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ABSTRACT 

 

Plants come under attack by a variety of organisms, including insects and pathogenic micro-

organisms such as viruses.  Plant viruses can interact indirectly with their vectors by inducing 

changes to plant chemistry which may alter its attractiveness as a host for herbivore vectors.  

Using red raspberry as a study system, this study aimed to investigate the host plant mediated 

interactions occurring between the large raspberry aphid, Amphorophora idaei, and two of the 

viruses that it transmits, Black raspberry necrosis virus (BRNV) and Raspberry leaf mottle virus 

(RLMV). 

 

In whole plant bioassays, BRNV and RLMV-infected plants were shown to be initially more 

attractive to A. idaei and aphids remained on the initially selected host plant for a period of 

approximately 30 minutes. In addition, A. idaei took three days longer to reach reproductive 

maturity compared with those feeding on non-infected plants, suggesting a virally-induced 

manipulation of aphid behaviour whereby a deceptive attraction of the vector to a host plant 

found to be nutritionally poor, presumably acts to promote virus transmission.  

 

Investigations of the underlying plant chemistry revealed that raspberry viruses may be capable of 

facilitating aphid feeding by reducing leaf phenolic concentration when aphids are feeding and 

that infection with BRNV and RLMV resulted in significantly elevated levels of carbon and free 

amino acids in the leaves.  While increased concentrations of amino acids might be expected to 

promote aphid performance, the amino acid composition was dominated by glutamate (77% of 

total content of infected plants), a previously suggested indicator of reduced host-plant suitability 

for aphids.  Volatile entrainments from virus-infected plants showed elevated levels of the green 

leaf volatile (Z)-3-hexenyl acetate.  Bioassays subsequently revealed that this compound acted as an 

aphid attractant at a concentration of 50 ng ml-1 but that aphid behaviour was unaffected by lower 

concentrations.  

 

The combined utilisation of PCR diagnostics developed from newly sequenced viral genomes and 

the implementation of a non-invasive, targeted method of sampling plant headspace volatiles 

enabled this study to provide novel insights into the nature of host plant mediated interactions 

between aphids and the viral pathogens that they transmit. 
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Introduction 

1.1 Introduction  

Like all other plants, raspberry is frequently attacked by a variety of damaging organisms, 

including insect herbivores and pathogenic microorganisms such as viruses and fungi.  As 

plants are sessile and cannot physically move away from such attackers, they have 

developed a vast array of defence strategies to respond to grazing herbivores and invading 

pathogens and, ultimately, defend themselves against further attack (Baldwin & Preston, 

1999; Dicke, 2009).  Plant pathogens may trigger a defensive response from the plant 

which results in alterations to host plant physiology which then has effects on insect 

herbivores.  This type of interaction is termed ‘indirect’ as the two attacking organisms 

need not interact directly in order for there to be profound changes to insect behaviour.  

Such indirect interactions, which are mediated by the host plant, received limited 

attention until about 20 years ago (Hatcher et al., 2004) when their importance as drivers 

of arthropod and pathogen population dynamics began to be realised (see Khan & 

Saxena, 1985; Blua & Perring, 1992; Bacher et al., 2002; Biere et al., 2002).  Such studies 

are especially complex for insects which act as vectors for pathogenic microorganisms, 

such as plant viruses, as in these cases there is scope for both direct interactions (e.g. 

circulation of virions in the insect haemolymph) and indirect interactions through virus-

induced changes to the host plant (Stout et al., 2006).  Aphids, along with whiteflies and 

leafhoppers, are responsible for the transmission of around 80% of all insect transmitted 

plant viruses (Fereres & Moreno, 2009) and although many studies recognise that 

indirect interactions can have profound effects on aphid behaviour, few attempt to link 

these behaviours to changes in plant physiology which is central to both host selection 

and performance of the insect in response to infection of a host plant with viral 

pathogens.  Several studies have addressed the role of the large raspberry aphid, 
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Amphorophra idaei, as a vector of several viral pathogens of red raspberry, Rubus idaeus, in 

the United Kingdom (see Chapter Two of this thesis) yet studies of the indirect 

interactions occurring between these debilitating viruses and their vector which are 

mediated by the host plant are non-existent.  Such interactions may play a significant role 

in shaping the populations of many organisms, including insects, for which raspberry 

plants are an important resource.  Investigations of the indirect interactions occurring 

between viral pathogens of raspberry and A. idaei are of key importance for long-term 

control of the aphid (and therefore spread of viral diseases) in the face of the large scale 

breakdown of plant resistance mechanisms that is known to be occurring in the UK and 

wider Europe as the aphid adapts and overcomes plant defence mechanisms (see Chapter 

Two). 

 

1.2 Interactions between pathogenic micro-organisms 

and insect herbivores on a shared host plant 

1.2.1 Plant defence against insects and pathogens 

Pathogenic microbes that pose a threat to plants include bacterial pathogens, plant viruses 

and fungi.  Their presence has been demonstrated to have a variety of effects on insect 

herbivores and both positive and negative interactions mediated by the host plant have 

been found.  The first line of defence for a plant is provided by epicuticular waxes and 

trichomes which provide a physical barrier to an invading pathogen (Dangl & Jones, 

2001).  However, these constitutive defences are not always a successful deterrent and 

once the leaf surface is breached, a process of signal transduction may then be initiated in 

the plant to produce defensive chemicals, or secondary metabolites, which may affect the 
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susceptibility of the host plant to subsequent attack (Chen, 2008).  Three main signalling 

pathways are known to be involved in the defence response to pathogens and insects; 

jasmonic acid (JA), salicylic acid (SA) and ethylene (ET).  The extent to which each 

pathway is activated appears to be attacker specific (Reymond & Farmer, 1998) which 

may result in antagonistic or synergistic interactions between plant attackers (Koornneef 

& Pieterse, 2008).  For example, plant pathogens are usually associated with an SA-

mediated response which may act to suppress the JA-mediated response to insect 

herbivores (Stout et al., 1999).  These types of interaction between signalling pathways are 

often referred to as ‘cross-talk’ (Kunkel & Brooks, 2002).  In addition, plants have also 

been found to possess receptors which are capable of recognising the type of organism 

which is attacking e.g. mitogen-activated protein kinase (MAPK) proteins (Jonak et al., 

2002; Nakagami et al., 2005) which activate a signalling cascade which regulates cellular 

activities such as gene expression.  Plants therefore exhibit a complex array of biochemical 

responses and the result of this ‘induced resistance’ ultimately leads to alterations in the 

underlying plant chemistry which can subsequently exert a range of effects on a secondary 

attacker, such as an insect herbivore (Karban & Baldwin, 1997). 

 

1.2.2 Effect of plant pathogens on non-vector insects 

The biochemical processes mentioned in the previous section, and their products can 

indirectly alter host plant suitability for insect herbivores that play no direct role in the 

further transmission of the pathogen.  For example, Kreuss (2002) showed that infection 

of creeping thistle with the pathogenic fungus, Phoma destructiva, was detrimental to larval 

development of the beetle Cassida rubiginosa and contrastingly,  Johnson et al. (2003) 
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demonstrated a positive association between birch leaves that were infected by a fungal 

pathogen and natural populations of the birch aphid, Euceraphis betulae.  Neither of these 

insects are vectors of the fungal pathogens and similar effects on non-vector herbivores 

have been found in response to plants infected with viral pathogens.  For example, a 

recent study by Belliure et al.  (2010) demonstrated the beneficial effect of Tomato 

spotted wilt virus (TSWV) infection on the two-spotted spider mite, Tetranychus urticae 

through promoted juvenile survival on TSWV-infected pepper plants and there is an 

extensive literature arising which investigates the effects of plant virus infection on other 

insect herbivores.  However, here the story becomes increasingly complex as many insects 

actually act as vectors for plant viral pathogens and are therefore responsible for 

transmitting them to new host plants.  In cases such as these, there may be further 

selection pressures acting on the pathogen to manipulate the behaviour of a vector which 

is ultimately responsible for its continued survival in the environment. 

 

1.2.3 Effects of plant pathogens on insect vectors 

Insects typically locate host plants using optical cues, such as foliage colouration (Prokopy 

& Owens, 1983), chemical cues such as detection of plant volatiles (Bruce et al., 2005) 

and gustatory cues detected upon landing on the leaf surface (Powell et al., 2006).  A 

growing body of evidence suggests that plant attack by pathogenic micro-organisms alters 

their attractiveness as potential host plants for insects that vector the particular pathogen.  

Specifically, pathogenic microorganisms tend to make plants more alluring for the insect, 

presumably to increase the likelihood of transmission to a new host.  For example, in 

choice tests involving the Mexican bean beetle vector of Southern bean mosaic virus 
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(SBMV) and Bean pod mottle virus (BPMV), Epilachna varivestis, adult beetles were 

preferentially attracted to leaf discs of bean plants that had been mechanically inoculated 

with the viruses over those from healthy plants (Musser et al., 2003).  The mechanisms 

responsible are often attributed to changes in foliage colouration (i.e. pathogen induced 

leaf senescence; Fereres et al., 1999) which make the leaf more readily detected by the 

insect at distance. Increasingly experiments are demonstrating that the pathogen can also 

induce changes to plant volatile emissions that alter the attractiveness of the plant as a 

host for the insect.  The study of McLeod et al.,  (2005) demonstrated beyond doubt the 

role of elm tree semiochemicals in attracting the elm bark beetle vector, Hylurgopines 

rufipes, to trees infested with the fungal pathogen, Ophiostoma novo-ulmi, through first 

sampling and identifying sesquiterpenes from the tree bark and subsequently testing them 

in olfactometer bioassays in the laboratory and in more natural conditions in a plantation 

of American elm.  The advantage of such a system to a pathogen that is dependent on a 

vector for dispersal is clear.  What remains less clear is the benefit, if any, to the insect 

vector.  

 

The performance of the insect vectors of plant pathogens can be affected by pathogen-

induced changes to host plant metabolism and some studies have attempted to link insect 

performance on plants challenged by pathogens by quantifying alterations to nitrogen, 

sugars, proteins and amino acids (Blua et al., 1994; Tinney et al., 1998), all of which are 

important components of the insect diet.  Intuitively, natural selection should favour a 

system by which the insect gains from feeding on pathogen-infected plant tissue and 

indeed several studies demonstrate this (Castle & Berger, 1993; Maris et al., 2004; 

Belliure et al., 2005).  There is also evidence that pathogens can promote vector survival 



20 

 

Introduction 

by negatively impacting populations of natural enemies (Belliure et al., 2008).  In contrast 

however, there are also examples where plant pathogens exert negative effects on their 

vector.  For example, Khan & Saxena (1985) demonstrated the negative effect of Tungro 

virus of rice through prolonged development of the leafhopper vector, Nephotettix virescens 

when feeding on tungro-infected rice plants.  Tinney et al, (1998)  showed that larvae of 

the moth, Tyria jacobaeae, were smaller and had longer relative growth rates when feeding 

on coltsfoot plants infested with the rust, Coleosporum tussilaginis, compared with larvae 

reared on healthy plants and the authors demonstrated that plants infected with C. 

tussilaginis had a lower leaf nitrogen content than healthy plants.  Prolonged development 

time of insects often leaves them more susceptible to attack by natural enemies and/or 

predators (Clancy & Price, 1987) and therefore, in these cases, it is not in the best 

interests of the vector to feed on infected plant tissue. 

 

1.3 Interactions between aphids and plant viruses  

Aphids are specialised to feed on phloem sap and this makes them highly effective virus 

vectors as their specialised mouthparts facilitate feeding with a minimum amount of 

damage to the host plant while their characteristically high reproductive output and 

occasionally polyphagous nature ensures efficient virus transmission (Ng & Perry, 2004).  

This has provided the impetus for studies of indirect interactions between aphids and 

plant viruses as any alterations to the suitability of a plant as a host in response to virus 

infection may have a significant effect on aphid population dynamics and thus the spread 

of viral-disease (Ferriss & Berger, 1993; McElhany et al., 1995; Jeger et al., 2004). 
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1.3.1 Aphids as virus vectors 

A direct interaction inevitably occurs between aphids and plant viral pathogens during 

virus transmission although there is currently no evidence to suggest that these 

interactions affect aphid behaviour (Medina-Ortega et al., 2009).  It is during this process 

that virus particles are transferred to the vector and also transmitted to new hosts.  Plant 

viruses transmission by aphids occurs in three distinct steps: acquisition, retention and 

inoculation (Powell, 1991) and viruses can be generally classified in the following ways:   

 

1.3.1.1 Nonpersistent and semiperistent viruses 

Until recently, it was assumed that nonpersistent viruses were purely stylet-borne and 

semipersistent viruses were fore-gut borne. However, this view was revised after the work 

of Uzest et al. (2007) which demonstrated that the semipersistently transmitted 

Cauliflower mosaic virus (CaMV) is retained in the common food/salivary duct of the 

principal hemipteran vector, Brevicoryne brassicae, and not in the fore-gut as was previously 

assumed.  The virus particles (virions) of nonpersistently transmitted viruses are likely to 

be subsequently released during intracellular salivation (Powell, 2005).  Of all the true 

bugs which act as virus vectors, only aphids are known to transmit plant viruses in a 

nonpersistent manner (Ng & Falk, 2006).  This is probably due to the intricate structure 

of aphid mouthparts which allows efficient uptake of virions during short exploratory 

probes of the plant tissue using the stylets.  Acquisition of these viruses occurs only after 

cell membranes are punctured by the stylets (Powell, 1991) and the time taken to for the 

aphid to acquire the virus is very short (usually within minutes) as the stylets need only to 

pierce epidermal cells (Figure 1.1a). The virions can then be easily transmitted to a new 

host plant when the aphid migrates to a new feeding site.  At this stage, it is believed that 
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transmission is facilitated by either of two mechanisms, the ‘helper strategy’ where virus-

encoded proteins interact with the virion to aid binding to the mouthparts (Ng & Falk, 

2006; Figure 1.1a), or ‘the capsid strategy’, where specific components of the viruses’ 

protein coat (or capsid protein) aid adsorption and successful retention of the virions to 

the retention sites in the aphid mouthparts (Ng & Falk, 2006; Figure 1.1b).  The time for 

which the virus is retained by the aphid is also very short and the virions are rapidly 

released when it begins to probe healthy plant tissue, usually within minutes.  This type of 

transmission is termed ‘nonpersistent’ and most plant viruses are transmitted by this 

method.  Semipersistent viruses differ slightly in that the virions are transmitted to and 

from the phloem.  Virions may reach as far as the foregut, but as described above, may 

also be retained in the food/salivary canal of the stylets.  The factors which may govern 

the subsequent release of virions from the vector to a new host plant (inoculation), which 

normally occurs within minutes of feeding on a new host, remain unexplored for 

nonpersistent and semipersistent viruses but are likely to involve interactions between 

certain virus-encoded proteins, vector proteins and other molecules as has been shown for 

certain persistently transmitted plant viruses (Ng & Falk, 2006) (see 1.3.1.2)    

 

1.3.1.2 Persistent viruses 

A virus is termed ‘persistent’ when it actually enters the circulatory system of the aphid 

and virions are found in the aphid haemolymph and, in contrast to nonpersistent and 

semipersistent viruses, those that are persistently transmitted require a much longer 

acquisition period – often hours to days.  As a consequence, the aphid can remain 

viruliferous (capable of transmitting the virus) for many days.  Depending on whether the 

virus replicates within the aphid, persistent viruses can be further classed into circulative, 
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nonpropagative (viruses that do not replicate in the vector) or circulative, propagative 

(viruses which have a replicative phase in the vector).  Circulative nonpropagative 

transmitted viruses remain in the aphid for periods of weeks and also through moulting.  

The virus is ingested from infected phloem tissue and passes from to the gut epithelium 

by endocytosis and exits into the hemocoel by exocytosis (Gray & Gildow, 2003)..  After 

circulating in the hemocoel the virions are actively taken up by the accessory salivary 

gland cells where they can then be passed to plant tissue when the insect is feeding.  The 

work of Gildow & Gray (1993) and later work reviewed by Gray & Gildow (2003) 

showed that the ability of Luteoviruses to cross barriers in the accessory salivary glands is 

virus-specific and in order to be successfully transmitted, virions must be capable of 

crossing both the basal lamina and basal plasmalemma of this gland.  Movement through 

the aphid salivary glands is therefore highly specific and successful transmission of the 

same virus can vary not only between aphid species but also between virus isolates (Gray 

& Gildow, 2003).  Aphid transmitted circulative, propagative plant viruses, which have 

only so far been found to occur in one family of viruses, the Rhabdoviridae (Hogenhout 

et al., 2008) pass through the aphid gut and circulate in the haemolymph.  Rhabdoviruses 

have to overcome barriers in the gut epithelium such as gut cell receptors which recognise 

certain viral proteins and, like Luteoviruses, must also be able to penetrate the accessory 

salivary gland in order for successful transmission to occur (Hogenhout et al., 2003).  

Once they have reached the salivary glands, virions bud off from cellular membranes and 

can be transported to plant cells during salivation. Unlike circulative, nonpropagative 

viruses which only remain in the aphid for weeks after uptake, successful acquisition of a 

Rhabdovirus renders the aphid viruliferous for the rest of its life.    
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Figure 1.1. Schematic diagram of potential virus binding sites for nonpersistent viruses 

e.g. Cucumber mosaic virus (CMV) and semipersistent viruses e.g. Cauliflower mosaic 

virus (CaMV). (a) Helper strategy, showing helper component interacting with the capsid 

protein of the virion.  (b) Capsid strategy showing the virion interacting with the 

retention site.  Diagram based on that of Ng & Falk (2006). 

 

 



25 

 

Introduction 

1.3.2 Virus transmission and aphid preference-performance  

Transmission of most plant viruses are thought to be the result of co-evolutionary 

processes between the virus and the vector (Ng & Perry, 2004) and evidence suggests 

aphids are often attracted to host plants already infected with the virus.  For example, 

Eigenbrode et al., (2002) demonstrated that the principle vector of Potato leaf roll virus, 

Myzus persicae, was preferentially attracted to potato (Solanum tuberosum) plants infected 

with the virus rather than to healthy plants.  M. persicae is a generalist and will feed on a 

wide range of plants  (Blackman & Eastop, 2000) yet studies of the same virus and vector 

conducted by Srininvasan et al. (2006) reported a similar result with less emigration of 

aphids from PLRV-infected hairy nightshade (Solanum sarrachoides).  Eigenbrode et al. 

(2002) was the first study to report changes in aphid host preference in response to 

volatile cues from virus-infected plants and this work led to a number of subsequent 

studies using this particular study system which attempted to categorise the behaviour of 

M. persicae more specifically. For example, Alvarez et al. (2007) showed that the aphid’s 

ability to differentiate between volatiles emitted from healthy and PLRV-infected potato 

plants was dependent on the age of the plant and Werner et al. (2009) demonstrated 

differences in aphid behavioural responses to PLRV-infection at different time intervals 

following host plant inoculation with the virus and found that fewer aphids migrated 

from infected plant leaflets at 4 and 6 weeks after virus-inoculation compared with 2, 8 

and 10 weeks.  The seminal study of Eigenbrode et al. (2002) has also led to investigations 

of the role of plant volatile attractants in other plant systems, and Medina-Ortega et al. 

(2009) demonstrated that another generalist aphid, Rhopalosiphum padi, was attracted to 

synthetic volatile blends made to mimic those produced by wheat plants that were 

infected with Barley yellow dwarf virus (BYDV). 
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The consequences for aphids of host plant virus infection can be variable, and while 

many studies report that virus-infected plants make superior hosts for aphids (Castle & 

Berger, 1993; Blua et al., 1994; Jimenez-Martinez et al., 2004; Srininvasan et al., 2006) 

some report neutral (Hodge & Powell, 2008) or negative effects (Fiebig et al., 2004; 

Donaldson & Gratton, 2007).  However, to date, few studies have linked the 

consequences of aphid host plant choice in response to plant viruses to their reproductive 

success on the plant, nor have they related any changes in preference or performance to 

changes in host plant quality, so the causal mechanism of the observed effects remains 

unclear.  For example, although the studies of Eigenbrode et al. (2002), Srinivason et al. 

(2006), Alvarez et al. (2007) and Werner et al. (2009) clearly demonstrated that Myzus 

persicae will preferentially settle and feed on host plants infected with PLRV, they 

focussed exclusively on aphid behaviour.  No attempt was made to link aphid arrestment 

with the causal nutritional mechanism through investigations of the underlying leaf 

chemistry - the ultimate driver of the indirect interaction.  A few studies have attempted 

to make these causal links but gaps remain. For example, the studies of Fiebig et al. (2003) 

demonstrated a reduction in the intrinsic rate of population increase of the cereal aphid, 

Sitobion avanae, on wheat plants infected with Barley yellow dwarf virus (BYDV) and 

linked this decrease in performance to a reduction in free amino acids and sugars in the 

phloem sap and the study of Blua et al. (1994) measured a higher rate of population 

increase as the concentration of free amino acids increased in squash plants infected with 

ZYMC, but both studies failed to assess the preference of the aphid or the potential role 

of volatile compounds in the interaction.   
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Given the differences that have been observed in insect performance on host plants 

infected with viral pathogens, methods could be employed to link vector behaviour and 

performance not only with the causal mechanism e.g. plant nutritional compounds 

important for aphid growth and development, but also with the mode of virus 

transmission.  As viral pathogens can be categorized into those that are non-persistent, 

semipersistent and persistent (for examples see Table 1.1), their successful transmission 

depends critically on not only whether a competent vector remains on the plant long 

enough to acquire the virus, but also if the vector then feeds or probes for the necessary 

time period required for the virus to be transferred.  For example, nonpersistent viruses 

require only brief probes for the virions to be transferred to the vector mouthparts and 

can be transmitted within minutes of access to a non-infected plant whereas persistent 

viruses require much longer acquisition and inoculation periods (Ng & Perry, 2004).  

Does it therefore follow that the virus can manipulate plant chemistry in such a manner 

that will promote optimal uptake and transmission by the vector?   

 

A recent study by Mauck et al. (2010) demonstrated that although the cotton aphid, Aphis 

gossypii, was preferentially attracted to Cucurbita pepo plants infected with Cucumber 

mosaic virus (CMV), plants that were experimentally infected with the virus supported 

lower aphid populations than did uninfected plants.  The attraction of the aphid and the 

lower number of aphids found on virus-infected plants therefore indicates a higher 

dispersal of A. gossypii from CMV-infected plants which may be indicative of a 

nutritionally poor host.  As CMV is transmitted nonpersistently, the rapid dispersal of 

aphids from infected plants presumably results in virus spread.  Conversely, a number of 

studies have suggested that a prolonged period of feeding by aphids in response to plant 
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infection with viruses that require a longer time period to be successfully acquired is 

facilitated by an attraction of the vector to the host plant (Alvarez et al., 2007) and virus-

induced improvements in host plant quality which encourage colonisation.  In cases such 

as these, enhanced quality of the plant promotes rapid population growth and, with 

crowding, the production of alates (winged aphids) which disperse and transmit the virus 

to new plants (Gildow, 1980, 1983).  For example, studies of Potato leafroll virus (PLRV), 

a persistently transmitted virus, have shown that the principal PLRV-vector Myzus persicae 

is preferentially attracted to virus-infected plants (Eigenbrode et al., 2002) and that the 

insect actually performs better on these plants (Castle & Berger, 1993).  This enhanced 

performance makes it more likely that the aphid will remain on the plant for prolonged 

feeding, a behaviour which is likely to increase the likelihood of successful acquisition, 

after which the aphid will remain viruliferous for an extended period (Ng & Perry, 2004).   

