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Summary 

During evolution, biological differences between species can arise not only due 
to structural differences between genes, but also following changes in how, 
where and when genes are active. However, we know much less about this 
second aspect, because large-scale comparative transcriptomics only became 
feasible relatively recently. In this thesis, I will therefore investigate several 
aspects of gene expression evolution, with emphasis on our own species.  
 
A first step to understanding regulatory evolution is to determine how 
variation in gene expression is created. Transposable elements (TEs) are 
genomic parasites that can affect their host genome in a number of ways, 
including gene expression. In Chapter 2, I investigate to what extent 
transposable elements (TEs) have contributed to expression differences between 
humans and chimpanzees.  
 
Once expression variation has been established, a combination of selection and 
drift will decide which variants are passed on to future generations. It is of 
particular interest to identify changes that were established through positive 
selection, as these are adaptive. In Chapter 3, I describe a new method to detect 
positive selection acting on gene expression and apply it to data from humans 
and chimpanzees.  
 
Human gene expression is regulated through several mechanisms associated 
with transcription and post-transcriptional processing. In Chapter 4, I consider 
the long-term evolution of the human genome and investigate whether genes 
have reached their maximum capacity in terms of regulatory complexity. 
Finally, in Chapter 5, I explore the relationship between gene regulation and 
sequence conservation by identifying and analysing extremely conserved 
elements in the genome of the fruit fly Drosophila melanogaster.  
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General introduction 
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The human genome contains around 20000 protein-coding genes (Flicek et al. 

2011), however this structural information is not enough. To build and maintain 

our bodies, the genome also must detail how, where and when each gene is to 

be used. It has long been hypothesised that many of the differences between 

humans and other animals are due to changes in these instructions (Britten and 

Davidson 1969; King and Wilson 1975; Wray 2007). In this thesis, I will explore 

the evolution of human gene expression on a genome-wide level. I will begin, 

in Section 1.1, by providing a brief overview of the many mechanisms that 

regulate how protein-coding genes are expressed. I will then move on, in 

Section 1.2, to present some commonly used methods for assessing gene 

regulation en masse and discuss the technical limitations that affect measure-

ments of genome-wide gene expression patterns within and between species. In 

Section 1.3, I will review our present understanding of differences in gene 

expression between humans and other species, along with the evolutionary 

processes that may underlie these differences. Finally, in Section 1.4, I will 

outline how the work presented as part of this thesis will address four 

fundamental aspects of gene expression evolution that are not yet fully 

understood.   

 

!

1.1. Mechanisms of human gene regulation 

 

The expression of protein-coding genes involves two phases: transcription, in 

which the gene’s DNA serves as a template to produce a messenger RNA 
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(mRNA) molecule and translation, in which the mRNA is decoded and used to 

assemble a polypeptide (Figure 1.1). In this section, I will describe the steps of 

this process, with focus on the many regulatory layers that alter the final output 

both qualitatively and quantitatively. 

 

1.1.1. Transcriptional regulation 
 

Protein-coding genes are transcribed by RNA polymerase II (Pol II) and the first 

step of transcription is therefore to make sure that the polymerase is recruited 

to the gene, where it binds, together with several general transcription factors 

(GTFs), to a region in the immediate vicinity of the transcription start site, 

known as the promoter (Thomas and Chiang 2006). The details of this recruit-

ment vary, as different promoters contain different combinations of sequence 

motifs recognized by GTFs (Baumann, Pontiller, and Ernst 2010). In addition, 

some of the recruited factors have specific functions and are preferentially 

found in certain tissues (Goodrich and Tjian 2010).  

 

Pol II function is further controlled by transcription factors (TFs) bound to 

sequence elements that are known as enhancers or silencers depending on 

whether they activate or repress transcription (Noonan and McCallion 2010). 

These elements can be situated up to at least 1 Mb away from the promoter 

(Lettice et al. 2002) and it appears that the DNA forms a loop which brings the 

relevant sequences together (Tolhuis et al. 2002). In some cases, a third class of 

sequence elements, referred to as insulators, provide a barrier that prevents 



!
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Figure 1.1. Expression of protein-coding genes. The DNA (top) is transcribed 

from the 5’ to the 3’ end. The resulting unprocessed pre-mRNA contains exons 

(boxes) separated by introns (lines). The exons, in turn, consist of protein-

coding sequences (dark grey) and untranslated regions (UTRs; light grey). The 

introns are subsequently removed to produce a mature mRNA, which is 

transported out of the nucleus into the cytoplasm, where it is translated into a 

protein (bottom).  

!
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enhancers and silencers from interacting with the wrong promoter (Noonan 

and McCallion 2010). Many genes are regulated by arrays of autonomous 

enhancers, each of which drives expression in a subset of tissues (Visel et al. 

2009), and it is therefore thought that enhancers play an important role in 

evolution, as changes in a given elements are less likely to have widespread 

side effects (Wray 2007). 

 

Pol II typically begins transcription by producing several short RNA fragments, 

before it manages to leave the promoter and the GTFs behind and enter the 

elongation phase (Saunders, Core, and Lis 2006). In some genes, Pol II pauses 

almost immediately after escaping the promoter, where it remains, ready to 

quickly resume elongation upon induction (Margaritis and Holstege 2008). This 

was originally thought to be a relatively rare phenomenon, but it now seems 

that many genes undergo transcription initiation without subsequent 

elongation (Guenther et al. 2007). 

 

1.1.2. Chromatin remodelling 
 

Transcription may also be controlled by the accessibility of the DNA. In the cell, 

DNA is packed into chromatin, meaning that it is wrapped around nucleo-

somes, which are complexes of histone proteins. It is thought that the presence 

of nucleosomes prevents transcriptional regulators from binding and consistent 

with this view, it has been found that active promoters are typically depleted in 

nucleosomes (Ozsolak et al. 2007). There is also some evidence to suggest that, 
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at least in some cases, this depletion is a requirement, rather than a con-

sequence, of Pol II binding (Bai and Morozov 2010). 

 

Many histone modifications, such as acetylation or methylation of specific 

residues, are associated with specific gene regions and frequently correlate with 

transcription rate, however in this case the direction of causality is less clear (Li, 

Carey, and Workman 2007). 

 

1.1.3. Post-transcriptional modifications 
 

Transcription is not sufficient to produce a fully functional mRNA. Most genes 

undergo splicing, which is a process where certain regions of the transcript, the 

introns, are removed and the remaining sequences, the exons, are joined 

together (Sharp 1987). Also, the ends of the RNA molecule must be modified to 

avoid degradation. The 5’ end modification is known as a “cap” (Shatkin 1976), 

whereas the 3’ end receives a tail of adenosines and is therefore said to be poly-

adenylated (Millevoi and Vagner 2010). 

 

Splicing presents the opportunity to alternatively exclude and include certain 

exons in the final mRNA. More than 90% of human genes produce such alter-

native splicing isoforms (Wang et al. 2008). It is also common for genes to have 

multiple polyadenylation sites (Ozsolak et al. 2010) and transcription start sites 

(Carninci et al. 2006). The resulting isoforms may encode slightly different 
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proteins or contain different sets of regulatory signals that affect later steps of 

the gene’s expression. 

 

The mRNA may also be modified through RNA editing, where single bases 

within the transcript are altered. The most frequent change is from adenosine 

into inosine, which in most contexts is equivalent to guanosine. Editing can 

affect both regulatory signals and the encoded protein sequence (Farajollahi 

and Maas 2010).  

 

1.1.4. mRNA transport 
 

Following transcription, which takes place in the cell’s nucleus, the mRNA is 

exported to the cytoplasm for translation (Stewart 2010). Some mRNA are 

further transported to specific subcellular compartments. The sequence 

elements that direct this localisation are typically located in the 3’ untranslated 

region (UTR) of the transcript (Martin and Ephrussi 2009) and may differ 

between alternative isoforms of the same gene (An et al. 2008). 

 

1.1.5. Regulatory RNAs 
 

The cytoplasm also houses many non-coding RNAs (ncRNAs), which play a 

role in gene regulation. MicroRNAs (miRNAs) are short RNAs that bind to 

partially complementary target sequences within the mRNA (most commonly 

located in the 3’ UTR), thereby either causing the mRNA to be degraded or 
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preventing it from being translated (Huntzinger and Izaurralde 2011). It has 

been estimated that miRNAs affect over 60% of human genes (Friedman et al. 

2009). A less well-studied class of RNAs is the endogenous short interfering 

RNAs (siRNAs), which are similar to miRNAs, but complement their targets 

perfectly. They too can target mRNAs for degradation (Okamura and Lai 2008). 

 

There are also examples of longer ncRNAs with diverse roles in gene regulation 

(Ponting, Oliver, and Reik 2009). Considering the large amount of non-coding 

transcripts (Carninci et al. 2005), it seems likely that many new instances of 

ncRNA regulation will be identified in the future, although it should be taken 

into account that some of these transcripts might represent transcriptional noise 

(Ponting, Oliver, and Reik 2009). 

 

1.1.6. Translation and beyond 
 

The first task of translation is for the small ribosomal subunit to scan the 

mRNA, starting from the 5’ end, until it reaches the start codon and is joined by 

the larger subunit. The efficiency of the scanning depends on the secondary 

structure of the 5’ UTR (in many cases translation initiation can only proceed if 

a helicase is present), as well as a number of regulatory proteins that bind to the 

5’ and 3’ UTRs (Sonenberg and Hinnebusch 2009). 

 

Following ribosome assembly, elongation begins and proceeds until the 

ribosome encounters a stop codon. If this stop codon occurs in an unexpected 
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position, it can trigger a pathway known as nonsense-mediated decay (NMD), 

which leads to the degradation of the mRNA. The NMD mechanism is used to 

detect and remove faulty transcripts, however, it also plays a role in gene 

regulation, in which case it may be triggered by various other signals, including 

introns in the 3’ UTR or short open reading frames (ORFs) within the 5’ UTR 

(Nicholson et al. 2010). 

 

Finally, it should be noted that even if gene expression may be considered over 

once a protein has been produced, the function, activity and turnover rate of 

that protein can still be extensively modified by the addition of various post-

translational modifications, such as phosphorylation, methylation, acetylation 

and many others (Walsh, Garneau-Tsodikova, and Gatto 2005). 

 

 

1.2. Large-scale methods to assess gene expression 

 

As detailed above, human genes can be regulated at virtually every step of their 

expression. Consequently, no single measurement can capture all facets of gene 

regulation and conclusions about gene expression evolution may therefore 

depend on the type of data that is being analysed. Furthermore, all 

measurement techniques are subject to errors, which, if unaccounted for, may 

lead to biased results. Before reviewing what is currently known about the 

evolution of gene expression (see Section 1.3), it is therefore necessary to 
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become familiar with the strengths and limitation of the molecular methods 

that were used to produce the data. In Section 1.2.1, I will introduce how 

mRNA levels can be assessed on a genome-wide scale using the microarray 

technique. The analyses presented in this thesis rely heavily on microarray data 

and the technique has also played a central role in the general development of 

the field. I will also discuss the advantages of the more recent method of RNA 

sequencing. In Section 1.2.2, I will present the chromatin immunoprecipitation 

(ChIP) method, which can be used to determine which DNA sequences are 

bound by a given protein and which has been extensively used to reveal the 

regulatory information encoded in the genomes of humans and other species. 

In Section 1.2.3, I will discuss some general issues that affect all comparative 

studies of gene expression, regardless of methodology.  

 

1.2.1. Microarrays 
 

The microarray technique allows simultaneous quantitative assessment of the 

expression levels of thousands of mRNAs. Briefly, microarrays are chips that 

contain DNA fragments, “probes”, which are complementary to the mRNAs of 

given genes. The microarray chip is incubated together with an RNA or cDNA 

sample, which has been labelled with a fluorescent dye. The RNAs or cDNAs 

will hybridise with their corresponding probes and by measuring the intensity 

of fluorescence for each probe, it is possible to estimate the concentrations of the 

different RNA species in the sample (Schena et al. 1995). Having access to 

mRNA expression levels makes it possible to study the combined effect of 
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many regulatory steps, without knowledge of the exact regulators or target 

sequences involved. However, it is nonetheless important to remember that 

although mRNA level often correlates with protein level (Fu et al. 2007; Gry et 

al. 2009), it may be the case that differences in mRNA concentrations are 

buffered or enhanced by subsequent regulation.  

 

While the principle of microarrays is simple, they need to be carefully inter-

preted to avoid misleading artefacts. Firstly, the technique is sensitive to subtle 

variations in the experimental procedures, such that there can be substantial 

variation in observed intensities even between replicates of the same 

experiment. This technical variation needs to be addressed by statistical 

normalisation of the data (Reimers 2010). Secondly, the physical location of 

individual probes on the microarray chip can influence how well they hybridise 

with their targets and non-random chip designs may therefore skew the results 

(Verdugo et al. 2009). Thirdly, the hybridisation efficiency is also dependent on 

the exact sequence of the probes, which means that probes targeting the same 

gene may give different amounts of signal (Irizarry et al. 2005). If gene 

expression is measured in two species, using species-specific probes, this probe 

effect will therefore tend to inflate the observed differences. However, for 

closely related species, which are not too divergent in terms of mRNA species, 

identical probe sets can be used: For example, it is possible to compare human 

and chimpanzee gene expression using human-specific microarrays, provided 

that all probes with mismatches are removed from the analysis (Khaitovich et 
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al. 2005), as probe-target mismatches influence the hybridisation profile (Gilad 

et al. 2005).  

 

More recent technologies, such as RNA sequencing, can circumvent some of the 

issues described above. RNA sequencing provides short reads of the RNAs 

present in a sample and these sequence fragments can be bioinformatically 

processed to give information about the full transcripts (Costa et al. 2010). In 

addition to estimating expression levels, RNA sequencing can be used to detect 

unknown alternative isoforms or cases of RNA editing. As the technique does 

not rely on hybridisation with known sequences, it also does not suffer from the 

same cross-species issues that affect microarrays. However, as this is a 

relatively new technique, the number of available datasets is limited. 

 

1.2.2. Chromatin immunoprecipitation 
 

For a more in-depth understanding of the different regulatory steps that affect 

gene expression, it is useful to know which molecular factors are associated 

with the DNA at different locations and time points. Chromatin 

immunoprecipitation (ChIP) is a technique where cells are treated with 

formaldehyde to create covalent bonds between the DNA and its associated 

proteins. The DNA is then fragmented and those fragments that are associated 

with a protein of interest can be identified by microarrays (ChIP-chip) or 

sequencing (ChIP-seq) (Collas 2010). The method has been extensively used to 

identify TF binding sites and locations of modified histones in the human 
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genome, as part of the Encyclopedia of DNA Elements (ENCODE) project 

(ENCODE Project Consortium et al. 2007). There are also similar projects for 

two model organisms: the fruit fly Drosophila melanogaster (The modENCODE 

Consortium et al. 2010) and the nematode Caenorhabditis elegans (Gerstein et al. 

2010).  

 

1.2.3. Sources of variation in gene expression data 
 

The generation and analysis of gene expression datasets is a complex process 

and it is therefore critical to be aware of the many factors that can contribute to 

observed variation within and between species. Alongside technical variation, 

there are biological aspects that need to be taken into account, to ensure that the 

analysed samples are directly comparable.  For example, it has been shown that 

gene expression can change with the diet (Somel et al. 2008) and age (Lu et al. 

2004) of the sampled individuals. Some observed gene expression differences 

might therefore be explained by changes in environment or by skewed 

sampling, where the age of the sampled individuals has not been matched 

across species (Hodgins-Davis and Townsend 2009).  

 

In cross-species studies it is often especially difficult to obtain perfectly 

matched samples, because of ecological differences between the species 

(Hodgins-Davis and Townsend 2009). When the different contributing factors 

are correlated in this way, it can be impossible to tease apart the genetic and 
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environmental effects (Leek et al. 2010). While many confounding factors are 

impossible to eliminate, care should be taken to keep them to a minimum.  

 

 

1.3. Gene expression in humans and other species 

 

Already four decades ago, it was suggested that changes in gene expression 

have played a major role in phenotypic evolution (Britten and Davidson 1969; 

King and Wilson 1975). This view is still widely held (Carroll, Grenier, and 

Weatherbee 2004; Wray 2007), but we currently know too little about regulatory 

evolution to determine its true contribution to phenotype diversity (Hoekstra 

and Coyne 2007). This Section will introduce the evolutionary patterns 

observed for paralogous genes within a genome (Section 1.3.1) and between 

orthologous genes in different species (Section 1.3.2), as well as discuss the 

contribution of selection to these observations.  

 

1.3.1. Expression diversification of duplicate genes 
 

Although the most likely outcome of a gene duplication event is that one of the 

copies is subsequently silenced, occasionally both duplicates remain active in 

the genome (Lynch and Conery 2000). The fate of the two copies may however 

be very different: it is frequently observed that one gene in the duplicate pair 

evolves quickly, both in terms of protein-coding sequence (Zhang, Gu, and Li 
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2003) and gene expression (Gu, Zhang, and Huang 2005). This is consistent with 

a model where one copy carries out the ancestral function, whereas the other is 

free to adopt a new role, so-called neo-functionalisation (Zhang 2003). Analysis 

of the tissue specificity of human and mouse duplicates suggests that in as 

much as half of all cases, one copy retains the original expression pattern, while 

the other has lost expression in some tissues: in another 25% of gene pairs the 

gene expression pattern has been partitioned between the copies, consistent 

with sub-functionalisation, where each copy performs a subset of the functions 

originally carried out by the ancestral gene, while the remaining genes show 

similar expression patterns, suggesting that they act to increase gene dosage 

(Farre and Alba 2010). 

 

Three main scenarios are possible for a new regulatory mutation: it may be 

deleterious and subsequently get removed by negative selection, it may be 

neutral and randomly change in frequency until it is either fixed or lost, or it 

may be adaptive and get driven to fixation by positive selection. The 

accelerated evolution of one of the two duplicates could therefore be due either 

to relaxed negative selection, which would allow neutral accumulation of 

mutations or to positive selection. It is not known whether the fixation of 

duplicate genes is primarily a neutral or adaptive process (Innan and 

Kondrashov 2010) and although some models have been devised to categorise 

the evolutionary patterns of expression changes in duplicate genes, these do not 

address the role of positive selection in generation the observed patterns (Gu 

2004; Oakley et al. 2005). 
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The burst of expression change for one of the copies following gene duplication 

represents a special case and the divergence of gene expression for orthologous 

genes in different species might not be explained by such periods of rapid 

evolution. However, it should be noted that lineage-specific gene duplication 

and expression divergence between lineages are correlated phenomena, such 

that orthologous genes with a duplication event in one species tend to show 

more divergent expression patterns between species, possibly indicating a 

causal relationship (Huminiecki and Wolfe 2004).  

 

1.3.2. Differences in gene expression between humans and other species 
 

It is impossible to give a single measure of the level of conservation between 

human gene regulation and that of other species. Some aspects are remarkably 

similar across taxa: for example, TFs encoded by the Hox gene family regulate 

early development in an analogous fashion across all animals (Carroll, Grenier, 

and Weatherbee 2004). On the other hand, the majority of binding regions for 

various TFs do not overlap between humans and mice (Kunarso et al. 2010; 

Schmidt et al. 2010).  

 

Considering the cognitive differences between humans and chimpanzees, one 

might expect to see large gene expression changes in the human brain. 

However, expression divergence between the two species is lower in brain 

samples, than it is in samples from heart, kidney, liver and testis (Khaitovich et 
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al. 2005). Furthermore, Broca’s area, which controls human speech, does not 

show significant expression differences compared to other parts of the human 

cerebral cortex (Khaitovich et al. 2004a). 

