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SUMMARY 

The cyclooctane sesquiterpene lactone, asteriscanolide 1 (Figure 1), has attracted 

considerable interest in the chemical literature since San Feliciano and colleagues
1
 first 

reported its isolation from Asteriscus aquaticus L. To date, no pharmaceutical applications 

have been found for 1. However, the challenge offered by the construction of its 

cyclooctanoid core represents an important target for the development of methods directed 

towards the preparation of other related eight-membered ring-containing terpenoids with 

more interesting biological properties. 

 

Figure 1. Asteriscanolide. 

This thesis illustrates an investigation into the total synthesis of natural product 

asteriscanolide 1. Following up on the previous work established by Marsh,
2
 an approach to 

1 was designed, seeking to build a suitable framework for an intramolecular [3 + 2] nitrile 

oxide-olefin cycloaddition (INOC) as the pivotal synthetic step to assemble the medium-

sized ring.  

The INOC strategy was extensively investigated. As this remained unsuccessful, the 

investigation was extended to various other intramolecular strategies, including 

intramolecular [3 + 2] silyl nitronate-olefin cycloaddition (ISOC), samarium(II) iodide-

mediated cyclisation, radical-mediated cyclisation, and nitronate anion-epoxide cyclisation, 

which identified certain limitations that would hinder further progress. To this end, a 

second generation towards 1 incorporating ring-closing metathesis (RCM) and 

intermolecular nitronate anion-epoxide addition was designed. A detail discussion of the 

results is contained within.  
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11..11  NNaattuurraall  PPrroodduuccttss  
 

 ver the centuries, the scientific community have always been searching for 

natural products with biological activities that can contribute in the discovery and 

design of potential drugs for the treatment or prevention of life-threatening human 

diseases.
3,4

  

Natural compounds can be obtained from tissues of both terrestrial and marine sources, 

including plants, bacteria, fungi, vertebrates, and invertebrates.
4,5

 Thanks to the biodiversity 

of nature, a wide variety of natural products have been found, each of them with unique 

molecular architecture.
3,6

  

The separation methodology of the components of a mixture has been practised since the 

beginning of chemical science.
7
 However, the isolation and purification of natural origin 

products by traditional methods are frequently limited by a number of factors. Firstly, 

extraction of highly complex materials often involves expensive and time-consuming 

procedures. Secondly, unstable molecules may be sensitive to air, thermal, light or pH 

conditions. Finally, large-scale production of natural products is constrained due 

insufficient natural resources.
7,8

  

Organic chemistry plays a fundamental role in the study of synthesising naturally occurring 

products and their related analogues. Nonetheless, it was not until the 1950s when 

medicinal synthetic compounds were equally competing with their natural counterparts.
8
 

Recent studies have revealed that the key for discovering new drugs is to explore and 

understand nature at a molecular level, and combine it with the knowledge of organic 

synthesis, creating chemical concepts and implementing theoretical principles.
8,9

    

Although remarkable progress has been made, many of these natural products and their 

derivatives are currently in screening or clinical testing.
6
 Attention must be paid in the 

development of novel synthetic tools to obtain important bioactive molecules. 

  

O  
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11..22  CCyyccllooooccttaannooiiddss  

1.2.1 The Synthetic Challenge of Cyclooctanoid Systems 

Great interest and activity in the synthesis of compounds bearing medium-sized rings in 

their structure, particularly cyclooctanoids, has increased considerably during the last three 

decades due to their presence found in many biologically active natural products.
10-12

 The 

construction of eight-membered rings from acyclic precursors is considered to be an 

interesting challenge for synthetic organic chemistry since it involves several aspects that 

should be taken into consideration.
10-17

 In terms of the ring size, the ring closure of 

cyclooctanes by intramolecular cycloaddition reactions has demonstrated to be often more 

difficult to prepare than smaller or even larger cycles.
11,14

 This can be attributed to the high 

degree of strain and the transannular interactions develop unfavourable entropic and 

enthalpic effects, thus impeding the cyclisation to occur.
15-18

 Consequently, the synthetic 

strategies commonly used for the formation of other ring sizes, cannot always be applied on 

eight-membered ring systems.
10,11

 Indeed, the current synthetic methodology that has been 

developed for eight-membered ring compounds has only been aimed for specific targets, 

but a general pattern for their preparation still remains a mystery.
18

   

1.2.2 Conformations of Eight-Membered Rings 

There are various possible energetically stable conformations of the eight-membered ring 

(Figure 2). The interconversion of these forms depends directly on the nature of the 

substituents.
11,18

 

 

Figure 2. Conformations of eight-membered rings. 
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After exhausting studies with different molecules containing the eight-membered ring 

system, including spectroscopic methods, X-ray crystallography, and molecular mechanics 

calculations, it has been clear that the most stable conformation is predominately the boat-

chair conformation, which is in equilibrium with the crown conformation (Scheme 1).
11,20 

The boat-chair conformation, which bears two eclipsed ethane linkages, tends to reduce the 

transannular nonbonded repulsions, and has the lowest-energy torsional strain.
11,19

 

 

Scheme 1. Equilibrium of the eight-membered ring. 

1.2.3 Strategies for the Formation of Cyclooctanoids 

There are several strategies that can be used for the synthesis of eight-membered 

carbocycles. These strategies fall into three main categories according to the chemical 

transformation in which ring is generated: fragmentation, ring expansion, and C-C bond 

formation reactions.
11

  Among these synthetic strategies, C-C bond formation reactions 

offers the possibility of creating  a new ring in one step, while fragmentation and ring 

expansion reactions already requires a pre-existing ring. The direct formation of 

cyclooctanoid compounds can be accomplished through C1-C8 ring closure cyclisations, 

cycloadditions, and coupling reactions.
10,11

   

Cycloaddition reactions, especially higher-order cycloaddition reactions, are one of the 

most attractive and versatile methods for the synthesis of carbocyclic systems.
10

 These 

types of reactions have become an efficient route to obtain complex cyclooctanoids with 

extensive functionality and good control of stereocentres in a single step.
12,18

  

1.2.4 The Occurrence of Cyclooctanoids in Nature 

Frequently, naturally occuring cyclooctanoids present the eight-membered ring fused or 

bridged to other smaller rings, and can also contain double bonds or other 
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group

functionalities. The majority of these polycyclic cyclooctanes are located in the 

natural class of the terpenes, lignans, and some pigments.
10,11

 In nature, there are over a 

hundred products that contain the eight-membered ring.
10,13

 These have been found and 

isolated from terrestrial plants, marine organisms, pathogenic fungi, and insects.
10

 

Illustrative examples of selected cyclooctanoids widely distributed in nature are shown in 

Table 1
I
. Terpene ceroplastol 2 is found in the wax secreted by certain species of scale 

insect Ceroplastes to avoid desiccation.
21

 Most cyclooctanoid lignans are found in plants, 

like schizandrin 3, a dibenzocyclooctadiene lignan isolated from the fruit seeds of 

Schizandra chinensis Baill.
22

 In the class of pigments, a unique cyclooctadiene red indole 

chlorophyte pigment, caulerpin 4, can be obtained from the green algal genus Caulerpa.
23 

Terpene Lignan Pigment 

 

 
 

 
 

 

 
Ceroplastes rusci 

 

 

 
 

 

 
Schizandra chinensis 

 

 
 

 

 
 

 

 
Caulerpa racemosa 

Table 1. Selected examples of terpene, lignan, and pigment cylooctanoids in nature. 

                                                 
I 
Image sources: In order from left to right http://test2macroinstantes.blogspot.com/2007/04/cochinilla.html,  

http://www.dinophoto.sk/medicinal.htm, and http://www.reefcorner.com/SpecimenSheets/caulerpa.htm 

Used with kind permission of photographers Javier Gállego, Dionyz Dugas, and Ken Hahn, respectively.  

http://test2macroinstantes.blogspot.com/2007/04/cochinilla.html
http://www.dinophoto.sk/medicinal.htm
http://www.reefcorner.com/SpecimenSheets/caulerpa.htm
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11..33  TTeerrppeenneess  

1.3.1 Terpene Definition and the Isoprene Rule 

Terpenes, also referred as isoprenoids, are a large class of cyclic and acyclic natural 

products, and their basic structure is based on the repetition of isoprene (2-methyl-1,3-

butadiene) units (Figure 3). Following the isoprene rule,
24

 terpenoids are divided into 

families depending on the number of isoprene residues from which they are biologically 

derived; sometimes certain atoms can be added or lost.
25

 The general molecular formula is 

(C5H8)n where n is the number of linked isoprene units. For example, C5-hemiterpenes are 

made from one isoprene unit, C10-monoterpenes consist of two isoprene units, C15-

sesquiterpenes contain three, C20-diterpenes four, C25-sesterterpenes five, C30-triterpenes 

six, C40-tetraterpenes have eight, and molecules with more than eight isoprene units are 

named polyterpenes.  

 
 

Figure 3. Isoprene. 

1.3.2 Ring Systems of Cyclooctanoid Terpenes 

The most notable cyclooctanoid terpene ring systems in the category of the 

sesquiterpenoids are precapnellane 5, asteriscane 6, and neolemnane 7.
 
From the family of 

the diterpenoids, taxane 8 has received the most attention while rare C20-diterpene systems 

such as basmane 9 and crenulane 10 have also been identified. In addition, there are 

numerous types of diterpenes from the polycyclic fusicoccane 11, and many can be found 

in higher plants. Members of the sesteterpenoid group mainly have structures characterised 

by functionalised 5-8-5 tricycle ring system. The ophiobolane 12 skeleton belongs to the 

family of the C25-sesteterpenoids. Numbering sequence of these ring systems are shown 

(Figure 4).
11

  



Introduction 

 7 

 

Figure 4. Common ring systems of cyclooctanoid terpenes. 

1.3.3 Biological Activities of Cyclooctanoid Terpenes 

Presently, many terpenoids possessing the eight-membered carbocycle in their molecular 

system exhibit potential biological applications, from anticancer agents, to anti-fungal and 

antibiotics. Many are utilised in the agricultural and pharmaceutical industry, and others 

have been very useful as product targets for a significant number of synthetic endeavours. 

Table 2 provides a list of important biological activities found on different cyclooctanoid 

terpenes. 
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Terpene family Cyclooctanoid terpene Biological activity 

Diterpene 

 

Phytotoxic
26 

Diterpene 

 

Cardiotoxic
27 

Triterpene 

 

Anti-HIV
28 

Diterpene 

 

Termite defence 

secretion
29 

Sesteterpene 

 

Nematocidal
30 

Table 2. Biological activities of selected cyclooctanoid terpenes.  
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Diterpene 

 

Antibacterial
31 

Diterpene 

 

Antihypertensive
32 

Sesquiterpene 

 

Antiinflamatory and 

antipyretic
33

 

 

Diterpene 

 

Anticancer
34

  

Sesteterpene 

 

Angiotensin II antagonist 

and immunosuppressive
35

 

Table 2. Biological activities of selected cyclooctanoid terpenes (continuation).  
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11..44  CCyyccllooooccttaannee  SSeessqquuiitteerrppeennooiiddss  

1.4.1 Fused Ring Systems of Cyclooctane Sesquiterpenoids 

Most of the natural sesquiterpenes bearing eight-membered rings have been isolated from 

marine sources. Their molecular structure generally presents fused cyclooctanes, in many 

cases incorporating bicyclic 5,8-fused ring systems. Dactylol 23,
36,37

 poitediol 24,
38

 and 

precapnelladiene
 
25

39
 are among the first to be synthesised of this kind of cyclooctanoid 

sesquiterpenes. More recently, less common 6,8-fused ring systems such as neolemnalyl 

acetate
 
26,

40
 and parvifoline 27

41
 have also been synthesised (Figure 5).  

 

Figure 5. Synthesised cyclooctane sesquiterpenoids. 
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1.4.2 Selected Synthesis of 5,8-Fused Ring System Sesquiterpenes  

1.4.2.1 Dactylol 23

 

Dactylol 23 was first isolated from the Caribbean sea hare known as Aplysia dactylomela
42

 

(Figure 6
II
) and later in the red seaweed Laurencia poitei.

43 

 

Figure 6. Aplysia dactylomela. 

In 1985, Gadwood
36

 converted (±)-dactylol 23 from synthetic poitediol 24 under Birch 

conditions
44

 (Scheme 2). 

 

Reagents and conditions: (a) Na-liquid NH3, EtOH, 70%. 

Scheme 2. Gadwood‟s conversion of poitediol 24 to dactylol 23. 

                                                 
II

 Image source: http://seaslugs.free.fr/nudibranche/a_aply_dactylomela.htm Used with kind permission of 

Philibert Bidgrain. 

http://seaslugs.free.fr/nudibranche/a_aply_dactylomela.htm
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During the same year, Matsumoto‟s group
37

 converted africanol 28 to sesquiterpene 23 

through a formal 1,2-shift of a methyl group (Scheme 3). Dehydration of 28, followed by 

epoxidation of the resultant mixture of two tetrasubstituted olefins gave oxirane 29, which 

was subsequently treated with boron trifluoride diethyl etherate to afford trans-fused 

alcohol 30. Finally, selective hydrogenation on the five-membered ring formed dactylol 23. 

 

Reagents and conditions: (a) POCl3, py, 70 ºC → 90 ºC, 1 h, (1:1); (b) m-CPBA, CH2Cl2, RT, 5 min, 42% 

(over two steps); (c) BF3∙OEt2, -10 ºC, 30 min, 18%; (d) H2/PtO2, EtOH, RT, 9 h, 90%. 

Scheme 3. Matsumoto‟s conversion of africanol 28 to dactylol 23. 

Later that year Paquette and colleagues
45

 published a formal total synthesis of C15-dactylol 

23 (Scheme 4). Ring expansion of cyclohexanone 31 by the Saegusa method
46

 gave rise to 

cycloheptenone 32, which was subjected to a Simmons-Smith cyclopropanation.
47,48

 Aldol 

condensation, acetylation, and β-elimination afforded 33. Reduction of 33 with the Luche 

reagent
49

 and subsequent heating of the resulting β-alcohol with triehtylorthoacetate, 

followed by saponification produced carboxylic acid 34. The corresponding acid chloride 

was prepared and exposed to stannic chloride, generating a mixture of cyclopentenones, 

which under standard dithioketalisation procedure, gave a favorable ratio of 35 and 36. 

Sequential Raney nickel desulfurization and epoxidation was performed to yield key 

intermediate 29, as synthesised by Matsumoto‟s research group.
37
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Reagents and conditions: (a) Et3N, TMSCl; (b) n-BuLi, Cl2CHCH3; (c) PhMe, ∆, 71% (over three steps); (d) 

HOCH2CH2OH, H
+
, 83%; (e) C2H5ZnI, CH2I2, 92%; (f) H3O

+
, quant.; (g) LICA, CH3CHO, 79%; (h) Ac2O, 

Et3N, 96%; (i) DBU, PhH, ∆, 93%; (j) NaBH4, CeCl3∙7H2O; (k) CH3C(OC2H5)5, propionic acid, ∆, 72%; (l) 

KOH; (m) (COCl)2; (n) SnCl4, ClCH2CH2Cl, 0 ºC, 96%; (o) HSCH2CH2SH, TsOH, 35/36 (83:17); (p) RaNi, 

EtOH; (q) m-CPBA, 27% (over three steps); (r) BF3∙Et2O, 0 ºC; (s) H2, PtO2, EtOH. 

Scheme 4. Paquette‟s total synthesis of dactylol 23. 

Molander and Eastwood
50 

developed the total synthesis of (+)-dactylol 23 via a Novel [3 + 

5] annulation (Scheme 5). Cyclopentenone 37 with a trimethylsilyl enol ether in the 

presence of a mixed Lewis acid system formed the dicarbonyl compound 38. Annulation of 

38 using β-dicarbonyl-1,3-dianionic equivalent led to a mixture of keto-enol tautomers of 

39. Decarboxylation of 39 and a subsequent methylenation with Tebbe‟s reagent
51

 gave 

access to 40, which was subjected to an isomerisation procedure. Target (+)-dactylol 23 

was obtained when mixed olefins were treated with a dissolving metal reduction. 
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Reagents and conditions: (a) (CH)2C=CHOSiMe3, TiCl4, Ti(Oi-Pr)4, CH2Cl2, -95 ºC, 83%; (b) 

CH2=C(OTMS)CH=C(OTMS)OMe, TrSbCl6, CH2Cl2, -78 ºC, 77%; (c) NaCl, DMSO, H2O, 140 ºC, 84%; (d) 

Cp2TiClCH2Al Me2, THF, 0 ºC, 92%; (e) RhCl3∙3H2O, 70 ºC, 96%; (f) Li, H2N(CH2)2NH2, DME, 40 ºC, 25%.  

Scheme 5. Molander and Eastwood‟s total synthesis of dactylol 23. 

The stereoselectivity of this annulation reaction can be explained by the unprecedented 

neighboring group participation mechanism, involving a cylic oxocarbenium ion 

intermediate that served as a template for diastereoselective carbon-carbon bond formation. 

Confirmation of the complete regio- and stereoselectivity was demonstrated by the 

functionalisation of 39 to furnish the single enol acetate 41 (Scheme 6). 

 



Introduction 

 15 

 

Reagents and conditions: (a) Ac2O, DMAP, py, 90%. 

Scheme 6. Molander and Eastwood‟s synthesis of precursors 39 and 41.  

Fürstner and Langemann
52

 developed a concise total synthesis of racemic dactylol 23 

featuring a ring-closing metathesis as the key step for the preparation of the eight-

membered ring (Scheme 7). Reaction of cyclopentenone 42 with lithium dimethyl cuprate, 

followed by the addition of commercially available 2,2-dimethyl-4-pentenal in order to trap 

nonequilibrating enolate 43, gave 44. Dehydration, and a subsequent chemo- and 

diastereoselective hydrogenation led to 1,2-trans-ketone 45, which was converted to the 

protected tertiary alcohol 46 bearing a methallyl side chain. Cyclisation of the silylated 

alcohol 46 by RCM was accomplished using Schrock‟s catalyst.
53

 Workup of 46 with an 

aqueous solution of tetra-n-butylammonium fluoride gave access to (±)-dactylol 23 in 17% 

overall yield.    
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Reagents and conditions: (a) MeLi, CuI, Bu3P, Et2O, -78 ºC (1 h) → -40 ºC (2.5 h); (b) 

CH2=CHCH2C(CH3)2CHO, -78 ºC → RT, 77%; (c) CH3SO2Cl, DMAP, CH2Cl2, 35 ºC, 18 h, 85%; (d) 

Bu3SnH, ZnCl2, Pd(PPh3)4, THF, RT, 20 min, 83%; (e) methallyl bromide, Mg-graphite, THF, 65 ºC, 30 min; 

CeCl3, -78 ºC, 2 h, 80%; (f) (Me3Si)2NH, acetyl chloride,  DMAP, 93%; (g) molybdenum carbene (3 mol%), 

hexane, 55 ºC, 3 h; aq TBAF, THF, 50 ºC, 3 h, 92%. 

Scheme 7. Fürstner and Langemann‟s total synthesis of dactylol 23.     

In 2000, Harmata and Rashatasakhon
54

 illustrated the synthesis of (+)-23 incorporating an 

intramolecular [4 + 3] cycloaddition reaction (Scheme 8). Alkylation of the 

enantiomerically pure ketoester 47 with iododiene 48 gave the cycloaddition precursor 49. 

Removal of the carbomethoxy group via a Krapcho procedure
55,56

 afforded ketone 50. 

Chlorination of the lithium enolate of 50 with triflyl chloride, exposure of the resultant 

chloroketone to triethylamine in a 1:1 mixture of trifluoroethanol and diethyl ether, and 

addition of tosic acid afforded cycloadduct 51. The major isomer of 51 underwent a 

cyclopropanation using the Simmons-Smith methodology,
47,48

 which after a Baeyer-

Villiger reaction
57

 and hydrogenation procedure formed 52. Hydrolysis of 52 and 

esterification of the corresponding hydroxy acid generated hydroxy ester 53. The bicylic 

ester 54 was obtained after installation of the double bond, followed by saponification. 

Completion of the synthesis of (+)-23 was achieved through reduction of the resulting acid 

chloride of 54. 
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Reagents and conditions: (a) NaH; n-BuLi, 70%; (b) KCN, DMSO, ∆, 94%; (c) LDA, TfCl; (d) Et3N: 

TFE/Et2O (1:1); (e) p-TSA, (25:1), 74% (over three steps); (f) CH2I2, Et2Zn, 95%; (g) MMPP, DMF, 84%, (h) 

H2/PtO2, (4:1), 98%; (i) KOH; (j) CH2N2; (k) POCl3, HMPA, py; (l) KOH, 84% (over four steps); (m) COCl2, 

DMF; (n) m-CPBA, py, DMAP; (o) LAH, Et2O, 50% (over three steps). 

Scheme 8. Harmata and Rashatasakhon‟s total synthesis of dactylol 23.  
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1.4.2.2 Poitediol 24 

In 1978, sesquiterpene poitediol 24 was isolated along with dactylol 23 from the ethanol 

extracts of the red seaweed Laurencia poitei
43

 (Figure 7
III

). 

  

 

Figure 7. Laurencia poitei. 

Gadwood et al.
58

 published the total synthesis of poitediol 24 in a racemic form employing 

an anionic oxy-Cope rearrangement
59

 as the strategic step (Scheme 9). The stereoselective 

reduction of enone 55 gave trans-norcaranol 56, which after oxidation was converted to 57, 

followed by the addition of vinylmagnesium bromide and boron trifluoride etherate to form 

cyclobutanone 58. Reaction of 58 with lithium acetylide generated 59. A subsequent oxy-

Cope rearrangement of 59 furnished cyclooctadienone 60 upon heating under neutral 

conditions. Sequential treatment of 60 with methyl-lithium, oxidative rearrangement with 

pyridinium chlorochromate, and reaction with lithium dimethyl cuprate provided 

cyclooctadienone 61. Formation of the α-epoxide 62 was accomplished by reduction, 

benzylation, and epoxidation conditions. Addition of lithium triethylborohydride to 62, 

followed by protection of the alcohol, debenzylation, and Swern oxidation
60

 yielded ketone 

63. Introduction of the α-methylene group and subsequent reduction gave 64. The synthesis 

of (±)-poitediol 24 was achieved after the desilylation of alcohol 64. 

 

                                                 
III 

Image sources: http://www.lionfishlair.com/ourtanks/100gvolitan.shtml Used with kind permission of 

photographer Renee Coles-Hix.  

http://www.lionfishlair.com/ourtanks/100gvolitan.shtml
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Reagents and conditions: (a) DIBAL-H, Et2O, -100 ºC; (b) Et2Zn, CH2I2, O2; (c) PCC, CH2Cl2, 69% (over 

three steps); (d) CH2=CHMgBr, PhH; (e) BF3∙Et2O, Et2O, 54% (over two steps); (f) LiC≡CH, THF, -30 ºC, 5 

min; (g) 50 ºC, 3 h,  50% (over two steps); (h) MeLi, Et2O, -78 ºC; (i) PCC, CH2Cl2; (j) LiMe2Cu, Et2O, 53% 

(over three steps); (k) LAH, Et2O, -78 ºC; (l) KH, PhCH2Br, Bu4NI, THF; (m) m-CPBA, CH2Cl2; (n) LiEt3, 

BH, THF, 50 ºC, 66% (over four steps); (o) SEMCl, i-Pr2NEt, THF, 50 ºC; (p) Na, NH3; (q) ClCOCOCl, 

Me2SO, -78 ºC; i-Pr2NEt, 79% (over three steps); (r) LDA, THF; CH2O; (s) MsCl, i-Pr2NEt, 46% (over two 

steps); (t) i-Bu3Al, hexane, 25 ºC, 41%; (u) 0.1 M HCl in MeOH, 76%. 

Scheme 9. Gadwood‟s total synthesis of poitediol 24. 

It was not until 2009 when Vanderwal and co-workers
61

 synthesise (+)-poitediol 24 by 

employing allylsilane ring-closing metathesis and electrophilic desilylation as the pivotal 

operation for the construction of the eight-membered ring (Scheme 10). The synthesis of 45 

was adapted from the previous dactylol synthesis reported by Fürstner and Langemann.
52

 

Indium-mediated allylation of ketone 45 with [2-(iodomethyl)allyl]trimethylsilane and a 
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subsequent in situ silylation afforded diene 65, which was treated with Grubbs (2
nd

 

generation) catalyst
62

 to produce cylooctene 66, followed by stereoselective epoxidation. 

The corresponding silyl epoxide was decomposed upon fluoride-mediated elimination with 

concomitant silyl ether cleavage to complete the synthesis of (+)-24 in 18% overall yield.       

 

Reagents and conditions: (a) ICH2C(CH2)CH2Si(CH3)3, In
0
, DMF, 0 ºC, 1.5 h; TMSCl, DMAP, imidazole,    

0 ºC → RT, 4 h, 55%; (b) Grubbs (2
nd

 generation) catalyst, CH2Cl2, ∆, 7 h; (c) m-CPBA, 0 ºC, 1 h; (d) TBAF, 

THF, 30-33 ºC, 18 h, 46% (over three steps). 

Scheme 10. Vanderwal‟s total synthesis of poitediol 24. 
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1.4.2.3 Precapnelladiene 25 

Cyclooctanoid sesquiterpene precapnelladiene 25 was isolated from the non-polar extracts 

of the soft coral Capnella imbricata
63

 (Figure 8
IV

).
 
 

 

Figure 8. Capnella imbricata. 

In 1985, Paquette et al
64

 described a stereocontrolled total synthesis of (±)-25 using a 

Claisen rearrangement
65,66

 as the key transformation of the medium-sized ring (Scheme 

11). Thermal ene cyclisation of 67 has been demonstrated previously by Conia‟s group.
67 

The resulting bicycled ketone was subjected to a Baeyer-Villiger oxidation,
57

 followed by 

methylation to afford 68, which was treated with substoichiometric quantities of methoxide 

ion with buffered PCC to afford epimerically pure keto ester 69. Treatment of 69 with 2-

methylpropen-1-yllithium produced 70. Addition of Tebbe‟s reagent
51

 gave 71. 

Thermolysis of 71 led to key intermediate 72. Regiocontrolled conversion of the carbonyl 

group in 72 to a double bond was prepared to access tosylhydrazone 73. Decomposition 

gave mainly less-substituted olefin 74 and 25 as the minor component. Subsequent rhodium 

trichloride-promoted isomerisation allowed the formation of (±)-25.       

                                                 
IV

 Image source: http://www.pbase.com/the_underwater_world/image/68566250 Used with kind permission 

of photographer Danielle Caceres-Bricheno.  

http://www.pbase.com/the_underwater_world/image/68566250
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Reagents and conditions: (a) 325 ºC, 1.5 h; (b) m-CPBA, CH2Cl2, 76%; (c) DIPA, THF, n-BuLi, CH3I, 87%; 

(d) NaOCH3, MeOH; PCC, NaOAc, 71%; (e) LiCH=C(CH3)CH3, Et2O, -78 ºC, 58%; (f) Tebbe‟s reagent, 

PhMe; (g) 200 ºC, 48 h, 67% (over two steps); (h) tosylhidrazine, MeOH, HCl, 96%; (i) n-BuLi, diglyme, ∆, 

74/25 (3:1),  94%; (j) RhCl3, EtOH, ∆, 45%. 

Scheme 11. Paquette‟s total synthesis of precapnelladiene 25.  

Mehta‟s and colleagues
68

 synthesised (±)-sesquiterpene 25 from triquinane precursor 75 

(Scheme 12). Subjecting the readily available tricyclic bis-enone 76 to relocation of one of 

the enone moieties, partial hydrogenation, and selective Wittig olefination
69

 gave rise to 77, 

which after stereoselective hydrogenation over rhodium-carbon catalyst, thiacetalization, 

and desulfurization to deoxygenate formed olefin 75. Catalytic ruthenium dioxide oxidation 

employing Sharpless conditions
70

 gave biclyclic dione 78, which was subjected to 

chemoselective Wittig olefination, followed by two successive regioselective methylations 

to access 79. Isomerisation was achieved with a rhodium catalyst to produce 80. Sequential 

metal hydride reduction and dehydration of the resulting 81 yielded (±)-25.  
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Reagents and conditions: (a) RhCl3∙3H2O, EtOH, 70%; H2-10%, Pd/C, EtOAc, quant.; (b) Ph3P
+
MeI

-
, NaO-t-

C5H11, PhMe, 85%; (c) H2-5%, Rh/C-EtOH, 90%; (d) HSCH2CH2SH-p-MeC6H4SO3H, PhH, 80%; (e) Na-

liquid NH3, 65%; (f) RuO2, NaIO4, CCl4, MeCN, H2O, 80%; (g) (Me2Si)2NH, n-BuLi, MeI, -78 ºC, THF, 

92%; (h) (i-Pr)2NH, n-BuLi, MeI, -78 ºC, THF, 67%; (i) RhCl3∙H2O, EtOH, 80%; (j) LAH, Et2O, 80%; (k) 

POCl3, DBU, py, 70%. 

Scheme 12. Mehta‟s total synthesis of precapnelladiene 25.   

Another Claisen rearrangement
65,66

 strategy was employed in 1990 by Petasis and Patane
71

 

for the total synthesis of racemic 25 (Scheme 13). The synthesis commenced with the 

conjugate addition of 82 with lithium dimethylcuprate, affording the silyl enol ether 83, 

which was subjected to a Mukaiyama aldol reaction
72

 to give precursor 84. Formation of 

the enol ether 85 was accomplished when 84 was treated under Baeyer-Villiger reaction 

conditions,
57

 dehydration, and methylenation conditions. Thermolysis of 85 led to 

cyclooctanone 86. Methylenation of 85 with dimethyl titanocene gave access to diene 87. 

Synthesis of (±)-precapnelladiene 25 was completed after catalytic isomerisation. 
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Reagents and conditions: (a) Me2CuLi, TMSCl, THF, TMEDA, 89%; (b) TiCl4, CH2Cl2, (±)-2-

methylcyclopentanone, 93%; (c) m-CPBA, NaHCO3, CH2Cl2, quant.; (d) MsCl, Et3N, DMAP; (e) Cp2TiMe2, 

THF, 60 ºC; (f) PhMe, 185 ºC, 45%; (g) Cp2TiMe2, THF, 60 ºC, 92%; (h) RhCl3, EtOH, 50 ºC. 

Scheme 13. Petasis and Patane‟s total synthesis of precapnelladiene 25.  

The Claisen rearrangement of 85 occurred with high stereoselectivity. The chair-chair 

transition state was favored over the chair-boat transition state (Figure 9). 

 

Figure 9. Petasis and Patane‟s transitions states of precursor 85. 

Moore‟s research group
73

 published an alternative to synthesise (±)-sesquiterpene 25 via a 

tandem anionic oxy-Cope
74

 rearrangement (Scheme 14). Treatment of diisopropyl squarate 

88 with 1-lithio-2-methylpropene, followed by TFAA and aqueous workup afforded 89. 

Selective reduction of the more electrophilic carbonyl group produced 90. The precursor 91 

was obtained in one-pot operation by the addition of 4-lithio-1-butene to the vinylogous 

ester in 90 and acid hydrolysis of the resulting β-hydroxyl enol ether. Trimethylsilylation 

and thermal rearrangement formed bicyclo[3.2.0]heptanone 92, which was then treated 

with aqueous acid, chemoselective thioacetalization, and desulfurization conditions to 
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generate 93. The subsequent addition of vinyllithium induced the oxy-Cope expansion in a 

regioselective manner, trapping the resultant enolate with diphenyl chlorophosphate to form 

94. Subjecting 94 to trimethylaluminium in the presence of substoichiometric amount of 

Pd[PPh3]4 completed the synthesis of (±)-25 with an overall yield of 12%.   

 

Reagents and conditions: (a) LiCH=C(CH3)CH3; TFAA; NaHCO3, H2O, 94%; (b) LiAlH-(t-OBu)3, 93%; (c) 

CH2=CHCH2CH2Li; 1 M HCl, 80%; (d) TMSCl, Et3N; 138 ºC, 76%; (e) TBAF, H2O; HS(CH2)3SH; RaNi 

(W-2), 57%; (f) LiCH=CH2, -78 ºC →  RT; ClPO(OPh)2, 47%; (g) Pd[P(Ph)3]4, AlMe3, 78%. 

Scheme 14. Moore‟s total synthesis of precapnelladiene 25.  

Ito and Iguchi
75

 have more recently developed an enantioselective formal synthesis of (+)-

25 (Scheme 15). Chiral copper-catalysed enantioselective [2 + 2] cycloaddition reaction of 

95 with a bis-pyridine lignan 96 gave compound 97. Subsequent introduction of the methyl 

group was accomplished in a stereoselective manner by treating 97 with a Wittig reagent,
69 

followed by reductive conditions to obtain the corresponding alcohol 98.  Coordination of 

the hydroxyl group at the angular position with the Wilkinson catalyst
76

 for hydrogenation 

of 98 access compound 99 with high diastereoselectivity. Oxidation of the hydroxyl group 

using Dess-Martin periodinane,
77

 followed by the Wittig reaction of the resultant aldehyde 
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produced 100, which was hydrolysed to generate precursor 93, identical to that reported by 

Moore‟s group.
73

 

 

Reagents and conditions: (a) HC≡CSPh, 96, CuCl2, AgSbF6, CH2Cl2, -78 ºC, 73%, 68% ee; (b) 

methyltriphenylphosphonium bromide, n-BuLi, Et2O, 0 ºC, 76%; (c) LAH, Et2O, 0 ºC, 98%; (d) Rh(PPh3)3Cl, 

H2, CH2Cl2, RT, 66%, (11:1); (e) DMP, NaHCO3, CH2Cl2, RT, 88%; (f) isopropyltriphenylphosphonium 

iodide, n-BuLi, THF, -78 ºC, 86%; (g) HgCl2, MeCN, H2O, 70 ºC, 20%; (h) LiCH=CH2, -78 ºC →  RT; 

ClPO(OPh)2; (i) Pd[P(Ph)3]4, AlMe3. 

Scheme 15. Ito and Iguchi‟s total synthesis of precapnelladiene 25.  
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11..55  AAsstteerriissccaannoolliiddee  11

  

1.5.1 Isolation and Structural Elucidation of Asteriscanolide 1 

In 1985, San Feliciano and co-workers
1
 published the isolation of cyclooctane 

sesquiterpene lactone asteriscanolide 1 from the hexane extract of a plant known as 

Asteriscus aquaticus L (Figure 10
V
), a sweet fragrant plant from the Compositae family, 

commonly named as golden star that grows annually in the Mediterranean territory.  

 

Figure 10. Astericus aquaticus.  

Although several synthetic substances possessing an identical carbon framework of 1 were 

reported before in the literature,
78,79

 up to that time, no natural product had appeared with 

that specific skeletal arrangement. San Feliciano called the bicyclic compound asteriscane 6 

(Figure 11).      

                                                 
V

 Image source: http://www.planetefleurs.fr/Systematique/Asteraceae/Asteriscus_aquaticus.htm Used with  

kind permission of photographer Christian Bravard.  

http://www.planetefleurs.fr/Systematique/Asteraceae/Asteriscus_aquaticus.htm
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Figure 11. Asteriscane. 

The natural product asteriscanolide 1, was isolated as a crystalline solid (mp 178 ºC; [α]D 

12.1º (CHCl3)) of the (+)-enantiomer by repeated chromatography of a methanol defatted 

hexane extract of the aforementioned. The structural elucidation of 1 was performed by IR, 

EIMS, NMR, and X-ray experiments.     

The EIMS study displayed M
+
 at m/z= 250, corresponding to the formula C15H22O3, and the 

IR spectrum showed absorption of γ-lactone and ketone groups (1770, 1705 cm
-1

). 

Confirmation of the structure was supported by the data from several detailed 2D-NMR 

studies. The relative stereochemistry of ring junctions was deduced from the values of 

proton coupling constants, being all cis, which was proved by analysis of reduction 

products. Treatment of 1 with an excess of lithium aluminum hydride gave rise to the 

formation of asteriscaneacetal 101, as well as the expected asteriscanetriol 102 (Figure 12).  

 

Figure 12. San Feliciano‟s reduction products from asteriscanolide 1. 

