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Abstract

In the projective space PG(k−1, q) over Fq, the finite field of order q, an (n; r)-arc

K is a set of n points with at most r on a hyperplane and there is some hyperplane

meeting K in exactly r points. An arc is complete if it is maximal with respect

to inclusion. The arc K corresponds to a projective [n, k, n − r]q-code of length

n, dimension k, and minimum distance n − r; if K is a complete arc, then the

corresponding projective code cannot be extended.

In this thesis, the n-sets in PG(1,19) up to n = 10 and the n-arcs in PG(2,19)
for 4 ≤ n ≤ 20 in both the complete and incomplete cases are classified.

The set of rational points of a non-singular, plane cubic curve can be considered

as an arc of degree three. Over F19, these curves are classified, and the maximum

size of the complete arc of degree three that can be constructed from each such

incomplete arc is given.
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Preface

In recent years there has been an increasing interest in finite projective spaces,

and important applications to practical topics such as coding theory, cryptography

and design of experiments have made the field even more attractive.

A problem, first studied in statistics by Fisher [20, 21], has proved to be equiva-

lent to a problem in geometry [13]. The statistician Bose [11], in his investigations

on graph theory, design theory and finite projective spaces, generalized this appli-

cation of finite projective geometry for the design of experiments and called it the

packing problem. mainly using purely combinatorial arguments in combination

with some linear algebra. He also presented, in 1961, connections between the

design of experiments and coding theory [12, 13].

After initial consideration by Bose and his followers as a statistical problem,

the topic was taken up by Segre [45, 46] applied to finite projective spaces. Using

geometric methods, he showed that, in the projective plane PG(2, q) over the

Galois field GF(q) with q odd, every set of q + 1 points, no three of which are

collinear, is a conic.

Coding theory provides a second motivation for these problems, which have

equivalent formulations in finite projective spaces and coding theory. This amounts

in coding theory to studying the row space of a generator matrix of a code and

in Galois geometry to studying the column space. The classical example, that

is, the equivalence of linear maximum distance separable MDS codes and arcs

in projective spaces, has been stressed in many books on Galois geometries and

coding theory. In [36], MacWilliams and Sloane introduce the chapter on MDS

codes in their standard work on coding theory as one of the most fascinating

chapters in all of coding theory.

Applications of curves over finite fields to coding theory have been given by

Goppa [22]. These stimulated the enthusiasm of many geometers to work on the

problems that arise from these relations amongst finite projective spaces, coding

theory and statistics. Some of these problems in the view of finite projective spaces

and coding theory are as follows:

(I) to classify the (n; r)-arcs in PG(k − 1, q) which correspond to projective

[n, k, n − r]q-codes;

(II) to classify non-singular plane cubic curves in PG(k − 1, q) and find the

number of rational inflexion points on each curve.

xi



Preface xii

These two problems has been studied by Hirschfeld theoretically and also for

q = 2,3,4,5,7,9,11,13; see [28]. Hirschfeld and Storm have given a historical

survey on the problem (I); see [31].

In this thesis the case q = 19 is studied. Since

19 ≡ 1 (mod 3)

this property affects the geometry considerably. For example, there exists a tetrad

of equianharmonic type in PG(1,19) and there exists a non-singular plane cubic

curve with nine rational inflexion points.

The principle themes of this thesis are the following.

(1) Classify the subsets of the projective line PG(1,19) up to size 10.

(2) Classify arcs in the projective plane PG(2,19) up to size 20.

(3) Classify those arcs which are contained in a conic.

(4) Classify non-singular plane cubic curves in PG(2,19) according to the num-

ber of rational inflexion points and the number of rational inflexion triangles; deter-

mine which of them are complete as (k; 3)-arcs and, for each incomplete (k; 3)-arc,

find the largest complete (k; 3)-arc which contain it.

(5) Give the corresponding error-correcting projective [n, k, n − r]19-codes to

these arcs.

The main computing tool that was used in this thesis is the mathematical

programming language GAP [24]. A windows machine and a cluster computer

have been used to execute the programs.

The material developed in each chapter is as follows.

Chapter 1 is devoted to basic definitions and some background material on the

theory of finite fields, projective spaces, their arcs, conics, plane cubics and coding

theory. The relation between coding theory and projective spaces is explained.

The main reference used in this chapter is [28] beside other important references

that are related to the subjects in this work referred to throughout.

Chapter 2 deals with the projective line PG(1,19) of order nineteen. The

classification of all n-sets for 4 ≤ n ≤ 10 is given. Partitions of PG(1,19) into

two decads and into five disjoint tetrads are found. Links with MDS codes of

dimension two are also given.

Chapter 3 introduces the background to the projective plane PG(2, q). Im-

portant properties of ovals, conics and complete arcs in the projective plane are
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introduced and their relation to each other are explained. Also, some of the known

results on complete arcs are stated and some conditions for a k-arc K to be com-

plete or incomplete are given. Some bounds for the size of complete arcs are also

given. The algorithms to calculate the matrix transformation between any two

4-arcs and construction of a complete arc are given.

Chapter 4 deals with classification in the projective plane PG(2,19) of com-

plete and incomplete n-arcs for 4 ≤ n ≤ 20. Some other configurations are also

given. Links with MDS codes of dimension three are described.

Chapter 5 is devoted to non-singular, plane cubic curves over F19. The canon-

ical form, the number of rational points and the stabilizer group for each non-

singular plane cubic curve are found. The number of non-singular plane cubic

curves is determined in both the complete and incomplete cases, and the max-

imum size of a complete arc of degree three that can be constructed from each

incomplete arc are given. Links with AMDS codes of dimension three are also

explained.

Finally, in the appendix there is a table of the points of PG(2,19).



Chapter 1

Introduction

1.1 Finite Fields

A field is a non-empty set K with two binary operations, usually called addition

and multiplication, with the property that K is an additive group with identity 0

and K/{0} is a multiplicative group and distributive law holds.

A Galois field is a finite field with q = ph elements, where p is a prime number

and h is a natural number. This field is denoted by GF(q) or Fq. Here p is called

the characteristic of this field and is the smallest prime such that

px = x +⋯ + x´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

= 0, for all x ∈ Fq.

If f(x) is an irreducible polynomial of degree h over Fp, then

Fph = Fp[x]/(f(x))

= {a0 + a1x + a2x
2 +⋯ + ah−1x

h−1 ∣ ai ∈ Fp, f(x) = 0},

is a field of characteristic p satisfying the following properties.

(1) The elements x of Fq satisfy xq − x = 0.

(2) Let x, y ∈ Fq. then

(x + y)q = xq + yq.

(3) There exists ε in Fq/{0} such that

Fq = {0,1, ε, . . . , εq−2 ∣ εq−1 = 1};

1
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such an ε is called a primitive element or primitive root of Fq.

(4) The additive structure of Fq is given by the group isomorphism

Fq ≅ Zp ×⋯ ×Zp

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h

.

(5) The multiplicative structure of Fq is given by the group isomorphism

Fq/{0} ≅ Zq−1.

(6) Fph is a vector space of dimension h over Fp.

(7) (Uniqueness): Any finite field K of q elements is isomorphic to Fq.

Throughout this work the linear space of n-tuples over the finite field Fq is

denoted by Fn
q .

For an extensive introduction to finite fields see [35].

1.2 Primitive and subprimitive polynomials

Let f(x) = xn − an−1xn−1 −⋯ − a0 be a monic polynomial of degree n ≥ 1 over Fq.

(I) Its companion matrix C(f) is given by the n × n matrix

C(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⋮ In−1

0

a0 a1 ⋯ an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(II) Let f be irreducible over Fq and α ∈ Fqn be a root of f .

• It is called primitive if the smallest power s of α such that αs = 1 is

(qn − 1); that is, α is a primitive root over Fqn .

• It is called subprimitive if the smallest power s of α such that αs ∈ Fq

is θ(n − 1, q) = (qn − 1)/(q − 1).

Lemma 1.2.1. The monic polynomial f(x) of degree n ≥ 1 over Fq is a primitive

polynomial over Fq if and only if (−1)nf(0) is a primitive element of Fq and the

least positive integer r for which f(x) divides (xr − (−1)nf(0)) is θ(n − 1, q).
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Proof. See [35, Theorem 3.18].

Corollary 1.2.2. According to Lemma 1.2.1, every primitive polynomial over Fq

is also subprimitive.

1.3 Roots

To solve the equation xn = c in Fq with q = ph, let d = (n, q − 1), e = (q − 1)/d and

let s be a primitive element of Fq.

(i) xn = 1 has d solutions in Fq, namely x = 1, se, s2e, . . . , s(d−1)e.

(ii) xn = 1 has the unique solution x = 1 when d = 1.

(iii) xn = 1 has n solutions when n∣(q−1); these are x = 1, s(q−1)/n, . . . , s(n−1)(q−1)/n.

(iv) xn = c has a unique solution when d = 1; this is x = cr where r, r
′ ∈ Z and

rn + r′(q − 1) = 1.

(v) xn = c has n solutions when n∣(q − 1) and c(q−1)/n = 1.

(vi) When p > 2, the equation x2 = c has two solutions for exactly half the non-

zero values of c and no solutions for the other half.

(vii) The following are equivalent:

(a) (q − 1,3) = 3;

(b) q ≡ 1 (mod 3);

(c) x2 + x + 1 = 0 has two distinct roots in Fq;

(d) x3 = 1 has exactly three solutions in Fq.

(viii) The following are equivalent:

(a) q ≡ 0 (mod 3);

(b) x2 + x + 1 = 0 has exactly one root in Fq;

(c) x3 = 1 has exactly one solution in Fq and in Fq2 ;

(d) q = 3h.
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1.4 Group Theory and Group Actions

A group G acts on a set K if there is a map ϕ ∶K ×GÐ→K such that if e is the

identity and g, g
′

are elements in G; then, for any x ∈K,

(i) ϕ(x, e) = x;

(ii) ϕ(ϕ(x, g), g′) = ϕ(x, gg′).

The orbit of a set S is SG = {ϕ(S, g) ∣ g ∈ G}, a subset of K; the stabilizer of S

is GS = {g ∈ G ∣ ϕ(S, g) = S}, a subgroup of G.

The action of G on K is transitive if there is only one orbit; that is, given

x, y ∈ K there exists g ∈ G such that y = ϕ(x, g). The action is sharply transitive

if it is transitive and if Gx = {e} for all x ∈K.

The action of G on K is k-transitive if there is some element of G transforming

any ordered k-tuple of distinct elements of K to any other such k-tuple.

Lemma 1.4.1. Let the group G act on the set K.

(1) If y = ϕ(x, g), for x, y ∈K, g ∈ G, then

(a) yG = xG;

(b) Gy = g−1Gxg.

(2) ∣Gx∣ = ∣G∣/∣xG∣; that is, the order of the stabilizer group of x is the order of G

divided by the length of the orbit of x.

Some groups that occur in this work are listed below.

Z = group of integers;

Zn = cyclic group of order n;

V4 = Klein 4-group which is the direct product of two copies

of the cyclic group of order 2;

Sn = symmetric group of degree n;

An = alternating group of degree n;

Dn = dihedral group of order 2n = ⟨r, s ∣ rn = s2 = (rs)2 = 1⟩;

G ×H = the direct product of G and H;

G ⋊H = a semi-direct product of G with H, where G

is a normal subgroup.
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1.5 Projective Space over a Finite Field

Let V = V (n + 1, q) be an (n + 1)-dimensional vector space over the field Fq with

zero element 0 which can be regarded as Fn+1
q . Consider the equivalence relation

on the elements of V0 = V /{0} whose equivalence classes are the one-dimensional

subspaces of V with zero removed. Thus, if X,Y ∈ V0, then X is equivalent to Y if

Y = tX for some t in Fq/{0}; that is, yi = txi for all i. Then the set of equivalence

classes is the n-dimensional projective space over Fq and is denoted by PG(n, q).
The elements of PG(n, q) are called points ; the equivalence class of the vector X

is the point P(X) . It will also be said that X is a coordinate vector for P(X)
or that X is a vector representing P(X). In this case, tX with t in Fq/{0} also

represents P(X); that is, by definition, P(tX) = P(X). So, the points of PG(n, q)
can be described in terms of coordinates as in Table 1.1,

Table 1.1: Type of elements of PG(n, q)

Type of elements No. of elements

P(x0, . . . , xn−1,1) qn

P(x0, . . . , xn−2,1,0) qn−1

⋮ ⋮
P(x0,1,0, . . . ,0) q

P(1,0, . . . ,0) 1

θ(n, q)

where x0, x1, . . . , xn−1 ∈ Fq. So

∣PG(n, q)∣ = θ(n, q) = (qn+1 − 1)/(q − 1).

The points P(X1), . . . ,P(Xr) are linearly independent if a set of vectorsX1, . . . ,Xr

representing them is linearly independent.

For anym = −1,0,1,2, . . . , n, a subspace of dimensionm, orm-space, of PG(n, q)
is a set of points all of whose representing vectors form, together with the zero, a

subspace of dimension m + 1 of V = V (n + 1, q); it is denoted by Πm. A subspace

Π0 of dimension zero has already been called a point; a subspace of dimension

−1 is the empty set. Subspaces Π1 of dimension one, Π2 of dimension two are

respectively a line, a plane. A subspace Πn−1 of dimension n − 1 is a hyperplane.

A hyperplane is the set of points P(X) whose vectors X = (x0, . . . , xn) satisfy a
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linear equation

u0x0 + u1x1 +⋯ + unxn = 0

with U = (u0, . . . , un) in Fn+1
q /{(0, . . . ,0)}. An m-space Πm is the set of points

whose representing vectors X = (x0, . . . , xn) satisfy the equations XA = 0, where

A is an (n + 1) × (n −m) matrix of rank n −m with coefficients in Fq.

Throughout this work a line through two distinct points Pi and Pj is denoted

by PiPj.

1.6 Projectivities

Let Ω1 and Ω2 be two projective spaces of dimension n.

A projectivity T ∶ Ω1 Ð→ Ω2 is a bijection given by a non-singular (n+1)×(n+1)
matrix A such that P(X ′) = P(X)T if and only if tX

′ = XA, where t ∈ Fq/{0}.

Write T = M(A); then T = M(λA) for any λ in Fq/{0}.

The two projective spaces Ω1 and Ω2 are projectively equivalent if there is a

projectivity between them; this is denoted by Ω1 ≅ Ω2.

A projectivity T which permutes the θ(n, q) points of PG(n, q) in a single cycle

is called a cyclic projectivity.

Lemma 1.6.1. A projectivity T of PG(n, q) is cyclic if and only if the character-

istic polynomial of an associated matrix is subprimitive.

Proof. See [28, Theorem 4.2].

Remark 1.6.2. In Lemma 1.6.1, T is not unique. See [28, Section 1.6(ix)].

The projective general linear group PGL(n + 1, q) is the group of projectivities

of PG(n, q). The general linear group GL(n + 1, q) is the group of non-singular

linear transformations of V (n + 1, q). It is isomorphic to the multiplicative group

of (n + 1) × (n + 1) non-singular matrices whose entries come from Fq. The order

of GL(n + 1, q) is

(qn+1 − 1)(qn+1 − q)⋯(qn+1 − qn).

Since each projectivity T of PG(n, q) is given by q − 1 matrices λA,λ ∈ Fq/{0},

then the order of PGL(n + 1, q) is

∣GL(n + 1, q)∣/(q − 1).
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1.7 The Fundamental Theorem of Projective Geometry

(i) If {P0, . . . , Pn+1} and {P ′0, . . . , P
′

n+1} are both subsets of PG(n, q) of cardi-

nality n + 2 such that no n + 1 points chosen from the same set lie in a

hyperplane, then there exists a unique projectivity T such that P
′

i = PiT, for

i = 0,1, . . . , n + 1.

(ii) For n = 1, (i) simplifies: there is a unique projectivity of PG(1, q) transform-

ing any three distinct points on a line to any other three.

(iii) For n = 2, (i) simplifies: there is a unique projectivity of PG(2, q) transform-

ing any four distinct points no three on a line to any other four points no

three on a line.

1.8 The Principle of Duality

For any space Ω = PG(n, q), there is a dual space Ω∗, whose points and hyper-

planes are respectively the hyperplanes and points of Ω. So, for any projective

result established using points and hyperplanes, a symmetrical result holds in

which the conditions on hyperplanes and points are interchanged: points become

hyperplanes, the points lying on a hyperplane become the hyperplanes through a

point, non-collinear points become non-concurrent hyperplanes. Hence the dual

of an r-space in Ω is an (n − r − 1)-space in Ω∗. In particular, in PG(2, q), point

and line are dual.

1.9 Coordinate Frames

The Fundamental Theorem of Projective Geometry emphasizes a basic difference

between V (n+1, q) and PG(n, q). In the former, linear transformations are deter-

mined by the images of n+1 points; in the latter, projectivities are determined by

the images of n+2 points. Let {P0, . . . , Pn+1} be any set of n+2 points in PG(n, q),
no n + 1 in a hyperplane. If P is any other point of the space, then a coordinate

vector for P is determined in the following manner. Let Pi be represented by the

vector Xi for some vector Xi in V (n + 1, q). Since Xn+1 is linearly dependent on

X0, . . . ,Xn, for any given t in Fq/{0} there exist ai in Fq/{0} for i = 0,1, . . . , n

such that

tXn+1 = a0X0 +⋯ + anXn.
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So, for variable t, the ratios ai/aj remain fixed. Thus, if P is any point with

P = P(X), then

X = t0a0X0 +⋯ + tnanXn.

So, with respect to {P0, . . . , Pn+1}, the point P is given by (t0, . . . , tn) where the

ti are determined up to a common factor. Then {P0, . . . , Pn} is the simplex of

reference and Pn+1 the unit point. Together the n + 2 points form a (coordinate)

frame. In particular, let Ei = (0, . . . ,0,1,0, . . . ,0) be the vector with 1 in the

(i + 1)-th place and zeros elsewhere, and let E = (1, . . . ,1). Write

Ui = P(Ei), U = P(E).

Then {U0, . . . ,Un} is the simplex of reference and U the unit point forming a

frame {U0, . . . ,Un,U}, which is called the standard frame.

Thus, in V (n + 1, q), a basis is a set of n + 1 linearly independent points and,

in PG(n, q), a frame is a set of n + 2 points, no n + 1 in a hyperplane; that is,

every subset of n + 1 points is linearly independent. Dually, a coordinate frame is

determined by n + 2 hyperplanes no n + 1 of which have a point in common. The

faces of the simplex of reference are written u0, . . . ,un and the unit hyperplane u.

So ui has equation xi = 0 and u has equation ∑ni=0 xi = 0.

Again from the Fundamental Theorem, if two coordinate frames are given by

the vectors X = (x0, . . . , xn) and Y = (y0, . . . , yn), then a change from one frame to

the other is given by Y =XA, where A is an (n+ 1) × (n+ 1) non-singular matrix.

1.10 Arcs in a Projective Space

An (n; r)-arc or arc of degree r in PG(k, q) with n ≥ r + 1 is a set of n points K
with property that every hyperplane meets K in at most r points of K and there

is some hyperplane meeting K in exactly r points. An (n; 2)-arc is also called an

n-arc. An (n; r)-arc K is complete if it is maximal with respect to inclusion; that

is, it is not contained in an (n + 1; r)-arc. The maximum value n for an (n; r)-arc

is denoted by mr(k, q).
A line ` of PG(k, q), k > 1 is an i-secant of an (n; r)-arc K if ∣` ∩K ∣ = i. A

2-secant is called a bisecant, a 1-secant a unisecant (tangent) and a 0-secant is an

external line. Define τi as the number of i-secants to K.
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From Lemma 1.4.1(2), the number of (n; r)-arcs projectively equivalent to an

(n; r)-arc K with stabilizer group G in PG(k, q) is

∣PGL(k + 1, q)∣/∣G∣.

More details are given in Chapter 3.

1.11 Projective Plane Curves

A homogeneous polynomial F in the three indeterminate variables X0,X1,X2 over

Fq is called a form. Let X = (x0, x1, x2) and F (X) = F (x0, x1, x2). A projective

plane curve F or plane curve for short is the set

F = v(F ) = {P(X) ∈ PG(2, q) ∣ F (X) = 0}.

A point P(X) of F is a rational point of F .

A plane curve F is irreducible if F is irreducible over Fq. The order or degree

of F is the degree of F .

Let P = P(A) be a point of the irreducible plane curve F = v(F ) of degree d

and let ` = P(A)P(B). Then

f(t) = F (A + tB) = F (0) + F (1)t +⋯ + F (d)td.

Since P (A) ∈ v(F ), so F (0) = F (A) = 0; also F (d) = F (B). Suppose ` is not on

F = v(F ); that is, not all the F (i) are zero. The intersection multiplicity of ` and

F at P (A), denoted mP (`,F), is the multiplicity of the root t = 0 of f(t); that is,

it is the highest power of t in the factorization of f(t).
The multiplicity of P on F , denoted mP (F), is the minimum of mP (`,F) for

all lines ` through P . Then P is a singular or multiple point of F if mP (F) ≥ 2 and

a simple or non-singular point of F if mP (F) = 1. The curve F is called singular

or non-singular according as F does or does not have a singular point. A line `

is a tangent line to F at P if mP (`,F) >mP (F) and then ` denote by `P .

If mP (F) = 1, then P has a unique tangent `P . If mP (F) = 2, then P is a

double point of F . A double point P with two distinct tangents to F at P is

called a node, and with only one tangent to F at P is a cusp. If P is a double

point with two distinct tangents, neither of them defined over Fq, then P is an

isolated double point over Fq. If mP (F) = 3, then P is a triple point of F .
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A non-singular rational point P of F is a point of inflexion of F if

mP (`P ,F) ≥ 3.

Here, P is also called a rational inflexion; the tangent line `P at P is the inflexion tangent.

If F is a form of degree one; that is,

F =
2

∑
i=0

aiXi,

with not all ai = 0 in Fq, then v(F ) is a line.

If F is a form of degree two; that is,

F = ∑
0≤i≤j≤2

aijXiXj,

with not all aij = 0 in Fq, then v(F ) is called a plane quadric. The discriminant

of a plane quadric Q = v(F ) is the determinant

∆ = det

RRRRRRRRRRRRRRRRRR

2a00 a01 a02

a01 2a11 a12

a02 a12 2a22

RRRRRRRRRRRRRRRRRR

.

Put

δ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4a00a11a22 + a01a02a12 − a00a2
12 − a11a2

02 − a22a2
01 for q odd,

a01a02a12 − a00a2
12 − a11a2

02 − a22a2
01 for q even.

So, ∆ = 2δ for q odd.

Lemma 1.11.1. On PG(2, q), q = ph, a plane quadric Q is non-singular if and

only if δ ≠ 0.

Proof. See [28, Theorem 7.16].

A non-singular plane quadric Q is called a conic.

More details about conics and their relation to arcs are discussed in Chapter 3.
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If F is a form of degree three, that is

F = ∑
0≤i≤j≤k≤2

aijkXiXjXk ,

with not all aijk = 0 in Fq, then v(F ) is called a cubic.

More details about cubics and their relation to arcs are discussed in Chapter 5.

Example 1.11.2. The conic has no singular point and no inflexion point.

Remark 1.11.3. Let F be an irreducible plane curve of degree d that has k

rational points. Then F can be regarded as a (k; r)-arc with r ≤ d.

Lemma 1.11.4. (i) With F homogeneous, a point P = P(x0, x1, x2) of F =
v(F ) is singular if and only if

∂F

∂X0

(P ) = ∂F

∂X1

(P ) = ∂F

∂X2

(P ) = 0.

(ii) An irreducible plane curve of degree d has at most (d − 1

2
) singularities.

Proof. (i) See [34, Theorem 6.8].

(ii) See [34, Corollary 7.16].

Let F = v(F ) be a projective plane curve of degree d. Write

FXi
= ∂F

∂Xi

, FXiXj
= ∂2F

∂Xi∂Xj

.

If the determinant

Ĥ(X0,X1,X2) =

RRRRRRRRRRRRRRRRRR

FX0X0 FX0X1 FX0X2

FX0X1 FX1X1 FX1X2

FX0X2 FX1X2 FX2X2

RRRRRRRRRRRRRRRRRR

is not vanishing, then the projective curve Ĥ = v(Ĥ(X0,X1,X2)) is the Hessian

curve of F ; it has degree 3(d − 2).

Lemma 1.11.5. Let F = v(F ) be a projective plane curve of degree d such that

2(d − 1) is invertible in Fq.

(i) A non-singular point P of F is an inflexion point of F if and only if it is a

common point of F and Ĥ.
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(ii) Every singular point of F lies on Ĥ.

Proof. See [30, Theorem 1.35].

Remark 1.11.6. (1) If 2(d− 1) is not invertible in Fq then Ĥ is identically zero.

(2) Let F = v(F ) be a non-singular plane cubic curve. Then its Hessian is also a

plane cubic.

1.12 Coding Theory

1.12.1 Basic Definitions and Results

Let V (n, q) = Fn
q be the n-dimensional vector space over Fq. In general any subset

C of V (n, q) is a q-ary code. A linear q-ary [n, k, d] code or an [n, k, d]q-code C is

a subspace of V (n, q), where the dimension of C is

dim C = k,

and the minimum distance is

d(C) = d = min{w(x) ∣ x ∈ C/{0}} = min{d(x, y) ∣ x ≠ y}.

Here, with x = (x1, . . . , xn) = x1 . . . xn and y = (y1, . . . , yn) = y1 . . . yn,

w(x) = ∣{i ∣ xi ≠ 0}∣

is the weight of the word x and

d(x, y) = ∣{i ∣ xi ≠ yi}∣

is the (Hamming) distance between the words x and y. If d is not specified, then

the term [n, k]q-code is used. The vectors v ∈ C are called the codewords.

A central problem in coding theory is that of optimizing one of the parameters

n, k and d for given values of the other two and q fixed.

A code C with minimum distance at least 2e+1 can correct up to e errors. So, if

a received codeword is distorted in at most e entries, then it can correctly deduced

which codeword was sent. This type of code is called an e-error correcting code.
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Lemma 1.12.1. If a code C has minimum distance d, then it can correct

e = ⌊(d − 1)/2⌋ errors, where ⌊m⌋ denotes the integer part of m.

A generator matrix G of an [n, k, d]q-code C is a k ×n matrix whose rows form

a basis of C; thus, if λ = (λ1, . . . , λk) ∈ Fk
q/{0} and c1, . . . , cn are the columns of G,

then

x ∈ C ⇐⇒ x = (
k

∑
i=1

λic1, . . . ,
k

∑
i=1

λicn).

A linear code for which any two columns of a generator matrix are linearly

independent is called a projective code.

For u = (x1, . . . , xn) and y = (y1, . . . , yn), let

x ⋅ y =
n

∑
i=1

xiyi

be the standard scalar (inner) product of x and y. The dual code C� of an [n, k, d]q-
code C is

C� = {x ∈ Fn
q ∣ x ⋅ y = 0, for all y ∈ C},

which is an [n,n−k, d′]q-code. A parity-check matrix H for C is an (n−k)×n matrix

that is a generator matrix for the dual code C�; thus, if x = (x1, . . . , xn) ∈ Fn
q and

c1, . . . , cn are the columns of H, then

x ∈ C ⇐⇒ xH⊺ = 0 or equivalently x1c1 +⋯ + xncn = 0.

Two codes C1 and C2 are equivalent if C2 can be obtained from C1 by permuting

coordinates and by multiplying coordinates by non-zero elements of Fq. There is

a code C
′

equivalent to C for which the generator matrix has the standard form

G = [IkA], where Ik is the k × k identity matrix and A is a k × (n − k) matrix; in

this case, a parity-check matrix for C
′

is H = [−A⊺In−k].
The minimum distance d of C can be calculated from the next result.

Lemma 1.12.2. If C is an [n, k]q-code with corresponding generator matrix G
and parity-check matrix H, then the following are equivalent:

(i) d(C) = d;

(ii) every d−1 columns of the parity-check matrix H are linearly independent but

some d columns are dependent;
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(iii) at most n−d columns of the generator matrix G lie in any hyperplane of the

projective space PG(k − 1, q);

Corollary 1.12.3. (Singleton bound) For an [n, k, d]q-code,

d ≤ n − k + 1.

For an extensive introduction to this subject see [27], [36], [37].

1.12.2 MDS Codes and AMDS Codes

Let C be an [n, k, d]q-code.

(I) C is maximum distance separable (MDS) if

d = d(C) = n − k + 1;

that is, d achieves the upper limit in the Singleton bound.

(II) C is almost-MDS (AMDS) if

d = d(C) = n − k.

Theorem 1.12.4. If C is an [n, k, d]q-code with corresponding generator matrix

G and parity-check matrix H, then the following are equivalent:

(i) C is an MDS code;

(ii) any n − k columns of the parity-check matrix H are linearly independent;

(iii) at most k − 1 columns of the generator matrix G lie in a hyperplane of

PG(k − 1, q); that is, every k columns are linearly independent;

(iv) the dual code C� is an MDS code.

Remark 1.12.5. The dual code of an AMDS code need not to be AMDS as

illustrated in the following example.

Let C [n, k, n − k + 1]q-code be an MDS code with parity check matrix

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h1

⋮
hn−k

⎤⎥⎥⎥⎥⎥⎥⎥⎦(n−k)×n

,
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where hi is the ith row of H. Choose h ∈ V (n, q) which is not a linear combination

of rows of H and which is of weight less than k − 1. Consider

H1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1

⋮
hn−k

h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(n−k+1)×n

as a parity check matrix of the [n, k−1]q-code C1. Then C1 is an AMDS code but

the dual is not.

For further background on linear MDS and AMDS codes, see [9], [10], [19] and

[31].

1.13 The Relationship Between Coding Theory and Finite

Projective Spaces

The projective geometries over finite fields have been introduced and it was seen

that linear codes come from finite fields. These two different ideas are linked by

their underlying vector spaces. The following explanation and result are presented

in many references, for instance [4].

Let v1, v2, . . . , vk be the rows of a generator matrix G for a projective [n, k, d]q-
code and for i = 1,2, . . . , n define vectors ui of V (k, q), by the rule

(ui)j = (vj)i.

In other words, the jth coordinate of ui is the ith coordinate of vj; that is, ui is

column vector of G. For all a ∈ Fk
q/{0} the vector ∑kj=1 ajvj has at most n− d zero

coordinates and so, for i = 1,2, . . . , n,

k

∑
j=1

aj(vj)i = 0

has at most n − d solutions. Hence

k

∑
j=1

aj(ui)j = 0
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has at most n − d solutions, or in other words there are at most n − d of the n

vectors ui on the hyperplane with equation

k

∑
j=1

ajXj = 0.

So, this gives the following fundamental theorem.

Theorem 1.13.1. There exists a projective [n, k, d]q-code if and only if there exists

an (n;n − d)-arc in PG(k − 1, q).

Finally, as a conclusion from this chapter, the geometrical objects considered

in this work can be viewed as a linear codes defined over a finite field. Hence, all

results on their geometry can be translated to results on coding theory as is shown

in the next chapters.



Chapter 2

The Projective Line of Order Nineteen

2.1 Introduction

The main reference for this section is [28, Chapter 6].

In general, the q + 1 points of PG(1, q) are P(t0, t1), ti ∈ Fq. So,

PG(1, q) = {P(t,1) ∣ t ∈ Fq} ∪ {P(1,0)}.

Each point P(t0, t1) with t1 ≠ 0 is determined by the non-homogeneous coordinate

t0/t1; the coordinate for P(1,0) is ∞. So, the points of PG(1, q) can be represented

by the set

Fq ∪ {∞} = {∞, λ1, λ2, . . . , λq ∣ λi ∈ Fq}.

A projectivity T = M(A) of PG(1, q) is given by

Y =XA,where X = (x0, x1), Y = (y0, y1)and A =
⎡⎢⎢⎢⎢⎣

a c

b d

⎤⎥⎥⎥⎥⎦
.

Let s = y0/y1 and t = x0/x1. Its projective equation is

s = (at + b)/(ct + d).

If Qi = PiT for i = 2,3,4 and Pi and Qi have the respective coordinates ti and

si, then T is given by

(s − s3)(s2 − s4)
(s − s4)(s2 − s3)

= (t − t3)(t2 − t4)
(t − t4)(t2 − t3)

. (2.1)

17
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2.2 The Cross-Ratio and Stabilizer Group of a Tetrad

The cross-ratio λ = {P1, P2;P3, P4} of four ordered points P1, P2, P3, P4 ∈ PG(1, q)
with coordinates t1, t2, t3, t4 is

λ = {P1, P2;P3, P4} = {t1, t2; t3, t4} =
(t1 − t3)(t2 − t4)
(t1 − t4)(t2 − t3)

.

The cross-ratio has the property that

(1) λ = {t1, t2; t3, t4} = {t2, t1; t4, t3} = {t3, t4; t1, t2} = {t4, t3; t2, t1}. So, {P1, P2;P3, P4}
is invariant under a projective group of order four, given by

{I, (P1P2)(P3P4), (P1P3)(P2P4), (P1P4)(P2P3)} ≅ V4.

