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Abstract 

Bacillus thuringiensis (Bt) and its insecticidal toxins have been used in pest 

control for decades but there is a great concern about its future as a successful 

pest control agent due to the development of insect resistance and the narrow 

spectrum of activity of the toxins. To ensure the continuous relevance of Bt 

toxins in pest control, projects aimed at isolating novel Bt strains expressing 

toxins with improved activity are vigorously pursued and the genetic 

manipulation of existing toxins to improve their activity and overcome resistance 

is also undertaken. The aim of this project was to genetically manipulate the 

genes encoding Cry1Ah and Cry1Ie for improved activity aimed at countering 

resistance evolved by populations of Plutella xylostella. The project was also 

aimed at expressing cry30Ea and cry40Da genes cloned from highly 

mosquitocidal Bt strains S2160-1 and S2196 respectively and at developing a 

protocol for the in vivo selection of toxin variants with improved activity. Cry1Ah 

was successfully expressed in E. coli JM109 under the control of a cry1Ac 

promoter and ribosome binding site and in Bt IPS/78/11 under the control of the 

cyt1Aa promoter while Cry1Ie was also expressed in E. coli JM109. The 

expressed Cry1Ah and Cry1Ie toxins were found to be toxic to both susceptible 

(G88) and Cry1A resisitant (KARAK) populations of Plutella xylostella though 

there was significant cross resistance to Cry1Ah in KARAK. A genetically 

manipulated hybrid toxin CryAIA aimed at creating a novel toxin that captures 

the relatively broad spectrum of Cry1Ah but overcoming KARAK resistance was 

expressed but found to be non-toxic. Attempts to express cry30Ea and cry40Da 

were also not successful despite utilising different hosts and expression vector 

systems that have successfully been used in expressing other cry genes. 

Meanwhile, the strategy designed to enrich for more toxic Bt strains in vivo in 

from a mixed treatment in fact found that the non-toxic R128M strain dominated 

the toxic 431 strain. 
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Chapter 1: Literature review, objectives and background to project  

1.1 Literature review 

1.1.1 Bacillus thuringiensis 

1.1.1.1 Discovery and habitat 

Bacillus thuringiensis (Bt) was originally discovered in 1902 by a Japanese 

biologist Shigetane Ishiwatari who isolated it from diseased silkworm,  Bombyx  

mori, but it was formally characterised in 1915 by Ernst Berliner of Germany 

who isolated it from diseased larva of Ephestia kuhniella (flour moth caterpillars) 

in Thuringia province and linked it to the cause of a disease called Schlaffsucht 

(Milner 1994). Bacillus thuringiensis is a Gram positive spore forming bacteria 

grouped into the Bacillus cereus group of Bacilli which produces proteinaceous 

insecticidal crystals during sporulation which is the distinctive feature between it 

and other members of the Bacillus cereus group (Read et al., 2003, Rasko et al., 

2005). 

The habitat of Bacillus thuringiensis is not distinct but ubiquitous as the bacteria 

has been isolated from soil (Hernández-Rodríguez and Ferré, 2009, Muleta et 

al., 2009, Patel et al., 2009, Saadaoui et al., 2009, Vidal-Quist et al., 2009, Baig 

et al., 2010, Bozlaǧan et al., 2010, Gobatto et al., 2010), faecal material of 

herbivorous animals (Maheswaran et al., 2010), phylloplanes (Bizzarri and 

Bishop, 2008, Tilquin et al., 2008, Noda et al., 2009, Zhang et al., 2009, Zhang 

et al., 2010), food material (De Santis et al., 2008, Ankolekar et al., 2009), 

rhizozphere (Muleta et al., 2009), dust (Hernández-Rodríguez and Ferré, 2009), 

insects (Gobatto et al., 2010) and sea sediment (Baig and Mehnaz, 2010). 

 

1.1.1.2 Growth and response to biotic and abiotic factors 

Bacillus thuringiensis readily proliferates when environmental conditions like 

temperature and nutrients availability are favourable whilst the formation of 

spores have been shown to be triggered by internal and external factors 

including signals for nutrient starvation, cell density, and cell cycle progression 

(Hilbert and Piggot, 2004). The life cycle of Bt can be divided for convenience 

into phases and these are Phase I: vegetative growth; Phase II: transition to 

sporulation; Phase III: sporulation; and Phase IV: spore maturation and cell lysis 

(Hilbert and Piggot, 2004, Berbert-Molina et al., 2008). Though strains of 

Bacillus thuringiensis have been isolated from numerous sources, its vegetative 
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proliferation in these samples is rather unclear as the most prevailent form 

isolated from most of these sources are dormant spores (Ankolekar et al., 2009, 

Muleta et al., 2009, Vidal-Quist et al., 2009, Baig et al., 2010, Baig and Mehnaz, 

2010, Bozlaǧan et al., 2010, Gobatto et al., 2010, Lietze et al., 2010).  

It has been shown that Bt is a pathogen in its own right and that its primary 

means of reproduction is in insect cadavers (Raymond et al., 2010). Outside its 

primary means of reproduction (insect cadavers) Bacillus thuringiensis has 

been shown to be a poor competitor with other bacteria. Bizzarri and Bishop, 

(2008), demonstrated that Bt strains isolated in the vegetative form from the 

phylloplane of clover, 2810-S-4, and a laboratory strain, HD-1, were able to 

colonize clover to a density of about 1000 CFU/g of leaf when seeds were sown 

in sterile soil but only to a density of about 300 CFU/g of leaf in nonsterile soil 

showing about two-third reduction in population density. In another example, 

Pseudomonas fluorescens had the most significant antagonistic effect on the 

proliferation of Bacillus thuringiensis among seven other native soil bacterial 

isolates out of ten that showed various antagonistic effect on Bt (Rojas-Ruíz et 

al., 2010). Jarosz, 1970 demonstrated that gut bacteria of Galleria  mellonella 

larva, mainly dominated by Streptococcus  faecalis, suppressed the proliferation 

of bacteria ingested with food (including Bacillus thuringiensis) through the 

production of bacteriocin. Takatsuka and Kunimi, 2000 showed that Bacillus 

thuringiensis was only able to proliferate in the gut of oriental tea tortrix, 

Homona magnanima Diakonoff when reared aseptically but fail to proliferate in 

normally reared larval cadavers. Raymond et al., 2008b demonstrated that 

Bacillus thuringiensis showed an increased growth in the larva of Plutella 

xylostella when its groups member Bacillus cereus was present and further 

showed that the antibiotic producing Bacillus cereus strains suppressed the 

growth of other Plutella xylostella gut flora.  

 

1.1.1.3 Virulence and reproduction in insect host 

Bacillus thuringiensis has been tagged ‘an impotent pathogen’ because of its 

opportunistic pathogen behaviour under appropriate conditions based on the 

fact that Bt strains have been isolated from environments where their target 

insect are not normally associated with (Raymond et al., 2010) and the 

supposed need for gut flora in Bt toxicity (Broderick et al, 2009). Nevertheless, 
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Bt is well equipped as a pathogen that is capable to single handedly bypass the 

barriers posed by insects against bacterial infection (Ha et al., 2005a, Ha et al., 

2005b, Vallet-Gely et al., 2008). It has been shown that Bt produces virulence 

factors like phospholipases C (Palvannan and Boopathy, 2005, Martin et al., 

2010b), proteases (Hajaij-Ellouze et al., 2006, Brar et al., 2009, Infante et al., 

2010) and  hemolysins (Gominet et al., 2001, Nisnevitch et al., 2010). The 

virulence factors listed above are controlled by the pleiotropic regulator PlcR 

and it has been demonstrated that cytotoxicity of Bt is PlcR dependent 

(Ramarao and Lereclus, 2006). Deletion of the plcR gene has been shown to 

result in a drastic reduction in the virulence of Bt in orally infected insects 

(Salamitou et al., 2000). The production of virulence factors by Bt is necessary 

but not enough for Bt to be called a pathogen (Fedhila et al., 2003) but its 

production of proteins that have been proved beyond doubt to be independently 

insecticidal justifies it’s name as an insect pathogen (Frankenhuyzen, 2009). 

Bacillus thuringiensis exerts its toxicity through a multistep process that involves 

the solubilisation of Bt insecticidal crystal toxin in the insect midgut to release 

protoxins leading to the N-terminal and C-terminal cleavage of the protoxin by 

midgut proteases yielding an activated protease resistant core of about 60-

70kDa (Bravo et al., 2007). The activated toxin now bind to specific receptors 

which induces toxin insertion into the midgut epithelium columnar cells (Gomez 

et al., 2007). Toxin insertion leads to the formation of lytic pores in microvilli of 

apical membranes (Bravo et al., 2007). Subsequently, cells lyse and disruption 

of the midgut epithelium releases the cell content providing Bacillus 

thuringiensis spores a germinating medium leading to a severe septicaemia and 

insect death (de Maagd et al., 2001, Bravo et al., 2007). 

 

1.1.2 Bacillus thuringiensis insecticidal toxins 

1.1.2.1 Production, types and classification 

The life cycle of Bt has been shown to proceed through Phase I: vegetative 

growth; Phase II: transition to sporulation; Phase III: sporulation; and Phase IV: 

spore maturation and cell lysis (Hilbert and Piggot, 2004, Berbert-Molina et al., 

2008) and the production of insecticidal proteins deposited in crystals in the 

mother cell have been shown to mainly start from the  onset of sporulation 

(Sedlak et al., 2000, Xia et al., 2005, Guidelli-Thuler et al., 2009, Pérez-García 
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et al., 2010). cry-genes have been shown to be transcribed from two 

overlapping promoters BtI and BtII by RNA polymerase that contain sporulation 

dependent sigma factors σE and σK (Sedlak et al., 2000, Hilbert and Piggot, 

2004) and a mutation in the consensus region of σE has been shown to inhibit 

transcription from BtI and BtII promoters (Sedlak et al., 2000). It has also been 

shown that some Bt insecticidal proteins are produced and secreted into the 

culture medium during vegetative growth (Estruch et al., 1996, Donovan et al., 

2001, Shi et al., 2004, Bhalla et al., 2005, Leuber et al., 2006, Milne et al., 2008, 

Singh et al., 2010a, Abdelkefi-Mesrati et al., 2011).  

It has been shown that in some strains of Bt, the crystal proteins are localised 

on the surface of spores of mother cells (Wojciechowska et al., 1999) while 

others are released from the mother cell spores after sporulation. Du and 

Nickerson, 1996 demonstrated that purified spores from a strain producing 

Cry1Ac toxin was able to cross-react with antibodies raised using a 65kDa 

protease activated core protein of Cry1Ac. Purified spores from crystal 

producing strains of Bacillus thuringiensis have been found to be lethal to insect 

pest though at a lower degree compared to the lethality of the crystal protein 

(Johnson and McGaughey, 1996, Tang et al., 1996, Johnson et al., 1998). 

The insecticidal proteins in the crystalline bodies produced during sporulation 

have been shown to contain two types of insecticidal proteins namely Cry toxins 

and Cyt-toxins and there are between one to five Cry toxins produced and 

packaged into a single crystal or multiple crystals by a Bt strain (de Maagd et al., 

2001). The Cry toxins acquired the mnemonic Cry from the fact that they are 

found in the crystal while the Cyt-toxins acquired the mnemonic Cyt because of 

their in vitro cytolytic activity (Crickmore et al., 1998). 

Schnepf and Whiteley, 1981, confirmed that the insecticidal ability of Bt is as a 

result of the proteins that it produces by cloning and heterologously expressing 

the first toxin gene in E. coli  which showed insectidal activity to Manduca sexta 

just as the wild type Bacillus thuringiensis var. kurstali HD-1 that it was cloned 

from did. Since this discovery, a great number of other genes have cloned and 

expressed and the process of Bt toxin gene discovery is still ongoing. In order to 

differentiate between one Bt insecticidal gene and the other, the discoverers of 

the genes gave them arbitrary names like 4.5, 5.3 and  6.6-kb-class  genes 

(Kronstad and Whiteley, 1986), bta gene (Sanchis et al., 1989), cry gene 
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(Donovan et al., 1988) and Type A and Type B (Hofte et al., 1988) among 

others. With a steady growth in the number of cloned and characterised novel 

insecticidal genes coming through, an attempt was made to organise the ever 

growing data. The first attempt to produce an organised systematic 

nomenclature of Bt insecticidal genes was dependent on the insecticidal activity 

of the protein they code for to assign a primary rank to the gene and with this 

system, genes that encode proteins toxic to lepidopteran insects were called 

cryI genes, while lepidopteran and dipteran protein genes were called  cryII 

genes, cryIII genes were those ones that encoded proteins toxic to coleopterans 

and cryIV genes encoded proteins toxic to dipterans alone (Hofte and Whiteley, 

1989). Though this system provided a framework for naming newly cloned novel 

toxins, it was short of a robust system of nomenclature that is able to 

accommodate new genes without ambiguity. The discovery of wild type gene 

like cryIB that code for toxins that are toxic to both lepidoptera and coleoptera 

(Bradley et al., 1995) throw the system off balance as it did not have room to 

accommodate a toxin with such spectrum of activity. Also, toxins like CryIC that 

had toxicity to both dipterans and lepidopterans (Smith and Ellar, 1994) did not 

have a place in the (Hofte and Whiteley, 1989) system of nomenclature.  

With the difficulty of accommodating newly discovered genes in the (Hofte and 

Whiteley, 1989) nomenclature system arising, there was a need to come up 

with a robust system of nomenclature and Crickmore et al., 1998 came up with 

a system that is based on sequence similarity rather than function based. In the 

Crickmore et al, system, the mnemonic root was combined with a series of 

numerals and letters assigned in a hierarchical fashion to indicate degrees of 

phylogenetic divergence which was estimated by phylogenetic tree algorithms. 

The mnemonic Cyt was used for parasporal crystal proteins from Bacillus 

thuringiensis that exhibits hemolytic activity or any protein that has obvious 

sequence similarity to a known Cyt protein and mnemonic Cry was assigned to 

a parasporal crystal proteins from Bacillus thuringiensis that exhibits some 

experimentally verifiable toxic effect to a target organism, or any protein that 

has obvious sequence similarity to a known Cry protein. With this system for 

naming Cry and Cyt proteins widely accepted, it has also been adopted for the 

naming of the vegetatively produced Bacillus thuringiensis toxins and this family 

of proteins has been given the mnemonic Vip. A website which hosts all the cry, 
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cyt and vip cloned genes has been established and is frequently updated as 

new genes are discovered. 

 

1.1.2.2 Structure of insecticidal toxins 

The 3-D crystal structure of Cry-proteins including coleopteran specific Cry8Ea1 

(Guo et al., 2009), Cry3Aa (Li et al., 1991) and Cry3Bb (Galitsky et al., 2001), 

dipteran specific Cry4Aa (Boonserm et al., 2006) and Cry4Ba (Boonserm et al., 

2005), lepidopteran specific Cry1Aa (Grochulski et al., 1995), 

lepidopteran/dipteran specific Cry2Aa (Morse et al., 2001) have been resolved 

through X-ray crystallographic  methods of their activated forms. Also, the 3-D 

structure of Cyt-proteins have been resolved including activated Cyt2Ba (Cohen 

et al., 2008) and unprocessed Cyt2Aa (Li et al., 1996). Figure 1.1 is the crystal 

structure of Cry8Ea1 (Guo et al., 2009) showing the three domain organisation 

typical of all resolved 3-D structures of Cry toxins while figure 1.2 is the 3-D 

structure of Cyt2Ba which shows overall similarity to 3-D structure of Cyt2Aa 

that had previously been resolved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: 3-D crystal structure of Cry8Ea determined at 2.20Ǻ (PBD ccode: 

3EB7). The three domains of the protein are represented with different colours 

with domain I coloured blue, domain II coloured green while domain III is 

coloured red 
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Figure 1.2: Crystal structure of a monomer of Cyt2Ba determined at 1.80Ǻ (PDB 

code: 2RCI). The ‘rainbow’ colouring scheme is used in colouring the molecule 

starting with blue at the N-terminal and ending with red at the C-terminal 

 

Though different Cry toxins have been shown to have specific targets in their 

insecticidal activity, the overall 3-D fold of many of them has been shown to be 

the same (see figure 1.1) , comprising of three domains (de Maagd et al., 2003). 

Domain I has been shown to compose of seven α-helices in which the central 

helix-α5 is hydrophobic and is encircled by six other amphipathic helices. The 

helical domain I has been shown to share structural similarities with other pore 

forming bacterial toxins like cytolycin A (Mueller et al., 2009), diphtheria toxin 

and colicin A (Parker and Pattus, 1993). Each of the outer helices of domain I is 

known to be amphipathic in nature and most of the helices are longer than 30Ǻ 

in length (Pigott and Ellar, 2007). Domain II is made up of  three antiparallel β-

sheets packed together to form a β-prism with pseudo three-fold symmetry (Li 

et al., 1991). Two of the sheets are composed of four strands in a Greek key 

motif and are solvent exposed (Boonserm et al., 2006). The third sheet packs 

against domain I and is arranged in a Greek-key-like motif with three strands 

and a short alpha-helix (Pigott and Ellar, 2007). The structure of domain II has 

been compared to those of other β-prism proteins with carbohydrate-binding 

 

Cohen et al., 2008 
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properties (de Maagd et al., 2003), including vitelline (Shimizu et al., 1994) and 

Maclura pomifera agglutinin (Lee et al., 1998) and it reveals a great topological 

similarity. Domain III has been shown to contain two antiparallel β-sheets that 

adopt a β-sandwich fold with the jelly roll topology (Boonserm et al., 2006). Both 

sheets are composed of five strands, with the outer sheet facing the solvent and 

the inner sheet packing against domain II. Two long loops extend from one end 

of the domain and interact with domain I (Grochulski et al., 1995). Domain III 

shows less structural variability than domain II, and the main differences are 

found in the lengths, orientations, and sequences of the loops (Boonserm et al., 

2005). Domain III has been compared to other carbohydrate-binding protein 

domains and it shows great degree of similarity (de Maagd et al., 2003) and 

similarity of domain III was also found with those of domain 4 of the pore-

forming toxin aerolysin which is involved in maintenance and stability of the 

heptameric toxin complex (Lesieur et al., 1999). 

 

1.1.2.3 Mechanisms of action of Bacillus thuringiensis toxins 

Proposed mechanisms of action of Cry and Cyt toxins from Bt include pore 

formation in which Bt toxins induce cell death by forming ionic pores following 

insertion into the membrane, causing osmotic lysis of midgut epithelial cells in 

their target insect (Knowles and Ellar, 1987, Haider and Ellar, 1989, Grochulski 

et al., 1995, Schnepf et al., 1998, Bravo et al., 2004, Rausell et al., 2004). Also, 

a relatively new mechanism of action of Cry toxins have been proposed which 

involves the activation of Mg2+-dependent signal cascade pathway that is 

triggered by the interaction of the monomeric 3-domain Cry toxin with the 

primary receptor, the cadherin protein BT-R1 (Zhang et al., 2005, Zhang et al., 

2006, Soberón et al., 2009). The trigerring of the Mg2+-dependent pathway has 

a knock-on effect and initiates a series of cytological events that include 

membrane blebbing, appearance of nuclear ghosts, and cell swelling followed 

by cell lysis (Zhang et al., 2006). The Mg2+-dependent signal cascade pathway 

activation by Cry toxins have been shown to be analogous to similar effect 

imposed by other pore forming toxins on their host cells when they are applied 

at subnanomolar concentration (Parker and Pattus, 1993, Nelson et al., 1999, 

Menzies and Kourteva, 2000, Soberon et al., 2009, Porta et al., 2011). 
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Though the two mechanisms of action seem to differ, with series of downstream 

events following on from toxin binding to receptors on target cell membranes, 

they all agree to the fact that the toxins initially would have to be solubilised in 

an alkaline environment in vivo (Aronson et al., 1991, de Maagd et al., 2001, 

Soberon et al., 2009) or in vitro (Lambert et al., 1992, Bradley et al., 1995, 

Zhang et al., 2005, Zhang et al., 2006) and activated by proteases before 

(Zhang et al., 2005, Zhang et al., 2006) or after binding (Gómez et al., 2002, 

Bravo et al., 2004, Jiménez-Juárez et al., 2007, Soberon et al., 2009) to 

receptors like cadherins. The midgut of lepidopteran and dipteran insects have 

been shown to be alkaline (Berebaum, 1980, Gringorten et al., 1993) and it 

enhances the solubility of Cry toxins (Bravo et al., 2004, Soberon et al., 2009) 

and those of coleopteran are neutral or slightly acidic and in vitro solublisation 

of Cry1Ba (Bradley et al., 1995) and Cry7Aa (Lambert et al., 1992) has been 

shown to enhance their activity to Leptinotarsa decemlineata.  

With the pore forming model (Knowles and Ellar, 1987, Haider and Ellar, 1989, 

Grochulski et al., 1995, Schnepf et al., 1998, Bravo et al., 2004, Rausell et al., 

2004), an ingested crystal toxin is solubilised in the alkaline environment of the 

insects midgut releasing protoxins which are initially processed by midgut 

proteases. The initial cleavage of the protoxin by the gut proteases results in the 

removal of the the C-terminal half and about 30 amino acid residues from the N-

terminal thus releasing  active toxin monomers which bind to receptors such as 

cadherin (Atsumi et al., 2008, Bel et al., 2009, Chen et al., 2009, Fabrick et al., 

2009a, Muñóz-Garay et al., 2009, Obata et al., 2009, Pacheco et al., 2009a, 

Arenas et al., 2010) or proteins anchored to the membrane by GPI-anchored 

proteins such as aminopeptidase N (Arenas et al., 2010). The initial binding of 

the activated toxins to receptors results in their conformational changes which 

facilitates a second cleavage that removes the N-terminal helix α-1, by 

membrane-bound protease. The removal of helix α-1 results in the formation of 

oligomers that are the membrane insertion competent  (Bravo et al., 2004). The 

binding of Cry toxins to the cadherin-like receptors have been shown to involve 

specific interactions of the variable loop regions in domain II and III with 

cadherin epitopes (Nair et al., 2008, Chen et al., 2009, Pacheco et al., 2009a, 

Soberon et al., 2009). 
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The oligomerised activated toxin that is bound to membrane receptors then 

insert the central hydrophobic helix α-4 and 5 (Nair et al., 2008) into the apical 

membrane of midgut cells causing osmotic shock, bursting of the midgut cells 

and finally ending in the insect death (Knowles and Ellar, 1987, Haider and Ellar, 

1989, Grochulski et al., 1995, Schnepf et al., 1998, Bravo et al., 2004, Rausell 

et al., 2004). The pore formation model as proposed by Bravo et al., 2004 for 

Cry1A toxins is presented in figure 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Model of the mode of action of Cry1A toxins 

            1: Crystal toxin solubilisation 

            2: Initial cleavage by gut proteases 

            3: Active toxin monomer binding to receptors and second cleavage by 

                membrane bound proteases 

            4: Membrane insertional competent oligomer formation 

            5: Binding of oligomeric toxin to receptors 

            6: Lytic pore formatio 

 

 

 

 

 
 
 

Bravo et al., 2004 
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Cyt-toxins have also been shown to effect killing of its insect targets through 

unspecific binding to midgut membrane lipids followed by membrane insertion 

which leads to pore formation and insect death (Li et al., 1996, Cohen et al., 

2008, Zhao et al., 2009, Rodriguez-Almazan et al., 2011). 

The activation of Mg2+-dependent signal cascade pathway that is triggered by 

the interaction of the monomeric 3-domain Cry toxin with the primary receptor, 

the cadherin protein (Zhang et al., 2005, Zhang et al., 2006, Soberón et al., 

2009) has been shown to trigger a pathway involving stimulation of the 

stimulatory G protein α-subunit and adenylyl cyclase (AC), increased cyclic 

adenosine monophosphate (cAMP) levels, and activation of protein kinase A 

(PKA). Activation of the AC/PKA signalling pathway initiates a series of 

cytological events that include membrane blebbing, appearance of nuclear 

ghosts, and cell swelling followed by cell lysis (Zhang et al., 2005, Zhang et al., 

2006). 

  

1.1.2.4 Toxicity to insect pests and application as biological control 

            agent 

With specific insecticidal effect of Bt toxins to insect pests in the orders 

Coleoptera (beetles and weevils) (López-Pazos et al., 2010, Sharma et al., 

2010), Diptera (flies and mosquitoes) (Pérez et al., 2007, Roh et al., 2010), 

Hymenoptera (bees and wasps) (Garcia-Robles et al., 2001, Sharma et al., 

2008), Lepidoptera (butterflies and moths) (Baig et al., 2010, Darsi et al., 2010) 

and non-insect species such as nematodes (Cappello et al., 2006, Hu et al., 

2010), Bt toxins have taken centre stage as the major biological control agent 

because genetically modified crops expressing Bt toxins and insectides 

formulated from Bt products are widely used and accepted. As published in the 

International Service for the Acquisition of Agri-biotech Applications (ISAAA), 

website (http://www.isaaa.org/), there is an increase to more than 1 billion 

hectres of accumulated GM crops between 1996 that they were commercialised 

to 2010 that the findings was published. 

The increased popularity of biological control agents over synthetic chemicals 

because of the unselective lethal effect of chemical insecticidal agents (Moser 

and Obrycki, 2009, Kristoff et al., 2010, Shah and Iqbal, 2010, Eriksson and 

Wiktelius, 2011, Stevens et al., 2011) and the development of resistance 



 33 

(Ahmad et al., 2008) has led to intense research in the isolation of new Bt 

strains, cloning of novel insecticidal protein genes and manipulation of existing 

ones to cope with emerging concerns on the future of Bt as biological control 

agent like the development of resistance (Pereira et al., 2008, Gong et al., 2010) 

or cross-resistance (Sayyed et al., 2008, Xu et al., 2010) and its narrow 

spectrum of activity (Kao et al., 2003, Shu et al., 2009). 

Currently, about 600 insecticidal genes have been cloned from various Bt 

strains and deposited at the Bt toxin nomenclature website 

(http://www.lifesci.sussex.ac.uk/home/ Neil_Crickmore/Bt/) and out of these, a 

greater number have been heterologously expressed and found to be either 

independently (Song et al., 2003, Gonzalez-Cabrera et al., 2006, Ibargutxi et al., 

2008, Xue et al., 2008, Hu et al., 2010) or in combination (Sharma et al., 2010) 

toxic to insect species in one or more orders. 

Bacillus thuringiensis and its insecticidal toxins have been used directly in the 

form of sprays (Ali et al., 2010) or transgenic plants (Barton et al., 1987, Vaeck 

et al., 1987, Qaim and Zilberman, 2003, Walter et al., 2010, Chen et al., 2011) 

or indirectly (Hutchison et al., 2010) as pesticidal agents to improve yields of 

agricultural crops.  

Various assessments have been carried out to check for the safety of Bt toxins 

from sprays or transgenic plants to non-target species in the environment and it 

has been shown to be mostly environmentally friendly without known adverse 

effects (Kapur et al., 2010, Walter et al., 2010, Chen et al., 2011, Randhawa et 

al., 2011) though there is a laboratory observation that seem to implicate a 

commercial Bt strain aizawai in the reduction of reproduction in bumblebee 

(Bombus terrestris) workers when applied at a concentration of 0.1% through 

sugar water and pollen (Mommaerts et al., 2010). 

 

1.1.2.5 Development of resistance and cross-resistance by insect pests  

            to toxins 

The continuous relevance of Bt toxins in the control of insect and non-insect 

pests is threatened by the development of resistance by the pests in the field 

(Sayyed et al., 2004) and laboratory reared populations (Pereira et al., 2008, 

Fabrick et al., 2009b). There have also been reports of insect populations 

resistant to a particular toxin showing resistance to other toxins that they have 
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not previously been exposed to a term known as ‘cross-resistance’ (Pereira et 

al., 2008, Sayyed et al., 2008, Gong et al., 2010, Xu et al., 2010).  

The development of resistance to a toxins in the Cry1A group is of great 

economic importance because most commercialised Bt based insecticides 

contains Bt strains that naturally expressed Cry1A toxins or are engineered to 

do so (Ahmedani et al., 2008). 

There have been a number of proposed modes of resistance of insect pests to 

Bt toxins including reduction of binding of toxins to receptors in the midgut of 

insects, reduced solubilisation of protoxin, alteration of proteolytic processing of 

protoxins and toxin degration and or precipitation by proteases (Bruce et al., 

2007). The understanding of the mechanism of action of Bt toxins (Knowles and 

Ellar, 1987, Haider and Ellar, 1989, Grochulski et al., 1995, Schnepf et al., 1998, 

Bravo et al., 2004, Rausell et al., 2004) have enhanced the experimental 

verification of some of the modes.   

The most studied and experimentally verified mode of resistance is ‘mode 1’ 

which is characterized by recessive inheritance, resistance to and reduced 

binding by at least one Cry1A toxin, and negligible cross-resistance to Cry1C 

(Tabashnik et al., 1998, Sayyed et al., 2004, Heckel et al., 2007). Cry1Ac and 

Cry1Ab toxins were shown to have a specific binding of 8 and 15% respectively 

to brush border membrane vesicles from a Cry1A toxin sensitive population of 

Plutella xylostella (LAB-UK) but these specific bindings were reduced to 0.6 and 

1% respectively with brush border membrane vesicles prepared from a field 

population of Plutella xylostella (Karak) that has developed resistance to 

Cry1Ac toxin (Sayyed et al., 2004). In another example of Plutella xylostella 

development of resistance to Bt toxins through reduced binding of toxins to 

receptors on its brush border membrane vesicles, Tabashnik et al., 1994 

demonstrated that a Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa and Cry1Ja resistant  

population of Plutella xylostella (NO-QA) showed a reduced binding to Cry1Ac.  

Kranthi, et al, 2006 demonstrated that a Cry1Ac sensitive strain of cotton 

bollworm, Helicoverpa armigera SUS-G was able to inherit  resistance from 

Cry1Ac resistant strains RES-Bt and RES-Ac. Gonzalez-Cabrera et al, 2003 

showed that brush border membrane vesicles from Cry1Ac resistant pink 

bollworm (Pectinophora gossypiella) did not bind to Cry1Ab which has been 

shown to have a common binding site as Cry1Ac. There have been other 
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reports implicating alteration in midgut proteins that bind to Cry toxins mutating 

and resulting in reduced binding (Jurat-Fuentes and Adang, 2006, Wang et al., 

2007, Fabrick et al., 2009a). 

Alteration of protease profile in the midgut of Cry1Ac resistant Helicoverpa 

armigera affected the proteolytic processing of Cry1Ac resulting in the 

production of 95 and 68kDa toxin as opposed to the active 65kDa toxin 

produced by midgut protease from susceptible population (Rajagopal et al., 

2009) is an evidence of linkage between improper processing of Bt toxin and 

development of resistance. Sayyed et al., 2005 demonstrated that a field 

collected resistant population of Plutella xylostella (SERD4) which was 

subsequently selected in the laboratory using Cry1Ab and named Cry1Ab-SEL 

were more sensitive to trypsin-activated Cry1Ab compared to Cry1Ab protoxins. 

The brush border membrane vesicles from laboratory selected population of 

Ostrinia nubilalis resistant to Cry1F was found to be unaffected in its binding to 

the toxin and no differences in activity of luminal gut proteases or altered 

proteolytic processing of the toxin were observed in the resistant strain 

compared to the sensitive strain (Pereira et al., 2010). With failure to implicate 

binding proteins or toxin processing proteins in the midgut of resistant strains of 

insects as the source of resistance, the full understanding of the mechanism of 

insect resistance to Cry toxins still have much to be discovered in years ahead. 

 

1.1.3 Strategies for improving toxicity and overcoming insect pests  

         resistance to Bt toxins  

1.1.3.1 Use of synergistic proteins, other toxins and spores 

Apart from resistance by pests being a major threat to the future of Bt spores 

and its insecticidal toxins as biological control agent, the problem of efficacy and 

spectrum of acitivity (Regev et al., 1996, de Maagd et al., 2001) are other 

problems that are associated with Bt toxins. Only a small minority of a single 

toxin show activity that spans two to three insect orders like Cry1Ba which 

shows toxicity to Coleopterans, Dipterans and Lepidopterans (Zhong et al., 

2000). Most of the toxins cloned have narrow spectrum of activity (Kao et al., 

2003, Shu et al., 2009) while some expressed toxins like Cyt1Aa show a weak 

toxicity to Dipteran like mosquito on their own but show synergistic activity when 

combined with other toxins like Cry4Ba and Cry11Aa ( Pérez et al., 2007). 
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To boost the efficacy of Bt insecticidal toxins and overcome resistance posed by 

insect pests, the use of other proteins like cadherin fragments have been shown 

to be a successful strategy (Chen et al., 2007, Abdullah et al., 2009, Pacheco et 

al., 2009b, Park et al., 2009a, Peng et al., 2010). The use of a toxic compound, 

gossypol derived from cotton plant has also been used in combination with 

Cry1Ac to boost its efficacy against resistant population of Helicoverpa zea 

(Anilkumar et al., 2009). Coexpression of chitinase a protein that is known to 

disrupt chitin which is a physical barrier in the peritrophic membrane in the 

midgut of insects have been shown to have an enhanced effect on the efficacy 

of Cry1Ac against Helicoverpa armigera (Ding et al., 2008) and Cry1C against 

Spodoptera littoralis (Regev et al., 1996). Also, the combination of Cry toxins 

have proven to be a very useful strategy employed in boosting efficacy and 

fighting resistance and this is called gene stacking or pyramiding (Jurat-Fuentes 

et al., 2003, Kaur, 2006, Avisar et al., 2009). The combination of Cry1Ac and 

Cry2Ab showed a synergistic effect to Helicoverpa armigera (Ibargutxi et al., 

2008).  

 It has also been shown that a mixture of crystal protein and spores from the 

same strain in a bioassay results in a synergistic insecticidal activity (Johnson 

and McGaughey, 1996, Tang et al., 1996, Johnson et al., 1998). 

 

1.1.3.2 Domain and loop swapping 

With insights gained into the structure of Cry toxins (Li et al., 1991, Grochulski 

et al., 1995, Galitsky et al., 2001, Morse et al., 2001, Boonserm et al., 2005, 

Boonserm et al., 2006) and their mechanism of action, (Zhang et al., 2005, 

Zhang et al., 2006, Bravo et al., 2007, Gomez et al., 2007, Pacheco et al., 

2009a) through molecular genetics studies of the interaction between the insect 

host and the toxins, specificity of toxins can be altered or broadened. Herrero et 

al, 2004 demonstrated that replacing single residues in loops 2 and 3 of domain 

II with and residues 541–544 in domain III of Cry1Ca with alanine resulted in 

lower toxicity to Spodoptera exigua while their toxicity to Manduca sexta was 

not affected which underscores the detailed understanding of the importance of 

these residues to insect specificity providing a great tool for toxin manipulation. 

Swapping domain III of Cry1Ac, Cry1Ba and Cry1Ea which has low or no 
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toxicity to Spodoptera exigua with domain III of Cry1Ca have shown an 

improved toxicity to Spodoptera exigua (de Maagd et al, 2000).  

Abdullah et al, 2003 remodelled domain II loops of Cry4Ba to resemble that of 

Cry4Aa and generated mutants that show improved toxicity to Culex 

quinquefasciatus and Culex pipiens up to >700-fold and >285-fold respectively. 

In a similar study, Cry19Aa, a mosquitocidal toxin with specificity toward 

Anopheles stephensi and Culex pipiens but with no measurable activity against 

Aedes aegypti, was made more than 42,000-fold more toxic to Aedes aegypti 

by engineering putative domain II loops 1 and 2 to resemble that of Cry4Ba 

(Abdullah and Dean, 2004). Also, Liu and Dean 2006 introduced mosquitocidal 

activity to Cry1Aa through rational design to the sequence of loops 1 and 2 

based on a sequence alignment with Cry4Ba, a naturally occurring 

mosquitocidal toxin. 

Replacement of domain III of Cry1Ba with that of Cry1Ac resulted in an 

improved activity to Heliothis virescens (Karlova et al., 2005).  Naimov et al, 

2001 created a hybrid protein by replacing domain II of Cry1Ba with that of 

Cry1I which resulted in activity against Colorado Potato Beetle that is 

comparable to that of Cry3Aa. 

 

1.1.3.3 Site directed mutagenesis 

This is the use of cDNA technology to generate a point mutation at a 

predetermined position in a gene (Cammack et al, 2006) and DNA sequence of 

interest like promoters (Fleming et al., 2010, Moustafa et al., 2010). To effect an 

informed site directed mutagenesis, the sequence information and the structure 

of the protein targeted must be known at least to a reasonable extent and Cry 

toxins DNA and structural information is well studied and understood to a 

reasonable extent (de Maagd et al., 2001, de Maagd et al., 2003). 

The understanding of the domain structure and function of Cry1Ac enhanced 

the use of site directed mutagenesis by Kim et al, 2008 to effect changes to 

domain I and II that resulted in mutants that showed improve activity to Ostrinia 

furnacalis and Plutella xylostella.  

A triple mutant (N372A, A282G and L283S) in domain II loop of Cry1Ab resulted 

in a 36-fold increase in toxicity to Lymantria dispar and this correlated with an 

increased binding affinity of greater than 18-fold to brush border membrane 
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vesicles which also resulted in higher toxin concentration at the binding site 

(Rajamohan et al., 1996). 

 

1.1.3.4 Directed evolution 

Natural evolutionary trend has been used in analysing the divergence and host 

specificity in Cry toxins (de Maagd et al., 2001) and biotechnological technique 

like gene shuffling has been used in artificially directing the evolution of new 

genes with novel characteristics (Stemmer, 1994a, Stemmer, 1994b, Zhao and 

Arnold, 1997, Lassner and Bedbrook, 2001, Craveiro et al., 2010). Craveiro et 

al, 2010 used DNA shuffling technique to produce four gene variants from 

cry11A12synth and cry11A12 genes that has toxicity against Telchin licus licus 

as opposed to non toxic product from the parent gene cry11A12synth. Shan et 

al, 2011 used modern directed evolution techniques of error-prone PCR, 

staggered extension process (StEP) shuffling combined with Red/ET 

homologous recombination to investigate the insecticidal activity of Cry1Ac and 

isolated a toxin variant designated as T524N which has increased insecticidal 

activity against Spodoptera exigua larvae while its original insecticidal activity 

against Helicoverpa armigera larvae was still retained. 

 

1.1.3.5 Production of truncated toxins 

It is well understood that a Cry toxin mode of action involves the solubilisation of 

protoxins in the midgut of susceptible insects, activation of the solubilised 

protoxins by midgut proteases resulting in a truncated active toxin that binds to 

receptors being inserted into epithelial membrane creating lytic pores (Knowles 

and Ellar, 1987, Haider and Ellar, 1989, Grochulski et al., 1995, Schnepf et al., 

1998, Bravo et al., 2004, Rausell et al., 2004) or activating Mg2+-dependent 

signal cascade pathway that is triggered by the interaction of the monomeric 3-

domain Cry toxin with the primary receptor, the cadherin protein (Zhang et al., 

2005, Zhang et al., 2006, Soberón et al., 2009). 

The understanding of the regions that are bound to receptors and how protoxins 

are processed to a functional form has led to creation of manipulated toxins that 

mimics the in vivo processing of toxins like truncated toxins that lack part of N-

terminal sequence (Pardo-López et al., 2009). Bravo et al., (2004) 

demonstrated that the processing of a protoxin to an active toxin in the midgut 
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of susceptible insect involve the initial cleavage of the protoxin by proteases in 

the midgut followed by a second cleavage by membrane bound protease that 

removes the helixα-1 while the toxin is bound to midgut receptors. Deletion in 

the amino-terminal region including helix α-1 of Cry1A toxin resulted in Cry toxin 

that form oligomers in the absence of cadherin receptor that kill insects which 

has developed resistance to Cry1A toxins caused by mutations in the cadherin 

gene. The modified toxins were also effective against insects which had 

acquired reduced susceptibility to native Bt toxins due to diminished expression 

of cadherin protein by cadherin gene silencing with RNA interference (Soberón 

et al., 2007). Morse et al, 2001 resolved the structure of Cry2Aa protoxin and 

observed that it has 49-amino acid residues preceding helix α-1 at the N-

terminal which is cleaved in vivo to generate an active toxin. Mandal, et al, 2007 

demonstrated that in vitro truncation of Cry2Aa at the N-terminal of 42-amino 

acid residues resulted in an improved toxicity against Spodoptera littoralis and 

Agrotis ipsilon. 

Apart from truncation of the N-terminal residues of domain I to generate toxins 

with improved activity, Wu et al, 2000 also created mutants (R345A, ∆Y350, 

∆Y351) that involve the deletion and site specific mutation in loop I of Cry3A 

domain II  which resulted in improved activity against Tenebrio molitor. 

 

1.2 Objectives 

1.2.1 Overall objective 

The overall aim of this project is to clone and heterologously express and 

characterise wild type cry1Ah, cry1Ie, cry30Ea and cry40Da genes, genetically 

manipulate them to create variants with improved toxicity and to develop a 

protocol that can be used in selecting the toxin variants with improved toxicity. 

 

1.2.2 Specific objectives 

1.2.2.1 Design of expression systems for cry1Ah, cry1Ie, cry30Ea and  

            cry40Da genes 

Under this objective, suitable expression systems would be designed for the 

expression of the genes in a range of hosts. pET vectors will be used as well as 

existing vectors used previously to express Bt toxins in E. coli and Bt. An 

existing vector like pGEM1AcP which has origin of replication in E. coli and a 
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native promoter of cry1Ac with ribosome binding site to its 3’ end of the 

promoter would be manipulated for use in expressing the genes. Another 

existing vector pSV2, a Bt shuttle vector with origin of replication in E. coli and 

Bt would be manipulated to carry native promoter of cry1Ac gene and its 

ribosome binding site and used for expression of some of the genes in Bt host. 

Also pSVP27 a Bt shuttle vector with pSV2 backbone carrying the promoter of 

cyt1A would also be manipulated for the expression of some the genes in Bt 

host. 

 

1.2.2.2 Assay the heterologously expressed toxins for insecticidal  

             activity 

This objective seeks to estimate the toxicity of the expressed proteins to 

ascertain if they have any improvement in toxicity compared to existing ones. 

