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Abstract

The following work presents an exploration of human search behaviour both from bi-

ological and computational perspectives. Search behaviour is defined as the movements

made by an organism while attempting to find a resource. This work describes some of

the principal procedures used to record movement, methods for analysing the data and

possible ways of interpreting the data. In order to obtain a database of searching be-

haviour, an experimental setup was built and tested to generate the search paths of human

participants. The test arena occupied part of a football field and the targets consisted of

an array of 20 golf balls. In the first set of experiments, a random and regular distribu-

tion of targets were tested. For each distribution, three distinct conspicuity levels were

constructed: a cryptic level, in which targets were painted the same colour as the grass,

a semi-conspicuous level in which targets were left white and a conspicuous condition in

which the position of each target was marked by a red flag, protruding one metre from the

ground. The subjects tested were 9-11 year old children and their search paths were col-

lected using a GPS device. Subjects did not recognise the spatial cues regarding the way

targets were spatially distributed. A minimal decision model, the bouncing search model,

was built based on the characteristics of the childrens search paths. The model produced

an outstanding fit of the children’s behavioural data. In the second set of experiments,

a new group of children were tested for two new distributions obtained by arranging the

targets in patches. Again, children appeared unable to recognise spatial information dur-

ing the collection processes. The children’s behaviour once again produced a good match

with that of the bouncing search model. This work introduces several new methodolog-

ical aspects to be explored to further understand the decision processes involved when

humans search. Also, it illustrates that integrating biology and computational science can

result in innovative research.
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Chapter 1

Introduction

The objective of this work is to provide an organised procedure exemplifying a possible

method to record, analyse and model the searching behaviour of biological organisms.

Searching, understood as the movements made while attempting to find a resource, is

a ubiquitous behaviour in mobile organisms. One cannot underestimate the importance

and complexity of search behaviour accross the life spectrum: It is produced by different

systems of locomotion, occurs throughout all media and spatio-temporal scales and is

guided by a coordinated set of external and internal processes. In this work, the focus is

on the characteristics of the movement an individual makes when searching, the choices

involved in the decision mechanism and finally, a comparison of this mechanism with the

set of choices derived from a standard optimisation procedure.

For the purpose of obtaining a detailed record of search behaviour under controlled

conditions, an experimental situation was designed. The experiment involved human

participants searching in a bounded arena for targets whose spatial distribution and vi-

sual conspicuity was manipulated by the experimenters. Simultaneously, their path was

tracked using a GPS (Global Positioning System). The analysis of the searching paths

were used to construct a statistical model based on a simple set of rules. The model

followed a simple design: an artificial searcher would follow a linear trajectory until it

collided with the boundary of the arena or one of the targets. Conspicuity was simulated

as the radius of the circle surrounding each target, in which the size of the radius was

proportional to the degree of conspicuity. The collection of a target would occur when the
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searchers path intersected with any of these circles. Thus, the searcher appears to bounce

off any sensory encounter, hence the name bouncing search. Finally, this model was em-

bedded into an optimisation procedure to observe whether the decision points (namely,

the turning angles after a collision) would be able to accommodate a systematic sweep of

the arena, producing a search strategy that guarantees the collection of all the targets in

any spatial distribution.

The present work has the following goals:

• To produce and test an experimental setup where it is possible to obtain search paths

under controlled conditions involving significant time constraints.

• To produce a simple model from the searching paths, which is easily implemented

and whose complexity can be adapted to further findings.

• To test the viability of obtaining a systematic search as the result of an optimisation

procedure.

1.1 Multidisciplinary approach to search behaviour

Historically, biology has demonstrated an ongoing interest in search behaviour. Search

behaviour presents an excellent case study for several biological disciplines: Searching

is fundamental to the life of mobile organisms, which combines the use of proximate

decision-making with the development of search strategies that are of evolutionary rel-

evance. Proximate mechanisms influence local decisions. For example, in the case of

a foraging hummingbird or bee, an association is made between the size or colour of a

flower and the amount of nectar that it may hold. Evolutionary strategies favour fixed sys-

tematic movements, as in the case of ants who undertake foraging trips from and back to

their nest with a shorter travelled distance between sequential visits to resources. Search-

ing relies heavily on the sensory and motor capacities of an organism, but some of the

search choices reflect efficiency measures shaped by evolutionary pressures. For exam-

ple, while searching in a patch, or an area where resource density is high, it’s important to
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move slowly and look carefully for resources. However, evolutionary pressures influence

the amount of time a searcher spends in a particular patch. Searching efficiency is cen-

tral to the economics of an organism: individuals must make the best use of their limited

time and energy to search under conditions of reduced information and in many cases,

the targets are not static. Search behaviour has been studied extensively in the biological

sciences, which is further emphasised by the popularity of ’Optimal Foraging Theory’

(Pyke, Pulliam and Charnov, 1977; Stephen and Krebs, 1987; Pyke, 1984), as well as the

numerous examples that illustrate these cases in a huge variety of organisms (Bacteria

(Stibora and Sommer, 2003), Parasites (Lozano, 1991), Insects (Charnov, 1976; Scheirs

and De Bruyn, 2002), Fish (Werner and Hall, 1974), Birds (Goss-Custard, 1977), Mam-

mals (Heth, Golenberg and Nevo 1989), Humans (Winterhalder, 1980; Winterhalder and

Smith E.A. 2000).

Historically, searching problems have been relevant to computer science and biol-

ogy alike: Questions concerning shortest paths between a defined set of coordinates are

highlighted in the famous travelling salesman example. In this scenario, a salesman won-

ders how to travel the shortest distance between a set of houses and towns he must visit

(Lawler et al., 1985). Another example includes the behaviour of robotic and simulated

agents having to move and find specific items within intricate sets of artificial or real

world data (Goss and Deneubourg, 1992; Yamaguchi, 1998). Also, problems regarding

search paths have similar constraints in biology and computer science: energy, time, and

other factors relating to search behaviour are among the crucial parameters around which

efficient solutions revolve. This common ground marks an interesting area for multidis-

ciplinary work. Aside from understanding biological phenomena, it is possible to analyse

behaviour and to derive the algorithmic components that construct it (Webb, 2001). This

is mutually beneficial, as algorithms provide models of behaviour that lead to a better

understanding of the underlying mechanisms. Hence algorithms derived from evolution-

ary processes are useful resources to be tested in computational situations (Webb, 2000).

These algorithms may not always be optimal, but are often parsimonious solutions, based

on a simple set of rules, and are therefore computationally accessible.
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There are other contexts in which searching is integrated in both a biological and a

computational process. Some authors have compared the similarity between the funda-

mental aspects of foraging and some of the distinctive features of how humans browse

the information on the World Wide Web (Pirolli, 2005; Mantovani, 2001). Others use the

principles of foraging to explain the process in which the memory remembers words by

invoking semantic networks, in which patches of similar words become associated (Hills,

Todd and Jones, 2009). This extrapolation from the principles of searching show how ex-

tensive the range of applications can be. Similarity between these procedures is important

because it might suggest cost-efficient ways to deal with searching through large amounts

of information on the web or in our minds. The fact that similar aspects of searching can

be detected at different levels of information processing (looking at an image or a web-

page, remembering words or constructing them using letters drawn at random, looking

for a book in a library or a can of soup in the supermarket, foraging for mushrooms in the

forest, etc.,) suggests that central, and minimally cognitive mechanisms are involved in

searching that are scalable to a range of dimensions and situations, as opposed to mental

mapping and navigational planning or orientation, which are probably situation and scale

dependent.

In this work a multidisciplinary approach to searching is adopted. An experimen-

tal paradigm was built to obtain the searching paths from human participants. Analysis,

measurements and pre-processing procedures where integrated into a toolbox to system-

atically uncover relevant features of the paths. A simple model was used to study the

properties of the hypothetical mechanisms underlying the search behaviour observed in

the experimental setup. The same model was used to test an evolutionary procedure at-

tempting to obtain systematic search paths under the constraints of the bouncing search

model.

1.2 Outline of the thesis

• Chapter II presents a literature review of path analysis. It describes important as-

pects of path analysis and it’s processes: From recording and pre-processing to
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detailed examples, the main features of random walk models and suggestions on

how to detect the existence of finer patterns within a searching path’s structure. It

is organised into three main sections:

– The first section offers guidelines on how to record the movement process. It

also describes the main elements of a path and the principle techniques used

when dealing with either missing data or excessive detail.

– The second section introduces the main statistical models that have been used

to study biological behaviour. It describes several types of random walk vari-

ations, the characteristics that define them and the statistical processes used

to identify them. Also, it contains a brief discussion on the use and misuse

of pseudo-paths, a common bootstrapping method used when studying the

statistical nature of trajectories.

– The third section addresses, in more detail, the detection and interpretation of

repetitive patterns in a path structure in the context of environmental cues. It

includes the case of foraging, highlighting the importance of specific mecha-

nisms related to efficiency and decision-making.

• Chapter III presents the results obtained from the recording, analysis and modelling

of search behaviour. The introduction stresses the importance of testing search be-

haviour under natural conditions and in a task that involves movement, rather than

through computerised or highly constrained testing conditions. Also, it provides

a justification for the type and age of the subjects tested. Details on the experi-

mental setup used for testing search behaviour are followed by a description of the

bouncing search model. Results describe the influence of environmental cues on the

subject’s performance. The main findings are summarised in the discussion, along

with some recommendations for future studies.

– The contents of this chapter form the basis for a paper that has been accepted

for publication in:

Physica A: Statistical Mechanics and its Applicationsas a paper titled:
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A experimental and theoretical model of childrens’ searching behavior in re-

lation to target conspicuity and spatial distribution with co-authors:

Rosetti, M, Pacheco-Cobos, L and Larralde, H and Hudson, R. See Appendix

C.

• Chapter IV presents the recording and analysis of search behaviour in a new set

of experiments constructed to challenge the findings of Chapter III. The numerical

quantification of conspicuity provided the measures necessary for the construction

of patchy distributions of targets. Conspicuity was manipulated in the same way

as in Chapter III, but a new condition was added, in which the subjects are given

some hints regarding the distribution of targets. The children’s search paths were

indistinguishable from the model’s predictions. This chapter also presents a set of

performance measures, related to the structure of patches, that were obtained from

the search behaviours of children and artificial agents.

• In Chapter V, the performance of the paths produced by an optimisation procedure is

evaluated. General conclusions are drawn regarding the nature of the search strate-

gies that might prove successful in the constrained setup of the bouncing search.

• Chapter VI presents the main conclusions of this work. It further emphasises the

importance of adopting a multidisciplinary approach to search behaviour by com-

bining computer science and biology. This chapter summarises the main findings of

this work. Finally, the section on future work provides some useful recommenda-

tions for improving the search task and model, for which optimisation procedures

can prove useful.

1.3 Thesis contributions

Among the main contributions of this work are:

• The successful development of a versatile experimental task: The manner in which

the experimental setup was designed allows the exploration of several questions
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related to the search performance of humans by testing modified versions of the

experimental setup. Experimental conditions guarantee that results are consistent

amongst trials, but the dimensions of the experimental field and the playful nature

of the task suggests that subjects enjoy the task and that energetic decisions may

play a role in their performance.

• The experimental series described here constitutes one of the first examples for the

evaluation of searching performance through the study of search paths. The use of

GPS recordings for human behaviour has a recent history, but has never been used

in an experimental task up until now.

• The development of a simple algorithm to explain the performance of humans

whilst searching in a bounded environment. A simple model with a large predictive

power suggests the use of simple heuristics in search behaviour.

• Finally, the simulation and posterior attempts to optimise the bouncing search ex-

periment represents an example of the possibility of how the tools of computer

science can provide insights into biological processes.
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Chapter 2

A review of path recording, analysis,

modeling and interpretation

In this chapter, relevant concepts and methods related to path analysis are introduced. The

purpose here is to summarise the large amount of information that exists on path analysis,

while placing it within a framework that provides a set of instructions to be used in the

following chapters. Many of the concepts and methods explained here are illustrated with

plots and examples generated solely for this purpose.

2.1 Introduction

From bacteria to humans, it is through changes of location that individuals contribute

to the dispersion of a population, explore their home-range, avoid predators, find food,

mates and shelter or improve their current circumstances by migrating to more favourable

conditions. Movements of organisms can be described in enormous detail and in a huge

variety of contexts, yet it can also be summarised as a path encoded as a discrete time

series of spatial co-ordinates. The analysis of paths can be used to measure and quantify

features of movement relevant to several types of behavioural questions, such as animal

distribution, habitat use and selection, habitat connectivity, recruitment, migrations, and

foraging strategies (Tremblay, 2009).

Analyses commonly aimed at records of individual movement stem from relatively
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different fields of research. Some questions address theoretical aspects, such as the statis-

tical properties of movement in bacteria, while others are concerned with practical appli-

cations, for instance, helping fisheries predict the location of fish schools. The time and

distance scales over which movement occurs ranges from excessively large to extremely

small and detailed. Thus, this work presents an integrative effort to deal with these differ-

ences using referenced approaches, methods, models and other efforts, which serve as a

list of background studies that have dealt with such issues.

In this chapter an effort has been made to classify and describe the essential character-

istics of the methods used for pre-processing path data, the models with which to interpret

the resulting path features, and the frameworks for the identification and interpretation of

possible mechanisms that give rise to particular features. The goal is to provide a type of

flow chart to aid with the sequential choices needed to be made when studying the paths

produced by moving organisms.

In the first section the consequences of the sampling criteria are discussed, followed

by a description of the principal pre-processing methods which typically follow any sam-

pling. The consequences of under and oversampling are also addressed, along with how

pre-processing follows either case, as well as the effects these methods will have on the

statistical structure of the components of a path. The next section focuses on the rele-

vance of random walk models for the description and understanding of biological move-

ment. Variations of random walk are introduced, it’s principal characteristics, as well as

the biological models for which they have proven useful. Next, an overview of the situ-

ations found to be optimal search strategies is presented together with quantifiable ways

to recognise them. Finally, guidelines for more detailed path interpretations with an aim

to distinguish strategies and mechanisms are presented. These include a closer look at

the dynamic processes by which a path is formed and the relationship between the en-

vironmental parameters and the properties of the path. The special case of searching is

discussed in order to exemplify the case where energy demands place constraints on the

characteristics of displacement.
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2.2 Methods of sampling and pre-processing

2.2.1 Sampling

Movement data is recorded through systematic procedures typically sampled at either

fixed time or distance intervals, or at behavioural events chosen by the observer. For ex-

ample, movement in E. coli is marked by a tumbling behaviour, which these prokaryotes

use to change direction; path segments can then be taken to be linear interpolations be-

tween tumbling events (Reviewed in Berg, 1975; Adler, 1975). Automated observation of

microscopic paths rely on motion-recording software set to sample individual trajectories

with fixed time intervals, as observed with the paths of sea urchin spermatozoids (Corkidi

et al., 2008) or the movement of leukocytes as they migrate and interact with tissues and

other cells. (Mempel et al., 2004). Movement occurring at a visible scale can be video

recorded and sampled using physical references of space. Analysis of videos to sample

movement in a fixed time frame is a common method used for small mammals (Pacheco-

Cobos et al., 2003; Sokoloff et al., 2002) and invertebrates (Baatrup and Bayley, 1993).

The quantitative recording of movement from a video can be achieved by mapping the

motion against physical references that are either artificially constructed (e.g. placing

pickets arranged in a spatial distribution with defined distance intervals, Bovet, 1968; or

with a lattice reference, see Pacheco-Cobos et al., 2003), or naturally occurring, such as

landscapes (e.g. distance between trees or a group of flowers).

Longer displacements can be tracked with satellite positioning (Jouventin and Weimer-

skirch, 1990; Weimerskirch et al., 2002) or telemetry (Keating et al., 1991), involving an

automated sampling process which depends on fixed intervals set by the observers and

is limited by the resolution and storage capacity of the recording apparatus (Ryan et al.,

2004; Hays et al., 2001). On other occasions, movement is detected by indirect evidence

of animal activity, such as hair, droppings, or track marks (Whittington et al., 2004); paths

detected this way can be recorded, for example, by recording their position with any of

the methods mentioned above at the desired resolution. Given the previous examples, it

is clear that different sampling methods may produce path representations with different
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details and features (Behamou and Bovet, 1992). The path of a bee inside a patch of

flowers can be represented as the linear sequence between landings, while sampling at

fixed time intervals can capture features of the path between the flowers, which might

be useful in a more detailed analysis. Also, while fixed time intervals are convenient for

accurately representing speed, recording motion at fixed distance intervals might be used

to produce a gapless representation of the distance travelled, which is especially relevant

if the particular organism has lengthy resting times (Getz and Saltz, 2008).

An important characteristic of the recording method chosen to study a path is it’s res-

olution, i.e. the distance or time in which the movement will be sampled, relative to the

distance or time in which movement normally occurs (Codling, 2005). Ideally, the res-

olution should reflect the characteristics of the motion in terms of the length scale that

the study wishes to analyse. Realistically, however, the resolution is more than often lim-

ited by the methodological and technical capabilities of the study, which generates under-

or over-sampled paths whose direct interpretation can lead to errors (Turchin, 1998). If

under-sampled, the points making up the path do not provide sufficient resolution to accu-

rately represent the movement of the subject/s under study. For instance, if an organism

moves in a spiralling fashion, and is sampled using large intervals, the lines between

successive points will depict a rugged forward movement rather than it’s true spiralling

movement. Conversely, over-sampling may capture more detail than is necessary, result-

ing in the creation of artefacts that make it difficult to interpret the path. For example,

recording movement with a too high resolution produces records that may be interpreted

as movement features that are, in fact, mere body shifts naturally associated with gait.

This is more extensively discussed by Turchin, who refers to the wobbling motion of

cockroaches (1998, p. 131).

Thus, as a general rule it is risky to attempt to interpret paths directly from sampling,

since their resolution is frequently not optimal and limited by the available recording

methods. Pre-processing methods can provide criteria that help decide which data to use,

which to discard and can even improve under-sampled paths. Overall, it is advisable

to favour over-sampling rather than under-sampling, since pre-processing strategies are
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better able to deal with over-sampled data, and make less assumptions. Thus, by setting

intervals of high resolution as a general guideline, flexibility can then be gained during

pre-processing (Turchin 1998, Benhamou and Bovet, 1992).

In general, movement can occur in one, two or three dimensions. Although the fol-

lowing text will deal mainly with two dimensions, most of the analysis can be applied

to a different number of dimensions. Obviously, dimensionality is strongly related to the

physical medium in which the motion is taking place, however, when possible, dimen-

sionality should be simplified, since situations can become increasingly complex due to

the higher number of options yielded by the use of more dimensions.

2.2.2 Path characteristics

Once the methodological details have been decided with the help of the criteria and ex-

amples discussed above, and the paths are sampled, one can begin to resolve the char-

acteristics of the path. Sampled movement, by whichever method, becomes a discrete

path represented by a time series of sequential co-ordinate points (xi, yi) in a reference

system. At this stage, the path can also be represented using a time series of another set

of important elements:

• The step lengths, quantifiable as the series of the lengths (li) of the line segments

between successive sampling points, can be calculated as:

li =
√

(xi+1 − xi)2 + (yi+1 − yi)2 (2.1)

Where (xi, yi) and (xi+1, yi+1) are values of the consecutive coordinates that make

up the path.

• The turning angle θ, which is the change of bearing between two consecutive steps,

can be calculated as the difference between the angles of successive path segments,

measured with respect to an arbitrary system of reference. For each segment, its

angle θi can be computed as:
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Figure 2.1: Path Characteristics: A simplified path segment is used to illustrate a) the length of a
step, which is the segment between two consecutive fixed points, b) the turning angle,
or the change of bearings between steps and c) the beeline between the start and ending
point of the path segment (in grey).

θi =


if yi < [sgn(∆xi)yiπ + arctan

(
∆xi

∆yi

)
]

else arctan
(

∆xi

∆yi

)
 (2.2)

Where the sgn function is defined as:

sgn(x) =


for x < 0 − 1

otherwise 1

 (2.3)

The turning angle ∆θi is calculated as the difference between successive values of

θ or:

∆θi = θi+1 − θi (2.4)

A third characteristic is the change of bearing (ψ) of every step which is calculated as

the angle between the orientation of a step as referenced from the horizontal axis (Figure

2.2).

These features of the path are simple to calculate (See figure 2.1), and provide a

ground for comparing the performance between organisms with regards to energy expen-
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Figure 2.2: Measuring ψ (a)

diture, coverage, efficiency and directionality. Moreover, they form the basis for com-

parison with other statistical models of movement. For instance, the total path length L

which is given by the sum of the lengths li of the segments, and the beeline, which is the

straight line between the first and last point of the path. It’s orientation with respect to an

arbitrary axis represents the path’s main bearing. Also, the ratio between the length of the

beeline and the total path length can be used to estimate the tortuosity of a path. Yet, these

values are likely to vary depending on the sampling procedure, and the criteria used by

the researcher, when the path is sampled as behavioural events. To reduce this variabil-

ity and to transform the data into a form more convenient for the intended analysis, the

data should undergo pre-processing procedures that correct for over- and, when possible,

under-sampling.

2.2.3 Pre-processing

In path analysis, pre-processing consists of a series of optional steps designed to manipu-

late data in order to select or, when necessary, create data from the sampled process that

most accurately represent the characteristics of the movement. Typically, any sampled

path will undergo a great deal of pre-processing. This includes interpolation for paths
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which are suspected to be under-sampled or have missing records, and re-discretisation

and coarsening, for paths that are over-sampled.

Interpolation

Interpolation involves the insertion of new co-ordinate locations between sampled points

to enhance the representation resulting from an under-sampled path. The most direct

interpolation algorithm is linear interpolation where an interval is subdivided into smaller

ones by adding new co-ordinates over the line drawn between (xa, ya) and (xb, yb). For

example, choosing the value of xnew as the x-coordinate for an interpolated point, the

corresponding value of ynew can be calculated with:

ynew = yi + xnew − xi
(
yi+1 − yi
xi+1 − xi

)
, for (xi, xi+1) (2.5)

Linear interpolation is often used to fill in the gaps left by missing points when sam-

pling is made in a conservative manner (Tremblay, 2006). While nothing is gained by

interpolating a correctly sampled path, linear interpolation relies on the assumption of

linear displacement to complete a defective sampling process by placing steps inside the

gaps, which are arbitrarily determined by, for instance, by the sampling frequency.