 

These examples of virus-induced changes to host plant quality seem to support the 

hypothesis that aphid performance on virus-infected plants can be predicted from the 

mode in which the particular virus is transmitted by the aphid.  Although comparative 

studies of aphid behaviour and performance on host plants infected with viruses with 

different modes of transmission are few, Castle & Berger (1993) showed that M. persicae 

was consistently more attracted to Potato virus X (PVX-), Potato virus Y (PVY-) and PLRV-

infected potato plants over non-infected ones.  Furthermore, this study showed that PVX-

infected plants were the least attractive to the aphid vector and PLRV-infected plants 

attracted the most aphids.  These findings are of significance as PVX is not transmitted by 

aphids, while PLRV is persistently transmitted by M. persicae and must replicate in the 

aphid.  However, a similar study by Hodge and Powell (2008), which investigated the 
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effects of several viruses of legumes, which are transmitted nonpersistently and 

persistently by the aphid, Acyrthosiphon pisum, found that although there were differences 

in aphid performance, no relationship between virus transmission strategy and the 

induction of winged morphs could be found.  For example, the persistently transmitted 

virus, Pea enation mosaic virus (PEMV) was found to exert little effect on aphid survival, 

growth and reproductive output despite the requirement for prolonged aphid feeding for 

the virus to be successfully acquired.  A more recent study by the same authors which 

investigated the interaction between A. pisum and PEMV in further detail, found the 

same preference for PEMV-infected plants by A. pisum but noted that the performance of 

the aphid, measured by mean daily growth rate (MDGR), was only enhanced on older 

PEMV-infected plants with well developed virus symptoms (Hodge & Powell, 2010.  The 

varying findings of these experiments, utilizing different plant systems, highlight the 

intimate associations between viral pathogens and their aphid vectors and suggest that 

these interactions are likely to be highly host specific.   

 

The two viruses which are investigated in this thesis, Black raspberry necrosis virus and 

Raspberry leaf mottle virus, fall between the two categories of viruses studied in the above 

example.  As semipersistent viruses, aphid ingestion of phloem is required for virions to 

be successfully acquired by the aphid.  If a link between aphid performance and virus 

transmission strategy is to hold true, then their aphid vector, Amphorophoro idaei, should 

not only be preferentially attracted to infected raspberry plants, but should feed on the 

plant for periods of in excess of 30 min to successfully acquire the virus (Stace-Smith, 

1955a) before migration to new, potentially uninfected host plants.   
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1.3.3 Summary 

Plant viruses can alter the behaviour of their aphid vectors through changes in host-plant 

attractiveness.  Studies of aphid preference for healthy or diseased host plants have 

revealed the potential role of plant volatile compounds as attractants to virus-infected 

plants, yet the consequences of the host plant choice for aphid performance are variable 

and negative, neutral and positive effects of virus-infected host plants have been recorded.  

Relatively few studies have addressed the underlying plant nutritional chemistry that may 

be responsible for the differences in aphid performance but, plant nitrogen, particularly 

amino acids seems likely to play an important role.   

 

 

1.4 Aims 

The aim of this study was to characterise the behaviour and performance of the European 

large raspberry aphid, Amphorophora idaei, in response to host plant infection with two 

common viral pathogens of red raspberry in the United Kingdom, Black raspberry 

necrosis virus (BRNV) and Raspberry leaf mottle virus (RLMV).  Specifically, this study 

aimed to: 

 

1. establish whether A. idaei show a preference for raspberry plants infected with 

BRNV and RLMV and how virus infection affects aphid movement 

2. investigate the effect of virus-infection of the performance of A. idaei 
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3. identify and where possible, quantify, changes to particular aspects of nutritional 

quality of the host plant which may be responsible for any differences observed in 

(1) and (2). 

4. investigate the potential role of plant volatile compounds in aphid attraction to 

virus-infected raspberry plants. 

 

1.5 Thesis structure   

The following chapter (CHAPTER TWO), “The biology of the European large raspberry 

aphid (Amphorophora idaei), its role in virus transmission and resistance breakdown in red 

raspberry” provides a comprehensive review of the raspberry study system used for the 

experiments detailed later in this thesis.  Raspberry is a small, but high value crop in the 

U.K. and this study aimed to synthesise existing knowledge of A. idaei as studies were 

previously fragmented across several disciplines.  The review focuses on the role of A, idaei 

as a vector of raspberry pathogens, its interactions with other insects and the problems 

arising from breakdown of plant resistance to the aphid. 

 

CHAPTER THREE, “The effect of Black raspberry necrosis virus and Raspberry leaf mottle 

virus on the recruitment and performance of, Amphorophora idaei”, describes the results of 

several aphid bioassays which were conducted in order to ascertain if A. idaei exhibited a 

preference for virus-infected host plants as has been demonstrated by studies of other 

aphid species.  Furthermore, this chapter explores aphid performance on healthy and 

virus-infected raspberry plants and movement subsequent to the initial host plant choice; 

with the hypothesis being that promoted aphid performance in response to virus 

infection would lead to prolonged aphid feeding on the plant, while reduced 
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performance may trigger aphid migration.  The role of visual and olfactory cues in aphid 

host location is also explored.  

 

CHAPTER FOUR, “Aphids and viral pathogens induce chances in Rubus idaeus leaf 

chemistry”, describes the results of leaf chemical analyses conducted to explore the causal 

mechanisms for the depressed performance of A. idaei on virus-infected plants which was 

demonstrated by the experiments of Chapter Three.  Specifically, this chapter aimed to 

test the hypothesis that increased leaf phenolics and decreased nitrogen and amino acids 

may account for the prolonged development time of A. idaei on virus-infected host plants. 

 

CHAPTER FIVE, “Raspberry volatiles attract Amphorophora idaei to virus-infected raspberry 

plants”, aimed to investigate alterations to plant volatile emissions in response to 

infection with raspberry viruses.  In particular, this study aimed to characterise gross 

changes in volatile composition and test candidate attractants in bioassay with A. idaei.   

 

CHAPTER SIX, “Discussion”, reviews the key findings of the research and suggests future 

directions for the study of indirect interactions between pathogens and their vectors. 



 

 

CHAPTER TWO 
 

The biology of the European large raspberry aphid 

(Amphorophora idaei): its role in virus transmission and 

resistance breakdown in red raspberry† 
 

 

 

 

 

 

 

 

                                                
† Agricultural and Forest Entomology (2009) DOI: 10.1111/j.1461-9563.2008.00409.x 
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Abstract 

The European large raspberry aphid, Amphorophora idaei, is the most important vector of viral 

diseases afflicting commercially grown red raspberry (Rubus idaeus L.) in the United Kingdom and 

wider Europe, with European raspberry production amounting to 416,000 tonnes per annum. 

Amphorophora idaei is the principle vector of three known viruses: Black raspberry necrosis virus, 

Raspberry leaf mottle virus and Rubus yellow net virus, with A. idaei taking as little as two minutes 

to transmit some viruses.   Existing control strategies, including resistant cultivars, insecticides and 

eradication of disease from parent plants and associated problems are described in this chapter. 

For example, strong selection pressures have resulted in A. idaei overcoming genetic resistance in 

many raspberry cultivars and most insecticides are now ineffective at controlling the A. idaei 

populations and consequently the spread of viral diseases. 

 

Information about trophic interactions with other insect herbivores and natural enemies is scarce 

and existing knowledge is also reviewed in this chapter.  Another major pest of raspberry, the vine 

weevil (Otiorhynchus sulcatus) has been found to compromise aphid resistance in some raspberry 

cultivars, increasing A. idaei abundance by 80%. Parasitoids show mixed success in parasitizing A. 

idaei, although Aphidius ervi attack rates more than doubled when A. idaei fed on a partially 

susceptible raspberry cultivar, compared to a resistant variety.  

 

Future directions for the sustained control of A. idaei are suggested, taking into consideration the 

possible effects of climate change and also changes in agronomic practices in UK agriculture. 
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2.1 Introduction 

The European large raspberry aphid, Amphorophora idaei, is the most economically 

important aphid pest of commercially grown red raspberry (Rubus idaeus) cultivars in the 

UK and Northern Europe. While large populations of A. idaei can reduce plant vigour 

(Gordon et al., 1997), it is a more serious pest of raspberry because of its role as a highly 

mobile and effective vector of at least three viral pathogens, all of which can cause severe 

damage and loss in fruit crop (Alford, 2007). The three viruses known to be transmitted 

by A. idaei  all belong to the Raspberry mosaic disease (RMD) complex (Converse, 1987) 

and they are Black raspberry necrosis virus (BRNV), Raspberry leaf mottle virus (RLMV) 

and Rubus yellow net virus (RYNV).  BRNV is often the first to infect raspberry (Jones, 

1976) with the plant then rapidly becoming infected with other viruses such as RLMV. 

 

Raspberry (Rubus spp.) is a high value and economically important crop in many parts of 

the UK, Europe and North America, with global production estimated at 500,000 tonnes 

per year (FAOSTAT, 2008). There is increasing emphasis on the importance of fruit and 

vegetables for human health, particularly those products, such as Rubus, which are  rich 

sources of dietary antioxidants (Deighton et al., 2000; McDougall et al., 2005). Thus 

demand for Rubus is increasing, with European production increasing by 42% between 

1994 and 2004 alone (FAOSTAT, 2008). One of the main threats to increasing yields are 

viral diseases transmitted by A. idaei, so it is not surprising that there have been extensive 

efforts to control A. idaei over the last 40-50 years, largely by breeding aphid resistant 

raspberry varieties (Sargent et al., 2007).  However, the strong selection pressure exerted 

on the aphid  by resistant varieties, together with the short generation time of A. idaei, has 
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led to the evolution of aphid biotypes capable of overcoming  plant resistance (Birch et 

al., 2002). Aphid biotypes (also referred to as strains) are groups of multiple genotypes 

that share a phenotypic trait (in the case of A. idaei, the ability to colonise specific plant 

genotypes (Puterka & Burton, 1991). In particular, the spread of resistance-breaking 

genes between populations of A. idaei is believed to occur through migrations of 

parthenogenetic asexual females in the summer months as a result of overcrowding on 

host plants and subsequent migrations of sexually reproducing males and females in the 

autumn months which ensure extensive exchanges of genetic material  during the A. ideai 

life cycle (Birch et al., 2002). In addition to concerns about resistance-breaking A. idaei 

biotypes, the few remaining certified insecticides are now largely ineffective at eradicating 

aphids in time to prevent viral transmission (which takes as little as two min - see Section 

2.3). Insecticides have also proved problematic, as peak aphid populations occur at the 

optimum time for fruit harvesting (Gordon et al., 1997), when insecticide residues may 

pose a threat to human health due to toxicity. 

 

The increasing problem of A. idaei in commercial raspberry production therefore requires 

novel approaches to control aphid populations and virus transmission, which could 

include combinations of genetically resistant plant varieties and novel strategies such as 

biocontrol (Ode, 2006) and semiochemical technologies (Agelopoulos et al., 1999). 

Developing such approaches requires a more detailed understanding of the biology of A. 

idaei and how it interacts with other organisms, yet this information remains fragmented 

across several disciplines. The literature reviewed in this chapter synthesises existing 

knowledge of A. idaei across these disciplines and describes the aphid interactions with 

other organisms, including its host plant and the viral pathogens it transmits. 
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2.2 General biology 

2.2.1 Taxonomy and morphology 

Classification of the large raspberry aphid is somewhat confused in early literature as it 

was originally assumed that all Amphorophora occurring on Rubus belonged to a single 

species, Amphorophora rubi (Kaltenbach).  In 1939, after observations of both morphology 

and host-plant transfers, Börner concluded that there were in fact two distinct species of 

these aphids which he assigned to the genus Nectarosiphon, one occurring solely on red 

raspberry that was termed Nectarosiphon idaei (now Amphorophora idaei), and another on 

blackberry, Nectarosiphon rubi (now Amphorophora rubi) (Börner, 1939).  This revision of 

aphid taxonomy was subsequently supported by cytological studies which confirmed that 

the chromosome complement of Amphorophora occurring on red raspberry in Europe 

differed from that of Amphorophora sampled from blackberry (2n = 18 and 20 respectively) 

(Blackman et al., 1977). Hill (1956) suggested that the North American and European 

vectors were also discrete species, as the raspberry cultivar Lloyd George was reported to 

be resistant to A. idaei in North America, even though it was known to be susceptible in 

the UK.  Despite being almost identical in appearance, the taxonomy of these species 

differs, with the North American aphid vector named Amphorophora agathonica and the 

European vector named Amphorophora idaei (Alford, 2007). 

 

The body length of apterous (wingless) A. idaei adults ranges from 2.5 - 4.1 mm 

(Blackman & Eastop, 2000).  Adults are usually pale green to yellowish green in colour 

with long antennae and siphunculi (Figure 2.1a). Plate 2.1a shows a single apterous 

female and nymphs on the stem. The alatae differ slightly in that they possess a brown 
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head and thoracic region but are generally of a similar size, ranging from 2.5 - 4.0 mm in 

length.  

 

2.2.2 Life cycle 

Amphorophora idaei undergoes an obligate holocyclic lifecycle (incorporating asexual and 

sexual phases) on red raspberry. Parthenogenetic (asexual) reproduction takes place 

throughout the spring and summer months until the emergence of males later in the year 

when the aphids then begin to reproduce sexually. The seasonal life cycle for a typical 

population in the UK is illustrated in Figure 2.1b, although it should be noted that the 

timing of events can be variable between seasons. In the UK, the fertilized eggs, deposited 

by the oviparae (the egg laying female), hatch in early March.  The eggs are yellow-green 

when first laid and change to shining black prior to hatching (Dicker, 1940).  The 

emergent nymphs feed at the leaf tip before moving to the underside of the leaf.  These 

fundatrices (colony founders) are distinguishable from later generations by the presence 

of two rows of dark spots and bristles on the dorsal surface.  These spots fade in the third 

and fourth instars (Dicker, 1940).   Elsewhere in Europe, female A. idaei hatch from the 

eggs between late March and early April in Poland (Borowiak-Sobkowiak, 2006) and 

somewhat later (late April to early May) in Finland (Rautapää, 1967). Newly hatched 

nymphs do not tend to occur in large numbers, thus total population sizes are small at 

this time of year. The apterous nymphs and adults are very mobile and drop from the 

plant when they are disturbed (Converse, 1987).  After several generations of 

parthenogenetic apterae, female alatae begin to appear, usually between the months of 

June and July (Alford, 2007). These alatae begin to migrate to new canes on the host 

plant or colonise new plants.   
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After migration, the female alatae again produce parthenogenetic, wingless daughters and 

oviparae begin to appear in October alongside sexual male alates. After mating, fertilised 

eggs are deposited near the base of the canes of the host plant from October right 

through until December where they remain until the following March.  In the UK, peak 

populations of the large raspberry aphid occur in mid summer on most red raspberry 

genotypes (Jones, 1976).  The number of generations produced over the summer period is 

dependent on prevailing environmental conditions. Borowiak-Sobkowiak (2006) recorded 

eight to ten generations in Poland, whereas Dicker (1940) recorded ten in Finland.   

 

2.2.3 Seasonal occurrence of A. idaei on different raspberry cultivars 

in Scotland 

 The population dynamics of A. idaei can be highly variable on different cultivars of 

raspberry, depending on levels of resistance in the plant and the aphid biotypes in the 

area (see Section 2.4.3). In Scotland, surveys of aphid abundance on insecticide-free 

experimental plantations at SCRI (56°447’N, 3°012’W) showed that peak populations 

were observed between June and August (Mitchell, 2007). These surveys were carried out 

at weekly intervals during 2004 on plantations comprising two susceptible (Malling Jewel 

and Glen Ample) and one partially resistant cultivar (Glen Clova). Four independent 

plots of each cultivar were chosen, using four plants at random for each plot (16 in total 

for each cultivar). On each plant, 12 leaves were sampled at random from the top, middle 

and bottom stems (using both primocane and floricanes). See Mitchell (2007) for full 

details. Populations of A. idaei generally peaked in late July, but it was apparent that 

numbers were higher on susceptible varieties compared to the partially resistant variety 

(Figure2.2).
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Plate 2.1. (a) Adult female A. idaei (labelled A) and nymphs (example labelled B) on stem 

of red raspberry. (b - d) Symptoms of viral pathogens known to be transmitted by A. idaei 

(b) Black raspberry necrosis virus (BRNV), (c) Rubus yellow net virus (RYNV) and (d) 

Raspberry leaf mottle virus (RLMV).  
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Figure 2.2. Seasonal occurrence of A. idaei on Rubus idaeus cultivars with varying degrees 

of aphid resistance: Malling Jewel (no resistance); Glen Clova (multigenic minor gene 

resistance) and Glen Ample (major gene A1).  Figure from Mitchell (2007). 
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2.2.4 Trophic interactions 

Interactions with other organisms in the system have largely focussed on trophic 

interactions with other insects (reviewed below), although there is evidence that A. idaei 

becomes infected with fungal diseases.  Dickson (1979) reported the occurrence of three 

fungal pathogens in A. idaei collected from the field. Of the three fungal pathogens 

identified, Entomophthora aphidis, E. planchoniana and E. thaxteriana, the latter was the 

most lethal for A. idaei, with mortality rates of 62% in laboratory experiments (Dickson, 

1979). 

 

2.2.5 Interactions with other herbivores 

Other than the large raspberry aphid, notable pests of red raspberry in the UK include 

the small raspberry aphid (Aphis idaei), the raspberry beetle (Byturus tomentosus), the clay 

coloured weevil (Otiorhynchus singularis), the vine weevil (Otiorhynchus sulcatus), the 

raspberry cane midge (Resseliella theobaldi), the raspberry moth (Lampronia rubiella) and the 

two-spotted spider mite (Tetranychus urticae).  A comprehensive review of the arthropod 

pests occurring on Rubus spp. is provided by Gordon et al., (1997). In spite of the 

potential diversity of arthropod species occurring on raspberry, studies of the interactions 

between the large raspberry aphid and other insect herbivores are remarkably scarce.   

 

Despite this dearth of studies, the scope for interactions with other herbivores seems 

increasingly likely as several insect pests become more prevalent because of the removal of 

organochlorine pesticides due to environmental concerns (Gordon et al., 1997). For 

example, the removal of aldrin has led to sharp increases in populations of vine weevil (O. 
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sulcatus) in commercial raspberry production (Moorhouse et al., 1992). Root-feeding O. 

sulcatus larvae are the most damaging life stage, and it has recently been shown that they 

can impact on the population of A. idaei feeding aboveground (Johnson et al., 2008). In 

particular, feeding by two vine weevil larvae increased populations of A. idaei by 80% on 

raspberry plants with partial aphid resistance (cv. Glen Clova) (Figure 2.3a), whereas 

cultivars with more robust levels of aphid resistance (cv. Glen Rosa) showed no significant 

difference in aphid abundance (6-20 aphids per plant). The mechanism underpinning 

this interaction may be linked with nutritional changes in the phloem (Johnson et al., 

2008). 
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Figure 2.3. Trophic interactions between A. idaei and (a) the vine weevil, Otiorhynchus 

sulcatis, showing how the presence of vine weevils promoted A. idaei abundance on Glen 

Clova (analysis of variance: F1,18= 5.31, P = 0.033), adapted from Johnson et al. (2008) and 

(b) the parasitic wasp Aphidius ervi oviposition rates on three cultivars of raspberry with 

increasing degrees of aphid resistance (Malling Jewel < Malling Landmark < Glen Rosa); 

ANOVA: F2,56 = 27.11, P < 0.001 (aphid density fitted as covariate), adapted from 

Mitchell (2007).  Lowercase superscripts indicate significant differences between cultivars.  

Data from Johnson et al., (2008). 
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2.2.6 Potential biocontrol 

The introduction of parasitoids or natural enemies, or both, to managed ecosystems has 

been suggested as a strategy for controlling insect pests (Price et al., 1980), so it is not 

surprising that this has been the primary motivation for investigating interactions 

between A. idaei and such organisms (Birch et al., 1996; Mitchell, 2007). There are 

currently very few studies of the interactions between the large raspberry aphid and 

natural enemies (see Birch et al., 1996). However, there is evidence that parasitoids 

frequently attack A. idaei. For example (Dickson, 1979) identified a selection of 

parasitoids that had emerged from mummified A. idaei collected from the field. Emerging 

parasitoids belonged to four families (Cynipoidae, Chalcididae, Encyrtinae and 

Braconidae) and one superfamily (Proctotrupoidae). The aphid mummies recovered from 

the field were predominantly at fourth instar (62%) and adult (30%) stages, with the 

remainder being third instar nymphs (Dickson, 1979). 

 

Experiments investigating the interactions between A. idaei and parasitic wasps have 

recently been conducted by Mitchell (2007).  In particular, parasitism of A. idaei by three 

common aphid parasitoids; Aphidius colemani, Aphelinus abdominalis and Aphidius ervi was 

examined, with only the latter successfully parasitizing the aphid.  Parasitism levels by A. 

ervi were low, but there was evidence of an interaction between the resistance gene 

present in the raspberry cultivar (see Section 2.4) and the parasitoid’s ability to 

successfully attack an aphid host. Although the mechanisms of the interaction remain 

uncertain, this study showed that attack rates by A. ervi were significantly higher on A. 

idaei feeding on the moderately susceptible cultivar, Malling Landmark, compared with 

those feeding on the highly susceptible cultivar, Malling Jewel and moderately resistant 
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cultivar, Glen Rosa (Figure 2.3b).  Further studies of these interactions may provide a 

future strategy of combining aphid resistance with biological control, although a 

significant concern about biological control in raspberry is contamination of ripe fruit by 

parasitized aphid mummies, which can result in significant economic losses through 

rejection on aesthetic grounds (Hall et al., 2009). 

 

 

2.3 Amphorophora idaei vector biology  

The three viruses known to be vectored by A. idaei belong to the Raspberry mosaic disease 

(RMD) complex and are widespread in Europe.  Both the aphid’s capability to transmit 

the viruses for several days after initial acquisition and recent sequencing and taxonomic 

placement (see McGavin & MacFarlane, 2010) suggests that their transmission is likely to 

be semi-persistent.  This section describes each virus including their taxonomy (which has 

recently been revised) and the symptoms they commonly cause. 

 

2.3.1 Black raspberry necrosis virus (BRNV) 

BRNV has not as yet been assigned to a family or genus by the International Committee 

on Taxonomy of Viruses (ICTV), but phylogenetic analysis allows a tentative placement 

within the genus Sadwavirus (Halgren et al., 2007). Originally termed 52V virus in 

Europe (Jones & Murant, 1972), BRNV, so-called due to the effect it induces at the tips 

of black raspberry seedlings (Stace-Smith, 1955a), is often the first aphid-borne virus to 

arrive in new red raspberry plantations (Converse, 1987). After only one growing season, 

plantations of susceptible cultivars such as Malling Jewel can become 75% infected  
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(Jones, 1979).  In the UK, BRNV is often found associated with a complex of viruses 

which only then results in the production of detectable physical symptoms. For example, 

in Europe the host plant develops symptoms of vein banding mosaic disease (Jones, 1991) 

when found in complex with RYNV and RLMV, which as the name suggests, produces 

visible chlorotic bands on the leaves.  Few red raspberry cultivars show outward symptoms 

after infection with BRNV alone, but the disease is sometimes distinguishable by the 

presence of small patches of leaf discolouration (Plate 2.1b).  The presence of the disease 

ultimately results in a decrease in plant vigour and fruit yield. However, the lack of 

outward symptoms in most commonly grown cultivars makes early diagnosis difficult 

unless plant tissue with a suspected infection is either grafted to a sensitive indicator 

(usually black raspberry, Rubus occidentalis) where the infection induces the characteristic 

necrosis at the tip of the seedling or PCR diagnostics are utilised to confirm infection. 