Cry toxin sensitive and Cry1Ac-resistant populations of Plutella xylostella in 

which a range of toxins have been assayed with would be used in checking the 

toxicity of the expressed proteins. This would give insights into the cross-

resistance effect observed in other Cry toxins. 

 

1.2.2.3 Genetical manipulation of the expressed toxins for desired activity 

Under this objective, the understanding of the genes cry1Ah, cry1Ie, cry30Ea 

and cry40Da would be exploited in manipulating them for improved toxicity and 

the overcoming of resistance and cross-resistance. To this end, techniques like 

domain swapping, truncation of the wild type gene, creation of fusion genes 

would be employed in creating new genes. 

 

1.2.2.4 Using toxin pairs to conduct bioassay to check for synergism 

In this objective, sublethal dose of toxin pairs Cry1Ie/Cry1Ah and Cry1Ie/Cry1Ac 

would be used in conducting bioassays against Plutella xylostella to check for 

synergistic activities between them. This method has been used in combating 

resistance developed by Aedes aegypti to Cry11Aa by combining Cry11Aa with 

Cyt1Aa (Pérez et al., 2007) and Culex quinquefasciatus resistance to Cry4Ba 

by combining it with Cyt1Aa (Cantón et al., 2011). Also, enhanced activity has 

been observed between Cry1Ab and Cry1Ac against Chilo partellus (Sharma et 
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al., 2010), Cry1Ac and Cry2Ab against Helicoverpa armigera (Ibargutxi et al., 

2008). 

 

1.2.2.5 Develop an in vivo protocol for enriching for Bt strains expressing  

            more active toxin 

This objective seeks to find out if in vivo passage of Bt strains generated from a 

mutant library through Plutella xylostella would enrich for mutant strains 

expressing more active toxins. 

 

1.3 Background to project 

The background to this project is based on the abilities and disabilities of the 

insect pathogen, Bacillus thuringiensis (Raymond et al., 2010).  Bacillus 

thuringiensis produces proteinaceous insecticidal crystals during sporulation 

which is the distinctive feature between it and other members of the Bacillus 

cereus group (Rasko et al., 2005). The proteinaceous crystal has been 

successfully linked to extrachromosomal DNA material (plasmid) by Ward and 

Ellar, 1983 who produced a plasmid cured strain that was acrystalliferous and 

non-toxic to Aedes  aegypti  larvae. Schnepf and Whitely 1981, demonstrated 

that the source of toxicity of Bacillus thuringiensis var. kurstali HD-1 to Manduca 

sexta was a plasmid gene that coded for a protein that was found in the 

proteinaceous crystal. They cloned and heterologously express the gene from 

extracted plasmid DNA in E. coli and showed that the E. coli expressed protein 

was toxic to Manduca sexta.  

Since the discovery of the ability of Bacillus thuringiensis strains to selectively 

kill insect species in the orders Coleoptera, Diptera, Hymenoptera, Lepidoptera 

and non-insect species such as nematodes it has been widely used as the 

major biological control agent and widely preferred to chemical insecticides.  

The disability of some existing Bacillus thuringiensis toxins to overcome the 

resistance developed by some insect species in field (Sayyed et al., 2004) and 

in laboratory reared populations (Pereira et al., 2008, Fabrick et al., 2009b) is 

eminent and increased research at the molecular level into the workings of the 

toxins has provided some insights into how some of the resistance traits could 

be managed (Soberón et al., 2007, Bravo and Soberón, 2008, Pardo-López et 

al., 2009).  
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The quest for new Bacillus thuringiensis strains with novel characteristics that 

are able to overcome resistance traits posed by insects in field and laboratory 

populations led to the isolation of a Bt strain Bacillus thuringiensis BT8 and 

cloning of the gene encoding cry1Ah1 a 134KDa toxin from it by Xue, et al, 

2008. The cloned cry1Ah was successfully expressed in an acrystalliferous 

mutant of Bacillus thuringiensis HD73‾ and found to be highly toxic against 

Lepidopteran larvae of Ostrinia furnicalis, Helicoverpa amigera, Chilo 

suppressalis and Plutella xylostella with LC50 values of 0.05, 1.48, 0.98µg/g and 

1.52 µg/ml respectively. Unfortunately, a resistant strain of Ostrinia furnacalis 

(ACB-AbR) originally selected in the laboratory with Cry1Ab also developed 

resistance to other Cry1-toxins including Cry1Ah to which it had not previously 

been exposed. The cross-resistance level observed with Cry1Ah was 131-fold, 

Cry1Ac 36-fold and Cry1F 6-fold (Xu et al, 2010). 

In another exploration, Cry1Ie which is a short form Cry toxin of approximately 

81kDa was cloned from Bacillus thuringiensis isolate Btc007 and was 

heterologously expressed in E. coli BL21 (DE3) as a fusion protein using pET-

21b vector. The E. coli expressed Cry1Ie was found to be toxic to Ostrinia 

furnacalis, with an LC50 of 2.22μg/ml, Plutella xylostella, with an LC50 of 

0.20μg/ml and Leguminivora glycinivorella, with an LC50 of 9.02μg/ml. It was 

found to be non-toxic to Helicoverpa armigera and Spodoptera exigua (Song et 

al, 2003). 

Though Cry1Ie has a narrow spectrum of activity compared to Cry1Ah, it has an 

interesting aspect that could be exploited to create a new toxin with improved 

activity through molecular genetic techniques. It has been shown that a 

population of Ostrinia furnacalis (ACB-AbR) that has developed resistance to 

Cry1Ah as a result of its developing a resistance to Cry1Ab was still sensitive to 

Cry1Ie (Xu et al, 2010). 

Cry1Ie belongs to the three domain Cry toxins but lacking C-terminal blocks 6-8 

present in full length 130kDa cry-proteins like Cry1Ah. The C-terminal end of 

Cry toxins have been shown to be removed during proteolytic processing of 

inactive protoxins to an active form which initiates binding to brush border 

membrane of susceptible insect.  

Still in the quest to isolate Bt strains with improved activity, two strains S2160-1 

and S2196-1 were isolated from soil samples in Guangxi, China and found to 
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have activity to Culex quinquefasciatus and Aedes Albopictus comparable to 

that of Bacillus thuringiensis spp. israelensis which is a long standing 

mosquitocidal strain (Pérez et al., 2007, Otieno-Ayayo et al., 2008). The coding 

sequences of cry30Ea and cry40Da toxin genes were amplified using PCR from 

the isolated strains S2160-1 and S2196-1respectively with deduced proteins of 

~77.6kDa and ~73.5kDa respectively. However, SDS-PAGE analysis of the 

total protein from these strains suggested that these toxins were not expressed 

in the wild type strains (Zhang et al, unpublished data).  cry30 genes have 

previously been cloned from mosquitocidal strains of Bacillus thuringiensis and 

heterologously expressed (Tan et al., 2009, Zhu et al., 2010). They have been 

found to form operons which splits into frames with the downstream frame 

having homology to C-terminal block 6-8 of full length cry-genes and the 

upstream frame having homology to block 1-5 of short cry-genes (Ito et al., 

2006). cry40 gene has also been shown to form operon with cry34 gene (Brown, 

1993). It has been cloned from mosquitocidal strains Bacillus thuringiensis 

serovar aizawai (Ito et al, unpublished data) obtained from the Bacillus 

thuringiensis nomenclature website (http://www.lifesci.sussex.ac.uk 

/home/Neil_Crickmore/Bt/) and Bacillus thuringiensis thompsoni (Brown, 1993). 
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Chapter 2: Materials and Methods 

2.1 Materials 

2.1.1 Plasmids 

The plasmids used in this project were pSVP27 and pSV2 (Crickmore and Ellar, 

1992) which are Bt shuttle vectors used in cloning genes in E. coli via their 

multiple cloning sites for expression in Bt as they have origin of replication in 

both E. coli and Bt. pSV2 has chloramphenicol resistance gene which is 

functional in Bt and ampicillin resistance gene which is functional in E. coli. 

pSVP27 in addition to the attributes of pSV2 also has cyt1A promoter which 

drives expression of genes inserted downstream of the promoter. Plasmid 

pGEM-T from Promega was also used in cloning of PCR procducts that are 

amplified using Taq DNA polymerase which adds adenine (A) to the 3’ end of its 

PCR products. It has an origin of replication in E. coli and an ampicillin 

resistance gene. pGEM1AcP is another plasmid that was used in this project. It 

has in addition to the pGEM-T vector backbone, the promoter for cry1Ac 

including its ribosome binding site and coding sequence and was supplied by 

Neil Crickmore. Another plasmid that was used in this project that has the 

vector backbone of pGEM-T is p101 construted by Vidisha Krishnan 

(unpublished data) by inserting the three gene cry41Aa operon and then 

deleting the first open reading frame. Also used was plasmid pET3a from 

Novagen which has origin of replication in E. coli, ampicillin resistance gene, T7 

IPTG inducible promoter and multiple cloning sites. 

 

2.1.2 Bacterial strains 

The bacterial strains used for this project were E. coli JM109, E. coli BL21 DE3 

supplied by Neil Crickmore and E. coli BL21 Rosetta from Promega which is 

chloramphenicol resistant due the pRARE plasmid that it harbours. pRARE 

plasmid is a plasmid that codes for tRNA genes that code for tRNAs that are 

rare in E. coli which enhances the heterologous expression of some non-E. coli 

genes in E. coli host. E. coli BL21 Rosetta was supplied by Jie Zhang of 

Institute of Plant Protection, Beijing, China.  

Other bacterial strains used were acrystalliferous mutant of Bacillus 

thuringiensis sup. israelensis IPS 78/11, crystal producing wild type strain 

Bacillus thuringiensis HD73, acrystalliferous mutant of Bacillus thuringiensis 
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HD73-, 431 a genetically engineered Bacillus thuringiensis IPS 78/11 

expressing wild type cry1Ca gene and R128M a genetically engineered Bacillus 

thuringiensis IPS 78/11 expressing mutated cry1Ca gene which were all 

supplied by Neil Crickmore. 

 

2.1.3 Insect populations 

The insect populations used were of the species Plutella xylostella and were 

toxin sensitive population G88 which were maintained on either Chinese  

cabbage  (Brassica  pekinensis) or artificial diet and Cry1Ac-resistant population 

KARAK obtained from the University of Oxford, UK. KARAK was also 

maintained on Chinese  cabbage  (Brassica  pekinensis) 

 

2.1.4 Culture media and insect food 

The media used were 2x and 1x Luria broth and 1x Luria agar. Antibiotics 

concentrations were 50 or 100μg/ml for ampicillin, 5, 10, 17 or 20μg/ml for 

chloramphenicol and 50μg/ml for kanamycin. 

The insect used in this project were fed with artificial diet or Chinese cabbage 

(Brassica  pekinensis). 

 

2.2 Methods 

2.2.1 Design of primers for DNA amplification 

PCR primers used in this project were designed using the programme PRIMER 

SELECT a part of DNASTAR software package. Some primers were designed 

to amplify exact sequence as found in the template while others were designed 

with changes when intending to introduce mutations. Primers were designed to 

have an optimum annealing temperature of between 50-60oC and this was done 

by altering the length of the primers. 

 

2.2.2 PCR amplification of DNA 

Using appropriate primer pairs, Pfu UltraTM Hotstart PCR master mix system or 

Taq PCR master mix or High Fidelity PCR master mix from Roche were used in 

the amplification of DNA fractions.  
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The reaction conditions for PCR amplification were set as follows: 

Initial warming of lid 100oC for 4 minutes, initial denaturation 95oC for 2 minutes, 

annealing of primers 45oC or 50oC or 55oC or 60oC (depending on the primers’ 

optimum annealing temperature) for 30 seconds, primer extension at 72oC  for 1 

minute per 1000bp of DNA to be amplified. The cycle from initial denaturation to 

primer extension was set to repeat for 29 cycles after which the sample was 

cooled to 4oC. 

In table 2.1 below, a summary of the PCR reaction mix is shown. 

 

Components Volume  

Distilled water 22.5µl 

Forward primer 1µl of 100pmol/ µl 

Reverse primer 1µl of 100pmol/ µl 

DNA template 0.5µl 

Pfu Ultra Hotstart 2x master 

mix or Taq PCR master mix or 

High Fidelity PCR master mix 

25µl 

  

        Table 2.1: PCR master mix recipe 

 

2.2.3 Purification of DNA from agarose gels 

PCR reaction mixes were ran on 1% agarose gel and required bands excised 

and purified. The excised bands were placed in a clean microcentrifuge tube 

and purified according to the QIAquick Gel Extraction kit protocol. According to 

this protocol, three volume of buffer QG was added to one volume of excised 

gel in a microcentrifuge tube. The tubes were incubated for 10 minutes at 60oC 

with inversion every 3 minutes to enhance dissolution. After the incubation, one 

volume of isopropanol was added to one volume of gel and inverted to mix. 

The mixes were transferred to MiniElute columns and centrifuged at 14,000xg 

for 1 minute. The flow through were discarded and 500µl of buffer QG were 

added to the columns and centrifuged at 14,000xg for 1 minute. 

The flow through were discarded and 750µl of buffer PE were added to the 

columns and centrifuged for 1 minute at 14,000xg. The flow through were 
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discarded and the columns centrifuged again to remove any trace of buffer in 

the columns. The columns were then placed in clean 1.5ml centrifuge tubes and 

10µl of buffer EB were added and allowed to stand for 1 minute after which they 

were centrifuged for 1 minute at 14,000xg to elute the DNA. 

 

2.2.4 Transformation of bacterial strains with plasmids 

2.2.4.1 Transformation of E. coli strains 

E. coli JM109 were made competent for transformation by growing a loopful of 

its culture in 100ml of Luria broth for two hours at 37oC. The culture was 

centrifuged at 10k rpm in SLA-1500 rotor for 10 minutes to pellet cells. The 

pelleted cells were washed in 100ml of fridge-cold water and centrifuged at 10k 

rpm in SLA-1500 rotor for 10 minutes. 

The cells were then suspended in 200μl of 4oC-distilled water. For E. coli JM109, 

50µl of the cells were transferred into electroporation cuvette and 1µl of plasmid 

DNA was added, mixed and gently tapped to get the cells settled at the bottom 

of the cuvette. The cuvette was then placed in an electroporation machine and 

operated at the settings of 1.8 kV, 200 Ohms, 25µF for cells to take up the 

plasmid DNA. After electroporation, the cells were incubated in a shaker tank at 

37oC in 1ml of Luria broth for 1 hour to resuscitate the cells. The 1ml culture 

was then centrifuged to get it concentrated by removing part of the supernatant 

and then plated onto Luria agar plate containing 100µg/ml of ampicillin. 

For BL21 Rosetta, 1µl of plasmid DNA was added to 50µl of the ready-made 

competent cells and placed on ice for 45 minutes. The cells/plasmid mix was 

then placed in water bath at 42oC for 90 seconds and then placed on ice for 3 

minutes. One millilitre of Luria broth was added to the cell/plasmid mix and 

incubated in water bath at 37oC for 1 hour. Five hundred microlitre of the 

transformation mix was spread plate on Luria agar plate containing 17µg/ml 

chloramphenicol and 50µg/ml of ampicillin. 

 

2.2.4.2 Transformation of Bt strains 

Bacillus thuringiensis strains were made competent for transformation by 

growing a loopful of its culture in 100ml of Luria broth for four hours at 30oC. 

The culture was centrifuged at 10k rpm in SLA-1500 rotor for 10 minutes to get 

the cells pelleted. The pelleted cells were washed in 100ml of fridge-cold 
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electroporation buffer (272mM sucrose, 0.5mM MgCl2, 0.5mM K2HPO4, and 

0.5mM  KH2PO4 pH7.2) (Peng et al., 2009) and centrifuged at 10k rpm in SLA-

1500 rotor for 10 minutes. 

The cells were then suspended in 400μl of 4oC electroporation buffer. One 

hundred microlitre of the suspended cells were transferred into electroporation 

cuvette and 2µl of plasmid DNA was added, mixed and gently tapped to get the 

cells settled at the bottom of the cuvette. The cuvette was then placed in an 

electroporation machine and operated at the settings of 1.8 kV, 200 Ohms, 

25µF for cells to take up the plasmid DNA. After electroporation, the cells were 

incubated in a shaker tank at 30oC in 1ml of Luria broth for 1 hour to resuscitate 

the cells. The 1ml culture was then centrifuged to get it concentrated by 

removing part of the supernatant and then plated onto Luria agar plate 

containing 5µg/ml of chlorampenicol. 

 

2.2.5 Rapid size screening of E. coli transformants 

Rapid size screening was conducted to quickly screen transformants for the 

presence of the plasmid.  

To conduct rapid size screening, solution A as detailed below was pre-warmed 

to 37oC and 50µl  pipetted into a 1.5ml Eppendorf tube. A colony from the 

transformants or a control colony harbouring the plasmid without insert was 

resuspended in the 50µl of solution A in 1.5ml Eppendorf tube and vortexed for 

5-10 seconds. The tube was then incubated at 37oC for 5 minutes. After 

incubation, the tube was then placed on ice for at least 5 minutes and then 

centrifuged at 13,000xg for 5 minutes. After the centrifugation, 20µl of the 

supernatant was loaded on to 0.7% agarose gel.  

From the gel, a colony with potential of having the insert will be higher up on gel 

than the control plasmid without insert and the colony with potential of 

harbouring the correct clone would be analysed further for confirmation. 
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   solution A  

Water 6.5ml 

500mM EDTA 100µl 

Sucrose     1g (this makes 30% concentration of sucrose) 

10% SDS 250µl 

0.4M NaOH  2.5ml 

1M KCL  600µl 

Bromophenol blue to taste 

 

2.2.6 Extraction of plasmid DNA from transformed bacterial strains 

2.2.6.1 Extraction of plasmid from E. coli transformants 

Using the QIAprep spin miniprep kit protocol, 1.5ml of freshly grown E. coli 

culture was centrifuged at 14,000xg for 1 minute in a microcentrifuge tube and 

the supernatant discarded. The pelleted cells were resuspended in 250µl of 

buffer P1. 

The P1 mix was votexed and 250µl of buffer P2 was added and gently inverted 

for six times. Three hundred and fifty microlitre of buffer N3 was then added and 

inverted gently for six times. The mix was centrifuged for 10 minutes at 

14,000xg and the supernatant transferred to QIAprep column and centrifuged 

for 1 minute. The column was washed with 500µl of buffer PB, centrifuged for 1 

minute and the flow through discarded. The column was also washed by adding 

750µl of buffer PE and centrifuged at 14,000xg for 1 minute and the flow 

through discarded. The column was centrifuged at 14,000xg for 1 minute to get 

rid of all remaining PE buffers. The column was then placed in a clean 1.5ml 

microcentrifuge tube and 50µl of buffer EB was added to the centre of the 

column, allowed to stand for 1 minute, and then centrifuged for 1 minute at 

14,000xg to elute the plasmid DNA. 

 

2.2.6.2 Extraction of plasmid from Bt  transformants 

Using the QIAprep spin miniprep kit protocol, 1.5ml of freshly grown 

transformed Bt culture was centrifuged at 14,000xg for 1 minute in a 

microcentrifuge tube and the supernatant discarded. The pelleted cells were 

resuspended in 250µl of buffer P1 containing 10µg/ml of lysozyme. The 

inclusion of lysozyme was to enhance the lysing of the thick cell wall of Bt. 
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 The P1/lysozyme mix was votexed and 250µl of buffer P2 was added and 

gently inverted for six times and the plasmid preparation continued as described 

in section 2.2.6.1. 

 

2.2.7 Digestion of extracted plasmid DNA with restriction enzymes 

Plasmids extracted from transformants were checked by digesting 1µl of 

purified DNA with appropriate restriction enzyme in its buffer in a reaction mix in 

which distilled water was added to make a final volume of 10µl. The reaction 

mixes were then incubated at the restictions enzyme’s manufacturers 

recommended optimum temperatire for 1 hour. 

 

2.2.8 Expression and harvesting of protein and quantification of protein 

         and spores 

2.2.8.1 Expression and harvesting of protein from E. coli JM109  

The E. coli cells were grown in one litre of 2x Luria broth containing 100µg/ml of 

ampicillin and 17µg/ml of chloramphenicol for strain BL21 Rosetta and one litre 

of 2x Luria broth containing 100µg/ml of ampicillin for JM109. 

The cultures were grown at 37oC for three days and the cells were observed 

under light microscope for presence of inclusion bodies. The cultures were 

centrifuged at 10k rpm in SLA-1500 rotor for 10 minutes and the supernatant 

discarded. The pelleted cells were suspended in 35ml of distilled water in a 

50ml Falcon tube. The cells were sonicated for 5 minutes at full power pulsing 

at every 3 seconds. The sonicated cells were transferred into 50ml Oakridge 

tubes and centrifuged at 12k rpm in SS-34 rotor for 15 minutes and the 

supernatant discarded. 

The pellets were resuspended in 35ml of distilled water and sonicated again at 

full power for 2 minutes pulsing at every 3 seconds. The sonication mixes were 

then centrifuged at 12k rpm in SS-34 rotor for 15 minutes and the supernatant 

discarded. The pellets containing the expressed proteins were resuspended in 

5ml of distilled water. 

Five microlitre of the suspended proteins were ran on 7.5% SDS-PAGE gel. 

The protein bands were visualised by treating the SDS-PAGE gel as follows: 

Fifty millilitre of solution containing 50% of ethanol, 10% of acetic acid and 40% 

of distilled water was added to the gel and heated in microwave for 30 seconds 
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and placed on a shaker for 5 minutes. The solution was drained out and 50ml of 

solution containing, 5% of ethanol, 7.5% of acetic acid, 87.5% of distilled water 

and 200µl of a solution of 0.25% coomassie blue in ethanol was added to the 

gel and heated for 30 seconds in microwave. The gel in this solution was placed 

on a shaker for about 1 hour for the protein bands to be visualised. 

 

2.2.8.2 Expression and harvesting of protein from E. coli BL21 (DE3) 

A loopful of E. coli BL21 (DE3) harbouring plasmid pET3a with the gene to be 

expressed were subcultured into 10ml of Luria broth containing 100 µg/ml of 

ampicillin and grown overnight. The 10ml overnight cultures were inoculated 

into 100ml of fresh Luria broth containing  100 µg/ml of ampicillin and grown to 

optical density of between 0.5 to 1.0. After the culture has attended the required 

optical density, it was then induced with IPTG to a final concentration of 

between 0.25-1.0nM and incubated at temperatures between 20oC to 37oC for 8 

to 24 hours. 

After growing the culture for the required length of time, it was centrifuged at 

10k rpm in SLA-1500 rotor for 10 minutes and the supernatant discarded. The 

pelleted cells were suspended in 35ml of distilled water in a 50ml Falcon tube. 

The cells were sonicated for 5 minutes at full power pulsing at every 3 seconds. 

The sonicated cells were transferred into 50ml Oakridge tubes and centrifuged 

at 12k rpm in SS-34 rotor for 15 minutes and the supernatant discarded. 

The pellets were resuspended in 35ml of distilled water and sonicated again at 

full power for 2 minutes pulsing at every 3 seconds. The sonication mixes were 

then centrifuged at 12k rpm in SS-34 rotor for 15 minutes and the supernatant 

discarded. The pellets containing the expressed proteins were resuspended in 

5ml of distilled water and analysed on 7.5% SDS-PAGE gel as described in 

section 2.2.8.1. 

 

2.2.8.3 Expression and harvesting of protein from Bt 

The Bt clones harbouring appropiate plasmid  or a wild type Bt strain was grown 

in 5ml of Luria broth for 16 hours at 30oC. Five Petri plates of 25ml Luria agar 

containing 5μg/ml of chloramphenicol were inoculated 1ml each with the 16 

hour culture of the clones and grown at the temperature of between 20 to 30oC 

for 5 days. 
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After incubating the inoculated plates for 5 days, 2ml of sterile distilled water 

was added to the cultures on plates and carefully washed with a sterile  spatula 

into SLA1500 rotor centrifuge tube and centrifuged at 10k rpm in SLA-1500 

rotor for 10 minutes and the supernatant discarded. The pelleted cells were 

resuspended in 35ml of distilled water and sonicated for 5 minutes at full power 

pulsing at every 3 seconds. The sonicated cells were transferred into 50ml 

Oakridge tubes and centrifuged at 12k rpm in SS-34 rotor for 15 minutes and 

the supernatant discarded. 

The pellets were resuspended in 35ml of distilled water and sonicated again at 

full power for 2 minutes pulsing at every 3 seconds. The sonication mixes were 

then centrifuged at 12k rpm in SS-34 rotor for 15 minutes and the supernatant 

discarded. The pellets containing the expressed proteins were resuspended in 

5ml of distilled water and analysed on 7.5% SDS-PAGE gel as described in 

section 2.2.8.1. 

 

2.2.8.4 Estimation of protein concentration 

Concentration of harvested proteins were estimated by preparing three dilutions 

of the protein of unknown concentration and also three concentrations of BSA 

between 0.1 to 1.0mg/ml as standard.  

The protein concentration of the unknown was estimated by band intensity 

comparison with the known BSA band intensity. To have a reliable estimation, 

the experiment was always repeated with more dilutions around the first 

estimated concentration. 

For example, if 1:10 dilution of the unknown protein is observed to have the 

same band intensity as BSA 0.1mg/ml a further dilutions like 0.5:10, 1:10 and 

1.5:10 of the unknown protein and 0.05, 0.1 and 0.15mg/ml of the BSA would 

be prepared and ran on SDS-PAGE gel again and a second comparison made. 

 

2.2.8.5 Quantification of spores 

To obtain spores, cultures from stock of Bt strains were grown on 5μg/ml 

chloramphenicol or 50μg/ml kanamycin nutrient agar plates for five days at 

30ºC, the growth was observed under the  microscope to make sure they have 

sporulated. The sporulated cells were recovered in 20ml of distilled water and 

pasteurized at 70ºC for 45 minutes in water bath to inactivate vegetative cells. 
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The spores were serially diluted and 100µl of the diluted concentration of 10-4, 

10-5 and 10-6 were separately plated in duplicate and incubated for 16 hours at 

30ºC for spores to germinate and form colonies. Dilutions with between 30 and 

200 colonies per plates were counted and the number of spores/ml was 

estimated on the basis that a colony is formed from a single spore.  

 

2.2.9 Characterisation of expressed proteins 

2.2.9.1 Alkaline solubility 

Forty microlitre of expressed proteins were centrifuged at 14,000xg for 2 

minutes and supernatant discarded. The pellets were resuspended in 40µl of 

50mM Na2CO3 (pH 8.0, 8.5, 9.5, 10.5, 11.5 and 12) containing 10mMDTT. To 

check for the solubility the expressed proteins in Na2CO3, the mixtures were 

incubated at 37oC in water bath for 1 hour. After incubation, 10µl were pipetted 

from the total reaction mixtures and stored in an Eppendorf tube while the 

remaining reaction mixtures were then centrifuged and the supernatants 

pipetted into clean microcentrifuge tubes. Five microlitre of the supernatants 

and the total reaction mixtures were ran on SDS-PAGE gel to check for 

solubility. 

 

2.2.9.2 Protease activation 

Forty microlitre of expressed proteins were centrifuged at 14,000xg for 2 

minutes and supernatant discarded. The pellets were resuspended in 40µl of 1 

or 2µg/ml of trypsin solution made in 50mM Na2CO3 (pH 9.5 and 11.5). To allow 

for trypsin digestion, the mixtures were initially incubated at 37oC for 1 hour 

followed by another 1 hour after addition of 0.2µl of 1M DTT to the reaction  

mixtures. By so doing, the activity of trypsin was maintained as its activity would 

have been affected if DTT were to be added from the start of the experiment. 

Adding DTT after trypsin has completed its digestion was to make sure that the 

trypsinised protein is denatured for proper visualisation on SDS-PAGE gel 

because it has been shown that protease activated Cry toxins still have an 

intact 3D structure (Li et al., 1991, Grochulski et al., 1995, Galitsky et al., 2001, 

Morse et al., 2001, Boonserm et al., 2005, Boonserm et al., 2006, Guo et al., 

2009). After incubation, 10µl were pipetted from the total reaction mixtures and 

stored in an Eppendorf tube while the remaining reaction mixtures were 
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centrifuged and the supernatants pipetted into clean microcentrifuge tubes. Five 

microlitre of the total reaction mixtures and supernatants were ran on SDS-

PAGE gel to check for solubility and activation. 

 

2.2.10 Preparation of insect diets 

Insect artificial diet preparation: 

        Component A 

Wheat germ                32.0g 

Casein                        15.0g 

Sucrose                      13.0g 

Yeast                            6.4g 

Salt Mixture W              4.3g 

Cholesterol                   0.4g 

Methyl paraben            0.4g 

Sorbic acid                   0.7g 

The above ingredients were measured and blended in 357ml of boiling distilled 

water containing 5.4g of agar. The blended mixture was then autoclaved. 

 

                Component B 

Vitamin mixture Vanderzant        0.1g 

Ascorbic acid                               2.0g 

Choline chloride                          0.4g 

 

The ingredients above making up component B were aceptically measured and 

dissolved in 50ml of sterile distilled water. 

After autoclaving component A, it was allowed to cool to about 40oC after which 

component B was added and mixed by swirling. The diet was either prepared 

with rifampicin or without rifampicin depending on the strain of bacteria that 

would be assayed using the diet. Diet that contained rifampicin prepared by 

adding 1ml of 25mg/ml stock solution of rifampicin to a mixture of autoclaved 

component A and component B and mixed by swirling. 

The diet was then dispensed 20ml each into 50ml plastic cups and covered with 

cling film and stored at 4oC and used within a month. 
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2.2.11 Maintenance of Plutella xylostella populations on artificial diets and 

           cabbage (Brassica  pekinensis) plants 

Eggs of Plutella xylostella were placed on either 6 week old Chinese cabbage 

leaves (Brassica  pekinensis) in a glass cage or on 20ml of artificial diet in a 

50ml cup coverered with paper towel. The eggs on cabbage plant or diet were 

maintained at 28oC and 70% relative humidity with 16 hours light and 8 hours 

dark in an incubator where they hatch and grow from L1 to late L4 stage where 

they pupate.  

Pupae were placed in a plastic cage that has an open top that is covered with 

cloth for aeration until adults emerge. The emerging adults were fed with 20% 

honey or 10% sucrose solution in water and they remain in the cage and mate 

and lay eggs on aluminium foil that is coated with cabbage juice.  

 

2.2.12 Bioassay of expressed proteins (toxins) and/ or spores against  

           Plutella xylostella 

2.2.12.1 Leaf dip assays 

The method of Iqbal et al, 1996 as modified by Sayyed et al, 2000 was used in 

which cabbage leaf discs (5cm diameter) were soaked in toxin dilution for 10 

seconds, removed and held for 10 seconds and shaken to drain most the toxin 

solution. The toxin coated leaves were then air-dried for about 1 hour. The toxin 

solution were made in a solution of 50µl/L of triton-X100 which acts as 

suffactant enhancing the attachment of toxin to leave surfaces (Sayyed et al., 

2000). 

Ten third instar larvae of Plutella xylostella were exposed to two treated leaf 

discs in a 9cm Petri dish containing two 9cm No.1 Whatman filter paper soaked 

with 1ml of distilled water. The larvae were allowed to feed on the treated 

leaves for 3 days after which the number of dead larvae were counted. Fifty 

percent lethal concentration of the toxins were calculated using EPA PROBIT 

ANALYSIS PROGRAMME VERSION 1.5. This probit analysis software is used 

in calculating lethal concentration values and it requires a minimum of three 

doses of substance whose lethality is to be calculated. 
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2.2.12.2 Diet dip assays 

The method of Iqbal et al, 1996 as modified by Sayyed et al, 2000 was used in 

which 20ml of diet that has been poured into a 50ml cup and allowed to set 

were asceptically divided into four and one quadrant soaked in toxin dilution for 

10 seconds, removed and held for 10 seconds and shaken to drain most the 

toxin solution. The toxin coated diet quadrant were then air-dried for about 1 

hour. The toxin solution were made in a solution of 50µl/L of triton-X100 which 

acts as suffactant enhancing the attachment of toxin to diet surfaces (Sayyed et 

al, 2000). 

Ten third instar larvae of Plutella xylostella were exposed to 1 quardrant treated 

diet in a 20ml cup with perforated cap that allows for aeration of the cup while 

the larvae feed. The larvae were allowed to feed on the treated diet for 5 days 

after which the number of dead larvae were counted. Fifty percent lethal 

concentration of the toxins were calculated using probit software. 
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Chapter 3: Expression, manipulation and characterization of Cry1Ie toxin 

3.1 Introduction 

Cry1Ie is a Cry toxin of approximately 81kDa cloned from Bacillus thuringiensis 

isolate Btc007. It has been heterologously expressed in E. coli BL21 (DE3) as a 

fusion protein using the pET-21b vector. The E. coli expressed Cry1Ie has been 

found to be toxic to Ostrinia furnacalis, with an LC50 of 2.22μg/m, Plutella 

xylostella, with an LC50 of 0.20μg/ml and Leguminivora glycinivorella, with an 

LC50 of 9.02μg/ml. It has been found to be non-toxic to Helicoverpa armigera 

and Spodoptera exigua (Song et al, 2003). 

Though Cry1Ie has a narrow spectrum of activity compared to Cry1Ah (Xue, et 

al, 2008), it has an interesting aspect that could be exploited to create a new 

toxin with improved activity through molecular genetic techniques. It has been 

shown that a population of Ostrinia furnacalis (ACB-AbR) that has developed 

cross resistance to Cry1Ah as a result of exposure to Cry1Ab was still sensitive 

to Cry1Ie (Xu et al., 2010). 

Cry1Ie belongs to the three domain Cry toxins but lacks C-terminal blocks 6-8 of 

full length 130kDa Cry proteins. With insights gained into the structure (Li et al., 

1991, Grochulski et al., 1995, Galitsky et al., 2001, Morse et al., 2001, 

Boonserm et al., 2005, Boonserm et al., 2006) and mechanism of action (Bravo 

et al., 2007, Gomez et al., 2007) of Cry toxins through molecular genetics 

studies of the interaction between the insect host and the toxins, specificity of 

toxins can be altered or broadened. Liu and Dean, 2006 through genetic 

manipulation changed the Lepidopteran Cry1Aa to a Dipteran specific toxin. 

Swapping domain III of Cry1Ac, Cry1Ba and Cry1Ea which has low or no 

toxicity to Spodoptera exigua with domain III of Cry1Ca resulted in an improved 

toxicity to Spodoptera exigua (de Maagd et al, 2000). Domain II of Cry1Ab has 

been shown to be involved in the insertion of the toxin into the brush border 

membrane vesicles of Manduca sexta and a mutation in the domain II residue 

F371 results in a mutant that lacks membrane insertional ability and thus toxicity 

(Nair et al, 2008). Other modifications of Cry toxins like truncation of part of the 

N-terminal sequence (Franklin et al., 2009, Muñóz-Garay et al., 2009) have also 

been shown to be effective in creating new toxins with improved activity against 

certain insect population. 
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In this chapter, the expression of the 2160bp open reading frame of Cry1Ie in E. 

coli, its toxicity against susceptible and resistance populations of Plutella 

xylostella will be presented. The manipulation of Cry1Ie at the genetic level to 

produce a mutant toxin lacking its helix α-1 and swapping of its domain II with 

that of Cry1Ah will also be covered. In addition, the synergistic studies 

conducted between Cry1Ie and Cry1Ah against susceptible and resistance 

populations of Plutella xylostella will be presented. Also presented here are the 

results from the expression, characterisation and toxicity testing of Cry1Ie 

mutants created through site directed mutagenesis. 

 

3.2 Results 

3.2.1 Construction of a plasmid for the expression of the cry1Ie gene 

To construct a plasmid expressing Cry1Ie in E. coli as illustrated in figure 3.3, 

the DNA fragments needed are the coding sequence for Cry1Ie and a vector 

with all the expression vector elements like selective marker, E. coli origin of 

replication, ribosome binding site and a promoter that is able to drive the 

expression of Cry1Ie. Jie Zhang of Institute of Plant Protection, Beijing, China, 

supplied the coding sequence of Cry1Ie in a plasmid pETB-1IE shown in figure 

3.2 while Neil Crickmore supplied the expression vector pGEM1AcP1Ac shown 

in figure 3.1. The vector pGEM1AcP1Ac is a vector designed to express Cry1Ac 

in E. coli hosts and it has the native promoter of cry1Ac, coding sequence of 

Cry1Ac and pGEM-T vector backbone. 

Primer pair GEMF- 5’ TCTCATGCAAACTCAGGTTTAA 3’/GEMR- 5’ 

AAGTTACCTCCATCTCTTTTATTTAAG 3’ were designed using PRIMER 

SELECT programme software to amplify the required fragment of PGEM-T 

vector (Promega) backbone, native cry1Ac promoter and ribosome binding site 

hereafter designated as pGEM1AcP from pGEM1AcP1Ac. 5’ phosphorylated 

primer pair IF-5’ ATGAAACTAAAGAATCCAGATAAGC 3’/IR-5’ 

CTACATGTTACGCTC- AATATGGA 3’ were also designed to amplify the cry1Ie 

open reading frame from pETB-1IE. 

Using Pfu Ultra Hotstart PCR Master Mix system according to the 

manufacturers amplification instructions, pGEM1AcP and Cry1Ie, were 

amplified and the PCR products were ran on 1% agarose gel and the required 

bands of 3566bp (pGEM1AcP) and 2160bp (Cry1Ie) were excised and purified 
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according to the procedure described in section 2.2.3 for the purification of DNA 

from agarose gels. Pfu Ultra Hotstart PCR Master Mix was PCR kit of choice 

because of Pfu polymerase’s high fidelity property and the fact that it produces 

a blunt ended PCR product.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Schematic of pGEM1Ac plasmid showing cry1Ac coding sequence 

(green arrow), cry1Ac-ribosome binding site (blue block) and promoter (red 

oval), origin of replication in E. coli (pink block) and ampicillin resistance gene 

(brown block) 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Schematic of plasmid pETB-1IE  
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Figure 3.3: Schematic of the construction of the plasmid pGEM1AcP1Ie 
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To construct the plasmid pGEM1AcP1Ie, the following volumes of reagent and 

DNA fragments were measured and mixed together as shown in table 3.1. 

 

Components Volumes 

H20 1.5µl 

pGEM1AcP 1.0µl 

Ligation buffer  5.0µl 

Cry1Ie 2.0µl 

T4 Ligase  0.5µl 

  

Table 3.1: Recipe of ligation mix for pGEM1AcP1Ie 

 

The ligation mix was incubated at room temperature for 3 hours and then stored 

at 4oC overnight to enhance ligation. 

E. coli JM109 was transformed with the ligation mix and many transformants 

were rapid size screened as described in section 2.2.5 to check for colonies 

harbouring the plasmid pGEM1AcP1Ie. Clones with the correct orientation of 

Cry1Ie were checked by digesting extracted plasmid with EcoRI and analysed 

on 1% agarose gel to check for required bands of 2997, 1266, 984 ,429 and 50 

base pairs. Analysis of the EcoRI digest on agarose gel shown in figure 3.4 

confirms that the plasmid pGEM1AcP1Ie was successfully constructed. Lane 3 

of figure 3.4 has shown the presence of the expected bands of 2997, 1266, 

984 ,429bp but the expected band of 50bp could not be detected on gel as it is 

too small. 
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Figure 3.4: Gel picture showing the purified PCR fragments of cry1Ie, 

pGEM1AcP   and digestion of pGEM1AcP1Ie extracted from E. coli JM109 with 

EcoRI. Lane 1: 2160bp cry1Ie coding sequence band, lane 2: 3565bp 

pGEM1AcP, lane 3: digested pGEM1AcP1Ie showing the expected bands of 

2997, 1266, 984  and 429bp and lane 4: 1kb DNA marker 

. 

3.2.2 Expression and characterisation of Cry1Ie protein 

The strain of E. coli JM109 harbouring the plasmid pGEM1AcP1Ie was grown in 

2x Luria broth for 3 days at 37oC after which the total protein was harvested as 

described in section 2.2.8.1. The total protein was ran on 7.5% SDS-PAGE gel 

and the protein band of ~81kDa was seen on gel.  

The expressed proteins were tested for alkaline solubility and protease 

activation according to the method in section 2.2.9.1 and 2.2.9.2. The alkaline 

solubility test showed that expressed Cry1Ie is sparingly soluble in Na2CO3 

even at pH 11 while digestion with trypsin (a protease) gave a ~55kDa resistant 

core on SDS-PAGE gel. Figure 3.5 is a picture of SDS-PAGE gel showing 

expressed Cry1Ie band of 81kDa in lane 1, lane 2 shows Cry1Ie protein band 

from the Na2CO3 solubility test at pH11 while lane 3 shows the presence of a 

resistant core from trypsin activation of Cry1Ie toxin. 

 

 

 

 

   1              2            3             4  

7000bp 

4000bp 

2000bp 

8000bp 

1500bp 

6000bp 

5000bp 

3000bp 

1000bp 

500bp 



 63 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Expressed Cry1Ie and its alkaline solubility and trypsin activation 

characterisation. Lane 1: Cry1Ie protein band of 81kDa (green arrow), lane 2: 

Na2CO3 solubilised Cry1Ie band at pH11 (black arrow), lane 3: ~55kDa trypsin 

resistant core (red arrow) and lane 4: Protein marker 

 

 

3.2.3 Toxicity testing of Cry1Ie against populations of Plutella xylostella 

The potency of the expressed Cry1Ie against susceptible population of Plutella 

xylostella (G88) and Cry1Ac resistant population of Plutella xylostella (KARAK) 

was conducted using the leaf dip assay and diet dip assay as described in 

sections 2.2.12.1 and 2.2.12.2 and it was found to have an LC50 of 0.319µg/ml 

against G88 with 95% confidence limit of 0.267-0.466µg/ml. It had an LC50 of 

4.176µg/ml against KARAK with 95% confidence limit of 3.299-4.477µg/ml. 

 

 

3.2.4 Synergistic studies between Cry1Ie and Cry1Ac toxins 

To check for synergism between Cry1Ie and Cry1Ac toxins, single 

concentration of the toxins were combined and used in assaying for the 

mortality of the exposed insect alongside assays that involved only the single 

concentration of individual toxin. Considering that the LC50 of Cry1Ie and 

Cry1Ac against G88 population of Plutella xylostella was 0.319µg/ml and 

0.037µg/ml respectively, a concentration of 0.15µg/ml for Cry1Ie and 0.03µg/ml 
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for Cry1Ac were used in combination and singly to conduct bioassays against 

G88. These concentrations were chosen such that they were below the LC50 of 

each of the toxins but also able to affect mortality when used individually.  

