University of Sussex

A University of Sussex DPhil thesis
Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Removing and Restoring
Control Flow with the Value
State Dependence Graph

James Stanier

Foundations of Software Systems
School of Informatics
University of Sussex

US

University of Sussex

A thesis submitted, on July 23rd, 2011, in partial fulfilment of the requirements for
the degree of Doctor of Philosophy (DPhil) in the School of Informatics at the
University of Sussex.

To Mum, Dad and Rebecca

Statement of Originality

This thesis is my own work and contains nothing which is the outcome of
work done in collaboration with others, except as specified in the text and the
Acknowledgements.

This thesis is not substantially the same as any that [have submitted or
am currently submitting for a degree, diploma or any other qualification at

any other university. No part of this dissertation has already been, or is being
submitted for any such degree, diploma or qualification.

July 23rd, 2011

© 2008-2011 University of Sussex. All trademarks used in this thesis are hereby ac-
knowledged.

il

Abstract

This thesis studies the practicality of compiling with only data flow informa-
tion. Specifically, we focus on the challenges that arise when using the Value
State Dependence Graph (VSDG) as an intermediate representation (IR).
We perform a detailed survey of IRs in the literature in order to discover
trends over time, and we classify them by their features in a taxonomy. We
see how the VSDG fits into the IR landscape, and look at the divide between
academia and the “real world” in terms of compiler technology. Since most
data flow IRs cannot be constructed for irreducible programs, we perform an
empirical study of irreducibility in current versions of open source software,
and then compare them with older versions of the same software. We also
study machine-generated C code from a variety of different software tools.
We show that irreducibility is no longer a problem, and is becoming less so
with time. We then address the problem of constructing the VSDG. Since
previous approaches in the literature have been poorly documented or ignored
altogether, we give our approach to constructing the VSDG from a common
IR: the Control Flow Graph. We show how our approach is independent of
the source and target language, how it is able to handle unstructured control
flow, and how it is able to transform irreducible programs on the fly. Once the
VSDG is constructed, we implement Lawrence’s proceduralisation algorithm
in order to encode an evaluation strategy whilst translating the program into
a parallel representation: the Program Dependence Graph. From here, we
implement scheduling and then code generation using the LLVM compiler.
We compare our compiler framework against several existing compilers, and
show how removing control flow with the VSDG and then restoring it later
can produce high quality code. We also examine specific situations where the
VSDG can put pressure on existing code generators. Our results show that the
VSDG represents a radically different, yet practical, approach to compilation.

1il

Acknowledgements

Firstly I would like to thank Dr. Des Watson, who has shown great en-
couragement for the project, and has always provided invaluable guidance. If
I didn’t have such a great experience being supervised as an undergraduate,
then I probably would have never shown an interest in academia in the first
place. However, I did, and look where we are now.

My parents deserve countless thanks for everything they have done for me
since 1985. They always encouraged me at school and convinced me that I
could make something of myself. My hope for the future is that I can continue
to make them feel proud.

Thank you to past and present students in the Foundations of Software Sys-
tems research group at the University of Sussex, who have become good friends
since 2008. These are Dr. Anirban Basu, Dr. Jian Li, Dr. Roya Feizy, Dr. Yasir
Malkani, Dr. Lachhman Dhomeja, Stephen Naicken, Simon Fleming, Danny
Matthews, Ben Horsfall, Tom Harvey and Morteza Kheirkhah. Additionally,
I’d like to thank Dr. Alan Lawrence, Dr. Neil Johnson and Prof. Alan Mycroft
for their feedback and advice.

I also extend my thanks to the ACM, who have provided me with a great
distraction as Departments Chief of ACM XRDS magazine.

And last, but not least, thank you to Rebecca Harrison for reminding me
that there are more important things in life than just science.

v

Table of Contents

Statement of Originality
Abstract
Acknowledgements

List of Figures

1 Introduction

1.1 The importance of compilers.
1.1.1 A compiler’s function,
1.1.2 Optimising compilers

1.2 The VSDG: some motivation
1.21 Loops
1.2.2 Optimisation
1.2.3 Normalisation

1.3 Generating code from the VSDG

1.4 Contributions o0

1.5 Published work oo

2 Intermediate Representations in Compilers: A Survey

2.1 Introduction L Lo
2.2 Terms and definitions
2.3 IR taxonomy
24 Linear IRs
2.4.1 Classical representations
2.4.2 Static Single Assignment
2.4.3 Gated Single Assignment
2.5 Graphical IRs o
251 Trees.
2.5.2 Directed Acyclic Graphs
2.5.3 Control Flow Graph
2.54 Superblocks
2.5.5 Data Flow Graph

ii

iii

iv

Table of Contents

2.5.6 SSA Graph
2.5.7 Program Dependence Graph.
2.5.8 Program Dependence Web
2.5.9 Value Dependence Graph
2.5.10 Value State Dependence Graph
2511 Pegasus
2512 Click’s IR o
2.5.13 Dependence Flow Graph
2.6 Classification and comparison
2.6.1 Classification and citations
2.6.2 IR technology in current compilers
2.7 Summary

A Study of Irreducibility in C Programs
3.1 Introduction o
3.2 Backgroundo
3.3 Causes and solutions of irreducibility
3.4 Modern languages, old languages
3.5 Method
36 Results.
3.7 Patterns of irreducibilityo 0oL
3.8 Machine-generated irreducibility
3.8.1 Parser generators
3.8.2 Source-to-source compilation
3.8.3 MATLAB Real-Time Workshop
3.9 Concluding remarks oo
3.10 Summary L.

Construction

4.1 Introduction

4.2 Relatedworko
4.2.1 Value State Dependence Graph
4.2.2 Dependence Flow Graph
4.2.3 Value Dependence Graph
4.2.4 Thinned Gated Single Assignment
4.2.5 Gated Data Dependence Graph
426 Ourrequirements

4.3 Structural analysis oL

4.4 Sketching the algorithm
4.4.1 Generating VSDG fragments
4.4.2 Control tree traversal,
443 Mergingo

4.5 Generating and merging
4.5.1 Generating VSDG fragments

vi

26
27
28
29
30
32
33
33
34
34
34
39

40
40
41
43
45
47
48
50
52
52
02
54
o4
56

Table of Contents

4.5.2 Control tree traversal
453 Mergingo
4.6 Worked exampleo
4.6.1 Structural analysis oL
4.6.2 Generating VSDG fragments
4.6.3 Traversing and merging
4.7 Summary oL e e
5 Proceduralisation
5.1 Introduction
5.2 Previousworko
53 Theproctool Lo
5.4 Lawrence’s naive approach L.
5.5 Lawrence’s effective algorithm
5.6 Compilingloops. L
5.6.1 O-nodes
5.6.2 Loopsinthe PDG
5.7 Adding loops to Lawrence’s framework
5.7.1 Using serial edges to transform the PDG
5.7.2 Handling break and continue
5.8 Worked example
5.9 Summaryo
6 Sequentialisation
6.1 Introduction.
6.2 Previouswork Lo
6.3 Theseqtool L
6.4 Node splittingo
6.5 Scheduling o
6.6 Towards sequential code
6.6.1 Statements Lo L
6.6.2 Conditional branches
6.6.3 Loops
6.7 Generating LLVM oo
6.8 Summaryo
7 Evaluation
7.1 Introduction
7.2 Tools for comparisono
73 Results. L
7.3.1 Without independent redundancy
7.3.2 With independent redundancy
T4 Summary e

Vil

72
72
78
78
78
80
83

86
86
87
90
91
94
95
95
96
97
98
100
100
106

109
109
110
111
113
114
116
117
117
118
122
125

Table of Conten

8 Conclusion

ts

8.1 Contributions
8.2 Further work

Appendices

A Construction
A1 Omitted merge algorithms
A.1.1 IfThenElse merge

Al2

SelfL.oop merge

A.13 NaturalLoopmerge L.

B Proceduralisation algorithm
B.1 Lawrence’s effective algorithm
B.1.1 Gating conditions L Lo
B.1.2 The traversal algorithm
B.1.3 The v-ordering transformation

C Grammar specification for pdg files
C.1 Examplefile
C.2 Grammar

C.21
C22
C.23

C24

References

Non-terminal rules

Terminal rules
Parameters . .
C.2.3.1 Nodep
Edge parameters

arameters

viii

133
133
135

138

139
139
139
139
139

143
143
144
145
148

150
150
152
152
153
153
153
155

156

List of Figures

1.1
1.2
1.3
14

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1

3.2

3.3

3.4

3.5
3.6

A typical compiler structure split into phases. 2
C code and the corresponding VSDG for a factorial function. 5]
A for loop and corresponding @ nodes. L. 6
Two syntactically different if statements become the same VSDG. 8
Some example code containing an if statement.. 14
A simple IR taxonomy.o 16
Transformation of Figure 2.1 into SSA. 19
Transformation of Figure 2.1 into GSA. 21
The sentence a * b + c represented as two different tree types. . . 22
DAGs for the expression (a+b)* (b+ a) * (c +d), showing both

left-associativity and right-associativity. 23
Some example code containing a loop. 24
The CFG representation of Figure 2.7. 24
The DFG representation of the first two instructions in Figure 2.1. 26
The PDG representation of Figure 2.7. 28
The VDG representation of Figure 2.7. 29
The VSDG representation of Figure 2.7. 31
Timeline of IRs based on the publication date of the original paper

describing it. The starting date of classical IRs has been estimated

as no precise information is available. 36
Performing 77 and T5 transformations on a reducible (a) and irre-

ducible (b) CFG. 42
Some pseudocode which contains the canonical three-node irre-

ducible CFG. 43
The application of node splitting to the irreducible CFG in Fig-

ure 3.1b. . Lo 45
Top three languages in the TIOBE Programming Community Index

for July 2009.o 46
Results for current (as of July 2009) versions of open source software. 49

Results for the oldest available versions of the software in Figure 3.5. 49

1X

List of Figures

3.7 Unstructured labelled sections of code and the equivalent struc-
tured code. op, represents non-branching code and ¢, represents
Boolean variables. oo

3.8 Results for parsers generated for 8 programming languages using
lexand yacc.

3.9 Results for parsers generated for 8 programming languages using
flex and bison.

3.10 Results for source-to-source compiled versions of the software from
Figure 3.5.. oL

3.11 Results for C code generated with Real-Time Workshop for MAT-
LAB Simulink models. 0

4.1 Acyclic structures that can be recognised by structural analysis.
A proper region is of arbitrary size; the pictured example is the
smallest possible proper region. oo

4.2 Cyclic structures that can be recognised by structural analysis. Like
the proper region, the improper loop is schematic.

4.3 A CFG is reduced step-by-step by structural analysis into a one-
node limit graph. Lo o

4.4 The resulting control tree from applying structural analysis to the
CFGin Figure 4.3.

4.5 Region occurrences for 15 open source projects from Figure 3.5 as
of July 2009.

4.6 Some C code which has been translated into a linear IR. Identifiers
with a % indicate local variables, and those with a @ indicate labels.

4.7 Performing structural analysis on the CFG from Figure 4.6.

4.8 The control tree generated after structural analysis in Figure 4.7.
The blocks have been annotated with their postorder numbering. .

4.9 VSDG fragments generated for each basic block in the CFG. Note
that since the basic block i.en does not contain any non-terminating
instructions, we do need to generate any nodes forit.

4.10 The fragment G, created after performing a merge at abstract node

4.11 The complete VSDG constructed from Figure 4.6.

5.1 A y-node (a) and corresponding split and merge nodes (b).
5.2 An outline of the proctool. 0.

o4

62

66

80
81

81

88
89

5.3 An example program and the VSDG produced by the VECC compiler. 91

5.4 The PDG produced by applying the naive algorithm to the VSDG
in Figure 5.3. Lo

92

List of Figures xi

5.5

5.6
9.7

5.8

5.9
5.10

5.11
5.12
5.13
5.14
5.15
5.16

5.17

6.1
6.2

6.3

6.4

A VSDG for a program exhibiting independent redundancy. The
grey add node demands the result of two separate v nodes on its L
and R port. Two different paths can use the result of the shaded
sub node. One path is via the blue coloured nodes, and the other
is via the red coloured nodes. 93
The canonical illegal PDG subgraph. 93
The unsequentialisable PDG produced by the naive approach on
the VSDG of Figure 5.5: the bold computation is shared. The
illegal subgraph exists between the two predicate nodes testing r9
and r14, and their respective children when the predicate evaluates
totrue. 94
Application of y-ordering to the independent redundancy example
in Figure 5.5. The shared computation is in bold. Performing ~-
ordering means that the shared computation occurs only once on
each possible control flow path from r4, thus preventing redundant
computations. Lo 95
A while loop in abstract syntax translated into a loop in the CDG. 97
Two semantically different VSDGs and (a) which translate to the

same PDG (b) when serial edges are ignored. 99
A PDG with (a) hoist edges annotated, and (b) after application
of hoisting. 101
A C program containing a break node and the corresponding VSDG.102
The PDG produced by proc for the VSDG in Figure 5.12. 102
A VSDG containing a nested loop. 0oL 103
Unconnected PDG nodes with virtual registers assigned from the
VSDG in Figure 5.14.o o 104
The results of various link operations during the proceduralisation
algorithm.o o 107
The finished PDG after proceduralisation, normalisation, and build-
ing of the DDG for the VSDG in Figure 5.14. 108
An outline of the seq tool. L. 112

Application of node splitting to the independent redundancy exam-
ple PDG. The (previously) shared sub computation is in bold. In
contrast to Figure 5.8, the computation now exists on two separate

control dependence regions. oL 115
Application of the scheduling algorithm to a PDG. The order in
the schedule is annotated next to each node. 117

A C program with a nested loop translated into a PDG by proc.
The I and X port registers of each loop value are indicated next
to each loop predicatenode. 121

List of Figures

6.5 Application of LLVM -03 to the LLVM IR generated by our seq
tool (a) and 11vm-gcc (b) respectively. alloca instructions, where
possible, are promoted to SSA registers with phi instructions being
inserted where necessary.

7.1 Size of the VSDG and PDG internal representations for a test set
with no independent redundancy.
7.2 Lines of LLVM IR produced by our compiler (proc + seq) com-
pared to Clang and 1lvm-gcc..
7.3 Number of Intel x86-64 instructions generated by our compiler
(proc + seq + 1llc) on non-independent redundancy code com-
pared to Clang + 1llc, 1lvm-gcc + lcc and GCC at optimisation
levels -00 (a) and -03 (b).
7.4 Size of the VSDG and PDG (after node splitting) internal repre-
sentations for a test set with independent redundancy.
7.5 Number of Intel x86-64 instructions generated by our compiler
(proc + seq + 1llc) on independent redundancy code compared
to Clang + 1lc, 1lvm-gcc + lcc and GCC at optimisation levels
-00 (a) and -03 (b).

B.1 The buildPDG algorithm. (Note mutable variables C(-), P and D.) . .
B.2 The link procedure.

C.1 A PDG produced by the proc tool (a) and its pdg file output (b). .

xil

148
148

151

Chapter 1

Introduction

1.1 The importance of compilers

When Grace Murray Hopper developed the compiler for the A-0 System lan-
guage in 1952 [102], considered the first ever compiler for an electronic com-
puter, it is unlikely she was aware of the compelling, complicated field of
computing that compiler technology would become. When programming in
today’s most popular modern languages such as Java, C or C++ [8], one can
easily forget the extent of the processing and translation that occurs before
the written program can run on the target hardware, comprised of increasingly
complicated and powerful digital circuitry. Our rapid-pace, technology-driven
society would not be possible without the essential tool that evolved from
Hopper’s original work.

A-0 was not like today’s complex compilers. By storing subroutines on
tape, the programmer could write in mathematical notation in order to be
able to call stored subroutines. Further development resulted in the ability for
a computer to recognise English commands, showing that programming could
potentially be more understandable to humans. In addition to the fact that
compilers allow languages to be more literate, they also aid in writing more
powerful, concise code. Soon after Hopper’s original paper was published,
John Backus proposed a new language for the mainframe computers at IBM.
This would eventually become FORTRAN [92|. The language sported one of
the first compilers to use optimisation, a technique which attempts to improve
generated code by means of analysis and transformation. The true meaning of
“improve” is dependent on the optimising criteria; for example, the user may
want code that executes in the fastest possible time, or code that takes up the
least possible space in memory.

The principal rewards of compiler technology — the ability to support more
complex and useful programming languages, combined with the need to pro-
duce faster, better code — has encouraged computer scientists to continually
develop compilers to accept more intricate language syntax, and to perform

CHAPTER 1. INTRODUCTION 2

syntax O

X tokens tree X IR L IR X
character Lexical o Syntax | Semantic | Optimisation o Code target-machine

> > > >
stream analyser analyser analyser passes generator code

Figure 1.1: A typical compiler structure split into phases.

highly complex optimisations, often exploiting specific properties of the target
architecture for maximum possible gain.

1.1.1 A compiler’s function

At an abstract level, a compiler is only doing one apparent task: reading
the source program given to it, and then generating a semantically equivalent
program in the required target language as output. However, in practice,
compilers perform many different stages of analysis and transformation in order
to achieve a correct result.

Most modern compilers are similar in their general structure. Broadly
speaking, a typical compiler is split into two logically disparate phases: the
analysis of the source program and the synthesis of the desired target program.
These two phases are commonly referred to as the “front-end” and “back-end”
of a compiler. In Figure 1.1 we show a typical compiler structure. The front-
end breaks up the source program into basic segments (often called tokens)
and then checks that their grammatical structure is valid with reference to
the input language specification. Additionally, information is extracted and
stored about the input program for use in later stages of compilation. The
result of this analysis stage is normally a machine-independent representation
of the source program, which is then used by the latter phases of the compiler
to construct an equivalent program in the target language.

While the theory and application of the compiler front-end has remained
mostly “solved” for a time, the implementation of the intermediate represen-
tation (IR) phase and the quest to achieve high-quality code generation still
attracts active research. Programming languages have remained fairly similar
in structure over time, but hardware is constantly evolving, resulting in the
need for more flexible [Rs and a wider range of code generators.

1.1.2 Optimising compilers

Producing correct code is the fundamental goal of a compiler. However, the
ability to optimise code, both during and after compilation, yields a number
of benefits. The aim of optimisation is to produce target code that has better
performance than if the optimisation passes were not undertaken. In a general
sense, good performance indicates that the optimised code will run faster than

CHAPTER 1. INTRODUCTION 3

before. However, the metric by which performance is judged can differ de-
pending on the context in which the optimisations are being performed. For a
program running on a desktop computer with an abundance of storage, speed
may be the primary concern. Yet, with an increasing number of embedded
systems with limitations on power and space, the overall size of the code may
be important, or the desire that the code uses as little power as possible when
running. Therefore, it is necessary to treat optimisations as passes over a
representation in the compiler that is machine-independent, as analysis and
transformation is therefore free from being bounded by specifics of the target
code, and optimisations can take place without worrying about machine-level
specifics. In most modern compilers, the majority of optimisations are carried
on the IR, which is often a graph-like structure.

Most, if not all, modern compilers perform optimisations on an IR called the
Control Flow Graph (CFG) [12]|. This seminal IR was introduced to explicitly
represent all possible control flow paths in a program. A CFG is a directed
graph G = (V| E) consisting of nodes V and edges E. Nodes are commonly
called basic blocks and contain instructions. Edges show possible paths of
execution. When control enters a basic block it does so at the first instruction
and can only leave through the last instruction. An edge (a,b) indicates that
control may pass from a to b once the last instruction in a has executed.
Representing a program as a CFG is now a highly commonplace activity: it
is the IR of choice in many mainstream and research compilers such as GCC
[2] and LLVM [82]. Yet, many now-standard optimisations are based on data
flow information; that is, identifying which parts of the program depend other
parts in order to execute. Thus, graph-based data flow IRs were designed
to make data flow optimisations easier to perform. In these graphs, nodes
represent operations such as add, and edges represent the flow of data from
the result of one operation to the input of another. An operation can execute
at any time after all of its input data values have been computed. When
an operation executes, it produces a new value which is propagated to other
connected operations. However, early data flow IRs were unable to deal with
explicit control flow concepts such as loops and conditional branches, meaning
these IRs had to be used in conjunction with the CFG.

Since compilers must generate correct code, compiler writers have always
been conservative with optimisations. More specifically, compilers are tradi-
tionally very conservative with the order of instructions in the input program,
hence the almost universal adoption of the CFG as the IR of choice. But, on a
grander scale, should we pay so much attention to the specific instruction order
that the programmer has specified? We may be able to do better by stripping
away all but essential control flow, optimising with greater freedom, and then
restoring the control flow later. As compilers are always under scrutiny to
produce better and faster code, this is a bold, yet exciting, avenue to explore.

Functional, demand-based IRs have shown promise. These IRs try to discard
explicit representation of control flow and infer control flow from properties of

CHAPTER 1. INTRODUCTION 4

data flow, and thus eliminate the CFG as the basis of analysis and transforma-
tion. For example, the Value Dependence Graph (VDG) [125] used selectors to
implement if and switch statements: a condition is evaluated, then the value
is demanded from the true or false connection of the selector, depending on
the result of this condition. Loops were implemented as function calls with tail
recursion. However, the authors noted that they suffered from a termination
problem: “evaluation of the VDG may terminate even if the original program
did not”.

The Value State Dependence Graph (VSDG) [72]| extended the concept of
the VDG by introducing state edges. If two nodes are connected by a state
edge, then this enforces that those operations must be performed in that order.
This overcame the termination problem with the VDG. The VSDG is a sparse
data flow IR that contains enough program information to eliminate the CFG,
while exposing the program to a variety of simple, powerful optimisations.

1.2 The VSDG: some motivation

The VSDG is a functional IR that represents programs with reducible control
flow [65] purely as data flow. Formally, a VSDG is a labelled directed graph
G = (N, Ey, Eg,l, Ny, No) consisting of nodes N (with unique entry node
Ny and exit node N), value dependency edges Ey C N x N and state
dependency edges Fg C N x N. The labelling function ¢ associates each node
with an operator.

There are four different types of node in the VSDG. The first are value
nodes. These represent pure operations such as add and sub. The second are
state nodes. These are side effecting operations such as load and store. The
third are v nodes which implement the behaviour of conditional statements
by demanding a value from one or other input according to the value returned
from their condition input. The fourth are € nodes which implement the
behaviour of loops.

Two different types of edge are present in the graph. Value edges indicate
the flow of data between nodes in the same way as other data flow IRs. For
example, an add instruction will have two operands connected by separate
value edges, such as 5 and 2. State edges represent sequential dependencies
in the program. For example, assume a memory location x. A particular
load x operation may come before a store x, and a state edge between these
operations ensures that this is always the case. Linearity constraints ensure
only one state can be “live” at any given time, i.e. stateful operations consume
and destroy the previous state; this ensures the semantics of the input program
are maintained.

As an example, we show C code for a factorial function in Figure 1.2 and
its corresponding VSDG. In this example, we can see most of the different
VSDG nodes. Ny is the box at the top of the diagram and N, is the return

CHAPTER 1. INTRODUCTION

public : fac()

[n [STATE
[

N

int fac(int n) {
int r;
if(n == 1)
r = n;
else
r =n * fac(n - 1);
return r;

() (b)
Figure 1.2: C code and the corresponding VSDG for a factorial function.

node. Edges connect to and from labelled ports, which are annotated in the
diagram. Value edges are solid (blue) and state edges are dashed (red). For
example, the sub (subtract) node has L and R ports for the left- and right-
hand operands respectively. The call node has an arg0 port for the first and
only argument to the function being called, and an A port to specify the name
of this function. The box at the top of the VSDG represents the function
inputs, in this case the value n and the state. Edges are drawn in the direction
of demand. The return node demands both state and value, represented by
the dashed state edge and the solid value edge. These are connected to the
node which represents the if statement in the program. The v node demands
the condition value through the C' port; if this yields true, it demands and
returns a value from the T port, otherwise from F'. The value edge labelled C
demands the result of the eq node, which in turn demands the constant value 1
and the value n passed as a parameter to the function. If the v node condition
is true, then the parameter value of n is demanded. If it is false, then the

parameter value of n is multiplied with the result of the call to the function

labelled fac() with one argument: n — 1. Note that the v node also has T’

and F' state edges. If the C port evaluates to true, the edge to the original
function state reflects that the recursive call must not be made; if false, the
state edge to call reflects that it must be.

CHAPTER 1. INTRODUCTION 6

j= ...
for(i = 0; i < 10; i++) {

-3

}

=3
(a))

Figure 1.3: A for loop and corresponding 6 nodes.

1.2.1 Loops

Loops are represented by 6 nodes. A 67?4 node acts as a loop header, and
the 0% node acts as a loop exit. In Figure 1.3 we show a for loop and
its corresponding 6 node representation. 6 nodes are interpreted as follows.
On the first iteration, the loop values of i and j are set to the initial values
demanded through the #"¢%@ I ports. These ports are annotated as I<i> and
I<j> in the diagram. These initial values are now available to be demanded
through the 67¢%¢ L ports. Next, the condition demanded through 6% C
port is evaluated. If this evaluates to true then all 6% R port values are
demanded, causing evaluation of the loop body. These new R port values for
i and j become the #"¢2¢ [, port values for the next iteration. This behaviour
continues until the #** C port evaluates to false, and the current values for
i and j are returned through the 6% X port. Loops always consume and
produce state, unless their termination is guaranteed by appropriate analysis.
In this particular example loop the body has no side effects, so the state edge
from 6% points to 07¢%?. Semantics for the VSDG have been given along with
a more detailed definition and well-formedness conditions, but we omit these
for space, referring the reader instead to Johnson’s thesis [72].

CHAPTER 1. INTRODUCTION 7

1.2.2 Optimisation

The VSDG is an excellent tool for optimisation. Many classical optimisa-
tions can be performed on the VSDG using a combination of graph rewriting
and node or edge marking. Graph rewriting optimisations involve replacing a
subgraph of the VSDG with an alternative one that is considered better by
some given criteria. For example, the strength reduction optimisation [10] can
be performed by finding and then replacing operators with cheaper alterna-
tives. Rewriting optimisations can be continually performed until no further
subgraphs are matched. Marking optimisations walk over the graph using tra-
ditional graph traversal techniques whilst marking nodes and edges according
to some criteria. As an example optimisation, we will show how dead node
elimination can be performed.

Dead node elimination is a combination of dead code elimination and un-
reachable code elimination. Dead code is that which has no effect on the
result of the function it is in. Unreachable code is code that will never exe-
cute. Because the VSDG is a data flow IR, dead code generates nodes which
have no value or state edges connected to them because their values are never
demanded. Unreachable code generates VSDG nodes that are either dead, or
become dead after other optimisations. For example, a v node may have a
constant value being demanded through the C port, so the branch can be re-
moved. Therefore, dead node elimination is a simple node marking algorithm
(Algorithm 1). This runs in O(N) time, where N is the number of nodes
in the VSDG. The VSDG has been used to implement a number of classical
and novel optimisations [72, 123]. Many come “for free” just by representing a
program as a VSDG, such as this dead node elimination technique.

Algorithm 1: Dead node elimination on the VSDG.
Input : A VSDG G(N, Ey, Eg, Ny) with zero or more dead nodes.
Output: A VSDG with no dead nodes.

1. WalkAndMark(n) =
if n is marked then return;
mark n;
V{m|m € N A (n,m) € (Ey UEg)} do
WalkAndMark(m);
in WalkAndMark(N);

2. Vn€ N do
if n is unmarked then delete(n).

CHAPTER 1. INTRODUCTION 8

a) if (P)
x =2,y =3;
else
x =4;y=5;
b) if(P) x = 2; else x = 4;
if(P) y = 3; else y = 5;

Figure 1.4: Two syntactically different if statements become the same VSDG.

1.2.3 Normalisation

We say a compiler normalises input programs Py, ..., P, (with different source
codes) if they are translated into the same output program (executable). If
this happens, then those source programs were different methods of imple-
menting the same computation, and had the same observable semantics. The
more normalising a compiler is, the less the programmer has to worry about
optimising their code by hand: the compiler deals with this for them. Thus,
we claim that the most optimising compiler is the most normalising compiler,
assuming correct and efficient programs are being generated. This allows the
programmer to think about their code at higher levels of abstraction.

The VSDG is a highly normalising IR. Since programs are represented by
data flow and only the essential control flow enforced by state edges, different
source programs computing the same underlying idea can take the same form
in the VSDG@G. For example, consider the two syntactically different programs
in Figure 1.4. Despite being written in different ways, the underlying compu-
tations are the same, and have the same observable semantics. This means
that in the VSDG representation they have the same structure.

Broadly speaking, we say that the VSDG represents what needs to be com-
puted in a given program. Conversely, the CFG represents how it has to be
computed. By saying what needs to be computed rather than how, optimisers
have greater freedom to move and rewrite instructions to improve the pro-
gram, without having to worry about the original order of instructions that
the source program specified. Thus, the VSDG is more normalising than the
CFG and other control flow based IRs. This property makes the VSDG an
excellent tool for optimisation.

1.3 Generating code from the VSDG

If we eliminate the CFG by translating a program into a VSDG, we are faced
with a challenge in the back-end of the compiler: restoration of control flow.
This process is called sequentialisation. Being able to produce an optimal

CHAPTER 1. INTRODUCTION 9

sequentialisation was shown to be NP-complete [122]. A sequentialisation is
optimal if it is:

Dynamically optimal No redundant computations are performed on any
path in the CFG.

Statically optimal It has the smallest size amongst all dynamically optimal
sequentialisations [123].

Since an optimal sequentialisation involves some element of search, Lawrence
[83] investigated a different approach to generating code from the VSDG,
proposing that the back-end of a VSDG compiler could consist of two dis-
tinct parts:

1. Translating the VSDG into a Program Dependence Graph (PDG) [57],
an existing parallel IR, representing both control flow and data flow
information. This stage encodes a lazy evaluation strategy in a similar
manner to the evaluation of functional programming languages.

2. Translating this PDG into a CFG using existing techniques, from which
code can then be generated.

But how effective is this technique? Also, aside from the challenge of gen-
erating sequential code from a VSDG, there exist various other complications
that pose difficulties for a potential VSDG compiler. What are these compli-
cations, and how can we overcome them?

1.4 Contributions

In this thesis we are interested in practical factors that relate to implementing
a VSDG compiler. We are concerned with the whole compiler, from VSDG
construction through to code generation. This thesis makes the following con-
tributions.

The TR landscape Which IRs have been used in compilers over time, and
how can we classify them? In Chapter 2 we study IR developments from
the birth of compiler technology through to the present day, in order to
see how the VSDG fits into the IR landscape. We categorise IRs by their
features in a taxonomy, and also look at the divide between academia
and the “real world” in terms of compiler technology. We are aware of
no similar survey in the literature.

Irreducibility Currently, the VSDG, like many other data flow IRs, cannot
be built for irreducible programs. In Chapter 3 we explore the meaning
of irreducibility and show why it causes a problem for compilers. We

CHAPTER 1. INTRODUCTION 10

perform an empirical study of irreducibility in current versions of open
source software, and then compare them with older versions of the same
software. We also study machine-generated C code from a variety of
different software tools. We use this to decide whether irreducibility is
a problem that can prevent IRs like the VSDG from becoming widely
used.

Construction Previous approaches to constructing the VSDG and similar
IRs have been poorly documented or ignored in the literature altogether.
In Chapter 4 we provide a thorough approach to constructing the VSDG
from the CFG of an input program. We show how our approach is inde-
pendent of the source and target language, how it handles unstructured
control flow, and also how it is able to transform irreducible programs
on the fly. We know of no other construction algorithm that can perform
all of these techniques.

Proceduralisation With the VSDG constructed, in Chapter 5 we implement
Lawrence’s proceduralisation algorithms [83] on the VSDG. We show
how a naive approach to proceduralisation results in an illegal PDG, as
defined by Ferrante et al [56]. Then, we implement Lawrence’s effective
algorithm by analysing the VSDG using gating conditions, and then
using this information to guide the construction of the PDG. We show
how this avoids illegal PDGs by a process called y-ordering. We extend
Lawrence’s algorithm to include loops in the PDG, and give an example
of how to proceduralise nested loops, thus bridging the gap between
Johnson’s and Lawrence’s work. No implementation of this technique
has been previously performed.

Sequentialisation With the PDG generated from Chapter 5, Chapter 6 de-
tails our implementation of sequentialisation from the PDG. We show
how Lawrence’s algorithm can generate PDGs that are not well-formed,
and give our strategy for restoring well-formedness. Then, we give our
approach to scheduling the PDG, and show how to generate code from
statements, conditional branches and loops. We also show how to gen-
erate LLVM IR, suitable for input into existing code generators.

Evaluation In Chapter 7 we compare our compiler framework against several
existing compilers. We study the effects of removing and restoring control
flow with the VSDG in comparison to CFG-based compilers. We then
look specifically at the PDGs generated by v-ordering, and how this
technique puts pressure on code generators.

Conclusion Chapter 8 concludes and suggests potential directions for further
research.

CHAPTER 1. INTRODUCTION 11

1.5 Published work
Parts of this thesis are published in or are related to:

1. Stanier, J. Graphs and Gating Functions. Section in the forthcoming
textbook “SSA-based Compiler Design”, Springer, 2012.

2. Stanier, J and Watson, D. 2011. A Study of Irreducibility in C Pro-
grams. To appear in Software: Practice and Experience.

3. Stanier, J and Lawrence, A. 2011. The Value State Dependence Graph
Rewvisited. In Proceedings of the Workshop on Intermediate Representa-
tions (co-located with CGO 2011), pages 53-60.

4. Stanier, J and Watson, D. 2011. Iniermediate Representations in Com-
pilers: A Survey. Accepted for publication in ACM Computing Surveys.

Chapter 2

Intermediate Representations in
Compilers: A Survey

2.1 Introduction

Compilers are an essential tool in software development. Without compilers,
we would not have the efficient support for the wide variety of expressive high-
level programming languages available today. Better compilers have allowed
for more powerful programming languages, raising the level of abstraction for
the programmer, and making code easier to write. However, compilers do
more than just translating source code into target code. They are also able to
optimise the source program in order to make it better by some criteria. For
example, the user may want the smallest code possible, or the fastest code.
Since compilers can (and should) optimise code, it makes sense to translate
the source program into a data structure which makes optimisation easier.

A compiler commonly constructs an intermediate representation (IR)
[10] which is an internal form of a program created during compilation [119].
This structure forms the start and end point of a number of analyses and
transformations performed during compilation. Many compilers use more than
one IR during the course of compilation [118].

Figure 1.1 shows a typical compiler structure as a number of phases. To
begin with, the source program is read into the compiler and split into its
atomic syntactic components by the lexical analyser. These syntactic compo-
nents are called tokens and are passed to the syntax analyser, where their order
is inspected against a formal definition of the language to ensure the source
program is syntactically correct. Typically a syntax tree and symbol table are
produced by this stage, and these data structures are used by the semantic
analyser to perform type checking and type conversions, amongst other anal-
yses concerned with correctness. After this stage, the IR is generated. The
IR can then be used to perform a number of analyses and transformations to
improve the program. Then, the target machine code is generated from the IR.

12

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 13

The front-end of a compiler is considered to be all phases before optimisation
on the IR: the lexical analyser, syntax analyser and semantic analyser. The
back-end is commonly considered to be all phases after machine-independent
optimisation: namely all stages of code generation.

The IR is not just present to act as a vehicle for code optimisation. It
can play a key role in compiler implementation, where front-ends (for different
source languages) and back-ends (for different target architectures) can share
a common IR, resulting in a significant reduction of effort when implementing
multiple compilers. This idea is not new [41], but it has never been satisfacto-
rily implemented although the use of a common IR for a small range of similar
programming languages is not uncommon. Furthermore, there are many ex-
amples of compilers where back-ends, based on the same IR, are available for
a wide range of target architectures. Some compiler projects have made use of
the IR to support rapid implementation via interpretation. The IR produced
by the front-end can be interpreted, rather than code generated. For exam-
ple, the BCPL language [96] could be implemented on a new machine using a
bootstrapping process based on an IR called INTCODE. This is a simple and
compact representation for which an interpreter can be written easily. Once
an interpretive implementation is available, work can start on a conventional
back-end based on the use of the more complex OCODE IR.