Final structural assignment and absolute configuration of 1 were determined by a single 

crystal X-ray diffraction experiment. Molecule 1 consisted of five stereocentres, four of 

which were contiguous, and a bicyclo[6.3.0]undecane ring system bridged by a 

butyrolactone ring fragment. The cyclooctane ring adopted an almost boat conformation 

and the pentagonal rings displayed envelope conformations typical of such rings.  
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1.5.2 Previous Total Syntheses of Asteriscanolide 1 

1.5.2.1 Wender‟s Synthesis 

In 1988, Wender et al.
80

 reported the first total synthesis of sesquiterpene lactone (+)-

asteriscanolide 1 based on a nickel-catalysed intramolecular [4 + 4] cycloaddition 

reaction
14,81

 as the strategic step for the formation of the eight-membered ring.  

The thirteen-step sequence started with acrolein 103, which was treated with isopropenyl 

lithium, followed by esterification with isobutyric anhydride, and subsequent regio- and 

stereoselective enolate Claisen rearrangement
82

 to afford diene acid 104. Conversion of the 

carboxylic acid to the aldehyde functionality was accomplished using LAH, followed by 

Swern oxidation procedure.
83

 It was after the addition of lithium vinylacetylide and an 

additional Swern oxidation when the introduction of asymmetry was facilitated by an 

enantioselective reduction of the resultant propargyl ketone employing a Darvon alcohol 

modified lithium hydride reagent
84

 to form the corresponding alcohol 105. 

Hydroalumination of the alkyne in 105 with Red-Al
®

 and stannylation of the resultant 

vinylaluminate furnished the mixture of stannanes 106 and 107. Transmetallation of mixed 

products 106 and 107 utilising n-butyllithium, followed by carboxylation and acidic 

workup yielded the desired cycloaddition precursor 108. The formation of cyclooctadiene 

109 was performed by treating bis-diene lactone 108 with Ni(COD)2 in the presence of 

triphenylphosphine with high stereoselectivity; less than 5% of [4 + 2] cycloadducts were 

observed. Selective conjugate reduction of 109 gave precursor 110. The introduction of the 

C-7 stereocentre was realised by face-selective hydroboration of 110 and in situ oxidation 

of the resulting borane with pyridinium chlorochromate giving access to (+)-1 in 2.7% 

overall yield (Scheme 16).                    
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Reagents and conditions: (a) isopropenyl Grignard, 57%; (b) isobutyric anhydride, 99%; (c) LDA, -78 ºC →  

0 ºC, 69%; (d) LAH, 93%; (e) DMSO, (COCl)2, Et3N, 88%; (f) LiC≡CCH=CH2, 88%; (g) DMSO, (COCl)2, 

Et3N, 89%; (h) LAH/Darvon, 95%, >98% ee; (i) Red-Al
®
; Me3SnCl, 83%; (j) n-BuLi; CO2, 56%; (k) 

Ni(COD)2, Ph3P, 90 ºC, 67%; (l) Red-Al
®
, CuBr, 74%; (m) BH3∙THF; PCC, 48%. 

Scheme 16. Wender‟s total synthesis of asteriscanolide 1.  

1.5.2.2 Paquette‟s Synthesis 

In 2000, Paquette and colleagues
85

 became the second group to develop a successful 

enantioselective total synthesis of (+)-1 using unprecedented Michael-Michael reaction 

sequence
86

 and ring-closing metathesis as the key bond-forming operations.  

The synthesis initiated with the lithium-halogen exchange of known bromoketal 111, 

followed by condensation of the vinyllithium reagent with (S)-(-)-menthyl p-

toluenesulfinate to give cyclopentenone 112. The preparation of bicyclic ester 113 was 

elaborated by chirality transfer from the enantiodefined sulfoxide substituent of 112 and 

subsequent Michael reaction with methyl 4-hydroxy-2-butynoate and potassium carbonate. 
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The Michael addition of the heteroatom-centred appeared to be asymmetrically inducted 

and the initial product of the 1,4-conjugate addition proved to be capable of subsequent 

intramolecular addition to the triple bond. Hence, the one-step fully controlled conversion 

of 112 to 113 set up two of the stereocentres of (+)-1 in a novel tandem process in modest 

yield (Scheme 17). 

 

Reagents and conditions: (a) n-BuLi; (S)-(-)-menthyl p-toluenesulfinate; CSA, aq acetone, 77%; (b) methyl 4-

hydroxy-2-butynoate, K2CO3, THF, 38%. 

Scheme 17. Paquette‟s synthesis of precursor 113. 

The carbon-sulfur bond cleavage and saturation of the olefinic linkage of 113 were 

accomplished in a one-pot face-selective hydrogenation with Raney nickel to afford keto-

ester 114, which was converted into triflate 115 in almost quantitative yield. Subjection of 

115 into a Stille coupling reaction
87

 gave diene 116 in good yield. After reduction and 

iodination conditions, the resulting iodide 117 was exposed to a copper-catalysed 

substitution with methallylmagnesium chloride to form triene 118 (Scheme 18). 
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Reagents and conditions: (a) H2, RaNi (150 psi), MeOH, 88%; (b) KHMDS, PhNTf2, THF, -78 ºC, 98%; (c) 

Bu3SnCHCH2, Pd2(dba)3, CHCl3, LiCl, THF, 95%; (d) LAH, 94%; MsCl, Et3N; NaI, 79%; (e) 

CH3C(CH2)CH2MgCl, CuI, THF, 0 ºC, 98%. 

Scheme 18. Paquette‟s synthesis of precursor 118.   

The RCM reaction produced cyclooctane 119 in high yield; subsequent photooxygenation 

of 119 in dicholoromethane and reduction of the resultant hydroperoxide gave diallylic 

alcohol 120. Dess-Martin oxidation,
77

 followed by hydrogenation of the resulting dienone 

afforded 121. The introduction of the final stereogenic centre by this hydrogenation was 

confirmed by the regioselective ruthenium tetraoxide oxidation to yield crystalline (+)-

asteriscanolide 1 (Scheme 19).         
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Reagents and conditions: (a) Grubbs (1
st
 generation) catalyst, CH2Cl2, ∆, 93%; (b) O2, TTP, CH2Cl2, hν; 

LAH, 61%; (c) DMP, CH2Cl2; (d) H2, 10% Pd/C (300 psi), EtOH, 67% (over two steps); (e) RuCl3, NaIO4, 

MeCN, CCl4, H2O, RT, 63%. 

Scheme 19. Paquette‟s total synthesis of asteriscanolide 1.  

1.5.2.3 Krafft‟s Synthesis 

During the same year as Paquette‟s synthesis, Krafft‟s research group
88

 published the total 

synthesis of (±)-asteriscanolide 1 and also presented a detailed account of the synthetic 

studies a year after.
89

  The synthetic route was achieved by an intermolecular Pauson-

Khand [2 + 2 + 1] cycloaddition reaction
90

 and a ring-closing metathesis as the key 

transformations. The strategy incorporates the cyclooctane stereogenic centre C-7 prior to 

the ring formation.     

Protection of the hydroxyl group in 3-butyn-1-ol 122, followed by formation of lithio 

alkyne with s-BuLi in THF and addition of ethyl chloroformate gave alkynoate 123. 

Treatment of alkynoate 123 with dicobalt octacarbonyl in petroleum ether produced 

dicobalt hexacarbonyl complexed alkyne 124, the cycloaddition precursor. Incremental 

addition of NMO to 124 with propene in dichloromethane led to cyclopentenone 125. 

Deprotonation of 125 using LHMDS/HMPA, followed by quenching the resultant HMPA-

complexed lithium enolate with methyl iodide afforded gem-dimethyl cyclopentenone 126. 
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Fluoride ion-mediated desilylation gave primary alcohol 127. Luche reduction
49

 and a 

subsequent acid-catalysed lactonisation afforded hydroxyl lactone 128. The protection of 

the hydroxyl group to the corresponding TBS ether improved facial selectivity, which after 

hydrogenation yielded the desired all-cis diastereoisomer 129 and isomer 130 (Scheme 20).  

 

Reagents and conditions: (a) TBSCl, Et3N, DMAP, 95%; s-BuLi, THF, -78 ºC, EtOCOCl, 70%; (b) 

Co2(CO)8, 0 ºC, petroleum ether, quant.; (c) NMO∙H2O, propene/CH2Cl2 (1:1), 92%; (d) LHMDS, -78 ºC, 

THF, HMPA; MeI, 94%; (e) HF/py, MeCN, quant.; (f) NaBH4/CeCl3∙7H2O; 2 M HCl/acetone (1:1), 88%; (g) 

TBSOTf, py, 0 ºC, quant.; (h) H2, Pd/C (20 psi), EtOH, 4 h, 129/130 (9:1), quant. 

Scheme 20. Krafft‟s synthesis of precursors 129 and 130.  

The reduction of lactone 129 using DIBAL-H, followed by Wittig olefination
69

 of the 

resultant lactol 131 provided poly-substituted cyclopentane 132. Conversion of primary 

alcohol 132 to the corresponding carboxylic acid was accomplished under Jones oxidation 

conditions,
91

 which after desilylation of the secondary alcohol, followed by reflux with acid 

chloride in acetone and spontaneous intramolecular lactonisation gave bicylic lactone 133. 

Ozonolysis with a reductive workup using Me2S formed aldehyde 134 without 



Introduction 

 35 

epimerization. The stereoselective introduction of the C-7 methyl group was accomplished 

through a Lewis acid-catalysed stanylation, yielding homoallylic alcohol 135 and isomer 

136 (Scheme 21). 

 

Reagents and conditions: (a) DIBAL-H, PhMe, -78 ºC, quant.; (b) CH3PPh3Br, n-BuLi, THF, ∆, 88%; (c) 

CrO3, H2SO4, acetone; 2 M HCl/acetone (1:1), ∆, 89%; (d) O3, CH2Cl2, -78 ºC; SMe2, quant.; (e) 

CH3CHCHCH2SnBu3, BF3∙OEt2, CH2Cl2, -78 ºC, 135/136 (8:1), 74%. 

Scheme 21. Krafft‟s synthesis of precursors 135 and 136. 

The elaboration of 135 to the corresponding TES ether, followed by the alkylation of the 

lactone, trapping the lithium enolate with allyl bromide in the presence of HMPA generated 

diene 137 in high yield. The ring-closing metathesis of 137 with a substoichiometric 

amount of Grubbs (2
nd

 generation) catalyst
62

 under reflux gave the so called “inside-

outside” tricycle 138 bearing the C-7 methyl group with the correct orientation. Treatment 

of 138 with TBAT and acetonitrile under reflux formed a mixture of separable alcohols 139 

and 140. After hydrogenation and oxidation reaction conditions, a mixture of enantiomers 

of 1 was obtained with an overall yield of 12% (Scheme 22). 
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Reagents and conditions: (a) TESOTf, py, 87%; LHMDS, HMPA, THF, -78 ºC; allyl bromide, 90%; (b) 

Grubbs (2
nd

 generation) catalyst (50 mol%), CH2Cl2, ∆, 92%; (c) TBAT, MeCN, ∆, 139/140 (2:1); (d) H2, 

Pd/C (20 psi), EtOH, 93%; TPAP, NMO, CH2Cl2, quant. 

Scheme 22. Krafft‟s total synthesis of asteriscanolide 1. 

1.5.2.4 Snapper‟s Synthesis 

An efficient synthesis of (+)- and (-)-asteriscanolide 1 was developed by Snapper‟s group
92

 

in the year 2000, featuring a novel intramolecular cyclobutadiene cycloaddition reaction, 

ring-opening metathesis (ROM), and subsequent Cope rearrangement
93

 as the key 

transformations.   

The successful route begins with the reduction of commercially available ketone 141 to 

form the nonracemic allylic alcohol 142. The Saegusa oxidation
46

 of the silyl enol ether 

derived from ketone 141, followed by (S)-B-Me-CBS-catalysed enantioselectitve 

reduction
94

 of the resultant enone generated (S)-dimetylcyclopentenol 142. While this 

configuration of 142 led to natural product (+)-1, the use of (R)-B-Me-CBS catalyst in the 

reduction gave the antipode of 142, which was used to prepare (-)-asteriscanolide 1 

(Scheme 23).  
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Reagents and conditions: (a) LDA, TMSCl, Et3N; Pd(OAc)2 (10 mol%), benzoquinone, 60%; (b) BH3∙OEt2, 

THF, (S)-B-Me-CBS (10 mol%), 56%, 94% ee. 

Scheme 23. Snapper‟s synthesis of precursor 142.   

Mild heating of the photolysis product of commercially available α-pyrone 143 with 

Fe2(CO)9 achieved the iron-complexed cyclobutadiene ester 144. Reduction of the ester 

functionality to a methyl group using LAH and boron trifluoride diethyl etherate gave 145. 

Subsequent functionalisation of the cyclobutadiene moiety was accomplished by an 

electrophilic aminomethylation to provide p-substituted cyclobutadiene complex 146, 

which after in situ methylation and etherification using the sodium alkoxide of homochiral 

142 generated cycloaddition precursor 147. Cycloadduct 148 was obtained upon heating 

147 with trimethylamine N-oxide in acetone (Scheme 24).  

 

Reagents and conditions: (a) hν, PhH; Fe2(CO)9, 50 ºC, 64%; (b) LAH, BF3∙OEt2, 93%; (c) Me2NCH2NMe2, 

H3PO4, AcOH, 100 ºC, 67%; (d) MeI, THF; NaH, 142, THF/DMF, 50%; (e) Me3NO, acetone, 56 ºC, 63%. 

Scheme 24. Snapper‟s synthesis of precursor 148.  

Treatment of 148 with Grubbs (2
nd

 generation) catalyst
62

 in benzene under ethylene 

atmosphere induced a ring-opening metathesis and proceeded with a Cope rearrangement 

of the resulting ring-opened species, dialkenyl cyclobutane 149, with relatively mild 
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reaction conditions to generate cyclooctadiene 150. The allylic oxidation of 150 with 

pyridinium chlorochromate in dichloromethane gave Wender‟s intermediate,
80

 

cyclooctadiene 109. The further elaboration of intermediate 110 to the target natural 

compound (+)-1 was accomplished following Wender‟s synthetic sequence: Selective 1,4-

reduction of the unsaturated lactone 109 using copper hydride, hydroboration of the 

remaining olefin 110, and PCC oxidation of the resulting alkyl borane. The BH3 reduction 

conveniently installed the required C-7 ketone (Scheme 25). 

 

Reagents and conditions: (a) Grubbs (2
nd

 generation) catalyst (5 mol%), ethylene, PhH, ∆, 50-80 ºC, 74%; (b) 

PCC, py, 4Å MS, CH2Cl2, 79%; (c) Red-Al
®
, CuBr, AcOH, THF, 89%; (d) BH3∙OEt2, Et2, THF; PCC, py, 4Å 

MS, CH2Cl2, 60%.    

Scheme 25. Snapper‟s total synthesis of asteriscanolide 1. 
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1.5.3 Previous Synthetic Approaches to Asteriscanolide 1 

1.5.3.1 Booker-Milburn‟s Approach 

In 1994, Booker-Milburn and co-workers
95

 described their first approach towards the 

synthesis of asteriscanolide 1. The strategy involved a novel aza-de Mayo 

fragmentation
96,97

 of a cyclobutane carboxylic acid, which was prepared by an efficient [2 + 

2] photocycloaddition of tetrahydrophthalic anhydride (THPA) to propargyl alcohol. 

Irradiation of a solution of THPA 151 in acetonitrile with propargyl alcohol gave 

cyclobutene anhydride 152. Subsequent hydrolysis employing aqueous tetrahydrofuran 

afforded hydroxyl diacid 153. Hydrogenation, followed by acid-catalysed lactonisation 

produced the desired cyclobutane-carboxylic acid 154. Conversion of the acid to the 

isocyanate was accomplished by treating 154 with diphenylphosphoryl azide, which was 

hydrolysed in situ to the amine and subsequently fragmented to access cylooctanone 

lactone 155 in good yield (Scheme 26). 

 

Reagents and conditions: (a) propargyl alcohol, hν, MeCN, 1 h, 77%; (b) THF/H2O, 85%; (c) H2, Pd/C (1 

atm), MeOH; p-TSA (cat), dioxane, ∆, 60%; (d) (PhO)2PON3, Et3N, dioxane, ∆; 2 M HCl, cis/trans (2.8:1), 

61%. 

Scheme 26. Booker-Milburn‟s synthesis of precursor 155. 
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The initial strategy was abandoned as esters 156 and 157, previously sythesised from 158, 

were found to be inert to photolysis conditions; none of the intramolecular [2 + 2] 

photoadducts 159 were obtained. The failure of the reaction was rationalised on the basis of 

electronic grounds, and therefore, the photochemistry of more electron deficient acid-ester 

160, derived from THPA 151, was investigated finding also to be inert to form photoadduct 

161. The problem was partly explained by the argument that esters have a conformational 

preference governed by electronic factors that prevent the adoption of the necessary 

conformation for the intramolecular cycloaddition (Scheme 27). 

 

Reagents and conditions: (a) (COCl)2, CH2Cl2; 2-cyclopentenol, Et3N, CH2Cl2; NaH, PhMe, 59%; (b) NaH, 

TBSCl, THF, 91%; (c) hν, cyclohexane, MeCN or acetone; (d) allyl alcohol, Et3N, DMPA, CH2Cl2, 85%. 

Scheme 27. Booker-Milburn‟s attempt to precursors 159 and 161.  

In the following two years, Booker-Milburn et al.
98

 extended the investigation towards the 

synthesis of natural product 1 by an intermolecular [2 + 2] photocycloaddition between 

THPA 151 and racemic 5,5-dimethyl-2-cyclopentenol 142,
99

 but unfortunately, no [2 + 2] 

photoadducts 162 were observed. This was probably the result of unfavourable steric 

hindrance induced by the gem-dimethyl groups, as photolysis of THPA 151 and 2-

cyclopentenol readily underwent to give photoadduct 163 (Scheme 28).   
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Reagents and conditions: (a) 5,5-dimethyl-2-cyclopentenol 142, hν, MeCN, 48 h; (b) 2-cyclopentenol, hν, 

MeCN, 10 h, 70%.  

Scheme 28. Booker-Milburn‟s attempt to precursor 162 and synthesis of precursor 163. 

Furthermore, a more favourable acid-ether 164 was designed as a key intermediate towards 

165, assuming the carbonyl group was now absent and the sp
3
-hybridised centre should 

allow a much greater degree of conformational flexibility during the cycloaddition step 

(Scheme 29). 

 

Scheme 29. Booker-Milburn‟s proposal for synthesis of precursor 165.   

Thus, treatment of allylic bromide 166 with the sodium alkoxide of 2-cyclopentenol gave 

the required ether 167. The preparation of the photocyloaddition precursor 168 was 

achieved by lithium-halogen exchange and quenching the resultant vinyllithium species 

with solid carbon dioxide. Photolysis of 168 in acetone afforded cyclobutane 169, which 

was subjected to a Curtius rearrangement
100

 to give isocyanate 170. This isocyanate proved 

to be remarkably stable in both acid hydrolysis and chromatography. Hence, an 

unconventional protecting group was adopted in the following steps. Oxidation of 170 with 
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ruthenium tetraoxide led to the labile isocyanate-lactone 171, which underwent the aza-de 

Mayo fragmentation in situ upon hydrolysis in aqueous acid followed by basification to 

yield cyclooctanone 172 in conjunction with the corresponding epimer 173  (Scheme 30).   

 

Reagents and conditions: (a) NaH, 2-cyclopentenol, DMF, 0 ºC, 73%; (b) t-BuLi, THF, -78 ºC; CO2, 83%; (c) 

hν, acetone, 4 h, 75%; (d) (PhO)2PON3, Et3N, dioxane, ∆, 89%; (e) RuO2, NaIO4, CCl4, H2O, MeCN; 2 M 

H2SO4; NaHCO3, 172/173 (1:2), 55%.  

Scheme 30. Booker-Milburn‟s synthesis of precursors 172 and 173.  

Booker-Milburn‟s strategy illustrated an elegant route towards asteriscanolide 1 via 

intramolecular [2 + 2] photocycloaddition and a Curtius rearrangement/ruthenium 

tetraoxide fragmentation sequence. This approach provides access to 172, the core skeleton 

of 1, which lacks the gem-dimethyl groups and the essential methyl group at C-7. 

In 1997, final attempts to extend Booker-Milburn‟s model studies to the actual system of 1 

were reported using the aforementioned synthetic route with 5,5-dimethyl-2-cyclopentenol 

142, leading to the eventual synthesis of 7-desmethylasteriscanolide 174.
101
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Starting material dibromide 166 was treated with the sodium alkoxide of 5,5-dimethyl-2-

cyclopentenol 142 to generate ether 175. Metal-halogen exchange, followed by quenching 

the resulting vinyllithium with solid carbon dioxide furnished the α,β-unsaturated 

carboxylic acid 164. Irradiation of 164 in acetonitrile with acetophenone as a sensitiser led 

to photoadduct 165, which after a Curtius rearrangement with diphenylphosphoryl azide in 

toluene afforded the stable isocyanate 176. As described before, ruthenium tetraoxide-

mediated oxidation and subsequent hydrolysis of the corresponding isocyanate lactone 

formed a separable mixture of 174 and the 9-H epimer 177 (Scheme 31).        

 

Reagents and conditions: (a) NaH, 5,5-dimethyl-2-cyclopentenol 142, DMF, 0 ºC, 75%; (b) t-BuLi, THF, -78 

ºC; CO2, 81%; (c) hν, MeCN, PhCOMe, 3 h, 51%; (d) (PhO)2PON3, Et3N, PhMe, 89%; (e) RuO2, NaIO4, 

CCl4, H2O, MeCN; 2 M H2SO4; dioxane, 100 ºC, 174/177 (1:1), 56%.  

Scheme 31. Booker-Milburn‟s synthesis of precursors 174 and 177. 

At this stage, attention was focused on the introduction of the methyl group at C-7 in order 

to culminate 1, which was initiated using a standard enolate protocol (Scheme 32). 

However, treatment of 174 with LDA and alkylation with methyl iodide was unsuccessful. 

The result was the undesired mixture of methylated product 178 and dimethylated 179. 

Deprotonation of 174 gave the more substituted enolate at C-9, which underwent 

methylation to give 178, rather than the expected kinetic enolate at C-7. Compound 179 

arises from further alkylation of 178. The deprotonation preference of the asteriscanolide 1 

skeleton was confirmed, as a number of reaction conditions were applied without 
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improvement. The application of enamine chemistry to introduce the C-7 methyl group was 

equally unsuccessful giving either unreacted ketones or complex reaction mixtures.      

 

Reagents and conditions: (a) LDA, THF, -78 ºC; MeI, 178/179 (1:1), 24%. 

Scheme 32. Booker-Milburn‟s synthesis of precursors 178 and 179.   

An alternative approach towards 1 was proposed via TBS enol ether of 174 with TBSOTf 

in a basic media.
102

 Unfortunately, none of the expected enol ethers were obtained, and the 

only products isolated were cyclobutane 180 and fragmented enol ether 181. Cyclobutane 

180 was derived by a transannular cyclisation,
103

 ironically the exact reverse of the 

fragmentation used to form the starting material 174. The second product, silyl enol ether 

181, was produced by a base-catalysed retro-Michael fragmentation of 182 (Scheme 33). 

 

Reagents and conditions: (a) TBSOTf, Et3N, CH2Cl2, RT, 1 h, 180/181 (1:1), 30%. 

Scheme 33. Booker-Milburn‟s synthesis of precursors 180 and 181. 
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A related fragmentation sequence was also observed during the oxidation/hydrolysis of 176 

after a polar intermediate 183 was isolated from the reaction mixture, which underwent a 

similar reaction to form 184 (Scheme 34). 

 

Reagents and conditions: (a) RuO2, NaIO4, CCl4, H2O, MeCN; 4 M H2SO4, dioxane, 100 ºC, 15 min; (b) aq 

dioxane, 100 ºC, 2.5 h, 36% (over two steps).  

Scheme 34. Booker-Milburn‟s synthesis of precursor 184. 

In the same manner, oxidation of 170, followed by hydrolysis of the isocyanate induced the 

same fragmentation ring system 185 and dimerisation product 186 (Scheme 35). 

 

Reagents and conditions: (a) RuO2, NaIO4, CCl4, H2O, MeCN; H2O/dioxane, 100 ºC, 185 (2%), 186 (28%). 

Scheme 35. Booker-Milburn‟s synthesis of precursors 185 and 186.   
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These fragmentations gave rise to an identical butenolide-fused undecane skeleton found in 

naturally occurring asteriscunolide C 187 (Figure 13), and as structures related to 1 have 

been isolated from the same natural source of the astericunolides (Astericus graveolens), 

Booker-Milburn proposed that it is possible for the two skeletal arrangements to be 

biosynthetically related via the aforementioned retro-Michael fragmentation. 

 

Figure 13. Asteriscunolide C. 

In summary, Booker-Milburn‟s laboratory revealed that 174 is prone to fragmentation, and 

the attempted methylation of 174 via enolate formation is in competition with the potential 

retro-Michael sequence previously mentioned. This would explain the reason why mono-

alkylation at C-9 was observed rather than at C-7 and the apparent necessity to introduce 

the methyl group at C-7 prior to the formation of the eight-membered ring. A five step 

strategy for the synthesis of 7-desmethylasteriscanolide 174 has been described, 

highlighting an intramolecular [2 + 2] photocycloaddition-fragmentation (aza-de Mayo) 

sequence as the key transformation.       

1.5.3.2 Lange‟s Approach 

In 1996, Lange and Organ
104

 published the synthesis of (±)-norasteriscanolide 188, 

featuring a very similar route to that reported by Booker-Milburn et al.
95,98,101

  

Irradiation of trimethylsilyl enol ether 189 in the presence of cyclopentenone formed 

photoadduct 190, which was treated with LDA and methyl iodide to access mono-methyl 

product 191. Treatment of 190 with an excess of these reagents failed to give desired gem-

dimethyl group at C-11, resulting only in methylation at the 2-position, which would have 

involved an enolate double bond exo-cyclic to the cyclobutane ring. Reduction of 191 with 
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sodium borohydride, followed by in situ lactonisation produced 192. Fluoride-ion mediated 

desilylation and subsequent spontaneous retro-aldol fragmentation yielded (±)-188 in four 

steps. In addition, in their attempt to circumvent the methylation problem, the initial 

photoaddition was conducted using 193 and dimethylated enone 194, but no desired 

photoadduct 195 was observed (Scheme 36).  

 

Reagents and conditions: (a) cyclopentenone, hν, CH2Cl2, 15 h, 35%; (b) LDA, THF, -78 ºC; MeI, 95%; (c) 

NaBH4, MeOH, 0 ºC, 70%; (d) TBAF, THF, 0 ºC, 90%; (e) hν. 

Scheme 36. Lange‟s synthesis of precursor 188 and attempt to precursor 195.    

Although Lange‟s approach shows to be efficient, as 5,8 ring system skeleton of 1 was 

prepared in a very stereoselective manner in only four steps, two methyl groups were still 

missing and the yield of the intermolecular photocycloaddition is significantly poor in 

comparison with Booker-Milburn‟s [2 + 2] photocycloaddtion,
101

 who also had the gem-

dimethyl groups installed prior to cycloaddition.  
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1.5.3.3 Sarkar‟s Approach 

Sarkar and colleagues
105

 reported an efficient route to the cis 5,8-fused bibyclic carbon 

framework of 1 in a four-step sequence. The strategy comprises the use of thermal ene 

cyclisation, lactonisation, and [3,3] sigmatropic rearrangement as the key bond-forming 

operations.  

From the preparation of 1,6-diene 196, previously described by Sarkar,
106

 thermal 3-(3,4) 

ene cyclisation of 196 gave allylsilane 197, which was exposed to m-CPBA, followed by 

stirring with silica gel in dicholomethane to generate 198. Methylation of 198 with 

dimethyltitanocene gave the extremely labile enol ether 199, which was subjected to 

thermolysis in a tube coated with sodium hydroxide to afford cyclooctane 200 in modest 

yield (Scheme 37).  

 

Reagents and conditions: (a) PhMe, 235 ºC, 18 h, 96%; (b) m-CPBA, Na2HPO4, CH2Cl2, RT; SiO2, CH2Cl2, 

RT, 46%; (c) Cp2TiMe2, THF, 65 ºC, 24 h, 65%; (d) 180 ºC, PhMe, 24 h, 36%. 

Scheme 37. Sarkar‟s synthesis of precursor 200. 

Sarkar‟s approach is a short and effective route for the construction of the 5,8-fused 

carbocyclic core of 1. In general, the strategy operates in low yields, however, is an 

attractive alternative approach to 1. More importantly, the synthetic procedure offers a 
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potential application to a number of terpenoid natural products with similar molecular 

structures. 

1.5.3.4 Parsons‟ Approach 

Recent synthetic investigations towards asteriscanolide 1 had been carried in our group by 

Parsons and Marsh.
2
 The original synthetic approach aimed to prepare 1 via a global 

hydrogenation procedure and an acidic catalysed hydrolysis sequence of isoxazoline 201. 

The key intermediate 201 could potentially be accessed through an intramolecular [3 + 2] 

nitrile oxide cycloaddition reaction of a nitrile oxide, which would be prepared in situ from 

nitro compound 202. Alkene cross metathesis (CM) of nitroalkene 203 with allylic lactone 

204 could provide cyclisation precursor 202. Allyl lactone 204 might be assessed via the 

allylation of known lactone 205
107

 (Scheme 38). 

 

Scheme 38. Parsons‟ first proposal for synthesis of asteriscanolide 1.  

Lactone 205 was readily prepared from commercially available cyclopentadiene 206 in a 

four-step sequence. A mixture of 206 with 1,2-dibromoethane was added to a suspension of 

sodium hydride in tetrahydrofuran, giving access to spirocyclic diene 207. Addition of 

dichloroacetyl chloride to triethylamine in dichloromethane formed dichlorocyclobutanone 

208 via a [2 + 2] ketene-olefin cycloaddition with dichloroketene.
108

 Subsequent exposure 
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of 208 to zinc dust and ammonium chloride in methanol gave cyclobutanone
 
209.

109
 

Baeyer-Villiger oxidation
57

 of 209 gave lactone 205.
107 

Alkylation of 205 was 

accomplished using LHMDS and quenching the resultant enolate with allyl bromide to 

obtain a separable mixture of 204 and 210 in modest yield. Further attempts to enhance the 

yield and facial selectivity were unsuccessful (Scheme 39).  

 

Reagents and conditions: (a) NaH, 1,2-dibromoethane, THF, 0 ºC, 70%; (b) Cl2CHCOCl, Et3N, CH2Cl2, 0 ºC, 

71%; (c) Zn (4.8 eq), NH4Cl (12 eq), MeOH, RT, 83%; (d) H2O2, AcOH, 0 ºC → RT, 18 h, 64%; (e) 

LHMDS, THF, -78 ºC; allyl bromide, -78 ºC → RT, 204/210 (1:1.1), 62%. 

Scheme 39. Parsons‟ synthesis of precursors 204 and 210.    

Cross metathesis of the diastereomerically pure allyl lactone 204 was performed utilising a 

readily available nitro olefin as a model to assess the viability of the construction of eight-

membered ring through an intramolecular nitrile oxide-olefin cycloaddition. Bromide 211 

was converted to the corresponding nitro product 212 by reaction with sodium nitrite in 

DMF.
110

 Subsequent CM with 204 and 4-nitrobut-1-ene 212 gave olefin 213 in high yield, 

but only the E-configuration was obtained. Unfortunately, this geometrically restrictive E-

alkene would not allow the INOC to occur. As such, attempted regioselectivity 

hydrogenation of the newly formed double bond in 213 using diimide
111 

was not successful 

as only the fully saturated system 214 was isolated (Scheme 40). 
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Reagents and conditions: (a) NaNO2, DMF, RT, 2 h, 43%; (b) 212, Grubbs (2
nd

 generation) catalyst (5 

mol%), CH2Cl2, ∆, 18 h, 95%; (c) H2NNH2∙H2O, 1 M aq CuSO4 (cat), air, EtOH, ∆, 16 h, 75%. 

Scheme 40. Parsons‟ synthesis of precursors 212 and 214. 

Parsons and Marsh illustrated another nitrile oxide cycloaddition alternative towards 1, this 

time from nitroalkane 215 to generate isoxazoline 216. This requires a suitable precursor, 

aldehyde 217, which can be prepared from the known acid-ester 218
112

 with the aim to 

utilise aldol protocol to couple 205 with 217 (Scheme 41).  

 

Scheme 41. Parsons‟ second proposal for synthesis of asteriscanolide 1.  

Due to the commercial unavailability of 218, an alternative to construct the framework 

required for 217 was investigated using the chiral oxazolidionone chemistry. Commercially 

available (R)-4-benzyl-2-oxazolidinone 219 was subjected to N-acylation
113

 to give the 
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desired chiral auxiliary 220. Sequential conjugate addition of the titanium enolate of 220 to 

the tert-butyl acrylate
114

 afforded oxazolidinone 221 (Scheme 42).  

 

Reagents and conditions: (a) Propionoic anhydride, LiCl, Et3N, THF, -10 ºC → RT, 20 h, quant.; (b) Ti(Oi-

Pr)4, TiCl4, DIEA, CH2Cl2, 0 ºC, 2 h; t-butyl acrylate, 0 ºC → RT, 18 h, 89%. 

Scheme 42. Parsons‟ synthesis of precursor 221. 

Cleavage of the auxiliary
115

 in 221 gave carboxylic acid 222, which was exposed to 

chemoselective reduction conditions, followed by protection of the resulting alcohol to 

form 223. DIBAL-H reduction of the ester functionality and subsequent treatment of the 

corresponding alcohol 224 with IBX in refluxing acetone
116

 afforded aldol precursor 217 

(Scheme 43). 

 

Reagents and conditions: (a) H2O2, LiOH, THF, 0 ºC, 2 h, 92%; (b) BH3∙ SMe2, THF, 0 ºC, 4 h, 76%; (c) 

TBSOTf, 2,6-lutidine, RT, 18 h, 88%; (d) DIBAL-H, CH2Cl2, -78 ºC, 3 h, 89%; (e) IBX, acetone, ∆, 4 h, 

87%. 

Scheme 43. Parsons‟ synthesis of aldehyde 217. 
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Disappointingly, the aldol reaction between precursors 205 and 217 did not give the 

expected β-hydroxylactone 225. The reaction was originally tried treating 205 with LDA at 

low temperature and quenching the resulting enolate with the aldehyde 217. However, only 

the starting material and some decomposition were observed (Scheme 44). 

 

Reagents and conditions: (a) LDA, THF, -78 ºC; HMPA, 217, -78 ºC → 0 ºC. 

Scheme 44. Parsons‟ attempt to precursor 225. 

In addition, a series of reactions were undertaken, varying the base, the presence of a 

coordinating co-solvent, and the temperature during the formation of the enolate but 

unfortunately, no desired aldol product was obtained. Two possible explanations were 

rationalised, the first was concerned with the inability to generate the enolate, which 

standing against this, is the synthesis of 1 reported by Krafft group,
88,89

 alkylation of the 

lactone was achieved in good yield under standard conditions to produce the RCM 

precursor, allyl lactone 137, and the second, and most probable theory, attributed to the 

basicity of the enolate, meaning that if the enolate was more basic than nucleophilic, the 

lack of product and regeneration of the starting material could be justified.   

As a result of the unsuccessful aldol reaction, Parsons and Marsh illustrated a viable and 

efficient alternative using the Horner-Wadsworth-Emmons reaction (HWE).
117

 The 

condensation of α-phosphonated lactone 226 and aldehyde 217 could led to the α,β-

unsaturated product 227 (Scheme 45).  
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Scheme 45. Parsons‟ proposal for synthesis of olefin 227.  

Treatment of 205 with LDA in tetrahydrofuran at low temperature, followed by addition of 

diethyl chlorophosphite and exposure to air did not generate the required phosphonate 

226.
118

 In a similar manner, use of diethyl chlorophosphate and a second equivalent of base 

did not give rise to the desired phosphonated lactone 226 (Scheme 46). 

 

Reagents and conditions: (a) LDA, THF, -78 ºC; ClP(OEt)2, -78 ºC → RT; air; (b) LDA, THF, -78 ºC; 

ClP(O)(OEt)2, -78 ºC; LDA, -78 ºC → RT.   

Scheme 46. Parsons‟ attempt to phosphonated lactone 226.  

In summary, Parsons and Marsh described an attractive route for the synthesis of 

asteriscanolide 1 via an intramolecular [3 + 2] nitrile oxide cycloaddition reaction of 

isoxazoline 201 as the key step for the construction of the eight-membered ring. This 

approach provides a synthetic procedure to generate lactone 205 with a significant part of 

the required molecular architecture. However, only the synthesis of geometrically 

unfavorable INOC precursor, nitro E-olefin 213, and fully saturated nitroalkene 214 were 

obtained. Furthermore, exhausting attempts for installing the carbon chain bearing the 

important homochiral methyl group in butyrolactone 205 have been carried without any 

success, and modifications in the strategy have also failed to approach 1. 

