

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Computing multi-scale organizations built
through assembly

Gregory M. Studer

Submitted for the degree of D.Phil.

University of Sussex

August 6, 2011

Declaration

I hereby declare that this thesis has not been submitted, either in the same or different form, to this
or any other university for a degree.

Signature:

Declaration iii

Acknowledgements

I am indebted first of all to my advisor Inman Harvey, who was responsible
for shepherding my early interests in multi-scale phenomena as they repeatedly
twisted and turned. I count myself lucky to also have a whole host of supportive
colleagues - Lucas Wilkins, Jose Fernandez-Leon, Nick Tomko, Matthew Egbert,
Renan Moioli, Bruno Santos, and the rest of the CCNR - your help has made
this thesis as complete as it could be and infinitely more accessible. A special
mention should also be made of Cristiano Solarino: our coffee discussions were a
major factor in clarifying the ideas within and pushing me in new and interesting
directions.

Of course, supporting this research at a more fundamental level is my family and
my wife Sara. Each one of you has always been incredibly supportive of my often
incomprehensible goals. You guys are the best.

Computing multi-scale organizations built
through assembly

Gregory M. Studer

Summary

The ability to generate and control assembling structures built over many orders of magnitude is
an unsolved challenge of engineering and science. Many of the presumed transformational bene-
fits of nanotechnology and robotics are based directly on this capability. There are still significant
theoretical difficulties associated with building such systems, though technology is rapidly ensur-
ing that the tools needed are becoming available in chemical, electronic, and robotic domains. In
this thesis a simulated, general-purpose computational prototype is developed which is capable
of unlimited assembly and controlled by external input, as well as an additional prototype which,
in structures, can emulate any other computing device. These devices are entirely finite-state and
distributed in operation. Because of these properties and the unique ability to form unlimited size
structures of unlimited computational power, the prototypes represent a novel and useful blueprint
on which to base scalable assembly in other domains.

A new assembling model of Computational Organization and Regulation over Assembly Lev-
els (CORAL) is also introduced, providing the necessary framework for this investigation. The
strict constraints of the CORAL model allow only an assembling unit of a single type, distributed
control, and ensure that units cannot be reprogrammed - all reprogramming is done via assembly.
Multiple units are instead structured into aggregate computational devices using a procedural or
developmental approach. Well-defined comparison of computational power between levels of or-
ganization is ensured by the structure of the model. By eliminating ambiguity, the CORAL model
provides a pragmatic answer to open questions regarding a framework for hierarchical organiza-
tion.

Finally, a comparison between the designed prototypes and units evolved using evolutionary
algorithms is presented as a platform for further research into novel scalable assembly. Evolved
units are capable of recursive pairing ability under the control of a signal, a primitive form of
unlimited assembly, and do so via symmetry-breaking operations at each step. Heuristic evidence
for a required minimal threshold of complexity is provided by the results, and challenges and
limitations of the approach are identified for future evolutionary studies.

Submitted for the degree of D.Phil.

University of Sussex

August 6, 2011

Contents

1 Introduction 1
1.1 Contributions . 2

1.1.1 Dynamic, scalable assembly and computation 2
1.1.2 Research summary . 3

1.2 Clarifications . 3
1.2.1 Assembling systems . 4
1.2.2 Assembly and self-assembly . 4
1.2.3 Assembly and self-organization . 4
1.2.4 Assembly and dynamical hierarchies . 5

1.3 Thesis overview and structure . 5

2 Background and Motivation 7
2.1 Origins of research into assembling systems . 7
2.2 Early assembling systems . 8

2.2.1 Artificial life and robotics . 10
2.2.2 The modern synthesis . 12

2.3 Current work on assembling systems . 15
2.3.1 Modeling dynamical hierarchies . 16
2.3.2 Dynamical hierarchies in artificial chemistries 17
2.3.3 Multi-scale robotic assembly . 22

2.4 A middle way . 26
2.4.1 Meta-unit control . 28
2.4.2 Other scaling approaches . 29

2.5 Evolved approaches to assembled hierarchy . 30
2.5.1 Molecube replication . 30
2.5.2 Open-ended evolution . 34

2.6 A new model for assembly . 34

3 The CORAL Model 36
3.1 Overview . 36

3.1.1 Model components . 37
3.2 Petri nets and C/E nets . 39

3.2.1 Comparison with other approaches . 44
3.2.2 Related Petri net assembly models . 45

3.3 Atomic Units . 47
3.4 The Environment . 48
3.5 Background signals . 54

Contents vii

3.5.1 Signal noise . 57
3.6 Time constants . 58
3.7 A simulation example . 59

3.7.1 Sample environment . 59
3.7.2 Signal control . 60
3.7.3 Past steady state? . 63

4 Assembly Scaling with NOR Operations 65
4.1 Not-OR operation . 65
4.2 NOR assemblers . 67

4.2.1 NOR meta-units . 70
4.3 Assembly behavior . 72

4.3.1 Structure blinking . 75
4.3.2 Structure shielding . 78
4.3.3 Waterfall selection . 79
4.3.4 Full assembly algorithm . 82

4.4 Implementation in 36 bits . 87
4.4.1 Simulated assembly of meta-units . 88

4.5 Emulating arbitrary formulae . 93
4.6 Remarks . 98

5 Graph Assembly and Computation using Petri Assemblers 100
5.1 Overall approach . 101
5.2 C/E net primitives . 102

5.2.1 Designing a C/E primitive . 103
5.2.2 Localization . 106

5.3 C/E assemblers . 112
5.4 Assembly behaviors . 114

5.4.1 Linear feedback shift registers . 114
5.4.2 Graph assembly . 121
5.4.3 Turtle assembly . 123

5.5 Implementation in 27 bits . 132
5.5.1 Building a target network . 136

5.6 Remarks . 139

6 Evolutionary Search for Scalable Assemblers 142
6.1 Evolutionary algorithms and genetic programming 142
6.2 Pairing assemblers . 144
6.3 Evolving recursive assemblers . 144

6.3.1 Genotype representation . 144
6.3.2 Fitness function . 146
6.3.3 Pairing results . 149

6.4 Fitness landscapes of scalable assembly . 153

Contents viii

6.4.1 Generalized controller and fitness function 157
6.5 Tests of other algorithms . 164

6.5.1 Messy genotype encodings . 164
6.5.2 Other evolutionary algorithms . 166
6.5.3 Results . 169

6.6 Remarks . 172

7 Principles of Recursive Assembly 174
7.1 Recursive assembly . 175
7.2 Why recursive assembly? . 176

7.2.1 Brains and bodies . 176
7.2.2 Logical “bodies” . 178
7.2.3 Assembly potential and limitations of C/E units 179
7.2.4 CE meta-constructions . 179

7.3 Models of assembling systems . 180
7.3.1 Self-organization and necessary complexity 181

8 Conclusion 183
8.1 NOR units . 183
8.2 Assembly of arbitrary computers . 184

8.2.1 Stochastic graph assembly . 185
8.3 Assembly and virtual evolution . 186
8.4 Future work . 188
8.5 Final remarks . 189

A Proof of meta-unit shielding 190

B A comparison of C/E primitives 194

Bibliography 197

List of Figures

2.1 Gordon Pask’s electrochemical ear. 9
2.2 The Penroses’ replicating blocks. 10
2.3 Diagram of a CEBOT. 11
2.4 Fractum modules. 11
2.5 Comparison of the CORAL and κ-model. 23
2.6 DNA Sierpinski triangles. 24
2.7 Molecube diagram and open-ended evolution. 31
2.8 Stacked lifecycle graph of a molecube simulation. 33

3.1 Core features of the CORAL model. 38
3.2 Summary of basic Petri and C/E net operations. 39
3.3 Example Petri or C/E net. 40
3.4 Example C/E net execution. 41
3.5 Example C/E net execution (continued) . 42
3.6 Contact in a C/E net and mitigating construction. 43
3.7 Synchronized FSTs and Petri nets. 46
3.8 Sample atomic CORAL unit. 47
3.9 Sample atomic CORAL unit with ports. 48
3.10 Sample linking CORAL units (start). 50
3.11 Sample linking CORAL units (linked). 51
3.12 Sample linking CORAL units (disconnecting). 52
3.13 Sample linking CORAL units (disconnected). 53
3.14 Sample atomic CORAL unit with signal transition. 55
3.15 Sample CORAL units receiving signal. 56
3.16 Signal noise construction. 57
3.17 Sample simulation environment (start). 60
3.18 Sample simulation environment (after signal). 61
3.19 Sample simulation environment (links formed). 62
3.20 Sample simulation environment (stable structures). 62
3.21 Sample simulation environment (final structures). 63

4.1 NOR identities as diagrams. 66
4.2 Nested NOR gates. 67
4.3 The NOR unit. 68
4.4 The NOR unit with signals. 69
4.5 A NOR meta-unit. 70
4.6 A NOR meta-meta-unit. 71

List of Figures x

4.7 NOR unit signal propagation. 73
4.8 NOR unit with assembly signals. 74
4.9 Structure blinking example. 77
4.10 Structure shielding example (open). 80
4.11 Structure shielding example (linked). 81
4.12 Labels for waterfall selection. 82
4.13 Waterfall selection priming path. 83
4.14 Steps 1 and 2 of the waterfall selection algorithm. 84
4.15 Steps 3 and 4 of the waterfall selection algorithm. 84
4.16 Steps 5 and 6 of the waterfall selection algorithm. 85
4.17 Steps 7 and 8 of the waterfall selection algorithm. 85
4.18 NOR diagram with all ports and signals. 88
4.19 Full NOR unit implementation. 89
4.20 NOR unit simulation (start). 90
4.21 NOR unit simulation (seed vs. stock). 90
4.22 NOR unit simulation (first assembly). 91
4.23 NOR unit simulation (half-built). 91
4.24 NOR unit simulation (meta-units). 92
4.25 NOR unit simulation (meta-meta-meta-unit creation). 93
4.26 NOR structure for (a ↓ b) ↓ (a ↓ b). 94
4.27 Propagation in (a ↓ b) ↓ (c ↓ d). 95
4.28 Antennae emulation. 96
4.29 NOR structure for (a ↓ b) ↓ (c ↓ d) with antennae. 97

5.1 C/E net primitive. 104
5.2 Constructions for C/E operations. 105
5.3 Construction for pass&sync. 106
5.4 Sample island graph construction. 108
5.5 Island reduction for outgoing transitions. 109
5.6 Island reduction for incoming transitions. 110
5.7 Island reduction for place islands. 110
5.8 Final localized island graph. 111
5.9 Core C/E unit structure. 113
5.10 C/E unit with logic for ports. 115
5.11 3-bit LFSR example. 116
5.12 LFSR state-shifting FSM models. 120
5.13 C/E unit with LFSR logic. 120
5.14 Self-connected structures. 122
5.15 An example path through a C/E unit structure. 124
5.16 A pathological path calculation. 127
5.17 Structure verification using turtle movement. 131
5.18 Skeleton of full C/E unit. 134
5.19 Full C/E unit implementation. 135

List of Figures xi

5.21 Simulated island graph construction (start). 136
5.20 Small island graph example. 137
5.22 Simulated island graph construction (filtering bad edges). 138
5.23 Simulated island graph construction (half-built). 138
5.24 Simulated island graph construction (fully-built). 139
5.25 Target computing device with labels. 139

6.1 Recursive pairing of simple C/E units. 145
6.2 Skeleton CORAL unit for evolution. 147
6.3 Recursive pairing - max fitness and assembly levels. 151
6.4 Best recursive example. 152
6.5 Best evolved assembler (with signal). 154
6.6 Best evolved assembler (paired with signal). 155
6.7 Best evolved assembler (pair symmetry break). 156
6.8 Skeleton CORAL unit for more general evolution. 158
6.9 2p/3t fitness landscape (binary coding). 160
6.10 2p/3t fitness landscape (gray coding). 162
6.11 2p/4t fitness landscape (gray coding). 162
6.12 3p/3t fitness landscape (gray coding). 163
6.13 Fitness landscape autocorrelation. 165
6.14 Benchmark results (binary genomes). 170
6.15 Benchmark results (messy genomes). 171
6.16 Benchmark results (prob. messy genomes). 171
6.17 Benchmark results - best pairing assembler. 172

7.1 Recursive assembly vs. standard assembly. 177
7.2 Scalable unit-compressible behavior. 179

8.1 Scalable assembly with NOR units. 184
8.2 C/E units assembled into computational part. 185

A.1 NOR-meta unit diagram. 191

B.1 Noisy channel primitive and Quine construction. 195
B.2 Noisy channel primitive as CORAL unit. 195

List of Tables

2.1 Interaction features of different types of assembly models. 13
2.2 Individual unit features of different types of assembly models. 13
2.3 Control features of different types of assembly models. 14

4.1 NOR truth table. 66

5.1 State swapping example. 118
5.2 Mapping example using shift, merge, and recover. 119

6.1 Recursive pairing evolutionary results. 150
6.2 Gray code example. 161

List of Algorithms

1 Waterfall selection assembly algorithm in Python pseudocode. 86
2 Turtle assembly algorithm in Python pseudocode. 133
3 Recursive pairing behavior fitness function in Python pseudocode. 148
4 Simplified recursive pairing fitness function in Python pseudocode. 159
5 The coevolutionary MGA in Python pseudocode. 167

Chapter 1

Introduction

Systems assembled from huge numbers of tiny components are the basis of all living and non-
living processes in the natural world. Through basic interactions structure is generated, and com-
posed from these structures more structure; from the smallest particles we can observe to the
largest galaxy clusters. What is truly fascinating about the natural world is the incredible diversity
and dynamism at any scale one looks, all of it fundamentally generated from the same sorts of ba-
sic physical interactions, everywhere. For example, our own body is an amalgamation of nanotech
devices, organized through multiple levels into a macroscopic body, controlled via an impossibly
intricate microscopic electrical system. Only recently have scientists begun to emulate in artificial
ways this quintessential trick of nature - the generation and control of dynamic structure over a
broad range of scales.

The notion of system hierarchy via assembled components is not new, particularly in the life
sciences. Organisms are amazing constructions of systems of systems built from a more-or-less
single kind of part, recognized in the development of cell theory in the 1800s. Cells themselves
are built from chemical and atomic organizations, which fundamentally rely on a small number of
basic chemicals. Though these ideas have been well-known for the latter half of the 20th century
(Maynard Smith & Szathmáry, 2004), the development of artificial chemistry and artificial life
in the late 1980s made the constructive and computational understanding of life and related pro-
cesses a topic of active research. Because living systems are composed of multi-scale interactions,
a major challenge of this project is to “create a formal framework for synthesizing dynamical
hierarchies at all scales” (Bedau et al., 2000; Lenaerts et al., 2005; Bedau, 2007).

The control and generation of dynamic, multi-scale devices is not of interest only to biology, as
recent convergent advances in nanotechnology, chemistry, electronics, and robotics attest (White-
sides, 2002). At the macroscale, assembling robotic devices are theorized to have extreme flexi-
bility in the types of tasks they can accomplish, while potentially being more robust and cheaper
(Yim et al., 2007a, 2009). As machines get smaller, toward the micro- and nano- scale, building
machines upwards from simpler, stochastic assembling parts is one of the only practical ways to
generate complex devices, be they mechanical (White & Yim, 2007; Tolley et al., 2008; Yim et al.,
2009) or chemical (Gómez-López & Stoddart, 2002; Drexler et al., 2007; Gazit, 2007). In all of
these research areas, the main promise and challenge lies in building and harnessing structures of

Chapter 1. Introduction 2

many simple parts organized over multiple scales. This remains difficult, despite demonstrated
technical capability to build assembling parts in each domain. Robotic devices of thousands of
units remain elusive (Yim et al., 2009), the construction of complex, multi-part nanotech devices
is still on the horizon (Whitesides et al., 1991; Whitesides, 2002; Drexler et al., 2007), and the
gap between remains comparatively unknown territory. General principles of controllable assem-
bly across scales are required, divorced from particular environments, along with constructive
“blueprints” for assembling parts generally applicable in many areas.

1.1 Contributions

Toward these goals, this thesis introduces a framework, based on a distributed computational no-
tion of interaction, which supports well-defined and constructive Computational Organization and
Regulation over Assembly Levels - the CORAL model. By formalizing the central question of
“how can we generate and control dynamic structure across scales?” to a system restricted by
shared constraints of assembly and well-defined composite structures, it is possible to unambigu-
ously describe devices organized at higher structural levels. This model then provides a framework
for the design of structurally and computationally scalable prototype units, while ensuring a mini-
mum of assumptions about the initial unit scale or environment. These prototypes demonstrate for
the first time that unlimited, dynamic constructive power over unlimited scales is achievable (and
easily controllable) in a computational sense, requiring a base unit with fewer states than a single
CPU register. The CORAL model and these prototypes provide the framework and blueprints for

uniquely scalable and controllable assembling systems.

1.1.1 Dynamic, scalable assembly and computation

At the heart of these capabilities are the ideas of distributed, concurrent, and composable compu-
tation. The primary tool used by the CORAL model is Petri nets and the subset of capacity-1 Petri
nets called condition-event (C/E) nets (Reisig, 1992; Petri, 1996). Petri nets are a well-known
model of distributed computation developed in the 1960s by Carl Adam Petri (Petri, 1962), and
can be viewed as a token-based game or, equivalently, synchronized collections of finite state
machines. Mathematically, Petri nets can be represented as a bipartite graph of “places” and
“transitions,” where places may be marked with tokens and token flow is synchronized between
multiple places by transitions. Synchronization is a primitive Petri net operation, which is used as
the basis of the assembly operation in the CORAL model. The operation of units when assembled
is changed only by synchronizing particular transitions with others, allowing the construction of
composite units which are themselves Petri nets. A more detailed description and explanation is
provided in Chapter 3.

The major innovation allowed by this architecture is this tight integration of internal unit com-
putation and external unit interaction while maintaining basic notions of topology. In every as-
sembling system, external interactions between units eventually become the internal processing
inside assembled structures. In previous models of assembling systems with topological structure,
such as amorphous computing models (Abelson et al., 2000), artificial chemistries (Mayer & Ras-
mussen, 1998; Banzhaf et al., 1999; Dorin, 2000; Ono & Ikegami, 2001; Ewaschuk & Turney,
2006; Hutton, 2007), or robotically-inspired systems (Studer & Lipson, 2006; Sayama, 2009), the

Chapter 1. Introduction 3

atomic parts are represented in a qualitatively different way than the composite structures. Often,
for example, passive individual “molecules” float freely in a 2D or 3D world. Over time these
form semi-stable aggregates, which are then interpreted as dynamic structures at different levels
using various heuristics. These structures, however, must be described in qualitatively different
ways than the molecules themselves, and may additionally include fluid boundaries, internal state,
and mobility. Comparisons between the atomic parts and hybrid environmental structures conse-
quently become difficult, if not impossible, clouding ideas of complexity and hierarchical organi-
zation. This is also the case in natural systems, where larger objects typically interact differently
from the components of which they are made.

Progress can be made, however, by meeting at the middle: atomic units and composite assem-
blies can both be modeled using internal state and finite (though potentially large) boundaries. It
is also possible to restrict multi-unit structures to interact only directly through the mechanisms of
their constituent units, particularly when building new assembling machines. Artificial assembling
devices are designed naturally this way, and it is hypothesized that other, scale-dependent interac-
tions of structures can be more easily understood as additions to the inherently scale-independent
core system. By linking this model of hierarchical assembly, inspired by abstract models of dy-
namical hierarchy, to a simple control scheme and general topological space, the construction and
control of huge structures becomes possible. Essentially, this thesis documents a search for the
smallest realistic substrate for unlimited computational development.

1.1.2 Research summary

With the basic ideas of assembly across scales as a backdrop, the novel contributions of the work
in this thesis are listed individually below:

• a framework for assembling systems which allows the direct computational comparison of
assembled devices across many orders of magnitude of assembly - the CORAL model -
while also including basic realistic assumptions such as conservation of mass and finite
connectivity (Chapter 3),

• using this framework, the first example of a simple assembling prototype with well-defined,
distributed, and dynamic controllability in structures of unlimited size and arbitrary logical
computation - the NOR unit (Chapter 4),

• the first example of a simple assembling prototype with the ability to build dynamic com-
puting artifacts of unlimited size and arbitrary computational complexity, including its own
controller, in an environment preserving the basic notions of realism above - the C/E unit
(Chapter 5),

• and an original investigation using evolutionary algorithms to design simple examples of
scalable assembling (pairing) units, including a comparison of various algorithms and geno-
type encodings as a base for future work (Chapter 6).

1.2 Clarifications

Before beginning the thesis proper, it is helpful to outline a few issues in terminology and con-
cepts which may inadvertently misdirect or confuse the reader. The study of assembling systems
is a highly interdisciplinary field, and different vocabulary and approaches are more popular in

Chapter 1. Introduction 4

different areas. In addition, it is useful to clarify exactly what is meant by an assembling system,
since readers may initially have different impressions as to what the term means.

1.2.1 Assembling systems

The notion of an assembling system is defined here as a collection of objects or units which can

build composite objects called structures. This definition is similar or more general than those
given elsewhere for assembly and self-assembly (Andeen, 1997; Adleman, 2000; Whitesides,
2002; Banzhaf, 2004). The focus on objects instead of organizations is deliberate, as the work
presented here does not consider dynamically stable structures as entities themselves. A prag-
matic approach is taken instead where every novel topological structure is considered a different
type of assembled device, which allows the direct comparison of structures with units when using
the CORAL assembly model. This definition also supports recursion; structures can be relabeled
as units to form a second-order assembling system.

1.2.2 Assembly and self-assembly

In much related literature, the terms “self-assembling system” or “self-assembly” are used to de-
scribe systems compatible with the very general definition given above. The definition of self-
assembly in (Banzhaf, 2004) is a slight exception, as it limits the scale of the process to a single
“stage” or level, with “self-formation” allowing recursive constructs. Assembling systems de-
scribed in this thesis exhibit self-formation in this context.

The prefix “self-” usually indicates that individual devices at some point act under limited
external control, but the extent of this idea varies. For example, is a system self-assembling if
smart but immobile parts are attached by stupid external robots (Werfel et al., 2006), or if the
external environment (Krishnan et al., 2007) powers and directs most assembly itself? Develop-
mental systems (Harding & Banzhaf, 2008), in particular, do not fall neatly into this category. It is
acknowledged here that the distinction between self- and normal assembly is an inherently fuzzy
border, made more so by complications establishing whether a structure of multiple units is a unit
itself. The preferred term in this work is simply “assembly,” to indicate that the interesting philo-
sophical issues related to identity and control are not addressed. Again, a pragmatic approach is
used where unrealistic individual manipulation is forbidden, but realistic, limited broadcast com-
munication and control is not.

1.2.3 Assembly and self-organization

A similar problem of definition exists for the term “self-organization.” Though there have been
many attempts to precisely define self-organization and emergence (e.g. (Ashby, 1962; Haken,
1987; Baas, 1994; Banzhaf, 2004)), the terms still encompass different ideas to different people
and so are avoided for clarity. Related work in multi-unit simulated systems that build structure
is often presented as an example of self-organization. The claim is not challenged, but this type
of research is also considered here as an example of assembly. Similarly, multi-agent systems are
here considered instances of multi-unit systems if the agents form larger structure. One property
many models called self-organizing do share is demonstrated organization at only a single higher

Chapter 1. Introduction 5

descriptive level - the “self-organized” level. This was the impetus behind research into multiple
“levels of organization,” strongly related to dynamical hierarchies and the work in this thesis.

1.2.4 Assembly and dynamical hierarchies

Dynamical hierarchies are a flexible concept in dynamical systems theory and artificial life, where
the underlying description of some system is refactored into more granular representations with-
out losing essential descriptive ability. Though there is not general agreement on the best way of
going about this process, dynamical hierarchies have been identified in many types of systems:
smooth dynamical systems (Jacobi, 2005), population-based systems (Rowe et al., 2005), discrete
chemical interactions (Dittrich & di Fenizio, 2007), and finite state automata (Nehaniv & Rhodes,
2000), amongst others. Assembling systems do not necessarily constitute dynamical hierarchies,
however most work constructing such hierarchies naturally integrates assembly either explicitly or
implicitly, and it has been hypothesized that assembly is a required component for such hierarchies
to emerge (Bedau et al., 2000). Because the CORAL model allows well-defined recursive struc-
tures of different sizes with comparable computational dynamics, dynamical hierarchies based on
subsets of computational behavior are naturally observed.

A caveat - it is also true that few if any observed system hierarchies in the physical world
are strictly child-to-parent or parent-to-child. Information flows bi-directionally through many
scales - for example, particular molecules are required for an organism to move a large body, but
the results of directed motion include changes to these molecules, potentially mediated through
a highly complex nervous system and digestive processes. Circular dependence is ubiquitous,
and an active area of research. The terms “hierarchy,” “structural level,” and “level of assembly”
must be read here and throughout this thesis somewhat ambiguously when applied to real systems,
implying not that all interactions conform to some sort of tree-like organization but only that some
interactions do.

1.3 Thesis overview and structure

A brief summary of the chapters of the thesis is presented below as a guide to the reader.
Chapter 2 begins with a brief history of assembly research, dividing the discussion between

the early pioneering work in a variety of fields and the modern interdisciplinary synthesis which
exists today. Particular attention is paid to modeling approaches in the different fields, which
motivate the choices made in the CORAL model. The idea of reconfiguration in response to input
is also discussed, which gives the primary motivation for the global-broadcast input mechanism
used throughout the other chapters.

The CORAL model is fully introduced in Chapter 3. As described above, the model is based on
C/E net units, which, in combination, become larger C/E net units. An example unit is presented
which generates chain and loop structures, but assembly is fundamentally limited, motivating the
two assembling prototypes of the next two chapters.

In Chapter 4, the first prototype is introduced - an assembling unit implementing a logical
Not-OR (NOR) operation. By attaching itself to other NOR units in particular structures, meta-
units implementing the NOR operation can also be built, and themselves directed into even larger
constructions. NOR units therefore are the first instance of a realistic assembling model to demon-

Chapter 1. Introduction 6

strate unlimited assembly over arbitrary orders of magnitude in size. These mega-structures can
themselves be controlled, and placed into other structures that compute arbitrary logical expres-
sions, the output of which can drive a variety of other actions not modeled in the core CORAL
framework.

The second type of assembling unit, the C/E unit, is able to build arbitrarily large structures
which can emulate any other computational device. Described in Chapter 5, these units are also
capable of building their own C/E net structure at larger scale. The meta-nets constructed are po-
tentially more powerful than, but composed of, the individual unit interactions, and are assembled
via an interesting distributed graph assembly algorithm called “turtle assembly.”

Chapter 6 presents results from an experiment into the evolutionary design of hierarchically
assembling devices. Such an investigation is interesting in itself, as there have been few exam-
ples evolving the design of assembling devices using simulated evolution, and results comparing
different types of algorithms and genotype encodings are provided. In addition, it is known from
the NOR unit example that the CORAL model supports unlimited hierarchical assembly. The re-
sults from this thesis therefore suggest that the limited hierarchy demonstrated thus far in virtual
ecosystem and artificial chemistry models incorporating evolution is a result of hierarchy being
difficult to evolve using current evolutionary algorithms, and is not a fundamental limitation of
abstract environments.

In Chapter 7, a synthesis of the ideas from the three previous chapters relating to recursive as-
sembly is presented. Other perspectives on assembly and self-organisation are compared with the
demonstrated scalable assembly results and the engineering trade-offs inherent in the approach are
discussed. The chapter ends with a discussion of modeling in systems with dynamic organisational
capabilities.

Finally, Chapter 8 summarizes the results put forward in the previous chapters, identifies lim-
itations of the work, and recommends ideas for extensions.

Chapter 2

Background and Motivation

Research into the design of assembling systems currently spans a broad swathe of disciplines, with
the term “assembly” used to describe systems of both complex interacting machines and organisms
to comparatively simple reactive simulations. This large scope is not simply a consequence of
language but also of the models, which tend to have similar roots to research begun soon after the
advent of computer science in the 1930s. In this chapter these origins are briefly introduced, giving
the background of relevant research in artificial chemistries and robotics which inspired and inform
the assembly model developed for this thesis. Much recent work has addressed aspects of assembly
at multiple organizational levels and various means of building assemblies in a controllable way,
and a contribution of this thesis is to link these previously disparate ideas together using a model
that can demonstrate both.

2.1 Origins of research into assembling systems

Explicit study into artificial assembling systems began in the late 1940s, when the explosion of
electronics research first made such devices conceivable. At Los Alamos National Laboratory,
John Von Neumann was investigating the potential self-replication of mechanical devices using
ideas from automata theory, newly developed by pioneering computer scientists of the 1930s. The
core of his idea, reprinted in 1966 from earlier lectures, was this:

...[O]ne imagines automata which can modify objects similar to themselves, or
effect syntheses by picking up parts and putting them together, or take synthesized
entities apart. ...Draw up a list of unambiguously defined elementary parts. Imagine
there is a practically unlimited supply of these parts floating around in a large con-
tainer. One can then imagine an automaton functioning in the following manner: It is
also floating around in this medium; its essential activity is to pick up parts and put
them together, or, if aggregates of parts are found, to take them apart. (Von Neumann,
1966)

Informed by the current understanding of self-assembling systems in biology, Von Neumann was
aware that real self-assembling machines would probably be linked in complex ways to the en-
vironment in which they interact. Understanding the general processes of self-assembly required

Chapter 2. Background and Motivation 8

sidestepping this problem using some sort of abstract, prototypical environment, and in discus-
sions with a colleague Stanislaw Ulam he was led to analogous mathematical models of crystal
assembly (Ulam, 1950; Beyer et al., 1985). By marrying a regular crystal grid with automata the-
ory, Von Neumann designed the first cellular automata (CA) - a regular grid of computing elements
which interact locally and synchronously. As an abstraction to answer questions about mechanical
replication, each grid cell in a CA originally corresponded with some simple mechanical atom,
highly limited in function but powerful when acting cooperatively. Using this model (and others),
Von Neumann was able to pose the following question:

Can one build an aggregate out of such elements in such a manner that if it is
put into a reservoir, in which there float all these elements in large numbers, it will
then begin to construct other aggregates, each of which will at the end turn out to be
another automaton exactly like the original one? (Von Neumann, 1963)

Von Neumann provided his own answer in the the publication of the universal CA constructor
(as well as other universal models) (Von Neumann, 1966). This original constructor was an un-
wieldy structure of thousands of cells (an impressive mathematical construction in an era before
desktop computing) but was further refined several years later to only eight and four states in two
respective theses by Edgar Codd (Codd, 1968) and Edwin Roger Banks (Banks, 1971). Universal
constructive power, the ability of particular constructs to build any other structure, implies that a
system supports self-replication, though simpler self-replicators exist, as was shown a decade later
by Christopher Langton (Langton, 1984). Self-replication is not a particular focus of the research
presented in this thesis, but it was and is a major driver of assembly research. All self-replicating
devices require some sort of multi-part assembly (perhaps by definition), and investigation into
biological reproduction informs assembly research to this day.

Although originally designed for investigating mechanical assembly, cellular automata have
been and continue to be used as a model for discrete, distributed populations in a variety of fields
too numerous to describe here. They also continue to be used as a tool to investigate distributed
assembly processes, and are related to many current models of assembling or distributed systems
discussed later in this chapter.

2.2 Early assembling systems

A second major strand of assembly thought began similarly in the 1950s with the pioneering
cyberneticist Gordon Pask, and was reintroduced to the artificial intelligence (AI) mainstream
much later in the early 1990s (Pask, 1958a; Cariani, 1993; Bird & DiPaolo, 2008). Instead of
using mechanical devices, Pask devised a self-assembling “ear” from a chemical soup of iron
particles in sulphuric acid. Too small and numerous to individually direct, the particles instead
could be influenced to form long chains by external electrical signals, becoming a chemical system
tuned by the user (or itself) to build structure (Figure 2.1). These structures then acted as analog
computers, filtering multimodal information from the environment and controlling the production
of new structure. This type of analog work was superseded with the rise of digital computation,
and only slowly have computer scientists, inspired by biological and chemical structure, continued
asking many of the same questions. To this day, Pask’s ear is notable in both the simplicity of the
assembling unit and the huge scale over which assemblies were formed, from molecular units to

Chapter 2. Background and Motivation 9

Figure 2.1: Photograph of Pask’s electrochemical assemblage from (Pask, 1958b; Cariani, 1993).
The black-and-white photo is of the electrochemical bath, where tree-like threads of iron (E) grow
in acidic solution from electrodes (perpendicular to the page). The circular wires are a support
frame. The electric field at the electrodes modifies the growth of threads, while the growth of
metallic threads modifies these electric fields. By rewarding (with increased growth) the response
of wire structures to particular multimodal stimuli, Pask was able to demonstrate the assembly of
a wire ear which “heard” particular sounds.

Chapter 2. Background and Motivation 10

Figure 2.2: Diagram of self-replicating blocks from (Penrose, 1959). The vertical block clasp
assemblies are capable of basic assembly and replication if one considers the two-block assembly
of (a) an assembled object. After joining consecutively with a block on the left (b) and right (c)
(assuming stochastic shaking motion), a pair of two-block assemblies is created. The two-block
assemblies effectively catalyze their own production.

macroscopic devices. The search for simple discrete assemblers over unlimited scale in this thesis
was partially inspired by Pask’s approach.

A second major study of real but artificial assembling devices was the 1959 work by Lionel
Penrose and his son Roger on systems of tumbling plywood blocks (Penrose, 1959). Perhaps
Roger Penrose is better known for the beautiful aperiodic tilings which bear his name, though
this work was similarly groundbreaking. By shaping blocks with unpowered mechanical latches
and shaking them in a flat box, the Penroses were able to assemble larger aggregates and demon-
strate shapes which built copies of themselves (Figure 2.2). The idea of physical shape directly
influencing function is today an active area of research in the field of conformational switching
(Saitou, 1999; Freitas & Merkle, 2004). Protein chemistry, in particular, is largely based on con-
formations. One canonical example is bacteriophage assembly, where parts of virii are built from
self-assembling proteins (Casjens & King, 1975; Thompson & Goel, 1988). More recent chemi-
cal computing using DNA exploits nucleotide pairing to literally build computational solutions (in
both senses) from DNA-encoded directives (Adleman, 1994) (discussed later in Section 2.3.2).

2.2.1 Artificial life and robotics

Physical and mathematical approaches to assembly intersected in the early 1990s with parallel re-
search into models of biological, chemical, and robotic processes. Though mathematical models
of these systems have been in constant development for hundreds of years, the widespread avail-
ability of huge computing power allowed researchers, for the first time, to simulate hundreds and
thousands of interacting components. This new freedom facilitated a new type of investigation
into chemistry and biology: simulated experiments on complex living systems not as they were
but as they could be. The new direction was widely recognized as the new fields of artificial life
(ALife) (Langton, 1989) and artificial chemistry (McCaskill, 1988; Fontana, 1992) in the early

Chapter 2. Background and Motivation 11

Figure 2.3: Diagram of a CEBOT module from (Fukuda et al., 1991). Multiple mobile cells search
and link to one another via two complimentary ports.

(a) (b)

Figure 2.4: Images of fractum modules from (Murata et al., 1994). The modules form a hexagonal
grid (2.4b) and move via magnetic changes on a powered surface.

1990s. Abstracted chemical and biological systems, essentially huge interacting baths of similar
units, provide the second foundation to assembly research as it is conducted today. The goal of
this type of research is twofold, and not only includes a biological understanding of why life pro-
cesses exist in the forms they do, but also an algorithmic understanding of life processes which
are difficult to mimic using artificial technology (Bedau et al., 2000).

Alongside these developments, the maturation of robotics technology led to the first macro-
scopic examples of active assembling devices. The core engineering ideas behind self-replicating
(and self-assembling) robots began in the early 1980s with designs for replicating space probes
(Freitas, 1980; Merkle, 1992; Sipper, 1998). By the late 1980s the first real devices were built,
including both the CEBOT (Figure 2.3), a robot formed from individual cells echoing Von Neu-
mann’s original kinematic assemblers (Fukuda & Nakagawa, 1987; Fukuda et al., 1991), and fol-
lowed closely by the fractum (Figure 2.4), a two-dimensional, hexagonal robotic lattice built from
identical parts reminiscent of a cellular automata (Murata et al., 1994). These were the first proto-
types of robots which complete tasks by linking together into assemblies, known today as the field

Chapter 2. Background and Motivation 12

of modular robotics. The potential of robots which do not explicitly assemble but instead work
in groups, swarm robotics, began much earlier in the mid-1940s but only gained momentum at a
similar time (Dorf, 1990; Cao et al., 1997), though it is important to emphasize again that biolog-
ical models of swarming long preceded robotic studies. As opposed to modular robots, robots in
swarms do not necessarily physically attach to one another. However, from a larger perspective,
swarm robotics may be considered a special case of modular robotics (or vice versa) in which
units can be arbitrarily reconfigured with respect to one another. As with artificial chemistries and
artificial life, the boundaries of these fields are fluid and still being explored. The reader is also
referred to (Freitas & Merkle, 2004) as an excellent review of physical instances of assembling
systems, though with a focus on replication.

2.2.2 The modern synthesis

There is significant overlap in modeling and implementation between varieties of cellular automata
(CA), chemical assemblers, conformationally switching devices, artificial chemistries, and simu-
lated assembling robots. For historical reasons, cellular automata work tends to emphasize the
design of the rules inside the units, while artificial chemistry and conformational switching re-
gard the interactions between units as the more important aspect. Additionally, the interactions
in CAs tend to be discrete and synchronous, while artificial chemistries often investigate types of
asynchronous, stochastic interactions and robotic interactions tend to be asynchronous and deter-
ministic, but more complex. There are also many exceptions to these generalizations. In the spirit
of artificial chemistry, swarm and modular robotics, and assembly reviews which compare studies
along different research axes (Dudek et al., 1996; Iocchi et al., 2001; Dittrich et al., 2001; Freitas
& Merkle, 2004; Bayindir & Şahin, 2007), a partial listing of the assumptions of canonical models
of assembly in various fields is shown below in Tables 2.1-2.3. The comparison of assembly mod-
els is not intended as definitive, rather, the various features are meant to illustrate the various ways
assembly, once disembodied from implementation, has been modeled in these disparate areas. Be-
cause of the extreme interdisciplinary nature of assembly research, models in different fields have
emphasized different assembly properties. The CORAL model is also included in these tables to
show how the choices made compare with other paradigms, though the full model is introduced
only in Chapter 3.

Chapter 2. Background and Motivation 13

Type of Model
Synchronized
interactions

Stochastic
interactions

Discrete
interactions

Cellular
Automata

yes no yes

Artificial
Chemistry

no yes maybe

Conformational
Switching

no yes yes

Swarm
Robotics

no maybe no

Modular
Robotics

no no yes

Chemical
Computing

no yes maybe

CORAL Model no yes yes

Table 2.1: Interaction features of different types of assembly models. Interaction refers to the way
in which individual units pass information between one another.

Type of Model
Identical

units
Stochastic

units
Discrete

units
Finite state

units

Cellular
Automata

yes no yes yes

Artificial
Chemistry

maybe no yes yes

Conformational
Switching

maybe no yes yes

Swarm
Robotics

maybe no maybe no

Modular
Robotics

yes no yes no

Chemical
Computing

maybe yes maybe yes

CORAL Model yes no yes yes

Table 2.2: Individual unit features of different types of assembly models.

Chapter 2. Background and Motivation 14

Type of Model
External
direction

Full program-
per-unit

Cellular
Automata

no no

Artificial
Chemistry

no no

Conformational
Switching

no no

Swarm
Robotics

yes yes

Modular
Robotics

yes yes

Chemical
Computing

yes no

CORAL Model yes no

Table 2.3: Control features of different types of assembly models.

It is important to emphasize again that there are many exceptions to the yes/no declarations
above.

Table 2.1 compares different assembly models on criteria derived from the way units interact
with one another. Models using synchronized interactions require all units to change state at the
same time. Stochastic interactions means that the interactions are chosen randomly, or have some
sort of random factor affecting them. Discrete interactions are interactions which happen in an
all-or-none fashion, either units are chosen to have a particular interaction or they do not.

In contrast, Table 2.2 compares the way units themselves are modeled. Units may all begin
as identical, or there may be many different kinds of units used to populate the simulation. Like
stochastic interactions, units themselves may operate stochastically and use (semi-)random state
changes. As shown in the third column, units and assemblies may be discrete objects, or there may
be ambiguity in defining boundaries or to what other parts a unit is attached. Finally, assembling
units may be modeled as infinite-memory general-purpose computers, or strictly limited in state.

The final Table 2.3 highlights the way in which these various assembly models are used or
controlled. Units may be subject to external influences during the assembly process, or require
some external direction in order to be used. Related to this idea is whether each individual unit
is itself programmed with the full instructions, or whether the units are individually executing
simpler programs which result in the desired function in combination.

Some interesting general properties become clear when looking at the above tables. To begin,
it somewhat justifies the “object” definition of assembling systems given in Chapter 1, in that the
main properties shared at least partially by all of the above models are discrete, identical units.
As an aside, this is not to say that all assembling systems use exactly identical units, but only

Chapter 2. Background and Motivation 15

that with discrete units it is often possible to postulate an uber-unit which subsumes all the unit
types if multiple types of unit are required, enabled initially for a single type. The main points of
divergence between models seem to be along the stochastic interaction, external direction, finite
state unit, and program-per-unit axes. While there is largely consensus on the other factors, any
model investigating assembly in general must make these choices, potentially limiting the areas to
which the model will be applicable.

Because it was designed to investigate realizable assembling units but ignore particular in-
teraction details, the CORAL model described in this paper combines the strict interactions of
modular robotics with stochastic interactions and simple units of artificial chemistries. This en-
ables both structural realism and huge scales. The highly-programmable and high-memory units
of swarm robotics and modular robotics are possible due to the huge scale difference between
microelectronics and macrorobotics, but this difference does not exist in other domains and is re-
duced as robotics shrink. Assuming finite state units is a safer choice, and such units are generally
much easier to build and predict even in macroscopic devices. Along the same lines, it is deemed
highly important that external direction over assemblies be possible. For reasons that will be elab-
orated further on in this chapter, program-per-unit methods tend to be fundamentally less flexible
in reconfiguration than approaches that explicitly recognize the role of external influences.

The misleading historical distinctions in which each of these models developed have recently
been falling away, leading to a more general appreciation self-constructing, open, far-from-equilibrium

systems (Kauffman, 1993) and the more concise notions of dynamic self-assembly (Whitesides,
2002) and constructive dynamical systems (Fontana & Buss, 1994; Banzhaf, 2004). As defined by
Fontana and Buss:

We develop an approach where no particular fixed network is known a priori, by
considering a finite ensemble in which interactions among objects repeatedly con-
struct new objects. . . A constructive dynamical system is, therefore, characterized by
two components: a dynamics in phase space and a dynamics of the system’s support.

The study of constructive dynamical systems motivates the previously-mentioned definition of
assembly, and again emphasizes treating assembling systems as systems of distinguishable objects.
The study of all general constructive dynamical systems is an exciting topic beyond the scope of
this thesis, and so here we have limited our review of these works to those explicitly designed to
create, model, or measure the production of new entities at multiple scales. In the next section, the
more recent developments in this and other contexts will be presented.

2.3 Current work on assembling systems

In a seminal Artificial Life paper, a set of 14 open questions were posed by leading researchers as
important challenges remaining in the field (Bedau et al., 2000). Question 8 of 14 is a challenge
to “create a formal framework for synthesizing dynamical hierarchies at all scales.” Assembly is
mentioned explicitly as a core component needed to build these processes, in multiple contexts,
along with a formal framework in which to model constructive systems. The work in this thesis
directly addresses this challenge from both the modeling and implementation perspective. In the
past 10 years, much progress has been made on this topic, (Lenaerts et al., 2005), but the question

Chapter 2. Background and Motivation 16

remains unanswered (Bedau, 2007) and addressing it fully would unlock new scalable technology
and better understanding of multi-level networks in biology, chemistry, and computer science.

As might be expected from the diversity of viewpoints on assembly, work toward building and
modeling systems exhibiting order at multiple scales comes from a variety of directions. Dynamic
hierarchies have been defined using philosophical, computational, and informational measures, of-
ten tied to particular implementations. Related measures of complexity sometimes address scaling
measures as well. There have in parallel been many less formal approaches simulating and build-
ing various types of assembling systems with interesting multi-level behaviour. A survey of this
research and the current progress made toward understanding dynamic hierarchies and multi-scale
behavior is presented below.

2.3.1 Modeling dynamical hierarchies

Many approaches to dynamical hierarchies have tended to focus exclusively on the problem of
formally identifying multi-scale structure, and several competing paradigms exist to describe the
idea in various contexts. As early as 1969 scientists acknowledged the mathematical study of hi-
erarchical systems was valuable (Mesarović & Macke, 1969), but later work by Baas (Baas, 1994)
popularized the ideas for artificial life audiences and proposed a fairly similar set of properties
required for a system to generate new properties from interacting parts at multiple levels. These
properties are inherently tied to the notion of an observer. A number of initial (level 1) objects are
required as a given, which may be grouped into different indexed sets S1

x =,x ∈ N. An interaction
function I1(S1

x) and observation function O1(S1
x) are defined over these sets, intuitively capturing

the ways in which the objects can interact and the ways in which they can be viewed. A con-
structive grouping or result function R then takes these observations and creates a second-order
structure using some process, often representing ideas like equilibrium structure (though other
functions are not disallowed). Second-order structure is the result of this function applied to the
first order structures:

S2
y = R(S1

x ,O
1, I1) where x,y ∈ N

A higher level property or dynamic P is created when:

P ∈ O2(S2
y) and P /∈ O2(S1

x)

O2 is an observation function for higher-level structures which may or may not be the same
as O1. This hierarchy of organization can be extended upward indefinitely to any level, each new
level potentially requiring a new observation function or interactions. (The above is a summary
from (Rasmussen et al., 2001b) and (Baas et al., 2004).)

While Baas’s model incorporates core ideas of hierarchical organization, it is not very pre-
cise because the notion of observation is not very strict. Trivial hierarchies can be created, e.g.
solely aggregating cellular automata (Dorin & McCormack, 2002), and others have proposed ex-
tensions and new models to formalize hierarchy in agent-based (Groß & Lenaerts, 2003), infor-
mation theory (McGregor & Fernando, 2005), or compatibility (Rowe et al., 2005) terms. Further
approaches, taking insights from models of complex systems in physics and dynamical systems

Chapter 2. Background and Motivation 17

theory have been introduced by Jacobi (Jacobi, 2005) and in the form of Chemical Organisation
Theory (COT) (di Fenizio et al., 2000; Dittrich & di Fenizio, 2007).

Other researchers have attempted to capture hierarchical organization using models from com-
puter science. These formalisms have the advantage of depending only on the system interactions
themselves for detecting complexity, and are easily analyzed mathematically. It is possible to de-
compose a given finite state automata into a nested series of sub-automata using the Krohn-Rhodes
decomposition, which can then be used as a bias-free measure of the hierarchical complexity of
a system (Nehaniv & Rhodes, 2000; Egri-Nagy & Nehaniv, 2004, 2008). A more constructive
model using the complexity of interactions in a finitary process soup (FP soup) has also been pro-
posed, which simulates assembling systems as interacting state machines (Crutchfield & Young,
1989; Crutchfield & Görnerup, 2006). The complexity measure for the atomic ε-machine units
(fully-connected, deterministic finite state transducers) can also be applied to population interac-
tions between units, allowing meta-unit organizations to be easily tracked.

While these numerous measures of dynamical hierarchy provide different perspectives and
“slices” of how the system is organized, no broad consensus seems to have emerged privileging
one over the other. Arguably, this is because these various hierarchical decompositions are diffi-
cult to apply to many realistic simulations or data which would weed out measures which do not
have much relevance to actual systems. (An exception to this, however, is chemical organisation
theory, which has been used as a framework for chemical computing (Matsumaru et al., 2005).)
An additional factor is that the measures themselves are not constructive, nor are they intended
to be. To build novel types of many-level dynamical hierarchies requires other methods, and so
ease of construction or the interesting behavior generated cannot really be used as a criteria. To
those who wish to define hierarchy rigorously, such work must take the existence of hierarchies as
a given. Perhaps as a consequence, however, no mathematical search for automata or primitives
which hierarchically assemble indefinitely has been completed thus far, using any of these mod-
els, though such automata may exist. Instead, artificial chemistries are the more-or-less concrete
experiments into how structure can be generated.

2.3.2 Dynamical hierarchies in artificial chemistries

Artificial chemistries provide a useful middle ground between pure theoretical investigation into
multi-scale systems and the types of interactions needed to realize them. Many varieties exist,
often involving some sort of assembly, while all tending to share the basic concepts of many
individual parts interacting using predefined rules to form larger organizations (Dittrich et al.,
2001; Banzhaf, 2004). Probably the canonical example of these ideas is the previously-mentioned
AlChemy artificial chemistry simulation of small λ-calculus functions (Fontana & Buss, 1994,
1996). By transforming one another and being transformed, at least three levels of program inter-
actions can be discerned. The programs themselves undergo interactions with one another which
are only in some cases directly mappable to physical space, though it is mentioned that functional
families can be generated by structural families of related chemicals. The previously mentioned
FP-soup model (Crutchfield & Görnerup, 2006; Görnerup & Crutchfield, 2008), when divorced
from the complexity measure, contains a similar idea using finite state machines (FSMs), as does
newer work in reflexive FSMs (Salzberg, 2007). Other tape-based models draw inspiration from

Chapter 2. Background and Motivation 18

the Turing machine model of computation (McCaskill, 1988; Dittrich & Banzhaf, 1998; Ikegami,
1999). In these, binary strings act upon one another as alternately program or data, which is
hypothesized to be a superset of the types of manipulations chemical structures perform on one
another. Single or multiple organizations of dynamically stable units have been observed using
these approaches, though again the interactions of derived units are not related in any simple way
to a physical interpretation of the ancestors. Similar to these ideas are simulations of autocat-
alytic protein sets (Kauffman, 1993) or metabolism (Bagley et al., 1991), which demonstrate the
self-organization and metadynamics of cyclic organizations built through catalytic closure, i.e.
hypercycles (Eigen & Schuster, 1977). Approaches using traditional cellular automata and the
organizing of higher order groupings of cells has also been demonstrated (Baas & Helvik, 2005;
Helvik, 2005; Hoekstra et al., 2007), with applications to other formal distributed models. These
models assume a priori behavior at each scale exists, however, and do not create organizations
themselves.

In general, these computational artificial chemistries have been shown to be a rich medium in
which to generate multiple levels of interactions and sometimes structure (often, for example, ex-
hibiting self-replication). The CORAL simulation environment, itself a close relative of the FSM
soup approach, builds upon their previous success and demonstrates that such soups are capable
of unlimited assembly. Thus far, only limited examples of structural or organizational hierarchies
had been generated using these approaches, with most of the work in organizational hierarchy. A
drawback to purely computational approaches, however, is that they lack physical realism with-
out additional constraints, and these constraints may significantly change the allowable classes of
behavior. Basic notions such as conservation of matter and unit topology have often been ignored
in favor of the abstraction, and so in this light making the interactions and units of the system
compatible with basic physics became an explicit goal of the CORAL model.

Other artificial chemistry research is more directly inspired by biological chemistry, which
often demonstrates many levels of hierachical dynamics through assembly. An early example is
one of the most interesting: (Thompson & Goel, 1988), where a novel artificial chemistry and
cellular automata variant, the movable finite automata (MFA), is used to simulate the construction
of a virus. The original work was limited to rectangular interactions, but was later extended to
use more realistic spherical interactions (Shirayama et al., 2004). The MFA model is interesting
as it incorporates the elegant finite automata model of computation with a very general notion of
assembly via complementary ports, quite close to that used in the CORAL model. However, due
to particular assumptions used by the model about bond strengths and bond topologies it becomes
difficult to apply outside the domain of viral assembly.

Simulations of autopoeisis (Ono & Ikegami, 2001) have been shown to demonstrate the gen-
eration of meta-structures and metabolism from simple parts, as have other grid (Mayer & Ras-
mussen, 1998; Banzhaf et al., 1999) and non-grid-based (Dorin, 2000; Hutton, 2002, 2007) ap-
proaches inspired by biological mechanisms. In the latter work by Hutton, using rules loosely pat-
terned after the actual cellular mechanisms, proto-cell type patterns have been built which require
at least three hierarchical assembly processes. The model of (Doursat, 2008) also demonstrates
multi-scale constructs, using an “excitable canvas” of mobile cells with modular genetic regulatory
networks (similar to amorphous computing (Abelson et al., 2000; Nagpal et al., 2003)). Though

Chapter 2. Background and Motivation 19

no explicit measure is made, such an approach in theory could generate organizations at many
scales at the cost of increasing complexity in the core units. The JohnnyVon artificial chemistry
is based on a biological metaphor of nucleotides, and attempts to use the pairing functionality to
build much larger regular structures (Smith et al., 2003; Ewaschuk & Turney, 2006). These static
assembled structures can be quite impressively large, but the particular pairing force-field model
holding assembled structures together is again difficult to apply generally. Multi-set based self-
assembly of cell-like computing structures (membrane or P-systems (Păun & Rozenberg, 2002))
is another recent development (Bernardini et al., 2005, 2007), though in this particular work the
cells are taken as a basic unit and multi-scale structure is not explicitly addressed. Membrane sys-
tems naturally have a multiply-nested approach, and are similar in structure to Baas’s hypercycles
(Baas, 1994) or bigraphs (Milner, 2009).

“Real” artificial chemistry

In a broader sense, all of chemistry (and perhaps physics) can be considered assembling systems,
and significant progress has been made simulating realistic assembling chemical systems (Klein
& Shinoda, 2008) in particular areas. The goal of these studies is somewhat different from the
minimal approach demonstrated here and in other artificial chemistry studies. Realistic models
are useful for prediction and understanding of real chemical systems, whereas artificial chemistry
models such as the one presented here seek to understand the core functionality needed for par-
ticular behaviors. For example, it is difficult using realistic models to analyze and describe what
general properties, if any, allow simple amino acids to perform so many functions when used in
combination with one another. Is it an accident of evolution that (more or less) 22 are used, and
might they be even more powerful if more were added or the chemical behavior was different?
These are important questions when attempting to mimic natural assembly using our own artificial
constructions.

However, a new synthesis of chemistry and computer science is again underway, echoing the
merge which created artificial chemistry in the 1990s. Currently described as rule-based modeling

(Hlavacek et al., 2006), the idea is again to integrate computer science with biological processes
but, this time, with vastly greater computing power and knowledge of detailed cellular processes.
The κ model (Danos & Laneve, 2004) and similar precursor models such as BioNetGen (Faeder
et al., 2005) are powerful process calculi and agent-based approaches (respectively) applied to
real chemical processes currently difficult to model in entirety. In particular, the combinatorial
explosion caused by assembly poses problems for conventional approaches (Danos et al., 2007).
The κ model uses notions of proteins, binding sites and interfaces quite close to the units, ports
and state of the CORAL model and also to robotic self-assembly using graph theory via Klavins
(Klavins et al., 2006b; Danos & Tarissan, 2007) and the π-calculus approach of (Regev et al., 2001;
Regev & Shapiro, 2002). The major difference between these approaches and the CORAL model
is that the CORAL model uses internal state to enforce local operations, whereas local operations
are constraints on the syntax of κ reactions and graph-theoretic assembly (Figure 2.5). It is a
deep question, not fully answered to date, how to “bunch” local interactions together into higher
semantic levels, though rule-based approaches show promise (Danos et al., 2008). The recursive
assembly discussed throughout this thesis is one form of such bunching, applicable to particular
kinds of interactions.

