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“Novel insights into the DNA interstrand cross-link repair in Schizosaccharomyces 

pombe: characterisation of Fan1 through standard and high-throughput genetic 

analysis” 

 

FAN1/MTMR15 (Fanconi anemia-associated nuclease 1 / Myotubularin-related protein 

15) is a protein originally identified from a set of size-fractionated human brain cDNA 

libraries coding for large proteins in vitro (Nagase et al., 1999). FAN1 is widely 

conserved across eukaryotes, with the notable exception of S. cerevisiae 

(Smogorzewska et al., 2010; MacKay et al., 2010; Kratz et al., 2010; Liu et al., 2010; 

Shereda et al., 2010). Recent work has shown that FAN1 is a novel component of the 

Fanconi Anemia repair DNA pathway in higher eukaryotes (Smogorzewska et al., 2010; 

MacKay et al., 2010; Kratz et al., 2010; Yoshikiyo et al., 2010; Liu et al., 2010; Shereda 

et al., 2010). 

My work presents a biochemical and genetic characterisation of the FAN1 

Schizosaccharomyces pombe ortholog Fan1. I show that, in contrast with the situation 

in higher eukaryotes, Fan1 in S. pombe does not strongly interact with components of 

the mismatch repair pathway. The disruption of fan1 causes a mild sensitivity to 

interstrand cross-linking agents, dramatically augmented by the concomitant deletion 

of the nuclease Pso2, suggesting a role for Fan1 in the resolution of DNA interstrand 

cross-links. Further genetic interactions are explored by use of an automated high-

throughput screen, where a non-epistatic relationship is found with Pli1, a component 

of the SUMOylation pathway. Finally, I show that three conserved residues in the 

VRR_nuc nuclease domain are required for Fan1 activity in DNA repair. Taken together, 

the data presented points at a role for S. pombe Fan1 in the resolution of adducts 

created by DNA interstrand cross-linking agents.   
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1.1 DNA damage and response pathways 

The maintenance of genomic stability is of paramount importance in living cells.  Every day 

cellular DNA is damaged by exogenous, environmental factors such as background radiation 

and sunlight. In addition, endogenous harmful by-products of cell metabolism and errors 

induced by enzymes involved in DNA processing constitute continuous threats which are 

intrinsic to cellular growth and development (Ciccia and Elledge, 2010). The damage occurring 

to the DNA double helix can be broadly classified into three categories, according to the nature 

of the lesion: single-strand breaks (SSBs) occur when a discontinuity is generated on only one 

of the two complementary DNA strands; double-strand breaks (DSBs) involve both the DNA 

strands; a third group of lesions comprises local alterations of the standard base pairing or 

hydrogen-bond configuration such as base chemical modifications, base-base mismatches and 

DNA covalent intra- and inter-strand cross-links. Cells have developed an intricate network of 

tightly regulated repair mechanisms which detect and address different forms of DNA damage, 

in order to minimise any fatal effect which may arise as a consequence of it. SSBs are repaired 

by the single-strand break repair system, whereas DSBs are tackled by either nonhomologous 

end-joining (NHEJ) or homologous recombination (HR). The third category of DNA lesion is 

processed by specific mechanisms such as base excision repair (BER), mismatch repair (MMR), 

nucleotide excision repair (NER) and interstrand cross-link repair (Ciccia and Elledge, 2010). 

1.2 Structure of this chapter 

 Aim of this chapter 1.2.1

The aim of this introductory chapter is to provide a background for the work presented in the 

subsequent sections. First, a general overview will be given of the organisation of the DNA 

damage responses and of the DNA checkpoints, the mechanisms by which living cells sense 

and respond to insults at their genetic material (sections 1.3 - 1.4). Then, a brief section will 

outline the single-strand repair pathway (section 1.5). It should be noted that this section is 
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intentionally schematic and has been added for completeness, since this topic is not directly 

relevant to the work presented in the following chapters of results. The DNA double-strand 

break repair system will be discussed in sections 1.6 – 1.8 primarily from a mechanistic 

perspective, where the role of the various components will be described with preference 

towards better understood mechanisms and model organisms. A special emphasis will be 

given to the repair of double strand breaks by homologous recombination processes (section 

1.8), as this aspect is relevant to one of the sections of results (appendix 1). For completeness, 

basic aspects of DNA double-strand break repair by non-homologous end joining will also be 

illustrated in section 1.7 The major body of this introduction will focus on specific mechanisms 

of DNA damage responses aimed at the repair of chemical alterations to the DNA structure 

(sections 1.9 – 1.12). In particular, the final section 1.12 will present a detailed discussion of 

the interstrand cross-link repair pathway, the main subject of the work presented in this thesis.  

 Notes on the use of nomenclature used for protein names 1.2.2

While being conserved in most of its fundamental aspects, the detailed mechanisms and the 

components of the response to DNA damage can differ between organisms. Those differences 

will be highlighted where necessary. The following superscripts have been used to define 

protein names: Hs, Homo sapiens; Sp, Schizosaccharomyces pombe; Sc, Saccharomyces cerevisiae 

Ec, Escherichia coli.  However, superscripts have been omitted when the context is specific in 

respect of the model organism discussed. In addition, superscripts have been occasionally 

omitted when a molecular mechanism is presented as a general concept, or when a 

mechanism is conserved across all the organisms discussed. As a guide for the following initial 

sections, table 1.1 presents a summary of the known homologs of the main players in the DNA 

damage checkpoint in fission yeast, humans and budding yeast.   
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1.3 DNA damage responses 

Cells respond to insults to their genome by coordinating a series of signal transduction 

pathways whose primary aim is to restore the integrity of the genetic material. The key initial 

step shared by all the DNA damage responses (DDRs) is sensing the DNA lesions. Downstream 

components acting as mediators are thought to act as bridges to functionally connect different 

response factors. Effectors are then identified as the responsible proteins for end-point effects 

of the damage responses such as the induction of cell-cycle arrest and the promotion of DNA 

repair. Overall, the signals from early to late steps of the damage response define signal 

transduction pathways named signal cascades.  

1.4 DNA checkpoints 

One of the most crucial consequences of the activation of DNA damage responses is the 

induction of cell cycle arrest in order to allow time for DNA repair (Zhou and Elledge, 2000). 

The orchestration of cell cycle transitions during DNA repair is controlled by DNA checkpoint 

proteins. It is now clear that, although mainly conserved across eukaryotes (see table 1.1), the 

mechanisms and the players involved in DNA checkpoints differ between humans, S. cerevisiae 

and S. pombe. In this section, an overview is presented of the current model of DNA 

checkpoint signalling and the details of mechanisms underlying the functioning of DNA 

checkpoints, focusing on S. pombe as a model organism. 

The concept of DNA damage checkpoint was initially formulated following studies of the Rad9Sc 

(homolog of S. pombe Crb2 and human 53BP1) mutant in S. cerevisiae, which failed to delay 

mitosis after DNA damage (Weinert and Hartwell, 1988). Thus, it was proposed that this DNA 

damage checkpoint linked DNA repair and progression through the cell cycle. Rad9 was 

proposed to perform a surveillance function, sensing DNA damage and signalling to the cell 

cycle machinery to delay progression until repair of damage has been accomplished.  
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 DNA checkpoints in S. pombe 1.4.1

Two major DNA checkpoints have been identified in S. pombe: the first acts in G2 and is called 

G2/M DNA damage checkpoint; the second acts in S phase and is called replication (or S phase) 

checkpoint. The effect of both these checkpoints is to halt the transition from G2 to mitosis 

(Carr, 2002).  

The G2/M checkpoint was shown to be conserved in fission yeast following the observation of 

a delayed onset of mitosis in cells irradiated with UV (Rowley et al., 1992; al-Khodairy and Carr, 

1992). al-Khodairy and Carr (1992) showed four mutants (rad1-d, rad3-d, rad9-d and rad17-d) 

to be unable to arrest in mitosis following exposure to UV, indicating a role for the 

corresponding proteins in the damage checkpoint. Enoch et al. (1992) showed that these 

proteins and Hus1 (the third component of the heterotrimeric 9-1-1 clamp complex Rad9-

Rad1-Hus1) were also required for the S phase replication checkpoint following HU-induced 

cell cycle arrest. Subsequent work identified Rad26 as a further DNA checkpoint protein (al-

Khodairy et al., 1994), which is now known to interact and be phosphorylated by Rad3 

following DNA damage (Edwards et al., 1999). This phosphorylation is the earliest biochemical 

marker of Rad3 function and occurs independently of all the other checkpoint proteins 

(Edwards et al., 1999).  The effector kinase Chk1 has been shown to be a central regulator of 

the DNA damage checkpoint, downstream of Rad3, Rad26 and the 9-1-1 complex (Walworth et 

al., 1993; al-Khodairy et al., 1994). Importantly, Walworth et al. (1993) presented also the first 

evidence for the connection between the damage checkpoint and the progression through the 

cell cycle by control of the cell cycle kinase Cdc2. Subsequent work by Saka et al. (1997) 

identified Crb2 as a checkpoint mediator required for the activation of Chk1 in response to 

DNA damage. 

Additional work identified genes required only for proficient cell cycle arrest following 

exposure to hydroxyurea (HU), an agent which arrests S phase by depleting the cellular 

nucleotide pool. In response to S-phase arrest or to DNA damage perturbing the progression of 
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the replication fork, phosphorylation and activation of the serine/threonine kinase Cds1 is an 

essential prerequisite (Murakami and Okayama, 1995; Lindsay et al., 1998). The mediator Mrc1 

has been shown to be essential for the activation of Cds1 (Alcasabas et al., 2001). In addition 

to delaying mitosis, this intra-S phase checkpoint stabilises stalled replication forks and 

prevents late origin firing (Lindsay et al., 1998; Santocanale and Diffley, 1998). 

The components discussed above constitute the DNA damage and replication checkpoints in S. 

pombe. However, a high degree of conservation has been found throughout eukaryotes (table 

1.1). 

 Sensing the damage 1.4.2

As discussed above, the phospho-inositide 3 kinase (PI3K)-like kinase Rad3 has been identified 

as a key activator of the DNA damage response in S. pombe. This is the homolog of Mec1Sc and 

ATRHs, originally identified as homologs of Rad3Sp. It has been speculated that distinct 

structure-dependent sensors elicit specific DNA damage responses (Zhou and Elledge, 2000). A 

Description Fission yeast Human Budding yeast 

phospho-inositide 3 kinase (PI3K)-like kinase Rad3 ATR Mec1 

ATR-interacting protein Rad26 ATRIP Ddc2 

phospho-inositide 3 kinase (PI3K)-like kinase Tel1 ATM Tel1 

Rfc1 homolog Rad17 Rad17 Rad24 

9-1-1 clamp  Rad9 Rad9 Rad17 

 Hus1 Hus1 Mec3 

 Rad1 Rad1 Ddc1 

MRX complex  Rad32 Mre11 Mre11 

 Rad50 Rad50 Rad50 

 Nbs1 Nbs1 Xrs2 

Mediator/checkpoint protein (BRCT protein) Crb2 53BP1, 
MDC1, 
BRCA1? 

Rad9 

Mediator (BRCT protein) Mrc1 Claspin Mrc1 

Mediator (BRCT protein) Rad4/Cut5 TopBP1 Dpb11 

Signaling kinase  Chk1 Chk1 Chk1 

Signaling kinase  Cds1 Chk2 Rad53 

Table 1.1 | Homologs of DNA checkpoint proteins in fission yeast, human and budding yeast.  
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common intermediate able to trigger DNA damage responses is ssDNA coated with the single-

strand binding protein RPA (Zou and Elledge, 2003).  Another PI3-like kinase, ATMHs (Tel1Sp,Sc) 

plays an important role in DNA damage checkpoint in higher eukaryotes (Zhou and Elledge, 

2000), whereas its role in yeast appears to be confined at the control of telomere length 

(Greenwell et al., 1995). ATR and ATM kinases in mammalian cells have been associated with 

the role of sensor proteins, although the extent of their involvement in the damage response 

pathways is clearly much broader (see 1.4.3). A brief overview is given below of proteins that 

have been associated with the role of sensors of the DNA damage and replication checkpoint.   

ATR binds to ssDNA (one of the hallmarks of DNA damage) coated with the single-strand 

binding protein RPA dependently on the interaction with its partner ATRIP (Zou and Elledge, 

2003). However, studies in Xenopus laevis have indicated that this localisation is not sufficient 

for ATR activation. In this system, ATR signalling is dependent on the additional colocalisation 

of the 9-1-1 complex, involved in checkpoint activation in higher and lower eukaryotes 

(Parrilla-Castellar et al., 2004; Cimprich and Cortez, 2008). Interestingly, in S. cerevisiae the 

colocalisation of the Ddc2Sc-Mec1Sc (orthologs of ATRIPHs – ATRHs) and the 9-1-1 (composed of 

Rad17-Mec3-Ddc1 in S. cerevisiae) complexes is sufficient to activate the DDR even in the 

absence of damage (Bonilla et al., 2008). However, the model for ATR activation appears to be 

more complicated than previously thought and may require the additional presence of 

structures that resemble stalled replication forks, as shown in Xenopus egg extracts 

(MacDougall et al., 2007). Indeed, the structural similarity of the 9-1-1 complex with the sliding 

trimeric clamp PCNA (Proliferating Cell Nuclear Antigen, a processivity factor involved in 

eukaryotic replication) suggests that the 9-1-1 complex could act as an emergency sliding 

platform for the recruitment of DNA repair factors to the site of damage following replicational 

stress (Parrilla-Castellar et al., 2004). In this scenario, ATR-dependent mechanisms may act 

more specifically in response to DNA damage impeding the progression of the replication fork, 

rather than to generic DNA damage (Cimprich and Cortez, 2008).  
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The role of ATM appears to be more limited and directed at the response to DNA DSBs. The 

heterotrimeric MRN (Mre11Hs,Sc/Rad32Sp - Rad50Hs,Sp ,Sc – Nbs1Hs,Sp  / Xrs2Sc) complex has been 

implicated as a sensor protein and this complex is required for ATM activation (evidence 

reviewed in Lamarche et al., 2010). Interestingly, the artificial targeting of DNA repair factors 

such as NBS1Hs, MRE11Hs and ATMHs elicited a DNA damage response in the absence of any 

lesion in mammalian cells (Soutoglou and Misteli, 2008). Despite this seductive simplicity, it is 

increasingly clear that the ATR and ATM pathways are interconnected and further studies are 

required to unravel the biological significance of this cross-talk (Parrilla-Castellar et al., 2004).  

 The downstream effects of the damage responses  1.4.3

Primary physiological targets of the damage responses are the orchestration of cell-cycle 

transitions, the regulation of DNA transcription, the coordination of DNA repair and the 

induction of apoptotic responses (Zhou and Elledge, 2000). However, recent work has shown 

that the scope of the biochemical consequences following the activation of damage-induced 

responses is more extensive than previously appreciated. A large-scale proteomic analysis 

identified more than 700 targets for ATRHs and ATMHs, encompassing previously expected 

proteins involved in processes such as RNA splicing, the spindle checkpoint and chromatin 

remodelling (Matsuoka et al., 2007). A wider complexity can be envisaged following the 

potential identification of additional targets for the downstream kinases Chk1 and Chk2.  

Beyond these unexpected far-reaching effects, the significant enrichment shown for factors 

involved in DNA repair mechanisms (Matsuoka et al., 2007) confirms the critical role for the 

DNA damage responses in directly surveilling and maintaining the integrity of the cellular 

genome.  

 The mediators of the damage responses 1.4.4

Following the initial activation, the damage response pathways depend on a wide range of 

posttranslational modifications which act as mediating elements for protein-protein 

interactions (Ciccia and Elledge, 2010). As seen above, ATRHs (Rad3Sp, Mec1Sc) and ATMHs 
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(Tel1Sp,Sc) play a key role as upstream transducers in the response to DNA damage. ATR and 

ATM control the downstream stages of the cascade by phosphorylating targets such as the two 

serine/threonine kinases Chk1Hs (Chk1Sp,Sc) and Chk2Hs (Cds1Sp, Rad53Sc) respectively, which in 

turn phosphorylate other downstream mediators and effectors (Zhou and Elledge, 2000).  

An important mediator identified in mammalian cells and yeast is the checkpoint protein 

53BP1Hs (Crb2Sp, Rad9Sc), which has been shown to play additional direct roles in 

recombination. Importantly, a requirement was shown for Crb2 for proficient cell cycle arrest 

in response to UV (Saka et al., 1997). This activity was suggested to rely on direct interactions 

of Crb2 with the BRCT protein Rad4/Cut5 and the kinase Chk1 (Saka et al., 1997). 

 A model for the DNA checkpoint in S. pombe 1.4.5

Taken together, the above data suggest a model for the DNA damage checkpoint in S. pombe 

where the Rad9-Rad1-Hus1 complex is firstly loaded at damage sites by Rad17 and 

independently of the phospho-inositide 3 kinase (PI3K)-like kinase Rad3 (in complex with its 

binding partner Rad26). If the damage occurs during replication, Mrc1 acts as a mediator to 

activate Cds1, which in turn acts on the Cdc2 kinase to prevent the progression into mitosis. In 

contrast, if the damage occurs in the G2 phase, Crb2 and Rad4/Cut5 mediate the signal to 

Chk1, which in turn exerts a similar action to halt the cell cycle.  

 The role of Crb2 in DNA damage checkpoint and repair 1.4.6

Crb2, homolog of human 53BP1 and S. cerevisiae Rad9, is a central component of the DNA 

damage checkpoint and the DNA damage responses in S. pombe. Interestingly, while the DNA 

repair functions appear to be conserved between Crb2Sp, 53BP1Hs and Rad9Sc, the DNA 

checkpoint role of 53BP1 seems to play a limited role compared to the yeast homologs (Carr, 

2002; Ward et al., 2006). As a background for the work presented in chapter 8, this section 

provides an overview of the current knowledge on Crb2 as a player in DNA damage checkpoint 

responses. Further aspects about this protein, in particular the role in the DNA damage 

checkpoint and its interaction with Rqh1Sp, are discussed in section 8.1.1.    
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Crb2Sp is directly recruited to Ionizing Radiation (IR)- induced DSBs through interactions 

between its Tudor and BRCT domains with modified histones (Du et al., 2006; Greeson et al., 

2008). The crucial role for Crb2 in the DSB response pathway is confirmed by data showing 

that, following UV irradiation, Crb2 is phosphorylated and in turn required for phosphorylation 

and activation of Chk1 (Saka et al., 1997; Mochida et al., 2004). However, Tudor domains are 

dispensable for Crb2 recruitment to DSBs induced by the HO endonuclease (Du et al., 2006). 

A number of studies emphasise the importance of CDK phosphorylation on Crb2-T215 in DSB 

repair. This aspect was first characterised by Esashi and Yanagida (1999). Importantly, a 

pathway of recruitment occurring in the absence of histone phosphorylation and methylation 

seems to be dependent on the phosphorylation of T215 (Du et al., 2006). This residue has been 

shown to be critical for the association between Crb2 and the BRCT chromatin-bound protein 

Rad4/Cut5 (Du et al., 2006). Furthermore, T215 phosphorylation by Cdk1 has been suggested 

to be required for the subsequent Rad3-dependent hyperphosphorylation of Crb2 upon DNA 

damage (Esashi and Yanagida, 1999). The effect of mutations of the T215 residue on the DNA 

repair functions of Crb2 has been shown directly by the fact that crb2-T215A cells are more 

sensitive than wt to IR (Caspari et al., 2002). The T215A mutation has been suggested to cause 

a deficiency in the checkpoint function of Crb2, although this seems to be dependent on the 

doses of DNA damaging agent used (this aspect is further discussed in section 8.1.1). However, 

it is interesting to note that crb2-T215A cells are as hypersensitive as crb2-d cells to the DNA 

damaging agent camptothecin (CPT), although significantly less hypersensitive to UV and IR 

(Greeson et al., 2008). This data suggests that the phosphorylation of Crb2-T215 is 

differentially required in response to distinct subsets of lesions. Interestingly, this CDK 

phosphorylation regulates Crb2 activity through the cell cycle, as recruitment of Crb2 to DSBs 

is blocked at early stages of the S-phase, indicating that Crb2 may be involved in DNA repair 

only at specific stages of the cell cycle (Du et al., 2003; Nakamura et al., 2004; Du et al., 2006).  
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1.5 DNA Single-strand break repair 

This section is included to complete the description of the types of DNA damage with a brief 

overview of the current model for the repair of single strand breaks. As little is known about 

this repair pathway in S. pombe and no yeast homolog has been found for the central 

component PARP1, the overview illustrated below is based mostly on reviewed data from 

mammalian systems.     

 Sources of SSBs 1.5.1

Single-strand breaks (SSBs) in living cells can arise as a consequence of a variety of processes. 

Attacks by reactive oxygen species (ROS) such as hydrogen peroxide are amongst the most 

common causes of SSBs (reviewed in Caldecott, 2008). SSBs are also produced as molecular 

intermediates of physiological processes like the relaxation of DNA topological stress by 

topoisomerases belonging to the subfamilies IA and IB (Wang, 2002) or the removal of 

damaged bases by the base excision repair (BER) system (Robertson et al., 2009). Unrepaired 

SSBs can eventually lead to the fatal impairment of fundamental physiological process such as 

DNA replication and transcription (Caldecott, 2008).  

 Overview of the single-strand repair system in mammalian cells 1.5.2

The current model for the repair of SSBs distinguishes different repair pathways depending on 

the cause of damage. In the case of breaks that are consequences of damage to the DNA sugar 

(like those caused by ROS), the primary SSB sensor is poly(ADP-ribose) polymerase 1 (PARP1Hs). 

Upon binding with DNA breaks, PARP1 functions by adding chains of poly(ADP-ribose) onto 

itself and other target proteins (Caldecott, 2008). PARP1 binding on DNA is rapidly reversed by 

degradation of poly(ADP-ribose) chains by poly(ADP-ribose) glycohydrolase PARG (Fisher et al., 

2007; Caldecott, 2008). Although multiple roles have been attributed to PARP1Hs (reviewed in 

Caldecott, 2008), the main role for this component appears to be the recruitment of XRCC1 (X-

ray repair cross-complementing protein 1). It has been proposed that XRCC1 acts as a scaffold 

for the assembly of components downstream of the SSB repair pathway (Whitehouse et al., 
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2001). The second step in the SSB repair is the DNA end processing, which restores the 

standard 3’-hydroxyl and 5’-phosphate termini. This step is carried out by a diverse range of 

enzymes: PNKP, APE1, TDP1 and APTX (the functional details related to these enzymes can be 

found in Caldecott, 2008). Once the conventional ends have been restored, a gap filling step 

can occur where the damaged DNA strand is resynthesized to its original length. Gaps of a 

single nucleotide are repaired by Polin a pathway termed short-patch repair. Alternatively, 

when the gap filling step is extended for 2-12 nucleotides, a process called long-patch repair 

occurs which requires the flap endonuclease 1 FEN1 and is stimulated by PCNA and PARP1. 

SSBs induced as a consequence of the abortive activity of TOP1 are repaired by TDP1 (tyrosyl-

DNA phosphodiesterase 1) and PNKP (polynucleotide kinase 3’-phosphatase) (Caldecott, 2008). 

The final step of SSBR is the ligation of the single-stranded gaps, carried out preferentially by 

LIG1 in long-patch repair and LIG3 in short-patch repair (Caldecott, 2008). 

Indirect SSBs created as intermediates of the base excision repair pathway are discussed in 1.9. 

1.6 DNA Double-strand breaks 

Among the different types of DNA damage, double-strand breaks (DSB) are particularly 

dangerous in that the complementary strand cannot be used as a template for repair. 

DSBs can be caused by exogenous, endogenous or specialized factors. Exogenous agents are 

represented by ionizing radiation, environmental mutagens or anticancer drugs. In addition, 

endogenous by-products of cell metabolism (e.g. free radicals), replication single-stranded 

breaks in DNA, collapsed forks or dysfunctional telomere end processing can all lead to 

formation of DSBs. However, this type of lesion naturally occurs as intermediates in several 

specialized cellular processes including meiosis, V(D)J recombination, immunoglobulin class 

switching and possibly B-cell somatic hypermutation (van Gent et al., 2001).   
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The importance of accurate DNA DSB repair is confirmed by accumulating indications in higher 

eukaryotes of direct links between inappropriate DSB repair and tumorigenesis (Pierce et al., 

2001). 

Cells possess two distinct ways to repair a DSB repair: homologous recombination (HR) and 

non-homologous end-joining (NHEJ). The first requires extensive sequence homology as a 

template to repair the break, thus as a consequence homologous recombination is potentially 

an error-free repair pathway. In contrast, NHEJ is generally error-prone, as the two cut ends 

are ligated together with little or no requirement for sequence homology (Haber, 2000). 

 HR versus NHEJ: the pathway choice 1.6.1

The preference towards either pathway of DNA double-strand break repair is determined by 

several factors and only recently studies have begun to shed light on the subject (reviewed in 

Shrivastav et al., 2008).     

Firstly, it is increasingly clear that the choice between homologous recombination and non-

homologous end joining is largely dependent on the phase of the cell cycle. Given its 

requirement for sequence homology, HR is used after DNA replication, when a sister 

chromatid is present. On the other hand, NHEJ can be used irrespectively of the presence of 

homologous sequences. Several reports are now beginning to unravel the relationship 

between the cell cycle and the choice of DSB repair pathway. It appears that cyclin-dependent 

protein kinases are directly involved in this aspect. In S. cerevisiae, DSB repair by homologous 

recombination in G1 is limited, with recombination being controlled at the level of resection by 

Clb (S and G2 cyclins)-CDK activity (Aylon et al., 2004). Importantly, CDK1 (Cdc28Sc) is required 

for efficient 5’-3’ resection and inhibition of Cdc28Sc results in abolished HR and increased 

NHEJ (Ira et al., 2004). In particular, this control seems to be exerted in the budding yeast by 

CDK over the endonuclease Sae2Sc (Huertas et al., 2008).  

Secondly, the nature of the lesion should be taken into consideration. For instance, in the case 

of DNA DSBs as consequences of chemical damage or discontinuities to only one DNA strand, 
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NHEJ cannot always be used, as only a single free end may be generated. In contrast, when 

DNA damage produces two double-stranded ends, both HR and NHEJ can be potentially 

utilised, opening the possibility of the choice between the two modalities of repair.  

Thirdly, competition between HR and NHEJ components appears also to play an important 

role. In S. cerevisiae, Mre11 accumulates at unresected DSB ends and processing near the 

breaks in G1 is inhibited by competition with NHEJ (Ira et al., 2004; Zierhut and Diffley, 2008). 

Furthermore, the lack of the NHEJ proteins yKuSc, Lif1Sc or Dnl4Sc increases 5’ DSB end 

degradation in G1 (Clerici et al., 2008).  

Finally, differences in the use of HR versus NHEJ have been reported for lower and higher 

eukaryotes. In yeast, most of double-stranded breaks are repaired by HR. This is preferred to 

NHEJ, which has been shown to be very limited and inefficient (Prudden et al., 2003; further 

evidence reviewed in Shrivastav et al., 2008). In contrast, the use of NHEJ in mammalian cells is 

extensive and accounts for the repair of majority of DSBs (Shrivastav et al., 2008).  

Taken together, the data so far indicate that pathway choice in DSB repair is more intricate 

than previously thought and it is possible that additional novel unknown factors may still add 

to the complexity of the scenario. 

1.7 DNA Double-strand break repair: non-homologous end joining 

As discussed above, repair by non-homologous end joining is inefficient and utilized very 

limitedly in yeast DSB repair. However, the key NHEJ components are present and conserved 

across eukaryotes. The section below presents a brief overview of the components of this 

repair pathway from data from lower and higher eukaryotes.    

 Non-homologous end joining: key players in higher and lower eukaryotes 1.7.1

The term non-homologous end joining (NHEJ) was proposed following the observation of 

imprecise repair occurring in S. cerevisiae in the absence of a homologous donor (Moore and 

Haber, 1996). NHEJ is now defined as a process whereby two cut DNA duplexes are rejoined 
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together with little or no requirement for sequence homology. The two broken ends are firstly 

protected by high-affinity binding proteins. The further downstream events lead to the re-

association of the two broken molecules and the final re-ligation. Although components 

exquisitely critical for NHEJ have been identified, many proteins acting in this pathway share 

functions in single-strand break repair. Indeed, the key difference between the two processes 

is the need for re-associating overhangs when both the DNA strands, rather than only one of 

them, are cut.  

The widely conserved heterodimer Ku70/Ku80 is a central component of NHEJ in higher as well 

as lower eukaryotes (Daley et al., 2005). Ku binds DNA ends with high affinity and is considered 

to be a docking platform for enzymes involved in the downstream NHEJ (Lieber, 2010). In 

vertebrate NHEJ, the kinase DNA-PKcs phosphorylates Artemis, and the endonuclease activity 

of the DNA-PKcs:Artemis complex is thought to be involved in the step of 5’ and 3’ overhang 

processing (Ma et al., 2002). Further downstream, DNA synthesis is performed by family X 

polymerases such as Pol and Pol (Lieber, 2010). The XRCC4:DNA ligase IV is a crucial 

complex able to ligate ends that share microhomology as well as incompatible ends (Gu et al., 

2007). The latter activity is facilitated by Ku and XLF (XRCC4-like factor) (Gu et al., 2007; Tsai et 

al., 2007). Other accessory components participate in processing 5’ and 3’ DNA ends in 

vertebrate NHEJ: polynucleotide kinase (PNK), aprataxin (APTX), and APLF, all interacting with 

XRCC4 and whose precise role is still a matter of debate (Lieber, 2010). 

Despite being less important for DSB repair, all the key NHEJ components are conserved in 

yeast. In the budding yeast, Ku and DNA ligase IV are present (Yku70Sc, Yku80Sc, Dnl4Sc) (Daley 

et al., 2005). The fundamental interaction between XRCC4 (Lif1Sc) and DNA ligase IV (Dnl4Sc) is 

also maintained (Herrmann et al., 1998). Pol4Sc, the only polymerase X in S. cerevisiae, has also 

been associated with NHEJ (Wilson and Lieber, 1999). However, homologs of other 

components such as DNA-PKcs and Artemis have not been identified (Daley et al., 2005). In the 

fission yeast S. pombe, the key S. cerevisiae NHEJ components are present, with the exception 
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of XRCC4 (Raji and Hartsuiker, 2006). Interestingly, a notable difference between S. cerevisiae 

versus S. pombe and H. sapiens NHEJ is the involvement of the MRXSc (Mre11Sc- Rad50Sc - 

Xrs2Sc) complex. Although its exact role is still unknown, it has been proposed that the 

tethering capabilities of the trimer may facilitate repair by keeping the severed overhangs in 

proximity. However, a more direct role in assisting Ku and Dnl4Sc has also been suggested 

(Daley et al., 2005).     

 A model for non-homologous end joining  1.7.2

Based on data from S. cerevisiae, a model for NHEJ has been proposed by Daley et al. (2005) 

where the MRX complex promptly binds DSBs internally to Ku. Dnl4Sc (DNA ligase IV) is then 

recruited to the DSB. After the pairing of the overhangs, ligation is attempted. If unsuccessful, 

a series of rounds of DNA end processing and ligation attempts follow. Thus, this model 

postulates an iterative process where the choreography of DSB repair by NHEJ is dictated by 

the relative affinity of NHEJ components for distinct DNA ends.  

A similar scenario might occur in vertebrates, with the additional role for DNA-PKcs in 

recruiting XRCC4:DNA ligase IV, which then ligates the two DNA ends. In this context, Artemis 

might be involved in the iterative ligation/processing rounds. The physical interaction shown 

for DNA-PKcs with XRCC4:DNA ligase IV and Artemis (Daley et al., 2010) would lend support to 

this model. 

1.8 DNA Double-strand break repair: homologous recombination 

 Overview of homologous recombination processes 1.8.1

Three main mechanisms can be grouped under the definition of homologous recombination 

processes: single-strand annealing (SSA), break-induced replication (BIR) and gene conversion 

(GC) (Haber, 2000). The process called single-strand annealing occurs when a DSB is created 

between two flanking homologous regions. In this scenario, these homologous regions can be 

used to direct annealing and ligation of the two DNA strands, leading to deletion of the 



17 
 

INTRODUCTION 

 

sequence between the repeats (fig. 1.1a). In cases where single-ended DSBs are generated 

(e.g. from a collapsed replication fork), a repair mechanism called break-induced replication 

can occur (fig. 1.1b). By this pathway, DNA replication continues to the end of a chromosome, 

or until a converging fork is encountered.  

However, it is usually common to refer to homologous recombination as a synonym for gene 

conversion, as it is still unclear whether and to what extent SSA and BIR represent 

physiological alternatives to GC in vivo, or whether they just represent failed GC events 

(reviewed in Paques and Haber, 1999). For this reason, the overview presented in this section 

focuses on homologous recombination as intended for gene conversion. 

Gene conversion is a uni-directional transfer of genetic information to a broken DNA molecule 

from a homologous template, usually a sister chromatid or a homologous chromosome. Gene 

conversion, like all the other proposed homologous recombination mechanisms, begins with a 

5’-3’ resection at the DSB to expose a long 3’-ended single-stranded DNA filament which 

invades a homologous region forming a so-called D-loop (displacement loop) (fig. 1.1, top). 

Gene conversion can lead to crossover events, and two models have been proposed for this 

mechanism.  

According to the model proposed by Szostak and colleagues (Szostak et al., 1983), following 

the formation of the D loop by strand invasion, the second resected end on the broken duplex 

(the one not engaged in the D loop formation) is captured to the D-loop. A double Holliday 

junction is then formed whose resolution leads to either crossing-over or non-crossing-over 

structures, depending on the direction by which the junctions are resolved (fig. 1.1c). In the 

second model, called synthesis-dependent strand annealing (SDSA) (fig. 1.1c, bottom), the 

newly synthesized leading strand is displaced from the donor and re-annealed to its original 

partner. Consequently, this mechanism leads to non-crossover events only.   

Thus, overall the essential steps in homologous recombination can be summarised as follows: 

first, the double strand break is recognised; second, the duplex is resected from the 5’ to the 3’ 
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end to provide a single-stranded filament for the subsequent strand invasion; a D-loop is 

formed between the above single DNA strand and a homologous template strand, either from 

a sister chromatid or a homologous chromosome; finally, the second end is captured and a 

double Holliday junction is formed which is then resolved, leading to either crossing-over or 

non crossing-over products.    

 Step 1: DSB recognition 1.8.2

The heterotrimeric MRN (Mre11Hs,Sc/Rad32Sp - Rad50Hs,Sp ,Sc – Nbs1Hs,Sp  / Xrs2Sc) complex is 

recruited at early stages of DSB repair in S. cerevisiae (Lisby et al., 2004). As seen above, this 

complex has been implicated at the early stages of DSB recognition. In the context of 

homologous recombination, data indicates that an additional role for this complex would be in 

tethering broken DNA molecules, keeping the partners close to each other in order to facilitate 

Figure 1.1 | Pathways of homologous recombination (adapted from Haber, 2000). a. Single strand 

annealing, occurring when two homologous regions flanking a DSB are used to direct the annealing step. b. 

Break-induced replication, occuring when DNA replication proceeds to the end of the chromosome or to a 

converging fork. c. Gene conversion, as a model proposed by Szostak et al. (1983) (top) or as synthesis-

dependent strand annealing (bottom). See text for more details. 
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the downstream molecular mechanisms. Firstly, it has been shown that clustering of damaged 

chromosome ends is reduced in MRN-deficient cells (Aten et al., 2004). Secondly, structural 

work in human cells indicates that the 50-nm long coiled coil of Rad50Hs can tether broken 

DNA ends (de Jager et al., 2001). Interestingly, in yeast it has been reported that the apex 

interaction that connects two Rad50 coiled coils is essential for wild-type resistance to DNA 

damaging agents (Wyman and Kanaar, 2006). In this context, a functional role has been has 

been proposed in S. pombe where Rad50 would promote the use of sister chromatids as 

templates for repair (Hartsuiker et al., 2001).       

 Step 2: DNA end resection 1.8.3

The following steps in homologous recombination require the creation of a single-stranded 3’-

hydroxyl overhang in a process named DNA 5’-3’ resection. Two types of DNA breaks should be 

distinguished: ‘clean’ DSB ends, with standard 5’-P and 3’-OH, like those resulting from the 

activity of endonucleases; ‘dirty’ DSB ends, with modified termini or protein-DNA adducts that 

require further processing in order to restore standard termini.  It appears that the role of the 

many enzymes associated with DNA resection is not always overlapping, and some specificity 

for specific structures exists.  

In S. cerevisiae, the MRX (Mre11Sc - Rad50Sc – Xrs2Sc) complex has been shown to play a crucial 

role in the resection of ‘clean’ breaks created by the HO endonuclease, whereas the ability to 

perform gene conversion per se is only marginally affected in mrx null mutants (Sugawara and 

Haber, 1992; Ivanov et al., 1994). Thus, the mechanistic details of this requirement are still not 

clear. Rather than having a direct role in the processive 5’-3’ resection, Mre11Sc nuclease 

activity is required only for the initial clipping of ‘dirty’ ends (Krogh and Symington, 2004). A 

similar role has been shown in S. pombe, where the Mre11 ortholog Rad32Sp is involved in the 

removal of Top2 and Top1 from the 5’ and 3’ ends, respectively (Hartsuiker et al., 2009). In the 

fission yeast and mammals, however, the endonucleolytic activity of the complex (Mre11Hs, 
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Rad32Sp) seems to be more crucial for DSB repair than in the budding yeast (Williams et al., 

2008; Buis et al., 2008).  

Work in S. cerevisiae has shown that the endonuclease Sae2 plays a role in the transition from 

the initial resection steps to the following end processing (Lisby et al., 2004). This finding 

would suggest a role for Sae2 as a regulator of 5’-3’ processive resection further to the activity 

of the MRX complex. Intriguingly, in S. pombe the Sae2 homolog Ctp1 participates in DNA end 

resection in concert with the MRN complex (Limbo et al., 2007). A role for this protein in 

processing ‘dirty’ DNA ends has been identified that overlaps with Rad32Sp in the removal of 5’-

bound Top2 (Hartsuiker et al., 2009). A functional interaction with the MRN complex has been 

also demonstrated for the human homolog CtIP (Sartori et al., 2007), confirming the crucial 

conserved involvement of this component in these initial steps of recombination. 

The extensive processing required for the generation of a 3’-overhang suggests the 

requirement for a 5’-3’ exonuclease. In the budding and the fission yeast, Exo1 seems to be a 

good candidate, as deletion of exo1 impairs resection (Llorente and Symington, 2004; Moreau 

et al., 2001; Tomita et al., 2003). However, the finding that resection and homologous 

recombination in Exo1-deficient cells still occur (Tran et al., 2004) indicates that other 

unknown nucleases or mechanisms are involved in shortening the 5’-3’ DNA tracts.     

Studies in S. cerevisiae and mammalian cells have suggested that a possible parallel 

mechanism for DNA end resection may involve the combined activity of the helicase 

Sgs1Sc/BLMHs and a single-strand-specific endo- or exonuclease. Deletion of both Sgs1Sc and 

Exo1Sc did not abolish gene conversion, suggesting that the combined activity of these two 

enzymes is not absolutely required for the initial steps of recombination (Mimitou and 

Symington, 2008). However, a resection defect was shown for sgs1Sc/bmlHs deletion mutants, 

and resection required Sgs1 helicase domain. The Exo1 nuclease activity was also required 

(Mimitou and Symington, 2008; Zhu et al., 2008; Gravel et al., 2008). It has been proposed that 

a two-step mechanism of resection occurs, where intermediates created by the initial 
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trimming (MRN complex and Sae2) are processed via either of two resection pathways: the 

first led by Exo1; the second involving Sgs1 in association with a nuclease (Mimitou and 

Symington, 2008). It has been suggested that this enzyme is the endonuclease/helicase Dna2Sc 

(Zhu et al., 2008). However, it should be noted that the assays employed in the two above 

studies (Mimitou and Symington, 2008; Zhu et al., 2008) are based on a single-strand annealing 

system in which the cellular background is devoid of the recombination protein Rad51Sc. This 

was done in order to exclude the contribution of Rad51-dependent molecular events such as 

break-induced replication. However, it cannot be excluded that the resection operated by 

Sgs1Sc in this background can in fact be an artefact of the system used. Thus, further work is 

needed to establish more precisely the extent and the mechanisms of the involvement of RecQ 

helicases in the resection step of homologous recombination.          

 Step 3: strand invasion 1.8.4

The ssDNA generated following the resection step is thought to be rapidly bound by the 

abundant single-strand binding protein RPA. The central step in homologous recombination is 

the assembly of a nucleoprotein filament, composed of DNA and recombination proteins 

belonging to the Rad52 epistasis group (Krogh and Symington, 2004). Biochemical data from 

lower and higher eukaryotes indicate that the recombinase Rad51 catalyses an ATP-dependent 

strand exchange reaction between a single-stranded circular DNA and a homologous linear 

duplex (Sung, 1994; Namsaraev and Berg, 1997). However, in yeast Rad51 is not always 

required for all recombination events and is often less important than Rad52 in vivo (Paques 

and Haber, 1999). It has been shown that Rad52 in S. cerevisiae acts by forming a complex with 

RPA bound to ssDNA and by recruiting Rad51, which then displaces RPA (Sugiyama and 

Kowalczykowski, 2002). Biochemical data indicate that other two proteins, Rad55 and Rad57, 

form a stable heterodimer which has been implicated in mediating the assembly of the Rad51 

nucleoprotein filament (Sung, 1997). Another component that localises to the Rad51 

nucleoprotein filament is Rad54. It has been shown that this enzyme, belonging to the 
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Swi2/Snf2 family of chromatin remodelling proteins, promotes Rad51-dependent pairing of 

homologous DNA through a change in the topological conformation of the double helix 

(Petukhova et al., 1999). This process, where the nucleoprotein filament invades a homologous 

duplex through the formation of a D-loop, is called strand invasion. The topological changes 

induced by Rad54 appear to be a requirement for strand invasion and DNA pairing (Petukhova 

et al., 1999; Van Komen et al., 2000). 

 Holliday Junction resolution 1.8.5

The Szostak model of recombination predicts the generation of a recombination intermediate 

called double Holliday junction (dHJ; fig. 1.1; Szostak et al., 1983). According to this model, the 

final products of recombination can be crossover or non-crossover type, depending on the 

directionality by which the double Holliday junction is resolved. Crossover events can occur 

between sister chromatids (SCE, Sister Chromatid Exchange) or between homologous 

chromosomes or regions in the genome. SCE are usually not deleterious, as sisters have 

identical sequences. Thus, the most obvious reason to suppress crossover events is to prevent 

exchanges between repetitive sequences in the genome, which could lead to harmful 

chromosomal rearrangements. For this reason, crossovers events are usually suppressed in 

favour of non-crossover events: by using the synthesis-dependent strand annealing (SDSA) 

pathway (fig. 1.1c), by biased resolution of Holliday junctions (fig. 1.1c), or by using a Holliday 

junction dissolution pathway (Wu and Hickson, 2003; Wu and Hickson, 2006).  

The mechanism for HJ resolution has been elusive for decades. Although studies in S. pombe 

initially suggested that the complex Mus81Sp /Eme1Sp was a promising candidate for in vivo HJ 

resolution, these proteins lack the biochemical properties of canonical HJ resolvases, such as 

activity towards static HJs in vitro (evidence reviewed in Svendsen and Harper, 2010). A role 

for Mus81Sp /Eme1Sp has been proposed where these enzymes act on intermediates generated 

during HJ resolution, rather than on fully formed HJs (Osman et al., 2003). In multicellular 
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eukaryotes, in vitro cleavage of HJs has been shown for the SLX1Hs/SLX4Hs complex, whereas 

the fungal ortholog appears to lack this activity (Svendsen and Harper, 2010).  

The first classical HJ resolvases involved in eukaryotic nuclear metabolism, GEN1Hs and Yen1Sc, 

have been recently identified in S. cerevisiae and mammalian cells, respectively (Ip et al., 

2008). S. pombe lacks an obvious ortholog of these enzymes. This finding might explain the 

prominent role for Mus81Sp /Eme1Sp in this organism (Ip et al., 2008). 

However, in the context of double Holliday junctions formed during gene conversion, it is still 

unclear whether and how these resolvases are controlled in vivo to allow a biased resolution 

towards non-crossover products. 

 RecQ helicases and Holliday junction dissolution    1.8.6

The RecQ family of helicases is a class of enzymes highly conserved across species and required 

for the maintenance of genome stability. Their importance is substantiated by the fact that 

three human RecQ homologs are defective in cancer-prone syndromes (Bernstein et al., 2010). 

Yeasts have only one main RecQ homologue (Sgs1 in S. cerevisiae, Rqh1 in S. pombe), while 

five members are present in human (BLM, WRN, RECQ1, RECQ4, RECQ5).  

One of the most prominent roles for RecQ helicases is their role in suppressing deleterious 

consequences arising from homologous recombination processes. As seen above, depending 

on the particular pathways chosen for HR-mediated repair of DNA damage, the final products 

can be crossover or non-crossover type (fig. 1.1c). In this context, RecQ helicases appear to be 

involved in suppressing crossover events, which could be potentially deleterious. Studies 

involving Rqh1Sp, Sgs1Sc and BLMHs have shown that these helicases are functionally associated 

with two binding partners, topoisomerase Top3Sc (TOPOIIIHs) and RmiSc (RmiSp, RMI1Hs/BLAP75) 

(Laursen et al., 2003; Gangloff et al., 1994; Johnson et al., 2000; Wu et al., 2000; Mullen et al., 

2005; Chang et al., 2005). These associations have proved to be important for the activity of 

these helicases in homologous recombination. In S. cerevisiae, Sgs1 is required to suppress 

crossovers during DSB repair and it has been proposed to process double Holliday junctions 
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(Ira et al., 2003). Sgs1 is also required for resolution of Rad51-dependent recombination 

intermediates arising from perturbed replication (Liberi et al., 2005). Likewise, in S. pombe 

early work has shown that rqh1 null cells have high levels of recombination and fail to properly 

segregate chromosomes (Stewart et al., 1997). Similarly to the situation in S. cerevisiae, fission 

yeast Rqh1-Top3 are involved with Rhp51 (homolog of Rad51Sc) in response to UV- and IR-

induced damage in G2 (Murray et al., 1997; Caspari et al., 2002; Laursen et al., 2003). The 

central role of RecQ helicases in suppressing potentially deleterious homologous 

recombination processes has been recently highlighted by showing that Sgs1Sc is critically 

required to suppress formation of multichromatid joint molecules during meiosis (Oh et al., 

2007). Together with other studies on human BLMHs helicase, these lines of evidence have 

suggested four roles for RecQ helicases in homologous recombination processes: 1) at the 

resection stage of homologous recombination, it has been recently demonstrated that Sgs1Sc, 

in collaboration with other nucleases such as Sae2, Exo1 and Dna2, is able to resect 5’ ends, 

allowing exposure of 3’ tails required for subsequent processing by the HR machinery 

(Mimitou and Symington, 2008; Zhu et al., 2008; Gravel et al., 2008); 2) at later stages of 

homologous recombination, RecQ helicases disrupt the formation of D-loops (van Brabant et 

al., 2000; Bachrati et al., 2006; Wu et al., 2001); 3) as suggested from studies in Drosophila, 

BLM helicase may assist the SDSA pathway (see fig. 1.1c), by facilitating DNA synthesis after 

formation of the D-loop and/or by disrupting the D-loop to allow reannealing of the extended 

strand to the original broken molecule (Adams et al., 2003; McVey et al., 2004); 4) a late role 

for RecQ helicases at double Holliday junctions has been shown in vitro for BLMHs in 

association with its functional partner TOPOIIIHs. In a process called double Holliday junction 

dissolution, BLMHs would process these structures into a hemicatenane structure by its branch-

migrating activity, and TOPOIIIHs would decatenate these intermediates into a non-crossover 

product (Wu and Hickson, 2003). RMIHs has been shown to be a stimulating factor in this 

process (Wu and Hickson, 2006; Raynard et al., 2006).  
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1.9 Repair of chemically altered DNA bases: Base Excision Repair 

 Mutation avoidance pathways: Base Excision Repair and Mismatch Repair  1.9.1

The most common base-base interaction within the DNA helix is the standard G/C – A/T 

Watson-Crick (W-C) pairing. Although alternative physiological base pairings exist, generally 

deviations from the standard W-C hydrogen bond configuration lead to threats to genome 

stability (Kunz et al., 2009). Another type of DNA mismatch is the misalignment of two 

complementary strands known as insertion/deletion loops (IDLs) (Jiricny, 2006; Kunz et al., 

2009). Two main pathways (reviewed in Kunz et al., 2009) deal with both these types of base 

mispairings: base excision repair (BER), responding to mispairings arising as a consequence of 

DNA damage; postreplicative mismatch repair (MMR), specialized in misincorporation errors 

generated by DNA polymerases.  