Of course, linear interpolation is not the only choice: there are an infinite number of

curves which can be chosen to interpolate between any two sample points (for the result of

a few arbitrary choices, see figure 2.3). However, some interest has been directed towards

the use of splines to represent movements (Turchin, 1998). Splines are curves obtained by

evaluating a set of low-degree polynomials, each one defined over a different subinterval

of the path coordinates. Splines can be chosen to produce a smooth curve with seamless

unions at each of the path sample points, interpolations can then be chosen as points along

the spline. There are several types of splines with different properties, though the choice

of which to use that best represents movement remains arbitrary. Spline interpolation has

been attempted with limited success in aquatic environments, since they best model the

movement of particles in the atmosphere or oceans, in which movement operates in a

curvilinear manner due to the forces that influence fluid properties, like density gradients
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Figure 2.3: Example of interpolation. A regularly sampled path (a). The subsequent interpolation
efforts when the original path has randomly lost 10% of the original sampling points
by (b) linear interpolation, (c) cubic splines, and (d) a set of bezier curves.
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and Coriolis forces (Vogel, 1994). Also, the movements of animals tracked in fluids

or the atmosphere, such as birds in flight or aquatic organisms, are heavily affected by

wind or current. Curvilinear tracks are consistent with marine animals moving in fluid,

curvilinear structures (Tremblay et al., 2006). Given this observation, Tremblay et al.,

(2006) evaluated interpolation using curvilinear algorithms for tracks of different species,

observing not only a more accurate description of the actual movement of certain marine

species but also a higher accuracy when estimating the length of paths from fewer data

points.

Rediscretisation

Rediscretisation is the calculation of a new path over an old one using a constant step

length (Turchin, 1998). This is generally useful for finding a length scale in which steps

are not self correlated (the statistical simplicity of independent steps is discussed below),

even if at some scale they accurately represent the nature of the movement. Rediscreti-

sation is commonly used when self correlation is considered a spurious consequence of

over-sampling.

Self-correlation can be dependent on the sampling interval, hence, by increasing step

length until the correlation disappears, it may be possible to reconstruct the path as a series

of steps with independent turning angles (Figure 2.4) . Even though rediscretising path

information results in information loss and decreased resolution of the path, the gain of

representing the path as a sequence of independent steps can prove valuable for statistical

models and bootstrapping techniques (Turchin, 1998; Dray, Royer-Carenzi and Calenge,

2010). One of the possible ways in which rediscretisation can be implemented is found

in box 1.0. When using a rediscretisation procedure to remove correlations and over-

sampling, the choice of length for the new step should, ideally, involve knowledge of the

organisms activity (Turchin, 1998). The link 1 contains my own Matlab implementation

of the process described in box 1.0.

1http://docs.google.com/Doc?docid=0AXBqPCRUKfQHZGRnYnI0Z21fMjByY3YzODZjNA&hl=en
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Figure 2.4: Effect of rediscretization:(a) A path consisting of frequent sampling points and nor-
mally distributed turning angles (a, inset), and after (b) rediscretization procedure.
The number of steps is reduced but changes the turning angle distribution to a uni-
form distribution (b, inset), thus removing the directional persistence of the previous
turning angle distribution.
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Box 1.0 The following box contains an easily computable algorithm to rediscretize a

path. First, a new step length d′ is chosen by the researcher. For a correlated path, the

rediscretization step at which the correlations are lost is λ, which can be found by attempting

rediscretization with sequential increments.

Figure 2.5: Illustrated rediscretization procedure.

Over the original path, a circle is drawn using the first point on the path as the center and d′

as the radius. Figure 2.5 (a). The first step of the rediscretized path goes from the center or

the circle to the closest point where the circumference intersects the path. The intersection

coordinates can be calculated with the following formulae:

x =
D∆y ± sgn(∆y)∆x

√
r2d2

r −D2

d2
r

y =
−D∆x± |∆y|

√
r2d2

r −D2

d2
r

where, dr, D

dr =
√

∆x2 + ∆y2

D = x1y2 − x2y1

Then, the center of the circle is moved to the next point (the first point of the rediscretized

path, figure 2.5 (b)) and the process is repeated until the end of the path is reached. The

resulting path has a fixed step length equal to d′ (Figure 2.5 (c)).

Coarsening

Coarsening is another popular preprocessing technique, which potentially reduces an

oversampled path into a smaller sequence of distinct effective steps of appropriately vary-
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Figure 2.6: Effect of coarsening: (a) An oversampled path, with a turning angle distribution cen-
tred around zero (a, inset), can be resampled (b) in steps of varied size through coars-
ening, which usually reduces the number of steps and changes the shape of the turning
angle distribution (b, inset).

ing length (Turchin, 1998). In essence, by coarsening, the path variations which fall

within a given threshold are removed and the steps involved are joined into a single effec-

tive step. One of the possible ways in which to implement this procedure is illustrated in

box 1.1.

The threshold of variation for a step to be joined is decided by an arbitrary parameter

w. The choice of w is based on observation of path structure and does not necessarily

reflect any biological information, this justifies incrementing systematically the parameter

w to find the most suitable effective steps. The link 2 contains the Matlab implementation

of the process described in box 1.1.

Similar to rediscretisation, coarsening can also remove sequential turning angle cor-

relations, but there is no need to choose a step size, rather, the procedure gives rise to a

path with variable step sizes (Figure 2.6). However, a problem with this procedure is a

2http://docs.google.com/Doc?docid=0AXBqPCRUKfQHZGRnYnI0Z21fMjJnY25kMzdnZw&hl=en
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potential larger loss of information compared with rediscretisation. The reduction in the

number of steps may be far greater when coarsening, thus, first attempting a rediscretisa-

tion procedure may help in cases where step number is an issue.

The potential gain may outweigh the loss of resolution, since having paths of variable

step lengths, and independent turning angles, greatly increases the chances of successfully

using several bootstrapping methods as well as allowing for the comparison of data with

statistical models (these are described in the next section).
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Box 1.1 First, a threshold value w is defined (a). This value roughly represents the

amount of variation to be removed from the path. A rectangle crossed in the middle through

its longest length by the line between Po and Pi+2, and whose shorter side is 2w is drawn

(a). Then, the coordinates between Po and Pi+2 are examined to see whether between

they fall within the rectangle borders (b). If the coordinates fall within the rectangle, the

rectangle is drawn again for the interval Po to Pi+3 (c). This procedure is repeated until

the coordinates in between the interval fail to fall inside the rectangle (c) or the path ends.

When the coordinates fall outside the rectangle boundaries, the interval, up to when the co-

ordinates still fall inside the rectangle is joined into a single step (Po − Pi+4) and the end

point if the new single step is used to repeat the process (d) until the path ends (e).

Figure 2.7: An example coarsening procedure, illustrating my own implementation

Note: For both preprocessing procedures, there are values which are chosen by the

experimenter (d′ in rediscretization, w in coarsening). In order to find the value for

these parameters which returns the desired effective step and angle distribution, the

pre-processing should try out systematically increasing values, testing the effect of different

values on the resulting distributions. In both cases the effective paths can be reached

once the sequential turning angle disappears or the shape of the turning angle distribution

remains relatively stable.

Correlation is usually caused by the natural tendency of an organism to move in a
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straight line, a reflection of the biased distribution of the sensorial systems attributed to

cephalization and bilateral symmetry, or even willfully maintained as an effective search-

ing strategy. It is common to study autocorrelated data in order to evaluate and distinguish

between kinesis and taxis in an organisms movement. Choosing to analyze autocorrelated

features of a path over those arising as the product of rediscretization or coarsening, im-

plies the choice of a length scale and does not discard the phenomena occurring at a

different (usually larger) one. In fact, the long steps commonly produced by coarsening

represent the instances where the organism travelled in a correlated manner, although the

focus is rather placed on the reasons and places where the direction changes are occurring

.For the cases where correlation occurs with larger angles, such as in systematic move-

ments, coarsening may in fact enhance the correlation of the turning angles. Identification

of the most salient features of systematic movement are discussed further in this chapter.

Pre-processing may change the attributes of the original path, such as the shape of

the step length and turning angle distributions. It may also remove the presence of self-

correlated turns and step lengths. If steps and turns are uncorrelated, and therefore in-

dependent processes, it may be possible to represent the path as a random walk, a topic

described with more detail in the next section.

On the detection and removal of self-correlations

A correlated movement process implies that the probability of the choice of turning angle

or step length at every step is influenced by previous turning choices or step lengths.

There are several ways in which correlation can be detected. A simple way to detect

correlations between successive step directions is to calculate the mean cos(θ) of the

turning angles, where a value approaching 1 denotes absolute correlation for a path that

travels in straight line, while uncorrelated steps yield a value 0 and a value of -1 denotes a

negative correlation, or a path where the walker makes a complete directional change on

every step.

Another way to detect self-correlated turning angles or step lengths is the computation

of the autocorrelation function for these values. Autocorrelation can be detected in a time
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series by comparing a signal with lag-shifted versions of itself. An issue that arises when

working with an autocorrelation function to detect self-correlations in a path, is the need

for fixed units, which in the case of pre-processed paths is n or the tag attached to each

step (Dray, Royer-Carenzi and Calenge, 2010).

Another technique that could to detect autocorrelation in a path is normally applied to

the detection of correlations in the underlying signals in time series and involves the use

of the Fourier transform. The Fourier transform gives the amplitudes of corresponding

to each frequency when we represent the signal as a superposition of periodic functions

(sines and cosines). Structure in the frequency domain relates to an underlying struc-

ture (correlations) in the functions that give rise to the time series. Conversely, a con-

stant power spectrum in the frequency domain indicate an uncorrelated, white, signal.

(Brillinger, et al., 2004). Something similar can be achieved by using wavelets, which

are a special case of Fourier transforms that involve the simultaneous representation of

time and frequency of a signal (Polansky, et al., 2010). As with any time series, it is also

possible to divide a path in smaller segments and test for local self-correlation.

Sometimes it is possible to remove correlation so that the individual steps can be

treated as independent events, which is useful if the case requires the use of bootstrap-

ping techniques. Self-correlation can be dependent on the sampling interval and therefore

by increasing step length until the correlation disappears, it may be possible to represent

the path as a series of steps with independent turning angles (Dray, Royer-Carenzi and

Calenge, 2010). Pre-processing involves changing the scale with which steps are repre-

sented; thus, ideally, a scale can be found a scale can be found where the step properties

are no longer self-correlated. Correlation might still exist, but on smaller scales. Hence,

during pre-processing, one goal is to find the smallest scale at which correlations disap-

pear.

Removal of self-correlations may be desirable in order to address the process gener-

ating the path as a series of independent events. Having independent steps allows for a

great simplification of the statistics describing movement and allows the comparison of

the recorded paths with some of the simplest random walk models. Also, correlations are
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undesired because they frequently are a consequence of the recording method, however,

it is possible that sequential correlations might be a feature of interest in the path. Within

this work, emphasis is placed in processing the data as to arrive at the simplest set of

choices, and independent steps guarantee the simplest statistical explanation.

2.3 Probabilistic models of movement paths

The use of statistical movement models allows for the description of path features within a

greater framework of probability that has a long research history and hence, many testable

predictions. One of the most basic descriptions obtained is from the visual inspection of

the shape of the step length and turning angle distributions. For instance, if paths can have

steps of variable length, the shape of the distribution of step length values may be mea-

sured. The shape of the distribution suggests many features of movement, whether steps

are normally distributed or perhaps the path is better described as a series of small steps

interrupted by the rare appearance of extremely long steps. Similarly, the distribution of

turning angles yields information on the statistical arrangement of successive bearings of

the path. A distribution of turning angles centred around a mean of zero signifies the most

frequent direction taken, and that the walker moves more frequently to those places.

2.3.1 The mean squared displacement

Amongst the first statistical descriptions that can arise from a path’s characteristics is the

squared displacement. The step length and change of bearing are combined to compute

the squared displacement, which is an account of the length that an individual searcher

has travelled from it’s point of origin in a given number of steps, or |R̄|2. It is mainly

useful to calculate mean square displacement for theoretical paths or groups of organisms

by averaging several paths at each step and the rate at which the variance grows can help

determine the rate of diffusion of that particular set of paths, or the probability to find any

of the walkers at a certain distance after a given time period.

The mean (thus µ) of the square displacement (〈|R̄µ|2〉) is computed as:
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〈|R̄µ|2〉 =
1

N

N∑
µ=1

( n∑
i=1

li cos(ψi)

)2

+

(
n∑
i=1

li sin(ψi)

)2
 (2.6)

Where ψi is the angle resulting from the change of bearing at step i, li is the length of

step i, n is the number of steps in a path and N is the total number of paths in the sample.

While the square of the mean (|〈R̄µ〉|2) is:

|〈R̄µ〉|2 =

 1

N

N∑
µ=1

n∑
i=1

li cos(ψi)

2

+

 N∑
µ=1

n∑
i=1

li sin(ψi)

2

(2.7)

So then the variance (σ) is the difference between the mean of the square and the

square of the mean:

σ = 〈|R̄µ|2〉 − ‖〈R̄µ〉‖2 (2.8)

The comparison between the variance of the mean squared distance calculated and

that expected from a random process can be used to suggest the presence of orientation

mechanisms and the diagnosis of non-random elements. Similarities (or differences) in

the statistics of sampled paths over a limited time or space interval should not be consid-

ered as definite arguments to accept nor reject the model: the characteristics of paths are

frequently affected by the scale of description and amount of data. Therefore, in order

to attempt a comparison and to determine the similarities and differences that a particular

set of paths hold to a random process, other characteristics should be tested.

In biology, we often find that the turning angles of the movement of many organisms

draw normal distributions, with a mean centred around zero. Some authors have suggested

another way of calculating the mean squared distance to take this fact into consideration.

For instance, Kareiva and Shigesada (1983) suggested that calculation of R̄2
n the following

formula could be used. In this formula, only the mean cosine is taken into consideration,

since the sine of small angles is close to zero. Also, note that n is used instead of mu,

since it is for individual paths:

R̄2
n = nm2 + 2nm2

1

(
c

1− c

)n− 1− cn−1
2

1− c

 (2.9)
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Where:

m1 = 1
n

∑n
i=1 li, m2 = 1

n

∑n
i=1 li

2, c = 1
n

∑n
i=1 cos(θ) (2.10)

The expression within parenthesis gives importance to the mean cosine of turning

angles in the first steps, so that for paths with a large number of steps (n >> 1):

R̄2
n ≈ n

(
m2 + 2m2

1

ψ

1− ψ

)
(2.11)

The variance around the mean squared displacement can be calculated by the differ-

ence between the squared displacement and the square of the displacement (McCulloch

and Cain, 1989).

2.3.2 Random walks

The theoretical description of paths generated by a sequence of distributed steps, i.e.

lengths and turning angles, falls within the framework of random walk models. In gen-

eral, the basic assumption of a random walk is that paths are constructed by the suc-

cessive concatenation of steps drawn from appropriate probability distributions. When a

given random walk model is found to statistically fit a biologically observed set of paths,

then the model can be used to make inferences about the efficiency with which the path

covers space, the probability it has to encounter sparsely distributed random targets, the

frequency it will revisit previously visited areas, etc. On the other hand, when a path is

judged to be non-random, random walk models can be used as a null hypothesis to evalu-

ate the internal or external reasons as to why the path differs from randomness. Of course,

for cases consisting of few sampled paths, it may be hard or even impossible to distin-

guish among the many types of random walks, and thus to determine which model best

represents the biological process. In what follows, all paths are represented as occurring

on a two-dimensional surface, though it is also possible to represent them and measure

their characteristics in one and three dimensions.
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Figure 2.8: An example of a simple random walk, with the main statistical features (inset) a uni-
form turning angle and step length distribution.

Simple random walks

A simple random walk is the most basic form of a random walk involving step sizes

and turning angles drawn from uniform distributions. It exhibits normal diffusion (linear

growth of the variance of the mean squared displacement) and is characterised by the

independence and isotropy (i.e. lack of a preferred direction) of the steps comprising

the path (see example in figure 2.8). Basic random walks are still popularly used as

models for movement in bacteria (Keller and Segel, 1971, Schnitzer et al., 1990) and

have proven useful when describing the movement of populations as a diffusion process

(Okubo, 1980). Among the properties that have been studied, it is possible to calculate

the chances that a random walk has to visit a certain number of sites, whether some sites

have more probability of being visited, the number of times it will visit the same site, the

time it may take to cover all the area, and several more properties.

Given the vast body of knowledge on the basic random walks, it is clear why it pro-

vides such a good testing ground for biological hypotheses. For instance, one could ask

how different is the natural movement of an organism to a random walk. If the movement

of an organism is like a random walk, what are the chances it might get back home? How

28



Figure 2.9: The directional bias of a set of 100 biased random walks is shown by a white arrow.
The bias is created in this case by a preferential choice of a random turning angle
(inset).

likely is it that it will encounter all the resources? Will it find the closest resources to

home or will it look for the farthest ones? What happens if resources regenerate or move

around? Amongst the advantages of a random walk as a null hypothesis is it’s simplicity.

If no other elements are taken into account and movement is said to be random in origin,

how much would it differ from the movement we observe? On the other hand, this can

prove to be a disadvantage - no organism can be said to move in a truly random fashion,

nor in a boundless environment. Thus, in many cases, it’s potential as a null hypothesis is

limited. Many questions, however, might benefit from the use of random walk models by

increasing the complexity to include other elements, such as energy expenditure or risk

of death. What follows are some of the variants of the basic random walk found to be

popular in the biological literature, which can be obtained by modifications of properties

of the distributions on which the turning angle and step sizes are drawn.
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Biased random walks

A biased random walk produces paths with an orientational bias. Although the individual

components (step size and turning angle) are random, they might contain a slight bias. For

instance, steps taken in a certain general direction (e.g., north) can be longer than those

moving in any other direction (Figure 2.9). This type of random walk can also exhibit a

linear growth in the diffusion rate, although sub diffusion (that is, a diffusion rate lower

than expected for a simple random walk) can happen if the bias pulls the walker to the

point of origin.

Biased random walks have been proposed as models for organisms which orient to-

wards stimuli, for example, swimming bacteria with simple motor and navigational mech-

anisms, perform biased random walks to get closer to their objectives (Segall, 1986).

Also, it can be an efficient searching strategy in heterogeneous landscapes, where distri-

bution density exists as a gradient (Hill and Häder, 1997; Kamil et al., 2009).

Knowledge of the biological system generating the path may be essential for the clas-

sification of these paths as biased random walks. Usually, by knowing the position of a

potential attractor, it is possible to calculate the general direction towards which the bias

is directed. In these cases, the variance of the turning angle might become relevant, as it

can prove to be significantly different from that of a basic random walk.

Correlated random walks

Random walks where the turning angles are considered to be independently drawn from a

distribution with a mean that peaks around zero (or any other mean, though in biology this

value is usually close to zero) earn the name of correlated random walks (Figure 2.10).

Once a direction is taken, it is more probable to find the walker somewhere along the

initial angle. However, given that the first angle is also a random choice, dispersion also

increases at a linear rate.

Correlated random walks are popular in references of biological movement, which

can be explained by the fact that many animals have normal distribution of turning angles,

i.e., they prefer to move forwards. The anatomical configuration of most animals is on
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Figure 2.10: An example of a correlated random walk, in which the main feature is that turning
angles appear to be drawn from a normal distribution (inset)

a longitudinal body axis, with the head on one of the endpoints (Bovet and Benhamou,

1988). The head usually concentrates the senses so navigation persists in this direction.

This type of model has been described for the movement of Eleodes beetles (Crist et

al., 1992), caribou (Bergman et al., 2000), swans (Nolet and Mooij, 2002) and many

others species. Foraging habits resembling correlated random walks can be efficient under

certain conditions, such as when searching for locations that can only be visited once, the

higher frequency of small turning angles reduces the chances for the path to repeatedly

visit the same place.

Lévy walks

Lévy Walks are random walks in which the length of constituent steps is best described

by a Lévy distribution, in which the frequency of ever larger steps decreases as a negative

power function of their length. An interesting property of Lévy walks is that they exhibit

scale invariance on the step distribution, meaning that at several scales, it is possible to

observe small steps punctuated by the rare appearance of extremely large ones (Figure

2.11). The length of each successive step (l) varies according to a truncated power-law of
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Figure 2.11: An example of a Lévy walk, where the steps are drawn from a Lévy distribution,
which is a visually evident feature given the presence of rare but conspicuous long
steps, punctuated by patches of smaller step lengths.

the form:

P (l) ∼ l−µ

where

1 < µ < 2

(2.12)

Lévy walks are frequently reported in the biological literature, particularly for for-

aging paths of animals. They have been reported for microplankton (Bartumeus et al.,

2003), albatross flights (Viswanathan et al., 2006), foraging paths of deer (Mårell et al.,

2002), the movements in-between inflorescence made by bumblebees (Reynolds, 2005),

spider monkeys in the Yucatan peninsula (Ramos-Fernández et al., 2004), Peruvian purse-

seiners fishing trips (Bertrand et al., 2005), humans, as estimated by travelling distances

of marked currency (Brockmann et al., 2006) and many others. This is relevant because

some environmental features are also scale invariant, like the distribution of resource

patches (Ramos-Fernández et al., 2004). Large steps provide a way of moving between

patches while small movements can be used to exploit the resources within a patch.

Léve walks are an efficient search strategy for sparsely distributed resources. The in-
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frequent and extremely long steps move the searcher away from a certain area that may be

closer to another patch. A visual inspection of the paths and the step size distribution can

suggest a Lévy walk, particularly when looking for characteristics, such as the presence

of single steps with a length similar to that of the whole path. A linear fit of the frequen-

cies of the step size in a logarithmic plot (across as many scales as possible) can be a

good estimator of scale invariance. A slope of the linear fit between 1 and 3 (optimally 2)

can suggest a Lévy distribution of step sizes. Since histograms are sensitive to the choice

of bin size, the number of bins has to be chosen geometrically, increasing the bin size

logarithmically until a good match is found. A goodness-of-fit statistic should be used, as

many distributions can resemble a Lévy distribution, leading to mistakes in identification

of Lévy walks in several organisms (Edwards et al., 2007). Other transformations greatly

increase the accuracy of the identification, such as plotting the frequencies divided by

the bin width against the geometrical bin width (Benhamou, 2007). A detailed account

on minimising the error when identifying Lévy walks can be found in the work of Sims,

Righton and Pitchford (2007).

2.3.3 Saltatory search

Saltatory search is a set of probabilistic models, which have received little attention (An-

derson, 1997). These models contemplate searching as a series of runs and pauses, while

placing emphasis on the characteristics of the distribution of waiting times, namely the

intervals in which the organism does not move. Anderson (1981) identified that salta-

tory search was likely to occur when the functions relating body speed to benefits are

concave-up, as opposed to cruise search occurring when those functions are linear or

concave-down. That is, when an organism needs to move fast to catch it’s prey, the more

likely strategy adopted would be to wait and ambush. However, if prey moves slowly,

organisms can cruise by and collect prey without adopting a saltatory search strategy. The

characteristics of movement (step size or direction) can be replicated by any of the mod-

els described above. However, waiting times between steps is an easy way to implement

fluctuations in the velocity that are not central to the description of random walk. Waiting
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Figure 2.12: Step plot better represents the saltatory searches: the length of flat periods are the
static searching periods, while the sudden increases in the cumulative activity show
the brief periods where movement occurs.

times might be a qualitative feature worth studying in certain contexts. For example, when

movement is particularly costly for a predator, or a prey is hard to detect it can pay off to

make only few displacements to attempt to catch a target (Souto et al., 2007). Where prey

predictability is low, non-translational periods to scan the area can be beneficial. If prey

are mobile, it could pay off to wait and ambush, especially in areas of high prey density

or a scenario of great speed disadvantage. The velocity and duration of movement bouts

can be adjusted to the size of prey to optimise the energy gain, as shown by the freshwater

fish, white crappie (O’Brien, 1989).

