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Chapter 1

Introduction

1.1 General background

A binary low-density parity-check (LDPC) code is a linear block code that is

defined by a sparse parity-check matrix H, that is H has a low density of 1’s.

LDPC codes were originally presented by Gallager in his doctoral dissertation

[9], but largely overlooked for the next 35 years. A notable exception was

[29], in which Tanner introduced a graphical representation for LDPC codes,

now known as Tanner graphs. However, interest in these codes has greatly

increased since 1996 with the publication of [22] and other papers, since it

has been realised that LDPC codes are capable of achieving near-optimal

performance when decoded using iterative decoding algorithms.

LDPC codes can be constructed randomly by using a computer algorithm

to generate a suitable matrix H. However, it is also possible to construct

LDPC codes explicitly using various incidence structures in discrete mathe-

matics. For example, LDPC codes can be constructed based on the points

and lines of finite geometries: there are many examples in the literature (see

for example [18, 28]). These constructed codes can possess certain advan-

tages over randomly-generated codes. For example they may provide more

efficient encoding algorithms than randomly-generated codes. Furthermore

it can be easier to understand and determine the properties of such codes

because of the underlying structure.

LDPC codes have been constructed based on incidence structures known

as partial geometries [16]. The aim of this research is to provide examples of

new codes constructed based on structures known as semipartial geometries

(SPGs), which are generalisations of partial geometries.
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Since the commencement of this thesis [19] was published, which showed

that codes could be constructed from semipartial geometries and provided

some examples and basic results. By necessity this thesis contains a number

of results from that paper. However, it should be noted that the scope of

[19] is fairly limited and that the overlap between the current thesis and [19]

is consequently small. [19] also contains a number of errors, some of which

have been noted and corrected in this thesis.

The next two sections provide a brief review of LDPC codes and semi-

partial geometries, introducing the notation and results that will be used in

this thesis.

1.2 LDPC codes

A binary low-density parity-check code is a linear block code for which the

parity-check matrix H has a low density of 1’s. LDPC codes can be gener-

alised to other alphabets, but non-binary LDPC codes will not be considered

in this thesis.

Let H = [hij] be an m × n parity-check matrix of an LDPC code C. If

H contains exactly γ 1’s in each column and exactly ρ = γn/m 1’s in each

row, then we say that C is regular, or more specifically (γ, ρ)-regular.1 H will

have a low density of 1’s and therefore define an LDPC code provided that

γ � m, or equivalently that ρ � n. If H has full rank over GF (2) then the

rate R of C is given by R = 1− γ/ρ.

If the number of 1’s is not constant in either the rows or the columns, we

say that C is irregular.

We shall denote the density of a matrix H by Hd, where Hd is the total

number of 1’s in H divided by mn.

An LDPC code can be represented by a bipartite graph known as a Tanner

graph [29]. The nodes of the graph are referred to as bit nodes and check (or

parity) nodes, and the nodes are connected so that bit node j is connected

to check node i if hij is 1. If C is regular then the bit nodes have uniform

degree γ and the check nodes have uniform degree ρ.

The girth of a Tanner graph is its minimum cycle length. The girth is

always even and must be greater than or equal to 4. Note that a 4-cycle in

1This notation is not used consistently in the literature. I have used the notation as it
is used in [17], [15] and elsewhere. However some authors reverse the order of the row and
column weights (e.g. [27] .)
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the Tanner graph corresponds to a submatrix of H whose corner entries are

all 1.

1.3 Semipartial geometries

1.3.1 Definition and basic properties

In this section we define semipartial geometries, and give some notation and

basic results that will be used throughout this thesis.

We begin with the definition.

Definition 1.1. A finite semipartial geometry is an incidence structure S =

(P ,B, I) in which P and B are disjoint non-empty sets of objects called points

and lines respectively, and for which I is a symmetric point-line incidence

relation satisfying the following axioms:

(i) each point is incident with t + 1 (t ≥ 1) lines and two distinct points

are incident with at most one line;

(ii) each line is incident with s+1 (s ≥ 1) points and two distinct lines are

incident with at most one point;

(iii) if a point P and line l are not incident, then there are either 0 or α ≥ 1

points that are collinear with P and incident with l;

(iv) if two points are not collinear then there are µ > 0 points collinear with

both.

We denote a semipartial geometry by spg(s, t, α, µ), where s, t, α and µ

are defined as above.

Given P, P ′ ∈ P , we write P ∼ P ′ and say that P and P ′ are collinear if

there is some line l for which P I l I P ′. Here P � P ′ means that P and P ′

are not collinear. Dually, for l, l′ ∈ B, we write l ∼ l′ or l � l′ according as l

and l′ are concurrent or non-concurrent.

Let |P| = v and |B| = b. Then (see [14]) it can be shown that

v(t + 1) = b(s + 1)

v = 1 + (t + 1)s(1 + t(s− α + 1)/µ).
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The point graph of a semipartial geometry is strongly regular with pa-

rameters (v, s(t + 1), s − 1 + t(α − 1), µ). This means that each of the v

vertices of the point graph is connected to exactly s(t+1) other vertices, any

two connected vertices are both connected to exactly s− 1 + t(α− 1) other

vertices, and any two unconnected vertices are both connected to exactly µ

other vertices.

1.3.2 Special cases of semipartial geometries

Semipartial geometries were introduced in [6] as a generalisation of partial

geometries: a semipartial geometry is a partial geometry if and only if the

zero in axiom (iii) of Definition 1.1 does not occur. From this it is clear

that a partial geometry is a semipartial geometry with µ = α(t + 1), and

conversely. We call a semipartial geometry that is not a partial geometry a

proper semipartial geometry.

Semipartial geometries may also be viewed as generalisations of partial

quadrangles: a partial quadrangle is a semipartial geometry with α = 1.

Partial quadrangles were introduced in [5] as a generalisation of generalised

quadrangles. We recall that a generalised quadrangle is a partial geometry

with α = 1.

It follows from these remarks that generalised quadrangles, partial quad-

rangles and partial geometries are all special cases of semipartial geometries

and can be defined by restricting axiom (iii) of Definition 1.1 as follows:

• Generalised quadrangles: α = 1 and the zero does not occur;

• Partial quadrangles: α = 1;

• Partial geometries: the zero does not occur.

Since generalised quadrangles, partial quadrangles and partial geometries

are all special cases of semipartial geometries we shall for the most part use

the notation spg(s, t, α, µ) in all cases. A semipartial geometry is a partial

geometry if and only if µ = (t + 1)α, for which reason the value of µ is not

required in order to specify a partial geometry. We shall also sometimes use

the notation pg(s, t, α) to denote a partial geometry.

As observed in [14] we have the following scheme, in which ‘→’ stands

for ‘generalises to’:
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generalised quadrangle −→ partial geometry

↓ ↓
partial quadrangle −→ semipartial geometry.

1.4 LDPC codes from semipartial geometries

A semipartial geometry can be used to define a regular binary LDPC code

by using an incidence matrix of the geometry as the parity-check matrix H

for the code. We shall call an LDPC code that is defined using the incidence

matrix of a semipartial geometry an SPG code.

The following subsections provide some general results and observations

that will be used later in this thesis. These results are largely based on results

contained in [16].

1.4.1 The matrix H

We shall follow [3, Chapter 9] and label the columns of H with lines and

the rows with points. Thus H has v rows and b columns. The row-weight is

ρ = t + 1 and the column weight is γ = s + 1. The matrix will have a low

density of 1’s and therefore define an LDPC code provided that s + 1 � v,

or equivalently that t + 1 � b.

Note that for a proper semipartial geometry we have that b ≥ v ([14]), so

in this case H has at least as many columns as rows.

1.4.2 Girth

In general, we are particularly interested in constructing codes that have

Tanner graphs with large girth, that is they are free of short cycles. This

is because short cycles in the Tanner graph degrade the performance of the

decoding algorithm.

The girth will always be even since the graph is bipartite, and the girth

will always be at least six since it is not possible in a semipartial geometry

for two distinct points to lie on two distinct lines.

If α = 1 then the Tanner graph is free of 6-cycles and has girth at least 8.

Therefore we expect that semipartial geometries that are generalised quad-

rangles or partial quadrangles could yield SPG codes that perform well under

sum-product decoding.
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If α > 1 then the Tanner graph will contain 6-cycles. In this case it is

useful to have a measure of how many 6-cycles the graph contains. We have

the following lemma, which is based on a result from [16]. The proof uses

the fact that a 6-cycle in the Tanner graph corresponds to a triangle in the

corresponding semipartial geometry.

Lemma 1.1. The number of 6-cycles N6 in the Tanner graph of an SPG

code derived from a semipartial geometry spg(s, t, α, µ) with |P| = v and

|B| = b satisfies

N6 =
bt(α− 1)

3

(
s + 1

2

)
.

Proof. Let P and P ′ be two distinct points both incident with a line l. P is

incident with t lines other than l, none of which is incident with P ′. Since

P ∼ P ′ we have by axiom (iii) of Definition 1.1 that P ′ is collinear with α

of the points on each of these lines. Therefore P and P ′ are contained in

t(α − 1) triangles. There are
(

s+1
2

)
pairs of points on l, and therefore there

are t(α− 1)
(

s+1
2

)
triangles containing a pair of points on l. There are b lines

in total, but a given triangle contains three pairs of points, from which the

result follows.

1.4.3 Minimum distance - lower bounds

In [30] Tanner presented the bit-oriented and parity-oriented bounds for the

minimum distance dmin of a (γ, ρ)-regular code of length n defined by a

parity-matrix H. Let µ1 > µ2 > . . . > µs be the ordered distinct eigenvalues

of HHT where H is interpreted as a real matrix of zeros and ones. Then the

bit-oriented bound ([30] Theorem 3.1) is

dmin ≥
n(2γ − µ2)

(γρ− µ2)

and the parity-oriented bound ([30] Theorem 4.1) is

dmin ≥
2n(2γ + ρ− 2− µ2)

ρ(γρ− µ2)
.

In [16] these bounds are used to obtain lower bounds for dmin in terms

of α, s and t, where H is the incidence matrix of a partial geometry. The

following lemma is derived.
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Lemma 1.2 ([16]). The minimum distance dmin of an LDPC code C derived

from a partial geometry pg(s, t, α) satisfies

dmin ≥ max

{
(t + 1)(s + 1− t + α)

α
,
2(s + α)

α

}
.

Proof. See [16].

As noted in [16], for particular classes of partial geometries the bound

of Lemma 1.2 is weak. In particular, for partial geometries that are Steiner

2-designs (α = s+1), nets (α = t) or dual nets (α = s) the following Lemma

provides a better bound, which is based on a result contained in [23] and

referred to as the Massey bound.

Lemma 1.3. The minimum distance dmin of a (γ, ρ)-regular LDPC code C
satisfies

dmin ≥ γ + 1.

Proof. See [23].

We use Lemma 1.3 for LDPC codes derived from Steiner 2-designs, nets

and dual nets; for codes derived from other partial geometries we usually use

Lemma 1.2.

Using similar arguments to Lemma 1.2 bounds are derived in [19] for

codes derived from semipartial geometries. The bounds obtained in [19]

contain some errors; a corrected version is given in the following lemma.

Lemma 1.4 ([19]). The minimum distance dmin of an LDPC code C of length

n = b = |B| derived from a semipartial geometry spg(s, t, α, µ) satisfies

dmin ≥ max

{
n(3s + 3 + µ− tα− t−

√
∆)

2st + s + µ + t + 1− tα−
√

∆
,

2n(3s + 1 + µ + t− tα−
√

∆)

(t + 1)(2st + s + µ + t + 1− tα−
√

∆)

}
where

∆ = (s + tα− t− 1− µ)2 + 4(st + s− µ).

Proof. See [19]. The errors are for the most part confined to the the statement

of the result itself and therefore do not affect the proof significantly.
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If a semipartial geometry is also a partial geometry then we have n = b =

(t+1)(st+α)/α and µ = (t+1)α. In this case, as can be readily verified, the

bounds of Lemma 1.4 simplify to give the bounds of Lemma 1.2. We shall

therefore only use Lemma 1.4 for proper semipartial geometries, although in

some cases Lemma 1.3 provides a better lower bound.

1.4.4 Geometric interpretation of codewords

Let C be a binary SPG code and let c = (c1, . . . , cn) ∈ C. Since cHT = 0 it

follows that supp(c) = {i ∈ N : ci 6= 0} defines a set L of lines of B such that

every point of P lies on an even number of the lines of L. Conversely, if L is

a set of lines with this property then L defines a codeword c of weight |L|.
It follows that if for a given semipartial geometry we can find a subset

L of the lines with the property that every point lies on an even number of

the lines of L then we have found a codeword of weight |L| of the SPG code

derived from the geometry.

1.4.5 2-rank of H

As discussed in [16] it can be advantageous for the parity-check matrix of

an LDPC code to have some linearly dependent rows as this provides extra

parity-checking constraints for the decoding algorithm. It is therefore useful

to have a measure of the redundancy of the parity-check matrix H of an SPG

code.

As we are dealing with binary codes we are interested in rank2(H), the

rank of H over GF (2).

For codes derived from partial geometries the following two lemmas pro-

vide upper and lower bounds on rank2(H) (see [16]).

Lemma 1.5. Let H be the incidence matrix of an SPG code derived from a

partial geometry pg(s, t, α). Then

rank2(H) ≤ st(s + 1)(t + 1)

α(s + t + 1− α)
+ 1.

Proof. An upper bound for rank2(H) is the number of non-zero eigenvalues

of HHT . If H is the incidence matrix of a partial geometry then HHT has

two non-zero eigenvalues (s + 1)(t + 1) and s + t + 1− α with multiplicities

1 and st(s + 1)(t + 1)/α(s + t + 1− α) respectively.

9



Lemma 1.6. Let H be the incidence matrix of an SPG code derived from a

partial geometry pg(s, t, α) for which s + t + 1− α ≡ 1 mod 2. Then

rank2(H) ≥ st(s + 1)(t + 1)

α(s + t + 1− α)
.

Proof. See [16].

Corollary 1.1. Let H be the incidence matrix of an SPG code derived from

a partial geometry pg(s, t, α) for which s + t + 1− α ≡ 1 mod 2. Then

rank2(H) =
st(s + 1)(t + 1)

α(s + t + 1− α)

or

rank2(H) =
st(s + 1)(t + 1)

α(s + t + 1− α)
+ 1.

For proper semipartial geometries, it is not possible to derive a useful

upper bound for rank2(H) as we did above in Lemma 1.5 for partial geome-

tries. This is because a proper semipartial geometry HHT has three non-zero

eigenvalues

(s + 1)(t + 1),
s + tα + t + 1− µ +

√
∆

2
,
s + tα + t + 1− µ−

√
∆

2
,

with respective multiplicities

1, s(t+1)(st+t+µ−tα)(
√

∆−ε)−ζ

2µ
√

∆
, s(t+1)(st+t+µ−tα)(

√
∆+ε)+ζ

2µ
√

∆
,

where ∆ = (s + tα− t− 1− µ)2 + 4(st + s− µ), ε = s + tα− t− 1− µ and

ζ = 2sµ(t+1). In this case the multiplicities sum to s(t+1)(st+t+µ−tα)
µ

+1 = v,

giving rank2(H) ≤ v, which is self-evident since H is a v × b matrix with

v ≤ b.

The following lemma provides a lower bound for rank2(H) where H is the

incidence matrix of a proper semipartial geometry. This bound was derived

in [19], although the statement of the result given there is incorrect.

Lemma 1.7. Let H be the incidence matrix of an SPG code derived from

a proper semipartial geometry spg(s, t, α, µ) for which s + tα + t + 1 − µ ≡
1 mod 2. Let ∆ = (s + tα− t− 1− µ)2 + 4(st + s− µ).

If s + tα + t + 1− µ−
√

∆ ≡ 2 mod 4 then
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rank2(H) ≥ s(t + 1)(st + t + µ− tα)(
√

∆ + s + tα− t− 1− µ) + 2sµ(t + 1)

2µ
√

∆
.

If s + tα + t + 1− µ +
√

∆ ≡ 2 mod 4 then

rank2(H) ≥ s(t + 1)(st + t + µ− tα)(
√

∆− s− tα + t + 1 + µ)− 2sµ(t + 1)

2µ
√

∆
.

Proof. See [19]. (Although the result is stated incorrectly in [19] the proof is

generally correct. As with Lemma 1.6, the proof relies on a result concerning

the p-rank of strongly regular graphs given in [2].)

Note that Lemma 1.7 only holds for incidence matrices derived from

proper semipartial geometries, as the proof requires µ 6= (t + 1)α. (This

is not made clear in [19].) We use Lemma 1.6 if the semipartial geometry is

a partial geometry.

1.4.6 Code dimension

The lower bounds of Lemmas 1.6 or 1.7, if they exist, provide an upper bound

for the dimension k of an SPG code, since k = n−rank2(H).

Similarly the upper bounds of Lemma 1.5 provide a lower bound for k for

an SPG code derived from a partial geometry.
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Chapter 2

SPG-reguli

It is possible to construct semipartial geometries using SPG-reguli. These

were introduced in [31] where they are defined as follows.

Definition 2.1. An SPG-regulus is a set R of m-dimensional subspaces

PG(1)(m, q), . . . , PG(r)(m, q), r > 1, of PG(n, q) with the following proper-

ties.

(a) PG(i)(m, q) ∩ PG(j)(m, q) = ∅ for all i 6= j.

(b) If PG(m + 1, q) contains PG(i)(m, q), then it has a point in common

with 0 or α > 0 spaces in R\{PG(i)(m, q)}. If PG(m + 1, q) has no

point in common with PG(j)(m, q) for all i 6= j then it is called a tangent

(m + 1)-space of R at PG(i)(m, q).

(c) If the point x ∈ PG(n, q) is not contained in an element of R then it is

contained in a constant number θ of tangent (m + 1)-spaces of R.

An SPG-regulus R gives rise to an incidence structure S = (P ,B, I) as

follows. P is the set of points of PG(n+1, q)\PG(n, q), so v = qn+1. The set

L is the set of (m + 1)-dimensional subspaces of PG(n + 1, q) that contain

an element of R but are not contained in PG(n, q). The incidence relation I

is that of PG(n + 1, q).

In the particular case m = 0 we call this incidence structure the linear

representation of R and denote it by T ∗
n(R). For m > 0 we call it the

generalised linear representation of R. In this thesis we shall consider only

the case m = 0.

We shall frequently use the notation Σ = PG(n+1, q) and Σ0 = PG(n, q)

when discussing SPG-reguli and their incidence structures.
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Theorem 2.1 ([31]). The incidence structure S arising from the SPG-regulus

R is a semipartial geometry spg(qm+1 − 1, r − 1, α, (r − θ)α).

Proof. See [31].

2.1 Linear representations

As discussed above, an SPG-regulus that is a set of points R in PG(n, q) has

a linear representation T ∗
n(R) that is a semipartial geometry. The various

known examples of linear representations arising from SPG-reguli that are

sets of points are introduced below.

Following the discussion in 1.3.2 the examples are grouped into three

types: partial geometries, proper partial quadrangles and proper semipartial

geometries for which α > 1.

2.1.1 Partial geometries

Let Kd,q denote a maximal arc of degree d in the projective plane Σ0 =

PG(2, q). Every line of PG(2, q) is either a d-secant or an external line

of Kd,q. From [13] Theorem 12.7 we know that either d|q or d = q + 1.

d = q and d = q + 1 give trivial maximal arcs: Kq,q is the point set of

AG(2, q) = PG(2, q)\l for some line l, and Kq+1,q is the point set of PG(2, q).

Non-trivial maximal arcs are those for which d|q and 2 ≤ d < q, and

non-trivial maximal arcs exist only in planes of even order q = 2h (see [1]).

In fact there exists a non-trivial maximal arc of degree 2m for every positive

m < h.

Kd,q gives rise to a linear representation T ∗
2 (Kd,q), and T ∗

2 (Kd,q) is a partial

geometry with parameters s = q − 1, t = (q + 1)(d− 1), α = d− 1.