Thus, under all 24 permutations of {P1, P2, P3, P4}, the cross-ratio takes just

the six values

λ, 1/λ, 1 − λ, 1/(1 − λ), (λ − 1)/λ, λ/(λ − 1).

(2) λ = {t1, t2; t3, t4} takes the values ∞,0 or 1 if and only if two of the ti are

equal.

A projectivity is determined by the images of three points, by (2.1). Therefore

there exists a projectivity T = M(A) such that Qi = PiA, i = 1,2,3,4 if and only if

the cross-ratios of the two sets of four points in the corresponding order are equal.

Also the order of PGL(2, q) is q(q2 − 1), which is the number of ordered sets of

three points in PG(1, q).

Remark 2.2.1. The action of PGL(2, q) on PG(1, q) is sharply 3-transitive.

An unordered set of four distinct points is called a tetrad. Let λ be the cross-

ratio of a given order, the tetrad is called

(I) harmonic, denoted by H, if λ = 1/λ or λ = λ/(λ − 1) or λ = 1 − λ;

(II) equianharmonic, denoted by E, if λ = 1/(1−λ) or, equivalently, λ = (λ−1)/λ;

(III) neither harmonic nor equianharmonic, denoted by N , if the cross-ratio is

another value .
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The cross-ratio of any harmonic tetrad has the values −1, 2, 1/2.

Let q = ph, where p is a prime. When p = 2, there are no harmonic tetrads and

when p = 3, then λ = −1 is the unique solution.

The cross-ratio of a tetrad of type E satisfies the equation

λ2 − λ + 1 = 0. (2.2)

So, equianharmonic tetrads exist if and only if λ3 + 1 = 0 has three solutions in Fq

or λ = −1 is a unique solution of (2.2) in Fq. Therefore equianharmonic tetrads

exist if q ≡ 1 or 0 (mod 3); so if p = 3, harmonic and equianharmonic are the

same. In particular, a tetrad of type E exists when q = 19. Since the values ∞ , 0

and 1 cannot appear as the cross ratio of a tetrad whose four points are distinct

and since every three distinct points in PG(1, q) are projectively equivalent, so

we choose the tetrad where three of the points are ∞, 0 and 1. As the cross-ratio

λ = {∞,0; 1, t} = t, it is only necessary to consider the elements t ∈ Fq/{0,1} and

the corresponding tetrads {∞,0,1, t}. Hence there are three classes of tetrads:

X1 = {tetrads of type H},

X2 = {tetrads of type E},

X3 = {tetrads of type N}.

Now the question is: Which subgroup of S4 fixes the tetrad in each class?

Let T = {P1, P2, P3, P4} be a tetrad in classes Xi with cross-ratio λ = {P1, P2;P3, P4}.

(I) If i = 1 (harmonic case), then λ = 1/λ, whence for p > 3 there are eight

permutations of T amongst the 24 permutations which are projectively equivalent

as follows:

I, (P1P2)(P3P4), (P1P3)(P2P4), (P1P4)(P2P3),
(P3P4), (P1P2), (P1P3P2P4), (P1P4P2P3).

These permutations form a group isomorphic to the dihedral group D4 of order

eight.

(II) If i = 2 (equianharmonic case), then λ = 1/(1 − λ) = (λ − 1)/λ, whence for

q ≡ 1 (mod 3) there are 12 projectively equivalent permutations of T amongst the
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24 permutations which are projectively equivalent as follows:

I, (P1P2)(P3P4), (P1P3)(P2P4), (P1P4)(P2P3), (P2P4P3), (P1P2P3),
(P1P3P4), (P1P4P2), (P2P3P4), (P1P2P4), (P1P3P2), (P1P4P3).

These permutations form a group isomorphic to the alternating group A4 of degree

four.

(III) If i = 3, then from the definition of a tetrad of type N there only four

permutations of T amongst the 24 permutations which are projectively equivalent

as follows:

I, (P1P2)(P3P4), (P1P3)(P2P4), (P1P4)(P2P3).

These permutations form a group isomorphic to the Klein 4-group V4.

So, following lemma is obtained.

Lemma 2.2.2. On PG(1, q), q = ph,

(i) the number of harmonic tetrads nH and the stabilizer group G of each one

are as in the following table:

nH G

p = 3 q(q2 − 1)/24 S4

p > 3 q(q2 − 1)/8 D4

(ii) the number of equianharmonic tetrads nE and the stabilizer group G of each

one are as in the following table:

nE G

p = 3 q(q2 − 1)/24 S4

q ≡ 1 (mod 3) q(q2 − 1)/12 A4

Proof. See [28, Lemma 6.1].

On PG(1, q), a (k; 1)-arc is just an unordered set of k distinct points simply

called a k-set. A 3-set is called a triad, a 4-set a tetrad, a 5-set a pentad, a 6-set

a hexad, a 7-set a heptad, an 8-set a octad, a 9-set a nonad, a 10-set a decad.

The question arises here: How many projectively inequivalent k-sets in PG(1, q)
are there and what is the stabilizer group of each one?
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2.3 The Algorithm for Classification of the k-Sets inPG(1, q)

On PG(1, q), a k-set can be constructed by adding to any (k − 1)-set one point

from the other q−k+2 points. According to the Fundamental Theorem of Projec-

tive Geometry, Section 1.7(ii), any three distinct points on a line are projectively

equivalent; so choose a fixed triad R. A 4-set is formed by adding to R one point

from the other q−2 points on PG(1, q); that is, from PG(1, q)/R = Rc. It is shown

in Section 2.2 that there is a unique tetrad of type H and unique tetrad of type E

but the tetrad of type N might be divided into subclasses. A 5-set is formed by

adding to any tetrad T in Xi one point from the other q − 3 points on PG(1, q).
The group GT fixes T and splits the other q − 3 points into a number of orbits;

so, different 5-sets are formed by adding one point from each different orbit. The

procedure can be extended to construct 6,7,8,9, . . . , ( q+1
2 )-sets in PG(1, q). The

(n − 1)-subsets of an n-set are classified according to their projective type.

Let K and K
′

be two pentads. To check they are equivalent the following steps

are used.

(1) Classify tetrads in both pentads.

(2) If the classifications of K and K
′

are different then they are projectively in-

equivalent.

(3) If the classifications of K and K
′

are the same, then transformation matrices

Aα are constructed from a tetrad T with highest recurrence in the algebraic

structure of K to tetrads Tα in K
′

with same types of T.

(4) If the action of one Aα on the remaining points of T are equal to the remaining

points of T
′

then K and K
′

are projectively equivalent. If not, it means they

are projectively inequivalent.

This procedure can be extended to check the equivalence between k-sets,

k = 6,7, . . . , ( q+1
2 ), and also can be used to calculate the stabilizer group of each

k-set.
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2.4 Preliminary to PG(1, 19)

On PG(1,19), the projective line over Galois field of order 19, there are 20 points.

The points of PG(1,19) are the elements of the set

F19 ∪ {∞} = {∞,0,±1,±2,±3,±4,±5,±6,±7,±8,±9}.

The order of the projective group PGL(2,19) is 20 ⋅ 19 ⋅ 18 = 6840. This is the

number of ordered sets of three points.

In the following sections in this chapter, the k-sets in PG(1,19), k = 4, . . . ,10,

are classified by giving the projectively inequivalent k-sets with their stabilizer

groups.

2.5 The Tetrads

Let S be the set of all different tetrads in PG(1,19). Then the order of S is

∣S∣ = (20

4
) = 4845.

As mentioned in Section 2.2, to consider the action of PGL(2,19) on S, it is only

necessary to consider the tetrads {∞,0,1, t}, t ∈ F19/{0,1}. A tetrad is of type H

if the cross-ratio is −1,2 or 1/2 = −9. It is of type E if the cross-ratio is −7 or 8,

and it is of type N if the cross-ratio is −2,3,−3,4,−4,5,−5,6, −6,7,−8 or 9. As a

tetrad of type N has six possible values of its cross-ratios so, there are two tetrads

of type N , one with cross-ratios −2,3,−6,7,−8,9 denoted by N1 and the other with

−3,4,−4,5,−5,6 denoted by N2. Hence there are four classes of tetrads:

C1 = {the class of H tetrads} ∋ {∞,0,1, a} for a = −1,2,−9;

C2 = {the class of E tetrads} ∋ {∞,0,1, b} for b = −7,8;

C3 = {the class of N1 tetrads} ∋ {∞,0,1, c} for c = −2,3,−6,7,−8,9;

C4 = {the class of N2 tetrads} ∋ {∞,0,1, d} for d = −3,4,−4,5,−5,6.

From Lemma 2.2.2 ∣C1∣ = 855, ∣C2∣ = 570 and therefore ∣C3∣ = ∣C4∣ = 1710. As

mentioned in Section 2.2 any two tetrads with the same cross-ratio are projectively

equivalent; so each class Ci, i = 1,2,3,4, is projectively unique. Then there are
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only four projectively distinct tetrads.

Case(1): The tetrad H = {∞,0,1,−1} chosen from C1.

Case(2): The tetrad E = {∞,0,1,−7} chosen from C2.

Case(3): The tetrad N1 = {∞,0,1,−2} chosen from C3.

Case(4): The tetrad N2 = {∞,0,1,−3} chosen from C4.

A. Ali [2] in 1993 classified the tetrads, pentads and hexads on PG(1,19).
The results are rechecked and rewritten to make the research continuous. For a

chosen tetrad from each class Ci its stabilizer group in PGL(2,19) identified it as

a subgroup of S4 using the projective equation. As mentioned in Section 2.2 about

tetrads and Lemma 2.2.2, the following are satisfied.

Case(1): Let the tetrad H = {∞,0,1,−1} be chosen from the class C1. The

stabilizer group GH of H consists of the following eight permutations:

I, (P1P2)(P3P4), (P1P3)(P2P4), (P1P4)(P2P3),
(P3P4), (P1P2), (P1P3P2P4), (P1P4P2P3).

The eight permutations of H and the respective projectivities are given in Table

2.1.

Table 2.1: Projectivities fixing an H tetrad

No. H tetrad Projectivity

1 {∞,0,1,−1} t

2 {0,∞,−1,1} −1/t

3 {1,−1,∞,0} (t + 1)/(t − 1)

4 {−1,1,0,∞} (1 − t)/(1 + t)

5 {∞,0,−1,1} −t

6 {0,∞,1,−1} 1/t

7 {−1,1,∞,0} (1 + t)/(1 − t)

8 {1,−1,0,∞} (t − 1)/(t + 1)
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The group

GH = {t,−1/t, (t + 1)/(t − 1), (1 − t)/(1 + t),−t,1/t, (1 + t)/(1 − t), (t − 1)/(t + 1)},

fixes the tetrad H; it is isomorphic to

D4 = ⟨(1 + t)/(1 − t), (t + 1)/(t − 1)⟩.

Case(2): Let the tetrad E = {∞,0,1,−7} be chosen from the class C2. The

stabilizer group GE of E consists of the following twelve permutations:

I, (P1P2)(P3P4), (P1P3)(P2P4), (P1P4)(P2P3), (P2P4P3), (P1P2P3),
(P1P3P4), (P1P4P2), (P2P3P4), (P1P2P4), (P1P3P2), (P1P4P3).

The twelve permutations of H and the respective projectivities are given in Table

2.2.

Table 2.2: Projectivities fixing an E tetrad

No. E tetrad Projectivity

1 {∞,0,1,−7} t

2 {0,∞,−7,1} 1/(8t)

3 {1,−7,∞,0} (t + 7)/(t − 1)

4 {−7,1,0,∞} (t − 1)/(8t − 1)

5 {∞,1,−7,0} (1 − 8t)

6 {1,∞,0,−7} (t − 1)/t

7 {−7,0,∞,1} t/(8t − 8)

8 {0,−7,1,∞} 7/(8t − 1)

9 {∞,−7,0,1} (7t − 7)

10 {−7,∞,1,0} (t + 7)/(8t)

11 {0,1,∞,−7} 1/(1 − t)

12 {1,0,−7,∞} t/(t + 7)
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The group

GE ={t,1/(8t), (t + 7)/(t − 1), (t − 1)/(8t − 1), (1 − 8t), (t − 1)/t, t/(8t − 8), (7t − 7),

(t + 7)/(8t),1/(1 − t), t/(t + 7)},

fixes E; it is isomorphic to

A4 = ⟨(t + 7)/(8t), 1/(8t)⟩.

Case(3): Let the tetrad N1 = {∞,0,1,−2} be chosen from the class C3. The

stabilizer group GN1 of N1 consists of the following four permutations:

I, (P1P2)(P3P4), (P1P3)(P2P4), (P1P4)(P2P3).

The four permutations of N1 and the respective projectivities are given in Table

2.3.

Table 2.3: Projectivities fixing an N1 tetrad

No. N1 tetrad Projectivity

1 {∞,0,1,−2} t

2 {0,∞,−2,1} −2/t

3 {1,−2,∞,0} (t + 2)/(t − 1)

4 {−2,1,0,∞} (t − 1)/(9t − 1)

The group

GN1 = {t,−2/t, (t + 2)/(t − 1), (t − 1)/(9t − 1)},

fixes N1; it is isomorphic to

V4 = ⟨−2/t, (t − 1)/(9t − 1)⟩.

Case(4): Let the tetrad N2 = {∞,0,1,−3} be chosen from the class C4. The

stabilizer group GN2 of N2 consists of the following four permutations:

I, (P1P2)(P3P4), (P1P3)(P2P4), (P1P4)(P2P3).
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The four permutations of the elements of N2 and the respective projectivities are

given in Table 2.4.

Table 2.4: Projectivities fixing an N2 tetrad

No. N2 tetrad Projectivity

1 {∞,0,1,−3} t

2 {0,∞,−3,1} −3/t

3 {1,−3,∞,0} (t + 3)/(t − 1)

4 {−3,1,0,∞} (t − 1)/(6t − 1)

The group

GN2 = {t,−3/t, (t + 3)/(t − 1), (t − 1)/(6t − 1)},

fixes N2; it is isomorphic to

V4 = ⟨−3/t, (t − 1)/(6t − 1)⟩.

From the cases 1,2,3 and 4, the following conclusion is obtained.

Theorem 2.5.1. On PG(1,19), there are precisely four projectively distinct tetrads

given with their stabilizer groups in Table 2.5.

Table 2.5: Distinct tetrads on PG(1,19)

Type The tetrad Stabilizer

H {∞,0,1,−1} D4 = ⟨(1 + t)/(1 − t), (t + 1)/(t − 1)⟩

E {∞,0,1,−7} A4 = ⟨(t + 7)/(8t), 1/(8t)⟩

N1 {∞,0,1,−2} V4 = ⟨−2/t, (t − 1)/(9t − 1)⟩

N2 {∞,0,1,−3} V4 = ⟨−3/t, (t − 1)/(6t − 1)⟩



Chapter 2. PG(1,19) 27

2.6 The Pentads

To construct the pentad in PG(1,19), as mentioned in Section 2.3, it is enough to

add one point from each orbit that comes from the action of the projective group

of the tetrad GT on the complement of T, where T = H,E,N1,N2. All orbits of

the tetrads in Table 2.5 are given in Table 2.6.

Table 2.6: Partition of PG(1,19) by the projectivities of tetrads

T Partition of Tc

H (1) {2,−2,3,−3,6,−6,9,−9}
(2) {4,−4,5,−5,7,−7,8,−8}

E (1) {−1,2,3,−3,4,−4,5,−5,6,7,9,−9}
(2) {−2,−6,8,−8}

N1 (1) {−1,2,4,9}
(2) {3,−7}
(3) {−3,5,7,−8}
(4) {−4,−5,8,−9}
(5) {6,−6}

N2 (1) {−1,3}
(2) {−2,6,−8,9}
(3) {2,5,7,8}
(4) {4,−4}
(5) {−5,−6,−7,−9}

According to Table 2.6, there are fourteen pentads constructed by adding one

point from each orbit to the corresponding tetrad. Each pentad contains five

tetrads. In Table 2.7, for each pentad P = {a1, a2, a3, a4, a5} the classification of

its tetrads in the order

{a1, a2, a3, a4},{a1, a2, a3, a5},{a1, a2, a4, a5},{a1, a3, a4, a5},{a2, a3, a4, a5}

is given. Also the stabilizer group of each pentad is given.
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Table 2.7: Pentads on PG(1,19)

Symbol The pentad Types of tetrads Stabilizer

P ′′1 {∞,0,1,−1,2} H H N1 N1 N2 Z2 = ⟨1 − t⟩

P ′′2 {∞,0,1,−1,4} H N2 N2 E N1 I = ⟨t⟩

P ′′3 {∞,0,1,−7,−1} E H N1 N2 N2 I = ⟨t⟩

P ′′4 {∞,0,1,−7,−2} E N1 N1 N1 E S3 = ⟨(1 − 8t), t/(9t − 1)⟩

P ′′5 {∞,0,1,−2,−1} N1 H H N1 N2 Z2 = ⟨−(t + 1)⟩

P ′′6 {∞,0,1,−2,3} N1 N1 E E N1 S3 = ⟨t/(7 − 6t), (t − 1)/(9t − 1)⟩

P ′′7 {∞,0,1,−2,−3} N1 N2 N1 N2 N1 Z2 = ⟨−(t + 2)⟩

P ′′8 {∞,0,1,−2,−4} N1 N2 H E N2 I = ⟨t⟩

P ′′9 {∞,0,1,−2,6} N1 N2 N2 N1 N1 Z2 = ⟨1/(9t)⟩

P ′′10 {∞,0,1,−3,−1} N2 H N1 H N1 Z2 = ⟨(t + 3)/(t − 1)⟩

P ′′11 {∞,0,1,−3,2} N2 H E N2 N1 I = ⟨t⟩

P ′′12 {∞,0,1,−3,−2} N2 N1 N1 N2 N1 Z2 = ⟨−(t + 2)⟩

P ′′13 {∞,0,1,−3,4} N2 N2 N2 N2 N2 D5 = ⟨(t − 4)/(5t − 4), (t + 3)/(5t − 1)⟩

P ′′14 {∞,0,1,−3,−5} N2 N2 E N1 H I = ⟨t⟩

For those pentads with an equivalent sets of tetrads, Table 2.8 gives the pro-

jectivities between them.

Table 2.8: The equivalence of pentads

No. Equivalent pentads Projective equation

1 P ′′1 Ð→ P
′′

5 −t

2 P ′′1 Ð→ P
′′

10 (2 − t)/t

3 P ′′2 Ð→ P
′′

3 (t − 1)/(t + 1)

4 P ′′2 Ð→ P
′′

8 4t/(1 − t)

5 P ′′2 Ð→ P
′′

11 (1 − t)

6 P ′′2 Ð→ P
′′

14 1/(1 − 5t)

7 P ′′4 Ð→ P
′′

6 −2/t

8 P ′′7 Ð→ P
′′

9 (6t − 1)/(t − 1)

9 P ′′7 Ð→ P
′′

12 t
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Table 2.8 gives the following conclusion.

Theorem 2.6.1. On PG(1,19), there are precisely five projectively distinct pen-

tads given with their stabilizer groups in Table 2.9.

Table 2.9: Inequivalent pentads on PG(1,19)

Type The pentad Stabilizer

P1 {∞,0,1,−1,2} Z2 = ⟨1 − t⟩

P2 {∞,0,1,−1,4} I = ⟨t⟩

P3 {∞,0,1,−7,−2} S3 = ⟨(1 − 8t), t/(9t − 1)⟩

P4 {∞,0,1,−2,−3} Z2 = ⟨−(t + 2)⟩

P5 {∞,0,1,−3,4} D5 = ⟨(t − 4)/(5t − 4), (t + 3)/(5t − 1)⟩

2.7 The Hexads

The projective group GPi
splits Pci , i = 1,2,3,4,5, into a number of orbits. The

hexads are constructed by adding one point from each orbit to the corresponding

pentad. All orbits are listed in Table 2.10.

Table 2.10: Partition of PG(1,19) by the projectivities of pentads

Pi Partition of Pci

P1 (1) {−2,3} (2) {−3,4} (3) {−4,5} (4) {−5,6} (5) {−6,7} (6) {−7,8}
(7) {−8,9} (8) {−9}

P2 GP2 splits Pc2 into 15 orbits of single points

P3 (1) {−1,2,4,5,7,9} (2) {3,−4,−5} (3) {−3,6,−6,8,−8,9}

P4 (1) {−1} (2) {2,−4} (3) {3,−5} (4) {4,−6} (5) {5,−7} (6) {6,−8}
(7) {7,−9} (8) {8,9}

P5 (1) {−1,2,−2,3,−5,6,−7,8,−8,9} (2) {−4,5,−5,−6,−9}

The total numbers of all orbits is 36; therefore 36 hexads can be constructed in

PG(1,19). In Table 2.11 all equivalent hexads with their projective equations are

listed.
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Table 2.11: The equivalence of hexads

No. Equivalent hexads Projective equation

1 P1 ∪ {−2} Ð→ P4 ∪ {−1} (t − 1)

2 P1 ∪ {−3} Ð→ P1 ∪ {−6} (t − 1)/(t + 1)

3 P1 ∪ {−3} Ð→ P2 ∪ {2} (1 − t)

4 P1 ∪ {−3} Ð→ P2 ∪ {6} (t − 1)/(t + 3)

5 P1 ∪ {−3} Ð→ P3 ∪ {−1} −2/(t + 1)

6 P1 ∪ {−3} Ð→ P4 ∪ {3} 3t/(t − 2)

7 P1 ∪ {−4} Ð→ P2 ∪ {−2} (−t)

8 P1 ∪ {−4} Ð→ P2 ∪ {−9} (2 − t)/(4 + t)

9 P1 ∪ {−5} Ð→ P2 ∪ {9} −1/t

10 P1 ∪ {−5} Ð→ P4 ∪ {8} t/(6t + 6)

11 P1 ∪ {−7} Ð→ P2 ∪ {3} (t − 2)/t

12 P1 ∪ {−7} Ð→ P2 ∪ {−3} (1 + t)/(1 − t)

13 P1 ∪ {−7} Ð→ P4 ∪ {2} −1/(9t)

14 P1 ∪ {−7} Ð→ P4 ∪ {3} (t − 2)/(9t + 9)

15 P1 ∪ {−7} Ð→ P5 ∪ {−1} (1 + t)/(1 − t)

16 P1 ∪ {−8} Ð→ P2 ∪ {−6} (t − 1)/(t + 1)

17 P1 ∪ {−8} Ð→ P2 ∪ {8} (t − 2)/(5t + 2)

18 P2 ∪ {−4} Ð→ P3 ∪ {3} (t − 4)/(6 − 6t)

19 P2 ∪ {5} Ð→ P5 ∪ {−4} 1/(5t)

20 P2 ∪ {−5} Ð→ P3 ∪ {−3} −(4t + 3)

21 P2 ∪ {−5} Ð→ P4 ∪ {5} (t − 4)/t

22 P2 ∪ {−7} Ð→ P2 ∪ {−8} (7t − 8)

23 P2 ∪ {−7} Ð→ P4 ∪ {7} (t + 7)/(6t + 6)
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Table 2.11 gives the following conclusion.

Theorem 2.7.1. On PG(1,19), there are precisely 13 projectively distinct hexads

summarized in Table 2.12.

Table 2.12: Inequivalent hexads on PG(1,19)

Type The hexad Types of pentads Stabilizer

H1 {∞,0,1,−1,2,−2} P1P1P1P1P4P4 V4 = ⟨−t, −2/t⟩

H2 {∞,0,1,−1,2,−3} P1P1P2P3P2P4 I = ⟨t⟩

H3 {∞,0,1,−1,2,−4} P1P2P2P1P2P2 Z2 = ⟨(2t + 2)/(t − 2)⟩

H4 {∞,0,1,−1,2,−5} P1P2P1P4P4P2 Z2 = ⟨(1 − t)/(1 + 9t)⟩

H5 {∞,0,1,−1,2,−7} P1P2P2P4P4P5 I = ⟨t⟩

H6 {∞,0,1,−1,2,−8} P1P2P1P2P2P2 Z2 = ⟨(t − 2)/(t − 1)⟩

H7 {∞,0,1,−1,2,−9} P1P1P1P1P1P1 D6 = ⟨(1 + t)/(2 − t), (2t − 1)/(t − 2)⟩

H8 {∞,0,1,−1,4,−4} P2P2P2P2P3P3 V4 = ⟨−t, 4/t⟩

H9 {∞,0,1,−1,4,5} P2P2P5P5P2P2 V4 = ⟨(t − 4)/(4t − 1), (t − 5)/(5t − 1)⟩

H10 {∞,0,1,−1,4,−5} P2P2P4P4P3P3 Z2 = ⟨−1/t⟩

H11 {∞,0,1,−1,4,7} P2P2P2P2P2P2 S3 = ⟨(4t + 3)/t, −(t + 1)/(8t + 1)⟩

H12 {∞,0,1,−1,4,−7} P2P2P2P4P2P4 Z2 = ⟨(t − 4)/(t − 1)⟩

H13 {∞,0,1,−2,−3,6} P4P4P4P4P4P4 S3 = ⟨(t + 2)/(6t + 2), (t + 3)/(t − 1)⟩

Remark 2.7.2. Note that H3 and H6 both have the same structure of pentads

and the same type of stabilizer group but they are projectively inequivalent.
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2.8 The Heptads

The projective group GHi
splits Hci , i = 1, . . . ,13, into a number of orbits. The

heptads are constructed by adding one point from each orbit to the corresponding

hexad. All orbits are listed in Table 2.13.

Table 2.13: Partition of PG(1,19) by the projectivities of hexads

Hi Partition of Hci

H1 (1) {3,−3,7,−7} (2) {4,−4,9,−9} (3) {5,−5,8,−8} (4) {6,−6}

H2 GH2 splits Hc2 into 14 orbits of single points

H3 (1) {−2,−9} (2) {3,8} (3) {−3} (4) {4,5} (5) {−5,−7} (6) {6,−6}
(7) {7} (8) {−8,9}

H4 (1) {−2,−8} (2) {3,4} (3) {−3,−6} (4) {−4,8} (5) {5,9} (6) {6,−7}
(7) {7,−9}

H5 GH5 splits Hc5 into 14 orbits of single points

H6 (1) {−2,−5} (2) {3,−9} (3) {−3,6} (4) {4,7} (5) {−4,5} (6) {−6,−7}
(7) {8,9}

H7 (1) {−2,3,−3,4,−4,5,−5,6,−6,7,−8,9} (2) {−7,8}

H8 (1) {2,−2} (2) {3,−3,5,−5} (3) {6,−6,7,−7} (4) {8,−8,9,−9}

Hc9 (1) {2,−3,6,−9} (2) {−2,7,−8,9} (3) {−4,−5} (4) {3,−6,−7,8}

H10 (1) {2,9} (2) {−2,−9} (3) {3,6} (4) {−3,−6} (5) {−4,5} (6) {7,8}
(7) {−7,−8}

H11 (1) {2,−4,−5,6,8,−8} (2) {−2,3,−3,5,−7,9} (3) {−6,−9}

H12 (1) {2,−2} (2) {3,9} (3) {−3} (4) {−4,−6} (5) {5} (6) {−5,−8}
(7) {7,−9} (8) {6,8}

H13 (1) {−1,−5,−6} (2) {2,3,5} (3) {4,−4,7,8,−8,9} (4) {−7,−9}

There are 86 different orbits; therefore 86 heptads can be constructed in PG(1,19).
The projectively distinct heptads with their types of hexads and the stabilizer

groups are given in the following theorem.
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Theorem 2.8.1. On PG(1,19), there are 18 projectively distinct heptads, as sum-

marized in Table 2.14.

Table 2.14: Inequivalent heptads on PG(1,19)

Type The heptad Types of hexads Stabilizer

T1 {∞,0,1,−1,2,−2,−3} H1H2H1H5H2H5H13 Z2 = ⟨−(t + 1)⟩

T2 {∞,0,1,−1,2,−2,6} H1H4H2H2H4H10H10 Z2 = ⟨−2/t⟩

T3 {∞,0,1,−1,2,−2,−4} H1H3H2H6H7H2H4 I = ⟨t⟩

T4 {∞,0,1,−1,2,−2,−5} H1H4H3H6H5H5H12 I = ⟨t⟩

T5 {∞,0,1,−1,2,−3,9} H2H6H2H12H8H11H10 I = ⟨t⟩

T6 {∞,0,1,−1,2,−3,8} H2H5H3H12H2H12H5 Z2 = ⟨(t + 1)/(6t − 1)⟩

T7 {∞,0,1,−1,2,−3,4} H2H2H5H5H10H10H13 Z2 = ⟨1 − t⟩

T8 {∞,0,1,−1,2,−3,5} H2H3H2H8H10H3H10 Z2 = ⟨(t + 3)/(t − 1)⟩

T9 {∞,0,1,−1,2,−3,7} H2H2H3H6H8H12H4 I = ⟨t⟩

T10 {∞,0,1,−1,2,−3,−7} H2H5H4H6H10H2H5 I = ⟨t⟩

T11 {∞,0,1,−1,2,−3,−4} H2H3H5H9H2H9H5 Z2 = ⟨−(t + 1)/(9t + 1)⟩

T12 {∞,0,1,−1,2,−4,−8} H3H6H6H3H6H11H3 Z3 = ⟨t/(7t + 7)⟩

T13 {∞,0,1,−1,2,−4,−5} H3H4H9H5H5H12H11 I = ⟨t⟩

T14 {∞,0,1,−1,2,−5,−7} H4H5H12H4H13H13H5 Z2 = ⟨(1 − t)/(4t + 1)⟩

T15 {∞,0,1,−1,2,−7,9} H5H6H6H9H5H12H9 Z2 = ⟨−t/(t + 1)⟩

T16 {∞,0,1,−1,2,−7,8} H5H5H8H8H10H10H9 Z2 = ⟨1 − t⟩

T17 {∞,0,1,−1,2,−7,−9} H5H7H5H5H5H5H5 Z6 = ⟨(2t − 1)/(t + 1)⟩

T18 {∞,0,1,−1,4,−5,−7} H10H12H12H12H13H10H10 Z3 = ⟨8/(t + 7)⟩
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2.9 The Octads

The projective group GTi
splits T ci , i = 1, . . . ,18, into a number of orbits. The

octads are constructed by adding one point from each orbit to the corresponding

heptad . All orbits are listed in Table 2.15.

Table 2.15: Partition of PG(1,19) by the projectivities of heptads

Ti Partition of T ci
T1 (1) {3,−4}(2) {4,−5}(3) {5,−6} (4) {6,−7} (5) {7,−8} (6) {8,−9} (7) {9}

T2 (1) {3,−7} (2) {−3,7} (3) {4,9} (4) {−4,−9} (5) {5,−8} (6) {−5,8} (7) {−6}

T3 GT3 splits T c3 into 13 orbits of single points

T4 GT4 splits T c4 into 13 orbits of single points

T5 GT5 splits T c5 into 13 orbits of single points

T6 (1) {3,−2} (2) {4,6} (3) {−4,−9} (4) {5,−7} (5) {−5,−6} (6) {7,9} (7) {−8}

T7 (1) {−2,3} (2) {−4,5} (3) {−5,6} (4) {−6,7} (5) {−7,8} (6) {−8,9} (7) {−9}

T8 (1) {−2,6} (2) {3} (3) {4,−4} (4) {−5,−6} (5) {7,8} (6) {−7,−9} (7) {−8,9}

T9 GT9 splits T c9 into 13 orbits of single points

T10 GT10 splits T c10 into 13 orbits of single points

T11 (1) {−2,−9} (2) {3,8} (3) {4,5} (4) {−5,−7} (5) {6,−6} (6) {7} (7) {−8,9}

T12 (1) {−2,3,−6} (2) {−3,7,−7} (3) {4,5,6} (4) {−5,8,9} (5) {−9}

T13 GT13 splits T c13 into 13 orbits of single points

T14 (1) {−2,5} (2) {3,−6} (3) {−3,−9} (4) {4,−8} (5) {−4,6} (6) {7} (7) {8,9}

T15 (1) {−2} (2) {3,4} (3) {−3,8} (4) {−4,5} (5) {−5,−6} (6) {6,−9} (7) {7,−8}

T16 (1) {−2,3} (2) {−3,4} (3) {−4,5} (4) {−5,6} (5) {−6,7} (6) {−8,9} (7) {−9}

T17 (1) {−2,−3,5,−5,−6,−8} (2) {3,4,−4,6,7,9} (3) {8}

T18 (1) {−2,3,−3} (2) {−2,−6,8} (3) {−4,9,−9} (4) {5,6,7} (5) {−8}

There are 154 different orbits; therefore 154 octads can be constructed in

PG(1,19). The projectively distinct octads with their types of heptads and the

stabilizer groups are given in the following theorem.
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Theorem 2.9.1. On PG(1,19), there are 31 projectively distinct octads, as sum-

marized in Table 2.16.