This section will give only a brief overview of the first repair pathway, whereas the next section 

will present a more detailed discussion about the mutation avoidance by MMR. 

 Core BER components in eukaryotes  1.9.2

Base Excision Repair is a highly conserved pathway which deals with damage to DNA bases in 

the form of alkylation, deamination and oxidation. Such chemical alterations can be 

deleterious for living organisms, as they can lead to deviations from the canonical Watson-

Crick base pairing (Robertson et al., 2009).  

BER acts by replacing the damaged base with the correct one and restoring the integrity of the 

affected DNA strand. The BER reaction is initiated by DNA glycosylases, which recognise and 

remove the damaged base, irrespectively of whether this is located on the nascent or the 

template strand. This cleavage creates either an apurinic or apyrimidinic (AP) site. Thus far, 11 

different DNA glycosylases have been identified in mammalian cells (Robertson et al., 2009). A 

common molecular mechanism appears to be shared by these proteins where the removal of 

the target base is performed by cleaving the N-glycosydic bond between the affected base and 

the proximal deoxyribose (Roberston et al., 2009). 
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The resulting AP site is further processed by either an AP endonuclease or an AP lyase, whose 

reaction generates a single nucleotide gap in the DNA strand. The difference between the two 

types of enzymes is in the side where the incision of the DNA is performed: 5’ or 3’ to the AP 

site, respectively (Boiteux et al., 1987; O'Connor and Laval, 1989; Robson and Hickson, 1991). 

Finally, the single-stranded gap is filled by DNA polymerase beta (POLBHs) and the nick ligated 

by DNA ligase III (LIG3Hs) (Sobol et al., 1996; Kubota et al., 1996; Wei et al., 1995).  

The importance of BER for genomic stability is confirmed by the high degree of conservation 

for the key components of the pathway from bacteria to mammals (Robertson et al., 2009). 

 Short-patch and long-patch BER 1.9.3

It has been shown that human BER can be reconstituted in vitro with only four enzymes: a 

uracil-DNA glycosylase (UNGHs), the AP endonuclease APEX1Hs, the polymerase POLBHs, and 

either the ligase LIG3Hs or LIG1Hs (Kubota et al., 1996). However, further work by Frosina et al. 

(1996) proposed the existence of two distinct BER pathways in mammalian cells. The case of a 

single-nucleotide gap directly processed by POLBHs and LIG3Hs was called short-patch BER, 

whereas the case where a longer gap is created was named long-patch BER (Frosina et al., 

1996). In the latter pathway, following the endonucleolytic activity of APEX1Hs, POLBHs exerts 

its additional strand-displacement activity which leads to the generation of a flap structure 

that needs to be processed by the flap endonuclease FEN1Hs prior to ligation (Frosina et al., 

1996; Robertson et al., 2009).  

Interestingly, XRCC1Hs has been shown to be recruited to repair sites promptly after the activity 

of a DNA glycosylase or an AP endonuclease during short-patch BER (Kubota et al., 1996). In 

this context, it has been suggested that XRCC1Hs would function as a scaffold protein, similarly 

to the situation in the general single-strand DNA repair (see 1.5.2 and Kubota et al., 1996). On 

the other hand, PCNAHs appears to be required specifically for long-patch BER (Robertson et 

al., 2009). However, the significance and the mechanism underlying the choice of either repair 

pathway are still obscure. 
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1.10 Repair of base-base mismatches: Mismatch Repair Pathway 

 Overview of the mismatch repair pathway 1.10.1

The estimated mutation rate during DNA replication in eukaryotic cells is lower than 1 

mutation every 109 bases copied. Replicative DNA polymerases are hi-fidelity enzymes, 

capable of error rates as low as 1 error every 107 insertions as a result of their proofreading 

activity (McCulloch and Kunkel, 2008). In order to achieve a further 100-fold decrease in 

mutation events, cells use correction pathways acting downstream of replication, of which 

postreplicative MMR is the most prominent one (McCulloch and Kunkel, 2008; Kunz et al., 

2009). Errors in nucleotide incorporation arise during either semi-conservative replication or 

synthesis associated with DNA repair, the most common causes being nucleotide pool 

imbalances (Roberts and Kunkel, 1988; Bebenek et al., 1992) or contaminations with 

chemically altered nucleotides (reviewed in Kunz et al., 2009). MMR deals with four types of 

mismatches within the DNA helix: non-Watson/Crick pairings; small insertion/deletion loops 

(IDLs); DNA bases-uracil mispairings (e.g. GU mispairings); chemical modification of DNA bases 

(e.g. 8-oxo-7,8-dihydroguanine, or 8-oxo-G) which lead to mismatches due to alterations of the 

hydrogen-bonding potential (Kunz et al., 2009). MMR in prokaryotes and eukaryotes can be 

divided into four steps: the first step is the recognition of the DNA lesion; the second step is 

the assembly of the repair complex; the third step is the identification of the nascent DNA 

strand; the final fourth step is the excision of the affected base and the resynthesis and ligation 

of the DNA strand (Jiricny, 2006). Although the general repair mechanisms are conserved, 

specific molecular differences distinguish prokaryotic, higher and lower eukaryotic systems. A 

schematic overview of the MMR pathway based on studies of reconstituted human MMR in 

vitro is shown in fig. 1.2.   

 Mismatch repair pathway in E. coli 1.10.2

To date most of the mechanistic insights in the MMR pathway derive from studies of the MutS, 

MutL and MutH complexes (collectively named MutHLS system) in E. coli.  MutS homodimers 
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recognize IDLs (1-4 nt in length) and a variety of base-base mismatches (Spampinato et al., 

2009; Kunz et al., 2009). MutS then recruits a homodimer of MutL; the formation of this 

ternary complex is dependent on ATP and activates the latent endonuclease MutH (Jiricny, 

2006). In prokaryotes, the specificity of the MMR pathway for mispairings occurring on newly 

synthesized DNA strands following DNA replication is due to MutH preferential binding to Dam 

methylation on GATC sequences, which are transiently unmethylated shortly after the transit 

of the DNA polymerase (Welsh et al., 1987; Au et al., 1992). MutH generates a nick which 

provides an entry point for the single strand binding protein SSB and the DNA helicase II 

(UvrD). This enzyme unwinds the DNA, facilitating the further exonucleolitic degradation by 

either 5’-3’ (RecJ or ExoVII) or 3’-5’ (ExoI or ExoX) nucleases, depending on where the 

mismatch is located (Burdett et al., 2001; Spampinato et al., 2009). Finally, the affected strand 

is resynthesized and ligated by DNA polymerase III and DNA ligase (Kunz et al., 2009).  

 The mammalian mismatch repair system 1.10.3

The MMR pathway in eukaryotes differs from the MutHLS system in that the proteins involved 

are heterodimers instead of homodimers (table 1.2). The initial steps of the pathway are 

similar to the E. coli system, whereas the steps downstream appear to differ. The initial 

recognition step is carried out by two heterodimers: MSH2 and MSH6 form MutS, dealing 

with base-base mismatches and 1-2 IDLs; MSH2 and MSH3 constitute MutS, which binds 

larger IDLs (Kunz et al., 2009). The precise role of the MutL heterodimers is still unclear. 

MLH1Hs and PMS2Hs form MutL, the most important MutL complex in human MMR. This 

dimer is involved in general MMR, including single base-base and short IDL mismatches 

(Kunkel and Erie, 2005; Kunz et al., 2009). MLH1Hs and PMS1Hs form MutL, which could 

provide a backup role for MutL, although its function is still unknown (Räschle et al., 1999).   

MLH1Hs heterodimerizes with MLH3Hs to form MutL, whose primary role seems to be in 

meiotic recombination (Lipkin et al., 2002).  

Although it has been shown that MutL and MutL interact to form a ternary complex with 
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Figure 1.2 | Schematic representing an overview of the mismatch repair pathway based on the 

reconstituted human MMR in vitro. Two scenarios are depicted. a: MutS and MutL clamps diffuse 

upstream and encounter the Replication Fork Complex RFC first. b: MutS and MutL clamps diffuse 

downstream and encounter a PCNA molecule first. Following excision, resynthesis and ligation steps are 

shared between the two scenarios. Adapted from Jiricny, 2006. 

E.coli H. sapiens S. pombe S. cerevisiae 

MutS MSH2 Msh2 Msh2 

 MSH3 Swi4 Msh3 

 MSH6 Msh6 Msh6 

MutL MLH1 Mlh1 Mlh1 

 PMS2 Pms1 Pms1 

 - - Mlh2 

 MLH3 - Mlh3 

 PMS1* - - 

MutH - - - 

- EXO1 Exo1 Exo1 

 
Table 1.2 MMR factors of prokaryotic and eukaryotic model organisms. 

*hPMS1 is closely related to Mlh2
Sc

, but it is not considered as ortholog 

because of significant structural dissimilarities. Adapted from Marti et 

al., 2002 
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the DNA (evidence reviewed in Jiricny, 2006), the dynamics of this assembly is still obscure. 

The mechanism of identification of the nascent strand in human MMR is still a matter of 

debate. Several lines of evidence suggest that the determinant may be provided by strand 

discontinuities arising from DNA replication (Spampinato et al., 2009). It has been suggested 

that PCNA (Proliferating Cell Nuclear Antigen) may be involved in this process, as in yeast 

MutS and MutS were shown to associate with PCNA and then be transferred to the 

mismatch (Lau and Kolodner, 2003). However, more recently it has been shown that the 

binding affinity and specificity of human MutS are in fact not dependent on PCNA (Iyer et al., 

2008). The final steps of MMR are aimed at the restoration of the original strand by excision, 

resynthesis and final ligation of the affected molecule. Given that mismatches can be either at 

5’ or 3’ to the MutS/MutL assembly point, both 5’-3’ and 3’-5’ exonucleases should be 

implicated in the excision step, similarly to what has been shown in E. coli (Burdett et al., 2001; 

Spampinato et al., 2009). However, to date only EXO1 has been associated with mammalian 

MMR, albeit only with some and not all the subsets of events (Wei et al., 2003). The 

reconstitution of the MMR system in vitro led to the additional identification of RPA (single-

stranded binding-factor replication protein A) and the non-histone chromatin component high-

mobility group box 1 (HMGB1) as MMR factors (Jiricny, 2006).     

 Mismatch repair in S. pombe 1.10.4

An intermediate situation is present in the fission yeast S. pombe. Three MutS and two MutL 

homologs have been found to date: Swi4Sp, Msh2Sp and Msh6Sp correspond to MSH3Hs, MSH2Hs 

and MSH6Hs in human cells; Mlh1Sp and Pms1Sp are MutL homologs of MLH1Hs and PMS2Hs 

(Marti et al., 2002). Msh2Sp is a central component of MMR-mediated repair, as deletion 

mutants show increased rate of mutation in mitotic growth (Rudolph et al., 1999). 

Furthermore, this protein has been implicated in mating-type switching, chromosome 

organization during meiosis and control of GT repeat stability (Rudolph et al., 1999; Mansour 

et al., 2001). Msh6Sp appears to play the same crucial role in MMR as Msh2Sp: these 



31 
 

INTRODUCTION 

 

components showed comparable increase of mutation rates in both mitotic and meiotic 

mismatch repair (Tornier et al., 2001; Rudolph et al., 1999). In contrast, Swi4Sp is only 

marginally involved in the MMR pathway and may be more important in processes such as 

mating-type switching (Rudolph et al., 1999; Mansour et al., 2001). The MutL homolog Pms1Sp 

is required both in mitotic MMR and in mismatches arising during meiotic recombination 

(Schär et al., 1997; Fleck et al., 1999). Little is known about the second MutL homolog, Mlh1Sp. 

Downstream, Exo1Sp endonuclease has been shown to be involved in the same MMR pathway 

as Pms1Sp and Msh2Sp, although its role is likely to be redundant with other yet unidentified 

endonucleases (Rudolph et al., 1998; Mansour et al., 2001). 

Detailed analyses of mismatches on a molecular level have suggested that in S. pombe two 

independent repair systems operate: a major long-patch pathway, dealing with all base 

mismatches except C/C, and a minor short-patch system, which repairs all mismatches 

including C/C with low efficiency (Schär and Kohli, 1993; Schär et al., 1993; Rudolph et al., 

1998). Components of other pathways such as Nucleotide Excision Repair have been found to 

be involved in the minor system (Fleck et al., 1999).     

1.11 Removal of bulky DNA adducts: Nucleotide Excision Repair 

 Overview of the nucleotide excision repair system 1.11.1

Nucleotide excision repair (NER) is a versatile DNA repair system which deals with a wide range 

of bulky DNA lesions caused by agents such as nitrosamines, benzo[a]pyrenes, cross-linking 

agents and UV light (Nouspikel, 2009). The basis for this flexibility lies in the signal for NER 

response being distortions in the DNA double helix and not specific DNA lesions (Nouspikel, 

2009). NER is commonly divided into two sub-pathways: global genome repair (GGR), acting on 

nontranscribed or unexpressed regions of the genome; transcription-coupled repair (TCR), 

specialised in the removal of lesions from actively transcribed genomic sequences (fig. 1.3). 

The sequential steps involved in NER are well characterised and they can be grouped into four 
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stages. The first stage is the recognition of the DNA lesion. It has been shown that in order to 

act as a signal for NER, a distorsion in the DNA helix and the presence of a chemical 

modification are required (Hess et al., 1997; Sugasawa et al., 2001). The second step is the 

denaturation of the DNA double strand around the lesion. Following a double incision step 5’ 

and 3’ to the lesion and the removal of the affected DNA oligonucleotide, the final stage is the 

gap filling and the ligation to restore the original DNA sequence.  

The importance of NER for the maintenance of genomic stability is proven by the number of 

diseases associated with mutations in NER components: Xeroderma pigmentosum (XP), 

Cockayne syndrome (CS), Cerebro-occulofacio-skeletal syndrome (COFS), UV-sensitive 

syndrome (UVSS), Trichothiodystrophy (TTD) (Lehmann, 2003). 

 Mechanism of human global genome repair 1.11.2

The complex which senses the DNA distortion in human cells is composed of three subunits: 

XPC, HR23B and centrin 2. XPCHs has been shown to bind preferentially to the DNA strand 

opposite the lesion, so it is thought to recognise DNA distortions and not the lesion per se 

(Maillard et al., 2007). HR23BHs interacts with XPC but its precise role is still unclear (Sugasawa 

et al., 1997). Data from the S. cerevisiae ortholog Rad23Sc suggest that HR23BHs may control 

the ubiquitylation status of XPC (Watkins et al., 1993). The association of centrin 2 with XPC-

HR23B stabilises the complex and stimulates NER (Araki et al., 2001). 

The recognition of mildly distorting lesions such as cyclobutane pyrimidine dimers (CPDs) is 

problematic for the XPC complex. The DDB (Damage DNA Binding) complex, composed of 

DDB1Hs and DDB2Hs/XPEHs, has been proposed to favour the recruitment of the XPC complex by 

exacerbating the DNA distortion (Nouspikel, 2009). Furthermore, the DDB2-associated E3 

enzyme ubiquitylates XPCHs, increasing its affinity for DNA while inducing degradation of the 

DDB complex itself (Sugasawa et al., 2005). These concerted mechanisms are thought to 

underlie a handover mechanism whereby XPC persists at the heart of the recognition stage of 

NER (Nouspikel, 2009).   
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Figure 1.3 | Schematic representing the current model for human nucleotide excision repair. Global 

genome repair (GGR) is involved in removing bulky adducts from non-transcribed regions of the 

genome, whereas transcription-coupled repair (TCR) acts on actively transcribed sequences. The four 

repair stages (recognition, denaturation, double incision and gap filling/ligation) appear to be shared by 

the two pathways. In global genome repair, the lesion is recognised primarily by the XPC-HR23B-centrin 

2 complex. For mildly distorting lesions such as cyclobutane pyrimidine dimers (CPDs), the recognition 

step by the XPC complex may be aided by the DDB (Damage DNA Binding) complex, which has been 

suggested to exacerbate the distortion. At this stage, ubiquitylation appears to play an important role, 

increasing the affinity of the XPC complex for DNA and inducing degradation of the DDB complex. The 

denaturation stage of GGR is performed by the transcription factor TFIIH in concert with the XPD and 

XPB helicases (not shown). The double endonucleolytic incision is performed by XPF-ERCC1 and XPG, 

respectively 5’ and 3’ of the lesion. The consequent gap is filled in by the replicative polymerases Pol 

and Pol in association with PCNA. Finally, the integrity of the DNA is restored by Lig III-XRCC1 and 

possibly Lig I. Mechanistic details for TCR are still unclear. CSA and CSB have been implicated in the 

initial recognition stage, although the exact meaning of their recruitment to lesion-stalled RNA 

polymerases II is still obscure.  Diagram adapted from Nouspikel, 2009. 
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The denaturation of the double helix around the lesion is carried out by the transcription 

factor TFIIH, composed of multiple subunits and involved in transcription (Nouspikel, 2009). 

The switchover between the transcriptional and the NER role appears to depend on the 

subunit MAT1Hs (Busso et al., 2000). The helicases XPDHs and XPBHs, of opposite polarities, are 

involved in opening the bubble around the lesion (Winkler et al., 2000; Coin et al., 2007). 

However, the role of the other subunits of the complex in NER is still unclear. 

Despite being essential for NER, the precise role played by XPAHs has not been elucidated yet. 

It has been proposed that XPAHs, in association with RPAHs, may function to recognise the 

strand carrying the lesion, or to verify the lesion itself (Nouspikel, 2009).             

The endonucleolytic incision 5’ and 3’ of the lesion is performed by XPFHs-ERCC1Hs and XPGHs, 

respectively (Evans et al., 1997; O'Donovan et al., 1994). Interestingly, the heterodimer XPFHs-

ERCC1Hs has been linked to other biological processes such as recombination and telomere 

maintenance (Nouspikel, 2009). A role in early steps of interstrand cross-link repair has also 

been proposed for this complex (see below).  

The last stage of NER is the refill of the gap and the ligation of the nicked strand. DNA 

resynthesis is performed by the replicative DNA polymerases  and  in association with PCNA 

(Popanda and Thielmann, 1992; Shivji et al., 1992; Nichols and Sancar, 1992). Recent work has 

indicated that ligation is executed by XRCC1Hs and DNA ligase III (Moser et al., 2007).               

 Transcription-coupled repair 1.11.3

The existence of transcription-coupled repair (TCR) was proposed following the observation of 

selective and more efficient removal of UV-induced damage from actively transcribed genes 

and transcribed strands from active genes (Mellon, 2005). TCR has been shown to be a sub-

pathway of NER in both prokaryotes and eukaryotes, as many proteins are shared between 

TCR and GGR (Nouspikel, 2009). The main difference between the two pathways appears to be 

at the recognition step, where the lesion is thought to be sensed by RNAPII during 

transcription. This has been directly inferred by the finding that lesions that do not affect 
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RNAPII are not able to elicit a TCR response (Donahue et al., 1996).  However, the subsequent 

connection between the recognition step and the involvement of NER factors is still a matter 

of debate. In E. coli, mutations in the mfdEc gene negatively affect TCR (Mellon and Champe, 

1996; Mellon, 2005). Supported with further biochemical and genetic evidence, a model has 

been proposed where Mfd plays a role in promoting and coordinating the recruitment of NER 

factors at the site of stalled RNA polymerase complex (Mellon, 2005). A similar situation may 

occur in higher eukaryotes, although mechanistic details are so far lacking. In human cells, 

CSAHs and CSBHs have been implicated in the recruitment of NER factors to lesion-stalled RNA 

polymerase II (Fousteri et al., 2006). TCR components and mechanisms appear to be conserved 

in yeast (Tornaletti, 2009). 

 Yeast NER 1.11.4

Early genetic characterisation led to the classification of yeast NER genes into two groups, 

according to the severity of the sensitivity shown by the respective single mutants to UV light 

and other DNA damaging agents, including DNA cross-linking agents (Prakash and Prakash, 

2000). NER components and mechanisms are mainly conserved between yeast and higher 

eukaryotes, with the exception of two proteins that have not been identified in human cells: 

Rad7 and Rad16 (table 1.3). In S. cerevisiae these proteins appear to be specifically involved in 

the repair of nontranscribed DNA, suggesting that Rad7Sc-Rad16Sc and not Rad4Sc are in fact 

functional homologs of XPCHs (Verhage et al., 1994; Mueller and Smerdon, 1995). 

 Translesion synthesis polymerases in lower and higher eukaryotes 1.11.5

Upon encountering a block impeding its progress, a replication fork can replicate the DNA past 

the damage in a process called translesion synthesis (TLS). This process depends on the switch 

between standard, hi-fidelity replicative DNA polymerases and specialised, low-fidelity 

polymerases (Lehmann et al., 2007). A brief description of these low-fidelity polymerases will 

be given below.      



36 
 

INTRODUCTION 

 

Human DNA polymerase  (Pol) is capable of efficient bypass of CPDs such as cyclobutane 

thymine dimers (McCulloch et al., 2004). Although this was shown in vitro, clinical data from 

patients defective in the gene coding for Polindicate that this enzyme is indeed the main one 

responsible for replicating past CPDs in human cells (Lehmann et al., 2007). The role for this 

protein is thought to be the reduction of in vivo mutagenesis, although data from human, 

mouse and budding yeast cells in this respect are controversial and partially argue against the 

mutagenic potential of the polymerase itself (Waters et al., 2009).    

It has been demonstrated both in vitro and in vivo that DNA polymerase  (Pol) is able to 

replicate DNA past a variety of lesions such as benzo[a]pyrene-guanine (Lehmann et al., 2007). 

Interestingly, an unexpected function for this polymerase has been shown in mammalian NER, 

where this enzyme was required for efficient removal of pyrimidine(6-4)pyrimidine (6-4 PP) 

photoproducts (Ogi and Lehmann, 2006). 

DNA polymerase  belongs to the B-family of polymerases and is a heterodimer composed of 

two subunits, the catalytic subunit Rev3 and the regulatory subunit Rev7 (Nelson et al., 1996).  

However, in contrast with the other members of the B-family, Pol lacks the 3’-5’ proofreading 

exonuclease activity, possesses low processivity and is mutagenic on undamaged DNA 

(McCulloch and Kunkel, 2008).   

Table 1.3 | NER components in H. sapiens, S. pombe and S. cerevisiae. 

 

H. sapiens S. pombe S. cerevisiae 

Not known Rhp7 Rad7 

Not known Rhp16 Rad16 

XPA Rhp14 Rad14 

XPC Rhp41/Rhp42 Rad4 

HR23B Rhp23 Rad23 

XPD Rhp3/Rad15 Rad3 

XPB Ercc3sp Rad25 

XPF Rad16 Rad1 

ERCC1 Rad16 Rad10 

XPG Rad13 Rad2 

CSB Rhp26 Rad26 

CSA ?Ckn1 Rad28 



37 
 

INTRODUCTION 

 

In both human and S. cerevisiae, REV3 mutants have been shown to be defective for 

spontaneous as well as for induced in vivo mutagenesis (Waters et al., 2009). The involvement 

of another Rev protein in TLS, Rev1, is more atypical. Rev1 is in fact not a polymerase but a 

deoxycytidyl transferase, although its activity has been shown to be similarly required for 

spontaneous mutagenesis or mutagenesis induced by DNA-damaging agents. Pol and REV1 

are considered to be the main proteins responsible for the mutagenic repair of DNA lesions in 

lower and higher eukaryotes (Waters et al., 2009).  

Little is known about the function of the Y-polymerase DNA polymerase  (Pol). It is 

characterised by very poor processivity and high error rates (Tissier at al., 2000), but details of 

its function in vivo are still obscure. Rather than being directly involved in TLS (or in addition to 

this role), the multiple interactions associated with this protein have suggested a role in the 

coordination of TLS at the replication fork (Lehmann 2007). 

 PCNA as a DNA polymerase switchboard  1.11.6

Work in S. cerevisiae has shown that the initiation step in TLS is the mono-ubiquitination of the 

homotrimeric complex PCNA. Mono-ubiquitination is performed by Rad6 and Rad18 on Lys-

164 in response to DNA damage. In a second step, mono-ubiquitinated PCNA is poly-

ubiquitinated on Lys-63 in a reaction dependent on Mms2-Ubc13 and Rad5 (Hoege et al., 

2002). Interestingly, the polyubiquitination rather than the monoubiquitination on Lys-164 

appears to channel DNA repair into a still uncharacterised error-free pathway (Stelter and 

Ulrich, 2003). A similar regulation occurs in S. pombe although, in contrast with the budding 

yeast, mutants defective in the ubiquitination of PCNA are also sensitive to IR (Frampton et al., 

2006). Similarly, in mammalian cells PCNA is mono-ubiquitinated in response to UV, MMS, 

mitomycin C, cisplatin and a variety of other DNA damaging agents (Lehmann et al., 2007). In 

the budding yeast and humans, the mono-ubiquitination of PCNA recruits the Y-family 

polymerases and provides a likely mechanism for the polymerase switch (Kannouche et al., 

2004; Watanabe et al., 2004; Bi et al., 2006; Guo et al., 2006). It has been proposed that the 
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stalling of the replicative polymerase generates single-stranded DNA which activates Rad18 (Bi 

et al., 2006). The binding of Rad6 to Rad18 establishes an E2-E3 complex that mono-

ubiquitinates PCNA. The consequent recruitment of Y-family polymerases to mono-

ubiquitinated PCNA leads to replication past the lesion and following dissociation and 

replication restart (Lehmann et al., 2007). Intriguingly, PCNA appears also to provide a flexible 

switchboard for other biological processes through post-translational SUMO modifications 

(reviewed in Bergink and Jentsch, 2009).  

1.12 Repair of DNA interstrand cross-links: ICL repair and Fanconi 

anemia pathway 

 DNA interstrand cross-link inducers in clinic and research 1.12.1

Amongst all the lesions occurring on the DNA double helix, interstrand cross-links (ICLs) 

represent a particularly insidious threat to genomic stability. Interstrand cross-links create 

covalent bonds linking the two DNA strands in a duplex, generating an abnormal structure that 

poses an insurmountable obstacle to the progression of cellular machinery like DNA 

replisomes. ICL-inducing agents have been used in clinical treatment of a diverse range of 

cancers since the second half of the nineteenth century. DNA interstrand cross-linkers are still 

commonly used nowadays, alone or in combination with other therapies, against many types 

of tumours such as haematological malignancies and those affecting lung, bladder, testicles, 

ovaries and pancreas (Lehoczký et al., 2007). Cross-linking agents can also be found in naturally 

occurring products such as medicinal and edible plants (Smith et al., 2004; Manderfeld et al., 

1997). In addition, evidence has been found of ICLs generated by exogenous environmental 

factors such as UV light (Love et al., 1986) as well as by metabolites of endogenous cellular 

metabolism (Niedernhofer et al., 2003). Although a detailed discussion of ICL-forming agents is 

beyond the scope of this introduction, a brief overview of the main classes of cross-linkers will 
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be given below. Further molecular details underlying their cytotoxicity are given in 4.1.2, with 

focus on the three compounds used in this study (cisplatin, mitomycin C, mechloretamine).  

The family of furocumarins comprises psolarens such as 8-methoxypsolaren (8-MOP), widely 

used in research as well as in dermatology for treatment of inflammatory skin diseases like 

psoriasis, vitiligo and eczema (Lehoczký et al., 2007).  

Cisplatin (cis-platinum diamminedichloride, or CDDP) is widely used in chemotherapy and 

research. Despite its high cytotoxic burden, cisplatin is routinely used for treatment of a broad 

range of tumours, in particular testicular and ovarian (Boulikas and Vougiouka, 2004). The 

majority of lesions caused by cisplatin are  intrastrand (IaCL) cross-links between two adjacent 

purine bases, whereas interstrand cross-links account for only a minority of the lesions (Brabec 

and Kasparkova, 2002).  

Nitrogen mustards are commonly used in clinic for treatment of tumours including multiple 

myeloma, lymphoma, leukemia and ovarian carcinoma (Lehoczký et al., 2007). 

Mechlorethamine (bis(2-chloroethyl)methylamine, or HN2) is the nitrogen mustard most 

widely used in research, although the generation of ICL accounts for only a small proportion of 

a wide range of lesions (Lehoczký et al., 2007). 

Mitomycin C (MMC) is a naturally occurring antibiotic employed in the treatment of gastric, 

pancreatic and non-small cell lung cancers (Verweij and Pinedo, 1990). Following enzymatic 

activation by physiological reductases, MMC is capable of generating a higher load of ICLs 

(approximately 13%) compared to other ICL-inducing agents (Lehoczký et al., 2007). 

Another class of interstrand cross-linking agents is represented by nitrosoureas like carmustine 

(Bis(2-chloroethyl)nitrosurea, or BCNU), used in the treatment of intracranial tumours and 

malignant melanomas (Lehoczký et al., 2007).     

 The multifaceted DNA interstrand cross-link repair 1.12.2

The mechanisms for the response to ICLs in unicellular organisms depend on components 

involved in the major DNA repair pathways: nucleotide excision repair, base excision repair, 
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mismatch repair, translesion synthesis and homologous recombination (Lehoczký et al., 2007). 

A similar situation is present in multicellular organisms, although the existence of the 

specialised Fanconi anemia (FA) pathway (McCabe et al., 2009) marks a significant difference. 

The evolution of this additional repair pathway may reflect the increased susceptibility of 

multi-cellular organisms to the exposure to endogenous and exogenous DNA interstrand cross-

linking agents.  

Due to the unique structure of this multifaceted DNA repair pathway, the precise identification 

of its components and their precise roles has proven to be an elusive task. Furthermore, it is 

important to notice that a general complication with the use of ICL-inducing agents in research 

is the generation of a variety of DNA lesions of which interstrand cross-links are in fact the 

minority. For instance, in cisplatin treatment 1,2-intrastrand cross-links between adjacent 

purines account for the majority of lesions caused; in psolaren treatment, 8-methoxypsolaren 

monoadducts persist even following photoactivation (Brabec, 2002). Available evidence 

indicates that ICLs are indeed the main lesions responsible for the cytotoxicity of the 

commonly used cross-linkers (Lehoczký et al., 2007). These considerations should be taken into 

account when assessing the contribution of the different repair pathways specifically to the 

resolution of DNA interstrand cross-links. This issue is further discussed in 4.1.2. In the next 

sections, the eukaryotic interstrand cross-link repair pathway will be dissected in its 

constitutive sub-components, with a final overview of the specialised Fanconi anemia pathway 

in mammalian cells and the recently discovered role of FAN1 in higher eukaryotes. The 

emphasis will be primarily given to functional details emerged from the literature so far, with 

the aim of providing a global picture for ICL repair in lower and higher eukaryotes. 

 Recombination-dependent and –independent ICL repair 1.12.3

The ICL repair is commonly divided into two sub-pathways. In one pathway, referred to as 

recombination-independent or mutagenic, following ICL removal the gap is filled by translesion 

polymerases. This pathway relies on NER and TLS and occurs normally in G1 phase, when a 
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homologous template is not available to act as a template. Well characterised in E. coli, the 

mutagenic ICL repair appears to be a minor and more elusive mechanism in lower and higher 

eukaryotes (Legerski, 2010). The second pathway depends on the homologous recombination 

machinery and is the prominent system for ICL repair in cycling mammalian cells (Legerski, 

2010). Thus, ICL repair in the S phase of the cell cycle appears to the preferable option, 

probably reflecting the fact that error-free ICL repair would be unfeasible without the 

presence of an undamaged homologous template, as both the DNA strands are compromised 

by the cross-link. Indeed, it has been suggested that ICLs can be tolerated until the S phase is 

reached, and that passage through S phase is required to elicit efficient repair (Akkari et al., 

2000; Zheng et al., 2003). Although different models have been proposed for this 

recombination-dependent pathway, their common feature is the initial collapse of a 

replication fork encountering the ICL and the consequent generation of a single-sided DSB 

(Legerski, 2010). These aspects of HR-dependent ICL repair will be discussed in 1.12.7.                

 NER proteins and ICL repair 1.12.4

Given the DNA-distorting lesions created by interstrand cross-linkers, it is not surprising that 

proteins involved in nucleotide excision repair have been shown to be centrally involved in ICL 

repair in both prokaryotes and eukaryotes (Lehoczky et al., 2007; McCabe, 2009). However, 

the exact role for these proteins is still unclear. It should be noted that ICLs represent a type of 

bulky lesion which is structurally distinct from the canonical NER substrates, as the two DNA 

strands are covalently linked and a complete opening of the bubble around the lesion is not 

achievable. However, this does not appear to constitute a limiting step for the reaction (see 

below).  

Using a cross-linked reporter plasmid assay, the core set of human NER components (XPC, XPA, 

TFIIH, XPG and XPF-ERCC1) was shown to be required for  repair of ICLs induced by mitomycin 

C or photo-activated psolaren (Wang et al., 2001; Zheng et al., 2003). 
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Work in lower and higher eukaryotes indicates that NER is involved in the initial recognition 

step. In S. cerevisiae, deletion of rad4 (XPCHs) caused hypersensitivity to treatment with HN2, 

cisplatin and mitomycin C (McHugh et al., 1999; Wu et al., 2004). Human XPC was shown to 

have affinity for ICLs in vitro (Zhao et al., 2009). The requirement for XPC was also 

demonstrated using a cross-linked reporter plasmid (Zheng et al., 2003). More direct evidence 

has been shown using a system capable of inducing laser-localised psolaren cross-links, to 

which XPC is rapidly recruited, along with other NER factors (Muniandy et al., 2009).  

Evidence has been found for the involvement of the elusive NER component XPAHs/Rad14Sc in 

ICL repair. In the budding yeast, rad14-deleted cells showed similar hypersensitivity to HN2 

compared to rad4-d strains (McHugh et al., 1999). Consistently, primary human XPA-deficient 

fibroblasts showed hypersensitivity to MMC (Niedernhofer et al., 2006). Kaye et al. (1980) 

showed that cells deficient in XPA were unable to remove ICLs formed by photoactivated 8-

methoxypsolaren. More recently, Clingen et al. (2007) reported in a comet assay system that 

XPA (along with XPF) is required for an efficient reaction of ICL unhooking.  

Further downstream in the NER cascade, work in the budding and the fission yeast has 

affirmed the crucial involvement of the nuclease Rad2Sc/Rad13Sp (homologs of mammalian 

XPG) in the response to cross-linking agents. In S. cerevisiae, deletion of RAD2 leads to 

increased sensitivity to cisplatin, HN2, MMC and 8-MOP (Chanet et al., 1985; Wilborn and 

Brendel, 1989; Wu et al., 2004). Following induction of 8-MOP ICLs at the mating-type locus 

MAT, rad2-d showed impaired repair attributed to defective incision of the substrate (Meniel 

et al., 1995). In S. pombe, rad13-d strains are hypersensitive to exposure to HN2, cisplatin and 

mitomycin C (Lambert et al., 2003 and this study). The human ortholog XPG has also been 

directly associated with ICL repair (Wang et al., 2001; Zheng et al., 2003). XPG-deficient 

chinese hamster cell lines showed not only sensitivity to cisplatin, but also defects in ICL 

uncoupling, the first double incision which leads to release of the ICL from one of the two DNA 

strands (De Silva et al., 2002).  
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However, the most remarkable evidence of involvement of NER components in ICL repair is 

represented by the mammalian XPF-ERCC1 complex. Whereas in S. cerevisiae the deletion of 

the XPF ortholog RAD1 leads to a significant but not dramatic sensitivity to HN2 (Barber et al., 

2005), data from mammalian cells indicates a fundamental role in response to ICLs (see 

below). This component will be further discussed in section 1.12.8.        

 Translesion synthesis in HR-independent ICL repair 1.12.5

Numerous lines of evidence suggest that the eukaryotic recombination-independent ICL repair 

pathway, occurring mainly in G0/G1, is dependent on translesion polymerases. Indirect 

evidence has been found in both yeast and mammalian cells, where it has been demonstrated 

that repair of ICLs is mutagenic (Ruhland and Brendel, 1979; McHugh et al., 1999; Sarkar et al., 

2006; Wang et al., 2001; Zheng et al., 2003). A summary of the most relevant direct evidence 

of the involvement of TLS polymerases in recombination-independent ICL will be presented 

below. 

Early work in S. cerevisiae pointed at a crucial role for Rev3, the catalytic subunit of the B-

family polymerase Pol(Nelson et al., 1996). Also known as Pso1, Rev3 has been implicated in 

ICL repair based on sensitivity of the deletion mutant to psolaren (Henriques and Moustacchi, 

1980; Cassier-Chauvat and Moustacchi, 1988). Sensitivity has been subsequently 

demonstrated for cisplatin, HN2 and MMC (Grossmann et al., 1999; Grossmann et al., 2000; 

McHugh et al., 2000; Wu et al., 2004). Pol-null yeast mutants are more sensitive to HN2 

treatment in G0/G1 than in S phase, pointing at a role for this polymerase in recombination-

independent ICL repair (McHugh et al., 2000; Sarkar et al., 2006). In this context, NER-

dependent incision is shown to be required prior to TLS-dependent gap filling (McHugh and 

Sarkar, 2006; Sarkar et al., 2006). A role for Pol in the HR-independent ICL repair pathway has 

also been shown in avian, mouse and human cells (Shen et al., 2006; Zhang et al., 2007). Direct 

biochemical evidence has been found for Pol activity in HR-dependent ICL repair using cell-
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free X. laevis extracts. In this system, the regulatory subunit REV7 appears to be required for 

the extension step past the ICL (Räschle et al., 2008).     

Rev1Sc possesses a deoxycytidyl-transferase rather than a standard polymerase activity 

(Waters et al., 2009) and it has been shown to be epistatic to Pol in S. cerevisiae ICL repair 

(Sarkar et al., 2006). However, work in S. cerevisiae and mammalian cells have failed so far to 

identify a precise role for this protein. Thus, it is possible that the proposed role for Rev1Sc 

(REV1Hs) in coordinating TLS at the replication fork (Lehmann, 2007) holds true for ICL repair as 

well. 

The involvement of other TLS factors in the budding yeast ICL repair is still unclear. Genetic 

evidence excludes a role for Rad30, the second major Y-polymerase in yeast (Grossmann et al., 

2001; Wu et al., 2004; Sarkar et al., 2006). In contrast, data from host-cell reactivation assays 

are consistent with a role for the human ortholog Pol in the HR-independent ICL repair, as 

repair of MMC and psolaren ICLs is affected in XPV (Pol-deficient) cells (Wang et al., 2001; 

Zheng et al., 2003). 

The requirement for other factors of the TLS machinery is still unclear. However, the 

participation of ubiquitinated PCNA and/or other posttranslational modifications has been 

proposed (Sarkar et al., 2006). 

 MMR and BER in ICL repair 1.12.6

Genetic data indicate that in S. cerevisiae the deletion of MMR proteins Msh2, Msh6 and Pms1 

does not affect the response to cisplatin and HN2 (Beljanski et al., 2004). However, based on 

epistasis analysis, Msh2 has been implicated in ICL processing in S phase (Barber et al., 2005).  

Human clinical data in this respect are controversial, as MMR-deficient cells have been 

reported to be more resistant to cisplatin treatment (Johnson et al., 1998). Discrepancies have 

been found in MMR- cells treated with MMC, where response has been reported to be either 

uninfluenced or negatively affected by the absence of MMR (Papouli et al., 2004; Fiumicino et 

al., 2000). Several hypotheses have been proposed for the involvement of MMR in ICL repair. It 
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has been proposed that resistance to cisplatin may be simply due to the mutator phenotype 

conferred by the absence of MMR, and this would explain the degree of variable resistance 

observed in different studies (Papouli et al., 2004; Pani et al., 2007). Alternatively, it has been 

suggested that MMR may be involved in the resolution of mismatches generated following the 

activity of TLS polymerases (Moggs et al., 1997). In contrast, recent data suggest that MMR in 

human cells participates in the homologous recombination-dependent ICL repair pathway and 

not in the error-prone pathway (Wu et al., 2005). Using psolaren-modified triplex-forming 

oligonucleotides, Zhao et al. (2009) demonstrated the participation of MutS in the XPA/XPC-

dependent recognition of ICLs in vitro and in vivo, confirming previous in vitro data (Zhang et 

al., 2002). Taken together, the evidence on MMR implication in response to ICL-inducing 

agents suggests the existence of a diversified scenario, where MMR components may act on 

intermediates of ICL repair only in specific circumstances. However, a direct role for the MMR 

pathway in ICL repair seems to be excluded. In fact, it has been proposed that direct action by 

MMR on cisplatin adducts may trigger a futile repair cycle that would finally lead to apoptosis 

(Brabec et al., 2002). This hypothesis would provide another possible explanation for the 

increased resistance in cisplatin-treated cell cultures. 

The role for base excision repair in the resolution of ICLs is still unclear. In S. cerevisiae, the lack 

of 3-methyladenine glycosylase (Mag1) leads to hypersensitivity to HN2 (McHugh et al., 1999). 

In this study, mag1 (and no other BER component) is shown to be epistatic to rad4 for HN2 

sensitivity. However, the lower sensitivity of mag1-d compared to rad4-d suggests potential 

overlapping roles in the repair of less toxic HN2 lesions such as monoadducts. 

Studies in human cells indicate that psolaren-induced DNA monoadducts are firstly excised by 

the DNA glycosylase NEIL1 and secondly processed by the apurinic/apyrimidinic endonuclease 

1 (APE1) (Couvé-Privat et al., 2007). Recent work highlights a crosstalk between FA proteins 

and NEIL1 where the Fanconi anemia pathway would act in the stabilisation of the BER 
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component at ICL sites (Macé-Aimé et al., 2010). However, the details of this interaction are 

still unclear and further investigations are needed. 

 Homologous recombination-dependent ICL repair 1.12.7

Homologous recombination (HR) is crucially involved in the repair of interstrand cross-links in 

eukaryotes (Legerski, 2010). Studies in S. cerevisiae clearly indicate that this yeast relies on 

homologous recombination for ICL repair, as RAD51 and RAD52 null mutants are 

hypersensitive to ICL-inducing agents, especially in exponentially growing cells (Henriques and 

Moustacchi, 1980; McHugh et al., 2000; Grossmann et al., 2001). A similar importance has 

been demonstrated for the fission yeast ortholog Rhp51 (Lambert et al., 2003 and this study). 

Consistently, sensitivity to interstrand cross-linkers has been demonstrated for other mutants 

defective in components of the budding yeast HR machinery such as the MRX complex, Rad54, 

Rad55 and Rad57 (Henriques and Moustacchi, 1980; McHugh et al., 2000; Wu et al., 2004). 

Interestingly, the sensitivity of RAD55-deleted mutants in stationary phase suggested an 

additional role for this protein aside from the HR-dependent ICL repair (Wu et al., 2004).  

Likewise, siRNA depletion of RAD51 and RAD52 in human fibroblasts led to increased 

sensitivity to MMC (Hanlon Newell et al., 2008). Other in vivo studies in rodent and chicken 

cells have confirmed the requirement of the HR machinery for wild-type resistance to cross-

linking agents, although differences appear to exist in the involvement of Rad52-dependent 

events (Hinz, 2010).  

As discussed above, the involvement of the HR machinery is confined to S phase of the cell 

cycle, when a homologous sequence is available as a template for the repair. In both yeast and 

mammals, it has been shown that DSB formation after exposure to ICL-inducing agents 

requires passage through S phase (McHugh et al., 2000; Akkari et al., 2000; De Silva et al., 

2000; Räschle et al., 2008). One-ended DSBs can be generated in either of two scenarios: the 

replication fork proceeds past the end of a single-stranded region of DNA previously processed 

by endonucleolytic cleavage; or, the replication fork collapses following direct collision with 
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the ICL (Legerski, 2010). However, a third scenario has been proposed where the collapse of 

two converging replication forks generates a two-ended DSB (Räschle et al., 2008). In any of 

these situations, it is important to note that homologous recombination could not operate 

directly on a template containing an ICL, as the covalent bond would prevent the necessary 

separation of the two complementary strands. Thus, the interplay between HR and other 

repair mechanisms is crucial for the HR-dependent ICL repair pathway. This section will 

present a brief summary of the evidence implicating homologous recombination in ICL repair. 

One of the mechanisms postulated for the formation of one-ended breaks is mediated by the 

structure-specific endonuclease Mus81-Eme1 (Mus81Sc-Mms4Sc). Work in mouse ES cells has 

implicated this complex in the ICL resolution, as Mus81-Eme1- dependent cleavage is required 

for DSB formation in cells treated with cisplatin and MMC (Hanada et al., 2006). Based also on 

the preceding characterisation of this endonuclease in vivo and in vitro (see Rahn et al., 2010 

for reviewed evidence), it has been proposed that the endonucleolytic cleavage occurs on one 

of the affected strands, 3’ to the lesion (Hanada et al., 2006). The second incision, 5’ to the 

cross-link, appears to be performed by XPF-ERCC1 (see 1.12.8.). This double incision 

(unhooking) is thought to be necessary in order to provide a suitable substrate for 

recombination-mediated replication restart (see 1.12.8.). Further downstream, mounting 

evidence suggest that the recruitment of translesion synthesis polymerases after the 

unhooking reaction is dependent in mammals on the Fanconi anemia pathway (Shen et al., 

2009). In this context, this pathway would provide a recruitment mechanism for TLS 

polymerases, given the absence of stretches of single-stranded DNA which would serve as an 

activator for RAD18 (Bi et al., 2006).     

Thus, a role for recombination-dependent replication restart in ICL repair has been repeatedly 

indicated by the available data, and models have been proposed for the re-establishment of a 

replication fork at the site of nucleotide incorporation. However, it should be also noted that 

the models for replicational fork restart presented so far (reviewed in Lambert et al., 2007) 
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may not directly be applicable to an ICL-stalled replication fork, as in this case the damage 

involves both, and not only one, of the two complementary DNA strands.     

 Mammalian XPF-ERCC1 and ICL response 1.12.8

In mammalian NER, the XPF-ERCC1 endonuclease functions by cleaving the denatured bubble 

5’ to the adduct (Evans et al., 1997). Human and CHO cells defective in XPF-ERCC1 are 

dramatically more sensitive to ICL-inducing agents compared to other NER mutants (evidence 

reviewed in (Wood, 2010). This may suggest that the activity of this complex in ICL repair is in 

fact distinct from the standard role played in NER and that XPF-ERCC1 would be involved in 

different stages of ICL repair. 

It has been proposed that XPF-ERCC1 is involved in the initial reaction of ICL unhooking from 

the DNA duplex. In the first model proposed, a 3’-5’exonucleolytic activity has been invoked 

for this complex in the presence of RPA (Bessho et al., 1997). Together with other components 

of the NER pathway, this nuclease would remove a short stretch of ssDNA 5’ to the ICL, event 

which would initiate a futile repair reaction that would terminate with either an unligated 

cross-linked product or a ligated product resembling the original cross-link (Bessho et al., 1997; 

Mu et al., 2000). Alternatively, dual incisions would be executed by XPF-ERCC1 in the canonical 

context of the NER pathway (Wang et al., 2001; Zheng et al., 2003).  

In dividing cells, the process of ICL unhooking is thought to be a necessary step for the 

generation of the one-ended and two-ended DSBs (Räschle et al., 2008; Hinz, 2010).  

Importantly, a recent study has demonstrated the requirement for ERCC1-XPF-dependent ICL 

unhooking for localisation of FANCD2 to chromatin (Bhagwat et al., 2009). Although it has 

been proposed that at this stage XPF-ERCC1 may be the only endonuclease responsible for the 

cleavage of one of the two DNA strands, 5’ and 3’ to the ICL (Kuraoka et al., 2000; Fisher et al., 

2008), the most commonly accepted model proposes a combined two-step incision of Mus81-

Eme1 (3’ to the ICL) first, followed by XPF-ERCC1 (5’ to the ICL) (Hanada et al., 2006). This 

scenario would be compatible with SLX4 acting as a scaffold for both the endonucleases 
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(Fekairi et al., 2009; Muñoz et al., 2009). However, some controversy exists in this respect, as 

the endonucleolytic activity of XPF/ERCC1 5’ of the ICL has been shown only in vitro on an 

artificial structure with the cross-link adjacent to a single-stranded 3’ flap (Kuraoka et al., 

2000).  