Chapter 2. Background and Motivation 20

The κ molecular process model

It is particularly useful to illustrate in more detail the workings of the κ process model, as it is a
modern fusion of ideas from other successful biological process models and a “purer” computa-
tional approach. Again, the goal of the work differs from our own, but the closeness in design of
formal molecular models and many parts of the CORAL assembling system leads to many similar
challenges.

The original intention of the κ-model was to model protein interactions (Danos & Laneve,
2004), and as such places emphasis on topology changes between and within linkable units. Pre-
specified rules changing the units’ port or site topology in response to previous changes have the
power to emulate the high-level behavior of active sites in proteins. No physical environment is
specified explicitly; one can visualize the κ model as a well-mixed reactor with anonymous units
of different types, where each unit instance has a particular set of open sites. To be more specific
(much of the following details are derived from (Danos & Laneve, 2004; Danos et al., 2006; Danos
& Tarissan, 2007)), the basis of the model is:

• a countable set of protein names P ∈ {A,B,C, . . .}

• a countable set of edge names E ∈ {x,y,z, . . .}

• for all A ∈ P , a number of sites of A written (A, i), where i ∈ N and i < s(A)

• a signature map s : P → N, defining the maximum number of sites of a protein name A

The purpose of the edge and protein names is fairly straightforward. The sites of a particular
protein name are numbered and limited to some maximum defined by s. A solution in the κ model
is an algebraic construct with the following recursive syntax:

S := 0|S,S|A(ρ)|(x)(S)

The values 0 and S,S allow one to describe an empty solution or a solution of many proteins,
while the A(ρ) indicates a protein name ∈ P with interface ρ. Intuitively, this defines solutions as
collections of named proteins, each instance of which has a particular set of ports opened, closed,
or connected. The final term is a new operator, which binds the (edge) name x in the adjacent
solution. (Note that in this syntax the protein name A refers to a particular type of protein, whereas
the name x refers to a particular edge instance.) Generally this binding is used to introduce shared
edges between proteins modeled in a solution, where x is a bond name used in the protein interface
ρ. The syntactic form is extremely similar to that of the π-calculus, by design.

What remains to be described is the protein interface - ρ is a partial map N→ E ×{h,v},
where each integer in the domain of ρ can be thought of as corresponding to a site of a particular
protein name. As described above, this interface defines the state of the sites of the protein, with
each site either connected via a named edge, hidden (h), visible (v), or not present (as is allowed
by the partial map). Interfaces are much easier to understand using a graphical notation, where
i+ j̄+ kx indicates a visible site i, a hidden site j, and a site k connected to edge x.

Chapter 2. Background and Motivation 21

κ solutions and reactions

The syntactic state of a chemical solution is intended to model the topological state of a real protein
solution. Chemical reactions dictate how bonds form and are broken in real solutions, and corre-
sponding reactions in the κ model dictate transitions between syntactic forms. For each chemical
system modeled, the reaction set R contains mappings between solution “prototypes.” A particular
solution matches one of the prototypes in the domain of the reaction map if it is syntactically iden-
tical up to edge renaming (though there are some additional subtleties with commutative terms).
As an example, Equations 2.1 describe reaction rules corresponding to the topological reactions
diagrammed in Figure 2.5a. These reactions are, respectively, the activation of particular sites and
the linking or complexation of units via the active sites.

A(ā+ i+ j),B(b+h),C(c+ k+ c′+ c′′) → (e)(A(a+ ī+ j̄),B(be +h),C(ce + k̄+ c′+ c′′))

A(ā+ i+ j),B(b+h),C(c+ k+ c′+ c′′) →
(e)(f)(g)(A(a+ i f + jg),B(be +h f),C(ce + kg + c′+ c′′))

(2.1)
Sets of reaction functions define a transition system over κ solutions: iterating from a solution

si, one can progressively match sub-solutions to inputs in the reaction rules and replace them with
instances of reaction-rule outputs in a new solution si+1. This matching process is immediately
analgous to the subgraph isomorphism used for matching in the graphical reaction rules of (Klavins
et al., 2006b), for example, and graph grammars in general.

Comparison between the CORAL and κ models

Importantly, the syntax of κ solutions is broad enough to encompass models with no simple phys-
ical analog; for example, solutions with a single edge between 20 different proteins. In addition,
reaction rules are not constrained to operate within any particular size bounds, making non-local
interactions possible. Several restrictions on the allowed reaction forms are required so that phys-
ically plausible models remain so, but it is up to the model user to verify that the reaction rules are
sufficiently local (properties also shared by graph grammar assembly models (Danos & Tarissan,
2007)). This seems at first an essential difference between these and the CORAL model, since in
the CORAL model only unit-local interactions or interactions between directly linked units can
be represented. As shown by (Danos & Laneve, 2004), however, a pairwise-restricted version of
the κ model, the mκ model, can emulate every valid κ reaction. This emulation generally requires
additional state, however, depending on the high-level operation.

As one goal when developing the CORAL model was to investigate the minimum state re-
quired scale-invariant self-assembly (for definitions of scale-invariant explored throughout the re-
mainder of this thesis), this emulation step is of primary interest. Pairwise restrictions ensure
that in writing down the reaction rules one cannot conceal steps which require additional state be
added for synchronization, since then recursive assembly algorithms may be written which require
unlimited state. This is a feature in the κ model which gives power to the syntax, however it is
inappropriate when investigating minimal units.

Another notable difference between the models is in the nature of combined operations. While
the solution network state is contained in the links defined on each protein in the κ model, in the
CORAL model a barrier is drawn between the internal state of units and the environmental state

Chapter 2. Background and Motivation 22

of links between these units. The separation is due again to the goal of the work - the state of
CORAL units is meant to represent the designed-in complexity (and should be minimized), whilst
environmental complexity emerges through assembly interactions (and should be maximized).
The second major difference, related again to the modeled environment, is the addition of a single
broadcast signal in the CORAL model. To date, κ and graph-grammar models have been used
to investigate closed environments, where a target is specified and the reaction rules derived for
that target. As explained in more detail below, this fundamentally limits the avenues available for
investigation, in particular relating to structures which act dynamically.

Though 3 introduces the full CORAL model, Figure 2.5 illustrates the overall similarities in
graphical construction to the κ-model. As described above, the state or interfaces of κ proteins
are contained in named site mappings (drawn as small external circles), while the state of CORAL
units is defined by patterns of tokens in the state of internal Petri net places (drawn as small
internal circles). Transition rules in the κ model are not pictured, as they are defined externally via
reaction rules, but transitions are included in CORAL model diagrams as rectangular transitions

linking the places.

Further chemistry-inspired models

The previously-mentioned Chemical Organisation Theory (di Fenizio et al., 2000; Dittrich &
di Fenizio, 2007) works at the higher level of chemical kinetics, but shows similar promise in
modeling poorly understood reaction networks. Given a set of reaction rules, organisations can
be defined as self-maintaining subsets of chemical compounds. Organisations are tied deeply with
dynamical analysis of the system, and any sufficiently complex chemical system generates hier-
archies of these organisations. No structural information is needed or provided by this view, but
when structure is largely ignorable (such as in chemical computing) it provides a powerful inter-
face into complex reaction networks and hierarchical decomposition of chemical behavior (Benkö
et al., 2009).

Parallel biochemical work modeling the assembly of real DNA (Fontana, 2006), a molecule
with highly discretized interactions and combinatorial chemistry, has also led to new formula-
tions of self-assembly theory using only tiles with complementary edges (Adleman, 2000; Seelig
et al., 2006). Nanoscale versions of these tiles have been formulated using DNA base-pair binding
to enforce complementarity, resulting in impressive constructions such as DNA Sierpinski trian-
gles and tesselated shapes (Rothemund et al., 2004; Rothemund, 2006). Dynamic multi-level and
modular constructions are not explicitly investigated, though the fractal forms are quite suggestive
(Figure 2.6). The tile model significantly differs from the CORAL and above rule-based assembly
models, however, in that it assumes a combinatorial number of complementary “glues” can exist
between tiles. This may be practical for long strands of DNA and robotic devices, but it limits the
applicability in devices without an initially large state or combinatorial number of types.

2.3.3 Multi-scale robotic assembly

Research in robotics now finds itself facing problems which were formerly confined to the biolog-
ical and chemical worlds. As designs move toward distributed components which are cheaper and
potentially more flexible, understanding the behavior of arbitrary assembled structures requires
fundamentally new paradigms. This is similar to the situation in biochemistry, but with an added

Chapter 2. Background and Motivation 23

(a)

↘

(b)

Figure 2.5: Comparison of edge creation / linking in the κ-model (2.5a) (Danos & Laneve, 2004)
and the CORAL model (2.5b). State is contained in port activations on proteins in the κ-model,
which may be hidden (blue circles), open (white circles), or linked (black circles), and linking
takes place via rules which modify these ports and edges. As will be seen in Chapter 3, state is
internal in the CORAL model but drives ports which may be disabled (white rectangles), holding
(black rectangles), or connected (merged rectangles). The reaction rules in the κ-model are spec-
ified explicitly, while in the CORAL model the rules may be partially implicit with intermediate
computations. Both models are equivalently expressive, and one can translate CORAL units into
the proteins and reaction rules of the mκ-model (a restricted pairwise version of equivalent power)
or vice-versa.

Chapter 2. Background and Motivation 24

Figure 2.6: Images of DNA assemblers from (Rothemund et al., 2004). Assembled Sierpinski
structure (with errors) can be seen in (D) and (E). The patterns were programmed from DNA
tiles with edges of particular specificity, so that tiles representing 1-values may only attach to two
previous tiles with values (0,1) or (1,0).

Chapter 2. Background and Motivation 25

twist - the units themselves can be built to any imaginable form, and the object is not to observe
but to control. The question is not so much if a particular robotic system can be built, but rather
how to build the system most effectively and what kind of primitive devices to use as the base. To
echo the previously-posed question: it is as if one wished to design a new set of amino acids. The
field is still in rapid development, however, and though these issues are widely acknowledged most
approaches to date have tended toward custom implementations for particular platforms, with rare
exceptions.

Because of the complexity inherent in building an assembling mechanical system, work in
assembling robotics has only recently concerned itself with the assembly of large (thousands or
more) numbers of parts (Yim et al., 2007a, 2009). To a large extent, research in this area is
bifurcated into swarm and modular robotics. Swarm robotics research primarily investigates the
designs and protocols of distinct units which primarily communicate with one another, while mod-
ular robotics investigates robotic units which can physically connect with one another. There is
overlap between the two areas, such as the original mobile CEBOTs (Fukuda et al., 1991), the
Swarm-bots project of multiple mobile robots with attachment grippers (Tuci et al., 2005), or the
mobile Jasmine robots which dock together to form robot structures (Kornienko et al., 2007).

Reconfiguration and control

One shared problem in both these areas is known as the “configuration problem”: given a number
of robotic units, how can one direct them into creating a desired formation or structure. There
have been many practical (see review (Ota, 2006)) and theoretical studies of this problem (see
review (Prencipe & Santoro, 2006)) in swarm robotics, where it is sometimes called the (arbitrary)
pattern formation problem (Suzuki & Yamashita, 1996; Bahçeci et al., 2003; Flocchine et al.,
2008), formation control and reconfiguration (Gazi & Fidan, 2006), or more generally just self-
organization. In modular robotics it is more often called the (self-)(re-)configuration problem
(Chen & Burdick, 1995; Dudek et al., 1996; Parker, 2000; Yim et al., 2007a). Modular robotic
studies often go further into self-assembly, as task-related reconfiguration is the central goal of
their study.

Reconfiguration results often depend heavily on the type of communication allowed and the
ways in which the robots can move and sense. Broadly, these can be divided into centralized and
decentralized approaches (Dudek et al., 1996; Cao et al., 1997; Iocchi et al., 2001; Bahçeci et al.,
2003). Centralized approaches are typified by a single controller entity sending individual robots
direct commands at each time interval. Decentralized control implies each robot makes decisions
based largely on local information from attached sensors. For large numbers of robots, there is
general agreement that the centralized approach is more computationally intensive, less flexible,
and less scalable than decentralized control (Dudek et al., 1996; Bayindir & Şahin, 2007), but
it is not fully understood how decentralized robots can be designed to make complex decisions
and structures (particularly dynamic structures) (Whitesides, 2002; Bahçeci et al., 2003). Swarm
robotic work often takes a partially centralized approach, while most, if not all, modular robotic
devices use decentralized networking.

Chapter 2. Background and Motivation 26

2.4 A middle way

The work presented in this thesis points at an intermediate path. The difficulty of controlling huge
numbers of units (e.g. robots, agents, or molecules) from a central source does not primarily arise
from broadcast communication issues, but instead from the computational and bandwidth load of
addressing individual robots. At all scales, broadcast signals can often be designed simply and
cheaply, either by flooding an environment with particular chemicals (Matsumaru et al., 2005;
Rothemund, 2006; Wu et al., 2009), electrical signals (Pask, 1958a; Murata et al., 1994; Hamad-
Schifferli et al., 2002; Kirby et al., 2007), (ultra)sound (Merkle, 1992), radio waves (Fredslund &
Mataric, 2002; Murata et al., 2004; Kornienko et al., 2007), heat (Livstone et al., 2006), or light
(Yim et al., 2007b). Wireless communication is not often used for broadcast in prototype modular
robotic systems (since reprogramming through direct-wiring is simpler during development), but
ultrasound and light sensors are used in the control of many modular robotic units (Fukuda et al.,
1991; Yim et al., 2000; Suh et al., 2002; Castano et al., 2002; Jørgensen et al., 2004; Bishop et al.,
2005; Tuci et al., 2005; Ishiguro et al., 2006). Alternately, semi-broadcast communication can be
performed using seed units or parent controllers which rely on connected units to re-transmit the
signal (Kotay et al., 1998; Yim et al., 2000; Castano et al., 2002; Støy et al., 2003; Murata et al.,
2004; Jørgensen et al., 2004; White et al., 2005; Zykov et al., 2007; Krishnan et al., 2007; Yim
et al., 2007b; Kornienko et al., 2007), though disconnected units are not addressible in the same
way. The above references are not exhaustive; sending chemical, physical, or radio-frequency sig-
nals is commonplace in many fields and the referenced works are simply examples from assembly
contexts. In contrast to the broadcast approach, however, sending individualized signals to large
numbers of units is a highly difficult task for a centralized controller. Depending on task com-
plexity, large amounts of centralized processing may be required, and, perhaps more importantly,
frequently transmitting individual unit actions is an inefficient use of communication bandwidth.
In chemical or other microscopic systems, such individualized control is probably impossible to
achieve by any means.

A model is proposed in the next chapter, the CORAL environment, which uses the simple as-
pects of broadcast signals while explicitly assuming that addressing individual units is impossible.
All broadcast signals (or background signals, as they are later denoted) are received by every unit
in the simulation, though they may be ignored by units in particular states. If these assembling
units were used as a basis of a new type of stochastically assembling modular robot, to use a
macroscopic example, they would require only a single remote control to manipulate them all at

once. The idea is similar to that of the “conductor” robot in (Fredslund & Mataric, 2002) (or in-
deed, a human conductor) which sends a small, periodic broadcast indicating the type of formation
the other robots should assume but not directly how to achieve it. Despite the presence of a leader
robot, the algorithm is still considered a decentralized approach by (Bayindir & Şahin, 2007).

This single controller, sending simple broadcast signals to the entire environment, is able to
assemble arbitrary numbers of robot-structures or unit-structures in parallel. These structures are
sometimes called devices to emphasize their functional nature. If a single device is removed from
the environment, a copy of the same controller used for assembly can also usefully control the
device in isolation. The idea is a shift from pre-programming a unit or group of units with some
target structure in mind, instead focusing on properties that make units (robotic or otherwise) use-

Chapter 2. Background and Motivation 27

ful components in any future (and unknown) device. Since we (the robotic or chemical engineers)
have not been given a decision about which particular device we will need to make, we want to
ensure that the collection of units is able to build all sorts of different machines. Once the new
device has been decided, somehow this information will have to be transmitted from some exter-

nal source (to reprogram all the units, for example). A very simple model of this external source,
chosen in the CORAL model, is a broadcast signal. Other choices are possible. Compared to other
methods, broadcast signals are easy to simulate and analyze, re-use the useful broadcast control
mechanism for individual assembled devices, and assume no particular inter-unit communication
capabilities in the units themselves.

The paradigm shift from programming assembling units for a known task to programming
units for many future unknown tasks somewhat muddies the water between centralization and
decentralized algorithms. By definition, units not designed to build predetermined devices or per-
form predetermined tasks require some external information channel through which these may
be specified. This channel may imply centralized control, but the label is misleading in the con-
text. If, for example, the external channel allows only very small amounts of information to pass,
any extra complexity in the assembled structure must be pre-specified in the units themselves.
These units are decentralized in a sense, but less general assemblers and probably less useful.
If this channel is wide, and essentially reprograms each unit individually as if a wire was being
attached, the actual assembly process will also effectively be fully decentralized. The reprogram-
ming step, however, ensures there is no benefit to this approach as compared to designing for
known tasks. Note that current research into compiling centralized tasks (usually structural) into
distributed sub-tasks for each unit also requires preprogramming and/or reprogramming the dis-
tributed instructions (Nagpal et al., 2003; Kondacs, 2003; Beal, 2005; Klavins et al., 2006a; Danos
& Tarissan, 2007; Grushin & Reggia, 2008; Costelha & Lima, 2008; McNew & Klavins, 2008;
Ashley-Rollman et al., 2009) (though this is a rather elegant way of doing so).

Between these two extremes lies a useful maximum, where each unit contains just enough
information to be effectively reconfigured while retaining the flexibility to build many different
types of devices in response to external signals. Each unit needs no individual reprogramming
and is largely reactive in nature, but through broadcast environmental manipulation non-reactive,
controllable structures can be formed. To contrast the reconfiguration problem, this might be
phrased as the “pre-configuration” problem, and has been addressed only partially. This thesis
argues that for assembling devices whose benefits primarily lie in simplicity and flexibility, the
pre-configuration problem is a more appropriate target. The idea might also be viewed as a special
case of compiling centralized instructions, where reprogramming happens implicitly through the
new collective behavior of the structures formed.

Perhaps the best way to understand this shift is through the common biological metaphors
used today in assembly research. Cells, as the smallest self-contained unit of life, have been
a traditional inspiration for assembly research, e.g. cellular automata, the French flag problem
(Wolpert & Dover, 1981; Miller & Banzhaf, 2003), the cellular robot (CEBOT) (Fukuda et al.,
1991), and amorphous computing (Abelson et al., 2000). Cells, however, are highly nontrivial
structures, with complex interactions that make them difficult to control individually and especially
in combination. Each is built using incredible protein machines, however. These largely reactive

Chapter 2. Background and Motivation 28

structures, when directed by chemical signals, become devices which perform a huge variety of
tasks. Even better, each of these structures is made from 22 or so rather simple parts. If we wish to
engineer our own assembling devices, particularly ones which need to radically and dynamically
reorganize, we might do well to start down one level from cells and understand the requirements
for artificial “amino acids” through which all else can be built. The CORAL model is designed for
this search.

As a final clarification, there is a circular or autopoetic (Maturana & Varela, 1980) aspect
to real proteins, in that the chemical signals emerge from the operation of the protein machines
themselves. This feedback is undoubtedly important, though it is argued here that one must first
understand the limitations of the straightforward, external controller approach before the benefits
of circular organization can be appreciated. This is not to say that feedback is impossible for
dynamic organizations in the CORAL model; usually it is hard to avoid. However, as is demon-
strated in Chapter 4, even without “closing the loop” and considering dynamic organizations one
can build some highly interesting types of dynamic structures.

2.4.1 Meta-unit control

The above discussion was meant to motivate the general approach toward building artificial assem-
blers taken in this thesis. Small reactive units, in combination, can be assembled into complex,
controllable devices. Ideally, one would be able to build and manipulate huge structures from very
small, simple parts. As the size of structures grow, however, the complexity of specifying and
controlling these structures also grows, generally geometrically.

One problem with this complexity is that it can overwhelm any finite pre-programmed unit,
requiring the external signal approach also discussed in the above section. In practice, macroscopic
units built with electronics can have huge information capacity, such that the limit above is not a
practical concern, but there are efficiency and scaling problems. Every assembling unit is required
to contain large amounts of memory and supporting hardware and software, which adds to the
cost and power consumption of units. As units get smaller and capable of forming more intricate
structures, the memory, hardware, and power penalties go up while the capacity to hold them
goes down. For meso- and microscopic electronic parts, it becomes much harder to specify large
assembled structures on the devices themselves. Chemical or nanoscale mechanical devices are
currently even simpler, and while DNA or other chemical storage can achieve impressive data
density, it is difficult to reprogram units of this size or use DNA for device-internal computation.
Pre-programming dynamic units does not scale.

Once a device is assembled, it must be controlled (or control itself) to be useful, and the same
calculation comes into play. As an assembled device grows, the complexity of controlling each
unit individually grows linearly (or more), and this will overwhelm finite pre-programmed units in
the same manner as above. While external signals (even broadcast-only) can theoretically encode
any manner of control, ideally control would be efficient and involve as few signals as possible
while allowing both large and small devices to be built. From this goal comes the idea of meta-unit

control.
Meta-unit control is not a new idea in modular robotics, though it tends to be of more lim-

ited use in pre-programmed devices. In work with cubical unit-compressible modules, Rus and

Chapter 2. Background and Motivation 29

Vona introduced the concept of grains - larger, multi-unit cubes with the ability to reconfigure
themselves arbitrarily (Rus & Vona, 1999). Grains share the same unit-compressible operations as
individual modules, and are able to reconfigure themselves arbitrarily using grain operations de-
fined for grains of any size, though control of these modules is not discussed in a distributed way.
The Molecule modular robotic platform has a similar concept called tiles (Kotay & Rus, 2000),
as does the Shady robot using metamodules (Detweiler et al., 2007). Detweiler et al. propose a
hierarchy of metamodules, where each level has a new control scheme. All three of these systems
can create larger assembled units with simplified control properties, referred to here as meta-units.
When an assembling system must create unknown devices, such units aggregate the control of
many units into a single assembling shape.

These grain, tile, and metamodule meta-units are abstractions placed into the external con-
troller; once the meta-unit structure is created, the same complex individual unit commands must
be sent to move it, though now these signals are aggregated conceptually for the user. A major
goal of the research in this thesis is to show that with careful choice of unit design and meta-unit
structure, meta-units can implicitly realize meta-control through their aggregate structure alone.
Instead of putting functional wrappers around sets of signals which happen to be useful control-
ling groups of units, one can design units which when assembled respond to the same signals as
the individual units themselves. Both structure and function become self-similar, perhaps with
a scaling factor. If designed even more carefully, meta-units can build meta-meta-units with the
same control function, ad infinitum - an assembling quine (Hofstadter, 1979).

This results in a radical but intuitive compression of the control space, where larger instances
of the same devices are controlled using the same signals. In addition, it is easy to give large
structures simple behavior, a useful trick for the more structural aspects of a device. A similar idea
exists in nanotechnology, though not explicitly for control, in convergent assembly (Merkle, 1997;
Freitas & Merkle, 2004). Assuming processes exist which align a limited number of units together
at any scale (perhaps a shaped lattice, chemical “tweezers,” or robot arms), it is theoretically
possible to grow geometrically larger and larger modules by feeding in small parts to a regular
assembling mesh, assembling in parallel, and feeding these to the next higher level. As will
be shown in Chapter 4, if the units are chosen correctly, no feed or mesh is needed, and any
computational device can be created (Chapter 5). Instead of reaching downward toward atoms
with progressively smaller “hands” (Feynman, 1959), one can also reach upward.

2.4.2 Other scaling approaches

Other scalable assembly methods have been proposed for robotic or swarm structures which do
not directly use the concept of meta-units. One approach is to gradually increase the resolution
of the desired structure as new modules are added to the system (Støy & Nagpal, 2004), implic-
itly generating a rough hierarchy from any shape. Other similar growth methods for biologically
inspired agents (Nagpal et al., 2003), including morphogen gradients (Mamei et al., 2004), and
robotic swarms (Cheng et al., 2005; Studer & Harvey, 2007) have also been proposed, though
these approaches also lack means of control and require units with large memory. A new stochas-
tic assembling approach to multi-level assembly is presented in (Mermoud et al., 2009), which
uses heuristics to build multi-level approximations (much like (Thorsley & Klavins, 2008)). The

Chapter 2. Background and Motivation 30

CORAL model does not require approximations to model structures, due to the nature of the com-
ponents, but the definition and simulation of dynamically stable unit organizations may require
similar model reductions.

The control of many assembling units through a high-level language compiled to distributed in-
structions has also been demonstrated in many forms, as was mentioned above. The basis of these
languages include graph grammars (Klavins et al., 2006b), amorphous computing unit languages
(Kondacs, 2003; Beal, 2005), geometric and stigmergic constraints (Grushin & Reggia, 2008),
Petri nets (Costelha & Lima, 2008), or fact/action systems similar to classifier systems (Ashley-
Rollman et al., 2009). In each case, the program in the high-level language is automatically broken
into smaller pieces which are distributed to each unit. Depending on the implementation, the dis-
tributed rules may be unique to each unit type. Assuming types are finite, rules-per-type can be
seen as equivalent to all units getting a the full set of rules predicated on state.

The idea is in many ways the inverse of meta-units and the assembly mechanism described
in this paper, which describes mostly reactive distributed units building stateful, controllable de-
vices. The difference is not simply a shift in perspective, however. The units postulated here are
programmable only through composition, and cannot change their behavior directly if different de-
vices are needed. This is a trade-off: one must build structures (potentially wastefully) to change
the functionality of the atomic components. For example, using NOR units from Chapter 4 one
must build a tree to implement the AND function, it does not exist atomically. On the other hand,
the units themselves may be simpler and more uniform. It is conceivable (and rather interesting)
to imagine a merge of these approaches in the future, where higher-level descriptions are compiled
down to distributed operations, which are then themselves compiled down to particular structures
with those functions.

2.5 Evolved approaches to assembled hierarchy

Evolution through natural selection, as the designer behind natural assembling systems throughout
the biological world, can be considered the most successful generator of dynamical hierarchies
known to date. In Chapter 6, evolution-inspired searches of CORAL model assemblers using
virtual genetic algorithms are presented. There have been a limited number of previous studies
using evolutionary simulations to generate systems with interactions at multiple dynamic levels,
the earliest of which is the Tierra model (Ray, 1992, 1997) and the related Evita model (Bedau
et al., 1997). The assembling robot platforms Molecubes (Zykov et al., 2007), ATRON (Østergaard
& Lund, 2003), and Swarm-bots (Trianni et al., 2003, 2004) have also evolved control for multi-
unit robotic structures using these methods. In general, however, the aim of these robotic studies
is more to engineer flexible and fault-tolerant behaviors than to understand properties which lead
to scalable construction.

2.5.1 Molecube replication

An exception is (Studer & Lipson, 2006), which demonstrates the emergence of replicating species
of structures using abstracted Molecube behavior. The Molecube, as introduced above and pic-
tured in Figure Figure 2.7b, is a cubical robot with electromagnets on each of the cube faces. An
actuated diagonal cut through the cube allows the rotation of three faces of the Molecube with

Chapter 2. Background and Motivation 31

(a)

(b)

Figure 2.7: Open-ended evolution of Molecubes (2.7b) in a cellular arena (2.7a) from (Studer &
Lipson, 2006). The cellular grid is initally seeded with a small percentage of units with randomly
generated controllers (arbitrarily assigned a color in (2.7a)). Each unit is capable of swiveling two
halves with respect to one another and linking on four faces (2.7b). Individual units are incapable
of motion, but by swiveling the units move connected units (up to a limit), and so structures may
be mobile. Units can also overwrite nearby controllers with their own. Given a slow mutation rate
of random overwrites of unit controllers with new random functions, the simulated Molecubes
form continuously novel types of stable, self-replicating, and competing structures.

respect to the other three faces. In isolation the robots are basically immobile, however when
assembled into structures they are able to dynamically reconfigure and even self-replicate (Zykov
et al., 2007).

The Molecube simulation built to further explore this structural replication takes place in a me-
chanically realizable grid environment where robotic controllers for two-dimensional Molecubes
are randomly generated and allowed to overwrite one another. To survive, units with controllers
must form into structures which move and propagate themselves. Explicit tests were performed not
only for individual replicators, of which there were many, but also for correlated species groups
(though none were conclusively found). Structures of particular controller species often were
found in a hierarchy of nested forms, where smaller, mobile forms later combine to form larger
structures (Figure 2.8b).

The simulation uses a grid similar to those of other cellular automata models, though the grid in

Chapter 2. Background and Motivation 32

this case is populated with different molecube controllers, each contained in an implied molecube
with orientation. There are generally many empty locations with no cube and no controller, loosely
corresponding to the quiescent state of an ordinary CA. Controllers can be thought of as a mapping
function from bits to bits, or equivalently as a binary classifier system. Random instances of this
map are easily generated from a long binary string cut into input and output portions. Input to
the controllers is simply the binary encoding of the von Neumann neighborhood of the molecubes
(chosen because attachment between molecubes happens only on faces). The controller output in
response to this input is also binary, and logically divided into three sections:

1. magnet - four bits indicating which faces (A, B, C, D) of the molecube should be able to
link to other molecubes, i.e. whether the magnet is “on” or “off”

2. swivel - four bits indicating which half of the cube to swivel w.r.t. the other half. As
can be seen in Figure 2.7b, swiveling is the way in which molecube structures reconfigure
themselves. There are molecube types with different swivel cuts, grouping faces (AB)(CD)
or (DA)(BC), and two bits control the output of each type of cube orientation.

3. overwrite - four bits indicating which neighbor controllers, in molecubes adjacent to faces
(A, B, C, D), should be overwritten by a copy of the current molecube controller

To visualize the environment, each molecube controller type is consistently assigned a random
color in a 2D grid, with black as the quiescent state (Figure 2.7a). The simulation progresses
by initializing random molecubes at random locations with a given density, choosing a random
molecube order, and executing the molecube controllers in that order by providing neighbor input
and processing the effects of the controller output. An example of such output might be to attach
to a neighbor cube via a magnet bit, overwrite the cube’s controller with an overwrite bit, and
swivel two cube faces, moving all cubes attached to those faces (as in 2.7b). It is important to note
that coordination between at least two molecubes is required for movement, a single cube attached
to no neighbors cannot move.

These operations are designed to mimic the physically realized operations of real molecubes.
As simulated time progresses, those controllers which can coordinate molecubes into forming
movable structures are able to propagate themselves, and those which are not are often overwrit-
ten. To ensure diversity, mutation events happen spontaneously where a controller is completely
overwritten by a random replacement - cube structures can protect themselves somewhat by con-
tinual overwrites but individuals are highly susceptible. This results in an implicit evolutionary
drive toward fast, self-replicating structures in a physically realizable substrate, which was nearly
always observed from initial states (see Figure 2.8).

Using this simulation, it was also found that replicating structures were often composed of
one or more sub-structures, sometimes in near-fractal arrangement, which raised the question of
whether multi-species structures could be observed as an even higher level of organization. Pre-
liminary work toward this goal, which correlated over time the number of duplicated structures
for each controller type (Studer & Lipson, 2006) indicated that there were in fact no (linear) cor-
relations between duplicated structures of different species in the simulations tested, nor could
any easily be generated by adding additional state and communication bits to the molecube con-
trollers. This negative result had positive consequences, however, as it was the direct inspiration
for the work undertaken in this thesis.

Chapter 2. Background and Motivation 33

(a)

(b)

Figure 2.8: ”Stacked lifecycle” chart of a molecube simulation (2.8a), where the horizontal axis
indicates simulation time steps (a time step is a full set of molecube executions) and the vertical
axis indicates the number of duplicate structures of a particular prototype (2.8b) form containing
a single type of controller. Growing numbers of duplicates indicate replication of cube structures,
not simply propagation via overwrite of controllers. Color is the same as the controller color. As
new species are created via mutation and propagate they are stacked on top of the older species,
so the full area indicates the total number of duplicates in all species. In (2.8b), some duplicated
species prototypes are shown with a colored graph representation - each face type is represented
by a different colored node, which are implicitly attached to a central black molecube node and
explicitly to other face nodes. These subgraphs can then be checked for isomorphism to detect
duplicate structures. It is commonly the case that these duplicated structures are “sub-parts” of
one another, as can be verified is the case above.

Chapter 2. Background and Motivation 34

2.5.2 Open-ended evolution

Because there is no explicit evolutionary pressure toward an external goal, this type of simula-
tion is classified as open-ended evolution. A major open problem in open-ended evolution, also
mentioned in the open problems in artificial life (Bedau et al., 2000), is how complexity is gener-
ated. As described by (Ray, 1997), researchers seek to produce a “digital analog to the Cambrian
explosion,” in which multicellular organisms suddenly and inexplicably began appearing in the
fossil record. The in silico equivalent has proven difficult to emulate fully, despite abstract, uncon-
strained environments (Sims, 1994; Ikegami & Hashimoto, 1997; Ofria & Adami, 1999; Lenski
et al., 2003; Standish, 2003) and direct simulated attempts (Furusawa & Kaneko, 1998, 2002;
Yoshida et al., 2005). A major problem is that there is not general agreement on how to compare
complexity, particularly across models, or that complexity even increases (Bedau, 2009). New
approaches to artificial evolutionary algorithms have been proposed as necessary, perhaps inte-
grating recent biological discoveries in development and evolution (Banzhaf et al., 2006; Bedau,
2009) or extreme quantum parallelism (Standish, 2003). The exception to this, however, as men-
tioned above, is the emergence of self-replicating structures. These have appeared much more
frequently than initially expected despite the lack of evolutionary pressure (Koza, 1992; Chou &
Reggia, 1997; Studer & Lipson, 2006).

An approach partially avoiding these difficulties, using an earlier version of the CORAL
model, was presented as (Studer & Harvey, 2008). While recognizing that increasing complexity
is a difficult concept to define, most widely-accepted examples of complexification involve the
composition of larger organizations from multiple smaller organizations. If the organizations at
each scale are otherwise functionally identical, the evolved system, if not increasing in complex-
ity, is at least at a threshold of dynamically renewing complexity by any measure chosen. Such
systems are interesting not only theoretically, but also as a mechanism to achieve the above-stated
goals of building scalable devices through assembly. The results from this work and extensions
are further presented in Chapter 6.

2.6 A new model for assembly

The CORAL assembly model was developed to pull together the various strands of work presented
in this chapter, taking the most compatible aspects from many of the above models and removing
complications from particular domains. In particular, inspiration was taken from the FSM soup ar-
tificial chemistry approach, new rule-based biochemical models, and modular robotic interactions.
Aspects of assembly models it was considered vital to support in the CORAL model are:

• Asynchronous, local interactions - assembling units are independent and act subject to local
connectivity constraints

• Asynchronous, finite-state units - assembling units have highly limited memory

• External information source - reconfiguration information cannot be preprogrammed into
units

• Conservation of matter - atomic assembling units must be reconfigured, not created or de-
stroyed

Chapter 2. Background and Motivation 35

• Inter-unit interactions identical to intra-unit interactions - assembled devices are not hybrid
constructions but “first-class citizens,” equivalent to larger atomic units

The first three of these constraints were discussed above in Tables 2.1, 2.2, and 2.3. The fourth,
conservation of matter, is an extremely important consideration for real assembling systems, and to
a large extent it seems the ease of creating hierarchical systems is related strongly to whether or not
atomic units are infinitely malleable or may reproduce (such as in abstract artificial chemistries).
Assembly results from the CORAL model cannot depend on a lower level of replication or con-
struction, since the highly-related properties of assembly are the focus of the model itself. The fifth
constraint is perhaps the most unconventional, but the idea is shared by the new rule-based bio-
chemical and grammar-based robotic models. As has been shown by assembly research targeted
at specific domains, the analysis of huge constructs becomes qualitatively different (and often in-
tractable) if the interactions between assembled units are not captured as strictly as those in the
units themselves. By making the inner and outer interactions equivalent, one can use a single set
of mathematical tools to analyze, control, and compare behavior across scales. The next chapter
describes the implementation of the CORAL model and the Petri net formalism which captures
the above requirements.

Chapter 3

The CORAL Model

To scientifically investigate assembling systems, especially large systems with mixtures of com-
posite and atomic pieces, one must first define in a rigorous way the units which are able to undergo
assembly and the mechanisms by which these units interact. In this chapter, we define precisely
the operation of an idealized environment and unit behavior which we declare is an instance of
assembly: the CORAL model. Designed with simple but extendable assumptions compatible with
realistic environments, the model combines the unique properties of controllable interactions via
background signals and complete equivalence between external unit communication and internal
unit processing. By blurring the line between composite and atomic units, the CORAL model
allows the investigation of controllable assembly as a process without reference to any particu-
lar scale. Created for this thesis, an early version of the model was presented at the ALife XI
conference (Studer & Harvey, 2008).

3.1 Overview

The CORAL (Computational Organization and Regulation over Assembly Levels) assembly model
captures the notion of discrete, identical assembling components as they interact in a well-mixed
environment. Intuitively, the simulated environment is a “sea” or “soup” of many identical parts
with a limited number of assembly ports that may open or close. There is a shared background
signal which is detected at each timestep by each unit, and this background signal may modify
the interactions of all units in the simulation simultaneously (noise and asynchronicity exist, but
are modeled in unit internals) (see Section 3.5.1). Through externally-directed changes of the
background signal and designing simple units which respond to these changes by opening ports,
units may be assembled into extremely large structures. To extend the oceanic analogy further:
we can modify the salinity, but we cannot touch individual parts. There is no mechanism in the
CORAL model by which an individual unit may be addressed separately from any other, units are
indistinguishable.

As discussed at the end of Chapter 2, the main motivation behind the design of the CORAL
framework is to see how much complexity one can offload to this broadcast background signal
and remove from individual parts and the environment. In many real assembling systems such as

Chapter 3. The CORAL Model 37

artificial DNA computing or robotic swarms, broadcast information is cheap to create and control
compared to the redesign of individual parts. In others, such as developing biological organisms or
chemical networks, non-local environmental manipulation may be the only external control possi-
ble. The explicit recognition of external influences is also required of systems which are meant to
be dynamically controlled, and background signals are a simple model of these influences.

This design, which strongly limits the complexity of individual parts but allows complex de-
sign to be inserted via external signals, also avoids many of the philosophical issues raised when
describing a system as generating structure at multiple scales (Rasmussen et al., 2001b; Groß &
McMullin, 2001; Rasmussen et al., 2001a). For example, is a larger structure simply an aggregate
of smaller units acting independently, or does it deserve description as a new entity? With back-
ground signals, structures at larger scales can be unambiguously and pragmatically identified: a
set of devices with the same types of interactions in response to the same signals.

Units interact only when assembled with one another in the CORAL environment, which dif-
fers from traditional cellular automata (CA)-type models also used to model discrete, distributed
systems. The CORAL assembly process can form dynamic networks (or structures) of any topol-
ogy, restricted only by the connectivity of the atomic units. These assembled structures are de-
signed to be directly comparable in complexity and operation to the atomic structures themselves.
Large and complex connected assemblies can be reintroduced into the simulation as atomic units
that contain many sensors and potentially higher connectivity. In a CA model, large regions of
correlated cells (a structure, for the sake of this discussion) can have jagged and fluid external
boundaries that are qualitatively different from a single cell neighborhood. If one of these regions
was encapsulated as a single cell in a larger regular automata, the boundaries may have no direct
equivalent. In addition, CA cells and structures either update synchronously, in which case CA
structures can be a poor approximation of real assemblies made of many mostly-independent com-
ponents, or asynchronously, in which case CA structures also behave internally in a qualitatively
different way from the synchronously-updating cells of which they are composed.

The CORAL model trades the simplicity of a predefined topology and synchronized operation
for simplicity in comparing units across scales. Other artificial chemistry models have relaxed one
or both of these requirements, often in domain-specific ways. However, the combination of simple,
generic environmental interactions and single mechanism of external control in the CORAL model
serves to link as closely as possible the computation of simple but plausible assembling devices
with the input driving these devices. Due to the use of Petri net event synchronization as a basis
for intra-unit control and inter-unit interactions, this link holds as assemblies grow to arbitrary
scales.

3.1.1 Model components

It is useful to point out again the overall components of the CORAL model, to serve as a useful
reference point going forward. Further sections in this chapter provide more complete details and
examples, but an introductory listing the components includes:

• a single, labeled Petri net which defines unit behavior. Petri and C/E nets are discussed first,
in Section 3.2, but this section may be skipped if one is already familiar with the Petri net
computational model.

Chapter 3. The CORAL Model 38

Figure 3.1: A diagram of the core features of the CORAL model. Well-mixed units “float” in the
environment, each with identical controller but potentially unique state (indicated by color). Units
may be linked to one another via pairwise links between ports which are enabled and disabled by
the unit controller. A background, broadcast signal is always present in the simulation and affects
each unit in the same state identically.

• a set of many identical, asynchronously executing units with state and complementary ports.
Section 3.3 describes in detail how the behavioral C/E net, mentioned above, controls the
interactions of these units in various states.

• a single well-mixed environment in which all units reside, which is responsible for the cre-
ation of links between units in particular states. Section 3.4 defines the CORAL environ-
ment.

• a single broadcast signal, consisting of a single symbol at any given time, which may enable
particular state transitions defined in the behavioral net. This is again a novel feature of the
CORAL model, and addressed in Section 3.5.

In a compact description, the CORAL model is an asynchronous model of many anonymous,
identical, interacting computational units. Figure 3.1 highlights the main components graphically,
and there are further examples throughout the chapter drawn in a similar way. One can match the
features with the list above: the units are all identical (each contains the same Petri net, though may
have different markings), current environmental links are drawn as dotted lines, and the current
symbol of the broadcast signal is placed in the background and circled with a dotted line. The
position of units when visualized does not affect behavior; only the topology of connections is
important.

Chapter 3. The CORAL Model 39

Figure 3.2: Summary of basic Petri and C/E net operations. Rectangles indicate transitions, white
circles are places, black circles in places are tokens. When treated mathematically, Petri nets
are often formulated such that transitions with no-input, no-output, or input-and-output places
are ignored (since these cases can be emulated by other constructions), but the nets can be more
naturally drawn and understood graphically if these types of transitions are allowed.

3.2 Petri nets and C/E nets

The basis of the CORAL model is derived from a Petri net variant - the condition-event (C/E) net.
Petri nets, as a formal, well-understood model of distributed computation with graphical format,
have recently become an interesting platform from which to investigate robotic and biochemical
systems. Though much work focuses on Petri nets as an intuitive model for multi-step planning
and manufacturing tasks (DiCesare, 1993), other research has expanded their application to the
coordination of robot teams (Wang & Saridis, 1993; Sheng & Yang, 2005; Costelha & Lima,
2008), complex biochemical reactions (Peleg et al., 2005), and even as a computational basis
for the relativistic universe (Zuse, 1969; Petri, 1996, 2008). The primary advantage of Petri net
systems in these areas is the ease of modeling concurrent (i.e. independent) and synchronized
operations. Highly interleaved processes can be represented as a network of tokens on a simple
labeled graph. Assuming the graph is a compact representation of the configuration space of some
system, for example chemical species or robot states, the resulting Petri net encompasses all the
behavior in the system in an intuitive, yet computationally rigorous way.

The description of Petri nets below is derived largely from (Peterson, 1981), (Jensen & Rozen-
berg, 1991), (Reisig, 1992), and (Petri, 1996). Formally, a Petri net can be described as a directed

bipartite graph of places and transitions, along with a distributed marking (Figure 3.3). Places
hold the state of the modeled system as tokens, while transitions determine how tokens move
between places. Each place may contain one or more tokens, and a full listing of the number of
tokens in each place is again the marking or a constellation. If all the places attached to the incom-
ing edges of a transition have tokens (or there are no incoming edges), the transition is enabled and
may fire (see Figure 3.2). When a transition fires, a token from each incoming place is removed
and a token is added to each outgoing place. This changes the token marking, which might then
enable other transitions. It is possible, and normal, for multiple transitions to be active at the same
time; the choice of which transition to fire is nondeterministic. Figures 3.4 and 3.5 illustrate a
limited type of Petri net, a C/E net, in operation.

One can think of a Petri net as a kind of token game, where tokens move around the graph via
transitions into new configurations (and may be created and destroyed). As the game progresses,

Chapter 3. The CORAL Model 40

place

→

transition

token

p0

p1

p3

p4

p2

p5

Figure 3.3: An example Petri or C/E net diagram. By convention, Petri net places are depicted as
circles and transitions as squares or rectangles. C/E nets are limited to a single token per place,
while general Petri nets may have unlimited numbers of tokens per place. Arrows are directed
edges indicating the incoming and outgoing places and transitions for each node (double arrows
indicate both incoming and outgoing edges). The graph is bipartite, therefore transitions may only
have directed edges to and from places and places may only have edges to and from transitions.
The marking of the C/E net above is the set of all places containing tokens, i.e. {p0, p2}. The
convention adopted in this thesis is for active transitions to be colored gray.

Chapter 3. The CORAL Model 41

(a)

→

(b)

↙

nondeterministic

choice

(c)

→

(d)

↙
(continued in Figure 3.5)

Figure 3.4: An example C/E net execution sequence of the net depicted in Figure 3.3. Transitions
which are enabled and may fire are colored grey, those which are chosen to fire in this sample
execution are circled with a thinly-dashed line. In the initial marking, shown as (3.4a), only the
topmost place contains a token. Two transitions in (3.4a) are enabled to fire, however; the central
enabled transition because the token is in the incoming place and the rightmost enabled transition
because it has only an outgoing edge pointing to an empty place with no tokens. In (3.4b) the
central transition has fired, placing the token downward one place node and enabling two other
transitions. The choice of which transition to fire is made nondeterministically, and (3.4c) and
(3.4d) depict the C/E net marking assuming the rightmost and right-bottom enabled transitions
have fired, respectively. The sequence continues in Figure 3.5.

Chapter 3. The CORAL Model 42

(continued from Figure 3.4)

↙

(a)

→ contact

(b)

↙

(c)

→

(d)

Figure 3.5: Continued execution of the C/E net depicted in Figure 3.4. The marking in (3.5a)
was the result of the central-bottom enabled transition firing from (3.4d) in the previous figure.
The leftmost, bottommost, and bottommost enabled transitions have fired to create the markings
in (3.5b), (3.5c), and (3.5d), respectively. In (3.5b), the enabled transition with both incoming and
outgoing edges from (3.5a) has fired, leaving the double-edged place unchanged but also adding
a token to the place below. This same transition and the one below are not enabled in (3.5b) and
(3.5c) because of contact - firing would result in more than one token per place, so is disallowed
under the rules of C/E nets. In 3.5d the lower-left token has been removed, and so the middle-left
transition can become enabled.

Chapter 3. The CORAL Model 43

contact at

transition equivalent

with no

contact

Figure 3.6: Transition with contact in a C/E net. Because the outgoing places are full the transition
cannot fire. Such a net can always be emulated by an equivalent construction where no contact
is possible. Potential contact places are duplicated to create complementary places with opposite
edges to each transition. In this way, conditions on the outgoing places can be replaced with extra
conditions on the incoming places.

certain places may accumulate tokens or be emptied of them, and the net may or may not deadlock.
The network can be studied for certain conditions or “fact transitions,” represented as particular
transition firings, and can also be analyzed for boundedness. Boundedness refers to the theoretical
maximum number of tokens which may appear in any place, so that a k-bounded net will only ever
have k tokens at once in a place. Petri nets which are 1-bounded are also called safe.

There are many different varieties and extensions of Petri nets, but in this thesis only safe and
ordinary Petri nets are used - those with unweighted (or weight=1) edges and restricted to a single
token per place. (Loops are possible, however, where a place has a directed edge to a transition,
and that transition has a directed edge back to the same place.) These restricted nets can also be
described as condition-event (C/E) nets (Reisig, 1992; Petri, 1996) or predicate/transition (PrT)
nets (Jensen & Rozenberg, 1991) to emphasize the close connection to formal logics. The C/E net
convention is used here.

The single-token distinction is an important consideration for the modeling of realistic assem-
bling units. Arbitrary Petri nets, as we have defined them above, may assume an infinite number of
states, since each place may contain any number of tokens. Real devices, however, do not neces-
sarily have an infinite number of distinguishable configurations that can be used for computation,
particularly if the devices are small. Ideally our model should reflect this finite state limitation.
The modification to the Petri net definition above, adding a capacity to each place, realizes this
restriction and defines a C/E net. Any finite capacity could be used, but for simplicity all places
have a maximum capacity of one token. With a one-token capacity, C/E net markings can be rep-
resented as binary strings, and these are easy to analyze and quickly simulate. C/E nets are Petri
nets, but certain unbounded Petri nets cannot be implemented as finite C/E nets.

It is important to clarify exactly how this capacity restriction affects C/E net execution. C/E
nets may have transitions that are blocked by full places, called contact, which is not an issue
in general Petri nets. The C/E rule for transition enablement is that a transition may fire if and
only if each place attached to an incoming edge of the transition contains a token, and each place
attached solely to an outgoing edge of the transition does not contain a token. In other words,
a transition firing can be blocked by outgoing place tokens, not including looped places (see the
C/E net execution from Figure 3.5b and Figure 3.6). After a transition fires, each place attached
solely to an incoming edge has no tokens, while each place attached to an outgoing edge contains

Chapter 3. The CORAL Model 44

a token. Again, as might be intuitively expected, tokens move from source to destination places
except for looped places which instantaneously give a token and then receive it back. For a modern
mathematical treatment of both Petri and C/E nets, the reader is referred to (Reisig, 1992; Petri,
1996). It is important to note again that there is a simple transformation of C/E nets to safe
nets without token restrictions (by emulating each place with potential contact as two unbounded
complementary places (Peterson, 1981)) (see Figure 3.6), so the tools of Petri net analysis are
always available for C/E nets.

3.2.1 Comparison with other approaches

Cellular automata for many years have been a traditional choice when modeling highly distributed
systems, so the use of a novel framework benefits from a comparison. In part, our study of assem-
bling systems derives from artificial chemistries, and many artificial chemistries have abandoned
a rigid grid topology in favor of either well-mixed or physical interaction environment. In the
case of the CORAL assembly model, well-mixed interactions are used because they are physically
plausible, simple to simulate, and do not depend on the topology of the generated structures. Other
related work in formal artificial chemistries tends to use this approach (Fontana & Buss, 1996; Dit-
trich & Banzhaf, 1998; Crutchfield & Görnerup, 2006; Salzberg, 2006), as do some formal models
of chemical processes (Winfree, 1996; Danos & Laneve, 2004; Dittrich & di Fenizio, 2007).

Cellular automata use finite state machines (FSMs) as the basic unit of computation, as do
many other assembling systems. FSMs and the closely related finite state transducers (FSTs)
are well-understood computational structures (Kozen, 1997), but ignore two critical components
which makes their use difficult in this context: parallelism and synchronization. A reactive unit
modeled as a FST is always in a particular state at any given time, and at some future moment
produces and/or consumes a signal to move to a next state. If two FST units are linked and com-
municating with one another, one must produce a signal while the other simultaneously consumes
the signal (otherwise extra state is required and the unit is not modeled entirely as an FST). The
two FSTs have synchronous state transitions for this event (see Figure 3.7). While it is entirely
possible to define a model of this type, such a device can be modeled equivalently as a Petri or
C/E net (Peterson, 1981).

Petri nets generalize sets of state machines to include synchronous and asynchronous transi-
tions. Two FSTs acting independently are equivalent to a Petri net with two disconnected and
singly-marked components, while two FSTs sharing a synchronous transition are equivalent to a
Petri net in which singly-marked components share a Petri-transition. Two Petri net components
placed side-by-side are trivially a larger Petri net, which makes it simple to analyze aggregations
of multiple nets. This compositional property is especially useful when comparing the complexity
and behavior of assembled units over multiple scales. The AlChemy model (Fontana & Buss,
1996), which uses λ-calculus expressions as primitives, as well as the “process soup” models
(Salzberg, 2007; Görnerup & Crutchfield, 2008), which use FSTs, share this property to a degree
in that derived structures are modeled identically to the initial components. The derived λ-calculus
programs or FST structures are composed using highly nonphysical information processes, how-
ever, not through simple addition. Certain rule-based chemical models (Danos & Laneve, 2004;
Faeder et al., 2005) and graph grammars (Klavins et al., 2006b) also support deriving composite

Chapter 3. The CORAL Model 45

structural rules from individual rules, though again the functional composition process is not as
straightforward.

Equivalent formulations

C/E nets may also be represented equivalently using classifier systems, neural networks, and graph
rewriting formalisms. If one considers the vector of places in a C/E net as a string of bits, C/E
transitions can be represented as a function mapping a set of bit strings (with wildcards) to a
different set of bit strings. In fact, the implementation of C/E nets written for this thesis uses the
binary representation for speed. This is also known as a Holland classifier system (Holland, 1992),
of which C/E nets are (at least) a subset. The construction is similar to that of (Reid, 1998), in
which each transition is mapped to an input and output vector action rule. Each position in the
input and output vector corresponds to a place, and the number in that position determines the input
tokens consumed and output tokens produced. Given single-token capacity limitations, the vectors
above collapse to binary strings. Classifier systems themselves can also be represented using a
subclass of feed-forward artificial neural networks (ANNs) (Smith & Cribbs, 1994), which may
seem unsurprising in this context given the intuitive similarity between Petri nets and recurrent
ANNs. Incidentally, the artificial chemistry of McCaskill also uses a classifier pattern matching as
a condition for reactions (McCaskill, 1988; Dittrich et al., 2001), though the results of interactions
can change these classifier rules. As the abstract bit-string rewriting system, or more directly as
a dynamic graph, C/E and Petri nets can also be easily encoded into rules of graph grammars
(Corradini, 1995).

As a result of this mathematical closeness, C/E net models of assembling units introduced
in this thesis are amenable to being described in a variety of different, but related, formalisms.
This flexibility is useful, since assembly research has been previously studied using many differ-
ent models. Also, in analysis, often it is useful to visualize a C/E unit as a simple state machine,
ignoring concurrency, or unfolding (McMillan, 1995; Esparza et al., 2002), emphasizing concur-
rent pathways. At other times the full Petri or C/E representation more clearly shows the shared
interactions between structures. From a philosophical perspective, often it is not clear in assem-
bling systems what the different “parts” are once a variety of structures have formed, making it
tempting but misleading to analyze signals sent between easily identified components. By defin-
ing communication more broadly as a synchronized relationship between two actions, the idea
can encompass not only sending signals (linking send-token and receive-token actions/transitions)
but also exchanges of information not easily identified with a “sender” or “receiver”. To use an
analogy, commuters living in different suburbs of London and leaving at different times can often
see familiar people commuting on the trains, simply because everyone is influenced by the discrete
train schedules. No secret messages are involved (though it may seem so at times), instead this
is a property of the train system itself. The Petri net notion of synchronization captures this idea
concisely, and from a finite automata perspective.