 

Early findings suggested that human gene expression was evolving without 

constraint, i.e., that the vast majority of all new mutations were neutral 

(Khaitovich et al. 2004b; Yanai, Graur, and Ophir 2004), but later studies have 

demonstrated an extensive role for negative selection in comparisons between 

humans and chimpanzees (Lemos et al. 2005), as well as humans and mice (Liao 

and Zhang 2006). 

 

The contribution of adaptive mutations to gene expression evolution is still an 

open question (for a review of how this question has been studied, see Chapter 

3). It may well be that selective pressures differ between tissues. In particular, it 

has been noted that gene expression is unusually divergent between human 

and chimpanzee testis samples, after correcting for the variation among 

individuals (Khaitovich et al. 2005). This might indicate that gene expression is 

positively selected in this tissue, although this has yet to be formally tested and 

could have other explanations (Khaitovich et al. 2006). 
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1.4. Objectives of this thesis 

 

The aim of this thesis is to increase our understanding of the principles of gene 

expression evolution, with emphasis on humans. In this section I will describe 

how each of the four analytical chapters relates to a fundamental question in 

the field. Each chapter contains a more thorough review of the relevant 

literature for the topic.  

 

1.4.1. Generation of regulatory variation 
 

The first step towards a more complete appreciation of gene expression 

evolution is to identify how new expression variants are created. Mutations that 

affect gene expression in humans span the range form point mutations that 

change a single nucleotide to copy number variants (CNVs) of 1 kb or more 

(Stranger et al. 2007). Transposable element (TE) insertion is a particular type of 

mutation that has been suggested to play a major role in human evolution 

(Britten 2010). Chapter 2 of this thesis investigates whether TEs have caused 

expression differences between humans and chimpanzees. 

 

1.4.2. Selection acting on gene expression 
 

Secondly, we want to know how selection acts on the observed variation. 

Adaptive mutations are of special interest, as they increase the organism’s fit-

ness. However, identifying them remains problematic. In Chapter 3, I present a 
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new method to estimate the proportion of expression variation that is due to 

adaptive evolution. I apply this method to expression divergence between 

humans and chimpanzees. 

 

1.4.3. Limits to regulatory diversification 
 

Even in the absence of negative selection on gene function, there will still be 

limitations to regulatory evolution. For example, expression levels cannot 

increase beyond the capacity of the transcriptional machinery. Knowledge of 

such external constraints and the extent to which they curb expression is 

important for correctly modelling neutral evolution over longer time periods. In 

Chapter 4, I investigate the accumulation of regulatory mechanisms through 

time and examine whether regulatory complexity is a limiting factor in humans. 

I consider many different facets of regulation, including transcriptional regu-

lation, alternative processing, miRNA regulation, NMD and RNA editing. 

 

1.4.4. Sequence signatures of regulatory elements 
 

Sequence conservation is frequently used to identify regulatory elements, as 

functionally important units are expected to be maintained by negative selec-

tion. However, the relationship between function and sequence conservation is 

far from straightforward. On one hand, many elements with demonstrated 

roles in gene regulation are not especially well conserved (Blow et al. 2010). On 

the other hand, some sequences, known as ultraconserved elements (UCEs), are 
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identical across species, even though no known molecular mechanism seems to 

require that degree of conservation (Bejerano et al. 2004). UCEs have primarily 

been studied in humans and other vertebrates, but further insights might be 

possible using model organisms that are more easily manipulated. In Chapter 5, 

I analyse UCEs that are shared between twelve Drosophila species.  
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2.  

Transposable elements: insertion pattern and 

impact on gene expression evolution in hominids 
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2.1. Introduction 

 

Almost half of the human genome is made up of transposable elements (Lander 

et al. 2001). These DNA sequences are able to insert into a new genomic location 

through the process of transposition. While most such insertions are likely to be 

subsequently lost due to selection or genetic drift, our lineage has still accu-

mulated more than 7500 TE copies since the split from chimpanzees (Mills et al. 

2006), with three families accounting for more than 95% of these transposition 

events: the Long Interspersed Element 1 (L1), the Alu element, which belongs to 

the Short Interspersed Elements (SINEs), and the SVA element (SINE-R, VNTR, 

Alu). 

 

TEs have commonly been viewed as selfish parasites, whose persistence in the 

genome is best explained by their success as replicating units, rather than any 

benefit they might bestow on the host (Doolittle and Sapienza 1980; Orgel and 

Crick 1980). Indeed, the presence of TEs can severely impair genome function, 

either by direct disruption of functional sequences (Kazazian et al. 1988) or by 

promoting ectopic homologous recombination, which can lead to potentially 

harmful duplications, deletions and genome rearrangements (Hedges and 

Deininger 2007). 

 

On the other hand, some TE-derived sequences are among the most conserved 

elements of the human genome (Kamal, Xie, and Lander 2006; Lowe, Bejerano, 
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and Haussler 2007), suggesting that some TEs are functional. In particular, 

some TEs have been found to play a role in transcriptional regulation by 

providing genes with promoters and enhancers (Jordan et al. 2003; van de 

Lagemaat et al. 2003; Bejerano et al. 2006; Bourque et al. 2008). Several human 

genes are transcribed from a promoter situated within the L1 element 

(Nigumann et al. 2002) and transcripts originating within Alus have also been 

reported (Faulkner et al. 2009). The evolutionary potential of TE-derived cis-

regulatory sequences was recently demonstrated in rice, where recent TE 

insertions have led to upregulation of gene expression and the creation of new 

regulatory networks (Naito et al. 2009). 

 

Other mechanisms may also contribute to the transcriptional impact of TEs, 

such as reduced elongation efficiency or premature polyadenylation following 

intronic L1 insertion (Han, Szak, and Boeke 2004). Furthermore, mammalian TE 

activity is under epigenetic control, through siRNAs (Yang and Kazazian 2006), 

histone modifications (Martens et al. 2005) and DNA methylation (Walsh, 

Chaillet, and Bestor 1998). In Arabidopsis thaliana, a side effect of epigenetic 

silencing has been reduced expression of neighbouring cellular genes (Hollister 

and Gaut 2009). 

 

With this in mind, it is tempting to ask how the evolution of human gene 

expression has been affected by TE activity. Expression divergence (ED) is a 

measure of the difference in gene expression levels between two species. Two 

previous studies have suggested a relationship between TE insertions and ED. 
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Firstly, there is a correlation between the number of Alu insertions and ED as 

measured between human and mouse, although the direction of the correlation 

depends on the statistic used to measure ED (Urrutia, Ocana, and Hurst 2008). 

The authors also concluded that Alu elements are enriched around broadly 

expressed genes, but they do not themselves drive an expansion of gene 

expression patterns. Secondly, a positive correlation between ED and the 

number of lineage-specific SINEs and Long Terminal Repeat (LTR) elements 

has been found in rodents, where, although the amount of variance explained 

was modest, the average effect of TEs was considerable and appeared to have 

contributed around 20% of the total ED between mouse and rat (Pereira, Enard, 

and Eyre-Walker 2009). 

 

Here, we investigate to what extent TE activity has contributed to hominid 

evolution by analysing quantitative changes in gene expression and transcript 

diversity between human and chimpanzee. 

 

 

2.2. Materials and Methods 

 

We used two datasets to study the evolution of gene expression. In the first, 

microarray expression data for brain, heart, kidney, liver and testis was avail-

able from six humans and five chimpanzees (Khaitovich et al. 2005). These ex-

periments were conducted using the Affymetrix U133plus2 array, which was 
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designed for human sequences, but contains a number of probes that match 

chimpanzee sequences equally well. This array has been shown to perform well 

in comparison to other arrays, including the newer exon arrays (Robinson and 

Speed 2007). The raw data was masked using the protocol developed by Toleno 

et al. (2009), in which probes were removed unless they had a perfect, single 

match in both the human and the chimpanzee genome. Furthermore, only 

probe sets that contained at least six such probes were used for further analysis, 

as probe sets represented by fewer probes tend to give unreliable results 

(Toleno et al. 2009). Expression values were calculated using the RMA (robust 

multichip analysis) function in the Bioconductor affy package (Irizarry et al. 

2003a; Irizarry et al. 2003b; Gentleman et al. 2004). (Processed data was kindly 

provided by Joe Hacia of the University of Southern California).  

 

For each gene, we calculated ED between human and chimpanzee as the 

Euclidean distance between the average log-transformed expression values for 

each tissue. If a gene was assigned multiple probe sets, a single probe set was 

chosen at random to represent that gene, in order to avoid bias in the estimation 

of ED (see Section 2.3). Gene coordinates were downloaded from the UCSC 

Genome Bioinformatics site (Rhead et al. 2010), using genome build hg18 for 

human and panTro2 for chimpanzee. For genes with alternative transcripts, a 

single transcript was chosen at random among those that matched the probe set 

representing that gene. 
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To allow lineage-specific analysis of ED, we analysed a second dataset, which 

included data from rhesus macaque as an outgroup species. Somel et al. (2009) 

measured gene expression levels in the prefrontal cortex of 39 humans, 14 chim-

panzees and 9 rhesus macaques, using the Affymetrix U133plus2 platform as in 

the first dataset. The raw data was masked using files made available by the 

authors to include only probes that had a single, perfect hit in the genomes of 

all three species and to require each gene to be represented by at least eight 

such probes. Log-transformed expression values were calculated using the 

RMA function in Bioconductor (Irizarry et al. 2003a; Irizarry et al. 2003b; 

Gentleman et al. 2004). We calculated ED as the Euclidean distance between the 

average expression levels for the relevant species and normalised the values by 

dividing by the mean ED value for that species pair. To determine whether the 

individuals in the dataset had reached puberty or not, we used life history data 

from the AnAge database (de Magalhaes and Costa 2009). 

 

Recently inserted TEs in the human and chimpanzee genomes had previously 

been identified by Mills et al. (2006). We converted the data to current genome 

coordinates, using the UCSC liftOver tool (Rhead et al. 2010). Due to rearrange-

ments in the updated genome assemblies, conversion failed for 7 human and 

440 chimpanzee entries. These were excluded from the set. We then scored each 

of the genes for which we had expression data, according to the presence or 

absence of a recent TE insertion within the following seven regions: 0-2 kb, 2-10 

kb and 10-20 kb upstream and downstream of the transcript and within the 

introns. 
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To identify TEs present in both human and chimpanzees, but not in the rhesus 

macaque (genome release rheMac2), we used the human-chimpanzee and 

human-macaque net alignments displayed in the UCSC Genome Browser 

(Rhead et al. 2010). We identified all gaps in the human-macaque alignment 

that did not match a human-chimpanzee gap and then compared these to 

transposable elements in the RepeatMasker track. To allow for slight annotation 

errors, we isolated all RepeatMasker entries where the coordinates matched a 

gap in the rhesus macaque sequence, plus/minus 20 bp. 

 

Expression state in the germ line was assigned according to eGenetics/SANBI 

EST data (Kelso et al. 2003), as incorporated in Ensembl release 56 (Flicek et al. 

2010), by considering genes active if they were associated with the Cell Type 

term “germ cell”. 

 

 

2.3. Results 

 

We set out to investigate if recent TE insertions in the human or chimpanzee 

lineage have led to increased ED in nearby genes. Lineage-specific TEs had 

previously been identified (Mills et al. 2006) by identifying indels in the human-

chimpanzee genome alignment and matching these to TEs in RepBase version 

10.02 (Jurka 2000). Thus, the set of new TE insertions may also contain a small 
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number of ancient TEs that were precisely deleted in one species. Genes were 

classified according to the presence of a recently inserted TE within 0-2 kb, 20-

10 kb and 10-20 kb either upstream or downstream of the transcribed sequence 

or within the introns. No exonic TEs were found. 

 

Microarray expression data for both species were available for 8995 genes and 

five tissues (Khaitovich et al. 2005; Toleno et al. 2009). We calculated ED as the 

Euclidean distance between the log-transformed tissue-specific expression 

values for each species. We decided against another commonly used alternative 

definition of ED, based on the correlation coefficient, as it tends to overestimate 

ED for genes with conserved uniform expression (Pereira, Waxman, and Eyre-

Walker 2009). 

 

Calculations of ED were complicated by the fact that some genes were 

represented by more than one probe set in the microarray data. Although the 

platform used to generate the data was not designed to address alternative 

splicing, some probe sets have still been created to target different transcripts of 

the same gene. If different numbers of probe sets are used to generate the ED 

values and if the probability of retaining a TE is related to whether the affected 

gene undergoes alterative processing, this could introduce a bias into the 

analysis. Indeed, we found that human genes to which we had mapped at least 

one recently inserted TE had on average 2.7 annotated Ensembl transcripts, 

whereas genes without insertions had 2.3 transcripts (p = 2 x 10-16, Mann-

Whitney U test). The corresponding values for chimpanzee were an average of 
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2.0 transcripts for genes with TEs and 1.8 transcripts for genes without (p = 5 x 

10-10). To avoid bias in our estimates of ED we therefore decided to let each gene 

be represented by a single probe set chosen at random. 

 

To evaluate the effect of TE insertions on ED, we compared genes with or 

without TEs within their upstream, downstream and intronic sequences. An 

overview of the analysis is shown in Figure 2.1. Although we found a 

marginally significant increase in median ED for genes with L1 insertions 

within 0-2 kb upstream and gens with SVA insertions within 0-2 kb 

downstream (p = 0.030 and p = 0.032, Mann-Whitney U test), these results are 

not significant after correcting for multiple tests. We therefore combined the 

data from each TE family (Figure 2.2). In spite of a general tendency towards an 

increase in median ED, none of the regions gave significant results when 

considered separately. However, if we combine these p values, using the Z 

transformation method (Whitlock 2005), the result is significant (p = 0.024), and 

even more so if we exclude the regions 10-20 kb upstream or downstream (p = 

0.0027).  

 

It therefore seems that genes with new TEs have higher ED. It is, however, not 

possible to infer the direction of causality based on these results, as they could 

be explained either by increased ED as an effect of TE insertion or by a ten-

dency for genes with higher ED to accumulate TEs. To test between these alter-

natives we identified TE insertions that occurred before the human-chimpanzee 

split, but after the split from rhesus macaque: we reasoned that these fairly 



! 30!

 

 

 

 

 

 

 
 

 

 

Figure 2.1. Flowchart describing the steps of the analysis (see text for details). 
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Figure 2.2. The association between lineage-specific TE insertions and ED. 

Mean ED for genes with (white) or without (gray) TEs specific to either human 

or chimpanzee within 0-2 kb, 2-10 kb or 10-20 kb upstream or downstream of 

the transcribed region or within the introns. The number of genes carrying 

species-specific TE insertions in a specific region is listed on the right. Standard 

errors are indicated as bars. 

!
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recent insertions should affect humans and chimpanzees equally and therefore 

not contribute to ED between the two species. We found that genes with shared 

TE insertions did display a significantly higher level of ED, if we combined TEs 

within regions and probabilities as above (combined p value = 0.00003), indi-

cating that TEs tend to integrate and/or be retained in genes that for some other 

reason are more likely to change their expression level (Figure 2.3).  

 

Thus, at least part of the increase in ED for genes with species-specific TE 

insertions can be explained as a background effect, which also affects genes 

with shared TEs. Nevertheless, it is possible that TEs induce an additional in-

crease in ED. To investigate this, we calculated the relative effect of TEs on ED 

as the ratio between the average ED values for genes with species-specific TEs 

and genes without such TEs, divided by the ratio between the average ED 

values for genes with shared TEs and genes without such TEs. If the relative 

effect is above one, it indicates that the presence of species-specific TEs acts to 

increase ED over and above the general tendency for TEs to integrate into genes 

with high ED. Howver, we find that the relative effect is not significantly above 

one for any of the seven regions under consideration (Figure 2.4). The highest 

relative effect is observed for genes with TEs within 0-2 kb downstream of the 

transcript, but the 95% confidence interval obtained by bootstrapping is (0.97, 

1.48) for this single value and thus the result is not significant. As we cannot 

detect any increase in ED due to new TE insertions, beyond what can be ex-

plained by a general tendency for gene with higher ED to retain TEs, we con



! 33!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

Figure 2.3. The association between shared TEs and ED. Mean ED is given for 

genes with (white) and without (grey) a TE shared between humans and 

chimpanzees, within 0-2 kb, 2-10 kb or 10-20 kb upstream or downstream of the 

transcribed region or within the introns. The number of genes carrying shared 

TE insertions in a specific region is listed on the right. Standard errors are 

indicated as bars. 
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Figure. 2.4. The relative effect of TE insertion on ED. The relative effect was 

calculated as the ratio between the mean ED values for genes with and without 

species-specific TEs, divided by the ratio of the mean ED values for genes with 

or without shared TEs. The bars represent 95% confidence intervals obtained by 

bootstrapping.  

!
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clude that TE activity has not contributed to the genome-wide evolution of gene 

expression levels in humans and chimpanzees.  

 

Although we find no evidence that new TE insertions increase ED in the 

analysis above, it is possible that this is due to a lack of power. We therefore 

sought to test whether TEs affect ED using a complementary approach. For 

genes with a new TE insertion in humans we compared the ED between human 

and macaque to the ED between chimpanzee and macaque. We also performed 

the corresponding analysis for genes with a TE in chimpanzees. If TEs affect 

ED, we predict that genes with a human-specific TE insertion will show higher 

ED between human and macaque than between chimpanzee and macaque, 

with the converse being the case for genes with a chimpanzee-specific insertion. 

To perform the analysis, we only considered genes that had one or more 

insertions in one species, but none in the other. We analysed microarray data 

for 3747 genes in the prefrontal cortex of 39 humans, 14 chimpanzees and 9 

rhesus macaques (Somel et al. 2009). The presence of an out-group in this 

dataset allowed us to assess changes in ED on a lineage-specific basis. To do so, 

we calculated human-macaque and chimpanzee-macaque ED as the Euclidean 

distance between the means of the log-transformed expression values for each 

species. Because human and chimpanzee share a common history, these ED 

values represent the sum of a species-specific component as well as a shared 

component that accounts for all ED between rhesus macaque and the human-

chimpanzee ancestor. Any difference between the human-macaque and 
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chimpanzee-macaque ED values can therefore be directly attributed to human-

specific or chimpanzee-specific events. 

 

On average, chimpanzee-macaque ED is higher than human-macaque ED in 

this dataset. Consequently, if we test for an increase in ED for the lineage with 

TE insertions, the test would be too conservative for human-specific TEs and 

too liberal for chimpanzee-specific TEs. To allow for an unbiased test, we 

normalised all ED values by dividing the ED for each gene by the mean ED for 

that species pair. Note, the fact that ED between chimpanzee and macaque is 

higher than that between human and macaque does not necessarily imply 

accelerated evolution along the chimpanzee lineage. Rather, it might be best 

explained by the higher variance among chimpanzee individuals in this dataset, 

especially considering previous work indicating that ED in the brain is higher 

along the human lineage (Khaitovich et al. 2005). 