 Models for replication-initiated ICL repair 1.12.9

Based on studies in bacteria, lower and higher eukaryotes, different models have been 

proposed for replication-initiated ICL repair. The models proposed by McHugh et al. (2001) and 

Niedernhofer et al. (2004) envisage that following the encounter of a replication fork with the 

ICL, a one-ended DSB is created (fig. 1.4). Although the mechanism for DSB formation in this 

context is still unclear, it can be postulated that one-ended DSBs are created as a consequence 

of a 3’ endonucleolytic cleavage or of a replication fork run-off. It is thought that the 

subsequent cleavage 5’ to the ICL releases the adduct (ICL unhooking). According to 

Niedernhofer et al. (2004), TLS polymerases would be then responsible for filling in the single-

stranded gap and excisional repair for removing the ICL from the DNA duplex. Finally, gap 

filling and recombinational repair would restore the integrity of the double strand 

(Niedernhofer et al., 2004). This model differs from the one proposed by McHugh et al. (2001), 

where homologous recombination is thought to rescue DNA replication and it would not act as 

a final repair mechanism per se. In the light of the data reviewed in this chapter, the adapted 

model shown in fig. 1.4 has been based on Niedernhofer et al., 2004. The most accepted 

endonucleolytic mechanism for the release of the adduct (Hanada et al., 2006) is shown here, 

a two-step incision where Mus81-Eme1 would be responsible for the cleavage 3’ to the ICL and 

XPF-ERCC1 for the 5’ cut, although this aspect is still subject of controversy (see 1.12.8). 

The above models are based on a single replication fork encountering the ICL adduct. 

However, recently a model has been proposed which postulate a scenario where two 

replication forks would converge at the ICL (fig. 1.5; Räschle et al., 2008). After an initial fork 

pausing 20-40 nt from the lesion, one of the leading strands would be extended to 1 nt from 
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the adduct. Following incision, translesion synthesis would occur as hypothesised in 

Niedernhofer et al., 2004. Finally, the repair of the top strand would be carried out by NER 

mechanisms, whereas the bottom strand would be restored by recombinational repair. The 

adapted model proposed by Räschle et al. (2008) is shown in fig. 1.5. One important difference 

between the single and the double replication fork model is the extension past the ICL: 

whereas with a single replication fork TLS polymerases would be required for the filling of a 

single stranded gap, in the double fork model translesion synthesis would be implicated in the 

extension of one of the newly replicated strands. It should be noted that questions still exist 

whether the double replication fork model is relevant in vivo. One of the issues that might 

pose a conceptual obstacle to this model is the fact that the activation of DNA damage 

checkpoints would act to prevent the firing of late origins (Lambert et al., 2007), thereby 

significantly reducing the possibility of two forks converging at the ICL. However, it is still 

possible that a combination of the two scenarios occur in vivo, although further studies are 

needed to support any further hypothesis.  

 The role of Pso2/Snm1 in ICL repair 1.12.10

Screens in S. cerevisiae for mutants sensitive to ICL-inducing treatments revealed the existence 

of two genes, snm1 (Sensitivity to Nitrogen Mustard) and pso2 (sensitive to PSOlaren), 

required for wild-type resistance (Henriques and Moustacchi, 1980; Ruhland et al., 1981). 

Cassier-Chauvat and Moustacchi (1988) later demonstrated that snm1 and pso2 are in fact 

allelic. Widely conserved across eukaryotes, Pso2/SNM1 belong to the -CASP subfamily of the 

metallo--lactamase (MBL) super-family of proteins and mounting evidence suggest conserved 

important roles in response to ICLs (Cattell et al., 2010). In S. cerevisiae, Snm1 has been shown 

to be a DNA 5’exonuclease, and this activity is required for its function in ICL repair (Li et al., 

2005). Interestingly, snm1-d mutants show defects in repair of DSBs induced by ICL treatment, 

implicating this gene in processing intermediates generated after the incision step (Li and 

Moses, 2003; Barber et al., 2005). 
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Figure 1.4 | Model for single replication fork-initiated ICL repair (adapted from Niedernhofer et al., 

2004 and Hanada et al., 2006). This model proposes that either a 3’ endonucleolytic cleavage or a 

replication fork run-off generates a one-ended DSB. Translesion synthesis is thought to fill in the gap 

created by the ICL unhooking and final excisional and recombinational repair would finally restore the 

integrity of the genetic information. Mus81-Eme1 and XPF-ERCC1 would be responsible for the cleavage 

3’ and 5’ to the ICL, respectively, as proposed in Hanada et al., 2006.  
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Based on the available data, a role for Snm1/Pso2 has been postulated where its nuclease 

activity would resect the DNA flanking the ICL to facilitate TLS or homologous recombination 

(Li et al., 2005; McHugh and Sarkar, 2006). However, epistatic analyses suggest that in S. 

cerevisiae the role of Snm1/Pso2 in DNA repair may in reality be broader and more complex. In 

S phase, overlapping roles in ICL damage processing have been found for Pso2, Exo1 and Msh2 

(Barber et al., 2005). Furthermore, in response to ionizing radiation (IR), overlapping functions 

have been suggested for Pso2, Exo1 and Mre11 (Lam et al., 2008). These data indicate that 

Pso2 function in S. cerevisiae may not be confined exclusively to ICL resolution, and a complex 

interplay with other repair factors may occur, partly dependently on the cell cycle phase. Of 

the three human paralogs, the most similar in structure to yeast Pso2 is SNM1A (Dronkert et 

al., 2000). The finding that only SNM1A and not SNM1B or SNM1C can suppress the sensitivity   

Figure 1.5 | Model for double replication fork-initiated ICL repair (adapted from Räschle et al., 

2008). In this model, two converging replication forks stall 20-40 nucleotides from the ICL. 

Extension to 1 nt from the adduct is followed by translesion synthesis, required for the further 

extension of one of the two nascent strands past the lesion. Finally, the top and the bottom duplex 

would be restored by NER and HR processing, respectively. 
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of pso2-d yeast null mutants to ICL-inducing agents strongly indicates that SNM1A is a 

functional homolog of yeast Pso2 (Hazrati et al., 2008). Human fibroblasts depleted in SNM1A 

are more sensitive than wild-type cells to MMC treatment (Hemphill et al., 2008). Following 

treatment with the interstrand cross-linking agent 4HC (4-Hydroperoxycyclophosphamide), 

SNM1A showed increased localisation to damage-induced foci (Richie et al., 2002). 

Interestingly, in this study SNM1A foci formation was augmented also upon IR treatment and 

in colocalisation with MRE11 and 53BP1, which could indicate a wider role for this protein in 

DNA repair (Richie et al., 2002). An additional similarity to the yeast ortholog is the finding that 

the increase in foci formation is cell-cycle dependent (Richie et al., 2002). The existence of a 

SNM1A ICL repair pathway partly independent of the canonical FA pathway has been indicated 

by epistasis analysis (Ishiai et al., 2004; Hemphill et al., 2008). An additional level of regulation 

has also been suggested by the physical interaction and the nuclear colocalisation of SNM1 

with the SUMO E3 ligase PIAS1 (Ishiai et al., 2004). The importance of post-translational 

modifications in this scenario has been highlighted by recent work showing that SNM1A is 

recruited to damage-induced nuclear foci through its UBZ domain and dependently on RAD18-

monoubiquitination of PCNA (Yang et al., 2010).  

The specificity in sensitivity to MMC and no other DNA interstrand cross-linking agents has 

hinted at the existence of overlapping functions between SNM1A and the other human 

paralogs. However, despite the defective response to ICL-inducing agents which has been 

shown for mammalian SNM1B in some circumstances (evidence reviewed in Cattell et al., 

2010), the data suggest that SNM1A is the only human paralog clearly involved in ICL repair. 

 The Fanconi anemia pathway in ICL repair 1.12.11

The Fanconi anemia (FA) pathway is a DNA damage response cascade present in higher 

eukaryotes defined by at least 13 genes found mutated in the corresponding genetic disease: 

FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ, FANCL, 

FANCM and FANCN. The FA pathway is normally divided into three units: upstream 
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components (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL and FANCM), which 

assemble into an E3 ubiquitin ligase complex called the “FA core complex”; the central 

complex FANCD2-FANCI (termed “ID complex”), which is ubiquitinated by the FA core complex 

in response to DNA damage; and the downstream components, including FANCD1/BRCA2, 

FANCN, FANCJ (Kee and D'Andrea, 2010). Additional associated downstream components such 

as FAAP24, FAAP100, MHF1, MHF2 and the newly discovered FAN1 are not part of the FA 

pathway as described above, but are required for its functionality (Kee and D'Andrea, 2010). 

Finally, deubiquitination mediated by the USP1/UAF1 complex has been shown to be required 

for the completion of the pathway (Nijman et al., 2005; Cohn et al., 2007). Although multiple 

functions are being increasingly associated with the FA pathway, its primary role is in response 

to interstrand cross-links.   

The helicase/translocase FANCM is a crucial component of the FA pathway with several 

identified biochemical activities (Whitby, 2010). FANCM appears to be required, in complex 

with FAAP24, for the recruitment of the FA core complex to chromatin in response to DNA 

damage (Kim et al., 2008). Taken together, complementation and biochemical studies indicate 

that FANCM-FAAP24 acts as a sensor for the DNA lesion and recruits the FA core complex to 

facilitate the monoubiquitination of FANCD2 (Whitby, 2010). However, the finding that defects 

in FANCMHs ATP-binding capabilities lead to deficiency in resistance to MMC but not in the 

monoubiquitination of FANCD2 and FANCI suggest that the role of FANCM in DNA repair is 

broader and partially independent of the main FA pathway (Xue et al., 2008; Singh et al., 

2009). The ATP-dependent translocational activity on synthetic four-way junctions and DNA 

forks may indicate a role for FANCM in remodelling stalled forks at sites of damage, possibly to 

facilitate ICL repair (Xue et al., 2008). Other important activities proposed for FANCM in 

response to DNA damage are the activation of the S-phase checkpoint, the stabilisation of 

stalled replication forks and avoidance of sister chromatid exchanges (evidence reviewed in 

Whitby, 2010). These roles have been proposed also in the light of work done with FANCM 
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orthologs in the budding and fission yeast (Mph1Sc and Fml1Sp respectively), which appear to 

be the only FA components in lower eukaryotes (Whitby, 2010). Interestingly, further support 

to the proposal of FA-independent ICL repair functions for FANCM derives from work in S. 

pombe, which showed that fml1 deletion mutants are hypersensitive to cisplatin (Sun et al., 

2008).   

The monoubiquitination of the central mediators FANCD2-FANCI is a crucial step for the 

downstream events in the FA pathway, although detailed mechanisms of how this event 

coordinates ICL repair are still enigmatic (Alpi and Patel, 2009). A role has been shown in 

Xenopus for the FA pathway in supporting HR-dependent ICL repair. In this study, it has been 

demonstrated that monoubiquitinated FANCD2-FANCI would promote incisions near the ICL 

and translesion synthesis (Knipscheer et al., 2009). Although numerous studies have indicated 

that the FA pathway acts to support recombinational ICL repair (Kee and D’Andrea, 2010), the 

most direct connection found was the identification of biallelic mutations in the HR factor 

BRCA2 from FA patients (Howlett et al., 2002). 

The current model for the involvement of the FA pathway in ICL repair is as follows: the ICL is 

recognised by FANCM-FAAP24 bound to the recently discovered MHF complex (Singh et al., 

2010; Yan et al., 2010; Kee and D’Andrea, 2010). FANCM-FAAP24-MHF recruits the FA core 

complex, which in turn monoubiquitinates FANCD2 and FANCI on chromatin (Alpi and Patel, 

2009; Kee and D’Andrea, 2010). FANCD2-FANCI then recruits downstream factors such as the 

newly identified FAN1 nuclease and interacts with HR and TLS factors, finally facilitating HR-

dependent ICL repair (Kee and D’Andrea, 2010). Furthermore, it is thought that a parallel 

crosstalk with S-phase checkpoint proteins mediates and coordinates the ICL repair with other 

DNA damage response mechanisms (Kee and D’Andrea, 2010). 

 FAN1, a novel component associated with the FA pathway 1.12.12

Recent work from independent laboratories identified and characterised FAN1 (Fanconi 

anemia-associated nuclease 1, or FANCD2/FANCI-associated nuclease 1), a novel component 
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associated with the FA pathway in higher eukaryotes (Smogorzewska et al., 2010; MacKay et 

al., 2010; Kratz et al., 2010; Yoshikiyo et al., 2010; Liu et al., 2010; Shereda et al., 2010).  

FAN1 (previously named MTMR15/KIAA1018) was originally identified from a set of size-

fractionated human brain cDNA libraries coding for large proteins in vitro (Nagase et al., 1999). 

Interestingly, FAN1 appears to be the only eukaryotic protein with a VRR_nuc (virus-type 

replication-repair nuclease) domain. This domain was found in bacteriophage and prophage 

proteins involved in DNA metabolism processes including replication and recombination (Kinch 

et al., 2005; Iyer et al., 2006). Successive protein alignments established that human FAN1 

possesses three conserved domains: a UBZ-type ubiquitin-binding domain, a SAP-type DNA 

binding motif and the VRR_nuc domain. FAN1 is widely conserved across eukaryotes, with the 

notable exception of S. cerevisiae (Smogorzewska et al., 2010; MacKay et al., 2010; Kratz et al., 

2010; Liu et al., 2010; Shereda et al., 2010).  

A first indication that FAN1 is involved in genome maintenance processes came from the 

finding that human FAN1 strongly interacts with MLH1 and PMS2, involved in the mismatch 

repair pathway (Cannavo et al., 2007). However, a possible role for FAN1Hs in canonical MMR 

was ruled out by the finding that FAN1-depleted cells show wild-type resistance to 6-

thioguanine, a marker drug for MMR (MacKay et al., 2010). Evidence for human, worm and 

chicken FAN1 involvement in the response to ICL-inducing agents was found in all the 

independent studies (Smogorzewska et al., 2010; MacKay et al., 2010; Kratz et al., 2010; Liu et 

al., 2010; Shereda et al., 2010). A mild sensitivity was shown to CPT and MMS for Fan1Hs –

depleted cells by Smogorzewska et al., 2010, but this was not confirmed in three other studies 

(MacKay et al., 2010; Kratz et al., 2010; Liu et al., 2010). FAN1 localises to ICL-, IR- and HU- 

induced foci, and its UBZ domain is necessary and sufficient for this localisation 

(Smogorzewska et al., 2010; MacKay et al., 2010; Kratz et al., 2010; Liu et al., 2010; Shereda et 

al., 2010). Upon damage induction FAN1Hs colocalises to ICL-induced foci with and dependently 

on monoubiquitinated FANCD2Hs, suggesting a role with the FA pathway. FANCD2Hs 
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monoubiquitination is not impaired in the absence of FAN1, indicating that FAN1Hs acts 

downstream of FANCD2Hs (Smogorzewska et al., 2010; MacKay et al., 2010; Kratz et al., 2010; 

Liu et al., 2010). Defects in homologous recombination suggest that FAN1Hs may be involved in 

the HR processes linked to ICL repair. As DSB resection is not impaired in the absence of 

FAN1Hs and RAD51 foci persist in FAN1Hs-depleted cells, it has been proposed that FAN1Hs may 

be required for late stages of HR-dependent repair (MacKay et al., 2010; Kratz et al., 2010). 

Biochemical analyses show that FAN1Hs possesses a robust endonuclease activity toward 5’-

flap structures, specifically on dsDNA 1-5 nucleotides from the branchpoint. Additionally, 

FAN1Hs is a 5’-3’ exonuclease acting on the double stranded portion of 5’- and 3’-flap 

structures and nicked structures (Smogorzewska et al., 2010; MacKay et al., 2010; Kratz et al., 

2010). Both exo- and endonucleolytic activities are absent when the key residues in the 

VRR_nuc domain D960, E975, K977 are mutated in Fan1Hs (Smogorzewska et al., 2010; Kratz et 

al., 2010; Liu et al., 2010). Additional mutations found to impair Fan1Hs nuclease activity are 

Q864A (Smogorzewska et al., 2010) and the double mutations D981A R982A (MacKay et al., 

2010). Interestingly, whereas mutations in the nuclease domain do not affect FAN1 localisation 

to laser-induced damage, mutations or total ablation of the SAP domain in human FAN1 

reduce the GFP-FAN1 recruitment signal (Smogorzewska et al., 2010). Moreover, deletion of 

the SAP domain in C. elegans FAN1 causes embryonic hypersensitivity to MMC and HN2 

(Smogorzewska et al., 2010). 

Epistasis analyses showed an intriguing difference between human and avian FAN1, as in the 

latter model organism FANCC-/- FAN1-/- and FANCJ-/- FAN1-/- combined deletions led to 

increased sensitivity to cisplatin compared to the single mutants, in contrast with FAN1Hs-

depleted cells, which showed epistatic relationship with FANCD2 or FANCA in response to ICL-

inducing agents (Yoshikiyo et al., 2010; Kratz et al., 2010; Liu et al., 2010). It has been proposed 

that this data might indicate a role more independent of the FA pathway in avian cells than in 

human cells (Yoshikiyo et al., 2010). 
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Taken together, the data on FAN1 in higher eukaryotes strongly supports a role for this 

nuclease in the resolution of ICLs, in parallel with the FA pathway. In particular, a role in the ICL 

unhooking would be consistent with the biochemical activity. However, questions have been 

raised regarding a substantial functional redundancy with MUS81/EME1 and possibly 

XPF/ERCC1 which would render FAN1 activity superfluous at this stage of ICL repair (MacKay et 

al., 2010; Kratz et al., 2010). Consistently with the defects showed at late stages of 

recombinational repair, a more plausible role for FAN1 appears to be in processing 

recombination intermediates generated by ICL treatment (MacKay et al., 2010; Kratz et al., 

2010). Furthermore, the strong interactions showed with MMR factors suggest that they may 

indeed be functional. In particular, it has been proposed that MMR factors would act 

independently of the canonical MMR pathway for the recruitment of FAN1, which would 

perform incisions at the site of ICL, possibly in combination with other nucleases 

(Smogorzewska et al., 2010). Alternatively, or in addition to this role, FAN1 might serve as a 

recruiting component for MMR factors, which would promote the correction of translesion 

synthesis-induced mismatches during ICL repair (MacKay et al., 2010). 

Further studies are needed to elucidate these aspects. However, it is interesting to note that 

the appearance of FAN1 earlier than the FA pathway on an evolutionary scale suggests that 

the role for this component is distinct from the canonical FA pathway in higher eukaryotes. For 

this reason, the study of FAN1 in the lower eukaryote S. pombe will provide unique functional 

insights that may be relevant to FAN1 in higher eukaryotes. The investigation of S. pombe 

FAN1 (named Fan1Sp following the work discussed in this section) is the focus of the present 

study.       

1.13 Aim of this work 

The aim of this work is to characterise Fan1Sp, the ortholog of FAN1 in the fission yeast S. 

pombe. This study profits from the amenability of the genetic tools available for this model 
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organism, in particular the possible use of high-throughput approaches to explore genetic 

interactions between the protein and other components of the DNA repair machinery. Given 

the absence of a yeast FA pathway, the study of this protein in S. pombe provides a unique 

opportunity to investigate the existence of alternative pathways of ICL repair in higher 

eukaryotes.  

 



 
 

 
  

2 Chapter Two 
 

MATERIALS AND METHODS
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2.1 General media and reagents used in this study 

Yeast Extract Media (YE) For 5 litres 

Yeast Extract 25 g 

Glucose  150 g 

Adenine 500 mg 

Leucine 500 mg 

Uracil 500 mg 

Lysine 500 mg 

Histidine 500 mg 

For YEP, add Bactopeptone 100 g 

  

EMM2 Minimal Medium For 1 litre 

1X EMM2 salt 50 ml 20X EMM2 salt (see below) 

0.5% NH4Cl 25 ml 20% NH4Cl 

0.01M Na2HPO4 25 ml 0.4M Na2HPO4 

0.5% Glucose 12.5 ml 40% Glucose 

1X vitamins (see below ) 1 ml 1000X vitamins 

1X trace elements (see below)  100 ul 10000X trace elements 

  

20 X  EEM2 salts For 1 litre 

Potassium Hydrogen Phthalate 61.2 g 

KCl 20.0 g 

MgCl2 
. 6H20 21.4 g 

Na2SO4 0.20 g 

CaCl2 
. 2H2O 0.26 g  

 to 1 litre and FILTER STERILIZE 

  

1000 X  Vitamins For 100 ml 

Pantotenic Acid calcium salt 100 mg 

Nicotinic Acid 1 g 

myo-Inositol 1 g 

Biotin (kept at 4°C) 1 mg 

 KEPT IN THE FRIDGE AND PROTECTED FROM LIGHT   

  

10000 X  Trace Elements  For 100 ml 

H3BO3  500 mg 

MnSO4 400 mg 

ZnSO4 
. 7H20 400 mg 

Fe2(SO4)3 300 mg 

Na2MoO4 150 mg 

KI 100 mg 

CuSO4 
. 5H20 40 mg 
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Citric Acid 1000 mg  

  

Leu 100 X* For 1 litre 

7.5 mg/ml 7.5 g in 1 litre distilled water 

 Autoclave sterilization 

  

Ade 100 X* For 1 litre 

7.5 mg/ml 7.5 g in 1 litre distilled water 

 Autoclave sterilization 

  

His 100 X* For 1 litre 

7.5 mg/ml 7.5 g in 1 litre distilled water 

 Autoclave sterilization 

  

Ura 50 X For 1 litre 

3.75 mg/ml 3.75 g in 1 litre distilled water 

 Autoclave sterilization 

  

CSE For 1 litre 

28 mM Na2HPO4 70 ml 0.4M Na2HPO4 

8.8 mM citric acid 44 ml 0.2M citric acid 

40 mM EDTA 14.9 g Na2EDTA.2H2O 

1.2 M sorbitol 218.6 g sorbitol 

 to 1 litre with distilled water and filter sterilise 

  

10/50 Tris-EDTA (pH 7.4) For 1 litre 

10 mM Tris-HCl, pH 7.4 5 ml 2 M Tris-HCl pH 7.4 

50 mM EDTA, pH 8.0 100 ml 0.5 M EDTA, pH 8.0 

  to 1 litre with distilled water and filter  

  

5 X TBE  For 2 litres 

445 mM Tris Base 108.0 g Tris base 

445 mM Boric Acid 55 g Boric acid 

10 mM EDTA 7.44 g Na2EDTA • 2H2O 

  to 2 litres with distilled water 

  

0.5 M EDTA pH 9.5 For 1 litre 

 186.12 g Na2EDTA • 2H2O (MW=372.24) 

 Bring volume to 800 ml with distilled water 

 Mix 

 Adjust to pH 9.5 with NaOH pellets  

 Adjust volume to 1 litre with distilled water 

  

0.5 M EDTA pH 8 For 1 litre 

 186.1 g Na2EDTA • 2HO (MW=372.24) 
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 Bring volume to 800 ml with distilled water 

 Mix 

 Adjust to pH 8.0 with NaOH pellets  

 Adjust volume to 1 litre with distilled water 

  

1000 X Ampicillin (50 mg/ml) For 10 ml 

 Dissolve 500 mg in 10 ml water  

  

G-418  

100 mg/ml in H2O, filter sterilised  

  

NAT (Nourseothricin)  

100 mg/ml in H2O, filter sterilised  

  

1 M Tris-HCl For 1 litre 

 121.1 g Tris-base to 800 ml of distilled water 

 Adjust to desired pH with concentrated HCl 

 Adjust volume to 1 litre with distilled water 

  

TE, pH 7.4 For 1 litre 

(10 mM Tris-HCl, pH 7.4 10 ml 1 M Tris-HCl 

1 mM EDTA, pH 8.0) 2 ml 0.5 M EDTA, pH 8.0 

 Adjust volume to 1 litre with distilled water 

  

TBE-Tris-borate, EDTA buffer 5 X For 1 litre 

445 mM Tris base  54.0 g Tris base 

445 mM Boric acid  27.5 g Boric acid 

10 mM EDTA  3.72 g NaEDTA • 2H2O (MW=372.24) 

 Adjust to 1 litre with distilled water 

  

TAE-Tris-acetate, EDTA buffer 50X For 1 litre 

2 M Tris base  242.2 g Tris base 

2 M Glacial acetic acid  57.1 ml Glacial acetic acid 

50 mM EDTA  18.61 g Na2EDTA • 2H2O (MW=372.24) 

 Adjust to 1 litre with distilled water 

  

3 M Sodium acetate For 1 litre 

 408.3 g Sodium acetate (3HO) in 800 ml  

 Adjust to pH 4.8 or 5.2 with 3 M acetic acid 

 Adjust volume to 1 litre with distilled water 

  

SSC 20X  For 1 litre 

3 M NaCl  175.3 g NaCl 

0.3 M sodium citrate  88.2 g tri-Nacitrate •2H2O 

 Adjust to pH 7.0 with 1 M HCl 
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 Adjust volume to 1 litre with distilled water 

  

0.1 M Sodium phosphate buffer, pH 7.0 For 1 litre 

 57.7 ml of 1 M NaHPO 

 42.3 ml of 1 M NaHPO 

 Adjust volume to 1 litre with distilled water 

  

1 M NaHPO (Sodium phosphate-dibasic) For 1 litre 

 142.0 g NaHPO in 800 ml distilled water 

 Adjust volume to 1 litre with distilled water 

  

1 M NaHPO (Sodium phosphate-
monobasic) 

For 1 litre 

 120.0 g NaHPO in 800 ml distilled water 

 Adjust volume to 1 litre with distilled water 

  

YNB minimal media (liquid) For 1 litre 

Formendium® YNB 1.9 g 

Ammonium sulphate 5 g 

Glucose 20 g 

  

YNB plates For a 400 ml bottle 

YNB minimal media (liquid) – see above  

10 M Sodium hydroxide 0.08 ml 

DIFCO® Bacto agar 10 g 

  

ELN media For 1 litre 

Formendium® EMM broth (no nitrogen) 27.3 g 

Ammonium chloride 0.05 g 

Uracil 0.1 g 

Leucine 0.1 g 

Histidine 0.1 g 

Arginine 0.1 g 

Adenine 0.2 g 

( for plates: add 10 g BACTO® agar per 400 
ml bottle) 

 

  

 

G418: Melford® G-418 disulphate (product code G0175) 

NAT: Nourseothricin-dihydrogen sulfate ClonNAT 2000mg cat.no. 502000. 
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2.2 General techniques used in this study 

2.2.1 Crosses and random spore analysis 

Fresh strain patches from YE plates were streaked on ELN plates and mixed together with a 

loopful of sterile water.  ELN plates were incubated for 2-3 days at 25°C.  

For random spore analysis, a loopful from crossed patches was resuspended in 1 ml sterile 

water added with 20 ul helicase (1:10 dilution; Biosepra® S.H.P. / H.P.J. helix pomatia juice). 

After o/n incubation at room temperature, between 100 and 1000 spores were plated on YE 

plates and incubated at 30°C until colonies reached a satisfactory size. Colonies were then 

replicated on selective plates and grown at 30°C. 

2.3 Methods used in chapter three (biochemical characterisation of 

Fan1Sp) 

2.3.1 DNA digest – restriction site analysis (HindIII, SalI) 

HindIII: NEB R0104. 

SalI: NEB R0138. 

Digests carried out overnight at 37°C. 

2.3.2 DNA gel electrophoresis 

Invitrogen® L.M.P. (Low Melting Point) Agarose [Cat. no. 15517-022] was melted in 300ml 1X 

TBE (final concentration 1%). The apparatus used was the Biorad® SubCell GT®. DNA marker 

used: Fermentas® GeneRuler® DNA Ladder Mix. Gel was run at 20V overnight and for further 6 

hrs at 80V. 

2.3.3 Southern blot analysis 

DNA from agarose gels was transferred onto GeneScreen™ Hybridization Transfer Membrane 

(cat. n. NEF983001PK) using an Amersham® Biosciences Vacugene® XL apparatus. Gels were 
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treated as follows: depurination (0.25 M HCl for 15 minutes each), denaturation (1.5 M NaCl + 

0.5 M NaOH for 15 minutes each), neutralization (1 M Tris pH 8 + 1.5 M NaCl for minutes 

each). The membrane was quickly rinsed in in 4 X SSC and dried on Whatman® 3MM paper. 

The DNA was cross-linked on the membrane by using a Stratagene® Stratalinker® (2 cycles at 

1200 J/m2). The membrane was incubated at 65°C in 80 ml hybridisation solution added with 

266 ul 30% BSA (SIGMA A8327-50ml) for at least 30 minutes. The probe was prepared with 150 

ng DNA for each membrane in a total volume of 45 ul and boiled for 5 minutes. The DNA probe 

was added to the labelling mix GE Healthcare® Ready-To-Go™ DNA Labeling Beads (-dCTP) 

(product code: 27-9240-01). 5 ul  -32P - dCTP (GE Healthcare® REDIVUE™ DEOXYCYTIDINE 5'-

[-32P]TRIPHOSPHATE, TRIETHYLAMMONIUM SALT (product code: AA0005-250UCI) were 

added to the labelling mix and incubated at 37°C for 30 minutes. The labelling mix was filtered 

with GE Healthcare® G50 columns. The filtered probe was boiled and added to 20 ml 

hybridisation solution, together with boiled salmon sperm (Invitrogen® cat. no. 15632-011, 200 

ul each membrane from a 10 mg/ml stock solution). The membrane was incubated with the 20 

ml hybridisation solution at 65°C overnight. Membrane was washed with gentle shaking as 

follows: wash solution I at 65°C for 15 minutes; wash solution II at 42°C for 15 minutes. The 

signal from the membrane was detected by using Amersham storage phosphor-screen 

cassettes on a Molecular Dynamics® Storm 840 phosphorimager apparatus.  

 Hybridization solution (in 100 ml): 30 ml 20 X SSC, 1 ml Denhardt solution 100 X, 3.33 ml 30 % 

Sarcosyl. Wash solution I (in 500 ml): 50 ml 20 X SSC, 50 ml 10% SDS. Wash solution II (in 1 

litre): 5 ml 20 X SSC, 10 ml 10% SDS. 100X Denhardt's reagent: 2% (w/v) Ficoll 400, 2% (w/v) 

polyvinylpyrrolidone, 2% (w/v) bovine serum albumin (Sigma® Cat. No. A3059). 

2.3.4 Whole cell extracts (TCA extraction) 

Cells were grown in 5ml YE overnight. About 5 ODs of cells were harvested and washed. The 

pellet was resuspended in 1 ml 20% TCA (Trichloroacetic Acid) and transferred to ribolyser 

tubes. Cells were centrifuged again, resuspended in 200 ul 30% TCA and ribolysed by using 



67 

 
MATERIALS AND METHODS  

glass beads (Sigma® G8772-500G) for at least 4 cycles (15 sec each) at speed 6.5, or until lysis 

of approximately 90% of cells was accomplished. The contents of the ribolyser tubes were 

filtered and centrifuged at 4000 rpm for 5 minutes at 4°C into fresh centrifuge tubes. These 

were then centrifuged again at 14000 rpm for 5 minutes at 4°C. The supernatant was 

discarded and the pellet resuspended in 200 ul 1X sample buffer. Samples were finally boiled 

for about 3 minutes prior to storage at -20°C.  

4X Sample buffer (100ml): 250mM Tris pH 6.8, 8% SDS, 20% glycerol, 20% -mercaptoethanol, 

bromophenol blue (final concentration 0.4%). 

2.3.5 Western blot analysis 

All protein gels were run by using a Biometra® Minigel® apparatus. Running gels were 

prepared at a concentration of 8% (see below). Stacking gels were prepared as described 

below. Voltage was increased from 80V to 120V upon migration of the samples from stacking 

to running gel. Transfer was performed by using a Biorad® Miniprotean® II apparatus onto a 

GE® Healthcare® ECL membrane and carried out overnight at 15V at 4°C. Membrane was 

stained with Ponceau dye and washed with PBS added with Tween, final concentration 0.1% 

(SIGMA® Cat. No. P7949). Blocking was performed for 2 hours in PBS-Tween® (PBST) added 

with final 3% milk (Marvel® dried skimmed milk). Primary antibodies were added to PBST + 

milk in a 1:3000 dilution and incubated for 2 hours at room temperature (r.t.) under slow 

agitation. Secondary antibodies were added to PBST + milk in a 1:5000 dilution and incubated 

for 45 minutes at r.t. under slow agitation. Washes were performed three times for 15 minutes 

each at r.t. with medium-fast agitation. Chemoluminescence was induced and detected by GE® 

Healthcare® ECL Plus® (Product No. RPN2132) and GE® Healthcare® ECL Hybond® film (Product 

No. RPN3032D) .  

Primary antibodies used in this study: anti-myc (Santa Cruz® mouse anti-myc, 9E10 – sc-40); 

anti-HA (Santa Cruz® HA probe, F7 – sc-7392); anti-FLAG (SIGMA® F1804). Secondary antibody: 

Dako® anti-mouse HRP (P0260). 
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10X running gel was prepared as follows: 75g Tris base, 470g glycine, 25g SDS in 2.5 litres 

milliQ water. Transfer buffer: 12.1 g tris base, 56.3 g glycine, 1 litre methanol, 10 ml 10% SDS in 

5 litres milliQ water. Buffer A (PBS): 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4, 800 ml 

milliQ water. 

Running gel (8%) prepared as follows (recipe for one minigel) : 2.3 ml H20, 1.3 ml 30% 

acrylamide mix, 1.3 ml 1.5M Tris (pH 8.8), 0.05 ml 10% SDS, 0.05 ml 10% ammonium 

persulfate, 0.003 ml TEMED. 

Stacking gel (recipe for one minigel): 3.7 ml H20, 0.650 ml 30% acrylamide mix, 0.6 ml 1 M Tris 

(pH 6.8), 0.05 ml 10% SDS, 0.05 ml 10% ammonium persulfate, 0.010 ml TEMED.    

Protein marker: NEB® Prestained Protein Marker, Broad Range (7-175 kDa) (Cat. No. P7708). 

2.3.6 Co-immunoprecipitation 

Approximately 50-100 ODs of cells were centrifuged at 3,000 g at 4°C for 5 mins. Pellets were 

resuspended in 1 ml sterile water, transferred to ribolyser tubes and centrifuged at 13,000g at 

4°C for 5 minutes. After discarding the supernatants, pellets were kept at -20°C for 10 minutes. 

Samples were transferred on ice and added with 400 ul Miltenyi Biotec® (MB) lysis buffer 

supplemented with Roche® protease inhibitors and PMSF (Phenyl-MethylSulphonyl Fluoride). 

1 centrifuge tube cap of SIGMA glass beads (Sigma® G8772-500G) was added to each sample. 

Cells were lysed using a ribolyser (Fastprep® FP120 BIO101 Thermo-savant®: 4-8 cycles for 15 

seconds, speed 6.5; 30 seconds of cooling on ice between cycles). Satisfactory lysis was 

confirmed by visual inspection by microscope. The glass beads were removed from the 

samples and the supernatants were transferred to fresh centrifuge tubes. 90 ul from each 

lysate was added to 40 ul 4x sample buffer (final concentration 1x) supplemented with 26 ul -

mercaptoethanol (final concentration 20%), boiled for 5 minutes and stored at -20°C (input 

samples). 600 ul of MB lysis buffer were finally added to the lysates before proceeding with 

the purification. 50 ul MB lysis anti-tag MB microbeads were added to each sample and 

incubated on ice for 30 minutes (note: FLAG-tagged microbeads were prepared by adding 1 ug 
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SIGMA flag Ab (SIGMA® F1804) to unlabelled MB microbeads). MB MACSTM columns were 

placed in a magnetic separator and prepared by addition of 200 ul MB lysis buffer 

supplemented with Roche® protease inhibitors and PMSF. After the labelling reaction was 

finished, the cell lysate was loaded on the columns. These were then washed with 200 ul MB 

wash buffer 1 for 4 times and finally with 100 ul MB wash buffer 2. 20 ul of MB elution buffer 

pre-heated at 95°C was applied to the columns and incubated at room temperature for 5 

minutes. The immunoprecipitates were eluted with additional 50 ul of pre-heated MB elution 

buffer. Between 25 and 35 ul of lysate/immunoprecipitate per sample were loaded on SDS-

PAGE gel for western blot analysis (see 2.3.5). 

Miltenyi Biotec® buffers used: MB Lysis buffer (150 mM NaCl, 1% Triton® X-100, 50 mM Tris 

HCl pH 8.0); MB wash buffer 1 (150 mM NaCl, 1% Igepal CA-630, 0.5% sodium deoxycholate, 

0.1% SDS, 50 mM Tris HCl pH 8.0); MB wash buffer 2 (20 mM Tris HCl pH 7.5); elution buffer 

for SDS-PAGE (50 mM Tris HCl pH 6.8, 50 mM DTT, 1% SDS, 1 mM EDTA, 0.005% bromphenol 

blue, 10% glycerol).      

Roche® protease inhibitors complete, EDTA-free (Product No. 05 056 489 001)  

PMSF (Phenyl-MethylSulphonyl Fluoride): SIGMA® P7626. 

2.3.7 Recombinase-Mediated Cassette Exchange to construct tagged strains 

Recombinase-Mediated Cassette Exchange (RMCE) was employed in this study for gene 

tagging as described in Watson et al., 2008. A schematic on the use of this system for gene 

tagging is shown in figure 3.1. The base strains Fan1-loxP-ura4+-loxM3, Mlh1-loxP-ura4+-

loxM3 and Pms1-loxP-ura4+-loxM3 were constructed by standard homologous recombination 

techniques. The base strains were transformed with the following plasmids to allow the 

Recombinase-Mediated Cassette Exchange: pAW8_13myc, pAW8_3HA, pAW8_6FLAG (see 

Watson et al., 2008). Transformants were plated on YNB + adenine. Three to five colonies were 

grown in 5 ml YE and approximately 10000 cells were plated on 5-FOA. Three to five colonies 
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were checked by sequencing. Two positive isolates were frozen in 60% YE + 40 % glycerol at -

80°C.  

2.3.8 Transformation of S. pombe cells  

Transformation of S. pombe cells was carried out in sterile conditions. The optimal pH of LiOAc 

stock solution was pH 4.9 for transformation of plasmids and pH 7.5 for transformation of 

linear DNA. Cells were grown overnight o/n in 100 ml YEP. Approximately 1*108 cells were 

centrifuged, washed in water and LiOAc-TE and transferred to centrifuge tubes. Cells were 

centrifuged again and resuspended in LiOAc-TE (100 ul each tube). Tubes were incubated at 

30°C for approximately 60 minutes. The following reagents were added to each tube: 5 ul 

boiled salmon sperm; DNA to transform (about 0.1-1 ug for plasmid DNA; 1-10 ug for linear 

DNA); DMSO (SIGMA® D2650; 10% final concentration); 700 ul pre-warmed 40% PEG-LiOAc-TE. 

Tubes were incubated at 30°C for 30 mins-1 hour. Cells were heat-shocked at 42°C for 5 

minutes and left at r.t. for 10 minutes. Cells were centrifuged, resuspended in 100 ul TE and 

plated onto appropriate selective plates. Plates were incubated for at least 2-3 days at 30°C. 

5X LiOAc stock solution: 0.5 M LiOAc (pH 4.9 for transformation of plasmids / pH 7.5 for 

transformation of linear DNA); LiOAc-TE : 1 mM EDTA, 100 mM LiOAc, 10 mM Tris-HCl pH 7.5; 

40% PEG-LiOAc-TE (for 5 ml ca.): 4 ml 50 % PEG, 1 ml 5 X LiOAC, 10 ul 0.5 M EDTA, 25 ul 2M 

Tris-HCl pH 7.5. 

2.3.9 Genomic DNA extraction 

Cells were grown o/n in 10 ml YEP at 30°C to approximately OD 5. Approximately 50 ODs of 

cells were centrifuged at 3,000 g for 5 minutes. Pellets were resuspended in 1 ml CSE added 

with zymolyase 20T (Seikagaku®, product code 12049) (1 mg/ml final concentration). Pellet 

was resuspended in 1 ml CSE and incubated for 30-60 minutes at 37°C. After 30 minutes, 

satisfactory lysis was checked under microscope. Cells were centrifuged at 3,000 g for 5 

minutes. Pellet was resuspended in 450 ul of 5X TE and transferred to 1.5 ml centrifuge tubes. 

50 ul 10% SDS was added to each tube, then incubated for 5 minutes at r.t. 150 ul 5M KAc was 
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added to each tube, then incubated 10 minutes on ice. Tubes were centrifuged for 10 minutes 

at 20,000 g. The supernatant from each tube was transferred to fresh tubes. 1 volume of 

isopropanol was added. Samples were centrifuged at 20,000 g at 4 °C for 10 minutes and the 

supernatant was discarded. The pellet was washed with 500 ul 70% ethanol and centrifuged 

for 5 minutes at 20,000 g. The supernatant was discarded and the pellet was resuspended in 

250 ul 5XTE added with RNAse A (5 ul of a 10 mg/ml solution). Samples were incubated at 37°C 

for 20 minutes. 2ul 10% SDS and proteinase K (SIGMA® P2308) 10 ul of a 10 mg/ml solution) 

were added to each sample. Tubes were incubated for 60 minutes at 55°C. Genomic DNA was 

purified by phenol chloroform extraction twice as follows: 1 volume of phenol chloroform-

isoamyl alcohol (SIGMA® product no. 77617), vortexing, spinning at 13000 g for 5 minutes, 

upper phase transferred to fresh tubes. DNA was further purified by isopropanol precipitation 

(1 volume isopropanol, 1/10 volume 3M Sodium Acetate, wash with 70% ethanol). Pellet was 

finally resuspended in 30 ul 1XTE.   

2.3.10 Spontaneous mutation rate assay 

Single colonies were isolated on YEA from individual streaks. 11 colonies from each strain were 

grown in 5ml YE in individual tubes. Samples were incubated at 30°C for 48 hours to stationary 

phase. Cultures were serially diluted as follows: 10 ul saturated culture in 1 ml H2O; 10 ul of 

this dilution into 1 ml H2O. 50 ul of this dilution were plated on YE-Agar (YEA) plates. 50 ul of 

saturated culture were plated on YE-5-FOA (5-Fluoroorotic acid; Melford® F5001) plates (0.1% 

final concentration). Plates were incubated for 3-4 days at 30°C. Spontaneous mutation rates 

were calculated by the Lea-Coulson method of the median (Rosche and Foster, 2000; Foster, 

2006).  
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2.4 Methods used in chapter four (genetic characterisation of Fan1Sp by 

in vivo survival assays) 

2.4.1 In vivo survival assays: spot tests 

Strains were inoculated in 5 ml YE and grown at 30°C o/n. 107 cells from each logarithmically 

growing culture were harvested and resuspended in 1 ml water. Four serial 1/10 dilutions 

were prepared from each culture. 10 ul were spotted onto YEA plates added with increasing 

doses of DNA damaging agents. All the spots were deposited in duplicates on the same plate to 

guarantee an internal control. Plates were incubated at 30°C for three days. Images were 

acquired by a Syngene® Ingenius® apparatus.  

DNA damaging agents used:  

- UV irradiation: performed with a Stratagene® Stratalinker® 

- Methyl methanesulfonate (MMS): SIGMA® (cat. no. 129925)  

- Camptothecin (CPT) (98%): Acros Organics® (cat. no. 27672)  

- Hydroxyurea (HU) (98%): SIGMA® (cat. no. H8627) 

- Cisplatin (Cis-platinum(II)diammine dichloride): SIGMA® (product no. P4394) 

- Mitomycin C (MMC): Sigma® Mitomycin C - 2mg (cat. no. M0503). 

2.4.2 In vivo survival assays: survival curves 

2x108 cells grown to exponential phase were centrifuged and washed with PBS. Pellets were 

resuspended in 10 ml and split into five 2 ml aliquots in 15 ml tubes. Stock solutions of the 

drugs were made at this stage; subsequent serial dilutions and inoculations were made quickly 

in order to minimise the loss of efficacy of unstable drugs. Each dilution was inoculated into 

the 2 ml aliquoted cultures and tubes incubated at 30°C with shaking for 1 hour. 1 ml (2x107 

cells) from each aliquot was washed and resuspend in 10 ml PBS. Each aliquot was diluted 100-

fold (100 ul into 10 ml PBS). 10 ul of these dilutions (approximately 200 cells) were plated onto 

YEA and grown at 30°C for 3-4 days. Standard error of the mean was calculated as standard 

deviation divided by the square root of the number of independent experiment repeats. 
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DNA damaging agents used: 

- HN1 (2-Chloro-N,N-dimethylethylamine hydrochloride): SIGMA® (product no. 24362) 

- HN2 (Mechlorethamine hydrochloride, 98%): SIGMA® (product no. 122564) 

- MMC (Mitomycin C): Sigma® Mitomycin C - 2mg (product no. M0503). 

2.5 Methods used in chapter six (synthetic genetic arrays) 

2.5.1 Automated Screening of the Bioneer deletion library 

A loopful of query mutant (Q) was inoculated from a fresh patch into 15 ml YE+NAT and grown 

for at least 6 hours. The above culture was poured into an empty Singer® PlusPlate® (“Q bath”) 

Once thawed, library plates were replicated onto YEA PlusPlates®: four liquid 96-well plates 

combined onto one YEA PlusPlate® (384 spots) [PROGRAM 1, TWICE PER ARRAY]. A 384 agar 

plate was build using the Q bath as a source (“Q YEA PlusPlates®”) [PROGRAM 2, TWICE PER 

ARRAY]. Cells were grown for 2-3 days at 30°C (or until colonies are grown to satisfactory size). 

Each library was replicated to fresh YEA PlusPlates® (“L YEA PlusPlates®”) [PROGRAM 3]. 

Mating: colonies were combined from the L and Q YEA PlusPlates® onto ELN PlusPlates® 

[PROGRAM 4, RUN TWICE PER ARRAY]. ELN PlusPlates® were incubated at 25°C for 4 days.  

YEA PlusPlates® were incubated at 30°C for 3 days: pictures were taken approximately every 

12 hours to monitor the fitness of the single mutants. Spore germination: colonies were 

replicated from ELN PlusPlates® to YEA PlusPlates® [PROGRAM 5] and incubated at 30°C for 3 

days. Selection 1: colonies were replicated from YEA PlusPlates® to YE+GC PlusPlates® 

[PROGRAM 5] and incubated at 30°C for 2-3 days (or until colonies have grown to satisfactory 

size). Selection 2: cells were replicated from YE+GC PlusPlates® to YE+GNC PlusPlates® 

[PROGRAM 3] and incubate at 30°C for 1-3 days. Pictures to assess the fitness of double 

mutants were taken at this stage every approximately 12 hours.  

For the assessment of resistance to DNA damaging agents, cells were replicated from YE+GNC 

PlusPlates® to YE PlusPlates® added with different concentrations of chosen DNA damaging 



74 

 
MATERIALS AND METHODS  

agents [PROGRAM 3]. Plates were incubated at 30°C for 2-4 days and pictures taken 

approximately every 12 hours. 

Pictures were taken by using a Syngene® Ingenius® apparatus.  

Software used for colony size analysis: HT Colony Grid Analyser 1.1.0/1.1.7, Adobe® 

Photoshop® CS5 Extended, Microsoft® Excel® 2007/2010.  