Consequently, further research in Parsons‟ laboratory has been taken place following this 

attractive approach towards natural product asteriscanolide 1.  
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22..11  RReettrroossyynntthheettiicc  AAnnaallyyssiiss  

Following Marsh‟s work,
2
 initial disconnective approach identified isoxazoline 216 as a 

suitable precursor that can potentially give access to asteriscanolide 1 in one synthetic 

operation with a global hydrogenation and an acidic workup sequence. The hydrogenation 

of 216 would potentially cleave the cyclopropane ring to form the gem-dimethyl function
119

 

and the N-O bond. Carrying out this reaction in the presence of acetic acid would conduct 

to the hydrolysis of the resultant imine to provide the required ketone, and hopefully, would 

also led to the dehydration of the β-hydroxyl group, which is necessary for the completion 

of the synthesis of natural product 1. The isoxazoline precursor 216, could potentially be 

prepared via an intramolecular [3 + 2] nitrile oxide-olefin cycloaddition reaction, with the 

required nitrile oxide being generated in situ by dehydration of nitro compound 215 using 

the Mukaiyama-Hoshino procedure.
120

 The nitroalkene intermediate 215, bearing the 

important enantiodefined methyl group, is to be assessed through a HWE olefination
117

 of 

aldehyde 217 and phosphonated lactone 226, followed by a selective conjugate reduction of 

the α,β-unsaturated carbonyl group and simple functional group manipulation. In turn, 226 

should be accessible by phosphorylation of the well known lactone 205
107

 (Scheme 47).  

 

Scheme 47. Retrosynthetic analysis.  
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22..22  SSyynntthheessiiss  ooff  LLaaccttoonnee  220055  

In our retrosynthetic analysis, the initial goal was to synthesise 205
107

 in an efficient multi-

gram scale synthesis. The construction of the cis-fused bicyclic ring system 205 was a key 

step in our strategy, as it bears a significant part of target molecule 1. However, a very 

similar fragment had also been of interest to another research group. As described before 

(see section 1.5.2.3), Krafft‟s
88,89

 synthesis of 1 incorporates the design of lactone 133 in a 

twelve-step sequence prior to the formation of the cyclooctane ring (Figure 14).  

 

Figure 14. Krafft‟s lactone. 

In 1972, Grieco
121

 reported the synthesis of cis-jasmone 228 employing the cycloaddition 

of dichloroketene to cyclopentadiene 206 in order to form 229, followed by dechlorination 

to generate 230 and subsequent Baeyer-Villiger oxidation
57

 to provide a related lactone 231 

to that required in our synthetic plan (Scheme 48). 

 

Reagents and conditions: (a) Cl2CHCOCl, Et3N, hexane, 0 ºC, 85%; (b) Zn (6 eq), AcOH, RT, 95%; (c) 

H2O2, AcOH, 0 ºC → RT, 24 h, 90%. 

Scheme 48. Grieco‟s synthesis of cis-jasmone 228. 
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Another example of the conversion of cyclopentadiene 206 to bicyclic 230 was reported by 

Newton and Roberts
122

 for the synthesis of prostaglandin-F2α 232 (Scheme 49). 

 

Reagents and conditions: (a) Cl2CHCOCl; (b) Zn, AcOH, 85% (over two steps). 

Scheme 49. Newton and Robert‟s synthesis of prostaglandin-F2α 232. 

More importantly, Newton and colleagues
109

 have also published the synthesis of a 

cyclopropyl analogue of prostaglandin D2 233, where the tricyclic ketone 209, our required 

compound towards lactone 205, was prepared in modest yield (Scheme 50).     

 

Reagents and conditions: (a) NaH, 1,2-dibromoethane, Et3(PhCH2)NCl, NaOH, RT; (b) Cl2CHCOCl, Et3N, 

hexane, 0 ºC, 60% (over two steps); (c) Zn (9.3 eq), NH4Cl (4.2 eq), MeOH, RT, 16 h, 75%. 

Scheme 50. Newton‟s synthesis of prostaglandin D2 233.    

Jaworski et al.
107

 prepared cyclopropyl ketone 209 for the formation of analogues of 

prostaglandins, which was then treated under Baeyer-Villiger conditions
57

 to give the 

desired lactone 205 in modest yield (Scheme 51). 
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Reagents and conditions: (a) H2O2, AcOH, 35 h, 54%. 

Scheme 51. Jaworski‟s synthesis of lactone 205.    

Following the procedure described by Green et al.,
108

 a cooled mixture of freshly cracked 

and distilled cyclopentadiene 206 and 1,2-dibromoethane was added to a suspension of 

sodium hydride in tetrahydrofuran, giving spirocyclic diene 207. Further to this, a solution 

of 207 and triethylamine in dichloromethane was exposed to dichloroacetyl choride, giving 

rise to 208 through a [2 + 2] cycloaddition reaction with dichloroketene (Scheme 52). 

 

Reagents and conditions: (a) NaH, 1,2-dibromoethane, THF, 0 ºC, 70%; (b) Cl2CHCOCl, Et3N, CH2Cl2, 0 ºC, 

74%. 

Scheme 52. Synthesis of precursor 208. 

With 208 in hand, we turn to the dechlorination methodology reported by Newton‟s 

group.
109

 Dichlorocyclobutanone 208 was treated with zinc dust and ammonium chloride in 

methanol to give cyclobutanone 209 in 70% yield. In addition, a small quantity of the 

mono-chloride cyclobutanone 234 was also isolated (Scheme 53). 

 

Reagents and conditions: (a) Zn (4 eq), NH4Cl (10 eq), MeOH, RT, 24 h, 209 (70%), 234 (5%). 

Scheme 53. Synthesis of precursors 209 and 234. 
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As described by Jaworski,
107

 it was pleasing to find that oxidation of 209 employing 

Baeyer-Villiger
57

 conditions was repeatable in our hands. Treatment of 209 with hydrogen 

peroxide in acetic acid gave rise to the expected lactone 205 in good yield, which was 

recrystallised to give a crystalline solid (Scheme 54 and Figure 15). 

 

Reagents and conditions: (a) H2O2, AcOH, 16 h, 0 ºC → RT, 84%. 

Scheme 54. Synthesis of lactone 205. 

 

Figure 15. X-ray crystal structure of lactone 205. 

Hopefully, the introduction of the chiral C-7 methyl group into racemic lactone 205 would 

enable the isolation of (+)-asteriscanolide 1. It was also reasoned that optically pure 205 

could potentially be prepared by two different methodologies:  
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In 2004, Mihovilovic et al.
123

 reported a series of stereoselective Baeyer-Villiger 

oxidations
57

 of fused bicyclic ketones with a cyclobutanone structural motif 235 to give the 

corresponding regioisomeric lactones 236 and 237 using a biocatalyst (Scheme 55).  

 

Reagents and conditions: (a) Recombinant Escherichia coli/whole-cells from Brevibacterium. 

Scheme 55. Regiodivergent biooxidation of racemic bicycle ketone 235. 

On the other hand, Wallis and co-workers
124

 from the Glaxo group research applied α-

methylbenzylamine/bisulfite addition complex to racemic 230 (Scheme 56). This could be 

used in our project for the resolution of racemic 209. 

 

Reagents and conditions: (a) D-(+) or L-(-) 1-phenylethanamine, SO2, H2O, CH2Cl2; Na2CO3, H2O. 

Scheme 56. Wallis‟ resolution of racemic ketone 230. 
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22..33  SSyynntthheessiiss  ooff  LLaaccttoonnee  223388  

The partial dechlorination of 208 has also been observed by Hassner and co-workers,
125

 

where reduction of 208 with zinc dust (previously activated by treatment with 10% 

hydrochloric acid) and acetic acid in diethyl ether gave mainly chloroketone 234 and a 

minor quantity of cyclobutanone 209 (Scheme 57). 

 

   Reagents and conditions: (a) Zn (1.3 eq), AcOH, Et2O, RT, N/A%. 

Scheme 57. Hassner‟s synthesis of precursors 209 and 234. 

Having efficiently prepared 209, it was decided to investigate and optimize the conditions 

for the preparation of the mono-chloride ketone 234 in order to provide an alternative for 

the synthesis of the α-phosphonated lactone 226. Hence, dechlorination of 208 was 

performed using three equivalents of zinc dust and ammonium chloride in methanol at 0 ºC 

for eight hours, and further stirred at room temperature for additional seven hours. This 

resulted with only the formation of 234 as a crystalline solid in good yield (Scheme 58 and 

Figure 16).    

 

Reagents and conditions: (a) Zn (3 eq), NH4Cl (10 eq), MeOH, 0 ºC (8 h) → RT (7 h), 82%. 

Scheme 58. Synthesis of precursor 234. 
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Figure 16. X-ray crystal structure of precursor 234. 

In the same manner as 209, mono-chloride ketone 234 underwent a Baeyer-Villiger 

oxidation
57

 with hydrogen peroxide in acetic acid, forming exclusively the mono-chloride 

lactone 238 as a crystalline solid in excellent yield (Scheme 59 and Figure 17).  

 

Reagents and conditions: (a) H2O2, AcOH, 16 h, 0 ºC → RT,  99%. 

Scheme 59. Synthesis of lactone 238. 
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Figure 17. X-ray crystal structure of lactone 238. 

Up to this point, both lactones 205 and 238 represent viable precursors towards the 

phosphonated lactone 226, one of the partners for the HWE condensation
117

 strategy. The 

chemistry for the construction of 205 and 238 was easy to scale up and isolated as 

crystalline solids, thus providing direct structural evidence.   
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22..44  SSyynntthheessiiss  ooff  PPhhoosspphhoonnaatteedd  LLaaccttoonnee  222266  

2.4.1 Subjecting Lactone 205 to Phosphonation Conditions 

Having isolated lactones 205 and 238, we first focused our attention on the conversion of 

205 into the corresponding phosphonate compound 226. With regards to the α-

phosphonation of similar lactone systems, Wiemer et al.
118,126,127

 have reported two 

different phosphonation methods of γ-butyrolactone 239 for the use as a precursor to the 

HWE
117

 reaction.  

The first route was based upon a 1,3-phosphorus migration in dialkyl vinyl phosphate 240 

to produce the desired α-phosphono compound 241
126,127

 (Scheme 60). 

 

Reagents and conditions: (a) LDA, THF; ClP(O)(OEt)2, HMPA; (b) LDA, 68% (over two steps). 

Scheme 60. Wiemer‟s phosphonation: First method. 

An alternative strategy employs the reaction of an enolate with diethyl phosphorochloridite, 

followed by aerial oxidation to afford 241
118

 (Scheme 61). 

 

Reagents and conditions: (a) LDA, THF; ClP(OEt)2; (b) air, 69% (over two steps). 

Scheme 61. Wiemer‟s phosphonation: Second method. 

Whilst there is no report of the synthesis of phosphonated bicyclic lactone 226, we decided 

to apply Wiemer‟s methodology on our lactone 205. Thus, treatment of 205 with lithium 

diisopropylamide in tetrahydrofuran at low temperature, followed by the addition of diethyl 
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chlorophosphate in hexamethylphosphoramide as a co-solvent and a second equivalent of 

base did not allow the formation of 226. This only led to the decomposition of 205. 

Likewise, treating 205 with lithium diisopropylamide, addition of diethyl chlorophosphite, 

and subsequent exposure to air did not give rise to the desired phosphono product 226. 

Only decomposition was observed (Scheme 62). 

 

Reagents and conditions: (a) LDA, THF, -78 ºC; ClP(O)(OEt)2, HMPA, -78 ºC; LDA, -78 ºC → RT; (b) 

LDA, THF, -78 ºC; ClP(OEt)2, -78 ºC → RT; air. 

Scheme 62. Attempt to phosphonation of lactone 205. 

2.4.2 Subjecting Lactone 238 to Phosphonation Conditions 

In light of the unsuccessful generation of 226 utilising lactone 205, we turn to investigate 

the possibility of forming a carbon-phosphorous bond on the mono-chlorinated lactone 238. 

For this, attempts to synthesise dialkyl phosphonated lactone 226 were carried out using 

various chemical pathways including Michaelis-Arbuzov‟s reaction,
128

 Michaelis-Becker‟s 

reaction,
129

 and an organometallic reaction.
130,131

 

Thus, lactone 238 was first subjected to a Michaelis-Arbuzov rearragement
128

 (Scheme 63). 

Table 3 summarises the variety of the reaction conditions used. 

 

Scheme 63. Attempt to phosphonation of lactone 238. 
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Entry P(OEt)3 

(eq) 

Solvent Heating conditions Time 

(h) 

Product 

1 1.1 - ∆ 48  SM + 226 (traces) 

2 7 - MW 150 W (130 ºC)  2.5  SM + 226 (traces) 

3 1.1 - MW 150 W (200 ºC) 2  Decomposition 

4 1.1 PhMe ∆ 8  SM 

Table 3. Phosphonation approach of lactone 238 utilising Michaelis-Arbuzov reaction. 

Initially we used triethyl phosphite (Entry 1). The reaction mixture was monitored by TLC 

when heating to reflux for two days, but only starting material 238 and traces of 226 were 

obtained.  

The use of microwaves
132

 in this type of reaction (150 W, 130 ºC) for two and a half hours 

provided trace amounts of 226 together with the starting material 238 (Entry 2), but higher 

heating with microwaves (150 W, 200 ºC) for two hours led to the total decomposition of 

the starting material 238 (Entry 3).  

Solvents are not generally used in the Michaelis-Arbuzov transformation, but occasionally 

can control the reaction.
128

 Therefore, the presence of a hydrocarbon solvent such as 

toluene
133

 in this reaction was employed (Entry 4). The reaction was left to stir for eight 

hours in refluxing toluene. Unfortunately, only starting material 238 was isolated.  

In a second approach to generate 226, a Michaelis-Becker reaction
129

 was performed. The 

first step was based on the treatment of diethyl phosphite 242 and sodium hydride in 

tetrahydrofuran at low temperature to give the phophonic salt 243. The second step 

involved adding 243 to the mono-chloride lactone 238. However, only traces of 226 were 

generated and the starting material was recovered (Scheme 64).     
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Reagents and conditions: (a) NaH, THF, 0 ºC, 5 min; (b) 243, 0 ºC → RT, 16 h. 

Scheme 64. Attempt to phosphonation of lactone 238 utilising Michaelis-Becker reaction.    

Finally, an altenative route was executed via an organometallic reaction.
130,131

 Formation of 

a lithium compound from treating lactone 238 with t-butyllithium and subsequent addition 

of diethyl chlorophosphate at low temperature in tetrahydrofuran did not furnish 226. Only 

the starting material 238 and some decomposition material were observed (Scheme 65). 

 

Reagents and conditions: (a) t-BuLi (2 eq), THF, -78 ºC, 2 h; ClPO(OEt)2 (10 eq), -78 ºC, THF, 1 h. 

Scheme 65. Attempt to phosphonation of lactone 238 utilising organometallic reaction.    

2.4.3 Applying the Finkelstein Reaction to Lactone 238 

After the unsuccessful synthesis of α-phosphonated lactone 226, an alternative strategy was 

investigated. In order to increase the reactivity of lactone 238, we decided to convert 238 to 

the corresponding iodide 244 through the Finkelstein halogen exchange reaction.
134

 This 

was achieved by treating 238 with sodium iodide in the presence of acetone under reflux 

for two days, giving 244 as a 24:1 mixture of diastereoisomers in 70% yield, where convex 

face selectivity was favoured (Scheme 66 and Figure 18). 
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Reagents and conditions: (a) NaI (15 eq), acetone, ∆, 48 h, convex/concave face selectivity (24:1), 70%. 

Scheme 66. Halogen exchange of lactone 238 utilising Finkelstein reaction. 

  

Figure 18. Favoured convex face selectivity (left) and disfavoured concave face selectivity 

(right) of the nucleophilic substitution of lactone 238. 

2.4.4 Subjecting Lactone 244 to Phosphonation Conditions 

We next focused our attention towards the application of the Michaelis-Arbuzov reaction
128

 

to new mono-halogenated intermediate 244 (Scheme 67). Table 4 summarises the variety 

of the reaction conditions used.  

 

Scheme 67. Phosphonation of lactone 244 using P(OEt)3. 
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Entry P(OEt)3 

(eq) 

Heating conditions Time 

(h) 

Yield 

(%) 

Face selectivity
a 

(convex:concave) 

1 1.2 ∆ 16 20 5:1 

2 1.2 MW 150 W (200 ºC)  0.03 21 4:1 

3 2 MW 150 W (125 ºC) 1  40 6:1 

4 6  MW 150 W (130 ºC) 1.5 50 6:1 

5 7 MW 150 W (130 ºC) 2.5 60 5:1 

6 7.5 MW 150 W (135 ºC) 3 60 5:1 

                   a
Ratio determined by 

1
H NMR analysis. 

Table 4. Phosphonation of lactone 244 utilising Michaelis-Arbuzov reaction.    

It was pleasing to find that treatment of 244 with triethyl phosphite under reflux for sixteen 

hours finally afforded the desired α-phosphonated precursor 226 as an inseparable 5:1 

mixture of diastereoisomers in 20% yield with the expected phosphonate substituent on the 

convex face as the major product (Entry 1).  

Microwave irradiation
132

 with the same equivalents of the phosphonation reagent for two 

minutes increased the yield (Entry 2). We also observed a significant improvement on the 

formation of 226 (Entry 3 to 6) with a 60% of optimum yield (Entry 5 and 6) when using 

MW and increasing the number of equivalents of P(OEt)3, reaction time, and temperature. 

In addition, compound 244 was exposed to microwaves using trimethyl phosphite for three 

hours, affording 245 as an inseparable 3:1 mixture of diastereoisomers in 10% yield, 

favouring the phosphonate ester placed on the convex face of the system (Scheme 68). 

 

Reagents and conditions: (a) P(OMe)3 (7 eq), MW 150 W (105 ºC), 3 h, convex/concave face selectivity  

(3:1), 10%. 

Scheme 68. Phosphonation of lactone 244 using P(OMe)3. 
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In an initial investigation by Marsh
2
 it was found that chiral aldehyde 217 could be 

synthesised by the use of a chiral auxiliary.
113-115

 However, an alternative strategy for the 

construction of 217 was envisaged.   

The commercially available (2R)-(-)-(3)-hydroxy-2-methylpropionate 246, whose chiral 

carbon potentially represented the C-7 methyl group of asteriscanolide 1, was chosen as a 

starting material for the synthesis of aldehyde 217.  

Due to the presence of the aldehyde functionality 247 adjacent to the asymmetric centre, it 

was necessary to apply a methodology that did not affect the optical purity.
135

 The Wittig 

chiral aldehyde 247 was prepared according to the literature previously described by a 

number of research groups,
136-138  

with slight modifications.
139

 The free hydroxyl group of 

Roche ester 246 was protected as the TBS ether 248, followed by reduction of the ester 

with 2.2 equivalents of diisobutylaluminium hydride to furnish alcohol 249. The use of one 

equivalent of DIBAL-H to form directly aldehyde 247 was unreliable as the desired 

aldehyde 247 was formed in only 50% yield. As such, a two-step sequence was used. 

Reduction of 248 afforded the corresponding alcohol 249 in 94% yield. Subsequent Parikh-

Doering oxidation
140

 using sulfur trioxide pyridine complex in dimethyl sulfoxide and 

dichloromethane generated aldehyde 247 in 84% yield, which was stored in the freezer at -

30 ºC to reduce the possibility of racemisation of a potentially thermally sensitive α-chiral 

stereocentre. Aldehyde 247 underwent a two carbon homologation employing a Wittig 

ylide, (carbethoxymethylene)triphenylphosphorane in dichloromethane at room 

temperature, giving the E-alkene of α,β-ester 250 as a single isomer in excellent yield 

(Scheme 69). 

 



Results and Discussion 

 72 

 

  Reagents and conditions: (a) TBSCl (1.4 eq), imidazole (1.4 eq), DMPA (10 mol%), CH2Cl2, 0 ºC → RT 

(16 h), 96%; (b) DIBAL-H (2.2 eq), CH2Cl2, - 78 ºC → RT (16 h); NaKC4H4O6, 16 h, 94%; (c) SO3·py (4 eq), 

Et3N (5 eq), Me2SO, CH2Cl2, 0 ºC → RT (16 h), 84%; (d) Ph3P=CHCO2Et (1 eq), CH2Cl2, RT, 16 h, 99%. 

Scheme 69. Synthesis of precursor 250. 

Alkene 250 was then treated with substoichiometric amounts of platinum oxide in ethyl 

acetate under hydrogen gas for twenty four hours to give ester 251 in 97% yield. Marshall 

and co-workers,
141

 however, utilised palladium on carbon as the hydrogenation catalyst, 

where they reported that the use of ethyl acetate was important, as the choice of ethanol led 

to the complete loss of the TBS ether. We decided to prepare aldehyde 217 in a similar two-

step sequence for the same reason than aldehyde 247. Although elaboration of 251 to the 

corresponding alcohol 224 has been accomplished by using DIBAL-H
137,141

 or LiCl-

NaBH4,
138

 we used instead lithiumaluminium hydride in tetrahydrofuran at low 

temperature, which furnished 224 in excellent yield. It was found that Nicoalou
142

 and 

Marshall
143

 had synthesised aldehyde 217 by exposing alcohol 224 to Swern oxidation 

conditions.
83

 On the other hand, Marsh
2
 used IBX in acetone.

116
 In our project, aldehyde 

217 was prepared from alcohol 224 under Parikh-Doering conditions
140

 with sulfur trioxide 

pyridine complex in dimethyl sulfoxide and dichloromethane to give rise to 217 in 92% 

yield (Scheme 70).  
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  Reagents and conditions: (a) H2, PtO2 (10 mol%), EtOAc, 24 h, 97%; (b) LiAlH4 (1.1 eq), THF, 0 ºC, 3 h, 

99%; (c) SO3·py (4 eq), Et3N (5 eq), Me2SO, CH2Cl2, 0 ºC → RT (16 h), 92%. 

Scheme 70. Synthesis of aldehyde 217. 

This strategy demonstrated to be a reliable route for the construction of aldehyde 217, 

which incorporates the enantiodefined C-7 methyl group. 
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2.6.1 The Horner-Wadsworth-Emmons Approach 

In search of a viable and efficient route for the construction of alkene 227 via the HWE 

reaction,
117

 we found that 241 has been extensively studied and employed as a parter for the 

HWE reaction. Sodium hydride,
144,145

 nitrogenated bases in the presence of LiCl,
146,147

 and 

potassium hexamethyldisilazane
118,148

 are among the basic conditions used. To illustrate, 

Rosini and colleagues
146

 published the condensation of γ-butyrolactone 241 with aldehyde 

252 to give 253 using DBU with LiCl. Mathies et al.
144

 reported the condensation of 

lactone 241 with aldehyde 254 to form 255 using sodium hydride. Additionally, Weimer 

and co-workers
118

 described the selective synthesis of E-propylidene lactone 256 from 241 

and propionaldehyde using KHMDS (Scheme 71).      

 

  Reagents and conditions: (a) LiCl, DBU, THF; 252, THF, Z/E (3:2), 72%; (b) NaH, THF, 0 ºC; 254, THF, 

96%; (b) KHMDS, 18-crown-6, THF, -78 ºC; propionaldehyde, THF, 75%.  

Scheme 71. Examples of HWE condensation of γ-butyrolactone 241. 
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In 1994, Kishimba
148

 published the condensation of γ-butyrolactone 257 with aldehyde 258 

employing sodium hydride in tetrahydrofuran to give E-olefin 259 in poor yield (Scheme 

72). 

 

  Reagents and conditions: (a) NaH, THF; 258, 12%. 

Scheme 72. Kishimba‟s condensation of γ-butyrolactone 257. 

So far, in the chemistry literature, there has been no report of a bicylic lactone such as 205 

participating in a HWE process. In spite of this, it was reasoned that the HWE condensation 

could potentially be an efficient key step towards the synthesis of nitroalkene 215. 

2.6.1.1 Model Study 

To investigate the plausibility of the HWE
117

 approach to phosphonated lactone 226 with 

an aldehyde, a brief model study was conducted. For this investigation, the condensation 

was performed in two steps and commercially available isovaleraldehyde was used to 

represent the HWE partner. Thus, compound 226 was exposed to lithium tert-butoxide 260, 

prepared in situ by subjecting tert-butanol 261 to n-butyllithium at low temperature in 

tetrahydrofuran, followed by the addition of isovaleraldehyde. It was pleasing to discover 

that condensation of 226 did actually take place, giving rise to the alkene 262 as a 1:1.1 

mixture of Z/E geometric isomers in 45% yield (Scheme 73). 
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Reagents and conditions: (a) n-BuLi (1.1 eq), THF, -70 ºC, 10 min; (b) 260, -50 ºC, 15 min; isovaleraldehyde, 

THF, -70 ºC (2 h) → RT (16 h), Z/E (1:1.1), 45% (over two steps). 

Scheme 73. Horner-Wadsworth-Emmons condensation: Model study. 

2.6.1.2 Synthesis of Olefin 227 

Having successfully synthesised 262, the HWE condensation
117

 step could now be applied 

in our strategy. In the same manner as previously described in the model study, 

phosphonate precursor 226 was added to a solution of tert-butoxide 260, prepared in situ 

from tert-butanol 261, followed by the addition of homochiral aldehyde 217. We were 

pleased to discover that formation of the highly desired olefin 227 was achieved as a 

separable 1.1:1 mixture of Z/E isomers in 66% yield (Scheme 74). 

 

  Reagents and conditions: (a) n-BuLi (1.1 eq), THF, -70 ºC, 10 min; (b) 260, -50 ºC, 15 min; 217, THF, -70 

ºC (2 h) → RT (16 h), Z/E (1.1:1), 66% (over two steps). 

Scheme 74. Synthesis of olefin 227: First method. 
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Furthermore, the triumphal application of the HWE reaction was extended. This time, 

condensation of phosphonate 226 with aldehyde 217 was executed by the presence of 

aqueous solution of potassium carbonate.
149

 This route gave alkene 227 as a separable 1.2:1 

mixture of the Z/E geometric isomers in 80% yield (Scheme 75). 

 

  Reagents and conditions: (a) aq K2CO3 (96 eq), 217, THF, -10 ºC → RT (7 days), Z/E (1.2:1), 80%. 

Scheme 75. Synthesis of olefin 227: Second method. 

2.6.2 Subjecting Olefin 227 to Selective Conjugate Reduction 

A wide variety of synthetic methods have been developed for the selective conjugate 

reduction of α,β-unsaturated carbonyl compounds by using metal-base reagents.
150

 

Hydrogenation involving copper complex as a transition metal catalyst has demonstrated to 

be useful tool for the chemoselective conjugate 1,4 reduction, where isolated alkenes and 

most functional groups do not interfere usually.
151,152 

Lending credibility to this potential approach, in their total synthesis of asteriscanolide 1, 

Wender‟s group
80

 accomplished the conjugate reduction of the unsaturated lactone utilising 

copper hydride and selective kinetic protonation of the resultant enolate from the exo-face 

produced 110 in 74% isomeric purity (Scheme 76). 

 

  Reagents and conditions: (a) Red-Al
®
, CuBr, 74%.  

Scheme 76. Wender‟s selective conjugate reduction. 



Results and Discussion 

 78 

In our synthetic plan, the saturation of olefin 227 (Scheme 77) was envisaged by the 

hydride transfer using copper and magnesium reagents. The results are summarised in 

Table 5. 

   

Scheme 77. Synthesis of precursors 263 and 264. 

 

Entry Hydrogenation 

reagent 

Solvent T  

(ºC) 

Time 

(h) 

Product 

1 Red-Al
®
 (4eq), 

CuBr (4 eq)
 

THF -78 to -10 3 263 (20%) + 264 (50%) 

2 [Ph3P(CuH)]6 

(0.24 eq) 

PhH/H2O RT 16 Decomposition 

3 Mg turnings 

(10 eq) 

MeOH RT 16 263 (40%) + 264 (40%) 

Table 5. Selective conjugate reduction of olefin 227.    

Olefin 227 was treated with Red-Al
®
 in the presence of cuprous bromide in 

tetrahydrofuran,
151,153

 giving rise to a separable mixture of diastereoisomers 263 and 264 in 

20% and 50% yield, respectively (Entry 1). 

In a second approach we investigated using a stable copper(I) hydride cluster, hexa-μ-

hydrohexakis(triphenylphosphine) hexacopper (Stryker‟s reagent)
152,154

 in the presence of 
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water at room temperature. Disappointingly, all the starting material 227 decomposed 

(Entry 2). 

 Alternatively, the use of other metals had also been explored. Treatment of olefin 227 with 

magnesium turnings in the presence of methanol
155,156

 at room temperature successfully 

gave in a 1:1 ratio both expected diastereoisomers 263 and 264 in 80% yield. This 

operation supported a Birch-type radical anion formation,
44

 followed by additional electron 

incorporation and protonation (Entry 3).   

At this stage, partial kinetic protonation of isolated 264 occurred under basic conditions 

when employing lithium diisopropylamide in tetrahydrofuran at low temperature and 

quenching with tert-butyl bromide. The reverse addition method changed the ratio to 5:1 in 

favour to 263 and each diastereoisomer was isolated (Scheme 78). 

 

  Reagents and conditions: (a) LDA (1.1 eq), THF, -78 ºC; t-BuBr (10 eq), THF, -78 ºC (3 h) → RT (16 h), 

263/264 (5:1). 

Scheme 78. Partial kinetic protonation of precursor 264. 
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2.6.3 Functional Group Transformation Towards Nitroalkene 215 

To continue this investigation, we envisaged performing a simple functional group 

manipulation from precursor 263 to nitroalkene 215. For this, cleavage of alcohol 263 was 

required (Scheme 79). Table 6 describes the basic and acid-based desilylation procedures 

performed.  

 

 Scheme 79. Synthesis of precursors 265 and 266. 

 

Entry Reaction  

Conditions 

T  

(ºC)  

Time 

(h) 

Product 

1 TBAF, THF 0  6 265 (75%) + 266 (25%) 

2 2 M HCl in EtOH 0 to RT 4 265 (99%) 

Table 6. Silyl deprotection of precursor 263. 

Initial attempt for the removal of the TBS group
 
was achieved using tetrabutylammonium 

fluoride in tetrahydrofuran
157

 to give alcohol 265 in 75% yield. Unfortunately, during the 

reaction, we observed that fluoride itself was acting as a base, and therefore, epimerization 

took place affording unwanted alcohol 266 in 25% yield (Entry 1). 
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In a second attempt, silyl deprotection of 263 was accomplished by using acid 

hydrolysis.
158,159

 Treatment of 263 with a 2 M solution of hydrochloric acid in ethanol 

exclusively gave unprotected alcohol 265 in excellent yield (Entry 2). 

On the other hand, TBS cleavage of 264 using the same desilylation methods as in 263 led 

only to the formation of alcohol 266 (Scheme 80). 

 

  Reagents and conditions: (a) TBAF (1.4 eq), THF, 0 ºC, 6 h, 99%; (b) 2 M HCl in EtOH, 0 ºC, 4 h, 99%. 

Scheme 80. Synthesis of precursor 266. 

We next sought a method for the conversion of the hydroxyl-group to primary iodide 267. 

Following the iodination methodology described by Garegg
160

 alcohol 265 was treated with 

iodine, triphenyl phosphine, and imidazole in dicholoromethane. The iodinated lactone 267 

was fortuitously obtained in 95% yield. Subsequent conversion of the iodo moiety 267 into 

the desired nitro functionality 215 was performed by the use of nitrite ion bounded to 

macroporous quaternary ammonium Amberlite
®
 resin (IRA-900-NO2

-
) in refluxing 

benzene.
161

 This efficient procedure generated the desired nitroalkene precursor 215 in 80% 

yield (Scheme 81). 



Results and Discussion 

 82 

 

  Reagents and conditions: (a) I2 (2 eq), PPh3 (2 eq), imidazole (2 eq), 0 ºC (20 min) → RT (16 h), 95%; (b) 

Amberlite
®
 IRA-900-NO2

- 
(11.1 eq), PhH, ∆, 48 h, 80%. 

Scheme 81. Synthesis of nitroalkene 215. 

The functional group transformation was further extended to 266. In a similar manner, 

iodination of 266 by Garegg‟s method
160

 gave 268 in 74% yield, followed by nitration with 

Amberlite
®
 IRA-900-NO2

-
 in refluxing benzene

161
 led to 269 in 60% yield (Scheme 82). 

 

  Reagents and conditions: (a) I2 (2 eq), PPh3 (2 eq), imidazole (2 eq), 0 ºC (20 min) → RT (16 h), 74%; (b) 

Amberlite
®
 IRA-900-NO2

-
 (8.2 eq), PhH, ∆, 48 h, 60%. 

Scheme 82. Synthesis of nitroalkene 269. 
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2.7.1 Intramolecular [3 + 2] Nitrile Oxide-Olefin Cycloaddition 

The nitrile oxide-olefin cycloaddition reaction is a powerful synthetic method for the 

construction of fused five-membered ring heterocyclics.
162

 Since the discovery of 

intramolecular nitrile oxides cycloadditions to the alkene function,
163

 many extensions and 

applications for the synthesis of natural and unnatural products have been developed. There 

are a number of methods for the preparation of nitrile oxides. The most common and easy 

way is the in situ technique, which includes the Huisgen and Mack‟s
164

 method using 

hydroximoyl chlorides, and the dehydration of nitro compounds employing either the 

Mukaiyama-Hoshino procedure
120

 or Shimizu‟s modification.
165

  

Formation of eight-membered rings utilising the INOC reaction have been observed in the 

chemical literature by few scientific groups. To exemplify, Kozikowski et al.
166

 described 

an unexpected fused cyclooctane 270 instead of the less-strained six-membered ring while 

subjecting p-naphthoquinone derivative 271 to Mukaiyama-Hoshino conditions.
120

 The 

resultant course of this cycloaddition reflects the effect of the electron-withdrawal in the 

enedione moiety, thereby increasing the reactivity (Scheme 83). 

 

Reagents and conditions: (a) p-ClC6H4NCO, Et3N, PhH, ∆, 15 h, 58%.  

Scheme 83. Kozikowski‟s cyclooctanoid synthesis: INOC conditions. 

In a different manner, Nagaoka and colleague
167

 apply the INOC procedure for the 

synthesis of the A/B ring system of taxane 8 by treating nitroalkene 272 under Mukaiyama 

conditions.
120

 However, the reaction gave rise to the oxime derivative 273 and the expected 

isoxazoline 274 was not detected. This result was attributed to the fact that cyclisation was 
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vertically orientated with respect to the double bond of the A ring and not to the in-plane 

approach (Scheme 84).  

 

Reagents and conditions: (a) p-ClC6H4NCO, Et3N, PhH, 70 ºC, 10 h, 94%.  

Scheme 84. Nagaoka‟s cyclooctanoid synthesis: INOC conditions. 

2.7.1.1 Model Study 

Confident of the potential application of the INOC reaction to our synthetic strategy, an 

initial simple model study was carried out to establish the ease of preparation isoxazolines 

from nitrile oxides.
168,169

 To represent the nitroalkene, commercially available hex-5-en-1-

ol 275 was treated under iodination conditions
160

 with iodine, triphenyl phosphine, and 

imidazole in dicholoromethane affording iodinated compound 276 in 80% yield. The 

synthesis of niroalkene 277 was undertaken by treatment of 276 with sodium nitrite in 

DMF.
110

 Displacement of the iodide occurred in 49% yield (Scheme 85).   
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  Reagents and conditions: (a) I2 (1.4 eq), PPh3 (1.4 eq), imidazole (1.4 eq), 0 ºC (20 min) → RT (16 h), 80%; 

(b) NaNO2 (1.1 eq), DMF, RT, 3 h, 49%. 

Scheme 85. Synthesis of nitroalkene 277: Model study. 

Having nitroalkene 277 in hand, we proceed to investigate the in situ preparation of the 

nitrile oxide group, which will hopefully generate the corresponding isoxazoline 278.  