 

2.3.2 Rubus yellow net virus (RYNV) 

Nucleotide sequencing of RYNV has identified it as a new species (Jones et al., 2002) and 

it is now recognised by the ICTV as belonging to the Badnavirus  genus in the family 

Caulimoviridae. It is a disease that is now found in almost every major raspberry growing 

area in the world, although the use of resistant red raspberry cultivars has had the effect 

of decreasing the incidence of the disease in Europe and North America. When the virus 

is present as a single infection (i.e. in the absence of other components of RMD), it 

produces a characteristic net-like chlorosis along the leaf veins of the host plant (Plate 

2.1c).  This chlorosis discolours the plant, making it appear pale green.  If the infection is 

chronic, it can result in downward cupping of the leaves (Converse, 1987). More 

commonly, RYNV is found in a virus complex, which produces varying symptoms 
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depending on the components present. Cadman (1952) found that in some UK cultivars, 

when RYNV was present together with BRNV the infected plant showed symptoms of 

veinbanding mosaic disease. Stace-Smith (1956) found that the same combination of 

viruses in North American plants induced raspberry mosaic, but  the work of Jones 

(1991) suggests that it is more likely to be the combination of RYNV and RLMV that 

causes veinbanding mosaic disease in UK cultivars, with the presence of BRNV simply 

resulting in more intense symptoms. 

 

2.3.3 Raspberry leaf mottle virus (RLMV) 

Recent sequencing and phylogenetic analysis has shown that a UK isolate of RLMV, 

previously termed Raspberry leaf spot virus (RLSV), and isolates of a similar Closterovirus 

found in North America, previously termed Raspberry mottle virus (RMoV), are actually 

all isolates of the same virus and should now be referred to under the collective name 

Raspberry leaf mottle virus (RLMV), the first of these viruses to be described (McGavin & 

MacFarlane, 2010). This section includes information from older literature where these 

viruses are still referred to using the old naming system. 

 

RLMV is found commonly in cultivated red raspberry (Jones & Murant, 1972), with 

symptoms reported in plants from many European countries outside the UK. Single 

infection with RLMV  is usually latent and symptomless, but in sensitive cultivars such as 

Malling Jewel, symptoms can be extreme, resulting in plant death (Jones & Jennings, 

1980). The work of Jones (1980) showed that RLMV infection in the cultivar Glen 

Prosen resulted in an overall decrease in fruit yield.  In such sensitive cultivars it is 

common for chlorotic yellow spots to develop on the plant leaves (Plate 2.1d). These spots 
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are often randomly distributed and measure 1-2 mm in diameter.  In extreme cases, 

spotting of leaves can lead to the formation of large chlorotic patches as overlap occurs 

(Converse, 1987).  Additionally, leaves on fruiting canes can become deformed and plant 

growth is stunted.  Infection in sensitive cultivars ultimately leads to plant death within 2-

3 years (Converse, 1987).  

 

Currently, RLMV has not been assigned to a family or genus by the ICTV although 

recent nucleotide sequencing of the UK strain suggests placement within the family 

Closteroviridae (McGavin & MacFarlane, 2010).  This sequence data is identical to that 

obtained by Tzanetakis et al., (2007) for a North American isolate of the virus, confirming 

that the two viruses are, in fact, the same.  

 

2.3.4 Aphid transmission of viruses 

All three of the viruses vectored by A. idaei are believed to be naturally transmitted during 

feeding on infected plant tissue, with the virus being picked up by the aphid’s stylets.  The 

virus is spread when the aphid migrates to a healthy host plant and subsequently inserts 

the stylets to feed. The spread of viruses in raspberry plantations usually occurs along 

plant rows (Rankin, 1931) and in addition to natural aphid migration, the viruses are also 

spread by passive aphid movements due to wind and rainfall (Converse, 1987). Studies 

conducted by (Stace-Smith, 1955a) revealed that BRNV could be transmitted by the 

aphid after an acquisition access period of between 15 and 30 minutes.  Successful 

transmission required a subsequent inoculation period of two minutes on an uninfected 

host.  These acquisition and inoculation times are slightly different in the case of RYNV.  

In this instance, the aphid must undertake an acquisition access period of in excess of an 
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hour in order to become virulent, with inoculation periods of four hours or more greatly 

increasing the incidence of successful transmission (Stace-Smith, 1955b).  The ability of 

the aphid to transmit RYNV is lost after 4 hours of access to healthy plant tissue (Stace-

Smith, 1955b) whereas aphids exposed to BRNV inoculated tissue only retain the ability 

to transmit the virus for c.3 hours (Stace-Smith, 1955a). The success of some aphid 

resistant raspberry cultivars has meant that research into the transmission of RLMV in 

raspberry has not been a high priority, although is likely to become more of an issue with 

resistance breakdown. Research by Cadman (1954) using the closely related Rubus 

occidentalis indicated that an initial acquisition access period of less than half an hour was 

required in order for the vector to acquire RLMV, with a subsequent inoculation period 

of less than an hour sufficient for the virus to be successfully transferred to a new host 

plant.  Again, the frequency of successful transmission was greatly enhanced by increasing 

both the acquisition access and inoculation periods.  

 

2.4 Resistant raspberry cultivars and resistance-breaking 

aphid biotypes 

 

2.4.1 Resistant cultivars and plant resistance genes 

By far the most effective method of aphid control is the planting of genetically resistant 

red raspberry cultivars. Many of these have been introduced over the last 40-50 years by 

commercial breeding programmes and have, until recently, been largely successful at 

controlling the spread of the viruses transmitted by A. idaei through resistance to the 

aphid vector. Plant resistance to A. idaei (and other pest species) is comprehensively 

reviewed by Hall et al., (2009), with a particular emphasis on plant breeding initiatives.  
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Cultivars introduced for commercial use over the last 40 years possess either single major 

gene resistance (either A1 or A10) or have multiple (multigenic) minor gene resistance 

(Jones, 1986) (Table 2.1).  The resistance gene A1 (Knight et al., 1959) was first 

incorporated into red raspberry cultivars in the 1980s (Birch et al., 2004) and the 

strongest gene, A10,  was isolated from black raspberry, Rubus occidentalis (Keep & Knight, 

1967) and subsequently incorporated into red raspberry breeding.  Birch & Jones (1988) 

reported that plants with either the A10 or A1 gene conferred maximum resistance to A. 

idaei, while plants with multigenic resistance conferred slightly less resistance. This 

resistance is thought to be expressed in a number of ways, including reduced settling and 

feeding by aphids (i.e. antixenosis) (Birch & Jones, 1988) and decreases in fecundity and 

rate of larval development (i.e. antibiosis) (Mitchell, 2007).  

 

A little over ten years ago, about 90% of raspberry plantations in the UK made use of 

plants containing resistance genes, with approximately 40% of these possessing the A10 

resistance gene and 30% possessing the A1 resistance gene (Birch et al., 1996). This 

particular method was highly successful in limiting both aphid population size and virus 

transmission until the increased selection pressure on the aphid inevitably led to the 

emergence of new resistance-breaking biotypes.  

 

Birch & Jones (1988) noted that large numbers of A. idaei were found on the cultivars 

Glen Prosen and Glen Moy in the field, but that there were relatively small populations 

found on the cultivars Delight and Malling Landmark growing in close proximity.  This 

observation was anomalous as these four cultivars were all assumed to possess the same 

resistance gene to the aphid, major gene A1.  Jones et al. (2000) suggested that either these 
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cultivars did not in fact all possess resistance gene A1, or other genes (termed ‘modifying 

genes’) were in operation, leading to a variation in gene effectiveness against the aphid.  

Subsequent glasshouse experiments designed to test these hypotheses revealed that the 

genetic basis of resistance to A. idaei was much more complex than was previously 

believed, with major gene resistance apparently being altered by other minor genes, 

depending on the genetic background of the cultivar.  In particular, it was noted that 

plants that had been shaded with black netting exhibited reduced resistance to A. idaei, 

indicating that the effectiveness of single major genes can be altered by varying 

environmental conditions during growth as well as genetic factors (Jones et al., 2000).  

Furthermore, the observation that root herbivory by vine weevils compromised 

multigenic resistance in Glen Clova and allowed aphid populations to successfully 

colonise the plant (described earlier - see Figure 2.3a) suggests that the presence of other 

herbivores feeding on the host may also alter plant resistance. Thus far, no gene has been 

identified in Rubus germplasm that can convey resistance to the virus itself (Jones & 

Jennings, 1980), so management continues to depend on control of the aphid vector.   

 

2.4.2 Potential resistance mechanisms against Amphorophora idaei 

The epicuticular wax layer found on most plants has long been understood to play a role 

in plant defence against desiccation and attack from herbivores and pathogens 

(Schoonhoven et al., 2005).  There is also evidence that the epicuticular wax of Rubus 

leaves protects the plant from A. idaei attack (Robertson et al., 1991; Shepherd et al., 

1999a, b).  Attempts to identify an individual component that could underpin resistance 

to A. idaei have so far been unsuccessful although comparisons of the composition of leaf 

surface wax collected from the largely A. idaei resistant cultivar Autumn Bliss (A10 



 

 

 

Chapter 2: Biology of the European large raspberry aphid 

 

55 

resistance) and that of the entirely susceptible cultivar Malling Jewel have revealed 13 

compounds common to both cultivars.  These compounds were identified as belonging to 

four major classes: straight chain hydrocarbons; acetic acid esters of long chain alcohols; 

tocopherols and triterpenoid compounds and it is believed that their relative 

concentrations could influence resistance. Robertson et al. (1991) were able to relate the 

chemical composition of the leaf surface to aphid susceptibility using linear discriminant 

analysis.  Using chromatographic data and results of bioassays, 24 out of 26 plants were 

classified correctly in terms of the level of aphid resistance possessed.  Furthermore, small 

amounts of triacylglycerols detected by gas chromatography-mass spectrometry (GC-MS) 

in leaf wax collected from the susceptible cultivar Malling Jewel are believed to be to be a 

result of the incorporation of aphid exuviae and cornicle fluid into the leaf wax 

(Shepherd et al., 1999b).  These compounds were detected in wax taken from the entirely 

aphid susceptible cultivar, Malling Jewel but not in wax from the resistant Autumn Bliss.    

These findings appear to indicate that the measurement of these leaf wax components 

could provide a future method of screening plants for aphid resistance (Shepherd et al., 

2000).
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2.4.3 Resistance-breaking aphid biotypes 

The introduction of aphid resistant cultivars has led to strong selection pressure on A. 

idaei to overcome this resistance and has resulted in the emergence of several resistance-

breaking biotypes (listed in Table 2.1). Of the five fully described A. idaei biotypes, two 

(biotypes two and X) are capable of overcoming A1 resistance, found in cultivars such as 

Glen Moy and Glen Prosen (Birch et al., 1992). Biotype two is now found commonly on 

these cultivars.  For example, in 1990-91, 77% of A. idaei collected from 22 field sites in 

the UK were identified as belonging to biotype two or X (Birch et al., 1994) compared 

with just 3% between 1958 and 1961 (Briggs, 1965).  In an effort to combat this rising 

problem, cultivars possessing major gene A10 began to be used more extensively.  This has 

led to the emergence of at least one further biotype with the genetic capacity to colonize 

these plants, currently referred to as ‘A10-breaking’ in Table 2.1.  More recently released 

cultivars expressing this gene, such as Glen Doll, are therefore no longer completely 

resistant to A. idaei attack. Biotype one is believed to now only to occur on wild raspberry, 

while there is a suggestion that biotypes three and four have either become, or are close to 

becoming, extinct (Sargent et al., 2007).  

 

 

2.6 Alternative control strategies   

Using resistant cultivars is by far the most widespread technique for controlling A. idaei 

populations, but other strategies have also been deployed. Insecticides have been used in 

the field against aphids already carrying viruses, whereas heat therapy and meristem 

culture can be exploited to eradicate the disease in parent plants used for propagation, 
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thereby limiting virus transmission back into A. idaei populations. However, both heat 

treatment and meristem culture do not protect the plant from subsequent attack by 

viruliferous A. idaei, so such remediation can be short lived. 

 

2.6.1 Insecticides 

The use of organophosphorous based (OP) insecticides to control raspberry aphid was 

relatively rare, and has declined still further with the introduction of aphid resistant red 

raspberry cultivars. Gordon et al., (1997), using survey data from agricultural agencies in 

the UK,  reported that raspberry accounted for less than 5% of total OP insecticide usage 

on UK crops since  the introduction of resistant cultivars. The short inoculation time 

required by the virulent aphid means that pesticides are largely unsuccessful at preventing 

virus spread in raspberry plantations, regardless of effectiveness at controlling aphid 

population size, as they simply do not kill the aphid quickly enough to prevent 

transmission (Taylor & Chambers, 1969).   

 

2.6.2 Heat therapy 

Heat therapy involves the application of either hot water or air at temperatures usually 

ranging between 35 and 54°C to eliminate virus particles from plant material.  Wet heat 

is generally more effective than dry heat (Matthews, 1991), although the use of hot air on 

growing plants increases their survival rate. Research published by Chambers (1961) 

demonstrated that certain cultivars could be freed from some components of the 

raspberry mosaic complex by heat treatment of 35°C for periods of 2-3 weeks. RYNV is a 

heat stable virus (Stace-Smith, 1960) and as such, attempted eradication through whole 

plant heat treatment has proved unsuccessful although the heat-labile virus, BRNV, can 
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be eradicated from infected host plants by heat treatment at 32-37°C for a time period of 

10 days (Stace-Smith & Mellor, 1957).  Tip cuttings excised from the host plant and 

rooted during this heat treatment are found to be free from virus (Bolton & Turner, 

1962). Plants that have been infected with other heat-stable raspberry viruses, such as 

RLMV, can be freed from infection by heat treatment at 32-37°C for time periods of 

between 10 and 20 days (Baumann, 1982).  

 

2.6.3 Meristem culture 

Plant viruses vary in their distribution within plant cells and, although difficult if the 

virus occurs in the apical meristem (Toussaint et al., 1984), it is possible to produce virus-

free propagated plants by culturing of meristematic tissue.  This is achieved by aseptically 

culturing the apical tips of the infected plants and the first pair of leaf primordia 

(Hollings, 1965) in a nutrient medium containing growth factors. It is also possible to use 

a combination of both heat therapy and meristem culture to produce virus-free plant 

material (Baumann, 1982).  

 

 

2.7 Conclusions 

The reported breakdown of the most effective aphid resistance in red raspberry has made 

the European large raspberry aphid a much more serious problem than has hitherto been 

the case. Insecticides are not a viable alternative in the long term, so new control 

strategies will need to be developed, which will inevitably rely on a better understanding 

of the biology and vectoring behaviour of A. idaei. Moreover, issues such as the effects of 
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global climate change on A. idaei have not yet been explored, but most predictions suggest 

that aphids are likely to become more of a problem due to increased overwintering 

survival (Zhou et al., 1995). Mitchell (2007) suggested that A. idaei is less well suited to 

higher temperatures, but the extent to which it could adapt to warmer climates (as it has 

done to resistant plant cultivars) remains unclear. Even if mid-season temperatures were 

disadvantageous to A. idaei, the overall increase in temperature would most likely extend 

the seasonal life cycle of A. idaei (see Figure 2.1) which in itself would be problematic in 

terms of viral transmission occurring earlier in the season.  New strategies that 

incorporate several approaches in an integrated pest and disease management (IPDM) 

framework will undoubtedly be needed for effective control of A. idaei. For example, 

understanding the chemical ecology of host plant location, and whether viral infection 

plays a role in this through changes to plant chemistry, could be useful for disrupting A. 

idaei behaviour. Semiochemical traps, based on naturally occurring plant volatiles, have 

been used to control other insect pests of red raspberry (e.g. Robertson et al., 1995) so 

this is distinctly feasible. 

 

Recent developments in raspberry management and research into host plant resistance 

provide two unique advantages, which may make biocontrol strategies more viable. 

Firstly, protected coverings (i.e. polytunnels) have become commonplace for growing 

raspberries since being introduced to the UK in 1993, and now account for 80% of soft 

fruit on sale in UK supermarkets (Anon, 2005). It is probable that parasitoids and/or 

predators would operate more effectively within the confines of such tunnels, having 

smaller areas to search for aphid prey and reduced ability to disperse from the tunnel.  

Secondly, the development of molecular and genetic tools, including molecular markers 
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such as Amplified Fragment Length Polymorphism (AFLP) and microsatellite markers 

such as Simple Sequence Repeats (SSR), has recently led to much better understanding of 

resistance mechanisms in Rubus (e.g. Graham et al., 2002; Graham et al., 2004; Stafne et 

al., 2005; Sargent et al., 2007) and may lead to more durable resistance against A. idaei. If 

the problem of fruit contamination with aphid mummies can be overcome, these twin 

approaches of bottom-up (host plant resistance) and top-down control (biocontrol agents) 

might therefore lead to more effective and sustainable control of A. idaei in the future. 
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Abstract 

Black raspberry necrosis virus (BRNV) and Raspberry leaf mottle virus (RLMV) are 

debilitating viruses of Rubus idaeus and are vectored by the large raspberry aphid, 

Amphorophora idaei.  Plants infected with these viral pathogens were found to be initially 

more attractive to the aphid vector in light conditions as more adult aphids chose to 

move to these plants when offered a dual choice between a healthy plant and one infected 

with both viruses. In experiments conducted over different timescales aphid preference 

for virus infected plants was variable.  Specifically, a significantly higher proportion of 

aphids were found on virus infected leaves over a short experiment of 30 minute whereas 

no difference in aphid preference was found over a longer experiment observed over a 

seven day period.  Differences in leaf colouration measured from absorbance and 

reflectance of light from plant leaves were found, suggesting that there may be a visual cue 

to aphids which is responsible for their initial preference to virus infected plants.  

 Comparison of aphid performance on virus–infected plants and healthy plants revealed 

that feeding in the presence of BRNV and RLMV was detrimental to the aphid.  

Amphorophora idaei took longer to reach adulthood and begin to reproduce on plants that 

were infected with BRNV + RLMV when compared to healthy plants although the 

number of offspring produced in a seven day period was unaffected by plant infection 

with these viruses.  These results are indicative of a deceptive attraction of A. idaei to a 

nutritionally poor host plant which may promote further transmission of the viruses as 

the aphid is attracted to the host plant over a period of time conducive to successful 

acquisition. 
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3.1 Introduction 

3.1.1 Rationale 

As was discussed in the previous chapter, Amphorophora idaei is prevalent in the United 

Kingdom and is a serious pest of red raspberry through its role as a vector of several viral 

pathogens (Converse, 1987).  Understanding the mechanism(s) by which these pathogens 

are transmitted and how the viruses may influence aphid behaviour, is of fundamental 

importance to developing strategies to limit the spread of viral diseases in raspberry 

plantations as the selection pressure acting on aphid populations has led to large scale 

breakdown of resistance in cultivated R. idaeus (see Chapter Two).  Novel control 

strategies based on manipulation of natural aphid behaviours could therefore provide 

solutions to this problem by exploiting plant derived chemicals which may act as aphid 

attractants or repellents.  Knowledge of how the insect interacts with the host plant and 

how the plant mediates the interactions with viral pathogens is therefore of key 

importance to this research.    

 

3.1.2 Plant viruses alter vector behaviour and reproduction 

Research investigating the interactions between insect vectors, and the viruses they 

transmit, commonly demonstrate that insects preferentially settle on plants that are 

infected with viral pathogens when presented with a choice between a healthy and a 

diseased plant.  Examples of this preference have been found for many different species of 

plant–feeding insects on a diverse range of host plants including the leafhopper vector of 

Tungro virus feeding on rice (Khan & Saxena, 1985) and the thrips vector of Tomato 

spotted wilt virus feeding on pepper (Maris et al., 2004).  These studies use a common 
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experimental design that involves releasing insects equidistantly between a healthy plant 

and one infected with the virus of interest.  Interestingly, although these studies show 

that the insect is initially attracted to virus–infected plants it does not always follow that 

the insect will choose to feed there for a prolonged period of time.  For example, the 

study of Khan and Saxena (1985) showed that the leafhopper, Nephotettix virescens, is 

initially attracted to diseased rice plants but after only 24 h, it disperses and settles on 

healthy plants.  Plant nutritional quality is suggested as the trigger for such rapid 

movement as the presence of the viral pathogens in the host plant can actually be 

detrimental to vector development and reproduction (Khan & Saxena, 1985).  

Alterations to plant chemical composition in response to virus infection are discussed in 

detail in Chapter Four of this thesis. 

It may at first seem counter–intuitive that a plant virus should induce changes in the host 

plant that may discourage the vector from prolonged feeding.  However, as was discussed 

in Chapter One, most insect–transmitted plant viruses are not persistently transmitted 

(Ng & Perry, 2004), requiring the vector to probe the plant only for a very short time 

period (15-30 min in the case of BRNV and RLMV; see Chapter Two, Section2.3.4) 

before successful transmission occurs (within hours for BRNV and RLMV).  The 

suitability of the plant as a host for the vector is therefore detected within a very short 

space of time as it probes the plant (Chapman, 2003).  These brief probes are enough for 

virions to be successfully adsorbed to the mouthparts of the vector and they are then 

transported to a new host plant when the insect disperses.  It must be stressed that the 

response of the vectors to feeding on plant tissue infected with viral pathogens varies 

between systems.  Many studies report positive effects of plant pathogens on vector 

survival and reproduction.  For example, Maris et al., (2004)  showed that offspring of the 
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thrips vector of Tomato spotted wilt virus (TSWV), Frankliniella occidentalis, reach 

pupation faster on TSWV–infected pepper plants, indicative of shortened development 

time.  In studies using the same insect, Belluire et al., (2008) showed that the shortened 

development time on TSWV–infected plants acts to reduce the susceptibility of the insect 

to predation by two species of mite as they are incapable of capturing larger thrips larvae, 

thus, the presence of the virus indirectly mediates a beneficial interaction for the vector 

through alterations in host nutritional quality. 

 

Perhaps one of the most well studied interactions between a plant virus and its vector 

comes from another agricultural crop system and involves the interactions occurring 

between Potato leaf roll virus (PLRV) and the aphid vector Myzus persicae on potato 

plants.    PLRV is a persistently transmitted virus (see Chapter 1, section 1.3.1.2) and 

requires the aphid vector to feed for prolonged periods (hours to days) in order to 

successfully transmit the virus to a new host plant.  The comparative study of Castle & 

Berger (1993) demonstrated that M. persicae was preferentially attracted to virus-infected 

potato plants and the strongest attraction was for plants infected with PLRV which must 

replicate in the aphid before it can be transmitted to new host plants.  In contrast, M. 

persicae were least attracted to plants infected with Potato virus X, a non-aphid 

transmitted plant virus.  However, other studies report a neutral effect of plant viruses on 

their insect vectors. Hodge & Powell, (2008) showed that tic bean infection with Pea 

enation mosaic virus (PEMV) has no effect on survival, growth or reproduction of one of 

the aphid vectors, Acyrthosiphon pisum, despite the aphid’s preference for settling on the 

virus–infected plants.  This study suggests that the attraction of the vector to diseased 
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plants is caused by the yellowing of foliage and, unlike studies of potato viruses, found no 

evidence that vector preference for diseased host plants is related to the dependence of 

the virus on the vector for transmission. 