3.2.2 Related Petri net assembly models

Other assembly research has used Petri nets to control or model assembling systems. Extending
the classical uses of Petri nets to model manufacturing processes, it has been shown that one can
create a top-down dynamic program for robot groups (Milutinovic & Lima, 2002) and break the

Chapter 3. The CORAL Model 46

F

E

A

D

B

C

F'

E'

A'

D'

B'

C'

�/��/�

1/ 0

�/� �/�

0/ 1

�/��/�

1/ 0

�/� �/�

0/ 1

(a)

F

E

F'

E'

A'

D'

B'

C'

�/� �/�

0/ 1

�/��/�

A

D

B

C

�/� �/�

�/��/�

1/ 0

(b)

Figure 3.7: Two synchronized FSTs and the equivalent Petri and C/E net construction. In (3.7a),
two isomorphic FSTs with input/output signals on each transition arrow are in states E and B’
(indicated by an arrow without a source) with complementary state transitions. At some future
time, both FSTs may simultaneously transition to states F and C’ respectively, consuming and
producing 0 and 1 signals from one another (indicated by the dotted box). Pictured in (3.7b) is
the equivalent structure as a Petri net. Directed edges from places E and B’ indicate that tokens at
these places are necessary for the shared central transition, which after firing places tokens at the F
and C’ places. The Petri transitions in (3.7b) have been labeled with the input/output signals from
the corresponding FST transitions of (3.7a), including transitions with empty signals ε. The central
transition has no label since the shared signals are produced and consumed internal to the FST pair.
If this transition is broken into two independent Petri transitions (indicated by the dotted line), the
result is two identical Petri nets which emulate the original FSTs without synchronization.

Chapter 3. The CORAL Model 47

Figure 3.8: A sample atomic unit, visualized as the C/E controller inside the unit circle boundary.
The controller is the C/E net from Figures 3.3, 3.4, and 3.5.

program down automatically into robot actions (Costelha & Lima, 2008; Palamara et al., 2009).
The opposite operation, reconstructing of the behavior of multiple units as a behavioral Petri net,
is also possible. Klavins applies this operation to assembling units (Klavins, 2006), and there are
many examples of reconstructing Petri net models of biochemical systems (Peterson, 1981; Peleg
et al., 2005).

In the work mentioned above, however, the actions and transformations of entire systems
are modeled as Petri nets. The individual units may, and generally do, interact using some other
system entirely - compiled C++, graph grammars, or chemical interactions. Distributed processing
at a unit level is not considered, and the work in this thesis instead emphasizes these distributed
units. Petri nets are used in the CORAL model to represent generic, discrete computing ability
internal to the units, not sequences of external actions or group properties (though this could
be done as well). Petri net synchronization is also used as the core communication ability in the
CORAL model, much the way named signals are used as the core of the π-calculus. This approach
applied to assembly is novel to the knowledge of the author, and provides an elegant and physically
plausible method of generating nontrivial structure in a formal way.

3.3 Atomic Units

Now that the core C/E model has been defined and motivated, the particulars of the interactions
and units in the CORAL model can be described. As introduced above, a CORAL simulation
consists of a large number of atomic units interacting in the well-mixed “sea” or “soup.” Each
unit has an identical onboard controller, modeled as the simple Petri net variant described above:
a C/E net. Like all Petri nets, the atomic units’ C/E nets operate by moving tokens in places via
transitions to other places. All of a unit’s C/E net places and most of the transitions are internal to
the unit itself, and unless affected by signals or assembly these act exactly as they would in any
other C/E net. A unit’s state is simply the current marking of these places. A sample atomic unit
containing the same C/E net used in the previous examples above is shown as Figure 3.8.

Chapter 3. The CORAL Model 48

right portleft port

Figure 3.9: Example assembling unit from Figure 3.8 with linking, synching, and unlinking transi-
tions assigned and labeled in two complementary ports. Linking transitions are indicated by a open
dotted box containing an arrow with addition symbol, synching transitions by an open box con-
taining a two-way arrow, and unlinking transitions indicated by an open box containing a two-way
arrow with strikethrough. The open dashed boxes enclosing left and right transitions group these
transitions into two complementary ports (multiple ports and port types can be defined, but only a
single port pair is shown here for simplicity). Since there is only a single pair of complementary
left/right ports the labels are omitted in later figures, though in the more complex examples in
later chapters both ports and transitions are often referred to by labels. Note that equal numbers
of each type of transition are assigned to each port. With basic assembly operations assigned to
these transitions, the unit may now attach, communicate, and detach from other units in a CORAL
environment, which will be simulated later in the chapter.

3.4 The Environment

In order to eliminate the possibility that the simplicity of the atomic units is simply due to the
hidden complexity in particular environmental interactions, the CORAL model takes a minimal
approach to representing the environment. As in other artificial chemistry models, assembling
units are well-mixed, with no spatial position or orientation. Assembly takes place through com-
plementary ports on individual units, and open ports in the environment are simply paired together
at a constant rate. Atomic units can only specify which ports are open, but they are in no way able
to directly influence the complementary units to which they will be joined. Imagining each unit
as a protein, the units may catalyze or join when randomly encountering another unit but cannot
choose which units they encounter. This behavior has the advantage of simple analysis and simula-
tion, though real assembling systems appear in diverse environments and no single formalism can
capture all possible types of environmental interactions. By simplifying these interactions to the
greatest possible extent, the CORAL model can better clarify the minimal discrete logic required
for flexible assembling units responding to only a single source of external information.

Multiple types of complementary ports can be defined in a given environment instance, and

Chapter 3. The CORAL Model 49

each port pair may be assigned labels (In→Out, Le f t→ Right, Top→ Bottom, etc.). These port
types approximate the different interaction types inherent to a particular kind of assembling de-
vice such as a robot or chemical. A unit in the environment may then have zero or more instances

of each port type, each port instance assigned to a unique set of unit controller transitions. Port
instances correspond to particular interactions supported by a single device. Whether a unit port
is open or closed depends on the activation of assigned transitions inside the unit, which in turn
depends on the unit controller marking. A mapping is defined a priori assigning particular transi-
tion sets to particular ports, where certain transitions will, when able to fire for a certain interval of
time, enable the external port. These are called linking transitions, and their activation essentially
corresponds to a hypothetical device being in a receptive state for assembly or communication.
There may be many of these linking transitions which enable the same port type (but different
ports) on a particular CORAL unit. The idea is probably best captured visually, and Figure 3.9
shows an example assembling unit in which two complementary ports have been defined and the
transitions assigned to each. Each complementary port must be assigned the same number and
types of transitions, otherwise pairing the transitions is not well-defined.

If there are two open ports of complementary type in the environment due to linking transi-
tions being enabled and holding (described below), a connection or link may be created between
the two units. When created, the unit markings are changed by the simultaneous firing of the link-
ing transitions which activated the connected ports, as shown in Figures 3.10 and 3.11. The new
environmental link synchronizes pairs of transitions between the units, only allowing the synchro-

nized transitions to fire if both transitions can fire simultaneously. Synchronized transitions behave
exactly as if they were a single transition in a larger, composite C/E net (since synchronization is
a primitive ability of transitions), making the linked unit effectively a larger atomic part.

Linking Petri nets via transitions is described in (Peterson, 1981) as a language-exploring con-
struction and reviewed in (Reisig, 2009) across various domains, but the idea has not yet been
applied to dynamic assembling devices. Intuitively, however, there are advantages to thinking
about assembly this way. Challenging philosophical and mathematical problems arise when try-
ing to decide how to define separate “objects” in a system with dynamic structure. Often new
assumptions or unit limitations must be added to identify larger structures, even when they seem
natural to a particular system (Ray, 1992; Rasmussen et al., 2001b; Lenski et al., 2003; Ewaschuk
& Turney, 2006; Hutton, 2007), or conversely larger structures may be the result of many irre-
versible procedures or a process of computational development and no longer composed of atomic
individuals (McCaskill, 1988; Fontana & Buss, 1996; Ikegami, 1999; Salzberg, 2007; Görnerup
& Crutchfield, 2008). The linked Petri net approach sidesteps these issues in an elegant way,
effectively declaring that two or more connected units are both a collection synchronized indi-
vidual entities and a well-defined and identically modeled whole. Each structure can trivially be
reduced to component parts, but this operation does not impact the status of the structure’s unity,
which can be decided (or not) by any applicable method. Also note that the slightly strange phrase
“synchronized transition(s)” is sometimes used for paired transitions to emphasize the parts/whole
duality.

In the above discussion, linking and synchronized (synching) transitions were defined for as-
sembling units, but composite units must also sometimes break. As opposed to linking, unlinking

Chapter 3. The CORAL Model 50

Figure 3.10: Several example assembling units from Figure 3.9 in the topological CORAL envi-
ronment. The largest units have complementary link transitions enabled and are holding (colored
fully black) because the environment has not yet allowed assembly. At some future time, these
units with holding link transitions will have complementary ports paired and assembled together,
allowing the currently holding transitions (circled in a thinly dashed line) to fire as merged transi-
tion(s) (shown in Figure 3.11). Other link transitions may be enabled but not yet holding because
they have not waited long enough (discussed in Section 3.6).

is controlled by the connected units themselves. When both units have appropriate markings, par-
ticular synchronized unlink transition(s) may fire, not directed by the environment. This again
models the same procedure in real devices, where robots or proteins must be in particular states to
disengage from one another. This does not mean that unlinking is necessarily deterministic, how-
ever, as is explained further below, just that stochasticity is associated with the units themselves.
The unlinking process requires first that two connected units have a shared, enabled (Figure 3.12)
unlink transition. If this unlink transition becomes (jointly) enabled and then fires, the environ-
ment breaks the connection between the two units and fires the transitions. This completes the
link, communicate, unlink cycle, illustrated in full for a sample unit in Figures 3.10, 3.11, 3.12,
and 3.13.

Linking, synching, and unlinking transitions assigned to a port are disabled and do not fire
unless a unit is connected at that particular port to another unit. A C/E net controller transition

Chapter 3. The CORAL Model 51

Figure 3.11: The two large units from Figure 3.10 have been assembled into a composite unit
(or structure) by the environment. The assembly process fires the corresponding link transitions
simultaneously, as if they were a single transition. Each transition in the linked ports is synchro-
nized with the other corresponding transition, effectively creating single shared transitions with
both left and right input and output places. The central synchronized transition is now enabled and
may fire. Because they have effectively become internal transitions, the merged transitions do not
need to hold for environmental input before firing.

Chapter 3. The CORAL Model 52

Figure 3.12: The composite unit from Figure 3.11 has fired several transitions including the central
merged transition and the merged unlink transition(s) are now enabled. When these transition(s)
fire, the complementary ports will be broken apart and the synchronized transitions separated.

Chapter 3. The CORAL Model 53

Figure 3.13: The composite unit from Figure 3.12 has now fired the unlinking transition(s) and
broken apart into two separate units once again. The assembly process has changed the state of
the unit on the left, which will impact future interactions. This is also an important mechanism of
symmetry breaking in the CORAL model, as initially identical units can differentiate via assembly.
The left unit may again become enabled for assembly on the right port once the enabled link
transition becomes holding again, likewise for the right unit’s left and right ports.

Chapter 3. The CORAL Model 54

which has attempted to fire but is inhibited not to fire by these constraints is said to be holding.
Holding only occurs after a transition would have fired normally, but was unable to do so due
to environmental restrictions like being assigned as a port transition or signal transition. One
can think of holding as a “frozen” transition firing, which may be unfrozen later through some
environmental interactions or if the marking which enables the transition changes. Alternately
one might imagine the environment as a large singular C/E net linking each of the many units,
where the holding transitions are waiting for a token in a special environmental place.

Essentially, holding prevents the environment from directly driving unit actions via transition
firings, since units must have already been capable of performing the action represented by the fir-
ing transition beforehand - the environment only restricts firing. Holding also makes atomic units
more intuitive to design. It is possible to emulate the opposite effect, however, in which unlinked
port and signal transitions do not hold, by adding a second set of transitions unassigned to ports
but mimicking the synchronized transitions. When linking occurs, a special pair of places can
be toggled and the inner transitions disabled while the synchronized transitions become enabled.
Though the potential zero-time-step events used in this version of the CORAL model mechanism
makes holding necessary for non-stochastic port activation, perhaps similar effects could be cre-
ated entirely implicitly using only synchronization and more restrictive timed transitions. Holding
is also used in the implementation of background signals, and so will be discussed in more detail
in the section below.

3.5 Background signals

As introduced in the beginning of this chapter, background signals in the “sea” of assembling
CORAL parts are detected by each unit, and may modify the units’ behavior. These signals may
be externally manipulated over time in order to direct the behavior of many parts into assemblies
or, speaking in a different but equivalent paradigm, to modify the environment such that the units
self-assemble into particular devices.

At every time step of a CORAL simulation a single type of background signal is present. This
signal may change as the simulation progresses, and is the only mechanism used to pass external
information into the CORAL environment. Background signals play the role of controllable pa-
rameters in a real assembling environment, be they chemical, electrical, sonic, etc.. Detection of
background signals by units is implemented in a similar way to the linking transitions described
above. An initial mapping of signals to unit controller transitions is defined in the environment,
representing the effect a signal would have on some device. These mapped signal transitions are
constrained to fire only if the appropriate signal is present in the environment (shown in Figure
3.14). As described above for linking transitions, a signal transition which may have otherwise
fired but cannot do so because the background signal disallows it is said to be holding. The signal
transition mapping is slightly simpler than in the case of port transitions because only individ-
ual transitions are assigned to particular signal types, i.e. each signal transition is independent
from the others. Figure 3.15 illustrates the signaling process for a number of units in a sample
environment.

Using this indirect method of disabling transitions, the environment and background signals
never directly dictate that a unit change state or immediately assemble. Instead, a CORAL unit

Chapter 3. The CORAL Model 55

Figure 3.14: The atomic unit from Figure 3.8 with the topmost transition assigned as a signal
transition, indicated by the downward zigzag arrow in the dotted circle. Multiple signal transitions
are possible and used heavily by the assembling units in later chapters, but only a single signal
transition is shown here for simplicity.

must be in a receptive state, indicated by holding transitions, and the environment’s job is again
only to execute these transitions simultaneously. Rather than increase the number of potential
execution paths of the unit by adding extra functionality, the environment can only restrict these
paths by requiring paired token or state transitions (if units are viewed as a FSM) to itself or other
units. This property allows the user of the CORAL model to be confident that the environment
is not implicitly introducing any extra operations which were not already present in the atomic
units. Signals in the environment which do not correspond to a holding labeled signal transition
are simply ignored by a unit, as shown in Figure 3.15.

As a simulation progresses, the environmental background signal is changed repeatedly, in
sequence, to stimulate different behaviors. To describe these changes compactly, a sequence of
background signals sent to the environment over a period of time can be written using a shorthand
syntax indicating the types of signals and the signal durations. The format is [signal]:[duration] ,
[signal]:[duration] , ..., where [signal] can be omitted if Ø and [duration] omitted if 1. For example,
the sequence:

X:4, Y, :3, Z:2
is equivalent to the expanded input sequence:

XXXXYØØØZZ
This sequence defines the background signals of some environment for 10 time steps. Short-

hand is used interchangeably with the expanded notation throughout the rest of the chapters to
describe background input signals set in the environment. The Ø symbol is used to represent the
absence of a signal or a quiescent background signal like the quiescent states of certain cellular
automata.

Chapter 3. The CORAL Model 56

(a) No (empty) background signal present.

(b) At a later time, the signal changes to match the signal transition label.

Figure 3.15: Example CORAL units from Figure 3.14 before and after a background signal
change. Ports are assigned as in Figure 3.9, though unused here. In (3.15a), the background
signal - indicated by the large dotted circle in the lower-right corner - is empty (Ø), so transitions
assigned to signals which have been enabled for long enough cannot fire and are holding. Note
that the large unit on the left has an enabled signal transition, but is not yet holding. At a later time
in (3.15b) the background signal has been changed to (again shown circled in the bottom right-
hand corner), matching the label on the signal transitions, and so all previously holding signal
transitions are able to fire. Units with non-holding signal transitions are unaffected. Some units
now have enabled link transitions for their left ports, which after enough time has passed would
allow the units to undergo assembly as shown in Figures 3.10, 3.11, 3.12, and 3.13.

Chapter 3. The CORAL Model 57

Figure 3.16: A CORAL unit similar to the ones presented in Figure 3.15 but with a construction
that sometimes “forgets” it has received a signal (circled with a thinly dashed line). Additionally,
this unit can become locked in the assembled position if it removes a token placed by the right
linking transition needed later for unlinking (transition also circled).

3.5.1 Signal noise

Without exception, background signals are received by every receptive unit in the simulation.
Similarly, when two receptive units are chosen to assemble, assembly always succeeds. In the real
world, noise and errors are often present and a significant factor in designing assembling devices.
These issues are important, and are not modeled in the CORAL environment directly but rather in
properties of the unit C/E controllers themselves. For example, if one wished to simulate a unit
which only received a fraction of the broadcasts, the C/E controller on the unit itself would be
designed to nondeterministically throw away any tokens created as a result of the signal transition
firing (shown in Figure 3.16). The signal transition still fires perfectly, but the unit only responds
some of the time.

This approach to noise was chosen to allow flexibility in how signals are processed from each
signal transition while keeping the environment very simple. Units which fail to assemble can be
modeled using internal logic which sometimes immediately detaches attached units. It makes no
sense in the context of the environmental assumptions to add an ability of units to refuse a connec-
tion; units cannot be affected by any other unit until assembly is performed. In the experiments
described in Chapters 4, 5, and 6, noise was not added explicitly to any C/E net controller but
inconsistent functioning is often observed due to differences in transition firing sequences. Much
of the design in the controllers for Chapters 4 and 5 is explicitly to ensure deterministic func-
tioning for particular actions, and generally when evolving controllers in Chapter 6 the resulting
units work only stochastically. Timing issues, described below, along with incorrect execution
branching, provide plenty of scope for noisy execution when viewed at the proper semantic level.

Chapter 3. The CORAL Model 58

3.6 Time constants

The CORAL simulation framework has thus far been defined with the assumption that the execu-
tion of the C/E net controllers inside each unit is nondeterministic. The frequency of the assembly
operation has also been left undefined. When actually simulating instances of units interacting,
transition timing must be defined - or more accurately, the relationship between how quickly the
transitions on the unit controller fire to the assembly operation must be defined. When this con-
stant is chosen, the C/E controllers become timed, stochastic Petri nets (SPNs) (Peterson, 1981;
Jensen & Rozenberg, 1991). Non-instantaneous internal transitions are a natural fit in the CORAL
model because environmental transitions must sometimes hold, and these eventually become the
internal transitions of the composite units. In addition, assuming units reach a steady state before
environmental interactions become important (or that they ever do) limits the applicability of the
model for non-equilibrium devices.

In the designed and evolutionary assembler work presented below, the CORAL simulations
are executed discretely as a series of timesteps. Transitions, once enabled to fire, wait a random
amount of time to fire, uniformly chosen from [0,τ) where τ is an integer (often 5 or 20). The
potential choice of 0 as the lower bound is significant because it allows for arbitrarily long se-
quences of execution each timestep. During these sequences, the external agent controlling the
background signals has no means of controlling the unit, defeating attempts to deterministically
time when a unit will reach a particular state. The use of another gatekeeper or “clock” signal
is necessary if this kind of determinism is required (though longer execution sequences become
exponentially less likely). This also means that assembled units cannot easily rely on each unit
remaining in semi-synchronized execution paths after a communication (i.e. synchronized transi-
tion) action. If the marking changes and a transition waiting to fire becomes inactive due to other
transition firings, the transition must wait again when re-enabled. Holding transitions must also
wait a random amount of time to activate, but then fire immediately when the appropriate signal
or assembly operation occurs. As discussed at the end of Section 3.4, the non-holding equivalent
is also possible to emulate via a simple construction duplicating the port and signal transitions.

The rate of assembly in the environment is determined partially by the number of units with
open ports (i.e. holding link transitions), but is limited to α assembly operations per timestep (α is
often 10). The number of operations is not dependent on the number of units in the environment
or number of open ports.

The particular units and ports which undergo assembly when more than α potential operations
are available are chosen randomly. In many real systems this method of matching assembling units
would be very implausible; in chemical systems, for example, the rate of assembly is a function
of the amounts of the components. Simplicity was chosen in the CORAL model so as not to
introduce other complicating factors to the unit interactions aside from the background signal.
However, extensions using different interaction types were designed to be simple modifications
of these assumptions. Real assembling systems differ greatly in the way in which parts find one
another, so any choice of interaction makes the simulation less general. By investigating this
baseline type of extremely simple pairing behavior, particular extensions to the unit assembly
choices such as locality or physical conformation can be quantified in terms of the extra expressive
power it adds (or removes) toward building particular structures. Locality in particular is discussed

Chapter 3. The CORAL Model 59

later in Section 5 as significantly reducing complexity when building structures with cycles in the
connection topologies.

State space methods

Interestingly, there is an isomorphism between SPNs with exponential delays and Markov models
(Molloy, 1982; Lin & Marinescu, 1988). More generally, any labeled transition system (LTS),
to which C/E and Petri nets can be transformed, has a state-space interpretation which can be
analyzed in generic ways for interesting properties (Valmari, 1998). Such state space analyses are
used in Chapter 6 to algorithmically filter out Petri net controllers which can never interact with
other units or input signals, as well as to understand how evolved C/E net unit controllers function.

To this end, the uniform-delay and uniform assembly rate assumptions of the CORAL model
could have been replaced with exponential delays, somewhat reducing determinism but still al-
lowing similar behavior. As the focus of the work in this thesis was to establish that scalable,
computational assembling devices could be defined rigorously and constructed, further analysis of
these devices was only preliminary. A simple modification of the model to use different timing
mechanisms would be an interesting and useful step in that direction, and is mentioned as a future
extension in Chapter 8.

3.7 A simulation example

Once the assembling unit C/E logic has been defined and environmental transitions have been as-
signed, the behavior of large numbers of these units can be simulated. Simulation verifies that unit
designs do in fact behave as intended, as well as providing a very useful testbed for trying out and
debugging new assembly ideas. Simulation is also used in particular to verify the behavior of the
scalable assembling devices in the next chapter. In this next section, a simple simulation of the
assembling units introduced above is presented, demonstrating the core features of the CORAL
simulator and simple types of chaining behavior. As might have been guessed, the example C/E
unit introduced above was designed to have interesting, though somewhat limited, assembly be-
havior.

3.7.1 Sample environment

A sample simulation environment, filled with copies of the units described in the above sections,
is shown as Figure 3.17. The units and environment are visualized and simulated via a slightly
customized MASON agent simulation framework, developed at George Mason University (Luke
et al., 2004), while the C/E net simulation engine itself and the environment interactions are pro-
grammed in Java, available to download from:

• https://coralassembly.wordpress.com/

Images from the simulation are generally shown outlined to distinguish them from other unit
diagrams in the text.

In the simulation shown, the time constant for transition firing τ is set to 20, and the assembly
rate α is set to 10 assembly operations per time step. As before, this means that each transition
will wait in the interval of [0,τ) time steps before firing, and that up to 10 open complementary

https://coralassembly.wordpress.com/

Chapter 3. The CORAL Model 60

Ø

(a)

Ø

(b)

Figure 3.17: Images from an example simulated environment containing of 64 identical copies of
the assembling units shown in Figure 3.15. Image (3.17a) shows all the units, while (3.17b) is a
close-up view. Because it is often difficult to track the states of many units simultaneously, the
external borders of the units drawn in the simulator are assigned arbitrary colors based on state -
units with the same marking have the same color. All units currently have the same marking, so all
colors are currently the same. As in previous figures, the current background signal broadcast to all
units is shown in the upper-left hand corner of the image (Ø), but ports and transition assignments
are not visualized. Instead, as is shown in Figure 3.19, assembled units are drawn with transitions
linked by dotted lines.

ports will be paired each time step if they exist. The behavior of this particular unit and many
others is somewhat insensitive to these constants, however, and would generate similar structure
if they were changed (though more slowly or quickly).

The CORAL environment is visualized in the simulator as an empty white plain on which
CORAL units float about, often bumping into one another. This bumping is purely a visualization
trick to “spread” units apart when assembled into different kinds of structures, the position and
movement of a unit has no influence on which pairs of units the environment chooses to assemble.
When units assemble they are also depicted as linked by ideal springs, which again does not affect
the simulation itself. Since the topology of assembled structures is dynamic and often impossible
to predict in advance, a spring network is just a useful, general model from which natural structural
layout can emerge.

3.7.2 Signal control

As was the case in Figure 3.15a, each unit in Figure 3.17 starts with only a single token in the
topmost place. Since a token is required in the place below for the left port of the unit to open,
no assembly can take place even though the right port link transition eventually holds, opening all
right ports. The enabled signal transition cannot fire without a matching background signal, and so
the units simply remain static until that signal is sent. Several time steps are allowed to go by, so

Chapter 3. The CORAL Model 61

↯

Figure 3.18: The simulation environment from Figure 3.17 after the background signal has been
changed to . The firing of the signal transition changes the controller markings, enabling the left
port link transition. When the left port link transition attempts to fire it will hold instead, opening
the left port of the parent unit. A single unit has already fired another internal transition, however,
returning it to the initial state, and depending on whether the internal or link transition fires first
each unit may or may not open the left port. Again, the colors are arbitrary and different colors
indicate different unit markings.

that each signal transition is holding. Eventually, in Figure 3.18, the background signal changes,
matching the signal transition label, allowing the signal transitions on all the units to fire.

When the signal transition fires, the new marking enables many of the left port link transitions,
again as seen in Figure 3.18. Some of these transitions will attempt to fire and hold if other internal
transitions do not remove the enabling tokens, resulting in the left port opening on several units.
Since the right port of every unit is also open, the environment pairs these complementary ports
randomly, resulting in unit structures shown in Figure 3.19. Not only pairs but also chains and
loops of units are formed, since the open left and right ports of paired units may also be open. In
general, these structures will not be initially stable because of the C/E controller design chosen.
The first connection made is initially destroyed by the paired units, as in Figures 3.11 to 3.13.
The transient assembly changes the markings of some units, however, resulting in later structures
with stable parts. The simulation after several thousand time steps have passed is shown below
as Figure 3.20, and includes three stable parts which have re-formed from units in previously
assembled structures.

Without any other changes to the background signal, no units in the simulation are able to
assemble or change state, having become locked into a particular marking. The design of the
signal transition, however, allows it to fire multiple times, each time “pumping” a single token
from the topmost place to which it eventually returns. As seen above, each pump potentially
enables the left unit port, and it is instructive to view the simulation results if the background
signal continually pushes the token around the upper loop. The units introduced later in Chapters
4 and 5 use long, repeated signal inputs as well.

Figure 3.21 shows the final steady state of the simulation after continuous firing of the signal

Chapter 3. The CORAL Model 62

Ø

Figure 3.19: Some of the left ports were opened after the signal in Figure 3.18, resulting in sev-
eral unit pairs. Two of these structures are shown above, with dotted lines linking synchronized
transitions.

Ø

Figure 3.20: The simulation after several thousand timesteps have passed without a background
signal, resulting in three stable structures. The unit markings, indicated by darker color (or bright-
ness), are different here than in the previous paired structures of Figure 3.19.

Chapter 3. The CORAL Model 63

↯

Figure 3.21: More assembly has taken place after many time steps with the background signal.
Many chain structures are visible, along with two loop structures of length 4 and 10. The unit
structures are topologically stable under the influence of any other background signal patterns,
and therefore no further assembly can take place.

transition. A variety of chain structures form, of different lengths, and eventually each of these be-
comes stable to further assembly - though of course the token pumping cycle in the topmost places
continues. The intuitive reason for the structural stability is that repeated assembly operations re-
sult in additional tokens in the leftmost places of a right-port-assembled unit. These extra tokens
eventually cause contact, or “jam,” the left port transitions, resulting in assembled units which
cannot disconnect or connect depending on the current assembled state. The resulting structures
are formed stochastically, stopping growth and breakage when all the composed units are unable
to disconnect or attach to others. Because there is only a single complementary pair of ports, only
chains or loops are possible when this occurs.

3.7.3 Past steady state?

This example simulation was designed to give a flavor of the types of behavior seen in assembling
CORAL units, and the static final state is typical of most kinds of C/E net controllers. Eventu-
ally, no matter how the background signals are manipulated, these controllers reach a final set of
steady state structures from which no new interactions can be generated. Different structures may
emerge depending on the random choices of transition firings, or dynamically stable organiza-
tions, but the final result is effectively bounded in both size and complexity. Analogous behavior
is seen in real-life robotic assembling devices, where a particular type of controller is sufficient for
building a certain structure design or set of structure designs and after which the controller must
be reprogrammed. This type of interaction requires a huge unit memory, and raises the question
of whether there might be another, developmental way to reprogram the structures themselves

Chapter 3. The CORAL Model 64

through the same types of signals.
As mentioned in Chapter 2, it seems the natural world currently has a monopoly on these

type of assembling systems which do continue to generate interesting behavior across scales - nu-
cleotides and amino acids effectively assemble into dynamic structures vastly larger than their size.
Admittedly, each organism does not bootstrap itself from only information, but the question is still
valid: is there a small unit from which one can build things vastly larger and arbitrarily complex,
using only information passed through a highly limited channel? The CORAL model, by disallow-
ing all but a single form of external input, makes this question particularly stark. Answering this
question is the topic of the next three chapters, which give constructions for an infinitely scalable
logical assembler and finite assembly device able to assemble into arbitrarily complex computing
devices. Chapter 6 takes a different approach, and uses evolutionary search to directly investigate
the idea of multi-scale assembly.

Chapter 4

Assembly Scaling with NOR Operations

As discussed in Chapters 2 and 3, current research into assembling systems and self-assembling
artifacts has not, to date, focused on assembly as a process divorced from scale. Structures of many
components are often fundamentally different in some way from the units themselves, and when
composite units are not different, they are instead functionally abstract and difficult to map into
real-world interactions. In the previous chapter, the CORAL model of assembling systems was
introduced which address these two constraints, expanding a precise definition of limited-mass
assembly to interacting units of any size and introducing a typical assembler which is limited in
dynamic and computational function. In this chapter, we use the CORAL model as a platform
for designing a novel assembling unit which is capable of building itself at larger levels, as an
explicit demonstration of an assembly process which scales, controllably, indefinitely. Designed
to be as simple as possible and driven by background environmental signals, the assembling Not-
OR (NOR) unit in structural combination can emulate any type of logical expression. This is
partially a function of the inherent composability of logical operations and partially of the scalable
assembly process presented here, allowing the composition to occur no matter how large structures
grow. With indefinite hierarchical assembly, structures built from huge numbers of finite-memory
NOR units can perform well-defined operations using vast numbers of parts. The scalable logic
operations are here presented for assembly tasks only, but by linking these operations to other
real-world actions the coordinated behavior of huge assemblies becomes possible.

4.1 Not-OR operation

It is useful to begin by introducing some basic propositional logic, as the NOR units defined
further in the chapter rely on it heavily. The quick introduction below is largely derived from
(Magnus, 2009), though (Smullyan, 1995) was also a resource. Propositional logic consists of
an infinite set of variables or atoms (written here as lowercase alphabetical letters) to which true

or false values can be assigned, along with a set of logical operators which combine the values
of these primitives. Most of the standard operators are quite familiar, like AND (∧), OR (∨), IF
(conditional) (→), and NOT (¬), though the particular symbols used to represent these operators
varies. NOR (↓) is another basic binary logical operation, perhaps not as common, but is defined

Chapter 4. Assembly Scaling with NOR Operations 66

simply by the truth table below:

a b a ↓ b

true true false

true false false

false true false

false false true

Table 4.1: NOR truth table.

As can also be seen in the above table, the output of NOR is the negation of the OR of two
inputs, i.e. a ↓ b = ¬(a∨ b). Essentially, the output of a NOR operation is true only when both
variables (or atoms) a and b are false. Combinations of NOR operations can mimic any other bi-
nary logical expression (Smullyan, 1995), a property which is shared by another logical operation
NAND and used when designing transistor logic in microchip design. For example:

¬a = a ↓ a

a∨b = (a ↓ b) ↓ (a ↓ b)

a∧b = (a ↓ a) ↓ (b ↓ b)

a→ b = (¬a)∨b = ((a ↓ a) ↓ b) ↓ ((a ↓ a) ↓ b) (4.1)

The identities from Equations 4.1 can easily be proven by substituting all combinations of true

and false into the variables a and b for each equation, or equivalently by constructing truth tables.
These expressions can also be represented using diagrams:

a

(a)
a b

(b)
a b

(c)

Figure 4.1: The first three identities ¬a (4.1a), a∨ b (4.1b), and a∧ b (4.1c) from Equations 4.1,
shown as a diagram. Each NOR node, represented traditionally as an extended half-moon with
circled tip, is linked so that input enters from the bottom and output is read from the top. The
specified a and b variables are set at the base of the diagram and outputs read from the topmost
NOR node. Each subfigure corresponds to the respective equation from the identities.

NOR operations can also be combined into a larger expression or diagram which also computes
a NOR function, as shown below in Equation 4.2 and Figure 4.2:

((a ↓ b) ↓ (a ↓ b)) ↓ ((a ↓ b) ↓ (a ↓ b)) = (a ↓ b) (4.2)

Chapter 4. Assembly Scaling with NOR Operations 67

a ab b

Figure 4.2: Diagram of nested NOR gates which also computes NOR.

Using this construction, the NOR operation supports some notion of infinite hierarchical as-
sembly (as is well-known). When combined or “wired” with itself in particular configurations,
the output of the NOR-structure in response to some input is identical to the output of individual
NOR units. These larger combinations can themselves be wired together to create other logical
expressions using arbitrary numbers of units. The mapping between units at different scales is not
entirely well-defined, however - there are four times as many inputs in the larger NOR unit. There
is also no description of the process through which a single NOR unit might link in a distributed
way with other NOR units - as one might expect, since propositional logic does not deal with such
issues.

In the next section, a construction is presented using the CORAL model in which assembling
units are able to perform NOR operations, creating a distributed implementation of the above ab-
stract logical construction. The largest challenge is to address the concerns raised above regarding
the creation of a distributed process to build logical trees. Two sets of background signals are in-
troduced for this purpose: one set to encode the potentially complex logical inputs into a sequential
form appropriate for the limited CORAL bandwidth, and another to encode assembly commands.
Once constructed, the unit trees have useful scale-independent properties which are used as the
basis for further assembly as discussed later in the chapter.

4.2 NOR assemblers

NOR operations are a useful primitive around which to design a scalable assembling unit, since the
logical operation of meta-structures is well-defined and in combination the operation is logically
universal. The processes required to control and manipulate these primitives while construction is
taking place must still be specified, along with some mechanism for setting the values of different
variables in NOR expressions. The CORAL model provides a natural framework to address these
issues. Units and meta-units have identical internal and external interactions, so controlling the
behavior of assembled structures of any size is done identically. In theory, this property allows
a single encoding of background signals to be used to specify input variables and control the
creation of new structures representing new logical expressions, no matter how large the structures
grow. The trick, of course, is to design signals and units (from here on called NOR units) which
respond in a consistent way when assembled into meta-structures. Otherwise one has to create
separate background signal encodings for each of the exponentially many different structure types,
defeating the purpose of investigating assembly at multiple scales.

As can be seen in the network topology of the logical diagrams Figures 4.1 and 4.2, connected
NOR operations are depicted as linked to three other operations along two input “wires” and one

Chapter 4. Assembly Scaling with NOR Operations 68

Out

In

In

Figure 4.3: A CORAL unit with three ports, two of type In and one of type Out, each port con-
taining some numbers of transitions. The Out port type is complementary to the In port type.
Transitions and edges are shown as connecting to some as-yet-undefined controller in the empty
center which emulates the NOR logic.

output wire. In the CORAL model, all communication and structure between units is achieved
through the pairing of complementary ports, not wires, and so to create similar nested forms it is
necessary for each unit to contain two input ports, both complementary to a single output port.
The two input ports are from here on described as In-ports and the output port Out-port. Figure
4.3 shows this idea visually.

The ports of Figure 4.3 give NOR units the potential to receive, process, and output infor-
mation, but it is impossible given the constraints of a CORAL environment to specify particular
input to particular units (as was done in the NOR diagrams of Figures 4.1 and 4.2). Some addi-
tional method must be defined to encode variables of NOR expressions into CORAL background
signals. In the approach used here, A or B signals (or both, sequentially) are sent to the simula-
tion environment (followed by a C clocking signal), and these are interpreted as true values for
the respective inputs of the a ↓ b NOR operation a NOR unit is emulating. The choice of signal
names correspond to the canonical variables for a two-input logical operation, i.e. a and b. For a
given NOR unit, one can arbitrarily assign an In-port to each of these variables a and b, so that the
values of these variables are received as input from other connected units at the A In-port and B

In-port, and a ↓ b is then passed as output to a forward-connected unit. Initially, however, no ports
are connected, and in general there must be a way in which units receive input from background
signals for controllable assembly to be possible. The solution chosen here is for each NOR unit to
be metaphorically “wired” to these shared background signals when not attached to any other unit
at the appropriate port.

Re-stating the ideas above, when a NOR unit “floating” in the CORAL environment (not linked
to any others) receives an A signal followed by a C clocking signal, the yet-to-be-defined internal
controller emulates a NOR operation a ↓ b where a = true. B signals similarly set b = true. The
absence of an A or B signal before the C signal is, by default, interpreted as a false value for a

and b. However, if the unit is connected to another unit via an In-port, the corresponding A or B

background signal is ignored by the unit and the output value of the connected unit used instead

Chapter 4. Assembly Scaling with NOR Operations 69

Out

In

In

A B C K

Figure 4.4: The above CORAL unit template from Figure 4.3 with additional signal transitions
needed to encode logical variables. Again the rest of the controller is left undefined.

as a or b. The A In-port, when connected, causes the A signal to be discarded, and likewise the
B In-port blocks the B signal (in figures, the A In-port is usually left or top). The overall effect
is that in tree-shaped assembled structures, leaves and open In-ports of the tree respond to signals
while fully In-port-connected units do not. This property mirrors the same behavior in logical
operations, where atomic variables define the innermost nested level of the formula syntax (which
can be viewed itself as a tree) and are where input values are specified.

Sequential, clock-separated signals like the ones described above must be used to encode the
value of variables in the CORAL model, since the background signal can only be a single value
at any given timestep. While a single unit might perhaps respond to all combinations of inputs as
separate signals, e.g. including the combined signal “A&B”, the total number of potential variables
in a logical formula is unbounded and therefore must be specified serially at some point. The
gatekeeper or clock signal C is also necessary because several consecutive events may occur in a
single simulation timestep (see Section 3.6), allowing no deterministic way of “timing” how many
signals have been sent using transition firings. For the same reason, an additional reset signal K is
needed to restart the detection of A and B signals, as in AB[ClocK]. . .. Without a final K signal,
there is no way to distinguish between the signal strings ABC, ABCC, ABCCC, etc. since the signal
transitions synchronized with C may fire multiple times before the next environmental timestep.
The final signal encoding sends either strings of CK, ACK, BCK, or ABCK, specifying the four
true/false input possibilities for the NOR operation. Handling more than two input variables is
also possible, as mentioned above, and discussed later in Section 4.5.

Figure 4.4 is a diagram showing the basic ports and signal transitions needed to define control-
lable NOR unit binary tree structures, analogous to NOR logic expressions. Structures with cyclic
connections are also possible as was demonstrated in the example from Chapter 3, but these are
not discussed in this chapter because they do not easily correspond to static logical expressions
and are avoided in the particular assembly process introduced in the next section. The two In and
single Out-ports allow connections between NOR units, while the four signal transitions allow
successive signals to set the value of logical variables.

Chapter 4. Assembly Scaling with NOR Operations 70

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Figure 4.5: Several NOR units from Figure 4.4 connected together into a larger meta-unit. Con-
nected ports and synchronized transitions are depicted as in Figure 3.12 but are curved to better
show the structure.

4.2.1 NOR meta-units

Somehow, though the actual C/E controller has not yet been shown, the unit shown as Figure 4.4
combines the input from the two potentially-linked In-ports with the signals set in the environment
to produce a NORed output at the linked Out-port (after receiving a C signal). When such units
are built into structures such as the one in Figure 4.5, the structure has output identical to a single
NOR unit, but shifted in time by an additional two CK signals. These larger NOR structures are
referred to as meta-units. Meta-units may be grouped in the same way to create meta-meta-units
since they perform the same NOR operation (Figure 4.6), and so on ad infinitum. Each level of
structure simply delays the output by an additional factor of three, such that a level n structure
requires 3n clock signals.

The calculation of output in assembled structures and meta-units, which is where unit and
meta-unit self-similarity is demonstrated, is best visualized as a wave of calculation from leaf to
root (see Figure 4.7). If, for example, background signals of the form CK, ACK, BCK, or ABCK

are specified as the environment advances in time, the output of a single NOR unit will be true,
false, false, or false, respectively. The value of this output does not affect the behavior of the
calculating unit directly, but it is fed as a value into the In-port of a connected unit if one exists.
The output of the meta-unit shown in Figure 4.7a is initially undefined after one clock step (if the
output of a structure is defined as the output of the root of the structure tree) since the background

Chapter 4. Assembly Scaling with NOR Operations 71

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Figure 4.6: NOR meta-units from Figure 4.5 themselves connected into a larger meta-meta-unit.

Chapter 4. Assembly Scaling with NOR Operations 72

signals of A and B are ignored when NOR units are connected at the corresponding In-port. The
root of the tree is fully In-port connected and the previous output value of the connected units is
not specified, so it is not clear what inputs the root and root’s immediate children receive. If an
empty background signal CK is then sent, assigning both a and b input variables to false on units
with open ports, the root childrens’ output becomes known, since the previously sent signals are
known. After a second empty CK signal, the output of the root unit is known, and is identical to the
original output of the individual unit by the identity ((a ↓ b) ↓ f alse) ↓ (f alse ↓ (a ↓ b)) = a ↓ b.
Every floating NOR unit without In-port-connected children after the CK signals has an output
of true, because without connected In-ports a single unit simply reacts to the inputs last sent. By
forming structures, inputs can instead be processed through several logical operations. Again,
Figure 4.7 shows this processing graphically for a meta-unit with an initial input of ACK.

In general, all NOR units connected in tree structures process information this way - discrete
steps starting from the leaf units and working upwards or rightwards toward the root. Each CK

signal advances the calculation one step further upward until the final output is calculated in the
root unit. Units connected at only a single In-port are designated control units because it is possible
to either block or compute with the input from the connected In-port by sending background
signals at the appropriate time. If only an empty CK signal is sent, indicating a,b = f alse, the
value from the In-port connected unit passes through as if it was connected at both ports:

input ↓ f alse = f alse ↓ input = input ↓ input

This is the reason the NOR meta-unit in Figure 4.5 differs in structure from the NOR diagram in
Figure 4.2; the empty signals remove the need for the extra leaf units. Conversely, if an A or B

signal is sent to the control units, indicating a = true or b = true, input is effectively blocked from
the other In-port since the output of the control unit is forced to false:

input ↓ true = true ↓ input = f alse

4.3 Assembly behavior

The previous section was an overview of the logical processing of NOR units and binary tree struc-
tures, which is largely identical to the conceptual NOR operation but with the added complications
of signal encoding. Since the CORAL model allows only a single background signal to specify the
potentially many variables of NOR operations, one must use the particular order or timing of these
signals to encode the values of each variable. Once assembled into particular NOR unit structures,
these structures share the recursive identity properties of the original NOR operations, albeit not
in a synchronized way. This difference turns out to be very useful when distinguishing units of
different sizes. However, no description has yet been made of the mechanism by which NOR units
form structures, aside from the ports necessary to do so. In this section we describe a second set of
additions to the NOR unit which allow us to build trees of units in a completely controllable way.

As is demonstrated by the variety of different assembling systems mentioned in Chapter 2,
many distributed assembly behaviors can be imagined which allow us to build arbitrary shapes.
The primary goal here of building assembling units controllable at all scales requires this behavior
to survive in a meaningful way under the composition of units - in particular, the composition of

Chapter 4. Assembly Scaling with NOR Operations 73

7→ ACK →

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

f

t

?

f
?

f

f

t

f

t

f

?

?
?

?
9

(a)

9 CK →

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

f

f

t

t
f

t

t

f

f

f

f

f

?
?

f
9

(b)

9 CK →

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

f

f

f

f
t

t

t

f

f

f

f

t

f
t

t
(

(c)

Figure 4.7: An illustration of logical values propagating through the meta-unit of Figure 4.5.
The diagram is read left-to-right, top-to-bottom, where broken arrows indicate the next line. At
some time in the environment the signals ACK are sent (indicating a = true and b = f alse at
open ports), followed by two sets of all-false CK signals. At first the outputs of the rightmost
units are undefined since the connected inputs could previously have passed any truth value, but
as successive CK clock signals are set the defined calculation moves forward. After three CK

clock steps, the root output of the meta-unit is false - a NOR operation has been performed on the
original input signal of ACK (true ↓ f alse = f alse).

Chapter 4. Assembly Scaling with NOR Operations 74

Out

In

In

A B C K

S R F

P

Figure 4.8: The NOR unit from Figure 4.4 with additional assembly signal transitions.

units into the larger meta-structures. If an entirely new behavior has to be used each time a larger
NOR structure is formed as in (Rus & Vona, 1999; Kotay & Rus, 2000; Detweiler et al., 2007),
where possibly such a behavior does not exist or requires new unit memory or functionality as
in (Rasmussen et al., 2001b), it will defeat the purpose of scalable assembly by making larger
structures increasingly complex or perhaps impossible to create using simple parts. The algorithm
for NOR unit assembly avoids these pitfalls, and is identical (aside from a scaled timing factor)
when applied to individual NOR units or meta-units or meta-meta-units of any size. NOR units
themselves require only the limited behavior described in the previous section along with a small
set of additional assembly signals.

A core feature of the CORAL model is that every unit is completely identical except for the
internal state contained in the controller marking. For NOR units, the only state implied so far
is the output state of a unit, which is affected by the background signals and potential input from
connected In-ports. This can be seen most clearly in Figure 4.7, where it is represented by the
true, false, or unknown output at each unit’s Out-port. By adding extra signals S, R, F, and P,
this state can do double-duty; it both stores the output passed to connected units and also controls
the connection state of the units’ In and Out-ports. Since these output states store the result of
logical expressions emulated by the current unit structures, and the inputs to these expressions
are controlled through background signals, this allows the control of assembly based on current

logical state. Four new background signals are used to take advantage of this idea:

• The S signal (for structure) allows a unit to be primed for assembly if the current output
state is true.

• Once primed, the R and F signals (for reverse and forward) determine whether the Out-port
or one of the In-ports are to be opened or enabled. There is only a single Out-port, so the
F signal directly enables the Out-port link transition, but the choice of In-ports requires an
additional signal.

• A priming signal P “pushes back” the priming after the R signal sets the direction. This
either opens an In-port which is not connected or sends the priming backward down the tree
to a child unit. The selection of In-port is determined by the current output state of the unit,
where the A In-port is opened by true and B In-port opened by false.

Chapter 4. Assembly Scaling with NOR Operations 75

Overall, assembly is realized by 1) sending A and B signals to generate a true output in particular
structures, 2) sending an S signal to prime, 3) sending an R or F signal to choose assembly direc-
tion, and, if needed, 4) sending additional priming signals to select child In-port. Figure 4.8 shows
a NOR unit with these signal transitions added.

This assembly mechanism reduces building particular structures to a process of placing partic-
ular units in true output states. These output states are only dependent on the structurally-defined
logical operations, which as shown above can be recursively composed. In consequence, the pro-
cedure for placing units in these states also remains unchanged when the structures are built from
meta-NOR or meta-meta-NOR units. The full algorithm, waterfall selection, is described in detail
below, but first requires two core techniques be introduced:

• blinking - a scale-independent synchronization of NOR structures and meta-units using al-
ternating background signals

• and shielding - the enforced ignorance of A and B background signals in meta-units which
are connected at particular In-ports, yet still have many other open but unused In-ports

Given the tools of blinking and shielding, waterfall selection can select particular structure sizes
and ensure that only those structures are activated for assembly. The next two subsections will
formally describe these properties and show how they can be derived for linked units emulating
NOR operations. The third subsection brings the ideas together for the final assembly algorithm,
which exploits the natural recursive combination of logical operations to allow the natural recur-
sive assembly of objects.

4.3.1 Structure blinking

Binary tree structures built from NOR units have an interesting property - if an oscillating sig-
nal of either input variable is received by unit structures, the output state of every NOR unit in
the environment will eventually oscillate out-of-phase with the signal, no matter how the unit is
connected. Out-of-phase in this context means that after an ACK or BCK background signal has
been present, indicating a = true or b = true, the output state of the root of every NOR structure
will eventually (after many oscillations) always be false, and when the signal is only CK the root
output will be true. The idea may seem counter-intuitive at first since it applies regardless of NOR
unit tree shape, but is easily shown using a recursive proof.

Definition 1. An oscillating background signal of A is defined as a series of repeating signal
groups of the form ACK CK ACK CK ACK CK . . ., consisting of (A and clock signals) alternating
with (just clock signals). Oscillating background signals of B are defined similarly.

Definition 2. Given an oscillating background signal, an out-of-phase output is defined for a tree
structure when that tree structure’s root has a true output after a group of CK signals and a false

output after a group of ACK or BCK signals.

Theorem 3. The root output state of a NOR unit or tree of connected NOR units of any depth
d > 0 will eventually oscillate out-of-phase to an oscillating signal of either A or B, given enough
alternations of the signal groups.

Chapter 4. Assembly Scaling with NOR Operations 76

Case 1. A single, depth d = 1, non-connected NOR unit’s output oscillates out-of-phase with an
oscillating signal of either A or B.

The above is true, because after a NOR unit receives the group of background signals ACK (rep-
resenting a = true, b = f alse), by the functionality assumed for NOR units in Section 4.2 the
output state of the NOR unit will be false. When CK are the last signals received (representing
a = f alse, b = f alse) the output will be true. The same holds for oscillating B signals.

Case 1. Assuming that the theorem holds for depth≤ d, where d ≥ 1, the root output state of a tree
structure of NOR units of depth d +1 will eventually oscillate out-of-phase to an oscillating
input of either A or B.

The root of a tree structure of depth d + 1 has, by definition, at least one child tree of depth
≤ d connected to In-ports. The input to a NOR unit from each connected In-port is the output
of the root of the attached child trees at the previous clock step, as described in the previous
section, and so by the recursive assumption we can say that the previous output state of the child
tree roots must eventually oscillate out-of-phase with the background signals after enough signal
group oscillations.

In addition, by the assumed functionality of NOR units, the root NOR unit of a structure will
have an output after the next signal group which is the NOR’ed input of connected child NOR
units (if they exist) or the values assigned by the next signals. Furthermore, the value of the input
of child units is the output calculated after the previous signal group, since calculation takes place
in a NOR unit after a C signal is sensed.

After the sufficient number of oscillations, if the next signal group is CK, the previous signal
group must have been ACK or BCK (see Figure 4.9). By the operation of NOR units, the next CK

signal sets the corresponding input of any open ports of the root unit to false. We also know the
input received from connected child tree roots must also be out-of-phase with ACK or BCK, and
so is also false. Therefore, no matter how the root unit is connected to child trees, the output of
the root unit after the CK signal group will be f alse ↓ f alse = true.

If the next signal group is ACK or BCK, the previous signal group must have been CK (again
see Figure 4.9). Given this, we know as before that the out-of-phase child input(s) to the root
NOR unit must be true. Since at least one child subtree must exist (otherwise the depth of the
tree structure would be 1), the output of the root unit after the ACK or BCK signal group will be
true ↓ x = x ↓ true = f alse.

Because the next signal group is always either CK, ACK, or BCK when assuming alternating
A or B signals, there are no other cases and the output of the root of the structure will always be
out-of-phase with the next oscillating input (given at least enough alternations of the signal groups
for the child trees to become out-of-phase and an additional alternation).

Proof. Since the root output state of a d = 1 NOR tree eventually oscillates out-of-phase with
oscillating A or B signals, and the same applies in the recursive case for d +1 when the recursive
assumption holds for d ≥ 1, NOR binary tree structures of all depths eventually oscillate out of
phase to oscillating signals.

Since every NOR unit in a binary tree structure of any size is the root of a tree of some depth,
this statement is equivalent to:

Chapter 4. Assembly Scaling with NOR Operations 77

99K CK
(previous)

· · · (now) · · · ACK
(next)

99K

Out

A B C K

Out

In

In

A B C K

Out

A B C K

t

t
· · · false

Out

In

In

A B C K

Out

A B C K t

t · · · false

(a)

99K ACK
(previous)

· · · (now) · · · CK
(next)

99K

Out

A B C K

Out

In

In

A B C K

Out

A B C K

f

f
· · · true

Out

In

In

A B C K

Out

A B C K f

f · · · true

(b)

Figure 4.9: NOR-unit trees under the influence of an oscillating A signal. When the next signal
group is ACK (4.9a), the previous signal group was CK, and therefore the previous output of the
connected NOR subtrees is true. (NOR subtrees of arbitrary depth are represented by a NOR unit
with an attached triangle.) Since the ACK signal group also sets an open A In-port to true, the root
output after this group will be false. In (4.9b), the previous signal group was ACK, and therefore
the previous output of the NOR subtrees is false. The next CK signal group does not change the
default false value at an open In-port, and so the output of the root is true.

Chapter 4. Assembly Scaling with NOR Operations 78

Proof. The output state of every individual NOR unit or those connected in binary tree structures
will eventually oscillate out-of-phase with oscillating A or B signals.

Blinking is an easy way to deterministically synchronize the output of every NOR unit in a
CORAL environment in a distributed way. Though not proven above, the number of oscillations
in the background signals for the above to apply needs to be at least the depth of the largest tree
structure, since that depth defines the number of clock signals needed to advance all leaf-input
calculation to the root of a NOR tree. We mostly ignore this complication in the proof above by
not explicitly tracking the number of signal group oscillations in the recursive assumption.

Interestingly, and usefully, the same property above also applies to NOR meta-units. These
structures perform the same NOR calculation but require extra time and signals to do so, propor-
tional to their size. A tree structure made from meta-units such as the one shown in Figure 4.6 will
oscillate out-of-phase with a background signal of triple the period:

ACK CK CK ACK CK CK ACK CK CK . . .

A meta-meta-unit requires a period 3 times as long again. Not all the unit output states in the meta-
structure oscillate, only the root units, though this is naturally defined as the output of the entire
meta-unit in the next section. Structures composed of individual NOR units and those composed
of meta-units of various scales respond differently to oscillating signals with longer periods, and
this can be used to distinguish these structures using only background signaling.