Note that T ∗
2 (Kd,q) is a generalised quadrangle if and only if q is even and

d = 2, i.e. if and only if the arc is a hyperoval. The order of the generalised

quadrangle T ∗
2 (K2,2h) is (2h − 1, 2h + 1), that is there are 2h points on every

line, and 2h + 2 lines through every point.

2.1.2 Proper partial quadrangles

Partial quadrangles that are not generalised quadrangles are known as proper

partial quadrangles.
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Let R be a point set in PG(n, q). Then T ∗
n(R) is a proper partial quad-

rangle spg(q− 1, t, 1, µ) if and only if R is a (t + 1)-cap in PG(n, q) with the

property that each point not in R lies on t+1−µ tangents, where µ < t+1.

From this it can be deduced that the following cases of linear representations

that are proper partial quadrangles can occur (see [3]):

1. T ∗
3 (O) with O an ovoid in Σ0 = PG(3, q). This is a proper partial

quadrangle spg(q − 1, q2, 1, q(q − 1)) and was first constructed in [5].

The classical example of an ovoid in PG(3, q) is the elliptic quadric,

denoted by Q−(3, q). A non-classical example is the Tits ovoid, which

exists for any q = 22e+1, e ≥ 1. There are no other known examples of

(q2 +1)-caps in PG(3, q) other than the elliptic quadric and Tits ovoid.

2. If q = 3 then R is either an ovoid in PG(3, 3), an 11-cap in PG(4, 3)

or a 56-cap in PG(5, 3). The linear representation of the 11-cap is an

spg(2, 10, 1, 2) and of the 56-cap is an spg(2, 55, 1, 20). The 11-cap

and 56-cap are both projectively unique.

3. If q = 4 then R is either an ovoid in PG(3, 4), a 78-cap in PG(5, 4)

such that each external point is on 7 secants or a 430-cap in PG(6, 4)

such that each external point is on 55 secants. At least one example of

such a 78-cap exists, first constructed in [12]. Its linear representation

is an spg(3, 77, 1, 14). There is no known example of such a 430-cap;

however if one were to exist then its linear representation would be an

spg(3, 429, 1, 110).

4. If q ≥ 5 then the partial quadrangle has to be T ∗
3 (O) with O an ovoid

in PG(3, q).

2.1.3 Proper semipartial geometries with α > 1

There are two known cases:

1. Let U be a unital in Σ0 = PG(2, q2). Then we have that T ∗
2 (U) is an

spg(q2 − 1, q3, q, q2(q2 − 1)). The classical example is a non-singular

Hermitian curve U2; there are several non-classical examples, including

Ree unitals and Buekenhout-Metz unitals. See [3].

2. Let B be a Baer-subgeometry of Σ0 = PG(n, q2). Then T ∗
n(B) is an

spg(q2 − 1, (qn+1 − 1)/(q − 1)− 1, q, q(q + 1)).
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Chapter 3

SPG codes from linear

representations: general results

In this chapter we give some general results concerning the properties of SPG

codes derived from linear representations.

We have the following Lemma, which provides lower and upper bounds

on the minimum distance of a code derived from any linear representation

T ∗
n(R) for which |R| ≥ 2.

Lemma 3.1. The minimum distance of a code derived from a linear repre-

sentation T ∗
n(R), |R| ≥ 2, satisfies q + 1 ≤ dmin ≤ 2q.

Proof. The lower bound follows from Lemma 1.3 since the column weight of

H is q.

For the upper bound let P, P
′ ∈ R ⊂ Σ0, and let Π 6= Σ0 be any plane in

Σ that contains P and P
′
. Consider the set L ⊂ L consisting of all lines of Π

through P or P
′
. Every point of P lies on either 0 or 2 lines of L, and hence

(see Section 1.4.4) the code contains a codeword of weight |L| = 2q.

The next result gives a lower bound for the 2-rank of an incidence matrix

H of an SPG code.

Result 3.1. Let H be the incidence matrix of an SPG code derived from a

linear representation T ∗
n(R). Then rank2(H) ≥ qn.

Proof. Consider a point P ∈ R. There are qn lines of L through P . These

qn lines are parallel in S, which means that the corresponding columns of H

are linearly independent and therefore that rank2(H) ≥ qn.
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The following theorem gives us the order of a subgroup of the automor-

phism group of an SPG code derived from a linear representation.

Theorem 3.1. Let C be an SPG code derived from a linear representation

T ∗
n(R) and let H be the stabiliser of R in PGL(n + 1, q) (i.e. the projective

group of R). Then the automorphism group of the code C contains a subgroup

of order qn+1(q − 1)× |H|.

Proof. The stabiliser of PG(n, q) in PGL(n + 2, q) is AGL(n + 1, q), and the

kernel G of the action of AGL(n+1, q) on PG(n, q) is the group of translations

and dilations of AG(n + 1, q), which has order qn+1(q− 1). The extension of

G by H is a subgroup of the automorphism group of C since both G and H

fix L. This extension has order qn+1(q − 1)× |H|, as required.
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Chapter 4

SPG codes from linear

representations: examples

Referring to Section 2.1, we have the following known examples of linear

representations of SPG-reguli1:

1. The partial geometries T ∗
2 (Kq+1,q). We shall denote the codes arising

from their linear representations by CKq+1,q .

2. The partial geometries T ∗
2 (Kq,q). We shall denote the codes arising from

their linear representations by CKq,q .

3. The partial geometries T ∗
2 (K2m,2h), 1 < m < h. We shall denote the

codes arising from their linear representations by CK
2m,2h

.

4. The generalised quadrangles T ∗
2 (K2,2h). We shall denote the codes aris-

ing from their linear representations by CK
2,2h

.

5. The proper partial quadrangles T ∗
3 (O) withO an ovoid in Σ0 = PG(3, q).

The known ovoids in PG(3, q) are the elliptic quadric Q−(3, q) and the

Tits ovoid. We shall denote the codes arising from their linear repre-

sentations by CQ−
q

and CTOq respectively.

6. A proper partial quadrangle T ∗
4 (C11) arising from the projectively unique

11-cap C11 in Σ0 = PG(4, 3). T ∗
4 (C11) is an spg(2, 10, 1, 2). We shall

denote the code arising from the linear representation by CC11 .

1The spg(3, 429, 1, 110) arising from a 430-cap has been omitted as it is not known to
exist.
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7. A proper partial quadrangle T ∗
5 (C56) arising from the projectively unique

56-cap C56 in Σ0 = PG(5, 3). T ∗
5 (C56) is an spg(2, 55, 1, 20). We shall

denote the code arising from the linear representation by CC56 .

8. A proper partial quadrangle T ∗
5 (C78) arising from a 78-cap in Σ0 =

PG(5, 4). T ∗
5 (C78) is an spg(3, 77, 1, 14). We shall denote the code

arising from the linear representation by CC78 .

9. The semipartial geometries T ∗
2 (U) arising from a unital in Σ0 = PG(2, q2).

The classical example is a non-singular Hermitian curve U2,q2 : we shall

denote the code arising from the linear representation of a non-singular

Hermitian curve U2,q2 in PG(2, q2) by CU2,q2 . We shall not consider the

codes arising from the linear representations of non-classical unitals in

this thesis.

10. The semipartial geometries T ∗
n(B) arising from a Baer-subgeometry of

Σ0 = PG(n, q2). We shall denote the code arising from the linear

representation of a Baer-subgeometry of PG(n, q2) by CBn,q2 .

The SPG codes arising from the linear representations listed above are

discussed in the following sections.
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4.1 The codes CKq+1,q

In this case K is the point set of PG(2, q) and the point set P of T ∗
2 (K) is

simply the point set of AG(3, q) = PG(3, q)\PG(2, q). L is the set of lines of

PG(3, q) that contain a point of PG(2, q) but are not contained in PG(2, q).

We have s = q − 1, t = q(q + 1) and α = q. Since α = s + 1 the partial

geometry T ∗
2 (K) is a 2-(q3, q, 1) design.

Let S = (P ,B, I) be the incidence structure defined by T ∗
2 (K).

4.1.1 The matrix H

For these codes we have v = q3, b = n = q2(q2+q+1), γ = q and ρ = q2+q+1.

The matrix density is Hd = γ/v = ρ/b = 1/q2.

4.1.2 Girth

Since α = d− 1 = q > 1 the girth of the Tanner graph is 6.

From Lemma 1.1 we have N6 = bt(α−1)
3

(
s+1
2

)
= (q9 − q7 − q6 + q4)/6.

4.1.3 Minimum distance

From Lemma 3.1 we know that q + 1 ≤ dmin ≤ 2q.

Using Magma, the minimum distance was calculated for q = 2, 3, 4. Un-

fortunately for larger values of q Magma was not able to determine the min-

imum distance. The results are displayed in Table 4.1.

Table 4.1: Minimum distance of CKq+1,q

q dmin

2 3

3 6

4 5

We note that for even values of q the lower bound of Lemma 3.1 is at-

tained and for q = 3 the upper bound is attained. However it did not prove

possible to prove a general result concerning the minimum distance of the

codes CKq+1,q .
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4.1.4 2-rank of H

Lemma 1.5 gives rank2(H) ≤ q3. Unfortunately Lemma 1.6 does not apply

since s + t + 1− α = q2 + q ≡ 0 mod 2 for both even and odd q.

Based on Magma calculations (see Table 4.2) we can make the following

conjecture for odd values of q.

Conjecture 4.1. For q odd the 2-rank of H is q3, that is H has full 2-rank.

4.1.5 Code dimension

Using Magma the dimension of CKq+1,q was found for small values of q. The

results are displayed in Table 4.2.

Table 4.2: Dimension of CKq+1,q and 2-rank of H

q length n dimension k 2-rank of H

2 28 21 7

3 117 90 27

4 336 285 51

5 775 650 125

7 2793 2450 343

8 4672 4299 373

9 7371 6642 729

From these results we can make the following conjecture for odd values

of q.

Conjecture 4.2. For q odd CKq+1,q has dimension q2(q2 + 1).

This conjecture is true if and only if all the rows of H are linearly inde-

pendent over GF (2), which is true if and only if it is not possible to find a

non-empty proper subset M of P such that every line of B contains an even

number of the points in M .

4.1.6 The automorphism group of CKq+1,q

The projective group of the set K = PG(2, q) is PGL(3, q). Hence using

Theorem 3.1 we find that the automorphism group of the code CKq+1,q has a

subgroup of order q3(q − 1)× |PGL(3, q)| = q6(q3 − 1)(q2 − 1)(q − 1).
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4.2 The codes CKq,q

In this case K is the point set of AG(2, q) = Σ0\l for some line l. We have

s = q− 1, t = q2− 1 and α = q− 1. Since α = s the partial geometry T ∗
2 (K)

is a dual net. Let S = (P ,B, I) be the incidence structure defined by T ∗
2 (K).

4.2.1 The matrix H

For these codes v = q3, b = n = q4, γ = q and ρ = q2. The matrix density is

Hd = γ/v = ρ/b = 1/q2.

4.2.2 Girth

Since α = q − 1 > 1 for q > 2 the girth of the Tanner graph is 6.

From Lemma 1.1 we have

N6 =
bt(α− 1)

3

(
s + 1

2

)
= q5(q2 − 1)(q − 1)(q − 2)/6.

If q = 2 then K is a hyperoval in PG(2, q). This case is dealt with in

Section 4.4 below.

4.2.3 Minimum distance

From Lemma 3.1 we know that q + 1 ≤ dmin ≤ 2q.

Using Magma the minimum distance was calculated for small values of q

and the results are displayed in Table 4.3.

Table 4.3: Minimum distance of CKq,q

q dmin

2 4

3 6

4 6
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4.2.4 2-rank of H

Lemma 1.5 gives rank2(H) ≤ q3 − q + 1.

Lemma 1.6 applies for odd q since s + t + 1− α = q2 ≡ 1 mod 2 for odd

q. Hence by Corollary 1.1 we have the following result.

Result 4.1. For odd q the 2-rank of H for CKq,q is either q3−q+1 or q3−q.

Magma computations for the dimension of these codes (see Table 4.4)

suggest that in fact for odd q the 2-rank of H is q3 − q + 1.

Comparing Tables 4.2 and 4.4 we can make the following interesting con-

jecture.

Conjecture 4.3. For even q, let H1 be a parity-check matrix for CKq+1,q and

let H2 be a parity-check matrix for CKq,q . Then rank2(H1) = rank2(H2).

4.2.5 Code dimension

From Result 4.1 we have the following result.

Result 4.2. For odd q we have k = n−rank2(H) = q4−q3+q or q4−q3+q−1.

Magma computations for small values of q returned the results in Table

4.4.

Table 4.4: Dimension of CKq,q and 2-rank of H

q length n dimension k 2-rank of H

2 16 9 7

3 81 56 25

4 256 205 51

5 625 504 121

7 2401 2064 337

8 4096 3723 373

9 6561 5840 721

These results suggest that for odd values of q the dimension is in fact

q4 − q3 + q − 1.
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4.2.6 The automorphism group of CKq,q

The stabiliser of the set K = AG(2, q) in PGL(3, q) is AGL(2, q). We have

|AGL(2, q)| = q2|AGL(2, q)| = q2(q−1)|PGL(2, q)| = q3(q2−1)(q−1). Hence

using Theorem 3.1 we find that the automorphism group of the code CKq,q

has a subgroup of order q3(q − 1)× |AGL(2, q)| = q6(q2 − 1)(q − 1)2.
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4.3 The codes CK2m,2h
, 1 < m < h

We represent the points of Σ = PG(3, 2h) by the non-zero left-normalised

vectors of V (4, 2h). Points of Σ0 = PG(2, 2h) are represented by the (non-

zero left-normalised) vectors X = (x0, x1, x2, x3) with x0 = 0, and the points

of Σ\Σ0 are represented by the vectors with x0 = 1.

We use the method for constructing maximal arcs for even q given in [8].

We shall call these Denniston maximal arcs to distinguish them from other

constructions.

Consider an irreducible homogeneous quadratic polynomial F (X, Y ) over

GF (2h), and let H be a subgroup of order 2m of the additive group of GF (2h).

Then

K2m,2h = {(0, 1, x2, x3) : F (x2, x3) ∈ H}

is a Denniston maximal arc of degree 2m in PG(2, 2h).

Let S = (P ,B, I) be the incidence structure defined by T ∗
2 (Kd,q), d =

2m, q = 2h, 1 < m < h.

4.3.1 The matrix H

For these codes v = q3, b = n = q2(q(d − 1) + d), γ = s + 1 = q and

ρ = t + 1 = q(d− 1) + d. The matrix density is Hd = γ/v = ρ/b = 1/q2.

4.3.2 Girth

α = d− 1 > 1 and therefore the Tanner graph contains 6-cycles.

From Lemma 1.1 we have

N6 =
q3(q2 − 1)(d− 1)(d− 2)(q(d− 1) + d)

6
.

4.3.3 Minimum distance

Using Lemma 3.1 we have q + 1 ≤ dmin ≤ 2q.

Applying Lemma 1.2 we find that dmin ≥ 2( q−1
d−1

+ 1). Since d ≥ 4 it

follows that for all values of q and d we cannot use Lemma 1.2 to improve

the lower bound of q + 1.

Unfortunately Magma was unable to compute the minimum distance for

the first case for which 1 < m < h, namely m = 2 and h = 3 (that is d = 4

and q = 8).
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4.3.4 2-rank of H

Applying Lemma 1.5 gives rank2(H) ≤ q3(1− 1/d) + q2 − q(1− 1/d). Table

4.5 shows that this upper bound is not sharp.

Lemma 1.6 does not apply since s + t + 1− α = dq ≡ 0 mod 2.

4.3.5 Code dimension

Using the result in the previous section we have

k = n− rank2(H)

≥ q2(q(d− 1) + d)− {q3(1− 1/d) + q2 − q(1− 1/d)}
= q3(d− 2 + 1/d) + q2(d− 1) + q(1− 1/d).

Note that when d = 2 we have k ≥ q(q + 1)2/2, which is the result

obtained in Section 4.4.5.

Magma was only able to find the dimension for the case m = 2 and h = 3

(that is d = 4 and q = 8). This result (see Table 4.5) shows that the lower

bound for k given above is not sharp.

Table 4.5: Dimension of CK
2m,2h

and 2-rank of H

q d length n dimension k 2-rank of H

8 4 1792 1436 356

4.3.6 The automorphism group of CK2m,2h
, 1 < m < h

In this case we do not have a general result that will give us the projective

group of a Denniston maximal arc in PG(2, 2h). For example (see [10])

there are two Denniston maximal arcs of degree 4 in PG(2, 16), which have

projective groups of different orders.

We can however state the following, which follows directly from results

in [10].

Result 4.3. The projective group of a Denniston maximal arc in PG(2, 2h)

contains a subgroup of order 2h + 1.
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It follows from this and the proof of Theorem 3.1 that the automorphism

group of the code CK
2m,2h

has a subgroup of order 23h(2h − 1)(2h + 1) =

23h(22h − 1).
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4.4 The codes CK2,2h

In this case K is a hyperoval in Σ0 and the linear representation is a gen-

eralised quadrangle T ∗
2 (K2,2h). Let S = (P ,B, I) be the incidence structure

defined by T ∗
2 (K2,2h).

We know that all hyperovals are regular (that is consist of a conic plus its

nucleus) for h ≤ 3, and that regular hyperovals exist for all values of h (see

[13]). As we are trying to find general results that hold for all values of q we

shall restrict our attention to regular hyperovals in the following sections.

4.4.1 The matrix H

For these codes v = q3, b = n = q2(q+2), γ = s+1 = q and ρ = t+1 = q+2.

The matrix density is Hd = γ/v = ρ/b = 1/q2.

4.4.2 Girth

Result 4.4. The Tanner graph of the incidence structure defined by T ∗
2 (K2,2h)

has girth g = 8.

Proof. α = 1 and therefore g ≥ 8. Let P be any point on the conic and let

N be the nucleus. Let l ∈ Σ0 be the bisecant defined by P and N . Consider

a plane Π ⊂ Σ such that Π ∩ Σ0 = l. Let l1, l2, l3, l4 be distinct lines in Π,

li 6= l, such that l1 I P I l2 and l3 I N I l4. Then li ∼ lj for i = 1, 2, j = 3, 4.

The four points of intersection along with the four lines correspond to a cycle

of length 8 in the Tanner graph. Hence g = 8.

4.4.3 Minimum distance

Result 4.5. The minimum distance of CK
2,2h

is 2q.

Proof. Applying Lemma 1.2 we find that dmin ≥ 2q. It follows from Lemma

3.1 that dmin = 2q.

4.4.4 2-rank of H

Applying Lemma 1.5 gives rank2(H) ≤ q(q2 + 2q − 1)/2. Lemma 1.6 does

not apply since s + t + 1− α = 2q ≡ 0 mod 2.
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For small values of q Table 4.6 shows the 2-rank of H, obtained by Magma

computations. These results show that the upper bound given by Lemma

1.5 is sharp for q = 2 and q = 4, but not for q = 8.

4.4.5 Code dimension

Magma computations for small values of q returned the results in Table 4.6.

Table 4.6: Dimension of CK
2,2h

and 2-rank of H

q length n dimension k 2-rank of H

2 16 9 7

4 96 50 46

8 640 341 299

From the previous section we have

k = n− rank2(H) ≥ q2(q + 2)− q(q2 + 2q − 1)/2 = q(q + 1)2/2.

Although this bound is sharp for q = 2 and q = 4 it is not sharp for q = 8:

see Table 4.6.

4.4.6 The automorphism group of CK2,2h

The order of the projective group G of K2,2h is given by [13] Corollary 8.27.

There are three cases: h = 1, h = 2 and h > 2.

1. For q = 2, G ∼= S4. Hence the automorphism group of the code CK2,2

has a subgroup of order 23 × |S4| = 192.

2. For q = 4, G ∼= A6. Hence the automorphism group of the code CK2,4

has a subgroup of order 43 × 3× |A6| = 69120.

3. For q = 2h > 4, G ∼= PGL(2, q). Hence the automorphism group

of the code CK
2,2h

has a subgroup of order q3(q − 1) × |PGL(2, q)| =

24h(2h − 1)(22h − 1).
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4.5 The codes CQ−q

Let S = (P ,B, I) be the incidence structure defined by T ∗
3 (O), where O is

an elliptic quadric Q−(3, q).