Table 2.16: Inequivalent octads on PG(1,19)

Type The octad Types of heptads Stabilizer

O1 {∞,0,1,−1,2,−2,−3,−4} T1T3T11T1T15T3T11T14 Z2=⟨−(t+2)⟩

O2 {∞,0,1,−1,2,−2,−3,4} T1T3T7T4T17T10T10T14 I=⟨t⟩

O3 {∞,0,1,−1,2,−2,−3,5} T1T4T8T2T16T5T13T18 I=⟨t⟩

O4 {∞,0,1,−1,2,−2,−3,6} T1T2T2T1T7T10T10T7 Z2=⟨(1−t)/(1+t)⟩

O5 {∞,0,1,−1,2,−2,−3,7} T1T1T9T4T4T9T14T14 Z2=⟨−2/t⟩

O6 {∞,0,1,−1,2,−2,−3,8} T1T4T6T3T4T3T6T1 Z2=⟨−(t+2)/(7t+1)⟩

O7 {∞,0,1,−1,2,−2,−3,9} T1T3T5T3T13T5T13T7 Z2=⟨−(t+1)⟩

O8 {∞,0,1,−1,2,−2,6,−4} T2T3T9T9T5T3T5T2 Z2=⟨−(t+1)/(5t+1)⟩

O9 {∞,0,1,−1,2,−2,6,4} T2T3T10T9T3T4T8T10 I=⟨t⟩

O10 {∞,0,1,−1,2,−2,6,5} T2T4T13T10T11T9T16T5 I=⟨t⟩

O11 {∞,0,1,−1,2,−2,6,−5} T2T4T14T6T10T14T7T18 I=⟨t⟩

O12 {∞,0,1,−1,2,−2,6,−6} T2T2T3T3T3T3T8T8 V4=⟨2/t, −2/t⟩

O13 {∞,0,1,−1,2,−2,−4,−5} T3T4T13T11T15T17T6T13 I=⟨t⟩

O14 {∞,0,1,−1,2,−2,−4,8} T3T4T4T5T12T3T9T10 I=⟨t⟩

O15 {∞,0,1,−1,2,−2,−4,9} T3T3T12T3T12T3T3T3 S3=⟨(t−2)/(t+4), (2/t)⟩

O16 {∞,0,1,−1,2,−2,−4,−9} T3T3T3T9T9T3T9T9 V4=⟨−2/t, (2−t)/(1+t)⟩

O17 {∞,0,1,−1,2,−2,−5,5} T4T4T9T9T15T15T11T6 Z2=⟨−t⟩

O18 {∞,0,1,−1,2,−2,−5,8} T4T4T13T12T12T13T15T15 Z2=⟨−2/t⟩

O19 {∞,0,1,−1,2,−2,−5,−8} T4T4T4T13T4T13T13T13 V4=⟨(t−2)/(t−1), (2t−2)/(t−2)⟩

O20 {∞,0,1,−1,2,−3,9,4} T5T7T9T10T6T8T5T18 I=⟨t⟩

O21 {∞,0,1,−1,2,−3,9,−4} T5T11T12T6T13T9T13T10 I=⟨t⟩
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O22 {∞,0,1,−1,2,−3,9,5} T5T8T12T9T9T5T12T8 Z2=⟨−(t+3)/(2t+1)⟩

O23 {∞,0,1,−1,2,−3,9,−5} T5T10T9T9T6T8T13T16 I=⟨t⟩

O24 {∞,0,1,−1,2,−3,9,−6} T5T5T5T5T5T5T5T5 D4=⟨(t−1)/(t+1),(2t+1)/(t−2)⟩

O25 {∞,0,1,−1,2,−3,9,−7} T5T10T15T10T15T16T5T16 Z2=⟨(t+7)/(t−1)⟩

O26 {∞,0,1,−1,2,−3,9,−8} T5T9T15T7T14T16T13T18 I=⟨t⟩

O27 {∞,0,1,−1,2,−3,4,5} T7T8T11T11T16T16T8T7 Z2=⟨(t−4)/(4t−1)⟩

O28 {∞,0,1,−1,2,−3,−7,−4} T10T11T13T13T15T10T11T15 Z2=⟨−(t+7)/(t+1)⟩

O29 {∞,0,1,−1,2,−4,−5,−7} T13T13T14T13T14T14T14T13 V4=⟨(t−1)/(8t−1),(2t+2)/(t−2)⟩

O30 {∞,0,1,−1,2,−7,8,−9} T16T17T17T16T16T16T16T16 D6=⟨(1+t)/(2−t), t/(t−1)⟩

O31 {∞,0,1,−1,4,−5,−7,−8} T18T18T18T18T18T18T18T18 S4=⟨(1+t)/(1−t), (t−4)/(t−1)⟩

2.10 The Nonads

The 31 projectivities of the octads GOi
, i = 1, . . . ,31, split Oci into a number of

orbits. The nonads are constructed by adding one point from each orbit to the

corresponding octad. All orbits are listed in Table 2.17.

Table 2.17: Partition of PG(1,19) by the projectivities of octads

Oi Partition of Oci
O1 (1) {3,−5} (2) {4,−6} (3) {5,−7} (4) {6,−8} (5) {7,−9} (6) {8,9}

O2 GO2 splits Oc2 into 12 orbits of single points

O3 GO3 splits Oc3 into 12 orbits of single points

O4 (1) {3,9} (2) {4,7} (3) {−4,−8} (4) {5,−7} (5) {−5,8} (6) {−6,−9}

O5 (1) {3,−7} (2) {4,9} (3) {−4,−9} (4) {5,−8} (5) {−5,−8} (6) {6} (7) {−6}

O6 (1) {3,−8} (2) {4,7} (3) {−4,−5} (4) {5,−6} (5) {6} (6) {−7,9} (7) {−9}

O7 (1) {3,−4} (2) {4,−5} (3) {5,−6} (4) {6,−7} (5) {7,−8} (6) {8,−9}
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O8 (1) {3,−5} (2) {−3,8} (3) {4,7} (4) {5,−9} (5) {−6,9} (6) {−7,−8}

O9 GO9 splits Oc9 into 12 orbits of single points

O10 GO10 splits Oc10 into 12 orbits of single points

O11 GO11 splits Oc11 into 12 orbits of single points

O12 (1) {3,−3,7,−7} (2) {4,−4,9,−9} (3) {5,−5,8,−8}

O13 GO13 splits Oc13 into 12 orbits of single points

O14 GO14 splits Oc14 into 12 orbits of single points

O15 (1) {3,−3,−5,7,−7,−8} (2) {4,5,6,−6,8,−9}

O16 (1) {3,−5,−7,8} (2) {−3,7} (3) {4,5,−8,9} (4) {6,−6}

O17 (1) {3,−3} (2) {4,−4} (3) {6,−6} (4) {7,−7} (5) {8,−8} (6) {9,−9}

O18 (1) {3,−7} (2) {−3,7} (3) {4,9} (4) {−4,−9} (5) {5,−8} (6) {6}
(7) {−6}

O19 (1) {3,4,7,−9} (2) {−3,6,−6,−7} (3) {−4,5,8,9}

O20 GO20 splits Oc20 into 12 orbits of single points

O21 GO21 splits Oc21 into 12 orbits of single points

O22 (1) {−2,−6} (2) {3,−9} (3) {4,−5} (4) {−4,8} (5) {6,−8} (6) {7,−7}

O23 GO23 splits Oc23 into 12 orbits of single points

O24 (1) {−2,3,−4,5,6,7,−8,−9} (2) {4,−5,−7,8}

O25 (1) {−2,−8} (2) {3,5} (3) {4,−9} (4) {−4,7} (5) {−5,6} (6) {−6,8}

O26 GO26 splits Oc26 into 12 orbits of single points

O27 (1) {−2,7} (2) {3,−7} (3) {−4} (4) {−5} (5) {6,−9} (6) {−6,8}
(7) {−8,9}

O28 (1) {−2,5} (2) {3,57} (3) {4,−6} (4) {−5,−9} (5) {6,9} (6) {8,−8}

O29 (1) {−2,3,8,−9} (2) {−3,7} (3) {4,5} (4) {6,−6,−8,9}

O30 (1) {−2,3,−3,4,−4,5,−5,6,−6,7,−8,9}

O31 (1) {−2,−2,3,−3,−4,5,6,−6,7,8,9,−9}

There are 228 different orbits; therefore 228 nonads can be constructed in

PG(1,19). The projectively distinct nonads with their types of octads and the

stabilizer groups are given in the following result.
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Theorem 2.10.1. On PG(1,19), there are 33 projectively distinct nonads, as

summarized in Table 2.18.

Table 2.18: Inequivalent nonads on PG(1,19)

Type The nonad Types of octads Stabilizer

N1 {∞,0,1,−1,2,−2,−3,−4,3} O1O1O2O13O2O28O13O28O29 Z2=⟨−(t+1)⟩

N2 {∞,0,1,−1,2,−2,−3,−4,4} O1O2O12O27O3O13O9O10O11 I=⟨t⟩

N3 {∞,0,1,−1,2,−2,−3,−4,5} O1O3O9O27O4O25O7O28O26 I=⟨t⟩

N4 {∞,0,1,−1,2,−2,−3,−4,6} O1O4O8O10O5O26O14O21O11 I=⟨t⟩

N5 {∞,0,1,−1,2,−2,−3,−4,7} O1O5O6O17O6O17O16O1O5 Z2=⟨(7−t)/(1+5t)⟩

N6 {∞,0,1,−1,2,−2,−3,−4,8} O1O6O14O13O7O18O15O21O2 I=⟨t⟩

N7 {∞,0,1,−1,2,−2,−3,4,5} O2O3O13O27O10O30O25O23O26 I=⟨t⟩

N8 {∞,0,1,−1,2,−2,−3,4,−5} O2O2O9O4O9O2O4O2O5 Z2=⟨−(t+1)⟩

N9 {∞,0,1,−1,2,−2,−3,4,−6} O2O3O8O26O17O13O20O25O11 I=⟨t⟩

N10 {∞,0,1,−1,2,−2,−3,4,7} O2O5O7O26O19O13O10O11O29 I=⟨t⟩

N11 {∞,0,1,−1,2,−2,−3,4,−7} O2O4O6O11O11O2O11O4O11 Z2=⟨(t−4)/(t−1)⟩

N12 {∞,0,1,−1,2,−2,−3,4,8} O2O6O14O11O14O2O9O20O5 I=⟨t⟩

N13 {∞,0,1,−1,2,−2,−3,4,9} O2O7O16O20O14O13O23O21O26 I=⟨t⟩

N14 {∞,0,1,−1,2,−2,−3,5,6} O3O4O10O3O4O27O20O10O20 Z2=⟨(t+3)/(t−1)⟩

N15 {∞,0,1,−1,2,−2,−3,5,−6} O3O3O11O20O11O26O20O26O31 Z2=⟨−(t+1)⟩

N16 {∞,0,1,−1,2,−2,−3,5,7} O3O5O5O23O11O3O23O29O11 Z2=⟨(2t)/(t−2)⟩

N17 {∞,0,1,−1,2,−2,−3,5,−7} O3O4O6O9O12O23O8O7O20 I=⟨t⟩

N18 {∞,0,1,−1,2,−2,−3,5,8} O3O6O19O23O9O10O14O21O3 I=⟨t⟩

N19 {∞,0,1,−1,2,−2,−3,5,−8} O3O5O18O22O3O26O22O18O26 Z2=⟨−(t+3)/(t+1)⟩

N20 {∞,0,1,−1,2,−2,−3,5,9} O3O7O14O22O8O10O24O21O20 I=⟨t⟩

N21 {∞,0,1,−1,2,−2,−3,8,−9} O6O6O13O13O13O13O13O13O6 S3=⟨−(t+1), (t+3)/(2t+3)⟩
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N22 {∞,0,1,−1,2,−2,6,−4,5} O8O10O9O23O9O10O16O23O8 Z2=⟨(t+2)/(4t−1)⟩

N23 {∞,0,1,−1,2,−2,6,−4,−6} O8O12O9O16O14O14O15O22O9 I=⟨t⟩

N24 {∞,0,1,−1,2,−2,6,4,5} O9O10O13O28O21O13O17O23O21 I=⟨t⟩

N25 {∞,0,1,−1,2,−2,6,4,−5} O9O11O9O11O20O9O11O20O20 Z3=⟨4/(2−t)⟩

N26 {∞,0,1,−1,2,−2,6,4,−8} O9O10O14O23O17O14O18O22O25 I=⟨t⟩

N27 {∞,0,1,−1,2,−2,6,5,−5} O10O11O17O26O23O28O26O27O20 I=⟨t⟩

N28 {∞,0,1,−1,2,−2,6,5,−8} O10O10O18O21O28O28O21O25O25 Z2=⟨1/(9t)⟩

N29 {∞,0,1,−1,2,−2,6,−5,8} O11O11O18O29O21O21O29O26O26 Z2=⟨1/(9t)⟩

N30 {∞,0,1,−1,2,−2,−4,−5,8} O13O14O18O19O21O18O13O17O28 I=⟨t⟩

N31 {∞,0,1,−1,2,−3,9,4,−4} O20O21O27O22O23O21O22O23O20 I=⟨t⟩

N32 {∞,0,1,−1,2,−3,9,4,−6} O20O24O26O23O25O23O20O25O26 Z2=⟨(2−t)/(1+2t)⟩

N33 {∞,0,1,−1,2,−3,4,5,−4} O27O27O27O27O27O27O27O27O27 D9=⟨(4+t)/(2−t), (1−t)⟩

2.11 The Decads

The 33 projectivities of the nonads GNi
, i = 1, . . . ,33, split N c

i into a number of

orbits. The decads are constructed by adding one point from each orbit to the

corresponding nonad. All orbits are listed in Table 2.19.

Table 2.19: Partition of PG(1,19) by the projective group of nonads

Ni Partition of N c
i

N1 (1) {4,−5} (2) {5,−6} (3) {6,−7} (4) {7,−8} (5) {8,−9} (6) {9}

N2 GN2 splits N c
2 into 11 orbits of single points

N3 GN3 splits N c
3 into 11 orbits of single points

N4 GN4 splits N c
4 into 11 orbits of single points

N5 (1) {3,5} (2) {4,−8} (3) {−5,9} (4) {6,8} (5) {−6,−7} (6) {−9}

N6 GN6 splits N c
6 into 11 orbits of single points
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N7 GN7 splits N c
7 into 11 orbits of single points

N8 (1) {3,−4} (2) {5,−6} (3) {6,−7} (4) {7,−8} (5) {8,−9} (6) {9}

N9 GN9 splits N c
9 into 11 orbits of single points

N10 GN10 splits N c
10 into 11 orbits of single points

N11 (1) {3,9} (2) {−4,−6} (3) {5} (4) {−5,−8} (5) {6,8} (6) {7,−9}

N12 GN12 splits N c
12 into 11 orbits of single points

N13 GN13 splits N c
13 into 11 orbits of single points

N14 (1) {3} (2) {4,−4} (3) {−5,−6} (4) {7,8} (5) {−7,−9} (6) {−8,9}

N15 (1) {3,−4} (2) {4,−5} (3) {6,−7} (4) {7,−8} (5) {8,−9} (6) {9}

N16 (1) {3,6} (2) {4} (3) {−4,−5} (4) {−6,−8} (5) {−7,−9} (6) {8,9}

N17 GN17 splits N c
17 into 11 orbits of single points

N18 GN18 splits N c
18 into 11 orbits of single points

N19 (1) {3,8} (2) {4,−9} (3) {−4,6} (4) {−5,9} (5) {−6,7} (6) {−7}

N20 GN20 splits N c
20 into 11 orbits of single points

N21 (1) {3,4,−4,−5,7,−8} (2) {5,−6} (3) {6,−7,9}

N22 (1) {3,−3} (2) {4,8} (3) {−5,−8} (4) {−6,7} (5) {−7,−9} (6) {9}

N23 GN23 splits N c
23 into 11 orbits of single points

N24 GN24 splits N c
24 into 11 orbits of single points

N25 (1) {3,−4,7} (2) {−3} (3) {5} (4) {−6,9,−9} (5) {−7,8,−8}

N26 GN26 splits N c
26 into 11 orbits of single points

N27 GN27 splits N c
27 into 11 orbits of single points

N28 (1) {3,−7} (2) {−3,7} (3) {4,9} (4) {−4,−9} (5) {−5,8} (6) {−6}

N29 (1) {3,−7} (2) {−3,7} (3) {4,9} (4) {−4,−9} (5) {5,−8} (6) {−6}

N30 GN30 splits N c
30 into 11 orbits of single points

N31 GN31 splits N c
31 into 11 orbits of single points

N32 (1) {−2,5} (2) {3,8} (3) {−4,−9} (4) {−5} (5) {6,7} (6) {−7,−8}

N33 (1) {−2,3,−5,6,−6,7,−7,8,−9} (2) {−8,9}
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There are 280 different orbits; therefore 280 decads can be constructed in

PG(1,19). The projectively distinct decads with their types of nonads and the

stabilizer groups are given in the following theorem.

Theorem 2.11.1. On PG(1,19), there are 44 projectively distinct decads, as

summarized in Table 2.20.

Table 2.20: Inequivalent decads on PG(1,19)

Type The decad Type of Nonads Stabilizer

D1 {∞,0,1,−1,2,−2,−3,−4,3,4} N1N2N1N2N7N7N24N24N28N29 Z2=⟨−t⟩

D2 {∞,0,1,−1,2,−2,−3,−4,3,5} N1N3N2N8N2N8N3N10N1N10 Z2=⟨(t−5)/(t−1)⟩

D3 {∞,0,1,−1,2,−2,−3,−4,3,6} N1N4N3N9N24N10N27N30N28N29 I=⟨t⟩

D4 {∞,0,1,−1,2,−2,−3,−4,3,7} N1N5N4N11N9N12N27N13N3N16 I=⟨t⟩

D5 {∞,0,1,−1,2,−2,−3,−4,3,8} N1N6N5N12N21N13N30N6N24N10 I=⟨t⟩

D6 {∞,0,1,−1,2,−2,−3,−4,3,9} N1N6N6N6N30N6N30N30N30N1 V4=⟨−(t+1), (1−t)/(1+2t)⟩

D7 {∞,0,1,−1,2,−2,−3,−4,4,5} N2N3N7N2N33N14N7N3N27N27 Z2=⟨4/t⟩

D8 {∞,0,1,−1,2,−2,−3,−4,4,6} N2N4N8N17N14N16N10N12N18N11 I=⟨t⟩

D9 {∞,0,1,−1,2,−2,−3,−4,4,−6} N2N2N9N17N7N9N21N17N7N11 Z2=⟨−(t+2)⟩

D10 {∞,0,1,−1,2,−2,−3,−4,4,7} N2N5N10N17N27N18N24N22N4N16 I=⟨t⟩

D11 {∞,0,1,−1,2,−2,−3,−4,4,−7} N2N3N11N17N27N15N9N25N14N15 I=⟨t⟩

D12 {∞,0,1,−1,2,−2,−3,−4,4,8} N2N6N12N23N2N20N6N23N20N12 Z2=⟨(2−t)/(1+5t)⟩

D13 {∞,0,1,−1,2,−2,−3,−4,4,−8} N2N4N12N23N31N17N13N23N22N25 I=⟨t⟩

D14 {∞,0,1,−1,2,−2,−3,−4,4,9} N2N6N13N23N31N18N30N26N24N9 I=⟨t⟩

D15 {∞,0,1,−1,2,−2,−3,−4,4,−9} N2N5N6N23N3N19N30N18N26N4 I=⟨t⟩

D16 {∞,0,1,−1,2,−2,−3,−4,5,6} N3N4N14N22N7N8N7N13N24N9 I=⟨t⟩

D17 {∞,0,1,−1,2,−2,−3,−4,5,−7} N3N3N3N3N17N17N17N17N32N32 V4=⟨−(t+2), (5−t)/(1+t)⟩

D18 {∞,0,1,−1,2,−2,−3,−4,5,8} N3N6N18N18N7N3N28N6N28N7 Z2=⟨(t+1)/(9t−1)⟩

D19 {∞,0,1,−1,2,−2,−3,−4,5,−8} N3N4N19N26N31N14N32N20N28N27 I=⟨t⟩
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D20 {∞,0,1,−1,2,−2,−3,−4,5,9} N3N6N20N23N31N17N26N20N24N13 I=⟨t⟩

D21 {∞,0,1,−1,2,−2,−3,−4,6,7} N4N5N8N17N26N12N9N23N6N12 I=⟨t⟩

D22 {∞,0,1,−1,2,−2,−3,−4,6,8} N4N6N11N4N10N10N29N6N29N11 Z2=⟨−(t+1)/(5t+1)⟩

D23 {∞,0,1,−1,2,−2,−3,−4,6,−8} N4N4N4N20N20N4N15N20N20N15 V4=⟨−(t+2), (1−t)/(1+t)⟩

D24 {∞,0,1,−1,2,−2,−3,−4,7,−9} N5N5N5N5N5N5N5N5N5N5 D10=⟨2/(t+2), −2/t⟩

D25 {∞,0,1,−1,2,−2,−3,−4,8,9} N6N6N17N23N13N17N19N23N13N8 Z2=⟨−(t+2) ⟩

D26 {∞,0,1,−1,2,−2,−3,4,5,−6} N7N9N15N9N27N27N7N32N32N15 Z2=⟨(t−1)/(5t−1) ⟩

D27 {∞,0,1,−1,2,−2,−3,4,5,7} N7N10N16N10N7N10N7N7N16N10 V4=⟨(t−4)/(4t−1), 2t/(t−2)⟩

D28 {∞,0,1,−1,2,−2,−3,4,5,8} N7N12N18N30N27N26N7N26N31N19 I=⟨t⟩

D29 {∞,0,1,−1,2,−2,−3,4,5,9} N7N13N20N13N31N20N7N32N31N32 Z2=⟨(t+2)/(t−1)⟩

D30 {∞,0,1,−1,2,−2,−3,4,−5,−7} N8N11N8N12N11N25N12N11N8N12 Z3=⟨(t−4)/(6t+6)⟩

D31 {∞,0,1,−1,2,−2,−3,4,−6,7} N9N10N19N20N19N30N30N20N9N10 Z2=⟨(t−7)/(3t−1)⟩

D32 {∞,0,1,−1,2,−2,−3,4,−6,8} N9N12N18N20N29N26N10N25N32N16 I=⟨t⟩

D33 {∞,0,1,−1,2,−2,−3,4,−6,9} N9N13N20N22N32N26N24N31N28N27 I=⟨t⟩

D34 {∞,0,1,−1,2,−2,−3,4,7,8} N10N12N12N13N15N18N13N18N15N10 Z2=⟨−(t+2)/(7t+1)⟩

D35 {∞,0,1,−1,2,−2,−3,4,7,9} N10N13N10N13N27N30N30N27N29N29 Z2=⟨−2/t⟩

D36 {∞,0,1,−1,2,−2,−3,5,6,−7} N14N17N14N18N18N17N31N20N20N31 Z2=⟨(1−t)/(1+t)⟩

D37 {∞,0,1,−1,2,−2,−3,5,−6,7} N15N16N19N16N31N29N19N31N29N15 Z2=⟨(2−t)/(1+8t)⟩

D38 {∞,0,1,−1,2,−2,−3,5,−7,8} N17N18N17N18N22N23N22N23N20N20 Z2=⟨2/t⟩

D39 {∞,0,1,−1,2,−2,−3,5,8,−9} N18N18N21N30N24N24N24N30N30N18 Z3=⟨(t+3)/(2t+3)⟩

D40 {∞,0,1,−1,2,−2,6,−4,5,9} N22N23N26N23N26N23N26N22N26N23 V4=⟨(t+2)/(4t−1), −(t+4)/(9t+1)⟩

D41 {∞,0,1,−1,2,−2,6,−4,−6,9} N23N23N23N23N23N23N23N23N23N23 D5=⟨(2+t)/(9−t), (t−6)/(t−1)⟩

D42 {∞,0,1,−1,2,−2,6,4,5,−5} N24N25N27N24N27N31N24N27N31N31 Z3=⟨4/(2−t)⟩

D43 {∞,0,1,−1,2,−2,6,4,5,−8} N24N26N28N30N24N30N30N30N26N28 Z2=⟨(t−5)/(5t−1)⟩

D44 {∞,0,1,−1,2,−3,9,4,−4,5} N31N31N31N33N31N31N31N31N31N31 Z9=⟨(4+t)/(2−t)⟩
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2.12 The partition of PG(1, 19)

Each decad Di, and its complement Dci partition PG(1,19). The stabilizer GDi

of the decad Di also fixes the complement Dci . Since there are 44 projectively

distinct decads in PG(1,19), so the question arises: Are Dci and Di equivalent?

What is the group of projectivities of PG(1,19) of the partition?

In Table 2.21, all Dci are listed with their types of the nonads. Also the projective

equation from each Dj to its equivalent decad Dci is given.

Table 2.21: Classification of the complements of the decads in PG(1,19)

Dci Types of nonads Dj Projective equation

Dc1 N30N30N13N13N27N27N10N10N29N29 D35 (t + 6)/(4t − 5)

Dc2 N6N6N4N10N4N11N11N29N10N29 D22 (t + 5)/(3t + 4)

Dc3 N24N30N3N1N28N9N4N27N29N10 D3 (t + 7)/(4t − 1)

Dc4 N5N1N16N12N3N4N9N13N11N27 D4 (t + 7)/(7t − 1)

Dc5 N21N6N5N24N12N6N1N30N10N13 D5 (t + 7)/(4t − 1)

Dc6 N6N1N6N30N1N6N30N30N6N30 D6 (t + 7)/(7t − 1)

Dc7 N19N31N31N19N15N16N15N16N29N29 D37 (t + 7)/(3t − 4)

Dc8 N2N18N17N8N14N4N12N11N16N10 D8 (9 − t)/(1 + 4t)

Dc9 N18N13N12N13N15N18N12N10N15N10 D34 (5 − t)/(2 + 6t)

Dc10 N5N24N22N17N2N18N4N10N16N27 D10 (t − 6)/(4t − 1)

Dc11 N3N9N25N17N2N15N14N11N15N27 D11 (t − 1)/(4t − 1)

Dc12 N6N23N23N17N17N13N8N6N19N13 D25 (7 + t)/(2 − 3t)

Dc13 N23N2N23N25N22N12N17N4N31N13 D13 (t − 1)/(8t − 1)

Dc14 N26N2N23N9N24N13N18N6N31N30 D14 (t − 1)/(8t − 1)

Dc15 N26N23N6N3N5N18N2N4N19N30 D15 (9 − t)/(1 + 4t)

Dc16 N18N26N32N10N20N12N25N9N16N29 D32 (t + 9)/(5t + 6)

Dc17 N4N20N20N20N4N15N20N4N15N4 D23 (t − 8)/(5t − 3)



Chapter 2. PG(1,19) 44

Dc18 N30N20N19N20N9N9N10N30N19N10 D31 (3 − t)/(9 + 6t)

Dc19 N26N3N19N20N27N14N32N28N31N4 D19 −(t + 5)/(8t + 1)

Dc20 N23N3N20N20N13N17N26N24N31N6 D20 −(t + 5)/(8t + 1)

Dc21 N5N6N17N8N26N23N12N12N4N9 D21 (9 − t)/(1 + 4t)

Dc22 N10N2N3N3N8N2N1N10N8N1 D2 (t − 6)/(4t + 5)

Dc23 N17N3N3N32N17N17N3N32N17N3 D17 (t − 9)/(8t + 6)

Dc24 N5N5N5N5N5N5N5N5N5N5 D24 (4 − t)/(3 + 2t)

Dc25 N12N2N20N12N23N2N6N20N23N6 D12 (t − 3)/(2t + 7)

Dc26 N9N32N27N7N15N7N9N32N15N27 D26 (t + 5)/(8t − 1)

Dc27 N10N7N7N7N10N7N10N16N16N10 D27 (t + 5)/(2t − 6)

Dc28 N30N31N26N18N7N7N12N26N19N27 D28 (9 − t)/(1 + 5t)

Dc29 N20N7N31N13N7N32N32N20N31N13 D29 (t − 8)/(3t − 1)

Dc30 N8N12N11N12N8N25N8N12N11N11 D30 (t − 6)/(4t − 1)

Dc31 N6N28N3N7N3N6N18N7N18N28 D18 (t − 7)/(4t − 5)

Dc32 N24N22N4N14N7N8N9N7N13N3 D16 −(t + 8)/(4t + 3)

Dc33 N31N9N22N27N28N26N20N32N13N24 D33 (t − 7)/(8t − 1)

Dc34 N21N2N9N2N7N11N17N7N17N9 D9 (7 + t)/(9 − 3t)

Dc35 N24N7N2N1N28N29N2N7N24N1 D1 −(t + 5)/(3t + 4)

Dc36 N14N31N20N17N18N14N17N20N18N31 D36 −(t + 4)/(2t + 1)

Dc37 N2N3N33N7N27N2N27N3N7N14 D7 (t + 5)/(8t − 1)

Dc38 N18N20N23N22N17N17N23N20N18N22 D38 −(t + 4)/(2t + 1)

Dc39 N18N30N18N24N21N18N24N30N30N24 D39 (t + 8)/(8t − 1)

Dc40 N23N26N22N23N23N23N26N22N26N26 D40 (t + 8)/(8t − 1)

Dc41 N23N23N23N23N23N23N23N23N23N23 D41 (t − 8)/(4t + 7)

Dc42 N31N31N24N24N24N27N31N27N25N27 D42 (t + 6)/(2t − 1)

Dc43 N26N28N30N30N28N30N24N24N26N30 D43 −(t + 9)/(2t + 1)

Dc44 N31N33N31N31N31N31N31N31N31N31 D44 (t − 7)/(8t − 1)
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Amongst the 44 decads Di there are 16 of them which are not equivalent to

their complements as shown in Table 2.21.

Theorem 2.12.1. The projective line PG(1,19) has

(i) 28 projectively distinct partitions into two equivalent decads;

(ii) 16 projectively distinct partitions into two inequivalent decads.

They are given in Table 2.22 and Table 2.23 with their stabilizer groups in PGL(2,19)
and the number of partitions of that type.

Table 2.22: Partition of PG(1,19) into two inequivalent decads

{Di;Dci} Stabilizer of the partition Number

{D1;Dc1} Z2 = ⟨−t⟩ 3420

{D2;Dc2} Z2 = ⟨(t − 5)/(t − 1)⟩ 3420

{D7;Dc7} Z2 = ⟨4/t⟩ 3420

{D9;Dc9} Z2 = ⟨−(t + 2)⟩ 3420

{D12;Dc12} Z2 = ⟨(2 − t)/(1 + 5t)⟩ 3420

{D16;Dc16} I = ⟨t⟩ 6840

{D17;Dc17} V4 = ⟨−(t + 2), (5 − t)/(1 + t)⟩ 1710

{D18;Dc18} Z2 = ⟨(t + 1)/(9t − 1)⟩ 3420

{D22;Dc22} Z2 = ⟨−(t + 1)/(5t + 1)⟩ 3420

{D23;Dc23} V4 = ⟨−(t + 2), (1 − t)/(1 + t)⟩ 1710

{D25;Dc25} Z2 = ⟨−(t + 2)⟩ 3420

{D31;Dc31} Z2 = ⟨(t − 7)/(3t − 1)⟩ 3420

{D32;Dc32} I = ⟨t⟩ 6840

{D34;Dc34} Z2 = ⟨−(t + 2)/(7t + 1)⟩ 3420

{D35;Dc35} Z2 = ⟨−2/t⟩ 3420

{D37;Dc37} Z2 = ⟨(2 − t)/(1 + 8t)⟩ 3420
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Table 2.23: Partition of PG(1,19) into two equivalent decads

{Di;Dci} Stabilizer of the partition Number

{D3;Dc3} Z2 = ⟨(t + 7)/(4t − 1)⟩ 3420

{D4;Dc4} Z2 = ⟨(t + 7)/(7t − 1)⟩ 3420

{D5;Dc5} Z2 = ⟨(t + 7)/(4t − 1)⟩ 3420

{D6;Dc6} D4 = ⟨(t + 7)/(7t − 1),−(t + 1)⟩ 855

{D8;Dc8} Z2 = ⟨(9 − t)/(1 + 4t)⟩ 3420

{D10;Dc10} Z2 = ⟨(t − 6)/(4t − 1)⟩ 3420

{D11;Dc11} Z2 = ⟨(t − 1)/(4t − 1)⟩ 3420

{D13;Dc13} Z2 = ⟨(t − 1)/(8t − 1)⟩ 3420

{D14;Dc14} Z2 = ⟨(t − 1)/(8t − 1)⟩ 3420

{D15;Dc15} Z2 = ⟨(9 − t)/(1 + 4t)⟩ 3420

{D19;Dc19} Z2 = ⟨−(t + 5)/(8t + 1)⟩ 3420

{D20;Dc20} Z2 = ⟨−(t + 5)/(8t + 1)⟩ 3420

{D21;Dc21} Z2 = ⟨(9 − t)/(1 + 4t)⟩ 3420

{D24;Dc24} D20 = ⟨(4 − t)/(3 + 2t),−2/t⟩ 171

{D26;Dc26} V4 = ⟨(t + 5)/(8t − 1), (t − 1)/(5t − 1)⟩ 1710

{D27;Dc27} D4 = ⟨(t + 5)/(2t − 6), 2t/(t − 2)⟩ 855

{D28;Dc28} Z2 = ⟨(9 − t)/(1 + 5t)⟩ 3420

{D29;Dc29} V4 = ⟨(t − 8)/(3t − 1), (t + 2)/(t − 1)⟩ 1710

{D30;Dc30} S3 = ⟨(t − 6)/(4t − 1), (t − 6)/(6t + 6)⟩ 1140

{D33;Dc33} Z2 = ⟨(t − 7)/(8t − 1)⟩ 3420

{D36;Dc36} V4 = ⟨−(t + 4)/(2t + 1), (1 − t)/(1 + t)⟩ 1710

{D38;Dc38} V4 = ⟨−(t + 4)/(2t + 1), 2/t⟩ 1710

{D39;Dc39} S3 = ⟨(t + 8)/(8t − 1), (t + 3)/(2t + 3)⟩ 1140

{D40;Dc40} D4 = ⟨(t + 5)/(3t + 8), (t + 2)/(4t − 1)⟩ 855

{D41;Dc41} D10 = ⟨(t − 8)/(4t + 7), (t − 6)/(t − 1)⟩ 342

{D42;Dc42} S3 = ⟨(t + 6)/(2t − 1), 4/(2 − t)⟩ 1140

{D43;Dc43} V4 = ⟨−(t + 9)/(2t + 1), (t − 5)/(5t − 1)⟩ 1710

{D44;Dc44} D9 = ⟨(t − 7)/(8t − 1), (4 + t)/(2 − t)⟩ 380

Remark 2.12.2. In Table 2.23, when the stabilizer group of the partition is

generated by two elements, the first generator transforms the decad Di to Dci ,
while the second fixes Di.
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2.13 Splitting PG(1, 19) into Five Disjoint Tetrads

There are four types of tetrads H,E,N1,N2 on PG(1,19). The question arises

here: Does the projective line PG(1,19) split into five disjoint harmonic tetrads,

five equianharmonic tetrads, five tetrads of type N1 or five tetrads of type N2?

