to the bus. Although this fault is not common, it would 

potentially jeopardise the sync frame broadcast and hence the determinism of the message 

delivery schedule of the system. The babbling idiot problem has been addressed in a 

theoretical level during this research, but since it is not a common fault it is hard to emulate. 

Further research is required in order to be able to emulate accurately the failure and evaluate 

the operation of the theoretical proposed solution. 

Additionally, it will be useful if MilCAN provides Health and Usage Monitoring Systems (HUMS) 

functionalities. HUMS increase the availability of systems whilst reducing the maintenance. 

MilCAN already provides some health monitoring functionalities by being able to detect bus 

errors. Since High Availability MilCAN has introduced new components, their operation needs 

to be monitored and recorded. Furthermore MilCAN should be able to provide Build In Test 

(BIT) capabilities. This requires Built In Test Equipment (BITE) to be used with MilCAN devices. 

Additionally further investigation is required to provide additional health monitoring 

capabilities by monitoring the FT layer. More specifically there have to be counters that 

provide information such as; how often the bus goes to bus-off, how long is non-operational, 

how often traffic is switched and how often the speed has dropped. 
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Appendix 

MilCAN Reconfiguration Protocol 

Function 
Primary 
ID Secondary ID Direction DLC 

Start firmware load 0xBE 0x1E M > S 3 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <Start Sequence Number> 

 

 
2 <Firmware Version> 

 

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Start firmware load (ACK) 0xBE 0x1F S > M 3 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <Start Sequence Number> 

 

 
2 <Firmware Version> 

 

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Address set 0xBE 0x20 M > S 6 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <Sequence Number> 

 

 
2 <Data Size> 

  

 
3 <Address Upper Bytes> 

 

 
4 <Address Lower Bytes> 

 

 
5 <Checksum> 

  

 
6 

   

 
7 
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Function 
Primary 
ID Secondary ID Direction DLC 

Address set (ACK) 0xBE 0x21 S > M 6 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <Sequence Number> 

 

 
2 <Data Size> 

  

 
3 <Address Upper Bytes> 

 

 
4 <Address Lower Bytes> 

 

 
5 <Checksum> 

  

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Programming data 0xBE 0x22 M > S 8 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <Sequence Number> 

 

 
2 <Data Upper Bytes> 

 

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 <Data Lower Bytes> 

  

Function 
Primary 
ID Secondary ID Direction DLC 

Programming data (ACK) 0xBE 0x23 S > M 8 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <Sequence Number> 

 

 
2 <Data Upper Bytes> 

 

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 <Data Lower Bytes> 

  

Function 
Primary 
ID Secondary ID Direction DLC 

Enter programming mode 0xBE 0x24 M > S 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 
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Function 
Primary 
ID Secondary ID Direction DLC 

Enter programming mode 
(ACK) 0xBE 0x25 S > M 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Erasing app sectors 0xBE 0x26 M > S 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Erasing app sectors (ACK) 0xBE 0x27 S > M 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 
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Function 
Primary 
ID Secondary ID Direction DLC 

Erasing chip 0xBE 0x28 M > S 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Erasing chip (ACK) 0xBE 0x29 S > M 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Software reset 0xBE 0x2A M > S 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Software reset (ACK) 0xBE 0x2B S > M 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 
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Function 
Primary 
ID Secondary ID Direction DLC 

Checksum 0xBE 0x2C M > S 3 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <Checksum upper> 

 

 
2 <Checksum lower> 

 

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Checksum (ACK) 0xBE 0x2D S > M 3 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <Checksum upper> 

 

 
2 <Checksum lower> 

 

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Status checking 0xBE 0x2E M > S 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 
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Function 
Primary 
ID Secondary ID Direction DLC 

Status checking (result) 0xBE 0x2F S > M 3 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

<MilCAN 
mode> 

  

 
2 <Node mode> 

  

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Version checking 0xBE 0x30 M > S 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Version checking (result) 0xBE 0x31 S > M 8 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <Version> 

  

 
2 <Version> 

  

 
3 <Version> 

  

 
4 <Version> 

  

 
5 <Version> 

  

