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Abstract

The focus of this thesis is to propose and implement a highly efficient nu-
merical method to study cell dynamics. Three key phases are covered: math-
ematical modelling, linear stability analytical theory and numerical simula-
tions using the moving grid finite element method. This aim is to study cell
deformation and cell movement by considering both the mechanical and bio-
chemical properties of the cortical network of actin filaments and its concen-
tration. These deformations are assumed to be a result of the cortical actin
dynamics through its interaction with a protein known as myosin II in the cell
cytoskeleton.

The mathematical model that we consider is a continuum model that couples
the mechanics of the network of actin filaments with its bio-chemical dynam-
ics. Numerical treatment of the model is carried out using the moving grid
finite element method. By assuming slow deformations of the cell boundary,
we verify the numerical simulation results using linear stability theory close
to bifurcation points. Far from bifurcation points, we show that the model
is able to describe the deformation of cells as a function of the contractile
tonicity of the complex formed by the association of actin filaments with the
myosin II motor proteins. Our results show complex cell deformations and
cell movements such as cell expansion, contraction, translation and protru-
sions in accordance with experimental observations.

The migratory behaviour of cells plays a crucial role in many biological
events such as immune response, wound healing, development of tissues, em-
bryogenesis, inflammation and the formation of tumours.
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Chapter 1

Introduction

1.1 General overview

Cells are usually minute in size but complex in structure and dynamics. They are the
smallest known basic unit of life and are capable of existing on their own in the form of
a single cell organism such as amoeba. They can also exist as a group of cells (as found
in multicellular organisms such as slime molds) working together to perform specific
tasks towards the well being or detriment of the organism. They perform some cellular
functions by responding to stimuli in their environment, usually by becoming polarised,
moving, deforming (i.e a change in shape or size) and repositioning their intracellular
organelles (Chen et al. 2000). Likewise in the absence of external stimuli, cells in vitro

are found to deform spontaneously (Binamé et al. 2010; Maeda et al. 2008). It is now well
established that the cortical actin filaments play an important part in both the spontaneous
and migratory behaviour of cells, though the series of events that lead to each may be
different (Stéphanou et al. 2004).

The migratory behaviour of cells plays a crucial role in many biological events (e.g.
physiological and pathological process (Le Clainche and Carlier 2008)) such as immune
response (Fleischer et al. 2007; Lauffenburger and Horwitz 1996; Ridley et al. 2003),
wound healing, development of tissues (Xue et al. 2010), embryogenesis (Clark 1996;
Stéphanou 2010), inflammation and the formation of tumour metastasis (Lauffenburger
and Horwitz 1996; Stéphanou et al. 2008). A significant amount of work has been done
in determining the migratory behaviour of cells. Most of this work has been done through
theoretical studies, laboratory experiments and mathematical modelling of cell dynamics
(Zaman et al. 2005). In the last few decades, a lot of studies were carried out in order
to aid the understanding of biochemical processes of cell motility. These studies have
improved our understanding of the order of events and the identification of some key
molecular components that are actively involved in cell motility (Keren and Theriot 2008).
Migration is the result of a cycle of multistep events (Rafelski and Theriot 2004; Xue et al.
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2010) namely: protrusion of pseudopodia infront of the cell body (the protrusion must be
large for migration to be sustained), the formation of new adhesion sites that connect the
extracellular matrix to the actin cytoskeleton at the protrusion regions (Le Clainche and
Carlier 2008), the development of traction, translocation of the cell body and the release
of old adhesion sites at the rear of the cell (Ananthakrishnan and Ehrlicher 2007; Gupton
et al. 2005; Lauffenburger and Horwitz 1996). These events depend on the mechanical
properties of the cells which in turn are determined by the cytoskeleton and its associated
proteins, cell structures as well as the surroundings with which the cells interact (Zhu
et al. 2000). On the contrary, less work has been done towards the understanding of the
spontaneous deformation of cells (Stéphanou et al. 2004). Spontaneous deformation is
found to occur in both static and motile cells (Maeda et al. 2008). It has been hypothesised
that spontaneous deformation of a cell is caused by an internal pressure generated in
the cell cytoplasm as a result of the cortical actomyosin contraction. This pressure is
assumed to be sufficient in pushing the cell membrane outward at positions where the
membrane is not strongly linked to the cytoskeleton (Binamé et al. 2010; Paluch et al.
2005; 2006). It is clear that any work geared towards understanding the spontaneous
dynamics of cells would shed more light on the mechanisms that govern cell dynamics
and also improve understanding of the mechanisms and processes that prompt a static cell
to begin to migrate.

Most of the recent studies on cell migration have focused on the mechanisms of cell-
signalling that play a part towards the occurrence and sustenance of large-scale cell po-
larity while little attention has been given to the study of the mechanical and physical
factors that engineer the large-scale coordination of cell dynamics (Keren and Theriot
2008). By coupling the interactions among the various mechanical and biochemical fac-
tors, a better understanding could be gained on the various cellular processes that regulate
cell movement (Okeyo et al. 2009). Although there has been a considerable amount of
work towards the study of the F-actin network dynamics, it is not fully understood how
the mechanical forces produced by actomyosin contractility spatiotemporally control the
F-actin flows and deformations (Okeyo et al. 2009). In Okeyo et al. (2009), it has been
suggested that the mechanical forces originating from the actomyosin interactions are key
to the occurrence of cell movement. Actin is a polymer that can exist either in filamentous
form (F-actin) or in monometric form (G-actin) (Chen et al. 2000) and F-actin is arranged
in a paired helix of two protofilaments (Ananthakrishnan et al. 2006). The actin cortex
is made up of short actin filaments that are arranged as a three-dimensional meshwork
of approximately 50 nm (Ananthakrishnan et al. 2006) and underlies the cell membrane.
The size of the meshwork increases towards the interior of the cell to approximately 300
nm (Ananthakrishnan et al. 2006). Actin filament usually undergoes rapid polymerisa-
tion (into F-actin) and depolymerisation (into G-actin) and this depends on physical or
chemical conditions that influence the cell (Pullarkat et al. 2007). Its network is the most
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prevalent and dynamic protein in the cell cytoskeleton and plays an important part in
maintaining cell shape and locomotion (Pullarkat et al. 2007).

The aim of this work is to study cell deformations by considering both the mechanical
and biochemical properties of the cortical network of actin filaments and its concentration.
In this study, we adopt the hypothesis that the filaments will either push on the membrane
when they polymerise in order to create more space for the extension of actin filaments
or pull on the membrane when they contract. Contraction of the filaments occurs as a
result of the interaction of actin with myosin which is a protein found in the cytoplasm.
As a result of the interaction between actin filaments and myosin-II, stress fibres generate
a contractile force that is used in cell locomotion and control of cell shape (Bischofs
et al. 2008; Senju and Miyata 2009). We also assumed that the contraction of the network
creates cytoplasmic flows throughout the cell which increase the pressure in the cytoplasm
and push the membrane outward at locations where the membrane is not firmly linked to
the actin network (Stéphanou et al. 2004).

Our model is a modification of a cytomechanical model by Stéphanou et al. (2004)
which was an extension of an earlier model describing the actin cytogel by Lewis and
Murray (1991; 1992). In our model we focus on the polymerisation kinetics of actin with
regard to cell deformations as was done in Stéphanou et al. (2004) and Alt and Tranquillo
(1995).

A two-dimensional (2D) approximation of the problem holds since the cell that we
consider is an in vitro cell adhering on a 2D substrate. In an experimental condition
the lamellipodial zone where the actin dynamics are taking place is very flat and can be
considered 2D. In Stéphanou et al. (2004) the description of the actin dynamics was re-
stricted to a one-dimensional circular active layer of radius r in order to avoid the problem
involved in dealing with a free moving cell boundary. The radial movement of actin in the
cell cortex was not considered but its tangential displacement was assumed to lead to a lo-
cal increase or decrease in density on the circle which affect the intensity of the retraction
force. Also the model equations were derived in the polar coordinate system. The limita-
tion of the polar coordinate system is its difficulty in describing the evolution of a domain
as it moves outside the origin of the polar coordinate. These limitations can be dealt with
by using a different computational model for its numerical approximation based on, for
example, a level set method (LSM) (Sethian 1996), a boundary element method (BEM)
(Brebbia 1981; Crouch and Starfield 1983) or a finite element method (FEM) (Madzva-
muse et al. 2003; Reddy 1993; Zienkiewicz et al. 2005). BEM is an efficient numerical
tool that is very useful in the discretization of models where only the surface is of inter-
est (Hofreither et al. 2010) and it is computationally expensive to obtain solutions in the
interior of the domain. Also the application of the BEM to second-order inhomogeneous
partial differential equations and nonlinear problems is much more difficult compared to
the FEM (LaForce 2006). Mathematical models that describe cell dynamics are usually
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non-linear in nature. FEM can be used easily to approximate non-linear problems (Reddy
1993; Sadd 2005). It can handle continuously deforming complex geometries (Madzva-
muse 2006) and is thus perfect for modelling cell deformations. The LSM is an efficient
numerical technique that can be used to track the motion of complex fronts as they evolve
(Sethian 1996). The LSM method will not be implemented here but we intend to use it in
future studies to track splitting and reconnecting cells.

There are various finite element computational strategies for moving boundary prob-
lems. An example is the moving grid finite element method which was introduced by
Madzvamuse (2000) to study partial differential equations posed on complex evolving
domains. It is a highly accurate, efficient and robust numerical method which has been
used successfully to compute solutions of reaction-diffusion systems of biological models
in growing and continuously deforming domains Madzvamuse (2006); Madzvamuse and
Maini (2007); Madzvamuse et al. (2003; 2005). The novelty of the moving grid finite
element method is its ability to allow the prescription of the nodal displacement of the
computational grid points of the finite element mesh during the evolution of the domain
(Madzvamuse 2006; Madzvamuse et al. 2005).

In view of these, we develop in this thesis a moving grid finite element computation of
a cytomechanical model of cell deformation that is defined in a 2D cartesian coordinate
system. We present our findings and show that this model is able to describe the intracel-
lular actin dynamics and the resulting shapes and movements of protrusion and retraction
of the membrane.

1.1.1 Outline of the thesis

In Chapter 2 we give a biological overview of the cell cytoskeleton, dynamics of actin
filaments and the mechanism of cell movement. In Chapter 3 we introduce the cytome-
chanical model from first principles. Furthermore, in this Chapter we carry out linear
stability theory in order to identify key bifurcation parameters as well as compute analyt-
ical solutions close to bifurcation points that will be used to validate numerical results.
We introduce the moving finite element numerical scheme for the model in Chapter 4. In
Chapter 5 we present our findings from the numerical simulations of the MGFEM. We
show that this model is able to describe the intracellular actin dynamics and the resulting
shapes and movements of protrusion and retraction of the membrane. Furthermore we
highlight key parameters of the model that determine the cell membrane dynamics.

We introduce below some mathematical concepts and formulae.
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1.2 Notation and mathematical preliminaries

1.2.1 Notation

Here we introduce some basic notation that will be used throughout the thesis.

We denote by RRR2 a two-dimensional euclidean space and

RRR2 = {x = (x,y) : x,y ∈RRR}

withRRR denoting a set of real numbers. An open and connected subset ofRRR2 is known as a
domain. We define our domain as ΩΩΩt ⊂RRR2 which represents the continuously deforming
and moving cell at time t and its corresponding boundary is represented by ∂Ω∂Ω∂Ωt , where
t ∈ I = [0,Tf ]. The area of ∂Ω∂Ω∂Ωt for all t ∈ I is denoted by |∂Ω∂Ω∂Ωt |. In RRR2 we define dΩΩΩt =

dxdy and ds is the element of arclength.

Here we let g(x(t) , t) be scalar functions of class C0(ΩΩΩt×R) and w(x(t), t)= (w1,w2)

a vector valued function of class [C0(ΩΩΩt×R)×C0(ΩΩΩt×R)], where C0(ΩΩΩt×R) denotes a
set of continuous functions in ΩΩΩt×R. And we define the following operators.
The gradient operator

∇g = (
∂g
∂x

,
∂g
∂y

).

The divergence operator

∇ ·w =
∂w1

∂x
+

∂w2

∂y
.

The Laplace operator

∆g = ∇ ·∇g =
∂ 2g
∂x2 +

∂ 2g
∂y2 .

By ∇λ we denote the gradient with respect to λ , where λ (x(t)) := (λ1(x(t)), λ2(x(t)),
λ3(x(t))) denotes the barycentric coordinate system and

∇λ g = (
∂g
∂λ1

,
∂g
∂λ2

,
∂g
∂λ3

).

Ordinary derivatives are denoted using the Leibniz notation dg/dx, d2g/dx2, . . . , or the
prime notation y′, y′′, . . . . Below we state some relevant mathematical concepts and for-
mulae.

1.2.2 Some mathematical formulae

Here we let g(x(t) , t) and w(x(t), t) to be as defined above. We let also r (x(t) , t) be a
scalar function of class C0(ΩΩΩt×R). And we recall the following theorems:
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Gradient theorem

The gradient theorem is (Reddy 1993)∫
ΩΩΩt

∇r dΩΩΩt =
∫

∂Ω∂Ω∂Ωt

nr ds, (1.1)

where n = (n1,n2) is the outward unit normal to ∂Ω∂Ω∂Ωt and n1,n2 are the rectangular com-
ponents of n (Larsson and Thomée 2003). Applying this to the product rg and afterwards
utilizing the product rule gives∫

ΩΩΩt

(∇r)g dΩΩΩt = −
∫

ΩΩΩt

(∇g)r dΩΩΩt +
∫

∂Ω∂Ω∂Ωt

nrg ds.

By rewriting in component form, we obtain the following identities (Reddy 1993).

∫
ΩΩΩt

∂ r
∂x

g dΩΩΩt +
∫

ΩΩΩt

∂g
∂x

r dΩΩΩ =
∫

∂Ωt∂Ωt∂Ωt

n1rg ds, (1.2)

∫
ΩΩΩt

∂ r
∂y

g dΩΩΩt +
∫

ΩΩΩt

∂g
∂y

r dΩΩΩt =
∫

∂Ω∂Ω∂Ωt

n2rg ds. (1.3)

Divergence theorem

The divergence theorem is ∫
ΩΩΩt

∇ ·w dΩΩΩt =
∫

∂Ω∂Ω∂Ωt

w ·n ds, (1.4)

Green’s formula

Applying the divergence theorem (1.4) to the product g∇r we obtain the following iden-
tities known as the Green’s formula (Larsson and Thomée 2003).∫

ΩΩΩt

∇r ·∇g dΩΩΩt =
∫

ΩΩΩt

∆r g dΩΩΩt +
∫

∂Ω∂Ω∂Ωt

g ∇r ·n ds. (1.5)

1.2.3 Spaces and norms

We define some important spaces and norms. Let 1≤ p < ∞, we define

Lp(ΩΩΩt) =
{

v(x, t)a measurable function :
∫

ΩΩΩt

|v(x, t) |p dΩΩΩt < ∞ for x ∈ΩΩΩt , t ∈ I
}

and its corresponding norm

‖v(x, t)‖Lp(ΩΩΩt) =

(∫
ΩΩΩt

|v(x, t) |p dΩΩΩt

) 1
p

.
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The set Lp(ΩΩΩt) is a Banach space. We define the following Hilbert space on ΩΩΩt , t ∈ I:

H1(ΩΩΩt) =
{

v(x, t) ∈ L2(ΩΩΩt), Dαααv ∈ L2(ΩΩΩt), |ααα| ≤ 1
}
,

for every t ∈ I, where ααα = (α1,α2), |ααα| = α1 +α2 and Dααα represents the distributional
derivative at every time t ∈ I,

Dαααv =
∂ |ααα|v

∂ααα1x ∂ααα2y
.

1.2.4 Reynolds transport theorem

Here we state the Reynolds transport theorem. This theorem shall be useful in the deriva-
tion of the moving grid finite element weak formulation.

Theorem 1.2.1. (Reynolds transport theorem) Let g(x, t) be a scalar function defined on

ΩΩΩt and βββ be a flow velocity field then

d
dt

∫
ΩΩΩt

g dΩΩΩt =
∫

ΩΩΩt

(
Dg
Dt

+g∇ ·βββ
)

dΩΩΩt , (1.6)

where D/Dt denotes a material derivative. A proof of this theorem can be found in Ache-

son (1990) and Madzvamuse (2000).

1.2.5 Method of Frobenius

The method of Frobenius (Zill and Cullen 2000) is usually used to solve an ordinary
differential equation (ODE) by finding series solutions about a regular singular point.

Definition 1.2.1. (Regular singular points) A singular point x = x0 of a linear differential

equation written in the form

y′′+m(x)y′+ z(x)y = 0

is said to be a regular singular point if m∗(x) = (x− x0)m(x) and z∗(x) = (x− x0)
2z(x)

are both analytic at x0, i.e if they can be written in the form of a power series in (x− x0)

with a positive radius of convergence.

If an ODE has a regular singular point at x = x0, then there exists at least one solution
of the form (Coleman 2005; Zill and Cullen 2000)

y = (x− x0)
κ

∞

∑
n=0

cn(x− x0)
n =

∞

∑
n=0

cn(x− x0)
n+κ , (1.7)

where κ is a constant to be determined. The method of finding such a solution is called
the method of Frobenius (Zill and Cullen 2000). We note that for x0 = 0 the series (1.7)
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reduces to
y = xκ

∞

∑
n=0

cnxn. (1.8)

1.2.6 Bessel’s equation

The equation
x2y′′+ xy′+(x2−α

2)y = 0, (1.9)

is known as the Bessel’s equation. We present the analytical solution of this equation
using the method of Frobenius (Coleman 2005; Zill and Cullen 2000). The analytical
solution is well known (Coleman 2005; Zill and Cullen 2000) but we present it here for
the sake of completeness. Here we focus only on non-negative integer values of α .

The Bessel’s equation has a regular singular point at x = 0 thus there exist at least one
solution of the form y = xκ

∑
∞
n=0 cnxn. Substituting the last expression into (1.9) yields

x2y′′+ xy′+(x2−α
2)y =

∞

∑
n=0

(n+κ)(n+κ−1)cnxn+κ +
∞

∑
n=0

(n+κ)cnxn+κ

+
∞

∑
n=0

cnxn+κ+2−α
2

∞

∑
n=0

cnxn+κ = 0.

By pulling out the first term of the first, second and fourth series we obtain

c0(κ
2−α

2)xκ + xκ
∞

∑
n=1

[(n+κ)(n+κ−1)+(n+κ)−α
2]cnxn + xκ

∞

∑
n=0

cnxn+2 = 0,

or after combining the second and third series,

(κ2−α
2)c0 +

[
(κ +1)2−α

2]c1x+
∞

∑
n=2
{
[
(n+κ)2−α

2]cn + cn−2}xn+κ = 0. (1.10)

A value of κ for which a solution is possible satisfies the indicial equation κ2−α2 = 0
(since the first term must be zero with c0 6= 0 otherwise we will have the 0 solution). The
indicial roots are κ =±α, where α 6= 0. Substituting κ = α, α > 0, into (1.10) yields

[
(α +1)2−α

2]c1x+
∞

∑
n=2
{
[
(n+α)2−α

2]cn + cn−2}xn+κ = 0. (1.11)

Since (1.11) is identically zero, the identity property (Zill and Cullen 2000) implies that
the coefficient of each power of x is equal to zero. Thus

[
(α +1)2−α

2]c1 = (2α +1)c1 = 0. (1.12)

and [
(n+α)2−α

2]cn + cn−2 = 0, n = 2,3, · · · . (1.13)
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From (1.12) we have that c1 = 0. And from (1.13) we have

n(n+2α)cn =−cn−2, n = 2,3, · · · . (1.14)

The relation (1.14) with c1 = 0 implies that c3 = c5 = c7 = · · · = 0, so for n = 2,4,6, . . .
we obtain, after choosing n = 2k, k = 1,2,3, . . .

c2k =−
c2k−2

2k(2k+2α)
=− c2k−2

2′k2′(k+α)
.

This is a recurrence relation and is equivalent to (Coleman 2005; Zill and Cullen 2000)

c2k =−
(−1)k

22k+αk!Γ(1+α + k)
,

where Γ(1+α + k) is the Gamma function. The Frobenius solution

y = Jα(x) =
∞

∑
k=0

c2kx2k+α

=
∞

∑
k=0

(−1)k

k!Γ(k+α +1)

(x
2

)2k+α

,

where Jα(x) is known as the Bessel function of the first kind of order α . Also, for the
indicial root κ =−α, we proceed in the same way as above and obtain that

y = J−α(x) =
∞

∑
k=0

c2kx2k+α

=
∞

∑
k=0

(−1)k

k!Γ(k−α +1)

(x
2

)2k−α

,

where J−α(x) is known as the Bessel function of the first kind of order −α . For non-
integers values of α, Jα(x) is bounded at x = 0, but J−α(x) is not (Zill and Cullen 2000).
This implies that they are linearly independent and the general solution of (1.9) for x > 0
is

y =C1Jα(x)+C2J−α(x).

Let us define the function

Yα =
(cosπα)Jα(x)− J−α(x)

sinπα

for non-integer values of α. Yα is known as the Bessel function of the second kind of
order α and is also a solution of (1.9). Furthermore Jα(x) and Yα are linearly independent.
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Thus the general solution of (1.9) can be written as

y =C1Jα(x)+C2Yα(x). (1.15)

1.2.7 Modified Bessel’s equation

The modified Bessel’s equation of order α is

x2y′′+ xy′− (x2 +α
2)y = 0. (1.16)

This equation is solved using the method of Frobenius as was shown above for the Bessel’s
equation (1.9). The solution for non-negative integers, x > 0 is (Coleman 2005)

y = c1Iα(x)+ c2Kα(x), (1.17)

where
Iα(x) =

∞

∑
k=0

1
k!Γ(k+α +1)

(x
2

)2k+α

, (1.18)

is a modified Bessel function of the first kind of order α and

Kα(x) =
π

2
I−α(x)− Iα(x)

sinπα
(1.19)

with
I−α(x) =

∞

∑
k=0

1
k!Γ(k−α +1)

(x
2

)2k−α

. (1.20)

I−α(x) and Kα(x) are the modified Bessel function of the first kind of order −α and
modified Bessel function of the second kind of order α respectively.