Currently, there are a wide variety of different IRs in use, both in the
literature and in real world compilers. Different IRs are used for different
purposes and each has its own benefits and drawbacks. The first objective
of this chapter is to provide a detailed overview of the IR landscape. To
accomplish this we propose an IR taxonomy, then identify the components
and design purposes of different IRs and group them accordingly. The second
objective is to look at the size of the technology gap between academic or
commercial research and real world compilers in terms of their IRs. We do
this by providing a timeline of IR developments in research, and surveying the
IR technology used in current compilers. We are unaware of any survey of IRs,
apart from two existing bibliographies [37, 89)].

This chapter presents the following:

e We outline some common terms and definitions which we will use through-
out this thesis.

e We explain our taxonomy for classifying IRs.

e Then, we look at a number of popular linear and graphical IRs, detailing
their design and common uses.

e We look at the uses of these IRs in the literature and also in “real-world”
compilers. We use this information to comment on the technology gap
between the two areas.

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 14

a=>b+ c;
X = a % d;

if(x == y)
zZ = e;
else
z = f;
y=2z+1;
return y;

(a)

Figure 2.1: Some example code containing an if statement.

2.2 Terms and definitions

Before we present our taxonomy, we will outline some terms and definitions
that are used repeatedly throughout this thesis. Firstly, we frequently refer
to the definition of a directed graph which is an ordered pair G = (V, E)
comprising of a set V of nodes and a set E of edges where E € V x V. Many
IRs are represented as graphs. A path from a vertex vy to v, in a graph is a
sequence of nodes vg, v1, ..., Un—1, Uy Which all are connected by edges in F. If
a path vy, ..., vg exists in F then the graph has a cycle and is therefore called
cyclic. If no such path exists, the graph is acyclic [26]. A strongly connected
component of a graph is a subgraph in which all nodes in the subgraph are
reachable by all other nodes in the subgraph. A back edge in a directed graph
is one that points to an ancestor in a depth-first traversal. A bipartite graph
is a set of graph nodes, which when decomposed into two disjoint sets, no two
graph nodes within the same set are adjacent. Single-entry single-exit (SESE)
analysis finds subgraphs of a directed graph that have exactly one incoming
edge and one outgoing edge.

We also refer to dependence relationships in programs. The first of these
is control dependence. Control dependence arises from execution order con-
straints within the program. For example, consider the code fragment in Fig-
ure 2.1. Here, the value that is assigned to z is control dependent on the
outcome of the if statement guard: if it evaluates to true, then z = e, else z
= f. The second is data dependence. This arises from the flow of data in the
program. In Figure 2.1 the statement x = a * d has a data dependence on the
previous statement a = b + c, since the latter must execute for the result of
a to be available for the execution of the former. Related to data dependence,
a def-use chain for a variable connects a definition of that variable to all of
the uses it may reach.

We also refer to whether a program exhibits reducible control flow. If a

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 15

program does not have reducible control flow, then it is irreducible. Irreducible
programs prevent compilers from optimising loops. Given a directed graph,
it is reducible if we can repeatedly perform transformations 77 and T5 until
the graph has been transformed into a single node. The resulting graph is
called the limit graph. Assuming we are analysing a directed graph G, the
transformations are as follows:

T1 Suppose n is a node in G with a self-loop, that is, an edge from n to itself.
Transformation 77 on node n is the removal of this self-loop.

Ty Let nq and no be nodes in G such that no has the unique direct ancestor
n1, and neo is not the initial node. Then transformation 75 on node pair
(n1,n2) is merging nodes n; and ny into one node, named n;/ny, and
deleting the unique edge between them [65].

These transformations are confluent: the same limit graph will be reached
regardless of the order of application. If there is more than one node in the
limit graph, the CFG is said to be irreducible.

Trees are data structures that feature often in compilation. A tree consists of
one or more nodes. Exactly one node is the root of the tree. All nodes except
the root have exactly one parent; the root has no parents. Edges connect
parents to children. A node with no children is called a leaf. Nodes with one
or more children are called interior nodes. Preorder and postorder traversals
are two special cases of depth-first search in which the children of each node
are visited left to right. Compilers often traverse trees and then perform some
action at each node. If an action is done when a node is first visited, then the
traversal is preorder. If it is done when the node is left for the last time, then
the traversal is postorder.

Construction of an IR is the process that builds it from whichever form an
input program is in. Destruction of an IR is the process that translates it into
some target format, whether that be machine code or another IR.

2.3 IR taxonomy

We now present a simple IR taxonomy (Figure 2.2) which we will use to group
IRs. The taxonomy consists of three categories in which IRs can exhibit char-
acteristics. The first category is structure. The structure of an IR can be
divided into two broad sub-categories:

Linear The IR represents pseudocode for a machine. This varies from rela-
tively high-level instructions to low-level instructions similar to assembly
language.

Graphical The IR represents program information in the form of a graph.

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:

A SURVEY 16
Structure Dependence | Content
Linear None Full
Graphical (cyclic) Control Partial
Graphical (acyclic) Data
Hybrid

Figure 2.2: A simple IR taxonomy.

We choose to split graphical IRs into two further sub-categories: cyclic and
acyclic, based on these graph theoretic properties.
The second category is the dependence information represented:

None The IR is not designed to highlight any dependence information.

Control The IR represents relationships explicitly in terms of the control de-
pendencies between variables or sequences of instructions in the program.

Data The IR represents relationships explicitly in terms of the data depen-
dencies between variables or sequences of instructions in the program.

Hybrid The IR highlights both control and data dependency information.
The third category is the program content contained within the IR:

Full The compiler is able to generate target code with only the information
present in the IR.

Partial The compiler requires more information, stored externally from the
IR, in order to generate target code.

In this chapter, we categorise the IRs mentioned according to this taxonomy,
and use this information to identify IR trends over time.

2.4 Linear IRs

All linear TRs consist of sequences of instructions. However, the format and
complexity of these instructions varies. In the early days of compilation many
linear IRs were developed as part of commercial or unpublished software, so
the exact original specifications are not always available. We summarise these
under classical representations.

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 17

2.4.1 Classical representations

One of the earliest forms of linear IR was based on Polish notation. This
was originally developed as a parenthesis-free mathematical notation [54] and
exists in prefix and postfix forms. This notation was used in a number of early
compilers. The expression

(1 +2) =3

can be represented in prefix notation in the following way:
* + 123

Alternatively, it can be represented in in postfix notation as:
12+ 3 %

Postfix Polish notation has been used as it is potentially an efficient IR
for generating code for a stack-based machine architecture (e.g. Burroughs
mainframe computers [22]). To generate code, the IR is simply scanned left
to right, with operands being placed on to the stack sequentially and opera-
tors being applied immediately to the operands on the stack. Since computer
programs contain non-arithmetic operations, extended Polish describes any
extension of Polish notation that can handle additional operations such as
conditional branching, loops, and assignment. All Polish notation statements
are referenced by their position in the execution order. Although Polish nota-
tion based IRs are compact, they are difficult to optimise. Additionally, most
modern processors use register-based, rather than stack-based, architectures.
Construction of prefix Polish notation can be achieved by a linear preorder
walk of the abstract syntax tree (Section 2.5.1). Construction of postfix Polish
notation involves a postorder walk.

Another classical IR is based on triples [10]. These instructions have
three fields: an operator op and two arguments a; and a,, represented as
< op,aj,ap > and also referenced by position. The expression (1+ 2)*3
would be represented by two triples, where the parenthesised numbers in the
aj or ap fields refers to the position of another triple as an operand:

0) <+,1,2>
(1) <%*,(0),3>

Quadruples extend triples by having four fields: an operator op, two ar-
guments a; and a, and a result r, represented as < op,aj, as,r >. The result
field r stores the result of the instruction. (1 4 2) % 3 would be represented as
follows:

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 18

<+,1,2,t0 >
< *,%t9,3,t1 >

Similarly, three-address code (3AC) is a linear IR consisting of a sequence
of instructions where there is at most one operator on the right-hand side
of an instruction. For example, the expression (1 + 2) % 3 would have to be
represented by two 3AC instructions as there are two operators. This is shown
as:

to=1+2
ti =1tpo*x3

where to and t; are temporary variables generated by the compiler. It is
possible to represent whole program information using 3AC. Aho et al. [10]
specify a 3AC form that supports assignments, operations, jumps, procedure
calls, array indexing and address and pointer assignments. Triples, quadruples
and 3AC can be generated from a linear inorder walk of the abstract syntax
tree.

Many modern compilers use some kind of linear instructions as an IR, either
alone or as part of a graph based IR (Section 2.5). For example, the popular
open source LLVM compiler [82] uses 3AC written as pseudo-assembly instruc-
tions and the Java language uses Java bytecode as an intermediate form fed to
the Java virtual machine. Register Transfer Language [48] is a linear form close
to assembly language that has appeared in many compilers including GCC.
These linear forms support modularity in compiler design, allowing a clean sep-
aration between phases. Some compilers may use high level languages, such
as C, as IRs also.

2.4.2 Static Single Assignment

The linear IRs above do not explicitly show any dependence information. Many
compiler optimisations require knowledge of the data dependencies in a pro-
gram. Static Single Assignment form (SSA) [47] is a method that transforms
linear IR variables to ensure that each is only assigned to once. SSA is not
a language, it is a technique that can be applied to a linear IR. This allows
for data dependence information to be easily discovered since the each use of
a variable points to the exact definition. It does this by transforming each
variable V into a variable V; which only has one assignment. The most recent
V; variable is said to be the most dominating, and is always used in a given ref-
erence to the variable V. SSA uses pseudo-assignment to handle points in the
program where control flow merges. If some assignment to V is dependent on
a preceding choice in control flow such as an if statement then a ¢-function is

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 19

a; = by + cy;
Xy = ag * dy;

if(xqy == yi1)
Z1 = €315
else
zg = £33

return yi;

(a)
Figure 2.3: Transformation of Figure 2.1 into SSA.

used. This function will create a new definition of V' depending on the control
flow path taken. We transform our sample code from Figure 2.1 into SSA in
Figure 2.3. Here, as z is assigned to in the if statement, a ¢-function generates
z3 for the use in the following assignment to y;.

SSA explicitly shows the data dependence relationship between uses of a
variable, which neatly shows def-use chains. Since SSA is in single assign-
ment form, there cannot be any redefinition of a variable, hence the def-use
chain is explicit by observation. Converting to SSA form makes various opti-
misations easier and more powerful, such as global value numbering [98] and
constant propagation [124]. SSA can be used in conjunction with any other
IR containing linear statements.

Construction of SSA form involves two steps: ¢-functions being inserted
at join nodes in the control flow graph (Section 2.5.3), and new variables
Vi being generated. Cytron et al. [47] show that SSA can be constructed
in O(R) time where R is the maximum of: N, the number of nodes in the
control flow graph, F, the number of edges, A,.ig, the number of original
variable assignments and M4, the number of original mentions of a variable.
However, this construction technique can result in unnecessary ¢-nodes being
inserted. Bilardi and Pingali [27] presented an algorithm that only computes
the necessary ¢-functions and competes with the speed of Cytron et al.

SSA form cannot be directly interpreted in order to generate code. There-
fore it must be destructed before compilation can continue. This involves using
an algorithm that converts ¢-functions into appropriately-placed copy instruc-
tions. Briggs et al. [30] showed that the original algorithm for SSA destruction
produced incorrect results in some situations and presented a new algorithm.
Sreedhar et al. [109] produced an algorithm that reduced the number of gener-
ated copy instructions. Boissinot et al. [28] revisit the problem of destructing
SSA form, improving on speed and memory usage. SSA is a well-studied IR

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 20

and is used in a number of mainstream compilers such as GCC! and LLVM.

2.4.3 Gated Single Assignment

In SSA form, ¢-functions are used to identify points where variable definitions
converge. However, they cannot be directly interpreted as they do not specify
the condition which determines which of the variable definitions to choose.
Thus, after SSA has been constructed and used for optimisations, it must be
destructed before code generation can begin. Gated Single Assignment [20]
replaces ¢-functions with gating functions. These gating functions are used
to represent conditional branches and loops. GSA can be directly interpreted
without having to perform any destruction techniques as is necessary in the
case of SSA. We take our definition of the gating functions from Tu and Padua
[120]:

e The « function explicitly represents the condition which determines which
¢ value to select. A v function is of the form ~(P,V;, Va) where P is
a predicate, and Vi and V4 are the values to be selected if the predi-
cate evaluates to true or false respectively. This can be read simply as
if-then-else.

e The p function is inserted at loop headers to select the initial and loop
carried values. A p function is of the form u(Vipi, Viter), where Vipis
is the initial input value for the loop, and Vi, is the iterative input.
¢-functions at loop headers are replaced with u functions.

e The 1 function determines the value of a variable when a loop terminates.
A 7 function is of the form n(P, Vgna) where P is a predicate and Vipg
is the definition reaching beyond the loop.

We show our example code in Figure 2.1 translated into GSA in Figure 2.4.
Here, the variables are subject to the same renaming as in SSA. However, the
assignment to zs is represented as a v function rather than a ¢ function. The
~ function has a direct reference to the predicate P that decides the control
choice in the if statement, along with the choice between z; and z, that exists
in SSA form.

Construction of GSA is used as an intermediate step in the construction of
the Program Dependence Web (Section 2.5.8) where an SSA form Program
Dependence Graph (PDG) (Section 2.5.7) is translated to a GSA form PDG.
This step takes O(V N?2) operations where V is the number of variables in
the program and N is the number of nodes in the PDG’s control dependence
graph. Interpreting a GSA in this situation is not discussed in detail.

'http://gcc.gnu.org

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 21

a; = by + cy;
Xy = ag * dy;

if(P)

Z1 = €1,
else

zy = f4;

z3 = ’Y(P721722);
y1 = z3 + 1;
return yi;

(a)
Figure 2.4: Transformation of Figure 2.1 into GSA.

Thinned-GSA [62], a more compact version of GSA, has been used to per-
form value numbering. Construction of Thinned-GSA is shown to take linear
time from SSA form. Destruction is not discussed.

2.5 Graphical IRs

Graphical IRs use nodes and edges to represent a variety of different relation-
ships within a program. Some of the earliest recorded graphical IRs are trees,
directed acyclic graphs and flowgraphs.

2.5.1 Trees

After lexical analysis and during syntax analysis of the source program, a com-
piler will commonly generate some form of tree which represents the syntactic
structure of the program. There are generally two types of tree which may be
constructed: the abstract syntax tree (AST) and the parse tree. ASTs differ
from parse trees as the interior nodes represent only the essential programming
constructs rather than non-terminals in the grammar for the input language.
Given some expression, each AST interior node represents an operator, and the
children of that node represent the operands of that expression. For example,
assume the following expression language grammar in EBNF:

E=T{"+" T} | T.
T =P {"x" P} | P.
P=albl c.

Given the sentence a * b + c derived from this grammar, we can show the
AST and parse tree in Figure 2.5. Notice that the AST only contains the

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 22

AN
SN L L

Figure 2.5: The sentence a * b + c represented as two different tree types.

essential information (the + and * operators and variable names), whereas the
parse tree contains all of the non-terminals used in the parse. Syntax tree or
parse tree construction is straightforward, especially when a parser is written in
a top-down recursive manner. Here, code for creating and annotating the tree
can be placed in the actions of the recognising methods. Code generation is
possible directly from the syntax tree, however, optimisation is more difficult
than with other IRs since the compiler may need to access data at various
points of the tree at any given time, making for complicated tree walking
algorithms. In practice, syntax trees are often used for type checking and
semantic analysis, then flattened into a different IR such as 3AC or a directed
acyclic graph before continuing with compilation. Flattening refers to the
action of translating a tree structure into linear code. Typically construction
and flattening of the AST or parse tree are linear processes, except when
backtracking parsers are used.

2.5.2 Directed Acyclic Graphs

As seen previously, an AST is a structure that has a close correspondence to
the input program. However, this means that there may be redundant com-
putations within it, such as multiple copies of particular expressions. If code
is generated naively from a tree with redundant computations, the resulting
code after flattening will contain unnecessary instructions. A directed acyclic
graph (DAG) avoids this duplication by allowing nodes to have multiple parent
nodes. This allows identical subtrees in the graph to be reused. As well as
making the DAG more compact than the corresponding AST resulting in less
memory usage, it means that the compiler can generate code that evaluates
the subtree once and then uses the result multiple times.

For example, consider the expression (a+b) * (b + a) * (c +d). Here, the
subexpressions a +b and b+ a are equivalent due to the 4+ operator being
commutative, even though they are syntactically different. Figure 2.6 shows
the DAG for this expression.

A DAG can be constructed instead of a syntax tree if, when creating a new

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 23

. AN

SN DA,

NN /\
a b c d a b

Figure 2.6: DAGs for the expression (a + b) * (b + a) * (c + d), showing both
left-associativity and right-associativity.

node, the parser checks whether an identical node exists. If it does, then edges
are connected from this instead. Alternatively, a syntax tree can be translated
into a DAG using a value numbering method [10]. This technique runs close
to linear time when using a hash table to record syntax tree nodes along with
their associated numbers. Flattening the DAG into a linear IR requires a linear
walk as per syntax trees.

The DAG is used as the IR in the lcc compiler [58, 59]. lcc generates
only the necessary fragments of the DAG as it parses the program, processes
them, then deletes them before continuing. Some compilers use the DAG as
a method of improving the existing IR. This is achieved by building the DAG
to expose potential redundancies in the code, then transforming the existing
IR accordingly. Afterwards it is discarded [118].

2.5.3 Control Flow Graph

The control flow graph (CFG) [12] is a directed graph G = (V, E) consisting of
nodes V and edges F, with two nodes entry and exit in V' where all control
flow enters and exits the graph respectively. Nodes are commonly called basic
blocks and contain instructions. Edges show possible paths of execution. A
CFG is therefore a representation of the control flow structure in the program.
When control enters a basic block it does so at the first instruction and can
only leave through the last instruction. Any jump or branching instruction
may only appear at the end of a basic block. An edge (a,b) indicates that
control may pass from a to b once the last instruction in a has executed.
In the CFG the compiler has usually translated instructions from the input
program into a simple linear IR such as 3AC. Figure 2.8 shows the example
code with a loop in Figure 2.7 represented as a CFG. Edges are drawn dotted
to show similarities with control flow edges in other IRs presented later. For
brevity, we have represented the conditional test with a ? suffix. The edges
labelled T and F represent the path taken when the condition evaluates to
true or false, respectively. The CFG has a total ordering of instructions, which
has usually been enforced by the order in which the programmer (or machine)

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 24

int main(int a, int b) {
a=>b+ 1;
while(a < 100)
at+;

return a;

(a)

Figure 2.7: Some example code containing a loop.

start
a=b+1
A\
a < 100 ?
/\
a++ return a

end

Figure 2.8: The CFG representation of Figure 2.7.

wrote them in the input program. A CFG represents a single function. For
inter-procedural control flow to be described, a separate structure called a call
graph is often used. This is a directed graph with nodes representing functions,
and an edge (p, q) exists if function p can call function q.

CFG construction usually occurs from a linear list of instructions such as
3AC, or it can occur from the AST. Both of these methods take close to linear
time. Code can be generated directly from the CFG due to its structure and
simplicity. The CFG allows a wide variety of optimisations and transforma-
tions can be performed. It is widely used in the literature and in mainstream
compilers.

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 25

2.5.4 Superblocks

The superblock is an IR developed to yield high instruction-level parallelism
(ILP) on superscalar and VLIW processors. Within the basic blocks of a
CFG there is a limited amount of ILP as each instruction follows sequentially.
Superblocks allow ILP optimisation over the existing basic block boundaries.
In order to generate superblocks, a CFG is statically analysed so that a nu-
merical value is associated with each basic block representing the instruction
frequency of that block. This then separates groups of basic blocks into traces
which represent common paths of execution. Each trace is then combined
into a superblock on which optimisation is performed. Optimisations include
enlarging operations, which increase the size of superblocks so the scheduler
can manage larger numbers of instructions, and dependence removing oper-
ations, which eliminate data dependencies between instructions in frequently
executed superblocks, increasing the TLP. Superblocks were implemented in
the IMPACT-1 compiler, and benchmark tests showed a 13% to 143% increase
in ILP compared to existing techniques [68].

Branch-heavy code can decrease the effectiveness of superblock optimisa-
tions because the probability of executing any given path is reduced. Hyper-
blocks [85] are constructed by performing if-conversion [15], which is a tech-
nique for converting control dependence into data dependence by eliminating
branches where possible. If branches are eliminated, increased instructions are
available to the scheduler. In tests, hyperblocks are shown to perform better
than superblocks for higher issue rate processors.

Construction of superblocks begins with the CFG, and the time efficiency
of construction is dependent on the static analysis of the program required
beforehand. Destruction is not necessary, as like the CFG, it can be directly
executed.

2.5.5 Data Flow Graph

The data flow graph (DFG) [50] is also a directed graph G = (V, E) except
edges F now represent the flow of data from the result of one operation to
the input of another. An instruction executes once all of its input data values
have been consumed. When an instruction executes it produces a new data
value which is propagated to other connected instructions. The earliest work
on data flow computing is credited to Dennis [49]. We show the first two
instructions of Figure 2.1 as a DFG in Figure 2.9. In the diagram, the + and
* operations have been annotated with the variable they are being stored into
in the original code for clarity. Edges are drawn dashed to show similarities
with data flow edges in other IRs presented later.

Whereas the CFG imposes a total ordering on instructions, the DFG has no
such concept, nor does the DFG contain whole program information. Thus,
target code cannot be generated directly from the DFG. The DFG can be seen

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 26

\\\ l,/ //I
vy /

a \ /
\ /
\ /

) I ¢

©

X

Figure 2.9: The DFG representation of the first two instructions in Figure 2.1.

as a companion to the CFG, and they can be generated alongside each other.
With access to both graphs, many optimisations can be performed effectively.
However, keeping both the CFG and the DFG updated and synchronised dur-
ing optimisation can be costly and complicated.

2.5.6 SSA Graph

An SSA Graph [126] consists of vertices which represent operations (such as
add and load) or ¢-functions, and directed edges connect uses of values to
their definitions. The edges to a vertex represent the arguments required
for that operation, and the edge from a vertex represents the propagation of
that operation’s result after it has been computed. This graph is therefore
a demand-based representation. In order to compute a vertex, we must first
demand the results of the operands and then perform the operation indicated
on that vertex. The SSA Graph can be constructed from a program in SSA
form by explicitly adding use-definition chains. There are no explicit nodes for
variables in the graph. Instead, an operator node can be seen as the “location”
of the value stored in a variable.

The textual representation of SSA is much easier for a human to read com-
pared to a graphical form. However, the primary benefit of representing the
input program in this form is that the compiler writer is able to apply a
wide array of graph-based optimisations by using standard graph traversal
and transformation techniques. It is possible to augment the SSA Graph to
model memory dependencies. This is achieved by adding additional state edges
that enforce an order on the sequence of operations reading and writing from
memory.

In the literature, the SSA Graph has been used to detect a variety of induc-
tion variables in loops [126], also for performing instruction selection techniques
[52, 104], operator strength reduction [45], rematerialization [31], and has been
combined with an extended SSA language to aid compilation in a parallelizing
compiler [113|. The reader should note that the exact specification of what

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 27

constitutes an SSA Graph changes from paper to paper. The essence of the
IR has been presented here, as each author tends to make small modifications
for their particular implementation.

2.5.7 Program Dependence Graph

The Program Dependence Graph (PDG) [57] represents both control and data
dependencies together in one graph. The PDG was developed to aid optimisa-
tions requiring reordering of instructions and graph rewriting for parallelism,
as the strict ordering of the CFG is relaxed and accompanied by the addition of
data dependence information. The PDG is a directed graph G = (V, E) where
nodes V are statements, predicate expressions or region nodes, and edges E
represent either control or data dependencies. Thus, the set of all edges E
has two distinct subsets: the control dependence subgraph E¢ and the data
dependence subgraph Ep. E¢ can be cyclic if a loop is present in the program,
since a loop in the PDG is defined by a control back edge forming a strongly
connected region. FEp is always acyclic, and can be seen as a series of data
dependency DAGs for each basic block, which are then connected together
based on the data flow through the program. Similar to the CFG, a PDG also
has two nodes ENTRY and EXIT, through which data flow enters and exits the
program respectively.

Statement nodes represent instructions in the program. Predicate nodes
test a conditional statement and have true and false edges to represent the
choice taken on evaluation of the predicate. Region nodes group all nodes
with the same control dependencies together, and order them into a hierarchy.
If the control dependence for a region node is satisfied, then it follows that
all of its children can be executed. Thus, if a region node has three different
control-independent statements as immediate children, then these could po-
tentially be executed in parallel. Our example code with a loop is shown as a
PDG in Figure 2.10. Rectangular nodes represent statements, diamond nodes
predicates, and circular nodes are region nodes. Solid edges represent control
dependence, and dashed edges represent data dependence.

Construction of the PDG is tackled in two steps from the CFG: construction
of the control dependence subgraph and construction of the data dependence
subgraph. Ferrante et al. [57] construct the control dependence subgraph in
O(N?) time. The data dependence subgraph can be constructed after aliasing,
procedure calls and side effects are analysed in the program. This involves
constructing a DAG for each basic block and then linking them together. Thus
the construction of the data dependence subgraph relies on the type of data
dependence analysis used. Harrold et al. [61] construct the PDG during
parsing. Many algorithms were proposed in the literature for generating code
from the PDG [55, 56, 107, 19], but they all were later shown to contain flaws.
The only algorithm that claims to be complete and able to handle irreducible
programs is that of Steensgaard [112]. Generating the minimal size CFG from

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 28

return a

Figure 2.10: The PDG representation of Figure 2.7.

a PDG is an NP-complete problem.

The PDG’s structure has been exploited for generating code for vectorisa-
tion |24, 103], and has also been used in order to perform accurate program
slicing [91] and testing [23].

2.5.8 Program Dependence Web

The Program Dependence Web (PDW) [90] is generated by translating the
data dependencies present in the PDG into GSA (Section 2.4.3). Thus, it can
be seen as a combination of the PDG and GSA in one IR. The motivation for
the development of the PDW is that it can be interpreted under three different
execution models: control-, data- and demand-driven. This gives the compiler
writer flexibility when developing back-ends for different architectures. De-
pending on the execution model required, a different interpretable program
graph (IPG) is extracted from the PDW. The IR was used to compile FOR-
TRAN for data flow architectures, but is limited to programs with reducible
control flow. The PDW was later modified [34] to improve the handling of
loops.

Constructing the PDW is costly. It requires five passes over the PDG to
generate the corresponding PDW resulting in a time complexity of O(N?3).
Since the PDG is directly interpreted, no destruction techniques are discussed.
In the demand-driven execution, the IPG consists of the data dependence
graph augmented with the gating nodes of GSA, and is very similar to the
Value Dependence Graph (Section 2.5.9).

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 29

<D

v

allocate local storage
a=b+ 1

deallocate local storage
return y

[]

store

Figure 2.11: The VDG representation of Figure 2.7.

2.5.9 Value Dependence Graph

The Value Dependence Graph (VDG) [125] is a sparse, functional data depen-
dence representation, developed to eliminate the CFG as the basis of analysis
and transformation. Representing a program as a VDG only specifies the value
(data) flow in a program. A VDG is a directed bipartite graph G = (V, E)
consisting of nodes V and edges E. Nodes either represent operations, or are
ports representing operands. Edges connect operation nodes to their operand
ports. Each port is produced by exactly one node, or it is not produced by
any node (it is a free value). Primitive nodes implement basic operations such
as arithmetic and constants. Conditional expressions are implemented by ~
nodes which function in the same manner as those in GSA form. Function
calls are implemented with a call node which takes the name of the function
and the function parameters, and produces result ports. Parameter nodes take
no operands and produce a parameter value. Function values are produced by
A nodes. Every VDG also contains at least one return node. We show the
VDG for our example program with a loop in Figure 2.11. Value edges are
drawn in dashed. Solid edges link call nodes to the node they call.

Implicit machine quantities such as store contents and I/O channels must
be explicit in the VDG in order to ensure that operations occur in the correct

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 30

order. Loops are translated into tail-recursive function calls. The authors
state that optimising a program in VDG form is simpler to implement, easier
to express formally, and faster than equivalent CFG analysis. An interesting
property of the VDG is that is is implicitly in SSA form: for every operator
node, that node will have zero or more successors using its value.

The original construction algorithm for the VDG begins from a CFG, where
single-entry single-exit (SESE) analysis is performed. Then, region informa-
tion is used to decide placement of v nodes, A nodes and call nodes. Next,
calls corresponding to unstructured control flow are consolidated. Next, the
intermediate graph is symbolically executed in order to produce the VDG. The
running time of this construction algorithm is not discussed. A syntax-directed
construction approach is considered by Byers et al. [33], however, it requires
a large quantity of post-processing phases to remove redundant nodes.

Weise et al. [125] transform the VDG into a demand-based PDG, where
the control flow subgraph is replaced by a demand dependence graph. Then,
a PDG sequentialisation technique [112] is used to turn this into a CFG. The
VDG was used in an experimental C compiler in order to perform partial re-
dundancy elimination without performing redundant code motion. However,
the VDG did suffer from a problem in that “evaluation of the VDG may ter-
minate even if the original program did not” [125], making it unsuitable for
non-experimental use; the VDG represented no information about interpreta-
tion, ordering or termination.

2.5.10 Value State Dependence Graph

The Value State Dependence Graph [72]| builds upon the work of the VDG.
In order to solve the termination problem with the VDG, the VSDG adds
state dependency edges in order to model sequential execution of instructions.
A VSDG is a labelled directed graph G = (N, Ey, Eg, ¢, Ng, Noo) consisting
of nodes N with unique entry node Ny and exit node N, value-dependency
edges By € N x N, and state-dependency edges F'g € N x N. The labelling
function £ associates each node with an operator. Value dependency edges
Ey perform the same function as those in the VDG. State dependency edges
FEs represent the essential sequential dependencies in the input program. An
example of this would be enforcing a store x instruction before a load x
instruction, ensuring in no circumstance that this ordering is violated. Like
the VDG, the VSDG is explicitly in SSA form. It has two well-formedness
conditions. The first is that ¢ and the Ey arity must be consistent. This
ensures that a multiplication operator will always have exactly two inputs,
and so on. The second is that the VSDG must be acyclic. Nodes in the VSDG
represent either operators or constants. Each node has labelled ports in which
edges emerge or connect to.

Like the VDG, conditional branches are represented by ~ nodes, except
these now also return a state as well as data values. Loops are represented

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 31

La [b [STATE
4
!
I

L !

|
;
/
(¢} R<a>)/
w R<STATE>

A
X<STATE> | | X<a>

N4

Figure 2.12: The VSDG representation of Figure 2.7.

differently to the VDG. Here, a 6 node is used to model loops. A 6 node
0(C,1,R, L, X) sets its internal value to initial value I. Then, while condition
value C holds true, it sets L to the current internal value and updates the
internal value with the repeat value R. When C' evaluates to false computation
ceases and the internal value is returned through the X port. By default, this
node type is cyclic. Therefore, this does not match against one of the VSDG
well-formedness conditions. As a result, during compilation, all § nodes are
replaced with two nodes 6"¢%4 and #'* which enclose the loop body. This
transformation is defined as a VSDG G being translated into VSDG Gneteor
form. Given a VSDG G, G is defined to be identical to G except that
each 0 node #; is replaced with two nodes, thead and 01’7‘“”; edges to or from
ports I and L of 6; are redirected to G?e“d and those to or from ports R, X
and C' are redirected to 0§“il. We have shown the VSDG for our example code
with a loop in Figure 2.12.

Johnson [72] constructs the VSDG directly from the AST. However, this is
limited to programs with reducible control flow: the occurrence of goto and
switch statements causes this construction method to halt. Stanier [110] con-
structs the VSDG after performing an interval analysis technique called struc-
tural analysis [106], which allows irreducible control flow to be transformed
into reducible control flow. Producing linear code from the VSDG has been
explored in a number of ways. Johnson adds serialising edges to the graph in
order to enforce an order of execution, and inserts split and merge nodes to
enable v nodes to be directly interpreted. However, optimal placement of split
nodes was found to be NP-complete [122]|. Lawrence [83] presents a framework

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 32

that involves translating the VSDG into a PDG by encoding a lazy evaluation
strategy, similar to functional programming. This restores enough control flow
information to continue with code generation.

In addition to being an efficient IR for many traditional optimisations |72],
two traditionally antagonistic passes — register allocation and code motion —
can be performed at the same time using the VSDG [70]. Also, algorithms
to utilise multiple memory access instructions [105] for smaller code size have
been developed [71]. A similar representation to the VSDG called the Gated
Data Dependence Graph [123] has been described, which again uses v nodes
for conditional choice and the concept of state, but uses a u and 7 loop rep-
resentation similar to GSA. Firm? is a data dependence representation also
using the concept of state, but the CFG is retained: the graph is built within
the CFG basic blocks. More recently, Tate et al. [117, 116] used a similar
graph, called the Program Evaluation Graph (PEG), in order to optimise by
performing equality analysis. This work performs optimisations in different se-
quences in order to produce multiple versions of the same program, and then
picks the best version according to heuristics.

2.5.11 Pegasus

Pegasus [32] is a data-flow oriented IR designed for use in hardware compi-
lation. The IR is a directed graph in which nodes are operations and edges
represent value flow. The results of an operation may be used as input to
multiple other operations. Data is produced by an operation, transported by
an edge and then consumed by another operation. Like the VDG and VSDG,
primitive nodes represent constants and complex operations such as memory
access and procedure calls have special nodes. Parameter nodes represent the
arguments to procedures. Multiplexer nodes perform a similar function to ~
nodes, and merge nodes perform the function of u nodes. The notion of state
or store dependence is represented by synchronisation tokens which are passed
between operations with non-commuting side effects. This enforces the correct
order of execution.

Construction of Pegasus begins from the CFG of each procedure in a pro-
gram. The CFG is first transformed into hyperblocks and compiled into spec-
ulatively executed code in order to extract ILP, with branches transformed
into multiplexers. Edges are then added between instructions that may de-
pend on each other, and these are used to carry the synchronisation tokens.
Then, data flow edges connect hyperblocks together, along with the insertion
of loop back edges and merge nodes. The authors note that the construction
time complexity is given by the complexity of the component phases; the most
complicated of which is the alias analysis used to calculate points-to sets. The
construction is then linear based on the size of these resulting sets. Pegasus

*http://www.libfirm.org

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 33

was implemented in the CASH compiler? which synthesises hardware circuits
from the graph.

2.5.12 Click’s IR

Click’s IR [38] is a variation of the PDG based on Petri nets [94]. The Petri
net model of execution involves control tokens being passed from node to
node. Similar to the PDG, the set of edges contains two subgraphs: the
control dependence subgraph and the data dependence subgraph. Nodes in
the graph represent operations. REGION nodes perform the same function as
those in the PDG. PHI nodes model SSA pseudo-assignment, and IF nodes
model conditional branching. Loops are implemented with a REGION node
at the head, and an IF node at the end of the loop body. A back edge links
the TRUE projection from the IF node to the REGION node at the loop head.
Construction and destruction of this IR are not discussed in detail. A modified
version of this IR is used in the Java HotSpot server compiler [93].

2.5.13 Dependence Flow Graph

The Dependence Flow Graph [95] is an IR designed to be executable and for
dependencies to be quickly traversed. Similar to the other data dependence
IRs, nodes in the graph represent operations, and edges point from producers
to consumers. Value-carrying tokens are passed along edges in the graph in a
similar manner to the Petri net model of execution. An imperative updatable
global store is used to enforce an order on operations, and load and store
operators interact with this store. Operations that are store-dependent are
said to have imperative dependence. Loops are represented explicitly with
loop and until nodes.

Construction of the Dependence Flow Graph [74] proceeds by performing
SESE analysis on the CFG. Then, the variables used in each region are dis-
covered. Then, data dependence edges are inserted in parallel with the CFG
control dependence edges to form a base level graph. A forward flow algorithm
then traverses the graph and maintains the most recent source for each vari-
able; when a region is bypassed, dependencies are cut. Then, any dead edges
from this cutting process are cleaned up. The authors do not discuss the time
complexity of this process.

The Dependence Flow Graph was implemented in the Pidgin compiler?. The
graph is abstractly interpreted according to its operational semantics in order
to produce code. A constant propagation algorithm is shown to be simpler to
implement but just as effective as existing IRs.