The answer is yes for each type as given below. Here the symbol CR(a1) refers

to the cross-ratio of the set ai.

(i) Harmonic

a1 = {∞,0,1,−1}, CR(a1) = −1;

a2 = {2,−2,3,−5}, CR(a2) = −1;

a3 = {−3,4,−4,−6}, CR(a3) = 2;

a4 = {5,7,8,−8}, CR(a4) = 2;

a5 = {6,−7,9,−9}, CR(a5) = −9.

(ii) Equianharmonic

a1 = {∞,0,1,−7}, CR(a1) = −7;

a2 = {−1,2,−2,5}, CR(a2) = −7;

a3 = {3,−3,−4,7}, CR(a3) = 8;

a4 = {4,8,9,−9}, CR(a4) = 8;

a5 = {−5,6,−6,−8}, CR(a5) = −7.

(iii) Tetrads of Type N1

a1 = {∞,0,1,−2}, CR(a1) = −2;

a2 = {−1,2,3,4}, CR(a2) = −6;

a3 = {−3,−4,5,−5}, CR(a3) = −8;

a4 = {6,−6,8,−8}, CR(a4) = 7;

a5 = {7,−7,9,−9}, CR(a5) = −8.

(iv) Tetrads of Type N2

a1 = {∞,0,1,−3}, CR(a1) = −3;

a2 = {−1,2,−2,3}, CR(a2) = 6;

a3 = {4,−4,5,−5}, CR(a3) = 4;

a4 = {6,−6,8,−9}, CR(a4) = 6;

a5 = {7,−7,−8,9}, CR(a5) = 6.

Remark 2.13.1. These partitions are not unique. There are 519156 partitions of

five disjoint harmonic tetrads, 67944 of five disjoint equianharmonic tetrads, and

more than 100000 of five disjoint tetrads of type N1 and N2.
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2.14 Summary

The information about PG(1,19) is summarized in the following two tables. Table

2.24 presents the full details about the number of k-sets in PG(1,19); 5 ≤ k ≤ 10,

containing a certain (k − 1)-set K and inequivalent under the stabilizer group of

K, as well as the type of their stabilizer groups. Table 2.25 presents the number of

all inequivalent k-sets in PG(1,19), 4 ≤ k ≤ 10, and the type of the their stabilizer

groups. A cell m ∶ G of the tables means that m is the number of k-sets stabilized

by the group G; nk means the number of k-sets and n̄k means the number of

inequivalent k-sets.

Table 2.24: The classification of k-sets in PG(1,19), 5 ≤ k ≤ 10

k-set nk m ∶ G

Pentad 14 5 ∶ I 6 ∶ Z2 2 ∶ S3 1 ∶ D5

Hexad 36 12 ∶ I 15 ∶ Z2 6 ∶ V4 2 ∶ S3 1 ∶ D6

Heptad 86 42 ∶ I 36 ∶ Z2 6 ∶ Z3 1 ∶ Z6

Octad 154 88 ∶ I 51 ∶ Z2 9 ∶ V4 1 ∶ S3 1 ∶ D4 2 ∶ D6 2 ∶ S4

Nonad 228 162 ∶ I 60 ∶ Z2 3 ∶ Z3 2 ∶ S3 1 ∶ D9

Decad 280 160 ∶ I 89 ∶ Z2 12 ∶ Z3 15 ∶ V4 2 ∶ Z9 1 ∶ D5 1 ∶ D10

Table 2.25: The classification of inequivalent k-sets in PG(1,19), 4 ≤ k ≤ 10

k-set n̄k m ∶ G

Tetrad 4 1 ∶ V4 1 ∶ V4 1 ∶ A4 1 ∶ D4

Pentad 5 1 ∶ I 2 ∶ Z2 1 ∶ S3 1 ∶ D5

Hexad 13 1 ∶ I 5 ∶ Z2 3 ∶ V4 2 ∶ S3 2 ∶ D6

Heptad 18 6 ∶ I 9 ∶ Z2 2 ∶ Z3 1 ∶ Z6

Octad 31 11 ∶ I 12 ∶ Z2 4 ∶ V4 1 ∶ S3 1 ∶ D4 1 ∶ D6 1 ∶ S4

Nonad 33 18 ∶ I 12 ∶ Z2 1 ∶ Z3 1 ∶ S3 1 ∶ D9

Decad 44 16 ∶ I 17 ∶ Z2 3 ∶ Z3 5 ∶ V4 1 ∶ Z9 1 ∶ D5 1 ∶ D10
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2.15 MDS Codes of Dimension Two

As in Theorem 1.13.1, an (n;n−d)-arc in PG(k−1, q) is equivalent to a projective

[n, k, d]q-code. So, if k = 2 and n−d = 1, then there is a one-to-one correspondence

between n-sets in PG(1,19) and projective [n,2, n − 1]19-codes C. Since d(C) of

the code C is equal to n − k + 1, thus the projective code C is MDS.

In Table 2.26, the MDS codes corresponding to the n-sets in PG(1,19) and the

parameter e of errors corrected are given.

Table 2.26: MDS code over PG(1,19)

n-Set MDS code e

Tetrad [4,2,3]19 1

Pentad [5,2,4]19 1

Hexad [6,2,5]19 2

Heptad [7,2,6]19 2

Octad [8,2,7]19 3

Nonad [9,2,8]19 3

Decad [10,2,9]19 4
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The Projective Plane

3.1 Introduction

The projective plane PG(2, q) is a 2-dimensional projective space over Fq. In a

plane, each point P is joined to the remaining points by a pencil which consists

of q + 1 lines; each of these lines contains P and q other points. Hence the plane

contains

q(q + 1) + 1 = q2 + q + 1 = θ(2, q)

points and by duality a plane contains q2 + q + 1 lines. The integer q is called the

order of the plane.

Throughout, Υ = {U0,U1,U2,U} denotes the standard frame in PG(2, q).

3.2 Construction of PG(2, q)

In this section three ways to represent the points of PG(2, q) are given.

(1) Let f(x) = x3 − a2x2 − a1x − a0 be a cubic subprimitive polynomial over Fq.

An example of a cyclic projectivity T = M(A) occurs when A = C(f); that is,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

0 0 1

a0 a1 a2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

since ∣xI3 −C(f)∣ = f(x), see [17, Theorem 7.1].

50
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So, P(x0, x1, x2)T = P(x′0, x′1, x′2), where

x′0 = a0x2,

x′1 = x0 + a1x2,

x′2 = x1 + a2x2.

If α is a root of f(x) in Fq3 , then

α3 = a2α
2 + a1α + a0. (3.1)

Let P (0) = U0 and define P (i) = P (0)Ti. For i = 0,1, . . . , q2 + q, there exist

y
(i)
0 , y

(i)
1 , y

(i)
2 in Fq such that

αi = y(i)0 + y(i)1 α + y(i)2 α2.

Then

αi+1 = α ⋅ αi = y(i)0 α + y(i)1 α2 + y(i)2 α3. (3.2)

By substituting (3.1) in (3.2),

αi+1 = a0y
(i)
2 + (y(i)0 + a1y

(i)
2 )α + (y(i)1 + a2y

(i)
2 )α2.

But also

αi+1 = y(i+1)
0 + y(i+1)

1 α + y(i+1)
2 α2.

Thus

(y(i+1)
0 , y

(i+1)
1 , y

(i+1)
2 ) = (y(i)0 , y

(i)
1 , y

(i)
2 )A.

So, P (i) = P(y(i)0 , y
(i)
1 , y

(i)
2 ) or more generally P (i)Tj−i = P (j), 0 ≤ i < j ≤ q2 + q.

The order of the projectivity T is θ(2, q), and

PG(2, q) = {U0T
i ∣ i = 0,1, . . . , q2 + q}.

Note that P (0) = U0, P (1) = U1, P (2) = U2. Since T acts cyclically on the points

of PG(2, q), then dually it acts cyclically on the lines of PG(2, q).
The existence of a cyclic projectivity gives an attractive representation of the

points and lines of PG(2, q) as illustrated in (2).

(2) The plane can be represented by a regular array ; that is, each row is a cyclic

permutation of the previous one.
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Suppose that the points collinear with P (0) and P (1) are those P (i) with

indices i = d2, d3, . . . , dq. Write d0 for 0 and d1 for 1, and consider the array M:

d0 d0 + 1 d0 + 2 . . . d0 + q2 + q
d1 d1 + 1 d1 + 2 . . . d1 + q2 + q
⋮ ⋮ ⋮ . . . ⋮
dq dq + 1 dq + 2 . . . dq + q2 + q

,

where each entry has been reduced modulo q2+q+1. The rows ofM represents

the points of PG(2, q) and the columns represents the lines of PG(2, q).
According to Berman [7, Theorem 2.1], the integers d0, d1, . . . , dq form a perfect

difference set ; that is, q2 + q integers di − dj with i ≠ j are all distinct modulo

q2 + q + 1.

These types of representations for PG(2, q) can be extended to higher dimen-

sions. See [28, Section 4.2].

(3) The points of PG(2, q) as shown in Table 1.1 can be represented by vectors

of three coordinate over Fq as in Table 3.1.

Table 3.1: Type of elements of PG(2, q)

Type of elements No. of elements

P(x0, x1,1) q2

P(x0,1,0) q

P(1,0,0) 1

θ(2, q)

Throughout, the numeral form is used to refer to the points of PG(2, q); that

is, 1 = P (0),2 = P (1), . . . , q2 + q + 1 = P (q2 + q).

3.3 Arcs in a Plane

As in Section 1.10, a (k; r)-arc in PG(2, q) is a set of k points no r + 1 of them

collinear but some r collinear. In the terms of τi this becomes the following: a

(k; r)-arc is a set of k points of PG(2, q) for which τi ≥ 0 for i < r, τr > 0 and τi = 0

when i > r. In terms of i-secants the definition of a complete (k; r)-arc becomes

the following: a (k; r)-arc K is complete if every point lies on some r-secant of
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K. In PG(2, q), the number of (k; r)-arcs projectively equivalent to a (k; r)-arc K
with stabilizer group G is

q3(q3 − 1)(q2 − 1)/∣G∣.

3.4 Some Basic Equations

Let P be a point of k-arc K and let t(P ) be the number of unisecants through P .

Then through P there are k − 1 bisecants of K; hence

t(P ) = (q + 1) − (k − 1) = q + 2 − k = t.

So,

t + k = q + 2 and t ≥ 0; (3.3)

hence k ≤ q + 2 and t is independent of the point P . Therefore a k-arc K can have

at most q + 2 points. There are exactly 1
2k(k − 1) bisecants, kt unisecants and

q2 + q + 1 − 1

2
k(k − 1) − kt = 1

2
q(q − 1) + 1

2
t(t − 1)

external lines. That is,

τ2 = (k
2
), τ1 = kt, τ0 = (q

2
) + (t

2
).

Let Q be a point of PG(2, q) not on the k-arc K. Let σi(Q) be the number of

i-secants through Q. The number σ2(Q) of bisecants is called the index of Q with

respect to K. Then σ0(Q) + σ1(Q) + σ2(Q) = q + 1 and σ1(Q) + 2σ2(Q) = k. So,

σ1(Q) ≡ k (mod 2) and from (3.3), the following holds:

t ≡ k (mod 2) if q is even;

t ≢ k (mod 2) if q is odd.

Example 3.4.1. Let K be a k-arc in PG(2, q).

(i) If k = q, then

(1) σ1(Q) + 2σ2(Q) = q;

(2) if q even, then σ1(Q) is even;
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(3) if q odd, then σ1(Q) is odd;

(4) t = 2, τ2 = 1
2q(q − 1), τ1 = 2q and τ0 = 1

2q(q − 1) + 1.

(ii) If k = q + 1, then

(1) σ1(Q) + 2σ2(Q) = q + 1;

(2) if q even, then σ1(Q) is odd;

(3) if q odd, then σ1(Q) is even;

(4) t = 1, τ2 = 1
2q(q + 1), τ1 = q + 1 and τ0 = 1

2q(q − 1).

Let ci be the number of points of PG(2, q)/K of index exactly i. So, c0 is the

number of points through which no bisecant of K passes. Then K is complete if

and only if c0 = 0; that is, σ2(Q) ≠ 0 for all Q off K. Also, c3 is the number of

points where three bisecants meet. The maximum possible index of a point, with

respect to a given k-arc, is k′ = ⌊1
2k⌋.

If two k-arcs are projectively equivalent then it is necessary that both have the

constant ci for each i. However, the converse is not true as shown in next chapter.

Lemma 3.4.2. The constants ci of a k-arc K in PG(2, q) satisfy the following

equations:

k′

∑
i=0

ci = q2 + q + 1 − k; (3.4)

k′

∑
i=1

ici = k(k − 1)(q − 1)/2; (3.5)

k′

∑
i=2

i(i − 1)ci = k(k − 1)(k − 2)(k − 3)/8. (3.6)

Proof.

k′

∑
i=0

ci = ∣{Q ∣ Q ∈ PG(2, q)/K}∣;

k′

∑
i=1

ici = ∣{(Q, `) ∣ Q ∈ `/K; ` a bisecant of K}∣;

k′

∑
i=2

i(i − 1)ci = ∣{(Q,{`, `′}) ∣ Q ∈ (` ∩ `′)/K; `, `′ bisecants of K}∣.
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The values of the constant ci for a k-arc with 2 ≤ k ≤ 7 are given in Table 3.2.

Table 3.2: Constants for small arcs

k c0 c1 c2

2 q2 q − 1

3 (q − 1)2 3(q − 1)

4 (q − 2)(q − 3) 6(q − 2) 3

5 (q − 4)(q − 5) + 1 10(q − 4) 15

6 (q − 7)2 + 6 − c3 3{5(q − 7) + c3} 3(15 − c3)

7 (q − 10)2 + 20 − c3 3{7(q − 11) + c3} 3(35 − c3)

It is clear from Table 3.2 that a complete 4-arc exists only for q = 2 and 3. A

5-arc is never complete.

3.5 n-Stigms

An n-stigm in PG(2, q) is a set of n points, no three of which are collinear, together

with the 1
2n(n− 1) lines that are joins of pairs of the points. The points and lines

are called vertices and sides of the n-stigm. The vertices form an n-arc. A 3-stigm

is also called a triangle, a 4-stigm a tetrastigm, a 5-stigm a pentastigm and a

6-stigm a hexastigm.

Let l(n, q) be the number of points on the sides of an n-stigm, and

l∗(n, q) = q2 + q + 1 − l(n, q).

The diagonal points of an n-stigm are the intersections of two sides which do not

pass through the same vertex.

For n ≤ 5, The number of points on the sides of an n-stigm is

l(n, q) = (n
2
)(q − 1) + n − 1

2
(n

2
)(n − 2

2
).

Table 3.3 gives the values of l(n, q) and l∗(n, q). See [28, Lemma 7.1(i)].
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Table 3.3: The number of points on the sides of an n-stigm

n 2 3 4 5

l(n, q) q + 1 3q 6q − 5 10q − 20

l∗(n, q) q2 (q − 1)2 (q − 2)(q − 3) (q − 4)(q − 5) + 1

Note that l∗(n, q) = c0 for 2 ≤ n ≤ 5.

3.6 Conics

Let

F = a00X
2
0 + a11X

2
1 + a22X

2
2 + a01X0X1 + a02X0X2 + a12X1X2,

be a form of degree 2 and Q = v(F ) be a plane quadric . As mentioned in Section

1.11, a conic is a non-singular plane quadric. Then the following properties hold.

(1) A conic is an irreducible plane quadric.

(2) Any plane quadric through a 5-arc is non-singular. See [28, Theorem 7.4].

(3) Every conic is determined by the ratios of the coefficients (a00, a11, a22, a01, a02, a12).
So, it is determined by five of its points.

(4) In PG(2, q) with q ≥ 4, there is a unique conic through a 5-arc. See [28,

Corollary 7.5].

(5) In PG(2, q), number of conics is q5 − q2. See [28, Theorem 7.4].

(6) If a conic contains one rational point, then it contains exactly q + 1. See [28,

Lemma 7.6].

(7) Let C be a conic and P(A) ∈ C. Then the q+1 lines of the plane through P(A)
comprise the tangent and q bisecants.

(8) Every conic in PG(2, q) is a (q + 1)-arc. So, its unisecants are its tangents.

See [28, Lemma 7.7 and Corollary 8.3].

(9) In PG(2, q) for q even, the q + 1 tangents to a conic C are concurrent. The

point of intersection of these tangents is called the nucleus. See [28, Corollary

7.11]. Note that the nucleus is not on any bisecants of C.
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(10) In PG(2, q) for q odd, every point off a conic C lies on exactly two or no

tangents of C. See [28, Lemma 8.10].

A point of PG(2, q) is external or internal to the conic C according as it lies

on two or no tangents of C. Hence, with respect to C, the q2 + q + 1 points of

PG(2, q) are partitioned into three classes:

(a) q + 1 points on C;

(b) q(q + 1)/2 external points;

(c) q(q − 1)/2 internal points.

Similarly, the q2+q+1 lines of PG(2, q) are partitioned into three classes with

respect to C:

(a) q + 1 unisecants;

(b) q(q + 1)/2 bisecants;

(c) q(q − 1)/2 external lines.

(11) Let C = v(F ) be a conic and PGO(3, q) denote the projective group of the

conic. Then

(i) C ≅ C∗ = v(X2
1 −X0X2) = {P(t2, t,1) ∣ t ∈ Fq ∪ {∞}}.

(ii) Let T = M(A) be an element of PGL(2, q) given by P(t,1) ↦ P(t,1)T,

where

A =
⎡⎢⎢⎢⎢⎣

a c

b d

⎤⎥⎥⎥⎥⎦
.

The matrix A has the following effect on C∗:

P(t2, t,1) ↦ P(t2, t,1)T′,

where T′ = M(A′) and

A′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a2 ac c2

2ab ad + bc 2cd

b2 bd d2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus

ϕ ∶ PGL(2, q) Ð→ PGO(3, q)
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given by Tϕ = T′ is an group isomorphism. Therefore,

PGL(2, q) ≅ PGO(3, q).

For more details see [28, Corollary 7.14].

(12) There is a one-to-one correspondence between PG(1, q) and a conic in PG(2, q).
Therefore, there is a one-to-one correspondence between a set of points on

PG(1, q) and an arc of the same size on a conic in PG(2, q).

3.7 Ovals

A k-arc in PG(2, q) with maximum number of points is an oval. The maximum

value of k for a k-arc is denoted by m2(2, q) and was determined by Bose [11] in

the following theorem.

Theorem 3.7.1. In PG(2, q)

m2(2, q) =
⎧⎪⎪⎨⎪⎪⎩

q + 2 for q even,

q + 1 for q odd.

Proof. As mentioned in Section 3.4, k ≤ q+2 because t(P ) = q+2−k = t ≥ 0 for any

k-arc. When q is even, the union of a conic C with its nucleus N is a (q + 2)-arc,

whence m2(2, q) = q + 2 for q even.

If q is odd and t = 0, then σ1(Q) = 0 for all Q off the k-arc K. Thus 2σ2(Q) = k
is even and q + 2− t = k is odd, which is a contradiction. So t ≠ 0; that is, k ≤ q + 1.

As a conic is a (q + 1)-arc, so m2(2, q) = q + 1 for q odd.

Theorem 3.7.2. (Segre’s Theorem)

In PG(2, q), with q odd, every oval is a conic.

Proof. See [28, Theorem 8.14].

For more results about mr(2, q), r > (q + 3)/2 see [18].

3.8 Complete k-Arcs

A k-arc K is complete if and only if the points on the bisecants of K cover the

whole plane. An example of a complete arc is the oval for q even and the conic for

q odd. There is no complete arc other than a conic lying on the conic.
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The questions arise here: Are there complete arcs in PG(2, q) other than ovals?

What is the lower bound for the minimum integer k for complete k-arcs in PG(2, q)?
Any q-arc is incomplete for q odd as given in the following lemma.

Lemma 3.8.1. In PG(2, q) for q odd, a q-arc K lies on a conic; the number of

such conics is one or four as q ≠ 3 or q = 3.

Proof. See [28, Theorem 10.28].

Lemma 3.8.2. If a k-arc K in PG(2, q) is complete, then q ≤ 1
2(k − 1)(k − 2). If

q is not a prime, the equality cannot hold.

Proof. See [6, Theorem 2.5.1].

Corollary 3.8.3. In PG(2, q), if q ≥ 16, there is no complete 6-arc and 7-arc.

Lemma 3.8.4. In PG(2, q) with q odd, let the k-arc K, where k = 1
2(q + 5), have

its points arbitrarily chosen from a conic C. Then the bisecants of K contain all

the points in the plane other than those of C/K.

Proof. See [28, Lemma 9.27].

Corollary 3.8.5. In PG(2, q) with q odd, if K is a k-arc not contained in a conic,

then K has at most k = 1
2(q + 3) points in common with a conic.

Proof. If there is a conic C containing 1
2(q + 5) points of K and if P ∈ K/C, then

by Lemma 3.8.4 there is a bisecant of K through P ; that is, K has 3-secant, a

contradiction.

Lemma 3.8.6. In PG(2, q), q odd and q ≥ 7, there exists a complete k-arc not on

a conic.

Proof. Outline: Let Q be an external point of the conic C. The q+1 lines through

Q consist of two tangents to C, 1
2(q − 1) bisecants to C and 1

2(q − 1) external lines

to C. Let the k-arc K∗ consist of Q, the two points P,P ′ of contact of the tangents

to C through Q, and one of the two points of C on each of the 1
2(q−1) bisecants of

C through Q. Then k = 1
2(q + 5). Now K∗ can be completed to K∗′ not on a conic.

See [28, Lemma 9.29].

Lemma 3.8.7. In PG(2, q), q ≡ −1 (mod 4), there exists a complete k-arc with

k = 1
2(q + 5).
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Proof. Outline: The set K∗ of the previous lemma can be chosen so that K∗ = K∗′.
Let C = v(X2

1 − X0X2) and let Q = U1; then {P,P ′} = {U0,U2}. Let α be a

primitive element of Fq. Then the q−1 points of C/{U0,U2} fall into two branches

S∗ and N∗, where

S∗ ={P(α2i,1, α−2i) ∣ i = 1, . . . , (q − 1)/2}, the branch of the squares,

N∗ ={P(α2i−1,1, α−2i+1) ∣ i = 1, . . . , (q − 1)/2}, the branch of the non-squares.

Let K∗1 = S∗ ∪ {U0,U1,U2} and K∗2 = N∗ ∪ {U0,U1,U2}. Then K∗1 and K∗2 are

complete k-arcs with k = 1
2(q + 5). See [28, Theorem 9.30].

Lemma 3.8.8. If K is a k-arc in PG(2, q), q odd, and k > 2
3(q + 2), then there is

a unique complete arc containing K.

Proof. See [28, Theorem 10.23].

3.9 The Algorithms

The calculation of a matrix transformations between two 4-arcs as well as methods

of constructions of inequivalent and complete arcs are illustrated in the following

algorithm.

3.9.1 Projectivity Between Two 4-Arcs

In general, a projectivity T = M(A) in PG(2, q) is given by the equation

tY =XA,

where Y = (y0, y1, y2), X = (x0, x1, x2), A = (tij), t ∈ Fq/{0}; that is,

x0t00 + x1t10 + x2t20 = ty0, (3.7)

x0t01 + x1t11 + x2t21 = ty1, (3.8)

x0t02 + x1t12 + x2t22 = ty2. (3.9)

By the Fundamental Theorem of Projective Geometry, Section 1.7(iii), T is uniquely

determined when the points Pi, i = 1,2,3,4, of a 4-arc and their images PiT, also

points of a 4-arc, are given. The mapping T is in fact determined by eight con-

ditions. This can be seen in two ways. The matrix A has nine entries but T is
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determined by their ratios and so by eight conditions; alternatively, given the four

points Pi, each image PiT is determined by two conditions as follows.

Eliminating t from equations (3.7) and (3.8), and from (3.8) and (3.9) give the

following two homogeneous equations:

y1(x0t00 + x1t10 + x2t20) − y0(x0t01 + x1t11 + x2t21) = 0,

y2(x0t01 + x1t11 + x2t21) − y1(x0t02 + x1t12 + x2t22) = 0.

So, T is determined by 4 × 2 = 8 conditions.

Alternatively, to find a projectivity between any two arcs the following proce-

dure can be used. Let

K = {P(a0, a1, a2),P(b0, b1, b2),P(c0, c1, c2),P(d0, d1, d2)},

K′ = {P(a′0, a′1, a′2),P(b′0, b′1, b′2),P(c′0, c′1, c′2),P(d′0, d′1, d′2)},

be two 4-arcs and Υ = {P(1,0,0),P(0,1,0),P(0,0,1),P(1,1,1)} be the standard

frame. IfA is a matrix which transforms Υ toK andB is a matrix which transforms

Υ to K′, then the matrix A−1B transforms K to K′.
The procedure to find the projective transformation T = M(A) which maps

P(1,0,0) to P(a0, a1, a2),

P(0,1,0) to P(b0, b1, b2),

P(0,0,1) to P(c0, c1, c2),

P(1,1,1) to P(d0, d1, d2),

is as follows. Let α,β, γ ∈ Fq/{0} and

(1,0,0)A = α(a0, a1, a2),

(0,1,0)A = β(b0, b1, b2),

(0,0,1)A = γ(c0, c1, c2).

Then,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

αa0 αa1 αa2

βb0 βb1 βb2

γc0 γc1 γc2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Also there is ν ∈ Fq/{0} such that (1,1,1)A = ν(d0, d1, d2); so the following non-

homogeneous system is obtained:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 b0 c0

a1 b1 c1

a2 b2 c2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α

β

γ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

νd0

νd1

νd2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

This system has a unique solution given by

α
RRRRRRRRRRRRRRRRRR

d0 b0 c0

d1 b1 c1

d2 b2 c2

RRRRRRRRRRRRRRRRRR

= β
RRRRRRRRRRRRRRRRRR

a0 d0 c0

a1 d1 c1

a2 d2 c2

RRRRRRRRRRRRRRRRRR

= γ
RRRRRRRRRRRRRRRRRR

a0 b0 d0

a1 b1 d1

a2 b2 d2

RRRRRRRRRRRRRRRRRR

= ν
RRRRRRRRRRRRRRRRRR

a0 b0 c0

a1 b1 c1

a2 b2 c2

RRRRRRRRRRRRRRRRRR
or

α

D1

= β

D2

= γ

D3

= ν

D4

,

where D1D2D3D4 ≠ 0. Therefore,

D4

ν
A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D1a0 D1a1 D1a2

D2b0 D2b1 D2b2

D3c0 D3c1 D3c2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

and

T = M(A) = M(D4

ν
A) .

3.9.2 Construction of Inequivalent k-Arcs

In this section, the algorithm used to classify the k-arcs that contain the standard

frame is described.

Let K be a (k − 1)-arc, k ≥ 5, containing the standard frame Υ.

(1) Define Ck−1
0 to be a set of points not on the bisecants of K; that is, points

of index zero. Here ∣Ck−1
0 ∣ = c0.

(2) If Ck−1
0 is not empty, that is, K is not complete, then Ck−1

0 is separated into

orbits by the stabilizer group GK of K.

(3) A k-arc is constructed by adding one point to K from an orbit.

(4) Let ⌊k2 ⌋ = n. Then the values of the constants c0, c1, . . . , cn, are calculated

for each k-arc.
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(5) Let Mk be the set of all different k-arcs that are constructed from (k−1)-arcs

in PG(2, q). Then Mk is partitioned into classes {Mk
i }i∈Λ according to c0, . . . , cn.

(6) In general, two k-arcs, K and K′ are equivalent if there is a projective

transformation T which transforms the frame Υ to any permutation of four points

in K′ such that T transforms K/Υ to any permutation of the other k − 4 points in

K′. Accordingly, any two k-arcs in the same class Mk
i are equivalent if there is a

projective transformation between them.

Remark 3.9.1. (1) If Ck−1
0 ≠ φ, then Ck

0 ⊂ Ck−1
0 .

(2) If K and K′ are two equivalent arcs, then it is necessary that they have the

same type of projective group. It is shown in the next chapter that the converse

is not true. So, the k-arcs in each class Mk
i can be partitioned according to their

projective groups.

3.9.3 Construction of Complete k-Arcs

To find the complete arcs of size s, first try to calculate all inequivalent arcs of

size equal to a fixed threshold n, n < s. Then try to complete each inequivalent

n-arc by extending it until it reaches the desired length s. An s-arc is complete if

Cs
0 = φ. In doing the extension, the repeated arcs are skipped and the information

furnished by Ch
0 , n < h < s, is exploited to save time. Inequivalent complete arcs

are checked as in Section 3.9.2, steps 5 and 6.
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The Projective Plane of Order Nineteen

4.1 Introduction

According to Section 3.1, the projective plane of order nineteen, PG(2,19), has

381 points and lines, 20 points on each line and 20 lines passing through each

point.

Let `1 = v(X2); that is, `1 is the line passing through points P(X0,X1,X2) with

third coordinate equal to zero. Then `1 forms the following difference set.

1 2 26 46 80 86 112 183 216 220 238 251 259 266 289 308 318 366 371 380

From Section 3.2, the points and the lines `i of PG(2,19) can be represented

by the following array. See Appendix A.

Table 4.1: The points and the lines of PG(2,19)

`1 `2 `3 `4 . . . `q2+q+1

1 2 3 4 . . . 381 238 239 240 241 . . . 237
2 3 4 5 . . . 1 251 252 253 254 . . . 250
26 27 28 29 . . . 25 259 260 261 262 . . . 258
46 47 48 49 . . . 45 266 267 268 269 . . . 265
80 81 82 83 . . . 79 289 290 291 292 . . . 288
86 87 88 89 . . . 85 308 309 310 311 . . . 307
112 113 114 115 . . . 111 318 319 320 321 . . . 317
183 184 185 186 . . . 182 366 367 368 369 . . . 365
216 217 218 219 . . . 215 371 372 373 374 . . . 370
220 221 222 223 . . . 219 380 381 1 2 . . . 379

64
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A vector representation of the points in PG(2,19) by three coordinates over Fq

is as follows.

Table 4.2: Type of elements of PG(2,19)

Type of elements No. of elements

P(x0, x1,1) 361

P(x0,1,0) 19

P(1,0,0) 1

θ(2,19)

4.2 The Unique 4-Arc

From the Fundamental Theorem of Projective Geometry applied to the projective

plane, Section 1.7(iii), the frame Υ is projectively the unique 4-arc in PG(2,19).
The frame points in PG(2,19) are the points 1,2,3,263 in numeral form. The

stabilizer group of Υ is S4, which can be found by transforming Υ to its 24 permu-

tations. The matrix determining each element of S4 for each permutation (ijkl)
of Υ is given by the rows of Table 4.3. The two matrices marked by g1, g2 are

generators of S4.