The Bessel and modified Bessel function will be used in Section 3.6.2 to obtain the
analytical solution of the Neumann Laplacian on a disk.
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Chapter 2

Biological overview of cell movement

2.1 Introduction

Cells are the basic unit of life capable of independent existence as observed in unicellular
organisms (e.g. amoeba) or as a group as found in multicellular organisms (e.g. animals
and plants). They are broadly divided into two types: namely eukaryotic and prokaryotic.
Prokaryotic cells usually exist as unicellular organisms while eukaryotic cells can exist
as unicellular organism (e.g. amoeba and yeast) or multicellular organisms like plants
and animals (Alberts et al. 2002; Karp 1999). Prokaryotes are organisms whose cells lack
membrane bound organelles. Eukaryotes on the other hand, are organisms whose cells are
organized into complex structures with organelles enclosed within membranes as found in
multicellular organisms like plants and animals and single-cell organisms like yeast and
amoeba. Though there are remarkable differences in the morphological features among
single-cell and multicellular organisms, the molecular biology and biochemistry at the
cellular level is basically the same (Karp 1999). In the human, there exist more than 200
different types of cells each physiologically and biochemically specialised for a specific
function (Stéphanou 2010). Though cells are naturally built to carry out specific functions,
in multicellular organisms, different cells come together to form tissues which work in
harmony for the well being or detriment of the organism. For organisms with increasing
level of complexity, tissues are organised into organs which are in turn organised into
systems. The formation of tissues, organs and systems is usually achieved through cell
replication and movement which makes cell movement a vital process for reproduction,
maintenance and development in multicellular organisms (Le Clainche and Carlier 2008).

A general description of the structure, mechanism and dynamics of movement of a
eukaryotic cell will be presented and particular emphasis would be on cytoskeleton which
is the cell component that is largely responsible for deformation and movement. Rele-
vant biological details required as a background for the development of the mathematical
model will also be reviewed.
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2.2. Description of an eukaryotic cell

2.2 Description of an eukaryotic cell

Here we introduce the eukaryotic cell and discuss its essential components in order to set
the stage for the description of cell movement.

2.2.1 Overview

A eukaryotic cell is composed of three main parts; the cell membrane, cytoplasm and
nucleus. We present below their definitions.

Definition 2.2.1. (Cell membrane) This is a phospholipid bilayer with embedded proteins

that separates the cell from its external environment. It serves as a substrate for enzymatic

reactions and also controls the movement of substances in and out of cells by restricting

diffusion (Liu et al. 2008).

Definition 2.2.2. (Nucleus) This is a membrane-bound organelle that contains most of

the cell’s genetic material (the DNA). It occupies about 10% of the total cell volume. The

concentric lipid bilayer membrane are perforated at intervals which aids in transporting

molecules between the nucleus and the cytosol. This membrane allows for various pro-

teins that act on DNA to be concentrated at locations in the cell where they are needed

(Alberts et al. 2002).

Definition 2.2.3. (Cytoplasm) This is the area between the cell membrane and the nu-

cleus (see Figure 2.1) consisting of membrane-bound organelles and a network of fila-

ments (called the cytoskeleton) suspended in the cytosol (a cytoplasmic matrix excluding

the organelles). The cytoplasm contains an array of membrane-bound organelles such

as mitochondria which are involved in the production of chemical energy necessary for

cellular activities. It also contains organelles like the endoplasmic reticulum which are

involved in the production of the cell’s proteins and lipids. Also found in the cytoplasm are

Golgi complexes which are involved in sorting, modification and transport of materials to

specific cellular locations. (Alberts et al. 2002; Karp 1999). The cytoskeletal network aid

in cell movement and support (Karp 1999).

2.2.2 The cell cytoskeleton

The cytoskeleton is a complex network of filamentous protein polymers with associated
proteins which provide internal organization and mechanical rigidity to cells (Liu et al.
2008). This is usually referred to as the internal cellular scaffold which controls cell
shape, movement, division, transportation of organelles and numerous other vital func-
tions (Pullarkat et al. 2007). Its main components are the microtubules, intermediate
filaments, microfilaments (Ananthakrishnan and Ehrlicher 2007; Ananthakrishnan et al.
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2.2. Description of an eukaryotic cell

!"

Figure 2.1: A schematic showing a cell with its three main components.

Figure 2.2: A schematic representation of the components of the cell showing the cy-
toskeletal filaments and some organelles (Pullarkat et al. 2007).

2006; Pullarkat et al. 2007; Zhu et al. 2000), motor proteins, crosslinking proteins, acto-
myosin complexes and regulation protein and ions (Pullarkat et al. 2007).

The microtubules, intermediate filaments and microfilaments (see Figure 2.2) are
biopolymers that form an organized and coherent structure via entanglement, bundling,
binding and crosslinking with other accessory proteins. Though all the filaments aid in
cell movement, the microfilaments are the most essential (Ananthakrishnan and Ehrlicher
2007; Betz et al. 2006; Hofman et al. 1999). These can rapidly change and form organised
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2.2. Description of an eukaryotic cell

structures that are adapted for movement in response to the surrounding environment of
the cell (Ananthakrishnan and Ehrlicher 2007).

These biopolymers are differentiated in terms of their rigidity which is measured as
a function of the persistence length Lp (Ananthakrishnan and Ehrlicher 2007). The per-
sistence length is the distance that the filament is bent by thermal forces, and is directly
proportional to the rigidity and dependent on the filament length (Ananthakrishnan and
Ehrlicher 2007; Morse 1998; Pampaloni et al. 2006).

Definition 2.2.4. (Microtubule filaments) These are polar, rod-like hollow polymers (Dogt-

erom et al. 2005; Pullarkat et al. 2007). They are the stiffest of the biopolymer and ap-

proximately 25 nm in outer diameter (Pullarkat et al. 2007) with an Lp ranging from 100

to 5000 µm (Pampaloni et al. 2006). They are formed by the spontaneous assembly of

tubulin protein subunits called tubulin monomers (Dogterom et al. 2005; Pullarkat et al.

2007) and are dynamic in nature (Dogterom et al. 2005). Usually one end is attached to a

single microtubule-organising centre called a centrosome and it grows in length by poly-

merisation (Alberts et al. 2002; Dogterom et al. 2005). They exist in small numbers as

isolated filaments and are not directly involved in important mechanical functions at the

cellular level compared to microfilaments, except in cells like neurons where microtubules

associated proteins bundle axons and dendrites into a tight core of aligned filaments that

have a mechanical role. They serve as platform for the transport of intracellular materi-

als, an example being the distribution of chromosomes between two newborn cells during

mitosis (Pullarkat et al. 2007).

Definition 2.2.5. (Intermediate filaments) These are more flexible compared to micro-

tubules and microfilaments (Zackroff and Goldman 1979). They have a Lp of approxi-

mately 0.3-1.0 µm and range in diameter from 8 to 12 nm (Pullarkat et al. 2007; Zackroff

and Goldman 1979). Unlike microfilaments and microtubules they are not polarized and

do not treadmill (Zackroff and Goldman 1979). Tread-milling is a phenomenon that oc-

curs in actin filaments and microtubles when one end of the filament grows in length as

a result of the addition of protein subunit while the other end shrinks as a result of the

constant removal of the protein subunit from its end. Intermediate filaments are dynamic

in nature (Helfand et al. 2004) but not as highly as the other filaments (Pullarkat et al.

2007). When exposed to physiological conditions that depolymerize microfilaments and

microtubules, they mostly stay insoluble (Helfand et al. 2004; Pullarkat et al. 2007). They

form a fibrous network that links the nucleus to the cell membrane (see Figure 2.2) serv-

ing as structural support to the cell and give resistance to shear stress (Ananthakrishnan

and Ehrlicher 2007). In culture, cells can grow and move in the absence of intermediate

filaments (Sarria et al. 1992) and they do not seem to show any direct active involvement

in cellular activities (Lewis and Murray 1992; Pullarkat et al. 2007; Stéphanou 2010).

Definition 2.2.6. (Microfilaments) They are also known as actin filaments and are semi-
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2.2. Description of an eukaryotic cell

flexible polar polymers (Ananthakrishnan and Ehrlicher 2007; Kuusela and Alt 2009;

Stéphanou 2010). They range in diameter from 6-10 nm (Ananthakrishnan and Ehrlicher

2007) and have a Lp length of approximately 10 µm - 17 µm (Gittes et al. 1993; Pullarkat

et al. 2007). Actin is the most prevalent component of the cell cytoskeleton and plays a

key role in maintaining cell shape, movement (Kim et al. 2009; Pullarkat et al. 2007;

Stéphanou and Tracqui 2002) and the detection of external forces acting on the cell (Kim

et al. 2009). It is assembled from its monomeric form called G-actin (Chen et al. 2000)

and is usually arranged in a paired helix of two protofilaments (Ananthakrishnan et al.

2006). Actin is found predominantly in the area around the cell membrane called the

cell cortex and its network at the cell cortex is sometimes referred to as the cortical actin

network (see Figure 2.2). The cortex is made up of short actin filaments (F-actin) that are

arranged as a three-dimensional mesh work of approximately 50 nm (Ananthakrishnan

et al. 2006). The size of the mesh work increases from the membrane towards the inte-

rior of the cell to approximately 300 nm (Ananthakrishnan et al. 2006). They are highly

dynamic in nature and rapidly polymerize into F-actin and depolymerise into G-actin

and the forces generated by polymerisation is vital in the initiation of cell movement (see

Figure 2.3).

Definition 2.2.7. (Motor proteins) These are molecular motors that generate mechani-

cal forces when associated with F-actin or microtubules filaments (Pullarkat et al. 2007).

They have the ability to carry out directed movement and they can transport organelles

along the filaments or move the filaments themselves (Alberts et al. 2002; Pullarkat et al.

2007). They are grouped into two categories depending on the filaments along which

they move, namely actin motors and microtubule motors. Actin motors are made up of

the myosin family of proteins that carry out unidirectional movement along F-actin gen-

erating contractile forces as a consequence of this interaction. The contractile forces

are necessary to perform mechanical functions such as cell shape maintenance, cell divi-

sion and transportation of cellular organelles. Microtubule motors consist of kinesin and

dyenin. Kinesin usually moves towards the plus-end of microtubules while dyenin moves

towards the minus-end. They play a key role in cellular transport.

Definition 2.2.8. (Crosslinking proteins) They help in the connection of the cytoskeletal

filaments. Examples of crosslinking proteins are Filamin, α-actinin (Ananthakrishnan

and Ehrlicher 2007; Pullarkat et al. 2007) and fascin (Ananthakrishnan and Ehrlicher

2007). They are essential for controlling the assembly of filaments and help in establishing

the elasticity of actin filament network (Pullarkat et al. 2007).

Definition 2.2.9. (Actomyosin complexes) These are complexes that result from the inter-

action of myosin motor proteins with actin filaments. Myosin II, a member of the myosin

family of motor proteins, are capable of assembling into short bipolar chains which in turn
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F-actin G-actin 
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(a) 
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Figure 2.3: A schematic description of actin polymerisation and de-polymerisation kinet-
ics. (a) is an illustration of actin polymerisation and de-polymerisation. (b) is an illustra-
tion of cell membrane protrusion in response to a stimulant. G-actin molecules rapidly
diffuse towards the side closer to the stimulant and polymerises into F-actin. The force
generated by the polymerisation causes the membrane to protrude towards the source of
the stimulant.

interact with neighbouring actin filaments to generate active contractile stresses within

the actin network. These stresses are necessary for regulating cell shape and also control-

ling cell movement. In eukaryotic cells, actomyosin complexes exist in a random network

of highly cross-linked gel forming the actin cortex which is attached to the plasma mem-

brane. A cell fragment containing only actomyosin complexes is capable of generating
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2.3. Dynamics of actin filaments

and maintaining its movement (Pullarkat et al. 2007).

Definition 2.2.10. (Regulatory proteins and ions) Regulatory proteins also known as

nucleation-promoting factors (NPFs) (Pollard 2007) are actively involved in the control

of actin polymerisation/de-polymerisation kinetics and in the regulation of the activity of

motor proteins (Ananthakrishnan and Ehrlicher 2007). Actin polymerisation promoting

proteins such as nucleator proteins (e.g. Arp2/3 complex) initiate the assembly of new

filaments. Other regulatory proteins like thymosin are able to bind and isolate a large

amount of G-actin in the cell while others like profilin bind to G-actin monomer to form

a complex which readily adds to the free plus end of an actin filament to affect polymeri-

sation. On the other hand, cofilin also called actin depolymerising factor, is capable of

binding to either the monomeric G-actin or the polymeric F-actin. The binding of cofilin

along the length of actin filament causes it to twist more tightly creating a stress which

weakens the interaction of subunits within the filament causing the filament to break. The

activity of gelsolin an actin filament severing protein is activated by the presence of high

concentration of cytosolic Ca2+ an important regulatory ion. Also, Ca2+ activates sev-

eral protein-kinases which result in phosphorylation of myosin motors thus enhancing

contractility of actomyosin complex (Alberts et al. 2002; Pullarkat et al. 2007).

Among the cytoskeletal components, actin and its accessory proteins are the most
vital for cell movement. In the next section we present a detailed description of actin,
its dynamical nature and interactions with its accessory proteins (Stéphanou and Tracqui
2002).

2.3 Dynamics of actin filaments

Actin can exist as a monomeric G-actin or polymeric F-actin. The polymeric F-actin can
undergo further polymerisation to form longer actin filament or depolymerise to form
monomeric G-actin and this depends on its physical or biochemical surrounding condi-
tions (Pullarkat et al. 2007). The changes from F-actin to G-actin and vice versa helps
regulate the elastic property of the cell and are vital for cell movement (Ananthakrish-
nan and Ehrlicher 2007) and maintenance of cell shape (Stéphanou and Tracqui 2002).
F-actin has two distinct ends: a fast growing end otherwise known as the plus end (ori-
ented towards the membrane) with a critical actin monomer concentration Cp of ∼ 0.1
µ M and a slow growing (minus) end with a critical actin monomer concentration of Cm

∼ 0.6 µ M (Alberts et al. 2002). When the concentration of monomeric actin is higher
than its critical concentration Cp, then F-actin polymerisation occurs at both ends but
when the concentration is lower than the critical concentration Cm, F-actin depolymerises
into G-actin (Ananthakrishnan and Ehrlicher 2007). When the actin monomer concen-
tration lies between Cp and Cm, then only the plus end polymerises while the minus end
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2.3. Dynamics of actin filaments

Figure 2.4: An illustration of a crawling cell with three areas enlarged to show the ar-
rangement of actin filaments. Actin filaments are shown in red, the arrowheads are point-
ing towards the plus end (Alberts et al. 2002).

depolymerises (Ananthakrishnan and Ehrlicher 2007) a process known as tread-milling
(Ananthakrishnan and Ehrlicher 2007). The tread-milling rate (0.1 subunits per sec. at
the barbed end) is very slow hence it is unlikely to influence the overall actin filament
growth in cells (Pollard 2007).

In physiological conditions, F-actin can assemble into different structures forming
networks and bundles (Kaverina et al. 2002; Pollard et al. 2000) through its interaction
with numerous accessory proteins (Pollard et al. 2000). The F-actin structures produce
two major distinct types of cell protrusions, namely the lamellipodia (flat sheet-like pro-
trusions) and filopodia (spiky protrusions) (Hoglund et al. 1980; Insall and Machesky
2009; Small 1981; Small et al. 1978; Svitkina et al. 1997). Lamellipodia contain actin
networks while filopodia contain actin bundles (Hoglund et al. 1980; Small 1981; Small
et al. 1978; Svitkina et al. 1997)(see Figure 2.4 for an illustration of actin network and
bundles). Both lamellipodia and filopodia vary in length between 0.1−0.2µm and leads
to migration (Urban et al. 2010).
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2.3. Dynamics of actin filaments

2.3.1 Molecular mechanism of actin nucleation

Actin is the most predominant protein found in most eukaryotic cells and more than half
of it is in its monomeric form. Actin monomers can spontaneously assemble into short
oligomers which are unstable and readily dissociate because such assembly results from
a monomer binding to a few other monomers. For a new stable long filament to form,
the monomers must first assemble into a nucleus which is stabilised by multi monomer-
monomer interactions which can then polymerise rapidly by adding more monomers. The
process by which a stabilised nucleus is formed is called actin filament nucleation (Alberts
et al. 2002). There exists a strong inhibition by profilin and thymosin-β4 to nucleation of
new filaments (Pollard and Borisy 2003) but once they are nucleated they can grow with
or without the aid of accessory proteins (Insall and Machesky 2009). A dendritic nucle-
ation hypothesis explains the assembly of actin filaments at the front of motile cells. An
illustration of actin nucleation is shown in Figure 2.6 (Pollard 2007). Numerous proteins
are associated with actin monomers to promote the process of actin nucleation but Arp2/3
complexes and formin play the major role in this process. Arp2/3 complex consists of
seven subunits, but Arp2 and Arp3 are the only subunits that are involved in actin nu-
cleation (Insall and Machesky 2009). It is biochemically inactive when isolated from its
associated proteins (Insall and Machesky 2009; Machesky et al. 1999; Millard et al. 2004;
Pollitt and Insall 2009) and is activated through interactions with VCA the C-terminal of
WASP family protein and an actin filament (Insall and Machesky 2009). The WASP fam-
ily regulates the activity of Arp2/3 complex by acting as intermediates to integrate signals
from small GTPases (e.g. Rac and Cdc42), signal adapters (e.g. Grb2 and Nck) and mem-
brane phospholipids (e.g. PIP2, and protein kinases) (Insall and Machesky 2009). Arp2/3
is activated if the signal is greater than the threshold for activation and converts the signal
to actin polymerisation. Arp2/3 complex produces branched filaments by anchoring the
pointed end of a new filament to an existing actin filament (Pollard 2007) (see Figure 2.5,
(Insall and Machesky 2009)). This allows the free end of the new filament to continue to
grow until stopped by a capping protein. These new filaments are usually nucleated at an
angle of 70◦ from the sides of the existing filaments. They push out the leading edge of
motile cells as they grow thus producing a lamelipodium (Pollard 2007). This has been
observed under an electron microscope (Insall and Machesky 2009).

Formin is a member of a family of proteins with a formin homology-2 (FH2) domain
(Pollard 2007) which binds actin. Some members of the formin family of protein have
both formin homology-1 (FH1) (which binds profilin) and FH2 domain. They form a
new filament nucleus from monomeric actin and stay bound to the growing end of the
new actin filament and maintain the growth of the filament by encouraging the addition of
more monomers (Romero et al. 2004). It also protects the actin filament against capping
proteins that usually terminate the process of actin polymerisation. Formins produce un-
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2.3. Dynamics of actin filaments

lamellipodia seen in cellsmoving on flat surfaces. Both blebs and
fat pseudopods may be key to certain forms of migration in 3D.
While they have been recently reviewed in full elsewhere (Char-
ras and Paluch, 2008; Charras et al., 2005; Fackler and Grosse,
2008; Mitchison et al., 2008), we will discuss some of the more
recent developments.

Molecular Mechanisms of Branch Formation
The Arp2/3 complex is one of the main powerhouses of actin
filament generation and biochemical and cell biological data
suggest that it nucleates new actin filaments from the sides of
preexisting filaments in the form of branched networks. Arp2/3
complex consists of seven subunits, with Arp2 and Arp3 being
similar in structure and sequence to actin, and the other five
subunits (ARPC1–5) being unique and highly conserved in evolu-
tion (Machesky and Gould, 1999). Arp2/3 complex in its pure
form is biochemically inactive, but becomesmaximally activated
via interactions with both a WASP family protein C-terminal
sequence known as VCA and an actin filament. Because the
Arp2/3 complex only shows maximal activity in vitro as a part
of this multimolecular structure, it has been difficult to visualize
the so-called activated state of the complex.
Several recent advances in our understanding of the mecha-

nism of actin branch formation have led to a detailed molecular

picture of how the Arp2/3 complex functions (Figure 2). Since
Arp2/3 complex is thought to undergo major structural changes
when it interacts with WASP family proteins and actin filaments
(Robinson et al., 2001), the holy grail in the field has been struc-
tural information about the activated Arp2/3 complex and its
interactions with activators. The original X-ray crystal structure
of Arp2/3 shows the inactive complex, in which Arp2 and Arp3
reside in an arrangement that is incompatible with nucleation
of the daughter branch filament and in which much of the Arp2
structure is unresolved (Robinson et al., 2001). Additionally,
Arp3 is nucleotide free in the original structure, leaving the nucle-
otide binding pocket wide open. Newer structures have added
the ATP back to Arp3 and observed conformational changes
(Kiselar et al., 2007; Nolen and Pollard, 2007), but the conforma-
tion of the Arp2/3 complex when it is bound to a mother filament
and to the appropriate WASP family activator(s) has not yet been
visualized directly.
Biochemical experiments have provided hints about the

structure of the activated complex, and have suggested mecha-
nisms for the activation cycle of Arp2/3-complex-based actin
nucleation. The C-terminal tail of N-WASP and its relatives can
be directly crosslinked to Arp2, Arp3, and ARPC1 (Pan et al.,
2004; Weaver et al., 2002), suggesting interactions between
these subunits and WASP proteins. Recent biochemical data
shows that Arp2/3 complex lacking the Arp2 subunit is still
able to bind to the N-WASP tail, meaning that Arp2 is not essen-
tial for the interaction (Nolen and Pollard, 2008). However, Arp2-
free complex does not nucleate actin, supporting the idea that
Arp2 and Arp3 cooperate to form an active dimer for nucleation.
This is further supported by studies using structural mass spec-
trometry, where peptides from both Arp2 and Arp3 have been
found to both interact with WASP, consistent with a closed con-
formation resembling an actin dimer for these subunits (Kiselar
et al., 2007). Kinetic modeling of the activation cycle for Arp2/3
complex shows that the interaction of Arp2/3 complex with
actin filaments is the slowest step in the assembly of branches,
perhaps because of the large conformational changes required
of both the Arp2/3 complex and the mother filament and their
large surface area of contact (Beltzner and Pollard, 2008).
In an elegant attempt to force Arp2/3 into its active state,

a synthetically activated complex has been generated in which
actin is crosslinked to the activating peptide from N-WASP
(Figure 2). This formed an N-WASP:actin:Arp2/3 cocomplex
that could be completely purified and analyzed by X-ray scat-
tering (Boczkowska et al., 2008). This complex is not in a branch
junction, which may affect how representative of the active
state it is, but it is bound to N-WASP and the first new actin
subunit of the branch. This model, together with studies of actin
and WASP-homology 2 (WH2) domain interactions (Lee et al.,
2007; Rebowski et al., 2008), suggests that the tail of N-WASP
makes extensive contacts with the Arp2 subunit of the Arp2/3
complex, which spotlights Arp2 as the subunit that contacts
the first new actin monomer of the daughter filament. The X-ray
scattering model of Boczkowska et al. compares with electron
tomography studies of an actual branch junction to reveal
conformational changes in both the Arp2/3 complex and the
mother actin filament that are important for branch formation
(Rouiller et al., 2008) (Figure 2). Rouiller et al. provide the first
and best-resolved structure of the activated Arp2/3 complex,

Figure 1. The Major Mechanisms of Actin Nucleation in Cells and
Some of Their Accessory Proteins
Both the Arp2/3 complex and formins use actin monomers to polymerize actin
filaments. The Arp2/3 complex is a stable assembly of seven subunits
including two actin-related proteins, Arp2 and Arp3. Formins are dimers that
sit on the growing ends of actin filaments andmediate elongation of linear actin
networks. They use profilin (not shown) to help recruit actin monomers and
facilitate rapid actin assembly.