Using the diet dip method described in 2.2.12.2, solutions containing a 

combination and individual concentration of the toxins were made and used in 

bioassay against G88. 

On the fifth day, the number of death and live larvae were counted and 

recorded as shown in table 3.2. 

 

 

Single or combination 

of Cry1Ie and Cry1Ac 

toxins (μg/ml) 

Number of 

insect dead 

out of 20 

Number of  

live insects 

out of 20 

Total 
number 
of 
insects 
exposed 

Cry1Ie (0.15μg/ml)   5 (25%) 15 (75%) 20 

Cry1Ac (0.03μg/ml) 10 (50%) 10 (50%) 20 

Cry1Ie (0.15μg/ml) and 

Cry1Ac (0.03μg/ml)  

  9 (45%) 11 (55%) 20 

 

Table 3.2: The number of dead and live larvae from the synergism studies 

between Cry1Ie and Cry1Ac toxins 

 

The results presented in table 3.2 shows that there is no synergism between 

Cry1Ie and Cry1Ac because judging from the fact that Cry1Ie on its own kills 

25% and Cry1Ac on the other hand kills 50% on its own, it would have been 

expected that synergism will result in killing of more than 75% (the sum of the 

percentage mortality from individual toxins). The 45% mortality observed with 

the mixture is lower than what would be expected even if the effect with mixture 

were to be additive which shows that there is no synergism. 
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3.2.5 Mutagenesis of Cry1Ie 

3.2.5.1 Swapping domain II of Cry1Ie with domain II of Cry1Ah: 

construction of pGEM1AcPIAI plasmid 

The observation that regions in domain II and III of Cry toxins are the 

determinants of the order of insects against which a toxin is active (de Maagd et 

al, 2000, Liu and Dean, 2006, Nair et al, 2008) was the basis for the swapping 

of domains between Cry1Ie and Cry1Ah. Also, the observation that a Cry1Ah 

resistant population of Ostrinia furnacalis (ACB-AbR) was still sensitive to 

Cry1Ie (Xu et al., 2010) informed the domain swapping to produce a hybrid that 

targets a Cry1Ac and Cry1Ah resistant population of of Plutella xylostella 

(KARAK) which belong to the same Lepidoptera order as Ostrinia furnacalis.   

The plasmid pGEM1AcPIAI was designed to express a hybrid Cry-protein 

carrying domain I of Cry1Ie, domain II of Cry1Ah and domain III of Cry1Ie 

hereafter known as CryIAI. The domain borders were mapped out by multiple 

sequence alignment of Cry1Ie protein sequence using ClustalW (Larkin et al, 

2007) with Cry1-toxin sequences whose domain borders have already been 

determined viz: Cry1Ia and Cry1Ba (Naimov et al, 2001). To determine the 

borders between domains of Cry1Ie, its full amino acid sequence was aligned 

with full length of Cry1Ia and Cry1Ba amino acid sequences. Alanine-299 

(green box of figure 3.6A) was chosen as the end of domain I for Cry1Ie 

because it aligns with Alanine-299 of Cry1Ia and Alanine-290 of Cry1Ba which 

Naimov et al., (2001) has previously determined as the end of domain I. The 

same procedure was used in determining border between domain II and III. 
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Figure 3.6: Multiple sequence alignment of segments of Cry1Ie, Cry1Ia, Cry1Ba, 

and Cry1Ea protein sequences using ClustalW software. 

               A: The red line demarcates domain I and domain II and the green box  

                    is Alanine-299 which is the end of domain I  for Cry1Ie. 

               B: The blue line demarcates domain II and domain III and the pink 

                    box is Histidine-493 which is the end of domain II  for Cry1Ie.  

 

After mapping out the domain borders as shown in figure 3.6, primer pair 

1AhDIIF 5’ GTATTAGAAAATTTTGATGGTAGTTTT 3’/1AhDIIR 5’ ATGTA- 

TCCAAGAGAACATAGGAGCT 3’ were designed to amplify domain II of 

Cry1Ah from pGEM1AcP1Ah plasmid constructed in section 4.2.1. The primers 

were modified by addition of phosphate group to their 5’ ends to allow ligation of 

their PCR product. Primer pair GEM1IeF 5’ CGTAGTGCAGATCGTACAA 3’ 

and GEM1IeR 5’ TGCGTCTGTATATACTTCTCTTGTAAG 3’ were designed to 

amplify cry1Ie and its vector excluding its domain II as shown in figure 3.7. The 

primer pairs were used in conducting PCR and the amplified DNA sequences 

were gel purified according to the method described in section 2.2.3. The DNA 

fragments amplified using each primer pair were named as follows: 

1AhDIIF/1AhDIIR product was named as 1AhDII (555bp) while that of 

GEM1IeF/GEM1IeR was named as GEM1Ie (5144bp). These PCR products 

were ligated to form the plasmid pGEM1AcPIAI.                                                 

 

 

 

 

Domain I Domain II 

A 

 

Domain II Domain III 

B 
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The recipe in table 3.3 shows the ligation of the PCR fragments of 1AhDII, and 

GEM1Ie to form plasmid pGEM1AcPIAI. 

 

 

 

 

 

 

 

 

Table 3.3: Recipe for the ligation of DNA fragments to form pGEM1AcPIAI 

expression vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Components pGEM1AcPIAI 

H2O 3µl 

GEM1Ie 5µl 

1AhDII 0.5µl 

10x Ligase buffer 1µl 

T4 DNA ligase 0.5µl 
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Figure 3.7: Schematic illustrating the construction of pGEM1AcPIAI plasmid 

from 1AhDII and GEM1Ie DNA fragments 

 

The ligation mixes were incubated at room temperature for 3 hours and 

afterward incubated in the refrigerator at 4oC overnight. E. coli JM109 was 

transformed with the ligation mixes by electroporation and the transformants 

screened for colonies harbouring pGEM1AcPIAI plasmid. The presence of the 

1AhDII in pGEM1AcPIAI was checked by conducting PCR using the primer pair 

1AhDIIF/1AhDIIR with pGEM1AcPIAI extracted from transformants as the 

template. The correct orientation of 1AhDII in pGEM1AcPIAI was confirmed by 

digesting the extracted plasmid of pGEM1AcPIAI with EcoRI which gave the 

expected bands of 2997bp, 1248bp, 975bp and 429bp (pointed by red arrow) as 

shown in figure 3.8 except 50bp band which could not be detected as it is too 

small. When the plasmid pGEM1AcPIAI was successfully formed, E. coli BL21 

Rosetta was also transformed with it for expression of CryIAI. The plan to 
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express CryIAI in E. coli BL21 Rosetta was informed by the fact that some Bt 

toxins had been found to express better in this host (Jie Zhang – personal 

communication). 

Computational analysis of the hybrid cryIAI gene using EMBOSS Transeq tool 

an online programme at the EMBL-EBI website gave a putative protein with 756 

amino acid residues. Compute pI/Mw tool (Bjellqvist et al., 1993, Bjellqvist et al., 

1994) which is an online programme at ExPASy website used in computing the 

molecular weight of the deduced protein estimated the molecular weight of 

CryIAI to be approximately 80kDa. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.8: Gel picture showing PCR products GEM1Ie, 1AhDII and 

confirmation of the presence of DNA fragment 1AhDII in pGEM1AcPIAI. Lane 1: 

5144bp from  GEM1IeF/GEM1IeR, Lane 2: 555bp from 1AhDIIF/1AhDIIR, Lane 

3: Digestion of representative pGEM1AcPIAI with EcoRI showing band sizes of  

2997bp, 1248bp, 975bp and 429bp (pointed by red arrow), Lane 4: PCR using 

primer pair 1AhDIIF/1AhDIIR with pGEMIAI as template and Lane 5: DNA 

marker 
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Expression of CryIAI protein from E. coli JM109 and E. coli BL21 Rosetta 

The strain of E. coli JM109 or E. coli BL21 Rosetta harbouring the plasmid 

pGEM1AcPIAI was grown in a 2x Luria Broth for 3 days at 37oC after which the 

total proteins were harvested as described in section 2.2.8.1. 

The total proteins were ran on 7.5% SDS-PAGE gel but no protein band of 

~80kDa was seen on gel gel (data not shown).  

As the required band of 80kDa was not seen when the clones were grown at 

37oC, they were then grown at other temperatures including 20oC, 25oC and 

30oC. Total proteins were harvested from each set of culture and analysed on 

SDS-PAGE gel but again the expected bands were not seen. 

 

Attempting expression of cryIAI in Bt 

The plasmid pSV2 is a shuttle vector that has origins of replication for Bt and E. 

coli. It has multiple cloning sites, which includes a BamHI site that was used for 

the cloning of the coding sequences of cryIAI gene including the native cry1Ac-

promoter in its upstream region. 

To construct plasmid pSV21AcPIAI, DNA fragments used were BamHI 

linearized pSV2 and the cry1Ac-promoter/cryIAI region with BamHI overhangs 

as shown in figure 3.9. 

The sequence of native cry1Ac-promoter/cryIAI gene was obtained from the 

plasmid pGEM1AcPIAI previously constructed. Primer pair 1AcPF 5’ 

gagctcggATcccaacaccctgg 3’/1AcPR 5’ gatattGGaTcctgagtttgcatgag 3’ were 

designed with base changes as shown with capital letters to introduce BamHI 

sites at the 5’ and 3’ ends.  

Using High Fidelity PCR Master system from Roche according to the 

manufacturers instructions, the required fragment was amplified from 

pGEM1AcPIAI plasmid and the PCR product was ran on 1% agarose gel and 

the required band of 2319bp was excised and purified as described in section 

2.2.3. The PCR product was first cloned into a pGEM-T vector from Promega 

and E. coli JM109 was transformed with the ligation mix. Plasmids extracted 

from transformants harbouring positive clones were digested with BamHI to 

release 1AcPIAI with BamHI overhangs. High Fidelity PCR Master system was 

used because of its high fidelity and the production of PCR products with 3’ A-

overhangs which aid cloning with the pGEM-T vector which has 3’ T-overhangs. 
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Cloning the PCR products into PGEM-T was desirable because it allows for a 

proper digestion and release of the needed fragments.  

pSV2 plasmid was extracted from the clone of E. coli JM109 harbouring it and 

the extracted plasmid was digested with BamHI in the presence of phosphatase. 

The phosphotase was included in the digestion mix to dephosphorylate the 

phosphate group at the 5’ ends of the linearised pSV2 DNA fragment thus 

preventing it from self ligation. The linearised pSV2 was ran on 1% agarose gel 

and its band excised from the gel and purified according to the procedure 

described in section 2.2.3. 

The gel purified DNA fragments of linearised pSV2 and 1AcPIAI were ligated 

according the recipe outlined in table 3.4. 

 

 

 

 

 

 

 

 

Table 3.4: Recipe for ligation of DNA fragments to form plasmid pSV21AcPIAI 

 

The ligation mix was incubated at room temperature for 3 hours and then 

incubated at 4oC overnight to enhance ligation. 

E. coli JM109 was transformed with the ligation mix and many transformants 

were rapid size screened as described in section 2.2.5 to check for colonies 

harbouring the plasmid pSV21AcPIAI. Colonies whose plasmid size on agarose 

gel were higher than that of pSV2 which was used as a control, had the 

potential of having the insert 1AcPIAI. Plasmid DNA was extracted from clones 

with insert and the correct orientation of 1AcPIAI was confirmed by digesting 

extracted plasmid with NcoI (data not shown). Acrystalliferous strain of Bt IPS 

78/11 was transformed with confirmed plasmid according to the method 

described in section 2.2.3.2. Successful transformation of IPS 78/11 was 

confirmed by extracting plasmids from IPS 78/11 clones, retransforming into E. 

Components pSV21AcPIAI 

H2O 5.0µl 

pSV2 0.5µl 

1AcPIAI 3.0µl 

10x Ligase buffer 1.0µl 

T4 DNA ligase 0.5µl 
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coli JM109 and then minipreping and digesting extracted plasmids alongside 

the original plasmid extracted from E. coli clones.  

E. coli JM109 was transformed with the ligation mix and not directly into IPS 

78/11 because the transformation efficiency of IPS 78/11 is very low and would 

be extremely difficult to obtain transformed clones with the ligation mix. E. coli 

JM109 on the other hand, is easily transformed with ligation mix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Schematic showing the construction of the plasmid pSV21AcPIAI 
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Expression of CryIAI protein from acrystalliferous Bt IPS 78/11 under the 

control of native cry1Ac-promoter 

The clone of IPS 78/11 harbouring the plasmid pSV21AcPIAI was grown in 5ml 

of Luria broth for 16 hours at 30oC. Five Petri plates of 25ml Luria agar with 

5μg/ml chloramphenicol were inoculated 1ml each with the 16 hour culture of 

the clone and grown at 30oC for 5 days. Total protein were harvested as 

described in section 2.2.8.3 and ran on 7.5% SDS-PAGE gel but again the 

protein band of ~80kDa was not seen on gel (data not shown).  

As the required band of ~80kDa was not seen when the clone was grown at 

30oC, it was then grown at other temperatures including 20oC, 25oC and 37oC. 

Total protein was harvested from each set of culture and analysed on SDS-

PAGE gel but the required band was still not seen. 

 

Attempting expression of cryIAI gene in Bt utilising the cyt1A-promoter 

Plasmid pSVP27 is a vector for gene expression in Bt under the control of 

cyt1A-promoter constructed by fusing a sequence containing cyt1A-promoter to 

pSV2 and incorporating multiple cloning sites including BamHI downstream of 

the promoter (Crickmore and Ellar, 1992). 

To construct plasmids pSVP271AcRBSIAI aimed at expressing cryIAI gene 

under the control of native cyt1A-promoter in acrystalliferous Bt, DNA fragments 

used were BamHI linearized pSVP27 and sequence containing cry1Ac-

ribosome binding site/cryIAI gene with BamHI overhangs as shown in figure 

3.10. 

Sequence of cry1Ac-Ribosome binding site/cryIAI gene was obtained from the 

plasmid pGEM1AcPIAI previously constructed through PCR. Primer pairs RIAIF 

5’ aatgGatCCgtatcttaataaaagagatgg/RIAIR 5’ gatattGGaTcctgagtttgcatgag 3’ 

were designed with base changes as shown with capital letters to introduce 

BamHI sites at 5’ and 3’ ends using PRIMER SELECT programme.  

Using High Fidelity PCR Master system from Roche according to the 

manufacturers amplification instructions, needed fragment was amplified from 

pGEM1AcPIAI plasmid and the PCR product was ran on 1% agarose gel and 

required band of 2194bp was excised and purified according to the PCR 

products purification procedure described in section 2.2.3. The PCR product 

was first cloned into a pGEM-T vector from Promega and E. coli JM109 was 
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transformed with the ligation mix. Plasmids extracted from transformants 

harbouring positive clones were digested with BamHI to release 1AcRBSIAI 

fragment with BamHI overhangs.  

pSVP27 plasmid was extracted from the clone of E. coli JM109 harbouring it 

and the extracted plasmid was digested with BamHI in the presence of 

phosphatase. The linearised pSVP27 was ran on 1% agarose gel and its band 

excised and purified according to the procedure described in section 2.2.3. 

The gel purified DNA fragments of linearised pSVP27 and 1AcRBSIAI were 

ligated according the recipe outlined in table 3.5. 

 

 

 

 

 

 

 

 

 

Table 3.5: Recipe for ligation of DNA fragments to form plasmid 

pSVP271AcRBSIAI 

 

The ligation mixes were incubated at room temperature for 3 hours and then 

incubated at 4oC overnight. 

E. coli JM109 was transformed with the ligation mix and many transformants 

were rapid size screened as described in section 2.2.5 to check for colonies 

harbouring the plasmid pSVP271AcRBSIAI. Colonies whose plasmid size on 

agarose gel were higher than that of pSVP27 which was used as control, had 

the potential of having the insert 1AcRBSIAI. Plasmid DNA was extracted from 

clones with insert and the correct orientation of 1AcRBSIAI was confirmed by 

digesting extracted plasmid from pSVP271AcRBSIAI with NcoI and BamHI 

(data not shown). The plasmid was successfully formed and acrystalliferous 

strain of Bt IPS 78/11 was transformed with the confirmed plasmid. Successful 

transformation of IPS 78/11 was confirmed by extracting plasmids from IPS 

Components pSVP271AcRBSIAI 

H2O 5.0µl 

pSVP27 0.5µl 

1AcRBSIAI 3.0µl 

10x Ligase buffer 1.0µl 

T4 DNA ligase 0.5µl 
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78/11 clones, retransform E. coli JM109 and then minipreped and digest 

extracted plasmids alongside the original plasmid.  

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 
 
 
 
Figure 3.10: Schematic showing the construction of the plasmid 

pSVP271AcRBSIAI 

 

 

 
Expression of CryIAI protein in acrystalliferous Bt IPS 78/11 under the 

control of cyt1A promoter 

The clone of IPS 78/11 harbouring the plasmid pSVP271AcRBSIAI was grown 

in 5ml of Luria broth for 16 hours at 30oC. Five Petri plates of 25ml Luria agar 

with 5μg/ml of chloramphenicol were inoculated 1ml each with the 16 hour 

culture of the clone and grown at 30oC for 5 days. Total protein was harvested 

as described in section 2.2.8.3 and ran on 7.5% SDS-PAGE gel no protein band 

of 80kDa was seen on gel (data not shown).  
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As the required band of 80kDa was not seen when the clone was grown at 30oC, 

it was then grown at other temperatures including 20oC, 25oC and 37oC. Total 

protein was harvested from each set of culture and analysed on SDS-PAGE gel 

but the required band was not still seen. 

 

3.2.5.2 Truncation of N-terminal α-helix 

To construct the plasmid pGEM1AcP1Ie∆ which is a plasmid designed to 

express truncated sequence of cry1Ie gene, primer pair 1Ie∆F 5’ 

GTTCCTTTTGCTGGACAAATAGCTAGCCTC 3’/1Ie∆R 5’ CATAAGTTACC- 

TCCATCTCTTTTATTAAG 3’ was designed such that Cry1Ie protein sequence 

will be deleted from amino acid position 2(Lysine) to amino acid position 

75(Glycine) inclusive. This deletion targeted the possible protease recognition 

site of glycine outside the helix α-1 region of Cry1Ie domain I which when 

recognised, the amino acid to its carboxyl end is cleaved (Lightwood et al., 2000, 

Walters et al., 2008). The pore forming model of Cry toxin mode of action has 

demonstrated that following the initial cleavage of protoxins by gut proteases 

that removes the C-terminal half and about 30 amino acid residues from the N-

terminal, the processed toxins then bind to receptors resulting in their 

conformational changes which facilitates a second cleavage by membrane 

bound protease that removes the N-terminal helix α-1 (Bravo et al., 2004). The 

processed toxins lacking helix α-1 and the C-terminal half have been shown to 

form oligomers that are capable of inserting into insect midgut epithelial 

membrane in the absence of cadherin (Gomez et al, 2002, Soberon et al, 2007). 

The need to create a modified Cry1Ie with deleted helix α-1 was to target a 

Cry1Ac/Cry1Ah resistant population of Plutella xylostella (KARAK) because it 

has been shown that a modified Cry1Ab that lacks helix α-1 was active against 

a resistant population of Pectinophora gossypiella whose resistance has been 

linked to cadherin gene deletions (Muñóz-Garay et al., 2009). Also, Sayyed et 

al., 2005 demonstrated that a field collected resistant population of Plutella 

xylostella (SERD4) which was subsequently selected in the laboratory using 

Cry1Ab and named Cry1Ab-SEL were more sensitive to trypsin-activated 

Cry1Ab compared to Cry1Ab protoxins. The amino acid position 75(Glycine) 

was selected for inclusion in the deletion because multiple sequence alignment 

of Cry1Ie amino acid sequence with other Cry1-toxin amino acid sequences 
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with known helix α-1 position (Grochulski et al, 1995) showed that Glycine-75 a 

protease recognition site is just outside helix α-1 as shown in figure 3.11.  

Using Pfu Ultra Hotstart PCR Master Mix system according to the 

manufacturers instructions, primer pair 1Ie∆F/1Ie∆R, was used in conducting 

PCR using pGEM1AcP1Ie as template as illustrated in fugure 3.12. The PCR 

mix was ran on 1% agarose and a product with band size of 5501bp was 

excised and purified according to the PCR products purification procedure 

described in section 2.2.3. Three microlitre of the purified PCR product was self 

ligated in the presence of 4.5μl of water, 2μl of 10x ligation buffer and 0.5μl of 

T4 DNA ligase. The ligation mix was incubated at room temperature for 3 hours 

and then at 4oC overnight. E. coli JM109 was transformed with the ligation mix 

and the successful formation of plasmid pGEM1AcP1Ie∆ was confirmed by 

digestion of the plasmid extracted from the transformants with EcoRI restriction 

enzyme as shown in figure 3.13. 

 

 

 

 

 

 

 

 

 

                                       

Figure 3.11: Multiple sequence alignment of  Cry1Ab, Cry1Ac, Cry1Aa and 

Cry1Ie protein sequences for determination of protease recognition sites after 

helix α-1 segments of their domain I. The brown double-headed arrow indicates 

the helix α-1 segment, the ‘G’ in the blue box is Glycine-75 of Cry1Ie 
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Figure 3.12: Schematic for the construction of the plasmid pGEM1AcP1Ie∆. The 

PCR primers were designed to amplify the gene deleting the green block 
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Figure 3.13: Gel picture of PCR product ligated to form the plasmid 

pGEM1AcP1Ie∆ and confirmation of its formation by digesting a representative 

plasmid with EcoRI restriction enzyme. Lane 1: digestion of pGEM1AcP1Ie 

plasmid with EcoRI as control showing band sizes of 2997bp, 1266bp, 984bp 

and 429bp, Lane 2: PCR  product (5501bp) of pGEM1AcP1Ie∆, Lane 3: 

digestion of representative pGEM1AcP1Ie∆ plasmid with EcoRI showing band 

sizes of 2997bp, 1044bp, 984bp and 429bp and Lane 5: DNA marker 

 

 

 

 

Expression and characterisation of Cry1Ie∆ 

The strain of E. coli JM109 harbouring the plasmid pGEM1AcP1Ie∆ was grown 

in a 2x Luria Broth for 3 days at 37oC after which the total protein was harvested 

as described in section 2.2.8.1. The total protein was ran on 7.5% SDS-PAGE 

gel and a protein band of ~73kDa (the predicted size of Cry1Ie∆) was seen on 

gel as shown in figure 3.14 lane 2.  

The expressed protein was tested for alkaline solubility and protease activation 

according to the method in section 2.2.9.1 and 2.2.9.2. The alkaline solubility 

test showed that expressed Cry1Ie∆ was not soluble in 50mM Na2CO3 at pH11 
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as shown in lane 3 of figure 3.14 while digestion with trypsin (a protease) did 

not give a resistant core of ~50-60kDa on SDS-PAGE gel but showed that the 

protein was completely degraded as shown in lane 5 of figure 3.14. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Expressed Cry1Ie∆ and its solubility and trypsin 

characterization.Lane 1: 81kDa wild type Cry1Ie (pointed by black arrow), Lane 

2: ~73kDa Cry1Ie∆ (pointed by red arrow), Lane 3: Supernatant from alkaline 

solubility test of Cry1Ie∆ at pH11, Lane 4: Total sample from alkaline solubility 

test of Cry1Ie∆ at pH11, Lane 5: Supernatant from trypsin activation test of 

Cry1Ie∆, Lane 6: Total sample from trypsin activation test of Cry1Ie∆ and lane 7: 

Protein molecular weight marker 

 

 

 

 

Toxicity testing of expressed Cry1Ie∆ 

The toxicity of Cry1Ie∆ was tested against G88 and KARAK populations of 

Plutella xylostella according to the method described in sections 2.2.13.1 but 

there was no mortality to either the toxin sensitive G88 or the Cry1Ac resistant 

KARAK at concentrations as high as 100μg/ml. 
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3.2.5.3 Site directed mutagenesis 

Based on preliminary results obtained by Liu et al, 2010 (unpublished data), it 

was observed that two Cry1Ie mutants viz: Y442H and A522V had the potential 

of improved toxicity towards Plutella xylostella compared to the wild type Cry1Ie. 

We decided to confirm this finding using our own Cry1Ie expression system. 

To create the mutant Y442H, mutagenic PCR primers Y4F 5’ TATTATCTA- 

GGGCATGCTGGAGTTG 3’/Y4R 5’ AAAATTATCAGATGCAATCGGAAG 3’ 

were designed using PRIMER SELECT programme such that Tyrosine-442 

codon TAT of the wild type cry1Ie is replaced with CAT which codes for 

Histidine by changing the first ‘T’ of the codon to a ‘C’ as shown with the red 

letters in the forward primer Y4F.  A522V mutant was created by designing a 

mutagenic primer A5F 5’ TGTCTTCAGGTGTCGCTGTAGTG 3’/A5R 5’ 

GATTGAACGCTTTTACTAATGGTA 3’ that changed the first ‘C’ of GCC 

Alanine-522 codon to ‘T’ creating GTC which codes for Valine as shown with 

the red lettering in the forward primer A5F.  

Using Pfu Ultra Hotstart PCR Master Mix system according to the 

manufacturer’s instructions, primer pair Y4F/Y4R or A5F/A5R, was used in 

conducting PCR using pGEM1AcP1Ie as template and the PCR mix was ran on 

1% agarose. The PCR product with band size of 5726bp was excised and 

purified according to the PCR products purification procedure described in 

section 2.2.3. Six microlitre of each of the purified PCR products were self 

ligated in the presence of 1.5μl of water, 2μl of 10x ligation buffer and 0.5μl of 

T4 DNA ligase. The ligation mixes were incubated at room temperature for 3 

hours and then at 4oC overnight. E. coli JM109 were transformed with the 

ligation mixes and the successful formation of plasmid pGEM1AcPY442H or 

pGEM1AcPA522V was confirmed by digestion of the plasmid extracted from the 

transformants with HaeIII restriction enzyme with pGEM1AcP1Ie plasmid as 

control. Successful creation of the mutants was confirmed by sequencing of the 

mutant plasmids (data not shown). 

Creation of the double mutant Y442H+A522V was done by using the primers for 

A522V (A5F/A5R) to conduct PCR with Y442H mutant plasmid as template and 

it successful formation of the plasmid pGEM1AcPY442H+A522V was also by 

digestion of plasmid extracted as described for Y442H and A522V and 

sequencing. 
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Bioinformatic analysis of wild type Cry1Ie and its Y442H, A522V and 

Y442H+A522V mutants 

Since the 3D structure of Cry1Ie has not been resolved at the moment, its 

amino acid sequence was submitted online to the SWISS-MODEL Workspace 

(Amold et a.l, 2006; Schwede et a.l, 2003; Guex and Peitsch, 1997) a web 

based method of modelling 3D structures of proteins using templates with 

resolved structures. Results from SWISS-MODEL showed that Cry1Ie has a 

46.31% strict identity to the template 3eb7B whose structure has been 

determined at 2.30Ǻ and deposited in the SWISS-MODEL library. The predicted 

3D structure produced by the SWISS-MODEL programme was that of a typical 

three domain Cry-protein as shown in figure 3.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: SWISS-MODEL predicted 3D structure of Cry1Ie. Domain I is 

coloured red while domains II and III are coloured gold 

 

The replacement of Tyrosine with Histidine in mutant Y442H is a highly 

conservative replacement with both having aromatic side chains that are 

reactive while the replacement of Alanine with Valine in mutant A522V is semi 

conservative replacement as they both have hydrocarbon side chains but the 
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difference is that the side chain of Alanine is smaller than that of Valine (Berg et 

al, 2006). 

The secondary structure prediction by SWISS-MODEL software did not assign 

structures to the points where the Y442H and A522V mutations were made but 

predicted loop structures for regions around them as shown appendix 2. 

Predictions by PSIPRED for wild type Cry1Ie and 3eb7B (Cry8Ea) showed that 

the Y442H and A522V mutations are within loop regions as shown in figure 3.16 

and 3.17 respectively. The location of the Tyrosine-442 and Alanine-522 in the 

3D structure showed that they are part of the exposed loop regions as shown in 

figures 3.18 and 3.19 and exposed loops have been shown in other Cry toxins 

to be involved in binding to midgut receptors. Therefore, it is possible that this 

replacement will affect toxicity. 

To find out the percentage similarity between the wild type Cry1Ie and 3eb7B, 

pairwise sequence alignment was conducted using BLASTP 2.2.24+ 

programme and the result (appendix 1) showed that they share 48% strict 

identical amino acids, 65% replacement that are conservative and 3% gaps. 

The percentage of shared identical amino acid between Cry1Ie and 3eb7B 

(Cry8Ea) obtained with BLASTP 2.2.24+ programme is 48% while that of 

SWISS-MODEL programme  is 46.31% which gives a difference of 1.69%. This 

difference is as a result of the length of amino acids used by the two 

programmes in their predictions. While BLASTP 2.2.24+ programme use the 

sequences from amino acid position 1 for both Cry1Ie and Cry8Ea, SWISS-

MODEL programme start at amino acid position 56 for Cry1Ie and 64 for 3eb7B. 

The alignment between Cry1Ie and 3eb7B has shown an overall even 

distribution of conserved regions between them though there is not much 

conservation at the loop regions where the mutations Y442H and A522V are 

made. This is not surprising because loop regions varies among Cry toxin which 

give rise to different host specificities observed for different Cry toxins. 
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Figure 3.16: Comparison of the secondary structures around Y442H mutation in 

Cry1Ie and the corresponding region in Cry8Ea using PSIPRED programme. 

The Y442H mutation point in Cry1Ie is pointed by the red arrow while the green 

arrow points to the corresponding position (S-448) in Cry8Ea which was 

determined from the BLASTP 2.2.24+ sequence alignment 
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Figure 3.17: Comparison of the secondary structures around A522V mutation in 

Cry1Ie and the corresponding region in Cry8Ea using PSIPRED programme. 

The A522V mutation point in Cry1Ie is pointed by the red arrow while the green 

arrow points to the corresponding position (N-526) in Cry8Ea which was 

determined from the BLASTP 2.2.24+ sequence alignment 
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Figure 3.18: 3D structure of Cry1Ie showing the position of Tyrosine-442 (black 

arrow). Domain I is coloured red while domain II and III are gold colured 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: 3D structure of Cry1Ie showing the position of Alanine-522 (red 

arrow). Domain I is purple coloured while domain II and III are coloured green 
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Expression and characterisation of Y442H, A522V and Y442H+A522V 

mutant proteins 

The strains of E. coli JM109 harbouring the plasmid pGEM1AcPY442H or 

pGEM1AcPA522V or pGEM1AcPY442H+A522V was grown in a 2x Luria broth 

for 3 days at 37oC after which the total protein were harvested as described in 

section 2.2.8.1. The total proteins were ran on 7.5% SDS-PAGE gel and the 

protein band of ~81kDa was seen on gel for all the clones as shown in figure 

3.20.  

The expressed proteins were tested for alkaline solubility and protease 

activation according to the method in section 2.2.9.1 and 2.2.9.2. The alkaline 

solubility test showed that expressed Y442H, A522V and Y442H+A522V were 

sparingly soluble in 50mM Na2CO3 pH11 while digestion with trypsin (a 

protease) gave a ~55kDa resistant core on SDS-PAGE gel as shown in figure 

3.21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: Gel picture of expressed Y442H, A522V and Y442H+A522V. Lane 

1: Protein molecular weight marker, Lane 2: 81kDa wild type Cry1Ie (pointed by 

black arrow), Lane 3: 81kDa Y442H mutant (pointed by green arrow), Lane 4: 

81kDa A522V mutant (pointed by blue arrow) and Lane 5: 81kDa 

Y442H+A522V (pointed by black arrow) 
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Figure 3.21: Gel picture of alkaline solubility and protease digestion 

characterization of expressed Y442H, A522V and Y442H+A522V Lane 1: 

Supernatant from alkaline solubility test of Y442H at pH11 showing presence of 

81kDa band (pointed by black arrow), Lane 2: Supernatant from alkaline 

solubility test of A522V showing presence of 81kDa band (pointed by red arrow), 

Lane 3: Supernatant from alkaline solubility test of Y442H+A522V showing 

presence of 81kDa band (pointed by green arrow), Lane 4: Supernatant from 

trypsin activation test of Y442H showing presence of ~55kDa band (pointed by 

blue arrow), Lane 5: Supernatant from trypsin activation test of A522V showing 

presence of ~55kDa band (pointed by pink arrow), Lane 6: Supernatant from 

trypsin activation test of Y442H+A522V showing presence of ~55kDa band 

(pointed by gray arrow), Lane 7: Protein molecular weight marker 

 

 

 

 

 

 

 

 

 

 

 

95kDa 

72kDa 

52kDa 

   1          2          3            4          5         6           7 



 89 

Toxicity testing of Cry1Ie, Y442H, A522V and Y442H+A522V against 

against sensitive population of Plutella xylostella (G88). 

The toxicity of the expressed mutants Y442H, A522V and Y442H+A522V were 

tested against the susceptible population of Plutella xylostella (G88) using the 

method described in section 2.2.13.2 and the results are as shown in table 3.6. 

To determine the lethal concentrations of the toxins that are able to cause 50% 

mortality, three difeerent concentrations for each toxin were used in duplicate to 

conduct the assay and the assays were repeated for at least four times until 

reproducible results were obtained. For Cry1Ie, the three concentrations used 

were 0.15, 0.25 and 0.35µg/ml while 0.18, 0.6 and 1.8µg/ml were for Y442H 

mutants. The concentrations used for A522V were 0.1, 0.8 and 1.8µg/ml and 

that of the double mutant Y442H+A522V  were 0.1, 0.8 and 1.8µg/ml. 

 

 

 

 

 

 

 

 

 

 

Table 3.6: Toxicity testing of Cry1Ie, Y442H, A522V and Y442H+A522V against 

G88 

 

3.3 Discussion 

The expression of the open reading frame of wild type cry1Ie under the control 

of the native cry1Ac-promoter was successful as the protein band of 

approximately 80kDa was seen on SDS-PAGE gel. The characterization of the 

expressed protein also showed that it folded properly as it was found to be 

soluble, though sparingly, in alkaline solution of Na2CO3 at pH11. Its activation 

by trypsin resulted in approximately 55kDa band on SDS-PAGE gel and its 

toxicity to Plutella xylostella gave an LC50 of 0.319 µg/ml (95% confident limit 

Toxins LC50(µg/ml) 95% 
Confidence limits 

Cry1Ie 0.319 0.267-0.466 

Y442H 0.420 0.295-0.582 

A522V 0.386 Not determined 

Y442H+A522V 0.401 0.281-0.551 
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0.267-0.466) which is comparable to the LC50 of 0.20μg/ml of the fusion form 

expressed by Song et al, 2003. 

The strategy used in producing the truncated Cry1Ie known as Cry1Ie∆  was 

found to be successful at the expression stage as the expected protein band of 

approximately 73kDa was seen on SDS-PAGE gel. The characterisation of the 

expressed truncated Cry1Ie protein revealed that the protein probably did not 

fold properly as it failed to demonstrate the typical characteristics of Cry 

proteins. It was found that it was not soluble in alkaline solution of Na2CO3 and 

the protease resistant core of 50-60kDa band was not seen on SDS-PAGE gel 

when supernatant from its protease activation experiment was analysed. The 

SDS-PAGE analysis of the total reaction mix from the protease activation 

experiment shows that the protein was completely digested to fragments that 

could not be detected on a gel thus failing to produce the resistant core of 

approximately 50-60kDa. Though the full length Cry1Ie protein was sparingly 

soluble in alkaline solution of Na2CO3 it gave the trypsin resistant core of 

approximately 55kDa and was toxic to Plutella xylostella. Cry1Ie∆ on the other 

hand could not be solubilised or activated and it was not toxic to Plutella 

xylostella. Susceptible insect midgut proteases Cry toxin activation has been 

shown to be an important step that prepares a protoxin for activity against 

susceptible insects. Yamaguchi et al., (2010) showed that Cry8Da toxin was 

only able to bind to brush border membrane vesicles of Japanese beetles 

(Popillia japonica Newman) when activated using midgut juice extracted from 

the beetles. In a Cry1Ac resistant population of Helicoverpa amigera, it was 

observed that there was a down regulation of  HaSP2 (Helicoverpa armigera 

serine protease 2) and that the protease resistant core of 95 and 68kDa was 

observed when the protease extracted from this resistant population was used 

in activating Cry1Ac (Rajagopal et al, 2009) which underscores the importance 

of proper protease activation to toxin toxicity. In the case of Cry1Ie∆, its 

impotency to susceptible and Cry1Ac resistant population of Plutella xylostella 

is not a case of the insects midgut protease regulation but more likely as a 

result of its improper folding. Adamo et al, 2000 demonstrated that the deletion 

of the first six N-terminal segment of h4 plasma membrane Ca2+ pumps did not 

affect its activity but the mutants in which 15-75 amino acid residues were 

deleted from the N-terminal reduced its activity to undetectable levels. Also 
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Chow et al, 2003 showed that the secondary and tertiary structure of 

apomyoglobin (apoMb) is dependent on its length and that at short length, non-

native β-sheet conformation and self-associated amyloid-like species were 

generated while as the length increases, α-helix structures gradually takes over. 

With the length of a protein directly affecting its folding and properties, it is 

reasonable to conclude that the deletion of Cry1Ie from amino acid position 2-

75 has adversely affected its folding and structure which results in the 

generation of a non-functional protein. 

The genetically manipulated CryIAI which is a hybrid protein made by swapping 

of domain II of Cry1Ie with that of Cry1Ah did not result in expression of the 

protein that it codes for. Though all the upstream elements like the cry1Ac 

promoter, cyt1A-promoter, ribosome binding sites that have been successfully 

used in expressing the parent genes of cry1Ie and cry1Ah were supplied, it still 

did not express. cyt1A-promoter has been used in the expression of Cry2A 

(Crickmore and Ellar, 1992) while cry1Ac-promoter has been used in 

expression of Cry11A with Bacillus brevis as host (Roh et al, 2010).The use of 

different hosts and varying of culturing conditions like temperature did not 

rescue the expression of cryIAI and this could be as result of the fact that the 

hybrid gene created cannot express a functional protein. Reports have also 

shown that a nonsense and missense mutation in Chlamydia trachomatis 

serovar L2 and D strains results in the formation of pseudogenes (Giles et al, 

2009). The non-expression of the cryIAI hybrid can also be that the protein it is 

coding for is toxic to the cell even at level that could not be detected on SDS-

PAGE though this has not been confirmed. Kemble et al, 2006 demonstrated 

that Protein tyrosine kinase Src are toxic to bacteria cells and creates a non-

toxic mutant that could be expressed in bacterial host. 

Synergistic studies between Cry1Ie and Cry1Ac showed that there is no 

synergism between them. With individual LC50 of 0.319 and 0.037 for Cry1Ie 

and Cry1Ac respectively, and the use of their combination at individual doses 

that will result in lethality below LC50s, a synergistic effect could not be observed. 

Synergism has been variously reported between Cry toxins including Cry1Ab 

and Cry1Ac (Sharma et al, 2010), Cry1Ac and Cry2Ab (Ibargutxi et al., 2008) 

and Cry1Ac and Cry2Aa (Yunus et al., 2011). It has also been reported 

between Cry toxins and Cyt toxins including Cry4Ba and Cyt1Aa (Canton et al, 
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2011) and Cry10Aa and Cyt1Aa (Hernandez-Soto et al, 2009). Ibargutxi et al., 

2008, suggested that the synergism observed between Cry1Ac and Cry2Ab 

was as a result of special interaction between them while Canton et al, 2011 

showed that synergism between Cry11Aa and Cyt1Aa results from specific 

interaction between them and created a mutant Cyt1Aa that results in reduced 

synergism. The absence of synergism between Cry1Ie and Cry1Ac might be 

that these specific interactions is also absent. 

The sequence information obtained from the sequencing of Cry1Ie mutants 

Y442H, A522V and Y442H+A522V showed that they were all successfully 

engineered at the DNA level and SDS-PAGE of total proteins from each of the 

mutants showed that the proteins were all expressed. Alkaline solubility and 

protease activation characterisation of the expressed mutants showed that they 

still posses characteristics typical of Cry toxins which means that they were 

properly expressed and folded. The toxicity testing of the mutants did not show 

any significant difference in toxicity improvement compared to the wild type 

Cry1Ie. Point mutations have been shown to enhance the toxicity of Cry toxins 

like Cry1Aa (Lebel et al, 2009), Cry3A (Wu et al, 2000) and these has been 

effected by studying the gene carefully and determining where to effect the 

mutation but the Cry1Ie mutants created here was as a result of random 

mutation that was effected through an error prone PCR (Liu et al, 2010 – 

unpublished data). Bioinformatics analysis of wild type Cry1Ie and the mutants 

Y442H, A522V and Y442H+A522V showed that the mutated points fall on 

regions that have been shown to be involved in toxin binding to brush border 

membrane vesicles of a susceptible host (Fernandez et al, 2005, Gomez et al, 

2006, Atsumi et al, 2008, Obata et al, 2009) Though the mutations Y442H, 

A522V and Y442H+A522V did not affect the stability of their expressed proteins, 

it did not however result in any substantial increase in toxicity. The inability of 

the mutants to show remarkable increase in toxicity might be due to the fact that 

the replacements were very conserved for Y442H mutant and moderately 

conserved for A522V thus making no difference (Berg et al, 2006). On the other 

hand, it might be that the mutated regions are not involved in Cry1Ie binding to 

receptors in the gut of Plutella xylostella.  

The results from this chapter show that cry1Ac-promoter is capable of driving 

the expression of a functional Cry1Ie toxin and its mutants except CryIAI which 
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might be as result of the fact that the manipulated toxin could not fold correctly. 