Additional reagent used: Cycloheximide,  SIGMA® (product no. C7698) (100 mg/l from a 100 

mg/ml stock in DMSO) 

2.5.2 RoTor® PROGRAMS 

(the section follows on the next page)  
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PROGRAM 0 (Library replicas; automatically run twice) 

Use: to create replicas of the frozen gene deletion library (96 well plates) 

 WET 96 -> WET 96 

 Long pads 96 

 Program: “Library replicate” (personalised program), X# number of copies to 
perform 

 

Selected options: 

 Recycle mode: OFF 

 Revisit mode: OFF 

 Liquid mix source: ON 

 Liquid mix target: ON 

 

SOURCE: 

Pinning tab: 

 speed = 15 mm/sec 

 backoff = - 0.1 mm 

Wet mix tab: 

 diameter = 0.5 mm 

 speed = 25 mm/sec 

 cycles = 10 

 travel = 3D (0.25) 

 

TARGET: 

Pinning tab: 
 speed = 15 mm/sec 

 backoff = 0.3 mm 

Wet mix tab: 

 diameter = 1 mm 

 speed = 25 mm/se 

 cycles = 6  

 travel = 3D (3). 
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PROGRAM 1 (Replica WET 96 -> DRY 384) 

Use: to combine deletion library 96 well plates onto agar plates (4 wet plates 
to 1 dry plate) 

 WET 96 -> DRY 384 

 Long pads 96 

 Program: “1 to 4 array” 

 

Selected options: 

 Liquid mix source: ON 

 Agar mix target: OFF 

 

SOURCE: 

Pinning tab: 

 speed = 15 mm/sec 

 backoff = - 0.1 mm 

Wet mix tab: 

 diameter = 1.3 mm 

 speed = 25 mm/sec 

 cycles = 10 

 travel = 3D (1) 

 

TARGET: 

Pinning tab: 
 pin pressure = 32 % 

 speed = 9mm/sec 

 overshoot = 2 mm 

  

 

This program was run twice per array to ensure that enough cells are 
transferred. 
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PROGRAM 2 (BATH 96 -> DRY 384) 

 

Use: to transfer cells from a query strain culture onto agar plates (384) 

 

 BATH 96 -> DRY 384 

 Long pads 96 

 Program: “1 to 4 array single source” 

 

Selected options: 

 Recycle mode: ON 

 Revisit mode: ON 

 Liquid mix source: ON 

 Agar mix target: OFF 

 

SOURCE: 

Pinning tab: 

 speed = 15 mm/sec 

 backoff = 0.4 mm 

Wet mix tab: 

 diameter = 1.3 mm 

 speed = 25 mm/sec 

 cycles = 5 

 travel = 3D (1) 

 

TARGET: 

Pinning tab: 
 pin pressure = 32 % 

 speed = 9mm/sec 

 overshoot = 2 mm 

  

 

This program was run twice per array to ensure that enough cells are 
transferred. 
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PROGRAM 3 (DRY 384 -> DRY 384) 

 

Use: to replicate colonies from agar (384) to agar plates (384), single replicas. 

 

 DRY 384 -> DRY 384 

 short pads 384 

 Program: “Replicate” 

 

Selected options: 

 Recycle mode: OFF  

 Revisit mode: OFF  

 Agar mix source: OFF (Optional: ON – see below*) 

 Agar mix target: OFF 

 

SOURCE: 

Pinning tab: 

 pin pressure = 32 % 

 speed = 9mm/sec 

 overshoot = 2.5 mm 

[Dry mix tab:] 

This mode is optional, but it might be needed to make sure to replicate also smaller, 
scattered colonies. 

 clearance = 2.5 mm 

 diameter = 1 mm 

 cycles = 1 

 

TARGET: 

Pinning tab: 
 pin pressure = 32 % 

 speed = 9mm/sec 

 overshoot = 2.5 mm 
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PROGRAM 4 (MATING, DRY 384 -> DRY 384) 

 

Use: to mate colonies from agar (384) to agar plates (384). 

 

 DRY 384 -> DRY 384 

 short pads 384 

 Program: “mate” 

 

Selected options: 

 No offset 

 Agar mix source: OFF (Optional: ON – see below*) 

 Agar mix target: OFF 

 

SOURCE: 

Pinning tab: 

 pin pressure = 32 % 

 speed = 9mm/sec 

 overshoot = 2 mm 

[Dry mix tab:] 

This mode is optional, but it might be needed to make sure to replicate also smaller, 
scattered colonies. 

 clearance = 2.5 mm 

 diameter = 1 mm 

 cycles = 1 

 

TARGET: 

Pinning tab: 
 pin pressure = 32 % 

 speed = 9mm/sec 

 overshoot = 2 mm 

  

This program was run twice. 
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PROGRAM 5 (Dry 384 -> Dry 384, automatically run twice) 

 

Use: to create replicas of the 384 agar plates (intermediate steps of the 
screening, double replicas) 

 

 Dry 384 -> Dry 384 

 Short pads 384 

 Program: “Library replicate X1” (personalised program)  

 

Selected options: 

 Recycle mode: ON  

 Revisit mode: ON (See **IMPORTANT NOTE** below)  

 Agar mix source: OFF (Optional: ON – see below) 

 Agar mix target: OFF 

 

SOURCE: 

Pinning tab: 

 pin pressure = 32 % 

 speed = 9mm/sec 

 overshoot = 2.5 mm 

[Dry mix tab:] 

This mode is optional, but it might be needed to make sure to replicate also smaller, 
scattered colonies. 

 clearance = 2.5 mm 

 diameter = 1 mm 

 cycles = 1 

 

TARGET: 

Pinning tab: 
 pin pressure = 32 % 

 speed = 9mm/sec 

 overshoot = 2.5 mm 
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2.6 Chapter seven: phenotypic analysis of point mutants 

2.6.1 Site-directed mutagenesis PCR 

Primers to construct the loxP-Fan1-loxM3 base strain: 

>  mtmr15(upstream)-loxP 

AGCAACTTTCGCTAAACTTGCATTATAGACAACACTGTAACTTACGAATGCAGTTAAATTTTCAAAAGCA

TTTATTTAAACGGATCCCCGGGTTAATTAA 

>  mtmr15(downstream)-loxM3 

GCAAAACGATGGTAATTCAGCAAGCAAAGTGTAATTTACATAAGCTATGCATTTAATGAAAAGATTAAC

AATCACGTTTTgaattcgagctcgtttaaac. 

 

Primers to construct the point mutants: 

> MTMR15_D651N_F 

ATAGTTCTAGCGGGATACCTaacTTATGTTTGTGGAATCCGTC 

>MTMR15_D651N_R 

GACGGATTCCACAAACATAAgttAGGTATCCCGCTAGAACTAT 

>MTMR15_D651A_F 

CTAGCGGGATACCTGcaTTATGTTTGTGGAATC 

>MTMR15_D651A_R 

GATTCCACAAACATAATGCAGGTATCCCGCTAG 

>MTMR15_E666Q_K668A_F 

AAAAAATTTATGTTTTCAcAAGTTgctAGCGATAATGATAGGCTCTCAGAA 

>MTMR15_E666Q_K668A_R 

TTCTGAGAGCCTATCATTATCGCTAGCAACTTGTGAAAACATAAATTTTTT 

> MTMR15_K668A_F 
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AAAAAATTTATGTTTTCAGAAGTTgctAGCGATAATGATAGGCTCTCAGAA 

> MTMR15_K668A_R 

TTCTGAGAGCCTATCATTATCGCTAGCAACTTCTGAAAACATAAATTTTTT 

>MTMR15_L159A_F_new 

CGATGAAgcGCGTTCGTTAGCTAGACAAACGAAGGTGTGTGG 

>MTMR15_L159A_R_new 

CTAGCTAACGAACGCGCTTCATCGAGAGATAGAATTTCAATTATTTCTTCAGTTG 

>MTMR15_E666Q_F_new 

GTTTTCAcAAGTTAAAAGCGATAATGATAGGCTCTCAGAAGCGCAAAAATTCTGG 

> MTMR15_E666Q_R_new 

ATCATTATCGCTTTTAACTTGTGAAAACATAAATTTTTTTTTAGACGGATTCCACAAAC. 

 

PCR program: 1) 94°C, 3 mins; 2) 94°, 30 sec; 3) 58°C, 1 min; 4) 68°C 20 mins (or: 2 

minutes/kb); 5) repeat steps 1)-4) for 20 times; 6) 4°C (stop). 

Polymerase used: Stratagene® Pfu Turbo (Cat. No. 600250).   

2.7 Methods used in appendix 1 (Ch16 DSB repair system) 

2.7.1 Ch16 DSB repair system (thiamine promoter-regulated HO) 

Strains were grown from frozen stocks in selective EMM2 minimal media (+thiamine 8 uM 

+selection for HO plasmid) and streaked on G418 plates. Cells were inoculated directly from 

G418 plate into 10 ml selective media (EMM2 minimal media +thiamine 8 uM +selection for 

HO plasmid) and grown o/n at 30°C in 50 ml tubes. The cell concentration of the cultures 

(optical density, OD) was measured and diluted to OD 0.1 in 10 ml (minimal +thiamine 8 uM 

+selection for plasmid). Cultures were grown for 3 hours at 30°C. The equivalent of 20 ul OD 

0.2 was inoculated into 10 ml YE, and 100 ul of this culture were plated on YEA (3 

plates/culture) (0 minutes timepoint). The remainder of the cultures were split in half. Half of 
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the cultures (- thiamine samples) were washed 2 times in PBS (20 ml each wash) to remove the 

thiamine from the medium. Pellets were resuspend in 10 ml selective media (+ / - thiamine 

+selection for plasmid + adenine to avoid selection against rearrangements or 

minichromosome loss). Cultures were grown for 48 hrs at 30°C (concentration was kept below 

OD 1 throughout the experiment). After 48 hours growth, OD was checked and the equivalent 

of 20 ul OD 0.2 was inoculated into 10 ml YE. 100ul of this dilution were plated on YEA plates 

(three plates per samples). After 2-3 days of growth, plates were replicated on YEA-G418; 

EMM +ULHT; EMM +ULAT (U, uracil; L, leucine; H, histidine; A, adenine; T, thiamine). Colonies 

were scored using a manual colony counter.  

2.7.2 Pulse-field gel electrophoresis 

Cells were grown overnight in 10 ml YEP at 30°C. Cultures were transferred to 15 ml tubes and 

centrifuged at 2500 g at room temperature (r.t.) for 3 minutes. Cells were washed twice in 10 

ml distilled water. Cells were counted by hemocytometer and diluted in fresh minimal EMM 

medium (+ / - thiamine as appropriate, final concentration 30 uM) (cell density was kept below 

2*107 cells/ml throughout the experiment). The agarose for plugs was melted in TSE (0.8% final 

concentration) and kept at 55°C. 3*108 cells were harvested from each samples and 

transferred to 50 ml tubes. 1/100 volume of 10% NaN3 and 1/10 volume of 0.5 M pH 8 EDTA 

were added to each sample and incubated on ice for 5 minutes. Cultures were centrifuged at 

2500 g at 4°C for 3 minutes and the pellets washed in CSE and then resuspended in 2 ml CSE by 

using sterile loops.  0.5 ml lyticase solution in CSE (1.5 mg/ml) were added to each culture and 

incubated at 37°C for 15-30 minutes (or up to 80-90 % of cells lysis). Cultures were centrifuged 

at 1000 g at r.t. for 3 minutes, the supernatant removed by aspiration and the cell pellet 

resuspended in 300 ul TSE by sterile loops. Plugs were prepared for each sample with 400 ul of 

pre-melt agarose and incubated on ice for 5 minutes. Plugs were resuspended in 10 ml TES and 

incubated at 55°C for 90 minutes. Plugs were transferred to 10 ml lauryl sarcosine solution (1% 

lauryl sarcosine in 0.5 M EDTA pH 9.5; SIGMA® Biochemika® 61747) added with proteinase K 
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(final concentration 0.5 mg/ml) and incubated at 55°C for 24 hours. After 24 hours, 250 ul of 

fresh proteinase K (final amount 5 mg) was added to the tubes and the plugs incubated for 

further 24 hours. For the electrophoretic run, half a plug from each sample was equilibrated in 

1 ml TAE for three times. Plugs were incorporated in the melted agarose and samples run as 

indicated below. 

PFGE apparatus:  Biorad PFGE CHEF-DR® III. Agarose: Certified Megabase® Agarose for PFGE 

(Biorad® 161-3109). Gel: final concentration 8%. Program used: initial sw. time = 1.8 k sec (30 

mins); final sw. time = 1.8 k sec (30 mins); run time = 68 hours; Volts / cm = 2.0; angle = 106°. 

Recipes: TSE (10 mM Tris-HCl pH 7.5; 45 mM 0.5 M pH 8 EDTA; 0.9 M sorbitol); TES (50 mM 

Tris-HCl pH 7.5; 250 mM EDTA pH 8; 1 % SDS).  

2.7.3 Ch16 DSB repair system (estradiol receptor-hormone binding domain-regulated HO) 

Two single colonies per strain (ER-HBD-HO, N-terminal and C-terminal constructs) were 

inoculated and grown overnight in 10 ml EMM2 added with adenine, leucine, thiamine, 

histidine. Cultures were washed four times with distilled water and split into two cultures. Only 

one of the two cultures was added with thiamine (60 uM final concentration). Each culture was 

again split into two subcultures, only one of which was added with -estradiol (0.3 uM final 

concentration). Approximately 500 cells were plated on YEA after 24 and 48 hours from 

induction. After 2-3 days of growth on YEA, colonies were replica-plated on YEA-G418 and 

EMM2 ade-. After 1-2 days of growth, marker loss was scored as the number of G418-sensitive 

and adenine-auxotroph colonies. 

-Estradiol: SIGMA® Cat. No. E2758. 

2.7.4 Ch16 DSB repair system (invertase promoter-regulated HO) 

Protocol was based on the standard protocol presented in 2.6.1, with the below modifications. 

Strains were woken up on selective plates and restreaked onto G418 plates o/n. A starter 

culture was inoculated from these streaks. After o/n growth, cultures were diluted to 0.2 OD in 

100 ml YE containing 6.25mg G418 and grown for 4 hours. Cells were harvested, washed with 
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PBS, resuspended in the 100 ml of selective medium and grown overnight. Cultures were 

divided into two and diluted to 0.1 OD in EMM containing either glucose or sucrose. Cultures 

were grown at 30˚C under agitation (200 rpm). 

EMM for repression state: EMM dry mix (Potassium Hydrogen Phthalate, 75 g; Na2HPO4, 55g; 

NH4Cl, 125 g; glucose, 500 g). EMM media (dry EMM stock 30.2 g/l; 50X Salts 20ml/l; 1000X 

vitamins 1.0ml/l; 10000X minerals 0.1ml/l). For agar plates, EMM media + 2% agar. 8% glucose 

(final concentration) added per litre after autoclaving. Salts for EMM solution (MgCl2•2H2O 

0.26 M; CaCl2•2H2O 5.0 mM; KCl 0.67 M; Na2SO4 14.1 mM). Vitamins for EMM solution 

(pantothenic acid 4.2 mM; nicotinic acid 8.12 mM; inositol 55.5 mM; biotin 40.8 uM). Minerals 

for EMM solution (boric acid 80.9 mM; MnSO4 23.7 mM; ZnSO4•7H2O 13.9 mM; FeCl3•6H2O 

7.4 mM; molybdic acid 2.5 mM; KI 6.0 mM; CuSO4•5H2O 1.6 mM; citric acid 47.6 mM). 

EMM for induced state: EMM media (potassium hydrogen pthalate 0.3% w/v; Na2HPO4 0.22%; 

ammonium chloride 0.5%; sucrose 4%; 50X Salts 2mls/ 100ml; 1000X Vitamins 0.1ml/100ml; 

10000X Minerals 0.01 ml/100ml). 

YE, supplement mix: 10 g each of adenine, histidine, leucine, lysine, and uracil. 

YE5S liquid/agar:  1.125 g supplements/litre; 30 g glucose/l; 5 g yeast extract/l. For plates, add 

agar at 2%. 8% glucose (final concentration) added after autoclaving. 

2.8 List of strains used 

Strain 

code 
Name Genotype Phenot. 

M.

t. 
Notes 

AMC1 501 
leu1-32 ura4-D18 

ade6-704 

leu- ura4- 

ade- 
h- 

Standard “wild-type” strain, 

h- 

AMC3 503 
leu1-32 ura4-D18 

ade6-704 

leu- ura4- 

ade- 
h+ 

Standard “wild-type” strain, 

h+ 
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YFS2 
501-

cdc13nd 
leu1-32 ura4-D18 

ade6-704 
leu- ade- h- 

501 transformed with 

ER_cdc13nd plasmid 

(YFP3) 

YFS3 TH1230 
ade6-M210 Ch16-

MG 
ura- leu- h- 

Minichromosome strain (see 

Prudden et al. 2003); Ch16-

MG genotype: ade6-M216 

rad21::MATa-kanMX6 

cid2::his3  

YFS4 TH1293 
ade6-M210 Ch16-

MG 
ura- leu- h+ 

Minichromosome strain (see 

Prudden et al. 2003); Ch16-

MG genotype: ade6-M216 

rad21::MATa-kanMX6 

cid2::his3  

YFS5 
TH1230-

HO 
ade6-M210 Ch16-

MG 
ura- h- 

Minichromosome strain (see 

Prudden et al. 2003); Ch16-

MG genotype: ade6-M216 

rad21::MATa-kanMX6 

cid2::his3 HO endonuclease 

in pREP81X (PW25, or 

YFP5) 

YFS6 
TH1230-

HOER 
ade6-M210 Ch16-

MG 
leu- h- 

Minichromosome strain (see 

Prudden et al. 2003); Ch16-

MG genotype: ade6-M216 

rad21::MATa-kanMX6 

cid2::his3 ER-HBD_HO 

(YFP2) 

YFS11 
TH2158 

+ p86 
MGH wt + p86 ura-   

From A. Dave: MGH wt 

transformed with p86(leu), 

plasmid carrying the HO 

endonuclease under 

invertase promoter 

YFS12 
TH2368 

+ p86 
MGH crb2-d rqh1-d 

+ p86 
ura-   

From A. Dave: MGH wt 

transformed with p86(leu), 

plasmid carrying the HO 

endonuclease under 

invertase promoter 

YFS13 
TH2369 

+ p86 
MGH crb2-d rqh1-d 

+ p86 
ura-   

From A. Dave: MGH wt 

transformed with p86(leu), 

plasmid carrying the HO 

endonuclease under 

invertase promoter 

YFS14 
TH2370 

+ p86 
MGH crb2-d rqh1-d 

+ p86 
ura-   

From A. Dave: MGH wt 

transformed with p86(leu), 

plasmid carrying the HO 

endonuclease under 

invertase promoter 
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YFS15 
TH2368 

+ p96 
MGH crb2-d rqh1-d 

+ p96 
ura-   

From A. Dave: MGH wt 

transformed with p96(leu), 

plasmid -empty vector with 

the invertase promoter 

YFS16 
fan1-d 

strain, or 

14152 

ade6-M216 

"MTMR::kanR"  

G418r, ura-, 

ade-, leu- 
h+ 

strain # 14152 from Bioneer 

library 

YFS17 

fan1-d 

strain 

("PN"390

9), or 

3909 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::kanR 

G418r, ura-, 

ade-, leu- 
h+ 

Strain 3909 from Paul 

Nurse's lab 

YFS19 
msh2

(SAS364) 

msh2::kanMX6 leu1-

32 ade6-704 ura4-

D18 
G418r h- 

Strain SAS34 from 

Stephanie Schalbetter's 

collection 

YFS20 
3909x 

IMS461 

leu1-32 ?ura4-D18? 

?ade6-M? 

SPBC146.06c::kanR 

cdc6-wt ura4+ 

G418r ura+ h+ 
crossed isolate n.5 - checked 

by PCR 

YFS21 
3909x 

IMS463 

leu1-32 ?ura4-D18? 

?ade6-M? 

SPBC146.06c::kanR 

cdc6-L591M ura4+ 

G418r ura+ h- 
crossed isolate n. 8 - 

checked by PCR 

YFS22 
14152x 

IMS461 

ade6-M216 

"MTMR::kanR" 

cdc6-wt ura4+ 
G418r ura+ h+ 

crossed isolate n.3 - checked 

by PCR 

YFS23 
14152x 

IMS463 

ade6-M216 

"MTMR::kanR" 

cdc6-L591M ura4+ 
G418r ura+ h- 

crossed isolate n. 2 - 

checked by PCR 

YFS24 
pms1-P-

ura4-M 
pms1-loxP-ura4-

loxM 
ura4+ h- 

Base strain, first step RMCE 

to tag pms1; 501 

transformed with linear 

fragment, see details on 

separate files; sequenced. 

YFS25 
fan1-P-

ura4-M 
fan1-loxP-ura4-loxM ura4+ h- 

Base strain, first step RMCE 

to tag fan1; colony M20. 

501 transformed with linear 

fragment, see details on 

separate files; sequenced. 
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YFS26 
mlh1-P-

ura4-M 
mlh1-loxP-ura4-

loxM 
ura4+ h- 

Base strain, first step RMCE 

to tag mlh1; colony m1. 501 

transformed with linear 

fragment, see details on 

separate files; sequenced. 

YFS27 
pms1-P-

6xFLAG-

M 

pms1-loxP-6xFLAG-

loxM 
G418r h- 

Final step RMCE, see 

YFS24; colony frozen: P4-3 

(see 7.22) 

YFS31 
mlh1-

3HA 
501 mlh1-3HA G418r h- 

isolate 1; checked by 

Western (see7.37) 

YFS32 
mlh1-

3HA 
501 mlh1-3HA G418r h- 

isolate 2; checked by 

Western (see 7.37) 

YFS33 
3909x 

IMS534 
fan1::kanMX, 

cdc20wt ura+ 
ura+, G418r h- 

colony 1; checked by colony 

PCR 

YFS34 
3909x 

IMS534 
fan1::kanMX, 

cdc20wt ura+ 
ura+, G418r h+ 

colony 14; checked by 

colony PCR 

YFS35 
3909x 

IMS536 
fan1::kanMX, 

cdc20M630F ura+ 
ura+, G418r h- 

colony 8; checked by colony 

PCR 

YFS36 
3909x 

IMS536 
fan1::kanMX, 

cdc20M630F ura+ 
ura+, G418r h+ 

colony 1; checked by colony 

PCR 

YFS41 
14152x 

IMS534 
fan1::kanMX, 

cdc20wt ura+ 
ura+, G418r h- 

colony 1; checked by colony 

PCR 

YFS42 
14152x 

IMS534 
fan1::kanMX, 

cdc20wt ura+ 
ura+, G418r h- 

colony 7; checked by colony 

PCR 
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YFS43 
14152x 

IMS536 
fan1::kanMX, 

cdc20M630F ura+ 
ura+, G418r h+ 

colony 7; checked by colony 

PCR 

YFS44 
14152x 

IMS536 
fan1::kanMX, 

cdc20M630F ura+ 
ura+, G418r h- 

colony 12; checked by 

colony PCR 

YFS49 
fan1-

13myc 
501 fan1-13myc G418r h- 

isolate A, Western blot see 

logbook 7.44 

YFS50 
fan1-

13myc 
501 fan1-13myc G418r h- 

isolate D; fewer myc 

repeats: Western blot see 

logbook 7.44 

YFS55 

pREP4N 

no HO 

strain  (-

ve 

control) 

501 pREP4N empty NATr     

YFS56 

Nt 

pREP4N 

ERHBD-

HO 

501  Nt pREP4N 

ERHBD-HO 
NATr     

YFS57 

Ct 

pREP4N 

ERHBD-

HO 

501 Ct pREP4N 

ERHBD-HO 
NATr     

YFS59 
fan1:: 

NAT  

(3909N) 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

NATr, ura-, 

ade-, leu- 
h+ 

isolate 2; checked G418s; 

checked by PCR (see 7.48, 

7.52) and Southern (see 

7.64) 

YFS60 
fan1:: 

NAT 

(14152N) 

ade6-M216 

"MTMR::NAT"  

NATr, ura-, 

ade-, leu- 
h+ 

isolate 1; checked G418s;  

checked by PCR (see 7.48, 

7.52) and Southern (see 

7.64) 

ETS12 
chk1::kan

MX6 

Chk1::KanMX6  

Ade6-704 Leu1-32 

Ura4D18 

G418r, ura-, 

ade-, leu- 
h-   
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YFS64 

fan1:: 

NAT 

(14152) 

chk1::kan 

ade6-M216 

"MTMR::NAT"  

chk1::kanMX 
NATr, G418r h- YFS60XETS12, isolate B1 

YFS65 

fan1:: 

NAT 

(14152) 

chk1::kan 

ade6-M216 

"MTMR::NAT" 

chk1::kanMX 
NATr, G418r h+ YFS60XETS12, isolate C1 

SAL181 pso2-d 

ade6-704, leu1-

32, 

pso2::kanMX6, 

ura4-D18 

KANr, ura-, 

ade-, leu- 
h-   

YFS68 

fan1:: 

NAT 

(14152) 

pso2::kan 

ade6-M216 

"MTMR::NAT"  

pso2::kanMX 
NATr, G418r h- YFS60XSAL181, isolate A2 

YFS69 

fan1:: 

NAT 

(14152) 

pso2::kan 

ade6-M216 

"MTMR::NAT"  

pso2::kanMX 
NATr, G418r h+ YFS60XSAL181, isolate A4 

YFS70 
mlh1-

3HA 
mlh1-loxP-3HA-

loxM 
G418r h+ 

derived from YFS31 (x 503) 

col.A4 (see Western 7.59) 

YFS71 
pms1-P-

6xFLAG-

M 

pms1-loxP-6xFLAG-

loxM 
G418r h+ 

Derived from YFS27; col. 

A2 (see Western 7.46) 

YFS72 
pms1-P-

6xFLAG-

M 

pms1-loxP-6xFLAG-

loxM 
G418r h+ 

Derived from YFS27; col. 

A4 (see Western 7.46) 

YFS73 

fan1:: 

NAT 

msh2:: 

kan 

ade6-M216 

"MTMR::NAT"  

msh2::kanMX6 leu1-

32 ade6-704 ura4-

D18 

NATr, G418r h- YFS19 crossed with YFS60 

YFS74 

fan1:: 

NAT 

msh2:: 

kan 

ade6-M216 

"MTMR::NAT"  

msh2::kanMX6 leu1-

32 ade6-704 ura4-

D18 

NATr, G418r h+ YFS19 crossed with YFS60 
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YFS75 

fan1:: 

NAT 

(3909) 

chk1::kan 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

chk1::kanMX 

NATr, G418r h+ YFS59XETS12, isolate 3 

YFS76 

fan1:: 

NAT 

(3909) 

chk1::kan 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

chk1::kanMX 

NATr, G418r h- YFS59XETS12, isolate 4 

YFS77 

fan1:: 

NAT 

(3909) 

pso2::kan 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

pso2::kanMX 

NATr, G418r h- YFS59XSAL181, isolate 1 

YFS78 

fan1:: 

NAT 

(3909) 

pso2::kan 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

pso2::kanMX 

NATr, G418r h+ YFS59XSAL181, isolate 2 

YFS79 

fan1:: 

NAT 

QUERY 

STRAIN 

Q1 

(derived 

from 

3909) 

 ade6-M210; leu1-

32; ura4-D18; 

mat1_m-cyhS, smt0; 

rpl42::cyhR (sP56Q) 

fan1::NATMX 

(derived from 

YFS59) 

NATr, CyhS h- 

YFS59 x AMC400; from 

tetrad analysis (spore 1) 2 

checked NATr, CyhS + 

segregation of rpl42::cyhR 

locus by tetrad analysis  

YFS80 

fan1:: 

NAT 

QUERY 

STRAIN 

Q2 

(derived 

from 

3909) 

 ade6-M210; leu1-

32; ura4-D18; 

mat1_m-cyhS, smt0; 

rpl42::cyhR (sP56Q) 

fan1::NATMX 

(derived from 

YFS59) 

NATr, CyhS h- 

YFS59 x AMC400; isolate 

3; checked NATr, CyhS. 

Random spores, but 

rpl42::cyhR locus checked 

by test crosses 

YFS81 

fan1:: 

NAT 

QUERY 

STRAIN 

Q3 

(derived 

from 

14152) 

 ade6-M210; leu1-

32; ura4-D18; 

mat1_m-cyhS, smt0; 

rpl42::cyhR (sP56Q) 

fan1::NATMX 

(derived from 

YFS60) 

NATr, CyhS h- 

YFS60 x AMC400; isolate 

5; checked NATr, CyhS. 

Random spores, but 

rpl42::cyhR locus checked 

by test crosses 

YFS82 

fan1:: 

NAT 

QUERY 

STRAIN 

Q4 

(derived 

from 

14152) 

 ade6-M210; leu1-

32; ura4-D18; 

mat1_m-cyhS, smt0; 

rpl42::cyhR (sP56Q) 

fan1::NATMX 

(derived from 

YFS60) 

NATr, CyhS h- 

YFS60 x AMC400; from 

tetrad analysis (spore 3) 2 

checked NATr, CyhS + 

segregation of rpl42::cyhR 

locus by tetrad analysis  
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YFS83 

Query 

base 

strain 
(AMC400) 

 ade6-M210; leu1-

32; ura4-D18; 

mat1_m-cyhS, smt0; 

rpl42::cyhR (sP56Q) 

CyhS h- 

AMC400 = P392 = 

THS3181 (strain received 

from Tim Humphrey) (see 

Roguev et al., 2007) 

YFS84 

fan1D 

msh2D 

(derived 

from 

3909) 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

msh2::kanMX 

NATr, G418r h- YFS59XYFS19; isolate 5 

YFS89 

fan1-d 

msh2-d 

(derived 

from 

3909) 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

msh2::kanMX 

NATr, G418r h- YFS59XYFS19; isolate 3 

YFS90 
mlh1-

3HA 
mlh1-loxP-3HA-

loxM 
G418r h+ 

derived from YFS31 (x 503) 

col.C1 (see Western 7.59) 

YFS91 

fan1-

13myc 

pms1-

6xFLAG 

501 fan1-loxP-

13myc-loxM pms1-

loxP-6xFLAG-loxM 
G418r ? 

YFS49 X YFS71, col. D1 

(see Western blot 7.60) 

YFS92 

fan1-

13myc 

pms1-

6xFLAG 

501 fan1-loxP-

13myc-loxM pms1-

loxP-6xFLAG-loxM 
G418r ? 

YFS49 X YFS71, col. D3 

(see Western blot 7.60) 

JMM21 fen1-d 
ade6-704, leu1-32,  

rad2::ura4, ura4-D18 

ura+, ade-, 

leu- 
h-   

YFS93 
fan1-d 

(3909) 

fen1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

fen1::ura+ 

NATr ura+ h+ YFS59 X JMM21, isolate 2 

YFS94 
fan1-d 

(3909) 

fen1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

fen1::ura+ 

NATr ura+ h- YFS59 X JMM21, isolate 6 

YFS95 
fan1-d 

(14152) 

fen1-d 

ade6-M216 

"MTMR::NAT" 

fen1::ura+ 
NATr ura+ h+ YFS60 X JMM21, isolate 2 
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JMM38 exo1-d 
exo1::ura4, leu1-32, 

ura4-D18 
ura+, leu- h+   

YFS96 

exo1-d 

(h- 

version 

derived 

from 

JMM38) 

exo1::ura4+;  leu1-

32; ura4-D18  
ura4+ h- 

JMM38 X 501 (isolate 2); see 

JMM38; from GP1055, strain 

from P. Sgankasi 

YFS97 

exo1-d 

(h+ 

version 

derived 

from 

JMM38) 

exo1::ura4+;  leu1-

32; ura4-D18  
ura4+ h+ 

JMM38 X 501 (isolate 4); see 

JMM38; from GP1055, strain 

from P. Sgankasi; ### 

BACKUP STRAIN, USE 

JMM38 INSTEAD) ### 

YFS101 

msh6-d 

(h- 

version 

derived 

from 

Izumi 

Miyabe's 

IMS480) 

  
G418r; ade-; 

ura- 
h- IMS480 X 501 (col.6) 

YFS102 

msh6 

(h- 

version 

derived 

from 

Izumi 

Miyabe's 

IMS480) 

  
G418r; ade-; 

ura- 
h- IMS480 X 501 (col.3) 

YFS103 

mlh1-d 

(h- 

version 

from 

Izumi 

Miyabe's 

IMS482) 

  
G418r; ade-; 

ura- 
h- IMS482 X 501 (col.3) 

YFS104 

mlh1-d 

(h- 

version 

from 

Izumi 

Miyabe's 

IMS482) 

  
G418r; ade-; 

ura- 
h- IMS482 X 501 (col.4) 

YFS105 

pms1-d 

(h- 

version 

from 

Izumi 

Miyabe's 

IMS483) 

  
G418r; ade-; 

ura- 
h- IMS483 X 501 (col.2) 
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YFS106 

pms1-d 

(h- 

version 

from 

Izumi 

Miyabe's 

IMS483) 

  
G418r; ade-; 

ura- 
h- IMS483 X 501 (col.1) 

YFS107 

msh3-d 

(h- 

version 

derived 

from 

Izumi 

Miyabe's 

IMS481) 

  
G418r; ade-; 

ura- 
h- IMS481 X 501 (col. 1) 

YFS108 

msh3-d 

(h- 

version 

derived 

from 

Izumi 

Miyabe's 

IMS481) 

  
G418r; ade-; 

ura- 
h- IMS481 X 501 (col. 5) 

AMC77 rad13-d 

ade6-704, leu1-32, 

rad13::ura4, ura4-

D18 

ura+, ade-, 

leu- 
h-   

YFS109 
fan1-d 

(3909) 

rad13-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

rad13::ura4+ 

NATr, ura+ h+ YFS59XAMC77; col. 1 

YFS110 
fan1D 

(3909) 

rad13-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

rad13::ura4+ 

NATr, ura+ h- YFS59XAMC77; col. 4 

YFS111 
fan1-d 

(14152) 

rad13-d 

ade6-M216 

"MTMR::NAT" 

rad13::ura4+ 
NATr, ura+ h- YFS60XAMC77; col. 2 

YFS112 
fan1-d 

(14152) 

rad13-d 

ade6-M216 

"MTMR::NAT" 

rad13::ura4+ 
NATr, ura+ h+ YFS60XAMC77; col. 5 

YFS115 
fan1-d 

(3909) 

mlh1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

mlh1::kanMX 

NATr, G418r h- YFS59 X YFS103; col. 3 
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YFS116 
fan1-d 

(3909) 

mlh1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

mlh1::kanMX 

NATr, G418r h- YFS59 X YFS103; col. 8 

YFS117 
fan1-d 

(14152) 

mlh1-d 

ade6-M216 

"MTMR::NAT" 

mlh1::kanMX 
NATr, G418r h+ YFS59 X YFS103; col. 6 

YFS118 
fan1-d 

(14152) 

mlh1-d 

ade6-M216 

"MTMR::NAT" 

mlh1::kanMX 
NATr, G418r h+ YFS59 X YFS103; col. 8 

YFS119 
fan1-d 

(3909) 

pms1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

pms1::kanMX 

NATr, G418r h- YFS59 X YFS105; col. 3 

YFS120 
fan1-d 

(3909) 

pms1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

pms1::kanMX 

NATr, G418r h+ YFS59 X YFS105; col. 4 

YFS121 
fan1-d 

(14152) 

pms1-d 

ade6-M216 

"MTMR::NAT" 

pms1::kanMX 
NATr, G418r h+ YFS59 X YFS105; col. 5 

YFS122 
fan1-d 

(14152) 

pms1-d 

ade6-M216 

"MTMR::NAT" 

pms1::kanMX 
NATr, G418r h- YFS59 X YFS105; col. 6 

YFS123 
fan1-d 

(3909) 

exo1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

exo1::ura4+ 

NATr; ura+ h+ YFS59 X YFS96; col.3 

YFS124 
fan1-d 

(3909) 

exo1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

exo1::ura4+ 

NATr; ura+ h- YFS59 X YFS96; col.8 

YFS125 
fan1-d 

(14152) 

exo1-d 

ade6-M216 

"MTMR::NAT"exo1

::ura4+ 
NATr; ura+ h- YFS60 X YFS96; col.5 
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YFS126 
fan1-d 

(14152) 

exo1-d 

ade6-M216 

"MTMR::NAT"exo1

::ura4+ 
NATr; ura+ h- YFS60 X YFS96; col.7 

JMM1814 rhp18-d 
ade6-704, leu1-32, 

rhp18::ura4, ura4-

D18 

ura+, leu-, 

ade- 
h-   

YFS127 
fan1-d 

(3909) 

rhp18-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

rhp18::ura4+ 

NATr; ura+ h+ YFS59 X JMM1814; col.1 

YFS128 
fan1-d 

(3909) 

rhp18-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

rhp18::ura4+ 

NATr; ura+ h- YFS59 X JMM1814; col.2 

YFS129 
fan1-d 

(14152) 

rhp18-d 

ade6-M216 

"MTMR::NAT"rhp1

8::ura4+ 
NATr; ura+ h+ YFS60 X JMM1814; col.1 

YFS130 
fan1-d 

(14152) 

rhp18-d 

ade6-M216 

"MTMR::NAT"rhp1

8::ura4+ 
NATr; ura+ h- YFS60 X JMM1814; col.3 

YFS131 
pso2-d 

exo1-d 
pso2::kanMX 

exo1::ura+ 
G418r, ura+ h+ SAL181 X JMM38; col. 1 

YFS132 
pso2-d 

exo1-d 
pso2::kanMX 

exo1::ura+ 
G418r, ura+ h- SAL181 X JMM38; col. 2 

YFS135 

fan1-

13myc 

mlh1-

3HA 

501 fan1-loxP-

13myc-loxM mlh1-

loxP-3xHA-loxM 
G418r ? 

YFS49 X YFS70, spore E2 

(see Western blot 7.68) 

YFS139 

fan1D 

strain 
("PN"3909) 

pso2D 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::kanR 

pso2::kanR 

G418r h+ YFS17XSAL181; spore C2 
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YFS140 

fan1-d 

strain 
("PN"3909) 

pso2-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::kanR 

pso2::kanR 

G418r h+ YFS17XSAL181; spore C3 

YFS141 

fan1-d 

strain 
("PN"3909) 

pso2-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::kanR 

pso2::kanR 

G418r h+ YFS17XSAL181; spore H1 

YFS142 
pso2-d 

msh2-d 

501 

pso2::kanMX 

msh2::kanMX 

G418r h+ SAL182XYFS19; spore C2 

YFS143 
pso2-d 

msh2-d 

501 

pso2::kanMX 

msh2::kanMX 

G418r h+ SAL182XYFS19; spore C3 

YFS144 

fan1-d 

(derived 

from 

3909) 

pso2-d 

msh2-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NATr 

pso2::kanR 

msh2::kanR 

G418r NATr ? YFS59XYFS143; spore B3 

YFS145 

fan1-d 

(derived 

from 

14152) 

pso2-d 

msh2-d 

ade6-M216 

"MTMR::NAT"  

pso2::kanR 

msh2::kanR 

G418r NATr ? YFS60 X YFS143; spore D1 

YFS146 

fan1-d 

(derived 

from 

14152) 

pso2-d 

msh2-d 

ade6-M216 

"MTMR::NAT"  

pso2::kanR 

msh2::kanR 

G418r NATr ? YFS60 X YFS143; spore E3 

YFS147 

fan1-d 

(derived 

from 

3909) 

pso2-d 

exo1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NATr 

pso2::kanR 

exo1::ura+ 

G418r Natr 

ura+ 
? YFS123 X SAL181; col. 3 

YFS148 

fan1-d 

(derived 

from 

3909) 

pso2-d 

exo1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NATr 

pso2::kanR 

exo1::ura+ 

G418r Natr 

ura+ 
? YFS123 X SAL181; col. 1 

YFS149 

fan1-d 

(derived 

from 

14152) 

pso2-d 

exo1-d 

ade6-M216 

"MTMR::NAT"  

pso2::kanR 

exo1::ura+ 

G418r Natr 

ura+ 
? YFS125 X SAL182; col.1 
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YFS150 

fan1-d 

(derived 

from 

14152) 

pso2-d 

exo1-d 

ade6-M216 

"MTMR::NAT"  

pso2::kanR 

exo1::ura+ 

G418r Natr 

ura+ 
? YFS125 X SAL182; col.3 

SAL261 rhp51-d 
ade6-704, leu1-32, 

rhp51::kanMX6, 

smt-0, ura4-D18 

G418r, ade-, 

leu-, ura- 
h-   

YFS155 

fan1-d 

(derived 

from 

3909) 

rhp51-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NATr 

rhp51::kanR 

NATr G418r h+ YFS59 X SAL261; col. 2 

YFS156 

fan1-d 

(derived 

from 

3909) 

rhp51-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NATr 

rhp51::kanR 

NATr G418r h- YFS59 X SAL261; col. 7 

YFS157 
exo1-d 

msh2-d 

exo1::ura4+; 

msh2::kanMX6 leu1-

32; ura4-D18 
ura4+; G418r h- YFS96 X YFS19; col.1 

YFS158 
exo1-d 

msh2-d 

exo1::ura4+; 

msh2::kanMX6 leu1-

32; ura4-D18 
ura4+; G418r h+ YFS96 X YFS19; col.3 

YFS159 

fan1-d 

(derived 

from 

3909) 

pso2-d 

rad13-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NATr 

pso2::kanR 

rad13::ura+ 

G418r NATr 

ura+ 
? YFS78 X AMC77; col.2 

YFS160 

fan1-d 

(derived 

from 

3909) 

pso2-d 

rad13-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NATr 

pso2::kanR 

rad13::ura+ 

G418r NATr 

ura+ 
? YFS78 X AMC77; col.3 

YFS161 

fan1-d 

(derived 

from 

14152) 

pso2-d 

rad13-d 

ade6-M216 

"MTMR::NAT"  

pso2::kanR  

rad13::ura+ 

G418r NATr 

ura+ 
? YFS69 X AMC77; col. 2 

YFS162 

fan1-d 

(derived 

from 

14152) 

pso2-d 

rad13-d 

ade6-M216 

"MTMR::NAT"  

pso2::kanR  

rad13::ura+ 

G418r NATr 

ura+ 
? YFS69 X AMC77; col. 6 
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YFS163 

fan1-d 

(derived 

from 

3909) 

pso2-d 

rhp18-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NATr 

pso2::kanR 

rhp18::ura+ 

G418r NATr 

ura+ 
? YFS127 X SAL181; col.1 

YFS164 

fan1-d 

(derived 

from 

3909) 

pso2-d 

rhp18-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NATr 

pso2::kanR 

rhp18::ura+ 

G418r NATr 

ura+ 
? YFS127 X SAL181; col 7  

YFS165 

fan1-d 

(derived 

from 

14152) 

pso2-d 

rhp18-d 

ade6-M216 

"MTMR::NAT"  

pso2::kanR 

rhp18::ura+ 

G418r NATr 

ura+ 
? YFS129 X SAL181; col. 1 

YFS166 

fan1-d 

(derived 

from 

14152) 

pso2-d 

rhp18-d 

ade6-M216 

"MTMR::NAT"  

pso2::kanR 

rhp18::ura+ 

G418r NATr 

ura+ 
? YFS129 X SAL181; col. 5 

SAL161 rad3-d 

ade6-704, leu1-

32, 

rad3::kanMX6, 

ura4-D18 

G418r, ura-, 

ade-, leu- 
h-   

YFS171 

fan1-d 

(derived 

from 

3909) 

rad3-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

rad3::kanMX 

NATr, G418r h- YFS59 X SAL161; col. 3 

YFS172 

fan1-d 

(derived 

from 

3909) 

rad3-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

rad3::kanMX 

NATr, G418r h+ YFS59 X SAL161; col. 1 

YFS173 

fan1-d 

(derived 

from 

14152) 

rad3-d 

ade6-M216 

"MTMR::NAT"  

rad3::kanMX 
NATr, G418r h+ YFS60 X SAL161; col. 3 

YFS174 

fan1-d 

(derived 

from 

14152) 

rad3-d 

ade6-M216 

"MTMR::NAT"  

rad3::kanMX 
NATr, G418r h+ YFS60 X SAL161; col. 4 

AMC293 cds1-d 
cds1::ura4, leu1-32, 

ura4-D18 

ura+, leu-, 

ura- 
h-   
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YFS175 

fan1-d 

(derived 

from 

3909) 

cds1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

cds1::ura+ 

NATr, ura+ h- YFS59 X AMC293; col. 2 

YFS176 

fan1-d 

(derived 

from 

3909) 

cds1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

cds1::ura+ 

NATr, ura+ h+ YFS59 X AMC293; col. 3 

YFS177 

fan1-d 

(derived 

from 

14152) 

cds1-d 

ade6-M216 

"MTMR::NAT" 

cds1::ura+ 
NATr, ura+ h+ YFS60 X AMC293; col. 4 

YFS178 

fan1-d 

(derived 

from 

14152) 

cds1-d 

ade6-M216 

"MTMR::NAT" 

cds1::ura+ 
NATr, ura+ h- YFS60 X AMC293; col. 5 

YFS179 

fan1-d 

(derived 

from 

14152) 

rhp51-d 

ade6-M216 

"MTMR::NAT"  

rad51::kanR 
NATr, G418r h- YFS60 X SAL261; col. 1 

YFS180 

fan1-d 

(derived 

from 

14152) 

rhp51-d 

ade6-M216 

"MTMR::NAT"  

rad51::kanR 
NATr, G418r h+ YFS60 X SAL261; col. 8 

YFS181 

fan1:: 

NAT 

(14152) 

pso2-d  

rhp51-d 

ade6-M216 

"MTMR::NAT"  

pso2::kanMX 

rhp51::kanMX 

NATr, G418r ? 
YFS69XSAL261, tetrads 

2:2,  spore D4 

YFS182 

fan1:: 

NAT 

(14152) 

pso2-d  

rhp51-d 

ade6-M216 

"MTMR::NAT"  

pso2::kanMX 

rhp51::kanMX 

NATr, G418r ? 
YFS69XSAL261, tetrads 

2:2,  spore I2 

YFS183 

fan1-d 

(derived 

from 

3909) 

pso2-d 

rhp51-d  

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

pso2::kanMX 

rhp51::ura+ 

NATr, 

G418r, ura+ 
? YFS78xIMS22; col.5 

YFS184 

fan1-d 

(derived 

from 

3909) 

pso2-d 

rhp51-d  

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

pso2::kanMX 

rhp51::ura+ 

NATr, 

G418r, ura+ 
? YFS78xIMS22; col.1 
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YFS185 

fan1-d 

(derived 

from 

3909) 

pso2-d 

rhp51-d  

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

pso2::kanMX 

rhp51::ura+ 

NATr, 

G418r, ura+ 
? YFS78xIMS22; col.7 

YFS186 
pso2-d 

rhp51-d  

pso2::kanMX6 

rhp51::ura4+ 
G418r, ura+ ? SAL182xIMS22; col.1 

YFS187 
pso2-d 

rhp51-d  

pso2::kanMX6 

rhp51::ura4+ 
G418r, ura+ ? SAL182xIMS22; col.4 

YFS188 
pso2-d 

rhp51-d  

pso2::kanMX6 

rhp51::ura4+ 
G418r, ura+ ? SAL182xIMS23; col.3 

YFS189 
rad13-d 

pso2-d 

rad13::ura4+ 

pso2::kanMX6 
ura4+, G418r ? AMC77xSAL182; col.1 

YFS190 
rad13-d 

pso2-d 

rad13::ura4+ 

pso2::kanMX6 
ura4+, G418r ? AMC77xSAL182; col.4 

YFS191 
rhp18-d 

pso2-d 

rhp18::ura+ 

pso2::kanMX6 
ura4+, G418r ? JMM1814xSAL182; col. 1 

YFS192 
rhp18-d 

pso2-d 

rhp18::ura+ 

pso2::kanMX6 
ura4+, G418r ? JMM1814xSAL182; col. 5 

YFS193 
fan1 base 

strain 

loxP-ura4+-loxM3 

fan1 base strain 
ura4+ h+ 

503 transformed with linear 

fragment (1st step RMCE); col. 

5. Sequenced ok (loxP and 

loxM3 sites) 

YFS194 
fan1 base 

strain 

loxP-ura4+-loxM3 

fan1 base strain 
ura4+ h+ 

503 transformed with linear 

fragment (1st step RMCE); col. 