Developmental Cell 17, September 15, 2009 ª2009 Elsevier Inc. 311

Developmental Cell

Review

Figure 2.5: Schematic description of the activity of Arp2/3 complex and formins during
actin nucleation in cells. Arp2/3 complex and formins initiate the production of new
actin filaments via polymerisation of monomeric actin. Arp2/3 initiates the production
of branched filaments while formins are dimers and are attached to the growing ends of
actin filaments. Formin act by encouraging the growth of single filaments necessary for
formation of actin bundles (Insall and Machesky 2009).

branched single filaments that are mostly oriented perpendicular to the membrane (Pollitt
and Insall 2009). They act against capping proteins by staying attached to the barbed
end (i.e. fast growing end) of the actin filament (see Figure 2.5 for an illustration (In-
sall and Machesky 2009)). These single filaments are necessary for the formation of
actin bundles that produce filopodia. During the formation of filopodia, actin monomers
that are ready for polymerisation are usually complexed to profilin (Insall and Machesky
2009). In living organisms multiple isoforms of profilin exist and some of them inter-
act with formin to enhance actin polymerisation (Neidt et al. 2009). The profilin-actin
complexes have a characteristic of rapid filament assembly and are produced through the
help of a proline-rich sequence in the formin-homology 1 (FH1) region. Furthermore,
the formin-homology 2 (FH2) domain (containing two antiparallel actin binding ends)
encourages polymerisation by enhancing the addition of profilin-actin complexes to the
barbed (growing) end of the filament (Xu et al. 2004).
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ANRV311-BB36-22 ARI 7 April 2007 7:8

Figure 1
Overviews of the functions of Arp2/3 complex and formins. Dendritic nucleation hypothesis for the
assembly of actin filaments at the leading edge of motile cells. Nucleation-promoting factors such as
WASp and Scar/WAVE bring together Arp2/3 complex with an actin monomer on the side of a filament
to nucleate a branch. The free barbed end of the branch grows until it is capped. Modified, with
permission, from References 91 and 93. Bottom left-hand corner: Formins nucleate unbranched
filaments and remain attached to their barbed ends as they elongate. Processive actin polymerization in
association with a formin FH2 domain. Modified, with permission, from Reference 58.

terminates growth. Formins produce un-
branched filaments for actin bundles found
in filopodia and the cytokinetic contrac-
tile ring (123). The formin remains associ-
ated with the growing end of the filament,
providing an anchor and protection against
capping.

The field has reached a point where sophis-
ticated quantitative assays are required to in-
vestigate mechanisms. Routine applications of
simple assays are not up to this task. Typically

Formin: a member
of a family of
proteins with a
formin homology-2
(FH2) domain that
interacts with the
barbed end of the
actin filament

an investigator adds their proteins to unpoly-
merized actin monomers (with a trace of the
actin molecules labeled on cysteine 374 with
pyrene) and records the change in fluores-
cence over time. The fluorescence of pyrenyl-
actin is ∼20 times higher when polymerized,
so the signal-to-noise ratio is outstanding,
but the only parameter directly available from
this assay is the concentration of polymerized
actin. If one also knows either the concentra-
tion of filament ends or the rate at which they
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Figure 2.6: Schematic representation of the process of actin nucleation in cells. Nu-
cleation promoting factors such as WASP and Scar/WAVE activates Arp2/3 complex to
nucleate a branch. The growing ends of the filament branch grows until it is capped by
capping proteins and pushes out the membrane as it grows thereby creating a lamelipodia
(Kovar and Pollard 2004; Pollard 2007; Pollard and Borisy 2003; Pollard et al. 2000).

2.3.2 Actin depolymerisation enhancing proteins

In living cells the dynamics of actin filaments are essential because different physiologi-
cal conditions require actin in different forms and this dynamism is achieved by actions
of actin binding proteins. Some of the actin binding proteins enhance polymerization
while others enhance de-polymerisation. All these proteins work in conjunction with
numerous accessory proteins to coordinate the dynamics of actin network. The actin
de-polymerising proteins include the cofilin and the gelsolin family of proteins (Anan-
thakrishnan and Ehrlicher 2007).

Cofilin is an actin de-polymerising protein that binds to both monomeric and fila-
mentous form of actin. It binds along the length of actin filaments forcing it to twist
more tightly. The mechanical stress produced through this binding weakens the interac-
tions between actin subunits in the filaments thus enhancing severing. This also makes
the ADP-actin subunits at the minus end of the filaments to dissociate, thus increasing
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Figure 2.7: Actin-thymosin complex is sterically prevented from binding to the plus end
an actin filament (Alberts et al. 2002).

tread-milling (Alberts et al. 2002).

Gelsolin, another actin depolymerization protein, binds and severs actin filaments. It
has two subunits that bind to two different sites on the actin subunit. One of the binding
sites is exposed on the surface of the filament while the other is hidden in the longitudinal
bond between the subunit. Once gelsolin severs an actin filament, it caps and remains
bound to the plus end actin as an effective capping protein (Alberts et al. 2002; Anan-
thakrishnan and Ehrlicher 2007).

2.3.3 Actin binding and cross-linking proteins

Actin binding proteins such as profilin and thymosin aid in promoting the availability of
actin monomers for polymerisation (Ananthakrishnan and Ehrlicher 2007). Thymosin is
a small protein that binds to actin monomers sequestering them from getting involved
in actin polymerisation (see 2.7 for an illustration). The thymosin-actin complex cannot
associate with either the plus or minus end of the actin filaments and therefore cannot
hydrolyse or exchange their bound nucleotide. When cellular conditions require for actin
polymerisation, the sequestered thymosin-actin complex is made available for polymeri-
sation by binding to another actin binding protein called profilin. Once profillin binds to
thymosin-actin complex there occurs conformational changes that will result in the dis-
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sociation of thymosin from actin but strengthening profilin-actin complex (Alberts et al.
2002; Ananthakrishnan and Ehrlicher 2007). The profilin actin complex can readily add
unto the free plus end of an actin filament. The activity of profilin is regulated by intra-
cellular mechanism like phosphorylation and inositol phospholipid binding. The ability
of profilin to move thymosin sequestered actin to the cell membrane where actin poly-
merisation is required for the formation of actin-rich motile structures like filopodia and
lamellipodia is crucial and this is why profilin is located in the cytosolic face of the cell
membrane where it binds to acidic membrane phospholipids (Alberts et al. 2002; Pollard
2007).

Cross-linking and bundling proteins aid in the connection of actin network. Example
of such proteins are filamin, α−actinin and fascin (Ananthakrishnan and Ehrlicher 2007).
Single filaments are bundled together into a bundle by proteins such as fascin, fimbrin and
scruin (Ananthakrishnan and Ehrlicher 2007).

2.4 Cell movement

Cell movement was first observed by van Leeuwenhoek in 1675 using a microscope slide
(Ananthakrishnan and Ehrlicher 2007; Karp 1999). The microscopic observation of mov-
ing cells created a great deal of interest in understanding the reasons and mechanisms by
which cells move. A lot of experimental work has been carried out to study the behaviour
of cells both in vivo and in vitro. Alongside the experimental work, theoretical studies
and mathematical modeling have been excellent tools in the acquisition of the available
wealth of knowledge on cell movement. Despite all these studies, a total understanding
of the regulation of molecular, biochemical and mechanical factors during cell movement
is yet to be conceived.

Cells are very dynamic entities and they are capable of existing on their own (as found
in unicellular organisms) or as a group of the same or different types of cells (as found
in multicellular organisms). In multicellular organisms each type of cell is designed for a
particular function and they are the basic functional unit. Large numbers of cells special-
ized for a particular function come together to make up tissue. They are also organized to
form organs, and organ systems which work together to perform necessary tasks for the
well being or detriment of the organism. Most of the essential tasks involves cell move-
ment which is a vital and complex activity performed by all living organisms (Aizawa
et al. 1996).

Cell movement plays important roles in many physiological and pathological process
(Le Clainche and Carlier 2008) such as immune response (Fleischer et al. 2007; Lauffen-
burger and Horwitz 1996; Ridley et al. 2003), wound healing, development of tissues (Xue
et al. 2010), embryogenesis (Clark 1996; Stéphanou 2010), inflammation and the forma-
tion of tumour metastasis (Lauffenburger and Horwitz 1996; Stéphanou et al. 2008). It is
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2.4. Cell movement

thus imperative that cell movement be well understood because of its paramount role in
key biological events necessary for development and function.

2.4.1 Mechanism of cell movement

Different types of cells exhibit various kinds of movements for example sperm cells move
by swimming, prokaryotes such as bacteria move by the rotation of their flagellar motors
(Alberts et al. 2002) but most animal cells migrate by crawling (Nobes and Hall 1999).
The migratory modes of crawling cell can be grouped into mesenchymal and amoeboid
depending on the structures that enhance the movement (Binamé et al. 2010). A detailed
description of the migratory modes illustrated in Figure 2.8 is given below.
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Figure 2.8: Schematic representation of the two modes of migration in eukaryotic cells.

Mesenchymal movement

Mesenchymal movement is a mode of locomotion in which cells adopt an elongated and
polarized morphology with lamellipodia (Binamé et al. 2010). Lamellipodia are flat sheet-
like protrusions parallel to the substrate at the front of spreading and migrating cells
(Small et al. 2002). These sheet-like protrusions first observed by Abercrombie et al.
(1970) are otherwise known as the leading edge but they are called ‘ruffles’ when they
coil upward (Abercrombie 1980; Abercrombie et al. 1970; 1971; Small et al. 2002).

Mesenchymal movement has been widely studied and the series of processes that lead
to this mode of migration is known (Binamé et al. 2010). In mesenchymal movement,
migration is the result of a cycle of multistep events (see Figure 2.9 for an illustration) be-
ginning with protrusion of pseudopodia, the formation of new adhesion sites that connect
the extracellular matrix to the actin cytoskeleton at the protrusion regions (Le Clainche
and Carlier 2008), the development of traction, translocation of the cell body and the re-
lease of old adhesion sites at the rear of the cell (Ananthakrishnan and Ehrlicher 2007;
Gupton et al. 2005; Lauffenburger and Horwitz 1996; Xue et al. 2010). These series of

36



2.4. Cell movement!"#$%&$%'()*$%+,($!"##$%!&!

!

!"#

!
$%&'()*+,!'!()*+,-./)!01! .*+! .*2++!(.-3+(!01!)+44!,05+,+6.%!7-(+8!06!9:%:";<!-1.+2!8+.+2,/6/63!/.(!8/2+)./06!01!,0./06%! .*+!)+44!
+=.+68(!-!>20.?(/06!/6!.*/(!8/2+)./06!7@!-)./6!>04@,+2/A-./06!-.!.*+!4+-8/63!+83+B!C.!.*+6!-8*+2+(!/.(!4+-8/63!+83+!.0!.*+!(?21-)+!06!
D*/)*!/.!/(!,05/63!-68!8+E-8*+2+(!-.!.*+!)+44!708@!-68!2+-2B!F/6-44@%!/.!>?44(!.*+!D*04+!)+44!708@!102D-28!7@!)06.2-)/4+!102)+(!3+6E
+2-.+8!-.!.*+!)+44!708@!-68!2+-2!01!.*+!)+44B!

!

!
$%&'()* -,!'! ()*+,-./)! G7-(+8! 06! -! 1/3?2+! /6! *..><HHDDDB2>/B+8?H8+>.H7)7>H,047/0)*+,HIJK+7H,7"H>-2.:H-)./6B*.,L! (*0D/63!
*0D!.*+!)+44!-8*+2+(!.0!.*+!(?7(.2-.+B!M+44E(?7(.2-.+!-..-)*,+6.(!-2+!102,+8!D*+6!-)./6!7?684+(!)066+).!.0!.*+!(?7(.2-.+!-.!)+2.-/6!
(/.+(!5/-!-8*+(/06!,04+)?4+(!(?)*!-(!5/6)?4/6%!.-4/6!-68!/6.+32/6B!

!
"#$! %&'()! *+,-(./! 0,(.)(01$! +2! ,&3)#$3! 4+5$1'!

)&.! %$! 5$'),(%$5! &'! 2+11+*'6! 72! 3#$! 4$4%,&.$! *$,$!
2(8$5! &.5! (44+9&%1$:! &.! &)3(.! 2(1&4$.3! *+;15! '3+0!
0+1<4$,(=(./!*#$.! (3! %;40$5! (.3+! (3! &.5!*+;15! %$!
;.&%1$!3+!0;'#!&/&(.'3! (3!+,!/$.$,&3$!2+,)$6!>+*$9$,:!

3#$!4$4%,&.$!5+$'!.+3!,$4&(.!'3&3(+.&,<!%;3!;.5$,?
/+$'! )+.'3&.3!!"#$%&'%()#*&#%! (6$6! ,&.5+4! 3#$,4&1!
21;)3;&3(+.!5;$!3+!3#$!4$4%,&.$@'!'4&11!'(=$!')&1$!&.5!
,$1&3(9$!21$8(%(1(3<6!7.!&55(3(+.:!&.!&)3(.!2(1&4$.3!('!.+3!
&! '3(22:! (44+9&%1$! ,+5! 3#&3! '3+0'! /,+*(./! +.)$! (3!
,$&)#$'! 3#$!4$4%,&.$! %;3! ('! &.! $1&'3()! 2(1&4$.3! 3#&3!

Figure 2.9: A schematic illustration of the three stages of mesenchymal mode of cell
migration (Ananthakrishnan and Ehrlicher 2007).

events are counterbalanced by random membrane activities which subsequently encour-
age more protrusions and, if sustained, lead to a new direction of movement (Binamé
et al. 2010). Meanwhile the protrusion of the pseudopodia in front of the cell body must
be large for migration to be sustained. As a result, the cell migrates with directional mi-
gration on a short scale but after a long time it becomes random (Binamé et al. 2010) in
the absence of external cues.

Mesenchymal migration is dependent on the proteolysis of extracellular matrix (ECM)
and integrins of the migrating cells, and relies on the production of matrix metallopro-
teinases (Parri et al. 2009; Yamazaki et al. 2005). Metalloproteinases disrupt regions of
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adhesion of the cell to the ECM by targeting both integrins and matrix components (Bi-
namé et al. 2010) thus creating a path for migration (Parri et al. 2009).

Amoeboid movement

Amoeboid movement is a primitive mode of cell migration (Parri et al. 2009). In this
mode, migrating cells glide through the ECM, rather than degrading it, because cell-ECM
adhesion is weak (Friedl et al. 1998) and there is no involvement of integrins (Binamé
et al. 2010).

Amoeboid movement can occur in cells that do not possess actin for example nema-
tode sperm (Robert and Stewart 1997) and in actin-rich cells such as fibroblasts (Stéphanou
et al. 2008), Dictyostelium discoideum (Firtel and Meili 2000), leukocytes (Friedl and
Weigelin 2008), hematopoietic stem cells (Giebel et al. 2004) both in vivo and in 3D cul-
tures (Sahai and Marshall 2003). In actin-rich cells, ameoboid movement is believed to
be induced by the interplay between an active contractile force and a passive hydrostatic
pressure generated in the cell cytoskeleton.

Amoeboid movement is initiated by the production of blebs which are bubble-like pro-
trusions on the surface of the cell occuring in both motile and non-motile cells. When they
occur in non-motile cells they give rise to spontaneous deformation of the cell membrane.
These spontaneous deformations occur without any external stimulant. An observation of
unstimulated fibroblasts under an electron microscope reveal well organised spatial and
temporal dynamics of the cell membrane protrusions and not random, as found in stimu-
lated cells (Stéphanou et al. 2008). Internal pressure has been implicated as the key force
that generate the membrane blebs that are observed at the front of protrusions in unstimu-
lated cells and this is known to play a key role in cell deformation (Abraham et al. 1999;
Bereiter-Hahn and Luers 1998; Charras et al. 2005).

It is assumed that blebs are initiated by either a local rupture of the actin cortex (Keller
and Eggli 1998) or a local membrane dissociation from the actin cortex (Cunningham
1995). Localized contractile force generated by the actomyosin network can give rise to
both conditions that initiate blebs. Myosin activation pathways like Rho-Kinase (ROCK)
and myosin light chain kinase (MLCK) has been observed in non-motile and motile bleb-
bing cells which is an evidence of its involvement in blebbing (Charras and Paluch 2008).
The intracellular hydrostatic pressure generated by the actomyosin complex can locally
weaken membrane-cortex adhesion or rupture actin cortex thus initiating a bleb (Charras
and Paluch 2008). The detachment of membrane from actin cortex has been observed
in motile cells like Fundulus deep cells (Fink), zebrafish PGCs (Blaser et al. 2006) and
walker carcinosarcoma cells (Keller et al. 2002) while a local rupture of the actin cortex
has also been observed in fixed walker carcinosarcoma cells (Charras and Paluch 2008;
Keller et al. 2002).

Initially blebs are free of actin cytoskeleton but afterwards they begin to expand with
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Figure 2.10: A schematic illustration of the initiation of blebs. They are formed either
by the rupture of the cortex or by membrane detachment. In a, a local or global pressure
resulting from a local or global contractile activity of actomyosin complex can detach the
membrane from the cortex thereby initiating a bleb. In b, a local rupture of the cortex
initiates a bleb. In both cases expansion of the bleb is caused by an intracellular hydro-
static pressure generated by the effect of the contractile stress on the cytosol (Charras and
Paluch 2008).

influx of cytosol, actin, myosin and other accessory proteins. Thereafter actin and myosin
interact together beneath the bleb and generate contractile stress which causes the bleb to
retract as observed in non-migrating cells (Charras and Paluch 2008). On the other hand,
in migrating cells retraction of the bleb does not always occur but instead the contractile
stress originating from the rear of the cell translocates the cell body (Blaser et al. 2006;
Charras and Paluch 2008). It has been observed experimentally that blebbing can initiate
migration in motile cells like amoebae, embryonic cells, mammalian tumour cells (Blaser
et al. 2006; Sahai and Marshall 2003; Trinkaus 1973; Yoshida and Soldati 2006). Bleb-
bing is used by embryonic cells during embryogenesis (Blaser et al. 2006) and by tumour
cells during metastasis (Fackler and Grosse 2008; Sahai and Marshall 2003; Yoshida and
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Soldati 2006).

Blebbing is associated with extreme cell deformability, thus allowing them to easily
pass through a mesh of extracellular matrix (Wolf et al. 2003). Also, since there is no in-
volvement of integrins with only weak impact on the ECM, blebbing cells move through
the mesh of ECM relatively quick. In contrast to mesenchymal migration, the inhibi-
tion of matrix proteases does not inhibit amoeboid movement which shows that the the
impact of blebbing cells on the ECM is weak. Cells moving on two dimensional (2D)
surfaces usually form lamellipodia and filopodia which initiate mesenchymal movement
while those moving on three dimensional (3D) surfaces have a preference for bleb driven
migration. In cancerous cells, it has been observed that drugs which would usually pre-
vent mesenchymal movement by inhibiting matrix proteases did not affect the spread of
the tumour cells in 3D matrix (Insall and Machesky 2009). Recently, it has been observed
that the mode of migration assumed by a cell is dependent on physiological conditions
surrounding it for example, neutrophils and lymphocytes switch to bleb driven migration
when substrate adhesion is reduced (Insall and Machesky 2009; Malawista et al. 2000;
Sroka et al. 2002).

2.5 Project motivation

In the last few decades, a lot of studies have been carried out in order to aid the understand-
ing of biochemical and biophysical processes that determine cell movement. Laboratory
experiments, theoretical studies and mathematical modelling of cell dynamics have been
utilised in most of the studies (Zaman et al. 2005). These have lead to the identification of
some essential molecular components involved in cell movement and have also unravelled
the sequence of events that determine cell movement (Keren and Theriot 2008). Mech-
anisms of cell-signalling which are involved in production and sustenance of large-scale
cell polarity have been the focus of many of the recent studies on cell movement while
studies on the mechanical and physical factors that engineer the large-scale coordination
of cell dynamics have been of little interest (Keren and Theriot 2008). Cell movement is
governed by a combination of chemical kinetics, transport and physical forces and move-
ment of actin network interacting with their associated proteins hence it can be modelled
mathematically by coupling together the models of continuum mechanics and biochemi-
cal kinetics (Evans 1993; Mogilner 2009; Oster 1984). A better understanding could be
gained into the processes that regulate and control cell movement through the coupling
of the interactions among the various biophysical and biochemical factors that control
cell movement (Okeyo et al. 2009). Though extensive research on F-actin network dy-
namics have been carried out, a complete understanding of how the mechanical forces
generated by actomyosin contractility control the spatio-temporal flow of F-actin and cell
deformation is yet to be reached (Okeyo et al. 2009).
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The primary aim of this work is to motivate a numerical method for the approxima-
tion of a mathematical model describing cell deformations. The model we will consider
was initially developed to study cell deformations by considering both the biophysical
and biochemical properties of the cortical network of actin filaments with it associated
proteins. In this project, we adopt the hypothesis of a pressure-driven protrusion. We as-
sume that the filaments will either push on the membrane when they polymerise in order
to create more space for their growth or pull on the membrane when they contract. Con-
traction of the filaments occurs as a result of the interaction of actin with myosin-II in the
cell cytoplasm. Due to their interaction, stress fibres generate a contractile force which
is used in cell movement and cell shape control (Bischofs et al. 2008; Senju and Miyata
2009). We also assume that the contraction of the actin network creates cytoplasmic flows
throughout the cell which increases the pressure in the cytoplasm and push the membrane
outward at locations where the membrane is not firmly linked to the actin network (Alt
and Tranquillo 1995; Stéphanou et al. 2004).