 

Consistent with our previous analysis, we find no evidence, in any of the 

regions examined, that a lineage-specific TE tends to increase ED in that species 

relative to ED in the other species (Figure 2.5). This is true even if we combine 

probabilities across introns and flanking regions (p = 0.32 for human-specific 

TEs and p = 0.13 for chimpanzee-specific TEs; Mann-Whitney U test and Z 

transformation). Because the samples used to generate the expression data were 

taken from individuals of varying ages (Somel et al. 2009), we repeated the 

analysis separately for samples from pre-pubertal and post-pubertal indi-

viduals, in order to reduce age-related variation. Again, the results were not 
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Figure 2.5. The effect of TE insertions on lineage-specific ED. A. Mean human-

macaque ED (white) and chimpanzee-macaque ED (gray) for genes with 

human-specific TE insertions. B. The same for genes with chimpanzee-specific 

TE insertions. The number of genes with human-specific or chimpanzee-specific 

TE insertions is listed. Standard errors are indicated as bars.  

!
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significant (combined probabilities, pre-pubertal individuals: p = 0.42 for 

human TEs, p = 0.17 for chimpanzee TEs; post-pubertal individuals: p = 0.84 for 

human TEs, p = 0.13 for chimpanzee TEs), providing further support for the 

hypothesis that recent TE insertions have not acted to increase ED between 

humans and chimpanzees. 

 

During our analysis of species-specific TEs, we observed that upstream inser-

tions were more frequent than downstream insertions. In total, we identified 

561 genes with at least one new TE within 20 kb upstream of the transcription 

start site in either human or chimpanzee and 496 genes with at least one new 

TE downstream of the transcribed region. The difference is just significant (p = 

0.049, two-tailed binomial test) and upstream insertions are also more common 

if we only consider TEs within 10 kb or 2 kb upstream or downstream of genes, 

although the overrepresentation is not significant (p = 0.075 and p = 0.047, 

respectively). This enrichment of upstream insertions is surprising, since we 

might expect that TEs inserted upstream would be more likely to disrupt 

transcriptional regulatory elements and therefore tend to be selected against, 

although it has previously been noted that TE insertions in the 3’ flanking 

region of rodent genes tend to show bigger effects on ED than those in the 5’ 

region (Pereira, Enard, and Eyre-Walker 2009). Another explanation is that TEs 

are preferentially inserted upstream of genes, as is the case for P elements in 

Drosophila melanogaster (Spradling et al. 1995), where it is presumed to be linked 

to the altered chromatin structure around the transcription start site of active 

genes (Kelley et al. 1987; Voelker et al. 1990). If the same is true for hominid 
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TEs, then we would expect an enrichment of upstream TE insertions for genes 

that are expressed in the germ line, but not for other genes. Based on expression 

data downloaded from Ensembl (see Section 2.2), we categorised all genes as 

active or inactive in the germ line and compared the number of upstream and 

downstream insertions for active and inactive genes. When we considered all 

recent TE insertions together, we found that the inactive genes had approxi-

mately the same number of upstream and downstream insertions, whereas 

active genes had significantly more upstream insertions (p = 0.003, !2 test). The 

pattern is contributed mainly by Alu and, to some extent, SVA elements, where-

as L1 elements appear unaffected (Table 2.1). 

 

Although species-specific TEs have not affected ED between human and 

chimpanzee, they may still have had an influence on other aspects of gene 

expression evolution, such as transcript diversity. As described above, we 

established that genes with recent TE insertions have a significantly higher 

number of annotated transcripts than genes without such insertions. Since both 

Alu and L1 elements can be involved in processes such as alternative promoter 

usage (Nigumann et al. 2002; Faulkner et al. 2009) and alternative splicing 

(Makalowski, Mitchell, and Labuda 1994; Sorek, Ast, and Graur 2002; Belancio, 

Hedges, and Deininger 2006; Lev-Maor et al. 2008), which act to increase 

transcript diversity, we speculated that the TE insertions themselves might in 

part explain why the affected genes tended to produce more transcripts. The 

differences in annotation quality between the human and chimpanzee tran-

scriptomes makes a direct comparison of transcript numbers difficult. Instead, 
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Table 2.1. Number of recent upstream and downstream TE insertions in genes 

that are active or inactive in the germline.  

 

 

 Active 
Upstream 

Active 
Downstream 

Inactive 
Upstream 

Inactive 
Downstream p value 

Total 255 181 306 315 p = 0.003 

Alu 169 129 206 215 p = 0.04 

L1 19 19 38 32 Not significant 

SVA 51 33 53 55 Not significant 

!
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we reasoned that if TEs increase transcript diversity, then human genes should 

have more transcripts on average if they contained a human-specific TE, than if 

their chimpanzee orthologue contained a chimpanzee-specific TE. Conversely, 

we would expect chimpanzee genes with chimpanzee-specific TEs to produce 

more transcripts than chimpanzee genes where the human equivalent had 

undergone TE insertion.  

 

We calculated the number of transcripts in the release 54 of the Ensembl 

database (Flicek et al. 2010) for human and chimpanzee genes that contained 

recently inserted Alu, L1 or SVA insertions (Figure 2.5). Before correction for 

multiple tests, there was only one significant result; human genes with a new 

SVA insertion have significantly more transcripts than human genes with a new 

SVA insertion in chimpanzees. However, this result is not significant after 

correction for multiple tests and we do not see a similar pattern for chimpanzee 

genes. Of course it should be noted that the lack of observed effect of TEs on 

transcript diversity could be due to insufficient annotation of alternative iso-

forms.  

 

 

2.4. Discussion 

 

TEs have previously been proposed as important contributors to the evolution 

of gene regulation (Britten and Davidson 1971; Feschotte 2008). In contrast to 
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Figure 2.6. The association between transcript diversity and lineage-specific 

TEs. Figure gives the average number of annotated alternative transcripts in 

humans (A) and chimpanzees (B) which have a lineage-specific insertion in 

either humans (white) or chimpanzees (grey). 
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this, our results show that recent TE activity has not had a detectable effect on 

ED between human and chimpanzee, suggesting that while TEs may contribute 

occasionally to gene expression divergence in hominids, they are not a major 

source of regulatory change. 

 

Our results are consistent with those of Urrutia, Ocana and Hurst (2008), but 

are surprising considering previous results in mouse and rat, in which it was 

estimated that 20% of all ED was due to the insertion of new SINE and LTR 

elements (Pereira, Enard, and Eyre-Walker 2009). The discrepancy between 

hominids and rodents might be due to qualitative differences in TE activity in 

the two groups. In rodents the TEs with strongest apparent influence on ED 

were LTRs and SINEs, however new LTR insertions are rare in the human and 

chimpanzee genomes, and SINEs, although common, are represented mainly 

by the primate-specific Alu element (Mills et al. 2006). Pereira, Enard and Eyre-

Walker (2009) also attempted to establish causality between ED and new TE in-

sertions by considering the correlation between ED and TE insertions shared by 

mouse and rat, but these shared TEs were potentially much older than those we 

have used here and may therefore have been an imperfect control if the pattern 

of TE insertion had changed over time. 

 

The results presented here are not consistent with a model where TEs affect 

gene expression by disrupting existing sequences or providing “ready-to-use” 

regulatory elements. In particular, we find no indications that intronic L1 inser-

tions affect ED, as might have been expected considering that in vitro assays 
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have shown that such insertions can attenuate reporter gene expression by re-

ducing elongation efficiency (Han, Szak, and Boeke 2004). On the other hand, 

although a few candidate cases exist (Schwahn et al. 1998; Yajima et al. 1999), it 

has yet to be shown that this form of regulation is used in vivo (Han and Boeke 

2005). 

 

It has been argued that TEs initially may only have a weak impact on gene 

expression and that this regulatory function is subsequently refined by selection 

(Faulkner and Carninci 2009). Possibly, the short time scale of this study might 

therefore not allow us to gauge the full impact of TEs on gene expression, 

however the findings of two previous studies argue against this: Firstly, at least 

for Alu elements, recent insertions do not appear to be under selection 

(Cordaux et al. 2006) and secondly, there is no conclusive evidence that Alu 

elements have contributed to gene expression evolution along the primate 

lineage (Urrutia, Ocana, and Hurst 2008). This is not to say that decaying TEs 

may not provide sequence material in which functional elements can later 

evolve. There are several examples of human enhancers that have arisen in this 

way (Britten 1994; Ackerman et al. 2002; Medstrand et al. 2005). Nevertheless, 

the presence of TE-derived regulatory sequences might best be explained by the 

abundance of TEs in the genome. Considering that 45% of the human genome 

has been contributed by TEs (Lander et al. 2001), it stands to reason that these 

sequences would harbour a fair share of regulatory modules.  
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It should also be appreciated that while we find no evidence for TEs 

contributing to differences in gene expression between hominid species, it is 

still possible that they contribute to variation within a single species. For 

example, it may be that TEs in general cause mutations of large effect, which 

rarely are beneficial or neutral and therefore never become fixed between 

species. Such large effect mutations, providing that they are not lethal, can 

contribute substantially to variation in fitness and phenotypes, even if they are 

very deleterious (Eyre-Walker 2010). Thus, while the contribution of TEs to 

gene expression evolution might be negligible, their impact on human gene 

regulation could still be of great interest from a medical perspective (Belancio, 

Hedges, and Deininger 2008).  

 

In a recent study, it was shown that human genes are more likely to be ex-

pressed at high levels and in broad patterns if their promoters are rich in TEs, 

which might indicate that TEs are used to modify chromatin structure upstream 

of the transcription start site (Huda et al. 2009). Our results, showing that TEs 

preferentially insert upstream of genes that are transcribed in the germ line, 

suggest insertion bias as a possible alternative explanation of these results. The 

same process might also have contributed to the overall enrichment of SINEs in 

upstream sequences previously observed by Medstrand et al. (2005). Inter-

estingly, it seems that it is primarily Alu elements and, to some extent, SVA 

elements that experience insertion bias, whereas L1 elements appear to be 

unaffected. This is surprising, considering that Alus and SVAs are non-

autonomous elements that do not encode proteins necessary for transposition, 
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but instead parasitise the L1 machinery (Dewannieux, Esnault, and Heidmann 

2003; Ostertag et al. 2003). Although there are some mechanistic differences 

between Alu and L1 insertions (Kroutter et al. 2009), it is unclear how this 

might contribute to the observed bias. 

 

The distribution of TEs in the human genome is non-random and correlates 

with various aspects of gene expression, such as expression levels, transcript 

diversity and activity in the germ line. Importantly, as illustrated in this study, 

a correlation does not necessarily imply causality. When studying the contri-

butions of TEs to gene expression evolution it is therefore crucial to apply 

proper controls in order to disentangle any real effects from the background.  
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3. 

A McDonald-Kreitman-type test for positive 

selection on gene expression 
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3.1. Introduction 

 

It has long been suggested that differences between species are often due to 

alterations in gene expression (Britten and Davidson 1969; King and Wilson 

1975; Wray 2007). It would therefore be of great interest to be able to estimate 

the proportion of expression divergence that is due to positive selection. 

 

If the regulatory regions are already known, a number of sequence analysis 

tools can be used to test for positive selection acting on the relevant sequences 

(Jenkins, Ortori, and Brookfield 1995; Kohn, Fang, and Wu 2004; Rockman et al. 

2005; Gaffney, Blekhman, and Majewski 2008), however this is a rare situation. 

While expression quantitative loci (eQTLs) may be used to detect very recent 

cases of positive selection (Kudaravalli et al. 2009), the use of sequence analysis 

methods on a larger scale generally relies on assumptions regarding which 

sequences are involved in regulation (Andolfatto 2005; Haygood et al. 2007; 

Holloway et al. 2007; Torgerson et al. 2009; Babbitt et al. 2010) and will therefore 

exclude currently unidentified regulators, such as many distant-acting ele-

ments, in spite of their potentially substantial contribution to gene regulation 

(Visel, Rubin, and Pennacchio 2009). Furthermore, the positively selected 

changes that are identified using these methods do not necessarily have an 

effect on gene regulation. A more desirable solution would therefore be to infer 

adaptive evolution directly from gene expression data, without requiring 

knowledge of regulatory sequences.  
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Many methods have been proposed to this end (Fay and Wittkopp 2008), 

although none has been generally adopted. Firstly, it has been suggested that 

different theoretical models of gene expression could be further developed to 

serve as null hypotheses in tests for positive selection (Khaitovich, Paabo, and 

Weiss 2005; Bedford and Hartl 2009), but the necessary framework is currently 

lacking.  Secondly, in the absence of such quantitative models, Fraser, Moses 

and Schadt (2010) argued that positively selected eQTLs that affect the same 

gene should tend to change expression in the same direction and used this 

qualitative information to estimate the proportion of adaptive expression 

evolution in yeast. However, in its present form, this approach relies on genetic 

crosses between strains, making it unsuitable for the study of human evolution.  

 

A third strategy for the detection of positive selection on gene expression has 

been to list genes that have evolved in a pattern consistent with adaptive 

evolution, by identifying genes that either have changed their expression in one 

lineage, while remaining stable in others (Gilad et al. 2006; Blekhman et al. 2008; 

Blekhman et al. 2010), or that have an unusually high ratio between their 

between-species and within-species expression variance (Nuzhdin et al. 2004). 

The underlying assumption is that, although no formal tests are performed, 

these lists will nonetheless be enriched for positively selected genes, although 

this will naturally depend on the amount of adaptive evolution that has 

occurred in the species of interest, as genes under relaxed negative selection 

might exhibit similar patterns. To reduce the number of false positives, 
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Whitehead and Crawford (2006) performed a similar analysis to that of 

Nuzhdin et al. (2004) to identify positively selected genes in fish populations, 

but additionally required that the part of the among-population variation, 

which could not be explained by genetic distance, should regress with an 

ecological variable. However, while this approach may be useful under some 

circumstances, it is restricted to cases where a single environmental parameter 

is predicted to have a large biological influence.  

 

A more general test for positive selection would however be possible if the ratio 

of between-species to within-species expression variance could be estimated for 

neutrally evolving genes. Rifkin, Kim and White (2003) attempted to provide 

such a cut-off point based on an estimate of the mutational variance in gene 

expression, i.e., the increase in variance per generation that is caused by new 

mutations. For model organisms with short generation times, mutation 

accumulation lines may be used to experimentally estimate this quantity 

(Denver et al. 2005; Rifkin et al. 2005), but for most species such estimates 

would be based on speculation. Expressed pseudogenes have been proposed as 

an alternative neutral standard (Khaitovich et al. 2004b), but it is questionable 

whether they fulfil the requirement of being non-functional (Svensson, 

Arvestad, and Lagergren 2006) and they are not common. Instead of estimating 

the mutational variance, Lemos et al. (2005) therefore based their cut-off point 

on the mutational heritability, which had previously been determined for 

various characters (Lynch 1988). However, both methods to obtain a threshold 

value for positive selection rely on assumptions about population size and 
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other factors, which might explain their different results: while Rifkin, Kim and 

White (2003) concluded that 25% of the investigated genes in a comparison of 

Drosophila melanogaster and D. simulans had undergone positive selection, 

Lemos et al. (2005) compared the same species without identifying a single 

positively selected gene.  

 

Thus, although a number of methods have been devised to investigate the 

contribution of positive selection to gene expression evolution, there is no 

straightforward procedure for estimating the proportion of adaptive evolution 

directly from human data. Here, we will outline how the McDonald-Kreitman 

test, which is frequently used to estimate levels of positive selection in sequence 

data (McDonald and Kreitman 1991; Fay, Wyckoff, and Wu 2001; Eyre-Walker 

et al. 2002) can be extended to gene expression data. The resulting test is easy to 

perform and takes the evolutionary history of each gene into account. We hope 

that it will serve as a standard tool to make studies of positive selection on gene 

expression levels comparable across species and experiments.  

 

 

3.2. Materials and methods 

 

We describe a new test for positive selection on gene expression levels, based 

on the McDonald-Kreitman (MK) test of positive selection in DNA sequence 

data. In the MK test the number of synonymous (Ps) and non-synonymous (Pn) 
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polymorphisms are compared to the numbers of synonymous (Ds) and non-

synonymous (Dn) substitutions. Under a neutral model in which mutations at 

synonymous sites are neutral and mutations at non-synonymous sites are 

neutral or strongly deleterious, then Dn/Ds = Pn/Ps. In contrast, if some non-

synonymous mutations are advantageous Dn/Ds > Pn/Ps, and if some are slightly 

deleterious Dn/Ds < Pn/Ps (McDonald and Kreitman 1991). 

 

We can formulate an MK test for gene expression divergence as follows: Let us 

assume that mutations that affect gene expression are either neutral or strongly 

deleterious, and that a proportion, f, of mutations are neutral. Let us also 

assume that the evolution of gene expression over a short time follows that of a 

random walk. If X(t) is the expression level at time t, then 

 

! 

(X(t) " X(0))2 = µft# 2  

 

where ! is the mutation rate and !2 is the increase of gene expression per 

neutral mutation (Khaitovich, Paabo, and Weiss 2005). Hence the squared 

difference in expression between two individuals, be they of the same or 

different species, is 

 

! 

E(t) = (X1(t) " X2(t))
2 = 2µft# 2. 

 

The squared difference is expected to increase linearly with time, i.e., the 

variance in gene expression between individuals is expected to increase linearly 

with time (Khaitovich, Paabo, and Weiss 2005; Pereira, Waxman, and Eyre-

Walker 2009). This is expected to be true over the shorter time scale, but there 
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will eventually be limits as to how high or low expression can evolve (Bedford 

and Hartl 2009). 

 

Let us split the divergence between the two individuals into three time periods: 

tb, the time between the most recent common ancestors in each species for the 

locus in question; twi, the expected time to coalescence for two randomly chosen 

lineages in species i; and tci, the difference between twi and the time at which all 

lineages coalesce (Figure 3.1). For a recombining sequence each of these times 

will be the average across sites within the locus in question. The expected 

expression divergence between species, Eb, is therefore expected to be equal to 

E(tb) and the average expression divergence between pairs of individuals within 

a species, Ew, is expected to be E(tw). Let us also define Ec = E(tc). 

 

We can make a similar argument for sequence divergence: If mutations are 

strongly deleterious or neutral, then the divergence between individuals are 

linearly related to the time that separates them: 

 

! 

S(t) = 2µt  

 

so the ratio of the divergence between species, Sb, is expected to equal S(tb) and 

the divergence between individuals of the same species, Sw, is expected to be 

S(tw). Hence we expect under strict neutrality to have Eb/Ew = Sb/Sw. This may be 

rearranged analogously to the MK test above: Eb/Sb = Ew/Sw. 
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Figure 3.1. Tree illustrating the time between the most recent common 

ancestors of each species (tb), the time to expected time to coalescence for two 

randomly chosen lineages within a given species (tw) and the difference 

between tw and the time at which all lineages coalesce (tc). 

!
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If we assume that some expression mutations are advantageous, then we expect 

Eb/Sb > Ew/Sw because advantageous mutations contribute more to divergence 

than they do to polymorphism. If we assume that the advantageous mutations 

are rare, but strongly selected, then we can ignore their contribution to 

polymorphism, as an advantageous mutation contributes at most twice the 

nucleotide diversity of a neutral mutation (Kimura 1969). We then have 

 

! 

Ew = 2µftw"
2  

 

and 

 

! 

Eb = (2µftb"
2) /(1#$e ) 

 

where "e is the proportion of the expression divergence that is driven by 

positive selection. Hence 

 

! 

"e =1# EwSb /(EbSw ). 

 

This is analogous to the method for estimating the proportion of substitutions 

driven by positive selection (Fay, Wyckoff, and Wu 2001; Smith and Eyre-

Walker 2002). 

 

We need to estimate the variance in expression (Eb) and between individuals 

within a species (Ew). This can be accomplished by using a nested analysis of 

variance (ANOVA), in which the variance between individuals can be divided 

into error variance, the variance between individuals and the variance between 

species (Nuzhdin et al. 2004). The variance within individuals, Vw, is an 
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estimate of Ew, and the variance between species, Vb, is an estimate of Eb + Ec. 