 

In evolutionary terms, as the virus is dependent on the insect for survival, it would not be 

beneficial for it to cause damage of such severity as to risk the death of the host plant 

before acquisition has taken place.  Therefore, natural selection should favour a system by 

which the virus has little or no negative effect on the aphid vector.  At best, the virus 

should alter plant chemical composition in such a way as to actually benefit the insect 

and this scenario is indeed found to occur in the PLRV–potato system.  The earlier work 

of Castle & Berger (1993) demonstrated that M. persicae benefits from feeding on infected 

potato tissue, reflected in shorter development times and increased number of progeny.  

The studies of Eigenbrode et al. (2002)  and Alvarez et al. (2007) build on these findings 

by showing that increased volatile emissions from PLRV-infected plants are responsible 

for the attraction of the aphid to virus-infected plants. 

 

 The above examples demonstrate the variable effects that plant viruses can exert on their 

vectors.  The interactions appear to be host and/or virus specific and in particular, are 

often related to the mode of virus transmission by the insect vector.  This highlights the 

need for further studies of these interactions, particularly with regard to high value 

agricultural crop systems where novel strategies must be developed to address the 

problems arising through decreased pesticide application due to environmental concerns.   
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The apparent specificity of virus–vector interactions also increases the scope for 

investigations in other plant systems important for the UK economy, such as raspberry, 

which remain relatively poorly studied with regard to pathogen–induced changes to plant 

chemistry which may mediate interactions with insect herbivores. 

 

3.1.3 Study system  

Full details of the biology of A. idaei and current understanding of the role the aphid 

plays in the transmission of viral pathogens of raspberry are provided in Chapter Two of 

this thesis.  In summary, in the UK, Black raspberry necrosis virus (BRNV) and Raspberry 

leaf mottle virus (RLMV) are components of Raspberry Mosaic Disease (RMD) and are 

therefore commonly found to infect raspberry host plants in combination.   Glen Ample, 

an SCRI developed cultivar of red raspberry, is currently widely grown in commercial 

plantations in the UK as it is spine–free, vigorous and produces large, fleshy, bright red 

berries.  This variety was bred to possess major gene resistance, A1, which previously 

conferred resistance to most biotypes of A. idaei (see Chapter Two, section 2.4.1).  Glen 

Ample is now susceptible to biotypes 2 and X, prevalent in Scotland due to the selection 

pressure that the cultivar has exerted on aphid populations since its commercial release.     

 

3.1.3 Aims and hypotheses 

The aim of this study was to establish whether A. idaei preferred to feed on healthy host 

plants or those infected with BRNV and RLMV and determine how feeding on either 

host plant affected performance.  As both BRNV and RLMV are transmitted 
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semipersistently and require short acquisition periods for the aphid to become 

viruliferous, aphid bioassays were set up using different timescales.  The aim of the 

different designs was primarily to assess the initial host plant preference of the aphid for a 

particular plant (healthy or virus-infected) and further to this, the study specifically aimed 

to characterise whether:   

1. Aphids remained on the plant they had initially selected  

2. Aphid performance (juvenile development time, pre–reproductive period and 

number of nymphs laid) differed when feeding on healthy and infected plants. 

3. Timescales for aphid migration to new host plants varied: 

a. Within 30 min (time required for successful virus acquisition) 

b. Over a seven day period (investigating migratory behaviour) 

 

In addition to answering these questions, the experimental design allowed for 

investigation of potential cues to the aphid during host plant location, i.e. investigation of 

visual and olfactory attractants. These experiments were designed to test three main 

hypotheses:  

1. Plants infected with viral pathogens would make more attractive hosts for A. idaei 

which would be reflected in an increased number of aphids choosing to move to 

infected plants.  

2. Aphid performance would be affected negatively by the presence of BRNV + 

RLMV as semipersistent viruses require only brief virus acquisition periods. 

3. Negatively affected performance of A. idaei would induce the aphid to move to a 

new host plant. 

 



 

Chapter 3:  The effect of BRNV + RLMV on the recruitment and performance of A. idaei 

70 

3.2 Materials and methods 

3.2.1 Plant propagation  

Plants were grown from vernalised root of the raspberry cultivar Glen Ample.  Parent 

plant material was derived from virus–infected reference plants or virus–tested ‘healthy’ 

plants held at SCRI. Parent plants were originally produced by bottle grafting of scions 

from BRNV and RLMV–infected reference plants, which had been PCR–verified, onto 

healthy Glen Ample plants.  Root balls from the infected plants were cold stored at –20 

ºC for at least six months prior to propagation.  Root was sown in hotbox propagators at 

20 ± 1 ºC within an air conditioned, aphid–free glasshouse (20 ± 1 ºC, 16:8; L: D 

photoperiod) in small trays using Bulrush bedding compost (Bulrush Horticulture Ltd., 

Londonderry, U.K.).  From four weeks of growth, new seedlings were carefully 

transplanted to individual pots (diameter 12 cm) and allowed to grow for a further four 

weeks in the glasshouse (conditions as above) before being used in experiments. 

 

3.2.2 Virus testing 

All plants used in experiments were first verified for the presence or absence of virus 

using RT–PCR on total RNA extracted from plant leaves.   Leaf samples for RNA 

extraction were taken from plant seedlings that were approximately six weeks old.  A 

small leaf was excised from the growing tip of the plant, immediately placed in a 2 ml 

tube and snap frozen in liquid nitrogen.  The sample was then ground to a homogenous 

powder in liquid nitrogen using a cooled, sterile mortar and pestle.  50 mg of the frozen 

plant powder was transferred into a 1.5 ml tube and 450 µl buffer RLT (Qiagen RNeasy 

plant mini kit), 45 µl plant RNA isolation aid (Ambion) and 4.5 µl β–mercaptoethanol 
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was added.  The sample was vortexed vigorously and centrifuged for 5 min at top speed.  

The aqueous sample was transferred to a QiaShredder spin column and the extraction 

was continued according to the Qiagen RNeasy manufacturer’s instructions.  Ready–to–

go™ RT–PCR beads (GE Healthcare) were used to set up 50 µl PCR reactions using total 

RNA extracts according to the manufacturers instructions using primers specific to virus 

RNA sequence (Table 3.1).  

 

 

 

 

 

 

 

 

The RT–PCR cycling conditions for BRNV amplification were: one cycle at 42 ºC for 1 

hour (reverse transcription); one cycle at 94 ºC for 5 min, followed by 40 cycles at 94 ºC 

for 1 min, 66.5 ºC for one min and 72 ºC for one min. The reaction then underwent a 

final extension at 72 ºC for 20 min.  The PCR conditions for RLMV primer pairs were as 

above but with an annealing temperature of 58 ºC.  Positive and negative control 

reactions were included in the PCR using RNA extracted from a known healthy plant 

and one which carried a reference isolate of RLMV or BRNV.  A 10 µl aliquot of cDNA 

product was analysed by running on a 1% agarose gel stained with ethidium bromide 

solution and visualised under UV light. 

Table 3.1. Primer sequences and product sizes for BRNV and RLMV RT-PCR reactions 

Target Primer Sequence (5’ – 3’) Product size (nt) 

    

1153f gcgcaatgaacccaagttta 
BRNV 

1154r caacatcgaatccctcaagc 
502 

    

1291f gtccgacttagtgatgacgtatcg 
RLMV 

1291r cctcggatggagtaagcccactg 
373 

    

 



 

Chapter 3:  The effect of BRNV + RLMV on the recruitment and performance of A. idaei 

72 

3.2.3 Insects 

A clone of Amphorophora idaei (biotype 2) were maintained in Perspex cages within a 

controlled environment laboratory at 19 ± 1 ºC, 16:8, L:D photoperiod, the optimum for 

aphid development.  The insects were reared on Malling Landmark raspberry plants to 

ensure that any behaviours observed were not a result of previous experience feeding on 

the Glen Ample test plant. 

 

3.2.4 Aphid recruitment – initial preference 

To investigate if A. idaei shows a preference for raspberry plants infected with viral 

pathogens, two choice tests were carried out.  These choice tests were set up in a 

controlled environment at 19 ± 1ºC with overhead lighting (16:8 L:D photoperiod).  Two 

plants (one healthy and one infected with BRNV and RLMV) were positioned 30 cm 

apart and connected using a wooden bridge (30 cm x 3 cm) with a 15ml universal tube 

sunk into the centre.  Bridge positions were checked using a spirit level.  Three apterous 

A. idaei adults were transferred to the central tube and left for 30 minutes prior to the 

start of each experimental replicate in order to minimise the effects of stress on the 

insects.  Apterae were used for ease of experimental manipulation as the ‘open’ nature of 

the experimental set-up did not allow for use of winged aphids.  The screw cap of the tube 

was removed and aphids were allowed to ascend the inside of the tube and cross the 

wooden bridge to contact a plant, when they were assumed to have made an initial 

choice.  Twenty replicates of the experiment were obtained in light conditions using 

different aphids and plants on each occasion.  The experiment was repeated in the dark 

to ascertain whether preferences were driven by visual cues such as leaf senescence 
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induced by the raspberry viruses.  The laboratory was darkened by blocking out all 

external light with black paper.  Ten replicates were conducted using different aphids and 

plants.  Aphid positions were checked by illuminating the experiment with a dim red 

light bulb for a few seconds at a time. 

 

3.2.5 Aphid performance 

The performance experiment was designed to test aphid development rate and 

reproduction on RT–PCR–verified healthy and virus–infected raspberry host plants.  

Plants were positioned on a raised platform within a water–filled plastic tray which served 

as a ‘moat’ barrier to aphid movement between plants within a controlled environment at 

19 ± 1ºC with 16:8 L:D photoperiod.  Eight week old plants (cv. Glen Ample) were 

inoculated with one apterous adult aphid which was then monitored daily for production 

of offspring.  At the onset of reproduction, all but one first instar aphid were gently 

brushed from the plant using a fine paintbrush.  The remaining nymph was monitored 

daily and the date of adulthood (i.e. development time) and the time to onset of 

reproduction (i.e. pre–reproductive period) recorded.  The aphid was allowed to remain 

on the plant for seven days from the onset of reproduction and the total number of 

offspring produced in this time was recorded at the conclusion of the experiment.  Ten 

experimental replicates were obtained in this way using different aphids and plants.  At 

the conclusion of the experiment, all aphids were brushed from the plant whereupon the 

leaves were excised, snap frozen in liquid N2 and stored at –80 ºC for chemical analyses 

(see Chapter Four).  Ten control plants of each plant type (healthy and virus–infected) 
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that were not exposed to aphid treatment were also harvested at this time (see Chapter 

Four). 

 

3.2.6 Aphid movement between plants 

3.2.6.1 Over 30 min 

One plant leaflet from each of two plants (healthy or virus-infected) was placed into a 

square Petri dish (23.5 cm × 23.5 cm) through a small hole cut in each side and the lid of 

the dish was placed on top to prevent aphids escaping.  The leaves remained attached to 

the rest of the plant throughout the experiment and any potential strain on the stem was 

avoided by suspending the Petri dish on clamp stands so that it sat parallel to the bench 

(position checked with spirit level).  A mirror was positioned beneath the arena to aid 

aphid observation if the insect walked underneath the leaf.  An adult aphid was released 

from a central hole in the Petri dish after it had been starved for an hour and its position 

in the arena recorded every min for 30 min.  The aphid was scored as being in a ‘neutral’ 

area if it was anywhere other than on one of the plant leaflets.  A total of 43 experimental 

replicates were obtained in this way using different aphids and plant pairs (i.e. 43 healthy 

plants paired with 43 infected plants and 43 different aphids). 

 

3.2.6.2 Over seven days 

To further investigate aphid movement after the initial host plant choice was made, a 

migration experiment was conducted in order to look more closely at the patterns of 

aphid movement between host plants.  Two plants, one healthy and one infected with 
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BRNV and RLMV, were positioned within a wire–mesh insect cage with a plywood base 

(54 cm × 50.5 cm) similar to those described by Clark et al. (2010).  Plant pots were 

positioned through circular holes cut into the base (diameter 10 cm) which left the 

aboveground mass of the plant entirely enclosed within the cage and meant that the 

plants could be watered at the base of the plant pot without the need to open the cage.  

All cages were positioned in a controlled environment (conditions as above).  Five 

apterous A. idaei adults were released from a dish in the centre of the cage base between 

the two plants and were then allowed to move freely within the cage.  Aphid positions 

were recorded after 12 h and at 24 h then at 24 h intervals thereafter for a seven day 

period.  A total of 28 replicates were obtained using different aphids and plants in each 

cage.   

 

3.2.7 Foliage colouration 

In order to ascertain if differences in foliage colouration may be a factor in aphid host 

plant location, measurements of both absorbance and reflectance were made using 

healthy and virus-infected plants.  All measurements were taken using a UniSpec-SC 

spectral analysis system (PP Systems, Massachusetts, U.S.A).  Absorbance and reflectance 

were measured from 20 plants (ten healthy and ten infected with BRNV and RLMV) 

which were grown in identical conditions to those used in aphid experiments and that 

had been verified for the presence of absence of the viruses using PCR tests (see section 

3.2.2).  The UniSpec system was calibrated in both light and dark to obtain a reference 

scan between 300 and 1100 nm.  After calibration, the fibre-optic detector was clipped to 

a fully expanded leaf of the plant and absorbance and reflectance were measured between 



 

Chapter 3:  The effect of BRNV + RLMV on the recruitment and performance of A. idaei 

76 

400 and 800 nm at intervals of approximately 4 nm using a source white light intensity of 

100%.  All measurements were taken from leaves at a similar age and position on each 

plant.  Absorbance and reflectance of each leaf was calculated by comparison with the 

reference scans as follows: 

Absorbance = log (I0/I); 

Reflectance = I/I0: 

where I is the raw sample data obtained from each leaf and I0 is the reference data from 

the background scan. 

 

3.2.8 Statistical analyses 

Parametric statistical tests were applied where possible to all data confirmed to be 

normally distributed.  Some aphid performance data (development time and pre–

reproduction time) required log10 transformation in order to meet assumptions of 

normality.  Aphid performance parameters were analysed using a one-way ANOVA and 

differences in foliage colouration (absorbance and reflectance of light) using a two-sample 

(unpaired) t-test in GenStat version 13.0 (VSN International). 

The proportion of aphids initially choosing virus infected plants over healthy plants in 

the light and dark experiments were analysed using generalized linear models (GLM) with 

a binomial error structure and utilising a logit-link function in R version 2.12.1 (R 

Foundation for Statistical Computing).  Model estimates of the proportion of aphids on 

virus infected plants (y-variable) were generated for both the experimental data and also 

for a null model which assumed no preference (proportion of aphids on infected plants 
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equal to 0.5).  Significant deviations between these two models were therefore indicative 

of an aphid preference for virus infected plants and the results are reported as the χ2 

values generated from each comparison.      

 Due to the repeated measures on the same aphid individuals over time, the longer aphid 

migration experiments (over 30 min and 7 d) were analysed using a generalized linear 

mixed effects model (GLMM) assuming a binomial error structure and utilising a logit-

link function.  In each analysis, the proportion of aphids on infected plants was fitted as 

the y-variable and time was initially fitted as the x-variable.  Cage or arena nested within 

time was initially fitted as the random term.  Terms were subtracted from the model until 

any further removal led to significant increases in deviance and thus higher values of 

Akaike’s Information Criterion (AIC; Akaike, 1974).  All results and associated 

probabilities are reported based on the resulting minimum model for each experiment 

(for model summaries see Table 3.2).  Aphids on the side of the arena or cage were 

assumed to be non-responsive and were excluded from the analyses.  All mixed models 

were run using the lme4 package in R version 2.12.1 following the methods of Crawley 

(2007) to eliminate temporal pseudoreplication in the dataset.   

 

3.3 Results 

3.3.1 Aphid recruitment – initial preference 

A higher number of A. idaei chose to move to plants that were infected with BRNV and 

RLMV when released from the universal tube under both light (Figure 3.1a) and dark 

(Figure 3.1b) conditions.  All aphids tested moved to a plant within an hour of release 

with a total of 38 aphids out of 60 and 20 out of 30 choosing those infected with BRNV 
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+ RLMV under light and dark conditions respectively.  The proportion of aphids 

choosing infected plants in light conditions was significantly different from 0.5 (χ21 = 

4.31, P = 0.038, Figure 3.1a).  Although a higher proportion of aphids chose the infected 

plant in dark conditions, the result was not significantly different from 0.5 at the 95% 

confidence interval (χ21 = 3.40, P = 0.065, Figure 3.1b). 

 

3.3.2 Aphid performance 

When reared on plants that were infected with BRNV and RLMV, the time taken for a 

newly laid first instar A. idaei to reach adulthood was significantly longer on BRNV + 

RLMV–infected plants compared with healthy plants (F1, 18 = 4.75, P = 0.043; Figure 

3.2a).  The development time of A. idaei on healthy plants was only 12.3 (± 1.10) days, 

more than three days shorter than A. idaei feeding on infected plants (15.4 ± 0.90 days).  

Similarly, the time taken by the aphid to reach reproductive maturity and to begin to 

produce nymphs (pre–reproductive period) was significantly longer on virus–infected 

plants than on healthy plants (F1, 18 = 6.15, P = 0.023; Figure 3.2b) at 16.8 (± 1.19) days 

compared to the 14.9 (± 1.14) days taken by aphids feeding on healthy host plants.  

Counts of the number of nymphs produced by an adult aphid over the seven days 

following the first reproduction on each plant revealed no effect of host plant infection 

with BRNV and RLMV (Figure 3.3). 
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Figure 3.1.  Proportion of aphids initially choosing healthy or BRNV + RLMV–infected 

plants in (a) light conditions, χ21 = 4.31, P = 0.038 and (b) dark conditions, χ
2
1 = 3.40, P = 

0.065. Bars represent response from n = 20 and n = 10 respectfully.  
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Figure 3.2.  (a) A. idaei development time in days, F1, 18 = 4.75, P = 0.043 and (b) A. idaei 

pre–reproductive period in days, F1, 18 = 6.15, P = 0.023.  Mean values of n = 10 ± SEM 

are shown and back-transformed data are reported in both figures.   
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Figure 3.3.  Number of nymphs laid by adult A. idaei per day, F1, 18 = 0.035, P = 0.854   

Mean values of n = 10 ± SEM are shown. 
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3.3.3 Aphid movement between plants 

3.3.3.1 Over 30 min 

Observations of individual aphids released between a leaf of a non-infected and virus 

infected plant demonstrated that  A. idaei were found in consistently higher proportions 

on infected leaves at all sample periods after 2 min of the start of the experiment (Figure 

3.4a).  The time for which the aphid was exposed to the leaves was found to exert a highly 

significant effect on aphid preference for virus infected leaves with a tendency for the 

proportion of aphids on infected leaves to increase significantly over time (Table 3.2).  

  

3.3.3.2 Over seven days 

Although a consistently higher proportion of aphids were present on virus-infected plants 

compared with healthy plants over the entirety of the seven day experiment (Figure 3.5), 

the proportion of aphids present on the infected plants was not found to differ 

significantly from 0.5 (see Table 3.2).   

Experiment AIC Random Effects Fixed Effects Estimate z value P 

 

30 mins 

 

144.5 

 

Arena 

 

Intercept 

Time 

 

1.70294 

0.26868   

 

0.747 

4.086 

 

0.455 

< 0.001 

7 days 158.1 Cage Intercept 0.5222 1.064 0.287 

 

 

Table 3.2.  Summary of minimum adequate generalised linear mixed effects models (GLMM) for 

aphid behaviour assays showing the minimum AIC used for model selection, random and fixed 

effects specified in the model, model estimates and associated z values and probabilities.  
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Figure 3.4.  Proportion of aphids present on healthy or BRNV and RLMV-infected leaves 

over 30 minute time period, 1 adult aphid released per arena. Mean values ± SEM are 

shown. See Table 3.2 for details. 
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Figure 3.5.  Proportion of aphids present on healthy or BRNV and RLMV-infected host 

plants over 7 d period.  Mean values of n = 28 ± SEM are shown. See Table 3.2 for 

details. 
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3.3.4 Foliage colouration 

Within the range of wavelengths at which absorbance and reflectance of white light was 

measured (400 – 800 nm), all healthy plants and infected plants exhibited a maximum 

absorbance in the blue and red regions of the spectrum of light (Figure 3.6a).  There were 

no significant differences in the wavelength of light absorbed by healthy and virus-

infected plant leaves between 412 and 712 nm but there were differences at wavelengths 

of 751.5, 771.3 and 791.2 nm; all values corresponding to the red region of the visible 

spectrum (Table 3.3).  As expected, peak reflectance of both healthy and virus-infected 

leaves within the visible spectrum occurred at wavelengths corresponding to green light 

(Figure 3.6b).  Analysis of reflectance revealed a significant difference in light reflected 

from healthy and virus-infected plants, particularly in regions of the spectrum 

corresponding to blue, green and red light (Table3.3).  
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Figure 3.6 (a) Absorbance and (b) Reflectance of healthy and virus-infected plant leaves 

between 400 and 800 nm.  Blue lines represent healthy plants and red lines represent 

virus-infected plants.  Mean values of n = 10 ± SEM are shown.  Asterisks denote 

significant differences (see Table 3.3 for details).   
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3.4 Discussion 

In aphid initial choice tests, A. idaei showed a significant preference for plants that were 

infected with BRNV and RLMV over those that were healthy.  These findings are 

consistent with several other studies of aphid preference for diseased host plants (e.g. 

(Castle & Berger, 1993; Eigenbrode et al., 2002; Mauck et al., 2010). Aphids are known 

to exhibit a phototactic response to reflected light from host plants (Powell et al., 2006) 

and many studies attribute aphid preference for virus–infected plants to the visual 

attraction of symptomatic yellow foliage (Fereres et al., 1999; Hodge & Powell, 2008).  

The absorbance of light from healthy and virus-infected plants as measured by spectral 

analysis in this study showed that there were discrete differences in the wavelength of 

light absorbed by the leaf (Figure 3.6a) and the wavelength of light reflected (Figure 3.6b).  

As apterous A. idaei exhibited a preference for virus infected plants in light conditions, it 

is reasonable to assume that they may be attracted by a visual cue.   

 

The eyes of herbivorous insects, including aphids, are known to possess three colour 

receptors which are sensitive to UV, blue or green light (see Chittka & Doring, 2007).  In 

addition, the peach-potato aphid, Myzus persicae has been shown to possess a UV receptor 

with a peak sensitivity of 330 nm and a green receptor with a peak sensitivity of 530 nm 

(Kirchner et al., 2005).  Although photoreception of A. idaei has not yet been determined, 

if it is similar to that of M. persicae then the results of this study show that there are 

significant differences in the reflectance of light from healthy and virus-infected raspberry 

plants at the closest wavelength to that of peak sensitivity in M.  persicae  (wavelength = 

532.6 nm, t = -5.00, P < 0.001; Table 3.2) and indeed throughout the green region of the 
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spectrum of light.  Although, the influence of foliage colouration was negligible in this 

short-term laboratory experiment, it may be important for host plant location by A. idaei 

in field conditions and, as virus-infected plants measured in this study showed a greater 

reflectance of green light, it may be the case that these plants would be more apparent to 

the aphid at long distance.  Additionally, as the virus infection progresses, visible 

symptoms develop on the leaves.  For example, infection of red raspberry with BRNV and 

RLMV often results in the production of angular yellow patches on the leaves (see 

Chapter two; section 2.3.1) and yellow-green light has been shown to be the most 

attractive for other aphid species (Prokopy & Owens, 1983).  Due to the high selection 

pressure acting on aphids, colour intensity may be used by the aphid as a method of 

discriminating between good quality hosts and poor ones.  Significant differences 

between reflectance of light corresponding to the blue and red regions of the spectrum 

were also found in my study which may also influence A. idaei host selection at long 

distance however, until a red receptor is discovered in an herbivorous insect, the role of 

vivid red autumn colouration as a warning signal to herbivores (Hamilton & Brown, 

2001) will remain unresolved. 