3http://www.cs.cmu.edu/ phoenix/compiler.html
‘http://iss.ices.utexas.edu/p.php

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 34

2.6 Classification and comparison

2.6.1 Classification and citations

We now apply the taxonomy of Figure 2.2 to the IRs, resulting in Table 2.1.
We used Google Scholar to find the number of citations for the original paper
describing each IR in Table 2.2. We did this to get an idea of the academic
“importance” of each representation. We also present a timeline in Figure 2.13
which plots the publication years of the original papers shown in Table 2.2.
Note that data here cannot be regarded as being precise. For example, al-
though the seminal SSA publication is the 1991 journal article, the idea was
in development for a long time at IBM beforehand [127].

Table 2.2 shows that, in academia, the PDG and SSA have been very in-
fluential. For such fundamental concepts, the CFG and DFG have a relatively
low number of citations in comparison. However, the CFG and DFG are such
commonplace IRs that authors often cite compiler textbooks rather than the
original papers when referring to them. More recent (post-1990) IRs have a
relatively low number of citations.

The timeline in Figure 2.13 shows that from the development of classical IRs
through to the PDG, there were few radical new developments. IR literature
in the 1970’s was dominated by the CFG and the discovery of new analysis and
transformations for it. Likewise, the DFG had a similar effect from 1980 on-
wards. There is a clear clustering of new IR publications from 1987-1995. We
can only speculate the exact reason for the increase in new IR developments
at that time, however much compiler literature, especially that at the more
prestigious compiler conferences, was focusing on vectorisation and parallel
computing during this period. This was possibly as a result of the installation
of high-performance machines by Cray and other technology companies. The
supercomputer era was short-lived, with most specialist supercomputer manu-
facturers apart from Cray filing for bankruptcy by the mid 1990’s. This spike
in data flow IRs (and the ILP specific superblocks) could have been as a result
of academia trying to develop compilers that could utilise the parallelism of
these machines. As noted by Bell [25] this approach to building massively par-
allel special purpose computers in order to tackle parallel computing wasn’t a
solution to the problem. It did, however, generate a great deal of academic in-
terest, and most importantly, research money. Academic interest in IRs seems
to have lessened over the last ten years, but Pegasus and VSDG-like IRs show
that they are still a useful tool for specific compilation purposes.

2.6.2 IR technology in current compilers

We selected a range of widely used compilers and recorded the different IRs
being constructed during compilation. The compilers we chose are as follows:

javac This is the principal Java compiler. It compiles Java source code into

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:

A SURVEY 35
IR Structure Dependence | Content
Polish notation Linear None Partial
Extended Polish Linear None Full
Triples/Quadruples Linear None Partial
3AC Linear None Full
SSA Linear Data Partial
GSA Linear Data Full
Tree Graphical (acyclic) | None Full
DAG Graphical (acyclic) | Data Full
CFG Graphical (cyclic) | Control Full
Superblocks Graphical (cyclic) | Control Full
SSA graph Graphical (cyclic) | Data Partial
DFG Graphical (cyclic) | Data Partial
PDG Graphical (cyclic) | Hybrid Full
PDW Graphical (cyclic) | Hybrid Full
VDG Graphical (cyclic) | Data Full
VSDG Graphical (acyclic) | Data Full
Pegasus Graphical (cyclic) | Data Full
Click’s IR Graphical (cyclic) | Hybrid Full
Dependence Flow Graph | Graphical (cyclic) | Data Full

Table 2.1: Classification of IRs according to the taxonomy of Figure 2.2.

IR Paper Citations
PDG Ferrante et al. [57] 1659
SSA Cytron et al. [47] 1576
Superblocks Hwu et al. [68] 546
DFG Dennis [50] 507
CFG Allen [12] 262
PDW Ottenstein et al. [90] 202
SSA graph Wolfe [126] 140
VDG Weise et al. [125] 107
Dependence Flow Graph | Johnson and Pingali [74] | 107
Pegasus Budiu and Goldstein [32] | 34
Click’s IR Click and Paleczny [38] 22
VSDG (and similar) Johnson and Myecroft [70] | 21

Table 2.2: Number of citations on Google Scholar (accessed January 2011) for
the paper originally describing the IR, ordered by total number.

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:

A SURVEY

36

"9[qe[TeAR ST UOT)RWIIOJUT 9s10a1d OU e PIJRuII)sd Usd(Sey SH]
[eotsse[d Jo ayep Jurpre)s oy], i1 Suiqusep Ioded [eurduio o) jo ayep uoryestjqnd o1} WO paseq SYT JO SUIPWIT, :£]°Z 2In31

$00T 000T S661 0661 S861 0861 SL6l 0L61 S961
| | | | | | | | |

00T So6l1 1661 L861 0861 0L61
DASA AL SARID VSS DAd DAd D4D

72002 661 0661 *OV¢ ‘sopdnipenb ‘sojdin ‘uonelou ysijod

Snsego DAA mad 0961

SYI [e91SSe[)

€661

syoojqradng

€661
ydein moyq souspuado

7661
ydeis vss

0661
VSD

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 37

bytecode, which is then later executed on the Java Virtual Machine
(VM).

Java HotSpot server VM This is the principal server Java compiler. It
optimises and executes Java bytecode, applying many more aggressive
optimisations than the HotSpot client VM.

Jikes RVM This is a mature open source VM for Java, developed from the
IBM Jalapeno project. Jikes RVM is a popular choice for implementing
Java research projects.

GCC This is the GNU Compiler Collection, which is utilised as the standard
compiler on a majority of Unix-based operating systems. It has front-
ends for a wide variety of programming languages and targets a large
number of processor architectures.

Icc This a simple C compiler written in order to document the process of
compiler design [58, 59| and is highly cited.

tce This is a very compact C compiler often used on embedded devices.

LLVM This is an open source compilation framework which is also very pop-
ular for research projects.

Mono This is an open source compiler for C#.

Open64 This is an open source compiler for the Itanium and x86-64 archi-
tectures.

These compilers were chosen as access is available to their internal structure,
and apart from lcc, are still under frequent development. We show the IRs
built by these compilers in Table 2.3. Other popular proprietary compilers
such as those provided by Microsoft and Intel do not publish information
about their compilation techniques in sufficient detail to be considered for this
survey. In addition to the IRs mentioned earlier in the chapter, we record
the presence of a multi-level IR system, and the number of levels. This is an
explicit compiler design choice involving multiple levels of IR, from high to
low. Jikes RVM features three levels of IR: high-level (HIR), low-level (LIR)
and machine-specific (MIR). HotSpot and mono feature two levels: HIR and
LIR. WHIRL, the IR used in open64, uses 5 levels of IR: very high (VH),
high (H), mid (M), low (L) and very low (VL). Using different levels allows
optimisations to be written to work on the level of IR that is most suitable for
them.

Aside from lcc and tce, which can be considered special-purpose compilers
(i.e. for systems with storage and memory concerns), it can be seen that
modern compilers share a common set of IRs:

38

‘szo1tduIod juerInd ur past £So[ouyre) I €7 9[qRL

youado

ouour

INATT/Suep

201

29]

203

INA I0a10s 30dG10F] + oeael

INAY sovI[+ oeael

NMI-DASA/DAA | MAJ/VSD | eI§ | 1eour] | HAJ | [PAININ | 994, | VSS | DAA | HAD | HVA

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:

A SURVEY

CHAPTER 2. INTERMEDIATE REPRESENTATIONS IN COMPILERS:
A SURVEY 39

A syntax tree in the front-end;

A linear representation, either for transforming or for outputting the
program in a human-readable format;

e SSA for performing data flow optimisations;

e A CFG for control flow optimisations.

Syntax trees and linear representations can be regarded as foundational
compiler technology. However, the CFG and SSA representations emerged
from academia and have now become standard in mainstream compilers. SSA
has generated both academic and real-world interest: it is the second most
cited IR in Table 2.2. Interestingly, the most cited IR, the PDG, is only present
in the Java HotSpot server compiler which uses an SSA variation of it. Through
informal discussion with other compiler researchers, we have yet to note any
compiler primarily using the PDG, despite it being the most cited. The reason
for this could be similar to the spike in the timeline in Figure 2.13: the PDG
was a seminal IR in the supercomputing era. It produced a high number of
citations and interest and was most certainly influential in the development
of other IRs, however, most mainstream computer users are only just getting
affordable access to multicore processors for their home and office machines.
Similarly, VDG and VSDG graphs have appeared in a number of influential
conferences, yet the technology still remains unused outside of academia. In
the short term future, these IRs may well be revisited in attempts to solve the
multicore parallelization problems we are increasingly facing in both academic
and mainstream compilation.

2.7 Summary

This chapter has explored the existing IR landscape in detail. We began with
classical IRs that were implemented in some of the earliest compilers, such
as Polish notation and triples, then moved to the early seminal IRs such as
the CFG and SSA, and finally looked at the increasing trend towards whole
program data flow graph IRs such as the VSDG. We saw that there is a divide
between IR technology in academia and in mainstream compilers. The most
highly cited TR — the PDG — is only present in one mainstream compiler,
despite the technology being nearly 20 years old. Clearly it takes a long time
for academic ideas to become fully realised and implemented. We speculate
that not only is this because of the vast quantity of time it takes to implement
a stable compiler, but academics may never have the required time to make
notable open source compiler contributions, and compiler writers may not have
the time to continually digest the latest literature. Pressures in academia and
industry are very different. However, compiler researchers and programmers
must continue to innovate if we are to keep up with ever evolving hardware.

Chapter 3

A Study of Irreducibility in C
Programs

3.1 Introduction

In producing target code from a source program, most compilers spend a great
deal of time and effort trying to optimise the generated code. This is performed
in an attempt to improve the quality of the code according to prescribed cri-
teria (most commonly, speed of execution). These optimisations can range
from simple analyses such as deleting unreachable code, to more complicated
techniques like code motion. When a program is running it is often the case
that a large proportion of execution time is spent iterating in loops. Therefore,
aggressive analysis and optimisation of loops is desirable in order to achieve
large speed improvements in the generated target code. A wide range of tech-
niques exist for optimising loops; however many can only be reliably used when
the control flow graph (CFG) of a program is reducible. In a reducible CFG,
all loops have a single entry point that dominates all of the basic blocks in
its body. Conversely, an irreducible CFG contains one or more loops with
multiple entry points.

Many loop optimisers give up once they have detected irreducible regions
of a program, choosing to leave them unoptimised. Alternatively, irreducible
CFGs can be made reducible by using a technique called node splitting; how-
ever this can lead to an exponential increase in the size of the graph. Many
compiler writers who choose to restrict loop optimisations to reducible graphs
cite surveys of FORTRAN programs which were undertaken during the 1970’s
as proof that they are a rare occurrence. We argue that since the landscape
of programming has changed dramatically since the original surveys were per-
formed, an up-to-date study of irreducibility is warranted.

Additionally, with respect to this thesis, the VSDG is restricted to repre-
senting reducible programs [72]. This is also true of a variety of other IRs,
including the Value Dependence Graph [125], Gated Data Dependence Graph

40

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 41

[123] Program Dependence Web [90], and Thinned Gated Single Assignment
form [62]. So not only do irreducible programs limit loop optimisations, they
also limit the application of a number of compiler technologies in the literature.

This chapter presents the following:

e We outline the concept of irreducibility and give examples of how it can
occur in programs.

e Existing methods for dealing with irreducibility are explained.

o We present the results for our study of a large number of human-written
C functions to determine how common irreducibility is now compared to
the time of the original surveys.

e We then study the output of a number of software tools that generate C
code.

o We use this in order to gain an insight into how programmers and pro-
gramming languages have changed, and posit that compiler designers
should not have to worry about dealing with irreducible functions due to
their rarity. This questions the need for any new node splitting research.

3.2 Background

In this chapter we are interested in the concept of reducibility. The original
definition [39, 12| states that a reducible CFG is one on which a technique
called interval analysis can be performed. Later work [65] described a notion
of “collapsibility” which also determines whether a program is reducible. It can
also be defined as whether a particular partitioning of edges can be performed
on the graph [66]. We turn to collapsibility for the definition in this study as we
feel it is the easiest to understand. A CFG is reducible if we can repeatedly
perform transformations 77 and 75 until the graph has been transformed into
a single node. The resulting graph is called the limit graph. Assuming we
are analysing a CFG G, the transformations are as follows:

T1 Let G be a CFG. Suppose n is a node in G with a self-loop, that is, an
edge from n to itself. Transformation 77 on node n is removal of this
self-loop.

Ty Let nq and no be nodes in G such that no has the unique direct ancestor
n1, and n9 is not the initial node. Then transformation 75 on node pair
(n1,n2) is merging nodes n; and ny into one node, named nj/n9, and
deleting the unique edge between them [65].

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 42

(b)

Figure 3.1: Performing 77 and T, transformations on a reducible (a) and
irreducible (b) CFG.

These transformations are confluent: the same limit graph will be reached
regardless of the order of application. If there is more than one node in the
limit graph, the CFG is said to be irreducible. Examples of performing T}
and T» transformations can be seen in Figure 3.1. A canonical example of an
irreducible flow graph is formed of three nodes and is shown in Figure 3.2.
In this example we can see that we cannot perform 77 as there are no nodes
with a self-loop. We cannot perform 75 as nodes b and ¢ do not have a unique
predecessor. Various algorithms exist for detecting whether a CFG is reducible.
Hopcroft and Ullman [67] use the transformations above to detect reducibility
in O(Flog FE) time, where F is the number of edges in the graph. Tarjan
[114] presents an approach by performing a depth-first search over the graph
and using a set-union function to test whether 77 and 75 can be performed,
running in O(FE log* F) time, where log* z = min{i|llog" < 1}, which compares
favourably.

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 43

bool main(bool x) { / \

a: if(x) goto b; else goto c;

b: if(x) goto end; else goto c; b _>l c
c: if(!x) goto b; else goto end;
end: return x; \‘ ;’

} A

Figure 3.2: Some pseudocode which contains the canonical three-node irre-
ducible CFG.

3.3 Causes and solutions of irreducibility

Generally, there are two culprits for irreducibility. The first is the program-
mer, and the second is the compiler. The programmer can create irreducible
programs by writing code in an unstructured manner. The compiler can create
irreducibility by aggressively optimising the program [43], causing difficulty for
decompilation techniques |76, 44| which try to bring high-level structure back
from assembly code.

One of the most famous debates in computer science stemmed from a letter
[51] criticising the goto statement as being a cause for poor quality code. The
original letter provoked some lively debate [17, 18]. This argument is seen
as inspiring the move towards structured programming, where reliance on the
goto statement is lowered or removed altogether, replaced by structured con-
structs such as for and while loops and if...then...else constructs. Much
of the debate surrounding the goto statement centres around the fact that it
makes programs difficult for programmers to understand. However, another
important aspect of the goto argument is that unstructured use can produce
irreducible loops in the CFG. This can be “harmful” to the compiler writer,
who faces some important optimisation design decisions as a result. Hecht
and Ullman [65] showed that all goto-less programs are reducible. However,
this does not mean that all programs containing goto statements are irre-
ducible. Aho et al. [10] state that many programs containing goto statements
are often reducible, as programmers think about their code in terms of loops
and branches when they are writing it. Since the CFG models control flow,
producing an irreducible graph requires the input program to contain goto
statements that create multiple-entry loops in the graph (Figure 3.2).

A compiler optimisation known to cause irreducibility is tail call elimina-
tion. This is a special case of tail call optimisation which transforms tail
recursive functions into iterative ones [87]. By doing so, stack space is saved.
This optimisation is important in functional languages where tail recursion

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 44

is extensively used, but it is also applicable in all languages where recursive
functions can be written. If a function is recursive then tail call elimination
replaces the recursive call with a branch to the entry of the function, creating
a loop. When combined with inlining there is a possibility of creating multiple
loop entry points, thus creating irreducibility.

Deciding not to perform optimisations on irreducible graphs can be costly.
Programs usually spend the majority of their execution time iterating around
loops. Many compiler optimisations — especially those that analyse and trans-
form loops — fail to work on irreducible CFGs. If the compiler writer chooses
to restrict loop optimisations to reducible graphs, then the occurrence of an ir-
reducible loop prevents many optimisation techniques from being used. Many
classical algorithms suffer this fate, such as global common subexpression elim-
ination (39|, computing dominators [9] and loop invariant code motion [10].
Havlak [63] showed that the presence of one irreducible loop can prevent the
improvement of all loops in a procedure. Additionally, a number of inter-
mediate representations in the literature cannot be built when the CFG is
irreducible — such as the Value Dependence Graph [125] and variations thereof
[72, 123], Program Dependence Graph [57] and Thinned Gated Single Assign-
ment form [62] — which in turn means that any optimisation benefit through
using them is impeded.

Two solutions have been proposed for dealing with irreducibility: improving
algorithms so that they work on irreducible graphs at the cost of added com-
plexity, or transforming the graph so that it becomes reducible at the cost of
compilation time and a potentially exponential increase in code size [35]. These
transformation techniques can be applied in the front-end of the compiler or
on the intermediate representation. In the front-end, Erosa and Hendren [53]
devise a method for detecting and eliminating goto statements on the ab-
stract syntax tree. Ammarguellat [16] performs an aggressive normalisation
technique on the input language which eliminates the need for optimisations
on the CFG and removes any irreducibility. These front-end techniques are
less common and less input language independent than CFG-based transfor-
mations which take the form of node splitting [64].

We can define node splitting as another transformation alongside 77 and T5.
As described earlier, the continued application of T and 15 to an irreducible
graph will result in a limit graph with a more than one node. When this point
is reached, we perform a node splitting transformation T3 of which our chosen
definition is given by Unger and Mueller [121], citing Hecht |64]:

T3 Choose any node with at least two predecessors. Duplicate this node so
that there is one copy from each of them. Each of the predecessors is
now connected to one of the copies, and all of the outgoing edges of the
original node are duplicated for each copy.

Once T3 has completed, 71 and T, can be used again, and the process con-

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 45

345 T 345 Ty

Figure 3.3: The application of node splitting to the irreducible CFG in Fig-
ure 3.1b.

tinues until the limit graph has only one node and the graph is reducible.
Figure 3.3 shows the application of node splitting followed by the continuation
of T1 and T3 transformations on the irreducible CFG from Figure 3.1b. The
biggest challenge for node splitting algorithms is minimising the increase in
code size as a result of duplicating nodes. Several algorithms for minimising
size increase have been developed. Janssen and Corporaal [69] present an al-
gorithm called Controlled Node Splitting (CNS), which is tested against the
original T35 method described above, and an optimal technique which is very
computationally expensive. Benchmarks indicate that CNS is more effective
at reducing increase in code size than the original T3 method, with an av-
erage code size increase of 30.1% compared to 235.5%. Unger and Mueller
[121] present an optimised node splitting algorithm using DJ-Graphs to detect
irreducible loop structures. Optimised node splitting performed better than
traditional T3 node splitting, with 35% reduction in code size increase.

3.4 Modern languages, old languages

Programming language designers have the power to exclude goto statements
from whichever language they create. The Java programming language in-
cludes goto as a reserved word, but it is left unimplemented. Java, along with
other recently introduced languages have decided to not implement the goto
statement, such as Python, JavaScript and Ruby. However, other popular
languages include the goto statement. Java, C and C+-+ are the top three
programming languages in the table of popularities in July 2009 as calculated
by the TIOBE Software Programming Community Index [8] (Figure 3.4). Java
has a popularity index of 20%, C 17% and C++ 10%. We can therefore infer
that a large proportion of software is currently being written in C and C++.
Both of these languages allow the use of goto statements, so programimers are
potentially able to create irreducible programs. It is also possible for switch
statements to cause irreducibility in C and C++, with the most famous exam-
ple being Duff’s Device, which was created in order to manually unroll loops.

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 46

Pos. Jul 2009 | Pos. Jul 2008 | Pos. § | Language | Ratings Jul 2009 | § Jul 2008
1 1 - Java 20.452% -0.89%
2 2 - C 17.319% +1.37%
3 3 - CH++ 10.419% -0.27%

Figure 3.4: Top three languages in the TIOBE Programming Community In-
dex for July 2009.

It interlaces a switch statement with a while loop and acts as a computed
goto!l. Java does not allow this interlacing of constructs. It is worth mention-
ing, however, that Java allows the use of labelled statements in combination
with break and continue, allowing control to return to the enclosing labelled
statement. These are more well-behaved than conventional goto statements,
and will not cause irreducibility.

Two surveys are often cited in texts to prove that irreducibility is rare.
Knuth [79] sampled a total of 33 FORTRAN 66 programs which spanned
over 20,000 punch cards, which is roughly equivalent to the same number of
lines of code. Static analysis was performed in order to count keywords and
programming constructs. A form of run-time profiling was then performed to
see how these were used when the programs executed. A random sample of
50 programs and subroutines were selected, and an interval analysis technique
was applied to the CFG of each. It was discovered that every CFG was reduced
to a single node limit graph, thus all were reducible. However, it is also stated
that on average only 2.75 transformations were required per program, and
the highest number of transformations required was 6. Cocke and Allen [13]
performed interval analysis techniques on 72 randomly selected FORTRAN IV
programs which were currently running in the T. J. Watson Research Center.
The task being performed by these programs was not given. Five of these
programs were irreducible. An average of 2.85 transformations were needed
to reduce each program to its limit graph, a figure similar to that of Knuth’s
average. The maximum number of transformations required was 9. Even
though these surveys constitute the primary citations for irreducibility studies
in real-world programs, we argue that they no longer represent an accurate
picture of programming. Current languages contain a richer set of features
for the programmer to use and, most importantly, software projects are much
bigger and more complicated than the FORTRAN programs tested.

Other large-scale empirical surveys of programming languages have been
performed, including Java [40], COBOL [101, 36], APL [99, 100] and Pascal
[42]. These surveys do not mention reducibility. Instead, they focus on dis-
covering how programmers are using the language by measuring keyword and
language construct frequencies.

!More information available from http://foldoc.org/Duff’s+device.

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 47

3.5 Method

Since the surveys mentioned in the last section were carried out, the popularity
of FORTRAN has dropped and so for this study we turned to C. According to
the TIOBE index, C still ranks significantly higher in popularity than C++.
Many core system utilities and tools are written in this language, as well as
a lot of embedded code and a majority of large open source projects. In this
section we present our methodology for performing our study of irreducibility.

The technique that we use to determine irreducibility in a program is called
structural analysis. Structural analysis is a fine-grain form of interval anal-
ysis which is performed on the CFG. The technique was first presented by
Sharir [106] as an extension of interval analysis. The aim of the algorithm
is to analyse the CFG and recognise particular control flow patterns.An im-
proper region is detected when the CFG is irreducible. It is characterised
as a strongly-connected component with multiple entries. Structural analysis
first constructs a depth-first spanning tree for the CFG. It then examines ba-
sic blocks in postorder, recognising regions and collapsing them into abstract
nodes. This continues until the limit graph is reached. As with 77 and T,
analysis, a limit graph with more than one node is irreducible. In parallel, the
algorithm constructs a control tree which represents the hierarchical structure
of the regions within the original graph. In other work, structural analysis
has been used to approximate the worst-case execution time of programs [46]
and to perform thread partitioning [21]. We delay a detailed description of
the structural analysis algorithm until Chapter 4, where we will be using it to
construct the VSDG.

We have implemented the updated structural analysis algorithm given by
Muchnick [87] as an optimisation pass inside the LLVM compiler framework
[82]. If the algorithm completes and the limit graph is one node, then the CFG
is reducible. If we detect an improper region at any stage of the algorithm the
program is deemed irreducible.

We log the number of reductions needed to turn the CFG into a limit graph
to give a rough measure of program complexity in the style of Knuth [79] and
Cocke and Allen [13]. We also log the locations (via line number) of goto
statements found in the source file for ease of reference, and to see how com-
mon their usage is. There is a slight discrepancy between our reductions and
that of the previous surveys. 77 and 75 reductions result in the collapsing
of 1 or 2 blocks respectively. In structural analysis, a reduction can collapse
anywhere from 1 to 3 blocks in the fixed-size cases, and potentially many
more in the catch-all proper region schema. This means that the number
of reductions we measure in our framework would be higher in a 77 and 7%
based framework as less blocks are being reduced each time a transformation
is performed. Additionally, Allen and Cocke measure the number of iterations
through their interval analyser as opposed to the number of 71 and 75 trans-
formations performed. However, Knuth specifically measures the number of

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 48

T1 and T3 transformations. Clearly this means that the three surveys do not
have directly comparable reduction data, however, we are only interested in a
rough measure of program complexity since irreducibility is the focus of this
survey.

3.6 Results

We first tested the irreducibility of the source of a set of open source projects
written in C. We chose the source code of 15 GNU projects as our sample
data. These represent non-trivial, regularly updated software with an active
community of developers. They have also been in widespread use since their
conception. We began by performing structural analysis on each C file in the
source code. The only optimisation that was performed on the graph before-
hand was LLVM’s -simplifycfg pass, which performs dead code elimination
and some simple basic block merging. The results are given in Figure 3.5.
In total, we found 5 irreducible functions in a total of 10427, giving a total
average irreducibility for this set of current programs of 0.048%. We see from
the results that all irreducibility occurs only when gotos are used, agreeing
with a finding from Hecht and Ullman [65]. It can be seen that a large num-
ber of goto statements are still used in most projects. After obtaining results
for the current versions of the software, we ran the same tests on the oldest
versions available to us. These results are shown in Figure 3.6. Here we found
20 irreducible functions in a total of 4772, giving an average irreducibility of
0.42% for older versions of the same software. This represents a statistically
(chi-squared) highly significant difference (P < 0.0001). While irreducibility
is still a rare occurrence, it seems to be nearly 10 times more likely in the
software written between 9 to 15 years ago than in the C software of today.
Importantly, the 5 irreducible functions in the latest versions are all present
in the older versions. No new irreducible functions have been introduced.

In the survey carried out by Knuth [79] it is stated that the average number
of transformations needed to produce a limit graph in 50 randomly selected
functions is 2.75. In the Cocke and Allen [13] survey this average was 2.85 for
a total of 72 functions. From our results, we see that for current versions of the
software the average number of transformations is 4.250, and for old versions it
is 5.286. By comparing with these original surveys, we can see that functions
from 1993-2007 are more complicated than those from the 1970’s, although
this is unsurprising. Knuth found that the largest number of transformations
needed to produce a limit graph was 6, and Allen and Cocke’s maximum
number of interval analyser iterations was 9. For current versions of software,
the largest number of transformations required was 270. In older versions, the
largest number of transformations was 193.

Interestingly, the current versions have a lower average number of trans-
formations than the older versions of the same software. While this decrease

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 49
Name & Released | Number of | Number of | Reductions | gotos | Irreducible
version C files functions (average) functions
binutils-2.19.1 2009 42 828 4.127 216 0
bison-2.4.1 2008 31 538 5.043 63 0
coreutils-7.4 2009 108 1508 3.442 86 0
findutils-4.4.2 2009 8 321 2.059 8 0
grep-2.5.4 2007 9 232 5.263 110 0
guile-1.8.7 2009 104 4517 2.314 756 3
gzip-1.3.12 2007 32 141 6.645 5 0
idutils-4.2 2006 5 98 4.439 3 0
indent-2.2.10 2009 11 119 4.610 8 1
less-418 2009 35 445 3.591 3 1
m4-1.4.13 2009 11 201 4.846 0 0
make-3.81 2006 24 278 5.155 68 0
readline-6.0 2009 39 600 3.025 252 0
sed-4.2.1 2009 7 121 3.877 4 0
wget-1.11 2008 31 480 5.313 127 0

497 10427 4.250 1709 5

Figure 3.5: Results for current (as of July 2009) versions of open source soft-

ware.
Name & Released | Number of | Number of | Reductions | gotos | Irreducible
version C files functions (average) functions
binutils-2.7 1996 32 617 4.263 90 1
bison-1.25 1995 22 172 7.209 2 0
coreutils-5.0 1996 91 932 4.548 69 0
findutils-4.1 1994 7 147 1.925 0 0
grep-2.0 1996 9 133 6.707 148 0
guile-1.0 1997 72 1042 3.731 542 15
gzip-1.2.4 1993 20 110 6.755 2 0
idutils-3.2 1996 6 104 4.413 6 0
indent-1.9.1 1994 9 63 7.066 20 2
less-290 1995 32 335 3.042 22 1
m4-1.4 1994 20 227 6.053 72 0
make-3.75 1996 21 169 7.917 42 1
readline-2.0 1994 15 347 3.513 14 0
sed-1.18 1993 6 94 7.234 75 0
wget-1.5.3 1998 25 280 4.911 25 0
387 4772 5.286 1129 20

Figure 3.6: Results for the oldest available versions of the software in Fig-

ure 3.5.

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 20

of 1.036 is not a large enough figure to conclude anything concretely, we can
speculate that alongside the reduction in irreducibility through time, recent
programming is becoming more structured and modular; i.e. large unwieldy
functions are being broken down into several smaller ones. By visually inspect-
ing the source code for both old and new programs, it can be seen that there
has been a significant amount of restructuring on many of the projects. Us-
age of goto statements per function has also declined in the current versions.
Here, the average number is 0.16 compared to 0.23 in the old versions. This
is consistent with the claim that programming is becoming more structured.

Since tail call elimination is an optimisation that can cause irreducibility
when replacing recursion with iteration, we tested all software after performing
LLVM’s tail call elimination pass with an inlining pass. We found that there
was no irreducibility added by these optimisations to any of the graphs.

3.7 Patterns of irreducibility

We visually inspected the functions which were flagged as irreducible as we
were curious as to whether there were any recurring patterns in the source code.
In this section we will explore these and suggest how a similar functionality
could be achieved by using more structured programming.

We discovered that the style of source code producing irreducibility is not
far removed from the style of the canonical example given in Figure 3.2. Com-
monly, an irreducible function is partitioned into different sections by using
labels. Each label contains code performing some specific task. goto state-
ments transfer control between these sections in such a way that an irreducible
CFG is produced. A good example of this behaviour can be seen in irreducible
functions that are parsing text, such as print_comment () from indent-1.9.1 in
the file comments.c. Here, the code is iterating over characters representing a
comment in code, and then using goto to jump to different sections depending
on the character that has been read. This allows a different action to be taken
when reading the beginning and end of a line. Similar behaviour can be seen in
another irreducible text processing function, fch_get () from less-290 in ch.c.
We give a simplified example in Figure 3.7. Here we see three labelled sections
representing different tasks, and control flow jumps between them. A possible
solution is to translate each labelled task as a separate function, and then use
function calls instead of gotos, as this resembles the original presentation of
the code.

Further examples of this behaviour can be seen in four functions in guile-1.0,
in the file unif.c. These functions are:

e scm_vector_set_length_x()
e scm_array_prototype ()

e scm_uniform_array_read_x()

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS ol

a() {
if(c1) {
opl; b();
}
else {
a: if(cl) { op2; c();
opl; goto b; }
} op7;
op2; goto c; }
b: if(c2) {
op3; goto end; b() {
} if(c2) {
op4; goto c; op3; return;
c: if(e3) { }
op5; goto b; op4; c();
} }
op6; goto end;
end: op7; c() {
if(e3) {
op5; b(); return;
}
op6;
}

Figure 3.7: Unstructured labelled sections of code and the equivalent struc-
tured code. op, represents non-branching code and ¢, represents Boolean
variables.

e scm_uniform_array_write()

Here, after a number of macros have been expanded by the compiler, an la-
belled loop performs processing that has been organised into labelled sections.
These sections contain gotos which jump to different labelled sections repre-
senting different stages of this processing. We see no difficulty in a programmer
refactoring this code in a structured manner.

It may be possible to automatically detect irreducible patterns in source
code during compilation by pattern matching and then emit a diagnostic warn-
ing to the programmer. Alternatively, a diagnostic warning could be emitted
during a CFG analysis phase. This would allow the programmer to reconsider
the way they have programmed a particular piece of code and to adjust it
accordingly, thus giving the compiler more chance to optimise it.

Most, if not all, of the irreducible functions were composed of the pattern
above. Ideally, all iterative behaviour should be handled by structured looping
constructs or by function calls.

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 52

3.8 Machine-generated irreducibility

C code is not always written by humans. Many software tools can generate C
code as output. Machine-generated C code may have a very different style to
that which is written by humans, especially as a software tool is not necessarily
generating code with readability in mind. Often, machine-generated C exhibits
heavy goto usage with the resulting output looking much more like low-level
assembly code than structured C. In this section we test machine-generated C
code for irreducibility.

3.8.1 Parser generators

Compiler writers and language designers often use parser generators. These
tools simplify front-end compiler construction by reading a language specifi-
cation and then generating a lexical analyser and parser for that language.
Two commonly used lexical analyser generators are lex, and in a more recent
implementation, flex. These tools transform a specification of the tokens in
input language specification into a transition diagram and then generate a lex-
ical analyser in C. These lexical analysis tools are often used in conjunction
with two commonly used parser generators, yacc and more recently bison,
which interface with the lexical tokens returned by lex or flex in order to
perform syntax analysis. From a specification of the input language, an LALR
parser is generated. Used together, these can form the front-end of a compiler
for that language.

We obtained language specifications for a number of non-trivial program-
ming languages via the comp.compilers newsgroup. Firstly, we generated a
parser in C for these languages using lex and yacc. The results of running our
analysis on these C files is shown in Figure 3.8. Then, we generated parsers
using the more recent flex and bison tools and ran our analysis on these C
files. The results for this are shown in Figure 3.9. The grammar for Fortran
made use of a handwritten lexical analyser that interfaced with yacc or bison
due to the complexities present in the lexical analysis of Fortran.

No irreducible functions were detected in the code produced by these tools.

3.8.2 Source-to-source compilation

It is also possible to generate C code by performing source-to-source com-
pilation. Here, the compiler reads in C (or another high-level language) as
the input language. However instead of generating code for a low-level tar-
get, it generates high-level source code. Source-to-source compilation can be
achieved in LLVM by compiling to LLVM bitcode as usual, but then using the
11c tool to generate C as the target language rather than a low-level target
such as x86. As we are interested in observing differences between human-
written C and machine generated C, we chose to source-to-source compile all

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 23
Language | Number of | Number of | Reductions | gotos | Irreducible
grammar C files functions (average) functions
Ada 9x 2 40 4.300 15 0
C 2 42 4.024 15 0
C++ 2 38 4.421 15 0
Fortran 2 10 11.100 1 0
Java 1.1 2 35 4.229 15 0
MATLAB 2 39 4.308 15 0
Modula-2 2 70 3.971 21 0
Pascal 2 40 4.200 6 0

14 314 5.069 103 0

Figure 3.8: Results for parsers generated for 8 programming languages using
lex and yacc.

Language | Number of | Number of | Reductions | gotos | Irreducible
grammar C files functions (average) functions
Ada 9x 2 40 4.350 6 0
C 2 42 4.071 7 0
C++ 2 42 5.381 6 0
Fortran 2 10 11.100 1 0
Java 1.1 2 35 4.286 6 0
MATLAB 2 39 4.359 22 0
Modula-2 2 70 3.986 28 0
Pascal 2 40 4.250 22 0

14 318 5.220 98 0

Figure 3.9: Results for parsers generated for 8 programming languages using
flex and bison.

of the human-written open source software tested earlier in Figure 3.5 into
machine-generated C, and then analysed these files. The results can be seen
in Figure 3.10. It is worth noting that the 11c tool was unable to generate C
code for 23 C files in guile-1.8.7, and exited with an error. We believe this to
be a bug in the tool. However, the functions that exhibited irreducible control
flow previously were unaffected by this bug and compiled without error.

Interestingly, no irreducibility was introduced or removed by source-to-
source compiling the software in this way. There is a dramatic increase in
the number of gotos. This is due to the fact that, on inspection, the 11c tool
generates C by making each basic block in the CFG a labelled section of C
code, and then using gotos to transfer control to the next labelled section(s).
Thus, since the structure of the machine-generated source code resembles the
original CFG, when it is translated back into a CFG by our analysis pass, the
structure of the graph is almost identical.