 
6 <Version> 

  

 
7 <Version> 
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Function 
Primary 
ID Secondary ID Direction DLC 

Node ID change 0xBE 0x32 M > S 7 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <MILCAN_ID1> 

  

 
2 <MILCAN_ID2> 

  

 
3 

<NODE_SERIAL
> 

  

 
4 

<NODE_SERIAL
> 

  

 
5 

<NODE_SERIAL
> 

  

 
6 

<NODE_SERIAL
> 

  

 
7 

    

Function 
Primary 
ID Secondary ID 

Directio
n DLC 

Node ID change (result) 0xBE 0x33 S > M 7 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <MILCAN_ID1> 

  

 
2 <MILCAN_ID2> 

  

 
3 

<NODE_SERIAL
> 

  

 
4 

<NODE_SERIAL
> 

  

 
5 

<NODE_SERIAL
> 

  

 
6 

<NODE_SERIAL
> 

  

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Node speed change 0xBE 0x34 M > S 5 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <NODE_SPEED_A_1> for 1000 kbits 

 
2 <NODE_SPEED_A_2> 

 

 
3 <NODE_SPEED_B_1> 

 

 
4 <NODE_SPEED_B_1> 

 

 
5 

   

 
6 

   

 
7 
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Function 
Primary 
ID Secondary ID Direction DLC 

Node speed change (result) 0xBE 0x35 S > M 5 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <NODE_SPEED_A_1> 

 

 
2 <NODE_SPEED_A_2> 

 

 
3 <NODE_SPEED_B_1> 

 

 
4 <NODE_SPEED_B_1> 

 

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Message configuration 0xBE 0x50 M > S 8 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <Primary ID> 

  

 
2 <Secondary ID> 

  

 
3 <New Priority> 

  

 
4 

<New Primary 
ID> 

  

 
5 <New Secondary ID> 

 

 
6 <New Start Frame> 

 

 
7 <New Cycle> 

   

Function 
Primary 
ID Secondary ID Direction DLC 

Message configuration (ACK) 0xBE 0x51 S > M 8 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 <Primary ID> 

  

 
2 <Secondary ID> 

  

 
3 <New Priority> 

  

 
4 

<New Primary 
ID> 

  

 
5 <New Secondary ID> 

 

 
6 <New Start Frame> 

 

 
7 <New Cycle> 
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Function 
Primary 
ID Secondary ID Direction DLC 

Message configuration save 0xBE 0x52 M > S 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 

    

Function 
Primary 
ID Secondary ID Direction DLC 

Message configuration save 
(ACK) 0xBE 0x53 S > M 1 

 
Payload Data 

 
Description 

 
0 <Slave ID> 

  

 
1 

   

 
2 

   

 
3 

   

 
4 

   

 
5 

   

 
6 

   

 
7 
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MilCAN Reconfiguration test result 

Automotive segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 1000kbit, routing MilCAN backbone 

  SEGA to BBONE BBONE to SEGU SEGA to SEGU 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x3e30 MAPED1 0.0343 0.0395 0.0209 0.0255 0.0556 0.0636 

0x3e32 MAPED2 0.0357 0.0403 0.0209 0.0259 0.0569 0.0648 

0x5e30 MAPED3 0.0455 0.0392 0.0295 0.0273 0.0723 0.0652 

0x3e34 MASTR1 0.0342 0.0403 0.021 0.025 0.0553 0.0647 

0x3e36 MASTR2 0.0408 0.0427 0.0235 0.0265 0.0652 0.0686 

0x5830 MASTR3 0.04 0.0434 0.0233 0.0282 0.0644 0.0712 

0x5832 MASTR4 0.0417 0.0435 0.0238 0.0282 0.067 0.0712 

0x5834 MASTR5 0.0441 0.0436 0.028 0.0283 0.0696 0.0713 

0x4430 MASTR6 0.0404 0.0393 0.0238 0.0278 0.0655 0.0661 

0xd220 MAWHE1 0.0347 0.0381 0.0212 0.0255 0.0562 0.0651 

0xd221 MAWHE2 0.0269 0.0388 0.0211 0.0244 0.035 0.0649 

0xf020 MAENG1 0.0348 0.0404 0.0209 0.0254 0.0557 0.0652 

0xf021 MAENG2 0.0356 0.0387 0.021 0.0257 0.0566 0.0659 

0xf022 MAENG3 0.0422 0.0395 0.0238 0.0267 0.0665 0.0682 
 

Utilities segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 1000kbit, routing MilCAN backbone 

