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SUMMARY 
 

Both mammalian and bacterial peroxidases contain novel covalent linkages. In 
the former a sulfonium linkage to a critical Met residue is thought to modify the normal 
planarity of the haem affecting the functional properties. Following on from the work of 
Metcalfe et al., 2004 which showed that such links could be engineered in ascorbate 
peroxidase, horseradish peroxidase (HRP) has been used as convenient model system to 
try and understand the structural and electronic effects of engineered covalent linkages. 
Previous work in the group (Cali, 2008) had shown that mutation of Ser167 to Met in 
HRP-C* resulted in autocatalytic cross-linking on incubation with hydrogen peroxide. 
In this thesis, two additional HRP variants, S167Y and S167W were studied and a new 
novel structural linkage discovered. 

The UV/Vis spectrum of the S167Y variant suggested a more 6-coordinate high 
spin character. The molar extinction coefficients were markedly increased, 180 mM-1 

cm-1 for S167Y and 135 mM-1 cm-1 for S167W, compared to 100 mM-1 cm-1 for the WT 
enzyme, consistent with a more 6 coordinate high spin character normally seen in lignin 
peroxidase. In contrast, the dissociation constant (Kd) of the S167W variant mutant for 
the aromatic donor BHA was hardly affected, whilst that of the S167Y variant increased 
two-fold relative to the WT, implying a significant perturbation of the aromatic donor 
binding site and / or the associated haem-linked hydrogen bonding network. 

After peroxide treatment the haem group of the S167Y variant could not be 
extracted into acid butanone in contrast to the WT. Only a proportion of the haem could 
be extracted even from the untreated S167Y variant, implying that a substantial fraction 
of the protein had formed the haem-protein linkage during folding and purification. 
These results were confirmed during reverse phase HPLC and MALDI-TOF / ESI mass 
spectroscopy measurements. The haem and protein completely co-eluted in the case of 
peroxide treated S167Y, while only ~50% of the haem was linked to the protein in the 
untreated as isolated enzyme. The MALDI-TOF and ESI mass spectrum showed that 
there was a large increase (614 Da) in the mass of the linked S167Y protein, compared 
to that of the unlinked enzyme. Unlike the sulfonium linkage obtained earlier, treatment 
with hydrogen peroxide was unnecessary to observe this increase. Interestingly, the 
100% unlinked S167Y protein could only be isolated if enzyme was prepared in the 
presence of an efficient peroxidase substrate as an antioxidant scavenger. It appears that 
a Tyr residue at position 167 is highly reactive with respect of the haem vinyl side chain 
forming a spontaneous covalent link not otherwise seen in nature. 

Pre steady-state comparison of the intermediates has shown that Compound I 
was formed essentially normally at near WT rates, however its stability was greatly 
affected in the S167Y variant (linked or unlinked), the life time being decreased to 
~0.04 s, compared to of the WT enzyme, where it was ~80 s. The substrate preference 
of the cross-linked S167Y variant was also altered. Stopped-flow measurements of the 
individual rate constants for the partial reactions of the catalytic cycle with luminol as 
reducing substrate revealed an increase in the rate of reduction of Compound I to 
Compound II (k2). 

The X-ray crystal structure of S167Y variant was solved to 1.7 Å resolution and 
the structure has been modelled and determined by x-ray crystallography. The x-ray 
structure reveals an unanticipated linkage containing an additional ring structure bonded 
to the engineered Tyr. ESI mass measurements supported this structure. 
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Chapter One: 

Introduction 
 
 

 

1.1 Peroxidases: 
 
Peroxidases are a group of enzymes that catalyze oxidation-reduction reactions. They 

were among the first enzymes to be discovered, more than a century and a half ago 

(Dunford, 1991). In 1855 Schonbein observed the ability of the compound hydrogen 

peroxide (H2O2) to oxidise certain organic compounds such as guaiacol, which was 

explained later by the presence of the enzyme peroxidase. The term peroxidase was 

used for the first time in 1898, when Linossier used this term for the enzyme that he was 

isolating from pus (Azevedo et al., 2003). Peroxidases are classified as oxido-reductases 

and are given the official [EC number 1.11.1.]. Simply, the overall reaction catalysed by 

peroxidases can be expressed by the following equation: 

 

 

 

Peroxidases are widely distributed throughout the biological world. They are found in 

many plants, in many animal tissues and in micro-organisms. These enzymes carry out a 

variety of biosynthetic and degradative functions with the concomitant consumption of 

peroxide compounds as oxidant, especially H2O2. In addition, they are responsible for 

protecting cells against the accumulation of these dangerously reactive peroxide 

compounds, that form as side-products of oxygen metabolism (Poulos and Kraut, 1980; 

Arnhold et al., 2006). 

Donor + H2O2                                     oxidised donor + 2 H2O Peroxidase 



2 
 

Toxic molecules such as superoxide radicals, hydrogen peroxide and hydroxide radicals 

can be found in cells as side-products of metabolic reactions that involve the reduction 

of O2 (Fridovich, 1998). Oxidative phosphorylation by mitochondria is one of the major 

sources of these metabolic reactions, and results in the production of superoxide free 

radicals (Loschen et al., 1974). Several enzymes are also known to produce superoxide 

as a side-product, including aldehyde oxidase (Rajagopalan et al., 1962), cytochrome 

P450 reductase (Bosterling and Trudell, 1981) and xanthine oxidase (McCord and 

Fridovich, 1968). Therefore, the primary radical produced in biological systems is the 

superoxide radical. This undergoes conversion into many other radicals, including the 

extremely reactive hydroxyl radical. It is thus important for organisms to get rid of the 

superoxide toxic molecule quickly, so that other more dangerous oxidants (e.g. 

hydroxyl radicals) do not accumulate. This reduces the risk of cell damage that occurs 

due to oxygen radicals, such as lipid peroxidation of membrane walls (Bus et al., 1974), 

DNA damage (Halliwell and Gutteridge, 1989) and protein damage (Davies, 1987; 

Davies et al., 1987). 

 

The major defence system against superoxide involves a family of metalloenzymes, 

called superoxide dismutases, by which superoxide is converted to oxygen and H2O2 

(Fridovich, 1986). So the degradation of superoxide produces hydrogen peroxide, but 

while hydrogen peroxide is not as potent an oxidising agent as superoxide, it is still 

dangerous to the cell. Hydrogen peroxide is therefore removed by two peroxidatic types 

of enzyme, catalase and peroxidase (Fridovich, 1998). Catalases decompose hydrogen 

peroxide into water and oxygen, whereas peroxidases reduce hydrogen peroxide to 

water. Peroxidases act as electron acceptors when they have reacted with hydrogen 

peroxide, they then dissipate their oxidative potential via reaction with a variety of 
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substrates (Smith and Veitch, 1998). Thus, peroxidases are oxido-reductases, which use 

H2O2 as an electron acceptor for catalyzing a wide variety of oxidative reactions. The 

pathways of formation and decay of reactive oxygen species is shown in Scheme 1.1. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Scheme 1.1: Pathways of formation and decay of reactive oxygen species. 
 

1.2 Classification of Peroxidases: 
 
Peroxidases are found in animals, plant and microorganisms, and they are classified as 

metalloenzymes. The greater proportion of them contains the ferri-protoporphyrin IX 

(haem) as a prosthetic group in their active site (Smith and Veitch, 1998). On the basis 

of their structural and catalytic properties, haem-containing peroxidases can be divided 

into two main superfamilies, the mammalian peroxidase superfamily and the plant 

peroxidase superfamily (Figure 1.1) (Welinder, 1991; Dunford, 1999a; Dunford, 

1999b). In addition, there are two further, rather indistinct groups of haem peroxidases, 

chloroperoxidases (Sundaramoorthy et al., 1995) and the di-haem cytochrome c 

peroxidases (Fulop et al., 1995). 
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The primary sequences and three dimensional structures of the plant and mammalian 

peroxidase superfamilies are quite different and distinct. The most important chemical 

difference between them is in the nature of the interactions that bind the apo-protein to 

the haem prosthetic group. 

 

1.3 Mammalian peroxidase superfamily: 
 
This superfamily includes enzymes such as myeloperoxidase, MPO, (EC 1.11.1.7), 

thyroid peroxidase, TPO, (EC 1.11.1.7), eosinophil peroxidase, EPO, (EC 1.11.1.7), 

lactoperoxidase, LPO, (EC1.11.1.7) and a partial region of prostaglandin endoperoxide 

synthase (EC 1.14.99.1) (Figure 1.1). The naming of the mammalian peroxidase 

superfamily derived from the fact that its members were originally identified only in 

mammals (Hiraga et al., 2001; Zederbauer et al., 2007b). Note that, although 

glutathione peroxidase is categorized as an animal peroxidase (Churin et al., 1999), it is 

not a member of this superfamily and does not contain a haem group.  

 

1.3.1 Functional importance: 
 
The main functions of mammalian peroxidases are in host defence against infections, 

pathogenesis of microorganisms and hormone synthesis (Furtmuller et al., 2006). MPO, 

EPO and LPO play a prominent role in the immune system by exerting antimicrobial 

effects indirectly through catalyzing the hydrogen peroxide mediated peroxidation of 

halide ions, particularly chloride and the pseudo-halide thiocyanate (Harrison and 

Schultz, 1976; Klebanoff, 1991; Thomas et al., 1991; Van Dalen et al., 1997), to form 

the powerful antimicrobial agents hypohalous and hypothiocyanous acids, respectively, 

as described by the following equation where X− represents the halide or thiocyanate: 
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The products of this equation are responsible for the killing of invading pathogens and 

viruses (Belding et al., 1970; Klebanoff, 1970; Zederbauer et al., 2007b). MPO is the 

most abundant protein present in the azurophilic granules of neutrophils and in the 

lysosomes of monocytes. It represents the cornerstone of cell-mediated antimicrobial 

activity in the innate immune system of humans (Zederbauer et al., 2007b). LPO is 

found in human exocrine secretions, such as milk, tears and saliva, that represent the 

first line of protection against harmful microorganisms entering the human body 

(Thomas et al., 1991). EPO is released from activated eosinophils and plays an 

important role in eliminating tissue-invasive parasites (Gleich et al., 1989). In contrast, 

TPO has a key role in the biosynthesis of the thyroid gland hormones, thyroxin and 

triiodothyronine (Taurog, 1970). 

 

1.3.2 Structures of mammalian peroxidases: 
 
For the mammalian peroxidases, the crystal structures of MPO and LPO have been 

solved, while the structures of EPO and TPO are not yet known. The crystal structure of 

MPO became available in 1992, when Zeng and Fenna were able to determine the 

overall enzyme structure at 3 Å resolution by X-ray crystallography of the canine 

enzyme (Zeng and Fenna, 1992). After that, the X-ray crystal structure of human MPO 

at 2.8 Å and 2.3 Å resolution was obtained, and this structure has since been extended to 

1.9 and 1.8 Å resolution using data recorded at -180 oC (Fiedler et al., 2000; Blair-

Johnson et al., 2001; Capena et al., 2009). Recently, the crystal structure of caprine 

(goat) LPO at 2.4 Å resolution has been determined (Singh et al., 2008). 

_ + H2O2   +   X     +    H3O                            HOX     +    2H2O 
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Figure (1.2) shows the overall protein fold for human MPO (Fiedler et al., 2000). 

Human mature MPO is a glycosylated, cationic, dimeric molecule with a single 

disulfide bridge between the two monomers. Each symmetry related monomer (73 

kDa), contains two polypeptide chains of 14.5 and 58.5 kDa respectively, known as 

heavy and light chains. The heavy chain is composed of 467 amino acids and contains 

five intra-chain disulfide bridges, while there are 106 amino acids in the light chain with 

one intra-chain disulfide bridge. The secondary structure is largely α-helical, with very 

little β-sheet, with a total of 22 helices ranging in length from 4-29 residues (Zeng and 

Fenna, 1992; Fiedler et al., 2000).  

 

Human mature EPO (69.8 kDa) is a highly cationic, monomeric glycoprotein consisting 

of 715 amino acids. The molecule has two polypeptide chains, a 57.9 kDa heavy chain 

and a 11.9 kDa light chain, similar to the arrangement of the MPO monomer (Carlson et 

al., 1985; Olsson et al., 1985; Furtmuller et al., 2006). 

 

Human LPO is a predominantly α-helical single-chain polypeptide glycoprotein with 

molecular weight of 80 kDa. The DNA sequence of human LPO codes for a protein of 

712 amino acids with an observed 51 % similarity on basis of sequence alignment with 

both human MPO and EPO (Langbakk and Flatmark, 1989; Ueda et al., 1997). The 

complete amino acid sequence determination of caprine LPO shows that it is a single-

chain polypeptide of 595 amino acid residues including 15 cysteine residues that form 

seven disulfide bridges. From X-ray data the monomeric structure is largely α-helical 

with only two small anti-parallel β-sheets (Singh et al., 2008). Figure 1.3 depicts a 

schematic diagram of the caprine LPO molecule. 



 
 

 

 

 

          
 

 
 
 

 

 

 

Figure 1.2: The overall protein fold for human MPO dimer. The heavy polypeptides 

of the two halves are coloured red and blue, whereas the light polypeptides are in a 

lighter shade of the same colour. Other colour coded features include: haems (green), 

carbohydrate (orange), calcium (pink), and chloride (yellow). At the centre of the 

molecule the disulfide linking the two monomers is shown in black. This figure is 

reproduced from Fiedler et al., 2000. 



 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3: Schematic diagram of the caprine LPO monomer. α-helices are 

represented as cylinders, and β-sheets are indicated by arrows. The iron atom is shown 

as a brown-coloured sphere, iodine ions are shown as purple-coloured spheres, and the 

calcium ion is shown as a grey-coloured sphere. The haem moiety is indicated in CPK 

representation (green), and the four carbohydrate chains attached to Asn95, Asn205, 

Asn241, and Asn332 are shown in ball-and-stick representation. The helices have been 

numbered. This figure is reproduced from Singh et al., 2008. 
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The gene for human TPO encodes a single-chain polypeptide consisting of 933 residues 

which has a molecular weight of approximately 100 kDa. Compared to the other 

mammalian peroxidases TPO has a C-terminal extension and is a type-1 glycosylated 

transmembrane protein (Kimura et al., 1987; Baker et al., 1994; Nishikawa et al., 

1994). In general therefore, the overall structures of the four mammalian peroxidases 

seem to have a similar core. Each monomer, or catalytic domain, of these peroxidases 

also contains one iron atom, present as a covalently bound ferri-protoporphyrin IX 

derivative, in addition to one calcium ion (Zederbauer et al., 2007b).  

 

1.3.3 Active site architecture of mammalian peroxidases: 
 
The haem group is essential to the active site of all peroxidase enzymes. This group 

consists of a ring structure, called a tetrapyrrole ring system, complexed to a central iron 

atom. The pyrrole rings are linked together by methene bridges (-CH=) to create a 

conjugated double bond system where electrons can be shared across the whole ring. 

The carbon atoms of the methene bridges are located at positions α, β, γ and δ. Each 

pyrrole ring bears a number of different side chains; four methyl groups are located at 

positions 1, 3, 5 and 8, two vinyl groups at positions 2 and 4 and two propionate groups 

are present at positions 6 and 7 (Figure 1.4) (Dunford, 1999e). 

 

One of the most important structural features of mammalian peroxidases is the nature of 

the binding of the haem group to the protein molecule. In MPO the methyl groups on 

pyrrole rings A and C of the protoporphyrin IX are modified to allow the formation of 

ester linkages with the carboxyl groups of Glu242 of the heavy polypeptide chain and 

Asp94 of the light polypeptide chain (human enzyme). In addition, the β-carbon of the 

vinyl group on pyrrole ring A forms a covalent bond with the sulfur atom of Met243 of 
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the heavy chain (human enzyme), giving rise to a sulfonium ion linkage (Figure 1.5). 

By these interactions the haem porphyrin ring is considerably distorted from planarity 

and takes on a bow-shaped structure (Fiedler et al., 2000).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Structure of ferri-protoporphyrin IX (haem). The modified Fisher 

numbering system is used to describe the overall structure (Dunford, 1999e). 

 

 

The full mode of haem binding revealed by Fiedler and co-workers (Fiedler et al., 2000) 

is so far unique to MPO. Although all other members of the mammalian peroxidase 

superfamily contain equivalents to Asp94 and Glu242 in their sequences, they lack a 

methionine at positions equivalent to 243. There is a lot of biochemical and biophysical 

evidence which confirms the presence of haem-protein ester linkages, analogous to 

those of MPO, in human LPO using Asp225 and Glu375 (Andersson et al., 1996; Rae 

and Goff, 1996; DePillis et al., 1997; Suriano et al., 2001; Colas et al., 2002), in human 

EPO through Asp93 and Glu241 (Oxvig et al., 1999), and in human TPO using Asp238 

and Glu399 (Taurog, 1999). However, the methionine at position 243 in human MPO is 
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substituted by threonine in human EPO (Sakamaki et al., 1989), whereas in human TPO 

a valine is found at this position (Kimura et al., 1987); also human LPO has been shown 

to contain a histidine at this position (Ueda et al., 1997), and in bovine LPO a glutamine 

is present (Cals et al., 1991). Thus, the sulfonium linkage from the protein to the ring A 

vinyl group is a unique feature of MPO, and the presence of this positively charged 

sulfur atom covalently attached to a pyrrole ring vinyl group may be responsible for the 

unusual spectral properties that distinguish this protein from other mammalian 

peroxidases (Fenna et al., 1995). It is important to note here that all covalent links 

between the haem and the protein lie on the distal side of the haem group. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.5: The non-planar porphyrin ring in human MPO and its covalent 

attachments to the protein via two ester bonds [Asp94 and Glu242] and one 

sulfonium linkage [Met243]. In addition the catalytic residues His95, Arg239, and 

Gln91 are shown, the latter being important in halide binding. The figure was 

constructed by Accelrys DS visualizer using the coordinates deposited in the PDB 

(accession code 1CXP). 
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1.3.4 Spectral features of mammalian peroxidases: 
 
In the haem of haemoproteins, there are four coordination positions in a plane around 

the iron atom which are occupied by nitrogen atoms of the porphyrin, and the fifth 

coordination position at least, and possibly the sixth position also, is occupied by a 

donor group from the protein. In peroxidases, the fifth position is occupied generally by 

a nitrogen atom of the imidazole group of a histidine residue (referred to as the proximal 

histidine). Two main spin states are found for the ferri-protoporphyrin of peroxidases. 

The first has the spin moment of five unpaired electrons (spin 5/2) and is called the high 

spin state, while the second has only one unpaired electron (spin 1/2) and is called the 

low spin state (Brill and Williams, 1961). 

  

The electronic absorption spectra of haem proteins are characterised by the presence of 

two groups of intense bands. The first group, which includes Soret, α and β bands, is 

due to transitions of the π-electrons of the haem porphyrin group, while the second 

group consisting of two bands, one at about 600-650 nm (CTI) and the other at 450-500 

nm (CTII), is due to charge transfer to the high spin Fe3+ ion. The analysis of absorption 

spectra therefore allows one to establish the coordination and spin-state(s) of the haem 

iron atom, on the basis of correlation with structurally characterised proteins and model 

compounds. Both high and low spin states show typical Soret, α and β bands. The 

intensity of the α and β bands is low in the high spin state, and they are often obscured 

by the charge transfer bands, while the charge transfer bands are absent in the low spin 

state. The intensity of the α band in the low spin state is very dependent on the character 

of the fifth and sixth ligands, but the β band intensity is almost independent of the fifth 

and sixth ligands (Brill and Williams, 1961). 
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The unusual, additional, haem-protein covalent binding in mammalian peroxidases is 

responsible for their peculiar spectroscopic properties. The Soret bands of the visible 

absorption spectra of mammalian peroxidases are characteristically red-shifted with 

respect to those seen for other haem proteins, and this spectral shift has generally been 

ascribed to the influence of the protein environment on the spectral properties of the 

haem. LPO, TPO and EPO have two ester bonds in their structures between the haem 

and protein. MPO is distinctive from other mammalian peroxidases in that it forms an 

extra covalent sulfonium ion linkage between the haem and protein. This difference in 

the number of linkages that bind the protein with the haem has been interpreted as the 

major factor that contributes to the variation in optical properties between MPO and 

other mammalian peroxidases (Fiedler et al., 2000; Zederbauer et al., 2007b). 

 

Spectral analysis of LPO shows that the Soret band is fairly sharp with a maximum at 

412 nm, and the visible spectrum also exhibits maxima at 501, 542, 595, and 631 nm. 

The width and wavelength of the Soret band, as well as the wavelength of CT1 at 631 

nm are characteristic of a six-coordinate (6C) high-spin (HS) ferric haem (Eaton and 

Hochstrasser, 1967; Sievers, 1980; Zederbauer et al., 2007b). The spectral features of 

both EPO and TPO are very similar to that of LPO (Table 1.1). The absorption maxima 

of MPO are red shifted compared to other mammalian peroxidases, and are responsible 

for the characteristic green colour of the enzyme. The visible spectrum displays a Soret 

band at 428 nm, with additional maxima at 498, 570, 622 and 690 nm (Andrews and 

Krinsky, 1981; Wever and Plat, 1981). Important in this regard, it is noteworthy that 

replacement of Met243 (the residue responsible for the sulfonium linkage) in MPO 

produces an enzyme that exhibits a Soret band at 410–412 nm, considerably blue-

shifted from the 428 nm band of the native enzyme and similar to those of the other 
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mammalian peroxidases (Jacquet et al., 1994; Kooter et al., 1997a; Kooter et al., 

1999b). Similarly, the E242Q mutant of MPO, presumably lacking one of the haem-

protein ester bonds, exhibits a blue-shifted Soret band at 416–418 nm, and the mutants 

D94N and D94V, presumed to lack the other ester bond, also have a blue-shifted Soret 

band at 413-414 nm (Jacquet et al., 1994; Floris et al., 1995; Kooter et al., 1999a). 

These studies strongly suggest that the presence of one more linkage from the haem to 

the protein in MPO is responsible for its unusual spectral properties. 

 

Table 1.1: Electronic absorption spectra data of native mammalian peroxidases 

and some mutants of MPO. 

Enzyme 
Soret peak 

(nm) 

CTI 

(nm) 

CTII 

(nm) 

α band 

(nm) 

β band 

(nm) LPOa 412 631 501 595 542 EPOb 413 638 500 580 542 TPOc 412 638 496 582 547 MPOd,e 428 690 498 622 570 M243T MPOf 413 690 502 590 548 D94V MPOg 413, 428 682 596 620 568 E242Q MPOh 418 665 508 647 554 

 

a(Sievers, 1980), b(Furtmuller et al., 2006), c(Dunford, 1999c), d(Zederbauer et al., 2007b), e(Wever and Plat, 1981), 
f(Kooter et al., 1999c), g(Kooter et al., 1999a), h(Kooter et al., 1999b). 

 

 

 

It is also clearly evident that the extra haem-protein covalent linkages are important in 

maintaining the catalytic activities of mammalian peroxidases. The catalytic properties 
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of mutants of human MPO, in which residues involved in the covalent ester or 

sulfonium haem attachments were replaced, were found to be markedly different from 

those of the native enzyme. Mutation of Met243 had a huge effect on the activity of the 

enzyme, neither the M243Q nor the E242Q mutants showed chlorination activity and 

both mutants had reduced catalytic activities when substrates for single electron 

oxidation reactions were used. In addition, the D94N mutant had about 30% peroxidase 

activity while the D94V mutant had activity at even lower levels (a small percentage 

activity was observed) (Floris et al., 1995; Kooter et al., 1997a; Kooter et al., 1999a; 

Kooter et al., 1999b). 

 

1.3.5 Mechanism of action of mammalian peroxidases: 
 
Mammalian peroxidases efficiently catalyze both oxidation and halogenation cycles, 

producing oxidizing and halogenating agents. The first step of these cycles is the 

reaction of the ferric haem [Fe(III)] form of the peroxidase with hydrogen peroxide to 

form a redox intermediate called Compound I (Step 1). Compound I, which has a 

porphyrin π-cation radical and an oxygen atom coupled by a double bond to Fe (IV), 

contains two oxidizing equivalents more than the resting enzyme (Dolphin and Felton, 

1974; Marquez et al., 1994). 

 

 

 

Under physiological conditions, mammalian peroxidases are characterised by their 

ability to oxidise halides and thiocyanate into hypohalous and hypothiocyanous acids, 

respectively, with concomitant reduction of Compound I in a two-electron step back to 

Native enzyme                                     Compound I 
PorFe(III)  +  H2O2                      •+PorFe(IV)=O  +  H2O              Step 1 
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the ferric enzyme form (Step 2, where: X− represents the halide or thiocyanate and HOX 

the corresponding acid).  

 

 

 

This step along with step 1 above is the fall halogenation cycle (Figure 1.6). The 

electron donors can be arranged by the ease of oxidation as follows: SCN− > I− > Br− > 

Cl− (Arnhold et al., 2006). All haem peroxidases, including plant superfamily 

peroxidases without extra covalent haem links, can oxidise iodide and thiocyanate. The 

more difficult oxidation of bromide is catalyzed by mammalian peroxidases, but with 

less efficiency also by the plant peroxidases (Munir and Dordick, 2000). However, 

MPO Compound I is the only one that is capable of oxidizing chloride at pH 7.0 

(Marquez et al., 1994; Furtmuller et al., 1998), by a mechanism that includes a 

Compound I-chloride intermediate. At low chloride concentration, the formation of 

Compound I-chloride is rate limiting, while at high chloride concentration the transition 

back to native enzyme and the formation of the hypochlorous acid is rate controlling 

(Furtmuller et al., 2000). It has been observed that the presence of the sulfonium linkage 

in human MPO has a significant role to play in chloride oxidation. Mutation of Met243 

into Thr, Gln or Val (the corresponding residues in EPO, LPO and TPO) all had a 

dramatic effect on the overall chlorination activity. With the exception of M243T, all 

variants completely lost their chlorination activity (Kooter et al., 1999b). In addition, it 

was found that replacement of the ester residue Glu242 by Gln lead to a decrease in the 

overall chlorination and bromination activity to 20% and 24%, respectively, compared 

to wild-type recombinant MPO. The variants D94N and D94V have also been shown to 

have a chlorination activity substantially lower than that of wild-type MPO (Kooter et 

•+PorFe(IV)=O   +   X−   +   H+                        PorFe(III)  +  HOX        Step 2 
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al., 1999a; Zederbauer et al., 2005; Zederbauer et al., 2007a). Also, the peroxidative 

activity of recombinant LPO was shown to be highly dependent on the number of esters 

to the haem in the enzyme (DePillis et al., 1997). 

 

Compound I of mammalian peroxidases can also react with numerous other substrates, 

including tyrosine, tryptophan, nitrite, phenol and indole derivatives, by two 

consecutive one-electron steps to produce the ferric enzyme again. This process 

involves the formation of a second intermediate called Compound II [PorFe(IV)=O], 

and leads to the formation of substrate free radicals as shown in the following, Steps 3 

and 4. 

 

 

 

 

These two steps, in addition to the oxidation of the ferric enzyme by hydrogen peroxide 

(Step 1), are combined to form the peroxidase cycle (Figure 1.6) (Marquez and 

Dunford, 1995; Burner et al., 1999; Jantschko et al., 2002; Zederbauer et al., 2007b). 

 

Finally, in the absence of one-electron donors, a third enzyme state named Compound 

III is formed slowly. This can occur either by reaction of Compound II with hydrogen 

peroxide (Step 5) or by the fast reaction of superoxide with native enzyme (Step 6) 

(Dunford, 1999d). 

 

 

 

PorFe(IV)=O +  AH2  +  H+                      PorFe(III) + •AH  +  H2O   Step 4 

  •+PorFe(IV)=O  + AH2                        PorFe(IV)=O  +  •AH +  H+      Step 3 
Compound II 

PorFe(IV)=O  +    H2O2                           PorFe(II)O2  +  H2O           Step 5 

 Compound III 

PorFe(III)  + O2
•−                        PorFe(II)O2                                 Step 6 



  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.6: The overall reaction mechanisms of mammalian peroxidases. Both 

halogenation and peroxidase cycles utilize hydrogen peroxide to oxidise the native 

ferric peroxidase to Compound I. AH2 and •AH represent substrate being oxidised and 

the formed radical product, respectively. X− represents halide or thiocyanate and HOX 

the corresponding acid. 
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1.4. Plant peroxidase superfamily: 
 
The second superfamily of peroxidases, the plant peroxidase superfamily, consists of 

peroxidases from plants, fungi, bacteria and yeast. This superfamily has been further 

subdivided on the basis of sequence and structural homology into three classes (Figure 

1.1) (Welinder et al., 1992). 

 

1.4.1. Class I. Peroxidases of prokaryotic origin: These include the 

intracellular enzymes in plants, bacteria and yeast, such as microbial cytochrome c 

peroxidase (EC 1.11.1.5), bacterial catalase-peroxidase (EC 1.11.1.6) and ascorbate 

peroxidase (EC 1.11.1.11). In fact, ascorbate peroxidase is not plant-specific, it has also 

been isolated and purified successfully from the bovine eye with the N-terminal 

sequence of the purified enzyme showing a very high homology to plant enzymes 

(Wada et al., 1998). Class I peroxidases are characterised by the fact that they do not 

have glycosylation, cysteine disulphide bridges, calcium ions or N-terminal signal 

sequences for secretion. It was observed that the Trp191 residue of the yeast 

cytochrome c peroxidase appears to be conserved in other Class I peroxidases 

(Welinder, 1992; Dunford, 1999b). 

 

1.4.2 Class II. Secreted fungal peroxidases: These are extracellular peroxidases 

from fungi, including Coprinus cinereus peroxidase, CiP, (EC 1.11.1.7), lignin 

peroxidase, LiP, (EC 1.11.1.14) and Mn+2-dependent peroxidase, MnP, (EC 1.11.1.13). 

Unlike the Class I peroxidases, the fungi secretory peroxidases are characterised by 

having an N-terminal signal sequence for secretion. Also, they have about 5% 

carbohydrate, two calcium ions and four conserved disulfide bridges in their structure 

(Welinder, 1992). Tyrosine residues are rare in Class II peroxidases, appearing once 
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only in lignin peroxidases, and absent from other class members. Class II peroxidases 

have an additional 40 to 60 amino acid residues at their C-termini, compared to the 

peroxidases in other classes (Welinder, 1992). 

 

1.4.3 Class III. Classical secretory plant peroxidases: The most intensively 

studied and well known enzyme in this class is horseradish peroxidase (HRP, EC 

1.11.1.7). Besides the structure of horseradish peroxidase, HRP, other known Class III 

structures are those for peanut peroxidase, PNP, (Schuller et al., 1996), soybean 

peroxidase, SoP, (Puppo et al., 1980), turnip peroxidase, TuP, (Hosoya, 1960), tobacco 

peroxidase, TobP, (Mader and Fussl, 1982) and barley peroxidase, BaP, (Henriksen et 

al., 1998b). Similarly to Class II peroxidases, the Class III peroxidases contain two ions 

of calcium, an amino-terminal signal sequence for secretion and four conserved 

disulfide bridges. In addition, they have extra helices that play a role in restricting 

access to the haem edge and binding aromatic electron donor molecules. The 

carbohydrate content in their structures ranges between 0-25% (Welinder et al., 1992). 

 

A comparison of the structures of plant peroxidase superfamily enzymes shows that all 

members contain 10 common α-helices, which can be considered as two five-helical 

structures, one the distal domain, and the other the proximal domain. Members of 

Classes I and II have one extra helix unique to their Class, whilst there are three extra 

helices found in Class III peroxidases, two of these three helices, F and F" are involved 

in the substrate access channel leading to the edge of the haem (Schuller et al., 1996; 

Gajhede et al., 1997). 
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1.5 Horseradish Peroxidase: 

1.5.1 Horseradish: 
 
The horseradish (Armoracia rusticana) belongs to the family Brassicaceae (Crusiferae). 

Horseradish is a hardy perennial herb cultivated in temperate regions of the world, 

particularly, South-Eastern Europe, Western Asia and North America. Principal 

production areas are located in the USA and, to a lesser extent, Europe. The plant grows 

up to 1.5 metres tall and is mainly cultivated for its large white root, which grows 

entirely underground to about 1 metre. The root contains a pungent, acrid and vesicating 

volatile oil. It also contains useful minerals including calcium, sodium, magnesium and 

vitamin C; the fresh root contains an average of 302 mg per 100 g vitamin C (Peter, 

2004). 

 

Horseradish is the only natural source of horseradish peroxidase. Production of the 

enzyme from horseradish roots occurs on a relatively large scale due to its commercial 

uses; it is used in diagnostic, analytical, biochemical and biotechnological applications, 

for example as a component of clinical diagnostic kits, and for immunoassays (Tijssen 

and Kurstak, 1984; Maidan and Heller, 1992; Garguilo et al., 1993; Veitch, 2004).  

 

1.5.2 General introduction to the enzyme: 
 
Horseradish peroxidase (HRP, EC 1.11.1.7), is one of the most important haem-

containing enzymes obtained from a plant source and has been studied for more than a 

century. The first observation of a reaction catalysed by horseradish peroxidase was by 

Lois Antonie Planche when he mentioned it in his note of 1810 (Veitch and Smith, 

2001; Veitch, 2004). 
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Horseradish peroxidase is not one enzyme, but a group of isoenzymes. As long ago as 

1958, five isoenzymes had been isolated from horseradish root using 

carboxymethylcellulose chromatography, called HRP A, B, C, D and E (Paul, 1958). In 

1966 seven isoenzymes were isolated and purified using DEAE-cellulose 

chromatography, where HRP-A could be further resolved into three fractions called A1, 

A2 and A3 (Shannon et al., 1966). Since then, more than 40 isoenzymes have been 

identified and they are divided into groups according to their isoelectric points. The 

acidic group contains A1, A2 and A3 isoenzymes, the neutral group contains B and C 

isoenzymes and the basic group contains D and E isoenzymes (Kay et al., 1967; Shin et 

al., 1971; Veitch and Smith, 2001). HRP-C is the most abundant isoenzyme isolated 

from horseradish root. Significant progress has been made on HRP-C structure and 

function since 1990, after a recombinant form of the enzyme, HRP-C*, was expressed 

successfully in E. coli and refolded in vitro (Smith et al., 1990). Native HRP-C enzyme 

has 18-22% carbohydrate, attached to the enzyme through eight asparagine residues 

Asn13, Asn57, Asn158, Asn186, Asn198, Asn214, Asn255 and Asn268, evenly 

distributed over the surface of protein but with some heterogeneity (Chance and 

Maehly, 1955; Welinder and Mazza, 1975; Welinder, 1976; Welinder, 1979). 

 

1.5.3 Structure of horseradish peroxidase: 

1.5.3.1 General features: 
 
HRP-C was completely sequenced in 1976 (Welinder, 1976), although the first solution 

of its three dimensional structure using X-ray crystallography was not achieved until 

1997 on the recombinant enzyme HRP-C* (Figure 1.7) (Gajhede et al., 1997). The 

enzyme has been characterised as a single polypeptide chain with 308 amino acid 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.7: Ribbon representation of HRP-C* structure. Helices are shown in red 

colour while the small region of β structure is shown as a light blue arrow. The haem 

group is shown in red. The structure also has two calcium ions in green. The figure was 

constructed by Accelrys DS visualizer using the coordinates deposited in the PDB 

(accession code 2ATJ). 
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residues, folded into the 10 core α helices plus 3 extra helices and molecular weight of 

33,890 Da (Welinder, 1979). It has four disulfide bridges Cys11–Cys91, Cys44–Cys49, 

Cys97–Cys301 and Cys177–Cys209 (Welinder, 1976). Two different types of metal 

centre are found in HRP-C, which play essential roles in the structural and functional 

integrity of the enzyme; these are iron (III) protoporphyrin IX and two calcium ions 

(Haschke and Friedhoff, 1978; Shiro et al., 1986; Gajhede et al., 1997). 

 

1.5.3.2 Haem prosthetic group: 

 
HRP-C contains iron (III) protoporphyrin IX (ferri-protoporphyrin IX), i.e. a haem 

group, as a prosthetic group in its active site. In addition to the four coordination 

positions with the nitrogen atoms of the porphyrin pyrrole rings, the haem iron has two 

axial coordination sites (the fifth and sixth positions) where binding can also occur. The 

haem group is attached to the protein at the fifth position through a covalent bond 

between the iron atom and the Nε2 atom of His170 (proximal histidine). The sixth 

coordination site is essentially unoccupied in the resting state of the enzyme (Veitch and 

Smith, 2001; Veitch, 2004). Indeed, this is the only covalent link between the haem 

prosthetic group and the protein; there are no additional covalent linkages observed 

similar to those in mammalian peroxidases between the protein and porphyrin (Kooter 

et al., 1997b). Nevertheless, between the haem group and the protein there is a hydrogen 

bonding network, between the propionate groups and the amino acid side chains of 

Glu176, Ser73, Ser35 and Arg31 (Gajhede et al., 1997). 

 

The spin state of the Fe (III) in the haem group depends greatly on the orbital occupancy 

of its d-orbital electrons. The nature of this occupancy is influenced by the ligand bond 

electrons at the fifth and sixth iron atom positions (Dunford, 1999f). In HRP, the ferric 
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iron has five unpaired electrons in the d-orbital (spin 5/2) and is referred to as high spin. 

Indeed, it is reasonable to state that the dominant species of the resting state of HRP-C 

is five-coordinate high spin (5C-HS), although a small amount of six-coordinate high 

spin haem (6C-HS) can be detected. In the presence of a ligand in the sixth coordination 

site of the ferric iron, the spin state is affected due to the impact of the ligand field on 

the distribution of electrons in the d-orbital (paired or unpaired). If the ligand field is 

‘weak’, such as with a fluoride ligand, the electrons in the d-orbital are not affected too 

much and remain unpaired, and as a result the state is described as 6C-HS. However, in 

the presence of a ‘strong’ ligand like cyanide, the ligand field will force the electrons to 

be paired in the d-orbital, and therefore only one electron remains unpaired (spin 1/2), 

this state is described as 6C-LS (Dunford, 1999f; Veitch and Smith, 2001). 

 

1.5.3.3 The active site structure of HRP-C: 

 
The distal (the region of the enzyme lying above the plane of the haem when viewed in 

the usual orientation) and proximal (the region lying below the plane of the haem) 

domains of HRP-C contain residues crucial to the function of the active site of the 

enzyme (Figure 1.8) and are described in detail below. 

 

1.5.3.3.1 Proximal region: 

 
In the proximal domain, the His170 residue is considered the most important residue for 

catalysis which, as noted previously, is covalently bonded to the haem iron. In addition, 

there is the Asp247 residue, which forms a hydrogen bond via its carboxylate side chain 

with the His170 Nδ1. The strength of this interaction controls the basicity of the 

proximal histidine and also maintains the resting state haem in its five-coordinated state. 



  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Haem and catalytic residues in the active site of HRP-C. The haem 

group (shown in red colour) is coordinated to the proximal histidine His170. The sixth 

coordination site distal to the haem group is vacant. The figure shows the location of 

important distal site residues Arg38, Phe41, His42 and Asn70. The figure was 

constructed by Accelrys DS visualizer using the coordinates deposited in the PDB 

(accession code 2ATJ). 
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It was found that the imidazole ring of His170 is tightly stacked against the side chain 

of Phe221 (Gajhede et al., 1997), and the loss of this π–π interaction leads to a 

perturbation of the haem pocket in the enzyme (Howes et al., 2001c). The role of the 

proximal histidine ligand in peroxidase function has been studied by replacing His170 

with alanine. It was observed that the reaction of H170A variant with H2O2 did not give 

any spectroscopically detectable Compound I or Compound II but resulted in the 

gradual degradation of the haem group. The activity of the mutant could be partially 

rescued by the addition of exogenous imidazole (Newmyer et al., 1996b). This has also 

been shown for other peroxidases of the plant peroxidase superfamily (Goodin and 

McRee, 1993). 

 

1.5.3.3.2 Distal region: 
 
The distal region of HRP-C contains a number of amino acid residues that have an 

essential role in catalysis; these include Arg38, Phe41, His42 and Asp70 (Figure 1.8). 

Two of these residues Arg38 and His42 are conserved in all plant peroxidases and are 

known to play a role in the acid-base catalytic cleavage of the O-O bond of peroxide 

during the process of Compound I formation. The catalytic role of the histidine residue 

in the formation of the Compound I intermediate was first proposed in 1980 by Poulos 

and Kraut (Poulos and Kraut, 1980), and then confirmed in 1993 by Erman and co-

workers when they found that the replacement of histidine by leucine caused a reduction 

of 105 fold in the rate of Compound I formation (Erman et al., 1993). 