 

In darkness, where the detection of reflected light by the aphid would have been 

impossible, there was a trend towards a preference for virus infected plants (P = 0.065).  

This particular experiment used only half the number of trials of that conducted in light 

conditions and it is therefore likely that an increased number of replicates would have 

resulted in a significant result.  In conclusion, it is not possible to rule out the role of an 

olfactory cue mediated by changes in volatile compounds as in other plant pathogen – 
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aphid interactions (Eigenbrode et al., 2002; Jimenez-Martinez et al., 2004; Mauck et al., 

2010). 

 

My studies showed that, after the initial attraction of the A. idaei to plants infected with 

BRNV and RLMV (Figure 3.4), they exhibited a significant preference for the infected 

plants over a 30 min period.  Indeed, the proportion of aphids found on infected leaves 

was found to significantly increase over the 30 min the aphid was exposed to the two 

plants.  However, the study which was conducted over a seven day period indicated no 

such significant preference for virus infected plants between 12 and 168 hours (Figure 

3.5).  This finding has several important implications as the attraction of the aphid to 

these plants appears to be deceptive and this is reflected in A. idaei performance 

parameters when forced to feed on virus–infected plant tissue.  Newly laid instar I A. idaei 

took longer to develop to adulthood on plants infected with BRNV and RLMV than 

when compared to those which fed on healthy control plants.  The time taken to reach 

reproductive maturity and to begin to produce offspring was subsequently longer and, 

although no difference was observed in the total number of offspring produced on each 

type of plant, the development times would undoubtedly have knock–on effects for total 

aphid population growth.  It may actually be less costly to the aphid to invest energy in 

moving to a more suitable host. 

 

 Similar antagonistic effects of plant viruses on insect vectors have been found previously.  

For example, Donaldson & Gratton (2007) demonstrated that the population growth 

rate of Aphis glycines on soybean infected with Alfalfa mosaic, Soybean mosaic or Bean 
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pod mottle viruses, was reduced by an average of 20% and Mauck et al., (2010) reported 

that squash plants infected with Cucumber mosaic virus supported lower populations of 

Aphis gossypii in the field.  It may be argued that a pathogen–induced reduction in host 

suitability is actually of benefit to BRNV and RLMV in this instance as the semi–

persistent nature of their transmission means that A. idaei need only feed on the virus-

infected plant for approximately 30 min in order to become viruliferous.  However, the 

mechanism of subsequent transmission remains unresolved.  It is likely that the vector 

migrates between the 30 min and 12 h time periods recorded in these experiments and 

that this relocation was missed by the first sampling period of 12 h in the seven day 

experiment.  A more frequent period of experimental observation (e.g. counts every hour 

from 0 to 12 h) may therefore be beneficial for the purposes of future studies.   

 

Whatever the mechanism, be it physical or chemical, it is clearly detrimental for A. idaei 

to feed on virus–infected tissue when healthy raspberry plants are available and although 

this study did not measure longevity and fecundity of A. idaei for the entirety of the 

aphid’s lifespan, the prolonged development time is likely to not only have an impact on 

overall population growth but could also have indirect implications for vector survival 

through an increased period of susceptibility to natural enemies and predators. The work 

of Alliaume et al. (2010) showed that the larval developmental stages of the seven–spot 

ladybird, Coccinnella septempunctata, exhibited a preference for smaller development stages 

of A. idaei in choice tests conducted in the laboratory.  Although the behavioral response 

of the beetles requires further testing under field conditions, it is highly likely that a 

similar behaviour would be observed in plantations and further corroborate the slow-
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growth, high-mortality hypothesis (Feeny, 1970; Clancy & Price, 1987; Williams, 1999).  

Similarly, juvenille developmental stages of A. idaei are less effective than adults at evading 

attack by the parasitic wasp, Aphidius ervi (Mitchell et al., 2010) and is therefore beneficial 

for the aphid to reach adulthood quickly.  These insects are just two examples of a 

number of predators/natural enemies known to be naturally occurring in raspberry 

plantations and their presence would be therefore highly likely to impact aphid 

population size on both healthy and virus–infected plants.  Thus, it is important to bear 

in mind that plant infection with viral pathogens not only has impacts for the insects that 

act as vectors, but the consequences of induced changes to host plant chemistry may be 

more far reaching and impact upon the population dynamics of higher trophic groups – 

particularly with changes in management practices which now tend to enclose raspberry 

plants under polytunnels and therefore also enclose insect populations (Mitchell et al., 

2010). 

 

The plant–mediated interactions between viral pathogens and aphids occurring in 

raspberry, and indeed other plant systems consist of several sequential stages.  First, 

pathogen–induced changes to the host plant alter the visual and/or olfactory signals 

emitted by the host plant.  This is probably in the form of increased volatile emissions 

providing a stronger or more easily detectible signal which attracts aphids preferentially to 

the diseased plant.  Secondly, pathogen–induced changes to contact or gustatory cues 

detected by the aphid when it alights on the plant may operate through physical or 

chemical changes to the leaf surface which may facilitate probing and feeding.  Finally, 

the pathogen may induce alterations to host plant nutritional chemistry which may 

induce the aphid to remain (arrest) on the plant and feed for prolonged periods 
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(Eigenbrode et al., 2002; Jimenez-Martinez et al., 2004; Srininvasan et al., 2006) or might 

trigger aphid migration through the provision of a nutritionally poor host (Mauck et al., 

2010).  This study has addressed the first and last of these stages and identified the initial 

attraction of A. idaei to raspberry plants infected with BRNV and RLSV and characterised 

aphid behaviour subsequent to this host plant choice in the form of rapid migration away 

from the diseased plant and poorer development when forced to feed on virus–infected 

tissue.  The next step is to further elucidate the mechanisms that may be responsible for 

these observations.  In particular, the identification of altered volatile signals emitted 

from virus–infected raspberry plants is discussed in Chapter Five of this thesis while 

investigations of plant leaf chemistry are discussed in Chapter Four. 



CHAPTER FOUR 
 

Aphids and viral pathogens induce changes in Rubus 

ideaus leaf chemistry  
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Abstract 

In order to investigate potential causal mechanisms for the poorer performance of A. idaei 

on raspberry plants infected with BRNV and RLMV compared with healthy plants, a 

series of chemical analyses were conducted on R. idaeus leaf tissue with the objective of 

exploring virus-induced changes to leaf chemical composition. These chemical analyses 

were conducted on freeze dried and milled leaf material excised from plants used in aphid 

choice and performance experiments.  Leaf phenolic compounds were quantified to 

explore defensive responses of raspberry plants to aphid and virus attack and leaf carbon, 

nitrogen and amino acids were analysed to investigate potential differences in nutritional 

quality for the aphid. 

 

Extraction of leaf phenolic compounds revealed that aphids feeding on healthy plants 

increased the level of leaf phenolic compounds, suggestive of a defensive response by the 

plant, but that aphids feeding on virus-infected plants failed to elicit a similar response.  

Aphid feeding actually led to a decrease in phenolic content in these plants.  This 

decrease may be evidence of a virus-induced facilitation of aphid feeding. 

  

Analysis of leaf carbon and nitrogen concentration by flash combustion showed that 

although the carbon concentration was significantly elevated in plants infected with 

BRNV and RLMV compared with healthy plants, leaf nitrogen did not differ. Although 

the subsequent C:N ratio calculated was higher in virus-infected plants, it did not differ 

significantly from that of healthy plants. 

 

Quantification of free amino acids using HPLC demonstrated that their concentration in 

plants infected with BRNV and RLMV increased by over 200% from 8.45 µM g–1 in virus-

free plants to 29.14 µM g–1.  The amino acid content of raspberry was dominated by the 

non-essential glutamate (65% of total in healthy plants) which further increased in 

response to plant infection with BRNV and RLMV (77% of total).  High relative 

concentrations of glutamate have been previously suggested as being indicative of 

nutritionally poor host plants for aphids.   
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4.1 Introduction 

4.1.1 Rationale 

As was demonstrated in Chapter Three, the large raspberry aphid, Amphorophora idaei, is 

attracted to raspberry plants that are infected with BRNV and RLMV.  This choice 

appears to have detrimental consequences for the aphid as when forced to feed on 

raspberry plants infected with these pathogens, A. idaei performs less well and takes longer 

to develop compared with A. idaei feeding on healthy raspberry.  However, when given a 

free choice between host plants, despite an initial attraction to virus-infected host plants, 

the preference was short lived and the proportion of aphids on these plants was not 

significant after 12 h. The mechanism(s) that are responsible for these behaviours are 

likely to be related to pathogen induced changes in plant nutritional chemistry and the 

aim of this chapter was to identify specific changes to leaf chemistry which may explain 

the aphid behaviour and performance observed in the experiments that are detailed in 

Chapter Three.   

 

4.1.2 Plants as resources for insects and pathogens 

Aphids are phloem feeders and the phloem sap diet provides them with a concentrated 

solution of carbohydrate and a low concentration of amino acids (Dixon, 1998).  Aphids 

require carbon, in the form of sugars, as an energy source and amino acids for protein 

metabolism (Rhodes et al., 1996) but are understood to be limited by plant nitrogen 

(Dixon, 1998) and in particular, by the low availability of dietary amino acids (Douglas, 

1993).  Studies of aphid physiology using artificial diets have demonstrated the 

importance of these compounds for aphid growth (Douglas, 1998).  Aphids, like all 
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animals, are unable to synthesise particular amino acids that are required for protein 

synthesis (essential amino acids) (Morris, 1991) and they therefore must acquire these in 

their diet or from symbionts.  The ratio of essential to non–essential amino acids in the 

aphid phloem–sap diet is very low (Douglas, 1993) and in order for aphids to meet the 

high metabolic demand to fuel their characteristically high growth rate, they have formed 

symbioses with micro–organisms to provide them with additional essential amino acids 

(Buchner, 1965).  Most aphids possess the symbiotic micro–organism Buchnera aphidicola 

and a recent study to quantify plant phloem amino acids revealed that this symbiosis is 

sufficient to meet the nutritional demand of the aphid when reared on artificial diets 

lacking individual component amino acids which would normally be available to them 

when feeding on their host plant (Gunduz & Douglas, 2009).   

 

Plant pathogens are also reliant on the host plant metabolism to synthesise particular 

resources that they require in order to multiply and be transmitted to new hosts.  For 

example, like aphids, plant viruses require amino acids which they use to synthesise new 

viral protein during replication and they are entirely dependent on the host plant 

metabolism to synthesise these components (Hull, 2002).  Overlapping requirements for 

these resources inevitably leads to competition between insects and viruses for these 

resources (Fiebig et al., 2004).      

 

 

 

 

 



 

Chapter 4:  Raspberry leaf chemistry 

98 

4.1.3 Plant mediated interactions between pathogens and insect 

herbivores 

Plants are capable of mounting a wide array of defensive responses to pathogen infection 

and herbivory (Stout et al., 2006).  The induction of a defensive response to a first 

attacker may have implications for a secondary attacker through alterations to plant 

physiology or biochemical pathways which may alter the chemical composition of the leaf.  

For example, Kluth et al., (2002) showed that although the aphids Aphis fabae and 

Uroleucon cirsii mechanically transmitted the rust fungus, Puccinia punctiformis, they 

interacted differently with the pathogen compared with the herbivorous beetle, Cassida 

rubignosa which is also a vector for the fungus.  Aphids were shown to perform better on 

host plants infected with the pathogen, while development of juvenile beetles was 

impaired and adult biomass reduced.  This study therefore demonstrates the variable 

effects of plant pathogen infection on insect vectors with one seemingly mutualistic 

interaction and one antagonistic interaction.  Thus, plant–mediated effects on insects 

must be taken into account when attempting to study tri–lateral interactions such as 

those occurring between A. idaei and BRNV and RLMV on host raspberry plants.    Many 

studies have successfully characterised insect behaviour on host plants that are infected 

with pathogens, but studies that actually investigate the underlying changes to plant 

physiology that may underpin the interaction are few in number.  Knowledge of these 

chemical mechanisms is extremely important for furthering our understanding of host 

plant mediated interactions between pathogens and their vectors, particularly chemical 

mechanisms that may affect pathogen epidemiology through promoted or degraded insect 

performance which has implications for the spread of disease in natural systems.   
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4.1.4 Potential chemical mechanisms 

As aphids are limited by dietary nitrogen and low concentrations of amino acids in the 

phloem sap diet, these nutrients may be important factors in determining the underlying 

plant chemistry which may act as the causal mechanism for changes in insect performance 

on host plants infected with pathogens.  Fiebig et al. (2004) reported a significant 

reduction in total amino acids in response to wheat infection with Barley yellow dwarf 

virus (BYDV).  This decrease had a knock–on effect for the cereal aphid, Sitobion avenae, 

which was shown to be less efficient at utilising the plant phloem sap and subsequently 

exhibited a lower intrinsic rate of increase on BYDV–infected host plants.  Similarly, 

Johnson et al. (2003) showed that infection of birch leaves with a fungal pathogen, 

Marssonina betulae, led to a higher concentration of free amino acids in symptomatic 

leaves where performance of the birch aphid, Euceraphis betulae, was enhanced.  In 

addition to pathogen–induced changes in amino acid composition, all higher plants 

produce allelochemicals such as polyphenols and therefore all herbivorous insects 

encounter these chemicals when feeding (Schoonhoven et al., 2005).  Many 

polyphenolics, e.g. catechin, are strong deterrents to insect feeding or act as insect 

toxicants.  The studies of Abouzaid et al. (1993) demonstrated the detrimental effect of 

catechin on the performance of the European corn borer, Ostrinia nubilalis.  Specifically, 

this antioxidant flavonol was shown to significantly impede larval development of the 

insect.  The presence of such feeding deterrents in raspberry tissue is an important 

consideration for investigation of A. idaei performance as enzymes in aphid saliva have 

been found to be closely related to plant defence against aphids (Miles, 1999).  For 

example, probing by aphids can cause localised accumulation of polyphenols in the leaf 

which may disrupt aphid digestion, but these are usually counteracted by enzymes in the 
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aphid’s saliva which detoxify harmful plant defence compounds (Miles, 1999; Ma et al., 

2010).  Rubus species are known to be rich in phenolic antioxidants (Deighton et al., 

2000) but most studies focus on the properties of berries due to their benefits for human 

health.  Few studies have addressed the content of these compounds in leaves and their 

effects on herbivores that feed on raspberry, such as A. idaei.         

 

4.1.5 Aims and hypotheses 

The aim of this study was to investigate potential chemical mechanisms that could be 

responsible for the poorer performance of A. idaei on raspberry plant infected with BRNV 

+ RLMV.  In order to achieve this aim, four different chemical analyses were performed 

on raspberry leaf tissue.  The specific aim was to quantify changes in levels of leaf 

phenolics, carbon, nitrogen and amino acids which may affect the response of A. idaei on 

when feeding on plants infected with BRNV and RLMV.  Chemical analyses were as 

follows:  

1. quantification of leaf polyphenols  

2. quantification of leaf carbon and nitrogen content 

3. identification and quantification of leaf free amino acids 

 

These analyses were conducted to test the following hypotheses which were based on the 

reduced performance of A. idaei on virus infected plants:  
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1. production of polyphenolic compounds would be enhanced in response to 

infection with BRNV and  RLMV and/or aphid feeding (defensive response) 

2. leaf nitrogen would be decreased in plants infected with BRNV + RLMV, 

resulting in an increased C:N ratio  

3. plants infected with BRNV and RLMV would have a lower concentration of 

amino acids than healthy plants.     

 

4.2 Materials and methods 

Leaves from plants used in the aphid performance experiments and individual aphid 

choice tests (over 30 min) were freeze dried and milled to a fine powder for all chemical 

analyses detailed below (see Chapter three).  These plants included controls that were not 

exposed to aphids and a subset of six plants that had been exposed to aphids for 

approximately three weeks.  In these cases, the aphid population never exceeded 35 

aphids (adult plus offspring).  Analysis of leaf C and N content was conducted on the 

leaves from aphid choice tests while analysis of leaf phenolics and amino acids was carried 

out on control plants from the aphid performance experiment (Chapter Three, Section 

3.2.5) which consisted of 10 healthy plants and 10 plants infected with BRNV + RLMV 

that had been exposed to identical growth conditions as plants that had been inoculated 

with aphids during the experiment.  Phenolic and amino acid analyses were also 

performed on a subset of six plants that had been exposed to aphids.  All plants were 

harvested for analysis at the same time after the completion of the experiment.  
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4.2.1 Leaf phenolics 

Analysis was carried out using the enzymatic method described by Stevanato et al.,    

(2004), which has the advantage of not being affected by interfering substances such as 

ascorbate, citrate and sulfite (Stevanato et al., 2004).  Extractions were conducted in a 

10:1 ratio (leaf material to methanol) from 50 mg freeze dried material in 50% methanol 

at 80°C for 2.5 hr.  The aqueous phase was removed and cleared by centrifugation.  An 

enzymatic reaction was set up using 50 µl of supernatant mixed with 740 µl potassium 

phosphate buffer (pH 8.0), 100 µl 4–aminophenazone, 100 µl hydrogen peroxide and 10 

µl horse radish peroxidase.  The reaction was incubated at room temperature for 15 min 

and absorbance read at a wavelength of 500 nm.  Absorbance data were converted to 

catechin equivalents using a standard curve produced by serial dilution (0 – 0.10 mg ml–1 

catechin).  All chemicals were obtained from Sigma–Aldrich (Dorset, UK).  

 

4.2.2 Carbon and nitrogen 

Carbon and nitrogen concentrations were analysed using flash combustion and 

chromatographic separation of approximately 2 mg of ground and homogenised plant 

material using an Exeter Analytical CE440 Elemental Analyzer (EAI, Coventry, UK). 

Combustion of the weighed sample occurred in pure oxygen using helium to carry the 

combustion products through the analytical system. The C and N concentrations of 

samples were calculated using standards (Acetanilide) with known C and N 

concentrations. 
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4.2.3 Quantification of leaf free amino acids 

Free amino acids were extracted from 50 mg freeze–dried and milled leaf material in 80% 

HPLC grade methanol (Fisher Scientific).  After addition of 1 ml of 80% methanol, 

samples were vortexed vigorously and placed on a shaking plate for 1 h to provide 

continuous agitation.  The mixture was then centrifuged for 15 min at 10,000 rpm at 4 

oC and the supernatant stored in a fresh tube.  A second 1 ml aliquot of 80% methanol 

was then added to the plant pellet and a second extraction carried as described above.  

The supernatants were then pooled and mixed thoroughly by vortexing.  A 1 ml aliquot 

of the extraction was transferred to a new tube and dried under vacuum until just dry.  

The resulting pellet was eluted in 1 ml Milli–Q water and stored temporarily at –20 °C.   

 

Amino acids were separated using reverse phase HPLC after derivitisation using o–

phthaldialdehyde (Jones, et al. 1981) using a Hewlett Packard autosampling LC system 

with Zorbax XDB-C18 column and fluorescence detection.  Amino acids were quantified 

by comparison with AA–S–A18 (Sigma) reference mixture supplemented with asparagine, 

glutamine and tryptophan.  All protein amino acids, with the exception of proline and 

cysteine, could be quantified using this method.   

 

4.2.4 Statistical analyses 

Parametric statistical tests were used where possible on data determined to be normally 

distributed (Shapiro–Wilk test).  In order to investigate potential interactions occurring 

between plant viruses and aphids, leaf phenolics and amino acids were analysed using a 

two–way ANOVA with plant type (healthy or infected) and aphid treatment as factors.  
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Some amino acid data (asparagine, serine, glycine, arginine, histidine, lysine, methionine, 

tryptophan and valine) required log10 transformation in order to meet assumptions of 

normality (Shapiro-Wilk test).  Carbon, nitrogen and C:N were analysed using a t-test or 

non-parametric equivalent, Mann-Whitney U as indicated.  All figures show back 

transformed means and standard errors.    

 

4.3 Results 

4.3.1 Phenolics 

Extraction of leaf phenolic compounds and comparison of absorbance with a serial 

dilution of catechin showed that although the concentration of phenolics was slightly 

elevated in control plants infected with BRNV + RLMV, the difference was not 

significant when compared with healthy control plants.  However, the phenolic content 

of healthy plants that had been inoculated with adult A. idaei showed a significant 

increase compared with both healthy and virus–infected control plants that received no 

aphid treatment.  Furthermore, plants infected with BRNV + RLMV which were 

inoculated with adult A. idaei showed a significant reduction when compared with 

healthy plants also inoculated with aphids but no difference was observed between either 

of the controls.  There was a significant interaction between the presence of virus in the 

leaf tissue and aphid feeding (Figure 4.1). 

 

4.3.2 Carbon and nitrogen 

The carbon content of healthy leaves was 359.19 (± 10.650) mg g–1 of leaf dry weight.  

This measurement was lower than that found in leaves infected with BRNV + RLMV 
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which was calculated to be 420.14 (± 3.058) mg g–1 of leaf dry weight.  This difference was 

determined to be highly statistically significant (Mann-Whitney U = 0.00, T = 55.0, P < 

0.001, Figure 4.2a).  A similar relationship was not found for leaf nitrogen.  Although 

healthy plant leaves were found to have a slightly lower nitrogen concentration per gram 

of leaf dry weight compared with leaves infected with BRNV + RLMV (41.47 ± 2.224 mg 

g–1 c.f. 44.42 ± 2.409 mg g–1), the difference was not significant at the 95% confidence 

interval (t = -0.898, d.f = 18, P = 0.381, Figure 4.2b).  Similarly, the C:N ratios 

subsequently calculated showed that although healthy leaves had a slightly lower C:N 

ratio, calculated as 8.80 ± 0.377, it did not differ significantly from the ratio of 9.68 ± 

0.467 of virus-infected leaves (t = -1.467, d.f = 18, P = 0.160, Figure 4.2c)  

 

4.3.3 Quantification of leaf free amino acids 

The total concentration of free amino acids in healthy plant leaves was 8.45 ± 1.574 µM 

g–1 which was lower than in plants infected with BRNV and RLMV where the total amino 

acid concentration was calculated to be 29.14 ± 5.173 µM g–1; an increase of 

approximately 240%.  There was no effect of aphids on the concentration of free amino 

acids (F1, 28 = 0.246. P = 0.624) (Figure 4.3a).   The essential amino acids had a total 

concentration of 0.91 ± 0.106 µM g–1 (14%) in healthy plants and 1.58 ± 0.179 µM g–1 

(8%) in plants infected with BRNV + RLMV.  Again, the presence of aphids feeding on 

leaves did not result in a significant effect on the content of leaf essential amino acids  

(F1, 28 = 0.047, P = 0.428) (Figure 4.3b).   
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The dominant amino acid found in raspberry leaf tissue was the non–essential glutamine 

at a concentration of 6.19 ± 1.349 µM g–1 (65% of total) in healthy plants, and 24.90 ± 

4.846 µM g–1 (77% of total) in plants infected with BRNV + RLMV.  Another non–

essential amino acid, aspartate, was the second most abundant and was found at a 

concentration of  0.64 ± 0.089 µM g–1 in healthy plants and 1.33 ± 0.165 µM g–1  in 

BRNV and RLMV infected plants.   