  SEGU to BBONE BBONE to SEGA SEGU to SEGA 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x5501 MUGPS1 0.0181 0.0247 0.0368 0.0457 0.0544 0.071 

0x5502 MUGPS2 0.0209 0.0245 0.0376 0.046 0.0567 0.0709 

0x5503 MUGPS3 0.0219 0.0245 0.0383 0.0461 0.0587 0.0709 

0x5030 MUPWR1 0.0232 0.0256 0.0395 0.0442 0.0596 0.0659 

0x5936 MUSNS1 0.0249 0.0197 0.043 0.0429 0.0685 0.0603 
 

Automotive segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 1000kbit, routing Ethernet backbone 

  SEGA to SEGU 

ID Message high HRT low HRT 

0x3e30 MAPED1 0.0368 0.0323 

0x3e32 MAPED2 0.0384 0.0359 

0x5e30 MAPED3 0.0469 0.039 

0x3e34 MASTR1 0.0365 0.0312 

0x3e36 MASTR2 0.0465 0.0408 

0x5830 MASTR3 0.0461 0.0383 

0x5832 MASTR4 0.0471 0.0409 

0x5834 MASTR5 0.048 0.0427 

0x4430 MASTR6 0.0462 0.0412 

0xd220 MAWHE1 0.0377 0.0337 

0xd221 MAWHE2 0.0354 0.0321 

0xf020 MAENG1 0.037 0.0325 

0xf021 MAENG2 0.0385 0.0342 

0xf022 MAENG3 0.0482 0.0398 
 

  



131 
 

 

Utilities segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 1000kbit, routing Ethernet backbone 

  SEGU to SEGA 

ID Message high HRT low HRT 

0x5501 MUGPS1 0.0296 0.0252 

0x5502 MUGPS2 0.0315 0.0387 

0x5503 MUGPS3 0.0314 0.0402 

0x5030 MUPWR1 0.0301 0.0403 

0x5936 MUSNS1 0.0186 0.0252 
 

Automotive segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 1000kbit, routing MilCAN/Ethernet backbone 

  SEGA to SEGU 

ID Message high HRT low HRT 

0x3e30 MAPED1 0.0519 0.0592 

0x3e32 MAPED2 0.0535 0.0597 

0x5e30 MAPED3 0.0396 0.0298 

0x3e34 MASTR1 0.0518 0.0623 

0x3e36 MASTR2 0.0644 0.0646 

0x5830 MASTR3 0.0344 0.0353 

0x5832 MASTR4 0.0366 0.0358 

0x5834 MASTR5 0.038 0.0357 

0x4430 MASTR6 0.0647 0.0576 

0xd220 MAWHE1 0.0534 0.0652 

0xd221 MAWHE2 0.0313 0.0631 

0xf020 MAENG1 0.0522 0.0627 

0xf021 MAENG2 0.0533 0.0638 

0xf022 MAENG3 0.0663 0.0645 
 

Utilities segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 1000kbit, routing MilCAN/Ethernet backbone 

  SEGU to SEGA 

ID Message high HRT low HRT 

0x5501 MUGPS1 0.0672 0.0724 

0x5502 MUGPS2 0.0681 0.0724 

0x5503 MUGPS3 0.0685 0.0723 

0x5030 MUPWR1 0.0329 0.0391 

0x5936 MUSNS1 0.0305 0.0346 
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Automotive segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 500kbit, routing MilCAN backbone 

  SEGA to BBONE BBONE to SEGU SEGA to SEGU 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x3e30 MAPED1 0.0343 0.0394 0.0246 0.0254 0.0547 0.0639 