4.5.1 The matrix H

For these codes v = q4, b = n = q3(q2 +1), γ = q and ρ = q2 +1. The matrix

density is Hd = γ/v = ρ/b = 1/q3.

4.5.2 Girth

Result 4.6. The Tanner graph of the incidence structure defined by T ∗
3 (O)

has girth g = 8.

Proof. Since α = 1 we know that g ≥ 8. Consider a line l ∈ Σ0 such that

|l ∩ Q−(3, q)| = 2. Such a line exists since Q−(3, q) is a cap in Σ0. Let

l ∩ Q−(3, q) = {P, P
′}. Now consider a plane Π ⊂ Σ such that Π ∩ Σ0 = l.

Let l1, l2, l3, l4 be distinct lines in Π, li 6= l, such that l1 I P I l2 and l3 I P
′

I l4. Then li ∼ lj for i = 1, 2, j = 3, 4. The four points of intersection along

with the four lines correspond to a cycle of length 8 in the Tanner graph.

Hence g = 8.

4.5.3 Minimum distance

Result 4.7. The minimum distance of CQ−
q

is 2q.

Proof. Applying Lemma 1.4 we find that dmin ≥ 2q. It follows from Lemma

3.1 that dmin = 2q.

4.5.4 2-rank of H

From Result 3.1 we have rank2(H) ≥ q3. This is a better bound than that

provided by Lemma 1.7, which applies only for odd q and gives the bound

rank2(H) ≥ q3 − q2 + q − 1.

For small values of q Magma was able to compute the 2-rank of H and

the results are shown in Table 4.7. These results show that the lower bound
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given by Result 3.1 is not sharp for odd or even q. However we can make the

following conjecture when q is odd.

Conjecture 4.4. For q odd the 2-rank of H is q4, that is H has full 2-rank.

4.5.5 Code dimension

Since rank2(H) ≥ q3 we have k = n−rank2(H) ≤ q5. However Table 4.7

shows that this bound is not sharp for both even and odd q.

Table 4.7: Dimension of CQ−
q

and 2-rank of H

q length n dimension k 2-rank of H

2 40 25 15

3 270 189 81

4 1088 861 227

5 3250 2625 625

7 17150 14749 2401

8 33280 29833 3447

We have the following conjecture for odd values of q.

Conjecture 4.5. For q odd CQ−
q

has dimension q3(q2 − q + 1).

This conjecture is true if and only if all the rows of H are linearly inde-

pendent over GF (2), which is true if and only if it is not possible to find a

non-empty proper subset M of P such that every line of B contains an even

number of the points in M .

4.5.6 The automorphism group of CQ−
q

Using Theorem 3.1 we find that the automorphism group of the code CQ−
q

has

a subgroup of order q4(q−1)×|PGO−(4, q)|. Since |PGO−(4, q)| = 2q2(q4−1)

(see [13]) it follows that the automorphism group has a subgroup of order

2q6(q − 1)(q4 − 1).
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4.6 The codes CTOq

Let S = (P ,B, I) be the incidence structure defined by T ∗
3 (O), where O is a

Tits ovoid in PG(3, q), with q = 22e+1, e ≥ 1.

The canonical form of a Tits ovoid (see [3]) is

O = {(0, 1, 0, 0)} ∪ {(1, z, y, x) : z = xy + xσ+2 + yσ},
where σ is the automorphism t 7→ t2e+1 of GF (22e+1).

4.6.1 The matrix H

The parameters of H are the same as for the codes CQ−
q
. We have v = q4,

b = n = q3(q2 + 1), γ = q and ρ = q2 + 1. The matrix density is Hd = γ/v =

ρ/b = 1/q3.

4.6.2 Girth

Result 4.8. The Tanner graph of the incidence structure defined by T ∗
3 (O)

has girth g = 8.

Proof. As for Result 4.6 above.

4.6.3 Minimum distance

Result 4.9. The minimum distance of CTOq is 2q.

Proof. As for Result 4.9.

4.6.4 2-rank of H

As for the codes CQ−
q
, the 2-rank of H for CTOq satisfies rank2(H) ≥ q3.

Using Magma it was found that for CTO8 we have

rank2(H) = n− k = 33280− 29722 = 3558.

4.6.5 Code dimension

As for the codes CQ−
q

we have k ≤ q5.

The first value of q for which a Tits Ovoid exists is q = 8. Using Magma

the dimension of the code CTO8 was found to be 29722. Note that this is not

the same as the dimension of the code CQ−
q
, which has dimension 29833.
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4.6.6 The automorphism group of CTOq

The stabiliser of T ∗
3 (O) in PGL(4, q) is the Suzuki group Sz(q) of order q2(q2+

1)(q−1) (see [7]). It follows from Theorem 3.1 that the automorphism group

of the code CTOq has a subgroup of order q6(q2 + 1)(q − 1)2.
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4.7 The code CC11

Let S = (P ,B, I) be the incidence structure defined by T ∗
4 (C11), where C11

is the projectively unique 11-cap in PG(4, 3).

We construct C11 as follows (see [25]). Let π be a plane in PG(4, 3), and let

Q = {P1, P2, P3, P4} be a quadrilateral in π. Let l = {V1, V2, V3, V4} be a line

in PG(4, 3) that does not meet π. Consider the four lines PiVi, i = 1, 2, 3, 4.

There are eight points on these lines (two on each line) other than Pi and Vi.

These eight points and the three diagonal points of Q form the 11-cap C11.

4.7.1 The matrix H

Here v = 35 = 243, b = n = 34 × 11 = 891, γ = 3 and ρ = 11. The matrix

density is Hd = γ/v = ρ/b = 1/81.

4.7.2 Girth

Since α = 1 we know that g ≥ 8. Arguing as in the proof of Theorem 4.6 we

can find four coplanar lines in B that intersect in four points of P , showing

that g = 8.

4.7.3 Minimum distance

A computation using Magma shows that the minimum distance of the code

CC11 is 6.

4.7.4 2-rank of H

Using Magma we find that rank2(H) = 891 − 648 = 243. Therefore the

matrix H has full rank over GF (2).

Note that this means that there does not exist a non-empty proper subset

M of P such that every line of B contains an even number of the points in

M .

4.7.5 Code dimension

Magma gives the code dimension to be 648.
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4.7.6 The automorphism group of CC11

The projective group of the set K = C11 is isomorphic to the Mathieu group

M11 of order 11× 10× 9× 8 = 7920 (see [26]). Hence using Theorem 3.1 we

find that the automorphism group of the code CC11 has a subgroup of order

35 × 2× 7920 = 3849120.
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4.8 The code CC56

Let S = (P ,B, I) be the incidence structure defined by T ∗
5 (C56), where C56

is the projectively unique 56-cap in PG(5, 3). Following [12], the 56-cap is

constructed as half of the points on an elliptic quadric in PG(5, 3).

4.8.1 The matrix H

Here v = 36 = 729, b = n = 35 × 56 = 13608, γ = 3 and ρ = 56. The matrix

density is Hd = γ/v = ρ/b = 1/243.

4.8.2 Girth

Since α = 1 we know that g ≥ 8. Arguing as above, we can find four coplanar

lines in B that intersect in four points of P , showing that g = 8.

4.8.3 Minimum distance

It was not possible to find the minimum distance using Magma.

4.8.4 2-rank of H

Using Magma we find that rank2(H) = 13608− 12879 = 729. Therefore the

matrix H has full rank over GF (2).

As we have seen in other examples the full 2-rank of H implies that there

does not exist a non-empty proper subset M of P such that every line of B
contains an even number of the points in M .

4.8.5 Code dimension

Magma gives the code dimension to be 12879.

4.8.6 The automorphism group of CC56

The projective group of the set K = C56 is isomorphic to [PSL(3, 4)]C2, an

extension of PSL(3, 4) by a cyclic group of order 2 (see [11]). From [13],

|PSL(3, 4)| = 20160. Hence using Theorem 3.1 we find that the automor-

phism group of the code CC56 has a subgroup of order 36 × 2× 20160× 2 =

58786560.
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4.9 The code CC78

Let S = (P ,B, I) be the incidence structure defined by T ∗
5 (C78), where C78

is a 78-cap in PG(5, 4). For the 78-cap we use a construction discovered by

Hill. (See [12], although the construction is not actually given in that article.

A brief description of the construction is given in [4].)

The points of Hill’s 78-cap are listed in the Magma code in the Appendix

of this thesis.

4.9.1 The matrix H

Here v = 46 = 4096, b = n = 45×78 = 79872, γ = 4 and ρ = 78. The matrix

density is Hd = γ/v = ρ/b = 1/1024.

4.9.2 Girth

Since α = 1 we know that g ≥ 8. Arguing as previously, we can find four

coplanar lines in B that intersect in four points of P , showing that g = 8.

4.9.3 Minimum distance

It was not possible to find the minimum distance using Magma.

4.9.4 2-rank of H

It was not possible to find the 2-rank of H using Magma.

4.9.5 Code dimension

It was not possible to find the code dimension using Magma.

4.9.6 The automorphism group of CC78

The projective group of the set K = C78 is isomorphic to the direct product

of a cyclic group of order 3 with an extension of a cyclic group of order

13 by a cyclic group of order 6 (see [12]). Hence using Theorem 3.1 we

find that the automorphism group of the code CC78 has a subgroup of order

46 × 3× 3× 6× 13 = 2875392.
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4.10 The codes CU2,q2

Let S = (P ,B, I) be the incidence structure defined by T ∗
2 (U2,q2), where U2,q2

is a non-singular Hermitian curve in PG(2, q2).

4.10.1 The matrix H

Here v = q6, b = n = q4(q3 + 1), γ = q2 and ρ = q3 + 1. The matrix density

is Hd = γ/v = ρ/b = 1/q4.

4.10.2 Girth

α = q > 1 and therefore the Tanner graph contains 6-cycles.

From Lemma 1.1 we have

N6 =
q9(q3 + 1)(q2 − 1)(q − 1)

6
.

4.10.3 Minimum distance

Applying Lemma 1.3 we find that dmin ≥ q2 + 1. However this bound is not

sharp as the following results from [27] show.

Result 4.10. For even q the minimum distance of the code CU2,q2 is q2 + q.

Result 4.11. For odd q the minimum distance of the code CU2,q2 is even and

satisfies

q2 + q ≤ dmin ≤ 2q2.

4.10.4 2-rank of H

Applying Lemma 1.7 we find that s + tα + t + 1− µ−
√

∆ = 2q2 ≡ 2 mod 4

for odd q, but s + tα + t + 1− µ +
√

∆ = 2(q3 + q2) 6≡ 2 mod 4 for all q. We

therefore have the following result.

Result 4.12. For q odd H satisfies

rank2(H) ≥ q5 − q3 + q2 − 1.
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Magma results for the 2-rank for small values of q2 are given in Table 4.8.

For q2 = 9 we have rank2(H) = 2268− 1539 = 729. Therefore for this value

of q2 the matrix H has full rank over GF (2).

We conjecture that for odd values of q2 the matrix H has full rank q6

over GF (2).

4.10.5 Code dimension

Using Result 4.12 we can derive an upper bound for the dimension for odd

q.

Result 4.13. For odd q the dimension of CU2,q2 satisfies

k = n− rank2(H) ≤ q7 − q5 + q4 + q3 − q2 + 1.

Using Magma the code dimension was computed for small values of q.

The results are contained in Table 4.8.

Table 4.8: Dimension of CU2,q2 and 2-rank of H

q2 length n dimension k 2-rank of H

4 144 96 48

9 2268 1539 729

We conjecture that for odd values of q2 the dimension of the code is

q4(q3 − q2 + 1). As in other cases, we note that this conjecture is true if and

only if all the rows of H are linearly independent over GF (2), which is true

if and only if it is not possible to find a non-empty proper subset M of P
such that every line of B contains an even number of the points in M .

4.10.6 The automorphism group of CU2,q2

The projective group of the set K = U2,q2 is PGU(3, q2), which has order

q3(q3 + 1)(q2 − 1) (see [13]). Hence using Theorem 3.1 we find that the

automorphism group of CU2,q2 has a subgroup of order q9(q3 + 1)(q2 − 1)2.
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4.11 The codes CB2,q2

We restrict our attention to codes arising from the linear representation of a

Baer-subgeometry of PG(2, q2).

Let S = (P ,B, I) be the incidence structure defined by T ∗
2 (B), where B

is a Baer-subgeometry of PG(2, q2).

4.11.1 The matrix H

In the general case, where B is a Baer-subgeometry of PG(n, q2), we have

v = q2(n+1), b = q2n(qn+1 − 1)/(q − 1), γ = q2 and ρ = (qn+1 − 1)/(q − 1).

The matrix density is Hd = γ/v = ρ/b = 1/q2n.

Hence for CB2,q2 we have v = q6, b = q4(q2+q+1), γ = q2 and ρ = q2+q+1.

The matrix density is Hd = 1/q4.

4.11.2 Girth

α = q > 1 and therefore the Tanner graph contains 6-cycles.

From Lemma 1.1 we have

N6 =
q7(q2 − 1)2(q2 + q + 1)

6
.

4.11.3 Minimum distance

Applying Lemma 1.3 we find that dmin ≥ q2 + 1. However this bound is not

sharp as the following results from [27] show.

Result 4.14. For even q the minimum distance of the code CB2,q2 is q2 + q.

Result 4.15. For odd q the minimum distance of the code CB2,q2 is even and

satisfies

q2 + q ≤ dmin ≤ 2q2 − 2.

4.11.4 2-rank of H

Applying Lemma 1.7 we find that s + tα + t + 1 − µ −
√

∆ = 2q2 ≡ 2 mod

4 iff q is odd, but s + tα + t + 1− µ +
√

∆ = 2(q3 + q2) 6≡ 2 mod 4 for all q.

We therefore have the following result.

Result 4.16. For odd q, the code CB2,q2 satisfies rank2(H) ≥ q6−q4−q3 +q.
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Magma results for the 2-rank are given in Table 4.9. We conjecture that

for odd values of q2 the matrix H has full rank q6 over GF (2).

4.11.5 Code dimension

Using Result 4.16 we can derive an upper bound for the dimension for odd

values of q.

Result 4.17. For odd q the dimension of CB2,q2 satisfies

k = n− rank2(H) ≤ q5 + 2q4 + q3 − q.

Using Magma the code dimension was computed for small values of q.

The results are contained in Table 4.9.

Table 4.9: Dimension of CB2,q2 and 2-rank of H

q2 length n dimension k 2-rank of H

4 112 67 45

9 1053 324 729

We conjecture that for odd values of q2 the code dimension is q4(q + 1).

As in other cases, we note that this conjecture is true if and only if all the

rows of H are linearly independent over GF (2), which is true if and only if

it is not possible to find a non-empty proper subset M of P such that every

line of B contains an even number of the points in M .

4.11.6 The automorphism group of CB2,q2

The projective group of a Baer-subgeometry of PG(2, q2) is isomorphic to

PGL(3, q) and has order q3(q3 − 1)(q2 − 1). Hence using Theorem 3.1 we

find that the automorphism group of the code CB2,q2 has a subgroup of order

q9(q3 − 1)(q2 − 1)2.
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Chapter 5

Code simulation results 1

This section provides some simulation results that test the performance of

some of the SPG codes presented in the previous section.

The codes were tested on the additive white gaussian noise (AWGN)

channel and decoded using iterative probabilistic decoding. The simulations

were performed using source code written by the author of [24]. The source

code can be downloaded from http://the-art-of-ecc.com. The decoding used

a maximum of ten iterations.

The performance of each code was compared with that of a randomly gen-

erated code of the same rate and length. The random codes were constructed

following the methods in [22] and [21] and using source code downloaded from

http://www.cs.utoronto.ca/∼radford/ldpc.software.html.1

The intention was to generate random codes that would perform well and

thereby give a good benchmark for assessing the performance of the SPG

codes. At the signal-to-noise ratios we are considering randomly generated

LDPC codes perform well with a column weight of 3 (as discussed in [15])

and therefore the random codes were constructed so that they would have as

many columns of weight 3 as possible. This was achieved using the evencol

option in Neal’s program. In addition the no4cycle option was used, which

eliminates cycles of length four in the Tanner graph, if possible.

A further comparison was provided by an uncoded signal transmitted on

the same AWGN channel.

1The format of the alist files generated by Neal’s program is not entirely compatible
with Morelos-Zaragoza’s simulation code. This problem was overcome by modifying the
downloaded source code.
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5.1 The codes CKq+1,q

The codes CK3,2 , CK4,3 , CK5,4 and CK6,5 were tested.

5.1.1 CK3,2

The code CK3,2 is a (2,7)-regular [28, 21, 3] code of rate 0.75. Its parity-check

matrix is an 8× 28 matrix with 2-rank 28− 21 = 7.

The performance of CK3,2 was compared with a randomly constructed

LDPC code that had an 8 × 28 parity-check matrix with column weight 3

and row weights that ranged between 1 and 25. The 2-rank of this matrix

was calculated using Magma and was found to be 7, the same as for CK3,2 .

The rate and length of the randomly constructed code were therefore the

same as for CK3,2 . The matrix contained some 4-cycles.

The results are shown in Figure 5.1. The code CK3,2 performed well in

comparison with the randomly generated code. This is probably because

the Tanner graph of CK3,2 contains no 4-cycles and only 56 6-cycles (see

Section 4.1.2), whereas the program that generated the random code was

not able to eliminate all 4-cycles from the Tanner graph. It is probable that

the presence of 4-cycles combined with a greater number of 6-cycles in the

Tanner graph explains the poor performance of the randomly constructed

code in comparison to CK3,2 .

5.1.2 CK4,3

The code CK4,3 is a (3, 13)-regular [117, 90, 6] code of rate 10/13 ≈ 0.769.

Its parity-check matrix is a 27× 117 matrix of full 2-rank.

The performance of CK4,3 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

27× 117 matrix with column weight 3 and row weights that ranged between

3 and 53. A Magma computation showed that the matrix had full 2-rank.

The matrix contained some 4-cycles.

The results are shown in Figure 5.2. The SPG code performed well in

comparison with the randomly generated code. As with CK3,2 this can proba-

bly be explained by the fact that the Tanner graph of the randomly generated

code contained some 4-cycles.
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Figure 5.1: The decoding performance of the SPG code CK3,2 on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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Figure 5.2: The decoding performance of the SPG code CK4,3 on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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5.1.3 CK5,4

The code CK5,4 is a (4, 21)-regular [336, 285, 5] code of rate 285/336 =

95/112 ≈ 0.848. Its parity-check matrix is a 64 × 336 matrix of 2-rank

336− 285 = 51.

The performance of CK5,4 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

51× 336 matrix with column weight 3 and row weights that ranged between

8 and 79. A Magma computation showed that the matrix had full 2-rank.

The matrix contained some 4-cycles.

The results are shown in Figure 5.3. Again the SPG code performed

well in comparison with the randomly generated code. One explanation for

this is that the Tanner graph of the randomly constructed code contained

some 4-cycles. In addition the parity-check matrix of CK5,4 contains linearly

dependent rows, which can enhance decoding performance by providing extra

checks. These two factors appear to outweigh the fact that the parity-check

matrix of the randomly generated code is less dense than the parity-check

matrix of CK5,4 (1/17 as opposed to 1/16 for CK5,4).
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Figure 5.3: The decoding performance of the SPG code CK5,4 on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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5.1.4 CK6,5

The code CK6,5 is a (5,31)-regular [775, 650] code of rate 650/775 = 26/31 ≈
0.839. Its parity-check matrix is a 125× 775 matrix of full 2-rank.

The performance of CK6,5 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

125×775 matrix with column weight 3 and row weights that ranged between

9 and 31. A Magma computation showed that the matrix had full 2-rank.

The matrix contained some 4-cycles.

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations.