4.3.2 Structure shielding

As the second property necessary for waterfall selection, individual NOR units have the inherent
ability to ignore or “shield” the background signals A or B when connected at the corresponding A

or B In-port and instead accept the previous output value of the In-port connected unit. Meta-units
do not necessarily share this trait, since they are composed of units with both types of open In-
ports (see Figure 4.5) and component units with open ports are always affected by those signals.
However, if meta-units are connected in a particular way to one another and background signals
encoded so as to cancel one another out as the calculation progresses, meta-units of any scale are
also able to partially emulate the shielding property despite the presence of other, open ports.

Because of these many open In-ports, meta-units are potentially able to assemble and com-
municate with other units and meta-units in more ways than individual NOR units. However, for
purposes here it is initially assumed that the only types of assemblies meta-units form are analo-
gous to the assemblies individual NOR units form: binary trees. In the waterfall selection section
below this assumption will be further justified, but defined here the only two relevant In-ports of
a meta-unit are the upper A In-port of the topmost leaf node and the lower B In-port of the bot-
tommost in Figure 4.5. These two In-ports, in combination with the Out-port of the root node of
the NOR structure, correspond to the three ports of individual NOR units and are designated the
A and B In-ports and Out-port of the entire meta-unit. The naming convention again reflects the
behavior of the port discussed in Section 4.2, where a NOR unit or meta-unit connected to another
at the A or B In-port ignores the background A or B signal and uses the connected unit’s output
value instead.

Chapter 4. Assembly Scaling with NOR Operations 79

Figure 4.10 and 4.11 give an example of this shielding behavior in meta-units. If an ACK ACK

ACK signal is received by a meta-unit with no meta-children, the output (at the root unit) will be
false. Both the topmost leaf unit and the two bottom child units respond to the initial A signal,
setting the output values of these nodes to false after CK. After the second ACK signal, the top
child of the root unit has the value true, since it is connected at its A In-port, while the bottom
child’s output is now false. The third A signal cannot affect the output of the fully-connected root
unit, so the final output of the structure is the NOR of the two child outputs, (true ↓ f alse) = f alse.
This calculation sequence is shown visually in Figure 4.10.

However, if the NOR meta-unit structure is connected at its A In-port (as in Figure 4.11) a
different result is possible. When the input from the connected unit is true during the first set of
ACK signals there is no difference in output, since in Figure 4.10 the ACK signals also set a true

input to the open A In-port. If the input from the connected unit is false, though, the connection
blocks the reception of the A signal at the topmost leaf unit (again see Figure 4.11). This results
in the topmost leaf unit having a true output state. After the second ACK signal group, the bottom
child of the root unit is set to false again because of its open A In-port, but the top child of the
root node is now also false, since the top leaf unit previously output true. As before, the final
ACK signals do not affect the root unit’s output, which is again the NOR of the two child outputs,
f alse ↓ f alse = true. By sending interfering extra signals the meta-unit effectively ignores input
not from an In-port. The same effect can be shown with B signals since the NOR meta-unit is
symmetric.

Shielding the In-ports of a meta-unit by flooding with signals also works for larger meta-meta-
units, no matter how many meta-levels are specified. There are an increasing number of open ports
in these structures, but as above it is assumed only the topmost and bottommost child units from
Figure 4.6 can be connected to other units along with the single Out-port at the root. Intuitively,
this property is maintained in meta-meta-units for the same overall reason it was maintained in
the meta-unit case - the bottom branch of individual NOR units or meta-units are always disabled
to false by the continued ACK signals and this false input does not affect the result of the upper
calculation. More information and a more detailed proof of shielding of meta-units is given in
Appendix A, since the description is somewhat verbose.

Once the roots of particular structures have been enabled by blinking the meta-units at correct
scales, input shielding allows us to select between structures using their connectivity. Waterfall
selection can then be used to determine the positions at which the NOR units or meta-units of
smaller scale will attach.

4.3.3 Waterfall selection

With the NOR-unit properties of blinking and shielding introduced above, it finally becomes pos-
sible to describe the full waterfall selection algorithm. To begin, every tree structure of NOR units
has a unique root. From this root one can uniquely address every element in the NOR tree. For
example, the root can be identified with the empty string ε and a simple naming rule applied where
each child NOR unit in the tree is labeled by the parent name plus a 1 or 0 depending on the parent
unit In-port to which it is attached. For the purposes here, the A In-Port connected units receive a
1 and the B In-Port units receive a 0. One can identify node in a tree given a name such as 11001

Chapter 4. Assembly Scaling with NOR Operations 80

7→ ACK →

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

f

t

?

f
?

f

f

t

f

t

f

?

?
?

?

S R F

S R F

S R F

S R F

S R F

9

(a)

9 ACK →

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

f

t

t

f
f

f

f

t

f

t

f

f

?
?

f

S R F

S R F

S R F

S R F

S R F

9

(b)

9 ACK →

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

f

t

t

f
f

f

f

t

f

t

f

f

f
t

f

S R F

S R F

S R F

S R F

S R F

(

(c)

Figure 4.10: Values set from three ACK inputs propagating through a NOR meta-unit with free
In-ports. After these signals are received, the root output of the meta-unit is false.

Chapter 4. Assembly Scaling with NOR Operations 81

7→ ACK →
Out

In

In

A B C K

Out

In

In

A B C K

f Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

f

t

?

f
?

t

f

f

t

f

?

?
?

?
9

(a)

9 ACK →
Out

In

In

A B C K

Out

In

In

A B C K

? Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

f

t

f

f
f

?

f

f

t

f

t

?
?

f
9

(b)

9 ACK →
Out

In

In

A B C K

Out

In

In

A B C K

? Out

In

In

A B C K

Out

In

In

A B C K

Out

In

In

A B C K

f

t

?

f
f

?

f

f

t

f

?

t
f

f
(

(c)

Figure 4.11: Values set from three ACK inputs propagating through a NOR meta-unit with a
connected A In-port (indicated by the arrow). After these signals are received, the root output of
the meta-unit is now true, as if the A signals had been ignored by the meta-unit’s connected A

In-port (though successive waves of calculation may be different, depending on further input from
the connected structure shown partially here).

Chapter 4. Assembly Scaling with NOR Operations 82

O
u
t

InIn

A
B

C
K

O
u
t

InIn

A
B

C
K

O
u
t

InIn

A
B

C
K

O
u
t

InIn

A
B

C
K

O
u
t

In

O
u
t

InIn

A
B

C
K

In

A
B

C
K

S
R

F

S
R

F

S
R

F

S
R

F

S
R

F

S
R

F

ϵ

1 0

11 01 00

PP

P

PPP

Figure 4.12: A NOR unit tree structure labeled by the waterfall selection naming rule.

by starting at the root unit and working downwards, choosing the next child based on the current
character in the name string. One might think of a series of water-filled tubes flowing downward
from the root, where at each node it is possible to switch a valve and change the direction of flow.
Such a labeling is shown in Figure 4.12 with unit labels placed on top of the appropriate units.

Given a population of identical NOR tree structures made from NOR (meta-)units alongside
individual, floating (meta-)units, one can first ensure that the only NOR units with true output
state and without parent nodes are the root nodes of the NOR structures. This is done by blinking
the units so that all have an output of true, and then sending a shielded input in order to falsify

individual units but not units in structures. The roots of the meta-unit structures will then have a
unique output value of true, which is used to start the waterfall selection process by priming these
roots with S and R signals. The unit priming is then directed toward particular leaf unit ports at
which new units are attached, using the label of the desired leaf unit as a “map” of how to get
there.

Addressing a NOR structure in this top-down way implies a flow downward from the root, but
the calculation of a NOR tree’s logical expression flows upward from the leaves. There must be
some path downward from the root unit, parallel to the upward path of logical operation, to specify
where new units are attached. Progress on this parallel path is controlled via the previously-
introduced P signal, such that a primed root unit will pass its priming to a child unit in response
to this P signal. By relying again on the logical output state for direction (where true output sends
the priming to the A In-port child, false to the B In-port), it is possible to transfer the priming of
the currently primed unit to whichever child unit is chosen. As was proven above, every NOR
unit in the simulation responds identically to an oscillating input, which gives a simple way of
selecting the direction of priming flow at each unit. By following the label of the target node such
that the units are blinked to true for a 1 character and false for an 0 character, followed by the P

signal, eventually the priming will reach the target leaf node and the correct In-port of the growing
structure will open. Figure 4.13 is an illustration of the process for a simple structure.

4.3.4 Full assembly algorithm

Figures 4.14 to 4.17 visually present the selection and growth of tree structures using the full
waterfall selection algorithm. Each step requires only that blinking and shielding properties hold,

Chapter 4. Assembly Scaling with NOR Operations 83

O
u
t

InIn

A
B

C
K

O
u
t

InIn

A
B

C
K

O
u
t

InIn

A
B

C
K

O
u
t

InIn

A
B

C
K

O
u
t

In

O
u
t

InIn

A
B

C
K

In

A
B

C
K

S
R

F

S
R

F

S
R

F

S
R

F

S
R

F

S
R

F

ϵ

1 0

11 01 00

PP

P

PPP

t

f

f

P

P

P

*

*

*

Figure 4.13: The NOR unit tree structure from Figure 4.12 demonstrating a priming path from
root to final port on unit 01. Units are primed in sequence from top to bottom (starting with the
root unit, primed by the S signal), and priming is indicated by a *. Blinking is used before each P

signal to set the true and false output states corresponding to the next unit in the path, and the P

signal then moves the priming to the next unit. When a leaf unit is reached the P signal opens the
appropriate In-port of the unit for further assembly.

and these properties apply to both individual NOR units and meta-units. The waterfall selection
algorithm, given these properties, is not only able to build any structure out of units or meta-units,
but to do so over indefinite scale, allowing the control of arbitrarily structured trees of arbitrary
size. Assembly of a meta-unit results in a structural quine, where the meta-unit responds in the
same way but more slowly to the assembly commands. As can be seen from the recursive nature of
the algorithm and verified by the provided source code, there is no algorithmic difference between
building structures at small scale and building them at another, larger scale aside from the number
of clock steps required to perform each of the program’s child functions.

Algorithm 1 is a precise pseudocode description of waterfall assembly, using the functions
blink_structure, shield_input, break_symmetry, and select_waterfall to encapsulate
the respective operations. All functions implicitly write signal output to the output_commands

variable, such that after a executing the waterfall_assembly function the signals can be read
from this shared variable.

In the pseudocode presented, a tree specifies the structure to be built, while the scale in-
dicates which scale of meta-units should be used as a basis for the structure. The five-unit meta
construction is specified as the META_UNIT_TREE constant, which is built identically to any other
structure but allows further assembly by preserving the necessary properties for meta-construction.
See Section 4.2.1 for more details. The implementation given in the source code also shields
against smaller left-over meta-units (which often exist due to stochastic partitioning of units) but
the slightly modified logic required is not included to maintain the pseudocode algorithm’s overall
readability.

Chapter 4. Assembly Scaling with NOR Operations 84

7→

t

t

t

t

t t

t

t

t

(a) Blink to true.

→

f

?

f

?

t t

t

t

t

(b) Advance with no A or B input.

9

Figure 4.14: Steps 1 and 2 of the waterfall selection algorithm. Originally, units are assumed to
be in either single (meta-)unit structures or linked in copies of one particular tree structure. (In
these next figures, “unit” is taken to mean (meta-)unit, and units are represented by circled NOR
symbols to emphasize that they may be composite structures. This is a recursive assumption,
and is maintained during the next steps of the waterfall selection algorithm.) Using the blinking
mechanism described earlier, the output state of all units is first put into a state of true using
oscillating input signals. Because all sub-trees of the tree structure are also subject to blinking
behavior using oscillations of shorter duration, all sub-trees will also have a root output state of
true, as can be seen in (4.14a). Next, a potentially repeated empty signal is sent, with duration
depending on unit size. In the case of single units, this empty signal results in a true output value,
as can be seen in (4.14b). In tree structures, however, the root unit is passed the sub-trees’ previous
true value, resulting in a false output which is used in the next step to discriminate between single
and structured units.

9

f

?

f

?

t t

t

t

t

(a) Open output of individual units with F.

→

f

f

f

f

f f

f

f

f

(b) Blink to false.

9

Figure 4.15: Steps 3 and 4 of the waterfall selection algorithm. Continuing from Figure 4.14, units
and trees of units are now distinguished by root output state. Per the operation of units described
earlier in Section 5.4, using the S and F signals allows us to open the Out-ports of the individual
units only (4.15a). In (4.15b), blinking is again used to normalize the output of all units, trees, and
sub-trees to false, in preparation for another discrimination of trees from individual units.

Chapter 4. Assembly Scaling with NOR Operations 85

9

t

?

t

?

f f

f

f

f

(a) Send A or B input shielded by connected
port.

→

t

?

t

?

f f

f

f

f *

*

(b) Prime with S signal, direction R.

9

Figure 4.16: Steps 5 and 6 of the waterfall selection algorithm. Again continuing from Figure
4.15, all units and trees initially have false output. The shielding property of units and meta-units
now allows us to discriminate trees from individual units once again, by sending an A, B, or either
signal depending on whether the root unit of the tree structure is connected at A-, B-, or both
ports. This signal is shielded by the connected unit if one exists, resulting in tree structures with
an output of true and individual units with an output of false (4.16a). Again using the signals from
Section 5.4, the root unit is primed (4.16b) and ready to select an In-port to open, as was seen in
more detail in Figure 4.13.

9

f

f

f

f

f f

f

f

f

*

*

(a) Blink and use P to move priming.

→

f

f

f

f

f f

f

f

f

(b) Priming reaches leaf unit.

(

Figure 4.17: Steps 7 and 8 of the waterfall selection algorithm. In Figure 4.16, the root units of
tree-structures are primed. The In-port selection process is now continued by progressively blink-
ing the tree structure and moving the primed state backwards through the tree structure (4.17a),
which is again shown in more detail by Figure 4.13. Once our priming state reaches the leaf unit
that we have chosen for the attachment of a new individual unit (4.17b), the leaf unit In-port is
opened, which allows the assembly of a new unit to the tree structure. Once left-over individual
units are reset, this results in the original state seen in (4.14a) above, but with a larger tree struc-
ture. By successive application of these steps, any tree structure can be “grown” from a collection
of individual units and a tree seed generated via symmetry breaking. The full assembly algorithm
in pseudocode is presented in Section 4.3.4.

Chapter 4. Assembly Scaling with NOR Operations 86

Algorithm 1 Waterfall selection assembly algorithm in Python pseudocode.
Constants

META_UNIT_TREE = ...; ASSEMBLY_WAIT = ...

output_commands = [] # Stored commands

def waterfall_assembly(tree, scale):

Assemble meta-units to correct scale

for s in range(0, scale):

assemble(META_UNIT_TREE, scale)

Assemble tree of meta-units

fringe = [(tree, ��, 1)]; max_depth = 0

shield_dir = (�A� if tree.children[0] else �B�)

while len(fringe) > 0:

unit, address, depth = fringe.pop(); if not unit: continue

max_depth = (max_depth if max_depth > depth else depth)

Assemble the current unit and add children to the fringe

assembly_step(address, scale, max_depth, shield_dir)

fringe += [(node.children[0], address + �1�, depth + 1),

(node.children[1], address + �0�, depth + 1)]

Add a unit to the growing tree at a particular address

def assembly_step(address, scale, max_depth, shield_dir):

Select individual units

if address != ��:

blink_structure(�A�, �A�, max_depth - 1, scale)

empty_input(1, scale)

else: break_symmetry(scale)

send_signal(�S�); send_signal(�F�)

Select structure trees

if address != ��:

blink_structure(�A�, None, max_depth - 1, scale)

shield_input(shield_dir, scale)

else: empty_input(1, scale) # Select remaining units

send_signal(�S�); send_signal(�R�)

select_waterfall(address, scale)

send_signal(ASSEMBLY_WAIT)

Send empty input for a particular scale

def empty_input(length, scale): ...

Send a general signal input

def send_signal(signal): ...

Core waterfall selection functions

def blink_structure(a_or_b, last_signal, depth, scale): ...

def shield_input(a_or_b, scale): ...

def select_waterfall(address, scale): ...

def break_symmetry(scale): ...

Chapter 4. Assembly Scaling with NOR Operations 87

4.4 Implementation in 36 bits

The final NOR unit with all necessary signal transitions and port transitions assigned is shown
as Figure 4.18 in diagrammatic form and with all internal logic as Figure 4.19. There are 36
places and 41 transitions in the full C/E net, hence the title of the section. Actually several places
serve half duty, acting as one part of an on-off toggle (since the C/E nets we use lack inhibitory
connections), so markings represented as bit strings might actually be a few bits shorter. Though
the image at first may seem complex, the NOR unit implementation behaves exactly as described
above except for two final signals (described below) needed for simulated stochastic symmetry
breaking in non-infinite numbers of units. Much of the repeated structure also arises from the fact
that, in the CORAL environment, a unit must explicitly track when it becomes linked to other
units if this changes the unit behavior. There is no default environment-controlled state available
to the unit in which this information is stored. A second complicating factor is that NOR units
must ensure that some signal transitions fire only a single time per signal when it is a requirement
of the control algorithms defined above. In real environments with real devices (and in many other
simulated examples), often these two requirements are trivial because they are implicit properties
of the environment. It seems there is quite a bit of interfacing which often goes unremarked
in these more complex interactions and is exposed computationally here by the more minimal
CORAL framework.

To break the initial finite set of identical units or meta-units into two groups, an extra Y signal
is used. All units and meta-units begin in the same state, and so these must be partitioned using
some stochastic method (since addressing individual units is not possible) into a set of “seed”
and “stock” units of correct proportions. Structures and meta-units grow downward from the seed
units, using waterfall selection to determine where the next stock unit is added. Stochasticity in
any of the transition firing timings could also have been used to partition the initial set, though
the dedicated signal provides a slightly more straightforward way of selecting fractional sets of
units. The assembler described in Chapter 5 uses transition timings instead. An additional Z reset
signal is also needed to undo assembly steps if, due to an insufficient number of stock units, open
In-ports of growing structures are unable to be paired. The stochastic partition, by definition, does
not always work perfectly, especially for smaller numbers of units.

Two directional transitions per port are used in the implementation of Figure 4.19, one to pass
the NOR calculation tokens forward and one to send a priming token backward, and as mentioned
earlier two places per port are used to track whether the port has been connected or not. The C/E
diagram data used to generate Figure 4.19 and execute it in the CORAL simulator is available
online at:

• https://coralassembly.wordpress.com/

The software used for design and layout of the many C/E net graphs, both for display in this thesis
and in simulation, is the free yEd graph editor, written in Java and available for all platforms at:

• http://www.yworks.com

Graphs designed in yEd can then be translated directly into C/E nets, such that the implemented
NOR unit displayed below can be imported as-is into a simulation.

https://coralassembly.wordpress.com/
http://www.yworks.com

Chapter 4. Assembly Scaling with NOR Operations 88

Out

In

In

A B C K

S R F

P Z Y

Figure 4.18: Diagram of a NOR assembler with all signals and ports needed for waterfall selection
(P), breaking symmetry (Y), and resetting incomplete assembly (Z).

4.4.1 Simulated assembly of meta-units

Using this implementation, we can show scalable assembly working to create meta-units, meta-
meta-units, and so on in a simulated CORAL environment. As before, we must set our assembly
rate α and transition firing rate τ: here α = 1 assembly operation per time step and the max
time steps per transition firing is τ = 20. The value for τ is high here so that there is a gradient in
transition firings when breaking symmetry, however this also means that the simulation must often
wait several time steps between setting signals so that transitions will fire. In the skeleton signal
strings shown in the captions of simulation figures the wait times are omitted for clarity, but they
are generated by the sample code provided. Figures 4.20 to 4.25 illustrate the process of creating
structure and scalable assemblers for a sample system with 512 NOR units.

Chapter 4. Assembly Scaling with NOR Operations 89

AH

AL

BH

BL

lh

hl

QH

QL

ll

10

hh

Out.0

In.0

In.1

clrOut

C K
21

cOut

dcOut

setAH

setBH

dcB

cB

dcA

cA

A B

aEnv

bEnv

43 44

R

COut.0

16

17

59

F

CBack.0

CBack.1

48

49

50

51 52

50

51 52 53

S
54

Y

60

46

62

Z

65

66

67

68

69

70

70

71

72

69 70

71

72

lowOut

P

75

76

77

78

79

80

a In-port

b In-Port

 Out-port

Figure 4.19: An implementation of the final NOR assembler diagrammed in Figure 4.18, zoomed
in to highlight the controller. Certain signals and ports are placed so that the edges and logic are
as clear as possible. Generally, the top section of the C/E net handles NOR inputs from signals
and ports (indicated by the NOR symbol), producing a NOR output at the Out.0 transition after a
K signal. The lower half of the C/E net manages assembly and the flow of waterfall selection in
the opposite direction (indicated by the branching arrows). The output state of the unit, discussed
in abstract in the sections above, is contained in the two large places QH and QL and is linked to
the waterfall assembly logic by the S and CBack transitions. Much of the duplicated logic around
each port transition tracks whether or not the port has been connected, and much of the duplicated
logic around signal transitions ensures the environment only fires the transition once. In particular
environments, this extra processing may not be necessary.

Chapter 4. Assembly Scaling with NOR Operations 90

Ø

(a)

Ø

(b)

Figure 4.20: A CORAL simulation containing 512 instances of the NOR unit implementation,
initially in identical state (4.20a). Unit controllers are not drawn due to the number of units pic-
tured. Stock units are selected by blinking all units to true (for structures of depth 1, blinking
is just a single clock signal), disabling selection on some of them, then enabling forward con-
nections: (C)blink,(Y, : wait)sym_br,(S,F)open,K. (Portions of the signals corresponding to each
operation are labeled with subscripts.) Seed units are the remainder and selected for reverse con-
nections: (C)select ,(S,R)open,K. The resulting seed and stock units are shown in different colors
and brightness as they are in different states (4.20b).

Ø

→

Figure 4.21: Close-up comparing the controller of seed and stock units from Figure 4.20b. The
controller is the one pictured in Figure 4.19, however edges are not drawn for clarity. The seed
and stock units are in different states, indicated by color of the outer ring, and also by the different
markings of each unit. The arrow indicates the Out-port link transition, which is enabled for all
stock units but not for units of the growing structure.

Chapter 4. Assembly Scaling with NOR Operations 91

Ø

(a)

Ø

(b)

Figure 4.22: After selecting the A In-port of the seed units from Figure 4.20b (by setting the
output state to true) using the one-unit case of waterfall selection, units assemble in the environ-
ment: (C,P)w f all,(: wait,Z)assm,K (4.22a). A closeup of the linked controllers and synchronized
transitions of the assembled pairs is shown as (4.22b), drawn again without C/E net edges.

Ø

(a)

Ø

(b)

Figure 4.23: Two further stock units are added to the growing structure using the same blinking and
waterfall selection technique. From Figure 4.22a, individual stock units are selected by blinking all
units to true, then sending an empty input of false while connected units are disabled by receiving
true from their children: (C,K)blink,(C)inp,(S,F)open,K. Seed structures are then selected in the
opposite way, by blinking all units of current scale to false, then sending a shielded a = true input
to the connected port connected units will ignore: (A,C,K)blink,(A,C)shield ,(S,R)open,K and after-
wards using waterfall selection (A,C,K,C,K)blink,(A,C,P)w f all,(: wait,Z)assm,K. Similar com-
mands are used for the third unit.

Chapter 4. Assembly Scaling with NOR Operations 92

Ø

(a)

Ø

(b)

Figure 4.24: Many instances of the final assembled meta-unit from Figure 4.5 are completed
(starting from the environment of Figure 4.23b) and shown in (4.24a), again using the same the
same blinking and waterfall selection technique. A close-up of the meta-unit is shown in (4.24b).
This meta-unit can now be used as a base for future structures, as is shown in the next Figure 4.25.

Chapter 4. Assembly Scaling with NOR Operations 93

Ø

(a)

Ø

(b)

Ø

(c)

Ø

(d)

Figure 4.25: Using the same steps as were used to create meta-units (or any other structure) from
units, meta-meta-units can be created from meta-units (as in Figure 4.6). The simulation continues
uninterrupted from Figure 4.24 and the initial symmetry breaking step is depicted in (4.25a) (note
the colors of the root NOR units). Subfigures (4.25b) and (4.25c) are built using higher-order
blinking, shielding, and waterfall selection, and (4.25c) illustrates 12 created meta-meta-units. A
final third-level meta-meta-meta-unit was created using the same process from meta-meta-units in
4.25d (parts of the structure lie atop one other in 3D).

4.5 Emulating arbitrary formulae

With the demonstrated ability to form arbitrary structures at any scale, it is now possible to show
how formulae with multiple variables can be emulated using particular types of these structures.
In general, any logical formula can be converted into a form using only nested NOR operations.
For example, as was shown in Equation 4.2, a∨ b = (a ↓ b) ↓ (a ↓ b). A NOR unit structure can
emulate this and any other nested NOR formula. The construction is simple and natural: starting
from the outermost NOR operation, attach a child NOR unit for each child NOR operation to the

Chapter 4. Assembly Scaling with NOR Operations 94

corresponding In-port, then do the same recursively for each child unit. The construction for a∨b

is shown as Figure 4.26. If the input values for the corresponding NOR units are set to variable
values, after a number of clock steps equal to the NOR structure depth the root output of the NOR
structure contains the result of the formula.

Out

In

In

A B C K

a

b
S R F

P Z Y

Out

In

In

A B C K

a

b
S R F

P Z Y

Out

In

In

A B C K

S R F

P Z Y

Figure 4.26: NOR unit structure for (a ↓ b) ↓ (a ↓ b).

A problem arises when logical formulae contain an unlimited number of variables, not just a

and b. For example, consider a NOR formula similar to the one above: (a ↓ b) ↓ (c ↓ d). This
is a valid expression and using the natural construction is transformed into the same NOR unit
structure as in Figure 4.26. This time, however, the four In-ports of the leaf NOR units take as
input the values of variables a, b, c, and d. To set these variables such that the output at the root
unit takes them all into account, the values of all four must be set prior to the same clock step.
Since there are only two signals, A and B, available to set four values, a and c will always be equal
using the Figure 4.26 construction, as will b and d. Figure 4.27 illustrates this collision in variable
value assignment. Similar collisions are possible even using two variables when the child trees are
of different depths, though generally it is possible to swap In-ports in the NOR assembly (since
NOR is commutative) so that such collisions are eliminated.

To avoid these variable value collisions, an additional “antennae” construction is defined here
which allows each variable to be specified at a different offset in clock time. Larger antennae
receive earlier A, B signals and feed this data at the appropriate clock step into ports of the core
logical construction. In the conflicted translation of the example expression (a ↓ b) ↓ (c ↓ d), each
variable value is input simultaneously at the depth-2 leaf nodes of the structure. If these variables
are labeled with this depth and signal which they are input, the result is as follows:

(a2,A ↓ b2,B) ↓ (c2,A ↓ d2,B)

All variables with a shared depth and signal cannot be specified independently. Ideally, these
signals and depths would each be unique, allowing the specification of any set of values in a logical
formula. To simplify the problem somewhat, one can require that only the depths be unique. As
will be explained below, using the same signal to specify each variable helps resolve conflicts in
the antennae themselves.

The antennae construction allows the depth of each variable to be varied without altering the
output of the logical expression. It is based on a simple logical identity hinted at earlier:

Chapter 4. Assembly Scaling with NOR Operations 95

7→ ACK →

Out

In

In

A B C K

f
t

f
S R F

P Z Y

Out

In

In

A B C K

f
t

f
S R F

P Z Y

Out

In

In

A B C K

?
?

?
S R F

P Z Y

a

b

c

d

(

(a) a = c = true, b = d = f alse

7→ BCK →

Out

In

In

A B C K

f
f

t
S R F

P Z Y

Out

In

In

A B C K

f
f

t
S R F

P Z Y

Out

In

In

A B C K

?
?

?
S R F

P Z Y

a

b

c

d

(

(b) a = c = f alse, b = d = true

7→ ? →

Out

In

In

A B C K

f
t

f
S R F

P Z Y

Out

In

In

A B C K

f
f

t
S R F

P Z Y

Out

In

In

A B C K

?
?

?
S R F

P Z Y

a

b

c

d

(

(c) a = d = true, b = c = f alse

Figure 4.27: Various background signals which assign the values of variables for the NOR unit
emulation of (a ↓ b) ↓ (c ↓ d). In (4.27a) and (4.27b), correct values for each input can be assigned
using background signals. Not all combinations of variable values can be specified, though, as
shown in (4.27c), because in this case the values require opposite inputs be sent to signal transitions
of different units in a single clock step. Selective activation of units this way is impossible in the
CORAL model.

Chapter 4. Assembly Scaling with NOR Operations 96

x ↓ f alse = ¬x

and therefore:

(x ↓ f alse) ↓ f alse = ¬(x ↓ f alse) = ¬(¬x) = x

Using this identity, it is possible to nest a variable arbitrarily deeply inside a logical formula
without changing the value of the output. A new symbol is assigned for a nesting of this type,
evocative of an antennae itself:

 (x)0 = x

 (x)n = ((x)n−1 ↓ f alse) ↓ f alse

It is also easy to show recursively that:

 (x)n = x

Therefore, we may rewrite the example expression (a ↓ b) ↓ (c ↓ d) as:

((a)0 ↓ (b)1) ↓ ((c)2 ↓ (d)3)

When constructing this formula using NOR units, extra, even-length chains of singly-connected
units are connected to the appropriate In-ports of the core logical structure. Each (x ↓ f alse) ↓
f alse formula requires two NOR units to implement, connected like so:

S R F

P Z Y

S R F

P Z Y

In

Out

In

In

A B C K

Out

In

In

A B C K

x

Figure 4.28: NOR units which can emulate the (x ↓ f alse) ↓ f alse function as part of a longer
antennae. There is an equivalent construction using B In-ports, by the commutivity of NOR.

Using this NOR structure, an antennae (x)n of length n requires that the variable x be spec-
ified at a NOR structure depth increased by 2×n. Since antennae of any length can be substituted
for a variable, one simply needs to select antennae of unique lengths in order to rewrite any formula

Chapter 4. Assembly Scaling with NOR Operations 97

Out

In

In

A B C K

S R F

P Z Y

S R F

P Z Y

In

Out

Out

In

In

A B C K

Out

In

In

Out

In

In

A B C K

S R F

P Z Y

S R F

P Z Y

In

Out

Out

In

In

A B C K

Out

In

In

A B C K

S R F

P Z Y

S R F

P Z Y

In

Out

Out

In

In

A B C K

A B C K

S R F

P Z Y

Out

In

In

A B C K

S R F

P Z Y

Out

In

In

A B C K

S R F

P Z Y

Out

In

In

A B C K

S R F

P Z Y

S R F

P Z Y

In

Out

Out

In

In

A B C K

Out

In

In

A B C K

S R F

P Z Y

S R F

P Z Y

In

Out

Out

In

In

A B C K

Out

In

In

A B C K

S R F

P Z Y

S R F

P Z Y

In

Out

Out

In

In

A B C K

a→

b

cd

Figure 4.29: The NOR structure emulating (a ↓ b) ↓ (c ↓ d) (in dashed box) with attached antennae
units. The variables a, b, c, and d are now input at unique depths, allowing each value to be set
independently.

so that variables do not conflict when specified. Applying this to the rewritten formula, labeling
each variable with depth gives:

(((a2)
0 ↓ (b4)

1) ↓ ((c6)
2 ↓ (d8)

3))

The particular signal specifying each of the variable values has been omitted in the above for-
mula. In Figure 4.28, it is assumed that the x input variable is specified through the topmost A

In-port of the leaf unit, and that the other input to the unit will be false. If a B background signal is
set in the environment while the x value is propagating, however, the x value will be ignored and
output passed to the next unit forced to false. If there are multiple antennae of different lengths,
each passing a previously set variable value to the core logical NOR structure, setting a new vari-
able value using B signals will interfere with all previous values. For this reason, we assume that
all variable values are set using an A signal, with the depth of the antenna construction controlling
which variable is actually being set at a particular clock step. So long as these depths are unique
(and they can be, since antennae can be constructed of arbitrary lengths), using only a single sig-
nal to set variable values avoids all conflicts and allows the value of any number of variables to
be specified in any formula. Figure 4.29 shows the final multi-variable NOR structure with anten-
nae attached. Structures made from meta-units can be built in the same way with corresponding
meta-unit antennae since the identities used for logical equivalence still hold.

Using antennae built from NOR units, every formula in propositional logic can be emulated by
a NOR unit structure. The value of each variable is specified at a particular depth, and the output
of the structure can be read off the output state of the root unit after a number of clock steps equal
to the depth of the unit tree. For the unit in Figure 4.29 it is now possible to calculate the result
when a = d = true, b = c = f alse by setting the following signals sequentially in the environment:

Chapter 4. Assembly Scaling with NOR Operations 98

ACK (for d = true) CK

CK (for c = f alse) CK

CK (for b = f alse) CK

ACK (for a = true) CK

CK (final result)

4.6 Remarks

NOR units have been shown above to be fully general assemblers of logic expressions, due to
their properties of scalable assembly and the antennae construction. It is possible to build any tree
structure of NOR units using the implementation shown in Figure 4.19 and the background signals
generated from Algorithm 1. Since these trees of NOR units correspond exactly with nested NOR
expressions, and from nested NOR expressions one can build all other logical expressions, one
can build a NOR device to calculate anything described in propositional logic. NOR meta-units
also have at least the same expressiveness, given their ability to assemble into arbitrary binary trees
linked by extreme A and B In-ports. Though the CORAL model used to simulate NOR units is very
abstract, it relies only on complementary pairing and the sensing of shared background signals.
Both of these properties have been demonstrated by a variety of natural and artificial assembling
systems to varying degrees, and so it is not unreasonable to assume that NOR assemblers could
actually be built from electronic, mechanical, or perhaps even chemical parts.

Though Chapter 8 discusses the implications in more detail, the results demonstrated here
present NOR units as a prototype of realizable, artificial assembling units capable of building
arbitrary levels of organization and arbitrary complexity at all these levels. While not shown to
be a minimal implementation, it is worth remembering that Von Neumann’s original universal
constructors were rather unwieldy, and only successively refined over time. Simply having a
deterministic, easily accessible model which generates these scalable structures is a major step for
further advancements. As was the author’s experience, hypotheses for minimal future directions
become much easier to form and evaluate when there is a model already creating the behavior you
wish to optimize.

With that caveat, the NOR unit implementation appears more complex at first glance largely
because it contains an explicit, computational description of properties other environments might
take for granted. Port disablement after connection and single responses to input signals are two
of these. Even so, as mentioned above, the amount of memory required to store the states of such
a unit (36 bits) is tiny compared to the vast megastructures the units can deterministically and

dynamically form (dynamically, because certain megastructures can always form other, bigger
structures). In effect, almost all the complexity in the target structure has been offloaded indirectly
into background signals - and there are probably further refinements making units even simpler.
Even at this stage, however, NOR units, by adding the ability to scale assembly over orders of
magnitude, allow the possibility of generating from microscopic parts macroscopic devices of
arbitrary precision.

Chapter 4. Assembly Scaling with NOR Operations 99

Beyond a proof-of-concept for assembly control over very large parts, the choice of proposi-
tional logic was made not only for abstract reasons but because the output of this logic can also be
attached to other processes. The CORAL model is solely concerned with questions of assembly -
there are no ’physics’ or even ’locations’ to allow structural actions. These actions have the poten-
tial to be highly interesting, however. For example, unit-compressible assembling modules with
only the ability to change horizontal or vertical dimension (Rus & Vona, 1999; Suh et al., 2002;
Ishiguro et al., 2006) have been shown to be highly capable assembling devices, alternately so are
devices which can simply modify angles between two parts (Hamlin & Sanderson, 1997; Ünsal
& Khosla, 2000; Tuci et al., 2005; Zykov et al., 2007; Detweiler et al., 2007; Kirby et al., 2007).
Such an ability could be added to a real-world implementation of a NOR unit, allowing struc-
tures of these units to manipulate their shape, linked to their logical output state. If, for example,
compression was directed by the current logical output of the NOR unit, NOR structures can be
constructed which have dynamic shape manipulation directed by the value of logical expressions.
Other types of actions are also possible. Importantly, these actions would be controllable in similar
ways for structures of arbitrary size. Only preliminary work has been done to date demonstrating
this idea, however. Even more capable designs are possible if structures at multiple scales can be
merged, building a brain alongside its body. Chapter 8 discusses this idea further and presents a
hypothetical unit-compressible action linked to a NOR assembler.

While logical output is interesting, it also has limited expressiveness for doing these sorts
of tasks. By nature formulae are static, and the behavior of assembled structures ideally highly
dynamic. Also, binary tree structures are the only types of objects which have been built using
the NOR unit approach, though this is not only because binary trees correspond to logical syntax
but also because new difficulties arise once cyclic graph structures can be created. A different
basis is needed for a more complex assembler, one which builds structures that instead approach
the capability of arbitrary Turing machines. The next chapter presents that new basis as C/E nets
themselves, with the next assembler able to build an emulation of itself or any C/E net at larger
scale directly.

Chapter 5

Graph Assembly and Computation using
Petri Assemblers

The NOR units of Chapter 4, while capable of building arbitrary meta-structures, only do so in
the form of multi-scale binary trees. This is sufficient for Boolean logical expressions, which are
represented as trees of sub-expressions. It would be interesting, however, if the same type of dis-
tributed assembly was capable of producing structures of arbitrary topology. Perhaps even more
interesting would be if these structures had arbitrarily powerful potential for computation. In this
chapter, a second CORAL assembler design is presented with both of these properties, directly
demonstrating a CORAL assembling environment able to emulate any computer. Previous assem-
bling artificial chemistries have built or emulated interesting computing devices, but the systems
used have been either highly abstract (ignoring basic physical properties such as conservation of
matter, e.g. (McCaskill, 1988; Fontana, 1992; Nagpal et al., 2003; Crutchfield & Görnerup, 2006;
Salzberg, 2007)) and/or preprogrammed through some initial memory input. The assembly de-
scribed here assumes only a mixture of basic, undifferentiated computational “amino acids,” with
the final result depending more on perturbations than the units themselves. The system is probably
most similar to the more recent work of (Danos & Laneve, 2004; Klavins et al., 2006b) in which
the operation of many distributed parts can be synthesized into and derived from high-level for-
malisms. This begs the question: is there a minimal useful part in such systems? One simple but
powerful computational prototype is demonstrated here, from which any other computing device
can be bootstrapped.

This assembling unit, the C/E unit, emulates base C/E net operations. These operations, as
discussed in Chapter 3, are the core of every atomic unit in the CORAL model. A multi-level
symmetry is created where assembling C/E units and signal information can form any larger, meta-
Petri net - including the atomic C/E controller itself. This brings into sharp focus the novel aspects
of a dynamic approach to assembly, since the C/E units emulate only a fraction of themselves and
cannot be pre- or re-programmed with more than a tiny part of the whole pattern of their structure.

The chief challenges discussed in this chapter relate to deterministic graph assembly, intro-
duced briefly at the end of Chapter 4, and the design of a minimal C/E net component. Additional
complications arise from the potentially PSPACE-complete nature of subassemblies when build-

Chapter 5. Graph Assembly and Computation using Petri Assemblers 101

ing computing devices more powerful than boolean logic. A distributed state-shifting mechanism
is introduced for this reason, based on linear-feedback shift registers (LFSRs), which allows gen-
eral state manipulation of arbitrary numbers of units using only a very small number of signals.
Because of this orthogonal addition, the C/E unit assembly does not yet scale recursively even with
arbitrary meta-net emulation, though there is very probably scope for such a recursive assembly
process to be created in the future.

5.1 Overall approach

The following chapter contains much technical detail, and so it is helpful to first sketch the overall
direction and problems addressed while undertaking this line of research. In general, the goal is
similar to that described in the previous chapter - the design of an assembling unit with particular
compositional properties. This leads to certain similar problems which must be addressed:

• the creation of a syntactic and structural abstraction which defines equivalence between
a collection of units and individual C/E unit functionality, similar to the way the logical
identities of NOR units lead to a meta-unit abstraction in Section 4.2.1. The corresponding
construction for C/E units is called localization.

• the design of a fully distributed assembly algorithm capable of linking units in computation-
ally interesting ways, like the waterfall assembly algorithm of Section 4.3.3. In this section,
a similar graph assembly task for C/E units is accomplished using the turtle assembly algo-
rithm.

The more general and computationally powerful functionality desired from C/E units also adds
complexities which do not exist when working with the structure and syntax of Boolean logic
trees. As mentioned in the brief introduction above, there are several new challenges:

• the choice of a single, finitely-connected C/E net primitive, since a C/E net is constructed
using two different types of nodes with potentially unlimited connectivity. Boolean logic has
the advantage of a canonical structural form derived from direct electronic implementations.

• the assembly of arbitrary graph structures, requiring self-links and therefore distinguishable
structural identity. NOR unit assembly was able to remain agnostic as to which unit instance
was added to a growing tree, so long as the unit had the correct structure.

• a mechanism to control the output of a partially-completed C/E unit structure without run-
ning into the complexity bounds of predicting arbitrary C/E net output. In particular, the
simple blinking properties of NOR unit structures described in Section 4.3.1 allows simple
normalization of state across all NOR-units, but in general it is not possible to design a sim-
ilar mechanism into C/E units without restricting the structure of intermediate assemblies.

Echoing the order of the previous chapter, the C/E net primitive designed for assembly is first
introduced in Section 5.2. Using the localization construction, this C/E net primitive is shown to
be sufficient for the construction of arbitrarily structured meta-C/E nets. Next, the CORAL unit
which incorporates the C/E net primitive is described - the C/E unit (Section 5.3). Using the prop-
erties of the C/E unit, as well as additions useful for graph assembly, compact state manipulation,
and structural verification (introduced in Section 5.4), the full turtle assembly algorithm can be
described in Section 5.4.3. The remainder of the chapter is then dedicated to the complete C/E
unit implementation (Section 5.5) and the example assembly of a computing unit.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 102

5.2 C/E net primitives

The previous chapter describes an implementation of assembling units based on NOR operations.
This is a useful and simple abstraction through which to understand and control the generation of
meta-units (of interest in itself) but the NOR abstraction is placed on top of another - the C/E net
controllers of the CORAL model. C/E nets were initially chosen as a useful language for assembly
because of the distributed nature of Petri net systems, with built-in operations of synchronization
and concurrency. These same properties remain useful when controlling large meta-structures
extended across many units. Instead of regarding particular meta-structures as logical formulae, in
many cases it would be nice to view these structures as a composition of C/E operations, organized
like NOR meta-units into easily controllable chunks.

Of course, in the CORAL model this is already somewhat the case. Linked units with C/E
controllers effectively become a larger C/E net, so that a large structure built from many identical
units can be viewed whole as a single, combined C/E net with many isomorphic sections. Standard
Petri net analysis techniques can be applied to the combined net, but it is not clear without further
information what the various types of larger nets are capable of. Perhaps a particular unit type
generates only uninteresting nets when linked to copies of itself, or only particular classes of nets.
Ideally one would like to ignore unimportant operations of individual units and lift the description
of the combined net to a higher level, so that what the large network is actually doing can be more
easily understood.

The approach taken here is to design an individual unit which behaves like a small, generic part
of a larger C/E net. Like NOR operations are used as primitives for building logical expressions,
C/E primitive operations when linked to one another can build any C/E net. As a result, the
behavior of assembling units emulating a C/E primitive may be described at a higher level than
simply the combined C/E net formed by these units. This bears repeating, since the jumps in
levels of description are hard to follow: the combination net of a structure formed by many atomic
units emulating C/E net primitives, where the units themselves are implemented as atomic C/E
nets, can also be described at a higher level as a different C/E meta-net. As nested NOR operations
may be reformulated into equivalent logical operations (including meta-NOR units), C/E primitive
operations in combination can be interpreted as equivalent C/E nets (including meta-primitives).
Unlike logical operations, however, the class of C/E nets is Turing-complete when the size of the
network is unbounded and zero-testing of places is possible (as it is with C/E capacity limits)
(Peterson, 1981). In addition, the symmetry at multiple levels of description extends not only
upward but also downward to the atomic unit itself, so that the atomic controller core no longer
needs to be particularly atomic and might instead be a combination of primitives. This flexibility
in levels of description is a novel property in a system which respects conservation of mass, and
effectively divorces the computation from the scale at which it is created. Any behavior described
as a C/E net can be built big, small, or in-between.

The above discussion assumes that a suitable C/E primitive exists which emulates the core
functions of other C/E nets. Unlike the NOR operation for logical expressions, there is not a
standard, composable Petri net primitive immediately available which requires only limited con-
nections to other primitives. This perhaps reflects the general focus of Petri net literature, which
seems to center on higher-level modeling applications and protocols. The idea of a concurrent

Chapter 5. Graph Assembly and Computation using Petri Assemblers 103

computing base (in the context of a basis for the laws of modern physics) was a focus of work by
Petri himself (Zuse, 1969; Petri & Smith, 1987; Petri, 1996; Petri & Reisig, 2008; Petri, 2008), but,
in his own words, was a “forgotten topic” with the rise of the ubiquitous Von Neumann architecture
as a fundamentally synchronous basis for computers and the success of Petri nets as verification
tools. A simple construct which allows the generation of computationally universal Quine transfer
(Q(a,b,c) = ab̄∨bc, a,b,c ∈ 0,1) has been demonstrated by Petri (Figure B.1 in the appendices).
The composed nets built from the construct are non-interactive without modifications, however,
and the pairwise interactions of the CORAL model require extra transitions and ports for further
assembly. Petri’s construct and modifications for interactivity are explained further in Appendix
B. A simpler primitive allowing more direct, interactive emulation of meta-level C/E nets is also
possible to derive, however, by carefully examining the types of actions small portions of C/E nets
carry out.

5.2.1 Designing a C/E primitive

As was defined earlier in Chapter 3, Petri and C/E nets are bipartite graphs of places and transitions
where each place may be connected to any number of transitions and each transition may be
connected to any number of places. In a C/E net, places may hold zero or one tokens which
determine the transitions which are able to fire. The overall goal when designing a primitive for
such a net is to be able to divide any net into small, identical pieces such that the overall operation
of the network as measured from certain designated transitions is unchanged.

Since the net primitive will eventually be modeled as an atomic unit in the CORAL simu-
lation, any part we choose must conform to basic CORAL constraints. The first constraint we
discuss here is the bounded connectivity limit of CORAL units. The arbitrary connectivity of C/E
nets is impossible to emulate using any type of CORAL atomic unit (and probably any realistic
assembling unit), since the number of complementary ports must be finite. Choosing a primitive
with any number of finite ports results in the unit being unable to directly emulate networks with
higher connectivity. As a first step in creating any type of C/E primitive, upper limits must be set
on the number of place-to-transition and transition-to-place edges. Only cyclic and chain networks
are possible if this limit is set at 1 - a place may only connect to a single transition and a transition
to a single place. A sensible, simple choice is a maximum of 2 incoming and outgoing edges
per place or transition, which allows the partial emulation of more highly connected C/E net by
converting more highly-connected places or transitions into tree structures of multiple branching
places or transitions. There are some subtleties required when handling transitions with multiple
incoming place edges, which will be described in more detail further in the section and chapter.

The second major constraint placed by the CORAL model on net primitives is the requirement
that all interactions take place through shared transitions. Places are always internal to the units
themselves. Assuming the limit on branching described above, which again requires a maximum
of two incoming and two outgoing edges, the essential operations which must be supported by
transition-bounded portions of a C/E net can be listed as follows:

• produce: producing a new token from one output transition

• consume: consuming a token from one input transition

Chapter 5. Graph Assembly and Computation using Petri Assemblers 104

Figure 5.1: Small C/E net primitive. Compositions of this net with itself, by merging right transi-
tions with those on the left in various combinations, can be made equivalent to any arbitrary C/E
net. Dotted lines indicate these transition merge positions.

• pass: consuming a token from one input transition and then producing a token from one
output transition

• decide: consuming a token from one input transition and then producing a token at one or
another output transition

• split: consuming a token from one input transition and producing two tokens at two output
transitions

• combine: consuming a token from one or another input transition and producing a token at
a single output transition

• sync: consuming a token from two input transitions and only then producing a token at a
single output transition

This list is also shown graphically in Figure 5.2. The seven operations above may seem arbitrary at
first glance, but they can be regarded generally as permutations of the simple, feed-forward ways
in which 0 to 2 transitions can be linked to 0 to 2 other transitions using 1 or 2 places. These
choices will be further justified later with the introduction of the localization construction, which
allows the emulation of other, more complex operations by combinations from this core group.

One trivial candidate for a C/E primitive is simply the raw combination of these basic C/E nets,
though the CORAL unit implementation would be much more complex than necessary and require
16 complementary ports. Alternately, it is possible to collapse the full set of these operations into
a few core types. For example, the produce and consume operations can be emulated by linking
pass-through and splitting or combining operations, respectively, so they become unnecessary to
include directly. Other operations can share input and output transitions, assuming non-connected
input and output transitions not in use will not fire. By using this overlap, decide and combine

can also be collapsed into linked produce-sync and split-consume operations. The final result is
a much smaller 6-transition network composed of overlapping sync, split, and pass operations
(Figure 5.1) which, when composed with itself appropriately, is able to emulate all other parts as
shown in Figure 5.2.

One further operation is required for the localization of C/E nets, designated pass&sync. The
addition is necessary to mimic highly in-connected transitions in C/E nets (representing a highly
centralized action or operation) in a fully distributed way. The standard sync operator locks the
places being synchronized such that if a second token never appears the first place marked will

Chapter 5. Graph Assembly and Computation using Petri Assemblers 105

u

(a) pass

u

(b) sync

u

(c) produce

u

(d) decide

u

(e) split

u

(f) consume

u

(g) combine

Figure 5.2: Essential operations supported by the C/E net primitive from Figure 5.1. Transitions
linked by dotted lines indicate a merging of transitions between primitive units, not drawn as
fully solid here to better distinguish each component. Each composition may depend on previous
compositions defined in rows above. The looped transitions in (5.2c) and (5.2f) indicate self-
connections, where tokens emerging from right output transitions of a C/E primitive are fed via
another attached unit back to the left inputs. Grayed portions of the C/E primitive constructions
are inactive and not connected to other net components. This is possible because CORAL port
transitions are inactive when not connected.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 106

u

Figure 5.3: The final pass&sync operator, required for emulating transitions with many incoming
place edges. Though the position of the top-center transitions may suggest otherwise, only three
transitions are paired in the rightmost diagram (not the light gray transitions).

remain marked. With infinite C/E edge counts there is no problem, since a transition with many
in-places can simply fire instantaneously and remove all tokens from all places simultaneously.
The same behavior given only limited edges requires multiple levels of sync operations performed
in a nested sequence to ensure that all required in-places have tokens. Much of the time the nested
sync operations (each of which is only able to verify the presence of two tokens) will not complete
because some tokens are missing from particular in-places. When this happens, the tokens must
be passed back to the original in-places to allow other transitions to fire. As mentioned above,
this cannot happen with the standard sync operator, which deadlocks in the single-token case. The
pass&sync operator adds nondeterministic choice as an atomic action, and so allows a “guess” of
whether all in-places have tokens to be wrong. Figure 5.3 illustrates the new operation, which is
again simply a combination of the primitive shown in Figure 5.1.

It is important to note that the C/E net primitive used in these constructions has not been
proven minimal. Given the pairwise constraints of the CORAL model, a lower topological bound
of at least three linkable transitions are required for any primitive which builds complex graph
structures. Two places are also required at minimum, since otherwise no transition, paired or
otherwise, can link more than two places. This leads to combined C/E nets with no transition
branching, a significantly limited class of C/E nets. So, if not minimal, the construction in Figure
5.1 is at least less than twice as large. A slightly simpler 4-transition version of the primitive
is capable of emulating every operation above except pass&sync, and it is suspected that further
simplification is not possible if this operation cannot be eliminated. A proven minimal unit would
be interesting, however, and perhaps further refinements are possible in the future.

5.2.2 Localization

Given the C/E net primitive above, capable of emulating each feed-forward operation, the local-

ization algorithm is now introduced as a way of partitioning arbitrary 1-safe Petri nets into linked
copies of this primitive. As mentioned previously in Section 5.1, the basis of localization is con-
ceptually similar to the NOR-based logical identities of Section 4.1 but uses C/E net primitives
in place of a NOR operator. Every C/E net can be decomposed into linked 1-place networks, and
groups of C/E primitives with identical behavior to these subnets can then be substituted.

The procedure intuitively works by slicing each shared transition into a copy for each place,
creating for each place a separate, “island” network linked by connections to other islands. New
islands are also created for sliced transitions with more than two edges in the previous network,

Chapter 5. Graph Assembly and Computation using Petri Assemblers 107

since only pairs of transitions can be assembled in the CORAL model. Finally, each island is
normalized into a connected combination of islands containing primitive operations, which is
always possible due to the simple single-place structure. These simplified islands may then be
built using CORAL units emulating the C/E primitive.

Safe Petri nets, and not C/E nets, are the input to the localization process, which is an important
distinction. C/E nets can be transformed into safe Petri nets (and trivially vice versa) via a simple
construction described earlier in Chapter 3, so this does not limit the applicability of the process.
Emulating networks with contact (blocking), like C/E nets, becomes challenging conceptually
when places become linked distantly via intermediate primitives. Viewing the C/E net as a safe
Petri net allows transitions to depend only on incoming markings, and the localized (and safe)
result may then be interpreted again as a C/E net.

To begin, as mentioned above, a safe Petri net is divided into a set of islands derived from
the places. Each island contains a single place, as well as a copy of all attached transitions,
found by following incoming and outgoing edges to and from that place. This divided net is of
very simple structure, though the number of incoming and outgoing transitions may be large. A
new construction is defined, the island graph, which contains a node for each island and a set
of connections between islands attached to incoming and outgoing transitions. If a transition is
shared by two places (and therefore two islands) there is a connection in the island graph between
these two transitions. Where a transition is shared by many places, a new island is created with
incoming and outgoing transitions complementary to the copies of the transition at each island.
These transitions are also connected in pairs. Figure 5.4 shows a demonstration of the island
construction on a sample graph.

The island graph as described above essentially corresponds to units in the CORAL environ-
ment, with connections between incoming and outgoing transitions. Assuming the original net
had no transitions or places with many edges, the initial island graph is already a target struc-
ture, buildable via C/E primitives, which emulates the original net. In general this will not be the
case, and further processing is usually needed to simplify more complex islands into equivalent
connected primitives. The limitation of pairwise assembly also requires addressing, since this dis-
allows transitions contained in more than two islands from merging. As per the construction, these
are initially represented as new, empty islands containing only transition copies.