5. NOT sequenced 
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KAF1177 
rhp18:: 

kanMX6 

ade6-704, leu1-32, 

rhp18::kanMX6, 

ura4-D18 

G418r, ura-, 

leu-, ade- 
h+   

YFS197 
fan1D 

(3909) 

rhp18D 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

rhp18::kanMX 

NATr, G418r ? YFS59xKAF1177; col.1 

YFS198 
fan1-d 

(14152) 

rhp18-d 

ade6-M216 

"MTMR::NAT" 

rhp18::kanMX 
NATr, G418r ? YFS60xKAF1177; col.2 

YFS199 
fan1-d 

(14152) 

rhp18-d 

ade6-M216 

"MTMR::NAT" 

rhp18::kanMX 
NATr, G418r ? YFS60xKAF1177; col.3 

YFS200 
fan1-d 

(14152) 

rhp18-d 

ade6-M216 

"MTMR::NAT" 

rhp18::kanMX 
NATr, G418r ? YFS60xKAF1177; col.4 

AMC75 rad17-d 
ade6-704, leu1-32, 

rad17::ura4,  

ura4-D18 

ura+, ade-, 

leu- 
h-   

YFS207 
fan1-d 

(3909) 

rad17-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

rad17::ura4+ 

NATr, ura+ ? YFS59xAMC75; col.2 

YFS208 
fan1-d 

(3909) 

rad17-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

rad17::ura4+ 

NATr, ura+ ? YFS59xAMC75; col.3 

YFS209 
fan1-d 

(14152) 

rhp18-d 

ade6-M216 

"MTMR::NAT" 

rhp18::kanMX 
NATr, G418r ? YFS60xAMC75; col. 2 

YFS210 
fan1-d 

(14152) 

rhp18-d 

ade6-M216 

"MTMR::NAT" 

rhp18::kanMX 
NATr, G418r ? YFS60xAMC75; col. 3 
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AMC79 rad9-d 
ade6-704, leu1-32, 

rad9::ura4,  

ura4-D18 

ura+, ade-, 

leu- 
h-   

YFS211 
fan1-d 

(3909) 

rad9-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

rad9::ura4+ 

NATr, ura+ ? YFS59xAMC79; col.1 

YFS212 
fan1-d 

(3909) 

rad9-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NAT 

rad9::ura4+ 

NATr, ura+ ? YFS59xAMC79; col.3 

YFS213 
fan1-d 

(14152) 

rad9-d 

ade6-M216 

"MTMR::NAT" 

rad9::ura4+ 
NATr, ura+ ? YFS60xAMC79; col. 2 

YFS214 
fan1-d 

(14152) 

rad9-d 

ade6-M216 

"MTMR::NAT" 

rad9::ura4+ 
NATr, ura+ ? YFS60xAMC79; col. 3 

YFS215 rad1-d  rad1::ura4+ ura+ h- JMM319x501; col., 3 

YFS216 pli1-d pli1::natMX6 NATr h- FZW1981x501; col. 2 

YFS217 pli1-d pli1::natMX6 NATr h- FZW1981x501; col. 6 

YFS221 
pli1-d 

pso2-d 

pli1::natMX6  

pso2::kanMX6 

NATr 

G418r 
? SAL181xFWZ1981; col. 1 

YFS222 
pli1-d 

pso2-d 

pli1::natMX6  

pso2::kanMX6 

NATr 

G418r 
? SAL181xFWZ1981; col. 5 



104 

 
MATERIALS AND METHODS  

YFS223 
fan1-d 

(3909) 

rad1-d  

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NA

T rad1::ura4+ 

NATr 

ura4+ 
? YFS59xYFS215; col. 1 

YFS224 
fan1-d 

(3909) 

rad1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::NA

T rad1::ura4+ 

NATr 

ura4+ 
? YFS59xYFS215; col. 2 

YFS225 
fan1-d 

(14152) 

rad1-d  

ade6-M216 

"MTMR::NAT" 

rad1::ura4+ 

NATr 

ura4+ 
? YFS60xYFS215; col. 1 

YFS226 
fan1-d 

(14152) 

rad1-d  

ade6-M216 

"MTMR::NAT" 

rad1::ura4+ 

NATr 

ura4+ 
? YFS60xYFS215; col. 4 

YFS228 
fan1 base 

strain  

pso2-d 

loxP-ura4+-loxM3 

fan1 base strain 

pso2::kanMX6 

G418r 

ura+ 
h+ YFS193xSAL181; col. 1 

YFS229 
fan1 base 

strain  

pso2-d 

loxP-ura4+-loxM3 

fan1 base strain 

pso2::kanMX6 

G418r 

ura+ 
h+ YFS193xSAL181; col. 5 

YFS230 
fan1-d 

(3909) 

pli1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::kan

MX6 

pli1::natMX6 

G418r 

NATr 
? YFS17xYFS216; col. 1 

YFS231 
fan1-d 

(3909) 

pli1-d 

leu1-32 ura4-D18 

ade6-M? 

SPBC146.06c::kan

MX6 

pli1::natMX6 

G418r 

NATr 
? YFS17xYFS216; col. 4 

YFS232 
fan1-d 

(14152) 

pli1-d  

ade6-M216 

"MTMR::kan" 

pli1::natMX6 

G418r 

NATr 
? YFS16xYFS216; col. 2 

YFS233 
fan1-d 

(14152) 

pli1-d  

ade6-M216 

"MTMR::kan" 

pli1::natMX6 

G418r 

NATr 
? YFS16xYFS216; col. 5 
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YFS237 
fan1-

D651A 

501  

loxP_fan1-

D651A_loxM 

ade- 

ura- 

leu- 

? 

RMCE: colony DA2A. Vector 

sequenced: ok (top + bottom 

strand); genome sequenced: ok 

but unsequenced gaps (see 

separate file). 

YFS240 
fan1-

D651N 

501  

loxP_fan1-

D651N_loxM 

ade- 

ura- 

leu- 

? 

RMCE: colony DN1D. Vector 

sequenced: ok (top + bottom 

strand); genome sequenced: ok 

but unsequenced gaps (see 

separate file). 

YFS241 
fan1-

K668A 

501  

loxP_fan1-

K668A_loxM 

ade- 

ura- 

leu- 

? 

RMCE: colony KA1A. Vector 

sequenced: ok (top + bottom 

strand); genome sequenced: ok 

but unsequenced gaps (see 

separate file). 

YFS242 
fan1-

K668A 

501  

loxP_fan1-

K668A_loxM 

ade- 

ura- 

leu- 

? 

RMCE: colony KA1B. Vector 

sequenced: ok (top + bottom 

strand). 

YFS243 
fan1-

E666Q 

 K668A 

501  

loxP_fan1-E666Q 

 K668A_loxM 

ade- 

ura- 

leu- 

? 

RMCE: colony dm1A. Vector 

sequenced: ok (top + bottom 

strand); genome sequenced: ok 

but unsequenced gaps (see 

separate file).  

YFS247 
fan1-

D651A  

pso2D 

501  

loxP_fan1-

D651A_loxM 

pso2::kanMX6 

ade- 

ura- 

leu- 

G418r 

? 
YFS77xYFS237; col 1 

(checked G418r NATs) 

YFS248 
fan1--

d651A  

pso2-d 

501  

loxP_fan1-

D651A_loxM 

pso2::kanMX6 

ade- 

ura- 

leu- 

G418r 

? 
YFS77xYFS237; col 2 

(checked G418r NATs) 

YFS249 
fan1--

d651N 

pso2-d 

501  

loxP_fan1-

D651N_loxM 

pso2::kanMX6 

ade- 

ura- 

leu- 

G418r 

? 
YFS77xYFS239; col 1 

(checked G418r NATs) 

YFS250 
fan1--

d651N 

pso2-d 

501  

loxP_fan1-

D651N_loxM  

pso2::kanMX6 

ade- 

ura- 

leu- 

G418r 

? 
YFS77xYFS239; col 2 

(checked G418r NATs) 

YFS251 
fan1-

K668A 

pso2-d 

501  

loxP_fan1-

K668A_loxM  

pso2::kanMX6 

ade- 

ura- 

leu- 

G418r 

? 
YFS77xYFS241; col 1 

(checked G418r NATs) 
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YFS252 
fan1-

K668A 

pso2-d 

501  

loxP_fan1-

K668A_loxM  

pso2::kanMX6 

ade- 

ura- 

leu- 

G418r 

? 
YFS77xYFS241; col 2 

(checked G418r NATs) 

YFS253 

fan1-

E666Q 

 K668A  

pso2-d 

501  

loxP_fan1-E666Q 

 K668A_loxM  

pso2::kanMX6 

ade- 

ura- 

leu- 

G418r 

? 
YFS77xYFS243; col 1 

(checked G418r NATs) 

YFS254 

fan1-

E666Q 

 K668A  

pso2-d 

501  

loxP_fan1-E666Q 

 K668A_loxM  

pso2::kanMX6 

ade- 

ura- 

leu- 

G418r 

? 
YFS77xYFS243; col 2 

(checked G418r NATs) 

 

 

Note: in this table , D or –d are used interchangeably to indicate a deletion mutant. 

Strains used in 

APPENDIX 1 

Strains used in 

Chapter 3

Strains used in 

Chapter 4

Strains used in 

Chapter 5

Strains used in 

Chapter 6

Strains used in more 

than one chapter



 

 

 

3 Chapter Three 
 

BIOCHEMICAL CHARACTERISATION OF FAN1 IN 
SCHIZOSACCHAROMYCES POMBE 

CHARACTERIOF FANCHAROMYCES POMBE 
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3.1 Introduction 

 Spontaneous mutation rate as a readout for MMR pathway dysfunctions 3.1.1

The mismatch repair (MMR) pathway deals with deviations from the standard G/C and A/T 

DNA base pairing (Kunz et al., 2009).  The study of MMR activity has led to the development of 

several in vivo and in vitro systems to detect hallmarks of genomic instability such as single-

base substitutions and microsatellite instability (Spampinato et al., 2009). A widely used 

methodology is based on the detection of phenotypic changes consequent to mutations 

incurred in a genetic marker (mutator phenotype). In yeast, such methods comprise forward or 

reverse mutation assays. In the first case, a diversified spectrum of mutations can lead to a 

mutator phenotype such as acquired resistance to a specific toxic compound or loss of 

prototrophy. Reverse mutation assays usually detect a specific type of mutations that needs to 

be reverted in order to generate a viable cell (Spampinato et al., 2009). 

In this study, a forward mutation assay is used to detect the rate of spontaneous mutation in 

fan1-deleted fission yeast cells. The readout in this system is the switch from uracil 

prototrophy to uracil auxotrophy. Studies indicate that the estimated mutation rate during 

DNA replication in eukaryotic cells is lower than 1 mutation every 109 bases (McCulloch and 

Kunkel, 2008). This level of mutation rate would be undetectable by current mutation assays.  

In S. cerevisiae, a mutation in the Pol DNA polymerase catalytic subunit (Pol3-L615M) leads to 

a 7-fold increased spontaneous mutation rate with no measurable changes in other 

phenotypes monitored (Venkatesan et al., 2006). In this study, the spontaneous mutation rate 

was increased to detectable levels by using a strain harbouring the corresponding mutation in 

the polymerase Cdc6 (Cdc6-L591M). To determine mutation rates in fan1-d wild-type and 

mutator backgrounds, fluctuation analysis as described in Foster (2006) was used. The analysis 

of the results was performed by using the Lea-Coulson median estimator method (Rosche and 

Foster, 2000; Foster, 2006).  
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 Use of recombinase-mediated cassette exchange to construct tagged strains 3.1.2

The recombinase-mediated cassette exchange (RMCE) method developed by Watson et al., 

(2008) was used to generate epitope-tagged strains. This cre/lox recombination system 

provides a rapid and efficient way to tag or replace target genes in S. pombe. The first step is 

the construction of a base strain by insertion of a loxP-ura4+-loxM3 cassette at the site of 

interest. The second step is the transformation of the base strain with a plasmid carrying the 

tag or the replacement gene inserted within the loxP and loxM3 cassettes. The final step is the 

recombinational exchange between the sequences flanked by loxP and loxM3. A schematic of 

the procedure is shown in fig. 3.1. 

Figure 3.1 | Schematic representation of Recombinase-Mediated Cassette Exchange (RMCE) to tag 

proteins of interest. The base strain was constructed by standard molecular biology techniques. Dotted 

lines indicate cassettes located on a S. pombe chromosome. Crosses represent homologous 

recombination between loxP and loxM3 cassettes  Abbreviations: ura4+, S. pombe uracil marker; LEU2, 

S. cerevisiae  leucine marker; gene, gene of interested to be tagged; P, loxP site; M3, mutant loxM3 site; 

Pnmt41, S. pombe nmt41 promoter; Tnmt, nmt terminator sequence; IN, S. pombe rad50 intron 1; cre, gene 

coding for the recombinase Cre. Adapted from Watson et al., 2008. 
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3.2 Aim of this chapter 

FAN1Hs (also known as KIAA1018) has been shown to interact with components of the 

mismatch repair (MMR) pathway such as MLH1, PMS1 and PMS2 (Cannavo et al., 2007; 

MacKay et al., 2010; Smogorzewska et al., 2010). The aim of this chapter is to investigate 

whether Fan1 plays a role in the MMR pathway in S. pombe by assessing physical protein-

protein interactions and alterations in the spontaneous mutation rates in fan1-d strains. 

3.3 Results 

 Southern blot analysis of Fan1Sp deletion mutants 3.3.1

Two independently-derived fan1-d mutants (fan1::kanMX; kanMX confers resistance to the 

drug geneticin, or G418) have been analysed in parallel in this study. The first mutant (3909) 

was kindly donated by Professor Paul Nurse; the second mutant (14152) is derived from the 

Bioneer® S. pombe deletion mutant library (http://pombe.bioneer.co.kr/). To test the correct 

disruption of the fan1 cassette, genomic DNA from the two strains was extracted and analysed 

by Southern blot analysis following diagnostic digests by restriction endonucleases. Both the 

two mutant strains showed the expected size for SalI-digested genomic DNA (approximately 

9880 bp) (fig. 3.2). However, 3909 in the HindIII digests showed a probed fragment 

approximately 300 bp shorter than expected (approximately 2500 bp compared to the 

expected 2818 bp). This apparent discrepancy is due to the kanMX cassette in the 3909 strain 

being inverted compared to the 14152 strain, as confirmed by sequencing of the two mutants. 

Thus, it can be concluded that the size of the fragments showed by Southern blot analysis 

confirmed the identity of the two independently derived fan1 disruptants. 
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Figure 3.2 | Southern blot analysis of the two independently-derived fan1-deleted 

strains, 3909 and 14152. a. Schematic showing the expected size for the digests in the 

Southern analysis (Fan1 probe). b. The Southern blot analysis confirmed the identity of 

the two deleted strains. The slight size differences in the HindIII fragment are due to 

the inverted position of the kanMX6 cassette. H, HindIII; S, SalI. 
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 Western blot analysis of Fan1Sp double-tagged strains  3.3.2

Three single tagged strains (Fan1-13myc, Mlh1-3HA, Pms1-6FLAG) were constructed using the 

RMCE method illustrated in fig. 3.1. The choice of these two components of the MMR pathway 

was based on parallel work showing that human FAN1 interacts in vivo with MLH1, PMS1 and 

PMS2 (Cannavo et al., 2007; MacKay et al., 2010; Smogorzewska et al., 2010). In S. pombe, 

Mlh1 (Mlh1Sc, MLH1Hs) and Pms1 (Pms1Sc, PMS2Hs) are part of the MutL heterodimer, involved 

in the DNA repair complex assembly step of MMR (Marti et al., 2002; Marti et al., 2003). 

Whole cell (TCA) extracts of the two double tagged strains (Fan1-13myc Mlh1-3HA and Fan1-

13myc Pms1-6FLAG) were analysed by Western blot. Single and double tagged proteins 

migrated with electrophoretic mobility lower than the expected based on their calculated 

protein mass (fig. 3.3, panels a and b). This could be due to technical factors such as running 

conditions and buffer composition of the SDS-PAGE performed. However, the relative 

electrophoretic mobility for the tagged proteins and the antibody specificity shown in this 

analysis reveal an acceptable consistency. Thus, it can be concluded that the Western blot 

analysis confirms the identity of the single and double tagged proteins constructed.   

 S. pombe Fan1 does not associate with the mismatch repair proteins Mlh1 and Pms1  3.3.3

To test whether Fan1 interacts with Mlh1 and Pms1 in vivo, cell extracts of Fan1-13myc Mlh1-

3HA and Fan1-13myc Pms1-6FLAG double tagged strains were subjected to immuno-

precipitation and western blot analysis. The western blot analysis of Fan1-13myc, Mlh1-3HA 

and the double tagged Fan1-13myc Mlh1-3HA immuno-precipitates confirmed the correct -

myc immuno-purification of Fan1 in both Fan1-13myc and Fan1-13myc Mlh1-3HA (fig. 3.4, top 

gel, IP lanes). When the same samples were subjected to western blot analysis using the -HA 

antibody, a faint band corresponding to Mlh1-3HA was visible in the Fan1-13myc Mlh1-3HA IP 

lane, suggesting that Fan1 and Mlh1 co-immunoprecipitate (fig. 3.4, bottom gel, IP lanes). 
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 However, a similar faint band is visible also in the Mlh1-3HA (single tagged strain) IP lane. The 

simplest explanation for this result is that the immuno-purification with the -myc antibody 

cross-reacts with other proteins, such as Mlh1-3HA. This explanation is consistent with the 

immuno-purification using the reciprocal antibody against HA (fig. 3.5). The western blot 

analysis with the -HA antibody confirmed the correct immuno-precipitation of the single and 

the double tagged strains (Mlh1-3HA and Fan1-13myc Mlh1-3HA, respectively; fig. 3.5, top gel, 

IP lanes). However, no bands corresponding to the Fan1-13myc were identified in the immuno-

precipitates subjected to western blot analysis with the -myc antibody (fig. 3.5, bottom gel, IP 

Figure 3.3 |  Western blot analysis of the Fan1
Sp

 double tagged strains Fan1-13myc Pms1-6FLAG and 

Fan1-13myc Mlh1-3HA. a. Calculated mass for the tagged proteins used in this study (source for 

proteins: http://old.genedb.org/genedb/pombe/; tag size estimated based on their sequence). b. 

Whole cell extracts of wild-type and tagged strains. Western blot analysis performed using the 

indicated antibodies on four separate 8% SDS-PAGE gels. Band sizes are estimated based on NEB® 

Prestained Protein Marker, Broad Range (not shown). The tagged proteins migrate with mobility lower 

than expected, but consistently with their relative calculated mass. WCE, whole cell extract (TCA 

extraction). 

http://old.genedb.org/genedb/pombe/
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lanes). Thus, the immunoprecipitation with the -HA antibody appears to be more specific 

than the immunoprecipitation performed with a -myc antibody. This shows that the two 

proteins do not co-immunoprecipitate. Taken together, the western blot analysis on Fan1-

13myc and Mlh1-3HA -myc and -HA immunoprecipitates excludes a strong interaction 

between the two proteins. 

A similar result was obtained with the Fan1-13myc and Pms1-6FLAG immuno-precipitates. The 

-myc western analysis on the -myc pulldown confirmed the presence of Fan1 in the Fan1-

13myc and Fan1-13myc Pms1-FLAG IP lanes (fig. 3.6, top gel, IP lanes). A faint band 

corresponding to the size expected for Pms1-FLAG was visible also in the Fan1-13myc Pms1-

FLAG lane in the -FLAG western blot (fig. 3.6, bottom gel, IP lanes). However, as a band of 

similar size was also visible in the Pms1-FLAG IP lane, this result demands some caution. In the 

reciprocal immuno-precipitation with the -FLAG antibody, a strong band of the size expected 

for Fan1-13myc was shown in the -myc western blot (fig. 3.7, bottom gel, IP lanes). This 

would suggest that Fan1-13myc co-immunoprecipitates with Pms1-FLAG in the -FLAG 

pulldown. However, it cannot be excluded that Fan1-13myc is identified in this western blot 

due to non-specific precipitation of proteins and not due to specific protein-protein 

interactions.              

 fan1-d mutants do not exhibit an increase in spontaneous mutation rate 3.3.4

To further test a possible involvement of Fan1Sp in the mismatch repair system, a series of fan1 

deletion mutants were tested for increase in their spontaneous mutation rate. Forward 

mutation assays are routinely used as standard methods to determine increases in 

spontaneous mutation rate, strongly correlated with defects in the mismatch repair pathway 

(Spampinato et al., 2009). To further investigate a possible involvement of Fan1Sp in the 

resolution of base-base mismatches, a forward mutation assay was employed where the loss 

of uracil prototrophy was monitored in standard growing conditions.   
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Figure 3.4 | Western blot analysis of Fan1-13myc, Mlh1-3HA and Fan1-13myc Mlh1-3HA 

immunoprecipitates, -myc pulldown. Fan1-13myc and Mlh1-3HA do not co-immunoprecipitate in the 

-myc pulldown. Top gel: western blot analysis with antibody against the myc epitope. The arrow 

indicates the size of the band expected for Fan1-13myc. Bottom gel: western blot analysis with antibody 

against the HA epitope. The arrow indicates the size of the band expected for Mlh1-3HA. The two 8% 

SDS-PAGE gels were loaded with the same samples and subjected to two independent western blot 

analyses. Band sizes are estimated based on NEB® Prestained Protein Marker, Broad Range. WCE, whole 

cell extract (TCA extraction); IP, immunoprecipitate: INPUT, 45% of the total lysate.     
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Figure 3.5 | Western blot analysis of Fan1-13myc, Mlh1-3HA and Fan1-13myc Mlh1-3HA 

immunoprecipitates, -HA pulldown. Fan1-13myc and Mlh1-3HA do not co-immunoprecipitate in the 

-HA pulldown. Top gel: western blot analysis with antibody against the HA epitope. The arrow 

indicates the size of the band expected for Mlh1-3HA. Bottom gel: western blot analysis with antibody 

against the myc epitope. The arrow indicates the size of the band expected for Fan1-13myc. The two 

8% SDS-PAGE gels were loaded with the same samples and subjected to two independent western 

blot analyses. Band sizes are estimated based on NEB® Prestained Protein Marker, Broad Range. WCE, 

whole cell extract (TCA extraction); IP, immunoprecipitate: INPUT, 45% of the total lysate.     
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Figure 3.6 | Western blot analysis of Fan1-13myc, Pms1-6FLAG and Fan1-13myc Pms1-6FLAG 

immunoprecipitates, -myc pulldown. Fan1-13myc and Pms1-6FLAG do not co-immunoprecipitate in the 

-myc pulldown. Top gel: western blot analysis with antibody against the myc epitope. The arrow indicates 

the size of the band expected for Fan1-13myc. Bottom gel: western blot analysis with antibody against the 

FLAG epitope. The arrow indicates the size of the band expected for Pms1-FLAG. The two 8% SDS-PAGE gels 

were loaded with the same samples and subjected to two independent western blot analyses. Band sizes 

are estimated based on NEB® Prestained Protein Marker, Broad Range. WCE, whole cell extract (TCA 

extraction); IP, immunoprecipitate: INPUT, 45% of the total lysate.  
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   Figure 3.7 | Western blot analysis of Fan1-13myc, Pms1-6FLAG and Fan1-13myc Pms1-6FLAG 

immunoprecipitates, -FLAG pulldown. A strong band corresponding to Fan1-13myc is shown in the -

FLAG pulldown, -myc western blot. Top gel: western blot analysis with antibody against the FLAG 

epitope. The arrow indicates the size of the band expected for Pms1-FLAG. Bottom gel: western blot 

analysis with antibody against the myc epitope. The arrow indicates the size of the band expected for 

Fan1-13myc. The two 8% SDS-PAGE gels were loaded with the same samples and subjected to two 

independent western blot analyses. Band sizes are estimated based on NEB® Prestained Protein Marker, 

Broad Range. WCE, whole cell extract (TCA extraction); IP, immunoprecipitate: INPUT, 45% of the total 

lysate. 
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The S. pombe mutant cdc6 -L591M was used as a background to increase the basal mutation 

rate to detectable levels, as the spontaneous mutation rate in a cdc6+ background is in the 

order of 1 mutation every 109 bases copied (table 3.1 and fig. 3.8). In a cdc6 -L591M 

background, the mutation rate is increased by three orders of magnitude every 106 bases 

copied. However, no significant increase in the spontaneous mutation rate was observed 

following deletion of fan1 (table 3.1 and fig. 3.8). This data argued against a direct involvement 

of Fan1Sp in the MMR pathway. The deletion of Msh2Sp (central component of the MMR 

pathway) in a cdc6-L591M background would prove to be a good validation for the use of this 

assay to detect increased levels of mismatches. However, msh2-d cdc6 -L591M is not viable (I. 

Miyabe, personal communication). For this reason, an alternative version of the system was 

used where a point mutation in the catalytic subunit of Pol (cdc20-M630F) leads to a milder 

mutator phenotype. In S. cerevisiae, the corresponding mutation pol2-M644F leads to a 

significant increase in the spontaneous mutation rate only when combined with an msh6 

deletion (Pursell et al., 2007). In a wt background, the deletion of msh2 led to an increase in 

mutation rate up to 2.9*10-7 from undetectable levels in msh2+ (table 3.1 and fig. 3.9, blue 

Table 3.1 | Spontaneous forward mutation rate of fan1-d mutants in cdc6+ and cdc6-L591M 

backgrounds. Data from three independent experiments. For each strain, 11 colonies were grown to 

saturation at 30°C for 48 hours. Fluctuation analysis was performed as described in chapter 2. 

Spontaneous mutation rates were calculated by the Lea-Coulson method of the median (Rosche and 

Foster, 2000; Foster, 2006). Standard error: standard deviation divided by   . Fold elevation calculated 

as ratio between the average of the mutant and the average of the corresponding background of 

reference (cdc6+ or cdc6-L591M). Fold elevation of value 0 reflects the reduction in spontaneous 

mutation rate displayed by Cdc6-L591M fan1-d (14152).  

 Mutation rate/cell division  

 Experiment  
1 

Experiment 
2 

Experiment 
3 

Average  Standard 
error 

Fold 
elev. 

cdc6+ 8.09E-10 5.27E-10 5.65E-10 6.33E-10 8.85E-11 1 

cdc6+ fan1-d (3909) 9.98E-10 8.45E-10 9.17E-10 9.20E-10 4.42E-11 1 

cdc6+ fan1-d (14152) 6.49E-10 5.74E-10 5.02E-10 5.75E-10 4.24E-11 1 

cdc6-L591M 2.08E-06 1.08E-05 2.82E-06 5.25E-06 2.81E-06 1 

cdc6-L591M fan1-d (3909) 2.55E-06 6.35E-06 3.37E-06 4.09E-06 1.16E-06 1 

cdc6-L591M fan1-d (14152) 1.90E-06 2.93E-06 2.99E-06 2.61E-06 3.54E-07 0 
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bars). When msh2 is deleted in a cdc20-M630F background, the relative increase in mutation 

rate is approximately five fold, up to 1.5*10-6 (fig. 3.9, blue bars). As this experiment was only 

performed once, this data was compared to the data from a similar experiment performed in 

our laboratory by Dr I. Miyabe. The fold increase between the cdc20+ and the cdc20-M630F 

strains in an msh2-deleted background was approximately four-fold, from 1*10-6 to 4.2*10-6 

(fig. 3.9, red bars), consistent with the experiment performed for this study. This data confirms 

that the spontaneous mutation rate assay used in this study is an appropriate indicator of 

defects in the MMR pathway. A further confirmation that Fan1Sp is not directly involved in the 

resolution of base-base mismatches is the fact that when combined with the cdc20-M630F 

Figure 3.8 | Spontaneous mutation rate of fan1-d mutants in cdc6+ and cdc6-L591M backgrounds. 

Bars represent the average of the three independent experiments in table 3.1. The spontaneous 

mutation rate is not increased in a cdc6-L591M background when fan1 is deleted. Error bars represent 

the standard error of the mean, calculated as standard deviation divided by  𝟑. Blue inset: expanded 

values on the Y axis for cdc6+, cdc6+ fan1-d (3909) and cdc6+ fan1-d (14152), which would not be 

visible with the main Y axis scale (left of the graph). 
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mutation, the spontaneous mutation rate again did not fall within the detection limit of the 

assay (supplementary fig. 9.21). Taken together, these data indicate that Fan1Sp is not directly 

involved in the resolution of DNA base-base mismatches through the MMR pathway. 

3.4  Discussion 

 Fan1Sp does not associate in vivo with MMR components and is not involved in the 3.4.1

MMR pathway 

In mammalian cells, FAN1Hs interacts in vivo with MLH1Hs and PMS2Hs, ortholog of Pms1Sp 

Figure 3.9 | Spontaneous mutation rate of msh2-d mutants in a cdc20 wt and cdc20-M630F 

backgrounds. For each strain, 11 colonies were grown to saturation at 30°C for 48 hours. Fluctuation 

analysis was performed as described in chapter 2. Spontaneous mutation rates were calculated by the 

Lea-Coulson method of the median (Rosche and Foster, 2000; Foster, 2006). As the experiment in this 

study (blue bars) was performed only once, the result was compared with the result of a similar 

experiment obtained by Dr I. Miyabe (red bars). In both the experiments, a similar significant increase in 

the spontaneous mutation rate is shown in the cdc20-M630F compared to cdc20+.  
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(Cannavo et al., 2007; Smogorzewska et al., 2010; MacKay et al., 2010; Kratz et al., 2010). 

Despite this physical in vivo interaction, two lines of evidence suggest that in fact FAN1Hs is not 

directly involved in mismatch resolution. Firstly, it was shown that siRNA depletion of FAN1Hs 

in a MLH1-mutated background still induces sensitivity to ICL-inducing agents, indicating that 

FAN1Hs role is independent of the MMR status (Smogorzewska et al., 2010). Secondly, FAN1Hs-

depleted cells are not sensitive to 6-thioguanine, a marker drug for the MMR pathway 

(MacKay et al., 2010). Despite the evidence excluding a direct role in the MMR pathway, the 

physical association found in mammalian cells still suggests a functional significance for the 

FAN1Hs-MMR interaction. Indeed, it has been proposed that human FAN1 might serve as a 

recruitment factor for MMR components to act at the ICL, possibly to correct mismatches 

arising as a consequence of the activity of error-prone translesion polymerases (Smogorzewska 

et al., 2010; MacKay et al., 2010).  

The situation in S. pombe appears to differ. As presented above, in the western blot analysis of 

co-immunoprecipitation experiments no physical interaction between Fan1Sp and the 

homologous S. pombe MMR components Mlh1Sp and Pms1Sp were detected (figures 3.4 - 3.7). 

To further investigate the involvement of Fan1Sp in the MMR pathway, spontaneous mutation 

rate was calculated in fan1-deleted cells in cdc6+ wild-type and cdc6-L591M mutated 

backgrounds. As fan1-d cells failed to show an increase in the spontaneous mutation rate 

compared to the control strains (fig. 3.8), a direct role for Fan1Sp in the MMR pathway could be 

ruled out. Taken together, the data presented here rules out a direct role for Fan1Sp in the 

repair of base-base mismatches.  

3.5 Conclusions 

A basic biochemical characterisation was presented in this chapter where a myc-tagged Fan1Sp 

was analysed by western blot for prospective interactions with components of the mismatch 

repair pathway. Furthermore, the direct involvement in the MMR pathway was tested by 
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spontaneous mutation rate in the absence of Fan1. Both the approaches gave negative results, 

indicating that Fan1 is not a novel member of the mismatch repair pathway. In the next 

chapter, an extensive genetic characterisation is presented, the aim of which is the integration 

of Fan1Sp into the S. pombe DNA damage responses. 



 
 

 

 

 

4 Chapter Four  
 

GENETIC CHARACTERISATION OF SCHIZOSACCHAROMYCES 
POMBE FAN1: ASSESSMENT OF EPISTATIC INTERACTIONS BY 

IN VIVO SURVIVAL ASSAYS  
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4.1 Introduction 

 Use of epistasis analysis to infer protein functions  4.1.1

In this chapter, in vivo survival assays are used to assign genetic interactions between Fan1Sp 

and known proteins involved in previously characterized pathways of DNA metabolism. In 

particular, this section presents an extensive use of the serial-dilution colony spotting assay, a 

highly standardized technique widely used to assess synergistic interactions between genes of 

interest. Profiting from the amenable genetics of the fission yeast, a series of double and triple 

null mutants can be rapidly created and exposed to increasing doses of a range of chemical 

agents known to induce specific subsets of lesions on the DNA molecule. Thus, the function of 

a protein can be deduced on the basis of the observed sensitivity of combinations of mutants 

to specific agents. According to the classical interpretation of genetic interactions, a gene is 

defined as epistatic to a second non-allelic gene if the phenotype of the deletion of the first 

gene is masked by the deletion of the second gene (Roth et al., 2009). In the case of exposure 

to DNA damaging agents, it is generally assumed that two genes involved in the same repair 

pathway show a similar phenotype (namely, augmented sensitivity compared to the wild-type 

gene) when either gene, or both, are deleted. Conversely, a non-epistatic interaction is 

assumed when the deletion of the second gene aggravates the sensitivity due to the deletion 

of the first gene. In this latter scenario, it can be deduced that the two genes code for proteins 

that act in distinct, compensatory pathways of DNA repair. Although these interpretations 

represent an oversimplification of interactions between gene products, they provide a simple 

logical framework to help infer the role of uncharacterized proteins.       

 DNA cross-linking agents used in this study 4.1.2

In order to understand the rationale behind the use of cross-linking agents in this study, it is 

useful to consider the molecular mechanisms underlying their cytotoxicity.  

Cisplatin is commonly used in research as an inducer of DNA interstrand cross-links. However, 
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the majority of the lesions created by this agent are intrastrand cross-links (IaCL) between two 

adjacent purine bases (1,2-intrastrand cross-links), whereas 1,3-intrastrand cross-links and 

interstrand cross-links (ICLs) account for a more limited proportion of the total lesions (Brabec, 

2002). The specific response of the DNA repair machinery to the different lesions caused by 

cisplatin is still unclear. It has been shown that 1,2- and 1,3-intrastrand cross-links are 

recognised by the mammalian NER apparatus. However, 1,2-intrastrand adducts are poor 

substrates for this repair pathway and they may represent the lesions responsible for cisplatin 

cytotoxicity (Zamble et al., 1996; Moggs et al., 1997).   

The most commonly used agent belonging to the nitrogen mustard family of DNA interstrand 

cross-linking agents is bis(2-chloroethyl)methylamine (HN2, mechloretamine). The vast 

majority of lesions formed by this bi-functional alkylating agent are of mono-adducts, with a 

small proportion of ICLs that total 1-5% of the lesion burden (Lehoczký et al., 2007). However, 

in budding and fission yeast, HN2 ICLs have been shown to be the lesions responsible for the 

resulting cytotoxicity (McHugh et al., 1999; Lambert et al., 2003). 

Mitomycin C is a naturally-derived antibiotic used experimentally for its capacity to form a 

significant proportion (approximately 13%) of non-distorting ICLs on the DNA molecule 

(Lehoczký et al., 2007). 

The chemical structures and the degree of distortion induced by these agents on two opposing 

DNA bases in a duplex are illustrated in fig. 4.1. In this study, cisplatin has been widely used as 

an interstrand cross-linking agent. Despite the mixed proportion of adducts generated, 

following considerations of cost-effectiveness, chemical stability and data from pre-existing 

literature, this drug was thought to be the best choice for the current work. However, 

comparisons with MMC and HN2 are also reported and considered, where appropriate.    
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4.2 Aim 

The aim of this chapter is to define epistatic interactions of Fan1Sp with a selection of 

candidate genes by use of in vivo survival assays such as spot tests and survival curves. By 

exposing several combinations of null mutants to a range of DNA damaging agents, it is 

possible to identify synergistic effects leading to increased or decreased cell viability to specific 

subsets of DNA damage. The results from these assays lead to the assignment of genetic 

interactions between Fan1Sp and other known components participating in common and 

compensatory pathways of DNA metabolism. 

4.3 Results 

 Fan1Sp is a novel component of the DNA damage response  4.3.1

To assess the response of fan1-d mutants to a variety of DNA lesions, the two Fan1Sp deletion 

mutants 3909 and 14152 were initially back-crossed twice to a wild-type strain and five 

independent G418-resistant colonies were isolated and tested under increasing concentrations 

of a selection of DNA damaging agents. All the fan1 deletion isolates showed wild-type 

sensitivity to UV, camptothecin (CPT), methyl methanesulfonate (MMS) and hydroxyurea (HU) 

Figure 4.1 |Structures and adducts created by the interstrand cross-linking agents used in this study. 

The three chemical compounds used create a diversified range of adducts on the DNA molecule. The 

chemical structures illustrated here refer to distortions created by the interstrand cross-links portion 

of adducts. Chemical structures adapted from Hlavin et al., 2010; data from Brabec et al., 2002; 

Lehoczký et al., 2007.    
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(fig. 4.2). However, a subtle but reproducible sensitivity was shown when cells were exposed 

to cis-platinum diammine-dichloride (cisplatin, CDDP) and mitomycin C (MMC). These drugs 

belong to a family of DNA damaging agents that induce covalent cross-links between the two 

strands of a DNA molecule [interstrand cross-links, ICLs; reviewed in Lehoczký et al. (2007)]. 

The same pattern of sensitivity was observed for the five independent colonies derived from 

the second mutant 14152 (fig. 4.3). It should be noted that the independent deletion isolates  

Figure 4.2 | Sensitivity of Fan1
Sp

 deletion isolates of mutant 1 (3909) to a variety of DNA damaging 

agents. Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7
 cells 

(first spot on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used as a 

standard hypersensitive control for the efficacy of the agents used. fan1-d isolates from mutant 3909 

(3909-1r/5r) display a subtle but reproducible sensitivity to ICL-inducing agents.  Abbreviations used: 

UV, Ultra-Violet irradiation; CPT, camptothecin; MMS, methyl methanesulfonate; HU, Hydroxyurea; 

cispl, cisplatin; MMC, mitomycin C.  
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Figure 4.3 | Sensitivity of Fan1
Sp

 deletion isolates of mutant 1 (14152) to a variety of DNA damaging 

agents. Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7
 cells 

(first spot on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used as a 

standard hypersensitive control for the efficacy of the agents used. fan1-d isolates from mutant 14152 

(14152-1r/5r) display a subtle but reproducible sensitivity to ICL-inducing agents.  Abbreviations used: 

UV, Ultra-Violet irradiation; CPT, camptothecin; MMS, methyl methanesulfonate; HU, Hydroxyurea; 

cispl, cisplatin; MMC, mitomycin C. 
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display a variable degree of sensitivity to the drugs tested. It can be hypothesized that this is 

due to the effects of unknown suppressors in different isolates. However, albeit subtle, the 

sensitivity to DNA interstrand cross-linkers was reproducible for all the isolates. Thus, it could 

be concluded that this phenotype pointed towards a role for Fan1Sp in the repair of DNA 

interstrand cross-links.  

 Fan1Sp shows a non-epistatic interaction with Pso2Sp in response to cisplatin and 4.3.2

mitomycin C 

The mild sensitivity towards ICL-inducing agents suggested that Fan1Sp was implicated in ICL 

repair but its role overlapped with the function of other components of the DNA repair 

machinery. Thus, in the absence of Fan1Sp, the repair of ICLs appears to be carried out through 

alternative pathways. To test this, the original 3909 and 14152 mutants were crossed with a 

series of deletion mutants of genes reported to be involved in the ICL resolution pathway, 

either in S. pombe or in the budding yeast S. cerevisiae. Although little is known about the 

resolution of DNA ICLs in S. pombe, the nuclease Pso2Sp (Snm1Sc) has been clearly shown to be 

specifically required for normal resistance to ICL-inducing agents (Lambert et al., 2003). To 

allow a flexible and rapid series of genetic crosses between different deletion mutants, the 

original kanMX deletion cassettes in the 3909 and 14152 strains were replaced with a natMX6 

deletion cassette, which confers resistance to nourseothricin (Hentges et al., 2005). The 

natMX6 null mutants derived from 3909 and 14152 were named 3909N and 14152N, 

respectively. The two strains were shown to be G418s and were further checked by Southern 

blot analysis (see supplementary fig. 9.22).  
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When exposed to increasing doses of cisplatin and MMC, the fan1 pso2 double mutant 

showed a dramatic reduction in viability compared to the single mutants and the wt strain (fig. 

4.4). A slight increase in sensitivity was also shown following irradiation with UV. This 

observation is consistent with the finding that UV light induces a small amount of DNA 

interstrand cross-links (Love et al., 1986). No synergistic hypersensitivity was shown for MMS, 

CPT or HU (fig. 4.4). To rule out any possible effect due to the replaced natMX6 deletion 

cassette, the assay was repeated with a fan1 pso2 mutant generated by using the original 3909 

Figure 4.4 | Sensitivity of fan1-d pso2-d double mutant to a variety of DNA damaging agents. 

Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7
 cells (first spot 

on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used as a standard 

hypersensitive control for the efficacy of the agents used. The combined deletion of fan1 and pso2 

aggravates the sensitivity to cisplatin and MMC. Abbreviations used: UV, Ultra-Violet irradiation; CPT, 

camptothecin; MMS, methyl methanesulfonate; HU, Hydroxyurea; cispl, cisplatin; MMC, mitomycin C. 
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kanMX mutant as a parental strain. The two combined kanMX mutations (fan1::kanMX 

pso2::kanMX) resulted in the same sensitivity to UV and cisplatin compared to the 

fan1::natMX6  pso2::kanMX  combined mutations (supplementary fig. 9.5). Thus, any possible 

artefact due to the natMX6 cassette can be confidently ruled out. Taken together, these data 

indicate that Fan1Sp is a novel DNA repair component acting in a pathway that is parallel and 

distinct from the one involving Pso2Sp.  

 Fan1Sp is specifically involved in the response to DNA interstrand cross-links 4.3.3

In order to confirm that Fan1Sp is specifically involved in the resolution of covalent bonds 

between the two strands of a DNA molecule, cell survival assays were repeated for fan1-d and 

pso2-d using bis(2-chloroethyl)methylamine (HN2, mechloretamine), agents shown to 

generate a cleaner proportion of DNA interstrand cross-links compared to cisplatin (Lehoczký 

et al., 2007). 

When exposed to increasing concentrations of HN2, fan1-d cells showed a marked decrease in 

viability only when combined with the deletion of the gene coding for Pso2Sp (fig. 4.5). A similar 

experiment with MMC confirmed the results obtained in the spot tests (fig. 4.4), as again the 

double mutant fan1-d pso2-d was the most sensitive strain (supplementary fig. 9.6, top panel). 

As a further control, the same experiment was conducted in the presence of HN1 (2-

dimethylaminoethylchloride hydrochloride), a mono-functional nitrogen mustard which does 

not form ICLs (McHugh et al., 2000). None of the strains treated with this agent, including the 

double mutant pso2-d fan1-d, showed any sensitivity to this agent to doses up to 100 times 

higher than HN2 (supplementary fig. 9.6, bottom panel).  

Taken together, these data confirm that Fan1Sp is a novel component of the DNA repair 

pathway that specifically acts in S. pombe to repair cross-links linking covalently the two 

strands of a DNA molecule, and that Fan1Sp and Pso2Sp act in two separate pathways. 
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 Fan1Sp is epistatic with the effector kinase Chk1Sp  4.3.4

The protein kinase Chk1, the main effector of the DNA damage checkpoint pathway in S. 

pombe (reviewed in Carr, 2002), has been shown to be involved in the response to ICLs 

(Lambert et al., 2003). To assess whether the deletion of fan1 aggravates the sensitivity to ICL-

inducing agents, the double mutant fan1-d chk1-d was exposed to increasing doses of cisplatin 

and MMC. Both the double disruptants showed sensitivity to cisplatin comparable to the chk1 

null mutant (fig. 4.6). When exposed to high doses of mitomycin C, the double mutant 

appeared to be slightly more sensitive than the cognate mutants. The sensitivity of the chk1-

null background was marked, as previously reported (Lambert et al., 2003). This result suggests 

that Fan1Sp and Chk1Sp functions overlap, although not entirely, in the resolution of adducts 

created by DNA cross-linkers.  

Figure 4.5 | Sensitivity of fan1-d mutants, alone and in combination with pso2-d, to HN2. 4x10
7
 

cells from logarithmically growing cultures were exposed to each indicated dose of damaging agents. 

Approximately 200 cells were plated on YEA and grown for 3-4 days at 30°C. Lines represent the 

average of three independent experiments. Error bars represent the standard error of the mean. The 

combination of the deletions of fan1 and pso2 causes the most marked sensitivity among the 

mutants tested. HN2, bis(2-chloroethyl) methylamine. 
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The effector kinase Cds1Sp (Rad53Sc) is the central component of the DNA replication 

checkpoint in S. pombe (Carr, 2002). To assess the requirement for an intact DNA replication 

checkpoint in the absence of fan1-d, the double mutant fan1-d cds1-d was tested. No 

sensitivity was shown for either the single deletion mutant or the combination fan1-d cds1-d 

(fig. 4.7), indicating that the replication checkpoint is not required for the viability of wt cells or 

fan1-d cells when these are challenged by agents inducing interstrand cross-links.  

Figure 4.6 | Sensitivity of chk1 mutants to interstrand cross-linking agents. Logarithmically grown 

cultures were spotted in four 1:10 serial dilutions starting from 10
7
 cells (first spot on the left) on YEA 

plates containing the agents in the amount indicated. rad3-d is used as a standard hypersensitive 

control for the efficacy of the agents used. The combined deletion of fan1 and chk1 leads to a slight 

increased sensitivity only in cells exposed to MMC but not cisplatin. Abbreviations used: cispl, cisplatin; 

MMC, mitomycin C. 
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 Core MMR factors are not involved in the resolution of ICLs with Fan1Sp   4.3.5

Although it has been demonstrated that the mismatch repair (MMR) pathway is not crucially 

involved in the resolution of ICLs in S. cerevisiae (Beljanski et al., 2004; Barber et al., 2005), In 

this organism, Pso2 has shown overlapping functions with Msh2 in response to nitrogen 

mustard (HN2) (Barber et al., 2005). Furthermore, human MutS has been reported to be 

involved in the recognition and uncoupling of ICLs induced by psolaren (Zhang et al., 2002; 

Zhao et al., 2009). Nevertheless, the study of the role of the MMR pathway in resistance to 

interstrand cross-linking agents has led to contrasting results (see 1.12.6). To investigate the 

requirement for MMR factors in the ICL-repair in S. pombe, a series of double and triple 

disruptants were tested for sensitivity to cisplatin and UV.  

The deletion of msh2, alone or in combination with fan1-d, did not lead to increased sensitivity 

to either agent compared to wt cells (fig. 4.8). The same result was confirmed for two other 

components of the MMR pathway, Pms1Sp and Mlh1Sp (supplementary fig. 9.7). This result 

Figure 4.7 | Sensitivity to UV and cisplatin of replication checkpoint mutants cds1-d. Logarithmically 

grown cultures were spotted in four 1:10 serial dilutions starting from 10
7
 cells (first spot on the left) 

on YEA plates containing the agents in the amount indicated. rad3-d is used as a standard 

hypersensitive control for the efficacy of the agents used. The combined deletion of fan1 and cds1 

phenocopies the cognate deletion mutants. Abbreviations used: UV, Ultra-Violet irradiation; cispl, 

cisplatin. 
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suggests that the central components of MMR are not involved in the resolution of interstrand 

cross-links in S. pombe. The concomitant disruption of pso2 and msh2 did not result in a 

synergistic sensitivity to cisplatin, ruling out possible overlapping roles for the two enzymes 

(fig. 4.9). Interestingly, the additional deletion of fan1 (fan1-d pso2-d msh2-d) led to a subtle 

increase in sensitivity in the 3909N background compared to the fan1 (3909N) pso2 strain (fig. 

4.9) in cells exposed to UV. Although this phenotype was reproducible also for the second 

mutant (14152N, supplementary fig. 9.8), its extreme subtlety indicates that there is no clear 

overlap in the functions of these three components and any additional role for Msh2Sp in a 

fan1-d pso2-d background might be confined exclusively to a limited subset of lesions. 

 Exo1Sp is not involved in the efficient resolution of ICLs 4.3.6

Despite showing redundant activities with Pso2 in response to HN2 treatment in S. cerevisiae 

(Barber et al., 2005; Lam et al., 2008), the precise role of the Exo1 exonuclease in the ICL repair 

is still being debated. To assess whether a clear function can be assigned to Exo1 in the ICL 

repair in S. pombe, several combinations of mutants were generated and tested. The exo1-d 

mutant showed wild-type sensitivity to UV and a subtle augmented sensitivity to cisplatin,   

Figure 4.8 | Sensitivity of msh2-d mutants, alone or in combination with fan1-d. Logarithmically grown 

cultures were spotted in four 1:10 serial dilutions starting from 10
7

 cells (first spot on the left) on YEA 

plates containing the agents in the amount indicated. rad3-d is used as a standard hypersensitive 

control for the efficacy of the agents used. The combined deletion of fan1 and msh2 does not affect the 

sensitivity to UV and cisplatin compared to the single mutants. Abbreviations used: cispl, cisplatin. 
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indicating a possible minor role in the resolution of lesions generated by cisplatin (fig. 4.10). 

The combined deletion fan1-d exo1-d led to a slight increased sensitivity compared to the 

parental single mutants (fig. 4.10, top panel). The pso2 exo1 double mutant was also more 

sensitive to cisplatin than the corresponding single mutants, suggesting independent roles for 

Pso2 and Exo1 in ICL repair in S. pombe (fig. 4.10, bottom panel). However, when directly 

compared with the pso2-d fan1-d mutant, the synergistic sensitivity of pso2-d exo1-d was 

considerably milder, showing that Exo1Sp involvement in the ICL pathway is only marginal (fig. 