 

It has since been shown that the rate of Compound I formation is drastically decreased 

by more than five orders of magnitude when His42 is replaced by other non-polar 

residues, such as Ala or Val (Newmyer and Ortiz de Montellano, 1995; Newmyer and 
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Ortiz de Montellano, 1995; Rodriguez-Lopez et al., 1996a). The addition of exogenous 

imidazole (2-substituted imidazoles) partially rescues both the rate of Compound I 

formation and the peroxidase activity of the H42A mutant (Newmyer and Ortiz de 

Montellano, 1996a). The catalytic activity can also be partially rescued by the 

introduction of another histidine residue in a different position as with the double 

mutant [H42A:F41H] HRP (Savenkova et al., 1996) and [H42V:R38H] HRP 

(Savenkova et al., 1998). In Chloroperoxidase, a versatile but unusual haem-containing 

peroxidase, the catalytic base used to assist in the process of O-O bond cleavage during 

Compound I formation is a glutamic acid residue rather than histidine (Sundaramoorthy 

et al., 1995). Thus, the effect of replacing His42 with glutamic acid, to give an enzyme 

that mimics in part the distal pocket of chloroperoxidase, has been investigated (Tanaka 

et al., 1996; Jennings, 1998). An intermediate rate of Compound I formation can be 

achieved with H42E, suggesting that this residue can act as an alternative proton 

acceptor, although it is only weakly basic (Veitch and Smith, 2001). 

 

The catalytic role of Arg38 in HRP-C has also been investigated through site directed 

mutagenesis. The importance of Arg38 comes from its ability to stabilise the transition 

state intermediate Compound 0 (hydroperoxide complex) during the formation of 

Compound I (Rodriguez-Lopez et al., 1996a; Rodriguez-Lopez et al., 1996b). In the 

case of the R38L mutant, the absence of the Arg residue at position 38 leads to a 

decrease in the rate of Compound I formation, but not as drastically as in the His42 

mutants (Rodriguez-Lopez et al., 1996a). Similar results were reported for the R38L 

mutant, where it was found that there was a 500-fold decrease in Compound I formation 

compared to the wild type enzyme (Smith et al., 1993). The double mutant H42E:R38S 
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proved the importance of these two residues in the catalytic reduction of H2O2, as it 

shows one of the slowest rates of Compound I formation known (Meno et al., 2002). 

 

It has been observed that the presence of the hydrogen bond between the His42 Nδ1 

hydrogen and Asn70 Oδ1 oxygen plays an important role in maintaining the basicity 

and alignment of the catalytic His42 residue, and fixes it in the correct position for 

participation in the acid-base catalytic reduction of H2O2 (Nagano et al., 1995; Nagano 

et al., 1996; Tanaka et al., 1997). Disruption of this hydrogen bond, as in N70D and 

N70V variants, leads to a presumed decrease in the basicity of His42 and decreases the 

rate of Compound I formation (Nagano et al., 1996). 

 

1.5.3.4 Calcium binding sites: 
 
Calcium ions are the most abundant metal ions found in proteins. They have the ability 

to bind to oxygen containing ligands, with a coordination number of 6 or 7. All plant 

peroxidases in Classes II and III contain two calcium binding sites, one proximal and 

the other distal to the haem plane. In HRP-C, the coordination number of each calcium 

ion is seven. The distal calcium is coordinated with oxygen-donor ligands provided 

from the side chain carboxylates of Asp43 and Asp50, the side chain hydroxyl of Ser52, 

the backbone carbonyls of Asp43, Val46 and Gly48 and the structural water molecule 

W15 (Figure 1.9). The proximal calcium is coordinated with oxygen-donor ligands 

provided from the side chain carboxylates of Asp222 and Asp230, the side chain 

hydroxyls of Thr171 and Thr225, and the backbone carbonyls of Thr171, Thr225 and 

Ile228 (Veitch and Smith, 2001; Azevedo et al., 2003). In addition, there is a hydrogen 

bond connection between the distal calcium binding site and the distal haem pocket, as 

besides coordination with calcium, W15 is also hydrogen bonded to the Oε1 of Glu64 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1.9: Calcium binding sites in HRP-C*. The haem group is shown in red with 

distal (D) and proximal (P) calcium ions shown in green. The hydrogen bonding 

linkages are shown in green colour also. The figure was constructed by Accelrys DS 

visualizer using the coordinates deposited in the PDB (accession code 2ATJ). 
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which in turn is hydrogen bonded to another water molecule W14. This water molecule 

and the backbone carbonyl of Glu64 are then hydrogen bonded to Asp70 Nδ2, and 

Asp70 is hydrogen bonded to the Nδ1 of the distal His42 (Figure 1.9) (Gajhede et al., 

1997). 

 

The importance of the calcium ions to the activity of the HRP enzyme is thought to be 

due to their ability to maintain the haem pocket structure and hence catalytic activity. It 

was reported that the loss of calcium from the structure of HRP-C leads to a decrease in 

both enzyme activity (about 40% reduced) and thermal stability (Haschke and 

Friedhoff, 1978), and subtle changes in the environment of the haem can be detected 

spectroscopically (Howes et al., 2001a). The importance of Glu64 to the calcium 

stabilisation of HRP-C and enzyme activity has been studied by site directed 

mutagenesis. Three mutants E64G, E64P and E64S were constructed and all exhibited 

substantially decreased enzyme activities, implying that this Glu residue is a key residue 

for the stable binding of the distal calcium, maintaining the structural integrity of the 

distal cavity (Tanaka et al., 1998). 

 

1.5.4 Horseradish peroxidase reaction cycle: 
 
HRP-C is an enzyme that catalyses the oxidation of a wide variety of organic and 

inorganic substances, with H2O2 as electron accepter (Yamazaki, 1974; Dunford and 

Stillman, 1976; Dunford, 1991; Zhu et al., 2001). The general catalytic cycle proceeds 

via a sequence of reactions which can be described by the following equations (Smith 

and Veitch, 1998; Veitch and Smith, 2001):- 
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E: HRP-C enzyme,  Porph: the haem porphyrin ring 

AH2: reducing substrate, AH: oxidation product of AH2 

 

In the first step of this cycle (equation 1) the HRP-C resting state reacts with hydrogen 

peroxide and is oxidised to a high oxidation state intermediate known as Compound I, 

in which one electron is removed from the ferric iron to give the FeIV oxyferryl centre 

and a second electron is removed from the porphyrin to give a porphyrin π-cation 

radical (Dunford and Stillman, 1976). The second step in the cycle involves a single 

electron oxidation of the substrate by Compound I. The porphyrin π-cation radical is 

reduced to give a second high oxidation state intermediate known as Compound II; the 

rate of this step of reaction is dependent on the substrate (Hasinoff and Dunford, 1970). 

Finally, in the third step, Compound II reacts with another substrate molecule from 

which an electron is extracted by the FeIV oxoferryl to regenerate the resting enzyme. 

The overall reaction of this cycle can be described in the net equation 4 (below). 

 

 

  

.

. 

. 
Compound I 

Compound II 

E (FeIII, Porph)   +    H2O2 E (FeIV=O, Porph  +)  + H2O     (1) 

E (FeIV=O, Porph  +) + AH2 
 

E (FeIV=O, Porph)     + AH       (2) 

E (FeIII, Porph)  +  AH +  H2O  (3) E (FeIV=O, Porph)    + AH2 
 

k1 

k2 

k3 . 

. 

.
H2O2   +   2AH2                                2H2O    +    2AH               (4) 



27 
 

 

The HRP-C reactions cycle can also be described as a modified ping-pong mechanism 

(Scheme 1.2) (Dunford, 1999e). 

 

 

 

 

 

Scheme 1.2: The HRP-C ping-pong mechanism. Hydrogen peroxide reacts with the 

resting enzyme to produce an intermediate named Compound I, after which the 

substrate AH2 reacts with Compound I to yield Compound II, and finally a second 

molecule of the substrate AH2 reacts with Compound II to regenerate the resting 

enzyme. 

 

 

1.5.4.1 Mechanism of Compound I formation: 

The catalytic mechanism for the formation of Compound I was initially proposed by 

Poulos and Kraut from analysis of the crystal structure of yeast cytochrome c 

peroxidase. It involves two crucial residues in the distal region, the distal His and the 

distal Arg (Poulos and Kraut, 1980). It is supposed that a similar mechanism operates in 

HRP-C, given that these His and Asp residues are conserved in all members of the plant 

peroxidase superfamily (Dunford, 1991). 

 

The mechanism of Compound I formation is considered to be a two-step process, shown 

for HRP-C in Scheme 1.3. Step 1 starts with the entry of the hydrogen peroxide 

molecule (Hα-Oα-Oβ-Hβ) into the peroxidase distal haem cavity which leads to the 

formation of a hydroperoxide complex, referred to as Compound 0; this step is a 

reversible reaction. During this step, the α-proton of the hydrogen peroxide is abstracted 

H2O2 H2O AH2 AH2 +  H2O AH AH 

HRP-C Compound I Compound II HRP-C 

. .
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by His42 and a covalent bond is formed between the haem iron and the Oα of the 

hydroperoxyl anion (-OOH), generating an iron-oxygen bond. This leads to a hydrogen 

bond between the newly protonated His42 and the β-oxygen atom of the hydroperoxide 

complex (Baek and Van Wart, 1992). 

 

In the second step of Compound I formation, the hydroperoxide complex moves 

through a transition state, where the positively charged side chain of Arg38 assists in 

stabilising the charged transition state intermediate via hydrogen bonding and 

electrostatic interaction. Heterolytic cleavage of the Oα-Oβ covalent bond occurs as one 

electron is transferred from the haem iron and another one from the porphyrin. 

Therefore, the resulting high oxidation state intermediate, Compound I, has an oxyferryl 

haem (Fe(IV)=O) and a porphyrin π-cation radical. In addition, a departing water 

molecule is formed from the remaining Oβ-Hβ leaving group of hydrogen peroxide and 

the Hα previously donated to His42 (Everse, 1998). 

 

1.5.4.2 Reduction of Compound I and II: 

 
The mechanism of Compounds I and II reduction has not been as intensively studied as 

the mechanism of Compound I formation. Site-directed mutagenesis studies have 

clearly demonstrated that the HRP-C distal residues His42 and Arg38 are also important 

in the reduction of Compounds I and II (Rodriguez-Lopez et al., 1996a; Rodriguez-

Lopez et al., 1996b). 



 

 

                 
Scheme 1.3: Proposed mechanism for the formation of Compound I in HRP-C. The 

α-proton of H2O2 is abstracted by His42, and the positively charged side chain of Arg38 

assists in stabilising the transition state. The scheme also includes Asn70 that forms a 

hydrogen bond with His42, a critical function affecting the rate of Compound I 

formation, reproduced from Veitch and Smith, 2001. 
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Nearly 20 years after the proposed mechanism for Compound I formation by Poulos and 

Kraut (Poulos and Kraut, 1980), a detailed mechanism for the reduction of Compounds 

I and II by a small phenolic substrate has been proposed, based on data from the 1.45 Å 

crystal structure of a ternary complex of cyanide-ligated HRP-C and ferulic acid 

(Henriksen et al., 1999). Two assumptions have been made in this mechanism: firstly 

that the orientation of ferulic acid in the pre-electron transfer complexes formed 

transiently with Compounds I and II is likely that in the ternary complex with cyanide-

ligated HRP-C, secondly, that the position of Arg38 remains undisturbed by the binding 

of any exogenous compounds during the reduction of enzyme intermediates; this is 

supported by several substrate-bound crystal structures (Henriksen et al., 1998a; 

Henriksen et al., 1999). 

 

It is generally accepted that when a substrate molecule binds to Compound I, an 

electron is transferred to the porphyrin ring via the exposed haem edge, and the π-cation 

radical disappears. In the case of ferulic acid, the proposed mechanism for Compounds I 

and II reduction is illustrated in Scheme 1.4. The carbonyl group of a proline residue 

(Pro139), which is conserved throughout the plant peroxidase superfamily (Veitch and 

Smith, 2001), acts as a hydrogen bond accepter for a structurally conserved water 

molecule, which also acts as a conduit for a proton from the hydroxyl group of ferulic 

acid to the Nε2 atom of His42. This process of proton transfer is coupled to the electron 

transfer from ferulate to the exposed haem edge. The hydrogen bond between Arg38 

and the ferulate oxygen is thought to assist the proton transfer from the ferulic acid to 

His42. As Compound II is formed the ferulic acid radical leaves the enzyme and is 

substituted by a fresh substrate molecule. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.4: Mechanism of Compounds I and II reduction in HRP-C by ferulic 

acid. The scheme is based on a 1.45 Å resolution crystal structure of the ternary 

complex of ferulic acid and cyanide-ligated HRP-C (Henriksen et al., 1999). The 

direction of proton transfer is indicated by the dotted arrows. The mechanism also 

shows the participation of Pro139 in the formation of an important hydrogen bond with 

the water molecule via its carbonyl group, reproduced from Veitch and Smith, 2001. 
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The reduction of Compound II occurs by a similar mechanism, but this time the final 

destination of both proton and electron is the ferryl-oxygen which is reduced to the 

resting ferric state. The ferryl oxygen accepts two protons, one from the substrate 

molecule and the other from the distal His42, to form a water molecule that is released 

from the haem iron (Azevedo et al., 2003). 

 

1.5.5 Aromatic substrate binding site: 
 
There is agreement that the minimal distance between the haem iron atom in HRP-C 

and the aromatic substrate is 8−11 Å, therefore excluding the metal as the binding site. 

It has been suggested that aromatic donors bind at a hydrophobic site in the vicinity of 

the exposed haem edge, a region comprising the haem methyl C8 and haem meso Cδ 

protons (Dunford, 1991; Veitch and Smith, 2001). Inactivation experiments of HRP-C 

by alkyl- and phenylhydrazines, sodium azide, cyclopropanone hydrate and nitroalkanes 

provide strong support that substrate oxidation occurs at the exposed haem edge. When 

different alkylhydrazine reagents are incubated with HRP-C and hydrogen peroxide the 

addition of the alkyl moieties is exclusively to the meso carbon of the haem edge. 

Cyclopropanone hydrate, nitromethane, and sodium azide similarly add to the meso 

carbon after being oxidised by the enzyme to radical intermediates (Ortiz de 

Montellano, 1992). 

 

In fact, substrate access to the oxoferryl centre of HRP-C Compounds I and II appears 

to be hindered by the local protein environment, an example of ‘closed’ haem 

architecture. Attempts to alter this aspect of the chemistry of HRP-C have been made by 

site-directed mutagenesis. Substituting the distal residue Phe41 by smaller amino acid 

residues such as Ala, Leu and Thr, as well as replacement of His42 with Ala and Val, 
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all resulted in an increase in substrate access to the oxoferryl centre of Compound I 

(Newmyer and Ortiz de Montellano, 1995; Ozaki and Ortiz de Montellano, 1995). 

 

On the basis of optical difference spectroscopy, hyperfine shifted NMR spectroscopy, 

and nuclear magnetic relaxation studies, it has been shown that HRP-C can bind with a 

variety of aromatic donor molecules (Figure 1.10) reversibly to form 1:1 enzyme-donor 

complexes (Critchlow and Dunford, 1972; Burns et al., 1975; Schejter et al., 1976; 

Morishima, 1978). The complexes are formed with either the resting state of the enzyme 

or with ligand bound forms, most commonly the cyanide ligated state. Spectroscopic 

and crystallographic studies have revealed a wealth of information on the site where 

these aromatic substrates are located. 

 

The X-ray structures of ferulic acid (FA) complexed with resting state HRP-C* or the 

cyanide-ligated enzyme have been solved to 2.0 Å and 1.45 Å, respectively (Henriksen 

et al., 1999). It was found that the aromatic ring of FA is almost coplanar with the haem 

group and that there are hydrogen bonding interactions between Arg38 NηH2 and the 

phenolic and methoxy oxygen atoms of FA, as well as between the phenolic oxygen and 

an active site water molecule. This active site water molecule is also hydrogen bonded 

both to the backbone oxygen of Pro139 and to the cyanide ligand nitrogen. The other 

interactions between the FA molecule and HRP-C can be defined as hydrophobic 

interactions with amino acid side chains of Phe68, Gly69, Pro139, Ala140, Phe142, 

Phe179, as well as with the C8 methyl and Cδ of the haem group (Henriksen et al., 

1999).  
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Figure 1.10: Aromatic donor molecules that can form complexes with HRP-C. 
 

 

1.5.6 Biological roles of horseradish peroxidase: 
 
In general, plant peroxidases are constitutive enzymes mainly found in the cell wall, 

vacuoles and transport organelles and rough endoplasmetic reticulum. They play an 

important role in plant physiological actions including auxin catabolism, modification 

of the cell wall, lignification, pathogen defence and wound healing (Azevedo et al., 

2003). 

 

Auxins are plant hormones that have an important role in plant growth and 

development, including the control of the elongation, division and differentiation of 

cells. One of the most important auxins produced by plants is indole-3-acetic acid 

(IAA). HRP-C is considered to be the main enzyme responsible for the catabolism of 

IAA (Campa, 1991). The ability of HRP-C to degrade the plant hormone IAA has been 
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reviewed as early as 1955 (Kenten, 1955). In contrast to most peroxidase-catalysed 

reactions, the oxidation of IAA by HRP-C has been shown to occur in the absence of 

hydrogen peroxide; for this reason authors used to refer to peroxidases in the older 

literature by the term indole acetic acid oxidases (Veitch and Smith, 2001). The 

mechanism of this oxidation is complex and has been studied experimentally in great 

detail by several groups (Campa, 1991; Dunford, 1999g). The major products of IAA 

oxidation include indole-3-methanol, indole-3-aldehyde and 3-methylene-2-oxindole, 

the latter most probably as a result of the non-enzymatic conversion of indole-3-

methylhydroperoxide. 

 

The cell wall is sometimes considered the primary site of action of plant peroxidases, as 

they play an integral role in cell wall biosynthesis. The oxidative coupling of phenolic 

monomers such as p-coumaryl, coniferyl and sinapyl alcohols can be catalyzed by HRP 

(Campa, 1991). These reactions are also essential in the biosynthesis of lignin, a 

complex and highly branched phenylpropanoid polymer that constitutes 20-30% of a 

plant cell wall. The cell wall peroxidase-catalyzed reactions are, however, not restricted 

to lignification. The synthesis of suberin, a wax that reduces water loss from cells, 

involves a peroxidase in a manner similar to that proposed for lignin biosynthesis 

(Campa, 1991; Azevedo et al., 2003). 

 

It has been reported in several plant systems, that the level of peroxidase expression and 

the isoenzyme pattern is altered by stress conditions. Peroxidases are part of the first 

line of plant defence, and increases in activity were observed upon plant exposure to 

ozone, pollution, radiation, nutritional disorders, wounding, infections, salinity and 
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aging. One of the clearest examples of this induction of HRP-C activity is the rapid 

response on wounding of horseradish leaves (Campa, 1991). 

 

1.5.7 Applications of horseradish peroxidase: 
 
HRP is one of the most widely used enzymes in vitro, as a reagent for organic synthesis 

and bio-transformation, as well as in coupled enzyme assays, chemiluminscent assays 

and immunoassays. The enzyme meets many requirements for successful use in these 

systems, such as flexibility in assay, stability, sensitivity in range of analyte detection, 

as well as availability of pure form at reasonable cost (Azevedo et al., 2003; Veitch, 

2004). 

 

One of the major applications of HRP in preparative organic synthesis is using it as a 

mild catalyst; it has the ability to catalyze a number of useful oxidative N- and O-

dealkylation reactions that are relatively difficult to carry out synthetically (Meunier, 

1991). In addition, HRP has been used in the organic synthesis of optically active 

compounds such as (S)-hydroperoxides and (R)-alcohols (Adam et al., 1995). 

Epoxidation of styrene in the presence of a mediator such as 4-methylphenol (Ortiz de 

Montellano and Grab, 1987) and selective hydroxylation of some aromatic compounds 

in the presence of oxygen and dihydroxyfumaric acid (Klibanov et al., 1981) can also be 

achieved using HRP. 

 

One of the most commercial uses of HRP is in immunoassays. The term immunoassay 

describes a wide range of assays used to detect and quantify antigens using antibodies. 

HRP-antibody conjugates have been extensively used in enzyme-linked immunosorbent 

assays (ELISA), Western blotting and immunohistochemistry assays (IHC). These are 
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the basis for many diagnostic kits, such as pregnancy testing kits. In these systems, it is 

convenient to be able to detect peroxide activity colorimetrically (Veitch and Smith, 

2001; Azevedo et al., 2003). 

 

Another commercial use of peroxidases is to detect and quantify molecules of clinical 

interest, such as glucose, uric acid and cholesterol in biological fluids (blood, plasma 

and urine). In the case of glucose, for example, it is oxidised by glucose oxidase to yield 

stoichiometric amounts of hydrogen peroxide, which are then used by HRP to oxidise 

selected substrates to give products that can be monitored easily by colorimetric, 

fluorometric or chemiluminescent methods (Veitch and Smith, 2001). One of the 

advantages of using HRP in clinical assays is that few inhibitors of the enzyme are 

found in biological fluids, thus reducing the possibility of errors. Chemiluminescent 

assays are particularly sensitive and widely used. These assays involve the oxidation of 

luminol, or a derivative, to yield 3-aminophthalate and light, with sensitivity up to 1000 

times more than when using a chromagenic substrate (Coulet and Blum, 1992; 

Nakayama and Amachi, 1999). 

 

1.6 Introduction of haem-protein covalent linkages into plant 
peroxidases: 
 
As discussed before (sections 1.2 and 1.3.3) mammalian peroxidases share a feature not 

found in the enzymes of the plant peroxidase superfamily, in that the haem prosthetic 

group is covalently attached to the protein via at least two ester linkages from the 

porphyrin. In addition, MPO has an additional sulfonium linkage between a methionine 

residue and the β-carbon of the 2-vinyl group of the porphyrin. Early studies on the 

ester linkages have indicated that they are formed autocatalytically, by reaction with 
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H2O2 (DePillis et al., 1997). Incubation of recombinant LPO, which as expressed in the 

baculovirus system has only part of the haem bound, with hydrogen peroxide led to an 

increase both in covalent haem binding and catalytic activity (DePillis et al., 1997). In 

addition, the haem group in the E375D mutant of LPO is initially only partially 

covalently bound, but exposure to H2O2 again results in complete covalent binding and a 

fully active protein (Colas et al., 2002). This provides further evidence that the 

mammalian peroxidases haem-protein ester linkages are formed by an autocatalytic 

process. Furthermore, it has been demonstrated unambiguously that the protein-haem 

ester linkages in EPO are also formed by an autocatalytic process (Oxvig et al., 1999), 

and that for TPO, exposure to H2O2 is very important for the formation of mature and 

active enzyme (Fayadat et al., 1999). 

 

More recently, efforts have been made to mimic the haem-protein covalent linkages of 

mammalian peroxidases in plant peroxidases. A glutamic acid residue has been 

introduced into the distal cavity of HRP (Colas and Ortiz de Montellano, 2004) near to 

the haem. The HRP-C* mutant F41E was found to be isolated with no covalently bound 

haem, but the haem was completely covalently bound upon incubation with H2O2. 

These results clearly show that the presence of an appropriately situated carboxylic acid 

group is sufficient for ester bond formation with the haem porphyrin (Colas and Ortiz 

de Montellano, 2004). The first information about the mechanism of formation of the 

sulfonium linkage in MPO was revealed in 2004, when a methionine residue was 

engineered close to the 2-vinyl haem group in recombinant pea cytosolic ascorbate 

peroxidase (rpAPX) (Metcalfe et al., 2004). The S160M mutant was isolated, and upon 

incubation with H2O2 a covalent sulfonium ion linkage was seen to be formed. These 

results provide the first evidence that covalent linkage formation between a methionine 
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residue and the haem vinyl group occurs as an H2O2–dependent process. They also 

identified a transient Compound I-like species as a reaction intermediate (Metcalfe et 

al., 2004). Recently, the same group have reported the introduction of a tyrosine residue 

at the same position in rpAPX (S160Y). This lead, on treatment with H2O2, to the 

formation of a haem-tyrosine covalent link (Pipirou et al., 2007b), and in addition, a 

second covalent link from the haem to Trp41, previously also seen on treatment of wild-

type rpAPX with excess of H2O2 for a long time (Pipirou et al., 2007a). Although no 

Compound I-like species was seen for the S160Y mutant, a tyrosine radical was seen by 

EPR experiments and the haem-Trp41 linkage was assumed to occur via a tryptophan 

radical. However, the importance of an, at least transient, π-cation radical to the linkage 

process was identified by experiments with cytochrome c peroxidase (CcP). Only for 

the mutant W191F was a tryptophan-haem linkage observed between the distal 

tryptophan (Trp51) and porphyrin, on treatment with excess H2O2 for a long time; the 

wild-type enzyme, which uses a Trp191 radical instead of a porphyrin π-cation radical 

showed no such tryptophan linkage under similar conditions (Pipirou et al., 2009). 

 

Recent work by another member of author’s group, Dr. Kasim Cali, has successfully 

created a covalent sulfonium linkage between the [S167M] HRP-C* mutant protein and 

the prosthetic haem group, through an H2O2-dependent activation process (Cali, 2008). 

Previously, to determine which residue in HRP-C might be in a suitable position for the 

introduction of a sulfur side chain, the X-ray structure of HRP-C* (Gajhede et al., 1997) 

was superimposed on that of MPO using the coordinations of the haem. The 

superposition revealed that the position of the methionine residue (Met243), responsible 

for the formation of the sulfonium linkage in MPO, was close to the serine residue 

Ser167 in HRP-C and close to the 2-vinyl group of the haem. This work was the first to 
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generate a haem-protein sulfonium bond in the commercially valuable HRP-C enzyme, 

but the linkage was not found to be stable indefinitely (Cali, 2008).  

 

1.7 The aim of the present work: 
 
Commercially important horseradish peroxidase (HRP: EC 1.11.1.7) is the most 

intensively studied member of the plant peroxidase superfamily. This project was 

designed to build on previous work to introduce novel haem-protein covalent linkages 

into HRP, to try to increase the stability, and possibly the activity, of the enzyme, and 

also to attempt to understand more about the mechanism of formation and the advantage 

of these linkages in mammalian peroxidases in which they naturally occur. The previous 

work involved the introduction of a sulfonium linkage into HRP-C* (Cali, 2008). Here, 

by comparison with work on rpAPX (Pipirou et al., 2007b), the current work aimed to 

introduce other covalent linkages between the haem porphyrin and protein in HRP-C, 

i.e. tyrosine and tryptophan linkages. To this end, two site-directed HRP-C* mutants at 

position 167 have been constructed, in which Ser167 was substituted by tyrosine or 

tryptophan (S167Y and S167W). The new mutant genes were generated using a PCR-

based Whole Plasmid Amplification Method of site-directed mutagenesis. The resulting 

mutant enzymes were characterised using UV/Visible spectroscopy and attempts were 

made to introduce the covalent linkage using incubation with H2O2. The presence of a 

linkage was determined using Electronic absorption spectroscopy, acid butanone haem 

extraction, MALDI-TOF and ESI mass spectrometry and HPLC methods. The results 

provide proof of the formation of a tyrosine-haem covalent linkage. The effect of this 

linkage on the activity of the enzyme was also characterised using steady-state and pre 

steady-state enzyme kinetics. 
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Chapter Two: 

Materials and Methods 
 

 

2.1 Materials: 
 
All molecular biology methods used are those described in Sambrook et al., 1989, 

unless otherwise stated. BDH, Fisher, and Sigma Aldrich supplied all chemicals used 

and all restriction enzymes and their appropriate buffers were supplied by NEB (UK) 

Ltd, unless otherwise stated. The synthesis of oligonucleotide primers and DNA 

sequencing were performed by MWG-biotech.com. 

 

2.2 Generation of mutants: 

2.2.1 Site-directed mutagenesis: 
 
Site-directed mutagenesis of recombinant horseradish peroxidase (WT HRP-C*) at 

position 167 was carried out using the polymerase chain reaction (PCR) based Whole 

Plasmid Amplification Method (WPAM) mutagenesis technique in order to construct 

two new variants [S167Y] HRP-C* and [S167W] HRP-C*. This method has been 

described previously (Veitch et al., 1997; Doyle et al., 1998). The synthetic WT HRP-C 

gene (Smith et al., 1990), cloned in the commercially available expression vector 

pFLAG1 (Doyle et al., 1998), was used as the template; the length of the resulting 

plasmid (known as pFLAG1-HRP-C) is 6.3 kb. During the PCR process, a thermostable 

and proof-reading DNA polymerase (Pfu polymerase) was used. Pfu polymerase was 
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preferred to Taq polymerase, due to the higher fidelity that it has in comparison with 

Taq polymerase (Lundberg et al., 1991; Cline et al., 1996). 

 

2.2.2 Primer design: 
 
PCR oligonucleotide primers were designed to anneal exactly ‘back to back’ at their 5’ 

termini on opposite template DNA strands. The designed primers included the 

necessary nucleotide mismatches required to generate the desired amino acid 

substitutions in the protein, in addition to silent mutations which generated a new 

restriction enzyme site in order to facilitate screening of the transformed clones. Two 

primers were designed for each mutant gene to be made and the software Webcutter1 

was used to assist in the design of the primers. This software permits the user to 

examine a given nucleotide sequence for the presence of both existing restriction 

enzyme sites and silent sites that can be introduced by exploiting natural codon 

degeneracy (see Figure 3.2). The first primer was the mutagenic primer which covered 

the area to be mutated and contained the intended base changes. The second primer was 

the reference primer which annealed to the other DNA strand. 

 

High purity, salt free (HPSF) primers were synthesized and supplied by MWG-Biotech 

in a lyophilized form. These primers were dissolved in sterile, distilled deionised water 

(ddH2O) to produce 100 μM stock primer solutions that were further diluted to produce 

10 μM working stock primers. 

 

 

                                                
1 http://www.users.unimit.it/Camelot/tools/cut2.html 
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2.2.3 DNA Amplification Mutagenesis using PCR: 
 
To generate each mutant gene, a 50 μl PCR was carried out containing 5 μl of 10x Pfu 

reaction buffer, 5 μl dNTPs (1 mM each), 1 μl template DNA (5 ng), 5 μl of 10 μM each 

of the two primers, 0.5 μl of Pfu polymerase (1.25U Promega, added after a Hot Start) 

and 28.5 μl of sterile ddH2O. The PCR tubes containing the mixture above were placed 

in a thermocycler (Perkin-Elmer GeneAmp 2400) and subjected to twenty five cycles, 

each cycle was as follows: 

 

Hot Start 95 oC for 10 minutes 

Pause for 5 minutes to add the Pfu polymerase followed by 25 cycles of 

Denaturation 95 oC for 45 seconds 

Annealing 56 oC for 1 minute 

Extension 72 oC for 17 minutes 

 
 

At the end of the 25 cycles, the thermocycler was set to automatically reduce the 

temperature down to 4 oC until the next morning. 

 

2.2.4 Identification of correctly sized PCR product: 
 
On completion of the PCR, in order to check if a PCR product was made and of the 

correct size, agarose gel electrophoresis was carried out using a DNA size marker. PCR 

products of the correct length should be 6.3 kb. This was done by preparing a 70 ml 

agarose gel containing 1% (w/v) agarose in a 1x Tris-borate-EDTA (TBE) buffer (89 

mM Tris base, 89 mM Boric acid and 2 mM EDTA, pH 8.0). 10 μl of each of the PCR 

solutions were taken and mixed with 2 μl of 6x Ficoll loading buffer (15% (w/v) Ficoll 
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400, 0.25% Bromophenol Blue and 0.25% xylene cyanol FF). The PCR samples and the 

marker were loaded on the gel. The gel was placed in a gel tank filled with 1x TBE 

buffer, and run under a constant potential difference of 60V until the blue dye 

approached the end of gel. Since the DNA is negatively charged due to the phosphate 

backbone, the samples will be separated according to their size, smallest moving 

quickest, towards the positive charged end. The gel was removed and placed into a 

staining box containing ddH2O and 20 μl of 10mg/ml ethidium bromide. The box was 

rocked for about 30 minutes, and then DNA bands were visualized under UV light by 

using a translluminator. 

 

2.2.5 Purification of PCR product: 
 
To remove the methylated template from the PCR samples, the next step was adding 1 

μl of DpnI. The mixture was incubated for two hours at 37 oC. The PCR solution was 

then made up to 150 μl with sterile ddH2O, in an Eppendorf tube. 150 μl of Phenol: 

Chloroform: Isoamylalcohol mix (25:24:1) was added, and the tube inverted several 

times until an emulsion was formed. The emulsion was centrifuged for two minutes in a 

micro-centrifuge at 13,000 rpm. The aqueous DNA-containing top layer was carefully 

transferred to another tube. To remove traces of phenol, 150 μl of chloroform was then 

added, mixed well and then centrifuged at 13,000 rpm for one minute. The top aqueous 

layer was removed and transferred to the other tube, carefully as before. 
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2.2.6 Ethanol precipitation of the purified PCR product: 
 
The DNA solution resulting from the phenol/chloroform extraction process was 

adjusted to a sodium concentration of 0.3 M by adding a volume of 3 M Na-acetate, pH 

5.2, equal to 1/9th volume of the DNA sample. 2.5 volumes of ice-cold 100% ethanol 

were added and the solution was again mixed well by shaking and then left at -20 oC for 

30 minutes. The solution was centrifuged at 13,000 rpm in a micro-centrifuge for 10 

minutes with the hinge of the tube outwards. The supernatant was carefully removed. 

500 μl of 70% ethanol was added to the pellet and the tube centrifuged again at 13,000 

rpm for 5 minutes, with hinge out as before. As far as possible the supernatant was 

carefully removed, and by leaving the lid of tube open in the filter hood the DNA was 

dried fully. 8 μl of sterile ddH2O was then added to resuspend the purified DNA. 

 

2.2.7 Circularization of the PCR products: 

2.2.7.1 Phosphorylation of the PCR product:  
 
In order to add 5’ phosphate groups to the ends of the purified linear DNA fragments, 

the DNA solution was treated with 1 μl of 10x ligase buffer and 1 μl of T4 

Polynucleotide kinase (10 units/μl) to give a total volume of 10 μl. The mixture was 

incubated at 37 oC for 2 hours. 

 

2.2.7.2 Ligation of the phosphorylated PCR product: 

 
In order to recircularize the phosphorylated linear DNA, 1 μl of 10x ligase buffer, 1 μl 

of T4 DNA Ligase (400 units/μl) and 8 μl of sterile ddH2O were added to the mixture 

from the phosphorylation process to give a final volume of 20 μl. Then the solution was 

incubated overnight at 4 oC. 
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2.2.8 DNA Transformation into E. coli (DH5α): 
 
The recircularized, mutant plasmid DNA was transformed into the E. coli DH5α strain 

(Invitrogen library efficient competent DH5α) using the heat-shock method (Sambrook 

et al., 1989). The stored competent cells, which were frozen at -80 oC, were thawed on 

ice with no external heating. After this, 10 μl of the ligated plasmid DNA was added 

into 100 μl of the competent cells, gently mixed with pipette tip, and then left on ice for 

20 minutes. The mixture was heat-shocked at 42 oC for 45 seconds in a water bath (as 

heat exchange is more efficient than in a hot-block). The sample was placed back on ice 

for five minutes for the cells to recover. 1 ml of sterile Luria-Bertani (LB) broth was 

added to the tube, and the cells were shaken at 37 oC for 1 hour to allow for the 

antibiotic resistance to be expressed. The sample was then centrifuged in a micro-

centrifuge at 7,000 rpm for 2 minutes to produce a cell pellet. Most of the supernatant 

was poured off, leaving approximately 100 μl. The cells were resuspended gently by 

pipette tip and plated onto a Luria-Bertani (LB) agar plate containing 100 μg/ml 

ampicillin; the plate was left upside down and incubated overnight at 37 oC. 

 

A transformation control was also carried out as follows: 100 μl of competent cells with 

10 ng of WT pFLAG1-HRP-C plasmid DNA was plated onto an LB agar plate 

containing 100 μg/ml ampicillin. The aim of this was to check the efficiency of the 

competent cells and to discover any potential contamination. 

 

2.2.9 Plasmid DNA miniprep: 
 
Transformed DH5α colonies obtained on the ampicillin-containing LB agar plates were 

picked and inoculated into 5 ml LB broth containing 100 μg/ml ampicillin. The cultures 
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were shaken overnight in an incubator at 37 oC. 2 x 1.5 ml of each culture was 

centrifuged in a micro-centrifuge at 7,000 rpm for two minutes. The plasmid DNA 

miniprep was then carried out using the protocol of the QIAprep® MiniPrep Kit 

supplied by Qiagen. The final DNA solution was extracted into 50 μl of 10 mM Tris, 

pH 8.5. 

 

2.2.10 Restriction enzymes analysis of miniprep plasmid DNA: 
 
7 μl of each plasmid DNA miniprep was digested in a total volume of 10 μl that also 

included 1 μl of bovine serum albumin (BSA) to a final concentration 100 μg/ml, 1 μl 

of manufacturer recommended restriction endonuclease buffer and 1 μl of restriction 

endonuclease BssSI (4 units/μl). In all cases an undigested control was also performed 

where the restriction enzyme was substituted by sterile ddH2O. The mixtures were 

incubated at 37 oC for one hour. 

 

After incubation, 2 μl of 6x Ficoll loading buffer was added to both digested and 

undigested mixtures. The samples were analysed by electrophoresis, alongside a DNA 

size marker, on a 70 ml agarose gel (1% w/v agarose) at 60 V. The gel was stained with 

ddH2O and 20 μl of 10 mg/ml ethidium bromide and shaken for 30 minutes. The stained 

gel was transluminated under UV light for DNA band identification. 

 

2.2.11 Plasmid DNA midiprep:  
 
The remaining 2 ml of a 5 ml LB broth culture, from which plasmid miniprep and digest 

showed a positive result, were used to inoculate a larger overnight culture. 250 μl of 

each positive culture was added to 50 ml LB broth containing 100 μg/ml ampicillin and 
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incubated overnight at 37 oC. Plasmid DNA midiprep was then carried out using a 

Wizard® DNA Purification System MidiPrep Kit supplied by Promega. The final DNA 

solution was extracted using 300 μl of 10 mM Tris, pH 8.5. 

 

The purity and concentration of the midiprep plasmid DNA was determined using a 

spectrophotometer and the spectral range between 220-320 nm. The purity of DNA is 

given by the ratio of A260/A280; values between 1.8 and 2 indicate that DNA is pure. The 

concentration of the DNA was determined by the following equation, as a solution of 

DNA at 50 ng/μl has an absorbance at 260 nm of 1.0. 

[DNA] = 50 * A260 * dilution factor 

 

2.2.12 Submitting DNA for sequencing: 
 
To confirm the presence of the desired mutations in the putative mutant plasmids, and to 

check for any PCR introduced error, two samples for each positive clone were prepared 

for sequencing by MWG-Biotech. The appropriate volume of midiprep DNA containing 

1 μg DNA was made up to 10 μl with 10 mM Tris, pH 8.5. One sample was sent for 

sequencing with 10 μl of 10 μM in-house forward primer (lipseq1) and the other was 

sent with 10 μl of 10 μM in-house reverse primer (lipseq5). The sequencing results 

were checked using the Seqman section of DNASTAR software, by aligning the new 

HRP-C mutant sequences with wild-type HRP-C gene.  

 

2.2.13 Glycerol Stocks: 
 
The new HRP-C mutant plasmids in E. coli DH5α were stored as glycerol stocks for 

long-term use. A colony was inoculated into 5 ml LB broth containing 100 μg/ml 
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ampicillin and incubated overnight at 37 oC. 1 ml of the culture was pipetted into a 

Nunc cryovial using sterile technique. Then 0.5 ml of sterile 50% glycerol was added, 

the tube inverted to mix and the stock stored at -80 oC. When needed, the glycerol stock 

was thawed slightly and some of the cells plated onto an LB agar plate with ampicillin 

to generate single colonies. 

 

2.3 Protein Expression and Purification: 
 
Expression of protein from the synthetic HRP-C gene cloned in the pFLAG1 expression 

vector is regulated by lacIq repression of the tac promoter, a strong promoter formed by 

the hybridisation of different regions of the trp and lac promoters (de Boer et al., 1983). 

Repression is relieved in the presence of the lactose analogue isopropyl-β-D-

thiogalactopyranoside (IPTG) and the protein is expressed in the form of misfolded 

aggregates or inclusion bodies, which require refolding to recover the active enzyme 

(Smith et al., 1990). 