When plotting the cumulative distance travelled versus the time spent, it is possible to

identify the characteristic waiting times by analysing the frequency and length of the flat

lines in the plot (Figure 2.12).

2.3.4 Pseudopaths and bootstrapping

When producing movement records, is not uncommon to obtain statistically challenged

databases (i.e. recording only a small sample of searchers or search paths with a small

number of steps) because of situations involving difficult recording terrain, an extensive

effort needed from the observer to obtain a detailed record or rare sampling opportunities.
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A usual statistical challenge faced by movement databases is that even after consider-

able experimental efforts, the number of sampled trajectories are still fewer than what is

needed to make statistically-sound claims. However, some statistical methods allow one

to make full use of even a small data set. For instance, it is possible to make full use of a

reduced sample of paths by using bootstrapping procedures. Bootstrapping is an compu-

tational method that assigns measures of accuracy to statistical estimates (Efron, 1993).

It can be used to approximate distributions, standard errors and confidence intervals and

other statical characteristics by methodical resampling from an original data set. Resam-

pling bootstrapping can be used on processed individual paths to learn more about their

statistical characteristics.

Pseudopaths can be computationally-generated by determining the similarity of the

path’s characteristics to a certain probability distribution and then, using such distributions

to generate populations of paths with similar characteristics (Tremblay, Robinson and

Costa, 2009). In such a process, at least two distributions come into play: the shape of the

step size and the turning angle distribution. At every step, a new coordinate is generated

drawing the corresponding step size, or l1 and a and a turning angle, θ1. This process can

be repeated for n number of steps and for N number of paths. On the other hand, if a

path’s characteristics are clearly independent, that is are no self-correlations in the path or

the path is not correlated with any spatial reference (which denotes orientation or taxis),

constructing paths using reshuffled step sizes and angles is an alternative bootstrapping

procedure. This can be done by randomly interlocking pieces of the path in any way. For

instance, paths can be reversed, or any part of the path attached to any other part. Indeed,

an alternative test of event independence, can be done by checking if statistical properties

are maintained when paths are randomly reshuffled.

By generating large (> 106) amounts of resampled paths through computer simu-

lations, it is possible to observe of dispersion effects as well as bring out any statistical

peculiarities that would not be noticeable in a small sample of paths (Dalziel, Morales and

Fryxell, 2008). If events in the paths are not independent they can also be bootstrapped

but the complexity of the path-generation process increases. For instance, if steps are cor-
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related, it is important to create a path in which the correlation is kept. Pseudopaths can be

generated to match any number of characteristics, and again, it is important to make the

point that independent steps are only the simplest case. Bootstrapping by resampling can-

not account for the possibility that the processes may not be stationary, limiting the power

of the interpretation. Thus, bootstrapping provides method with which is possible to re-

sample a small set of paths with the intent of researching their statistical characteristics,

although it also has limited statistical assertiveness.

2.4 Mechanistic interpretation of movement paths

2.4.1 Mechanisms vs. models

As mentioned before, probabilistic models describe paths using global features - i.e the

shape of the distribution of the turning angles or step lengths. Global probabilistic fea-

tures can help predict movement features such as dispersion rate, collection efficiency,

frequency of revisits to the same place, etc. However, movement characteristics of a

path are rarely homogeneously distributed over time. When a particular variation occurs

repeatedly under similar conditions we can suggest the presence of a mechanism.

For instance, if an organism moving mainly in straight lines with few turns enters a

patch of densely packed resources, the movement of this organism might shift to small

steps and an increased turning frequency. If there was a record showing the movement

of such an organism, it will be evident that at some point it’s behaviour changed, and if

information about the environment were available, it could be possible to deduce, from

this local change in path properties, a density-aware mechanism to increase collection

rate. From a global perspective, the causes of the change in movement properties would

only be important for their contribution to the statistical properties of the path, but no

effort would be placed on understanding the factors that contributed to the local change in

movement properties. So, in this thesis, a mechanism is defined as local changes in path

features that can be traced to a particular environmental feature.

To study the changes in their inner structure, paths need to be systematically frag-
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mented in sub-paths by criteria such as the occurrences of particular events, the collection

of a resource, the detection of a stimulus or the collision against a boundary. To detect the

presence of mechanisms in movement records is not always a feasible option. Usually,

an extensive knowledge and description of the sensorial capacities of the organism and

the spatial distribution of relevant stimuli is a requisite. In normal situations movement is

caused by multi-sensory integration and feedback processes, and any attempt to establish

a cause and effect relationship will be probabilistic at best. A great aid to pin down the

relation between sensorial cues and a movement sequence are experimental testing situ-

ations where defined configurations of cues can be tested. The nature of the information

input and processing falls outside the scope of this chapter, as interest is in defining how

a set of movements comprises a mechanism, as well as the accompanying advantages and

consequences.

In this section, discussion will be centred around the identification of common mech-

anisms based on the characteristics of the movement they produce. Particularly, by show-

ing ways in which movement patterns and mappings of the environment can be over-

lapped. An arbitrary classification of the sensorial features involved in mechanisms is

used, with increasing complexity as more cognitive mechanisms come into play. The

last section focuses on foraging, which integrates several of the mechanisms, including

memory, and holds an interest in the light of efficiency issues.

2.4.2 Systematic movements

While the environment may include potential cues to guide movement, under certain con-

ditions, systematic movements provide the most viable solutions. In a set of computer

simulations Zollner and Lima (1999) show that an exhaustive systematic search performed

better than the best correlated random walk when mortality risks are low and energy re-

serves are high: increasing the range of detection of patches also favoured systematic

searches. Systematic searches are easily recognisable, as they often have salient geo-

metric features. Systematic movements are presumably achieved by ignoring cues that

might be present to favour a set of systematic rules. Among the advantages of this type

37



of mechanisms is the simplicity of the underlying geometry, the systematic covering of

surrounding space, the reduced cost on sensorial capacity, the reduced dependence on en-

vironmental information and finally, keeping track of the directional reference to the point

of origin.

In the case Hemilepistus reaumuri, a desert isopod that lives in extreme temperatures

and is often found in need of a burrow, success time is a crucial factor and a systematic

combing of the area can be more rewarding and less costly to execute than searching in a

random walk fashion, avoiding repeated visits to the same places without the use of po-

sitional references. Hoffmann (1983) described the searching movements of H. reaumuri

as efficient homing behaviour independent of external orientation cues, that exploits an

intrinsic structure that begins as an imperfect spiral with increasingly bigger loops, whose

centre remains the starting point. By keeping track of the the simple geometric parame-

ters of which a systematic search is composed, it is possible to locate the starting point by

means of a path-integrator, or an integration of the information gathered during the jour-

ney, such as the number of steps, the distance from the nest, the total time travelled, etc. In

a similar case, when foraging desert ants fail to return to the nest via path-integrators, they

engage in systematic searches, consisting of loops of ever increasing size. The density of

the systematic search pattern is correlated with the ants confidence in their path integrator,

this confidence decreases with increasing foraging distances (Merkle et al., 2006).

An almost unlimited number of systematic strategies may exist. However, for some

which produce repeated geometric patterning, identification of the rules underlying a sys-

tematic search begins by determining a suitable geometric candidate from observing a

plot and recognising structures in the path reminiscent of, for example, spirals (See ex-

amples in figure 2.13). A match can be corroborated by calculating a given parameter in

the path and comparing it to the values generated by a simulation of the path drawn by the

geometric pattern. Given the mechanistic nature of the origin of systematic movement,

periodicity or steady changes should be found in some of the parameters, for example,

distance to the origin over time, length travelled between steep turns, distance from the

origin, etc.

38



Figure 2.13: (a) An example of systematic movement, (b) systematic movement plus noise and
(c) regularity in the path that can give it away as systematic movement.

2.4.3 Cues and working memory

Cue-based mechanisms attempt to relate the way in which an organism moves to its sen-

sory capacity as well as the particular spatial arrangement of relevant information in order

to determine the mechanisms employed to sample information and the accuracy of the de-

cisions involved. For this, a map of the stimuli is needed with a resolution relevant to the

organism’s discerning capacity, as well as a movement record that is fine enough to relate

directional changes of the organism in response to changes in environmental variables.

For instance, the migration rate of the pseudo-plasmodia that drives the thermotaxis of the

slug Dictyostelium discoideum. The migration patterns of these slugs display strong de-

pendence of the range of temperature, moving only when located within a given range of

temperature values and stopping their movement in higher temperatures (Poff and Skokut,

1977).

Due to their disperse nature, many stimuli occur in gradients, where intensity de-

creases as a function of the distance from the source. The movements an organism makes

while responding to a gradient can either be classified as a kinesis or a taxis; they are

considered positive when moving towards the source or negative if moving away from the
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source. Taxis and kinesis are among the first orientation mechanisms derived from study-

ing movement. They are particularly well described, classified and extensively illustrated

with examples in the classic works of Fraenkel and Gunn (1961). The main difference

between these orientation mechanisms is that in a taxis, orientation is achieved by move-

ment with a directional aim while during a kinesis an organism manages to approximate

a target by means of an increased turning frequency. As the organisms approach the de-

sired value, movements might become increasingly accurate (reviewed in Benhamou and

Bovet, 1992).

Gradients should disperse in concentric circles, yet physical obstacles in the surround-

ings, i.e. water or wind currents frequently shape them into linear plumes. When inside a

gradient, the edges can be detected by a steeper drop in the range of the stimulus values,

thus producing a corresponding change in behaviour. Movements towards the gradient

source are oriented in a direction perpendicular to the gradient’s edge. Zigzagging or

counter-turning is the succession of alternating left and right turns, and is a common fea-

ture of the movements flying insects use to track an odour source (Kennedy, 1983). An

illustrative example of the orientation mechanisms used within a gradient is provided by

Baker and Kuenen (1982), where they describe the zigzag fashion movement used by

male oriental fruit moths whilst flying along a stationary pheromone plume.

One of the most fundamental mechanisms for orientating in a gradient is to com-

pare the difference between subsequent timed samples. This is where working memory

becomes important - by sampling information, any current sensorial value must be com-

pared to those sensed in the past in order to orient. Therefore, a positive difference can

be followed to reach (or turn around to avoid) the source while a negative one can be

used to turn and correct (or continue along to escape) the source. By increasing the sam-

pling points (the information stored in working memory) it is possible to achieve a more

accurate navigation through the gradient.

For instance, the neural model of Mori and Ohshima (2002) for Caenorhabditis el-

egans thermotaxis involves mechanisms regulated by two interneurons in opposite di-

rections: a difference in one direction positively stimulates the other direction to move
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towards the source. The number of sampling points needed to track a source is small.

This can be observed in paths resulting from the implementation of the algorithms of

model cricket phonotaxis (Webb and Scutt, 2000) and lobster inspired, odour-tracking

underwater autonomous robots (Atema, 1996). A crossed stimulation of sensors and mo-

tors allows the source of a gradient to be tracked down by measuring intensity at every

time step. When the difference is not informative enough, random movement may ensue

to produce a significant difference on which to act. Termites move randomly until detect-

ing the odour of food sources: when these insects forage, a successful exploratory path

leaves a pheromone recruitment trail, which becomes increasingly conspicuous as more

individuals join in (Reinhard et al., 1997).

As opposed to the type of changes provided by graded stimuli, some stimuli are simply

detected in one sudden moment. Such is the case of visual (the sight of) or tactile cues

(contact with) that may present an effect on the movement choices. In terms of movement

records, the appearance of a visual cue or landmark can be monitored by a sudden change

in the movement features, for instance, the sudden switch of a zigzag movement to a

linear trajectory. In order to establish the association with the visual cue, it is possible to

measure whether the distance between the path where the switch appears and the position

of the landmark is coherent with the visual range of the organism. A linear path towards

the visual cue indicates that it serves as a landmark while a path parallel to the cue shows

that by following the cue it is possible to reach a particular point, such as an opening

on the side of a large wall. Movement can follow more complex rules if memory comes

into play. A visual cue might be associated by memory with the presence or absence

of other stimuli and so forth, blurring the relation between the stimulus and movement.

Nevertheless, it is extremely important for some organisms, as Ettiene et al. (1996) argues

in a review explaining how mammals update their position using an array of cues derived

from their locomotion to return home, but rely on visual landmarks to keep an accurate

reference as distance from the point of origin increases.
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Movement in bounded spaces

Contact cues define the area where movement may occur. This is frequently encountered

in experimental situations, where arena walls influence the shape of movement by pro-

viding limits around the area of movement. Experiments in bounded spaces often leave

unexplored the question of how exactly animals are using these boundaries, and whether it

is contributing to the overall behaviour in the experiment (Andreassen, 1996). However, it

is clear that arena boundaries may shape a path into a peculiar geometry, force organisms

into corners and provide more information than was meant to be included in the study.

For instance, in combination with a thermal gradient, a wall can help to establish a linear

cue upon which to compare values of the gradient, like the newborn pups moving along

the boundaries of an arena when placed on a surface with a thermal gradient, where they

use the walls as a spatial referential thermometer (Pacheco-Cobos et al., 2003). In other

cases, boundaries can work as bouncing surfaces, marking the obligatory turning points

to be made in order to be kept inside safe or resourceful areas (Rosetti et al., 2010).

While random walk models dictate that it is not likely that a walker should follow a

boundary, some organisms are often heavily dependent on boundaries for spatial refer-

ences (Jeanson, 2003). Such is the effect of boundaries on newborn animals, whom have

not developed many of the senses and thus, rely heavily on tactile stimuli to orient them-

selves. Also, some animals live in tight spaces and avoid open spaces. Such is the case

with rats placed in bounded environments in order to perform anxiety tests that quantify

the time spent near the wall or in the arena centre (Treit and Fundytus, 1988). Also, their

use is not only circumstantial, they can provide useful information for simple orientation

mechanisms, such as protection from the cold or predators and generally contribute to

proprioception. Insects of the members Trichogramma genus, use the thigmotaxis along

the edges of a leaf belonging to their host plants, while placing eggs all along the perime-

ter (Gingras et al., 2008). This may be a simple mechanism to maximise the area where

the eggs are placed. The simplicity of the reaction to borders observed in biological sys-

tems has inspired work in artificial agents, due to the ease of implementation and efficient

navigation in situations where physical obstacles abound (May et al., 2006).
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Amongst the main mechanisms that can be identified in bounded environments are

the proper thigmotaxis or wall following behaviour, which is movement that occurs con-

sistently along the borders or sharp turns while approaching a boundary. If movement is

permanent and linear along the border it can be considered a straight line as the bound-

ary reduces the directional alternatives of movement (Neumeister et al., 2004). Whereas

when movement occurs on and off the bounds it is possible to compare the characteristics

between the two places in order to understand the effect and the decisions involved in

following and/or in detaching from the wall.

2.4.4 The case of foraging

Movement between patches

For very long searching bouts, it is possible to distinguish differences in the searching

patterns when organisms are inside and outside a resource path. Changes in local resource

density has been suggested as a mechanism to decide when to leave a particular patch

(Charnov, 1976; Stephens and Krebs, 1986). Changes in time interval between collections

produce consequent modifications of the turning and movement rates, leading to changes

in foraging intensity.

Generally, it is assumed that foraging intensity can be quantified by the convolution

of a path, an index that increases as turning rates increase or larger turning degrees appear

more frequently. It is possible to calculate the tortuosity for different intervals of a path

to try to identify the patch crossing segments and compare their characteristics with those

segments involved in exploration or where the collection is marked by significantly fewer

collection points. Tortuosity is the ratio of the distance travelled between two points to

the beeline between these points. It is a measure of how much a path differs from linear

movement. For instance, if an organism leaves it’s home to forage, it can be calculated as

the ratio of the foraging path to the linear distance between all the sequence of collection

points:
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T =

√
(xi+1−xi)2+(yi+1−yi)2)√

(xci+1−xci )2+(yci+1−yci )2
(2.13)

Where xi, yi are the coordinate points defining the path and xci , yci are the coordinate

points defining a sequence of linear distances using fewer coordinate points than the path

(for instance, those points that mark collections.) Sinuosity can be increased when forag-

ing inside a patch to maximise area coverage, but not as much as to make the forager go

over its own path and visit the same place repeatedly (Benhamou, 2004a). The sinuos-

ity of the search path corresponds to the amount of turning associated with a given path

length and is then given by:

S = σ√
p

(2.14)

Where σ is the variance of the turning angle distribution and p is the constant step size

(remember, a path can be rediscretized). This calculation of sinuosity involves a constant

step length and a turning angle with a null mean. A general definition of sinuosity, that is

able to include any level of turning angle dispersion and a randomly variable step length

follows:

S =
[
p(1+c

1−c + b2)
]

(2.15)

Where c = exp(−σ2/2) and b =
∑n
i=1(li − l̄)2 or the variance of the step length.

For instance, clown fish larvae display a clear shift in the complexity of their swim-

ming paths after the onset of feeding: from a linear ranging mode when looking for a

patch, they turn into a highly convoluted searching mode once a patch is located, also

increasing their speed when a patch is found (Coughlin, Strickler and Sanderson, 1992).

Similarly, ruddy ducks usually slow down and increase tortuosity and thus search intensity

in areas with high concentration of a resource (Tome, 1988).

44



Movement inside patches (area restricted search)

By mapping movement paths over environmental variables, such as the availability of

resources, it is possible to detect when the animal enters a resource-rich area and perhaps

with enough detail, even the individual events of resource collection. Therefore, it is

possible to relate the changes in movement characteristics to the changes of the resource

spatial configuration.

Changes in the movement characteristics may be identified as mechanisms to increase

the possibility of encountering a resource, such as slower movement, more scanning activ-

ity, smaller steps and larger turning angles. These mechanisms help an area concentrated

search to maximise efficiency by matching the resource distribution or density within a

patch. Regularities can be deduced by working out the changes that collection imposes

on movement characteristics. In a given sequence of collections, the properties of the

distribution for a particular characteristic of movement may be shifted dynamically after

a few encounters to adjust performance during the foraging bout.

These mechanisms can be defined using the concepts of fast and frugal heuristics de-

veloped by Hutchinson and Gigerenzer (2005) and the framework given by the statistical

decision theory proposed by Dall et al. (2005). Managing the amount of information

to which an organism is exposed while foraging to produce an optimal decision seems

a near-to-impossible task; and might be a futile one if the costs of the effort outweigh

the benefits. Rather, it can be less costly to make decisions with a simple set of rules-of-

thumb, influenced by few variables and little or no memory processing, while achieving

an efficient solution. This behaviour can be observed by tracking modifications in the pa-

rameters of the turning angle and step size distribution along changes in resource density.

For example, a rule of thumb to follow during area concentrated search is to exploit

heterogeneity of distribution by slowing down when a resource is found (more resources

might be near), but increasing speed could result in a better search if the resources are

uniformly distributed (Krakauer and Rodrı́guez-Gironés, 1995). Fortin (2002) showed

how short term sampling of the quality of resources allows bisons to modify the charac-

teristics of the searching paths to invest more effort in searching in areas with high quality
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resources. Haskell (1997) studied how ferrets finely tune the characteristics of the search

paths during area-concentrated search by lowering the sinuosity as resources become less

clumped. In a classic example, Smith (1974) observed that scrubs performed small zigzag

movements after encountering a resource.

2.4.5 Memory and movement

The role of memory in shaping foraging behaviour has been extensively studied. Until

now, the discussed strategies have mainly dealt with the attempt to make the most out

of reduced amounts of information, where resource distributions are depleted on a single

visit, and thus have little use for more than working (or short-term) memory. However,

several organisms commonly forage in the same area, returning to search the places where

they have found food in the past. In these cases, landmarks and environmental cues help

them navigate to particular sites. The situations described in this section are viable for

organisms exploiting static resources in the same place, that are not depleted within a

foraging bout or that can be regenerated within short periods of time.

There are numerous experimental reports that confirm the influence that memory has

in shaping movement. One way to evaluate the effect of memory is to quantify the char-

acteristics of movements occurring in the same location when resource quality changes.

Noda et al. (1994) observed how planktivorous reef fish, Chromis chrysurus searched in

a slow tortuous pattern when well within their normal feeding sites, that is, places where

prey were abundant on previous occasions, but independently of the current presence or

absence of prey, whereas their movement between foraging regions was quick and un-

eventful. On the other hand, some animals show a precise recollection of places that held

resources and are able to travel in foraging paths that maximise collections by visiting

only the locations where food was found. For instance, in an experimental setting, ca-

puchin monkeys that have been exposed to a series of platforms of which some included

food; when presented to the experimental setting again they visited only feeding platforms

that included food on previous occasions (Janson and Di Bitetti, 1997)

The use of memory in organisms foraging inside patches, such as bumblebees, honey-
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bees and hummingbirds has been the focus of a considerable amount of research. Many

of the aspects we know about foraging choices and memory come from research on these

species. This is the result of highly versatile experimental situations, in which a great

number of the characteristics of the objects holding the food (color, quality and position)

can be manipulated. For instance, to distinguish the roles of short and long term memory,

Greggers and Menzel (1993) showed that the choices made by the bees depended on the

short-term memory used for choosing the next feeder but on long-term memory when it

came to visit feeders yielding a high reward. Also, memory in B. terricola contributes

in avoiding previously visited flowers (Heinrich, 1978). The work by Saleh and Chittka

(2007) on honeybees show that while experiencing a stable array of feeding sites, vis-

its occur in a repeatable, stable order or traplining, in a near-neighbour sequence, while

experimentally changing the positions of the feeding array increases the frequency of re-

peated visits to the same sites as well as the search times. Also, the bumblebee, Bombus

flavifrons, uses resource distribution for direct foraging, performing nearest neighbours

movements (Zimmerman, 1979).

Another interesting mechanism involved in foraging relates to cache recovery. On oc-

casion, some animals obtain more food than it is possible to eat, and must save it for later.

The hidden food must be later retrieved and thus, memory plays an important role. The

precision with which cache is localised is outstandingly accurate and well documented.

Accuracy depends on the time after which species retrieve: Some tits (of the Parus genus)

can locate and consume the food within 24 hours while other species, like the nutcrackers

birds of the Nucifraga genrus, can take months before retrieving food (reviewed in Kamil

and Roitblat, 1985). Apparently, landmarks are crucial to success in locating caches, as

Kamil, Balda and Good (1999) describe for the orientation movements used to infer the

memory mechanisms associated with retrieval of hidden food.