The truncation of Cry1Ie from amino acid position 2 to 75 did not produce a 

functional protein as bioassay against sensitive population of Plutella xylostella 

showed no sign of toxicity at concentration as high as 100µg/ml. The non 

toxicity of Cry1Ie∆ is likely to be as a result of misfolding as characterisation of 

the expressed protein fall short of those of typical Cry toxin. Moreover, the 

mutants Y442H, A522V and Y442H+A522V though properly expressed were 

not of any significant improvement in toxicity to Plutella xylostella compared to 

the wild type Cry1Ie as the amino acid substitutions were conservative. The 

inconsistency between the toxicity of Y442H and A522V observed here 

compared to the preliminary finding of Liu et al could be as a result of our using 

a different population of Plutella xylostella for the toxicity assays or it could be 

that their preliminary results were not valid. 
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Chapter 4: Expression, manipulation and characterization of Cry1Ah toxin 

4.1 Introduction 

Cry1Ah1 is a 134KDa protein cloned from Bacillus thuringiensis BT8 by Xue, et 

al., 2008. It was successfully expressed in an acrystalliferous mutant of Bacillus 

thuringiensis HD73‾ and found to be highly toxic against Lepidopteran larvae of 

Ostrinia furnicalis, Helicoverpa amigera, Chilo suppressalis and Plutella 

xylostella with LC50 values of 0.05, 1.48, 0.98 and 1.52 µg/ml respectively.  

A resistant strain of Ostrinia furnacalis (ACB-AbR) originally selected in the 

laboratory with Cry1Ab also developed resistance to other Cry1-toxins including 

Cry1Ah which it had not been previously exposed but was not resistance to 

Cry1Ie. The cross-resistance level observed with Cry1Ah was 131-fold, Cry1Ac 

36-fold and Cry1F 6-fold (Xu et al, 2010). 

The development of cross-resistance among these toxins was not surprising 

because pair wise sequence alignment between Cry1Ab1 and Cry1Ac1, 

Cry1Ab1 and Cry1Ah1, and Cry1Ab1 and Cry1Fa1 using ClustalW programme 

(Larkin et al, 2007) revealed a high level of identity of 87%, 82% and 71% 

respectively. Moreover, the 3-D crystal structures of representative Cry toxins 

(Cry1Aa, Cry2Aa, Cry3Aa, Cry3Bb, Cry4Aa, Cry4Ba and Cry8Ea1) display a 

high level of similarity with a three-domain organization.  

With the successful mapping of epitopes in domain II and III involved in Cry1A 

binding to midgut receptors of susceptible insects (Liang and Dean, 1994, 

Gomez et al, 2006), and also with the identification of midgut molecules that 

interact with these toxins (Abdullah et al, 2006), exchange of toxin domains and 

segment have been used in creating novel toxins with improved properties 

(Nakamura, 1990, de Maagd et al, 1996, Naimov, et al, 2001).  

Synergistic effects resulting from the combination of Bacillus thuringiensis 

spores and Cry1A toxins (Johnson and McGuaghey, 1996), different crystal 

toxins including Cry1A toxins (Sharma et al, 2010), crystal and cytolytic toxins 

(Hernandez-Soto et al, 2009), crystal proteins and plant substances (Anilkumar 

et al, 2009), crystal toxins and cadherin receptor fragments from insects (Chen 

et al, 2007, Park et al, 2009) have been shown and these have been exploited 

in boosting the toxicity of Cry proteins and overcoming insect resistance. 

Other modifications of Cry toxins like truncation of part of the N-terminal 

(Franklin et al, 2009, Muñóz-Garay et al, 2009), creation of hybrid toxins (Xia et 
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al, 2009) and site directed mutagenesis (Wu and Aronson, 1992, Rajamohan et 

al, 1996, Wu et al, 2000, Padilla et al, 2006, Wang et al, 2008) have proven to 

be effective in boosting the toxicity of Cry toxins including Cry1A toxins and help 

in fighting resistance. 

In this chapter, the expression of Cry1Ah toxin in E. coli and IPS 78/11 (an 

acrystalliferous Bacillus thuringiensis) hosts, its toxicity against susceptible and 

resistance populations of Plutella xylostella will be presented. In addition, the 

manipulation of Cry1Ah at the genetic level to produce a mutant toxin lacking 

helix α-1 and swapping of its domains I or II with that of Cry1Ie will also be 

covered. Moreover, the synergistic studies conducted between Cry1Ah and 

Cry1Ie against Plutella xylostella will be presented. 

 

4.2 Results 

4.2.1 Construction of plasmid for expression of Cry1Ah in E. coli 

To construct the plasmid expressing Cry1Ah in E. coli, the DNA fragments 

needed are the coding sequence for cry1Ah and a vector with all the expression 

vector elements like selection marker, E. coli origin of replication, ribosome 

binding site and a  promoter that is able to drive the expression of Cry1Ah. Jie 

Zhang of Institute of Plant Protection, Beijing, China, supplied the coding 

sequence of cry1Ah in a plasmid pSXY422-1Ah as shown in figure 4.1 while 

Neil Crickmore supplied the expression vector pGEM1AcP1Ac. The vector 

pGEM1AcP1Ac is a vector designed to express Cry1Ac in E. coli hosts and it 

has the native promoter of cry1Ac and coding sequence of cry1Ac with pGEM-T 

vector backbone. 

Primer pairs GEMF- 5’ TCTCATGCAAACTCAGGTTTAA 3’/GEMR- 5’ 

AAGTTACCTCCATCTCTTTTATTTAAG 3’ were designed using PRIMER 

SELECT programme to amplify the required fragment of PGEM-T vector 

(Promega) backbone, native cry1Ac-promoter and ribosome binding site 

hereafter designated as pGEM1AcP from pGEM1AcP1Ac. Primer pairs AF- 5’ 

ATGGAGATAGTGAATAATCAGAATC 3’ and AR- 5’ CTATTCCTCCATAAGGA- 

GTAATTC 3’ were also designed to amplify cry1Ah open reading frame from 

pSXY422-1Ah as shown in figure 4.2.  

Using Pfu Ultra Hotstart PCR Master Mix system according to the 

manufacturers amplification instructions, pGEM1AcP and cry1Ah, were 
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amplified and PCR products were ran on 1% agarose gel and required bands of 

3566bp (pGEM1AcP) and 3486bp (cry1Ah) were excised and purified according 

to the procedure described in section 2.2.3 for the purification of DNA from 

agarose gel. Pfu Ultra Hotstart PCR Master Mix was PCR kit of choice because 

of Pfu polymerase high fidelity property and ability to proof read and produce a 

blunt ended PCR product. 

 

 

 

 

 

 

 

 

  

   

 

Figure 4.1: Schematic representation of the plasmid pSXY422-1Ah 
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Construction of pGEM1AcP1Ah 

 

                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Schematic for construction of plasmid pGEM1AcP1Ah 
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To construct the plasmid pGEM1AcP1Ah, the following volumes of reagent and 

DNA fragments as shown in table 4.1 were measured and mixed together. 

 

Components Volumes 

H20   - 

pGEM1AcP 1µl 

Ligation buffer  5µl 

cry1Ah 4µl 

T4 Ligase  1µl 

  

Table 4.1: Recipe of ligation mix for pGEM1AcP1Ah  

 

The ligation mix was incubated at room temperature for 3 hours and then stored 

at 4oC overnight. 

E. coli JM109 was transformed with the ligation mix and many transformants 

were screened to check for colonies harbouring pGEM1AcP1Ah. The correct 

orientation of cry1Ah was checked by digesting extracted plasmid with EcoRI 

and running on 1% agarose gel to check for required bands of 2997bp, 2841bp, 

1164bp and 50bp which was successful as all the expected bands were seen 

on gel as shown in figure 4.4 except the 50bp which could not be detected as it 

is too small. 

 

4.2.2 Construction of plasmid for expression of Cry1Ah in Bt 

Construction of pSVP271AcRBS1Ah 

Plasmid pSVP27 is a vector for gene expression in Bt under the control of 

cyt1A-promoter constructed by fusing a sequence containing cyt1A-promoter to 

pSV2 and incorporating multiple cloning sites including BamHI downstream of 

the promoter (Crickmore and Ellar, 1992). 

To construct plasmids pSVP271AcRBS1Ah, aimed at expressing cry1Ah gene 

under the control of native cyt1A-promoter in acrystalliferous Bt, DNA fragments 

used were BamHI linearized pSVP27 and sequence containing cry1Ac-

Ribosome binding site/cry1Ah gene with BamHI overhangs. 
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Sequence of cry1Ac-Ribosome binding site/cry1Ah gene was obtained from the 

plasmid pGEM1AcP1Ah previously constructed. Primer pairs RAhF 5’ 

aatgGatCCgtatcttaataaaagagatgg/RAhR 5’ gatattGGaTcctgagtttgcatgag 3’ were 

designed with base changes as shown with capital letters to introduce BamHI 

sites at 5’ and 3’ ends using PRIMER SELECT programme.  

Using High Fidelity PCR Master system from Roche according to the 

manufacturers amplification instructions, needed fragment was amplified from 

pGEM1AcP1Ah plasmid and the PCR product was run on 1% agarose gel and 

required band of 3553bp was excised and purified according to the PCR 

products purification procedure described in section 2.2.3. The PCR product 

was first cloned into a pGEM-T vector from Promega and E. coli JM109 was 

transformed with the ligation mix. Plasmids extracted from transformants 

harbouring positive clones were digested with BamHI to release 1AcRBS1Ah 

fragment with BamHI overhangs.  

pSVP27 plasmid was extracted from the clone of E. coli JM109 harbouring it 

and the extracted plasmid was digested with BamHI in the presence of 

phosphatase. The phosphotase was included in the digestion mix to 

dephosphorylate the phosphate group at the 5’ ends of the linearised pSVP27 

DNA fragment thus preventing it from re-ligation. The linearised pSVP27 

(5588bp) was run on 1% agarose gel and its band excised and purified. 

The gel purified DNA fragments of linearised pSVP27 and 1AcRBS1Ah were 

ligated according the recipe outlined in table 4.2 and the schematic for the 

construction of the plasmid pSVP271AcRBS1Ah is as shown in figure 4.3. 
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Table 4.2: Recipe for ligation of DNA fragments to form plasmid 

pSVP271AcRBS1Ah 

 

 

The ligation mix was incubated at room temperature for 3 hours and then stored 

at 4oC overnight to enhance ligation. 

E. coli JM109 was transformed with the ligation mix and many transformants 

were rapid size screened as described in section 2.2.5 to check for colonies 

harbouring the plasmid pSVP271AcRBS1Ah. Colonies whose plasmid size on 

agarose gel were higher than that of pSVP27a which was used as control, had 

the potential of having the insert 1AcRBS1Ah. Plasmid DNA were extracted 

from clones with insert and the correct orientation of 1AcRBS1Ah was 

confirmed by digesting extracted plasmid with EcoRI and checking for required 

bands of 7412bp and 1697bp as shown in figure 4.4. Acrystalliferous strain of Bt 

IPS 78/11 was transformed with the confirmed plasmid according to the method 

in section 2.2.3.2. Successful transformation of IPS 78/11 was confirmed by 

extracting plasmids from IPS 78/11 clones, retransforming E. coli JM109 with 

the extracted plasmid and then minipreped and digest extracted plasmids from 

transformed E. coli JM109 alongside the original plasmid.  

 

 

 

 

 

 

 

 

Components pSVP271AcRBS1Ah 

H2O 4.0µl 

pSVP27 0.5µl 

1AcRBS1Ah 4.0µl 

10x Ligase buffer 1.0µl 

T4 DNA ligase 0.5µl 
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Figure 4.3: Schematic showing the construction of the plasmid 

pSVP271AcRBS1Ah 
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Figure 4.4: Gel picture showing the purified PCR fragments of cry1Ah, 

pGEM1AcP, purified BamHI linearized pSVP27, purified 1Ac-Ribosome binding 

site/cry1Ah with BamHI overhangs, EcoRI digested pGEM1AcP1Ah and 

pSVP271AcRBS1Ah. Lane 1: 3486bp cry1Ah band, Lane 2: 3566bp 

pGEM1AcP band, Lane 3: 5588bp BamHI linearized pSVP27 band, Lane 4: 

3521bp 1AcRBS1Ah with BamHI overhang band, Lane 5: EcoRI digestion of 

pGEM1AcP1Ah showing 2997/2841bp and 1164bp bands, Lane 6: EcoRI 

digestion of  pSVP271AcRBS1Ah showing 7412bp and 1697bp bands and 

Lane 7: DNA marker 

 

 

 

4.2.3 Expression and characterisation of Cry1Ah protein 

The strains of E. coli JM109 harbouring the plasmid pGEM1AcP1Ah were 

grown in a 2x Luria Broth for 3 days at 37oC after which the total protein were 

harvested as described in section 2.2.8.1. The total protein was ran on 7.5% 

SDS-PAGE gel and the protein band of ~134kDa was seen on gel as shown in 

figure 4.5. Also, the clone of IPS 78/11 harbouring the plasmid 

pSVP271AcRBS1Ah was grown in 5ml of Luria broth for 16 hours at 30oC. Five 

Petri plates of 25ml Luria agar with 5μg/ml concentration of chloramphenicol 
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were inoculated 1ml each with the 16 hour culture of the clone and grown at 

30oC for 5 days. Total protein was harvested as described in section 2.2.8.3 

and ran on 7.5% SDS-PAGE gel and the protein band of ~134kDa was seen on 

gel as shown in figure 4.5. 

The expressed proteins were tested for alkaline solubility and protease 

activation according to the method in sections 2.2.9.1 and 2.2.9.2. The alkaline 

solubility test showed that both the E. coli JM109 and Bt IPS 78/11 expressed 

Cry1Ah were soluble in 50mM Na2CO3 pH11 while digestion with trypsin (a 

protease) gave a ~60kDa resistant core on SDS-PAGE gel as shown in figure 

4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Gel picture of Cry1Ah expressed in E. coli and Bt and their pH11 

alkaline solubility and trypsin activation. Lane 1: E. coli JM109 expressed 

Cry1Ah (black arrow), Lane 2: IPS 78/11 expressed Cry1Ah (red arrow), Lane 3: 

Na2CO3 solubilised E. coli expressed Cry1Ah (blue arrow), Lane 4: Na2CO3 

solubilised IPS 78/11 expressed Cry1Ah (green arrow), Lane 5: Trypsin 

activated core from E. coli expressed Cry1Ah (brown arrow), Lane 6: Trypsin 

activated core from IPS 78/11 expressed Cry1Ah (yellow arrow) and Lane 7: 

Protein molecular weight marker 
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4.2.4 Toxicity testing of Cry1Ah against populations of Plutella xylostella 

The potency of the E. coli JM109 and Bt IPS 78/11 expressed Cry1Ah against 

artificial diet reared susceptible population of Plutella xylostella (G88) and 

cabbage reared Cry1Ac resistant population of Plutella xylostella (KARAK) was 

conducted using the diet dip assay and leaf dip assay as described in sections 

2.2.13.2 and 2.2.13.1. Using the leaf dip method, three doses 49, 51 and 

53µg/ml of the E. coli JM109 expressed Cry1Ah were used in bioassay against 

resistant Plutella xylostella population and the assays were repeated at least 

four times until a reproducible result was obtained. The doses of the E. coli 

JM109 expressed Cry1Ah used in bioassay with the sensitive G88 population 

were  1.0, 1.5 and 2.5µg/ml while the doses of the Bt IPS 78/11 expressed 

Cry1Ah used in bioassay against G88 populations were 1.0, 1.5 and 2.5µg/ml. 

From the assays, it was found that the E. coli JM109 expressed and the Bt IPS 

78/11 expressed proteins had an LC50 of 1.417µg/ml (95% confidence limit 

0.867-1.917µg/ml) and 1.502µg/ml against G88 respectively. The E. coli JM109 

expressed Cry1Ah had an LC50 of 50.620µg/ml against KARAK with 95% 

confidence limits of 48.932-51.760µg/ml. 

 

4.2.5 Synergistic studies between Cry1Ah and Cry1Ie toxins 

To check for synergism between Cry1Ah and Cry1Ie toxins, a single 

concentration of each toxin was combined and used in assaying for the 

mortality of the exposed insect alongside assays that involve only the single 

concentration of an individual toxin. Considering that the LC50 of Cry1Ah and 

Cry1Ie against G88 population of Plutella xylostella was 1.417µg/ml and 

0.319µg/ml respectively, a concentration of 0.4µg/ml for Cry1Ah and 0.15µg/ml 

for Cry1Ie was used in combination and singly to conduct bioassay against G88. 

These concentrations were chosen such that they were below the LC50 of each 

of the toxins but also able to affect mortality when used individually.  

Using the diet dip assay method described in 2.2.12.2, solutions containing a 

combination and individual concentrations of the toxins were made and used in 

bioassay against G88. 

On the fifth day, the number of death and live larvae were counted and 

recorded as shown in table 4.3  
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Single or combination 

of Cry1Ah and Cry1Ie 

toxins 

Number of 

insect dead 

out of 20 

Number of  

live insects 

out of 20 

Total 
number 
of 
insects 
exposed 

Cry1Ah (0.4μg/ml)   10 (50%) 10 (50%) 20 

Cry1Ie (0.15μg/ml)    5 (25%) 15 (75%) 20 

Cry1Ah (0.4μg/ml) and 

Cry1Ie (0.15μg/ml)  

  13 (65%)   7 (35) 20 

 

Table 4.3: The number of dead and live larvae from the synergistic studies 

between Cry1Ah and Cry1Ie toxins 

 

The results presented in table 4.3 shows that there is no synergism between 

Cry1Ie and Cry1Ac because judging from the fact that Cry1Ah on its own kills 

50% and Cry1Ie on the other hand kills 25% on its own, it would have been 

expected that synergism will result in killing of more than 75% (the sum of the 

percentage mortality from individual toxins). The 65% mortality observed with 

the mixture is lower than what would be expected even if the effect with mixture 

were to be additive which shows that there is no synergism. 

 

4.2.6 Manipulation of Cry1Ah for improved activity 

4.2.6.1 Swapping domain II of Cry1Ah with domain II of Cry1Ie and domain   

            I of Cry1Ah with domain I of Cry1Ie 

Construction of pGEM1AcPAIA and pGEM1AcPIAA plasmids 

The research findings that regions in domain II and III of Cry toxins are the 

determinants of the species of insects a toxin is toxic against (Nair et al, 2008 

and Liu and Dean, 2006) and the level of toxicity (de Maagd et al, 2000) was 

the basis for the swapping of domains between Cry1Ah and Cry1Ie. Moreover, 

it has been reported by Xu et al., 2010 that there was no cross resistance to 

Cry1Ie by a Cry1Ah resistant population of  Ostrinia furnacalis (ACB-AbR) and 

furthermore Cry1Ah has been shown to have a broader spectrum of activity 

compared to Cry1Ie (Song et al., 2003, Xue et al., 2008). Considering the broad 

spectrum activity of Cry1Ah and the sensitivity of ACB-AbR to Cry1Ie, the 
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domain swapping was aimed at producing a hybrid toxin that is able to 

overcome the resistance posed by a Cry1Ah resistant population of Plutella 

xylostella (KARAK) while capturing the broad spectrum activity of wild type 

Cry1Ah. The plasmid pGEM1AcPAIA was designed to express a hybrid Cry-

protein carrying domain I of Cry1Ah, domain II of Cry1Ie and domain III of 

Cry1Ah hereafter known as CryAIA while the plasmid pGEM1AcPIAA was 

designed to express a hybrid Cry-protein carrying domain I of Cry1Ie and 

domain II and III of Cry1Ah. The domain borders were mapped out by multiple 

sequence alignment of Cry1Ah protein sequence using ClustalW programme 

(Larkin et al, 2007) with Cry1-toxin sequences viz: Cry1Ia, Cry1Ba and Cry1Ea 

(Naimov et al, 2001) in which their domain borders have already been 

determined as shown in figure 4.6. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Multiple sequence alignment of segments of Cry1Ah, Cry1Ia, 

Cry1Ba, and Cry1Ea protein sequences using ClustalW software. 

               A: The red line demarcates between domain I and domain II. 

               B: The blue line demarcates between domain II and domain III.  
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After mapping out the domain borders, primer pair 1IeDIIF 5’ ATTGGGACA- 

GTACATCCAAATG 3’/1IeDIIR 5’ ATGTGTCCAAGAATATACCAATGC 3’ were 

designed to amplify domain II of cry1Ie. The primers were modified by addition 

of phosphate group to their 5’ ends to enhance the ligation of their PCR product. 

Primer pair GEM1AhF 5’ CGTAGTGCTGAATTTAATAATATAATT 3’/ 

GEM1AhR 5’ TGGGTTTGTATAAATTTCTCTTG 3’ were designed to amplify 

cry1Ah and its vector excluding its domain II. Primer pair GEMF- 5’ 

TCTCATGCAAACTCAGGTTTAA 3’/GEM1IeR 5’ TGCGTCTGTATATACTTC- 

TCTTGTAAG 3’ were designed to amplify the plasmid pGEM1AcP1Ie excluding 

domain II and III of Cry1Ie. Also primer pair 1AhDIIF 5’ GTATTAGAAAATTT- 

TGATGGTAGTTTT 3’/AR- 5’ CTATTCCTCCATAAGGAGTAATTC 3’ were 

designed to amplify domain II and III of Cry1Ah. The primer pairs were used in 

conducting PCR and the amplified DNA sequences were gel purified from gel 

according to the method described in section 2.2.3. The DNA fragments 

amplified using each primer pair were named as shown in table 4.4. 

 

 

 

 

Primer pair Template PCR product 

name 

PCR product 

size 

    (bp) 

1IeDIIF/1IeDIIR pGEM1AcP1Ie 1IeDII 582bp 

GEM1AhF/ 

GEM1AhR 

pGEM1AcP1Ah GEM1Ah 6497bp 

GEMF/ 

GEM1IeR 

pGEM1AcP1Ie GEM1IeDI 5144bp 

1AhDIIF/ AR pGEM1AcP1Ah 1AhDII_III 2673bp 

 

Table 4.4: Tabular presentation of primer pair and their PCR product name and 

size including the template they are amplified from              
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The recipe in table 4.5 shows the ligation of the PCR fragments of 

IeDII/GEM1Ah and GEM1IeDI/1AhDII_III to form plasmids pGEM1AcPAIA and 

pGEM1AcPIAA respectively and figure 4.7 is a schematic for the construction of 

these plasmids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5: Recipe for the ligation of DNA fragments to form pGEM1AcPAIA  and 

pGEM1AcPIAA expression vectors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Components pGEM1AcPAIA pGEM1AcPIAA 

H2O 3.0µl 3.5µl 

GEM1IeDI - 4.0µl 

1IeDII 0.5µl - 

GEM1Ah 5.0µl - 

1AhDII_III - 1.0µl 

10x Ligase buffer 1.0µl 1.0µl 

T4 DNA ligase 0.5µl 0.5µl 
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Figure 4.7: Schematic illustrating the construction of pGEM1AcPAIA plasmid 

from 1IeDII and GEM1Ahe DNA fragments. The construction of pGEM1AcPIAA 

is the same except that different domains are swapped. a= GEM1AhR; b= 

GEM1AhF; c= 1IeDIIF; d= 1IeDIIR; DI= domain I; DII= domain II; DIII= domain 

III  

 

 

 

The ligation mixes were incubated at room temperature for 3 hours and 

afterward incubated in the refrigerator at 4oC overnight. E. coli JM109 were 

transformed with the ligation mixes by electroporation and the transformants 

screened for colonies harbouring pGEM1AcPAIA or pGEM1AcPIAA plasmid. 

The presence of the IeDII in pGEM1AcPAIA was confirmed by conducting PCR 
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using the primer pair AF/1IeDIIR with pGEM1AcPAIA extracted from 

transformants as the template while the correct orientation of 1AhDII_III in 

pGEM1AcPIAA was confirmed by conducting PCR using IF/1AhDIIR primer pair 

with extracted pGEM1AcPIAA as template. A further confirmation of 

construction of pGEM1AcPAIA was by digesting extracted plasmid with AflIII 

while plasmid pGEM1AcPIAA was further confirmed by digesting plasmid 

extracted from its transformant with EcoRI. The expected bands from 

pGEM1AcPAIA and pGEM1AcPIAA restriction digestion were abserved on 

agarose gel as shown in figure 4.8 except a 50bp band from pGEM1AcPIAA 

digestion which could not be detected because of its small size. 

Computational analysis of the hybrid cryAIA and cryIAA genes using EMBOSS 

Transeq tool an online programme at the EMBL-EBI website gave a putative 

protein with 1170 and 1189 amino acid residues respectively. Compute pI/Mw 

tool (Hughes et al, 1993, Bjellqvist et al, 1994, Gasteiger et al, 2005) which is 

an online programme at ExPASy website used in computing the molecular 

weight of the deduced proteins gave their molecular weights to be 

approximately 132kDa and 134kDa respectively. 
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Figure 4.8: Gel picture showing PCR products GEM1Ah, 1IeDII, GEM1IeDI, 

1AhDII_III, digestion of pGEM1AcPAIA and pGEM1AcPIAA plasmids to confirm 

the presence of DNA fragment 1IeDII in pGEM1AcPAIA and 1AhDII_III in 

pGEM1AcPIAA. Lane 1: 6497bp gel purified GEM1Ah band, Lane 2: 582bp 

1IeDII fragment, Lane 3: 5144bp GEM1IeDI band, Lane 4: 2673bp 1AhDII_III 

band, Lane 5: AflIII digestion of pGEM1AcPAIA showing 3225bp, 1336bp, 

912bp, 614bp, 418/403bp and 171bp (orange arrow), Lane 6: EcoRI digestion 

of pGEM1AcPIAA showing 30093/2997bp, 1248bp and 429bp (red arrow) and 

Lane 7: DNA marker 

 

 

 

Expression of CryAIA or CryIAA proteins in E. coli JM109  

The clones of E. coli JM109 harbouring the plasmid pGEM1AcPAIA or 

pGEM1AcPIAA were grown in a 2x Luria broth for 3 days at 37oC after which 

the total proteins were harvested as described in section 2.2.8.1. 

The total proteins were run on 7.5% SDS-PAGE gel but the protein band of 

~132kDa for CryAIA or ~134kDa for CryIAA was not seen on the gel.  When the 

strains were grown at other temperatures including 25oC and 30oC, a protein 

band of ~132kDa was seen for strain harbouring pGEM1AcPAIA but the 

required band of ~134kDa was not seen from strain harbouring pGEM1AcPIAA. 
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The expressed CryAIA protein was tested for pH11 alkaline solubility and 

protease activation according to the method in section 2.2.9.1 and 2.2.9.2. The 

alkaline solubility test showed that expressed CryAIA was not soluble in 50mM 

Na2CO3 pH 9-11 as the protein band could not be seen on gel when the 

supernatant was ran. Digestion of CryAIA with trypsin (a protease) did not give 

a resistant core of ~60kDa on SDS-PAGE gel but showed that the protein was 

degraded by trypsin as shown in figure 4.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: SDS-PAGE gel picture of expressed CryAIA, total protein from E. 

coli JM109 strain harbouring plasmid pGEM1AcPIAA, alkaline solubility test and 

trypsin digestion of CryAIA. Lane 1: Expressed CryAIA protein band (black 

arrow), Lane 2: Total protein from E. coli strain harbouring plasmid 

pGEM1AcPIAA Lane 3:  Total sample from alkaline solubity test of CryAIA at 

pH11 showing protein band of 132kDa, Lane 4: Supernatant from alkaline 

solubility of CryAIA at pH11, Lane 5: Supernatant from trypsin activation test of 

CryAIA, Lane 6: Total sample from trypsin activation test of CryAIA and lane 7: 

Protein molecular weight marker 
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Toxicity testing of expressed CryAIA 

The toxicity of CryAIA was tested against G88 and KARAK populations of 

Plutella xylostella according to the method described in sections 2.2.13.1 but 

there was no mortality to either the toxin sensitive G88 or the Cry1Ac resistant 

KARAK at concentrations as high as 100μg/ml. 

 

Attempting expression of CryIAA in E. coli BL21 Rosetta 

As the required bands of 134kDa was not seen when the clone of E. coli JM109 

harbouring the plasmid pGEM1AcPIAA, E. coli BL21 Rosetta was then 

transformed with the plasmid for expression of CryIAA. The plan to express 

CryIAA in E. coli BL21 Rosetta was informed by the fact that some Bt toxins had 

been found to express better in this host (Jie Zhang – personal communication). 

The strain of E. coli BL21 Rosetta harbouring the plasmid pGEM1AcPIAA was 

grown in a 2x Luria Broth for 3 days at 37oC after which the total protein were 

harvested as described in section 2.2.8.1. 

The total protein was ran on 7.5% SDS-PAGE gel and the protein band of 

~134kDa for CryIAA was not seen on gel. As the required band of ~134kDa was 

not seen when the clone was grown at 37oC, it was then grown at other 

temperatures including 20oC, 25oC and 30oC. Total protein was harvested from 

each set of culture and analysed on SDS-PAGE gel but again the required band 

was not seen (data not shown). 

 

Attempting expression of cryIAA gene utilising native cry1Ac-promoter 

with Bt shuttle vector backbone pSV2 and  IPS 78/11 acrystalliferous Bt as 

host 

To construct plasmid pSV21AcPIAA aimed at expressing cryIAA gene under the 

control of native cry1Ac-promoter in acrystalliferous Bt, DNA fragments used 

were BamHI linearized pSV2 and sequence of native cry1Ac-promoter/cryIAA 

gene with BamHI overhangs. 

Sequence of native cry1Ac-promoter/cryIAA gene was obtained from the 

plasmid pGEM1AcPIAA previously constructed. Primer pairs 1AcPF 5’ 

gagctcggATcccaacaccctgg 3’/1AcPR 5’ gatattGGaTcctgagtttgcatgag 3’ were 

designed with base changes as shown with capital letters to introduce BamHI 

sites at 5’ and 3’ ends using PRIMER SELECT programme.  
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Using High Fidelity PCR Master system from Roche according to the 

manufacturers amplification instructions, needed fragment was amplified from 

pGEM1AcPIAA plasmid and the PCR product was ran on 1% agarose gel and 

required band of 3763bp was excised and purified according to the PCR 

products purification procedure described in section 2.2.3. The PCR product 

was first cloned into a pGEM-T vector from Promega and E. coli JM109 was 

transformed with the ligation mix. Plasmids extracted from transformants 

harbouring positive clones were digested with BamHI to release 1AcPIAA with 

BamHI overhangs. High Fidelity PCR Master system was used because of its 

high fidelity and the production of PCR products with 3’ A-overhangs which aid 

cloning with the pGEM-T vector which has 3’ T-overhangs. Cloning the PCR 

products into PGEM-T was desirable because it allows for a proper digestion 

and release of the needed fragments.  

pSV2 plasmid was extracted from the clone of E. coli JM109 harbouring it and 

the extracted plasmid was digested with BamHI in the presence of phosphatase. 

The phosphotase was included in the digestion mix to dephosphorylate the 

phosphate group at the 5’ ends of the linearised pSV2 DNA fragment thus 

preventing it from self ligation. The linearised pSV2 was ran on 1% agarose gel 

and its band excised and purified according to the procedure described in 

section 2.2.3. 

The gel purified DNA fragments of linearised pSV2 and 1AcPIAA were ligated 

according the recipe outlined in table 4.6 while figure 4.10 is a schematic 

showing the construction of the plasmid pSV21AcPIAA. 
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Table 4.6: Recipe for ligation of DNA fragments to form plasmid pSV21AcPIAA 

 

The ligation mix was incubated at room temperature for 3 hours and then stored 

at 4oC overnight. 

E. coli JM109 was transformed with the ligation mix and many transformants 

were rapid size screened as described in section 2.2.5 to check for colonies 

harbouring the plasmid pSV21AcPIAA. Colonies whose plasmid size on 

agarose gel was higher than that of pSV2 which was used as control, had the 

potential of having the insert 1AcPIAA. Plasmid DNA were extracted from 

clones with insert and the correct orientation of 1AcPIAA was confirmed by 

digesting extracted plasmid with NcoI and ran on 1% agarose gel to check for 

required bands (data not shown). Acrystalliferous strain of Bt IPS 78/11 was 

transformed with confirmed plasmid according to the method in section 2.2.3.2. 

Successful transformation of IPS 78/11 was confirmed by extracting plasmids 

from IPS 78/11 clones, retransform E. coli JM109 and then minipreped and 

digest extracted E. coli JM109 plasmids alongside the original plasmid.  

 

 

 

 

 

 

 

 

 

 

Components pSV21AcPIAA 

H2O 5.0µl 

pSV2 0.5µl 

1AcPIAA 3.0µl 

10x Ligase buffer 1.0µl 

T4 DNA ligase 0.5µl 
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Figure 4.10: Schematic showing the construction of the plasmid pSV2APIAA 
 
 

 

Expression of CryIAA protein in acrystalliferous Bt IPS 78/11 under the 

control of native cry1Ac-promoter 

The clone of IPS 78/11 harbouring the plasmid pSV21AcPIAA was grown in 5ml 

of Luria broth for 16 hours at 30oC. Five Petri plates with 25ml Luria agar 

containing 5μg/ml concentration of chloramphenicol were inoculated 1ml each 

with the 16 hour culture of the clone and grown at 30oC for 5 days. Total protein 

was harvested as described in section 2.2.8.3 and ran on 7.5% SDS-PAGE gel 

but no protein band of ~134kDa was seen on gel (data not shown).  

As the required bands of ~134kDa was not seen when the clones were grown 

at 30oC, they were then grown at other temperatures including 20oC, 25oC and 

37oC. Total proteins were harvested from each set of culture and analysed on 

SDS-PAGE gel but the required band was still not seen. 
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Attempting expression of cryIAA gene utilising cyt1A-promoter of plasmid 

pSVP27 with IPS 78/11 acrystalliferous Bt as host 

To construct plasmid pSVP271AcRBSIAA aimed at expressing cryIAA gene 

under the control of native cyt1A promoter in acrystalliferous Bt, DNA fragments 

used were BamHI linearized pSVP27a and sequence containing 1Ac-Ribosome 

binding site/cryIAA gene with BamHI overhangs. 

Sequence of 1Ac-Ribosome binding site/cryIAA gene was obtained from the 

plasmid pGEM1AcPIAA previously constructed through PCR. Primer pair 

RIAAF 5’ aatgGatCCgtatcttaataaaagagatgg 3’/RIAAR 5’ gatattGGaTcctga- 

gtttgcatgag 3’ were designed with base changes as shown with capital letters to 

introduce BamHI sites at 5’ and 3’ ends using PRIMER SELECT programme.  

Using High Fidelity PCR Master system from Roche according to the 

manufacturers amplification instructions, needed fragment was amplified from 

pGEM1AcPIAA plasmid and the PCR products were ran on 1% agarose gel and 

required band of 3638bp was excised and purified according to the PCR 

products purification procedure described in section 2.2.3. The PCR product 

was first cloned into a pGEM-T vector from Promega and E. coli JM109 was 

transformed with the ligation mix. Plasmids extracted from transformants 

harbouring positive clones were digested with BamHI to release RIAA fragment 

with BamHI overhangs.  

High Fidelity PCR Master system was used because of its high fidelity and the 

production of PCR products with 3’ A-overhangs which aid cloning with the 

pGEM-T vector which has 3’ T-overhangs. Cloning the PCR products into 

PGEM-T was desirable because it allows for a proper digestion and release of 

the needed fragments.  

pSVP27 plasmid was extracted from the clone of E. coli JM109 harbouring it 

and the extracted plasmid was digested with BamHI in the presence of 

phosphatase. The phosphotase was included in the digestion mix to 

dephosphorylate the phosphate group at the 5’ ends of the linearised pSVP27 

DNA fragment thus preventing it from re-ligation. The linearised pSVP27 was 

run on 1% agarose gel and its band excised and purified according to the 

procedure described in section 2.2.3. 
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The gel purified DNA fragments of linearised pSVP27 and 1AcRBSIAA were 

ligated according the recipe outlined in table 4.7 while figure 4.11 is a 

diagrammatical illustration of pSVP271AcRBSIAA plasmid construction. 

 

 

 

 

 

 

 

 

 

Table 4.7: Recipe for ligation of DNA fragments to form plasmid 

pSVP271AcRBSIAA 

 

The ligation mix was incubated at room temperature for 3 hours and then stored 

at 4oC overnight. 

E. coli JM109 was transformed with the ligation mix and many transformants 

were rapid size screened as described in section 2.2.5 to check for colonies 

harbouring the plasmid pSVP271AcRBSIAA. Colonies whose plasmid size on 

agarose gel were higher than that of pSVP27 which was used as control, had 

the potential of having the insert 1AcRBSIAA. Plasmid DNA were extracted 

from clones with insert and the correct orientation of 1AcRBSIAA was confirmed 

by digesting extracted plasmid from pSVP271AcRBSIAA with NcoI and BamHI 

and run on 1% agarose gel to check for required bands (data not shown). 

Acrystalliferous strain of Bt IPS 78/11 was transformed with confirmed plasmid 

according to the method in section 2.2.3.2. Successful transformation of IPS 

78/11 was confirmed by extracting plasmids from IPS 78/11 clones, retransform 

E. coli JM109 and then minipreped and digest E. coli JM109 extracted plasmids 

alongside the original plasmid.  

 

 

 

 

Components pSVP271AcRBSIAA 

H2O 5.0µl 

pSVP27 0.5µl 

1AcRBSIAA 3.0µl 

10x Ligase buffer 1.0µl 

T4 DNA ligase 0.5µl 
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Figure 4.11: Schematic showing the construction of the plasmid 

pSVP271AcRBSIAA 

 

 

Expression of CryIAA protein in acrystalliferous Bt IPS 78/11 under the 

control of native cyt1A-promoter 

The clone of IPS 78/11 harbouring the plasmid pSVP271AcRBSIAA was grown 

in 5ml of Luria broth for 16 hours at 30oC. Five Petri plates of 25ml Luria agar 

containing 5μg/ml concentration of chloramphenicol were inoculated 1ml each 

with the 16 hour culture of the clone and grown at 30oC for 5 days. Total protein 

was harvested as described in section 2.2.8.3 and run on 7.5% SDS-PAGE gel 

but the protein band of ~134kDa was not seen on gel (data not shown).  

As the required band of ~134kDa was not seen when the clone was grown at 

30oC, it was then grown at other temperatures including 20oC, 25oC and 37oC. 

Total proteins were harvested from each set of culture and analysed on SDS-

PAGE gel but the required bands were still not seen. 
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4.2.6.2 Truncation of N-terminal α-helix 

To construct the plasmid pGEM1AcP1Ah∆ which is a plasmid designed to 

express truncated sequence of cry1Ah gene, primer pair 1Ah∆F 5’ GTCCC- 

AGGTGCGGGGTTT 3’ and 1Ah∆R 5’ CATAAGTTACCTCCATCTCTTTT- 

ATTAAG 3’ were designed such that Cry1Ah protein sequence will be deleted 

from amino acid position 2(Glutamic acid) to amino acid position 

50(Phenylalanine) inclusive. This design took into consideration the amino acid 

phenylalanine-50, which is a protease recognition site. Its recognition by 

protease results in cleavage of the neighbouring amino acid to its carboxyl side 

(Walters et al, 2008; Lightwood et al, 2000). According to the pore forming 

model of Cry toxin mode of action, the initial cleavage of protoxins by gut 

proteases that removes the C-terminal half and about 30 amino acid residues 

from the N-terminal is followed by the processed toxins binding to receptors 

resulting in their conformational changes which facilitates a second cleavage by 

membrane bound protease that removes the N-terminal helix α-1 (Bravo et al., 

2004). Truncated toxins lacking helix α-1 have been shown to form oligomers 

that are membrane insertion competent even in the absence of cadherin 

(Gomez et al, 2002, Soberon et al, 2007). The need to create a modified 

Cry1Ah with deleted helix α-1 was to target our Cry1Ac/Cry1Ah resistant 

population of Plutella xylostella (KARAK) because Sayyed et al., 2005 

demonstrated that a field collected resistant population of Plutella xylostella 

(SERD4) which was subsequently selected in the laboratory using Cry1Ab and 

named Cry1Ab-SEL were more sensitive to trypsin-activated Cry1Ab compared 

to Cry1Ab protoxins. Moreover, it has been shown that a modified Cry1Ab that 

lacks helix α-1 was active against a resistant population of Pectinophora 

gossypiella whose resistance has been linked to cadherin gene deletions 

(Muñóz-Garay et al., 2009). The amino acid position 50(Phenylalanine) was 

selected for inclusion in the deletion because multiple sequence alignment of 

Cry1Ah amino acid sequence with other Cry1-toxin sequences with known helix 

α-1 position showed that phenylalanine-50 a protease recognition site is just 

outside helix α-1 (Grochulski et al, 1995) as shown in figure 4.12.  

Computational analysis of the truncated gene cry1Ah∆ using EMBOSS Transeq 

tool an online programme at the EMBL-EBI website gave a putative protein with 
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1112 amino acid residues. Compute pI/Mw tool (Hughes et al, 1993, Bjellqvist 

et al, 1994, Gasteiger et al, 2005) which is an online programme at ExPASy 

website used in computing the molecular weight of the deduced protein gave its 

molecular weight to be approximately 126kDa. 

Using Pfu Ultra Hotstart PCR Master Mix system according to the 

manufacturers amplification instructions, primer pair 1Ah∆F/1Ah∆R, was used in 

conducting PCR using pGEM1AcP1Ah as template and the PCR mix was ran 

on 1% agarose. The PCR product with band size of 6905bp was excised and 

purified according to the PCR products purification procedure described in 

section 2.2.3. Three microlitre of the purified PCR product was self ligated in the 

presence of 4.5μl of water, 2μl of 10x ligation buffer and 0.5μl of T4 DNA ligase. 

The ligation mix was incubated at room temperature for 3 hours and then at 4oC 

overnight. E. coli JM109 was transformed with the ligation mix and the 

successful formation of plasmid pGEM1AcP1Ah∆ was confirmed by digestion of 

the plasmid extracted from the transformants with EcoRI restriction enzyme 

(data not shown). Figure 4.13 illustrates how the plasmid pGEM1AcP1Ah∆ was 

constructed. 