 

Infection of raspberry plants with BRNV and RLMV had a significant effect on the 

concentrations of five of the eight non-essential amino acids quantified; aspartate (4.4a), 

aparagine (4.4b), tyrosine (4.4g), alanine (4.4h), and glutamate (4.4i) and one of ten 

essential amino acids, isoleucine (4.4k), were significantly elevated in response to virus 

infection and aphid feeding was found to significantly increase the concentration of 

tyrosine in otherwise healthy plants (4.4g). In addition, there was an interactive effect of 

virus infection and aphid feeding on the concentration of the essential amino acids 

arginine (4.4e) and methionine (4.4n).  No significant effect of virus infection and/or 

aphid feeding was found for serine (4.4c), glutamine (4.4b), glycine (4.4f), histidine (4.4j), 

leucine (4.4l), lysine (4.4m), phenylalanine (4.4o), threonine (4.4p), tryptophan (4.4q) or 

valine (4.4r).  
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Figure 4.1. Leaf phenolic concentrations of virus–infected and healthy plants, with or 

without aphids feeding.  White circles represent healthy plants and grey triangles 

represent virus-infected plants. Mean values of n = 6–10 ± SEM are shown.  Significant 

effects (P < 0.05) are highlighted in bold.  
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Figure 4.2 (a) carbon concentration, (b) nitrogen concentration and (c) C:N ratio of 

healthy and virus infected raspberry leaves.  All figures show mean values of n = 10 ± 

SEM. 
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Figure 4.3 Concentration of (a) total free amino acids and (b) essential amino acids in 

healthy raspberry leaves (white bars) and leaves infected with BRNV + RLMV (grey bars) 

without aphids present (–) and with aphids feeding on leaves (+).  Mean values of n = 6–

10 ± SEM are shown.  Significant effects (P < 0.05) are highlighted in bold.  
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4.4 Discussion 

The results of this study demonstrate that there is an interactive effect of raspberry viruses 

and aphids on the phenolic content of raspberry leaves (Figure 4.1).  In particular, leaf 

phenolic levels exhibited an upward trend in response to aphid feeding on otherwise 

healthy plants but showed a small decrease in response to aphid feeding on plants 

infected with BRNV and RLMV. Therefore, the two raspberry viruses studied seemingly 

induced the evasion of a plant defensive response to aphids as no major difference in 

phenolic content was observed between healthy plants and those infected with BRNV 

and RLMV.  Elevated leaf phenolic content of plants in response to herbivore attack has 

been observed previously (Hartley & Firn, 1989; Felton et al., 1994; Bi et al., 1997) and 

polyphenolic compounds, such as polyphenol oxidase (PPO), have been previously 

implicated as markers for aphid host plant preference and selection and indicators of 

aphid resistant and aphid susceptible host plants (Jordens-Rottger, 1979; Dreyer & Jones, 

1981; Peng & Miles, 1988).  Montgomery & Arn (1974) showed that a simple phenolic 

substance, phlorizin, acted as a feeding and ingestion deterrent to the North American 

vector of BRNV and RLMV, Amphorophora agathonica and Han et al. (2009) showed that 

constitutive levels of PPO were higher in aphid resistant cultivars of wheat compared with 

susceptible varieties.  The same study demonstrated that the application of aphid saliva 

induced an increase in PPO concentration in both resistant and susceptible varieties, 

although the increase was greater in susceptible plants (Han et al. 2009).  The major 

signalling pathway associated with plant defence against insects is the jasmonic acid (JA) 

pathway. Methyl jasmonate (MeJA), together with jasmonic acid (JA), are key inducers of 

proteinase inhibitors which can protect plants from insect attack but are more often 

associated with responses to chewing herbivores such as Lepidopteran larvae rather than 
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phloem feeders such as aphids (Farmer & Ryan, 1990; Thaler et al., 1996; Koo & Howe, 

2009).  Anti-aphid defence, similar to plant defence against pathogens, is more commonly 

shown to be associated with salicylic acid (SA) signalling (Bostock, 1999; Bostock et al., 

2001) and a weaker jasmonate response (Moran & Thompson, 2001; Rodriguez-Saona et 

al., 2005; Thaler et al., 2010).  It may therefore be expected that the R. idaeus plants would 

mount a similar response to attack by A. idaei and by the two viral pathogens, BRNV and 

RLMV, as viruses stimulate an SA-mediated plant defence response.  However, this was 

obviously not the case for the production of plant phenols and this could indicate that  

that “cross-talk” is occurring between other pathways i.e. a virus-induced SA response 

could diminish the activity of JA-responsive genes encoding anti-herbivore activity.  

Clearly, further studies are required to confirm this.     

 

Although little is known about the induction of phenolic compounds in response to 

plant pathogens, the results of the studies which are available report variable results.  For 

example, Arpita & Ghosh (2008) recorded lower levels of phenolics in Hibiscus plants 

infected with the viral pathogen causing Yellow vein mosaic disease, while Johnson et al. 

(2003) reported that birch leaves infected with the fungal pathogen, Marssonina betulae, 

produced higher levels of phenolics than asymptomatic leaves.  As aphids performed less 

well on plants that were infected with BRNV and RLMV, where phenolic levels were 

reduced compared to healthy plants (Chapter Three), it is unlikely that that the levels of 

phenolic compounds present were responsible for the depressed development time of 

Amphorophora idaei.  This observation would appear to be beneficial to the viral pathogens 

as the failure of the plant to mount an anti-aphid defensive response when infected with 
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BRNV and RLMV may facilitate the short probes the aphid is required to make in order 

to  successfully acquire the viruses. 

 

Leaf C:N increased, although not significantly so, in response to infection with BRNV 

and RLMV as a result of an increase in carbon content of the leaves.  High C:N ratios are 

generally associated with decreases in performance of herbivorous insects, and, in 

particular high concentrations of carbon based compounds such as carbohydrate and 

lipids have also been associated with decreased insect performance as they tend to dilute 

other important nutrients (Awmack & Leather, 2002).  The concentration of carbon in 

raspberry leaves was found to be significantly elevated in response to infection with 

BRNV and RLMV and further analysis of carbon composition, particularly sugars 

important for aphids such as sucrose, may reveal compositional changes to help explain 

the poorer performance of A. idaei on virus-infected plants. For example, Mittler, (1970) 

showed that plant sucrose content could be predicted by measuring honeydew 

carbohydrate content and the more recent study of Hale et al. (2003) demonstrated that a 

very high sucrose concentration can lead to reduced ingestion of phloem sap as the aphid 

restricts osmoregulation which becomes costly at high osmotic pressures (Hale et al., 

2003).  In general, the ability of an insect to convert plant material into body mass 

increases as plant nitrogen increases (Schoonhoven et al., 2005) and the effect of elevated 

nitrogen on aphids has been demonstrated previously (Cisneros & Godfrey, 2001).  

Based on performance parameters measured for A. idaei in Chapter Three, as leaf 

nitrogen, which is generally considered to be limiting to aphids, did not show any 

alteration in concentration in response to virus infection it seems unlikely to be the cause 

of the depressed performance of A. idaei.  However, the lack of difference observed may 
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actually have been due to the presence of amino-nitrogen derived from BRNV and 

RLMV nucleic acids in the leaf tissue or the presence of plant derived N–containing 

compounds which are actually unavailable to the aphid but which may have masked any 

differences in N concentration.  Furthermore, the free amino acid content of raspberry 

leaf tissue was shown to be elevated in response to infection with BRNV and RLMV and 

both the total amino acid content and the relative proportion of essential amino acids 

were found to be highly elevated in response to BRNV and RLMV infection in raspberry 

leaf tissue.  As aphids are generally limited by amino acid availability (Douglas, 1993, 

2006) it appears that virus-induced changes to amino acid content cannot explain the 

poorer performance of A. idaei on BRNV and RLMV-infected plants.  However, in almost 

all of the individual amino acids quantified, the increase in response to virus infection 

was less pronounced in plants where aphids were feeding (Figure 4.4a-r).  This could be 

the result of direct removal of amino acids from the leaf pool by aphids during phloem 

feeding but may also be another example of cross-talk occurring between plant signalling 

pathways as generally stress to plants causes reductions in protein synthesis and a 

corresponding increase in free amino acids (Brodbeck & Strong, 1987).  In addition, 

plant viruses have a requirement for amino acids produced by metabolism of the host 

plant in order to synthesise new viral protein (Hull, 2002).  If the amino acid 

requirements of BRNV and RLMV overlap with that of A. idaei then the reduced 

performance of the aphid on virus-infected raspberry plants may be due to direct 

competition for dietary amino acids between the herbivore and the pathogen.  However, 

the exception to the general trend observed in R. idaeus is the essential amino acid 

methionine which, although unaffected by virus infection alone, exhibited an interaction 

with aphid feeding (F1,28 = 4.53, P = 0.027).  Methionine has previously been suggested as 
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a feeding stimulant for several aphid species (Mittler, 1967, 1970; Harrewijn & 

Noordink, 1971) and it could be hypothesised that the elevated levels in BRNV and 

RLMV–infected tissue is, like the leaf phenolics, a pathogen-induced mechanism to 

facilitate aphid acquisition of virions, which may be overridden by the natural plant 

defence response to aphid attack, although further studies are required in order to 

confirm this.     

 

The dominant amino acid in both healthy and virus-infected raspberry leaf tissue was 

glutamate which accounted for 64% of the total amino acid content in healthy plants.  

This proportion was elevated in response to infection with BRNV and RLMV (77.0%) 

and when aphids fed on virus-infected leaves (82%).  Glutamate has, in the past, been 

implicated in a reduction in host plant suitability when present in high relative 

concentration (Douglas, 1993; Karley et al., 2002), as it is in raspberry leaf.  Furthermore, 

high relative levels of glutamate have been shown to be present in aphid resistant plant 

cultivars and have been suggested as contributing to poorer aphid performance on these 

plants.  For example, Weibull (1988) recorded higher levels of glutamate in barley and oat 

cultivars resistant to the bird cherry oat aphid, Rhopalosiphum padi while Chen et al. (1997) 

found the same relationship in melon plants resistant to the cotton aphid, Aphis gossypii.  

It seems that glutamate may act similarly as an indicator amino acid of host plant 

suitability for A. idaei in raspberry.   

 

In conclusion, the leaf chemical analyses detailed in this chapter may in part begin to 

explain the poorer performance of A. idaei on raspberry plants infected with BRNV and 
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RLMV, particularly with respect to individual amino acids (see Table 4.1) such as 

glutamate which may act as indicators of a nutritionally poor host, although further 

studies are required in order to confirm specific relationships.  Further investigation is 

required to confirm their role in A. idaei nutrition, particularly the essential amino acids 

such as methionine.  Artificial diets are commonly utilised in investigation such as these 

and additional analyses of products of aphid digestion through examination of honeydew 

may also prove useful.  All chemical analyses in this study were conducted on total leaf 

material, which has proved a reliable indicator of phloem composition for barley (Winter 

et al., 1992; Johnson et al., 2009) but in this system, further extraction and analysis of 

phloem using techniques such as EDTA exudation (King & Zeevaart, 1974; Douglas, 

1993) or aphid stylectomy may provide further insights into the nutritional quality for A. 

idaei of raspberry plant infected with BRNV and RLMV. 
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+ aphids 

 

+BRNV + RLMV 

 

+ BRNV +RLMV 

+ aphids 

 

Leaf phenolics 

 

↑↑↑↑ 

 

↑↑↑↑ 

 

– 

Carbon n/a ↑↑↑↑ n/a 

Nitrogen n/a _ n/a 

His _ _ _ 

Ile _ ↑↑↑↑ _ 

Leu _ _ _ 

Lys _ _ _ 

Met _ _ ↑↑↑↑ 

Phe _ _ _ 

Thr _ _ _ 

Trp _ _ _ 

Val _ _ _ 

Asp _ ↑↑↑↑ _ 

Asn _ ↑↑↑↑ _ 

Ser _ _ _ 

Gln _ _ _ 

Arg _ _ ↑↑↑↑ 

Gly _ _ _ 

Tyr ↑↑↑↑ ↑↑↑↑ _ 

Ala _ ↑↑↑↑ _ 

Glu _ ↑↑↑↑ _ 

Total  ↑↑↑↑  

 

Table 4.1. Summary of results of leaf chemical analyses. Results reported as difference 

from healthy control plants. ↑↑↑↑, increase, _, no change and n/a, not tested.  Essential 

amino acids are shaded. 



CHAPTER FIVE 

Raspberry volatiles attract Amphorophora idaei 

to virus-infected raspberry plants  
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Abstract 

Aphid behavioural assays detailed in Chapter Three showed that Amphorophara idaei were 

more attracted to virus infected raspberry plants compared with healthy plants.  Although 

there was evidence that there may be a visual cue to the aphid through changes in leaf 

colouration, the role of a volatile signal was not ruled out.  In order to investigate 

potential alterations in the volatile composition of raspberry plants infected with BRNV 

and RLMV, entrainments of leaf headspace were taken simultaneously from healthy and 

virus infected plants using a novel solid phase microextraction (SPME) technique.   

 

Analysis of the volatile entrainments using TOF-GC-MS successfully identified 27 

individual volatile components in the headspace of raspberry plants and revealed an 

elevated level of overall volatile emissions from virus-infected plants compared with 

healthy controls in line with the results of previous studies of the effect of virus infection.  

Furthermore, comparison of the GC-MS signals from healthy and virus infected plants 

showed that 2 of the 27 plant-derived compounds, 2-hexenal and (Z)-3-hexenyl acetate, 

were elevated in response to virus-infection based on non-overlapping standard errors, 

making them candidate aphid attractants. 

 

Results of aphid bioassays with (Z)-3-hexenyl-acetate showed that A. idaei was attracted to 

the compound at a concentration of 50 ng ml-1 but unaffected by lower and higher 

concentrations of this volatile. 
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5.1 Introduction 

5.1.1 Rationale 

Aphids have been shown to exhibit a phototactic response to reflected light from plants 

(Hardie, 1989) and in particular, an attraction to yellow colouration (Moericke, 1952; 

Prokopy & Owens, 1983).  The results of Chapter Three indicated that there may be a 

visual cue operating to attract A. idaei to virus infected plants but the experiments did not 

conclusively rule out a role of volatile signals in host plant location.  It may therefore be 

the case that aphids are attracted to plants infected with BRNV and RLMV in the 

presence and absence of visual stimuli.  This chapter is concerned with the identification 

of potential volatile attractants and more consideration is given to the role of leaf 

colouration in Chapter Six. 

 

5.1.2 Plant volatiles as host cues to aphids 

All plants emit a range of volatile hydrocarbons which generally consist of C6-aldehydes, 

C6-alcohols and their acetates (Shiojiri et al., 2006) which vaporise on exposure to air, 

most especially when damage has occurred to the leaf (Schoonhoven et al., 2005).  These 

so called green leaf volatiles (GLVs) are those which are responsible for the characteristic 

‘cut grass’ smell from a damaged plant and consist mainly of saturated or monosaturated 

alcohols and adehydes which may occur as different isomers. It was first believed that 

phytophagous insects possessed the ability to discriminate between host plants based on 

perception of volatile compounds which were characteristic of a particular host plant 

(Fraenkel, 1959), however, it has since been shown that most insects, including aphids, 

are capable of detecting plant volatiles that are ubiquitous to higher plants (Bruce et al., 
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2005) (Table 5.1)  Plant chemical cues are detected by olfactory receptor neurons (ORNs) 

which are housed on the antennae of the insect.  In aphids, the ORNs are found on 

sensilla known as rhinaria located on the antennae of the insect.  These include the 

proximal and distal primary rhinaria and the secondary rhinaria.  The antennal structure 

of alate and apterous aphid morphs differ in that alate aphids possess more secondary 

rhinaria, suggesting that these organs are involved in host location (Pickett et al., 1992).  

On perception of a plant odour, the ORNs act to convert the chemical signal received 

from the plant to an electrical signal which acts as an input to the central nervous system 

of the insect (Hansson, 2002) and elicits the appropriate behavioural response.  Whether 

the plant is subsequently deemed acceptable depends on a variety of cues which are 

detected after landing, such as antennal detection of odours at the leaf surface (Storer et 

al., 1996) or repellent cues detected by probing the leaf with the stylets (Powell et al., 

2006). 

 

Examples of aphid host perception using volatile signals come from a variety of different 

species feeding on different host plants.  For example Visser et al. (1996) compared the 

electroantennogram (EAG) responses of four aphid species with an overlapping host 

plant range (Megoura viciae, Aphis fabae, Myzus persicae and Brevicoryne brassicae) to 35 plant 

volatiles and found that aphids were sensitive to general green leaf volatiles e.g. (E)-2-

hexenal, benzaldehydes (e.g. 4-methoxybenzaldehyde), carvones (e.g. (-)-(R)-carvone, 

monoterpene aldehydes (e.g. citronellal), nitriles (e.g. hexanonitrile) and isothiocyanates 

(e.g. butyl isothiocyanate) (Table 5.1).  Moreover, the polyphagous aphid, M. persicae 

showed increased sensitivity to 2-heptanone, 3-methoxy- and 4-methoxybenzaldehyde and 
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hexano- and heptanonitrile compared with the other aphid species studied and the non 

host-alternating M. viciae showed reduced sensitivity to some of the general green leaf 

volatiles which may aid in olfactory discrimination between host and non-host plants. 

 

In addition, studies of olfactory responses of the black bean aphid, Aphis fabae 

demonstrated that this aphid species preferentially orientated towards the odour of 

undamaged host faba bean, Vicia faba, plants in olfactometer studies (Nottingham et al. 

1991) and identification of the volatiles responsible revealed 15 different compounds that 

were electrophysiologically active with A. fabae (Webster et al., 2008).  A synthetic blend 

of these volatiles made to mimic V. faba compositionally was attractive to A. fabae and 

furthermore, the aphid showed no preference for the natural plant odour over the 

synthetic blend (Webster et al., 2008). 

 

It has been further hypothesized that not only are aphids tuned to detect ubiquitous plant 

volatile compounds (Bruce et al., 2005) but they also use plant specific ratios to recognize 

their host plants.  For example, Ngumbi et al. (2007) demonstrated that Myzus persicae was 

more attracted to synthetic blends made to mimic the headspace of potato plants 

compared with the individual component volatiles and a recent study by Webster et al. 

(2010) showed that a synthetic blend made to mimic faba bean elicited a positive 

response from the black bean aphid, A. fabae. Indeed, in the study by Webster et al., the 

component volatiles tested individually surprisingly elicited a negative response from the 

aphid and the authors postulated that these responses are indicative of the aphids’ ability 

to discriminate between odour sources qualitatively and that the response is dependent 
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on the blend properties of the particular host plant.  Such responses would clearly be 

advantageous to an aphid for successful host plant location, but there is no indication 

that all aphid species would behave in a similar way.   
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5.1.3 Plant viruses alter the attractiveness of host plants to aphids 

As has been discussed previously, plants infected with viral pathogens are often shown to 

be more attractive to the aphids that vector the pathogen.  By eliminating visual cues to 

the insect (i.e. conducting bioassays in darkness), the role of plant volatiles in the 

attraction can be demonstrated.  Using this type of experimental set up, the seminal study 

of Eigenbrode et al. (2002) revealed that Myzus persicae was preferentially attracted to 

headspace volatiles of potato plants infected with Potato leaf roll virus (PLRV) over those 

present in the headspace of non-infected potato plants.  The attraction of M. persicae was 

tested in response to a natural odour source (i.e. plant leaflets) and also in response to 

filter paper discs treated with volatiles eluted from Super-Q volatile traps onto filter 

paper.  In both cases, volatiles from PLRV-infected plants preferentially attracted the 

aphid and analysis of the volatiles collected showed that total emissions from virus-

infected plants were almost double those emitted from a non-infected control.  

Furthermore, analysis of the individual components revealed that 14 out the 21 

individual component detected were elevated by 1.6 fold (β-sesquiphellandrene) to 5 fold 

(nonane).  The results of behavioural bioassays coupled with the headspace volatile 

analysis make it likely that these increases are responsible for the attraction of M. persicae 

and indeed, studies conducted subsequently using the same system revealed that one of 

the constituent volatiles of PLRV-infected potato, β-pinene, acted as an aphid arrestant 

(Ngumbi et al., 2007).   

 

In experiments of a similar style, Jimenez-Martinez et al. (2004) demonstrated that the 

bird cherry–oat aphid, Rhopalosiphum padi, was more attracted to the headspace of wheat 
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plants infected with Barley yellow dwarf virus (BYDV) compared to the headspace of 

uninfected control plants.  In addition, wheat plants infected with BYDV were found to 

emit a higher concentration of volatiles than uninfected control plants which could 

potentially explain the preference exhibited by the aphid for these plants.  In more recent 

studies of the same system, Medina-Ortega et al. (2009) studied the response of 

Rhopalosiphum padi to both synthetic blends of volatiles made to mimic the headspace of 

BYDV-infected wheat plants and non-infected plants and the individual components of 

the blend.  R. padi were found to be attracted by the synthetic blend made to mimic 

BYDV-infected plants over a blend made to mimic non-infected wheat and also to the 

individual components nonanal, (Z)-3-hexenyl acetate, decanal, caryophyllene and 

undecane when tested against a paraffin oil control.  This study therefore succeeded in 

identifying several compounds from wheat which act as aphid attractants.  The study of 

Mauck et al. (2010) employed a slightly different experimental approach and in addition 

to sampling volatiles of Cucurbita pepo plant in the laboratory, extended their study to 

include sampling from field grown plants.  The outcome was the same.  Plants infected 

with Cucumber mosaic virus (CMV) released an increased quantity of volatiles and were 

more attractive to the aphids vectors M. persicae and Aphis gossypii compared with non-

infected plants (Mauck et al., 2010).  
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5.1.4 Aims and hypotheses 

The aim of the experiments described in this chapter was primarily to detect overall 

differences between headspace volatiles from healthy raspberry plants and those infected 

with BRNV and RLMV using a non-invasive headspace sampling technique and 

qualitative analysis.  This is the first study, to my knowledge, that has attempted to 

identify difference in raspberry volatile emissions in response to plant infection with viral 

pathogens.  Candidate aphid attractants from this analysis would then be tested to 

determine whether they attracted A. idaei.  The key hypotheses for this study were: 

 

1. Raspberry plants infected with BRNV and RLMV would produce elevated levels 

of volatile compounds in line with previous studies, showing the effect of viral 

infection on volatile emissions where aphids were preferentially attracted to virus-

infected plants (Eigenbrode et al., 2002; Srinivasan et al., 2006) 

2. If certain components of the blend of raspberry headspace volatiles were present 

in BRNV and RLMV- infected plants and absent from non-infected plants, or 

were found to be present in both, but elevated in response to viral infection, these 

components would be attractive to A. idaei.    
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5.2 Materials and methods 

5.2.1 Volatile sampling using SPME-GC-MS 

All volatile entrainments were taken from plants which were grown in identical 

conditions to those used in aphid experiments (see Chapter Three). Volatile 

entrainments were taken after at least 8 weeks of growth to mimic the age of plants used 

in aphid experiments.  Volatiles were sampled using solid-phase micro-extraction (SPME) 

fibres (Supelco Ltd., Pennsylvania, USA).  SPME fibres are advantageous for sampling the 

headspace of plants as they eliminate the need for solvents during sampling of the plant 

headspace.  This is due to the fibre being coated with either a solid extraction phase 

which directly adsorbs organic compounds to its surface, or an absorbent compound 

which can be used for liquid phase analytes.  In both cases, their sensitivity means that 

limits of detection can be as low as parts per trillion (ppt). SPME fibre design consists of a 

syringe-like mechanism which is used to expose the fibre during sampling and to retract it 

into the sheath prior to analysis (Figure 5.1).  After the entrainment has been taken, the 

fibre can then be easily injected directly into a GC-MS system for desorption and final 

analysis.  