 

2.3.1 Small-scale HRP-C* protein expression: 

2.3.1.1 Transformation into E. coli protein expression strain W3110: 
 
[S167Y] and [S167W] midiprep plasmid DNA (as confirmed by sequencing), as well as 

WT HRP-C DNA (used as a control), were transformed into E. coli W3110 cells. The -

80 oC stored, chemically competent W3110 cells were thawed in ice with no external 

heating. 10 μl of the DNA was taken and added into 100 μl of the competent cells. The 

mixture was gently mixed with pipette tip, and then left on ice for 20 minutes. After 

that, the mixture was heat-shocked at 42 oC for 2 minutes in a water bath, and placed 

back on ice for five minutes. 1 ml of sterile LB broth was added, and the cells were 
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shaken at 37 oC for 30 minutes to allow the antibiotic resistance to be expressed. Then 

the sample was centrifuged in a micro-centrifuge at 7,000 rpm for 2 minutes to produce 

a cell pellet. Most of the supernatant was poured off, leaving approximately 100 μl. The 

cells were resuspended gently by pipette tip, plated onto a LB agar plate containing 100 

μg/ml ampicillin, and incubated upside down overnight at 37 oC. 

 

2.3.1.2 Culture growth: 
 
Two transformed W3110 colonies were selected for each mutant HRP-C plasmid, in 

addition to one colony of WT, and were inoculated overnight in 5 ml LB broth 

containing 100 μg/ml ampicillin at 37 oC. A glycerol stock was prepared for each 

culture (section 2.2.13) and stored for future use. 50 μl of each culture was then 

inoculated into a further 5 ml LB broth containing 100 μg/ml ampicillin. The cultures 

were grown at 37 oC with vigorous shaking for 1.5 hours, then induced by adding 1 mM 

IPTG (10 μl of 500 mM stock), and grown for a further three hours. An inoculated but 

un-induced culture was also grown at the same time. 

 

Cells were harvested from 3 ml of each culture by centrifugation in a micro-centrifuge 

at 7,000 rpm for two minutes. The cells were resuspended in 500 μl of buffer solution 

containing 20 mM Tris, pH 8.0, 1 mM EDTA, 1 mM DTT and 2 M urea, by pipetting. 

The resuspended cells were sonicated for 30 seconds and then centrifuged for 15 

minutes at 13,000 rpm, and the resulting supernatant discarded. The protein containing 

pellet was resuspended in a further 500 μl of the above buffer, and the sonication step 

repeated. 500 μl of the same buffer, but supplemented with 2% Triton X-100, was then 

added and the mixture was left to stand for 10 minutes at room temperature. The 
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mixture was then centrifuged at 13,000 rpm for 15 minutes and the supernatant was 

discarded. The pellet was resuspended in 30 μl of a buffer solution containing 50 mM 

Tris, pH 8.0, 1 mM EDTA, 30 mM DTT and 10 M urea, by pipetting. The samples were 

centrifuged at 13,000 rpm for 10 minutes to remove any remaining insoluble 

(membrane) proteins. The HRP-C protein containing supernatant was removed carefully 

and stored as a 10 M urea extract at -20 oC. 

 

2.3.1.3 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE): 

2.3.1.3.1 Gel Recipes 
 

1) 12% Resolving Gel, 10 ml 3M Tris, pH 8.55 1.25 ml28% acrylamide, 1.5% bis acrylamide 4.30 ml 20% SDS 0.05 ml ddH2O 1.90 ml 0.14% Ammonium persulphate 2.50 ml Temed 5.00 μl 

 

2) Stacking Gel, 6 ml 

1M Tris/SDS 
0.75 ml (of 4.8ml 1M Tris, pH 7.0 + 0.2ml SDS) 28% acrylamide, 1.5% bis acrylamide 0.75 ml ddH2O 1.50 ml 0.14% Ammonium persulphate 3.00 ml Temed 7.50 μl 
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3) 1:1 sample buffer: SDS 1 gGlycerol 2 ml bromophenol blue (0.1% w/v ddH2O) 2 ml 1M Tris, pH 7.0 1.25 ml 2-mercaptoethanol 2 ml ddH2O 2.75 ml 

 

    4) Stain solution: 10% acetic acid, 10% ethanol + 0.1% Coomassie Blue in ddH2O. 

    5) Destain solution: 10% acetic acid, 10% ethanol in ddH2O. 

 

2.3.1.3.2 SDS-PAGE Method: 
 
SDS-PAGE electrophoresis was performed using 5 μl of each of the 10 M urea extracts 

mixed with an equal volume of 1:1 gel sample buffer. Then samples were subjected to 

electrophoresis using the discontinuous buffer system through the acrylamide stacking 

gel and 12% acrylamide resolving gel. The Rainbow wide-range protein molecular 

weight marker used was from BioRad Laboratories. Electrophoresis was run first at a 

constant 30 mA until the sample reached the stacking gel, when the current was 

increased to 60 mA until the dye reached the bottom of the resolving gel. 

 

The gels were stained with stain solution for 30 minutes at room temperature with 

rocking. The gels were then washed with ddH2O and destained with destain solution 

and rocking at room temperature until the protein bands could be visually resolved from 

the background. 
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2.3.2 Large Scale HRP-C* protein production: 

2.3.2.1 Culture growth and protein expression: 
 
Solution 1) Terrific Broth (TB): 6 g tryptone, 12 g yeast extract, 4 ml glycerol and 

450 ml ddH2O were mixed in a 2 l baffled conical flask. The flask was fitted with a 

bung and then autoclaved. 

Solution 2) 10x TB phosphate: 6.27 g of anhydrous K2HPO4 and 1.17 g of KH2PO4 

were dissolved in 50 ml ddH2O using vigorous stirring, and then autoclaved. 

 

50 μl of glycerol stock of either WT HRP-C or mutant HRP-C pFLAG1 plasmid in 

W3110 E. coli were inoculated into 50 ml of LB broth containing 100 μg/ml of 

ampicillin, and shaken overnight at 37 oC. Each 5 ml of this 50 ml culture were 

inoculated into 500 ml of TB (solution 1 plus solution 2) containing 100 μg/ml of 

ampicillin. The cultures were shaken at 37 oC, and the growth rate was monitored by 

measuring the increase in light scattering at 600 nm. When the O.D. reached 0.8-1.0, the 

cultures were induced with 0.5 mM IPTG. The O.D.600 was recorded until little or no 

change was observed (approximately 4 hours); at this point all the cultures were 

harvested and centrifuged at 4,000 rpm for 30 minutes at 4 oC in a Beckman J-6B 

centrifuge. The supernatant was decanted and the cell pellets were stored at -20 oC.  

 

2.3.2.2 Lysis of Cells and Washing of Protein Pellets: 

 
All harvested cell pellets were resuspended in 200 ml 50 mM Tris, pH 8.0, 10 mM 

EDTA, 1 mM DTT, to give approximately 250 ml solution. The solution was 

transferred to a 500 ml plastic beaker, and lysozyme powder was added to give a final 

concentration of 2 mg/ml, mixed well and the extract was left for one hour on a bench at 
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room temperature until it became very viscous and stringy. The extract was then divided 

into 5 x 50 ml fractions and sonicated in a 100 ml plastic beaker with a large probe 

(CV33 probe) attached to an ultrasonic disintegrator (MSE Mod MK2), each fraction 

for 2 x 1 minutes. When the extract became thinner it was decanted into centrifuge tubes 

and centrifuged in a Beckman J2-21 centrifuge, rotor JA20, at 15,000 rpm for 30 

minutes at 4 oC; the supernatants were discarded.  

 

In each individual tube, the protein pellet was resuspended in 20 ml of 2 M urea, 20 mM 

Tris pH 8.0, 1 mM EDTA and 1mM DDT by manual homogenisation. Then 10 ml of 

the same solution supplemented with 3% Triton X-100 was added. The solutions were 

mixed well and left at room temperature for 15 minutes, then centrifuged at 15,000 rpm 

for 30 minutes at 4 oC. The supernatant was again discarded. This last step was repeated 

once more. It was repeated again for a third time, but this time without using the Triton 

X-100 part of the wash, in order to remove traces of Triton detergent that might 

subsequently affect the efficiency of the folding procedure. The HRP-C* protein pellets 

were stored frozen at -20 oC. 

 

2.3.2.3 Folding and purification of HRP-C* protein:  

 
For each variant or WT, all HRP-C* protein pellets were resuspended in 30 ml of 

freshly prepared buffer containing 50 mM Tris, pH 8.0, 6 M urea, 1 mM EDTA and 1 

mM DTT by using a homogeniser, and were left at room temperature for 15 minutes. 

They were then centrifuged at 15,000 rpm for 30 minutes at 4 oC. The concentration of 

the protein in the supernatant was determined using the Bio-Rad Bradford protein assay 

with bovine serum albumin (BSA) as a standard. The enzyme was then diluted to a final 

concentration of 2 mg/ml using more of the buffer mentioned above. The volume of the 
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protein solution was multiplied by a factor of 10 to give the final total fold volume. A 

folding solution was prepared so that after the protein solution was added, the 

concentrations would be 2.1 M urea, 50 mM Tris, pH 8.0, 8 mM CaCl2 and 0.7 mM of 

oxidised L-glutathione. The folding solution was chilled in the cold room for 30 

minutes, and then the enzyme solution was added (giving 0.1 mM DTT and 200 μg/ml 

protein), and the mixture left in the cold room (stirring) for 18 hours. At this point 6 μM 

of haemin was added, and the mixture again left in the cold room with stirring for a 

further 48 hours.  

 

The folded enzyme solution was then centrifuged in the Beckman J-6B centrifuge at 

4,000 rpm for 30 minutes to remove any misfolded protein aggregates formed. The 

solution was concentrated down to about 300 ml using a large spiral-wound Amicon 

concentrator of 30,000 Da, pre-washed with 2 M urea, and then concentrated down 

again to less than 50 ml using Millipore 30,000 Da ultrafiltration membranes in a stirred 

cell at 4 oC. The protein solution was dialysed overnight at 4 oC against 20 mM Na 

acetate solution, pH 4.3 containing 1 mM CaCl2. The aggregates formed during the 

dialysis process were removed by centrifugation at 4,000 rpm in the Beckman J-6B 

centrifuge for 10 minutes at 4 oC, and then by passing the supernatant obtained through 

a Millipore 0.22 μm Millex-GS sterilizing filter unit. 

 

Final purification of the dialysed protein solution was achieved by cation exchange 

chromatography using the Pharmacia Fast Protein Liquid Chromatography (FPLC) 

instrument. The protein was loaded onto a Mono S cation exchange column, pre-

equilibrated with 20 mM Na-acetate, pH 4.3. The purified HRP-C* enzyme was eluted 

from the column by the application of a NaCl gradient to a final concentration of 1 M. 
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The purified protein fractions were gel-filtered into 5 mM MOPS buffer, pH 7.0 using a 

PD–10 desalting column (Pharmacia). The purified HRP-C* enzyme was then frozen in 

liquid nitrogen and stored at -80 oC. 

 

2.4 UV/Vis Spectroscopic studies: 
 
All standard UV/Visible spectroscopic studies of HRP-C* enzyme samples were 

performed on a Shimadzu UV- 2401 PC spectrophotometer. The measurements were 

taken at 25 oC using quartz cuvettes. 

 

2.4.1 Spectral features of WT HRP-C* and the new variants: 
 
The UV/Vis spectra of the resting states of WT HRP-C* and the new S167 variants 

were recorded by scanning their diluted solutions in 5 mM MOPS buffer, pH 7.0; from 

250-750 nm. 

 

2.4.2 Haem Soret peak extinction coefficient (ε) determination: 
 
The pyridine haemochrome method was used to determined the molar absorption 

coefficient of WT HRP-C* and the new variants (Fuhrhop and Smith, 1975) at the haem 

Soret peak; this method measures the total haem content of the sample by forming 

pyridine-haem complexes, from extracted haem produced on treating enzyme samples 

with alkali. The difference spectrum of the reduced minus oxidised forms is used to 

calculate the concentration of the haem extracted from the enzyme and, using a known 

extinction coefficient, to determine the Soret extinction coefficient. 
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For WT and each variant, 40 μl of diluted enzyme solution was made up to 400 μl with 

5 mM MOPS buffer, pH 7.0, and the resting state Soret peak absorption recorded. The 

enzyme solution was recovered from the cuvette, diluted further to 800 μl with the same 

buffer, and then 88 μl of 1 M NaOH and 175 μl pyridine were added. The mixture was 

divided equally between two quartz cuvettes and a baseline was taken. The mixture in 

the sample cuvette was then reduced with a few crystals of sodium dithionite and a 250-

750 nm spectrum was taken. The value of A555-A542nm was recorded, and the extinction 

coefficient for each new HRP-C* variant was calculated using the published extinction 

coefficient for the reduced minus oxidised haem pyridine complex, ε555 - ε542 = 20.7 

mM-1 cm-1 (Fuhrhop and Smith, 1975), and the known Soret absorbance. 

 

2.5 Benzhydroxamic acid binding assays: 
 
Benzhydroxamic acid (BHA) binding assays were carried out on WT HRP-C* and the 

new S167Y and S167W variants in order to estimate the dissociation constant (Kd) of 

the enzyme-BHA complex. Difference spectra of the enzyme with BHA added or not 

were recorded between 350-450 nm using the following procedure. 

 

1 ml of 3 μM solution of each enzyme in 5 mM MOPS buffer, pH 7.0, was placed in 

both the sample cuvette and reference cuvette, and a baseline was taken. Then 

successive volumes (10 μl) of stock BHA solution (200 μM) were added to the sample 

cuvette and an equal volume of buffer added to the reference cuvette, and the different 

spectra were recorded. Successive volumes of stock BHA solution were added until 

saturation of the enzyme sample occurred. Addition of BHA causes an increase in the 

absorbance of the Soret peak of the HRP-C* enzyme, and when the absorbance does not 
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change with the addition of more BHA, then saturation of enzyme has occurred. All 

experiments were conducted at 25 oC. The absolute BHA concentrations in the sample 

cuvette were determined and the absorbance values were corrected accordingly to the 

dilution factor. 

 

The dissociation constant (Kd), as well as the maximum absorbance (Aω), were 

determined by fitting the data, using a weighted least-squares error minimization 

procedure, to the equation: 

 2 / ( +  + ) + ( +  + ) 4 .  

 

corresponding to reversible binding of a ligand to a single site, where A is the 

absorbance change at 409 nm (Soret) for a total BHA concentration L, Aω is the 

maximum absorbance change and P is the total protein concentration (Smith et al., 

1992). 

 

2.6 Reaction of enzyme with hydrogen peroxide: 
 
In order to further characterise the new S167 HRP-C* variants, and also to attempt to 

create a new covalent linkage between the haem and the protein, enzyme samples were 

treated with differing amounts of freshly prepared hydrogen peroxide solution (DePillis 

et al., 1997; Colas and Ortiz de Montellano, 2004).  

 

Samples of the S167W and S167Y mutants were gel-filtered using a NAP–5 column 

(pre-packed disposable columns containing SephadexTM G–25 Medium, Promega) into 

50 mM Na-phosphate buffer (pH 7.0 for S167W and pH 9.5 for S167Y), and were then 
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diluted to a final concentration of 5 µM in the same Na-phosphate buffer. 0.5 mM of 

freshly diluted H2O2 was then added, and the reaction solution was incubated for two 

hours at 25 oC. After that, the H2O2 treated samples of the variants were gel-filtered 

back into 5 mM MOPS buffer, pH 7.0.  

 

The UV/Visible spectra 250-750 nm of the resting states of WT HRP-C*, treated and 

untreated variants were then taken. Pyridine haemochrome assays were performed on all 

the enzyme samples as described in section 2.4.2. 

 

2.7 Enzyme intermediates on treatment with hydrogen peroxide: 
 
Repeat scans of S167 HRP-C* variants at different times after treatment with H2O2 

were taken in order to monitor the differences in rate of formation and reduction of the 

enzyme intermediates, Compounds I and II, under steady-state conditions. This 

experiment was carried out for HRP-C* variants, where 0.5 mM of H2O2 was added to 5 

µM of each mutant in 50 mM sodium phosphate buffer (pH 7.0 for S167W and pH 9.5 

for S167Y) at 25 oC and 250-750 nm scans were taken at different times (1, 5, 10, 15, 

20, 30, 60, 90, 120, 150 and 180 minutes) after the addition of H2O2. 

 

2.8 Acid butanone haem extraction: 
 
The ability to extract the haem prosthetic group from the new S167 variants (both 

before and after treatment with H2O2) was tested using the acid butanone extraction 

technique (Fuhrhop and Smith, 1975). This experiment was to look for the formation of 

a cross-linkage between the haem and the protein as a result of the enzyme’s reaction 

with H2O2. For each 100 μl enzyme sample of WT HRP-C*, S167W or S167Y variant, 
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either treated or untreated with hydrogen peroxide, 25 μl of 2 M HCl was added (to 

denature the protein) plus 500 μl of butanone to extract the organic haem group. The 

solution was shaken well and then left on the bench to allow the separation of the 

aqueous layer below and the organic layer above; then the organic layer was carefully 

extracted. In general for WT HRP-C*, under these conditions, the haem group is 

extracted directly into the organic layer, leaving the apo-protein in the aqueous layer. 

Pyridine haemochrome analyses (section 2.4.2) were performed on the organic layer 

extracted samples and the amount of haem extracted from each of the samples was 

calculated accordingly. 

 

2.9 High Performance Liquid Chromatography (HPLC) analysis: 

2.9.1 Principles of chromatography: 
 
Chromatography is one of the most powerful analytical methods, and is used for 

separation, identification and determination of the substances in complex mixtures. This 

method is characterised by the existence of two phases, a stationary phase and a mobile 

phase. The components of the mixture (solutes or analytes) are distributed between 

these two phases, and move with the mobile phase through the stationary phase 

according to their relative affinities towards each phase. The separation is performed by 

the difference in the rate of getting each component out of the system, which is known 

as elution. A substance that is distributed preferentially in the mobile phase will elute 

from the system more rapidly than those preferentially distributed in the stationary 

phase (Done, 1978). 

 

There are two types of chromatography, based on the stationary phase. The first one is 

known as planar chromatography, in which the stationary phase is supported on a flat 
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plate or in the pores of a paper; in this type of chromatography the mobile phase passes 

the stationary phase under the effect of gravity or by capillary action. The second type is 

known as column chromatography, in which the stationary phase is packed into a 

column and the mobile phase moves under the influence of gravity, or by the effect of 

pressure. Chromatographic techniques can also be subdivided into gas or liquid 

chromatography, based upon the nature of the mobile phase, as well as solid or liquid 

chromatography depending on the form of the stationary phase (Skoog et al., 1998). 

 

2.9.2 Distribution ratio and Retention time: 
 
The relative affinity of a solute towards the stationary and mobile phases is known as a 

distribution ratio K, which is expressed as: K /  

where, Sst is the concentration of solute on the stationary phase, and Smo the 

concentration of solute in the mobile phase (Skoog et al., 1996). 

 

The K value is the key to the analysis process in chromatography techniques, large 

values of K lead to slow elution for the solute, while small values lead to rapid elution. 

Therefore, the best separation occurs when the differences between the distribution 

ratios of the solutes in the mixture are large and significant. The time it takes for the 

solute to pass through the stationary phase is called the retention time tR, or in other 

words, the time it takes after sample injection for the solute peak to reach the detector 

(Skoog et al., 1996; Higson, 2004). 
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2.9.3 HPLC apparatus: 
 
High Performance Liquid Chromatography (HPLC) represents one of the most widely 

used forms of chromatography. The term ‘high performance’ relates to the ability of 

HPLC to perform high quality and selective separation of compounds in minimum 

times. In the HPLC system, the separation process is achieved by forcing the mobile 

phase to penetrate through the column under high pressure (Higson, 2004). A typical 

schematic diagram of High Performance Liquid Chromatography is shown in Figure 

2.1. In general, an HPLC apparatus consists of three main sections: solvent delivery 

system, column and detector. 

 

 

 

 

 

 

 

 

Figure 2.1: Simple scheme of an HPLC system, showing the main parts that make 

up the apparatus, reproduced from Higson, 2004. 

 

2.9.3.1 Solvent Delivery System: This is the first section in the HPLC apparatus, and is 

responsible for providing an accurate, constant flow of mobile phase when required. 

This system consists of the following key parts. 

a) Solvent reservoirs, which are usually equipped with inlet filters to remove dust 

and other particulate material; this facilitates the process of solvent pumping and 

protects the column from the possibility of blockage. 
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b) A solvent degassing unit, to remove dissolved air in the solvent; air can produce 

bubbles in the column, causing a reduction in the performance of detectors and 

disruption of elution peaks (Fifield and Kealey, 1995; Kealey and Haines, 2002). 

c) Pumps, which are responsible for forcing the mobile phase through the column 

at a controlled flow rate; this is achieved by applying a constant pressure 

(Lindsay, 1992). Most pumping systems in HPLC include (1) a range of flow 

rates from 0.1-2 ml/min., (2) non pulse flow, to remove noise from the detector, 

(3) the generation of pressure up to 4500 psi, (4) the ability to resist corrosion 

from a wide range of solvents and (5) flow reproducibility of 0.5% or better, to 

ensure adequate analytical precision (Gilbert, 1987). 

 

In the HPLC technique, liquid samples are injected directly into the flowing mobile 

phase, using highly controlled injection systems. Two types of injection system are 

available, syringe and valve. Syringe injection is more convenient than valve (Done, 

1978). Up-to-date HPLC apparatus is generally equipped with automated injection 

systems, which have the ability to automatically inject up to 100 samples. A guard 

column is also sometimes used, positioned before the separation column. This serves to 

protect the column from aggregated particulate matter in the injected samples. It is a 

short column packed with the same stationary phase as the analytical column (Kealey 

and Haines, 2002). 

 

2.9.3.2 Column: This holds the stationary phase. The columns in HPLC are usually 

constructed from stainless steel tubing, and most have lengths ranging from 10-30 cm 

with diameters ranging from 3-10 mm. These columns are packed typically with particle 

sizes of 5 or 10 μm. As a result of the need to improve and develop the efficiency of 
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HPLC, high performance micro-columns have been produced with smaller dimensions, 

ranging from 3-7.5 cm in length and 1-4.6 mm in diameter, with 3 or 5 μm particle size 

(Skoog et al., 1996).  

 

The main type of packing material for HPLC columns is micro porous particles with 

diameters from 3-10 μm. Silica is one of the most important materials that is used as a 

packing material as it can be made with highly uniform diameters. It is used to prepare 

chemically modified stationary phases with high quality separation properties. The 

particles are coated in most cases with thin organic films, which are bonded either 

chemically or physically to the surface. There are four major classes of modified silica: 

esterified silicas, Si-N functionalized silicas, Si-O-Si-C functionalized silicas and 

polysiloxane/silicone derivatized silicas. Other chemical materials that are used for 

column packing, include alumina particles, porous polymer particles, porous graphite 

carbon and ion-exchange resins (Higson, 2004). 

 

Recently, a particle size of less than 3 microns has been used for HPLC. It produces 

improved peak shapes, and reduces the retention time by a factor of ten. This is named 

ultra performance liquid chromatography (UPLC) (de Villiers et al., 2006). 

 

2.9.3.3 Detector: The detector is essential to all types of chromatography techniques. It 

is responsible for detecting the elution positions of the separated components of a 

mixture that has been subjected to a chromatographic process. The results from the 

detectors are generally displayed in the form of a chromatogram with varying peaks, 

each one of these peaks representing one component of the mixture. The main 

characteristic of any detection system is the ability to give a recognizable signal, even 
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with a minimum concentration of solute, against the background noise of the instrument 

(Done, 1978). 

 

A number of detectors are available for HPLC, and the most commonly used include 

UV-Visible absorption, fluorescence, electrochemical and refractive index detectors. By 

far the most widely used are UV-Visible detectors due to their high sensitivity and 

ability to monitor many different solutes as they elute from the column. Today, a 

variable wavelength detector (diode-array) is available for a range of 200-700 nm, 

which can display an entire spectrum as solutes exit the column (Pryde and Gilbert, 

1979; Ardrey, 2003). A fraction collector may be added after the detector; this is useful 

for collecting pure fractions accurately for further spectroscopic analysis. 

 

2.9.4 HPLC analysis of the new HRP-C* mutants: 
 
HPLC analysis was used to examine the nature of any covalent linkage between the 

haem and the protein in WT HRP-C* and the S167 variants both before and after H2O2 

treatment. All HPLC assays were conducted on the Agilent 1100 Series HPLC system 

with an analytical C4, 4µm (100 × 4.5 mm) reverse phase column, under PC control. 

The mobile phase consisted of two buffer solutions, Buffer A: 0.1% (v/v) trifluroacetic 

acid (TFA) in water, and Buffer B: 0.1% (v/v) TFA in acetonitrile (MeCN). 20 μl of a 

50 μM enzyme sample were mixed with an equal volume of 2% SDS (Metcalfe et al., 

2004) and boiled for 5 minutes at 95 oC, after which the sample was diluted to 100μl 

total volume with buffer A and injected (20 μl at a time) into the column pre-

equilibrated with buffer A. The protein/haem elution was achieved by using the 

following elution profile with a flow rate of 1 ml/min.: 0 % buffer B for 5 minutes, after 

that 0-30 % buffer B for 5 minutes, followed by 30-40 % buffer B for 5 minutes, and 
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then 40-100 % buffer B for 45 minutes. The haem group was monitored at 400 nm 

while the protein was monitored at 280 nm. 

 

2.10 Mass Spectrometry: 

2.10.1 Introduction: 
 
Mass spectrometry (MS) is a widely used analytical technique, in which the atoms or 

molecules of a sample are treated to form gaseous ions; these ions are then separated 

according to their mass-to-charge ratio (m/z) (Farmer, 1963). MS is characterised by 

high sensitivity, as very small amounts of analyte (picogram) are sufficient to provide 

information with high accuracy and precision (Ardrey, 2003). MS has been successfully 

applied to a wide range of research studies in organic chemistry, to determine the 

molecular weight and structure of organic compounds (Johnstone and Rose, 1996), and 

in inorganic and organometallic chemistry, to identify and determine complexes and 

compound components (Henderson and McIndoe, 2005). Furthermore, this technique 

has been used extensively in the field of biochemistry and biotechnology, to 

characterise a wide variety of bio-molecules such as sugars, oligonucleotides, peptides 

and protein molecules (Fountoulakis and Langen, 1997; Roepstorff, 1997; Mo and 

Karger, 2002). Currently, MS plays a significant role in determining the amino acid 

sequences of peptides and proteins, in addition to identifying the location of disulfide 

bridges in proteins (Hunt et al., 1988; Carr et al., 1991). MS has a lot of applications in 

the pharmaceutical industry, where it is invaluable for drug discovery and drug 

metabolism studies (Korfmacher, 2005; Ackermann et al., 2008), and has important 

medical applications, in respiratory and blood gas analysis, lipid analysis and in 

studying the fate of pesticide and insecticide metabolism (Milne, 1991).  
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2.10.2 Main components of mass spectrometry: 
 
MS consists of the following main parts: inlet system, ionization source, mass analyzer 

and detector, Figure 2.2. These fundamental parts are usually maintained under high 

vacuum in order to protect the system from the effects of air molecules, which would 

hinder and disrupt the mass spectra of samples by colliding with the gaseous ions, and 

also cause damage to some parts of the instrument such as the ionization source and 

detector (Kealey and Haines, 2002). 

 

 

 

 

 

 
 
 
 
 
 
Figure 2.2: Block diagram showing the main parts of a mass spectrometer. 
 

 

2.10.2.1 Sample Inlet System: The sample inlet represents the first part of the mass 

spectrometer instrument. It facilitates the controlled introduction of gaseous or 

vapourized liquid samples via a molecular leak, and solid samples via a heated probe. In 

fact, there are three inlet systems commonly used for introducing samples for 

ionization: these are batch, direct probe and chromatographic type inlet. Each one of 

these systems has high efficiency and are used for experiments depending on the nature 

of sample to be analyzed (Kealey and Haines, 2002; Higson, 2004). 
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2.10.2.2 Ionization Sources: The main function of this part is to produce as many ions 

as possible from the neutral particles of sample, and to form an ion beam that is suitable 

to enter into the analyzer. A variety of ionization sources are used for MS, the choice 

depending on the nature of the sample and the type of information desired. For example, 

electron ionization and chemical ionization sources are suitable for gas phase ionization, 

whilst fast atom bombardment, secondary ion mass spectrometry, electrospray and 

matrix assisted laser desorption ionization sources are used to ionize condensed phase 

samples. The principle of how most of these ionization sources work is the exciting of 

the neutral sample molecule which then ejects an electron to form a radical cation (M+.). 

Suitable ionization sources must also be characterised by possession of a stable ion 

beam that has sufficient intensity for accurate measurement. In addition, ionisation 

sources are designed to produce as low as possible an intensity of background ions 

which do not originate from the sample, and they should not exhibit mass 

discrimination (Elliot, 1963; Roboz, 1968). 

 

2.10.2.3 Mass Analyzer: The sample ions, which are formed in the ionisation source, 

are then accelerated into the next part of the mass spectrometer, known as the mass 

analyzer, by applying an electric field. Within the mass analyzer, the ions are separated 

according to differences in their mass-to-charge (m/z) ratios. Ions formed from neutral 

sample molecules will have different masses, and therefore when accelerated towards 

the analyzer region, they will enter with a range of velocities; the greater the mass of the 

ions the slower they travel, hence ions with smaller mass will arrive and enter the 

analyzer first (Higson, 2004). Several forms of mass analyzers are available to achieve 

the separation process of the ions according to their m/z value. The selection of mass 

analyzer depends on the following properties: (1) resolution, (2) mass range, (3) scan 
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rate and (4) detection limits required. Commonly used mass analyzers include 

quadrupole filter, magnetic sector, time-of-flight, ion cyclotron resonance and 

quadrupole ion trap analyzers (Chapman, 1993; Bramer, 1998). 

 

2.10.2.4 Detector and Data Processing: This is the last component of the mass 

spectrometer. Once the process of separation of the ions according to their m/z ratios in 

the analyzer region is completed, ion current of varying intensity reaches the detector. 

The detector monitors this ion current, amplifies it, and then transmits a signal into the 

data processing system, whereby the signal is processed and recorded in the form of a 

mass spectrum. The spectrum output is plotted as m/z values of the ions against their 

intensities. Important information can be obtained from this spectrum, such as the 

number of components, the molecular mass of each component and the relative 

abundance of the various components in the sample. The most common detectors 

include the photomultiplier, electron multiplier and micro-channel plate detectors, and 

are used to suit the type of analyzer (Bramer, 1998; Ashcroft, 2002; Polce and 

Wesdemiotis, 2002). 

 

2.10.3 MALDI-TOF Mass Spectrometer: 
 
Matrix-Assisted Laser Desorption Ionization (MALDI) is a soft ionization technique 

used in MS, which is characterised by high accuracy and sensitivity. The technique was 

developed in 1988 by Hillenkamp and Karas for protein analysis (Karas and 

Hillenkamp, 1988), and recently it has become one of the most widely used techniques 

for the analysis of bio-molecules. It is used mainly for rapid measurement of the 

molecular weights of peptides, proteins, lipids, oligonucleotides, oligosaccharides and 
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other bio-molecules, with an accuracy of up to 0.01% of the actual molecular weight of 

the sample (Johnstone and Rose, 1996). 

 

MALDI-MS is based on exposing the sample to be analyzed, mixed with an excess of 

matrix compound, to a short period of bombardment by intense pulses of laser light, 

usually a pulsed nitrogen laser at a wavelength of 337 nm (Figure 2.3) (Polce and 

Wesdemiotis, 2002). The matrix is characterised by its high absorbance of laser light 

energy, which is transformed into excitation energy and leads to the ionization of the 

analyte. Experience has shown that the best and most reliable results can be obtained 

when the molar ratio of sample to matrix ranges from 1:100 to 1:50,000. Indeed, the 

matrix plays an essential role in the generation of intact ions from the analyte, as it 

assists in efficiently providing controllable energy to the sample, minimizing the 

possibility of decomposition (Hillenkamp et al., 1991; Lewis et al., 2000). 

 

 

 

 

 

 

Figure 2.3: The process of the formation of sample ions by MALDI source, 

reproduced from Polce and Wesdemiotis, 2002. 

 

2.10.3.1 MALDI Matrices: 
 
Matrices that are used in MALDI-MS analysis should have the following properties: (1) 

high electronic absorption at the laser wavelength used, (2) good vacuum stability, (3) 

low vapour pressure and (4) good solubility in solvents that also dissolve the analyte 
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sample (Montaudo et al., 2002). The most commonly used matrices are 2,5-

dihydroxybenzoic acid (DHB) which is usually used for the analysis of glycopeptides, 

glycoproteins, small proteins and oligonucleotides, 3,5-dimethoxy-4-hydroxycinnamic 

acid (sinapic acid or SA) which is commonly used for peptides and proteins, and α-

cyano-4-hydroxycinnamic acid (α-CHCA) which is mainly used for the analysis of 

peptides, glycopeptides and small proteins (Figure 2.4) (Lewis et al., 2000). 

 

2.10.3.2 Sample Preparation in MALDI: 

 
The sample-matrix preparation is crucial to the quality of the spectrum obtained in 

MALDI-MS, as it strongly affects detection sensitivity, selectivity and mass resolution 

in the analysis of peptides and proteins. The most frequently used preparation method 

currently is the dried-droplet method. It is quite a simple and fast method, in which 

initially a saturated solution of a suitable matrix is prepared in water/organic solvent 

(usually either ethanol or acetonitrile). Appropriate amounts of this matrix solution are 

then mixed with the analyte dissolved in identical solvent(s) to give a mixture with a 

matrix to sample ratio of about 5000:1. After this, an aliquot of the mixture is 

transferred onto the MALDI target and allowed to dry at room temperature. The sample 

is then is ready to be loaded into the MALDI-MS instrument and analyzed (Hillenkamp 

et al., 1991; Lewis et al., 2000). 

 

 

 

 
 
 
  
Figure 2.4: Chemical structures of the most common MALDI matrices. 

Sinapic acid (SA) α-CHCA DHB 
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2.10.3.3 Time-of-Flight analyzer in MALDI: 

 
Time-of-Flight (TOF) analyzers are typically suited for use with MALDI-MS because 

of their theoretically unlimited mass range, high ion transmission and temporal 

separation of ions (Lewis et al., 2000). TOF is characterised by its ability to produce 

high mass accuracy and high mass resolution. In MALDI TOF-MS, a packet of ions is 

produced by firing a laser onto the matrix-sample mixture, which is then accelerated by 

a fixed electric potential (V). The resulting velocity of the ions is characteristic of their 

m/z ratio. After the ions leave the acceleration region they then enter a field-free flight 

region known as a drift tube. They travel through the drift tube and reach the detector at 

different times depending on their initial velocity. The signal resulting from the detector 

is recorded as a function of time and displayed as a mass spectrum, on which the square 

of the flight time is proportional to the m/z ratio, as shown in the following equation: / 2V /  

where, m is the mass of the ion, z is the number of charges, V is the accelerating 

voltage, t is the ion flight time, l is the length of the flight tube. Since the V and l values 

are known, the m/z ratio can be calculated from the equation above (Chapman, 1993; 

Lewis et al., 2000; Montaudo et al., 2002). 

There are two kinds of TOF analyzers which can be used to detect the ions through the 

drift tube; these are linear mode and reflectron mode (Figure 2.5). Higher sensitivity, 

particularly at high molecular mass, is achieved in linear mode, whilst higher resolution 

is obtained in reflectron mode, as the reflector (ion mirror) serves to increase the flight 

time of the ions and hence their separation. In linear mode, resolution is around (500–

800) and only a short lifetime (1 μs) for the ion is required, even in the case of a 

metastable decay on the flight path. In reflectron mode, resolution is typically around 

1000–2500 (Hillenkamp et al., 1991; Montaudo et al., 2002). 
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Figure 2.5: Diagram of a MALDI TOF-MS in (a) Linear mode and (b) Reflectron 

mode, reproduced from Hillenkamp et al., 1991. 

 

2.10.4 ESI Mass Spectrometer: 
 
Electrospray ionization (ESI) has emerged as a powerful MS technique for the analysis 

of large and fragile polar molecules. Since it was first used by Yamashita and Fenn in 

1984 (Yamashita and Fenn, 1984), this technique has become one of the common ways 

to measure the molecular weight of bio-molecules, particularly peptides and proteins. 

The principle of ESI is the formation of multiply charged ions from an analyte, with 

produced ions having one, two, three or more charges; therefore the corresponding m/z 

ratios will vary relative to the number of charges (z) carried by each ion. In this 

technique, large molecules such as proteins can be protonated or deprotonated at several 

sites, giving ions with an upper limit of m/z value not exceeding a few thousand. This is 

of significance as a mass spectrometer measures the m/z ratio of an ion, and the mass 

range of an instrument may therefore be effectively extended by a factor equivalent to 

the number of charges caused to reside on the sample molecule. Thus, massive 

molecules, even those with a molecular weight in excess of a hundred thousand, can be 

analyzed (Johnstone and Rose, 1996). 
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2.10.4.1 Mechanism of Electrospray Ionization: 

 
Electrospray ionization occurs by three main steps: (1) formation of charged droplets, 

(2) desolvation of the droplets and (3) formation of gas-phase ions from the sample. 

During standard ESI (Figure 2.6), the sample is dissolved in a polar, volatile solvent and 

introduced into the instrument by a syringe pump in a region of atmospheric pressure 

(Ashcroft, 2002). The analyte solution is then passed through an electrospray capillary 

tube at a flow rate ranging between 1 μl/min to 1 ml/min, while a strong electric field is 

applied to the tip of the capillary. Typically, the potential difference between the 

capillary tip and a nearby counter-electrode is 3-4 kV. The sample emerging from the 

tip is charged by the field and hence dispersed into a mist of highly charged droplets, a 

process that is assisted by the co-axial flow of a nebulising gas, usually nitrogen, 

flowing around the outside of the capillary. The charged droplets then undergo a 

desolvation process during their passage across the front of the ionization source, 

assisted by a warm flow of nitrogen gas that is known as the drying gas. As a result of 

the removal of the solvent, the droplets decrease in size until they reach the Rayleigh 

instability limit; at this point a Coulombic explosion occurs and several even smaller 

droplets are formed. A series of solvent evaporation, droplet contraction and Coulombic 

explosions is repeated until gas-phase ions of the sample are produced (Figure 2.7), 

which are eventually transferred through a sampling cone under high vacuum towards 

the analyzer of the mass spectrometer (Fenn et al., 1989; Ashcroft, 2002; Polce and 

Wesdemiotis, 2002; Prokai, 2002; Ardrey, 2003). 
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Figure 2.6: Standard Electrospray Ionization (ESI) spectrophotometer set up, 

reproduced from Ashcroft, 2002. 

 
 

 

 

 
 
 

Figure 2.7: The formation of ions from droplets in ESI, reproduced from Polce and 

Wesdemiotis, 2002. 

 

2.10.4.2 ESI spectrum appearance and Data processing: 

 
As discussed before, ESI produces multiply charged ions, either by protonation in 

positive ionization mode, [M+zH] +z, or deprotonation in negative ionization mode, [M-

zH] -z, from molecules that have multiple sites. The choice between negative or positive 

ionization modes would depend on the nature of the sample. Peptides and proteins are 

usually analyzed under positive ionization conditions, while saccharides and 

oligonucleotides are analyzed under negative ionization conditions. The analysis of 

[M+zH] +z 
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multiply charged (both protonated and deprotonated) ions has been accomplished using 

most types of analyzers, such as quadrupole, magnetic sector, ion taps and time-of-flight 

(Prokai, 2002). An ESI mass spectrum usually appears as a series of ion peaks of 

different m/z values, each of which represents a different charged state for the same 

analyte (Fenn et al., 1989). The molecular weight of the sample can be determined from 

the spectrum, using the fact that adjacent peaks in the multiply charged series are 

different only by one charge. A typical ESI-MS spectrum, of horse heart myoglobin, is 

shown in Figure 2.8; in this spectrum, the m/z values recorded for multiply charged ions 

range from 616.35 to 1413.87 (Ardrey, 2003). Each peak observed in this spectrum 

represents the intact molecule of the analyte carrying an unknown number of charges, 

and the same number of protons. The value above each peak represents the molecular 

weight of the intact analyte divided by the charge number it carries (Ardrey, 2003).  

 

The m/z value of an ion is related to the molecular weight of the analyte and can be 

expressed by the following equation:  /   (MW +  nH )/n 
where m/z = the mass-to-charge ratio, MW = the molecular mass of the analyte, n = the 

integer number of charges on the ion and H = the mass of a proton = 1.008 Da. 