0x3e32 MAPED2 0.0356 0.0401 0.0206 0.0258 0.0562 0.0652 

0x5e30 MAPED3 0.044 0.0395 0.0279 0.027 0.0704 0.065 

0x3e34 MASTR1 0.0339 0.0412 0.0208 0.0256 0.0546 0.0663 

0x3e36 MASTR2 0.0404 0.0432 0.023 0.0268 0.0631 0.0694 

0x5830 MASTR3 0.0402 0.0431 0.0229 0.0279 0.0616 0.0701 

0x5832 MASTR4 0.0413 0.0434 0.0241 0.0281 0.0641 0.0702 

0x5834 MASTR5 0.0423 0.0437 0.0257 0.0281 0.0673 0.0703 

0x4430 MASTR6 0.0401 0.0399 0.0229 0.0285 0.0634 0.0659 

0xd220 MAWHE1 0.0345 0.0417 0.0205 0.0277 0.0543 0.0671 

0xd221 MAWHE2 0.0151 0.0426 0.0207 0.0253 0.0329 0.0642 

0xf020 MAENG1 0.0345 0.0416 0.0208 0.0255 0.0552 0.0662 

0xf021 MAENG2 0.0356 0.0411 0.0208 0.0262 0.056 0.0677 

0xf022 MAENG3 0.0419 0.0418 0.0231 0.0266 0.0646 0.0697 
 

Utilities segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 500kbit, routing MilCAN backbone 

  SEGU to BBONE BBONE to SEGA SEGU to SEGA 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x5501 MUGPS1 0.0182 0.0238 0.0367 0.0485 0.055 0.0651 

0x5502 MUGPS2 0.0214 0.0238 0.0377 0.0469 0.0593 0.0653 

0x5503 MUGPS3 0.0233 0.0242 0.038 0.0469 0.06 0.0652 

0x5030 MUPWR1 0.0237 0.0215 0.0379 0.046 0.0593 0.0595 

0x5936 MUSNS1 0.0246 0.0201 0.0419 0.042 0.066 0.0597 
 

Automotive segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 500kbit, routing MilCAN/Ethernet backbone 

  SEGA to SEGU 

ID Message high HRT low HRT 

0x3e30 MAPED1 0.0516 0.0593 

0x3e32 MAPED2 0.0534 0.0598 

0x5e30 MAPED3 0.0382 0.0294 

0x3e34 MASTR1 0.0512 0.0608 

0x3e36 MASTR2 0.0631 0.0627 

0x5830 MASTR3 0.0352 0.0353 

0x5832 MASTR4 0.036 0.0354 

0x5834 MASTR5 0.0366 0.0353 

0x4430 MASTR6 0.0638 0.0623 

0xd220 MAWHE1 0.0524 0.0627 

0xd221 MAWHE2 0.0306 0.0614 

0xf020 MAENG1 0.0521 0.061 

0xf021 MAENG2 0.0534 0.0612 

0xf022 MAENG3 0.0648 0.0617 
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Utilities segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 500kbit, routing MilCAN/Ethernet backbone 

  SEGU to SEGA 

ID Message high HRT low HRT 

0x5501 MUGPS1 0.0656 0.0671 

0x5502 MUGPS2 0.0662 0.0686 

0x5503 MUGPS3 0.0665 0.0687 

0x5030 MUPWR1 0.0283 0.0294 

0x5936 MUSNS1 0.0288 0.0297 
 

Automotive segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 250kbit, routing MilCAN backbone 

  SEGA to BBONE BBONE to SEGU SEGA to SEGU 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x3e30 MAPED1 0.0351 0.0398 0.0207 0.0256 0.0552 0.0641 