Even in short sequences the calculation of all possible paths becomes a costly process

memory-wise and thus, a futile exercise where energy is certainly better invested in other

processes. Surprisingly, vervet monkeys that randomly visited locations of a feeding array

where food was placed, have been shown to be able to compute the shortest path between
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items (Cramer and Gallistel, 1997). Perhaps there are clever heuristics to compute an

efficient solution, such as variations of the nearest neighbour strategy that guarantee to

produce an efficient path and that once in a while hit the optimal path by chance alone,

and save time and energy in the computation of more expensive solutions.

2.4.6 A word on identification of mechanisms

An interesting property of mechanisms is that they have strong individual and context-

dependant components. In many occasions, a mechanism is determined by an interpre-

tation of the relationship between inputs and outputs. The hypothesised mechanism may

change depending on the internal state of a given individual at different moments: more

risk-taking strategies can appear under stressful conditions. This is especially important

in the case of experimental situations - organisms may find task-specific solutions to a

problem under experimental conditions, but never have a chance to use it in the wild.

2.5 Summary

Given the availability of new methodologies that allow to record the movement and lo-

cation of organisms, to know and understand how to use the tools, study, and analyse

of movement paths of individual organisms is a priority for any researcher attempting to

perform experimental work in this area. As can be observed from the scope of this chap-

ter there is a vast framework in which movement paths can be interpreted. It has been

shown that paths can be intuitively useful, given that their shape is intrinsically linked to

the way in which organisms use their space. Also, paths have simple, easily quantifiable

components, which are common to the movement of all organisms. This chapter reflects

an effort to bring together methods, models and mechanisms related to path analysis and

to use them as the background for constructing the experimental work. The organisation

in the following chapters, including the methods used for pre-processing the records, the

analysis of the performance based on path descriptors and the mechanistic interpretation,

hold a clear resemblance to the structure of this chapter. The reason for this resemblance
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is that this chapter was successfully used as a flow-diagram for the experimental work and

may help guide future work.
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Chapter 3

An experimental test on searching

behaviour

3.1 Introduction

The study and detailed description of search behaviour is an integral component for the

understanding of how organisms interact with their environment and, more specifically,

to infer the decision processes followed during searching (Bell, 1991). There are a large

number of biological studies illustrating how various species search, which place most

emphasis on the efficiency of the search strategies used (Pyke, Pulliam, and Charnov,

1977). Questions regarding the efficiency of a chosen search strategy are hard to formulate

in conditions of unknown density and distribution of resources, as is often the case in

real life search settings. Nevertheless, some findings make it possible to attribute an

adaptive value to certain decision-making strategies, suggesting in turn the existence of

an evolutionary pressure on searching efficiency (reviewed in Pyke, 1984). For modern

humans searches usually have more relaxed constraints and reduced costs, less severe

consequences and a more subjective benefit scale. However, many of the mechanisms

that guide our search behaviour today may have been shaped during harsher times and

therefore might reveal a tendency for efficiency (Kaplan, 1992).

In certain circumstances human movement appears to exhibit features of a random
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process, as in the study of the displacements estimated by following the temporal records

of the location of marked paper currency (Brockman et al., 2006) and by tracking cell

phone use (González et al., 2008), which revealed a dispersive processes of Lévy char-

acteristics combined with regular visits to the same place. Whether at finer length scales

the diffusive properties of human movement continue to be an accurate description of the

process, is an interesting question. Indeed, at finer scales one could anticipate that en-

vironmental features, cognitive components and short-term goals can induce systematic

behaviours, which would deviate from the simple random processes that apply at larger

scales. In fact, examples in nature, where systematic movements allow animals to in-

crease the probability of finding their target, are few, but well documented such as the

searching behaviour of Cataglyphis ants. When disorientated, these ants move in loops of

increasing size in various directions that systematically cover the area, thereby increasing

the probability of finding the nest (Wehner et al., 1981). Also, there is plentiful docu-

mentation on how organisms adjust their searching strategy to local resource conditions,

especially density (Viswanathan et al., 1999; Zollner and Lima, 1999; Bartumeus et al.,

2005). Adjusting tortuosity and speed (Fortin, 2003; Mårell et al., 2002; de Knegt et al.,

2007; Haskell et al., 1997) or other searching strategies (Bartumeus et al., 2007; Thomp-

son and Fedak, 2001) can increase the resource encounter rate, thus, improving the yield

of the search.

Here, human search behaviour is studied in order to observe whether search paths

were constructed through a systematic process sensitive enough to allow adjustment to

the underlying resource distribution, (e.g. distance between targets), a topic for which

there is far less documentation available (Gross et al., 1995). The spatial structure reflects

the characteristics of the distribution of resources in the physical landscape in which the

search takes place (McIntyre and Wiens, 1999). For modern humans it is common to

search in environments in which geometric regularities are present. These regularities

may be exploited to give structure to a search and are often useful in predicting the loca-

tion of a given target. However, we found that spatial regularity of the target distribution

was largely ignored, or went unnoticed, and that searching appeared to be governed by
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rather simple rules, influenced by a few physical constraints such as the arena size.

Due to the inherent problems in obtaining detailed recordings of search behaviour,

few studies have focused on human movement in dimensions that allow a realistic rep-

resentation of space and the cognitive processing involved. Also, the energetic costs of

experimental situations usually differ considerably from real life. For instance, human

foraging behaviour has been studied in virtual environments, where behavioural features

are expressed in computer simulations (Goldstone and Ashpole, 2004). Multiple partici-

pants where simultaneously tested in a foraging task taking place in a virtual environment,

consisting of a grid on a computer screen. Different experimental conditions were created

by allowing the searcher to see the resource and the other searchers or by limiting the

visibility of the searcher on the screen as well as temporal indicators of the collections it

made. Testing conditions also varied the ratio of abundance of the two available patches.

Researchers explained that each food point was equivalent to a lottery ticket to win a prize

at the end of the test. Participants exhibited under-matching, that is the proportion of par-

ticipants in every resource pool failed to match that pools’ abundance of resources. Also,

the participants exhibited migrations of participants from one pool to another when par-

ticipants were failing to collect sufficient resources. Although experimentally accessible

and hugely versatile, these approaches have the disadvantage that the representation of

space, the cognitive processing involved, and the energetic costs differ considerably from

real life situations.

Studies that require the participants to physically search are usually conservative re-

garding the spatial dimensions available, since they are conducted within the confines of

laboratories, and provide little opportunity for efficient strategies to emerge. For example,

pathways have been recorded for humans searching for a sensor hidden under a carpet,

similar to rats searching for a hidden platform in a Morris water-maze (Bohbot et al.,

2001), or searching for a marble hidden inside one of many film containers distributed on

the floor of a room (Gilchrist, North and Hood, 2001). Gilchrist and colleagues (2001)

individually tested participants in a 3x3 m arena, where they had to locate a marble hid-

den inside a film canister. Individuals were tested twice for every display size (number of
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canisters in the room); in one of the tests a marble was present and in another there was

no marble. Participants were required to indicate when they had finished. They found that

many of the aspects of the searchers’ movements were similar to the aspects of the eye

movement during visual searches, meaning that the amount of time doubles when there

is no marble in the canister array and that search time grows linearly with the number of

items.

Smith, Hood and Gilchrist (2005) individually tested children (5-8 years old) using a

similar setup. Inside a 4x4m area surrounded and obscured by curtains, individuals were

presented with a regular grid-like array of 49 (7x7) switches on the floor. Of these, only

16 switches were lit with a green light, and only one of them would, when turned, activate

a red light. On one test, children had to turn the switches with their dominant hand,

while on another they had to turn them with their non-dominant hand. Searchers with the

non-dominant hand took longer and had more revisits than those with the dominant hand.

The findings of such experiments confirm the relational increment between search time

and the number of items, and suggest an important role for memory, as when participants

return to review previously visited targets (Smith, Hood and Gilchrist, 2008).

In this chapter a new experimental approach is described, in which it is possible to

study basic aspects of human search behaviour. In particular, the questions addressed are

related to the decisions involved in the searching procedure, i.e., whether there are any

systematic aspects and how does this change with conspicuity and the amount of infor-

mation in the distribution. In this setup, an attempt is made to simulate a simple search

situation reminiscent of childrens’ games such as hide-and-seek or the Easter egg hunt,

where constraints are few and relaxed, and the rewards are of no energetic or economic

value. Rather than introducing an artificial reward for the searcher’s performance (such as

money or candy), this experiment aims to explore a basal condition which also occurs nat-

urally since searching does not necessarily involve a monetary or energetic benefit. Fur-

thermore, a large outdoor setting was used and, as in previous studies, the effect of target

distribution and target conspicuity on participants search performance was tested. Paths

were recorded using a common tracking device, such as the ones described in the previ-
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ous chapter, more precisely Global Position Systems (GPS) technology, which already has

been successfully applied to the study of human locomotion (Terrier and Schutlz, 2005;

Shoval and Isaacson, 2006). Coarsening procedures described in chapter II were used to

pre-process the data and deal with some of the resolution issues of the GPS. Finally, a

comparison between the participants’ behaviour and that of a simple statistical model was

made, in order to gain further insights into the structure of the search process, and the role

that cognitive aspects may play in this. In order to achieve this, traits of the probabilis-

tic models were coupled with a mechanistic decision process, such as those described in

chapter II.

Since the experimental task was reminiscent of a game, testing children was consid-

ered to be an adequate choice. A small group of children was used in a pilot study to

determine the age at which children showed to perform well (finish the hardest version

of the task in less than 8 minutes), locate the targets and understand the instructions.

Amongst the benefits of testing 9-11 year old children are: 1) having participants with

a positive attitude towards outdooractivities (Smith, 1984; 1986), 2) to ensure the task

would be understood as a game, thus minimising the influence of possible speculation

about the researchers’ motives, and 3) to use an age group with well developed spatial

abilities (Linn and Petersen, 1985). This opens the possibility to later explore younger

and older age groups. Also, because of their developmental history or their reticence to

participate in games, adults might have more varied strategies, while children of this age

might still be developing their own. Very little work has been done in testing the search

strategy of children, and even less so in dealing with the strategies through the analysis of

searching paths, hence, the nature of this study was exploratory. The principal features of

the search process at a certain length scale were mimicked using a simple computational

model.
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3.2 Methods

3.2.1 Searching experiments

Experimental setup

The test included 36 children (a total of 18 boys and 18 girls, three boys and three girls

in each of the six test conditions described below) ranging from 9 to 11 years old and

attending 5th grade of primary school in Mexico City. Search trials were carried out

during school hours (9 am to 1 pm) with pauses during break-time. Fair weather and

mild temperatures prevailed throughout the study. Experiments were carried out on one

half of the grass soccer field of the childrens’ school, a rectangle 60 x 80 m (4800 m2)

with clearly visible markers (orange fluorescent traffic cones) at each corner. Twenty golf

balls were placed across the test area according to either the same random or to the same

regular distribution (figure 3.1 a and b, respectively). These distributions were chosen

as simple alternatives: a random distribution holds no structure while the regularity of

the regular distribution holds information concerning how the targets are arranged. The

two distributions were computationally determined using a 1x1 m lattice. The physical

placement of the balls was aided by chalk marks at 1m intervals along the arena perimeter,

and the consistency of their location across trial was ensured by placing a small marker

peg below each ball. Three levels of conspicuity were implemented but only one was used

per trial: balls painted green to match the grass represented the cryptic level, unpainted

white balls represented a semi-conspicuous level, and unpainted balls plus a 1m pole with

a flag marking their location, which was visible from every point in the arena, represented

the maximum conspicuity level (figure 3.1 c-e). The height of the uncut grass covered the

whole diameter of the balls, making them difficult to detect from a distance.

Each child was tested individually and brought directly from the classroom to the

experimental field by one of the experimenters. To minimise participants communicating

their experiences to classmates, children were taken from separate classrooms. Upon

arrival the child was verbally instructed to find and collect, in a bag, as many balls as

possible before the experimenters told the child to stop. A sample of the targets was
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Figure 3.1: Summary of the experimental setup: (a) the random and (b) the regular distribution of
the twenty balls, and (c-e) the three levels of their conspicuity.

shown, either a white or a green golf ball, and the role of the flags on the field was

explained when appropriate. Children did not know the number of targets nor the 8 minute

test time. Participants started to search from the midpoint of the fields southern short

border, and two experimenters positioned at the starting point observed the search and

recorded the time at which each ball was collected. Trials were ended after 8 mins or

when all balls had been collected.

A GPS device (Garmin GPS V) set to record the child’s position every second was

placed on a belt around the child’s waist and activated. The open test area ensured unin-

terrupted satellite reception. For a more extended discussion on the characteristics of the

GPS please see appendix B.

Procedures conformed to the guidelines for human research of the Instituto de Investi-

gaciones Biomédicas, Universidad Nacional Autónoma de México, and verbal or written

consent was obtained from the children, parents, teachers and school authorities.

3.2.2 Path analysis

To reduce inherent error in the GPS recording of search paths and to help identify possible

patterns, path records were coarsened using the procedure described in chapter II. The

coarsening procedure involves joining path segments with small turning into one step by
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Figure 3.2

increasing the width around the line segments (figure 3.2 a-c) so that only main changes

of direction remained. The width used to coarsen paths (3 m) was chosen based on the

mean variance between individual collection records.

Searching was quantified using the following descriptors: Total time spent and dis-

tance traveled, which are indicators of the effort needed to perform the search; for ex-

ample, for the cryptic targets we expected longer searches. These descriptors provide a

transparent way to establish differences in the cost of the search process Efficiency, calcu-

lated as the distance traveled over the number of targets collected, providing an estimate

of the cost per target collected Total path self-crosses, which is a gross estimator of per-

formance; searchers who rarely cross their own path make better use of their effort. A

straightness index (linear distance between collection points divided by actual distance

traveled by the searcher between those points), which provides an indicator of the diffi-

culty of the search, and an optimality index (linear distances between the actual sequence

of collections divided by the linear distances between the shortest sequence of collec-

tions calculated by simulated annealing (Kirkpatrick et al., 1983; Laarhoven and Aarts,

1987)), which relates to the global efficiency of the sequential collections made by the

searcher. The above descriptors provide indirect information about the economics of de-
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cision making during the search process. To estimate search success we also calculated

the collection rate (balls per minute), and total collections. Collection rate reflects search

efficiency, whereas total number of balls collected gives a global success measure.

Descriptor values across conditions were compared using the Matlab statistical tool-

box (Mathworks Inc, 2008). As most data were not normally distributed (Lilliefors test

for normality) non-parametric statistics were used throughout. Descriptor values were

compared across conditions using Kruskal-Wallis tests followed by post hoc multiple

comparisons with the Bonferroni correction.

As no difference was found on any measure between boys and girls, their data have

been combined. Although this might appear controversial in light of the vast literature on

gender differences in the use of space, it is worth remembering that the children in this

study are young and few, so no conclusions should be drawn from this lack of difference

between genders.

3.3 Collection of data

As can be seen from the analysis in appendix B, GPS technologies offers advantages

and limitations. First, the length scales at which paths were recorded by GPS are to

be analyzed and interpreted was rather coarse, so many of the details of the children’s

behaviour, such as head turns, did not appear on the records. Most outliers in path data

were easy to detect and correct.

Precision, on the other hand, was problematic, since the coordinate values that the

GPS assigned to a similar spot on different occasions could vary up to 15 meters. There-

fore, measures were taken to rely minimally on the GPS for the match between spatial

variables. For instance, the record the position of the targets was not recorded by GPS

and then matched to their location to the path, since the two elements are likely to be

severely de-phased in space. Instead, a more suitable for this technology was to allow the

GPS to record the position of the searcher and then manually record the collection times

while observing the experimental task.
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3.4 Searching performance of the children

In terms of participant interest and involvement, the task was a success. Children seemed

eager to participate since the recruiting procedure. On the field, walking rapidly and

continuously with an occasional sprint. Clearly, their determination and speed were faster

on the conspicuous task. Even though they knew beforehand that no award or prize was

given, on many occasions they asked for a score or the time in they had taken to complete

the task and which was the fastest path so far. After the test, researchers attempted to

engage in a chat about their impressions, whether they had noticed if the targets were

placed in a certain pattern or if they had a particular way of moving about the arena, but

their discourse proved to be very unspecific.

Visual inspection of the coarsened paths suggests that the children walked in essen-

tially straight lines across the arena (e.g. figure 3.2 d and e), and that the factors ac-

counting for the few changes in direction were (perhaps obviously) the arena boundaries

or the detection of a nearby ball and its subsequent collection. Some spontaneous turns

not associated with collections or collisions were also observed. However, the number of

such turns decreased dramatically with the coarsening width, suggesting that they might

contribute to the structure of search paths at fine spatiotemporal scales. Unfortunately, the

resolution of the searchers’ data was not adequate to explore such fine scale structures.

Admittedly, searching is a complex behaviour and the GPS records do not provide

nearly enough detail to make out important aspects, such as head turns which children

may have used to scan the field as they traveled. It is possible to see from the turning

angle distribution of uncoarsened paths that they did have a large percentage of turns in

small angles, thus, in many instances the full body displacements did occur forward in a

semi straight line. This phenomena is captured by the coarsening procedure in the form

of long steps. As mentioned above, quantification of the turning angles revealed that

the children turned near the borders and near collection points, as well as in many other

locations, but the number of turns near locations that were neither a collection points nor

boundaries, diminished greatly after coarsening. However, it is impossible to say exactly

if turns near collections took place before or after the collection was done.
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Figure 3.3: Normalized turning angle distribution for both uncoarsened (gray background) and
coarsened paths (white background). Histograms show the distribution of internal
turning angles (black bars) and the distribution of turns occurring within 3m of the
boundary (white bars)
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The distributions of turning angles for both coarsened and uncoarsened paths are

shown in figure 3.3. While the turning angle distribution for the uncoarsened paths ap-

peared to show some degree of persistence, i.e. a tendency to take steps roughly in the

direction of the previous step, the details fall below the current spatial resolution. After

coarsening, all the turning angle distributions flattened considerably, as expected.

The distributions of turning angles for both coarsened and uncoarsened paths are

shown in gure 3.3. While the turning angle distribution for the uncoarsened paths ap-

peared to show some degree of persistence, i.e. a tendency to take steps roughly in the

direction of the previous step, the details fall below the current spatial resolution.

The self-correlations of turning angles and step lengths of coarsened and uncoarsened

paths are shown in gure 3.4. While the turning angles appear to have a self-correlation

value of around 0.3 in the case of uncoarsened path, this disappears with a small coarsen-

ing width. Step lengths, on the other hand, have very low correlation values even when

uncoarsened and even lower when coarsened.

The flat (uniform) turning angle distribution and the uncorrelated turning angles pro-

vides clues as to the main decision processes involved in the searching path and greatly

simplifies statistical modelling efforts.

Search performance varied slightly for some descriptors between the random and reg-

ular distribution of the targets (significance p <0.05, Mann-Whitney test, but p<0.05,

multiple comparisons using a Bonferroni test), but the direction of difference was not

consistent across descriptors and the degree of difference was generally not significant.

On the other hand, performance descriptors varied consistently with conspicuity, with

significant differences found mainly between the cryptic and the conspicuous conditions

(figure 3.5).

In general, the lower the conspicuity of the targets, the longer the search paths (fig-

ure 3.5a), the more time spent searching (figure 3.5b), and the lower the efficiency of the

searching process (figure 3.5c). Furthermore, participants crossed their own path more

often (figure 3.5d) and had more tortuous paths (figure 3.5e) when searching for cryptic

targets. Nevertheless, in all conditions the sequence of collections resulted in an optimal-
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Figure 3.4: Autocorrelation functions for the turning angles and step sizes of the children paths. A
small correlation can be percieved in the sequential turning angles of the uncoarsened
paths. This autocorrelation is no longer noticeable after coarsening.
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Figure 3.5: Comparison of path descriptors across conditions. ∗p > 0.05 (See text for explanation
of statistical tests)
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ity index of 0.6 or larger (figure 3.5f). Finally, children collected fewer cryptic balls per

minute (figure 3.5g) and often failed to collect all the balls (figure 3.5h). The percentage

of times that participants collected the closest ball ranged from 50% in the random cryptic

condition to 70% in the regular conspicuous condition, showing that the paths departed

from a nearest neighbor search.

3.5 The bouncing search model

To model childrens search behaviour a numerical simulation was implemented following

the main features of the children searching paths, such as the uniform turning angle dis-

tribution of the coarsened paths and the long steps,that reflect the persistent movement of

the children when not interrupted by a collection or a boundary: Agents move in straight

lines until they collide with a boundary or detect a target. After boundary detection or

collection of the target, a new direction is assigned randomly from a uniform angular dis-

tribution, with the restriction that agents do not leave the arena (bouncing; figure 3.6a).

Target conspicuity is represented in the model by a circle (of radius rd) that allows detec-

tion of the target located at its center (figure 3.6b). Intersection of the circle’s perimeter by

the agent’s path will result in target collection. To simplify calculation, when a collection

occurs the path is redefined as the straight line between the previous bouncing point and

the center of the detection circle.

While this barely changes the performance of the agent in conditions with very small

rd values, it is important for the large rd values, where it introduces a false two step

collection process: one step goes from the point of origin to perimeter of the circle of

detection and a second step extends from the perimeter of to the center the circle of de-

tection. Collected targets are removed from the target array. If several detection circles

are intersected by the agents path, only the closest target is assumed to be collected, and

information about other targets is discarded. Thus, as the simplest implementation of the

process, the model assumes no memory or learning in the searching mechanism.

A total of 10,000 simulated paths were calculated for each rd from 1 to 70 m in 1

m intervals. Arena dimensions, target distributions and test time were the same as in the
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Figure 3.6: Main features of the bouncing search model (a) The agent moves in a straight line
until intersecting a boundary (1.2), that produces an effective step between the last
previous position (1.1) and the collision point (1.2), after which a new angle is chosen
(1.3) (black line), and the next step is calculated (black and dashed line). (b) The
agent moves in a straight line until intersecting a circle of detection (2.2), producing
an effective step between the previous position (2.1) and the collection point (2.3)
(black line), after which a new angle is again chosen (2.4) (black and dashed line).
The original intersecting step (dashed line) is discarded. See explanation in text.

experiment. Search times were calculated from distance travelled, assuming a speed of

v = 1.7m/s, corresponding to the minimum mean velocity of all experimental conditions.

By considering this velocity, we give the model the same time window as the slower

children. Furthermore, the maximum difference between the average speeds was about

30 %, so results do not vary much from one case to another.