4.11 and supplementary fig. 9.9). This observation is further confirmed by the absence of any 

significant additional sensitivity of the fan1 exo1 pso2 triple mutant compared to pso2 fan1 

following exposure to cisplatin (fig. 4.11 and supplementary fig. 9.9). Taken together, these 

data suggest that Exo1Sp is overall involved but not crucially required for the efficient 

resolution of interstrand cross-links in S. pombe. 

  

Figure 4.9 | Sensitivity of fan1-d (3909N) pso2-d msh2-d triple mutant to UV and cisplatin. 

Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7

 cells (first spot 

on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used as a standard 

hypersensitive control for the efficacy of the agents used. A subtle increased sensitivity to cisplatin is 

noticed only for the combined triple mutant fan1-d pso2-d msh2-d when exposed to UV. Abbreviations 

used: UV, Ultra-Violet irradiation; cispl, cisplatin. 
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  Figure 4.10 | Sensitivity to UV and cisplatin of the exo1-d mutant in combination with either fan1-d 

(top panel) or pso2-d (bottom panel). Logarithmically grown cultures were spotted in four 1:10 serial 

dilutions starting from 10
7
 cells (first spot on the left) on YEA plates containing the agents in the amount 

indicated. rad3-d is used as a standard hypersensitive control for the efficacy of the agents used. The 

concomitant deletion of fan1 or pso2 in an exo1-d background (top and bottom panels respectively) 

causes increased sensitivity to cisplatin. Abbreviations used: UV, Ultra-Violet irradiation; cispl, cisplatin. 
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 Rad13Sp shows a non-epistatic relationship with Fan1Sp 4.3.7

ICL repair in lower and higher eukaryotes has proved to be elusive due to the intersection of 

different DNA repair pathways competing for the same intermediate substrates. In S. 

cerevisiae, components of the nucleotide excision repair (NER), post-replication repair (PRR) 

and homologous recombination (HR) pathways have all been implicated in the resolution of 

interstrand cross-links (Lehoczký et al., 2007). To test whether a similar involvement can be 

identified for the Fan1Sp ICL repair pathway in S. pombe, a series of double and triple mutants 

were created and tested for sensitivity to UV and cisplatin. 

Rad13Sp (XPGHs, Rad2Sc) is a nuclease centrally involved in NER, pathway that is required for the 

initial incision at early steps of ICL repair in S. cerevisiae (Lehoczký et al., 2007). A rad13-d 

strain showed a dramatic reduction in viability, compared to wt, when exposed to cisplatin (fig. 

4.12). Interestingly, rad13-d sensitivity was significantly increased when combined with a 

deletion of the gene coding for Fan1Sp, but not with pso2-d  (fig. 4.12, bottom panel). However, 

Figure 4.11 | Sensitivity of different combinations of fan1-d (3909N background), exo1-d and pso2-d 

mutants to UV and cisplatin. Logarithmically grown cultures were spotted in four 1:10 serial dilutions 

starting from 10
7
 cells (first spot on the left) on YEA plates containing the agents in the amount 

indicated. rad3-d is used as a standard hypersensitive control for the efficacy of the agents used. The 

triple deletion of fan1, pso2 and exo1 does not aggravate the sensitivity of the cognate double mutant 

fan1 pso2. Abbreviations used: UV, Ultra-Violet irradiation; cispl, cisplatin. 
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the triple mutant fan1-d pso2-d rad13-d (14152N background) phenocopied the fan1-d pso2-d 

strain (fig. 4.12, top panel). The same pattern of sensitivity was observed for the 3909N 

background (supplementary fig. 9.10). These data suggest that in S. pombe Rad13 is involved in 

the resolution of DNA interstrand cross-links in the Pso2 but not in the Fan1 pathway. 

 Rhp18 is epistatic with Fan1Sp and Pso2Sp   4.3.8

In S. cerevisiae, the post-replication repair (PRR) complex Rad6-Rad18 has been shown to have 

a role in the regulation of DNA synthesis following endonucleolytic cleavage of ICL   

Figure 4.12 | Sensitivity of rad13 mutants exposed to increasing doses of cisplatin (fan1-d: 14152N 

background). Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 

10
7
 cells (first spot on the left) on YEA plates containing the agents in the amount indicated. rad3-d is 

used as a standard hypersensitive control for the efficacy of the agents used. The deletion of both fan1 

and rad13 causes a marked hypersensitivity to cisplatin. Bottom panel: independent experiment 

showing the compared sensitivity of pso2-d rad13-d and the respective single mutants. Abbreviations 

used: cispl, cisplatin. 
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intermediates (Lehoczký et al., 2007). The fission yeast homolog of Rad18 is the E3 ubiquitin 

ligase Rhp18. Following exposure to cisplatin, rhp18-d was markedly more sensitive than wt at 

doses as low as 50 M (fig. 4.13 and 4.14). In an rhp18-d background, deletion of either fan1 or 

pso2, or both (fan1-d pso2-d rhp18-d) did not lead to increased sensitivity compared to rhp18-

d (fig. 4.14). The same result was shown for the 14512N background (supplementary fig. 9.11). 

This result suggests that Rhp18 is involved in the resolution of ICL repair in a step that is 

common to the Pso2Sp and Fan1Sp pathways. 

 Rhp51 is non-epistatic with Pso2Sp and Fan1Sp    4.3.9

Homologous recombination has been shown to be involved in the repair of ICLs in the budding 

and fission yeast (Lehoczký et al., 2007; Lambert et al., 2003). This was confirmed in the 

present study by the increased sensitivity to UV and cisplatin of the strain deleted for Rhp51 

(homolog of RAD51), required for most recombination events in the fission yeast (fig. 4.15). 

The deletion of both fan1 and rhp51 led to a marked drop in viability compared to wild-type 

and single mutants when cells were exposed to cisplatin (fig. 4.15) Interestingly, the triple 

deletion of the genes coding for Fan1Sp, Rhp51 and Pso2Sp resulted in the most dramatic 

decrease in viability compared to all the combinations of mutants tested (fig. 4.15 and 

supplementary fig. 9.12). These data suggest a crucial role for Rhp51 in the resolution of ICLs 

outside the Pso2Sp and Fan1Sp pathways. Moreover, the notable differences in sensitivity 

between the combinations fan1-d rhp51-d and pso2-d rhp51-d (fig. 4.15 and supplementary 

fig. 9.12) highlight the differential extent of involvement for Rhp51 in the Pso2Sp and Fan1Sp 

pathways.  
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Figure 4.14 | Sensitivity of combinations of rhp18 mutants to UV and cisplatin (fan1-d: 3909N 

background). Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7
 

cells (first spot on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used 

as a standard hypersensitive control for the efficacy of the agents used. The additional deletion of rhp18 

does not affect the sensitivity of pso2-d to cisplatin. Abbreviations used: UV, Ultra-Violet irradiation; 

cispl, cisplatin. 

Figure 4.13 | Sensitivity of combinations of single and double rhp18 mutants to UV and cisplatin. 

Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7
 cells (first spot 

on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used as a standard 

hypersensitive control for the efficacy of the agents used. The additional deletion of rhp18 does not 

affect the sensitivity of fan1-d to cisplatin. Abbreviations used: UV, Ultra-Violet irradiation; cispl, 

cisplatin. 
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4.4 Discussion 

 Overlapping activity for Fan1Sp and Pso2Sp in the resolution of DNA ICLs 4.4.1

The genetic characterisation in this chapter is based on the assessment of sensitivity of a 

combination of fan1-d mutants to a variety of DNA damaging agents. The initial observation 

that all the isolates from two independently-derived fan1-d mutants are specifically sensitive 

to cisplatin and mitomycin C (fig. 4.2 and fig. 4.3) pointed towards a role for Fan1Sp in the 

resolution of covalent cross-links between the two strands of the DNA molecule. In fission 

yeast, the only component implicated specifically in the resolution of ICLs in fission yeast is the 

nuclease Pso2Sp (Lambert et al., 2003). When combined with the deletion of fan1, pso2-d cells 

showed a dramatic increased sensitivity to cisplatin and MMC (fig. 4.4), consistent with a 

possible overlapping activity of the two enzymes in the repair of lesions created by cross-

linking agents. This conclusion was further supported as the same pattern of sensitivity was 

Figure 4.15 | Sensitivity to cisplatin of various combinations of rhp51 mutants (fan1-d: 14152N 

background). Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7
 

cells (first spot on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used 

as a standard hypersensitive control for the efficacy of the agents used. The deletion of rhp51 

aggravates the sensitivity of the fan1-d and fan1-d pso2-d mutants. Abbreviations used: UV, Ultra-Violet 

irradiation; cispl, cisplatin. 
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shown following exposure to the nitrogen mustard HN2 (fig. 4.5). Pso2Sp belongs to the -CASP 

metallo- -lactamase (MBL) family of DNA nucleases. The best characterised protein in the 

family is the S. cerevisiae Pso2, a 5’-exonuclease involved in response to all ICL-inducing 

treatments (Li et al., 2005; Henriques et al., 1997). Although it has recently been recently 

suggested that the role of Pso2Sc may be extended to the processing of ionizing radiation (IR)-

induced DSBs in conjunction with Mre11Sc and Exo1Sc (Lam et al., 2008), the role of this family 

of nucleases remains more closely associated with ICL repair (Cattell et al., 2010). Thus, this 

initial characterisation strongly indicates the existence of two distinct pathways for the 

resolution of ICLs in S. pombe. 

 The DNA checkpoint control of the ICL pathway 4.4.2

The importance of the DNA damage checkpoint in response to ICLs is highlighted by the 

extreme hypersensitivity displayed by chk1-d (fig. 4.6). Interestingly, the combination of fan1-d 

and chk1-d appeared to lead to increased combined hypersensitivity only in cells treated with 

MMC, but not in cells treated with cisplatin (fig. 4.6). The most plausible explanation for this 

result is that the Fan1 pathway in S. pombe acts within the Chk1-dependent damage response. 

However, for a subset of lesions enriched in interstrand cross-links as those generated by 

MMC, Fan1Sp may additionally have Chk1–independent roles. 

 MMR factors are not involved in the efficient resolution of ICLs in S. pombe  4.4.3

The involvement of components of the mismatch repair pathway in the ICL resolution has 

proven to be elusive. Although the core MMR components are not required for an efficient 

response to ICL in S. cerevisiae (Beljanski et al., 2004), Msh2Sc and Pso2Sc seem to play 

overlapping roles in response to HN2 treatment (Barber et al., 2005). The situation in S. pombe 

appears to differ. Neither the single deletion of msh2 nor the combined deletion with pso2 led 

to any detectable increased sensitivity to cisplatin treatment (fig. 4.8 and 4.9), arguing against 

a role for MMR in the ICL response in S. pombe. This observation is further confirmed by the 

lack of any synergistic sensitivity shown for pso2-d in combination with the deletion of either 
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pms1 or mlh1, downstream effectors of the MMR cascade (supplementary fig. 9.7). This is in 

contrast with S. cerevisiae, where the sensitivity of a pso2-d mutant is aggravated by the 

additional deletion of pms1 (Barber et al., 2005). Thus, two possibilities can be envisaged: the 

first possibility is that S. pombe differs from S. cerevisiae as MMR core factors may not play any 

role in the resolution of interstrand adducts. Alternatively, the role for MMR factors might be 

confined to a specific phase of the cell cycle that would be masked in experiments where the 

cell population grows asynchronously prior to treatment with DNA damaging agents. In S. 

cerevisiae, the overlap between the activity of Pso2 and Msh2 seems to be confined to the S 

phase of the cell cycle, where the collision of replication forks with ICLs will precipitate DSB 

formation (Barber et al., 2005). Although the synergistic sensitivity in pso2-d msh2-d is still 

detectable following acute treatment with HN2 in an asynchronous population (Barber et al., 

2005), the result might differ when cells are treated chronically with cisplatin, as in the present 

study (fig. 4.8 and fig. 4.9). Further experiments with a synchronous population could rule out 

or confirm the latter possibility. 

Interestingly, a subtle but reproducible increase in sensitivity could be observed for the triple 

mutant fan1 pso2 msh2 compared to the cognate strains when exposed to UV light and not to 

cisplatin (fig. 4.9 and supplementary fig. 9.8). It could be speculated that in S. pombe Msh2 

would deal with a subset of lesions generated by UV light towards which Fan1 and Pso2 are 

inert. However, the extreme subtlety of this synergistic effect demands additional work to 

support any further conclusion.  

Studies of the Exo1 nuclease in eukaryotes have revealed a multitude of roles in several 

aspects of DNA metabolism (Tran et al., 2004). In the repair of ICLs, overlapping functions have 

been shown in S. cerevisiae for Pso2Sc and Exo1Sc (Barber et al., 2005; Lam et al., 2008). The 

data presented in this study suggests that the same is true in the fission yeast, as pso2 shows 

an increased sensitivity with exo1 when cells are exposed to cisplatin (fig. 4.10 and fig. 4.11). 

Interestingly, this possible overlap in the roles of the two enzymes in ICL repair does not 
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appear to extend to Fan1 in S. pombe, as the sensitivity of fan1-d exo1-d is very subtle (fig. 

4.10). However, it is important to notice that the overlapping role between Pso2Sp and Exo1Sp 

seems to be marginal and less pronounced than in S. cerevisiae (Barber et al., 2005; Lam et al., 

2008). Intriguingly, the triple mutant fan1-d pso2-d exo1-d shows a very subtle increased 

sensitivity confined to UV exposure rather than cisplatin treatment (fig. 4.11 and 

supplementary fig. 9.9). It could be speculated that Exo1Sp is required to repair a subset of 

lesions generated by UV normally repaired by Fan1Sp and Pso2Sp. This role might echo the 

situation in S. cerevisiae, where Exo1Sc has been shown to play a role in the response to UV 

damage (Qiu et al., 1998). However, the subtlety of the phenotype found in this study 

demands further analysis to support this hypothesis.   

 Rad13Sp is involved in the Pso2Sp pathway of ICL response  4.4.4

The observation that the deletion of Rad13Sp (XPGHs, Rad2Sc), a core component of the 

nucleotide excision repair (NER) pathway, results in a strong sensitivity to ICLs (fig. 4.12) 

confirms previous data in fission yeast (Lambert et al., 2003). The crucial role of the NER in the 

ICL repair has been shown to be conserved across lower and higher eukaryotes (Lehoczký et 

al., 2007; Wood, 2010). In S. cerevisiae, genes belonging to the NER complementation group 

have been found to be critically required for resistance to cisplatin (Wu et al., 2004). In the 

light of the present study, it is possible to suggest that in S. pombe the involvement of NER is 

confined to the Pso2Sp pathway of ICL response, as the synergistic sensitivity to cisplatin is 

shown only for the combination fan1-d rad13-d and not for pso2-d rad13-d or for the triple 

mutant fan1-d pso2-d rad13-d (fig. 4.12). However, as the epistasis analysis presented here is 

limited to Rad13Sp, it cannot be excluded that other NER components may be required at 

different stages of the ICL repair. In the budding yeast, Rad2Sc (Rad13Sp) is required for wild-

type resistance to cisplatin, HN2, MMC and 8-Methoxypsoralen (8-MOP) (Wilborn and Brendel, 

1989; Wu et al., 2004). The observation that the DNA incision is inhibited in rad2-d cells in 

budding yeast following treatment with 8-MOP (Chanet et al., 1985; Meniel et al., 1995) 
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suggests that this nuclease is involved at early stages of the ICL repair. With the analysis 

presented in this chapter it is not possible to assess whether this is also the case for the fission 

yeast. It is tempting to speculate that if Rad13Sp plays a similar role at the incision step of the 

ICL removal, another nuclease should be involved for a similar activity in the Fan1Sp pathway. 

This component could either be Fan1Sp itself or a yet unidentified nuclease.  

 Rhp18 is overall required for the ICL response 4.4.5

The requirement for RAD18 for wild-type resistance to cisplatin has been previously observed 

in S. pombe, S. cerevisiae and higher eukaryotes (Lambert et al., 2003; Wu et al., 2004; Tateishi 

et al., 2003; Nojima et al., 2005). Interestingly, the data presented here showed no increased 

sensitivity for either fan1-d rhp18-d or pso2-d rhp18-d (fig. 4.13 and fig. 4.14). This would 

indicate that the role for Rhp18Sp in the ICL response is required for both the Fan1Sp and Pso2Sp 

pathways. Rhp18Sp is an E3 ubiquitin ligase homologous to Rad18Sc and belongs to the Rad6-

Rad18 post-replication repair epistasis group in budding and fission yeast. Although the role 

for this protein in the DNA repair of ICLs has not yet been fully elucidated, work in S. cerevisiae 

has shown that this protein would act in conjunction with Rad6 in controlling the DNA 

synthesis at late stages of the ICL processing (Lehoczký et al., 2007). Recent work in 

mammalian cells has shown that RAD18Hs is required for the recruitment of SNM1AHs (Pso2Sp,Sc) 

to DNA repair complexes following exposure to UV and MMC. The UBZ (ubiquitin-binding zinc 

finger) domain of SNM1AHs is essential for this localisation (Yang et al., 2010). As neither Fan1Sp 

nor Pso2Sp possess UBZ domains, in the fission yeast the scenario might be different and 

ubiquitylation might not be required for the activity of Fan1Sp. The RAD18-dependent 

monoubiquitination of PCNA is a pre-requisite for the recruitment of SNM1A to the site of 

damage (Yang et al., 2010). The epistasis analysis presented here does not exclude a similar 

role in the fission yeast, although no further details can be deduced from the data presented in 

this chapter. 
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 Rhp51 shows a differential involvement in the Fan1Sp and Pso2Sp pathways  4.4.6

Several studies highlight the importance of homologous recombination (HR) processes in the 

ICL resolution. In S. pombe, the deletion of rhp51 leads to hypersensitivity to HN2 (Lambert et 

al., 2005). In S. cerevisiae, HR-deficient cells in exponential phase are sensitive to cisplatin and 

HN2 (McHugh et al., 2000; Beljanski et al., 2004). Data show that homologous recombination 

processes are required to repair DSBs generated by treatment with cisplatin or HN2 in 

replicating budding yeast cells (McHugh et al., 2000; Frankenberg-Schwager et al., 2005).  

It has been suggested that homologous recombination might be required only for an ICL repair 

pathway that is functional in replicating cells (Frankenberg-Schwager et al., 2005). However, 

there is no clear indication about the proportion of DSBs that are generated as repair 

intermediates or as a result of the collision of replication forks with ICLs, so it is difficult to 

establish how and in which scenarios HR processes are required in the ICL repair. The data 

presented in this chapter confirms the importance of the S. pombe Rad51 homolog Rhp51 in 

the response to ICLs. The deletion of rhp51 leads to a significant decrease in viability when 

cells are exposed to cisplatin (fig. 4.15). This decrease is aggravated by the deletion of pso2, 

but interestingly this effect is even more dramatic in combination with a deletion of fan1 

(supplementary fig. 9.12 and fig. 4.15). This finding suggests that Rhp51-dependent HR 

processes would be involved in greater extent in the absence of the Fan1Sp pathway. However, 

it is also important to notice that HR appears to play a crucial role in a yet unknown 

contribution to the ICL response, as the triple mutant fan1-d pso2-d rhp51-d shows a further 

reduction in viability compared to all the cognate mutants (fig. 4.15 and supplementary fig. 

9.12). Epistasis analysis in S. cerevisiae has suggested the existence of three separate pathways 

for ICL response, defined by Pso2Sc, Rev3Sc and Rad51Sc (Grossmann et al., 2001). Rev3 is part 

of the translesion synthesis (TLS) polymerase Pol, recognized for its crucial role in ICL 

response in S. cerevisiae and vertebrates (evidence reviewed in Ho and Schärer, 2010).  It 
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would be interesting to further extend the epistasis analysis presented in this chapter to 

Rev3Sp mutants, in order to assess whether the same situation occurs in the fission yeast. 

4.5 Conclusions 

Taken together, the epistasis analysis presented in this chapter demonstrates an important 

role for Fan1 in the resolution of DNA interstrand cross-links in S. pombe. All the data 

presented here was obtained by testing double and triple combinations of null mutants for 

survival to a range of DNA damaging agents. As these null mutants were created on a rational 

basis of existing data from published literature, it could not be excluded that other genetic 

interactions might exist with still uncharacterised components of the DNA repair machinery. 

For this reason, an automated screen of a deletion library was set up to expand the 

investigation into further genetic interactions.  



 

 

5 Chapter Five 
 

ASSESSMENT OF GENETIC INTERACTIONS THROUGH  
HIGH-DENSITY SYNTHETIC GENETIC ARRAYS 
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5.1 Introduction 

 Genetic interactions and genetic networks 5.1.1

Genetic interactions examine how the mutation in one gene alters the phenotype due to the 

deletion of a second one. As seen in the previous chapter, the classic definition of epistasis 

dictates that a gene is epistatic to a second non-allelic one when the phenotype consequent to 

the deletion of the second gene is masked by the phenotype caused by the deletion of the first 

one (Roth et al., 2009). On a wider scale, genetic interactions can be classified into negative or 

positive. Negative interactions occur when the deletion of a second gene leads to a reduction 

in the fitness of a single mutant (synthetic sickness). An extreme case of negative interaction 

occurs when the deletion of the second gene leads to loss of viability (synthetic lethality). 

Positive (alleviating) interactions occur when the fitness of the double mutant is higher than 

the healthiest single mutant.  

A series of high-throughput approaches have been recently developed in the budding and 

fission yeast to allow for extensive screens of genetic interactions. In the diploid-based 

synthetic lethality analysis on microarrays (dSLAM), a series of haploid-convertible 

heterozygous diploid knock-outs were profiled by DNA microarrays for gene-compound and 

gene-gene interactions in S. cerevisiae (Pan et al., 2004; Pan et al., 2006). In the synthetic 

genetic array (SGA) approach, a series of automated pinning procedures are employed to 

construct arrays of haploid double mutants to be analysed for gene-gene interactions (Tong et 

al., 2001; Tong et al., 2004; Roguev et al., 2007). Based on the SGA method, epistatic miniarray 

profiles (E-MAPs) were generated where the quantitative analysis of genetic interactions could 

be used to link subsets of genes to specific biological processes (Schuldiner et al., 2005; 

Schuldiner et al., 2006; Collins et al., 2006; Collins et al., 2007). In less than a decade since their 

introduction, these high-throughput approaches have proved to be useful tools in defining 

genetic interaction networks in fission and budding yeast (Dixon et al., 2009).  
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5.2 Aim  

The analysis presented in the previous chapter was based on a rational selection of known 

components of DNA metabolism that were thought to potentially result in genetic interactions 

with fan1. The work presented in this chapter aims at exploring the genetic landscape of S. 

pombe in order to detect further genetic interactions between fan1 and other components of 

DNA metabolism. The genetic interactions between fan1 and a series of null mutants from the 

Bioneer® V2 deletion library were assessed by construction of high-throughput synthetic 

genetic arrays (SGAs). The first phase of the screen focused on genetic interactions in standard 

conditions of growth. The second phase of the screen assessed the phenotypes of double 

deletion mutants derived from phase one for hypersensitivity to the interstrand cross-linking 

agent cisplatin.  

5.3 Results 

 Construction of synthetic genetic arrays in S. pombe: the PEM-2 strategy  5.3.1

In the present work, the assessment of genetic interactions between fan1 and other genes in 

S. pombe was carried out by applying the SGA method as described in Roguev et al., 2007. This 

method employs a series of pinning procedures in order to generate arrays of haploid double 

mutants. Of the two strategies presented in Roguev et al., 2007, the PEM-2 (pombe epistatic 

mapper 2) system was used. This approach is based on recessive resistance to cycloheximide, 

an inhibitor of protein synthesis, which allows for selection against diploid cells. Initially, the 

strains 3909N and 14152N (see 4.3.2) were crossed with a query base mutant strain (kind 

donation of Dr Tim Humphrey) bearing two alleles of the large ribosomal subunit 60S, the 

target of cycloheximide. One allele, cyhS, confers sensitivity to cycloheximide and is inserted 

within the H1 and H2 homology boxes of the mating-type locus mat-1 (fig. 5.1). The second 

allele, cyhR, confers resistance to cycloheximide and is placed at the endogenous 60s subunit 

locus (rpl42). 
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However, due to the recessive nature of the mutation, this strain is sensitive to cycloheximide. 

Following mating, h- cyh-sensitive spores carrying both the cyhS and cyhR alleles and the fan1 

deletion were selected by tetrad dissection. This genetic background defines the strain called 

fan1::natMX6 query mutant (fig. 5.1). The fan1-d query mutant was then crossed with a series 

of deletion mutants from the Bioneer® collection following the procedure shown in fig. 5.2. 

Pictures were taken at different timepoints at steps d and i and used to assess the fitness of 

single and double mutants, respectively.  

Figure 5.1 | Schematic overview of the pinning procedures to construct the synthetic genetic arrays 

used in the present work. The screen was performed in a 384-pin format. Four 96-well plates from the 

Bioneer® library were combined on one YEA 384-spot agar plate (a-b). Likewise, the query mutant was 

inoculated from a 96-well to a 384-spot format (c-e). The screen was repeated for at least three times 

from independent query mutant isolates. All the replicas were carried out by using the Singer® RoToR
©

 

HDA station by use of short 384 pins.  
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  Computational analysis of colony size 5.3.2

In order to refine the detection of phenotypic changes in the double mutant colonies showing 

a decrease (synthetic sickness) or increase (alleviating interaction) in colony size, a 

computational procedure has been employed which relies on the use of digital imaging 

analysis. Previous work has shown that colony size can be used as a phenotypic readout to 

assess epistatic interactions (Schuldiner et al., 2005; Schuldiner et al., 2006; Collins et al., 2006; 

Collins et al., 2007). The approach presented in this chapter is based on the method presented 

Figure 5.2 | Schematic representing the marker selection process throughout the PEM-2 screen. The 

PEM-2 (Pombe Epistatic Mapper - 2) approach is based on recessive resistance to the drug 

cycloheximide. Step1 (pink panel): construction of the fan1::natMX6 query mutant. Tetrad analysis is 

necessary to ensure the maintenance of both the cyh
S
 allele within the mating-type locus and the cyh

R
 

allele at the native locus. Step 2 (green panel): screen of the deletion mutant library. Mating and 

selection procedures ensure the maintenance of the three markers NAT
R
, G418

R
 and cyh

R
 (at the native 

locus), conferring to the final double deletion mutant resistance to nourseothricin, geneticin and 

cycloheximide, respectively. MTL, mating-type locus mat1. Schematic adapted from Roguev et al., 2007.  



155 
 

RESULTS – CHAPTER 5 

in Collins et al., 2006. Since interactions between two unrelated genes in living organisms are 

rare (Pan et al., 2004; Tong et al., 2004; Schuldiner et al., 2005), the median colony size 

expected for double mutant colonies can be used as a reference to determine significant 

deviations that can reflect aggravating or alleviating interactions between pair or genes 

(Collins et al., 2006). However, due to the nature of the present analysis, which is limited to a 

single query mutant strain, comprehensive and statistically robust approaches such as E-MAP 

would not be feasible. For this reason, the imaging software HT Colony Grid Analyser 

presented in Collins et al., 2006 was used to build only a semi-quantitative dataset of 

categories of genetic interaction between fan1 and a series of null mutant from the Bioneer® 

library. This procedure was applied further to the construction of SGAs (see 5.3.1).  

The first step was to extract raw colony size from digital images of single and double mutant 

arrays (fig. 5.1, d and l respectively). For each array, the median colony size was calculated and 

compared to the size of every colony on the same plate. To exclude biases due to differential 

growth of colonies dependent on their location on the plates, separate medians were 

calculated for the two outermost and for the innermost rows and columns of the plate. 

However, when the values were compared with each other, the difference in pixels was never 

significantly high enough to justify a separate analysis. Thus, a single value of median colony 

size was used for each plate. An example of a spreadsheet created for one synthetic genetic 

array is shown in supplementary fig. 9.16. Five colour-coded categories of deviation from the 

median colony size (F = F value – median) were assigned according to the criteria shown in 

fig. 5.3. A separate category was assigned to synthetic lethality, where F=-median. 

The second step in this analysis was to collect together the data from all the independent 

screens on a single spreadsheet for each genetic array. An example of the spreadsheets 

generated is shown in supplementary fig. 9.17. Finally, double mutants were assigned to 

categories of genetic interactions with a high or low degree of confidence, depending on 

criteria of consistency across different screens and healthiness of the single mutants.   
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 The visual assessment of genetic interactions leads to a first series of prospective 5.3.3

fan1 interacting partners 

The synthetic genetic arrays were constructed following the procedure described in Roguev et 

al., 2007 (PEM-2 strategy). The pictures of the GNC plates obtained at the end of the 

automated selection process (fig. 5.2, step l) were compared with the pictures of the YEA 

plates carrying the single mutants from the Bioneer® deletion library (fig. 5.2, step d). 

Categories of synthetic sickness, synthetic lethality or alleviating interactions were assigned 

according to the logical framework shown in fig. 5.4. The results of the analysis are shown in 

tables 5.1a and 5.1b. Genes that are physically close to the fan1 ORF could be potentially 

scored as synthetic lethal, as the recombination efficiency in this case is dramatically reduced 

due to linkage effects. To identify false positive entries due to genetic linkage biases, a further 

level of control was introduced by intersecting the results in table 5.1a and 5.1b with a list of   

Figure 5.3 | Criteria for the assignment of colour codes to categories of genetic interaction according 

to the degree of deviation from the median colony size on each array. The size of every double mutant 

colony (“F value”) on each array was compared to the median colony size on that array. Five colour-

coded categories of deviation from the median colony size (F) were assigned to each double mutant: 

two green categories for F>0; two orange categories for F<0; one category forF=0. A separate red 

category was assigned to synthetic lethality (no double mutant colony, F=-median).  
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 genes 50 kb upstream and downstream the fan1 ORF (“Linkage” column in tables 5.1a and 

5.1b; the complete list of genes is shown in supplementary fig. 9.13). Due to the limitations of 

this type of analysis, most of the interactions scored resulted in the synthetic lethal category, 

as synthetic sickness and alleviating interactions were more difficult to assess with good 

confidence. When matched with gene ontology (GO) S. pombe annotations, a few entries 

resulted in categories of biological processes associated with DNA metabolism (supplementary 

fig. 9.14). In particular, three genes associated with DNA repair appeared to be synthetic sick 

(rhp18) or synthetic lethal (rhp54, rhp55) when combined with the fan1 deletion. As the fan1-d 

rhp18-d strain had already been tested by in vivo survival assays (see 4.3.8) and no defect in 

growth had been clearly noticed in the double mutant, this occurrence was further considered 

in the second stage of the screen analysis and later dismissed as an artefact of the visual 

Figure 5.4 | Logical framework used to assign categories of genetic interactions to the double mutants  

generated by the automated screen. Note: if a colony was present in the double mutant plate but not 

in the single mutant plate, this case has been treated as a defect in the pinning procedure, rather than 

an extreme case of alleviating interaction.      
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inspection (see below). Rhp55 (Rad55Sc) and Rhp54 (Rad54Sc) have been associated with 

homologous recombination processes in S. pombe (Muris et al., 1996; Khasanov et al., 1999). 

To validate the apparent synthetic lethality of the rhp54-d fan1-d and rhp55-d fan1-d 

combinations, these strains were re-constructed with independently derived mutants and 

checked by tetrad analysis. Neither combination resulted in consistent synthetic lethal 

interactions (supplementary fig. 9.15). This data suggests that the apparent synthetic lethality 

shown for these two double mutants is in fact due to defects in biological processes which 

hamper the progression through successive stages of the screen, such as cell cycle defects. In 

particular, it should be noted that deletions of rhp54 and rhp55 significantly affect the growth 

of the corresponding mutants. Thus, it cannot be excluded that the poor survival of the mutant 

strains through the selection process may be the reason underlying the apparent synthetic 

lethality.       

 The computational analysis of colony size leads to a more accurate assignment to 5.3.4

categories of genetic interactions 

In order to overcome the limitations intrinsic to the visual inspection of colony size, a digital 

analysis was applied where the size of the double and single mutant colonies was calculated 

via computational software. The results of this analysis are shown in tables 5.2, 5.3 and 5.4. 

Compared to the visual approach, the dataset was overall expanded, predominantly in the 

compartment of positive interactions. 13 entries were excluded compared to the visual 

dataset due to either low consistency across different screens or poor viability of the 

corresponding single mutants. One example of the latter case is rhp54. All the other entries in 

the visual dataset were consistently confirmed in the computational dataset, although some 

interactions were classified under a low degree of confidence. One such case is rhp18, which 

resulted in an unclear synthetic lethal / synthetic sick interaction with fan1 which was not 

confirmed by the analysis presented in the previous chapter (see 4.3.8). Tetrad dissection may 

prove to be helpful in clarifying whether the interaction between these two genes leads to a  



 
 

 

 

Table 5.1a | Genes in the Bioneer® library that resulted in a significant genetic interaction with fan1 following visual inspection of synthetic genetic arrays. The result of 

three independent screens is shown. Only genetic interactions scored for both screen 1 (black) and 3 (blue) are shown. Screen 2 (brown) was additionally compared with 

the screens 1 and 3 as a further quality control. Gene IDs, gene names and descriptions are extracted from the strain list provided with the Bioneer® deletion mutant 

haploid set. Linkage (ORF ± 50 kb): purple boxes indicate genes within ± 50 kb from the fan1 ORF.   

Gene ID
Gene 

name
Description Linkage (ORF ± 50 kb)

SPAC11D3.18c nicotinic acid plasma membrane transporter

SPAC15A10.16 bud6 actin interacting protein 3 homolog Bud6

SPCC16C4.11 pef1 Pho85/PhoA-like cyclin-dependent kinase Pef1

SPAC1D4.13 byr1 MAP kinase kinase Byr1

SPAC11G7.02 pub1 ubiquitin-protein ligase E3

SPBC1709.18 tif452 translation initiation factor eIF4E 4F complex subunit

SPBC13E7.04 atp16 F1-ATPase delta subunit

SPAC13C5.03 tht1 nuclear membrane protein involved in karyogamy

SPBP35G2.06c nup131 nucleoporin Nup131

SPBC1734.12c alg12 dolichyl pyrophosphate Man7GlcNAc2 alpha-1,3-glucosyltransferase Alg12

SPBC19C7.02 ubr1 N-end-recognizing protein Ubr1

SPAC3H5.07 rpl702 60S ribosomal protein L7

SPBC12C2.02c ste20 sterility protein Ste20

SPBC646.13 sds23 inducer of sexual development Sds23/Moc1

SPBC1734.06 rhp18 Rad18 homolog Rhp18

SPBC651.02 nitrilase

SPBC1734.07c TRAPP complex subunit Trs85

SPBC646.17c dic1 dynein intermediate chain Dic1

SPBC18H10.06c swd2 COMPASS complex subunit Swd2

SPBP35G2.14 RNA-binding protein

SPBC146.06c human MTMR15 homolog MTMR15

SPBC146.04 sulfhydryl oxidase

SPBC1921.05 ape2 aminopeptidase Ape1

SPBC24C6.06 gpa1 G-protein alpha subunit

SPBC1D7.05 byr2 MAP kinase kinase kinase Byr2

SPBC21.05c ral2 Ras guanyl-nucleotide exchange factor Ral2

SPCC1223.02 nmt1 no message in thiamine Nmt1

SPAC17A2.13c rad25 14-3-3 protein Rad25

SPACUNK4.12c mug138 metallopeptidase

SPCC1827.04 ankyrin repeat protein, unknown biological role

SPBC337.07c carboxypeptidase

SPAC15A10.03c rhp54 Rad54 homolog Rhp54

SPAC23E2.03c ste7 meiotic suppressor protein Ste7

SPBC3B8.02 php5 CCAAT-binding factor complex subunit Php5

SPAC15E1.05c ethanolamine-phosphate cytidylyltransferase

Synthetic sickness Synthetic lethality Alleviating



 
 

 

 

Table 5.1b | Genes in the Bioneer® library that resulted in a significant genetic interaction with fan1 following visual inspection of synthetic genetic arrays. The result of 

three independent screens is shown. Only genetic interactions scored for both screen 1 (black) and 3 (blue) are shown. Screen 2 (brown) was additionally compared with 

the screens 1 and 3 as a further quality control. Gene IDs, gene names and descriptions are extracted from the strain list provided with the Bioneer® deletion mutant 

haploid set. Linkage (ORF ± 50 kb): purple boxes indicate genes within ± 50 kb from the fan1 ORF.  

Gene ID
Gene 

name
Description Linkage (ORF ± 50 kb)

SPAC1D4.06c csk1 cyclin-dependent kinase activating kinase Csk1

SPAP7G5.04c lys1 aminoadipate-semialdehyde dehydrogenase

SPAC15E1.10 PI31 proteasome regulator related

SPBP35G2.07 ilv1 acetolactate synthase catalytic subunit

SPCC1442.01 ste6 guanyl-nucleotide exchange factor Ste6

SPAC3C7.03c rhp55 RecA family ATPase Rhp55

SPAC11G7.04 ubi1 ribosomal-ubiquitin fusion protein Ubi1

SPAC1002.06c bqt2 bouquet formation protein Bqt2

SPBC8E4.05c fumarate lyase superfamily

SPAC10F6.12c mam4 protein-S isoprenylcysteine O-methyltransferase Mam4

SPBC3B8.03 saccharopine dehydrogenase

SPAC15E1.02c DUF1761 family protein

SPAC25B8.18 mitochondrial electron carrier

SPCP1E11.04c pal1 membrane associated protein Pal1

SPBC337.15c coq7 ubiquinone biosynthesis protein Coq7

SPAC1F12.04c conserved fungal protein

SPBC13E7.03c RNA hairpin binding protein

SPAC22E12.03c THIJ/PFPI family peptidase

SPAP7G5.05 rpl1002 60S ribosomal protein L10

SPBC27B12.10c tom7 mitochondrial TOM complex subunit Tom7

SPCC553.12c conserved fungal protein

SPAC1F12.02c p23fy translationally controlled tumor protein homolog

SPBC2G2.10c mug110 sequence orphan

SPAC15A10.15 sgo2 shugoshin Sgo2

SPAC15A10.08 ain1 alpha-actinin

SPCC1235.09 histone deacetylase complex subunit

SPCC1672.04c mitochondrial copper ion transport protein

SPAC644.08 haloacid dehalogenase-like hydrolase

SPAC17G8.13c mst2 histone acetyltransferase Mst2

SPAC144.06 apl5 AP-3 adaptor complex subunit Apl5

SPBC146.11c mug97 meiotically upregulated gene Mug97

Synthetic sickness Synthetic lethality Alleviating
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truly severe genetic interaction. However, tetrad analysis with this pair of genes is hampered 

by the proximity of the two ORFs, separated by approximately 57 kb. Thus, a different 

approach and further work would be required to address this issue. 

Surprisingly, rhp55-d appeared to be again synthetic lethal with fan1-d, despite the fact that 

this possibility was ruled out by tetrad analysis (supplementary fig. 9.15). This particular case is 

further discussed in 5.4.1.  

Consistently with the visual approach, no other severe genetic interactions were shown 

between fan1 and known components of DNA repair pathways in standard conditions of 

growth. 

In an attempt to validate the method used, four additional mutant strains (byr1-d, byr2-d, 

pub1-d, csk1-d) were freshly streaked from the synthetic lethality set (high confidence) and 

independently crossed with wt strains 501 (h-) and 503 (h+). After three days on ELN plates at 

25°C, no spores were visible for the any of the three crosses following iodine staining, whereas 

501 and 503 turned dark red, indicating efficient processes of mating and sporulation for this 

control strains (supplementary figure 9.20). The absence of spores was confirmed by visual 

inspection by microscope. Thus, this test cross indicate that the four mutants from the 

Bioneer® library are pulled out in the final synthetic lethality set because of a general 

dysfunction in the mating and/or sporulation process and not because of synthetic lethal 

genetic interaction with fan1. 

 The cisplatin sensitivity screen reveals new genetic interactions with DNA repair 5.3.5

components 

As shown in the previous chapter, epistasis analysis has proven to be a useful tool to define 

the role of proteins acting in pathways of DNA repair that are alternative to the one where 

Fan1Sp is involved. However, the epistasis analysis presented in the previous chapter was based 

on a rational selection of components of DNA repair pathways known from previous published 

work. In order to extend the investigation to yet uncharacterised genetic interactions, the   
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Table 5.2 | Interactions between fan1 and a series of deletion mutants from the Bioneer®library 

showed as synthetically lethal, as determined by the computational analysis of colony size. High 

confidence is defined by: 1) high consistency of results across the screens and 2) higher degree of size 

deviation of the double mutant from the median compared to the size deviation of the corresponding 

single mutant. In cases where the single mutant showed poor viability, any apparent synthetic lethality 

with fan1 was removed from the dataset. Gene IDs, Bioneer® plate reference, gene names and 

descriptions are extracted from the strain list provided with the Bioneer® deletion mutant haploid set. 

Linkage (ORF ± 50 kb): purple boxes indicate genes within ± 50 kb from the fan1 ORF.   

  

Gene ID
Bioneer® 

plate ref.

Gene 

name
Description

Linkage? 

(ORF ± 

50 kb)

High confidence

SPAC11D3.18c V2-04-B09 nicotinic acid plasma membrane transporter

SPAC15A10.16 V2-04-C12 bud6 actin interacting protein 3 homolog Bud6

SPAC1D4.13 V2-05-F06 byr1 MAP kinase kinase Byr1

SPAC11G7.02 V2-04-F09 pub1 ubiquitin-protein ligase E3

SPBC13E7.04 V2-03-G09 atp16 F1-ATPase delta subunit

SPAC13C5.03 V2-04-G10 tht1 nuclear membrane protein involved in karyogamy

SPBC651.02 V2-08-H05 nitrilase

SPBC18H10.06c V2-11-F03 swd2 COMPASS complex subunit Swd2

SPBP35G2.14 V2-10-F10 RNA-binding protein

SPBC146.06c V2-12-F06 human MTMR15 homolog MTMR15

SPBC1921.05 V2-12-G07 ape2 aminopeptidase Ape1

SPBC24C6.06 V2-15-A03 gpa1 G-protein alpha subunit

SPBC1D7.05 V2-15-B02 byr2 MAP kinase kinase kinase Byr2

SPBC21.05c V2-15-C02 ral2 Ras guanyl-nucleotide exchange factor Ral2

SPACUNK4.12c V2-17-E12 mug138 metallopeptidase

SPAC23E2.03c V2-14-H06 ste7 meiotic suppressor protein Ste7

SPBC3B8.02 V2-16-H07 php5 CCAAT-binding factor complex subunit Php5

SPAC15E1.05c V2-16-H11 ethanolamine-phosphate cytidylyltransferase

SPAC1D4.06c V2-19-A02 csk1 cyclin-dependent kinase activating kinase Csk1

SPCC1795.06 V2-25-A05 map2 P-factor

SPAP7G5.04c V2-22-B02 lys1 aminoadipate-semialdehyde dehydrogenase

SPAC15E1.10 V2-22-B05 PI31 proteasome regulator related

SPAC3C7.03c V2-19-G03 rhp55 RecA family ATPase Rhp55

SPCC1393.10 V2-25-G06 ctr4 copper transporter complex subunit Ctr4

SPBP35G2.13c V2-19-H11 swc2 chromatin remodeling complex subunit Swc2

SPAC1565.04c V2-20-A11 ste4 adaptor protein Ste4

SPAC10F6.12c V2-24-B08 mam4 protein-S isoprenylcysteine O-methyltransferase Mam4

SPAC25B8.18 V2-23-E10 mitochondrial electron carrier

SPBC13E7.03c V2-23-H04 RNA hairpin binding protein

SPAC1F12.02c V2-33-A10 p23fy translationally controlled tumor protein homolog

SPBC2G2.10c V2-29-B08 mug110 sequence orphan

SPAC15A10.15 V2-30-B03 sgo2 shugoshin Sgo2

SPAC15A10.08 V2-30-D03 ain1 alpha-actinin

SPCC1235.09 V2-30-D08 histone deacetylase complex subunit

SPAC17G8.13c V2-28-H04 mst2 histone acetyltransferase Mst2

Low confidence

SPAC1556.03 V2-04-H11 azr1 serine/threonine protein phosphatase Azr1

SPAC8C9.12c V2-06-C11 iron ion transporter

SPBC337.04 V2-08-D02 ppk27 serine/threonine protein kinase Ppk27

SPBC1734.07c V2-10-A02 TRAPP complex subunit Trs85

SPCC1442.01 V2-19-D12 ste6 guanyl-nucleotide exchange factor Ste6

SPAC11G7.04 V2-23-A09 ubi1 ribosomal-ubiquitin fusion protein Ubi1

SPBC337.15c V2-24-F03 coq7 ubiquinone biosynthesis protein Coq7

Colour 

code

Synthetic Lethality (SL)
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Table 5.3 | Interactions between fan1 and a series of deletion mutants from the Bioneer®library 

showed as synthetic sick and synthetic sick / lethal (SS/SL), as determined by the computational 

analysis of colony size. SS/SL represents varied but consistent negative interactions across different screens. High 

confidence is defined by: 1) high consistency of results across the screens and 2) higher degree of size deviation of 

the double mutant from the median compared to the size deviation of the corresponding single mutant. Gene IDs, 

Bioneer® plate reference, gene names and descriptions are extracted from the strain list provided with the Bioneer® 

deletion mutant haploid set. Linkage (ORF ± 50 kb): purple boxes indicate genes within ± 50 kb from the fan1 ORF.   

Gene ID
Bioneer® 

plate ref.

Gene 

name
Description

Linkage? 

(ORF ± 

50 kb)

High confidence

SPBC83.04 V2-02-D11 apc15 anaphase-promoting complex subunit Apc15

SPBC336.14c V2-08-B02 ppk26 serine/threonine protein kinase Ppk26

    SPBC530.14c V2-17-H08 dsk1 SR protein-specific kinase Dsk1

SPBP4H10.05c V2-26-G01 spe2 S-adenosylmethionine decarboxylase proenzyme Spe2

SPBC20F10.03 V2-24-G02 conserved eukaryotic protein

Low confidence

SPBC354.13 V2-08-G02 rga6 GTPase activating protein Rga6

SPAC4H3.07c V2-11-H01 protein phosphatase Fmp31

SPBC1709.04c V2-22-D10 cyp3 cyclophilin family peptidyl-prolyl cis-trans isomerase Cyp3

SPCC576.12c V2-25-E05 conserved eukaryotic protein

SPBC651.03c V2-19-G10 gyp10 GTPase activating protein Gyp10

SPAC630.04c V2-23-B12 sequence orphan

High confidence

SPAC17A2.06c V2-05-C02 vps8 WD repeat protein Vps8

SPCC16C4.11 V2-03-F02 pef1 Pho85/PhoA-like cyclin-dependent kinase Pef1

SPBC19G7.04 V2-07-A08 HMG box protein

SPBC1734.12c V2-09-B12 alg12 glucosyltransferase Alg12

SPAC24H6.03 V2-12-G02 cul3 cullin 3

SPBC1709.13c V2-15-A01 lysine methyltransferase

SPCC584.13 V2-15-A12 amino acid permease, unknown 14

SPBC337.07c V2-16-G07 carboxypeptidase

SPAC6B12.12 V2-22-A01 tom70 mitochondrial TOM complex subunit Tom70

SPBC1734.05c V2-23-A05 spf31 DNAJ protein Spf31

SPAP7G5.05 V2-27-A08 rpl1002 60S ribosomal protein L10

SPBC1734.15 V2-30-E11 rsc4 RSC complex subunit Rsc4

Low confidence

SPBC146.10 V2-02-A06 mug57 meiotically upregulated gene Mug57

SPCC1223.15c V2-03-B02 spc19 DASH complex subunit Spc19

SPBC1539.06 V2-02-C06 acyl-coenzyme A binding protein

SPBC1709.18 V2-02-G07 tif452 translation initiation factor eIF4E 4F complex subunit

SPBC216.05 V2-03-G10 rad3 ATR checkpoint kinase

SPBP35G2.06c V2-08-B09 nup131 nucleoporin Nup131

SPBC36.07 V2-08-C03 iki3 RNA polymerase II elongator subunit Iki3

SPBC3H7.13 V2-08-G03 FHA domain protein Far10

SPBC646.13 V2-08-G05 sds23 inducer of sexual development Sds23/Moc1

SPBC1734.06 V2-09-G09 rhp18 Rad18 homolog Rhp18

SPBC216.04c V2-07-H08 methionine sulfoxide

SPBC1105.04c V2-12-C06 cbp1 CENP-B homolog

SPBC646.17c V2-11-E08 dic1 dynein intermediate chain Dic1

SPCC622.16c V2-12-F11 epe1 transcription factor Epe1

SPBP35G2.11c V2-10-G02 transcription related zf-ZZ type zinc finger protein

SPBC146.04 V2-10-G08 sulfhydryl oxidase

SPBC1711.05 V2-15-B01 nucleocytoplasmic transport chaperone Srp40

SPBC409.11 V2-17-E08 meu18 sequence orphan

SPAC8F11.10c V2-22-B09 pvg1 pyruvyltransferase

SPBC1709.11c V2-21-H04 png2 ING family homolog Png2

SPCC970.05 V2-21-H11 rpl3601 60S ribosomal protein L36

SPBP35G2.04c V2-26-A04 sequence orphan

SPBC8E4.05c V2-23-B01 fumarate lyase superfamily

SPAC3A12.13c V2-26-B10 translation initiation factor eIF3 complex subunit

SPBC1709.16c V2-24-E02 conserved protein (fungal bacterial plant)

SPCP1E11.04c V2-20-F03 pal1 membrane associated protein Pal1

SPAC4F10.14c V2-24-G08 btf3 nascent polypeptide-associated complex subunit

SPAC1F12.04c V2-26-G12 conserved fungal protein

SPBC409.03 V2-33-E11 swi5 Swi5 protein

SPBC146.11c V2-28-H05 mug97 meiotically upregulated gene Mug97

Colour 

code

Synthetic Sickness / Synthetic Lethality (SS/SL)

Synthetic Sickness (SS)
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Table 5.4 | Interactions between fan1 and a series of deletion mutants from the Bioneer®library 

showed as positive interactions, as determined by the computational analysis of colony size. High 

confidence is defined by: 1) high consistency of results across the screens and 2) higher degree of size 

deviation of the double mutant from the median compared to the size deviation of the corresponding 

single mutant. Gene IDs, Bioneer® plate reference, gene names and descriptions are extracted from the 

strain list provided with the Bioneer® deletion mutant haploid set.  