 

 

 

 

 

 

 

 

 

Figure 4.12: Multiple sequence alignment of  Cry1Ab, Cry1Ac, Cry1Aa and 

Cry1Ah protein sequences for determination of protease recognition sites after 

helix α-1 segments of their domain I. The brown double-headed arrow indicates 

the helix α-1 segment, the ‘F’ in the red box is Phenylalanine-50 of Cry1Ah 
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Figure 4.13: Schematic for the construction of the plasmid pGEM1Ah∆. The 

PCR primers were designed to amplify the gene deleting the yellow block 
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Expression and characterisation of Cry1Ah∆ 

The strain of E. coli JM109 harbouring the plasmid pGEM1AcP1Ah∆ was grown 

in a 2x Luria Broth for 3 days at 37oC after which the total protein was harvested 

as described in section 2.2.8.1. The total protein was ran on 7.5% SDS-PAGE 

gel but the protein band of ~126kDa was not seen on gel.  

As the required band of ~126kDa was not seen when the clone was grown at 

37oC, it was then grown at other temperatures including 20oC, 25oC and 30oC. 

Total proteins were harvested from each set of culture and analysed on SDS-

PAGE gel but the required band was not still seen (data not shown). 

 

4.3 Discussion 

The expression of the open reading frame of wild type Cry1Ah under the control 

of the native cry1Ac and cyt1A-promoter was successful as the protein band of 

approximately 134kDa was seen on SDS-PAGE gel. The characterization of the 

expressed proteins also showed that it folded properly as it was found to be 

soluble in alkaline solution of Na2CO3 even at pH8.5. Its activation by trypsin 

resulted in the observation of an approximately 60kDa band on SDS-PAGE gel. 

The toxicity to Plutella xylostella with an LC50 of 1.417 µg/ml (95% confident 

limit 0.867-1.917µg/ml) for E. coli JM109 expressed and 1.502µg/ml for the IPS 

78/11 expressed which is comparable to the LC50 of 1.52μg/ml of its expression 

in acrystalliferous mutant of Bacillus thuringiensis HD73‾ by Xue et al, 2008.  

This further confirms that the protein was expressed in a stable and active form 

in both E. coli JM109 and IPS 78/11.  

The strategy used in producing the hybrid toxin CryAIA was found to be 

successful at the expression stage as the expected protein band of 

approximately 132kDa was seen on SDS-PAGE gel. The characterisation of the 

expressed CryAIA protein revealed that the protein did not fold properly as it 

failed to demonstrate typical characteristics of Cry-proteins. It was found that it 

was not soluble in alkaline solution of 50mM Na2CO3 and the protease resistant 

core of 50-60kDa band was not seen on SDS-PAGE gel when supernatant from 

its protease activation experiment was analysed. The SDS-PAGE analysis of 

the total reaction mix from the protease activation experiment shows that the 

protein was completely digested to fragments that could not be detected on gel 
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thus failing to produce the resistant core of approximately 50-60kDa. The 

toxicity testing of CryAIA showed that it was not toxic to susceptible and Cry1Ac 

resistant population of Plutella xylostella. Susceptible insect midgut protease 

activation of Cry toxin have been shown to be an important step that prepares a 

protoxin for activity against susceptible insects. Yamaguchi et al, 2010 showed 

that Cry8Da toxin was only able to bind to brush border membrane vesicles of 

Japanese beetles (Popillia japonica Newman) when activated using midgut 

juice extracted from the beetles. In a Cry1Ac resistant population of Helicoverpa 

amigera, it was observed that there was a down regulation of  HaSP2 

(Helicoverpa armigera serine protease 2) and that the protease resistant core of 

95 and 68kDa was observed when the protease extracted from this resistant 

population was used in activating Cry1Ac (Rajagopal et al, 2009). In the case of 

CryAIA, its impotency to susceptible and Cry1Ac resistant population of Plutella 

xylostella is not a case of the insects midgut protease regulation but as a result 

of its improper folding. Singh et al., 2010 and Henderson et al., 2010 

demonstrated that a missense mutation of dystrophin protein results in its 

instability and conformational changes and the fact that CryAIA has been 

expressed but failed the characterisation test shows that its conformation and 

stability has been affected by the domain swap. 

The genetically manipulated cryIAA which is a toxin gene made by swapping of 

domain I of cry1Ah with that of cry1Ie and cry1Ah∆ which is cry1Ah mutant 

designed to to express truncated Cry1Ah did not result in expression of the 

proteins they code for. Though all the upstream elements like the cry1Ac-

promoter, cyt1A-promoter and ribosome binding site that have been 

successfully used in expressing the parent genes of cry1Ah and cry1Ie were 

supplied, they were not still expressed. cyt1A-promoter has been used in the 

expression of Cry2A (Crickmore and Ellar, 1992) while cry1Ac-promoter has 

been used in expression of Cry11A with Bacillus brevis as host (Roh et al, 

2010).The use of different hosts and varying of culturing conditions like 

temperature did not rescue the expression of cryIAA or cry1Ah∆  and this could 

be as result of the fact that the hybrid and the truncated genes created have 

resulted in proteins that have not folded properly. 

Synergistic studies between Cry1Ah and Cry1Ie showed that there is no 

synergism between them. With individual LC50 of 1.417 and 0.319μg/ml for 
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Cry1Ah and Cry1Ie respectively, and the use of their combination at individual 

doses that will result in lethality below LC50, a synergistic effect could not be 

observed. Synergism has been reported between Cry1Ac and Cry2Aa (Yunus 

et al., 2011), Cry1Ac and Cry2Ab (Ibargutxi et al., 2008) and Cry1Ab and 

Cry1Ac (Sharma et al, 2010). Ibargutxi et al., 2008, suggested that the 

synergism observed between Cry1Ac and Cry2Ab was as a result of special 

interaction between them. Carmona et al., 2011 made a mutant Cry1Ab-

D136N/T143D that has a dominant negative phenotype inhibiting the toxicity of 

wild type Cry1Ab and other Cry1 toxins including Cry1Aa, Cry1Ac and Cry1Fa 

against Manduca sexta.  Since Cry1Ab-D136N/T143D was able to inhibit 

activity of other Cry1 toxins, they concluded that the dominant negative 

phenotype was as a result of hetero-oligomers formed between Cry1Ab-

D136N/T143D and the other Cry1 toxins. Synergism has also been reported 

between Cry toxins and Cyt toxins including Cry4Ba and Cyt1Aa (Canton et al, 

2011) and Cry10Aa and Cyt1Aa (Hernandez-Soto et al, 2009). Canton et al, 

2011 showed that synergism between Cry11Aa and Cyt1Aa results from 

specific interaction between them and created a mutant Cyt1Aa that resulted in 

reduced synergism. The absence of synergism between Cry1Ah and Cry1Ie 

might be that these specific interactions are also absent. 

The results from this chapter show that cry1Ac and cyt1A-promoters are 

capable of driving the expression of a functional Cry1Ah toxin and also its non-

functional mutant CryAIA. It has also been shown that the strategy leading to 

the construction of the cryIAA and cry1Ah∆ mutants did not result in the 

formation of functional genes as their putative proteins were not seen on gel 

despite different methods employed to enhance their expression. The hybrid 

protein CryAIA engineered by swapping domain II of Cry1Ah with that of Cry1Ie 

did not produce a functional protein as bioassay against sensitive population of 

Plutella xylostella showed no sign of toxicity at concentration as high as 

100µg/ml. The non toxicity of CryAIA is likely to be as a result of misfolding as 

characterisation of the expressed protein fall short of those of typical Cry toxin. 
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Chapter 5: Attempting expression of coding sequences for cry30Ea  

                   and cry40Da toxin genes  

5.1 Introduction 

The coding sequences of cry30Ea and cry40Da toxin genes were amplified 

using PCR from Bacillus thuringiensis strains S2160-1 and S2196-1 

respectively isolated from soil samples in Guangxi, China. The SDS-PAGE 

analysis of the total protein from these strains did not show the ~77.6kDa and 

~73.5kDa bands of their respective deduced proteins. Total proteins prepared 

from these strains were found to be toxic to mosquito strains Culex 

quinquefasciatus and Aedes Albopictus (Zhang et al, unpublished data).  

Other cry30 genes like cry30Aa1 (Juárez-Pérez et al, 2003), cry30Ba1 (Ito et al, 

2006), cry30Fa1 (Tan et al, 2009) and cry30Ga1 (Zhu et al, 2010) have been 

cloned from mosquitocidal strains of Bacillus thuringiensis and heterologously 

expressed in acrystalliferous strains of Bacillus thuringiensis and E. coli BL21. A 

cry40 gene cloned from a Bacillus thuringiensis strain has also been expressed 

in Bacillus subtilis under its native promoter (Brown, 1993) and E. coli under 

IPTG inducible tac promoter (Brown and Whiteley, 1992). Brown, 1993 also 

showed that the DNA sequence upstream of cry40 gene start site had 

consensus with those of other cry-genes which are sporulation sigma factor 

dependent.  Ito et al, 2006 have shown that Cry30Ba has the five conserved 

blocks found in a typical Cry toxin. It has also been shown that Cry30Fa1 has 

the conserved five blocks typical of Cry toxins but it lacks the C-terminal half 

found in 130kDa Cry toxins (Tan et al, 2009).  

To study the molecular characteristics and toxicity of the proteins possibly 

encoded by cry30Ea and cry40Da genes, heterologous expression was 

attempted and this chapter is focusing on the various methodologies utilised in 

attempting to express and characterise their proteins. 

 

5.2 Results 

5.2.1 Bioinformatics analysis of cry30Ea and cry40Da DNA and  

         deduced amino acid sequences 

To apply molecular genetics techniques in manipulating the cry30Ea and 

cry40Da sequences for heterologous expression, bioinformatics analysis like 

pair wise and multiple sequence alignments were carried out. Tables 5.1 and 
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5.2 below summarise the similarities and differences between their deduced 

protein sequences with known expressed proteins of their class. The deduced 

amino acid sequence from cry30Ea and cry40Da DNA sequences were 688 

and 658 amino acids respectively. Compute pI/Mw tool (Hughes et al, 1993; 

Bjellqvist et al, 1994, Gasteiger et al, 2005) which is an online programme at 

ExPASy website used in computing the molecular weight of the deduced 

proteins of Cry30Ea and Cry40Da estimate their molecular weight to be 

approximately 77.6kDa and 73.5kDa respectively. BLASTP 2.2.24+ programme 

(Altschul et al, 1997, Altschul et al, 2005) was used in conducting pair wise and 

multiple alignment of the deduced amino acid sequence. 

 

 

Proteins Similarities with 

Cry30Ea 

Positives with 

Cry30Ea 

Gaps 

Cry30Aa1 76% (519/689) 84% (573/689) 0% (2/689) 

Cry30Ba1 56% (388/694) 70% (481/694) 5% (37/694) 

Cry30Ca1 67% (461/695) 77% (535/695) 2% (14/695) 

Cry30Fa1 70%(479/690) 79%(539/690) 0% (5/690) 

Cry30Ga1 59% (406/690) 72% (492/690) 4% (28/690) 

 

Table 5.1: BLASTP 2.2.24+ programme pair wise alignment results of 

Cry30Ea1 deduced protein sequence with sequences of five members of Cry30 

Cry toxins that has been heterologously expressed 
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Proteins Similarities with  

Cry40Da 

Positives with 

Cry40Da 

Gaps 

Cry40Aa1 60% (399/672) 72% (479/672) 3% (23/672) 

Cry40Ba1 53% (375/677) 66% (443/677) 4% (30/677) 

 

Table 5.2: BLASTP 2.2.24+ programme pair wise alignment results of 

Cry40Da1 deduced protein sequence with sequences of two members of 

Cry40-toxins that have been heterologously expressed 

 

 

5.2.2 Exploring different expression vector systems and hosts for the  

         expression of cry30Ea and cry40Da genes 

5.2.2.1 Utilizing native cry1Ac-promoter with pGEM vector backbone and  

        E. coli JM109 as host  

The native promoter of cry1Ac in pGEM-T vector backbone as described in 

chapter 3 and 4 was used in attempting expression of cry30Ea and cry40Da 

DNA sequences with E. coli JM109 as host. The needed DNA fragments were 

pGEM1AcP which consist of pGEM-T vector backbone and cry1Ac-promoter 

from pGEM1AcP1Ac plasmid and the coding sequence of cry30Ea and cry40Da 

genes obtained from Bacillus thuringiensis strains S2160-1 and S2196-1 

respectively. 

From the sequence information obtained from Wenfei Zhang who supplied  

Bacillus thuringiensis strains S2160-1 and S2096-1, primer pairs F30 5’ 

ATGAATTCTTATCAAAATACAAATG 3’/R30 5’ TTAGTTCACTGTACAAG- 

CTACTAC 3’ and F40 5’ ATGAATTCATATCAAAATACAAATG 3’/R40 5’ 

TTAATTGATAAATAAATCGTTCACC 3’ for amplification of the coding 

sequences of cry30Ea and cry40Da genes respectively were designed using 

PRIMER SELECT programme. The primers for amplification of pGEM1AcP 

fragment from pGEM1AcP1Ac plasmid have been described in chapter 3. For 

simplicity the PCR product sequences for cry30Ea and cry40Da would be 

referred to as 30Ea and 40Da respectively. 
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Using Pfu Ultra Hotstart PCR Master Mix system according to the 

manufacturers instructions pGEM1AcP, cry30Ea and cry40Da sequences were 

amplified and PCR products were ran on 1% agarose gel and required bands of 

3566bp (pGEM1AcP), 2067bp (30Ea) and 1977bp (40Da) were excised and 

purified according to the PCR products purification procedure described in 

section 2.2.3. The purified bands of pGEM1AcP, 30Ea and 40Da were used in 

the construction of the plasmids pGEM1AcP30Ea and pGEM1AcP40Da as 

shown in figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Schematic illustrating the construction of pGEM1AcP30Ea or 

pGEM1AcP40Da plasmids from the ligation of the PCR products of pGEM1AcP, 

and 30Ea or 40Da 
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To construct the plasmids pGEM1AcP30Ea or 40Da, the following volumes of 

reagent and DNA fragments as shown in table 5.3 were measured and mixed 

together. 

 

 

Components Volumes 

H20 1µl 

pGEM1AcP 1µl 

Ligation buffer  5µl 

30Ea or 40Da 3µl 

T4 Ligase  1µl 

  

Table 5.3: Recipe of ligation mixes for pGEM1AcP30Ea or 40Da 

 

The ligation mixes were incubated at room temperature for 3 hours and then 

stored at 4oC overnight. 

E. coli JM109 were transformed with the ligation mixes and many transformants 

were screened to check for colonies harbouring the plasmid pGEM1AcP30Ea or 

pGEM1AcP40Da. Clones with the correct orientation of 30Ea or 40Da was 

checked by digesting extracted plasmid with EcoRI. As shown in lane 3 of figure 

5.2, the construction of pGEM1AcP30Ea was confirmed when digested plasmid 

ran on gel gave expected bands of 2997 and 2413bp though expected bands of 

173 and 50bp were not seen as they are too small to be detected. Also lane 5 of 

figure 5.2 confirms the construction of pGEM1AcP40Da as expected bands of 

2997 and 2099bp were seen on gel though expected bands of 224 and 50bp 

were not seen as they are too small to be detected. 
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Figure 5.2: Picture of gel showing 30Ea, pGEM1AcP, EcoRI digestion of 

pGEM1AcP30Ea, 40Da, EcoRI digestion of pGEM1AcP40 plasmid. Lane 1: 

2067bp fragment of 30Ea, Lane 2: 3566bp band of pGEM1AcP, Lane 3: EcoRI 

digested pGEM1AcP30Ea showing band sizes of 2997bp and 2413bp, Lane 4: 

1997bp fragment of 40Da, Lane 5: EcoRI digested pGEM1AcP40Da showing 

band sizes of 2997bp and 2099bp and Lane 6: DNA marker 

 

 

 

Expression of Cry30Ea or Cry40Da proteins in E. coli JM109 

The strains of E. coli JM109 harbouring the plasmid pGEM1AcP30Ea or 

pGEM1AcP40Da was grown in a 2x Luria Broth for 3 days at 37oC after which 

the total protein were harvested as described in section 2.2.8.1. 

The total proteins were ran on 7.5% SDS-PAGE gel but the protein bands of 

77.6kDa and 73.5kDa from cry30Ea and cry40Da genes were not seen on gel 

as shown in figure 5.3.  

As the required bands of 77.6kDa and 73.5kDa were not seen when the clones 

were grown at 37oC, they were then grown at other temperatures including 20oC, 

25oC and 30oC. Total proteins were harvested from each set of culture and 

analysed on SDS-PAGE gel and the required bands were not still seen (data 

not shown). 
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Figure 5.3: Pictures of gel showing total proteins from E. coli JM109 harbouring 

plasmids pGEM1AcP30Ea or pGEM1AcP40Da and total protein from E. coli 

JM109 without the plasmids. Lane 1: Total protein for E. coli JM109 harbouring 

pGEM1AcP30Ea, Lane 2: Total protein for E. coli JM109 harbouring 

pGEM1AcP40Da, Lane 3: Total protein for E. coli JM109 without the plasmids 

and Lane 4: Protein marker  

 

 

 

5.2.2.2 Utilising pET3a vector and E. coli BL21 (DE3) as host 

pET3a is a member of pET series of vectors from Novagen which expresses 

proteins under a T7 promoter. It has ribosome binding site, NdeI cloning site, T7 

gene for 10 leader peptide, BamHI cloning site, T7 terminator, ampicillin 

resistance (bla) ORF, and pBR322 origin of replication. The BamHI cloning site 

was used in the cloning of cry30Ea and cry40Da genes and this requires the 

introduction of BamHI sites at their 5’ and 3’ ends of their sequences. 

Primer pairs 30BamF 5’ gagatggGgAtCCcttatgaattc 3’/30BamR 5’ gatattGGaTc- 

ctgagtttgcatgag 3’ and 40BamF 5' gagatggGgAtCCcttatgaattc 3'/40BamR 5’ 

gatattGGaTcctgagtttgcatgag 3’ were designed using PRIMER SELECT 

programme with changes to introduce the BamHI sites shown in uppercase 

letters within the primer sequences.  

Cloning the orfs via the BamHI site means that Cry30Ea and Cry40Da  proteins 

from the formed plasmids would have a higher molecular weight than 77.6kDa 

and 73.5kDa respectively because BamHI sites is preceded by the 10 amino 

 

83kDa 

62kDa 

47.5kDa 

        1                 2                3              4 
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acid T7 gene leader peptide and the BamHI fragments of cry30Ea and cry40Da 

inserts form a continuous frame with the leader peptide as shown in figure 5.4. 

 

 

A 

ATG GCT AGC ATG ACT GGT GGA CAG CAA ATG GGT CGC GgA tCC ctt atg aat…… 

  M      A      S      M      T      G      G      Q      Q      M     G       R       G     S    V   M   N 

 

 

B                                                                                                              

ATG GCT AGC ATG ACT GGT GGA CAG CAA ATG GGT CGC GgA tCC ctt atg aat…… 

  M      A      S      M      T      G      G      Q      Q      M       G      R      G    S     V   M   N 

 

Figure 5.4: Fused DNA sequence of the T7 leader peptide and BamHI cloned 

Cry30Ea (A) and Cry40Da (B) sequences and their corresponding amino acid 

sequences 

 

With the fusion of the leader peptide, the molecular weight of the deduced 

protein from the cry30Ea and cry40Da genes were calculated using the 

Compute pI/Mw tool (Hughes et al, 1993, Bjellqvist et al, 1994 and Gasteiger et 

al, 2005) and they were estimated to be approximately 79kDa and 75kDa 

respectively. 

Using High Fidelity PCR Master system from Roche according to the 

manufacturers amplification conditions, cry30Ea and cry40Da sequences were 

amplified using pGEM1AcP30Ea and pGEM1AcP40Da plasmids constructed in 

section 5.2.2.1 as template and the PCR products were ran on 1% agarose gel 

and required bands of 2011bp (cry30Ea) and 2021bp (cry40Da) were excised 

and purified according to the PCR products purification procedure described in 

section 2.2.3. The PCR products were first cloned into a pGEM-T vector from 

Promega and E. coli JM109 was transformed with the ligation mix. Plasmids 

extracted from transformants harbouring positive clones were digested with 

BamHI to release cry30Ea and cry40Da fragments with BamHI overhangs. The 

fragments of cry30Ea and cry40Da sequences released from pGEM-TBam30Ea 

and pGEM-TBam40Da with BamHI overhangs will be known as Bam30Ea and 

Bam40Da for clarity.  
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pET3a plasmid was extracted from the clone of E. coli JM109 harbouring it and 

the extracted plasmid was digested with BamHI in the presence of phosphatase. 

The phosphatase was included in the digestion mix to dephosphorylate the 

phosphate group at the 5’ ends of the linearised pET3a DNA fragment thus 

preventing it from re-ligation. The linearised pET3a was ran on 1% agarose gel 

and purified from its band excised from the gel according to the procedure 

outlined in section 2.2.3. 

The gel purified DNA fragments of linearised pET3a, Bam30Ea and Bam40Da 

were ligated according the recipe outlined in table 5.4 while figure 5.5 shows the 

schematic illustrating the construction of the plasmids pET3aBam30Ea and 

pET3aBam40Da. 

 

 

 

Table 5.4: Recipe for ligation of DNA fragments to form plasmids 

pET3aBam30Ea and pET3aBam40Da 

 

 

 

The ligation mixes were incubated at room temperature for 3 hours and then 

stored at 4oC overnight. 

E. coli JM109 were transformed with the ligation mixes and many transformants 

were screened to check for colonies harbouring the plasmid pET3aBam30Ea 

and pET3aBam40Da. Clones with the correct orientation of Bam30Ea or 

Bam40Da were confirmed by digesting extracted plasmid with EcoRI and 

BamHI. E. coli BL21(DE3) were transformed with confirmed plasmids and 

Components pET3aBam30Ea pET3aBam40Da 

H2O 3.5µl 3.5µl 

pET3a    1µl    1µl 

Bam30Ea    4µl    - 

Bam40Da    -    4µl 

10x Ligase buffer    1µl    1µl 

T4 DNA ligase 0.5µl 0.5µl 
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confirmed by extracting and digesting plasmids from transformants. The 

plasmids pET3aBam30Ea and pET3aBam40Da were successfully constructed 

as the expected bands were seen on gel as shown in figure 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Schematic illustrating the construction of plasmids pET3aBam30Ea 

or pET3aBam40Da from ligation of BamHI linearised pET3a and Bam30Ea or 

Bam40Da DNA fragments 
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Figure 5.6: Gel picture showing Bam30, Bam40, pET3a, EcoRI digestion of 

pET3aBam30Ea and pET3aBam40Da. Lane 1: 2090bp band of Bam30Ea, 

Lane 2: 2000bp band of Bam40Da, Lane 3: BamHI linearized pET3a, Lane 4: 

EcoRI digested pET3aBam30Ea showing band sizes of 4139bp and 2592bp, 

Lane 5: EcoRI digestion of pETBam40Da showing band sizes of 4139bp, 

2278bp and 224bp pointed by red arrow and Lane 6: 1Kb DNA marker 

 

 

Expressing Cry30Ea and Cry40Da under the control of T7 promoter 

through IPTG induction 

E. coli BL21 (DE3) harbouring pET3aBam30Ea or pET3aBam40Da plasmid 

were subcultured into 10ml of Luria broth containing 100 µg/ml of ampicillin and 

grown overnight. The 10ml overnight cultures were inoculated into a fresh Luria 

broth containing  100 µg/ml of ampicillin and grown to optical density of 1.066 

and 0.682 for pET3aBam30Ea and pET3aBam40Da respectively. At the 

mentioned optical densities, 50µl of 1M IPTG was added to the cultures and 

grown at 37oC for 16 hours. Total proteins were harvested according to the 

method outlined in section 2.2.8.2. 

The total proteins were ran on 7.5% SDS-PAGE gel and the protein bands of 

77.6kDa and 73.5kDa from cry30Ea and cry40Da genes were not seen on gel 
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but a band of ~62kDa was observed for both pET3aBam30Ea and 

pET3aBam40Da clones.  

To confirm that the observed band of ~62kDa were from the genes cry30Ea and 

cry40Da, the BL21 (DE3) clones with the pET3aBam30Ea or pET3aBam40Da 

plasmids and  without the plasmid were grown as previously described but in 

200ml Luria broth and when they attained optical density of 0.8, the cultures 

were divided into two equal portions and one portion was induced with IPTG 

while the other half was not induced.  

Total proteins were harvested and ran on 7.5% SDS-PAGE gel and the ~62kDa 

bands were still observed for the IPTG induced strains having the 

pET3aBam30Ea or pET3aBam40Da plasmids but not with the uninduced 

strains and the BL21 (DE3) without the plasmids as shown in figure 5.7. 
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Figure 5.7: SDS-PAGE gel picture of the induced and non-induced strains of E. 

coli BL21 (DE3) harbouring plasmids pET3aBam30Ea and pET3aBam40Da. 

Lane 1: Protein molecular weight marker, Lane 2: ~62kDa (pointed by yellow 

arrow)  protein band from strain harbouring pET3aBam30Ea induced with IPTG, 

Lane 3: Total protein from strain harbouring pET3aBam30Ea without IPTG 

induction, Lane 4: ~62kDa (pointed by red arrow)  protein band from strain 

harbouring pET3aBam40Da induced with IPTG, Lane 5: Total protein from 

strain harbouring pET3aBam40Da without IPTG induction, Lane 6: Total protein 

from IPTG induced E. coli BL21 (DE3) without the plasmids 

 

 

Characterisation of the expressed proteins 

The expressed proteins were tested for alkaline solubility at pH11 and protease 

activation according to the method in section 2.2.9. The results show that the 

~62kDa protein was not seen when the supernatant from the alkaline solubility 

test was ran on SDS-PAGE gel but the ~62kDa band was still present in the 

pellet meaning that the proteins are not soluble in alkali. Results from SDS-

PAGE gel analysis of the total reaction mixes and supernatants from the 

protease activation experiments show that the protease resistant core of about 

50-60kDa typical of Cry-proteins was not seen meaning that the proteins were 

destroyed by protease as shown in figure 5.8. 
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Figure 5.8: SDS-PAGE Gel picture showing alkaline  solubility  and protease 

activation characterisation of  the ~62kDa protein band. Lane 1: Total reaction 

sample from 50mM Na2CO3 pH11 solubility test of ~62kDa band from 

pET3aBam30Ea strain showing the presence of ~62kDa band (pointed by black 

arrow), Lane 2: Supernatant from 50mM Na2CO3 pH11 solubility test of ~62kDa 

band from pET3aBam30Ea strain indicating absence of the ~62kDa band, Lane 

3: Total reaction sample from trypsin activation test of ~62kDa band from 

pET3aBam30Ea strain indicating absence of resistant core, Lane 4: 

Supernatant from trypsin activation test of ~62kDa band from pET3aBam30Ea 

strain indicating absence of resistant core, Lane 5: Total reaction sample from 

50mM Na2CO3 pH11 solubility test of ~62kDa band from pET3aBam40Da strain 

showing the presence of ~62kDa band (pointed by red arrow), Lane 6: 

Supernatant from 50mM Na2CO3 pH11 solubility test of ~62kDa band from 

pET3aBam40Da strain indicating absence of the ~62kDa band, Lane 7: Total 

reaction sample from trypsin activation test of ~62kDa band from 

pET3aBam40Da strain indicating absence of resistant core, Lane 8: 

Supernatant from trypsin activation test of ~62kDa band from pET3aBam40Da 

strain indicating absence of resistant core and Lane 9: Protein molecular weight 

marker 
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From the characterisation results of the expressed ~62kDa proteins, it was 

thought that changing the culturing conditions like concentration of IPTG, 

culture temperature after inductions and time of growth after inductions, a 

functional protein could be obtained. With this assumption considered, the 

clones were cultured at 37oC, induced with IPTG to concentration of 0.25mM, 

0.5mM and 1mM, grown after induction at temperatures of 20oC, 25oC and 30oC 

and grown for 8 hours, 12 hours and 24 hours after induction. 

The proteins from these cultures were harvested and they all show the ~62kDa 

protein on SDS-PAGE gel but were neither soluble in alkaline solution nor 

produce a resistance core from protease activation experiments as summarised 

in table 5.5. 
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IPTG 
conc. 
(mM) 
 

Temperature 

(oC) 

 
 

Time of 
incubation 
after 
IPTG 
induction 

Protein 
size on 
SDS-
PAGE 
(~kDa) 
 
 

Alkaline 
solubility 
 
 

Protease 
activation 
 
 

0.25 20 24 hours 62 Not 

Soluble 

No 

protease 

resistant 

core 

0.5 20 8 hours 62 Not 

Soluble 

No 

protease 

resistant 

core 

1.0 20 16 hours 62 Not 

Soluble 

No 

protease 

resistant 

core 

0.5 25 24 hours 
 

62 Not 

Soluble 

No 

protease 

resistant 

core 

0.5 30 8 hours 62 Not 
Soluble 

No 
protease 
resistant 
core 

 

Table 5.5: Summary of the changes in IPTG concentration, temperature of 

growth after IPTG induction and time of growth after IPTG induction and 

characteristics of expressed proteins 
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5.2.2.3 Utilising native cry1Ac-promoter with Bt shuttle vector backbone  

            pSV2 and  IPS 78/11 acrystalliferous Bt as host 

The plasmid pSV2 is a shuttle vector that has origin of replication in Bt and E. 

coli. It has multiple cloning sites, which includes a BamHI site that was used for 

the cloning of the coding sequences of cry30Ea or cry40Da genes carrying 

native cry1Ac-promoter in their upstream regions. 

To construct plasmids pSV21AcP30Ea and pSV21AcP40Da aimed at 

expressing cry30Ea or cry40Da genes under the control of native cry1Ac-

promoter in acrystalliferous Bt, DNA fragments used were BamHI linearized 

pSV2 and sequence of native cry1Ac-promoter/cry30Ea or cry40Da genes with 

BamHI overhangs. 

Sequence of native cry1Ac-promoter/cry30Ea or cry40Da genes were obtained 

from the plasmids pGEM1AcP30Ea and pGEM1AcP40Da previously 

constructed in section 5.2.2.1. Primer pair 1AcPF 5’ gagctcggATcccaacaccctgg 

3’/1AcPR 5’ gatattGGaTcctgagtttgcatgag 3’ were designed with base changes 

as shown with capital letters to introduce BamHI sites at 5’ and 3’ ends using 

PRIMER SELECT programme. This primer pair was the same for both cry30Ea 

and cry40Da genes as the regions they bind to in the template plasmids 

pGEM1AcP30Ea and pGEM1AcP40Da are the same because they share the 

same vector backbone pGEM1AcP. 

Using High Fidelity PCR Master system from Roche according to the 

manufacturers amplification instructions, needed fragments were amplified from 

pGEM1AcP30Ea and pGEM1AcP40Da plasmids and the PCR products were 

ran on 1% agarose gel and required bands of 2259bp (cry30Ea) and 2169bp 

(cry40Da) were excised and purified according to the PCR products purification 

procedure described in section 2.2.3. The PCR products were first cloned into a 

pGEM-T vector from Promega and E. coli JM109 was transformed with the 

ligation mix. Plasmids extracted from transformants harbouring positive clones 

were digested with BamHI to release 1AcP30Ea and 1AcP40Da fragments with 

BamHI overhangs. The fragments of 1AcP30Ea and 1AcP40Da sequences 

released from pGEM-T1AcP30Ea and pGEM-T1AcP40Da with BamHI 

overhangs would now be known as 1AcP30Ea and 1AcP40Da for clarity.  

pSV2 plasmid was extracted from the clone of E. coli JM109 harbouring it and 

the extracted plasmid was digested with BamHI in the presence of phosphatase. 
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The linearised pSV2 was ran on 1% agarose gel and purified from its band 

excised from the gel according to the procedure outlined in section 2.2.3. 

The gel purified DNA fragments of linearised pSV2, 1AcP30Ea and 1AcP40Da 

were ligated according the recipe outlined in table 5.6 while Figure 5.9 shows a 

diagrammatic illustration of how the plasmids pSV21AcP30Ea and 

pSV21AcP40Da were made. 

 

 

Table 5.6: Recipe for ligation of DNA fragments to form plasmids 

pSV21AcP30Ea and pSV2AP40Da 

 

The ligation mixes were incubated at room temperature for 3 hours and then 

stored at 4oC overnight. 

E. coli JM109 were then transformed with the ligation mixes and many 

transformants were rapid size screened as described in section 2.2.5  to check 

for colonies harbouring the plasmid pSV21AcP30Ea and pSV21AcP40Da. 

Colonies whose plasmid size on agarose gel were higher than that of pSV2 

which was used as control, had the potential of having the insert 1AcP30Ea and 

1AcP40Da. Plasmid DNA were extracted from clones with insert and the correct 

orientation of 1AcP30Ea or 1AcP40Da were confirmed by digesting extracted 

plasmid from pSV21AcP30Ea with HaeIII and BamHI and plasmid from 

pSV21AcP40Da with EcoRI and BamHI (data not shown). The plasmids 

pSV21AcP30Ea and pSV21AcP40Da were successfully and acrystalliferous 

strain of Bt IPS 78/11 were transformed with the confirmed plasmids according 

to the method in section 2.2.3.2. Successful transformation of IPS 78/11 was 

confirmed by extracting plasmids from IPS 78/11 clones, retransform E. coli 

Components pSV21AcP30Ea pSV21AcP40Da 

H2O 5.0µl 5.5µl 

pSV2 0.5µl 0.5µl 

1AcP30Ea 3.0µl    - 

1AcP40Da    - 2.5µl 

10x Ligase buffer 1.0µl 1.0µl 

T4 DNA ligase 0.5µl 0.5µl 
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JM109 and then minipreped and digest extracted plasmids alongside the 

original plasmid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.9: Schematic showing the construction of the plasmids pSV2AP30Ea 

and pSV2AP40Da 

 

 

 

 

 

Expression of Cry30Ea or Cry40Da proteins in acrystalliferous Bt IPS 

78/11 under the control of native cry1Ac-promoter 

The clones of IPS 78/11 harbouring the plasmid pSV21AcP30Ea or 

pSV21AcP40Da were grown in 5ml of Luria broth for 16 hours 30oC. Five Petri 

plates of 25ml Luria agar with 5μg/ml concentration of chloramphenicol were 

inoculated 1ml each with the 16 hour culture of the clones and grown at 30oC 
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for 5 days. Total protein were harvested as described in section 2.2.8.3 and ran 

on 7.5% SDS-PAGE gel but the protein bands of 77.6kDa and 73.5kDa from 

cry30Ea and cry40Da genes were not seen on gel as shown in figure 5.10.  

As the required bands of 77.6kDa and 73.5kDa were not seen when the clones 

were grown at 30oC, they were then grown at other temperatures including 20oC, 

25oC and 37oC. Total proteins were harvested from each set of culture and 

analysed on SDS-PAGE gel and the required bands were not still seen (data 

not shown). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10:  Picture of SDS-PAGE gel showing total proteins from Bt IPS 78/11 

strains harbouring pSV21AcP30 or pSV21AcP40Da plasmids. Lane 1: Protein 

molecular weight marker, Lane 2: Total protein from Bt strain IPS 78/11 

harbouring pSV21AcP30Ea, Lane 3: Total protein from Bt strain harbouring 

pSV21AcP40Da and Lane 4: Total protein from Bt strain IPS 78/11 without the 

plasmid  
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5.2.2.4 Utilising cyt1A-promoter of plasmid pSVP27 and IPS 78/11  

             acrystalliferous Bt as host 

Plasmid pSVP27 is a vector for gene expression in Bt under the control of cyt1A 

promoter constructed by fusing a sequence with cyt1A promoter to pSV2 and 

incorporating multiple cloning sites including BamHI downstream of the 

promoter (Crickmore and Ellar, 1992). 

To construct plasmids pSVP271AcRBS30Ea and pSV271AcRBS40Da aimed at 

expressing cry30Ea or cry40Da genes under the control of native cyt1A-

promoter in acrystalliferous Bt, DNA fragments used were BamHI linearized 

pSVP27 and sequence containing 1Ac-Ribosome binding site/cry30Ea or 

cry40Da genes with BamHI overhangs. 

Sequence of 1Ac-Ribosome binding site/cry30Ea or cry40Da genes were 

obtained from the plasmids pGEM1AcP30Ea and pGEM1AcP40Da previously 

constructed in section 5.2.2.1. Primer pairs R30_40F 5’ aatgGatCCgtatctt- 

aataaaagagatgg 3’/R30_40R 5’ gatattGGaTcctgagtttgcatgag 3’ were designed 

with base changes as shown with capital letters to introduce BamHI sites at 5’ 

and 3’ ends using PRIMER SELECT programme. This primer pair was the 

same for both cry30Ea and cry40Da genes as the regions they bind to in the 

template plasmids pGEM1AcP30Ea and pGEM1AcP40Da are the same 

because they share the same vector backbone pGEM1AcP. 

Using High Fidelity PCR Master system from Roche according to the 

manufacturers amplification instructions, needed fragments were amplified from 

pGEM1AcP30Ea and pGEM1AcP40Da plasmids and the PCR products were 

ran on 1% agarose gel and required bands of 2134bp (cry30Ea) and 2044bp 

(cry40Da) were excised and purified according to the PCR products purification 

procedure described in section 2.2.3. The PCR products were first cloned into a 

pGEM-T vector from Promega and E. coli JM109 was transformed with the 

ligation mix. Plasmids extracted from transformants harbouring positive clones 

were digested with BamHI to release 1AcRBS30Ea and 1AcRBS40Da 

fragments with BamHI overhangs.  

pSVP27 plasmid was extracted from the clone of E. coli JM109 harbouring it 

and the extracted plasmid was digested with BamHI in the presence of 

phosphatase. The linearised pSVP27 was ran on 1% agarose gel and purified 
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from its band excised from the gel according to the procedure outlined in 

section 2.2.3. 

The gel purified DNA fragments of linearised pSVP27, 1AcRBS30Ea and 

1AcRBS40Da were ligated according the recipe outlined in table 5.7 while figure 

5.11 illustrates how the plasmids pSVP271AcRBS30Ea and 

pSVP271AcRBS40Da were constructed. 

 

 

Table 5.7: Recipe for ligation of DNA fragments to form plasmids 

pSVP271AcRBS30Ea and pSVP271AcRBS40Da 

 

 

The ligation mixes were incubated at room temperature for 3 hours and then 

stored at 4oC overnight. 

E. coli JM109 were then transformed with the ligation mixes and many 

transformants were rapid size screened as described in section 2.2.5 to check 

for colonies harbouring the plasmid pSVP271AcRBS30Ea and 

pSVP271AcRBS40Da. Colonies whose plasmid size on agarose gel were 

higher than that of pSVP27 which was used as control, had the potential of 

having the insert 1AcRBS30Ea and 1AcRBS40Da. Plasmid DNA were 

extracted from clones with insert and the correct orientation of 1AcRBS30Ea 

and 1AcRBS40Da were confirmed by digesting extracted plasmid from 

pSVP271AcRBS30Ea with HaeIII and BamHI and plasmid from 

pSVP271AcRBS40Da with EcoRI and BamHI (data not shown). The plasmids 

pSVP271AcRBS30Ea and pSVP271AcRBS40Da were successfully formed and 

acrystalliferous Bt IPS 78/11 were transformed with confirmed plasmids 

Components pSVP271AcRBS30Ea pSVP271AcRBS40Da 

H2O 5.0µl 5.5µl 

pSVP27 0.5µl 0.5µl 

1AcRBS30Ea 3.0µl    - 

1AcRBS40Da    - 2.5µl 

10x Ligase buffer 1.0µl 1.0µl 

T4 DNA ligase 0.5µl 0.5µl 



 148 

according to the method in section 2.2.3.2. Successful transformation of IPS 

78/11 was confirmed by extracting plasmids from IPS 78/11 clones, retransform 

E. coli JM109 and then minipreped and digest extracted plasmids alongside the 

original plasmid.  

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 
 
 
 
Figure 5.11: Schematic showing the construction of the plasmids 

pSVP271AcRBS30Ea and pSVP271AcRBS40Da 
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Expression of Cry30Ea or Cry40Da proteins in acrystalliferous Bt IPS 

78/11 under the control of native cyt1A-promoter 

The clones of IPS 78/11 harbouring the plasmid pSVP271AcRBS30Ea or 

pSVP271AcRBS40Da were grown in 5ml of Luria broth for 16 hours at 30oC. 

Five Petri plates of 25ml Luria agar with 5μg/ml concentration of 

chloramphenicol were inoculated 1ml each with the 16 hour culture of the 

clones and grown at 30oC for 5 days. Total protein were harvested as described 

in section 2.2.8.3 and ran on 7.5% SDS-PAGE gel but the protein bands of 

77.6kDa and 73.5kDa from cry30Ea and cry40Da genes were not seen on gel 

(data not shown).  

As the required bands of 77.6kDa and 73.5kDa were not seen when the clones 

were grown at 30oC, they were then grown at other temperatures including 20oC, 

25oC and 37oC. Total proteins were harvested from each set of culture and 

analysed on SDS-PAGE gel and the required bands were not still seen (data 

not shown). 

 

 
5.2.2.5 Replacing ORF-2 of cry41A operon with the coding sequence of  

            cry30Ea or cry40Da with E. coli JM109 as host  

To construct the expression vectors p101BamBam30Ea and 

p101BamBam40Da for the expression of cry30Ea and cry40Da genes, the 

plasmid p101 which is a plasmid constructed by inserting the operon of 

cry41Aa1 gene lacking ORF-1 into pGEM-T vector (Vidisha Krishnan-

unpublished data) was used. p101 plasmid carries a putative promoter and 

ribosome binding site, orf-2 (Cry-gene block 1-5) and orf-3 (Cry-gene block 6-8) 

of cry41Aa1 and orf-2 is known to be a short cry-gene while orf-3 is the carboxyl 

end of a 130kDa Cry toxin (Yamashita et al, 2005). Since the C-terminal (block 

6-8) segment of cry-genes have been shown to enhance crystal formation and 

stability of Cry proteins (Naimov, et al, 2006, Song et al, 2008), the replacement 

of orf-2 (block 1-5) of p101 with the short cry-genes (cry30Ea and cry40Da) may 

hypothetically enhance their expression and crystal formation since the plasmid 

will provide them with their lacking orf-3 (block 6-8). cry30Ea and cry40Da are 

usually split-genes meaning that their open reading frames normally form 

operons comprising of two or more reading frames (Juarez-Perez et al., 2003; 
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Ito et al, 2006). One of the open reading frames contains the conserved 

sequence of most cry-genes designated as blocks 1-5 while the frame following 

this is another conserved sequence of cry-genes designated as block 6-8 

(Juarez-Perez et al, 2003, Yamashita, et al, 2005, Ito et al, 2006). To facilitate 

the cloning of cry30Ea or cry40Da genes into the orf-2 position of p101 which 

will supply them with their lacking blocks 6-8, PCR primer pair p101BamF 5’ 

CCGTGTGCAACTATCCCTGAC 3’/ p101BamR 5’ ATCCTCCATTCCATTT- 

CTATCC 3’, which amplify p101, excluding the orf-2 of cry41Aa1 were designed. 