3.6 Behaviour of the bouncing search model

The model produced smooth curves showing a clear relation between the rd values and the

distance travelled, the main descriptor chosen for comparison with the experimental data

(figure 3.7). In these curves, three broad regions may be identified: a region with rd =

1 − 5m, characterised by paths commonly composed of long, uninterrupted steps, and

trials that finished before all targets were collected, a second region with rd = 6 − 12m,

where small changes in rd resulted in rapid shortening of the search paths and collection

of all targets, and the third region with rd > 12m, where the distance travelled slowly

reached a plateau as every step resulted in intersecting with a circle of detection and the

collection of all targets in a nearest neighbour pattern. The model proved to be robust,
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Figure 3.7: Matching of the experimental and model data: The continuous line represents the
mean distance travelled (grey area s.d.) produced by the model, and each circle repre-
sents data from an individual participant in the corresponding experimental condition.
The mean distance travelled by each participant was used to estimate an rd value by
matching it to the closest position on the curve generated by the model.

since changing the mean velocity of agents, the probability of collecting a detected target,

or the probability of altering the direction without intersecting a boundary or a centre of

detection resulted in curves with similar properties to the ones obtained with the original

bouncing model.

3.7 Comparison between the model and the children’s

behavior

For this, the main descriptor of search behaviour considered was total distance travelled.

It was possible to estimate each child’s rd value by matching its distance to the nearest

value on the curve produced by the model (figure 3.7).

The values for the distance travelled by the search paths of the model was averaged for

every rd from 1 to 70m. Each average represents 10,000 runs of the model using a single

rd. This produced a curve in which the distance travelled is plotted against the rd values.

For the distance travelled by every child, a match was found amongst the average distances

travelled by the model. This match indicated the rd value that most likely corresponded

to the conspicuity of the targets for the child. The rd values resulting from matching all
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the children values from a single condition were used to calculate a different subset of

descriptors with which to compare the other descriptors of the children.

An illustration of the distributions of distance travelled by the children and the model

agents can be obtained from figure 3.7, where the distances traveled by the children are

matched to their corresponding rd value using the results of the model (the grey area in

the figure represents the standard deviation of the distribution of the distances travelled).

This allowed us to estimate the mean rd for each of the six experimental conditions,

giving a minimum rd of 7 m for the cryptic condition and a maximum rd of 16 m for

the conspicuous condition. Children’s turning rate did not differ significantly across con-

ditions, but showed a tendency to decline with increasing conspicuity. In contrast, the

model showed no such tendency with an overall constant turning rate for experimentally

equivalent rd values. This suggests that the children’s turning rates were influenced by

factors not represented in the model.

In order to compare the search behaviour of the children and the model, a subset

of the descriptors was calculated for the model using pooled rd values for which the

total distance travelled matched the corresponding child’s value for each experimental

condition (figure 3.8).

The overlap of values that the pooled rds yielded is consistent (i.e. the children data

points fall within the range of the values calculated for the model, which is of no statistical

value but denotes an interesting trend) with the descriptors of the childrens search paths,

which though there were a few instances in which single childrens path descriptors fell

slightly outside the range predicted by the model.

3.8 Discussion

A simple behavioural model was implemented using what was identified as the constitu-

tive events of the search process performed by the children, namely movement in straight

lines with turns in random directions when close to the field boundaries or at collection

points. We stress that the model was designed to mimic what appeared to be the individual

events that gave rise to the search path, without recourse to memory or to other cognitive
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Figure 3.8: Boxplots of path descriptors generated by the model for the pooled rd’s corresponding
to the childrens matches of distance traveled (shown in Fig 3.7); horizontal bars give
the median, horizontal borders of the box give the 25th and 75th percentiles, and the
whiskers extend to the most extreme data points. Each black dot represents the score
of a child for that particular descriptor. Given the inner workings of the model, only
some of the performance descriptors are comparable to the childrens search paths. For
clarity, outliers for the model data are not shown.
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processes. A more detailed model could be implemented by including small departures

from this coarse behaviour at small length scales. In spite of it’s simplicity, the resulting

displacement process is intrinsically non-Markovian (due to the collecting of targets), and

thus not amenable to analysis using the usual tools of random walk theory. Further, while

designed to reproduce the behaviour of the children at the level of individual events, the

model was tested by comparing the descriptors of complete search paths generated by the

model with those for the paths of the children. We found that these global descriptors

already matched satisfactorily.

The children’s paths suggest that they made little use of the underlying spatial distri-

butions of targets to orient themselves, if at all. On the other hand, the manipulation of

conspicuity yielded the expected effects, given that searching in the conspicuous condi-

tions resulted in movement in essentially straight lines along the flags, while the cryptic

condition provided a searching challenge reflected by longer paths, longer search times

and lower collection rates. It was notable that most targets were collected in sequences

with an optimality index above 0.6, even in the more difficult experimental conditions,

possibly by using essentially the same searching behaviour, consisting mainly of locomo-

tion in essentially straight lines combined with deflections from the boundary or to pick

up balls. Our data resolution does not allow an accurate account of departures from this

behaviour at finer length scales. Nevertheless, mechanisms operating at finer scales might

exist, which may increase the efficiency of the search, especially in the cryptic condition.

Recording and modelling this fine scale behaviour presents an technological challenge

that may be useful to attempt to address in the future.

The distribution of step lengths suggests an exponential distribution in both the chil-

dren’s and the model’s paths within the dimensions set by the strict borders of the search

field (figure 3.9). It should be noted, however, that the process cannot be described as a

simple random walk with exponential distribution of step lengths. The reason for this is

that as the search progresses, the target distribution changes as targets are collected, giv-

ing rise to a non-Markovian process. Further, it is difficult to use the model to predict how

children would search in larger areas without strict boundaries, although it does present a
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testable hypothesis in which long uninterrupted steps should reflect the dimensions of the

search field (a larger search field makes possible longer steps). While it is rare for forag-

ing models to consider environmental boundaries, this is in most cases the search situation

in the every day life of humans, particularly in urban areas where physical boundaries and

obstacles commonly define the areas we search in.

The children did not appear to detect the structure of the regular distributions. A possi-

ble reason for this could be that the regular properties of these distributions were modified

by the collection events, making the identification of the original structure difficult. An

interesting modification could be to consider patchy distributions, where after visiting

various patches subjects might detect a pattern and upon finding a target, search for others

nearby. Unfortunately, patchy distributions were explicitly discarded as an experimental

possibility in the present study because adequate patches could not be constructed without

the numerical ranking of conspicuity levels.

The findings suggest that, at least in the current scenario, children may instead have

mainly used the presence of boundaries or the visual detection of targets to turn while

searching. Often, the places we search in are bounded spaces (e.g. parking lots, libraries,

supermarkets) and contain information regarding the location of targets (e.g. codes on

library shelves or in parking lots) that could make it less necessary to bounce around

the search space before reaching the target. Still, the bouncing strategy appears to be a

cheap, simple rule of thumb that does not require that one reads signs, memorizes codes

or constructs spatial maps, and requires little or no information to function in unknown

environments (Gigerenzer and Todd, 1999). Future work could focus on the information

acquired during the search, for instance by asking the participants to draw a map of the

location of the targets after completing the task to evaluate whether they are able to detect

the shape of the underlying distribution through the collection of targets.

In conclusion, the behavioural experiment and model described here should prove

useful for the investigation of social and cognitive processes in a variety of contexts.

Even the very simple model employed here proved useful for mimicking basic aspects

of the children’s paths. Increasing the model’s complexity should help identify the effect
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Figure 3.9: Semi-log plot of the normalized frequency of step sizes for the model and children’s
search paths: The frequent occurrence of small steps and the increasing decline in the
frequency of larger step sizes suggest an exponential distribution. Slopes of linear fits
are not significantly different (Children: -0.0065, Model = -0.0071)

of additional factors contributing to search behaviour under more challenging conditions.

Further, changing the motivational context and/or the age group of the participants in the

experiment may help test whether the structure of systematic target distributions can be

detected during the search. Although only a first step, the present study already suggests

that at least basic features of children’s search behaviour can be simulated using very

simple decision rules.
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Chapter 4

Search Behaviour in Patchy

Distributions

4.1 Introduction

In the previous chapter, the planning and testing of an experimental task to record hu-

man searching behaviour in large, open areas was presented. The experimental design

described in the previous chapter was aimed at finding the effect of changing the spatial

distribution and the conspicuity of the targets on several descriptors related to searching

performance. Afterwards, a simple model was built by incorporating what were consid-

ered the main features of the search paths of the subjects, namely, linear movement in

a random direction after the collision with an arena boundary or the collection of a tar-

get. The bouncing search model replicated the searchers behaviour to a great extent and

matched the subject’s descriptors with considerable success.

The results presented in the previous chapter indicate that conspicuity of the targets

has a strong effect on searching performance. Conspicuity, or the approximate distance

at which the targets can be detected, was a property that was only qualitatively ranked

for the experimental tests described in chapter III. However, the experiments and model

described in the previous chapter allowed an approximation to a numeric quantification of

conspicuity values through the match between the distance travelled calculated for every
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rd of the model and the distance travelled by the children. This permitted the design of

new tests to challenge the findings of the experimental task as well as the inner work-

ings of the model, using distributions which presumably provide more information to the

searcher. Such is the case of patchy distributions, where targets are found to be clumped

together, leading to locations with higher density (or patches) surrounded by areas with

lower (or zero) target density. When within a patch, a searcher may be able to estimate the

higher density through measures such as the collection rate or the time interval between

collections and thus, increase the chances of finding more targets by adjusting the search-

ing movements accordingly. A finer search of the area surrounding a collection point may

be achieved, for instance, by increasing the turning rate while reducing the step sizes.

One of the main questions derived from the previous chapter is whether subjects can

detect cues from the underlying distribution or incorporate any cues acquired from their

searching manner. The results and analysis presented in the previous chapter suggests

that, at least in the limited conditions of the current experimental setup, children fail to

detect or choose to ignore the information regarding the underlying structure of the target

distribution. However, it could be argued that the spatial distributions of targets used in

the experiments described in the previous chapter hold either no structure (random) or

were based on regularities that are rarely exploited in normal situations (regular). It has

been argued that patchy distributions are amongst the most frequent distributions found

in natural conditions, thus making them an interesting candidate in which to test human

search behaviour (Rougharden, 1977).

At the heart of the concept for searches in patchy environments lies the marginal value

theorem, or the strategy that searchers should implement to maximise collection efficiency

when in a patch by calculating an optimal patch-leaving time based on the collection

rate (Charnov, 1976). Patch detection and exploitation mechanisms have been described

for insects (Kohler, 1984), birds (Ydenberg, 1984), mammals (De Knegt et al., 2007)

and several other groups. In humans, experiments that try to elucidate the mechanisms

of patch exploitation, via the development exercises, have shown to be interesting. For

instance, in a searching exercise, subjects had to search for words using sets of random
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letter sequences (Wilke et al., 2009). Another test asked subjects to fish in simulated

ponds, so the researchers could study the factors that subjects take into account when

deciding to stay in one pond or to move on to a different one (Hutchinson, 2008). These

studies support the idea that subjects decide to leave a patch by mechanisms other than

the calculation of collection rates, they tend to spend more time than expected in a single

patch, and choose to move away from a patch following a successful collection.

Few studies have attempted to elucidate the decisions involved in the searching be-

haviour of humans in semi-natural conditions, where searching involves the costs of dis-

placement. There are, however, several examples of human searching for resources in

patchy distributions in natural conditions. Rural communities search edible mushrooms

(Pacheco-Cobos, 2010), firewood (Biran et al., 2004) or other edible plants (Ladio and

Lozada, 2000). In urban environments, many resources are arranged in conspicuously

marked patches, such as supermarket aisles, and although searchers easily find their loca-

tion and limits, they rarely deplete them. Since searchers of different backgrounds often

experience patch distributions, the question posed here is whether they can actually detect

a patchy distribution of resources based on the information gathered during their search

procedure and consequently adjust their movements to achieve efficient collections. Also,

if a searcher holds some knowledge about the nature of the distribution, can this result in

a finer search and more efficient collections.

A semi-natural search situation, such as the one presented in the previous chapter,

would not only allow to test whether subjects can detect a patchy distribution, but also

give some indications as to how the exploitation of the patches occurs.

4.2 Methods

In order to expand on the experimental findings of the previous chapter, slight modifica-

tions were made to the experimental setup. On this occasion, the test included 42 children

(21 boys and 21 girls, three boys and three girls in each of the seven test conditions de-

scribed below) from ages 9 to 11 years and attending 5th grade of primary school in

Mexico City. Search trials were carried out during school hours (9 a.m. to 1 p.m.) with
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pauses during break-time. The dates of the experiment on this occasion also coincide with

the end of the rainy season, so fair weather and mild temperatures prevailed throughout

the experimental sessions.

The arena location and dimensions were identical to the ones used in the previous

study. Again, visible markers (orange fluorescent traffic cones) marked the corners of the

arena. Twenty golf balls were placed in the test area according to one of two different

distributions (figure 4.1 a and b, respectively). A set of heterogeneous cluster patches

(cluster distribution from here on) were constructed using a hexagon as a blueprint to

insure that all targets in the patch were at least 10-12 m apart from each other. This

distribution included 6 patches, with 2, 3, 4, 5 and 6 elements respectively. A second

patchy distribution was constructed by placing two layers of targets (layer distribution

from here on) parallel to each of the long limits of the experimental arena. The placement

of the targets in every layer was also done so that targets were at least separated by 10-12

meters. The physical placement of balls was done by locating the position of one of the

targets using chalk marks at 1 m intervals along the arena perimeter, and then placing the

rest of the targets in the patch using a set of strings to insure that the distance between was

kept constant. This point is particularly important, as explained below, when conspicuity

comes into play, the targets should not be perceived visually as a patch, but inferred from

the change in target density as collections are made. The consistency of their location

across trials was ensured by placing a small marker peg below each ball.

This experimental setup used the same three conspicuity levels for every distribution

used. For the cluster patchy distribution, a condition was added in which the children that

would search for cryptic targets were instructed that targets are clumped, which means

that once a target is found, it is probable that other targets are nearby. To insure that

the instruction had been clear, they were also asked to explain, in their own words, the

patchy nature of the distribution. This condition was introduced with the goal of having

subjects know a central property of the distribution and see whether they could adjust

their searching behaviour accordingly.

The main question of this work is whether children could detect the underlying proper-
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Figure 4.1: Summary of the experimental setup, showing of 20 targets with which a distribution
of (a) cluster patches and (b) layer patches was constructed, as well as the three (c-d)
conspicuity levels used.

ties of the target distribution. In both distributions, if subjects managed to detect the local

increment in target density, a localized searching pattern should follow. The performance

of a localized search should differ from the performance of the bouncing search. The

presence of smaller steps and more frequent turns should be reflected in the descriptors

and differences with the bouncing search model should be evident.

The cluster distribution tested the capacity to detect the presence of patches and items

within the patch itself, but since patches were arranged randomly, the presence of a patch

gave no cue as to the location of other patches. The patchy distribution tested the capacity

to detect the presence of patches and items within the patch itself, and since the patches

where almost symmetrical in their location, so patch location had an intrinsic structure.

Conspicuity levels were conserved as in the experiment in chapter III for reasons of com-

parison as well as because they provide a gradient of intensity of the searching process.

Cryptic targets could not be seen from inside the patch, so only density cues suggested

the presence of a patch. The semi conspicuous targets, it is possible to see the layout of
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the patch, but not the layout of other patches, while in the case of conspicuous targets the

whole distribution was apparent from any place in the arena.

Each child was taken directly from the classroom to the experimental arena and tested

individually. The method and manner in which the experiment was conducted was identi-

cal to the experiment described in chapter III. Again, procedures conformed to the guide-

lines for human research of the Instituto de Investigaciones Biomédicas, Universidad Na-

cional Autónoma de México, and informed consent was obtained from children, parents,

teachers and school authorities.

Out of the 42 children tested, only the path of one girl searching for cryptic targets

arranged in cluster patches was not included in the data set, due to GPS malfunctions.

4.3 Collection of data

Along with the advantages and limitation of GPS use discussed in chapter III, it is possi-

ble to expand on a few of the caveats derived from the tests in appendix B. While the GPS

scores on coherence appear to be trustworthy for the comparison between subjects, at least

at a coarse length scale, the precision scores can introduce errors in repeated testing. The

GPS records of the spatial distribution should not be used to match collection points and

searching paths. Also, GPS does not have enough precision to be used to construct and

reconstruct the experimental distribution. Instead a more accurate and precise solution

was to use fixed objects around the field that provide a stable landmark and strings of dif-

ferent measures to accommodate the targets and precisely measure the distance between

them.

4.4 Path Analysis

In order to maximise comparability, the coarsening procedure applied in chapter III was

also used for the paths of these children, the same descriptors calculated and the same

statistical tools applied. Once again, no difference was found between boys and girls for

any descriptor, so gender was ignored when pooling the data.
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4.4.1 Searching Behaviour

Children were seemingly enthusiastic and involved in the task. Performance was visibly

influenced by the conspicuity of the targets. Some of the children tested in the cryptic con-

dition reported that searching was ’hard’ because it was ’difficult to see the targets’. Also,

when questioned about the distribution, responses were vague, but descriptions such as

’all over’ were frequent and none responded with any adjective similar to ’clumped, ag-

gregated or patchy’. In the experimental condition where they expected a patchy search,

all children responded affirmatively to understanding the instructions and gave coherent

explanations when asked to repeat the instructions in their own words.

The distributions of turning angles for both coarsened and uncoarsened paths are

shown in figure 4.2. While the turning angle distribution for the uncoarsened paths ap-

pears to show some degree of persistence, i.e. a tendency to take steps roughly in the

direction of the previous step, the details fall below our spatial resolution. As expected,

coarsening makes all the turning angle distributions flattened considerably. No visible

difference was found between the turning angle distribution of the children searching for

cryptic targets and those who where briefed with information regarding the patches.

Also, as can be seen in figure 4.3, the values of the auto correlation function (ACF)

show that turning angles were only slightly correlated with the turning angle of the pre-

vious immediate step. This slight correlation can be attributed to oversampling, which is

common when the recording rate (1 sec intervals) is frequent and steps travelled in the

same direction are recorded as separate events. The correlation values drop sharply af-

ter coarsening. The coarsening width (w=3m), taken from the previous chapter, although

small, was sufficient to remove the jags in the paths caused by the limits of GPS resolution

and oversampling. Step sizes showed no correlation either before or after coarsening.

The conspicuity level deeply affects the searching performance of the children, as

shown by the descriptor values in figure 4.4. Subjects looking for cryptic targets trav-

elled longer distances, spent more time and had an overall lower efficiency of collections,

measured as meters travelled per target collected. They also crossed their own path more

often, travelled in a more tortuous manner and collected the targets in a sequence measur-
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Figure 4.2: The normalised distribution of internal (white bars) and near-wall (black bars) bounc-
ing angles, before (grey background) and after coarsening (white background). Notice
the decrease in the number of steps and the flattening of the distributions after coars-
ening.

ing almost two times the distance travelled by the optimal sequence of target collections,

determined by simulated annealing. Children in the cryptic condition had a lower collec-

tion rate and collection of the targets went on for the entire duration of the test. Also, no

consistent differences where found between distributions.

The performance between the briefed subjects and their uninformed counterparts was

practically identical for most descriptors. A slight variation resulting in a difference of

statistical significance could be observed in the case of the collection rate and the total

number of collections, although in both cases, performance is consistently poorer when

subjects had information about the spatial arrangement of the targets.

4.4.2 Model Fit

The model was applied to the patchy target distributions, matching those used to test

the children in the semi natural experimental conditions. Examples of the paths of the

children and the model for the distributions used in the current and the previous chapter
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Figure 4.3: Mean autocorrelation values for the turning angles and step sizes before (continues
line) and after coarsening (dashed line) for different shifted versions of the value se-
quence.
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Figure 4.4: Children’s descriptors of searching performance. Dots shown individual values for
every child while lines show median values.*p¿0.05.
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Figure 4.5: Mean distance travelled (black line, SD grey area) values produced by the output of
10,000 runs of the model for every rd value.

(i.e random, regular, patchy clusters and patchy layers) is shown in appendix D.

Curves displaying the mean and standard deviation of the distance travelled by the

10,000 search paths generated by the bouncing search model for every integer rd value

from 1 to 70 m, are shown in figure 4.5. These curves show that, once again, there is a

monotonic relation between the rd values and the descriptor values.

Each of the values for distance travelled by the children were matched to the corre-

sponding most similar value in the curve that displays the mean distance travelled by the

model (curves in figure 4.5). The set of rd values resulting from the match were in turn

used to calculate the values yielded by other descriptors. The resulting comparison of

both values is shown in figure 4.6. It is worth mentioning that the mean matched rd val-

ues in the current chapter and chapter III, have a striking similarity, particularly for the

cryptic conspicuity level (cluster r̄d = 8.3, layer r̄d =7.2, random r̄d =9.5, regular r̄d =8.2)

The model fit appears to be exceptionally good in most cases. In very few cases, such

as the self-crosses (or number of times the trajectory of a searcher crosses itself) in the

semi conspicuous cluster patches or the optimality index in the conspicuous layer patches,

the model’s prediction is smaller than the variation observed in the children.

Step size frequency for every target distribution was plotted separately (figure 4.7).

The distribution of children and model step sizes appear to approach an exponential dis-
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Figure 4.6: Overlap between the children’s values of chosen descriptors (black dots) together with
boxplots summarising the descriptor’s values for the model for the rd values resulting
from matching the children’s and models’ behaviour. In each box, the central mark is
the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points. For clarity, outliers are not shown.
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Figure 4.7: Normalised step size distribution for the coarsened children’s paths and the model.

tribution.

4.4.3 Patch Depletion

To explore the nature of the visits to patches, the collections of targets within the same

patch were quantified as vertical increments in the step plots of figure 4.8. Using the

linear interpolation of the first and last points of these step plots, it is possible to see that

a higher slope is indicative of a large number of sequential collections while inside the

same patch. For instance, it is possible that conspicuity had a strong effect on the number

of collections made in the same patch. In general, the slope of the stair plot increases

as targets become more conspicuous. The individual cases however, show that some of

the children in the conspicuous conditions have a poor perception of the patchy structure,

which results in an unexpected and uneven set of slope scores for the subjects in this

condition. Also, information on the patchy structure, however, does not appear to modify

the slope of the stair plot, and in fact, appears to actually make it make it smaller.

The slope values produced by the collection sequences of the model have considerably

less dispersion than the slopes of the children, as illustrated by figure 4.9. The sequences

of collections followed by the model do not include as much variability as the children.