 

Carboxen-PDMS SPME fibres were used to sample raspberry headspace volatiles in this 

study.  These fibres are coated with carbon and polydimethylsiloxane which is an 

adsorbent polymer for gaseous entrainments.  This particular fibre is reusable after 

thermal conditioning at 300 °C.  Entrainments were taken simultaneously from one 

healthy plant and one verified to be infected with BRNV and RLMV using PCR tests (see 

Chapter Three).  Each plant was positioned on a custom built metal rig which was used 
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to hold leaf cages and fibres in place on the plant (Plate 5.1a).  One leaf of each plant was 

fitted with a copper wire cage (Plate 5.1b) which had been solvent washed in isohexane 

and methanol prior to use.  The cage was held in place on the sampling rig with lengths 

of copper wire to remove any strain on the leaf and stem of the plant.  Once in position, 

the leaf and cage were sealed in a transparent plastic cooking bag using plastic seals 

(Platee 5.1c).  Cooking bags were used primarily to shield the SPME fibre from any 

contaminating air currents and as their principal use is in food preparation, they are 

unlikely to give off many chemical signals which could contaminate the volatile signal 

released from the plant (Tom Shepherd, personal communication).  The leaf and bag 

were flushed with filtered air by passing an air flow through a molecular sieve and 

activated carbon which cleaned the air and removed any traces of water.  Clean air was 

passed into the bag at a flow rate of 250 ml min-1 for 30 min prior to the volatile 

entrainment being taken by inserting a small copper pipe fitted to the filters and a 

vacuum pump into a small hole made in the bag.  The bag was then resealed and the 

SPME fibre and holder was positioned approximately 50 mm from the leaf surface by 

piercing a small hole through the plastic with a syringe.  The fibre was exposed above the 

leaf surface (Plate 5.1d) and the entrainment was taken for 90 min.  The fibre was then 

retracted into its sheath and immediately placed into the GC-MS autosampler for 

desorption and analysis.  The SPME fibre was injected into a ThermoFinnigan Tempus 

time of flight (TOF) GC-MS (Thermo Scientific) with DB 1701 column (30 m × 0.25 mm 

× 0.25 µm) (Agilent Technologies, West Lothian, UK) using helium as a carrier gas.  The 

column was held at 40 °C for 2 min and then heated to 250 °C at 10 °C min-1 and held 

for 10 min.  Data was acquired using the Excalibur software package (Thermo Scientific) 

and peaks were identified by comparison with the integrated NIST/EPA/NIH electron 
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ionization (EI) library using 3 pairs of plants from which entrainments had been 

simultaneously obtained.   
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Figure 5.1. SPME fibre assembly for injection into a GC-MS system, reproduced from 

SPME-fibre user guide (Supelco Ltd., Pennsylvania, USA). 
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5.2.2 Aphid responses to (Z)-3-hexenyl acetate 

As (Z)-3-hexenyl acetate was found to be highly elevated in raspberry plants infected with 

BRNV and RLMV, this chemical was used to conduct bioassays with adult A. idaei.  The 

general protocol for individual choice tests was similar to that of Medina-Ortega et al. 

(2009) and involved the release of aphids in an arena containing two paper discs, one 

which was treated with (Z)-3-hexenyl acetate (Sigma-Aldrich, Dorset, UK)  and another to 

act as a control.  To prevent rapid evaporation of the volatile, it was first dissolved in pure 

(> 99%) paraffin oil (Sigma-Aldrich, Dorset, UK) which acted as a slow-release agent.  

Appropriate concentrations were obtained by serial dilution.  Two paper discs (filter 

paper Whatman grade 1) measuring 5.5 cm in diameter were positioned in opposing 

sides of a rectangular glass dish (21.5 × 16.5 cm) with glass lid.  One of the paper models 

was treated with 100 µl of paraffin oil and the other was treated with 100 µl of volatile 

solution.  The models were positioned equidistantly from the centre of the glass floor and 

covered with a glass dish.  An apterous adult A. idaei which had been starved for 1 hour 

was then released into the centre of the arena and its position recorded every 1 min for a 

total of 20 min.  The bioassays were conducted in a darkened laboratory at room 

temperature.  Arenas were positioned on a ventilated bench top and were lit from above 

by a single white LED bulb producing a light intensity in the glass arena of 350 ± 1 LUX.  

LEDs generally produce very little heat but to ensure temperatures in the bioassay arena 

were uniform, iButtons™ (Maxim Integrated Systems, CA) were used to record the 

temperature in each ‘zone’ of the glass dish prior to the experiment.  Different aphids and 

paper leaf models were used to obtain each replicate and the arena was rotated through 

180° after each replicate to avoid positional effects.  Arenas were solvent washed in 
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methanol and baked in an oven prior to use. Aphid behaviour was investigated at four 

different concentrations (10 ng ml-1, 50 ng ml-1, 100 ng ml-1 & 250 ng ml-1) and different 

aphids and paper discs were used to obtain 20 – 24 replicates per concentration. 

 

5.2.3 Statistical analyses 

Raspberry volatiles 

The total volatile signals acquired from healthy and virus-infected plants were compared 

using a t-test.  Individual volatile compounds were not subject to statistical analysis but 

standard errors were calculated.  Non-overlapping standard errors were considered 

evidence of a change in abundance between samples (Eigenbrode et al., 2002). 

 

Aphid choice tests 

Due to the repeated measures on the same aphid individuals over time, aphid choice tests 

were analysed using a generalized linear mixed effects model (GLMM) assuming a 

binomial error structure and utilising a logit-link function.  In each analysis, the 

proportion of aphids on the volatile treated paper disc was fittted as the y-variable and 

time was initially fitted as the x-variable.  Arena nested within time was initially fitted as 

the random term.  Terms were subtracted from the model until any further removal led 

to significant increases in deviance and thus higher AIC, providing a minimum adequate 

model for each analysis. All results and associated probabilities are reported based on the 

resulting minimum model for each experiment (for model summaries see Table 5.3).  

Aphids on the side of the glass arena were assumed to be non-responsive and were 

excluded from the analyses.  All mixed models were run using the lme4 package in R 
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version 2.12.1 following the methods of Crawley (2007) to eliminate temporal 

pseudoreplication in the dataset.   

 

5.3 Results 

5.3.1 GC-MS analysis of raspberry volatiles  

Identification of raspberry volatiles emitted from fully expanded raspberry leaves using GC-

MS successfully identified a total of 27 component compounds which comprised mainly 

aldehydes, monoterpenes and sesquiterpenes (Table 5.2).  The total volatile emissions from 

plants infected with BRNV and RLMV was found to be elevated by approximately 25%, but 

this difference was determined not to be statistically significant (t = -0.513. P = 0.635).  

Entrainments from both healthy and virus-infected plants were dominated by acetic acid 

which accounted for between 40 and 50% of the total volatile signal detected.  The next most 

abundant compound in terms of signal level detected was the monoterpene α-pinene which 

accounted for 18.58% of the signal from healthy plants and 19.82% of the signal from virus-

infected plants.  Although the same component volatiles were present in the entrainments 

from both healthy and virus-infected plants, several components showed differences in 

relative compositions between plant treatments based on non-overlapping standard errors.  

Of the 27 components which were found to make up the raspberry volatile profile (Figure 

5.2), 17 were found to be elevated in response to infection with BRNV and RLMV while 11 

showed a reduction or no change in signal level. Of these, 2-hexenal and (Z)-3-hexenyl acetate, 

phellandrene, 5-ethyl-25H-furanone and one of a family of five sesquiterpenes (termed 

unknown sesquiterpene 4 in Table 5.2) were considered as significantly altered based on non-

overlapping standard errors.  While 2-hexenal and (Z)-3-hexenyl acetate were elevated in virus-
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infected plants, phellandrene, 5-ethyl-25H-furanone and the unknown sesquiterpene were 

markedly reduced.       

 

 
component expressed as %  of total plant volatile signal 

 

Peak 

# 
component 

RT (min) uninfected control 

BRNV + RLMV- 

infected 

     

1 acetic acid 3.93 49.88 ± 3.920 45.88 ± 8.910 

2 hexanal 5.75 1.52 ± 0.414 2.02 ± 0.256 

3 α-pinene 6.90 18.58 ± 2.842 19.82 ± 7.919 

4 2-hexenal 7.11 0.06  ± 0.008 0.19 ±  0.112 

5 camphene 7.27 0.65 ± 0.182 0.67 ± 0.196 

6 heptanal 7.53 0.38 ± 0.099 0.43 ± 0.116 

7 linalyl acetate 7.80 1.73 ± 0.466 1.64 ± 0.561 

8 ocimene 8.30 4.00 ± 1.077 6.14 ± 3.849 

9 limonene 8.70 2.03 ± 0.476 1.93 ± 0.578 

10 phellandrene 8.83 0.28 ± 0.052 0.23 ± 0.088 

11 eucalyptol 9.02 2.90 ± 1.181 1.42 ± 0.025 

12 (Z)-3-hexenyl acetate 9.07 2.00 ± 1.155 3.87 ± 0.357 

13 benzaldehyde 9.15 3.68 ± 0.805 3.50 ± 0.482 

14 octanal 9.23 0.75 ± 0.274 1.06 ± 0.330 

15 butyrolactone 9.86 6.30 ± 2.739 4.62 ± 2.771 

16 5-ethyl-25H-furanone 9.93 0.34 ± 0.032 0.24 ± 0.050 

17 linalool 10.84 0.83 ± 0.313 1.03 ± 0.252 

18 nonanal 10.84 0.79 ± 0.332 0.86 ± 0.230 

19 camphor 11.89 0.28 ± 0.037 0.31 ± 0.124 

20 d-valerolactone 12.25 0.24±  0.041 0.19 ± 0.039 

21 decanal 12.32 0.39 ± 0.173 0.51 ± 0.213 

22 bornyl acetate 13.46 0.96 ± 0.273 1.69 ± 1.206 

23 UK sesquiterpene 1 13.76 0.01 ± 0.002 0.01 ± 0.001 

24 UK sesquiterpene 2 13.87 0.050 ± 0.011 0.04 ± 0.005 

25 UK sesquiterpene 3 14.44 0.16 ± 0.026 0.25 ± 0.085 

– UK sesquiterpene 4 14.70 0.03 ± 0.010 0.16 ± 0.101 

– UK sesquiterpene 5 15.61 0.01 ± 0.002 0.01 ± 0.001 

    

 

Table 5.2. Components of headspace of healthy and virus-infected raspberry leaves in order of 

elution during gas chromatography.  Mean values of n = 3 ± SEM are shown.  Components found 

to be elevated with non-overlapping standard errors are double underscored and components 

found to be reduced with non-overlapping standard errors are single underscored. UK - unknown.  

Peak # corresponds to peaks labelled in Figure 5.2.     
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5.3.2 Aphid responses (Z)-3-hexenyl acetate 

The response of A. idaei to concentrations of the green leaf volatile (Z)-3-hexenyl acetate 

(which is known to be naturally released by the host plant) was variable.  At the lowest 

concentration tested (10 ng ml-1) there was no effect of the volatile solution on aphid 

preference (see Table 5.3 and Figure 5.3).  However, at the next concentration tested (50 

ng ml-1) the volatile exerted a significant effect on aphid preference for volatile treated 

discs (Table 5.3). Specifically, the proportion of aphids on the treated discs showed a 

significant tendency to increase over time (Figure 5.4).  The higher concentrations of 100 

and 250 ng ml-1 had no effect on the preference of A. idaei for volatile treated discs (Figure 

5.5 and 5.6 respectively. 

   

 

 

Assay 

 

AIC 

 

Random Effects 

 

Fixed Effects 

 

Estimate 

 

z value 

 

P 

 

10 ng ml-1 

 

167.9 
Time 

Arena 
Intercept 167.85 -0.7685 0.193 

 

50 ng ml-1 

 

70.73 Arena 
Intercept 

Time 

2.46940 

0.21444 

1.064 

2.661 

0.2873 

0.0078 

 

100 ng ml-1 

 

278.3 Arena Intercept 0.5993 1.042 0.298 

 

250 ng ml-1 

 

152.5 Arena Intercept 0.3425 0.981 0.326 

  

Table 5.3.  Summary of minimum adequate generalised linear mixed effects models 

(GLMM) for aphid volatile assays showing the minimum AIC used for model selection, 

random and fixed effects specified in the model, model estimates and associated z values 

and probabilities.  
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Figure 5.3 Aphid positions on paper leaf models treated with paraffin oil control or 10 

ng (Z)-3-hexenyl acetate over 20 minute experimental period. Mean values of n = 20 ± SE 

are shown. See Table 5.3 for details. 
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Figure 5.4 (a) Aphid positions on paper leaf models treated with paraffin oil control or 

50 ng (Z)-3-hexenyl acetate over 20 minute experimental period. Mean values of n = 20 ± 

SE are shown. See Table 5.3 for details. 
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Figure 5.5 Aphid positions on paper leaf models treated with paraffin oil control or 100 

ng (Z)-3-hexenyl acetate over 20 minute experimental period. Mean values of n = 24 ± SE 

are shown. See Table 5.3 for details. 
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Figure 5.6 Aphid positions on paper leaf models treated with paraffin oil control or 250 

ng (Z)-3-hexenyl acetate over 20 minute experimental period. Mean values of n = 24 ± SE 

are shown. See Table 5.3 for details. 
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5.4 Discussion 

Comparison of the volatile profiles generated for healthy raspberry plants and those 

infected with BRNV and RLMV revealed that 17 of the 27 component volatile 

compounds were elevated in response to viral infection.  Of these, 2-hexenal and (Z)-3-

hexenyl acetate were determined to be considerably elevated on the basis of non-

overlapping standard errors, making them candidate attractants for the virus vector, 

Amphorophora idaei.  Both 2-hexenal and (Z)-3-hexenyl acetate are green leaf volatiles and 

have been previously shown to elicit electroantennogram responses from other aphid 

species, including the black bean aphid, Aphis fabae, and the peach–potato aphid, Myzus 

persicae (Visser et al., 1996).  A striking feature of headspace entrainments from both 

healthy and virus-infected raspberry plants was the presence of a family of at least five 

sesquiterpenes which had retention times of between 13 and 16 minutes in this study.  

Although they were not identified, these compounds seem to be a characteristic feature of 

Rubus idaeus plants and have been found previously in headspace entrainments taken 

from both canes and damaged leaves (Tom Shepherd, personal communication).  

However, the compounds which were found to be elevated in response to infection with 

BRNV and RLMV, 2-hexenal and (Z)-3-hexenyl acetate, have been previously identified 

and quantified from potato (Eigenbrode et al., 2002), faba bean (Nottingham et al., 1991), 

wheat (Jimenez-Martinez et al., 2004) and squash (Mauck et al., 2010).  Green leaf volatiles 

such as these, are formed by the hydroperoxide lyase (HPL) pathway of oxylipin 

metabolism (Matsui, 2006; Shiojiri et al., 2006) which is responsible for the oxidation of 

fatty acids to short chain aldehydes and their derivatives (Feussner & Wasternack, 2002).  

During this process, 2-hexenal, which is a six carbon adehyde, is metabolized by the 
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action of alcohol dehydrogenase to form its corresponding C6 –alcohol, (Z)-3-hexen-1-ol or 

its isomer (E)-2-hexenal.  This is then in turn involved in a reaction catalysed by 

acyltransferase to form (Z)-3-hexenyl acetate from the alcohol precursor and acetyl 

coenzyme A (acetyl CoA) (Matsui, 2006) (Figure 5.7).      

 

The results of the volatile entrainments taken from raspberry plants indicated that the 

relative amount of (Z)-3-hexenyl acetate increased in response to host plant infection with 

BRNV and RLMV.  This compound was selected for further study with A. idaei as it had 

been previously shown to be elevated in raspberry leaves subjected to mechanical damage, 

although to a lesser extent (Tom Shepherd, personal communication) and it is the end 

product of the metabolism of 2-hexenal, which was also shown to be elevated in this 

study.  The range of concentrations tested was initially based on concentrations which 

had been previously shown to be naturally occurring in host plants of both Myzus persicae 

(Ngumbi et al., 2007) and Rhopalosiphum padi (Medina-Ortega et al., 2009).  These 

bioassays demonstrated that individual A. idaei were attracted to (Z)-3-hexenyl acetate at a 

concentration of 50 ng per ml paraffin oil and were unaffected by the other 

concentrations tested.  Although this study tested the role of only one compound from 

the raspberry headspace, the positive response of A. idaei to (Z)-3-hexenyl acetate at a 

concentration of 50 ng ml-1 suggests that that similar relationships may be found for other 

individual volatile components, particularly 2-hexenal which was also found to be highly 

elevated in response to infection with BRNV and RLMV.   Various isometric forms of 2-

hexenal have been previously shown to elicit electroantennogram responses from several 

aphid species (Table 5.1) and its elevation in virus-infected raspberry plants makes it 

another promising candidate as an attractant for A. idaei. 
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However, the fact that A. idaei responded to (Z)-3-hexenyl acetate at only one of the four 

concentrations tested suggests that further work is needed before firm conclusions can be 

drawn.  In particular, future work should focus on elucidating the concentration of 

volatiles such as (Z)-3-hexenyl acetate which naturally occurs in the red raspberry 

headspace. 

 

In contrast, infection of raspberry plants with BRNV and RLMV led to a considerable 

reduction in two volatile components, one identified as 5-ethyl-25H-furananone and the 

other one of the family of sesquiterpenes referred to previously.  It may be that these 

components are unattractive to A. idaei and therefore their reduction in the headspace 

makes no difference to the behaviour of the aphid or perhaps their reduction enhances a 

compositional shift in volatile components in response to BRNV and RLMV-infection.  

This is, however, speculative, requiring further study of the effects of these components 

on A. idaei behaviour.  However, similar studies of faba bean headspace volatiles have 

shown that although the intact blend acting as an aphid attractant, individual component 

volatiles can actually act as aphid deterrents when presented alone to the insecct (Webster 

et al., 2010). 
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Figure 5.7. Part of the oxylipin biosynthetic pathway in plants showing reactions leading 

to the formation of (Z)-3-hexenyl acetate.  For full pathway see Matsui (2006). 
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The findings of numerous investigations of plant volatile compounds have given rise to 

two general hypotheses in the ecological literature concerning insect host plant location.  

The first is that insects are able to recognize their host plants through detection of 

particular components of the plant headspace that are characteristic of a particular plant 

species exploited by the insect.  The second hypothesis is that insects recognize specific 

ratios, or blends, of certain volatiles that are ubiquitous throughout the plant kingdom 

(Bruce et al., 2005).  The findings of this investigation appear to support the latter as both 

healthy and virus-infected plants contained the same suite of volatile components which 

were present in the headspace to a greater or lesser extent in response to virus infection, 

with the majority of components being compounds which have been characterized 

previously from different plant species.  No one component was found to be unique to 

plants infected with BRNV and RLMV and therefore the preferential attraction of A. 

idaei to these plants detailed in Chapter Three is either the result of the elevation of 

individual components such as (Z)-3-hexenyl acetate and 2-hexenal, or the overall shift in 

the ratios of the volatile components which seems to result from host plant infection with 

the two viral pathogens studied here.  

 

To my knowledge, this is the first study of alterations to raspberry headspace volatiles in 

response to virus infection.  The results provide scope for further study of the exact 

mechanism by which the volatile components of the raspberry headspace act to 

preferentially attract A. idaei to virus infected plants.  Although individual components 

have been tested and verified as aphid attractants in this study, many aspects remain to be 

investigated.  For example, in order to translate these findings to a field situation, it 

would be interesting to not only test more component volatiles, such as 2-hexenal, but 
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also to investigate the distance over which they may remain physiologically active.  This 

type of study would be crucial to the development of a chemical lure for A. idaei which 

may reduce the incidence of virus in a raspberry plantation by deceptive manipulation of 

the aphid’s behaviour.  Furthermore, behavioural testing of compositionally different 

synthetic blends based on the volatile ratios of both healthy and virus-infected raspberry 

plants would provide further insight into the mechanism of A. ideai attraction and may 

reveal which components are particularly important in the attraction of the aphid.  This 

type of study requires a quantitative study of the raspberry headspace to be carried out, 

perhaps using volatile traps such as Super-Q™ which would allow known standards to be 

incorporated into the GC-MS analysis.    
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6.1 Summary 

The primary aim of this thesis, as outlined in Chapter One, was to characterise the 

behaviour and performance of the European large raspberry aphid, Amphorophora idaei, in 

response to host plant infection with two viral pathogens of raspberry, Black raspberry 

necrosis virus and Raspberry leaf mottle virus.  Towards this aim, experiments were 

designed to establish aphid preferences for healthy and virus-infected plants, investigate 

aphid performance in response to plant viral infection and identify and/or quantify 

changes in host plant chemistry which may be responsible for any differences that were 

observed.  Chapter Three of this thesis showed that A. idaei was preferentially attracted to 

Rubus idaeus plants that were infected with Black raspberry necrosis virus and Raspberry 

leaf mottle virus when they were present in combination.  This attraction appeared to be 

a viral manipulation of aphid behaviour as A. idaei performed poorly on these plants 

compared with those that were not infected.  The aphid remained on the virus-infected 

host plant for a period of approximately 30 min.   

  

Investigations of raspberry leaf chemistry detailed in Chapter Four showed that infection 

by these viral pathogens may facilitate aphid feeding by reducing the levels of phenolic 

compounds in the leaves which may otherwise act as a deterrent to the aphid and by 

increasing the levels of the amino acid methionine which has been implicated as an aphid 

feeding stimulant (Mittler, 1967, 1970; Harrewijn & Noordink, 1971).  The amino acid 

composition of raspberry leaves was dominated by the non-essential glutamate, which 

further increased in response to infection with BRNV and RLMV.  Glutamate may be an 

indicator of poor nutritional quality and may be linked to increased development time 
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observed for A. idaei when feeding on virus-infected plants.  Finally, sampling of 

headspace volatiles from non-infected and infected raspberry plants (Chapter Five) 

revealed highly elevated levels of the green leaf volatile, (Z)-3-hexenyl acetate which was 

subsequently shown to act as an aphid attractant when presented to A. idaei at a 

concentration of 50 ng ml-1.  This study therefore makes a fundamental contribution to 

existing knowledge of indirect interactions which are mediated by a shared host plant and 

provides a basis for further work, either using the raspberry system or one of the many 

other plant systems which are simultaneously attacked by viral pathogens and their aphid 

vectors. 

 

6.2 Aphids and plant chemistry 

As was discussed in Chapter Four, aphids have a dietary requirement for energy rich 

sugars, and amino acids for protein metabolism (Rhodes et al., 1996).  In particular, 

aphids require their diet to be supplemented with essential amino acids either by 

acquiring them during feeding or through the metabolism of their symbionts.  Aphids are 

limited by dietary nitrogen and low concentrations of amino acids in the phloem sap diet 

(Douglas, 1993; Dixon, 1998) therefore these nutrients may be important factors in 

determining the underlying plant chemistry which may act as the causal mechanism for 

changes in insect performance on host plants infected with pathogens.  Furthermore, 

aphids must overcome plant defence mechanisms which may be mounted in response to 

herbivory and/or attack by viral pathogens.  For example, all higher plants produce 

allelochemicals such as polyphenols and therefore all herbivorous insects encounter these 

toxic chemicals when feeding (Schoonhoven et al., 2005).  Aphids may have the capacity 
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to detoxify certain plant-derived feeding deterrents through enzymes present in their 

saliva (Miles, 1999) but many studies have shown that toxins, such as polyphenols, are 

deterrent to aphids (Jordens-Rottger, 1979; Dreyer & Jones, 1981; Peng & Miles, 1988; 

Chen et al., 1997).  