0x3e32 MAPED2 0.0365 0.0408 0.0209 0.0258 0.0567 0.0656 

0x5e30 MAPED3 0.0432 0.0399 0.027 0.0277 0.0693 0.0653 

0x3e34 MASTR1 0.0348 0.0412 0.0207 0.0256 0.0549 0.066 

0x3e36 MASTR2 0.0403 0.0428 0.0232 0.0271 0.0626 0.0688 

0x5830 MASTR3 0.0396 0.0432 0.0248 0.0288 0.0608 0.0715 

0x5832 MASTR4 0.0406 0.0436 0.0257 0.0285 0.064 0.0719 

0x5834 MASTR5 0.0421 0.044 0.0275 0.0283 0.0687 0.0719 

0x4430 MASTR6 0.0405 0.0384 0.0238 0.0295 0.0627 0.0672 

0xd220 MAWHE1 0.0354 0.041 0.0212 0.0283 0.0555 0.0661 

0xd221 MAWHE2 0.0298 0.0416 0.0208 0.0251 0.0346 0.0663 

0xf020 MAENG1 0.0352 0.0415 0.0209 0.0256 0.0553 0.0663 

0xf021 MAENG2 0.0363 0.041 0.0211 0.0253 0.0564 0.0678 

0xf022 MAENG3 0.0416 0.0413 0.0227 0.0261 0.0638 0.0687 
 

Utilities segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 250kbit, routing MilCAN backbone 

  SEGU to BBONE BBONE to SEGA SEGU to SEGA 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x5501 MUGPS1 0.0193 0.0262 0.0355 0.0386 0.0515 0.0686 

0x5502 MUGPS2 0.0221 0.0266 0.0363 0.0386 0.056 0.0687 

0x5503 MUGPS3 0.0233 0.0269 0.0366 0.0382 0.0586 0.069 

0x5030 MUPWR1 0.0237 0.0275 0.0346 0.038 0.0607 0.0619 

0x5936 MUSNS1 0.0251 0.0207 0.0412 0.0411 0.0665 0.0593 
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Automotive segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 250kbit, routing MilCAN/Ethernet backbone 

  SEGA to SEGU 

ID Message high HRT low HRT 

0x3e30 MAPED1 0.0532 0.0603 

0x3e32 MAPED2 0.0548 0.0609 

0x5e30 MAPED3 0.0377 0.0298 

0x3e34 MASTR1 0.0529 0.0615 

0x3e36 MASTR2 0.0608 0.0636 

0x5830 MASTR3 0.0335 0.0352 

0x5832 MASTR4 0.0344 0.0353 

0x5834 MASTR5 0.0366 0.0352 

0x4430 MASTR6 0.0612 0.065 

0xd220 MAWHE1 0.0543 0.0665 

0xd221 MAWHE2 0.0315 0.063 

0xf020 MAENG1 0.0535 0.0623 

0xf021 MAENG2 0.0549 0.0628 

0xf022 MAENG3 0.0628 0.0638 
 

Utilities segment message latencies; MilCAN segment 1000kbit 
MilCAN backbone 250kbit, routing MilCAN/Ethernet backbone 

  SEGU to SEGA 

ID Message high HRT low HRT 

0x5501 MUGPS1 0.0645 0.0709 

0x5502 MUGPS2 0.0656 0.0736 

0x5503 MUGPS3 0.0667 0.0749 

0x5030 MUPWR1 0.0297 0.0408 

0x5936 MUSNS1 0.029 0.0359 
 

Automotive segment message latencies; MilCAN segment 500kbit 
MilCAN backbone 500kbit, routing MilCAN backbone 

  SEGA to BBONE BBONE to SEGU SEGA to SEGU 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x3e30 MAPED1 0.0399 0.0253 0.0215 0.0183 0.0626 0.0431 