Figures 5.5, 5.6, and 5.7 illustrate constructions for the normalisation of island graph nodes
into combinations of primitive operations. The first step in breaking nonstandard islands into net
primitives is to normalize the transition-only islands. If there is only a single incoming connec-
tion, representing a transition which branches outward to many places, the island can be replaced
with many branching copies of the split operation (Figure 5.5). If there are many incoming con-
nections, however, the situation is slightly more difficult. As in the outgoing case, the limited
branching nature of the net primitive means that transitions linked to many incoming places must
be represented by a tree of sync operations. But, unlike the outgoing case, it is unclear whether the
highly in-linked transition emulated by the transition island should have fired until all of the sync
operations complete. For example, imagine a net where 3 of 4 places are marked and a transition
fires only when all 4 contain tokens. If this in-linked transition is simply replaced by a nested tree
of sync operations comparing pairs of places and then comparing the results, the first sync level

Chapter 5. Graph Assembly and Computation using Petri Assemblers 108

(a)

A

B

C D

E

F

G

H
I

J

K

(b)

Figure 5.4: The island graph construction, starting from a sample 1-safe Petri net (5.4a) and
resulting in an island graph (5.4b). An island (solid black borders) is created for each place, labeled
with a letter, containing a copy of neighbor transitions and edges. Islands are also created for
transitions with more than two edges in (5.4a), which contain only copies of each island transition
(i.e. C, D, H, and I). Island connections are created between transition copies, indicated by dotted
white arrows, with direct links created for transitions with two edges and corresponding links to
transition-only islands for transitions with more than two edges.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 109

u

Figure 5.5: Transition islands with many outgoing transitions (circled with a thinly dashed line)
may have those transitions replaced by nested split operations. Pass operations are also used to
handle cases in which numbers of transitions are not powers of two. After the conversion, the new
transition island has only a single output transition (though potentially many input transitions,
handled by the construction of Figure (5.6)).

will remove the tokens from only the first pair of marked places and then remain waiting for the
final token. This final token may never come, or may depend on other transitions with edges to the
first pair of places which will now never fire. Essentially each sync operation is only a guess that
the transition might fire, and these guesses must be allowed to be wrong. This is the reason for
the pass&sync operation introduced above, which ensures that tokens removed for sync operations
never remove tokens permanently unless all levels fire. A set of reverse transitions must also be
added to incoming islands to support passing incorrectly synced tokens back to the original place.
One reverse transition is placed in each place island with an incoming connection to the transition
island (which changes the number of transitions in the place island but not the overall structure).
The full construction is shown in Figure 5.6.

After these two steps, the island graph consists of normalized primitive operation islands,
which have replaced the original transition-only islands, connected to the original place islands.
Some of the place islands may also contain additional incoming transitions. The structure of
every place island is, as before, a set of incoming transitions and a set of outgoing transitions
all connected to a single central place. (Places with both an incoming and outgoing edge to a
single transition are not considered here since they complicate the algorithm somewhat and can
be emulated by additional places.) The next step is to find any open outgoing transitions not
connected to any other islands (which only occurs in place islands) and connect them to consume

operations. These open transitions exist if the original Petri net contained transitions without
outgoing places. Port transitions are disabled by default in the CORAL model if a port is not
connected, so connected consume islands must be created for these open transitions to fire. There
are no open incoming transitions requiring the same treatment, since the original net must be safe
and transitions without incoming places would produce an unlimited number of tokens.

The final step is to transform incoming transitions into trees of combine operations and outgo-
ing transitions into trees of decide operations. Figure 5.7 illustrates this process, which is straight-
forward because the original Petri net is safe and can have no contact. (Contact was discussed in
Section 3.2.) After this processing, the island graph contains islands representing primitive oper-
ations connected to place islands with only a single incoming and outgoing transition (which is

Chapter 5. Graph Assembly and Computation using Petri Assemblers 110

u

Figure 5.6: Transition islands with many incoming transitions (circled with a thinly dashed line)
can be replaced by nested trees of sync&pass operations. As in Figure (5.5), pass operations are
also used when numbers of transitions are not powers of two. When the central output transition
of the sync&pass operations does not fire, indicating one or the other tokens may not be present,
the tokens are returned via other primitive operations and an extra incoming transition to the
original place islands. After this substitution there are no more transition islands, having all been
normalized into connected islands of primitive operations.

u

Figure 5.7: The multiple incoming and outgoing transitions of place islands (circled with a thinly
dashed line) can be replaced by nested trees of decide and combine operations. The remaining
root place island becomes a pass operation.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 111

Figure 5.8: The final localized island graph, containing only islands of primitive operations. The
labels on operations indicate the island of Figure 5.4b from which the operation islands were
derived. This graph can then be used as a target graph for the C/E assemblers introduced in
Section 5.3.

itself a pass operation). Slightly more efficient graph structures can be produced by allowing the
original place islands one or two outgoing transitions (since these are also the primitive operations
decide and combine) but doing so again complicates the algorithm description.

Figure 5.8 shows the final localized island graph derived from the example safe Petri net of
Figure 5.4a. By combining transitions linked by connections, a localized Petri net is created.
This net is safe if the original net is safe, since the primitive subgraphs representing the original
transitions will only move tokens to other place islands if the original net could have fired the
corresponding transitions. Therefore it can be implemented using CORAL units with capacity-
limited C/E nets, which are defined identically to Petri nets when contact is not an issue. In
addition, the behavior of the expanded net emulates that of the original net in that the incoming
transition edges of the localized island structures fire only if the original net transition (from which
they were constructed) might have fired. (Incoming sync&pass trees as shown in Figure 5.6 are
a special case; the root of the tree construction fires as the original transition.) If the expanded
net is attached at these transitions to some external device, and the central place of the root place-
island pass operations set to the initial net marking, the potential orderings of transition firings

Chapter 5. Graph Assembly and Computation using Petri Assemblers 112

are identical to the original network. In other words, if the expanded net was actually built using
CORAL units in a chemical bath, it could be “plugged” in at these transitions and act as the
network it was derived from.

5.3 C/E assemblers

By designing an assembling unit which contains the C/E net primitive shown above in Figure 5.1
and also supports the graph construction mentioned in Section 5.4.2, arbitrary computing devices
of any size and any function can, in theory, be constructed. C/E nets of O(n2) can simulate a
linearly bounded automata of size n (Jones et al., 1977; Esparza, 1998), so if the potential assembly
size is unbounded the automata simulated may approach the computational power of an unbounded
Turing machine. In practice, of course, there are limits to the size of any assembled structure,
though the CORAL model was designed explicitly to allow the control of assembly over orders of
magnitude.

The main challenge remaining is to somehow link in a useful way the computation performed
by partially completed structures with the new assembly that needs to occur, as was done with
NOR units. One major difference between partially completed NOR structures and partially com-
pleted C/E nets is the previously-mentioned computational power of the units. Predicting the out-
put of arbitrary C/E nets is PSPACE-complete (Esparza & Nielsen, 1994; Esparza, 1998), which
contains and is widely believed a superset of the NP-complete complexity class. There are no
known efficient algorithms to generally calculate how inputs will affect the full structure of a col-
lection of C/E units. Like the partially-completed yet fully operational Death Star in Return of the
Jedi, the incomplete C/E substructures are just as dangerous computationally as the target C/E net.
A solution to this problem using a parallel control path is described in the next section.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 113

In

In

In

Out

Out

Out

KC

Figure 5.9: The core structure of a C/E unit. The C/E net primitive from Figure 5.1 is represented
using pairs of places and synchronized transitions. Signals C and K allow one synchronized tran-
sition firing. Note that unlinking transitions are necessary in the C/E unit because of the graph
assembly process.

Figure 5.9 shows an assembling unit containing the C/E net primitive, designated C/E units.
Each of the three left and right linked transitions from the C/E net primitive have been designated
as synchronized transitions assigned to an In or Out-port of the complementary In and Out types.
The number of places has been doubled, creating complementary low, middle, and high places.
When initialized with a token, these complementary places are constrained by the operation of the
C/E net to always have a token when the regular low, middle, and high places do not, and vice
versa. Transitions can only be enabled in C/E nets by places which contain a token, so the creation
of place complements allows designating transitions that fire when the standard places are empty.
This ability is useful later when controlling state changes and assembly operations. The NOR
unit implementation shown as Figure 4.19 also used this doubling construction, since otherwise it
would be impossible to enable particular transitions on a f alse output. Extra linking and unlinking
transitions assigned to each port are also needed for control of the assembly process.

There are two additional signal transitions in the figure which receive the signals C and K.
Like the NOR units, C/E units may be clocked, and the C and K signals are used for the same
purpose as the signals in the previous chapter. These transitions ensure that only a single C/E
primitive operation (in the form of a synchronized transition) can occur after a C signal is sent,
while a following K signal ends the potential for an operation and resets extra enabling places
(not shown). Sending a repeated CKCKCK. . . background signal effectively removes this control,

Chapter 5. Graph Assembly and Computation using Petri Assemblers 114

allowing unrestricted execution. Since general C/E nets are not synchronized to a clock signal, this
allows assembled meta-nets to execute in an unrestricted way while also allowing deterministic
assembly. An additional signal could also be added which permanently (with a single signal)
removes the clocking after assembly has occurred, though the simpler case is described here.

5.4 Assembly behaviors

C/E units do not have a single output value like NOR units, and instead store relevant internal
state in the form of three sets of complementary places. As a convenient representation, each
of these complementary pairs can be defined as set to 1 or 0 by a token at the higher or lower
complementary place, respectively. These potential states, which can be represented as a three-bit
string of high/mid/low (e.g. 010), are used to determine which, if any, of the link transitions will
be opened. Like the NOR unit, a core feature of scalable assembly is that the logical state of the
unit is linked directly to the assembly operation.

Each of the 3 Out-ports may be connected to any of the 3 input ports, making it necessary to
assign 6 distinct token constellations to uniquely enable the link transitions of each Out and In-
port. There are 23 = 8 possible constellations of tokens representing the state of the C/E units, two
of which are symmetric with respect to the ports (000 and 111). It is natural, therefore, to assign
the three single-1 states (100, 010, 001) to open the corresponding Out-ports of the C/E unit,
while the three double-1 states (011, 101, 110) open the In-ports of the C/E unit corresponding
to the empty place. When assembly occurs, the Out-port link transition removes a token from
the corresponding higher place while the In-port link transition moves the corresponding lower
token to the higher place. As a result, the Out-port connected unit always has a state of 000 after
assembly, while the In-port connected unit always has a state of 111. The C/E unit implementing
this logic is shown as Figure 5.10.

Slightly more control is needed over assembly timing, otherwise structures form uncontrol-
lably when internal computations required for graph assembly are taking place. This often leads
to uninteresting, randomized behavior. Like the NOR unit priming signal, a special set of assem-
bly clock signals D and L are required for units to begin assembly, after which the particular ports
opened are determined by the C/E unit state. With the addition of the parallel linear feedback

shift register (LFSR) control structure described below, these signals (and any additional others)
could be removed and simulated via combinations of other LFSR signals, but are perhaps easier
to describe and understand separately.

5.4.1 Linear feedback shift registers

To quickly recap, an assembling unit capable of building arbitrary C/E nets, the C/E unit, has
been defined in the sections above. Onboard is a C/E net primitive, with additional logic that
allows one to specify the opening of particular output ports or input ports in a way linked to
particular unit/computational states. By manipulating these states appropriately and then allowing
assembly to occur, it is possible to build structures from these units. Controlling the structures
built still requires some mechanism of manipulating the states of the unit via background signals,
which cannot be done directly through the computational inputs in C/E units because the devices
built may be PSPACE-complete. A parallel state-shifting process is used instead, and to describe

Chapter 5. Graph Assembly and Computation using Petri Assemblers 115

Out

Out

Out

In

In

In

LD

Figure 5.10: C/E unit with internal logic for enabling linking transitions. Each Out link transition
is enabled by markings representing bit triples with a single 1 value in the corresponding place
group, while each In link transition is enabled by a single 0 value in the corresponding place group.
Multi-edges indicate both inward and outward edges between each source and target (places only
link to transitions, and vice versa), and are used to group edges for clarity.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 116

1 0 0

⊕

0 1 0

⊕

1 0 1

⊕

1 1 0

⊕

1 1 1

⊕

0 1 1

⊕

0 0 1

⊕

0 0 0

⊕

Figure 5.11: A 3-bit LFSR iterating through successive states. Arrows into and out of the shift
registers indicate the direction of bit flow. The tap chosen here is maximal, meaning that the
number of states iterated is 2n−1 (where n is the length of the shift register) when the initial state
is not all zeroes.

this process it is first necessary to introduce a device and algorithm commonly encountered in
electronics and cryptography called a linear feedback shift register (LFSR). Essentially LFSRs
are a very simple way to rotate through long sequences of states, and this ability is used to to
create a very general distributed state shifting mechanism for C/E units. Much of the background
information in the next section is taken from (Ronse, 1982), (Kennedy & Gentle, 1980), and
(Goresky & Klapper, 2009).

An LFSR, as commonly described, is a clocked device with a linear array of n bits, known as
a shift register. At each clock step, the value of bits is shifted one position (except for the last bit),
such that a bit at position i is moved to a position i+1. The new, first bit in the array is generated
by an XOR (⊕) operation of the previous final bit in the array with bits from other positions, called
taps. If the taps chosen correspond to a primitive polynomial of degree n which is a factor of the
polynomial xT +1, the LFSR of length n will iterate through T states given an appropriate initial
state (Goresky & Klapper, 2009). The primitive polynomial is of the form:

1+
n−1

∑
i=1

qixi + xn

All qi values are zero, except those corresponding to the taps, which are equal to one. For the
example above in Figure 5.11, the single tap is set at position 2 (q2 = 1), and:

x7 +1 = (1+ x)(1+ x+ x3)(1+ x2 + x3)

Therefore the period generated is of length 7 given a non-zero initial state. Such a period is
maximal for an LFSR of length 3. The interest in LFSRs for many applications stems from the

Chapter 5. Graph Assembly and Computation using Petri Assemblers 117

simple implementation and the need for only very small numbers of taps for maximal periods of
long registers. In addition, the state sequences generated have useful pseudorandom properties
which distribute bit values near-uniformly, which is often practical in cryptology applications.

State swapping

For purposes here, however, LFSRs are used as the basis of a way to manipulate the state of
arbitrary number of units in parallel, using a minimum of signals. Given any type of unit, a
CORAL environment consists of many of these units with internal state in the form of token
constellations. Units in the same state are deterministically indistinguishable because they must
respond in the same way to all signals (though stochastic transitions can break this symmetry), and
so units may be grouped into state sets containing all units with the same markings. Manipulating
units for assembly using background signals is an operation which, in general, moves units in
each state set to some other target state while keeping each state set distinct. LFSRs guarantee the
ability to shift states in this way because each clock step advances every state to the next in the
ring - there is no possibility that two LFSRs in different states will advance to the same state.

For arbitrary manipulation of state sets, often it will be necessary to not only shift but also
reorder the sets. For example, assume C/E units in states s1, s2 and s3 include an LFSR imple-
mentation with a period-7 state loop of:

s1→ s2→ s3→ s4→ s5→ s6→ s7→ s1→ s2→ . . .

Permuting these states may be necessary for assembly so that s1 7→ s2, s2 7→ s1, and s3 7→ s3.
Clearly, simply shifting states will never result in this mapping, since s1 and s2 always shift relative
to one another. By adding an additional swap operation to an LFSR, however, which exchanges
any two states, it is possible to generate any such permutation. All states may be advanced to
any other, and so any pair of states can be chosen for the exchange. If we assume for the above
example that we are able to swap s1 and s7, we can generate the target mapping using the operations
illustrated in Table 5.1.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 118

Operation s1 s2 s3 s1 = 001 s2 = 100 s3 = 010

shift s2 s3 s4 100 010 101

shift s3 s4 s5 010 101 110

shift s4 s5 s6 101 110 111

shift s5 s6 s7 110 111 011

shift s6 s7 s1 111 011 001

shift s7 s1 s2 011 001 100

swap s1 s7 s2 001 011 100

shift s2 s1 s3 100 001 010

Table 5.1: Example generating a target state mapping of s1 7→ s2, s2 7→ s1, and s3 7→ s3 using
shift and swap operations. The states are first shifted to place target state groups into swap states,
then swapping reorders the states before a final shift into the mapping target states. Sample shift
register bit states are manipulated alongside the state variables to illustrate how the shifting and
swapping work when implemented.

Because only reversing two states is required, the swap operation is simple to implement.
Consecutive shift and swap signals applied to C/E units with LFSR and swap functionality can
perform arbitrary permutations of the current states, since the two operations are sufficient for
bubble-sorting. These state permutations are key to the assembly of C/E units and unit structures.
In practice, three signals S, W, and R must be used to direct the shifting (S) and swapping (W) of
C/E units because it is impossible in the CORAL model to distinguish deterministically between
single and multiple signals (e.g. SW vs. SSW vs. SSSW), as was also seen with NOR units. R is
used as a reset signal for both S and W and also for signals defined below. A universal reset signal
could also be designed which would also replace the clock-reset K, but for clarity the signal sets
remain separate in this thesis.

State merging and recovery

A final operation, state merging, is also required so that C/E units in different state sets can be
merged to a single set. Merging is necessary when one wants to execute a non-invertable state
mapping, with many states mapped to the same target state. Swapping and shifting state values
cannot generate these types of mappings, since by design the swap and shift operations never result
in two different states assuming identical states afterward.

To merge states, some merging state is transformed into a target state without the target state
being changed. One good choice of target state, in general, is the LFSR all-zero state. After being
transformed, the all-zero state will not be affected by subsequent shifting or swapping, and so
multiple merges can occur consecutively and intertwined with the other operations. In an opposite
recover operation, the all-zero state is transformed back into the merging state chosen earlier. By
shifting and merging particular states down into the all-zero state, then recovering the all-zero state
back into the merge state, C/E units which are members of different state sets can be manipulated

Chapter 5. Graph Assembly and Computation using Petri Assemblers 119

to have the same state. An example state mapping s1 7→ s2, s2 7→ s2, and s3 7→ s3 which requires
merging s1 and s2 while preserving s3 is shown below in Table 5.2, where s1 is the merge state and
sz is the all-zero state. As in the swap example above in Table 5.1, a period-7 LFSR is assumed.

Operation s1 s2 s3 s1 = 001 s2 = 100 s3 = 010

merge sz s2 s3 000 100 010

shift sz s3 s4 000 010 101

shift sz s4 s5 000 101 110

shift sz s5 s6 000 110 111

shift sz s6 s7 000 111 011

shift sz s7 s1 000 011 001

shift sz s1 s2 000 001 100

recover s1 s1 s2 001 001 100

shift s2 s2 s3 100 100 010

Table 5.2: Example generating a target state mapping of s1 7→ s1, s2 7→ s1, and s3 7→ s3 using shift,
merge, and recover operations. As in Table 5.1, sample shift register bit states are manipulated
alongside state variables to illustrate the operations.

It is possible that only a subset of permutations and non-invertible mappings are sufficient
for the particular assembly operations needed to build C/E structures. While potentially non-
minimal, the simplicity of the above approach allows more direct planning about units in particular
states transforming to others. Any deterministic approach must require at least two operations to
permute state sets because of the cyclic or chain topology of a singly-connected state diagram.
Additional operations to merge and recover state sets from the all-zero state are required for the
operation of C/E units, because the all-zero state corresponds to the all-low state required in C/E
unit computation. The merge and recover operations can also be combined with swap, so that a
swap first moves a state into the all-zero position and a recover moves it out. Figure 5.12 shows
FSM representations using both the original and merged operations for a three-bit LFSR.

As a result, the shifting (S), swapping (W), and recover (E) mechanisms of state manipulation
require very low numbers of signals to implement (including R) for the amount of flexibility they
allow when manipulating the state of units. Using these signals, the states of any number of
units can be manipulated in arbitrary ways. This flexibility is especially useful when filtering
incorrectly linked units by propagating signals through a partially-built structure. Figure 5.13
illustrates simple LFSR logic added to the C/E unit, though in the full implementation, described
in the next section, additional controllable state is needed.

Arbitrary distributed state manipulation

To summarize, orthogonal to the logic implementing a C/E net primitive in the C/E units is the
LFSR logic described above. The LFSR is used to change the values of the pairs of places used

Chapter 5. Graph Assembly and Computation using Petri Assemblers 120

011

111

001

101

100

010

110

000

shiftshift

shift

shift

shift

shift

shift

swap

swap merge

recover

(a)

011

111

001

101

100

010

110

000

shiftshift

shift

shift

shift

shift

shift

swap

swap

recover

(b)

Figure 5.12: FSMs modeling the operations of the C/E unit LFSR state shifting. The FSM of
(5.12a) requires entirely separate signals for merge and recover, while the FSM in (5.12b) has
combined the operations so only a single additional signal is needed. Standard swapping is still
possible, but a second recover signal must be sent after swap to reverse the states. Likewise,
merging is just a single swap signal with the side effect of moving another state.

0
0

0

⊕

R

S

W

E

Figure 5.13: C/E unit with LFSR logic. The three complementary place pairs used by the C/E
primitive (enclosed in the gray dotted boxes) can now be modified via the shift signal (S). Full C/E
logic for swap (E) and recover (E) not pictured. The reset signal R also resets places needed for
these operations.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 121

by the net primitive. These three place pairs represent the three bit shift register in the standard
LFSR model, and the markings of the complementary pairs can be changed in arbitrary ways by
sending signals for the four (or three, when combined) LFSR operations described above. Given
the two components of the LFSR and C/E net primitive, it is possible to assemble structures by
manipulating the port enablement via the LFSR components, and these structures can then pass
tokens via the C/E net primitive to other parts of the structure. However, more is needed to cre-
ate structures representing more complex C/E networks: filtering for graph structures containing
cycles, and new markings for control over unlink transitions. These additions rely as much as
possible on the existing assembly capabilities and C/E primitive logic, but fundamentally require
extra, controllable states if deterministic assembly is the goal.

5.4.2 Graph assembly

Though seemingly a simple extension to tree assembly, the assembly of general graph structures
using the CORAL model, or any well-mixed stochastically assembling system, is challenging.
Tree structures, which by definition contain no cyclic edges, may be assembled deterministically
from a single seed unit by repeatedly adding single units. Assuming an environment contains
only incomplete tree structures and single units, opening a single port on a single unit in the tree
structures and a single port on the individual units results in randomized pairing in which the
particular unit that attaches to a structure does not matter. However, if the target structure contains
a cycle, at some point in the assembly process a structure will need to open two complementary
ports of two component units and somehow ensure that these units only attach to each other. The
identity of which parts connect is important.

The CORAL model does not allow units to influence in any way the particular choice of port
pairing, since units are assumed mixed beyond their control. As in an organic chemical reaction,
where multiple products are unavoidable results in the formation of large chemical structures, the
result of opening two complementary ports on a single type of structure will be chains and loops
of this structure in various lengths. This situation is illustrated in Figure 5.14. Ideally only the
target self-connections would form, but this result is highly improbable and becomes much more
so as the number of structures becomes large.

One solution used in chemical engineering is to successively filter the reaction “products” until
only a single type of structure remains. The only input mechanism in a CORAL environment are
the background signals, so some set of background signals must be sent which tend to unlink the
ports of chain and loop structures. After several assembly and filtering inputs, structures will be
self-linked with higher and higher probability. Because identical structures are distinguishable
only through symmetry breaking and chain and loop structures consist of identical copies of a
sub-structure, all filtering methods must necessarily be stochastic.

The filtering algorithm used here, for simplicity, is tightly linked to the operation of the as-
sembling unit itself, and so is described in more detail later in the section. As a brief summary,
however, the signals sent by the algorithm can be thought of as a computational analogue to “shak-
ing” the generated assemblies vigorously. Self-linked structures will always have a single part that
shakes in the same direction, but the multiple sub-structures composing the chains and loops of
multi-linked units may shake in different directions, causing the structure to break at these points.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 122

(a)

↙ ↓ ↘

(b)

(c)

(d)

· · ·

Figure 5.14: Two complementary open ports on many copies of an initial assembled structure
(5.14a) lead to many different results. Not only self-connections occur as in (5.14b), but also many
different sizes of looped structures appear (5.14c and 5.14d). Since there is no unit interaction
possible before assembly in the CORAL model, no precautions are possible which prevent these
extra “reaction products” from forming.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 123

The next section introduces the primitive computational unit which is capable of these graph as-
sembly computations and becomes Turing-complete when combined into graphs.

5.4.3 Turtle assembly

It is now possible to define the primary assembly mechanism for C/E units - “turtle” assembly -
given the logical components introduced above:

• Petri net localization into C/E primitives,

• LFSR state shifting,

• and graph assembly and verification.

The name of the assembly algorithm is inspired by turtle graphics, where a single point or “turtle”
forms an image from the trail of its motion (similar to the children’s Etch A Sketch toy). At a high
level, the core of the algorithm proceeds by progressively moving a unique turtle state through the
C/E units of an incompletely assembled structure, using the operations of the C/E net primitive
in combination with LFSR state shifting to select particular paths. The same turtle is also used
to verify self-connection in graph structures by a symmetry-breaking decision to traverse or not
traverse the newly formed cycle.

Starting from a large, partially-built structure of C/E units, the core of the mechanism works
as follows. In a large structure, many units in the structure must necessarily be in the same states.
In fact, most must be, since the structure size can ideally grow without bound while the number of
states is limited. To be precise, we can say that a large structure consists of n units, each of which
is in a single state si ∈ S. Since the number of units is much larger than the number of potential
states (n� |S|), at least one state must be shared by multiple units.

We also assume the existence of a unique turtle state t ∈ S at one of the units, which we would
like to “advance” along some connected path of units through the structure (starting from the
current unit). The exact value of this state is unimportant, but in order to allow the manipulation
of individual units using this turtle it must always remain unique. To advance the turtle state to the
next unit in the path, it suffices to put the next unit into some other unique state (since LFSR state
shifting can always permute states if necessary). Assuming the path is long, and there are only
finite states, the unique previous turtle states must also be merged into states shared by other units.

Figure 5.15 shows various representations of a path through a C/E structure. The compact
labeled representation, Figure 5.15c, will be primarily used in the following discussion, but it is
only a shorthand for the full C/E unit interactions. We assume a path of connected units (assuming,
for now, only forward Out-port to In-port connections), and we represent such a path as a list of
labeled states:

t

0
1
0 ↗

s

0
0
0
→

s

0
0
0

↘
s

0
0
0
→

s

0
0
0
· · ·

The first unit in the path has the unique turtle state t, other units are in the shared structural
state s while connections between units are represented by arrows. Since all Out-ports are comple-
mentary to all In-ports, arrows may connect different port positions (such as top to middle, middle

Chapter 5. Graph Assembly and Computation using Petri Assemblers 124

In

In

In

Out

Out

Out

KC

In

In

In

Out

Out

Out

KC

In

In

In

Out

Out

Out

KC

In

In

In

Out

Out

Out

KC

In

In

In

Out

Out

Out

KC

(a)

(b)

t

0
1
0 ↗

s

0
0
0
→

s

0
0
0

↘
s

0
0
0
→

s

0
0
0
· · ·

(c)

Figure 5.15: An example path through a C/E unit structure, shown equivalently as connected C/E
units (5.15a), representative C/E primitives (5.15b), and a linear path of labeled states (5.15c).
Empty grey units in (5.15a) and partially-connected primitive transitions in (5.15b) indicate other
portions of the structure ignored for this particular path. The goal of turtle movement along this
path is to place the end unit into a unique turtle state given a unique start unit turtle state.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 125

to bottom, etc.). Multiple types of shared structural states are also possible, but not pictured. Units
not on the path are assumed to be in structural state s as well, and do not (yet) affect path traversal
so the connections to these units are not drawn. The goal is to transfer the unique turtle state to the
end of the path (here dropping the particular state values because they are unimportant so long as
unique per-label):

s↗ s→ s↘ s→ t · · ·

The two tools available to perform this transfer are LFSR state shifting and individual C/E
net operations. Permuting the original state path using LFSR operations cannot map a particular

unit in s state to t, since each of the original s states are identical and therefore deterministically
indistinguishable. Likewise, simply allowing C/E computation by sending the clock signals CK

will do nothing, since the starting unit has edges only to disconnected transitions from the central
place(s), as can be seen in Figure 5.15. By combining the two methods together, however, arbitrary
transfer of turtle state is possible.

An example using the path from the Figure 5.15 the helps to clarify how the process works.
First, the turtle and structure states are permuted such that the turtle state may send a token and the
adjacent structural state may receive a token over a shared synchronized transition. For the first
step, this mapping is 010 7→ 001 = t, 000 7→ 000 = s, where the labels s and t are reassigned to the
mapping result. After state shifting is complete, t is still unique and s is identical:

t

0
0
1 ↗

s

0
0
0
→

s

0
0
0

↘
s

0
0
0
→

s

0
0
0
· · ·

Next, a CK signal is placed in the environment and received by every unit, which allows a
synchronized transition between the first and second unit in the path to fire, resulting in:

t ′

0
0
0 ↗

s′

0
1
0
→

s

0
0
0

↘
s

0
0
0
→

s

0
0
0
· · ·

After this single firing (or calculation step), the first and second units’ states change to new
values labeled s′ and t ′. In the current case s′ is unique and t ′ = s, but in general this will not
always be true. A trivial state permutation and relabeling is needed (000 7→ 000 = t ′ = s, 010 7→
010 = s′ = t) to fully move the unique turtle state to the second unit:

s↗ t→ s↘ s→ s−·· ·

A CK signal can again be sent, resulting in:

s

0
0
0 ↗

t ′

0
0
0
→

s′

0
1
0

↘
s

0
0
0
→

s

0
0
0
· · ·

Chapter 5. Graph Assembly and Computation using Petri Assemblers 126

Again, a trivial permutation changes s′ and t ′ to t and s, respectively:

s↗ s→ t↘ s→ s−·· ·

With alternating calculation and permutation steps, it is possible in this fashion to move the
unique turtle state along forward-linked paths. First, state groups are permuted such that a single
calculation in the correct direction can progress, and secondly the synchronized transition(s) are
allowed to fire, resulting in new states for the turtle and adjacent structural unit. These new states
are often, but not always, unique, however. For example, take the next step in half-traversed path
above. Permuting the states appropriately (010 7→ 100 = t, 000 7→ 000 = s), we have:

s

0
0
0 ↗

s

0
0
0
→

t

1
0
0

↘
s

0
0
0
→

s

0
0
0
· · ·

After sending a CK signal, the output becomes:

s

0
0
0 ↗

s

0
0
0
→

t ′

0
1
0

↘
s′

0
1
0
→

s

0
0
0
· · ·

Simple unit limitations

Because the topmost synchronized transition of a C/E net primitive outputs two tokens, as shown
in Figure 5.16, the state of the next unit in the path (s′) and the previous turtle state unit (t ′) are
identical and now indistinguishable. Further path traversal can occur, but a unique turtle state is
no longer guaranteed or possible (depending on other portions of the structure). Making things
more difficult, most structures do not even have feed-forward paths between all units. Traversal
of backwards connections must also occur (In-port to Out-port), and this is particularly the case
for cyclic-connection verification paths, to be discussed shortly. Intuitively, to traverse backwards
connections one permutes the s state to 100, 010, or 001 and t state to 000. With these active s

states, however, many structural units (including those not on the path but in the s state) will be
able to fire synchronized transitions in response to a CK signal, and unique state for t ′ or s′ is
impossible to ensure in all cases. Additional safeguards are needed to allow deterministic turtle
motion in these cases, and extra state is required to represent these safeguards. The extra state
also provides a natural basis for controlling unlinking transitions between units, a second major
component of turtle validation, and the control of this state is discussed below.

Extra graph assembly state

Summarizing the discussion above, the control of unique turtle states between units of a structure
is complicated when the turtle motion must traverse backward across connections or across syn-
chronized transitions which output different numbers of tokens than they receive as input. Both of
these cases result in the same general problem: there is no way of guaranteeing the uniqueness of
states s′ and t ′ after CK signals allow calculation (synchronized transition firings).

Chapter 5. Graph Assembly and Computation using Petri Assemblers 127

(a)

↓

(b)

Figure 5.16: Traversing the example path from Figure 5.15 with the current turtle state at the
central unit. Because of the nature of the path connections and C/E primitive computation, firing
the synchronized transition(s) results in the next unit in the path and the central unit having an
identical marking (5.16b).

Chapter 5. Graph Assembly and Computation using Petri Assemblers 128

To solve this problem (and add additional state to control unlink transitions), four extra places,
representing two extra bits, are added to the LFSR implementation on the C/E unit. The extra bits
do not affect the C/E primitive operation, and represent only a small addition to the LFSR logic be-
cause the same second-to-last tap position is maximal for a 5-bit as well as 3-bit register (allowing
the LFSR to cycle through all 31 non-empty 5-bit states). The bit representation introduced above
for the state of C/E units is extended for these bits by appending them to the front of the bit string,
e.g. 10-101, 11-000, and so on. As with the 3-bit states, these 5-bit states may be permuted into
any other using the shift, swap, and recover LFSR operations with corresponding environmental
signals.

The primary use of these high bits is to allow and disallow the firing of synchronized tran-
sitions in particular directions. A C/E unit in state 01-### may fire only Out-port transitions (#
representing any bit), while a unit in 10-### may fire only In-port transitions. The 00-### and
11-### states are interpreted naturally as all-disabled and all-enabled. Standard C/E or assembly
operations do not change the values of the high bits, so that if all units are in 11-### states they
may calculate normally. However, LFSR operations do modify the values of these bits, which lets
unit states be shifted into non-interacting or partially-interacting states.

The directionality and disablement allowed via high bits allows more control over connections
traversed for turtle motion. The state of the unit on the Out-port side of the connection is permuted
to 01-###, while the state the unit on the In-port side is shifted to 10-###. Units in states irrelevant
to the computation but necessary to preserve can also be safely shifted to unique “frozen” or
inactive 00-### states. Assuming the lower bits are also set correctly and either the Out-port or
In-port state is unique, only a single calculation between units in these states may proceed. The
resulting states s′ and t ′ are also distinct, since s and t differ in high bits and these do not change
during C/E operations.

Example. The failed central unit traversal presented above now becomes possible using high bits.
Each unit in structural state is allowed only to receive tokens from In-port connections, while the
turtle state may only send tokens from an Out-port. Resuming the example of Figure 5.16 above,
with the new high bits:

s

1
0
−
0
0
0 ↗

s

1
0
−
0
0
0
→

t

0
1
−
1
0
0

↘

s

1
0
−
0
0
0
→

s

1
0
−
0
0
0
· · ·

CK
→

s

1
0
−
0
0
0 ↗

s

1
0
−
0
0
0
→

t ′

0
1
−
0
1
0

↘

s′

1
0
−
0
1
0
→

s

1
0
−
0
0
0
· · ·

The state change can be exploited using the LFSR shifting map since the high bits make t’ and s’

unique:

Chapter 5. Graph Assembly and Computation using Petri Assemblers 129

10−000 7→ 10−000 = s

01−010 7→ 10−000 = t ′ = s

10−010 7→ 01−010 = s′ = t

Finally resulting in s↗ s→ s↘ t→ s−·· ·

Example. Reverse traversal of connections is also possible. For example, given a bi-directional
path through a structure (linked only at the middle In- and Out-ports for simplicity), the high bit
restrictions only allow a single synchronized transition firing between the unit in state t and the
adjacent structural unit. Assuming states have been permuted initially for the first traversal:

t

1
0
−
0
0
0
←

s

0
1
−
0
1
0
→

s

0
1
−
0
1
0
←

s

0
1
−
0
1
0
· · ·

CK
→

t ′

1
0
−
0
1
0
←

s′

0
1
−
0
0
0
→

s

0
1
−
0
1
0
←

s

0
1
−
0
1
0
· · ·

Permuting the resulting states after the calculation:

01−010 7→ 10−000 = s

10−010 7→ 10−000 = t ′ = s

01−000 7→ 01−010 = s′ = t

Results in:

s

1
0
−
0
0
0
←

t

0
1
−
0
1
0
→

s

1
0
−
0
0
0
←

s

1
0
−
0
0
0
· · ·

Unlinking operations

Unique state for unlinking operations also becomes possible with these two extra bits/places. Sim-
ilar to the In-port/Out-port calculation restrictions above, assembly states are divided into linking

and unlinking states via the high bits. Units in 01-### may enable Out-port link transitions, while
units in 10-### may enable In-port unlink transitions. Out-port unlink transitions and In-port link
transitions are always enabled given appropriate low-bit state/marking, but are restrained not to

Chapter 5. Graph Assembly and Computation using Petri Assemblers 130

fire by their port transition complement. Since assembly and calculation steps respond to different
clock signals (C, K vs. D, L), the high bit states used overlap without problems.

Unlink transitions are enabled using states similar to those of link transitions. As with link
transitions, three unique states are needed to identify the particular In-port unlink transition which
should be detached: 10-100, 10-010, and 10-001. These correspond to the high, middle, and
low In-ports, and are distinct from the link transition states given the additional high bits. When
unlinking occurs, the three lower bits of the newly-detached source and target units are placed into
the states which would be required for linking again. This is done for simplicity, since these states
are already unique and often multiple assembly operations must detach/reattach units multiple
times for validation of a cyclic connection. Choosing states this way allows the detached units to
reattach to other units without additional state permutation.

Turtle verification

When a new connection is added to a partially-completed structure and creates a cyclic edge, the
resulting structures must be verified for correctness. The basic procedure used, as was introduced
in Section 5.4.2, is to ensure that the unit linked by the new connection is the same unit as the
one found by traversing the rest of the cyclic connections in the opposite direction through the
sub-structure. The idea is fairly simple but difficult to describe clearly in words, so Figure 5.17
provides a concrete example using the cyclic assembler from Section 5.4.2.

The turtle verification process begins when a cyclic connection is added to a growing structure.
The target unit for this connection (In-port connected) performs a symmetry-breaking operation
to place it in a holding state h or turtle state t. A path is then calculated through the interior of the
sub-structure, starting and ending at the current unit position. If the structure is self-linked, this
path will lead back to the same unit, but crucially the path leads to a different unit in a connected
sub-structure if the structure is a chain or loop of multiple sub-structures. After traversing this path
using the unique t ′ state (and shifting the h and original t states into frozen 00-### states), it is
possible to compare the state sent around the sub-structure with the original state of a symmetry-
breaking start unit. (The exact mechanism requires two lower-bit states which can receive the
same token while maintaining individuality.) When t ′ is “received” and h was original start unit
state, or nothing is received and t was the original start unit state, the states corresponding to
these conditions are transformed into unlink states to remove the invalid connection between sub-
structures. Link-enabling signals are again broadcast into the CORAL environment to reconnect
newly-open ports, which may self-link or form chain and loop structures again.

Self-linked units can never have a mismatch in received turtle state, since the unit which “de-
cides” to send the turtle message and later receives it (or does not) is the same. Therefore self-
connections are stable under the turtle verification process. After several verification steps, chain
and loop structures become less and less likely, and eventually are all destroyed.

Combined algorithm

With the LFSR state permutation, turtle motion, and turtle verification mechanisms described in
detail, it is finally possible to sketch the full assembly algorithm for arbitrary C/E net structures:
Algorithm 2. Overall it is similar in structure to the NOR waterfall assembly Algorithm 1, only
replacing a tree traversal with a graph traversal and adding special handling for the creation of
cyclic edges. In both, seed structures are created by a symmetry breaking operation of the original

Chapter 5. Graph Assembly and Computation using Petri Assemblers 131

t

t'

t'

t't'

t'

t'

(a)

Ø

t

t'

h t'

t'

t'
t'

t'

t'

t
t'

t'

t'
t'

t'

(b)

Figure 5.17: Two types of structures formed after a cyclic connection, one self-linked (5.17a) and
the other connected as a loop of sub-structures (5.17b). Units on one side of the new connection
“decide,” via a symmetry-breaking operation into states h and t, whether or not to send a mes-
sage (in the form of turtle state t ′) around the cyclic connection of the sub-structure. Using the
turtle motion mechanism described in Section 5.4.3, the t ′ message state is advanced over the con-
nections of each sub-structure simultaneously (possible because all substructures are identical).
Eventually the message state reaches the original unit or the corresponding unit in a different sub-
structure. Units which sent a message and did not receive one, or received one and did not send
one (circled in a thinly dashed line) can then be manipulated via LFSR commands to unlink the
connection. This mismatch never happens in self-connected units (5.17a), so they remain stable
under verification.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 132

homogenous CORAL environment of individual units, to which additional units are added one-
at-a-time. Though the order of unit assembly is simply defined here, in practice it is useful to
ensure that new nodes are attached in positions nearby the previous attachments and minimize
turtle motion. In addition, a minimal spanning tree can be calculated so that the addition of cyclic
edges and verification happens only at the end of the assembly process. The full C/E unit diagram
data and turtle assembly source code which generates commands to assemble various structures is
available online at:

• https://coralassembly.wordpress.com/

Again like the waterfall assembly algorithm, the pseudocode presented in Algorithm 2 encapsu-
lates state permutation, turtle movement, and cyclic structure verification, each described above, as
the functions perm_states, move_turtle, and filter_structs, respectively. All functions im-
plicitly save the commands they generate to the output_commands variable. The break_symmetry
command is not described elsewhere, but uses stochastic timing of transitions to change some
units in a particular state to a new state. The core features of turtle assembly are outlined in
turtle_assembly - a function which takes a multigraph structure with port information and im-
plicitly outputs the commands necessary to build it using C/E units. Localization and the island
graph construction (Section 5.2.2) are used to derive the multigraph structure and connected ports
which emulate a desired safe Petri net.

The target multigraph structure with port information (tar_struct) is input to the function,
and a struct multigraph is maintained as the current state of the growing structure. A map-
ping of labels to states is also maintained as the states dictionary, which is used and modified
appropriately by core functions. All actual state information has been abstracted from the pseu-
docode, however, for simplicity and readability. The arbitrary labels given to the turtle state and
frozen turtle state are TURTLE_STATE and FROZEN_TURTLE_STATE, the shared structural state is
STRUCT_STATE, and a label for the individual stock parts is PART_STATE. These are implicitly per-
muted to appropriate values so that units will connect correct ports. Once connected, the number
of filtering steps is specified by the constant FILTER_STEPS.

5.5 Implementation in 27 bits

The turtle assembly algorithm above is sufficient for the general assembly of graph structures, and
through such assembly C/E unit structures can emulate arbitrary C/E nets. Figure 5.18 highlights
the signals and main places of the final C/E unit, while Figure 5.19 shows the final C/E controller
net including all signal and port transitions, consisting of 27 places and 49 transitions. Though this
network looks quite complex embedded in a two-dimensional view it is effectively a superposition
of all the smaller networks described above. A C/E unit of this design, when controlled by signals
from the turtle assembly algorithms described above, is capable of forming structures which emu-
late any sort of C/E net, including its own controller. Notably this network requires fewer overall
places and transitions than the NOR assembler, partially due to the efficient state-shifting LFSR
algorithm.

https://coralassembly.wordpress.com/

Chapter 5. Graph Assembly and Computation using Petri Assemblers 133

Algorithm 2 Turtle assembly algorithm in Python pseudocode.
Constants

FILTER_STEPS = ...

TURTLE_STATE, FROZEN_TURTLE_STATE = ...

STRUCT_STATE, PART_STATE = ...;

output_commands = [] # Stored commands

def turtle_assembly(tar_struct):

struct = ... # Empty directed multigraph, current structure

states = {TURTLE_STATE : ...} # All units initially in same state

Create our first partial structure by breaking symmetry

break_symmetry(states[TURTLE_STATE], states)

Assemble C/E structure via graph traversal

turtle = tar_struct.nodes[0]; struct.add_node(turtle)

fringe = [(turtle, tar_struct.edges(turtle)[0])]

while len(fringe) > 0:

Fringe is a list of node and next edge

unit_a, edge = fringe.pop()

unit_b = (edge[0] if edge[0] == unit else edge[1])

cycle = (unit_b in struct)

Move turtle to new assembly point

if not cycle: move_turtle(struct, [turtle, unit_b], states)

if cycle:

If a cyclic conn, freeze turtle state at unit_a

and move to unit_b

move_turtle(struct, [turtle, unit_a], states)

move_turtle(struct, [unit_a, unit_b], states, freeze=True)

turtle = unit_b

Permute turtle states and part states for assembly

perm_states(states, ...); allow_assembly(states)

Filter new connection if necessary

if cycle:

for i in range(0, FILTER_STEPS):

filter_structs(struct, edge, turtle, states)

allow_assembly(states) # Reconnect unlinked ports

else: struct.add_node(unit_b)

struct.add_edge(edge)

for new_edge in tar_struct.edges(unit_b):

if not new_edge in struct.edges():

fringe.append((unit_b, new_edge))

Allows assembly, makes turtle state newly connected state

def allow_assembly(states): ...

Core turtle assembly functions

def perm_states(states, mapping): ...

def move_turtle(struct, path, states, *props): ...

def filter_structs(struct, cyclic_edge, turtle, states): ...

def break_symmetry(state_to_split, states): ...

Chapter 5. Graph Assembly and Computation using Petri Assemblers 134

In

In

In

Out

Out

Out

K

C

L

D

S

W

E

R

Figure 5.18: Diagram of the C/E unit with all port and signal transitions labeled. The three low
pairs of C/E logic places and two high pairs of extra graph assembly places are also included. On
top of this “skeleton,” the C/E net primitive and LFSR logic are superimposed, resulting in the C/E
unit implementation of Figure 5.19.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 135

⊕
Out.0

R

S

SyncR.0

SyncR.1

SyncR.2

SyncL.0

SyncL.1

SyncL.2

LinkR.0

LinkR.1

LinkR.2

LinkL.0

LinkL.1

LinkL.2

UnlinkL.0 UnlinkR.0

UnlinkL.2

UnlinkR.1

UnlinkR.2

UnlinkL.1

E

C

K

W

D

L
Out.1

Out.2

In.1

In.0

In.2

Figure 5.19: The full C/E unit implementation, with LFSR, assembly, and C/E net primitive logic
superimposed. The actual graph in standard graph markup language (graphML) form is available
with the source code, since viewing the full diagram this way necessarily obscures parts of the
logic. Overall, the LFSR logic can be seen as the central zig-zag line with LFSR signals, while
the assembly and net primitive logic share space in the many edges of the central area. Unlike the
NOR unit assembler, no tracking of assembled edges need occur, which simplifies the port logic
significantly.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 136

5.5.1 Building a target network

To demonstrate the assembly process, the implementation of Figure 5.19 is placed in a simulated
CORAL environment and a target network is generated. As an illustrative example, the central F

portion of the localized island graph from Figure 5.8 is built here. Assembling the full localized
network is also possible, but the complex resulting graph is time-consuming to produce and dif-
ficult to view in 2D. Figure 5.20b shows the F islands transformed into islands containing only
the C/E net primitive (using the identities from Figure 5.2), and this structure may then be built
in simulation via turtle assembly. While the original place island contained no cyclic connections,
the transformed result does (due to the produce and consume operations required to emulate decide

and combine).
For this example α = 1 assembly operations per time step, as before, but the transition firing

rate τ = 5. Because of the large number of LFSR steps needed for state permutation and verifi-
cation, the simulation runs more efficiently using this rate at the cost of granularity in symmetry
breaking. The resulting structures would be identical for any transition rate, however. Figures 5.21
to 5.24 illustrate the entire assembly process, from a soup of initially identical units to multiple
copies of the target computing device.

(a) (b)

Figure 5.21: A CORAL simulation containing 256 instances of the C/E unit implementation of
Figure 5.19, initially in identical state (5.21a). Controllers are not drawn due to the number of
units pictured. After an initial symmetry break to establish seed units, turtle assembly attaches
several other units, resulting in the partial tree structures of (5.21b). The target structure is that of
Figure 5.20b, and assembly has started generally from the left to right.

Chapter 5. Graph Assembly and Computation using Petri Assemblers 137

(a)

(b)

Figure 5.20: The island graph shown as (5.20a) is the F section of Figure 5.8. After the primitive
operations are transformed into combinations of the base C/E net primitive (by the identities of
Figure 5.2), the localized structure can be built using turtle assembly operations (Figures 5.21 to
5.24).

Chapter 5. Graph Assembly and Computation using Petri Assemblers 138

(a) (b)

Figure 5.22: Starting from Figure 5.21b, a new cyclic connection is added between two units
(5.22a). This results in some correct self-connections, but also many incorrect connections to
other structures. Over several turtle verification unlink/relink steps, non-self-linked structures are
unstable and eventually all connections are self-connections.

Ø

(a)

Ø

(b)

Figure 5.23: The three combine operations of Figure 5.20a have now been partially built, though
the topmost C/E primitive structure for the consume operation has not yet been linked back to the
structure. The turtle node (differently colored) is therefore at that node and ready to create another
cyclic connection back to the structure (ports and connection circled by thinly dashed lines). After
several assembly and validation steps, all structures are linked as in (5.23b).

Chapter 5. Graph Assembly and Computation using Petri Assemblers 139

(a) (b)

Figure 5.24: The target structure of Figure 5.20b has now been built fully, as shown in close-
up (5.24a). Because of the relaxation algorithm the position of some units are not exact, but the
topology of the links is the same (see Figure 5.25). Eight other identical structures are also created,
each of which compute identically and can be used as the basis of the assembly of a larger device.

11

13

12

8

5

4

6

7 9

10

2

3

1

(a)

1

6

7 8 11

2 3

4 5

9 10

12 13

(b)

Figure 5.25: Explicit labeling of a constructed assembly from Figure 5.24, showing that it is in
fact an instance of the target computing structure of Figure 5.20b.

5.6 Remarks

This chapter introduces and addresses two limitations of NOR assemblers - the inability to form
graph structures and emulate more powerful computing devices. On top of these changes, the
formalisms used are simplified to be entirely C/E-net-based, leading to controllable units described
in a mathematical language which build more powerful devices in the same language. The C/E
unit is the concrete instantiation of these ideas. Assuming an unlimited supply of units, C/E unit

Chapter 5. Graph Assembly and Computation using Petri Assemblers 140

structures can be built which emulate any size C/E net, which in turn means they can emulate a
Turing machine with any size tape. This includes building at larger scale the internal structure of
the C/E unit itself, which requires many units and much time, but is possible in principle. The
assembly manipulations are made more generic and require fewer signals by using parallel state
manipulations via LFSR logic. Using this ability, C/E units form and verify graph structures by
manipulating special turtle states inside the structures themselves. Essentially, turtle states are the
distributed “handles” with which external broadcast signals grasp parts of the unit structures.

The C/E unit is a novel prototype for assembling artifacts with unlimited computational po-
tential while obeying conservation of mass and finite connectivity. Certain modular robotic units
with complex internal controllers may be implicitly capable of of complex computations, but only
natural systems thus far have used assembly itself as the sole programming step. Chemical compu-
tation has also demonstrated computation through assembly such as in (Adleman, 1994; Winfree,
1996; Dittrich & di Fenizio, 2007), though as mentioned in Chapter 2 the physical substrate is
pre-specified or pre-tailored for the particular computation. C/E units are assembly amino acids,
a general unit which can build any other computational form, and can build any device without
prior modification.

The C/E unit is a proof-of-concept that increasingly powerful devices can be built from very
limited general parts in a distributed way. The implementation simulated above may seem complex
at first glance, partially because of the low-level pieces from which it is built (capacity-1 places
and transitions) and the minimal environmental assumptions (no locality and no individual unit
interactions). A number of minor simplifications are possible to the knowledge of the author, but
any unit will require control over the basic operations of linking, unlinking, enabling multiple
ports in different portions of the structure, and verifying cyclic connections. A LFSR is a very
general way to achieve distributed state control for all these tasks using a minimum of signals,
though perhaps a more integrated control type would lead to a more elegant design.

The formation of graph structures is a particularly challenging aspect of CORAL assembly be-
cause stochastic filtering must be used to achieve arbitrary levels of accuracy. As discussed above,
no stochastically assembling units, including those of the CORAL model, are able to determinis-
tically create a graph structure with cycles (though with certain environmental assumptions about
locality it can become much more likely). These cycles, however, are vital to more powerful com-
putation using either NOR or C/E units. While designing C/E units, one early method considered
for validating cycles was to spread a signal from the newly linked units, exploiting the inherent
C/E net computation of the partially built structure. Instead of “turtling” through individual units,
as described above, a structure might also be “flooded” with tokens from a connected unit. This is
practical when the structure is acyclic, but the response of the rest of structure to token input may
be that of any arbitrary C/E net once other cycles exist. Determining the output of a general C/E
net to general input is a PSPACE-complete problem (and comes ever-closer to non-computable
as the size of the structure becomes large); there is no efficient algorithm to determine when or
whether a token signal arrives at some other unit without additional restrictions. In consequence,
the predictable individual propagation of tokens between pairs of units is used instead. It seems
generally difficult to direct further assembly by bootstrapping on the computation of partially-built
structures, since the output of computationally powerful structures is difficult, if not impossible,

Chapter 5. Graph Assembly and Computation using Petri Assemblers 141

to predict.
Building meta-C/E net controllers from C/E units (themselves described using C/E nets in the

CORAL simulator) is possible to simulate but remains complex. Fully recursive C/E assembly
using this idea is not yet possible but is a goal worth pursuing, since it would enable the same
types of multi-level control discussed for the less-powerful NOR units. The main challenge is
to somehow selectively block certain connected units from responding to particular broadcast
signals, as is done via shielding in NOR meta-units. In other words, emulating the C/E logic of
the controller itself is not a problem, but there is no way yet to emulate the special signal and
port transitions separately from the rest of the units. This limitation does serve to underline the
subtle requirements of recursive assembly - even with Turing-complete computational potential
and arbitrary state permutations, multi-level control over a system requires the means of control

itself be emulable.
Little discussion was made so far about the object of this control - what the computation of

C/E units can do. No particular physical or chemical environment has been assumed for C/E
units to act in, so the description of their function is limited in the CORAL model to the relevant
composition and assembly behavior. Given some sort of target environment, the computation C/E
structures perform can be linked to structural behavior in any number of ways, and this of course
is the primary reason for such computation. To re-use an example from the NOR assemblers, the
compression of unit-compressible modules could be linked to particular token constellations of
a C/E unit, resulting in different motion from different token flow. The extra expressiveness of
C/E nets compared to Boolean functions means that any computable behavior of this type could in
theory be built, though the structure of the final assemblies would of course need to be related to
the way in which the behavior was implemented. These are important, interesting questions, and
the C/E unit is proposed as a prototype for building realistic units which are general computational
parts and also potentially general mechanical parts. While not entirely realistic, the C/E unit model
does not violate conservation of mass and complementary assembly ports can be built many ways
and many sizes.

This chapter concludes the discussion of two designed examples of scalable assembly: NOR
and C/E units. In combination they demonstrate that the CORAL simulation is capable of building
devices of any size and as powerful as any other computing machine, given simple and general
individual parts and a single information broadcast. Nature has performed the same task many
times over, but with information encoded in the process of natural selection and evolution. It is
possible that novel and simpler assemblers with scalable assembly properties could be discovered
using the same types of evolutionary algorithms. In the next chapter, this hypothesis is tested in a
series of evolutionary experiments into the automated design of CORAL assemblers.