The model we consider is a modification of a cytomechanical model by Stéphanou
et al. (2004) which was an extension of an earlier model describing the actin cytogel by
Lewis and Murray (1992). In the model by Lewis and Murray (1992), cell movement
was assumed to be driven by cycles of solation (expansion) and gelation (contraction) of
actin and believed to be controlled by the level of calcium (Stéphanou 2010). Solation
of actin is believed to occur when a given threshold of calcium is reached which in turn
activates the expansion of the actin gel thus pushing the membrane outwards. Re-gelation
of actin occurs when the calcium level falls below its threshold which causes the network
to contract again (Stéphanou et al. 2004). Later experimental studies showed the preva-
lence of actin filaments and polymerization promoting proteins at protruding regions of
the cell and identified actin polymerization to be a key process in cell deformations and
movements (Mogilner 2009). The model by Lewis and Murray (1992) was modified by
Alt and Tranquillo (1995) to describe the polymerisation and de-polymerisation kinet-
ics. In our model we focus on the polymerisation kinetics of actin with regard to cell
deformations as was done in Stéphanou et al. (2004) and Alt and Tranquillo (1995).

We will implement a finite element numerical approximation of an extension of a
cytomechanical model of cell deformations and then study the spatio-temporal dynam-
ics of the cell by considering the interactions between the mechanical and biochemical
properties of actin dynamics. We also seek to identify key parameters that determine cell
movement.
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Chapter 3

Mathematical description of cell
movement

3.1 Introduction

The focus of this chapter is to introduce a mathematical model for cell deformation and
then present a detailed mathematical analysis of the model. For many centuries, exper-
imental biology was main stream in the quest to decipher the complexity of cell move-
ment. In recent decades mathematical modelling and theoretical studies have contributed
immensely in elucidating the understanding of the migratory behaviour of cells (Zaman
et al. 2005) and is projected to take a leading role in future developments of cell move-
ment (Flaherty et al. 2007). This is due to the ability of the increasingly sophisticated
computer programs to perform complex simulations relating to biological systems even
at the cellular level. With the help of these sophisticated computer programs the inherent
problems like time consumption and high cost associated with laboratory experiments can
be highly reduced (Flaherty et al. 2007).

Cell movement involves a vast number of different kinds of proteins all interacting in
complex networks. The interaction of actin with its associated proteins is usually a major
factor in the derivation of models for cell movement. For example, the process of cell
membrane protrusion is usually modelled with respect to localized actin polymerisation
(Flaherty et al. 2007; Gracheva and Othmer 2004; Mogilner 2009). Proposing an accurate
model to account for the vast molecular interactions involved in cell movement is a non-
trivial activity. This has greatly motivated the proposition of models based on single stages
of cell movement such as protrusion, contraction and adhesion. The advantage of these
type of models is that they allow for a higher level of resolution of each process which
hitherto would not have been feasible in a unified model (Pollard and Borisy 2003).

Mathematical modelling of cell movement began as a result of the need to under-
stand the process of actin tread-milling (Mogilner 2009). The initial models by Hill and
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Kirschner (1982), Wegner (1976) and Oosawa and Asakura (1962) were geared at quan-
tifying the actin treadmill and employed thermodynamics to study the nature and size of
the force generated by actin polymerisation. These models provided basic ideas that are
still used in new and complex models (Mogilner 2009). A model by Peskin et al. (1993)
proposed a Brownian ratchet model to describe actin polymerisation as rigid ratchet mech-
anism which elongates by rectifying the Brownian motion of the membrane. According
to this model, when the end of an actin filament comes into contact with a membrane,
the membrane could diffuse away and thus create a gap. If this gap is large enough then
the filaments will elongate by the addition of monomers to the growing end (Mogilner
2009; Pollard et al. 2000). An improvement of this model by Mogilner and Oster (1996)
considers the filaments to be elastic springs whose behaviour is a function of the bending
modulus of the filament and the angle it makes with a load (e.g. membrane) at its tip.
The thermal fluctuations of actin filaments displaces the actin filaments from the mem-
brane and creates a gap for the elongation of the filament (Mogilner 2009). The elastic
restoring force of the filament acts to restore the elongated filament to its original po-
sition and gives rise to the protrusion of the membrane (Mogilner 2006; Mogilner and
Oster 1996). This model was able to predict an optimal angle between the actin filament
and the load for effective force transmission. Subsequent study showed that protrusion is
not determined by the dynamics of individual filaments but by a dentritic actin network.
This motivated the development of a model by Mogilner and Edelstein-Keshet (2002)
to study protrusion based on the dendritic-nucleation hypothesis. By using a 1D model
consisting of a system of partial differential equations describing the diffusion, reaction,
filament elongation and de-polymerisation of actin alongside other processes observed
during the nucleation of actin filaments they were able to show that the velocity of pro-
trusion is directly proportional to the quantity of barbed ends around the front of the cell.
The microscopic models described above were developed to study the local protrusion
mechanism observed during cell movement (Mogilner 2009; Pollard et al. 2000). Contin-
uum models have been developed to study the global behaviour of cell shape. Example
of such models are: a two-phase fluid model for cytosol and the actin network (Alt and
Dembo 1999), a one dimensional (1D) viscoelastic model of the cytoplasm and active
stress generation (Gracheva and Othmer 2004), a 1D model for the actin distribution and
its reaction (Mogilner et al. 2001) and a 2D elastic continuum model (Rubinstein et al.
2005). Another continuum model is the cytomechanical model that couples a force bal-
ance mechanical equation for actin network to a reaction-diffusion equation for the F-actin
bio-chemical dymamics (Stéphanou et al. 2004). The model we consider is an extension
of this model. In this chapter, we introduce the mathematical model from first principles
and carry out a linear stability analysis to identify key model parameters that determine
cell deformations.
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3.2 General overview of the cytomechanical model

The cytomechanical model initially proposed by Alt and Tranquillo (1995) is based on
the hypothesis of a pressure driven protrusion. The model assumes that cell deformation
is as a result of the interaction between an internal hydrostatic pressure pushing on the
membrane and the contractile force of the actin network pulling on the membrane through
their link with the membrane. The intensity of this pulling force is assumed to vary within
the cell and depends linearly on the local amount of F-actin available. Hence the higher
the actin density the more the pulling force applied on the membrane. The model also
considers the actin polymerisation kinetics to be regulated around a chemical equilibrium
concentration (Stéphanou et al. 2004).

In Alt and Tranquillo (1995) and Stéphanou et al. (2004) the cytomechanical model
was represented in a polar coordinate system and the radial membrane extension of the
cell was determined using a partial differential equation that describe forces like the hy-
drostatic pressure existing inside the cell, an active force which depends on local con-
centration of actin, additional curvature-dependent stress due to the surface tension of the
cortical actin-membrane complex and a frictional force opposing the movement of the
cell membrane. The partial differential equation for the membrane extension was coupled
to a force balance mechanical equation describing the actin mechanical behaviour and
a reaction-diffusion equation describing the actin polymerisation kinetics. This model
was initially proposed to describe the membrane dynamics of round-shaped cells such as
keratinocytes or leukocytes which have small protrusions around the cell body. It was de-
veloped and extended by Stéphanou et al. (2004) to take into account deformations with
large amplitude such as those observed in resting fibroblasts.

Here the cytomechanical model is represented in a cartesian coordinate and consist
of two coupled systems of partial differential equations, namely (i) a force balance me-
chanical equation for actin network and (ii) a reaction-diffusion equation describing the
concentration of F-actin, its random movement via diffusion, the convective and dilu-
tion effects due to cell movement and its kinetics of polymerisation and depolymerisa-
tion. The partial differential equation used in the previous models to determine the radial
membrane extension is omitted here because we use a different coordinate system. Here
the displacement of the membrane is specified by the displacement solutions of the force
balance equation (details of this will be given later). Also, in previous cytomechanical
models actin polymerisation was considered to be a secondary event occurring sponta-
neously after the pressure force pushing on the membrane creates an adequate space for
the intercalation of monomers but here we consider the polymerisation force to be a pri-
mary event that reinforces the osmotic pressure. This allows for the study of both the
pressure-induced deformation dynamics observed in both non-motile and motile cell (Bi-
namé et al. 2010; Charras and Paluch 2008) and the actin polymerisation driven protrusion
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dynamics observed largely in motile cells (Binamé et al. 2010).

The force balance mechanical equation is derived from continuum mechanics (Murray
1993) while the reaction-diffusion equation is derived from conservation equation exploit-
ing conservation laws (Edelstein-Keshet 2005; Murray 1993). The model consist of two
variables, the F-actin density and the actin displacement velocity in the cell. We moti-
vate the derivation of the force balance mechanical equation and the reaction-diffusion
equation from first principle and specify adequate boundary conditions necessary for the
well-posedness of the coupled system.

3.3 Derivation of the model equations

Let ΩtΩtΩt ⊂RRR2 be a simply connected bounded and continuously deforming domain repre-
senting the cell shape at time t ∈ I = [0,Tf ], Tf > 0 and ∂Ωt∂Ωt∂Ωt be the boundary describing
the cell. We begin by deriving the reaction-diffusion equation describing the actin bio-
chemical dynamics (i.e the concentration of F-actin, its random movement via diffusion,
convective and dilution effects due to shape movement and its kinetics of polymerisa-
tion and de-polymerisation) within the domain ΩΩΩt . Next we will derive a force balance
mechanical equation that describes the mechanical properties of actin filaments and cou-
ple it to the reaction-diffusion equation describing the actin biochemical dynamics on a
continuously deforming domain ΩΩΩt .

3.3.1 Reaction-diffusion equation for actin biochemical dynamics on
a continuously deforming cell domain

Reaction-diffusion equations have been used in the modelling of a vast number of phe-
nomena that arise in many areas of the natural sciences such as in geology, ecology,
chemistry, physics and biology (Edelstein-Keshet 2005; Grindrod 2007; Murray 1993).
Here we use it to model the actin biochemical dynamics on a continuously deforming cell
domain.

At any given point, x = (x(t),y(t)) ∈ΩtΩtΩt ⊂RRR2, let a = a(x(t), t) be the F-actin con-
centration and u = (u(x(t), t),v(x(t), t))T be a vector of infinitesimal displacement of the
elements of the actin network at position x∈ΩΩΩt at time t ∈ I. As a result of cell movement
we define βββ to represent the flow velocity of the elements of the actin network. The posi-
tion of any point in the domain is not constant but is dependent on time in order to account
for the changes in cell shape as a result of cell deformation and movement. Actin filament
concentration is defined to accommodate the time dependence of the spatial coordinates.
That is at any given point, x(t) ∈ ΩΩΩt , a = a(x(t), t) represents the actin filament con-
centration at x(t), t ∈ I. We denote by a constant parameter ka the rate of polymerisation
of actin filaments from the molecular G-actin component and the constant parameter ac
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3.3. Derivation of the model equations

the concentration of actin filaments at the chemical equilibrium which differentiates the
states of polymerisation and de-polymerisation. The function ka(ac−a) describes the net
formation of actin filament from the molecular G-actin component. It models the degra-
dation of F-actin a around the steady state ac. Thus when the density of a decreases, it
implies that it has depolymerized into G-actin.

We now derive a reaction-diffusion equation to model the biochemical dynamics of
the actin filaments. The conservation equation states that the rate of change of the quantity
of a material in ΩΩΩt , t ∈ I is equal to the net flux of the material through the boundary plus
the net creation of the material within the domain. Applying the conservation equation to
describe the biochemical dynamics of the actin filaments, we have that;

d
dt

∫
ΩΩΩt

adΩΩΩt =−
∫

∂Ω∂Ω∂Ωt

J ·n dS +
∫

ΩΩΩt

ka(ac−a) dΩΩΩt . (3.1)

We assume that J is a continuously differentiable function and we apply the divergence
theorem (1.4) to (3.1) to obtain the following;

d
dt

∫
ΩΩΩt

adΩΩΩt =
∫

ΩΩΩt

(
−∇ ·J + ka(ac−a)

)
dΩΩΩt (3.2)

The domain of integration is time dependent, hence we cannot swap the operation of
differentiation with that of integration as is usually done on fixed domains. We proceed
by applying the Reynolds transport theorem (1.6) to the term on the left of (3.2) to obtain

∫
ΩΩΩt

(
Da
Dt

+a(∇ ·βββ )
)

dΩΩΩt =
∫

ΩΩΩt

(
−∇ ·J + ka(ac−a)

)
dΩΩΩΩΩΩΩΩΩt , (3.3)

where βββ denotes the flow velocity of actin filaments and D
Dt is a material derivative:

Da
Dt

=
∂a
∂ t

+ βββ∇a

Upon replacing the definition of the material derivative Da
Dt into (3.3), we get

∫
ΩΩΩt

(
∂a
∂ t

+ βββ∇a+a(∇ ·βββ )
)

dΩΩΩt =
∫

ΩΩΩt

(
−∇ ·J + ka(ac−a)

)
dΩΩΩt . (3.4)

We assume that actin filaments flow from regions of high concentration to regions of low
concentration and its flux J is proportional to the concentration gradient. Thus by Fick’s
law of mass diffusion we have that

J =−Da∇a, (3.5)

and Da is a positive constant diffusion coefficient for F-actin. Applying the product rule
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3.3. Derivation of the model equations

(i.e ∇ · (aβββ ) = βββ∇a+ a(∇ ·βββ )) and Fick’s law of mass diffusion to (3.4), we obtain the
following ∫

ΩΩΩt

(
∂a
∂ t

+ ∇ · (aβββ )−Da∆a− ka(ac−a)
)

dΩΩΩt = 0, (3.6)

Since (3.6) holds for any arbitrary domain ΩΩΩt at all time t and both integrands are contin-
uous then the following equation is valid (Madzvamuse 2000),

∂a
∂ t

+ ∇ · (aβββ )︸ ︷︷ ︸
convection

− Da∆a︸ ︷︷ ︸
diffusion

= ka(ac−a)︸ ︷︷ ︸
polymerisation kinetic

. (3.7)

A relevant boundary condition is the zero-flux boundary condition (n ·∇a) as it specifies
that there is no flux of actin into the domain or out of it. Thus it enforces that actin fila-
ments are confined to the domain and do not cross the boundary neither are they increased
by external sources.

Remark 3.3.1. (Special case) When βββ = 0, the reaction-diffusion equation (3.7) reduces

to a reaction-diffusion equation on a fixed domain.

The reaction-diffusion equation (3.7) is coupled to a force balance mechanical equa-
tion which describes the mechanical properties of actin filaments. We present below the
derivation of the force balance mechanical equation from continuum mechanics.

3.3.2 Force balance mechanical equation for actin dynamics

According to experimental observations, the active mechanical forces that determine cell
deformation and movement are largely due to the mechanical properties of the actin net-
work (Alt and Tranquillo 1995; Binamé et al. 2010; Charras and Paluch 2008; Stéphanou
et al. 2004).

The network of actin filaments in the cell is modelled as a viscoelastic and contractile
gel. As viscoelastic materials, they exhibit the characteristics of both viscous solutions
and elastic solids when deforming. When an external force is applied to an elastic material
it deforms but returns back to its original form after the force is removed. Thus elastic
solids are said to have a perfect memory of their original shape. Viscous solutions do not
have memory of their original shape and hence do not return to their original shape after
an applied force is removed. Unlike purely elastic and viscous materials, viscoelastic
materials have a partial memory of their original form. Like an elastic solid it shows
an initial resistance to deformation when an external force is applied to it, this is then
followed by a slow flow, similar to a viscous solution and once the force is removed it
slowly returns towards its original form. A remarkable feature of viscoelastic property
is that its deformation is dependent not only on the applied force but also on time (Bray
2001; Janmey 1991; Kundu and Cohen 2002).
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3.3. Derivation of the model equations

The viscoelastic network of actin interacts with myosin II (a motor protein that is
found in the cell cytoplasm) to generate contractile stress in the cell cytoplasm. As the
network of actin filament contracts due to its interaction with myosin II, the filaments will
become aligned into bundles and the contractile force developed will increase with time
since on the bundles, myosin II molecules are favoured to work in the same direction and
thus increasing the efficiency of the contraction (Bray 2001). We assume that during the
contraction of the actin network, the actin filaments pull the cell membrane inwards as a
result of their being attached to the membrane. We also assume that the contractions of
the actin network also cause cytoplasmic flows which in turn induces an osmotic pressure
in the cell cytoplasm. This pressure pushes the membrane outward at positions where
the membrane is not firmly attached to the actin network (Stéphanou et al. 2004). Also
an additional pressure due to the polymerisation of actin filaments from the monemeric
G-actin acts around the membrane. As a result of pushing on the membrane when they
polymerize in order to create adequate space for its extension. Although the dynamics
of the network of actin filaments have been the focus of many studies, it is still not yet
clear how these contractile forces spatiotemporally regulate the actin network dynamics.
It was shown by Okeyo et al. (2009) that these contractile forces are the primary factor
responsible for the realisation of the many mechanochemical processes that determine
cell motility.

The viscoelastic and contractile properties are represented by stress tensors compris-
ing viscous σσσ v, elastic σσσ e, contractile σσσ c components, plus an additional pressure com-
ponent σσσ p representing the pressure in the cell. We assume that at the intracellular level,
the cell complies to Newtonian dynamics such that inertial terms are negligible compared
to viscous and elastic forces, hence motion ceases as soon as the forces are turned off
(Lewis and Murray 1991; Purcell 1977). At any given point, x = (x(t),y(t)) ∈ΩtΩtΩt ⊂RRR2,
let u = (u(x(t), t),v(x(t), t))T be a vector of infinitesimal displacement of the elements of
the actin network at position x ∈ΩΩΩt at time t ∈ I. Thus at any given time, the actin net-
work is in mechanical equilibrium and satisfies the following equilibrium equation which
is the force balance mechanical equation:

∇ · (σσσ v + σσσ e + σσσ c + σσσ p) = 0, (3.8)

where σσσ v, σσσ e, σσσ c and σσσ p are the viscous, elastic, contractile and pressure component
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3.3. Derivation of the model equations

stress tensors. These are defined as:

σσσ v = µ1
∂εεε

∂ t
+µ2

∂φ

∂ t
I, (3.9)

σσσ e =
E

1+ν

(
εεε +

ν

1−2ν
φI
)
, (3.10)

σσσ c = σ(a)I = ψa2e−a/asat I, (3.11)

σσσ p =
p(a)
1+φ

I =
p

1+φ

(
1+

2
π

δ (l)arctana
)

I, (3.12)

where εεε = 1
2(∇u+∇uT ) is the strain tensor, I is the identity tensor, φ =∇ ·u is the dilation,

and µ1 and µ2 are the shear and bulk viscosities of the actin network respectively. Finally
E and ν are the Young’s modulus and Poisson ratio respectively. For the force balance
mechanical equation we specify a stress free boundary. The function σ(a) represents the
contractile activity of the actomyosin network (see Figure 3.1). In the above formulation,
asat is used to specify the saturation concentration of F-actin. Contraction of the network
pulls the membrane inwards. The cell cytoplasm is made up of 80% water. Thus the
contraction of actin network creates cytoplasmic flows which gives rise to an hydrostatic
pressure in the cell cytoplasm. This pressure pushes the membrane outwards at regions
where actin and the membrane is not firmly linked. In our model, we assume that the
linking of the membrane to the actin network at any point on the membrane depends
linearly on the amount of F-actin present at that point. Thus we model the contractile
force using the stress tensor σσσ c = ψa2ea/asatI as a function of F-actin density. Hence
the higher the actin density the more the pulling force applied on the membrane provided
a < 2asat . When a > 2asat then there are too much F-actin and the contractile force
begins to decrease exponentially. This is due to compaction of the network which prevents
further contraction (see Figure 3.1 for a plot of σ(a) against the actin density a).In order to
describe the pressure forces acting within the cell we make the following assumptions. We
assume that the initial domain is a unit disk which we denote as Ω0 and that there exists
a family of bijective mappings that maps the points ξξξ = (ξx,ξy) of the initial domain to
point x on the current domain ΩΩΩt . Let l : ΩΩΩt×I→RRR and it’s corresponding function on the
initial domain be l̂ : ΩΩΩ0× I→ [0,1] where l̂(ξξξ , t) is the distance between the centroid and
the point ξξξ in the initial domain with l̂(ξξξ , t) = l(x(ξξξ , t), t). The function p(a) describes
the pressure force in different regions governed by the heavy-side function:

δ (l) =



1 if the point (x, t) with l(x(ξξξ , t), t) = l̂(ξξξ , t) is such that

the distance
√

ξ 2
x +ξ 2

y > 0.8 in the initial domain,

0 elsewhere.

(3.13)
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3.3. Derivation of the model equations

This signifies that far from the membrane, only the osmotic component p/(1+φ) of the
pressure force exists within the network and depends on the dilation φ . In the vicinity
of the membrane (i.e. where

√
ξ 2

x +ξ 2
y > 0.8 = l0), a polymerisation-induced pressure

which depends on the local actin density reinforces the osmotic stress and pushes the
membrane out at regions where the filaments are not firmly linked to the membrane (see
Figure 3.2 for a graphical illustration). δ (l) is used here to specify the differences in
pressure in the cell at the vicinity of the membrane and further away from it. We have
assumed that the polymerisation of actin, which happens predominately at the vicinity of
the membrane, induces a pressure that reinforces the osmotic pressure at the vicinity of
the membrane.
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Figure 3.1: Function σ(a) describing the actomyosin network contractility. The contrac-
tility first increases in a parabolic way with the actin density until a critical density of
actin is reached, after which the contractility begins to decrease exponentially. This is due
to compaction of the network which prevents further contraction. Here asat = 1.1 and ψ

=1.0.