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS o4

Name & Released | Number of | Number of | Reductions | gotos | Irreducible
version C files functions (average) functions
binutils-2.19.1 2009 42 828 4.605 19062 0
bison-2.4.1 2008 31 537 5.101 7816 0
coreutils-7.4 2009 108 1371 4.125 23668 0
findutils-4.4.2 2009 8 252 2.405 2970 0
grep-2.5.4 2007 9 185 7.281 5368 0
guile-1.8.7 2009 83 1484 3.348 14344 3
gzip-1.3.12 2007 32 135 6.970 2994 0
idutils-4.2 2006 5 89 4.944 1282 0
indent-2.2.10 2009 11 88 5.659 3187 1
less-418 2009 35 406 3.714 6969 1
m4-1.4.13 2009 11 89 4.944 3849 0
make-3.81 2006 24 2563 6.055 4920 0
readline-6.0 2009 39 560 3.595 7695 0
sed-4.2.1 2009 7 106 4.292 1796 0
wget-1.11 2008 31 505 5.673 10302 0
471 6888 4.860 97160 5

Figure 3.10: Results for source-to-source compiled versions of the software
from Figure 3.5.

3.8.3 MATLAB Real-Time Workshop

Simulink is a tool for designing and simulating dynamic and embedded sys-
tems, developed by MathWorks and integrated within the MATLAB environ-
ment. The Real-Time Workshop package enables C code to be generated from
Simulink models. We selected a number of non-trivial Simulink projects that
were available to download from the MATLAB Central File Exchange [6] and
then used Real-Time Workshop to generate C code for these simulations. The
Simulink projects ranged from signal processing algorithms to neural network
simulations, along with a PUMA robot arm controller and inverted pendulum,
motor, and suspension simulations. The results from the analysis of these C
files is shown in Figure 3.11.

Interestingly, the C code produced by Real-Time Workshop is highly struc-
tured and very readable. No gotos were present in any of the C files. Therefore,
no irreducible functions were present in this code.

3.9 Concluding remarks

We conclude from this study that irreducibility is happening much less fre-
quently than it was 9 to 15 years ago. It is difficult to say exactly why, as
there are a great number of factors that contribute to why a programmer or
software tool could be producing irreducible code. A programmer may nat-
urally think about coding in an unstructured manner, or be adding a quick
fix to some existing code by using gotos and labels rather than completely

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS 5%)

Simulink model Number of | Number of | Reductions | gotos | Irreducible

C files functions (average) functions
DC Motor Model 5 22 0.363 0 0
Inverted Pendulum 30 13 0.920 0 0
PID Controlled DC Motor 6 25 1.080 0 0
Timing Recovery 16 55 5.909 0 0
Viterbi Decoding 6 21 3.524 0 0
Suspension System 5 22 0.366 0 0
PUMA Robot Controller 20 87 1.920 0 0
PAM Mod./Demod. 6 22 1.591 0 0
OFDM w/ QPSK Mod. 5 24 1.542 0 0
Cellular Neural Network 5 22 0.455 0 0
14 318 5.220 98 0

Figure 3.11: Results for C code generated with Real-Time Workshop for MAT-
LAB Simulink models.

restructuring a section into a structured loop, amongst many other reasons.
However, there has been a clear move towards structured programming over
the decades: many popular modern languages such as Java do not include the
goto statement and rely on purely structured constructs to develop programs.
Since this is the case, many newly educated programmers may be thinking
differently about how they design their code than those who were taught to
program when unstructured techniques were still widely used.

The Internet has greatly increased collaboration between programmers on
open source projects, and the complexity and number of open source projects
continues to grow. With this also comes an increase in the number of devel-
opers working on projects. Being able to write clear code that is readable
by other humans is a key skill. Contributors are much more likely to accept
code which is neat and readable, and this quality often goes hand-in-hand with
structured programming and less irreducibility.

The results presented here should influence both compiler writers and com-
piler researchers. For those are writing compiler optimisations that may have
worried about handling the chance of irreducibility, we say that it is an ex-
tremely rare occurrence, and it will probably be even rarer in the future. We
feel that out of all the possible programs that a compiler can compile, the
overall loss of potential optimisation from irreducibility is negligible. Taking
into consideration the trend of less irreducibility over time, and the fact that
no new irreducible functions were introduced since the old versions of the soft-
ware we tested, we posit that leaving irreducible code unoptimised is o feasible
future-proof option for compiler writers. Additionally, a corollary to this state-
ment is that IRs restricted to reducible programs are feasible and future-proof
also. This, of course, questions the need for more complicated node splitting
techniques. Unless a drastically different approach to transforming any irre-
ducible graph into a reducible one is discovered, we feel that any more node

CHAPTER 3. A STUDY OF IRREDUCIBILITY IN C PROGRAMS o6

splitting research will have little impact on real-world compilation, since many
compilers do not even perform it in a basic 73 form. Programmers wishing to
write the “best” code for a problem should concentrate on structured algorithm
design to give the compiler the best chance for aggressive optimisation.

Future work could analyse source code at more regular time intervals to try
and see if a particular time or event coincided with a reduction in irreducible
code. It would be interesting to see whether functions rewritten to be reducible
were done so primarily for this purpose, or whether it was an unintended side
effect of a programmer thinking in a more structured manner. Code written
for some specialist purposes may rely heavily on unstructured control flow,
but we are currently unaware of any such purpose. We would be interested to
see if a compiler with a particularly aggressive inlining phase could repeatedly
and predictably transform reducible CFGs into irreducible ones.

3.10 Summary

In this chapter we have performed an empirical study of irreducibility in cur-
rent versions of open source software, and compared them with older versions
of the same software. We also studied machine-generated C code from a num-
ber of software tools. We found that irreducibility is rare, and is becoming
less common with time. We concluded that leaving irreducible functions un-
optimised is a feasible future-proof option due to the rarity of its occurrence
in non-trivial software, and as a result of this, IRs restricted to reducible pro-
grams are feasible and future-proof also.

Chapter 4

Construction

4.1 Introduction

In this chapter, we examine the problem of constructing the VSDG. There
exist a number of different approaches to building the VSDG and related 1Rs.
In the literature, construction proceeds from one of two data structures: the
abstract syntax tree (AST) or CFG.

During syntax analysis it is common practice for the AST to be built. One
existing approach uses the AST along with the symbol table to generate nodes
and edges in the VSDG. Identifying the position of a conditional statement or
a loop in the input program is simple: the keyword for the construct will be
present in the AST. However, the major drawback to this approach is that it is
entirely source language dependent, meaning that the algorithm would have to
be rewritten for every input language that the compiler parses. Additionally,
this approach is unable to detect irreducible control flow (since it lacks any
kind of “bigger picture” of the source program), is restricted to 0-trip loop
constructs, and cannot handle unstructured exit from loops.

The alternative—constructing from the CFG—presents different challenges.
Whereas the position of conditional statements and loops is explicit in the
AST, this must now be rediscovered from patterns in control flow. In the
literature, this has been achieved by analysing the “shape” of the CFG to
discover control flow patterns, and then using this information to guide the
placement of branching and looping constructs in the IR. These techniques
are all restricted to input programs with reducible control flow, and require
separate node splitting passes to transform irreducible programs into reducible
ones.

We posit that previous construction approaches lack a unifying technique
that remains language independent; handles unstructured control flow, and
allows the opportunity to detect and deal with irreducibility. This chapter
presents an approach to constructing VSDGs that addresses these issues by:

1. Finding patterns in the CFG and handling irreducibility using an existing

o7

CHAPTER 4. CONSTRUCTION 28

technique called structural analysis;

2. Using a novel construction algorithm that generates a VSDG fragment
for each basic block in the CFG, and then merges them together using
the syntactic information discovered during the previous phase.

We show with a worked example how our approach can construct a VSDG
from the CFG in SSA form of an input program. We believe that this frame-
work provides the construction stage with more syntactic detail about the in-
put program than previous approaches, enables a convenient way to deal with
irreducibility, and neatly deals with unstructured control flow. Additionally,
we believe that our framework is better documented than previous approaches
in the literature.

4.2 Related work

We will begin by exploring the previous ways in which a number of related
IRs have been constructed. The IRs that we consider for this section are the
VDG, VSDG, DFG and GDDG, which we explored in Chapter 2, since they
are all dataflow-based IRs that use «-nodes for conditional choice and have
related looping constructs.

4.2.1 Value State Dependence Graph

Johnson [72] uses a syntax-directed translation of C input programs. The
abstract syntax tree (AST) for a program is often generated in the front-end
of the compiler during syntax analysis. Top-down recursive parsers can easily
generate the tree in the actions of their recognising methods. The AST along
with the symbol table can be used to construct the VSDG. Lawrence’s work
with the VSDG did not present any new method for construction [83].

A stack-based approach is taken, similar to that of Brandis and Mdssenbdck
[29]. To compile expressions, the AST is traversed whilst emitting VSDG
nodes and edges. Nodes which assign to variables also update the symbol
table information with the current VSDG node for that value. Side-effecting
operations produce a new state.

Compiling if statements makes use of a private name stack for each value
in the symbol table. VSDG node names are temporarily stored on this stack
to model the lexical scoping within the source program. Upon entry to an
if statement, the current node name of each register variable is pushed onto
this stack. When exiting the then block and entering else, for each register
variable, the name at the top of the stack is swapped with the current VSDG
node name. When exiting the else block, the v node has edges added to the
respective nodes from the T" and F ports to represent the values returned when
the if statement evaluates to true or false.

CHAPTER 4. CONSTRUCTION 29

Compiling loops makes use of #7¢¢¢ and ' nodes. When detecting the
entry to a loop, for each register variable, edges are added from the §7¢@? |
port to the source node. Then, all register variables are updated to refer to
the §7°@ [, port. Before exiting out of the loop, edges are added from the
R port to the current nodes for those values. On exit, all register variables are
updated to refer to the 6% node X port.

There are two benefits to this method of construction. Firstly, access to
keywords in the input program such as if and while identify the precise
position of conditional statements and loops. Secondly, use of simple AST
traversal methods guarantees an efficient implementation of the algorithm.

However, the disadvantages far outweigh the advantages. The first is con-
cerned with modularity. Many modern compilers are split into modular units
which are as independent from the input and target languages as possible.
This allows the development of compilers for new programming languages and
architectures to take less time, as just a new front-end or back-end can be
written. Writing VSDG construction into the syntax analysis stage ties it to a
particular input language; in this case C. Additionally, there exists no way of
detecting irreducible control flow. Due to these reasons, Johnson’s algorithm
quits with an error upon seeing the goto or switch keyword in the AST [72].
This makes a syntax-directed construction approach unsuitable.

4.2.2 Dependence Flow Graph

Construction of the DFG begins by computing Single-Entry Single-Exit (SESE)
regions in the CFG. A SESE region in a CFG is an ordered pair (a, b) of dis-
tinct edges a and b where a dominates b, b postdominates a, and every cycle
containing a also contains b and vice versa. Once SESE regions have been
discovered [73], the authors state they use four steps to build the DFG:

1. Determine the variables used within each SESE region by means of an
“inside-out” traversal.

2. Create a base-level DFG with no region bypassing by inserting depen-
dence edges in parallel with control flow edges.

3. Perform region bypassing using a forward flow algorithm using the in-
formation in Step 1.

4. Remove dead flow edges created during bypassing using a backward prop-
agation algorithm.

Exact details of how to implement this construction algorithm are waived
for space concerns [95, 74|, and little extra detail on DFG construction is
available in the author’s thesis [75]. We therefore look elsewhere for examples
of construction from the CFG.

CHAPTER 4. CONSTRUCTION 60

4.2.3 Value Dependence Graph

The VDG can be seen as the predecessor of the VSDG, and represents loops
by translating them into tail-recursive function calls with A and call nodes.
The authors tackle construction of the VDG in four stages:

1. SESE analysis is performed to identify conditional branches, loops and
unstructured control flow.

2. A Store Dependence Graph (SDG) is constructed by translating basic
blocks into block nodes, branching control flow into v-nodes and looping
and unstructured control flow becomes A and call nodes. The authors
note that this step is “expository fiction”, in that the implementation
doesn’t actually build the SDG, but merely uses the information to drive
the next stage.

3. The SDG is converted into a VDG by performing symbolic execution,
where each block node is translated into a DDG node and then linked
together with subsequent DDG nodes with «-nodes.

Like the DFG, the authors waive any exact details of the construction al-
gorithm due to space [125]. No further publications were produced on the
VDG.

4.2.4 Thinned Gated Single Assignment

TGSA construction proceeds from the CFG. To begin with, an analysis pass
discovers control flow patterns that represent loops. Then, the entry and exit
of loops are augmented with preheader and postbody nodes. These augmenta-
tions are then used to guide the placement of - and n-nodes which represent
loops in TGSA form.

After this stage has completed, the CFG is then translated into SSA form.
The ¢-functions that are placed at control flow merges serve as a marker for
where to place DAGs of v-nodes. An algorithm traverses the CFG backwards
from each ¢-function along immediate dominators and places a v-node at each
conditional branch that is encountered, using a process the authors call -
conversion.

Upton [123] states that this construction approach was attempted for the
building of the GDDG, but it failed to work for loops with multiple exits.

4.2.5 Gated Data Dependence Graph

As a result of the aforementioned flaws of TGSA construction, building the
GDDG incorporates Tarjan’s algorithm [114] for building the loop nesting tree,
which identifies a unique header node for each loop in a reducible CFG. Once

CHAPTER 4. CONSTRUCTION 61

the loop nesting tree has been built, loop construction proceeds in the manner
of TGSA form, augmenting loop entries and exists and placing p- and n-nodes.

Placement of v-nodes is achieved without translating the program into SSA
form; instead path expressions [115] are used to guide insertion. These path
expressions can be used to place v-nodes in the manner of Tu and Padua
[120]. Upton uses this technique to place y-nodes for every virtual register
defined on some path to control flow merges from its immediate dominator.
Loop predicates are also built in this way. This is an effective construction
approach, however it requires a previous analysis pass to remove irreducibility
from the input program.

4.2.6 Our requirements

We therefore state the following requirements of our VSDG construction algo-
rithm:

Correctness Fundamentally, the VSDG should correctly represent the input
program by performing the same operations.

Language-independence Johnson’s syntax-directed approach with the AST
is not independent of the input language. We should operate on the
program in a (mostly) machine-independent form, namely the CFG.

Dealing with irreducibility We need to be able to detect irreducible re-
gions in the control flow graph. Ideally, we would like to have the ability
to apply node splitting as construction proceeds.

Dealing with unstructured control flow We also need to be able to han-
dle unstructured control flow. As seen in the previous chapter, most
real-world C programs feature frequent goto usage.

The first part of our construction algorithm aims to detect control flow
patterns. We choose to begin construction from the CFG as most modern
compilers use it as the primary IR, and it is simple to work with. We take an
existing approach to detecting control flow patterns called structural analysis.

4.3 Structural analysis

Structural analysis is a fine-grain form of interval analysis on the CFG. It
was first presented by Sharir [106] as an extension of existing interval analysis
techniques [14]. A detailed pseudocode algorithm is given by Muchnick [87].
We use Muchnick’s pseudocode to implement it. The purpose of structural
analysis is to make the syntax-directed method of dataflow analysis [97] ap-
plicable to a lower-level IR. Thus, this approach unites the different benefits
of constructing from the AST and CFG. It also identifies more patterns than

CHAPTER 4. CONSTRUCTION 62

Y

HH
-«

2

B3

if-then-else
if-then

Continuous l

blocks l
-

ez | [|

(2] [oni] [o]
2 R
switch-case \ /

proper region

Figure 4.1: Acyclic structures that can be recognised by structural analysis. A
proper region is of arbitrary size; the pictured example is the smallest possible
proper region.

standard interval analysis techniques. Structural analysis works by analysing
the CFG and matching regions against pre-defined patterns, called schema.
The acyclic schema recognised by structural analysis are shown in Figure 4.1.
The cyclic schema are shown in Figure 4.2.

First, we define the acyclic schema. These describe various conditional
constructs, straight-line code and an acyclic “catch-all” schema.

e A sequence of basic blocks S = {by,bg,...,bp—1,bn} where each by has
exactly one successor bgyc. and predecessor byreq Where bsyce, bprea € S
and succ(b,) < 1 are identified as a schema of continuous blocks.

e Two basic blocks by and by are identified as the if-then schema iff: b;
has exactly one predecessor and two successors, where by € suce(by),
pred(by) = by and succ(by) — by = succ(bs).

e Three basic blocks by, b and b are identified as an if-then-else schema
iff: by has exactly one predecessor, succ(by) = {ba,bs}, ba has exactly
one successor and succ(be) = suce(bs).

CHAPTER 4. CONSTRUCTION 63

Z

self loop while loop natural loop

!

| B2 o= B3 |
} I

improper loop

Figure 4.2: Cyclic structures that can be recognised by structural analysis.
Like the proper region, the improper loop is schematic.

e A set of basic blocks S = {by, b, ..., bp—1,by,} is identified as a switch-
case schema iff: b; has exactly one predecessor, b, has exactly one suc-
cessor, and all blocks in the subsequence {by, ..., b,—1} have only b; as a
predecessor and b, as a successor’.

e Any acyclic region of arbitrary size that does not match any of the above
cases is a proper region.

Similarly, we can describe the cyclic schema. These represent a variety of
loop constructs, and also a method for detecting irreducible regions.

e A basic block by is a self loop schema iff it has exactly one distinct
successor and predecessor, and an edge (by, by).

e Two basic blocks b; and by form a while loop schema iff: b; has exactly
one predecessor, by has exactly two successors of which one is bs, and
pred(by) = succ(bg) = by.

e A natural loop is any reducible loop that does not match the above
schema.

e The improper loop schema applies to any irreducible regions of the
code.

'The exact implementation of the switch-case schema can be adjusted to allow fall-
through behaviour in case statements if desired.

CHAPTER 4. CONSTRUCTION 64

When the structural analysis algorithm executes, it examines basic blocks
in postorder, recognising regions and collapsing (reducing) them into abstract
nodes. These abstract nodes are annotated with the type of reduction that
has taken place. For example, the if-then-else schema from Figure 4.1 would
become an if-then-else abstract node upon reduction. This continues until
the limit graph is reached. In parallel, a structure called the control tree is
constructed. This represents the hierarchical structure of the regions within
the original graph. In Figure 4.3 we see an example of a CFG being reduced
step-by-step by structural analysis. The original basic blocks are unshaded,
whereas abstract nodes are shaded grey. Each basic block in the CFG has
been annotated with its numbering in the postorder traversal. The structural
analysis algorithm starts at the lowest number in the postorder and works
upwards. Block 1 alone does not match any of the schema. However, blocks
1 and 2 match the conlinuous blocks schema and are reduced into an abstract
node which we label 12a. Block 3 alone does not match a schema, but block
4 matches the self loop schema and is reduced to 4a. Now this allows 4a and
5 to match the continuous blocks schema, being reduced to 45a. Now blocks
6, 3 and 45a match the if-then-else schema, and are reduced to 3456a. This
leaves two blocks which are reduced using the continuous blocks schema into
the limit graph 123456a. Since the limit graph consists of only one node, this
graph is reducible, and we have finished the structural analysis stage.

The control tree is generated during structural analysis is shown in Fig-
ure 4.4. We follow the same shading convention for abstract nodes and origi-
nal basic blocks. It can be seen that all of the original basic blocks form leaf
nodes, and abstract nodes are always interior nodes. We have now completed
the CFG analysis phase and produced a control tree. This is the structure
that we will work with to begin the VSDG construction phase.

Omne problem with Johnson’s construction during syntax analysis is that
unstructured exit from loops is not completely supported: recall that the algo-
rithm quits upon seeing switch or goto keywords in the AST [72]. However,
the benefit of using structural analysis is that a loop consisting of conditionals
and gotos may take the same control flow structure as an existing loop schema
even though its syntax would not necessarily show this.

An additional benefit of structural analysis is the opportunity to apply node
splitting to irreducible regions. Since every region that the algorithm identifies
has exactly one entry point, the improper schema will always include the lowest
common denominator of the set of entries to the strongly connected component
that is the multiple-entry cycle within the improper region [87].

Analysing the CFG using structural analysis has offered the following ben-
efits which aid VSDG construction:

e An opportunity to recognise more patterns in the CFG than other meth-
ods of interval analysis, reclaiming much of the syntactic information
lost after syntax analysis.

CHAPTER 4. CONSTRUCTION 65

continuous self
blocks loop

-
B?H

l

3

|

—_—

;
A\
4 :) 4a

<
<%

] B
&

if-then-else continuous
3456a blocks
5a — e 123456a
A\

/I
-
S
-
[*)
[V

[

2

Figure 4.3: A CFG is reduced step-by-step by structural analysis into a one-
node limit graph.

e Detection of irreducibility in the program, which can then be dealt with
by whichever preferred method (e.g. node splitting).

e A better way of dealing with unstructured control flow, as unstructured
loops will often match against schema their syntax may not immediately
suggest.

We used our implementation of structural analysis to see the commonality
of different region types in real world programs. This acts as an indicator as
to which merge algorithms would be called the most often when performing
this merging stage. We analysed the source code of the open source projects
in Figure 3.5. The table in Figure 4.5 shows the occurrences of each region
type found in all of the software.

4.4 Sketching the algorithm
Constructing a VSDG from the CFG consists of two stages:

1. Traversing the CFG to find regions.

CHAPTER 4. CONSTRUCTION 66

Figure 4.4: The resulting control tree from applying structural analysis to the
CFG in Figure 4.3.

Region name Number of occurrences
Continuous blocks 14715

If-then 8347
If-then-else 5739
Switch-case 252

Proper 3756

Self loop 191

While loop 2477

Natural loop 3263

Improper 5)

Figure 4.5: Region occurrences for 15 open source projects from Figure 3.5 as
of July 2009.

2. Using the discovered syntactic information about these regions to drive
construction of the graph.

We have used structural analysis to achieve the first stage. In our construc-
tion approach, we split the second stage into two sub-stages:

2a. Creating a VSDG fragment for each basic block. These fragments rep-
resent straight-line code, and hence do not have any - or - nodes.

2b. Traversing the control tree and combining fragments by using the type
of the abstract node to identify the - or 6- nodes (or none in the case
of continuous blocks) to add.

CHAPTER 4. CONSTRUCTION 67

4.4.1 Generating VSDG fragments

The first stage examines the instructions in each basic block in turn and creates
a VSDG fragment. No gating functions are added until the merge stage, since
this information is encoded in the control tree abstract nodes during structural
analysis. We limit the scope of variables to the basic block that we are looking
at. We generate nodes with value edges for instructions and their operands.
Memory operations on values such as load and store are linked in the correct
order with state edges, and we keep track of the most recent state operation
for each value. We also keep track of the first and last usage of a value in
each fragment. If a variable is being used that has not been defined in the
current block (i.e. it was defined in a previous one), we create a top-link node.
This is used in the merging stages to link our basic block fragments together.
We do not generate nodes for terminating branch or jump instructions, as the
destination to transfer control flow is explicitly shown in the edges of the CFG.
Once we have performed this for all basic blocks, we traverse the control tree.

4.4.2 Control tree traversal

A postorder traversal of the control tree is required to construct the graph in
the correct order. When traversing, we check if we are visiting a leaf node or an
interior node. Leaf nodes are always the original basic blocks, so they have had
a VSDG fragment generated in the previous stage. Interior nodes are abstract
nodes, and identify the type of merge required. When we visit an abstract
node, we perform the indicated merge. A merge at an abstract node creates
a new fragment containing the children of that node. These merges continue
until we reach the root of the control tree, where we will have constructed the
complete VSDG by merging all of the fragments.

4.4.3 Merging

As we work through the control tree, we perform different merges on the child
fragments of a given abstract node. The type of merge is identified by the type
of abstract node we are visiting. For example, the first three nodes visited in
postorder in Figure 4.4 would be 1, 2 and 12a. The abstract node 12a was
created during a continuous blocks reduction as per its annotation, specifying
that the nodes 1 and 2 can be merged together as straight-line code without
requiring any - or 6-nodes. Below we list the different types of abstract node
and the type of merge we will perform upon seeing them. We begin with the
abstract nodes representing acyclic schema. For every merge operation we
seek to resolve top-link nodes if possible by looking for the previous use of a
top-link node’s value.

Continuous blocks This schema represents straight-line code. Each child
fragment Gy, € {G1, ..., Gy, } is merged in order into Gpjocks-

CHAPTER 4. CONSTRUCTION 68

If-then This has two child fragments: Go and Gr. The fragment that returns
the y-node condition is G¢. The fragment evaluated when this is true
is Gp. We create a «v node and link the C port to G¢, and the T port
to Gr. The F port will be linked later on, so a top-link is created and
linked to the F' port.

If-then-else The procedure is the same as above, except we have an additional
fragment G executed when G¢ is false. We link this to the F' port of
the v node.

Switch-case Each child fragment represents an individual case statement in
the input program. We translate these into a chain of v nodes.

Proper A proper region is of arbitrary size, and again we translate these into
a chain of « nodes.

We also describe the merges for the cyclic abstract nodes.

Self loop This abstract node has one child. We generate a #"¢*? node and
for the first usage of all values in the child fragment we create a link to
the L port. For these same values we create a top-link which is linked
to from the I port. We also generate a 6% node, with the last usage
of all values being linked from the R port. The C port is linked to the
conditional test that terminates the fragment.

While loop This abstract node has two children, and we treat it similarly to
the SelfLoop merge. We link the loop body between the §7°% and e
nodes as before, and link the condition to the C port of the 8% node.

Natural loop Like the switch-case and proper region schema, these are of
arbitrary size. We create a p node at the loop header, and at each
loop exit we place a 1 node. The condition for each n node links to the
terminating condition of each loop exiting block in the schema.

Improper regions can be transformed during structural analysis by node
splitting so they should no longer be present at this stage. Alternatively, a
procedure containing an improper region can be left unoptimised, a behaviour
seen in many real-world compilers.

4.5 Generating and merging

The structural analysis algorithm was implemented in LLVM for the study of
irreducible programs performed in Chapter 3. We therefore wrote the merging
algorithm as an LLVM pass that ran after structural analysis completed, using
the generated control tree. The LLVM IR is a CFG containing instructions
that are implicitly in SSA form.

CHAPTER 4. CONSTRUCTION 69

4.5.1 Generating VSDG fragments

Before we traverse the control tree, we generate a VSDG fragment for each
basic block in the CFG. The goal of this stage is to populate a map data
structure called F'ragments, which will contain a reference to each basic block
in the CFG mapped to the fragment that has been generated for it. We
will begin with some definitions that will be used in the presentation of the
algorithm.

Basic block A basic block BB(Ins,GV,T') consists of a set of instructions
Ins, a set of global variables GV and a terminating instruction 7. The
set of all basic blocks is called Blocks.

Instruction An instruction I(Op,V, L, R,SE, BB) consists of the operation
of the instruction Op, value stored in a virtual register V', operand L,
operand R, a Boolean flag indicating whether it is a side-effecting in-
struction SFE, and a reference to the basic block it is contained in BB.

We use a dot notation to access data contained within a tuple. For example,
in order to access the type of the operation of instruction I, we would write
I1.0p. We use the < operator to indicate the storing of a value to a tuple.
The operand(s) of an instruction may be a constant or a reference to another
instruction, as is the case in LLVM.

Each fragment has a function header node. When all fragments have been
merged into the final VSDG these function header nodes will have been merged
together.

Function header A function header node FFH (¢, Vals,__STATE__) has a unique
label ¢, a set of entry variables Vals and the variable __STATE__ [72].

We use the W operator to describe the addition of an element or set to an
existing set. We also use this same operator to describe a value being added
to the function header node, e.g. S'Wx.

The VSDG we wish to construct can consist of 4 types of node. These
are value nodes, state nodes, conditional (7) nodes and loop (#"?? and @)
nodes. In this stage of the algorithm we are only required to generate value
nodes and state nodes. The conditional and looping constructs are introduced
at the merging stage. For the construction algorithm we also use a type of
node called a top-link, which literally means “this variable has been declared,
but not in this block”. Top-link nodes are used to discover the correct places
to join fragments together during the merging stage.

VSDG node A node Node(T,Value, BB) consists of a type T' (value, state,
gamma, mu, eta, top-link), virtual register value Value, and reference
to the originating basic block BB.

CHAPTER 4. CONSTRUCTION 70

VSDG edge A directed edge Edge(From,To, FPort,TPort) consists of a
source node F'rom, destination node To, and port labels from the source
node F'Port and destination node T'Port.

As mentioned previously, the global data structure for this stage of the
algorithm which is accessible to later stages is a map

Fragments : (BB — (N, E, FHs, CurrentNode, CurrentState, ThetaMap))

which maps each basic block BB with the generated VSDG fragment. This
information is the nodes (N) and edges (F), the function header node (F Hs)
along with a map

CurrentNode : (V — N)
mapping a value with the latest node for it in the fragment, and the map
CurrentState : (V — N)

mapping a value with the latest state-changing node for it in the fragment.
The map

ThetaMap : (BB — N)

is used for merging loop regions with multiple exits, and will be explained in
more detail later.

For brevity, we assume the existence of a function ValueLink(X,Y) which
creates a directed value edge from node X to node Y and adds this edge to the
set . We also assume a similar function StateLink(X,Y) exists which creates
a directed state edge from node X to node Y, and also adds it to the set E.
We assume the correct port names are assigned to edges during this process
in order to save space.

We now consider Algorithm 2, which handles the construction of a fragment
from a basic block. If this is the first basic block in the CFG, all global variables
declared are added to the function header. Then, for each instruction a VSDG
node is constructed. If the instruction is side-effecting, then a state edge is
created between the newly created instruction node and the previous side-
effecting usage of that value.

Algorithm 3 creates a node for each instruction. If the instruction is side-
effecting, it is labelled as a state node, and the L operand is constructed.
Both load and store instructions have a L operand, but store nodes also
have a R operand. This new node is now linked to the previous state usage
of the computed value, whether this be in the function header or a previous
node. If the node does not have side-effects, then it is created and labelled as
a value node, updated as the current node for that value, and its operands
are constructed.

CHAPTER 4. CONSTRUCTION 71

Algorithm 2: Construct a VSDG fragment for each basic block in the
CFG.
Input : The set of all basic blocks in the CFG: Blocks.
Output: The populated data structure Fragments, containing a fragment for
each basic block.

forall the BB € Blocks do

if first then

first «—false;

forall the gv € GV do
L FH W gv;

forall the I € Ins do
ConstructInstruction(l);
if I.SFE then

| StateLink(CurrentState(/.V),I);

FHs W FH;
Fragment W (N,E,FHs,CurrentNode,CurrentState);
Fragments(BB) < Fragment;

Algorithm 3: Construct a VSDG node for each instruction.

Input : An instruction I.
Output: A constructed node for this instruction added to N.

if I.SFE then
n.T < state;
ConstructOperand(n,l.L);
if 1.O0p is store then
L ConstructOperand(n,l.R);

if CurrentState(I) is null then
| StateLink(n,FH,__STATE__)

else
| StateLink(n,CurrentState(l),]);

PR

else

n.BB «— I.BB;

n.vV«— I.V;

n.T «+ value;
CurrentNode(I.V') « n;
ConstructOperand(n,l.L);
ConstructOperand(n,l.R);

N & n;

CHAPTER 4. CONSTRUCTION 72

Each instruction will have some number of operands. Algorithm 4 handles
this. An operand can be several things. If it is a constant, we simply join
it to the parent constant node. Otherwise, we check for the previous use of
this value. If it is not present, we create a top-link node. Else, we link to the
previous value.

Algorithm 4: Construct a VSDG node for each operand.

Input : The parent instruction node n, and the operand to construct O.
Output: A constructed node for this operand added to Nodes.

Opr.T < value;

Opr.V « 0.V;

if O is a constant then
L ValueLink(n,Opr);

else

if CurrentNode(O.V) is null then
Opr.BB «— O.BB;
Opr.T « top-link;
ValueLink (n,Opr);
CurrentNode(O.V) « Opr;

else
| ValueLink(n,CurrentNode(O.V));

N & Opr;

4.5.2 Control tree traversal

We now have generated a fragment for each basic block in the CFG, stored
in the map Fragments. These fragments, when merged together in the cor-
rect way, will form the completed VSDG. The order in which they are joined
together is dictated by the syntactic structure of the program encoded in the
abstract nodes of the control tree. We perform a postorder traversal of the
control tree. Each leaf node of the control tree is a basic block. Each interior
node is an abstract node created when a reduction occurred during structural
analysis. The postorder numbering is stored in a map

PostNums : (int — BB)

generated by Algorithm 5.

4.5.3 Merging

Using this postorder numbering, we can then process the control tree and per-
form merges when we reach interior nodes. We visit each node in the control
tree in postorder. If the node is a leaf node it is added to a set called RegionN-
odes. When we reach an interior node, the function performing the relevant

CHAPTER 4. CONSTRUCTION 73

Algorithm 5: Number the control tree in postorder.

Input : The root node of the control tree.
Output: The postorder numbering map Post Nums.

TreeNode.Visited < true;
forall the ¢ € TreeNode. Children do
if c.Visited is false then
L TraverseControlTree(c);

PostMax < PostMax +1;
PostNums(PostMax) « TreeNode;

merge is called with this set of nodes as the parameter. These functions merge
these child fragments into one fragment, using the syntactic information en-
coded in the abstract node.

Algorithm 6: Merge together the nodes, edges and function headers of
fragments from a particular schema.

Input : RegionNodes, the set of all basic blocks in a schema.
Output: A single fragment containing all of the elements from the fragments
generated from RegionNodes.

forall the r € RegionNodes do
CurrentFragment < Fragments(r);
MergedN w CurrentFragment.N;
MergedE W CurrentFragment.E;
forall the = € CurrentFragment.FHs do
| MergedFH w x;

return (MergedN ,MergedE,MergedFH null,null null);

Some similar processes occur in each abstract node merge. To begin with
we must merge the nodes and edges of each fragment together. We also have
to merge together the function headers. We do this in Algorithm 6. The
other common process is resolving top-links. This is presented in Algorithm 7.
Here, we check to see if there is a node in the current fragment that is a use of
the same value (or state, depending on the edge type) that the top-link refers
to. If so, we can update the edge to point to this node. We also update the
current node and state usage of a value whilst doing so. We check whether the
ThetaMap has been passed as an argument if we need to resolve the top-links
with multiple loop exits.

Now we can use processes to merge two fragments. We begin by showing
the process taken when merging together two fragments that are part of a
ContinuousBlocks schema; that is, they form straight-line code in the input
program. This does not introduce any - or #-nodes and is shown in Algo-
rithm 8. Here, the nodes, edges and function headers are merged together into
one fragment using the MergeElements algorithm. Then, any edges pointing

CHAPTER 4. CONSTRUCTION 74

Algorithm 7: Resolve the top-link nodes in a fragment, where possible.

Input : Fragment with unresolved top-link nodes.
Output: Fragment with resolved top-link nodes, where possible.

forall the e € MergedEdges do

if ThetaMap is not null then

BB « e.From.BB;

ThetaTail — ThetaMap(Pred(BB));

if e is a value edge then
e.To < ThetaTail;
MergedCurrentNode(TopLink. V) « e.From;

else if e is a state edge then
e.To « ThetaTail;
| MergedCurrentState(TopLink. V) « e.From;

else
if e.To is a top-link then
TopLink «— e.To;
if e is a value edge then
if MergedCurrentNode(TopLink. Value) is not null then
e.To «— MergedCurrentNode(TopLink.V);
L MergedCurrentNode(TopLink. V) « e.From;

else if e is a state edge then
if MergedCurrentState(TopLink.V) is not null then

e.To « MergedCurrentState(TopLink.V);
MergedCurrentState(TopLink. V') < e.From;

if TopLink.Indegree is 0 then
| MergedEdges — TopLink;

at the old function headers are updated, followed by the ResolveTopLinks
algorithm.

In an IfThen merge, we use a y-node in order to represent conditional choice.
We show the algorithm for creating an IfThen region in Algorithm 9. Since
the IfThenElse algorithm is so similar, it has been included in the appendix
(Algorithm 16). For each register variable being used in the then part of the
if statement, a v node is created. Then, the C port of each v node is linked to
the terminating conditional instruction in the if statement. Since an IfThen
region does not have an else block, a top-link is created so the F' port can be
connected later in the merging process.

Next we consider the SwitchCase region. This is an arbitrary size schema
that matches against a typical switch...case construct in code. Since the
~ node cannot handle multiple predicates and selection, nor do we have a
“switch” node to use, we must use a chain of «-nodes in order to replicate

CHAPTER 4. CONSTRUCTION 75

Algorithm 8: Merge for the ContinuousBlocks schema.

Input : RegionNodes, which contains the basic blocks identified as the
continuous blocks schema.
Output: The merged ContinuousBlocks schema fragment.