On occasions, a subject may revisits patches (4.10). Searchers looking for cryptic tar-
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Figure 4.8: Stair plots showing the sequence of collections of targets for each subject. Vertical
increments account for collections of targets belonging to the same patch, while hor-
izontal increments occur when sequential collections involve targets from different
patches. Grey triangles mark the limits for the optimal and the worst possible slopes
for that the sequence of collections particular to that distribution.
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Figure 4.9: Slope values for the individual children’s stair plots (dots) and the model (boxplots).

gets revisit the patches more often than in any other condition, while some of the searchers

in the semi and conspicuous conditions manage to completely deplete the patches. Al-

though the range of values is not very large, a large amount of individual variation can

be observed. It is surprising, for instance, that some children in conspicuous conditions

do not deplete the patches even-though they are evident. This is true even for the laminar

patches, where revisits means crossing to the other side of the arena. Revisiting frequency

is one of the few descriptors that show a statistical difference for the condition in which

children were cued with information about the patches; in this case they show a lower

revisiting frequency than the uninformed counterpart. The range of the model’s revisiting

frequency appears to be produce similar values for the cryptic and semi condition, but has

very low variance for the conspicuous condition.

4.5 Discussion

The searching task and experimental setup proved, once again, to be useful for collecting

paths of searching children, this time under a new set of spatial distributions. The distance
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Figure 4.10: Revisiting frequency or the times of times the searcher makes a comes back to make
a collection to an already visited patch. Boxplots show the revisiting frequency for
the bouncing search model. ∗p > 0.05

between the targets in a patch, used in the construction of the patchy spatial distributions

and derived from the matches of the rd proved to be adequate, as shown by the perfor-

mance of the subjects. GPS records showed a reasonably low amount of outliers, which

were dealt with accordingly; for more information of GPS precision and a few ways with

which to deal with outliers, see in appendix A.

The main results, regarding the capability of searchers to detect a more natural dis-

tribution represented by targets arranged in patches, suggests that searchers ignore or do

not keep track of information regarding the spatial array of the targets. Not only do the

children’s descriptors fall within the same range as the values of the children searching in

random and regular distributions, but also the model performance correctly matches the

children’s behaviour for this experimental setup. Other tasks in which human subjects

are confronted with patches, suggest that they are not very good in using conventional

information when exploiting the patch (Wilke et al., 2009, Hutchinson, 2008). Detecting

the spatial distribution requires a larger set of rules than simply bouncing, and does not

necessarily lead to a larger number of collections.
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The lack of an apparent response to the patches could be a particular choice of search-

ing, but more likely the children did not pick up the cues as to the patchiness of the

distribution. This could be for a number of reasons. First, it might not be an easy task

to estimate distance or density, even for conspicuous elements. Estimation of parameters

while searching, and specially during a first exposure, could be too large a cognitive bur-

den. The density aspects could be tested in future setups, but it might require a different

configuration of elements, since the green golf balls used here were already at their visual

threshold that is, if the targets were placed any closer it they would be visible from other

targets location, which would not lead to a search processes. In the case of the layered

patch, the changes made a larger drop and the payoff given by a local search could be re-

flected in the performance. Also, if one of the sides was explored successfully, following

the rules on the other one would have been fruitful. A necessary direction for the future

is retesting the same subjects, since local searches and patchy environments are proba-

bly learned quickly and performance should improve dramatically within a few testing

sessions.

The group of subjects that were given information as to how the targets were arranged,

appear to have failed to properly execute a patchy search. Seeing that there is no evidence

that subjects can identify the concept of a patch based solely on information gathered

during the collection process, there are doubts about whether subjects of this age will

be able execute a patchy search even if told that it could result in a larger number of

collections. It is impossible to totally discard a patchy search, because head movements

were not included in the path records. Then again, patchy searches, if executed, it did

not over-perform in any aspect the search patterns of the uninformed children and were in

fact slightly less profitable in terms of collection rate and total collections.

Given the popularity of patchy distributions in the searching and foraging literature,

testing patchy distributions was a necessary addition to the current experimental setup

and an interesting challenge for the bouncing search model. The performance of a bounc-

ing search in a patchy distribution does not appear to differ from the performance of

the children. It is possible to successfully make several sequential collections inside a
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patch without the assistance of information. The probabilities of encountering a target

belonging to the same patch after bouncing off a collection is large, specially if elements

of a patch are spread away enough from each other so that the first collection is made

close to the centroid of the patch. Thus, for some patch densities, the path followed by

a patchy search could be remarkably similar to the path produced by a bouncing search.

The bouncing search has a strong dependance on boundaries, which might increase the

likelihood of collections, since the subject remains within the arena the whole time. In an

environment where borders are less obvious or further away and targets are found in small

but very dense patches, the performance of finer searches might prove more profitable.

4.6 Conclusion

The challenge posed by adding more or different types of information to the spatial dis-

tribution, in the form of targets arranged in patches, did not drastically alter the main

characteristics of the children’s searching paths, at least, given the current dimensions

and the resolution of the recording methodology. Attention to the spatial array does not

appear to be relevant to searching under the current motivational concerns and rewarding

schema. A simple model replicates the performance descriptors and to a certain degree,

the patterns of patch visits. The bouncing search, with its simple set of rules, manages

to mimic the performance and statistical features of humans searching for targets in an

enclosed space. There are however, many questions related to the capacity of humans to

detect spatial distributions from the information derived from their searching behaviour,

as well as the utility that this capacity may have in real life.
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Chapter 5

Optimisation of a simple searching

algorithm

Mobile organisms often face the problem of having to search for resources in unknown

environments. In order to invest as little energy as possible, searching strategies aimed

at maximising resource encounters are probably shaped through evolutionary history and

previous experience (Hassell and Southwood, 1978; Milton, 1988). Some strategies at-

tempt to match movement characteristics to those of the resource or the environment.

Experience shows that in order to increase the intake when inside a resource patch, move-

ment should be slower and more tortuous. Conversely, when resource density is poor,

faster straight-line movement may be more beneficial (MacArthur and Pianka, 1966; Root

and Kareiva, 1984; Bernstein, Kacelnik and Krebs, 1988). Environmental features may

restrict the area in which a searcher moves, which helps in establishing the geometric

properties needed for a systematic scanning, such as the turning angle of a zig-zag that

bounces against parallel borders.

The bouncing search test follows the work of Rosetti et al., (2010) (also described

in Chapter III) to model children’s search behaviour inside a bounded arena. The model

guidelines dictate that a searcher follows linear trajectories that either collect one of the

circular targets or collides with the arena boundaries, from which an angle to bounce off

is chosen. The searching continues until all targets are collected or until a time limit
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is reached. The probability of the searcher’s trajectory making a collection is greatly

dependent on the radius of detection around the target, which is the main parameter ex-

plored along with the spatial distribution of the targets. In the current work, we aim to

use optimisation strategies to shape the search paths and study the characteristics of the

resulting solutions, to see whether they represent successful strategies. Another aim is

to explore how the target distribution can qualitatively modify the performance of the

solutions brought on by the optimisation task.

5.1 Experimental Setup

5.1.1 Environment

The bouncing search model was submitted to an evolutionary optimisation procedure. A

computational version of the model was implemented in Matlab (Mathworks Inc, 2008).

The simulated environment consisted of a rectangular arena (60 x 80m) with 20 randomly

placed non-regenerating resources following one of four types of target distributions: ran-

dom, regular, cluster patches and layered patches. The starting point of the searcher is

fixed on one of the shorter sides of the rectangle. The main criteria for termination were

the collection of all targets or reaching a given number of steps.

5.1.2 Genetic Algorithm

A series of tests using genetic algorithms (GA) were setup to investigate whether the

turning angles in the bouncing search could be shaped into a systematic strategy capable

of collecting all targets, and to determine whether their location could be predicted. The

matlab code can be found in the following link 1.

Genotype to phenotype mapping

The individual genomes consist of an array of 100 θ values distributed between − 2
pi

and

2
pi

, which in turn codify the turning angles (Figure 5.1) and the total number of steps avail-

1http://docs.google.com/Doc?docid=0AXBqPCRUKfQHZGRnYnI0Z21fMjNtOXd6cGJnbQ&hl=en
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Figure 5.1: Representation of the turning angles of a search path. The turning angle, or the angle
with which the searcher bounces off the boundaries or from a collection point is the
only characteristic coded in the genome.

able. On the randomly generated population, the turning angles are randomly assigned

a uniform distribution to each one of the steps. The step size is not assigned, since by

the inner workings of the bouncing search, it will be determined by the direction of the

turning angle and the presence of a boundary or a collection point. The total number of

steps is determined by the size of the genome, although not all of the steps will necessarily

show, since all targets could be collected before reaching the end of the genome or the

time limit may be reached before all the turning angles in the genome are presented.

For each iteration of the bouncing search, a new step of the search path is calculated.

The options for a step are to collide against a boundary, make a collection, or end up out-

side the arena. Another array keeps track of the bouncing angles that result in successful

collections.

Distributed genetic algorithm

The first choice of algorithm was a distributed genetic algorithm, in which each solution

is placed on a unique location over a toroidal grid (Husbands et. al., 1998). After testing,

each individual is assigned a fitness value according to it’s performance. A random loca-
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Figure 5.2: A graphic representation of a section of a toroidal grid (a). A selected individual
(in grey) and the neighbourhood grid that surrounds it will participate in a process of
roulette based selection. The roulette-based selection is illustrated in (b). The solutions
in the neighbourhood are ranked and a probability of being selected for a parent in the
generation is directly proportional to the proportion that their fitness contributes to the
mating pool, illustrated here by the pie chart inside the roulette.

tion of the toroidal grid is taken along with the solutions in the surrounding neighbouring

grid locations. This mating pool of solutions is ranked in descending order, after which,

the parent solution is chosen by a rank-based roulette explained below (Figure 5.2)

Rank-Based Roulette In the rank-based roulette (Figure 5.2), the ith solution (ranked

from 0 to N1, with N1 being the fittest) of the mating pool has a chance of passing on to

the next generation proportional to i or:

P (i) =
2i

N(N + 1)
(5.1)

This gives the lowest rank solution no probability of becoming a parent, while giving

the highest rank solution no probability of being replaced by the newly formed child.
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Figure 5.3: An illustration of the population (a), consisting of linear arrays of θ values. The pop-
ulation is tested and their performance quantified through a fitness value. The top
scoring values (10%) of the population is separated from the rest. This elite is used to
generate the next population and a copy passes unchanged (c). The process continues
until a solution is found.

Elitist genetic algorithm

The second choice of algorithm explored, consisted of an elitist genetic algorithm. After

solutions are tested and a fitness value is assigned to their performance, the population is

ranked in descending order. A percentage of the population with the top fitness scores is

chosen to be the parents with each solution contributing to an equal percentage of the new

population. Also, the top scoring solutions are reinstated to the next generation with no

modification (Figure 5.3).
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Elitism The elitist reproduction guarantees the survival of the fittest solutions, while

introducing new variants by mating a member of the elite with several random solutions

of lesser fitness. Since each member of the elite produces an equal percentage of the next

generation this guarantees that no single solution dominates the gene pool, which would

stagnate the evolutionary process.

Mutation and Reproduction

Both asexual and sexual reproduction were tested.

Creep and complete mutation During asexual reproduction, a parent genome was

passed on to the next generation changed only by mutation operators. Two different mu-

tation types operate over the genome: a creep mutation would produce slight changes to a

gene (the value of a single bouncing angle) by replacing it with a random value normally

distributed around the value previously occupying that gene. A complete mutation would

change the θ value completely by assigning a new one randomly chosen from a regular

distribution of −2π to 2π.

Tests were done for different frequencies in which a mutation occurred. The complete

mutation occurred during the generation of a new population on 1, 5 or 10 percent of the

population, while the creep mutation happened to 10, 20 or 30 percent of the population.

Cross over Cross over occurred only if sexual reproduction was allowed. By crossing

over, genes from the selected parent (the result from the roulette or a member of the elite,

depending on the type of generic algorithm used) and non-selected member of the mating

pool combine their genomes into an offspring. The percentage that parents contribute

to the genome can vary. Once an element of the next generation is produced, sexual

reproduction contemplates the possibility of a mutation occurring to it’s genome.

5.1.3 Evaluation

In every algorithm, the original setup involved a population (PopN = 100) of paths that

were subjected to the bouncing search test on separate occasions (TestNum = 10) and
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then their mean success was quantified and ranked. A new population was created by the

different methods and parameters described above. This process was iterated for a given

number of generations (GenN = 100) or until a satisfactory solution was found. Velocity

and time were not taken into account. Instead, large numbers of steps were available prior

to termination of the task, thus, only the genes coding the turning angle of the successful

sequence of collections were passed on. This was done to ensure most solutions would

be successful collectors and thus, introducing plasticity in the pool of solutions.

The regular as well as both of the patchy target distributions used for testing were

fixed, while the random distribution was generated for every test. The fixed distributions

were used to test the capacity of the algorithm to study the performance of the evolved

search paths for different target configurations, while the random distribution provided

the challenge of producing a systematic strategy. Tests were done for radii of detection of

(rd) 2, 5 and 10 m.

Fitness

The main fitness criteria included the collection of all targets with the minimum number

of steps. Fitness (f) was calculated using the following formula:

f = (
nc
N

) ∗ 10 + (
1

i
) ∗ 100 (5.2)

where nc is the number of targets collected, N is the total number of targets in the

arena and i is the number of steps taken to solve the task.

In the case of testing the regular distribution of targets a single value for the fitness

was used. For the random distribution of targets a ranked fitness was used. When scores

are ranked the fitness F is the weighted sum of the N scores with a weight proportional

to the inverse ranking i (ranking is from 1 to N , with N as the lowest score):

F = (
2

N(N − 1)
) ∗

N∑
i=1

ifi (5.3)
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Ranking fitness provides pressure for the algorithm to do well on every test and dimin-

ishes the effect of tests in which the solution is quickly found by fortuitous circumstances.

It evens the scores out so that a solution doing moderately well on every test has a better

fitness than one that succeeds in an isolated incident.

At first glance, it may seem that the algorithm could find an optimal solution by not

moving at all. However this possibility is non-existent since the only conditions ending

the task are the collection of all targets or exhausting all the available steps. Also, notice

that the fitness is calculated with the number of steps, not the distance travelled, favouring

the paths that find solutions and not merely the shortest paths. Therefore, the greatest

percentage of the fitness value is given by the number of targets collected (maximum value

= 10), and it is progressively increased by solutions that use fewer steps (maximum value

5). The fitness was calculated for every individual as an average of fitness obtained in each

test. With this, we attempted to give the better fitness to search paths that were consistently

successful, and to avoid favouring rare events producing high fitness by chance alone.

5.2 Results

5.2.1 Exploration of the parameter space

Only paths searching in a regular distribution managed to be completely successful (20

targets in 20 steps) although often the evolutionary procedure will produce suboptimal

solutions of 21-25 steps. It is clear that the few final targets are considerably hard to

collect than the first ones. In the case of the random distribution, evolution would not

yield an optimal solution, having reached search paths that could collect all targets using

35-50 steps.

The different algorithms were tested using various parameters. There were no great

differences in the evolutionary performance measured in the capacity to reach a successful

solution and the number of generations needed to do so. All algorithms could produce a

search path that collected all regularly distributed targets and none could yield a search

97



path that guaranteed the collection of all the targets in the random distribution. Larger

generations did not improve the evolutionary process.

As mentioned before, the creep mutation produces slight changes to the turning angle

based on a normal distribution. Given that this is the main driving force behind change

during asexual reproduction, larger probabilities were tested (0.10, 0.20 and 0.30). In the

case of the random distribution, different creep mutation settings appear to have no effect

on the chance to obtain a satisfactory solution. The mean population fitness oscillates

around the same value. For the fixed distributions, steady increments were observed in

the maximum fitness in the case of the elitist GA, and although more fluctuations in the

mean fitness were produced, the distributed GA also manages to reach a steady maximum

fitness. The creep mutation probability of occurring on only 10% of the population ap-

pears to be the best choice, since it introduces enough variability to find better solutions

while larger values appear to somewhat disrupt the evolutionary process.

The complete mutation replaced the value of the chosen gene with a new θ value cho-

sen from a regular distribution. This was done to avoid stagnation and to introduce new

values that could provide a sudden solution, rather than the much more subtle creep mu-

tation operator. Given that this operator can be as disruptive as it is productive, it was

introduced with less probability than the creep operator (0.01, 0.05 and 0.1). Changing

the probability of the occurrence of complete mutations did not visibly modify the evolu-

tionary process for the random distribution or any of the fixed distributions.

Cross over rates were needed when sexual reproduction was allowed. The cross over

procedure places complete parts of a parent onto the offspring genome (75, 50 or 25 %).

The combination of path segments might be faster in producing new solutions, although

the disruptive effect might be considerable. Changing the proportion that the parent con-

tributes to the next generation did not change the general pattern of the fitness growth

in the GAs. For the random distribution, oscillations in the fitness are observed along

with the inability of the algorithms to find a solution. In the fixed distribution, the eli-

tist GA maintains the top fitness value across generations or increases it, while heavier

oscillations are observed for the distributed GA when sexual reproduction is introduced.
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Based on the maximum fitness achieved by the GAs, the algorithm chosen was the

sexual and elitist reproduction and a cross rate of 50%, a creep mutation of 0.20% and

complete mutation of 0.01%.

5.2.2 Performance of solutions

Turning angle

The evolution procedure began by using angles drawn from a regular distribution ranging

from −π to −π. The distribution of the turning angles after the evolutionary process is

reminiscent of a bimodal distribution with peaks around −π
2

and π
2

(Figure 5.4). This

modification of the turning angle distribution suggests that, upon reaching the border,

angles that allow the searcher to bounce off the arena walls in a perpendicular manner tend

to maximise the collection of targets. The bimodal shape of the turning angle distribution

is gradually lost as the rd values increase, since for large rd’s the step do not reflect

bounces from the wall but from previous collection points and when collections occur

often. Also, in the case of the turning angle histograms of the fixed distributions of targets,

the bimodal shape is not as smooth. This is due to the bounces from the wall being overall

less frequent than in the paths that evolve under a random distribution of targets.

The turning angle distributions for the random, cluster and laminar target distributions

appear also to be of bimodal nature. However, the shape of the distribution is not nearly

as smooth as that of the regular distribution. For small rds, small turning angles were

not present. Small turning angles may only occur after a collection point, whereas only

large angles occur when bouncing off boundaries. As the rd increases, the turning angle

distributions show a tendency to be either more one-sided (regular target distribution)

or the frequency of few turning angles to dominate the distribution. It is possible that,

as rd increases, the number of solutions that the bouncing search can provide become

very limited, thus always recurring to the same set of angles with the same frequencies.

Also, for a less structured target distribution (random target distribution), more contrast is

shown between the frequency of appearance of a given range of turning angles.
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Figure 5.4: Turning angle distribution of the paths found as solutions to the optimisation procedure
occurring under the bouncing search constraints. Turning angles are shown for the
different distributions used as well as for different rd values.

Step size

The step size distribution of the population of solutions found by the GAs resembles an

exponential distribution in the case of the random distribution (Figure 5.5). The shape

of the step size distributions of the fixed target distributions does not appear to have an

obvious pattern. The distribution of step sizes of the search paths evolved in the ran-

dom (dynamic) distribution suggests that the distribution contains a great proportion of

bounces against the boundaries, thus the smooth distribution. On the other hand, the

length of the steps shown in the distribution of step sizes for the paths evolved on fixed

distributions are strongly marked by the distances between collections.

Performance descriptors

The performance descriptors calculated for the search paths show the difference between

the challenge posed by dynamic or static distributions. The distance travelled by the

paths searching for random, dynamic targets of rd = 2 was about d̄ =3000m, decreasing

by half (d̄ =1480m) for rd = 5 and even further (d̄ =1000m) for rd = 10. The distance
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Figure 5.5: Step size distribution of the paths found as solutions to the optimisation procedure.
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travelled in the fixed solutions was always considerably less (regular d̄ = 1645, 520,

330m, patchy cluster d̄ = 1381, 840, 426m, patchy layered, d̄ = 1518, 555, 560m, rd =

2, 5, 10 respectively). The efficiency (number of meters travelled per target collected)

follows a similar pattern, with the random targets proving challenging to collect: rd = 2,

ē =165 m/target, rd = 5, ē =75 m/target, rd = 10, ē =50 m/target. Again, the fixed

targets more than halves this amounts (regular ē = 80, 26, 16 m/target, patchy cluster ē =

70, 42, 33 m/target, patchy layered, ē = 75, 28, 28 m/target, rd = 2, 5, 10 respectively).

The number of crosses in the paths shows an even larger drop between the condition with

random dynamic targets ()rd = 2, c̄ = 500, rd = 5, c̄ = 120, rd = 10, c̄ = 50) and the

static ones (regular c̄ = 145, 12, 2, patchy cluster c̄ = 114, 32, 4, patchy layered, c̄ = 128,

13, 16, rd = 2, 5, 10 respectively). In general terms, the solutions follow the expected

pattern.

5.3 Discussion

While the optimisation techniques seem to be able to produce optimal results for fixed,

static distributions, it cannot to do so for dynamic, random distributions. The reason

behind this is not immediately clear. It could be an intrinsic limitation of the optimisation

process to be unable to produce a systematic strategy, given that it should be completely

efficient and use the fewest steps possible. On the other hand, the inability to produce

systematic searching paths that guarantee the collection of all targets could be related

to the rules of the bouncing search model. Thus, the constraints set by the conditions

of the bouncing search are extremely harsh, since missing a single target would break

up the possibility of constructing a systematic strategy, moving the solutions away from

the optimal fitness goal. In short, the model may have the possibility of constructing a

systematic strategy, but as yet it does not have enough flexibility to shape the turning

angles in a way they could exploit it productively.

An important point to make regarding the random distributions is that even though

a strategy may prove to be efficient in collecting random targets through a systematic

sweeping of the arena, it may prove an enormously costly effort. As collections occur,
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the density decreases, producing more and more steps that would not collect a target by

mere chance. If a systematic search discovers all the targets but one, yet the elusive target

requires a complete re-scanning of the arena, this might severely hinder the overall fitness

value. This could be a clue as to why systematic movements are so rarely found in nature,

relating closely to the optimal foraging principle described by Charnov (1974) relating to

the time at which it is best for an organism to leave the current patch and start foraging

in a new one. In both cases, the current and the original experiments, the whole arena

can be considered as a single patch. Also, in both experiments success was measured by

collections, ending either when there were no more targets in the arena or when the time

limit expired, denying the searcher possibility of giving up.

A random distribution of targets does not allow the paths to establish steps that are

consistently successful. Converging directionality in the turning angle is one of the signs

of a systematic search strategy. For small rd values, the turning angles that produce a col-

lection hold little chance of being successful under other random distributions of targets

while for high conspicuities, any step will find a target at the start of the test. However,

with less targets in the arena the possibility to miss one increases, ruining the chances that

a searcher can get a perfect fitness score.