The results are shown in Figure 5.4. In this case the randomly constructed

code performed better than the SPG code. This is slightly surprising since

again the parity-check matrix of the randomly constructed code contained

some 4-cycles. However in this case the density of the parity-check matrix for

CK6,5 is 1/25 compared to 3/125 for the randomly constructed code. Therefore

the randomly constructed matrix contain 3/5 the number of 1’s in its parity-

check matrix. This means that overall the randomly constructed code will

have a lower proportion of short cycles in its Tanner graph than the SPG code

— specifically it will contain many fewer 6-cycles. This probably explains

the better performance of the randomly generated code.
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5.2 The codes CKq,q

The codes CK3,3 , CK4,4 and CK5,5 were tested.

5.2.1 CK3,3

The code CK3,3 is a (3, 9)-regular [81, 56, 6] code of rate 56/81 ≈ 0.691. Its

parity-check matrix is a 27× 81 matrix with 2-rank 81− 56 = 25.

The performance of CK3,3 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

25× 81 matrix with column weight 3 and row weights that ranged between

3 and 41. A Magma computation showed that the matrix had full 2-rank.

The matrix contained some 4-cycles.

The results are shown in Figure 5.5. CK3,3 performed well in comparison

with the randomly generated code. This can be attributed to the following

factors:

- the Tanner graph of the randomly generated code contains some 4-

cycles

- the parity-check matrix of CK3,3 is slightly less dense (1/9 compared to

3/25 for the random code)

- the parity-check matrix of CK3,3 contains linearly dependent rows.

5.2.2 CK4,4

The code CK4,4 is a (4,16)-regular [256, 205, 6] code of rate 205/256 ≈ 0.801.

Its parity-check matrix is a 64× 256 matrix with 2-rank 256− 205 = 51.

The performance of CK4,4 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

51× 256 matrix with column weight 3 and row weights that ranged between

6 and 60. A Magma computation showed that the matrix had full 2-rank.

The matrix contained some 4-cycles.

The results are shown in Figure 5.6. Again the SPG code performed well

in comparison with the randomly generated code. This can be attributed

to the fact that the parity-check matrix of the randomly generated code

contains some 4-cycles, as well as the fact that the parity-check matrix of

CK4,4 contains some linearly dependent rows.
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Figure 5.4: The decoding performance of the SPG code CK6,5 on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.
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Figure 5.5: The decoding performance of the SPG code CK3,3 on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.

47



It is interesting that the randomly generated code performed very slightly

better than CK4,4 at low signal-to-noise ratios (see Figure 5.6). This is proba-

bly because the parity-check matrix of the randomly generated code is slightly

less dense than the SPG matrix (1/17 compared to 1/16 for CK4,4), which

at low signal-to-noise ratios seems to be a more important factor than the

linear dependence of rows in the parity-check matrix of the SPG code.
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Figure 5.6: The decoding performance of the SPG code CK4,4 on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.

5.2.3 CK5,5

The code CK5,5 is a (5,25)-regular [625,504] code of rate 504/625 ≈ 0.806 and

with minimum distance 6 ≤ dmin ≤ 10. Its parity-check matrix is a 125×625

matrix with 2-rank 625− 504 = 121.

The performance of CK5,5 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

121×625 matrix with column weight 3 and row weights that ranged between

7 and 27. A Magma computation showed that the matrix had full 2-rank.

The matrix contained no 4-cycles.

The results are shown in Figure 5.7. In this case the randomly constructed
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code performed better than the SPG code. The probable explanation for this

is that the parity-check matrix of the randomly generated code is less dense

(3/121 compared to 1/25 for CK5,5). Since the random matrix contains no

4-cycles its lower density implies that the Tanner graph will have a lower

proportion of 6-cycles in its Tanner graph than the SPG code, which would

explain the better performance of the randomly generated code.
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Figure 5.7: The decoding performance of the SPG code CK5,5 on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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5.3 The codes CK2m,2h
, 1 < m < h

The shortest code in this class in CK4,8 . This is an (8, 28)-regular [1792, 1436,

≥ 5] code of rate 1436/1792 ≈ 0.801. Its parity-check matrix is a 512× 1792

matrix with 2-rank 1792 − 1436 = 356. Other codes in the class were too

long to test with the available software.

The performance of CK4,8 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

356×1792 matrix with column weight 3 and row weights that ranged between

5 and 27. A Magma computation showed that the matrix had full 2-rank.

The matrix contained no 4-cycles.

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations.

The results are shown in Figure 5.8. The randomly constructed code

performed significantly better than CK4,8 , despite the fact that the parity-

check matrix of CK4,8 contains a large number of linearly dependent rows.

The probable explanation is that the density of the random matrix is 3/356 ≈
0.00843 compared to 8/512 ≈ 0.0156 for the SPG code, which means that

the random matrix contains nearly half as many 1’s. As the random matrix

did not contain any 4-cycles its lower density implies that the Tanner graph

of the random code must contain a lower proportion of 6-cycles and 8-cycles,

which would explain its better performance.
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5.4 The codes CK2,2h

The codes CK2,4 and CK2,8 were tested. Magma was not able to generate the

4096× 4608 parity-check matrix for the code CK2,16 .

5.4.1 CK2,4

The code CK2,4 is a (4,6)-regular [96, 50, 8] code of rate 50/96 ≈ 0.521. Its

parity-check matrix is a 64× 96 matrix with 2-rank 96− 50 = 46.

The performance of CK2,4 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

46× 96 matrix with column weight 3 and row weights that ranged between

2 and 10. A Magma computation showed that the matrix had full 2-rank.

The matrix contained no 4-cycles.

The results are shown in Figure 5.9. CK2,4 performed better than the

randomly constructed code. One explanation for this is that the SPG matrix

is slightly less dense than the randomly constructed matrix (1/16 compared

to 3/46 for the random matrix). In addition the parity-check matrix of CK2,4

contains a number of linearly dependent rows, which can enhance decoding

performance.

5.4.2 CK2,8

The code CK2,8 is an (8, 10)-regular [640, 341, 16] code of rate 341/640 ≈
0.533. Its parity-check matrix is a 512× 640 matrix with 2-rank 640− 341 =

299.

The performance of CK2,8 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

299 × 640 matrix with 634 columns of weight 3 and 6 columns of weight 4.

The row weights ranged between 2 and 14. A Magma computation showed

that the matrix had full 2-rank.

The results are shown in Figure 5.10. The randomly constructed code

performed slightly better for signal-to-noise ratios less than about 1.2dB, but

the SPG code performed better for signal-to-noise ratios greater than 1.2dB.

It would appear that for values of the signal-to-noise ratio less then 1.2dB the

lower density of the random matrix (approximately 0.0101 for the random

matrix compared to 0.0156 for the SPG matrix) is the most significant factor,
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Figure 5.8: The decoding performance of the SPG code CK4,8 on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.
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Figure 5.9: The decoding performance of the SPG code CK2,4 on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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whereas for values greater than 1.2dB the fact that the SPG matrix contains

a large number of linearly dependent rows is a more important factor. This

is in agreement with the analysis presented above regarding CK4,4 .
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Figure 5.10: The decoding performance of the SPG code CK2,8 on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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5.5 The codes CQ−q

The codes CQ−
2
, CQ−

3
and CQ−

4
were tested.

5.5.1 CQ−
2

The code CQ−
2

is a (2, 5)-regular [40, 25, 4] code of rate 0.625. Its parity-check

matrix is a 16× 40 matrix with 2-rank 40− 25 = 15.

The performance of CQ−
2

was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

15× 40 matrix with column weight 3 and row weights that ranged between

1 and 26. A Magma computation showed that the matrix had full 2-rank.

The matrix contained some 4-cycles.

The results are shown in Figure 5.11. The SPG code performed better

than the random code. This can be attributed to the following factors:

- The Tanner graph of the randomly generated code contains some 4-

cycles, whereas the Tanner graph of CQ−
2

has girth 8 (Result 4.6).

- The parity-check matrix of CQ−
2

is less dense (1/8 compared to 1/5 for

the random code).

- The parity-check matrix of CQ−
2

contains a linearly dependent row.

- The minimum distance of CQ−
2

is 4, which by Lemma 3.1 is the largest

possible value for a code derived from the linear representation of a set

of points in PG(3, 2).

The most significant of these reasons is likely to be the discrepancy in

the matrix densities and therefore another test was performed in order to

compare CQ−
2

with a randomly constructed code with a matrix density as

close to that of CQ−
2

as possible. In this second simulation the parity-check

matrix of the random code was a 15× 40 matrix with 38 columns of weight

2 and 2 columns of weight 3. The row weights ranged between 3 and 8. A

Magma computation showed that the matrix had full 2-rank. The matrix

contained no 4 cycles.

The results are shown in Figure 5.12, on which both the randomly gen-

erated codes have been plotted. As can be seen the second random code

improves upon the performance of the first, showing that for very short codes
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such as these a column weight of 2 is preferable to a column weight of 3. How-

ever the second random code still performs less well than CQ−
2
. One reason

for this is likely to the linearly dependent row in the parity-check matrix of

the SPG code. Another reason is probably the regularity of the row weights

of the SPG code.

5.5.2 CQ−
3

The code CQ−
3

is a (3, 10)-regular [270, 189, 6] code of rate 0.7. Its parity-

check matrix is a 81× 270 matrix of full 2-rank.

The performance of CQ−
3

was compared with a randomly constructed

LDPC code whose parity-check matrix was an 81 × 270 matrix with col-

umn weight 3 and row weights that ranged between 5 and 20. A Magma

computation showed that the matrix had full 2-rank. The matrix contained

no 4-cycles.

The results are shown in Figure 5.13. The code CQ−
3

performs better than

the randomly generated code for all values of the signal-to-noise ratio. One

reason for this is that the Tanner graph of CQ−
3

has girth 8 (Result 4.6) and

is therefore free of 4-cycles and 6-cycles, whereas the Tanner graph of the

randomly constructed code is likely to contain a large number of 6-cycles.

We note also that the minimum distance of CQ−
3

is 6, which by Lemma 3.1

is the largest possible value for a code derived from the linear representation

of a set of points in PG(2, 3).

5.5.3 CQ−
4

The code CQ−
4

is a (4,17)-regular [1088, 861, 8] code of rate 861/1088 ≈ 0.791.

Its parity-check matrix is a 256× 1088 matrix with 2-rank 1088− 861 = 227.

The performance of CQ−
4

was compared with a randomly constructed

LDPC code whose parity-check matrix was an 227 × 1088 matrix with col-

umn weight 3 and row weights that ranged between 6 and 25. A Magma

computation showed that the matrix had full 2-rank. The matrix contained

no 4-cycles.

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations.

The results are shown in Figure 5.14. We see that CQ−
4

performs well

compared to the random code. This may be attributed to the following
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Figure 5.11: The decoding performance of the SPG code CQ−
2

on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions. The random code has column weight 3.
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Figure 5.12: The decoding performance of the SPG code CQ−
2

on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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factors:

- The Tanner graph of CQ−
4

has girth 8 and is therefore free of 6-cycles.

- The parity-check matrix of CQ−
4

contains linearly dependent rows.

- The minimum distance of CQ−
4

is 8, which by Lemma 3.1 is the largest

possible value for a code derived from the linear representation of a set

of points in PG(3, 4).

These factors outweigh the slightly lower density of the randomly-generated

matrix (3/227 ≈ 0.0132 as opposed to 4/256 = 0.015625 for the SPG code).
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Figure 5.13: The decoding performance of the SPG code CQ−
3

on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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Figure 5.14: The decoding performance of the SPG code CQ−
4

on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.
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5.6 The code CTO8

The first value of q for which a Tits ovoid exists is q = 8. The code CTO8 is

an (8, 65)-regular [33280, 29722, 16] code of rate 29722/33280 ≈ 0.893. Its

parity-check matrix is a 4096 × 33280 matrix with 2-rank 33280 − 29722 =

3558.

The next shortest code in the family CTOq is CTO32 , which has length

33587200 and was therefore too long to test using the available software.

The performance of CTO8 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

3558 × 33280 matrix with column weight 3 and row weights that ranged

between 14 and 46. A Magma computation showed that the matrix had full

2-rank.

Because of the length of these codes the log-likelihood version of the

decoding algorithm was used to perform the simulations. The results are

shown in Figure 5.15.
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Figure 5.15: The decoding performance of the SPG code CTO8 on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.

In this simulation CTO8 performed poorly, hardly improving on the bit

error rate of the uncoded signal. By contrast the randomly constructed code
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performed well. The probable explanation for this is the greater density of

the parity-check matrix of CTO8 compared to the random code: the parity-

check matrix of CTO8 has density 8/4096 = 1/512 whereas the random matrix

has density 3/3558 = 1/1186.
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5.7 The code CC11

The code CC11 is a (3, 11)-regular [891, 648, 6] code of rate 648/891 ≈ 0.727.

Its parity-check matrix is a 243× 891 matrix of full 2-rank.

The performance of CC11 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

243×891 matrix with column weight 3 and row weights that ranged between

4 and 22. A Magma computation showed that the matrix had full 2-rank.

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations.

The results are shown in Figure 5.16. The performance of the SPG code

and the random code were similar. This was perhaps to be expected as the

parity-check matrices both had density 3/243 = 1/81 and they both had

column weight equal to 3.
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Figure 5.16: The decoding performance of the SPG code CC11 on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.
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5.8 The code CC56

The code CC56 is a (3, 56)-regular [13608, 12879, 4 ≤ dmin ≤ 6] code of rate

12879/13608 ≈ 0.946. Its parity-check matrix is a 729× 13608 matrix of full

2-rank.

The performance of CC56 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

729 × 13608 matrix with column weight 3 and row weights that ranged be-

tween 37 and 85. A Magma computation showed that the matrix had full

2-rank.

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations. The

results are shown in Figure 5.17.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−5

10
−4

10
−3

10
−2

10
−1

Signal−to−noise ratio (dB)

B
it 

er
ro

r 
ra

te

SPG [13608, 12879]

Random LDPC [13608, 12879]

Uncoded

Figure 5.17: The decoding performance of the SPG code CC56 on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maxi-

mum of 10 iterations. The performance of CC56 and the random code were

extremely similar over this range of signal-to-noise ratios.

The performance of CC56 and the random code were extremely similar.

The density of the parity-check matrices for CC56 and the randomly con-

structed code are both 1/243, both matrices have column weight equal to 3,

and both matrices have full 2-rank. These factors would seem to explain the
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similar performance of the two codes.

63



5.9 The code CC78

The code CC78 is a (4, 78)-regular code of length n = 79872. Unfortunately

it was not possible to simulate the performance of this code because of its

length.
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5.10 The codes CU2,q2

The codes CU2,4 and CU2,9 were tested.

5.10.1 CU2,4

The code CU2,4 is a (4,9)-regular [144, 96, 6] code of rate 2/3. Its parity-check

matrix is a 64× 144 matrix of 2-rank 144− 96 = 48.

The performance of CU2,4 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

48× 144 matrix of column weight 3 and row weights that ranged between 4

and 23. A Magma computation showed that the matrix had full 2-rank.

The results are shown in Figure 5.18.
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Figure 5.18: The decoding performance of the SPG code CU2,4 on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.

The code CU2,4 performed better than the randomly generated code. In

this case the parity-check matrices for both the SPG code and the randomly

generated code have density 1/16. However the parity-check matrix of the

random code contained some 4-cycles. In addition the parity-check matrix

of the SPG code contains linearly dependent rows.
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5.10.2 CU2,9

The code CU2,9 is a (9,28)-regular [2268, 1539] code of rate 1539/2268 ≈ 0.679.

Its parity-check matrix is a 729× 2268 matrix of full 2-rank. By Result 4.11

we have dmin = 12, 14, 16 or 18.

The performance of CU2,9 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

729× 2268 matrix with 2267 columns of weight 3 and one column of weight

4. The row weights ranged between 2 and 20. A Magma calculation showed

that the matrix had full 2-rank.

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations. The

results are shown in Figure 5.19.
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Figure 5.19: The decoding performance of the SPG code CU2,9 on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.

In this case the randomly generated code performed better than the SPG

code. We note that the density of the random matrix is approximately 1/243,

compared to 1/81 for the SPG code. The greater column weight and density

of the SPG code gives rise to a higher number of short cycles in the Tanner

graph and degrades the performance of the code.
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5.11 The codes CB2,q2

The codes CB2,4 and CB2,9 were tested.

5.11.1 CB2,4

The code CB2,4 is a (4, 7)-regular [112, 67, 6] code of rate 0.598. Its parity-

check matrix is a 64× 112 matrix of 2-rank 112− 67 = 45.

The performance of CB2,4 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

45× 112 matrix of column weight 3 and row weights that ranged between 2

and 14. A Magma computation showed that the matrix had full 2-rank.

The results are shown in Figure 5.20, which shows that CB2,4 performed

better than the random code. This can be attributed to two factors. Firstly

the parity-check matrix of the SPG code has density 1/16 compared to a

density of 1/15 for the random code. Secondly the parity-check matrix for

the SPG code contains linearly dependent rows.

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal−to−noise ratio (dB)

B
it 

er
ro

r 
ra

te

SPG [112, 67, 6]

Random LDPC [112, 67]

Uncoded

Figure 5.20: The decoding performance of the SPG code CB2,4 on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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5.11.2 CB2,9

The code CB2,9 is a (9, 13)-regular [1053, 324] code of rate 0.308. Its parity-

check matrix is a 729 × 1053 matrix of full 2-rank. By result 4.15 we have

dmin = 12, 14 or 16.

The performance of CB2,9 was compared with a randomly constructed

LDPC code of the same rate and length. Its parity-check matrix was a

729× 1053 matrix with 985 columns of weight 3, 65 columns of weight 4 and

3 columns of weight 5. The row weights ranged between 2 and 12. A Magma

calculation showed that the matrix had full 2-rank.

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations. The

results are shown in Figure 5.21.
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Figure 5.21: The decoding performance of the SPG code CB2,9 on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.

The random code performed better than the SPG code. Again this is due

to the fact that the parity-check matrix of the random code has a much lower

density (≈ 0.0042) than the parity-check matrix of the SPG code (≈ 0.0123).
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Chapter 6

Other Semipartial Geometries

In this section we discuss some examples of semipartial geometries that do

not arise from SPG-reguli, and their associated codes. The examples are

taken from [3, Chapter 10].

6.1 The codes CU2,3(m)

Let Um = {1, 2, 3, . . . ,m}, m ≥ 4. Let P be the set of pairs of Um, let B be

the set of unordered triples of Um, and let I be the inclusion relation. Then

U2,3(m) = (P ,B, I) is an spg(2, m− 3, 2, 4). See [3].

It is usual to denote these semipartial geometries by CU2,3(n). However

we shall use n to denote the length of the resulting codes, and we therefore

denote the codes by CU2,3(m) to avoid confusion.

We note that if m > 4 U2,3(m) is a proper semipartial geometry since

µ 6= (t + 1)α for all m > 4.

6.1.1 The matrix H

For all m ≥ 4 we obtain an SPG code CU2,3(m) for which v =
(

m
2

)
, b = n =

(
m
3

)
,

γ = 3 and ρ = m− 2. We have Hd = 6
m(m−1)

.

6.1.2 Girth

Since α = 2 the Tanner graph contains 6-cycles. From Lemma 1.1 we have

N6 =
bt(α− 1)

3

(
s + 1

2

)
= (m4 − 6m3 + 11m2 − 6m)/6.
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6.1.3 Minimum distance and codeword weights

We have the following Lemmas.

Lemma 6.1. For all m ≥ 4 the minimum distance of the code CU2,3(m) is 4

and CU2,3(m) contains
(

m
4

)
minimum weight codewords.

Proof. A codeword in CU2,3(m) corresponds to a subset L ⊂ L such that every

set in P is a subset of an even number of the sets in L. Consider the set

L = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} ⊂ L. Every set in P is a subset of

0 or 2 sets in L. Hence CU2,3(m) contains a codeword of length 4 and dmin ≥ 4.

It is clear that there can be no smaller subset of L with this property. Hence

dmin = 4.

We can choose L in
(

m
4

)
different ways, each corresponding to a different

minimum weight codeword.

Lemma 6.2. All codewords in CU2,3(m) have even weight.