Similarly, we can consider the average divergence between individuals within a 

species, the nucleotide diversity, #, to be an estimate of Sw, and the average 

divergence between individuals of different species, dS, to be an estimate of Sb + 

Sc + Sw. If we assume that tc is small relative to tb, we can ignore Ec and Sc and 

estimate "e as 

 

! 

"e =1#V w (dS #$ ) /(Vb$ ) 

 

where the averages are across species. If expression or sequence data is not 

available for both species then we suggest that we assume that the within-

species expression variance and nucleotide diversity in the species with missing 

data is the same as in the species for which we have data.  

 

 

3.2.1. Simulations 
 

To evaluate the performance of our method, we simulated expression data 

according to the model 

 

! 

yijk = µi + Iij +" ijk  

 

where yijk is the log2 expression value for species i, individual j and replicate k, 

Iij represents the variation between individuals and is drawn from a normal 

distribution with a variance of 10n, where n is drawn from a uniform distri-

bution between -4 and 0, and $ijk is the measurement error, drawn from a 
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normal distribution with a variance of 10-2. Thus, our simulations incorporate a 

relatively high error variance, which can be up to 100 times larger than the 

within-species variance. The species mean !i was drawn from a normal distri-

bution with a variance equal to the within-species variance multiplied by the 

ratio between the average sequence divergence and heterozygosity, in the case 

of neutral genes, or the neutral variance multiplied by some factor in the case of 

positively selected genes. The absolute variance values are not important in this 

and the following simulations, as it is only the ratio between Vb and Vw, which 

is evaluated. Sample sizes and other parameters are provided in the description 

of each simulation below. 

 

The neutral sequences in our simulations were based on human and 

chimpanzee data (see further details in Section 3.2.2). We generated the 

sequence divergence and nucleotide diversity for each of these sequences by 

sampling from a binomial distribution such that the expected value would 

equal the average number of substitutions between humans and chimpanzees, 

and the average number of polymorphisms per site in humans. For the 

polymorphism data we then sampled from the site frequency spectrum 

obtained from 1000 Genomes data on the human CEU population (The 1000 

Genomes Project Consortium et al. 2010) that we used in our analysis (see 

below). For example, the number of polymorphisms per site in the 1000 

Genomes data is 0.0037, so after binomial sampling we might have 37 poly-

morphisms in a sequence of 10000 bp. We then sampled allele frequencies from 

the corrected site frequency spectrum (see below) of the 1000 Genomes dataset 
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and used these to calculate the average nucleotide diversity for our simulated 

locus. In our simulation we are effectively assuming that all loci are similar and 

that there is free recombination.  

 

In our first simulation, we created datasets of 100, 1000 and 10000 genes, where 

each dataset contained expression levels from five individuals from each 

species, with two replicates per individual and where each gene was associated 

with 10000 bp of neutral sequences. For every set of parameters, we calculated 

"e for 1000 datasets. We generated our data under five evolutionary scenarios: 

no adaptive evolution of gene expression, 10% of genes experiencing adaptive 

evolution (with an overall "e of 10% or 50%), or all genes experiencing adaptive 

evolution (again with "e set to 10% or 50%). It may appear counter-intuitive to 

have an "e of 50%, when only 10% are under positive selection. However, as "e 

estimates the proportion of the between-species expression variance that is due 

to adaptive evolution, it may exceed the proportion of positively selected genes, 

if these genes have changed their expression to a considerable degree. In similar 

fashion, the MK test as applied to sequence data estimates the proportion of 

sites that have been positively selected, but these sites could be evenly 

distributed among genes or concentrated to only a handful. 

 

Secondly, we generated datasets of 100 genes where more data were available 

for each gene. Compared to the simulation described above, we either increased 

the associated neutral sequences to 100000 bp, extended the expression dataset 

to 100 individuals times 5 replicates per species, or both. Again, we analysed 
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1000 experiments for each setting and used this to calculate the mean estimated 

"e together with a 95% confidence interval. 

 

To test whether our method could identify individual genes under positive 

selection, we generated two datasets, each with 9000 neutral and 1000 positively 

selected genes and with an overall "e of 10% and 50%, respectively. Each gene 

was associated with 100000 bp of neutrally evolving sequences. We created 95% 

confidence intervals for our estimates of the overall "e by bootstrapping per 

gene (1000 repeats). For each gene we calculated a one-sided 95% confidence 

interval for the ratio 

! 

Vb" /(V w (dS #" ))  by bootstrapping the expression data per 

individual and the sequence data per site. 

 

3.2.2. Data analysis 
 

To estimate Vw and Vb from experimental data, we used a previously published 

expression dataset from human and chimpanzee lymphoblastoid cell lines, 

measured on the human-specific Affymetrix U133A microarray (Choy et al. 

2008). We masked the data by removing all probes that did not have a single 

perfect match in the chimpanzee genome. Probe sets with less than four 

remaining probes were discarded, as smaller probe sets tend to give unreliable 

results (Lu et al. 2007). Expression values were calculated with the robust 

microchip average (RMA) method as implemented in Bioconductor (Irizarry et 

al. 2003a; Irizarry et al. 2003b; Gentleman et al. 2004). For genes with multiple 
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probe sets on the array, we chose a single probe set at random to represent that 

gene. 

 

The dataset from Choy et al. (2008) included cell lines derived from 5 

chimpanzees and 46 humans, of which 13 were of European descent (CEU), 19 

of Han Chinese or Japanese descent (CHB/JPT) and 14 of Yoruba descent (YRI). 

For each human sample, two replicates were available, whereas three or four 

replicates were available for the chimpanzee samples. To achieve a balanced 

experimental design, five individuals were randomly chosen from each of the 

human populations, and two replicates were randomly chosen for each chim-

panzee individual. The between-species, within-species and error variance 

components were then estimated by nested ANOVA of the log-transformed 

expression values, with the modification that we calculated separate estimates 

for the human and chimpanzee within-species and error variances. To verify 

that our variance estimates were unbiased even in cases with unequal 

variances, we used the same method to analyse simulated expression datasets 

with known variances. These datasets were based on the same model as 

described above, but with set variances from Table 3.2.  

 

Estimates of # and dS for each gene were obtained as follows. We extracted the 

intron coordinates of all human autosomal protein-coding genes in Ensembl 

release 56 (Flicek et al. 2010), as mammalian introns are essentially neutral 

(Gaffney and Keightley 2006). To further ensure that we were working with 

purely neutral sequences, we removed any sequences that were within 50 bp of 
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a splice junction or that overlapped with exons from other genes. We also re-

moved conserved elements identified by the phastCons program (Siepel et al. 

2005) by excluding all sequences that featured in the “Primate El” table of the 

Conservation track for the human genome release hg18 in the UCSC Genome 

Browser (Rhead et al. 2010). The SNP frequency spectra for these neutral 

sequences in the CEU, CHB/JPT and YRI populations were taken from low 

coverage pilot data from the 1000 Genomes Project (The 1000 Genomes Project 

Consortium et al. 2010). To correct for the limited power to detect very rare 

variants, we divided the number of observed SNPs at different frequencies by 

the power to detect SNPS at that frequency (estimates of detection power were 

kindly provided by Adam Auton). To estimate the degree of sequence diver-

gence, we downloaded blastz alignments (Schwartz et al. 2003b) of the human 

and chimpanzee genomes (released hg18 and panTro2, respectively) from the 

UCSC Genome Browser (International Human Genome Sequencing 

Consortium et al. 2001; Chimpanzee Sequencing and Analysis Consortium 

2005; Rhead et al. 2010). We excluded sites where the human sequence was 

unknown (“N”) or where the chimpanzee sequence had a quality score of 40 or 

below, as judged from the Quality Scores track in the UCSC Genome Browser. 

 

In our correction of dS, we approximated the chimpanzee average hetero-

zygosity by its human counterpart. The true chimpanzee value is likely to be 

larger, which means that our estimate of dS is slightly inflated and will cause 

our test to be somewhat conservative. To test whether this had a major 

influence on our results, we repeated the analysis, assuming that the 
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chimpanzee average heterozygosity was 10-fold larger than the one found in 

humans.  

 

 

3.3. Results 

 

Here we propose a test, analogous to the well-established McDonald-Kreitman 

test for sequence data (McDonald and Kreitman 1991), of whether expression 

divergence has been subject to positive selection, and if so, to estimate the 

proportion of expression divergence that can be attributed to adaptive evo-

lution. The method contrasts the expression divergence between and within 

species to the level of neutral sequence divergence between and within species. 

Suitably measured expression divergence is expected to increase linearly with 

time, just as we expect for neutral sequence evolution. 

 

To investigate the performance of our method we performed a series of 

simulations. First, we generated expression datasets of 100, 1000 or 10000 genes 

that had experienced different levels of adaptive evolution (see Section 3.2.1). 

The datasets were of moderate size, with five individuals per species and two 

replicates per individuals, and they were relatively noisy, with an error 

variance that could be up to 100-fold larger than the within-species variance. 

We further let each gene be associated with 10000 bp of neutrally evolving 

sequences with the same expected divergence and heterozygosity as in human 
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and chimpanzee intronic sequences. For each set of parameters, we simulated 

1000 experiments and calculated the mean estimated "e, together with the 

standard error and standard deviation. The simulations confirmed that our 

method gives an essentially unbiased of "e when the sample size is above 1000 

genes (Table 3.1). For smaller datasets, and especially when the true "e is small, 

the estimates are biased downward. This should not be a general problem as 

datasets of 10000 genes or more are easily obtained using microarrays or RNA 

sequencing. However, it may make it more difficult to determine "e for subsets 

of genes that are of special interest, unless they have been heavily targeted by 

positive selection. We therefore wanted to see whether we could compensate 

for reduced sample size by adding more data for the genes in question. 

However, adding more neutral sequences and/or expression data for more 

individuals only had a negligible effect on the confidence intervals associated 

with our estimates (Figure 3.2). This points to that the main obstacle to estimate 

"e for small groups of genes is the inherent difficulty of estimating the between-

species variance based on only two species.  

 

The extended MK test can also be used to search for individual genes that have 

been positively selected. We therefore generated two datasets, in the same 

manner as above, where 10% of the genes had experienced adaptive evolution 

and where the true "e was either 10% or 50%. To maximise our power to detect 

positive selection, we generated expression data for 100 individuals per species, 

with 5 replicates per individual. For the first dataset, we estimated "e to be 0.11, 

with a confidence interval of (0.05, 0.17), which we obtained by bootstrapping 
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Table 3.1. Mean, standard error of the mean and standard deviation of the 

estimated !e, when the true !e is either 0, 0.1, or 0.5 and when either 100% or 

10% of all genes in the sample have experienced adaptive evolution of gene 

expression.  

 

 

  !e = 0 !e = 0.1 

(100% pos.) 

!e = 0.1 

(10% pos.) 

!e = 0.5 

(100% pos.) 

!e = 0.5 

(10% pos.) 

Mean -0.092 0.008 0.020 0.459 0.329 

S.e. 0.012 0.011 0.010 0.005 0.106 

100 genes 

S.d. 0.369 0.341 0.331 0.173 0.336 

Mean -0.014 0.089 0.085 0.494 0.477 

S.e. 0.003 0.003 0.003 0.002 0.003 

1000 genes 

S.d. 0.101 0.095 0.099 0.053 0.100 

Mean -0.002 0.099 0.099 0.499 0.499 

S.e. 0.001 0.001 0.001 0.001 0.001 

10000 genes 

S.d. 0.034 0.030 0.032 0.016 0.032 

 

 

!
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Figure 3.2. Confidence intervals for estimates of !e based on datasets with 

different number of loci, different experimental designs for the expression 

dataset (table gives number of individuals, followed by number of replicates) 

and different lengths of the associated neutral sequences. A. All genes evolve 

neutrally, !e = 0. B. All genes under positive selection, !e = 10%. C. 10% of genes 

under positive selection, !e = 10%. D. All genes under positive selection, !e = 

50%. E. 10% of genes under positive selection, !e = 50%.  

!
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the data per gene. For the second dataset, the estimate of "e was 0.47, with a 

confidence interval of (0.41, 0.53). Thus, the test gave accurate estimates of "e in 

both cases. For each gene, we calculated the ratio 

! 

Vb" /(V w (dS #" )) , which is an 

estimate of EbSw/EwSb. If this ratio is significantly above one, it suggests that 

expression of the gene has been positively selected. To test for significance, we 

created confidence intervals for each value using non-parametric bootstrapping 

(see Section 3.2.1). For smaller expression datasets, parametric bootstrapping 

could be considered.  

 

We found that although there was an enrichment of positively selected genes 

among the genes that were called as significant, 87% of the significant genes 

were false positives when the true "e was 10% and 82% when "e was 50% 

(Figure 3.3). There was also a high rate of false negatives; the proportion of true 

positively selected genes that showed up as insignificant was 51% and 35%, 

respectively. The reason for this becomes clear if we consider the distribution of 

values, which we would get from an ideal experiment in which all measure-

ments were free of error (in other words, where gene expression could be 

measured for an infinite number of individuals and where each gene was 

associated with neutral sequences of infinite length). Figure 3.4 shows that 

while the distribution is shifted to the right for positively selected genes, there 

is considerable overlap with neutrally evolving genes, both when "e = 10% and 

when "e = 50%. Thus, positively selected genes will frequently be indistin-

guishable from neutral genes. 
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Figure 3.3. Proportion of positively selected and neutral genes where the ratio 

! 

Vb" /(V w (dS #" ))  was significantly above one, at different values of !e. 

!
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Figure 3.4. A. Distribution of the ratio 

! 

Vb" /V w (dS #" ))  for neutral genes (white 

portion of bars) and positively selected genes (grey portion of bars) when !e = 

10%. B. Same for !e = 50%.  

!
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Overall, our simulations indicate that as long as the number of investigated 

genes in large, a moderately sized expression dataset can be sufficient to 

estimate the overall proportion of expression divergence that is due to adaptive 

evolution. However, lists of likely targets of positive selection should be 

interpreted with caution, even when "e is significantly above zero. Notably, this 

applies not only to the method presented here, but to any analysis that esti-

mates the between-species variance from pair-wise comparisons.  

 

Next, we applied our test to experimental data. As the method relies on 

estimates of the between-species and within-species expression variance, it is 

necessary to have replicate measurements of each individual, so that the error 

variance can be removed by nested ANOVA. We therefore chose to apply our 

method to the dataset of Choy et al. (2008) who measured gene expression in 

human and chimpanzee lymphoblastoid cell lines. This was also a suitable 

dataset for two additional reasons: Firstly, humans and chimpanzees are closely 

related species, where the between-species variation in gene expression has not 

reached saturation (Khaitovich et al. 2004b). Secondly, cell lines can be grown 

under more standardised conditions, which may remove much of the 

environmental variation that could otherwise obscure the results (Somel et al. 

2008; Hodgins-Davis and Townsend 2009). It should however be noted that the 

transformation into cell lines alters the expression of many genes, although 

most of these changes are minor (Caliskan et al. 2011). 
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In total, we had expression and sequence data for 7302 genes in chimpanzees 

and the three human populations CEU, CHB/JPT and YRI (see Section 3.2.2). 

Nested ANOVA assumes that the experimental design is balanced, that the data 

is normally distributed and that variances do not differ between groups (Sokal 

and Rohlf 1995). Before proceeding, we therefore investigated whether the 

expression data fulfilled these requirements. The design of the original dataset 

was not balanced, as it contained different numbers of individuals and repli-

cates for the two species. Although methods exist to estimate variance com-

ponents based on unbalanced designs, they tend to be either cumbersome or 

give biased results (Sahai and Ojeda 2003). We therefore chose to balance the 

design by excluding some of the raw data. We therefore randomly selected five 

individuals and two replicates from chimpanzees and from each of the three 

human populations represented in the original dataset. After processing the 

resulting dataset (see Section 3.2.2) we examined the distributions of the 

standardised log-transformed expression values, which in all cases proved to be 

approximately normal. However, using single-classification ANOVA to 

estimate the within-species and error variance for each gene, we found that the 

variances were not equal: the average human within-species variance was 0.02, 

while the average chimpanzee within-species variance was 0.05. The difference 

could be due to the fact that chimpanzees have a higher effective population 

size than humans do (Eyre-Walker et al. 2002; Hey 2010), or because the 

sampled chimpanzees were bred in captivity and may therefore belong to 

different subspecies (Becquet et al. 2007). The mean error variance also differed 

between humans and chimpanzees, which might reflect variation in the 
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establishment and maintenance of the cell lines. However, unequal variances 

are only problematic if they introduce bias into the nested ANOVA procedure. 

To test if this was the case, we simulated datasets of 10000 replicates with 

differing within-species and error variances, calculated the variance 

components using nested ANOVA and compared the estimated between-

species variance to the set value (Table 3.2). We found that a 10-fold increase in 

chimpanzee within-species and error variances only had a marginal effect on 

the between-species variance estimate, which was overestimated by around 3%. 

In cases with unequal variances our test may therefore give a biased estimate of 

"e, but the overall effect is negligible.  

 

We used our method to estimate "e for the divergence between human and 

chimpanzee using the polymorphism data from each of the three human 

populations. In each case, the estimate was negative (Table 3.3). These results 

relied on the assumption that we could correct dS by assuming that the chim-

panzee average heterozygosity was equal to the human average heterozygosity. 

If the true chimpanzee average heterozygosity were larger, this would cause us 

to underestimate "e. However, the estimates of "e remained significantly nega-

tive, even when we repeated the analysis assuming a 10-fold higher average 

heterozygosity in chimpanzees (data not shown). 

 

In principle, "e should not be able to take on negative values, but if slightly 

deleterious mutations are segregating in the population, these will cause an 

increase in the within-species expression variance that is not matched by a 
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Table 3.2. Nested ANOVA estimates of variance components based on datasets 

with unequal variances. The variance estimates were averaged across 10000 

simulations. The true variances used to generate the data are given in brackets. 

The first set of simulations were based on the average observed variances in 

humans and chimpanzee, and the chimpanzee error variance and within-

species variances were then increased by a factor of 10. 

 

 

 Between 
Within 

(human) 

Error 

(human) 

Within 

(chimpanzee) 

Error 

(chimpanzee) 

Average 0.061 (0.06) 0.020 (0.02) 0.063 (0.06) 0.051 (0.05) 0.096 (0.10) 

Higher Ve 0.061 (0.06) 0.020 (0.02) 0.060 (0.06) 0.046 (0.05) 1.002 (1.00) 

Higher Vw 0.062 (0.06) 0.020 (0.02) 0.600 (0.06) 0.492 (0.50) 0.101 (0.10) 

Higher Ve and Vw 0.062 (0.06) 0.020 (0.02) 0.060 (0.06) 0.512 (0.50) 0.995 (1.00) 

 

 

!



! 73!

 

Table 3.3. Estimates of the proportion of between-species expression variance 

in lymphoblastoid cell lines, which is due to positive selection.  