When the number of charges on an ion is known, then it is possible to calculate the 

molecular weight of the sample from one peak by using the equation. However, because 

the value of n is not known, this makes one peak insufficient to determine the molecular 

weight of the analyte. But if two adjacent peaks are examined, both unknown 

parameters (number of charges and molecular weight of analyte) can be solved from a 

pair of simultaneous equations (Johnstone and Rose, 1996; Ardrey, 2003). For example, 

if the ions appearing at m/z 848.62 in the horse heart myoglobin spectrum (Figure 2.8) 
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have "n" charges, then the ions at m/z 808.28 will have "n+1" charges, and the above 

equation can be written for these two ions as: 848.62  (MW +  nH )/n     and    808.28  MW +  (n + 1)H  /(n + 1) 
These simultaneous equations can be rearranged to exclude the MW term: n(848.62)   nH  (n + 1) 808.28  (n + 1)H   n(848.62)   n(808.28) + 808.28  H  n(848.62  808.28)   808.28  H   n  (808.28  H ) / (848.62  808.28) n  807.272 /40.34  20  

Putting the value of n back into the equation: 848.62  (MW +  nH )/ n 848.62x 20  MW +  (20 x 1.008) MW  16972.4  20.16 

MW = 16952.24 Da 

 

 

 

  

 

 

 

 

 
 
 
Figure 2.8: A positive ion ESI-MS spectrum of horse heart myoglobin, reproduced 

from Ardery, 2003. 
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2.10.5 MALDI-TOF analysis of HRP-C* mutants: 
 
For MALDI–TOF MS analysis, 5 μl of a 50μM of WT HRP-C*, S167W or S167Y 

variant (either treated or untreated with hydrogen peroxide) were mixed with an equal 

volume of 25 mg/ml matrix solution (α-cyano-4-hydroxycinnamic acid dissolved in 1:1 

MeCN and ddH2O). 1 μl of the final solution with matrix was applied to the sample 

target plate and allowed to dry and crystallise at room temperature. The analysis of 

sample was performed by the MALDI-TOF machine (Waters Corporation), pre-

calibrated with protein samples of high purity and known molecular weight. The sample 

was loaded under high vacuum, the laser fired (the energy of the laser was at 60% on 

medium range) and the detector placed in a linear mode. The data processing was 

achieved automatically using MassLynx V4.0 to calculate the mass of each enzyme 

sample. 

 

2.10.6 Electrospray Ionization of HRP-C* mutants: 
 
For ESI-MS analysis, HRP-C* proteins were analysed under positive ionisation 

conditions. 100 μl samples of WT-HRP-C*, S167W or S167Y variant (either treated or 

untreated with hydrogen peroxide) were dialysed overnight in the cold room (4 oC) 

against ddH2O, then mixed with an equal volume of 0.1% (w/v) formic acid in 50:50 

methanol and water. The final solution was directly injected at a rate of 15 μl/min into a 

Micromass Hybrid Q-TOF ultima machine (Waters Corporations), pre-calibrated with 

sodium iodide with m/z values range of 100-3000 Dalton. The dissolvation temperature 

was 400 oC and desolvation gas flow was 396 l/hr. Data processing and analysis of the 

resultant spectrum data was achieved automatically using MassLynx V4.1 to determine 

the mass of each protein sample. 
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2.11 Peroxidase activities under Steady-State Conditions: 

2.11.1 Initial steady-state parameters for the oxidation of ABTS: 
 
For WT HRP-C* as well as each of the S167 variants, initial steady-state parameters for 

peroxidase activity were determined using the substrate 2,2’-azino-bis (3-

ethylbenzthiozoline-6-sulphonic acid) (ABTS), which is oxidised to a green radical 

product in the presence of peroxidase and hydrogen peroxide (H2O2). 

 

Reactions were carried out in a citrate-phosphate buffer, pH 5.0, containing 51 mM 

disodium hydrogen orthophosphate and 24 mM citric acid. The assay reactions were 

initiated by the addition of substrate, hydrogen peroxide and then enzyme to a cuvette, 

giving final concentrations of 1 mM H2O2, 3 nM enzyme and 0.1-3 mM ABTS in 1 ml 

total final assay volume. All assay reagents were prepared in the assay buffer. 

 

The formation of the green radical product, as a function of time, was measured at 25 oC 

by monitoring the change of absorbance at 414 nm for 60 seconds. Three independent 

measurements were made for each substrate concentration. The initial rates (μmol.min-

1.ml-1) were determined using ε414 = 36.8 mM-1 cm-1 (Childs and Bardsley, 1975) and 

then converted to turnover number (s-1) using enzyme concentration. The Km and kcat for 

ABTS were determined by fitting the data obtained to the Michaelis-Menten equation 

using the statistical analysis software SigmaPlot for Windows V4.01 (SPSS UK Ltd,). 

Hydrogen peroxide concentration was determined by measuring the absorbance of a 

dilution of the stock solution at 240 nm, and using the extinction coefficient ε240 = 39.4 

M-1 cm-1 (Nelson and Kiesow, 1972). 
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2.11.2 Activity screening towards a panel of substrates: 
 
WT HRP-C* enzyme and the S167 variants were also screened against a range of 

peroxidase substrates, in order to determine their specific activities. The assays were 

carried out in phosphate-citrate buffer, pH 5.0, containing 51 mM disodium hydrogen 

orthophosphate and 24 mM citric acid at 25 oC. The individual conditions for each 

substrate are given in Table 2.1. The reactions were initiated by the addition of enzyme, 

at suitable concentration, to the other reagents. The dilute stock enzyme solutions were 

prepared in 5 mM MOPS buffer, pH 7.0, containing 0.2 mM CaCl2 and 0.2 mg/ml BSA, 

to promote enzyme stability. 

 

2.11.3 Initial steady-state parameters with luminol as substrate: 
 

Steady-state kinetic constants for luminol oxidation by WT HRP-C* and S167 variants 

were obtained by measuring the absorbance change at 400 nm for 60 seconds. The 

assays were carried out in a citrate-phosphate buffer, pH 5.0, as described in section 

2.11.2 using 1 mM H2O2, 20 nM enzyme and 0.1−5 mM luminol in 1 ml total assay 

volume. The initial rates (μmol.min-1.ml-1) were determined using ε400 = 4.5 mM-1 cm-1 

and then converted to turnover number (s-1). Kinetic parameters Km and kcat for luminol 

were determined by fitting the data obtained to the Michaelis-Menten equation. 
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Table 2.2: Enzymatic reaction conditions for assays of WT HRP-C* and S167 

variants with a range of substrates. The assays were carried out in phosphate-citrate 

buffer, pH 5.0, containing 51 mM disodium hydrogen orthophosphate and 24 mM citric 

acid at 25 oC using enzyme concentrations as shown below, 1 mM H2O2 (with the 

exception of point 2 below) and the different concentrations of substrates as shown 

below, in a final volume of 1 ml at 25 oC. The enzyme solutions were diluted in 5 mM 

MOPS buffer, pH 7.0, containing 0.2 mM CaCl2 and 0.2 mg/ml BSA. 

  

Substrate [Substrate] [Enzyme] Extinction coefficient 

ABTS 0.3 mM 0.5 nM aε414 = 36.8 mM-1 cm-1 

Ferulic acid 50 µM 0.25 – 0.5 nM bε310 = 8.68 mM-1 cm-1 

Caffeic acid 70 µM 0.2 – 0.25 nM cε320 = 10.4 mM-1 cm-1 

p-Cumaric acid 76 µM 0.1 – 0.25 nM dε308 = 12 mM-1 cm-1 

Potassium ferrocyanide 2 mM 2.5 – 5 nM eε420 = 1.06 mM-1 cm-1 

Guaiacol 5 mM 1 nM fε470 = 26.6 mM-1 cm-1 

Pyrogallol 20 mM 1 nM gε430 = 2.47 mM-1 cm-1 

o-Phenylenediamine 0.2 mM 0.5 nM hε450 = 11.1 mM-1 cm-1 

Chlorpromazine 2.2 mM 50 nM iε525 = 12.1 mM-1 cm-1 

Luminol1 0.5 mM 20 nM jε400 = 4.5 mM-1 cm-1 

Orange I2 50 µM 1 nM kε480 = 15.2 mM-1 cm-1 

Orange II2 50 µM 0.75 µM lε480 = 15.2 mM-1 cm-1 
 

a(Childs and Bardsley, 1975), b(Abelskov et al., 1997), c and d(Rasmussen et al., 1995), e(Hasinoff and Dunford, 1970), f and 

h(Bovaird et al., 1982), g(Chance and Maehly, 1955), i(Reilly and Aust, 1997), j(Cali, 2008), k and l(Coen, 2001). 
 
 
 
 
1 0.01772 gm of luminol was dissolved in 1 ml DMSO solvent, then 9 ml of ddH2O were added to this 

solution along with 200 µl of 1 M NaOH (to completely dissolve the luminol). 
2 The assay was carried out in 5 mM borate-phosphate buffer, pH 8.0, µ = 50 mM, using 0.1 mM of H2O2. 
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2.12 Pre steady-state kinetics measurements: 

2.12.1 Introduction: 
 
Stopped flow spectroscopy provides a way of monitoring fast reactions that have an 

accompanying spectral change. It was developed by Britton Chance in the 1950s and it 

is considered an efficient way of measuring the transient absorbance changes which 

occur when an enzyme reacts rapidly with substrate (Gutfreund, 1999). The method 

allows the measurement of pre steady-state rate constants for the formation of enzyme 

intermediates, which is impossible under normal steady-state kinetics. Pre steady-state 

kinetics describes the phase of an enzyme-catalysed reaction where enzymatic 

intermediates are accumulating, processes that may be completed typically within 

milliseconds. Therefore stopped flow spectroscopy is an extremely useful technique 

characterised by the ability to achieve a very rapid mixing of reagents and timely data 

collection (Cornish-Bowden, 2004). 

 

The sampling handling unit (SHU) of the stopped flow system used (Applied Photo 

Physics SX18MV) (Figure 2.9) is composed of two syringes, one holds the enzyme 

sample and the other holds the substrate under investigation. Computer controlled 

pneumatic ram drivers load reactants from these syringes into a mixing chamber. Once 

the mixed solution has passed through the mixing chamber it forces back a ‘stopping’ 

syringe, which triggers a micro switch, stopping the rams and triggering the 

spectroscopic measurements of the reaction. This process takes approximately 2 ms and 

is known as the dead time; the dead time is thus essentially the age of the reaction as it 

enters the optical cell. The system is able to measure either rapid change in absorbance 

at a single wavelength or across a range of wavelengths (using a photodiode array, see 
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below). The changes in absorption are measured using a spectrophotometer equipped 

with a xenon light source and a photomultiplier. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Sampling handling unit (SHU) of Stopped Flow spectrometer. The SHU 

is shown fitted with the sequential (double) mixing option. This option equips the SHU 

with 4 drive syringes and 2 pneumatic drives rams. The standard single-mix system is 

equipped with 2 drive syringes and 1 pneumatic drive ram2.  

 

2.12.2 Photodiode array experiments: 
 
The photodiode array (PDA) of the Applied Photophysics stopped flow system used, 

uses a xenon light source to perform rapid UV-Visible spectral scans of the contents of 

the optical cell. The array has the ability to perform spectral measurements over the 

range of 300-735 nm, and enables repeat scans down to every 1.28 ms (this is known as 

the integration time). Repeat scans obtained were analysed using the global analysis 

                                                
2 The picture is adopted from Applied Photophysics, hardware user guide of the SX20 stopped flow 
system. 
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software, Pro-Kinetics V1.05, to model the presence of possible transient species in the 

enzymatic reaction.  

 

Samples of WT HRP-C* and variants were exchanged from MOPS storage buffer, 

using a NAP-5 column (containing Sephadex G-25 Medium, Pharmacia) into 10 mM 

Na-phosphate buffer, pH 7.0, and then diluted to 4 µM with the same buffer. A 40 µM 

H2O2 solution was also prepared using the phosphate buffer. Enzyme and peroxide 

solutions were placed into the two driving syringes and mixed giving final 

concentrations of 2 µM enzyme and 20 µM H2O2. Rapid scan optical spectra were 

recorded in a logarithmic manner from 1.28 ms to 1000 ms. 

 

2.12.3 Determination of k1 value: 
 
The Compound I formation rate constant k1 for the reaction of WT HRP-C* or variant 

(both before and after treatment with hydrogen peroxide) with H2O2 was determined 

under pseudo first-order conditions using the stopped flow spectrophotometer. All 

measurements were conducted at 25 °C in 10 mM sodium phosphate buffer, pH 7.0.  

 

Stock enzyme samples were exchanged from MOPS buffer, using a NAP-5 column 

(containing Sephadex G-25 Medium, Pharmacia) into 10 mM phosphate buffer, pH 7.0, 

and diluted to the desired concentration with more buffer. A constant concentration of 

enzyme ranging between 1-1.5 µM was used with variable concentrations of H2O2 

ranging between 5-15 µM. Three independent determinations were made for each 

hydrogen peroxide concentration and the mean was taken. The changes in absorbance in 

the optical cell were monitored at 395 nm, the isosbestic wavelength for Compound I 

and Compound II (Smith et al., 1992). By following the decrease in absorbance at 395 
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nm, the pseudo first-order rate constant (kobs) at each H2O2 concentration was obtained 

by single exponential decay fit of the trace. The kobs obtained were then plotted against 

H2O2 concentration and the resultant curve fitted by a weighted least square, linear 

regression analysis using SigmaPlot software. The gradient of the plot is the second-

order rate constant k1. 

 

The auto-reduction of Compound I was also monitored, at 412 nm, by stopped flow 

spectroscopy. Upon stopped flow mixing of enzyme and H2O2, using final 

concentrations for H2O2 and enzyme of 2 µM and 20 µM, respectively, the traces 

obtained were biphasic in nature. The traces were recorded and fitted to a double 

exponential function and the pseudo first-order rate constant (kobs) were obtained. The 

life time of the Compound I intermediate was determined as the reciprocal of the kobs 

obtained. 

 

2.12.4 Determination of k2 and k3 values: 
 
The Compound I reduction, or Compound II formation, rate constant k2 and Compound 

II reduction rate constant k3 of the reaction of WT HRP-C* or variant with luminol as 

reducing substrate, were determined by monitoring the change in absorbance at 424 nm 

under pseudo first-order conditions using the stopped flow spectrophotometer. Pre-

preparation of Compound I was by mixing 3 μM of enzyme sample with 2.7 μM of 

H2O2, which was then reacted with variable concentrations of luminol ranging from 10 

– 50 μM. All measurements were carried out at 25 °C in 10 mM sodium phosphate 

buffer, pH 7.0. Stopped flow traces from these experiments were biphasic; an initial 

increase in absorbance was detected corresponding to the formation of Compound II, 

followed by a decrease in absorbance corresponding with the reduction of Compound II. 
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The traces were fitted to a double exponential function using the curve fitting 

application in the Pro-Data Viewer software (Applied Photo-Physics) to determine the 

pseudo first-order rate constants (kobs) for the first and second phases at the same time. 

After that, the rate constants k2 and k3 were calculated, by a weighted least square 

regression analysis using SigmaPlot software, from the slope of a graph of the pseudo 

first-order rate constants (kobs) against luminol concentration. 

 

2.13 Crystallization of enzyme samples: 
 
In order to determine X-ray crystal structures for the HRP-C* variants, the hanging drop 

vapour diffusion method (in which a drop of protein is brought gradually to super-

saturation by loss of water from the droplet to the larger reservoir that contains a 

polyethylene glycol solution) was used to grow crystals as previously reported for WT 

HRP-C* (Henriksen et al., 1999). Concentrated samples of HRP-C* variants were 

prepared by concentration to about 10 mg/ml using an Amicon YM-30 (30,000 Da) 

Centricon at 4 oC. A saturated solution of ferulic acid (FA) in isopropyl alcohol was 

also prepared, as well as 1 M calcium acetate, 1 M sodium cacodylate and 50% (w/v) 

polyethylene glycol 8000 (PEG 8000) solutions. 

 

Crystals were grown in a mixture of equal amounts (2 μl) of enzyme variant and 

reservoir solution, plus 1 μl of saturated FA in isopropyl alcohol, in a hanging drop, by 

vapour diffusion in a 24 well VDX plate (Hampton Research). The drops were 

equilibrated against reservoir solution with different concentrations of polyethylene 

glycol 8000, calcium acetate and sodium cacodylate in a 1 ml final solution, as shown in 

Table 2.2. The VDX tray was left in the fridge at 4 oC. 
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Table 2.2: Layout of reservoir solutions for a 24 well VDX plate for HRP-C* 

variant crystallization. Each well contained a different concentration of polyethylene 

glycol 8000, Ca acetate, and Na cacodylate, in 1 ml final solution.  

 
A1 

5% PEG 8000 

0.1M Ca acetate 

0.1M cacodylate

A2 

10% PEG 8000 

0.1M Ca acetate 

0.1M cacodylate

A3 

15% PEG 8000 

0.1M Ca acetate 

0.1M cacodylate

A4 

20% PEG 8000 

0.1M Ca acetate 

0.1M cacodylate

A5 

25% PEG 8000 

0.1M Ca acetate 

0.1M cacodylate 

A6 

30% PEG 8000 

0.1M Ca acetate 

0.1M cacodylate

B1 

5% PEG 8000 

0.2M Ca acetate 

0.1M cacodylate

B2 

10% PEG 8000 

0.2M Ca acetate 

0.1M cacodylate 

B3 

15% PEG 8000 

0.2M Ca acetate 

0.1M cacodylate 

B4 

20% PEG 8000 

0.2M Ca acetate 

0.1M cacodylate 

B5 

25% PEG 8000 

0.2M Ca acetate 

0.1M cacodylate 

B6 

30% PEG 8000 

0.2M Ca acetate 

0.1M cacodylate 

C1 

5% PEG 8000 

0.1M Ca acetate 

0.2M cacodylate

C2 

10% PEG 8000 

0.1M Ca acetate 

0.2M cacodylate 

C3 

15% PEG 8000 

0.1M Ca acetate 

0.2M cacodylate 

C4 

20% PEG 8000 

0.1M Ca acetate 

0.2M cacodylate 

C5 

25% PEG 8000 

0.1M Ca acetate 

0.2M cacodylate 

C6 

30% PEG 8000 

0.1M Ca acetate 

0.2M cacodylate 

D1 

5% PEG 8000 

0.2M Ca acetate 

0.2M cacodylate

D2 

10% PEG 8000 

0.2M Ca acetate 

0.2M cacodylate 

D3 

15% PEG 8000 

0.2M Ca acetate 

0.2M cacodylate 

D4 

20% PEG 8000 

0.2M Ca acetate 

0.2M cacodylate 

D5 

25% PEG 8000 

0.2M Ca acetate 

0.2M cacodylate 

D6 

30% PEG 8000 

0.2M Ca acetate 

0.2M cacodylate 
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Chapter Three: 

Generation of S167W and S167Y HRP-C* variants 

 

 

3.1 Introduction: 
 
The main aim of the described work was to introduce novel covalent linkages between 

the haem porphyrin and protein of HRP-C, similar to those found in myeloperoxidase 

and other mammalian peroxidases (Fiedler et al., 2000). It has previously been reported 

that mutation of Ser160 to Met or Tyr (S160M or S160Y) in recombinant pea ascorbate 

peroxidase (rpAPX) results in a covalent linkage between the haem 2-vinyl and the 

protein on treatment with H2O2 (Metcalfe et al., 2004; Pipirou et al., 2007b). in 

addition, the distal tryptophan of APX (Trp41) can form a covalent bond to the haem if 

the protein is incubated for a long time with H2O2 (Pipirou et al., 2007a); a result 

replicated for the W191F mutant of CcP where a link is formed between the distal 

tryptophan, Trp51, and the haem (Pipirou et al., 2009). 

 

Previously in this laboratory, the position 167 has been identified in HRP-C as the 

closet to the 2-vinyl of the haem (Cali, 2008). Work on the subsequently engineered 

[S167M] HRP-C* mutant showed that, upon incubation with H2O2, a sulfonium linkage 

was formed between the introduced methionine and the haem (Cali, 2008). Based on 

this work, and the work on rpAPX, it was decided to engineer two new mutants in HRP-

C*: [S167Y] and [S167W] HRP-C*. 
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The process of replacement of an amino acid by another one in a protein requires the 

changing of the particular codon that codes for the original amino acid residue to the 

codon of the desired replacement amino acid in the expression vector used. This 

manipulation in the gene or cDNA of the protein of interest is known as site-directed 

mutagenesis, and is the basis for much of the protein structure/function studies 

performed today. Indeed, this technique has been, and is still being, used to investigate 

the structure/function of plant peroxidases, in particular HRP-C, and has led to the 

understanding of the critical role(s) played by the distal and proximal haem pocket 

amino acid residues Arg38, His42 and His170 in peroxide binding and catalysis 

(Newmyer and Ortiz de Montellano, 1995; Newmyer and Ortiz de Montellano, 1996a; 

Rodriguez-Lopez et al., 1996a; Newmyer et al., 1996b; Rodriguez-Lopez et al., 1996b), 

as well as the functional importance and role(s) of other amino acid residues, such as 

Phe41, Glu64 and Asn70 in the substrate binding site, calcium binding sites etc. (Smith 

et al., 1992; Smulevich et al., 1994; Tanaka et al., 1998; Heering et al., 2002). 

 

In this work, mutant genes encoding HRP-C variants S167W and S167Y were produced 

using a PCR-based Whole Plasmid Amplification Method (WPAM). This method 

(Figure 3.1) has already been successfully employed in the generation of a range of 

peroxidase mutants (Veitch et al., 1997; Doyle et al., 1998) and has proved to be 

efficacious, economical and specifically does not require the presence of a unique 

restriction enzyme site near the point of mutation. The template used in this work was 

the ampicillin resistant (AmpR) expression vector pFLAG1-HRP-C, which contains a 

synthetic HRP-C gene (Smith et al., 1990). This vector allows the expression of HRP-C 

recombinant enzyme in E. coli under the control of the tac promoter; it also contains a 

copy of the lacIq repressor gene to ensure extra tight regulation of expression. The gene 
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is present in this vector between an Nde I site and a non-functional Bam HI/ Bgl II 

hybrid site (Figure 3.1). 

 

3.2 Design of Primers: 
 
Two oligonucleotide primers for the production of each mutant gene (Figure 3.2) were 

designed, to incorporate the necessary changed deoxynucleotide(s) required to generate 

the required amino acid substitution in the enzyme, as well as additional silent 

mutations to produce a new restriction enzyme site in order to facilitate transformant 

screening. These designed primers were synthesized by MWG-Biotech. For the S167Y 

mutant, the mutagenic primer contained a TAT codon, which encodes the amino acid 

tyrosine, instead of a TCC codon which encodes the amino acid serine. Also, correct 

ligation will lead to the formation of a new restriction site for the restriction enzyme 

BssSI, through the replacement of T at position 591 in the WT plasmid by C. It is 

important to mention here that the WT expression vector already has two restriction 

sites for BssSI at positions 1666 bp and 3049 bp, respectively. For the S167W mutant, 

the mutagenic primer contained the codon TGG, which encodes for the amino acid 

tryptophan, instead of the TCC codon (serine). The new introduced restriction site for 

the enzyme BssSI was the same as for the S167Y mutant. The reference primer used 

was the same for both S167Y and S167W. 



 

 

  
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: PCR-based Whole Plasmid Amplification Method of site-directed 

mutagenesis (Doyle et al., 1998).  
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For [S167Y]HRP-C gene 

Original WT sequence of the HRP-C gene: 

5’-AATCGCTCGAGTGACCTTGTGGCTCTGTCCGGAGGACACACATTTG-3’ 

 

Engineered sequence to give [S167Y]HRP-C gene: 

5’-AATCGCTCGAGTGACCTC*GTGGCTCTGTA*T*GGAGGACACACATTTG-3’ 

 

 

Mutagenic primer: 5’-C*GTGGCTCTGTA*T*GGAGGACAC-3’ Tm = 62 oC 

Reference primer:  5’-AGGTCACTCGAGCGATTCAG-3’  Tm = 62 oC 

 

 

For [S167W]HRP-C gene 

Original WT sequence of the HRP-C gene: 

5’-AATCGCTCGAGTGACCTTGTGGCTCTGTCCGGAGGACACACATTTG-3’ 

 

Engineered sequence to give [S167W]HRP-C gene: 

5’-AATCGCTCGAGTGACCTC*GTGGCTCTGTG*G*GGAGGACACACATTTG-3’ 

 

 

Mutagenic primer: 5’-C*GTGGCTCTGTG*G*GGAGGACAC-3’ Tm = 62 oC 

Reference primer:  5’-AGGTCACTCGAGCGATTCAG-3’  Tm = 62 oC 

 

Figure 3.2: Mutagenic and reference primers designed for the production of 

[S167Y]HRP-C and [S167W]HRP-C mutant genes, in the expression plasmid 

pFLAG1.  
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3.3 PCR Products: 
 
PCRs were carried out for both HRP-C mutants, according to the conditions described 

in section 2.2.3, using an annealing temperature of 56 oC and Pfu polymerase. A proof 

reading polymerase was essential due to the large size of the DNA products expected, 

i.e. 6.3 kb. Agarose gel electrophoresis is the standard method used for separating DNA 

molecules of different lengths. Therefore, the PCR products obtained for both HRP-C 

mutants were checked by running a portion of the reaction mixture on a 1% agarose gel 

(Figure 3.3). It can be seen that only a linear DNA fragment of 6.3 kb was produced for 

both mutants, in quantities sufficient for the continuation of the WPAM site-directed 

mutagenesis method. 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3.3: 1% Agarose gel electrophoresis of WPAM PCR products, where M: 

DNA size marker (Promega, 1 kb DNA Ladder), (a) [S167W]HRP-C DNA and (b) 

[S167Y]HRP-C DNA. 
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Next, the DNA template WT pFLAG1-HRP-C was removed from the PCR samples by 

using DpnI, and the samples purified using phenol/chloroform extraction and ethanol 

precipitation (see sections 2.2.5 and 2.2.6). After that, the 5’ termini of the linear, 

purified PCR products were phosphorylated using T4 polynucleotide kinase and the 

DNA re-circularized using T4 DNA ligase, to give circular pFLAG1-HRP-C mutated 

plasmids (section 2.2.7). 

 

3.4 Restriction enzyme analysis of E. coli transformants: 
 
The ligation mixtures for both mutants were transformed into DH5α E. coli cells and 

selected on ampicillin agar plates. The resulting colonies had DNA extracted which was 

then screened by restriction enzyme digest with BssSI (section 2.2.10), along with WT 

pFLAG1-HRP-C DNA as a control. This was to confirm the presence of the desired 

nucleotide changes and correct ligation as a new site for this enzyme should have been 

introduced. However, WT pFLAG1-HRP-C DNA already has two restriction sites at 

position 1666 bp and 3049 bp, which when digested will give two bands on a gel with 

sizes 1383 bp and 4812 bp, respectively. For the mutant plasmids the new restriction 

site has been inserted at position 591 bp, and so BssSI digestion should give three bands 

on a gel, of 1075 bp, 1383 bp and 3737 bp, respectively. 

 

The results for DNA from [S167Y] and [S167W] putative mutant colonies, digested 

with BssSI, are shown in Figures 3.4 and 3.5. Seven colonies have the correct restriction 

pattern for the [S167Y] HRP-C mutant (Figure 3.4) and four colonies have the correct 

restriction pattern for the [S167W] HRP-C mutant (Figure 3.5). These results 

demonstrate the success of the site-directed mutagenesis method used at 58% and 44%, 

respectively. In Figure 3.4 there can be seen an unexpected extra DNA band for



  
 

 

 

 

 

  

 

 

 

 

 

 

Figure 3.4: 1% agarose gel electrophoresis of BssSI digestion of DNA from 

transformed colonies for the putative pFLAG1-[S167Y]HRP-C mutant plasmid. 

M: DNA size marker (Promega, 1 kb DNA Ladder). 

 

 

 

 

 

 

 

  

 

 

 

Figure 3.5: 1% agarose gel electrophoresis of BssSI digestion of DNA from 

transformed colonies for the putative pFLAG1-[S167W]HRP-C mutant plasmid. 

M: DNA size marker, WT: WT pFLAG1-HRP-C plasmid digested with BssSI. 
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colonies 2, 5, 7, 10, 11, and 12 at approximately 2.5 kb. This is assumed to be due to 

star activity. 

 

3.5 Sequencing of [S167Y]HRP-C and [S167W]HRP-C mutant 
genes:  
 
Plasmid DNA from two colonies of each mutant was submitted for DNA sequencing in 

order to confirm the expected mutations and the absence of any errors that may have 

occurred during the PCR procedure. The results obtained were analysed using the 

Seqman module of DNASTAR Lasergene software, by alignment with the sequence of 

WT pFLAG1-HRP-C. For both mutants, one sample contained the correct sequence 

without any error and the other sample had an error in the gene sequence. The colony 

containing the DNA that had the correct mutant gene sequence was selected for further 

work. 

 

3.6 Protein expression of [S167Y]HRP-C and [S167W]HRP-C 
mutants: 
 
Recombinant protein expression of HRP-C has been a major focus of researchers since 

the beginning of 1990s, and therefore a number of different expression systems have 

been developed (Veitch, 2004). Among these systems, expression in E. coli has proved 

to be the most valuable, as it is relatively low-cost and easy to obtain mutant proteins 

compared to other systems. In addition, the recombinant enzyme from E. coli 

expression is obtained in a non-glycosylated form, which helps in X-ray crystallization 

studies (Veitch and Smith, 2001; Veitch, 2004). However, the protein is expressed as 

non-active and in insoluble inclusion bodies and so in vitro refolding is needed. 



92 
 

 

3.6.1 Small-scale protein expression: 
 
Both mutant plasmids were transformed into E. coli W3110 cells for high protein 

expression from the tac promoter after induction with 1 mM IPTG. Expression of 

protein and production of protein extracts were performed as in sections 2.3.1.1 and 

2.3.1.2. The products of the expression were analyzed by SDS-PAGE on a 12% gel. 

This revealed that the size, 34 kDa, and expression levels of each new mutant were 

similar to those of the WT enzyme (Figure 3.6). In the absence of the inducer (IPTG), 

there was no detectable expression. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: 12% SDS-PAGE of small-scale mutant HRP-C protein expression. The 

figure shows that both new mutants have size approximately 34 kDa, which is 

comparable to the size of WT HRP-C*. a1 and b1: S167Y mutant induced with IPTG 

while a2 and b2 are without IPTG, c1 and d1: S167W mutant induced with IPTG, c2 

and d2 without IPTG, e1 WT induced with IPTG and e2 without IPTG. M: protein size 

marker (SigmaMarkerTM, Wide Range, 6.5-200 kDa). 
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3.6.2 Large-scale protein expression, in vitro refolding and active 
enzyme purification: 
 
Large-scale protein expression, in vitro folding and purification were achieved for both 

new HRP-C variants, as well as for WT enzyme, using a slightly modified form of the 

method previously described by Smith and co-workers (Smith et al., 1992); an 

alteration in the refolding procedure of the protocol (section 2.3.2.3) involved the 

addition of haem to the folding solution only after 18 hours of the process of refolding 

with the process then continuing for another 46 hours. This alteration has been shown to 

give a small, but significant, increase in enzyme yield (Cali, 2008). 

 

The final active enzyme was purified after refolding and concentration using the Fast 

Protein Liquid Chromatography (FPLC) instrument and cation-exchange 

chromatography on a Mono S column (section 2.3.2.3). The FPLC elution profiles 

obtained for the variants [S167Y] and [S167W] HRP-C* were consistent with those 

obtained from the purification of WT HRP-C* (Figure 3.7), indicating that there was no 

significant variation in the folding of the new mutants, compared to the WT enzyme. 

Yields of the mutant enzymes were also similar to WT enzyme, at approximately 9 

mg/L E. coli. 
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Figure 3.7: Cation exchange chromatography profile of [S167Y] HRP-C*. Active 

enzyme was purified using FPLC and cation exchange column Mono-S HR 10/10. 

Elution was achieved with a linear NaCl gradient of 0-1 M. The enzyme eluted as a 

single sharp peak at 160 mM NaCl, the same salt concentration as for the WT enzyme 

and S167W mutant. 

 

3.7 Conclusion: 
 
The PCR-based Whole Plasmid Amplification Mutagenesis method was successfully 

used to construct two HRP-C mutant genes, S167Y and S167W. The expected sequence 

changes in the HRP-C gene were confirmed by restriction enzyme screening as well as 

DNA sequence analysis, and no unexpected changes were detected. Both mutant 

proteins have been expressed in E. coli and SDS-PAGE analysis showed that the protein 

had the expected mass of 34 kDa. Finally, the purified variants [S167Y] and [S167W] 

HRP-C* were obtained in good yield after in vitro refolding and cation-exchange 

chromatography on an FPLC machine.  
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Chapter Four: 

Characterisation of the new HRP-C S167 variants 
and evidence of covalent linkage 

 

 

4.1 Introduction: 
 
Despite considerable efforts made by a lot of researchers, the mechanism of formation 

of the haem-protein covalent linkages in mammalian peroxidases, and their functional 

advantage(s) remain unclear. In the last ten years, efforts have focused on introducing 

these bonds into plant peroxidases. Site directed mutagenesis of plant peroxidases, 

which lack these linkages and belong to a different peroxidase superfamily, has been 

used to study the effect of both the esters and sulfonium linkages of MPO in a simpler 

system, where fundamental parameters can be more easily measured and the effects, 

whether electronic or structural, determined. As mentioned before (section 1.6), new 

haem-protein covalent bonds have been successfully created in rpAPX and CcP, where 

it has been unambiguously demonstrated that creation of these linkages lead to a 

profound impact on the spectroscopic and functional properties of these enzymes 

(Metcalfe et al., 2004; Pipirou et al., 2007a; Pipirou et al., 2007b; Pipirou et al., 2009). 

 

Recent work by another member of the group, Dr. Kasim Cali, highlighted position 167 

in HRP-C as close enough to the haem to form a haem-protein bond in the site-directed 

HRP-C* mutant S167M. Dr. Cali concluded from UV/Visible spectroscopy studies and 

HPLC and MS analysis that a sulfonium linkage between the protein and the porphyrin 

of the haem prosthetic group was auto-catalytically generated in this mutant after 
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treatment with hydrogen peroxide. However, he also found that this linkage was 

unstable and that after a short time it broke to yield a modified haem species (Cali, 

2008).  

 

In this study, and building on the previous work, two new site-directed HRP-C* mutants 

S167W and S167Y have been constructed, and protein expressed, refolded and purified 

(Chapters 2 and 3). This chapter describes the initial characterisation of these new 

variants, the effect of treatment of these variants with hydrogen peroxide and the 

evidence for the creation of a new covalent linkage between the haem and the protein. 

 

4.2 Spectroscopic characterisation of the new S167 variants: 
 
Spectroscopic techniques are a particularly useful probe for understanding the electronic 

properties of the haem of the peroxidases. The UV/Vis spectrum of wild-type HRP-C is 

characterised by the presence of a Soret peak at 403 nm as a result of π-π* transitions, 

with a strong shoulder at about 380 nm. Charge-transfer bands (CTI and CTII) at 642 

and 498 nm are also present and are due to partial transfer of electronic charge between 

the porphyrin and the iron (Dunford, 1999f). The iron in the resting state of HRP has six 

co-ordination sites: four positions are located in the plane of the haem iron atom and are 

occupied by the nitrogen atoms of a porphyrin group, the fifth co-ordination site is 

occupied by the proximal imidazole side chain of His170 residue, and the sixth position 

is vacant. Therefore, HRP-C is substantially a five coordinate high spin ferric haem 

iron. There are no additional cross-links between the side chains of the haem group and 

the protein. 
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The spectral features of the S167Y and S167W variants indicate small but significant 

electronic differences in the haem environment when compared to wild-type 

recombinant enzyme, Figure 4.1 and Table 4.1, the most obvious being the absence of 

the shoulder at 380 nm in the spectrum of the S167Y variant. This suggests a loss of 5-

coordinate character of the haem iron and conversion to a 6-coordinate high spin form. 

The intensity of the shoulder at 380 nm is also much weaker in the S167W variant, 

suggesting that about 50% of the haem iron is converted from 5-coordinate high spin 

form to 6-coordinate high spin form. The Soret peak of S167W has also slightly red 

shifted to 404.  

 

The spectra also show that the CTII band for both the S167W and S167Y variants is 

496 nm, very slightly blue shifted when compared to the WT CTII band at 498 nm. 

However, there are more significant differences for the CTI band: being 636 nm for 

S167Y, 638 nm for S167W compared to 642 nm for WT. All these features are 

consistent with an increase in 6-coordinate character for the new variants. Also, 

consistent with this, there are significant increases in the molar extinction coefficients of 

both mutant variants, 180 mM-1 cm-1 for S167Y and 135 mM-1 cm-1 for S167W 

compared to 100 mM-1 cm-1 for the WT enzyme, implying a significant electronic effect 

especially for the S167Y variant. The large increase in molar extinction coefficient for 

the S167Y variant could be attributed to the resonance effect of the aromatic ring of the 

tyrosine residue as well as the auxochromic effect of the hydroxyl group. 

 

The most convenient measurement of peroxidase purity is given by the Reinheitszahl 

number (RZ), which is the ratio of the absorbance of the enzyme at the Soret peak and 

280 nm. RZ values between 3 and 3.4 are generally considered optimal for WT HRP-C 
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(Dunford, 1999f; Veitch and Smith, 2001). However, the reduction in the value of RZ 

for the S167W variant is reasonable as the addition of another tryptophan residue in the 

structure of enzyme will contribute to an increase in the absorbance at 280 nm, there is 

therefore no reason to suggest that the [S167W] HRP-C* sample is less pure. 

 

 

 

 

 

 

Table 4.1: Spectrum parameters for resting state of WT HRP-C*, S167W and 
S167Y variants. 

 

Enzyme Shoulder (nm) Soret peak (nm) CTII (nm) CTI (nm) Extinction coefficient mM-1 cm-1 RZ1 
WT HRP-C* 380 403 498 642 100 ± 5 3.4 

S167Y very weak  403 496 636 180 ± 2 3.3 

S167W weak 404 496 638 135 ± 1 2.7 

 
1 Reinheitszahl number 



 
 

 

 
 
 
 
 
 
 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: UV/Visible absorption spectra of WT HRP-C* and the new S167 

variants. Spectra were recorded in 5 mM MOPS buffer, pH 7.0 at 25 oC using 9 μM 

WT HRP-C*, 5 μM S167Y variant and 6.5 μM S167W variant. The inset in the top 

right of the figure is a magnified view of the region between 450 nm and 700 nm, in 

order to highlight the CTI and CTII bands. 
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4.3 BHA binding to WT HRP-C* and the new S167 variants: 
 
Benzhydroxamic acid (BHA) is capable of forming a spectroscopically distinct, 

reversible complex with both free and cyanide-ligated HRP-C (Schonbaum, 1973). In 

general, little selectivity is shown by HRP-C towards aromatic donors, however, BHA 

has become the donor molecule most favoured by researchers as a probe of the binding 

site due to its tight binding and strong spectroscopic effects (Veitch and Smith, 2001). 

The X-ray crystal structure of the BHA complex of the resting state of HRP-C* has 

been solved to 2.0 Å resolution (Henriksen et al., 1998a). The results showed that a 

well-defined electron density for BHA is observed in the peroxidase active site, with a 

hydrophobic pocket surrounding the aromatic ring of the substrate. The aromatic ring of 

the BHA makes hydrophobic contacts with the side chains of His42, Phe68, Gly69, 

Ala140, Pro141 and Phe179 residues, as well as the haem methyl C8 and the haem meso 

proton Cδ, with the shortest distance (3.7 Å) found between the haem C8-methyl and 

BHA. In addition, the residues Arg38, His42 and Pro139, and the distal water molecule 

2.6 Å above the haem iron, contribute to an extensive hydrogen bond network with the 

BHA side chain (Figure 4.2) (Henriksen et al., 1998a). 