The primers were designed such that the PCR product when ligated will have a 

BamHI site through which cry30Ea or cry40Da genes could be inserted. 

BamHI sites were also created at the 5’ and 3’ ends of cry30Ea and cry40Da 

genes through their PCR amplification with primers designed to introduce the 

BamHI sites. The primer pair 30_40F 5’ GAGATGGGGATCCCTTATGA ATTC 

3’ and 30_40R 5’ GATATTGGATCCTGAGTTTGCATGAG 3’ were designed 

with introduction of BamHI sites as shown by the blue fonts. The BamHI sites 

present at both 5’ and 3’ ends were introduced in such a way that when 

cry30Ea or cry40Da with BamHI overhangs is ligated to BamHI digested 

p101Bam, their start codon will be seven base pairs away from the ribosome-

binding site. The primer pair 30_40F/30_40R was suitable for amplifying 

cry30Ea and cry40Da because they were in the same vector and share similar 

bases at their 5’ ends. 

Using the primer pair p101BamR/p101BamF and p101 as template, Pfu Ultra 

Master mix was used in the amplification of a segment of p101 designated as 

p101Bam (6086bp) while the primer pair 30_40F/30_40R was used in the 

amplification of cry30Ea and cry40Da from pGEM1AcP30Ea and 

pGEM1AcP40Da respectively using Taq polymerase master mix. The purified 

PCR products of p101Bam, cry30Ea and cry40Da are shown on figure 5.13.  

The use of Pfu Ultra Master mix for p101Bam amplification was to capitalize on 

the 3’→5’ proofreading ability of Pfu thus producing a blunt ended PCR product 

while Taq polymerase master mix was used for amplification of cry30Ea and 

cry40Da because the 3’ addition of adenosine (A) by Taq polymerase was to be 

used in direct cloning of the PCR product into pGEM-T vector for ease of 

digestion with BamHI and final cloning into p101Bam. 
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The PCR product of 6086bp from the primer pair p101BamF/p101BamR was 

gel purified according to the method described in section 2.2.3 and 3µl of it was 

ligated in the presence of 5.5µl of water, 1µl of 10x ligase buffer and 0.5µl of 

ligase. 

E. coli JM109 were transformed with the ligation mixes according to the method 

outlined in section 2.2.4.1. The colony harbouring the formed plasmid of 

p101Bam was confirmed by digesting extracted plasmid with BamHI giving a 

single band of 6086bp. The PCR products from the primer pair 30_40F/30_40R 

of 2111bp and 2020bp with pGEM1AcP30Ea and pGEM1AcP40Da respectively 

as templates were first cloned into pGEM-T vector, which enhanced their 

digestion with BamHI. The digestion fragments of 2096bp for cry30Ea and 

2005bp for cry40Da from pGEM-TBam30Ea and pGEM-TBam40Da 

respectively were gel purified and ligated to BamHI digested p101Bam plasmid 

as shown in table 5.8. Figure 5.12 illustrates the construction of the plasmids 

p101BamBam30Ea or p101BamBam40Da from BamHI linearised p101Bam 

and cry30Ea or cry40Da with BamHI overhangs. 
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Figure 5.12: Schematic for the construction of p101BamBam30Ea and 

p101BamBam40Da 
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              Plasmids 

Components P101Bambam30Ea P101BamBam40Da 

H2O 4.5µl 4.5µl 

Bam30Ea 3µl - 

Bam40Da - 3µl 

p101Bam 1µl 1µl 

10x ligase buffer 1µl 1µl 

Ligase 0.5µl 0.5µl 

                               

Table 5.8: Recipe for the ligation of Bam30Ea and Bam40Da respectively to 

BamHI linearized p101Bam for the formation of p101BamBam30Ea and 

p101BamBam40Da plasmids 

 

E. coli JM109 was transformed with the ligation mixes according to the protocol 

in section 2.2.4.1. The colonies harbouring p101BamBam30Ea and 

p101BamBam40Da were confirmed by digestion of plasmids extracted from 

transformants with BamHI. The correct orientation of cry30Ea in 

p101BamBam30Ea was confirmed by digestion with NdeI while that of cry40Da 

in p101BamBam40Da was confirmed by digestion with NcoI. The plasmids 

p101BamBam30Ea and p101BamBam40Da were successfully formed as the 

expected bands from their restriction digestion gave the expected bands as 

shown in figure 5.14 though the expected band of 54bp from 

p101BamBam30Ea digestion with NdeI could not be seen on gel as it is too 

small to be detected. 
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Figure 5.13: Gel picture showing the PCR products of cry30Ea (2111bp), 

cry40Da (2020bp) and p101Bam (6086bp) from primer pairs 

Cry30_40F/Cry30_40R and p101BamF/p101BamR. Lane 1: PCR product of 

2111bp using primer pairs 30_40F/30_40R with pGEM1AcP30Ea as template, 

Lane 2: PCR product of  2020bp using primer pairs Cry30_40F/Cry30_40R with 

and pGEM1AcP40Da as template, Lane 3: PCR product of 6086bp using primer 

pair p101BamF/p101BamR with p101 as template, Lane 4: DNA marker 
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Figure 5.14: Gel picture confirming the successful construction of the plasmids 

p101Bam, p101BamBam30Ea and p101BamBam40Da. Lane 1: p101Bam 

digestion with BamHI producing a single band of 6086bp, Lane 2: digestion of 

p101BamBam30Ea with BamHI producing Bam30Ea fragment  (2096bp) and 

linear p101Bam (6086bp), Lane 3: Digestion of  p101BamBam30Ea with NdeI 

producing band sizes of 5265bp, 1396bp, 714bp, 577bp and 171bp (pointed by 

red arrow), Lane 4: Digestion of p101BamBam40Da with BamHI producing 

Bam40Da fragment (2005bp) and linear p101Bam (6086bp), Lane 5: Digestion 

of p101BamBam40Da with NcoI producing band sizes of 7441bp and 646bp 

and Lane 6: DNA marker. 

 

 

 

Expression of Cry30Ea or Cry40Da proteins in E. coli JM109 

The strains of E. coli JM109 harbouring the plasmid p101BamBam30Ea and 

p101BamBam40Da were grown in a 2x Luria broth for 3 days at 37oC after 

which the total protein were harvested as described in section 2.2.8.1. The total 

proteins were ran on 7.5% SDS-PAGE gel but the protein bands of 77.6kDa 

and 73.5kDa from cry30Ea and cry40Da genes were not seen on gel but a band 

which was about 84kDa was seen for both clones as shown in figure 5.15.  

The ~84kDa bands were excised and sent for sequencing and the sequencing 

results showed that they were product of ORF3. 
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Figure 5.15: Picture of SDS-PAGE gel showing total proteins from E. coli JM109 

strains harbouring plasmids p101BamBam30Ea or p101BamBam40Da. Lane 1: 

Protein molecular weight marker, Lane 2: Total protein from E. coli JM109 strain 

harbouring plasmid p101BamBam30Ea showing ~84kDa band (pointed by 

black arrow) and Lane 3: Total protein from E. coli JM109 strain harbouring 

plasmid p101BamBam40Da showing ~84kDa band (pointed by red arrow) 

 

 

 

 

5.2.2.6 Coupling the coding sequence of cry30Ea and cry40Da at the C- 

            terminal end to the C-terminal of Cry4Aa to make a hybrid gene  

            using the pET3aBam30Ea or pET3aBam40Da plasmids and E. coli  

            BL21 (DE3) as host 

Considering the fact that Cry30Ea and Cry40Da are short Cry-proteins lacking 

the C-terminal half (blocks 6-8) of a full length 130kDa Cry-proteins and always 

form an operon with an ORF having homology to C-terminal of full length Cry-

protein, we decided to fuse their proteins with the C-terminal half of Cry4Aa, 

which is a full length Cry toxin, to form a hybrid protein. The C-terminal (blocks 

6-8) of Cry proteins have been shown to facilitate crystallisation and its linkage 

to Cry30Ea and Cry40Da may enhance their expression and folding. 

To determine where about in the C-terminal of cry30Ea and cry40Da to start the 

fusion of C-terminal of cry4Aa, multiple sequence alignment using ClustalW 

 

95kDa 

72kDa 

52kDa 

       1                      2                      3 
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programme (Larkin et al, 2007) was conducted using the deduced protein 

sequences for Cry30Ea and Cry40Da and the protein sequence of Cry4Aa. 

From the multiple sequence analysis, a conserved region close to the C-

terminal end of the Cry30Ea and Cry40Da deduced protein sequences was 

observed as seen in figure 5.16 underlined with red line. A proline which is the 

the last amino acid in the observed conserved block pointed by the dark yellow 

arrow in figure 5.16 was the last amino acid for Cry30Ea and Cry40Da that will 

be used in the fusion while the beginning of the C-terminal of Cry4Aa used for 

the fusion was the isoleucine pointed by the pink arrow in figure 5.16 which 

follows the end of the conserved block. 

 

 

 

 

 

 

 

 

Figure 5.16: Multiple sequence alignment indicating the ends of Cry30Ea and 

Cry40Da and beginning of Cry4Aa C-terminal used in the fusion protein 

construction. The dark yellow arrow points to the end of C-terminal conserved 

blocks for Cry30Ea and Cry40Da, the pink arrow points to the beginning of 

Cry4A C-terminal used in the fusion while the red line shows the C-terminal 

conserved region from the three protein sequences 

 

With the ends of Cry30Ea and Cry40Da sequences determined through the 

multiple sequence alignment, PCR primers 304AF 5’ GGATCCGGC- 

TGCTAACAAAG 3’/304AR 5’ TGGATATAATTCGATTCTGTCAATAATT 3’ for 

Cry30Ea and 404AF 5’ GGATCCGGCTGCTAACAAAG 3’/404AR 5’ 

CGGTAAAAATTCAATTTTGTCAATG 3’ for Cry40Da were designed to amplify 

the truncated cry30Ea and cry40Da including the pET3a vector in 

pET3aBam30Ea and pET3aBam40Da plasmids respectively excluding the 

sequence starting from methionine (Cry30Ea) and aspartic acid (Cry40Da). 

Primers pair 4ACF 5’ ATTACTCGTTCTATAAGAGAGGATAGAGAG 3’/4ACR 5’ 

 

Cry4Aa 
Cry30Ea 
Cry40Da 
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TCACTCGTTCATGCAAATTAATTCAATG were also designed to amplify 

Cry4Aa C-terminal starting from isoleucine down to its stop codon. For simplicity, 

the PCR product using 304AF/304AR primers with pET3aBam30Ea as template 

will be designated as pET3a30Ea, while the PCR product using 404AF/404AR 

with pET3aBam40Da as template will be designated as pET3a40Da. Also the 

C-terminal fragment amplified from Cry4Aa gene using primer pair 4ACF/4ACR 

will be designated as 4Aa. 

Using Pfu Ultra Hotstart PCR Master Mix system according to the 

manufacturers amplification instructions, pET3a30Ea, pET3a40Da and 4Aa 

sequences were amplified and PCR products were ran on 1% agarose gel and 

required bands of 6680bp (pET3a30Ea), 6542bp (pET3a40Da) and 1515bp 

(4Aa) were excised and purified according to the PCR products purification 

procedure described in section 2.2.3. 

The gel purified PCR products of 6680bp (pET3a30Ea), 6542bp (pET3a40Da) 

and 1515bp (4c)  were ligated according the recipe outlined in table 5.9 while 

figure 5.17 gives a diagrammatic presentation of how the pasmids pET3a30Ea-

4Aa and pET3a40Da-4Aa were constructed. 

 

 

Table 5.9: Recipe for ligation of DNA fragments to form plasmids pET3a30Ea-

4Aa and pET3a40Da-4Aa 

 

The ligation mixes were incubated at room temperature for 3 hours and then 

stored at 4oC overnight. 

E. coli JM109 were transformed with the ligation mixes and many transformants 

were screened to check for colonies harbouring the plasmid pET3a30Ea-4Aa 

Components pET3a30Ea-4Aa pET3a40Da-4Aa 

H2O 1.5µl 1.5µl 

4Aa    5µl    5µl 

pET3a30Ea    2µl    - 

pET3a40Da    -    2µl 

10x Ligase buffer    1µl    1µl 

T4 DNA ligase 0.5µl 0.5µl 
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and pET3a40Da-4Aa. Clones harbouring plasmid pET3a30Ea-4Aa with the 

correct orientation of cry4Aa C-terminal fragment (4Aa) were confirmed by 

digesting extracted plasmid with EcoRI and BamHI (data not shown). The 

construction of the plasmid pET3a40Da-4Aa was not successful with the first 

ligation. To enhance the construction of the plasmid pET3a40Da-4Aa, a new 

ligation mix of 20μl volume was made and incubated at 15oC for 4 hours and 

then at 4oC for 16 hours. The ligation mix was then extracted in 1:1 mixture of 

ligation mix to phenol-chloroform solution. This was to help detach any ligase 

molecules that could be bound to the ligating DNA fragments thus reducing the 

molecular weight of the ligation product and easing its transportation through 

the E. coli cell wall. The ligation mix/phenol-chloroform mixture was centrifuged 

at 14,000xg for 10 minutes and the supernatant was carefully extracted and 

used in transformation of E. coli JM109. The construction of the plasmid 

pET3a40Da-4Aa was not still successful. 

E. coli BL21(DE3) were transformed with confirmed pET3a30Ea-4Aa plasmid 

and transformed E. coli BL21(DE3) was confirmed by extracting and digesting 

plasmids from transformants. 
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Figure 5.17: Schematic illustrating the strategy used in the construction of 

plasmids pET3a30Ea-4Aa or pET3a40Da-4Aa from ligation of pET3a30Ea or 

pET3a40Da to cry4Aa C-terminus (4Aa) 

 

 

Expressing cry30Ea-4Aa gene from plasmid pET3a30Ea-4Aa under the 

control of T7 promoter through IPTG induction 

E. coli BL21 (DE3) harbouring pET3a30Ea-4Aa plasmid was subcultured into 

10ml of Luria broth containing 100µg/ml of ampicillin and grown overnight. The 

10mls overnight culture was inoculated into a fresh 100ml Luria broth containing  

100µg/ml of ampicillin and grown to optical density of 0.802. At this optical 

density, 50µl of 1M IPTG was added to the culture and grown at 37oC for 16 

hours. Total protein was harvested according to the method described in 

pET3a30Ea or 
pET3a40Da 

cry4Aa C-terminus (4Aa) 

BamHI site 

BamHI site 

pET3a30Ea-4Aa 

(8195bp) OR 

pET3a40Da-4Aa 

(8057bp) 

pET3a 

cry30Ea or 
cry40Da with 
deleted C-
terminus  

Ligation 
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section 2.2.8.2. The total protein was run on 7.5% SDS-PAGE gel and the 

expected protein band of about 133.5kDa was seen on gel, though very faint.  

To confirm that the observed band of ~134kDa was from the gene cry30Ea-4Aa, 

the BL21 (DE3) clone with the pET3a30Ea-4Aa plasmid and  BL21 (DE3) 

without the plasmid were grown as previously described but in 200mls Luria 

broth and when they attained optical density of 0.7, the cultures were divided 

into two equal portions and one portion was induced with IPTG while the other 

half was not induced.  

Total proteins were harvested and ran on 7.5% SDS-PAGE gel and the 

~134kDa band was still observed  with the IPTG induced clone having the 

pET3a30Ea-4Aa plasmid but not with the uninduced strain and the BL21 (DE3) 

without the plasmids as shown in figure 5.18. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: SDS-PAGE picture of the induced and non-induced strain of E. coli 

BL21 (DE3) harbouring the plasmid pET3a30Ea-4Aa. Lane 1: Total protein from 

E. coli BL21 (DE3) harbouring plasmid pET3a30Ea-4Aa induced with IPTG 

showing presence of ~134kDa band (pointed by black arrow), Lane 2: Total 

protein from E. coli BL21 (DE3) harbouring plasmid pET3a30Ea-4Aa but not 

induced induced with IPTG, Lane 3: Total protein from E. coli BL21 (DE3) 

without the plasmid pET30Ea-4Aa and Lane 4: Protein molecular weight marker 
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Characterisation of the expressed fusion protein 

The expressed protein was tested for alkaline solubility and protease activation 

according to the method in section 2.2.9. The results in figure 5.19 shows that 

the ~134kDa protein was not seen when the supernatant from the pH11 alkaline 

solubility test was ran on SDS-PAGE gel but the ~134kDa band was still 

present in the pellet meaning that the protein is not soluble in alkaline solution. 

Results from SDS-PAGE gel analysis of the total reaction mixes and 

supernatants from the protease activation experiments show that the protease 

resistant core of about 50-60kDa typical of Cry-proteins was not seen. This 

means that the protein was degraded by protease. 

From the characterisation results of the expressed ~134kDa protein, it was 

hoped that by changing the culturing conditions like concentration of IPTG, 

culturing temperature after inductions and time of growth after inductions, a 

functional protein could be obtained. With this assumption considered, the clone 

was cultured at 37oC, induced with IPTG to concentration of 0.25mM, 0.5mM 

and 1mM, grown after induction at temperatures of 20oC, 25oC and 30oC and 

grown for 8 hours, 12 hours and 24 hours after induction. 

The proteins from these cultures were harvested and they all show the 

~134kDa protein on SDS-PAGE gel but were neither soluble in alkaline solution 

nor produce a resistance core from protease activation experiments as shown 

in table 5.10. 
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Figure 5.19: SDS-PAGE Gel picture showing the ~134kDa, alkaline solubility 

and protease activation test. Lane 1: Protein molecular weight marker, Lane 2: 

Total reaction sample from 50mM Na2CO3 pH11 solubility test of ~134kDa band 

from pET3a30Ea-4Aa strain showing the presence of ~134kDa band (pointed 

by black arrow), Lane 3: Supernatant from 50mM Na2CO3 pH11 solubility test of 

~134kDa band from pET3a30Ea-4Aa strain indicating absence of the ~134kDa 

band, Lane 4: Total reaction sample from trypsin activation test of ~134kDa 

band from pET3a30Ea-4Aa strain indicating absence of resistant core, Lane 5: 

Supernatant from trypsin activation test of ~134kDa band from pET3a30Ea-4Aa 

strain indicating absence of resistant core. 
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IPTG conc. 
(mM) 
 

Temperature 

(oC) 

 
 

Time of 
incubation 
after 
IPTG 
induction 

Protein 
size on 
SDS-
PAGE 
(~kDa) 
 
 

Alkaline 
solubility 
 
 

Protease 
activation 
 
 

0.25 20 24 hours 134 Not 

Soluble 

No 

protease 

resistant 

core 

0.5 20 8 hours 134 Not 

Soluble 

No 

protease 

resistant 

core 

1.0 20 16 hours 134 Not 

Soluble 

No 

protease 

resistant 

core 

0.5 25 24 hours 
 

134 Not 

Soluble 

No 

protease 

resistant 

core 

0.5 30 8 hours 134 Not 
Soluble 

No 
protease 
resistant 
core 

 

Table 5.10: Summary of the changes in IPTG concentration, temperature of 

growth after IPTG induction and time of growth after IPTG induction and 

characteristics of expressed proteins 
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5.2.2.7 Attempting co-expression of cry30Ea and cry40Da genes in  

        crystal toxin producing strain of Bt 

It was reported by Slim et al, 2010 (Contributed paper, SIP Meeting, Turkey-

2010) that a Cry protein that is not usually expressed could be expressed if a Bt 

strain that is already capable of expressing and forming a crystalline inclusion 

body of Cry toxins is transformed with a plasmid carrying the non-expressing 

toxin gene. 

Wild type Bt strain Cry+HD73 which expresses Cry1Ac were transformed with 

plasmids pSV21AcP30Ea, pSV21AcP40Da, pSVP271AcRBS30Ea and 

pSVP271AcRBS40Da constructed in sections 5.2.2.3 and 5.2.2.4 for 

expression of cry30Ea and cry40Da. 

Successful transformation of Cry+HD73 was confirmed by extracting plasmids 

from transformants that were chloramphenicol resistance, retransforming E. coli 

JM109 with extracted plasmids and then minipreping transformed E. coli JM109 

and digesting extracted plasmids alongside the original plasmids.  

 

 

Expression of Cry30Ea or Cry40Da proteins in Cry+HD73 clones 

harbouring the plasmids pSV21AcP30Ea, pSV21AcP40Da, 

pSVP271AcRBS30Ea or pSVP271AcRBS40Da 

The clones of Cry+HD73 harbouring the plasmid pSV21AcP30Ea, 

pSV21AcP40Da, pSVP271AcRBS30Ea or pSVP271AcRBS40Da were grown in 

5ml of Luria broth for 16 hours at 30oC. Five Petri plates of 25ml Luria agar with 

5μg/ml concentration of chloramphenicol were inoculated 1ml each with the 16 

hour culture of the clones and grown at 30oC for 5 days. Observation of the 

growth on plates under the light microscope shows that the cells have 

sporulated and formed bipyramidal crystals. Total protein were harvested as 

described in section 2.2.8.3 and ran on 7.5% SDS-PAGE gel but the protein 

bands of 77.6kDa and 73.5kDa from cry30Ea and cry40Da genes were not 

seen but the 130kDa band of Cry+HD73 native Cry1Ac protein was seen on gel 

(data not shown).  

As the required bands of 77.6kDa and 73.5kDa were not seen when the clones 

were grown at 30oC, they were then grown at other temperatures including 20oC, 

25oC and 37oC. Total proteins were harvested from each set of culture and 
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analysed on SDS-PAGE gel but the required bands were not still seen (data not 

shown). 

 

5.3 Discussion 

Despite the various strategies utilised to enhance the expression of cry30Ea 

and cry40Da genes that were amplified from mosquitocidal strains of Bacillus 

thuringiensis S2160-1 and S2196-1respectively, a functional protein could not 

be expressed. 

The utilisation of native cry1Ac-promoter in pGEM-T vector backbone with E. 

coli JM109 as host that could not express cry30Ea and cry40Da genes has 

been found to be very effective in expressing other cry-genes including Cry1Ac 

(unpublished data), Cry1Ie, CryIe∆, Cry1IeA522V, Cry1IeY442H, Cry1Ah and 

CryAIA as described in chapter 3 and 4 of this thesis. Among these cry1Ac-

promoter controlled expressed proteins are short wild type Cry-protein Cry1Ie; 

full-length wild type Cry-protein Cry1Ac and Cry1Ah; genetically manipulated 

short Cry-protein CryIe∆, Cry1IeA522V and Cry1IeY442H; and full length 

genetically manipulated Cry-protein CryAIA. 

Expression of cry30Ea and cry40Da genes utilising cry1Ac or cyt1A-promoters 

in acrystalliferous Bt was not successful despite the changes in culturing 

conditions. cyt1A-promoter has been used in the expression of Cry1Ah as 

described in chapter 3 and has been used in the expression of Cry2A 

(Crickmore and Ellar, 1992). cry1Ac-promoter has been used in expression of 

Cry11A with Bacillus brevis as host (Roh et al, 2010). 

Though the expression of cry30Ea and cry40Da genes under the control of T7 

promoter gave a protein band that was associated with the clones harbouring 

the plasmids pET3aCry30Ea or pET3aCry40Da, the observed protein bands of 

~62kDa fall short of the expected band of 77.8kDa and 73.5kDa  respectively 

for Cry30Ea and Cry40Da thus casting doubts on the source of the ~62kDa 

bands. Normally there should have been a difference in band size between the 

protein expressed from cry30Ea and cry40Da genes but this was not the case 

as ~62kDa observed was the same for both clones. Moreover, alkaline solubility 

characterisation and protease activation failed to prove that the observed 

~62kDa bands were Cry toxins. The observed results cast doubts on the 

functional integrity of the cry30Ea and cry40Da genes because T7 promoter has 
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been used in expressing functional Cry toxins like Cry1Ie, a short Cry-protein 

(Song et al, 2003), Cry2A and its mutant and a full length Cry-protein (Mandal et 

al, 2007). Vip3Ba1 a member of a class of insecticidal protein expressed during 

vegetative growth of some strains of Bacillus thuringiensis has been cloned 

from a strain of Bacillus thuringiensis and expressed in E. coli under the control 

of T7 promoter (Rang et al, 2005). The use of E. coli BL21 Rosetta which has 

been shown to express other Cry toxins did not rescue the expression of 

cry30Ea or cry40Da genes in a complete and functional form. 

The function of each of the domains in a Cry protein has been extensively 

studied and the C-terminal (blocks 6-8) has been found to be cysteine rich and 

function in the stability and enhancement of crystal formations through 

disulphide bonds (Wabiko and Yasuda, 1995, Naimov et al, 2006, Song et al, 

2008). The stability of Cry30Ea could not be achieved despite the construction 

of hybrid protein that was made up of cry30Ea gene and a C-terminal of cry4Aa 

gene. Despite the strategy designed to make sure that the transition from 

Cry30Ea into Cry4Aa C-terminal in the hybrid protein was as close to the 

continuation of Cry4Aa as possible, the hybrid protein could only produce a 

required band of ~134kDa protein that turn out to be non-functional.  

Though cry30Ea and cry40Da genes have a high level of similarity to members 

of their groups in the Bacillus thuringiensis toxin nomenclature as reviewed by 

Crickmore et al, 1998 and hosted at the web link (http://www.lifesci.- 

sussex.ac.uk/ Home/Neil_Crickmore/Bt/), it might be that they are pseudogenes. 

Pseudogenes are basically open reading frames that are homologous to 

functional genes but cannot be expressed due to mutation that preclude their 

expression or lack of some flanking control region in the promoter (Cammack et 

al, 2006). Martin et al, 2010 computational analysis of the genome of Bacillus 

anthracis reveals pseudogenes with promoters that maintain transcriptional 

activity. It has been reported that a frame shift in the coding region of a novel 

tomato class I basic chitinasegene results in the formation of a pseudogene 

(Baykal et al, 2006). Reports have also shown that a nonsense and missense 

mutation in Chlamydia trachomatis serovar L2 and D strains results in the 

formation of pseudogenes (Giles et al, 2009). In the case of cry30Ea and 

cry40Da, it does not seem to be the lack of some flanking control region in the 

promoter that is rendering them non functional because upstream elements like 
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cry1Ac, cyt1A, T7 promoters and ribosome binding site have been supplied to 

them and they cannot still be expressed whereas these upstream elements 

have been used in the expression of other genes. It is likely that their 

pseudogene status is as result of mutation within the open reading frame which 

could be nonsense, missense, insertion or deletion as pairwise sequence 

alignment with members of their groups as shown in appendices 3 and 4 

indicates differences like insertions and deletions. 

With the numerous methods that have been used to express other genes failing 

to expression cry30Ea and cry40Da genes, the functional integrity of these 

open reading frames is therefore questionable and they can rather be seen as 

pseudogenes that have been accumulated in the genome of the strains S2160-

1 and S2196-1respectively during evolutionary process. 
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Chapter 6: Development of a protocol for in vivo selection of toxin  

                   variants with improved activity 

6.1 Introduction 

The creation of Cry toxin mutant libraries has been achieved through directed 

evolution techniques like DNA shuffling (Craveiro et al., 2010), error prone PCR 

(Shu et al., 2007) and a combination of error-prone PCR, staggered extension 

process (StEP) shuffling and Red/ET homologous recombination (Shan et al., 

2011). Though these methods might create vast number of mutants, selecting 

for a variant with improved toxicity is always laborious, time consuming and 

expensive if all the variants created are to be individually tested for activity. With 

the perceived cost involved in screening every mutant created through directed 

evolution techniques, screening of such libraries is often through a random 

selection of a few which has a possibility of leaving out mutants with improved 

toxicity that was sort for in the first place. To exemplify the amount of time and 

resources that could be wasted in assaying every individual in a mutant library, 

out of 35 clones that were selected and assayed by Shu et el., 2007, 21 clones 

showed reduced toxicity, 6 clones showed similar toxicity as the wild type while 

8 clones showed increased toxicity meaning that about 77% of time and 

resources were wasted.  

Considering the high cost associated with screening every strain in a mutant 

library, we were interested in investigating the possibility of whether a strain 

expressing a more active toxin could be enriched for in a mixed pool in vivo 

which could be utilised in screening mutant libraries for strains with improved 

activity. This interest was based on the possibility of a strain expressing a more 

active toxin germinating and replicating faster than a strain expressing a less 

active toxin in vivo. As demonstrated by Du and Nickerson, 1996 the presence 

of BBMVs from Manduca sexta increases the rate and completeness of Cry+ 

HD73 spore germination but not Cry- HD73 spores. They also showed that toxin 

receptors of 115 to 120kDa could be purified from Cry+ spores/solubilised 

BBMV’s complex which shows that there is specific interaction between the 

Cry+ spores and the insect gut receptors. Moreover, they demonstrated that 

spores from a crystal producing strain of Bt were activated for germination at 

alkaline pH 10.3 while non-crystal producing spores could not be activated 

under the same condition. Raymond et al., 2008a also demonstrated that four 
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strains of Bacillus thuringiensis var. kurstaki and one of Bacillus thuringiensis 

var. tenebrionis were capable of growing in alkaline pH. Meanwhile, studies 

have shown that the pH of midgut of insect orders like Lepidoptera and Diptera 

range from 8.0 to 12.4 (Berenbaum, 1980, Gringorten et al, 1993) which would 

be a suitable in vivo environment to test for spore germination. From these 

findings, Cry+ strains are better adapted to germination and reproducing in the 

midgut of lepidopteran than Cry- strains. The mode of action of three-domain 

Cry toxin has been proposed to involve a multi-step process of toxin crystal 

dissolution in the alkaline environment of the insect midgut to release protoxins. 

The released protoxins have been shown to be first processed by midgut 

proteases which removes the C-terminal half and approximately 30 amino acid 

residues from the N-terminal revealing the active toxins which then bind to 

receptors on epithelial cells of susceptible insect gut. This binding culminates 

into a second cleavage by membrane bound proteases which removes the N-

terminal helix α-1. The toxins which at this stage are bound to specific receptors, 

form oligomers which insert into the epithelial cell membrane (Bravo et al., 2004, 

Bravo et al., 2007, Gomez et al., 2007). Toxin insertion leads to the formation of 

lytic pores in microvilli of apical membranes (Bravo et al., 2007). Subsequently, 

cells lyse and disruption of the midgut epithelium releases the cell contents 

providing Bacillus thuringiensis spores a germinating medium leading to a 

severe septicaemia and insect death (de Maagd et al., 2001, Bravo et al., 2007). 

From these findings, it was thought that since Cry+ spore germination rate was 

enhanced by BBMV binding and Bt strains are capable of growing in alkaline 

environment as found in some insect guts, a strain with more active toxin would 

bind, germinate, replicate and dominate its less toxic counterpart in an in vivo 

pool.   

Studies have shown that crystals formed by Bacillus thuringiensis ssp. finitimus 

during sporulation are associated with the spores of the mother cells 

(Wojciechowska et al, 1999) while in other strains of Bt the crystals are 

dissociated from the mother cell spores after sporulation. Though the spores 

are separated from the crystals in many species, in the situation of an insect gut, 

it has been suggested that there is high possibility of having spores and their 

crystals still lying close together (Raymond et al., 2010). Moreover, traces of 

toxins could still be detected from samples of purified spores (Johnson and 
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McGaughey, 1996, Tang et al, 1996, Johnson et al, 1998) which shows how 

difficult separating spores from their crystal toxins could be and hence how 

likely it is to find them together. Du and Nickerson, 1996 also showed that 

purified spores from a Bt strain producing Cry1Ac toxin were able to cross-react 

with antibodies raised using a 65kDa protease activated core portion of Cry1Ac 

which means that toxins could be detected on spore surfaces. Crystal toxins 

have also been purified from extracted spore coat proteins (Aronson et al., 1982, 

Johnson et al., 1998). Purified spores from crystal producing strains of Bacillus 

thuringiensis have been found to be lethal to insect pests albeit at a much lower 

degree compared to the lethality of the crystal protein though the purified spores 

were still found to have some traces of toxins which could support their toxicity 

(Johnson and McGaughey, 1996, Tang et al, 1996, Johnson et al, 1998). It has 

also been shown that a mixture of crystal protein and spores from the same 

strain in a bioassay can result in a synergistic insecticidal activity (Johnson and 

McGaughey, 1996, Tang et al, 1996, Johnson et al, 1998) which could be as a 

result of familial interaction between the spores and the crystals. With the idea 

of close proximity between spores and its crystals, it was thought that spores 

from a strain whose toxin binds to insect gut and creates a lesion would be 

highly likely to be the one to get into the haemocoel and cause septicaemia 

hence the strain that will dominate a mixed infection. Moreover, since it is a 

toxin with higher activity that will bind better and better effect the lesion, it was 

thought that this could also be a means of enriching for a strain with more active 

toxin in vivo. 

The possibility of enriching for a strain of Bt with more active toxin in an in vivo 

mixed pool was also based on the findings that there exists competition and 

reproduction between pathogenic and non-pathogenic strains of Bacillus 

species in an in vivo mixed infection. Raymond et al., 2007 reported that 

Bacillus cereus, which is a non-insect-pathogenic Bacillus, dominated its toxin 

producing, Lepidopteran toxic counterpart Bacillus thuringiensis kurstaki in an in 

vivo mixed infection with Plutella xylostella as host. The dominance of Bacillus 

cereus agreed with the prediction that selection for virulence in a group infection 

involving related individuals will depend on group’s cooperation that will result in 

low energy cost (Brown et al., 2002). Also, as reported by West et al., (2007), 

individuals in a group can benefit from public goods that are produced by 
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related members of the group who are themselves negatively affected because 

they expend more energy than the benefiting members of the group thus having 

a reduced fitness. It was therefore expected that Bacillus cereus will dominate 

the crystal producing Bacillus thuringiensis kurstaki as the energy cost of 

Bacillus cereus reproduction is expected to be lower than that of the crystal 

producing Bacillus thuringiensis kurstaki. With competition observed between 

related species, it was thought that two crystal producing strains will have the 

same energy cost and that dominance will therefore be controlled by ability to 

bind to gut receptors and activation for germination that has been reported to 

favour toxic Cry+ strains. 

From the above, a hypothesis was proposed that Bt strain expressing a toxin 

with high toxicity would be preferentially activated for germination in the 

presence of its non or less functional Cry+ counterpart in an in vivo mixed 

infection, and that a cadaver from this mixed treatment will be dominated by Bt 

strain with higher toxicity. In this chapter, the results from in vivo experiments 

conducted to test germination and replication ability of Cry+ and Cry- spores of 

Bt in single and mixed infection, germination and replication ability of two Cry+ 

strains of Bt  with one expressing an active toxin and the other expressing a 

non-toxic variant in single and mixed infections will be investigated.  

 

6.2 Single and mixed treatment of Plutella xylostella with crystal and non- 

      crystal producing Bt strains and recovery of spores from dead and  

      living larvae 

This set of experiment was conducted to see whether a toxic crystal producing 

strain of Bt would out compete an acrystalliferous non-toxic strain in vivo. To 

enhance the recovery of Bt spores from insect cadavers, wild type Bt strain 

Cry+HD73 (crystalliferous) and its plasmid cured strain Cry-HD73 

(acrystalliferous) were transformed with plasmids pSV2 and pUBpUC which 

confer chloramphenicol and kanamycin resistance respectively. The 

transformed strains hereafter named as Cry+HD73/SV2, Cry-HD73/SV2, 

Cry+HD73/pUBpUC and Cry-HD73/pUBpUC were subcultured on 5μg/ml 

chloramphenicol or 50μg/ml kanamycin agar plates and single colonies from 

each strain were picked, cultured and stored. These stocks were used 

throughout these experiments. 



 173 

To obtain spores from Cry+HD73/SV2, Cry-HD73/SV2, Cry+HD73/pUBpUC, Cry-

HD73/pUBpUC, stock cultures were grown on 5μg/ml chloramphenicol or 

50μg/ml kanamycin agar plates for five days at 30ºC, growth was observed 

under the  microscope to make sure they had sporulated. The sporulated cells 

were recovered in 20ml of distilled water and pasteurized at 70ºC for 45 

minutes in water bath to inactivate vegetative cells. 

The spores were serially diluted and 100µl of the 10-6 dilution was plated in 

duplicate for each strain for spore count estimation as described in section 

2.2.8.5. The inoculated plates were incubated overnight at 30ºC and colonies 

counted as shown in table 6.1. 

 

 

        

     Colonies 

 

 

Strain 
Plate 1 Plate 2 

 

 

Average 

colonies 

Number  of 

spores/ml 

of sample 

Cry+HD73/SV2 46 42 44 4.4 X 108 

Cry-HD73/SV2 112 106 109 1.1 X 109 

Cry+HD73/pUBpUC 

 

110 90 100 1.0 X 109 

Cry-HD73/pUBpUC  532 488 500 5.0 X 109 

 

Table 6.1: Quantification of spores/crystals in Cry+HD73/SV2, Cry-HD73/SV2, 

Cry+HD73/pUBpUC, Cry-HD73/pUBpUC 
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The number of spores/ml for each strain was calculated using the formula 

                                   

                                      Average number of colonies 

                                   Plated dilution X amount plated 

 

The spore concentrations were prepared in 30ml of water containing 50μl/L 

triton using either a single strain or a combination of two strains as shown in 

table 6.2. The spore dilutions were exposed to 3rd instar larvae of Plutella 

xylostella as described in material and methods section 2.2.13.1.  

 

Treatment  

type   

Strains of Bacillus thuringiensis and spore concentration  

Control No Cry+HD73/pUBpUC or Cry-HD73/pUBpUC 

single Cry+HD73/SV2(1000/ml) 

single Cry-HD73/SV2(1000/ml) 

single Cry+HD73/pUBpUC(1000/ml)  

single Cry-HD73/pUBpUC(1000/ml)  

mixed Cry+HD73/SV2(1000/ml)+ Cry-HD73/SV2(1000/ml) 

mixed Cry+HD73/pUBpUC(1000/ml) + Cry-HD73/pUBpUC(1000/ml)  

mixed Cry-HD73/pUBpUC(1000/ml)  + Cry+HD73/SV2(1000/ml) 

mixed Cry+HD73/pUBpUC(1000/ml) + Cry-HD73/pUBpUC(2000/ml)  

mixed Cry+HD73/pUBpUC(2000/ml)  + Cry-HD73/pUBpUC(2000/ml)  

 

Table 6.2: Types of Plutella xylostella treatment including strains and quantity of 

spores/ml in each sample 

 

After exposing five 3rd instar larvae of Plutella xylostella to the treated cabbage 

leaf discs for seven days, the dead and live larvae were recovered and larvae 

from each disc were homogenised in 0.85%(w/v) NaCl solution. The 

homogenates were pasteurized at 70ºC for 45 minutes to kill vegetative cells. 

The spore suspensions from strains with pSV2 plasmid were plated out on 

chloramphenicol plates for single colonies while those from stains with pUBpUC 

plasmid were plated out on kanamycin plates for single colonies. The plates 
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were incubated at 30ºC overnight. Single Bacillus thuringiensis colonies from 

the chloramphenicol plate could not be recovered as contaminants possibly 

from the insect’s gut or cabbage leaf discs outgrow and covered the plate but 

single colonies of Bacillus thuringiensis from the kanamycin plates were 

subcultured and incubated at 30ºC for five days. On the fifth day, the growths 

were observed under the light microscope for spores and crystals and the 

results was as shown in table 6.3. 

 

 

Treatment Total number of 

kanamycin 

resistance 

colonies  

observed 

Number 

of Cry+ 

strains 

Number 

of Cry-

strains 

Control 0 0 0 

Cry+HD73/pUBpUC(1000/ml)  

 

46 46 0 

Cry-HD73/pUBpUC(1000/ml)  

 

50  0 50 

Cry+HD73/pUBpUC(1000/ml) 

and Cry-HD73/pUBpUC(1000/ml)  

112 74 38 

Cry-HD73/pUBpUC(1000/ml)  

and Cry+HD73/SV2(1000/ml)  

62  0 62 

Cry+HD73/pUBpUC(1000/ml)  

and Cry-HD73/pUBpUC(2000/ml)  

82 42 40 

Cry+HD73/pUBpUC(2000/ml)  

and Cry-HD73/pUBpUC(1000/ml)  

 

96 11 85 

 

Table 6.3: Strains and number of cells recovered from exposed larvae of 

Plutella xylostella 
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From the results presented in table 6.3, the control experiment in which the 

insects were not exposed to any of the Bt strains did not produce any 

kanamycin resistant Bt which was in line with what was expected. The reliability 

of the results was also bolstered by the fact that the strain of Bt recovered from 

insects exposed to a particular strain of Bt in the single treatment was the same 

as the strain they were exposed to. The recovery of only Cry-/kanamycin 

resistance strain from a mixed treatment that involved Cry+/chloramphenicol 

resistance strain and Cry-/kanamycin resistance strain, showed that there was 

no in vivo plasmid transfer between the two strains of Bt used in the mixed 

treatment. Dominance of the Cry- strain was not observed when concentration 

of spores for both Cry- and Cry+ strains were at 1000/ml but surprisingly its 

dominance was observed when the Cry- spore concentration was at 1000/ml 

with the Cry+ at 2000/ml but not when Cry- concentration was at 2000/ml and 

the Cry+ at 1000/ml. The dominance of the Cry- strain could be as a result of the 

fact that the fitness of the Cry+ which produces toxin that kills the insect is 

reduced while the Cry- is only on the receiving side and therefore gained fitness 

(West et al., 2007). With no clear dominance between the Cry- and Cry+ strains 

of Bt used in the above experiment, a competition between toxic and non-toxic 

crystal producing Bt strains was investigated to find out if toxicity could enrich 

for Bt strains recovered from in vivo experiments involving two crystal producing 

Bt strains which are expected to have same metabolic load. 