 

 

Population !  95% CI 

lower limit 

95% CI 

upper limit 

CEU -9.75 -11.39 -8.36 

CHB/JPT -1.07 -1.66 -0.54 

YRI -7.14 -8.34 -6.13 

 

 

!
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similar increase in the between-species variance. This leads to an under-

estimation of "e and in cases with no or very little positive selection, the 

estimate can be negative (Fay, Wyckoff, and Wu 2001; Charlesworth and Eyre-

Walker 2008). From Table 3.3, it seems to be the case that "e estimate is higher 

for the CHB/JPT population, which could be taken to indicate that this 

population either carries fewer slightly deleterious mutations or that it has 

experienced more positive selection. However, an examination of the average 

expression variances for the three populations (Table 3.4), suggests that the 

deviation is instead due to the fact that a markedly higher proportion of the 

total variance was attributed to error variance. We therefore conclude that 

although we cannot rule out the possibility of a limited amount of adaptive 

evolution, there is currently no evidence for adaptive evolution of human gene 

expression. 

 

 

3.4. Discussion 

 

We propose an extended McDonald-Kreitman test as a useful tool to evaluate 

the contribution of positive selection to gene expression evolution in any closely 

related species pair. As we compare expression data and sequence data from 

the same genes, we reduce the problem of sampling the neutral standard from a 

different genomic region to that in which in the regulatory changes are 
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Table 3.4. Average between-species, within-species and error variances for the 

three human populations.  

 

 

 Between 

species 

Within 

species 

Error 

CEU 0.061 0.038 0.044 

CHB/JPT 0.058 0.008 0.076 

YRI 0.055 0.035 0.045 

 

!



! 76 

occurring. We have successfully used our test on simulated data to estimate the 

proportion of between-species variance that is due to adaptive evolution. 

 

We have also illustrated how individual genes may be tested for signs of 

positive selection. However, our simulations highlight the inherent difficulty of 

accurately estimating the between-species variance for single genes and so lists 

of top-candidate genes should be treated with caution, especially if "e is low. 

This applies not only to the test presented here, but to any method where 

estimates of the between-species variance are based on a single species pair. 

More precise rankings might be possible if several species or tissues were taken 

into account, although this introduces the additional problem of non-

independence between measurements. 

 

Our analysis of human and chimpanzee lymphoblastoid cell lines gave highly 

negative estimates of "e. This is consistent with the segregation of slightly dele-

terious mutations, which affect expression in humans. These mutations inflate 

the within-species relative to the between-species expression variance and 

cause "e to be underestimated. The same issue is known to affect the original 

McDonald-Kreitman test and some strategies to correct for this have been 

developed (Fay, Wyckoff, and Wu 2001; Eyre-Walker and Keightley 2009). 

However, the effect of slightly deleterious mutations has, to our knowledge, 

never been incorporated into models of gene expression evolution. Following 

the method of Eyre-Walker and Keightley (2009), it might be possible to deter-

mine the distribution of fitness effects for mutations that affect gene expression 
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and use this to control for the effects of slightly deleterious mutations. It might 

also be that the negative values of "e reflect limitations on the evolution of gene 

expression; expression divergence will not increase forever in a linear fashion 

because there must be limits to how highly or lowly a gene can be expressed. 

This seems an unlikely explanation in the current dataset because expression 

divergence appears to increase linearly across primates (Khaitovich, Paabo, and 

Weiss 2005). 

 

While it is possible that a modest amount of adaptive evolution is masked by 

slightly deleterious mutations or limits on how far gene expression can evolve, 

our results argue against pervasive positive selection along the human lineage 

since the split from chimpanzees. This is consistent with the results of Kudara-

valli et al. (2009), who estimated that 0.1% of human genes have undergone 

very recent positive selection, as judged from gene expression in lympho-

blastoid cell lines from the YRI population. Similarly, Lemos et al. (2005) com-

pared human and chimpanzee expression data from liver and kidney samples, 

without identifying any likely targets of positive selection. Sequence analyses of 

potential regulatory regions have given slightly higher estimates: Haygood et 

al. (2007) found that 4% of human genes had experienced positive selection 

within 5 kb upstream of the transcript, whereas Torgerson et al. (2009) esti-

mated that 5% of all fixed differences between human and chimpanzee at con-

served non-coding sites were adaptive. The extent to which these predicted 

regulatory changes translate to real differences in gene expression nevertheless 

remains unclear. In addition to the low levels of positive selection on human 
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protein-coding sequences (Chimpanzee Sequencing and Analysis Consortium 

2005; Zhang and Li 2005; Boyko et al. 2008; Eyre-Walker and Keightley 2009), 

we can therefore conclude that there is little evidence for adaptive evolution of 

gene expression levels in humans. 

 

Does this mean that human evolution has not depended on adaptive changes of 

gene regulation? It is difficult to answer this question, because a complete 

understanding of gene expression requires sampling of every cell type at every 

stage of an organism’s lifetime. It could therefore be that we are not seeing 

signs of positive selection, simply because we are not studying the tissues or 

developmental time points where adaptations are most likely to occur. For 

example, perhaps the most famous example of positively selected change in 

human gene expression, that of lactase persistence (Tishkoff et al. 2007), would 

not be detected in our analysis, as we are not analysing intestinal samples. On 

the other hand, lymphoblastoid cell lines are derived from blood cells involved 

in the body’s immune response. Genes with functions in immunity show signs 

of positive selection on both protein-coding and non-coding sequences 

(Haygood et al. 2010), so we might expect these cells to be a good starting point 

in the search for positive selection on gene expression. The lack of signal may 

therefore be seen as surprising.  

 

It is clear that more extensive expression datasets are needed to settle the 

question of adaptive regulatory evolution in humans. It will also be of great 

interest to investigate the role of positive selection in shaping the tran-
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scriptomes of many other species. We believe that the framework presented 

here will aid these investigations by allowing straightforward analysis of gene 

expression evolution.  



! 80 

 

 

4. 

The accumulation of gene regulation through time 
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4.1. Introduction 

 

The upper limit for regulatory complexity in the genome is not known, yet such 

a limit must exist. Taking alternative splicing as an example, while one might 

easily imagine a gene that produces 20 splicing isoforms, a gene with 200 000 

isoforms appears highly unrealistic, due to the overwhelming amount of 

regulatory sequences that would be required to avoid aberrant splice variants, 

which may cause disease (Tazi, Bakkour, and Stamm 2009), and the severe 

constraints that this would impose on the coding sequence (Parmley et al. 2007). 

It follows that genes have a maximum capacity for new isoforms and that once 

this maximum has been reached, the organisational difficulties of adding addi-

tional isoforms will completely outweigh the beneficial effects that these iso-

forms may provide. 

 

The same logic can be extended to the many other mechanisms that control 

gene expression, such that a single gene can only support a limited level of 

regulation by transcription factors (TFs), microRNAs (miRNAs) and other 

processes. While these types of regulation rarely involve coding sequences, they 

will still be limited by a finite supply of sequences that can house regulatory 

elements, as well as interference between new and old elements. At saturation, 

new features can therefore only become fixed if they replace pre-existing ones, 

or following a gene duplication event.  
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To what extent have human genes reached their maximum regulatory capacity? 

This question can be addressed by analysing the level of regulation associated 

with genes that arose at different evolutionary times. Four potential scenarios 

are illustrated in Figure 4.1. In the first (Figure 4.1.A), genes are continuously 

acquiring regulatory features and have not yet reached their maximum capac-

ity. In the second scenario (Figure 4.1.B), older genes are saturated in terms of 

gene regulation and do not show a further increase in complexity. These two 

scenarios assume that gene regulatory features accumulated over time. It might 

however be that different forms of regulation dominate in genes of different age 

categories (Figure 4.1.C) or that regulation and age are uncorrelated factors 

(Figure 4.1.D). This last scenario does however appear unlikely, as evolutionary 

age is known to correlate with aspects of gene architecture, including gene 

length and intron density (Wolf et al. 2009), as well as with gene expression, 

such that older genes tend to be expressed in more tissues (Milinkovitch, 

Helaers, and Tzika 2010) and at higher levels (Wolf et al. 2009) than younger 

genes. 

 

To distinguish between these scenarios, we have collected information on a 

variety of regulatory mechanisms operating in the human genome and related 

this to the evolutionary age of the affected genes. We found that older genes 

tend to be bound by more TFs, have more conserved upstream sequences, use 

more alternative transcription start sites (TSSs), produce more alternative 

splicing isoforms and use more alternative polyadenylation sites. Furthermore, 

older genes are more likely to be affected by miRNAs, nonsense-mediated 
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Figure 4.1. Potential relationships between regulatory complexity and gene age. 

A. Genes continuously increase their regulatory complexity throughout their 

lifetime. B. Regulatory complexity increases over a time until the maximum 

capacity is reached. C. Old and young genes tend to be regulated by different 

regulatory mechanisms. D. Regulatory complexity is independent of gene age.   
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decay (NMD) and RNA editing. Based on this and the lack of apparent satu-

ration, we draw the conclusion that the majority of human genes could support 

higher levels of regulation than what we currently observe. 

 

 

4.2. Materials and Methods 

 

To group human genes according to time of origin, we used the phylostrati-

graphic classifications established by Domazet-Lo!o and Tautz (2010), with the 

additional requirement that the genes should be represented in release 59 of the 

Ensembl database (Flicek et al. 2010). We excluded human genes shared by 

archaea and bacteria from our analysis, as many of the regulatory mechanisms 

that we consider are specific to eukaryotes. The number of genes for each of the 

18 age categories is shown in Table 4.1. 

 

Next, we calculated eight measures of the regulatory complexity of human 

genes. Firstly, we estimated the complexity of transcriptional regulation for 

each gene, by counting the number of TFs that bound within 10 kb upstream of 

the TSS in the human cell line GM12878. This dataset came from ENCODE 

ChIP-seq experiments performed at the HudsonAlpha Institute (Birney et al. 

2007) and was available through the HAIB TFBS track for the human genome 

(release hg18) in the UCSC Genome Browser (Rhead et al. 2010). The following 

20 TFs were analysed: BATF, BCL3, BCL11, EBF, Egr-1, GABP, IRF4, NRSF, 
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Table 4.1. Human genes classified according to time of origin. Age 

classifications were taken from Domazet-Lo!o and Tautz (2010) and time 

estimates from Hedges, Dudley and Kumar (2006). In cases where the time 

estimates did not match the phylogeny (marked with an asterisk), the 

divergence time was interpolated from those of the surrounding taxa.  

 

Category Time of origin (mya) Taxon Number of genes 
1 77.5 Primates 163 
2 91 Euarchontoglires 24 
3 97.4 Boreoeutheria 84 
4 104.7 Eutheria 294 
5 176.1 Mammalia 213 
6 324.5 Amniota 121 
7 361.2 Tetrapoda 73 
8 454.6 Euteleostomi 455 
9 568.8 * Craniata 394 

10 682.9 * Olfactores 33 
11 797 Chordata 168 
12 842 Deuterostomia 52 
13 910 Bilateria 728 
14 1036 Eumetazoa 1770 
15 1237 Metazoa 341 
16 1302.5 * Holozoa 281 
17 1368 Opisthokonta 449 
18 1628 Eukaryota 4906 

 

 

 

 

!
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p300, PAX5c, PAX5n, Pbx3, POU2F, Sin3A, SP1, SRF, TAF1, TCF12, USF-1 and 

ZBT33. As a second measure of transcriptional regulation, we calculated the 

degree of conservation of sequences within 10 kb upstream of the TSS, as the 

proportion of bases that were identified as conserved within primates by the 

phastCons program (Siepel et al. 2005). This information was taken from the 

Conservation track in the UCSC Genome Browser. 

 

Our next three complexity measures were based on the number of transcripts 

that are generated due to alternative use of TSSs, alternative splicing and 

alternative polyadenylation, respectively. To distinguish between these 

mechanisms we evaluated the exon coordinates, downloaded from Ensembl 

release 59 (Flicek et al. 2010), for all transcripts produced by genes for which we 

had age information. From the same database, we also downloaded a list of 

transcripts that were predicted to undergo NMD. Finally, we considered the 

degree of miRNA regulation based on the experimentally verified miRNA 

targets in TarBase v5.0.1 (Papadopoulos et al. 2009), as well as the number of 

sites that undergo RNA editing, taken from the DARNED database (Kiran and 

Baranov 2010). 

 

We investigated the relationship between gene age and regulatory complexity 

for each of our eight measures by calculation the Pearson correlation. This 

analysis was based on the complexity values of each gene, not the averaged 

values, which are provided for overview in Figure 4.2. 
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To examine whether the observed correlations persisted even when we 

corrected for gene function, we first grouped genes into functional categories 

based on Gene Ontology terms (Ashburner et al. 2000). To this end, we down-

loaded GOslim terms for “molecular function” and “biological process” from 

Ensembl release 59 (Flicek et al. 2010). We then repeated the analysis described 

above for each functional category, while correcting for multiple tests using the 

Bonferroni method. 

 

 

4.3. Results and Discussion 

 

In order to assess whether there is a limit to regulatory complexity, we have 

examined the accumulation of regulatory complexity in human genes by 

analysing several aspects of gene expression in genes of different evolutionary 

ages. To group genes according to time of origin, we used the classifications 

given by Domazet-Lo!o and Tautz (2010). These age estimates rely on 

orthologue identification by BLAST (Altschul et al. 1997), which could mean 

that some faster-evolving genes escape detection. However, simulations indi-

cate that overall this strategy is reliable (Albà and Castresana 2007). In total, 

human genes were divided into 18 age categories, with the oldest category 

including human genes that were present in the eukaryote ancestor and the 

youngest category consisting of primate-specific genes (Table 4.1). Divergence 

times for the different categories were taken from the TimeTree database 
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(Hedges, Dudley, and Kumar 2006), except in cases of contradictory estimates, 

where instead we interpolated the divergence time from the surrounding cate-

gories by taking the average time (Table 4.1). Qualitatively similar results were 

obtained when we excluded these categories, as well as when we performed the 

analysis using the category numbers rather than the time estimates. Our 

conclusions are therefore robust to errors in the estimated divergence times. 

 

We calculated eight measures of regulatory complexity, based on publicly 

available data (see Section 4.2). To estimate the level of transcriptional 

regulation, we analysed sequences within 10 kb upstream of the TSS. Firstly, we 

counted the number of TFs that bind to this region in the human lympho-

blastoid cell line GM12878. To exclude non-expressed genes, only genes that 

were bound by at least one TF were included in the analysis. Figure 4.2.A 

shows the average number of TFs that bind to genes of different ages, with a 

clear increase in TF binding for old relative to young genes. As the data is 

rather noisy and some of the age categories contain relatively few genes (Table 

4.1), differences between individual age categories should be interpreted with 

caution in this and the following graphs. A list of means and standard errors for 

all investigated regulatory mechanisms is provided in Table 4.2. Analysis 

confirmed that evolutionary age is significantly correlated with TF binding 

diversity, such that older genes are typically associated with more types of TFs 

(p = 2 x 10-16, r = 0.12, Pearson correlation, note all correlations are performed 

on the raw data, not the means shown in the figures). To estimate the 

magnitude of the increase in diversity, we fitted a linear model to the data, 
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Figure 4.2. Evolution of regulatory complexity. A. Average number of TFs 

binding within 10 kb upstream of genes. B. Average number of conserved bases 

within 10 kb of the TSS. C. Average number of TSSs per gene. D. Average 

number of splicing isoforms per gene. E. Average number of polyadenylation 

sites per gene. F. Average number of verified miRNA targets per genes. G. 

Proportion of genes that are targeted by NMD. H. Proportion of genes that are 

RNA edited. The age of the gene categories in million years is on the x axis. 

Note that these are averages per age categories, whereas the statistical analysis 

described in the text was performed on raw data.  
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Table 4.2. Average values per age category and regulatory mechanism. Stand-

ard errors are given in brackets. The category numbers refer to Table 4.1. 

 

Category TF binding Conservation Alt.TSSs Alt. splicing 
1 4.16 (0.41) 317 (47) 2.64 (0.23) 3.20 (0.36) 
2 5.20 (0.96) 698 (198) 2.25 (0.38) 2.92 (0.54) 
3 4.17 (0.46) 441 (69) 2.26 (0.26) 2.68 (0.34) 
4 4.06 (0.29) 467 (53) 2.33 (0.19) 2.74 (0.24) 
5 4.47 (0.32) 451 (55) 2.89 (0.25) 3.33 (0.36) 
6 4.69 (0.46) 460 (59) 3.31 (0.35) 3.89 (0.42) 
7 4.27 (0.53) 343 (70) 2.74 (0.33) 3.25 (0.38) 
8 4.85 (0.21) 407 (34) 3.40 (0.15) 4.12 (0.19) 
9 4.40 (0.22) 384 (29) 3.67 (0.17) 4.20 (0.20) 

10 5.00 (0.82) 506 (105) 2.73 (0.31) 3.21 (0.63) 
11 4.35 (0.32) 437 (52) 3.64 (0.24) 4.26 (0.30) 
12 4.39 (0.57) 323 (68) 3.66 (0.54) 4.40 (0.65) 
13 4.74 (0.15) 539 (29) 3.96 (0.16) 4.51 (0.19) 
14 4.74 (0.11) 420 (15) 3.15 (0.08) 3.62 (0.10) 
15 4.95 (0.21) 790 (51) 4.24 (0.23) 5.03 (0.28) 
16 4.74 (0.24) 446 (35) 4.75 (0.28) 5.78 (0.33) 
17 5.08 (0.18) 658 (42) 4.62 (0.23) 5.40 (0.26) 
18 5.43 (0.05) 538 (11) 5.02 (0.07) 5.84 (0.08) 

 

Category Alt. polyA miRNAs NMD RNA editing 
1 2.66 (0.24) 0 (0) 0.080 (0.021) 0.112 (0.025) 
2 2.13 (0.37) 0 (0) 0.042 (0.042) 0.083 (0.058) 
3 2.13 (0.27) 0 (0) 0.061 (0.027) 0.099 (0.033) 
4 2.33 (0.17) 0.003 (0.003) 0.058 (0.014) 0.069 (0.015) 
5 2.63 (0.24) 0.033 (0.015) 0.080 (0.014) 0.076 (0.018) 
6 3.09 (0.32) 0 (0) 0.092 (0.027) 0.059 (0.022) 
7 2.66 (0.32) 0 (0) 0.096 (0.035) 0.083 (0.033) 
8 3.33 (0.15) 0.011 (0.007) 0.113 (0.015) 0.096 (0.014) 
9 3.54 (0.16) 0.018 (0.007) 0.118 (0.016) 0.072 (0.013) 

10 2.61 (0.46) 0.030 (0.030) 0.091 (0.051) 0.091 (0.051) 
11 3.47 (0.24) 0.012 (0.008) 0.102 (0.023) 0.138 (0.027) 
12 3.80 (0.57) 0 (0) 0.100 (0.043) 0.160 (0.052) 
13 3.82 (0.16) 0.020 (0.007) 0.111 (0.012) 0.088 (0.011) 
14 3.09 (0.08) 0.040 (0.008) 0.094 (0.007) 0.083 (0.007) 
15 4.10 (0.23) 0.059 (0.016) 0.127 (0.018) 0.130 (0.018) 
16 4.61 (0.27) 0.053 (0.016) 0.165 (0.022) 0.198 (0.024) 
17 4.48 (0.22) 0.056 (0.012) 0.147 (0.017) 0.164 (0.018) 
18 4.91 (0.07) 0.056 (0.004) 0.175 (0.005) 0.166 (0.005) 

 

 

!
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which showed that genes in the youngest category are typically bound by 4.1 

TFs, whereas the oldest genes are bound by 5.4 TFs (Table 4.3).  

 

Secondly, we assessed the level of conservation of upstream sequences, by 

counting the number of bases within 10 kb of the TSS that were identified as 

conserved among primates by the phastCons program (Siepel et al. 2005). 