CurrentFragment <« MergeElements (RegionNodes);

forall the e € MergedE do

if e is a value edge then

if e.To is a state other than MergedFH then

if MergedCurrentNode(e.To) is null then
e.To « MergedFH;

L MergedCurrentNode(e. To) < MergedFH;

else
| e.To — MergedCurrentNode(e. T0);

else if e is a state edge then

if e.To is a state other than MergedFH then

if MergedCurrentState(e.To) is null then
e.To « MergedFH;

L MergedCurrentState(e. To) < MergedFH;

else
| e.To — MergedCurrentState(e. To);

ResolveTopLinks (CurrentFragment);
Fragments(CurrentBlock) < CurrentFragment;

the behaviour. We show this in Algorithm 10. We iterate over all blocks
representing case statements. For each register variable, we create a v node
of which the T port is linked to the current node for the value in this block.
For the F' port, we use a map to link to the previous + node for this value, if
it exists, or we create a top link to be resolved later. Since the Proper region
is of arbitrary size and is acyclic, we can utilise the approach in Algorithm 10,
and we do so in Algorithm 11. Each basic block in a Proper schema will have
some arbitrary number of children greater than 1. Thus, we can just treat
each block examined and its successors as a case statement, and repeatedly
call Algorithm 10 on all nodes in the region.

For the WhileLoop region, we must insert the #7¢%¢ and 6% nodes during the
merge, and Algorithm 12 does this. Prior to merging together the elements of
each fragment, we create §"¢?® and ** nodes. Then, for each register variable
in the loop body, the first usage is linked to the L port of the 67¢%¢ node. A
top-link is created for each L port variable from the I port. For the 8/ node,
the last usage of each register variable is linked to from the R port. The C
port links to the terminating conditional instruction of the loop. The SelfLoop
merge is very similar, except it only consists of one block. Due to this, the
SelfLoop algorithm (Algorithm 17) has been placed in the appendix.

CHAPTER 4. CONSTRUCTION 76

Algorithm 9: Merge for the [fThen schema.

Input : RegionNodes, which contains two fragments to merge.
Output: The merged fThen schema fragment.

CondBlock «+ RegionNodes(0);

TrueBlock < RegionNodes(1);

CondFragment « Fragments(CondBlock);

TrueFragment — Fragments(TrueBlock);

forall the register variables v € TrueBlock do

create new GammaNode;

create new TrueEdge;

if TrueFragment.CurrentNode(v) is not null then
TrueEdge.To < TrueFragment.CurrentNode(v);

L TrueEdge.From «— GammaNode.TPort;

else
L CreateTopLink (v,GammaNode. TPort);

CreateTopLink (v,GammaNode.FPort);
create new CondEdge;
CondEdge.From <+ GammaNode.CPort;
CondEdge.To « CondFragment.CurrentNode(CondBlock.T);
MergedCurrentNode(v) < GammaNode;
MergedCurrentState(v) <+ GammaNode;
MergedN & GammaNode;
MergedE W CondEdge, TrueEdge;

CurrentFragment < MergeElements (RegionNodes);
ResolveTopLinks (CurrentFragment);
Fragments(CurrentBlock) < CurrentFragment;

The remaining merge algorithm is for the NaturalLoop schema. This repre-
sents any reducible loop that is not one of the other looping constructs as it
has two or more exit edges. Algorithm 18 shows this merge in the appendix.

CHAPTER 4. CONSTRUCTION 77

Algorithm 10: Merge used in acyclic schema of arbitrary size
(SwitchCase and Proper).

Input : RegionNodes, which contains basic blocks, and a flag of either CASE
or PROPER depending on the type of schema being merged.
Output: The merged ArbitrarySize fragment.

CondBlock < RegionNodes(0);

CondFragment «— Fragments(CondBlock);

ctr «— 0;

while ctr < RegionNodes.Size do

CurrentBlock < RegionNodes(ctr);

CurrentFragment < Fragments(CurrentBlock);

forall the register variables v € CurrentBlock do

create new GammaNode;

create new TrueEdge;

if CurrentFragment. CurrentNode(v) is not null then
TrueEdge.To < CurrentFragment.CurrentNode(v);

L TrueEdge.From «— GammaNode.TPort;

else
L CreateTopLink (v,GammaNode. TPort);

create new FalseEdge;
if PrevGamma(v) is not null then
FalseEdge.To « PrevGamma(v);
L FalseEdge.From «+ GammaNode.FPort;

else
| CreateTopLink(v,GammaNode.FPort);

PrevGamma(v) < GammaNode;
create new CEdge;
CEdge.From <+ GammaNode.CPort;
CEdge.To « CondFragment.CurrentNode(CondBlock.T.Case(ctr));
CurrentFragment.CurrentNode(v) < GammaNode;
CurrentFragment.CurrentState(v) < GammaNode;
MergedN & GammaNode;
MergedE & CEdge, TrueEdge, FalseEdge;

ctr « ctr + 1;

if PROPER then
L RegionNodes < RegionNodes — RegionNodes(0);

CurrentFragment <« MergeElements (RegionNodes);
ResolveTopLinks (CurrentFragment);
Fragments(CurrentBlock) « CurrentFragment;

CHAPTER 4. CONSTRUCTION 78

Algorithm 11: Merge used for Proper regions.

Input : RegionNodes, which contains the basic blocks in a Proper schema..
Output: The merged ProperRegion fragment.

ctr +— 0;
while ctr < RegionNodes. Size do
SubRegion « 0;
CurrentBlock < RegionNodes(ctr);
SubRegion & CurrentBlock;
SubRegion W Succ (CurrentBlock) ;
CurrentFragment W ArbitrarySize (SubRegion,PROPER);

Fragments(CurrentBlock) <« CurrentFragment;

4.6 Worked example

We will show how the algorithm works by demonstrating it on an example
program. In Figure 4.6 we give a C program alongside its translation into a
linear IR. We obtained this by compiling the program with the LLVM compiler,
and then editing it by hand to make it more readable.

4.6.1 Structural analysis

Figure 4.7 shows the CFG for the code in Figure 4.6 and the reduction steps
that occur during structural analysis. Traversing the blocks in the CFG in
postorder, the structural analysis algorithm first detects an if-then-else schema
made up of the blocks w.b, 1.t and i.el. These are reduced into the abstract
node al. This allows for al and i.en to match the continuous blocks schema,
so they are reduced into a2. Now w.c and a2 match the while loop schema and
are reduced into a3. The next three reductions repeatedly apply the continuous
blocks schema until the limit graph is reached. The resulting control tree is
shown in Figure 4.8.

4.6.2 Generating VSDG fragments

Before traversing the control tree, we generate a fragment for each basic block
in the CFG. We begin with the basic block named entry. Since this is the
first basic block, we create a function header, which includes the __STATE__
pseudo-register that state-dependent nodes will interact with. The function
takes a parameter x so this is added to the function header. The first two
instructions allocate memory for x and y so we add these as well. We generate
nodes and edges for the multiplication of x by 2. This is now the most recent
value for y. For basic block w.c our only non-terminating instruction is sgt.
It is operating on x, but since it was defined elsewhere we create a top-link
node which is represented by a cloud in the diagram. This means “x has been
allocated, but not in this block”. We follow the same principle for other blocks.

CHAPTER 4. CONSTRUCTION 79

Algorithm 12: Merge for the WhileLoop schema.

Input : RegionNodes, which contains the basic blocks from the WhileLoop
schema.
Output: The merged WhileLoop fragment.

CondBlock < RegionNodes(0);

BodyBlock < RegionNodes(1);
CondFragment «— Fragments(CondBlock);
BodyFragment < Fragments(BodyBlock);
create new ThetaHead;

forall the register variables v € CondBlock do
create new LEdge;

LEdge.To < CondFragment.FirstUse(v);
LEdge.From <« ThetaHead.LPort;
CreateTopLink (v, ThetaHead./Port);
CondFragment & LEdge;

create new ThetaTail;
forall the register variables v € BodyBlock do
if v ¢ CondBlock then
create new LEdge;
LEdge.To < BodyFragment.FirstUse(v);
LEdge.From < ThetaHead.LPort;
CreateTopLink (v, ThetaHead.IPort);
BodyFragment & LEdge;

create new REdge;

REdge.From « ThetaTail.RPort;

REdge.To < BodyFragment.CurrentNode(v);
MergedCurrentNode(v) < ThetaTail;
MergedCurrentState(v) < ThetaTail;
MergedE & REdge;

create new CEdge, SEdgeUp, SEdgeDown;
CEdge.From « ThetaTail.CPort;

CEdge.To « CondFragment.CurrentNode(CondBlock.T);
SEdgeUp.From < BodyFragment.FirstSideEffect;
SEdgeUp.To « ThetaHead.STATE;
SEdgeDown.From « ThetaTail. STATE;
SEdgeDown.To < BodyFragment.LastSideEffect;
MergedN @ ThetaHead, ThetaTail;

MergedE W CEdge, SEdgeUp, SEdgeDown;
CurrentFragment < MergeElements (RegionNodes);
ResolveTopLinks (CurrentFragment);
Fragments(CurrentBlock) < CurrentFragment;

CHAPTER 4. CONSTRUCTION 80

int foo(i32 x) {

entry:
y = alloc i32
z = alloc i32
y = x mul 2
jmp Qw.c
w.cC
int foo(int x) { %hemp = x sgt 100
int y = x * 2; br %cmp, @w.b, Qw.e
int z; w.b:
while(x > 100) { X = x add 1
X++; Stmp = x mod 2
if(x % 2 == 0) %hemp2 = Ytmp eq O
z += x; br jcmp2, @i.t, @i.el
else i.t:
z t=y; z =2z +tx
} jmp @i.en
return z; i.el:

z=z+y
jmp Qi.en

jmp Qw.c

ret z

Figure 4.6: Some C code which has been translated into a linear IR. Identifiers
with a % indicate local variables, and those with a @ indicate labels.

The return node (ret instruction in basic block w.e) is state-dependent, as all
other operations must finish before we can return the value of z. It is dependent
on the previous usage of z in the completed VSDG. We have now generated
our fragments for each basic block in the CFG. We keep a reference between
each basic block and its fragment. The next stage is traversing the control tree
and performing merges at abstract nodes.

4.6.3 Traversing and merging

The control tree in Figure 4.8 has been annotated with the numbering of each
block after a postorder traversal. We consider the nodes of the tree in this
order. Once we reach an abstract node, we take the fragments for each of the
child nodes and merge them together. The first merge required is w.b, i.t
and i.el into al. This abstract node represents an if-then-else reduction, so
we need to perform an if-then-else merge.

e Block w.b forms the G¢ fragment. It contains the condition controlling

CHAPTER 4. CONSTRUCTION 81

Figure 4.7: Performing structural analysis on the CFG from Figure 4.6.

6 7!
II]
3 4 5

Figure 4.8: The control tree generated after structural analysis in Figure 4.7.
The blocks have been annotated with their postorder numbering.

CHAPTER 4. CONSTRUCTION 82

public : foo
T |2 [sme] S

entry w.C

Figure 4.9: VSDG fragments generated for each basic block in the CFG. Note
that since the basic block i.en does not contain any non-terminating instruc-
tions, we do need to generate any nodes for it.

the if statement: the eq instruction in Figure 4.9.
e Block i.t forms the Gr fragment.

e Block i.el forms the G fragment.

We create a new fragment, G,. As per the previous description, we generate
a y-node and add it to this fragment. The C port of the v-node is linked to
the conditional instruction in G¢, which is the eq node. We merge fragment
Gc with G, and add this edge. We then see if we can resolve any top-links.
There is a top-link to x, but we have no previous usages of x in G,.

We then merge G with G, and the T' port is linked to the topmost in-
struction in Gp, which is add. We have two new top-links for x and z. The
add instruction in G¢o was a previous usage of x, so we can remove the top-
link and add an edge to here. We have no previous usages of z. There are
no state-changing nodes in G, so we add a top-link to __STATE__. We then
merge Gr with G,,. The F port is linked to the topmost instruction in Gp,
which is another add instruction. We merge the z top-link with the existing
one as they operate on the same value. There is no previous usage of y. There
are no state-changing nodes in G either, so we add a top-link to __STATE__.

CHAPTER 4. CONSTRUCTION 83

Figure 4.10: The fragment G, created after performing a merge at abstract
node al.

A ~-node is a state node itself. It now is the topmost instruction and state
usage in G (i.e. it must be evaluated first). We can see the G, fragment in
Figure 4.10.

The other interesting merge occurs at a3. This abstract node was created
from a while loop schema reduction during structural analysis. This merge
involves generating #"¢?¢ and #' nodes for the loop header and footer. The
loop header #"¢%¢ receives its initial values through the I port. We haven’t
merged with that yet, so we generate top-link nodes. G forms the body of
the loop. The #'* node implements the loop guard condition through the C
port, dependent on the initial value of x.

We continue performing merges when we visit an abstract node in the con-
trol tree until we have obtained the finished VSDG. This is shown in Fig-
ure 4.11. Here we can see the addition of the return node (ret) which demands
the value of z and is state-dependent on the loop. The state for the beginning
of the function is now present, along with the original values for x, y, z and
__STATE__. The algorithm has now finished.

4.7 Summary

In this chapter, we have presented a method for constructing VSDGs that
unites the benefits of previous methods without replicating their problems. In
summary, the advantages of our approach are:

Language-independence Johnson’s construction during syntax analysis us-
ing the AST tied that particular implementation to a single language. By
operating on the CFG, our approach keeps graph construction language-
independent.

Dealing with irreducibility Structural analysis is able to detect irreducible
regions in the CFG. Node splitting can be applied to these regions as
they are detected. Another benefit of using structural analysis is that

CHAPTER 4. CONSTRUCTION 84

public : foo
x [y] z] state

QR T

y [x [z [sTATE

theta head
| [z [sTATE
=

\xlylzlSTATE

theta tail
x | y | z [STATE
<

’
7

Figure 4.11: The complete VSDG constructed from Figure 4.6.

an irreducible region will always contain the lowest common dominator
of the set of entries to the strongly connected component, thus node
splitting will always be performed on the smallest possible irreducible
region.

Dealing with unstructured control flow Unstructured portions of code
that contain loops consisting of conditional statements and gotos can
match against schema that their syntax would not necessarily suggest.

Modularity Keeping CFG structural analysis and VSDG construction decou-
pled and modular makes it easier to program and debug. Additionally,
the independence of each merge algorithm pulls apart graph construction
into further modular pieces, which allows for easier unit testing.

Simplicity Each stage of the graph construction algorithm requires only basic
data structures, mostly in the form of maps, in order to store the first
and current usage of values and states. This keeps both computational
and mental overhead down when programming each merge stage, as each
has a uniform input (n fragments) and output (1 fragment).

CHAPTER 4. CONSTRUCTION 85

Running time Although our construction algorithm is detailed, the run time
is not excessive. Computing dominators is done via Lengauer and Tar-
jan’s O(m log n) method [84] where m is the number of edges and n is
the number of nodes in the CFG. Structural analysis itself has no formal
run-time proof, however, when we used it to analyse the open source
software in the previous chapter, performance was always acceptable.
Once the control tree has been constructed by structural analysis, the
generating phase is linear, requiring just one pass over each basic block
and its instructions, and the merging stage also visits each basic block
exactly once.

We believe that these factors that benefit both the compiler and the pro-
grammer make our algorithm for VSDG construction more advantageous than
existing approaches in the literature.

Chapter 5

Proceduralisation

5.1 Introduction

The Value State Dependence Graph (VSDG) discards control flow entirely
and represents programs purely as data dependencies, retaining only essential
sequential dependencies, e.g. for I/O operations. This allows a wide variety
of optimisations to be performed easily, but complicates the generation of se-
quential code as control flow must be restored by the back-end of the compiler.

We explore previous incomplete attempts to restore control flow to the
VSDG and examine their differences and similarities. Then, we present two
implementations based on the proceduralisation work of Lawrence [83]. We
show how one of these implementations is unable to deal with a specific type
of VSDG, and how the other implementation solves this, thus arguing that the
longstanding problem of sequentialising the VSDG is now solved — provably
so in practice as well as in theory.

This chapter presents the following:

e We outline the problem of generating sequential code from the VSDG,
and explore previous attempts made in the literature to solve this prob-
lem.

e We present our software tool, proc, which translates VSDGs from John-
son’s VECC compiler into PDGs with virtual registers allocated using
Lawrence’s proceduralisation algorithm.

o We use proc to show output of Lawrence’s naive and effective algorithms,
showing how the effective algorithm deals with VSDGs exhibiting inde-
pendent redundancy.

e We then show how to compile #-node loops into PDGs by modifying
Lawrence’s existing proceduralisation framework.

86

CHAPTER 5. PROCEDURALISATION 87

5.2 Previous work

Although the VSDG makes many optimisations easier or indeed seemingly au-
tomatic |72, 123|, generating sequential code from it has proved problematic.
The power and simplicity of the VSDG is achieved by discarding all specifi-
cation of instruction ordering and control flow bar the minimum necessary to
specify the input program. This gives great opportunity for performing op-
timisations. However, in order to generate sequential code, a total ordering
of operations, as in the CFG, must be restored to the VSDG. This process is
called sequentialisation; despite previous attempts, it remains a — Upton sug-
gests the — major obstacle to building a compiler based on the VSDG [123].

The idea of restoring control flow by translation into a CFG predates the
VSDG — Weise et al. [125] state that the VDG is translated back into a CFG
via a demand-based PDG (dPDG). A dPDG is defined as a PDG where the
CDG is replaced by a demand dependence graph. This demand dependence
is “characterised by the v-nodes encountered on paths from a return node”, in
which “any path from a return node yields a sequence of v selector ports and a
corresponding sequence of selector/predicate values along that path”. However,
the authors give no formal algorithms or references for the analysis of these
demand conditions or the translation from VDG into dPDG. An interesting
point is that the mapping from the VDG to the CFG is many-to-one, so a
highly important factor of code generation from the VSDG is the encoding of
an ewvaluation strategy that maps to exactly one CFG.

Johnson et al. [70] originally approached the problem by defining a sequen-
tial VSDG as one which has a split node (Figure 5.1) matching every y-node
and enough serialising edges to make it correspond to a single CFG. “Enough”
means that each VSDG operation node has a unique immediate dominator
which can be seen as a predecessor in the CFG. A split node is the push se-
mantics |72] equivalent of a y-node: it takes a value, d, and a condition, ¢,
and outputs the value to (only) one of its two outputs dp or dr depending
on the condition. Thus, the split node parallels branching in the CFG, identi-
fying which nodes will be evaluated only according to runtime conditions. A
matching merge node recombines the values: two inputs are received (i; and
i2) and merged to one output d. This is similar to the y-node, but in the
push semantics its condition input can be omitted (by construction, in any
execution a value will only be pushed into one input). In Johnson’s algorithm,
split/merge pairs were strictly nested. Given a 7y-node, the T and F' port
will postdominate two subregions of the graph respectively. The split node
is inserted as the immediate Eg dominator of both of these subregions. For
f-loops, the unique immediate postdominator property is a constraint on the
I port. Johnson provides no algorithm for the placement of these nodes.

However, deciding where to place split nodes is a key part of the sequential-
isation process, as it selects the ewvaluation strategy for the output program.
Johnson, optimising for size rather than speed, and thus permitting speculative

CHAPTER 5. PROCEDURALISATION 88

Figure 5.1: A 4-node (a) and corresponding split and merge nodes (b).

evaluations to minimise duplication of expressions, implicitly chose an eager
strategy. This placed split nodes according to dominance by true/false ports
of v-nodes. We observe that his technique effectively decides upon a PDG, in
that the nodes between a split and its matching merge are precisely those for
which the corresponding PDG nodes are children of the PDG predicate node
via its true or false edges. Johnson’s algorithm for combined register allocation
and code motion can then be seen as operating on a PDG, mutating and re-
fining it in order to limit register pressure, whilst totally ordering the children
of each region node.

The question of optimising for speed was addressed by Upton, who showed
that for that purpose, the optimal placement of split nodes' is NP-complete
[122]. Upton’s algorithm sequentialises a Gated Data Dependence Graph,
a similar IR to the VSDG, by constructing a demand-based PDG. He first
computes demand conditions, which are Boolean expressions over the various
~v-node predicates, describing the control conditions under which the result
of a node is demanded, by propagation through the graph. Then, Upton’s
algorithm traverses the graph and produces a hierarchical demand-based PDG,
which must be iteratively refined in order to remove redundant predicate tests
before generating code from it.

Lawrence [83] proposed a new compiler architecture by breaking sequential-
isation into several stages: the first of these being the translation of the VSDG
into a Ferrante et al. PDG [57] — a process he called proceduralisation. In his
thesis, Lawrence presents two algorithms for the proceduralisation, one being
a naive approach that produces similar results to Johnson, and the other being
a more effective approach which succeeds by encoding an evaluation strategy
into the PDG. Since these algorithms were not implemented, in this chapter we
present our software tool proc which takes VSDG files from Johnson’s VECC
compiler as input and produces PDGs.

CHAPTER 5. PROCEDURALISATION 89

\
<
m
(@)
@)

\ 4

Naivg Effective
translation Internal translation

PDG
representation

> ‘:i -

=15 9

>
Standard

output
\ \
S dot generator |------- pdg generator [---------- :
\ \
.dot .pdg

Figure 5.2: An outline of the proc tool.

CHAPTER 5. PROCEDURALISATION 90

5.3 The proc tool

This chapter describes a software tool called proc for applying proceduralisa-
tion to the VSDG. We utilised the VECC compiler, written by Johnson [72] to
obtain VSDG input. The VECC compiler reads in a C source file and converts
it into a VSDG, emitting a VSDG file. A VSDG file is a human-readable de-
scription of the graph. We used the grammar for these VSDG files to produce
a handwritten lexical analyser and parser which forms one of the front-ends
of the tool. With an input VSDG, the tool can apply either of the two algo-
rithmic approaches outlined by Lawrence for proceduralisation, resulting in a
PDG. This PDG can be output as a dot [3] file in order to visually display
it, or as a human-readable pdg file. The syntax of the pdg files is given in
Appendix C, along with an example. These pdg files are used as input to the
code generation tool described in the next chapter. The tool is written in C++
using only standard library functions.
The tool is invoked as follows:

proc [-help] [-naive|-full] [-dotl|-sgc|-stats|-pdg] inputfile
We provide the following functionality in the tool:

-help Display the help dialogue.

-naive Perform a naive translation of an input VSDG into a PDG.

-full Perform an effective translation of the above.

-dot Produce a dot file output for the resulting PDG.

-pdg Produce a pdg file output for the resulting PDG.

-sgc Check the resulting PDG for well-formedness conditions and notify the
user of any problems. These well-formedness conditions are described in
this chapter.

-stats Display PDG statistics. These include the number of nodes, number
of edges in F¢ and Ep, and so on.

The naive translation does not support VSDGs with loops (it quits with a
message if looping constructs are detected), but the effective translation does
provide this support. An outline of the proc tool is given in Figure 5.2. All
PDG diagrams in this chapter are produced by the dot output of the proc
tool.

CHAPTER 5. PROCEDURALISATION 91

main(int x, int y) { public : main
int r; x | y [STATE
if(x <y) bR
r=1; L AN
else R S\
LY @ @ A
r=r *5; \
return r; !
} c\F_/T !
(=) |
!
!
/
/
Z)ﬂ /
/
/
L R /
/
/
/
/
L

<

Figure 5.3: An example program and the VSDG produced by the VECC
compiler.

5.4 Lawrence’s naive approach

Lawrence’s naive implementation consists of several steps. The first of these
steps translates each node in the VSDG into a PDG statement node. This
begins by assigning a virtual register to every operation node in the VSDG. For
example, a VSDG sub node is translated into a PDG statement node labelled
with, for example, ry = ro — r3 where ry is the virtual register assigned to
the sub node and ry and rs are the virtual registers assigned to the operands
of sub. Next, predicate nodes are generated. These correspond to the -
nodes in the VSDG. In our implementation we split any tupled «-nodes into
individual ones before proceeding. Each y-node g with a predicate operand
in virtual register 7, is translated into a PDG predicate node testing r, and
two group nodes for true and false children respectively. Given the notation
that 77 indicates the virtual registers assigned to the results of a node n, PDG
statement nodes rg = 7/ and 7§ = ﬁ are generated which assign virtual
registers to the result of the y-node for true and false paths.

With the PDG statement and predicate nodes generated and assigned vir-
tual registers, the next step is to create the CDG that places them in the
correct place in the control hierarchy. Lawrence’s naive construction works
on the principle that if some statement S is control dependent on some group
node G, then all children of S should also be dependent on G. The strategy
chosen by the naive construction is to traverse the VSDG from the return
node, using y-nodes as markers to indicate the next group node to link state-
ments to. Thus, all VSDG nodes that are reachable from the return node are

li.e. that first minimises the number of runtime evaluations, then program size — paral-
lelling definitions of Optimal Code Motion due to Knoop et al. [78]

CHAPTER 5. PROCEDURALISATION 92

made control dependent on the entry node (root) of the PDG. When a y-node
is reached, the corresponding 7§ = 7 and 7§ = ﬁ PDG statement nodes are
made control dependent on the corresponding PDG predicate node true and
false group node children.

Then, all dependency edges from the VSDG are copied across to the corre-
sponding PDG nodes, and both the heads and tails of these edges are moved
up the CDG hierarchy until they are between siblings (i.e. they share the same
immediate parent node). In Figure 5.4 we show the result of performing our
implementation of the naive translation on the VSDG in Figure 5.3. Statement
nodes are represented by rectangular boxes. Predicate nodes are represented
by diamonds. True and false edges from predicate nodes are labelled T and F
respectively. Region nodes are represented by circles containing the letter R.
In this example we can see how the v-node in the VSDG is translated into a
PDG predicate node. It can be seen that this approach works sufficiently well
on simple VSDGs.

2=r1ltr0

|r4=1i || 8 =r4 | | 5=2i | |r8=r5|

’ /
’ N7

Figure 5.4: The PDG produced by applying the naive algorithm to the VSDG
in Figure 5.3.

However, this algorithm does not perform adequately in general. The prob-
lems with this approach are specified below:

Code size The resulting PDG sequentialises to an unnecessarily large CFG
due to duplication of nodes.

Execution speed Duplication of nodes results in the CFG containing redun-
dant operations which slows execution time of the resulting program.

Correctness The resulting PDG may not be well-formed — specifically, it may
not be sequentialisable.

It is this last problem which is most serious. It can allow the formation of
an illegal PDG subgraph, of which the canonical form is shown in Figure 5.6.

CHAPTER 5. PROCEDURALISATION 93

int main(int A, int P, int Q) {
int t = A - 1;
int a, b, c;
if(Q) ~
x =t + 2;
else
x = 1;

public : main

if(P)

y =t + 3;
else

y = 2;

return x + y;

Figure 5.5: A VSDG for a program exhibiting independent redundancy. The
grey add node demands the result of two separate v nodes on its L. and R port.
Two different paths can use the result of the shaded sub node. One path is
via the blue coloured nodes, and the other is via the red coloured nodes.

This makes the resulting PDG unsequentialisable, as an evaluation strategy
has not been encoded.

Figure 5.6: The canonical illegal PDG subgraph.

Figure 5.5 shows such a (legal) VSDG: here, in any execution the sub node
may be demanded by both y-nodes, by either one, or by none. Lawrence calls
this situation independent redundancy. Applying the naive implementation
produces the unsequentialisable PDG of Figure 5.7. Thus, Lawrence states

that an effective algorithm must choose an evaluation strategy in order to
generate a sequentialisable PDG.

CHAPTER 5. PROCEDURALISATION 94

ENTRY [r6, r3, r2, 10, r1]
4
9=rener8| [r18=r19addre0 |
I L S ol
.- Sl T OF

<

y 4

N =

- -
o<

| 9 =r2 | | r19=r12 |r12=r5add ri1 | r11 = 2 consti
~ 4
\\<,’ \\\
\

~

\

\
~b

/

|r4=1consti| |r5=r3subr4|
A 3 >

Figure 5.7: The unsequentialisable PDG produced by the naive approach on
the VSDG of Figure 5.5: the bold computation is shared. The illegal subgraph
exists between the two predicate nodes testing r9 and r14, and their respective
children when the predicate evaluates to true.

5.5 Lawrence’s effective algorithm

In order to avoid the problems with VSDGs exhibiting independent redun-
dancy, Lawrence presents an algorithm that analyses the VSDG and uses a
system of gating conditions in order to compute the demand conditions be-
tween nodes. While this approach can be seen as similar to that of Weise
and Upton, the gating conditions ensure that, when independent redundancy
exists, VSDG operation nodes that are shared between different ~-paths are
identified. We provide the full algorithm from Lawrence’s thesis in Appendix B
for reference, edited to be applicable to standard VSDGs rather than Petri nets.

Figure 5.8 shows the application of ~v-ordering to the independent redun-
dancy example in Figure 5.5. Here, the input program returns the sum of two
conditionals, each of which might (or might not) make use of the shared com-
putation int t = A - 1. Thus, in the VSDG the returned value is the sum
of the result of two y-nodes, and there is no specification of when to evaluate
the sub. Therefore, the algorithm applies y-ordering, (arbitrarily) choosing
the predicate test on r4 (P in the source code) to be dominant and cloning the
subsidiary test on r9 (Q). This ensures a valid PDG is produced, and that the
shared computation (highlighted in bold) is only computed once on any path.

CHAPTER 5. PROCEDURALISATION 95

|r12=0il

|r8=r13addr9‘ |r9=2i‘
.Y

[r13=r17subriaf--»fr1a=1i]

Figure 5.8: Application of v-ordering to the independent redundancy example
in Figure 5.5. The shared computation is in bold. Performing vy-ordering
means that the shared computation occurs only once on each possible control
flow path from r4, thus preventing redundant computations.

5.6 Compiling loops

The algorithms presented in Lawrence’s thesis [83] operated on an acyclic
VSDG. This is due to loops being represented as infinite regular chains of
v-nodes (Chapter 2). However, we are using Johnson’s VECC compiler to
produce VSDG input files which use a #-node loop representation. This section
outlines how we integrated this style of loop into the VSDG to PDG translation
above.

5.6.1 6-nodes

Recall from Chapter 2 the #-node, which models the iterative behaviour of
loops:

f-node A 6-node 0(C,I,R,L,X) sets its internal value to initial value I.

CHAPTER 5. PROCEDURALISATION 96

Then, while condition value C holds true, sets L to the current internal
value and updates the internal value with the repeat value R. When C
evaluates to false computation ceases and the internal value is returned
through the X port. [72]

Johnson uses #-nodes to implement 0-trip loops (while, for) in his VSDGs.
1-trip loops (do...while, repeat...until) are left outside the scope of his
thesis with the claim that these can be synthesised by code duplication, addi-
tion of Boolean flags, or augmentation of the loop semantics. The #-node is
cyclic. In order to work with the #-node in Lawrence’s algorithmic framework,
we wish to translate it into an acyclic form. Johnson defines the G™°°P form,
which is acyclic, as follows:

VSDG G™ form Given a VSDG, G, we define G to be identical to
G except that each #-node 6; is replaced with two nodes, thead and Gf“il;
edges to or from ports I and L of 6; are redirected to 9?6‘“1 and those to
or from ports R, X, and C are redirected to Hf‘”l.

We implemented the translation to G™'°°P form as a required pass in proc.
This acyclic VSDG is suitable for input into a modified version of Lawrence’s
algorithm.

5.6.2 Loops in the PDG

PDG loops are defined by a back edge in the CDG. The simplest definition
of a PDG loop is given by Ballance and Maccabe [20], where a conversion
from abstract syntax to the structure of the CDG is given diagrammatically.
We reproduce this diagram in Figure 5.9. Here, a loop is represented by
a predicate node testing the loop condition P, with the body of the loop
positioned under the true group node of the predicate, with a back edge in the
CDG that transfers control to the beginning of the loop. The predicate does
not need a false group node; if the predicate evaluates to false then the loop
is not executed.

This hierarchical structure of loops is very similar to the structure of con-
ditional statements produced by Lawrence’s framework, where a ~-node is
translated into a PDG predicate node. The only difference is that no false
group node is required, and a back edge is added to the parent group node of
the predicate node from the true group child. We will firstly show a transla-
tion of loops based on this principle, and highlight why this doesn’t work with
particular loops with side-effecting guard conditions. Then, we will show how
to solve this problem with a further transformation on the PDG.

CHAPTER 5. PROCEDURALISATION 97

while(P) {
S; R

})

Figure 5.9: A while loop in abstract syntax translated into a loop in the CDG.

5.7 Adding loops to Lawrence’s framework

To begin with, each §7¢?¢ and #**" node must be converted into corresponding
PDG nodes. A 6'%(C, R, X) node translates naturally into a PDG predicate
node testing the virtual register of the C' condition, with one group node for
true children, which will represent the loop body. Since a back edge encloses
a loop region in the PDG, we translate the 67°%? node into a single group
node. This is removed later by the normalisation pass during construction. We
mark predicate nodes corresponding to 6% nodes so that after the algorithm
completes we can locate them in the PDG and add in back edges from the
true group node child to the parent group node of the predicate. Additionally,
during the virtual register assignment phase, any operations with operands
coming from the L port of the #"¢% node get their virtual register from the
corresponding operation node connected to the 6¢?¢ I port. Similarly, any
operations with operands coming from the X port of the /% node get their
virtual register from the corresponding operation node connected to the R
port. This look-up works within nested loops also. In addition, we tag each
predicate node corresponding to a loop with the #-node I and R port registers
of each value using this look-up mechanism. This information is used during
code generation.

We do not need to add any extra gating conditions to Lawrence’s framework;
we only have to modify the behaviour of the cond(e) function that gives a
gating condition for any n — n’ edge:

if e is a true edge from a y-node g

(g, 0)

cond(e) = N (g,0,A), if eis a false edge from a vy-node g
] O A0), ifeisa R edge from a #%node t
A, otherwise

Thus, the () gating condition now represents both y-nodes and #*%-nodes.

CHAPTER 5. PROCEDURALISATION 98

In the context of loops, the A gating condition represents the execution of
the loop body along the R port, and enforces the ordering of the loop body
statements under the true group node of the PDG predicate node.

However, loops are different from conditional statements in that the guard
condition is evaluated multiple times due to the back edge. This means that
the registers that the guard conditions test must be kept updated with the most
recent value of the corresponding variable in the loop. This is implemented as
a pass once the PDG has been built. For each loop in the PDG, the statement
node computing the guard condition is identified. Then, for all the statements
in the loop body (i.e. those that are children of the true group node), we check
the virtual register that is the left-hand operand. If this matches either of
the virtual registers on the right-hand side of the guard computation, then a
new statement node is inserted into the body that assigns the result of this
computation into the matching virtual register in the guard.

This technique works effectively for loops that do not have side-effecting
guard conditions. However, when a side-effecting guard condition is present, it
runs into problems. In Figure 5.10, we show two C programs containing a loop,
and their corresponding VSDGs. The first program has a non-side-effecting
guard condition, but the second has. Each of these two VSDGs produced by
the VECC compiler have identical value and state edges, but different serial
edges (drawn as green dashed arrows). The serial edges ensure that the add
is evaluated at the same time as the guard in the second VSDG. However, up
to this point, with Lawrence’s framework and our naive loop translation, we
have ignored serial edges. Thus, this means that the two semantically different
VSDGs translate to the same PDG 5.10b, which is incorrect.

We note the difference between the two VSDGs in Figure 5.10. In the non-
side-effecting example, one serial edge with the label C' is present between the
6'% node and and the 1t node. In the side-effecting example, an additional
serial edge, also labelled C, is present between the 8/ node and the add node.
In the context of the VECC compiler, these enforce a particular evaluation
order of the graph; that is that in the second example we must also evaluate
the add during evaluation of the 6;,; C condition, thus enforcing the side-
effecting behaviour of the guard. In the next section, we will show how we can
use these serial edges to transform the PDG to enforce the same behaviour,
avoiding the problems with the translation in Figure 5.10.

5.7.1 Using serial edges to transform the PDG

With the translation in Figure 5.10, the side-effecting guard statements are
incorrectly placed under the T' group node of the loop predicate in the PDG.
This is incorrect as they need to be computed at the same time as the guard
condition. Therefore, we need to identify the required statement nodes rep-
resenting the side-effect of the guard and hoist them out of the loop body,
making them a sibling of the computation of the condition.