Table 4.3: The stabilizer of the standard frame in PG(2,19)

(ijkl) Matrix transformation

(1234) 1 0 0 0 1 0 0 0 1

(1243) −1 0 0 0 −1 0 1 1 1

(1324) −1 0 0 0 0 −1 0 −1 0

(1342) 1 0 0 0 0 1 −1 −1 −1

(1423) 1 0 0 −1 −1 −1 0 1 0

(1432) −1 0 0 1 1 1 0 0 −1

(2134) 0 −1 0 −1 0 0 0 0 −1 g1
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(2143) 0 1 0 1 0 0 −1 −1 −1

(2314) 0 1 0 0 0 1 1 0 0

(2341) 0 −1 0 0 0 −1 1 1 1 g2

(2413) 0 −1 0 1 1 1 −1 0 0

(2431) 0 1 0 −1 −1 −1 0 0 1

(3124) 0 0 1 1 0 0 0 1 0

(3142) 0 0 −1 −1 0 0 1 1 1

(3214) 0 0 −1 0 −1 0 −1 0 0

(3241) 0 0 1 0 1 0 −1 −1 −1

(3412) 0 0 1 −1 −1 −1 1 0 0

(3421) 0 0 −1 1 1 1 0 −1 1

(4123) 1 1 1 −1 0 0 0 −1 0

(4132) −1 −1 −1 1 0 0 0 0 1

(4213) −1 −1 −1 0 1 0 1 0 0

(4231) 1 1 1 0 −1 0 0 0 −1

(4312) 1 1 1 0 0 −1 −1 0 0

(4321) −1 −1 −1 0 0 1 0 1 0

Remark 4.2.1. (1) From Table 3.2, the values of the constants ci for any 4-arc

are

c0 = 272, c1 = 102, c2 = 3.

(2) The three diagonal points of the frame are

U0U1∩U2U = P(1,1,0), U0U∩U1U2 = P(0,1,1), U0U2∩U1U = P(1,0,1).

These points are not collinear.

(3) The diagonal points are exactly the three points of index two. The set of

diagonal points is fixed by S4, the stabilizer group of the frame.
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4.3 5-Arcs

The number of points on the sides of a tetrastigm is l(4,19) = 109. Hence the

number of points not on the sides of tetrastigm is l∗(4,19) = 381 − 109 = 272.

The projective group S4 of the standard frame Υ splits the 272 points not on the

bisecants of Υ into 14 disjoint orbits as follows.

(1) { 7, 155, 94, 15, 33, 64, 65, 108, 103, 115, 12, 269, 51, 141, 274, 139, 342, 135,

198, 145, 298, 277, 343, 327 }.

(2) {8, 55, 258, 348, 194, 180, 297, 77, 39, 166, 323, 333, 42, 71, 328, 19, 313, 356,

376, 117, 349, 68, 307, 241 }.

(3) { 9, 118, 56, 345, 61, 128, 142, 37, 49, 225, 134, 165, 95, 182, 160, 197, 226,

16, 247, 235, 85, 275, 248, 59 }.

(4) {10, 317, 369, 44, 256, 207, 377, 233, 341, 364, 281, 304, 287, 339, 276, 292,

72, 74, 122, 181, 119, 111, 264, 130 }.

(5) {17, 45, 121, 229, 363, 303, 286, 60, 283, 223, 227, 105, 36, 208, 210, 20, 101,

144, 131, 230, 107, 215, 234, 314}.

(6) { 18, 350, 344, 53, 294, 189, 70, 353, 168, 62, 196, 254, 152, 32, 150, 100, 162,

280, 73, 285, 136, 57, 31, 360 }.

(7) {21, 34, 54, 243, 25, 133, 202, 213, 340, 305, 40, 265 }.

(8) { 22, 99, 324, 169, 306, 249, 316, 110, 75, 359, 106, 199, 147, 123, 29, 257, 167,

78, 93, 126, 148, 311, 332, 63 }.

(9) {23, 83, 246, 186, 140, 188, 200, 358, 178, 302, 365, 237, 346, 352, 282, 351,

52, 300, 354, 132, 149, 125, 143, 91 }.

(10) {24, 236, 120, 201, 176, 153, 161, 159}.

(11) {43, 109, 173, 191, 69, 288, 79, 158, 212, 211, 379, 219, 355, 315, 157, 347,

102, 163, 357, 177, 154, 329, 203, 190 }.

(12) {66, 209, 231, 179, 299, 192, 170, 89, 96, 279, 127,325 }.

(13) {76, 137, 104, 334, 164, 284, 172, 336, 295, 204, 174, 245 }.

(14) { 97, 272, 331, 361, 129, 296, 151, 205, 374, 146, 262, 156 }.
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Hence, fourteen 5-arcs are constructed by adding one point from each orbit to

Υ. They are listed with their stabilizer groups in Table 4.4.

Table 4.4: 5-arcs in PG(2,19)

No. The 5-arc Stabilizer The generator

1 {1,2,3,263,7} I 1 0 0 0 1 0 0 0 1

2 {1,2,3,263,8} I 1 0 0 0 1 0 0 0 1

3 {1,2,3,263,9} Z2 7 2 1 0 0 6 0 5 0

4 {1,2,3,263,10} I 1 0 0 0 1 0 0 0 1

5 {1,2,3,263,17} I 1 0 0 0 1 0 0 0 1

6 {1,2,3,263,18} Z2 1 1 1 −3 −1 −7 0 0 6

7 {1,2,3,263,21} Z2 0 0 −1 1 1 1 −1 0 0

8 {1,2,3,263,22} Z2 0 0 1 0 6 0 −2 0 0

9 {1,2,3,263,23} I 1 0 0 0 1 0 0 0 1

10 {1,2,3,263,24} S3 0 1 0 0 0 1 1 0 0
0 −7 0 8 0 0 0 0 −1

11 {1,2,3,263,43} Z2 −1 9 4 0 9 0 1 1 1

12 {1,2,3,263,66} Z2 1 1 1 0 0 −1 0 −1 0

13 {1,2,3,263,76} S3 0 0 8 0 1 0 7 6 −1
0 0 −1 1 1 1 −1 0 0

14 {1,2,3,263,97} D5 5 4 −1 −6 0 0 1 1 1
0 0 −1 1 1 1 −1 0 0

The stabilizer column in Table 4.4 shows that at least four of the fourteen 5-arcs

are projectively distinct.

Theorem 4.3.1. In PG(2,19), there are precisely five projectively distinct 5-arcs,

as summarized in Table 4.5.
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Table 4.5: Inequivalent 5-arcs in PG(2,19)

Symbol The 5-arc Stabilizer

A1 {1,2,3,263,7} I

A2 {1,2,3,263,9} Z2

A3 {1,2,3,263,18} Z2

A4 {1,2,3,263,24} S3

A5 {1,2,3,263,97} D5

Remark 4.3.2. (1) From Table 3.2, the values of the constants ci for any 5-arc

are

c0 = 211, c1 = 150, c2 = 15.

(2) The 5-arcs A2 and A3 have the same constants ci and isomorphic stabilizer

groups but they are inequivalent.

(3) Because of the one-to-one correspondence between PG(1,19) and a conic,

Theorem 4.3.1 can be deduced as follows.

Let

C∗ = v(X2
1 −X0X2) = {P(t2, t,1) ∣ t ∈ F19 ∪ {∞}}

be a conic. Then the five pentads Pi as given in Table 2.9 correspond to

inequivalent five 5-arcs P ′i on the conic C∗. Each 5-arc P ′i , i = 1, . . . ,5, is

equivalent to one of Aj, j = 1, . . . ,5. These equivalences and the matrix

transformations are given in Table 4.6.

Table 4.6: Transforming P ′i to Aj

P ′i ≅ Aj Matrix transformation

P ′1 = {1,3,263,250,177} ≅ A2 −9 −9 −9 9 −9 0 0 0 9
P ′2 = {1,3,263,250,374} ≅ A1 0 0 9 −9 1 −9 9 0 0
P ′3 = {1,3,263,104,248} ≅ A4 5 −2 −3 −8 5 3 3 0 0
P ′4 = {1,3,263,248,93} ≅ A3 0 0 8 6 −5 −8 0 5 0
P ′5 = {1,3,263,93,374} ≅ A5 7 0 0 −9 −2 8 0 8 0
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The process of finding the projectivity matrices of the 5-arcs P ′i is illustrated

in the following example.

Example 4.3.3. Let P1 = {∞,0,1,−1,2} be the pentad with stabilizer group

GP1 = ⟨1 − t⟩ ≅ Z2 as in Table 2.9. Using the parametrization of the conic C∗, the

projective transformation I ∶ PG(1,19) Ð→ PG(1,19) given by t ↦ 1 − t has the

following effect on C∗:

I′ ∶ P(t2, t,1) ↦ P((1 − t)2, (1 − t),1).

So

x′0 = x0 − 2x1 + x2,

x′1 = −x1 + x2,

x′2 = x2.

Therefore, I′ = M

⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

−2 −1 0

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

and GP ′1 = ⟨I′⟩.

Alternatively, the projective transformation can be deduced using the matrix

in Section 3.6(11)(ii).
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4.4 Collinearities of the Diagonal Points of Pentastigm

Let P0 = U0, P1 = U1, P2 = U2, P3 = U, P4 = P(a0, a1, a2) be the vertices of a

pentastigm P. Since the vertices of P form a 5-arc then P4 cannot be collinear

with any pair of other vertices; so

a0a1a2(a0 − a1)(a0 − a2)(a1 − a2) ≠ 0.

Write ij ⋅kl for PiPj∩PkPl; then the following fifteen points are the diagonal points

of P.

01 ⋅ 23 = P(1,1,0), 03 ⋅ 24 = P(a0, a1, a1),

01 ⋅ 24 = P(a0, a1,0), 04 ⋅ 12 = P(0, a1, a2),

01 ⋅ 34 = P(a2 − a0, a2 − a1,0), 04 ⋅ 13 = P(a2, a1, a2),

02 ⋅ 13 = P(1,0,1), 04 ⋅ 23 = P(a1, a1, a2),

02 ⋅ 14 = P(a0,0, a2), 12 ⋅ 34 = P(0, a1 − a0, a2 − a0),

02 ⋅ 34 = P(a1 − a0,0, a1 − a2), 13 ⋅ 24 = P(a0, a1, a0),

03 ⋅ 12 = P(0,1,1), 14 ⋅ 23 = P(a0, a0, a2).

03 ⋅ 14 = P(a0, a2, a2),

Lemma 4.4.1. The condition that five diagonal points of a pentastigm P are

collinear in PG(2, q) is that x2 = x + 1 has a solution in Fq.

Proof. See [28, Lemma 7.3(i)].

Since in F19 the equation x2 = x + 1 has two solutions 5,−4, so there is a

pentastigm with five collinear diagonal points in PG(2,19).
The pentastigm P which has the 5-arc A5 = {U0,U1,U2,U,P(−5,−4,1)} as

vertices has five diagonal points which are collinear as shown below.

The fifteen diagonal points of A5 in coordinate and numeral form are

01 ⋅ 23 = P(1,1,0) = 220, 03 ⋅ 24 = P(6,1,1) = 175,

01 ⋅ 24 = P(6,1,0) = 80, 04 ⋅ 12 = P(0,−4,1) = 319,

01 ⋅ 34 = P(5,1,0) = 308, 04 ⋅ 13 = P(1,−4,1) = 13,

02 ⋅ 13 = P(1,0,1) = 320, 04 ⋅ 23 = P(−4,−4,1) = 270,

02 ⋅ 14 = P(−5,0,1) = 268, 12 ⋅ 34 = P(0,−3,1) = 252,

02 ⋅ 34 = P(−4,0,1) = 261, 13 ⋅ 24 = P(1,−3,1) = 278,

03 ⋅ 12 = P(0,1,1) = 221, 14 ⋅ 23 = P(−5,−5,1) = 255.

03 ⋅ 14 = P(−5,1,1) = 335,
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Amongst these, the five diagonal points

03 ⋅ 24 = P(6,1,1),
14 ⋅ 23 = P(−5,−5,1),
01 ⋅ 34 = P(5,1,0),
04 ⋅ 12 = P(0,−4,1),
02 ⋅ 13 = P(1,0,1),

lie on the line v(−X0 + 5X1 +X2).

Remark 4.4.2. (1) The ten sides of the pentastigm P are separated into five

pairs such that no pair meets at vertex. Also the point P4 = P(−5,−4,1)
satisfies the equations

a1 = a0 + a2, a2
0 − a2

2 = −a0a2,

which are the conditions for the above collinearities.

(2) The fifteen diagonals points of A5 are exactly the fifteen points of index two.

4.5 Conics Through the Inequivalent 5-Arcs

As mentioned in Section 3.6(4), there is a unique conic through each 5-arc. Let

F = a0X
2
0 + a1X

2
1 + a2X

2
2 + a3X0X1 + a4X0X2 + a5X1X2

be a form of degree two and C = v(F ) be a conic. Since all five 5-arcs Ai contain

the points U0,U1,U2 then the form F reduces to

X0X1 + a′4X0X2 + a′5X1X2. (4.1)

Therefore, by substituting U and the 5th point of each 5-arc Ai in (4.1) the

following is deduced. Let t ∈ F19 ∪ {∞}; then

CA1 = v(X0X1 − 2X0X2 +X1X2) = {P(9(1 − t), t,9(t2 − t))};

CA2 = v(X0X1 + 9X0X2 + 9X1X2) = {P(9(t − t2),−9(t2 + t),9(1 − t2))};

CA3 = v(X0X1 + 3X0X2 − 4X1X2) = {P(6t,5(1 − t),8(t2 − t))};

CA4 = v(X0X1 − 8X0X2 + 7X1X2) = {P((t − 1)(5t − 3), (5t − 2t2),3(t − t2))};

CA5 = v(X0X1 + 5X0X2 − 6X1X2) = {P(7(t2 − 4t),8(1 − 5t),8t)}.
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4.6 The Group Action of D5 on the PentadA5

From Table 4.5, the group D5 = ⟨h, g ∣ g2 = h5 = I, hg = gh−1⟩ where

g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

−5 −4 1

4 4 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, h =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0

5 5 5

−5 −4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

is the stabilizer group of the 5-arc A5 = {1,2,3,263,97}.

The Group D5 acts transitively on A5 as given below:

1z→gh 2, 1z→gh2
263,

1z→gh3
3, 1z→h4

97.

Each of the five projectivities g, gh, gh3, gh2, gh4 fixes 15 points amongst the

211 points of index zero by transforming each point to itself. Each of these 15

points lies on a line which is a unisecant to A5 and a bisecant of the conic

CA5 = v(X0X1 + 5X0X2 − 6X1X2).

These lines are

`167 = v(X1 + 3X2); `272 = v(X0 + 4X2);
`77 = v(4X0 +X1); `279 = v(X0 − 3X1 −X2).
`220 = v(X0 −X1 +X2);

In Table 4.7, each row contains the projectivity f that fixes the set of 15 points

which lies on the line `i.

Table 4.7: Projectivities fixing 15 points

f Set of 15 points lies on `i fixed by f `i

g {23,36,44,51,74,93,151,156,165,167,168,192,212,246,349} `167

gh {61,66,75,77,78,102,122,156,162,188,292,296,314,327,365} `77

gh3 {21,54,76,89,104,127,146,156,204,209,245,265,299,305,331} `220

gh2 {73,106,110,128,149,156,179,198,208,256,272,297,317,351,357} `272

gh4 {9,117,135,148,156,163,186,205,215,279,280,304,324,358,364} `279

The five lines `167, `77, `220, `272, `279 are concurrent at an internal point P(−4,−3,1) =
156 which is fixed by D5 as well.
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4.7 6-Arcs

The number of points on the sides of pentastigm is l(5,19) = 170. Hence the

number of points not on the sides of each pentastigm is l∗(5,19) = 381−170 = 211.

So the total number of points not on the sides of the five pentastigms is 1055.

The action of the stabilizer group of each inequivalent 5-arc on the corresponding

set C5
0 splits the 1055 points into 509 orbits. The details about the 509 orbits are

given in Table 4.8.

A cell n′ ∶m′ in Table 4.8 means that n′ is the number of orbits of the 5-arc of

length m′.

Table 4.8: Size of orbits of the 5-arcs

5-arc A1 A2 A3 A4 A5

Total number 211 113 113 43 29
of orbits
n′ ∶m′ 211:1 15:1 98:2 15:1 98:2 1:1 14:3 28:6 1:1 14:5 14:10

There are seven different classes of 6-arcs of type [c0, c1, c2, c3] and eight different

sizes of stabilizer groups. The details about them are given Table 4.9. A cell n ∶ ∣G∣
in Table 4.9 means that n is the number of 6-arcs stabilized by the group G of size

m.

Table 4.9: Statistics of the constants ci of 6-arcs

No. [c0, c1, c2, c3] n ∶ ∣G∣

1 [140,210,15,10] 1 ∶ 60

2 [144,198,27,6] 3 ∶ 12, 1 ∶ 36

3 [146,192,33,4] 10 ∶ 6, 1 ∶ 12

4 [147,189,36,3] 28 ∶ 3, 2 ∶ 6

5 [148,186,39,2] 76 ∶ 2, 12 ∶ 4

6 [149,183,42,1] 210 ∶ 1, 15 ∶ 2

7 [150,180,45,0] 150 ∶ 1
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Note that the constants ci in Table 4.9 satisfy the values in Table 3.2 for k = 6.

From Table 4.9, a 6-arc have at most ten points of index three.

In Table 4.10, the 509 6-arcs are arranged according to the additional points

to each 5-arc Ai, i = 1,2,3,4,5, and the size of the stabilizer groups of the 6-arcs.

Here O(G) refers to size of the stabilizer groups of the 6-arcs.

Table 4.10: Points of index zero and order of the stabilizer group of 6-arcs

5-arc The additional points O(G)

8, 9, 10, 20, 21, 23, 24, 29, 31, 32, 34, 36, 37, 39, 40, 42, 44, 52, 54, 55, 57,
59, 60, 61, 62, 66, 68, 69, 71, 75, 78, 83, 85, 89, 91, 93, 96, 99, 100, 101,
102, 108, 109, 110, 111, 115, 118, 119, 120, 121, 123, 125, 128, 130, 131,
132, 133, 134, 139, 140, 143, 147, 149, 150, 151, 152, 154, 157, 161, 162,
165, 168, 173, 174, 176, 177, 178, 179, 181, 182, 186, 189, 190, 191, 196,
201, 202, 203, 204, 205, 207, 208, 209, 211, 212, 213, 215, 219, 223, 226,
231, 234, 236, 241, 243, 245, 246, 247, 249, 258, 262, 264, 265, 272, 274,
275, 277, 281, 282, 284, 286, 288, 295, 297, 299, 302, 305, 307, 311, 314,
315, 316, 317, 324, 329, 332, 333, 336, 340, 343, 344, 345, 347, 349, 350,
352, 353, 354, 355, 357, 359, 360, 361, 363, 374, 376, 377, 379

(1)

A1 12, 15, 45, 49, 51, 64, 73, 94, 136, 142, 146, 148, 155, 156, 163, 164, 188,
197, 199, 235, 256, 257, 269, 285, 294, 298, 323, 334, 341, 342

(2)

22, 72, 74, 77, 107, 117, 122, 127, 144, 225, 227, 230, 279, 313, 356, 358,
364,365

(3)

56, 135, 145, 198 (4)

327 (6)

7, 8, 10, 15, 17, 18, 20, 21, 22, 23, 25, 29, 33, 36, 37, 40, 42, 45, 49, 52, 53,
57, 60, 66, 69, 70, 71, 72, 76, 77, 78, 79, 89, 91, 93, 94, 100, 105, 107, 110,
111, 115, 119, 120, 122, 129, 131, 134, 137, 146, 149, 151, 153, 155, 158,
165, 168, 169, 172, 181, 192, 194, 196, 198, 208, 209, 213, 225, 227, 229,
233, 245, 246, 248, 254, 262, 275, 276, 331, 332, 345, 353

(1)

A2 19, 34, 44, 55, 59, 62, 95, 97, 101, 103, 104, 167, 178, 179, 199, 223, 235,
257, 360

(2)

31, 43, 54, 108, 202, 286 (3)

12, 118 (4)

162, 176 (6)

85, 203 (12)
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8, 9, 10, 12, 20, 21, 23, 25, 29, 32, 33, 34, 36, 44, 45, 49, 51, 52, 55, 56, 57,
65, 66, 71, 72, 74, 76, 79, 85, 89, 93, 94, 95, 99, 101, 104, 109, 111, 119,
122, 133, 137, 139, 140, 143, 144, 146, 149, 150, 155, 157, 161, 164, 165,
167, 169, 180, 181, 188, 190, 196, 203, 207, 210, 215, 223, 234, 235, 241,
247, 249, 262, 274, 281, 284, 287, 294, 302, 333, 359

(1)

A3 31, 37, 39, 59, 83, 100, 105, 141, 145, 147, 153, 162, 166, 172, 192, 258, 280,
304, 313, 329

(2)

75, 77, 127, 197 (3)

54, 131, 156 (4)

24, 73, 136, 152, 226 (6)

148 (12)

7, 8, 12, 19, 20, 21, 22, 33, 36, 39, 44, 55, 56, 59, 65, 66, 70, 76, 77, 78, 79,
93, 100, 132, 140, 156

(1)

9, 17, 32, 42, 62, 63, 89, 91, 102, 120, 126, 243 (2)
A4 23 (4)

18, 61 (6)

204 (12)

236 (36)

8, 15, 17, 20, 24, 33, 39, 42, 52, 56, 60, 62, 68, 72 (1)

9, 23, 36, 51, 54, 66, 74, 76, 78, 102 (2)
A5 73, 77 (4)

75, 110 (6)

156 (60)

For each of the eight different sizes of stabilizer groups in Table 4.10 and the

type of parameters [c0, c1, c2, c3], the inequivalence of the corresponding 6-arcs was

checked.

Theorem 4.7.1. In PG(2,19), there are precisely 117 projectively distinct 6-arcs

given with their stabilizer group types in Table 4.11.
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Table 4.11: Inequivalent 6-arcs

Symbol The 6-arc Stabilizer Symbol The 6-arc Stabilizer

B1 {1,2,3,263,7,8} I B2 {1,2,3,263,7,9} I
B3 {1,2,3,263,7,10} I B4 {1,2,3,263,7,20} I
B5 {1,2,3,263,7,21} I B6 {1,2,3,263,7,23} I
B7 {1,2,3,263,7,24} I B8 {1,2,3,263,7,29} I
B9 {1,2,3,263,7,31} I B10 {1,2,3,263,7,32} I
B11 {1,2,3,263,7,34} I B12 {1,2,3,263,7,36} I
B13 {1,2,3,263,7,37} I B14 {1,2,3,263,7,39} I
B15 {1,2,3,263,7,40} I B16 {1,2,3,263,7,42} I
B17 {1,2,3,263,7,44} I B18 {1,2,3,263,7,54} I
B19 {1,2,3,263,7,55} I B20 {1,2,3,263,7,57} I
B21 {1,2,3,263,7,60} I B22 {1,2,3,263,7,61} I
B23 {1,2,3,263,7,62} I B24 {1,2,3,263,7,66} I
B25 {1,2,3,263,7,69} I B26 {1,2,3,263,7,71} I
B27 {1,2,3,263,7,75} I B28 {1,2,3,263,7,78} I
B29 {1,2,3,263,7,91} I B30 {1,2,3,263,7,96} I
B31 {1,2,3,263,7,99} I B32 {1,2,3,263,7,100} I
B33 {1,2,3,263,7,101} I B34 {1,2,3,263,7,102} I
B35 {1,2,3,263,7,109} I B36 {1,2,3,263,7,118} I
B37 {1,2,3,263,7,119} I B38 {1,2,3,263,7,121} I
B39 {1,2,3,263,7,130} I B40 {1,2,3,263,7,134} I
B41 {1,2,3,263,7,139} I B42 {1,2,3,263,7,147} I
B43 {1,2,3,263,7,150} I B44 {1,2,3,263,7,151} I
B45 {1,2,3,263,7,161} I B46 {1,2,3,263,7,168} I
B47 {1,2,3,263,7,173} I B48 {1,2,3,263,7,176} I
B49 {1,2,3,263,7,182} I B50 {1,2,3,263,7,189} I
B51 {1,2,3,263,7,190} I B52 {1,2,3,263,7,213} I
B53 {1,2,3,263,7,247} I B54 {1,2,3,263,7,272} I
B55 {1,2,3,263,7,275} I B56 {1,2,3,263,7,282} I
B57 {1,2,3,263,7,295} I B58 {1,2,3,263,7,317} I
B59 {1,2,3,263,7,324} I B60 {1,2,3,263,7,374} I
B61 {1,2,3,263,7,12} Z2 B62 {1,2,3,263,7,15} Z2

B63 {1,2,3,263,7,45} Z2 B64 {1,2,3,263,7,49} Z2

B65 {1,2,3,263,7,64} Z2 B66 {1,2,3,263,7,73} Z2

B67 {1,2,3,263,7,136} Z2 B68 {1,2,3,263,7,142} Z2

B69 {1,2,3,263,7,146} Z2 B70 {1,2,3,263,7,148} Z2

B71 {1,2,3,263,7,155} Z2 B72 {1,2,3,263,7,156} Z2

B73 {1,2,3,263,7,163} Z2 B74 {1,2,3,263,7,164} Z2

B75 {1,2,3,263,7,188} Z2 B76 {1,2,3,263,7,197} Z2

B77 {1,2,3,263,7,199} Z2 B78 {1,2,3,263,7,257} Z2

B79 {1,2,3,263,7,285} Z2 B80 {1,2,3,263,7,294} Z2

B81 {1,2,3,263,7,298} Z2 B82 {1,2,3,263,7,334} Z2

B83 {1,2,3,263,7,342} Z3 B84 {1,2,3,263,7,22} Z3

B85 {1,2,3,263,7,72} Z3 B86 {1,2,3,263,7,74} Z3



Chapter 4. The Projective Plane of Order Nineteen 78

B87 {1,2,3,263,7,77} Z3 B88 {1,2,3,263,7,107} Z3

B89 {1,2,3,263,7,117} Z3 B90 {1,2,3,263,7,127} Z3

B91 {1,2,3,263,7,225} Z3 B92 {1,2,3,263,7,227} Z3

B93 {1,2,3,263,7,279} Z3 B94 {1,2,3,263,7,356} Z3

B95 {1,2,3,263,7,358} Z3 B96 {1,2,3,263,7,364} Z3

B97 {1,2,3,263,7,56} Z4 B98 {1,2,3,263,7,135} V4

B99 {1,2,3,263,7,145} Z4 B100 {1,2,3,263,7,198} V4

B101 {1,2,3,263,7,327} S3

B102 {1,2,3,263,9,62} Z2 B103 {1,2,3,263,9,31} Z3

B104 {1,2,3,263,9,118} V4 B105 {1,2,3,263,9,162} S3

B106 {1,2,3,263,9,176} S3 B107 {1,2,3,263,9,85} D6

B108 {1,2,3,263,9,203} A4

B109 {1,2,3,263,18,156} Z4 B110 {1,2,3,263,18,24} S3

B111 {1,2,3,263,18,73} S3 B112 {1,2,3,263,18,136} S3

B113 {1,2,3,263,18,152} S3 B114 {1,2,3,263,18,148} A4

B115 {1,2,3,263,24,204} A4 B116 {1,2,3,263,24,236} G36

B117 {1,2,3,263,97,156} A5

The group G36 is a group of order 36 that has 9 elements of order 2, 8 elements

of order 3 and 18 elements of order 4.

According to Table 4.9, the inequivalent 6-arcs fall into seven classes. The

classes are given in Table 4.12. A cell Bi′ . . .Bj′ ∶ n in Table 4.12 means that n of

the 6-arcs have the parameters [c0, c1, c2, c3].

Table 4.12: Statistics of the constants ci of the inequivalent 6-arcs

[c0, c1, c2, c3] Bi′ . . .Bj′ ∶ n

[140,210,15,10] B117 ∶ 1

[144,198,27,6] B108, B114, B115, B116 ∶ 4

[146,192,33,4] B105,B106,B107, B110,B111,B112 ∶ 6

[147,189,36,3] B84,B85,B86,B87,B88,B89,B90,B91,B92,B93,B94,B95,B96,B101,B103,B113 ∶ 16

[148,186,39,2] B62, B63, B66, B67, B69, B70, B71, B72, B73, B74, B75, B77, B78, B79, B80, B81, B82,
B83, B97, B98, B99, B100, B102, B104, B109 ∶ 25

[149,183,42,1] B2, B6, B8, B9, B10, B11, B13, B14, B19, B21, B22, B23, B24, B25, B26, B27, B28, B29,
B33, B34, B35, B37, B38, B39, B40, B41, B42, B43, B45, B50, B51, B54, B57, B58, B59,
B61, B64, B65, B68, B76 ∶ 40

[150,180,45,0] B1, B3, B4, B5, B7, B12, B15, B16, B17, B18, B20, B30, B31, B32, B36, B44, B46, B47,
B48, B49, B52, B53, B55, B56, B60 ∶ 25

The calculations shows that c0 ≠ 0 for all 6-arcs in PG(2,19) as in Table

4.9. This result coincides with Corollary 3.8.3 that there is no complete 6-arc

in PG(2,19).
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4.8 Properties of the 6-Arc B117

(1) Let

K ={U0,U1,U2,U,P(a, b,1),P(c, d,1)}

={P1, P2, P3, P4, P5, P6}

be a 6-arc. A point of index three is called a Brianchon point or B-point for short.

Write ij ⋅ kl ⋅mn = PiPj ∩ PkPl ∩ PmPn for a B-point. There are fifteen ways of

choosing three bisecants no two of which intersect on K. The following are the

conditions for these fifteen ways.

(1) 12 ⋅ 34 ⋅ 56 a − c = b − d;

(2) 12 ⋅ 35 ⋅ 46 a(d − 1) = b(c − 1);
(3) 12 ⋅ 36 ⋅ 45 d(a − 1) = c(b − 1);
(4) 13 ⋅ 24 ⋅ 56 d(a − 1) = b(c − 1);
(5) 13 ⋅ 25,46 (a − 1)(d − 1) = (1 − c);
(6) 13 ⋅ 26 ⋅ 45 1 − a = (b − 1)(c − 1);
(7) 14 ⋅ 23 ⋅ 56 a(d − 1) = c(b − 1);
(8) 14 ⋅ 25 ⋅ 36 c = ad;

(9) 14 ⋅ 26 ⋅ 35 a = bc;
(10) 15 ⋅ 23 ⋅ 46 1 − d = (b − 1(c − 1);
(11) 15 ⋅ 24 ⋅ 36 d = bc;
(12) 15 ⋅ 26 ⋅ 34 b = c;
(13) 16 ⋅ 23 ⋅ 45 (a − 1)(d − 1) = (1 − b);
(14) 16 ⋅ 24 ⋅ 35 b = ad;

(15) 16 ⋅ 25 ⋅ 34 a = d.

The ten B-points of B117 = {1,2,3,263,97,156} are

(1) 12 ⋅ 34 ⋅ 56 = 220; (6) 14 ⋅ 25 ⋅ 36 = 335;

(2) 12 ⋅ 35 ⋅ 46 = 80; (7) 15 ⋅ 24 ⋅ 36 = 13;

(3) 13 ⋅ 25 ⋅ 46 = 268; (8) 15 ⋅ 26 ⋅ 34 = 270;

(4) 13 ⋅ 26 ⋅ 45 = 261; (9) 16 ⋅ 23 ⋅ 45 = 252;

(5) 14 ⋅ 23 ⋅ 56 = 221; (10) 16 ⋅ 24 ⋅ 35 = 278.
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The set K10 = {13,80,220,221,252,261,268,270,278,335} of B-points of B117

forms a 10-arc. More details about this 10-arc are given in Section 4.17.

The remaining five possibilities form triangles as shown below.

The three lines The vertices

(I) P1P2 = v(X2) P3P6 = v(3X0 − 4X1) P4P5 = v(5X0 − 6X1 +X2) {259,308,342}

(II) P1P3 = v(X1) P2P4 = v(X0 −X2) P5P6 = v(X0 −X1 +X2) {320,218,58}

(III) P1P4 = v(X1 −X2) P2P6 = v(X0 + 4X2) P3P5 = v(X0 − 6X1) {273,175,141}

(IV) P1P5 = v(X1 + 4X2) P2P3 = v(X0) P4P6 = v(X0 − 6X1 + 5X2) {319,277,113}

(V) P1P6 = v(X1 + 3X2) P2P5 = v(X0 + 5X2) P3P4 = v(X0 −X1) {103,5,255}

Let W = {I,II,III,IV,V} be the set of five triangles. The stabilizer group A5 of

B117 also fixes the set W of five triangles .

(2) L. Storme and V. Maldeghem [48] in Proposition 13 proved that, with

4t2 − 2t − 1 = 0, t ∈ Fq, a 6-arc

K∗
6 = {(1,0,1 − 2t), (1,0,2t − 1), (1,2t,0), (1,−2t,0), (0,1,2t), (0,1,−2t)}

in PG(2, q) when q ≡ ±1 (mod 10) is the unique 6-arc with stabilizer group A5.