Again, we found a significant correlation with age, where older genes tend to 

have more conserved upstream sequences than younger genes (p = 1 x 10-10, r = 

0.06, such that the upstream regions of the oldest genes contain almost 40% 

more conserved bases, compared to younger genes (Table 4.3). Thus, both TF 

binding and upstream conservation show a highly significant correlation with 

evolutionary age. 

 

We then considered complexity in terms of alternative isoforms generated by 

differential use of TSSs (Figure 4.2.C), splice sites (Figure 4.2.D) and polyaden-

ylation sites (Figure 4.2.E). For each of these mechanisms we found significant, 

positive correlations with gene age (alternative TSSs: p < 2 x 10-16, r = 0.18; 

alternative splicing: p < 2 x 10-16, r = 0.18; alternative polyadenylation: p < 2 x 

10-16, r = 0.18). Compared to the youngest genes in our dataset, the oldest genes 

have gained 2.57 alternative start sites, 2.96 alternative splicing isoforms and 

2.54 alternative polyadenylation sites (Table 4.3). This is consistent with the 

recent results of Roux and Robinson-Rechavi (2011), who also showed an 

accumulation in alternative splicing isoforms over time. 
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Table 4.3. Differences in complexity between the youngest and oldest age cate-

gories. The estimates were obtained by fitting a linear model to the data. 

 

Category Youngest genes 
(primates) 

Oldest genes 
(eukaryotes) Ratio 

TF binding sites 4.12 5.38 1.31 

Conserved bases upstream 396 547 1.38 

Transcription start sites 2.35 4.92 2.09 

Splicing isoforms 2.76 5.72 2.07 

Polyadenylation sites 2.26 4.80 2.12 

miRNA sites 0.0017 0.0573 33.7 

NMD proportion 0.058 0.168 2.90 

RNA editing proportion 0.052 0.161 3.10 

!



! 94 

Notably, the patterns for these last three mechanisms are highly similar. This is 

to be expected, since they are frequently coupled (for example, a gene with two 

potential last exons will need to accommodate at least two polyadenylation 

sites and produce at least two alternative splicing isoforms). However, the 

similarity could also be a sign of ascertainment bias: if some genes have been 

more intensely studied, we might expect more alternative isoforms, of all three 

types, to have been identified in these genes. To exclude biased identification as 

an explanation, we analysed cases where one of the three mechanisms acts 

independently of the others. Thus, we identified alternative TSSs and poly-

adenylation sites that occur within a single exon and therefore cannot be 

directly associated with an increase in splicing. We also counted the number of 

alternative coding sequences generated from each gene, as this is not coupled 

directly to changes in UTR structure. As seen in Figure 4.3, the three resulting 

distributions of alternative events are distinct from each other, as we would 

expect for unbiased data. Remarkably, the correlations between complexity and 

age remained positive and significant (alternative TSSs: p = 1 x 10-5, r = 0.04; 

alternative splicing: p < 2 x 10-16, r = 0.16; alternative polyadenylation: p = 3 x 

10-5, r = 0.05), even though this analysis was performed on limited datasets 

(number of genes with multiple isoforms of a given type was 2655, 6547 and 

3028, respectively). 

 

Next, we investigated the distribution of verified miRNA binding sites across 

the 18 categories (Figure 4.2.F) and found that older genes are enriched in this 

type of regulation (p < 5 x 10-11, r = 0.06), with the average number of miRNA 
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Figure 4.3. Alternative isoforms arising from independent mechanisms. The 

average number of isoforms that are due to TSSs within a single exon (A), 

splicing of coding sequences (B) and polyadenylation sites (C) within a single 

exon for genes of different ages. The x axis shows gene age in million years.  
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targets per gene increasing more than 30-fold from 0.0017 to 0.0573. We also 

found significant, positive correlations between gene age and the likelihood for 

genes to be targeted by the less common regulatory mechanisms NMD (p < 2 x 

10-16, r = 0.10) and RNA editing (p < 2 x 10-16, r = 0.10). For both of these 

mechanisms, around 5% of the youngest genes are affected, whereas the 

proportion among the oldest genes is three times larger. 

 

In theory, the results described above could be influenced by an uneven 

distribution of gene functions among the age categories. If “early” genes pre-

dominantly are of a functional type that requires a certain level or mode of 

regulation, whereas “late” genes have other functions and therefore different 

regulatory needs, then we might see a superficial correlation between age and 

regulatory complexity. To test this possibility, we further divided our dataset 

according to Gene Ontology terms (Ashburner et al. 2000) and repeated the 

analysis for a number of functional categories (see Section 4.2). In the vast 

majority of cases, the correlations between complexity and gene age remained 

positive even for functional subsets of genes (Appendix A), showing that the 

positive correlations that we obtained for the full dataset are not due to 

functional bias. 

 

Based on these results, we can exclude the two last possibilities shown in Figure 

4.1, (no increase in complexity with time and certain types of complexity being 

associated with particular time periods) as all forms of regulatory complexity 

investigated here show a significant increase over time. We are therefore left to 



! 97 

determine whether the oldest human genes have reached regulatory saturation, 

i.e., whether the pace at which genes accumulate new features has slowed 

down for older genes. To do this, we performed a regression analysis involving 

a quadratic term. However, in all eight cases, this term was either not signi-

ficant or it indicated that the pace is higher for older genes. Thus, we have not 

found any evidence to suggest that human genes have reached saturation or 

that the rate with which they increase in regulatory complexity slows down 

over time. This partially contradicts the results of Roux and Robinson-Rechavi 

(2011), who showed that for non-duplicated genes, the rate of splicing isoform 

acquisition decreases as genes grow older. For duplicated genes, they found a 

linear relationship, consistent with our results, but argued that the linearity 

may be due to biased duplication.  

 

Wolf et al. (2009) recently showed that the ratio of the rate of non-synonymous 

to synonymous substitution (dN/dS) decreases with gene age, indicating that 

older genes are under stronger constraint. Rather than being the cause of the 

observed correlations, the decrease in dN/dS might be a consequence of the 

increase in the complexity of gene regulation, as regulatory elements within 

protein-coding sequences would be expected to constrain both non-

synonymous and synonymous sites, but might affect non-synonymous sites 

more, as they also need to encode the protein sequence. However, even if due 

to some currently unknown mechanism the increase in constraint with 

evolutionary age was the cause of the increase in complexity, this does not alter 

the fact that regulatory complexity accumulates through time. 
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To summarise, we have demonstrated that older genes tend to be bound by 

more TFs, have more conserved upstream sequences, use more alternative 

TSSs, produce more alternative splicing isoforms, use more alternative poly-

adenylation sites, contain more miRNA binding sites and that they are also 

more likely targets of NMD and RNA editing. The differences between young 

and old genes are of such a magnitude that they could have a substantial 

impact on gene function. Furthermore, we have shown that the accumulation of 

new regulatory features has been an ongoing process over the past 1.5 billion 

years of eukaryote evolution. Therefore, although human gene regulation is a 

highly elaborate process, it has not reached its peak and human genes would 

thus be able to become even more complex in the future.  
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5. 

Ultraconserved elements in the Drosophila Hox 

gene Ultrabithorax 
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5.1. Introduction 

 

Sequence conservation is frequently used to predict functional genomic 

elements (Kellis et al. 2003; Stark et al. 2007). At the extreme end of the con-

servation spectrum lie the so-called ultraconserved elements (UCEs), originally 

defined as orthologous regions of at least 200 bp that are identical in the human, 

mouse and rat genomes (Bejerano et al. 2004). Around 500 UCEs are shared 

between these species (Bejerano et al. 2004), whose last common ancestor lived 

91 million years ago (Hedges, Dudley, and Kumar 2006). Some of these ele-

ments function as developmental enhancers (Pennacchio et al. 2006), whereas 

others constitute non-coding RNAs (Calin et al. 2007) or are associated with 

alternative splicing (Bejerano et al. 2004; Lareau et al. 2007; Ni et al. 2007). 

However, although functions have been identified for many UCEs, no currently 

known molecular mechanism can fully explain the preservation of these 

sequences over long evolutionary distances, as most functional genomic ele-

ments, including enhancers, are typically not conserved to this degree (Visel et 

al. 2008). 

 

In theory, apparent ultraconservation can be due to regionally lowered 

mutation rates rather than intense selection, but the distribution of single 

nucleotide polymorphisms (SNPs) within UCEs speaks against this, as the allele 

frequency spectrum is shifted towards rarer alleles in UCEs, indicating that 

most derived alleles are removed by selection before reaching higher fre-
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quencies (Drake et al. 2006; Katzman et al. 2007). Negative selection acting on 

UCEs has been estimated to be three times stronger than that acting on non-

synonymous sites (Katzman et al. 2007) and elements of at least 100 bp that are 

perfectly conserved between primates and dog are more than 300 times less 

likely to have been lost in rodents, compared to neutral DNA (McLean and 

Bejerano 2008). 

 

Considering that UCEs are under powerful negative selection, it might be 

expected that mutations within these elements would dramatically compromise 

genome function. Paradoxically, simultaneous deletion of four UCEs from the 

mouse genome did not produce any major phenotypic changes, even though 

the deleted elements were verified enhancers located close to genes for which 

inactivation or expression changes had previously been shown to lead to 

distinct phenotypes (Ahituv et al. 2007). While these results might be explained 

by insufficient testing for phenotypes or redundancy of regulatory elements in 

the genome (in which case, however, the need for ultraconservation is not 

obvious), they suggest that UCEs play a subtler role than was initially thought. 

It has also been observed that human individuals can be homozygous for de-

rived SNP alleles within UCEs and still be phenotypically normal (Drake et al. 

2006; Chen, Wang, and Cohen 2007). In light of this conflicting evidence, further 

study of the processes underlying ultraconservation is clearly warranted.  

 

Although most analyses of ultraconservation have focussed on the genomes of 

mammals and other vertebrates, the phenomenon is not limited to this taxon. It 
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has been known for some time that the genome of the fruit fly Drosophila 

melanogaster harbours many constrained non-coding sequences (Bergman and 

Kreitman 2001) and a comparison between D. melanogaster and D. pseudoobscura 

established the presence of over 23000 ultraconserved sequences of at least 50 

bp, some of which are conserved even in the more distantly related mosquito 

Anopheles gambiae (Glazov et al. 2005). The lineages leading to D. melanogaster 

and D. pseudoobscura split 54 million years ago, while the split between Droso-

phila and Anopheles is estimated to have occurred around 470 million years ago, 

which corresponds to the time of the split between terrestrial vertebrates and 

bony fishes (Hedges, Dudley, and Kumar 2006). Other studies have identified 

UCEs shared by D. melanogaster and D. virilis (Papatsenko et al. 2006), as well as 

highly conserved (but not ultraconserved) elements in the genomes of D. 

melanogaster, D. yakuba, D. pseudoobscura and A. gambiae (Siepel et al. 2005). A 

common theme emerging from these studies is that non-coding UCEs are 

frequently associated with developmental genes, which is consistent with the 

distribution of UCEs in vertebrates (Bejerano et al. 2004). 

 

When comparative methods are used to predict functional genomic elements, 

the choice of study organisms influences what type of elements can be detected 

(Boffelli, Nobrega, and Rubin 2004). Comparisons between distantly related 

organisms allow the identification of highly constrained sequences, but exclude 

any elements that originated after the chosen organisms diverged from each 

other. Conversely, the use of closely related species allows identification of 

more recent elements, but is complicated by the higher overall sequence 
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similarity. In their comparison of the D. melanogaster and D. pseudoobscura 

genomes, Glazov et al. (2005) narrowed down their list of 23000 UCEs by 

focussing on longer elements and those UCEs that are shared with A. gambiae.  

 

Here, we use a complementary approach to that of Glazov et al. (2005) and 

identify UCEs that are shared by twelve sequenced Drosophila genomes. The 

most distantly related species in our dataset diverged 62 million years ago 

(Hedges, Dudley, and Kumar 2006), meaning that we are able to detect both 

ancient and more recently derived UCEs. Furthermore, the use of multiple 

species improves resolution and we can therefore also identify shorter ele-

ments. Following our genome-wide analysis, we perform an in-depth survey of 

elements located within the Ultrabithorax (Ubx) gene, which is enriched in 

UCEs. Ubx belongs to the Hox genes, a family of key developmental regulators 

that are present throughout the animal kingdom and that are also associated 

with UCEs in vertebrates (Sabarinadh et al. 2004; Sandelin et al. 2004; Lampe et 

al. 2008; Lin, Ma, and Nei 2008). In Drosophila, alternative splicing of the Ubx 

gene yields functionally distinct isoforms by differential inclusion of the “mI” 

and “mII” exons (Mann and Hogness 1990; Subramaniam, Bomze, and Lopez 

1994; Gebelein et al. 2002; Reed et al. 2010). It has previously been shown that 

both exons are highly conserved at the nucleotide level (Bomze and Lopez 

1994). Here, we show that the mI exon is embedded within a UCE and go on to 

test how synonymous mutations within this short exon affects the Ubx alter-

native splicing pattern, thereby providing a link between the general pheno-
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menon of ultraconservation and the biologically relevant regulation of a gene 

with a well-established role in development.  

 

 

5.2. Materials and methods 

 

The genome assemblies (as of June 2008) for the following species were 

downloaded from the UCSC Genome Browser (Rhead et al. 2010): D. ananassae, 

D. erecta, D. grimshawi, D. melanogaster, D. mojavensis, D. persimilis, D. pseudo-

obscura, D. sechellia, D. simulans, D. virilis, D. willistoni and D. yakuba. The 

number of UCEs shared by these genomes had previously been estimated using 

an alignment-free method (Warnefors 2007): A sliding window of 50 bp, moved 

1 bp at a time, was applied along each genome to divide it into overlapping 

fragments and identical fragments shared by all twelve genomes were iden-

tified as putatively ultraconserved. Position coordinates were then obtained by 

a BLAT search against the D. melanogaster genome (Kent 2002) and any frag-

ments with overlapping coordinates were reassembled into longer sequences. 

Here, this initial analysis was further refined by validating each potential UCE 

by visual inspection of the corresponding multiple alignment in the UCSC 

Genome Browser. Notably, the algorithm used to generate this alignment is not 

set to maximise UCE size and some elements may therefore appear shorter than 

their actual length. 
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Genome coordinates for the Glazov dataset (Glazov et al. 2005) were updated 

from the dm1 to the dm3 D. melanogaster genome assembly using the liftOver 

tool from the UCSC Genome Browser (Rhead et al. 2010). Overlap between 

UCEs and protein-coding and non-coding genes downloaded from Ensembl 

release 59 (Flicek et al. 2010) was determined using intersectBed (Quinlan and 

Hall 2010). Enrichment of Gene Ontology terms (Ashburner et al. 2000) was 

calculated using the goseq R package (Young et al. 2010) while correcting for 

the lengths of the exonic, intronic and intergenic regions belonging to each 

gene. We used a false discovery rate (FDR) of 5% as our cut-off to consider 

terms significant.  

 

A multiple alignment of the genomic Ubx sequences (not including the UTRs) 

from the twelve species was prepared with the MultiPipMaker tool (Schwartz 

et al. 2003a). All nucleotide stretches with complete identity across the twelve 

species were counted and classified according to size. As this approach is 

alignment-based, there are some discrepancies in UCE length between these 

results and those from the genome-wide analysis. The decay pattern of identical 

blocks under neutral evolution was simulated by randomly shuffling the 

positions of the Ubx alignment, while keeping the number of gaps intact. This 

was repeated ten times and each of the resulting alignments was analysed in 

terms of completely conserved sequence stretches.  

 

The Ubx.4 plasmid was a gift from Manuel de la Mata. Mutations were 

introduced into the Ubx.4 plasmid by splicing PCR-driven overlap extension 
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(Heckman and Pease 2007). The PCR fragment was cloned into the pGEM-T 

Easy vector (Promega) and the plasmid was sequentially digested with AflII 

and PmlI to release a 255 nt fragment, which was cloned into Ubx.4 to create the 

derivative construct Ubx.4_mutA. 

 

 

5.3. Results 

 

Here, we have identified UCEs as sequences of at least 50 bp that are perfectly 

conserved in twelve Drosophila species, whose last common ancestor lived 

approximately 62 million years ago (Hedges, Dudley, and Kumar 2006). 

Putative UCEs were identified by extracting sequence fragments of exactly 50 nt 

that were present in all twelve Drosophila genomes, followed by assembly of the 

fragments into longer sequences and visual inspection to confirm their status as 

UCEs (see Methods). Using this approach, we identified 1557 Drosophila UCEs.  

 

The majority (59%) of the UCEs identified here are located in intergenic 

sequences (Figure 5.1), but many are located within the introns (25%) and exons 

(12%). Only a small proportion (4%) overlaps known non-coding RNAs, which 

indicates that the identification of UCEs shared between multiple species can 

lead to the identification of novel functional elements. In sharp contrast to this, 

74% of previously identified UCEs shared between D. melanogaster and its 

distant relative A. gambiae (Glazov et al. 2005) overlap with known RNAs, 
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Figure 5.1. Genomic distribution of the UCEs identified here and those 

identified in Glazov et al. (2005). UCEs were categorised according to whether 

they overlapped with non-coding RNAs (black), exons in protein-coding genes 

(white), introns in protein-coding genes (light grey) or if they did not overlap 

with any known transcripts (dark grey). The charts represent the complete set 

of UCEs identified here (“12 species”), UCEs of at least 80 bp from the Glazov 

dataset (“Long”), UCEs from the Glazov dataset that were shared between D. 

melanogaster and the distantly related A. gambiae (“Old”) and the proportion of 

bases belonging to the different categories in the dm3 genome assembly, 

excluding sequences on “chromosome Uextra”.  
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suggesting that the inclusion of a distant species is of limited value in terms of 

detecting regions of unexpected conservation that would be candidates for 

further functional analysis. The distribution of the UCEs identified here is 

relatively similar to that of the longest UCEs (at least 100 bp) shared by D. 

melanogaster and D. pseudoobscura (Glazov et al. 2005), with the main difference 

being that the Glazov UCEs are more likely to overlap exons. This is not sur-

prising as these UCEs were identified in a two-species comparison and there-

fore are more likely to occur by chance in protein-coding regions, even if there 

is no strong selection on synonymous sites. While the UCE dataset presented 

here includes a smaller proportion of exonic UCEs, these elements are more 

likely to represent true cases of extreme conservation.  

 

To test whether ultraconservation is more common for certain types of genes, 

we calculated the enrichment of Gene Ontology terms describing molecular 

function (Ashburner et al. 2000) for genes with UCEs. Intergenic UCEs were 

assigned to the nearest neighbouring gene, irrespective of distance. Because 

longer genes and genes without close neighbours would be more likely to be 

assigned UCEs, we performed the enrichment analysis using the goseq package 

(Young et al. 2010), which takes length bias into account. At a false discovery 

rate (FDR) of 5%, no terms were significantly enriched for genes with exonic 

UCEs, possibly due to the small sample size. Among the highest-ranking terms 

were functions related to ion transport, which is consistent with the results 

obtained for the Glazov dataset. Genes with intronic and intergenic UCEs were 

significantly enriched for terms related to transcription factor activity, which is 
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consistent with previous results in both insects and vertebrates (Bejerano et al. 

2004; Glazov et al. 2005). However, although these results suggest that many 

UCEs might be important for transcriptional regulation, it is in general not 

possible to pinpoint a hypothetical function, which could then be tested 

experimentally. To allow a more detailed functional analysis, we therefore 

turned to UCEs located within the Hox gene Ubx. The first Drosophila mutant 

related to this gene was identified in 1915 and continued study has resulted in a 

rich collection of information on Ubx regulation (Maeda and Karch 2009). 