5.4 Conclusion

Genetic algorithms, and other computerised optimisation techniques, provide an excellent

framework with which to explore the searching strategies. The optimisation process can

be moulded to particular searching of environmental peculiarities and the most varied

fitness constraints. In this particular case, the algorithm that produced solutions for the

bouncing search of fixed targets could not produce a suitable systematic solution that

would solve the problem of searching for randomly distributed targets. This illustrates

that producing these solutions is not trivial and can rarely guarantee giving a searcher

one-hundred percent accuracy. Also, they are uncommon in nature because the search

for resources works in a non-exhaustitive way. Further directions of testing systematic

searches could include the seeding of possible solutions, and observing the solutions that
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generic algorithms produce with them.
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Chapter 6

Conclusion

6.1 A brief recapitulation

This work provides an effort to manage the theoretical and experimental tools needed to

research search behaviour, a classic topic related both to behavioural biology and com-

puter science. A brief recapitulation can be made following the thesis structure.

On the methodological side, the thesis showed the main difficulties linked to recording

movement, the different methods involved and the consequences link to every choice.

Also, some of the most popular ways of preprocessing data were explained with examples.

While on theoretical side, the thesis introduced some of the main concepts related to path

analysis and the measurement of descriptors to evaluate performance or to explain the

statistical characteristics of the paths. With the use of examples, mainly from behavioral

ecology, the main questions related to the topic of searching behavior were illustrated.

On the experimental side, the experimental setting proved to be versatile enough to

accommodate several different distributions, the subjects seem to be involved and enjoy

the task, while the recording apparatus proved to be accurate enough to allow recordings

and interpretation, at least at one choice of a length scale. Experimental conditions ma-

nipulated the distribution and conspicuity of the targets. A straightforward conclusion of

the experimental work centered around how the visual conspicuity of targets (resources)

is closely related to the characteristics of the success of a search effort. Even more inter-

estingly, is how changes in spatial distribution did not affect performance and that sub-
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jects appear not to be able to detect the underlying structure of the spatial distributions.

The bouncing search model seems to be a good platform for comparing search behaviour

which is bounded. The simple workings of the model allow for quick adjustment to a

different variety of experimental conditions as well as the manipulation of the parameters

under which it operates. Amongst the conclusion that the model allowed this research to

reach, is the similarity between the model and the children, in both the performance and

the statistical features of the searching paths. The simple rules of operation of the model

appear to closely mimic the behaviour of the children.

On the computational side, the optimisation procedure provided clues regarding the

difficulties of optimal searches of randomly distributed targets under the movement cri-

teria dictated by the bouncing search model. Even though it may manage to learn the

location of fixed targets, the number of steps needed to guarantee a solution that will

collect all the targets is so large that it is compensated by failing to collect all targets

with a smaller number of steps. What appears at first glance to be a sub-optimal solution

could be related to the patch leaving time, or the point at which searching for a target

becomes increasingly expensive. Further optimisations in both computational terms and

human experiments could be seeded by suggesting a systematic solution and observing

the modifications obtained from the test trails and the evolutionary process. The main

results produced by this work can be summarised by showing how seemingly complex

behaviour can have simple underlying mechanisms.

Applications of this research may be limited because of the basic nature of this re-

search. Many of the findings described here are derived from a particular lengthscale and

are therefore limited to these specific choices. However, others can be extrapolated to any

scenario in which search is used in a context of spatial movement and is tied to a temporal

or energetic constraint. The current findings can be applied to any number of situations

where search movements are bound and conspicuity is a crucial aspect of the finding pro-

cess. For instance, it could be used to understand the movements of subjects attempting

to exit a building, searching on a supermarket or an airport parking lot, or even reading a

book or browsing a web page can be an homologous process of searching, where the path
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is constrained by the margins of the page or of those of the browser. Links or relevant

information can be made more or less conspicuous using colors, font attributes or sizes.

The current experiments and model provide a simple platform to explore the movement

in many of these examples.

6.2 Further efforts

Searching is a basic aspect of the life and behaviour of any organism. In humans this

becomes even more interesting due to the diversity of activities, scenarios and constraints

that technological innovation has created. During these activities it may be relevant and

original to study the validity of old mechanisms, the strategies to adapt them to new

situations or the creation of entirely new ones. Although the methodology used in this

case study of search behaviour was quite largely exploratory, it is complex enough to

derive a rich set of variations.

In future experiments, the developmental questions can be pursued by involving younger

and older participants. Cooperation and competition can be introduced by keeping scores

and involving several simultaneous participants in the task. Other cognitive questions can

be pursued by changing the conspicuity and distribution and the score array. Further test-

ing should also include a test to measure the impact of area, number of targets and testing

time to calibrate the search effort to a certain standard and to be able to manipulate these

variables in relation to the tests. The main aspect to maintain in the new set of experi-

ments, and any other experiments involving search, is ecological validity. Although it’s

true that kids normally do not search for balls on a football field on their own accord, the

activity was treated as a game and children enjoyed the challenge.

Searching can be explored in other everyday situations such as the parallel project

(abstracts can be found in the Appendix B) which involves searchers of Nahua communi-

ties looking for mushrooms in the Malinche Volcano in the state of Tlaxcala, a few hours

away from Mexico City. This group of foragers search for mushrooms on weekends and

studying their searching pattern can provide insight into several questions ranging from

ecological matters to highly cognitive explanations. Following a similar tendency, in ur-
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ban environments, further directions of this work involve the analysis of the routes people

take in supermarkets and large buildings of several types. All these studies should be

complemented with statistical simulations and computer models, such as the bouncing

search model.

6.3 Conclusion

In conclusion, the experimental work shown here is highly useful and is the begin-

ning of an exploration into a very long line of research. Along with the experimental

setup, a set of analytic tools were put to the test, including preprocessing and parameters

of probabilistic model. Also, interpretation frameworks were shown including a simple

computational model and the testing of conventional optimisation techniques. The use of

this toolbox can only improve with further experimentation and testing, starting with the

many questions suggested by this work and with the experience and wisdom gained by

this experience. Future studies should provide interesting observations about the different

search patterns of humans in order to enrich our understanding of one of the most basic

behavioural activities.

6.4 Thesis Achievements

Again, in recapitulation of the main contributions of this work we can mention:

• First, the understanding of the vast framework of analysis and interpretations that

can be applied to movement data that can be seen in chapter II. This chapter pro-

vides a good frame of references on the methods and the difficulties to be encoun-

tered when dealing with path analysis.

• Chapter III successfully attempts an experimental semi natural setting in which

children search for targets arranged in a regular and a random distribution. The

main findings include, how the performance is affected by conspicuity of the targets,
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whereas the distribution does not appear to affect at all. Also, the performance

of the children, as evaluated by several descriptors and statistical properties of the

searching paths, does not appear to differ from the performance of a model in which

an agent traveling in straight lines bounces of boundaries and collection points in

random directions.

• Chapter IV expands the findings of chapter III, and uses them to create two different

patchy distributions. Children were tested in the same conditions of conspicuity.

An important addition is, however, a condition in which children were given hints

about the distribution of the targets. The main finding includes the effect of the

conspicuity of performance and more interestingly, the lack of reaction to the patchy

distribution of targets. Again, the bouncing search model, performs in a similar way

to the children, suggesting that the searching strategy of the children is produced by

simple rules and effective behaviour (rushing after collections) rather that attempts

at deciphering the characteristics of the target distribution.

• It is worth noting that the experimental series described here constitutes one of

the first examples of the evaluation of searching performance through the study of

search paths. The use of GPS recordings for human behaviour has a recent history,

but was never used in an experimental task.

• Finally, chapter V, describes an attempt to incorporate the characteristics of a bounc-

ing search into an optimisation procedure, which resulted in paths with a bimodal

distribution of turning angles with the two distinct peaks centered around −π
2

and

π
2
. Also, performance of the solutions suggested by the optimization procedure

proved to be similar to the performance of the children in previous chapters, while

the optimisation procedure failed to provide solutions for dynamic targets.
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Appendix A

Tests of GPS tracking

Introduction

The ability to search for and locate resources is one of the most basic and vital attributes

of animals, and one where several interesting aspects of their behaviour intersect (Bell,

1991). And yet, until recently the study of search behaviour in humans has proved difficult

as the everyday spaces we move in are often too large and complex for direct behavioural

observation or video recording. Traditionally, studies of human search behaviour have

largely relied on pencil-and-paper tests (Silverman, Choi and Peters, 2007) and labora-

tory simulations. Although ingenious, such experimental set-ups do not accurately reflect

real life situations in which the energetic and other costs of searching over larger areas

are likely to affect search decisions and strategies. Furthermore, descriptions of mobil-

ity in real life scales such as those illustrated in the work of Brockmann, Hufnagel and

Geisel (2006) or Gonzaléz, Hidalgo and Barabási (2008), rarely provide the possibility of

introducing experimental conditions. In the last decade, however, there has been consider-

able improvement in the recording of human search behaviour in larger, more naturalistic

contexts, while introducing experimental manipulations.

In this thesis, a low-cost and easily implemented method of recording human search

behaviour over larger areas outside the laboratory is described, which is readily open

to experimental manipulation and control. Our method, based on the popular game of

the Easter egg or peanut hunt requires participants to search for small objects (targets)

distributed across a large outdoor area such as a sports field (Rosetti, 2010). Participants
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wear GPS devices, which automatically record their pathways. Experimenters note the

time at which each target is collected, and at the end of testing, the information from

the GPS is downloaded on to a computer together with the information on the time of

collections, and analysed using readily available commercial software. However, some

concerns have been raised regarding precision and accuracy of the GPS apparatus used in

this work. These concerns are addressed in the experiments throughout this appendix.

GPS tracking

Automated tracking of search paths was performed using available and affordable GPS

devices (in the example below, Garmin GPS V personal Navigator). The small size and

weight of the GPS device (12.7 x 5.9 x 4.1 cm, 255 g with batteries) allowed participants

to carry it in the back of a modified belt. In this position the antenna is maximally exposed

and not obstructed when targets are picked up from the ground. Participant movement is

not hindered by use of the modified belt. GPS offer a variety of geographical units with

which to record position, but one of the most widely used and easily implemented employs

Universal Transverse Mercator (UTM) units drawn from a planar grid onto which a global

map has been superimposed. These units are expressed in a metric system of distance,

making behavioural descriptors of paths easy to calculate and interpret (Langley, 1998).

The computerised recording procedure can be set to record in fixed intervals of either time

or distance. Technical aspects, such as memory storage or battery life might limit the

duration of individual experiments to less than 10 to 12 consecutive hours. Commercial

and open source programs are available to download and interpret GPS data.

Constant good reception is needed to obtain a reliable record of the positions of par-

ticipants during the search. Furthermore, the accuracy error reported by the manual and

previous studies can be greatly reduced by conducting experiments in an open area (Hul-

bert and French, 2001). For our particular apparatus, the reported accuracy of the GPS

device is 0-15 m, 95 % C.I. (Garmin Reference Manual; Tougaw, 2002). It should be

noted that there is a considerable and important difference between the accuracy and the

precision of a GPS. In the present context accuracy is the difference between a position

125



Figure 6.1: A visual representation of a real world location (grey, large dot in the centre) and a
set of attempts to record it that are (a) neither accurate nor precise, (b) precise but not
accurate and (c) accurate and precise.

recorded by the GPS and the true location, while precision stands for the dispersion of

repeated measures of the same location (Figure 6.1).

The accuracy of a GPS is extremely hard to quantify but is of no consequence to the

current study, since the true location is irrelevant to the characteristics of path records

and behavioural descriptors. Precision, on the other hand, could be considered important

since the location of the targets on the field and the movement of the children was recorded

separately. In an ideal situation small dispersion values would make it possible to match

the target distributions to the children’s paths and also, it would be possible to replicate

the distributions based on the locations given by the GPS. However, to reduce possible

errors reliance on the GPS was kept to a minimum. The times at which subjects made

a collection were recorded by the experiments during the tests and distributions were

constructed daily using marks on the arena boundaries.

Outliers

Concerning the children’s search paths the most important aspect was to reduce possible

erroneous records from occurring along a search path, that is, to ensure that the charac-

teristics derived from the sequential co-ordinate points forming a path display credible

values. In the work of Pacheco-Cobos et al. (2009) the researchers tracking mushroom

foragers under the forest canopy considered extremely harsh conditions for GPS record-
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Figure 6.2: Step size distribution of the pooled, uncoarsened paths records of the experiments
described in chapter III and IV. The detail of the histogram shows the drop in frequency
after 5m

ings, and using the same apparatus as in the present study obtained only 1.8 % of outliers

for over 21,00 recorded points, while sporadic events where satellite connection was tem-

porarily lost accounted for 9.4 % of the 190 hours of continuous recording (personal

communication).

Constructing an experimental setting in a football field or any other open, clear and

flat area can reduce the size of this error by at least one order of magnitude. For example,

the number of outliers was quantified for the movement records of all the children in

the experiments described in chapter 3 and 4. Outliers were considered to be sequential

points that were more than 5m apart from each other. The percentage of outliers in all

the paths of the children combined accounted only for 1 minute from almost 3 hours of

recording. The complete distribution of uncoarsened step sizes can be observed in figure

6.2. Clearly outliers exist, but the small number can be easily identified and replaced by

linearly interpolating new co-ordinates inbetween the neighbouring records.
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Precision

Nevertheless, taking into consideration that the performance of the GPS may need to be

checked for a particular experimental setting, an estimation of precision can be obtained

at the planned experimental site by placing a GPS apparatus in a fixed location and setting

it to record it’s position, for example, every second until the GPS memory is full (aprox.

3000 pts in the case of the Garmin GPS V). The dispersion from the mean reflects the

precision of each coordinate (Serr, Windholz and Weber, 2006), calculated as the amount

that each individual recording (xi, yi) varies from the mean:

CIx = 1.96

√√√√√ n∑
i=0

(xi − x̄)2

n−1
, CIy = 1.96

√√√√√ n∑
i=0

(yi − ȳ)2

n−1

(6.1)

Here, n is the number of recordings, and and are the mean values taken, calculated as:

x̄ =

n∑
i=0

xi

n
, ȳ =

n∑
i=0

yi

n

(6.2)

Precision was calculated for the 3000 records generated by the GPS while measur-

ing the same location. Calculations of precision following the formulas described above

returned a precision of 3.4 m on the x axis and a precision of 2.7 on the y axis. The loca-

tion of measurements around the mean, including the amount of points falling at a given

distance from the mean are illustrated in figure 6.3.

Coherence

To produce an estimate of the sequential recording coherence, which is, to show that

GPSs can, on some scale, produce reliable behavioural measures, we recorded a set of

laps around the football field. Two researchers, each holding a GPS, travelled 5 laps

around the 403m soccer field depicted in the satellite picture shown in figure 6.4.

The perimeter length, calculated as the distance travelled during a lap was about 470m,

that is, approximately 20% more than the amount measured using the satellite images.

The difference is produced by the kinks in the path, efficiently removed by coarsening
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Figure 6.3: The GPS produced 3000 records of the same spot. Plot shows the number of records
falling at a given at every meter from the average of all records while the detail on the
top-right corner shows the location of the records.

Figure 6.4: Satellite view of the soccer-field used in the experiments.
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(w=1.5) the paths (418m, or a 5% overestimation). The turning angle distributions before

and after coarsening show consistency between laps as well as between travellers (Figure

6.5).

Conclusion

GPS’s are valuable instruments in behavioural research, particularly, to record human be-

haviour in open, large spaces. Performing tests on precision and coherence gives us a

better understanding of GPS capabilities as well as the limitations, and helps to plan ex-

perimental tasks that rely minimally on their precision. As recording technology develops

and GPS apparatus shrink in size, in might be possible in the future to have several GPSs

on a single subject and to average the paths to increase precision, if desired.
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Spatial Distribution of Taenia solium Porcine Cysticercosis within a

Rural Area of Mexico
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5. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciu-
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Abstract: Cysticercosis is caused by Taenia solium, a parasitic disease that affects humans

and rurally bred pigs in developing countries. The cysticercus may localise in the central ner-

vous system of the human, causing neurocysticercosis, the most severe and frequent form of the

disease. There appears to be an association between the prevalence of porcine cysticercosis and

domestic pigs that wander freely and have access to human feces. In order to assess whether
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the risk of cysticercosis infection is clustered or widely dispersed in a limited rural area, a spa-

tial analysis of rural porcine cysticercosis was applied to 13 villages of the Sierra de Huautla in

Central Mexico. Clustering of cases in specific households would indicate tapeworm carriers in

the vicinity, whereas their dispersal would suggest that the ambulatory habits of both humans and

pigs contribute to the spread of cysticercosis. A total of 562 pigs were included in this study (Au-

gustDecember 2003). A global positioning system was employed in order to plot the geographic

distribution of both cysticercotic pigs and risk factors for infection within the villages. Prevalence

of pig tongue cysticercosis varied significantly in sampled villages (p = 0.003), ranging from 0%

to 33.3% and averaging 13.3%. Pigs were clustered in households, but no differences in the clus-

tering of cysticercotic and healthy pigs were found. In contrast, the presence of pigs roaming

freely and drinking stagnant water correlated significantly with porcine cysticercosis (p = 0.07),

as did the absence of latrines (p = 0.0008). High prevalence of porcine cysticercosis proves that

transmission is still quite common in rural Mexico. The lack of significant differentiation in the

geographical clustering of healthy and cysticercotic pigs weakens the argument that focal factors

(e.g., household location of putative tapeworm carriers) play an important role in increasing the

risk of cysticercosis transmission in pigs. Instead, it would appear that other wide-ranging bio-

logical, physical, and cultural factors determine the geographic spread of the disease. Extensive

geographic dispersal of the risk of cysticercosis makes it imperative that control measures be ap-

plied indiscriminately to all pigs and humans living in this endemic area.

Citation: Morales J, Martı́}nez JJ, Rosetti M, Fleury A, Maza V, et al. (2008) Spatial Distri-

bution of Taenia solium Porcine Cysticercosis within a Rural Area of Mexico. PLoS Negl Trop

Dis 2(9): e284. doi:10.1371/journal.pntd.0000284

A new method for tracking Pathways of humans searching for wild,

edible fungi

Authors:L. Pacheco-Cobos1, M. Rosetti2 and R. Hudson1

1. Universidad Nacional Autónoma de México (UNAM), Instituto de Investigaciones Biomédicas.

2. University of Sussex, Centre for Computational Neuroscience and Robotics, Brighton BN1

9QH, U.K.
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Abstract: The study of human foraging behavior is relevant for social anthropology and be-

havioral ecology, because it makes it possible to study directly the relationship between human

communities and the forest resources they use and manage. The recording of individual search

pathways in the field has improved, in recent years, due to the availability of satellite technologies

like the Global Positioning System (GPS). The present study was carried out in a Nahua commu-

nity in Tlaxcala, Mexico, where wild fungi constitute an important source of food and income.

We discuss different methods used to record foraging paths in humans as well as the spatial lo-

cation of fungi gathered. Likewise, we mention the difficulties and procedures we have found

useful in overcoming them. The best recordings were obtained when the GPS device was: 1) Pro-

grammed to record geo- graphical position by time rather than distance intervals; 2) Carried by

the researcher; and 3) Used to mark the sites in the forest where fungi were collected. Although

the sample size explored was small, we believe that the analysis of the paths obtained using this

method can provide insights into the decisions that underlie the foraging patterns of humans, as

well as the possible relation between these and the spatial distribution of fungi.

Citation: L. Pacheco-Cobos, M. Rosetti and R. Hudson. A new method for tracking Pathways

of humans searching for wild, edible fungi. Micologı̀a Aplicada International, 21(2), 2009, pp. 77-

87.

Sex differences in mushroom gathering: women forage more efficiently

than men

Authors:Luis Pacheco-Cobos1, Marcos Rosetti2, Cecilia Cuatianquiz3, Robyn Hudson1

1. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México.

2. Centre for Computational Neuroscience and Robotics,University of Sussex, Brighton, UK

3. Centro Tlaxcala de Biologı́a de la Conducta, Universidad Autónoma de Tlaxcala, México.

Abstract: Some of the strongest evidence for sex differences in human cognition relate to

spatial abilities, with men traditionally reported to outperform women. Recently, however, such

differences have been shown to be task dependent. Supporting the argument that a critical factor

selecting for sex differences in spatial abilities during human evolution is likely to have been

the division of labor during the Pleistocene, evidence is accumulating that women excel on tasks
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appropriate to gathering immobile plant resources, while men excel on tasks appropriate to hunting

mobile, unpredictable prey. Most research, with the exception of some recent experimental field

studies, has been conducted in the laboratory, with little information available on how men and

women actually forage under natural conditions. In a first study, we GPS-tracked the foraging

pathways of 21 pairs of men and women from an indigenous Mexican community searching for

mushrooms in a natural environment. Measures of costs, benefits and general search efficiency

were analyzed and related to differences between the two sexes in foraging patterns. Although

men and women collected similar quantities of mushrooms, men did so at significantly higher cost.

They traveled further, to greater altitudes, and had higher mean heart rates and energy expenditure

(kcal). They also collected fewer species and visited fewer collection sites. These findings are

consistent with arguments in the literature that differences in spatial ability between the sexes are

domain dependent, with women performing better and more readily adopting search strategies

appropriate to a gathering lifestyle than men.