In F19, the equation 4t2 − 2t − 1 = 0 has two solutions −2,−7. In PG(2,19), for

t = −2, the 6-arc

K∗
6 = {373,261,259,308,260,309}

in numeral form is equivalent to the 6-arc B117 by the matrix transformation

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5 6 0

1 −4 9

5 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

4.9 6-Arcs on a Conic

The thirteen hexads Hi as given in Table 2.12 correspond to thirteen inequivalent

6-arcs H′
i on the conic C∗. Each 6-arc H′

i, i = 1, . . . ,13, is equivalent to one in

Table 4.11. These equivalences and the matrix transformations are given in Table

4.13.
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Table 4.13: Transforming H′
i to Bj

H′
i ≅ Bj Matrix transformation

H′
1 = {1,3,263,250,177,248} ≅ B104 9 9 9 9 −9 0 0 0 −9

H′
2 = {1,3,263,250,177,93} ≅ B55 0 6 0 7 −7 −7 2 1 7

H′
3 = {1,3,263,250,177,262} ≅ B68 0 0 −9 −9 1 −9 −9 0 0

H′
4 = {1,3,263,250,177,296} ≅ B76 9 0 0 9 −1 9 0 0 9

H′
5 = {1,3,263,250,177,104} ≅ B49 0 −9 0 9 −1 −9 0 0 −1

H′
6 = {1,3,263,250,177,236} ≅ B64 −4 0 0 −9 −4 −2 −6 6 2

H′
7 = {1,3,263,250,177,191} ≅ B107 −9 0 0 5 −4 −8 −5 −4 4

H′
8 = {1,3,263,250,374,262} ≅ B98 −4 0 0 −3 −6 −3 0 0 −7

H′
9 = {1,3,263,250,374,205} ≅ B100 −9 0 0 9 −1 9 0 0 −9

H′
10 = {1,3,263,250,374,296} ≅ B65 9 0 0 9 −1 9 0 0 9

H′
11 = {1,3,263,250,374,24} ≅ B101 6 0 0 −9 2 1 −3 −8 −7

H′
12 = {1,3,263,250,374,104} ≅ B61 9 9 9 −9 0 9 0 −9 0

H′
13 = {1,3,263,248,93,22} ≅ B113 −7 0 0 −8 7 4 −4 −4 −4

Alternatively, the 6-arcs on the conics are found by substituting the 6th point

of each 6-arc in Table 4.11 in the corresponding conic form of CAi
.

Theorem 4.9.1. In PG(2,19), there are precisely 13 projectively distinct 6-arcs

on a conic, as summarized in Table 4.14.

Table 4.14: Inequivalent 6-arcs on the conics

The conic Bi ∶ G

CA1 B49,B55 ∶ I
B61,B64,B65,B68,B76 ∶ Z2

B98,B100 ∶ V4

B101 ∶ S3

CA2 B104 ∶ V4, B107 ∶ D6

CA3 B113 ∶ S3

Remark 4.9.2. Let K = {U0,U1,U2,U,P(a, b,1),P(c, d,1)} be a 6-arc. The

6-arc K lies on the conic if and only if

ad(b − 1)(c − 1) − bc(a − 1)(d − 1) = 0.
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4.10 7-Arcs

From Table 4.12, the total number of points not on the sides of the hexastigms

is 17354. The action of the stabilizer group of each inequivalent 6-arc on the

corresponding set C6
0 splits the 17354 points into 11948 orbits. There are fourteen

different classes of 7-arcs of type [c0, c1, c2, c3] and four different sizes of stabilizer

groups. A cell n ∶ ∣G∣ denote the number n of 7-arcs with stabilizer group size ∣G∣.

Table 4.15: Statistics of the constants ci of 7-arcs

No. [c0, c1, c2, c3] n ∶ ∣G∣

1 [87,210,63,14] 14 ∶ 1

2 [88,207,66,13] 28 ∶ 1

3 [89,204,69,12] 77 ∶ 1, 12 ∶ 2, 6 ∶ 3

4 [90,201,72,11] 252 ∶ 1, 24 ∶ 2

5 [91,198,75,10] 644 ∶ 1, 24 ∶ 2, 18 ∶ 3

6 [92,195,78,9] 1358 ∶ 1, 64 ∶ 2, 15 ∶ 3

7 [93,192,81,8] 2044 ∶ 1, 52 ∶ 2

8 [94,189,84,7] 2387 ∶ 1, 84 ∶ 2

9 [95,186,87,6] 2121 ∶ 1, 68 ∶ 2

10 [96,183,90,5] 1407 ∶ 1, 80 ∶ 2

11 [97,180,93,4] 805 ∶ 1, 16 ∶ 2, 2 ∶ 6

12 [98,177,96,3] 245 ∶ 1, 44 ∶ 2, 3 ∶ 3, 4 ∶ 6

13 [99,174,99,2] 35 ∶ 1, 4 ∶ 2

14 [100,171,102,1] 7 ∶ 1, 4 ∶ 2

Note that the constants ci in Table 4.15 satisfy the values in Table 3.2 for k = 7.

Theorem 4.10.1. In PG(2,19), there are precisely 1768 projectively distinct 7-

arcs.

The number n of inequivalent 7-arcs with stabilizer group of type G with respect

to the constants ci are given in Table 4.16.
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Table 4.16: Statistics of the constants ci of inequivalent 7-arcs

No. [c0, c1, c2, c3] n ∶ G

1 [87,210,63,14] 2 ∶ I

2 [88,207,66,13] 4 ∶ I

3 [89,204,69,12] 11 ∶ I, 3 ∶ Z2, 2 ∶ Z3

4 [90,201,72,11] 36 ∶ I, 6 ∶ Z2

5 [91,198,75,10] 92 ∶ I, 6 ∶ Z2, 6 ∶ Z3

6 [92,195,78,9] 194 ∶ I, 16 ∶ Z2, 5 ∶ Z3

7 [93,192,81,8] 292 ∶ I, 13 ∶ Z2

8 [94,189,84,7] 341 ∶ I, 21 ∶ Z2

9 [95,186,87,6] 303 ∶ I, 17 ∶ Z2

10 [96,183,90,5] 201 ∶ I, 20 ∶ Z2

11 [97,180,93,4] 115 ∶ I, 4 ∶ Z2, 1 ∶ Z6

12 [98,177,96,3] 35 ∶ I, 11 ∶ Z2, 1 ∶ Z3, 2 ∶ S3

13 [99,174,99,2] 5 ∶ I, 1 ∶ Z2

14 [100,171,102,1] 1 ∶ I, 1 ∶ Z2

The constant c0 ≠ 0 for all 7-arcs in PG(2,19) as shown in Table 4.15. This

result coincides with Corollary 3.8.3 that no complete 7-arcs exist in PG(2,19).

4.11 7-Arcs on a Conic

The eighteen heptads Ti as given in Table 2.14 correspond to eighteen inequivalent

7-arcs T ′i on the conic C∗.
In Table 4.17, each row consists of a 7-arc T ′i and its projectively equivalent

7-arc Bj ∪ {P}, as well as the matrix transformation between them.
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Table 4.17: Transforming T ′i to Bj ∪ {P}

T ′1 = {1,3,263,250,177,248,93} ≅ B49 ∪ {345}
0 0 −9 −9 1 9 0 −1 0

T ′2 = {1,3,263,250,177,248,22} ≅ B65 ∪ {197}
−1 −7 9 6 −7 −7 0 0 3

T ′3 = {1,3,263,250,177,248,262} ≅ B64 ∪ {235}
9 0 0 −9 −1 9 0 1 0

T ′4 = {1,3,263,250,177,248,296} ≅ B61 ∪ {49}
−9 9 3 −8 7 −6 −5 0 0

T ′5 = {1,3,263,250,177,93,225} ≅ B61 ∪ {327}
−9 −9 −9 4 −9 −3 9 −3 −4

T ′6 = {1,3,263,250,177,93,204} ≅ B61 ∪ {226}
−9 −9 −9 9 −1 8 0 0 1

T ′7 = {1,3,263,250,177,93,374} ≅ B65 ∪ {182}
−6 −6 −6 0 7 −5 6 −1 1

T ′8 = {1,3,263,250,177,93,205} ≅ B65 ∪ {142}
7 3 −5 0 −3 −4 −7 −6 9

T ′9 = {1,3,263,250,177,93,24} ≅ B61 ∪ {135}
−6 −6 −6 −6 5 −3 −2 −7 −8

T ′10 = {1,3,263,250,177,93,104} ≅ B64 ∪ {64}
−5 −7 1 4 8 −9 0 0 2

T ′11 = {1,3,263,250,177,93,262} ≅ B68 ∪ {182}
0 0 −9 −9 1 −9 −9 0 0

T ′12 = {1,3,263,250,177,262,236} ≅ B64 ∪ {51}
0 −9 0 9 0 −9 9 9 9

T ′13 = {1,3,263,250,177,262,296} ≅ B61 ∪ {182}
6 0 0 −6 2 1 7 2 −2

T ′14 = {1,3,263,250,177,296,104} ≅ B61 ∪ {197}
9 0 0 9 −1 9 0 0 9

T ′15 = {1,3,263,250,177,104,225} ≅ B61 ∪ {51}
−9 0 0 3 8 4 6 −8 9

T ′16 = {1,3,263,250,177,104,204} ≅ B65 ∪ {135}
6 −3 −5 −8 6 3 −8 0 0

T ′17 = {1,3,263,250,177,104,191} ≅ B49 ∪ {226}
9 0 0 −5 8 4 5 −4 4

T ′18 = {1,3,263,250,374,296,104} ≅ B61 ∪ {64}
9 0 0 9 −1 9 0 0 9

Note that each 7-arc Bi ∪ {P} in Table 4.17 is on the conic CA1 . The 7-arcs on

the conics are also found by substituting the 6th and 7th points of each 7-arc in

the conic form of CA1 .
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Theorem 4.11.1. On PG(2,19), there are precisely 18 projectively distinct 7-arcs

on the conic summarized in Table 4.18.

Table 4.18: Inequivalent 7-arcs on the conic

No. The 7-arc Stabilizer [c0, c1, c2, c3]

1 B49 ∪ {345} Z2 [94,189,84,7]

2 B65 ∪ {197} Z2 [95,186,87,6]

3 B64 ∪ {235} I [92,195,78,9]

4 B61 ∪ {49} I [95,186,87,6]

5 B61 ∪ {327} I [93,192,81,8]

6 B61 ∪ {226} Z2 [98,177,96,3]

7 B65 ∪ {182} Z2 [96,183,90,5]

8 B65 ∪ {142} Z2 [95,186,87,6]

9 B61 ∪ {135} I [95,186,87,6]

10 B64 ∪ {64} I [98,177,96,3]

11 B68 ∪ {182} Z2 [96,183,90,5]

12 B64 ∪ {51} Z3 [92,195,78,9]

13 B61 ∪ {182} I [93,192,81,8]

14 B61 ∪ {197} Z2 [92,195,78,9]

15 B61 ∪ {51} Z2 [94,189,84,7]

16 B65 ∪ {135} Z2 [93,192,81,8]

17 B49 ∪ {226} Z6 [97,180,93,4]

18 B61 ∪ {64} Z3 [92,195,78,9]

4.12 8-Arcs

From Table 4.16 the total number of points not on the sides of the 7-stigms is

166219. The action of the stabilizer group of each inequivalent 7-arc on the corre-

sponding set C7
0 splits the 166219 points into 160164 orbits. There are 100 different

classes of 8-arcs of type [c0, c1, c2, c3, c4]. The minimum and maximum value of

each constant ci for all 8-arcs is as follows:
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40 ≤ c0 ≤ 61, 40 ≤ c1 ≤ 61,

138 ≤ c2 ≤ 200, 96 ≤ c3 ≤ 156,

0 ≤ c4 ≤ 37.

Since c0 ≠ 0 for all 8-arcs so there is no complete 8-arc in PG(2,19). There

are nine different sizes of stabilizer groups of the 8-arcs. The details are given in

Table 4.19.

Table 4.19: Statistics of the stabilizer groups of 8-arcs

Number of 8-arcs ∣G∣ Number of 8-arcs ∣G∣

156376 1 7 8

3641 2 2 12

32 3 1 16

84 4 1 24

20 6

Theorem 4.12.1. In PG(2,19), there are precisely 20361 projectively distinct

8-arcs.

In Table 4.20, the numbers of inequivalent 8-arcs are listed according to the

stabilizer group types G.

Table 4.20: Statistics of the inequivalent 8-arcs

Number of 8-arcs G Number of 8-arcs G

19547 I 7 S3

760 Z2 4 D4

8 Z3 1 D6

9 Z4 1 Z8 ⋊Z2

23 V4 1 S4
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4.13 8-arcs on a Conic

The 31 octads Oi as given in Table 2.16 correspond to 31 inequivalent 8-arcs O′
i

on the conic C∗. Each 8-arc O′
i is equivalent to an 8-arc of the form Bj ∪ {P1, P2}.

The details are given in Table 4.21.

Table 4.21: Transforming O′i to Bj ∪ {P1, P2}

O′
1 = {1,3,263,250,177,248,93,262} ≅ B49 ∪ {345,142}

0 0 −9 −9 1 −9 −9 0 0

O′
2 = {1,3,263,250,177,248,93,374} ≅ B49 ∪ {226,51}

6 0 0 8 2 1 5 −2 −4

O′
3 = {1,3,263,250,177,248,93,205} ≅ B49 ∪ {345,135}

0 0 −9 −9 1 9 0 −1 0

O′
4 = {1,3,263,250,177,248,93,22} ≅ B49 ∪ {345,51}

0 0 9 −9 1 8 −9 2 −1

O′
5 = {1,3,263,250,177,248,93,24} ≅ B49 ∪ {345,49}

0 0 −9 −9 1 9 0 −1 0

O′
6 = {1,3,263,250,177,248,93,204} ≅ B49 ∪ {345,94}

0 0 −9 −9 1 9 0 −1 0

O′
7 = {1,3,263,250,177,248,93,225} ≅ B49 ∪ {345,12}

0 0 −9 −9 1 9 0 −1 0

O′
8 = {1,3,263,250,177,248,22,262} ≅ B61 ∪ {135,327}

0 0 6 8 −3 −4 9 3 −2

O′
9 = {1,3,263,250,177,248,22,374} ≅ B61 ∪ {49,235}

−9 0 0 −9 −1 9 0 −1 0

O′
10 = {1,3,263,250,177,248,22,205} ≅ B61 ∪ {49,345}

9 −9 −3 −8 7 −6 5 0 0

O′
11 = {1,3,263,250,177,248,22,296} ≅ B61 ∪ {49,64}

−9 9 3 −8 7 −6 −5 0 0

O′
12 = {1,3,263,250,177,248,22,294} ≅ B64 ∪ {235,275}

9 9 9 7 −6 0 3 −3 −1

O′
13 = {1,3,263,250,177,248,262,296} ≅ B49 ∪ {226,12}

6 0 0 −6 2 1 7 2 −2

O′
14 = {1,3,263,250,177,248,262,204} ≅ B61 ∪ {49,135}

4 0 0 −9 −4 −2 6 −6 −2
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O′
15 = {1,3,263,250,177,248,262,225} ≅ B64 ∪ {235,327}

9 0 0 −9 −1 9 0 1 0

O′
16 = {1,3,263,250,177,248,262,191} ≅ B61 ∪ {135,235}

1 −6 4 −9 9 0 9 −3 −4

O′
17 = {1,3,263,250,177,248,296,205} ≅ B61 ∪ {49,226}

−9 9 3 −8 7 −6 −5 0 0

O′
18 = {1,3,263,250,177,248,296,204} ≅ B61 ∪ {49,51}

4 0 0 −9 −4 −2 6 −6 −2

O′
19 = {1,3,263,250,177,248,296,236} ≅ B61 ∪ {49,182}

−4 0 0 −9 −4 −2 −6 6 2

O′
20 = {1,3,263,250,177,93,225,374} ≅ B61 ∪ {135,94}

−1 6 −4 −9 9 0 −9 3 4

O′
21 = {1,3,263,250,177,93,225,262} ≅ B61 ∪ {135,275}

−4 0 0 −6 −4 −2 −2 −2 −2

O′
22 = {1,3,263,250,177,93,225,205} ≅ B61 ∪ {135,345}

0 0 −9 −9 1 9 0 −1 0

O′
23 = {1,3,263,250,177,93,225,296} ≅ B61 ∪ {135,198}

−9 3 4 9 −9 0 −1 6 −4

O′
24 = {1,3,263,250,177,93,225,294} ≅ B61 ∪ {327,345}

6 0 0 0 −5 7 −6 −5 −7

O′
25 = {1,3,263,250,177,93,225,104} ≅ B61 ∪ {327,51}

7 6 −9 −1 9 9 −7 3 −1

O′
26 = {1,3,263,250,177,93,225,236} ≅ B61 ∪ {135,64}

1 −6 4 8 2 −8 0 1 0

O′
27 = {1,3,263,250,177,93,374,205} ≅ B65 ∪ {135,142}

−4 0 0 5 −6 −3 −1 6 −4

O′
28 = {1,3,263,250,177,93,104,262} ≅ B61 ∪ {182,51}

0 −9 0 9 −1 −9 0 0 −1

O′
29 = {1,3,263,250,177,262,296,104} ≅ B61 ∪ {182,197}

6 0 0 −6 2 1 7 2 −2

O′
30 = {1,3,263,250,177,104,204,191} ≅ B49 ∪ {226,135}

9 0 0 −5 8 4 5 −4 4

O′
31 = {1,3,263,250,374,296,104,236} ≅ B61 ∪ {64,94}

9 0 0 −3 8 4 −6 −1 −4

Note that each 8-arc Bi ∪ {P1, P2} in Table 4.21 is on the conic CA1 .

The 8-arcs on the conic are also found by substituting the 6th, 7th and 8th

points of each 8-arcs in the conic form of CA1 .
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Theorem 4.13.1. In PG(2,19), there are precisely 31 projectively distinct 8-arcs

on a conic, as summarized in Table 4.22.

Table 4.22: Inequivalent 8-arcs on the conic

No. The 8-arc Stabilizer [c0, c1, c2, c3, c4]

1 B49 ∪ {345,142} Z2 [50,171,123,29,0]
2 B49 ∪ {226,51} I [56,153,141,23,0]
3 B49 ∪ {345,135} I [50,171,123,29,0]
4 B49 ∪ {345,51} Z2 [59,143,153,17,1]
5 B49 ∪ {345,49} Z2 [52,164,132,24,1]
6 B49 ∪ {345,94} Z2 [55,155,141,21,1]
7 B49 ∪ {345,12} Z2 [48,177,117,31,0]
8 B61 ∪ {135,327} Z2 [51,167,129,25,1]
9 B61 ∪ {49,235} I [55,156,138,24,0]
10 B61 ∪ {49,345} I [54,159,135,25,0]
11 B61 ∪ {49,64} I [54,159,135,25,0]
12 B64 ∪ {235,275} V4 [50,170,126,26,1]
13 B49 ∪ {226,12} I [54,159,135,25,0]
14 B61 ∪ {49,135} I [51,168,126,28,0]
15 B64 ∪ {235,327} S3 [46,180,120,24,3]
16 B61 ∪ {135,235} V4 [52,162,138,18,3]
17 B61 ∪ {49,226} Z2 [56,153,141,23,0]
18 B61 ∪ {49,51} Z2 [50,170,126,26,1]
19 B61 ∪ {49,182} V4 [54,156,144,16,3]
20 B61 ∪ {135,94} I [55,156,138,24,0]
21 B61 ∪ {135,275} I [54,159,135,25,0]
22 B61 ∪ {135,345} Z2 [51,167,129,25,1]
23 B61 ∪ {135,198} I [55,156,138,24,0]
24 B61 ∪ {327,345} D4 [52,160,144,12,5]
25 B61 ∪ {327,51} Z2 [54,158,138,22,1]
26 B61 ∪ {135,64} I [49,174,120,30,0]
27 B65 ∪ {135,142} Z2 [56,152,144,20,1]
28 B61 ∪ {182,51} Z2 [57,149,147,19,1]
29 B61 ∪ {182,197} V4 [48,174,126,22,3]
30 B49 ∪ {226,135} D6 [54,156,144,16,3]
31 B61 ∪ {64,94} S4 [52,156,156,0,9]
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4.14 9-Arcs

The total number of points not on the sides of the 8-stigms is 1053996. The action

of the stabilizer group of each inequivalent 8-arc on the corresponding set C8
0 splits

the 1053996 points into 1033587 orbits. There are 243 different classes of 9-arcs of

type [c0, c1, c2, c3, c4]. The minimum and maximum value of each constant ci for

all 9-arcs is as follows:

9 ≤ c0 ≤ 39, 72 ≤ c1 ≤ 162,

126 ≤ c2 ≤ 216, 21 ≤ c3 ≤ 84,

0 ≤ c4 ≤ 18.

Since c0 ≠ 0 for all 9-arcs so there is no complete 9-arc in PG(2,19). There are

six different sizes of stabilizer groups of the 9-arcs. The details are given in Table

4.23.

Table 4.23: Statistics of the stabilizer groups of 9-arcs

Number of 9-arcs ∣G∣ Number of 9-arcs ∣G∣

1027314 1 44 6

5670 2 7 9

550 3 2 18

Theorem 4.14.1. In PG(2,19), there are precisely 115492 projectively distinct

9-arcs.

In Table 4.24, the numbers of inequivalent 9-arcs are listed according to the

stabilizer group types G.

Table 4.24: Statistics of the inequivalent 9-arcs

Number of 9-arcs G Number of 9-arcs G

114146 I 21 S3

1134 Z2 7 Z3 ×Z3

182 Z3 2 (Z3 ×Z3) ⋊Z2
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4.15 9-Arcs on a Conic

The 33 nonads Ni as given in Table 2.18 correspond to 33 inequivalent 9-arcs N ′
i

on the conic C∗. Each 9-arc N ′
i is equivalent to a 9-arc of the form Bj∪{P1, P2, P3}.

The details are given in Table 4.25.

Table 4.25: Transforming N ′
i to Bj ∪ {P1, P2, P3}

N ′
1 = {1,3,263,250,177,248,93,262,353} ≅ B49 ∪ {226,12,51}

−6 0 0 8 2 1 −5 2 4
N ′

2 = {1,3,263,250,177,248,93,262,374} ≅ B49 ∪ {226,12,94}
4 −7 7 −8 9 −5 6 0 0

N ′
3 = {1,3,263,250,177,248,93,262,205} ≅ B49 ∪ {345,12,51}

0 9 0 9 −3 −9 −1 −4 2
N ′

4 = {1,3,263,250,177,248,93,262,22} ≅ B49 ∪ {345,49,51}
0 9 0 9 −2 −9 9 8 −8

N ′
5 = {1,3,263,250,177,248,93,262,24} ≅ B49 ∪ {345,49,198}

0 0 −9 −9 1 9 0 −1 0
N ′

6 = {1,3,263,250,177,248,93,262,204} ≅ B49 ∪ {226,12,275}
−7 −4 1 −8 4 9 −1 8 −3

N ′
7 = {1,3,263,250,177,248,93,374,205} ≅ B49 ∪ {226,12,135}

−6 0 0 −6 2 1 −7 −2 2
N ′

8 = {1,3,263,250,177,248,93,374,296} ≅ B49 ∪ {226,51,94}
4 −7 7 −8 9 −5 6 0 0

N ′
9 = {1,3,263,250,177,248,93,374,294} ≅ B49 ∪ {226,12,64}

6 6 6 7 −5 2 0 0 −9
N ′

10 = {1,3,263,250,177,248,93,374,24} ≅ B49 ∪ {226,12,197}
−8 7 −5 −8 0 −4 −3 −9 9

N ′
11 = {1,3,263,250,177,248,93,374,104} ≅ B49 ∪ {226,51,345}

6 0 0 8 2 1 5 −2 −4
N ′

12 = {1,3,263,250,177,248,93,374,204} ≅ B49 ∪ {226,51,64}
6 0 0 8 2 1 5 −2 −4

N ′
13 = {1,3,263,250,177,248,93,374,225} ≅ B49 ∪ {226,12,345}

0 0 −9 −9 1 9 0 −1 0
N ′

14 = {1,3,263,250,177,248,93,205,22} ≅ B49 ∪ {345,51,64}
−3 7 6 0 7 −6 3 0 0

N ′
15 = {1,3,263,250,177,248,93,205,294} ≅ B49 ∪ {345,135,327}

0 0 −9 −9 1 9 0 −1 0
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N ′
16 = {1,3,263,250,177,248,93,205,24} ≅ B49 ∪ {345,49,135}

0 0 −9 −9 1 9 0 −1 0

N ′
17 = {1,3,263,250,177,248,93,205,104} ≅ B49 ∪ {345,12,94}

4 −7 7 3 4 0 −1 3 −7

N ′
18 = {1,3,263,250,177,248,93,205,204} ≅ B49 ∪ {345,94,135}

0 0 −9 −9 1 9 0 −1 0

N ′
19 = {1,3,263,250,177,248,93,205,236} ≅ B49 ∪ {345,49,327}

0 −9 0 9 0 −9 9 9 9

N ′
20 = {1,3,263,250,177,248,93,205,225} ≅ B49 ∪ {345,12,135}

0 0 −9 −9 1 9 0 −1 0

N ′
21 = {1,3,263,250,177,248,93,204,191} ≅ B49 ∪ {226,12,142}

−5 4 −4 5 −8 −4 −9 0 0

N ′
22 = {1,3,263,250,177,248,22,262,205} ≅ B61 ∪ {49,235,345}

9 −9 −3 −8 7 −6 5 0 0

N ′
23 = {1,3,263,250,177,248,22,262,294} ≅ B61 ∪ {49,135,235}

9 0 0 −9 −1 9 0 1 0

N ′
24 = {1,3,263,250,177,248,22,374,205} ≅ B49 ∪ {226,12,235}

−4 7 −7 8 0 4 −6 −9 1

N ′
25 = {1,3,263,250,177,248,22,374,296} ≅ B61 ∪ {49,64,235}

−9 0 0 −9 −1 9 0 −1 0

N ′
26 = {1,3,263,250,177,248,22,374,236} ≅ B61 ∪ {49,51,235}

−9 0 0 −9 −1 9 0 −1 0

N ′
27 = {1,3,263,250,177,248,22,205,296} ≅ B61 ∪ {49,64,226}

−9 9 3 −8 7 −6 −5 0 0

N ′
28 = {1,3,263,250,177,248,22,205,236} ≅ B61 ∪ {49,51,345}

−4 0 0 −9 −4 −2 −6 6 2

N ′
29 = {1,3,263,250,177,248,22,296,204} ≅ B61 ∪ {49,51,64}

4 0 0 −9 −4 −2 6 −6 −2

N ′
30 = {1,3,263,250,177,248,262,296,204} ≅ B49 ∪ {226,12,49}

6 0 0 −6 2 1 7 2 −2

N ′
31 = {1,3,263,250,177,93,225,374,262} ≅ B61 ∪ {135,94,275}

−3 8 −1 −5 4 2 3 0 0

N ′
32 = {1,3,263,250,177,93,225,374,294} ≅ B61 ∪ {135,64,226}

4 6 −7 −4 8 5 9 5 2

N ′
33 = {1,3,263,250,177,93,374,205,262} ≅ B65 ∪ {135,142,182}

−4 0 0 5 −6 −3 −1 6 −4
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Note that each 9-arc Bi ∪ {P1, P2, P3} in Table 4.25 is on the conic CA1 . The

9-arcs on the conic are also found by substituting the 6th,7th,8th and 9th points

of each 9-arcs in the conic form of CA1 .

Theorem 4.15.1. In PG(2,19), there are precisely 33 projectively distinct 9-arcs

on a conic, as summarized in Table 4.26.

Table 4.26: Inequivalent 9-arcs on the conic

No. The 9-arc Stabilizer [c0, c1, c2, c3, c4]

1 B49 ∪ {226,12,51} Z2 [29,106,174,58,5]
2 B49 ∪ {226,12,94} I [26,118,156,70,2]
3 B49 ∪ {345,12,51} I [27,113,165,63,4]
4 B49 ∪ {345,49,51} I [25,120,156,68,3]
5 B49 ∪ {345,49,198} Z2 [29,104,180,52,7]
6 B49 ∪ {226,12,275} I [23,124,156,64,5]
7 B49 ∪ {226,12,135} I [29,106,174,58,5]
8 B49 ∪ {226,51,94} Z2 [35,90,186,58,3]
9 B49 ∪ {226,12,64} I [26,118,156,70,2]
10 B49 ∪ {226,12,197} I [26,113,171,55,7]
11 B49 ∪ {226,51,345} Z2 [34,93,183,59,3]
12 B49 ∪ {226,51,64} I [28,112,162,68,2]
13 B49 ∪ {226,12,345} I [25,120,156,68,3]
14 B49 ∪ {345,51,64} Z2 [31,102,174,62,3]
15 B49 ∪ {345,135,327} Z2 [27,108,180,48,9]
16 B49 ∪ {345,49,135} Z2 [25,118,162,62,5]
17 B49 ∪ {345,12,94} I [27,113,165,63,4]
18 B49 ∪ {345,94,135} I [27,113,165,63,4]
19 B49 ∪ {345,49,327} Z2 [19,136,144,68,5]
20 B49 ∪ {345,12,135} I [25,116,168,56,7]
21 B49 ∪ {226,12,142} S3 [30,105,171,63,3]
22 B61 ∪ {49,235,345} Z2 [29,106,174,58,5]
23 B61 ∪ {49,135,235} I [25,114,174,50,9]
24 B49 ∪ {226,12,235} I [30,107,165,69,1]
25 B61 ∪ {49,64,235} Z3 [29,111,159,73,0]
26 B61 ∪ {49,51,235} I [26,117,159,67,3]
27 B61 ∪ {49,64,226} I [28,112,162,68,2]
28 B61 ∪ {49,51,345} Z2 [31,100,180,56,5]
29 B61 ∪ {49,51,64} Z2 [23,122,162,58,7]
30 B49 ∪ {226,12,49} I [29,105,177,55,6]
31 B61 ∪ {135,94,275} I [29,108,168,64,3]
32 B61 ∪ {135,64,226} Z2 [29,104,180,52,7]
33 B65 ∪ {135,142,182} D9 [39,72,216,36,9]
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4.16 10-Arcs

The total number of points not on the sides of the 9-stigms is 2798052. The action

of the stabilizer group of each inequivalent 9-arc on the corresponding set C9
0 splits

the 2798052 points into 2783527 orbits. There are 1235 different classes of 10-arcs

of type [c0, c1, c2, c3, c4, c5]. The minimum and maximum value of each constant ci

for all 10-arcs is as follows

0 ≤ c0 ≤ 22, 39 ≤ c1 ≤ 102,

120 ≤ c2 ≤ 206, 62 ≤ c3 ≤ 151,

5 ≤ c4 ≤ 37, 0 ≤ c5 ≤ 9.

Since c0 = 0 for some 10-arcs so there is a complete 10-arc in PG(2,19). There

are 11 different sizes of stabilizer groups of the 10-arcs. The details are given in

Table 4.27.

Table 4.27: Statistics of the stabilizer groups of 10-arcs

Number of 10-arcs ∣G∣ Number of 10-arcs ∣G∣

2760500 1 9 10

22341 2 2 12

244 3 2 18

377 4 1 20

48 6 1 60

2 9

Theorem 4.16.1. In PG(2,19), there are precisely 280104 projectively distinct

10-arcs divided into 280075 incomplete arcs and 29 complete arcs.

In Table 4.28, the numbers of inequivalent 10-arcs are listed according to the

stabilizer group types G.
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Table 4.28: Statistics of the inequivalent incomplete 10-arcs

Number of 10-arcs G Number of 10-arcs G

276049 I 14 S3

3833 Z2 1 Z9

60 Z3 3 D5

36 Z4 1 D9

77 V4 1 D10

According to the stabilizer group types G, the numbers of 10-complete arcs are

listed in Table 4.29.

Table 4.29: Statistics of the inequivalent complete 10-arcs

Number of 10-arcs G Number of 10-arcs G

1 I 2 S3

18 Z2 2 D5

1 Z3 1 A4

1 Z4 1 A5

2 V4

4.17 The Unique Complete 10-Arc with Stabilizer Group A5

(1) From Section 4.8, the set K10 = {13,80,220,221,252,261,268,270,278,335} of

B-points of the 6-arc B117 forms a 10-arc. The class of type [c0, c1, c2, c3, c4, c5] of

K10 is

[0,90,150,110,15,6].

Since c0 = 0 then K10 is a complete 10-arc. The stabilizer group of K10 is A5.

(2) L. Storme and V. Maldeghem [48] in Proposition 13 also proved that with

4t2 − 2t − 1 = 0, t ∈ Fq, a 10-arc

K∗
10 ={(1,1,1), (1,1,−1), (1,−1,1), (1,−1,−1), (0,4t2,1),

(0,−4t2,1), (−4t2,1,0), (4t2,1,0), (1,0,4t2), (1,0,−4t2)}
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in PG(2, q) when q ≡ ±1 (mod 10) is the unique 10-arc with stabilizer group A5.