CHAPTER 5. PROCEDURALISATION 99

int ‘}‘l“i‘inzi“: ’g: i int E“"‘i“jlif ’j’of
while(x while(x P [x] _sTatE |
X STXTE e X STzTE
} }

return x;

b

X<__STATE_ >

r=0i r0=r4ltr 0
W . 4

S ~_~

s T

|r2=r4addr3| | r3=1i | | r4=r2 |
N ¥ W < 7 -~

(b)

Figure 5.10: Two semantically different VSDGs and (a) which translate to the
same PDG (b) when serial edges are ignored.

CHAPTER 5. PROCEDURALISATION 100

To begin with, we keep record of the C serial edges that come from the
6% node. Then, for each of these edges pointing at VSDG nodes, we find the
corresponding PDG nodes, and copy the edges across to the PDG; we call these
hoist edges. In Figure 5.11a we show the PDG with annotated hoist edges (also
drawn as green dashed arrows) for the second VSDG in Figure 5.10a. Each
hoist edge points at the statement node that needs to be hoisted, however that
statement node may be data dependent on other nodes in order to compute.
Therefore, for each node that needs to be hoisted, we do a depth-first search
along the DDG to identify the nodes it is dependent on. Then, if not already,
this group of nodes are then made control dependent on the parent node of
the loop predicate (the source of the hoist edge). This results in the correct
PDG of Figure 5.11b. This pass is run on the PDG after it has been built by
the modified version of Lawrence’s algorithm in the proc tool.

5.7.2 Handling break and continue

The keywords break and continue allow early exit from loops in C: imme-
diate early termination in the case of break and the restart of the loop with
continue. In Johnson’s VSDG@G, continue and break are implemented as “spe-
cial” nodes that modify the runtime execution of loops. These nodes “have the
exact same value and state dependencies as the 6% node, and produce a
new state”. These special nodes are then used during code generation in or-
der to generate jumps to the loop exit and loop entry labels respectively. In
Figure 5.12 we show a sample C program containing a break node. Broadly
speaking, the break and continue nodes specify which nodes to evaluate be-
fore they execute. In Figure 5.12, the add operation will be performed before
the loop terminates early with break.

The VSDG implementation of continue is done in a similar manner. Since
break and continue have specific meaning in code generation, rather than in
the PDG itself, we translate them across as break and continue statement
nodes in the PDG. We make the statement nodes data dependent on the value
predecessors in the VSDG to ensure that, from a scheduling perspective, the
break and continue are performed in the correct place. We show a PDG
generated by proc for Figure 5.12 in Figure 5.13.

5.8 Worked example

To show the workings of the modified algorithm, we provide a worked example.
We show the generation of a PDG containing nested loops by worked example
on the VSDG in Figure 5.14. Since there are two loops, we have labelled the
gead and 6**! nodes with unique numbers for reference. The first stage of the
algorithm involves assigning virtual registers for operation nodes in the VSDG
and then generating PDG statement nodes for each (Section 5.4). The result
of this phase is shown in Figure 5.15. Here, we can see the generated entry and

CHAPTER 5. PROCEDURALISATION 101

| r0=r4ltr1 |
SO~ A4
~ ~ /\ //

~__7

| M=0i |
L4

A
/
/
|
\
\
\

[ro=rattrt] [r=o0i |[r2=rdaddr3 | [B=1i
N4 RN, 4 L 7

(b)

Figure 5.11: A PDG with (a) hoist edges annotated, and (b) after application
of hoisting.

CHAPTER 5. PROCEDURALISATION 102

int main(int x, int y) {

vhite(x < v) A [STATE |
x++; STzTE
break;

}

return x;

}

|
X<x: :X<__STATE__>

A4

Figure 5.12: A C program containing a break node and the corresponding

VSDG.

ENTRY [4, 15, 16]

3=r4ltrs5
- N

break J r0=r1\/ r1;r4add\r2\ r42=1i L r4=r1
\\‘~_”,»\\\‘// \\: h ’,/

e

Figure 5.13: The PDG produced by proc for the VSDG in Figure 5.12.

CHAPTER 5. PROCEDURALISATION 103

int main(int x, int y, int z) { public : main

while(x < y) { x|y] z] STATE
Xx=x+ 1; ﬂ
while(x > z) { - /

X =x - 2; Iz> I/ _STATE_ >

}

}

return x;

}

A
X<x>T TX<__STATE_ >

N/

Figure 5.14: A VSDG containing a nested loop.

exit nodes, along with two predicate nodes for each 6*%_ two group nodes for
each 6"¢%¢ and a collection of statement nodes corresponding to the operation
nodes in the VSDG.

After the postdominator tree has been calculated for the VSDG@G, the bui1ldPDG
function (Appendix B) is called on the root node, which is the return node in
the VSDG. We use P(A) to represent the PDG fragment generated for A.

1. The edge return — 6% is processed, yielding CTetur2(glail) = A.
2. buildPDG recurses on #4.

a) All edges g1 — giail yield OO (gleil) = () (6tail A, ().

b) The edge 019 — 1t yields C%"" (1t) = A.
3. buildPDG recurses on 1t.

a) Both edges 1t — 07a? yield C1t(phead) = A,

CHAPTER 5. PROCEDURALISATION 104

ENTRY [16, 7, r8]

[r0=r3subrt| [r1=2i] [r2=r7gtr8] [B=r6addr4]| [ra=1i]| [r5=r61t17]

Figure 5.15: Unconnected PDG nodes with virtual registers assigned from the
VSDG in Figure 5.14.

4. buildPDG recurses on G5,
a) The edges g%l — ghead yvielq 00" (ghead) = @) (glail A, Q).
b) The edge 05 — sub yields C%™ (sub) = (AL, A, 0).
c¢) The edge 05 — gt yields %" (gt) = A.

5. buildPDG recurses on sub.

a) The edge sub — 2i yields C5"*(2i) = A.
b) The edge sub — 05 yields C(ghead) = A.

6. buildPDG recurses on 21, but this has no predecessors. Thus buildPDG(21i)
returns the fragment containing r1 = 2i and the set of external produc-
ers XD (21) = ().

7. 1link(P(21), A, P(sub)) is called, resulting in a new P(sub) as shown in
Figure 5.16a.

8. buildPDG recurses on gt.
a) Both edges gt — 04cad yield C8®(phead) = A,
9. buildPDG recurses on f4cad.

a) The edge 019 — add yields C% " (add) = A.
b) The edges ghead — ghead vielq 03" (ghead) — A

CHAPTER 5. PROCEDURALISATION 105

10. buildPDG recurses on add.
a) The edge add — 1i yields C234(1i) = A.
b) The edge add — 0724 yields C24d(gpead) = A,

11. buildPDG recurses on 11, but this has no predecessors. Thus buildPDG(11i)

returns the fragment containing r4 = 1i and the set of external produc-
ers XD(11) = ().

12. 1ink(P(1i, A, P(add)) is called, resulting in a new P(add) as shown in
Figure 5.16b.

13. link(P(#5%3), A, add) is called, linking a single group node with no chil-
dren to the fragment P(add).

14. Edges in * D(add) are updated, remaining C244(11) = Cadd(ghead) = A

15. 1ink(P(044), (05 A, (), P(sub)) is called. Recursively, this calls
link(P(04%").true, A, P(sub)), where P(65%").true is the true child of the
predicate node representing the Hé‘”l loop, thus linking the loop body un-
derneath the loop header. 1ink(P(#4).false,(), —) does nothing; there
is no false child required in loops.

16. Edges in * D(sub) are updated. CS%(2i) = O (ghead) = 7 (9Ll A, ().

17. 1ink(P(04), A, P(gt)) is called, connecting the loop condition PDG
fragment to the parent group node of the loop predicate in the fragment
P

18. The edges in * D(gt) are updated, remaining as C8%(9head) = A.
19. link(P(64%1), A, P(6hea)) is called, resulting in a new P(ghead).

20. The edges in * D(04°%) are updated, remaining C% Ead(&{wad) =
COheadz(13) = A.

21. buildPDG recurses on §7¢ed.
a) All edges 7% — main yield C%“"* (main) = A.

22. link(P(#7¢%d) A, P(main)) is called, connecting the entry node to the
graph.

23. link(P(61%"), A, P(1t)) is called, connecting the outer loop condition to
the parent of the loop predicate.

24. The edges in ¥ D(1t) are updated, remaining as C**(97¢d) = A.

CHAPTER 5. PROCEDURALISATION 106

25. Llink(P(61), (01 A, 0), P(65%)) is called. Recursively, this calls
Link(P(0!%) true, A, P(65%")) where P(61%").true is the true child of the
predicate node representing the 9'{‘”[loop, thus linking the loop body un-
derneath the loop header. 1ink(P(6:%")).false, (), —) does nothing; there
is no false child required in loops. The result of this link is shown in
Figure 5.16¢.

26. Edges in * D(64%) are updated, with %™ (21) = (05 AL D),
OO (ghead) = A and C%"" (11) = () (019, A,).

27. link(P(05%), A, P(04ea?)) is called, linking a single group node with no
children to the fragment P(6:%).

28. Edges in *D(65°*?) are updated, remaining C?1“** (main) = A.

29. link(P(return), A, P(#{%")) is called, linking the exit node to the parent
node of the outer loop predicate.

30. Edges in * D(01%) are updated, remaining Ch (21) = (05 AL D),
CO™ (11) = (1@, A, 0) and CY%"™ (main) = A.

31. The algorithm finishes, returning the completed PDG for the function
main, shown in Figure 5.16d.

Some additional passes are then run on the PDG. Firstly, a normalisation
pass runs that merges any group nodes with only one parent into that parent
to ensure well-formedness. Back edges are added between loop predicate true
group nodes and the parent group node of that predicate, as described in Sub-
section 5.6.2. Following this, a pass inserts the additional required assignments
into loop bodies to ensure that guard conditions are correct. Then, the DDG
is built using the following principle: for a statement node r3 =r1 add r2,
data dependence edges are added to the statement nodes producing r1 and
r2. This methodology is applied to the whole PDG. Then, the endpoints of
these edges are moved up between siblings in the CDG. We implemented this
edge moving algorithm by extending the Lowest Common Ancestor [9, 60] al-
gorithm, using it to find the group node parent of the two subtrees containing
each data dependence edge endpoint. Then, we run the loop guard hoisting
algorithm described in Subsection 5.7.1. However, in this example, no loops
have side-effecting conditions, so no hoisting is performed. The finished PDG
for the example is shown in Figure 5.17.

5.9 Summary

This chapter has explored the existing problems with generating sequential
code from the VSDG and similar graphs. While previous attempts to restore

CHAPTER 5. PROCEDURALISATION 107

C?

The result of 1ink(P(21), A, P(sub)). The result of 1ink(P(11), A, P(add)).

(@ (b)

i
A ORCNENO
P P

(n) ()
g
@ ®@<%
T

@

r0 =r3subrt @\‘
r0 =r3 sub r1

The result of 1ink(P(©'h), <?>(©" ! A,2), PO%M). The PDG returned by the finished algorithm.

(©) (d)

Figure 5.16: The results of various link operations during the proceduralisation
algorithm.

CHAPTER 5. PROCEDURALISATION 108

ENTRY [16, 17, 18]

5=r6ltr7
a -
R

"
? | 2=r3gtr8 | | 13 = 16 add r4 | a=1i
R 4 R4 4 <. A
4 e _//, .

| 10 = 3 sub r1 | | H=2i | | B=r0 |
< ¥ e

/

Figure 5.17: The finished PDG after proceduralisation, normalisation, and
building of the DDG for the VSDG in Figure 5.14.

control flow have fallen short, Lawrence’s algorithm, which translates a VSDG
into a PDG whilst encoding a lazy strategy in the manner of Upton, showed
promise. We proved, by means of an implementation, that Lawrence’s strategy
works for loopless VSDGs, and showed how ~-ordering occurs in the imple-
mentation. We then modified the algorithm to allow for #-node loops, thus
bridging the gap between Johnson and Lawrence’s work. We also showed how
serial edges are used to ensure that side-effecting guard conditions are ordered
correctly in the PDG. We posit that the longstanding problem of sequential-
ising the VSDG is now solved.

Chapter 6

Sequentialisation

6.1 Introduction

After applying the proceduralisation algorithm in Chapter 5 to the Value State
Dependence Graph (VSDG), a Program Dependence Graph (PDG) is gener-
ated. The PDG is a parallel IR that has been mentioned frequently in the
literature, but has had little usage in mainstream compilers (see Chapter 2).

In this chapter we explore scheduling and code generation from the PDG.
Since the PDG is a parallel representation, an ordering on instructions must
be chosen for the generated code to execute on a single program counter. This
process has commonly been called sequentialisation in the literature. We ex-
amine the literature for previous attempts to perform sequentialisation on a
PDG, highlighting how it has been problematic. We show how the problem
becomes more straightforward as a result of the proceduralisation algorithm
in Chapter 5, and then outline our approach and implementation of sequen-
tialisation, resulting in sequential code.

This chapter presents the following:

e We outline the problem of generating sequential code from the PDG,
and examine the literature for previous attempts to solve this problem.
We explain how Lawrence’s proceduralisation algorithm makes sequen-
tialisation more straightforward.

e We present our software tool, seq, which translates PDGs from the proc
tool into sequential program code.

e We outline our scheduling algorithm for the PDG.

e We demonstrate output from the seq tool via a human-readable pseu-
docode format and also LLVM bitcode.

109

CHAPTER 6. SEQUENTIALISATION 110

6.2 Previous work

Much of the early work with the PDG focused on construction and performing
analyses and transformations. To begin with, little attention was paid to the
problem of translating out of the PDG. This was because the PDG was often
built as an auxiliary IR—e.g. to perform program slicing [91]—rather than
the primary IR, so the problem was less important. In the original paper by
Ferrante et al. [57|, neither scheduling nor code generation are mentioned.
The PDG was developed for the parallelisation opportunities it offered, and in
subsequent literature, the target code was not for sequential processors. For
example, the IBM PTRAN project [11] used the PDG to translate sequential
FORTRAN programs into code that ran on parallel architectures.

The PDG is a natural representation for parallel programming. However,
in this thesis, we have seen that an effective approach to restore control flow
to the VSDG involves building a PDG to represent the program in parallel.
Therefore, this leaves us with the need to transform this PDG into sequential
code in order to finish a VSDG compiler framework for a sequential processor.

The initial work on generating sequential code from a PDG was done by
Ferrante and Mace [55]. Here, the authors consider a FORTRAN-like language
that contains statements, predicates and goto operators. In this paper, the
authors acknowledge that there are particular programs, when represented
as PDGs, that require duplication of nodes and edges before they can be
translated into a sequential form. An algorithm is presented that can generate
sequential code without duplication of statements for PDGs where a single
corresponding CFG is guaranteed to exist. No detail is given on how to handle
PDGs that do not have a guaranteed single corresponding CFG, nor are the
conditions for detecting a sequentialisable PDG given.

A follow up paper [56] presents a method for determining whether extra
guard variables or duplicate code must be inserted in order to guarantee a
single corresponding CFG. This paper contains the first explicit mention of
the illegal subgraph in Figure 5.6. Then, a more detailed algorithm is given
for generating sequential code when a guaranteed corresponding CFG exists.
When an illegal subgraph is detected, the authors conjecture that generating
the minimal size CFG is an NP-complete problem, showing a constrained ex-
ample that reduces to 3-SAT. Two years later, an oversight was spotted in
the previous two papers, and a corrected algorithm for sequentialising PDGs
with acyclic CDGs was given [107]| (i.e. loop-free PDGs). A sketch is pre-
sented showing how to sequentialise reducible loops. An alternative approach
[108] was also taken by the same authors, which uses preprocessing to make
information about external edges entering subgraphs available prior to sequen-
tialisation. Again, the handling of loops is sketched and a method for detecting
PDGs requiring duplication is outlined, but no concrete algorithm is given for
sequentialising either; this was left to a technical report which never surfaced.
Steensgaard [112] extends the algorithm to handle irreducible PDGs.

CHAPTER 6. SEQUENTIALISATION 111

The most prominent observation is that all of these attempts acknowl-
edge that sequentialisation becomes more difficult in the presence of illegal
PDG subgraphs. So far, in our compiler framework, we have begun by using
the VSDGs produced by Johnson’s VECC compiler, and then implemented
Lawrence’s proceduralisation algorithm. As seen in Chapter 5, the VSDG is
analysed using gating conditions, which are in turn used to guide the construc-
tion of the PDG. The disjunction (6) gating condition identifies nodes that
may be demanded via paths from more than one v node: either by both, one,
or none. Recall that Lawrence called this situation independent redundancy.
When the PDG is being built and independent redundancy is detected, one
predicate node in the PDG is selected as dominant and the others are selected
as subsidiary, and an arbitrary ordering is selected, duplicating the subsidiary
tests. This enforces an evaluation strategy, and more importantly, prevents
any illegal subgraphs from occurring in the corresponding PDG. Since this is
the case, we do not have to deal with illegal subgraphs when scheduling the
PDG, making the process more straightforward as a result.

6.3 The seq tool

This chapter describes a software tool called seq for sequentialising a PDG.
The pdg files that are generated by the proc tool are used as input to seq. A
handwritten parser for the pdg files, using the grammar in Appendix C, forms
the front-end of the tool. Once the pdg file has been read in, a scheduling
algorithm decides on an ordering of the instructions. Then, code is generated
into either human-readable pseudocode or LLVM bitcode. The tool is written
in C+-+ using only standard library functions.
The tool is invoked as follows:

seq [-help]l [-sl|-pl-1]1 [optional flags] inputfile

where inputfile is a valid pdg file. An outline of the seq tool is given in
Figure 6.1. The options are as follows:

-help Display the help dialogue.

-8 Output the code in a human-readable pseudocode to the standard output.
-p Output the code in a human-readable pseudocode to a .pse file.

-1 Output the code in human-readable 11vm bitcode to a .11 file.

-dot Print out a .dot file representation of the input PDG.

-stats Display PDG statistics.

CHAPTER 6. SEQUENTIALISATION 112

.pdg

\

fr seq | ;

Internal
PDG
representation

==

Sen oy

'

Node splitter

\ 4
Scheduler
\ A \ A
pseudocode 11lvm bitcode
generator generator
v \i
.pse I

Figure 6.1: An outline of the seq tool.

CHAPTER 6. SEQUENTIALISATION 113

6.4 Node splitting

As seen in Chapter 5, analysing the VSDG with gating conditions can detect
instructions that are shared down multiple control flow paths. When building
the PDG for shared instructions, the subsidiary predicate nodes are dupli-
cated and ordered in order to prevent redundant computations on any of these
paths, and also to prevent illegal subgraphs from occurring. This duplicating
and ordering process results in PDG statement nodes having multiple control
parents, which causes difficulty for existing scheduling algorithms. Notably,
Simons et al. [108] state that, for their scheduling algorithm to work, region
nodes must be the only type of node in the control dependence graph that
two control paths can merge. Intuitively, this causes a problem for any kind of
graph walking algorithm intended to generate code. A statement node with n
control dependence parents signifies that it is executed n times in the gener-
ated code. Graph walking algorithms, such as depth-first search, traditionally
use a list of visited nodes in order to prevent repeated visits. To allow for
repeated visits when walking the PDG, and also to conform to the PDG well-
formedness conditions of Simons et al. [108], we must apply a node splitting
transformation. We outline this transformation in Algorithm 13.

Algorithm 13: Node splitting algorithm to restore well-formedness to
the PDG.

Input : The root node of the PDG: n

Output: A well-formed PDG.

Mark(n);

forall the control dependence children in BFS order ¢ do
if controlParents(c) > 1 then

max «— control Parents(c);

1 1;

while ¢ < maz do
p <« control Parents(c).at(i);
clone < Clone(c);
SplitControlEdges (p,c, clone);
mazx «— control Parents(c);

SplitDataEdges();

This algorithm calls three helper functions:

Clone(c) Given a node ¢, this function returns a duplicate of that node. It
also tags the duplicated node with a reference to the original node it was
cloned from.

SplitControlEdges(p, c, clone) Whenever a node is split, this function
updates the control edge (p, c) to become (p, clone).

CHAPTER 6. SEQUENTIALISATION 114

SplitDataEdges() After all nodes have been split, the data dependence edges
must also be updated. This function iterates over all cloned nodes and
checks, for each, if any data dependence edges point to or from the tagged
original. If so, then these data dependence edges are updated to point
to or from the clone.

Splitting increases the size of the graph in memory. For each node with
n > 1 control dependence parents, n duplicates are created. However, this
penalty is only incurred at compile time. Additionally, the scheduling algo-
rithm given by Simons et al. requires duplication of all of the nodes in the
graph before assigning edges to create a schedule [108], so duplication of nodes
while working with the PDG is not uncommon, so we feel that it is an accept-
able solution.

In Figure 6.2 we show the PDG for the independent redundancy example,
seen previously in Figure 5.5, before and after the node splitting algorithm
is applied. The split PDG can now be used as input into a simple recursive
scheduling algorithm.

6.5 Scheduling

In this section we will show our approach to scheduling the PDG. In the next
section, we will show what modifications need to be made to the schedule
in order to generate sequential code. Given a PDG, we need to decide on a
sequential ordering of the instructions. Recall the two different types of edges
in the PDG:

Control dependence A control dependence edge (a,b) means that once a
has been executed, b is the next node to be considered for execution. a
may have multiple outgoing edges.

Data dependence A data dependence edge (a, b) means that node a requires
the result of b in order to be executed. Therefore, b should be executed
before a. Recall from Chapter 5 that Lawrence’s algorithm specifies that
data dependence edges should be moved up the PDG hierarchy so that
they are between siblings. As a result of this, a data dependence edge
in our PDG means that a requires the subgraph, of which b is the root
node, to have been executed before it can be executed itself.

Scheduling of the PDG begins at the entry node (root). From here, control
dependence edges specify a number of instructions to be scheduled next. The
order of these instructions depends on their data dependencies. Our scheduling
algorithm is recursive, and begins at the root. We present the basic scheduling
algorithm in Algorithm 14, which is a modified depth-first search. The exact

115

CHAPTER 6. SEQUENTIALISATION

"su0I3a1 9ouepuadap [013U0d 9yeredas oM} UO SISIXe Mou uopeindwod ay) ‘g ¢ aInd 0} JseIJu0d U] "P[Oq UL ST UOI}R)

-ndwoo qns pareys

(

Asnoraaad) oy, 'HIJ odu

eXo Aduepunpeal juepusadepur o) 03 Surirds spou jo uoryedddy :z'9 0Insrg

Vs

_ z=6l __@numm:um__ |

b=ou | fvraans zua=eu] _ z=6

CHAPTER 6. SEQUENTIALISATION 116

ordering of control dependence children and data dependence children is arbi-
trary. The Mark function adds a node to the marked list. The Number function
adds a node to the schedule list.

Algorithm 14: Recursive scheduling algorithm (Schedule) for a PDG
with no illegal subgraphs.

Input : The root node of the PDG: n
Output: A numbered schedule for the PDG.

Mark(n);
forall the Data dependence children d do
if d is not marked then

L Schedule(d);

Number (n);

if n is a predicate node then
Schedule (true);
Schedule(false);

forall the Control dependence children ¢ do
L Schedule(c);

We demonstrate the above algorithm on a PDG in Figure 6.3. The C pro-
gram given has been translated into a PDG by the proc tool, and the ordering
is given by our seq tool. Region nodes in the PDG are added to the schedule,
but do not generate instructions, as they do not have an associated operation;
they merely group instructions together with the same control dependencies.
Now that we have a schedule decided for the PDG instructions, we can look
at how the scheduled PDG nodes map to sequential code.

6.6 Towards sequential code

Broadly speaking, our PDGs represent three different types of programming
construct. The first is simple statements, the second is conditional branches
(predicate nodes), and the third is loops (predicate nodes with back edges).
We will look at the structure of sequential code that needs to be generated for
each of these. The seq tool provides a human-readable pseudocode output for
our PDGs, and we make use of that in this section. For now, we continue to use
virtual registers in the code. Also, at this point, the scheduling algorithm will
have completed, so we have access to a list of PDG nodes, where the position
in this list is the numbering in the schedule.

CHAPTER 6. SEQUENTIALISATION 117

main(int x, int y) {
int ret; @
if(x <y) {
ret = 1;

}
else {
ret = 2; R |r0=r1mu|r16| |r1=5i|
if(y + x > ret) { S \ A S b4
ret++; 16 AN XX\’\,/ 15 .7 14
y -
¥

ret = ret % 5; M0=r111tr12 2

return ret; TOF T

R R
|r15=r7| |r3=1i| |r2=r7addr3| |r15=r2|
12 9% 7 107 11

Figure 6.3: Application of the scheduling algorithm to a PDG. The order in
the schedule is annotated next to each node.

6.6.1 Statements

Given some number of statements that are contiguous in the schedule, they
can simply be output one after the other with respect to their order. For
example, in Figure 6.3, statements 5, 6 and 7 become:

5: r6 = r12 add ri1
6: r7 = 2i
7: rb =16 gt r7

where each instruction is labelled with its number in the schedule. No special
action is required when a statement node is encountered.

6.6.2 Conditional branches

In the previous chapter, we annotated predicate nodes with whether they
represent a conditional branch or loop in the input program. When a predicate
node represents a conditional branch, there are instructions to be executed

CHAPTER 6. SEQUENTIALISATION 118

when it evaluates to true, and likewise for false. Therefore, an instruction
testing the contents of the predicate’s register must be generated that jumps
to the first instruction scheduled for the false branch of the PDG predicate
node if it evaluates to false. If it is true, then control continues, executing the
associated true instructions. At the end of the true instructions, a jump must
be made to the first instruction after the false instructions.

So, when a predicate node is encountered, we must insert the correct jump
statements. This is achieved by modifying the schedule. Iterating through
the schedule, if we encounter a predicate node, we must perform the following
steps:

1. Get the immediate children from under the false branch region node.
Record the position of the first of these with respect to the schedule
(Ffirst), and also the last (Flgst).

2. Get the immediate children from the under the true branch region node.
Record the position of the last of these with respect to the schedule

(Tlast) .

3. Insert a conditional instruction if (reg !'= 0) jmp Fgirst Where regis
the associated predicate register.

4. Insert a jmp Fiascy1 statement after Tj,q.

For example, given the instructions in Figure 6.3 numbered 7-12, we gen-
erate the following:

7: rb =16 gt r7
8: if (rb == 0) jmp 13
9:

r3 = 1i
10: r2 = r7 add r3
11: r1b = r2
12: jmp 14
13: r1b = 7
14:

6.6.3 Loops

Loops are the most difficult of the constructs to handle. In the PDG, aloopis a
predicate node with a back edge to its parent region node. As with conditional
branch predicate nodes, we have previously annotated loop predicate nodes so
that we can identify them when they are encountered. The reason why loops
are most difficult can be traced back to the original VSDG representation of
a loop. In the VSDG, a # node is split into a #7°*? and #' node, with the
loop body contained inside of these. The handling of the iteration of the loop
is left entirely up to Johnson’s semantics. Recall the definition of the 6 node:

CHAPTER 6. SEQUENTIALISATION 119

A 6 node 6(C,I,R, L, X) sets its internal value to initial value I.
Then, while condition value C' holds true, sets L to the current
internal value and updates the internal value with the repeat value
R. When C' evaluates to false computation ceases and the internal
value is returned through the X port.

When this is split into 6724 and 6*% the edges to or from ports I and L
are redirected to 67°?? and those to or from ports R, X and C are redirected
to Htail_

When translating loops in Chapter 5, we translated the ' into a pred-
icate node testing the value computed through the C port, and placed the
instructions inside the body of the loop underneath the true region node of
the predicate, and added a control back edge from this region node to the par-
ent region node of the predicate. In terms of generating code, this is fine for
when the loop guard evaluates to true. However, we lack any kind of necessary
assignments for when the body evaluates to false before any iteration occurs;
that is, assignments which align with Johnson’s original semantic definition.

Values which are demanded through loops in the VSDG, and therefore PDG,
need treatment for when the loop never executes at all. This is summarised
as follows:

1. In Lawrence’s register allocation scheme, a VSDG node demanding a
value through the X port of a loop will operate on the virtual register
of that assignment. However, when the loop does not execute, that
assignment never happens.

2. Therefore, we need to generate code that assigns the original value from
before the loop execution when this is the case.

3. However, we only want this assignment to occur if the loop never exe-
cutes.

This, therefore, involves generating an additional Boolean assignment and
an additional predicate test in generated code. We leave the optimisation of
this to later stages; namely inside the LLVM compiler. Adding additional
complexity to this problem is that a value may be assigned to in a nested loop,
of which different registers mark the original, and post-loop registers for each
value. We tackle this problem by a phase after scheduling in which we identify
these registers. We show this in Algorithm 15. We make use of the I port and
X port information annotated in the previous chapter.

For each PDG statement node that has a data dependence on a loop, we run
Algorithm 15. The data dependence occurs via either the left or right operand
registers of this node, so these are passed to the algorithm. For each loop
encountered on a depth-first search (therefore including nested loops), both
registers are checked to see if they match the registers tagged earlier from the

CHAPTER 6. SEQUENTIALISATION 120

VSDG loop R port. If either does, then a PDG statement node is created
which assigns to this register the tagged I port information (i.e. the initial
loop value). This assignment is temporarily tagged to the associated group
node for use when generating code.

Algorithm 15: Generate the assignment statements required for when
a loop does not execute. The ordering assigned by the scheduling phase
is also annotated.
Input : Operand registers [Reg and rReg from a statement node with a
data dependence edge pointing to a loop, and the predicate node of
that loop, p.
Output: Loop predicate nodes tagged with assignments which handle
non-execution of loops.

S.push(p.TrueGroup);

visited «+ 0;

while S is not empty do

if u has not been visited then

u — S.pop;

if u is a loop predicate then

forall the r in p.RPorts do

if r == [Reg V r == rReg then

i < p.IPorts. find(r);
asmt.ResultReg «— r;
asmt.LOperandReg « 1;
p.addLoopAsmt(asmt);

isited W u;
forall the control dependence children w of u do
if w has not been visited then

i L S.push(w);

<

As an example, we show a C program with a nested loop which we translate
into a PDG with our proc tool in Figure 6.4. The I and X port registers of
each loop value are indicated next to each loop predicate node. In this example,
the exit node returns the value in register r0; from the source code, we can
see is the value x. The outer loop, which is guarded by the predicate node
testing r5, has an I port register of r6 for x (this is the initial input register
for x in the function) and an R port register of r0, which is the updated value
returned through the loop body. For the nested loop, the R port register is the
same (the result of the nested loop body is assigned to r0), however the I port
register is r3; the result of the x++ computation in the outer loop. By running
Algorithm 15, we generate an assignment of rO = r6 for the outer loop when
it is never executed, and an assignment of rO = r3 for the nested loop when it
is never executed. We can then use these assignments when generating code.

CHAPTER 6. SEQUENTIALISATION 121

main(int x, int y, int z) {
while(x < vy) {
X++;
while(x > z) {
X =X - 2;
}
}

return x;

ENTRY [16, 17, 18]

I port: {x =r6, y =1r7, z = r8}
R port: {x = r0, y = r7, z = r8}
2 \r

I port: {x =r3, y =1r7, z = r8}
R port: {x = r0, y = r7, z = r8}

|r1=2i| |r0=r3subr1|
w ~

7 7 8

Figure 6.4: A C program with a nested loop translated into a PDG by proc.
The I and X port registers of each loop value are indicated next to each loop
predicate node.

In Figure 6.4 we have annotated the PDG with the ordering assigned by
the scheduling phase. When iterating through the schedule and encountering
a loop predicate node, we approach generating sequential code in the following
manner:

1. Insert a Boolean assignment before the loop predicate in the schedule
which is set to false.

2. Insert an instruction setting this Boolean assignment to true after the
loop predicate in the schedule.

3. Get the immediate children from under the true branch region node.
Record the position in the schedule of the last of these (Tj4st).

4. Insert a conditional instruction if (reg != 0) jmp Tiast4+2 Where reg
is the register tested by the loop predicate node.

CHAPTER 6. SEQUENTIALISATION 122

5. Insert a jmp predLabel instruction at Tj,s to return to the top of the
loop, where predLabel is the schedule number of the loop predicate
node.

6. Insert a conditional instruction if (reg != 0) jmp current +
size(loopAssignments) + 1 where reg is the register of the Boolean as-
signment, current is the current position in the schedule, and size(loopAssignments)
is the number of additional assignments generated by Algorithm 15 for
this loop predicate node.

Following this approach, the pseudocode for the nested loop in Figure 6.4
is as follows:

1: rb = r6 1t r7

2: b0 = 0 consti

3: if (z5 !'= 0) jmp 17
4: b0 = 1 consti

5: r4 = 1 consti

6: r3 = r6 add r4

7: r2 = r3 gt r8

8: bl = 0 consti

9: if (z2 !'= 0) jmp 14
10: bl = 1 consti

11: r1l = 2 consti

12: r0 = r3 sub ril

13: jmp 9

14: if (bl !'= 0) jmp 16
15: r0 = r3 asmt

16: jmp 3

17: if (b0 !'= 0) jmp 19
18: r0 = r6 asmt

19: return r0O

6.7 Generating LLVM

In order to generate executable code for a sequential processor, we chose LLVM
bitcode as our target. There are a number of advantageous reasons for using
LLVM, especially in relation to our compiler architecture:

e LLVM is a mature, regularly updated open source project that competes
strongly with GCC, and is often faster than it [80].

e LLVM provides a pseudo-assembly IR called LLVM bitcode that is easy
to generate [81].

CHAPTER 6. SEQUENTIALISATION 123

e LLVM bitcode also uses virtual registers like our compiler architecture,
meaning that we can leave target register allocation to LLVM.

However, LLVM bitcode has well-formedness conditions that must be ad-
hered to:

1. LLVM treats labels in bitcode as the start of a basic block. It therefore
requires the end of basic blocks to be terminated with a conditional or
unconditional jump (i.e. no fall-through control flow).

2. SSA form must be strictly adhered to, that is, variables can only be as-
signed to once. Even though the VSDG is implicitly in SSA form, the
virtual register allocation phase in Lawrence’s algorithm creates assign-
ment statements on both true and false sides of predicate nodes which
assign to the same register. Additionally, v-ordering when building the
PDG creates duplicate predicate nodes, and our splitting phase dupli-
cates nodes also.

Condition 1 is satisfied by trivially inserting extra jump instructions in the
schedule, achieved by a linear walk. Condition 2 requires some extra work.
Since LLVM is in SSA form, it uses phi instructions to “choose” between
definitions of a variable when control flow merges. LLVM’s phi instructions
are of the following form

<result> = phi <ty> [<valO>, <label0>],

where <ty> is the type of the assignment, <val0> is one possible definition
reaching that point, and <1abel0> is the label of the basic block that definition
was created in. The ... indicates that phi functions can have an arbitrary
number of reaching definitions. Generating phi functions when traversing the
PDG is difficult as the recursive scheduling algorithm has no visibility of other
parts of the graph other than the node being currently visited and its im-
mediate children. However, we choose to take the same approach that the
llvm-gcc front end takes when generating LLVM IR. For each variable that is
assigned to more than once, we allocate memory with an alloca instruction
at the beginning of the function. Then, for each use of this variable, we insert
a load instruction beforehand, reading from this location, and update the use
to the load location. Likewise, each assignment to this variable is assigned
to a new virtual register, and is then followed by a store instruction. Since
LLVM IR is not a real target architecture, these loads and stores can be easily
optimised out. In fact, LLVM always does this by using the mem2reg pass.
This promotes alloca instructions into SSA registers, inserting phi instruc-
tions where necessary. In fact, the LLVM documentation highly recommends
this approach to generating phi instructions in LLVM IR unless there is an
extremely good reason not to [81].