Citation: Pacheco-Cobos L., Rosetti M., Cuatianquiz C., Hudson R. (2010) Sex differences

in mushroom gathering: men expend more energy to obtain equivalent benefits. Evolution and

Human Behavior, 31(4), 289-297.
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a b s t r a c t

This work explores search trajectories of children attempting to find targets distributed on
a playing field. This task, of ludic nature, was developed to test the effect of conspicuity
and spatial distribution of targets on the searcher’s performance. The searcher’s path
was recorded by a Global Positioning System (GPS) device attached to the child’s waist.
Participants were not rewarded nor their performance rated. Variation in the conspicuity
of the targets influenced search performance as expected; cryptic targets resulted in
slower searches and longer, more tortuous paths. Extracting the main features of the paths
showed that the children: (1) paid little attention to the spatial distribution and at least
in the conspicuous condition approximately followed a nearest neighbor pattern of target
collection, (2) were strongly influenced by the conspicuity of the targets. We implemented
a simple statisticalmodel for the search rulesmimicking the children’s behavior at the level
of individual (coarsened) steps. The model reproduced the main features of the children’s
paths without the participation of memory or planning.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The study and detailed description of search behavior is important to understand how organisms interact with their
environment and, more specifically, to infer the decision processes followed during searching [1]. There have been a large
number of biological studies illustrating how various species search, in which emphasis is mostly placed on the efficiency of
the search strategies (reviewed in Refs. [2–4]). Questions regarding the efficacy of the decisions underlying a search process
are hard to formulate in conditions of unknown density and distribution of resources, as is often the case in realistic search
settings. Nevertheless, some findings make it possible to attribute an adaptive value to certain decision-making strategies,
suggesting in turn the existence of an evolutionary pressure on searching efficiency [5]. Formodernhumans, searches have in
general more relaxed constraints and reduced costs, less severe consequences and amore subjective benefit scale. However,
many of the mechanisms that guide our search behavior today may have taken shape during harsher times and therefore
might reveal a tendency for efficiency [6].
In certain circumstances human movement appears to exhibit features of a random process, as in the study of the

displacements estimated by following the temporal records of the location of paper currency [7] and by tracking cell
phone use [8], which revealed a dispersive processes of Lévy characteristics combined with regular visits to the same
place. Whether at finer scales the diffusive properties continue to be an accurate description of the process is an interesting
question. Indeed, at finer scales one could anticipate that environment features, cognitive components and short-term goals

∗ Corresponding author. Tel.: +44 1273 877971; fax: +44 1273 678195.
E-mail addresses:mrosetti@gmail.com, rosetti_m@yahoo.com (M.F. Rosetti).
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can induce systematic behaviors, whichwould deviate from the simple randomprocesses that apply at large scales. Actually,
examples in nature where systematic movements allow animals to increase the probability of finding their target are few
but well documented, such as the searching behavior of Cataglyphis ants: when lost, these ants move in loops of increasing
size and varying orientation, systematically covering the area where there is a greater chance to find the nest [9]. Also,
there is abundant documentation on how organisms adjust their searching strategy to local resource conditions, especially
density [1,10–12]. Adjusting tortuosity and speed [13–16] or other searching values [17,18] can increase the resource
encounter rate, improving the yield of the search.
Here, we studied human search behavior to observe if search paths were constructed through a systematic process

sensitive enough to allow adjustment to the underlying resource distribution (e.g. distance between targets), a topic for
which there is far less documentation available [19]. The spatial structure reflects the characteristics of the distribution of
resources in the physical landscape in which the search takes place, elements that may be used by animals and humans to
perform their search [20]. For modern humans it is common to search in environments in which geometric regularities are
present. These regularities may be exploited to give structure to a search and are often useful in predicting the location of a
given target. We found instead that spatial regularity of the target distribution was largely ignored, or went unnoticed, and
that searching appeared to be governed by rather simple rules, influenced by a few physical constraints, such as the arena
size.
Due to the inherent problems in obtaining detailed recordings of search behavior, few studies have focused on human

movement in dimensions that allow a realistic representation of space and the cognitive processing involved, and the
energetic costs of experimental situations usually differ considerably from real life. For example, paths have been recorded
for humans searching for a sensor hidden under a carpet, similar to rats searching for a hidden platform in a Morris water-
maze [21], or searching for a marble hidden inside one of many film containers distributed on the floor of a room [22]. Such
studies, however, require the participants to physically search within areas that are usually rather small, given that they are
conducted within the confines of laboratories, and provide little opportunity for spatial strategies that consider the costs of
movement to emerge.
Here we describe a simple experimental and statistical model of search behavior based on the paths resulting from a

search situation reminiscent of children’s games such as the Easter egg hunt, where constraints are few and relaxed, and
the rewards are of little value. Furthermore, we used a large outdoor setting and explored the effect of target distribution,
and also of target conspicuity on the participants’ search performance. To monitor and later analyze participants’ search
behavior we used the Global Positioning System (GPS) technology that has been successfully applied to the study of human
locomotion [23–25]. Finally, we discuss the principal features of the search process, and the role that cognitive aspectsmight
have played.

2. Search experiments

We tested 36 children (18 boys and 18 girls, three boys and three girls in each of the six test conditions described below)
aged from 9 to 11 years and attending 5th grade of primary school in Mexico City. We chose children of this age (1) to have
participants with a positive attitude towards outdoor activities [26,27], (2) to ensure the task would be understood as a
game, thus minimizing the influence of possible speculation about the researchers’ motives, and (3) to use an age group
with well developed spatial abilities [28]. Search trials were carried out during school hours (9 a.m. to 1 p.m.) with pauses
during recess. Fair weather and mild temperatures prevailed throughout the study.
Experimentswere carried out on one half of the grass soccer field of the children’s school, a rectangle 60×80m (4800m2)

with clearly visible markers at each corner. Twenty golf balls were placed across the test area according either to the same
random or to the same regular distribution (Fig. 1(a) and (b), respectively). To avoid effects of human bias, the random
distribution was computer generated. The physical placement of balls was aided by chalk marks at 1 m intervals along the
arena perimeter, and the consistency of their location across trials was ensured by placing a small marker peg below each
ball. Three levels of conspicuity were implemented but only one was used per trial: balls painted green to match the grass
represented the cryptic level, unpainted white balls represented a semi-conspicuous level, and unpainted balls plus a 1 m
pole with a flagmarking their location and visible from every point in the arena represented themaximum conspicuity level
(Fig. 1(c)–(e)). The height of the uncut grass covered the whole diameter of the balls, making them difficult to detect from a
distance.
Each child was tested individually and brought directly from the classroom to the experimental field by one of the

experimenters. Tominimize participants communicating their experiences to classmates, children searching under the same
experimental conditions were taken from different classrooms. Upon arrival the child was verbally instructed to find and
collect in a bag as many balls as possible before a stop was announced by the experimenters. A sample of the target was
shown, either awhite or a green golf ball, and the role of flags on the fieldwas explained, when appropriate. Children did not
know the number of targets nor the eight minute test time. A GPS device (Garmin GPS V) set to record the child’s position
every second was placed on a belt around the child’s waist and activated. The open test area ensured uninterrupted satellite
reception. Participants were started at the midpoint of the field’s southern short border, and two experimenters positioned
at the starting point observed the search and recorded the time each ball was collected. Trials were ended after 8minutes or
when all balls had been collected. The experimental timewindowwas based on pilot studies showing that eightminuteswas
roughly the minimum time needed for a child to collect all the cryptic targets. In this experiment this was confirmed; in the
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Fig. 1. Summary of the experimental setup showing (a) the random and (b) the regular distribution of the twenty balls (black) and their position as
recorded as collection points along the search paths (gray crosses), and (c)–(e) the three levels of the balls’ conspicuity.

cryptic condition only one child managed to collect all targets, while in the semi conspicuous condition only one child failed
to collect all the targets. Procedures conformed to the guidelines for human research of the Instituto de Investigaciones
Biomédicas, Universidad Nacional Autónoma de México, and informed consent was obtained from parents, teachers and
school authorities.
Due to inherent fluctuations in the accuracy of the GPS device (0–15 m, 95% C.I. Garmin Reference Manual [29]), there

were differences between the path records of each trial and the records of the balls’ distribution. We therefore took the
position of each ball to be the average of all the children’s collection coordinates for that particular ball, resulting in a set of
effective target coordinates that sometimes fell somewhat away from particular paths (0–6.9 m, 95% C.I., e.g. Fig. 1(b)).
To quantify searching we calculated the following descriptors: total time spent and distance traveled, which are indicators

of the effort needed toperform the search; for example, for the cryptic targetsweexpected longer searches. These descriptors
provide a transparent way to establish differences in the cost of the search process. Efficiency, calculated as the distance
traveled over the number of targets collected, which provides an estimate of the cost per target collected. Total path self-
crosses, which is a gross estimator of performance; searchers who rarely cross their own pathmake better use of their effort.
A straightness index (linear distance between collection points divided by actual distance traveled by the searcher between
those points) which provides an indicator of the difficulty of the search, and an optimality index (linear distances between
the actual sequence of collections divided by the linear distances between the shortest sequence of collections calculated
by simulated annealing) which relates to the global efficiency of the sequential collections made by the searcher [30,31].
The above descriptors provide indirect information about the economics of decision making during the search process. To
estimate search success we also calculated the collection rate (balls per min), and total collections. The collection rate reflects
search efficiency, whereas the total number of balls collected gives a global success measure.
To reduce inherent error in the GPS recording of search paths and to help identify possible patterns, path records were

coarsened [32,33]. For this, path segments with small turning angles were combined into one step by increasing the width
around the line segments (Fig. 2(a)–(c)) so that only main changes of direction remained. The coarsening width (3 m) used
was equivalent to the mean variance in individual collection records resulting from the fluctuations in the GPS accuracy, as
mentioned above.
Descriptor values across conditions were compared using the Matlab r© statistical toolbox (Mathworks Inc. 2008). As

most of the children’s data were not normally distributed (Lilliefors test for normality [34]) we have used non-parametric
statistical tests throughout. Descriptor values were compared across the six conditions using Kruskal–Wallis tests [35]
followed by a post hoc multiple comparison procedure with the Bonferroni correction [36]. Performance scores between the
regular and random target distributions within each conspicuity condition were further compared using Mann–Whitney
tests [35]. As no difference was found on any measure between boys and girls, their data have been combined.

2.1. Path analysis of children’s search

Visual inspection of the coarsened paths suggested that the children walked in essentially straight lines across the arena
(e.g. Fig. 2(d) and (e)), and that the factors accounting for the few changes in direction were (perhaps obviously) the arena
boundaries or the detection of a nearby ball and its subsequent collection. Some spontaneous turns not associated with
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Fig. 2. Path coarsening. (a) An original path, where several segments move in the same general direction. (b) A rectangle of width (w) is then drawn
(dotted line) from the first to every successive segment until one segment within the sequence falls outside the rectangle’s area. The immediately previous
interval is merged to form a single step (dashed line). (c) The coarsened path displays in general longer step lengths and sharper turning angles. Example
showing the difference between (d) an uncoarsened path (regular distribution of cryptic balls) and (e) the same path after the coarsening procedure. The
irregularity in the distribution of balls is due to the intrinsic error in the GPS recording of positions.

collections or collisions were also observed. However, the number of such turns decreased dramatically with the coarsening
width, suggesting that they might contribute to the structure of search paths at fine spatiotemporal scales. Unfortunately,
the resolution of our data was not adequate to explore such fine scale structures.
The distributions of turning angles for both coarsened and uncoarsened paths are shown in Fig. 3. While the turning

angle distribution for the uncoarsened paths appeared to show some degree of persistence, i.e. a tendency to take steps
roughly in the direction of the previous step, the details fall below our spatial resolution. After coarsening, all the turning
angle distributions flattened considerably, as expected.
Search performance varied slightly for some descriptors between the random and regular distribution of the targets

(significance p < 0.05, Mann–Whitney test, but p > 0.05, multiple comparisons), but the direction of difference was
not consistent across descriptors and the degree of difference was generally not strong. On the other hand, performance
descriptors varied consistently with conspicuity, with significant differences found mainly between the cryptic and the
conspicuous conditions (Fig. 4).
In general, the lower the conspicuity of the targets, the longer the search paths (Fig. 4(a)), the more time spent searching

(Fig. 4(b)), and the lower the efficiency of the searching process (Fig. 4(c)). Furthermore, participants crossed their own
path more often (Fig. 4(d)) and had more tortuous paths (Fig. 4(e)) when searching for cryptic targets. Nevertheless, in all
conditions the sequence of collections resulted in an optimality index of 0.6 or larger (Fig. 4(f)). Finally, children collected
fewer cryptic balls per minute (Fig. 4(g)) and often failed to collect all the balls (Fig. 4(h)). The percentage of times that
participants collected the closest ball ranged from 50% in the random cryptic condition to 70% in the regular conspicuous
condition, showing that the paths departed from a nearest neighbor search.

3. The bouncing search model

To model children’s search behavior a numerical simulation was implemented applying the following simple search
rules: agents move in straight lines until they collide with a boundary or detect a target. After boundary detection or
collection of the target, a new direction is assigned randomly from a uniform angular distribution, with the restriction that
agents do not leave the arena (‘‘bouncing’’; Fig. 5(a)). Target conspicuity is represented in the model by a circle (of radius rd)
that allows detection of the target located at its center (Fig. 5(b)). Intersection of the circle’s perimeter by the agent’s path
will result in target collection. To simplify calculation, when a collection occurs the path is redefined as the straight line
between the previous bouncing point and the center of the detection circle. Collected targets are removed from the target
array. If several detection circles are intersected by the agent’s path, only the closest target is assumed to be collected, and
information about other targets is discarded. Thus, as the simplest implementation of the process, the model assumes no
memory or learning for the search strategy.
A total of 10,000 simulated paths were calculated for each rd from 1 to 70 m in 1 m intervals. Arena dimensions, target

distributions and test time were the same as in the field experiment. Search times were calculated from distance traveled,
assuming a constant speed of v = 1.7 m/s, corresponding to the slowest mean velocity among the different conditions.
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Fig. 3. Normalized turning angle distribution for both uncoarsened (gray background) and coarsened paths (white background). Histograms show the
distribution of internal turning angles (black bars) and the distribution of turns occurring within 3 m of the boundary (white bars).

3.1. Path analysis of the bouncing search model

The model exhibited a clear monotonic relation between the rd values and the distance traveled, the first descriptor
chosen for comparison with the experimental data (Fig. 6). In these curves, three broad regions could be identified: a region
with rd = 1–5 m, characterized by paths commonly composed of uninterrupted steps, and trials that finished before all
targets were collected. A second region with rd = 6–12 m, where small changes in rd resulted in rapid shortening of the
search paths and collection of all targets. And a third region with rd > 12 m, where the distance traveled reached a plateau
as every step resulted in an intersection with a circle of detection and the collection of all targets in a nearest neighbor
pattern. The model proved to be robust; for example, assuming a probability of collecting a detected target or considering
a small rate of making spontaneous turns without intersecting a boundary or a circle of detection, resulted in qualitatively
similar curves to the ones obtained using the simple bouncing search model. In the latter case, departures from the model’s
behavior are expected to occur when the distance between spontaneous turns becomes comparable with the length scales
in the system.

4. Comparison between the model and the children’s behavior

To compare the model’s results with the children’s search behavior, we took what could be considered the main
descriptor of search behavior, the total distance traveled. It was possible to estimate each child’s rd value by matching its
distance to the nearest value on the curve produced by the model (Fig. 6). This allowed us to estimate the mean rd for each
of the six experimental conditions, giving rd’s of 3–8 m for the cryptic condition and an rd’s of 12–36 m for the conspicuous
condition. However, variation in the rd’s obtained from the matching process for different participants suggested that
conspicuity was not only a property of the experimental conditions, but also arose from individual differences among the
searchers, such as height, visual acuity or vigilance (cf. Fig. 6).
In order to compare the search behavior of the children and the model, we calculated a subset of the descriptors for

the model using pooled rd values for which the total distance traveled matched the corresponding child’s value for each
experimental condition (Fig. 7; cf. Fig. 4). The overlap of values that the pooled rd’s yielded is consistent with the descriptors
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a b

c d

e f

g h

Fig. 4. Comparison of the children’s search path descriptors among conditions. Each dot represents a child’s value and the horizontal bars give themedians.
All conditions were compared: * above columns for multiple comparisons, Ď below columns for Mann–Whitney U tests, p < 0.05 (see text for explanation
of statistical tests).



Author's personal copy

M.F. Rosetti et al. / Physica A 389 (2010) 5163–5172 5169

a b

Fig. 5. Main features of the bouncing searchmodel. (a) The agentmoves in a straight line until intersecting a boundary (1.2), that produces an effective step
between the last previous position (1.1) and the collision point (1.2), after which a new angle is randomly chosen (1.3). (b) The agent moves in a straight
line until intersecting a circle of detection (2.2), producing an effective step between the previous position (2.1) and the collection point (2.3), after which
a new angle is again randomly chosen (2.4).

a b

Fig. 6. Matching of the experimental and model data. The continuous line represents the mean distance traveled (gray area s.d.) produced by the model,
and each circle represents data from an individual participant in the corresponding experimental condition. Themean distance traveled by each participant
was used to estimate an rd value by matching it to the closest position on the curve generated by the model.

of the children’s search paths, though there were a few instances in which single children’s path descriptors fell slightly
outside the range predicted by the model.

5. Discussion

We implemented in a simple behavioral model what we identified as the constitutive events of the search process
performed by the children, namely movement in straight lines with turns in random directions when close to the field
boundaries or at collection points. We stress that the model was designed to mimic what appeared to be the individual
events that gave rise to the search path, without recourse tomemory or to other cognitive processes. Amore detailedmodel
could be implemented by including small departures from this coarse behavior at small length scales. In spite of its simplicity,
the resulting displacement process is intrinsically non-Markovian (due to the collecting of targets), and thus not amenable
to analysis using the usual tools of random walk theory. Further, while designed to reproduce the behavior of the children
at the level of individual events, the model was tested by comparing the descriptors of complete search paths generated
by the model with those for the paths followed by the children. We found that these global descriptors already matched
satisfactorily.
The children’s paths suggest that they made little use, if at all, of the underlying spatial distributions of targets to orient

themselves. On the other hand, the manipulation of conspicuity yielded the expected effects, given that searching in the
conspicuous conditions resulted in movement in essentially straight lines along the flags, while the cryptic conditions
provided a searching challenge reflected by longer paths, longer search times and lower collection rates. It was notable
that most targets were collected in sequences with an optimality index above 0.6, even in the more difficult experimental
conditions, possibly by using essentially the same searching behavior, consistingmainly of locomotion in essentially straight
lines combinedwith deflections from the boundary or to pick upballs. Our data resolution does not allowan accurate account
of departures from this behavior at finer length scales. Nevertheless,mechanisms operating at finer scalesmight exist, which
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a b

c d

Fig. 7. Box plots of path descriptors generated by the model for the pooled r ′ds corresponding to the children’s matches of distance traveled (shown in
Fig. 6); horizontal bars give themedian, horizontal borders of the box give the 25th and 75th percentiles, and thewhiskers extend to themost extreme data
points. Each black dot represents the score of a child for that particular descriptor. Given the inner workings of the model, only some of the performance
descriptors are comparable to the children’s search paths. For clarity, outliers for the model data are not shown.

may increase the efficiency of the search, especially in the cryptic condition. Recording andmodeling this fine scale behavior
presents an interesting challenge.
The distribution of step lengths suggests an exponential distribution in both the children’s and the model’s paths within

the dimensions set by the strict borders of the search field (Fig. 8). It should be noted, however, that the process cannot be
described as a ‘‘simple’’ random walk with exponential distribution of step lengths. The reason for this is that as the search
progresses, the target distribution changes as targets are collected, giving rise to a non-Markovian process. Further, it is
difficult to use the model to predict how children would search in larger areas without strict boundaries, although it does
present a testable hypothesis in which long uninterrupted steps should reflect the dimensions of the search field (a larger
search field makes possible longer steps). While it is rare for foraging models to consider environmental boundaries, this is
in most cases the search situation in the everyday life of humans, particularly in urban areas where physical boundaries and
obstacles commonly define the areas we search in.
The children did not appear to detect the structure of the systematic regular distributions. A possible reason for this

could be that the regular properties of these distributions were modified by the collection events, making the identification
of the original structure difficult. An interestingmodification could be to consider ‘‘patchy’’ distributions,where after visiting
various patches subjects might detect a pattern and upon finding a target, search for others nearby. Unfortunately, patchy
distributions were explicitly discarded as an experimental possibility in the present study because adequate patches could
not be placed without overlap in the arena we had at our disposal.
The findings suggest that, at least in the current scenario, children may instead have mainly used the presence of

boundaries or the visual detection of targets to turn while searching. Often, the places we search in are bounded spaces
(e.g. parking lots, libraries, supermarkets) and contain information regarding the location of targets (e.g. codes on library
shelves or in parking lots) that could make it less necessary to ‘‘bounce’’ around the search space before reaching the target.
Still, the bouncing strategy appears to be a cheap, simple rule of thumb that does not require that we read signs, memorize
codes or construct spatial maps, and requires little or no information to function in unknown environments [37]. Future
work could focus on the information acquired during the search, for instance by asking the participants to draw a map of
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Fig. 8. Semi-log plot of the normalized frequency of step lengths for the model and children’s search paths.

the location of the targets after completing the task to evaluate whether they are able to detect the shape of the underlying
distribution through the collection of targets.
In conclusion, the behavioral experiment andmodel described here should be useful for investigating social and cognitive

processes in a variety of contexts. Even the very simple model employed here proved useful for mimicking basic aspects of
the children’s paths. Increasing the model’s complexity should help identify the effect of additional factors contributing to
search behavior under more challenging conditions. Further, changing the motivational context and/or the age group of
the participants in the experiment may help test whether the structure of systematic target distributions can be detected
during the search. Although only a first step, the present study already suggests that at least basic features of children’s
search behavior can be simulated using very simple decision rules.
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Appendix D

Children’s search paths
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Figure 6.6: Random distribution, conspicuous targets. Search paths of children and an example
of the a path generated by the bouncing search model. Children paths are coarsened
with w = 4m. Starting points (black half dot) and collection points (white circles) are
also plotted.
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Figure 6.7: Random distribution, semiconspicuous targets. Search paths of children and an
example of the a path generated by the bouncing search model. Children paths are
coarsened with w = 4m. Starting points (black half dot) and collection points (white
circles) are also plotted.

151



Figure 6.8: Random distribution, cryptic targets. Search paths of children and an example of
the a path generated by the bouncing search model. Children paths are coarsened with
w = 4m. Starting points (black half dot) and collection points (white circles) are also
plotted.
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Figure 6.9: Regular distribution, conspicuous targets. Search paths of children and an example
of the a path generated by the bouncing search model. Children paths are coarsened
with w = 4m. Starting points (black half dot) and collection points (white circles) are
also plotted.
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Figure 6.10: Regular distribution, semiconspicuous targets.Search paths of children and an ex-
ample of the a path generated by the bouncing search model. Children paths are
coarsened with w = 4m. Starting points (black half dot) and collection points (white
circles) are also plotted.
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Figure 6.11: Regular distribution, cryptic targets. Search paths of children and an example of
the a path generated by the bouncing search model. Children paths are coarsened
with w = 4m. Starting points (black half dot) and collection points (white circles) are
also plotted.
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Figure 6.12: Cluster distribution, conspicuous targets. Search paths of children and an example
of the a path generated by the bouncing search model. Children paths are coarsened
with w = 4m. Starting points (black half dot) and collection points (white circles) are
also plotted.
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Figure 6.13: Cluster distribution, semiconspicuous targets. Search paths of children and an
example of the a path generated by the bouncing search model. Children paths are
coarsened with w = 4m. Starting points (black half dot) and collection points (white
circles) are also plotted.
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Figure 6.14: Cluster distribution, cryptic targets. Search paths of children and an example of
the a path generated by the bouncing search model. Children paths are coarsened
with w = 4m. Starting points (black half dot) and collection points (white circles) are
also plotted.
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Figure 6.15: Layer distribution, conspicuous targets. Search paths of children and an example
of the a path generated by the bouncing search model. Children paths are coarsened
with w = 4m. Starting points (black half dot) and collection points (white circles) are
also plotted.
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Figure 6.16: Layer distribution, semiconspicuous targets. Search paths of children and an ex-
ample of the a path generated by the bouncing search model. Children paths are
coarsened with w = 4m. Starting points (black half dot) and collection points (white
circles) are also plotted.
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Figure 6.17: Layer distribution, cryptic targets. Search paths of children and an example of the
a path generated by the bouncing search model. Children paths are coarsened with
w = 4m. Starting points (black half dot) and collection points (white circles) are also
plotted.
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