 

The dissociation constant (Kd) is a specific type of equilibrium constant that is used to 

describe the affinity between an enzyme and a particular substrate or ligand. For HRP-

C, it has been reported that BHA has a high affinity (Kd = 2.4 μM) for binding with the 

free enzyme (Schonbaum, 1973). Binding also causes a perturbation to the coordination 

state of the haem iron of the enzyme, changing it from a 5-coordinate high spin form to 

a 6-coordinate high spin form (Smulevich et al., 1991). On the other hand, it has been 

found that BHA has a much weaker affinity for the cyanide-ligated form of the HRP-C 
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with a Kd value of 95 μM, 40-fold higher than for the free enzyme (Veitch and 

Williams, 1995). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: The binding mode of BHA to resting state HRP-C*. The donor molecule 

is located on the distal side of the haem plane and makes both hydrogen bond and 

hydrophobic interactions with the enzyme. The hydrogen bonds between the BHA side 

chain and distal residues, plus the structural water molecule above the haem group, are 

shown by dashed green lines. The figure was constructed by Accelrys DS visualizer 

using the coordinates deposited in the PDB (accession code 2ATJ).  
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BHA. It was found that the replacement of Arg38 by Lys or Leu, or His42 by Leu or 

Glu leads to a dramatic decrease in the affinity of the mutant enzyme towards BHA, as 

well as, a disruption of the coordination state of the haem iron in the enzyme-BHA 

complex. These findings have led to a clarification of the critical role(s) of His42 and 

Arg38 in the binding of BHA, via the hydrogen bonding network (Smith et al., 1993; 

Rodriguez-Lopez et al., 1996a; Howes et al., 2001b). The significance of the amino 

acid residue Phe179 has also been investigated, by substitution of this residue by Ala, 

His or Ser. All three variants (F179A, F179H and F179S) exhibit a high Kd and 

therefore a significant decrease in affinity for BHA for both the free and cyanide-ligated 

enzymes, when compared to the wild-type enzyme (Veitch et al., 1997; Howes et al., 

2001b). Furthermore, substitution of Phe68 by Ala (F68A) significantly increases the 

dissociation constant, indicating that this amino acid residue also plays a role in the 

binding site of aromatic substrates to the HRP-C (Veitch et al., 1996). 

 

In this section I explore whether the amino acid residue at position 167, chosen as the 

new potential haem-linkage site, has any affect on aromatic substrate binding in HRP-C. 

The effect of mutation of this residue on the affinity of the enzyme for BHA was 

determined. BHA binding assays were carried out for WT HRP-C*, as well as for the 

new S167 variants, by titrating an enzyme sample with successive amounts of BHA 

until there was no further obvious change in the absorbance spectra (Figure 4.3). The 

dissociation constant (Kd) for the BHA-enzyme complex, together with the maximum 

absorbance change of the Soret peak (Amax), was determined by fitting the change in the 

difference spectrum (bound minus unbound) of the Soret region to the quadratic binding 

equation given in section 2.5. The results obtained are shown in Figure 4.4 and Table 

4.2. 
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The absorbance spectra of WT HRP-C* and the S167W variant complexes with BHA 

show the absence of the 380 nm shoulder of the resting enzyme spectra, which gives 

clear evidence of conversion from the 5-coordinate high spin form into the 6-coordinate 

high spin form, this phenomena is typical of formation of a BHA complex (Smith et al., 

1992). The Kd value obtained for WT HRP-C* was 2.4 μM, in excellent agreement with 

the published values: 2.4 μM (Schonbaum, 1973) and 2.5 μM (Smith et al., 1992; 

Rodriguez-Lopez et al., 1996a). The results obtained in Table 4.2 show that the 

dissociation constant of the S167W variant for BHA (2.89 μM) is hardly affected 

relative to that for the wild-type enzyme, whilst it slightly increased (4.36 μM) for the 

S167Y variant implying a small perturbation of the aromatic donor binding site in this 

enzyme. In fact, there was no reason to expect any structural or functional significance 

of the Ser167 residue to the BHA binding site of HRP-C, however the replacement of 

this amino acid residue with the bulkier Trp or Tyr residues may have had an indirect 

affect on the environment of the haem centre leading to disruption of the interaction of 

BHA with the enzyme. 

 

Table 4.2: Dissociation constants (Kd) and the maximum absorbance change of the 

Soret peak (Amax) on the binding of BHA to HRP-C* and the new S167 variants. 

Results were determined by fitting the change in the difference spectrum (bound minus 

unbound) of the Soret region to the quadratic binding equation given in section 2.5. 

 

Enzyme Kd (µM) Amax WT HRP-C* 2.40 ± 0.25 0.165 ± 0.004 S167Y 4.36 ± 0.54 0.256 ± 0.009 S167W 2.89 ± 0.32 0.142 ± 0.004 



 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: UV/Visible difference spectra resulting from titration of the S167Y  

(right) and S167W (left) HRP-C* variants with different concentrations of BHA. 

Spectra were recorded in 5 mM MOPS buffer, pH 7.0 at 25 oC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.4: Change in absorption of the Soret peak obtained by titrating 3 μM of 

WT HRP-C*, S167Y and S167Y variants with different concentrations of BHA. 

Wavelength (nm) Wavelength (nm)
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4.4 Treatment of [S167W] and [S167Y] HRP-C* variants with 
hydrogen peroxide: 
 
As mentioned previously, exposure of recombinant LPO and EPO, [F41E] HRP-C*, 

[S167M] HRP-C* and the rpAPX variants S160M and S160Y to a stoichiometric 

excess of hydrogen peroxide results in covalent attachment of the haem to the protein 

through an autocatalytic process (DePillis et al., 1997; Oxvig et al., 1999; Colas et al., 

2002; Colas and Ortiz de Montellano, 2004; Metcalfe et al., 2004; Pipirou et al., 2007a; 

Pipirou et al., 2007b; Cali, 2008). A similar approach has been used in this work in an 

attempt to introduce a novel new covalent linkage into HRP-C. 

 

The new variants [S167W] and [S167Y] HRP-C* were incubated with hydrogen 

peroxide for two hours in sodium phosphate buffer at 25 oC (section 2.6) and in the 

absence of any reducing substrate. Observation by the naked eye noted the 

discolouration of the reaction solution to a pale green colour lasting for a few seconds, 

followed by a red colour. This observation was an indication of the rapid formation of 

the first high oxidation state intermediate Compound I (green) which is then quickly 

converted into the second high oxidation state intermediate Compound II. Repeated 

UV/Visible scans of the S167Y and S167W variants after treatment with H2O2 

confirmed this initial observation (Figures 4.5 and 4.6). The first scan, taken one minute 

after the beginning of the reaction shows that the first intermediate Compound I, is less 

stable and undergoes a more rapid conversion to Compound II for each mutant, when 

compared to WT HRP-C*. The spectra of both variants show the more stable 

intermediate Compound II with spectral features at λmax (nm) = 420, 555 and 523, which 

are consistent with those reported for Compound II of the wild-type enzyme (Dunford, 

1999f). Further scans then show that Compound II decays over a further period of time 
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back to the resting state enzyme. However, it was found that in the case of the S167W 

variant, the return to the resting state was more rapid, after 15 minutes, compared to the 

S167Y variant, which needed 180 minutes to return to the resting state. 

 

Treatment of the S167Y variant with H2O2 gave a final spectrum that was essentially 

identical to that of the pre H2O2 resting state (Figure 4.7); there are no changes in the 

position of the Soret peak or CTI band, which were 403 and 636 nm respectively. The 

only small difference between them appeared to be in the CTII band, where it was 496 

nm for untreated S167Y variant and 499 nm for the treated sample. The results showed 

also that the treated S167Y variant has a molar extinction coefficient value equal to 178 

mM-1 cm-1, again essentially identical to that of untreated S167Y (180 mM-1 cm-1). In 

the case of the S167W variant, the final spectrum after treatment with H2O2 is very 

different from the spectrum of the untreated variant and the wild-type enzyme (Figure 

4.8). Although the Soret peak and CTI band are still at 404 and 638 nm, the CTII band 

appears very weak in the treated variant at 496 nm. Furthermore, the S167W variant has 

lost 40% of its total haem signal as a result of exposure to H2O2, with a lower extinction 

coefficient of 121 mM-1 cm-1 compared to 135 mM-1 cm-1 for the untreated S167W. 

These results give a strong indication that a change in the haem environment, i.e. a 

significant electronic effect, has occurred during exposure to H2O2.  



  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5: Repeat scan spectra collected during the reaction of [S167Y] HRP-C* 

with H2O2. The reaction was carried out in sodium phosphate buffer, pH 9.5 at 25 oC, 

where 0.5 mM of H2O2 was added to 5 µM of variant. 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 4.6: Repeat scan spectra collected during the reaction of [S167W] HRP-C* 

with H2O2. The reaction was carried out in sodium phosphate buffer, pH 7.0 at 25 oC, 

where 0.6 mM of H2O2 was added to 6 µM of the variant. 



  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: UV/Visible absorbance spectra of 9 μM WT HRP-C*, 5 μM S167Y 

variant treated and untreated with 5 mM H2O2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: UV/Visible absorbance spectra of 9 μM WT HRP-C*, compared to 6.5 

μM S167W treated and untreated with 6.5 mM H2O2. 
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4.5 Evidence for the generation of a covalent linkage between the 
haem and the protein: 
 

4.5.1 Pyridine haemochrome assay: 
 
Pyridine haemochrome spectra are often used to give an indication of the type of haem 

present. These spectra are measured in aqueous alkaline pyridine solutions after 

reduction with sodium dithionite. The high pH of the solution leads to the disruption of 

non-covalent interactions between the haem and the protein, and the haemochrome 

complexes are formed by the coordination of two molecules of a pyridine to the haem 

group. The sharp and characteristic α-bands of the pyridine haemochrome spectra are 

used for identification and determination of the molar absorption coefficient ε, as well 

as the concentration of the haemoproteins (Fuhrhop and Smith, 1975; Kooter et al., 

1997a; Kooter et al., 1999a). 

 

A pyridine haemochrome assay was carried out on WT HRP-C*, and the new S167 

variants, both before and after treatment with hydrogen peroxide. The reduced-oxidized 

difference spectra obtained are presented in Figures 4.9 and 4.10, and the spectral 

features are summarised in Table 4.3. It was observed clearly that the pyridine 

haemochrome spectra of the S167W variant, either treated or untreated with H2O2, are 

identical to the spectra of WT HRP-C*; the maximum α-band appears at 555 nm and a 

Soret band at 419 nm. However, in the case of the S167Y variant, the pyridine 

haemochrome spectra showed a blue shifted maximum for the α-band, at 552 nm, 

beside a similarly shifted Soret band at 415.5 nm. These spectroscopic changes give a 

preliminary indication of the formation of a covalent linkage between the haem and the 

protein in the S167Y variant, since the electronic properties of the haem are modified, 

even before treatment of the enzyme with H2O2. 
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Similar results have been reported previously for rpAPX and HRP-C* mutants (Pipirou 

et al., 2007a; Pipirou et al., 2007b; Cali, 2008). A shift in the maximum α-band from 

556 nm to 553 nm was observed for rpAPX spectrum, after treatment with H2O2, 

presumed to be due to the formation of a haem-tryptophan link in the enzyme (Pipirou 

et al., 2007a). Similarly, the pyridine haemochrome spectrum showed a maximum α-

band at 556 nm for untreated [S160Y] rpAPX, but the peak blue shifted to 551 nm after 

reaction with H2O2 (Pipirou et al., 2007b). Finally, the spectrum observed for the 

[S167M] HRP-C* variant after treatment with H2O2 showed a pronounced blue shift in 

its bands compared to untreated enzyme, indicating a possible sulfonium linkage 

between the haem and the protein (Cali, 2008). 

 

The alkaline pyridine haemochrome spectrum of the MPO variant, [M243Q] MPO, is 

also greatly affected and showed blue shifted bands compared to that of WT MPO. This 

behaviour was attributed to the absence of the sulfonium linkage in the M243Q variant 

which is normally present in the native enzyme (Kooter et al., 1997a; Kooter et al., 

1999a; Kooter et al., 1999b). 

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9: Comparison of the pyridine haemochrome difference spectra for WT 

HRP-C* and the S167W variant, before and after treatment with 100 equivalents 

of H2O2. Spectra were recorded in 5 mM MOPS buffer, pH 7.0, at 25 oC and the haem-

protein species was reduced with disodium dithionite. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.10: Comparison of the pyridine haemochrome difference spectra for WT 

HRP-C* and the S167Y variant, before and after treatment with 100 equivalents of 

H2O2. Spectra were recorded in 5 mM MOPS buffer, pH 7.0, at 25 oC and the haem-

protein species was reduced with disodium dithionite. 
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Table 4.3: Spectral features of WT HRP-C* and the new S167 variants (both 

treated and untreated with 100 equivalents of H2O2) after treatment with alkaline 

pyridine. Spectra were recorded in 5 mM MOPS buffer, pH 7.0, at 25 oC and the haem-

protein species was reduced with disodium dithionite. 

 

Enzyme Soret Peak (nm) β max (nm) β min (nm) α max (nm)
WT HRP-C* 419 524 540 555 

aTreated WT HRP-C* 418.5 524 540 555 Untreated S167W 418.5 524 540 555 Treated S167W 418.5 524 540 555 Untreated S167Y 415.5 521 536 552 Treated S167Y 415.5 521 536 552 

 

a(Cali, 2008) 
 
 
 
 

4.5.2 Acid butanone haem extraction: 
 
Acid butanone haem extraction is a simple and fast method used to separate the haem 

from a haemoprotein, by exploiting differences in their relative solubilities in two 

immiscible solvents. However, as a result of the inability of the acid extraction 

technique to remove the haem prosthetic group from MPO because of the covalent 

linkages between the haem and the protein (Wu and Schultz, 1975), acid butanone haem 

extraction (Fuhrhop and Smith, 1975) was carried out in a similar way in this work to 

examine the possibility of the presence of a covalent linkage between the haem and the 

protein in the new S167 variants. This test gives a preliminary indication of a haem-
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protein covalent linkage. It did not remove the haem prosthetic group from the S160M 

and S160Y variants of rpAPX after treatment by H2O2 (Metcalfe et al., 2004; Pipirou et 

al., 2007b), or from [S167M] HRP-C* after H2O2 treatment (Cali, 2008). 

 

Samples of WT HRP-C*, S167W and S167Y variants (before and after reaction with 

H2O2) were subjected to the acid butanone extraction method (section 2.8). In order to 

determine and calculate the haem content for each sample, a pyridine haemochrome 

assay was then carried out on the extracted organic layer and quantitation was achieved 

from the reduced-oxidized difference spectra. The results obtained are presented in 

Table 4.4. 

 

For WT and both the S167W variant samples (before and after H2O2 treatment), 

essentially all the haem was recoverable from the butanone organic layer, which gives a 

strong indication that there is no haem covalently linked to the protein even after 

treatment with H2O2. However, very little or no haem was observed in the organic layer 

for the untreated and treated S167Y variant. These results clearly suggest that the haem 

group of the H2O2 treated S167Y variant is strongly and completely linked to the 

protein (0% recovery). In addition, 81% of the haem of the untreated S167Y variant was 

unrecoverable, suggesting that a haem-protein covalent bond occurs in this variant 

spontaneously. An acid butanone extraction and pyridine haemochrome was also 

applied to a sample of the S167Y variant that had been folded and purified in the 

presence of ferulic acid, a peroxidase substrate; almost all of the haem was then 

recovered in the organic layer, suggesting that the haem is unlinked to the protein when 

oxidation equivalents are scavenged. 
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A previous study from a member of this lab has concluded that the haem group from 

haem-protein cross-linked [S167M] HRP-C* was 100% unrecoverable on acid butanone 

extraction (Cali, 2008). He also reported that some 14% of the haem of the H2O2 

untreated S167M variant was unrecoverable, indicating that a low level of haem-protein 

bonding might have occurred spontaneously (Cali, 2008).  

 

 

Table 4.4: Acid butanone haem extraction of WT HRP-C*, [S167W] HRP-C*and 

[S167Y] HRP-C*. The acid butanone haem extraction technique was carried out for 

WT, S167W and S167Y samples, both before and after treatment with hydrogen 

peroxide. 100 µl of enzyme (using enzyme concentrations as shown below in nmoles) 

were treated with 25 µl of 2M HCl, and then 500 µl of butanone were added, the 

solution was mixed very well and then left on the bench to allow the separation of the 

aqueous layer below and the organic layer above. The pyridine haemochrome technique 

was then performed on the organic layer to measure the haem content. 

 

Enzyme 
Theoretical haem 

content (nmoles) 

Practical haem 

content (nmoles) 

Recovery 

percentage (%)WT HRP-C* 1.65 1.61 97 Untreated S167Y 3.30 0.63 19 Treated S167Y 1.67 Nil 0 Untreated S167Y-Ferulic acid 3.00 2.80 93 

Untreated S167W 2.70 2.60 96 Treated S167W 0.70 0.65 93 
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4.5.3 High Performance Liquid Chromatography (HPLC) Analysis: 
 
High Performance Liquid Chromatography (HPLC) is a highly improved form of 

column chromatography used frequently in biochemistry to separate, identify and 

quantify biological compounds. It has been successfully applied and widely used for the 

separation of all classes of biochemical molecules such as lipids, steroids, 

carbohydrates, amino acids, proteins and vitamins from complex mixture (Pryde and 

Gilbert, 1979). 

 

Compared to other chromatography systems, HPLC is preferred because it has high 

resolution, fast cycle times, high sensitivity, good accuracy, columns can be reused 

without repacking or regeneration and the system can be automated. The mobile phase 

is often varied during the analysis (gradient elution) to obtain the separation required.  

 

Recently, reverse phase HPLC has been used to distinguish between covalently and 

non-covalently attached haem to protein links in haemoproteins (Reeder et al., 2002; 

Limburg et al., 2005). The term reverse phase refers to a non-polar stationary phase and 

polar mobile phase. Under these conditions, hydrophobic compounds stick to reverse 

phase HPLC columns from highly aqueous mobile phases (usually containing water) 

and are then eluted from the columns with a hydrophobic organic mobile phase (such as 

acetonitrile). Therefore, in reverse phase HPLC compounds are separated based on their 

hydrophobic character, polar solutes separate and elute quickly from the column, while 

less polar and non-polar (hydrophobic) solutes elute with a longer retention time. 

 

This analytical technique was used in the present work in order to detect the formation 

of any new covalent linkages that might have occurred between the protein and the 
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haem prosthetic group for the new S167 HRP-C* variants. Enzyme samples for WT 

HRP-C*, [S167W] and [S167Y] HRP-C*, both before and after treatment with H2O2 

were subjected to reverse phase HPLC analysis, under denaturing conditions, using an 

analytical C4 column and a water/acetonitrile mobile phase under acidic conditions 

(0.1% v/v TFA). The haem group was monitored at 400 nm while protein was 

monitored at 280 nm during elution by an acetonitrile gradient (section 2.9.4). In a 

separate control experiment (data not shown) HPLC analysis was performed for free 

haem under the same conditions; the results showed that haem elution was 23 minutes. 

Representative chromatograms obtained for WT HRP-C*, [S167W] and [S167Y] HRP-

C* variants are presented in Figures 4.11, 4.12, 4.13 and 4.14 respectively. 

 

Chromatograms of WT HRP-C* and the S167W variant, both treated and untreated with 

H2O2, show two distinct peaks, one for the haem at 23 minutes and the other for the 

protein at 26 minutes, when monitored at 280 nm (Figures 4.11A, 4.11B, 4.12A and 

4.12B). However, only one major peak at 23 minutes corresponding to elution of the 

haem group is observed at 400 nm for these same samples, suggesting that the haem is 

not linked covalently to the protein. In the case of the S167W variant after treatment 

with H2O2, a small peak at 17 minutes is observed along with the haem peak at 23 

minutes and no absorbance is associated with the protein component, when monitored at 

400 nm (Figure 4.12B). This indicates degradation of the haem group of [S167W] HRP-

C* after exposure to H2O2. 

 

Surprisingly, for the H2O2 untreated S167Y variant sample monitored at 400 nm, 

besides the previously described haem peak which elutes at 23 minutes, a significant 

and a clear fraction of the haem co-elutes with the protein peak at 26 minutes (Figure 
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4.13A), giving a clear indication that a haem-protein linkage had occurred 

spontaneously in this enzyme during preparation. On the other hand, for the S167Y 

variant after treatment with H2O2, it can be seen that the haem group is completely 

attached to the protein and therefore co-eluting at 26 minutes (Figure 4.13B). Another 

sample of the S167Y variant, which was expressed, refolded and purified in the 

presence of ferulic acid, was also subjected to analysis by reverse phase HPLC. The 

resultant chromatograms show only one peak observed at 23 minutes when monitored at 

400 nm related to the free haem group. In addition, two peaks are observed at 23 and 26 

minutes respectively when monitored at 280 nm (Figure 4.14). These results prove that 

this sample of the S167Y variant was completely unlinked. Presumably the presence of 

ferulic acid functioned as an antioxidant preventing cross-linking from occurring during 

preparation of the enzyme. 

 

Previous work by a member of the group (Cali, 2008), showed similar cross-linking for 

[S167M]HRP-C* after incubating overnight with H2O2, when the haem group 

completely co-eluted with the protein, confirming the formation of a protein-haem 

covalent linkage. It has been confirmed that a covalent bond is formed between the 

haem and the protein as a result of an autocatalytic process in the CYP4A, CYP4F and 

CYP4B1 families of cytochrome P450 enzymes (Henne et al., 2001; Hoch and Ortiz de 

Montellano, 2001; Lebrun et al., 2002a; Lebrun et al., 2002b; Baer et al., 2007). 

Similarly, HPLC analysis provided clear evidence of an auto-catalytically haem-protein 

covalent linkage formation in LPO when exposed to H2O2 (DePillis et al., 1997; Colas 

et al., 2002; Colas and Ortiz de Montellano, 2003). Replacement of Ser 160 by Met 

(S160M) and Tyr (S160Y) in Ascorbate Peroxidase leads to the formation of a covalent 

haem-protein attachment after reaction with hydrogen peroxide, as judged by co-elution 



113 
 

 

of the haem and the protein when the product was subjected to the HPLC analysis 

(Metcalfe et al., 2004; Pipirou et al., 2007a; Pipirou et al., 2007b). Furthermore, HPLC 

experiments provided clear evidence that the covalent attachment of the haem to an 

engineered cysteine residue can also occur in the S160C variant of APX (Metcalfe et 

al., 2007). It has been reported that the haem group of F41E mutant in HRP-C* also co-

elutes with the protein at the same retention time when the treated enzyme with H2O2 

was examined by HPLC analysis (Colas and Ortiz de Montellano, 2004). The same 

process was used to confirm the formation of a covalent link between Trp51 and the 

haem in Cytochrome c Peroxidase (Pipirou et al., 2009). 



 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11: HPLC chromatograms of WT HRP-C* before and after treatment 

with H2O2. Left scale represents the absorbance at 400 nm while right scale represents 

at 280 nm, (A) WT HRP-C* before, and (B) WT HRP-C* after treatment with 100 

equivalents of H2O2. 
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Figure 4.12: HPLC chromatograms of [S167W] HRP-C* before and after 

treatment with H2O2. Left scale represents the absorbance at 400 nm while right scale 

represents at 280 nm, (A) the S167W mutant before, and (B) the S167W mutant after 

treatment with 100 equivalents of H2O2. The unexpected elution peak at 17 minutes is 

due to degradation of the haem after exposure to H2O2.  
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Figure 4.13: HPLC chromatograms of [S167Y] HRP-C* before and after 

treatment with H2O2. Left scale represents the absorbance at 400 nm while right scale 

represents at 280 nm, (A) Untreated S167Y mutant, and (B) Treated S167Y with 100 

equivalents of H2O2. 
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Figure 4.14: HPLC chromatogram of [S167Y] HRP-C* folded and purified in the 

presence of ferulic acid. Left scale represents the absorbance at 400 nm while right 

scale represents at 280 nm. 
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4.5.4 Protein analysis by Mass Spectrometry: 
 
Mass spectrometry is an analytical technique which is used to determine the mass of a 

sample by measuring the mass-to-charge (m/z) ratio of the sample once ionized. In fact, 

it is generally considered one of the most powerful analytical techniques for both 

qualitative and quantitative analysis, because of its great power in identification by both 

molecular weight and structural information. The first stage of mass spectrometry is the 

introduction of a sample into an ionization source. The analyte is ionized and 

accelerated to pass into the analyzer region of the mass spectrometer instrument, where 

ions are separated according to their mass-to-charge (m/z) ratios. The separated ions are 

then detected and presented as a mass spectrum displayed with m/z values on the x-axis 

and ion abundances on the y-axis (Johnstone and Rose, 1996).  

 

Among all types of mass spectrometry, soft ionization mass spectrometry, in particular 

matrix assistant laser desorption ionization (MALDI) and electrospray ionization (ESI), 

is ideal for the analysis of high molecular weight bio-molecules. Commercial 

availability of these MS instruments has made the analysis of bio-molecules such as 

peptides, proteins and many other compounds that were previously not accessible to 

mass spectrometric investigations, as routine. One of the greatest advantages of 

MALDI-TOF and ESI mass spectrometry is the sensitivity; the picomole to femtomole 

sensitivity range allows the investigation of bio-molecules even at very small quantities. 

Microgram quantities of sample are generally more than enough to do an analysis with a 

high accuracy up to ± 0.01 % (Daniel et al., 2002). Indeed, the accuracy of MS analysis 

is quite sufficient to detect the mass changes that would occur in peptides and protein 

molecules as a result of the substitution of one amino acid by another. 
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ESI and MALDI-TOF mass spectrometry studies have been widely used to look for 

increases in protein molecular weights due to haem to protein covalent bonds. During 

previous work in this lab, these techniques clearly showed that formation of a sulfonium 

linkage in [S167M] HRP-C* can be achieved by incubation of the enzyme overnight 

with hydrogen peroxide (Cali, 2008). ESI-MS in conjunction with HPLC analysis was 

used to investigate the cross-linking process of the amino acid residues Asp225 and 

Gly375 with the prosthetic haem group of Lactoperoxidase (Colas et al., 2002). 

 

MS analysis results provided strong evidence that a thioether bond formation between 

haem and an engineered cysteine residue at position 160 can occur easily under 

reducing conditions in the S160C variant of ascorbate peroxidase (Metcalfe et al., 

2007). MALDI-TOF and ESI mass spectrometry analysis also confirmed that 

introduction of an engineered methionine residue at the position 160 (S160M variant) 

and tyrosine residue at the same position (S160Y variant), led to the autocatalytic 

formation of a haem-methionine sulfonium linkage (the mass recorded was 629 Da 

higher than the predicted value) and a haem-tyrosine covalent linkage (the mass was 

632 Da higher than the predicted value) respectively in ascorbate peroxidase when 

treated with hydrogen peroxide (Metcalfe et al., 2004; Pipirou et al., 2007b). Mass 

spectrometry clearly showed that the exposure of ascorbate peroxidase to a sufficient 

quantity of hydrogen peroxide leads to the formation of a covalent linkage between the 

haem and the distal Trp 41 residue (Pipirou et al., 2007a). 

 

Recently, mass spectrometry studies indicated that the reaction of cytochrome c 

peroxidase with hydrogen peroxide leads to the formation of a covalent link with the 

distal tryptophan (Trp51) (Pipirou et al., 2009). Furthermore, the presence of a covalent 
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linkage between the protein and the haem prosthetic group was confirmed for many 

members of cytochrome P450 enzymes particularly CYP4A, CYP101, CYP4B and 

CYP4F superfamilies, using mass spectrometry analysis (Henne et al., 2001; Hoch and 

Ortiz de Montellano, 2001; Lebrun et al., 2002a; Lebrun et al., 2002b; Limburg et al., 

2005; Baer et al., 2007). MS analysis was also used to detect the presence of a single 

Tyr-Trp cross-link in M255I mutant of Catalase peroxidase, which is postulated to be an 

intermediate generated during formation of the Met-Tyr-Trp cross-link (Ghiladi et al., 

2005a; Ghiladi et al., 2005b). More recently, a combination of MALDI-TOF and ESI 

mass spectrometry analysis has been used in order to study the characteristics of the 

glycans of the glycopeptides from horseradish peroxidase (Chen et al., 2010). 

 

MALDI-TOF and ESI mass spectrometry were used in this work to investigate mass 

changes that may or may not occur in different HRP-C* samples after treatment with 

H2O2. The masses of WT, [S167Y] and [S167W] HRP-C* (treated and untreated with 

H2O2) were determined from MALDI-TOF mass spectra, and were also calculated from 

ESI-MS mass spectra shown in Figure 4.15, using the equation mentioned in section 

2.10.4.2, as well as auto-calculated directly from the ESI-MS apparatus using 

MassLynx V4.1 (Figure 4.16). The collective results are presented in Table 4.5, where 

the theoretical masses were calculated from the gene sequences. ESI mass spectrometry 

gave an experimental mass for WT HRP-C* of 34,041 Da (Table 4.5) which 

corresponds closely to the theoretical calculated mass of 34,048 Da. The experimental 

mass for the untreated S167W variant is 34,142 Da, and this increase in mass over WT 

is consistent with the replacement of a serine residue with tryptophan; the molecular 

masses for these amino acids are 105 Da and 204 Da respectively. For peroxide treated 

[S167W] HRP-C* the mass spectrum gave a mass of 34,168 Da. which is 26 Da higher 
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than the mass of untreated S167W; the origin of this mass increase seems to be less 

clear. However, the results clearly indicate that there is no linkage formed between the 

haem and the protein in the S167W variant even after H2O2 treatment. The experimental 

masses for untreated and treated [S167Y] HRP-C* are both 34,730 Da, corresponding 

to an increase in mass of 614 Da over the predicted mass of 34,117 Da (the predicted 

mass is 76 Da higher than WT, consistent with the replacement of a serine residue with 

tyrosine, 105 Da and 181 Da, respectively). This increase in mass of 614 Da is 

consistent with the covalent attachment of haem (616 Da) to the protein. The MS data 

are therefore in agreement with the HPLC analysis, and provide further evidence of the 

formation of the covalent cross-link between the haem and the protein in the S167Y 

variant. However, the spontaneous cross-linking of untreated S167Y was unexpected. 

Therefore, protein folding and purification of [S167Y] HRP-C* was performed in the 

presence of ferulic acid as an antioxidant scavenger and examined by mass 

spectrometry. The MS results showed no difference in mass between the calculated and 

the expected values, at 34,117 Da, respectively. 
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Table 4.5: Comparison of the molecular masses of WT, [S167W] and [S167Y] 

HRP-C* treated and untreated with H2O2, as well as [S167Y] HRP-C* purified in 

the presence of ferulic acid. The molecular masses were calculated from the MALDI-

TOF and ESI mass spectra. 

 

Enzyme 
Calculated mass 

(Da) 

Experimental 

mass (Da) 
Difference (Da) 

WT HRP-C* 34,048 34,041 7 Untreated S167W 34,140 34,142 2 Treated S167W 34,140 34,168 28 Untreated S167Y 34,117 34,731 614 Treated S167Y 34,117 34,731 614 Untreated S167Y-Ferulic acid 34,117 34,117 0 
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4.6 Crystal growth for [S167Y] HRP-C*: 
 
The hanging drop method was used to grow crystals of the S167Y variant, as described 

in section 2.12. In this method, the concentration of protein in a drop is gradually 

increased as water is lost to a reservoir solution by vapour diffusion (Branden and 

Tooze, 1991). The crystals form and grow as the protein solution is brought to a 

supersaturated state as the protein concentration exceeds protein solubility. After one 

week, and in order to accelerate crystallization, the S167Y mutant protein solution was 

seeded with WT HRP-C* micro-crystals to serve as nucleation centres for rapid growth 

of larger crystals. The resultant S167Y crystals were visible to the naked eye and in 

about one third of the wells of the crystal tray used (Table 2.2). They were a few 

millimetres in length after 3-4 weeks, and are shown in Figure 4.17. The crystals were 

bathed in cryo-protective solution, i.e. reservoir solution containing 22% glycerol, and 

then frozen in liquid nitrogen prior to X-ray data collection. The same crystallization 

procedure was attempted for S167W mutant; unfortunately, unlike S167Y, all attempts 

to get S167W crystals were unsuccessful.  

 

 

 

 

 

 

 

 

 

Figure 4.17: Selected crystals of the S167Y mutant of HRP-C*. The crystal were grown 

using hanging drop method and they were a few millimetres in length after 3-4 weeks. 
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4.7 Conclusions: 
 
Spectroscopic characterisation of [S167W] and [S167Y] HRP-C* variants showed the 

absence of the shoulder at 380 nm on the Soret peak seen for WT HRP-C*, and a 

substantial increase in molar extinction coefficients. These changes can be attributed to 

an increase in the 6-coordinate high spin character of the haem at the expense of 5-

coordinate high spin character. Studies on the effect of the mutations on the affinity of 

the HRP-C* enzyme for BHA, gave a dissociation constant (Kd) for the S167W variant 

that was only slightly higher than the WT. However, the Kd doubled for the S167Y 

variant, implying a small but significant perturbation of the aromatic donor binding site 

of the enzyme and / or the associated haem-linked hydrogen bonding network (Smith et 

al., 1992; Veitch et al., 1997). 

 

Incubation of the new HRP-C* variants S167W and S167Y with hydrogen peroxide, in 

the absence of any reducing substrate, for two hours in sodium phosphate buffer at 25 

oC showed changes in the individual catalytic reactivity of the enzymes compared to 

WT. Repeat UV/Visible scans demonstrated clearly that the first intermediate 

Compound I is less stable and undergoes a rapid conversion to the Compound II for 

both mutants, when compared to the WT enzyme. The spectroscopic properties of the 

more stable intermediate, Compound II (λmax at 420, 555 and 523 nm) were consistent 

with those for WT HRP-C*. In the case of the S167W variant the return to the resting 

sate was more rapid, with complete loss of Compound II after 15 minutes, compared to 

the S167Y variant, which needed 180 minutes to return to the resting state. 

 

The reduced, pyridine haemochrome spectrum of the S167Y variant only showed a blue 

shifted α-band at 552 nm in addition to a blue shifted Soret band at 415.5 nm, compared 
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to the 555 nm and 419 nm for WT HRP-C*. These spectroscopic changes, by analogy 

with MPO (Kooter et al., 1997a), indicated the formation a covalent linkage between 

the haem and the protein in the [S167Y] HRP-C* enzyme even before treatment with 

H2O2. 

 

The most important result from the reaction of the new variants with hydrogen 

peroxide, is the finding that the haem in [S167Y] HRP-C* is attached to the protein by 

covalent linkage. This was confirmed in three ways. Firstly, acid butanone haem 

extraction did not remove the haem from the protein, 100% of the haem of H2O2 treated 

S167Y variant was unrecoverable, compared with 97% of untreated WT and 96% of 

H2O2 treated S167W variant being recoverable. Interestingly, 81% of haem was also 

unrecovered from the non H2O2 treated [S167Y] HRP-C* sample. 

 

Secondly, HPLC analysis of the S167Y variant after treatment with H2O2 clearly 

showed that the haem group was strongly attached to the protein as it co-eluted with the 

protein peak at 26 minutes in the HPLC elution profile. Again untreated S167Y samples 

were also substantially cross-linked, with a significant and a clear fraction of haem 

again co-eluting with the protein peak at 26 minute. Thirdly, ESI and MALDI-TOF 

analysis of both untreated and H2O2 treated [S167Y] HRP-C* showed a mass of 34,731 

Da, corresponding to an increase in mass of 614 Da over the predicted mass of 34,117 

Da. This increase is consistent with the covalent attachment of haem (616 Da) to the 

protein. Again this gives a clear indication that the majority of the haem is already 

covalently linked to the protein before [S167Y] HRP-C* is reacted with H2O2, 

suggesting that the haem-protein linkage is spontaneous. No clear evidence was found 
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for a haem-protein cross-link in the [S167W] HRP-C* variant even after treatment with 

H2O2. 

 

The results obtained therefore show that a Tyr residue at position 167 close to the 2-

vinyl of the porphyrin of the haem is sufficient to allow formation of the haem-protein 

covalent linkage in HRP-C, even before treatment with H2O2. One likely scenario is that 

the enzyme turns over during isolation, folding or purification with an oxidant, forming 

radicals (either Compound I or a radical on the haem 2-vinyl) that enable the reaction 

with tyrosine to occur. Therefore, protein folding and purification for a sample of 

S167Y variant was performed in the presence of ferulic acid, as an antioxidant 

scavenger. Acid butanone extraction, HPLC and MS analysis then showed no evidence 

of a spontaneous haem-protein cross-link in the variant. It is important to mention that 

from this time, the UmS167Y refers to the unlinked mutant while mS167Y refers to the 

haem-tyrosine covalent link mutant. 

 

The S167Y variant has been successfully crystallised and data collected at the Diamond 

Light Source by Dr. Mark Roe (X-Ray Crystallography Collaborative Research Facility 

Manager, University of Sussex, UK). The structure was subsequently solved to 1.7 Å 

resolution. A more detailed account of the structural aspects of this mutant is given in 

chapter 7. 
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Chapter Five: 

Steady-state enzyme kinetics 
 

 

5.1 Introduction: 
 
Enzyme kinetics is the study of the rates of enzyme-catalyzed reactions. The rate of 

catalysis is defined as the number of moles of product formed per second and this value 

rises linearly with increasing substrate concentration, then begins to level off and 

approach a maximum at higher substrate concentrations (Berg et al., 2002). In 1913, 

Leonor Michaelis and Maud Menten proposed a classic model that describes an enzyme 

reaction (Michaelis and Menten, 1913). The model proposed is the simplest one that can 

be used to account for the kinetic properties of enzymes: 

 

 

 

In this equation E is an enzyme that combines with the substrate S to form an ES 

complex, with a rate constant of k1. The ES complex has two possible fates, it either 

dissociates back to E and S with a rate constant of k-1 or proceeds to form product P 

with a rate constant of k2. Michaelis and Menten established from this model a basic 

equation (equation 5.1), called the Michaelis-Menten equation, to describe the kinetic 

data of this enzyme reaction: 

  +             (  5.1) 

                     (1)        
k1 

k-1 

k2 
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In this equation V is the rate of catalysis at any given substrate concentration and Vmax is 

the maximum attainable rate of catalysis from the enzyme-catalyzed reaction (unit M s-

1). Km is an important characteristic of enzyme kinetics and is called the Michaelis 

constant. Km is expressed by the following equation: 

 +             (  5.2) 

 

Km indicates the affinity between the enzyme and substrate, it is a measure of the 

strength of the ES complex (see model 1 above), where a high value of Km indicates 

weak binding while a low value of Km indicates strong binding. The maximum rate of 

catalysis Vmax also leads to the turnover number of an enzyme (Berg et al., 2002), which 

is the number of substrate molecules converted into product by an enzyme molecule in 

unit time, when the enzyme is fully saturated with substrate (unit s-1). It is often called 

kcat. When the total concentration of enzyme [E]o is known, the Vmax is related to the 

turnover number kcat by the following equations: 

             (  5.3)       ⁄             (  5.4) 

 

Under physiological conditions, the [S]/Km ratio is typically between 0.01 and 1.0 

(Campbell and Farrell, 2009). However, when the substrate concentration is small 

compared to Km, the enzymatic rate is much less than kcat because not all the active sites 

of the enzyme molecules are filled with substrate. Under these conditions, the ratio 

value of kcat/Km behaves as the rate constant for the interaction between the substrate 

and the enzyme. The ratio kcat/Km is thus a measure of catalytic efficiency because it 
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takes into account both the rate of catalysis with a particular substrate (kcat) and the 

strength of the enzyme-substrate interaction (Km). Therefore, by using kcat/Km values, it 

is easy to compare an enzyme’s preferences for different substrates. Enzymes that have 

kcat/Km values at the upper limits have attained kinetic perfection (Berg et al., 2002). 

 

Most enzymatic reactions in biological systems are more complicated than the classical 

Michaelis-Menten model and include two substrates (Berg et al., 2002). Nevertheless, it 

is still possible to obtain data that conform to the Michaelis-Menten equation (equation 

5.1), and determine the steady-state kinetic parameters for each substrate in vitro, by 

treating the catalysis as if it is a single substrate reaction. This is achieved by varying 

the first substrate concentration, at a constant concentration of the second substrate, and 

vice versa. The parameters obtained by this method are termed ‘apparent’ and may 

change if the concentration of the constant substrate is altered (Cornish-Bowden, 2004). 

 

5.2 Initial steady-state kinetics of ABTS oxidation: 
 
In order to study the effects of mutation at position 167 on the catalytic efficiency of 

HRP-C*, steady-state kinetic parameters for the reaction of WT HRP-C* and the new 

S167 variants were determined with hydrogen peroxide and using 2, 2´-azino-di-(3-

ethyl-benzthiazoline-6sulphonic acid) (ABTS) as reducing substrate. ABTS is a 

relatively large molecule (Figure 5.1), with a sulphate oxygen to sulphate oxygen 

distance of 17.2 Å, and structurally is essentially a planar substrate (Mousty et al., 

1997). It is utilized as a convenient, low cost, commercially available substrate to assay 

peroxidase activity, as it is known as one of the most efficient electron donors for HRP 

(Childs and Bardsley, 1975; Smith et al., 1990; Heering et al., 2002). The chemical 

properties of ABTS and its oxidation by HRP-C have been extensively studied (Childs 
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and Bardsley, 1975; Wolfenden and Willson, 1982; Scott et al., 1993; Campos and 

Lissi, 1997; Aliaga and Lissi, 1998). In the presence of HRP-C and hydrogen peroxide 

this substrate readily undergoes a single electron oxidation to produce a cation radical 

species with distinctive green colour (Figure 5.1). Accordingly, ABTS assays involve 

the measurement of the accumulation of this cation radical by following the colour 

production spectrophotometrically as a function of time (Childs and Bardsley, 1975). 