Proof. Let L ⊂ L correspond to a codeword and let t = |L|. Each set in

L contains 3 pairs, which means that counting repetitions there are 3t pairs

contained in the sets of L. Since L corresponds to a codeword any pair must

occur an even number of times, which means that the 3t pairs can be split

into sets of even size. Hence 2 | 3t and t is even.

The following lemmas give us information about the weight distribution

of the codes CU2,3(m).

Lemma 6.3. Let C = CU2,3(m), m even. If C contains x codewords of weight

t, 0 ≤ t ≤ n then it contains x codewords of weight n− t.

Proof. L contains
(

m
3

)
sets and each of these sets contains 3 pairs, which

means that counting repetitions there are 3×
(

m
3

)
pairs contained in the sets

of L. Therefore each set in P is contained in
3×(m

3 )
(m

2 )
= m− 2 sets of L. Now

consider a subset L ⊂ L corresponding to a codeword of weight t = |L|.
Each set in P is contained in an even number of the sets in L. Since each

set in P is contained in m − 2 sets of L, and m − 2 is even, it follows that

each set of P is contained in an even number of the sets in L\L. Hence L\L
corresponds to a codeword of weight |L| − |L| = n− t.

Corollary 6.1. For m even CU2,3(m) contains the all 1s codeword.
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Lemma 6.4. Let C = CU2,3(m), m odd. Then the complement of any codeword

of C is not a codeword.

Proof. As for Lemma 6.4. In this case m − 2 is odd and so each set of

P is contained in an odd number of the sets in L\L. Hence L\L cannot

correspond to a codeword.

6.1.4 2-rank of H

Let Hm denote the parity-check matrix of the code CU2,3(m), m ≥ 4.

We have the following Theorem.

Theorem 6.1. For m ≥ 4 the 2-rank of Hm is
(

m−1
2

)
.

Proof. For m = 4 we have

H4 =



1 1 0 0

1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 1

0 0 1 1


.

By inspection we see that rank2(H4) = 3 =
(
3
2

)
.

For m ≥ 5 we note that Hm has the following structure:

Hm =

[
Hm−1 I(m−1

2 )
O A

]
.

Here I(m−1
2 ) is the

(
m−1

2

)
×

(
m−1

2

)
identity matrix, O is an (m−1)×

(
m−1

3

)
all-zero matrix, and A is a (2, m − 2)-regular (m − 1) ×

(
m−1

2

)
matrix. The

rows of Hm are arranged with the last m − 1 rows corresponding to pairs

that contain m. Similarly the last
(

m−1
2

)
columns correspond to the triples

containing m.

By inspection the first
(

m−1
2

)
rows of Hm are linearly independent, so

rank2(Hm) ≥
(

m−1
2

)
. Since any of the last m − 1 rows of Hm is a linear

combination of m−2 of the first
(

m−1
2

)
rows of Hm it follows that rank2(Hm) =(

m−1
2

)
.

The matrix H5 is shown in Table 6.1 as an illustration.
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Table 6.1: H5

(1,2,3) (1,2,4) (1,3,4) (2,3,4) (1,2,5) (1,3,5) (1,4,5) (2,3,5) (2,4,5) (3,4,5)

(1,2) 1 1 0 0 1 0 0 0 0 0

(1,3) 1 0 1 0 0 1 0 0 0 0

(1,4) 0 1 1 0 0 0 1 0 0 0

(2,3) 1 0 0 1 0 0 0 1 0 0

(2,4) 0 1 0 1 0 0 0 0 1 0

(3,4) 0 0 1 1 0 0 0 0 0 1

(1,5) 0 0 0 0 1 1 1 0 0 0

(2,5) 0 0 0 0 1 0 0 1 1 0

(3,5) 0 0 0 0 0 1 0 1 0 1

(4,5) 0 0 0 0 0 0 1 0 1 1

6.1.5 Code dimension

The dimension of CU2,3(m) follows from the last section.

Corollary 6.2. The dimension of CU2,3(m) is
(

m−1
3

)
.

Proof. The dimension is given by

k = n− rank2(Hm) =

(
m

3

)
−

(
m− 1

2

)
=

(
m− 1

3

)
.

We note that this means that the dimension of CU2,3(m) is the same as the

length of CU2,3(m−1), m ≥ 5.

Table 6.2 shows the dimension for small values of m.
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6.2 The code CM(7)

Three sporadic SPG codes can be obtained from the Moore graphs M(2), M(3)

and M(7). Moore graphs are graphs with valency k > 1, girth 5 and with the

minimum number of vertices, which is k2 + 1. It is known that necessarily

k ∈ {2, 3, 7, 57}; however a Moore graph with k = 57 is not known to exist.

M(2) is a trivial cycle graph of length 5. M(3) is known as the Petersen

graph. M(7) is known as the Hoffman-Singleton graph.

For each of the Moore graphs Γ there is an associated semipartial ge-

ometry, denoted by M(k). P is the set of vertices Γ and B is the set

{Γ(x) : x ∈ P}, where Γ(x) is the set of vertices adjacent to x. I is the natu-

ral incidence relation. M(k) = (P ,B, I) is an spg(k−1, k−1, k−1, (k−1)2)).

See [3].

For k = 2, 3, 7 we obtain an SPG code CM(k) for which v = b = n = k2+1,

γ = ρ = k. We have Hd = k
k2+1

.

Table 6.2: Dimension of CU2,3(m)

m length n dimension k

5 10 4

6 20 10

7 35 20

8 56 35

9 84 56

10 120 84

11 165 120

12 220 165

13 286 220

14 364 286

15 455 364

16 560 455

17 680 560

18 816 680

19 969 816

20 1140 969
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The length of the SPG-code CM(2) is 5 and the length of CM(3) is 10. These

codes are too short to be of interest and we therefore restrict our attention

to the code CM(7).

6.2.1 The matrix H

The code CM(7) has length n = 50 and Hd = 7/50.

A parity-check matrix H was constructed. This was achieved by labeling

vertices from 0 to 49 and listing the corresponding blocks Γ(0) to Γ(49)

(the blocks were taken from [20]), and then using Magma to construct the

incidence matrix. The points and blocks are shown in Table 6.3.

6.2.2 Girth

Since α = 6 the Tanner graph of CM(7) contains 6-cycles. Using Lemma 1.1

we find that the Tanner graph contains 10500 6-cycles.

6.2.3 Minimum distance and codeword weights

Using Magma, the minimum distance of CM(7) was found to be 8. The weight

distribution of the code is shown in Table 6.4.

6.2.4 2-rank of H and code dimension

Using Magma the 2-rank of H was found to be 22. The code dimension is

50− 22 = 28.
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6.3 The codes CLP(n,q)

Define P as the set of lines of PG(n, q) (n ≥ 4), B as the set of planes of

PG(n, q), and I as the inclusion relation. Then LP(n, q) = (P ,B, I) is an

spg(q(q + 1), qn−1−1
q−1

− 1, q + 1, (q + 1)2). See [3].

Table 6.3: Points and lines of M(7)

x Γ(x) x Γ(x)

0 {1,11, 14, 26, 38, 46, 49} 25 {2,7,16,24,26,33,37}
1 {0,2, 6 ,19, 22 ,40,43} 26 {0,4,21,25,27,30,35}
2 {1,3,9,13,25,31,47} 27 {9,15,19,26,28,32,45}
3 {2,4,11,18,34,42,45} 28 {13,24,27,29,34,40,49}
4 {3,5,8,23,26,40,48} 29 {8,11,22,28,30,37,47}
5 {4,6,13,17,32,37,46} 30 {6,18,26,29,31,41,44}
6 {1,5,7,10,15,30,34} 31 {2,20,23,30,32,36,49}
7 {6,8,12,25,39,45,49} 32 {5,11,27,31,33,39,43}
8 {4,7,9,14,20,29,43} 33 {14,22,25,32,34,41,48}
9 {2,8,10,17,27,38,41} 34 {3,6,20,28,33,35,38}
10 {6,9,11,21,24,36,48} 35 {12,17,26,34,36,43,47}
11 {0,3,10,12,16,29,32} 36 {10,14,31,35,37,40,45}
12 {7,11,13,19,23,35,41} 37 {5,19,25,29,36,38,42}
13 {2,5,12,14,21,28,44} 38 {0,9,23,34,37,39,44}
14 {0,8,13,15,18,33,36} 39 {7,18,21,32,38,40,47}
15 {6,14,16,23,27,42,47} 40 {1,4,16,28,36,39,41}
16 {11,15,17,20,25,40,44} 41 {9,12,30,33,40,42,46}
17 {5,9,16,18,22,35,49} 42 {3,15,21,37,41,43,49}
18 {3,14,17,19,24,30,39} 43 {1,8,24,32,35,42,44}
19 {1,12,18,20,27,37,48} 44 {13,16,30,38,43,45,48}
20 {8,16,19,21,31,34,46} 45 {3,7,22,27,36,44,46}
21 {10,13,20,22,26,39,42} 46 {0,5,20,24,41,45,47}
22 {1,17,21,23,29,33,45} 47 {2,15,29,35,39,46,48}
23 {4,12,15,22,24,31,38} 48 {4,10,19,33,44,47,49}
24 {10,18,23,25,28,43,46} 49 {0,7,17,28,31,42,48}
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6.3.1 The matrix H

We have v = (qn+1−1)(qn−1)
(q2−1)(q−1)

, b = n = (qn+1−1)(qn−1)(qn−1−1)
(q3−1)(q2−1)(q−1)

, γ = qn−1−1
q−1

and

ρ = q2 + q + 1.

We note that for n = 4 H is a square matrix (that is v = b). For n ≥ 5

we have b > v.

The matrix density is

Hd =
(q3 − 1)2(q2 − 1)

(qn+1 − 1)(qn − 1)(qn−1 − 1)
.

Table 6.4: Weight distribution of CM(7)

Weight Number of codewords

0 1

8 750

10 7770

12 52675

14 449550

16 2311575

18 8624700

20 22661835

22 42102850

24 57811425

26 58254700

28 42267025

30 22408050

32 8633100

34 2316300

36 470625

38 61950

40 525

42 50
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6.3.2 Girth

Since α ≥ 3 the Tanner graph contains 6-cycles. From Lemma 1.1 we have

N6 =
bt(α− 1)

3

(
s + 1

2

)
=

q3(qn+1 − 1)(qn − 1)(qn−1 − 1)(qn−2 − 1)

6(q − 1)4
.

6.3.3 Minimum distance

Lemma 1.3 gives dmin ≥ qn−1−1
q−1

+1. This is a better bound than that provided

by Lemma 1.4.

Magma was only able to calculate the minimum distance of CLP(4,2) and

CLP(4,3). The results are displayed in Table 6.5. The lower bound of Lemma

1.3 is sharp for CLP(4,2) but not for CLP(4,3).

Table 6.5: Minimum distance of CLP(n,q)

n q dmin

4 2 8

4 3 40

6.3.4 2-rank of H and dimension of CLP(n,q)

Lemma 1.7 does not apply for any values of n and q.

The code dimension and 2-rank of H were calculated for small values of

n and q using Magma. The results are displayed in Table 6.6.

Table 6.6: CLP(n,q): code dimension and 2-rank of H

n q dimension k 2-rank of H

4 2 79 76

4 3 120 1090

5 2 974 421
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6.4 The codes CW (2n+1,q)

Let σ be a symplectic polarity of PG(2n+1, q), n ≥ 1. Let P be the point set

of PG(2n+1, q), B be the set of lines that are not totally isotropic with respect

to σ, and I the incidence relation of PG(2n + 1, q). Then W (2n + 1, q) =

(P ,B, I) is an spg(q, q2n − 1, q, q2n(q − 1)). See [3].

6.4.1 The matrix H

We have v = (q2n+2 − 1)/(q − 1), b = n = q2n(q2n+2 − 1)/(q2 − 1), γ = q + 1

and ρ = q2n.

The matrix density is

Hd = (q2 − 1)/(q2n+2 − 1).

6.4.2 Girth

Since α ≥ 2 the Tanner graph contains 6-cycles. From Lemma 1.1 we have

N6 =
bt(α− 1)

3

(
s + 1

2

)
=

q2n+1(q2n − 1)(q2n+2 − 1)

6
.

6.4.3 Minimum distance

Lemma 1.3 gives dmin ≥ q +2. This is a better bound than that provided by

Lemma 1.4.

Magma was only able to calculate the minimum distance of CW (2n+1,q) for

small values of n and q. The results are displayed in Table 6.7.

Table 6.7: Minimum distance of CW (2n+1,q)

n q dmin

1 2 4

1 3 10

1 4 6

2 2 4

We observe that for even values of q the lower bound of q + 2 provided

by Lemma 1.3 is sharp in all cases.
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6.4.4 2-rank of H and dimension of CW (2n+1,q)

Lemma 1.7 does not apply since

s + tα + t + 1− µ = 2q2n ≡ 0 mod 2.

The code dimension and 2-rank of H were calculated for small values of

n and q using Magma. The results are displayed in Table 6.8.

Table 6.8: CW (2n+1,q): code dimension and 2-rank of H

n q dimension k 2-rank of H

1 2 10 10

1 3 51 39

1 4 212 60

1 5 495 155

1 7 2051 399

1 8 3760 400

1 9 6642 5823

2 2 336 280

2 3 7371 7008

Based on the results in Table 6.8 we make the following conjecture for

odd values of q.

Conjecture 6.1. For q odd

• rank2(H) = v − 1 = q2n+2−1
q−1

− 1;

• The dimension of CW (2n+1,q) is b− v + 1 = (q2n+2−1)(q2n−q−1)
q2−1

+ 1.

We note that for odd q all the rows in H sum to zero since γ = q + 1 is

even, which shows that rank2(H) < v, that is H does not have full 2-rank.

It follows that Conjecture 6.1 is true if and only if it is not possible to find a

non-empty proper subset R of the set of rows R of a parity-check matrix of

CW (2n+1,q), q odd, such that the the rows in R sum to zero. We note that if

such a set R were to exist then:

• R must contain an even number of rows (by a counting argument, since

the row weight is q2n which is odd).
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• The vectors in R\R would also sum to zero. This means that there

would exist a set R with |R| ≤ v/2.

• R would have to contain at least q2n + 1 rows, since the row weight is

q2n.
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6.5 The codes CNQ+(2n−1,2)

Let Q+(2n − 1, 2) be a non-singular hyperbolic quadric in PG(2n − 1, 2),

n ≥ 3. Let P be the set of points of PG(2n − 1, 2) that do not lie on

Q+(2n− 1, 2), let L be the set of lines of PG(2n− 1, 2) that do not intersect

Q+(2n − 1, 2), and let I be the incidence relation of PG(2n − 1, 2). Then

NQ+(2n−1, 2) = (P ,B, I) is an spg(2, 22n−3−2n−2−1, 2, 22n−3−2n−1). See

[3].

6.5.1 The matrix H

We have v = 22n − 1 − (2n−1 + 1)(2n − 1) = 2n−1(2n − 1). Therefore b =

v(t + 1)/(s + 1) = 2n−1(2n− 1)(22n−3− 2n−2)/3 = 22n−3(2n− 1)(2n−1− 1)/3.

Also γ = 3 and ρ = 22n−3−2n−2. The matrix density is Hd = 3/(2n−1(2n−1)).

6.5.2 Girth

Since α = 2 the Tanner graph contains 6-cycles. From Lemma 1.1 we have

N6 =
bt(α− 1)

3

(
s + 1

2

)
= bt = 22n−3(2n − 1)(2n−1 − 1)(22n−3 − 2n−2 − 1)/3.

6.5.3 Minimum distance

We have the following Theorem.

Theorem 6.2. The minimum distance of CNQ+(2n−1,2) is 4, for all n ≥ 3.

Proof. Suppose that the hyperbolic quadric is given by the canonical form

(see [13, Theorem 5.16])

Q+(2n− 1, 2) = X0X1 + X2X3 + ... + X2n−2X2n−1.

Then P = (1, 0, 0, . . . , 0) lies on the quadric. Consider the plane Π defined

by P and the points Q = (0, 0, 1, 1, 0, . . . , 0) and R = (0, 0, 0, 1, 1, 1, 0, . . . , 0).

(For example in PG(5, 2) P = (1, 0, 0, 0, 0, 0), Q = (0, 0, 1, 1, 0, 0) and R =

(0, 0, 0, 1, 1, 1). In PG(7, 2) P = (1, 0, 0, 0, 0, 0, 0, 0), Q = (0, 0, 1, 1, 0, 0, 0, 0)

and R = (0, 0, 0, 1, 1, 1, 0, 0), and so on.) Then Π ∩ Q+(2n − 1, 2) = {P}.
Let L ⊂ L be the set of the four lines of Π that do not contain P . Then

every point of P lies on either 0 or 2 lines of L. Hence CNQ+(2n−1,2) contains

a codeword of weight |L| = 4.
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From Lemma 1.3 we have dmin ≥ 4, from which it follows that dmin = 4.

6.5.4 2-rank of H and dimension of CNQ+(2n−1,2)

Lemma 1.7 does not apply since s + tα + t + 1− µ ≡ 0 mod 2.

The code dimension and 2-rank of H could only be calculated for n = 3

and n = 4 using Magma. The results are displayed in Table 6.9.

Table 6.9: CNQ+(2n−1,2): code dimension and 2-rank of H

n dimension k 2-rank of H

3 35 21

4 1008 112
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6.6 The codes CNQ−(2n−1,2)

Let Q−(2n− 1, 2) be a non-singular elliptic quadric in PG(2n− 1, 2), n ≥ 2.

Let P be the set of points of PG(2n−1, 2) that do not lie on Q−(2n−1, 2), let

L be the set of lines of PG(2n−1, 2) that do not intersect Q−(2n−1, 2), and

let I be the incidence relation of PG(2n−1, 2). Then NQ−(2n−1, 2) = (P ,B,

I) is an spg(2, 22n−3 + 2n−2 − 1, 2, 22n−3 + 2n−1). See [3].

6.6.1 The matrix H

We have v = 22n − 1 − (2n + 1)(2n−1 − 1) = 2n−1(2n + 1). Therefore b =

v(t + 1)/(s + 1) = 2n−1(2n + 1)(22n−3 + 2n−2)/3 = 22n−3(2n + 1)(2n−1 + 1)/3.

Also γ = 3 and ρ = 22n−3+2n−2. The matrix density is Hd = 3/(2n−1(2n+1)).

6.6.2 Girth

Since α = 2 the Tanner graph contains 6-cycles. From Lemma 1.1 we have

N6 =
bt(α− 1)

3

(
s + 1

2

)
= bt = 22n−3(2n + 1)(2n−1 + 1)(22n−3 + 2n−2 − 1)/3.

6.6.3 Minimum distance

We have the following Theorem.

Theorem 6.3. The minimum distance of CNQ−(2n−1,2) is 4, for all n ≥ 2.

Proof. Suppose that the elliptic quadric is given by the canonical form (see

[13, Theorem 5.16])

Q−(2n− 1, 2) = X2
0 + X0X1 + X2

1 + X2X3 + ... + X2n−2X2n−1.

Then the point P = (0, 0, 1, 0, . . . , 0) lies on the quadric. Consider the plane

Π defined by P and the two points Q = (1, 0, 0, . . . , 0) and R = (0, 1, 0, . . . , 0).

(For example in PG(3, 2) P = (0, 0, 1, 0), Q = (1, 0, 0, 0) and R = (0, 1, 0, 0).)

Then Π ∩Q−(2n− 1, 2) = {P}. Let L ⊂ L be the set of the four lines of Π

that do not contain P . Then every point of P lies on either 0 or 2 lines of

L. Hence CNQ−(2n−1,2) contains a codeword of weight |L| = 4.

From Lemma 1.3 we have dmin ≥ 4, from which it follows that dmin = 4.

83



6.6.4 2-rank of H and dimension of CNQ−(2n−1,2)

Lemma 1.7 does not apply since s + tα + t + 1− µ ≡ 0 mod 2.

The code dimension and 2-rank of H could only be calculated for n = 2,

n = 3 and n = 4 using Magma. The results are displayed in Table 6.10.