Chapter 6

Evolutionary Search for Scalable Assemblers

In addition to the designed assembling systems of Chapters 4 and 5, a parallel set of experi-
ments was performed in order to determine whether simple and novel assembling systems could
be discovered through evolutionary search. Other experiments evolving group behaviors for robots
(Kwong & Jacob, 2003; Baldassarre et al., 2003; Trianni et al., 2003, 2004; Pugh & Martinoli,
2006; Zykov et al., 2007), agents (Koza, 1992), artificial chemistries (Theraulaz & Bonabeau,
1995; Bonabeau et al., 2000) or all three (Studer & Lipson, 2006; Sayama, 2009) have discovered
interesting behaviors for groups of agents or robots using a variety of evolutionary algorithms. Vir-
tual evolution has also been applied to realistic chemical simulators, where it is able to generate at
least second-order micelle structure (Buchanan et al., 2008). Using the CORAL model as a base, it
was hoped that these types of results could be extended to controllable behavior over much larger
scales. Evidence toward the lower complexity bounds of assembling units was gained from the
results of these evolutionary runs, as well as necessary properties for control to be possible at all.
This study is also motivated by the open artificial life question of building a formal framework for
synthesizing dynamical hierarchies at all scales (Bedau et al., 2000; Lenaerts et al., 2005; Bedau,
2007). The first results evolving pairing assemblers in this chapter were reported earlier as (Studer
& Harvey, 2008).

The core methodology of the chapter is the use of evolutionary algorithms (EAs) and other
related evolutionary programming (EP) methods to find novel C/E net unit controllers for scalable
assembly tasks. Results are partially positive, with the evolution of simple units able to form recur-
sively pairing chains on command. More complex structures were attempted unsuccessfully, but
identifying these limitations directly led to addressing them in the designed assemblers mentioned
in previous chapters. A sweep using a selection of established and not-so-established evolutionary
algorithms and genotype encodings points toward particular methods which may be better suited
toward searching this difficult fitness space in the future.

6.1 Evolutionary algorithms and genetic programming

Evolutionary algorithms have become a well-known way of discovering and optimizing potential
solutions to simulable problems, particularly when the form of the solution is difficult to engineer

Chapter 6. Evolutionary Search for Scalable Assemblers 143

via traditional means. A variety of related research in the 1960s began exploring the evolutionary
process as an intelligent search (Bremermann, 1962; Fogel et al., 1965) (summarized in (Fogel,
1998)), which was followed by the development of the so-called genetic algorithm (Holland, 1975,
1992) using a virtual binary chromosome. Many varieties exist today, though a full survey is be-
yond the scope of this thesis. The term evolutionary algorithm is here defined broadly to mean any
algorithm which uses stochastic selection to improve a population of potential solutions. This defi-
nition also includes related algorithms like simulated annealing, despite the fact that the inspiration
comes from physics rather than biological evolution.

Some of the earliest applications of genetic algorithms were designed to evolve computing
models in the form of finite state machines (Fogel et al., 1965). This research has expanded into a
variety of active fields, and continues directly to this day ((Keller & Lutz, 2005; Lucas & Reynolds,
2007) have good summaries). The work has also been widely expanded to include the evolution
of neural networks (Harvey et al., 1997; Yao, 1999; Nolfi & Parisi, 2002), lisp programs (Koza,
1992), and logical circuits (Koza, 1992; Harvey & Thompson, 1996; Miller et al., 1997; Yao &
Higuchi, 1997; Miller & Banzhaf, 2003; Tan et al., 2004; Roggen & Federici, 2004; Koza et al.,
2005) among other types of models.

Recently, evolving Petri nets has also become an active research area. Originally the work
focused on more traditional uses of Petri nets in job scheduling and workflow management (Chiu
& Fu, 1997; Tohme et al., 1999; Saitou et al., 2002), but a new strand of research uses Petri nets to
model complex (bio-)chemical systems (Goss & Peccoud, 1998) where Petri nets representing the
master chemical equations are evolved (Kitagawa & Iba, 2003; Moore & Hahn, 2004a; Nummela
& Julstrom, 2005). Given some set of chemical data or target functions, the object is to create a
Petri net model of the system that matches all available data (and is as small as possible).

While superficially this may seem identical to the evolution of Petri nets in the CORAL model
(which can be considered a variety of artificial chemistry), the target of the above studies is mod-
eling the full behavior of the entire chemical system, where each chemical structure is represented
as a place in the full chemical network. In the CORAL model, Petri nets represent individual

behavior; using the chemical metaphor above, it would be as if the precursor molecules used were
evolved to fit fixed interaction mechanisms. As an aside, this use of Petri nets in the CORAL
model does not preclude their use as a system model as well, where species of Petri net unit
controllers replace chemical species. The idea has been discussed for graph grammar systems
(Klavins, 2006), of which Petri nets are a subset, and Petri nets can be elegantly extended to use
other Petri nets as tokens.

There has also been limited work in other areas evolving Petri net controllers. An investigation
evolving Petri nets as general classifiers is described in (Reid, 1998), which was also a precursor
to some of the previous biological work. A novel coevolutionary algorithm is used which rewards
each transition of the net individually, similar to the Holland bucket brigade (Holland, 1975). The
only robotic example known to the author is (Bourdeaud’huy & Yim, 2002), in which gaits for a
hexapod walker are evolved via genetic algorithm.

The basic optimization problem of finding an appropriate Petri net with particular computa-
tional behavior is somewhat similar to the previous job scheduling, chemical, and robotic exam-
ples, with a significant difference in the type of function required. Instead of matching a single

Chapter 6. Evolutionary Search for Scalable Assemblers 144

behavior or set of data, a multi-level behavioral test is required. The work below represents a first
application of Petri net evolution to distributed assembly or multi-level behavioral tasks.

6.2 Pairing assemblers

The scalable assembly behavior investigated using evolution was designed to be as primitive as
possible, so that evolution would have the best chance of discovering solutions. As discussed in
Chapter 3, the basic assembly operation of units in the CORAL simulation is to pair with one an-
other, and it is possible to generalize this pairing behavior to assemblies of multiple units. While
for a single unit, such pairing behavior is almost trivial to implement (enable a port transition on
either one side or its complement), the same behavior for many linked units requires synchroniza-
tion of open ports at the ends of the large chain structure. A single signal indicates that the next
pairing operation is meant to take place; coevolution of the signal and controller is not investigated.
Figure 6.1 illustrates the idea.

This recursive pairing behavior requires only two ports, and so only a single pair of comple-
mentary ports are used for each atomic unit. With only two complementary ports, the “sea” of
components in a simulation instance will generate only pair, chain, and loop structures, whatever
the structure size, as seen from the example assembler simulated in Section 3.7.1 with two ports.
As was also seen in Figure 3.21, without a properly designed controller CORAL units generally
reach an uninteresting steady state in which the structures built are immune to further perturba-
tion. The goal of the experiments in CORAL unit evolution is to discover assemblers which do
not become immune, and respond to background signal input in a controllable way no matter how

many recursive pairings have occurred.

6.3 Evolving recursive assemblers

A standard evolutionary algorithm, the Microbial GA (MGA) (Harvey, 2001, 2009), was used to
evolve the C/E net controller placed on the many identical atomic units in a CORAL simulation.
As in a traditional genetic algorithm (GA), a MGA maintains a population of genotypes which
are ranked, selected and filtered via a fitness function. However, MGAs use a steady-state popula-
tion, where genes from selected genotypes simply overwrite the genes of less preferred genotypes,
proportional to a constant value ρ. In practice, this considerably simplifies the operation of a
Microbial GA (as compared to a generational GA which updates many units at once) while main-
taining similar performance in many search domains. Results from other types of evolutionary
algorithms are also discussed later in the chapter.

6.3.1 Genotype representation

For performance and simplicity, binary genotypes were used to evolve the unit controller C/E nets.
For p numbered places and t numbered transitions, every possible outgoing edge from a place to a
transition is assigned a single bit: 1 indicating the edge is present in the controller, 0 indicating the
edge is absent. Effectively, the adjacency matrix of the C/E net is directly represented as a binary
string.

Chapter 6. Evolutionary Search for Scalable Assemblers 145

(a)

1

(b)

→

(c)

2

(d)→
···

Figure 6.1: Recursive pairing of CORAL units. In (6.1a), all units are identical and contain some
undefined controller with two ports and a signal transition. After a signal is sent to the units
(indicated by the arrow) the units differentiate into two types, enabling either the left or right
port but not both (6.1b). Once assembly occurs (6.1c), the correctly paired units again are ready
to receive a second signal. In response to the second signal, each pair opens either the leftmost or
rightmost port (6.1d). Assembly occurs again, creating groups of four. Ideally the process can be
repeated indefinitely, for unlimited numbers of pairing signals.

Chapter 6. Evolutionary Search for Scalable Assemblers 146

A significant factor allowing this representation (which could not be used in many of the bio-
chemical evolutionary Petri net studies) is the lack of weighted edges in C/E nets. ((Nummela
& Julstrom, 2005) find weights by alternative methods, though the topologies are limited.) In-
stead, the biochemical studies used representations of lists of tuples which encode (place,weight)

pairs for each transition, as does the robotic work of (Bourdeaud’huy & Yim, 2002). Effectively,
though there are minor differences in format between studies, the tuple representation evolves
an adjacency matrix encoded in sparse form. The grammatical evolution approach of (Moore
& Hahn, 2004a) is a notable exception, and generates weighted networks via the application of a
custom context-free grammars. While this approach seems quite interesting, because evolved con-
trollers for scalable assembly had not been investigated previously it was decided that the simplest
encoding which did not require assumptions about good result topologies would initially provide
the clearest results. The studies evolving assembly-line automation control assume predefined
architectures, so the encodings are not general and cannot be used in this context.

Each place is also assigned a single bit, indicating the presence or absence of a token at that
place in the controllers’ initial marking. Using this format, (2pt + p) bits are able to fully spec-
ify any CORAL controller with p and t transitions. The transition assigned a priori to receive
background signals and the two transitions required to link and pass tokens at unit ports are then
added to the t transitions with evolved links and attached to the first three places of the evolved
C/E network. Only a single transition per port is needed for both linking and communication, be-
cause link transitions also function as synchronized transitions after a connection is made. Unlink
transitions are not required for recursive pairing behavior in the evolutionary search, and were not
included in the experiment.

Figure 6.2 below is an illustration of the evolved CORAL unit. The ports are labeled the
standard In and Out, and a single signal transition for G is defined, which is the minimum required
for controllable assembly. CORAL assemblers with more port transitions and signals were found
to be difficult to evolve, and later work in this chapter comparing different encodings and and
evolutionary algorithms begins to address this issue.

6.3.2 Fitness function

To evolve units which maintain a pairing assembly ability as they grow into larger chains, a fitness
function is required which evaluates the pairing behavior of units at any scale. The core idea is to
measure the number of structures of the correct size after a single “level” of assembly. If pairing
occurs, the structure sizes will be correct. The converse, of course, is not always true, since
there are other behaviors which generate structures of the correct size at higher pairing levels by
assembling mismatched parts; e.g. structures of size 3 and 5 or 2 and 6 forming structures of size
8. These mismatched parts necessarily incur a fitness penalty at lower assembly levels, so there is
always evolutionary pressure to reduce the number of these units toward the maximum fitness at
which pairing always occurs. Counting the number of units of particular sizes is fast, simple, and
as discussed above gives a gradient toward the ideal solution, and so was considered appropriate
for the scaling assembly problem.

The recursive pairing behavior evolved is also required to be minimally controllable in order
to be well-defined. If pairing always happens spontaneously, without the need for a background

Chapter 6. Evolutionary Search for Scalable Assemblers 147

Figure 6.2: The skeleton places and environmental transitions of the evolved CORAL unit. In

and Out-port transitions and the input transition for the G signal are linked directly to place
nodes. Other internal transitions and places of the controller are not linked to port or signal transi-
tions. This is indicated by the gray dotted circle, outside of which no C/E net controller edges are
evolved.

signal, it is unclear where one should divide behavior for each scale. Spontaneous pairing would
be a perfectly acceptable mechanism for assembly of long strings of units, however this study
focuses on evolving an assembly response to particular kinds of input, controllable assembly,
which is preserved across all scales. The input is designed to be as simple as possible, consisting
of setting, before each recursive pairing behavior or level, a G background signal (Go-signal) after
200 CORAL environment time steps. Compared to the designed assemblers this is quite a simple
input, but the recursive pairing task does not require complex structure to be specified via the
background signals. Each pairing level requires only a new single edge, and so a single signal was
hypothesized as sufficient.

The full fitness function is slightly more complex than the previous description, and is pre-
sented in all relevant detail as Algorithm 3. The main addition is a fast “sanity check” using a
small simulation environment to ensure units do any sort of assembly at all and do not sponta-
neously assemble. First, the genome is translated into a C/E net controller using the encoding
from Section 6.3.1 and the small and large CORAL simulation environments of many units are
initialized. The controller is first tested in the small environment to ensure that it does not sponta-
neously start assembling anything without input and that it does assemble something with G input.
If this is not the case, the fitness evaluation terminates and adds a fractional value designed to bias
toward units with many transition firings over inactive units. If the small tests succeed, the pairing
tests are performed with G input in the larger simulation environment with many more units. For
the first set of tests, the larger environment is reset with the initial controller phenotype, but unlike
the small simulation the large simulation environment is not reset on subsequent tests. The large
environment, over multiple assembly levels, retains all the incorrectly paired units of the previous
levels and simply has a G background signal set for each assembly interval.

After the signal and 200000 time steps, the number of structures of the correct sizes are counted
and the fitness value updated. If pairing seems to have occurred, the same tests begin again,
searching for pairs of size 2level+1 (where level = 1 for the first pairs). When less than two pairs

Chapter 6. Evolutionary Search for Scalable Assemblers 148

Algorithm 3 Recursive pairing behavior fitness function in Python pseudocode.
Initialize the sim environments

input_step = 200; G = ...

large_sim = init_sim(1024, input_step)

small_sim = init_sim(128, input_step)

def fitness_function(genome):

Translate the controller from the genotype

controller = to_phenotype(genome)

Test fitness at each level

fitness = 0; level = 1; pairs = [controller, controller]

while len(pairs) >= 2 and level <= 10:

num_conns = test_sims(pairs, level)

If sanity tests have failed, add fractional activity fitness

if num_conns == None:

fitness += last_sim_activity() / 1000000

break

Get pairs and add to fitness

pairs = get_structs(large_sim, 2^level)

fitness += len(pairs) * 2^level * level^2

return fitness

def test_sims(structs, level):

Do a small quiet/noisy pairing test (if structures fit)

if 2^level <= 2 * len(small_sim.units):

steps = get_small_sim_steps(level)

not_sane = (test_sim(small_sim, structs, [], steps) != 0

or test_sim(small_sim, structs, [None, G], steps) == 0)

if not_sane: return None

Do a pairing test in the large sim, resetting only initially

return test_sim(large_sim, level == 1 ? structs : None,

[None, G], 1000 * input_step)

def test_sim(sim, structs, input, steps):

if structs != None: reset(sim, structs)

sim.set_input(input); num_conns_made = sim.step(steps)

return num_conns_made

def init(sim): ...

Resets the simulation environment using the provided structures

def reset(sim, sample_structs): ...

Returns the structures in the simulation, potentially of a given size

def get_structs(sim, size=None): ...

Gets an appropriate number of small simulation steps

def get_small_sim_steps(level): ...

Returns the number of transition firings in the last sim test

def last_sim_activity(): ...

Chapter 6. Evolutionary Search for Scalable Assemblers 149

are found, indicating the next level of pairing must be unsuccessful, the tests end. The full formula
for fitness of a particular genome g which generates a number of pairs nl at each level l is:

f itness(g) =
∞

∑
l=1

(nl×2l)× l2 (6.1)

The above is a fairly straightforward summation using the number of pairs times a factor for
each level. The product (nl × 2l) is just the number of units paired correctly at each level, while
the extra l2 factor weights the pairings progressively greater as the units grow, which biases the
evolution toward units which work partially at multiple assembly levels and against units that work
better at a lower assembly level. Fitness tests were stopped in practice after 10 levels of pairing,
since there are initially 210 = 1024 units in the large simulation.

6.3.3 Pairing results

The parameters used in the MGA algorithm and CORAL simulation for the evolution of pairing
units are:

MGA Algorithm:

• Population Size: 100 genomes

• Mutation rate: 0.01 mutated bits per crossover

• Uniform crossover with probability ρ = 0.5

• Tournament selection

• Binary encoding of (2pt + p) bits (signal and link transitions defined a priori)

Simulation parameters:

• Transition activation time τ = 50 timesteps

• Average assembly rate of α = 10.24 assembly operations per timestep (an earlier iteration
of the CORAL framework was used in which assembly rate is proportional to the number
of units)

• 200000 time step wait until the large assembly is considered finished

• Input string of :200,G,:199800 at each level

For Petri nets of sizes 3 places and 6 transitions (3p/6t), 5 places and 8 transitions (5p/8t), 7p/10t,
9p/12t, 11p/14t, 15 evolutionary runs of the MGA were performed. The different sizes were
chosen in order to gather evidence for a minimum complexity threshold at which scalable pairing
behavior emerged. The two necessary link transitions for the In and Out ports and the G signal
transition are always present, which accounts for the imbalance of three transitions, along with
incoming and outgoing edges to these transitions from three of the inner places. Other unreported
tests initially indicated that the evolution of consistent pairing behavior becomes much harder
without these edges, though results presented later relaxes these assumptions.

In each trial the fitness values of the evolved populations were tracked on 200000 fitness eval-
uations (this corresponds to approximately 2000 generations of a generational GA). Where runs
discovered better portions of the fitness space, the fitness function could slow quite dramatically

Chapter 6. Evolutionary Search for Scalable Assemblers 150

3p / 6t 5p / 8t 7p / 10t 9p / 12t 11p / 14t

Genome Size (bits) 21 55 105 171 253

Max Fitness 24687 129559 222567 117463 79031

Max Pair Size Created (units) 128 256 512 256 128

Max Assembly Levels Achieved (Std. Dev.) 7 (0.99) 8 (1.36) 9 (1.44) 8 (1.46) 7 (1.85)

Table 6.1: Results from each set of 15 pairing evolutionary runs, over 200000 fitness evaluations.
The best assembler was found using 7 places and 10 transitions, though the result could be simpli-
fied to a 5 place and 8 transition network. As the complexity of the network grows, better solutions
tend to become harder to find, indicated by higher variance in assembly levels between runs. The
minimal fitness contribution of the activity penalty is also truncated in these results.

and many fewer evaluations were possible. Evolutionary runs were ended after approximately two
weeks of computation time on a shared computer cluster, if not finishing sooner. Results from
these are summarized in Table 6.1 and Figure 6.3. Assembly level units indicate how many recur-
sive pairings were performed before no further pairings were detected. For example, an evolved
controller that when tested in simulation produces pairs in response to the first G signal, but these
pair structures fail to function further in response to further G signals, reaches an assembly level
of 1. A different C/E controller able to form pairs, pairs-of-pairs, and pairs-of-pairs-of-pairs (cre-
ating units of size 8) reaches an assembly level of 3. The ideal result is to find unit controllers
which, after pairing, always function as a larger pairing unit, giving a theoretically infinite assem-
bly level. In practice only 10 recursive pairing events were tested (for a max fitness of 10) because
of limitations in the number of units simulated and the stochastic symmetry breaking required to
form pairs.

The full source code for the above tests is available online at:

• https://coralassembly.wordpress.com/

A slightly modified version of the Petri Net Kernel (PNK) framework (Kindler & Weber, 2001) is
included in order to support loading and saving to PNML (Petri net markup-language) files. An
optimized portion of the Attributed Graph Grammar (AGG) framework (Rudolf, 1997; Melamed,
1998) is also used in the transformation from genome to C/E net. The software for each can
currently be found online at:

• Petri Net Kernel (v2.2): http://www2.informatik.hu-berlin.de/top/pnk/

• AGG framework (v1.6.1): http://user.cs.tu-berlin.de/∼gragra/agg/

As can be seen from the results in Table 6.1, the maximum assembly levels achieved grows
with the addition of places and transitions until 7p/10t is reached, at which point the maximum
assembly levels drop back again. In rare tests, random assemblers can form at least one structure
of the correct size for many levels through lucky choices in environmental pairing, but this effect
becomes much less likely for 8, 9, or 10 pairings, since the number of pairs possible decreases

https://coralassembly.wordpress.com/
http://www2.informatik.hu-berlin.de/top/pnk/
http://user.cs.tu-berlin.de/~gragra/agg/

Chapter 6. Evolutionary Search for Scalable Assemblers 151

 0

 50000

 100000

 150000

 200000

 250000

 50000 100000 150000 200000

M
ax

.
fi

tn
es

s
o
v
er

 a
ll

 r
u
n
s

Evaluations

3p/6t
5p/8t

7p/10t
9p/12t

11p/14t

(a)

 0

 2

 4

 6

 8

 10

 50000 100000 150000 200000

M
ax

.
as

se
m

b
ly

 l
ev

el
s

o
v
er

 a
ll

 r
u
n
s

Evaluations

3p/6t
5p/8t

7p/10t
9p/12t

11p/14t

(b)

Figure 6.3: Maximum fitness (6.3a) and assembly levels (6.3b) from each set of 15 pairing evo-
lutionary runs, over 200000 fitness evaluations. As reported in Table 6.1, the best assembling
controller was found using 7p/10t genomes. While fitness increases continually, there is a tempo-
rary decrease in assembly level of the 9p/12t assembler between 50000 and 100000 evaluations
due to more pairs at lower levels.

Chapter 6. Evolutionary Search for Scalable Assemblers 152

In Out

G

(a)

OutIn

G

(b)

Figure 6.4: Best final evolved assembler, from the (7p/10t) evolutionary run (6.4a). Extra places
and transitions which do not fire or fire initially only once were removed to create the simplified
version of (6.4b).

significantly. The assemblers discovered of size 3p/6t were all essentially random assemblers
exploiting this fact.

There appears to be a minimum level of C/E net complexity (in terms of places and inter-
nal transitions) below which the MGA is not able to discover good recursively pairing solutions.
Controllers with more transitions and places than this cutoff are, in theory, capable of least this per-
formance or better. In our experiments, it was found that a finite, rather small amount of evolved
C/E logic (5p/8t) is able to perform the optimal scaling behavior. This C/E network was strangely
discovered as an evolved 7p/10t unit, which was simplified by removing inactive places and tran-
sitions. The controller behaved by opening either the extreme left or right port of each assembled
structure in response to a G signal, where the port was chosen via symmetry breaking. Assuming
the number of units is large, this behavior results in recursive pairing behavior with an arbitrarily
small chance of unpaired units at each step.

C/E controllers evolved with only 3 places and 6 transitions were not found to be able to
duplicate the behavior of the other, more complex evolved units and therefore only achieved re-
cursive pairing via lucky choices in random pairing. As described above, the fitness function does
not check directly for pairing behavior, only structure size, so significant fitness is possible with
this random behavior. C/E nets evolved with more places and transitions (9p/12t, 11p/14t) were
found that paired more effectively than the very simple (and random) 3p/6t C/E nets, though re-
quired many more evaluations than the 7p/10t and 5p/8t nets. There are only 221 genomes for
the 3p/6t assemblers (edges to environmental transitions are not evolved), which is a rather small
search space. Even in this much more limited area evolution was unable to find correctly pairing
controllers, with a smaller assembly level variance than all the other evolutionary runs. Limited
numbers of evolutionary runs were also extended for 9p/12t and 11p/14t genomes, which demon-
strated slow performance increases seeming to plateau at 8 assembly levels.

Chapter 6. Evolutionary Search for Scalable Assemblers 153

Best Pairing Controller

The best pairing unit, taken from the 7p/10t set of evolutionary runs, is shown as Figure 6.4. A
simplified version with computationally unneeded transitions and places removed is also shown.
The Petri net analysis technique called unfolding was used to find redundant places and transitions
given the background signal (McMillan, 1995; Esparza et al., 2002), which generates a finite
partial order of firings. Unfoldings transform Petri net execution into weaved graph of branching
actions, which is also useful for interpreting how evolved Petri nets work. The transitions which
never fire and places which never change can then be removed using this graph of actions or
alternately by using a full state expansion.

When many of these units are placed into a CORAL simulation environment and a G signal is
sent, the units form sets of pairs (with a small number of units unable to pair). After enough time
steps have elapsed for assembly and for signal transitions to hold, a second G signal can be sent as
a background signal resulting in groups of four, and so on until the units are exhausted. Assuming
the pairing is complete after each G signal (which is unlikely when simulated), these units are
capable of pairing themselves indefinitely into larger and larger structures. For any individual test,
however, leftover units tend to eventually result in incorrect pairs that finally overwhelm the entire
simulation. These leftover units can, in theory, be avoided if ports are opened in an alternating
fashion, but this solution was not discovered in any of the evolutionary runs, and may require C/E
nets more complex than the maximum of 11p/14t and/or more synchronized port transitions.

Intuitively, the best evolved unit logic works in one of three modes: initial, pass-through

and decide. Units start in initial mode, with an open In-port. After receiving the first G signal,
the unit may change into an Out-port enabled unit (Figure 6.5). This transition does not happen
simultaneously for all units, and so some units enable their Out-port link transition while other
units are still In-port enabled. Complementary units may then be paired, usually resulting in most
or all of the units ending up in pairs given the assembly rate chosen. Pairing using a default-
enabled In-port is a special case for the first pairing step, and all later recursive pairings use decide

and pass-through modes to open ports after a signal. After the initial pairing, connected C/E
controllers settle into one of these two different states because of the non-symmetric token passing
(Figure 6.6).

In decide mode, a connected unit “chooses” to enable either the open In-port link transition
or the connected Out-port link transition in response to a G signal. In pass-through mode, the
unit simply passes a token from its In-port link transition to enable the Out-port link transition in
response to a G signal. As the unit pairs grow into long chains, the unit at the open In-port end
of the chain always decides whether the chain will enable the extreme In-port or Out-port, and the
other units in pass-through mode send Out-port tokens onward. This creates chains with pairing
behavior like individual units in response to G signals, opening either the In-port or Out-port, and
can form pairs of chains no matter how long the chains grow (Figure 6.7).

6.4 Fitness landscapes of scalable assembly

Limitations to the results and methodology presented above became apparent after these and other
evolutionary results were gathered. Even given the simplifying assumptions of the single signal
and limited topology of edges to signal and link transitions, the evolution of assembling units

Chapter 6. Evolutionary Search for Scalable Assemblers 154

OutIn

G

(a)

→
OutIn

G

(b)

Figure 6.5: The effect of a G background signal on the evolved assembler of Figure 6.4, in the
initial state. When input is received, a controller transition may fire which switches the activation
of link transitions. If the transition does not fire immediately, the unit of (6.5a) will be linked at
its In-port to another unit whose transition fired more at an earlier time step (6.5b). The resulting
paired structure is shown as Figure 6.6.

was extremely time-consuming with high variation between runs. Because better assemblers must
be tested over longer simulation time, populations which evolve to contain many good assemblers
take many times as long to evaluate. Worse, good and bad assemblers can contain C/E net portions
which fire continually but have little or no effect on assembly, again causing major slowdowns
to the simulation framework. These slowdowns made it difficult to initially experiment using
multiple evaluations per unit, despite the stochasticity inherent in the simulation. In addition, often
extremely long time periods pass without improvement, only to be followed by large unexpected
jumps of fitness. For example, though only more limited runs extended past 200000 evaluations,
the 5p/8t and 9p/12t extended runs would sometimes, suddenly, discover assemblers as good as
the best 7p/10t evolved assembler of Figure 6.4 (though never for 3p/6t or 11p/14t evolved units).

These problems are well-known issues for discrete and computational evolving systems. Sud-
den jumps in fitness are general characteristics of rugged (and neutral) fitness landscapes (Kauff-
man, 1993; Barnett, 2001). Researchers in evolutionary robotics and evolvable hardware have
long noted that behavioral evaluation is complex and often subject to high variation (Mataric &
Cliff, 1996; Harvey et al., 1997; Yao & Higuchi, 1997; Tan et al., 2004; Nelson et al., 2009).
Optimizing multiple, nested types of behavior using evolutionary algorithms remains a difficult
unsolved problem in the general case. Behavior shaping (Dorigo & Colombetti, 1994; Saksida
et al., 1997) or hierarchical reinforcement learning (Barto & Mahadevan, 2003) or chaining (Bon-
gard, 2008, 2009) address these issues partially, though higher-level descriptions generally require
human-assisted division of tasks. The fitness function above uses similar ideas in the small pre-
test simulation environment and the increasingly large pairing tasks. Unfortunately, in our tests,
compositionality puts a natural limit on the order in which the tests can be presented and it is not
clear that smaller assembly tasks are “simpler” in any sense than assembly of composed struc-
tures. In the interesting cases searched for, in fact, the overall assembly behavior should be the

Chapter 6. Evolutionary Search for Scalable Assemblers 155

In

G

Out

G

(a)

↓

In

G

Out

G

(b)

Figure 6.6: Units which have paired from the symmetry-breaking initial state (6.6a) are differen-
tiated and settle into two different modes once assembled. The decide mode, set in the left unit
of (6.6b), enables either the open In-port or the connected Out-port link transition in response to
a G signal, while the pass-through mode set in the right unit of (6.6b) will send a token from the
connected In-port to the open Out-port.

Chapter 6. Evolutionary Search for Scalable Assemblers 156

In

G

Out

G

(a)

↙ ↘
↙ ↘

In

G

Out

G

(b)

In

G

Out

G

(c)

Figure 6.7: After receiving a second G input signal, the paired units of Figure 6.6 are able to open
either the leftmost In-port or rightmost Out-port, depending on the stochastic transition firing in
the left decide-mode unit 6.7a. Depending on the particular transition firing first, the pair structure
either enables the extreme Out-port (6.7b) or In-port (6.7c) link transition. After assembly with
another pair, the new size-4 structure will also consist of a single leftmost unit in decide mode
with all other units in pass-through mode.

Chapter 6. Evolutionary Search for Scalable Assemblers 157

same between levels. It is possible, however, to upgrade the small/large simulation distinction with
finer granularity and to slowly increase the size of a simulation to allow for better (and unlimited)
assembly simulation.

In this section, the structure of fitness landscapes for the recursive pairing task are investigated
as a study into improvements needed for the evolution of scalable assemblers. A new, slightly
generalized fitness landscape of recursive pairing assemblers of low dimension can be imaged
directly, while statistical measures are derived for higher-dimensional landscapes. A new fitness
function integrating less granular scaling and pair counts is first described below. Since several
iterations of the evolutionary framework elapsed between this and the previous study, the fitness
landscape of the original fitness function of Algorithm 3 was not probed directly. The modifica-
tions largely generalize the previous fitness function in a simpler way, however, and it is believed
that the structure of the landscapes is qualitatively quite similar. (Adjustments while developing
the newer fitness function tended to preserve the overall structure.) Results comparing a variety of
evolutionary algorithms and genotype encodings using this new fitness function are also presented
later in this chapter. Several find pairing solutions to the unconstrained pairing assembler problem
similar to the original pairing assembler, but a non-population-based method tends to be faster and
better at finding good solutions.

6.4.1 Generalized controller and fitness function

Evolvable edges to environmental transitions

As mentioned above, the evolved pairing assemblers of Section 6.2 are limited in that the con-
nections of port and signal transitions to the evolved portions of the controller are fixed. The
restriction is lifted in the new fitness function. Instead of the evolved portion of Figure 6.2, edges
to and from the signal and link transitions are included in the evolutionary set (Figure 6.8). The set
of controllers which can be evolved using this scheme form a superset of the previously evolved
controllers, given a particular number of transitions and places.

Scaling fitness

Because of the difficulties evolving hierarchical behavior and the time-intensive operation of the
previous fitness function, the new fitness function was also designed to take advantage of a slowly-
scaling simulation with more flexible pairing criteria. Unlike the previous fitness function which
evaluates a simulated assembler until no more pairs are theoretically possible, the termination
criteria here is changed to detect when the target structure sizes of a particular assembly level
match poorly with the actual sizes. A similarity measure σ of structure sizes x and y is defined as
follows:

σ(x,y) = 1/(1+ |x− y|)

The function varies smoothly between 0 and 1, with a peak when x = y and a minimum when
|x− y| → ∞. An example helps to illustrate: given a target size of 8 units per structure, structures
of size 5, 6, 7, 9, or 10 have a σ of 1/4, 1/3, 1/2, 1/2, or 1/3, respectively. The average similarity
value over all structures with size > 1 in the simulation environment can then be calculated using
the σ measure. If this average is > 0.6, which ensures that many units must have paired perfectly
(otherwise the average cannot rise above 1/2), the next recursive pairing task is tested. Essentially

Chapter 6. Evolutionary Search for Scalable Assemblers 158

Out

G

In

Figure 6.8: The new evolved CORAL skeleton. The In and Out-port transitions and input transi-
tion for the G signal are still fixed, but the internal places and transitions and edges between them
may now have any form.

the above fitness function smoothly scales the fitness of structures which do not match the pairing
size exactly. The scaling can be made more aggressive by multiplying |x− y| by a large factor; at
the extreme case the similarity essentially becomes the previous count of pairs.

The sanity check of a quiet fitness test (where no input is sent to ensure units are not pairing
spontaneously) has been eliminated in the new fitness function. It was found in the previously-
reported experiments that units are unlikely to spontaneously pair past the first pairing level at a
rate which matches the input signals. A fast state exploration is instead used to filter out controllers
which will never fire link and/or sensor transitions assuming no environmental holding restrictions
(as previously mentioned in Section 3.6). If environmental transitions do not fire the units would
not be meaningfully evaluated in any case, since without enabled link transitions assembly does
not occur and without sensor input the units are again unlikely to pair spontaneously at a rate slow
enough to result in more than one recursive pairing evaluation.

The full fitness function, generalized and simplified from that of Algorithm 3, is presented as
Algorithm 4. Other small differences include the input syntax “${r-s}” indicating a randomized
duration of time between r and s timesteps and a reduced number of total timesteps per level.
Randomizing time prior to presenting G ensures evolved results are insensitive to the delay. More
significantly, fitness is averaged over n= 10 independent evaluations, weighted by the fitness value
ordering. If these fitnesses are sorted from lowest to highest such that the fitness of the lowest is
f1, the weighted average fitness µwt is then:

µwt =
∑

n
i=1 fi× i

(n2 +n)/2

Essentially the higher fitness values are counted more times than the lower fitness values. This
formula is intended to reward units which, despite a few bad pairings due to the stochastic nature
of the simulation, are otherwise able to pair consistently.

The weighted average fitness value of the previously-evolved best recursive pairing assembler

Chapter 6. Evolutionary Search for Scalable Assemblers 159

Algorithm 4 Simplified and optimized recursive pairing behavior fitness function in Python pseu-
docode.

Constants

pairs_per_level = 10

def fitness_function(genome):

Translate the controller from the genotype

controller = to_phenotype(genome)

if not is_linkable(controller): return 0

Test fitness at each level

fitness = 0; similarity = 1; structs = [controller]

level = 1

while similarity > 0.6 and level <= 5:

Do noisy test

sim = get_sim(structs, pairs_per_level * 2^level)

sim.set_input(�${50-300},G�); sim.step(4000)

structs = get_structs(sim)

similarity = avg_similarity(structs, 2^level)

fitness += similarity; level += 1

return fitness

Quick analysis of whether the port transitions can fire

def is_linkable(controller): ...

Gets a simulation environment of the correct size with the

correct structures

def get_sim(structs, size): ...

Calculates the avg similarity measure for units

def avg_similarity(structs, size): ...

Returns the structures in the simulation

def get_structs(sim): ...

Chapter 6. Evolutionary Search for Scalable Assemblers 160

Figure 6.9: The fitness landscape of a 2p/3t assembling unit. Each pixel corresponds to a binary
string, counting from 0 to 214−1, left-to-right, top-to-bottom. Brighter yellow pixels indicate bet-
ter fitness (all fitness is normalized between bright yellow and black). White pixels (the brightest)
are genomes which when translated evaluate to the maximum fitness found. Overall the image can
be simply read as brighter is higher fitness, and the best is white.

of Figure 6.4, tested under the new fitness function, is approximately 2.1. This corresponds to three
successive recursive pairing levels, which is fewer than was reported using the original fitness
function. It is important to remember that the new fitness value is a weighted average and so
fitness tests with more and less recursive levels of pairing are combined to create this value. The
stochastic nature of evaluation means that the recursive pairing level varies between fitness tests
(depending on how the environment pairs units). Without averaging multiple tests together (as
was the case in the original pairing experiments) higher fitness values are observed.

Low dimensional landscapes

Given the modified fitness function described above, the fitness landscape can be directly visu-
alized for low-dimensional assembling units. Such a view provides information on the general
structure of the landscapes of recursive assembly. Every possible adjacency matrix and marking
of a C/E net can be mapped to a binary string - a process used directly as the genotype encoding
for the evolved pairing assemblers - and the fitness values plotted as color in a binary-encoded
image. Though the number of genomes grows exponentially with the number of places and tran-
sitions, for small values of these the full fitness space is not too large. For 2p/3t controllers, for
example, 2×3×2+2 = 14 bits characterizes all the possible controllers, which can be displayed
in a small bitmap of size 27×27. At a minimum, three transitions are necessary for the input and
port transitions, the two places are (as always) internal. The resulting bitmap is shown as Figure
6.9.

This initial mapping of the genomes to pixels in Figure 6.9 is arbitrary with respect to how
evolution sees the landscape, since numbers close in standard binary counting do not generally
have similar bit strings. For example, 7 and 8 in a 4-bit binary code are 0111 and 1000, complete
complements of one another. Evolution, however, using low mutation rates, will almost never
mutate a genome of 0111 to 1000, and therefore these genomes should be far away from one
another when drawn as pixels. A different ordering is needed of the genomes to reflect this idea of
evolutionary distance, in order to gain an intuitive idea as to how the fitness landscape is shaped.

A better view can be had using a Gray code (Gray, 1953), which is a well-known method of

Chapter 6. Evolutionary Search for Scalable Assemblers 161

0000 0001 0011 0010 y

0100 0101 0111 0110

x 1100 1101 1111 1110 y

1000 1001 1011 1010

Table 6.2: Example of a Gray-coded fitness landscape, where n = 4 bits. Each pixel corresponds
to a Gray-coded binary string, counting from 0 (0000) to 2n− 1 (1000). Counting starts in the
upper left corner and winds left-to-right, right-to-left until ending in the bottom left corner (for
even rows). Along each axis the bit strings differ by only a single value, and folding the landscape
successively in half preserves this property in the new dimensions.

binary counting (though it may be generalized) in which each successive number requires only
a single bit change to realize (with wrap-around). Instead of counting to four in binary via 00,
01, 10, 11, for example, there is a corresponding 2-bit Gray code of 00, 01, 11, 10. Because
evolutionary algorithms using mutation tend to shift only small numbers of bits at a time, if the
binary genotypes of Figure 6.9 are rearranged in the order of a linear 14-bit Gray code, nearby
genotypes will also be nearby in mutation space.

One can go further: because of the symmetries inherent in the reflective nature of the Gray
code, folding the linear mapping into an appropriate two-dimensional box ensures the genotypes
in the second dimension will also be nearby, within one bit change. One can think of the 2D Gray-
coded image as a useful projection of how evolution sees the fitness space, which is increasingly
approximated by “folding” the image repeatedly in half (touching symmetric pixels together) to
imagine higher-dimensional links. Table 6.2 shows an example 4-bit Gray code mapping on a
sample fitness space. Nearby bit strings differing by a single bit correspond to C/E adjacency
matrices which differ by only a single token or edge. The data from Figure 6.9 is replotted this
way as Figure 6.10, as are subsequent fitness landscapes.

By putting similar binary strings closer together, it can be easily seen that the initially scattered
high-fitness genomes of Figure 6.9 are actually all part of only a few high-fitness regions. These
regions tend to also be symmetric across the center of the space, and would join after folding,
indicating that the better fitness is clumped together into regions. Higher-dimensional examples
are possible as well, as shown in the 2p/4t example of Figure 6.11 and the 3p/3t example of Figure
6.12.

These landscapes can also be more rigorously analyzed for general ruggedness using the auto-
correlation measure, introduced in (Weinberger, 1990) and used widely as a tool for investigating
fitness landscapes. Traditional use of autocorrelation is as a measure of how a time-delayed sig-
nal correlates with the original, but this idea can also be applied to a mutationally-delayed fitness
sequence. By taking random walks through the fitness landscape via some genome-changing op-
erator, it is possible to estimate the correlation in fitness between points at different mutational
removes. For smooth landscapes, the autocorrelation can be expected to change slowly with dis-
tance, while for rugged landscapes the correlation drops off more quickly. If there is no autocor-
relation at any distance > 0, no information is gained about other points by sampling and so no
search method will be more effective than random search. For a random walk ~f on a stationary

Chapter 6. Evolutionary Search for Scalable Assemblers 162

Figure 6.10: The fitness landscape of a 2p/3t assembling unit mapped using a 14-bit Gray code
(27×27 pixels). Colors are as in Figure 6.9, and the pixels assigned to each binary genotype are
determined as in Table 6.2.

Figure 6.11: The fitness landscape of a 2p/4t assembling unit mapped using an 18-bit Gray code
(29×29 pixels). Colors are as in Figure 6.9, and the pixels assigned to each binary genotype are
determined as in Table 6.2.

Chapter 6. Evolutionary Search for Scalable Assemblers 163

Figure 6.12: The fitness landscape of a 3p/3t assembling unit mapped using a 21-bit Gray code
(210×211 pixels). Colors and pixels as in Figure 6.10.

Chapter 6. Evolutionary Search for Scalable Assemblers 164

fitness landscape, the autocorrelation r at distance d is:

r(~f ,d) =
∑i=0...(| f |−d)(fi−µ~f)(fi+d−µ−→f)

σ2
~f

The values µ−→f and σ~f are the mean and standard deviation of all fitness values in the walk.
Autocorrelation values of fitness landscapes for the recursive pairing task as controller size be-
comes increasingly large are shown in Figure 6.13. As can be seen in the figure, mutation amounts
relative to the genome size result in steeper fitness variation as the genome size grows, indicating
the landscape grows more rugged w.r.t. mutation as the binary genome size increases. In addition
there seem to be many more non-functional genomes, indicated by the higher baseline autocorre-
lation value. Unfortunately these genomes are not instrumental in finding good solutions, since
the nature of the fitness function ensures they provide no gradient.

6.5 Tests of other algorithms

A second set of evolutionary experiments was designed to investigate the evolvability problems
of Section 6.2, taking advantage of the gradually-scaled fitness function and insights from the
fitness landscapes above. As seen from the autocorrelation measure, the relatedness of nearby
solutions drops off extremely quickly with more genome mutations, quickly reaching a baseline
value. It was hypothesized that mutational algorithms relying less on crossover might do better in
this sort of landscape, since larger jumps in genome are statistically random. As was seen in the
low-dimensional fitness landscapes, many high-fitness regions also are linked via similar-fitness
manifolds, i.e. neutral networks. The 1+1 evolutionary algorithm by (Barnett, 2001) is designed
explicitly for these types of landscapes, and so it is reasonable to assume it might also do well for
the recursive pairing task. Along with these algorithmic choices, tuning the genotype encoding
can also make many landscapes more evolution-friendly.

In the next section, the recursive pairing experiments of Section 6.2 are repeated while varying
the algorithm and genotype. The goal of these experiments is twofold - to determine algorithms
which improve upon the best recursively pairing assembler from the previous study, and as a basis
for future work exploring more complex recursive behavior via evolutionary algorithms.

6.5.1 Messy genotype encodings

Previous evolutionary optimization work used a tuple-list-based genome encoding (Kitagawa &
Iba, 2003; Nummela & Julstrom, 2005) with some success. Instead of a raw binary string repre-
senting the adjacency matrix of a C/E net directly, the matrix is represented in sparse form using a
list of (source, target, true|false) triples. Each triple represents a C/E net controller edge between a
place and transition (or vice versa) being either present or absent. Edges may be over- and under-
specified, and later genes (ordering unrelated to source or target) always supersede previous ones.
Token markings are represented using triples which have place source nodes and a target= null.
The idea is similar to that of messy genetic algorithm (Goldberg et al., 1989; Mitchell, 1998), in
which both a gene locus and value are specified. In the case of two-dimensional Petri nets, the lo-
cus is the source, target and the value is true or false. Because previous genes may be superseded

Chapter 6. Evolutionary Search for Scalable Assemblers 165

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

A
v
er

ag
e

A
u
to

co
rr

el
at

io
n

Distance (no. mutations / genome size)

1p/3t
3p/3t
6p/6t
9p/9t

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

A
v
er

ag
e

A
u
to

co
rr

el
at

io
n

Distance (no. mutations / genome size)

1p/3t
3p/3t
6p/6t
9p/9t

(b)

Figure 6.13: Autocorrelation of the fitness landscapes of recursive pairing assembly using increas-
ingly large controller sizes and binary genomes. The chart (6.13a) is a zoomed-in version of the
data from (6.13b). The plotted autocorrelation values are calculated by averaging over the auto-
correlation values from 1000 random walks, with walk distance plotted relative to genome size
to emphasize how fractional mutation affects genomes of different sizes. As can be clearly seen
in (6.13a), as the number of transitions and places grows the relative mutational change results
in steeper variation of the fitness values. The higher “baseline” correlation probably results from
larger proportions of entirely non-functional genomes, which correlate highly.

Chapter 6. Evolutionary Search for Scalable Assemblers 166

but still present in the genome, it was hypothesized that interesting effects may occur where useful
substructures can be deactivated temporarily but emerge later.

A different interpretation of the messy genomes is also possible, however. Instead of later
genes overriding earlier, conflicting true/false edges can be interpreted as edges the genome is
“unsure” about. If multiple fitness tests are used, these edges can be initialized to random values
each time, resulting in an average fitness which is taken from not a point but a small portion
of the fitness landscape. It was hypothesized that this fitness “smearing” might make it easier
for assemblers to evolve since adding or removing a single edge often results in very different
behavior. The stochastic interpretation of an overspecified messy gene might smooth these edges
out, and provide intermediate fitness behavior for otherwise broken assemblers.

Mutation and crossover for messy genomes (probabilistic or ordinary) is accomplished here
in a way analogous to two-point binary crossover for a MGA. A random two-point chunk of
genes from the successful genome is used to overwrite genes in the less successful genome. After
crossover, mutation changes a number of genes n by removing r genes and adding a genes such
that a+ r = n, where n is chosen by flipping a biased coin for each gene.

6.5.2 Other evolutionary algorithms

Random mutation hill climber

In addition to the change of genome encoding, the use of other evolutionary algorithms was also
hypothesized to lead to better overall results. The MGA operates in a way similar to traditional
genetic algorithms, using the standard notions of crossover and mutation (though in a particularly
simple form). By the no free lunch theorem (Wolpert & Macready, 1997), these operators are
not ideal for exploring all types of fitness landscapes. Results in genetic programming (Banzhaf
et al., 1998; Koza et al., 2005) have suggested that particular types of crossover are not useful, or
actively disruptive, and Petri net evolution can be viewed as an instance of genetic programming.
The standard MGA has a tunable recombination rate REC or ρ (Harvey, 2009), which is the
percentage of genes which are “infected” to the losing genome after each tournament (set to 0.5
in our previous work). By setting this recombination rate to zero, the MGA becomes in essence a
parallel random mutation hill-climber (RMHC).

1+1 netcrawler

Work by (Barnett, 2001) also shows that when significant neutral networks are present in a fitness
space, non-parallel exploration via a 1+1 netcrawler is optimal. The landscapes above show sig-
nificant neutral areas, so this type of search algorithm was also hypothesized to be an improvement
on the standard MGA.

The coevolutionary MGA

A third approach to evolving Petri net controllers is one of the earliest explored - coevolving
a population of transitions, not Petri nets, which are then combined with one another to form
complete Petri net solutions (Reid, 1998). In this work, fitness is assigned to each unit based on
the fitness of the complete Petri nets constructed from that unit and others, similar to the original
bucket brigade of (Holland, 1992). Here we present an elegant extension of the MGA, named the
CoevMGA, which allows the same type of coevolution to occur.

Chapter 6. Evolutionary Search for Scalable Assemblers 167

Algorithm 5 The coevolutionary MGA in Python pseudocode.
def evolve_coevmga(pop_size, num_evaluations, genotype_size):

Create the initial population

population = [init_genes() for i in range(0, pop_size)]

fitnesses = [[] for gene in population]

for i in range(0, num_evaluations):

Create a genotype out of many sets of genes

genotype = [rand() * len(population)

for i in range(0, genotype_size)]

phenotype = translate([population[gene] for gene in genotype])

fitness = fitness_function(phenotype)

Store the fitness back to each of the genes

for gene in genotype:

fitnesses[gene] = fitnesses[gene] + [fitness]

Partially overwrite one gene, as in the MGA

winner, loser = select_genes(population, fitnesses)

population[loser] =

partial_overwrite(population[winner], population[loser])

def init_genes():...

def fitness_function():...

def select_genes(population, fitness):...

def partial_overwrite(win_genes, lose_genes):...

The CoevMGA is a variant of the standard MGA (Harvey, 1996) which was designed to allow
the coevolution of partial phenotypes to solve optimization problems, particularly the evolution of
C/E nets. Instead of a single genome translated into a single phenotype, many sets of genes are
combined together in the MGA to make a genotype, which is then translated into one phenotype.
The fitness of the tested phenotype is then distributed back to the many component genes of which
it is composed. In all operations except fitness evaluation, the CoevMGA behaves identically to
the standard MGA.

The full algorithm is listed as Algorithm 5, with additional functions dependent on the par-
ticular implementation used. In addition to the normal MGA population, an additional list of
fitnesses is maintained for each set of genes in the population. For each evaluation, a genotype
is constructed from genes, translated into a phenotype, and is then passed to a domain-dependent
fitness function. The resulting fitness is then added to each of the component gene fitness lists.
Depending on the gene selection function, it may be possible to replace the fitness list with an
average value or maximum value.

Experimental Setup

In summary, the genotype encodings and algorithms hypothesized to enhance the evolution of
scalable assembly are listed below along with the original binary genomes and MGA. Parameters
of the encodings and algorithms are set to make comparisons as straightforward as possible. The

Chapter 6. Evolutionary Search for Scalable Assemblers 168

evolved controller size is held at the optimal size of the previous evolutionary runs: 7p/10t (repre-
sentable in 2×7×10+7 = 147 bits). By using the previous evolutionary runs as a benchmark, the
effect of the new scaling fitness function can be directly observed. This then provides a baseline
from which to compare other algorithms and encodings.

Encodings:

• Binary encoding

– Initial genomes of 147 bits with approximately 10% bits initially set (this was found
to provide significantly faster convergence on interesting solutions)

• Messy encoding

– Initial genomes with 15 (source, target, true|false) triples (10% of 147 ≈ 15)

• Stochastic messy encoding (ProbMessy)

– Initial genomes with 15 (source, target, true|false) triples

Algorithms:

• Microbial GA (MGA)

– Population size 200

– Two-point crossover, ρ = 0.5 recombination rate

– 5% of genes per genome mutated on crossover

– 10 independent fitness tests performed per genome evaluation

– Fitness is the weighted mean fitness value over all fitness tests, weighted as described
in Section 6.4.1.

• (Microbial) random mutation hill climber (MRMHC)

– Population size 200

– No crossover, mutation as above

– Fitness tests as above

• Coevolutionary MGA (CoevMGA)

– Population size 200

– Crossover and mutation as above

– 100 random genomes (half the population) combined to create a full C/E controller
for each evaluation, genomes initialized with 1% of bits initially set or as a single
messy gene for the messy gene encodings; binary genomes combined by OR’ing them
together, messy genomes combined by addition of gene sets

– Fitness tests as above, the resulting fitness value is recorded for each genome that was
combined to form the full controller

– Genome fitness is the average fitness value over all C/E controller evaluations of which
it has been a part

• 1+1 netcrawler

Chapter 6. Evolutionary Search for Scalable Assemblers 169

– 1 netcrawler in population

– Mutation rate auto-adjusted every 10 evaluations so that neutral mutations occur with
probability 1/e

– Neutral moves defined as exploring a genotype with fitness ±0.2 from the known
genotype

– Fitness tests as in the standard MGA

The simulation environment was tested with transition firing rate τ = 5, and assembly rate α = 1
assembly event per time step.

6.5.3 Results

Evolutionary results comparing the above encodings and algorithms are presented as Figures 6.14
to 6.16. 15 evolutionary runs were performed for each set of parameters, and results combined as
described in each figure. The source code for the newer evolutionary tests is also available at:

• https://coralassembly.wordpress.com/

As was discussed for the previous recursive pairing tests, when better pairing solutions are found
the evaluation speed drops significantly, since fitness evaluations become much more expensive.
Consequently, comparing algorithms and genomes in terms of number of evaluations is mislead-
ing, since much more or less calculation may have taken place per-evaluation to reach a particular
fitness value. For example, the evolution of binary genomes tends to generate proportionally more
zero-fitness individuals, but these individuals take almost no time to test, and so binary-encoded
generations seem to progress much faster using the raw evaluation metric.

Ideally the algorithms could be compared directly using computation time, but across shared
computers this is difficult to measure directly. Since the evaluation time is dominated almost
completely by the execution of the simulation environment, a useful proxy is the number of events
executed by the simulation. These events are of semi-constant time, each corresponding to a
simple C/E net, input, or assembly action, and are the primary computational load of evolution.
In measurements taken while evolution was occurring, the time to execute a thousand events (or
kEvent) remained largely constant per-run and between runs (approximately 0.001s or 1ms on the
computing cluster used). The results below plot fitness vs. kEvents, which should be read as a
measure of how fast the fitness of evolved pairing controllers increases using various algorithms
and genotype encodings. Each evolutionary run was recorded over 108 kEvents ≈ 28 hours.

Best assembler

The best assembler, found by the 1+1 algorithm using binary genomes, is shown as Figure 6.17.
The most notable difference between this unit evolved during the benchmarking runs and the pre-
viously evolved assembler of Figure 6.4 is the different connectivity to port and signal transitions;
these edges are now evolved and may connect to multiple places. This ability was exploited to
achieve higher fitness, though the overall behavior of the assembling unit is qualitatively very
similar to that of the previous assembler.

The pairing behavior of the best benchmark assembler also has three core states: initial, de-

cide, and pass-through. The initial state, shown in Figure 6.17, enables both In- and Out-ports

https://coralassembly.wordpress.com/

Chapter 6. Evolutionary Search for Scalable Assemblers 170

kEvents (≈ 0.001s)

Figure 6.14: Results evolving binary genotypes with various types of evolutionary algorithms
using the new recursive pairing fitness function. The upper chart indicates the maximum fitness
found by the evolutionary algorithm over all of the runs, while the bottom shows standard deviation
in the maximum between runs. All results were recorded over 108 kEvents ≈ 28 hours. The thin
dotted line represents the fitness of the best pairing assembler found in the previous tests (Figure
6.4).

Chapter 6. Evolutionary Search for Scalable Assemblers 171

kEvents (≈ 0.001s)

Figure 6.15: Results evolving messy genotypes with various types of evolutionary algorithms
using the new recursive pairing fitness function.

kEvents (≈ 0.001s)

Figure 6.16: Results evolving stochastic messy genotypes with various types of evolutionary al-
gorithms using the new recursive pairing fitness function.