 

The catalytic oxidation of ABTS by HRP-C is of course a two substrate reaction. The 

sequence of this reaction firstly involves interaction of the enzyme with hydrogen 

peroxide to produce the Compound I intermediate. This is followed by the oxidation of 

one molecule of ABTS concomitant with the reduction of Compound I to the second 

intermediate Compound II, and then, the oxidation of a second molecule of ABTS 

concomitant with the reduction of Compound II to the resting state of the enzyme 

(Childs and Bardsley, 1975). 

 

 

 

 

 

 

 

 

 

Figure 5.1: Chemical formula of ABTS and its oxidation product. Colourless, 

reduced ABTS undergoes a single electron oxidation in the presence of HRP-C and 

H2O2 to give a green, long-lived cation radical (Childs and Bardsley, 1975).  

ABTS 

cation radical 

N

SSO3

N

C2H5

N
N

S SO3

C2H5

- - 

N

SSO3

N

C2H5

N
N

S SO3

C2H5

- - 

- e -+ e -

+.



127 
 

 

In this work, activity assays were carried out using varying concentrations of ABTS and 

a constant concentration of H2O2. The initial rates, expressed as turnover numbers, were 

measured by monitoring the increase in absorbance at 414 nm resulting from the 

oxidation of the ABTS. Figure 5.2 shows the calculated initial rates against ABTS 

concentration and the plots of the Michaelis-Menten equation (equation 5.1) to the 

experimental data (SigmaPlot). The apparent kinetic parameters Km and kcat determined 

from each fit are listed in Table 5.1. The values of kcat/Km, the catalytic efficiency 

constant for ABTS oxidation by HRP-C, or KABTS, are also included in this table as a 

measure of the specific enzymes effectiveness.  

 

The kinetic parameters obtained show a number of important differences between the 

new mutants and the WT HRP-C*. The largest difference between the parameters for 

the S167W variant and WT HRP-C* is the higher apparent Km for the former; 366 µM 

for [S167W] HRP-C* and 184 µM for WT, meaning there is a two-fold decrease in the 

affinity of the mutant towards ABTS compared with the wild-type enzyme. Moreover, 

the apparent kcat of the mutant is also reduced, to approximately 75% of that of WT. 

These results indicate that replacement of the Ser167 residue by Trp has created an 

enzyme mutant with a somewhat reduced affinity towards ABTS and lower activity 

when compared to wild-type. Calculating the efficiency constant KABTS shows that the 

mutant has only 39% of the effectiveness of WT HRP-C* (Figure 5.3). 

 

The UmS167Y variant, compared to the S167W variant, displayed different behaviour 

during the steady-state oxidation of ABTS (Table 5.1). This variant has a decreased 

apparent Km value of 73 µM compared to 184 µM for WT (i.e. approximately 2.5-fold 

less) but also a reduction in the apparent kcat value to 18% of the WT enzyme. These 
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results mean, in contrast to the S167W variant, that the replacement of Ser167 by Tyr 

has created an enzyme mutant with a higher affinity towards ABTS, but a much lower 

catalytic activity kcat. As a result, the efficiency constant KABTS for Um[S167Y] HRP-C* 

is decreased to 45% of that of WT enzyme (Figure 5.3). 

 

As with UmS167Y, the m[S167Y] HRP-C* also has decreased apparent Km value to 

approximately half that of the wild-type enzyme (Table 5.1). However, the activity of 

mS167Y, as judged by the kcat value, is almost 3-fold higher than that of UmS167Y but 

still nearly 2-fold lower than that of the wild-type enzyme. These results therefore give 

a value of KABTS for m[S167Y] HRP-C* over twice the value of UmS167Y and equal to 

that of WT HRP-C*. It can therefore be concluded that the creation of the haem-protein 

cross-linkage in the S167Y mutant, has led to an enzyme with a similar effectiveness to 

WT HRP-C* (Figure 5.3), presumably due to the linkage causing an adventitious 

perturbation of the structure. 

 

In a previous study by a member of the group (Cali, 2008), it was observed that the Km 

value for UmS167M HRP-C* with ABTS was similar to that of WT HRP-C*, but the 

kcat value was 3-fold lower. Therefore, the S167M mutation decreased the enzyme’s 

effectiveness (KABTS) by approximately 2.5-fold compared to WT. However, the 

formation of the sulfonium linkage in this mutant (mS167M) had a larger negative 

effect on efficiency, as it reduced the KABTS value of the enzyme towards ABTS by a 

factor of 15 (Cali, 2008). 

 

From the present results, in conjunction with the findings of Cali (Cali, 2008), it seems 

clear that although Ser167 does not have any essential role in the catalytic function of  



 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Plots depicting the initial rates (expressed as turnover numbers) 

against ABTS concentration. (a) WT HRP-C* and [S167W] HRP-C* and (b) 

Um[S167Y] and m[S167Y] HRP-C*. The assays were carried out in phosphate-citrate 

buffer, pH 5, using 0.5 nM of enzyme, 1 mM H2O2, in a final volume of 1 ml at 25 oC. 

a 

b 



 

 

Table 5.1: Steady-state parameters of the oxidation of ABTS by WT HRP-C* and 

the new S167 variants. Data obtained from Figure 5.2. 

 

Enzyme Km (µM) kcat (s-1) KABTS (M-1s-1) 

WT HRP-C* 184 ± 18 699 ± 16 3.8 x 106 S167W 366 ± 22 524 ± 13 1.4 x 106 UmS167Y 73 ± 12 126 ± 4 1.7 x 106 mS167Y 95 ± 11 363 ± 8 3.8 x 106 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Histogram illustrating the effects of mutations at position 167 of HRP-

C* on kcat/Km values for the oxidation of ABTS. Data obtained from Figure 5.2.
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the enzyme, its mutation can affect indirectly either the substrate binding to the binding 

site or the rate of substrate turnover causing an alteration in the effectiveness of the 

enzyme towards ABTS. Interestingly, the only enzyme with the same effectiveness ratio 

as WT HRP-C* is the cross-linked S167Y variant. 

 

5.3 Activity screening towards a panel of substrates: 
 
HRP-C is characterized by having the capacity to oxidize a wide variety of substrates, 

albeit with varying efficiencies, e.g. aromatic amines, indoles, phenols and sulfonates 

(Veitch and Smith, 2001). In order to determine further the functional properties of the 

S167 enzyme mutants and whether the effects on the rate of ABTS oxidation already 

seen are replicated with other substrates, the new mutants were also studied against a 

panel of twelve further peroxidase substrates. Activity assays were carried out using 

varying concentrations of each substrate and a constant concentration of H2O2 (section 

2.11.2). The results obtained are presented as specific activities in Table (5.2). 

 

The S167W variant generally displays an impaired activity toward all substrates used 

compared to WT HRP-C*, although the degree of impairment varies considerably, 

ranging between 40-75% of the wild-type enzyme. While the specific activities for 

guaiacol and orange II oxidation are similar to those of the wild-type enzyme, most 

interestingly the S167W mutant exhibits an approximately 3-fold increase in luminol 

oxidation, under the conditions used. 

 

The ability of the UmS167Y variant to oxidize substrates was also found to generally be 

decreased when compared to WT HRP-C*, with the exception of guaiacol and orange 

II. The specific activities measured were also more severely impaired than for S167W, 
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except for pyrogallol. This is consistent with the ABTS oxidation results reported in the 

last section. These results give an indication that the active site of the enzyme has been 

more modified when the Ser167 residue is replaced by Tyr, than when it is replaced by 

a Trp, perhaps surprisingly giving the amino acid structures involved.  

 

 

Table 5.2: Substrate activity screening of WT HRP-C* and the new S167 variants. 

The assays were carried out in phosphate-citrate buffer, pH 5.0, at 25 oC. The results 

represent the specific activity of the enzyme in units (µmole. min-1. mg-1). 

 
 

Substrate WT S167W UmS167Y mS167Y 

ABTS 824 ± 8 389 ± 3 264 ± 4 805 ± 8 

Ferulic acid 3723 ± 33 1465 ± 12 1237 ± 38 3658 ± 141 

Caffeic acid 3742 ± 101 2030 ± 66 1312 ± 22 3648 ± 66 

p-Coumaric acid 2216 ± 64 1626 ± 75 1063 ± 11 2244 ± 19 

Potassium ferrocyanide 1247 ± 60 301 ± 2 260 ± 27 856 ± 42 

Guaiacol 387 ± 4 433 ± 11 338 ± 22 969 ± 40 

Pyrogallol 2931 ± 62 1055 ± 15 1172 ± 28 3853 ± 37 

o-Phenylenediamine 1672 ± 35 764 ± 10 598 ± 23 1655 ± 14 

Chlorpromazine 12 ± 1 5 ± 1 4 ± 1 13 ± 1 

Luminol 71 ± 2 201 ± 4 49 ± 1 163 ± 3 

Orange I 442 ± 14 305 ± 9 266 ± 8 755 ± 6 

Orange II 0.12 ± 0.01 0.12 ± 0.01 0.10 ± 0.01 0.17 ± 0.01 
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The most interesting observations were found for m[S167Y] HRP-C*, which displays 

an overall increase in specific activity of 2-4 fold towards all the substrates used, when 

compared to the unlinked enzyme. This increase in activity also leads to equivalent or 

higher activities compared to the WT enzyme (Figure 5.4), except for the potassium 

ferrocyanide. Of particular note is the approximately 2.5-fold increase in activity 

compared to WT for guaiacol and luminol. Again this is generally consistent with the 

previous results for ABTS. Presumably the perturbation of the structure brought about 

by the initial S167Y mutation is again altered by the production of the linkage so that 

the active site and substrate binding site are once more like the wild-type arrangement, 

although for a few substrates a small change must still be present that allows for the 

increased activities. It is interesting that the linked S167Y mutant has higher activities 

against all substrates tested than the linked S167M mutant (Cali, 2008), which were all 

lower than the unlinked S167M mutant. Presumably in this mutant the formation of the 

sulfonium linkage increases the perturbation of either, or both, the active and substrate 

binding sites. On the other hand, it has been reported that the specific activity of F41E 

HRP-C* towards guaiacol was significantly increased 10-fold after treatment with H2O2 

and creation of a haem-protein covalent bond (Colas and Ortiz de Montellano, 2004). 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Figure 5.4: Histogram of specific activities for the oxidation of a panel of 

peroxidase substrates by Um[S167Y] and m[S167Y] HRP-C* expressed as a 

percentage of the values obtained for WT HRP-C*. Data obtained from Table 5.2. 
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5.5 Steady-state kinetics of Luminol oxidation: 
 
The oxidation reaction of 5-amino-2,3-dyhydrophthalazine-1,4-dione (Luminol), 

mediated by HRP-C, to yield 3-aminophthalate and light is called chemiluminescence 

and is considered one of the many important applications of HRP (Thorpe and Kricka, 

1986; Veitch and Smith, 2001). This reaction produces light and has been used 

frequently in clinical applications, for immunoassays, metabolic pathway monitoring, 

detection of inorganic and organic compounds, determination of enzymatic reaction and 

detection of blood at crime scenes (Briheim et al., 1984; Radi et al., 1993; Lundqvist 

and Dahlgren, 1996). 

 

The chemiluminescence assay involves the normal catalytic cycle of HRP-C with both 

its intermediary complexes, Compound I and Compound II, being able to rapidly 

remove an electron from luminol to form a luminol cation radical. Then, the luminol 

radicals enter a complex chemical pathway to produce diazoquinione, luminol 

endoperoxide and finally, the light emitting excited state of a 3-aminophthalate ion and 

nitrogen gas. In the final step of the reaction the excited 3-aminophthalate ion yields a 

3-aminophthalate dianion and light (Bhandari et al., 2010). 

 

One disadvantage of the conventional chemiluminescence assay with HRP-C is the 

inefficiency of the luminescence reaction due to its low quantum yield (Tanaka et al., 

1999). Therefore, and in order to detect and measure smaller amounts of analytes in 

clinical assays, many efforts have been made to enhance the luminol activity of HRP-C. 

It has been found that the sensitivity of the luminol assay can be increased by addition 

of enhancers, such as 4-Iodophenol and 4-Iodophenylboronic acid but this can be costly 

(Kricka et al., 1988; Kricka et al., 1996). An attempt has been made to enhance the 
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direct luminol oxidation activity of HRP, by mimicking in HRP-C a possible binding 

site for luminol from Arthromyces ramosus peroxidase (ARP); the results showed a 

significant increase in enzyme activity towards luminol, with some HRP variants 

prepared having 500-fold higher activity for luminol than the wild-type enzyme (Tanaka 

et al., 1999). 

 

As mentioned before, from the specific activity screening against a panel of substrates, 

the luminol oxidation results showed that there was an interesting increase in activity of 

the S167W and mS167Y mutants relative to the wild-type enzyme. Therefore, apparent 

steady-state parameters were determined for these two mutants this time using luminol 

as reducing substrate, instead of ABTS, and conditions as described in section 2.6.3. 

 

The initial rates obtained, expressed as turnover numbers, were plotted against luminol 

concentration and were fitted to the Michaelis-Menten equation using SigmaPlot 

software (Figure 5.5). Apparent kinetics parameters obtained (Km and kcat) for WT HRP-

C*, S167W, UmS167Y and mS167Y are compiled in Table 5.3. The efficiency constant 

(kcat/Km) for each enzyme was calculated and is also included in this table. In order to 

facilitate visual comparison between WT HRP-C*, and the S167W, UmS167Y and 

mS167Y mutants, the efficiency constants are illustrated graphically in Figure 5.6. 

 

The results obtained for the S167W mutant show a significantly decreased apparent Km 

value by a factor of 7-fold and a kcat value decreased by a factor of 1.5-fold compared to 

the wild-type enzyme. These results lead to a clear increase in the efficiency of this 

enzyme variant towards luminol, with the kcat/Km for luminol being 5-fold higher than 

that of WT HRP-C* (Figure 5.6). 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5: Plots depicting the dependence of initial rates of luminol oxidation on 

luminol concentration during steady-state HRP-C assays. The data were fitted to the 

Michaelis-Menten equation and the values determined are given in Table 5.3. (a) WT 

HRP-C* and S167W mutant, and (b) Um[S167Y] and m[S167Y] HRP-C*. The assays 

were carried out in phosphate-citrate buffer, pH 5.0, using 20 nM of enzyme, 1 mM 

H2O2 and varying concentrations of luminol in a final volume of 1 ml at 25 oC. 

a 

b 



 

 

Table 5.3: Steady-state parameters of the oxidation of luminol by WT HRP-C* and 

the new S167 mutants. Data obtained from Figure 5.5. 

 
 

Enzyme Km (μM) kcat (s-1) kcat/Km (M-1s-1) 

WT HRP-C* 1425 ± 93 275 ± 10 1.93 x 105 

S167W 199 ± 24 190 ± 9 9.56 x 105 

UmS167Y 2030 ± 163 130 ± 7 0.65 x 105 

mS167Y 541 ± 49 170 ± 5 3.14 x 105 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6: Histogram illustrating the effects of mutations at position 167 of HRP-

C* on kcat/Km values for the oxidation of luminol. Data obtained from Figure 5.5.
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The UmS167Y variant displays very different behaviour to that of the S167W variant. It 

has an increased apparent Km value of 2030 μM compared to 1425 μM for WT HRP-

C*, accompanied by a 2-fold decrease in apparent kcat value. The efficiency constant for 

this mutant is therefore decreased by a factor of 3-fold compared to that of wild-type 

enzyme. However, the results for the mS167Y enzyme are again different to those of 

Um[S167Y] HRP-C*. For this linked mutant the decrease is 2.5-fold in Km and 1.6-fold 

in kcat compared to values for WT HRP-C*, leading to an overall 1.6-fold higher 

catalytic efficiency (kcat/Km) than the wild-type enzyme and 5-fold higher than the 

Um[S167Y] HRP-C*. The increase in catalytic effectiveness for both S167W and 

mS167Y enzymes is achieved by a decrease in the apparent Km value, which reflects a 

higher binding affinity for luminol. 

 

5.6 Conclusion: 
 
The changes in the kinetic parameters of the S167Y and S167W variants, relative to WT 

HRP-C*, are interesting. It can be concluded that the replacement of Ser167 by either a 

Tyr or Trp, leads to an indirect effect on the active and substrate binding sites of HRP-C 

and as a result modulates the activity of the enzyme towards certain substrates. The 

nature of this modulation seems to be substrate specific to some extent. In general, the 

introduction of a Tyr or Trp in position 167, leads to an enzyme with lower activity 

towards most substrates. However, surprisingly, and in contrast to other substrates, there 

is a significant enhancement in the oxidation activity of the S167W variant towards 

luminol leading to an enzyme efficiency approximately 5-fold that of WT HRP-C*. For 

the S167Y mutant formation of the haem-protein covalent linkage leads to an enzyme 

that has much more WT-like levels of activity against all substrates tested. This is very 

different to that previously found for the S167M mutant (Cali, 2008), where the 
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formation of the sulfonium linkage between the heam and protein leads to a further 

decrease in enzyme activity by approximately 12-16 fold. This is presumably due to an 

increase in the perturbation to the HRP-C* active site for m[S167M] HRP-C* but for 

m[S167Y] HRP-C* the linkage in some way compensates for the perturbations already 

caused by the mutation itself. A further discussion of the steady-state kinetic results and 

the functional changes accompanying the mutations of the HRP-C will be presented in 

chapter 7. 
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Chapter Six: 

Pre steady-state kinetic characterisation of HRP 
S167 variants and effect(s) of haem-protein 

covalent linkage 
 

 

6.1 Introduction: 
 
The term pre steady-state kinetics is usually applied to the observation of rates of 

reaction that occur in very short time intervals (usually fractions of a second) and at 

very low product concentrations. In enzyme kinetics, this period covers the time from 

the enzyme encountering its target substrate, up to the point that the system reaches an 

equilibrium state. Figure 6.1 illustrates the changes in concentration observed for the 

reaction participants, with time, during the pre steady-state and steady-state (Berg et al., 

2002). 

 

 

 

 

 

 

 

 

Figure 6.1: The concentration changes in reaction participants in an enzyme-

catalyzed reaction with time. Concentration changes under (A) steady-state 

conditions, and (B) pre steady-state conditions. This figure is adopted from Berg et al., 

2002.  
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The figure demonstrates that, from the beginning of the reaction, the concentration of 

Enzyme-Substrate complex (ES) rises from zero to its steady-state value. The steady-

state approximation is therefore not valid during this early stage and for this reason it is 

called the pre steady-state or transient-phase. The pre steady-state of an enzyme-

catalyzed reaction usually occupies a very brief period of time (milliseconds), therefore 

special rapid techniques have to be used for investigation. One of the most frequently 

used techniques is stopped-flow, in which a spectroscopic signal is observed during the 

pre steady-state stage (Wang, 2007). Pre steady-state kinetic experiments with 

peroxidases are often carried out using the stopped-flow apparatus, as it permits the 

direct monitoring of the kinetic behaviour of the resting enzyme and intermediates 

Compounds I and II (Dunford, 1999h). Stopped-flow spectroscopy was developed by 

Britton Chance in the 1950's (Chance, 1952) and allows the measurement of pre steady-

state rate constants for the formation of enzyme intermediates, which is not possible 

using steady-state methods. 

 

As mentioned in Chapter 5, the rate of an enzyme reaction is the quantity of reactants 

that disappear, or quantity of products that appear, in a specified unit of time. It is 

directly related to the concentration of reactants by a proportionality constant, called the 

rate constant (k). The number of reactant concentration terms which need to be 

considered when determining the rate of reaction is called the order of reaction (Berg et 

al., 2002). The pre steady-state reactions between the catalytic species of HRP and 

substrates are first-order with respect to each reactant, and second-order overall. 

Therefore, the rate of these reactions is dependent on the concentration of both the 

enzyme species and the substrate used. In general, the rate of such a second-order 

reaction is described by the following equation. 
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            (  6.1) 

 

where k is the second-order rate constant governing the reaction, [E] the concentration 

of enzyme and [S] the concentration of the substrate (Atkins and Paula, 2009). The rate 

constant (k) has the unit M1-n s-1, where n is the order of the reaction. A first-order rate 

constant has unit s-1 and second-order rate constant has the unit M-1 s-1 (Berg et al., 

2002). 

 

Direct kinetic measurement of second-order reactions with two reactants can be 

problematic and less precise if the concentrations of the two reactants are followed 

simultaneously, or if one is measured and the other calculated as a difference. 

Therefore, in order to minimise the complexities arising from dealing with two 

reactants, the reactions are forced to operate under pseudo first-order conditions (Job 

and Dunford, 1976). Maintaining a small concentration of the enzyme, reacting with a 

large excess of substrate (at least 5-fold greater than enzyme concentration), will allow 

the rate of the reaction to be first-order, because the relatively small changes in substrate 

concentration during the reaction will not contribute to the total order, as it is in excess 

and can be viewed as a constant (Berg et al., 2002). These reaction conditions are called 

pseudo first-order and can be described by the following equation: 

            (  6.2) 

 

where: kobs is the pseudo first-order rate constant, that has the unit s-1 (Job and Dunford, 

1976). 
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Valuable information can be obtained when the pseudo first-order rate constant is 

measured directly as a function of substrate concentration (Dunford, 1999h), including 

an apparent second-order rate constant (kapp) for a given reaction. A plot of kobs against 

substrate concentration gives a linear relationship, and from equation 6.3 the slope of 

the plot gives the most accurate determination of kapp in units of M-1 s-1 (Dunford, 

1993). A linear plot passing through the origin indicates that, in practical terms, the 

reaction is irreversible (Dunford, 1999h). 

 

            (  6.3) 

 

In the previous chapter, steady-state data showed that the kinetics of luminol oxidation 

were different for cross-linked [S167Y] HRP-C* compared to unlinked. Therefore, in 

order to determine the rate constants k1, k2 and k3 directly (see section 1.5.4) for the 

reaction of HRP-C with luminol, the pre steady-state kinetic experiments described in 

this chapter were carried out under pseudo first-order conditions, maintaining the 

substrate concentrations at 5-10 times greater than the enzyme. Linear plots obtained 

from the observed pseudo first-order rate constants against corresponding substrate 

concentration confirmed that the respective partial reactions were really second-order 

overall with respect to the substrate used and the enzyme. 

 

6.2 Stopped-flow rapid scan photodiode array: 
 
As mentioned before in section 4.2, the main feature of the resting state spectrum of 

HRP-C is the presence of a Soret band at 403 nm, with two other bands at 642 nm (CTI) 

and 498 nm (CTII) related to charge transitions (Dunford, 1999f). Upon exposure to 
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H2O2, the resting enzyme is rapidly converted to the Compound I intermediate, 

concomitant with a decrease in the molar absorptivity of the Soret peak by a factor of 

approximately two (Dunford, 1982; Dunford, 1999i). After this, over a period of time, 

the spectrum of the second intermediate Compound II is observed as the result of a slow 

auto-reduction of Compound I. A comparison of the resting enzyme spectrum with the 

typical spectrum of Compound II shows that the maximum peak in the Soret region is 

red shifted from 403 nm to 420 nm and the peak intensity is increased slightly. A double 

peak in the visible region of the spectrum, with maxima at 527 nm and 554 nm, is also 

considered a characteristic feature of Compound II (Dunford, 1999i). In fact, Compound 

II is more stable than Compound I, and hence is easier to characterize. 

 

In order to have an overview on the nature of the changes that occur in the UV/Vis 

spectrum during the first part of the catalytic cycle of the S167W and S167Y HRP-C* 

variants upon reaction with hydrogen peroxide, rapid scan photodiode array absorption 

spectrometry was used, in the presence of 10 equivalents of H2O2 and the absence of 

reducing substrate, using a stopped-flow spectrophotometer equipped with an attached 

diode-array detector (section 2.12.2). 500 data points were collected on a logarithmic 

scale over a total time of 1000 s. The results are presented in Figures 6.2a, 6.3a, 6.4a 

and 6.5a. These figures show selected spectra obtained from 64 milliseconds to 992 

seconds for WT HRP-C*, and S167W, UmS167Y (unlinked enzyme) and mS167Y 

(linked enzyme) variants, respectively. In addition, data analysis was performed using 

the Pro-K Global Analysis Program (Applied Photo-Physics), to fit the time-dependent 

spectra collected and obtain computer modelled enzymatic species. Figures 6.2b, 6.3b, 

6.4b and 6.5b show the obtained intermediate species spectra from computer modelling 
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of the original data, and there is an inset in each figure indicating the relative abundance 

of each species as a function of time. 

 

The predominant species of WT HRP-C* (Figure 6.2b) agree well with those reported 

previously (Dunford, 1982), with the only slight difference being that the Compound II 

Soret peak appears less intense than that of the resting state; this is attributed to not fully 

converting the enzyme to Compound II. For all four enzyme samples studied, it was 

found that the initial decrease in the Soret absorption of the resting state on conversion 

to Compound I was almost the same, i.e. approximately a factor of two. The original 

spectra of Um[S167Y] and m[S167Y] HRP-C* (Figures 6.4a and 6.5a) show clearly 

that the formation of Compound I occurs more rapidly than for WT HRP-C* (Figure 

6.2a). However, and at the same time, the relative abundance of the enzyme species 

shows that the Compound I is of UmS167Y and mS167Y are also unstable compared to 

WT Compound I and quickly convert to Compound II. Computer modelling simulation 

of the raw data confirms this rapid formation and reduction of Compound I, where a 

three species model (A  B  C) for both UmS167Y and mS167Y (Figures 6.4b 

and 6.5b) could not detect the resting state of the enzyme that is clearly indicated for 

wild-type enzyme (Figure 6.2b). The first species found (A) is approximately 90% 

Compound I, the second species (B) seem to be a 50/50 mixture of Compounds I and II, 

and the third species (C) represents Compound II. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2: Rapid scan absorption spectra of WT HRP-C* reaction with H2O2. 3.6 

µM of enzyme were treated with 40 µM of H2O2 in 10 mM sodium phosphate buffer, 

pH 7.0, at 25 oC. (a) Rapid scan absorption spectra from 64 ms to 992 s. (b) Enzyme 

intermediate species spectra obtained from computer simulation of the raw data by 

global analysis (APP Pro-K) software, the figure in the top right represents the relative 

abundance of each one of the enzyme intermediates as a function of time. 
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Figure 6.3: Rapid scan absorption spectra of [S167W] HRP-C* reaction with 

H2O2. 4 µM of enzyme were treated with 40 µM of H2O2 in 10 mM sodium phosphate 

buffer, pH 7.0, at 25 oC. (a) Rapid scan absorption spectra from 64 ms to 992 s. (b) 

Enzyme intermediate species spectra obtained from computer simulation of the raw data 

by global analysis (APP Pro-K) software, the figure in the top right represents the 

relative abundance of each one of the enzyme intermediates as a function of time. 
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Figure 6.4: Rapid scan absorption spectra of Um[S167Y] HRP-C* reaction with 

H2O2. 4 µM of enzyme were treated with 40 µM of H2O2 in 10 mM sodium phosphate 

buffer, pH 7.0, at 25 oC. (a) Rapid scan absorption spectra from 64 ms to 992 s. (b) 

Enzyme intermediate species spectra obtained from computer simulation of the raw data 

by global analysis (APP Pro-K) software, the figure in the top right represents the 

relative abundance of each one of the enzyme intermediates as a function of time. 
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Figure 6.5: Rapid scan absorption spectra of m[S167Y] HRP-C* reaction with 

H2O2. 4 µM of enzyme were treated with 40 µM of H2O2 in 10 mM sodium phosphate 

buffer, pH 7.0, at 25 oC. (a) Rapid scan absorption spectra from 64 ms to 992 s. (b) 

Enzyme intermediate species spectra obtained for computer simulation of the raw data 

by global analysis (APP Pro-K) software, the figure in the top right represents the 

relative abundance of each one of the enzyme intermediates as a function of time.  
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Analysis of the rapid scan absorption spectra of the S167W mutant shows only a good 

fit to the experimental data when using a model of four species (A  B  C  

D) instead of the three species model of the WT enzyme, where A represents the resting 

state, B Compound I, C Compound II and D a new form of the enzyme. The rapid scan 

spectra show clearly another decrease in the Soret peak intensity (Figure 6.3), beginning 

150 s after the start of the reaction, where instead of reduction of Compound II back to 

the resting state enzyme (the normal process that occurs in the wild-type enzyme) it 

appears to suffer from a bleaching process. This phenomenon gives an indication that 

destruction, i.e. methylene breakage, may occur to the haem because of increased 

sensitivity of this mutant to H2O2 in the absence of reducing substrate. More chemical 

analyses, such as NMR analysis, need to take place in order to prove this, although a 

similar possibility was seen in chapter 4 results from HPLC analysis. 

 

6.3 Pre steady-state enzyme kinetics: 

6.3.1 Determination of the rate constant (k1) for the reaction of resting 
enzyme with H2O2: 
 
The reaction cycle of HRP-C starts with the formation of the first intermediate, 

Compound I, by reaction of resting enzyme with H2O2 (equation 6.4). In this reaction 

the ferric haem group undergoes a two equivalent oxidation to an oxyferryl, FeIV, 

porphyrin π-cation radical state (Hasinoff and Dunford, 1970), with a second-order rate 

constant (k1) equal to 1.6 × 107 M-1 s-1 for the wild-type enzyme (Shiro et al., 1986).  

 

 

In order to examine the effects which may be caused by the mutations introduced into 

HRP-C* at position 167, on the rate of formation of Compound I, the second-order rate 

k1E + H2O2                                Compound I + H2O            (equation 6.4) 
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constant (k1) for the reaction of WT enzyme and the new variants with H2O2 was 

determined under pseudo first-order conditions at pH 7.0 (section 2.12.3). Upon mixing 

of the enzyme sample and a known concentration of H2O2 in the stopped-flow system, a 

decrease in absorption due to the formation of Compound I was monitored at 395 nm. 

When measuring k1 for HRP-C, the wavelength of 395 nm is generally used as this is 

the isosbestic wavelength between Compound I and Compound II (Smith et al., 1992). 

As the Compound I species is forming it is also unstable and will be auto-reduced 

slowly to Compound II even without the addition of any reductants (Dunford and 

Stillman, 1976). However, interference to the data caused by this reduction can be 

avoided, as there is no change in the A395 during the reduction of Compound I to 

Compound II. 

 

The pseudo first-order rate constants (kobs) at a number of H2O2 concentrations were 

determined by fitting the traces obtained, i.e. a decrease in A395 as a function of time, to 

a single exponential decay function (Figures 6.6 - 6.9). In order to then calculate the 

value of the second-order rate constant for each enzyme sample used, the obtained 

values for kobs were plotted against the corresponding hydrogen peroxide concentrations 

using a weighted least square linear regression analysis (Figures 6.10 and 6.11). The 

slope of the resultant graph in each case represents the k1 value (see equation 6.3) for 

the relevant enzyme, values obtained presented in Table 6.1.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Stopped-flow trace of Compound I formation of WT HRP-C*. The 

trace shows the change in A395 for one second after 3.6 µM of enzyme was mixed with 

40 µM of H2O2 in 10 mM sodium phosphate buffer, pH 7.0, at 25 oC. (a) original trace, 

(b) single exponential fit (in red) of the A395 versus time progress curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Stopped-flow trace of Compound I formation of [S167W] HRP-C*. The 

trace shows the change in A395 for one second after 4 µM of enzyme was mixed with 40 

µM of H2O2 in 10 mM sodium phosphate buffer, pH 7.0, at 25 oC. (a) original trace, (b) 

single exponential fit (in red) of the A395 versus time progress curve. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Stopped-flow trace of Compound I formation of Um[S167Y] HRP-C*. 

The trace shows the change in A395 for one second after 4 µM of enzyme was mixed 

with 40 µM of H2O2 in 10 mM sodium phosphate buffer, pH 7.0, at 25 oC. (a) original 

trace, (b) triple exponential fit of the trace, but that this likely reflected non-specific 

absorption drift over the longer timescale, the values used in Figures 6.11 come from a 

single exponential fit of the data over the first 0.2 seconds of the reaction.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Stopped-flow trace of Compound I formation of m[S167Y] HRP-C*. 

The trace shows the change in A395 for one second after 4 µM of enzyme was mixed 

with 40 µM of H2O2 in 10 mM sodium phosphate buffer, pH 7.0, at 25 oC. (a) original 

trace, (b) single exponential fit (in red) of the A395 versus time progress curve. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Pseudo first-order rate constant plots for Compound I formation for 

WT HRP-C* and [S167W] HRP-C*. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: Pseudo first-order rate constant plots for compound I formation for 

m[S167Y] and Um[S167Y] HRP-C*. 
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As mentioned before, the linear nature of the pseudo first-order rate constants versus 

H2O2 concentration plot passing through the origin (Figure 6.10), indicates that the 

formation of Compound I is an essentially irreversible process for wild type HRP-C* 

(Dunford, 1999h). The similar linear behaviour, and going through the origin, of the 

plots for the mutants, Figures 6.10 and 6.11, shows that the introduction of a tryptophan 

or tyrosine residue at position 167, instead of serine, also does not affect the mechanism 

of Compound I formation, i.e. the formation of Compound I has remained much faster 

than the rate of dissociation of the hydroperoxide complex (see scheme 1.3). 

 
 

Table 6.1: Second-order rate constants (k1) for Compound I formation by WT, 

Um[S167Y], m[S167Y] and [S167W] HRP-C*. All assays were carried out in 10 mM 

Na-Phosphate buffer, pH 7.0, at 25 oC. The k1 values were determined from the slopes 

of regression line plots of the pseudo first-order rate constants against hydrogen 

peroxide concentration. Data analysis and processing were carried out using Sigmaplot 

software.  

 
 

  Enzyme k1 (M-1 s-1) 

WT HRP-C* 1.59 ± 0.10 × 107 

S167W 9.0 ± 0.07 × 106 

UmS167Y 1.84 ± 0.20 × 107 

mS167Y 2.12 ± 0.10 × 107 
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The k1 value obtained for WT HRP-C* is 1.59 ± 0.10 × 107 M-1 s-1 and is in very good 

agreement with the published value, which is 1.64 × 107 M-1 s-1 (Smith et al., 1992). The 

results show a small but significant decrease in the k1 value of the S167W mutant 

compared to wild type enzyme, its value is reduced to almost half the value of WT 

HRP-C*. In the case of the UmS167Y mutant, a small but significant increase by a 

factor of 1.2-1.3 fold in the second-order rate constant for the formation of Compound I 

is observed relative to the wild-type enzyme. The production of the haem-protein 

covalent bond in this mutant (mS167Y) can be seen to have little effect on this value. 

 

Examination of the influence of haem pocket residues on the mechanism of Compound 

I formation in HRP-C, and their relative contribution to the k1 rate constant, has been a 

major focus of site directed mutagenesis studies. A study has been presented by Veitch 

and Smith that summarizes the haem pocket mutations of HRP-C on the rate of 

formation of Compound I (Veitch and Smith, 2001); this study shows the relative 

contributions of the distal and proximal haem pocket residues Arg38, Phe41, His42, 

Glu64, Asn70 and His170 of HRP-C. 

 

For enzymes engineered to be able to introduce a haem-protein covalent linkage, the k1 

rate constant of Compound I formation for the unlinked [F41E] HRP-C* variant showed 

a value 100 times lower than that of the wild-type enzyme, presumably a result of either 

an ionic or steric interaction between His42 and Glu41. However, interestingly, after 

treatment with hydrogen peroxide and formation of the covalent bond between the 

glutamic acid and the 3-methyl group of the haem, this mutant exhibited a rate of 

Compound I formation, equivalent to that of wild-type enzyme (Colas and Ortiz de 

Montellano, 2004). It has also been reported that, neither the S167M mutation alone, 
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nor the covalent modification of this enzyme, has any drastic affect on the basic 

mechanism for Compound I formation. The k1 value obtained of Compound I formation 

for the Um[S167M] HRP-C* was 1.32 × 107 M-1 s-1, while for m[S167M] HRP-C* it 

was 1.64 × 107 M-1 s-1 (Cali, 2008). 

 

6.3.2 Auto-reduction and life time of Compound I: 
 
Compounds I of the S167W and S167Y variants, formed by the addition of hydrogen 

peroxide to the enzyme at pH 7.0, were found to be unstable, and in a manner similar to 

Compound I of WT HRP-C* reverted to the resting state of the enzyme even in the 

absence of reducing agents (Figures 6.2-6.5). Therefore, in order to determine the life-

time of the Compound I species for each enzyme, the auto-reduction was monitored at 

412 nm in the stopped-flow system over a total time of 1000 s. This wavelength was 

chosen as it is the isosbestic point between Compound II and resting enzyme and 

therefore interference from the reduction of Compound II is avoided. The time traces 

obtained at 412 nm were found to be biphasic for all enzymes (Figure 6.12). The first 

phase is more rapid compared to a second slower phase. The traces were fitting to a 

double exponential equation using the curve fitting application in the Pro-Data Viewer 

software (Applied Photo-Physics), and two life times were determined using the 

reciprocal of the rate constants associated with both exponential rise phases of the traces 

(Table 6.2). 

 

The stopped-flow traces show that the amplitude changes associated with the two 

phases differ for each enzyme, Figure 6.12 and Table 6.2. The trace for WT HRP-C* 

has a fast phase with a small amplitude change of 15% and a slow phase with a much



 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Stopped-flow traces of Compound I auto-reduction followed at 412 

nm. The double exponential fits of the traces show a biphasic change in absorbance. A 

4 µM of enzyme sample was mixed with 10 equivalent of H2O2 in 10 mM sodium 

phosphate buffer, pH 7.0, at 25 oC. (a) WT HRP-C*, (b) [S167W] HRP-C*, (c) 

Um[S167Y] HRP-C* and (d) m[S167Y] HRP-C*. 

 

 

Table 6.2: Life times for Compound I of WT HRP-C*, [S167W] HRP-C*, 

Um[S167Y] HRP-C* and m[S167Y] HRP-C*. Values were calculated from the 

reciprocal of the rate constants obtained for the two phases of the traces in Figure 6.12. 
 

Enzyme 
Life Time of Compound I Intermediate 

Fast phase Slow phase 

WT HRP-C* 850 ± 17 ms (15%) 89 ± 13 s (85%) 

S167W 2.4 ± 0.2 s (37%) 22.6 ± 4.3 s (63%) 

UmS167Y 135 ± 8 ms (72%) 9.3 ± 0.2 s (28%) 

mS167Y 40 ± 3 ms (76%) 3.7 ± 0.2 s (24%) 

Time (s) 

Time (s) Time (s) 

Time (s) 

Absorbance 

Absorbance 

Absorbance 

Absorbance 
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larger amplitude change of 85%. In the case of the S167W variant, the trace shows an 

increase in the amplitude change of the fast phase (37%) at the expense of the slow 

phase, when compared to the wild-type enzyme. The traces of Um[S167Y] and 

m[S167Y] HRP-C* both show a dramatic change in the amplitude changes, with the 

early fast phase associated with a large amplitude change, of 72% and 76% respectively. 

 

The life times obtained show that the Compound I auto-reduction for the S167W mutant 

was 3-4 times faster overall than for wild-type enzyme; this result is in good agreement 

with the rapid scan diode array observations (Figures 6.2 and 6.3). The most interesting 

results are for the S167Y mutant, where over 70% of Compound I of both Um[S167Y] 

and m[S167Y] HRP-C* is auto-reduced in the fast phase within only 135 ms and 40 ms, 

respectively (Table 6.2) and then only another 4 or 10 seconds is needed to completely 

reduce Compound I to Compound II. The overall reduction is therefore 10 times and 25 

times, respectively, faster than for WT HRP-C* Compound I reduction. However, the 

majority of the effect is from the mutation itself and only a small further instability is 

introduced by the presence of the cross-link. A previous study in this laboratory showed 

that the Compound I of Um[S167M] HRP-C* has an overall life time 1.5 times shorter 

than the wild-type enzyme, while m[S167M] HRP-C* is 2.5 times shorter (Cali, 2008), 

i.e. there is clearly less effect on the stability of Compound I from the S167M mutation 

than the S167Y mutation. 