0x3e32 MAPED2 0.0409 0.0263 0.0219 0.0196 0.0639 0.0453 

0x5e30 MAPED3 0.0502 0.021 0.0208 0.0182 0.0738 0.0389 

0x3e34 MASTR1 0.0435 0.0309 0.0212 0.023 0.0654 0.0536 

0x3e36 MASTR2 0.0474 0.0323 0.0215 0.0254 0.0699 0.0565 

0x5830 MASTR3 0.0437 0.0293 0.02 0.0211 0.069 0.0501 

0x5832 MASTR4 0.0456 0.0295 0.02 0.0212 0.0691 0.0502 

0x5834 MASTR5 0.0457 0.0297 0.0206 0.0214 0.0693 0.0505 

0x4430 MASTR6 0.0458 0.0327 0.0219 0.0231 0.0681 0.0555 

0xd220 MAWHE1 0.0452 0.0363 0.0209 0.0241 0.066 0.06 

0xd221 MAWHE2 0.0433 0.0305 0.0216 0.0245 0.0576 0.0551 

0xf020 MAENG1 0.0434 0.0314 0.0214 0.0237 0.0661 0.0539 

0xf021 MAENG2 0.0444 0.0347 0.0222 0.0246 0.0684 0.0584 

0xf022 MAENG3 0.0484 0.0346 0.0224 0.0251 0.0721 0.0589 
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Utilities segment message latencies; MilCAN segment 500kbit 
MilCAN backbone 500kbit, routing MilCAN backbone 

  SEGU to BBONE BBONE to SEGA SEGU to SEGA 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x5501 MUGPS1 0.0187 0.0235 0.0497 0.0292 0.0667 0.0533 

0x5502 MUGPS2 0.0205 0.0236 0.0504 0.0291 0.0677 0.0532 

0x5503 MUGPS3 0.0207 0.0209 0.0494 0.029 0.0666 0.0504 

0x5030 MUPWR1 0.0182 0.0254 0.0552 0.027 0.0699 0.0487 

0x5936 MUSNS1 0.0185 0.0158 0.0471 0.0217 0.0642 0.0358 
 

Automotive segment message latencies; MilCAN segment 500kbit 
MilCAN backbone 500kbit, routing Ethernet backbone 

  SEGA to SEGU 

ID Message high HRT low HRT 

0x3e30 MAPED1 0.0408 0.0318 

0x3e32 MAPED2 0.0421 0.0347 

0x5e30 MAPED3 0.0562 0.03 

0x3e34 MASTR1 0.0462 0.0401 

0x3e36 MASTR2 0.0534 0.0396 

0x5830 MASTR3 0.0566 0.0423 

0x5832 MASTR4 0.0578 0.0419 

0x5834 MASTR5 0.0578 0.0356 

0x4430 MASTR6 0.0523 0.0412 

0xd220 MAWHE1 0.0442 0.043 

0xd221 MAWHE2 0.0474 0.0421 

0xf020 MAENG1 0.0465 0.0325 

0xf021 MAENG2 0.049 0.034 

0xf022 MAENG3 0.0546 0.0398 
 

Utilities segment message latencies; MilCAN segment 500kbit 
MilCAN backbone 500kbit, routing Ethernet backbone 

  SEGU to SEGA 

ID Message high HRT low HRT 

0x5501 MUGPS1 0.0212 0.0197 

0x5502 MUGPS2 0.0211 0.02 

0x5503 MUGPS3 0.0224 0.0155 

0x5030 MUPWR1 0.0229 0.0176 

0x5936 MUSNS1 0.0167 0.0125 
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Automotive segment message latencies; MilCAN segment 500kbit 
MilCAN backbone 500kbit, routing MilCAN/Ethernet backbone 

  SEGA to SEGU 

ID Message high HRT low HRT 

0x3e30 MAPED1 0.0607 0.0381 

0x3e32 MAPED2 0.0612 0.0408 

0x5e30 MAPED3 0.0408 0.0158 

0x3e34 MASTR1 0.0656 0.0469 

0x3e36 MASTR2 0.0695 0.0513 

0x5830 MASTR3 0.042 0.0247 

0x5832 MASTR4 0.0421 0.0256 

0x5834 MASTR5 0.0422 0.0262 

0x4430 MASTR6 0.0683 0.0476 

0xd220 MAWHE1 0.0647 0.0555 

0xd221 MAWHE2 0.0629 0.0481 

0xf020 MAENG1 0.0662 0.048 

0xf021 MAENG2 0.0691 0.0552 

0xf022 MAENG3 0.0722 0.0555 
 

Utilities segment message latencies; MilCAN segment 500kbit 
MilCAN backbone 500kbit, routing MilCAN/Ethernet backbone 