CHAPTER 6. SEQUENTIALISATION 124

define i32 @ir(i32 %rl7, i32 %rl5, i32 %rl6) nounwind readnone {
%rll = icmp ne i32 %rlé6, 0 ; <il> [#uses=2]
%r5 = icmp eq i32 %rl5, 0 ; <il> [#uses=1]
br il %r5, label %130, label %17

17:
%r2 = add i32 %rl7, 2

9r8s2 = add i32 %r17, 1

%r8s2. = select il %rll, i32 %r8s2, i32 1
br label %141

preds = %0

<i32> [#uses=1]
<i32> [#uses=1]
<i32> [#uses=1]

130: ; preds = %0
%r8a = add i32 %rl7, 1 <i32> [#uses=1]
%r8a. = select il %rll, i32 %r8a, i32 1 ; <i32> [#uses=1]
br label %141

141:
%r19.0 = phi i32 [%r8s2., %17], [%r8a., %130
$r18.0 = phi i32 [%r2, %17], [2, %130]
%r0 = add i32 %r18.0, %rl19.0
ret i32 $ro0
}

preds = %130, %17
; <i32> [#uses=1]
<i32> [#uses=1]
<i32> [#uses=1]

(a)
define i32 @ir(i32 %A, i32 %P, i32 %Q) nounwind readnone {
entry:
%0 = icmp eq i32 %Q, 0 ; <il> [#uses=1]
%1 = add nsw 132 %A, 1 ; <i32> [#uses=1]
%rl.0 = select il %0, i32 1, i32 &1 ; <i32> [#uses=1]
%2 = icmp eq i32 %P, 0 ; <il> [#uses=1]
%3 = add nsw 132 %A, 2 ; <i32> [#uses=1]
%r2.0 = select il %2, i32 2, i32 %3 ; <i32> [#uses=1]
%4 = add nsw i32 %rl.0, %r2.0 ; <i32> [#uses=1]
ret i32 %4
}
(b)

Figure 6.5: Application of LLVM -03 to the LLVM IR generated by our seq
tool (a) and 1lvm-gcc (b) respectively. alloca instructions, where possible,
are promoted to SSA registers with phi instructions being inserted where nec-
essary.

As an example, we show the LLVM IR generated for the independent redun-
dancy source code (Figure 5.5) by our compiler framework in Figure 6.5a. For
comparison alongside is the LLVM IR generated by LLVM itself in Figure 6.5b.
Both have been optimised at -03 which includes the mem2reg pass. Both pro-
grams have the same behaviour. The most interesting difference between the
two is the presence of the phi instructions in our own output. Whereas the
1llvm-gcc output looks very similar to the original source program, our output,
once optimised by LLVM, uses phi functions to represent the two values added
together before the function returns. In the next chapter we will explore the
differences between target machine code generated by using LLVM and by our
VSDG-based framework.

CHAPTER 6. SEQUENTIALISATION 125

6.8 Summary

This chapter has explored the problem of scheduling and generating code from
a PDG. We discovered that our PDG scheduling algorithm becomes more sim-
ple than those in the literature as a consequence of the y-ordering transforma-
tion implemented in the previous chapter, which avoids illegal PDG subgraphs
being formed, combined with our node splitting phase prior to scheduling. We
detailed our scheduling algorithm, and then discussed how to generate code
for statements, predicates and loops, showing output from our human-readable
pseudocode generator. We then described how this is expanded to generate
LLVM IR, allowing us to leave register allocation and target code generation
to the LLVM compiler.

Chapter 7

Evaluation

7.1 Introduction

The key goal of this thesis is to address the question of whether it is feasible to
use the VSDG as the sole IR in an optimising compiler. At the end of the last
chapter we saw that when generating LLVM IR in our compiler framework,
phi instructions are generated by the LLVM optimiser when the input program
exhibits independent redundancy. However, this target is only an IR: real
target architectures do not contain phi instructions.

To evaluate our compiler framework, we used our generated LLVM IR as
input to the 1lc tool, which is the LLVM compiler back-end. 1lc can gen-
erate code for a variety of target architectures. We chose the Intel x86-64 [4]
architecture as that was the instruction set for our development machine.

This chapter presents the following:

e We examine the LLVM IR generated by our compiler framework and
compare it to the size of the LLVM IR generated by Clang [1| and
1lvm-gcc [5].

o We generate Intel x86-64 from the LLVM IR produced by the above
three tools, and also from GCC. We compare and contrast the output
from these 4 different compilation methods.

e We study generated code that has increasing numbers of shared compu-
tations to observe the effect that vy-ordering and node splitting on the
PDG has on generated code.

7.2 Tools for comparison

We compared our compiler to existing tool chains in two stages.

126

CHAPTER 7. EVALUATION 127

1. Comparison of the LLVM IR generated by our compiler with the LLVM
IR generated by Clang 1.1 and also 11lvm-gcc (GCC version 2.4.1 from
LLVM build 2.7). We performed no optimisation on the VSDG or PDG
in our compiler. This gives an intuition of the effects of the CFG —
VSDG — PDG — CFG translation, and thus the removal and restoration
of control flow.

2. Comparison of the Intel x86-64 code generated by 11c from our compiler,
1llvm-gecc and Clang at different optimisation levels. In addition, we also
generate code from GCC at the same optimisation levels.

7.3 Results

This section presents our results. We are interested in several factors:

e The number of nodes and edges in the VSDG in memory during compi-
lation.

e The number of nodes and edges in the PDG in memory during compila-
tion.

e The number of instructions in LLVM IR that our compiler generates
compared to Clang and 11lvm-gcc.

e The number of Intel x86-64 instructions generated by the above and also
GCC at different optimisation levels.

7.3.1 Without independent redundancy

Before examining examples of independent redundancy, we will look at com-
parisons in programs that do not contain it. We wrote a number of C programs
that contained the features supported by both the VECC front-end and also
our own tool (e.g. structured C without gotos or switch statements, con-
taining only 0-trip loops). Due to limitations in our tool we limited the type
of operations to integers, however we feel that this sufficiently illustrates our
technique. This test set gradually increased in size, but did not introduce any
code that would produce independent redundancy in the VSDG. Since we are
primarily interested in the cost and effects of using the VSDG in a compiler,
we did not perform any optimisations on the VSDG or PDG.

We compiled our test programs to produce LLVM IR. We compiled the
same programs with the Clang and 1lvm-gcc front-ends. Figure 7.1 shows
details of the size of the VSDG and PDG during compilation. For this test
set, the number of nodes in the VSDG and PDG are similar. However, in
some examples, the PDG has a much greater number of edges. This is due to

CHAPTER 7. EVALUATION 128

Program | Function | VSDG | VSDG | PDG | PDG

lines nodes | edges | nodes | edges
non_irl.c 12 7 16 13 16
non_ir2.c 32 19 28 27 42
non_ir3.c o1 41 68 7 126
non_iréd.c 74 48 70 66 114
non_irb.c 102 66 109 113 193
non_ir6.c 120 71 98 95 102

Figure 7.1: Size of the VSDG and PDG internal representations for a test set
with no independent redundancy.

the increased number of data dependence edges required to have a well-formed
PDG compared to a well-formed VSDG. However, the VSDG can be discarded
once the PDG is built (in fact, it already is since proc and seq are separate
tools), so we do not have to maintain both in memory at the same time.

Figure 7.2 shows the size of the LLVM IR produced by our compiler com-
pared to Clang and 11vm-gcc. To reiterate, no optimisation is being performed
on the VSDG: it is only translated into a PDG and then back into a CFG.
There is a large reduction in the lines of LLVM IR produced compared to
Clang and 1lvm-gcc; especially so in the larger examples. This reduction is
due to the fact that the implicitly SSA form VSDG, and hence the PDG with
virtual registers, make generation of compact LLVM IR straightforward. As
an example, Clang and 11lvm-gcc generate load instructions before each use
of a variable and a store instruction after each new assignment, whereas our
LLVM IR generator only produces loads and stores where necessary; that is
for virtual registers that are assigned to more than once. Virtual registers are
only assigned to more than once in our PDG within conditional branches and
loops, and non_ir6. ¢ consisted of straight-line code aside from two conditional
branches, hence the comparative compactness.

Then we used the LLVM IR generated by the above three tools to generate
code with 1lc¢ at various optimisation levels. We also compiled the same
programs with GCC at the same optimisation levels. We show the results for
optimisation levels -00 and -03 in Figure 7.3. At optimisation level -00, the
code generated from the VSDG framework through 1lc is smaller than the
code generated by 1lc from Clang and 1lvm-gcc input. Also, our code is
smaller than that which is produced by GCC at -00.

When optimisation level -03 is used, we also produce smaller code. The
most striking observation is that our framework is using the same back-end
as the LLVM IR produced by Clang and 1lvm-gcc, however our code is sig-
nificantly more compact. Therefore, the LLVM IR we produce exposes many
more opportunities for optimisers to exploit, just by translating into, and then
out of, the VSDG.

CHAPTER 7. EVALUATION 129

600 T T T T T T
proc + seq
Clang ===
llvm-gcc —
500 R
400 g

Lines of LLVM IR
w
o
o
T
1

200 1

100 y

non_irl.c non_ir2.c non_ir3.c non_ir4.c non_ir5.c non_ir6.c
Program

Figure 7.2: Lines of LLVM IR produced by our compiler (proc + seq) com-
pared to Clang and 1lvm-gcc.

7.3.2 With independent redundancy

In the last chapter, we saw that whenever independent redundancy occurred in
the VSDG, the resulting LLVM IR would contain phi instructions. When SSA
is used in a compiler, it must be deconstructed before code can be generated.
In LLVM, phi instructions are removed by inserting copy instructions in the
generated code. We wrote a number of C programs that contained increasing
numbers of shared computations.

Figure 7.4 shows, for increasing numbers of shared computations, the size
of the VSDG and PDG in memory at compile time. It is easy to observe that
the greater the number of shared computations, the greater the duplicated
predicate nodes required through ~-ordering, thus the greater amount of node
splitting required to restore well-formedness of the PDG. As before, we gener-
ated Intel x86-64 instructions from these PDGs using 11c. We then generated
code using the Clang and 11vm-gcc front-ends, and also GCC. Figure 7.5 shows
the results.

The primary observation is that an increasing number of shared computa-
tions radically increases the size of the generated code at -00. This indicates
that at this optimisation level, the phi functions, and their resulting copy in-
structions, are difficult for 11c to optimise away. On ir10.c, which has 10
shared computations, the code generated by our framework at -00 has 306

CHAPTER 7. EVALUATION 130

T
proc + seq + lic —
GCC ===
500 Clang + llc m—
livm-gcc + lic

Intel x86-64 instructions generated

non_irl.c non_ir2.c non_ir3.c non_ir4.c non_ir5.c non_ir6.c
Program

(a)

100 T T
proc + seq + lic —
GCC ===
Clang + lic m—
livm-gcc + lic
80 B
e
Q
IS
[
[=4
5
S 60 f g
[=4
2
©
2
®
£
3 a0 g
©
@
x
T
E
20 B
0

non_irl.c non_ir2.c non_ir3.c non_ir4.c non_ir5.c non_ir6.c
Program

(b)
Figure 7.3: Number of Intel x86-64 instructions generated by our compiler

(proc + seq + 1llc) on non-independent redundancy code compared to Clang
+ 11lc, 1lvm-gcc + lcc and GCC at optimisation levels -00 (a) and -03 (b).

CHAPTER 7. EVALUATION 131

Program Shared VSDG | VSDG | PDG | PDG
computations | nodes | edges | nodes | edges
irl.c 1 16 21 42 58
ir2.c 2 20 27 61 84
irb.c 5 32 45 130 174
ir10.c 10 52 7 291 375

Figure 7.4: Size of the VSDG and PDG (after node splitting) internal repre-
sentations for a test set with independent redundancy.

movl instructions accessing the stack frame compared to only 2 in the same
code generated by GCC. Using the Clang and 1lvm-gcc front-ends with 11c
at the same optimisation level results in 49 and 51 movl instructions respec-
tively. However, when we optimise at -03, the more powerful optimisations
performed by LLVM dramatically reduce the copy instructions required in the
generated code. So much so that, aside from the blow-up in the size of the PDG
in memory when shared computations are present, there is no other penalty
for translating in and out of the VSDG, as long as sufficient optimisation is
performed before code generation.

7.4 Summary

This chapter has highlighted, through implementation, the implications of
translating out of the VSDG when generating code. One strength is the gen-
eral compactness of code when no shared computations are introduced. In
fact, with no optimisation occurring on the VSDG, our framework allows the
LLVM back-end to produce code that is more compact than our comparators.
This is notable due to the fact that both Clang and 1lvm-gcc use the same
back-end, yet produce much larger code. Translating in and out of the VSDG
exposes more potential optimisations in the program that 1lc can exploit.
However, most importantly, it proves that we can avoid the NP-complete opti-
mal sequentialisation problem by implementing a lazy strategy as it produces
acceptable results.

We saw that when shared computations are present, the resulting phi nodes
put pressure on the back-end. Without performing optimisation, an increas-
ing number of shared computations can exponentially increase the size of the
generated code. This is because increasing numbers of copy instructions are
required. However, assuming that there is sufficient optimisation taking place
(as we demonstrated with -03), then there is no penalty for translating into,
and out of, the VSDG. This is important as it proves that we can finally con-
sider a new approach to compilation based on data flow, not control flow, in
practice as well as in theory.

CHAPTER 7. EVALUATION 132

T
proc + seq + lic —
800 GCC === -
Clang + llc m—
livm-gcc + lic

Intel x86-64 instructions generated

irl.c ir2.c ir5.c irl0.c
Program
(a)
100 T
proc + seq + lic mm—
GCC ===
Clang + lic m—
livm-gcc + lic
80 B
e
Q
IS
[
[=4
5
S 60 f g
[=4
2
©
2
®
£
3 a0 -
©
@
x
T
E
20 B
0

irl.c ir2.c ir5.c irl0.c
Program

(b)
Figure 7.5: Number of Intel x86-64 instructions generated by our compiler

(proc + seq + 1llc) on independent redundancy code compared to Clang +
1lc, 1lvm-gcc + lcc and GCC at optimisation levels -00 (a) and -03 (b).

Chapter 8

Conclusion

The VSDG is a bold compilation technique that takes a very different ap-
proach to compilation: “the best way to optimise control flow is to throw it
away |and reconstruct it|” [88]. In previous work, the VSDG has been shown
to be a promising IR. However, there were a number of criticisms and uncer-
tainties about using the VSDG in a “real world” compiler. We believe we have
addressed them in this thesis.

8.1 Contributions
The contributions of this thesis are:

An IR survey In Chapter 2, we have performed a comprehensive survey of
compiler IRs over time. Our findings show that compilers have been
dominated by CFG-based IRs for most, if not all, of their lifetime. How-
ever, IRs like the VSDG are beginning to reoccur in the literature as a
tool enabling new approaches to optimisation. Thus, the VSDG deserves
more investigation and attention as a whole program representation.

Irreducibility Irreducible functions have long caused problems for compilers.
Most compiler optimisations — especially those that analyse and trans-
form loops — fail to work on irreducible CFGs. More importantly for the
VSDG, data flow IRs cannot be built from irreducible CFGs. Since most
references to proofs of the presence of irreducibility dated back over 40
years, in Chapter 3, we performed an empirical study of irreducibility
in current versions of open source software, and then compared them
with older versions. We also studied machine-generated C code from a
number of software tools. We concluded that irreducibility is extremely
rare, and is becoming less common with time, so it is no longer a major
hurdle to constructing IRs like the VSDG.

133

CHAPTER 8. CONCLUSION 134

Construction Previous approaches to constructing the VSDG and similar
IRs have been poorly documented or ignored in the literature altogether.
In Chapter 4, we presented a modular approach to constructing the
VSDG using structural analysis — a fine-grain form of interval analy-
sis — on the CFG in SSA form (a typical IR available in most modern
research compilers). By detecting patterns in the CFG that correspond
to syntactic components of a source program, we can then use these
patterns to guide VSDG construction; such as the insertion of «-nodes
and f-nodes. Structural analysis is language independent, handles un-
structured control flow, and allows the opportunity to detect and deal
with irreducibility on the fly with node splitting. Although the VSDG
does not support loops with unstructured exit, structural analysis can
detect these, which could allow for future modification of the VSDG
representation to cater for them.

Proceduralisation In Chapter 5 we presented our software tool, proc, that
implements Lawrence’s proceduralisation algorithms [83] for translating
a VSDG into a PDG. We showed proof, via output from our tool, that
his naive algorithin, like previous VSDG proceduralisation attempts, pro-
duces an illegal PDG subgraph as defined by Ferrante et al [56]. The
illegal subgraph exists in PDGs that correspond to more than one CFG.
Specifically, this happens when there are one or more shared compu-
tations, that is, instructions which may or may not be executed down
different execution paths due to v nodes. Therefore, an evaluation strat-
egy must be encoded for the PDG to be legal. We showed proof, via
output from our tool, that Lawrence’s effective algorithm successfully
duplicates predicate nodes in the PDG on a program with a shared com-
putation. We also modified Lawrence’s proceduralisation framework to
allow for traditional loops, and gave a worked example of how to proce-
duralise a nested loop. PDGs that are produced by our tool are output
in a human-readable text format, and the grammar for this language,
called pdg, is given in Appendix C.

Sequentialisation After generating a PDG in Chapter 5, we need to generate
code. Therefore, in Chapter 6 we presented our software tool, seq. We
studied previous attempts in the literature to sequentialise PDGs into
a CFG@G, highlighting how the problem has been previously hampered by
illegal PDG subgraphs. Since Lawrence’s PDGs, after y-ordering, can
have statement nodes with multiple control flow parents, they are not
well-formed according to Simons et al [108|. Therefore, we presented our
node splitting approach that restores well-formedness to the PDG. Then,
we presented our scheduling algorithm which decides on a single order of
nodes in the graph. We showed how to generate code from statements,
conditional branches and loops, using seq’s pseudocode output. Then,

CHAPTER 8. CONCLUSION 135

we detailed our approach to generating LLVM IR from the tool.

Evaluation In Chapter 7, we compared our framework to existing compil-
ers. We presented a number of observations. For a test set of programs
without shared computations, our framework, with no optimisation, pro-
duces dramatically less LLVM IR than the Clang and 1lvm-gcc front-
ends. Additionally, on the same test set with no optimisation, our VSDG
framework produces more compact code than LLVM with Clang and
1lvm-gcc and also GCC. Additionally, we showed that as the number of
shared computations increase in an input program, the greater pressure
that is put on the code generator, in this case LLVM’s 11c¢ back-end, to
optimise away phi instructions that arise. LLVM’s SSA deconstruction
algorithm inserts a large quantity (almost exponential) of copy instruc-
tions when generating code at -00 from shared computations in our
framework. However, when sufficient optimisation is taking place, these
copy instructions are limited to the point that there is no penalty when
translating into, and out of, the VSDG. Thus, we can finally consider
a new approach to compilation based on data flow, not control flow, in
practice as well as in theory.

8.2 Further work

We end this thesis with a number of directions for future work. Some of these
were outside the scope of this thesis, and others represent different directions
in which VSDG research could go.

Reducing copy instructions The evaluation of our framework shows that,
in an SSA-based compiler such as LLVM, exponentially large numbers of
phi instructions are present during compilation of shared computations,
and the resulting copy instructions are not currently being optimised
away at -00. These phi instructions occur after we translate out of the
PDG into LLVM intermediate code. At higher optimisation levels such
as -03 LLVM is able to optimise these away. We would be interested in
evaluating whether the number of copy instructions could be decreased
by changes in our own framework, or by other means. Would it be
possible to avoid exponential numbers of phi instructions altogether? We
have included Lawrence’s algorithm in the Appendix. There is definitely
scope for making this more efficient in terms of time and space required.
The tools that we have created during this thesis would be an ideal base
for experimenting with this. The algorithm has been implemented, and
writing additional tools for analysis of the algorithm would be a good
place to start. How does the time and space efficiency of the algorithm
scale over different programs? Are there any tweaks that can be made

CHAPTER 8. CONCLUSION 136

when proceduralising programs with independent redundancy that keep
the number of resulting ¢-nodes low?

Leveraging research compilers Our implementation is experimental, but
we feel there is enough promise in the VSDG to warrant it being con-
structed inside a fully functional compiler. How much modification to
the VSDG would be required for it to be built in GCC or LLVM? Modi-
fications would need to be made for unstructured exit to loops, either in
the form of new nodes or semantics, or by transforming the source pro-
gram or VSDG to remove them. This would then allow the VSDG handle
large benchmarks such as SPEC [7] or the Linux kernel to show perfor-
mance against existing compiler technology. For example, Lawrence’s
thesis [83] does not use #-nodes for loops. Instead, he models them using
infinite (treelike, regular) chains of p-nodes. This solves all of the cur-
rent restrictions with the VSDG such as it only being able to represent
reducible programs and 1-trip loops. However, there are obvious con-
notations for representing loops as infinite chains of nodes — how would
they be implemented in a compiler with finite memory? We predict that
work on this could start by using the text file VSDG output of John-
son’s VECC compiler, and then parsing the graph using the grammar
described in the Appendix of his thesis [72]. Then, algorithms could be
developed to transform these VSDGs, which use #-nodes for loops, into
the VSDGs that use infinite chains of u-nodes for loops as described in
Lawrence’s thesis. What would the increase in the size of the VSDG be
after this translation? Is there a neat notation or trick that could be
used to represent infinite loops finitely?

Hardware compilation As previously noted by Johnson [72]|, the VSDG
nodes have close mappings to equivalent hardware: v nodes map to mul-
tiplexers, #-nodes map to Moore state machines [86], load and store
nodes map to memory access cycles, and other nodes produce combina-
torial logic. We would be extremely interested to see a VSDG to hard-
ware compiler, especially as the power of FPGA and GPU technology,
and hence their ease of programming, increases. The Phoenix project
[32] used a data-flow IR called Pegasus to compile programs to hard-
ware. It used multiplexer nodes to represent conditional choice, which is
similar to how the VSDG’s y-nodes work. Loops were represented using
back-edges. This work on generating hardware is nearly 10 years old,
and generating hardware is a much more commonplace theme in current
research, especially with the wider availability of FPGA and GPU pro-
gramming kits. It would be a good time to investigate the potential of
the VSDG as an IR for generating hardware in this way. Like before,
work could either begin from our own tool (i.e. instead of generating
LLVM bitcode from the PDG, generate hardware) or the VSDGs output

CHAPTER 8. CONCLUSION 137

by Johnson’s VECC compiler (i.e. generate hardware by walking the
VSDG).

Detecting shared memory As an extension of the above, Lawrence’s pro-
ceduralisation algorithm assigns & gating conditions to shared compu-
tations. When generating hardware, memory accesses must be carefully
arranged. Can gating condition analysis on the VSDG solve the prob-
lem of knowing, statically at compilation time, which computations will
share the same memory? An @ gating condition may specify exactly
where two instructions nay need to access the same address in memory.

Better node splitting Our node splitting algorithm on the PDG is naive in
the sense that splitting decisions are made primarily on incoming edges,
rather than in any context of the program being represented. Could a
better node splitting algorithm be developed that reduces the overall size
increase of the PDG? On a grander scale, is the PDG even the best IR
to construct after translating out of the VSDG? The only reason that
we require this node splitting is that the PDG has a number of well-
formedness conditions that must be met in order to generate code from
it. Could an altogether different IR be used or invented for acting as the
midpoint between the VSDG and sequential code?

A functional back-end The VSDG has many similarities to functional pro-
gramming. Lawrence showed in the Appendix of his thesis a technique
for translating a VSDG into a functional program. A VSDG that does
not have any side-effecting operations is referentially transparent, and
therefore is translated into a pure functional program. For VSDGs that
have side-effects, Lawrence shows that these state edges can be encoded
by using Haskell’s state monad. We further explored the algorithmic
technique in our paper [111]. However, we have not yet implemented this
algorithm as it was outside the scope of this thesis. Therefore, by using
the output of Johnson’s VECC compiler and by following this algorithm,
we reckon it would be straightforward to begin generating functional pro-
grams. There would be a great deal of scope in investigating techniques
for generating good functional programs. If this works, then would it be
feasible to create a VSDG to functional language translator, resulting
in an imperative-to-functional compiler? This would be highly novel as
functional and imperative compilation are two very separate areas.

A functional front-end Assuming that functional programs could be gener-
ated from the VSDG (see above point), it would be interesting to consider
the reverse: compiling functional programs into VSDGs. A parser for a
functional language could be developed that generates the VSDG. This
could be used as input to our own tool, and could act as the starting
point for an investigation into alternative ways to compile functional

CHAPTER 8. CONCLUSION 138

languages. We have not considered this currently, however looking at
existing functional compilers such as GHC! may offer an insight into
how to begin to tackle this problem.

An optimising interpreter Since functional languages are often interpreted,
if it were possible to translate a functional program into a VSDG, could
it be optimised using existing algorithms and then directly evaluated for
output, thus creating an optimising interpreter? The efficiency of the
source to VSDG construction algorithm would be vital here. This idea
is based on the fast speed of optimisations on the VSDG as noted by
Johnson and Upton [72, 123], and the tendency for functional programs
to be interpreted, e.g. in the Hugs 98 Haskell interpreter?.

Parallelism We have not touched upon the topic of parallelism in this thesis,
but we feel that the VSDG would be a good starting point for inves-
tigation into instruction-level parallelism (ILP). Stateless VSDGs are
referentially transparent, therefore can be evaluated in any order (per-
haps in parallel). We feel it would be interesting to profile some pro-
grams that have been translated into the VSDG for their ILP potential.
For example, since we know the exact instructions that require memory
reads and writes in the VSDG, can we partition a program into memory-
independent sections that can be executed in parallel? Work on program
slicing on the PDG would be a good place to start when investigating
this problem [91]. Since we translate the VSDG into the PDG, there
may be a number of similarities in the techniques used.

A unifying IR? Would it be possible that sometime in the future, an IR
like the VSDG could unify compilation of both imperative, functional,
and hardware languages? Whilst still a distant goal, our work on the
VSDG has shown small steps towards this. Whilst working with the
VSDG we often thought that it represents the “essence” of von Neumann
machine computing. Programs are represented as simple computations
and memory accesses, yet, it is able to represent whole programs, it is
efficient to optimise, and in this thesis, we have shown that generating
good sequential code is possible too. Could the VSDG perhaps bridge
the gap between imperative and functional compilers?

'yww.haskell.org/ghc/
>yww.haskell.org/hugs/

Appendix A

Construction

A.1 Omitted merge algorithms

We include the three merge algorithms from Chapter 4 that were omitted for
space.

A.1.1 IfThenElse merge

The IfThenElse merge, as shown in Algorithm 16 is almost identical to the
[fThen merge (Algorithm 9) in the main body of the thesis. As before, a 7-
node is created for each variable used within the conditional statement. The C
port of each y-node is linked to the conditional instruction in the if statement.
The T port links to the most up-to-date usage of the variable in the then block
of the if statement. The F port links to the most up-to-date usage in the
else block. If neither of these could be found, a top-link is created.

A.1.2 SelfLoop merge

The SelfLoop merge in Algorithm 17 is similar in concept to the WhileLoop
merge shown in Algorithm 12 except that it only contains one block.

A.1.3 NaturalLoop merge

Johnson restricts his definition of the VSDG to represent programs where all
iteration is handled by while or for loops, where there is only one loop exit
[72]. Therefore, we show the placement of u- and - nodes in this algorithm, to
reflect representations that allow multiple loop exits, such as Upton’s GDDG
[123].

The entire schema is contained within a back edge from the last block in
the schema to the first. Each block in the schema has two successors: one is
the next block in the schema (unless it is the final block, in which case this
is the back edge) and another which is a loop exit. We place a u node at the

139

APPENDIX A. CONSTRUCTION 140

Algorithm 16: Merge for the IfThenElse schema.

Input : RegionNodes, which contains the basic blocks from the IfThenElse
schema.
Output: The merged IfThenElse fragment.

CondBlock < RegionNodes(0);

TrueBlock «— RegionNodes(1);

FalseBlock <« RegionNodes(2);

CondFragment <« Fragments(CondBlock);

TrueFragment < Fragments(TrueBlock);

forall the register variables v € TrueBlock U FalseBlock do

create new GammaNode;

if TrueFragment. CurrentNode(v) is not null then
create new TrueEdge;
TrueEdge.To < TrueFragment.CurrentNode(v);
MergedE & TrueEdge;

else
| CreateTopLink(v,GammaNode. TPort);

if FalseFragment.CurrentNode(v) is not null then
create new FalseEdge;
FalseEdge.To < FalseFragment.CurrentNode(v);
MergedE W FalseEdge;

else
L CreateTopLink (v,GammaNode.FPort);

create new CEdge;
CEdge.From «— GammaNode.CPort;
CEdge.To < CondFragment.CurrentNode(CondBlock.T);
MergedCurrentNode(v) < GammaNode;
MergedCurrentState(v) < GammaNode;
MergedN W GammaNode;

MergedE W CEdge;

CurrentFragment < MergeElements (RegionNodes);
ResolveTopLinks (CurrentFragment);
Fragments(CurrentBlock) < CurrentFragment;

APPENDIX A. CONSTRUCTION 141

Algorithm 17: Merge for the SelfLoop schema.

Input : RegionNodes, which contains the basic block from the SelfLoop
schema.
Output: The SelfLoop fragment.

CondBlock < RegionNodes(0);

CondFragment « Fragments(CondBlock);

create new ThetaHead;

create new ThetaTail;

forall the register variables v € CondBlock do
create new LEdge;

LEdge.To < CondFragment.FirstUse(v);
LEdge.From « ThetaHead.LPort;
CreateTopLink (v, ThetaHead.IPort);

create new REdge;

REdge.From « ThetaTail. RPort;

REdge.To < CondFragment.CurrentNode(v);
CondFragment.CurrentNode(v) < ThetaTail;
CondFragment.CurrentState(v) < ThetaTail;
CondFragment.E W LEdge, REdge;

create new CEdge, SEdgeUp, SEdgeDown;
CEdge.From « ThetaTail.CPort;

CEdge.To < CondFragment.CurrentNode(CondBlock.T);
SEdgeUp.From <« CondFragment.FirstSideEffect;
SEdgeUp.To < ThetaHead.STATE;
SEdgeDown.From « ThetaTail. STATE;
SEdgeDown.To < CondFragment.LastSideEffect;
MergedN W ThetaHead, ThetaTail;

MergedE W CEdge, SEdgeUp;

CurrentFragment <« MergeElements (RegionNodes);
ResolveTopLinks (CurrentFragment);
Fragments(CurrentBlock) <« CurrentFragment;

loop header, and a n node at each loop exit. The condition for each n node
is linked to the terminating condition of each loop exiting block. We keep a
reference to each block in the schema along with the 1 node that exits it. This
map is used when merging to make sure top-links are resolved to the right n
node.

APPENDIX A. CONSTRUCTION

142

Algorithm 18: Merge for the NaturalLoop region.

Input : RegionNodes, which contains the basic blocks in the NaturalLoop

schema.
Output: The merged NaturalLoop fragment.

CondBlock < RegionNodes(0);
CondFragment «— Fragments(CondBlock);
ctr — 1;

create new Mu;

CondFragment W Mu;

forall the register variables v € CondBlock do
create new LEdge;

LEdge.To < CondFragment.FirstUse(v);
LEdge.From < Mu.LPort;
CreateTopLink (v,Mu.IPort);
CondFragment & LEdge;

while ctr < RegionNodes.Size do
BodyBlock < RegionNodes(ctr);
BodyFragment « Fragments(BodyBlock);
forall the register variables v € BodyBlock do
create new LEdge;
if v ¢ CondBlock then
LEdge.From < BodyFragment.FirstUse(v);
LEdge.To < Mu.LPort;
CreateTopLink (v,Mu.lPort);

else
LEdge.To < CurrentFragment.LastUse(v);
LEdge.From « BodyFragment.FirstUse(v);
MergedCurrentNode(v) < BodyFragment.FirstUse(v);

create new Eta;

BodyFragment W Eta;
EtaMap(RegionNodes(ctr)) « Eta;

create new CEdge, SEdgeUp, SEdgeDown;
CEdge.From «— Eta.CPort;

SEdgeUp.From « BodyFragment.FirstSideEffect;
SEdgeUp.To <+ Mu.STATE;

SEdgeDown.From « Eta.STATE;
SEdgeDown.To «— BodyFragment.LastSideEffect;
BodyFragment W CEdge, SEdgeUp, SEdgeDown;

ctr «— ctr + 1;

CurrentFragment < MergeElements (RegionNodes);
CurrentFragment & EtaMap;

ResolveTopLinks (CurrentFragment,EtaMap);
Fragments(CurrentBlock) < CurrentFragment;

CEdge.To « BodyFragment.CurrentNode(BodyBlock.Terminator);

Appendix B

Proceduralisation algorithm

The VSDG to PDG implementation in Chapter 5 is based on the work in
Lawrence’s thesis [83]. For reference, we include the full algorithm here.

B.1 Lawrence’s effective algorithm

Central is the procedure buildPDG, which works by a recursive, post-order
traversal of the dominator tree of the VSDG!, using a system of gating con-
ditions computed during traversal to combine together the results of recursive
calls. Importantly, this algorithm supports additional operations which avoid
the flaws of naive translation. At each stage of recursion, buildPDG returns
a PDG fragment; the result of the outermost buildPDG call is the complete
PDG (for the function).

Gating conditions are defined and explained in Section B.1.1. The main
buildPDG procedure is given in Section B.1.2. Finally Section B.1.3 describes
the extra operation of y-ordering, avoiding the correctness problem of the naive
algorithm.

Further notation will also be useful. We write D(n) for the nodes dominated
by n, i.e. {n’ | ndom* n’}, or, interchangeably, the subgraph of the dominator
tree induced by those nodes. Thus D(ng) may stand for the entire dominator
tree. Secondly, let children(t) be the set {n’ | idom(n’) = n}, and succ(n) be
the operands of n.

Key to the algorithm is a lemma on dominator trees proved by Tu and
Padua [120]: that for any node n, its predecessors are either idom(n), or de-
scendants of idom(n). That is, the operands succ(n) of a node n are children
in the dominator tree of some ancestor of n:

idom(succ(n)) dom™ n (B.1)

!That is, the tree with the return node ng as root—unlike the dominator tree of a CFG,
where the entry node is root. Note this is the opposite formulation to that of Lawrence’s
thesis [83], where VSDG edges were drawn in the reverse direction using a notation like that
of Petri nets, and buildPDG thus traversed the postdominator tree.

143

APPENDIX B. PROCEDURALISATION ALGORITHM 144

Thus, every n’ € succ(D(n)) is either a node in D(n), or a child of some
ancestor of n. The set of external producers * D(n) are the operands to nodes
in D(n) which are not themselves in D(n):

*D(n) = succ(D(n))\D(n)

From the above, this set can be computed incrementally during traversal:

*D(n) = | succ(n) U U (*D(n')) | \children(n) (B.2)

n' € children(n)

B.1.1 Gating conditions

Gating conditions are used to control the actions of the sequentialisation al-
gorithm. For VSDG nodes u and v, the gating condition gc"(v) describes the
set of gating paths from w to v, which are paths u — v where all nodes are
dominated by u, expressed as the runtime conditions under which the result of
v would be used in computing u along one of those paths. Gating conditions
are based on the gating functions of Tu and Padua [120] with the addition of
a digjunction constructor @. Gating conditions are defined by the following
grammar:

ce(C = A Always demanded
0

| Not demanded
For some v-node g, according to the runtime

| O (g,ct,cp) value of the predicate of g, either ¢; applies, or

cy does
The node is demanded if either ¢y or cy says it

18

| 1D e

We treat the @ constructor as both associative and commutative with the
following normalisations continuously applied:

cA®AN = A
ced = ¢

N(g,c,c) = ¢

These mean that in any gating condition of the form ... ®¢; & ..., every ¢
must be a () gating condition. Operations will preserve the invariant that all
such () gating conditions have different v-nodes as their first element.

Construction of gating conditions makes use of three utility functions which
are defined recursively on the structure of their arguments.

APPENDIX B. PROCEDURALISATION ALGORITHM 145

Catenation c;j - ¢o is associative but not commutative.

=0
O(g,ce-c,cp-c)
= (c1-¢)®(c2-¢)

- =
O 0 0 o
I

(Note that handling the common cases of ¢-() = () and ¢- A = ¢ explicitly,
computes the same gating conditions more efficiently).

Union ¢ U ¢y is both associative and commutative:

PUc=cUbh=c
AUc=cUA=A
@(gvchcf)U@(g?Cz,‘,vc}) = (?)(g,ctch,CfUc})

In other cases, it must be that ¢; and ¢y are (potentially disjunctions of)
(Ds. c1Uco identifies all the y-nodes on both sides, and combines any ()s
with the same vy-node using the final rule above. If any of these result in
A then that is the overall result, otherwise all the resulting ())s are then
combined together using @ (thus preserving the invariant above).