 
 

6.3.2 Determination of the second-order rate constants (k2 and k3) for 
the HRP-C catalysed oxidation of luminol: 
 
The normal HRP-C reaction cycle is via the sequence: resting enzyme  Compound 

I  Compound II  resting enzyme (see section 1.5.4), so that after the 
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formation of Compound I, two sequential single electron reductions of Compound I by 

the reducing substrate occur and the resting enzyme is regenerated via Compound II; the 

rate constants k2 and k3, respectively, describe the reductions of Compounds I and II. 

Compound I and Compound II usually react with the same reducing substrate, i.e. once 

the reaction between Compound I and reducing substrate is initiated and some 

Compound II is formed, the Compound II begins to react with the substrate as well 

(Dunford, 1999h). It has been found that wild-type Compound I reacts more rapidly 

with reducing substrates than does Compound II, i.e. Compound II reduction is the rate 

limiting step. 

 

In this study, in order to determine the rate constant (k2) for reduction of Compound I, 

or formation of Compound II, and the rate constant (k3) for reduction of Compound II 

by luminol at the same time, approximately 3 µM of WT HRP-C* and the S167 variants 

were treated with 2.7 µM of H2O2. Then, directly, the reaction mixture was reacted 

under pseudo first-order conditions with a range of luminol concentrations. The kinetic 

measurements were performed in 10 mM sodium phosphate buffer, pH 7.0, at 25 oC and 

were monitored by a change in absorbance at 424 nm (at this wavelength both k2 and k3 

can be measured) using the stopped-flow instrument. This wavelength is the isosbestic 

point between Compound I and resting enzyme (Smith et al., 1992). It has been found 

that any excess of hydrogen peroxide in the reaction mixture would recycle some of the 

enzyme and cause interference with accurate measurement (Dunford, 1999h). For this 

reason, a slightly less than stoichiometric amount of hydrogen peroxide was used. 

 

The traces obtained of change in absorbance at 424 nm as a function of time were 

biphasic (Figure 6.13), where the rise in absorbance represents the Compound I 
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reduction stage (Compound II production), and the decay in absorbance represents 

Compound II reduction. The pseudo first-order rate constants (kobs) for Compounds I 

and II reduction were determined by fitting the traces obtained to a double exponential 

function. The slope of a plot of kobs from the rise phase against luminol concentration 

was used to calculate the second-order rate constant k2 for Compound I reduction 

(Figure 6.14), while the slope of a plot of kobs from the decay phase against luminol 

concentration was used to calculate the second-order rate constant k3 for Compound II 

reduction (Figure 6.15). The calculated k2 and k3 values are presented in Table 6.3. 

 

For the k3 determination, the plots of kobs against luminol concentration all show the 

presence of a small positive intercept on the x-axis (Figure 6.15). This intercept is due 

to a reduction of the concentration of luminol by one equivalent of enzyme through its 

initial reaction with the Compound I intermediate. 

 

In general, the results show that the rates of Compound I reduction are much faster (50-

360 times greater) than the rates of Compound II reduction, for all enzymes, and that the 

rates of Compound II reduction vary only over a two-fold range. However, the results 

do reveal that the rate of Compound I reduction (k2) for [S167W] HRP-C* is increased 

to approximately 4 times that of WT HRP-C*. This suggests that the substitution of the 

Ser residue for Trp at position 167 has a substantial effect on the way that the luminol 

molecule is able to interact with the Compound I intermediate, resulting in an 

enhancement in the reaction rate. However, as the rate limiting step for the overall 

reaction with luminol is the reduction of Compound II this will not result in an increase 

in steady-state activity. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: Stopped-flow traces of Compound II formation and reduction with 

luminol as reducing substrate. The traces show the change in absorbance at 424 nm 

for five seconds after reaction of Compound I (mixture of 3 μM enzyme and 2.7 μM 

H2O2) with 10 μM of luminol in 10 mM sodium phosphate buffer, pH 7.0, at 25 oC for 

each of (a) WT HRP-C*, (b) [S167W] HRP-C*, (c) Um[S167Y] HRP-C* and (d) 

m[S167Y] HRP-C*. The rise in absorbance represents the Compound I reduction stage, 

while the decay in absorbance represents the Compound II reduction stage. 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Plots of the pseudo first-order rate constants for Compound I 

reduction by luminol. (a) WT HRP-C* and [S167W] HRP-C*, and (b) Um[S167Y] 

and m[S167Y] HRP-C*. 

a 
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Figure 6.15: Plots of the pseudo first-order rate constants for Compound II 

reduction by luminol. (a) WT HRP-C* and [S167W] HRP-C*, and (b) Um[S167Y] 

and m[S167Y] HRP-C*. 

a 

b 
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Table 6.3: The pre steady-state kinetic parameters k2 and k3 obtained for WT 

HRP-C* and S167 variants, using luminol as reducing substrate. Rate constants k2 

and k3 were calculated by weighted least square regression analysis using SigmaPlot 

software, from the slopes of plots of the pseudo first-order rate constants (kobs) against 

luminol concentration (Figures 6.14 and 6.15). 

 

Enzyme k2 (M-1 s-1) k3 (M-1 s-1) 

WT HRP-C* 2.8 × 106 5.6 × 104 

S167W 1.07 × 107 5.2 × 104 

UmS167Y 1.7 × 106 2.2 × 104 

mS167Y 9.7 × 106 2.7 × 104 

 

 

The results obtained for Um[S167Y] HRP-C* show that there is a small decrease in the 

k2 value by a factor of 0.6 fold when compared with wild-type enzyme. However, after 

incubation with hydrogen peroxide and creation of the haem-protein covalent linkage, 

m[S167Y] HRP-C* shows an enhancement in the rate of reduction of Compound I with 

a value 3.5 times faster than that of WT HRP-C*. These results indicate that while the 

replacement of the Ser residue by Tyr at position 167 initially causes a slight weakening 

of the interaction between the Compound I intermediate and luminol, formation of the 

haem-protein covalent linkage by treatment with H2O2, leads to a conformation where 

Compound I is able to oxidize luminol more rapidly. However, as k3 is still the rate 

limiting step for the overall HRP-C* reaction in this mutant the slight decrease in k3 will 

lead to an approximately 2-fold slower steady-state rate for both the cross-linked and 

unlinked S167Y mutant. 
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6.4 Conclusion: 
 
The use of pre steady-state kinetic methods has revealed that the mutation of HRP-C at 

position 167 causes some modulation in the rate of Compound I formation, compared to 

WT. It has been observed that there is a small decrease in the rate of Compound I 

formation for [S167W] HRP-C* and a small increase for [S167Y] HRP-C*, with no 

significant difference between linked and unlinked enzyme. Additionally, it was shown 

that the auto-reduction of Compound I occur in two phases, fast and then slow. The 

amplitude changes of the slow and fast phases reveal that the majority of WT 

Compound I auto-reduction is in the slow phase (85%), while the majority of UmS167Y 

and mS167Y Compound I auto-reduction is in the fast phase (72-76%). The S167W 

mutation has an intermediate effect. Interestingly therefore the S167Y mutation leads to 

a 10-fold greater overall instability of Compound I. this instability is enhanced further 

by 2.5-fold if the haem-protein covalent linkage is formed.  

 

Despite of the small negative effect on both the k2 and k3 rate constants for Um[S167Y] 

HRP-C* with luminol as reducing substrate compared to wild-type, m[S167Y] HRP-C* 

shows a 3.5-fold increase in the rate of Compound I reduction when compared with the 

wild-type enzyme, suggesting that the formation of the haem-protein covalent linkage 

has resulted in more favourable conditions for the electron transfer step between 

luminol and the porphyrin π-cation radical of Compound I. Approximately the same 

enhancement in the rate of reduction of Compound I has also been observed for the 

S167W variant. However, although both S167W and mS167Y variants have increased 

Compound I reduction by luminol, neither shows an increase in Compound II reduction, 

which is the rate limiting step of the reaction, under the pre steady-state conditions. 
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Chapter Seven: 

Final discussion 
 
 
 
The mammalian peroxidases are distinguished, in contrast to plant peroxidases, by the 

presence of two or three covalent bonds between the haem porphyrin and the protein. 

The available information about these linkages, such as how they are formed and what 

their functional advantages, is limited. Therefore, efforts have been made recently to 

attempt to understand the mechanism of linkage formation and the effects on the 

enzyme containing them, by introducing equivalent bonds into plant  peroxidases, e.g. 

HRP or APX, using site-directed mutagenesis (Colas and Ortiz de Montellano, 2004; 

Metcalfe et al., 2004; Pipirou et al., 2007a; Pipirou et al., 2009). Previous work in this 

laboratory involved the identification of a residue, Ser167, in HRP-C in a similar 

position relative to the haem as Met243 in the mammalian peroxidase MPO, which is 

involved in a sulfonium linkage to the haem porphyrin. The mutant [S167M] HRP-C* 

was therefore produced and was found to contain a sulfonium bond between the protein 

and haem after treatment with hydrogen peroxide (Cali, 2008). However, the linkage 

was found to be unstable and broke down after a few days. 

 

In this work, the same residue, Ser167 of HRP-C, has been replaced by both Tyr and 

Trp using a PCR-based site-directed mutagenesis. Both enzyme variants have been 

successfully expressed in E. coli as inclusion bodies, refolded and characterized. 

Resting state spectra of both enzyme variants suggest that, in contrast to WT HRP-C*, 

the haem iron exists predominantly in a six-coordinate high spin form, similar to that 

found in Lip and MnP (Blodig et al., 2001). Consistent with this, the Soret peak 
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extinction coefficient of the variants is much more than that of the wild-type enzyme. 

These results indicate that replacement of Ser167 residue by a bulky residue leads to a 

perturbation in the environment of the haem, so that the sixth coordination position of 

the iron is occupied by a weak ligand, probably a water molecule. Binding studies have 

also revealed that the affinity of the enzyme towards BHA has been impaired as a result 

of the mutagenesis. This effect is most likely caused indirectly by a perturbation in the 

aromatic donor binding site and / or the associated haem-linked hydrogen bonding 

network of the enzyme, rather than suggesting a direct role of Ser167 in substrate 

binding. 

 

The most important conclusion of the current work is the finding that on exposure of the 

S167Y mutant to an adequate amount of hydrogen peroxide, a covalent attachment of 

the haem to the protein is formed autocatalytically. Different analytical techniques have 

been used to confirm the formation of the covalent cross-linkage. The inability to 

remove the haem prosthetic group by the acid butanone haem extraction technique, the 

coelution of the protein and the haem together during HPLC analysis and the increase in 

mass of 614 Da over the predicted mass of the protein by MS analysis, all provide 

strong evidence for the formation of the haem-protein covalent bond in the S167Y 

variant. In addition, the results indicate that the positioning of a Tyr residue at position 

167 near to the haem 2-vinyl side chain is sufficient to form the haem-protein covalent 

linkage, even in the absence of H2O2, this requires formation of radical species on the 

iron (e.g. compound I) and/or on the 2-vinyl group to initiate reaction with the tyrosine. 

Again, this likely happens as a consequence of turnover of the HRP-C during its 

isolation, folding or purification. In contrast to the sulfonium linkage formed in the 

[S167M] HRP-C* mutant (Cali, 2008), which was found to be unstable and broke down 
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after few days, the haem-protein cross linking in [S167Y] HRP-C* was found to be very 

stable. The linkage was followed up after a period of 14 days at 4 oC and room 

temperature, and using MS and HPLC analysis the results were the same as 

immediately after formation of haem-protein covalent bond. Opposite to the results for 

the [S167Y] HRP-C* variant, no protein-haem linkage could ever be detected for the 

[S167W] HRP-C* variant. 

 

Results from kinetic studies on the two new S167 variants indicate that, even though 

there is no major functional role of Ser167 in the catalytic activity of HRP-C, the 

catalytic properties of the mutants somewhat altered. Generally, the reactivity of both 

mutants is significantly reduced against reducing substrates, with the exception of 

luminol and guaiacol, for the S167W variant. However, after treatment with hydrogen 

peroxide and formation of the covalent linkage, the S167Y mutant has a higher 

reactivity towards all enzyme substrates, equivalent to or higher than WT HRP-C*. This 

suggests that, as a result of covalent linkage formation, a favourable conformational 

change has occurred in either the haem environment and / or substrate binding site. 

 

The two new S167 variants were also examined by pre steady-state kinetics. 

Measurement of Compound I formation showed a 2-fold reduction for S167W and a 

small increase for either unlinked or linked S167Y. In addition, Compound I was found 

to be much more unstable for both unlinked and linked [S167Y] HRP-C*. However, 

unlike the increased activity towards luminol shown by the S167W and linked S167Y 

variants under steady-state conditions, only Compound I reduction showed an increased 

rate constant for these two mutants under pre steady-state conditions; the rate 

determining step of Compound II reduction is not increased. This apparent contradiction 
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is explained by the different pH’s used for the two different experiments, pH 5.0 for 

steady-state and pH 7.0 for pre steady-state assays. 

 

Indeed, unlike Compound I reduction, the rate of reduction of Compound II to resting 

enzyme is highly dependent on the pH. It has been reported that Compound II is easiest 

to reduce at low pH, while at high pH it becomes less and less reactive (Dunford, 

1999h). It was also found that the kcat value for the oxidation of ABTS by HRP-C* is 

drastically affected and decreased by changes in the pH value form pH 5.0 to pH 7.0 

(Rodriguez-Lopez et al., 1996b). An attempt has been made to do a comparison 

between steady-state and pre steady-state enzyme kinetics results, but unfortunately this 

was not possible due to the differences in the pH used in each case which has led to a 

change in the activity of enzyme Compound II.  

 

7.1 X-ray crystal structure: 
 
X-ray data collection, generation of electron density maps and structure refinement for 

the S167Y variant were all carried out in collaboration with Dr. Mark Roe (X-Ray 

Crystallography Collaborative Research Facility Manager, University of Sussex). The 

data were collected at the Diamond Light Source, beamline I03, and refined to 1.7 Å 

resolution using the PHENIX software suite. [S167Y]HRP-C* structural coordinates 

have been deposited in the protein data bank under the accession code 2YLJ. 

Superposition of the crystal structure of the S167Y mutant on that of the wild-type 

enzyme showed that the overall folds of the two enzymes are very similar. The structure 

also indicates that the new Tyr167 residue occupies a position similar to that of Met243 

in MPO, i.e. in a potential position to form a covalent linkage with the haem vinyl 

group. 
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In fact, the crystal structure obtained was found to be a mixture of both linked and 

unlinked S167Y mutant (Figure 7.1). The linked structure reveals a highly unusual five 

member ring linkage from Tyr167 to the haem that has never been seen before, 

supported by the increase of 614 Da seen from ESI mass measurements of the linked 

S167Y protein, compared to the unlinked enzyme. In addition, it was observed that the 

haem porphyrin ring is considerably distorted from its planarity in the linked structure. 

This distortion in the haem planarity has been reported previously in the MPO structure 

as a result of the sulfoinum linkage, giving a bow-shaped structure of the haem (Fiedler 

et al., 2000). The X-ray crystal structure of the unlinked S167Y mutant shows that the 

distance between the engineered Tyr167 hydroxyl and the haem vinyl β carbon is 2.43 

Å, while the distance between the O-carbon of the phenyl ring and the haem vinyl β 

carbon is 1.64 Å (Figure 7.2), while there is 3.82 Å between the Ser167 hydroxyl and 

the haem vinyl β carbon in the wild-type enzyme. Therefore, for a cross-linked S167Y 

protein to be formed it is easier to initially form a C-C bond between the haem vinyl β 

carbon and the phenyl ring; then the five member ring linkage is constructed as 

described in the following proposed mechanism (Scheme 7.1). 

 

The mechanism involves the following steps: (1) Initial reaction of the S167Y mutant 

with H2O2 to form Compound I, (2) oxidation of Tyr167 by Compound I associated 

with removal of its hydroxyl proton to form a Tyr radical. The phenoxy radical of Tyr 

(i) readily rearranges to the benzyl radical (ii), (3) the benzyl radical of Tyr167 is then 

added to the Cβ of the 2-vinyl group of the haem leading to breakage of the double bond 

and resulting in a radical on Cα, (4) the ferryl haem is reduced by the radical on Cα 

leading to release of a water molecule and formation of a carbocation on the Cα and (5) 

finally, elimination of the proton occurs in concert with resonance arrangement and 
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attack on the electrophilic carbocation, resulting in the creation of a five member ring 

linkage giving a haem structure consistent with the mass spectrometry results. The 

mechanism for the formation of a covalent linkage between an engineered methionine at 

position 160 (S160M) and the haem in ascorbate peroxidase has been proposed 

(Metcalfe et al., 2004). This mechanism includes in the final step addition of a hydroxyl 

group to the Cα of the vinyl group of the haem resulting in the loss of the double bond. 

On the other hand, a proposed mechanism for the formation of the vinyl-sulfonium 

linkage in MPO suggests the loss of a proton from the Cβ of the vinyl group and 

retention of the double bond (Colas and Ortiz de Montellano, 2003). The typical MPO 

spectroscopic characteristics, especially the red shift in the Soret peak, have been 

attributed to the conjugation of the sulfonium ion with the haem group via this double 

bond (Kooter et al., 1999b). Metcalfe and co-workers therefore suggest that the loss of 

the double bond in [S160M] APX is the reason of why the UV/Visible spectrum does 

not show the significant red shift in the Soret peak as in MPO (Metcalfe et al., 2004). 

The results in this work, where no significant change in the Soret peak position of 

linked [S167Y] HRP-C* is seen to strongly support this reasoning. 

 

7.2 Finally to summarise the main results of this thesis: 
 
Although the [S167W] HRP-C* variant does not form a covalent linkage between the 

haem and protein on treatment with H2O2, it exhibits an enhanced luminol turnover 

which might be interesting commercially, as an alternative to the WT enzyme in 

chemiluminescence assays. However, the reason(s) for haem degradation in this mutant 

after exposure to H2O2 should be further investigated; analytical techniques such as LC-

MS and Fourier Transform Infrared Spectroscopy (FTIR) analysis would be useful. 

FTIR is an analysis technique that provides information about the molecular structure 
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and chemical bonding of materials. It can be utilized to study the chemical changes that 

might occur in the haem structure after exposure to H2O2. 

 

Most interestingly, this work has shown that a haem-protein covalent linkage can be 

formed either autocatalytically on the addition of hydrogen peroxide, or indeed 

spontaneously in the absence of H2O2, in the [S167Y] HRP-C* mutant. The X-ray 

crystal structure reveals an unanticipated linkage structure, containing an additional 

ring, between the engineered Tyr and the haem; a structure not seen before. This linkage 

seems to be much more stable than the sulfonium linkage previously investigated in 

[S167M] HRP-C*. In contrast to the S167M variant, however, in which formation of 

the linkage significantly lowers the activity of the enzyme against all substrates tested, 

the activity of [S167Y] HRP-C* is enhanced by linkage formation, even to levels 

greater than WT enzyme for some substrates. This retention of good levels of activity 

after the covalent bond formation shows that it should be possible to use this mutant as 

an alternative to WT in commercial and clinical applications of HRP-C. If, as it is 

hoped, the linked mutant displays increased stability over the WT enzyme, e.g. at high 

temperature, then it’s use in diagnostic kits would be a great advantage, particularly in 

areas of the world where there is less access to refrigeration.  

 

The results obtained in this work show that the presence of a haem-protein covalent 

bond significantly alters the electronic and catalytic properties of a haem enzyme. This 

suggests that the reason for the existence of the haem-protein covalent linkages in 

mammalian peroxidases, in addition to possible contributions to the stability of the 

enzymes, might well be related to the catalytic properties required. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Ribbon representation for the structure of [S167Y] HRP-C* mutant. 

The figure was constructed by the VMD molecular visualization programme using the 

molecular coordinates of the X-ray crystal structure of [S167Y] HRP-C* mutant, 

accession code 2YLJ.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Five member ring linkage between Tyr167 and the haem vinyl group in 

the structure of the [S167Y] HRP-C* mutant. The figure shows the positions of 

Tyr167 molecules both unlinked and covalently linked to the haem vinyl group. The 

distance between the engineered Tyr167 hydroxyl and the haem vinyl β carbon is 2.43 

Å, and the distance between the O-carbon of the phenyl ring of Tyr167 and haem vinyl 

β carbon is 1.64 Å. The figure was constructed by VMD molecular visualization 

programme using the molecular coordinates of the X-ray crystal structure of [S167Y] 

HRP-C* mutant, accession code 2YLJ. 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 7.1: Proposed mechanism for formation of a five member ring linkage 

between Tyr167 and 2-vinyl haem group in HRP-C*. Reactions 1-5 are described in 

the text. The results also indicate that the linkage is formed even before treatment with 

H2O2. Therefore, another possible route to initiating the reaction is that during catalysis 

a 2-vinyl radical species appears transiently on the haem, and this (and not Compound I) 

is responsible for hydrogen abstraction from the tyrosine side chain to initiate the 

covalent link formation. 

(i) 

(ii) (ii) 

(i) 



159 
 

 

References: 
 
Ackermann, B. L., Berna, M. J., Eckstein, J. A., Ott, L. W. and Chaudhary, A. K. 
(2008). Current applications of liquid chromatography/mass spectrometry in 
pharmaceutical discovery after a decade of innovation. Annual Review of Analytical 
Chemistry. 1: 357-396. 
  
Adam, W., Hoch, U., Lazarus, M., Saha-Moller, C. R. and Schreier, P. (1995). 
"Enzyme-catalyzed asymmetric synthesis: Kinetic resolution of racemic hydroperoxides 
by enantioselective reduction to alcohols with horseradish peroxidase." Journal of the 
American Chemical Society 117(48): 11898-11901. 
  
Aliaga, C. and Lissi, E. A. (1998). "Reaction of 2,2′-azinobis (3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS) derived radicals with hydroperoxides. Kinetics and mechanism." 
International Journal of Chemical Kinetics 30(8): 565-570. 
  
Andersson, L. A., Bylkas, S. A. and Wilson, A. E. (1996). "Spectral analysis of 
lactoperoxidase: Evidence for a common heme in mammalian peroxidases." Journal of 
Biological Chemistry 271(7): 3406-3412. 
  
Andrews, P. C. and Krinsky, N. I. (1981). "The reductive cleavage of myeloperoxidase 
in half, producing enzymically active hemi-myeloperoxidase." Journal of Biological 
Chemistry 256(9): 4211-4218. 
  
Ardrey, R. E. (2003). Liquid Chromatography - Mass Spectrometry: An Introduction, 
John Wiley & Sons Ltd., Chichester, UK: 7-127. 
  
Arnhold, J., Monzani, E., Furtmuller, P. G., Zederbauer, M., Casella, L. and Obinger, C. 
(2006). "Kinetics and thermodynamics of halide and nitrite oxidation by mammalian 
heme peroxidases." European Journal of Inorganic Chemistry(19): 3801-3811. 
  
Ashcroft, D. A. E. (2002). "An Introduction to Mass Spectrometry."  Web site: 
http://www.astbury.leeds.ac.uk/Facil/MStut/mstutorial.htm. 
  
Atkins, P. and Paula, J. (2009). Elements of Physical Chemistry. Oxford, W. H. 
Freeman. 
  
Azevedo, A., Martins, V., Prazeres, D., Vojinovic, V., Cabral, J. and Fonseca, L. 
(2003). Horseradish peroxidase: A valuable tool in biotechnology. Biotechnology 
Annual Review. 9: 199-247. 
  
Baek, H. K. and Van Wart, H. E. (1992). "Elementary steps in the reaction of 
horseradish peroxidase with several peroxides: Kinetics and thermodynamics of 
formation of compound 0 and compound I." Journal of the American Chemical Society 
114(2): 718-725. 
  



160 
 

 

Baer, B. R., Kunze, K. L. and Rettie, A. E. (2007). "Mechanism of formation of the 
ester linkage between heme and Glu310 of CYP4B1: 18O protein labeling studies." 
Biochemistry 46(41): 11598-11605. 
  
Baker, J. R., Arscott, P. and Johnson, J. (1994). "An analysis of the structure and 
antigenicity of different forms of human thyroid peroxidase." Thyroid 4(2): 173-178. 
  
Belding, M. E., Klebanoff, S. J. and Ray, C. G. (1970). "Peroxidase-mediated virucidal 
systems." Science 167(3915): 195-196. 
  
Berg, J. M., Tymoczko, J. L. and Stryer, L. (2002). Biochemistry. New York, W. H. 
Freeman. 
  
Bhandari, A., Kim, W. and Hohn, K. (2010). "Luminol-Based Enhanced 
Chemiluminescence Assay for Quantification of Peroxidase and Hydrogen Peroxide in 
Aqueous Solutions: Effect of Reagent pH and Ionic Strength." Journal of Environmental 
Engineering 136(10): 1147-1152. 
  
Blair-Johnson, M., Fiedler, T. and Fenna, R. (2001). "Human Myeloperoxidase: 
Structure of a Cyanide Complex and Its Interaction with Bromide and Thiocyanate 
Substrates at 1.9 Å Resolution." Biochemistry 40(46): 13990-13997. 
  
Blodig, W., Smith, A. T., Doyle, W. A. and Piontek, K. (2001). "Crystal structures of 
pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and 
of the W171F variant that eliminates the redox active tryptophan 171. Implications for 
the reaction mechanism." Journal of Molecular Biology 305(4): 851-861. 
  
Bosterling, B. and Trudell, J. R. (1981). "Spin trap evidence for production of 
superoxide radical anions by purified NADPH-cytochrome P-450 reductase." 
Biochemical and Biophysical Research Communications 98(2): 569-575. 
  
Bramer, S. E. V. (1998). "An Introduction to Mass Spectrometry."  web site: 
http://science.widener.edu/svb/massspec/massspec.pdf. 1998. 
  
Branden, C. I. and Tooze, J. (1991). Introduction to Protein Structure, Taylor & Francis. 
  
Briheim, G., Stendahl, O. and Dahlgren, C. (1984). "Intra- and extracellular events in 
luminol-dependent chemiluminescence of polymorphonuclear leukocytes." Infection 
and Immunity Journal 45(1): 1-5. 
  
Brill, A. S. and Williams, R. J. (1961). "The Absorption Spectra, Magnetic Moments 
and the Binding of Iron in some Haemoproteins." Biochemical Journal 78: 246-253. 
  
Burner, U., Jantschko, W. and Obinger, C. (1999). "Kinetics of oxidation of aliphatic 
and aromatic thiols by myeloperoxidase compounds I and II." FEBS Letters 443(3): 
290-296. 
  
Burns, P. S., Williams, R. J. P. and Wright, P. E. (1975). "Conformational studies of 
peroxidase-substrate complexes. Structure of the indolepropionic acid-horseradish 



161 
 

 

peroxidase complex." Journal of the Chemical Society, Chemical Communications(19): 
795-796. 
  
Bus, J. S., Aust, S. D. and Gibson, J. E. (1974). "Superoxide and singlet oxygen 
catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) 
toxicity." Biochemical and Biophysical Research Communications 58(3): 749-755. 
  
Cali, K. C. (2008). Towards the design of new functional properties in horseradish 
peroxidase (HRP): Engineering a covalent linke between the haem and the protein. 
Biochemistry. Brighton, Sussex. Ph.D: 185 
 
  
Cals, M. M., Mailliart, P., Brignon, G., Anglade, P. and Dumas, B. R. (1991). "Primary 
structure of bovine lactoperoxidase, a fourth member of a mammalian heme peroxidase 
family." European Journal of Biochemistry 198(3): 733-739. 
  
Campa, A. (1991). Biological roles of plant peroxidases: known and potential function. 
Peroxidases in chemistry and biology. J. Everse, K. E. Everse and M. B. Grisham, CRC 
Press Inc., Boca Raton, USA. 2: 25-50. 
  
Campbell, M. K. and Farrell, S. O. (2009). Biochemistry, Thomson-Brooks/Cole, 
United State. 
  
Campos, A. M. and Lissi, E. A. (1997). "Kinetics of the reaction between 2,2′-azinobis 
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) derived radical cations and phenols." 
International Journal of Chemical Kinetics 29(3): 219-224. 
  
Capena, X., Vidossich, P., Schrottner, K., Calisto, B. M., Banerjee, S., Stampler, J., 
Soudi, M., Furtmuller, P. G., Rovira, C., Fita, I. and Obinger, C. (2009). "Essential role 
of proximal histidine-asparagine interaction in mammalian peroxidases." Journal of 
Biological Chemistry 284(38): 25929-25937. 
  
Carlson, M. G., Peterson, C. G. and Venge, P. (1985). "Human eosinophil peroxidase: 
purification and characterization." Journal of Immunology 134(3): 1875-1879. 
  
Carr, S. A., Hemling, M. E., Bean, M. F. and Roberts, G. D. (1991). "Integration of 
mass spectrometry in analytical biotechnology." Analytical Chemistry 63(24): 2802-
2824. 
  
Chance, B. (1952). "The spectra of the enzyme-substrate complexes of catalase and 
peroxidase." Archives of Biochemistry and Biophysics 41(2): 404-415. 
  
Chance, B. and Maehly, A. C. (1955). Assay of catalase and peroxidase. Methods in 
Enzymology. S. P. Colowick and N. O. Kaplan, Academic Press, New York. 2: 764-
775. 
  
Chapman, J. R. (1993). Practical Organic Mass Spectrometry: A Guide for Chemical 
and Biochemical Analysis, John Wiley & Sons Ltd., Chichester, UK.: 1-31. 
  



162 
 

 

Chen, Y., Yan, G., Zhou, X. and Yang, P. (2010). "Combination of matrix-assisted laser 
desorption ionization and electrospray ionization mass spectrometry for the analysis of 
intact glycopeptides from horseradish peroxidase." Chinese Journal of Chromatography 
(Se Pu) 28(2): 135-139. 
  
Childs, R. E. and Bardsley, W. G. (1975). "The steady state kinetics of peroxidase with 
2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) as chromogen." Biochemical 
Journal 145(1): 93-103. 
  
Churin, Y., Schilling, S. and Borner, T. (1999). "A gene family encoding glutathione 
peroxidase homologues in Hordeum vulgare (barley)." FEBS Letters 459(1): 33-38. 
  
Cline, J., Braman, J. C. and Hogrefe, H. H. (1996). "PCR fidelity of Pfu DNA 
polymerase and other thermostable DNA polymerases." Nucleic Acids Research 24(18): 
3546-3551. 
  
Colas, C., Kuo, J. M. and Ortiz de Montellano, P. R. (2002). "Asp-225 and Glu-375 in 
autocatalytic attachment of the prosthetic heme group of lactoperoxidase." Journal of 
Biological Chemistry 277(9): 7191-7200. 
  
Colas, C. and Ortiz de Montellano, P. R. (2003). "Autocatalytic radical reactions in 
physiological prosthetic heme modification." Chemical Reviews 103(6): 2305-2332. 
  
Colas, C. and Ortiz de Montellano, P. R. (2004). "Horseradish peroxidase mutants that 
autocatalytically modify their prosthetic heme group. Insights into mammalian 
peroxidase heme-protein covalent bonds." Journal of Biological Chemistry 279(23): 
24131-24140. 
  
Cornish-Bowden, A. (2004). Fundamentals of Enzyme Kinetics, Portland Press, 
London. 
  
Coulet, P. R. and Blum, L. J. (1992). "Bioluminescence/chemiluminescence based 
sensors." Trends in Analytical Chemistry 11(2): 57-61. 
  
Critchlow, J. E. and Dunford, H. B. (1972). "Studies on horseradish peroxidase. IX. 
Kinetics of the oxidation of p-cresol by compound II." Journal of Biological Chemistry 
247(12): 3703-3713. 
  
Daniel, J. M., Friess, S. D., Rajagopalan, S., Wendt, S. and Zenobi, R. (2002). 
"Quantitative determination of noncovalent binding interactions using soft ionization 
mass spectrometry." International Journal of Mass Spectrometry 216(1-2): 1-27. 
  
Davies, K. J. (1987). "Protein damage and degradation by oxygen radicals. I. general 
aspects." Journal of Biological Chemistry 262(20): 9895-9901. 
  
Davies, K. J., Lin, S. W. and Pacifici, R. E. (1987). "Protein damage and degradation by 
oxygen radicals. IV. Degradation of denatured protein." Journal of Biological Chemistry 
262(20): 9914-9920. 
  



163 
 

 

de Boer, H. A., Comstock, L. J. and Vasser, M. (1983). "The tac promoter: a functional 
hybrid derived from the trp and lac promoters." Proceedings of the National Academy 
of Sciences of the United States of America 80(1): 21-25. 
  
de Villiers, A., Lestremau, F., Szucs, R., Gelebart, S., David, F. and Sandra, P. (2006). 
"Evaluation of ultra performance liquid chromatography. Part I. Possibilities and 
limitations." Journal of Chromatography A 1127(1-2): 60-69. 
  
DePillis, G. D., Ozaki, S. I., Kuo, J. M., Maltby, D. A. and Ortiz de Montellano, P. R. 
(1997). "Autocatalytic processing of heme by lactoperoxidase produces the native 
protein-bound prosthetic group." Journal of Biological Chemistry 272(14): 8857-8860. 
  
Dolphin, D. and Felton, R. H. (1974). "The biochemical significance of porphyrin π-
cation radicals." Accounts of Chemical Research 7(1): 26-32. 
  
Done, J. N. (1978). Idealized Equipment Design for HPLC. Practical high performance 
liquid chromatography C. F. Simpson, Heyden in association with the Continuing 
Education Committee of the Chemical Society, London, UK: 69-88. 
  
Doyle, W. A., Blodig, W., Veitch, N. C., Piontek, K. and Smith, A. T. (1998). "Two 
substrate interaction sites in lignin peroxidase revealed by site- directed mutagenesis." 
Biochemistry 37(43): 15097-15105. 
  
Dunford, H. B. (1982). Peroxidases. Advances in Inorganic Biochemistry. G. L. 
Eichhorn and L. G. Marzilli. New York, Elsevier. 4: 41-68. 
  
Dunford, H. B. (1991). Horseradish peroxidase: Structural and kinetic properties. 
Peroxidases in Chemistry and Biology. J. Everse, K. E. Everse and M. B. Grisham, 
CRC Press Inc., Boca Raton, USA. 2: 1-24. 
  
Dunford, H. B. (1993). Kinetics of peroxidase reactions: horseradish, barley, coprinus 
cinereus, liginin and manganese. Plant peroxidases: biochemistry and physiology : III 
International Symposium 1993 : proceedings. K. Welinder, University of Copenhagen 
and University of Geneva: 113-124. 
  
Dunford, H. B. (1999a). Heme peroxidase nomenclature. Plant Peroxidase Newsletter: 
Plant Biochemistry and Physiology. C. Penel, T. Gaspar and H. Greppin, University of 
Geneva, Geneva.: 65-71. 
  
Dunford, H. B. (1999b). Heme peroxidase and catalases families and superfamilies: 
Crystal structures. Heme peroxidases, Joun Wiley & Sons, Inc., New York, USA.: 33-
57. 
  
Dunford, H. B. (1999c). Lactoperoxidase, Thyroid peroxidase and other Animal 
peroxidase. Heme Peroxidases, Joun Wiley & Sons, Inc., New York, USA.: 414-434. 
  
Dunford, H. B. (1999d). Meyloperoxidase and Eosinophil peroxidase: Phagocytosis and 
Microbial Killing. Heme Peroxidases, Joun Wiley & Sons, Inc., New York, USA.: 349-
385. 
  



164 
 

 

Dunford, H. B. (1999e). Introduction. Historical Background. Heme Peroxidases, Joun 
Wiley & Sons, Inc., New York, USA.: 1-17. 
  
Dunford, H. B. (1999f). Spectroscopic of Horseradish Peroxisae. I: Optical, Resonanse 
Raman, Magnetic Circular Dichrosim, X-Ray Absorption and Diffraction. Heme 
Peroxidases, Joun Wiley & Sons, Inc., New York, USA.: 135-174. 
  
Dunford, H. B. (1999g). Horseradish peroxidases. III: Reaction with indole-3-acetic 
acid , light emission, and quantitative structure-activity realasionships. Heme 
Peroxidases, Joun Wiley & Sons, Inc., New York, USA.: 112-134. 
  
Dunford, H. B. (1999h). Horseradish peroxidases. I: Ligand binding, redox potentials, 
formation of its compounds, and some of their reactions. Heme Peroxidases, Joun Wiley 
& Sons, Inc., New York, USA.: 58-91. 
  
Dunford, H. B. (1999i). Model Peroxidases from Yeast and Horseradish, cloned 
enzymes, and comparison to metmyoglobin. Heme Peroxidases, Joun Wiley & Sons, 
Inc., New York, USA.: 18-32. 
  
Dunford, H. B. and Stillman, J. S. (1976). "On the function and mechanism of action of 
peroxidases." Coordination Chemistry Reviews 19(3): 187-251. 
  
Eaton, W. A. and Hochstrasser, R. M. (1967). "Electronic spectrum of single crystals of 
ferricytochrome-c." The Journal of Chemical Physics 46(7): 2533-2539. 
  
Elliot, R. M. (1963). Ion Sources. Mass Spectrometry. C. A. McDowell, McGraw-Hill, 
New York, USA.: 69-103. 
  
Erman, J. E., Vitello, L. B., Miller, M. A., Shaw, A., Brown, K. A. and Kraut, J. (1993). 
"Histidine 52 is a critical residue for rapid formation of cytochrome c peroxidase 
compound I." Biochemistry 32(37): 9798-9806. 
  
Everse, J. (1998). "The structure of heme proteins compounds I and II: Some 
misconceptions." Free Radical Biology and Medicine 24(7-8): 1338-1346. 
  
Farmer, J. B. (1963). Types of Mass Spectrometers. Mass Spectrometry. C. A. 
McDowell, McGraw-Hill, New York: 7-44. 
  
Fayadat, L., Niccoli-Sire, P., Lanet, J. and Franc, J. L. (1999). "Role of Heme in 
Intracellular Trafficking of Thyroperoxidase and Involvement of H2O2 Generated at the 
Apical Surface of Thyroid Cells in Autocatalytic Covalent Heme Binding " Journal of 
Biological Chemistry 274(15): 10533-10538. 
  
Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. and Whitehouse, C. M. (1989). 
"Electrospray ionization for mass spectrometry of large biomolecules." Science 
246(4926): 64-71. 
  
Fenna, R., Zeng, J. and Davey, C. (1995). "Structure of the green heme in 
myeloperoxidase." Archives of Biochemistry and Biophysics 316(1): 653-656. 
  



165 
 

 

Fiedler, T. J., Davey, C. A. and Fenna, R. E. (2000). "X-ray crystal structure and 
characterization of halide-binding sites of human myeloperoxidase at 1.8 oA resolution." 
Journal of Biological Chemistry 275(16): 11964-11971. 
  
Fifield, F. W. and Kealey, D. (1995). Principles and Practice of Analytical Chemistry, 
Chapman & hall, Glasgow, UK: 55-183. 
  
Floris, R., Moguilevsky, N., Puppels, G., Jacquet, A., Renirie, R., Bollen, A. and 
Wever, R. (1995). "Heme - protein interaction in myeloperoxidase: Modification of 
spectroscopic properties and catalytic activity by single residue mutation." Journal of 
the American Chemical Society 117(14): 3907-3912. 
  
Fountoulakis, M. and Langen, H. (1997). "Identification of proteins by matrix-assisted 
laser desorption ionization-mass spectrometry following in-gel digestion in low-salt, 
nonvolatile buffer and simplified peptide recovery." Analytical Biochemistry 250(2): 
153-156. 
  
Fridovich, I. (1986). "Biological effects of the superoxide radical." Archives of 
Biochemistry and Biophysics 247(1): 1-11. 
  
Fridovich, I. (1998). "Oxygen toxicity: A radical explanation." Journal of Experimental 
Biology 201(8): 1203-1209. 
  
Fuhrhop, J. H. and Smith, K. M. (1975). "Hemes: Determinations as pyridine 
hemochromes, in Laboratory Methods in Porphyrin and Metalloporphyrin Research." 
Elsevier Scientific Publishing(Oxford): 48-50. 
  
Fulop, V., Ridout, C. J., Greenwood, C. and Hadgu, J. (1995). "Crystal structure of the 
di-heme cytochrome c peroxidase from Pseudumonas aeroginosa." Structure 3(11): 
1225-1233. 
  
Furtmuller, P. G., Burner, U. and Obinger, C. (1998). "Reaction of myeloperoxidase 
compound I with chloride, bromide, iodide, and thiocyanate." Biochemistry 37(51): 
17923-17930. 
  