Furthermore, Ubx is significantly enriched for UCEs, as it contains 13 UCEs, 

whereas the expected number for a sequence of similar length (~75 kb) would 

be 0.89 (p < 10-10, Poisson).  

 

The Ubx-UCEs are unique sequences that cannot be found elsewhere in the 

genome, showing that they are not made up of repetitive sequences or 

transposable elements. We also tried to trace the origin of the elements by 

examining the multi-species Multiz alignment provided through the UCSC 

Genome Browser (Blanchette et al. 2004). Apart from the twelve Drosophila 

species, this alignment also includes Anopheles gambiae, the flour beetle 

Tribolium castaneum and the honeybee Apis mellifera. However, no sequences 

from these species matched the Ubx-UCEs, suggesting that the Ubx-UCEs 

originated after the initial dipteran radiation. As more insect genomes become 

available, it would be of interest to search for Ubx-UCEs in intermediate 

dipterans.  
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Although the extreme conservation of the Ubx-UCEs is unlikely to be compati-

ble with neutral evolution, the elements themselves do not necessarily consti-

tute discrete functional units. It might be the case that the entire Ubx locus is 

conserved to a high degree and that the Ubx-UCEs merely represent random 

aggregations of perfectly conserved positions. Indeed, when we aligned the 

genomic Ubx sequences from the the twelve Drosophila species using Multi-

PipMaker (Schwartz et al. 2003a), we found a large number of shorter regions of 

perfect conservation. Distinguishing between these two possibilities is crucial if 

we want to use ultraconservation as a means to understand genome function, 

as the mechanisms causing high levels of conservation over large genomic 

distances would presumably be different from those causing ultraconservation 

within a discrete region. To test whether the Ubx-UCEs are conserved units in 

their own right or whether they are a product of high local conservation levels, 

we simulated ten sequences of the same length as Ubx with the same number of 

indels and overall conservation level (Figure 5.2A). In no case did we see con-

served stretches of 50 bp or more. Thus, we expect the Ubx-UCEs to represent 

distinct functional elements. 

 

The simulation of Ubx sequences further indicates that already ultraconserved 

blocks of 20 bp or more are highly unlikely to occur by chance, yet a large 

number of such blocks exist within the Ubx locus. Like the Ubx-UCEs, they are 

relatively evenly distributed throughout the Ubx, without obvious clustering 

(Figure 5.2B). The Ubx-UCEs therefore do not seem to constitute a separate class 

of elements, but rather represent the extreme end of a continuum. The 
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Figure 5.2. A. Distribution of UCEs within Ubx compared to ten neutrally 

evolving sequences of the same length and overall conservation level. B. 

Position of shorter UCEs within Ubx. UCE size is somewhat underestimated in 

this graph as UCEs were identified based on a multispecies alignment. 

Positions of the Ubx exons are indicated below the graph. The gene measures 75 

kb between the start and the stop codons.  
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conclusions that we draw based on our study of Ubx-UCEs should therefore be 

relevant to understanding these shorter elements. 

 

To link our set of Ubx-UCEs to potential functions, we searched for positional 

overlap between these sequences and previously reported functional elements 

within the Ubx locus (Figure 5.3). Firstly, we looked for overlaps between Ubx-

UCEs and known protein-coding and non-coding transcripts. One element, 

Ubx-UCE-2, overlaps with the coding Ubx exon mI and will be discussed in 

more detail below. No other Ubx-UCEs overlap with Ubx coding sequences or 

with the CG31498 gene, which is located within the Ubxlocus. The region does 

not contain any reported non-coding RNAs, but there is some evidence for 

additional, protein-coding transcripts (Hild et al. 2003) and Ubx-UCE-11 

overlaps one of these putative genes (BK002585). For Ubx-UCE-2 and Ubx-UCE-

11 selection on amino acid sequences might therefore contribute to the observed 

level of conservation. 

 

As many vertebrate UCEs are known to drive gene expression, we went on to 

consider overlap between the Ubx-UCEs and transcriptional enhancers that are 

located within the Ubx introns. Two such enhancers are known: bithorax (bx) 

and anterobithorax (abx), both of which regulate aspects of Ubx expression (Peifer 

and Bender 1986; Maeda and Karch 2006). Perhaps surprisingly, the bx 

enhancer does not overlap with any Ubx-UCEs. The abx region, on the other 

hand, overlaps with both Ubx-UCE-8 and Ubx-UCE-9. The Ubx-UCE-8 is of 
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Figure 5.3. Overlap between Ubx-UCEs and known functional elements. See the 

text for further details.  

 

mI mII 
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particular interest as it sits within a 1.7 kb fragment that can drive reporter gene 

expression in an abx-like pattern (Simon et al. 1990). 

 

Next, we considered Ubx-UCEs located in the vicinity of splice junctions, as 

many of the longest elements in the Glazov dataset overlapped with splice sites 

(Glazov et al. 2005). The Ubx contains two short, alternatively spliced exons: mI 

and mII. Unusually, the gene also contains an intronic splice site, which is used 

to subdivide the largest intron (Burnette et al. 2005). The Ubx-UCE-2 extends 

into the intronic sequence on both sides of the mI exon, meaning that it overlaps 

with both the upstream and downstream splice site. The mII exon, although 

well-conserved (Bomze and Lopez 1994), does not overlap with any Ubx-UCEs 

and neither does the intronic splice site. 

 

Following the initial activation of Drosophila Hox genes, their expression state 

(active or inactive) is maintained by proteins of the Polycomb and Trithorax 

groups (Ringrose and Paro 2004). The binding site for five of these proteins 

within the Ubx locus have been determined by ChIP-chip (Beisel et al. 2007). 

Ubx-UCE-5 and Ubx-UCE-6 both overlap with one of the regions that was 

enriched for these regulators (PCR fragment 20287), however, this region only 

shows enrichment for one protein and the enrichment is only present in one of 

the two tested cell types. Thus, there does not appear to be a strong correlation 

between Ubx-UCEs and epigenetic regulation.  
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To summarise, we have some reason to believe that Ubx-UCE-2 may play a role 

in alternative splicing and that Ubx-UCE-8 is part of the abx enhancer. Further-

more, it is possible that Ubx-UCE-5 and Ubx-UCE-6 are involved in epigenetic 

regulation, that Ubx-UCE-9 is an additional component of the abx enhancer and 

that Ubx-UCE-11 is transcribed as part of the predicted BK002585 gene. For the 

remaining seven Ubx-UCEs, no potential functions were identified through our 

literature review. Notably, several functional regions of Ubx, such as the mII 

exon and the bx enhancer, were not connected with any Ubx-UCEs. 

 

Based on this functional overview, we decided to further investigate the causes 

of ultraconservation within the mI exon. Our observation that mI resides within 

a Ubx-UCE adds to previous work showing that the nucleotide sequence of this 

exon is identical in four Drosophila species (Bomze and Lopez 1994). Our 

analysis also shows that Ubx-UCE-2 is 71 bp long and extends into the introns 

on both sides of the mI exon, which is 51 bp long. This already suggests that 

coding constraints cannot be the only cause of this case of ultraconservation, 

but to test this formally, we compared the mI exon to the Ubx homeodomain, 

which encodes a DNA-binding protein domain that is identical on the amino 

acid level in all twelve Drosophila species. For both sequences we counted the 

number of synonymous sites and the number of changes that had occurred at 

those sites. All 15 sites within mI are identical, whereas 29 out of 57 sites within 

the homeodomain have changed, showing that the conservation pattern of mI is 

significantly different from that of the homeodomain (p = 0.0002, Fisher’s exact 

test). We only considered the third position of each codon for this analysis, 
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although some synonymous mutations within the homeodomain have occurred 

at the first position of sixfold degenerate codons. Including these substitutions 

yields qualitatively similar results. 

 

Splicing of the Ubx gene has been successfully studied using the Ubx.4 

minigene construct, which reproduces the tissue-specific alternative splicing 

pattern of Ubx (Subramaniam, Bomze, and Lopez 1994). Previous experiments 

using the Ubx.4 minigene have established that changes in the mI nucleotide 

sequence can affect exon inclusion levels in Drosophila SL2 cell culture (Hatton, 

Subramaniam, and Lopez 1998). However, since these constructs contained a 

combination of synonymous and non-synonymous changes within mI, the 

potential causes of ultraconservation become hard to disentangle: If the ob-

served changes in splicing pattern depend mainly on one or more non-syno-

nymous mutations, the ultraconservation at those positions might be due to 

selection on the amino acid sequence, selection for correct splicing or both. It 

might even be the case that the two selection pressures are opposed to each 

other, for example such that the need to encode a specific amino acid overrides 

potentially beneficial changes in splicing regulation. Here, we therefore wished 

to extend these previous results by testing whether purely synonymous muta-

tions have an impact on Ubx splicing. 

 

Towards this end, we produced the Ubx.4 derivative construct Ubx.4-mutA 

(Figure 5.4). Mutations were introduced at all synonymous positions within the 

mI exon, except within 5 bp of the exon borders, to avoid interference with 
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Figure 5.4. Comparison of the wildtype mI exon and the mutated exon in the 

Ubx.4-mutA construct. The amino acid sequence is shown at the top, followed 

by the wildtype coding sequence, with all possible synonymous mutations 

indicated below. At the bottom is the Ubx.4-mutA mI sequence with 

substitutions highlighted in grey.  
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basic splice site recognition. Thus, although the mutated mI exon encodes the 

same amino acids, any splicing signals within the exonic RNA sequence are 

likely to have been altered.  

 

 

5.4. Discussion 

 

We have identified 1557 sequences of at least 50 bp that are identical in the 

genomes of twelve Drosophila species. To explore potential functions of these 

elements, we turned to the Hox gene Ubx, which contains an unexpectedly large 

number of UCEs. We surveyed the literature on Ubx regulation, which has 

accumulated over several decades, to search for positional overlap between the 

13 Ubx-UCEs and known functional elements. This analysis suggested plausible 

roles for two Ubx-UCEs in alternative splicing and transcription, respectively, 

and indicated that some of the other Ubx-UCEs might be transcribed or 

involved in epigenetic regulation. However, in spite of the rich literature on the 

Ubx locus, we were not able to find any links with the pre-existing literature for 

seven Ubx-UCEs. Thus it seems that many features of Ubx biology have so far 

escaped detection and that comparative sequence analysis can serve as a tool to 

further our understanding of this biologically important locus.  

 

To study the mechanisms that underlie ultraconservation of a single element, 

we focussed on Ubx-UCE-2, which overlaps with the short mI exon, the 
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alternative splicing of which has important consequences in Drosophila develop-

ment. Further to previous experiments showing that nucleotide changes within 

mI can affect the Ubx alternative splicing pattern (Hatton, Subramaniam, and 

Lopez 1998), experiments by Britta Hartmann (unpublished observations) have 

established that an effect on splicing is observed for purely synonymous 

nucleotide substitutions. This suggests that the extreme conservation of mI and 

the immediately surrounding intronic sequences is likely due to a mixture 

between selection on the coding sequence and selection on splicing signals. 

Notably, many human UCEs overlap with alternative exons (Bejerano et al. 

2004) indicating that this type of dual selection pressure might be a common 

phenomenon. Possibly, ultraconservation in general might be often explained 

by multiple functions being imposed on a single sequence, for example en-

hancers that also function as silencers (Pennacchio et al. 2006) or coding 

sequences that contain transcriptional regulators (Lampe et al. 2008). Analysis 

of mutations within single UCEs provides a means to tease apart these different 

contributions.  

 



! 120 

 

 

6. 

General discussion 
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In this thesis, I have investigated four aspects of gene expression evolution. In 

Chapter 2, we saw that TEs have not had a noticeable effect on differences in 

expression levels and transcript diversity between humans and chimpanzees. In 

addition, it appears that TEs do not accumulate upstream of genes due to a 

presumed role in gene regulation, but rather because they are preferentially 

inserted upstream of genes that are active in the germ line. 

 

In Chapter 3, I proposed a test for positive selection acting on gene expression 

levels. Contrary to previous methods, this test estimates the rate of neutral 

evolution directly from experimental data. Applied to expression data from 

human and chimpanzee lymphoblastoid cell lines, the test indicated that 

slightly deleterious mutations are segregating in humans and that they 

overshadow any effects of adaptive evolution. Although exact quantification 

will have to await accurate modelling of the distribution of fitness effects 

associated with expression mutations, it seems that humans have undergone 

little or no adaptive evolution in terms of expression levels. 

 

Chapter 4 dealt with the evolution of regulatory complexity in the human 

genome. I showed that older genes are more extensively regulated than 

younger genes and that the rate of increase in complexity does not slow down 

over time. Therefore, the evolution of gene regulation does not appear to be 

curbed by difficulties of organising very complex genes.  
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Finally, in Chapter 5, the phenomenon of ultraconservation, which has been 

most extensively analysed in vertebrates, was studied in twelve Drosophila 

species. Although functions have been found for some UCEs, it is still not clear 

why these elements are conserved to such an extreme degree. The use of an 

easily manipulated model organism, such as Drosophila melanogaster, will allow 

careful dissection of UCEs to reveal their full responsibilites.  

 

How has this thesis contributed to our understanding of gene expression 

evolution? I will begin, in Section 6.1, by considering the importance of gene 

regulation in human evolution, in light of the data presented here. Next, in 

Section 6.2, I will discuss how the results of each chapter may extend to other 

species an to within-species variation. In Section 6.3, I will then outline some 

upcoming challenges in the field and will finish, in Section 6.4, with some 

concluding remarks on the lessons learnt from this thesis.  

 

 

6.1. The role of gene expression in human evolution 

 

How have changes in gene regulation affected the evolution of our own 

species? In Section 6.1.1, I will discuss human evolution in the short term, 

dating back to the split from our closest living relatives, the chimpanzees. In 

Section 6.1.2, I will consider gene regulation over longer time periods. 
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6.1.1. Adaptive and non-adaptive evolution of gene regulation 
 

The conclusion of Chapter 3, that there is no evidence for pervasive positive 

selection on gene expression in humans, is consistent with a previous study by 

Lemos et al. (2005). In both cases, the analyses were based on comparisons 

between humans and chimpanzees. In a complementary approach,  Kudaravalli 

et al. (2009) analysed variation within human populations and estimated that 

0.1% or less of their identified eQTLs showed signs of positive selection. It 

should be emphasised that the observed selection signal was not necessarily 

due to the eQTLs themselves, but could be caused by selection on nearby 

sequences that do not have an impact on gene expression. So far, there is 

therefore very little evidence that recent human evolution has been heavily 

influenced by adaptive changes in gene expression. 

 

This is not to say that there might not be individual cases of important human 

adaptations that have relied on differences in gene expression. Many critical 

differences might for example occur in early development and would therefore 

not have been visible in the above studies, which focussed on adult tissues and 

cell lines. The role of positive selection on human gene expression is therefore a 

question that remains to be finally settled. The extended McDonald-Kreitman 

test, presented in Chapter 3, will hopefully provide a useful framework for this 

purpose. 
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The relative contributions of regulatory and protein-coding mutations to 

phenotypic evolution are a matter of debate (Hoekstra and Coyne 2007). Should 

the apparent lack of adaptive gene expression evolution in humans be taken as 

evidence that structural changes have been more influential? Not necessarily, 

because positive selection acting on protein-coding sequences appears to have 

been much less efficient in humans, where estimates of the proportion of 

positively selected sites lie in the range of 0-20% (Boyko et al. 2008; Eyre-Walker 

and Keightley 2009), compared to other mammals such as mice, where it is 

above 50% (Halligan et al. 2010). This is at least in part due to variations in 

effective population size; while the human effective population size is around 

10000 (Eyre-Walker et al. 2002), the mouse equivalent is 580000 (Halligan et al. 

2010). A smaller effective population size means that it is easier for neutral and 

nearly neutral mutations to reach fixation. We must therefore take into account 

that many of the changes that made us human, whether regulatory or struc-

tural, might have been fixed due to random processes rather than because of 

their adaptive value. 

 

In principle, TEs could drive extensive remodelling of a genome in the absence 

of selection (Feschotte 2008). We might even expect a larger impact of TEs in 

humans compared to other species, as the reduced effective population size 

would make it more difficult for negative selection to weed out slightly 

deleterious insertions (Lynch 2007b). However, as we saw in Chapter 2, TEs 

have not contributed expression differences between humans and chimpanzees. 

Future studies will have to determine whether this is because TEs do not sig-
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nificantly influence gene expression or whether their effect is typically too large 

to be tolerated (see Section 6.2.1). 

 

6.1.2. Turn-over of regulatory elements 
 

The evolution of gene expression does not only depend on forces that influence 

the creation and fixation of new elements, but also on forces that cause them to 

be removed. In Chapter 4, I showed that genes tend to accumulate regulatory 

elements, as they grow older. To what extent is this regulatory complexity 

beneficial? 

 

The observation that complexity increases over time does not necessarily 

indicate that it has a purpose (Lynch 2007a). In theory, we might observe the 

same phenomenon for completely non-functional elements, if for some reason 

they were easier to add than to remove. It is of course not true that all 

regulation is unproductive; careful control of gene expression plays a critical 

role for survival and, as our knowledge of gene regulation in humans and other 

species grows, our appreciation of this will likely increase. However, it is worth 

keeping in mind that we are not yet in a position where we can explain what 

the regulatory information available from genome-wide surveys means in 

terms of organism function. Some signal will be due to technical and biological 

noise and some might represent regulatory elements that have become obsolete, 

but which are difficult to remove without disturbing gene function. However, 

at least for alternative splicing, the increase in complexity is not explained by a 



! 126 

larger proportion of non-functional isoforms, as the trend persists even when 

only isoforms with a confirmed protein product are included in the analysis 

(Roux and Robinson-Rechavi 2011). 

 

 

6.2. Generality of the results of this thesis 

 

To what degree can the observations presented here teach us something about 

gene expression evolution in general? In this section I will discuss how the 

results of each chapter may extend to other species and, where applicable, to 

variation between human individuals. 

 

6.2.1. Transposable elements 
 

We saw in Chapter 2 that TEs have not made a detectable contribution to gene 

expression in humans and chimpanzees. This is consistent with a previous 

study where it was shown that human Alu elements are more common around 

genes that are expressed in many tissues, but that they do not themselves cause 

genes to increase their expression breadth (Urrutia, Ocana, and Hurst 2008). 

However, it contrasts with results from Arabidopsis (Hollister and Gaut 2009), 

rice (Naito et al. 2009) and rodents (Pereira, Enard, and Eyre-Walker 2009) in 

which TEs were shown to contribute to differences in gene expression, although 

in the last case the contribution was relatively minor. Furthermore, com-
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parisons of embryonic stem cells from humans and mice have identified 

changes in transcriptional regulation that are linked to the activity of a rare type 

of TE known as endogenous retrovirus 1 (ERV1) (Kunarso et al. 2010). Together 

these observations argue for a lineage-specific effect of TEs, where the types of 

TEs that are present might be more important than the overall TE activity. 

 

As discussed in Chapter 2, very recent TE insertions may cause variation in 

gene expression between human individuals, but be too deleterious to ever 

reach fixation. Identifying such insertions might therefore be interesting from a 

medical perspective. Data has recently become available to test this hypothesis, 

as a number of studies have identified human polymorphic TEs (Beck et al. 

2010; Huang et al. 2010; The 1000 Genomes Project Consortium et al. 2010), 

which could be contrasted with expression data from the same individuals.  