Table 6.10: CNQ−(2n−1,2): code dimension and 2-rank of H

n dimension k 2-rank of H

2 4 6

3 90 30

4 1504 128
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6.7 The codes C
H

(n+1)∗
q

Let P be the set of lines of a projective space Σ = PG(n + 1, q) skew to

a fixed projective space H = PG(n − 1, q). Let B be the set of planes of

Σ that intersect H in exactly one point. Then H
(n+1)∗
q = (P ,B, I) is an

spg(q2 − 1, (qn − 1)/(q − 1)− 1, q, q(q + 1)). See [3].

6.7.1 The matrix H

We have v = q2n and b = q2(n−1)(qn − 1)/(q − 1). Also γ = q2 and ρ =

(qn − 1)/(q − 1). The matrix density is Hd = q2(1−n).

From these parameters it follows that for any q we have b ≥ v ⇔ n ≥ 3.

6.7.2 Girth

Since α = q ≥ 2 the Tanner graph contains 6-cycles. From Lemma 1.1 we

have

N6 =
bt(α− 1)

3

(
s + 1

2

)
= q2n(qn − 1)(qn − q)(q + 1)/6.

6.7.3 Minimum distance

Lemma 1.3 gives dmin ≥ q2 + 1.

Lemma 1.4 only provides a meaningful (non-negative) bound for n = 2.

However v > b for all q when n = 2.

Magma was only able to calculate the minimum distance of C
H

(n+1)∗
q

for

small values of n and q. The results are displayed in Table 6.11.

Table 6.11: Minimum distance of C
H

(n+1)∗
q

n q dmin

2 2 6

3 2 6

2 3 18

3 3 18

2 4 20

2 5 50
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6.7.4 2-rank of H and dimension of C
H

(n+1)∗
q

The code dimension and 2-rank of H could only be calculated for small values

of n and q using Magma. The results are displayed in Table 6.12.

Table 6.12: C
H

(n+1)∗
q

: code dimension and 2-rank of H

n q dimension k 2-rank of H

2 2 4 8

3 2 67 45

4 2 746 214

5 2 7001 935

2 3 3 33

3 3 324 729

2 4 24 56

3 4 3451 1925

2 5 5 145
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Chapter 7

Code simulation results 2

This chapter provides some simulation results that test the performance of

some of the SPG codes presented in the previous chapter. As in Chapter 5

the codes were compared with a randomly generated code and an uncoded

signal transmitted on an AWGN channel.

7.1 The codes CU2,3(m)

The results of Section 6.1.3 show that the structure of the codes for m odd

and m even are rather different. Therefore four codes were tested in total,

two with m odd and two with m even: CU2,3(7), CU2,3(8), CU2,3(17) and CU2,3(18).

7.1.1 CU2,3(7)

The code CU2,3(7) is a (3, 5)-regular [35, 20, 4] code of rate 4/7 ≈ 0.571. Its

parity-check matrix is a 21× 35 matrix with 2-rank 35− 20 = 15.

The performance of CU2,3(7) was compared with a randomly constructed

LDPC code that had a 15 × 35 parity-check matrix with column weight 3

and row weights that ranged between 1 and 22. The 2-rank of this matrix

was calculated using Magma and was found to be 15, the same as for CU2,3(7).

The rate and length of the randomly constructed code were therefore the

same as for CU2,3(7). The matrix contained some 4-cycles.

The results are shown in Figure 7.1. The code CU2,3(7) performed well in

comparison with the randomly generated code. This can be attributed to

the following reasons.
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- The Tanner graph of the randomly generated code contains some 4-

cycles, whereas the Tanner graph of CU2,3(7) has girth 6.

- The parity-check matrix of CU2,3(7) is less dense (1/7 compared to 1/5

for the random code).

- The parity-check matrix of CU2,3(7) contains linearly dependent rows.
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Figure 7.1: The decoding performance of the SPG code CU2,3(7) on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.

7.1.2 CU2,3(8)

The code CU2,3(8) is a (3, 6)-regular [56, 35, 4] code of rate 35/56 = 0.625. Its

parity-check matrix is a 28× 56 matrix with 2-rank 56− 35 = 21.

The performance of CU2,3(8) was compared with a randomly constructed

LDPC code that had a 21 × 56 parity-check matrix with column weight 3

and row weights that ranged between 2 and 28. The 2-rank of this matrix

was calculated using Magma and was found to be 21, the same as for CU2,3(8).

The rate and length of the randomly constructed code were therefore the

same as for CU2,3(8). The matrix contained some 4-cycles.
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The results are shown in Figure 7.2. The code CU2,3(8) performed well in

comparison with the randomly generated code. This can be attributed to

the following reasons.

- The Tanner graph of the randomly generated code contains some 4-

cycles, whereas the Tanner graph of CU2,3(8) has girth 6.

- The parity-check matrix of CU2,3(8) is less dense (3/28 compared to 3/21

for the random code).

- The parity-check matrix of CU2,3(8) contains linearly dependent rows.
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Figure 7.2: The decoding performance of the SPG code CU2,3(8) on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.

7.1.3 CU2,3(17)

The code CU2,3(17) is a (3, 15)-regular [680, 560, 4] code of rate 560/680 =

14/17 ≈ 0.824. Its parity-check matrix is a 136 × 680 matrix with 2-rank

680− 560 = 120.

The performance of CU2,3(17) was compared with a randomly constructed

LDPC code that had a 120 × 680 parity-check matrix with column weight
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3 and row weights that ranged between 8 and 28. The matrix was found

to have full 2-rank using Magma, showing that the rate and length of the

randomly constructed code were the same as for CU2,3(17). The Tanner graph

contained no 4-cycles.

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations.

The results are shown in Figure 7.3. The code CU2,3(17) performed slightly

better than the randomly generated code for low signal-to-noise ratios. How-

ever above about 4dB the performance of CU2,3(17) degrades as the code ex-

hibits an error floor.
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Figure 7.3: The decoding performance of the SPG code CU2,3(17) on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.

7.1.4 CU2,3(18)

The code CU2,3(18) is a (3, 16)-regular [816, 680, 4] code of rate 680/816 =

5/6 ≈ 0.833. Its parity-check matrix is a 153 × 816 matrix with 2-rank

816− 680 = 136.

The performance of CU2,3(18) was compared with a randomly constructed

LDPC code that had a 136 × 816 parity-check matrix with column weight
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3 and row weights that ranged between 8 and 28. The matrix was found

to have full 2-rank using Magma, showing that the rate and length of the

randomly constructed code were the same as for CU2,3(18). The Tanner graph

contained no 4-cycles.

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations.

The results are shown in Figure 7.4. The code CU2,3(18) performs less well

than the randomly generated code.
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Figure 7.4: The decoding performance of the SPG code CU2,3(18) on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.

7.1.5 Summary

The codes CU2,3(m) perform very well for low values of m and therefore seem

to provide a good source of short LDPC codes. The codes perform similarly

for both even and odd values of m, despite the different structures of the

codes.
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7.2 The code CM(7)

The code CM(7) is a (7,7)-regular [50, 28,8] code of rate 0.56. Its parity-check

matrix is a 50× 50 matrix with 2-rank 50− 28 = 22.

The performance of CM(7) was compared with a randomly constructed

LDPC code that had a 22 × 50 parity-check matrix with column weight 3

and row weights that ranged between 2 and 19. The 2-rank of this matrix

was calculated using Magma and was found to be 22, the same as for CM(7).

The rate and length of the randomly constructed code were therefore the

same as for CM(7). The matrix contained some 4-cycles.

The results are shown in Figure 7.5. The code CM(7) performed well in

comparison with the randomly generated code. This can be attributed to

the following reasons.

- The Tanner graph of the randomly generated code contains some 4-

cycles, whereas the Tanner graph of CM(7) has girth 6.

- The parity-check matrix of CM(7) contains a large number of linearly

dependent rows.

- The code CM(7) has a large minimum distance.

The matrix densities were similar (7/50 for CM(7) and 3/22 for the ran-

domly generated code).
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7.3 The codes CLP(n,q)

The codes CLP(4,2) and CLP(4,3) were tested.

7.3.1 CLP(4,2)

The code CLP(4,2) is a (7,7)-regular [155, 79, 8] code of rate 79/155 ≈ 0.510.

Its parity-check matrix is a square 155×155 matrix with 2-rank 155−79 = 76.

The performance of CLP(4,2) was compared with a randomly constructed

LDPC code that had a 76 × 155 parity-check matrix. The matrix had 153

columns of weight 3 and 2 columns of weight 4. The row weights ranged

between 1 and 12. The matrix was free of 4-cycles.

The 2-rank of this matrix was calculated using Magma and was found

to be 76, the same as for CLP(4,2). The rate and length of the randomly

constructed code were therefore the same as for CLP(4,2).

The results are shown in Figure 7.6. The code CLP(4,2) performed well in

comparison with the randomly generated code. The primary reason for this

is that the parity-check matrix of CLP(4,2) contains a large number of linearly

dependent rows. This outweighed the fact that the parity-check matrix of

the randomly generated code was less dense than the parity-check matrix of

CLP(4,2) (approximately 0.040 for the randomly generated code, compared to

0.045 for CLP(4,2)).

7.3.2 CLP(4,3)

The code CLP(4,3) is a (13,13)-regular [1210, 120, 40] code of rate 120/1210 ≈
0.099. Its parity-check matrix is a square 1210 × 1210 matrix with 2-rank

1210− 120 = 1090.

The performance of CLP(4,3) was compared with a randomly constructed

LDPC code that had a 1090×1210 parity-check matrix. The matrix had 1012

columns of weight 3, 185 columns of weight 4 and 13 columns of weight 5.

The row weights ranged between 2 and 11. The matrix was free of 4-cycles.

The 2-rank of this matrix was calculated using Magma and was found

to be 1090, the same as for CLP(4,3). The rate and length of the randomly

constructed code were therefore the same as for CLP(4,3).

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations.
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Figure 7.5: The decoding performance of the SPG code CM(7) on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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Figure 7.6: The decoding performance of the SPG code CLP(4,2) on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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The results are shown in Figure 7.7. The code CLP(4,3) performed very

poorly, producing a bit error rate that was almost the same as the uncoded

signal. The reason for this appears to be that the density of the parity-check

matrix for CLP(4,3) is much greater than for the randomly constructed matrix.

The density of the matrix for CLP(4,3) is 13/1210 ≈ 0.011, whereas the density

of the randomly constructed matrix is (1012× 3 + 185× 4 + 13× 5)/(1090×
1210) ≈ 0.0029. The SPG matrix therefore contains nearly four times as

many 1s as the random matrix, which accounts for the significantly better

performance of the randomly constructed code. Also most of the columns

in the randomly constructed matrix have weight 3, compared to a column

weight of 13 for the CLP(5,2) matrix: as discussed in [15], LDPC codes that

have parity-check matrices with column weights equal to 3 perform well under

iterative decoding.
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Figure 7.7: The decoding performance of the SPG code CLP(4,3) on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.

7.3.3 CLP(5,2)

The code CLP(5,2) is a (7,15)-regular [1395, 974] code of rate 974/1395 ≈ 0.698.

Its parity-check matrix is a 651× 1395 matrix with 2-rank 1395− 974 = 421.

95



The performance of CLP(5,2) was compared with a randomly constructed

LDPC code that had a 421 × 1395 parity-check matrix. The matrix had

column weight equal to 3. The row weights ranged between 4 and 19. The

matrix was free of 4-cycles.

The 2-rank of this matrix was calculated using Magma and was found

to be 421, the same as for CLP(5,2). The rate and length of the randomly

constructed code were therefore the same as for CLP(5,2).

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations.

The results are shown in Figure 7.8. The code CLP(5,2) performed very

poorly, producing a bit error rate that was almost the same as the uncoded

signal. The reason for this appears to be that the density of the parity-check

matrix for CLP(5,2) is greater than the density of the randomly constructed

matrix. The density of the matrix for CLP(5,2) is 7/651 ≈ 0.0107, whereas

the density of the randomly constructed matrix is 3/421 ≈ 0.00713. Also the

column weight of the randomly constructed matrix is 3, which is much better

for iterative decoding than the column weight of 7 of the CLP(5,2) matrix (see

[15]).
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Figure 7.8: The decoding performance of the SPG code CLP(5,2) on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.
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7.4 The codes CW (2n+1,q)

The codes CW (3,3), CW (3,4), CW (3,5) and CW (5,2) were tested.

7.4.1 CW (3,2)

The code CW (3,2) is a [20, 10, 4] code of rate 0.5. Its parity-check matrix is a

15× 20 (3,4)-regular matrix with 2-rank 20− 10 = 10.

The software that generated the random LDPC codes did not produce

a code with rate equal to 0.5. Therefore the performance of CW (3,2) was

compared with two randomly constructed codes, one of rate 0.55 and the

other of rate 0.45. The first code had a 10 × 20 parity-check matrix with

2-rank equal to 9. The matrix had column weight equal to 3 and row weights

that ranged between 1 and 18. The matrix contained some 4-cycles. The

second code had an 11×20 parity-check matrix with full 2-rank. This matrix

also had column weight equal to 3 and row weights that ranged between 1

and 18, and contained some 4-cycles.

The results are shown in Figure 7.9. The code CW (3,2) performed well

in comparison to the randomly generated codes. This can probably be at-

tributed to the fact that the parity-check matrix had a lower density than the

randomly constructed matrices. Furthermore the matrix contained a number

of linearly dependent rows.

7.4.2 CW (3,3)

The code CW (3,3) is a (4,9)-regular [90, 51, 10] code of rate 51/90 = 17/30 ≈
0.567. Its parity-check matrix is a 40× 90 matrix with 2-rank 90− 51 = 39.

The performance of CW (3,3) was compared with a randomly constructed

LDPC code that had a 39× 90 parity-check matrix. The matrix had column

weight equal to 3 and row weights that ranged between 2 and 14. The

matrix contained some 4-cycles. The matrix was found to have full 2-rank

using Magma. The rate and length of the randomly constructed code were

therefore the same as for CW (3,3).

97



The results are shown in Figure 7.10. The code CW (3,3) performed less well

than the randomly generated code. This can be attributed to the following

factors.

- The density of the matrix for CW (3,3) is 4/40 = 0.1 compared to 3/39 ≈
0.077 for the randomly constructed code.

- The randomly constructed matrix had column weight equal to 3.

These factors outweigh the fact that the the randomly constructed matrix

contained some 4-cycles, and also the fact that the matrix of the SPG code

contained an extra linearly dependent row.

7.4.3 CW (3,4)

The code CW (3,4) is a (5, 16)-regular [272, 212, 6] code of rate 212/272 =

53/68 ≈ 0.779. Its parity-check matrix is an 85 × 272 matrix with 2-rank

272− 212 = 60.

The performance of CW (3,4) was compared with a randomly constructed

LDPC code that had a 60×212 parity-check matrix. The matrix had column

weight equal to 3 and row weights that ranged between 7 and 32. The

matrix contained some 4-cycles. The matrix was found to have full 2-rank

using Magma. The rate and length of the randomly constructed code were

therefore the same as for CW (3,4).

The results are shown in Figure 7.11. The code CW (3,4) performed well

compared to the randomly generated code at signal-to-noise ratios greater

than 2dB. The explanation for this appears to be that the parity-check ma-

trix of CW (3,4) contains a number of linearly dependent rows and also that

the randomly constructed matrix contains some 4-cycles. In this case these

factors appear to outweigh the column weight of 3 of the randomly con-

structed matrix and the fact that the random matrix is less dense than the

SPG matrix (the densities are 0.05 and 0.059 respectively).

Comparing the performance of CW (3,4) with CW (3,3) we see that there is a

delicate balance in the way that the various properties of the matrices affect

performance. It seems that the significant factor in the better performance of

CW (3,4) compared to CW (3,3) is that the parity-check matrix of CW (3,4) contains

a higher proportion of linearly dependent rows.
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Figure 7.9: The decoding performance of the SPG code CW (3,2) on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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Figure 7.10: The decoding performance of the SPG code CW (3,3) on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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7.4.4 CW (3,5)

The code CW (3,5) is a (6,25)-regular [650, 495] code of rate 495/650 = 99/130 ≈
0.762. Its parity-check matrix is a 156× 650 matrix with 2-rank 650− 495 =

155.

The performance of CW (3,5) was compared with a randomly constructed

LDPC code that had a 155 × 650 parity-check matrix. The matrix had

column weight equal to 3 and row weights that ranged between 6 and 22.

The matrix was free of 4-cycles. The matrix was found to have full 2-rank

using Magma. The rate and length of the randomly constructed code were

therefore the same as for CW (3,5).

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations.

The results are shown in Figure 7.12. The randomly constructed code

outperformed CW (3,5) for all values of the signal-to-noise ratio. The main

reason for this is that the density of the randomly constructed matrix is nearly

half that of the SPG matrix (the densities are 0.0194 and 0.385 respectively).

7.4.5 CW (5,2)

The code CW (5,2) is a (3, 16)-regular [336, 280, 4] code of rate 280/336 = 5/6 ≈
0.833. Its parity-check matrix is a 63×336 matrix with 2-rank 336−280 = 56.

The performance of CW (5,2) was compared with a randomly constructed

LDPC code that had a 56×336 parity-check matrix. The matrix had column

weight equal to 3 and row weights that ranged between 6 and 68. The

matrix contained some 4-cycles. The matrix was found to have full 2-rank

using Magma. The rate and length of the randomly constructed code were

therefore the same as for CW (5,2).

The results are shown in Figure 7.13. The code CW (5,2) performed well

compared to the randomly generated code at signal-to-noise ratios greater

than 2dB. The explanation for this appears to be that the parity-check matrix

of CW (5,2) contains a large number of linearly dependent rows and also that

the randomly constructed matrix contains some 4-cycles. Also the density

of the parity-check matrix for CW (5,2) is 3/63 = 1/21 ≈ 0.048 whereas the

randomly constructed matrix has density 3/56 ≈ 0.054.

Interestingly the randomly constructed code performed slightly better

than CW (5,2) at low signal-to-noise ratios. The reason for this is unclear.
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Figure 7.11: The decoding performance of the SPG code CW (3,4) on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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Figure 7.12: The decoding performance of the SPG code CW (3,5) on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.

101



7.5 The codes CNQ+(2n−1,2)

The codes CNQ+(5,2) and CNQ+(7,2) were tested.

7.5.1 CNQ+(5,2)

The code CNQ+(5,2) is a [56, 35, 4] code of rate 0.625. Its parity-check matrix

is a 28× 56 (3,6)-regular matrix with 2-rank 56− 35 = 21.

The performance of CNQ+(5,2) was compared with a randomly constructed

LDPC code that had a 21× 56 parity-check matrix. The matrix had column

weight equal to 3 and row weights that ranged between 2 and 28. The

matrix contained some 4-cycles. The matrix was found to have full 2-rank

using Magma. The rate and length of the randomly constructed code were

therefore the same as for CNQ+(5,2).

The results are shown in Figure 7.14. The code CNQ+(5,2) performed well

in comparison to the randomly generated code. This can be attributed to

the following factors.

- The density of the matrix for CNQ+(5,2) is 3/28 ≈ 0.107 compared to

3/21 ≈ 0.143 for the randomly constructed code.

- The matrix for CNQ+(5,2) contained a number of linearly dependent rows.

- The randomly constructed matrix contained some 4-cycles.

7.5.2 CNQ+(7,2)

The code CNQ+(7,2) is a [1120,1008, 4] code of rate 0.9. Its parity-check matrix

is a 120× 1120 (3,28)-regular matrix with 2-rank 1120− 1008 = 112.

The performance of CNQ+(7,2) was compared with a randomly constructed

LDPC code that had a 112 × 1120 parity-check matrix. The matrix had

column weight equal to 3 and row weights that ranged between 17 and 102.

The matrix contained some 4-cycles. The matrix was found to have full 2-

rank using Magma. The rate and length of the randomly constructed code

were therefore the same as for CNQ+(7,2).

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations.