Furtmuller, P. G., Zederbauer, M., Jantschko, W., Helm, J., Bogner, M., Jakopitsch, C. 
and Obinger, C. (2006). "Active site structure and catalytic mechanisms of human 
peroxidases." Archives of Biochemistry and Biophysics 445(2): 199-213. 
  
Furtmuller, P. O., Obinger, C., Hsuanyu, Y. and Dunford, H. B. (2000). "Mechanism of 
reaction of myeloperoxidase with hydrogen peroxide and chloride ion." European 
Journal of Biochemistry 267(19): 5858-5864. 
  
Gajhede, M., Schuller, D. J., Henriksen, A., Smith, A. T. and Poulos, T. L. (1997). 
"Crystal structure of horseradish peroxidase C at 2.15 Ao resolution." Nature Structural 
Biology 4(12): 1032-1038. 
  
Garguilo, M. G., Huynh, N., Proctor, A. and Michael, A. C. (1993). "Amperometric 
sensors for peroxide, choline, and acetylcholine based on electron transfer between 
horseradish peroxidase and a redox polymer." Analytical Chemistry 65(5): 523-528. 



166 
 

 

  
Ghiladi, R. A., Knudsen, G. M., Medzihradszky, K. F. and Ortiz de Montellano, P. R. 
(2005a). "The Met-Tyr-Trp cross-link in Mycobacterium tuberculosis catalase-
peroxidase (KatG): Autocatalytic formation and effect on enzyme catalysis and 
spectroscopic properties." Journal of Biological Chemistry 280(24): 22651-22663. 
  
Ghiladi, R. A., Medzihradszky, K. F. and Ortiz de Montellano, P. R. (2005b). "Role of 
the Met-Tyr-Trp cross-link in Mycobacterium tuberculosis catalase-peroxidase (KatG) 
as revealed by KatG(M255I)." Biochemistry 44(46): 15093-15105. 
  
Gilbert, M. T. (1987). High Performance Liquid Chromatography, IOP Publishing 
Limited, Bristol, UK: 12-52. 
  
Gleich, G. J., Ottesen, E. A., Leiferman, K. M. and Ackerman, S. J. (1989). 
"Eosinophils and human disease." International Archives of Allergy and Applied 
Immunology 88(1-2): 59-62. 
  
Goodin, D. B. and McRee, D. E. (1993). "The Asp-His-iron triad of cytochrome c 
peroxidase controls the reduction potential electronic structure, and coupling of the 
tryptophan free radical to the heme." Biochemistry 32(13): 3313-3324. 
  
Gutfreund, H. (1999). "Rapid-flow techniques and their contributions to enzymology." 
Trends in Biochemical Sciences 24(11): 457-460. 
  
Halliwell, B. and Gutteridge, J. M. (1989). Free radicals in biology and medicine, 
Clarenden Press, Oxford, UK.: 466-493. 
  
Harrison, J. E. and Schultz, J. (1976). "Studies on the chlorinating activity of 
myeloperoxidase." Journal of Biological Chemistry 251(5): 1371-1374. 
  
Haschke, R. H. and Friedhoff, J. M. (1978). "Calcium-related properties of horseradish 
peroxidase." Biochemical and Biophysical Research Communications 80(4): 1039-
1042. 
  
Hasinoff, B. B. and Dunford, H. B. (1970). "Kinetics of the oxidation of ferrocyanide by 
horseradish peroxidase compounds I and II." Biochemistry 9(25): 4930-4939. 
  
Heering, H. A., Smith, A. T. and Smulevich, G. (2002). "Spectroscopic characterization 
of mutations at the Phe41 position in the distal haem pocket of horseradish peroxidase 
C: Structural and functional consequences." Biochemical Journal 363(3): 571-579. 
  
Henderson, W. and McIndoe, J. S. (2005). Mass Spectrometry of Inorganic and 
Organometallic Compounds, John Wiley & Sons Ltd., Chichester, UK.: 1-21. 
  
Henne, K. R., Kunze, K. L., Zheng, Y. M., Christmas, P., Soberman, R. J. and Rettie, A. 
E. (2001). "Covalent linkage of prosthetic heme to CYP4 family P450 enzymes." 
Biochemistry 40(43): 12925-12931. 
  
Henriksen, A., Schuller, D. J., Meno, K., Welinder, K. G., Smith, A. T. and Gajhede, M. 
(1998a). "Structural interactions between horseradish peroxidase C and the substrate 



167 
 

 

benzhydroxamic acid determined by X-ray crystallography." Biochemistry 37(22): 
8054-8060. 
  
Henriksen, A., Smith, A. T. and Gajhede, M. (1999). "The structures of the horseradish 
peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how 
peroxidases oxidize small phenolic substrates." Journal of Biological Chemistry 
274(49): 35005-35011. 
  
Henriksen, A., Welinder, K. G. and Gajhede, M. (1998b). "Structure of barley grain 
peroxidase refined at 1.9 oA… Resolution: A plant peroxidase reversibly inactivated at 
neutral pH." Journal of Biological Chemistry 273(4): 2241-2248. 
  
Higson, S. P. J. (2004). Analytical Chemistry, Oxford University PressInc., New York, 
USA.: 207-283. 
  
Hillenkamp, F., Karas, M., Beavis, R. C. and Chait, B. T. (1991). "Matrix-assisted laser 
desorption/ionization mass spectrometry of biopolymers." Analytical Chemistry 63(24). 
  
Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y. and Matsui, H. (2001). "A large family of 
class III plant peroxidases." Plant and Cell Physiology 42(5): 462-468. 
  
Hoch, U. and Ortiz de Montellano, P. R. (2001). "Covalently Linked Heme in 
Cytochrome P4504A Fatty Acid Hydroxylases." Journal of Biological Chemistry 
276(14): 11339-11346. 
  
Hosoya, Y. (1960). "Turnip peroxidase. I. Purification and physiochemical properties of 
multiple components in turnip peroxidase." Jornal of Biochemistry 47(3): 369-381. 
  
Howes, B. D., Feis, A., Raimondi, L., Indiani, C. and Smulevich, G. (2001a). "The 
Critical Role of the Proximal Calcium Ion in the Structural Properties of Horseradish 
Peroxidase." Journal of Biological Chemistry 276(44): 40704-40711. 
  
Howes, B. D., Heering, H. A., Roberts, T. O., Schneider-Belhadadd, F., Smith, A. T. 
and Smulevich, G. (2001b). "Mutation of residues critical for benzohydroxamic acid 
binding to horseradish peroxidase isoenzyme C." Biopolymers 62(5): 261-267. 
  
Howes, B. D., Veitch, N. C., Smith, A. T., White, C. G. and Smulevich, G. (2001c). 
"Haem-linked interactions in horseradish peroxidase revealed by spectroscopic analysis 
of the Phe-221 Met mutant." Biochemical Journal 353(2): 181-191. 
  
Hunt, D. F., Shabanowitz, J., Yates, J. R., Griffin, P. R. and Zhu, N. Z. (1988). Protein 
sequence analysis by tandem mass spectrometry: New methods and instrumentation. 
The analysis of peptides and proteins by mass spectrometry. C. J. McNeal, John Wiley 
and Sons Ltd., Chichester, UK.: 151-166. 
  
Jacquet, A., Garcia-Quintana, L., Deleersnyder, V., Fenna, R., Bollen, A. and 
Moguilevsky, N. (1994). "Site-directed mutagenesis of human myeloperoxidase: 
Further identification of residues involved in catalytic activity and heme interaction." 
Biochemical and Biophysical Research Communications 202(1): 73-81. 
  



168 
 

 

Jantschko, W., Furtmuller, P. G., Allegra, M., Livrea, M. A., Jakopitsch, C., 
Regelsberger, G. and Obinger, C. (2002). "Redox intermediates of plant and 
mammalian peroxidases: A comparative transient-kinetic study of their reactivity 
toward indole derivatives." Archives of Biochemistry and Biophysics 398(1): 12-22. 
  
Jennings, S. P. (1998). The properties of [H42E]HRP-C*, a horseradish peroxidase 
variant in which histidine 42, a proton acceptor, is replaced by a glutamate. 
Biochemistry. Brighton, Sussex. Ph.D.: 149. 
  
Job, D. and Dunford, H. B. (1976). "Substituent Effect on the Oxidation of Phenols and 
Aromatic Amines by Horseradish Peroxidase Compound I." European Journal of 
Biochemistry 66(3): 607-614. 
  
Johnstone, R. A. W. and Rose, M. E. (1996). Mass Spectrometry for Chemists and 
Biochemists Cambridge University Press, Cambridge, UK.: 1-112. 
  
Karas, M. and Hillenkamp, F. (1988). "Laser desorption ionization of proteins with 
molecular masses exceeding 10 000 daltons." Analytical Chemistry 60(20): 2299-2301. 
  
Kay, E., Shannon, L. M. and Lew, J. Y. (1967). "Peroxidase isozymes from horseradish 
roots. II. Catalytic properties." Journal of Biological Chemistry 242(10): 2470-2473. 
  
Kealey, D. and Haines, P. J. (2002). Instant Notes in Analytical Chemistry, BIOS 
Scientific Publisher Limited, Oxford, UK: 109-282. 
  
Kenten, R. H. (1955). "The oxidation of indolyl-3-acetic acid by waxpod bean root sap 
and peroxidase systems." Biochemical Journal 59(1): 110-121. 
  
Kimura, S., Kotani, T., McBride, O. W., K Umeki, K., Hirai, K., Nakayama, T. and S 
Ohtaki, S. (1987). "Human thyroid peroxidase: Complete cDNA and protein sequence, 
chromosome mapping, and identification of two alternately spliced mRNAs." 
Proceedings of the National Academy of Sciences of the United States of America 
84(16): 5555-5559. 
  
Klebanoff, S. J. (1970). "Myeloperoxidase: Contribution to the microbicidal activity of 
intact leukocytes." Science 169(3950): 1095-1097. 
  
Klebanoff, S. J. (1991). Myeloperoxidase: Occurrance and biological function. 
Peroxidases in chemistry and biology. J. Everse, K. E. Everse and M. B. Grisham, CRC 
Press, Boca Rotan, Florida, USA. 1: 1-36. 
  
Klibanov, A. M., Berman, Z. and Alberti, B. N. (1981). "Preparative hydroxylation of 
aromatic compounds catalyzed by peroxidase." Journal of the American Chemical 
Society 103(20): 6263-6264. 
  
Kooter, I. M., Koehler, B. P., Moguilevsky, N., Bollen, A., Wever, R. and Johnson, M. 
K. (1999c). "The Met243 sulfonium ion linkage is responsible for the anomalous 
magnetic circular dichroism and optical spectral properties of myeloperoxidase." 
Journal of Biological Inorganic Chemistry 4(6): 684-691. 
  



169 
 

 

Kooter, I. M., Moguilevsky, N., Bollen, A., Sijtsema, N. M., Otto, C., Dekker, H. L. and 
Wever, R. (1999a). "Characterization of the Asp94 and Glu242 mutants in 
myeloperoxidase, the residues linking the heme group via ester bonds." European 
Journal of Biochemistry 264(1): 211-217. 
  
Kooter, I. M., Moguilevsky, N., Bollen, A., Sijtsema, N. M., Otto, C. and Wever, R. 
(1997a). "Site-directed mutagenesis of Met243, a residue of myeloperoxidase involved 
in binding of the prosthetic group." Journal of Biological Inorganic Chemistry 2(2): 
191-197. 
  
Kooter, I. M., Moguilevsky, N., Bollen, A., Van Der Veen, L. A., Otto, C., Dekker, H. 
L. and Wever, R. (1999b). "The sulfonium ion linkage in myeloperoxidase. Direct 
spectroscopic detection by isotopic labeling and effect of mutation." Journal of 
Biological Chemistry 274(38): 26794-26502. 
  
Kooter, I. M., Pierik, A. J., Merkx, M., Averill, B. A., Moguilevsky, N., Bollen, A. and 
Wever, R. (1997b). "Difference fourier transform infrared evidence for ester bonds 
linking the heme group in myeloperoxidase, lactoperoxidase, and eosinophil peroxidase 
[5]." Journal of the American Chemical Society 119(47): 11542-11543. 
  
Korfmacher, W. A. (2005). "Foundation review: Principles and applications of LC-MS 
in new drug discovery." Drug Discovery Today 10(20): 1357-1367. 
  
Kricka, L. J., Cooper, M. and Ji, X. (1996). "Synthesis and Characterization of 4-
Iodophenylboronic Acid: A New Enhancer for the Horseradish Peroxidase-Catalyzed 
Chemiluminescent Oxidation of Luminol." Analytical Biochemistry 240(1): 119-125. 
  
Kricka, L. J., Stott, R. A. W. and Thorpe, G. H. G. (1988). Enhanced 
chemiluminescence enzyme immunoassays. Complementary Immunoassay. W. P. 
Collins. Chichester, J. Willey & Sons: 169-179. 
  
Langbakk, B. and Flatmark, T. (1989). "Lactoperoxidase from human colostrum." 
Biochemical Journal 259(3): 627-631. 
  
Lebrun, L. A., Hoch, U. and Ortiz de Montellano, P. R. (2002a). "Autocatalytic 
mechanism and consequences of covalent heme attachment in the cytochrome P4504A 
family." Journal of Biological Chemistry 277(15): 12755-12761. 
  
Lebrun, L. A., Xu, F., Kroetz, D. L. and Ortiz de Montellano, P. R. (2002b). "Covalent 
attachment of the heme prosthetic group in the CYP4F cytochrome P450 family." 
Biochemistry 41(18): 5931-5937. 
  
Lewis, J. K., Wei, J. and Siuzdak, G. (2000). Matrix-assisted Laser 
Desorption/Ionization Mass Spectrometry in Peptide and Protein Analysis Encyclopedia 
of Analytical Chemistry. R. A. Meyers, John Wiley & Sons Ltd, Chichester, UK.: 
5880–5894  
  
Limburg, J., LeBrun, L. A. and Ortiz de Montellano, P. R. (2005). "The P450cam G248E 
mutant covalently binds its prosthetic heme group." Biochemistry 44(10): 4091-4099. 
  



170 
 

 

Lindsay, S. (1992). High Performance Liquid Chromatography. J. Barnes, Joun Wiley 
& Sons Ltd., Chichester, UK: 43-62. 
  
Loschen, G., Azzi, A., Richter, C. and Flohe, L. (1974). "Superoxide radicals as 
precursors of mitochondrial hydrogen peroxide." FEBS Letters 42(1): 68-72. 
  
Lundberg, K. S., Shoemaker, D. D., Adams, M. W. W., Short, J. M., Sorge, J. A. and 
Mathur, E. J. (1991). "High-fidelity amplification using a thermostable DNA 
polymerase isolated from Pyrococcus furiosus." Gene 108(1): 1-6. 
  
Lundqvist, H. and Dahlgren, C. (1996). "Isoluminol-enhanced chemiluminescence: A 
sensitive method to study the release of superoxide anion from human neutrophils." 
Free Radical Biology and Medicine 20(6): 785-792. 
  
Mader, M. and Fussl, R. (1982). "Role of Peroxidase in Lignification of Tobacco Cells." 
Plant Physiological 70: 1132-1134. 
  
Maidan, R. and Heller, A. (1992). "Elimination of electrooxidizable interferant in 
glucose electrodes." Jornal of the American Chemical Society 113(23): 9003-9004. 
  
Marquez, L. A. and Dunford, H. B. (1995). "Kinetics of oxidation of tyrosine and 
dityrosine by myeloperoxidase compounds I and II: Implications for lipoprotein 
peroxidation studies." Journal of Biological Chemistry 270(51): 30434-30440. 
  
Marquez, L. A., Huang, J. T. and Brian Dunford, H. (1994). "Spectral and kinetic 
studies on the formation of myeloperoxidase compounds I and II: Roles of hydrogen 
peroxide and superoxide." Biochemistry 33(6): 1447-1454. 
  
McCord, J. M. and Fridovich, I. (1968). "The reduction of cytochrome c by milk 
xanthine oxidase." Journal of Biological Chemistry 243(21): 5753-5760. 
  
Meno, K., Jennings, S., Smith, A. T., Henriksen, A. and Gajhede, M. (2002). "Structural 
analysis of the two horseradish peroxidase catalytic residue variants H42E and 
R38S/H42E: implications for the catalytic cycle." Acta Crystallogr D Biol Crystallogr 
58(2): 1803-1812. 
  
Metcalfe, C. L., Daltrop, O., Ferguson, S. J. and Raven, E. L. (2007). "Tuning the 
formation of a covalent haem-protein link by selection of reductive or oxidative 
conditions as exemplified by ascorbate peroxidase." Biochemical Journal 408(3): 355-
361. 
  
Metcalfe, C. L., Ott, M., Patel, N., Singh, K., Mistry, S. C., Goff, H. M. and Raven, E. 
L. (2004). "Autocatalytic formation of green heme: Evidence for H2O2-dependent 
formation of a covalent methionine-heme linkage in ascorbate peroxidase." Journal of 
the American Chemical Society 126(49): 16242-16248. 
  
Meunier, B. (1991). N- and O-Demethylations catalyzed by peroxidases. Peroxidases in 
chemistry and biology. J. Everse, k. Everse and M. B. Grisham, CRC Press Inc., Boca 
Raton, USA. 2: 201-217. 
  



171 
 

 

Michaelis, L. and Menten, M. (1913). "Die Kinetik der Invertinwirkung." Biochem. 
Z.(49): 333-369. 
  
Milne, G. W. A. (1991). The applications of Mass spectrometry to proplems in 
medicine and biochemistry. Mass spectrometry: techniques and applications. G. W. A. 
Milne, Wiley-Interscience, New York, USA.: 327-371. 
  
Mo, W. and Karger, B. L. (2002). "Analytical aspects of mass spectrometry and 
proteomics." Current Opinion in Chemical Biology 6(5): 666-675. 
  
Montaudo, G., Montaudo, M. S. and Samperi, F. (2002). Matrix-Assisted Laser 
Desorption Ionization/Mass Spectrometry of Polymers (MALDI-MS). Mass 
Spectrometry of Polymers. G. Montaudo and R. P. Lattimer, CRC Press, New York, 
USA.: 428-530. 
  
Morishima, I. (1978). "Proton nuclear magnetic resonance spectra of compounds I and 
II of horseradish peroxidase." Biochemistry 17(21): 4384-4388. 
  
Mousty, C., Therias, S., Aboab, B., Molinie, P., Queignec, M., Leone, P., Rossignol, C. 
and Palvadeau, P. (1997). "Single crystal structure refinement and physical 
characterization of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) diammonium salt 
(ABTS)." New journal of chemistry 21(12): 1321-1330  
  
Munir, I. Z. and Dordick, J. S. (2000). "Soybean peroxidase as an effective bromination 
catalyst." Enzyme and Microbial Technology 26(5-6): 337-341. 
  
Nagano, S., Tanaka, M., Ishimori, K., Watanabe, Y. and Morishima, I. (1996). 
"Catalytic Roles of the Distal Site Asparagine-Histidine Couple in Peroxidases." 
Biochemistry 35(45): 14251-14258. 
  
Nagano, S., Tanaka, M., Watanabe, Y. and Morishima, I. (1995). "Putative hydrogen 
bond network in the heme distal site of horseradish peroxidase." Biochemical and 
Biophysical Research Communications 207(1): 417-423. 
  
Nakayama, T. and Amachi, T. (1999). "Fungal peroxidase: Its structure, function, and 
application." Journal of Molecular Catalysis - B Enzymatic 6(3): 185-198. 
  
Nelson, D. P. and Kiesow, L. A. (1972). "Enthalpy of decomposition of hydrogen 
peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in 
the UV)." Analytical Biochemistry 49(2): 474-478. 
  
Newmyer, S. L. and Ortiz de Montellano, P. R. O. (1995). "Horseradish peroxidase His-
42 Ala, His-42 Val, and Phe-41 Ala mutants. Histidine catalysis and control of substrate 
access to the heme iron." Journal of Biological Chemistry 270(33): 19430-19438. 
  
Newmyer, S. L. and Ortiz de Montellano, P. R. O. (1996a). "Rescue of the catalytic 
activity of an H42A mutant of horseradish peroxidase by exogenous imidazoles." 
Journal of Biological Chemistry 271(25): 14891-14896. 
  



172 
 

 

Newmyer, S. L., Sun, J., Loehr, T. M. and Ortiz de Montellano, P. R. (1996b). "Rescue 
of the horseradish peroxidase His-170 Ala mutant activity by imidazole: Importance of 
proximal ligand tethering." Biochemistry 35(39): 12788-12795. 
  
Nishikawa, T., Rapoport, B. and McLachlan, S. M. (1994). "Exclusion of two major 
areas on thyroid peroxidase from the immunodominant region containing the 
conformational epitopes recognized by human autoantibodies." Journal of Clinical 
Endocrinology and Metabolism 79(6): 1648-1654. 
  
Olsson, I., Persson, A. M., Stromberg, K., Winqvist, I., Tai, P. C. and Spry, C. J. (1985). 
"Purification of eosinophil peroxidase and studies of biosynthesis and processing in 
human marrow cells." Blood 66(5): 1143-1148. 
  
Ortiz de Montellano, P. R. (1992). "Catalytic Sites of Hemoprotein Peroxidases." 
Annual Review of Pharmacology and Toxicology 32(1): 89-107. 
  
Ortiz de Montellano, P. R. and Grab, L. A. (1987). "Cooxidation of styrene by 
horseradish peroxidase and phenols: A biochemical model for protein-mediated 
cooxidation." Biochemistry 26(17): 5310-5314. 
  
Oxvig, C., Thomsen, A. R., Overgaard, M. T., Sorensen, E. S., Hojrup, P., Bjerrum, M. 
J., Gleich, G. J. and Sottrup-Jensen, L. (1999). "Biochemical Evidence for Heme 
Linkage through Esters with Asp-93 and Glu-241 in Human Eosinophil Peroxidase." 
Journal of Biological Chemistry 274(24): 16953-16958. 
  
Ozaki, S. I. and Ortiz de Montellano, P. R. (1995). "Molecular engineering of 
horseradish peroxidase: Thioether sulfoxidation and styrene epoxidation by Phe-41 
leucine and threonine mutants." Journal of the American Chemical Society 117(27): 
7056-7064. 
  
Paul, K. G. (1958). "Die Isolierung von Meerrettichperoxydase." Acta. Chem. Scand. 
12: 1312-1318. 
  
Peter, K. V. (2004). Handbook of Herbs and Spices, CRC Press LLC, Boca Raton, 
USA. 2: 69-74. 
  
Pipirou, Z., Bottrill, A. R., Metcalfe, C. M., Mistry, S. C., Badyal, S. K., Rawlings, B. J. 
and Raven, E. L. (2007a). "Autocatalytic formation of a covalent link between 
tryptophan 41 and the heme in ascorbate peroxidase." Biochemistry 46(8): 2174-2180. 
  
Pipirou, Z., Bottrill, A. R., Svistunenko, D. A., Efimov, I., Basran, J., Mistry, S. C., 
Cooper, C. E. and Raven, E. L. (2007b). "The reactivity of heme in biological systems: 
Autocatalytic formation of both tyrosine-heme and tryptophan-heme covalent links in a 
single protein architecture." Biochemistry 46(46): 13269-13278. 
  
Pipirou, Z., Guallar, V., Basran, J., Metcalfe, C. L., Murphy, E. J., Bottrill, A. R., 
Mistry, S. C. and Raven, E. L. (2009). "Peroxide-dependent formation of a covalent link 
between Trp51 and the heme in cytochrome c peroxidase." Biochemistry 48(16): 3593-
3599. 
  



173 
 

 

Polce, M. J. and Wesdemiotis, C. (2002). Introduction to mass spectrometry of 
polymers. Mass Spectrometry of Polymers. G. Montaudo and R. P. Lattimer, CRC 
Press, New York, USA.: 1-40. 
  
Poulos, T. L. and Kraut, J. (1980). "The stereochemistry of peroxidase catalysis." 
Journal of Biological Chemistry 255(17): 8199-8205. 
  
Prokai, L. (2002). Electrospray Ionization (ESI-MS) and On-Line Liquid 
Chromatography/Mass Spectrometry (LC/MS). Mass Spectrometry of Polymers. G. 
Montaudo and R. P. Lattimer, CRC Press, New York, USA.: 159-190. 
  
Pryde, A. and Gilbert, M. T. (1979). Applications of high performance liquid 
chromatography Chapman and Hall Ltd., London, UK 13-23. 
  
Puppo, A., Rigaud, J., Job, D., Ricard, J. and Zeba, B. (1980). "Peroxidase content of 
soybean root nodules." Biochimica et Biophysica Acta 614(2): 303-312. 
  
Radi, R., Cosgrove, T. P., Beckman, J. S. and Freeman, B. A. (1993). "Peroxynitrite-
induced luminol chemiluminescence." Biochemical Journal 290(15): 51-57. 
  
Rae, T. D. and Goff, H. M. (1996). "Lactoperoxidase heme structure characterized by 
paramagnetic proton NMR spectroscopy." Journal of the American Chemical Society 
118(8): 2103-2104. 
  
Rajagopalan, K. V., Fridovich, I. and Handler, P. (1962). "Hepatic aldehyde oxidase. I. 
Purification and properties." The Journal of Biological Chemistry 237: 922-928. 
  
Reeder, B. J., Svistunenko, D. A., Sharpe, M. A. and Wilson, M. T. (2002). 
"Characteristics and mechanism of formation of peroxide-induced heme to protein 
cross-linking in myoglobin." Biochemistry 41(1): 367-375. 
  
Roboz, J. (1968). Introduction to Mass Spectrometry Instrumentation and Techniques 
John Wiley & Sons Inc., New York, USA.: 115-148. 
  
Rodriguez-Lopez, J. N., Smith, A. T. and Thorneley, R. N. F. (1996a). "Recombinant 
horseradish peroxidase isoenzyme C: the effect of distal haem cavity mutations 
(His42→Leu and Arg38→Leu) on compound I formation and substrate binding." 
Journal of Biological Inorganic Chemistry 1(2): 136-142. 
  
Rodriguez-Lopez, J. N., Smith, A. T. and Thorneley, R. N. F. (1996b). "Role of arginine 
38 in horseradish peroxidase: A critical residue for substrate binding and catalysis." 
Journal of Biological Chemistry 271(8): 4023-4030. 
  
Roepstorff, P. (1997). "Mass spectrometry in protein studies from genome to function." 
Current Opinion in Biotechnology 8(1): 6-13. 
  
Sakamaki, K., Tomonaga, M., Tsukui, K. and Nagata, S. (1989). "Molecular cloning 
and characterization of a chromosomal gene for human eosinophil peroxidase." Journal 
of Biological Chemistry 264(28): 16828-16836. 
  



174 
 

 

Sambrook, J., Fritsch, E. F. and Maniiaties, T. (1989). "Molecular Cloning: A 
Laboratory Manual." Cold Sold Harbour Laboratory Press(USA). 
  
Savenkova, M. I., Kuo, J. M. and Ortiz de Montellano, P. R. (1998). "Improvement of 
Peroxygenase Activity by Relocation of a Catalytic Histidine within the Active Site of 
Horseradish Peroxidase." Biochemistry 37(30): 10828-10836. 
  
Savenkova, M. I., Newmyer, S. L. and Ortiz de Montellano, P. R. (1996). "Rescue of 
His-42 Ala horseradish peroxidase by a Phe-41 His mutation. Engineering of a 
surrogate catalytic histidine." Journal of Biological Chemistry 271(40): 24598-24603. 
  
Schejter, A., Lanir, A. and Epstein, N. (1976). "Binding of hydrogen donors to 
horseradish peroxidase: a spectroscopic study." Archives of Biochemistry and 
Biophysics 174(1): 36-44. 
  
Schonbaum, G. R. (1973). "New complexes of peroxidases with hydroxamic acids, 
hydrazides, and amides." Journal of Biological Chemistry 248(2): 502-511. 
  
Schuller, D. J., Ban, N., Van Huystee, R. B., McPherson, A. and Poulos, T. L. (1996). 
"The crystal structure of peanut peroxidase." Structure 4(3): 311-321. 
  
Scott, S. L., Chen, W. J., Bakac, A. and Espenson, J. H. (1993). "Spectroscopic 
parameters, electrode potentials, acid ionization constants, and electron exchange rates 
of the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) radicals and ions." The Journal 
of Physical Chemistry 97(25): 6710-6714. 
  
Shannon, L. M., Kay, E. and Lew, J. Y. (1966). "Peroxidase isozymes from horseradish 
roots. I. Isolation and physical properties." Journal of Biological Chemistry 241(9): 
2166-2172. 
  
Shin, J. H. C., Shannon, L. M., Kay, E. and Lew, J. Y. (1971). "Peroxidase isozymes 
from horseradish roots. IV. Structural realationships." The Journal of Biological 
Chemistry 246(14): 4546-4551. 
  
Shiro, Y., Kurono, M. and Morishima, I. (1986). "Presence of endogenous calcium ion 
and its functional and structural regulation in horseradish peroxidase." Journal of 
Biological Chemistry 261(20): 9382-9390. 
  
Sievers, G. (1980). "Structure of milk lactoperoxidase. A study using circular dichroism 
and difference absorption spectroscopy." Biochimica et Biophysica Acta 624(1): 249-
259. 
  
Singh, A. K., Singh, N., Sharma, S., Singh, S. B., Kaur, P., Bhushan, A., Srinivasan, A. 
and Singh, T. P. (2008). "Crystal Structure of Lactoperoxidase at 2.4 Å Resolution." 
Journal of Molecular Biology 376(4): 1060-1075. 
  
Skoog, D. A., Holler, F. J. and Nieman, T. A. (1998). Principles of Instrumental 
Analysis, Saunders College Publishing/Harcourt Brace College Publishers, 
Philadelphia, USA: 674-767. 
  



175 
 

 

Skoog, D. A., West, D. M. and Holler, F. J. (1996). Fundamentals of Analytical 
Chemistry, Saunders College Publishing, Philadelphia, USA: 660-724. 
  
Smith, A. T., Sanders, S. A., Sampson, C., Bray, R. C., Burke, J. F. and Thorneley, R. 
N. F. (1993). Folding and activation of recombinant horseradish peroxidase from E.Coli 
and analysis of protein variants by side-directed mutagenesis. Plant Peroxidases, 
Biochemistry and Physiology, III International symposium proceedings. K. G. 
Welinder, S. K. Rasmussen, C. Penel and H. Greppin. University of Geneva, Geneva, 
Switzerland.: 159-168. 
  
Smith, A. T., Sanders, S. A., Thorneley, R. N. F., Burke, J. F. and Bray, R. R. C. (1992). 
"Characterisation of a haem active-site mutant of horseradish peroxidase, Phe41 Val, 
with altered reactivity towards hydrogen peroxide and reducing substrates." European 
Journal of Biochemistry 207(2): 507-519. 
  
Smith, A. T., Santama, N., Dacey, S., Edwards, M., Bray, R. C., Thorneley, R. N. F. and 
Burke, J. F. (1990). "Expression of a synthetic gene for horseradish peroxidase C in 
Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and 
heme." Journal of Biological Chemistry 265(22): 13335-13343. 
  
Smith, A. T. and Veitch, N. C. (1998). "Substrate binding and catalysis in heme 
peroxidases." Current Opinion in Chemical Biology 2(2): 269-278. 
  
Smulevich, G., English, A. M., Mantini, A. R. and Marzocchil, M. P. (1991). 
"Resonance Raman Investigation of Ferric Iron in Horseradish Peroxidase and Its 
Aromatic Donor Complexes at Room and Low Temperatures." Biochemistry 30: 772-
779. 
  
Smulevich, G., Paoli, M., Burke, J. F., Sanders, S. A., Thorneley, R. N. F. and Smith, A. 
T. (1994). "Characterization of recombinant horseradish peroxidase C and three site- 
directed mutants, F41V, F41W, and R38K, by resonance Raman spectroscopy." 
Biochemistry 33(23): 7398-7407. 
  
Sundaramoorthy, M., Terner, J. and Poulos, T. L. (1995). "The crystal structure of 
chloroperoxidase: A heme peroxidase-cytochrome P450 functional hybrid." structure 
3(12): 1367-1377. 
  
Suriano, G., Watanabe, S., Ghibaudi, E. M., Bollen, A., Pia Ferrari, R. and 
Moguilevsky, N. (2001). "Glu375Gln and Asp225Val mutants: about the nature of the 
covalent linkages between heme group and apo-Protein in bovine lactoperoxidase." 
Bioorganic and Medicinal Chemistry Letters 11(21): 2827-2831. 
  
Tanaka, M., Ishimori, K. and Morishima, I. (1996). "The distal glutamic acid as an acid-
base catalyst in the distal site of horseradish peroxidase." Biochemical and Biophysical 
Research Communications 227(2): 393-399. 
  
Tanaka, M., Ishimori, K. and Morishima, I. (1998). "Structural roles of the highly 
conserved Glu residue in the heme distal site of peroxidases." Biochemistry 37(8): 
2629-2638. 
  



176 
 

 

Tanaka, M., Ishimori, K. and Morishima, I. (1999). "Luminol activity of horseradish 
peroxidase mutants mimicking a proposed binding site for luminol in Arthromyces 
ramosus peroxidase." Biochemistry 38(32): 10463-10473. 
  
Tanaka, M., Nagano, S., Ishimori, K. and Morishima, I. (1997). "Hydrogen Bond 
Network in the Distal Site of Peroxidases: Spectroscopic Properties of Asn70-Asp 
Horseradish Peroxidase Mutant." Biochemistry 36(32): 9791-9798. 
  
Taurog, A. (1970). "Thyroid peroxidase and thyroxine biosynthesis." Recent Progress in 
Hormone Research 26: 189-247. 
  
Taurog, A. (1999). "Molecular evolution of thyroid peroxidase." Biochimie 81(5): 557-
562. 
  
Thomas, E. L., Bozeman, P. M. and Learn, D. B. (1991). Lactoperoxidase: structure and 
catalytic properties. Peroxidases in chemistry and biology. J. Everse, K. E. Everse and 
M. B. Grisham, CRC Press, Boca Raton, Florida, USA. 1: 123-142. 
  
Thorpe, G. H. G. and Kricka, L. J. (1986). Enhanced chemiluminescent reactions 
catalyzed by horseradish peroxidase. Methods in Enzymology. M. A. Deluca and W. D. 
McElory. Orlando, Florida, Academic Press 133: 331-353. 
  
Tijssen, P. and Kurstak, E. (1984). "Highly efficient and simple methods for the 
preparation of peroxidase and active peroxidase-antibody conjugates for enzyme 
immunoassays." Analytical Biochemistry 136(2): 451-457. 
  
Ueda, T., Sakamaki, K., Kuroki, T., Yano, I. and Nagata, S. (1997). "Molecular Cloning 
and Characterization of the Chromosomal Gene for Human Lactoperoxidase." European 
Journal of Biochemistry 243(1-2): 32-41. 
  
Van Dalen, C. J., Whitehouse, M. W., Winterbourn, C. C. and Kettle, A. J. (1997). 
"Thiocyanate and chloride as competing substrates for myeloperoxidase." Biochemical 
Journal 327(2): 487-492. 
  
Veitch, N. C. (2004). "Horseradish peroxidase: A modern view of a classic enzyme." 
Phytochemistry 65(3): 249-259. 
  
Veitch, N. C., Gao, Y., Smith, A. T. and White, C. G. (1997). "Identification of a 
critical phenylalanine residue in horseradish peroxidase, Phe179, by site-directed 
mutagenesis and 1H-NMR: Implications for complex formation with aromatic donor 
molecules." Biochemistry 36(48): 14751-14761. 
  
Veitch, N. C., Gilfoyle, D. J., White, C. G. and Smith, A. T. (1996). Plant Peroxidases: 
Biochemistry and Physiology. C. Obinger, U. Burner, E. R., C. Penel and H. Greppin 
University of Geneva: Geneva, Switzerland: 1-6. 
  
Veitch, N. C. and Smith, A. T. (2001). Horseradish peroxidase. Advances in Inorganic 
Chemistry. A. G. Sykes. London, UK., Academic Press. 51: 107-162. 
  



177 
 

 

Veitch, N. C. and Williams, R. J. P. (1995). "The use of methyl-substituted 
benzhydroxamic acids as structural probes of peroxidase substrate binding." European 
Journal of Biochemistry 229(3): 629-640. 
  
Wada, N., Kinoshita, S., Matsuo, M., Amako, K., Miyake, C. and Asada, K. (1998). 
"Purification and molecular properties of ascorbate peroxidase from bovine eye." 
Biochemical and Biophysical Research Communications 242(2): 256-261. 
  
Wang, R. Y. (2007). Rapid Scan, Stopped-Flow Kinetics. Applications of physical 
methods to inorganic and bioinorganic chemistry. R. A. Scott and C. M. Lukehart. 
Chichester, Wiley-Interscience: 469-488. 
  
Welinder, K. G. (1976). "Covalent structure of the glycoprotein horseradish peroxidase 
(EC 1.11.1.7)." FEBS Letters 72(1): 19-23. 
  
Welinder, K. G. (1979). "Amino acid sequence studies of horseradish peroxidase. 
Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete 
sequence, and some structural characteristics of horseradish peroxidase C." European 
Journal of Biochemistry 96(3): 483-502. 
  
Welinder, K. G. (1991). The plant peroxidase superfamily. Biochemical, Molecular and 
Physiological Aspects of Plant Peroxidases. J. Lobarzewski, H. Greppin, C. Penel and 
T. Gaspar, University M. Curie-Sklodowska, Lublin, Poland and University of Geneva, 
Switzerland.: 3-13. 
  
Welinder, K. G. (1992). "Superfamily of plant, fungal and bacterial peroxidases." 
Current Opinion in Structural Biology 2(3): 388-393. 
  
Welinder, K. G., Mauro, J. M. and Norskov-Lauritsen, L. (1992). "Structure of plant 
and fungal peroxidases." Biochemical Society Transactions 20(2): 337-340. 
  
Welinder, K. G. and Mazza, G. (1975). "Similarities and differences of five peroxidases 
from turnip and horseradish. Peptide mapping studies on glycoproteins." European 
Journal of Biochemistry 57(2): 415-424. 
  
Wever, R. and Plat, H. (1981). "Spectral properties of myeloperoxidase and its ligand 
complexes." Biochimica et Biophysica Acta - Enzymology 661(2): 235-239. 
  
Wolfenden, B. S. and Willson, R. L. (1982). "Radical-cations as reference chromogens 
in kinetic studies of ono-electron transfer reactions: pulse radiolysis studies of 2,2[prime 
or minute]-azinobis-(3-ethylbenzthiazoline-6-sulphonate)." Journal of the Chemical 
Society, Perkin Transactions 2(7): 805-812. 
  
Wu, N. C. and Schultz, J. (1975). "The prosthetic group of myeloperoxidase." FEBS 
Letters 60(1): 141-144. 
  
Yamashita, M. and Fenn, J. B. (1984). "Electrospray ion source. Another variation on 
the free-jet theme." Journal of Physical Chemistry 88(20): 4451-4459. 
  



178 
 

 

Yamazaki, I. (1974). Molecular mechanisms of oxygen activation. O. Hayaishi, 
Academic Press, New York, USA: 535-558. 
  
Zederbauer, M., Furtmuller, P. G., Bellei, M., Stampler, J., Jakopitsch, C., Battistuzzi, 
G., Moguilevsky, N. and Obinger, C. (2007a). "Disruption of the aspartate to heme ester 
linkage in human myeloperoxidase: Impact on ligand binding, redox chemistry, and 
interconversion of redox intermediates." Journal of Biological Chemistry 282(23): 
17041-17052. 
  
Zederbauer, M., Furtmuller, P. G., Brogioni, S., Jakopitsch, C., Smulevich, G. and 
Obinger, C. (2007b). "Heme to protein linkages in mammalian peroxidases: Impact on 
spectroscopic, redox and catalytic properties." Natural Product Reports 24(3): 571-584. 
  
Zederbauer, M., Jantschko, W., Neugschwandtner, K., Jakopitsch, C., Moguilevsky, N., 
Obinger, C. and Furtmuller, P. G. (2005). "Role of the covalent glutamic acid 242-heme 
linkage in the formation and reactivity of redox intermediates of human 
myeloperoxidase." Biochemistry 44(17): 6482-6491. 
  
Zeng, J. and Fenna, R. E. (1992). "X-ray crystal structure of canine myeloperoxidase at 
3 Å resolution." Journal of Molecular Biology 226(1): 185-207. 
  
Zhu, M., Huang, X. and Shen, H. (2001). "Aromatic azo compounds as 
spectrophotometric kinetic assay substrate for HRP." Talanta 53(5): 927-935. 
  
 
 


	Coversheet
	Al-Fartusie, Falah


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