 

In addition to plant defensive responses to herbivory and infection with viral pathogens, 

this thesis investigated the indirect effects of virus infection on the aphid vector.  Indeed, 

many studies have demonstrated that host plant infection with viruses can have 

significant effects on plant chemistry for aphids e.g. through reduced or elevated levels of 

amino acids in the phloem sap (Blua et al., 1994; Fiebig et al., 2004).  The experiments 

described by this thesis show that both aphids and viruses can have profound effects on 

leaf chemistry, most notably compositional changes to carbon and free amino acids 

concentrations in the leaf tissue.  For example, the overall leaf carbon concentration was 

found to be significantly elevated in response to host plant infection with BRNV and 

RLMV which may have the effect of diluting other important plant nutrients (Awmack & 

Leather, 2002).  Furthermore, the concentration of certain amino acids was significantly 

elevated in response to plant viral infection. Elevated levels of amino acids have been 

previously shown to promote aphid performance so why wasn’t this the case for A. idaei?  

The dominant amino acid quantified in raspberry was glutamate, a non-essential amino 

acid, which was found at a concentration of 24.9 ± 4.85 µM g–1 in virus-infected plants 

accounting for 77% of the total concentration of amino acids extracted from the leaf.  

High levels of glutamate have been implicated in reduced nutritional quality of phloem 

sap for aphids (Douglas, 1993).  For example, a high relative concentration of glutamate 

was found in certain oat cultivars where Rhopalosiphum padi were found to perform poorly 
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in terms of development and reproduction (Weibull, 1988) and similar observations have 

been made of Myzus persicae and Macrosiphum euphorbiae feeding on potato where 

glutamate was most the most abundant amino acid in the phloem sap (Karley et al., 

2002).  With studies of the mechanistic basis for these observations lacking, it is difficult 

to reach a definitive conclusion without further experimentation but investigations 

should focus on the potential of glutamate to disrupt efficient digestion of essential 

amino acids in the aphid gut, perhaps through competition between individual amino 

acids for receptor sites for readsorption. 

   

Another possible explanation for the poorer performance of A. idaei on virus-infected 

plants could be competition between the insect and the pathogen for amino acids and 

other nutrients (Fiebig et al., 2004) because viruses, like aphids, require amino acids for 

synthesis of new viral protein (Hull, 2002).  The amino acids extracted from Rubus leaf 

tissue were free amino acids, meaning only those which may be directly available as 

nutrients for both organisms were quantified.  This therefore allows further investigation 

of potential overlap in the amino acid requirements of both aphids and viral pathogens.  

The newly available full genomic sequence for BRNV and RLMV means that predictions 

of amino acid composition of viral proteins can be made (Appendix A).  If these overlap 

with the dietary requirements of A. idaei then this may provide evidence for direct 

competition between the virus and the vector for these amino acids.   

 

Analysis of amino acid composition of both BRNV and RLMV predict that serine, 

leucine and valine are the most abundant in terms of their relative concentration in total 

viral proteins of both BRNV and RLMV (Appendix A, Table A.2).  It is well established 
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that aphids are limited by dietary nitrogen and amino acids in the phloem sap diet 

(Douglas, 1993; Dixon, 1998) which are considered to be a major determinant of aphid 

population increase (Brodbeck & Strong, 1987).  The amino acid budget of the pea 

aphid, Acyrthosiphum pisum, calculated from the contribution of each amino acid to total 

aphid protein growth, revealed that A. pisum require aspartic acid and glutamic acid in the 

highest concentrations, followed by leucine and lysine (Gunduz & Douglas, 2009; Figure 

6.1).  Leucine is a major component of the viral protein of both BRNV and RLMV (see 

Appendix A).  Extrapolation of this data for the dietary requirements of the large 

raspberry aphid would be inappropriate, especially with investigations of A. idaei 

symbionts lacking, but this data serves to highlight that the amino acid requirements of 

aphids may overlap with the requirements of viral pathogens.  Similar dietary studies of 

A. idaei could not only confirm whether the dietary requirements of the aphid do indeed 

overlap with BRNV and RLMV but whether direct competition is likely to be occurring 

between these pest and pathogen species. 

 

The findings of this thesis have therefore identified two potential mechanisms which may 

mediate the negative interaction between A. idaei and the two viruses that it vectors which 

require further investigation.  The first is the role of non-essential amino acids, 

specifically glutamate, which may disrupt aphid digestion of phloem sap and the second is 

potential direct competition between aphid and virus for amino acids.  The direct effects 

of viruses on their insect vectors are rarely quantified other than to investigate virus 

acquisition and inoculation times of the vector.  Belliure et al. (2008) hypothesised that 

infection of vectors with plant viruses may increase their resistance to plant defence 

mechanisms.  Through comparison of survival and development of the thrips vector of 
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Tomato spotted wilt virus (TSWV), Frankliniella occidentalis, that were virulent for or 

avirulent, their study showed that acquisition of virus did not consistently benefit the 

thrips vector when feeding.  The authors concluded that the overall interaction between 

virus and vector was mainly indirect.  However, if competition for amino acids is 

occurring between the vector and the virus in the raspberry system studied in this thesis, 

i.e. the replicating virus is removing amino acids from the phloem sap available to the 

aphid, then the overall negative effect of plant virus infection on A. idaei is likely to be a 

combination of both direct and indirect effects during aphid feeding. 
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Figure 6.1.  Concentration of individual amino acids required for aphid protein growth 

of the pea aphid, Acyrthosiphon pisum.  ala – alanine, arg – arginine, asx – aspartic acid,  

glx – glutamic acid, gly – glycine, ile – isoleucine, leu – leucine, lys – lysine, met – 

methionine, phe – phenylalanine, ser – serine, thr – threonine, trp – tryptophan, tyr – 

tyrosine, val – valine.  Figure redrawn from Gündüz & Douglas (2009).    
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6.3 From the lab to the field – the potential implications for 

aphid population dynamics 

The reproductive capacity of A. idaei, and indeed all aphids, is such that small differences 

in aphid development time could have a massive impact on aphid population numbers.  

The prolonged development of A. idaei on virus-infected plants described in Chapter 

three is such that the so called ‘telescoping of generations’, whereby ovarian and 

embryonic development of the nymphs takes place inside the mother, would undoubtedly 

lead to a reduced intrinsic rate of increase (rm) on plants infected with BRNV and RLMV 

where there is a delay in nymphs being laid by the mother onto the host plant.  The 

results of a small field survey conducted in 2008 which aimed to explore seasonal aphid 

population dynamics on healthy and virus-infected plants produced some interesting 

results which may corroborate aphid behaviour in the laboratory (see Appendix B).  PCR 

testing of 42 plants spread evenly across the plantation revealed that over 90% of the 

plants were infected with BRNV and RLMV in various combinations (i.e. single 

infections with either virus or dual infection) and of those infected, over 60% contained 

both viruses.  Although the plants surveyed were of a different cultivar to that used in 

experiments detailed in this thesis, their parentage meant that at least some resistance to 

A. idaei should have been present and the prevalence of BRNV and RLMV in a field plot 

planted in 2002 highlights the need for ongoing studies of A. idaei with a view to 

controlling virus spread.  Mathematical simulations of virus transmission suggest that 

virus transmission is optimal when aphids preferentially orientate to infected plants but 

remain there long enough to acquire the virus before migrating to a healthy host 

(Sisterson, 2008).  The results of the laboratory studies show that this scenario occurs in 
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red raspberry and the results of the field survey demonstrate that BRNV and RLMV are 

capable of achieving high prevalence under certain conditions.  This may prove 

energetically costly to A. idaei as the lack of nutrition provided by virus-infected plants 

reduces aphid performance and triggers migration.  These costs may have negative 

impacts on aphid population numbers, reflected by the small population numbers found 

in this field study.   

 

The observations from raspberry and other studies serve to highlight the importance of 

transferring laboratory results into field situations where many other biotic and abiotic 

factors may play a role in the interaction between host plants, viruses and the insects that 

vector them.  In this case however, in order for laboratory and field studies to 

complement each other, further experiments must be carried out using alate A. idaei in 

order to ascertain host plant preference under field conditions and also, of particular 

importance to raspberry systems, the effects of enclosing plantations under polytunnels.  

Polytunnels provide a longer growing season for raspberry by increasing temperature but 

these variations in growing conditions are also likely to affect virus transmission by 

altering plant metabolism (Canto et al., 2009).  Specifically, fluctuations in plant nutrients 

are likely to alter aphid behaviour and physiology.  For example, a recent study has 

demonstrated that raspberry plants grown under polytunnels, where temperatures were 

7–10 °C higher than field plantations, had a lower foliar concentration of essential amino 

acids compared with field plots, associated with smaller aphid body size (Johnson et al., 

2010).  Smaller A. idaei are likely to be more susceptibile to predation by ladybird 

predators  (Alliuame et al., 2010) and parasitism by wasps such as Aphidius ervi (Mitchell et 

al., 2010).  Therefore, it is important that studies continue to investigate, not only plant-
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mediated effects on A. idaei, but also the knock-on effect on higher trophic groups such as 

predators and natural enemies.       

 

6.4 Crosstalk 

Three important signaling pathways are known to be involved in plant defence signaling 

against invading herbivores or pathogens, jasmonic acid (JA), salicylic acid (SA) and 

ethylene (ET).  The extent to which the pathways are activated depends on the type of 

organism that is attacking, thus enabling the plant to tailor its response to be attacker-

specific (Reymond & Farmer, 1998).  However, SA-mediated responses to pathogen 

attack have been shown to diminish the activity of JA-induced responses, normally 

associated with herbivory (Stout et al., 1999).  Such ‘cross-talk’ between the pathways may 

result in antagonistic or synergistic interactions between different attackers (Koornneef & 

Pieterse, 2008; van Dam, 2009).  When A. idaei feeds on BRNV and RLMV-infected host 

plants the resulting interaction appears to be detrimental to the aphid, as demonstrated 

by the performance experiment where development time of the aphid was increased on 

virus-infected plants.  In addition, the concentration of polyphenolics in the leaf tissue 

was found to be significantly elevated only when the plant was attacked by aphids and not 

in response to viral infection (see Chapter four, Figure 4.1).  This surprising result 

suggests that aphids induce a plant defensive response which viruses are capable of 

evading.  Previous studies have shown that aphids, like pathogens, tend to induce a 

response associated with SA signaling (Bostock, 1999; Bostock et al., 2001) and a weaker 

JA response (Moran & Thompson, 2001; Rodriguez-Saona et al., 2005; Thaler et al., 

2010).  However, in the presence of viruses, A. idaei did not trigger the same elevated 
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levels of polyphenolics that it did in healthy plants.  The benefit of this mechanism to the 

virus could be a non-deterrence of aphid feeding in order for it to acquire virions for 

subsequent transmission.  Studies of electrical potential of aphids (EPG) on healthy and 

virus-infected plants would be required in order to confirm if phenolic compounds were 

indeed exerting an effect.  In addition, further studies should focus on elucidating these 

complex interactions in order to ascertain which signaling pathways are involved in anti-

aphid and anti-virus defence in raspberry plants (see section 6.5).  

      

6.5 Future perspectives 

The experiments described in this thesis provide a basis for a variety of future 

investigations of raspberry-virus-aphid interactions.  Discussion in this chapter, and in 

those previous, have made suggestions for further whole plant experiments which may aid 

in disentangling the mechanisms which are in operation to deceptively attract A. idaei to 

what proves to be a poor host in terms of aphid development.  However, conducting 

studies at a genomic level would also provide insight into specific plant signals and their 

timing in response to aphid and pathogen attack.  For example, molecular studies of 

Arabidopsis thaliana have shown that plant attack by viral pathogens or aphids leads to a 

similar pattern of gene activation suggesting that the same signaling pathways are 

triggered (Bostock, 1999; Bostock et al., 2001).  However, as detailed above, feeding by A. 

idaei resulted in different responses to infection with BRNV and RLMV, indicating that 

the plant mounted a different mode of defence in response to each of these attackers.  

Insects and pathogens that attack plants induce signalling pathways that are responsible 

for the regulation of plant defence genes and metabolites involved in direct and indirect 
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defence against the attacker (Stout et al., 2005).  Analysis of attacker-specific gene 

expression profiles using microarray technology has proven valuable for untangling which 

plant signalling pathways are activated in response to different modes of attack (see 

DeVos et al., 2005).  To date, most studies of gene expression profiles have been 

generated by manipulation of the model plant Arabidopsis thaliana by subjecting plant 

leaves to attack by insects and pathogens utilising different feeding strategies for 

comparison of expression signatures.  These include phloem feeding aphids (Mewis et al., 

2006; Couldridge et al., 2007; Kusnierczyk et al., 2008), leaf chewing caterpillars 

(Reymond et al., 2004; de Vos et al., 2005; Mewis et al., 2006), microbial pathogens (leaf 

fungi or bacteria) (de Vos et al., 2005) and simulated mechanical wounding (Reymond et 

al., 2000).   

 

Reymond et al. (2000) compared the effects on gene expression of both mechanical 

wounding of the plant and feeding by larvae of the cabbage butterfly, Pieris rapae 

(Lepidoptera: Pieridae), and found that each treatment generated very different transcript 

profiles.  Removal of the plant’s rosette leaves activated genes that are known to be 

associated with water-stress, such as PRODH (Kiyosue et al., 1996) which was strongly 

down-regulated.  Feeding by P. rapae, however, did not induce many of the genes that 

were inducible by mechanical wounding and instead induced other plant defence genes 

such as that encoding hevein-like protein (HEL). The overall transcript profile generated 

by P. rapae feeding damage suggests that the larvae can minimise the activation of host 

defence genes and actually generate an attacker-specific gene transcript profile.  De Vos et 

al. (2005) reported similar findings with SA-, JA- and ET- responsive genes.  These were 

found to vary greatly in both the timing of expression and in the quantity of transcript 
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present in response to insects with different feeding modes (e.g. leaf chewers, cell content 

feeders and phloem feeders), once again indicating attacker-specific gene transcript 

profiles.   These studies have provided a detailed insight into the response of the whole 

plant genome to insect and pathogen attack with the advantage of the availability of full 

genomic sequence data for Arabidopsis thaliana.  In contrast, sequencing of the Rubus 

idaeus genome is not yet completed and at present only limited sequence data are 

available from an in-house database held at SCRI.  Crucially, full genomic sequence 

would allow for the development of a full cDNA microarray and subsequently, attacker-

specific transcript patterns could begin to be identified. The studies from Arabidopsis have 

served to identify numerous candidate genes implicated in plant attack by insects and 

pathogens and the sequences for these genes are readily available from online databases 

such as The Arabidopsis Information Resource (TAIR).  It is therefore highly likely that 

microarray technologies in conjunction with quantitative RT-PCR can be used as a 

molecular tool to identify attacker specific gene transcript profiles from raspberry in the 

very near future.  Quantitative real-time PCR (qRT-PCR) is a powerful molecular 

technique that can be used to simultaneously amplify and quantify levels of a particular 

gene transcript present within a sample.  Such investigations would further our 

understanding of complex plant signalling processes and identify differences and 

similarities between activation in response to pathogen and aphid attack.    
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6.6 Conclusions 

While most studies to date have focussed on elucidating the mechanism by which aphids 

are attracted to virus-infected plants, they have either assessed the consequences of this 

choice in terms of subsequent aphid performance (Eigenbrode et al., 2002; Srinivasan et 

al., 2006; Alvarez et al., 2007; Werner et al., 2009), or have addressed aspects of plant 

nutrition which may affect aphids’ host plant preference (Blua et al., 1994; Fiebig et al., 

2004).  This thesis aimed to incorporate all of these aspects and has tested not only aphid 

preference and performance in response to host plants infected with viral pathogens, but 

has also identified potential causal mechanisms for the behaviours observed in terms of 

attraction to the host plant and the underlying leaf chemistry which may be important for 

aphid development.  Thus, this study provides novel insights into the nature of plant-

aphid-virus interactions.  Furthermore, the specialist aphid central to this investigation, 

Amphorophora idaei, has provided novel insights into the intimate associations occurring 

between the insect and its host plant, which cannot be achieved by studies of polyphagous 

aphids such as Myzus persicae and Rhopalosiphum padi.  In conclusion, the findings of this 

thesis seem to suggest that infection of raspberry plants with BRNV and RLMV can lead 

to a virus-induced manipulation of aphid behaviour and performance which presumably 

acts to maximise transmission.  Furthermore, the viruses appear capable of manipulating 

plant chemistry in such a way that facilitates aphids probing/feeding for a time period of 

30 min, which is favourable for successful acquisition of virions but ultimately may 

induce migration to new feeding sites.  Leaf chemical analyses and headspace volatile 

sampling have added crucial detail to the underlying plant physiological mechanisms 

which may mediate these interactions.  This study therefore provides a platform for 
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further investigation at both genomic and field level to further our understanding of 

indirect interactions between aphids and the viruses they transmit, mediated by the host 

plant. 
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RLMV BRNV RLMV + BRNV 

Amino acid (Mol %) Amino acid (Mol %) Amino acid (Mol %) 

Ser 11.57 Leu* 8.61 Ser 9.76 

Leu* 10.83 Ser 7.95 Leu* 9.72 

Val* 7.76 Gly 7.26 Val* 7.37 

Arg 7.74 Val* 6.97 Arg 6.51 

Phe* 6.66 Glu 6.40 Gly 6.06 

Ala 5.63 Ala 6.30 Ala 5.97 

Thr* 5.63 Lys* 5.79 Phe* 5.74 

Gly 4.86 Thr* 5.77 Thr* 5.70 

Ile* 4.14 Ile* 5.64 Glu 4.99 

Asp 4.02 Asp 5.52 Ile* 4.89 

Lys* 3.69 Arg 5.28 Lys* 4.87 

Glu 3.59 Phe* 4.82 Asp 4.77 

Tyr 3.42 Asn 3.81 Tyr 3.52 

Asn 2.95 Tyr 3.61 Asn 3.38 

His* 2.49 Gln 3.02 Gln 2.55 

Gln 2.08 His* 2.38 His* 2.43 

Met* 1.15 Met* 2.36 Met* 1.76 

Trp* 1.12 Trp* 1.48 Trp* 1.30 

Table A.2.  Amino acid compositions of RLMV, BRNV and both viruses combined.  Table 

shows amino acids ranked in descending order of total molar percentage as determined from 

genomic RNA sequences of both viruses.  * denotes essential amino acids.  Predictions made 

using BioEdit vs 7.0 with GenBank accessions for RLMV  (accession dq357281) and BRNV -

(accessions dq344639 and dq344640) 
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Background 

The opportunity arose in 2008 to survey a raspberry field plantation at SCRI, 

Invergowrie, Dundee.  The plantation contained plants which were progeny of crosses 

between the SCRI developed cultivar Glen Moy, which possesses the same A1 aphid 

resistance gene as Glen Ample, and the North American cultivar Latham.  These plants 

were crossed in attempt to confer resistance to raspberry root rot.  The raspberry plot 

consisted of 18 rows of raspberry plants arranged into three replicates (six rows per 

replicate) each of which contained 241 individual plants.  A total of 42 plants which were 

spread evenly across the site, were selected based on a historical record of virus symptoms 

recorded from 2006 to 2008, to investigate seasonal fluctuations in large raspberry aphid 

populations on both healthy and virus-infected plants. 

 

Virus testing 

Each of the 42 plants surveyed for the presence of large raspberry aphid was also tested 

for the presence or absence of BRNV and RLMV using the PCR diagnostic tests detailed 

in Chapter three of this thesis.  

 

Aphid survey 

A total of 15 leaves were labelled on each of the 42 plants, of which 5 were located at the 

top of the cane, 5 in the mid-section of the cane and 5 at the bottom of the cane.  All 

leaves were from floricanes.  Leaves were surveyed once every 2 weeks by gently turning 

over the leaf and recording the number of large raspberry aphid present.  
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Results 

Virus testing 

Of the 42 plants tested, 27 tested positive for both BRNV and RLMV, five tested positive 

for BRNV only, five tested positive for RLMV only and a further five were negative for 

both viruses and were therefore considered to be non-infected (Figure B.1). 

 

Aphid survey 

On the first survey date, conducted on the 22nd May 2008, the number of A. idaei was 

found to be highest on non-infected plants when compared with any of the combinations 

of virus (Figure B.2) with a mean of 2.80 aphids being found on non-infected compared 

with the next highest value of 0.25 on RLMV-infected plants.  The number of A. idaei 

found on non-infected plants was much less at the second survey date on the 5th June 

(0.2), while the number on any of the combinations of virus-infected plants was slightly 

increased compared with the earliest survey date (max. of 0.44 on plants infected with 

BRNV and RLMV).  By the third sampling date on 19th June, the number of A. idaei on 

RLMV-infected plants and those infected with both viruses was found to be higher than 

on non-infected plants with a mean of 1.48 aphids on RLMV-infected plants and 1.30 on 

those infected with BRNV and RLMV compared with 1.00 aphids found on non-infected 

plants.  The number of A. idaei on BRNV-infected plants remained at the lowest level of 

0.60 aphids.  At the final sampling date on the 2nd July, the number of aphids on non-

infected, BRNV-infected and RLMV-infected plants had declined to 0 with just 0.11 

found on plants infected with BRNV and RLMV.  
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Figure B.2.  Mean number of aphids on each plant type at each survey date.  Mean 

number of 5 shown for healthy, BRNV-infected and RLMV-infected plants and mean 

number of 27 shown for BRNV and RLMV-infected plants.  Error bars show SEM. 
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Concluding remarks 

The aim of the field survey was to characterise seasonal fluctuations in aphid numbers on 

non-infected and virus-infected plants.  However, on completion of virus testing it became 

apparent that the raspberry plot that was used was heavily infested with both BRNV and 

RLMV.  Indeed, of 42 plants which were selected to represent an even spread of plants 

across the plantation, only 5 were found to be free from virus, representing just 11% of 

the plants investigated.  In just 8 years, both BRNV and RLMV had quite clearly become 

prevalent in this plantation and the aphid population which was supported by these 

plants was low.  The number of plants infected with both BRNV and RLMV represented 

64% of the plants which were surveyed and corroborates the general observation that 

these viruses are commonly found to infect raspberry plants in combination.  The high 

prevalence of the viruses in this plantation lend support to studies which are designed to 

find methods of controlling the spread of A. idaei, and through control of the vector, 

limit the spread of viruses.    

 

This study was also aimed at investigating aphid populations, not only within one season, 

but over several.  This was unfortunately impossible and the survey was abandoned after 

10 weeks due to damage inflicted on the floricanes due to the weight of unharvested fruit 

which rendered further work impossible due the huge loss of leaves.  Although the plants 

which were investigated were of a different cultivar to that used for the experiments 

detailed in the main body of this thesis, they were derived from Glen Moy parentage.  

This cultivar possesses the same resistance gene as Glen Ample and therefore there 

should have been some degree of aphid resistance in the field plants, making the high 

prevalence of the viruses all the more surprising.  
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