For t = −2, the 10-arc

K∗
10 = {263,370,250,244,252,372,371,251,28,185}

in numeral form is equivalent to the 10-arc K10 by the matrix transformation

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

9 −6 2

−8 −8 9

2 2 −8

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

4.18 10-Arcs on a Conic

The 44 decads Di as given in Table 2.20 correspond to 44 inequivalent 10-arcs

D′i on the conic C∗. Each 10-arc D′i is equivalent to a 10-arc of the form Bj ∪
{P1, P2, P3, P4}. The details are given in Table 4.30.

Table 4.30: Transforming D′i to Bj ∪ {P1, P2, P3, P4}

D′1 = {1,3,263,250,177,248,93,262,353,374} ≅ B49 ∪ {226,12,51,135}
−6 0 0 1 2 1 0 0 3

D′2 = {1,3,263,250,177,248,93,262,353,205} ≅ B49 ∪ {226,12,51,94}
6 0 0 1 2 1 0 0 −3

D′3 = {1,3,263,250,177,248,93,262,353,22} ≅ B49 ∪ {226,12,49,64}
−6 −6 −6 7 −5 2 0 0 9

D′4 = {1,3,263,250,177,248,93,262,353,24} ≅ B49 ∪ {226,12,51,64}
6 0 0 1 2 1 0 0 −3

D′5 = {1,3,263,250,177,248,93,262,353,204} ≅ B49 ∪ {226,12,49,142}
6 9 −1 8 −4 −9 −2 7 3

D′6 = {1,3,263,250,177,248,93,262,353,225} ≅ B49 ∪ {226,12,49,51}
−6 0 0 8 2 1 −5 2 4

D′7 = {1,3,263,250,177,248,93,262,374,205} ≅ B49 ∪ {226,12,94,135}
−6 0 0 −6 2 1 −7 −2 2

D′8 = {1,3,263,250,177,248,93,262,374,22} ≅ B49 ∪ {226,12,94,197}
4 −7 7 −8 9 −5 6 0 0

D′9 = {1,3,263,250,177,248,93,262,374,294} ≅ B49 ∪ {226,12,64,142}
6 6 6 7 −5 2 0 0 −9

D′10 = {1,3,263,250,177,248,93,262,374,24} ≅ B49 ∪ {226,12,94,327}
4 −7 7 −8 9 −5 6 0 0
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D′11 = {1,3,263,250,177,248,93,262,374,104} ≅ B49 ∪ {226,12,64,94}
4 −7 7 −8 9 −5 6 0 0

D′12 = {1,3,263,250,177,248,93,262,374,204} ≅ B49 ∪ {226,12,94,275}
4 −7 7 −8 9 −5 6 0 0

D′13 = {1,3,263,250,177,248,93,262,374,236} ≅ B49 ∪ {226,12,94,345}
4 −7 7 −8 9 −5 6 0 0

D′14 = {1,3,263,250,177,248,93,262,374,225} ≅ B49 ∪ {226,12,49,94}
4 −7 7 −8 9 −5 6 0 0

D′15 = {1,3,263,250,177,248,93,262,374,191} ≅ B49 ∪ {226,12,49,275}
0 −6 0 7 0 −7 5 5 5

D′16 = {1,3,263,250,177,248,93,262,205,22} ≅ B49 ∪ {226,12,64,345}
−3 7 6 −6 2 6 0 −5 0

D′17 = {1,3,263,250,177,248,93,262,205,104} ≅ B49 ∪ {345,12,51,94}
4 −7 7 3 4 0 −1 3 −7

D′18 = {1,3,263,250,177,248,93,262,205,204} ≅ B49 ∪ {226,12,135,275}
−7 −4 1 −8 4 9 −1 8 −3

D′19 = {1,3,263,250,177,248,93,262,205,236} ≅ B49 ∪ {345,12,51,327}
0 9 0 9 −3 −9 −1 −4 2

D′20 = {1,3,263,250,177,248,93,262,205,225} ≅ B49 ∪ {226,12,235,345}
−9 −1 −5 −5 7 −5 −5 −1 −9

D′21 = {1,3,263,250,177,248,93,262,22,24} ≅ B49 ∪ {226,12,64,275}
−8 −5 5 −6 −6 4 1 8 5

D′22 = {1,3,263,250,177,248,93,262,22,204} ≅ B49 ∪ {226,12,197,275}
−7 −4 1 −8 4 9 −1 8 −3

D′23 = {1,3,263,250,177,248,93,262,22,236} ≅ B49 ∪ {345,12,135,327}
9 −3 −4 −9 −3 8 1 0 0

D′24 = {1,3,263,250,177,248,93,262,24,191} ≅ B49 ∪ {345,49,198,235}
9 0 0 −9 −1 9 0 1 0

D′25 = {1,3,263,250,177,248,93,262,204,225} ≅ B49 ∪ {226,12,275,345}
−7 −4 1 −8 4 9 −1 8 −3

D′26 = {1,3,263,250,177,248,93,374,205,294} ≅ B49 ∪ {226,12,64,135}
−6 0 0 −6 2 1 −7 −2 2

D′27 = {1,3,263,250,177,248,93,374,205,24} ≅ B49 ∪ {226,12,135,197}
−6 0 0 −6 2 1 −7 −2 2

D′28 = {1,3,263,250,177,248,93,374,205,204} ≅ B49 ∪ {226,12,49,135}
−6 −6 −6 −7 0 7 0 5 0
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D′29 = {1,3,263,250,177,248,93,374,205,225} ≅ B49 ∪ {226,12,135,345}
−6 0 0 −6 2 1 −7 −2 2

D′30 = {1,3,263,250,177,248,93,374,296,104} ≅ B49 ∪ {226,51,64,94}
4 −7 7 −8 9 −5 6 0 0

D′31 = {1,3,263,250,177,248,93,374,294,24} ≅ B49 ∪ {226,12,49,197}
9 −9 −3 −9 8 7 6 −2 −9

D′32 = {1,3,263,250,177,248,93,374,294,204} ≅ B49 ∪ {226,12,64,197}
6 6 6 7 −5 2 0 0 −9

D′33 = {1,3,263,250,177,248,93,374,294,225} ≅ B49 ∪ {226,12,64,235}
6 6 6 7 −5 2 0 0 −9

D′34 = {1,3,263,250,177,248,93,374,24,204} ≅ B49 ∪ {226,12,197,345}
−3 7 6 6 −7 1 0 0 −7

D′35 = {1,3,263,250,177,248,93,374,24,225} ≅ B49 ∪ {226,12,49,345}
0 0 −9 −9 1 9 0 −1 0

D′36 = {1,3,263,250,177,248,93,205,22,104} ≅ B49 ∪ {345,12,94,135}
0 4 0 5 9 −5 −3 0 0

D′37 = {1,3,263,250,177,248,93,205,294,24} ≅ B49 ∪ {345,49,135,197}
−3 7 6 6 −7 1 0 0 −7

D′38 = {1,3,263,250,177,248,93,205,104,204} ≅ B49 ∪ {345,12,94,327}
4 −7 7 3 4 0 −1 3 −7

D′39 = {1,3,263,250,177,248,93,205,204,191} ≅ B49 ∪ {226,12,49,235}
0 9 0 9 0 −9 −9 −9 −9

D′40 = {1,3,263,250,177,248,22,262,205,225} ≅ B61 ∪ {49,51,235,327}
0 9 0 9 1 −9 1 0 0

D′41 = {1,3,263,250,177,248,22,262,294,225} ≅ B61 ∪ {49,135,235,327}
9 0 0 −9 −1 9 0 1 0

D′42 = {1,3,263,250,177,248,22,374,205,296} ≅ B49 ∪ {226,12,235,327}
−6 0 0 −6 2 1 −7 −2 2

D′43 = {1,3,263,250,177,248,22,374,205,236} ≅ B49 ∪ {226,12,49,198}
9 0 0 −5 −1 9 9 5 2

D′44 = {1,3,263,250,177,93,225,374,262,205} ≅ B61 ∪ {135,94,275,345}
−4 0 0 −6 −4 −2 −2 −2 −2

Note that each 10-arc Bi∪{P1, P2, P3, P4} in Table 4.30 is on the conic CA1 . The

10-arcs on the conic are also found by substituting the 6th, 7th, 8th, 9th and 10th

points of each 10-arc in the conic form of CA1 .
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Theorem 4.18.1. In PG(2,19), there are precisely 44 projectively distinct 10-arcs

on a conic, as summarized in Table 4.31.

Table 4.31: Inequivalent 10-arcs on the conic

No. The 10-arc Stabilizer [c0, c1, c2, c3, c4, c5]
1 B49 ∪ {226,12,51,135} Z2 [16,56,162,118,19,0]
2 B49 ∪ {226,12,51,94} Z2 [17,53,164,120,16,1]
3 B49 ∪ {226,12,49,64} I [15,57,165,113,21,0]
4 B49 ∪ {226,12,51,64} I [14,63,153,123,18,0]
5 B49 ∪ {226,12,49,142} I [15,56,168,110,22,0]
6 B49 ∪ {226,12,49,51} V4 [14,58,166,114,17,2]
7 B49 ∪ {226,12,94,135} Z2 [18,50,168,116,19,0]
8 B49 ∪ {226,12,94,197} I [16,57,159,121,18,0]
9 B49 ∪ {226,12,64,142} Z2 [14,65,147,129,16,0]
10 B49 ∪ {226,12,94,327} I [14,61,159,117,20,0]
11 B49 ∪ {226,12,64,94} I [16,56,162,118,19,0]
12 B49 ∪ {226,12,94,275} Z2 [11,67,158,114,20,1]
13 B49 ∪ {226,12,94,345} I [13,64,156,118,20,0]
14 B49 ∪ {226,12,49,94} I [12,68,150,122,19,0]
15 B49 ∪ {226,12,49,275} I [12,63,165,107,24,0]
16 B49 ∪ {226,12,64,345} I [16,58,156,124,17,0]
17 B49 ∪ {345,12,51,94} V4 [14,62,154,126,13,2]
18 B49 ∪ {226,12,135,275} Z2 [15,57,164,116,18,1]
19 B49 ∪ {345,12,51,327} I [14,60,162,114,21,0]
20 B49 ∪ {226,12,235,345} I [13,61,165,109,23,0]
21 B49 ∪ {226,12,64,275} I [14,61,159,117,20,0]
22 B49 ∪ {226,12,197,275} Z2 [13,61,164,112,20,1]
23 B49 ∪ {345,12,135,327} V4 [12,62,166,110,19,2]
24 B49 ∪ {345,49,198,235} D10 [20,40,180,120,5,6]
25 B49 ∪ {226,12,275,345} Z2 [12,62,168,104,25,0]
26 B49 ∪ {226,12,64,135} Z2 [17,49,176,108,20,1]
27 B49 ∪ {226,12,135,197} V4 [16,50,178,106,19,2]
28 B49 ∪ {226,12,49,135} I [13,65,153,121,19,0]
29 B49 ∪ {226,12,135,345} Z2 [16,52,173,109,20,1]
30 B49 ∪ {226,51,64,94} Z3 [22,45,159,133,12,0]
31 B49 ∪ {226,12,49,197} Z2 [11,65,164,108,22,1]
32 B49 ∪ {226,12,64,197} I [13,62,162,112,22,0]
33 B49 ∪ {226,12,64,235} I [15,59,159,119,19,0]
34 B49 ∪ {226,12,197,345} Z2 [14,58,167,111,20,1]
35 B49 ∪ {226,12,49,345} Z2 [13,61,164,112,20,1]
36 B49 ∪ {345,12,94,135} Z2 [15,59,158,122,16,1]
37 B49 ∪ {345,49,135,197} Z2 [11,63,170,102,24,1]
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38 B49 ∪ {345,12,94,327} Z2 [16,48,185,97,24,1]
39 B49 ∪ {226,12,49,235} Z3 [17,54,162,120,18,0]
40 B61 ∪ {49,51,235,327} V4 [14,56,172,108,19,2]
41 B61 ∪ {49,135,235,327} D5 [16,40,205,85,20,5]
42 B49 ∪ {226,12,235,327} Z3 [13,75,123,151,9,0]
43 B49 ∪ {226,12,49,198} Z2 [18,50,167,119,16,1]
44 B61 ∪ {135,94,275,345} Z9 [20,45,171,117,18,0]

4.19 11-Arcs

The total number of points not on the sides of the 10-stigms is 2594630. The

action of the stabilizer group of each inequivalent 10-arc on the corresponding set

C10
0 splits the 2594630 points into 2578375 orbits. There are 1736 different classes

of 11-arcs of type [c0, c1, c2, c3, c4, c5]. The minimum and maximum value of each

constant ci for all 11-arcs is as follows:

0 ≤ c0 ≤ 13, 6 ≤ c1 ≤ 48,

85 ≤ c2 ≤ 154, 109 ≤ c3 ≤ 185,

33 ≤ c4 ≤ 81, 0 ≤ c5 ≤ 19.

Since c0 = 0 for some 11-arcs so there is a complete 11-arc in PG(2,19). There

are seven different sizes of stabilizer groups of the 11-arcs. The details are given

in Table 4.32.

Table 4.32: Statistics of the stabilizer groups of 11-arcs

Number of 11-arcs ∣G∣ Number of 11-arcs ∣G∣

2566355 1 3 9

11862 2 2 10

115 3 2 18

36 6

Theorem 4.19.1. In PG(2,19), there are precisely 235320 projectively distinct

11-arcs divided into 225779 incomplete arcs and 9541 complete arcs.

In Table 4.33, the numbers of inequivalent 11-arcs are listed according to the

stabilizer group types G.
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Table 4.33: Statistics of the inequivalent incomplete 11-arcs

Number of 11-arcs G Number of 11-arcs G

223804 I 1 Z9

1941 Z2 1 D5

19 Z3 1 D9

12 S3

According to the stabilizer group types G, the numbers of 11-complete arcs are

listed in Table 4.34.

Table 4.34: Statistics of the inequivalent complete 11-arcs

Number of 11-arcs G

9501 I

36 Z2

4 Z3

4.20 12-Arcs

The total number of points not on the sides of the 11-stigms is 656507. The action

of the stabilizer group of each inequivalent 11-arc on the corresponding set C11
0

splits the 656507 points into 654654 orbits. There are 2787 different classes of

12-arcs of type [c0, c1, c2, c3, c4, c5, c6]. The minimum and maximum value of each

constant ci for all 12-arcs is as follows:

0 ≤ c0 ≤ 8, 0 ≤ c1 ≤ 24,

24 ≤ c2 ≤ 93, 99 ≤ c3 ≤ 204,

36 ≤ c4 ≤ 162, 0 ≤ c5 ≤ 54,

0 ≤ c6 ≤ 14.

Since c0 = 0 for some 12-arcs so there is a complete 12-arc in PG(2,19). There

are eleven different sizes of stabilizer groups of the 12-arcs. The details are given

in Table 4.35.
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Table 4.35: Statistics of the stabilizer groups of 12-arcs

Number of 12-arcs ∣G∣ Number of 12-arcs ∣G∣

638436 1 4 9

15327 2 9 12

396 3 7 18

320 4 4 24

132 6 1 72

18 8

Theorem 4.20.1. In PG(2,19), there are precisely 55708 projectively distinct

12-arcs divided into 25573 incomplete arcs and 30135 complete arcs.

In Table 4.36, the numbers of inequivalent 12-arcs are listed according to the

stabilizer group types G.

Table 4.36: Statistics of the inequivalent incomplete 12-arcs

Number of 12-arcs G Number of 12-arcs G

24902 I 8 S3

610 Z2 5 D5

17 Z3 1 A4

5 Z4 2 D6

22 V4 1 S4

According to the stabilizer group types G, the numbers of 12-complete arcs are

listed in Table 4.37.
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Table 4.37: Statistics of the inequivalent complete 12-arcs

Number of 12-arcs G Number of 12-arcs G

28301 I 2 Z3 ×Z3

1640 Z2 3 A4

82 Z3 1 D6

11 Z4 2 (Z3 ×Z3) ⋊Z2

47 V4 1 D9

37 S3 3 S4

4 D4 1 G72

The group G72 of order 72 has 21 elements of order 2, 26 elements of order 3,

18 elements of order 4 and 6 elements of order 6.

4.21 13-Arcs

The total number of points not on the sides of the 12-stigms is 34679. The action

of the stabilizer group of each inequivalent 12-arc on the corresponding set C12
0

splits the 34679 points into 34007 orbits. There are 957 different classes of 13-arcs

of type [c0, c1, c2, c3, c4, c5, c6]. The minimum and maximum value of each constant

ci for all 13-arcs is as follows:

0 ≤ c0 ≤ 7, 0 ≤ c1 ≤ 9,

7 ≤ c2 ≤ 40, 71 ≤ c3 ≤ 127,

122 ≤ c4 ≤ 189, 48 ≤ c5 ≤ 95,

1 ≤ c6 ≤ 21.

Since the value of c0 = 0 for some 13-arcs so there is a complete 13-arc in PG(2,19).
There are four different sizes of stabilizer groups of the 13-arcs. The details are

given in Table 4.38.
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Table 4.38: Statistics of the stabilizer groups of 13-arcs

Number of 13-arcs ∣G∣ Number of 13-arcs ∣G∣

32305 1 45 3

1645 2 12 6

Theorem 4.21.1. In PG(2,19), there are precisely 2733 projectively distinct 13-

arcs divided into 501 incomplete arcs and 2232 complete arcs.

In Table 4.39, the numbers of incomplete 13-arcs are listed according to their

stabilizer group types.

Table 4.39: Statistics of the inequivalent incomplete 13-arcs

Number of 13-arcs G Number of 13-arcs G

395 I 6 Z3

98 Z2 2 Z6

According to the stabilizer group types G, the numbers of 13-complete arcs are

listed in Table 4.40.

Table 4.40: Statistics of the inequivalent complete 13-arcs

Number of 13-arcs G Number of 13-arcs G

2090 I 3 Z3

137 Z2 2 S3
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4.22 14-Arcs

The total number of points not on the sides of the 13-stigms is 626. The action of

the stabilizer group of each inequivalent 13-arc on the corresponding set C13
0 splits

the 626 points into 584 orbits. There are 77 different classes of 14-arcs of type

[c0, c1, c2, c3, c4, c5, c6, c7]. The minimum and maximum value of each constant ci

for all 14-arcs is as follows:

0 ≤ c0 ≤ 6, 0 ≤ c1 ≤ 4,

0 ≤ c2 ≤ 15, 18 ≤ c3 ≤ 78,

84 ≤ c4 ≤ 168, 114 ≤ c5 ≤ 183,

9 ≤ c6 ≤ 53, 0 ≤ c7 ≤ 18.

Since the value of c0 = 0 for some 14-arcs so there is a complete 14-arc in PG(2,19).
There are five different sizes of stabilizer groups of the 14-arcs. The details are

given in Table 4.41.

Table 4.41: Statistics of the stabilizer groups of 14-arcs

Number of 14-arcs ∣G∣ Number of 14-arcs ∣G∣

140 1 22 6

311 2 5 12

106 4

Theorem 4.22.1. In PG(2,19), there are precisely 83 projectively distinct 14-arcs

divided into 13 incomplete arcs and 70 complete arcs.

In Table 4.42, the numbers of incomplete 14-arcs are listed according to their

stabilizer group types.

Table 4.42: Statistics of the inequivalent incomplete 14-arcs

Number of 14-arcs G Number of 14-arcs G

2 I 2 S3

5 Z2 1 D6

3 V4
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According to the stabilizer group types G, the numbers of 14-complete arcs are

listed in Table 4.43.

Table 4.43: Statistics of the inequivalent complete 14-arcs

Number of 14-arcs G Number of 14-arcs G

8 I 14 V4

35 Z2 4 S3

8 Z4 1 D6

4.23 15-Arcs

The total number of points not on the sides of the 14-stigms is 78. The action of

the stabilizer group of each inequivalent 14-arc on the corresponding set C14
0 splits

the 78 points into 36 orbits. There are only five different classes of 15-arcs of type

of [c0, c1, c2, c3, c4, c5, c6, c7] as given below:

[5,0,0,0,46,198,103,14],
[5,0,0,0,48,192,109,12],
[5,0,0,0,49,189,112,11],
[5,0,0,0,50,186,115,10],
[5,0,0,0,54,174,127,6].

Since c0 ≠ 0 for all 15-arcs so there is no complete 15-arc in PG(2,19). There

are four different sizes of stabilizer groups of the 15-arcs. The details are given in

Table 4.44.

Table 4.44: Statistics of the stabilizer groups of 15-arcs

Number of 15-arcs ∣G∣ Number of 15-arcs ∣G∣

15 1 3 6

16 2 2 10

Let J = {1,2,3,263,7,64,135,142,182,12,49,51} .

Theorem 4.23.1. In PG(2,19), there are precisely five projectively distinct in-

complete 15-arcs, as summarized in Table 4.45.



Chapter 4. The Projective Plane of Order Nineteen 107

Table 4.45: The inequivalent 15-arcs

The 15-arc Stabilizer [c0, c1, c2, c3, c4, c5, c6, c7]

J ∪ {94,197,198} I [5,0,0,0,49,189,112,11]

J ∪ {94,197,235} Z2 [5,0,0,0,54,174,127,6]

J ∪ {94,197,275} Z2 [5,0,0,0,46,198,103,14]

J ∪ {94,197,226} S3 [5,0,0,0,48,192,109,12]

J ∪ {197,235,275} D5 [5,0,0,0,50,186,115,10]

4.24 16-Arcs

From the five different classes of type [c0, c1, c2, c3, c4, c5, c6, c7] in Table 4.45, the

total number of points not on the sides of the 15-stigms is 25. The action of the

stabilizer group of each inequivalent 15-arc on the corresponding set C15
0 splits the

25 points into 14 orbits. There are only three different classes of 16-arcs of type

[c0, c1, c2, c3, c4, c5, c6, c7, c8] as given below:

[4,0,0,0,0,78,214,66,3],
[4,0,0,0,0,76,220,60,5],
[4,0,0,0,0,80,208,72,1].

Since c0 ≠ 0 for all 16-arcs so there is no complete 16-arc in PG(2,19). There are

three different sizes of stabilizer groups of the 16-arcs. The details are given in

Table 4.46.

Table 4.46: Statistics of the stabilizer groups of 16-arcs

Number of 16-arcs ∣G∣ Number of 16-arcs ∣G∣

10 2 2 12

2 8

Let J ′ = {1,2,3,263,7,64,135,142,182,12,49,51,94,197,198} = J ∪{94,197,198}.

Theorem 4.24.1. In PG(2,19), there are precisely four projectively distinct in-

complete 16-arcs, as summarized in Table 4.47.



Chapter 4. The Projective Plane of Order Nineteen 108

Table 4.47: The inequivalent 16-arcs

The 16-arc Stabilizer [c0, c1, c2, c3, c4, c5, c6, c7, c8]

J ′ ∪ {235} V4 [4,0,0,0,0,80,208,72,1]

J ′ ∪ {327} V4 [4,0,0,0,0,80,208,72,1]

J ′ ∪ {275} D4 [4,0,0,0,0,76,220,60,5]

J ′ ∪ {226} A4 [4,0,0,0,0,78,214,66,3]

4.25 The Unique k-Arcs, k = 17, 18, 19, 20

(1) From the four classes of type [c0, c1, c2, c3, c4, c5, c6, c7, c8] in Table 4.47, the

total number of points not on the sides of the 16-stigms is sixteen. The action

of the stabilizer group of each inequivalent 16-arc on the corresponding set C16
0

splits the sixteen points into four orbits. There is only one class of 17-arcs of type

[c0, c1, c2, c3, c4, c5, c6, c7, c8] as given below:

[3,0,0,0,0,0,112,216,33].

Since c0 ≠ 0 for the four 17-arcs so there is no complete 17-arc in PG(2,19).

Theorem 4.25.1. In PG(2,19), there is precisely one projectively distinct incom-

plete 17-arc

J17 = J ′ ∪ {226,235}.

It is stabilized by the group of type S3.

(2) From (1), there are only three points not on the sides of the projectively

unique 17-stigm whose vertices are the points of the 17-arc J17. One orbit is

constructed from these three points. The only class of 18-arc of type

[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9]

is

[2,0,0,0,0,0,0,144,207,10].

Since c0 ≠ 0 so there is no complete 18-arc in PG(2,19).
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Theorem 4.25.2. In PG(2,19), there is precisely one projectively distinct incom-

plete 18-arc

J18 = J ′ ∪ {226,235,275}.

It is stabilized by the group of type D18.

(3) From (2), there are only two points not on the sides of the projectively unique

18-stigm whose vertices are the points of the 18-arc J18. One orbit is constructed

from these two points. The only class of 19-arc of type [c0, c1, c2, c3, c4, c5, c6, c7, c8, c9]
is

[1,0,0,0,0,0,0,0,171,190].

Since c0 ≠ 0 so there is no complete 19-arc in PG(2,19).

Theorem 4.25.3. In PG(2,19), there is precisely one projectively distinct incom-

plete 19-arc

J19 = J ′ ∪ {226,235,275,327}.

It is stabilized by the group G of size 342.

(4) From (3), there is only one point 345 in numeral form not on the sides of

the projectively unique 19-stigm whose vertices are the points of the 19-arc J19.

So, only one 20-arc can be construct from J19 which is

J20 = J ′ ∪ {226,235,275,327,345}.

The class [c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10] of J20 is

[0,0,0,0,0,0,0,0,0,190,171].

Since c0 = 0 so J20 is complete arc. The 20-arc J20 is exactly the conic CA1 .

Remark 4.25.4. The value of the constant c9 represents the number of external

points and the value of the constant c10 represents the number of internal points

of CA1 .

Theorem 4.25.5. In PG(2,19), the conic CA1 is the projectively unique 20-arc.

It is complete and stabilized by the group PGL(2,19).

Theorem 4.25.6. In PG(2,19), the conic CA1 contains thirteen incomplete 14-

arcs, five incomplete 15-arcs as in Table 4.45, four incomplete 16-arcs as in Table

4.47 and unique incomplete 17-arc J17, 18-arc J18 and 19-arc J19.
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Remark 4.25.7. (1) From Theorems 4.25.3 and 4.25.6, the 19-arc J19 is projec-

tively unique and lies on the conic CA1 . This agrees with Lemma 3.8.1 that there

is a projectively unique 19-arc lying on a conic.

(2) Theorem 4.25.6 coincides with Lemma 3.8.8 that there is a unique complete

arc containing the k-arcs k = 15,16,17,18,19 for q = 19.

(3) The number of common points of an incomplete k-arc with a conic is at most

10, which happens when k = 11,12. The number of common points of a complete

k-arc with a conic is at most 11, which happens when k = 12. This agrees with

Lemma 3.8.5.

Remark 4.25.8. The uniqueness of the 17-arc, 18-arc and 19-arc on a conic C in

PG(2,19) can be proved theoretically as follows.

By Remark 2.2.1, PGO(3,19) acts sharply 3-transitively on C. Therefore there

is projectively a unique 17-arc on C. As a special case, PGO(3,19) is 2-transitive

and 1-transitive; so the 18-arcs and 19-arcs on C are projectively unique.
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4.26 Summary of Complete k-Arcs for k = 10, 11, 12, 13, 14

One of the main themes of the previous calculations for arcs in PG(2,19) is to

find the size of arcs which are complete and the number of complete arcs of each

size with their stabilizer group types. The following table summarizes the results

on the complete arcs in this chapter by giving, in each column, the size k of the

complete arc, the number Mk of the complete arcs of that size and finally the

number Mk split according to the types of the stabilizer groups represented by the

cell n ∶ G.

Table 4.48: The classification of the complete k-arcs in PG(2,19)

k = 10 k = 11 k = 12 k = 13 k = 14 k = 20

Mk = 29 Mk = 9541 Mk = 30135 Mk = 2232 Mk = 70 Mk = 1

1 ∶ I 9501 ∶ I 28301 ∶ I 2090 ∶ I 8 ∶ I 1 ∶ PGL(2,19)
18 ∶ Z2 36 ∶ Z2 1640 ∶ Z2 137 ∶ Z2 35 ∶ Z2

1 ∶ Z3 4 ∶ Z3 82 ∶ Z3 3 ∶ Z3 8 ∶ Z4

1 ∶ Z4 11 ∶ Z4 2 ∶ S3 14 ∶ V4

2 ∶ V4 47 ∶ V4 4 ∶ S3

2 ∶ S3 37 ∶ S3 1 ∶ D6

2 ∶ D5 4 ∶ D4

1 ∶ A4 2 ∶ Z3 ×Z3

1 ∶ A5 3 ∶ A4

1 ∶ D6

2 ∶ (Z3 ×Z3) ⋊Z2

1 ∶ D9

3 ∶ S4

1 ∶ G72
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4.27 MDS Codes of Dimension Three

According to Theorem 1.13.1, an (n;n − d)-arc in PG(k − 1, q) is equivalent to a

projective [n, k, d]q-code. Now, if k = 3, n−d = 2, and q = 19, then there is a one-to-

one correspondence between n-arcs in PG(2,19) and projective [n,3, n−2]19-codes

C. Since d(C) of the code C is equal to n − k + 1, thus the projective code C is

MDS.

In Table 4.49, the MDS codes corresponding to the n-arcs in PG(2,19) and the

parameter e of errors corrected are given.

Table 4.49: MDS code over PG(2,19)

n-arc MDS code e n − arc MDS code e

4-arc [4,3,2]19 0 13-arc [13,3,11]19 5

5-arc [5,3,3]19 1 14-arc [14,3,12]19 5

6-arc [6,3,4]19 1 15-arc [15,3,13]19 6

7-arc [7,3,5]19 2 16-arc [16,3,14]19 6

8-arc [8,3,6]19 2 17-arc [17,3,15]19 7

9-arc [9,3,7]19 3 18-arc [18,3,16]19 7

10-arc [10,3,8]19 3 19-arc [19,3,17]19 8

11-arc [11,3,9]19 4 20-arc [20,3,18]19 8

12-arc [12,3,10]19 4



Chapter 5

Classification of Non-Singular Plane Cubic
Curves

5.1 Introduction

From Section 1.11, a rational inflexion of a cubic curve F is a non-singular (simple)

point at which the tangent has three-point contact. A non-singular plane cubic

curve with k rational points can be regarded as a (k; 3)-arc.

A conic in PG(2, q) is projectively a unique, irreducible, plane curve of degree

two and also a complete (q + 1)-arc for q odd but an incomplete (q + 1)-arc for

q even, which can be completed uniquely to a (q + 2)-arc by its nucleus. Now,

the question arises here: Which non-singular plane cubic curves in PG(2, q) are

complete as arcs of degree three?

In this chapter the answer to this question for q = 19 is given by the following

method.

(1) Find the projectively distinct non-singular plane cubic curves in PG(2,19).
(2) For each of these, write down the canonical form.

(3) Then list the rational points of each one.

(4) Now, the 3-secants are checked if they fill PG(2,19) or not.

Also, the maximum values of k for (k; 3)-arcs containing the curves are calcu-

lated.

Firstly, some definitions and results which are related to curves over the field

F19 are given in next two sections.

113
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5.2 Properties of Non-Singular Plane Cubic Curves

Let F be a plane cubic curve defined over Fq. The class κ = κ(F) of F is the

number of distinct tangents to F through an arbitrary point of PG(2,Fq). The

class κ satisfies the following:

κ ≤ 6, q odd;

κ ≤ 3, q even.

See [28, Lemma 11.14].

Lemma 5.2.1. If a non-singular plane cubic curve F defined over Fq with q odd

has class six, then there are four tangents to F from a point P of F , other than

the tangent at P , and the cross-ratio of the four tangents is constant.

Proof. See [28, Lemma 11.15].

The non-singular plane cubic curve F in Lemma 5.2.1 called harmonic or

equianharmonic if the four tangents through a point form a harmonic or equianhar-

monic set. A non-singular cubic curve which is not harmonic or equianharmonic

is called general. In general, over Fq, q ≢ 0 (mod 3), a non-singular plane cubic

curve F has nine rational inflexions, [28, Theorem 11.43].

Let F be a cubic form over Fq. A rational inflexional triangle is a set of three

lines over Fq through the nine inflexions of F = v(F ) over Fq.

Lemma 5.2.2. (i) The number of rational inflexions on a non-singular plane

cubic curve over Fq, q ≡ 1 (mod 3) is zero, one, three, or nine. See [28,

Lemma 11.42].

(ii) The possible numbers of rational inflexional triangles if q ≡ 1 (mod 3) is zero,

one or four. See [28, Corollary 11.44].

A non-singular plane cubic curve F over Fq, q ≢ 0 (mod 3), is denoted by

F rn, where n is the number of rational inflexions and r is the number of ratio-

nal inflexional triangles. Also, F rn= Grn, Ern, Hrn when F is respectively general,

equianharmonic, harmonic.

Since 19 ≡ 1 (mod 3), then a non-singular plane cubic curve over F19 is one of

the following types:

F4
9 , F1

3 , F4
1 , F1

1 , F0
1 , F4

0 , F1
0 .

See [28, Theorem 11.46].
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Lemma 5.2.3. (i) There are (q − 1,3) projectively distinct plane cubic curves

with three collinear rational inflexions such that the inflexional tangents are

concurrent. The canonical forms are as follows:

(a) (q − 1,3) = 1,

F =X0X1(X0 +X1) +X3
2 ;

(b) (q − 1,3) = 3,

F =X0X1(X0 +X1) +X3
2 ,

F ′ =X0X1(X0 +X1) + αX3
2 ,

F ′′ =X0X1(X0 +X1) + α2X3
2 ,

where α is a primitive element of Fq.