  SEGU to SEGA 

ID Message high HRT low HRT 

0x5501 MUGPS1 0.0659 0.057 

0x5502 MUGPS2 0.0662 0.0569 

0x5503 MUGPS3 0.0657 0.0543 

0x5030 MUPWR1 0.0305 0.0568 

0x5936 MUSNS1 0.025 0.0268 
 

Automotive segment message latencies; MilCAN segment 500kbit 
MilCAN backbone 250kbit, routing MilCAN backbone 

  SEGA to BBONE BBONE to SEGU SEGA to SEGU 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x3e30 MAPED1 0.0418 0.0254 0.0231 0.0175 0.0635 0.0446 

0x3e32 MAPED2 0.0434 0.0267 0.0233 0.0182 0.0649 0.0462 

0x5e30 MAPED3 0.0509 0.0207 0.0236 0.0175 0.0707 0.039 

0x3e34 MASTR1 0.0447 0.0305 0.0228 0.0212 0.0664 0.0543 

0x3e36 MASTR2 0.0487 0.0324 0.0238 0.023 0.07 0.0575 

0x5830 MASTR3 0.0446 0.0293 0.0228 0.0202 0.0638 0.0513 

0x5832 MASTR4 0.0453 0.0298 0.0225 0.0205 0.0674 0.0521 

0x5834 MASTR5 0.0456 0.03 0.0227 0.0207 0.0692 0.0524 

0x4430 MASTR6 0.0472 0.0318 0.024 0.0221 0.0696 0.0554 

0xd220 MAWHE1 0.0465 0.0351 0.0228 0.0236 0.0658 0.0588 

0xd221 MAWHE2 0.0448 0.0315 0.0233 0.0224 0.0642 0.0574 

0xf020 MAENG1 0.0457 0.0313 0.0229 0.0222 0.0669 0.0555 

0xf021 MAENG2 0.0468 0.0352 0.0232 0.024 0.0692 0.061 

0xf022 MAENG3 0.0502 0.0346 0.0237 0.0247 0.0715 0.0611 
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Utilities segment message latencies; MilCAN segment 500kbit 
MilCAN backbone 250kbit, routing MilCAN backbone 

  SEGU to BBONE BBONE to SEGA SEGU to SEGA 

ID Message high HRT low HRT high HRT low HRT high HRT low HRT 

0x5501 MUGPS1 0.0189 0.0205 0.0455 0.0386 0.063 0.062 

0x5502 MUGPS2 0.0217 0.0209 0.0471 0.0385 0.0694 0.0621 

0x5503 MUGPS3 0.0239 0.0199 0.045 0.0382 0.0699 0.0593 

0x5030 MUPWR1 0.0229 0.0128 0.0426 0.0348 0.0691 0.0535 

0x5936 MUSNS1 0.0195 0.0153 0.0464 0.021 0.0644 0.037 
 

Automotive segment message latencies; MilCAN segment 500kbit 
MilCAN backbone 250kbit, routing MilCAN/Ethernet backbone 

  SEGA to SEGU 

ID Message high HRT low HRT 

0x3e30 MAPED1 0.0621 0.0385 

0x3e32 MAPED2 0.0634 0.0401 

0x5e30 MAPED3 0.04 0.0162 

0x3e34 MASTR1 0.0668 0.0468 

0x3e36 MASTR2 0.07 0.0504 

0x5830 MASTR3 0.041 0.0238 

0x5832 MASTR4 0.0411 0.0243 

0x5834 MASTR5 0.0412 0.0245 

0x4430 MASTR6 0.0709 0.046 

0xd220 MAWHE1 0.0675 0.0525 

0xd221 MAWHE2 0.0507 0.049 

0xf020 MAENG1 0.0673 0.0484 

0xf021 MAENG2 0.0714 0.054 

0xf022 MAENG3 0.0735 0.0539 
 

Utilities segment message latencies; MilCAN segment 500kbit 
MilCAN backbone 250kbit, routing MilCAN/Ethernet backbone 

  SEGU to SEGA 

ID Message high HRT low HRT 

0x5501 MUGPS1 0.0644 0.0472 

0x5502 MUGPS2 0.0706 0.0472 

0x5503 MUGPS3 0.071 0.0443 

0x5030 MUPWR1 0.0269 0.0319 

0x5936 MUSNS1 0.0249 0.0258 
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