The results are shown in Figure 7.15. The code CNQ+(7,2) performed poorly

in comparison to the randomly generated code, hardly improving on the bit
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Figure 7.13: The decoding performance of the SPG code CW (5,2) on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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Figure 7.14: The decoding performance of the SPG code CNQ+(5,2) on an

AWGN channel using iterative probabilistic decoding with a maximum of 10

iterations.
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error rate of the uncoded signal. It is unclear to me why this should have been

the case, particularly since the SPG matrix was less dense than the randomly

constructed matrix and the randomly constructed matrix contained 4-cycles.
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Figure 7.15: The decoding performance of the SPG code CNQ+(7,2) on an

AWGN channel using log-likelihood iterative probabilistic decoding with a

maximum of 10 iterations.

7.6 The codes CNQ−(2n−1,2)

The codes CNQ−(5,2) and CNQ−(7,2) were tested.

7.6.1 CNQ−(5,2)

The code CNQ−(5,2) is a [120, 90, 4] code of rate 0.75. Its parity-check matrix

is a 36× 120 (3,10)-regular matrix with 2-rank 120− 90 = 30.

The performance of CNQ−(5,2) was compared with a randomly constructed

LDPC code that had a 30×120 parity-check matrix. The matrix had column

weight equal to 3 and row weights that ranged between 3 and 50. The

matrix contained some 4-cycles. The matrix was found to have full 2-rank

using Magma. The rate and length of the randomly constructed code were

therefore the same as for CNQ−(5,2).
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The results are shown in Figure 7.16. The code CNQ−(5,2) performed well

in comparison to the randomly generated code. This can be attributed to

the following factors.

- The density of the matrix for CNQ−(5,2) is 3/36 ≈ 0.0833 compared to

3/30 = 0.1 for the randomly constructed code.

- The matrix for CNQ−(5,2) contained a number of linearly dependent rows.

- The randomly constructed matrix contained some 4-cycles.
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Figure 7.16: The decoding performance of the SPG code CNQ−(5,2) on an

AWGN channel using iterative probabilistic decoding with a maximum of 10

iterations.

7.6.2 CNQ−(7,2)

The code CNQ−(7,2) is a [1632,1504, 4] code of rate 0.921 (approximately).

Its parity-check matrix is a 136 × 1632 (3,36)-regular matrix with 2-rank

1632− 1504 = 128.

The performance of CNQ−(7,2) was compared with a randomly constructed

LDPC code that had a 128 × 1632 parity-check matrix. The matrix had

column weight equal to 3 and row weights that ranged between 16 and 150.
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The matrix contained some 4-cycles. The matrix was found to have full 2-

rank using Magma. The rate and length of the randomly constructed code

were therefore the same as for CNQ−(7,2).

Because of the relatively long length of these codes the log-likelihood

version of the decoding algorithm was used to perform the simulations.

The results are shown in Figure 7.17. The code CNQ−(7,2) performed

poorly in comparison to the randomly generated code, hardly improving on

the bit error rate of the uncoded signal. As with CNQ+(7,2) the SPG ma-

trix was less dense than the randomly constructed matrix and the randomly

constructed matrix contained 4-cycles, and I am therefore unable to explain

the poor performance of the SPG code compared to the randomly generated

code.
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Figure 7.17: The decoding performance of the SPG code CNQ−(7,2) on an

AWGN channel using log-likelihood iterative probabilistic decoding with a

maximum of 10 iterations.

7.7 The codes C
H

(n+1)∗
q

The codes C
H

(4)∗
2

, C
H

(5)∗
2

and C
H

(4)∗
3

were tested.
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7.7.1 C
H

(4)∗
2

The code C
H

(4)∗
2

is a [112, 67, 6] code of rate 0.598 (approximately). Its parity-

check matrix is a 64× 112 (4,7)-regular matrix with 2-rank 112− 67 = 45.

The performance of C
H

(4)∗
2

was compared with a randomly constructed

LDPC code that had a 45×112 parity-check matrix. The matrix had column

weight equal to 3 and row weights that ranged between 2 and 14. The

matrix contained some 4-cycles. The matrix was found to have full 2-rank

using Magma. The rate and length of the randomly constructed code were

therefore the same as for C
H

(4)∗
2

.

The results are shown in Figure 7.18. The code C
H

(4)∗
2

performed well in

comparison to the randomly generated code. This can be attributed to the

following factors.

- The density of the matrix for CNQ−(5,2) is 4/64 = 1/16 compared to

3/45 = 1/15 for the randomly constructed code.

- The matrix for C
H

(4)∗
2

contained a number of linearly dependent rows.

- The randomly constructed matrix contained some 4-cycles.

7.7.2 C
H

(5)∗
2

The code C
H

(5)∗
2

is a [960,746] code of rate 0.777 (approximately). Its parity-

check matrix is a 256×960 (4,7)-regular matrix with 2-rank 960−746 = 214.

The performance of C
H

(5)∗
2

was compared with a randomly constructed

LDPC code that had a 214 × 960 parity-check matrix. The matrix had

column weight equal to 3 and row weights that ranged between 4 and 22.

The matrix contained some 4-cycles. The matrix was found to have full 2-

rank using Magma. The rate and length of the randomly constructed code

were therefore the same as for C
H

(5)∗
2

.

The results are shown in Figure 7.19. The code C
H

(5)∗
2

performed poorly

in comparison to the randomly generated code, hardly improving on the bit

error rate of the uncoded signal. I am unable to explain the poor performance

of the SPG code compared to the randomly generated code.
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Figure 7.18: The decoding performance of the SPG code C
H

(4)∗
2

on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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Figure 7.19: The decoding performance of the SPG code C
H

(5)∗
2

on an AWGN

channel using iterative probabilistic decoding with a maximum of 10 itera-

tions.
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7.7.3 C
H

(4)∗
3

The code C
H

(4)∗
3

is a [1053,324] code of rate 0.307 (approximately). Its parity-

check matrix is a 729× 1053 (9,13)-regular matrix with 2-rank 1053− 324 =

729.

The performance of C
H

(4)∗
3

was compared with a randomly constructed

LDPC code that had a 729 × 1053 parity-check matrix. The matrix had

column weights equal to 3 and 4 row weights that ranged between 2 and

11. The matrix contained some 4-cycles. The matrix was found to have full

2-rank using Magma. The rate and length of the randomly constructed code

were therefore the same as for C
H

(4)∗
3

.

The results are shown in Figure 7.20. The code C
H

(4)∗
3

performed poorly

in comparison to the randomly generated code, hardly improving on the bit

error rate of the uncoded signal.
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Figure 7.20: The decoding performance of the SPG code C
H

(4)∗
3

on an AWGN

channel using log-likelihood iterative probabilistic decoding with a maximum

of 10 iterations.
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Chapter 8

Appendix: Magma Code

The following programs print parity-check matrices in alist format of the

codes that are discussed in the thesis. Some of the programs also calculate

properties of the codes such as the minimum distance.

8.1 CKq+1,q

/*

Program to find minimum distance and dimension of code

obtained from linear representation of PG(2,q)

*/

print "Input q";

read q1;

q := StringToInteger(q1);

k := GF(q);

VS4 := VectorSpace(k,4);

/*

PG2: set of points of PG(2,q)

P: PG(3,q)\PG(2,q) as an enumerated sequence

*/

PG2 := {Normalize(v) : v in VS4 | v ne 0 and v[1] eq 0};

P := Setseq({v: v in VS4 | v[1] eq 1});
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/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := VS4!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

Lines: set of all lines not in PG(2,q)

PG2Lines: Lines that contain a point of PG(2,q)

B: PG2Lines expressed in terms of P

*/

Lines := {line(v,w) : v,w in VS4 | Normalize(v) ne Normalize(w)

and w[1] ne 0 and v ne 0};

PG2Lines := {l: l in Lines | #(l meet PG2) ne 0};

B := {{i:i in [1..#P] | P[i] in l} : l in PG2Lines};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "q: " cat IntegerToString(q);

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format
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See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := q;

row_weight := q^2+q+1;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;
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end for;

Put(f, "\n");

end for;
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8.2 CKq,q

/*

Program to find minimum distance and dimension of code

obtained from linear representation of AG(2,q)

*/

print "Input q";

read q1;

q := StringToInteger(q1);

k := GF(q);

VS4 := VectorSpace(k,4);

/*

AG2: set of points of AG(2,q)

P: PG(3,q)\PG(2,q) as an enumerated sequence

*/

AG2 := {v : v in VS4 | v[1] eq 0 and v[2] eq 1};

P := Setseq({v: v in VS4 | v[1] eq 1});

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := VS4!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*
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Lines: set of all lines not in PG(2,q)

AG2Lines: Lines that contain a point of AG(2,q)

B: AG2Lines expressed in terms of P

*/

Lines := {line(v,w) : v,w in VS4 | Normalize(v) ne Normalize(w)

and w[1] ne 0 and v ne 0};

AG2Lines := {l: l in Lines | #(l meet AG2) ne 0};

B := {{i:i in [1..#P] | P[i] in l} : l in AG2Lines};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "q: " cat IntegerToString(q);

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := q;

row_weight := q^2;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);
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Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.3 CK2m,2h
, 1 < m < h

/*

Program to find minimum distance and dimension of code

obtained from linear representation of ’Denniston type’

maximal arc

*/

print "Input even q";

read q1;

q := StringToInteger(q1);

k := GF(q);

a := NormalElement(k);

print "Input h, 2<2^h<q";

read h1;

h := StringToInteger(h1);

b := {};

for i in [1..(h-1)] do

j:=2^i;

Include(~b, a^j);

end for;

j:={};

Include(~j,k!0);

Include(~j,k!1);

for i in b do

for t in j do

Include(~j, t + i);

end for;

end for;

VS4 := VectorSpace(k,4);

/*
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Given even q, calculate r such that rx^2 + xy + y^2 is irreducible.

*/

if not IsSquare(q) then

r:=1;

else

i:=1;

g:=PrimitiveElement(k);

while Trace(g^i) ne 1 do

i:=i+1;

end while;

r:=g^i;

end if;

/*

maxarc: set of points of ’Denniston type’ maximal arc

P: PG(3,q)\PG(2,q) as an enumerated sequence

*/

maxarc := {v : v in VS4 | v[1] eq 0 and v[2] eq 1 and (r*v[3]^2 + v[3]*v[4] +v[4]^2) in j};

P := Setseq({v: v in VS4 | v[1] eq 1});

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := VS4!j;

t := Normalize(s);

Include(~l, t);

end for;
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return l;

end function;

/*

Lines: set of all lines not in PG(2,q)

maxarclines: Lines that contain a point of the maximal arc

B: maxarclines expressed in terms of P

*/

Lines := {line(v,w) : v,w in VS4 | Normalize(v) ne Normalize(w)

and w[1] ne 0 and v ne 0};

maxarclines := {l: l in Lines | #(l meet maxarc) ne 0};

B := {{i:i in [1..#P] | P[i] in l} : l in maxarclines};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "q: " cat IntegerToString(q);

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := q;

row_weight := #B/q^2;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));
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s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.4 CK2,2h

/*

Program to find minimum distance and dimension of code

obtained from linear representation of hyperoval

*/

print "Input q";

read q1;

q := StringToInteger(q1);

k := GF(q);

VS4 := VectorSpace(k,4);

/*

hyp: set of points of hyperoval

P: PG(3,q)\PG(2,q) as an enumerated sequence

*/

hyp := {v : v in VS4 | v[1] eq 0 and v[2] eq 1 and v[4] eq v[3]^2};

Include(~hyp, VS4![0,0,0,1]);

Include(~hyp, VS4![0,0,1,0]);

P := Setseq({v: v in VS4 | v[1] eq 1});

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := VS4!j;

t := Normalize(s);

Include(~l, t);

end for;

121



return l;

end function;

/*

Lines: set of all lines not in PG(2,q)

hyplines: Lines that contain a point of the hyperoval

B: hyplines expressed in terms of P

*/

Lines := {line(v,w) : v,w in VS4 | Normalize(v) ne Normalize(w)

and w[1] ne 0 and v ne 0};

hyplines := {l: l in Lines | #(l meet hyp) ne 0};

B := {{i:i in [1..#P] | P[i] in l} : l in hyplines};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "q: " cat IntegerToString(q);

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := q;

row_weight := q+2;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);
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Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.5 CQ−q

/*

Program to find dimension of code obtained from

linear representation of elliptic quadric. (We know

that the minimum distance is 2q, so no need to find

this.)

*/

print "Input q";

read q1;

q:=StringToInteger(q1);

k := GF(q);

/*

Given q, calculate d such that dx^2 + xy + y^2 is irreducible.

For even q, trace d equals 1. For odd q, 1-4d is a non-square.

*/

if IsEven(q) and not IsSquare(q) then

d:=1;

elif IsEven(q) and IsSquare(q) then

i:=1;

g:=PrimitiveElement(k);

while Trace(g^i) ne 1 do

i:=i+1;

end while;

d:=g^i;

else

g:=PrimitiveElement(k);

i:=q-1;

while IsSquare(1-4*g^i) do

i:=i-1;

end while;

d:=g^i;

end if;
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VS5 := VectorSpace(k, 5);

/*

Q: set of points of elliptic quadric in PG(3,q)

P: PG(4,q)\PG(3,q) as an enumerated sequence

*/

Q := {Normalize(v) : v in VS5 | v ne 0 and v[1] eq 0 and

d*v[2]^2 + v[2]*v[3] + v[3]^2 + v[4]*v[5] eq 0};

P := Setseq({v: v in VS5 | v[1] eq 1});

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := VS5!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

Lines: set of all lines not in PG(3,q)

QLines: Lines that contain a point of the elliptic quadric

B: QLines expressed in terms of P

*/

Lines := {line(v,w) : v,w in VS5 | Normalize(v) ne Normalize(w)

and w[1] ne 0 and v ne 0};

QLines := {l: l in Lines | #(l meet Q) ne 0};

B := {{i:i in [1..#P] | P[i] in l} : l in QLines};
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S := IncidenceStructure<#P|B>;

C:=Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "q: " cat IntegerToString(q);

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := q;

row_weight := q^2+1;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;
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end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.6 CTOq

/*

Program to find dimension of code obtained from

linear representation of Tits ovoid. (We know

that the minimum distance is 2q, so no need to find

this.)

*/

print "q of form 2^(2e+1), e>0. Input e:";

read e1;

e:=StringToInteger(e1);

print "input q:";

read q1;

q:=StringToInteger(q1);

k := GF(q);

VS5 := VectorSpace(k, 5);

/*

TO: set of points of Tits ovoid in PG(3,q)

P: PG(4,q)\PG(3,q) as an enumerated sequence

*/

TO := {Normalize(v) : v in VS5 | v ne 0 and v[1] eq 0 and v[2] eq 1 and

v[3] eq (v[5]*v[4] + v[5]^(e+3) + v[4] ^(e+1))};

P := Setseq({v: v in VS5 | v[1] eq 1});

Include(~TO, VS5![0,0,1,0,0]);

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do
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j := v + a*w;

s := VS5!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

Lines: set of all lines not in PG(3,q)

TOLines: Lines that contain a point of the elliptic quadric

B: TOLines expressed in terms of P

*/

Lines := {line(v,w) : v,w in VS5 | Normalize(v) ne Normalize(w)

and w[1] ne 0 and v ne 0};

TOLines := {l: l in Lines | #(l meet TO) ne 0};

B := {{i:i in [1..#P] | P[i] in l} : l in TOLines};

S := IncidenceStructure<#P|B>;

C:=Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "q: " cat IntegerToString(q);

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := q;

row_weight := q^2+1;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));
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Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.7 CC11

/*

Program to find minimum distance and dimension of code

obtained from linear representation of 11-cap in PG(4,3)

*/

k:= GF(3);

VS6 := VectorSpace(k,6);

/*

c11: set of points of the 11-cap

Quadrilateral is {(0,0,0,1,0,0), (0,0,0,0,1,0),

(0,0,0,0,0,1), (0,0,0,1,1,1)}, with diagonal points

(0,0,0,0,1,1), (0,0,0,1,1,0),(0,0,0,1,0,1).

Line not in plain: {(0,1,0,0,0,0), (0,0,1,0,0,0),

(0,1,1,0,0,0),(0,1,2,0,0,0)}.

P: PG(5,3)\PG(4,3) as an enumerated sequence

*/

c11 := {VS6![0,0,0,0,1,1],

VS6![0,0,0,1,1,0],

VS6![0,0,0,1,0,1],

VS6![0,1,0,1,0,0],

VS6![0,1,0,2,0,0],

VS6![0,0,1,0,1,0],

VS6![0,0,1,0,2,0],

VS6![0,1,1,0,0,1],

VS6![0,1,1,0,0,2],

VS6![0,1,2,1,1,1],

VS6![0,1,2,2,2,2]};

P := Setseq({v: v in VS6 | v[1] eq 1});

/*

line: returns points on a line, given v,w on the line
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*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := VS6!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

L: set of all lines not in PG(4,q)

c11lines: element of L that contain a point of the 11-cap

B: c11lines expressed in terms of P

*/

L := {line(v,w) : v,w in VS6 | Normalize(v) ne Normalize(w)

and w[1] ne 0 and v ne 0};

c11lines := {l: l in L | #(l meet c11) ne 0};

B := {{i:i in [1..#P] | P[i] in l} : l in c11lines};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html
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*/

col_weight := 3;

row_weight := 11;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;
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Put(f, "\n");

end for;
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8.8 CC56

/*

Program to find minimum distance and dimension of code

obtained from linear representation of 56-cap in PG(5,3)

*/

k:= GF(3);

VS7 := VectorSpace(k,7);

/*

c56: points of the 56-cap. (See Hill’s

article, On the largest size of cap in S_{5,3}).

P: PG(6,3)\PG(5,3) as an enumerated sequence

*/

c56 := {

VS7![0,1,2,0,0,0,0],

VS7![0,0,1,2,0,0,0],

VS7![0,0,0,1,2,0,0],

VS7![0,0,0,0,1,2,0],

VS7![0,0,0,0,0,1,2],

VS7![0,1,1,1,1,1,2],

VS7![0,1,2,2,2,2,2],

VS7![0,1,0,2,0,2,0],

VS7![0,0,1,0,2,0,2],

VS7![0,1,1,2,1,0,1],

VS7![0,1,0,0,2,0,1],

VS7![0,1,0,1,1,2,1],

VS7![0,1,0,1,0,0,2],

VS7![0,1,2,1,2,1,1],

VS7![0,1,1,2,0,0,0],

VS7![0,0,1,1,2,0,0],

VS7![0,0,0,1,1,2,0],

VS7![0,0,0,0,1,1,2],

VS7![0,1,1,1,1,2,2],

VS7![0,1,2,2,2,2,0],
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VS7![0,0,1,2,2,2,2],

VS7![0,1,1,0,2,0,1],

VS7![0,1,0,0,1,2,1],

VS7![0,1,0,1,1,0,2],

VS7![0,1,2,1,2,2,1],

VS7![0,1,0,2,0,2,2],

VS7![0,1,2,1,0,1,0],

VS7![0,0,1,2,1,0,1],

VS7![0,1,1,0,2,0,2],

VS7![0,1,2,2,1,0,1],

VS7![0,1,0,2,2,0,1],

VS7![0,1,0,1,2,2,1],

VS7![0,1,0,1,0,2,2],

VS7![0,1,2,1,2,1,0],

VS7![0,0,1,2,1,2,1],

VS7![0,1,1,1,2,0,0],

VS7![0,0,1,1,1,2,0],

VS7![0,0,0,1,1,1,2],

VS7![0,1,1,1,2,2,2],

VS7![0,1,2,2,2,0,0],

VS7![0,0,1,2,2,2,0],

VS7![0,0,0,1,2,2,2],

VS7![0,1,1,2,2,0,0],

VS7![0,0,1,1,2,2,0],

VS7![0,0,0,1,1,2,2],

VS7![0,1,1,1,2,2,0],

VS7![0,0,1,1,1,2,2],

VS7![0,1,1,2,2,2,0],

VS7![0,0,1,1,2,2,2],

VS7![0,1,2,2,0,2,1],

VS7![0,1,0,2,2,1,2],

VS7![0,1,2,1,0,0,2],

VS7![0,1,2,0,2,1,1],

VS7![0,1,0,2,1,2,0],

VS7![0,0,1,0,2,1,2],

VS7![0,1,1,2,1,0,2]

};
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P := Setseq({v: v in VS7 | v[1] eq 1});

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := VS7!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

L: set of all lines not in PG(5,3)

c56lines: elements of L that contain a point of the 56-cap

B: c56lines expressed in terms of P

*/

L := {line(v,w) : v,w in VS7 | Normalize(v) ne Normalize(w)

and w[1] ne 0 and v ne 0};

c56lines := {l: l in L | #(l meet c56) ne 0};

B := {{i:i in [1..#P] | P[i] in l} : l in c56lines};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));
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print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := 3;

row_weight := 56;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do
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if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.9 CC78

/*

Program to find minimum distance and dimension of code

obtained from linear representation of 78-cap in PG(5,4)

*/

k:= GF(4);

a:=PrimitiveElement(k);

b:=a^2;

VS7 := VectorSpace(k,7);

/*

c78: points of the 78-cap.