  

Gene ID
Bioneer® 

plate ref.

Gene 

name
Description

Linkage? 

(ORF ± 

50 kb)

High confidence

SPAC25A8.01c V2-03-E06 fun thirty related protein Fft3

SPBC29A3.21 V2-02-E09 sequence orphan

SPCC126.11c V2-04-F02 RNA-binding protein

SPAC24C9.14 V2-05-F11 otu1 ubiquitin-specific protease

SPBPB2B2.10c V2-08-B10 galactose-1-phosphate uridylyltransferase

SPAC12B10.05 V2-09-B11 metallopeptidase

SPAC3H5.07 V2-06-E05 rpl702 60S ribosomal protein L7

SPAC13G7.05 V2-16-C11 acyl-coA-sterol acyltransferase

SPBC3E7.11c V2-15-D05 DNAJ protein Caj1/Djp1-type

SPBP4G3.02 V2-15-D07 pho1 acid phosphatase Pho1

SPCC1223.02 V2-15-D08 nmt1 no message in thiamine Nmt1

SPCC18.17c V2-15-D10 sequence orphan

SPAC18B11.10 V2-16-E02 tup11 transcriptional corepressor Tup11

SPAC17A2.13c V2-16-E12 rad25 14-3-3 protein Rad25

SPBC428.14 V2-15-F05 1-acylglycerol-3-phosphate acyltransferase

SPAC323.01c V2-22-B08 mitochondrial NADH kinase

Low confidence

SPAC23G3.08c V2-05-A11 ubp7 ubiquitin C-terminal hydrolase Ubp7

SPAC23H4.17c V2-03-B06 srb10 cyclin-dependent protein kinase Srb10

SPAC24H6.11c V2-03-C06 sulfate transporter

SPAC24C9.08 V2-05-E11 vacuolar carboxypeptidase

SPAPB17E12.02 V2-02-G03 yip12 SMN family protein Yip12

SPBC725.10 V2-04-G01 tspO homolog

SPAC57A7.12 V2-06-E07 heat shock protein Pdr13

SPAC630.05 V2-06-G07 gyp7 GTPase activating protein Gyp7

SPBC1348.02 V2-13-B11 S. pombe specific 5Tm protein family

SPAC8F11.08c V2-14-B10 esterase/lipase

SPBC582.10c V2-15-C06 ATP-dependent DNA helicase Rhp16b

SPBC713.07c V2-15-D06 vacuolar polyphosphatase

SPBC3E7.16c V2-15-E05 leu3 2-isopropylmalate synthase

SPCC1235.12c V2-15-E08 mug146 meiotically upregulated gene Mug46

SPCC63.14 V2-17-E11 conserved fungal protein

SPBC2F12.03c V2-15-F03 EST1 family protein

SPBC776.15c V2-15-F06 e2 component of oxoglutarate dehydrogenase complex

SPCC1259.11c V2-15-F08 gyp2 GTPase activating protein Gyp2

SPCC16A11.04 V2-15-F09 snx12 sorting nexin Snx12

SPBC16A3.19 V2-14-F12 histone acetyltransferase complex subunit Eaf7

SPCC16C4.06c V2-15-G09 tRNA pseudouridylate synthase (predicted)

SPBC16G5.07c V2-14-G12 prohibitin

SPAC30D11.11 V2-14-H07 Haemolysin-III family protein

SPBC12C2.08 V2-14-H11 dnm1 dynamin Dnm1

SPAC343.15 V2-16-H05 tit1 tRNA isopentenyltransferase

SPCC663.12 V2-24-G06 cid12 poly(A) polymerase Cid12

SPAC644.08 V2-33-E06 haloacid dehalogenase-like hydrolase

Colour 

code

Alleviating (positive interactions)
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computational approach presented above was applied to a screen for synthetic 

hypersensitivity to the DNA damaging agent cisplatin. Plates carrying double mutant strains 

from the automated replicas (fig. 5.1, step l) were replicated onto plates containing increasing 

concentrations of cisplatin (0 M, 50M, 200 M, 600 M). The size of the colonies arising 

after 24 hours and 39 hours of growth was calculated and analysed, in search for consistent 

and progressive reduction in colony size with increasing concentrations of cisplatin. An 

example of Excel® spreadsheet build for this analysis is shown in supplementary fig. 9.18. By 

intersecting the data from three independent screens, six candidates showed a progressive 

and consistent reduction in colony size upon increasing concentrations of cisplatin (table 5.5). 

The presence of the DNA repair nuclease Rad13 in the list proved to be an important initial 

validation of the methodology, as the deletion of this gene already showed synergistic 

hypersensitivity to cisplatin when combined with fan1-d (see 4.3.7). However, as this analysis 

was performed only on double mutants, it could not be excluded that the hypersensitivity to 

cisplatin was in fact due to the sole single mutant in the deletion library, and not to the 

combination with fan1-d. To assess whether the hypersensitivity shown in the screen is a true 

synergistic hypersensitivity and to provide a further validation to the methodology, double 

disruptants were recreated from independently derived mutants and then tested by 

employing standard in vivo survival assays.         

Table 5.5| Double mutants that showed progressive increased sensitivity to cisplatin in all the three 

independent screens. Gene IDs, Bioneer® plate reference, gene names and descriptions are extracted 

from the strain list provided with the Bioneer® deletion mutant haploid set.  

 

Gene ID Bioneer® plate 

ref.

Gene name Description

SPAC1687.05 V2-05-A01 pli1 SUMO E3 ligase Pli1

SPAC1952.07 V2-05-B05 rad1 checkpoint clamp complex protein Rad1

SPBC3E7.08c V2-13-C04 rad13 DNA repair nuclease Rad13

SPAC20G4.04c V2-19-C02 hus1 checkpoint clamp complex protein Hus1

SPAC9E9.14 V2-28-D07 vps24 vacuolar sorting protein Vps24

SPAC14C4.13 V2-30-G05 rad17 RFC related checkpoint protein Rad17
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Rad1Sp and Hus1Sp are part of the 9-1-1 clamp complex, which play crucial roles in checkpoint 

activation following DNA damage (Caspari et al., 2000; Parrilla-Castellar et al., 2004). Rad17Sp 

acts as a clamp loader for the trimeric complex (Parilla-Castellar et al., 2004). Interestingly, all 

these three highly correlated factors were pulled out in the screen. Rad9Sp, third component of 

the 9-1-1 complex, could not be in the final list because it was missing in the series of deletion 

mutants tested.  

When tested for sensitivity to cisplatin, both the fan1-d mutants 3909N and 14152N showed a 

strong hypersensitivity when combined with rad1-d, hus1-d or rad17-d (fig. 5.5). This data 

proved to be a good validation for the methodology used in the screen. However, the single 

mutants were similarly highly sensitive, indicating an epistatic interaction between these 

Figure 5.5| Sensitivity of hus1, rad1 and rad17 mutants to UV cisplatin. Logarithmically grown cultures 

were spotted in four 1:10 serial dilutions starting from 10
7
 cells (first spot on the left) on YEA plates 

containing the agents in the amount indicated. rad3-d is used as a standard hypersensitive control for 

the efficacy of the agents used. The double mutants tested in this experiment are derived from 

independently constructed single deletion mutants. All the mutants shown, alone or in combination 

with fan1-d, display a dramatic hypersensitivity to both UV and cisplatin. Abbreviations used: UV, Ultra-

Violet irradiation; cispl, cisplatin. 
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components and fan1. To determine whether the same occurs for the third component of the 

9-1-1 complex Rad9Sp, independently derived double mutants fan1-d rad9-d were constructed 

and tested by in vivo survival assays. Consistently with a common role as part of the 9-1-1 

heterotrimer, rad9-d phenocopied hus1-d and rad1-d, either as a single mutant or in 

combination with fan1-d (supplementary fig. 9.19). 

Intriguingly, fan1-d pli1-d was also pulled out as a hypersensitive double deletion mutant. Pli1 

is a SUMO (small ubiquitin-related modifier) E3 ligase that has been associated with DNA 

repair, although its role has not been elucidated yet (Bergink and Jentsch, 2009). When tested 

by in vivo survival assays, independently constructed fan1-d pli1-d mutants (3909 or 14152 

background) showed hypersensitivity to cisplatin compared to the wild-type, fan1-d and pli1-d 

strains (fig. 5.6). This increased sensitivity is dramatic following exposure to cisplatin and 

Figure 5.6 | Sensitivity of pli1-d mutants to UV and cisplatin. fan1-d: 3909 and 14152 backgrounds. 

Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7
 cells (first spot 

on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used as a standard 

hypersensitive control for the efficacy of the agents used. The double mutants tested in this experiment 

are derived from independently constructed single deletion mutants. The combination of fan1-d and 

pli1-d leads to a strong hypersensitivity to cisplatin. Abbreviations used: UV, Ultra-Violet irradiation; 

cispl, cisplatin. 
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absent upon UV irradiation, indicating that the two proteins are required in response to the 

formation of DNA interstrand cross-links.   

Taken together, these findings confirm that the application of the computational analysis of 

colony size to the high-throughput screen for sensitivity to cisplatin is an effective 

methodology that allowed the discovery of a novel genetic connection in the repair of DNA 

interstrand cross-links.  

5.4 Discussion 

 Use of high-throughput approaches to explore novel genetic interactions in standard 5.4.1

conditions of growth 

The analysis presented in this chapter makes use of high-throughput approaches to rapidly 

generate and analyse an extensive number of double haploid mutants. The visual inspection 

provided only an initial indication of genetic interactions and was used primarily to assess 

apparent synthetic lethal combinations. Following the computational analysis of colony size, 

the subdivision of the entries into high and low degree of confidence allowed for the 

maintenance of potentially interesting but ambiguous candidates while creating a list of high-

confidence interacting genes. Overall, the correspondence between the lists of candidate 

genetic interactions derived from the visual and the computational approach was satisfactory. 

The focus of this study is centred on potential pathways of DNA repair alternative to the one 

where Fan1Sp is involved. Thus, only candidates that had been previously associated with DNA 

repair were considered from the high-confidence list. All the ORFs identified with this initial 

approach were clustered in categories of biological processes based on Gene Ontologies from 

AmiGO Slim (http://old.genedb.org/amigo-cgi/slimmer). Only three genes resulted as entities 

involved in DNA repair: rhp18, rhp54 and rhp55 (table 5.1a/5.1b).  

rhp18-d appeared to be synthetic sick with fan1-d, although no such phenotype was shown in 

previous experiments (see 4.3.8). The tetrad analysis on this combination of genes was 
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hampered by the proximity of the two ORFs. However, when the computational analysis of 

colony size was applied to better refine the categories of synthetic sickness and alleviating 

interaction, rhp18 was classified under a low confidence SS/SL interaction (table 5.3), as the 

consistency across independent screens was unsatisfactory. Although it cannot be excluded 

that some form of genetic interaction between the two genes is at the basis of this abnormal 

behaviour, no further conclusion can be drawn from this data without additional experimental 

work. 

rhp54 represents another example of how the computational analysis led to a more accurate 

dataset of genetic interactions. From the visual approach, rhp54-d was found to be synthetic 

lethal with fan1-d (table 5.1a). With the computational analysis, the size of single mutant 

colonies was also taken into account. Indeed, the rhp54 single deletion mutant was 

significantly smaller than the median colony size in all the screens performed. Thus, it was 

assumed that the reason underlying the absence of a fan1-d rhp54-d double mutant could be 

explained by the poor viability of the parental single mutant, rather than to true synthetic 

lethality. This criterion was applied to the whole screen and other few similar cases were 

excluded accordingly. This exclusion from the refined dataset is consistent with the analysis by 

tetrad dissection, which showed that fan1-d rhp54-d spores can indeed germinate 

(supplementary fig. 9.15).  

 rhp55-d was synthetic lethal with fan1 in the visual screen, and in this case this finding was 

confirmed by the computational analysis (tables 5.1b and 5.2). The size of the single mutant 

was consistently close to the median value of colony size on the same plate, so the apparent 

synthetic lethality could not be explained by poor viability of the parental single mutant. 

However, when tested by tetrad analysis, fan1-d rhp55-d spores were viable (supplementary 

fig. 9.15). A possible explanation for this result is that the absence of Rhp55 provides an 

insurmountable obstacle for a correct sporulation specifically in the genetic background used 

for this screen. Rhp55 has shown to play important roles in mitotic recombination and meiosis, 
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although sporulation efficiency and spore viability are only reduced and not abolished in 

rhp55-d (Khasanov et al., 1999). Thus, it can be envisaged that the particular arrangement of 

the mating type locus in the query mutant may be incompatible with the deletion of genes 

involved in the recombination process during sporulation, such as rhp55. Accordingly, this 

might also be the case for other genes screened in this study. One way to exclude these false 

positives from the dataset would be to repeat the screens using a neutral NAT-resistant query 

mutant. With such query mutant, apparent synthetic lethality would in fact highlight obstacles 

in mating or sporulation processes. Without such additional controls, no further conclusion can 

be drawn with the only data available thus far.   

 Validations for the cisplatin automated screen 5.4.2

In the automated cisplatin screen presented in 5.3.5, fan1-d rad13-d showed a progressive and 

reproducible reduction in colony size upon increasing concentrations of cisplatin. The non-

epistatic interaction between fan1 and rad13 had been already demonstrated by in vivo 

survival assays in the previous chapter. Although it would be difficult to trace a direct 

correspondence between the two methods, this data provided a first important validation for 

the computational approach applied to the cisplatin screen. Furthermore, other important 

validations derived from in vivo survival assays showing that three other genes pulled out in 

the screen (rad1, hus1 and rad17) were indeed hypersensitive to cisplatin, although this was 

not dependent on the presence or absence of fan1 (fig. 5.5). Further to the significance in 

validating the method underlying the cisplatin automated screen, this result suggests that the 

Fan1 pathway of ICL repair is epistatic to the 9-1-1 (Rad9-Rad1-Hus1) complex, required for 

DNA damage checkpoint activation. This aspect will be further discussed in 8.1.4.  

 SUMOylation is involved in the DNA interstrand cross-link response 5.4.3

Another potentially interesting candidate, the SUMO E3 ligase Pli1, was also pulled out in the 

screen. When tested by standard in vivo survival assays, the hypersensitivity to cisplatin was 

shown only for the combined fan1 pli1 deletion (fig. 5.6). This result highlights a novel role for 
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this elusive component of DNA repair, placing SUMOylation in a pathway of ICL response 

alternative to the one where Fan1Sp is involved.  

Post-translational modifications such as conjugation of ubiquitin (ubiquitylation) and ubiquitin-

like substrates (i.e. SUMOylation) are important regulators of biological processes in 

eukaryotes. The importance of these classes of reversible modifications in DNA repair is 

highlighted by the fact that all the major components of DNA repair pathways are modified by 

ubiquitin, SUMO or both (Bergink and Jentsch, 2009). Interestingly, deubiquitylation plays a 

central regulatory role in the human ICL resolution pathway, where the deletion of the 

deubiquitylation enzyme USP1 leads to increased MMC-dependent chromosomal aberrations 

(Nijman et al., 2005). Likewise, in chicken cells the loss of USP1 causes hypersensitivity to DNA 

intercross-linkers (Oestergaard et al., 2007). Recent work has suggested that the recruitment 

of SNM1Hs (Pso2Sc,Sp) to DNA ICLs is mediated by its UBZ (ubiquitin binding zinc finger) domain 

(Yang et al., 2010). Remarkably, FAN1Hs appears to be recruited to sites of damage in a similar 

fashion (Smogorzewska et al., 2010; MacKay et al., 2010; Kratz et al., 2010; Liu et al., 2010). As 

neither Fan1Sp nor Pso2Sp possess a UBZ domain, a different scenario can be envisaged where 

ubiquitylation is not required for recruitment of Fan1Sp to damage sites. Based on the data 

presented in this chapter, SUMOylation appears to play a still unidentified role in a Fan1Sp – 

independent pathway in the fission yeast. To date, no clear role has been identified for 

SUMOylation in the response to ICL formation. Thus, this novel role would indicate a further 

level of molecular control over the resolution of these DNA lesions. It would be interesting to 

establish whether a similar regulation exists in mammalian cells, either as an alternative or as 

an addition to the ubiquitylation system. Furthermore, extensive epistasis analysis in S. pombe 

could identify other components of the Pli1Sp pathway, including effectors such as nucleases 

that would be required for the repair process.     
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5.5 Conclusions 

In this chapter, the use of high-throughput methodologies has led to the identification of novel 

genetic interactions between Fan1Sp and other various cellular components. Most importantly, 

the application of computational approaches has led to a better refinement of genetic 

interactions previously identified by a simple visual inspection. When these methods were 

applied to a screen for sensitivity to cisplatin, a novel genetic relationship could be established 

which pointed at a role for SUMOylation in processing of DNA interstrand cross-links. 

In the next chapter, the focus is on the molecular level, where point mutations helped identify 

residues that are essential for Fan1 activity in S. pombe. 
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6.1 Introduction 

 Domain organisation of Fan1Sp 6.1.1

In this chapter, in vivo survival assays are used to establish whether specific substitutions in 

the primary structure of Fan1Sp lead to a reduced or abolished biological function. FAN1Hs 

possesses three conserved domains: a UBZ-type ubiquitin-binding domain, a SAP-type DNA 

binding motif and a VRR_nuc domain (Virus-type Replication-Repair Nuclease). SAP (SAF-A/B, 

Acinus and PIAS) denotes putative DNA binding domains thought to be involved in 

chromosomal reorganisation (Aravind and Koonin, 2000). However, the specific function of 

these domains is still unclear. The VRR_nuc domain is associated with DNAses involved in 

repair and is characterized by a relatively conserved PD-(D/E)XK motif (Kinch et al., 2005; Iyer 

et al., 2006). Fan1Sp does not possess a UBZ domain, although the SAP and VRR_nuc domains 

are conserved (fig. 6.1 and Smogorzewska et al., 2010). In particular, four residues are 

conserved between FAN1Hs and Fan1Sp: one residue in the SAP domain (SpL159) and three in 

Figure 6.1 | Alignment between FAN1
Hs

 and Fan1
Sp

. Screenshots manually annotated from ClustalW2 

alignment (http://www.ebi.ac.uk/Tools/clustalw2/index.html). Boxes indicate two key conserved motifs 

of PD-(D/E)XK nucleases (Kinch et al., 2005). Stars indicate the conserved residues mutated in this study. 
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the VRR_nuc domain (D651, E666, K668 in the S. pombe homolog) (fig. 6.1).  

In order to assess the requirement for key residues for the biological function of Fan1Sp, a 

series of point mutants were tested for sensitivity to cisplatin by in vivo survival assays.    

6.2 Aim 

The aim of this chapter is to associate specific key conserved residues to the biological activity 

of S. pombe Fan1. A series of point mutants were created, crossed into a pso2::kanMX6 

background and tested for sensitivity to increasing concentrations of cisplatin. In this context, 

an augmented sensitivity shown by a particular mutant can indicate the requirement for the 

corresponding residue in the biological function of Fan1Sp.  

6.3 Results 

 Combination of site-directed mutagenesis and recombinase-mediated cassette 6.3.1

exchange 

The possibility of introducing specific substitutions in the primary sequence of proteins of 

interest is a precious tool to link prospective key residues with biological activities. In the 

present study, site-directed mutagenesis was combined with recombinase-mediated cassette 

exchange as outlined in fig. 6.2. The initial step was the introduction of the point mutations by 

mutagenic PCR, where primers carrying the mutations of interest were used to amplify a wt 

fan1 cassette on a pAW8 vector (fig. 6.2, step 1). In this way, mutated copies of the wt 

PAW8_fan1 vector, named PAW8_fan1_mut vector, were synthesized. The PAW8_fan1_mut 

vector was transformed in the previously constructed loxP-fan1::ura4+-loxM3 base strain (fig. 

6.2, step 2 and 3). At this locus, recombinase-mediated cassette exchange replaced the mutant 

allele in the genome (fig. 6.2, step 4). The final product is a version of the fan1 base strain 

carrying the point mutation of interest in the fan1 ORF (loxP-fan1_mut-loxM3). 
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Figure 6.2 | Combined approach of site-directed mutagenesis and recombinase-mediated 

cassette exchange used in this study. The construction of pAW8_fan1 vector and 

fan1::ura4+ deletion base strain were obtained by standard molecular biology techniques. 

Fan1 point mutants on pAW8 vector were obtained by mutagenic PCR with primers 

described in 2.7.1. Dotted lines indicate cassettes located on a S. pombe chromosome. 

Crosses represent homologous recombination between loxP and loxM3 cassettes.  

Abbreviations: ura4+, S. pombe uracil marker; LEU2, S. cerevisiae  leucine marker; fan1_mut, 

Fan1 point mutant; P, loxP site; M3, mutant loxM3 site; Pnmt41, S. pombe nmt41 promoter; 

Tnmt, nmt terminator sequence; IN, S. pombe rad50 intron 1; cre, gene coding for the 

recombinase Cre. Adapted from Watson et al., 2008. 
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 Point mutations in the nuclease domain abolish Fan1Sp activity 6.3.2

Based on the combined analysis of sequence homology between Fan1Sp, FAN1Hs and conserved 

key residues in PD-(D/E)XK nucleases (fig. 6.1), three residues in the VRR_nuc domain were 

mutated in this study: D651, E666, K668. The requirement for a functional SAP domain was 

also tested by substituting the conserved residue L159. Substitute amino acids were chosen 

with the aim of minimising possible distortions in the protein structure while removing the key 

moiety of the original residue. As the deletion of fan1 leads to only a mild sensitivity to 

interstrand cross-linking agents (see 4.3.1), the point mutants were crossed into a 

pso2::kanMX6 background, since this combined deletion was expected to aggravate the 

sensitivity to cisplatin of a non-functional Fan1. As a relevant control for the abolishment of 

Fan1Sp activity, the ura4+ deletion cassette in the fan1::ura4+ base strain (fig. 6.2, step 2) was 

replaced with a natMX6 cassette exploiting the same recombinase-mediated cassette 

exchange employed to generate the point mutants. The fan1::natMX6 base strain was then 

crossed into a pso2::kanMX6 background. It could be anticipated that the resulting double 

mutant would phenocopy the hypersensitive pso2-d fan1-d (see 4.3.2).     

As expected, the pso2-d fan1-d double mutant base strain displayed a marked hypersensitivity 

when exposed to doses of cisplatin as low as 50 M. All the three nuclease domain mutants 

fan1-D651A, fan1-E666Q and fan1-K668A phenocopied exactly the pso2::kanMX6 

fan1::natMX6 double mutant (fig. 6.3). The substitution of D651 with the structurally similar 

residue asparagine (Fan1-D651N) showed the same hypersensitivity of the fan1-D651A. In 

contrast, the SAP domain mutant fan1-L159A displayed a milder sensitivity to cisplatin, and 

only at higher doses of agent (fig. 6.4). Taken together, these results indicate that the nuclease 

activity is required for the biological activity of Fan1Sp in ICL repair. In contrast, the SAP domain 

is not strictly necessary for this activity, although its absence markedly reduces Fan1Sp 

proficiency in ICL repair.  
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Figure 6.4 | Sensitivity of the Fan1
Sp

 SAP domain point mutant to cisplatin. Logarithmically grown 

cultures were spotted in four 1:10 serial dilutions starting from 10
7
 cells (first spot on the left) on YEA 

plates containing the agents in the amount indicated. rad3-d is used as a standard hypersensitive 

control for the efficacy of the agents used. A mild hypersensitivity is shown for the SAP domain mutant 

(L159A) compared to wt Fan1
Sp

 in a pso2-d background. Abbreviation used: cispl, cisplatin. 

Figure 6.3 | Sensitivity of Fan1 nuclease point mutants to UV and cisplatin. Logarithmically grown 

cultures were spotted in four 1:10 serial dilutions starting from 10
7
 cells (first spot on the left) on YEA 

plates containing the agents in the amount indicated. rad3-d is used as a standard hypersensitive control 

for the efficacy of the agents used. Mutations in the Fan1
Sp

 nuclease domain (D651A, D651N, E666Q, 

K668A) cause hypersensitivity to cisplatin. Abbreviations used: UV, Ultra-Violet irradiation; cispl, cisplatin. 



179 

RESULTS – CHAPTER 6 

6.4 Discussion 

 The nuclease domain in S. pombe Fan1 is required for its biological activity in ICL 6.4.1

response  

In this chapter, site-directed mutagenesis has been coupled with recombinase-mediated 

cassette exchange in order to create a series of point mutants where Fan1 functional moieties 

were removed from key conserved residues. Three key residues were targeted in the VRR_nuc 

nuclease domain (D651, E666, K668), one in the SAP domain (L159). When mutated to 

residues lacking the functional amino acid moieties (D651A, D651N, E666Q, K668A), the 

corresponding mutants in the nuclease domain phenocopied the deletion of Fan1 in a common 

pso2-d background (fig. 6.3). This result suggests that the three conserved residues are 

required for Fan1 activity at interstrand cross-links. In vivo studies in human cells have shown 

that mutations in the nuclease domain of human FAN1 do not affect FAN1 localisation to laser-

induced damage (Smogorzewska et al., 2010). However, the mutations in the corresponding 

residues in the human FAN1 (D960A, E975A, K977A) impair the protein activity in biochemical 

assays (Smogorzewska et al., 2010; Kratz et al., 2010; Liu et al., 2010). In this study, a link has 

been found in vivo between S. pombe Fan1 nuclease residues and the efficient response to 

interstrand cross-links. It is then possible to suggest that Fan1Sp acts in the ICL repair pathway 

as a nuclease.  

 The SAP domain is only partially required for efficient response to ICL-inducing 6.4.2

agents 

SAP domains have been identified in a variety of proteins involved in various aspects of 

chromosomal reorganisation (Aravind and Koonin, 2000). The conserved SAP domain in FAN1 

in S. pombe and higher eukaryotes (fig. 6.1 and Smogorzewska et al., 2010) suggests a function 

in DNA binding, as previously hypothesized for this domain (Aravind and Koonin, 2000). In vivo 

studies with human FAN1 have shown that a mutation (L477P) or the complete deletion of the 

SAP domain reduce the strength of GFP-FAN1 signal localised to laser-induced damage 
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(Smogorzewska et al., 2010). In C. elegans, a single mutation in the SAP domain (tm423) causes 

increased lethality in embryos treated with MMC and HN2 (Smogorzewska et al., 2010). In the 

present study, the mutation of a key conserved SAP residue (L159A) affects the response to 

cisplatin to a milder extent compared to the nuclease mutants, and only at higher doses of 

drug (fig. 6.4). It is tempting to speculate that the SAP domain in FAN1 in S. pombe and higher 

eukaryotes is involved in the localisation and possibly direct protein-DNA contacts. In this 

context, the mutation of only one residue (L159 in the case of Fan1Sp) might impair DNA 

binding only partially, explaining why FAN1 is still proficient in response to lower doses of 

cisplatin (fig. 6.4). However, such hypothesis should be properly supported by additional 

experimental work.     

6.5 Conclusions 

The availability of flexible tools for site-directed mutagenesis of protein residues in S. pombe 

allows for rapid investigation of the requirement for specific residues in the biological activities 

of proteins of interest. In this study, four residues have been mutated and tested for increased 

sensitivity to cisplatin. Three key conserved nuclease residues have been found to be required 

for Fan1Sp biological activity in response to cisplatin, whereas a conserved residue in a putative 

DNA binding domain is only partially required for this function.    
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7.1 Final discussion 

 The rationale underlying this study  7.1.1

The investigation presented in this thesis stems from parallel work in mammalian cells which 

showed that human FAN1 (initially named KIAA1018/MTMR15) physically interacts with 

components of the mismatch repair pathway [Cannavo et al. (2007) and Dr J. Rouse, personal 

communication, 2008]. It was then assumed that the parallel characterisation of the S. pombe 

homolog (GeneDB systematic name: SPBC146.06c) would have shed further light on a 

potential unknown aspect of the DNA damage response in eukaryotes. The study of this 

protein in the fission yeast was thought to be particularly valuable for at least two reasons. 

Firstly, the amenable genetics and the tools available for the fission yeast would have provided 

a powerful model to rapidly identify the biological role of this protein. In this respect, the setup 

of a high-throughput screen would have served the purpose of completing and expanding the 

standard genetic analyses usually employed in this type of characterisation (in vivo viability 

assays such as spot tests and survival curves). Secondly, the absence of a homolog in S. 

cerevisiae (Dr J. Rouse, personal communication, 2008) suggested the presence of an 

additional DNA repair mechanism that could have been potentially interesting from an 

evolutionary perspective. Successively, in the process of completing the study presented in this 

thesis, five independent laboratories reported the characterisation of the mammalian 

KIAA1018, consequently named FAN1 (Fanconi anemia- associated nuclease 1, or 

FANCD2/FANCI-associated nuclease 1) (Smogorzewska et al., 2010; MacKay et al., 2010; Kratz 

et al., 2010; Yoshikiyo et al., 2010; Liu et al., 2010; Shereda et al., 2010). These works provided 

an additional value to the present study, as FAN1 was shown to be associated with the Fanconi 

anemia pathway of DNA interstrand cross-link repair, a pathway absent in S. pombe with the 

exception of a single component (Fml1Sp, ortholog of FANCM in higher eukaryotes). Thus, the 
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study of Fan1 in S. pombe bears the potential of revealing the existence of possible 

mechanisms of ICL repair in higher eukaryotes which act in parallel with the FA pathway. 

 A missing crosstalk between the MMR and the ICL repair pathways in S. pombe? 7.1.2

Following initial indications that human FAN1 interacts in vivo with components of the 

mismatch repair pathway (Cannavo et al., 2007 and Dr J. Rouse, personal communication, 

2008), the first step in this project was taken to assess the existence of similar protein-protein 

interactions for Fan1Sp. Western blot analyses of co-immunoprecipitation experiments did not 

identify the presence of either the MMR component Mlh1Sp or Pms1Sp with Fan1Sp (figures 3.4 - 

3.7). Furthermore, the absence of Fan1 did not lead to any increase in the spontaneous 

mutation rate, excluding any direct role in the repair of DNA mismatches (table 3.1 and fig. 

3.8). Reciprocally, the data presented in chapter five excludes a role for the MMR factors 

Msh2Sp, Mlh1Sp and Pms1Sp in the response to DNA interstrand cross-links generated by 

cisplatin (fig. 4.8 and supplementary fig. 9.7). The exclusion of a crucial role for the MMR 

pathway in ICL resolution in S. pombe is also consistent with the data found in the exo1 

epistasis analysis (section 4.3.6). Exo1 is a nuclease involved in the late stages of MMR and in 

several other aspects of DNA processing (reviewed in Tran et al., 2004). The scenario in S. 

pombe appears to differ from the one in S. cerevisiae, where MMR factors have been 

associated with ICL repair, and a strong overlap has been reported between Exo1Sc and Pso2Sc 

in the ICL response (Barber et al., 2005; Lam et al., 2008). In the present study, the deletion of 

pso2 and exo1 led only to a mild increased sensitivity, indicating the lack of the significant 

redundancy between Exo1 and Pso2 observed in S. cerevisiae (figures 4.10 and 4.11). As the 

fan1-d exo1-d mutant shows an even milder combined sensitivity (fig. 4.10), it can be 

concluded that Exo1 does not play a central function in ICL resolution in S. pombe.  

Taken together, these data indicate that S. pombe would lack a functional link between the 

MMR and the ICL pathway. Importantly, Fan1Sp would not serve as a possible ring of 

connection between the two pathways, as proposed for human FAN1 (Smogorzewska et al., 
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2010). However, as discussed in section 4.4.3, it cannot be excluded that this crosstalk may 

exist also in the fission yeast, but it is confined to a specific phase of the cell cycle, as shown for 

the budding yeast (Barber et al., 2005). Being based on the growth of asynchronous cultures 

and the chronic treatment with damaging agents, the genetic analysis presented in chapter 

five would fail to identify this cell cycle-dependent role. 

 The novel Fan1Sp-dependent pathway of ICL resolution 7.1.3

The genetic analysis presented in chapter five was aimed at the identification of a possible role 

for Fan1Sp in the response to DNA damage. A first clue that Fan1 is a component of one of the 

DNA repair pathways in S. pombe was the sensitivity shown by the deletion mutant to the 

interstrand cross-linking agents cisplatin and mitomicin C (figures 4.2 and 4.3). The prospective 

role for Fan1Sp in the resolution of this type of adducts was further confirmed by the dramatic 

increase in sensitivity to the same agents when the deletion of fan1 and pso2 were combined 

(fig. 4.4). As the nuclease Pso2Sp was previously identified as a key component of the ICL 

response in S. pombe (Lambert et al., 2003), this result suggested that Fan1Sp is a key 

component of a novel pathway of ICL repair acting in parallel with the one where Pso2Sp is 

involved. This hypothesis was further supported by the hypersensitivity shown by the double 

mutant fan1-d pso2-d for a third widely used DNA cross-linking agent, the bifunctional 

nitrogen mustard HN2 [bis(2-chloroethyl) methylamine] (fig. 4.5). In the light of the data 

reported for the mammalian FAN1 (Smogorzewska et al., 2010; MacKay et al., 2010; Kratz et 

al., 2010; Yoshikiyo et al., 2010; Liu et al., 2010; Shereda et al., 2010), it is possible to conclude 

that FAN1 has a conserved role in the response to DNA interstrand cross-links across 

eukaryotes.  

The systematic genetic analysis with other double and triple deletion mutants presented in 

chapter five identified only one other dramatic increased combined sensitivity to interstrand 

cross-linkers: the fan1-d rad13-d double mutant (fig. 4.12). Interestingly, the hypersensitivity 

of this combination of mutants was also shown clearly when the cisplatin high-throughput 



185 
 

FINAL DISCUSSION AND CONCLUSIONS 

 

screen was performed (table 6.5). Rad13Sp (homolog of Rad2Sc and XPGHs) is a core nuclease 

involved in the double incision step of the nucleotide excision repair pathway, 3’ to the lesion 

(O'Donovan et al., 1994). Interestingly, the fact that the combination of pso2-d and rad13-d did 

not lead to increased sensitivity to cross-linkers (fig. 4.12) places this nuclease uniquely in the 

Pso2-dependent pathway of ICL resolution.  

Consistently with other studies in eukaryotes, in chapter five the E3 ubiquitin ligase Rhp18 has 

been found to be required for wild-type resistance to interstrand cross-links (fig. 4.13; Lambert 

et al., 2003; Wu et al., 2004; Tateishi et al., 2003; Nojima et al., 2005). However, neither the 

combined deletion rhp18-d fan1-d nor rhp18-d pso2-d showed increased sensitivity to cisplatin 

compared to the sickest single mutants (fig. 4.13 and fig. 4.14), suggesting that Rhp18 is 

required for both the Pso2- and the Fan1-dependent pathways. The involvement of Rhp18Sp in 

ICL repair might echo what has been proposed in S. cerevisiae, where Rad18 would be 

implicated in controlling DNA synthesis at late stages of ICL processing in conjunction with 

Rad6, although further work is needed to support this hypothesis. 

A fourth gene found to be sensitive to cisplatin is rhp51, coding for the homolog of the 

recombination protein Rad51 (Sung, 1994; Namsaraev and Berg, 1997). Interestingly but not 

unexpectedly, the deletion of rhp51 showed increased sensitivity following exposure to 

cisplatin when combined with either fan1 or pso2, compared to the single mutants (fig. 4.14). 

Rhp51 has been already implicated in ICL repair in the fission yeast (Lambert et al., 2005). 

However, the data presented in this study suggests that indeed Rhp51 would be involved in 

both the Fan1- and Pso2-dependent pathways (fig. 4.15). In particular, the hypersensitivity of 

rhp51-d seems to be more dramatic in combination with fan1-d, suggesting that the Fan1 

pathway would rely on Rad51-dependent homologous recombination to a lesser extent 

compared to the Pso2 pathway. It is also interesting to note that the triple deletion strain 

fan1-d pso2-d rhp51-d appears to be even more sensitive compared to any of the cognate 

strains (fig. 4.15 and supplementary fig. 9.12). This observation suggests that Rhp51 has 
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additional functions in the response to ICLs which are independent of the two Fan1 and Pso2 

pathways. 

Overall, the genetic analysis presented here delineates the existence of a novel pathway of ICL 

repair in the fission yeast S. pombe. This pathway is parallel to the one where the nuclease 

Pso2Sp is required and appears to require the presence of functional homologous 

recombination machinery (Rhp51Sp) and the E3 ubiquitin ligase Rhp18Sp. In contrast, the Fan1 

pathway does not appear to require the activity of the nuclease Rad13Sp. It would be 

interesting to assess the requirement for additional components acting in the Fan1Sp pathway. 

This could be done with an approach similar to the one presented in chapter six, where a pso2-

deleted mutant could be used as a query strain, crossed with a series of deletion mutants from 

the Bioneer® library and the derived double mutants tested for sensitivity to increasing doses 

of cisplatin.  

 The DNA damage and replication checkpoint control of the Fan1 pathway 7.1.4

Despite the limitations of the analysis presented in chapter five (namely the chronic treatment 

of asynchronous populations of cells), some interesting observations emerged in respect to the 

control of ICL response by the DNA damage checkpoint system. A first interesting observation 

is that the deletion of the main DNA damage checkpoint effector Chk1 in the absence of Fan1 

led to a slight hypersensitivity only in response to mitomycin C (MMC) and not to cisplatin (fig. 

4.6). The spectrum of DNA lesions caused by MMC is considerably more enriched in 

interstrand cross-links than intrastrand cross-links or monoadducts compared to cisplatin (see 

4.1.2). A possible explanation for the increased sensitivity of fan1-d chk1-d is that Fan1Sp is 

involved in the response to DNA interstrand cross-links in a pathway that is partially 

independent of the Chk1Sp control. This could be either a distinct repair pathway that does not 

require the effector kinase Chk1Sp or, more probably, the consequence of the resolution of 

interstrand cross-links in the S phase of the cell cycle. It has been shown that ICLs in yeast and 

mammalian cells are mainly repaired via recombinational repair in logarithmically growing cells 



187 
 

FINAL DISCUSSION AND CONCLUSIONS 

 

(Legerski, 2010). This hypothesis would be consistent with the finding that cds1 (coding for the 

S-phase checkpoint kinase Cds1Sp) and fan1 seem indeed to be epistatic in response to 

treatment with cisplatin (fig. 4.7). However, it would be interesting to extend the epistasis 

analysis of cds1 to the treatment with MMC, as this would further test this genetic relationship 

in the context of a cleaner preponderance of interstrand cross-links compared to other types 

of adducts. Thus, a scenario can be envisaged where the DNA damage checkpoint controlled 

by Chk1Sp acts in response to monoadducts, interstrand and intrastrand cross-links outside the 

S phase of the cell cycle, whereas Cds1Sp is involved more specifically in the response to 

interstrand cross-links, which hamper the progression of replication forks.  

A second interesting observation is that the combined double deletions of fan1 and rad1, hus1 

or rad17 were identified as hypersensitive mutants in the cisplatin automated screen (table 

6.5). Rad1Sp and Hus1Sp are part of the heterotrimeric complex 9-1-1 (Rad9-Rad1-Hus1 in S. 

pombe), coding for components of the DNA checkpoint complex and proposed to be an 

emergency sliding clamp, circling the damaged DNA and acting as a recruitment platform for 

downstream factors (see section 1.4; evidence reviewed in Parrilla-Castellar et al., 2004). 

Rad17Sp has been proposed to act as a loading factor for the 9-1-1 complex (Carr, 2002). When 

tested for sensitivity to cisplatin with standard spot tests, all the three mutants displayed a 

dramatic hypersensitivity, independently of the concomitant deletion of fan1 (fig. 5.5). The 

extreme sensitivity of these mutants requires additional experiments with significantly lower 

doses of DNA damaging agents to check that indeed fan1 and the 9-1-1 complex are epistatic. 

However, other repeats of the same experiment and the result shown in supplementary fig. 

9.19 for rad9-d, where cisplatin has a slightly reduced cytotoxicity, appear to confirm that 

indeed this is the case. It would be interesting to determine the sensitivity of the 9-1-1 

mutants (single and combined with fan1-d) to MMC, in order to establish whether a difference 

in sensitivity can be observed for a fraction of sublesions enriched in interstrand cross-links, 

similarly to the chk1 disruptants. 
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Taken together, these results could indicate that the novel Fan1 pathway of ICL resolution is 

controlled by the DNA damage and replication checkpoints. It is possible that specific 

responses by either checkpoint are triggered dependently on the type of adducts created by 

the cross-linkers used and on the phase of the cell cycle where these lesions occur.  

 The molecular function of Fan1 in ICL resolution 7.1.5

Very limited conclusions can be drawn about the function of Fan1Sp in this novel pathway of 

ICL repair. Data from the analysis of Fan1Sp point mutants lead to the conclusion that at least 

three key residues in the VRR_nuc nuclease domain are required for the function of the 

protein in the ICL response: D651, E666 and K668 (fig. 6.3). In human cells, point mutations in 

the corresponding residues D960, E975, K977 compromise Fan1 exo- and endonucleolytic 

activities (Smogorzewska et al., 2010; Kratz et al., 2010; Liu et al., 2010). Although biochemical 

studies with S. pombe Fan1 have not been done in the present study, it is possible to suggest 

that Fan1Sp acts in the S. pombe ICL resolution pathway as a nuclease. Interestingly, the 

mutation in the conserved SAP domain (conserved domain involved in various aspects of 

chromosomal reorganisation; Aravind and Koonin, 2000) affects the response to ICLs only to 

very mild extent (fig. 6.4). However, it is still possible that the SAP motif mediates the contact 

with the damaged substrate DNA, similarly to what has been proposed for other proteins 

possessing this domain (Aravind and Koonin, 2000). In this context, a single SAP mutation in 

Fan1Sp would not be sufficient to abolish completely its contacts with the DNA molecule.  

From the limited data available thus far, it is not possible to assign a specific function to Fan1 

in the processing of ICL lesions. However, it is interesting to note that the nuclease Rad13Sp has 

been found to be non-epistatic with Fan1Sp and epistatic to Pso2Sp (fig. 4.12). It is tempting to 

speculate that another nuclease may be needed in the Fan1Sp pathway to cover the role 

performed by Rad13Sp. This nuclease (homolog of Rad2Sc/XPGHs) is a crucial component of the 

nucleotide excision repair pathway, involved in the endonucleolytic incision 3’ to the adduct 

(O'Donovan et al., 1994). Consistently with its role in NER, it has been proposed that in 
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mammalian cells XPG would be involved in the unhooking step of the ICL pathway (3’ of the 

lesion), although the finding that XPG-depleted cells are only mildly sensitive to ICL agents 

suggests that in fact other nucleases (such as MUS81-EME1) have a more prominent 

importance in this role (De Silva et al., 2002; Wood, 2010). It is possible that in S. pombe, as 

well as in higher eukaryotes, multiple nucleases are involved in the endonucleolytic unhooking 

step of ICL resolution. In the light of the biochemical studies with mammalian FAN1 

(Smogorzewska et al., 2010; MacKay et al., 2010; Kratz et al., 2010), it can be suggested that 

FAN1Hs/Fan1Sp may be implicated in this reaction, either 3’ or 5’ to the ICL. It would be 

interesting to test the requirement for the various nucleases that may be involved at this stage 

in the fission yeast, such as Mus81Sp/Eme1Sp, the XPF homolog Rad16Sp, Rad13Sp and Fan1Sp 

itself.  

The biochemical data for human FAN1 indicates that this enzyme may be additionally involved 

in other stages of ICL repair. Firstly, its exonuclease activity might be required in the trimming 

of the unhooked ICL. Secondly and more importantly, the significant defects shown for FAN1-

depleted cells at late stages of homologous repair indicate that this nuclease might be 

predominantly involved in the processing of recombination intermediates generated by 

treatments with DNA cross-linkers (MacKay et al., 2010; Kratz et al., 2010). However, the data 

presented in this study does not allow any further conclusion on a similar role for Fan1Sp.     

 The role of SUMOylation in the DNA interstrand cross-link pathway 7.1.6

Another interesting outcome of the cisplatin high-throughput screen was the identification of 

the increased sensitivity of the combined fan1-d pli1-d mutant compared to the parental single 

mutants (table 5.5 and fig. 5.6). Pli1Sp is a ligase involved in the post-translational conjugation 

of small proteins called SUMO (small ubiquitin-related modifier). Although the exact 

significance of this conjugation (called SUMOylation) is still debated, it is clear that this class of 

reversible modifications plays a widespread and important role in the regulation of eukaryotic 

biological processes including DNA repair (reviewed in Bergink and Jentsch, 2009). In the 
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context of this study, the hypersensitivity of the fan1-d pli1-d mutant to cisplatin highlights a 

crucial involvement of SUMOylation in an ICL resolution pathway distinct from the one where 

Fan1Sp is implicated. Further epistasis analysis could establish whether this is the Pso2Sp-

dependent, or a third unknown pathway. Whatever the outcome of these investigations, this 

study shows an unprecedented role for SUMOylation in the resolution of interstrand cross-

links in S. pombe which might be conserved in higher eukaryotes. However, on the basis of the 

data presented in this study, it is not possible to speculate on the functional significance for 

this mechanism in the response to ICL formation.   

 A model for ICL resolution in S. pombe 7.1.7

Based on the data presented in this study, it is possible to delineate the participation of some 

of the components of the DNA repair machinery in the resolution of interstrand cross-links in 

the fission yeast S. pombe. A schematic is presented in fig. 8.1 where the known Pso2 pathway 

of ICL resolution is paralleled by the newly discovered Fan1 pathway. The results from the 

high-throughput cisplatin screen (section 5.3.5) highlighted the non-epistatic relationship of 

Fan1 and the SUMO ligase Pli1 (fig. 5.6). However, as the epistasis analysis has not been 

extended to Pso2, it is not possible to discuss whether Pli1 is involved in the Pso2 pathway, 

and/or in a third, independent pathway of ICL response. Fig. 7.1 (left panel) shows also the 

possible molecular roles for Fan1 in the ICL resolution pathway, as discussed in section 7.1.5. 
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7.2 Conclusions 

This study profited from the use of the fission yeast S. pombe as a model organism to 

investigate the role of a novel component of the DNA interstrand cross-link pathway. Standard 

biochemical and genetic characterisation were expanded into the exploration of the yeast 

genetic landscape through the setup of a high-throughput sensitivity screen. Taken together, 

the present investigation unravels novel unsuspected genetic relationships between the 

Figure 7.1 | Proposed schematic of ICL resolution in S. pombe. The components of the various DNA 

repair pathways are shown in the relevant boxes, as assigned from the genetic analysis presented in this 

study. (+) and (-) highlight the differential involvement of the component in the different pathways [e.g. 

Exo1 showed to be more implicated in the Fan1 pathway (+) than in the Pso2 pathway (-), see fig. 4.10]. 