 

6.3 Single and mixed treatment of Plutella xylostella with toxic and non- 

      toxic crystal producing Bt strains and selection of spores from dead  

      and living larvae 

Spores of Bt used in this experiments were from the strains 431 and R128M, 

while spore free toxin was from E. coli JM109 strain engineered to express 

Cry1Ca toxin. 431 is an engineered strain made by transforming the 

acrystalliferous Bt strain IPS 78/11 with a Bt shuttle vector carrying the wild type 

cry1Ca gene. The vector confers chloramphenicol and kanamycin resistance to 

transformed clones. It expresses the wild type cry1Ca gene and forms 

bipyramidal crystalline inclusion bodies on sporulation and its spore/crystal mix 

is lethal to susceptible Plutella xylostella. R128M on the other hand is an 

engineered strain made by transforming the acrystalliferous Bt strain IPS 78/11 
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with a Bt shuttle vector carrying a mutated cry1Ca gene in which arginine at 

position 128 has been mutated through base change to methionine which 

renders the toxin inactive. The vector confers chloramphenicol resistance to 

transformed clones. It expresses the mutated cry1Ca gene and forms 

bypyramidal crystalline inclusion bodies on sporulation but its spore/crystal mix 

is not lethal to Plutella xylostella. Wild type Cry1Ca expressed in E. coli JM109 

is toxic to Plutella xylostella. 

The Bt strains, 431 and R128M were subcultured to single colonies and a 

colony picked for each strain and stored in the freezer as stock. Inoculum was 

taken from the pure stock culture and plated out on 50μg/ml kanamycin agar 

plate (431) or 5μg/ml chloramphenicol agar plate (R128M) and incubated at 

30oC for 5 days to allow for sporulation and crystal formation. On the fifth day, 

observation of the cultures under the light microscope confirmed that they had 

sporulated and formed crystals. Crystal proteins and spores were harvested 

and quantified according to the method described in sections 2.2.8.4 and 

2.2.8.5. Based on the spore count and crystal protein concentration estimates, 1 

millilitre of both 431 and R128M spore/crystal mixes were estimated to contain 

approximately 5.0x109 spores and 667μg of crystal protein. 

E. coli JM109 harbouring the plasmid for the expression of the wild type Cry1Ca 

was grown in Luria broth containing 100μg/ml of ampicillin for 3 days and the 

expressed Cry1Ca was harvested as described in section 2.2.8.1. Its 

concentration was estimated according to the method described in section 

2.2.8.4 to be 1667μg/ml. 

Sublethal doses of spore/crystal mix of 431 were made using sterile distilled 

water as shown in table 6.4. The sublethal doses of 431 were made based on a 

toxicity assay that was conducted using its spore/crystal mix. R128M 

spore/crystal mix was also diluted to similar spore concentrations as 431 as 

shown in table 6.4. A bioassay as described in section 2.2.13.2 was conducted 

to estimate the LC50 for E. coli expressed Cry1Ca and it was found to be 

approximately 2μg/ml.  
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Strain Spore count/ml Corresponding toxin 

concentration   (μg/ml) 

431 or R128M 1,000 0.00013 

431 or R128M 5,000 0.00067 
 

431 or R128M 10,000 0.00133 

431 or R128M 20,000 0.00267 

431 or R128M 50,000 
 

0.00667 

431 or R128M 100,000 
 

0.01334 

 

Table 6.4: Dilutions of spore/crystal mixes of 431 and R128M 

 

To test the in vivo activation/germination and replication of the spores of 431 

and R128M, the spore/crystal mix dilutions of table 6.4 were made in 30ml of 

triton water and used in Plutella xylostella assays according to the method 

described in section 2.2.13.2. The assay was left for 5 days after which each 

larva whether dead or alive was crushed in 50μl of sterile distilled water in 1.5ml 

Eppendorf tubes and left at room temperature for 5 days to enhance sporulation 

of Bt cells in the cadaver. On the fifth day, the larvae were homogenised in 

500μl of sterile distilled water. The homogenates were pasteurised at 62oC for 

30 minutes to get rid of vegetative cells and possible gut flora. One hundred 

microlitre of the homogenates from each larva was plated onto 50μg/ml 

kanamycin agar plate (431) or 10μg/ml chloramphenicol agar plate (R128M) 

and incubated overnight at 30oC for single colony counts. The number of spores 

recovered for 431 and R128M were approximately the same and is represented 

in table 6.5. As control, insects were also reared with the same diet that was 

used in assaying 431 and R128M and the cadavers were also harvested as 

described for 431 and R128M but no spores were recovered when control 

samples were plated on chloramphenicol plates. The absence of spores from 
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the control samples confirmed that the spores recovered from 431 and R128M 

treated cadavers were from 431 and R128M. 

 

 

Spore count/ml (431 or R128M) 

Used in assay 

Spores recovered 

from plates 

1,000 - 

5,000 + 
 

10,000 ++ 

20,000 +++++ 

50,000 
 

+++++++ 

100,000 
 

++++++++++ 

 

Table 6.5: Tabular representation of the spores recovered from larvae of 

Plutella xylostella exposed to varying concentrations of 431 or R128M. (- means 

no spores recovered while + represents the relative number of spores 

recovered)  

 

 

As shown in table 6.5, no spores were recovered for both 431 and R128M at 

spore concentration of 1,000/ml possibly because the concentration was too low 

which reduces the probability of insect ingestion or to initiate an infection. It was 

also observed that the number of spores recovered from cadavers was directly 

proportional to the spore concentration used in the assay. 

To test the in vivo competition ability between the spores of 431 and R128M, 

spore dilutions of 1x104, 2x104, 5x104 and 105 were made in 30ml of triton water 

containing 2μg/ml of E. coli expressed Cry1Ca and used in Plutella xylostella 

assay according to the method described in section 2.2.13.2. The E. coli 

expressed Cry1Ca was added to effect the killing of about 50% of the larvae as 

the spore concentrations for 431 used in these experiments were sublethal. The 
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killing of about 50% of the assayed population was necessary because Bt 

spores were only recovered in good number from dead larvae even at spore 

concentrations of 1x104, 2x104, 5x104. The assay was left for 5 days after which 

each larva was crushed in 50μl of sterile distilled water in 1.5ml Eppendorf 

tubes and left at room temperature for 5 days to enhance sporulation of Bt cells 

in the cadaver. On the fifth day, the larvae were homogenised in 500μl distilled 

water. The homogenates were pasteurised at 62oC for 30 minutes to get rid of 

vegetative cells and possible gut flora. One hundred microlitre of the 

homogenates from each larva was first plated onto 10μg/ml chloramphenicol 

agar plate because both 431 and R128M are chloramphenicol resistant and 

incubated overnight at 30oC for single colonies.  Single colonies picked from 

chloramphenicol plates were each streaked on a 50μg/ml kanamycin agar plate 

and then a 10μg/ml chloramphenicol agar plate and grown overnight at 30oC to 

differentiate between 431 (which are kanamycin resistant) from R128M (which 

are kanamycin sensitive). As control, insects were also reared on the same 

batch of diet that was used in with 431 and R128M but the diet was  treated with 

triton water containing 2μg/ml of the spore free E. coli expressed Cry1Ca. 

Samples from the the control experiment were plated on chloramphenicol plates 

but no colonies were recovered which bolstered the fact that the spores 

recovered from 431/R128M treated cadavers were actually from 431 and 

R128M. The different strains recovered from the cadavers treated with 431 and 

R128M in the presence of 2μg/ml of E. coli expressed Cry1Ca were as shown in 

tables 6.6 to 6.12. 
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Spore ratio 

(431:R128M) 

Larval 

status 

431 R128M Number of 

colonies 

observed from 

each larva 

Dead 0 10 10 

Dead 0 10 10 

10,000:50,000 

       (1:5) 

Dead 2 8 10 

Total 2 28 30 

Percentage  6.7% 93.3%  

Dead 10 0 10 

Dead 0 50 50 

Dead 44 0 44 

50,000:10,000 

      (5:1)          

Dead 50 0 50 

Total  104 50 154 

Percentage  67.5% 32.5%  

 
 
Table 6.6: Tabular presentation of strains of Bt spores recovered from dead 

larvae of Plutella xylostella infected with 431 and R128M at the ratios of 

10,000:50,000 (1:5) and 50,000:10,000 (5:1) 
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Spore ratio (431:R128M) Larval 

status 

 

431 

 

R128M 

 

Number of 

colonies 

observed from 

each larva 

Dead 1 9 10 

Dead 0 10 10 

20,000:100,000 

       (1:5) 

Dead 0 10 10 

Total  1 29 30 

Percentage  3.3% 96.7%  

Dead 0 10 10 

Dead 8 2 10 

Dead 0 10 10 

Dead 37 5 42 

100,000:20,000 

       (5:1) 

Dead 50 0 50 

Total  95 27 122 

Percentage  77.9% 22.1%  

 

Table 6.7: Tabular presentation of strains of Bt spores recovered from dead 

larvae of Plutella xylostella infected with 431 and R128M at the ratios of 

20,000:100,000 (1:5) and 100,000:20,000 (5:1) 
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Spore ratio 

(431:R128M) 

Larval 

status 

431 R128M Number of 

colonies 

observed 

from each 

larva 

Dead 10 2 10 

Dead 0 8 8 

Dead 0 9 9 

Dead 0 9 9 

5,000:5,000 

    (1:1) 

Dead 0 20 20 

Total  10 48 58 

Percentage  17.2% 82.8%  

 

Table 6.8: Tabular presentation of strains of Bt spores recovered from dead 

larvae of Plutella xylostella infected with 431 and R128M at the ratio of 

5,000:5,000 (1:1) 
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Spore ratio 

(431:R128M) 

Larval 

status 

431 R128M Number of 

colonies 

observed from 

each larva 

Dead 0 20 20 

Dead 0 20 20 

Dead 0 20 20 

Dead 0 7 7 

Dead 11 9 20 

Dead 20 0 20 

Dead 15 5 20 

Dead 0 11 11 

Dead 0 12 12 

1
0
,0

0
0

:1
0
,0

0
0
 

(1
:1

) 

Dead 12 8 20 

Total  58 112 170 

Percentage  34.1% 65.9%  

        

Table 6.9: Tabular presentation of strains of Bt spores recovered from dead 

larvae of Plutella xylostella infected with 431 and R128M at the ratio of 

10,000:10,000 (1:1) 

 

 

 

 

 

 

 

 

 

 

 

 



 185 

Spore ratio 

(431:R128M) 

Larval 

status 

431 R128M Number of 

colonies 

observed from 

each larva 

Dead 17 3 20 

Dead 0 20 20 

Dead 8 12 20 

Dead 11 9 20 

Dead 4 16 20 

Dead 2 18 20 

Dead 0 3 3 

Dead 0 5 5 

Dead 4 1 5 

1
0
0

,0
0

0
:1

0
0

,0
0
0
 

(1
:1

) 

Dead 2 8 10 

Total  48 95 143 

Percentage 33.6% 66.4%  

 

Table 6.10: Tabular presentation of strains of Bt spores recovered from dead 

larvae of Plutella xylostella infected with 431 and R128M at the ratio of 

100,000:100,000 (1:1) 
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Spore ratio 

(431:R128M) 

Larval 

status 

431 R128M Number of 

colonies 

observed from 

each larva 

Dead 1 19 20 

Dead 7 13 20 

Dead 8 12 20 

Dead 5 15 20 

Dead 0 20 20 

Dead 1 19 20 

Dead 2 18 20 

Dead 2 18 20 

Dead 0 20 20 

2
0
0

,0
0

0
:2

0
0

0
,0

0
0
 

(1
:1

) 

Dead 0 20 20 

Total  26 174 200 

Percentage 13% 87%  

 

Table 6.11: Tabular presentation of strains of Bt spores recovered from dead 

larvae of Plutella xylostella infected with 431 and R128M at the ratio of 

200,000:200,000 (1:1) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 187 

Spore ratio 

(431:R128M) 

Larval 

status 

431 R128M Number of 

colonies 

observed from 

each larva 

Dead 1 19 20 

Dead 0 20 20 

Dead 1 19 20 

Dead 1 19 20 

Dead 3 17 20 

Dead 0 20 20 

Dead 6 14 20 

Dead 0 20 20 

Dead 4 16 20 

1
,0

0
0
,0

0
0
:1

,0
0
0
,0

0
0
 

(1
:1

) 

Dead 1 19 20 

Total  17 183 200 

Percentage 8.5% 91.5%  

 

Table 6.12: Tabular presentation of strains of Bt spores recovered from dead 

larvae of Plutella xylostella infected with 431 and R128M at the ratio of 

1,000,000:1,000,000 (1:1) 
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Table 6.13: Sum of all the spores of 431 and R128M recovered from the 

different ratios of treatment 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: A bar graph for percentage of 431 and R128M spores recovered 

from cadarvers of insects exposed to spore ratios of 1:1, 1:5 and 5:1 

 

 

The results shown in tables 6.6 to 6.12 showed that larval death was low at 

lower spore concentrations while much death was recorded as the spore 

concentration increased. It was also observed that fewer spores (less than 100) 

were recovered from cadavers exposed to lower spore concentrations. When 

fewer spores (less than 100) were recovered from a larva, all the spores were 

analysed but when many colonies were recovered from a larva, only 20 

colonies picked from different areas of the plate were further analysed. From 

tables 6.6 and 6.7 in which 431 and R128M were used at the ratio of 1:5 and 

5:1, it was observed that in most cadavers the strain with a larger proportion 

Spore ratio 

(431:R128M) 

431 R128M Total 

1:1 159 (20.6%) 612 (79.4%) 771 

1:5 3 (5%) 57 (95%) 60 

5:1 199 (72.1%) 77 (27.9%) 276 
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was the one that was recovered in greater numbers though there were few 

cases where the lesser strain was recovered in greater numbers. The observed 

trend of dorminance of strain with larger proportion is also shown in figure 6.1 

where a bar chart of the percentage of strains recovered from each ratio is 

presented. A general trend was that R128M seems to dominate more than 431. 

From tables 6.8 to 6.12 where 1:1 ratio of 431/R128M was used at spore 

concentrations of 5,000 (table 6.8), 10,000 (table 6.9), 100,000 (table 6.10), 

200,000 (table 6.11) and 1000,000 (table 6.12), it was observed that in most of 

the cases, the strains recovered was dominated by R128M and this dominance 

increase as the spore concentration increases. To test the significance of these 

results a G test of independence was conducted using spores recovered from 

cadavers that were exposed to different spore ratios (table 6.13) to test the null 

hypothesis that there is no difference between the fitness of 431 and R128M. 

From the test a positive G-value of 13.19 with a P-value of 0.001367 was 

obtained which shows that the null hypothesis is not true and was rejected 

meaning that there is a difference in fitness between 431 and R128M. The null 

hypothesis could have been accepted if a negative G-value was obtained. The 

dominance of R128M could be as result of synergistic interaction between its 

spores and the Cry1Ca toxin that was used or as a result of the fact that 431 

has a different plasmid which might have had a negative impact on its fitness. 

These results do not support the hypothesis that a Bt strain expressing a toxin 

with high toxicity will be preferentially enriched in vivo as R128M that was 

recovered in higher number in most cases is non-toxic.  

Since 431 and R128M were made by transforming an acrystalliferous Bacillus 

thuringiensis spp. israelensis (Bti) with a plasmid carrying wild type cry1Ca (431) 

and mutated cry1Ca (R128M) genes and judging from the fact that the wild type 

cry1Ca gene was originally cloned from Bacillus thuringiensis spp. aizawai (Bta), 

synergism between E. coli expressed Cry1Ca  and spores of 431, R128M and 

other Bt spores was investigated. This investigation was based on an aspect of 

the hypothesis which relies on a familial interaction between spore and 

expressed toxin which may only take place between related spores and crystals. 

As such it would be expected that spores from a Bti strain expressing a Bta 

toxin may not have spore-associated toxin, germinate better or synergise 

compared with a Bta strain (its normal host) expressing Cry1Ca.  
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6.4 Synergism between spores from 431 and E. coli expressed Cry1Ca;  

      spores from R128M and E. coli expressed Cry1Ca;  spores from Cry- 

      IPS 78/11 and E. coli expressed; Cry-HD73 and E. coli expressed  

      Cry1Ca. 

Synergism studies were conducted between E. coli expressed Cry1Ca and 

spores from the non-toxic Bt strains R128M, IPS 78/11 and Cry-HD73 and 

spores from the toxic strain 431. Late third instar larvae of Cry toxin sensitive 

population of Plutella xylostella were exposed to 2μg/ml of the E. coli expressed 

Cry1Ca (about LC20 dose) in combination with 100,000 spores/ml of the various 

Bt strains. The 100,000 spores/ml of 431 was a sublethal dose to Plutella 

xylostella. The larvae were also exposed to a solution containing only 2µg/ml of 

the E. coli expressed Cry1Ca as well as solutions containing only 100,000 

spores/ml of the Bt strains. The assay method used in testing the synergism 

was as described in section 2.2.13.2. From previous experiments the 2µg/ml of 

Cry1Ca toxin added was expected to effect a 20% mortality while the 100, 000 

spores/ml solutions of R128M, IPS 78/11 and 431 are not expected to effect 

mortality but the Cry-HD73 spores at 100,000 spores/ml are expected to effect 

about 1% mortality. On the fifth day, the number of dead and live larvae were 

counted and recorded as shown in table 6.14.  
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Toxin and/or spore/crystal 

mix 

Number of 

dead insects 

out of 20 

Number of  

live insects 

out of 20 

Cry1Ca (2μg/ml) 4 16 

431 (100,000 spores/ml) + 

Cry1Ca (2μg/ml) 

11 9 

431 (100,000 spores/ml) 0 20 

R128M (100,000 spores/ml) 

+ Cry1Ca (2μg/ml) 

15 5 

R128M (100,000 spores/ml) 0 20 

IPS 78/11 (100,000 

spores/ml) + Cry1Ca 

(2μg/ml) 

12 8 

IPS 78/11 (100,000 

spores/ml) 

0 20 

Cry-HD73 (100,000 

spores/ml) + Cry1Ca 

(2μg/ml) 

14 6 

Cry-HD73 (100,000 

spores/ml) 

2 18 

 

Table 6.14: Display of the number of dead and live larvae from the synergism 

studies between spores of 431, R128M, Cry-IPS 78/11, Cry-HD73 and E. coli 

JM109 expressed Cry1Ca  
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Toxin and or 

spore/crystal mix 

Expected  

mortality 

Observed  

mortality 

P-value 
 

Statistical 
significance 
of results 

431 (100,000 

spores/ml) + Cry1Ca 

(2μg/ml) 

20% 55% 0.0242 Significant 

R128M (100,000 

spores/ml) + Cry1Ca 

(2μg/ml) 

20% 75% 0.0006 Extremely 

significant 

IPS 78/11 (100,000 

spores/ml + Cry1Ca 

(2μg/ml) 

20% 60% 0.0112 Significant 

Cry-HD73 (100,000 

spores/ml) + Cry1Ca 

(2μg/ml) 

21% 70% 0.0001 Extremely 

significant 

 

Table 6.15: Tabular presentation of the expected and observed mortality from 

the spore/crystal synergistic experiments and the calculated P-values with their 

statistical significance 

 

From the Fisher’s exact test of the expected and observed mortality resulting 

from the synergism studies shown in table 6.15, all the spores from the different 

Bt strains synergised E. coli expressed Cry1Ca but the synergism observed 

with R128M and Cry-HD73 spores were judged to be extremely significant as 

their P-values were 0.0006 and 0.0001 respectively.  

 

 

6.5 Discussion 

The exposure of Plutella xylostella larvae to toxic crystalliferous and non-toxic 

acrystalliferous Bacillus thuringiensis in a mixed treatment was to find out if the 

toxin producing strain will always reproduce and out compete the 

acrystalliferous non-toxic strain in the insect or vice versa. Results from the 

treatments in which the insects were exposed to a mixture of 2000 spores/ml of 

Cry+ and 1000 spores/ml of Cry- showed that the Cry- dominates the Bt 
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population pulled from the cadavers making up 88.5% of the Bt isolated 

compared to Cry+ 11.5% which was in line with previous experimental results by 

Raymond et al, 2007 which showed that Btk a toxin producing strain was 

dominated by its non-crystal producing counterpart Bc in an in vivo experiments. 

The dominance of the Cry- could also be explained in the light of the theory of 

cooperation that exist among related individuals in a group (West et al., 2007). 

With the cooperation theory, the Cry- could be seen as being passive in 

producing substances that kill the insect but only benefit by feeding on the 

cadaver while the Cry+ strain expends its energy to kill at a cost to its fitness. In 

a set of mixed treatment in which both Cry+ and Cry- were at 1000 spores/ml, 

out of 112 colonies recovered from treated larvae and observed, 74 were Cry+ 

while 38 were Cry-. Results from another mixed treatment in which Cry+ was at 

1000 spores/ml and Cry- at 2000 spores/ml showed that out 82 colonies 

recovered, 42 were Cry+ while 40 were Cry-. It would have been expected that 

since Cry- was able to dominate the Cry+ even when it was at half the Cry+ 

concentration, that it would even show more degree of dominance at ratios 1:1 

and 1:2 but this was not the case as the Cry+ dominates the Bt population 

pulled from the cadavers from 1:1 treatment while Cry+ and Cry- were at equal 

proportion when cadavers from 1:2 treatment were analysed. Possible reason 

for the dominance of the Cry+ strain could be that the insect fed on the Cry+ 

strain and later stopped eating as  the sequence of events leading to the killing 

of insect larvae by Bt toxin has been shown to proceed from toxin ingestion 

which culminates into loss of appetite (Ibagutxi et al, 2006). Therefore, if after 

ingesting the Cry+ strain, the larvae lost appetite then this can give the Cry+ the 

edge of germination and replication over the Cry-. A possibility that the insect 

could feed more on a single strain from a leaf disc treated with a solution of 

mixed strains is because feeding on any of the strain deposited on a leaf disc is 

a random event and may not be random at all times as live insect keep moving 

around. The inconsistency in the number of a specific strain recovered from the 

larvae treated with the toxic crystalliferous and non-toxic acrystalliferous strains 

of Bacillus thuringiensis could also be that the competition that was observed 

between Btk and Bc (Raymond et al., 2007) is not existing between the strains 

used in these experiments.  
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Using the strains 431 and R128M which are both crystal producing strains, the 

results obtained from their single strain treatment of Plutella xylostella showed 

that at low concentration of 1,000 spores/ml there was no larval death and no Bt 

cells could be recovered from the insect cadavers but when the spore 

concentration was increased to 5000 spores/ml, there was recovery of spores 

from the cadavers though no death was registered. The observed increase in 

number of colonies recovered from cadavers of insects that were alive at the 

point of harvest which were treated with high concentration of spores could be 

that the bacteria were able to regulate their virulent factors to their advantage in 

what is termed ‘Quorum sensing’ (de Kievit and Iglewski, 2000, Williams et al, 

2000, Schauder and Bassler, 2001) or may simply be that the insect immune 

system could not cope with these high numbers. 

The in vivo mixed treatment results showed that when 431 and R128M were 

combined at the ratio of 1:5 or 5:1, the dominating strain recovered from the 

insect cadaver was the one with the higher proportion in the mixture which is 

not in line with the hypothesis that 431 by virtue of it producing a more toxic 

toxin will, germinate and reproduce more than the non-toxic R128M. In 

treatments where there was a 1:1 ratio of the toxins, and at concentration 

ranging from 5,000-100,000 spores/ml, R128M was showing some degree of 

dominance but with concentrations of 200,000 and 1,000,000 spores/ml still at 

1:1 ratio, R128M was clearly the dominating strain.  

Synergism of Cry toxin by spores of crystal producing Bt strains have been 

reported (Miyasono et al, 1994, Johnson et al, 1996, Tang et al, 1996, Liu et al, 

1998). Synergism was conducted to check if the spores from different strains of 

Bt can synergise the activity of E. coli JM109 expressed Cry1Ca. Results 

showed that all the spores from the different strains used synergise the activity 

of Cry1Ca irrespective of their strain background. The one tail P-value statistical 

analysis of the expected and observed number of live and dead larvae showed 

that the synergism between E. coli expressed Cry1Ca and the spores from the 

non-toxic mutant R128M was extremely significant while synergism between E. 

coli expressed Cry1Ca and spores from 431, Cry-HD73 and Cry-IPS 78/11 were 

just considered to be significant (table 6.14). The hgher synergism observed 

with spores of R128M compared to that of 431 was quite interesting because 

the in vivo competition between them at 1:1 ratio in the presence of the E. coli 
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expressed Cry1Ca showed that R128M dominates 431 in most of the cases 

which points to the existence of special interaction between R128M and the E. 

coli expressed Cry1Ca. The acrystalliferous mutant IPS 78/11 was obtained 

from Bacillus thuringiensis var. israelensis IPS 78/11 by curing the toxin 

encoding plasmid (Ward and Ellar, 1983). It lacks the ability to form crystals 

during sporulation and thus lost toxicity to mosquito larvae unlike the wild type. 

The lack of crystal production and non-toxicity did not incapacitate its ability to 

synergise the activity of Cry1Ca which means that synergism is not only as 

result of interaction with the toxin on spore surfaces (Johnson et al., 1998). The 

mechanism of synergism of Cry toxin by spores of acrystalliferous mutants 

could be explained in the light of the fact that the Cry toxin at a low dose though 

not lethal enough to effect an independent mortality is able to cause the 

suppression of the immune barrier creating a suitable environment for the 

germination of the acrystalliferous mutant spores which results in septicaemia 

and subsequent dead of the insect (Johnson et al, 1998, Gatehouse, 2008, 

Raymond et al, 2010) or it could be that the toxins simply give the spores 

access to the haemolymph by breaking down the gut cell wall. On the other 

hand, there might be other proteins or substances on the surface of spores that 

enhance the activity of Cry toxins. Another acrystalliferous mutant Cry-HD73 

produced by growing the Cry1Ac expressing Bacillus thuringiensis HD73 at 

42oC which lost its ability to form crystals during sporulation and also its toxicity 

was also able to synergise Cry1Ca. SDS-PAGE analysis of the acrystalliferous 

mutants confirmed that they do not express Cry proteins and therefore their 

synergising Cry1Ca is not due to Cry toxin from spore surfaces but other 

mechanism.  

These results suggest that exposing Plutella xylostella to Bt strains expressing 

toxin variants will not enrich for Bt strains with improved toxicity as 431 which 

was independently toxic to Plutella xylostella population used in these 

experiments could not dominate R128M which showed no independent toxicity.  
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Chapter 7: General discussion and Further work 

7.1 General discussion 

The expression of the open reading frames of wild type cry1Ie, cry1Ah under 

the control of the native cry1Ac-promoter and cry1Ah under the control of cyt1A-

promoter were successful as the protein band of approximately 80kDa for 

Cry1Ie and 134kDa for Cry1Ah were seen on SDS-PAGE gels. Also, the 

manipulation of Cry1Ie to produce a truncated mutant and Cry1Ah for the 

replacement of its domain II with that of Cry1Ie were also successful. The 

characterization of the expressed wild type Cry1Ie and Cry1Ah protein also 

showed that they folded properly as they were found to be soluble in an alkaline 

solution of Na2CO3. Their activation by trypsin resulted in the observation of a 

protease resistant band on SDS-PAGE which also confirmed that they were 

properly expressed and folded. Toxicity to Plutella xylostella with an LC50 of 

0.319 µg/ml (95% confident limit 0.267-0.466) for Cry1Ie and 1.417µg/ml with 

95% confidence limit of 0.867-1.917µg/ml for Cry1Ah are comparable to the 

LC50 of 0.20μg/ml of the fusion form of Cry1Ie expressed under the control of T7 

promoter by Song et al, 2003 and the LC50 of 1.52μg/ml of Cry1Ah expressed in 

acrystalliferous mutant of Bacillus thuringiensis HD73‾ by Xue et al, 2008.  

For the mutants Cry1Ie∆  and CryAIA the strategy used in producing them were 

found to be successful at the expression stage as the expected protein band of 

approximately 73kDa for Cry1Ie∆ and 134kDa for CryAIA were seen using 

SDS-PAGE. The characterisation of these manipulated toxins reveal that they 

did not fold properly as they failed to demonstrate typical characteristics of Cry-

proteins. Their non-toxicity to Plutella xylostella was further proof that the 

manipulation has resulted in their lost of properties of Cry toxins demonstrated 

by their parent toxins. Adamo et al, 2000 demonstrated that the deletion of the 

first six N-terminal segments of h4 plasma membrane Ca2+ pumps did not affect 

its activity but the mutants in which 15-75 amino acid residues were deleted 

from the N-terminal reduced its activity to undetectable levels. Also Chow et al, 

2003 showed that the secondary and tertiary structure of apomyoglobin (apoMb) 

is dependent on its length and that at short length, non-native β-sheet 

conformation and self-associated amyloid-like species were generated while as 

the length increases, α-helix structures gradually takes over. With the length of 

a protein directly affecting its folding and properties, it is reasonable to conclude 
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that the deletion of Cry1Ie from amino acid position 2-75 had adversely affected 

its folding and structure which results in the generation of a non-functional 

protein. The swapping of domain II of Cry1Ah with that of Cry1Ie in the 

construction of CryAIA, though resulting in the production of a protein band that 

looked normal on an SDS-PAGE gel turned out to be non functional and this 

can be seen as a large scale missense mutation. Mashimo et al, 2010 

demonstrated that a missense mutation in Voltage-Dependent Sodium Channel 

(Nav1.1) which still appeared to be normal confered susceptibility to Febrile 

Seizures in rats. The genetically manipulated cryIAI cryIAA and cry1Ah∆, did 

not result in expression of the proteins they code for. Though all the upstream 

elements like the cry1Ac-promoter, cyt1A-promoter, ribosome binding sites that 

have been successfully used in expressing the parent genes of cry1Ie and 

cry1Ah were supplied, they still did not express.  

Synergistic studies between Cry1Ie and Cry1Ac or Cry1Ah showed that there is 

no synergism between Cry1Ie and either of Cry1Ac or Cry1Ah. With individual 

LC50 of 0.319, 0.037 and 1.417μg/ml for Cry1Ie, Cry1Ac and Cry1Ah 

respectively, and the use of their combination at individual doses that will result 

in lethality below LC50, a synergistic effect could not be observed. Synergism 

has been variously reported between and among many Cry toxins including 

Cry4Ba and Cyt1Aa (Canton et al, 2011), Cry10Aa and Cyt1Aa (Hernandez-

Soto et al, 2009), Cry1Ab and Cry1Ac (Sharma et al, 2010). Canton et al, 2011 

showed that synergism between Cry11Aa and Cyt1Aa results from specific 

interaction between them and created a mutant Cyt1Aa that results in reduced 

synergism. The absence of synergism between Cry1Ie and Cry1Ac or Cry1Ah 

might be that these specific interactions are also absent. 

 Bioinformatic analysis of wild type Cry1Ie and the increased toxicity mutants 

Y442H, A522V and Y442H+A522V showed that the mutated points fall on 

regions that have been shown to be involved in toxin binding to brush border 

membrane vesicles of susceptible host (Fernandez et al, 2005, Gomez et al, 

2006, Atsumi et al, 2008, Obata et al, 2009) Though the mutations Y442H, 

A522V and Y442H+A522V did not affect the stability of their expressed proteins, 

it did not however result in any substantial increase in toxicity. Though the initial 

screen by Liu et al., 2010 (unpublished data) showed increase in activity for the 

mutants, it might be that the initial screen data is not reliable. The inability of the 
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mutants to show remarkable increase in toxicity might be due to the fact that the 

replacements were very conserved for Y442H mutant and moderately 

conserved for A522V thus making no difference (Berg et al, 2006). 

Despite the various strategies utilised to enhance the expression of cry30Ea 

and cry40Da genes that were amplified from mosquitocidal strains of Bacillus 

thuringiensis S2160-1 and S2196-1respectively, a functional protein could not 

be expressed. Though cry30Ea and cry40Da genes have a high level of 

similarity to members of their groups in the Bacillus thuringiensis toxin 

nomenclature as reviewed by Crickmore et al, 1998 and hosted at the web link 

(http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), it might be that they 

are pseudogenes. Pseudogenes are basically open reading frames that are 

homologous to functional genes but cannot be expressed due to mutation that 

preclude their expression (Cammack et al, 2006). Martin et al, 2010’s 

computational analysis of the genome of Bacillus anthracis revealed 

pseudogenes with promoters that maintain transcriptional activity. It has been 

reported that a frame shift in the coding region of a novel tomato class I basic 

chitinase gene results in the formation of a pseudogene (Baykal et al, 2006). 

Reports have also shown that nonsense and missense mutations in Chlamydia 

trachomatis serovar L2 and D strains resulted in the formation of pseudogenes 

(Giles et al, 2009). In the case of cry30Ea and cry40Da, it does not seem to be 

the lack of some flanking control region in the promoter that is rendering them 

non functional because upstream elements like cry1Ac, cyt1A, T7 promoters 

and ribosome binding site have supplied to them and they cannot still be 

expressed whereas these upstream elements have been used in the expression 

of other genes. It is likely that their pseudogene status is as result of mutation 

within the open reading frame which could be missense, insertion or deletion as 

pairwise sequence alignment with members of their groups indicates 

differences like insertions and deletions (appendices 3 and 4). 

Synergism between spores from Bt strains 431, R128M, Cry-IPS 78/11 and Cry-

HD73 and E. coli expressed Cry1Ca showed that the spores from the different 

Bt strains all synergise the activity of E. coli expressed Cry1Ca. Surprisingly the 

highest synergistic effect with an extremely significant P-value of 0.0006 was 

observed with the spores of R128M which is a non-toxic mutant of Cry1Ca 

expressed in acrystalliferous Bt IPS 78/11. In vivo competition between toxic 
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crystal producing strain 431 and non-toxic crystal producing strain R128M 

showed that neither of the strain dominated a population of Bt pooled from 

Plutella xylostella that were exposed to a mixture of the strains. Also, there was 

no dominance observed between Cry-HD73 and Cry+HD73 when analysis of the 

cardavers of Plutella xylostella in which a mixture of the strains were exposed to 

was carried out.   

 

 

7.2 Further  work 

With the sequence alignment strategy employed in creating the mutant Cry1Ie∆ 

resulting in the production of a non-functional protein, a different strategy can be 

employed in carrying out a further work on the truncation experiment. This can 

be the use of BBMV associated protease from midgut of Plutella xylostella to 

digest the parent Cry1Ie and then sequencing the N-terminal of the resistant 

core which would help in determining where to truncate the protein thus 

mimicking in real terms the activated toxin. This can also be applied in the 

truncation of Cry1Ah. 

As revealed by multiple sequence alignment between Cry30Ea and Cry30 

toxins that there exist mutations like insertion and deletions, Cry30Ea can be 

manipulated by ether deleting or inserting portions that are either absent or 

present in those ones that have been successfully expressed in functional forms. 
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Appendices 
 
Appendix 1: BLASTP 2.2.24+ pairwise alignment between Cry8Ea and Cry1Ie 
 
>lcl|25025 Cry1Ie 
Length=719 
 
 Score =  625 bits (1613),  Expect = 0.0, Method: Compositional matrix adjust. 
 Identities = 334/700 (48%), Positives = 457/700 (65%), Gaps = 24/700 (3%) 
 
Cry8Ea  37   LQNMNYKEYLRMSEGYDSEYSGSPEVLISERDAVKTAISLVGTILGKLGVPLVGPIVSLY  96 
             L+N+N++++LRMSE      S  P V  S    ++T I + G ILG LGVP  G I SLY 
Cry1Ie  34   LKNINHEDFLRMSE----HESIDPFVSAS---TIQTGIGIAGKILGTLGVPFAGQIASLY  86 
 
Cry8Ea  97   STLIDVLWPGGKSQWEIFMEQVEALINQKIAEYARAKALAELEGLGNNYQLYLTALEEWQ  156 
             S ++  LWP GKSQWEIFME VE LI+QKI+ YAR  ALA+L+GLG+   +Y  +LE W  
Cry1Ie  87   SFILGELWPKGKSQWEIFMEHVEELIDQKISTYARNIALADLKGLGDALAVYHESLESWI  146 
 
Cry8Ea  157  ENPSSTRVLRDVRNRFEILDSLFTQYMPSFRVTGYEVPLLSVYAQAANLHLLLLKDASIF  216 
             +N ++ R    V++++  L+ LF Q +PSF V+G EVPLL +YAQAANLHLLLL+DAS+F 
Cry1Ie  147  KNRNNARATSVVKSQYIALELLFVQKLPSFAVSGEEVPLLPIYAQAANLHLLLLRDASVF  206 
 
Cry8Ea  217  GEEWGFSTTAINNYYNRQMSLIAQYSDHCVQWYRTGLDRLKGSNAKQWVEYNRFRREMTL  276 
             G+EWG S + I+ +YNRQ+   + YSDHCV+WY TGL+ L+G+NA+ WV YN+FR++MTL 
Cry1Ie  207  GKEWGLSNSQISTFYNRQVERTSDYSDHCVKWYSTGLNNLRGTNAESWVRYNQFRKDMTL  266 
 
Cry8Ea  277  SVLDIMTLFPMYDMRTYPMETKAQLTREVYTDPIGAIG-----AQGSWY-DSAPSFNTLE  330 
              VLD++ LFP YD   YP++T +QLTREVYTD IG +      A  +WY ++APSF+ +E 
Cry1Ie  267  MVLDLIALFPSYDTLVYPIKTTSQLTREVYTDAIGTVHPNASFASTTWYNNNAPSFSAIE  326 
 
Cry8Ea  331  STFIRGKHLFDFITRLSIYTGRSSFSASNYLKKWIGHQISSQPIGGSIQTQTYGTTSGSS  390 
             S  +R  HL DF+ +++IY+  S +S + Y+  W GH++  + IGG + T T G+T+ S  
Cry1Ie  327  SAVVRNPHLLDFLEQVTIYSLLSRWSNTQYMNMWGGHRLEFRTIGGVLNTSTQGSTNTS-  385 
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Cry8Ea  391  VIATQQIGFTGFDVYKTLSTAGVLFAYTSKYYGVSKVVFDAIYPDNKYKTTFTYNPGSEG  450 
              I    + FT  DVY+T S AG+    T    GV +V F   +      +   Y  G  G 
Cry1Ie  386  -INPVTLPFTSRDVYRTESLAGLNLFLTQPVNGVPRVDFHWKFATLPIASDNFYYLGYAG  444 
 
Cry8Ea  451  IGAQEKDSEVELPPETLDQPNYEAYSHRLNYVTFIRNPDVP--VFSWTHRSADRTNTVYS  508 
             +G Q +DSE ELPPET  QPNYE+YSHRL+++  I    V   V+SWTHRSADRTNT+   
Cry1Ie  445  VGTQLQDSENELPPETTGQPNYESYSHRLSHIGLISASHVKALVYSWTHRSADRTNTIEP  504 
 
Cry8Ea  509  DKITQIPVVKASDGPKPSANEVG-HYLGGDPISFNSSGSTGVIRLNINSPLSQKYRVRIR  567 
             + ITQIP+VKA +    +A   G  + GGD +   ++G+ G IR+NIN P +Q+YRVRIR 
Cry1Ie  505  NSITQIPLVKAFNLSSGAAVVRGPGFTGGDILRRTNTGTFGDIRVNINPPFAQRYRVRIR  564 
 
Cry8Ea  568  YCSSVDFDLDVVRGGTTVNNGRFNKSAPNVGWQSLKYENFKFASFSTPFTFNQAQDTLKI  627 
             Y S+ D        G  +N G F+ +  N G + L Y+ F+   F+TPF+F+  Q T  I 
Cry1Ie  565  YASTTDLQFHTSINGKAINQGNFSATM-NRG-EDLDYKTFRTVGFTTPFSFSDVQSTFTI  622 
 
Cry8Ea  628  SVRNFSSIVGGSVVYIDRIELIPVNATYEAEQDLDSAKKAVNTLFTNTK-DGLRPGVTDY  686 
                NFSS   G+ VYIDRIE +PV  TYEAE D + A++ V  LFT+T   GL+  V DY 
Cry1Ie  623  GAWNFSS---GNEVYIDRIEFVPVEVTYEAEYDFEKAQEKVTALFTSTNPRGLKTDVKDY  679 
 
Cry8Ea  687  EVNQAANLVECLSDDLYPNEKRLLFDAVKEAKRLSEARNL  726 
              ++Q +NLVE LSD+ Y +EKR LF+ VK AK++   RN+ 
Cry1Ie  680  HIDQVSNLVESLSDEFYLDEKRELFEIVKYAKQIHIERNM  719 
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Appendix 2: SWISS-MODEL secondary structure predictions for Cry1Ie and 3eb7B (Cry8Ea) 

 

Cry1Ie    56        SASTIQ TGIGIAGKIL GTLGVPFAGQ IASLYSFILG ELWPKGKSQW 
3eb7B     64    is--erdavk taislvgtil gklgvplvgp ivslystlid vlwpggksqw 
                                                                       
Cry1Ie               hhhhh hhhhhhhhhh         hh hhhhhhhhhh hh       h 
3eb7B            h  hhhhhh hhhhhhhhhh         hh hhhhhhhhhh hh       h 
 
 
Cry1Ie    102   EIFMEHVEEL IDQKISTYAR NIALADLKGL GDALAVYHES LESWIKNRNN 
3eb7B     112   eifmeqveal inqkiaeyar akalaelegl gnnyqlylta leewqenpss 
                                                                       
Cry1Ie          hhhhhhhhhh       hhhh hhhhhhhhhh hhhhhhhhhh hhhhhh     
3eb7B           hhhhhhhhhh h     hhhh hhhhhhhhhh hhhhhhhhhh hhhhhh     
 
 
Cry1Ie    152   ARATSVVKSQ YIALELLFVQ KLPSFAVSGE EVPLLPIYAQ AANLHLLLLR 
3eb7B     162   trvlrdvrnr feildslftq ympsfrvtgy evpllsvyaq aanlhllllk 
                                                                       