Remark 3.3.2. The key differences between the present model and previous models by

Stéphanou et al. (2004) and Alt and Tranquillo (1995) are highlighted below.

1. The present model unlike previous models by Stéphanou et al. (2004) and (Alt and

Tranquillo 1995) considers the polymerisation force to be a primary event that re-

inforces the osmotic pressure.

2. In order to account for the polymerization-induced pressure acting at the vicinity

of the membrane we have introduced the function δ to model the pressure force in

(3.12).
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Figure 3.2: A graphical and pictorial description of the variation of the function p(a) on
a typical cell. In (a) the function p(a) is shown describing the pressure force existing at
the vicinity of the membrane. This force comprises of a passive hydrostatic component
and an active polymerisation-induced force component corresponding to the force applied
by the growing filaments pushing on the membrane to create the space required for their
growth. In (b) a schematic illustration of the variation of the function p(a) within a typical
cell is shown, where l0 = 0.8.

3. In Stéphanou et al. (2004) and Alt and Tranquillo (1995) periodic boundary condi-

tions were incorporated in to the model but in the present model we specify a zero

flux boundary condition. The zero flux boundary condition specifies that there is no

flux of actin into the domain or out of it. The is relevant biologically because actin

is always confined in the cell cytoplasm and is not increased by flux through the cell
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3.3. Derivation of the model equations

membrane or flux out of the cell membrane.

4. Also unlike Stéphanou et al. (2004) and (Alt and Tranquillo 1995) the present model

is represented in cartesian coordinate.

5. Unlike the work by Gracheva and Othmer (2004), Rubinstein et al. (2005), Stéphanou

et al. (2004) and Alt and Tranquillo (1995) here a moving grid finite element method

is proposed for the numerical approximation of a mathematical model of cell defor-

mation.

3.3.3 The cytomechanical model

In summary, the cytomechanical model describing the actin dynamics is given by:

∇ · (σσσ v +σσσ e +σσσ c +σσσ p) = 000 in ΩΩΩt , t ∈ I, (3.14a)
∂a
∂ t
−Da∆a+∇ · (aβββ )− ka(ac−a) = 0 in ΩΩΩt , t ∈ I, (3.14b)

u(x(t), t) = 000 for x ∈ΩΩΩt , t = 0, (3.14c)

a(x(t), t) = a0 for x ∈ΩΩΩt , t = 0, (3.14d)

βββ = ωωωn for x ∈ ∂Ω∂Ω∂Ωt , t ∈ I, (3.14e)

σσσ v ·n = σσσ e ·n = n.∇a = 0 for x ∈ ∂Ω∂Ω∂Ωt , t ∈ I, (3.14f)

where all parameters and variables are as previously defined and as a result of cell move-
ment we define ωωωn to represent the normal velocity of the cell boundary. Furthermore the
outward unit vector normal to the boundary is denoted by n := (nx,ny). We define the
initial domain ΩΩΩ0, t = 0, to be a unit disk. We prescribe the initial conditions for actin
density a0 to correspond to random small perturbations around the homogeneous steady
state of the cell. This state biologically corresponds to the cell condition right after mi-
tosis (i.e. cell division) with the cell having a perfectly circular shape. We assume that
at the initial time, the cell is unstrained from its original position. On the boundary, we
take the flow velocity of the actin network βββ = ωωωn := ∂u/∂ t. Also in the interior of
the domain we assume that βββ = ∂u/∂ t. Here u is the infinitesimal displacement of the
actin network at any given point in space and is modelled in the force balance mechanical
equation (3.14a). The boundary conditions in (3.14e) specify a zero flux boundary for
the reaction-diffusion equation (3.14b) and a stress free boundary for the force balance
mechanical equation (3.14a). We note that the linking of actin filament to the membrane
as described in Chapter 2 is modelled by assuming that the flow velocity of actin filament
equals the cell domain velocity ωωωn.

Remark 3.3.3. We note that in a previous work by Stéphanou et al. (2004), the infinitesi-

mal displacement u(x(t), t) was taken to be the displacement of the elements of the actin
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Table 3.1: Dimensional parameters and their values as used in the mathematical model
except where it is specified otherwise.

Parameter Meaning Value Ref.

E Young’s modulus of the actin network 1.5 dyn/cm2 Estimated
ν Poisson’s ratio of the actin network 0.3 Estimated
Da Diffusion coefficient of actin 0.012 cm2/s Stéphanou et al. (2004)
ka Polymerisation rate of the actin

network 0.03 s−1 Estimated
asat Saturation concentration of F-actin 1.4 normalised density Stéphanou et al. (2004)
µ1 Shear viscosity of the actin network 96.15 dyn · s/cm2 Bausch et al. (1998)
µ2 Bulk viscosity of the actin network 250 dyn · s/cm2 Bausch et al. (1998)
l0 Specifies the vicinity of the membrane 80% of the cell radius Estimated
ac F-actin concentration at the chemical

equilibrium 1.0 normalised density Derived from model

network from the original unstrained position. In this work, we compute the displacement

u(x(t), t) continuously given the previous positions of x ∈ΩΩΩt , at time t ∈ I.

This assumption implies that at each time t, the elastic forces in (3.14a) are negligible

and the viscous forces dominate. An advantage of this modification is that the cell is no

longer rigid but can translate, expand and contract.

3.4 Selection of parameter values

We assign value to the model parameters. We begin by assigning non-dimensional pa-
rameter values.

3.4.1 Determination of dimensional parameter values

We assign numerical values to all the dimensional model parameters except the pressure
coefficient p and the contractile coefficient ψ . We note that we do not assign values to p

and ψ yet because we desire to choose their values such that the dispersion relation will
have a finite number of unstable modes. The dimensional parameter values are displayed
in Table 3.1.

Some of the parameter values are close to those available in the literature. In Stéphanou
et al. (2004), a diffusion coefficient Da in the range 0.00962− 0.134cm2/s and an actin
saturation concentration asat of 1.1 normalised density were used. Viscosity of Fibroblast
cells is given in Bausch et al. (1998) to be 200 dyn/cm2. Here we choose the value of
the shear viscosity to be 96.15 dyn · s cm2 and the value of the bulk viscosity of the actin
network µ2 = 250 dyn · s/cm2 to be larger than that of the shear modulus. This is because
F-actin is more resistant to compression than shear (Barnhart et al. 2011).
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We note that the value of the F-actin diffusion and polymerization rates we used is
not consistent with experimental observations. We highlight that for any arbitrary choice
of diffusion coefficient used, linear analysis shows that ψ can be chosen to obtain any
required mode of deformation. Also we do not seek to quantify our results with ex-
perimental observations thus assigning any arbitrary value to the diffusion coefficient is
sufficient for our studies. In Chapter 5, we shall carried out test-cases with diffusion co-
efficient similar to those of filamentous actin obtainable from literatures to obtain cell
deformation. And thus confirming the generality of our methodology. We would like to
point out that the value of ka does not influence the dynamics of the model greatly since
after carrying out a nondimensionalization of the model equations (as will be shown later)
we obtain equation (3.16) which is independent of ka. Hence irrespective of the value of
ka the cell will deform in the same way. Again our methodology is much more general.

We desire to carry out linear stability analysis of the cytomechanical model. But first
we non-dimensionalize the system of equations. This reduces the number of parameters
making the mathematical analysis afterwards more amenable.

3.4.2 Nondimensionalisation and non-dimensional parameter values

Let the length scale L be a typical radius of a cell. Substituting the following dimension-
less quantities into (3.14a) and (3.14b),

t̃ = tka, ã = a
ac
, ũ = u

L , ∇̃ = L∇, ∆̃ = L2∆, ãsat =
asat
ac
,

p̃ = p1+ν

E , φ̃ = φ , ε̃εε = εεε, µ̃i = µika
1+ν

E , ψ̃ = ψa2
c

1+ν

E ,

β̃ββ = βββ

kaL , d = D̃a =
Da

kaL2 , l̃0 =
l0
L

(3.15)

results in
∇̃ ·
{(

µ̃1ε̃εε t + µ̃2φ̃tI
)
+
(
ε̃εε +ν

′
φ̃I
)
+ ψ̃ ã2e−ã/ãsat I

}
+

∇̃ ·
{

p̃
1+ φ̃

[
1+

2
π

δ (l)arctan(ã)
]

I
}
= 0,

∂ ã
∂ t̃ −d∆̃ã+ ∇̃ · (ãβ̃ββ ) = 1− ã,

(3.16)

where ν ′ = ν

1−2ν
, ν 6= 0.5.

Using (3.15), we obtain the corresponding non-dimensional parameter values as dis-
played in Table 3.2. These non-dimensional parameter values will be helpful in the isola-
tion and study of the dynamics of any isolated wavenumber k2 > 0. Subsequently we will
compare solutions predicted by linear stability theory with those obtained from numerical
simulations.
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Table 3.2: Non-dimensional parameters and their values as used in the nondimensional-
ized mathematical model except where it is specified otherwise. These parameter values
were obtained from their dimensional counterpart by using (3.15). Here we have assume
that L = 1.0cm since we desire to carry out linear stabillity analysis on a unit disk and also
numerical simulations of the model equations will be carried out on an initial domain that
is equivalent to a unit disk.

Parameter Meaning Non-dimensional value

d Diffusion coefficient of actin 0.4
ãsat Saturation concentration of F-actin 1.4
µ̃1 Shear viscosity of the actin network 2.5
µ̃2 Bulk viscosity of the actin network 6.5
ψ̃ Contractility coefficient of the actin network 62.4
p̃ Pressure coefficient of the actin network 0.26
l̃0 Specifies the vicinity of the membrane 0.8

3.5 Linear stability analysis on a fixed unit disc

We restrict linear stability analysis to be carried out on a static unit disk. The assumption
is that for time t = t0 + n∆t, t > t0 with n small, the deformed cell domain is still very
close to a unit disk. Hence linear analysis is valid on ΩΩΩt provided t << 1 and ΩΩΩt ≈ ΩΩΩ0.
Here ∆t is a small time step.

The steady state solution of (3.16) is as = 1, us = 0. We linearize the system of
equations (3.16) by considering the stability of the steady state to small perturbations
ã = as + â, and ũ = us + û, where â and û are small variations from the steady state.
Substituting these into the nonlinear system (3.16) and neglecting all but the linear terms
results in the following linear system of partial differential equations:∇̃ ·

[
(µ̃1ε̂εε t + µ̃2φ̂tI)+(ε̂εε +ν ′φ̂I)+σ ′(1)âI+ p̃(1− φ̂)I+ p̃ 2

π
δ (l)âI)

]
= 0,

∂ â
∂ t̃ −d∆â+ ∇̃ · (β̂ββ )+ â = 0,

(3.17)

where ε̂εε t , φ̂t , φ̂ and β̂ββ are functions of û and σ ′(1)= ∂σ(ã)
∂ ã

∣∣∣
ã=as

. We now look for solutions
to these linearized equations in the form of

â(x, t) = a∗ exp
(

λ t + ik ·x
)

and û(x, t) = u∗ exp
(

λ t + ik ·x
)
, (3.18)

where λ and k are respectively the growth rate (also known as an eigenvalue) and the wave
vector and a∗ and u∗ are small amplitudes. In the next section we will see the possible k’s
that are allowed. If we substitute (3.18) into the linearized system (3.17) and require the
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solution to be non-trivial, we obtain that (see for example (Lewis and Murray 1991)),∣∣∣∣∣ λ +dk2 +1 λ ik

−ikσ ′(1)− ik p̃ 2
π

δ (l) µ̃k2λ + k2(1+ν ′)− p̃k2

∣∣∣∣∣= 0, (3.19)

where µ̃ = µ̃1 + µ̃2 and k = |k|. The eigenvalues λ are solutions of the polynomial in λ

given by the determinant of the matrix in (3.19) and is given by

k2 [
µλ

2 +b(k2)λ + c(k2)
]
= 0, (3.20)

where b(k2) = µ̃dk2 +[1+ν
′+ µ̃−σ

′(1)− p̃− 2
π

p̃δ (l)],

and c(k2) = d[1+ν
′− p̃]k2 +[1+ν

′− p̃].

Solving (3.20) results in the dispersion relation

λ (k2) =
−b(k2)±

√
b2(k2)−4µ̃k2c(k2)

2µ̃k2 . (3.21)

From the polynomial expression given in (3.20), it is obvious that the dispersion relation
is indeterminate when k2 = 0. Thus in the linear stability analysis we shall only consider
k2 > 0. Instability will occur for some wavenumber k2 > 0 if the corresponding λ (k2) has
Re(λ ) > 0. Below we use Routh-Hurwitz stability criterion (Edelstein-Keshet 2005) to
determine a sufficient condition on the coefficients of the polynomial (3.20) that would
result in Reλ (k2)> 0 for some k2 > 0. A solution with Reλ (k2)> 0 for some k2 > 0 can
exist if b(k2)< 0 or c(k2)< 0 or both (see Table 3.3).

Observe that c(k2) can either be positive or negative for all values of k2 > 0 depending
on the value of p̃. In particular, if p̃ > 1+ν ′ then c(k2) is negative for all values of k2 > 0.
b(k2) can take positive or negative values for some or all of k2 > 0 and this depends on
how small or large p̃ and σ ′(1) are when compared with the other parameters in b(k2).
Therefore instability can occur for some k2 > 0 if one of the following conditions is
satisfied:

1. b(k2)> 0 and c(k2)< 0 or

2. b(k2)< 0 and c(k2)> 0 or

3. b(k2)< 0 and c(k2)< 0 (see Table 3.3 for more detail).

Condition 1 and 3 above will have c(k2) < 0 for all k2 > 0. And the dispersion relation
will have an infinite range of unstable modes. Condition 2 can have a dispersion relation
with a finite range of unstable modes and shall be used in carrying out the linear stability
analysis.
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3.5. Linear stability analysis on a fixed unit disc

Remark 3.5.1. A reason for carrying out the linear stability theory is to validate the

numerical scheme that we will implement in order to find an approximate solution to the

model problem. This is usually carried out by showing that the numerical results obtained

are consistent with predictions from the linear stability theory close to bifurcation points

for some finite range of unstable modes. For the case where the dispersion relation has an

infinite range of unstable modes, linear theory is unable to determine the mode that will

be excited. Hence we restrict ourselves to the case where the dispersion relation isolates

a finite range of unstable modes.

Table 3.3: Possibilities of stable and unstable modes to exist.
Possible conditions (k2 6= 0) Types of mode Sign of Re(λ )

b(k2)> 0 and c(k2)> 0 Stable modes for all k2 > 0. Negative
b(k2)> 0 and c(k2)< 0 Unstable modes will exist. Positive
b(k2)< 0 and c(k2)> 0 Unstable modes will exist. Positive
b(k2)< 0 and c(k2)< 0 Unstable modes will exist. Positive

We now analyse b(k2)< 0 in detail. We have that

b(k2) = µ̃dk2 +[1+ν
′+ µ̃−σ

′(1)− p̃− 2
π

p̃δ (l)] := µ̃dk2 +G < 0, (3.22)

where G := [1+ ν ′+ µ̃ −σ ′(1)− p̃− 2
π

p̃δ (l)]. Observe that b(k2) is less than zero for
some k2 if G takes negative values and µ̃dk2 < |G|. Sufficient conditions for b(k2) to take
negative values for some k2 > 0 are:

(a) G = 1+ν ′+ µ̃−σ ′(1)− p̃− 2
π

p̃δ (l)< 0,

(b) µ̃dk2 < |G|=
∣∣∣1+ν

′+ µ̃−σ
′(1)− p̃− 2

π
p̃δ (l)

∣∣∣,
(c) k2

crit ≥ k2
1,

where k2
crit = |G|/µ̃d is the value of k2 for which b(k2) is zero and k2

1 is the first posi-
tive wavenumber. The last condition enforces that b(k2) is negative for at least the first
wavenumber, k2

1. From condition (a) and (b) above, we require p̃ or σ ′(1) to be suffi-
ciently large in order for b(k2)< 0 to exist for some k2 > 0, where

σ
′(1) :=

∂σ(ã)
∂ ã

∣∣∣
ã=1

= ψ̃

[
− 1

ãsat
e−

1
ãsat +2e−

1
ãsat

]
. (3.23)

From (3.23), we see that σ ′(1) is dependent on ãsat and also proportional to ψ̃ (see
Figure 3.3). In particular, if ãsat = 0.5 then σ ′(1) = 0 and if 0 < ãsat < 0.5 then σ ′(1)<
0. When σ ′(1) < 0 then b(k2) < 0 will exist for some k2 > 0 only if p̃ is sufficiently
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3.5. Linear stability analysis on a fixed unit disc
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Figure 3.3: A plot of σ ′(1) against ãsat with ψ̃ = 1.0.

large such that the three sufficient conditions for b(k2) < 0 are satisfied. Since zero-
flux boundary conditions are specified on the boundary ∂Ωt∂Ωt∂Ωt , we assume that saturation
concentration 2ãsat > as = 1.0 where as is the steady state solution of actin concentration.
We carry out a detailed analysis of the dispersion relation by considering the possibility of
b(k2)< 0 and c(k2)> 0 for some k2 > 0 to exist. The purpose of the linear stability theory
are two-fold: (a) to validate the numerical scheme and (b) to identify key bifurcation
parameters. We will show later that the numerical results are consistent with predictions
from the linear stability theory close to bifurcation points.

In order to tell when an eigenvalue k2 is isolated by a dispersion relation, we must first
determine the value of k2. We note that the value assumed by k2 depends on the domain
of interest. Let w(x) := (a(x),u(x))T denote the time independent eigenfunctions of the
linear system of differential equation (3.17). By considering only the spatial variations
in (3.17) we obtain the eigenvalue problem ∆w = −k2w, where w are time-independent
eigenfunctions of the linear system of differential equation (3.17) and k2 is its corre-
sponding eigenvalue. The eigenvalue problem is defined on a unit disk corresponding to
the initial domain. A solution of the eigenvalue problem gives the values of the eigenvalue
k2 and its corresponding eigenfunction w. In the next section, we present the solution of
the eigenvalue problem.
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3.6. Eigenfunctions on a unit disk

3.6 Eigenfunctions on a unit disk

A wavenumber k2 is the solution of the eigenvalue problem ∆w = −k2w, w 6= 0 with
homogeneous Neumann boundary condition i.e n ·∇w= 0, where w are time-independent
eigenfunctions of the linear system of differential equation (3.17). In order to determine
the value of k2, we use the separation of variables method to solve for an eigenfunction
w, w 6= 0 and a wavenumber k2 such that the eigenvalue problem is well defined. We note
that the solutions of eigenvalue problems are known for simple domains such as a disk
(Coleman 2005; Zill and Cullen 2000) but we present it here for the sake of completeness.

We convert the Laplacian operator to polar coordinates before applying the separation
of variables method.

3.6.1 Laplace operator in polar coordinates

Consider a scalar function w such that

∆w = wxx +wyy, (3.24)

then we can compute the Laplacian in Polar coordinate system by defining x = r cosθ and
y = r sinθ . Thus we have that

xr = cosθ , yr = sinθ , xθ =−r sinθ and yθ = r cosθ . (3.25)

By applying chain rule we can obtain the followingwr = wxxr +wyyr = wx cosθ +wy sinθ ,

wθ = wxxθ +wyyθ =−wxr sinθ +wyr cosθ .
(3.26)

Upon solving the simultaneous equation (3.26) for wx and wy, we obtainwx = wr cosθ − 1
r wθ sinθ ,

wy = 1
r wθ cosθ +wr sinθ .

(3.27)

We note that

wxx =
∂

∂x
(wx) =

∂

∂x

(
wr cosθ − 1

r
wθ sinθ

)
, (3.28)

= wrr cos2
θ +

1
r2 wθθ sin2

θ − 2
r

wrθ sinθ cosθ +
1
r

wr sin2
θ +

2
r2 wθ sinθ cosθ .

(3.29)
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3.6. Eigenfunctions on a unit disk

also

wyy
∂

∂x
(wx) =

∂

∂x

(1
r

wθ cosθ +wr sinθ
)
,

= wrr sin2
θ +

1
r2 wθθ cos2

θ +
2
r

wrθ sinθ cosθ +
1
r

wr cos2
θ − 2

r2 wθ sinθ cosθ .

(3.30)

An expression of the Laplacian in Polar coordinate system is obtained by substituting (3.29)
and (3.30) into (3.24). Thus yielding the following,

∆w = wrr +
1
r

wr +
1
r2 wθθ . (3.31)

3.6.2 Neumann Laplacian on a disk

Given a scalar function w such that w = (a(x),u(x))T := (w,w), the eigenvalue prob-
lem (3.32) is well defined for w 6= 0 satisfying,

∆w+λw = 0 in Ω0 = {(x,y) : x2 + y2 ≤ R2},
∂w
∂n

= 0 on ∂Ω0. (3.32)

In order to solve the eigenvalue problem (3.32), we resort to the Polar coordinates system.
We substitute (3.31) into (3.32) to obtain

wrr +
1
r

wr +
1
r2 wθθ +λw = 0, 0 < r < R, −∞ < θ < ∞,

wr(R,θ) = 0 −∞ < θ < ∞, (3.33)

where wr := ∂w/∂ r, wrr := ∂ 2w/∂ r2, wθ := ∂w/∂θ and wθθ := ∂ 2w/∂θ 2. Since the
point (r,θ) is the same as the point (r,θ +2π), we require

w(r,θ +2π) = w(r,θ)

for each θ , and each r in 0 < r < R. In polar coordinates, it is possible to have equations
with solutions which are unbounded at the origin (Coleman 2005). These solutions are
not continuous, so we require

lim
r→0

w(r,θ)< ∞, −∞ < θ < ∞, (3.34)

which can be written as
w(0,θ)< ∞.
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3.6. Eigenfunctions on a unit disk

In order to solve (3.33), we use the method of separation of variables. We search for
solution of the form

w(r,θ) = f (r)Θ(θ). (3.35)

Upon substitution of (3.35) into the eigenvalue problem (3.33) with (3.34), and separating
the ODEs we obtain the f equation

r2 f ′′+ r f ′+(λ r2−µ) f = 0,

fr(R) = 0, | f (0)|< ∞,

and the Θ equation

Θ
′′+µΘ = 0, Θ(θ +2π) = Θ(θ), Θ

′(θ +2π) = Θ
′(θ) for all θ .