As the analysis with pli1 has not been extended further to the combination pli1-d fan1-d double 

disruptant (fig. 5.6), it is not possible to exclude the participation of Pli1 in the Pso2 pathway, and/or in a 

third unknown pathway of ICL repair. Left panel: possible roles for Fan1 in the Fan1-dependent 

resolution pathway. For simplicity, only the double fork model is shown (see fig. 1.5 for a detailed 

description of the model).  
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interstrand cross-link repair pathway and other compensatory mechanisms of DNA 

metabolism and processing. This study reveals fresh insights into the repair of DNA interstrand 

cross-links, one of the most insidious threats posed to genomic stability. DNA interstrand 

cross-linking agents are amongst the most widely used treatments of a wide range of cancers. 

Studies in mammalian systems stemming from the outcome of the present work may translate 

in the increased efficacy of the current clinical options, for instance by simultaneous targeting 

parallel ICL repair pathways to selectively aggravate the cytotoxicity of the current oncological 

treatments. 
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8.1 Introduction 

 Crb2Sp as a regulator of Rqh1Sp activity  8.1.1

Caspari et al. (2002) suggested a role for the checkpoint mediator Crb2 in modulating the 

activity of the RecQ helicase Rqh1Sp in the fission yeast S. pombe. The link between Crb2 and 

the activity of Rqh1-Top3 was proposed to be mediated by the CDK phosphorylation of Crb2. 

This crosstalk emerged following the analysis of a cdc13 mutant which contained a mutation in 

the cyclin box and had reduced CDK activity (Caspari et al., 2002). In S. pombe, the CDK-cyclin B 

complex consists of Cdc2 and Cdc13. cdc13-245 is hypersensitive to IR despite being proficient 

in the G2/M arrest. The significant proportion of cells undergoing catastrophic mitosis 

suggested a defect in DNA repair. Analysis of Rhp51 (homolog of Rad51 in S. pombe) foci 

formation led to the conclusion that cdc13-245 was defective in both the early and late stages 

of HR-dependent DNA repair. At early stages, Cdc13 was redundant with the activity of Rad50, 

as the double mutant cdc13-245 rad50-d was more sensitive to IR than rad50-d and the 

formation of Rhp51 foci was impaired in this strain. The defect at late stages of 

recombinational repair was highlighted by the restoration of IR resistance of cdc13-245 in an 

rqh1-d background, indicating that Cdc2-Cdc13 affects intermediates generated by Rqh1 

activity.  

Crb2 is phosphorylated by CDK-CyclinB kinase both in undamaged and in damaged cells and 

this phosphorylation is required for cell-cycle arrest in response to UV irradiation and defective 

replication (Saka et al., 1997; Esashi and Yanagida, 1999). Caspari et al. (2002) showed a 

genetic interaction between Cdc13 and Crb2 when cdc13-245 was combined with the non-

phosphorylatable crb2-T215A mutation. crb2-T215A was initially characterised as showing a 

deficiency in the checkpoint function of Crb2 where the checkpoint can be initiated but not 

maintained (Nakamura et al., 2005). However, different lines of evidence suggest that this 

checkpoint defect is partial and depends on factors such as the dose of DNA damaging agent 
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used and the method used for cell cycle synchronisation. Nakamura et al. (2005) showed that 

this defect in checkpoint maintenance was displayed following exposure to doses of IR above 

90 Gy after synchronisation by cdc25-22 block and release. However, unpublished work in our 

laboratory showed that this defect did not occur when cell cultures were synchronised by 

elutriation prior to irradiation (Jo Murray, personal communication). The T215A mutation 

markedly affects the DNA repair function of Crb2, as crb2-T215A cells are more sensitive to IR 

than wt (Caspari et al., 2002).  

crb2-T215A displayed sensitivity to IR more marked than cdc13-245, but the double mutant 

was as sensitive as crb2-T215A, suggesting that Crb2 and Cdc13 act in the same pathway in 

response to IR. Furthermore, the deletion of rqh1-d suppressed the sensitivity of crb2-T215A 

to ionizing radiation, but the resistance was only restored to the level of rqh1-d, suggesting 

that Crb2 function requires Rqh1. Consistent with a role in the late stages of homologous 

recombination, Rqh1 foci appeared late following IR irradiation. Interestingly, the finding that 

the overexpression of Top3, binding partner of Rqh1, suppressed the IR sensitivity of crb2-

T215A and cdc13-245 suggested that these mutations impair Top3 activity. The molecular 

mechanism behind the IR sensitivity of crb2-T215A and cdc13-245 is still obscure. However, 

the IR-induced (Rqh1-dependent) hyperrecombination observed in crb2-T215A and cdc13-245 

may provide a plausible explanation for this increased sensitivity. Intriguingly, the relationship 

between Crb2 and Cdc13 does not appear to be direct, as the phosphorylation status of Crb2 is 

not affected in a cdc13-245 background (Caspari et al., 2002).  

Taken together, these data suggest that the regulation of Crb2 by Cdc2-Cdc13 in S. pombe may 

mirror the situation proposed in human cells, where the BRCT-domain protein BRCA1 acts as a 

scaffold which favours the assembly of checkpoint proteins and repair enzymes at the site of 

damage (Wang et al., 2000). Thus, upon IR treatment, the checkpoint-dependent 

hyperphosphorylation of Crb2 would be responsible for regulating the activity of Rqh1-Top3 at 

repair sites. In particular, it has been proposed that Crb2 could aid the convergence of two 
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Holliday junctions to form a hemicatenane that would then be resolved by the Rqh1-Top3 

complex (Carr, 2002). Crb2 may also act in the processing of recombination intermediates 

generated by Rqh1-Top3, as proposed in Caspari et al. (2002).     

The genetic relationship between Rqh1 and Crb2 through Cdc2-Cdc13 reported by Caspari et 

al. (2002) provides the basis for the work presented in this chapter. 

 Ch16 double-strand break repair system 8.1.2

In order to investigate the functional interaction between Rqh1 and Crb2 in recombinational 

repair in S. pombe, a genetic system has been used where a non-essential minichromosome 

(Ch16) derived from chromosome III is artificially introduced in S. pombe cells (Prudden et al., 

2003b). This genetic element is maintained by heteroallelic complementation between the 

ade6-M216 allele on Ch16 and the ade6-M210 on the native chromosome III. The main 

features of the Ch16 used in the present study are a MATa cassette, a target site for the HO 

endonuclease, and a kanMX6 cassette, adjacent to MATa, that confers resistance to the drug 

G418 (Geneticin). A further marker, his3+, is located 25 kb centromere-distal to the MATa site 

and confers prototrophy to histidine (fig. 8.1; Cullen et al., 2007). The expression of the HO 

endonuclease is regulated by the nmt1 promoter, induced in the absence of thiamine. Upon 

removal of thiamine from the medium, the HO endonuclease introduces a double-strand break 

(DSB) at the target MATa site, and subsequent repair events can be followed by assessing the 

loss of the three markers flanking the DSB. Minichromosome loss leads to an ade- G418-

sensitive his- phenotype, as all the three markers are lost (fig. 8.1b). Repair by homologous 

recombination (HR) leads to gene conversion and consequent kanMX6 loss (fig. 8.1a). Long-

tract gene conversion (LTGC) leads to loss of both ade6-M216 and kanMX6 markers (fig. 8.1c). 

Non-homologous end joining or repair by sister-chromatid conversion lead to both the 

markers being retained (fig. 8.1e). The fate of the additional his3+ marker is indicative of break-

induced loss of heterozygosity (LOH), which leads to loss of kanMX6 and his3+ markers but 
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retention of ade6 (fig. 8.1d; Cullen et al., 2007). Clearly, the his3+ marker is lost along with the 

other two markers if the minichromosome itself is lost. 

  

Figure 8.1 | Ch16 double-strand break repair system. As the expression of the HO endonuclease is 

regulated by the nmt promoter, removal of thiamine from the medium induces the HO nucleolytic 

activity targeted at the MATa site. DSB repair events can be assessed by scoring the loss of one or more 

genetic markers. The minichromosome system used in this study (MGH: MATa, G418, His) carries three 

markers flanking the MATa site: ade6-216, kanMX6, his3+. a. Repair of the HO break by homologous 

recombination (HR) leads to loss of the kanMX6 marker and retention of the ade6-216 and his3+ 

markers. b. The loss of the minichromosome leads to an ade- G418s his- phenotype. c. Long-tract gene 

conversion leads to the loss of the two markers ade6-216 and kanMX6 and retention of his3+. d. loss of 

heterozygosity leads to loss of the two markers on the right arm of the MATa site, kanMX6 and his3+. e. 

Non-homologous end joining or repair by sister chromatid gene conversion are conservative events 

which lead to retention of all the markers. 
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8.2 Aim 

The aim of this chapter is to test the use of the Ch16 double-strand break repair system to 

investigate the functional role of the interaction between Rqh1 and Crb2 in S. pombe. In order 

to achieve a tighter control over the activity of the endonuclease HO, inducible systems 

alternative to the standard nmt1 promoter (ER-HBD-HO, invHO) were also tested.  

8.3 Results 

 Gene conversion events are decreased in rqh1-d cells 8.3.1

This analysis started by investigating repair events occurring in the absence of the RecQ 

helicase Rqh1. To this aim, the Ch16 double-strand break repair system as described in Cullen 

et al., 2007 (MGH: MATa, G418, His) was used. 24 and 48 hours after the removal of thiamine 

Figure 8.2 | DNA repair events in wt and rqh1-deleted MGH Ch16 double-strand repair system. The 

timepoints refer to growth time following the removal of thiamine from the medium: –th, thiamine absent 

from the medium. 48 hrs +th refers to cultures grown in parallel to the 48 hrs –th cultures: +th, thiamine 

present in the medium. rqh1-d cells display a decrease in non-conservative events and a corresponding 

increase in conservative events compared to wt MGH. GC, gene conversion; EJ, end-joining; SCC, sister-

chromatid conversion; LTGC, long-tract gene conversion. 
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from the medium (24 hrs -th, 48 hrs –th) rqh1-d MGH cells showed a decrease in non-

conservative events (i.e. events leading to marker loss such as gene conversion), and a 

corresponding increase in conservative events compared to wt MGH (fig. 8.2, compare blue 

bars with red bars; table 8.1). This result confirms data published in Hope et al. (2006). 

However, an increase in conservative (EJ/SCC) events may in fact be just a consequence of the 

reduction in the HO cutting efficiency in rqh1-d cells compared to the wt. A way to rule out this 

possibility is to assess the HO cutting efficiency in rqh1-d and wt MGH. This experiment has 

been done in Hope et al. (2006), showing that the HO cutting efficiency is comparable in the 

two backgrounds. Thus, the most plausible explanation for the decrease of non-conservative 

events in rqh1-d compared to wt MGH is that Rqh1 is responsible for this shift in repair events, 

either by favouring gene conversion or by suppressing EJ/SCC events.   

It should be noticed that levels of gene conversion at 0 hrs (+ th) in wt MGH are higher than 

expected compared to similar experiments (fig. 8.4; Prudden et al., 2003). However, as a full 

repression of nmt1 is not achievable (Maundrell, 1990; Basi et al., 1993), this effect can be 

attributed to unusually high leakage from this inducible promoter. Although it cannot be 

confirmed that higher levels of GC in wt MGH are only due to this initial leakage, it should be 

noticed that at 24 hours in the absence of thiamine the difference in GC events is still higher in 

wt MGH compared to rqh1-d (28.3% and 8.9% respectively). Thus, this result still confirms the 

shift in repair events between the two backgrounds.  

Surprisingly, at a closer inspection the sum of all the repair events occurring at 48 hours (either 

in the absence or in the presence of thiamine) in both the backgrounds does not add up to 

100% (table 8.1). Although alternative minor repair events occur normally in the Ch16 system 

(Cullen et al., 2007), levels up to 18.3% (wt MGH, 48 hours +th) are unusually high. This 

occurrence in minor repair events is similar in both the backgrounds. Insights on this unusual 

occurrence can be gained by analysing the percentage of the loss of the three individual 

markers (supplementary fig. 9.3). The shift from common to minor repair events corresponds  
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to exceptional disparity between the loss of ade6 and his3+ markers, in particular a low his3 

marker loss compared to ade6 marker loss. However, it should be noticed that this unusual 

event occurs in all the 48 hrs samples, irrespectively of genetic background or presence of 

thiamine. Thus, this unexpected result can be explained by possible alterations in the 

composition of the solid media on which the cultures were plated. It is possible that small 

quantities of histidine were present in the media used to score his3+ marker loss for the 48 hrs 

timepoints, thereby leading to an erroneously low score of his3+ marker loss. However, 

despite this unexpected result, when only the most common repair events are taken into 

consideration, the shift towards an increase of EJ/SCC events in rqh1-d cells can still be 

confirmed.  

 Ch16 loss/LTGC events are increased in crb2-T215A 8.3.2

To investigate the functional interaction between Rqh1 and Crb2, the analysis of marker loss in 

the Ch16 system was performed in genetic backgrounds either devoid of Crb2 (crb2-d) or 

lacking a phosphorylatable T215 residue (crb2-T215A). At 48 hrs in the absence of thiamine, 

while crb2-T215A MGH shows rates of GC events comparable to wt MGH, Ch16 loss/LTGC 

Genetic 
background 

Time / 
induction 

% ade+ 
G418s his+ 

(GC) 

% ade+ 
G418r his+ 

(EJ/SCC) 

% ade- G418s 
his- (Ch16 loss 

/ LTGC) TOT 

% 
Alternative 

repair 
events 

wt MGH 0 hrs (+ th) 16.7±0.3 83.3±0.3 0±0 100 0.0 

24 hrs - th 28.3±2.4 67.7±2.7 4.1±0.4 100 0.0 

48 hrs - th 37.5±2.3 34.8±0.4 13.7±0.7 86 14.0 

48 hrs + th 18.8±2.9 62.5±2.5 0.3±0.3 81.7 18.3 

rqh1-d MGH 0 hrs (+ th) 2.5±1 95.2±1.2 1.3±0.5 99.1 0.9 

24 hrs - th 8.9±1.1 78.6±2.2 12.3±1.9 99.8 0.2 

48 hrs - th 25.2±1.6 36.1±1.6 23.8±1.8 85.1 14.9 

48 hrs + th 2.1±0.7 85±0.8 2.3±0.6 89.3 10.7 

Table 8.1 | Occurrence of repair events as plotted in fig. 8.2 and occurrence of alternative repair 

events. Alternative repair events are calculated as the difference between 100 and the sum of scored 

standard repair events (“TOT” column). GC, gene conversion; EJ, end-joining; SCC, sister-chromatid 

conversion; LTGC, long-tract gene conversion. 

 



201 

APPENDIX 1 

events are increased by approximately 100% in this background (from 15.78% to 29.77%), at 

the expense of a reduced percentage of EJ/SCC events (fig. 8.3). This increase is not dependent 

on Rqh1, as the same occurrence of GC and Ch16 loss/LTGC events is shown in its absence in a 

crb2-T215A background (crb2-T215A rqh1-d). However, interestingly the increase in Ch16 

loss/LTGC events seems to be dependent on the mutated Crb2, as crb2-d rqh1-d cells show 

rates of Ch16 loss/LTGC repair events comparable to wt levels (17.50% compared to 15.78%, 

respectively). Furthermore, the presence of Crb2 (either wt or T215A) seems to be responsible 

for the maintenance of wt levels of GC events, as these are reduced by approximately a half 

when crb2 is deleted (fig. 8.3, compare blue bars at 48hrs –th).  

Taken together, this data suggests that T215 in Crb2 is a key residue responsible for a shift in 

repair events, either by suppressing Ch16 loss/LTGC events or by promoting EJ/SCC events, 

through an unknown mechanism independent of Rqh1. 

 Isochromosome formation in the crb2-T215A background  8.3.3

To further investigate the shift in repair events caused by the mutated T215 residue in Crb2, 

randomly selected triple-negative colonies (ade- G418s his-) were processed by PFGE to 

+th -th +th +th -th +th +th -th +th +th -th +th
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Figure 8.3 | DNA repair events in crb2-T215A and crb2-d backgrounds. 48 hrs +th refers to cultures 

grown in parallel to the 48 hrs –th cultures: +th, thiamine present in the medium (HO off); -th, thiamine 

absent (HO on). Ch16 loss/LTGC events are doubled in a crb2-T215A background, at the expense of a 

reduced percentage of EJ/SCC events. GC, Gene Conversion; EJ, End-Joining; SCC, Sister-Chromatid 

Conversion; LTGC, Long-Tract Gene Conversion. 
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discriminate between loss of minichromosome or LTGC as the cause of the triple-negative 

phenotype. Data from a limited number of colonies (23 and 27 colonies for crb2-T215A and 

crb2-T215A rqh1-d, respectively) would suggest that, despite comparable rates of Ch16 

loss/LTGC events (fig. 8.3), the actual contribution of the distinct outcomes are different 

between crb2-T215A and crb2-T215A rqh1-d, with a greater incidence of minichromosome loss 

in a rqh1 null background (fig. 8.4). Although this would be consistent with a role for Rqh1 in 

preserving chromosomal stability (Stewart et al., 1997), further work is needed in order to 

confirm this finding. 

In order to confirm the presence or the absence of the minichromosome, the agarose pulse-

field gels used in the above experiment were blotted with probes homologous to sequences 

on each minichromosome arm. As expected, the chk1 probe (left arm of chromosome III) 

Figure 8.4 | Percentage of minichromosome presence in crb2-T215A and crb2-T215A rqh1-d cells. 

Presence was scored by visualisation of ethidium bromide – stained pulse-field gels, and confirmed by 

Southern blot analysis (see fig. 3.5). 
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annealed with both the minichromosome and chromosome III (fig. 8.5a, top gels). Weaker 

minichromosome signals in some tracts are probably due to significant progressive loss of the 

 minichromosome in the population of cells grown in rich media prior to PFGE treatment. 

Interestingly, crb2-T215A rqh1-dshowed two colonies where an alternative form of 

chromosome arises, probably due to exchange of genetic material between ChIII and the 

minichromosome. This form of chromosome (namely ChX) has been previously described 

(Prudden et al., 2003; Cullen et al., 2007). 

Surprisingly, the probe spcc4b3.18 (right arm of the minichromosome, proximal to the HO site) 

Figure 8.5 | Pulse-field gel analysis of Ch16 from ade- G418s his- colonies in crb2-T215A and crb2-

T215A rqh1-d mutants. a. Pulse-field gels blotted with probes either side of ChIII and minichromosome 

centromeres (chk1, top row; spcc4b3.18, bottom row). Each lane represents a single ade
-
 G418s his

-
 

colony. Two colonies in crb2-T215A rqh1-d (indicated by arrows) showed formation of intermediate 

forms of chromosomes, probably due to transfer of chromosomal material between ChIII and the 

minichromosome (ChX). b. Proposed schematic for the formation of isochromosomes from 

minichromosomes.   
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annealed only with chromosome III and not with the minichromosome in all the relevant 

colonies (fig. 8.6a, bottom gels). Weak minichromosome signals on membranes can be 

attributed to faint signals due to incomplete removal of the previous chk1 probe. This result 

can be explained by invoking the formation of an isochromosome, a particular type of gross 

chromosomal rearrangement where one of the two chromosomal arms is lost and replaced 

with a copy of the opposite arm (see proposed schematic in fig. 8.6b). This type of 

rearrangement in this system has been previously described (Tinline-Purvis et al., 2009). This is 

an interesting finding, which should be extended to a statistically significant number of 

samples, including wt MGH triple-negative colonies, in order to assess whether the formation 

of isochromosomes is specifically increased in a crb2-T215A background. 

 Regulation of HO by Estradiol Receptor-Hormone Binding Domain (ER-HBD-HO) 8.3.4

The nmt1 (no message in thiamine) promoter is the most widely used regulatory element in S. 

pombe. However, although optimisations of the upstream TATA box of the promoter have 

been obtained, its repression by thiamine cannot be achieved fully (Basi et al., 1993). 

Furthermore, nmt1 activation is induced at a maximum steady-state level 16 hours after the 

removal of thiamine from the medium (Maundrell, 1990). In an attempt to overcome these 

limitations, a novel approach was tested where the HO endonuclease is regulated at a post-

translational level. In this system, the protein of interest is confined in the cytoplasm by 

molecular chaperones. Upon addition of -Estradiol, the protein is released and translocated 

to the cell nucleus, and thus activated (Picard, 1993; Picard, 1994). Examples of such regulation 

have been described (Picard, 2000; Bøe et al., 2008). A cloning strategy was designed where 

the HO cassette was cloned into modular constructs either on the N- or the C-terminal side to 

an inducible Estradiol Receptor-Hormone Binding Domain (ER-HBD) (see supplementary fig. 

9.1 and 9.2 for the detailed cloning strategy). In addition, the presence of the nmt1 promoter 

in these vectors was expected to provide a further level of regulation. In these experiments, 

the MG system (lacking the his3+ marker compared to MGH; Prudden et al., 2003) was used. In 
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the N-terminal construct, HO showed a dramatically reduced activity where the maximum 

level of G418 marker loss reached only 18.5% after 48 hours from the removal of thiamine (fig. 

8.7). This indicates that the N-terminal tagging of the HO nuclease inactivates the protein. In 

contrast, in the C-terminal construct the HO endonuclease was induced by the removal of 

thiamine from the medium, but it was not affected by the presence or absence of -Estradiol 

(fig. 8.8). This suggests that the C-terminal-tagged HO is functional but not regulatable. Taken 

together, these data show that the constructed vectors described here cannot be used as a 

tool for a rapid activation of the HO endonuclease in S. pombe. 

 Regulation of HO by the Invertase promoter (InvHO) 8.3.5

A further attempt was made to achieve a more rapid induction of the HO endonuclease by 

using the invertase promoter as a regulatory element (inv1). Inv1 is activated within 1 hour 

following a shift from glucose to sucrose as a main source of carbon in the medium (Iacovoni 

et al., 1999). Wt MGH and crb2-d rqh1-d cells transformed with vectors carrying the invHO 

cassette (kind gift of Dr Tim Humphrey) showed low levels of background leakage at 2 hours of 

growth in the presence of extra glucose (fig. 8.8). However, the percentage of GC events was 

low at 2 hours of growth in the presence of sucrose in both wt MGH and double mutant (fig. 

8.8, light blue bars at 2 hrs, sucrose). In other experiments performed in wt MGH and crb2-

T215A rqh1-d MGH backgrounds, the invHO promoter showed variable results, with high levels 

of marker loss at 3 hrs following shift to sucrose but high levels of leakage at 0 hrs, before the 

induction (supplementary fig. 9.4). Moreover, levels of GC seem to decrease at 6 hours 

following induction (supplementary fig. 9.4, compare blue bars for 3 hrs and 6 hrs timepoints), 

probably reflecting an increased repression due to progressive hydrolysis of sucrose into 

glucose, a limitation of the invertase promoter that has already been reported (Iacovoni et al., 

1999). Taken together, these data on the inv1-regulated HO endonuclease suggest that further 

optimisation of the system are needed to achieve a rapid induction coupled with reduced 

levels of leakage. 
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Figure 8.6 | Marker loss in wt MG transformed with the N-terminal ER-HBD-HO construct. +th, 

thiamine added to the medium; -th, thiamine absent; +E, -Estradiol added to the medium;- E,  -

Estradiol absent. Time points refer to hours from the start of the experiment (+ th cultures were grown 

in parallel with – th cultures). The N-terminal ER-HBD-HO constructs display a reduced activity as 

assessed by low level of ade and G418 marker loss. 

Figure 8.7 | Marker loss in wt MG transformed with the C-terminal ER-HBD-HO construct. +th, 

thiamine added to the medium; -th, thiamine absent; +E, -Estradiol added to the medium;- E,  -

Estradiol absent. Time points refer to hours from the start of the experiment (+ th cultures were grown 

in parallel with – th cultures). The HO endonuclease in the C-terminal construct is induced by removal of 

thiamine from the media, but its control is unaffected by the presence or absence of -Estradiol. 



207 

APPENDIX 1 

 

Figure 8.8 | DNA repair events in wt MGH and crb2-d rqh1-d cells transformed with vectors carrying 

the HO endonuclease under regulation of the invertase promoter (InvHO). Timepoints (0, 2 hrs) refer 

to time after the switch of carbon source from glucose (HO off) to sucrose (HO on). The induction of HO 

in sucrose does not induce a significant increase in HO activity as scored by increased marker loss.  GC, 

Gene Conversion; EJ, End-Joining; SCC, Sister-Chromatid Conversion; LTGC, Long-Tract Gene Conversion; 

LOH, loss of heterozigosity. 

8.4 Discussion 

 DNA repair events in Rqh1 and Crb2 mutants 8.4.1

The aim of this work was to set up a system to study the functional relationship between the 

checkpoint mediator Crb2 and the helicase Rqh1 in S. pombe. The genetic relationship 

between the two proteins, suggested by preceding work by Caspari et al. (2002), provided the 

starting point for the project presented in this chapter. The use of the minichromosome 

system as presented in works by Prudden et al. (2003) and Cullen et al. (2007) was chosen as a 

tool to investigate the functional relationship that may link the two enzymes in the context of 

the recombinational repair of a site-specific DSB.  
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Initial results confirmed that gene conversion events are decreased in an rqh1-d background, 

as already reported by Hope et al., 2006. The following step in this project focused on Crb2. In 

particular, the Crb2-T215A (mutated in the CDK phosphorylation site) was shown to be 

responsible for a shift in repair events towards Ch16 loss/LTGC, favoured over EJ/SCC events 

(fig. 8.3). This data suggests a role for Crb2Sp in the choice of the DNA repair pathway utilised 

to repair an HO-induced DSB in which CDK phosphorylation of Crb2-T215 would favour 

conservative events such as end-joining or sister-chromatid conversion. This could occur either 

by promotion of this class of repair events or by suppression of non-conservative events 

(namely long-tract gene conversion). Interestingly, the importance of the Crb2-T215 

phosphorylation as a pathway switch seems to be confirmed by the finding that the absence of 

Crb2 leads to levels of conservative events and triple marker loss similar to wt (fig. 8.3, -th 

48hrs, red and green bars). However, the lack of data from crb2-d limits the conclusions that 

can be drawn in this respect. The presence of the checkpoint mediator may be required for 

higher levels of gene conversion compared to the wt and crb2-T215A backgrounds (fig. 8.3, -th 

48hrs, blue bars), although a reduction in GC events and a corresponding increase in EJ/SCC 

events may be due to the deletion of rqh1, as shown in fig. 8.2. Thus, in order to further define 

the apparent importance of the Crb2-T215 phosphorylation event in this context, it would be 

interesting to assess whether an opposite shift in repair events is shown in a crb2-T215 

phospho-mimetic mutant.  

Further work is needed to elucidate the significance of this pathway switch, but Rqh1 does not 

seem to be involved, as its deletion does not affect the overall distribution of repair events in a 

crb2-T215A background (fig. 8.3).  

 Isochromosome formation in crb2-T215A  8.4.2

A random selection of crb2-T215A colonies showing a triple-negative phenotype was 

subsequently analysed by Pulse-Field Gel Electrophoresis. Interestingly, the colonies that 

showed retention of the minichromosome, previously classified as “Long-tract Gene 
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Conversion” events, represented in fact a specific type of gross chromosomal rearrangements 

leading to formation of isochromosomes. The generation of these chromosomal structures has 

been previously reported. Nakamura and co-workers showed that two types of spontaneous 

gross chromosomal rearrangements involving the minichromosome can occur in fission yeast. 

Type II minichromosome rearrangements were identified as isochromosomes, where the 

original right arm was replaced by a copy of the left arm. Rhp51Sp was shown to be crucially 

involved in suppressing the formation of these structures (Nakamura et al., 2008). Work by 

Tinline-Purvis et al. (2009) using an HO inducible DSB system showed that the occurrence of 

isochromosomal rearrangements is generally increased in genetic backgrounds in which gene 

conversion is abrogated or inefficient (rhp51-d, rhp55-d, rhp57-d, nbs1-d). As extensive LOH 

and minichromosome loss showed the same trend, a plausible conclusion is that all these 

dramatic non-conservative events are the result of failed gene conversion (Tinline-Purvis et al. 

2009). In the present study, gene conversion events did not show significant changes in a crb2-

T215A background compared to wt (fig. 8.3). However, all the colonies analysed that were 

presumed to have lost the minichromosome were in fact shown to possess isochromosomes 

(fig. 8.5). Although it could be speculated that a phosphorylatable Crb2-T215 residue might be 

crucially involved in the suppression of isochromosome formation, the limited number of 

colonies analysed and the absence of any comparison with other genetic backgrounds does 

not allow any further conclusion from these data.  

It is interesting to note that the PFGE analysis (fig. 8.5) highlighted the formation of two forms 

of chromosomal rearrangements in crb2-T215A rqh1-d probably arising from transfer of 

chromosome material between ChIII and the minichromosome. Although the number of 

samples analysed here is very limited, a similar observation has been seen previously in our 

laboratory where an increase in translocations occurred in an rqh1-d background compared to 

wt (Dr S. Gill, personal communication). This finding would be consistent with the role shown 

for Rqh1 in preserving chromosomal stability (Stewart et al., 1997).   
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 Limitations of the Ch16 double-strand break repair system 8.4.3

The genetic system employed in this study provides a useful tool to detect the pathway chosen 

by cells to repair a DSB at a specific site. However, some limitations which are intrinsic to the 

system have to be considered. 

The first limitation is the impossibility to distinguish between an uncut target DNA and an 

error-free repair pathway, as in both cases the phenotypic outcome will be a wild-type 

combination of genetic traits. It is thereby assumed that in the presence of thiamine or at 

earlier time-points, when the induction of the HO endonuclease is either repressed or at its 

initial onset, the vast majority of wild-type colonies represent cells where the MATa site on the 

minichromosome has not been cleaved yet. 

The second limitation of the system is that further analysis by PFGE is required in order to 

assess whether the triple marker loss is due to occurrence of long-tract gene conversion or due 

to loss of the minichromosome.  

A third limitation is that, in order to allow comparisons between different genetic 

backgrounds, it is assumed that the efficiency of the HO endonuclease is consistently similar in 

different genetic backgrounds and at different time-points following induction. Although 

studies of HO cutting efficiency in vivo have not yet been performed, Hope et al. (2006) 

showed that indeed the HO cutting efficiency in wt and rqh1-depleted cells is comparable. 

The fourth limitation of the system is due to the use of the nmt1 promoter as a regulatory 

element for the HO induction: despite optimisations of the upstream TATA box of the 

promoter, its full repression by thiamine cannot be achieved (Basi et al., 1993). Furthermore, 

its activation is induced at a maximum steady-state level 16 hours after the removal of 

thiamine from the medium (Maundrell, 1990). To overcome this limitation, two alternative 

regulatory elements were tested, where the HO endonuclease can be regulated by the 

presence of -Estradiol (ER-HBD-HO) or sucrose (InvHO). However, most of the data obtained 
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in this chapter is based on the use of the well-established thiamine-regulated promoter and its 

intrinsic limitation taken into account, where appropriate. 

Finally, it should be also noticed that due to the prolonged status of activation of the HO 

endonuclease following its induction, the MATa site will undergo repeated rounds of re-

cutting, assuming the previous DNA repair events generate re-cleavable substrates. As a 

consequence, it could be postulated that over time repair events will be biased towards non-

conservative events, these being end-points for the occurrence of further cuttings. However, it 

has been shown that levels of G418 marker loss do not decrease significantly at 48 hours and 

72 hours following induction (Prudden et al., 2003, fig. 2 and suppl. fig. C). Thus, it can be 

assumed that the system is not affected by a bias towards non-conservative events in the time 

frame considered in this study.  

 Use of the Ch16 system to investigate the functional relationship between Rqh1 and 8.4.4

Crb2  

The data presented in this chapter indicate that while the Ch16 system can be used to 

investigate the relationship between Crb2 and Rqh1, as discussed above a limitation of the 

system is the impossibility of exerting a fine control over the HO activity. The requirement for 

16 hours to obtain maximum levels of HO induction translates into the difficulty in 

investigating functional protein-protein interactions on a molecular level. This limitation 

precludes cell cycle synchronisation studies as reported for other DNA damaging agents. 

Furthermore, the experimental procedure requiring colonies growing on selective plates 

excludes the possibility of detecting reduced cell viability following HO induction. Decreased 

cell viability in specific mutants caused by HO DSBs would be an important indicator of 

molecular events needed for wild-type survival and response to this subset of DNA damage. As 

shown in Caspari et al. (2002), the reduction in cell survival following IR in crb2-T215A and the 

restored resistance by the additional deletion of rqh1 highlighted a genetic relationship 

between the two proteins. It would be interesting to assess whether the same interplay occurs 
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following HO induction. This validation would be important, as it cannot be excluded that the 

above interaction may occur following specific types of DNA damage (e.g. IR-induced damage, 

as shown in Caspari et al., 2002) and may not be relevant in the context of a site-specific DSB 

generated by the HO endonuclease.  

In conclusion, the most evident finding obtained by the use of this system is that a cross-talk 

between Rqh1Sp and Crb2Sp does not seem to influence the choice of the pathway to repair an 

HO-induced DSB.  

 Alternative HO regulatory elements  8.4.5

Soon after the employment of this system, it became clear that the limitations of the Ch16 

system were hampering further developments towards the establishment of a reliable tool to 

address the specific questions posed by the project. As seen above, the delay in induction 

dictated by the use of the nmt1 promoter can impede analyses aimed at investigating the 

properties of components of functional molecular pathways on a dynamic level. For this 

reason, two alternative systems were tested where the HO endonuclease could be regulated in 

a rapid and reversible fashion. However, neither of the two systems, regulated by means of -

Estradiol (ER-HBD-HO) or sucrose (InvHO) could provide the reliability and the versatility 

required. Thus, further attempts to use the Ch16 system to establish the functional 

relationship between Crb2 and Rqh1 were abandoned. 

8.5 Conclusions 

The Ch16 system has proven to be a useful tool to investigate the choice of DNA repair 

pathway followed by cells bearing different genetic backgrounds (Prudden et al., 2003; Hope 

et al., 2006; Cullen et al., 2007; Tinline-Purvis et al., 2009). Due to the nature of the Ch16 DSB 

assay, the employment of this system addresses questions regarding the choice of repair 

pathways at steady-state levels of DNA repair, and would not be suitable to address the 

specific question posed by the project, namely the investigation of the functional relationship 
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between Rqh1 and Crb2. Indeed, the observation that the deletion of both Crb2 and Rqh1 

does not affect the choice of repair pathway compared to the wt background (fig. 8.3) would 

suggest that the relationship between the two proteins should be investigated by using a 

different set of tools. Likewise, the shift in DNA repair events observed in a crb2-T215A 

background does not seem to be affected by the concomitant absence of Rqh1. It cannot be 

excluded that the relationship between the two proteins could be resolved at early stages of 

HO induction, where an alternative, flexible and rapid way of regulating its activity was to be 

used. However, the two alternative systems of HO regulation failed to provide these 

improvements. Taken together, these results indicate that the Ch16 system would not be 

suitable to investigate the functional relationship between Crb2 and Rqh1. 
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Figure 9.1 | N-terminal ER-HBD HO: cloning strategy. Standard molecular biology techniques were used 

to obtain the construct of interest. Two distinct strategies were followed. In the first strategy (left side), 

the PCR product amplified from pFA6-kanMX6_ER-HBD is digested with AseI-SalI, while in the second 

strategy (right side) the plasmid is digested with AseI-NdeI. As AseI and NdeI generate compatible ends, 

the downstream steps are common to the two approaches.   
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Figure 9.2 | C-terminal ER-HBD HO: cloning strategy. Standard molecular biology 

techniques were used to obtain the construct of interest. 



217 
 

 

APPENDIX 2 

 

Figure 9.3 | Loss of individual markers in wt and rqh1-d MGH. The data in this graph represents the 

initial scoring of the loss of the three individual markers ade6, G418, his3 prior to the assignment to 

categories of DNA repair events shown in fig. 3.2. The data presented in this graph highlight an 

exceptionally low his3 marker loss compared to ade6 marker loss. See section 8.3.1 for a discussion 

about this unusual occurrence. The timepoints refer to growth time following the removal of thiamine 

from the medium: –th, thiamine absent from the medium. 48 hrs +th refers to cultures grown in parallel 

to the 48 hrs –th cultures: +th, thiamine present in the medium. 
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Figure 9.4 | DNA repair events in wt MGH and crb2-T215A rqh1-d cells transformed with vectors 

carrying the HO endonuclease under regulation of the invertase promoter (+ HO) or Inv empty vectors 

(no HO). The experiment was performed with three different isolates for each crb2-T215A rqh1-d strain 

(second, third and fourth column for each timepoint). All timepoints refer to hours of growth in medium 

containing sucrose (HO on). The strains show a significant leakage in HO activity at 0 hrs, before the 

induction with sucrose. GC, Gene Conversion; EJ, End-Joining; SCC, Sister-Chromatid Conversion; LTGC, 

Long-Tract Gene Conversion; LOH, loss of heterozigosity. 
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Figure 9.5 | Sensitivity of fan1::kanMX6 pso2::kanMX6 mutants to UV and cisplatin. Logarithmically 

grown cultures were spotted in four 1:10 serial dilutions starting from 10
7
 cells (first spot on the left) on 

YEA plates containing the agents in the amount indicated. rad3-d is used as a standard hypersensitive 

control for the efficacy of the agents used. The insertion of the kanMX6 instead of the natMX6 cassette 

to disrupt the fan1 ORF in a pso2-d background does not affect the sensitivity to the DNA damaging 

agents tested. UV, Ultra-Violet irradiation; cispl., cisplatin. 
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Figure 9.6 | Sensitivity of fan1-d mutants, alone and in combination with pso2-d, to MMC and the 

mono-functional nitrogen mustard HN1 (2-dimethylaminoethylchloride hydrochloride). 4x10
7
 cells 

from logarithmically growing cultures were exposed to each indicated dose of damaging agents. 

Approximately 200 cells were plated on YEA and grown for 3-4 days at 30°C. The combination of the 

deletions of fan1 and pso2 causes the most marked sensitivity to MMC among the mutants tested. No 

significant sensitivity is shown to the mono-functional nitrogen mustard HN1. MMC, Mitomycin C; HN1, 

mono-functional nitrogen mustard (2-dimethylaminoethylchloride hydrochloride). 
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  Figure 9.7 | Sensitivity of mlh1-d and pms1-d strains, alone and in combination with fan1-d, to UV and 

cisplatin. Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7

 cells 

(first spot on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used as a 

standard hypersensitive control for the efficacy of the agents used. The combined deletion of fan1 with 

mlh1 and pms1 does not affect the sensitivity to UV and cisplatin compared to the respective single 

mutants. Abbreviations used: UV, Ultra-Violet irradiation; cispl, cisplatin.  
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Figure 9.8 | Sensitivity of fan1-d (14152N) pso2-d msh2-d triple mutant to UV and cisplatin. 

Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7

 cells (first spot 

on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used as a standard 

hypersensitive control for the efficacy of the agents used. A subtle increased sensitivity to cisplatin is 

noticed only for the combined triple mutant fan1-d pso2-d msh2-d when exposed to UV. Abbreviations 

used: UV, Ultra-Violet irradiation; cispl, cisplatin. 
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Figure 9.9 | Sensitivity of different combinations of fan1-d (14152N background), exo1-d and pso2-d 

mutants to UV and cisplatin. Logarithmically grown cultures were spotted in four 1:10 serial dilutions 

starting from 10
7
 cells (first spot on the left) on YEA plates containing the agents in the amount 

indicated. rad3-d is used as a standard hypersensitive control for the efficacy of the agents used. The 

triple deletion of fan1, pso2 and exo1 does not aggravate the sensitivity of the cognate double mutant 

fan1 pso2. Abbreviations used: UV, Ultra-Violet irradiation; cispl, cisplatin. 
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Figure 9.10 | Sensitivity of rad13 mutants exposed to increasing doses of cisplatin (fan1-d: 14152N 

background). Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7
 

cells (first spot on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used 

as a standard hypersensitive control for the efficacy of the agents used. The deletion of both fan1 and 

rad13 causes a marked hypersensitivity to cisplatin. Bottom panel: independent experiment showing the 

compared sensitivity of pso2-d rad13-d and the respective single mutants. Abbreviations used: MMC, 

mitomycin C; cispl, cisplatin. 
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Figure 9.11 | Sensitivity of combinations of rhp18 mutants to UV and cisplatin (fan1-d: 14152N 

background). Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting from 10
7
 

cells (first spot on the left) on YEA plates containing the agents in the amount indicated. rad3-d is used 

as a standard hypersensitive control for the efficacy of the agents used. The additional deletion of rhp18 

does not affect the sensitivity of pso2-d to cisplatin. Abbreviations used: UV, Ultra-Violet irradiation; 

cispl, cisplatin. 

Figure 9.12 | Sensitivity to cisplatin of various combinations of rhp51 mutants to cisplatin (fan1-d: 

14152N background). Logarithmically grown cultures were spotted in four 1:10 serial dilutions starting 

from 10
7
 cells (first spot on the left) on YEA plates containing cisplatin in the amount indicated. rad3-d is 

used as a standard hypersensitive control for the efficacy of the agents used. The combined deletion of 

pso2 and rhp51 causes a lower sensitivity to cisplatin compared to fan1-d rhp51-d. Abbreviation used:  

cispl, cisplatin. 
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Figure 9.13 | Genome view of ORFs proximal to the MTMR15 ortholog fan1 in S. pombe (± 50 kb). List 

assembled by using the Artemis web applet (http://old.genedb.org/genedb/pombe).  
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Figure 9.14 | Gene Ontologies from AmiGO Slim relative to the ORFs shown in tables 5.1a and 5.1b. 

Screenshots assembled from http://old.genedb.org/amigo-cgi/slimmer. 
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Figure 9.15 | Tetrad dissection analysis on fan1-d rhp54-d and fan1-d rhp55-d double mutant strains. 

Only YEA plates shown. rhp54-d, rhp54::hphMX6 (hygromycin B – resistance cassette); rhp55-d, 

rhp55::ura4+. Independently derived mutants show that the combinations of fan1-d with rhp54-d and 

rhp55-d are not synthetically lethal. DM, double mutant; SMs, single mutants. DM:SMs is the ratio 

between the number of double mutant (DM) spores and the number of single mutant spores (SMs) in 

the respective tetrad on the left. DM and SMs spores were assessed by replica plating spores grown on 

YEA plates onto selective plates (YEA-hygromycin B and YEA-NAT plates for fan1-d rhp54-d; YNB-ura- 

and YEA-NATplates for fan1-d rhp55-d).     



 

 

 

 

 

Figure 9.16 | Example of spreadsheet with analysis of colony size relative to one synthetic genetic array. Colony size values of single mutants (SMs) were 

included here as a control for the presence of colonies on the single mutant array. DM, double mutant; SM, single mutant. “Row” and “column” refer to the 

position of the strain in the 384-format plate. “Median DM” and “Median SM” columns show the median value of colony size on the double mutants and 

single mutants plates, respectively (cells not highlighted in the columns, in this example: 171 and 76). The cells highlighted in light blue are intervals used for 

the assignment of colour-coded categories (see fig. 5.3). The correction of the median for innermost and outermost colonies are displayed here, but they 

were not considered  in the final analysis. Colour coded categories shown in the final two columns: (see fig. 5.3). 



 

 

 

  Figure 9.17 | Example of spreadsheet with colour-coded categories of genetic interaction relative to a single synthetic array. Categories of genetic interaction were finally 

assigned taking into account consistency across different screens and healthiness of the single mutant. Three independent screens were performed (“GNC” screens). 

Additionally, two further repeats were carried out by replicating GNC plates onto fresh GNC plates (”GNC-GNC” screens). See fig. 5.3 for the legend for colour-coded 

categories.  SS, synthetic sick; SL, synthetic lethal; GNC, geneticin, nurseothricin, cycloheximide plates.  



 

 

 

Figure 9.18 | Example of spreadsheet with colony size analysis at increasing concentrations of cisplatin. In this example, two possible candidates are shown (highlighted 

with a yellow square). However, only the second entry (row 2, column 2) was included in the final list of candidates, as consistency was shown across independent repeats of 

the screen. The main parameter taken into account in this analysis is the percentage reduction in colony size from cisplatin 50 M to cisplatin 200 M and cisplatin 200 M to 

cisplatin 600 M. Cells circled in red highlight the top 10% values in the column. Median values and deviation from median values were used only as a further control.

Q2xYFL2c-3c-4c-5c

39hrs

row column size-1 size-1 size-1 size-1

DMSO cisp50 cisp200 cisp600 DMSO cisp50 cisp200 cisp600 DMSO cisp50 cisp200 cisp600 cisp50-cisp200 cisp200-cisp600

1 1 0 0 0 0 151 164 116 55 -151 -164 -116 -55 - -

1 2 345 316 149 81 194 152 33 26 -112 -84

1 3 0 0 0 0 -151 -164 -116 -55 - -

1 4 0 0 0 0 -151 -164 -116 -55 - -

1 5 0 0 0 0 -151 -164 -116 -55 - -

1 6 0 0 0 0 -151 -164 -116 -55 - -

1 7 423 435 306 138 272 271 190 83 -42 -122

1 8 360 364 311 199 209 200 195 144 -17 -56

1 9 0 0 0 0 -151 -164 -116 -55 - -

1 10 395 394 309 108 244 230 193 53 -28 -186

1 11 0 0 0 0 -151 -164 -116 -55 - -

1 12 381 375 320 111 230 211 204 56 -17 -188

1 13 0 0 0 0 -151 -164 -116 -55 - -

1 14 289 312 277 81 138 148 161 26 -13 -242

1 15 0 0 0 0 -151 -164 -116 -55 - -

1 16 0 0 0 0 -151 -164 -116 -55 - -

1 17 0 0 0 0 -151 -164 -116 -55 - -

1 18 291 248 251 94 140 84 135 39 1 -167

1 19 0 0 0 0 -151 -164 -116 -55 - -

1 20 0 0 0 0 -151 -164 -116 -55 - -

1 21 0 0 0 0 -151 -164 -116 -55 - -

1 22 140 90 79 19 -11 -74 -37 -36 -14 -316

1 23 140 91 65 24 -11 -73 -51 -31 -40 -171

1 24 128 77 55 25 -23 -87 -61 -30 -40 -120

2 1 0 0 0 0 -151 -164 -116 -55 - -

2 2 272 173 49 22 121 9 -67 -33 -253 -123

Median values of colony size Difference from median values of % difference of colony size



232 
 

APPENDIX 2 

 

 

 

 

  

Figure 9.19 | Sensitivity of rad9 mutants to UV and cisplatin. Logarithmically grown cultures were 

spotted in four 1:10 serial dilutions starting from 10
7
 cells (first spot on the left) on YEA plates containing 

the agents in the amount indicated. rad3-d is used as a standard hypersensitive control for the efficacy 

of the agents used. The double mutant tested in this experiment is derived from independently 

constructed single deletion mutants. rad9-d, alone or in combination with fan1-d, shows a dramatic 

hypersensitivity to both UV and cisplatin. Abbreviations used: UV, Ultra-Violet irradiation; cispl, cisplatin. 
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Figure 9.20 | Test crosses with four selected strains from the prospective synthetic lethality set. The 

four deletion mutants byr1-d, byr2-d, pub1-d and csk1-d were freshly streaked from the prospective 

synthetic lethality set and crossed with the wild-type strains 501 (h-) and 503 (h+) on an ELN plate. The 

crosses were incubated at 25°C for three days. Following iodine staining, none of the crosses turned 

dark red, indicating defective mating/sporulation processes. In contrast, the cross between 501 and 503 

turned dark red as expected, indicating that the ELN media is not responsible for the inefficient crosses. 
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Spontaneous mutation rate - cdc20 mutants 

Figure 9.21 | Spontaneous mutation rate of fan1-d mutants in cdc20 wt and cdc20-M630F 

backgrounds. The average of three independent experiments is shown. Error bars represent the 

standard error of the mean, calculated as standard deviation divided by  𝟑. High standard error in all 

the samples is due to the low mutation rate falling outside the detection limit of the assay (errors in 

the order of 10
-8

/10
-9

).    
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Figure 9.22 |Southern blot analysis of the two fan1-deleted strains 3909N and 14152N. 3909N and 

14152N were obtained from the 3909 and 14152 strains, respectively, by replacing the kanMX6 

cassette with the natMX6 cassette. Left: schematic showing the expected size for HindIII and SalI 

digests. H, HindIII; S, SalI. Right: Southern blot analysis. The genomic DNA digested with the indicated 

restriction enzymes and lit with the nat probe confirms the identity of the two strains.  
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