Chapter 6. Evolutionary Search for Scalable Assemblers 172

OutIn

G

(a)

G

OutIn

(b)

Figure 6.17: Best final evolved assembler from the benchmark evolutionary runs (6.17a), found
using the 1+1 algorithm using binary genomes (as shown in Figure 6.14). Extra places and transi-
tions which do not fire or are duplicates were removed and merged to create the simplified version
of (6.17b). Unlike the evolved pairing unit of Figure 6.4 above, edges to the signal and port transi-
tions are also evolved, allowing for various types of synchronized transitions between units when
linked.

in response to a G signal, so that a given unit can connect on either the left or right side. This
does not lead to long chains and rings of units paired at both ports, since individual units are ca-
pable of atomically disabling one port when another is connected. In addition, since each unit has
both ports open, there is no risk that a stochastic choice of In and Out port will partition the units
unevenly. As a consequence, full pairing always occurs with individual units, though units may
pair with themselves, reducing fitness. Extended multi-unit structures cannot share state, however,
which makes disabling the opposite port when connected impossible as an atomic action, so this
technique is only useful for the initial pairing operation.

The behavior after the first pairing step is essentially identical to that of the previous evolved
assembler. Once linked, the In-port connected unit of a pair structure has a decide marking, while
the Out-port connected unit operates in pass-through mode. In general, even after multiple pairing
steps in response to further G signals, the rightmost unit in a chain of units will always decide,
while all other units (in pass-through state) pass tokens back to the leftmost open In-port. The
pass-through behavior is faster, since in these newer benchmarking evolutionary runs it is possible
for both port transitions to share common input and output places. Thus the firing of the Out-port
transition can directly enable the In-port transition without an intermediate state change (which
otherwise requires an additional transition firing). The rightmost In-port at the end of a pass-

through chain is enabled approximately twice as fast due to this optimization, resulting in better
pairing as the chains grow and higher fitness.

6.6 Remarks

Of the evolutionary algorithms tested, the above results show clearly that the 1+1 netcrawler algo-
rithm using binary genomes finds better recursive pairing solutions, faster, than all the other tested

Chapter 6. Evolutionary Search for Scalable Assemblers 173

algorithms. Using a messy encoding does not appear to help find higher fitness more quickly, and
the ProbMessy encoding helps even less, though it is noted that in select runs allowed to exceed
108 kEvents the 1+1 algorithm with standard messy encoding approaches the maximum fitness of
the binary encoding. Aside from the 1+1 algorithms using messy and binary genomes, all bench-
marked combinations found solutions similar in fitness to the previously evolved best assembler.

The MGA with and without crossover (MRMHC) perform almost identically in all three runs,
which indicates that the MGA’s infective crossover is of little to no use in finding good recursive
pairing solutions. In general, the population-based methods do not seem to benefit from par-
allelism when compared to the 1+1 netcrawler, and the overhead generated by evaluating many
semi-fit solutions seems to overwhelm any gains of sampling in different areas of the fitness space.
This is somewhat reflected in the higher fitness deviation for the 1+1 netcrawler when using bi-
nary and messy genomes. It seems the population-based methods are more consistent, particularly
when using binary genomes. Given a fitness function with constant evaluation time, a population-
based approach may be more effective. Using approximation methods instead of direct simulation
may provide this kind of speedup, and this idea is discussed as future work in Chapter 8.

It was hypothesized initially that the coevolutionary MGA might evolve better solutions by
combining multiple useful sub-nets, but this was not found to be the case. The CoevMGA per-
formed more poorly than other methods for all genome encodings, and performed particularly
badly given binary genomes. The combination method for binary genomes (OR) may not have
been appropriate for good solutions to be found, since sparser genomes tended to evolve more
effectively and OR’ing multiple bit strings together only increases the number of set bits. In addi-
tion, fitness is assigned equally to all contributing genotypes with no bucket-brigade as in (Reid,
1998), which may be a necessary factor for better coevolution.

The recursively assembling unit which paired more effectively than the previous best evolved
result was found by the 1+1 binary benchmarking test. However, despite the speed increase en-
abled by more flexible evolved connectivity to port transitions, the new evolved unit uses effec-
tively the same qualitative methods to control recursive pairing as the previously evolved assem-
bler. No alternation of open ports is observed, for example, and port activation seems to flow in
only a single direction through the chain structures. This may reflect limitations on units’ ability
to process information given the amount of C/E net components available, and future tests using
larger genomes and the more effective 1+1 algorithm may find more interesting behavior. Alter-
nately, the use of more complex environmental signals or ports may make the task easier, and
coevolving the signals and/or unit architecture may be a useful methodology applicable to more
complex scalable assembly tasks.

In conclusion, the automated design of scalable assembling systems is a challenging project,
and requires tools from a variety of related areas. In the next and final chapter various directions
for future evolutionary study are discussed in context of the designed assemblers demonstrated
previously. Lessons learned during the construction of these scalable and controllable models are
applicable to future evolutionary work, and vice versa. As must be the case, the benchmarks above
investigate only a small portion of the diverse methodologies for evolutionary design, and point
generally toward other methods which may also yield good results.

Chapter 7

Principles of Recursive Assembly

A well-known scientist (some say it was Bertrand Russell) once gave a public
lecture on astronomy. He described how the earth orbits around the sun and how the
sun, in turn, orbits around the center of a vast collection of stars called our galaxy. At
the end of the lecture, a little old lady at the back of the room got up and said: "What
you have told us is rubbish. The world is really a flat plate supported on the back
of a giant tortoise." The scientist gave a superior smile before replying, "What is the
tortoise standing on?" "You’re very clever, young man, very clever", said the old lady.
"But it’s turtles all the way down!" (Hawking, 1988)

In the above quotation from Stephen Hawking’s A Brief History of Time, science is humbled by an
appeal to a recursively composed system. Though this particular example is meant to be amusing,
it is a natural idea that systems are built on top of others; it is the way in which most if not all
scientific knowledge is organized (perhaps an irony not lost to Hawking). Biological and chemical
systems abound with structures easily categorized in this way, often built through processes of
assembly. Harnessing these types of systems and creating our own artificial examples has proved
challenging, however, even with modern advances in computer and chemical hardware. While it is
generally agreed that incredible potential exists even in our current abilities to create assembling
systems at nano, micro, meso, and macro scales, a general process or framework is missing in
which these systems can be designed and controlled while bridging these scales.

The problem is a classic question of artificial life, where interesting abilities inspired by natural
systems are restated as computer science to be better understood and engineered. Often this takes
the form of a prototypical model, providing a constructive basis for generating other, artificial
forms of the behavior. The work in this thesis is largely undertaken in this spirit, with the goal of
generating simple examples of realistic but computational assembly across scales using recursive
behavior. Such abilities will always depend somewhat on the particulars of the assembling units
and environment (though care has been taken to ensure that the model is extensible in these areas),
but the ability to build arbitrarily large devices in simulation with simple control and realistic
non-reprogrammable parts is an important step toward building simple and powerful assembling
devices in the real world. The abstract model is also shown to be quite capable - with smaller
memory than a single register in a modern CPU it is possible, through distributed assembly, to
build any computing device. These prototypes and assembly framework provide a pragmatic,

Chapter 7. Principles of Recursive Assembly 175

well-defined basis for future work in the assembly of large and controllable artifacts. Usefully
composable atomic primitives are the core part of the assembly problem when formulated this
way, and automated search for such primitives has also been explored in this thesis.

7.1 Recursive assembly

As mentioned in the introduction, the goal of the CORAL model is to provide a plausible mech-
anism for unlimited hierarchical assembling behavior in a realizable but computationally strict
system. Traditional state-of-the-art assembling systems and models have to date largely focused
on organization at one or two nested levels, often requiring qualitatively different mechanisms for
structure formation and interaction as assemblies grow larger. This is often the case in natural sys-
tems, but it complicates and makes incomparable the basic definitions of structure and interaction
across competing models. As discussed in Chapter 2, more formal computational models of as-
sembly also exist, such as cellular automata or artificial chemistries of computational units. These
formalisms, while generally more successful at generating multi-scale interactions, have tended to
ignore important constraints on realistic systems, such as conservation of mass. This has strongly
limited the application of this work to real systems, despite the interesting results (particularly in
self-replication).

The importance of control over dynamic hierarchies has also only recently become more ap-
preciated as roboticists and chemists gain the ability to engineer powerful assembling units. There
is broad recognition that the standard, centralized control paradigms do not scale to large numbers
of units. A common metaphor for the problem is that of the cell and the body, which is a profound
example of organization at many scales with highly flexible behavior. Biological cells are self-
contained units containing all the information needed to regenerate a full system, and it is obvious
by our very existence that such units have great potential. There is less recognition, however, that
the cellular metaphor obscures important aspects of our organization related to a developmental
view of an organism which is critical for the control and design of related artificial devices. There
are no DNA sequences encoding the exact cellular positions in the tissues of our arms, for exam-
ple, these are created implicitly via a mediated process of growth. When we wish to move our
arm, it is not required that our brain or any other single organ compute the movement of each
muscle fiber (or perhaps even muscle groups), the relatively simple neural signals are converted
into motion via the structure of the arm itself. The fact that each cell still contains (more or less)
the full genetic code is largely irrelevant to the fact that the computational structure of our arm and
the rest of our body was built through assembly via chemical signals years ago, not necessarily
arising even from our own DNA.

The idea becomes much more starkly defined when individual units themselves are entirely
incapable of storing the structure of the whole. The same type of directed assemblies can be built,
but now there is an explicit need for some sort of external control. Proteins are a better example of
this type of assembly - a cell itself is also a highly complex multi-scale machine, but as opposed
to the body only one “part” stores a symbolic copy of the whole, all other information is stored
implicitly in the current chemical and physical organization of the system. The protein paradigm
has significant advantages when applied to engineered systems: the atomic parts are much simpler,
while control remains highly distributed. The key aspect of artificial assembly is then transformed

Chapter 7. Principles of Recursive Assembly 176

into finding appropriate primitives as near as possible to the threshold of complexity at which
individual units can be assembled into useful structures at many scales.

The CORAL model was designed explicitly to explore this boundary in a computational set-
ting. As was shown in the final section of Chapter 3 and results evolving pairing assemblers from
Chapter 6, most choices of computational primitive have only limited ability to generate con-
trolled structure over multiple scales. Well-mixedness and the inability of units to directly affect
environmental interactions (realistic for many systems) make the issue worse, since as discussed
in Chapter 5 non-tree assembly requires complex processing for even near-deterministic results.
Of those units where assembly does not become totally random, the structures formed are gener-
ally limited in scale or non-responsive to external control. The NOR units, C/E units, and evolved
assembling units of Chapters 4, 5, and 6 avoid these pitfalls, while demonstrating recursively
scalable and computationally powerful assembly.

7.2 Why recursive assembly?

While this thesis and the above discussion switch between descriptions of scalable and recursive
assembly rather freely, it is not necessarily the case that a scalable assembly process need be re-
cursive. A well-defined incremental growth process may be capable of building arbitrarily large
structures, and there are many examples of simulated and real systems with these properties (par-
ticularly robotic systems), including the C/E unit. There is no need for structures of particular
“granularity” when talking of incremental assembly, extremely complex structures may be spec-
ified piecewise or otherwise. Recursive assembly does have a number of interesting tradeoffs,
however, which make it the primary target of this work. It is difficult to explain fully the ideas
without a concrete example in mind, however, which is why this explanation has been diverted
until after the introduction of several assembling units.

The primary motivation behind recursive assembly is derived from the assumption of an en-
vironment with only an external broadcast signal (the assumption of the CORAL model). This
signal has unlimited reach but highly limited bandwidth - only one signal at a time, no way to ad-
dress individual units. Under these assumptions, imagine a new device is required from a system
of units. One traditional method of assembly for programmable devices is to send the full device
specification via the signal to the devices, which then assemble themselves using some distributed
algorithm. Units must have high memory and lookup ability to store large specifications, however,
so this method does not scale downward easily. A second method is to develop an algorithm and
unit which allows the structure to be built piecewise (one piece at a time, since signal bandwidth is
limited). The size of the pieces may vary given the input and units, but with very large structures
this results in longer assembly times.

7.2.1 Brains and bodies

A key observation emphasized by this thesis is that, at a given scale, structures made of many
parts usually have a small number of complicated portions and very many other, primarily (but not
entirely) structural, components. This can be seen in the design of cells, organisms, robots, and city
architecture, to name only a few examples. A walking robot, for example, might have a complex
microchip brain at the microscale (or smaller), but legs of a basically uniform material except for

Chapter 7. Principles of Recursive Assembly 177

Structure Scale

Control

Model

Complexity

Small,

Complex

Large,

Complex

103

complexity

barrier

recursive
assembly

st
an
da
rd
as
se
m
bl
y

Figure 7.1: Recursive assembly vs. standard assembly, showing the “shortcut” through large,
simple structures. Recursive assembly processes decouple complexity from scale, allowing one to
“build out” in scale before “building up” in complexity and access new regions of the assembly
space.

joints at the macroscale. If the robot is specified in macroscale terms, there is no way to build the
brain via assembly. If the robot is specified at the microscale, the specifications will be incredibly
redundant and piece-by-piece assembly will take a relative eternity. Recursive assembly provides
a way out of this dilemma, by allowing one (in the case of NOR units) or potentially many types
of well-defined and controllable meta-units to be built from individual parts. This requires that the
parts themselves be structured so that particular forms result in higher-level control; in other words
a recursive construct. Importantly, the property above can be an addition to an already present
one-by-one assembly process, capable of building all forms incrementally. Linking all these ideas
together, if the recursive construct has identical capabilities to the primitive assembling units which
are able to build any structure incrementally, arbitrarily large structures can be built much more
efficiently by building “out” (recursively) as far as needed for the scale required and then building
“up” the required computation and structure (see Figure 7.1). Assuming the structure is patterned
appropriately, this can result in huge information and control compression. Resuming the previous
robotic example, even if specified microscopically a robot will be useless unless commands can
be issued for macroscopic behavior. Recursive constructs can again be exploited for this purpose,
allowing parts of the robot built from microscopic parts to be modeled at high granularity, despite
the fantastic complexity, since the structure itself ensures behavior will be simple and predictable.

NOR units are a concrete demonstration of this idea. NOR meta-units, of all levels, are also
by definition tree structures of individual NOR units. Since the waterfall assembly process of
Section 4.3.3 can build structures of arbitrary depth, any meta-unit structure can therefore be built
equivalently using no recursive assembly at all. The number of signals sent to the environment is
exponentially greater using the incremental method, however, and the signals sent poorly reflect
the inner logical structure of the final construction, since many parts of the meta-unit structure
are present simply to “cancel out” other portions given particular inputs. Of course, there are

Chapter 7. Principles of Recursive Assembly 178

many pathological forms not easily decomposable given this or any other method of recursive
construction; for example a large, randomly attached tree of NOR units. These types of structures
are probably not compressible by any general means, however, and their control is fundamentally
limited by complexity in the same way, making them of limited use.

In summary, the claim is that there will generally be some types of exploitable multi-scale
patterns inherent to a useful device of many parts, because otherwise such a device would be
impossible to understand and control. Even so, given a device of this type, one can choose at
any scale to assemble via incremental assembly, so nothing is lost. The core argument is that the
computational parts of a large device may be quite complex, but the entire device will likely not
be complex at the same scale and this can be exploited via recursive assembly. In an even more
cursory statement: brains and bodies build the same, but at different sizes. This fits well with post-
GOFAI ideas in AI and robotics where the body is itself a necessary and inseparable computational
device of the brain to which it is attached (Varela et al., 1992; Brooks & Stein, 1994; Pfeifer &
Iida, 2004; Clark, 2008; Bongard, 2009).

7.2.2 Logical “bodies”

An important consideration which is omitted from the CORAL simulation but highly important in
practice is what the computations of structures are “good for.” To be interesting as an engineered
device, NOR units must be able to perform useful functions aside from recursive assembly, prefer-
ably ones that become more useful as structures grow in scale. Without this, recursive units simply
attach to one another indefinitely and compute logical functions, and while this is a philosophi-
cally interesting example to those interested in organizational hierarchy it may be of less practical
use.

As mentioned previously in Chapter 4, NOR units are based on the NOR operation in Boolean
logic, from which any sort of Boolean logical expression can be generated. Particular NOR unit
structures therefore can perform any Boolean logical operation, the result of which can control any
other hypothetical unit action like motion or sensing. It is easy to imagine motion linked to the lo-
cal output of units, for example the current output state determining whether or not a part expands
or contracts like a unit-compressible module (Rus & Vona, 1999; Ishiguro et al., 2006). Figure
7.2 below gives such an example. Though investigating particular types of physical environment
is outside the scope of the work in this thesis, many different types of actions could theoretically
be linked to the computation of units and meta-units. Because of the recursive structure of meta-
units, these actions might also naturally scale, depending on the nature of the environment and the
action.

Chapter 7. Principles of Recursive Assembly 179

Ø

(a)

Ø

(b)

Ø

(c)

Figure 7.2: An example of unit-compressible behavior added to a NOR-unit. A NOR unit struc-
ture and meta-unit structure are seen in (7.2a). By driving the unit expansion/compression using
the output state of each unit (7.2c), controlled patterns of expansion expressible in terms of propo-
sitional logic can be generated in the structures (7.2b). This can be exploited for motion or other
actions. Due to the recursive functional nature of the NOR unit, expansion behavior for meta-
structures is also well-defined and easy to manipulate.

7.2.3 Assembly potential and limitations of C/E units

C/E units are a useful counterexample for the above discussion, since C/E unit structures are com-
putationally more powerful than NOR unit structures and are built on a recursively composable
model (the C/E primitive). However, the turtle assembly process itself is not recursive. Arbitrarily
complex devices can be built using C/E units, but these devices can only be built incrementally
with no recursive speedup currently possible. As will be discussed in later sections of this chapter,
this is not believed to be a fundamental limitation of the more powerful assembler. Recursive
C/E assembly is probably possible, however it is more difficult to exploit the naturally recursive
but more complex computation in substructures for use in assembly. The assembly of arbitrary
computing devices in a realistic environment without programmable atomic units is interesting for
other reasons, however, and is discussed below.

7.2.4 CE meta-constructions

To date, only smaller meta-constructions have been generated in simulation, though larger struc-
tures are possible. The major reason for this is the large number of C/E units and background
signals required, which is exacerbated by the need for many time-consuming assembly filtering
steps for a structure built with many cyclic connections. As discussed above, creating connections
between two parts of a single structure type, a cycle, inevitably results in the creation of incor-
rectly linked chains and cycles of incorrectly assembled structure instances. Filtering can reduce
the number of these incorrect assemblies, but the process is inherently stochastic and requires
many repetitions to be confident no incorrect structures remain. For large structures with many
edges not captured in a spanning tree the time and signals required can be enormous.

The problem is partially solved if the well-mixed assumption of the CORAL model can be
relaxed somewhat. For example, real protein chains, despite folding taking place in a stochastic
environment, generally do not have this problem (to the same degree) because identical folding

Chapter 7. Principles of Recursive Assembly 180

protein chains separated by a distance will not tangle with one another instead of themselves.
This is not necessarily true in all cases, especially as physically flexible structures grow orders
of magnitude larger than their component parts. Experience with the C/E unit assembler sug-
gests that locality may be best modeled as a heuristic optimization to the simulation, reducing the
number of filtering steps needed but not entirely eliminating the fundamental need for structure
verification. Other rule-based assembly models in robotics and combinatorial chemistry take sim-
ilar approaches, since physical environments are difficult to model both rigorously and efficiently
(Yang et al., 2008; Thorsley & Klavins, 2008; Mermoud et al., 2009).

The second major reason for smaller structures, introduced in the previous section, is that
while C/E units are able to emulate their own C/E unit controller in composition, C/E meta-units
do not respond identically to primitive C/E units to the assembly commands themselves. In other
words, while a C/E meta-unit would behave like a C/E primitive if built into meta-meta-structures
(assuming appropriate port connections), C/E meta-units have not been shown to be capable of
this assembly themselves. Unlike the NOR meta-units, which can be assembled efficiently into
higher-level structures via shielding and a delayed waterfall selection algorithm, C/E meta-units
do not “interfere” with themselves so as to respond to signals only from appropriate ports and sub-
units. Because of this, the exponential control compression for assembly through the construction
of meta-units is not currently available. Again, this is not believed to be a theoretical limitation,
as the turtle assembly and state-shifting used in standard C/E unit assembly has arbitrary ability to
manipulate the state of assembled structures. Unfortunately, the higher computational complexity
of assembled C/E units makes it difficult to generalize about the behavior of structures, and any
solution will probably be more complex than those designed for NOR unit primitives. Until this
is accomplished, meta-unit assembly remains highly suggestive but only of use in controlling, not
constructing, C/E structures.

Aside from the recursive limitations, the meta-Petri nets constructable from C/E units are a
powerful modeling and control basis for the assembled devices themselves. These devices, being
built of many parts, rely on the appropriate synchronization of many distributed interactions and
Petri net models were originally designed for these tasks (Peterson, 1981). Feed-forward Boolean
logic, as realized by NOR units, provides a very simple mapping of inputs to output with limited
dynamic potential, making more complex or multi-step actions difficult to realize in assembled
devices. Meta-nets built using C/E units, by contrast, allow one to capture interactive, parallel, and
synchronized behavior: anything which can be built as a safe Petri net of any size. Because of the
additional computational power, assembled C/E units can form the basis of other Turing complete
control abstractions. These custom control models may then be scaled upward and downward as
effectively as the meta-nets on which the models are based.

7.3 Models of assembling systems

A major enabling factor allowing the unambiguous demonstration of multi-level hierarchical con-
struction and assembly is the use of the CORAL model. Models of assembling systems are of lim-
ited use in investigating these topics when external assembly and/or communication uses a model
incompatible with the internal computation of the units themselves. External interactions become
internal interactions when studying assembling systems at multiple scales, leading to complex

Chapter 7. Principles of Recursive Assembly 181

hybrid models when environmental interactions are not strictly comparable with the internal pro-
cessing of base units. Artificial chemistry has many examples (Ono & Ikegami, 2001; Ewaschuk
& Turney, 2006; Hutton, 2007; Grushin & Reggia, 2008), as does artificial life (Bedau et al., 1997;
Ray, 1997) and modular robotics (Rus & Vona, 1999; Kotay & Rus, 2000; Detweiler et al., 2007),
among others discussed in Chapter 2. In the CORAL model, the primitive synchronization opera-
tions of Petri nets provide the basis for all of computation, assembly, and communication, making
assembled structures simply large instances of what could be an atomic C/E net.

In other pure-computation models with similar properties, such as Alchemy (Fontana & Buss,
1996), ε-machines (Crutchfield & Görnerup, 2006), FSM soups (Salzberg, 2007), or the general
case of process calculi, there is a lack of physical realism without appropriate constraints because
interactions effect large transformations of the units themselves. Physical units often have strict
limits as to how interactions may or may not occur, and generally mass cannot be destroyed. The
CORAL model makes these assumptions, forcing atomic units to specify in entirety beforehand
the finite ways in which they can be influenced (through synchronization) by other units. Unlike
other realistic artificial chemistries which investigate units designed or reprogrammed for each
task (such as the κ model (Danos et al., 2007) or the graph grammar assembly of (Klavins et al.,
2006b)), complex reconfiguration in the CORAL model is ideally achieved by solely manipulating
information sent to the system. Reconfiguring information is often much easier in practice than
replacing or reprogramming highly-engineered hardware, wetware, or molecular units when faced
with a new assembly target, especially when such units are limited in memory and/or complexity.

7.3.1 Self-organization and necessary complexity

There has been debate in self-organization literature as to whether continual addition to the under-
lying interactions is a necessary component of hierarchically organized systems (Rasmussen et al.,
2001b; Groß & McMullin, 2001; Rasmussen et al., 2001a). The simply-stated position or ansatz of
the addition-is-necessary proponents is that a self-organizing system, once defined in entirety, may
create some sort of organizational hierarchy. To extend this hierarchy, it is necessary to modify
in some way the units or interactions, otherwise by definition there is no way to change the sys-
tem organization. The natural world’s easily observable richness in levels of organization escapes
these limitations through an incredibly complex interaction space and extremely long time scales.
However, there is a flaw in this reasoning, in the assumption that a particular self-organizing sys-
tem must reach some sort of organizational plateau. Though trivial, the example of aggregating
triangles clearly demonstrates this type of behavior is a possibility (Dorin & McCormack, 2002).
Less trivial examples may also be possible, but no examples of such are known to the author.

With the addition of this caveat, the ansatz seems quite reasonable, but limited in scope. Ther-
modynamics states that entropy increase everywhere is inevitable - but only in a closed system.
Such systems are practically nonexistent (except perhaps the entirety of the universe). Similarly,
fully-defined self-organizing systems are also closed, and as such are basically theoretical. In re-
alistic models, external inputs must continually act on the components and environment (and are
necessary if one wishes to model the use of such systems by humans). Just as in thermodynamics,
it is of course possible to create systems which are closed in various degrees of approximation.
The ansatz above tells us however that such closed systems will be uninteresting from a dynamic

Chapter 7. Principles of Recursive Assembly 182

organizational perspective, since they are a priori limited in scope. Instead, we must focus on how
dynamic modification affects organizational hierarchies.

The CORAL model provides a single mechanism to perform these modifications: broadcast
signals. Like many modular robotic studies, a single type of unit is used to build multiple topolo-
gies. Unlike these studies, the assembled unit is not re-programmed once the target topology is
known, and instead units are immediately directed to assemble using the distributed background
signals. While in edge cases it is probably possible to mimic re-programming CORAL units be-
fore assembly or to emulate manipulating each unit independently using broadcast signals, there
is a pragmatic and theoretically interesting tradeoff where the unit itself is as simple as possible
but still allows distributed control. Information is wonderfully mutable stuff, and this advantage
can be better exploited when tied as little as possible to the hardware or wetware. In this case the
behavioral information does not need to reside in any one unit, but in the structure itself, which
leads naturally to scalable behavior (defined throughout the thesis in pragmatic computational
terms). Since the structure, no matter how complex, is always designed for some sort of specified
computation, extra steps determining how a composite structure acts are not necessary in order to
compose meta-parts into larger structures. A shift in perspective is also required, where the de-
velopmental program being followed is externalized from the system itself, and only slowly built
into the growing devices. As mentioned in Section 7.1 above, instead of a cellular metaphor for
assembling devices, researchers investigating multi-scale assembly behavior may be better served
by thinking of protein-based machinery. The parts themselves are much, much simpler, but from
them entire cells can be built.

From a practical perspective, dynamic (re)organization in the sense described above may also
be more interesting than pre-programmed self-organization since the former is the core ability that
cannot be mimicked by existing machines designed for a single purpose. Instead of the question
“can we build and program units which self-assemble into a device X?” one can ask “are there
simpler units which can be the base of all devices?” A device is only useful if it has certain
structure and can be controlled, where control has been historically the most difficult aspect of
using systems assembled from many parts. Control comes naturally, however, when linked to the
assembly model itself. In this thesis we have given simple examples of units universal in both
form and computation, assembling into certain classes of controllable machines, modeled using
two different computational paradigms and manipulated via external signals, while the machines
themselves can take any tree or graph structure. Such units are blueprints for devices of arbitrary
scale, which is major open problem of artificial life (Bedau et al., 2000; Lenaerts et al., 2005;
Bedau, 2007). As with all computation, the behavior and structure of devices are fundamentally
intertwined, though the underlying hope is that the potential for scalable assembly allows this
requirement to be relaxed, as it is in our own artificial devices and indeed our own bodies.

Chapter 8

Conclusion

The core idea of assembly in materially closed but informationally open systems has served, in
this thesis, as the basis for several interdependent investigations into dynamic, scalable assembly
processes. These include the dynamic growth of logical devices, Petri net computation, scalable
evolved assemblers, and a survey of the practical and theoretical implications of recursion in as-
sembly. Collectively, this work addresses open problems in multi-level constructive dynamical
systems, and demonstrates the novel capabilities of large numbers of extremely simple but com-
posable devices. Given enough time and a carefully chosen basis, one can provably build arbitrary
and nested complexity in a physically meaningful way.

In this chapter, results from previous chapters are integrated and summarized. We begin again
with NOR units, as the simplest demonstrated example of a recursively assembled device of ar-
bitrary scale and complexity. C/E unit and evolutionary results are next highlighted, demonstrat-
ing arbitrary scalable computation and the automatic generation of non-human-designed dynami-
cally assembling systems. Finally, future experiments which would extend and further refine the
research presented here are discussed, such as topological assembly restrictions, new genotype
models, and co-assembly of device “brain” and “body.”

8.1 NOR units

NOR units, by exploiting the inherent composability of NOR logical operations, are shown in this
thesis to be capable of building controllable assembling structures of unlimited scale using only
highly limited memory (36 bits). They are fundamentally limited in the types of computations the
structures can produce and the way in which the inputs and outputs are sent, but even so the control
of these units over arbitrary scales is well-defined and the structures built can take the form of any
tree shape. Importantly, this is not simply a trivial consequence of the NOR operation. If units
contained only a NOR operation encoded as a C/E net, the structures would behave identically
but there would be no way to build or control them. This point is important and subtle: the
developmental process itself must scale the same way as other functionality does.

Chapter 8. Conclusion 184

Ø

Figure 8.1: NOR units, demonstrating arbitrarily scalable assembly.

The novel demonstrated ability of NOR units to scale arbitrarily in simulation has impor-
tant consequences for the design of real assembling devices. The CORAL environment in which
the NOR units interact ensures no blatant shortcuts have been taken which make actual devices
impractical: pairwise interactions, stochastic mixing, and broadcast signaling have been demon-
strated in multiple ways for both machines and molecules (as further discussed in Chapters 2 and
3), though undoubtedly limitations remain for many domains. The relatively complex internal
logic of NOR units makes the robotic implementation seemingly more realistic, though much of
this logic is devoted to tasks that would be redundant in a chemical environment.

For example, because no a priori environmental shape or influences are assumed for a CORAL
unit, the modification of behavior, even trivial, after connections are made requires explicit C/E net
logic devoted to “remembering” the new structure. For many assembling systems, behavior when
linked is implicitly modified by other environmental factors, such as other ports being blocked by
the physical shape of a connected unit. NOR units must ignore environmental signals encoding
logical inputs once connected to other units at the corresponding In-port, which requires several
additional C/E places and transitions to track. If built as a real device, however, a reasonable
optimization would be to place the sensor inside the recessed port itself. Depending on the unit
and environment, this might be enough to block the sensor when the port is connected. Similarly,
explicit clock signals may be unneeded if the internal transitions are implicitly timed more strictly.
The lack of these assumptions in the CORAL model allows the computational contribution of these
environmental properties to be measured quantitatively, by the amount of core C/E logic removed.
While real systems might simplify the logic of a CORAL assembler this way, the hope is that as
much as possible no new functions would need to be added. NOR units thus are a blueprint for
how to build a controllable, scalable system in general.

8.2 Assembly of arbitrary computers

The second assembler design presented, C/E units, addresses the computational limitations of
feed-forward Boolean logic. In contrast to a different model laid overtop the core C/E net units

Chapter 8. Conclusion 185

of the underlying CORAL model, one can instead define an assembly model based on Petri nets
themselves using a C/E net primitive. Through the composition of this C/E net with itself, any
other safe Petri net of arbitrary size can be emulated. As discussed in Chapter 5, safe Petri nets are
essentially equivalent in computational power to linear-bounded automata (Esparza, 1998). As the
size of the network grows, the automata bound grows as well, so that a linear bounded automata
with any size tape is theoretically possible to emulate. Thus an assembling system of C/E units
is Turing complete to the same extent as any other realistic computer, i.e. the C/E primitive
can be directed to assemble arbitrary computing devices via assembly. No disparate higher-level
abstraction needs to be generated using these primitives in order to control these devices; the
internal logic of a meta-C/E unit is realized using a composition of many other assembled C/E
units.

Figure 8.2: C/E units, configured via assembly to act as part of a larger C/E meta-net.

The lack of intermediate abstractions provides an interesting perspective on assembly which is
not shared by NOR units. Assembled NOR unit structures and meta-structures might be thought
of as a one-directional ray in assembly space: starting from the base atomic implementation (using
C/E nets), meta-NOR units can be assembled at indefinitely higher and higher scales. Continuing
this same analogy, C/E unit assembly would be a full line extending indefinitely in both direc-
tions. The presumably atomic C/E net base can in fact itself be decomposed into a construction
of other C/E units, which themselves can be decomposed, ad infinitum, via the island graph con-
struction from Section 5.5.1. There is therefore no inherent scale to C/E unit operations, though
the assembly algorithm itself currently remains tied to only the atomic primitive.

8.2.1 Stochastic graph assembly

The introduction of C/E units in Chapter 5 also provides insights into the general construction
of complex structures containing cyclic edges in a stochastic environment. Without cycles only
tree structures are formed (by definition), each of which has a well-defined root where assembly
may begin. Given the only active components in a CORAL environment are individual units

Chapter 8. Conclusion 186

and the growing tree structures, there is no need to verify that a new element added to the tree
is a particular unit - assembly proceeds deterministically. This is not the case when a structure
with cycles is required. Because the CORAL model allows no way for units to influence the
particular complementary port to which an open port will attach, structures requiring a cyclic edge
between two sub-units must verify that they have not instead become attached in longer chains or
multi-structure rings via other structures’ identical sub-units (much more likely). Like unintended
outputs in chemical reactions, these additional assembly products must be filtered until only the
desired self-linked structure remains.

As described in Section 5.4.2, a stochastic method is required for this filtering. While the algo-
rithm itself is not too complex, the process is perhaps best described by analogy. After assembly of
a cyclic edge has occurred, resulting in self-connected, chain, and ring structures, one can imagine
sending input which vigorously “shakes” these structures which are “weak” at the newly-created
connections. If the shaking ever bends two connected sub-structures in opposite directions, the
connection breaks. Self-connected units are stable because they have only a single sub-structure
and so can only be bent in a single direction, but chains and rings eventually disintegrate. In the
C/E unit implementation, shaking is represented by each connected sub-structure choosing to send
a token (or not to send a token) backwards from the new cyclic link target unit, through the inter-
nal sub-structure, reaching a potentially different link target unit. If these units did not previously
make the same token choice they must be different units, and the link is broken. The algorithm,
as a part of the C/E “turtle” assembly process, is also applicable to other assembling models in
stochastic, well-mixed environments. While other stochastic assembly algorithms for target struc-
tures are known (White et al., 2005; Grushin & Reggia, 2008), locality is assumed as a key factor,
components are inflexible, and there are additional environmental assumptions.

8.3 Assembly and virtual evolution

To recap the discussion of Chapter 6, optimizing scalable assembling units using evolutionary
algorithms seems to be a difficult task, even in the simple pairing case. This correlates with results
from other researchers doing related experiments in evolved assembly, where the deterministic
construction of simple group structures is non-trivial (Koza, 1992; Harvey & Thompson, 1996;
Miller & Banzhaf, 2003; Roggen & Federici, 2004; Zykov et al., 2007), particularly if multi-
scale artifacts or organizations are desired (Studer & Lipson, 2006). Overall the 1+1 netcrawler
evolutionary algorithm was by far the most efficient choice for evolving recursive pairing units,
though population-based methods were penalized heavily for time-consuming intermediate fitness
evaluations. The best assemblers all exploited a similar stochastic recursive pairing behavior,
which probably reflects the limitations of connectivity and internal unit logic assumed for the
units. The optimal amount of logic (~5 places, ~8 transitions) for even this extremely simple
recursive task can be compared with the designed logic capable of building complex recursive
structure.

Finding consistent and composable behavior in the evolutionary search was challenging, and
testing for either of these properties was difficult using a fitness function. Consistency requires
many tests given an unpredictable environment, while also introducing multiple complicating fac-
tors related to the degree of penalty one wishes to assign to partial failure. Compositional behavior

Chapter 8. Conclusion 187

is, by definition, reliant on previous behaviors, and so simple malfunctions at lower levels trickle
upwards and destroy the ability to meaningfully evaluate the higher-level interactions.

One solution to the compositional problems may be methods which auto-group related be-
haviors together, either implicitly or explicitly, preferably across assembly scales. One major
approach to this idea is to use developmental encodings (Bentley & Kumar, 1999; Kumar & Bent-
ley, 2003; Stanley & Miikkulainen, 2003; Harding & Banzhaf, 2008). These methods are related
to the grammatical encodings discussed previously for Petri net evolution (Moore & Hahn, 2004b)
as well as developmental encodings for neural networks (Jakobi, 1995; Yao, 1999). Many devel-
opmental methods naturally generate phenotypes of many sizes, which is a useful feature when
the optimal size of the solution is not known beforehand (as is the case with recursive assemblers).
One must be careful, however, not to equate the evolved size of a CORAL unit’s C/E controller
with the size of the structures it produces - generally smaller, simpler controllers are better. Nev-
ertheless, the repeated behavioral patterns necessary for scalable assembly may be reflected in
an easier-to-evolve form using developmental encodings which themselves exploit recursion and
modularity.

More tests, and therefore computational power, can always solve the consistency problems,
though there may be a more elegant approach if the assembling system can be approximated
in more detail. As discussed previously in Section 2.4.2, approximation methods for stochastic
assembling systems have been developed, and these could be adapted to the CORAL model in the
future. Depending on the assumptions made about the interactions and environment, the methods
are not necessarily faster given a constructive system, e.g. (Dittrich et al., 2001), but there are
undoubtedly many simple cases which can be assigned a meaningful value quickly. On the other
hand, formal methods for characterizing the internal behavior of CORAL units could also be
used, though analytic methods would probably be hard to apply across structure growth in cases
where the environment is not mostly stochastic. In general, fully formalizing the pre-configuration
assembly problem for Petri net CORAL units has not been successful to date but is definite goal
of future work.

Though artificial evolution bears little resemblance to natural evolution in many ways, there
have been partially-successful attempts to generate multiple levels of structural organization in
virtual evolved systems (Studer & Lipson, 2006), mimicking the hierarchical organization seen
in natural systems. As mentioned in Chapter 2, other work has theorized that hierarchical or-
ganization and “open-ended” evolution may require either new types of interaction or extremely
distributed computational processing. The experiments described in this thesis support the latter
view, since the generation of structure and function across scales was demonstrably not limited by
the simple pairing interactions used by the CORAL model. Arbitrarily hierarchical organization is
possible in the CORAL model, as is the deterministic control over any level of this organization,
though when artificially evolving such systems the precision required is difficult to achieve using
traditional techniques. It is an indulgent hypothesis of the author that the many natural hierar-
chies inherent in the biological world may partially result from evolutionary reorganization under
constant physical, geological, and cosmic perturbations.

Chapter 8. Conclusion 188

8.4 Future work

While limitations and particularly interesting areas for further study have been noted throughout
the text, some of the main areas in which further research may lead to particularly interesting
results are again mentioned here. Probably the most important of these is the development of an
explicit mechanism to combine structures created at different scales. It is possible using NOR
units to build intricate logical structures as well as large meta-components. Assembling the two
together has not been demonstrated, but would be a significant breakthrough. One might imagine
the “brain” being assembled first, as an intricate small-scale structure with many components, then
temporarily disabling itself and mimicking a structural meta-unit. After meta-unit assembly of the
larger body, the brain structure can be re-enabled, resulting in a fully functional and intelligent
device built from only a single part, using a methodology applicable in a range of environments.
This ability may not even require extra scaffolding constructs, if the brain structure is designed
such that a subset of its function is the same as structural units.

While NOR-units provide the recursive assembly base from which to attempt the ideas above,
the potential devices would be more capable if C/E units were also extended with recursive assem-
bly ability as well. The direct emulation of a meta-C/E controller solves most of the computation
issues, but there still must be a way in which to disable internal units’ response to background sig-
nals. This might be done explicitly, through the use of turtle state modification and a new signal,
but there may also be a more elegant way exploiting the C/E meta-structure itself.

As a primary goal of the research presented here is the demonstration of a realistic assembler,
one of the other major unaddressed issues is the lack of a model for locality and space. There
are reasons for the omission, since any particular type of environmental assumption makes the
computational unit less general. Certain interesting properties may emerge from a minimal lattice
model, however. For example, C/E units require six ports, which might be mapped onto a cube
with six faces. Given this topological restriction, is it still possible to create arbitrary computing
devices? The author believes that it would be possible, but the question is open. Even if the
restriction does not affect computability, it would be an interesting investigation to determine the
efficiency of various packings in terms of units required. Assemblers with unconstrained topology,
as presented in this thesis, provide a pragmatic and meaningful benchmark against which to judge
assembly in different spaces.

The evolutionary search for scalable assembling units has only begun, though it has been seen
that such a search is effectively genetic programming and therefore quite challenging. The multi-
scale tests required to evaluate evolved units make it even more so. To date, only single signals
are used by evolving units. A coevolutionary approach may better represent the problem, where a
limited assembly algorithm generating multiple types of signals evolves alongside the assembling
units themselves. Developmental encodings may also prove useful. Multi-level fitness evaluation
is still problematic, but an analytic approach in which the unit controllers are not simulated directly
(a topic touched on briefly in the filtering of inactive or non-responsive units) may show promise.
Markov chain analysis may be possible with different timing assumptions for CORAL units, even
if used only as a first approximation to behavior. In particular, exploring how different timing
mechanisms could enhance realism and analysis in CORAL units is necessary for further study
from both a scientific and engineering point of view.

Chapter 8. Conclusion 189

8.5 Final remarks

The results and main contributions of this thesis have been related in the sections above, but are
restated here in summary. They include:

• a novel design for a recursively assembling device capable of building controllable structure
at arbitrary scale,

• a novel design for a device able to assemble into any other computing device, without pre-
programming,

• the CORAL model, a minimal framework for computational assembly respecting conserva-
tion of mass, which ensures the general applicability of the above prototypes,

• and a search for other interesting instances of such devices using evolutionary algorithms,
with a comparative study of different types of evolutionary search.

The prime motivation for this thesis can be expressed in even more fundamental terms as a search
for the simplest interface between information and the physical world. How thinly can we slice
our machines, artificial and biological, before we lose essential control and are left with only sand?
Aside from the practicality of such a minimal unit, the answer to this question serves as a baseline
or metric from which to understand the causally-connected interplay between a structure and how
it behaves. The work of this thesis demonstrates clearly that such an interface is possible, has use-
ful properties, and is well within our current technical abilities, but after this experience it seems
likely that even more elegant, minimal, and useful “slices” can be developed with further work. As
has been hypothesized by many, the linking of the informational world of the 20th century to the
new physical, chemical, and biological world of the 21st will begin another revolution in science
and society. This work is a small contribution toward that lofty goal, through the creation of a
computational bridge between structure and function at arbitrary scale.

Appendix A

Proof of meta-unit shielding

In this appendix, the ideas presented earlier in Section 4.3.2 regarding NOR meta-unit shielding
behavior are more rigorously treated. While a partial example is given in Figures 4.10 and 4.11,
NOR meta-unit shielding must be shown to hold for larger meta-units so that the waterfall selection
and assembly algorithm can be confidently said to assemble meta-units of arbitrary size.

Following a similar structure to the blinking proof of Section 4.3.1, first some definitions of
NOR meta-units, repeating signals, and shielding are presented. These definitions are then used
in a recursive proof, which defines the shielding property starting from a meta-unit of individual
units.

Definition 4. A repeated background signal of A is defined as a series of repeating signal groups
of the form ACK ACK ACK ACK ACK ACK . . ., consisting of repeated groups of A and (clock
signals). Repeated signals of B are defined similarly.

Definition 5. A repeated signal of length n is defined as a repeated signal consisting of n signal
groups of ACK or BCK.

Definition 6. A NOR meta-unit of scale s ∈ N0 is defined as follows:

• A NOR meta-unit of scale s = 0 is an individual NOR unit.

• A NOR meta-unit of scale s > 0 is a structure built from NOR meta-units of scale s− 1,
also called sub-units. The ports of the sub-units are linked as in Figure A.1, and the NOR
meta-unit always has a single Out-port and two In-ports as defined in Section 4.3.2. Figure
A.1 also establishes numeric labels for each sub-unit.

Appendix A. Proof of meta-unit shielding 191

3

4

1

2

0

Out

B In

A In

Figure A.1: NOR meta-unit of connected sub-units (scale > 0). The labeled In-ports and Out-port
are the only ports which may be connected to the complimentary ports of other meta-units.

As can be seen in the diagram, the Out-port and In-ports of a meta-unit are also the Out-port
of the root sub-unit and the topmost and bottommost In-port of sub-units 3 and 4. The output of a
meta-unit is also defined as the output of its root sub-unit when the scale > 0.

Definition 7. A NOR meta-unit of scale s > 0 shields its In-ports from a repeating A or B signal
of length 3s when:

• If connected at the corresponding A or B In-port with input x from the connected unit prior
to the repeated signal, the (root) output is ¬x after the repeated signal.

• If open at the corresponding A or B In-port, the output after the repeated signal is the same
as if the port was connected and x = true prior to the repeated signal. The output will
therefore always be false. Essentially the repeated signal emulates sending a true input to
the corresponding port in the same way an individual ACK or BCK signal group does for
individual NOR units.

It is important to note that individual NOR units of scale s = 0 do not shield their inputs by this
definition. Even when receiving an A or B signal, individual units also take input from the opposite
connected In-port into account, leading to a full NOR’ed output after the clock signal. Meta-units
are capable of only a weaker shielding of one input or the other, though this half-protection is
enough for recursive assembly. The length of the repeating signal is also important. It may be
possible to relax this assumption somewhat, using more or less signals, but only a single level of
meta-unit shielding is ever necessary for the waterfall assembly algorithm and so the more general
case is not addressed.

Theorem 8. NOR meta-units of scale s > 0 shield their In-ports from a repeated signal of length
3s.

Case 1. NOR meta-units of scale 1 shield their In-ports from a repeated signal of length 31.

A NOR meta-unit of scale 1 is, by definition, a connected structure of five individual NOR units.
We assume a repeating A signal, and claim by symmetry the same argument holds for repeating B

signals.

Appendix A. Proof of meta-unit shielding 192

After any ACK signal group, the output of sub-units 2 and 4 will always be false, by the
operation of individual NOR units. To explain further, sub-units 2 and 4 have open A In-ports, and
so they interpret an A signal as a true value for one of the variables in their calculated output (as
discussed in Section 4.2). The output of these NOR units must then always be true ↓ x = f alse,
where x is any Boolean input from the In-port connected unit.

Conversely, under the influence of a repeating A signal, the open B In-ports of sub-units 1 and
3 always ensure one false input. The output of sub-units 1 and 3 therefore depends entirely on
the respective input from each sub-unit’s connected In-port. After the first ACK signal group, the
output of sub-unit 3 will be x ↓ f alse =¬x, where x is either true (if not connected at the A In-port)
or is the input value of the connected unit before the repeated A signals. Again, this holds by the
operation of individual NOR units, described in Section 4.2.

This output becomes the input for sub-unit 1, since sub-unit 3’s Out-port is connected to sub-
unit 1’s In-port. After a second ACK signal group, the output for sub-unit 1 (and A In-port input
for sub-unit 0) will be (¬x) ↓ f alse = ¬(¬x) = x. Given the above-mentioned property that the
output of sub-unit 2 is always false after any ACK signal group, the output of the root sub-unit 0
depends entirely on sub-unit 1. After the third signal group, this root output will be x ↓ f alse=¬x.

Since the output of root sub-unit 0 and therefore (by definition) the NOR meta-unit is ¬x after
a repeated signal of length 3, where x is either true (if not connected at the A In-port) or the
input value of the connected meta-unit, the NOR meta-unit shields its A In-port from a repeated A

signal (of length 3). The structure and ports of a NOR meta-unit are symmetric, and so the same
argument holds for shielding of the B In-port from a repeated B signal.

Case 1. Assuming the theorem holds for NOR meta-units of scale s ≥ 1, NOR meta-units of scale
s+1 shield their In-ports from a repeated signal of length 3s+1.

The proof proceeds largely along the same lines as the previous case. A NOR meta-unit of scale
s + 1 is, by definition, a connected structure of five sub-units of scale s, labeled as in Figure
A.1. We again assume a repeating A signal, and claim by symmetry the same argument holds for
repeating B signals.

By the recursive assumption, all sub-units shield their A In-ports from a repeating A signal of
length 3s. After 3s repetitions of signal groups, therefore, the output of sub-units 2 and 4 (Figure
A.1) will always be false. We can also derive immediately that the output of sub-units 0 and 1
will always be the inverse of the A In-port input 3s repetitions ago. Chaining these ideas together,
the output of sub-unit 0 will always be the same as the A In-port input to sub-unit 1 after 2× 3s

repetitions.
Again by the recursive assumption, we know sub-unit 3 shields its In-ports from a repeated

signal of length 3s. The output of sub-unit 3 after 3s repetitions is therefore ¬x, which is also
the input to sub-unit 1. By the derivation in the previous paragraph, after an additional 2× 3s

repetitions the output of sub-unit 0 will be identical to the output of sub-unit 3: ¬x. Since x is
either the input from the connected unit at the meta-unit A In-port prior to the 3s +2×3s = 3s+1

repeated signals or is true, and the root output of the meta-unit of scale s+ 1 after the repeated
signal is ¬x, NOR meta-units of scale s+1 also shield their A In-ports from a repeated A signal.
Symmetrically, the same holds for the B In-port and repeated B signals.

Proof. Since NOR meta-units of scale s = 1 shield their In-ports from a repeated signal of length

Appendix A. Proof of meta-unit shielding 193

3s, and this property also holds for NOR meta-units of scale s+1 when it holds for scale s, NOR

meta-units of any scale s > 0 shield their In-ports from a repeated signal of length 3s.

Intuitively, the above theorem shows how one can select between structures of many connected
meta-units and single meta-units. Multi-meta-unit structures will always have a root connected to
further child meta-units, and the presence of this connection changes the output as compared to a
“free” or individual meta-unit in response to particular repeated signals. The core of the waterfall
assembly algorithm relies on the ability to make this distinction.

Appendix B

A comparison of C/E primitives

Section 5.2 introduces a compositional net primitive developed by Petri while attempting to model
regular computational structures which obey physical and relativistic metrics. In doing so, Petri
found that a certain type of “noisy channel” net was capable, in combination, of performing arbi-
trary, reversible, Boolean computation (Petri, 1996). Though the motivation comes from a compu-
tational basis of physics, not building assembling devices, such a primitive provides an interesting
comparison to the C/E net primitive of Chapter 5.

Because of the different research focus, the noisy channel primitive was not designed for
interactive computation, and more flexible methods of composition are required. However, the
construction itself is quite elegant, shown below as Figure B.1a, and with minor additions can be
transformed into a version compatible with the CORAL model.

As shown in Figure B.1, merging transitions allows four copies of the “noisy channel” primi-
tive to emulate the Boolean Quine function:

Q(a,b,c) = ab̄∨bc

This function, when composed with itself, can emulate any other Boolean switching network
(Petri & Smith, 1987), and Boolean switching networks are the core of computational technology
used in many areas. However, in order to perform this composition it is necessary to merge
places as well as transitions, sharing state between merged nets. Without place merging, the
only types of places in networks composed of multiple noisy channel primitives are those with
solely outgoing edges and those with solely incoming edges. This forces deadlock - places with
solely incoming edges never enable further transitions for firing and there is no way for new tokens
to enter places with outgoing edges. In order to allow more interactive behavior, place merging
can be emulated by the transition merging allowed in the CORAL model, attaching an additional
outgoing or incoming transition to each place. Technically each transition must also be assigned a
complimentary “direction,” but this can be done such that the Quine construction is still possible.
Figure B.2 shows the result: a compositional unit rather similar to the C/E net primitive of Figure
5.1.

The final noisy channel primitive requires at least 8 controllable port transitions to form Quine

Appendix B. A comparison of C/E primitives 195

(a)

=

(b)

(c)

=

b

Q(a,b,c)

b

Q(c,b,a)

a

b

b

c

(d)

Figure B.1: Base construct and the composed quine function from (Petri & Smith, 1987; Petri &
Reisig, 2008). Subfigures (B.1a) and (B.1b) are the “noisy channel” primitive, which can be com-
posed by combining transition edges into the computationally universal Quine function of (B.1c)
and (B.1d). The dotted circles in (B.1c) indicate transition mergings. In (B.1d) the places are
grouped in high/low pairs for each bit of the Quine transfer function. To compose the construction
of (B.1d) with any other, assuming only pairwise interactions (as in the CORAL model), additional
transitions would be needed to link the incoming and outgoing places.

(a)

=

(b)

Figure B.2: The noisy channel primitive of Figure B.1 with additional input and output transitions
needed by the CORAL model. A redrawn version is shown as (B.2b), making the similarity with
the C/E net primitive of Figure 5.1 clear.

Appendix B. A comparison of C/E primitives 196

functions, and 4 places to store state. This is two more ports than are required for the C/E net prim-
itive of Chapter 5, and an additional place, though the structure itself is actually quite similar to the
C/E net primitive. Without the additional transitions, the noisy channel primitive would be slightly
simpler than the C/E net primitive, though there is still a need for controllable composition of the
places - requiring a full eight ports of some kind. As discussed in Chapter 5, the control of ports
is complex, so minimizing the port number may result in simpler assembly behavior than only
reducing internal state. Given that the C/E net primitive is also, in compositions, computationally
universal (the Quine function of Figure B.2b can be built using the island graph construction), it
is a slightly simpler primitive in the CORAL context, though with a less regular topology.

Bibliography
Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, J., Nagpal, R., Rauch, E.,

Sussman, G. J., & Weiss, R. (2000). Amorphous computing. Communications of the ACM,
43(5), 74–82.

Adleman, L. (1994). Molecular computation of solutions to combinatorial problems. Science,
266(11), 1021–1024.

Adleman, L. (2000). Toward a mathematical theory of self-assembly. Tech. Rep. 00-722, Univer-
sity of Southern California, Department of Computer Science.
URL http://www.usc.edu/dept/cs/tech.html

Andeen, G. (1997). Toward a science of assembly. Robotics and Autonomous Systems, 21, 239–
248.

Ashby, W. R. (1962). Principles of the self-organizing system. In H. Foerster, & G. J. Zopf (Eds.)
Principles of Self-Organization, (pp. 255–278). Pergamon Press.

Ashley-Rollman, M. P., Lee, P., Goldstein, S., Pillai, P., & Campbell, J. (2009). A language for
large ensembles of independently executing nodes. In P. Hill, & D. Warren (Eds.) Proceedings
of the International Conference on Logic Programming (ICLP ’09), vol. 5649 of Lecture Notes
in Computer Science, (pp. 265–280). Pasadena, CA, USA: Springer.

Baas, N. (1994). Emergence, hierarchies, and hyperstructures. In C. Langton (Ed.) Artificial Life
III, Santa Fe Institute Studies in the Sciences of Complexity, (pp. 515–537). Addison-Wesley.

Baas, N., Ehresmann, A., & Vanbremeersch, J. (2004). Hyperstructures and memory evolutive
systems. International Journal of General Systems, 33(5), 553–568.

Baas, N., & Helvik, T. (2005). Higher order cellular automata. Advances in Complex Systems,
8(2-3), 169–192.

Bagley, R., Farmer, J., & Fontana, W. (1991). Evolution of a metabolism. In Artificial Life II,
Santa Fe Institute Studies in the Sciences of Complexity, (pp. 141–158). Westview Press.