In the first attempt, nitroalkene 277 was dehydrated by the Mukaiyama-Hoshino‟s 

technique
120

 using phenyl isocyanate in the presence of triethylamine. The desired 

isoxazoline 278 was successfully made by this method. However, the N,N’-diphenyl urea 

by-product 279 was precipitated from the 1,3-dipolar cycloaddition solution, which was 

impossible to separate from the desired isoxazoline 278 due to similar solubilities. Further 

purification by flash column chromatography did not separate isoxazoline 278 from the by-

product 279. The second attempt employed the Shimizu‟s procedure,
165

 where nitroalkene 

277 was treated with p-toluenesulfonyl chloride and triethylamine in dichloromethane 

furnishing isoxazoline 278 in 52% yield. This methodology proved to be more suitable as 

purification of the isoxazoline 278 was accomplished without any difficulties (Scheme 86). 
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Reagents and conditions: (a) PhNCO (2 eq), Et3N (2 eq), PhH, RT, 16 h, N/A%; (b) p-TsCl (2 eq), Et3N (2 

eq), CH2Cl2, 0 ºC → RT, 52%.  

Scheme 86. Intramolecular [3 + 2] nitrile oxide-olefin cycloaddition: Model study. 

2.7.1.2 Subjecting Nitroalkene 215 to INOC Conditions 

Having succesfully isolated the key nitro-alkene intermediate 215, we now focused our 

attention on the synthesis of 216 via the INOC reaction strategy.  

In the first attempt, nitrile oxide from 215 was prepared in situ using the procedure 

described by Shimizu
165

 (Scheme 87). However, problems occurred when attempting to 

synthesise isoxazoline 216. Table 7 summarises our efforts in forming precursor 216.   

 

Scheme 87. Attempt to isoxazoline 216: Shimizu and Mukaiyama-Hoshino conditions. 
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Entry Reaction  

Conditions 

Solvent Conc.  

(m/L) 

T  

(ºC) 

Time 

(h) 

Product 

1 p-TsCl (2 eq), 

Et3N (2 eq) 

CH2Cl2 0.0279 0 to RT 16 SM + 280 (81%) 

 

2 p-TsCl (2 eq), 

Et3N (2 eq) 

CH2Cl2 0.0035 0 to RT 16 SM 

 

3 p-TsCl (2.5 eq), 

Et3N (2.5 eq) 

CH2Cl2 0.0179 0 to RT 16 SM + 280 

 

4 p-TsCl (2 eq), 

Et3N (2 eq) 

CH2Cl2 0.0085 0 to RT 48 SM + 280 

 

5 p-TsCl (2 eq), 

Et3N (2 eq) 

PhH 0.0095 ∆ 6 SM + 280 

 

6 p-TsCl (3 eq), 

Et3N (3 eq) 

PhH 0.0029 75
a
 3 SM + 280 

 

7 p-TsCl (3 eq), 

Et3N
b 

(3 eq) 

CH2Cl2 0.0059 0 to RT 72 SM + 280  

+ decomposition 

8 p-TsCl (3 eq), 

Et3N
b 

(3 eq) 

PhH 0.0029 ∆ 

 

48 SM + 280  

+ decomposition 

9 p-TsCl (3 eq), 

Et3N
b 

(3 eq) 

PhMe 0.0029 ∆ 

 

48 SM + 280  

+ decomposition 
      a

The reaction was carried out using MW 150 W.  
      b

Triethylamine was added slowly over 24 hours using a syringe pump and stirred for the time indicated. 

Table 7. Subjecting nitroalkene 215 to Shimizu conditions. 

We can attribute the failure of the reaction to the formation of the dimer product, furoxan 

280 (Scheme 88). Treatment of nitroalkene 215 with p-toluenesulfonyl chloride and 

triethylamine in dichloromethane led to unwanted dimer 280 in 81% yield, the recovery of 

starting material 215, and a compound that we were unable to identify by proton NMR 

because of the small amount obtained. This latter compound gave a mass ion by HRMS of 

284.1258 ((calc. 284.1257) C15H19NO3Na (M + Na)
+
). This could correspond to 

cycloaddition product 216 or possible dehydration of INOC precursor 215 (Entry 1). 

At this point, we rationalised that coupling of the reactive nitrile oxide groups placed on the 

end of the molecules occurred in preference to the intramolecular cycloaddition. As such, 

the reaction was conducted using Shimizu‟s conditions
165

 with more dilute solutions (Entry 

2, 3, and 4). Unfortunately, we did not observed the desired isoxazoline 216 using the high-

dilution technique and only furoxan 280 was obtained as a product (Entry 3 and 4). 
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Alternatively, benzene was used as the solvent, but neither under reflux (Entry 5) or 

microwave irradiation (Entry 6) could furnish 216, and only dimer 280 was produced 

together with unreacted starting material 215.  

Since nitrile oxides are quite unstable and can easily dimerize and produce 1,2,5-

oxadiazole-2-oxides, commonly known as furoxans or furazan oxides,
170,171

 we decided that 

in order to avoid this problem, the generation of nitrile oxide should be performed 

slowly.
162

 Thus, to a very diluted solution of nitroalkene 215 and p-toluenesulfonyl chloride 

in dichloromethane was added triethylamine in a dropwise manner over twenty four hours 

using a syringe pump (Entry 7). Disappointingly, only found unreacted 215, furazan oxide 

280, and decomposition material was found.  

The use of benzene (Entry 8) or toluene (Entry 9) by Shimizu‟s method with slow 

addition of triethylamine led only to the starting material 215, dimer 280, and decomposed 

material. 

 

Reagents and conditions: (a) p-TsCl (2 eq), Et3N (2 eq), CH2Cl2, 0 ºC → RT, 81%.  

Scheme 88. Synthesis of furoxan 280. 
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Undeterred, a second attempt to isoxazoline 216 was investigated, but this time INOC 

reaction was performed using the Mukaiyama-Hoshino technique.
120 

The results of this 

investigation are summarised in Table 8.  

Nitroalkene 215 was dehydrated with phenyl isocyanate in the presence of triethylamine in 

benzene at room temperature. Unfortunately, this led to the formation of the corresponding 

furazan oxide 280 and unreacted compound 215 (Entry 1).  

In a similar manner, subjecting 215 to Mukaiyama-Hoshino conditions
120

 under reflux did 

not give rise to desirable 216. Only starting material 215 and 280 were observed (Entry 2).  

Disappointingly, the slow formation of the nitrile oxide by adding triethylamine in a slow 

fashion using phenyl isocyanate in refluxing benzene (Entry 3) or toluene (Entry 4) for 

four days proved to be unfruitful. The substitution of phenyl isocyanate for p-clorophenyl 

isocyanate in refluxing toluene led only to 215, furoxan 280, and decomposition (Entry 5). 

 

Entry Reaction 

conditions 

Solvent Conc.  

(m/L) 

T  

(ºC) 

Time 

(h) 

Product 

1 PhCNO (2 eq), 

Et3N (2 eq) 

PhH 0.0358 RT 16 SM + 280 

2 PhCNO (2 eq), 

Et3N (2 eq) 

PhH 0.0358 ∆ 16 SM + 280 

3 PhCNO (10 eq), 

Et3N
a
 (10 eq) 

PhH 0.0029 ∆ 96 SM + 280  

+ decomposition 

4 PhCNO (10 eq), 

Et3N
a
 (10 eq) 

PhMe 0.0029 ∆ 

 

96 SM + 280  

+ decomposition 

5 ClPhCNO (10 eq), 

Et3N
a
 (10 eq) 

PhMe 0.0034 ∆ 72 SM + 280  

+ decomposition 

      a
Triethylamine was added slowly over 24 hours using a syringe pump and stirred for the time indicated. 

Table 8. Subjecting nitroalkene 215 to Mukaiyama-Hoshino conditions. 

2.7.1.3 Subjecting Nitroalkene 269 to INOC Conditions 

As a final attempt it was hoped that the investigation of the intramolecular nitrile oxide-

olefin cycloaddition reaction on analogue nitroalkene 269 would be more geometrically 
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favoured in terms of the nitrile oxide unit with respect to the double bond, thus forming 

isoxazoline 281 (Scheme 89). The results are summarised in Table 9. 

 

Scheme 89. Attempt to isoxazoline 281: Shimizu and Mukaiyama-Hoshino conditions. 

 

Entry Reaction  

Conditions 

Solvent Conc.  

(m/L) 

T  

(ºC) 

Time 

(h) 

Product 

1 p-TsCl (2 eq), 

Et3N (2 eq) 

CH2Cl2 0.0194 0 to RT 16 SM + 282 (64%) 

2 p-TsCl (2eq), 

Et3N
a
 (2 eq) 

CH2Cl2 0.0029 0 to RT 96 SM + 282 

3 PhCNO (eq), 

Et3N
a
 (3 eq) 

PhH 0.0029 ∆ 

 

96 SM + 282  

+ decomposition 

4 PhCNO (10 eq), 

Et3N
a
 (10 eq) 

PhMe 0.0034 ∆ 

 

96 SM + 282  

+ decomposition 
      a

Triethylamine was added slowly over 24 hours using a syringe pump and stirred for the time indicated. 

Table 9. Subjecting nitroalkene 269 to Shimizu and Mukaiyama-Hoshino conditions. 

Treatment of INOC precursor 269 under Shimizu conditions
165

 with p-toluenesulfonyl 

chloride in the presence of triethylamine was unsuccessful, as the reaction led to undesired 

furoxan 282 in 64% yield (Scheme 90), some recovered nitroalkene 269, and a small 

compound unable to identify by proton NMR due to the lack of material obtained. This 

latter compound gave a mass ion by HRMS of 284.1268 ((calc. 284.1257) C15H19NO3Na 

(M + Na)
+
). This could correspond to cycloaddition product 281 or dehydration of 

nitroalkene 269 (Entry 1).  

The slow in situ generation of the nitrile oxide group by the dropwise addition of 

triethylamine into the Shimizu procedure
165

 did not help to give 281 (Entry 2).  
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At this late stage, the employment of the Mukaiyama-Hoshino technique
120

 by treating 269 

with phenyl isocyanate and triethylamine in refluxing benzene (Entry 3) or toluene (Entry 

4) proved to be unsuccessful, as dimer 282 was obtained and 281 was not isolated. 

 

Reagents and conditions: (a) p-TsCl (2 eq), Et3N (2 eq), CH2Cl2, 0 ºC → RT, 64%.  

Scheme 90. Synthesis of furoxan 282. 

To conclude this investigation employing nitroalkene precursors 215 and 269, we examined 

the use of an intramolecular nitrile oxide-olefin cycloaddition reaction and neither set of 

conditions, Shimizu
165

 or Mukaiyama-Hoshino
120

 resulted in the formation of any 

isoxazoline product 216 or 281, respectively. Only the corresponding furazan oxides 280 

and 282 were formed, and part of the starting material was recovered. This result was 

disappointing, as the INOC would have been a rapid approach to the required isoxazoline 

precursors.  

As this extensive investigation remained fruitless, alternatives for the intramolecular 

cycloaddition reaction were now considered.  

2.7.2 Intramolecular [3 + 2] Silyl Nitronate-Olefin Cycloaddition 

Silyl nitronates can be considered as synthetic equivalents of nitrile oxides in 1,3-dipolar 

cycloaddition reactions.
172

 In their reaction with olefins, the N-[(silyl)oxy]isoxazolidines 

formed are readily transformed into 2-isoxazolines upon heating
173

 or treatment with acid 

or tetrabutylammonium fluoride.
174

 However, intramolecular [3 + 2] silyl nitronate-olefin 
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cycloadditions are much more rarely used than the related INOC reactions.
175

 This can be 

explained to the fact that silyl nitronates are thermolabile, sensitive to humidity, and there 

are much less reactive than nitrile oxides.
172

 Starting from nitro compounds, the most 

common method for the preparation of silyl nitronates is the use of trimethylsilyl chloride 

in the presence of a base.
160

  

Although no report actually exist in the literature concerning the generation of an eight-

membered ring using the ISOC procedure, Breau‟s et al.
176

 achieved the cycloaddition of 

silaketal 283 to obtain a seven-membered ring tether 284 in 45% yield (Scheme 91).  

 

Reagents and conditions: (a) TMSCl (2 eq per day), Et3N (2 eq per day), PhH, ∆, 12 days, 45%.  

Scheme 91. Breau‟s cyclooctanoid synthesis: ISOC conditions. 

2.7.2.1 Subjecting Nitroalkene 215 to ISOC Conditions 

With 215 in hand, intramolecular silyl nitronate-olefin cycloaddition was viewed as another 

alternative to access the formation of the eight-membered carbocycle. It was reasonable to 

assume that the problematic dimerization of 215 using INOC conditions could be solved by 

the influence of the silyl group on nitronate 285. Treatment of 285 under ISOC conditions 

could potentially give N-[(silyl)oxy]isoxazolidine 286 and subsequently form 216 after a 

desilylation process (Scheme 92). 
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Scheme 92. Proposal for synthesis of isoxazoline 216 utilising ISOC conditions. 

During this investigation all attempts were unsuccessful, despite using standard conditions, 

the intramolecular cycloaddition towards 216 could not be accomplished (Scheme 93). 

Various bases and conditions were investigated. The results are summarised in Table 10.   

 

 Scheme 93. Attempt to isoxazoline 216: ISOC conditions. 
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Entry Reaction conditions Solvent T 

(ºC) 

Time 

(h) 

Product 

1 TMSCl
a
 (1.1 eq), 

Et3N (1.2 eq) 

PhH 0 to RT 72 SM 

2 TMSCl
a
 (1.1 eq), 

Et3N (1.2 eq) 

PhH ∆ 24 SM 

3 TMSCl
a
 (10 eq), 

Et3N (11 eq) 

PhH ∆ 72 SM 

4 TMSCl
a
 (2.5 eq), 

DBU(1.2 eq) 

CH2Cl2 0 to RT 24 SM 

5 TMSCl
a
 (5 eq), 

DBU (2.4 eq) 

CH2Cl2 0 to RT 72 SM 

+ decomposition 

6 TMSCl
a
 (1.3 eq), Et3N 

(1.3 eq), NaI (1.3 eq) 

CH3CN 0 to RT 72 SM 

+ decomposition 

7 TMSCl
a
 (3.9 eq), Et3N 

(3.9 eq), NaI (3.9 eq) 

CH3CN 0 to RT 72 Decomposition 

          a
Trimethylsilyl chloride was added 30 minutes after the addition of the base. 

Table 10. Subjecting nitroalkene 215 to ISOC conditions. 

In an initial attempt, silylation of nitro-olefin 215 was performed using trimethylsilyl 

chloride and triethylamine in benzene at room temperature, but disappointingly, only 

unreacted material 215 was isolated (Entry 1). As a result, the reagents used were 

rigorously purified and dried. A similar procedure was used under reflux but following 

workup only induced to the recovery of 215 (Entry 2). The same misfortune happen when 

the equivalents of the reagents were increased (Entry 3).  

It was then decided to use a stronger base. As such, deprotonation of nitro compound 215 

was attempted with 1,8-diazabicyclo(5.4.0)undec-7-ene in dichloromethane (Entry 4). 

Unfortunately, we were unable to obtain isoxazoline 216.  

Furthermore, increasing the number of equivalents of DBU and TMSCl only led to the 

isolation of unreacted starting material 215, decomposition, and a compound that we were 

unable to identify by proton NMR due to the lack of available material (Entry 5). This 

latter compound gave a mass ion by HRMS of 284.1257 ((calc. 284.1257) C15H19NO3Na 

(M + Na)
+
). This could correspond to the ISOC product 216.   
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We then envisaged silylation of 215 via a variant procedure using trimethylsilyl chloride, 

triethylamine, sodium iodide, and acetonitrile.
177

 It was reasoned that the addition of the 

sodium iodide into the reaction could potentially facilitate the desilylation process. 

Disappointingly, the application of this method to our system failed, having only recovered 

material and some decomposition (Entry 6). Also, increasing the number of equivalents of 

the silylation reagents consumed all the starting material 215 and none of the products 

corresponded to the desired cycloadduct 216 (Entry 7).   

After several unsuccessful avenues, alternative conditions for an intramolecular cyclisation 

were investigated. Thus, synthesis of appropriate precursors was also required.  

2.7.3 Samarium(II) Iodide-Mediated Intramolecular Cyclisation 

Samarium(II) iodide-mediated reductive cyclisations have found considerable application 

in the construction of eight-membered rings.
10

 One of the most important SmI2-promoted 

reaction is the carbonyl-alkene/alkyne reaction.
178

 The carbonyl group is initially reduced to 

generate a ketyl radical anion, which then attacks the unsaturated system. The carbonyl-

alkene/alkyne coupling could be accomplished with both activated and unactivated alkenes 

and alkynes.  

Molander‟s group
16

 illustrated that unsaturated ketone 287 cyclise to form bicyclic 5,8-

fused alcohol 288 through a ketyl radical-alkene intramolecular cyclisation in the SmI2-

HMPA milieu (Scheme 94). 

 

Reagents and conditions: (a) SmI2 (2.2 eq), t-BuOH 261 (2 eq), HMPA, THF, 1.5 h, 78%, d.s. 1:1.  

Scheme 94. Molander‟s cyclooctanoid synthesis: SmI2 cyclisation conditions. 

In 2003, Molander et al.
179

 published the total synthesis of (+)-isoschizandrin 289 via a 

samarium diiodide-promoted 8-endo-trig carbonyl-alkene cyclisation as the final step. The 
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ketyl-olefin coupling assembled the medium-sized ring when 290 was treated with SmI2, t-

butanol 261, and hexamethylphosphoramide affording 289 in good yield. The presence of 

the biaryl motif enhances this ring closure by lowering the SOMO/LUMO energy gap and 

reducing the entropic effects by ordering at least four of the ring‟s eight carbons (Scheme 

95). 

 

Reagents and conditions: (a) SmI2 (2.2 eq), t-BuOH 261 (2 eq), HMPA, THF, 85%, d.r. >18:1.  

Scheme 95. Molander‟s synthesis of isoschizandrin 289 via SmI2-mediated cyclisation.  

 

2.7.3.1 Subjecting Aldehyde 291 to SmI2 Cyclisation Conditions 

Whilst there is precedent for preparing eight-membered carbocycles using the samarium(II) 

iodide-mediated cyclisation reaction, the possibility of generating modified precursor 

cyclooctanol 292 by an 8-exo-trig radical cyclisation process from precursor 265 appeared 

to be an attractive option. We were encouraged by the benefit that if 292 was formed, 

subsequent oxidation to the corresponding ketone at C-8 could provide an alternative route 

to asteriscanolide 1 (Scheme 96).  
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Scheme 96. Proposal for synthesis of precursor 292 utilising SmI2 cyclisation conditions. 

For this investigation aldehyde 291 was prepared initially from the primary alcohol 

precursor 265 using tetrapropylammonium perruthenate.
180

 Disappointingly, exposure of 

unsaturated aldehyde 291 to samarium diiodide reductive cyclisation conditions did not 

afford the desired product 292 and only reduction to the alcohol 265 was observed (Scheme 

97). 

 

Reagents and conditions: (a) TPAP, NMO, 4 Å MS, CH2Cl2, 75%; (b) SmI2 (2.2 eq), t-BuOH 261 (2 eq), 

HMPA, THF.  

Scheme 97. Attempt to precursor 292: SmI2 cyclisation conditions.  

We postulated that ring-strain associated with the desired transition state was responsible 

for the failure of the cycloaddition. Due to time constraints and lack of any evidence of the 

desired product, this route was not investigated further. Alternatively, a radical-mediated 

intramolecular cyclisation could be envisaged as another method to create an eight-

membered ring in our system. 
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2.7.4 Radical-Mediated Intramolecular Cyclisation 

Free radical-induced cyclisations have emerged as a versatile methodology for the synthesis 

of carbocyclic ring systems.
10

 There are few examples of the use of radical cyclisation 

reactions leading to cyclooctane ring formation. Among the different reducing agents 

tributyltin hydride (TBTH) in the presence of a substoichiometric amount of radical 

initiator has been the most commonly used.
181

 

Pattenden et al.
182

 have described the formation of an eight-membered ring fragment of 

taxanes 293 based on a cascade radical-mediated macrocyclisation-transannulation strategy. 

Treatment of bis-enone 294 with Bu3SnH and 2,2‟-azobis(2-methylpropionitrile) (AIBN) 

led to 293 as a result of the 12-endo-trig cyclisation in a single operation (Scheme 98). 

 

Reagents and conditions: (a) Bu3SnH, AIBN (cat), PhH, ∆, 25%.  

Scheme 98. Pattenden‟s cyclooctanoid synthesis: Radical cyclisation conditions. 

Another example involving a TBTH-promoted carbocyclisation for the construction of a 

cyclooctane ring has been reported by Marco-Contelles and colleague.
183 

The 8-endo-trig 

radical reaction of primary alkyl precursor 295 provided 296 in 50% yield (Scheme 99). 
 

 

Reagents and conditions: (a) Bu3SnH (1.5 eq), AIBN (10 mol%), PhH, ∆, 50%.  

Scheme 99. Marco-Contelles‟ cyclooctanoid synthesis: Radical cyclisation conditions. 
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2.7.4.1 Subjecting Iodoalkene 267 to Radical Cyclisation Conditions 

An alternative new approach employing free radical-promoted cyclisation technique was 

investigated in our real system. It was hoped that previously prepared iodoalkene 267 could 

potentially give access to cyclooctanoid lactone 297. Despite that 297 change totally our 

retrosynthetic analysis; the intention was to explore the possibility of the formation of the 

eight-membered ring by the use of this methodology (Scheme 100).       

 

Scheme 100. Proposal for synthesis of precursor 297 utilising radical cyclisation 

conditions. 

Attempt was then made when iodoalkene 267 was treated slowly with Bu3SnH and 1,1‟-

azobis(cyclohexanecarbonitrile) (ABCN) in refluxing benzene. Unfortunately, only 

decomposition products were isolated. Proton NMR experiments and HRMS analyses of 

the products isolated indicated that the radical reduction actually took place, but no 

cyclisation products were obtained (Scheme 101). 

 

Reagents and conditions: (a) Bu3SnH (2.2 eq), ABCN (10 mol%), PhH, ∆, 96 h.  

Scheme 101. Attempt to precursor 297: Radical cyclisation conditions. 

This brief investigation, although not yielding the desired cyclooctanoid 297, provides 

further evidence showing that intramolecular cyclisation could be geometrically 
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disfavoured in terms of the peripheral functional group in the chain with respect to the 

unsaturated system. Therefore, focusing once more on alternative methods for the pivotal 

cyclisation step was necessary.  

2.7.5 Intramolecular Nitronate Anion-Epoxide Cyclisation 

The ring opening reactions of epoxides with nucleophiles are considered as a very useful 

approach in organic synthesis.
184

 In a similar manner to the Henry reaction,
185

 β-

nitroalcohols can be prepared by the nucleophilic addition of nitronate anions to oxirane 

rings.
 
While no substantial research has been conducted, these reactions are usually carried 

out under basic conditions and several methods have been reported.
186-188

 However, so far 

there is no precedent involving intramolecular cleavage of epoxides by nitronate species for 

the formation of eight-membered rings. 

2.7.5.1 Subjecting Nitroepoxide 298 to Cyclisation Conditions 

At this late stage of the project, synthetic efforts were now directed towards 

functionalisation of the unsaturated fragment of our system. Although we had limited 

material of precursor 215 available, in our study we aim to utilise 215 for an intramolecular 

nitronate anion addition to an epoxide in order to form the key C-C bond, and thus 

complete the tricyclic framework 299 of target molecule 1 (Scheme 102). 

 

 Scheme 102. Proposal for synthesis of precursor 299 utilising nitronate anion-epoxide 

cyclisation conditions. 
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To investigate this new synthetic route, nitroalkene 215 was first converted to epoxide 298. 

Treating 215 with Oxone
®
 in a two-phase system with ethyl acetate and water gave 298 as 

a separable 1.7:1 mixture of endo/exo diastereoisomers in excellent yield (Scheme 103).
189

 

 

Reagents and conditions: (a) Oxone
®
 (1 eq), NaHCO3 (5 eq), acetone (10 eq), EtOAc, H2O, RT, 16 h, 

endo/exo epoxidation (1.7:1), 99%.  

Scheme 103. Synthesis of nitroepoxide 298. 

In the attempt to cyclisation, nitroepoxide 298 was exposed to lithium tert-butoxide 260, 

previously prepared from t-BuOH 261 and n-BuLi at low temperature in tetrahydrofuran. 

Unfortunately, only 298 and decomposition material were observed (Scheme 104).  

 

Reagents and conditions: (a) n-BuLi (1.1 eq), THF, -70 ºC, 10 min; (b) 260, THF, -70 ºC (2 h) → RT  

(16 h). 

Scheme 104. Attempt to precursor 299: Intramolecular nitronate anion-epoxide cyclisation 

conditions. 

Due to the challenging nature of our system, a second generation retrosynthetic approach 

was identified. 
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22..88  SSeeccoonndd  GGeenneerraattiioonn  RReettrroossyynntthheettiicc  AAnnaallyyssiiss  

In this new approach, it was hoped that generation of β-nitroalcohol 300, a suitable 

substitute of isoxazoline 216, could be obtained by a ring-closing metathesis of diene 301. 

This could be prepared via nucleophilic ring-opening of the oxirane ring of compound 302 

with nitroalkene 203 under basic conditions. Alkylation of the well known lactone 205,
107

 

followed by oxidation of the olefin moiety should provide epoxide precursor 302 (Scheme 

105).  

 

Scheme 105. Retrosynthetic analysis reviewed. 

 

  

  

  

  

  

  

  



Results and Discussion 

 103 

22..99  SSyynntthheessiiss  ooff  EEppooxxiiddee  330022  

The alkylation of bicyclic γ-lactones bearing a similar framework to precursor 205 has been 

reported to give diastereoisomer products (303
190

 and 304
191

) under standard conditions 

where the alkyl substituent was placed on the convex face of the bicyclic system. In 

contrast, a mixture of lactones 305 and 306
192

 was obtained when a smaller electrophile 

was used (Scheme 106). 

 

Reagents and conditions: (a) LDA, HMPA, THF, hexane, -78 ºC; 1-iodobutane, -40 ºC  → -18 ºC, 42%; (b) 

LHMDS, THF, -90 ºC; allyl iodide, 79%; (c) LHMDS, THF, -65 ºC; MeI, -65 ºC → -20 ºC, 68% (305), 9% 

(306). 

Scheme 106. Examples of alkylation of bicyclic γ-butyrolactone 231. 

Following Marsh‟s protocol
2 

treatment of 205 with lithium diisopropylamide in 

tetrahydrofuran at low temperature and quenching of the resulting enolate with allyl 

bromide afforded a separable 1:1.5 mixture of lactone 204 and undesired diastereoisomer 

210 in modest yield. Improvement of the facial selectivity was observed when lithium 

bis(trimethylsilyl)amide and allyl bromide were used (Scheme 107). 
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Reagents and conditions: (a) LDA (1.1 eq), THF, -78 ºC, 1 h; allyl bromide (2 eq), -78 ºC (2 h) → RT (16 h), 

204/210 (1:1.5), 52%; (b) LHMDS (1.1 eq), THF, -78 ºC, 1 h; allyl bromide (2 eq), -78 ºC (2 h) → RT (16 h), 

204/210 (1:1.1), 74%.  

Scheme 107. Synthesis of precursors 204 and 210. 

Carnell and colleagues,
192

 who reported the preparation of 305 and 306,
192

 also developed 

the conversion of 305 to 306. Thus, re-formation of the enolate with LHMDS and 

quenching with methanol gave a small amount of 306. Moreover, Olivo et al.
193

 from the 

University of Iowa published a similar epimerization step. This time, kinetic protonation of 

the lithium enolate of lactone 305 gave the thermodynamically unfavored methyl lactone 

306 by using LHMDS, followed by workup procedure with a saturated solution of 

ammonium chloride in 78% yield (Scheme 108).    

 

Reagents and conditions: (a) LHMDS, THF, -65 ºC; MeOH, -65 ºC → -20 ºC, 15%; (b) LHMDS, -78 ºC, 2 h; 

aq NH4Cl, 78%. 

Scheme 108. Epimerization procedures of bicyclic γ-butyrolactone 305. 

As reported by Marsh,
2
 quenching the lithium enolate of 210 with tert-butyl bromide 

changed the ratio to 2.3:1 in favour of the desired diastereosisomer 204 bearing the allyl 

group on the concave face. The use of tert-butyl bromide enabled protonation from the least 

sterically encumbered face (Scheme 109).  
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Reagents and conditions: (a) LDA (1.1 eq), THF, -78 ºC; t-BuBr (10 eq), THF, -78 ºC (3 h) → RT (16 h). 

204/210 (2.3:1). 

Scheme 109. Partial kinetic protonation of precursor 210. 

Olivo‟s group
193

 reported the stereoselective epoxidation of the analogous unsaturated 

bicyclic lactone 306 employing peracetic acid in a mixture of sodium acetate-acetic acid 

giving preferentially the endo-epoxide 307 in 89% yield (Scheme 110).   

 

Reagents and conditions: (a) AcOOH (1.5 eq), NaOAc (2 eq), AcOH, RT, 48 h, 89%. 

Scheme 110. Olivo‟s epoxidation of bicyclic γ-butyrolactone 306. 

Likewise, the Furstoss‟ group
194

 also obtained diastereofacial selectivity when treating 

lactone 231 with m-chloroperbenzoic acid, which afforded a mixture of diastereomeric 

epoxides 308 and 309 in 80% and 6% yield, respectively, favouring the endo-epoxide 308 

(Scheme 111).   

 

Reagents and conditions: (a) m-CPBA (1.1 eq), CH2Cl2, 0 ºC → RT, 12 h, 80% (308), 6% (309).  

Scheme 111. Furstoss‟ epoxidation of bicyclic γ-butyrolactone 231.  



Results and Discussion 

 106 

In our case, it was decided to perform the olefin epoxidation of lactone 204 using m-CPBA 

in dichloromethane. This produced the desired oxirane ring lactone 302 as a separable 3.5:1 

mixture of endo/exo diastereoisomers in 73% yield (Scheme 112). The expected minor 

product, exo-epoxide diastereoisomer 302, was isolated a crystalline solid (Figure 19).   

 

Reagents and conditions: (a) m-CPBA (1.1 eq), NaHCO3 (1.1 eq), CH2Cl2, 0 ºC → RT, 48 h, endo/exo 

epoxidation (3.5:1), 73%.  

Scheme 112. Synthesis of epoxide 302. 
 

 

Figure 19. X-ray crystal structure of exo-epoxide 302. 
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22..1100  SSyynntthheessiiss  ooff  NNiittrrooaallkkeennee  220033  

Attention was focused towards the preparation of chiral nitroalkene 203. Marsh
2
 initially 

envisaged that 203 could be synthesised by regioselective „Me
-
‟ nucleophile addition to 

butadiene oxide.
195

 However, a more reliable strategy was investigated in this project.   

To commence the study, aldehyde 247 was chosen as the point of departure. Formation of 

alkene 310 was prepared according to the literature
196

 with slight modifications.
2
 Treatment 

of precursor 247 with methyltriphenylphosphonium bromide in tetrahydrofuran gave olefin 

310 in good yield. Deprotection of the hydroxyl group with Dowex
®
 50W-X8

197
 (cation-

exchange resin) in dichloromethane, followed by mesylation and subsequent iodide 

replacement
 
of the corresponding mesylate 311 led to iodide 312.

198
 Finally, nitration of 

312 with Amberlite
®
 resin in refluxing benzene

161
 furnished nitroalkene 203 in 67% yield 

(Scheme 113). 

 

Reagents and conditions: (a) Ph3P(Me)Br (2 eq), n-BuLi (2.5 eq), THF, 0 ºC → RT, 16 h, 81%; (b) Dowex
®
 

50W-X8, CH2Cl2, 48 h; MsCl (1.1 eq), NEt3 (1.1 eq), DMAP (cat), CH2Cl2, 0 ºC → RT, 16 h, 75%; (c) NaI 

(10 eq), acetone, ∆, 16 h, 71%; (d) Amberlite
®
 IRA-900-NO2

-
 (4.5 eq), PhH, ∆, 48 h, 67%. 

Scheme 113. Synthesis of nitroalkene 203. 

Having successfully prepared at least small quantities of key nitroalkene 203 in four steps 

from aldehyde 247, the synthesis of the potential ring-closing metathesis precursor 302 

could now be investigated.    
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22..1111  IInntteerrmmoolleeccuullaarr  NNiittrroonnaattee  AAnniioonn--EEppooxxiiddee  AAddddiittiioonn  AApppprrooaacchh  

2.11.1 Model Study 

To test the approach in principle, the reaction was attempted on epoxide 302 with 

commercially available nitroethane. Unfortunately, nitroethane in the presence of a base 

and subsequent nitronate anion addition to epoxide 302 failed to give any of the desired β-

nitroalcohol product 313 (Scheme 114). Several bases, including some commonly used for 

the Henry reaction
185

 were investigated for the deprotonation of the nitro compound and the 

results are summarised in Table 11.       

 

Scheme 114. Intermolecular [3 + 2] nitrile oxide-olefin cycloaddition: Model study. 

 

Entry Reaction conditions Solvent T  

(ºC) 

Time 

(h) 

Product 

1 EtNO2 (10 eq), 

Proton-sponge
®
 (10 eq) 

CH2Cl2 RT 120 SM 

2 EtNO2 (10 eq), 

DIEA (10 eq) 

CH2Cl2 RT 120 SM  

 

3 EtNO2 (10 eq), 

DBU (10 eq) 

CH2Cl2 RT 168 SM  

+ decomposition 

4 EtNO2
 
(10 eq), 

Amberlyst
®
 A-21 (10 eq) 

CH2Cl2 RT 168 SM  

+ decomposition 

5 EtNO2 (10 eq), 

t-BuOK (10 eq) 

t-BuOH 261 

THF (1:1) 

RT 168 SM  

+ decomposition 

6 EtNO2 (1.1 eq), 

t-BuOLi 260 (1.1 eq) 

THF -78 to RT 16 SM  

 
    a

The starting material 302 was added 1 hour after the addition of the base. 

Table 11. Subjecting epoxide 302 to nitronate anion-epoxide addition conditions. 
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Ring-opening of epoxide 302 was first attempted using proton-sponge
®

 and nitroethane in 

dichloromethane at room temperature. The reaction mixture was left for five days, but this 

indicated only the presence of the starting material (Entry 1).  

Next was investigated the nucleophilic addition of 302 using nitroethane and DIEA, also 

known as Hünig‟s base in dichloromethane at room temperature. However, after five days 

of stirring only unreacted 302 was isolated (Entry 2).  

Literature precedent has shown that there are many deprotonating agents that can be used 

for the Henry reaction
185

 such as DBU,
199

 Amberlyst A-21 resin,
200

 and potassium tert-

butoxide.
201

 An investigation using these bases was carried out in our real system. 

The employment of an excess of DBU
199

 as the deprotonation source and nitroethane in 

dichloromethane at ambient temperature for one week led only the recovery of 302 and 

some decomposed material (Entry 3).  

An excess of resin Amberlyst
®
 A-21

200
 (Entry 4) was investigated. This was added to a 

mixture of nitroethane and epoxide 302 in dichloromethane and left to stir for seven days. 

These conditions only resulted in the isolation of the starting material 302 and 

decomposition material. 

The application of a stronger base such as potassium tert-butoxide
201

 in a 1:1 mixture of 

tetrahydrofuran and tert-butanol 261 at room temperature for one week did not give access 

to the desired nitroalcohol 313. Only starting material 302 and decomposition were 

observed (Entry 5). In addition, when 302 was exposed to lithium tert-butoxide 260 in 

tetrahydrofuran at low temperature no desired nitroalcohol 313 was formed and only 

starting material 302 was observed (Entry 6). 

Unfortunately, time constrains and lack of material prevented any further investigations at 

this point. However, the results obtained and the syntheses of a number of intermediates 

towards asteriscanolide 1 justify additional investigation in the future.   
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22..1122  CCoonncclluussiioonnss  

Intensive synthetic studies towards asteriscanolide 1 have been undertaken using a novel 

strategy. The diverse disconnections have allowed the preparation of synthetically useful 

intermediates that had been subjected to our initial synthetic plans. 

The synthesis of lactone 205 and mono-chlorinated lactone 238 was successfully achieved 

in a four-step procedure, starting from commercially available cyclopentadiene 206, 

providing a significant part of our target molecule 1.  

Attempts to introduce the phosphonate ester in key lactone 205 under standard conditions 

failed. However, a promising result for the elaboration of α-phosphonated lactone 226 was 

observed when using chloro-lactone 238. Alternatively, formation of mono-iodinated 

lactone 244 from the halogen exchange of 238 resulted to be a reliable and scaleable 

strategy for the construction of the HWE precursor 226. 