The eigenvalues and eigenfunctions of the Θ-problem, are

µm =m2, m= 0,1,2, · · · ; Θ0(θ)= c0, Θm(θ)= cm cosmθ +dm sinmθ , m= 1,2,3, · · · .

The f equation becomes

r2 f ′′+ r f ′+(λ r2−m2) f = 0,

fr(R) = 0, | f (0)|< ∞.

In solving the f equation we consider each of the possible cases where λ = 0, λ < 0 and
λ > 0.

Case 1: λ = 0

λ = 0 gives the Cauchy-Euler equation (Coleman 2005)

r2 f ′′+ r f ′−m2 f = 0, m = 0,1,2, · · · .

The general solution for m = 0 is

f (r) = c1 + c2 lnr and

for m 6= 0, is
f (r) = c1rm + c2r−m.

For both equations the boundary condition yields c1 = c2 = 0. Thus, λ = 0 is not an
eigenvalue for any choice of m.
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3.6. Eigenfunctions on a unit disk

Case 2: λ < 0, λ =−k2 (k > 0)

Here we have the following equation for f .

r2 f ′′+ r f ′− (k2r2 +m2) f = 0.

Upon using the change of variable x = kr and y = f (x) we obtain the following modified
Bessel’s equation of order m,

x2y′′+ xy′− (x2 +m2)y = 0.

The general solution of the modified Bessel’s equation is presented in Section 1.2.7 (see
equation (1.16)) and is equal to

f (r) = c1Im(kr)+ c2Km(kr),

where Im and Km are the modified Bessel functions of order m. Considering that Km is
unbounded as r→ 0, we must have c2 = 0 and, since I′m(kr)> 0 for k > 0, we must also
have c1 = 0. Thus, there are no negative eigenvalues for all m.

Case 3: λ > 0, λ = k2 (k > 0)

Here we have the following equation for f .

r2 f ′′+ r f ′+(k2r2−m2) f = 0.

Upon using the change of variable x = kr and y = f (x) we obtain the following Bessel’s
equation of order m,

x2y′′+ xy′+(x2−m2)y = 0.

The general solution of the Bessel’s equation is presented in Section 1.2.6 (refer to (1.15))
and is equal to

f (r) = c1Jm(kr)+ c2Ym(kr),

where Jm and Ym are Bessel functions of order m. Considering that Ym is unbounded as
r→ 0, then we must have that c2 = 0. Upon applying the boundary condition at r = R we
have that

fr(R) = c1J′m(kR) = 0. (3.36)

This implies that c1 = 0 unless kR is a zero of the derivative of Bessel function J′m. Again
let x = kr then J′m(x) is (Zill and Cullen 2000):

J′m =
m
x

Jm− Jm+1.
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3.6. Eigenfunctions on a unit disk

A plot of function J′m for m = 0,1,2,3 is shown in Figure 3.4

Figure 3.4: A plot showing the derivative of Bessel’s function J′m for m = 0,1,2,3.

We note that each derivative of Bessel function J′m has infinitely many positive zeros
j′m,n, n = 1,2,3, · · · , thus the eigenvalues are (as deduced from (3.36))

λm,n = (km,n)
2 =

(
j′m,n/R

)2
, m = 0,1,2, · · · ; n = 1,2,3, · · · ,

with corresponding eigenfunctions

fm,n(r) = Jm
(

j′m,n r/R
)
, m = 0,1,2, · · · ; n = 1,2,3, · · · ,

λ = 0 is an eigenvalue only for m = 0.
Thus the solution of problem (3.32) has discrete eigenvalues:

λm,n = ( j′m,n/R)2, m = 0,1,2, · · · , n = 1,2, · · · ,

where j′m,n is the nth positive zero of J′m (an exception is that J′0,1 = 0).The corresponding
discrete eigenfunctions are given by:

w0,n(r,θ) = J0( j′0,nr/R) for m = 0.

For m≥ 1,
wm,n(r,θ) = Jm( j′m,nr/R)

(
cm cosmθ +dm sinmθ ,

)
.

We note that
cm cosmθ +dm sinmθ = ccosm(θ −θ1),
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3.6. Eigenfunctions on a unit disk

Table 3.4: Zeros of the derivative of Bessel functions of the first kind: j′m,n m = 0, · · · , 5;
n = 1, · · · , 4.

n j′0,n j′1,n j′2,n j′3,n j′4,n j′5,n
1 0.00000 1.84118 3.05424 4.20119 5.31755 6.41562
2 3.83170 5.33144 6.70613 8.01524 9.28240 10.51986
3 7.01558 8.53632 9.96947 11.34592 12.68191 13.98719
4 10.17346 11.70600 13.17037 14.58585 15.96411 17.31284

for constants c and θ1, hence the discrete eigenfunctions can be rewritten as follows

wm,n(r,θ) = Jm( j′m,nr/R)cosmθ , for m≥ 1

for constant c.
Values of j′m,n are obtained from the ‘Handbook of Mathematical Functions with For-

mulas, Graphs, and Mathematical Tables’ by Abramowitz and Stegun (Abramowitz and
Stegun 1968). For the sake of completeness, in Table 3.4, we present some values of j′m,n

for m = 0, · · · ,5 and n = 1, · · · ,4.
We summarise the results given above in Remark 3.6.1 below.

Remark 3.6.1. Consider a scalar function w such that ∆w = k2w, w 6= 0, on a disk

ΩΩΩ0 = {(x,y) : x2 + y2 ≤ R2} with homogeneous Neumann boundary condition. Then the

discrete eigenvalues are given by,

k2
m,n =

(
j′m,n/R

)2
, m = 0,1,2, · · · ; n = 1,2, · · · , (3.37)

with corresponding eigenfunctions, wm,n given by

wm,n(r,θ) =

J0( j′0,nr/R) if m = 0,

Jm( j′m,nr/R)ccosm(θ −θ1) if m > 0.
n = 1,2, · · · ,

for constants c and θ1. Here Jm is the mth Bessel function of the first kind and j′m,n is the

nth positive zero of J′m (except for j′0,1 = 0), where J′m denotes the derivative of the Bessel

function Jm with respect to r.

We consider the lowest non-zero wavenumber k2
1,1 : = ( j′1,1/R)2 and its corresponding vi-

bration mode w1,1(r,θ) = J1( j′1,1r/R)cosθ . Using MATLAB, we compute a surface plot
of the vibration mode w1,1. The plot is shown in Figure 3.5. This plot will be useful in
the comparison of the linear stability theory with the numerical results. A way of check-
ing the validity of the numerical results is to show that the numerical scheme computes
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3.7. Mode selection and the dispersion relation

spatially inhomogeneous steady state solutions which coincides with those predicted by
linear stability theory close to bifurcation points (Madzvamuse 2000).

1
0

1

1

0

1

0.5

0

0.5

w1,1

Figure 3.5: A surface plot of the vibration mode w1,1(r,θ) = J1( j′1,1r)cosθ which corre-
sponds to the lowest non-zero wavenumber k2

1,1 on a unit disk.

3.7 Mode selection and the dispersion relation

We seek to identify parameter values for c(k2) > 0 and b(k2) < 0 to exist for a finite
number of k2 > 0. We continue to denote the non-dimensional model parameters by a
tilde to avoid confusing it with their dimensional counterpart and we assign values to p̃

and ψ̃ such that the dispersion relation isolates a finite number of wavenumbers. We begin
by noting the following:

• If c(k2) > 0 for some k2 > 0 is required, then the value of the pressure coefficient
p̃ should be chosen such that the inequality p̃ < 1+ν ′ is satisfied. If this inequal-
ity is satisfied then c(k2) > 0 for all wavenumbers k2 (see (3.20) for the function
c(k2)). Thus we will have to rely on b(k2) for the isolation of a finite number of
wavenumbers k2 (this is a result of the Routh-Hurwitz stability criteria that gives a
sufficient condition on the coefficients of the polynomial (3.20) that would result in
Reλ (k2)> 0 for some k2 > 0).

• We require b(k2)< 0 for some k2 > 0. Recall that earlier in Section 3.5 we outlined
the sufficient conditions for b(k2) < 0 for some k2 > 0. From these conditions
we know that the value of b(k2) depends primarily on the value of the pressure
coefficient p̃ and the measure of the contractile tonicity ψ̃ for fixed values of ãsat .

Thus it is logical to use either p̃ or ψ̃ as the bifurcation parameter but we prefer to use
ψ̃ as the bifurcation parameter since there is no restriction on its value (note that p̃ has a
restriction on its value since it is required that p̃ < 1+ν ′ for c(k2) to be positive for any
k2 > 0).
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3.7. Mode selection and the dispersion relation

3.7.1 Isolation of a finite range of unstable wavenumbers

Here we rely on b(k2) in order to produce a dispersion relation that isolates a finite range
of unstable wavenumbers. b(k2) is a linear function of k2. We begin with the study of
the dispersion relation that isolates the wavenumber k2

1,1 as its only unstable non-zero
wavenumber. The wavenumber k2

1,1 is isolated by enforcing the following:

• b(k2)< 0 for k2
1,1 but greater than zero for all higher wavenumbers.

• p̃< 1+ν ′ (recall that enforcing this restriction on p̃ gives c(k2)> 0 for all wavenum-
bers k2 > 0). Given a Poisson’s ratio ν := 0.3 then ν ′ = 0.75. Hence

p̃ < 1+ν
′ = 1.75. (3.38)

Thus to satisfy the inequality (3.38) we assign a value to p̃ = 0.26. Next we assign
a value to ψ̃ such that the three conditions for b(k2) < 0 as given in Section 3.5 are
satisfied for only k2

1,1. Note that when the value of ψ̃ is gradually increased from ψ̃ = 0
we obtain a Hopf bifurcation. If we continue to increase ψ̃ then we get a transition from
a Hopf instability to a Turing’s instability ( See Figure 3.9(a)). A typical value of ψ̃ such
that a Turing instability occurs with k2

1,1 being the only non-zero wavenumber for which
b(k2) < 0 is ψ̃ = 62.4 (corresponding dimensional value using the scaling (3.15) is ψ

= 72 dyn/cm2) irrespective of the value of δ (l). A plot of b(k2) and the corresponding
dispersion relation Reλ (k2) against k2 is shown in Figure 3.6 for the case where δ (l) =

1. The plot of b(k2) and the corresponding dispersion relation Reλ (k2) against k2 for
the case where δ (l) = 0 is identical to that shown in Figure 3.6. We recall that it is
not possible to isolate only one non-zero wavenumber except for the case where k2

1,1 is
isolated. For any wavenumber greater than k2

1,1, we only have the choice of isolating
the first 2 non-zero wavenumbers, the first 3 non-zero wavenumbers, the first 4 non-zero
wavenumbers and so on. For illustrative purposes we present a plot in Figure 3.7 of b(k2)

and the corresponding dispersion relation Re(λ ) against k2 where the first 2 non-zero
wavenumbers have been isolated. In validating the numerical results we consider first
the case where only k2

1,1 is isolated. The advantage of this is that we can easily compare
the linear stability theory with the numerical results without having to worry about the
dynamics of mixed modes. Next we consider the dynamics of higher modes and mixed
modes. To isolate the first 2 non-zero wavenumbers as shown in Figure 3.7, we carried on
as we did for k2

1,1 but in addition we enforced another condition which is that k2
2 < k2

c < k2
3

irrespective of if δ (l) in b(k2) is taken to be 1 or zero, where k2
c is the point when b(k2)

= 0, k2
2 := k2

2,1 and k2
3 := k2

0,1. See Table 3.5 for values of ψ̃ and the corresponding
band of wavenumbers it isolates (all other model parameter values remain fixed and their
values are given in Table 3.2). When a band of wavenumbers is linearly unstable, it
is known that it becomes difficult to determine which eigenmode will be excited and
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3.7. Mode selection and the dispersion relation

in such cases the initial conditions play a key role in determining which eigenmode is
excited (Murray 1993). The principle of superposition (Zill and Cullen 2000) implies
that any linear combination of eigenmodes is also a solution of the eigenvalue problem.
Hence when a band of wavenumbers is isolated by a dispersion relation, it is possible that
instead of a single mode being selected a linear combination of eigenmodes (i.e mixed
modes) may evolve. In Section 5.1 we present numerical results that shows the important
role played by the contractile coefficient and the choice of initial conditions on mode
selection. For this purpose we present in Figure 3.8 surface plots of possible single and
mixed modes that could evolve for bands of wavenumbers given in Table 3.5. Earlier,
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Figure 3.6: We present in (a) a plot of b(k2)< 0 when k2
1,1 = 3.38994 is the only excitable

wavenumber. In (b) we show its corresponding dispersion relation Re λ := max(Re λ ).
In both cases δ (l) = 1.

Table 3.5: A display of the values of ψ̃ (and their corresponding dimensional values of ψ)
required by the dispersion relation in order to isolate at least two unstable wavenumbers.

Value of ψ̃ Value of ψ (dyn/cm2) wavenumbers isolated (i.e unstable)
62.439 72.045 k2

0,1, k2
1,1

95.327 109.993 k2
0,1, k2

1,1, k2
2,1

131.869 152.157 k2
0,1, k2

1,1, k2
2,1, k2

0,2
174.767 201.654 k2

0,1, k2
1,1, k2

2,1, k2
0,2, k2

3,1, k2
4,1

270.094 311.647 k2
0,1, k2

1,1, k2
2,1, k2

0,2, k2
3,1, k2

4,1, k2
1,2, k2

5,1
317.758 366.643 k2

0,1, k2
1,1, k2

2,1, k2
0,2, k2

3,1, k2
4,1, k2

1,2, k2
5,1 k2

2,2

we studied the dispersion relation with the value of the pressure coefficient p̃ fixed but the
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Figure 3.7: We present in (a) a plot of b(k2)< 0 when the first 2 non-zero wavenumbers
k2

1,1 = 3.38994 and k2
2,1 = 9.32838 are the only excitable wavenumbers. In (b) we show

the corresponding dispersion relation Re λ := max(Re λ ). In both cases δ (l) = 1.

contractility tonicity ψ̃ varied. Various other combinations of ψ̃ and p̃ are possible, hence
we study below the parameter space (ψ̃, p̃).

3.7.2 Parameter space

The spatiotemporal patterns occur in dynamical systems when driven away from equilib-
rium. The occurrence of these patterns are due to the emergence of symmetry-breaking
bifurcations (Cross and Hohenberg 1993; Moreo et al. 2010). According to Moreo et al.
(2010) and Yang et al. (2002) we can classify these into three types of instabilities on the
basis of a linear stability analysis of a homogeneous steady state, (1) a Turing bifurcation
resulting in patterns that are stationary in time and oscillatory in space; (2) a Hopf bifur-
cation resulting in oscillations that are uniform in space and periodic in time ; and (3) a
wave bifurcation resulting in patterns that are oscillatory in both time and space.

Here we keep all parameters given in Table 3.2 fixed except the pressure coefficient
p̃ and the contractile tonicity ψ̃ . We make a plot of the parameter space (ψ̃, p̃) showing
spaces that lie in a region of Hopf instability (Re(λ ) < 0 and Imag(λ ) > 0), oscillatory
instability (Re(λ )> 0 and Imag(λ )> 0) or Turing instability (Re(λ )> 0 and Imag(λ ) =
0). This plot is presented in Figure 3.9(a) for the case where b(k2) has δ (l) = 1. Note
that for δ (l) = 0 the parameter space plot is identical to that shown in Figure 3.9(a). In
Figure 3.9(a) we observe that there exists Hopf, oscillatory and Turing instability regions
where all have a dispersion relation that isolates k2

1,1 as the only non-zero wavenumber.
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Figure 3.8: Surface plots of selected eigenmodes for some bands of wavenumbers dis-
played in Table 3.5.

The ash area (H) signifies the region of Hopf instability with a dispersion relation that
isolates k2

1,1 as the only unstable non-zero wavenumber. The region (dark blue) preceding
that of Hopf instability represents the region where the uniform steady state is always
stable for all wavenumbers k2. Immediately after the Hopf instability region we have a
purple region (OS1) where an oscillatory instability exists for k2

1,1. The green region is a
Turing instability region and has a dispersion relation that isolates k2

1,1 as the only unstable
non-zero wavenumber. In the purple region (OS2) an oscillatory instability exists for k2

2,1.
The light blue region is also a Turing instability region and has a dispersion relation that
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3.7. Mode selection and the dispersion relation

isolates the first two non-zero wavenumbers k2
1,1 and k2

2,1. If we keep ψ̃ constant say
ψ̃ = 38.24, and then varying p̃ from 0 to 1.74, we observe (from the parameter space
plot shown in Figure 3.9(a) for δ (l) = 1) that there exists a transition from an oscillatory
to a Turing instability. We make another plot to illustrate better the transition from an
oscillatory to a Turing instability for ψ̃ = 38.24 by plotting the values of the real and
imaginary parts of λ as p̃ varies from 0 to 1.74. This plot is shown in Figure 3.9(b)
and 3.9(c) for δ (l) = 1 and δ (l) = 0 respectively. Alternatively, if we keep p̃ constant say

˜p = 0.8 and then vary ψ̃ from 30 to 60 then we obtain a transition from a stable region
to Hopf instability region to an oscillatory instability region and then finally to a Turing
instability region for both the case where δ (l) = 1 (i.e where

√
ξ 2

x +ξ 2
y > 0.8 = l0) and

δ (l) = 0 (i.e. where
√

ξ 2
x +ξ 2

y < 0.8 = l0), k2 > 0 (see Figure 3.9(a)). It is natural to
wonder how the solution would behave say in the case where ψ̃ = 38.24 and p̃ is varied
from 0 to 1.74 such that a transition from an oscillatory instability to a Turing instability
occurs. We studied this numerically by finding the numerical approximation of the model
problem (3.14) using the finite element method along with the equivalent numerical value
of p̃ which we obtained from the scaling given in (3.15).
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Figure 3.9: We present in (a) parameter space plot of the pressure coefficient p̃ against
the contractile tonicity ψ̃ showing the regions where instability exist for δ (l) = 1. The
ash area (H) signifies the region of Hopf instability with a dispersion relation that isolates
k2

1,1 as the only unstable non-zero wavenumber. The region (dark blue) preceding that
of Hopf instability represents the region where the uniform steady state is always stable
for all wavenumbers k2. Immediately after the Hopf instability region we have a purple
region (OS1) where an oscillatory instability exists for k2

1,1. The green region is a Turing
instability region and has a dispersion relation that isolates k2

1,1 as the only unstable non-
zero wavenumber. In the purple region (OS2) an oscillatory instability exists for k2

2,1.
The light blue region is also a Turing instability region and has a dispersion relation that
isolates the first two non-zero wavenumbers. And in (b) and (c) we show how the variation
of p̃ results in a transition from an oscillatory instability to a Turing instability for ψ̃ =
38.24. In (b) δ (l) = 1 and (c) δ (l) = 0.
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3.8 Summary

In this Chapter, we introduced a cytomechanical model for cell deformation from first
principles. The model consists of two coupled system of equations, namely a force bal-
ance equation (derived from continuum mechanics) and a reaction-diffusion equation (de-
rived from conservation equation exploiting conservation laws). The model assumes that
cell deformation is as a result of the interaction between an internal hydrostatic pres-
sure pushing on the membrane, an active polymerization-induced pressure pushing on
the membrane and the contractile force of the actin network pulling on the membrane
through their link with the membrane. The model consist of two variables namely, the
F-actin density and the actin displacement velocity in the cell. A detailed mathematical
analysis of the cytomechanical model was carried out using linear stability theory. The
reason for carrying out the linear stability theory is to validate the numerical scheme that
will be introduced in the next chapter. This is usually carried out by showing that the
numerical results obtained are consistent with predictions from the linear stability theory
close to bifurcation points for some finite range of unstable modes. In the linear stability
analysis, a study of the dispersion relation showed that the parameter ψ̃ which describes
the measure of the contractile tonicity is an appropriate bifurcation parameter. Thus by
varying the value of ψ̃ we showed that the dispersion relation could isolate a finite range
of wavenumbers. Also surface plots of predicted solutions for a couple of eigenfunctions
corresponding to the wavenumbers isolated by the dispersion relation were also presented.
These predictions from linear stability theory will be helpful in the validation of the nu-
merical scheme introduced in the next chapter.
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Chapter 4

A moving grid finite element method for
cell movement

4.1 Introduction

The aim of this chapter is to solve the cytomechanical model (3.14) describing the dy-
namics of movements and shape changes of the cell. The model is a highly complex and
non-linear system of equations with complex geometry as such an exact solution is diffi-
cult to compute and analytical solution is not feasible. In situations where exact solutions
to mathematical problems are difficult to obtain an approximate solution is usually sought
using numerical simulation methods (Reddy 1993). A lot of numerical simulation meth-
ods have been developed and are widely available in the literature. A determining factor
in choosing a numerical method is usually the ease in which a method can be applied to
a problem at hand and the ability of the method to produce highly accurate solutions in
comparison with other available methods. The key factors being accuracy, efficiency and
robustness of the numerical method (Madzvamuse 2006; Reddy 1993). On fixed domains
with simple geometry, numerical simulations are usually done using the finite difference
scheme due to the ease in which the method is applied (Crampin et al. 1999; Liszka and
Orkisz 1980; Morton and Mayers 1994). The application of the finite difference scheme to
continuously changing domains is usually non-trivial and encounters difficulty in dealing
with a continuously deforming moving boundary (Madzvamuse et al. 2005).