 

6.2.2. Positive selection on gene expression levels 
 

It is likely that adaptive evolution of gene expression has been more prominent 

in other species than it has in humans, as this is what has been seen for protein-

coding sequences (see Section 6.1.1). As more sequence and expression data 

become available, this could easily be tested using the extended McDonald-

Kreitman test from Chapter 3. It will be particularly interesting to see whether 

positive selection on expression changes will be tightly linked to positive 

selection on structural changes or whether under some evolutionary scenarios, 

new adaptations are more likely to be expression-based and vice versa. 
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6.2.3. Accumulation of regulatory complexity 
 

How has regulatory complexity evolved in other species? It seems plausible 

that the increase to complexity over time, shown in Chapter 4, is a general 

phenomenon that applies to many other lineages. However, it would be inter-

esting to see whether organisms with slimmer genomes, such as D. melanogaster 

or the yeast Saccharomyces cerevisiae, are more constrained in terms of gene 

regulation and might therefore show slower rates of increase for older genes. It 

should be emphasised that these trends concern the average behaviour and that 

the variance in complexity can be large between individual genes. For example, 

the Drosophila genome contains the spectacular Dscam gene, which contains 95 

alternative exons and could theoretically give rise to over 38000 isoforms (Park 

and Graveley 2007). 
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6.2.4. Ultraconservation 
 

Ultraconservation is a phenomenon that exists both in Drosophila and verte-

brates, and most likely also in many other clades for which we currently do not 

have sufficient genome information. Studying UCE function in Drosophila has 

both advantages and disadvantages if the aim is to understand ultraconser-

vation in the human genome. Vertebrate UCEs tend to be longer and older; in 

some cases they can be traced back to cartilaginous fishes (Wang et al. 2009). It 

is therefore unlikely that all lessons learned from Drosophila will be directly 

transferable. On the other hand, analysis of an independent set of UCEs, such as 

those in Drosophila, will give us more power to elucidate the general principles 

that underlie ultraconservation. 

 

 

6.3. Future studies 

 

The field of human molecular genetics has undergone a revolution in recent 

years: The human genome has been sequenced (Lander et al. 2001; Venter et al. 

2001), the contributions of regulatory mechanisms such as alternative splicing 

and miRNAs has been re-evaluated (Pasquinelli et al. 2000; Pan et al. 2008) and 

vast amounts of gene expression data have been collected (Parkinson et al. 

2011). However, many central questions remain largely unanswered: Which 

sequences are involved in gene regulation? How do these sequences differ 
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between humans and other species? What impact have these differences had on 

gene expression and, ultimately, fitness? Although it will undoubtedly take 

time to exhaustively address these topics, new developments will allow us 

further insights in the near future.  

 

6.3.1. Improved and extended gene expression measurements 
 

The ongoing ENCODE project is an effort to catalogue all functional elements in 

the human genome and the pilot phase of the project has already provided 

maps of transcribed sequences, transcription factor binding sites, histone 

modifications and many other features in 1% of the genome (ENCODE Project 

Consortium et al. 2007). Having access to this type of information is vital, if we 

are to fully decipher our genome. For example, it should increase our under-

standing of the mechanisms underlying ultraconservation, as well as allow 

informed choices about which sequences to analyse for signs of positive 

selection that might affect gene expression.  

 

Another area where we might expect significant progress within the next few 

years is proteomics: For technical reasons, many studies of gene expression 

have focussed on RNAs rather than proteins, as reliable measurement of 

protein levels have proven notoriously difficult (Bell et al. 2009), especially for 

genome-wide assessments. However, in a pioneering study, Schwanhäusser et 

al. (2011) recently measured both protein and mRNA levels for thousands of 
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genes in mammalian cells and showed that the regulation of translation is the 

most important factor for controlling protein abundance.  

 

6.3.2. Gene expression in model and non-model organisms 
 

Much effort is also being made to systematically investigate gene regulation in 

other species, which should give important evolutionary clues. The mouse 

ENCODE project has been designed to be largely analogous to its’ human 

counterpart, so that the data can be used for comparative analysis, but will also 

extend the human data by using techniques that cannot be applied to humans 

(Raney et al. 2011). There are also similar projects underway for the fruit fly D. 

melanogaster (The modENCODE Consortium et al. 2010) and the nematode C. 

elegans (Gerstein et al. 2010).  

 

From a human perspective, it is also of great interest to study gene regulation in 

primates, as this allows us to investigate changes that may have contributed to 

human-specific characteristics. While these animals are not as easily 

manipulated as model organisms such as mouse, the sequencing of several 

primate genomes, including gorilla, baboon and marmoset (Flicek et al. 2011), 

along with the previously published chimpanzee (Chimpanzee Sequencing and 

Analysis Consortium 2005), orang-utan (Locke et al. 2011) and rhesus macaque 

(Gibbs et al. 2007) genomes allow detailed comparative analysis of this clade 

and also enables the use of RNA sequencing and other techniques that require 

genome mappings. Other methods may also be available for these species, as, in 



! 132 

some cases, procedures established in humans may be directly transferable; for 

example, Cain et al. (2011) studied histone modifications in chimpanzees and 

macaques using ChIP-seq with a human antibody.  

 

Access to data from multiple species improves analyses by providing greater 

power to detect lineage-specific differences and by putting findings into 

context. For example, it has been reported that certain genes related to 

metabolism are upregulated in human relative to chimpanzee brain tissue, 

which could indicate that increased energy supply was a crucial step towards 

the enhanced cognitive ability seen in humans (Khaitovich et al. 2008). 

However, as lack information on expression levels of metabolic genes in other 

primate species, it is not yet possible to say whether this is truly a human-

specific pattern. Subsequent analysis may therefore require us to revise this and 

other hypothesis about human evolution.  

 

6.3.3. Gene expression in context 
 

Gene expression is not an end goal in itself, but a means to build up a whole 

organism, whose fitness will determine its’ survival. Therefore, we should aim 

to integrate the study of gene expression into a larger biological framework. In 

the first instance, this could mean relating gene expression data to biochemical 

processes in the cell, for example by correlating expression levels to the 

concentrations of different metabolites (Fu et al. 2011). Following on from this, 

we will also want to know how gene expression influences how cells specialise 
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and interact with each other, for example by studying gene expression from a 

developmental perspective (Venkataraman et al. 2008). Finally, because 

dynamic gene expression influences how animals interact with the outside 

world (Warren et al. 2010), molecular genetics also has links to psychology, 

ecology and other biological sciences. Thus, many future discoveries on the role 

of gene expression in human evolution are likely to come from interdisciplinary 

studies (Varki, Geschwind, and Eichler 2008). 

 

 

 

6.4. General conclusions 

 

Understanding gene expression evolution is not only a matter of collecting data. 

As shown in this thesis, naïve interpretation of genomic information can easily 

lead to erroneous conclusions regarding the selective regimes operating on a 

given sequence. For example, non-random distributions of genomic elements 

can sometimes arise through neutral processes. This was illustrated in Chapter 

2, where the enrichment of TEs upstream of protein-coding genes could be 

explained by biased insertion, without the need to invoke selection. Further, the 

degree of sequence similarity cannot be taken as a direct indication of 

functional importance, as shown by the study of Drosophila UCEs in Chapter 5; 

while future studies might provide functional explanations for all of these 

elements, it is nonetheless striking that they only rarely overlap with known 
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regulatory sequences. On the other side of the spectrum, as discussed in 

Chapter 3, large sequence divergence may or may not be indicative of emerging 

new functions, as it may arise from either positive selection or reduced 

constraint. In this context, one can speculate that many new features, such as TE 

insertions (Chapter 2) or new regulatory elements (Chapter 4) might be passed 

on to further generations, not because of their functional significance, but 

because they are selective neutral. Based on these considerations, the 

overarching message of this thesis is therefore the absolute need to complement 

genome-wide maps of gene regulation with thorough evolutionary analysis and 

not to assume that observed patterns are the result of natural selection until all 

neutral alternatives have been exhausted.  
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TFBS 4492 0.11 1.9 * 10-10 *** 
Cons. 6308 0.06 2.3 * 10-3 ** 
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Alt. splic. 6263 0.12 7.9 * 10-14 *** 
Alt. polyA 6263 0.13 7.9 * 10-14 *** 
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Cons. 4382 0.05 2.2 * 10-1  
Alt. prom. 4362 0.15 7.9 * 10-14 *** 
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Alt. splic. 1432 0.07 1  
Alt. polyA 1432 0.08 1  
miRNA 1449 0.06 1  
NMD 1432 0.04 1  Ca

ta
ly

tic
 a

ct
iv

ity
 

(M
F)

 

RNA ed. 1428 0.00 1  
TFBS 641 0.02 1  
Cons. 1419 0.17 6.8 * 10-8 *** 
Alt. prom. 1404 0.15 8.0 * 10-6 *** 
Alt. splic. 1404 0.14 8.3 * 10-5 *** 
Alt. polyA 1404 0.14 1.2 * 10-4 *** 
miRNA 1419 0.06 1  
NMD 1404 0.03 1  Si

gn
al

 tr
an

sd
uc

er
 

ac
tiv

ity
 (M

F)
 

RNA ed. 1402 0.07 1  
TFBS 954 0.13 3.8 * 10-2 * 
Cons. 1307 -0.00 1  
Alt. prom. 1303 0.13 1.2 * 10-3 ** 
Alt. splic. 1303 0.12 6.4 * 10-3 ** 
Alt. polyA 1303 0.14 9.1 * 10-5  
miRNA 1307 0.07 1  
NMD 1303 0.07 1  Tr

an
sp

or
t (

BP
) 

RNA ed. 1301 0.10 1.3 * 10-1  
TFBS 829 0.04 1  
Cons. 1173 0.03 1  
Alt. prom. 1166 0.02 1  
Alt. splic. 1166 0.01 1  
Alt. polyA 1166 0.02 1  
miRNA 1173 -0.00 1  
NMD 1166 -0.01 1  Tr

an
sc

rip
tio

n 
re

gu
la

to
r a

ct
iv

ity
 

(M
F)

 
RNA ed. 1164 0.01 1  
TFBS 1006 0.09 1  
Cons. 1673 0.09 1.4 * 10-1  
Alt. prom. 1666 0.14 3.0 * 10-6 *** 
Alt. splic. 1666 0.13 8.8 * 10-5 *** 
Alt. polyA 1666 0.13 1.5 * 10-5 *** 
miRNA 1673 0.05 1  
NMD 1666 0.04 1  M

ul
tic

el
lu

la
r 

or
ga

ni
sm

al
 

de
ve

lo
pm

en
t 

(B
P)

 

RNA ed. 1662 0.08 6.6 * 10-1  
TFBS 467 -0.03 1  
Cons. 1163 0.15 4.1 * 10-5 *** 
Alt. prom. 1148 0.05 1  
Alt. splic. 1148 0.04 1  
Alt. polyA 1148 0.03 1  
miRNA 1163 0.09 4.4 * 10-1  
NMD 1148 0.00 1  Re

ce
pt

or
 a

ct
iv

ity
 

(M
F)

 

RNA ed. 1146 0.04 1  
TFBS 600 0.09 1  
Cons. 965 0.10 6.2 * 10-1  
Alt. prom. 962 0.10 7.3 * 10-1  
Alt. splic. 962 0.08 1  
Alt. polyA 962 0.10 1  
miRNA 965 0.05 1  
NMD 960 0.04 1  Ce

ll 
di

ffe
re

nt
ia

tio
n 

(B
P)

 

RNA ed. 962 0.07 1  
TFBS 680 0.06 1  
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TFBS 482 0.02 1  
Cons. 682 0.13 1.8 * 10-1  
Alt. prom. 671 0.11 1  
Alt. splic. 671 0.11 1  
Alt. polyA 671 0.06 6.3 * 10-1  
miRNA 682 0.12 1  
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Alt. prom. 489 0.18 2.0  * 10-2 * 
Alt. splic. 489 0.19 1.0 * 10-2 ** 
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RNA ed. 429 0.13 1  
TFBS 313 0.09 1  
Cons. 425 -0.02 1  
Alt. prom. 420 -0.05 1  
Alt. splic. 420 -0.10 1  
Alt. polyA 420 -0.09 1  
miRNA 425 0.02 1  
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Alt. prom. 369 0.14 1  
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ta
bo

lic
 

pr
oc

es
s 

(B
P)

 

RNA ed. 369 0.10 1  
TFBS 176 0.18 1  
Cons. 281 0.19 4.5 * 10-1  
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Alt. splic. 280 0.18 1  
Alt. polyA 280 0.18 9.4 * 10-1  
miRNA 281 0.08 1  
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TFBS 164 0.13 1  
Cons. 280 0.28 9.2 * 10-4 *** 
Alt. prom. 280 0.30 8.0 * 10-5 *** 
Alt. splic. 280 0.29 3.8 * 10-4 *** 
Alt. polyA 280 0.30 1.7 * 10-4 *** 
miRNA 280 0.05 1  
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RNA ed. 280 0.14 1  
TFBS 166 0.09 1  
Cons. 236 0.05 1  
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Alt. polyA 236 0.10 1  
miRNA 236 0.02 1  
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RNA ed. 236 0.04 1  
TFBS 173 -0.06 1  
Cons. 208 0.09 1  
Alt. prom. 208 0.03 1  
Alt. splic. 208 0.01 1  
Alt. polyA 208 0.03 1  
miRNA 208 0.05 1  
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RNA ed. 206 -0.05 1  
TFBS 132 0.24 1  
Cons. 208 0.06 1  
Alt. prom. 207 0.12 1  
Alt. splic. 207 0.12 1  
Alt. polyA 207 0.11 1  
miRNA 208 0.01 1  
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RNA ed. 206 0.08 1  
TFBS 111 0.10 1  
Cons. 175 -0.01 1  
Alt. prom. 174 0.23 9.5 * 10-1  
Alt. splic. 174 0.23 7.2 * 10-1  
Alt. polyA 174 0.25 3.5 * 10-2 * 
miRNA 175 0.11 1  
NMD 174 0.17 1  Se
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TFBS 106 0.08 1  
Cons. 167 0.03 1  
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Alt. splic. 167 -0.01 1  
Alt. polyA 167 0.06 1  
miRNA 167 -0.07 1  
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RNA ed. 167 0.04 1  
TFBS 107 0.03 1  
Cons. 141 0.16 1  
Alt. prom. 138 0.19 1  
Alt. splic. 138 0.19 1  
Alt. polyA 138 0.21 1  
miRNA 141 0.05 1  
NMD 138 -0.01 1  O
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RNA ed. 138 -0.17 1  
TFBS 89 0.26 1  
Cons. 126 0.01 1  
Alt. prom. 123 -0.02 1  
Alt. splic. 123 -0.06 1  
Alt. polyA 123 -0.06 1  
miRNA 126 0.03 1  
NMD 123 -0.00 1  Ki
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RNA ed. 123 -0.03 1  
TFBS 48 0.09 1  
Cons. 69 0.00 1  
Alt. prom. 63 -0.03 1  
Alt. splic. 63 -0.11 1  
Alt. polyA 63 -0.08 1  
miRNA 69 0.03 1  
NMD 63 0.07 1  M
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TFBS 56 0.13 1  
Cons. 62 0.17 1  
Alt. prom. 62 -0.03 1  
Alt. splic. 62 0.03 1  
Alt. polyA 62 0.02 1  
miRNA 62 0.15 1  
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RNA ed. 62 0.05 1  
TFBS 43 -0.03 1  
Cons. 60 -0.14 1  
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Alt. splic. 59 0.06 1  
Alt. polyA 59 0.14 1  
miRNA 59 n/a n/a  
NMD 59 0.07 1  Ce

llu
la

r a
m

in
o 

ac
id

 a
nd

 d
er

iv
a-

tiv
e 

m
et

ab
ol

ic
 

pr
oc

es
s 

(B
P)

 

RNA ed. 59 -0.04 1  
TFBS 23 -0.33 1  
Cons. 50 -0.13 1  
Alt. prom. 50 0.22 1.2 * 10-2 * 
Alt. splic. 50 0.29 5.9 * 10-1  
Alt. polyA 50 0.26 5.7 * 10-2  
miRNA 50 0.10 1  
NMD 50 0.09 1  Ex

tra
ce

llu
la

r 
st

ru
ct

ur
e 

or
ga

ni
za

tio
n 

(B
P)

 

RNA ed. 50 0.02 1  
TFBS 27 0.23 1  
Cons. 34 0.31 1  
Alt. prom. 34 0.03 1  
Alt. splic. 34 0.07 1  
Alt. polyA 34 0.07 1  
miRNA 34 0.16 1  
NMD 34 0.07 1  El

ec
tro

n 
ca

rr
ie

r 
ac

tiv
ity

 (M
F)

 

RNA ed. 33 0.03 1  
TFBS 24 0.09 1  
Cons. 31 0.23 1  
Alt. prom. 31 0.02 1  
Alt. splic. 31 -0.00 1  
Alt. polyA 31 0.03 1  
miRNA 31 0.11 1  
NMD 31 -0.15 1  Ce

llu
la

r m
em

-
br

an
e 

fu
si

on
 (B

P)
 

RNA ed. 31 -0.34 1  
TFBS 10 0.03 1  
Cons. 11 -0.47 1  
Alt. prom. 11 0.48 1  
Alt. splic. 11 0.48 1  
Alt. polyA 11 0.42 1  
miRNA 11 n/a n/a  
NMD 11 -0.07 1  Ly

as
e 

ac
tiv

ity
 

(M
F)

 

RNA ed. 11 0.27 1  
TFBS 9 0.38 1  
Cons. 11 0.21 1  
Alt. prom. 11 -0.09 1  
Alt. splic. 11 -0.12 1  
Alt. polyA 11 -0.22 1  
miRNA 11 n/a n/a  
NMD 11 -0.67 1  Is

om
er

as
e 

ac
tiv

ity
 (M

F)
 

RNA ed. 11 0.15 1  
TFBS 9 0.39 1  
Cons. 11 0.36 1  
Alt. prom. 11 0.11 1  
Alt. splic. 11 0.20 1  
Alt. polyA 11 0.12 1  
miRNA 11 0.23 1  
NMD 11 0.17 1  Tr

an
sl

at
io

n 
re

gu
-

la
to

r a
ct

iv
ity

 (M
F)

 

RNA ed. 11 0.23 1  
TFBS 4 -0.56 1  
Cons. 7 0.11 1  
Alt. prom. 7 -0.06 1  
Alt. splic. 7 -0.05 1  
Alt. polyA 7 -0.14 1  
miRNA 7 n/a n/a  
NMD 7 -0.41 1  An

tio
xi

da
nt

 
ac

tiv
ity

 (M
F)

 

RNA ed. 7 n/a n/a  

!

!
GOslim  Mechanism Genes r p value 

TFBS 0 n/a n/a  
Cons. 0 n/a n/a  
Alt. prom. 0 n/a n/a  
Alt. splic. 0 n/a n/a  
Alt. polyA 0 n/a n/a  
miRNA 0 n/a n/a  
NMD 0 n/a n/a  Pa

th
og

en
es

is
 

(B
P)

 

RNA ed. 0 n/a n/a  
TFBS 0 n/a n/a  
Cons. 0 n/a n/a  
Alt. prom. 0 n/a n/a  
Alt. splic. 0 n/a n/a  
Alt. polyA 0 n/a n/a  
miRNA 0 n/a n/a  
NMD 0 n/a n/a  He

lic
as

e 
ac

tiv
ity

 
(M

F)
 

RNA ed. 0 n/a n/a  

!
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