An efficient route for the synthesis of the HWE parter 217 incorporating the important 

homochiral C-7 methyl group was accomplished in a seven-step sequence starting from 

commercially available Roche ester 246.  

Efforts to combine the two necessary fragments α-phosphonated lactone 226 and aldehyde 

217 led to the completion of the entire carbon framework 227 via a HWE condensation.    

Preparation of the required INOC precursor 215 and the corresponding diastereoisomer 269 

were synthesised via the functional group manipulation of the advanced olefin 227. 

However, failure was experienced in trying to form the eight-membered ring under both 

Mukaiyama-Hoshino and Shimizu conditions, resulting only in dimerization products 280 

and 282.  

Alternative strategies to device the ring closure were extensively investigated. Further 

approaches using the ISOC reaction, samarium(II) iodide-mediated cyclisation, radical-

mediated cyclisation, and nitronate anion-epoxide cyclisation remained fruitless. Further 

work is required to investigate the intramolecular route.  
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A second generation approach was envisaged with a RCM manoeuvre as the pivotal step. 

For this, the application of an epoxide-opening operation was necessary. Although 

intermediates epoxide 302 and nitroalkene 203 were made in a relatively efficient manner, 

a model study has not yet been realised. Future work using this chemistry would be 

required.   
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33..11  GGeenneerraall  EExxppeerriimmeennttaall  PPrroocceedduurreess  

All the reactions were performed under a nitrogen atmosphere unless otherwise stated, 

using oven-dried glassware. Reactions requiring anhydrous conditions were conducted by 

using flame-dried glassware. Microwave reactions were carried out with a CEM Discover 

SP microwave synthesis series. 

Anhydrous diethyl ether and tetrahydrofuran were distilled from sodium in the presence of 

benzophenone. Dichloromethane, benzene, toluene, N,N-dimethylformamide, 

triethylamine, and ethyl acetate were distilled from calcium hydride prior to use. Methanol 

and ethanol were distilled from activated Magnesium turnings using a crystal of iodine. 

Phenyl isocyanate was distilled from P2O5 and stored over flame-dried 3Å molecular 

sieves. All other grade solvents were used as received for routine purposes from Fischer 

scientific. Chemical reagents were commercially available and used without further 

purification unless otherwise stated.   

All reactions were monitored, where appropriate, by analytical thin layer chromatography 

(TLC) using Merck glass backed plates pre-coated with 0.25 mm layer of silica gel 60 F254 

containing a fluorescent indicator. Visualisation was achieved with ultra violet florescence 

radiation (254 nm), and/or by staining with alkaline potassium permanganate, vanillin, or 

phosphomolybdic acid dips. Purification by flash column chromatography was carried 

according to Still procedure
202

 using Fisher Scientific silica 60A (35-70 mesh). 

Proton nuclear magnetic resonance spectra (
1
H NMR) were recorded using a Varian 

VNMRS operating at 500 MHz, or a Bruker Advance AC-300 operating at 300 MHz. 

Samples were run at ambient probe temperature using deuteriochloroform as the solvent, 

unless otherwise stated. Residual isotopic solvent (CHCl3, δH = 7.27 ppm) was used as the 

internal reference. Chemical shifts (δ) are quoted in parts per million (ppm), and coupling 

constants (J) are measured in Hertz (Hz). The following abbreviations are used to describe 

the multiplicity of a given signal: s, singlet; d, doublet; t, triplet; m, multiplet; dd, doublet 

of doublets; ddd, double doublet of doublets; dt, doublet of triplets; br, broad singlet. 
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Carbon nuclear magnetic resonance spectra (
13

C NMR) were recorded using a Varian 

VNMRS operating at 125 MHz, or a Bruker Advance AC-300 operating at 75 MHz and 

proton decoupled. Samples were run at ambient probe temperature using 

deuteriochloroform as the solvent, unless otherwise stated. Residual isotopic solvent 

(CHCl3, δC = 77.00 ppm) was used as the internal reference. Chemical shifts (δ) are quoted 

in parts per million (ppm). Carbon spectra assignments are supported by DEPT and 

correlation experiments. The following abbreviations are use to describe the multiplicity of 

a given signal: C, quaternary; CH, methane; CH2, methylene, CH3, methyl. 

The numbering of all the compounds mentioned in this section is arbitrary, with the sole 

intention to aid in the assignment of protons and carbons in the relevant spectra. As such, 

they do not necessarily correspond with that of the I.U.P.A.C. system. 

Infrared spectra (IR) were recorded on a Perkin-Elmer FT-IR 298 (1710) spectrometer, 

with absorption maxima (νmax) measured in cm
-1

. Some samples were prepared as either a 

thin film (liquids) or a solution in dichloromethane (solids) between sodium chloride plates, 

and other samples were directly placed on a universal attenuated total reflectance sampling 

accessory. The following abbreviations are used in reference to the intensity of absorption: 

s, strong; m, medium; w, weak; br, broad.      

Mass spectrometry data were recorded by Dr. Alaa Abdul-Sada on a Bruker Daltronics 

Apex III 4.7T using positive electro-spray ionization (+‟ve ESI), and a Fisons Instrument 

VG Autospec using positive electron impact (+‟ve EI), with methanol as the solvent. Only 

molecular ions, fractions from molecular ions and other major peaks are reported as 

mass/charge (m/z) ratios. The following abbreviations are used to describe the experiment: 

HRMS, high resolution mass spectrometry; LRMS, low resolution mass spectrometry. GC 

MS analyses were carried out on a Quattro micro GC using HP-5MS fused silica (30 m × 

0.25 i. d. × 0.25 μm). The carried gas used was helium at a flow rate of 1 mL/min. 
 

Optical rotations were recorded using a Bellingham-Stanley ADP440 polarimeter with a 1 

cm-path length cell. Optical rotation [α]D data are given in units 10
-1

degcm
2
g

-1
, and solution 

concentrations are given in g/100 cm
-3

.  
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33..22  SSyynntthheessiiss  ooff  LLaaccttoonnee  220055  

Spiro[2.4]hepta-4,6-diene 207 

________________________________________________________________________________________________________________________  

 

Following the modified procedure reported by Green et al.
108

: To a stirred suspension of 

sodium hydride ( 52.70 g, 1.32 mol, 60% dispersion in mineral oil) in tetrahydrofuran (250 

mL) at 0 ºC was added a mixture of freshly cracked and distilled cyclopentadiene 206 

(50.00 mL, 0.61 mol), and 1,2-dibromoethane (50.20 mL, 0.58 mol) in a dropwise manner. 

The reaction mixture was allowed to warm slowly to ambient temperature, and was left to 

stir for 16 hours before being treated with methanol (100 mL) in a dropwise fashion. Once 

the excess of sodium hydride has decomposed, water (200 mL) was added with pentane (3 

× 150 mL), and the combined organic extracts were dried over anhydrous magnesium 

sulphate, filtered, and concentrated under reduced pressure. Distillation of the crude 

product afforded the title compound 207
VI

 as a colourless oil (37.60 g, 70%). 

B. P.: 116-118 ºC, 760 mm Hg. 

1
H NMR (300 MHz, CDCl3): δ 6.56 (2H, d, J = 6.6 Hz), 6.17 (2H, d, J = 6.6 Hz), 1.69 

(4H, s). 

13
C NMR (75 MHz, CDCl3): δ 139.3 (CH), 129.1 (CH), 37.8 (C), 12.7 (CH2). 

 

 

 

 

 

 

 
 

 

 

 

                                                 
VI

 Spectral data concurrent with the literature: Baretta, A.; Chong, K. S.; Cloke, F. G. N.; Feigenbaum, A.; 

Green, M. L. H. J. Chem. Soc., Dalton Trans. 1983, 861-864.   
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6,6-Dichlorospiro[bicyclo[3.2.0]heptane-2,1'-cyclopropane]-3-en-7-one 208 

________________________________________________________________________________________________________________________  

 

Following the modified procedure reported by Newton and colleagues
109

: To a stirred 

solution of spiro[2.4]hepta-4,6-diene 207 (5.00 mL, 49.92 mmol), and triethylamine (7.60 

mL, 54.91 mmol) in dichloromethane (125 mL) at 0 °C was added dichloroacetyl chloride 

(5.04 mL, 52.41 mmol) in a dropwise manner. The reaction mixture was left to stir for 16 h 

at ambient temperature. The resultant dark brown solution was treated with pentane (5 × 

100 mL), and the extracts were filtered. The filter cake was well washed with pentane, and 

the filtrate was concentrated under reduced pressure. Purification by flash column 

chromatography, eluting with petroleum ether, afforded the title compound 208
VII

 as a 

colourless oil (7.50 g, 74%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.73 (1H, dd, J = 5.5, 2.6 Hz, H-5), 5.55 (1H, dd, J 

= 5.7, 1.5 Hz, H-4), 4.34-4.15 (1H, m, H-6), 3.73 (1H, d, J = 7.6 Hz, H-9), 1.30-1.24 (1H, 

m, cyclopropyl), 0.97-0.87 (1H, m, cyclopropyl), 0.85-0.73 (2H, m, cyclopropyl). 

13
C NMR (125 MHz, CDCl3): δ (ppm) 196.5 (C-8), 143.6 (C-4), 125.5 (C-5), 76.7 (C-7), 

64.9 (C-6), 60.0 (C-9), 32.2 (C-3), 13.6 (C-1), 8.9 (C-2). 

HRMS (+’ve ESI): calculated for C9H8Cl2ONa
+
 224.9844 (M + Na)

+
, found 224.9845. 

IR νmax (neat, cm
-1

): 3083 (w), 3006 (w), 2964 (w), 1801 (s), 1597 (w), 1425 (w), 1278 

(w), 1184 (w), 963 (m), 748 (s), 679 (m), 588 (m).  

 

 

 

 

 

                                                 
VII

 Spectral data concurrent with the literature: Jones, S. W.; Middlemiss, D.; Newton, R. F.; Scheinmann, F.; 

Wakefield, B. J. J. Chem. Res., Miniprint 1988, 12, 3001-3027.  
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Spiro[bicyclo[3.2.0]heptane-2,1'-cyclopropane]-3-en-7-one 209 

________________________________________________________________________________________________________________________  

 

Following the modified procedure reported by Newton and colleagues
109

: To a stirred 

solution of zinc dust (7.08 g, 108.00 mmol), and ammonium chloride (14.50 g, 271.00 

mmol) in methanol (140 mL) was added a solution of 6,6-

dichlorospiro[bicyclo[3.2.0]heptane-2,1'-cyclopropane]-3-en-7-one 208 (5.50 g, 27.00 

mmol) in methanol (25 mL) in a dropwise manner, keeping the temperature below 40 ºC. 

The reaction mixture was stirred at room temperature for 24 hours before being filtered. 

The filter cake was well washed with methanol, and the filtrate was concentrated under 

reduced pressure. The residue was partitioned between water (75 mL) and dichloromethane 

(75 mL), and the organic phase was separated. The aqueous component was extracted with 

dichloromethane (3 × 50 mL), and the combined organic extracts were dried over 

anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. 

Purification by flash column chromatography, eluting with 5% diethyl ether/petroleum 

ether, afforded the title compound 209
VIII

 as a colourless oil (2.51 g, 70%).   

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.83 (1H, dd, J = 5.5, 2.4 Hz, H-5), 5.30 (1H, d, J = 

5.4 Hz, 1H, H-4), 3.66-3.56 (1H, m, H-6), 3.37-3.27 (2H, m, H-7), 2.80 (1H, dt, J = 17.6, 

3.5 Hz, H-9), 1.24-1.09 (1H, m, cyclopropyl), 0.81-0.73 (1H, m, cyclopropyl), 0.73-0.62 

(2H, m, cyclopropyl). 

13
C NMR (125 MHz, CDCl3): δ (ppm) 210.9 (C-8), 139.1 (C-4), 130.5 (C-5), 67.9 (C-6), 

54.5 (C-7), 36.9 (C-9), 31.2 (C-3), 13.9 (C-1), 8.9 (C-2). 

LRMS (+’ve EI): m/z 134 (M, 15%), 105 (47), 93 (46), 78 (100), 65 (51). 

                                                 
VIII

 Spectral data concurrent with the literature: Jones, S. W.; Middlemiss, D.; Newton, R. F.; Scheinmann, 

F.; Wakefield, B. J. J. Chem. Res., Miniprint 1988, 12, 3001-3027.  
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IR νmax (neat, cm
-1

): 3079 (w), 3006 (w), 2953 (w), 1771 (s), 1599 (w), 1425 (w), 1390 

(w), 1222 (w), 1081 (m), 959 (m), 744 (m). 
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3a,6a-Dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 205 

________________________________________________________________________________________________________________________  

 

Following the modified procedure reported by Marsh
2
: To a stirred solution of 

spiro[bicyclo[3.2.0]heptane-2,1'-cyclopropane]-3-en-7-one 209 (0.15 g, 1.20 mmol) in 90% 

aqueous acetic acid (5 mL) at 0 °C was added a mixture hydrogen peroxide (0.23 mL, 2.66 

mmol, 35 wt.% solution in water) in 90% aqueous acetic acid (6 mL) in a dropwise manner. 

The reaction mixture was stirred at 0 °C for 16 hours, before being added very slowly to a 

saturated aqueous solution of sodium hydrogen carbonate (100 mL). The product was 

extracted with diethyl ether (4 × 50 mL), and the combined organic extracts were washed 

successively with a 10 % aqueous sodium sulfite solution (50 mL), and a saturated aqueous 

sodium hydrogen carbonate solution (2 × 50 mL) before being dried over anhydrous 

magnesium sulfate, filtered, and concentrated under reduced pressure. Purification by flash 

column chromatography, eluting with 50% diethyl ether/hexane, afforded a white solid, 

which was recrystallised
IX

 from diethyl ether to give the title compound 205 as white 

monoclinic crystals (0.14 g, 84%).  

M. P.: 52-54 ºC. 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.54 (1H, dd, J = 5.6, 1.7 Hz, H-5), 5.34 (1H, dd, J 

= 5.6, 2.0 Hz, H-4), 4.57 (1H, d, J = 6.3 Hz, H-9), 3.78-3.65 (1H, m, H-6), 2.81 (1H, dd, J 

= 18.0, 9.9 Hz, H-7a or b), 2.51 (1H, dd, J = 18.0, 2.0 Hz, H-7a or b), 1.22-1.17 (1H, m, 

cyclopropyl), 0.98-0.89 (2H, m, cyclopropyl), 0.82-0.77 (1H, m, cyclopropyl).   

13
C NMR (125 MHz, CDCl3): δ (ppm) 176.6 (C-8), 136.9 (C-4), 129.0 (C-5), 89.4 (C-9), 

45.0 (C-6), 34.0 (C-7), 33.8 (C-3), 13.3 (C-1), 9.0 (C-2). 

LRMS (+’ve EI): m/z 150 (M, 53%), 105 (91), 91 (90), 79 (100), 65 (24), 51 (27), 39 (54), 

32 (39). 

                                                 
IX

 See appendix for crystal structure data. 
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IR νmax (neat, cm
-1

): 2983 (w), 2923 (w), 1765 (s), 1599 (w), 1419 (m), 1348 (m), 1306 

(m), 1224 (m), 1152 (s), 1039 (m), 974 (m), 852 (m), 748 (s). 
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33..33  SSyynntthheessiiss  ooff  LLaaccttoonnee  223388  

6-Chlorospiro[bicyclo[3.2.0]heptane-2,1'-cyclopropane]-3-en-7-one 234 

________________________________________________________________________________________________________________________  

 

Following the modified procedure reported by Newton and colleagues
109

: To a stirred 

solution of zinc dust (17.38 g, 0.26 mol), and ammonium chloride (47.41 g, 0.88 mol) in 

methanol (380 mL) was added a solution of 6,6-dichlorospiro[bicyclo[3.2.0]heptane-2,1'-

cyclopropane]-3-en-7-one 208 (18.00 g, 0.09 mol) in methanol (50 mL) in a dropwise 

manner, keeping the temperature below 40 ºC. The reaction mixture was stirred at 0 ºC for 

8 hours, and was further left to stir at room temperature for 7 hours before being filtered. 

The filter cake was well washed with methanol, and the filtrate was concentrated under 

reduced pressure. The residue was partitioned between water (150 mL) and 

dichloromethane (125 mL), and the organic phase was separated. The aqueous component 

was extracted with dichloromethane (3 × 150 mL), and the combined organic extracts were 

dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. 

Purification by flash column chromatography, eluting with 5% diethyl ether/petroleum 

ether, afforded a white solid, which was recrystallised
X
 from diethyl ether to give the title 

compound 234 as white monoclinic crystals (13.60 g, 82%). 

M. P.: 59-61 ºC. 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.72 (1H, dd, J = 5.5, 2.3 Hz, H-5), 5.51 (1H, d, J = 

5.5 Hz, H-4), 5.05 (1H, dd, J = 8.6, 2.8 Hz, H-7), 4.12 (1H, t, J = 7.9 Hz, H-6), 3.32 (1H, 

dd, J = 7.2, 2.8 Hz, H-9), 1.31-1.19 (1H, m, cyclopropyl), 0.94-0.84 (1H, m, cyclopropyl), 

0.78-0.67 (2H, m, cyclopropyl). 

                                                 
X
 See appendix for crystal structure data. 
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13
C NMR (125 MHz, CDCl3): δ (ppm) 203.7 (C-8), 142.7 (C-4), 125.6 (C-5), 65.7 (C-7), 

64.7 (C-9), 46.5 (C-6), 32.8 (C-3), 13.2 (C-1), 8.7 (C-2). 

HRMS (+’ve ESI): calculated for C9H9ClONa
+
 191.0234 (M + Na)

+
, found 191.0230. 

IR νmax (neat, cm
-1

): 2924 (w), 2854 (w), 1776 (s), 1600 (w), 1423 (w), 1293 (m), 1183 

(m), 1017 (m), 952 (s), 751 (s), 728 (s), 550 (m). 
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3-Chloro-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 

238 

________________________________________________________________________________________________________________________  

 

Following the modified procedure reported by Marsh
2
: To a stirred solution of 6-

chlorospiro[bicyclo[3.2.0]heptane-2,1'-cyclopropane]-3-en-7-one 234 (0.10 g, 0.59 mmol) 

in 90% aqueous acetic acid (4 mL) at 0 °C was added a mixture hydrogen peroxide (0.16 

mL, 1.85 mmol, 35 wt.% solution in water) in 90% aqueous acetic acid (6 mL) in a 

dropwise manner. The reaction mixture was stirred at 0 °C for 16 hours before being added 

very slowly to a saturated aqueous solution of sodium hydrogen carbonate (50 mL). The 

product was extracted with diethyl ether (4 × 40 mL), and the combined organic extracts 

were washed successively with a 10 % aqueous sodium sulfite solution (50 mL), and a 

saturated aqueous sodium hydrogen carbonate solution (2 × 50 mL) before being dried over 

anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. 

Purification by flash column chromatography, eluting with 30% diethyl ether/petroleum 

ether, afforded a white solid, which was recrystallised
XI

 from diethyl ether to give the title 

compound 238 as white orthorhombic crystals (0.10 g, 99%). 

M. P.: 65-67 ºC.  

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.72 (1H, dd, J = 5.7, 1.6 Hz, H-5), 5.47 (1H, dd, J 

= 5.7, 2.2 Hz, H-4), 4.79 (1H, d, J = 8.9 Hz, H-9), 4.50 (1H, d, J = 5.4 Hz,  H-7), 4.05-4.01 

(1H, m, H-6), 1.26-1.13 (1H, m, cyclopropyl), 1.07-0.92 (2H, m, cyclopropyl), 0.89-0.76 

(1H, m, cyclopropyl).   

13
C NMR (125 MHz, CDCl3): δ (ppm) 171.5 (C-8), 138.5 (C-4), 124.6 (C-5), 87.4 (C-7), 

55.2 (C-9), 50.8 (C-6), 34.5 (C-3), 13.0 (C-1), 8.8 (C-2). 

HRMS (+’ve ESI): calculated for C9H9ClO2Na
+
 207.0183 (M + Na)

+
, found 207.0181. 

                                                 
XI

 See appendix for crystal structure data. 
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IR νmax (neat, cm
-1

): 3082 (w), 2981 (m), 2844 (w), 1762 (s), 1700 (w), 1420 (w), 1333 

(m), 1311 (m), 1222 (m), 1165 (s), 1033 (s), 978 (m), 846 (m), 763 (s), 603 (m).  
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33..44  SSyynntthheessiiss  ooff  LLaaccttoonnee  224444  

3-Iodo-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 

244 

________________________________________________________________________________________________________________________  

 

To a stirred solution of 3-chloro-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-

2(3H)-one 238 (6.90 g, 38.00 mmol) in acetone (200 mL) was added sodium iodide (85.53 

g, 562.50 mmol) in small portions over 1 hour. The reaction mixture was heated to reflux 

for 48 hours. The flask was shielded from light throughout the reaction. After being 

allowed to cool to room temperature, the reaction mixture was diluted with diethyl ether 

(175 mL), and the extracts were filtered. The filter cake was washed with diethyl ether, and 

the filtrate was concentrated under reduced pressure. Purification by flash column 

chromatography, eluting with 30% diethyl ether/hexane, afforded the title compound 244 as 

a colourless solid, and a separable mixture of diastereoisomers in a 24:1 ratio (7.30 g, 

70%). 

Major diastereoisomer: 

 

M. P.: 70-72 ºC. Recrystallised from diethyl ether. 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.57-5.52 (2H, m, H-5, H-4), 4.66 (1H, d, J = 7.6 

Hz, H-9), 4.48 (1H, s, H-7), 4.06-3.84 (1H, m, H-6), 1.33-1.13 (1H, m, cyclopropyl), 1.13-

0.91 (2H, m, cyclopropyl), 0.91-0.68 (1H, m, cyclopropyl).   
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13
C NMR (125 MHz, CDCl3): δ (ppm) 174.5 (C-8), 138.9 (C-4), 124.7 (C-5), 88.6 (C-9), 

58.3 (C-6), 33.1 (C-3), 13.6 (C-7), 12.9 (C-1), 9.1 (C-2). 

HRMS (+’ve ESI): calculated for C9H9IO2Na
+
 298.9539 (M + Na)

+
, found 298.9537. 

IR νmax (neat, cm
-1

): 2955 (w), 1764 (s), 1598 (w), 1313 (m), 1225 (m), 1157 (s), 1033 

(m), 1017 (m), 956 (m), 873 (m), 736 (s), 678 (m), 574 (s). 

Minor diastereoisomer: 

 

M. P.: 76-78 ºC. Recrystallised from diethyl ether. 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.63 (1H, d, J = 5.6 Hz, H-5), 5.46 (1H, dd, J = 5.7, 

1.8 Hz, H-4), 5.02 (1H, d, J = 9.1 Hz,  H-7), 4.63 (1H, d, J = 5.8 Hz, H-9), 3.95-3.88 (1H, 

m, H-6), 1.21-1.09 (1H, m, cyclopropyl), 1.09-0.90 (2H, m, cyclopropyl), 0.90-0.77 (1H, 

m, cyclopropyl).   

13
C NMR (125 MHz, CDCl3): δ (ppm) 173.2 (C-8), 138.3 (C-4), 130.8 (C-5), 88.6 (C-9), 

50.3 (C-6), 34.4 (C-3), 18.7 (C-7), 13.1 (C-1), 9.7 (C-2). 

HRMS (+’ve ESI): calculated for C9H9IO2Na
+
 298.9539 (M + Na)

+
, found 298.9537. 

IR νmax (neat, cm
-1

): 2925 (w), 1753 (s), 1592 (w), 1427 (w), 1385 (w), 1308 (m), 1223 (s), 

1161 (s), 1034 (m), 978 (s), 880 (m), 738 (s), 699 (s), 578 (s). 
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33..55  SSyynntthheessiiss  ooff  PPhhoosspphhoonnaatteedd  LLaaccttoonneess  222266  aanndd  224455  

Diethyl (2-oxo-2,3,3a,6a-tetrahydrospiro[cyclopenta[b]furan-6,1'-

cyclopropan]-3-yl)phosphonate 226 

________________________________________________________________________________________________________________________  

 

Method 1:  

A solution of 3-iodo-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 

244 (2.00 g, 7.20 mmol), and triethyl phosphite (8.70 mL, 50.40 mmol) was treated with 

microwave irradiation (150 W, 125 °C) for 3 hours. The reaction mixture was cooled to 

ambient temperature, followed by the distillation of the triethyl phosphite excess using a 

Kugelrohr
®
 short-path apparatus. Purification by flash column chromatography, eluting 

with 10% methanol/dichloromethane, followed by a second flash column chromatography, 

eluting with 50% ethyl acetate/hexane, afforded the title compound 226 as a pale yellow 

oil, and an inseparable mixture of diastereoisomers in a 5:1 ratio (1.25 g, 60%). 

Method 2:  

A solution of 3-iodo-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 

244 (300 mg, 1.08 mmol), and triethyl phosphite (0.23 mL, 1.29 mmol) was heated to 

reflux for 16 hours. The reaction mixture was cooled to ambient temperature, followed by 

the distillation of the triethyl phosphite excess using a Kugelrohr
®
 short-path apparatus. 

Purification by flash column chromatography, eluting with 10% methanol/dichloromethane, 

followed by a second flash column chromatography, eluting with 50% ethyl acetate/hexane, 

afforded the title compound 226 as a pale yellow oil, and an inseparable mixture of 

diastereoisomers in a 5:1 ratio (64 mg, 20%). 
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Major diastereoisomer: 

 

Minor diastereoisomer: 

 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.89 (1H, dd, J = 5.7, 1.6 Hz, H-5minor), 5.53 (1H, 

dd, J = 5.6, 1.5 Hz, H-5major), 5.04-5.36 (2H, m,  H-4major and minor), 4.63 (1H, d, J = 6.1 Hz, 

H-9major), 4.49 (1H, d, J = 5.8 Hz, H-9minor), 4.28-4.17 (4H, m, H-10major), 4.17-4.05 (4H, m, 

H-10minor), 4.04-3.98 (1H, m, H-6major), 3.98-3.93 (1H, m, H-6minor), 3.40 (1H, dd, J = 25.4, 

9.3 Hz, H-7minor), 3.06 (1H, dd, J = 23.4, 2.1 Hz, H-7major), 1.42-1.32 (12H, m, H-11major and 

minor), 1.24-1.16 (2H, m, cyclopropylmajor and minor), 1.02-0.90 (4H, m, cyclopropylmajor and 

minor), 0.83-0.76 (2H, m, cyclopropylmajor and minor). 

13
C NMR (125 MHz, CDCl3): δ (ppm) major, 171.3 (C-8), 137.5 (C-4), 127.8 (C-5), 89.0 

(C-9), 63.5 (C-10), 63.1 (C-10), 48.1 (C-6), 46.2 (C-7), 33.5 (C-3), 16.4 (C-11), 16.3 (C-

11), 13.1 (cyclopropyl), 9.0 (cyclopropyl); minor, 171.3 (C-8), 137.5 (C-4), 127.8 (C-5), 

88.9 (C-9), 63.5 (C-10), 63.1 (C-10), 48.0 (C-6), 45.1 (C-7), 33.5 (C-3), 16.4 (C-11), 16.3 

(C-11), 13.1 (cyclopropyl), 9.0 (cyclopropyl).     

HRMS (+’ve ESI): calculated for C13H19PO5Na
+
 309.0856 (M + Na)

+
, found 309.0865. 

IR νmax (neat, cm
-1

): 3493 (w), 2982 (w), 2911 (w), 1764 (s), 1740 (w), 1635 (w), 1393 

(w), 1248 (s), 1155 (s), 1014 (s), 960 (s), 733 (s), 640 (m). 
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Dimethyl (2-oxo-2,3,3a,6a-tetrahydrospiro[cyclopenta[b]furan-6,1'-

cyclopropan]-3-yl)phosphonate 245 

________________________________________________________________________________________________________________________  

 

A solution of 3-iodo-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 

244 (0.10 g, 0.36 mmol), and trimethyl phosphite (0.30 mL, 2.50 mmol) was treated with 

microwave irradiation (150 W, 105 °C) for 3 hours. The reaction mixture was cooled to 

room temperature, followed by the distillation of the trimethyl phosphite excess using a 

Kugelrohr
®
 short-path apparatus. Purification by flash column chromatography, eluting 

with 50% diethyl ether/hexane, followed by a second flash column chromatography, eluting 

with 5% methanol/dichloromethane, afforded the title compound 245 as a pale orange oil, 

and an inseparable mixture of diastereoisomers in a 3:1 ratio (0.01 g, 10%). 

Major diastereoisomer: 

 

Minor diastereoisomer: 

 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.85 (1H, d, J = 5.3 Hz, H-5minor), 5.53 (1H, d, J = 

5.0 Hz, H-5major), 5.41 (1H, dd, J = 5.7, 1.9 Hz, H-4minor) 5.38 (1H, d,  J = 4.7 Hz, H-4), 
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4.65 (1H, d, J = 6.1 Hz, H-9major), 4.49 (1H, d, J = 5.8 Hz, H-9minor), 4.05-3.97 (1H, m, H-

6major), 3.97-3.92 (1H, m, H-6minor), 3.91-3.82 (6H, m, H-10major), 3.82-3.71 (6H, m, H-

10minor), 3.44 (1H, dd, J = 25.5, 9.3 Hz, H-7minor), 3.06 (1H, dd, J = 23.6, 1.9 Hz, H-7major), 

1.42-1.32 (12H, m, H-11major and minor), 1.24-1.12 (2H, m, cyclopropylmajor and minor), 1.05-0.90 

(4H, m, cyclopropylmajor and minor), 0.87-0.73 (2H, m, cyclopropylmajor and minor). 

13
C NMR (125 MHz, CDCl3): δ (ppm) major, 171.3 (C-8), 137.7 (C-4), 127.3 (C-5), 89.1 

(C-9), 54.0 (C-10), 53.4 (C-10), 47.9 (C-6), 45.2 (C-7), 33.4 (C-3), 13.1 (cyclopropyl), 9.0 

(cyclopropyl); minor, 171.3 (C-8), 137.7 (C-4), 126.7 (C-5), 88.9 (C-9), 54.0 (C-10), 53.4 

(C-10), 47.9 (C-6), 43.6 (C-7), 33.4 (C-3), 13.1 (cyclopropyl), 9.0 (cyclopropyl).     

HRMS (+’ve ESI): calculated for C11H15PO5Na
+
 281.0549 (M + Na)

+
, found 281.0548. 

IR νmax (neat, cm
-1

): 3462 (w), 2960 (w), 2855 (w), 1760 (s), 1462 (w), 1311 (m), 1250 (s), 

1157 (s), 1019 (s), 961 (m), 823 (m), 742 (m), 634 (m). 
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33..66  SSyynntthheessiiss  ooff  AAllddeehhyyddee  221177  

Methyl (2R)-3-{[tert-butyl(dimethyl)silyl]oxy}-2-methylpropanoate 248 

________________________________________________________________________________________________________________________  

 

Following the modified procedure reported by Ansell
139

: To a stirred solution tert-

butyldimethylsilyl chloride (35.45 g, 236.00 mmol) in dichloromethane (550 mL) at 0 °C 

was added imidazole (17.01 g, 253.00 mmol) as a single solid portion. The reaction mixture 

was stirred for 5 minutes, and a solution of methyl (2R)-(-)-(3)-hydroxy-2-

methylpropionate 246 (19.95 g, 169.00 mol) in dichloromethane (115 mL) was added in a 

dropwise fashion, followed by the addition of N,N-dimethylaminopyridine (2.06 g, 17.00 

mmol) as a single solid portion. The reaction mixture was allowed to slowly warm to room 

temperature and was left to stir for 16 hours. The reaction mixture was poured into water 

(800 mL), and the organic phase was separated. The aqueous component was extracted 

with dichloromethane (4 × 250 mL), and the combined organic extracts were dried over 

anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. 

Purification by flash column chromatography, eluting with 3% diethyl ether/petroleum 

ether, afforded the title compound 248
XII

 as a colourless oil (37.40 g, 96%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 3.79-3.75 (1H, m, H-4a or b), 3.69-3.62 (4H, m, H-4a 

or b, H-8), 2.71-2.60 (1H, m, H-5), 1.14 (3H, d, J = 7.0 Hz, H-6), 0.88 (9H, s, H-1), 0.04 

(3H, s, H-3).  

13
C NMR (125 MHz, CDCl3): δ (ppm) 175.4 (C-7), 65.2 (C-4), 51.4 (C-8), 42.5 (C-5), 

25.7 (C-1), 18.2 (C-2), 13.4 (C-6), -5.5 (C-3). 

HRMS (+’ve ESI): calculated for C11H24O3SiNa
+
 255.1386 (M + Na)

+
, found 255.1391. 

                                                 
XII

 Spectral data concurrent with the literature: Ansell, G. K. University of Sussex 2001. 
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IR νmax (neat, cm
-1

): 2931 (m), 2858 (m), 1741 (s), 1463 (m), 1435 (m), 1389 (m), 1362 

(m), 1254 (s), 1197 (m), 1175 (m), 1092 (s), 1025 (m), 1006 (m), 939 (w), 840 (s), 774 (s), 

665 (m).   

[α]D
26

 -18.7º (c 1.56 in CHCl3).    
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(2S)-3-{[tert-Butyl(dimethyl)silyl]oxy}-2-methylpropan-1-ol 249 

________________________________________________________________________________________________________________________  

 

Following the modified procedure reported by Ansell
139

: To a stirred solution of methyl 

(2R)-3-{[tert-butyl(dimethyl)silyl]oxy}-2-methylpropanoate 248 (6.00 g, 25.80 mmol) in 

dichloromethane (125 mL) at -78 °C was added diisobutylaluminium hydride (57.00 mL, 

54.31 mmol, 1 M solution in dichloromethane) in a dropwise manner over 3 hours. The 

reaction mixture was allowed to slowly warm to ambient temperature and was stirred for 16 

hours, before adding to an ice cooled solution of potassium sodium tartrate (37.00 g) in 

water (200 mL). The cloudy solution was stirred until clear, the layers were separate, and 

the aqueous phase was extracted with dichloromethane (4 × 100 mL). The combined 

organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated 

under reduced pressure. Purification by flash column chromatography, eluting with 10% 

diethyl ether/petroleum ether, afforded the title compound 249
XIII

 as a colourless oil (4.98 

g, 94%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 3.74 (1H, dd, J = 9.8, 4.4 Hz, H-7a or b), 3.68-3.52 

(3H, m, H-4, H-7a or b), 2.74 (1H, s, br, H-8), 2.01-1.88 (1H, m, H-5), 0.91 (9H, s, H-1), 

0.85 (3H, d, J = 6.9 Hz, H-6), 0.08 (6H, s, H-3).  

13
C NMR (125 MHz, CDCl3): δ (ppm) 68.7 (C-7), 68.2 (C-4), 37.0 (C-5), 25.8 (C-1), 18.2 

(C-2), 13.5 (C-6), -5.5 and -5.6 (C-3). 

HRMS (+’ve ESI): calculated for C10H24O2SiNa
+
 227.1437 (M + Na)

+
, found 227.1437. 

IR νmax (neat, cm
-1

): 3355 (br), 2954 (m), 2858 (m), 2959 (m), 1471 (m), 1389 (w), 1361 

(w), 1251 (s), 1087 (s), 1033 (s), 1006 (m), 938 (m), 840 (s), 773 (s), 666 (m).  

[α]D
24

 -10.5º (c 1.12 in CHCl3).    

 

 

                                                 
XIII

 Spectral data concurrent with the literature: Organ, M. G.; Wang, J. J. Org. Chem. 2003, 68, 5568-5574. 
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 (2R)-3-{[tert-Butyl(dimethyl)silyl]oxy}-2-methylpropanal 247 

________________________________________________________________________________________________________________________  

 

Following the modified procedure reported by Ansell
139

: To a stirred solution of (2S)-3-

{[tert-butyl(dimethyl)silyl]oxy}-2-methylpropan-1-ol 249 (8.00 g, 39.20 mmol) in 

dichloromethane (160 mL) at 0 °C was added triethylamine (27.50 mL, 196.00 mmol), and 

a solution of sulfurtrioxide pyridinium complex (24.96 g, 156.80 mmol) in 

dimethylsulfoxide (32.00 mL) in a dropwise fashion over 3 hours. The reaction mixture 

was allowed to warm to room temperature was stirred for 16 hours, before adding to a 

saturated solution of aqueous ammonium chloride (150 mL). The layers were separated, 

and the aqueous phase was extracted using diethyl ether (7 × 150 mL). The combined 

organic extracts were washed with a saturated aqueous solution of sodium chloride (150 

mL), dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced 

pressure. Purification by flash column chromatography, eluting with 10% diethyl 

ether/petroleum ether, afforded the title compound 247
XIV

 as a colourless oil (6.60 g, 84%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 9.74 (1H, s, H-7), 3.88-3.78 (2H, m, H-4), 2.58-

2.48 (1H, m, H-5), 1.10 (3H, d, J = 7.0 Hz, H-6), 0.88 (9H, s, H-1), 0.06 (6H, s, H-3).  