Numerical simulations of the cytomechanical model has been done by Alt and Tran-
quillo (1995) and Stéphanou et al. (2004) based on the finite difference scheme. Existing
difficulties in solving the cytomechanical model due to using the finite difference scheme
can be overcome by using a different simulation method for example, a boundary element
method (BEM) (Brebbia 1981; Crouch and Starfield 1983), a level set method (LSM)
(Sethian 1996) or a finite element method (FEM) (Madzvamuse et al. 2003; Reddy 1993;
Zienkiewicz et al. 2005). Since the cytomechanical model is a second order inhomoge-
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4.1. Introduction

neous and non-linear system of partial differential equations, the application of the BEM
to its numerical approximation is much more difficult compared to FEM (LaForce 2006).
The LSM will not be implemented here but could be implemented in the future to model
splitting and reconnecting cells.

In order to avoid the problem involved in dealing with a free moving cell boundary,
in Stéphanou et al. (2004) the description of the actin dynamics was restricted to a one-
dimensional circular active layer of radius, r. As a result, the radial movements of actin
in the cell cortex were not considered and only tangential displacements were assumed to
lead to a local increase or decrease in density on the circle which affect the intensity of
the retraction force.

The model was represented in the polar coordinate system. We reiterate here as stated
in the introduction that the polar coordinate system has difficulty in describing the evolu-
tion of a cell as it moves outside the origin of the polar coordinate system.

In view of these, we develop in this chapter a moving grid finite element model
(MGFEM) of the cytomechanical model that is defined in a 2D cartesian coordinate sys-
tem. The MGFEM is a novel extension of the finite element method to moving bound-
ary problems introduced by Madzvamuse (2000) to study partial differential equations
posed on complex evolving domains. It is a highly accurate, efficient and robust nu-
merical method which has been used successfully in Madzvamuse (2006); Madzvamuse
et al. (2003; 2005) and Madzvamuse and Maini (2007) for the numerical simulation of
reaction-diffusion systems on growing and continuously deforming domains with com-
plex geometries. The novelty of the moving grid finite element method is its ability to
allow the prescription of the nodal displacement of the computational grid points of the
finite element mesh during the evolution of the domain. It is able to accommodate a priori
descriptions of the grid displacement (Madzvamuse 2000), a computed grid displacement
(which are solutions of a partial differential equation of an unknown variable) or a grid
displacement generated by minimizing the residual of the differential equation (Baines
1994; Miller and Miller 1981) (as developed by Miller and Miller (1981) in the moving
finite element). The difference between the moving finite element and MGFEM is the
derivation of the grid displacement (Madzvamuse et al. 2005).

Here the displacement of the computational grid are prescribed as the displacement
solutions of the force balance equation. The moving grid finite element method of the
reaction-diffusion equations (3.14b) has already been established (Madzvamuse et al.
2005) but this is not the case for the force balance equation (3.14a). Here the main aim
is to develop a MGFEM of the cytomechanical model by deriving a MGFEM of the force
balance equation and then couple it to that of the reaction-diffusion equation.

In Section 4.3 we derive the weak formulation for the cytomechanical model. And
we present a finite element discretisation of the model in Section 4.4. In Section 4.5 we
describe the method of computation of the the domain evolution. Finally in Section 4.6
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4.2. Basic concept of the moving grid finite element method

we describe the techniques of implementation of the MGFEM.

4.2 Basic concept of the moving grid finite element method

Finite element methods are based on the idea of dividing a domain of interest into sub-
domains using simplexes such that the whole domain is approximated as a collection of
these simplexes (Reddy 1993). These simplexes are otherwise known as elements and
their vertices are called nodes. The model equations are described on each element and
the solution is approximated over the element by polynomials in terms of nodal values and
then assembled at the nodes to form an approximate system of equations for the whole
domain. For time dependent problems, this gives rise to a system of ordinary differential
equations and a temporal approximation is required, often using finite difference formula
for the time derivative. The resulting system of equations are solved to obtain the desired
unknown quantities at the nodes.

The moving grid finite element method is based on the same idea; the key differ-
ence being the introduction of a domain velocity and movement. The technique in which
the domain movement is accounted for distinguishes it from other moving finite element
methods (Madzvamuse 2006). The derivation of the moving grid finite element method
for the cytomechanical model involves four main steps: (1) Derivation of the weak formu-
lation of the differential equation. (2) Approximation of the actin concentration solution
(and displacement solution) over the finite elements (that involves a spatial and tempo-
ral approximation) to obtain a system of algebraic equations in terms of nodal values of
actin concentration solution (and displacement solution). (3) Assembly of the element
equations. (4) Incorporation of the domain velocity and movement.

The derivation of the finite element weak formulation of the cytomechanical model is
presented below.

4.3 Derivation of the weak formulation

For completeness, we restate here the cytomechanical model for cell movement and de-
formations on a continuously deforming cell:

∇ · (σσσ v +σσσ e +σσσ c +σσσ p) = 000 in ΩΩΩt , t ∈ I, (4.1a)
∂a
∂ t
−Da∆a+∇ · (aβββ )− ka(ac−a) = 0 in ΩΩΩt , t ∈ I, (4.1b)

u(x(t), t) = 000 for x ∈ΩΩΩt , t = 0, (4.1c)

a(x(t), t) = a0 for x ∈ΩΩΩt , t = 0, (4.1d)

βββ = ωωωn for x ∈ ∂Ω∂Ω∂Ωt , t ∈ I, (4.1e)

σσσ v ·n = σσσ e ·n = n.∇a = 0 for x ∈ ∂Ω∂Ω∂Ωt , t ∈ I, (4.1f)

75



4.3. Derivation of the weak formulation

where in (4.1a), σσσ v, σσσ e, σσσ c and σσσ p are the viscous, elastic, contractile and pressure
component stress tensors. These are defined as:

σσσ v = µ1
∂εεε

∂ t
+µ2

∂φ

∂ t
I, (4.2)

σσσ e =
E

1+ν

(
εεε +

ν

1−2ν
φI
)
, (4.3)

σσσ c = σ(a)I = ψa2e−a/asat I, (4.4)

σσσ p =
p(a)
1+φ

I =
p

1+φ

(
1+

2
π

δ (l)arctana
)

I, (4.5)

respectively. a = a(x(t), t) is the F-actin concentration and u = (u(x(t), t),v(x(t), t))T is
a vector of displacement of the elements of the actin network at position x ∈ΩΩΩt at time
t ∈ I. βββ represents the flow velocity of the elements of the actin network and ωωωn the
normal velocity of the boundary. n = (nx,ny) is the outward unit vector normal to the
boundary. ε = 1

2(∇u+∇uT ) is the strain tensor, I is the identity tensor, φ = ∇ ·u is the
dilation, ψ is a measure of the contractile tonicity, p is the pressure coefficient and µ1 and
µ2 are the shear and bulk viscosities of the actin network respectively. Finally E and ν

are the Young’s modulus and Poisson ratio respectively.

In 3.14b, ac is a constant parameter representing the F-actin concentration at the chem-
ical equilibrium. It differentiates the states of polymerisation and depolymerization. The
polymerisation rate is given by ka and Da is a positive diffusion coefficient for F-actin.
On the boundary, we take the flow velocity of the actin network βββ = ωωωn := ∂u/∂ t. Here
u is the displacement of the actin network at any given point in space and is computed as
the displacement solution obtained from the force balance equation 3.14a. In the interior
of the domain, we assume that βββ = ∂x/∂ t := ∂u/∂ t where ∂x/∂ t is the mesh velocity.
Thus we have a Lagrangian description of the domain evolution.

The force balance equation will be decoupled first into a system of two partial differ-
ential equations for ease of implementation of the weak formulation and the derivation of
the weak formulation of the force balance equation will be presented. Next we derive the
weak formulation of the reaction-diffusion equation.

4.3.1 Weak formulation of the force balance equation

The force balance equation on a continuously deforming cell domain ΩΩΩt t ∈ [0,Tf ] is

∇ · (σσσ v +σσσ e +σσσ c +σσσ p) = 000 in ΩΩΩt , t ∈ I, (4.6a)

u(x(t), t) = 000 for x ∈ΩΩΩt , t = 0, (4.6b)

σσσ v ·n = σσσ e ·n = 0 for x ∈ ∂Ω∂Ω∂Ωt , t ∈ I, (4.6c)
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4.3. Derivation of the weak formulation

where in (4.6a), σσσ v, σσσ e, σσσ c and σσσ p are the viscous, elastic, contractile and pressure
component stress tensors as defined in (4.2)-(4.5). Before we begin, we simplify the force
balance equation by decoupling it into a system of two differential equations; we do so
by substituting the values of σσσ v, σσσ e, σσσ c and σσσ p into the force balance equation (4.6a)
and then decoupling the resulting equation. This necessitates the expression of the stress
tensors in tensor-matrix forms. In order to write the stress tensors in tensor-matrix form
we note that the dilation φ by definition is φ := ∇ ·u = ∂u

∂x +
∂v
∂y and the stain tensor εεε is:

εεε(u) =
1
2

(
∇u+(∇u)T

)
=

(
∂u
∂x

1
2(

∂v
∂x +

∂u
∂y )

1
2(

∂v
∂x +

∂u
∂y )

∂v
∂y

)
∈ RRR2×2.

By using the above representation of the strain tensor εεε and the dilation φ , we represent
the stress tensors σσσ c, σσσ p, σσσ e and σσσ v (defined in (4.2)-(4.5)) in two-dimensional tensor-
matrix forms as follows:

σσσ c =

(
ψa2e−a/asat 0

0 ψa2e−a/asat

)
∈ RRR2×2,

σσσ v =

(
(µ1 +µ2)

∂ u̇
∂x +µ2

∂ v̇
∂y

µ1
2 (∂ v̇

∂x +
∂ u̇
∂y )

µ1
2 (∂ v̇

∂x +
∂ u̇
∂y ) µ2

∂ u̇
∂x +(µ1 +µ2)

∂ v̇
∂y

)
∈ RRR2×2,

σσσ e =
E ′

2

(
(ν ′+2)∂u

∂x +ν ′ ∂v
∂y

∂v
∂x +

∂u
∂y

∂v
∂x +

∂u
∂y ν ′ ∂u

∂x +(ν ′+2)∂v
∂y

)
∈ RRR2×2,

and

σσσ p =

(
p

1+φ
(1+ 2

π
δ (l) arctana) 0

0 p
1+φ

(1+ 2
π

δ (l) arctana)

)
∈ RRR2×2,

where E ′ = E/(1+ν), ν ′ = ν/(1−2ν) and E and ν are the Young’s modulus and Pois-
son ratio respectively. We substitute the matrix tensor representation of the stress tensors
into (4.6a) to obtain the force balance equation in matrix tensor form which is then de-
coupled into a system of two equations. The decoupled system of differential equations
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of the force balance equation is thus:

∂

∂x

(
D11

∂ u̇
∂x

+D12
∂ v̇
∂y

)
+

∂

∂y

[
D33

(
∂ u̇
∂y

+
∂ v̇
∂x

)]
+

∂

∂x

(
C11

∂u
∂x

+C12
∂v
∂y

)
+

∂

∂y

[
C33

(
∂u
∂y

+
∂v
∂x

)]
=−∂ f1

∂x
, (4.7a)

and

∂

∂x

[
D33

(
∂ u̇
∂y

+
∂ v̇
∂x

)]
+

∂

∂y

(
D12

∂ u̇
∂x

+D22
∂ v̇
∂y

)
+

∂

∂y

(
C12

∂u
∂x

+C22
∂v
∂y

)
+

∂

∂x

[
C33

(
∂u
∂y

+
∂v
∂x

)]
=−∂ f2

∂y
, (4.7b)

where
f1 ≡ f2 =

[
p

1+φ

(
1+

2
π

δ (l)arctana
)
+ ψa2e−a/asat

]
,

D11 = D22 = µ1 +µ2, D12 ≡ D21 = µ2, D33 = µ1/2,

C11 ≡ C22 =
E(1−ν)

(1+ν)(1−2ν)
, C12 ≡ C21 =

Eν

(1+ν)(1−2ν)
and C33 =

E
2(1+ν)

.

φ = ∇ · u is the dilation, ψ is a measure of the contractile tonicity and µ1 and µ2 are
the shear and bulk viscosities of the actin network respectively. E and ν are the Young’s
modulus and Poisson ratio respectively.

In order to derive the weak formulation of the force balance equation, we multiply
the system of partial differential equations (4.7) by a test function w1(x, t) ∈ H1(ΩΩΩt), t

∈ I, and using Green’s formula (1.5) we integrate the partial differential equations over
the domain ΩΩΩt and apply the boundary conditions (4.6c). We note that the boundary
condition (4.6c) implies that the boundary term vanishes after carrying out the integration
over the domain. The weak formulation is thus: Find u(x, t), v(x, t) ∈ H1(ΩΩΩt), t ∈ I such
that∫

ΩΩΩt

∂w1

∂x

(
D11

∂ u̇
∂x

+D12
∂ v̇
∂y

+C11
∂u
∂x

+C12
∂v
∂y

)
+

∂w1

∂y

[
D33

(
∂ u̇
∂y

+
∂ v̇
∂x

)]
+

∂w1

∂y

[
C33

(
∂u
∂y

+
∂v
∂x

)]
dΩΩΩt =

∫
ΩΩΩt

w1
∂ f1

∂x
dΩΩΩt , (4.8a)

and∫
ΩΩΩt

∂w1

∂y

(
D12

∂ u̇
∂x

+D22
∂ v̇
∂y

+C12
∂u
∂x

+C22
∂v
∂y

)
+

∂w1

∂x

[
D33

(
∂ u̇
∂y

+
∂ v̇
∂x

)]
+

∂w1

∂x

[
C33

(
∂u
∂y

+
∂v
∂x

)]
dΩΩΩt =

∫
ΩΩΩt

w1
∂ f2

∂y
dΩΩΩt , (4.8b)

for all w1(x, t) ∈ H1(ΩΩΩt), t ∈ I. The integrals on the right hand side of the weak formula-
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4.3. Derivation of the weak formulation

tion (4.8) are difficult to evaluate. To show this we write them out explicitly as:

∫
ΩΩΩt

w1
∂ f1

∂x
dΩΩΩt =

∫
ΩΩΩt

w1
∂

∂x

[
p

1+φ

(
1+

2
π

δ (l)arctana
)
+ψa2e−a/asat

]
dΩΩΩt ,

∫
ΩΩΩt

w1
∂ f2

∂y
dΩΩΩt =

∫
ΩΩΩt

w1
∂

∂y

[
p

1+φ

(
1+

2
π

δ (l)arctana
)
+ψa2e−a/asat

]
dΩΩΩt ,

(4.9)

since f1 ≡ f2 = p
1+φ

(
1+ 2

π
δ (l)arctana

)
+ ψa2e−a/asat . In view of this, we state the

following identities which can be derived using the gradient and divergence theorems and
are useful in the sequel in rewriting the weak form in a computationally efficient form.
Let r(x, t) and g(x, t) be scalar functions of class C0(ΩΩΩt) defined in ΩΩΩt ⊂ R2 and also
let n = (n1,n2) denote the outward unit vector normal to ∂Ω∂Ω∂Ωt for time t ∈ I. Then the
following identities (derived from the gradient theorem (1.1), see (1.2) and (1.3)) hold:

∫
ΩΩΩt

r
∂g
∂x

dΩΩΩt =−
∫

ΩΩΩt

g
∂ r
∂x

dΩΩΩt +
∫

∂Ω∂Ω∂Ωt

n1rg ds,

∫
ΩΩΩt

r
∂g
∂y

dΩΩΩt =−
∫

ΩΩΩt

g
∂ r
∂y

dΩΩΩt +
∫

∂Ω∂Ω∂Ωt

n2rg ds,

(4.10)

where ds is the element of arclength. Using the identities (4.10) we can rewrite the weak
form as follows: Find u(x, t), v(x, t) ∈ H1(ΩΩΩt), t ∈ I such that

∫
ΩΩΩt

∂w1

∂x

(
D11

∂ u̇
∂x

+D12
∂ v̇
∂y

+C11
∂u
∂x

+C12
∂v
∂y

)
+

∂w1

∂y

[
D33

(
∂ u̇
∂y

+
∂ v̇
∂x

)]
+

∂w1

∂y

[
C33

(
∂u
∂y

+
∂v
∂x

)]
dΩΩΩt =−

∫
ΩΩΩt

f1
∂w1

∂x
dΩΩΩt

+
∫

∂Ω∂Ω∂Ωt

n1 f1w1 ds, (4.11a)

and ∫
ΩΩΩt

∂w1

∂y

(
D12

∂ u̇
∂x

+D22
∂ v̇
∂y

+C12
∂u
∂x

+C22
∂v
∂y

)
+

∂w1

∂x

[
D33

(
∂ u̇
∂y

+
∂ v̇
∂x

)]
+

∂w1

∂x

[
C33

(
∂u
∂y

+
∂v
∂x

)]
dΩΩΩt =−

∫
ΩΩΩt

f2
∂w1

∂y
dΩΩΩt

+
∫

∂Ω∂Ω∂Ωt

n2 f2w1 ds, (4.11b)

for all w1(x, t) ∈ H1(ΩΩΩt), t ∈ I. Here n1 and n2 are the direction cosines of the outward
unit vector, n normal to ∂Ω∂Ω∂Ωt for time t ∈ I (i.e. n1 is the cosine of the angle between
the positive x direction and the vector n and n2 is the cosine of the angle between the
positive y direction and the vector n). Since the test functions we use are piecewise linear
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4.3. Derivation of the weak formulation

basis functions and their spatial derivatives are easy and straight forward to compute, the
weak formulation as expressed in (4.11) is a lot easier to compute compared to (4.8). We
say that u(x, t), v(x, t) are weak solutions of the force balance equation (4.6a) if u(x, t),
v(x, t) ∈ H1(ΩΩΩt) and (4.11) holds. Here we have assumed that a(x, t) is known and is the
solution of the reaction-diffusion equation (4.1b).

Remark 4.3.1. We would like to note that we do not actually compute the derivatives of

the delta function but we transfer these derivatives to the test function by using identi-

ties (4.10).

4.3.2 Weak formulation of the reaction-diffusion equation

Here we recall the reaction-diffusion equation for the actin bio-chemical dynamics for
completeness and derive a finite element model for this equation. The reaction-diffusion
equation for the actin bio-chemical dynamics is:

∂a
∂ t
−Da∆a+∇ · (aβββ )− ka (ac−a) = 0, (4.12)

where a = a(x(t), t) is the F-actin concentration and βββ represents the flow velocity of the
elements of the actin network. ac is a constant parameter representing the F-actin con-
centration at the chemical equilibrium. It differentiates the states of polymerisation and
depolymerization. The polymerisation rate is given by ka and Da is a positive diffusion
coefficient for F-actin.

By applying the product rule to the transport term in the reaction-diffusion equa-
tion (4.12), we can rewrite the reaction-diffusion equation as follows:

∂a
∂ t
−Da∆a+(∇a) ·βββ +a(∇ ·βββ )− ka (ac−a) = 0. (4.13)

We would like to represent the partial time derivative in the reaction-diffusion equa-
tion (4.13) in terms of the material derivative. In view of this, we introduce the mate-
rial derivative of the actin concentration a. Let Da/Dt be a material derivative, then the
material derivative of the actin concentration a is defined as (Reddy 1993);

Da
Dt

=
∂a
∂ t

+(∇a) ·βββ . (4.14)

Upon substituting the material derivative (4.14) into (4.13), we obtain the following dif-
ferential equation,

Da
Dt
−Da∆a+a

(
∇ ·βββ

)
− ka(ac−a) = 0. (4.15)

In order to obtain the weak formulation we multiply (4.15) by a test function w2(x, t) ∈
H1(ΩΩΩt), t ∈ I then we integrate by parts and apply the boundary condition n ·∇a = 0
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4.3. Derivation of the weak formulation

(see (4.1f)) :

∫
ΩΩΩt

[
w2

Da
∂ t

+a w2 (∇ ·βββ )+Da∇a ·∇w2 + kaa w2

]
dΩΩΩt =

∫
ΩΩΩt

kaacw2 dΩΩΩt . (4.16)

Using the product rule, the differential equation (4.16) can be rewritten as:

∫
ΩΩΩt

[
D(aw2)

∂ t
−a

Dw2

∂ t
+aw2 (∇ ·βββ )+Da∇a ·∇w2

]
dΩΩΩt +

∫
ΩΩΩt

kaaw2 dΩΩΩt

=
∫

ΩΩΩt

kaacw2 dΩΩΩt . (4.17)

Using the Reynolds transport theorem (see Section 1.2.4), we rewrite (4.17) such that the
weak formulation reads: Find a(x, t) ∈ H1(ΩΩΩt), t ∈ I such that

d
dt

∫
ΩΩΩt

aw2 dΩΩΩt +
∫

ΩΩΩt

(Da∇a ·∇w2 + kaaw2)dΩΩΩt =
∫

ΩΩΩt

(
kaacw2 +a

Dw2

Dt

)
dΩΩΩt ,

∀ w2 ∈ H1(ΩΩΩt). (4.18)

A stability analysis of the reaction-diffusion equation is given in Appendix A. We
show the existence of a weak solution of (4.15) in Appendix B. These results are known
but are only presented for the sake of completeness.
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4.3. Derivation of the weak formulation

4.3.3 Weak formulation of the coupled problem

The weak formulation of the coupled problem (4.1) is thus: Find a(x, t), u(x, t), v(x, t) ∈
H1(ΩΩΩt), t ∈ I such that

∫
ΩΩΩt

∂w1

∂x

(
D11

∂ u̇
∂x

+D12
∂ v̇
∂y

+C11
∂u
∂x

+C12
∂v
∂y

)
+

∂w1

∂y

[
D33

(
∂ u̇
∂y

+
∂ v̇
∂x

)]
+

∂w1

∂y

[
C33

(
∂u
∂y

+
∂v
∂x

)]
dΩΩΩt =−

∫
ΩΩΩt

f1
∂w1

∂x
dΩΩΩt

+
∫

∂Ω∂Ω∂Ωt

n1 f1w ds, (4.19a)∫
ΩΩΩt

∂w1

∂y

(
D12

∂ u̇
∂x

+D22
∂ v̇
∂y

+C12
∂u
∂x

+C22
∂v
∂y

)
+

∂w1

∂x

[
D33

(
∂ u̇
∂y

+
∂ v̇
∂x

)]
+

∂w1

∂x

[
C33

(
∂u
∂y

+
∂v
∂x

)]
dΩΩΩt =−

∫
ΩΩΩt

f2
∂w1

∂y
dΩΩΩt

+
∫

∂Ω∂Ω∂Ωt

n2 f2w1 ds, (4.19b)

and
d
dt

∫
ΩΩΩt

aw2 dΩΩΩt +
∫

ΩΩΩt

(Da∇a ·∇w2 + kaaw2)dΩΩΩt =
∫

ΩΩΩt

kaacw2 dΩΩΩt

+
∫

ΩΩΩt

a
Dw2

Dt
dΩΩΩt , (4.19c)

for all w1(x, t), w2(x, t) ∈ H1(ΩΩΩt), t ∈ I.