P: PG(6,4)\PG(5,4) as an enumerated sequence

*/

c78 := {

VS7![0,1,0,0,0,0,0],

VS7![0,1,b,b,a,1,0],

VS7![0,0,0,1,b,1,0],

VS7![0,1,a,1,0,b,1],

VS7![0,1,1,a,0,a,a],

VS7![0,1,0,a,1,a,b],

VS7![0,1,a,1,a,1,0],

VS7![0,1,0,b,1,b,0],

VS7![0,0,0,1,b,a,a],

VS7![0,0,0,0,1,a,a],

VS7![0,0,1,0,0,1,1],

VS7![0,1,1,a,1,a,0],

VS7![0,0,0,1,1,0,0],

VS7![0,1,1,b,a,0,b],

VS7![0,1,0,b,1,0,0],

VS7![0,1,1,b,1,a,b],

VS7![0,1,b,1,b,b,a],

VS7![0,1,b,a,0,1,b],
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VS7![0,1,1,b,0,1,0],

VS7![0,1,1,a,a,a,0],

VS7![0,1,0,1,a,a,1],

VS7![0,1,1,a,0,0,b],

VS7![0,1,b,b,0,1,1],

VS7![0,1,0,0,1,b,0],

VS7![0,1,a,0,1,0,b],

VS7![0,1,a,0,0,a,b],

VS7![0,1,a,b,a,1,a],

VS7![0,1,b,a,a,1,1],

VS7![0,1,1,0,b,1,a],

VS7![0,1,0,b,1,0,1],

VS7![0,0,1,1,0,0,1],

VS7![0,1,b,0,1,b,0],

VS7![0,1,1,a,b,1,0],

VS7![0,1,a,0,b,0,0],

VS7![0,1,b,0,a,a,b],

VS7![0,1,1,a,a,0,a],

VS7![0,1,a,0,b,0,b],

VS7![0,1,1,1,0,a,0],

VS7![0,0,1,b,1,a,a],

VS7![0,1,b,a,0,1,1],

VS7![0,1,b,1,a,0,b],

VS7![0,1,a,0,1,0,a],

VS7![0,1,b,1,b,a,0],

VS7![0,1,0,b,1,a,b],

VS7![0,1,a,a,0,1,b],

VS7![0,1,b,a,1,a,a],

VS7![0,1,1,a,1,0,b],

VS7![0,0,1,0,0,1,0],

VS7![0,1,a,a,1,a,1],

VS7![0,1,b,1,a,b,1],

VS7![0,1,a,b,b,0,a],

VS7![0,1,b,0,a,1,0],

VS7![0,1,a,0,1,a,a],

VS7![0,1,a,a,b,1,1],

VS7![0,1,1,0,b,a,b],
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VS7![0,1,b,a,0,b,1],

VS7![0,1,0,b,0,1,1],

VS7![0,1,1,b,a,1,1],

VS7![0,1,a,0,a,a,0],

VS7![0,0,1,a,b,a,b],

VS7![0,0,1,b,0,1,1],

VS7![0,1,b,1,0,0,1],

VS7![0,1,a,1,0,0,1],

VS7![0,1,1,b,a,1,a],

VS7![0,1,1,b,b,a,b],

VS7![0,1,1,0,1,0,0],

VS7![0,0,1,a,b,b,0],

VS7![0,1,1,b,a,b,1],

VS7![0,1,b,0,0,0,b],

VS7![0,1,0,0,a,b,1],

VS7![0,1,b,0,0,1,b],

VS7![0,0,1,0,1,0,b],

VS7![0,1,b,b,0,b,b],

VS7![0,1,a,a,a,a,1],

VS7![0,1,a,a,1,1,1],

VS7![0,0,1,b,b,0,a],

VS7![0,0,1,a,b,a,1],

VS7![0,1,a,b,1,0,0]

};

P := Setseq({v: v in VS7 | v[1] eq 1});

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;
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s := VS7!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

L: set of all lines not in PG(5,4)

c78lines: elements of L that contain a point of the 78-cap

B: c78lines expressed in terms of P

*/

L := {line(v,w) : v,w in VS7 | Normalize(v) ne Normalize(w)

and w[1] ne 0 and v ne 0};

c78lines := {l: l in L | #(l meet c78) ne 0};

B := {{i:i in [1..#P] | P[i] in l} : l in c78lines};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := 4;

row_weight := 78;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));
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Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.10 CU2,q2

/*

Program to find minimum distance and dimension of code

obtained from linear representation of Hermitian curve

in PG(2,q^2)

*/

print "Input characteristic p";

read p1;

p:=StringToInteger(p1);

print "Input h (even)";

read h1;

print "Input h/2";

read h2;

h:=StringToInteger(h1);

h3:= StringToInteger(h2);

k := GF(p^h);

r:=p^h3;

VS4 := VectorSpace(k, 4);

/*

H: set of points of Hermitian curve in PG(2,q^2)

P: PG(3,q^2)\PG(2,q^2) as an enumerated sequence

*/

H := {Normalize(v) : v in VS4 | v ne 0 and v[1] eq 0 and

(v[2]^(r+1) + v[3]^(r+1) + v[4]^(r+1)) eq 0};

P := Setseq({v: v in VS4 | v[1] eq 1});

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);
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Include(~l,w1);

for a in k do

j := v + a*w;

s := VS4!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

Lines: set of all lines not in PG(3,q^2)

HLines: Lines that contain a point of the Hermitian curve

B: HLines expressed in terms of P

*/

Lines := {line(v,w) : v,w in VS4 | Normalize(v) ne Normalize(w)

and w[1] ne 0 and v ne 0};

HLines := {l: l in Lines | #(l meet H) ne 0};

B := {{i:i in [1..#P] | P[i] in l} : l in HLines};

S := IncidenceStructure<#P|B>;

C:=Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "q^2: " cat IntegerToString(p^h);

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := r^2;

row_weight := r^3+1;
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f := Open("hermalist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.11 CB2,q2

/*

Program to find minimum distance and dimension of code

obtained from linear representation of Baer subplane

of PG(2,q^2)

*/

print "Input characteristic p";

read p1;

p:=StringToInteger(p1);

print "Input h (even)";

read h1;

print "Input h/2";

read h2;

h:=StringToInteger(h1);

h3:= StringToInteger(h2);

b := GF(p^h3);

k := ext< b|2>;

VS4k := VectorSpace(k, 4);

VS4b := VectorSpace(b, 4);

/*

Baer: set of points of Baer subplane in PG(2,q^2)

P: PG(3,q^2)\PG(2,q^2) as an enumerated sequence

*/

Baer := {Normalize(v) : v in VS4b | v ne 0 and v[1] eq 0};

P := Setseq({v: v in VS4k | v[1] eq 1});

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);
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Include(~l,w1);

for a in k do

j := v + a*w;

s := VS4k!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

Lines: set of all lines not in PG(2,q^2)

BaerLines: Lines that contain a point of the Baer subplane

B: BaerLines expressed in terms of P

*/

Lines := {line(v,w) : v,w in VS4k | Normalize(v) ne Normalize(w)

and w[1] ne 0 and v ne 0};

BaerLines := {l: l in Lines | #(l meet Baer) ne 0};

B := {{i:i in [1..#P] | P[i] in l} : l in BaerLines};

S := IncidenceStructure<#P|B>;

C:=Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "q^2: " cat IntegerToString(p^h);

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := p^h;

row_weight := p^h + p^h3 +1;
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f := Open("baeralist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.12 CU2,3(m)

/*

Print the matrix to file in alist format for the code U_{2,3}(n)

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

(Note that n in this program is the same as m in the thesis.)

*/

print "Input n";

read n1;

n := StringToInteger(n1);

S := {1..n};

sub2S := Subsets(S,2);

sub3S := Subsets(S,3);

P:=Setseq({v: v in sub2S});

B := {{i:i in [1..#P] | P[i] subset b} : b in sub3S};

S := IncidenceStructure<#P|B>;

C:=Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

col_weight := 3;

row_weight := n-2;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";
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Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.13 CM(7)

/*

Program to find dimension, minimum distance and weight

distribution of code obtained from the Moore graph M(7)

*/

P:=SetToIndexedSet(P1);

B := {

{1,11,14,26,38,46,49},{2,7,16,24,26,33,37},

{0,2,6,19,22,40,43},{0,4,21,25,27,30,35},

{1,3,9,13,25,31,47},{9,15,19,26,28,32,45},

{2,4,11,18,34,42,45},{13,24,27,29,34,40,49},

{3,5,8,23,26,40,48},{8,11,22,28,30,37,47},

{4,6,13,17,32,37,46},{6,18,26,29,31,41,44},

{1,5,7,10,15,30,34},{2,20,23,30,32,36,49},

{6,8,12,25,39,45,49},{5,11,27,31,33,39,43},

{4,7,9,14,20,29,43},{14,22,25,32,34,41,48},

{2,8,10,17,27,38,41},{3,6,20,28,33,35,38},

{6,9,11,21,24,36,48},{12,17,26,34,36,43,47},

{0,3,10,12,16,29,32},{10,14,31,35,37,40,45},

{7,11,13,19,23,35,41},{5,19,25,29,36,38,42},

{2,5,12,14,21,28,44},{0,9,23,34,37,39,44},

{0,8,13,15,18,33,36},{7,18,21,32,38,40,47},

{6,14,16,23,27,42,47},{1,4,16,28,36,39,41},

{11,15,17,20,25,40,44},{9,12,30,33,40,42,46},

{5,9,16,18,22,35,49},{3,15,21,37,41,43,49},

{3,14,17,19,24,30,39},{1,8,24,32,35,42,44},

{1,12,18,20,27,37,48},{13,16,30,38,43,45,48},

{8,16,19,21,31,34,46},{3,7,22,27,36,44,46},

{10,13,20,22,26,39,42},{0,5,20,24,41,45,47},

{1,17,21,23,29,33,45},{2,15,29,35,39,46,48},

{4,12,15,22,24,31,38},{4,10,19,33,44,47,49},

{10,18,23,25,28,43,46},{0,7,17,28,31,42,48}

};
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S := IncidenceStructure<P|B>;

C:=Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "weight distribution:";

print WeightDistribution(C);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := 7;

row_weight := 7;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;
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end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

//end for;
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8.14 CLP(n,q)

/*

Program to find dimension and minimum distance of code

obtained from LP(n,q)

*/

print "Input q";

read q1;

q := StringToInteger(q1);

k := GF(q);

print "Input n>=5, (n-1) is dimension of the projective space";

read n1;

n := StringToInteger(n1);

V:=VectorSpace(k,n);

Vnorm := {v:v in V | v eq Normalize(v) and v ne 0};

/*

line: returns points on a line, given independent v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := V!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

plane: returns points on a plane, given independent v,w,x on the plane

*/

plane := function(v,w,x);
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p := {};

l := line(v,w);

for a in l do

j := line(a,x);

for m in j do

n := V!m;

q := Normalize(n);

Include(~p,q);

end for;

end for;

return p;

end function;

/*

P1: set of lines of PG(n,q)

P: P1 as an enumerated sequence

*/

P1 := {line(v,w) : v,w in Vnorm | v ne w};

P := Setseq({p: p in P1});

/*

B1: set of planes of PG(n,q)

B: B1 expressed in terms of P

*/

B1 := {plane(v,w,x) : v,w,x in Vnorm | v ne w and x notin line (v,w)};

B := {{i:i in [1..#P] | P[i] subset b} : b in B1};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "q: " cat IntegerToString(q);

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));
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/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := ((q^(n-2)-1)/(q-1));

row_weight := q^2+q+1;

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");
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else

end if;

end for;

Put(f, "\n");

end for;
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8.15 CW (2n+1,q)

/*

Program to find dimension and minimum distance of code

obtained from symplectic polarity

*/

print "Input q";

read q1;

q := StringToInteger(q1);

k := GF(q);

print "Input n>=3, n odd (dimension of the projective space)";

read n1;

n := StringToInteger(n1)+1;

V:=VectorSpace(k,n);

Vnorm := {v:v in V | v eq Normalize(v) and v ne 0};

/*

line: returns points on a line, given independent v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := V!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

hyp: returns points on polar prime of a point. Uses canonical form

for symplectic polarity, see JWPH Theorem 5.26

*/

160



hyp := function(v);

h := {};

for a in Vnorm do

j:=0;

i:=1;

while i lt n do

j:=j+ v[i]*a[i+1] - v[i+1]*a[i];

i:=i+2;

end while;

if j eq 0 then

Include(~h,a);

end if;

end for;

return h;

end function;

/*

P1: point set of PG(n,q)

P: P1 as an enumerated sequence

*/

P1:=Vnorm;

P:=Setseq(P1);

/*

Lines: set of lines of PG(n,q)

*/

Lines := {line(v,w) : v,w in Vnorm | v ne w};

/*

B1: set of non totally isotropic lines of PG(n,q)

B: B1 expressed in terms of P

*/

B1 := {};

for l in Lines do

L := Setseq(l);

x := hyp(L[1]) meet hyp(L[2]);
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if l notsubset x then

Include(~B1,l);

end if;

end for;

B := {{i:i in [1..#P] | P[i] in b} : b in B1};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "q: " cat IntegerToString(q);

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := q+1;

row_weight := q^(n-2);

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do
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temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.16 CNQ+(2n−1,2)

/*

Program to find dimension of code obtained from

NQ+(2n-1,2)

*/

print "Input n, n >= 3";

read n1;

n:=StringToInteger(n1);

k := GF(2);

V := VectorSpace(k, 2*n);

PG := {v : v in V | v ne 0};

/*

offQ: set of points not on hyperbolic quadric in PG(2n-1,2)

P: offQ as an enumerated sequence

*/

offQ := {};

for v in PG do

a:=k!0;

for i in [1..n] do

a:= a + (v[2*i]*v[(2*i)-1]);

end for;

if a eq 1 then

Include(~offQ,Normalize(v));

end if;

end for;

P := Setseq({v: v in offQ});

/*
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Q: set of points of hyperbolic quadric

*/

Q := PG diff offQ;

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := V!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

Lines: lines of PG(2n-1,2)

offLines: Lines that do not intersect the quadric

B: offLines expressed in terms of P

*/

Lines := {line(v,w) : v,w in PG | v ne w};

offLines := {l: l in Lines | #(l meet Q) eq 0};

B := {{i:i in [1..#P] | P[i] in l} : l in offLines};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

//print "minimum distance: " cat IntegerToString(MinimumDistance(C));
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//Print the matrix to file in alist format - see MacKay

col_weight := 3;

row_weight := 2^(2*n-3) - 2^(n-2);

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;
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end for;

Put(f, "\n");

end for;
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8.17 CNQ−(2n−1,2)

/*

Program to find dimension of code obtained from

NQ-(2n-1,2)

*/

print "Input n, n>= 2";

read n1;

n:=StringToInteger(n1);

k := GF(2);

V := VectorSpace(k, 2*n);

PG := {v : v in V | v ne 0};

/*

offQ: set of points not on elliptic quadric in PG(2n-1,2)

Canonical form for elliptic quadric: X_0^2 + X_0X_1 + X_1^2 + X_2X_3...,

which since q=2 is simply X_0 + X_1 + SUM(X_iX_i+1) (see JWPH Th 5.16)

P: offQ as an enumerated sequence

*/

offQ := {};

for v in PG do

a:=k!0;

a:= v[1] + v[2];

for i in [1..n] do

a:= a + (v[2*i]*v[(2*i)-1]);

end for;

if a eq 1 then

Include(~offQ,Normalize(v));

end if;

end for;

P := Setseq({v: v in offQ});
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/*

Q: set of points of elliptic quadric

*/

Q := PG diff offQ;

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := V!j;

t := Normalize(s);

Include(~l, t);

end for;

return l;

end function;

/*

Lines: lines of PG(2n-1,2)

offLines: Lines that do not intersect the quadric

B: offLines expressed in terms of P

*/

Lines := {line(v,w) : v,w in PG | v ne w};

offLines := {l: l in Lines | #(l meet Q) eq 0};

B := {{i:i in [1..#P] | P[i] in l} : l in offLines};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "length: " cat IntegerToString(#B);
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print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

//Print the matrix to file in alist format - see MacKay

col_weight := 3;

row_weight := 2^(2*n-3) + 2^(n-2);

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then
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Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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8.18 C
H

(n+1)∗
q

/*

Program to find dimension and minimum distance of code obtained

from H^(n+1)*_q

*/

print "Input n, n>= 2 (S=PG(n+1,q))";

read n1;

n:=StringToInteger(n1);

print "Input q";

read q1;

q:=StringToInteger(q1);

k := GF(q);

/*

S: PG(n+1,q)

H: PG(n-1,q)

*/

V := VectorSpace(k, n+2);

S := {Normalize(v) : v in V | v ne 0};

H := {v: v in S | v[1] eq 0 and v[2] eq 0};

/*

line: returns points on a line, given v,w on the line

*/

line := function(v,w);

l := {};

w1:=Normalize(w);

Include(~l,w1);

for a in k do

j := v + a*w;

s := V!j;

t := Normalize(s);
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Include(~l, t);

end for;

return l;

end function;

/*

plane: returns points on a plane, given independent v,w,x on the plane

*/

plane := function(v,w,x);

p := {};

l := line(v,w);

for a in l do

j := line(a,x);

for m in j do

n := V!m;

t := Normalize(n);

Include(~p,t);

end for;

end for;

return p;

end function;

/*

P1: set of lines of PG(n+1,q)

P2: lines of PG(n+1,q) skew to H

P: P2 as an enumerated sequence

*/

P1 := {line(v,w) : v,w in S | v ne w};

P2:= {x : x in P1 | #(x meet H) eq 0};

P := Setseq({p: p in P2});

/*

B1: set of planes of PG(n+1,q)

B2: planes of PG(n+1,q) intersecting H in exactly one point

B: B1 expressed in terms of P

*/

173



B1 := {plane(v,w,x) : v,w,x in S | v ne w and x notin line (v,w)};

B2 := {x : x in B1 | #(x meet H) eq 1};

B := {{i:i in [1..#P] | P[i] subset b} : b in B2};

S := IncidenceStructure<#P|B>;

C := Dual(LinearCode(ChangeRing(IncidenceMatrix(S),GF(2))));

M:=ChangeRing(IncidenceMatrix(S),GF(2));

print "q: " cat IntegerToString(q);

print "length: " cat IntegerToString(#B);

print "dimension: " cat IntegerToString(Dimension(C));

print "minimum distance: " cat IntegerToString(MinimumDistance(C));

/*

Print the matrix to file in alist format

See MacKay http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html

*/

col_weight := q^2;

row_weight := (q^n-1)/(q-1);

f := Open("alist", "w");

Puts(f, Sprint(#B) cat " " cat Sprint(#P));

Puts(f, Sprint(col_weight) cat " " cat Sprint(row_weight));

s := Sprint(row_weight) cat " ";

Put(f, s^#P);

Put(f, "\n");

s := Sprint(col_weight) cat " ";

Put(f, s^#B);

Put(f, "\n");

for i in [1..#P] do

temp_vector := M[i];

for j in [1..#B] do
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if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;

for i in [1..#B] do

temp_vector := Transpose(M)[i];

for j in [1..#P] do

if temp_vector[j] eq 1 then

Put(f,Sprint(j) cat " ");

else

end if;

end for;

Put(f, "\n");

end for;
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