13
C NMR (125 MHz, CDCl3): δ (ppm) 204.5 (C-7), 63.4 (C-4), 48.7 (C-5), 25.7 (C-1), 

18.2 (C-2), 10.2 (C-6), -5.5 and -5.6 (C-3). 

HRMS (+’ve ESI): calculated for C10H22O2SiNa
+
 225.1281 (M + Na)

+
, found 225.1283. 

IR νmax (neat, cm
-1

): 2931 (m), 2858 (m), 2720 (w), 1727 (m), 1472 (m), 1390 (w), 1361 

(w), 1252 (s), 1095 (s), 1032 (s), 1006 (m), 938 (w), 842 (s), 774 (s), 668 (m). 

[α]D
29

 -25.6º (c 1.67 in CHCl3).    

 

 

                                                 
XIV

 Spectral data concurrent with the literature: Ansell, G. K. University of Sussex 2001. 
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Ethyl (2E,4S)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpent-2-enoate 250 

________________________________________________________________________________________________________________________  

 

Following the procedure reported by Chandrasekhar
138

: To a stirred solution of 

(carbethoxymethylene)triphenylphosphorane (17.24 g, 49.50 mmol) in dichloromethane 

(180 mL) at room temperature was added a solution of (2R)-3-{[tert-

butyl(dimethyl)silyl]oxy}-2-methylpropanal 247 (10.00 g, 49.50 mmol) in dichloromethane 

(80 mL). The reaction mixture was stirred for 16 hours. The resultant white precipitate was 

filtered, and concentrated under reduced pressure. The crude residue was triturated using 

petroleum ether (200 mL), and the remaining solvent was removed under reduced pressure. 

Purification by flash column chromatography, eluting with 3% diethyl ether/petroleum 

ether, afforded the title compound 250
XV

 as a colourless oil (13.50 g, 99%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 6.93 (1H, dd, J = 15.8, 7.2 Hz, H-7), 5.83 (1H, dd, J 

= 1.58, 0.9 Hz, H-8), 4.19 (2H, q, J = 7.1 Hz, H-10), 3.58-3.48 (2H, m, H-4), 2.53-2.45 

(1H, m, H-5), 1.29 (3H, t, J = 7.1 Hz, H-11), 1.06 (3H, d, J = 6.8 Hz, H-6), 0.88 (9H, s, J = 

6.1 Hz, H-1), 0.04 (6H, s, H-3).  

13
C NMR (125 MHz, CDCl3): δ (ppm) 166.7 (C-9), 151.3 (C-7), 120.9 (C-8), 66.9 (C-4), 

60.1 (C-10), 39.1 (C-5), 25.8 (C-1), 18.2 (C-2), 15.5 (C-6), 14.2 (C-11), -5.4 (C-3). 

HRMS (+’ve ESI): calculated for C14H28O3SiNa
+
 295.1705 (M + Na)

+
, found 295.1701. 

IR νmax (neat, cm
-1

): 2930 (m), 2858 (m), 1720 (s), 1654 (m), 1472 (m), 1388 (w), 1367 

(m), 1252 (s), 1181 (m), 1149 (m), 1092 (s), 1033 (m), 983 (w), 840 (s), 774 (s), 719 (w), 

666 (m). 

[α]D
27

 -14.5º (c 1.15 in CHCl3).    

 

 

                                                 
XV

 Spectral data concurrent with the literature: Marshall, J. A.; Yanik, M. M. J. Org. Chem. 2001, 66, 1373-

1379. 
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Ethyl (4S)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpentanoate 251 

________________________________________________________________________________________________________________________  

 

To a stirred solution of ethyl (2E,4S)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpent-2-

enoate 250 (13.00 g, 47.70 mmol) in ethyl acetate (200 mL) at ambient temperature under 

hydrogen atmosphere was added platinum oxide (1.08 g, 4.70 mmol) as a single solid 

portion. The reaction mixture was vigorously stirred for 24 hours. The reaction mixture was 

filtered through Celite
®
 pad, the residue was washed with ethyl acetate, and the solvent was 

concentrated under reduced pressure. Purification by flash column chromatography, eluting 

with 3% diethyl ether/petroleum ether, afforded the title compound 251
XVI

 as a colourless 

oil (12.70 g, 97%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 4.13 (2H, q, J = 7.1 Hz, H-10), 3.48-3.38 (2H, m, 

H-4), 2.40-2.25 (2H, m, H-8), 1.82-1.38 (3H, m, H-5, H-7), 1.25 (3H, t, J = 7.1 Hz, H-11), 

0.91-0.87 (12H, m, H-1, H-6), 0.04 (6H, s, H-3). 

13
C NMR (125 MHz, CDCl3): δ (ppm) 173.2 (C-9), 67.8 (C-4), 60.1 (C-10), 35.3 (C-5), 

32.1 (C-8), 28.5 (C-7), 25.9 (C-1), 18.3 (C-2), 16.4 (C-6), 14.2 (C-11), -5.4 (C-3).  

HRMS (+’ve ESI): calculated for C14H30O3SiNa
+
 297.1861 (M + Na)

+
, found 297.1856. 

IR νmax (neat, cm
-1

): 2930 (m), 2858 (m), 1737 (s), 1463 (m), 1372 (w), 1251 (s), 1177 (s), 

1088 (s), 1033 (m), 917 (w), 842 (s), 774 (s), 733 (s), 666 (m). 

[α]D
26

 -4.4º (c 1.86 in CHCl3).    

 

 

 

 

 

                                                 
XVI

 Spectral data concurrent with the literature: Marshall, J. A.; Yanik, M. M. J. Org. Chem. 2001, 66, 1373-

1379. 
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 (4S)-5-{[tert-Butyl(dimethyl)silyl]oxy}-4-methylpentan-1-ol 224 

________________________________________________________________________________________________________________________  

 

To a stirred solution of ethyl (4S)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpentanoate 

251 (11.50 g, 41.90 mmol) in tetrahydrofuran (150 mL) at 0 °C under was added lithium 

aluminium hydride (46.00 mL, 46.10 mmol, 1 M solution in tetrahydrofuran) in a dropwise 

fashion over 3 hours. The reaction mixture was allowed to warm to room temperature, 

before being slowly poured into water (80 mL). The aqueous layer was extracted with ether 

(4 × 150 mL). The combined organic extracts were dried over anhydrous magnesium 

sulfate, filtered, and the solvent was concentrated under reduced pressure. Purification by 

flash column chromatography, eluting with 3% diethyl ether/petroleum ether, afforded the 

title compound 224
XVII

 as a colourless oil (9.71 g, 99%).  

1
H NMR (500 MHz, CDCl3): δ (ppm) 3.64 (2H, t, J = 6.6 Hz, H-4), 3.49-3.37 (2H, m, H-

9), 1.70-1.10 (6H, m, H-5, H-7, H-8, H-10), 0.91-0.87 (12 H, m, H-1, H-6), 0.04 (6H, s, H-

3).  

13
C NMR (125 MHz, CDCl3): δ (ppm) 68.2 (C-4), 63.3 (C-9), 35.5 (C-5), 30.1 (C-8), 29.2 

(C-7), 25.8 (C-1) 18.3 (C-2), 16.7 (C-6), -5.4 (C-3). 

HRMS (+’ve ESI): calculated for C14H28O2SiNa
+
  255.1756 (M + Na)

+
, found 255.1750. 

IR νmax (neat, cm
-1

): 3335 (b), 2939 (m), 2856 (m), 1471 (m), 1388 (w), 1251 (m), 1092 

(s), 1059 (s), 1006 (m), 939 (w), 845 (s), 772 (s), 666 (m).  

[α]D
26

 -4.7º (c 1.17 in CHCl3).    

 

 

 

 

                                                 
XVII

 Spectral data concurrent with the literature: Marshall, J. A.; Yanik, M. M. J. Org. Chem. 2001, 66, 1373-

1379. 
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 (4S)-5-{[tert-Butyl(dimethyl)silyl]oxy}-4-methylpentanal 217 

________________________________________________________________________________________________________________________  

 

To a stirred solution of (4S)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpentan-1-ol 224 

(9.00 g, 38.70 mmol) in dichloromethane (180 mL) at 0 °C was added triethylamine (27.20 

mL, 193.90 mmol), followed by the addition of a solution of sulfurtrioxide pyridinium 

complex (24.70 g, 155.10 mmol) in dimethylsulfoxide (32.00 mL) in a dropwise fashion 

over 3 hours. The reaction mixture was allowed to warm to ambient temperature and stirred 

for 16 hours, before pouring into a saturated solution of aqueous ammonium chloride (200 

mL). The layers were separated, and the aqueous phase was extracted with diethyl ether (7 

× 150 mL). The combined organic extracts were washed with a saturated aqueous solution 

of sodium chloride (200 mL), dried over anhydrous magnesium sulfate, filtered, and 

concentrated under reduced pressure. Purification by flash column chromatography, eluting 

with 25% diethyl ether/petroleum ether, afforded the title compound 217
XVIII

 as a colourless 

oil (8.21 g, 92%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 9.77 (1H, t, J = 1.6 Hz, H-9), 3.74-3.40 (2H, m, H-

4), 2.53-2.39 (2H, m, H-8), 1.82-1.74 (1H, m, H-5), 1.67-1.58 (1H, m, H-7a or b), 1.50-1.40 

(1H, m, H-7a or b), 0.91-0.86 (12H, m, H-1, H-6), 0.04 (6H, s, H-3). 

13
C NMR (125 MHz, CDCl3): δ (ppm) 202.5 (C-9), 67.8 (C-4), 41.6 (C-8), 35.2 (C-5), 

25.8 (C-1), 25.5 (C-7), 18.3 (C-2), 16.4 (C-6), -5.4 (C-3). 

HRMS (+’ve ESI): calculated for C12H26O2SiNa
+
 253.1594 (M + Na)

+
, found 253.1599. 

IR νmax (neat, cm
-1

): 2989 (m), 2857 (m), 1727 (s), 1471 (m), 1389 (w), 1251 (m), 1091 

(s), 1006 (m), 938 (w), 834 (s), 774 (s), 665 (m). 

[α]D
24

 -4.5º (c 1.07 in CHCl3).    

 

 

                                                 
XVIII

 Spectral data concurrent with the literature: Marsh, G. P. University of Sussex 2007. 
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33..77  HHoorrnneerr--WWaaddsswwootthh--EEmmmmoonnss  CCoonnddeennssaattiioonn::  MMooddeell  SSttuuddyy    

3-(3-Methylbutylidene)-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-

cyclopropan]-2(3H)-one 262 

________________________________________________________________________________________________________________________  

 

To a stirred solution of tert-butanol 261 (0.01 mL, 0.12 mmol) in tetrahydrofuran (0.25 

mL) at -70 °C was added n-butyllithium (0.05 mL, 0.12 mmol, 2.5 M solution in 

tetrahydrofuran), and was left to stir for 10 minutes. To the reaction mixture was added a 

solution of diethyl (2-oxo-2,3,3a,6a-tetrahydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-

3-yl)phosphonate 226 (0.03 g, 0.11 mmol) in tetrahydrofuran (0.25 mL) in a dropwise 

manner, and was allowed to warm to -50 °C for 15 minutes. The reaction mixture was 

cooled to -70 °C, and a solution of isovaleraldehyde (0.01 mL, 0.11 mmol) in 

tetrahydrofuran (0.25 mL) was added in a dropwise fashion over 2 hours. The reaction 

mixture was allowed to warm slowly to ambient temperature, and stirred for 16 hours, 

before pouring into a saturated aqueous solution of sodium hydrogen carbonate (10 mL). 

The layers were separated, and the aqueous phase was extracted with diethyl ether (3 × 15 

mL). The combined organic extracts were washed with a saturated aqueous solution of 

sodium chloride (10 mL), dried over anhydrous magnesium sulfate, filtered, and 

concentrated under reduced pressure. Purification by flash column chromatography, eluting 

with 10% methanol/dichloromethane, afforded the title compound 262 as colourless oil, 

and an inseparable mixture of Z/E diastereoisomers in a 1:1.1 ratio (0.01 g, 45%). 
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Major diastereoisomer: 

 

Minor diastereoisomer: 

 

1
H NMR (500 MHz, CDCl3): δ (ppm) 6.73 (1H, td, J = 7.8, 2.2 Hz, H-10major), 6.28 (1H, 

td, J = 7.7, 1.6 Hz, H-10minor), 5.55 (1H, dd, J = 5.6, 2.0 Hz, H-5major), 5.48 (1H, dd, J = 5.5, 

2.1 Hz, H-5minor), 5.33-5.29 (2H, m, H-4major and minor), 4.56 (1H, d, J = 6.6 Hz, H-9major), 

4.50 (1H, d, J = 6.5 Hz, H-9minor), 4.24-4.20 (1H, m, H-6major), 4.14-4.10 (1H, m, H-6minor), 

2.65 (2H, t, J = 7.2 Hz, H-11minor), 2.21 (2H, t, J = 7.3 Hz, H-11major), 1.89-1.71 (2H, m, H-

12major and minor), 1.33-1.20 (2H, m, cyclopropylmajor and minor), 1.04-0.79 (18H, m, H-13major and 

minor, cyclopropylmajor and minor).   

13
C NMR (125 MHz, CDCl3): δ (ppm) 177.5 (C-8major or minor), 170.9 (C-8major or minor), 

143.3 (C-10minor), 139.6 (C-10major), 136.4 (C-4major or minor), 136.3 (C-4major or minor), 129.4 

(C-7major or minor), 129.0 (C-5minor), 128.0 (C-7major or minor), 126.6 (C-5major), 86.3 (C-9major), 

85.7 (C-9minor), 51.8 (C-6minor), 48.5 (C-6major), 38.9 (C-11major), 36.1 (C-11minor), 33.9 (C-

3major or minor), 33.8 (C-3major or minor), 28.6 (C-12major or minor), 28.2 (C-12major or minor), 22.6 (C-

13major or minor), 22.4 (C-13major or minor), 22.3 (C-13major or minor), 22.2 (C-13major or minor), 13.9 

(C-1major or minor), 13.7 (C-1major or minor), 8.8 (C-2major or minor), 8.7 (C-2major or minor).   

HRMS (+’ve ESI): calculated for C14H18O2Na
+
 241.1199 (M + Na)

+
, found 241.1197. 

IR νmax (neat, cm
-1

): 2956 (m), 2930 (m), 2720 (w), 1770 (s), 1675 (m), 1465 (m), 1367 

(w), 1221 (w), 1192 (s), 1136 (m), 1029 (s), 990 (m), 962 (m), 799 (m), 733 (m). 
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33..88  SSyynntthheessiiss  ooff  NNiittrrooaallkkeenneess  221155  aanndd  226699    

3-((4R)-5-{[tert-Butyl(dimethyl)silyl]oxy}-4-methylpentylidene)-3a,6a-

dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 227 

________________________________________________________________________________________________________________________  

 

Method 1:  

To a stirred solution of tert-butanol 261 (0.18 mL, 1.92 mmol) in tetrahydrofuran (5 mL) at 

-70 °C was added n-butyllithium (0.77 mL, 1.92 mmol, 2.5 M solution in tetrahydrofuran), 

and was left to stir for 10 minutes. To the reaction mixture was added a solution of diethyl 

(2-oxo-2,3,3a,6a-tetrahydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-3-yl)phosphonate 

226 (0.50 g, 1.75 mmol) in tetrahydrofuran (5 mL) in a dropwise manner, and was allowed 

to warm to -50 °C for 15 minutes. The reaction mixture was cooled to -70 °C, and a 

solution of (4S)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpentanal 217 (0.44 g, 1.92 

mmol) in tetrahydrofuran (4 mL) was added in a dropwise fashion over 2 hours. The 

reaction mixture was allowed to warm slowly to ambient temperature, and stirred for 16 

hours, before pouring into a saturated aqueous solution of sodium hydrogen carbonate (25 

mL). The layers were separated, and the aqueous phase was extracted with diethyl ether (3 

× 30 mL). The combined organic extracts were washed with a saturated aqueous solution of 

sodium chloride (25 mL), dried over anhydrous magnesium sulfate, filtered, and 

concentrated under reduced pressure. Purification by flash column chromatography, eluting 

with 5% diethyl ether/petroleum ether, afforded the title compound 227 as a colourless oil, 

and a separable mixture of Z/E diastereoisomers in a 1.1:1 ratio (0.42 g, 66%). 
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Method 2: 

To a stirred solution of diethyl (2-oxo-2,3,3a,6a-tetrahydrospiro[cyclopenta[b]furan-6,1'-

cyclopropan]-3-yl)phosphonate 226 (1.00 g, 3.49 mmol) in tetrahydrofuran (4 mL) at -10 

ºC was added  (4S)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpentanal 217 (0.80 g, 3.49 

mmol), followed by a 8 M aqueous solution of potassium carbonate (42 mL, 336.00 mmol). 

The reaction mixture was allowed to warm slowly to ambient temperature, and was left to 

stir for 7 days. The layers were separated, and the aqueous phase was extracted with diethyl 

ether (5 × 40 mL). The combined organic extracts were washed with a saturated aqueous 

solution of sodium chloride (50 mL), dried over anhydrous magnesium sulfate, filtered, and 

concentrated under reduced pressure. Purification by flash column chromatography, eluting 

with 3% diethyl ether/petroleum ether, afforded the title compound 227 as a colourless oil, 

and a separable mixture of Z/E diastereoisomers in a 1.2:1 ratio (1.01 g, 80%). 

Major diastereoisomer: 

 

1
H NMR (500 MHz, CDCl3): δ (ppm) 6.23 (1H, t, J = 7.6 Hz, H-10), 5.46 (1H, dd, J = 5.5, 

1.9 Hz, H-5), 5.28 (1H, dd, J = 5.5, 1.9 Hz, H-4), 4.48 (1H, d, J = 6.4 Hz, H-9), 4.10-4.06 

(1H, m, H-6), 3.50-3.34 (2H, m, H-15), 2.87-2.61 (2H, m, H-11), 1.72-1.50 (2H, m, H-12a 

or b, H-13), 1.30-1.15 (2H, m, H-12a or b, cyclopropyl), 0.97-0.73 (15H, m, H-14, H-18, 

cyclopropyl), 0.03 (6H, s, H-16). 

13
C NMR (125 MHz, CDCl3): 169.6 (C-8), 144.5 (C-10), 136.3 (C-4), 128.9 (C-5), 127.4 

(C-7), 85.7 (C-9), 67.9 (C-15), 51.6 (C-6), 35.4 (C-13), 33.9 (C-3), 32.5 (C-12), 25.8 (C-

18), 25.1 (C-11), 18.3 (C-17), 16.5 (C-14), 13.7 (C-1), 8.7 (C-2), -5.4 (C-16). 

HRMS (+’ve ESI): calculated for C21H34O3SiNa
+
 385.2169 (M + Na)

+
, found 385.2185. 
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IR νmax (neat, cm
-1

): 2953 (m), 2928 (m), 2856 (m), 1749 (s), 1668 (m), 1471 (m), 1366 

(m), 1309 (w), 1250 (m), 1223 (w), 1181 (m), 1089 (s), 1032 (s), 990 (w), 960 (w), 897 

(w), 833 (s), 773 (s), 666 (m). 

Minor diastereoisomer: 

 

1
H NMR (500 MHz, CDCl3): δ (ppm) 6.75-6.72 (1H, m, H-10), 5.60-5.47 (1H, m, H-5), 

5.30 (1H, dd, J = 5.4, 1.7 Hz, H-4), 4.54 (1H, d, J = 6.5 Hz, H-9), 4.25-4.19 (1H, m, H-6), 

3.53-3.36 (2H, m, H-15), 2.43-2.20 (2H, m, H-11), 1.75-1.55 (2H, m, H-12a or b, H-13), 

1.39-1.21 (2H, m, H-12a or b, cyclopropyl), 1.01-0.75 (15H, m, H-14, H-18, cyclopropyl), 

0.03 (6H, s, H-16). 

13
C NMR (125 MHz, CDCl3): 170.7 (C-8), 140.7 (C-10), 136.8 (C-4), 128.7 (C-7), 126.6 

(C-5), 86.3 (C-9), 67.8 (C-15), 48.5 (C-6), 35.4 (C-13), 33.7 (C-3), 32.0 (C-11), 27.5 (C-

12), 25.9 (C-18), 18.3 (C-17), 16.5 (C-14), 13.9 (C-1), 8.8 (C-2), -5.4 (C-16). 

HRMS (+’ve ESI): calculated for C21H34O3SiNa
+
 385.2169 (M + Na)

+
, found 385.2133. 

IR νmax (neat, cm
-1

): 2952 (m), 2928 (m), 2857 (m), 1754 (s), 1677 (m), 1471 (m), 1387 

(w), 1312 (w), 1249 (m), 1219 (w), 1184 (m), 1088 (m), 1032 (s), 1007 (w), 960 (w), 892 

(w), 833 (s), 773 (s), 732 (m), 666 (m). 
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3-((4R)-5-{[tert-Butyl(dimethyl)silyl]oxy}-4-methylpentyl)-3a,6a-

dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 263 

________________________________________________________________________________________________________________________  

 

Method 1:  

To a stirred solution of copper bromide (4.40 g, 30.93 mmol) in tetrahydrofuran (80 mL) at 

-5 ºC was added Red-Al
®
 (9.30 mL, 30.93 mmol, 63 wt. % in toluene) in a dropwise 

manner, and was left to stir for 45 minutes. The reaction mixture was cooled to -70 ºC, and 

was added a solution of 3-((4R)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpentylidene)-

3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 227 (2.80 g, 7.73 

mmol) in tetrahydrofuran (60 mL) in a dropwise fashion, and stirred for 15 minutes. The 

reaction mixture was allowed to warm to – 10 ºC, and left to stir for 3 hours, before being 

warm to room temperature, and stirred for 16 hours. To the reaction mixture was added 

water (140 mL), followed by pouring a saturated aqueous solution of ammonium chloride 

(300 mL). The layers were separated, and the aqueous phase was extracted using diethyl 

ether (3 × 150 mL). The combined organic extracts were washed with a saturated aqueous 

solution of sodium hydrogen carbonate (150 mL), dried over anhydrous magnesium sulfate, 

filtered, and concentrated under reduced pressure. Purification by flash column 

chromatography, eluting with 20% diethyl ether/petroleum ether, afforded the title 

compound 263 as colourless oil (0.77 g, 20%), and the corresponding diastereoisomer 264 

(1.90 g, 50%). 
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Method 2:  

To a stirred solution of 3-((4R)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpentylidene)-

3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 227 (110 mg, 0.31 

mmol) in methanol (3 mL) at ambient temperature was added magnesium turnings (70 mg, 

3.09 mmol, predried in over at 120 ºC), and was left to stir for 16 hours. To the reaction 

mixture was added carefully a solution of hydrochloric acid (1 mL, 3.09 mmol of 3 M 

solution in water), and the mixture was extracted with diethyl ether (2 × 5 mL). The 

combined organic extracts were washed with a saturated aqueous solution of sodium 

chloride (10 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated under 

reduced pressure. Purification by flash column chromatography, eluting with 10% diethyl 

ether/petroleum ether, afforded the title compound 263 as a colourless oil (50 mg, 40%), 

and the corresponding diastereoisomer 264 (50 mg, 40%). 

 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.58 (1H, dd, J = 5.7, 1.7 Hz, H-5), 5.39 (1H, dd, J 

= 5.7, 1.9 Hz, H-4), 4.40 (1H, d, J = 5.6 Hz, H-9), 3.79-3.72 (1H, m, H-6), 3.47-3.35 (2H, 

m, H-15), 2.77-2.70 (1H, m, H-7), 1.96-1.84 (1H, m, H-10a or b), 1.68-1.42 (5H, m, H-10a or 

b, H-11, H-12a or b, H-13), 1.23-1.07 (2H, m, H-12a or b, cyclopropyl), 0.99-0.73 (15H, m, H-

14, H-18, cyclopropyl), 0.04 (6H, s, H-16). 

13
C NMR (125 MHz, CDCl3): 178.1 (C-8), 137.9 (C-4), 125.1 (C-5), 87.4 (C-9), 68.2 (C-

15), 49.1 (C-6), 43.9 (C-7), 35.5 (C-13), 34.0 (C-3), 32.9 (C-12), 27.8 (C-10), 25.8 (C-18), 

25.3 (C-11), 18.3 (C-17), 16.6 (C-14), 12.9 (C-1), 8.6 (C-2), -5.3 (C-16). 

HRMS (+’ve ESI): calculated for C21H36O3SiNa
+
 387.2325 (M + Na)

+
, found 387.2323. 
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IR νmax (neat, cm
-1

): 2929 (m), 2856 (m), 1766 (s), 1463 (m), 1388 (w), 1360 (w), 1311 

(w), 1250 (m), 1226 (w), 1159 (s), 1090 (s), 1025 (w), 1005 (m), 981 (w), 947 (m), 833 (s), 

773 (s), 666 (m). 

 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.55 (1H, dd, J = 5.7, 1.7 Hz, H-5), 5.32 (1H, dd, J 

= 5.7, 1.7 Hz, H-4), 4.54 (1H, d, J = 6.4 Hz, H-9), 3.47-3.35 (3H, m, H-6, H-15), 2.56-2.49 

(1H, m, H-7), 1.84-1.72 (1H, m, H-10a or b), 1.66-1.38 (5H, m, H-10a or b, H-11, H-12a or b, 

H-13), 1.21-1.08 (2H, m, H-12a or b, cyclopropyl), 0.98-0.75 (15H, m, H-14, H-18, 

cyclopropyl), 0.03 (6H, s, H-16). 

13
C NMR (125 MHz, CDCl3): 179.4 (C-8), 136.6 (C-4), 129.0 (C-5), 87.8 (C-9), 68.2 (C-

15), 51.5 (C-6), 46.1 (C-7), 35.5 (C-13), 32.4 (C-3), 33.6 (C-12), 32.9 (C-10), 25.9 (C-18), 

24.5 (C-11), 18.3 (C-17), 16.6 (C-14), 13.2 (C-1), 9.1 (C-2), -5.2 (C-16). 

HRMS (+’ve ESI): calculated for C21H36O3SiNa
+
 387.2325 (M + Na)

+
, found 387.2325. 

IR νmax (neat, cm
-1

): 2928 (m), 2856 (m), 1767 (s), 1462 (m), 1387 (w), 1360 (w), 1250 

(m), 1166 (s), 1089 (s), 1040 (w), 993 (w), 939 (w), 833 (s), 773 (s), 743 (m), 665 (m). 
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3-[(4R)-5-Hydroxy-4-methylpentyl]-3a,6a-dihydrospiro[cyclopenta[b]furan-

6,1'-cyclopropan]-2(3H)-one 265 

________________________________________________________________________________________________________________________  

 

To a stirred solution of 3-((4R)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpentyl)-3a,6a-

dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 263 (1.78 g, 4.89 mmol) at 0 

ºC was added hydrochloric acid (35.60 mL, 71.20 mmol, 2 M solution in ethanol) in a 

dropwise fashion for ten minutes, and was allow to warm to room temperature and left to 

stir for 4 hours, before pouring into water (40 mL). The product was extracted with diethyl 

ether (4 × 50 mL), and the combined organic extracts were washed successively with a 

saturated solution of sodium hydrogen carbonate (35 mL), and a saturated solution of 

sodium chloride (35 mL), before being dried over anhydrous magnesium sulfate, filtered, 

and concentrated under reduced pressure. Purification by flash column chromatography, 

eluting with 50% diethyl ether/hexane, afforded the title compound 265 as a colourless oil 

(1.22 g, 99%).  

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.58 (1H, dd, J = 5.8, 1.7 Hz, H-5), 5.39 (1H, dd, J 

= 5.8, 2.0 Hz, H-4), 4.41 (1H, d, J = 5.7 Hz, H-9), 3.79-3.72 (1H, m, H-6), 3.55-3.44 (2H, 

m, H-15), 2.78-2.72 (1H, m, H-7), 1.95-1.85 (1H, m, H-10a or b), 1.71-1.16 (8H, m, H-10a or 

b, H-11, H-12, H-13, H-16, cyclopropyl), 0.99-0.90 (5H, m, H-14, cyclopropyl), 0.80-0.73 

(1H, m, cyclopropyl). 

13
C NMR (125 MHz, CDCl3): 177.8 (C-8), 138.0 (C-4), 125.0 (C-5), 87.4 (C-9), 68.2 (C-

15), 49.2 (C-6), 43.4 (C-7), 35.5 (C-13), 34.0 (C-3), 32.9 (C-12), 27.8 (C-10), 25.3 (C-11), 

16.6 (C-14), 12.9 (C-1), 8.7 (C-2). 

HRMS (+’ve ESI): calculated for C15H22O3Na
+
 273.1461 (M + Na)

+
, found 273.1462. 

IR νmax (neat, cm
-1

): 3473 (b), 2925 (m), 1747 (s), 1463 (w), 1312 (w), 1226 (w), 1161 

(m), 1026 (w), 1003 (w), 980 (w), 908 (s), 802 (m), 770 (s), 646 (m).  
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3-[(4R)-5-Hydroxy-4-methylpentyl]-3a,6a-dihydrospiro[cyclopenta[b]furan-

6,1'-cyclopropan]-2(3H)-one 266 

________________________________________________________________________________________________________________________  

 

Method 1: 

To a stirred solution of 3-((4R)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpentyl)-3a,6a-

dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 264 (240 mg, 0.65 mmol) in 

tetrahydrofuran (30 mL) at 0 ºC was added terbutylammonium fluoride (0.92 mL, 0.91 

mmol, 1 M solution in tetrahydrofuran) in a dropwise fashion, and the reaction mixture was 

stirred for 6 hours before pouring into water (25 mL). The product was extracted with 

diethyl ether (4 × 30 mL), and the combined organic extracts were washed successively 

with a saturated solution of sodium chloride (40 mL), before being dried over anhydrous 

magnesium sulfate, filtered, and concentrated under reduced pressure. Purification by flash 

column chromatography, eluting with 30% diethyl ether/hexane, afforded the title 

compound 266 as a colourless oil (145 mg, 99%).  

Method 2: 

To a stirred solution of 3-((4R)-5-{[tert-butyl(dimethyl)silyl]oxy}-4-methylpentyl)-3a,6a-

dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 264 (100 mg, 0.27 mmol) at 

0 ºC was added hydrochloric acid (2.10 mL, 4.20 mmol, 2 M solution in ethanol) in a 

dropwise fashion, and was allow to warm to room temperature and left to stir for 4 hours, 

before pouring into water (5 mL). The product was extracted with diethyl ether (4 × 5 mL), 

and the combined organic extracts were washed successively with a saturated solution of 

sodium hydrogen carbonate (10 mL), and a saturated solution of sodium chloride (10 mL), 

before being dried over anhydrous magnesium sulfate, filtered, and concentrated under 
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reduced pressure. Purification by flash column chromatography, eluting with 50% diethyl 

ether/hexane, afforded the title compound 266 as a colourless oil (68 mg, 99%).  

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.54 (1H, dd, J = 5.7, 1.8 Hz, H-5), 5.32 (1H, dd, J 

= 5.7, 1.9 Hz, H-4), 4.54 (1H, d, J = 6.4 Hz, H-9), 3.52-3.42 (2H, m, H-15), 3.41-3.37 (1H, 

m, H-6), 2.57-2.53 (1H, m, H-7), 1.85-1.73 (1H, m, H-10a or b), 1.70-1.14 (8H, m, H-10a or b, 

H-11, H-12, H-13, H-16, cyclopropyl), 0.98-0.89 (5H, m, H-14, cyclopropyl), 0.82-0.75 

(1H, m, cyclopropyl). 

13
C NMR (125 MHz, CDCl3): 179.4 (C-8), 136.6 (C-4), 128.9 (C-5), 87.9 (C-9), 68.0 (C-

15), 51.6 (C-6), 46.0 (C-7), 35.5 (C-13), 33.6 (C-3), 32.7 (C-12), 32.3 (C-10), 24.4 (C-11), 

16.5 (C-14), 13.2 (C-1), 9.0 (C-2). 

HRMS (+’ve ESI): calculated for C15H22O3Na
+
 273.1461 (M + Na)

+
, found 273.1462. 

IR νmax (neat, cm
-1

): 3473 (b), 2929 (m), 2962 (m), 1756 (s), 1462 (w), 1344 (w), 1313 

(w), 1229 (w), 1168 (s), 1034 (s), 987 (s), 939 (m), 845 (w), 744 (s), 662 (m).  
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3-[(4R)-5-Iodo-4-methylpentyl]-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-

cyclopropan]-2(3H)-one 267 

________________________________________________________________________________________________________________________  

 

To a stirred solution of triphenylphosphine (2.41 g, 9.20 mmol), and imidazole (0.62 g, 

9.20 mmol) in dichloromethane (30 mL) at 0 ºC was added iodine (2.33 g, 9.20 mmol) in 

small solid portions. The reaction mixture was stirred for 20 minutes, before adding a 

solution of 3-[(4R)-5-hydroxy-4-methylpentyl]-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-

cyclopropan]-2(3H)-one 265 (1.15 g, 4.60 mmol) in dichloromethane (10 mL) in a 

dropwise manner. The reaction mixture was warm to room temperature, and was left to stir 

for 16 hours, before pouring into a saturated aqueous solution of sodium thiosulfate (80 

mL). The aqueous component was extracted with dichloromethane (4 × 80 mL), and the 

combined organic extracts were washed with a saturated aqueous solution of sodium 

chloride (80 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated under 

reduced pressure. Purification by flash column chromatography, eluting with 5% diethyl 

ether/hexane, afforded the title compound 267 as a pale yellow solid (1.56 g, 95%).  

M. P.: 62-64 ºC. Recrystallised from diethyl ether. 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.63-5.56 (1H, m, H-5), 5.39 (1H, dd, J = 5.8, 1.8 

Hz, H-4), 4.42 (1H, d, J = 5.6 Hz, H-9), 3.83-3.73 (1H, m, H-6), 3.26-3.16 (2H, m, H-15), 

2.79-2.70 (1H, m, H-7), 1.96-1.86 (1H, m, H-10a or b), 1.59-1.25 (6H, m, H-10a or b, H-11, 

H-12, H-13), 1.29-1.17 (1H, m, cyclopropyl), 1.04-0.91 (5H, m, H-14, cyclopropyl), 0.81-

0.74 (1H, m, cyclopropyl). 

13
C NMR (125 MHz, CDCl3): 178.0 (C-8), 138.1 (C-4), 124.9 (C-5), 87.4 (C-9), 49.2 (C-

6), 43.3 (C-7), 36.2 (C-11 or C-12), 34.2 (C-13), 34.0 (C-3), 27.6 (C-10), 25.1 (C-11 or C-

12), 20.5 (C-14), 17.4 (C-15), 12.9 (C-1), 8.6 (C-2). 

HRMS (+’ve ESI): calculated for C15H21IO3Na
+
 383.0478 (M + Na)

+
, found 383.0473. 
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IR νmax (neat, cm
-1

): 2929 (m), 2865 (m), 1758 (s), 1459 (m), 1378 (w), 1311 (m), 1226 

(m), 1194 (m), 1161 (s), 1025 (m), 999 (s), 979 (s), 946 (s), 887 (m), 803 (m), 753 (s), 732 

(m), 579 (m). 
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3-[(4R)-4-Methyl-5-nitropentyl]-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-

cyclopropan]-2(3H)-one 215 

________________________________________________________________________________________________________________________  

 

To a stirred solution of 3-[(4R)-5-iodo-4-methylpentyl]-3a,6a-dihydrospiro[cyclopenta 

[b]furan-6,1'-cyclopropan]-2(3H)-one 267 (1.30 g, 3.60 mmol), and Amberlite
®
 IRA-900 

nitrite (10.00 g, 40.00 mmol) in benzene (60 mL) was heated to reflux for 48 hours. The 

reaction mixture was cooled to ambient temperature, before the resin was filtered off, and 

washed with benzene. The filtrate was dried over anhydrous magnesium sulfate, filtered, 

and concentrated under reduced pressure. Purification by flash column chromatography, 

eluting with 30% diethyl ether/hexane, afforded the title compound 215 as a pale yellow 

solid (0.81 g, 80%).  