Cry1Ie          hhhhhhhhhh hhhhhhhhhh hhh        hh   hhhhh hhhhhhhhhh 
3eb7B           hhhhhhhhhh hhhhhhhhhh hhh        hh   hhhhh hhhhhhhhhh 
 
 
Cry1Ie    202   DASVFGKEWG LSNSQISTFY NRQVERTSDY SDHCVKWYST GLNNLRGTNA 
3eb7B     212   dasifgeewg fsttainnyy nrqmsliaqy sdhcvqwyrt gldrlkgsna 
                                                                       
Cry1Ie          hhhhhhhhh    hhhhhhhh hhhhhhhhhh hhhhhhhhhh hhhh     h 
3eb7B           hhhhhhhhh    hhhhhhhh hhhhhhhhhh hhhhhhhhhh hhhh     h 
 
 
Cry1Ie    252   ESWVRYNQFR KDMTLMVLDL IALFPSYDTL VYPIKTTSQL TREVYTDAIG 
3eb7B     262   kqwveynrfr remtlsvldi mtlfpmydmr typmetkaql trevytdpig 
                                                                       
Cry1Ie          hhhhhhhhhh hhhhhhhhhh hhhhhh         sss       sss     
3eb7B           hhhhhhhhhh hhhhhhhhhh hhhhhh         sss       sss     
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Cry1Ie    302   TVHPNASFAS TTWYNNNAPS FSAIESAVVR NPHLLDFLEQ VTIYSLLSRW 
3eb7B     312   aigaqg---- -sw-ydsaps fntlestfir gkhlfdfitr lsiytgrssf 
                                                                       
Cry1Ie                                hhhhhh           ssss ssssssssss 
3eb7B           sss  s      ss        hhhhhh           ssss ssssssssss 
 
 
Cry1Ie    352   SNTQYMNMWG GHRLEFRTIG GVLNTSTQGS TNT--SINPV TLPFTSRDVY 
3eb7B     356   sasnylkkwi ghqissqpig gsiqtqtygt tsgssviatq qigftgfdvy 
                                                                       
Cry1Ie             sssssss sssssss       sssssss        sss ssss   sss 
3eb7B              sssssss sssssss       sssssss        sss ssss   sss 
 
 
Cry1Ie    400   RTESLAGLNL FLTQPVNGVP RVDFHWKFAT LPIASDNFYY LGYAGVGTQL 
3eb7B     406   ktlstagvlf aytskyygvs kvvfdaiypd nkykttftyn pgsegigaqe 
                                                                       
Cry1Ie          ssssssssss s  sssssss ssssssss     sssssss        ssss 
3eb7B           ssssssssss s  sssssss ssssssss     sssssss        ssss 
 
 
Cry1Ie    450   QDSENELPPE TTGQPNYESY SHRLSHIGLI SASHVKALVY SWTHRSADRT 
3eb7B     456   kdsevelppe tldqpnyeay shrlnyvtfi rn--pdvpvf swthrsadrt 
                                                                       
Cry1Ie          ssshhh                ssssssssss       ssss sssss      
3eb7B           ssshhh                ssssssssss       ssss sssss      
 
 
Cry1Ie    500   NTIEPNSITQ IPLVKAFNLS SGAAVVRGPG FTGGDILRRT NTGTFGDIRV 
3eb7B     504   ntvysdkitq ipvvkasdgp kp-sanevgh ylggdpisfn ssgstgvirl 
                                                                       
Cry1Ie          sss    sss sss                hh       sss    sss  sss 
3eb7B           sss    sss sss                hh       sss    sss  sss 
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Cry1Ie    550   NINPPFAQRY RVRIRYASTT DLQFHTSING KAINQGNFSA TM--NRGEDL 
3eb7B     553   ninsplsqky rvrirycssv dfdldvvrgg ttvnngrfnk sapnvgwqsl 
                                                                       
Cry1Ie          sss     ss sssssssss   ssssssss  ssssssss              
3eb7B           sss     ss sssssssss   ssssssss  ssssssss              
 
 
Cry1Ie    598   DYKTFRTVGF TTPFSFSDVQ STFTIGAWNF SSG---NEVY IDRIEFVPVE 
3eb7B     603   kyenfkfasf stpftfnqaq dtlkisvrnf ssivggsvvy idrielipvn 
                                                                       
Cry1Ie               sssss         ss ssssssss          sss sssssssss  
3eb7B                sssss         ss ssssssss          sss sssssssss  
 
 
Cry1Ie                                                                 
3eb7B           -                                                      
                                                                       
Cry1Ie                                                                 
3eb7B      
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Appendix 3: Pairwise sequence alignments between Cry30Ea and other 

                      Cry30 toxins 

>lcl|19517 Cry30Aa1 
Length=688 
 
 Score = 1053 bits (2724),  Expect = 0.0, Method: Compositional matrix adjust. 
 Identities = 519/689 (76%), Positives = 573/689 (84%), Gaps = 2/689 (0%) 
 
Query  1    MNSYQNTNEYEILDASQKNSTMSNRYPRCPLANNPQVPLQNTSYKDWLNMCQTITPLCTP  60 
            MNSY+N NEYEILD SQKNS MSNRY + PL NNP+VPLQNT+YKDWLNMCQTITPLCTP 
Sbjct  1    MNSYENKNEYEILDTSQKNSNMSNRYSKYPLTNNPKVPLQNTNYKDWLNMCQTITPLCTP  60 
 
Query  61   VETVSDYVAAFIGVPGSIFGAMPGPGAAVGLFLSSFSTIIPILWPNDTTPIWKEFTKQGL  120 
            ++T S  VA  I V G+IF +MPGPGAAVGL L SFSTIIPILWPND TPIWKEFTKQGL 
Sbjct  61   IDTDSKLVATAIKVIGAIFKSMPGPGAAVGLVLKSFSTIIPILWPNDKTPIWKEFTKQGL  120 
 
Query  121  QLFRPELGRDAIEIIGNDVQAEYNALKTMMQDFETKFATWDLNRTRANAIAATTEFNSVK  180 
            QLFRPELGRDAIEIIGNDVQAEYN+L+ MM+DFE KFA W+ NRTRANAIA TT F++V  
Sbjct  121  QLFRPELGRDAIEIIGNDVQAEYNSLEIMMRDFENKFANWESNRTRANAIAVTTAFSTVN  180 
 
Query  181  NQIIRLQERFLIAAENRPAFLNLYAQTANIDLILYQRGAANGDKWLEDINNRSISPFSSK  240 
             QIIRL+ERFLIA ENRPAFLNLYAQTANIDLILYQRG+  GDKW+ DINNRS SPFSSK 
Sbjct  181  TQIIRLKERFLIAPENRPAFLNLYAQTANIDLILYQRGSVYGDKWVADINNRSTSPFSSK  240 
 
Query  241  DYYQDLKLKIKNYTNYCAETYRNSLNILKNKSDIQWSIYNGYRRVATLGALDLVALFPNY  300 
            DYYQ LK KIK+YTNYCAETYRNSL ILKNK  IQW IYN YRR A LGALDLVALFPNY 
Sbjct  241  DYYQSLKGKIKDYTNYCAETYRNSLTILKNKPHIQWDIYNRYRREAILGALDLVALFPNY  300 
 
Query  301  DICIYPIQTQTELTRKVYMPSFYSERLPKGNIETWENSLTHPPSLFTWLKKLDPYTKSER  360 
            DICIYP QT+TELTRKVYMPSFY + L + +IET EN LTHPPSLFTWL +L+ YT  ER 
Sbjct  301  DICIYPTQTRTELTRKVYMPSFYLQALQQRDIETVENQLTHPPSLFTWLNELNLYTIRER  360 
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Query  361  FNPALEVASLCGLHAALSYTPQNGPEFAGPFQGILGTKTTPLISFDNQFVYELFLTQYRH  420 
            FNP L+VASL GL A   YT QN    + P QG +   T   IS  N ++Y+LF++QYRH 
Sbjct  361  FNPVLQVASLSGLQATSRYT-QNTTTISNPVQGPVREGTPTKISLANYYIYKLFMSQYRH  419 
 
Query  421  PNDCYSISGKPKITFYISDYYGNSRPNK-EYSSNIQLSSVITSYMNGPQNASTSNNISIK  479 
            PNDC  ISG  +++FY SDYYG   P    YS+    ++VI +YMNGPQNA  SN+ISI  
Sbjct  420  PNDCLPISGINEMSFYRSDYYGAGGPAPVHYSAGESPTNVIKTYMNGPQNALISNDISIN  479 
 
Query  480  QTKHILSDIKMIYTQIGGIYPSHDFGYSFAWTHTSVDPDNLIVPNRITQIPAVKAYSLTS  539 
            +T HILSDIKM Y++ GG+YP +DFGYSFAWTHTSVDPDNLIVPNRITQIPAVKAYSLTS 
Sbjct  480  ETSHILSDIKMNYSRTGGVYPLYDFGYSFAWTHTSVDPDNLIVPNRITQIPAVKAYSLTS  539 
 
Query  540  PARVIAGPGHTGGDLVALLNNNLEAGRMQIQCKTGSFTGASRRYGLRMRYAANSQFTVNL  599 
            PARVI GPGHTGGDLVALLN+  ++G MQIQCKTGSFTG SR+YGLRMRYAANS FTV+L 
Sbjct  540  PARVIVGPGHTGGDLVALLNSGTQSGTMQIQCKTGSFTGPSRQYGLRMRYAANSAFTVSL  599 
 
Query  600  SYVLSGTTYGTSFITESTFSRLNNIIPTDLKYEEFKYKEYSQIITMTLPANTIITISIQQ  659 
            SY L G T GTSF+TE+TFSR NNIIPTDLKYEEFKYK+Y QIITMTLPANTIITIS+QQ 
Sbjct  600  SYTLLGQTRGTSFVTENTFSRSNNIIPTDLKYEEFKYKDYLQIITMTLPANTIITISMQQ  659 
 
Query  660  AVASSNYQLIIDRIELYPMDQDVVACTVN  688 
            A    N QLIIDRIE YPMDQ VVACTVN 
Sbjct  660  ATGLLNNQLIIDRIEFYPMDQGVVACTVN  688 
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>lcl|19518 Cry30Ba1 
Length=683 
 
 Score =  722 bits (1863),  Expect = 0.0, Method: Compositional matrix adjust. 
 Identities = 388/694 (56%), Positives = 481/694 (70%), Gaps = 37/694 (5%) 
 
Query  1    MNSYQNTNEYEILDASQKNSTMSNRYPRCPLANNPQVPLQNTSYKDWLNMCQTITPLCTP  60 
            MN YQ   EYEILDA    S M N Y R PLANNPQVPLQNTSYKDWLNMCQTI PLCTP 
Sbjct  1    MNPYQKKTEYEILDALPNYSNMVNAYSRYPLANNPQVPLQNTSYKDWLNMCQTINPLCTP  60 
 
Query  61   VETVSDYVAAFIGVPGSIFGAMPGPGAAVGLFLSSFSTIIPILWPNDTTPIWKEFTKQGL  120 
            +    D +AA I V GSI   +PGPG A+G  L +FSTI+PILWPN  T IW +F ++GL 
Sbjct  61   INIDIDSLAASIAVVGSILALIPGPGEAIGFVLGTFSTILPILWPNGETKIWTDFAERGL  120 
 
Query  121  QLFRPELGRDAIEIIGNDVQAEYNALKTMMQDFETKFATWDLNRTRANAIAATTEFNSVK  180 
            QLFRPELG+DAIEI+   V++ YNALK  M++FE  F  W  NRTR+NA     +F+SV+ 
Sbjct  121  QLFRPELGQDAIEILVTGVKSGYNALKNRMENFEQAFTKWKGNRTRSNAEQVIRDFDSVR  180 
 
Query  181  NQIIRLQERFLIAAENRPAFLNLYAQTANIDLILYQRGAANGDKWLEDINNRSISPF-SS  239 
            +++I L+  ++I  EN+PAF+NLYAQTANIDLILYQRGA  GD W +DIN  SISPF  S 
Sbjct  181  DKVIDLKNDYMINPENKPAFINLYAQTANIDLILYQRGAVYGDDWEKDING-SISPFWGS  239 
 
Query  240  KDYYQDLKLKIKNYTNYCAETYRNSLNILKNKSDIQWSIYNGYRRVATLGALDLVALFPN  299 
            KDYY+ LK KI+ YTNYCAETYRNSLNILKNK +I W  YN YRR ATLGALDLVALFPN 
Sbjct  240  KDYYESLKTKIEEYTNYCAETYRNSLNILKNKPNISWDTYNKYRREATLGALDLVALFPN  299 
 
Query  300  YDICIYPIQTQTELTRKVYMPSFYSERLPKGN----IETWENSLTHPPSLFTWLKKLDPY  355 
            YD+ +YP  T+TELTRK+YMPSF    L + N    +E  EN+LTHPPSLFTWL +L+ Y 
Sbjct  300  YDMHLYPAATKTELTRKIYMPSF---GLQQSNYFQSLEGLENALTHPPSLFTWLNELNLY  356 
 
Query  356  TKSERFNPALEVASLCGLHAALSYTPQNGPEFAGPFQGILGTKTTPLISFDNQFVYELFL  415 
            T  E FNPAL+V+SL GL A   YT QN      P QG+    +T  I  +N FVY+L + 
Sbjct  357  TVRENFNPALQVSSLSGLQARSRYT-QNPTILDNPAQGVRNGTSTQ-IGLNNLFVYKLSM  414 
 
Query  416  TQYRHPNDCYSISGKPKITFYISDYYGNSRPNKEYSSNIQLSSVITSYMNGPQNASTSNN  475 
            +QY HPNDC SI+G   +TFY SDY GN+   + Y +    ++VI ++MNGPQ AS+SNN 
Sbjct  415  SQYHHPNDCSSIAGISDMTFYKSDYNGNASATQTYQAGRNTNNVINTFMNGPQKASSSNN  474 
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Query  476  ISIKQTKHILSDIKMIYTQIGGIYPSHDFGYSFAWTHTSVDPDNLIVPNRITQIPAVKAY  535 
            ISIKQTKHILSDIKMIY + GG+Y  +DFGYSFAWTHTSVDPDNLIVPNRITQIPAVKA  
Sbjct  475  ISIKQTKHILSDIKMIYFRTGGMYQVYDFGYSFAWTHTSVDPDNLIVPNRITQIPAVKAL  534 
 
Query  536  SLTSPARVIAGPGHTGGDLVALLNNNLEAGRMQIQCKTGSFTGASRRYGLRMRYAANSQF  595 
             +++ ++V+ GP   GGDL+ L    L+A    I+ KT     A+ RY +R+RYA+N+   
Sbjct  535  GISTDSKVVKGPVFIGGDLLLL---KLQA---TIRIKTDH---ANTRYKIRVRYASNANT  585 
 
Query  596  TVNLSYVLSGTTYGTSF---ITESTFSRLNNIIPTDLKYEEFKYKEYSQIITMTLPANTI  652 
             + LS + +  T   +F   IT ST S        +L+Y++F+Y  +     M  P+    
Sbjct  586  PIVLSSLQN--TLTVTFPQTITHSTIS--------ELQYKDFQYVTFPGEFIMDKPS---  632 
 
Query  653  ITISIQQAVASSNYQLIIDRIELYPMDQDVVACT  686 
            I ++I + V +    + IDRIE  P+ Q V+  T 
Sbjct  633  IDVAI-RGVQNDRNDIWIDRIEFLPITQSVLDYT  665 
 
 
>lcl|19519 Cry30Ca1 
Length=688 
 
 Score =  891 bits (2303),  Expect = 0.0, Method: Compositional matrix adjust. 
 Identities = 461/695 (67%), Positives = 535/695 (77%), Gaps = 14/695 (2%) 
 
Query  1    MNSYQNTNEYEILDASQKNSTMSNRYPRCPLANNPQVPLQNTSYKDWLNMCQTITPLCTP  60 
            MN Y N N+ EIL+AS  NS MS  YP+ PLA++ Q  ++N +YK+W+N C+TI   CTP 
Sbjct  1    MNLYGNKNDSEILNASSNNSNMSTTYPKYPLAHSRQDSMENMNYKEWINQCETINTFCTP  60 
 
Query  61   VETVSDYVAAFIGVPGSIFGAMPGPGAAVGLFLSSFSTIIPILWPNDTTPIWKEFTKQGL  120 
            ++T  + VAA IG  G+I   +PGPG A+G  LS+F+++IP LWP+DT  IW +FTKQGL 
Sbjct  61   IDTDINSVAATIGAVGAILALIPGPGEAIGFVLSTFTSLIPYLWPSDTKKIWGDFTKQGL  120 
 
Query  121  QLFRPELGRDAIEIIGNDVQAEYNALKTMMQDFETKFATWDLNRTRANAIAATTEFNSVK  180 
            QLFRPELG DAIEIIGNDVQ+EYN+LKT MQ+FE  F  W   R RA A+A T +F+SV+ 
Sbjct  121  QLFRPELGNDAIEIIGNDVQSEYNSLKTFMQNFEDSFTDWKKYRNRATAVAVTNDFSSVR  180 
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Query  181  NQIIRLQERFLIAAENRPAFLNLYAQTANIDLILYQRGAANGDKWLEDINNRSISPF-SS  239 
            +QIIRL++RFLI  EN+PAFL LYAQTAN DLILYQRGA   D+W  DIN RSISP   S 
Sbjct  181  DQIIRLKDRFLINPENKPAFLILYAQTANFDLILYQRGALYADEWENDIN-RSISPLLGS  239 
 
Query  240  KDYYQDLKLKIKNYTNYCAETYRNSLNILKNKSDIQWSIYNGYRRVATLGALDLVALFPN  299 
            KDYY  L  KIK YTNYCAETYRNSLNILKNK++I W  YN YRR  TLGALDL ALFPN 
Sbjct  240  KDYYISLAAKIKEYTNYCAETYRNSLNILKNKTNISWGTYNKYRREVTLGALDLAALFPN  299 
 
Query  300  YDICIYPIQTQTELTRKVYMPSFYSERLPKGN----IETWENSLTHPPSLFTWLKKLDPY  355 
            YDICIYPIQT+TELTRKVYMPSF    L + N    +E  EN+LTHPPSLFTWL +L+ Y 
Sbjct  300  YDICIYPIQTKTELTRKVYMPSF---GLQQSNYFQSLEGLENALTHPPSLFTWLNELNLY  356 
 
Query  356  TKSERFNPALEVASLCGLHAALSYTPQNGPEFAGPFQGIL-GTKTTPLISFDNQFVYELF  414 
            T  E FNPAL V+SL GL A   YT QN    + P QG+  GT T   I  +N FVY+L  
Sbjct  357  TIRENFNPALLVSSLSGLQAISRYT-QNPNRISNPAQGVRNGTPTQ--IGLNNLFVYKLS  413 
 
Query  415  LTQYRHPNDCYSISGKPKITFYISDYYGNSRPNKEYSSNIQLSSVITSYMNGPQNASTSN  474 
            L+QY HPN+CYSI+G   +TFY SDY GN+   + Y +    ++ I ++MNGPQ AS+SN 
Sbjct  414  LSQYHHPNECYSIAGISDMTFYKSDYNGNAPTTQTYQAGRNSNNFINTFMNGPQEASSSN  473 
 
Query  475  NISIKQTKHILSDIKMIYTQIGGIYPSHDFGYSFAWTHTSVDPDNLIVPNRITQIPAVKA  534 
            NISIKQT HILSDIKMIY++ GG YPS+DFGYSFAWTHTSV+PDNLIVPNRITQIPAVKA 
Sbjct  474  NISIKQTNHILSDIKMIYSRTGGTYPSYDFGYSFAWTHTSVNPDNLIVPNRITQIPAVKA  533 
 
Query  535  YSLTSPARVIAGPGHTGGDLVALLNNNLEAGRMQIQCKTGSFTGASRRYGLRMRYAANSQ  594 
              LTSPA+VIAGPGHTGGDLVALLN   +AGRMQIQCKTGSFTGASRRYG+R+RYAAN+  
Sbjct  534  DYLTSPAKVIAGPGHTGGDLVALLNAATQAGRMQIQCKTGSFTGASRRYGIRIRYAANNA  593 
 
Query  595  FTVNLSY-VLSGTTYGTSFITESTFSRLNNIIPTDLKYEEFKYKEYSQIITMTLPANTII  653 
             TV+LSY V  G T  T+FITE TF R NN IPTDLKYEEFKYKEY+QIITMT P NTI+ 
Sbjct  594  LTVSLSYTVQGGNTMSTTFITERTFLRPNNTIPTDLKYEEFKYKEYNQIITMTAPQNTIV  653 
 
Query  654  TISIQQAVASSNYQLIIDRIELYPMDQDVVACTVN  688 
            TI+IQQ  A  N QLIIDRIE YPMDQ VV CTVN 
Sbjct  654  TIAIQQLNAFPNDQLIIDRIEFYPMDQGVVPCTVN  688 
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>lcl|15419 Cry30Fa1 
Length=687 
 
 Score =  951 bits (2458),  Expect = 0.0, Method: Compositional matrix adjust. 
 Identities = 479/690 (70%), Positives = 539/690 (79%), Gaps = 5/690 (0%) 
 
Query  1    MNSYQNTNEYEILDASQKNSTMSNRYPRCPLANNPQVPLQNTSYKDWLNMCQTITPLCTP  60 
            M  YQ+ NEYEILD   K S + N Y R PLANNPQVPLQNTSYKDWLNMCQTITPLCTP 
Sbjct  1    MKPYQSENEYEILDTLPKYSNIVNVYSRYPLANNPQVPLQNTSYKDWLNMCQTITPLCTP  60 
 
Query  61   VETVSDYVAAFIGVPGSIFGAMPGPGAAVGLFLSSFSTIIPILWPNDTTPIWKEFTKQGL  120 
            ++  S  VA  IG+ G+IF AMPGPG+AVGLFL +FSTIIPILWPND TPIWKEFTKQGL 
Sbjct  61   IDIDSKLVATAIGILGAIFKAMPGPGSAVGLFLKTFSTIIPILWPNDNTPIWKEFTKQGL  120 
 
Query  121  QLFRPELGRDAIEIIGNDVQAEYNALKTMMQDFETKFATWDLNRTRANAIAATTEFNSVK  180 
            QLFRPELGRDAIEIIGNDVQ+ +NALK  M DFETKF  WD +RT+ NA    T F  V  
Sbjct  121  QLFRPELGRDAIEIIGNDVQSGFNALKDHMNDFETKFEIWDKDRTQTNATYLITAFGVVN  180 
 
Query  181  NQIIRLQERFLIAAENRPAFLNLYAQTANIDLILYQRGAANGDKWLEDINNRSISPF-SS  239 
             +II L+ +FLI   N+PAFLNLYAQTANIDLILYQRGA  GD W + IN+ SISPF SS 
Sbjct  181  GKIIDLKNQFLINPANQPAFLNLYAQTANIDLILYQRGAVYGDDWAKAINDSSISPFNSS  240 
 
Query  240  KDYYQDLKLKIKNYTNYCAETYRNSLNILKNKSDIQWSIYNGYRRVATLGALDLVALFPN  299 
            + +Y  LK KIK YTNYCAETYRNSL ILKN+ +IQW IYN YRR ATLGALDLVALFPN 
Sbjct  241  QIFYDSLKAKIKEYTNYCAETYRNSLTILKNQPNIQWDIYNRYRREATLGALDLVALFPN  300 
 
Query  300  YDICIYPIQTQTELTRKVYMPSFYSERLPKGNIETWENSLTHPPSLFTWLKKLDPYTKSE  359 
            YDIC YPI T+TELTRKVYMPSFY + L   NIET EN LTHPPSLFTWL +L+ YT  E 
Sbjct  301  YDICKYPISTKTELTRKVYMPSFYLQALQHSNIETLENQLTHPPSLFTWLNELNLYTIRE  360 
 
Query  360  RFNPALEVASLCGLHAALSYTPQNGPEFAGPFQGILGTKTTPLISFDNQFVYELFLTQYR  419 
             FNPAL+V+SL GL A   YT  +      P QGI      P+I  +N F+Y+L ++QYR 
Sbjct  361  NFNPALQVSSLSGLQAKYRYTQNSTILPNPPAQGITNGTPIPIIGLNNLFIYKLSMSQYR  420 
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Query  420  HPNDCYSISGKPKITFYISDYYGNSRPNKEYSSNIQLSSVITSYMNGPQNASTSNNISIK  479 
            HPNDC  I+G   +TFY SDY GN+   + Y +    ++VI ++MNGPQNAS+SNNISI  
Sbjct  421  HPNDCVPIAGISDMTFYKSDYNGNASATQTYQAGRNSNNVIDTFMNGPQNASSSNNISIN  480 
 
Query  480  QTKHILSDIKMIYTQIGGIYPSHDFGYSFAWTHTSVDPDNLIVPNRITQIPAVKAYSLTS  539 
            QT HILSDIKM Y + GG+Y   DFGYSFAWTHTSVD DNLIVPNRITQIPAVKA  L+S 
Sbjct  481  QTNHILSDIKMNYARSGGVY---DFGYSFAWTHTSVDLDNLIVPNRITQIPAVKANFLSS  537 
 
Query  540  PARVIAGPGHTGGDLVALLNNNLEAGRMQIQCKTGSFTGASRRYGLRMRYAANSQFTVNL  599 
            PARVIAGPGHTGGDLVALLN   +AG+MQIQCKTGS TGASRRYG+RMRYAAN+ FTV+L 
Sbjct  538  PARVIAGPGHTGGDLVALLNGGTQAGKMQIQCKTGSSTGASRRYGIRMRYAANNAFTVSL  597 
 
Query  600  SYVL-SGTTYGTSFITESTFSRLNNIIPTDLKYEEFKYKEYSQIITMTLPANTIITISIQ  658 
            SY L  G T GT+FITE TFSR NNIIPTDLKYEEFKYKEY+QIIT+T P NTI+TI+I+ 
Sbjct  598  SYTLQGGNTIGTTFITERTFSRPNNIIPTDLKYEEFKYKEYNQIITVTSPQNTIVTIAIR  657 
 
Query  659  QAVASSNYQLIIDRIELYPMDQDVVACTVN  688 
            Q     N QLIIDRIE YP+DQD  AC VN 
Sbjct  658  QLNPIPNDQLIIDRIEFYPVDQDAFACPVN  687 
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>lcl|20005 Cry30Ga1 
Length=664 
 
 Score =  787 bits (2032),  Expect = 0.0, Method: Compositional matrix adjust. 
 Identities = 406/690 (59%), Positives = 492/690 (72%), Gaps = 28/690 (4%) 
 
Query  1    MNSYQNTNEYEILDASQKNSTMSNRYPRCPLANNPQVPLQNTSYKDWLNMCQTITPLCTP  60 
            MN YQN NEY+ILD     S M N Y   PLANNPQVPLQNTSYKDWLNMCQTITPLCT  
Sbjct  1    MNLYQNENEYKILDVLPNYSNMVNAYSSYPLANNPQVPLQNTSYKDWLNMCQTITPLCTT  60 
 
Query  61   VETVSDYVAAFIGVPGSIFGAMPGPGAAVGLFLSSFSTIIPILWPNDTTPIWKEFTKQGL  120 
            +++  + VAA IGV  SI G + GPG A+GL L +FS+IIP LWP + T IW+EFT +GL 
Sbjct  61   IDSDINSVAAAIGVIASIIGLIRGPGEAIGLILGTFSSIIPFLWPENKTIIWEEFTHRGL  120 
 
Query  121  QLFRPELGRDAIEIIGNDVQAEYNALKTMMQDFETKFATWDLNRTRANAIAATTEFNSVK  180 
             L RPEL    IEII N ++  YNAL+  + +FE +FA W   + +A         ++++ 
Sbjct  121  NLIRPELTPAEIEIILNPLKGSYNALREQLVNFEREFAIWAGAKNQATTGDLLRRISAIE  180 
 
Query  181  NQIIRLQERFLIAAENRPAFLNLYAQTANIDLILYQRGAANGDKWLEDINNRSISPFSSK  240 
              II+L+ +  ++  N+PA L+LYAQTANIDLIL+QRGA  GD+W +   N+ I   +S+ 
Sbjct  181  GAIIQLKNQLTVSEANKPALLSLYAQTANIDLILFQRGAKYGDEWAKYARNQPIPFKTSR  240 
 
Query  241  DYYQDLKLKIKNYTNYCAETYRNSLNILKNKSDIQWSIYNGYRRVATLGALDLVALFPNY  300 
            +YY  L  KIK YTN  A TYRN LN +KN  +I W  +N YRR  TL ALDLVALFPNY 
Sbjct  241  EYYASLIEKIKTYTNDIAGTYRNGLNKIKNIQNISWDTFNEYRRGMTLSALDLVALFPNY  300 
 
Query  301  DICIYPIQTQTELTRKVYMPSFYSERLPK-GNIETWENSLTHPPSLFTWLKKLDPYTKSE  359 
            DICIYPIQT+TELTRK+YMPSFY + L + GN+E+ EN LTHPPSLFTWL +L+ YT SE 
Sbjct  301  DICIYPIQTKTELTRKIYMPSFYLQALQQSGNLESLENQLTHPPSLFTWLNELNLYTISE  360 
 
Query  360  RFNPALEVASLCGLHAALSYTPQNGPEFAGPFQGILGTKTTPLISFDNQFVYELFLTQYR  419 
             FNPA+                        P QGI G    P I  +N F+Y+L ++QY  
Sbjct  361  NFNPAI---------------------LPNPAQGITGGTPIP-IGLNNLFIYKLSMSQYH  398 
 
Query  420  HPNDCYSISGKPKITFYISDYYGNSRPNKEYSSNIQLSSVITSYMNGPQNASTSNNISIK  479 
             PN CY I+G   +TFY SDY GN+   + Y +    ++VI ++MNGPQNAS+SNNISIK 
Sbjct  399  DPNGCYPIAGISDMTFYKSDYNGNASTTQPYHAGRNSNNVIDTFMNGPQNASSSNNISIK  458 
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Query  480  QTKHILSDIKMIYTQIGGIYPSHDFGYSFAWTHTSVDPDNLIVPNRITQIPAVKAYSLTS  539 
            +TKHILSDIKM+Y++  G+Y     GYSFAWT TSV+PDNLIVPNRITQIPAVKA  L S 
Sbjct  459  ETKHILSDIKMVYSR-SGVY---SLGYSFAWTCTSVNPDNLIVPNRITQIPAVKANLLNS  514 
 
Query  540  PARVIAGPGHTGGDLVALLNNNLEAGRMQIQCKTGSFTGASRRYGLRMRYAANSQFTVNL  599 
            PARVIAGPGHTGGDLVALLN+  ++GRM+I+CKTGSFT  SRRYG+RMRYAAN+ FTV+L 
Sbjct  515  PARVIAGPGHTGGDLVALLNSGTQSGRMEIKCKTGSFTETSRRYGIRMRYAANNAFTVSL  574 
 
Query  600  SYVL-SGTTYGTSFITESTFSRLNNIIPTDLKYEEFKYKEYSQIITMTLPANTIITISIQ  658 
            SY L  G   G +F TE TF R NNIIPTDLKYEEFKYKEY+QIITMT P NTI+TI++  
Sbjct  575  SYTLQGGNPIGITFGTERTFLRTNNIIPTDLKYEEFKYKEYNQIITMTAPQNTIVTIAVY  634 
 
Query  659  QAVASSNYQLIIDRIELYPMDQDVVACTVN  688 
            Q+  S N QLIIDRIE YPMDQ V AC +N 
Sbjct  635  QSTPSLNNQLIIDRIEFYPMDQGVEACKMN  664 
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Appendix 4: Pairwise sequence alignments between Cry40Da and other 

                      Cry40 toxins 

 

>lcl|Cry40Aa1 Cry40Aa1 
Length=666 
 
 Score =  743 bits (1919),  Expect = 0.0, Method: Compositional matrix adjust. 
 Identities = 399/672 (60%), Positives = 479/672 (72%), Gaps = 23/672 (3%) 
 
Query  2    NSYQNTNGYEILESSSNNTNTPNRYPFANDPNIFPIILNDCPGKPWQDTWKSISNFISVM  61 
            NSY+N N YEILESSSNNTN PNRYPFAND ++  +  NDC G  W + W+S     S+  
Sbjct  1    NSYENKNEYEILESSSNNTNMPNRYPFANDRDMSTMSFNDCQGISWDEIWESAETITSIG  60 
 
Query  62   VSMAGFISSPGVLIGIPALLGIVNLLIPSSGPSVAALSICDLLSIIRKEVDESVLNDAVA  121 
            + +  F+  P  L GI  L  I+  LIP++  SV+ALSICDLLSIIRKEV +SVL+DA+  
Sbjct  61   IDLIEFLMEPS-LGGINTLFSIIGKLIPTNHQSVSALSICDLLSIIRKEVADSVLSDAIC  119 
 
Query  122  DF-NGKLTNYKEYYLSSLQEWLSAGKP----NDSRLSNVVEYFKKSEEGFNEILAGSLSR  176 
             F +GKL NY+EYYL  L+ WL  GKP    N+S +  +V+YF+ SE  FNEIL GSL+R 
Sbjct  120  RFLDGKLKNYREYYLPYLEAWLKDGKPLQKTNNSDIGQLVKYFELSERDFNEILGGSLAR  179 
 
Query  177  QNAQILLLPTFAQAANVQLLLLRDAVQYKKEWGALLSAEKVGSELISP------TIDYGQ  230 
             NAQILLLP F  +   QLLLLRDAVQY+++W   LSAE V SELISP      T DY + 
Sbjct  180  NNAQILLLPYFCASCKCQLLLLRDAVQYEEQWFPFLSAENVRSELISPNSGCDFTGDYYE  239 
 
Query  231  RLKDKIAQYAKYCVFWYQEGLNQIKEEGAGTTTWLKFNKFRREMTLAVLDIIALFPIYDF  290 
            RLK KIA+Y  YC +WYQ GLNQIK+ G G  TW KFNKFRREMTL VLDIIA+F  YDF 
Sbjct  240  RLKCKIAEYTDYCEYWYQAGLNQIKQAGTGADTWAKFNKFRREMTLTVLDIIAIFQTYDF  299 
 
Query  291  EKYPLGTNVELTREIYTDPVGYSRGNYRWEGLFS--FNSLEANGTRGPGLVTWLQAIDIY  348 
            +KYPL T+VELTREIYTDPVGYS G Y W   ++  FN+LEANGTRGPGLVTWL++I IY 
Sbjct  300  KKYPLPTHVELTREIYTDPVGYSSGTYSWLKYWTGAFNTLEANGTRGPGLVTWLRSIGIY  359 
 
 
 



 257 

Query  349  SHPVFTQPGYLIGWGGTRHYEDYTKGNGAFQRMSGTTSNDPHSISFGNTDIFKISSLARV  408 
            +  V     Y  GW GTRHYEDYT GNG FQRMSGTTSND   ISF N+DIFKI S A + 
Sbjct  360  NEYV---SRYFSGWVGTRHYEDYTTGNGNFQRMSGTTSNDLRDISFPNSDIFKIESKAIM  416 
 
Query  409  ELQPFVGYSIPRYRTSRAEFFPTTLNTLLYERNSSGY-SQTIESVLPGIDKDLPPSARNY  467 
             L   +  + P YR SRAEF  +T    LY+  +SG  S TI S LPGI K+  PS R+Y 
Sbjct  417  NLVGEIN-ARPEYRVSRAEFSESTAFIYLYDAGNSGLSSMTITSKLPGI-KNPEPSYRDY  474 
 
Query  468  SHRLSNAACVQYETSVVNVFGWTHTSMTRNNPIYPDKITQIPAVKAFALENG--AYVSAG  525 
            SHRLSNAACV    S +NV+GWTHTSM++ N IYPDKITQIPAVKAF + +     V AG 
Sbjct  475  SHRLSNAACVGAGNSRINVYGWTHTSMSKYNLIYPDKITQIPAVKAFDISDTGPGQVIAG  534 
 
Query  526  PGDTGGDVVTLPYLGRLKIRLTPAPTNKNYRVRIRYATSYGASLMVQRWSPSGSESDYFG  585 
            PG TGG+VV+LPY  RLKIRL PA TNKNY VR+RY ++    L+V+RWSPS   + YF  
Sbjct  535  PGHTGGNVVSLPYYSRLKIRLIPASTNKNYLVRVRYTSTSNGRLLVERWSPSSIINSYFF  594 
 
Query  586  SSPTGPYPTFGYMNTLVTTFNQSGVEIIIENRHYSNIIIDKIEFLPDDLTTLESEGERNL  645 
               TGP  +FGY++TLVTTFNQ GVEIII+N   + I +DK+EF+P + T LE EG+++L 
Sbjct  595  LPSTGPGDSFGYVDTLVTTFNQPGVEIIIQNLD-TPINVDKVEFIPVNSTALEYEGKQSL  653 
 
Query  646  EKTKKAVNDLFI  657 
            EK +  VNDLF+ 
Sbjct  654  EKAQDVVNDLFV  665 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 258 

>lcl|Cry40Ba1 Cry40Ba1 
Length=666 
 
 Score =  648 bits (1671),  Expect = 0.0, Method: Compositional matrix adjust. 
 Identities = 357/677 (53%), Positives = 443/677 (66%), Gaps = 30/677 (4%) 
 
Query  1    MNSYQNTNGYEILESSSNNTNTPNRYPFANDPNIFPIILNDCPGKPWQDTWKSISNFISV  60 
            MNSYQN N YEIL+SS NNTN PNRYPFAND ++ P+  NDC G PW D W+S ++F  + 
Sbjct  1    MNSYQNKNEYEILKSSPNNTNIPNRYPFANDRDMSPMSWNDCQGSPWNDVWESTASFTGI  60 
 
Query  61   MVSMAGFISSPGVLIGIPALLGIVNLLIPSSGPSVAALSICDLLSIIRKEVDESVLNDAV  120 
             + +  F+  P +  GI  L  ++  L+PS G +VA+LSICDLLSIIRKEVDESVL+DA  
Sbjct  61   GIDLITFLGEPSI-TGINLLFSVIGKLLPS-GQNVASLSICDLLSIIRKEVDESVLSDAY  118 
 
Query  121  ADFNGKLTNYKEYYLSSLQEWLSAGKPNDSRL-SNVVEYFKKSEEGFNEILAGSLSRQNA  179 
             DFNG + NY+ YYL+SL++WL AGKP   +L ++V ++F+ SE  FN +L GSLSR    
Sbjct  119  GDFNGVVNNYQTYYLTSLKKWLDAGKPTTGQLLTDVTKHFEFSEREFNALLKGSLSRPKG  178 
 
Query  180  QILLLPTFAQAANVQLLLLRDAVQYKKEWGALLSAEKVGSELISPTIDYGQRLKDKIAQY  239 
            +ILLLPT+ Q AN+ LLLLRD VQYK  W   L  E V SELISP+ DY    K+++A++ 
Sbjct  179  EILLLPTYTQGANLHLLLLRDFVQYKAVWEKELRTENVESELISPSFDYEGHFKEQLAEH  238 
 
Query  240  AKYCVFWYQEGLNQIKEEGAGTTTWLKFNKFRREMTLAVLDIIALFPIYDFEKYPLGTNV  299 
              +C+ WYQ GLNQIKE G  T  WLKFNKFRREMTL+VLDIIA+FP YDFE Y   T++ 
Sbjct  239  INHCITWYQAGLNQIKESGTSTENWLKFNKFRREMTLSVLDIIAIFPTYDFENYKSETHI  298 
 
Query  300  ELTREIYTDPVGYSRGNYRWEGLFS--FNSLEANGTRGPGLVTWLQAIDIYSHPVFTQPG  357 
            EL+RE+YTDPVGY+     WE   +  FN+LEANGTRGPGLVTWL+ IDI++  V    G 
Sbjct  299  ELSREVYTDPVGYN----GWEQNLTNGFNTLEANGTRGPGLVTWLKKIDIFTDEVTEYSG  354 
 
Query  358  Y-----LIGWGGTRHYEDYTKGNGAFQRMSGTTSNDPHSISFGNTDIFKISSLARVELQP  412 
            +     L GW GTRHYE YT  +   QR+SGTTSND  +I F N+ IF I+SLAR  L   
Sbjct  355  WSPVAILRGWAGTRHYEIYTGSSNTLQRISGTTSNDVSNIDFINSRIFIITSLARYALAG  414 
 
Query  413  FVGYS--IPRYRTSRAEFFPTTLNTLLYERNSSGY-SQTIESVLPGIDKDLPPSARNYSH  469 
                +   PRYR SR EF  T   T LYE NS G  S TIES LPG+         +Y + 
Sbjct  415  AAAGNPGSPRYRVSRVEFRSTGRYTFLYEVNSPGISSMTIESKLPGVKN--ATGFTDYFN  472 
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Query  470  RLSNAACVQYETSVVNVFGWTHTSMTRNNPIYPDKITQIPAVKAFALENGAYVSAGPGDT  529 
            RLSNAACVQ+ TS VNV+GWTH SM   N +YP+KITQIPAVKA+ +   + V AGPG T 
Sbjct  473  RLSNAACVQFGTSRVNVYGWTHISMGEGNYVYPNKITQIPAVKAWEIRGTSSVVAGPGHT  532 
 
Query  530  GGDVVTLPYLGRLKIRLTPAPTNKNYRVRIRYATSYGASLMVQRW--------SPSGSES  581 
            GG++V + Y     I+ T     K YRVRIRYA+     L ++RW            +   
Sbjct  533  GGNLVKMSYHSVWSIKFTCQQL-KRYRVRIRYASDGNCQLAMRRWRGGPGYVQEARHTVQ  591 
 
Query  582  DYFGSSPTGPYPTFGYMNTLVTTFNQSGVEIIIENRHYSNIIIDKIEFLPDDLTTLESEG  641 
              F  S T  Y +F Y++           ++ I+      + IDKIEF+PDDLTTLE E  
Sbjct  592  RTFSGSMT--YDSFKYLDIFTMPAEDYTFDLTIDLESGGALYIDKIEFIPDDLTTLEYEE  649 
 
Query  642  ERNLEKTKKAVNDLFIN  658 
            ERNLEKTK AVNDLF N 
Sbjct  650  ERNLEKTKNAVNDLFTN  666 

 

 


	Coversheet
	George, Zenas Okon