(ii) A non-singular plane cubic curve over Fq with three collinear rational inflex-

ions and concurrent inflexional tangents has three or nine rational inflexions.

(iii) A non-singular plane cubic curve over Fq with three collinear rational in-

flexions and non-concurrent inflexional tangents has three or nine rational

inflexions and canonical form

F = v(X0X1X2 + e(X0 +X1 +X2)3),

where e ≠ 0,1/27.

Proof. (i) See [28, Lemma 11.39].

(ii) See [28, Theorem 11.40].

(iii) See [28, Theorem 11.41].

Remark 5.2.4. In Lemma 5.2.3, in case (i), the inflexions are

P(1,0,0), P(0,1,0), P(1,−1,0);

in case (iii), the inflexions are

P(0,1,−1), P(1,0,−1), P(1,−1,0).

For q = 19, the results in Lemma 5.2.3 are detailed in Sections 5.4 and 5.5.
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5.3 Number of Non-Singular Plane Cubics and Their Rational

Points

Let ni for i = 0,1,3,9 be the number of projective equivalence classes of non-

singular plane cubic curve with exactly i rational inflexions. Let Pq be the total

number of projective equivalence classes. Hence,

Pq = n9 + n3 + n1 + n0.

Theorem 5.3.1. Pq = 3q + 2 + (−4

q
) + (−3

q
)

2

+ 3(−3

q
) .

Proof. See [28, Theorem 11.100(ii)].

Here the bracketed numbers are Legendre−Jacobi symbols taking the following

values:

(−4

c
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if c ≡ 1 (mod 4),
0 if c ≡ 0 (mod 2),

−1 if c ≡ −1 (mod 4);

(−3

c
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if c ≡ 1 (mod 3),
0 if c ≡ 0 (mod 3),

−1 if c ≡ −1 (mod 3).

Corollary 5.3.2. Over F19, P19 = 62.

Let Nq(1) denote the maximum number of rational points on any non-singular

plane cubic curve over Fq and Lq(1) the minimum number.

Lemma 5.3.3. (Hasse-Weil Bound) Let N1 be the number of rational points of a

non-singular plane cubic curve over Fq. Then

q + 1 − ⌊2√q⌋ ≤ N1 ≤ q + 1 + ⌊2√q⌋.

Proof. See [28, Corollary 2.9].

Corollary 5.3.4. Over F19, 12 ≤ N1 ≤ 28.

Lemma 5.3.5. When q is prime, the number N1 takes every value between Lq(1)
and Nq(1).
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Proof. See [28, Corollary 11.97 ].

For further details, related results, and proof of the results in this section and

previous two sections see [29], [32], [44] and [47].

The 62 non-singular plane cubics over F19 are classified in the next four sections

according to the types of F and the values of n and r. Also, the numbers of rational

points on these curves and the maximum size of a complete arc of degree three

can be constructed from each plane cubic curve are given.

The related results for the field of order nineteen are given in the next four

sections.

Throughout the following sections, a primitive element 2 in F19 is chosen.

5.4 Non-Singular Plane Cubics with Nine Rational Inflexions

Lemma 5.4.1. There exists a non-singular plane cubic curve over Fq with nine

rational inflexions if and only if q ≡ 1 (mod 3). Then F(c) = v(F (c)) has canon-

ical form

F (c) =X3
0 +X3

1 +X3
2 − 3cX0X1X2.

Proof. See [28, Lemma 11.36].

Corollary 5.4.2. Over F19, there exists a non-singular plane cubic curve with

nine rational inflexions.

Lemma 5.4.3. In PG(2, q), q ≡ 1 (mod 3), with ω a root of x2 + x + 1,

(i) F(c) is equianharmonic for c = 0,2,2ω,2ω2;

(ii) F(c) is harmonic for c = 1 ±
√

3, (1 ±
√

3)ω, (1 ±
√

3)ω2.

Proof. See [28, Lemma 11.47].

Remark 5.4.4. For q = 19, the equation x2 + x + 1 has two distinct roots, 7,−8.

Corollary 5.4.5. In PG(2,19),

(i) F(c) is equianharmonic for c = 0,2,3,−5;

(ii) there is no harmonic type of F(c).
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In Table 5.1, the columns give the symbol of each type of F rn, the canonical form,

the number of rational points ∣F rn∣, the description, the maximum value M(F rn) of

k for a (k; 3)-arc containing the curve, and the stabilizer group G.

Table 5.1: Non-singular plane cubic curves with nine rational inflexions

F rn Canonical form ∣F rn∣ Description M(F rn) G

G4
9 X3

0 +X3
1 +X3

2 + 7X0X1X2 18 Incomplete 21 (Z3 ×Z3) ⋊Z2

E4
9 X3

0 +X3
1 +X3

2 27 Complete − G54

The group G54 has 9 elements of order 2, 26 elements of order 3, and 18 elements

of order 6.
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5.5 Non-Singular Plane Cubics with Three Rational Inflexions

From Lemma 5.2.3, the non-singular plane cubic curves F with exactly three

rational inflexions have the following canonical forms:

F =X0X1(X0 +X1) + eX3
2 if the three inflexional tangents are concurrent,

F = X0X1X2 + e(X0 +X1 +X2)3 if the three inflexional tangents are not con-

current.

Lemma 5.5.1. The cubic F = v(X0X1X2 + e(X0 +X1 +X2)3) is

(i) singular and irreducible if e = −1/27;

(ii) equianharmonic if e = −1/24;

(iii) harmonic if 216e2 + 36e + 1 = 0, which has two roots when 3 is a square.

Proof. See [28, Lemma 11.52].

Corollary 5.5.2. In PG(2,19),

(i) the cubic v(X0X1X2 + 7(X0 +X1 +X2)3) is singular and irreducible;

(ii) if e = −4, then the cubic v(X0X1X2 − 4(X0 +X1 +X2)3) is projectively equiv-

alent to E4
9 in Table 5.1 by the matrix transformation

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1

1 1 −1

1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

;

(iii) there is no harmonic type of F .

Let G be the general type of curve when the inflexional tangents are not con-

current, and E the type when they are concurrent.

From Lemma 5.5.1 and Corollary 5.5.2, Table 5.2 is deduced. This table gives

the canonical form for the non-singular plane cubic curves with exactly one rational

inflexion, number of rational points, description complete or incomplete, maximum

size of a complete arc contain each curve, and the stabilizer groups.
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Table 5.2: Non-singular plane cubic curves with exactly three rational inflex-
ions

F rn No. Canonical form ∣F rn∣ Description M(F rn) G

1 X0X1X2 − 6(X0 +X1 +X2)3 12 Incomplete 27 S3

2 X0X1X2 + 3(X0 +X1 +X2)3 15 Incomplete 27 S3

3 X0X1X2 + 4(X0 +X1 +X2)3 15 Incomplete 27 S3

4 X0X1X2 + (X0 +X1 +X2)3 18 Incomplete 21 S3

G1
3

5 X0X1X2 − 7(X0 +X1 +X2)3 18 Incomplete 22 S3

6 X0X1X2 + 2(X0 +X1 +X2)3 21 Complete − S3

7 X0X1X2 + 5(X0 +X1 +X2)3 21 Complete − S3

8 X0X1X2 + 9(X0 +X1 +X2)3 24 Complete − S3

9 X0X1X2 − 9(X0 +X1 +X2)3 24 Complete − S3

10 X0X1X2 − 3(X0 +X1 +X2)3 24 Complete − S3

11 X0X1X2 − 2(X0 +X1 +X2)3 24 Complete − S3

12 X0X1X2 − 8(X0 +X1 +X2)3 27 Complete − S3

13 X0X1(X0 +X1) + 2X3
2 12 Incomplete 27 S3 ×Z3

Ē1
3

14 X0X1(X0 +X1) + 4X3
2 21 Complete − S3 ×Z3

5.6 Non-Singular Plane Cubics with One Rational Inflexion

Lemma 5.6.1. Let F be a non-singular plane cubic curve defined over Fq, q =
ph, p ≠ 2,3, with at least one inflexion. Then the following holds.

(i) F has the canonical form

F =X2
2X1 +X3

0 + cX0X
2
1 + dX3

1 ,
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where 4c3 + 27d2 ≠ 0.

(ii) The curve F is general when cd ≠ 0, harmonic when c ≠ 0 and d = 0, equian-

harmonic when c = 0 and d ≠ 0, and singular when 4c3 + 27d2 = 0.

Proof. See [28, Theorem 11.54].

Lemma 5.6.2. Write F ′ = v(F ′), F ′ =X2
2X1 +X3

0 + c′X0X2
1 + d′X3

1 . If F and F ′

are general, they are projectively equivalent if and only if c3/d2 = c′3/d′2 and d/d′

is a square.

Proof. See [28, Lemma 11.55].

Corollary 5.6.3. In PG(2,19), amongst the 306 ordered pairs (c, d) satisfying

the equation 4c3 + 27d2 ≠ 0, there are 34 different classes:

(i) for (c, d) = (−9,−8), F has nine inflexions;

(ii) for (c, d) = (−9,−9), (−9,−7), (−9,1), (−9,4), (−9,5), (−8,−8), (−8,−7),

(−8,−6), (−8,−5), (−8,−2), (−8,−1), (−8,4), F has exactly three inflexions;

(iii) for (c, d) = (−9,−6), (−9,−5), (−9,−4), (−9,−3), (−9,−2), (−9,−1), (−9,2),

(−9,3), (−9,6), (−9,7), (−9,8), (−9,9), (−8,−9), (−8,−4), (−8,1), (−8,2), (−8,5),

(−8,6), (−8,7), (−8,8), (−8,9), F has exactly one inflexion.

Using Lemma 5.6.1 and Corollary 5.6.3, in Table 5.3 the full details about

non-singular plane cubic curves with exactly one inflexion are given.
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Table 5.3: Non-singular plane cubic curves with exactly one rational inflexion

F rn No. Canonical form ∣F rn∣ Description M(F rn) G

1 X2
2X1 +X3

0 − 9X0X2
1 − 3X3

1 14 Incomplete 27 Z2

2 X2
2X1 +X3

0 − 8X0X2
1 + 9X3

1 14 Incomplete 27 Z2

3 X2
2X1 +X3

0 − 9X0X2
1 + 6X3

1 17 Incomplete 23 Z2

4 X2
2X1 +X3

0 − 9X0X2
1 − 2X3

1 20 Incomplete 22 Z2

G0
1

5 X2
2X1 +X3

0 − 9X0X2
1 + 2X3

1 20 Incomplete 22 Z2

6 X2
2X1 +X3

0 − 9X0X2
1 − 6X3

1 23 Complete − Z2

7 X2
2X1 +X3

0 − 9X0X2
1 + 3X3

1 26 Complete − Z2

8 X2
2X1 +X3

0 − 8X0X2
1 − 9X3

1 26 Complete − Z2

9 X2
2X1 +X3

0 +X0X2
1 20 Incomplete 21 Z2

H0
1

10 X2
2X1 +X3

0 + 2X0X2
1 20 Complete − Z2

11 X2
2X1 +X3

0 − 9X0X2
1 + 7X3

1 13 Incomplete 27 Z2

12 X2
2X1 +X3

0 − 9X0X2
1 − 5X3

1 16 Incomplete 26 Z2

G1
1

13 X2
2X1 +X3

0 − 9X0X2
1 − 4X3

1 16 Incomplete 25 Z2

14 X2
2X1 +X3

0 − 9X0X2
1 + 9X3

1 16 Incomplete 25 Z2

15 X2
2X1 +X3

0 − 8X0X2
1 + 8X3

1 16 Incomplete 25 Z2

16 X2
2X1 +X3

0 − 8X0X2
1 − 4X3

1 19 Incomplete 22 Z2

17 X2
2X1 +X3

0 − 8X0X2
1 +X3

1 19 Incomplete 21 Z2



Chapter 5. Classification of Non-Singular Plane Cubic Curves 123

18 X2
2X1 +X3

0 − 8X0X2
1 + 6X3

1 22 Incomplete 23 Z2

19 X2
2X1 +X3

0 − 8X0X2
1 + 7X3

1 22 Incomplete 23 Z2

20 X2
2X1 +X3

0 − 8X0X2
1 + 5X3

1 25 Complete − Z2

21 X2
2X1 +X3

0 − 9X0X2
1 −X3

1 25 Complete − Z2

22 X2
2X1 +X3

0 − 8X0X2
1 + 2X3

1 28 Complete − Z2

23 X2
2X1 +X3

0 + 6X3
1 19 Incomplete 21 Z6

E1
1

24 X2
2X1 +X3

0 − 8X3
1 28 Complete − Z6

G4
1 25 X2

2X1 +X3
0 − 9X0X2

1 + 8X3
1 22 Complete − Z2

E4
1 26 X2

2X1 +X3
0 − 2X3

1 13 Incomplete 28 Z6
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5.7 Non-Singular Plane Cubics with no Rational Inflexions

As mentioned in Section 5.2, a non-singular plane cubic curve F with zero rational

inflexions is an F4
0 or an F1

0 .

Lemma 5.7.1. (i) If q ≡ 1 (mod 3), then every F4
0 has canonical form F =

v(F ), where

F =X3
0 + αX3

1 + α2X3
2 − 3cX0X1X2,

with α a primitive element of Fq.

(ii) With λ3 = 1, the curve F in (i) is equianharmonic for c = 0,−2αλ, harmonic

for c = (1 ±
√

3)αλ, and an inflexional triangle for c = α,λ.

Proof. See [28, Lemmas 11.89, 11.90].

When c ≠ 0 and F is equianharmonic, write F = E4
0 ; when c = 0 and F is

equianharmonic, write F = Ē4
0 .

Remark 5.7.2. Over F19, the cubic equation λ3 = 1 in Lemma 5.7.1(ii) has three

solutions 1,7,−8.

Corollary 5.7.3. In PG(2,19),

(i) the curve F is equianharmonic if c = 0,−4;

(ii) there is no harmonic type of F4
0 .

Lemma 5.7.4. If q ≡ 1 (mod 3), then F1
0 has canonical form F = v(F ), where

F =X0X
2
1 +X2

0X2 + eX1X
2
2 − c(X3

0 + eX3
1 + e2X3

2 − 3eX0X1X2),

with α a primitive element of Fq and e = α,α2.

Proof. See [28, Lemma 11.91].

The curve F in Lemma 5.7.4 is equianharmonic for c = 0.

Corollary 5.7.5. In PG(2,19), the curve F is of type F1
0 if e = 2,4.

From the details in the above, Table 5.4 is deduced.
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Table 5.4: Non-singular plane cubic curves with zero rational inflexions

Frn No. Canonical form ∣Frn∣ Description M(Frn) G

1 X0X
2
1+X

2
0X2+4X1X

2
2−5(X3

0+4X3
1−3X3

2+7X0X1X2) 12 Incomplete 27 Z3

2 X0X
2
1+X

2
0X2+4X1X

2
2+9(X3

0+4X3
1−3X3

2+7X0X1X2) 15 Incomplete 26 Z3

3 X0X
2
1+X

2
0X2+2X1X

2
2−4(X3

0+2X3
1+4X3

2−6X0X1X2) 15 Incomplete 26 Z3

G1
0

4 X0X
2
1+X

2
0X2+2X1X

2
2−5(X3

0+2X3
1+4X3

2−6X0X1X2) 18 Incomplete 21 Z3

5 X0X
2
1+X

2
0X2+4X1X

2
2−2(X3

0+4X3
1−3X3

2+7X0X1X2) 18 Incomplete 21 Z3

6 X0X
2
1+X

2
0X2+2X1X

2
2−(X

3
0+2X3

1+4X3
2−6X0X1X2) 21 Complete − Z3

7 X0X
2
1+X

2
0X2+2X1X

2
2−2(X3

0+2X3
1+4X3

2−6X0X1X2) 21 Complete − Z3

8 X0X
2
1+X

2
0X2+2X1X

2
2−8(X3

0+2X3
1+4X3

2−6X0X1X2) 24 Complete − Z3

9 X0X
2
1+X

2
0X2+2X1X

2
2+9(X3

0+2X3
1+4X3

2−6X0X1X2) 24 Complete − Z3

10 X0X
2
1+X

2
0X2+4X1X

2
2−(X

3
0+4X3

1−3X3
2+7X0X1X2) 24 Complete − Z3

11 X0X
2
1+X

2
0X2+4X1X

2
2−8(X3

0+4X3
1−3X3

2+7X0X1X2) 24 Complete − Z3

12 X0X
2
1+X

2
0X2+4X1X

2
2−4(X3

0+4X3
1−3X3

2+7X0X1X2) 27 Complete − Z3

13 X0X
2
1+X

2
0X2+2X1X

2
2 12 Incomplete 27 Z3 ×Z3

E1
0

14 X0X
2
1+X

2
0X2+4X1X

2
2 21 Complete − Z3 ×Z3

15 X3
0+2X3

1+4X3
2−3X0X1X2 18 Complete − Z3 ×Z3

16 X3
0+2X3

1+4X3
2+7X0X1X2 18 Incomplete 24 Z3 ×Z3

G4
0

17 X3
0+2X3

1+4X3
2+4X0X1X2 18 Complete − Z3 ×Z3

18 X3
0+2X3

1+4X3
2−5X0X1X2 18 Incomplete 21 Z3 ×Z3

E4
0 19 X3

0+2X3
1+4X3

2−7X0X1X2 27 Complete − Z3 ×Z3

Ē4
0 20 X3

0+2X3
1+4X3

2 27 Complete − Z3 ×Z3 ×Z3
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5.8 Summary

From Tables 5.1, 5.2, 5.3 and 5.4 the following theorem is established.

Theorem 5.8.1. In PG(2,19), the 62 inequivalent non-singular plane cubic curves

are divided into 30 complete and 32 non-complete arcs of degree three.

Table 5.5 lists the number of each type of stabilizer group of complete and

incomplete projectively distinct non-singular cubic curves.

Table 5.5: Groups of non-singular plane cubic curves

Complete
G Z2 Z3 Z6 S3 Z3 ×Z3 S3 ×Z3 Z3 ×Z3 ×Z3 G54

No. 8 7 1 7 4 1 1 1

Incomplete
G Z2 Z3 Z6 S3 Z3 ×Z3 S3 ×Z3 (Z3 ×Z3) ⋊Z2

No. 15 5 2 5 3 1 1

In Table 5.6, a cell n ∶ m means that n is the number of points on the curve

and m is the number of such distinct curves.

Table 5.6: Numbers of distinct non-singular plane cubic curves

9 inflexions 18 ∶ 1 27 ∶ 1
3 inflexions 12 ∶ 2 15 ∶ 2 18 ∶ 2 21 ∶ 3 24 ∶ 4 27 ∶ 1
1 inflexion 13 ∶ 2 14 ∶ 2 16 ∶ 4 17 ∶ 1 19 ∶ 3 20 ∶ 4 22 ∶ 3 23 ∶ 1 25 ∶ 2 26 ∶ 2 28 ∶ 2
0 inflexion 12 ∶ 2 15 ∶ 2 18 ∶ 6 21 ∶ 3 24 ∶ 4 27 ∶ 3

Also, from these tables the following statistics are deduced.

1. In PG(2,19), n0 = 20, n1 = 26, n3 = 14, and n9 = 2. So, P19 = 62, which

agrees with Corollary 5.3.2.

2. L19(1) = 12 and N19(1) = 28 and the number N1 takes every value between

L19(1) and N19(1). This agrees with Corollary 5.3.4 and Lemma 5.3.5.

3. In PG(2,19), a non-singular plane cubic curve with k points is a complete

(k,3)-arc when k has the following values:

18,20,21,22,23,24,25,26,27,28.
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5.9 AMDS Codes of Dimension Three

According to Theorem 1.13.1, an (n;n − d)-arc in PG(k − 1, q) is equivalent to a

projective [n, k, d]q-code. Now, if k = 3, n−d = 3, and q = 19, then there is a one-to-

one correspondence between (n; 3)-arcs in PG(2,19) and projective [n,3, n−3]19-

codes C. Since d(C) of the code C is equal to n− k, thus the projective code C is

AMDS.

In Table 5.7, the AMDS codes corresponding to the (n; 3)-arcs for 12 ≤ n ≤ 28

in PG(2,19) and the parameter e of errors corrected are given.

Table 5.7: AMDS code over PG(2,19)

(n; 3)-arc AMDS code e (n; 3) − arc AMDS code e

(12; 3)-arc [12,3,9]19 4 (21; 3)-arc [21,3,18]19 8

(13; 3)-arc [13,3,10]19 4 (22; 3)-arc [22,3,19]19 9

(14; 3)-arc [14,3,11]19 5 (23; 3)-arc [23,3,20]19 9

(15; 3)-arc [15,3,12]19 5 (24; 3)-arc [24,3,21]19 10

(16; 3)-arc [16,3,13]19 6 (25; 3)-arc [25,3,22]19 10

(17; 3)-arc [17,3,14]19 6 (26; 3)-arc [26,3,23]19 11

(18; 3)-arc [18,3,15]19 7 (27; 3)-arc [27,3,24]19 11

(19; 3)-arc [19,3,16]19 7 (28; 3)-arc [28,3,25]19 12

(20; 3)-arc [20,3,17]19 8



Appendix A

Points of PG(2, 19)

Points of PG(2,19) generated by ( 0 1 0 0 0 1 −3 0 1 )

1 1 0 0 2 0 1 0 3 0 0 1 4 −3 0 1

5 −3 −3 1 6 −8 −8 1 7 −5 −7 1 8 −9 4 1

9 7 2 1 10 −1 −4 1 11 1 −6 1 12 −7 −4 1

13 1 −4 1 14 1 6 1 15 5 −8 1 16 −5 2 1

17 −1 −8 1 18 −5 −8 1 19 −5 −2 1 20 3 5 1

21 9 −9 1 22 −2 6 1 23 5 −3 1 24 −8 7 1

25 2 −1 1 26 8 1 0 27 0 8 1 28 6 0 1

29 −3 6 1 30 5 5 1 31 9 4 1 32 7 −2 1

33 3 −7 1 34 −9 9 1 35 −6 1 1 36 8 −3 1

37 −8 −4 1 38 1 9 1 39 −6 2 1 40 −1 −2 1

41 3 1 1 42 8 −8 1 43 −5 7 1 44 2 −3 1

45 −8 −1 1 46 −2 1 0 47 0 −2 1 48 3 0 1

49 −3 3 1 50 4 4 1 51 7 −3 1 52 −8 6 1

53 5 7 1 54 2 3 1 55 4 −9 1 56 −2 9 1

57 −6 −4 1 58 1 2 1 59 −1 −6 1 60 −7 4 1

61 7 −9 1 62 −2 −8 1 63 −5 3 1 64 4 −6 1

65 −7 3 1 66 4 3 1 67 4 1 1 68 8 2 1

128
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69 −1 9 1 70 −6 −2 1 71 3 6 1 72 5 −5 1

73 −4 −6 1 74 −7 −3 1 75 −8 −6 1 76 −7 −6 1

77 −7 9 1 78 −6 5 1 79 9 −1 1 80 6 1 0

81 0 6 1 82 5 0 1 83 −3 5 1 84 9 9 1

85 −6 −1 1 86 −9 1 0 87 0 −9 1 88 −2 0 1

89 −3 −2 1 90 3 3 1 91 4 −4 1 92 1 5 1

93 9 −3 1 94 −8 5 1 95 9 5 1 96 9 −8 1

97 −5 −4 1 98 1 8 1 99 6 −2 1 100 3 −6 1

101 −7 7 1 102 2 −8 1 103 −5 −3 1 104 −8 −7 1

105 −9 −5 1 106 −4 7 1 107 2 9 1 108 −6 4 1

109 7 −5 1 110 −4 3 1 111 4 −1 1 112 4 1 0

113 0 4 1 114 7 0 1 115 −3 7 1 116 2 2 1

117 −1 7 1 118 2 7 1 119 2 5 1 120 9 −6 1

121 −7 2 1 122 −1 4 1 123 7 −4 1 124 1 4 1

125 7 4 1 126 7 9 1 127 −6 −5 1 128 −4 −8 1

129 −5 6 1 130 5 2 1 131 −1 8 1 132 6 2 1

133 −1 2 1 134 −1 6 1 135 5 8 1 136 6 9 1

137 −6 −7 1 138 −9 1 1 139 8 5 1 140 9 −5 1

141 −4 −7 1 142 −9 7 1 143 2 6 1 144 5 3 1

145 4 6 1 146 5 6 1 147 5 −2 1 148 3 −5 1

149 −4 4 1 150 7 3 1 151 4 −3 1 152 −8 −2 1

153 3 8 1 154 6 −6 1 155 −7 −5 1 156 −4 −3 1

157 −8 2 1 158 −1 −9 1 159 −2 −7 1 160 −9 −6 1

161 −7 −2 1 162 3 7 1 163 2 −2 1 164 3 −2 1

165 3 −3 1 166 −8 8 1 167 6 −3 1 168 −8 −3 1

169 −8 4 1 170 7 6 1 171 5 1 1 172 8 −7 1

173 −9 5 1 174 9 8 1 175 6 1 1 176 8 3 1

177 4 2 1 178 −1 −5 1 179 −4 5 1 180 9 −7 1
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181 −9 8 1 182 6 −1 1 183 9 1 0 184 0 9 1

185 −6 0 1 186 −3 −6 1 187 −7 −7 1 188 −9 −2 1

189 3 9 1 190 −6 6 1 191 5 −9 1 192 −2 −3 1

193 −8 1 1 194 8 −4 1 195 1 −9 1 196 −2 7 1

197 2 −5 1 198 −4 9 1 199 −6 −8 1 200 −5 9 1

201 −6 9 1 202 −6 7 1 203 2 4 1 204 7 8 1

205 6 5 1 206 9 1 1 207 8 −5 1 208 −4 −2 1

209 3 4 1 210 7 −7 1 211 −9 2 1 212 −1 −3 1

213 −8 −9 1 214 −2 1 1 215 8 −1 1 216 2 1 0

217 0 2 1 218 −1 0 1 219 −3 −1 1 220 1 1 0

221 0 1 1 222 8 0 1 223 −3 8 1 224 6 6 1

225 5 9 1 226 −6 −9 1 227 −2 −4 1 228 1 7 1

229 2 −7 1 230 −9 6 1 231 5 −4 1 232 1 −8 1

233 −5 8 1 234 6 −9 1 235 −2 4 1 236 7 −8 1

237 −5 −1 1 238 −7 1 0 239 0 −7 1 240 −9 0 1

241 −3 −9 1 242 −2 −2 1 243 3 2 1 244 −1 1 1

245 8 9 1 246 −6 −3 1 247 −8 3 1 248 4 −2 1

249 3 −4 1 250 1 −1 1 251 −3 1 0 252 0 −3 1

253 −8 0 1 254 −3 −8 1 255 −5 −5 1 256 −4 6 1

257 5 −6 1 258 −7 −1 1 259 −5 1 0 260 0 −5 1

261 −4 0 1 262 −3 −4 1 263 1 1 1 264 8 −9 1

265 −2 −1 1 266 −8 1 0 267 0 −8 1 268 −5 0 1

269 −3 −5 1 270 −4 −4 1 271 1 −5 1 272 −4 −5 1

273 −4 1 1 274 8 −2 1 275 3 −8 1 276 −5 5 1

277 9 −4 1 278 1 −3 1 279 −8 9 1 280 −6 3 1

281 4 8 1 282 6 −8 1 283 −5 −9 1 284 −2 3 1

285 4 9 1 286 −6 8 1 287 6 −7 1 288 −9 −1 1
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289 −6 1 0 290 0 −6 1 291 −7 0 1 292 −3 −7 1

293 −9 −9 1 294 −2 −6 1 295 −7 8 1 296 6 −5 1

297 −4 8 1 298 6 8 1 299 6 7 1 300 2 −4 1

301 1 −7 1 302 −9 3 1 303 4 −7 1 304 −9 −7 1

305 −9 −8 1 306 −5 4 1 307 7 −1 1 308 5 1 0

309 0 5 1 310 9 0 1 311 −3 9 1 312 −6 −6 1

313 −7 5 1 314 9 2 1 315 −1 3 1 316 4 −5 1

317 −4 −1 1 318 −4 1 0 319 0 −4 1 320 1 0 1

321 −3 1 1 322 8 8 1 323 6 3 1 324 4 −8 1

325 −5 −6 1 326 −7 1 1 327 8 6 1 328 5 −7 1

329 −9 −4 1 330 1 3 1 331 4 5 1 332 9 7 1

333 2 −6 1 334 −7 −8 1 335 −5 1 1 336 8 7 1

337 2 1 1 338 8 1 1 339 8 4 1 340 7 −6 1

341 −7 −9 1 342 −2 8 1 343 6 4 1 344 7 5 1

345 9 −2 1 346 3 −9 1 347 −2 2 1 348 −1 −7 1

349 −9 −3 1 350 −8 −5 1 351 −4 2 1 352 −1 5 1

353 9 3 1 354 4 7 1 355 2 −9 1 356 −2 −5 1

357 −4 −9 1 358 −2 −9 1 359 −2 5 1 360 9 6 1

361 5 4 1 362 7 1 1 363 8 −6 1 364 −7 6 1

365 5 −1 1 366 7 1 0 367 0 7 1 368 2 0 1

369 −3 2 1 370 −1 −1 1 371 3 1 0 372 0 3 1

373 4 0 1 374 −3 4 1 375 7 7 1 376 2 8 1

377 6 −4 1 378 1 −2 1 379 3 −1 1 380 −1 1 0

381 0 −1 1
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Notation

∣X ∣ number of elements in the set X

X/Y the set of elements of X not in Y

φ the empty set

G ≅H the group G and H are isomorphic

K ≅ K′ the arc K and K′ are projectively equivalent

G ×H the direct product of the groups G and H

N ⋊H a semi-direct product of N and H with N

a normal subgroup of N ⋊H
⟨g1, . . . , gn⟩ the group generated by g1, . . . , gn

θ(n, q) (qn+1 − 1)/(q − 1)
(n
r
) n(n − 1)⋯(n − r + 1)/r!

⌊x⌋ integer n where n ≤ x < n + 1

(n,m) the greatest common divisor of n and m

Ik the k × k identity matrix

A⊺ transpose matrix of the matrix A

M(A) projectivity with matrix A

C(f) companion matrix of polynomial f

Piz→g Pj transform the point Pi to Pj by the projectivity g

Zn cyclic group of order n

Sn symmetric group of degree n

132
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An alternating group of degree n

Dn dihedral group of order 2n

GK group fixing a set K
Gi group of order i

Fq,GF(q) the Galois field of q = ph elements

Fq algebraic closure of Fq

Fn
q linear space of n-tuples over Fq

V (n, q) n-dimensional vector space over Fq

PG(n, q) n-dimensional projective space over Fq

GL(n, q) group of non-singular linear transformations

of V (n, q)
PGL(n, q) group of projectivities of PG(n − 1, q)
PGO(3, q) group of projectivities fixing the plane conic

P(X),P(x0, . . . , xn) point of PG(n, q) with vector X = (x0, . . . , xn)
Ui P(0, . . . ,0,1,0, . . . ,0) with 1 in the (i + 1)-th place

U P(1,1, . . . ,1)
ui hyperplane whose points satisfy the equation xi = 0

u hyperplane whose points satisfy the equation ∑ni=0 xi = 0

(n; r)-arc set of n points with at most r points on a hyperplane

n-arc set of n points with at most two points on a line

Υ standard frame {U0,U1, . . . ,Un,U}
Cn

0 set of points not on the bisecants of an n-arc

l(n, q) number of points on the sides of an n-stigm

l∗(n, q) q2 + q + 1 − l(n, q)
`i the lines of PG(2,19) in Table 4.1

`P the tangent line at the point P

PiPj line passing through the points Pi and Pj

t(P ) number of unisecants of k-arc K through P

τi number of i-secants to the arc K
σi(Q) number of i-secants to the arc K through Q ∉ K
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ci ∣ {Q ∈ PG(2, q)/K ∣ σ2(Q) = i} ∣
{Di;Dci} partition of PG(1,19) into two decads

{P1, P2;P3, P4} cross-ratio of the points P1, P2, P3, P4

{t1, t2; t3, t4} cross-ratio of the parameters t1, t2, t3, t4

CR(X) cross-ratio of the tetrad X

F = v(F ) {P(X) ∈ PG(2, q) ∣ F (X) = 0}
mP (F) multiplicity of P on F
mP (`,F) intersection multiplicity of the line ` and F at P

N1 number of rational points of non-singular plane

cubic curve over Fq

Lq(1) the minimum number of rational points on

any non-singular plane cubic over Fq

Nq(1) the maximum number of rational points on

any non-singular plane cubic over Fq

F rn non-singular plane cubic curve with n rational

inflexions and r rational inflexional triangles

[n, k, d]q-code code with length n, dimension k and minimum

distance d over the field Fq

C� dual code to the code C
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