M. P.: 60-62 ºC. Recrystallised from diethyl ether.   

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.57-5.54 (1H, m, H-5), 5.41 (1H, dd, J = 5.6, 2.3 

Hz, H-4), 4.42 (1H, d, J = 5.6 Hz, H-9), 4.35-4.30 (1H, m, H-15a or b), 4.26-4.20 (1H, m, H-

15a or b), 3.79-3.72 (1H, m, H-6), 2.72-2.69 (1H, m, H-7), 2.43-2.32 (1H, m, H-13), 1.95-

1.19 (7H, m, H-10, H-11, H-12, cyclopropyl), 1.05 (3H, d, J = 6.8 Hz, H-14), 0.99-0.91 

(2H, m, cyclopropyl), 0.81-0.79 (1H, m, cyclopropyl). 

13
C NMR (125 MHz, CDCl3): 177.5 (C-8), 138.1 (C-4), 124.6 (C-5), 87.7 (C-9), 81.1 (C-

15), 49.2 (C-6), 43.3 (C-7), 34.0 (C-3), 33.5 (C-12), 32.5 (C-13), 27.6 (C-10), 24.8 (C-11), 

17.2 (C-14), 12.9 (C-1), 8.7 (C-2). 

HRMS (+’ve ESI): calculated for C15H21NO4Na
+
 302.1363 (M + Na)

+
, found 302.1365. 

IR νmax (neat, cm
-1

): 2932 (m), 2870 (w), 1758 (s), 1544 (s), 1463 (w), 1383 (m), 1344 

(w), 1312 (w), 1226 (m), 1158 (s), 1026 (w), 1002 (m), 980 (m), 946 (m), 897 (w), 803 

(m), 756 (m), 732 (m), 624 (w). 
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3-[(4R)-5-Iodo-4-methylpentyl]-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-

cyclopropan]-2(3H)-one 268 

________________________________________________________________________________________________________________________  

 

To a stirred solution of triphenylphosphine (0.28 g, 1.08 mmol), and imidazole (0.07 g, 

1.08 mmol) in dichloromethane (10 mL) at 0 ºC was added iodine (270 mg, 1.08 mmol) in 

small solid portions. The reaction mixture was stirred for 20 minutes, before adding a 

solution of 3-[(4R)-5-hydroxy-4-methylpentyl]-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-

cyclopropan]-2(3H)-one 266 (0.14 g, 0.54 mmol) in dichloromethane (3 mL) in a dropwise 

manner. The reaction mixture was warm to room temperature, and was left to stir for 16 

hours, before pouring into a saturated aqueous solution of sodium thiosulfate (10 mL). The 

aqueous component was extracted with dichloromethane (4 × 10 mL), and the combined 

organic extracts were washed with a saturated aqueous solution of sodium chloride (10 

mL), dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced 

pressure. Purification by flash column chromatography, eluting with 5% diethyl 

ether/hexane, afforded the title compound 268 as a pale yellow oil (0.14 g, 74%).  

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.57-5.53 (1H, m, H-5), 5.32 (1H, dd, J = 5.7, 1.9 

Hz, H-4), 4.55 (1H, d, J = 6.1 Hz, H-9), 3.41-3.37 (1H, m, H-6), 3.23-3.15 (2H, m, H-15), 

2.55-2.50 (1H, m, H-7), 1.82-1.73 (1H, m, H-10a or b), 1.66-1.24 (6H, m, H-10a or b, H-11, 

H-12, H-13), 1.20-1.14 (1H, m, cyclopropyl), 1.03-0.97 (5H, m, H-14, cyclopropyl), 0.96-

0.76 (1H, m, cyclopropyl). 

13
C NMR (125 MHz, CDCl3): 179.2 (C-8), 136.7 (C-4), 128.8 (C-5), 87.8 (C-9), 51.5 (C-

6), 45.9 (C-7), 36.1 (C-11 or C-12), 34.4 (C-13), 33.6 (C-3), 32.1 (C-10), 24.3 (C-11 or C-

12), 20.5 (C-14), 17.3 (C-15), 13.2 (C-1), 9.0 (C-2). 

HRMS (+’ve ESI): calculated for C15H21IO3Na
+
 383.0478 (M + Na)

+
, found 383.0477. 
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IR νmax (neat, cm
-1

): 2928 (m), 2860 (m), 1759 (s), 1458 (m), 1378 (w), 1312 (m), 1227 

(m), 1169 (s), 1033 (m), 989 (s), 936 (m), 887 (w), 830 (w), 744 (s), 585 (m). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Experimental 

 155 

3-[(4R)-4-Methyl-5-nitropentyl]-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-

cyclopropan]-2(3H)-one 269 

________________________________________________________________________________________________________________________  

 

To a stirred solution of 3-[(4R)-5-iodo-4-methylpentyl]-3a,6a-dihydrospiro[cyclopenta 

[b]furan-6,1'-cyclopropan]-2(3H)-one 268 (125 mg, 0.34 mmol), and Amberlite
®
 IRA-900 

nitrite (700 mg, 2.80 mmol) in benzene (7 mL) was heated to reflux for 48 hours. The 

reaction mixture was cooled to ambient temperature, before the resin was filtered off, and 

washed with benzene. The filtrate was dried over anhydrous magnesium sulfate, filtered, 

and concentrated under reduced pressure. Purification by flash column chromatography, 

eluting with 30% diethyl ether/hexane, afforded the title compound 269 as a pale yellow oil 

(58 mg, 60%).  

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.56-5.52 (1H, m, H-5), 5.32 (1H, dd, J = 5.5, 1.8 

Hz, H-4), 4.55 (1H, d, J = 6.4 Hz, H-9), 4.33-4.28 (1H, m, H-15a or b), 4.24-4.18 (1H, m, H-

15a or b), 3.39-3.35 (1H, m, H-6), 2.54-2.49 (1H, m, H-7), 2.39-2.29 (1H, m, H-13), 1.83-

1.13 (7H, m, H-10, H-11, H-12, cyclopropyl), 1.03 (3H, d, J = 6.8 Hz, H-14), 0.96-0.86 

(2H, m, cyclopropyl), 0.82-0.76 (1H, m, cyclopropyl). 

13
C NMR (125 MHz, CDCl3): 178.6 (C-8), 136.8 (C-4), 128.6 (C-5), 87.8 (C-9), 81.4 (C-

15), 51.6 (C-6), 45.8 (C-7), 33.6 (C-3), 33.3 (C-12), 32.5 (C-13), 32.0 (C-10), 24.0 (C-11), 

17.1 (C-14), 13.2 (C-1), 9.0 (C-2). 

HRMS (+’ve ESI): calculated for C15H21NO4Na
+
 302.1363 (M + Na)

+
, found 302.1361. 

IR νmax (neat, cm
-1

): 2930 (m), 2868 (w), 1758 (s), 1545 (s), 1461 (m), 1382 (m), 1345 

(w), 1310 (w), 1228 (m), 1167 (s), 1039 (m), 989 (s), 939 (m), 885 (w), 743 (s), 634 (w). 
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33..99  IInnttrraammoolleeccuullaarr  [[33  ++  22]]  NNiittrriillee  OOxxiiddee--OOlleeffiinn  CCyyccllooaaddddiittiioonn::  

MMooddeell  SSttuuddyy    

  6-Iodohex-1-ene 276 

________________________________________________________________________________________________________________________  

 

To a stirred solution of triphenylphosphine (3.66 g, 13.97 mmol), and imidazole (0.95 g, 

13.97 mmol) in dichloromethane (30 mL) at 0 ºC was added iodine (3.55 g, 13.97 mmol) in 

small solid portions. The reaction mixture was stirred for 20 minutes, before adding a 

solution of hex-5-en-1-ol 275 (1.00 g, 9.90 mmol) in dichloromethane (10 mL) in a 

dropwise manner. The reaction mixture was warm to room temperature, and was left to stir 

for 16 hours, before pouring into a saturated aqueous solution of sodium thiosulfate (50 

mL). The aqueous component was extracted with dichloromethane (4 × 50 mL), and the 

combined organic extracts were washed with a saturated aqueous solution of sodium 

chloride (50 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated under 

reduced pressure. Purification by flash column chromatography, eluting with hexane, 

afforded the title compound 276
XIX

 as a colourless oil (1.69 g, 80%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.80 (1H, ddt, J = 16.9, 2.6, 6.7 Hz, H-5), 5.08-4.91 

(2H, m, H-6), 3.20 (2H, t, J = 7.0 Hz, H-1), 2.14-2.04 (2H, m, C-4), 1.90-1.80 (2H, m, C-

2), 1.55-1.47 (2H, m, C-3).   

13
C NMR (125 MHz, CDCl3): 138.0 (C-5), 114.9 (C-6), 32.8 (C-2), 32.5 (C-4), 29.6 (C-3), 

6.7 (C-1).  

LRMS (+’ve EI): m/z 210 (M, 100%), 205 (5), 183 (25), 167 (20), 155 (85), 141 (35), 137 

(6), 133 (8), 127 (93), 111 (17), 105 (57). 

IR νmax (neat, cm
-1

): 3030 (w), 2930 (m), 2860 (w), 1640 (m), 1435 (m), 1214 (s), 1173 

(m), 989 (m), 910 (s), 741 (m), 634 (w), 584 (m).  

 

                                                 
XIX

 Spectral data concurrent with the literature: Samsel, E. G.; Kochi, J. K. J. Am. Chem. Soc. 1996, 108, 

4790-4804.  
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6-Nitrohex-1-ene 277 

________________________________________________________________________________________________________________________  

 

To a stirred solution of sodium nitrite (0.18 g, 2.61 mmol) in N,N-dimethylformamide (10 

mL) was added 6-iodohex-1-ene 276 (0.50 g, 2.38 mmol), and the reaction mixture was 

stirred at ambient temperature for 3 hours. The reaction mixture was then partitioned 

between ice-water (40 mL), and diethyl ether (12 mL), and the organic phase was 

separated. The aqueous component was extracted with diethyl ether (4 × 20 mL), and the 

combined organic extracts were subsequently washed with water (2 × 40 mL), dried over 

anhydrous magnesium sulfate, and concentrated under reduced pressure. Purification by 

flash column chromatography, eluting with 10% diethyl ether/hexane, afforded the title 

compound 277
XX

 as a pale yellow oil (0.15 g, 49%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.77 (1H, ddt, J = 16.9, 2.6, 6.7 Hz, H-5), 5.09-4.97 

(2H, m, H-6), 4.39 (2H, t, J = 7.0 Hz, H-1), 2.15-2.10 (2H, m, C-4), 2.07-1.96 (2H, m, C-

2), 1.55-1.46 (2H, m, C-3).   

13
C NMR (125 MHz, CDCl3): 137.3 (C-5), 115.5 (C-6), 75.5 (C-1), 32.7 (C-4), 26.7 (C-2), 

25.3 (C-3).  

LRMS (+’ve EI): m/z 129 (M, 13%), 125 (5), 113 (18), 97 (17), 83 (20), 71 (40), 57 (60), 

43 (34), 32 (8), 28 (35). 

IR νmax (neat, cm
-1

): 3040 (w), 2930 (m), 2870 (w), 1641 (w), 1560 (s), 1435 (m), 1381 

(m), 994 (m), 913 (s), 751 (w), 615 (m).  

 

  

 

                                                 
XX

 Spectral data concurrent with the literature: Marsh, G. P.; Parsons, P. J.; McCarthy, C.; Corniquet, X. G. 

Org. Lett. 2007, 9, 2613-2616.  
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  3a,4,5,6-Tetrahydro-3H-cyclopenta[c]isoxazole 278 

________________________________________________________________________________________________________________________  

 

To a stirred solution of 6-nitrohex-1-ene 277 (89 mg, 0.68 mmol), and p-toluenesulfonyl 

chloride (263 mg, 1.36 mmol) in dichloromethane (30 mL) at 0 ºC was added triethylamine 

(0.19 mL, 1.36 mmol) in a dropwise fashion. The reaction mixture was allowed to warm to 

room temperature, and stirred for 16 hours, before pouring into water (25 mL). The layers 

were separated, and the aqueous phase was extracted using dichloromethane (4 × 30 mL). 

The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and 

concentrated under reduced pressure. Purification by flash column chromatography, eluting 

with 80% diethyl ether/petroleum ether, afforded the title compound 278 as a colourless oil 

(40 mg, 52%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 4.54-4.49 (1H, m, H-1a or b), 3.80-3.69 (2H, m, H-1a 

or b, H-2), 2.49-2.40 (2H, m, H-5), 2.31-2.22 (1H, m, C-4a or b), 2.21-2.13 (1H, m, H-4a or b), 

2.10-2.03 (1H, m, H-3a or b), 1.54-1.43 (1H, m, H-3a or b).  

13
C NMR (125 MHz, CDCl3): 172.4 (C-6), 74.5 (C-1), 28.4 (C-2), 28.4 (C-3 or C-4), 28.3 

(C-3 or C-4), 20.9 (C-5).  

HRMS (+’ve ESI): calculated for C6H9ONNa
+
 134.0576 (M + Na)

+
, found 134.0577. 

IR νmax (neat, cm
-1

): 2936 (m), 2870 (m), 1740 (w), 1610 (w), 1560 (w), 1450 (m), 1267 

(m), 1162 (m), 1092 (w), 902 (s), 868 (m), 793 (s), 729 (s), 681 (w). 
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33..1100  SSyynntthheessiiss  ooff  FFuurrooxxaannss  228800  aanndd  228822  

3-((4S)-4-{4-[(1R)-1-Methyl-4-(2-oxo-3a,6a-dihydrospiro[cyclopenta[b]furan-

6,1'-cyclopropan]-3(3H)-yl)butyl]-5-oxido-1,2,5-oxadiazol-3-yl}pentyl)-

3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 280 

________________________________________________________________________________________________________________________  

 

To a stirred solution of 3-[(4R)-4-methyl-5-nitropentyl]-3a,6a-dihydrospiro[cyclopenta 

[b]furan-6,1'-cyclopropan]-2(3H)-one 215 (40 mg, 0.13 mmol), and p-toluenesulfonyl 

chloride (53 mg, 0.26 mmol) in dichloromethane (10 mL) at 0 ºC was added triethylamine 

(38 μL, 0.26 mmol) in a dropwise fashion. The reaction mixture was allowed to warm to 

room temperature, and stirred for 16 hours, before pouring into water (10 mL). The layers 

were separated, and the aqueous phase was extracted using dichloromethane (4 × 15 mL). 

The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and 

concentrated under reduced pressure. Purification by flash column chromatography, eluting 

with 90% diethyl ether/hexane, afforded the title compound 280 as a pale yellow oil (29 

mg, 81%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.55-5.48 (2H, m, H-5), 5.42-5.36 (2H, m, H-4), 

4.43-4.39 (2H, m, H-9), 3.76-3.69 (2H, m, H-6), 2.91-2.78 (2H, m, H-13), 2.77-2.63 (2H, 

m, H-7), 2.04-1.31 (18H, m, H-10, H-11, H-12, H-14), 1.22-1.15 (2H, m, cyclopropyl), 

0.99-0.90 (4H, m, cyclopropyl), 0.80-0.73 (2H, m, cyclopropyl). 
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13
C NMR (125 MHz, CDCl3): 177.9-177.8 (C-8), 161.4-161.3 (C-15a), 138.4-138.3 (C-4), 

124.7-124.6 (C-5), 117.8-117.7 (C-15b), 87.5-87.4 (C-9), 49.2-49.1 (C-6), 43.2-42.9 (C-7), 

34.8-34.6 (CH2), 34.0-33.9 (C-3), 31.4 (C-13), 31.2 (CH2), 29.1 (C-13), 27.6 (CH2), 26.1-

25.3 (CH2), 19.1 (C-14), 15.7 (C-14), 12.9 (C-1), 12.8 (C-1), 8.6 (C-2), 8.5 (C-2). 

HRMS (+’ve ESI): calculated for C30H38N2O6Na
+
 345.2622 (M + Na)

+
, found 302.2622. 

LRMS (+’ve EI): m/z 522 (M, 13%), 504 (17), 487 (10), 459 (11), 228 (4), 200 (16), 186 

(6), 173 (18), 145 (36), 131 (30), 119 (35), 105 (67), 91 (100), 77 (44), 55 (42), 41 (38), 28 

(12).  

IR νmax (neat, cm
-1

): 2928 (m), 2865 (w), 1755 (s), 1588 (s), 1468 (m), 1382 (m), 1343 

(w), 1312 (m), 1226 (m), 1156 (s), 1024 (w), 980 (s), 946 (m), 931 (m), 805 (w), 762 (m), 

734 (m). 
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3-((4S)-4-{4-[(1R)-1-Methyl-4-(2-oxo-3a,6a-dihydrospiro[cyclopenta[b]furan-

6,1'-cyclopropan]-3(3H)-yl)butyl]-5-oxido-1,2,5-oxadiazol-3-yl}pentyl)-

3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 282 

________________________________________________________________________________________________________________________  

 

To a stirred solution of 3-[(4R)-4-methyl-5-nitropentyl]-3a,6a-dihydrospiro[cyclopenta 

[b]furan-6,1'-cyclopropan]-2(3H)-one 269 (30 mg, 0.10 mmol), and p-toluenesulfonyl 

chloride (41 mg, 0.21 mmol) in dichloromethane (8 mL) at 0 ºC was added triethylamine 

(30 μL, 0.21 mmol) in a dropwise fashion. The reaction mixture was allowed to warm to 

room temperature, and stirred for 16 hours, before pouring into water (8 mL). The layers 

were separated, and the aqueous phase was extracted using dichloromethane (4 × 10 mL). 

The combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and 

concentrated under reduced pressure. Purification by flash column chromatography, eluting 

with 90% diethyl ether/hexane, afforded the title compound 282 as a pale yellow oil (18 

mg, 64%).  

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.56-5.50 (2H, m, H-5), 5.33-5.29 (2H, m, H-4), 

4.57-4.49 (2H, m, H-9), 3.40-3.32 (2H, m, H-6), 2.87-2.73 (2H, m, H-13), 2.57-2.43 (2H, 

m, H-7), 1.97-1.25 (18H, m, H-10, H-11, H-12, H-14), 1.29-1.20 (2H, m, cyclopropyl), 

0.98-0.84 (4H, m, cyclopropyl), 0.82-0.74 (2H, m, cyclopropyl). 

13
C NMR (125 MHz, CDCl3): 177.0-178.8 (C-8), 161.4-161.3 (C-15a), 136.8-136.7 (C-4), 

128.7-128.6 (C-5), 117.7-117.6 (C-15b), 87.9-87.8 (C-9), 51.7-51.5 (C-6), 45.8-45.5 (C-7), 
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34.6-34.5 (CH2), 33.6-33.5 (C-3), 31.9 (CH2), 31.3 (C-13), 30.7 (CH2), 28.9 (C-13), 25.3-

24.5 (CH2), 18.9 (C-14), 15.3 (C-14), 13.2 (C-1), 13.1 (C-1), 9.1 (C-2), 9.0 (C-2). 

HRMS (+’ve ESI): calculated for C30H38N2O6Na
+
 345.2622 (M + Na)

+
, found 302.2636. 

IR νmax (neat, cm
-1

): 2923 (m), 2860 (w), 1759 (s), 1589 (s), 1433 (m), 1380 (w), 1345 

(w), 1312 (m), 1226 (w), 1167 (s), 1090 (w), 1033 (m), 989 (s), 950 (w), 836 (w), 740 (s), 

690 (m). 
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33..1111  SSyynntthheessiiss  ooff  AAllddeehhyyddee  229911  

(2R)-2-Methyl-5-(2-oxo-2,3,3a,6a-tetrahydrospiro[cyclopenta[b]furan-6,1'-

cyclopropan]-3-yl)pentanal 291 

________________________________________________________________________________________________________________________  

 

To a stirred solution of 3-[(4R)-5-hydroxy-4-methylpentyl]-3a,6a-dihydrospiro[cyclopenta 

[b]furan-6,1'-cyclopropan]-2(3H)-one 265 (0.16 g, 0.64 mmol) in dichloromethane (15 mL) 

was added 4Å molecular sieves (0.18 g), and N-methylmorpholine-N-oxide (0.09 g, 0.76 

mmol). The reaction mixture was stirred for 30 minutes, before adding 

tetrapropylammonium perruthenate (0.01 mg, 0.03 mmol) as a single solid portion, and left 

to stir for 2 hours. The reaction mixture was concentrated under reduced pressure. 

Purification by flash column chromatography, eluting with 50% diethyl ether/hexane, 

afforded the title compound 291 as a colourless oil (0.12 g, 75%).   

1
H NMR (500 MHz, CDCl3): δ (ppm) 9.63 (1H, dd, J = 5.5, 1.8 Hz, H-15), 5.56-5.53 (1H, 

m, H-5), 5.38 (1H, dd, J = 5.6, 1.7 Hz, H-4), 4.41 (1H, d, J = 5.7 Hz, H-9), 3.77-3.71 (1H, 

m, H-6), 2.76-2.69 (1H, m, H-7), 2.42-2.34 (1H, m, H-13), 1.92-1.14 (7H, m, H-10, H-11, 

H-12, cyclopropyl), 1.13 (3H, d, J = 7.0 Hz, C-14), 0.99-0.90 (5H, m, H-14, cyclopropyl), 

0.98-0.89 (2H, m, cyclopropyl), 0.79-0.73 (1H, m, cyclopropyl).  

13
C NMR (125 MHz, CDCl3): 204.6 (C-15), 177.8 (C-8), 138.2 (C-4), 124.9 (C-5), 87.5 

(C-9), 49.1 (C-6), 45.9 (C-13), 43.2 (C-7), 34.0 (C-3), 30.2 (C-12), 27.6 (C-10), 25.2 (C-

11), 13.4 (C-14), 12.9 (C-1), 8.6 (C-2). 

HRMS (+’ve ESI): calculated for C15H20O3Na
+
 271.1305 (M + Na)

+
, found 271.1306. 

IR νmax (neat, cm
-1

): 2934 (m), 2870 (w), 1759 (s), 1718 (s), 1460 (m), 1313 (m), 1226 

(m), 1158 (s), 1025 (w), 1002 (m), 980 (m), 946 (m), 887 (m), 802 (m), 755 (m), 621 (w).  
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33..1122  SSyynntthheessiiss  ooff  NNiittrrooeeppooxxiiddee  229988  

5'-[(4R)-4-Methyl-5-nitropentyl]tetrahydrospiro[cyclopropane-1,2'-

oxireno[3,4]cyclopenta[1,2-b]furan]-4'(2a'H)-one 298 

________________________________________________________________________________________________________________________  

 

To a stirred solution of sodium hydrogen carbonate (375 mg, 4.48 mmol), water (4 mL), 

acetone (519 mg, 8.96 mmol), and ethyl acetate (4 mL) at room temperature was added     

3-[(4R)-4-methyl-5-nitropentyl]-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-

2(3H)-one 215 (50 mg, 0.18 mmol), and left to stir vigorously, before adding a solution of 

Oxone
®
 monopersulfate (500 mg,  0.82 mmol) in water (4 mL) in a dropwise fashion over 

1 hour.  The reaction mixture was stirred for 16 hours. The product was extracted with 

diethyl ether (4 × 15 mL), before being washed with a saturated solution of sodium chloride 

(20 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced 

pressure. Purification by flash column chromatography, eluting with 50% diethyl 

ether/hexane, afforded the title compound 298 as a colourless oil, and white solid of a 

separable mixture of endo/exo diastereoisomers in a 1.7:1 ratio (51 mg, 99%).  

Major diastereoisomer: 

 

1
H NMR (500 MHz, CDCl3): δ (ppm) 4.39-4.30 (2H, m, H-9, H-15a or b), 4.27-4.20 (1H, 

m, H-15a or b), 3.63 (1H, d, J = 2.3 Hz, H-5), 3.29-3.23 (1H, m, H-6), 3.12 (1H, d, J = 2.3 
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Hz H-4), 2.77-2.71 (1H, m, H-7), 2.41-2.33 (1H, m, H-13), 1.91-1.30 (6H, m, H-10, H-11, 

H-12), 1.10-1.00 (5H, m, H-14, cyclopropyl), 0.92-0.83 (2H, m, cyclopropyl). 

13
C NMR (125 MHz, CDCl3): 177.7 (C-8), 87.5 (C-9), 81.4 (C-15), 64.1 (C-4), 57.4 (C-5), 

44.5 (C-6), 40.6 (C-7), 33.4 (C-12), 32.5 (C-13), 28.3 (C-3), 27.1 (C-10), 24.7 (C-11), 17.2 

(C-14), 9.1 (C-1), 7.6 (C-2). 

HRMS (+’ve ESI): calculated for C15H21NO5Na
+
 318.1312 (M + Na)

+
, found 318.1315. 

IR νmax (neat, cm
-1

): 2937 (m), 2869 (w), 1763 (s), 1542 (s), 1463 (w), 1431 (w), 1382 

(m), 1351 (w), 1303 (w), 1220 (w), 1163 (s), 1024 (m), 985 (m), 951 (m), 907 (m), 845 

(m), 789 (w), 719 (m), 629 (w). 

Minor diastereoisomer: 

 

M. P.: 107-109 ºC. Recrystallised from diethyl ether. 

1
H NMR (500 MHz, CDCl3): δ (ppm) 4.36-4.31 (1H, m, H-15a or b), 4.28-4.21 (2H, m, H-

9, H-15a or b), 3.69-3.65 (1H, m, H-5), 3.19-3.14 (1H, m, H-6), 3.11-3.08 (1H, m, H-4), 

2.72-2.66 (1H, m, H-7), 2.42-2.33 (1H, m, H-13), 2.10-2.00 (1H, m, H-10a or b), 1.83-1.33 

(5H, m, H-10a or b, H-11, H-12), 1.21-1.15 (1H, m, cyclopropyl), 1.09-1.05 (4H, m, H-14, 

cyclopropyl), 0.87-0.81 (1H, m, cyclopropyl), 0.71-0.65 (1H, m, cyclopropyl).  

13
C NMR (125 MHz, CDCl3): 177.4 (C-8), 87.1 (C-9), 81.4 (C-15), 64.7 (C-4), 57.6 (C-5), 

44.3 (C-6), 41.4 (C-7), 33.5 (C-12), 32.5 (C-13), 27.3 (C-3), 26.9 (C-10), 25.0 (C-11), 17.2 

(C-14), 10.8 (C-1), 5.6 (C-2). 

HRMS (+’ve ESI): calculated for C15H21NO5Na
+
 318.1312 (M + Na)

+
, found 318.1314. 

IR νmax (neat, cm
-1

): 2941 (w), 2865 (w), 1748 (s), 1540 (s), 1465 (w), 1381 (m), 1344 (w), 

1311 (w), 1228 (w), 1165 (s), 1037 (m), 1004 (m), 986 (s), 953 (m), 899 (m), 836 (m), 755 

(m), 736 (m), 620 (m). 
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33..1133  SSyynntthheessiiss  ooff  EEppooxxiiddee  330022  

3-Allyl-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 

204 

________________________________________________________________________________________________________________________  

 

Following the procedure reported by Marsh
2
: To a stirred solution of 3a,6a-

dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 205 (3.60 g, 24.00 mmol) in 

tetrahydrofuran (70 mL) at -78 ºC was added lithium bis(trimethylsilyl)amide (26.40 mL, 

26.40 mmol, 1 M solution in tetrahydrofuran) in a dropwise manner. The reaction mixture 

was stirred for 2 hours, before adding allyl bromide (4.20 mL, 48.00 mmol) in a dropwise 

fashion over 1 hour, keeping the temperature below -70 ºC. The reaction mixture was 

allowed to warm to room temperature, and left to stir for 16 hours, before being slowly 

poured into a saturated aqueous solution of ammonium chloride (50 mL). The aqueous 

layer was extracted with ether (4 × 50 mL). The combined organic extracts were dried over 

anhydrous magnesium sulfate, filtered, and the solvent was concentrated under reduced 

pressure. Purification by flash column chromatography, eluting with 5% diethyl 

ether/petroleum ether, afforded the title compound 204
 
as a pale yellow solid (1.69 g, 38%), 

and the corresponding diastereoisomer 210
XXI

 (1.67 g, 36%). 

 

M. P.: 35-37 ºC. Recrystallised from diethyl ether. 

                                                 
XXI

 Spectral datas concurrent with the literature: Marsh, G. P. University of Sussex 2007. 
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1
H NMR (500 MHz, CDCl3): δ (ppm) 5.98-5.88 (1H, m, H-11), 5.63 (1H, dd, J = 5.7, 1.4 

Hz, H-5), 5.39 (1H, dd, J = 5.6, 1.9 Hz, H-4), 5.22-5.11 (2H, m, H-12), 4.44 (1H, d, J = 5.7 

Hz, H-9), 3.82-3.77 (1H, m, H-6), 2.92-2.89 (1H, m, H-7), 2.76-2.70 (1H, m, H-10a or b), 

2.29-2.20 (1H, m, H-10a or b), 1.22-1.18 (1H, m, cyclopropyl), 0.99-0.91 (2H, m, 

cyclopropyl), 0.81-0.79 (1H, m, cyclopropyl).   

13
C NMR (125 MHz, CDCl3): δ (ppm) 177.5 (C-8), 138.0 (C-4), 135.4 (C-11), 125.1 (C-

5), 116.6 (C-12), 87.5 (C-9), 49.0 (C-6), 43.0 (C-7), 34.0 (C-3), 31.8 (C-10), 13.0 (C-1), 8.7 

(C-2). 

HRMS (+’ve ESI): calculated for C12H14O2Na
+
 213.0886 (M + Na)

+
, found 213.0891. 

IR νmax (neat, cm
-1

): 3078 (w), 2920 (w), 1755 (s), 1624 (m), 1602 (w), 1442 (w) 1346 

(m), 1310 (m), 1225 (m), 1160 (s), 1000 (s), 914 (s), 808 (m), 748 (s). 

 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.83-5.79 (1H, m, H-11), 5.51 (1H, dd, J = 5.6, 1.8 

Hz, H-5), 5.29 (1H, dd, J = 5.6, 2.0 Hz, H-4), 5.18-5.11 (2H, m, H-12), 4.49 (1H, d, J = 6.4 

Hz, H-9), 3.44-3.39 (1H, m, H-6), 2.64-2.58 (1H, m, H-7), 2.56-2.48 (1H, m, H-10a or b), 

2.39-2.32 (1H, m, H-10a or b), 1.16-1.10 (1H, m, cyclopropyl), 0.93-0.83 (2H, m, 

cyclopropyl), 0.79-0.73 (1H, m, cyclopropyl).   

13
C NMR (125 MHz, CDCl3): δ (ppm) 178.8 (C-8), 136.6 (C-4), 133.9 (C-11), 128.7 (C-

5), 118.3 (C-12), 88.0 (C-9), 50.6 (C-6), 45.7 (C-7), 36.0 (C-10), 33.6 (C-3), 13.2 (C-1), 9.0 

(C-2). 

HRMS (+’ve ESI): calculated for C12H14O2Na
+
 213.0886 (M + Na)

+
, found 213.0890. 

IR νmax (neat, cm
-1

): 3079 (w), 2918 (w), 1757 (s), 1641 (m), 1605 (w), 1440 (w) 1347 

(m), 1318 (m), 1233 (m), 1167 (s), 1037 (s), 989 (s), 915 (s), 736 (s). 
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   5'-Allyltetrahydrospiro[cyclopropane-1,2'-oxireno[3,4]cyclopenta[1,2-

b]furan]-4'(2a'H)-one 302 

________________________________________________________________________________________________________________________  
 

 

To a stirred solution of 3-allyl-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-

2(3H)-one 204 (0.53 g, 2.78 mmol) in dichloromethane (50 mL) was added a mixture of  

sodium hydrogen carbonate (0.26 g, 3.06 mmol), and m-chloroperoxybenzoic acid (0.53 

mg, 3.06 mmol), in small solid portions at 0 ºC. The reaction mixture was warm to room 

temperature, and left to stir for 48 hours, before pouring into a 20% aqueous solution of 

sodium metabisulfite (40 mL). The reaction mixture was further stirred for 20 minutes. The 

layers were separated, and the aqueous phase was extracted using dichloromethane (4 × 50 

mL). The combined organic extracts were washed with a 20% aqueous solution of sodium 

metabisulfite (50 mL), and water (50 mL), before being dried over anhydrous magnesium 

sulfate, filtered, and concentrated under reduced pressure. Purification by flash column 

chromatography, eluting with 50% diethyl ether/hexane, afforded the title compound 302 as 

a white solid, and a separable mixture of endo/exo diastereoisomers in a 3.5:1 ratio (0.42 g, 

73%).  

Major diastereoisomer: 

 

M. P.: 72-74 ºC. Recrystallised from diethyl ether. 
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1
H NMR (500 MHz, CDCl3): δ (ppm) 6.02-5.93 (1H, m, H-11), 5.27-5.14 (2H, m, H-12), 

4.25 (1H, d, J = 6.7 Hz, H-9), 3.74-3.72 (1H, m, H-5), 3.21-3.17 (1H, m, H-6), 3.10-3.09 

(1H, m, H-4), 2.90-2.84 (2H, m, H-7, H-10a or b), 2.59-2.48 (1H, m, H-10a or b), 1.22-1.16 

(1H, m, cyclopropyl), 1.10-1.06 (1H, m, cyclopropyl), 0.86-0.81 (1H, m, cyclopropyl), 

0.71-0.66 (1H, m, cyclopropyl).   

13
C NMR (125 MHz, CDCl3): δ (ppm) 177.5 (C-8), 135.6 (C-11), 116.6 (C-12), 87.2 (C-

9), 64.4 (C-4), 57.6 (C-5), 44.1 (C-6), 41.2 (C-7), 31.3 (C-10), 27.3 (C-3), 10.9 (C-1), 5.5 

(C-2). 

HRMS (+’ve ESI): calculated for C12H14O3Na
+
 229.0835 (M + Na)

+
, found 229.0835. 

IR νmax (neat, cm
-1

): 2920 (w), 2860 (w), 1747 (s), 1620 (m), 1340 (m), 1225 (m), 1170 

(s), 1038 (m), 997 (s), 870 (s), 832 (s), 735 (m). 

Minor diastereoisomer
XXII

: 

 

M. P.: 77-79 ºC. Recrystallised from diethyl ether. 

1
H NMR (500 MHz, CDCl3): δ (ppm) 6.00-5.92 (1H, m, H-11), 5.24-5.17 (2H, m, H-12), 

4.37 (1H, d, J = 6.6 Hz, H-9), 3.75 (1H, dd, J = 2.6, 0.6 Hz,  H-5), 3.35-3.30 (1H, m, H-6), 

3.10 (1H, d, J = 2.6 Hz, H-4), 2.94-2.89 (1H, m, H-7), 2.75-2.64 (1H, m, H-10a or b), 2.50-

2.42 (1H, m, H-10a or b), 1.07-1.00 (2H, m, cyclopropyl), 0.93-0.81 (2H, m, cyclopropyl). 

13
C NMR (125 MHz, CDCl3): δ (ppm) 177.7 (C-8), 134.8 (C-11), 117.3 (C-12), 87.2 (C-

9), 64.2 (C-4), 57.4 (C-5), 44.3 (C-6), 40.2 (C-7), 31.5 (C-10), 28.3 (C-3), 9.1 (C-1), 7.5 

(C-2). 

HRMS (+’ve ESI): calculated for C12H14O3Na
+
 229.0835 (M + Na)

+
, found 229.0835. 

IR νmax (neat, cm
-1

): 2929 (w), 2854 (w), 1741 (s), 1622 (m), 1344 (m), 1210 (m), 1176 

(s), 986 (m), 906 (s), 835 (s), 784 (m). 