Individual edges The function cond : (N x N) — C gives a gating condition
for any n — n’ edge.

M (g,A,0), if eis a true edge from a y-node g
cond(e) =< ((g,0,A), if eis a false edge from a y-node g
A, otherwise

B.1.2 The traversal algorithm

The algorithm is expressed as a procedure buildPDG(n) operating on a node
n, and is given in Figure B.1. buildPDG(n) converts into PDG form only the
nodes in the dominator subtree D(n), producing PDG P(n). Note that below
we make extensive use of shorthand notation for edges. Specifically, given sets
of nodes N1, No C N, we write N — N to indicate edges {n; — ny | n1 €
N1 Ang € Na}, and similarly for paths, writing Ny % n where n € N.

Hierarchical Decomposition of Demand Conditions An essential task
for the algorithm is to ensure that whenever a result of a node v might be
demanded to evaluate node u (i.e. there is a path u = v in the VSDG), control
dependence edges connect P(u) to P(v), ensuring that P(u) causes execution

APPENDIX B. PROCEDURALISATION ALGORITHM 146

of P(v) if necessary. The dominator tree allows all paths in the VSDG to be
decomposed and considered an edge at a time, as follows.

At each step of recursion, buildPDG(u) considers the edges D(u) — v leaving
D(u), thus v € ¥*D(u). As D(u) moves from a single leaf node to D(ng), which
is all the nodes in the VSDG, it eventually captures all edges. For a given u,
such edges D(u) — v may be broken down into one of two cases:

1. Edges u — v; these are handled by buildPDG(u) itself.

2. Edges leaving D(u') for some child u' € children(u); these are handled
by the recursive calls to buildPDG(u').

Composition of edges into paths is recorded using gating conditions. Specif-
ically, buildPDG(u) maintains the gating conditions gc(v) for all v € *D(u),
describing the gating paths u — v. Crucially, buildPDG(u) does not need to
handle non-gating paths u — v — w via other nodes v ¢ D(u): it merely
ensures that P(u) causes execution of P(v) as necessary, and the PDG subtree
P(v) will itself execute P(w) recursively.

Dominator Trees and Gating Conditions Thus, gating paths v — v for
v € *D(u) can be broken into two cases:

1. Single edges e = u — v. These cause v to be demanded exactly according
to cond(e).

2. Routes from u to v via some child v’ of u (i.e. u = idom(u')), where
v € *D(u'). Thus, gc* (v) describes the routes from u’ to v, and so
gct(u') - g¥ (v) describes the routes from v to u that go through u'.

This allows buildPDG(u) to compute gc*(v) by taking the union of the edges
u — v and the routes via each child u’ of w. Further, recalling the definition
of *D(u) in Equation B.2, gc®(u'), for u/ € children(u), may be computed in
the same way. For these nodes u = idom(u'), so all paths u 5/ are gating
paths, and described by gc¥(u’).

Connecting the PDG Fragments It is these gc¥(u), for v’ € children(u),
which determine how P(u) is produced by combining the P(u’). Specifically,
buildPDG(u) calls a procedure link to add control dependence edges from
P(u) to each P(u'). The link procedure is shown in Figure B.2; it is this
procedure we modify in order to incorporate the additional operation of our
algorithm: ~-ordering (Section B.1.3). Thus, for an arbitrary VSDG edge
u — v, one of two cases applies:

1. u = idom(v). In this case, during execution of buildPDG(u), the call to
link will directly add an edge from P(u) to P(v).

APPENDIX B. PROCEDURALISATION ALGORITHM 147

2. v € *D(u). In this case, the edge will be handled by the call to
buildPDG(idom(v)). This call dynamically encloses buildPDG(u). That
is, the edge u — v will (by recursive traversal) be concatenated onto
all the paths idom(v) = u, and included in computation of gcidem®)(v).
This GC is then passed to link, which uses it to add a control depen-
dence edge from the appropriate part of P(idom(v)) to P(v).

Return Values As buildPDG(v) traverses the dominator tree, its return
values are a triple:

e The set *D(v);

o A partial PDG P(v) computing the results of v into register(s) r,. This
PDG is partial in that it has no edges to the PDG statements corre-
sponding to the v € *¥D(v), and these will need to be added to make
it a valid PDG. For simplicity, we assume the root node of these PDG
fragments is a group node, containing at least:

— For ~-nodes g, an appropriate PDG predicate node, with true and
false child group nodes each containing an assignment rg = r,s for
the v’ targeted by the appropriate true or false edge of g;

— For arithmetic nodes, a statement node r, = op(rsycc(t))-

e For each v/ € *D(v), the Gating Condition gc?(v’), describing where
edges to the PDG subtree P(v") must be added to P(v).

Topological Sorts A final key to the algorithm is how buildPDG(u) pro-
cesses the children w; of u in topological sort order. Specifically, recall from
the definition of *D(u;) and the properties of dominator trees, that each
v € *D(u;) is either another child of u, or not dominated by u. Since the
VSDG is acyclic, we can sort the u, so that whenever u; € *D(uj) then u;
comes before u;. Thus, each u; comes after every u; which is on a path from
u to u;. The algorithm uses this to consider the u; in turn, such that when
processing each u;, all u; on paths u % w; have already been processed, and
thus the gating condition C(u;) is the correct value for gc*(u;).

Adding data dependence edges Using the virtual register assignment
that labels each PDG node, for each operand register we add an edge in Ep to
the PDG node that produces that operand. Then, as in the naive algorithm,
the endpoints of each edge are moved up the CDG until they are between
siblings.

APPENDIX B. PROCEDURALISATION ALGORITHM 148

buildPDG(u € N) =
Let C(v) = () be a map from transitions v € succ(D(u)) to GCs.
Let P store the initial PDG fragment for u. //see text
Let D store a set of transitions.
Let u; = children(u).
//1. Process edges from u
Set D = succ(u). //Nodes whose results are used by u
For each v € D,
set C'(v) = Upcus, cond(e).
//2. Recurse
For each u;, let (*D(u;), P(u;), gc® (v € *D(u;))) = buildPDG(u;).
//3. Combine subtree results
Top-sort the u; to respect u; € ¥*D(u;) = i < j. //see text
For each w; in topological sort order,
//C(u;) is now a correct value for g (u;)—see text
call 1ink(P, C'(u;), P(u;)). //1link is defined in Figure B.2
for each v € *D(u;), set C(v) = C(v) U C(u;) - gc® (v).
Set D = (D U*D(u;))\{u;}-
Remove entry for C'(u;). //Edges D(u;) — u; are inside D(u)
Normalise P (by merging group nodes with only one parent into parent).

Return (*D(u), P(u), gc%(v € *D(u))) = (D, P,C).

Figure B.1: The buildPDG algorithm. (Note mutable variables C(-), P and D.)

link(G, ¢, G") adds edges from (children of) PDG group node G to G” accord-
ing to c € C as follows:

e 1link(G,A,G’) adds a control edge from G to G'.

e 1ink(G, ()(g,ct, cf), "), for y-node g, identifies the corresponding PDG
predicate node (as a child of G) and recurses on its true child with ¢
and its false child with ¢f (passing G’ to both).

e link(G,0,G") does nothing.

e 1link(G,c; @ co, G') causes application of the y-ordering transform, con-
sidered in Section B.1.3.

Figure B.2: The 1ink procedure.

B.1.3 The y-ordering transformation

The ~-ordering transformation is used to deal with cases of independent re-
dundancy. Recall the VSDG in Figure 5.5, and assume the two y-nodes and

APPENDIX B. PROCEDURALISATION ALGORITHM 149

their dominator tree children have been translated into PDG fragments with
predicate nodes as the root. P(n) is the PDG fragment for the shared sub
computation. Naive treatment of these is not acceptable:

1. Adding control dependence edges to P(n) from both PDG predicate
nodes leads to an ¢llegal PDG.

2. Adding control dependence edges from each PDG predicate node to a
different copy of P(n) leads to a legal PDG but one in which the code
for n could be dynamically executed twice.

In our algorithmic framework, cases of independent redundancy are iden-
tified by & gating conditions. We use & to guide the link procedure. A
@ gating condition is of the form ¢; @ co2 @ ... where each ¢; is a () gating
condition. We choose one dominant predicate node from these and order it
before the other subsidiary ones, parallelling the choice of dominant variable
in construction of Ordered Binary Decision Diagram. For gating conditions
c1 @ co @ ... the intuitive Boolean expression of the form E; V Eo V ... has
no a priori specification of evaluation order, but one must be specified for a
sequential computer with a single program counter.

The transformation proceeds as follows. Let Py be the dominant predicate
node, and consider in turn each subsidiary predicate node P;. Remove the
CDG edge G — Ps and make P! be a clone of Ps with the same nodes as
children. Then, add CDG edges P;.true — Ps and Pg.false — P.. Repeat for
each remaining subsidiary node. Finally, the original call to 1ink with gating

S

condition () (ga, ¢4, cf;) @O (gs, c!) can be completed with two recursive calls
—_—

with n, firstly to P,.true with gating condition ¢, U () (gs, !, c!), and secondly
to P,.false similarly.

Appendix C

Grammar specification for pdg
files

The proc tool presented in Chapter 5 has the ability to output a textual
representation of the generated PDG. This allows the possibility for it to be
used as input to an existing code generation tool, or for one to be developed
as further work. The structure of the format is such that it is easy to parse,
either using a parser generator software tool or by hand.

C.1 Example file

In Figure C.1 we show a PDG produced by the proc tool dot file output, and
the textual representation produced by our pdg file generator. The syntax and
over all appearance of our pdg files are very similar to that of Johnson’s vsdg
files [72]; since we are using these files as input, we opt to make our output
look somewhat consistent with his input.

We follow the same convention as Johnson for modules and functions. Ev-
ery file defines some number of modules, which in turn contain some number
of functions. Each function consists of a name and a number of argument
registers, and the function body is a list of nodes and edges. Each node has a
name, type, operation type and result register, and optional operand registers
if required. For example, a predicate node just requires a result register con-
taining the location of the predicate test, whereas a statement node performing
an add operation requires a result register and two operands to be added.

Each edge contains an identifier for the head and tail with “->” characters
separating them. The tail of an edge contains a T or F label if coming from a
predicate node. An edge also has a type, specifying whether it is part of the
CDG or DDG.

Also in the manner of Johnson, we follow the same rules for visibility of
names. Names defined in a module definition with the public qualifier have
global scope, those defined within a module definition have module scope,

150

APPENDIX C. GRAMMAR SPECIFICATION FOR PDG FILES 151

A S

R R
P N

[B=1i | [8=ra | [r2=2i |
~ v -

r0=r1mulr8
- NOAP 4

8=r2 |

module if.vsdg {
public function main(r7,r6) {
// Entry node
node nodel2 [type=region,op=ENTRY,arg={r7,r6}];

// Exit node
node node6 [type=stmt,op=EXIT,res=r0];

// Nodes

node node7 [type=stmt,op=mul,res=r0,l=rl,r=r8];
node node0 [type=pred,res=r5];

node node2 [type=region];

node node3 [type=region];

node nodell [type=stmt,op=1lt,res=r5,1=r7,r=r6];
node node9 [type=stmt,op=consti,res=2i];

node node4 [type=stmt,op=asmt,res=r8,1=r3];
node node5 [type=stmt,op=asmt,res=r8,1l=r2];
node nodel0 [type=stmt,op=consti,res=r3,1=1i];
node node8 [type=stmt,op=consti,res=rl,1=5i];

// Data edges

edge node6 -> node7 [type=data];
edge node7 -> node8 [type=datal;
edge node7 -> node0 [type=datal;
edge node0 -> nodell [type=data];
edge node4 -> nodel0 [type=data];
edge node5 -> node9 [type=data];

// Control edges

edge nodel2 -> node6 [type=control];
edge nodel2 -> node7 [type=control];
edge nodel2 -> node0O [type=control];
edge node0:T -> node2 [type=control];
edge nodel0:F -> node3 [type=control];
edge nodel2 -> nodell [type=control];
edge node3 -> node9 [type=control];
edge node2 -> node4 [type=control];
edge node3 -> node5 [type=control];
edge node2 -> nodelO [type=control];
edge nodel2 -> node8 [type=control];

(b)
Figure C.1: A PDG produced by the proc tool (a) and its pdg file output (b).

APPENDIX C. GRAMMAR SPECIFICATION FOR PDG FILES 152

visible only within that module, and names defined in a function have function
scope and are visible only within that function.

C.2 Grammar
In the grammar we use the following style conventions:

Monospaced Literal terminal symbols.
Bold italicised Other terminal literals such as identifiers and constants.

Ttalicised Non-terminal symbols.

C.2.1 Non-terminal rules

pdg:
module
pdg module

module:
module module name { module body }

module _name:
identifier
€

module body:
module_ modifier module item
module _modifier module item module body

module _modifier:
public
€

module item:
function identifier (argument list) { function_body }

argument_ list:
identifier
identifier , argument_list

function_ body:
function_ item
function_ item function_ body

APPENDIX C. GRAMMAR SPECIFICATION FOR PDG FILES 153

function_ item:
node tdentifier parameters ;
edge tdentifier edge_label -> identifier parameters ;

edge_label:
: identifier

parameters:
[parameter list]
€

parameler list:
parameter
parameter , parameter list

parameter:
identifier = identifier
identifier = { arg_list }
arg_list:
arg

arg , arg_list

arg:
identifier

C.2.2 Terminal rules

The identifier terminal follows the same syntax of those in the C program-
ming language [77].

C.2.3 Parameters

Nodes and edges take a number of parameters.

C.2.3.1 Node parameters

Each PDG node takes one required parameter and five optional ones. The
required parameter is type, which specifies the type of PDG node it is. The
optional parameters are op, which specifies the type of operation that node
performs, res which is the result register for that operation, 1 and r, which

APPENDIX C. GRAMMAR SPECIFICATION FOR PDG FILES 154

represent the left and right operand registers respectively, and arg, which is a
list of arguments for the ENTRY node. op parameters are similar to the operator
node names in Johnson’s VECC compiler. The 1 and r parameters can take
constants and identifiers as well as registers. Registers are always prefixed by
r, for example r5, and constants are suffixed by a letter: i for integers and
f for floating point (e.g. 2i and 6.7f). In the case of the call node, the 1
operand takes an identifier representing the name of the function to call.

In addition to these parameters, predicate nodes that represent loops have
two additional parameters: iport and rport. These are pairs of values and
registers separated by a dot. The iport list contains the initial registers for
values in that loop, and the rport list contains the registers for returned values
in that loop. For example: iport={x.r3},rport={x.r0}. These are used by
the seq code generator.

op:
asmt [assignment]
consti constf constid [constant]
1d st [plain load/store]
vld vst [volatile load/store]
tld tst [temporary load/storel
neg add sub mul div mod [signed arithmetic]
udiv umod [unsigned arithmetic]
1sh rsh ursh larithmetic shift]
not and or xor [bitwise arithmetic]
fadd fsub fmul fdiv fneg [floating point]
call [function call]
eq ne gt gte 1t lte [conditional test]
ENTRY EXIT [entry/exit nodel

type:
pred [predicate nodel
stmt [statement nodel
region [region node]

res:
identifier

1:
identifier

r:

identifier

APPENDIX C. GRAMMAR SPECIFICATION FOR PDG FILES 155

C.2.4 Edge parameters
Edges either belong to the CDG or the DDG.

type:
control
data

References

Clang: a C language family frontend for LLVM.
http://clang.llvm.org.

GCC, the GNU Compiler Collection. http://www.gcc.gnu.org.
Graphviz. http://www.graphviz.org.

Intel64 and IA-32 Architectures Optimization Reference Manual.
http://www.intel.com.

llvm-gce — LLVM C front-end. http://1lvm.org/cmds/llvmgcc.html.

MATLAB Central File Exchange. http://www.mathworks.com/
matlabcentral/fileexchange.

SPEC - Standard Performance Evaluation Corporation.
http://www.spec.org.

TIOBE Programming Community Index for July 2009.
http://www.tiobe.com/index.php/content/paperinfo/tpci/
index.html, July 2009.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On finding lowest common
ancestors in trees. In Proceedings of the Fifth Annual ACM Symposium
on Theory of Computing, STOC’ 73, pages 253-265, New York, NY,
USA, 1973. ACM.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, & Tools. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition, 2006.

F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview
of the PTRAN analysis system for multiprocessing. Journal of Parallel
and Distributed Computing, 5(5):617 — 640, 1988.

F. E. Allen. Control flow analysis. In Proceedings of a Symposium on
Compiler Optimization, pages 1-19, New York, NY, USA, 1970. ACM.

156

REFERENCES 157

[13]

[17]
[18]
[19]

[21]

[22]

[23]

[24]

F. E. Allen and J. Cocke. Graph-theoretic constructs for program control
flow analysis. Technical Report IBM Research Report RC 3923, T.J.
Watson Research Center, Yorktown Heights, N.Y., July 1972.

F. E. Allen and J. Cocke. A program data flow analysis procedure.
Commun. ACM, 19(3):137, 1976.

J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion
of control dependence to data dependence. In Proceedings of the 10th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL’83), pages 177-189, New York, NY, USA, 1983. ACM.

Z. Ammarguellat. A control-flow normalization algorithm and its com-
plexity. IFEFE Trans. Softw. FEng., 18:237-251, March 1992.

R. L. Ashenhurst. ACM forum. Commun. ACM, 30(3):195-196, 1987.
R. L. Ashenhurst. ACM forum. Commun. ACM, 30(5):350-355, 1987.

T. Ball and S. Horwitz. Constructing control flow from control depen-
dence. Technical Report CS-TR-1992-1091, University of Wisconsin-
Madison, 1992.

R. A. Ballance and A. B. Maccabe. Program dependence graphs for the
rest of us. Technical Report 92-10, University of New Mexico, Albu-
querque, NM 87131, 1993.

N. D. Barli, H. Mine, S. Sakai, and H. Tanaka. A thread partitioning
algorithm using structural analysis. Joho Shori Gakkai Kenkyu Hokoku,
2000(74):37-42, 2000.

R. S. Barton. A new approach to the functional design of a digital com-
puter. In Proceedings of the Western Joint IRE-AIEE-ACM Computer
Conference (Western’61), pages 393-396, New York, NY, USA, 1961.
ACM.

S. Bates and S. Horwitz. Incremental program testing using program
dependence graphs. In Proceedings of the 20th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’93), pages
384-396, New York, NY, USA, 1993. ACM.

W. Baxter and H. R. Bauer, ITI. The program dependence graph and vec-
torization. In Proceedings of the 16th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL’89), pages 1-11,
New York, NY, USA, 1989. ACM.

REFERENCES 158

[25]

[32]

[33]

[34]

[35]

G. Bell A Dbrief history of supercomputing: “The
Crays”, Clusters and Beowulfs, Centers. What next?
http://research.microsoft.com/en-us/um/people/gbell/supers/
supercomputing-a_brief_history_1965_2002.htm, 2002.

N. Biggs. Algebraic Graph Theory (2nd ed.). Cambridge University
Press, Cambridge, England, 1993.

G. Bilardi and K. Pingali. Algorithms for computing the static single
assignment form. J. ACM, 50(3):375-425, 2003.

B. Boissinot, A. Darte, F. Rastello, B. D. de Dinechin, and C. Guillon.
Revisiting out-of-SSA translation for correctness, code quality and effi-
ciency. In Proceedings of the Tth Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization, CGO 09, pages 114-125,
Washington, DC, USA, 2009. IEEE Computer Society.

M. M. Brandis and H. Méssenbock. Single-pass generation of static
single-assignment form for structured languages. ACM Trans. Program.
Lang. Syst., 16(6):1684-1698, 1994.

P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. Practical
improvements to the construction and destruction of static single as-
signment form. Softw. Pract. Ezper., 28(8):859-881, 1998.

P. Briggs, K. D. Cooper, and L. Torczon. Rematerialization. In PLDI
'92: Proceedings of the ACM SIGPLAN 1992 Conference on Program-
ming Language Design and Implementation, pages 311-321, New York,
NY, USA, 1992. ACM.

M. Budiu and S. C. Goldstein. Pegasus: An efficient intermediate repre-
sentation. Technical Report CMU-CS-02-107, Carnegie Mellon Univer-
sity, May 2002.

D. Byers, M. Kamkar, and T. Palsson. Syntax-directed construction
of value dependence graphs. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01), pages 692-703, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

P. Campbell, K. Krishna, and R. A. Ballance. Refining and defining the
program dependence web. Technical report, University of New Mexico,
Albuquerque, NM, USA., 1993.

L. Carter, J. Ferrante, and C. Thomborson. Folklore confirmed: Re-
ducible flow graphs are exponentially larger. In Proceedings of the 30th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 03, pages 106-114, New York, NY, USA, 2003. ACM.

REFERENCES 159

[36]

[37]

[41]

[42]

[43]

[44]

[47]

[48]

R. J. Chevance and T. Heidet. Static profile and dynamic behavior of
COBOL programs. SIGPLAN Not., 13(4):44-57, 1978.

F. C. Chow and M. Ganapathi. Intermediate program representations
in compiler construction — a bibliography. SIGPLAN Not., 18:21-23,
November 1983.

C. Click and M. Paleczny. A simple graph-based intermediate represen-
tation. In Proceedings of the 1995 ACM SIGPLAN Workshop on In-
termediate Representations (IR’95), pages 35-49, New York, NY, USA,
1995. ACM.

J. Cocke. Global common subexpression elimination. In Proceedings of
a Symposium on Compiler Optimization, pages 20-24, New York, NY,
USA, 1970. ACM.

C. Collberg, G. Myles, and M. Stepp. An empirical study of Java byte-
code programs. Softw. Pract. Exper., 37(6):581-641, 2007.

M. E. Conway. A proposal for an UNCOL. Communications of the ACM,
1(10):5-8, Oct. 1958.

R. P. Cook and I. Lee. A contextual analysis of Pascal programs. Softw.,
Pract. Ezper., 12(2):195-203, 1982.

K. D. Cooper, Harvey, T. J., and K. Kennedy. Iterative data-flow anal-
ysis, revisited. Technical report, Rice University, 2003.

K. D. Cooper, T. J. Harvey, and T. Waterman. Building a control-flow
graph from scheduled assembly code. Technical report, Rice University,
2003.

K. D. Cooper, L. T. Simpson, and C. A. Vick. Operator strength reduc-
tion. ACM Trans. Program. Lang. Syst., 23(5):603-625, 2001.

M. Corti and T. Gross. Approximation of the worst-case execution time
using structural analysis. In Proceedings of the 4th ACM International
Conference on Embedded Software, EMSOFT 04, pages 269277, New
York, NY, USA, 2004. ACM.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control de-
pendence graph. ACM Trans. Program. Lang. Syst., 13(4):451-490, Oct
1991.

J. W. Davidson and C. W. Fraser. The design and application of a retar-
getable peephole optimizer. ACM Trans. Program. Lang. Syst., 2:191—
202, April 1980.

REFERENCES 160

[49]

J. B. Dennis. First version of a data flow procedure language. In
Programming Symposium, Proceedings Collogue sur la Programmation,
pages 362-376, London, UK, 1974. Springer-Verlag.

J. B. Dennis. Data flow supercomputers. Computer, 13(11):48-56, 1980.

E. W. Dijkstra. Letters to the editor: Go to statement considered harm-
ful. Commun. ACM, 11(3):147-148, 1968.

D. Ebner, F. Brandner, B. Scholz, A. Krall, P. Wiedermann, and
A. Kadlec. Generalized instruction selection using SSA-graphs. In
LCTES '08: Proceedings of the 2008 ACM SIGPLAN-SIGBED Confer-

ence on Languages, Compilers, and Tools for Embedded Systems, pages
31-40, New York, NY, USA, 2008. ACM.

A. Erosa and L. J. Hendren. Taming control flow: A structured approach
to eliminating goto statements. In Proceedings of the 199 IEEE Inter-
national Conference on Computer Languages, pages 229-240, Toulouse,
France, 1994. IEEE Computer Society Press.

J. Eukasiewicz. Aristotle’s Syllogistic From the Standpoint of Modern
Formal Logic (2nd ed.). Oxford Clarendon Press, Oxford, England, 1957.

J. Ferrante and M. Mace. On linearizing parallel code. In Proceedings
of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 85, pages 179-190, New York, NY, USA,
1985. ACM.

J. Ferrante, M. Mace, and B. Simons. Generating sequential code from
parallel code. In Proceedings of the 2nd International Conference on
Supercomputing, 1CS 88, pages 582-592, New York, NY, USA, 1988.
ACM.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang.
Syst., 9(3):319-349, 1987.

C. W. Fraser. A retargetable compiler for ANSI C. SIGPLAN Not.,
26(10):29-43, 1991.

C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: Design and
Implementation. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special
case of disjoint set union. In Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, STOC ’83, pages 246251, New
York, NY, USA, 1983. ACM.

REFERENCES 161

[61]

|66]

[67]

[71]

M. J. Harrold, B. Malloy, and G. Rothermel. Efficient construction of
program dependence graphs. In Proceedings of the 1993 ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA’93),
pages 160-170, New York, NY, USA, 1993. ACM.

P. Havlak. Construction of thinned gated single-assignment form. In
Proceedings of the 6th International Workshop on Languages and Com-
pilers for Parallel Computing (LCPC’94), pages 477-499, London, UK,
1994. Springer-Verlag.

P. Havlak. Nesting of reducible and irreducible loops. ACM Trans.
Program. Lang. Syst., 19(4):557-567, 1997.

M. S. Hecht. Flow Analysis of Computer Programs. Elsevier Science
Inc., New York, NY, USA, 1977.

M. S. Hecht and J. D. Ullman. Flow graph reducibility. In Proceedings
of the 4th ACM Symposium on Theory of Computing, STOC "72, pages
238-250, New York, NY, USA, 1972. ACM.

M. S. Hecht and J. D. Ullman. Characterizations of reducible flow graphs.
J. ACM, 21(3):367-375, 1974.

J. E. Hopcroft and J. D. Ullman. An nlogn algorithm for detecting
reducible graphs. In Proceedings of the 6th Annual Princeton Conference
on Information Sciences and Systems, pages 119-122, 1972.

W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,
R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab,
J. G. Holm, and D. M. Lavery. The superblock: an effective technique
for VLIW and superscalar compilation. J. Supercomput., 7(1-2):229-248,
1993.

J. Janssen and H. Corporaal. Making graphs reducible with controlled
node splitting. ACM Trans. Program. Lang. Syst., 19(6):1031-1052,
1997.

N. Johnson and A. Mycroft. Combined code motion and register allo-
cation using the value state dependence graph. In Proceedings of the
12th International Conference on Compiler Construction, CC '03, pages
1-16, Berlin, Heidelberg, 2003. Springer-Verlag.

N. Johnson and A. Mycroft. Using multiple memory access instructions
for reducing code size. In Proceedings of the 18th International Confer-
ence on Compiler Construction (CC’04), pages 265-280, 2004.

REFERENCES 162

[72]

[73]

[74]

[77]

[78]

[79]

[80]

[83]

N. E. Johnson. Code size optimization for embedded processors. Tech-
nical Report UCAM-CL-TR-607, University of Cambridge, Computer
Laboratory, November 2004.

R. Johnson, D. Pearson, and K. Pingali. The program structure tree:
computing control regions in linear time. In Proceedings of the ACM
SIGPLAN 1994 Conference on Programming Language Design and Im-
plementation, PLDI 94, pages 171-185, New York, NY, USA, 1994.
ACM.

R. Johnson and K. Pingali. Dependence-based program analysis. In
Proceedings of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation, PLDI 93, pages 78-89, New York,
NY, USA, 1993. ACM.

R. C. Johnson. Efficient program analysis using dependence flow graphs.
PhD thesis, Ithaca, NY, USA, 1995.

A. Johnstone, E. Scott, and T. Womack. What assembly language pro-
grammers get up to: Control flow challenges in reverse compilation.
In Furopean Conference on Software Maintenance and Reengineering,
page 83, Los Alamitos, CA, USA, 2000. IEEE Computer Society.

B. W. Kernighan. The C Programming Language. Prentice Hall Profes-
sional Technical Reference, 1988.

J. Knoop, O. Riithing, and B. Steffen. Optimal code motion: theory and
practice. ACM Trans. Program. Lang. Syst., 16(4):1117-1155, 1994.

D. E. Knuth. An empirical study of FORTRAN programs. Softw. Pract.
Ezper., 1(2):105-133, 1971.

C. Lattner. LLVM and Clang: Advancing compiler technology. Keynote
Talk, Free and Open Source Developers European Meeting, FOSDEM
"11, Brussels, Belgium, February, 2011.

C. Lattner and V. Adve. LLVM language reference manual.
http://1llvm.cs.uiuc.edu/docs/LangRef .html.

C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International

Symposium on Code Generation and Optimization, CGO 04, page 75,
Washington, DC, USA, 2004. IEEE Computer Society.

A. C. Lawrence. Optimizing compilation with the Value State Depen-
dence Graph. Technical Report UCAM-CL-TR-705, University of Cam-
bridge, Computer Laboratory, Dec. 2007.

REFERENCES 163

[84]

[91]

[94]

T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators
in a flowgraph. ACM Trans. Program. Lang. Syst., 1:121-141, January
1979.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann.
Effective compiler support for predicated execution using the hyperblock.
pages 161-170, Los Alamitos, CA, USA, 1995. IEEE Computer Society
Press.

E. F. Moore. Gedanken Experiments on Sequential Machines. In Au-
tomata Studies, pages 129-153. Princeton U., 1956.

S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, San Francisco, California, 1997.

A. Mycroft. The value state dependence graph. SSA Seminar, Autrans,
France, 2009.

K. J. Ottenstein. Intermediate program representations in compiler con-
struction: a supplemental bibliography. SIGPLAN Not., 19:25-27, July
1984.

K. J. Ottenstein, R. A. Ballance, and A. B. MacCabe. The program de-
pendence web: a representation supporting control-, data-, and demand-
driven interpretation of imperative languages. In Proceedings of the ACM
SIGPLAN 1990 Conference on Programming Language Design and Im-
plementation, PLDI 90, pages 257-271, New York, NY, USA, 1990.
ACM.

K. J. Ottenstein and L. M. Ottenstein. The program dependence graph
in a software development environment. In Proceedings of the First
ACM SIGSOFT/SIGPLAN Software Engineering symposium on Practi-
cal Software Development Environments, SDE 84, pages 177-184, New
York, NY, USA, 1984. ACM.

D. Padua. The Fortran I Compiler. Computing in Science and FEngg.,
2(1):70-75, 2000.

M. Paleczny, C. Vick, and C. Click. The Java HotSpot™ server com-
piler. In Proceedings of the 2001 Java™ Virtual Machine Research and
Technology Symposium (JVM’01), pages 1-12, Berkeley, CA, USA, 2001.
USENIX Association.

C. A. Petri. Kommunikation mit Automaten, PhD thesis. Technical
report, University of Bonn, 1962.

REFERENCES 164

[95]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P. Stodghill. Depen-
dence flow graphs: an algebraic approach to program dependencies. In
Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL 91, pages 67-78, New York,
NY, USA, 1991. ACM.

M. Richards and C. Whitby-Strevens. BCPL — The Language and its
Compiler. Cambridge University Press, 1980.

B. K. Rosen. High-level data flow analysis. Commun. ACM, 20(10):712—
724, 1977.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value num-
bers and redundant computations. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’88), pages 12-27, 1988.

H. J. Saal and Z. Weiss. Some properties of APL programs. In APL ’75:
Proceedings of Seventh International Conference on APL, pages 292—-297,
New York, NY, USA, 1975. ACM.

H. J. Saal and Z. Weiss. An empirical study of APL programs. Computer
Languages, 2(3):47 — 59, 1977.

A. Salvadori, J. Gordon, and C. Capstick. Static profile of COBOL
programs. SIGPLAN Not., 10(8):20-33, 1975.

J. Sammet. Farewell to Grace Hopper — end of an era! Commun. ACM,
35:128-131, April 1992.

V. Sarkar. Automatic partitioning of a program dependence graph into
parallel tasks. IBM J. Res. Dev., 35:779-804, September 1991.

S. Schéfer and B. Scholz. Optimal chain rule placement for instruction
selection based on SSA graphs. In SCOPES ’07: Proceedings of the 10th
International Workshop on Software & Compilers for Embedded Systems,
pages 91-100, New York, NY, USA, 2007. ACM.

D. Seal. ARM Architecture Reference Manual. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

M. Sharir. Structural analysis: A new approach to flow analysis in
optimizing compilers. Comput. Lang., 5(3):141-153, 1980.

B. Simons, D. Alpern, and J. Ferrante. A foundation for sequentializing
parallel code. In Proceedings of the Second Annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA 90, pages 350-359, New
York, NY, USA, 1990. ACM.

REFERENCES 165

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

B. Simons and J. Ferrante. An efficient algorithm for constructing a
control flow graph for parallel code. Technical Report TR 03.465, IBM
Santa Teresa Laboratory, San Jose, California, USA, Feb. 1993.

V. C. Sreedhar, R. D.-C. Ju, D. M. Gillies, and V. Santhanam. Trans-
lating out of static single assignment form. In Proceedings of the 6th

International Symposium on Static Analysis (SAS’99), pages 194-210,
London, UK, 1999. Springer-Verlag.

J. Stanier. Removing and Restoring Control Flow with the Value State
Dependence Graph. Technical report, University of Sussex, School of
Informatics, Oct. 2011.

J. Stanier and A. Lawrence. The value state dependence graph revisited.
In Proceedings of the Workshop on Intermediate Representations, WIR
11, pages 53—60, 2011.

B. Steensgaard. Sequentializing program dependence graphs for irre-
ducible programs. Technical Report MSR-TR-93-14, Microsoft Research,
1993.

E. Stoltz, M. P. Gerlek, and M. Wolfe. Extended SSA with factored
use-def chains to support optimization and parallelism. In Proceedings
of the 27th Annual Hawaii International Conference on System Sciences,
pages 43-52, 1993.

R. Tarjan. Testing flow graph reducibility. In Proceedings of the Fifth
Annual ACM Symposium on Theory of Computing, STOC 73, pages
96-107, New York, NY, USA, 1973. ACM.

R. E. Tarjan. Fast algorithms for solving path problems. J. ACM,
28(3):594-614, 1981.

R. Tate, M. Stepp, and S. Lerner. Generating compiler optimization from
proofs. In POPL ’10: Proceedings of the 87th Annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages, pages
389-402, New York, NY, USA, 2010. ACM.

R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: A
new approach to optimization. In POPL ’09: Proceedings of the 36th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 264-276, New York, NY, USA, 2009. ACM.

L. Torczon and K. Cooper. Engineering A Compiler. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2007.

J.-P. Tremblay and P. G. Sorenson. Theory and Practice of Compiler
Writing. McGraw-Hill, Inc., New York, NY, USA, 1985.

REFERENCES 166

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

P. Tu and D. Padua. Efficient building and placing of gating functions.
In Proceedings of the ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, PLDI 95, pages 47-55, New York,
NY, USA, 1995. ACM.

S. Unger and F. Mueller. Handling irreducible loops: Optimized
node splitting versus DJ-graphs. ACM Trans. Program. Lang. Syst.,
24(4):299-333, 2002.

E. Upton. Optimal sequentialization of gated data dependence graphs is
NP-complete. In Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications, PDPTA 03,
pages 1767-1770. CSREA Press, June 2003.

E. Upton. Compiling with data dependence graphs. Technical report,
University of Cambridge, Computer Laboratory, July 2006.

M. N. Wegman and F. K. Zadeck. Constant propagation with conditional
branches. ACM Trans. Program. Lang. Syst., 13(2):181-210, Apr 1991.

D. Weise, R. F. Crew, M. Ernst, and B. Steensgaard. Value depen-
dence graphs: representation without taxation. In Proceedings of the
21st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 94, pages 297-310, New York, NY, USA, 1994.
ACM.

M. Wolfe. Beyond induction variables. In Proceedings of the ACM SIG-
PLAN 1992 Conference on Programming Language Design and Imple-
mentation, PLDI '92, pages 162-174, New York, NY, USA, 1992. ACM.

F. K. Zadeck. The development of static single assignment form. Pre-
sented at the SSA Seminar, Autrans, France, April, 2009.

	Coversheet
	Stanier, James