Bahçeci, E., Soysal, O., & Şahin, E. (2003). A review: pattern formation and adaptation in multi-
robot systems. Tech. Rep. CMU-RI-TR-03-43, Carnegie Mellon University, Robotics Institute.
URL http://www.ri.cmu.edu/publication_view.html?pub_id=4534

Baldassarre, G., Nolfi, S., & Parisi, D. (2003). Evolving mobile robots able to display collective
behaviors. Artificial Life, 9(3), 255–267.

Banks, E. R. (1971). Proof of universal computation in cellular automata. Ph.D. thesis, Mas-
sachusetts Institute of Technology, Department of Mechanical Engineering.

Banzhaf, W. (2004). Artificial chemistries - towards constructive dynamical systems. Solid State
Phenomena, 97, 43–50.

Banzhaf, W., Dittrich, P., & Eller, B. (1999). Self-organization in a system of binary strings with
topological interactions. Physica D, 125, 85–104.

http://www.usc.edu/dept/cs/tech.html
http://www.ri.cmu.edu/publication_view.html?pub_id=4534

Bibliography 198

Banzhaf, W., Guillaume, B., Christensen, S., Foster, J., François, K., Lefort, V., Miller, J.,
Miroslav, R., & Ramsden, J. (2006). From artificial evolution to computational evolution: a
research agenda. Nature Reviews: Genetics, 7, 729–735.

Banzhaf, W., Nordin, P., Keller, R., & Francone, F. (1998). Genetic Programming: An Introduc-
tion. Morgan Kauffman.

Barnett, L. (2001). Netcrawling - optimal evolutionary search with neutral networks. In Proceed-
ings of the 2001 Congress on Evolutionary Computation (CEC), (pp. 30—37). Seoul, Korea:
IEEE Press.

Barto, A., & Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13(4), 341–379.

Bayindir, L., & Şahin, E. (2007). A review of studies in swarm robotics. Turkish Journal of
Electrical Engineering and Computer Science, 15(2), 115–147.

Beal, J. (2005). Amorphous medium language. In AAMAS Large-Scale Multi-Agent Systems
Workshop (LSMAS). Utrecht University.
URL http://groups.csail.mit.edu/mac/projects/amorphous/papers/

lsmas-final.pdf

Bedau, M. (2007). Artificial life. In M. Matten, & C. Stephens (Eds.) Philosophy of Biology,
vol. 3 of Handbook of the Philosophy of Science, (pp. 585–603). Amsterdam: Elsevier.

Bedau, M. (2009). Evolution of complexity. In Mapping the Future of Biology: Evolving Concepts
and Theories, (pp. 111–130). Netherlands: Springer.

Bedau, M., McCaskill, J., Packard, N., Rasmussen, S., Adami, C., Green, D., Ikegami, T., Kaneko,
K., & Ray, T. (2000). Open problems in artificial life. Artificial Life, 6(4), 363–376.

Bedau, M., Snyder, E., Brown, C., Husbands, P., & Harvey, I. (1997). A comparison of evolu-
tionary activity in artificial evolving systems and the biosphere. In Proceedings of the Fourth
European Conference on Artificial Life (ECAL), (pp. 125–134). Brighton, UK: MIT Press.

Benkö, G., Centler, F., Dittrich, P., Flamm, C., Stadler, B., & Stadler, P. (2009). A topological
approach to chemical organizations. Artificial Life, 15(1), 71–88.

Bentley, P., & Kumar, S. (1999). Three ways to grow designs: A comparison of embryogenies for
an evolutionary design problem. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), vol. 1, (pp. 35–43). Orlando, FL, USA: Morgan Kauffman.

Bernardini, F., Brijder, R., Rozenberg, G., & Zandron, C. (2007). Multiset-based self-assembly of
graphs. Fundamenta Informaticae, 75(1), 49–75.

Bernardini, F., Gheorghe, M., Krasnogor, N., & Giavitto, J. (2005). On self-assembly in population
P systems. In Unconventional Computation, vol. 3699 of Lecture Notes in Computer Science,
(pp. 46–57). Sevilla, Spain: Springer.

Beyer, W., Sellers, P., & Waterman, M. (1985). Stanislaw M. Ulam’s contributions to theoretical
theory. Letters in Mathematical Physics, 10, 231–242.

Bird, J., & DiPaolo, E. (2008). Gordon Pask and his maverick machines. In P. Husbands,
M. Wheeler, & O. Holland (Eds.) The Mechanization of Mind in History, (pp. 185–212). MIT
Press.

http://groups.csail.mit.edu/mac/projects/amorphous/papers/lsmas-final.pdf
http://groups.csail.mit.edu/mac/projects/amorphous/papers/lsmas-final.pdf

Bibliography 199

Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., & Nguyen, T. (2005).
Self-organizing programmable parts. In International Conference on Intelligent Robots and
Systems (IROS), (pp. 2644–2651). Edmonton, Canada: IEEE Press.

Bonabeau, E., Guérin, S., Snyers, D., Kuntz, P., & Theraulaz, G. (2000). Three-dimensional
architectures grown by simple ’stigmergic’ agents. Biosystems, 56(1), 13–32.

Bongard, J. (2008). Behavior chaining: incremental behavior integration for evolutionary robotics.
In Artificial Life XI, (pp. 64–71). Winchester, UK: MIT Press.

Bongard, J. (2009). Biologically inspired computing. IEEE Computer Magazine, 42(4), 95–98.

Bourdeaud’huy, T., & Yim, P. (2002). Petri net controller synthesis using genetic search. In
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 1,
(pp. 528 – 533). Hammamet, Tunisia: IEEE Press.

Bremermann, H. (1962). Optimization through evolution and recombination. In M. Yovits,
G. Goldstein, & G. Jacobi (Eds.) Self-organizing systems, (pp. 93–106). Washington, DC: Spar-
tan.

Brooks, R., & Stein, L. (1994). Building brains for bodies. Autonomous Robots, 1(1), 7–25.

Buchanan, A., Gazzola, G., & Bedau, M. (2008). Evolutionary design of a model of self-
assembling chemical structures. In N. Krasnogor, S. Gustafson, D. Pelta, & J. Verdegay (Eds.)
Systems Self-Assembly: Multidisciplinary Snapshots, (pp. 79–100). Elsevier.

Cao, Y., Fukunuga, A., & Kahng, A. (1997). Cooperative mobile robotics: antecedents and direc-
tions. Autonomous Robots, 4(1), 7–27.

Cariani, P. (1993). To evolve an ear. epistemological implications of Gordon Pask’s electrochem-
ical devices. Systems Research, 10(3), 19–33.

Casjens, S., & King, J. (1975). Virus assembly. Annual Review of Biochemistry, 44, 555–611.

Castano, A., Behar, A., & Will, P. M. (2002). The Conro modules for reconfigurable robots.
IEEE/ASME Transactions on Mechatronics, 7(4), 403–409.

Chen, I., & Burdick, J. (1995). Determining task optimal modular robot assembly configurations.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), (pp.
132–137). Nagoya, Japan: IEEE Press.

Cheng, J., Cheng, W., & Nagpal, R. (2005). Robust and self-repairing formation control for
swarms of mobile agents. In M. Veloso, & S. Kambhampati (Eds.) Proceedings of the Twentieth
National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of
Artificial Intelligence Conference, vol. 20, (pp. 59–64). Pittsburgh, USA: AAAI Press / MIT
Press.

Chiu, Y., & Fu, L. (1997). A GA embedded dynamic search algorithm over a Petri net model
for an FMS scheduling. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), (pp. 513–519). Albuquerque, New Mexico: IEEE Press.

Chou, H., & Reggia, J. (1997). Emergence of self-replicating structures in a cellular automata
space. Physica D: Nonlinear Phenomenon, 110, 252–276.

Clark, A. (2008). Supersizing the Mind. Oxford University Press.

Codd, E. (1968). Cellular Automata. New York: Academic Press.

Bibliography 200

Corradini, A. (1995). Concurrent computing: from Petri nets to graph grammars. In Proceed-
ings of the Joint COMPUGRAPH/SEMAGRAPH (SEGRAGRA) Workshop on Graph Rewriting
and Computation, Electronic Notes in Theoretical Computer Science, (pp. 56–70). Pisa, Italy:
Elsevier.

Costelha, H., & Lima, P. (2008). Modeling, analysis and execution of multi-robot tasks using
Petri nets. In Proceedings of the Seventh International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), (pp. 1187–1190). Estoril, Portugal: International Foundation for
Autonomous Agents and Multiagent Systems.

Crutchfield, J., & Görnerup, O. (2006). Objects that make objects: the population dynamics of
structural complexity. Journal of the Royal Society Interface, 3(7), 345–349.

Crutchfield, J., & Young, K. (1989). Inferring statistical complexity. Physical Review Letters,
63(2), 105–108.

Danos, V., Feret, J., Fontana, W., Harmer, R., & Krivine, J. (2008). Rule-based modeling, sym-
metries, refinements. Formal Methods in Systems Biology, 5054, 103–122.

Danos, V., Feret, J., Fontana, W., & Krivine, J. (2007). Scalable simulation of cellular signal-
ing networks. In S. Zhong (Ed.) Asian Symposium on Programming Languages and Systems
(APLAS), vol. 4807 of Lecture Notes in Computer Science, (pp. 139–157). Singapore: Springer.

Danos, V., Krivine, J., & Tarissan, F. (2006). Self-assembling trees. In Proceedings of the Third
Workshop on Structural Operational Semantics (SOS), vol. 175(1) of Electronic Notes in Theo-
retical Computer Science (ENTCS), (pp. 19–32).

Danos, V., & Laneve, C. (2004). Formal molecular biology. Theoretical Computer Science,
325(1), 69–110.

Danos, V., & Tarissan, F. (2007). Self-assembling graphs. Natural Computing, 6(3), 339–358.

Detweiler, C., Vona, M., Yoon, Y., Yun, S., & Rus, D. (2007). Self-assembling mobile linkages.
IEEE Robotics & Automation Magazine, 14(3), 45–56.

di Fenizio, P., Dittrich, P., Banzhaf, W., & Ziegler, J. (2000). Towards a theory of organizations.
In German Workshop on Artificial Life (GWAL). Bayreuth, Germany: not in print.
URL http://web.cs.mun.ca/~banzhaf/papers/gwal2000.pdf

DiCesare, F. (1993). Practice of Petri nets in manufacturing. Chapman & Hall.

Dittrich, P., & Banzhaf, W. (1998). Self-evolution in a constructive binary string system. Artificial
Life, 4(2), 203–220.

Dittrich, P., & di Fenizio, P. (2007). Chemical organisation theory. Bulletin of Mathematical
Biology, 69(4), 1199–1231.

Dittrich, P., Ziegler, J., & Banzhaf, W. (2001). Artificial chemistries - a review. Artificial Life,
7(3), 225–275.

Dorf, R. (1990). Concise International Encyclopedia of Robotics: Applications and Automation.
Wiley-Interscience.

Dorigo, M., & Colombetti, M. (1994). Robot shaping: Developing situated agents through learn-
ing. Artificial Intelligence, 70(2), 321–370.

http://web.cs.mun.ca/~banzhaf/papers/gwal2000.pdf

Bibliography 201

Dorin, A. (2000). Creating a physically-based, virtual-metabolism with solid cellular automata.
In M. Bedau, J. McCaskill, & S. Rasmussen (Eds.) Artificial Life VII, (pp. 13–20). Portland,
Oregon: MIT Press.

Dorin, A., & McCormack, J. (2002). Self-assembling dynamical hierarchies. In Artificial Life
VIII, (pp. 423–428). Sydney, Australia: MIT Press.

Doursat, R. (2008). Organically grown architectures: creating decentralized, autonomous systems
by embryomorphic engineering. In R. Wuertz (Ed.) Organic Computing, Complex Systems
Series, (pp. 201–220). Springer.

Drexler, K. E., Randall, J., Corchnoy, S., Kawczak, A., & Steve, M. (Eds.) (2007). Productive
nanosystems: a technology roadmap. U.S. Department of Energy.
URL http://e-drexler.com/d/07/00/1204TechnologyRoadmap.html

Dudek, G., Jenkin, M., Milios, E., & Wilkes, D. (1996). A taxonomy for multi-agent robotics.
Autonomous Robots, 3(4), 375–397.

Egri-Nagy, A., & Nehaniv, C. (2004). Algebraic hierarchical decomposition of finite state
automata: comparison of implementations for Krohn-Rhodes theory. In M. Domaratzki,
A. Okhotin, A. Salomaa, & S. Yu (Eds.) International Conference on Implementation and Ap-
plication of Automata (CIAA), Lecture Notes in Computer Science, (pp. 315–316). Kingston,
Canada: Springer.

Egri-Nagy, A., & Nehaniv, C. L. (2008). Hierarchical coordinate systems for understanding com-
plexity and its evolution, with applications to genetic regulatory networks. Artificial Life, 14(3),
299–312.

Eigen, M., & Schuster, P. (1977). A principle of natural self-organization. Naturwissenschaften,
64(11), 541–565.

Esparza, J. (1998). Decidability and complexity of Petri net problems - an introduction. In
W. Reisig, & G. Rozenberg (Eds.) Lectures on Petri Nets I: Basic Models, no. 1491 in Lec-
ture Notes in Computer Science, (pp. 374–428). Springer.

Esparza, J., & Nielsen, M. (1994). Decidability issues for Petri nets - a survey. Basic Research in
Computer Science (BRICS) RS-94-8, University of Aarhus, Denmark.
URL http://www.brics.dk/RS/94/8/

Esparza, J., Römer, S., & Vogler, W. (2002). An improvement of McMillan’s unfolding algorithm.
Formal Methods in System Design, 20(3), 285–310.

Ewaschuk, R., & Turney, P. D. (2006). Self-replication and self-assembly for manufacturing.
Artificial Life, 12(3), 411–433.

Faeder, J., Blinov, M., Goldstein, B., & Hlavacek, W. (2005). Rule-based modeling of biochemical
networks. Complexity, 10(4), 22–41.

Feynman, R. (1959). There’s plenty of room at the bottom. In American Physical Society, as
presentation. California Institute of Technology, CA, USA.
URL http://www.zyvex.com/nanotech/feynman.html

Flocchine, P., Prencipe, G., Santoro, N., & Widmayer, P. (2008). Arbitrary pattern formation by
asynchronous, anonymous, oblivious robots. Theoretical Computer Science, 407(1-3), 412–
447.

Fogel, D. (1998). Evolutionary Computation: The Fossil Record. Wiley-IEEE Press.

http://e-drexler.com/d/07/00/1204TechnologyRoadmap.html
http://www.brics.dk/RS/94/8/
http://www.zyvex.com/nanotech/feynman.html

Bibliography 202

Fogel, L., Owens, A., & Walsh, M. (1965). Artificial intelligence through a simulation of evolu-
tion. In M. Maxfield, A. Callahan, & L. Fogel (Eds.) Biophysics and Cybernetic Systems, (pp.
131–155). Spartan.

Fontana, W. (1992). Algorithmic chemistry. In C. Langton, C. Taylor, J. Farmer, & S. Rasmussen
(Eds.) Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, (pp. 159–209).
Westview Press.

Fontana, W. (2006). Pulling strings. Science, 314(5805), 1552.

Fontana, W., & Buss, L. (1994). Arrival of the fittest: toward a theory of biological organization.
Bulletin of Mathematical Biology, 56(1), 1–64.

Fontana, W., & Buss, L. (1996). The barrier of objects: from dynamical systems to bounded
organizations. Working Paper WP-96-27, International Institute for Applied Systems Analysis,
Laxenburg, Austria.

Fredslund, J., & Mataric, M. (2002). A general algorithm for robot formations using local sensing
and minimal communication. IEEE Transactions on Robotics and Automation, 18(5), 837–846.

Freitas, R. (1980). A self-reproducing interstellar probe. Journal of the British Interplanetary
Society, 33, 251–264.

Freitas, R. J., & Merkle, R. (2004). Kinematic Self-Replicating Machines. Landes Bioscience.
URL http://www.molecularassembler.com/KSRM.htm

Fukuda, T., Buss, M., Hosokai, H., & Kawauchi, Y. (1991). Cell structured robotic system CE-
BOT: control, planning, and communication methods. Robotics and Autonomous Systems, 7(2-
3), 239–248.

Fukuda, T., & Nakagawa, S. (1987). A dynamically reconfigurable robotic system (concept of
a system and optimal configurations). In Proceedings of the International Conference on In-
dustrial Electronics, Control, and Instrumentation (IECON), (pp. 588–595). Bellingham, WA,
USA: SPIE.

Furusawa, C., & Kaneko, K. (1998). Emergence of multicellular organisms with dynamic differ-
entiation and spatial pattern. Artificial Life, 4(1), 79–93.

Furusawa, C., & Kaneko, K. (2002). Origin of multicellular organisms as an inevitable conse-
quence of dynamical systems. The Anatomical Record, 268(3), 327–342.

Gazi, V., & Fidan, B. (2006). Coordination and control of multi-agent dynamic systems: models
and approaches. In Proceedings of the Second International Workshop on Swarm Robotics
at SAB 2006, vol. 4433 of Lecture Notes in Computer Science, (pp. 71–102). Rome, Italy:
Springer.

Gazit, E. (2007). Plenty of room for biology at the bottom: an introduction to bionanotechnology.
Imperial College Press.

Goldberg, D., Korb, B., & Deb, K. (1989). Messy genetic algorithms: motivation, analysis, and
first results. Complex systems, 3(5), 493–530.

Gómez-López, M., & Stoddart, J. (2002). Molecular and supramolecular nanomachines. In
H. Nalwa (Ed.) Nanostructured Materials and Nanotechnology. Elsevier.

Goresky, M., & Klapper, A. (2009). Algebraic shift register sequences. Unpublished manuscript.
URL http://www.cs.uky.edu/~klapper/algebraic.html

http://www.molecularassembler.com/KSRM.htm
http://www.cs.uky.edu/~klapper/algebraic.html

Bibliography 203

Görnerup, O., & Crutchfield, J. (2008). Hierarchical self-organization in the finitary process soup.
Artificial Life, 14(3), 245–254.

Goss, P., & Peccoud, J. (1998). Quantitative modeling of stochastic systems in molecular biology
by using stochastic Petri nets. Proceedings of the National Academy of Sciences of the USA
(PNAS), 95(12), 6750.

Gray, F. (1953). Pulse code communication. United States Patent Office, (Patent No. 2632058).

Groß, D., & Lenaerts, T. (2003). Towards a definition of dynamical hierarchies. In Workshop
Proceedings of Artificial Life VIII, (pp. 45–55). Sydney, Australia: University of New South
Wales Press.

Groß, D., & McMullin, B. (2001). Is it the right ansatz? Artificial Life, 7(4), 355–365.

Grushin, A., & Reggia, J. (2008). Automated design of distributed control rules for the self-
assembly of prespecified artificial structures. Robotics and Autonomous Systems, 56(4), 334–
359.

Haken, H. (1987). Self-organization and information. Physica Scripta, 35, 247–254.

Hamad-Schifferli, K., Schwartz, J., Santos, A., Zhang, S., & Jacobson, J. (2002). Remote elec-
tronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal
antenna. Nature, 415(6868), 152–155.

Hamlin, G., & Sanderson, A. (1997). TETROBOT: a modular approach to parallel robotics. IEEE
Robotics and Automation Magazine, 4(1), 42–51.

Harding, S., & Banzhaf, W. (2008). Artificial development. In R. Wuertz (Ed.) Organic Comput-
ing, Complex Systems Series, (pp. 201–220). Springer.

Harvey, I. (1996). The microbial genetic algorithm. Unpublished manuscript.
URL http://www.cogs.susx.ac.uk/users/inmanh/Microbial.pdf

Harvey, I. (2001). Artificial evolution: A continuing SAGA. In T. Gomi (Ed.) Proceedings of the
8th International Symposium on Evolutionary Robotics (ER2001), vol. 2217 of Lecture Notes
in Computer Science, (pp. 94–109). Tokyo, Japan: Springer.

Harvey, I. (2009). The microbial GA. In Proceedings of the European Conference on Artificial
Life (ECAL), Lecture Notes in Computer Science, (p. to appear). Budapest, Hungary: Springer.

Harvey, I., Husbands, P., Cliff, D., Thompson, A., & Jakobi, N. (1997). Evolutionary robotics: the
Sussex approach. Robotics and Autonomous Systems, 20(2), 205–224.

Harvey, I., & Thompson, A. (1996). Through the labrynth evolution finds a way: a silicon ridge.
In T. Higuchi, M. Iwata, & W. Liu (Eds.) Proceedings of the First International Conference
on Evolvable Systems: From Biology to Hardware (ICES), (pp. 406–422). Tsukuba, Japan:
Springer-Verlag.

Hawking, S. (1988). A Brief History of Time. Bantam Books.

Helvik, T. (2005). Dynamical systems of interacting units: information transport and higher order
structures. Ph.D. thesis, Norwegian University of Science and Technology.

Hlavacek, W., Faeder, J., Blinov, M., Posner, R., Hucka, M., & Fontana, W. (2006). Rules for
modeling signal-transduction systems. Science Signal Transduction Knowledge Environment
(STKE), 334(334), 1–18.

http://www.cogs.susx.ac.uk/users/inmanh/Microbial.pdf

Bibliography 204

Hoekstra, A., Lorenz, E., Falcone, J., & Chopard, B. (2007). Towards a complex automata frame-
work for multi-scale modeling: formalism and the scale separation map. In Proceedings of the
Seventh International Conference on Computational Science (ICCS), vol. 4487 of Lecture Notes
in Computer Science, (pp. 922–930). Beijing, China: Springer.

Hofstadter, D. (1979). Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of
Michigan Press.

Holland, J. (1992). Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press.

Hutton, T. (2002). Evolvable self-replicating molecules in an artificial chemistry. Artificial Life,
8(4), 341–356.

Hutton, T. (2007). Evolvable self-reproducing cells in a two-dimensional artificial chemistry.
Artificial Life, 13(1), 11–30.

Ikegami, T. (1999). Evolvability of machines and tapes. Artificial Life and Robotics, 3(4), 242–
245.

Ikegami, T., & Hashimoto, T. (1997). Replication and diversity in machine-tape coevolutionary
systems. In Artificial Life V , (pp. 426–433). Nara, Japan: MIT Press.

Iocchi, L., Nardi, D., & Salerno, M. (2001). Reactivity and deliberation: a survey on multi-robot
systems. Balancing Reactivity and Social Deliberation in Multi-Agent Systems, 2103, 9–32.

Ishiguro, A., Shimizu, M., & Kawakatsu, T. (2006). A modular robot that exhibits ameobic loco-
motion. Robotics and Autonomous Systems, 54(8), 641–650.

Jacobi, M. (2005). Hierarchical organization in smooth dynamical systems. Artificial Life, 11(4),
493–512.

Jakobi, N. (1995). Harnessing morphogenesis. Cognitive Science Research Papers 423, University
of Sussex, Falmer, UK.
URL ftp://ftp.informatics.sussex.ac.uk/pub/reports/csrp/csrp423.ps.Z

Jensen, K., & Rozenberg, G. (1991). High-level Petri Nets. Berlin: Springer-Verlag.

Jones, N., Landweber, L., & Lien, Y. (1977). Complexity of some problems in Petri nets. Theo-
retical Computer Science, 4(3), 277 – 299.

Jørgensen, M., Østergaard, E., & Lund, H. (2004). Modular ATRON: modules for a self-
reconfigurable robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), vol. 2, (pp. 2068–2073). Sendai, Japan: IEEE Press.

Kauffman, S. (1993). The Origins of Order: Self-Organization and Selection in Evolution. New
York: Oxford University Press.

Keller, B., & Lutz, R. (2005). Evolutionary induction of stochastic context free grammars. Pattern
Recognition, 38(9), 1393–1406.

Kennedy, W., & Gentle, J. (1980). Statistical Computing. Statistics: Textbooks and Monographs.
Marcel Dekker, Inc.

Kindler, E., & Weber, M. (2001). The Petri net kernel - an infrastructure for building Petri net
tools. International Journal on Software Tools for Technology Transfer (STTT), 3(4), 486–497.

ftp://ftp.informatics.sussex.ac.uk/pub/reports/csrp/csrp423.ps.Z

Bibliography 205

Kirby, B., Aksak, B., Hoburg, J., Mowry, T., & Pillai, P. (2007). A modular robotic system using
magnetic force effectors. In Proceedings of the IEEE International Conference on Intelligent
Robots and Systems (IROS), (pp. 2787 – 2793). San Diego, CA, USA: IEEE Press.

Kitagawa, J., & Iba, H. (2003). Identifying metabolic pathways and gene regulation networks
with evolutionary algorithms. In Evolutionary Computation in Bioinformatics, (pp. 255–274).
Elsevier Science.

Klavins, E. (2006). Self-assembly from the point of view of its pieces. In American Control
Conference (ACC), (pp. 22–28). Minneapolis, MN, USA: IEEE Press.

Klavins, E., Burden, S., & Napp, N. (2006a). Optimal rules for programmed stochastic self-
assembly. In G. Sukhatme, S. Schaal, W. Burgard, & D. Fox (Eds.) Robotics: Science and
Systems II (RSS), (pp. 9–16). Philadelphia, PA, USA: MIT Press.

Klavins, E., Ghrist, R., & Lipsky, D. (2006b). A grammatical approach to self-organizing robotic
systems. IEEE Transactions on Automatic Control, 51(6), 949–962.

Klein, M., & Shinoda, W. (2008). Large-scale molecular dynamics simulations of self-assembling
systems. Science, 321(5890), 798–800.

Kondacs, A. (2003). Biologically-inspired self-assembly of two-dimensional shapes using global-
to-local compilation. In International Joint Conference on Artificial Intelligence (IJCAI), (pp.
633–638). Acapulco, Mexico: Morgan Kauffman.

Kornienko, S., Kornienko, O., Nagarathinam, A., & Levi, P. (2007). From real robot swarm
to evolutionary multi-robot organism. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), (pp. 1483–1490). Singapore: IEEE Press.

Kotay, K., & Rus, D. (2000). Scalable parallel algorithm for configuration planning for self-
reconfiguring robots. In G. McKee, & P. Schenker (Eds.) Proceedings of Sensor Fusion and
Decentralized Control in Robotic Systems III, vol. 4196, (pp. 377–387). Boston, MA, USA:
SPIE Press.

Kotay, K., Rus, D., Vona, M., & McGray, C. (1998). The self-reconfiguring robotic molecule. In
Proceedings of the IEEE Conference on Robotics and Automation (ICRA), vol. 4, (pp. 424–431).
Leuven, Belgium: IEEE Press.

Koza, J. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press.

Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., & Lanza, G. (2005). Genetic Program-
ming IV . Springer.

Kozen, D. (1997). Automata and Computability. New York: Springer-Verlag.

Krishnan, M., Tolley, M., Lipson, H., & Erickson, D. (2007). Directed hierarchical self assembly
- active fluid mechanics at the micro and nanoscales. In Proceedings of the ASME International
Mechanical Engineering Congress and Exposition (IMECE). Seattle, WA, USA.

Kumar, S., & Bentley, P. (2003). Computational embryology: past, present and future. In Advances
in Evolutionary Computing: Theory and Applications, Natural Computing Series, (pp. 461–
477). Springer.

Kwong, H., & Jacob, C. (2003). Evolutionary exploration of dynamic swarm behaviour. In IEEE
Conference on Evolutionary Computation (CEC), (pp. 367–374). Canberra, Australia: IEEE
Press.

Bibliography 206

Langton, C. (1984). Self-Reproduction in cellular automata. Physica D: Nonlinear Phenomena,
10(1-2), 135–144.

Langton, C. (Ed.) (1989). Artificial Life. Redwood City: Addison-Wesley Publishing.

Lenaerts, T., Chu, D., & Watson, R. (2005). Dynamical hierarchies. Artificial Life, 11(4), 403–405.

Lenski, R., Ofria, C., Pennock, R., & Adami, C. (2003). The evolutionary origin of complex
features. Nature, 423, 139–144.

Lin, C., & Marinescu, D. (1988). Stochastic high-level Petri nets and applications. IEEE Trans-
actions on Computers, 37(7), 815–825.

Livstone, M., Weiss, R., & Landweber, L. (2006). Automated design and programming of a
microfluidic DNA computer. Natural Computing, 5(1), 1–13.

Lucas, S., & Reynolds, T. (2007). Learning finite-state transducers: evolution versus heuristic
state merging. IEEE Transactions on Evolutionary Computation, 11(3), 308–325.

Luke, S., Cioffi-Revilla, C., Panait, L., & Sullivan, K. (2004). MASON: a new multi-agent simu-
lation toolkit. In Proceedings of the 2004 SwarmFest Workshop, vol. 8. Ann Arbor, MI, USA.

Magnus, P. D. (2009). forall x - An Introduction to Formal Logic. University at Albany, State
University of New York.
URL http://www.fecundity.com/logic

Mamei, M., Vasirani, F., & Zambonelli, F. (2004). Experiments of morphogenesis in swarms of
simple robots. Applied Artificial Intelligence, 18(10), 903–919.

Mataric, M., & Cliff, D. (1996). Challenges in evolving controllers for physical robots. Robotics
and Autonomous Systems, 19(1), 67–83.

Matsumaru, N., Centler, F., di Fenizio, P., & Dittrich, P. (2005). Chemical organization theory as a
theoretical base for chemical computing. In C. Teusher, & A. Adamatzky (Eds.) Proceedings of
the 2005 Workshop on Unconventional Computing: From Cellular Automata to Wetware, (pp.
75–88). Sevilla, Spain: Luniver Press.

Maturana, H., & Varela, F. (1980). Autopoesis and Cognition. Holland: Reidel Publishing.

Mayer, B., & Rasmussen, S. (1998). Self-reproduction of dynamical hierarchies in chemical
systems. In C. Adami, R. Belew, H. Kitano, & C. Taylor (Eds.) Artificial Life VI, (pp. 123–
129). Los Angeles, CA, USA: MIT Press.

Maynard Smith, J., & Szathmáry, E. (2004). The major transitions in evolution. Oxford University
Press.

McCaskill, J. S. (1988). Polymer chemistry on tape: a computational model for emergent genetics.
Internal report, Max Planck Institute for Biophysical Chemistry, Göttingen.

McGregor, S., & Fernando, C. (2005). Levels of description: a novel approach to dynamical
hierarchies. Artificial Life, 11(4), 459–472.

McMillan, K. (1995). A technique of state space search based on unfolding. Formal Methods in
System Design, 6(1), 45–65.

McNew, J., & Klavins, E. (2008). Non-deterministic reconfiguration of tree formations. In Amer-
ican Control Conference (ACC), (pp. 690–697). Seattle, WA, USA: IEEE Press.

http://www.fecundity.com/logic

Bibliography 207

Melamed, B. (1998). Design and implementation of an attribute manager for conditional and
distributed graph transformation. Master’s thesis, Technical University of Berlin.
URL http://user.cs.tu-berlin.de/~gragra/agg/Diplomarbeiten/Melamed.ps.gz

Merkle, R. (1992). Self-replicating systems and molecular manufacturing. Journal of the British
Interplanetary Society, 45, 407–413.

Merkle, R. (1997). Convergent assembly. Nanotechnology, 8(1), 18–22.

Mermoud, G., Brugger, J., & Martinoli, A. (2009). Towards multi-level modeling of self-
assembling intelligent micro-systems. In Proceedings of The Eighth International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), (pp. 89–96). Budapest, Hungary:
International Foundation for Autonomous Agents and Multiagent Systems.

Mesarović, M., & Macke, D. (1969). Scientific theory of hierarchical systems. In L. Whyte,
A. Wilson, & D. Wilson (Eds.) Hierarchical Structures, (pp. 29–50). Elsevier.

Miller, J., & Banzhaf, W. (2003). Evolving the program for a cell: from French flags to Boolean
circuits. In S. Kumar, & P. Bentley (Eds.) On Growth, Form and Computers, (pp. 278–301).
Elsevier.

Miller, J., Thomson, P., & Fogarty, T. (1997). Designing electronic circuits using evolutionary al-
gorithms. arithmetic circuits: a case study. In K. Miettinen, P. Neittaanmäki, & M. Mäkelä
(Eds.) Genetic Algorithms and Evolution Strategies in Engineering and Computer Science,
Computational Methods in Applied Sciences, (pp. 105–131). Wiley.

Milner, R. (2009). The Space and Motion of Communicating Agents. Cambridge University Press.

Milutinovic, D., & Lima, P. (2002). Petri net models of robotic tasks. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), vol. 4, (pp. 4059–4064).
Washington, DC, USA: IEEE Press.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. MIT Press.

Molloy, M. (1982). Performance analysis using stochastic Petri nets. IEEE Transactions on
Computers, C-31(9), 913–917.

Moore, J. H., & Hahn, L. W. (2004a). Evaluation of a discrete dynamic systems approach for
modeling the hierarchical relationship between genes, biochemistry, and disease susceptibility.
Discrete and Continuous Dynamical Systems, 4(1), 275–288.

Moore, J. H., & Hahn, L. W. (2004b). Systems biology modeling in human genetics using Petri
nets and grammatical evolution. In Genetic and Evolutionary Computation (GECCO), (pp.
392–401).

Murata, S., Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., & Kokaji, S. (2004). Self-
reconfigurable robots: platforms for emerging functionality. Embodied Artificial Intelligence,
3139, 312–330.

Murata, S., Kurokawa, H., & Kokaji, S. (1994). Self-Assembling machine. In Proceedings of the
IEEE Conference in Robotics and Automation (ICRA), (pp. 441–448). San Diego, CA, USA:
IEEE Press.

Nagpal, R., Kondacs, A., & Chang, C. (2003). Programming methodology for biologically-
inspired self-assembling systems. In AAAI Spring Symposium on Computational Synthesis:
From Basic Building Blocks to High Level Functionality. Stanford University, CA, USA: AAAI
Press.

http://user.cs.tu-berlin.de/~gragra/agg/Diplomarbeiten/Melamed.ps.gz

Bibliography 208

Nehaniv, C., & Rhodes, J. (2000). The evolution and understanding of hierarchical complexity in
biology from an algebraic perspective. Artificial Life, 6(1), 45–67.

Nelson, A., Barlow, G., & Doitsidis, L. (2009). Fitness functions in evolutionary robotics: A
survey and analysis. Robotics and Autonomous Systems, 57(4), 345–370.

Nolfi, S., & Parisi, D. (2002). Evolution of artificial neural networks. In M. Arbib (Ed.) Handbook
of Brain Theory and Neural Networks, (pp. 418–421). MIT Press.

Nummela, J., & Julstrom, B. (2005). Evolving Petri nets to represent metabolic pathways. In
H. Beyer, & U. O’Reilly (Eds.) Proceedings of the 2005 Conference on Genetic and Evolution-
ary Computation (GECCO), (pp. 2133–2139). Washington, DC, USA: ACM.

Ofria, C., & Adami, C. (1999). Evolution of genetic organization in digital organisms. In
L. Landweber, & E. Winfree (Eds.) Evolution as Computation: DIMACS Workshop, Natural
Computing Series, (pp. 296–313). Princeton, NJ: Springer-Verlag.

Ono, N., & Ikegami, T. (2001). Artificial chemistry: computational studies on the emergence of
self-replicating units. In J. Kelemen, & P. Sosík (Eds.) Proceedings of the European Conference
on Artificial Life (ECAL), vol. 2159 of Lecture Notes in Computer Science, (pp. 186–195).
Prague, Czech Republic: Springer.

Østergaard, E., & Lund, H. (2003). Evolving control for modular robotic units. In Proceedings of
the IEEE International Symposium on Computational Intelligence in Robotics and Automation
(CIRA), (pp. 886–893). Kobe, Japan: IEEE Press.

Ota, J. (2006). Multi-agent robot systems as distributed autonomous systems. Advanced Engi-
neering Informatics, 20(1), 59–70.

Palamara, P. F., Ziparo, V. A., Iocchi, L., Nardi, D., & Lima, P. (2009). Teamwork design based on
Petri net plans. In L. Iocchi, H. Matsubara, A. Weitzenfeld, & C. Zhou (Eds.) RoboCup 2008:
Robot Soccer World Cup XII, Lecture Notes in Artificial Intelligence, (pp. 211–222). Suzhou,
China: Springer.

Parker, L. (2000). Current state of the art in distributed autonomous mobile robotics. Distributed
Autonomous Robotic Systems, 4, 3–12.

Pask, G. (1958a). The growth process inside the cybernetic machine. In Second International
Conference on Cybernetics, (pp. 765–794). Namur, Belgium.

Pask, G. (1958b). Physical analogues to the growth of a concept. In Mechanization of Thought
Processes, Symposium 10, (pp. 765–794). National Physical Laboratory, London: H. M. S. O.

Peleg, M., Rubin, D., & Altman, R. (2005). Using Petri net tools to study properties and dynamics
of biological systems. Journal of the American Medical Informatics Association, 12(2), 181–
199.

Penrose, L. (1959). Self-reproducing machines. Scientific American, 206(6), 105–114.

Peterson, J. (1981). Petri Net Theory and the Modeling of Systems. Upper Saddle River, NJ, USA:
Prentice Hall PTR.

Petri, C. (1962). Kommunikation mit Automaten. Ph.D. thesis, Technische Hochschule Darmstadt,
Darmstadt, Germany.

Petri, C. (1996). Nets, time, and space. Theoretical Computer Science, 153, 3–48.

Bibliography 209

Petri, C. (2008). On the physical basics of information flow - results obtained in cooperation with
Konrad Zuse. In Petri Nets, vol. 5062 of Lecture Notes in Computer Science. Xi’an, China:
Springer.

Petri, C., & Reisig, W. (2008). Petri net. Scholarpedia, 3(4), 6477.
URL http://www.scholarpedia.org/article/Petri_net

Petri, C., & Smith, E. (1987). "Forgotten topics" of net theory. In Petri Nets: Applications and
Relationships to Other Models of Concurrency, vol. 255 of Lecture Notes in Computer Science,
(pp. 499–514). Springer.

Pfeifer, R., & Iida, F. (2004). Embodied artificial intelligence: Trends and challenges. In Embodied
Artificial Intelligence, vol. 3139 of Lecture Notes in Artificial Intelligence, (pp. 1–26).

Prencipe, G., & Santoro, N. (2006). Distributed algorithms for autonomous mobile robots. In
G. Navarro, N. Bertossi, & Y. Kohayakawa (Eds.) Proceedings of 5th IFIP International Con-
ference on Theoretical Computer Science (TCS), vol. 209 of IFIP, (pp. 47–62). Santiago, Chile:
Springer.

Păun, G., & Rozenberg, G. (2002). A guide to membrane computing. Theoretical Computer
Science, 287(1), 73–100.

Pugh, J., & Martinoli, A. (2006). Multi-robot learning with particle swarm optimization. In Pro-
ceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), (pp. 448–453). Hakodate, Japan: The International Foundation for Autonomous
Agents and Multiagent Systems.

Rasmussen, S., Baas, N., Mayer, B., & Nilsson, M. (2001a). Defense of the ansatz for dynamical
hierarchies. Artificial Life, 7(4), 367–373.

Rasmussen, S., Baas, N., Mayer, B., Nilsson, M., & Olesen, M. (2001b). Ansatz for dynamical
hierarchies. Artificial Life, 7(4), 329–353.

Ray, T. (1992). Evolution, ecology and optimization of digital organisms. Working Paper 92-08-
042, Santa Fe Institute.
URL http://life.ou.edu/pubs/tierra/

Ray, T. (1997). Evolving complexity. Artificial Life and Robotics, 1(1), 21–26.

Regev, A., & Shapiro, E. (2002). Cells as computation. Nature, 419, 343.

Regev, A., Silverman, W., & Shapiro, E. (2001). Representation and simulation of biochemical
processes using the π-calculus process algebra. In Pacific Symposium on Biocomputing, vol. 6,
(pp. 459–470). Mauna Lani, HI, USA: World Scientific Press.

Reid, D. (1998). Constructing Petri net models using genetic search. Mathematical and Computer
Modeling, 27(8), 85 – 103.

Reisig, W. (1992). A Primer in Petri Net Design. Berlin: Springer-Verlag.

Reisig, W. (2009). The universal net composition operator. Research report, Humboldt University
of Berlin.
URL http://www2.informatik.hu-berlin.de/top/publikationen/de/Author/

REISIG-W.php

Roggen, D., & Federici, D. (2004). Multi-cellular development: is there scalability and robustness
to gain? In Parallel Problem Solving from Nature (PPSN VIII), vol. 3242 of Lecture Notes in
Computer Science, (pp. 391–400). Birmingham, UK: Springer.

http://www.scholarpedia.org/article/Petri_ net
http://life.ou.edu/pubs/tierra/
http://www2.informatik.hu-berlin.de/top/publikationen/de/Author/REISIG-W.php
http://www2.informatik.hu-berlin.de/top/publikationen/de/Author/REISIG-W.php

Bibliography 210

Ronse, C. (1982). Feedback Shift Registers. Berlin: Springer-Verlag.

Rothemund, P. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440, 297–
302.

Rothemund, P., Papadakis, N., & Winfree, E. (2004). Algorithmic self-assembly of DNA sierpin-
ski triangles. PLoS Biology, 2(12), e424.

Rowe, J., Vose, M., & Wright, A. (2005). State aggregation and population dynamics in linear
systems. Artificial Life, 11(4), 473–492.

Rudolf, M. (1997). Konzeption und implementierung eines interpreters für atrributierte graph-
transformation. Ph.D. thesis, Technical University of Berlin.

Rus, D., & Vona, M. (1999). Self-reconfiguration planning with compressible unit modules. In
Proceedings of the 1999 IEEE International Conference on Robotics and Automation (ICRA),
vol. 4, (pp. 2513–2520). Detroit, MI, USA: IEEE Press.

Saitou, K. (1999). Conformational switching in self-assembling mechanical systems. IEEE Trans-
actions on Robotics and Automation, 15(3), 510–520.

Saitou, K., Malpathak, S., & Qvam, H. (2002). Robust design of flexible manufacturing systems
using colored Petri net and genetic algorithm. Journal of Intelligent Manufacturing, 13(5),
339–351.

Saksida, L. M., Raymond, S. M., & Touretzky, D. S. (1997). Shaping robot behavior using princi-
ples from instrumental conditioning. Robotics and Autonomous Systems, 22, 231–250.

Salzberg, C. (2006). Complexity scaling of a minimal functional chemistry. In Artificial Life X,
(pp. 165–171). Bloomington, IN, USA: MIT Press.

Salzberg, C. (2007). A graph-based reflexive artificial chemistry. BioSystems, 87(1), 1–12.

Sayama, H. (2009). Swarm chemistry. Artificial Life, 15(1), 105–114.

Seelig, G., Soloveichik, D., Zhang, D., & Winfree, E. (2006). Enzyme-free nucleic acid logic
circuits. Science, 314(5805), 1585–1588.

Sheng, W., & Yang, Q. (2005). Peer-to-peer multi-robot coordination algorithms: Petri net based
analysis and design. In Proceedings of the IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM), (pp. 1407–1413). Monterey, CA: IEEE Press.

Shirayama, M., Koshino, M., Hatakeyama, T., & Kimura, H. (2004). Artificial life simulation of
self-assembly in bacteriophage by movable finite automata. BioSystems, 77(1-3), 151–161.

Sims, K. (1994). Evolving virtual creatures. In Proceedings of the 21st Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH), (pp. 15–22). Orlando, FL, USA:
ACM.

Sipper, M. (1998). Fifty years of research on self-replication: an overview. Artificial Life, 4(3),
237–257.

Smith, A., Turney, P., & Ewaschuk, R. (2003). Self-replicating machines in continuous space with
virtual physics. Artificial Life, 9(1), 21–40.

Smith, R., & Cribbs, H. I. (1994). Is a learning classifier system a type of neural network? Evolu-
tionary Computation, 1(2), 19–36.

Bibliography 211

Smullyan, R. (1995). First-order logic. Dover Publications.

Standish, R. (2003). Open-ended artificial evolution. International Journal of Computational
Intelligence and Applications, 3, 167–175.

Stanley, K., & Miikkulainen, R. (2003). A taxonomy for artificial embryogeny. Artificial Life,
9(2), 93–130.

Støy, K., & Nagpal, R. (2004). Self-repair through scale independent self-reconfiguration. In
Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), vol. 2, (pp. 2062–2067). Sendai, Japan: IEEE Press.

Støy, K., Shen, W., & Will, P. (2003). A simple approach to the control of locomotion in self-
reconfigurable robots. Robotics and Autonomous Systems, 44(3-4), 191–199.

Studer, G., & Harvey, I. (2007). A distributed formation algorithm to organize agents with no
coordinate agreement. vol. 4648 of Lecture Notes in Computer Science, (pp. 515–524). Lisbon,
Portugal: Springer.

Studer, G., & Harvey, I. (2008). A minimal approach to modular assembly. In Artificial Life XI,
as presented abstract. Winchester, UK.

Studer, G., & Lipson, H. (2006). Spontaneous emergence of self-replicating structures in molecube
automata. In Artificial Life X, (pp. 227–233). Bloomington, IN, USA: MIT Press.

Suh, J., Homans, S., & Yim, M. (2002). Telecubes: Mechanical design of a module for self-
reconfigurable robotics. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), vol. 4, (pp. 4095–4101). Washington, DC, USA: IEEE Press.

Suzuki, I., & Yamashita, M. (1996). Distributed anonymous mobile robots - formation and agree-
ment problems. In Proceedings of the Third Colloqium on Structural Information and Commu-
nication Complexity (SIROCCO), (pp. 313–330). Siena, Italy: Carleton Scientific.

Tan, K., Wang, L., Lee, T., & Vadakkepat, P. (2004). Evolvable hardware in evolutionary robotics.
Autonomous Robots, 16(1), 5–21.

Theraulaz, G., & Bonabeau, E. (1995). Coordination in distributed building. Science, 269(5224),
686–688.

Thompson, R., & Goel, N. (1988). Movable finite automata (MFA) models for biological systems
I: bacteriophage assembly and operation. Journal of Theoretical Biology, 131(3), 351–385.

Thorsley, D., & Klavins, E. (2008). Model reduction of stochastic processes using Wasserstein
pseudometrics. In American Control Conference (ACC), (pp. 1374–1381). Seattle, WA, USA:
IEEE Press.

Tohme, H., Nakamura, M., Hachiman, E., & Onaga, K. (1999). Evolutionary Petri net approach to
periodic job-shop-scheduling. In Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics (SMC), vol. 4, (pp. 441–446). Tokyo, Japan: IEEE Press.

Tolley, M., Krishnan, M., Erickson, D., & Lipson, H. (2008). Dynamically programmable fluidic
assembly. Applied Physics Letters, 93(25), 254105.

Trianni, V., Groß, R., Labella, T., Şahin, E., & Dorigo, M. (2003). Evolving aggregation behaviors
in a swarm of robots. In Proceedings of the European Conference on Artificial Life (ECAL), vol.
2801 of Lecture Notes in Computer Science, (pp. 865–874). Dortmund, Germany: Springer.

Bibliography 212

Trianni, V., Nolfi, S., & Dorigo, M. (2004). Hole avoidance: experiments in coordinated motion
on rough terrain. In F. Groen, N. Amato, A. Bonarini, E. Yoshida, & B. Krose (Eds.) Intelligent
Autonomous Systems (IAS) 8, (pp. 29–36). Amsterdam, The Netherlands: IOS Press.

Tuci, E., Groß, R., Trianni, V., Mondada, F., Bonani, M., & Dorigo, M. (2005). Cooperation
through self-assembly in multi-robot systems. Tech. Rep. TR/IRIDIA/2005-3, Universite Libre
de Bruxelles.
URL http://www.swarm-bots.org/

Ulam, S. (1950). Random processes and transformations. In Proceedings of the International
Congress of Mathematicians, vol. 2, (pp. 264–275). Cambridge, MA.

Ünsal, C., & Khosla, P. K. (2000). Mechatronic design of a modular self-reconfiguring robotic
system. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), (pp. 1742–1747). San Francisco, CA: IEEE Press.

Valmari, A. (1998). The state explosion problem. In Lectures on Petri Nets I: Basic Models, vol.
1491 of Lecture Notes in Computer Science, (pp. 429–528). Springer-Verlag.

Varela, F., Thompson, E., & Rosch, E. (1992). The Embodied Mind: Cognitive Science and
Human Experience. The MIT Press.

Von Neumann, J. (1963). The general and logical theory of automata. In Collected Works of John
von Neumann, vol. 5, (pp. 288–328). Pergamon Press.

Von Neumann, J. (1966). Theory of Self-Reproducing Automata. Champaign, IL: University of
Illinois Press.

Wang, F., & Saridis, G. (1993). Task translation and integration specification in intelligent ma-
chines. IEEE Transactions on Robotics and Automation, 9(3), 257–271.

Weinberger, E. (1990). Correlated and uncorrelated fitness landscapes and how to tell the differ-
ence. Biological Cybernetics, 63(5), 325–336.

Werfel, J., Bar-Yam, Y., Rus, D., & Nagpal, R. (2006). Distributed construction by mobile robots
with enhanced building blocks. In Proceedings of 2006 IEEE International Conference on
Robotics and Automation, Orlando, USA.

White, P., & Yim, M. (2007). Scalable modular self-reconfigurable robots using external actua-
tion. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), (pp. 2773–2778). San Diego, CA, USA: IEEE Press.

White, P., Zykov, V., Bongard, J., & Lipson, H. (2005). Three dimensional stochastic reconfigu-
ration of modular robots. In S. Thrun, G. Sukhatme, & S. Schaal (Eds.) Robotics: Science and
Systems (RSS) I, (pp. 161–168). Cambridge, MA, USA: MIT Press.

Whitesides, G. (2002). Self-Assembly at all scales. Science, 295(5564), 2418–2421.

Whitesides, G., Mathias, J., & Seto, C. (1991). Molecular self-assembly and nanochemistry: a
chemical strategy for the synthesis of nanostructures. Science, 254(5036), 1312–1319.

Winfree, E. (1996). On the computational power of DNA annealing and ligation. In L. Landweber,
& E. Baum (Eds.) DNA Based Computers II, vol. 27 of DIMACS: Discrete Math and Theoretical
Computer Science, (pp. 199–221). Princeton, NJ, USA: American Mathematics Society.

Wolpert, D., & Macready, W. (1997). No free lunch theorems for search. IEEE Transactions on
Evolutionary Computation, 1(1), 67–82.

http://www.swarm-bots.org/

Bibliography 213

Wolpert, L., & Dover, G. (1981). Positional information and pattern formation. Biological Sci-
ences, 295, 441–450.

Wu, G., Jonoska, N., & Seeman, N. (2009). Construction of a DNA nano-object directly demon-
strates computation. BioSystems, 98(2), 80–84.

Yang, J., Monine, M., Faeder, J., & Hlavacek, W. (2008). Kinetic Monte Carlo method for rule-
based modeling of biochemical networks. Physical Review E, 78(3), 31910.

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9), 1423–1447.

Yao, X., & Higuchi, T. (1997). Promises and challenges of evolvable hardware. In Evolvable
Systems: From Biology to Hardware (Proceedings of the International Conference on Evolvable
Systems) (ICES), vol. 5216 of Lecture Notes in Computer Science, (pp. 55–78). Prague, Czech
Republic: Springer.

Yim, M., Duff, D., & Roufas, K. (2000). PolyBot: a modular reconfigurable robot. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), (pp. 514–521). San
Francisco, CA: IEEE Press.

Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., & Chirikjian, G.
(2007a). Modular self-reconfigurable robot systems. IEEE Robotics & Automation Magazine,
14(1), 43–52.

Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., & Taylor, C. (2007b). Towards
robotic self-reassembly after explosion. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), (pp. 2767–2772). San Diego, CA, USA: IEEE Press.

Yim, M., White, P., Park, M., & Sastra, J. (2009). Modular self-reconfigurable robots. In Ency-
clopedia of Complexity and Systems Science, (pp. 5618–5631). Springer.

Yoshida, H., Furusawa, C., & Kaneko, K. (2005). Selection of initial conditions for recursive
production of multicellular organisms. Journal of Theoretical Biology, 233(4), 501–514.

Zuse, K. (1969). Rechnender raum. Shriften zur Datenverarbeitung, 1, 74.
URL ftp://ftp.idsia.ch/pub/juergen/zuserechnenderraum.pdf

Zykov, V., Mytilinaios, E., Desnoyer, M., & Lipson, H. (2007). Evolved and designed self-
reproducing modular robotics. IEEE Transactions on Robotics, 23(2), 308–319.

ftp://ftp.idsia.ch/pub/juergen/zuserechnenderraum.pdf

	Coversheet
	Studer, Gregory M.
	Introduction
	Contributions
	Dynamic, scalable assembly and computation
	Research summary

	Clarifications
	Assembling systems
	Assembly and self-assembly
	Assembly and self-organization
	Assembly and dynamical hierarchies

	Thesis overview and structure

	Background and Motivation
	Origins of research into assembling systems
	Early assembling systems
	Artificial life and robotics
	The modern synthesis

	Current work on assembling systems
	Modeling dynamical hierarchies
	Dynamical hierarchies in artificial chemistries
	Multi-scale robotic assembly

	A middle way
	Meta-unit control
	Other scaling approaches

	Evolved approaches to assembled hierarchy
	Molecube replication
	Open-ended evolution

	A new model for assembly

	The CORAL Model
	Overview
	Model components

	Petri nets and C/E nets
	Comparison with other approaches
	Related Petri net assembly models

	Atomic Units
	The Environment
	Background signals
	Signal noise

	Time constants
	A simulation example
	Sample environment
	Signal control
	Past steady state?

	Assembly Scaling with NOR Operations
	Not-OR operation
	NOR assemblers
	NOR meta-units

	Assembly behavior
	Structure blinking
	Structure shielding
	Waterfall selection
	Full assembly algorithm

	Implementation in 36 bits
	Simulated assembly of meta-units

	Emulating arbitrary formulae
	Remarks

	Graph Assembly and Computation using Petri Assemblers
	Overall approach
	C/E net primitives
	Designing a C/E primitive
	Localization

	C/E assemblers
	Assembly behaviors
	Linear feedback shift registers
	Graph assembly
	Turtle assembly

	Implementation in 27 bits
	Building a target network

	Remarks

	Evolutionary Search for Scalable Assemblers
	Evolutionary algorithms and genetic programming
	Pairing assemblers
	Evolving recursive assemblers
	Genotype representation
	Fitness function
	Pairing results

	Fitness landscapes of scalable assembly
	Generalized controller and fitness function

	Tests of other algorithms
	Messy genotype encodings
	Other evolutionary algorithms
	Results

	Remarks

	Principles of Recursive Assembly
	Recursive assembly
	Why recursive assembly?
	Brains and bodies
	Logical ``bodies''
	Assembly potential and limitations of C/E units
	CE meta-constructions

	Models of assembling systems
	Self-organization and necessary complexity

	Conclusion
	NOR units
	Assembly of arbitrary computers
	Stochastic graph assembly

	Assembly and virtual evolution
	Future work
	Final remarks

	Proof of meta-unit shielding
	A comparison of C/E primitives
	Bibliography