                                                 
XXII

 See appendix for crystal structure data. 
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33..1144  SSyynntthheessiiss  ooff  NNiittrrooaallkkeennee  220033  

tert-Butyl(dimethyl){[(2S)-2-methylbut-3-en-1-yl]oxy}silane 310 

________________________________________________________________________________________________________________________  

 

Following the procedure reported by Marsh
2
: To a stirred solution of 

methyltriphenylphosphonium bromide (3.60 g, 9.89 mmol) in tetrahydrofuran (50 mL) at 0 

ºC was added n-butyllithium (4.95 mL, 12.36 mmol, 2.5 M solution in tetrahydrofuran) in a 

dropwise fashion, and the reaction mixture was stirred for 20 minutes. A solution of (2R)-3-

{[tert-butyl(dimethyl)silyl]oxy}-2-methylpropanal 247 (1.00 g, 4.94 mmol) in 

tetrahydrofuran (40 mL) was added in a dropwise manner, keeping the temperature below 5 

ºC. The reaction mixture was allowed to warm slowly to ambient temperature, and was left 

to stir for 16 hours, before being poured into a saturated aqueous solution of ammonium 

chloride (150 mL). The organic phase was separated, and the aqueous component was 

extracted with diethyl ether (4 × 100 mL). The combined organic extracts were washed 

with a saturated aqueous solution of sodium chloride (150 mL), dried over anhydrous 

magnesium sulfate, and concentrated under reduced pressure. Purification by flash column 

chromatography, eluting with pentane, afforded the title compound 310
XXIII

 as a colourless 

oil (0.80 g, 81%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.82-5.74 (1H, m, H-7), 5.07-4.97 (2H, m, H-8), 

3.55-3.50 (1H, m, H-4a or b), 3.44-3.39 (1H, m, H-4a or b), 2.36-2.30 (1H, m, H-5), 1.00 (3H, 

d, J = 6.6 Hz, H-6), 0.89 (9H, s, H-1), 0.04 (6H, s, H-3). 

13
C NMR (125 MHz, CDCl3): δ (ppm) 141.4 (C-7), 113.8 (C-6), 67.9 (C-4), 40.2 (C-5), 

25.9 (C-1), 18.3 (C-2), 16.0 (C-6), -5.3 (C-3).  

HRMS (+’ve ESI): calculated for C11H24OSiNa
+
 223.1489 (M + Na)

+
, found 223.1493. 

                                                 
XXIII

 Spectral data concurrent with the literature: Marsh, G. P. University of Sussex 2007. 
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IR νmax (neat, cm
-1

): 3040 (w), 2956 (m), 2930 (m), 2857 (m), 1620 (w), 1472 (m), 1385 

(w), 1361 (w), 1253 (m), 1089 (s), 1006 (m), 912 (m), 833 (s), 773 (s), 667 (m). 

[α]D
24

 +0.68º (c 1.11 in CHCl3).    
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 (2S)-2-Methylbut-3-en-1-yl methanesulfonate 311 

________________________________________________________________________________________________________________________  

 

To a stirred solution of tert-butyl(dimethyl){[(2S)-2-methylbut-3-en-1-yl]oxy}silane 310 

(1.00 g, 4.90 mmol) in dichloromethane (250 mL) was added Dowex
®
 50W-X8 (30.00 g), 

and was left to stir for 48 hours. The reaction mixture was filtered, dried over anhydrous 

magnesium sulfate, and concentrated under reduced pressure. Following the procedure 

reported by Oishi et al.
198

: The crude product was poured into a flask with dichloromethane 

(50 mL), and was cooled to 0 ºC, before adding triethylamine (0.75 mL, 5.37 mmol), and 

methanesulfonyl chloride (0.42 mL, 5.37 mmol) in a dropwise manner, followed by adding 

4-dimethylaminopyridine (0.06 g, 0.49 mmol) in a single solid portion. The reaction 

mixture was allowed to warm to room temperature, and stirred for 16 hours, before being 

poured into water (50 mL). The layers were separated, and the aqueous phase was extracted 

using dichloromethane (4 × 50 mL). The combined organic extracts were washed with a 

10% aqueous solution of hydrochloric acid (100 mL), a saturated aqueous solution of 

sodium hydrogen carbonate (100 mL), and a saturated aqueous solution of sodium chloride 

(100 mL), before being dried over anhydrous magnesium sulfate, filtered, and concentrated 

under reduced pressure. Purification by flash column chromatography, eluting with 20% 

diethyl ether/pentane, afforded the title compound 311 as a colourless oil (0.61 g, 75%).  

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.78-5.70 (1H, m, H-5), 5.17-5.10 (2H, m, H-6), 

4.14-4.10 (1H, m, H-2a or b), 4.08-4.04 (1H, m, H-2a or b), 3.00 (3H, s, H-1), 2.67-2.58 (1H, 

m, H-3), 1.11 (3H, d, J = 6.8 Hz, H-4).  

13
C NMR (125 MHz, CDCl3): δ (ppm) 138.4 (C-5), 116.1 (C-6), 73.3 (C-2), 37.4 (C-1), 

37.2 (C-3), 16.0 (C-4).   

HRMS (+’ve ESI): calculated for C6H12O3SNa
+
 187.0399 (M + Na)

+
, found 187.0400. 

IR νmax (neat, cm
-1

): 3035 (w), 2975 (m), 2940 (w), 2860 (w), 1643 (w), 1460 (w), 1419 

(w), 1349 (s), 1332 (s), 1170 (s), 955 (s), 915 (s), 842 (s), 811 (s), 748 (m), 673 (m). 

[α]D
22

 +1.38º (c 1.04 in CHCl3).    
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(3S)-4-Iodo-3-methylbut-1-ene 312 

________________________________________________________________________________________________________________________  

 

Following the procedure reported by Oishi et al.
198

: To a stirred solution of (2S)-2-

methylbut-3-en-1-yl methanesulfonate 311 (1.10 g, 6.70 mmol) in acetone (150 mL) was 

added sodium iodide (10.00 g, 67.00 mmol) in small portions over 1 hour. The reaction 

mixture was heated to reflux for 16 hours. The flask was shielded from light throughout the 

reaction. After being allowed to cool to room temperature, the reaction mixture was diluted 

with diethyl ether (100 mL), and the extracts were filtered. The filter cake was washed with 

diethyl ether, and the filtrate was concentrated under reduced pressure. Purification by flash 

column chromatography, eluting with 1% diethyl ether/pentane, afforded the title 

compound 312 as a pale yellow oil (0.93 g, 71%). 

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.76-5.67 (1H, m, H-4), 5.10-5.05 (2H, m, H-5), 

3.22-3.18 (1H, m, H-1a or b), 3.16-3.11 (1H, m, H-1a or b), 2.41-2.34 (1H, m, H-2), 1.13 (3H, 

d, J = 6.6 Hz, H-3). 

13
C NMR (125 MHz, CDCl3): δ (ppm) 141.4 (C-4), 114.8 (C-5), 39.4 (C-2), 20.2 (C-3), 

14.5 (C-1). 

LRMS (+’ve EI): m/z 196 (M, 18%), 181 (5), 141 (35), 128 (7), 127 (100), 70 (43), 68 

(50), 67 (94), 65 (40), 63 (20), 62 (8), 57 (4). 

IR νmax (neat, cm
-1

): 3030 (w), 2963 (m), 2926 (m), 2855 (w), 1640 (w), 1454 (w), 1415 

(w), 1373 (w), 887 (s), 990 (s), 916 (s), 791 (w), 682 (m). 

[α]D
22

 -0.79º (c 1.04 in CHCl3).    
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(3S)-3-Methyl-4-nitrobut-1-ene 203 

________________________________________________________________________________________________________________________  

 

To a stirred solution of (3S)-4-iodo-3-methylbut-1-ene 312 (0.90 g, 4.50 mmol), and 

Amberlite
®
 IRA-900 nitrite (5.10 g, 20.40 mmol) in benzene (50 mL) was heated to reflux 

for 48 hours. The reaction mixture was cooled to ambient temperature, before the resin was 

filtered off, and washed with benzene. The filtrate was dried over anhydrous magnesium 

sulfate, filtered, and concentrated under reduced pressure. Purification by flash column 

chromatography, eluting with 10% diethyl ether/pentane, afforded the title compound 203 

as a colourless oil (0.35 g, 67%).  

1
H NMR (500 MHz, CDCl3): δ (ppm) 5.77-5.69 (1H, m, H-4), 5.19-5.12 (2H, m, H-5), 

4.36-4.25 (2H, m, H-1), 3.09-3.00 (1H, m, H-2), 1.13 (3H, d, J = 6.8 Hz, H-3). 

13
C NMR (125 MHz, CDCl3): δ (ppm) 137.6 (C-4), 116.6 (C-5), 80.7 (C-1), 36.7 (C-2), 

17.0 (C-3). 

LRMS (+’ve EI): m/z 116 (M
+
, 5%), 85 (7), 70 (90), 66 (76), 65 (63), 63 (19), 62 (20), 60 

(8), 57 (18), 55 (60), 52 (70), 51 (100).  

IR νmax (neat, cm
-1

): 3040 (w), 2967 (m), 2930 (m), 2850 (w), 1725 (m), 1640 (w), 1547 

(s), 1459 (m), 1378 (w), 1275 (m), 1126 (m), 993 (m), 923 (s), 727 (m), 674 (m). 

[α]D
22

 -0.78º (c 1.06 in CHCl3).    
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3a,6a-Dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 205 
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Table 1.  Crystal data and structure refinement . 

Identification code  nov1206 

Empirical formula  C9 H10 O2 

Formula weight  150.17 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/n  (No.14) 

Unit cell dimensions a = 8.3287(12) Å = 90°. 

 b = 9.1412(15) Å = 106.411(9)°. 

 c = 10.3119(15) Å  = 90°. 

Volume 753.1(2) Å3 

Z 4 

Density (calculated) 1.32 Mg/m3 

Absorption coefficient 0.09 mm-1 

F(000) 320 

Crystal size 0.30 x 0.20 x 0.15 mm3 

Theta range for data collection 3.57 to 26.14°. 

Index ranges -10<=h<=10, -11<=k<=11, -12<=l<=12 

Reflections collected 9215 

Independent reflections 1479 [R(int) = 0.063] 

Reflections with I>2sigma(I) 1179 

Completeness to theta = 26.14° 98.5 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1479 / 0 / 140 

Goodness-of-fit on F2 1.064 

Final R indices [I>2sigma(I)] R1 = 0.047, wR2 = 0.110 

R indices (all data) R1 = 0.063, wR2 = 0.119 

Largest diff. peak and hole 0.15 and -0.16 e.Å-3 

 

Data collection KappaCCD , Program package WinGX , Abs correction not applied ,  

Refinement using SHELXL-97 , Drawing using ORTEP-3 for Windows  
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for nov1206.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

O(1) 1669(1) 3857(1) 770(1) 40(1) 

O(2) 3594(2) 2801(2) -28(1) 65(1) 

C(1) 4444(2) 4441(2) 1914(2) 50(1) 

C(2) 3271(2) 3596(2) 792(2) 45(1) 

C(3) 1567(2) 4890(2) 1833(2) 35(1) 

C(4) 3364(2) 4967(2) 2783(2) 39(1) 

C(5) 3281(2) 3959(2) 3916(2) 40(1) 

C(6) 1726(2) 3574(2) 3849(2) 38(1) 

C(7) 516(2) 4242(2) 2661(2) 33(1) 

C(8) -1198(2) 3623(2) 1996(2) 41(1) 

C(9) -1039(2) 5016(2) 2782(2) 44(1) 

________________________________________________________________________________
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Table 3.   Bond lengths [Å] and angles [°] for nov1206. 

_____________________________________________________ 

O(1)-C(2)  1.349(2) 

O(1)-C(3)  1.467(2) 

O(2)-C(2)  1.201(2) 

C(1)-C(2)  1.500(3) 

C(1)-C(4)  1.517(3) 

C(3)-C(7)  1.506(2) 

C(3)-C(4)  1.542(2) 

C(4)-C(5)  1.505(2) 

C(5)-C(6)  1.324(2) 

C(6)-C(7)  1.481(2) 

C(7)-C(8)  1.508(2) 

C(7)-C(9)  1.511(2) 

C(8)-C(9)  1.495(3) 

 

C(2)-O(1)-C(3) 111.49(13) 

C(2)-C(1)-C(4) 104.70(14) 

O(2)-C(2)-O(1) 120.78(17) 

O(2)-C(2)-C(1) 128.86(17) 

O(1)-C(2)-C(1) 110.35(15) 

O(1)-C(3)-C(7) 109.63(12) 

O(1)-C(3)-C(4) 104.72(12) 

C(7)-C(3)-C(4) 105.84(13) 

C(5)-C(4)-C(1) 115.45(15) 

C(5)-C(4)-C(3) 102.47(13) 

C(1)-C(4)-C(3) 103.92(14) 

C(6)-C(5)-C(4) 112.40(14) 

C(5)-C(6)-C(7) 111.13(16) 

C(6)-C(7)-C(3) 105.21(13) 

C(6)-C(7)-C(8) 123.84(15) 

C(3)-C(7)-C(8) 121.10(14) 

C(6)-C(7)-C(9) 121.56(14) 

C(3)-C(7)-C(9) 120.81(15) 

C(8)-C(7)-C(9) 59.37(11) 

C(9)-C(8)-C(7) 60.41(11) 
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C(8)-C(9)-C(7) 60.22(11) 

_____________________________________________________________ 
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55..22  CCrryyssttaallllooggrraapphhyy  DDaattaa  ooff  PPrreeccuurrssoorr  223344  

6-Chlorospiro[bicyclo[3.2.0]heptane-2,1'-cyclopropane]-3-en-7-one 234 

________________________________________________________________________________________________________________________  
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Table 1.  Crystal data and structure refinement . 

Identification code  oct1806 

Empirical formula  C9 H9 Cl O 

Formula weight  168.61 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/n  (No.14) 

Unit cell dimensions a = 4.9201(2) Å = 90°. 

 b = 12.4213(4) Å = 90.313(2)°. 

 c = 13.3861(5) Å  = 90°. 

Volume 818.07(5) Å3 

Z 4 

Density (calculated) 1.37 Mg/m3 

Absorption coefficient 0.40 mm-1 

F(000) 352 

Crystal size 0.10 x 0.10 x 0.05 mm3 

Theta range for data collection 3.46 to 26.70°. 

Index ranges -6<=h<=6, -15<=k<=15, -16<=l<=16 

Reflections collected 12122 

Independent reflections 1714 [R(int) = 0.080] 

Reflections with I>2sigma(I) 1399 

Completeness to theta = 26.70° 99.1 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1714 / 0 / 136 

Goodness-of-fit on F2 1.060 

Final R indices [I>2sigma(I)] R1 = 0.048, wR2 = 0.107 

R indices (all data) R1 = 0.063, wR2 = 0.115 

Largest diff. peak and hole 0.35 and -0.43 e.Å-3 

 

Data collection KappaCCD , Program package WinGX , Abs correction not applied ,  

Refinement using SHELXL-97 , Drawing using ORTEP-3 for Windows  
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for oct1806.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

Cl 18(2) 9908(1) 6265(1) 47(1) 

O -2320(3) 10308(1) 8569(1) 31(1) 

C(1) 1571(5) 9805(2) 7459(2) 26(1) 

C(2) -270(4) 9836(2) 8373(2) 22(1) 

C(3) 1364(4) 8932(2) 8880(2) 20(1) 

C(4) 2628(4) 8706(2) 7829(2) 23(1) 

C(5) 1043(4) 7742(2) 7488(2) 27(1) 

C(6) -493(4) 7331(2) 8199(2) 26(1) 

C(7) -284(4) 7939(2) 9150(2) 21(1) 

C(8) -2561(4) 7962(2) 9895(2) 28(1) 

C(9) 21(5) 7368(2) 10144(2) 31(1) 

________________________________________________________________________________
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Table 3.   Bond lengths [Å] and angles [°] for oct1806. 

_____________________________________________________ 

Cl-C(1)  1.773(2) 

O-C(2)  1.197(3) 

C(1)-C(2)  1.526(3) 

C(1)-C(4)  1.542(3) 

C(2)-C(3)  1.538(3) 

C(3)-C(7)  1.521(3) 

C(3)-C(4)  1.567(3) 

C(4)-C(5)  1.498(3) 

C(5)-C(6)  1.321(3) 

C(6)-C(7)  1.483(3) 

C(7)-C(8)  1.505(3) 

C(7)-C(9)  1.515(3) 

C(8)-C(9)  1.505(3) 

 

C(2)-C(1)-C(4) 88.04(15) 

C(2)-C(1)-Cl 117.78(16) 

C(4)-C(1)-Cl 119.76(16) 

O-C(2)-C(1) 133.82(19) 

O-C(2)-C(3) 134.43(19) 

C(1)-C(2)-C(3) 91.41(15) 

C(7)-C(3)-C(2) 114.79(16) 

C(7)-C(3)-C(4) 106.40(16) 

C(2)-C(3)-C(4) 86.74(15) 

C(5)-C(4)-C(1) 115.80(17) 

C(5)-C(4)-C(3) 102.01(16) 

C(1)-C(4)-C(3) 89.69(15) 

C(6)-C(5)-C(4) 112.85(19) 

C(5)-C(6)-C(7) 112.6(2) 

C(6)-C(7)-C(8) 122.02(19) 

C(6)-C(7)-C(9) 121.48(19) 

C(8)-C(7)-C(9) 59.78(14) 

C(6)-C(7)-C(3) 104.13(17) 

C(8)-C(7)-C(3) 122.80(18) 

C(9)-C(7)-C(3) 122.52(18) 
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C(7)-C(8)-C(9) 60.46(13) 

C(8)-C(9)-C(7) 59.76(14) 

_____________________________________________________________ 
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55..33  CCrryyssttaallllooggrraapphhyy  DDaattaa  ooff  LLaaccttoonnee  223388  

3-Chloro-3a,6a-dihydrospiro[cyclopenta[b]furan-6,1'-cyclopropan]-2(3H)-one 

238 

________________________________________________________________________________________________________________________  
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Table 1.  Crystal data and structure refinement . 

Identification code  apr707 

Empirical formula  C9 H9 Cl O2 

Formula weight  184.61 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pca21  (No.29) 

Unit cell dimensions a = 24.0509(6) Å = 90°. 

 b = 4.98650(10) Å = 90°. 

 c = 28.5987(7) Å  = 90°. 

Volume 3429.84(14) Å3 

Z 16 

Density (calculated) 1.43 Mg/m3 

Absorption coefficient 0.40 mm-1 

F(000) 1536 

Crystal size 0.35 x 0.20 x 0.20 mm3 

Theta range for data collection 3.46 to 26.02°. 

Index ranges -29<=h<=29, -4<=k<=6, -35<=l<=34 

Reflections collected 18117 

Independent reflections 6268 [R(int) = 0.061] 

Reflections with I>2sigma(I) 4883 

Completeness to theta = 26.02° 98.9 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6268 / 1 / 434 

Goodness-of-fit on F2 1.006 

Final R indices [I>2sigma(I)] R1 = 0.045, wR2 = 0.090 

R indices (all data) R1 = 0.071, wR2 = 0.102 

Absolute structure parameter 0.54(5) 

Largest diff. peak and hole 0.22 and -0.26 e.Å-3 

Four independent molecules . 

 

Data collection KappaCCD , Program package WinGX , Abs correction not applied ,  

Refinement using SHELXL-97 , Drawing using ORTEP-3 for Windows  
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for apr707.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

Cl 5565(1) 6375(2) 2020(1) 42(1) 

O(1) 5973(1) 5187(6) 1031(1) 44(1) 

O(2) 5403(1) 8280(5) 731(1) 35(1) 

C(1) 5677(1) 7103(7) 1085(1) 31(1) 

C(2) 5539(2) 8585(7) 1537(1) 32(1) 

C(3) 4979(1) 9852(7) 1434(1) 31(1) 

C(4) 5009(2) 10313(8) 900(1) 32(1) 

C(5) 4439(2) 9646(8) 719(1) 36(1) 

C(6) 4181(2) 7987(7) 1088(1) 36(1) 

C(7) 4477(2) 8049(7) 1478(1) 35(1) 

C(8) 4340(2) 9298(8) 200(1) 46(1) 

C(9) 4119(2) 11724(8) 445(1) 52(1) 

Cl(1B) 4391(1) -617(3) 3529(1) 59(1) 

O(1B) 4689(1) 2923(5) 2691(1) 45(1) 

O(2B) 5587(1) 2159(5) 2833(1) 29(1) 

C(1B) 5043(2) 1563(7) 2869(1) 32(1) 

C(2B) 4970(2) -971(7) 3149(1) 33(1) 

C(3B) 5527(1) -1384(7) 3391(1) 30(1) 

C(4B) 5938(1) 194(7) 3081(1) 29(1) 

C(5B) 6320(1) 1661(7) 3409(1) 27(1) 

C(6B) 6033(2) 1565(8) 3867(1) 35(1) 

C(7B) 5602(2) -69(8) 3860(1) 36(1) 

C(8B) 6947(1) 1384(7) 3374(1) 36(1) 

C(9B) 6668(1) 3983(7) 3247(1) 34(1) 

Cl(1C) 2152(1) 766(2) 1055(1) 46(1) 

O(1C) 1695(1) -426(5) 2033(1) 42(1) 

O(2C) 2243(1) 2679(5) 2345(1) 33(1) 

C(1C) 1989(1) 1528(8) 1980(1) 31(1) 

C(2C) 2130(2) 3017(7) 1537(1) 34(1) 

C(3C) 2669(1) 4422(8) 1656(1) 34(1) 

C(4C) 2612(1) 4879(7) 2187(1) 33(1) 
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C(5C) 3182(2) 4414(7) 2387(1) 33(1) 

C(6C) 3478(1) 2866(7) 2027(1) 35(1) 

C(7C) 3201(2) 2806(8) 1630(1) 37(1) 

C(8C) 3469(2) 6654(8) 2658(2) 49(1) 

C(9C) 3265(2) 4190(8) 2908(1) 40(1) 

Cl(1D) 1787(1) -7212(2) 4527(1) 48(1) 

O(1D) 2047(1) -3187(5) 5330(1) 47(1) 

O(2D) 2951(1) -3878(5) 5207(1) 32(1) 

C(1D) 2410(2) -4558(7) 5170(1) 31(1) 

C(2D) 2362(1) -7194(7) 4913(1) 28(1) 

C(3D) 2923(1) -7583(7) 4680(1) 29(1) 

C(4D) 3316(1) -5879(7) 4988(1) 28(1) 

C(5D) 3701(1) -4497(7) 4646(1) 29(1) 

C(6D) 3424(2) -4710(9) 4190(1) 39(1) 

C(7D) 2996(2) -6384(8) 4205(1) 37(1) 

C(8D) 4328(1) -4793(8) 4691(1) 36(1) 

C(9D) 4059(1) -2157(7) 4795(1) 37(1) 

________________________________________________________________________________
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Table 3.   Bond lengths [Å] and angles [°] for apr707. 

_____________________________________________________ 

Cl-C(2)  1.768(3) 

O(1)-C(1)  1.202(4) 

O(2)-C(1)  1.344(4) 

O(2)-C(4)  1.470(4) 

C(1)-C(2)  1.525(5) 

C(2)-C(3)  1.517(5) 

C(3)-C(7)  1.511(5) 

C(3)-C(4)  1.545(5) 

C(4)-C(5)  1.503(5) 

C(5)-C(6)  1.478(5) 

C(5)-C(9)  1.512(5) 

C(5)-C(8)  1.513(5) 

C(6)-C(7)  1.325(5) 

C(8)-C(9)  1.494(6) 

Cl(1B)-C(2B)  1.776(4) 

O(1B)-C(1B)  1.202(4) 

O(2B)-C(1B)  1.345(4) 

O(2B)-C(4B)  1.476(4) 

C(1B)-C(2B)  1.506(5) 

C(2B)-C(3B)  1.522(5) 

C(3B)-C(7B)  1.506(5) 

C(3B)-C(4B)  1.542(5) 

C(4B)-C(5B)  1.502(5) 

C(5B)-C(6B)  1.482(5) 

C(5B)-C(9B)  1.502(5) 

C(5B)-C(8B)  1.518(5) 

C(6B)-C(7B)  1.319(5) 

C(8B)-C(9B)  1.504(5) 

Cl(1C)-C(2C)  1.779(4) 

O(1C)-C(1C)  1.213(4) 

O(2C)-C(1C)  1.338(4) 

O(2C)-C(4C)  1.482(4) 

C(1C)-C(2C)  1.508(5) 

C(2C)-C(3C)  1.512(5) 
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C(3C)-C(7C)  1.514(5) 

C(3C)-C(4C)  1.540(5) 

C(4C)-C(5C)  1.502(5) 

C(5C)-C(6C)  1.471(5) 

C(5C)-C(9C)  1.508(5) 

C(5C)-C(8C)  1.526(5) 

C(6C)-C(7C)  1.317(5) 

C(8C)-C(9C)  1.502(6) 

Cl(1D)-C(2D)  1.769(3) 

O(1D)-C(1D)  1.199(4) 

O(2D)-C(1D)  1.351(4) 

O(2D)-C(4D)  1.468(4) 

C(1D)-C(2D)  1.509(5) 

C(2D)-C(3D)  1.519(5) 

C(3D)-C(7D)  1.495(5) 

C(3D)-C(4D)  1.545(5) 

C(4D)-C(5D)  1.513(5) 

C(5D)-C(6D)  1.468(5) 

C(5D)-C(9D)  1.512(5) 

C(5D)-C(8D)  1.521(5) 

C(6D)-C(7D)  1.325(5) 

C(8D)-C(9D)  1.495(5) 

 

C(1)-O(2)-C(4) 111.6(3) 

O(1)-C(1)-O(2) 122.7(3) 

O(1)-C(1)-C(2) 128.5(3) 

O(2)-C(1)-C(2) 108.7(3) 

C(3)-C(2)-C(1) 103.3(3) 

C(3)-C(2)-Cl 116.2(3) 

C(1)-C(2)-Cl 110.7(3) 

C(7)-C(3)-C(2) 116.4(3) 

C(7)-C(3)-C(4) 102.1(3) 

C(2)-C(3)-C(4) 102.3(3) 

O(2)-C(4)-C(5) 108.7(3) 

O(2)-C(4)-C(3) 104.7(3) 

C(5)-C(4)-C(3) 105.4(3) 
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C(6)-C(5)-C(4) 105.2(3) 

C(6)-C(5)-C(9) 122.7(3) 

C(4)-C(5)-C(9) 119.5(3) 

C(6)-C(5)-C(8) 124.7(4) 

C(4)-C(5)-C(8) 120.5(3) 

C(9)-C(5)-C(8) 59.2(3) 

C(7)-C(6)-C(5) 111.2(3) 

C(6)-C(7)-C(3) 111.9(3) 

C(9)-C(8)-C(5) 60.4(3) 

C(8)-C(9)-C(5) 60.4(2) 

C(1B)-O(2B)-C(4B) 112.0(2) 

O(1B)-C(1B)-O(2B) 122.2(3) 

O(1B)-C(1B)-C(2B) 128.0(3) 

O(2B)-C(1B)-C(2B) 109.8(3) 

C(1B)-C(2B)-C(3B) 104.6(3) 

C(1B)-C(2B)-Cl(1B) 109.5(3) 

C(3B)-C(2B)-Cl(1B) 115.1(2) 

C(7B)-C(3B)-C(2B) 116.8(3) 

C(7B)-C(3B)-C(4B) 102.3(3) 

C(2B)-C(3B)-C(4B) 103.6(3) 

O(2B)-C(4B)-C(5B) 109.1(3) 

O(2B)-C(4B)-C(3B) 104.3(3) 

C(5B)-C(4B)-C(3B) 106.4(3) 

C(6B)-C(5B)-C(4B) 104.6(3) 

C(6B)-C(5B)-C(9B) 123.9(3) 

C(4B)-C(5B)-C(9B) 121.5(3) 

C(6B)-C(5B)-C(8B) 121.2(3) 

C(4B)-C(5B)-C(8B) 121.4(3) 

C(9B)-C(5B)-C(8B) 59.7(2) 

C(7B)-C(6B)-C(5B) 111.9(3) 

C(6B)-C(7B)-C(3B) 112.1(3) 

C(9B)-C(8B)-C(5B) 59.6(2) 

C(5B)-C(9B)-C(8B) 60.6(2) 

C(1C)-O(2C)-C(4C) 110.7(3) 

O(1C)-C(1C)-O(2C) 120.9(3) 

O(1C)-C(1C)-C(2C) 129.2(3) 
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O(2C)-C(1C)-C(2C) 109.9(3) 

C(1C)-C(2C)-C(3C) 103.4(3) 

C(1C)-C(2C)-Cl(1C) 110.3(3) 

C(3C)-C(2C)-Cl(1C) 116.3(3) 

C(2C)-C(3C)-C(7C) 117.8(3) 

C(2C)-C(3C)-C(4C) 102.4(3) 

C(7C)-C(3C)-C(4C) 101.7(3) 

O(2C)-C(4C)-C(5C) 108.4(3) 

O(2C)-C(4C)-C(3C) 104.1(3) 

C(5C)-C(4C)-C(3C) 105.7(3) 

C(6C)-C(5C)-C(4C) 104.9(3) 

C(6C)-C(5C)-C(9C) 126.0(3) 

C(4C)-C(5C)-C(9C) 120.6(3) 

C(6C)-C(5C)-C(8C) 121.4(3) 

C(4C)-C(5C)-C(8C) 119.5(3) 

C(9C)-C(5C)-C(8C) 59.4(3) 

C(7C)-C(6C)-C(5C) 111.7(3) 

C(6C)-C(7C)-C(3C) 111.9(3) 

C(9C)-C(8C)-C(5C) 59.7(2) 

C(8C)-C(9C)-C(5C) 60.9(3) 

C(1D)-O(2D)-C(4D) 111.9(3) 

O(1D)-C(1D)-O(2D) 121.9(3) 

O(1D)-C(1D)-C(2D) 128.8(3) 

O(2D)-C(1D)-C(2D) 109.3(3) 

C(1D)-C(2D)-C(3D) 104.9(3) 

C(1D)-C(2D)-Cl(1D) 111.5(2) 

C(3D)-C(2D)-Cl(1D) 114.8(2) 

C(7D)-C(3D)-C(2D) 116.9(3) 

C(7D)-C(3D)-C(4D) 103.1(3) 

C(2D)-C(3D)-C(4D) 102.8(3) 

O(2D)-C(4D)-C(5D) 109.4(3) 

O(2D)-C(4D)-C(3D) 104.6(3) 

C(5D)-C(4D)-C(3D) 104.8(3) 

C(6D)-C(5D)-C(9D) 124.4(3) 

C(6D)-C(5D)-C(4D) 105.3(3) 

C(9D)-C(5D)-C(4D) 121.1(3) 
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C(6D)-C(5D)-C(8D) 121.2(3) 

C(9D)-C(5D)-C(8D) 59.1(2) 

C(4D)-C(5D)-C(8D) 120.5(3) 

C(7D)-C(6D)-C(5D) 111.7(3) 

C(6D)-C(7D)-C(3D) 111.9(3) 

C(9D)-C(8D)-C(5D) 60.1(2) 

C(8D)-C(9D)-C(5D) 60.8(2) 

_____________________________________________________________ 
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55..44  CCrryyssttaallllooggrraapphhyy  DDaattaa  ooff  EExxoo--EEppooxxiiddee  330022  

5'-Allyltetrahydrospiro[cyclopropane-1,2'-oxireno[3,4]cyclopenta[1,2-

b]furan]-4'(2a'H)-one 302 

________________________________________________________________________________________________________________________  
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Table 1.  Crystal data and structure refinement for C12H14O3. 

Identification code  apr310 

Empirical formula  C12 H14 O3 

Formula weight  206.23 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/c (No.14) 

Unit cell dimensions a = 15.1394(4) Å = 90°. 

 b = 7.2675(3) Å = 103.711(2)°. 

 c = 9.7199(4) Å  = 90°. 

Volume 1038.96(7) Å3 

Z 4 

Density (calculated) 1.32 Mg/m3 

Absorption coefficient 0.09 mm-1 

F(000) 440 

Crystal size 0.21 x 0.17 x 0.15 mm3 

Theta range for data collection 3.54 to 27.10°. 

Index ranges -19<=h<=19, -9<=k<=9, -12<=l<=12 

Reflections collected 15615 

Independent reflections 2295 [R(int) = 0.058] 

Reflections with I>2sigma(I) 1899 

Completeness to theta = 27.10° 99.7 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2295 / 2 / 155 

Goodness-of-fit on F2 1.001 

Final R indices [I>2sigma(I)] R1 = 0.049, wR2 = 0.123 

R indices (all data) R1 = 0.061, wR2 = 0.130 

Largest diff. peak and hole 0.32 and -0.20 e.Å-3 

 

Data collection KappaCCD , Program package WinGX , Abs correction not applied  

Refinement using SHELXL-97 , Drawing using ORTEP-3 for Windows  
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Table 2.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for apr310.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

O(1) 3010(1) 3524(2) 8606(2) 41(1) 

O(2) 1271(1) -413(2) 6402(1) 27(1) 

O(3) 1787(1) -2621(2) 5220(1) 33(1) 

C(1) 2607(1) 270(2) 8196(2) 22(1) 

C(2) 3051(1) 1938(2) 7711(2) 29(1) 

C(3) 2371(1) 3378(2) 7228(2) 30(1) 

C(4) 1463(1) 2690(2) 7343(2) 22(1) 

C(5) 1575(1) 665(2) 7707(2) 22(1) 

C(6) 840(1) 3916(3) 7930(2) 35(1) 

C(7) 608(1) 3426(3) 6397(2) 35(1) 

C(8) 1901(1) -1625(2) 6233(2) 24(1) 

C(9) 2717(1) -1566(2) 7483(2) 24(1) 

C(10) 3608(1) -1972(3) 7074(2) 34(1)
a 

C(11) 4328(2) -2508(6) 8381(4) 36(1)
a
 

C(12) 5082(2) -1648(5) 8793(4) 52(1)
a
 

C(10A) 3608(1) -1972(3) 7074(2) 34(1)
b
 

C(11A) 4473(4) -1659(10) 8241(8) 36(2)
b
 

C(12A) 4816(4) -3075(9) 9083(6) 39(1)
b
 

________________________________________________________________________________ 

a 66.1 %, 33.9 %
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Table 3.   Bond lengths [Å] and angles [°] for apr310. 

_____________________________________________________ 

O(1)-C(2)  1.455(2) 

O(1)-C(3)  1.458(2) 

O(2)-C(8)  1.3380(19) 

O(2)-C(5)  1.4683(18) 

O(3)-C(8)  1.2013(19) 

C(1)-C(2)  1.515(2) 

C(1)-C(9)  1.531(2) 

C(1)-C(5)  1.548(2) 

C(2)-C(3)  1.465(2) 

C(3)-C(4)  1.492(2) 

C(4)-C(7)  1.497(2) 

C(4)-C(6)  1.504(2) 

C(4)-C(5)  1.514(2) 

C(6)-C(7)  1.491(2) 

C(8)-C(9)  1.514(2) 

C(9)-C(10)  1.523(2) 

C(10)-C(11)  1.516(4) 

C(11)-C(12)  1.280(5) 

C(11A)-C(12A)  1.341(8) 

 

C(2)-O(1)-C(3) 60.40(10) 

C(8)-O(2)-C(5) 111.73(11) 

C(2)-C(1)-C(9) 116.87(13) 

C(2)-C(1)-C(5) 104.24(12) 

C(9)-C(1)-C(5) 103.50(12) 

O(1)-C(2)-C(3) 59.92(11) 

O(1)-C(2)-C(1) 111.25(13) 

C(3)-C(2)-C(1) 109.91(13) 

O(1)-C(3)-C(2) 59.68(10) 

O(1)-C(3)-C(4) 112.25(14) 

C(2)-C(3)-C(4) 109.10(14) 

C(3)-C(4)-C(7) 120.83(14) 

C(3)-C(4)-C(6) 120.09(14) 

C(7)-C(4)-C(6) 59.57(11) 
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C(3)-C(4)-C(5) 106.77(12) 

C(7)-C(4)-C(5) 121.57(14) 

C(6)-C(4)-C(5) 122.20(14) 

O(2)-C(5)-C(4) 108.79(12) 

O(2)-C(5)-C(1) 104.70(11) 

C(4)-C(5)-C(1) 107.57(12) 

C(7)-C(6)-C(4) 59.98(10) 

C(6)-C(7)-C(4) 60.46(11) 

O(3)-C(8)-O(2) 121.91(14) 

O(3)-C(8)-C(9) 127.39(14) 

O(2)-C(8)-C(9) 110.67(13) 

C(8)-C(9)-C(10) 112.94(13) 

C(8)-C(9)-C(1) 103.43(12) 

C(10)-C(9)-C(1) 119.06(14) 

C(11)-C(10)-C(9) 109.66(17) 

C(12)-C(11)-C(10) 123.2(4) 

_____________________________________________________________ 
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