4.3.4 Finite-dimensional subspaces

Let ΩΩΩh,t , t ∈ I be a bounded domain triangulated by Th,t . Each triangular partition is
known as an element S. We use barycentric coordinates as the local coordinate system on
the elements of the triangulation. Let P̄ be a finite dimensional function space defined on
S̄, where S̄ is a reference element:

S̄ :=
{
(λ1, . . . ,λ3) ∈ R3; 0≤ λk ≤ 1,

3

∑
k=1

λk = 1
}

then there exists a one-to-one mapping from S̄ to S. Also let {x1,x2,x3} denote the ver-
tices of the element S. Then the following parameterisation using barycentric coordinates
over the element S can be defined (Dziuk and Elliott 2007),

x(λ1,λ2,λ3, t) =
3

∑
k=1

λk xk(t). (4.20)

Let w(x(t)) : ΩΩΩt → R, t ∈ I, be a finite element function on an element S defined by a
finite dimensional function space P̄ on a reference element S̄ and the mapping λ S from
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4.4. Finite element discretization of the model

the reference element S̄ to S such that w(x(t)) = w̄(λ S(x(t))), where w̄ is defined on S̄.
We define the space Xh(t) ⊂ H1(ΩΩΩt):

Xh(t) =
{

w ∈C0(ΩΩΩt); w̄ ∈ P̄ for all S ∈ Th,t , t ∈ I
}
.

4.4 Finite element discretization of the model

We discretize the problem (4.19) using the classical Galerkin method. At each time t, t ∈ I,
we discretize ΩΩΩt into a finite unstructured triangular partition ΩΩΩh,t of non-overlapping
triangles, where h is the maximum size of the largest triangle. Each triangular partition is
known as an element S and the set of these finite triangular elements is called a mesh and
we denote this mesh by Th,t . For the finite element mesh we require that no vertex of any
element lie on the interior of a side of another element and Si∩S j = /0 if i 6= j. Thus

Ω̄ΩΩh,t =
⋃

S(t)∈Th,t

S(t).

Definition 4.4.1. (Shape regularity; Johnson (1987))

Figure 4.1: A description of a typical element S of the triangulation Th,t .

Let hS = be the longest side of S (otherwise known as the diameter of S), ρS the

diameter of the circle inscribed in S (see Figure 4.1) and

h = max
S∈Th,t

hS.

A triangulation Th,t is shape regular if there exists a positive constant ζ independent of h

such that
ρS

hS
≥ ζ ∀S ∈ Th,t , t ∈ I. (4.21)

The constant ζ is a measure of the minimum angle in any S ∈ Th,t , t ∈ I. The regularity

condition (4.21) specifies that the elements S are not allowed to be arbitrary thin.

The triangulation Th,t for all t ∈ I is shape regular.
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4.4. Finite element discretization of the model

The discretised problem of the coupled system(PS) of (4.19) reads: Find ah(x, t),
uh(x, t), vh(x, t) ∈ Xh(t), t ∈ I such that

∫
ΩΩΩh,t

∂w1
h

∂x

(
D11

∂ u̇h

∂x
+D12

∂ v̇h

∂y
+C11

∂uh

∂x
+C12

∂vh

∂y

)
+

∂w1
h

∂y

[
D33

(
∂ u̇h

∂y
+

∂ v̇h

∂x

)]
+

∂w2
h

∂y

[
C33

(
∂uh

∂y
+

∂vh

∂x

)]
dΩΩΩh,t =−

∫
ΩΩΩh,t

f1
∂w1

h
∂x

dΩΩΩh,t

+
∫

∂Ω∂Ω∂Ωh,t

n1 f1w1
hds, (4.22a)

∫
ΩΩΩh,t

∂w1
h

∂y

(
D12

∂ u̇h

∂x
+D22

∂ v̇h

∂y
+C12

∂uh

∂x
+C22

∂vh

∂y

)
+

∂w1
h

∂x

[
D33

(
∂ u̇h

∂y
+

∂ v̇h

∂x

)]
+

∂w1
h

∂x

[
C33

(
∂uh

∂y
+

∂vh

∂x

)]
dΩΩΩh,t =−

∫
ΩΩΩh,t

f2
∂w1

h
∂y

dΩΩΩh,t

+
∫

∂Ω∂Ω∂Ωh,t

n2 f2w1
hds, (4.22b)

and
d
dt

∫
ΩΩΩh,t

ahw2
h dΩΩΩh,t +

∫
ΩΩΩh,t

(
Da∇ah ·∇w2

h + kaahw2
h
)

dΩΩΩh,t =
∫

ΩΩΩh,t

kaacw2
h dΩΩΩh,t

+
∫

ΩΩΩh,t

a
Dw2

h
Dt

dΩΩΩh,t , (4.22c)

for all w1
h(x, t), w2

h(x, t)∈Xh(t). Let nde represent the total number of degrees of freedom
of the nodes for the finite element discretization. Also let the set{

ϕi, ϕi ∈ Xh(t)⊂ H1(ΩΩΩt), i = 1, . . . ,nde
}

(4.23)

represent piecewise linear finite element nodal basis functions satisfying

ϕi(x j, t) =

{
1 if i = j,

0 if i 6= j.

We seek to find the finite element numerical approximation ah(x, t), uh(x, t), vh(x, t) ∈
Xh(t) ⊂ X(ΩΩΩt) expressed as linear combinations of the linear nodal basis functions ϕi of
the form

ah(x, t) =
nde

∑
i=1

aaai(t)ϕi(x, t), uh(x, t) =
nde

∑
i=1

Ui(t)ϕi(x, t), and

vh(x, t) =
nde

∑
i=1

Vi(t)ϕi(x, t). (4.24)

We assume that the number of nde in ΩΩΩt is large enough such that ah, uh and vh is a good
approximation of a, u and v respectively.
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4.4. Finite element discretization of the model

Linear interpolation on a triangular element

We seek to determine a linear approximation over each element S such that ah(x,y, t) =

c1(t)+c2(t)x(t)+c3(t)y(t). We let ck (k = 1, . . . ,3) and the spatial coordinates to be time
dependent because of domain deformation and evolution. At each node of the element
(xk,yk, t), (k = 1, . . .3) we require that ah(xk,yk, t) = ai and therefore the following holds:

a1(t) = c1(t)+ c2(t)x1(t)+ c3(t)y1(t), (4.25)

a2(t) = c1(t)+ c2(t)x2(t)+ c3(t)y2(t), (4.26)

a3(t) = c1(t)+ c2(t)x3(t)+ c3(t)y3(t). (4.27)

A solution of this system of algebraic equation specifies the values of the time dependent
constants c1, c2, c3 as follows:

c1(t) =
1

2A123(t)
(α1a1(t)+α2a2(t)+α3a3(t)) , (4.28)

c2(t) =
1

2A123(t)
(β1a1(t)+β2a2(t)+β3a3(t)) , (4.29)

c3(t) =
1

2A123(t)
(τ1a1(t)+ τ2a2(t)+ τ3a3(t)) , (4.30)

where A123(t) is the area of the triangle and αi = x j(t)yk(t)−xk(t)y j(t), βi = y j(t)−yk(t),

and τi = −(x j(t)− xk(t)), with i 6= j 6= k and i, j,k permute in natural order. Substitut-
ing (4.28) - (4.30) into ah(x,y, t) = c1(t) + c2(t)x(t) + c3(t)y(t) results in ah(x,y, t) =

∑
3
j=1 a j(t)ϕ j(x(t),y(t)) where ϕ j(x(t),y(t)),(i = 1 . . .3) is equal to

ϕ1 =
1

2A123(t)
(α1 +β1x(t)+ τ1y(t)) , (4.31)

ϕ2 =
1

2A123(t)
(α2 +β2x(t)+ τ2y(t)) , (4.32)

ϕ3 =
1

2A123(t)
(α3 +β3x(t)+ τ3y(t)) . (4.33)

These are called linear Lagrange basis functions. We assume that uh and vh are repre-
sented by the same linear Lagrange basis functions (4.31) - (4.33), hence a conformal
finite element method.

Transformation of local basis functions to a reference simplex

We denote the local basis functions on a reference element S̄ by ϕ̄i with i = 1,2,3. The
local basis function ϕi, i = 1,2,3 on an element S ∈ Th,t can be obtained by

ϕi(x(t)) = ϕ̄i(λ
S(x(t))),
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4.4. Finite element discretization of the model

where λ S is the barycentric coordinate for a point (x,y, t) in an element S.

Lemma 4.4.1. (Transport property of basis functions (Dziuk and Elliott 2007)) The fi-

nite element space on the discretised domain is a space of continuous piecewise linear

functions whose nodal basis functions have the following property;

Dϕi

Dt

∣∣∣
S
= 0. (4.34)

Proof. The basis functions ϕi(x, t) j = 1,2,3 on S satisfies ϕi(x(t))= ϕ̄i(λ
S(x(t))), where

λ S is the barycentric coordinates for a point (x,y, t) in S. And the material derivative of
ϕi(x(t)) on an element S yields

D
Dt

ϕi(x(t)) =
D
Dt

ϕ̄i(λ
S(x(t)) = 0

because λ S = (λ1,λ2,λ3) satisfies 0≤ λk ≤ 1, k = 1,2,3 for a point (x,y, t) on S.

4.4.1 Semi-discrete model of the force balance equation

In order to write the semi-discrete finite element approximation of the force balance equa-
tion in block matrices form, we substitute w1

h and w2
h by the basis function ϕ j, ( j = 1, . . . ,

nde), uh and vh by their corresponding values as given in (4.24) into (4.22a) and (4.22b),
then the resulting semi-discrete system of algebraic equations can be written in compact-
matrix-vector form as:[

[A11(t)] [A12(t)]

[A12(t)]T [A22(t)]

]{
{dU

dt (t)}
{dV

dt (t)}

}
+

[
[B11(t)] [B12(t)]

[B12(t)]T [B22(t)]

]{
{U(t)}
{V(t)}

}
={

{F1(t)}
{F2(t)}

}
(4.35)

where
{
{U(t)}
{V(t)}

}
are solutions of the finite element semi-discrete scheme (4.35). In (4.35)

we denote by {U(t)}= (U1(t), . . . ,Unde(t)) , {V(t)} = (V1(t), . . . ,Vnde(t)) ,
{dU

dt (t)
}
=(

dU1
dt (t), . . . , dUnde

dt (t)
)

and
{dV

dt (t)
}
=
(

dV1
dt (t), . . . , dVnde

dt (t)
)

vectors of the solutions and

their derivatives. [Akl(t)], [Bkl(t)], (k, l = 1, 2) and F(t) := ({F1(t)},{F2(t)})T are
the time dependent stiffness matrices and the generalised force vector respectively. The
entries of the time dependent stiffness matrices and the generalised force vector for (i, j
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4.4. Finite element discretization of the model

= 1, . . ., nde) are defined by:

A11
i j (t) :=

∫
ΩΩΩh,t

(
D11

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂x

+ D33
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂y

)
dΩΩΩh,t ,

A22
i j (t) :=

∫
ΩΩΩh,t

(
D33

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂x

+ D22
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂y

)
dΩΩΩh,t ,

A12
i j (t) := A21

ji (t) =
∫

ΩΩΩh,t

(
D12

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂y

+ D33
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂x

)
dΩΩΩh,t ,

with:

B11
i j (t) :=

∫
ΩΩΩh,t

(
C11

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂x

+ C66
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂y

)
dΩΩΩh,t ,

B22
i j (t) :=

∫
ΩΩΩh,t

(
C33

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂x

+ C22
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂y

)
dΩΩΩh,t ,

B12
i j (t) := B21

ji (t) =
∫

ΩΩΩh,t

(
C12

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂y

+ C33
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂x

)
dΩΩΩh,t ,

and

F1
j(t) := −

∫
ΩΩΩh,t

f1 (x(t))
∂ϕ j (x(t))

∂x
dΩΩΩh,t +

∫
∂Ω∂Ω∂Ωh,t

n1 f1 (x(t))ϕ j (x(t)) ds,

F2
j(t) = −

∫
ΩΩΩh,t

f2 (x(t))
∂ϕ j (x(t))

∂y
dΩΩΩh,t +

∫
∂Ω∂Ω∂Ωh,t

n2 f2 (x(t))ϕ j (x(t)) ds.

For convenience’s sake, we denote

[A(t)] :=

[
[A11(t)] [A12(t)]

[A12(t)]T [A22(t)]

]
, [B(t)] :=

[
[B11(t)] [B12(t)]

[B12(t)]T [B22(t)]

]
,

{U(t)} :=

{
{U(t)}
{V(t)}

}
,

{dU
dt

(t)
}

:=

{
{dU

dt (t)}
{dV

dt (t)}

}
and {F(t)} :=

{
{F1(t)}
{F2(t)}

}
.

More compactly, we rewrite the semi-discrete finite element model for the force balance
equation (4.35) in the form

[A(t)]
{

dU
dt

(t)
}
+ [B(t)]{U(t)}= F(t). (4.36)

Remark 4.4.1. We note that some entries of the block matrices [A] and [B] are non-

symmetric matrices. These entries are [A12], [A12]T , [B12] and [B12]T . A square matrix,
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4.4. Finite element discretization of the model

say X, is a non-symmetric matrix if the entries xi j of X, are such that

xi j 6= x ji.

Since some entries of the block matrices [A] and [B] are non-symmetric matrices then [A]

and [B] are non-symmetric block matrices.

4.4.2 Semi-discrete model of the reaction-diffusion equation

In order to write the semi-discrete finite element approximation of the reaction-diffusion
equation in matrix-vector form, we substitute wh by the basis function ϕ j, ( j = 1, . . . ,
nde) and ah by its corresponding value as given in (4.24) into (4.22c). Then we apply
the transport property of basis functions as given in Lemma 4.4.1 (the transport property
states that Dϕ j/Dt = 0). Upon applying the transport property of basis functions we
obtain the following semi-discrete system of algebraic equations which we have written
in compact-matrix-vector form:

d
dt

(
M(t){aaa(t)}

)
+
(

DaK(t)+ kaM(t)
)
{aaa(t)}= kaacH(t), (4.37)

where {aaa} = (aaa1, . . . , aaande) are actin concentration solutions of the semi-discrete scheme
(4.37). M, K, H are the time dependent mass and stiffness matrices, and force vector
respectively. The entries of the time dependent matrices and the force vector are defined
respectively as:

Mi j(t) :=
∫

ΩΩΩh,t

ϕi (x(t))ϕ j (x(t)) dΩΩΩh,t , Ki j(t) :=
∫

ΩΩΩh,t

∇ϕi (x(t)) ·∇ϕ j (x(t)) dΩΩΩh,t ,

and H j(t) :=
∫

ΩΩΩh,t

ϕ j (x(t)) dΩΩΩh,t .

4.4.3 Fully discrete scheme of the coupled problem

We discretise the time interval (0,Tf ] into a finite number n of uniform subintervals such
that

0 = t0 < t1 . . . < tn = Tf .

The size of each time interval ∆t := tn+1− tn.

In order to obtain a fully discrete finite element model of the coupled problem, we
consider a modified implicit finite differentiation formula for the time integration of the
semi-discrete finite element model of the force balance equation and the reaction-diffusion
equation as given in (4.36) and (4.37) respectively. Thus the fully discrete finite element
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4.5. Computation of the evolution of the domain

model of the coupled problem is given by

(
[A(tn)]+∆t [B(tn)]

)
{U}n+1 = [A(tn)]{U}n +∆t F(tn), (4.38a)

and

[
(1+∆t ka)M(tn+1)+∆t

(
DaK(tn+1)

)]
{aaa}n+1 = M(tn){aaa}n +∆t kaacH(tn), (4.38b)

where {U}n, {U}n+1 are the displacement solutions computed at time tn and tn+1 re-
spectively, and {aaa}n, {aaa}n+1 are the actin concentrations at time tn and tn+1 respectively.
For the numerical implementation, the initial data {U}0 and {aaa}0 are interpolated on the
initial mesh ΩΩΩh,0. All integral are evaluated using Gauss numerical quadrature (Reddy
1993). At each time t, t ∈ I, we assemble the finite elements to obtain the system of linear
algebraic equations (4.38). This system (4.38a) is solved using a generalised minimal
residual method (GMRES) (Sadd and Schultz 1986) while that of (4.38b) is solved using
a conjugate gradient method (CG) with diagonal pre-conditioner (Hestenes and Stiefel
1952; Saad 2003).

The implementation of the numerical scheme was carried out by extending the func-
tions in ALBERTA-2.0 1. ALBERTA is a flexible and efficient finite element toolbox
written in C language. The choice of ALBERTA is due to its advantages over most widely
available finite element software as far as the discretised problem (4.38) is concerned. A
few advantages are; the availability of data structures for easy and efficient assembly of
the discretised problem, the implementation of hierarchical meshes, mesh modification
algorithms for global refinement, availability of highly efficient and fast solvers and also
the availability of quadrature formulae for numerical integration (Schmidt et al. 2006).

The implementation of the solver GMRES and CG with diagonal pre-conditioner for
solving the system of linear algebraic equations (4.38) is available in ALBERTA library.

4.5 Computation of the evolution of the domain

In order to track the evolution of the domain accurately, we specify a Lagrangian kine-
matic description of the domain. We assume that the displacement of the boundary of
the domain occurs only in the direction that is normal to its boundary. The displacement
of the domain boundary at any time t corresponds to the solutions of the force balance
equation U(x, t) at the boundary which in turn are dependent on the local concentration
of the actin filament a(x, t) at any particular space and time. The displacement of the
interior nodes of the mesh is chosen to be equal to the flow velocity βββ (i.e. βββ = ẋ). On
the boundary we assume that βββ = ωωωn := ∂U/∂ t, where U is the displacement solution of

1http:// www.alberta-fem.de
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4.6. Numerical implementation of the moving grid finite element method

the force balance equation.
Let ΩΩΩtn and ΩΩΩtn+1 be the domain at time tn and tn+1 respectively. If we consider a

time interval [tn, tn+1] and assume that the spatial coordinates of ΩΩΩtn and ΩΩΩtn+1 are known.
Then we can define a first order linear approximation of the flow velocity as follows:

βββ (x(tn), tn) =
x(tn+1)−x(tn)

∆t
, (4.39)

where ∆t = tn+1− tn defines the time-step. We define a linear approximation of the do-
main ΩΩΩtn+1 such that

x(tn+1) = x(tn)+∆t ωωωn(x(tn), tn). (4.40)

By substituting the above expression for βββ (x(tn), tn) :=ωωωn(x(tn), tn) into (4.40) and given
Un+1 results in mesh movement. where Un+1 is the displacement solution of the force
balance equation at time tn (and specifies the displacement of the domain at time tn).
A Lagrangian kinematic description of the interior nodes of the mesh is used thus 4.40
equally specifies the position of the interior nodes.

A limitation of the Lagrangian kinematic description is that the minimum angle condi-
tion for the mesh elements can be violated for non-constant mesh velocity and large mesh
velocity. A remedy is to introduce a monitor function to check the quality of the mesh
(say after a couple of mesh movements) and re-mesh when the elements are no longer
favourable. Though this was not done here, we note that this aspect is left for a future
work.

Here the displacement solutions of the force balance equation are small in value hence
mesh velocity is small. For the time interval we considered, no mesh refinement was
required.

Remark 4.5.1. We remark again that the computation of the displacement of the domain

(as defined above) is substantially different from that of the Stéphanou et al. (2004) model.

4.5.1 Numerical computations

The fully discrete coupled problem is solved iteratively. We present in Algorithm 4.5.1
the numerical algorithm for the method.

4.6 Numerical implementation of the moving grid finite
element method

We outlined in Section 4.5.1, Algorithm 4.5.1, the steps for the implementation of the
moving grid finite method. We present here a detailed description of the method. We
begin by describing the technique of generating the finite element mesh and we describe
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Algorithm 1 [Fully discrete scheme]

Initialise U0 and aaa0. Set the time-step size to ∆t.

FOR n = 1, . . . ,TF with time-step size ∆t DO
Assemble M(tn), H(tn), [A(tn)], [B(tn)] and F(tn).
Solve for {U}n+1 in (4.38a).
Compute the new domain from the value of {U}n+1

Assemble M(tn+1) and K(tn+1) on the new domain.
Solve for {aaa}n+1 in (4.38b).

END FOR

the technique of computation of the unit normals of the force vector F in (4.35). Next
we show the technique of evaluation of the time dependent matrices [A(t)], [B(t)], M(t),
K(t) and the time dependent force vectors F(t) and H(t). First we detail mesh generation.

4.6.1 Mesh generation

The mesh ΩΩΩh,t is a simply connected bounded domain consisting of triangular elements
S, which satisfies that Si

⋂
S j = 0 if i 6= j and no vertex of any element lies on the interior

of another element. Thus
Ω̄ΩΩh,t =

⋃
S(t)∈Th,t

S(t).

At the initial time t = 0, the mesh ΩΩΩh,0 is a triangulation of a unit disc. ΩΩΩh,0 is generated
from a global refinement of a macro triangulation with projection of boundary nodes.
The incorporation of node projection to the refinement process is necessary to produce a
better approximation of the unit disc and is described below. During the mesh refinement
ALBERTA creates new nodes at the midpoint of the refinement edges of the elements.
We project the new nodes on the boundary of the mesh on the the surface g(x,y) = x2 +

y2−1 = 0 (see Figure 4.2). Let us denote by (xr,yr) a new node created at a refinement
edge located on the boundary of the mesh then its new coordinates after nodal projection
will become (xr/

√
x2

r + y2
r , yr/

√
x2

r + y2
r ). After a nodal projection, a global refinement is

done (see Figure 4.2). We present in Figure 4.3(a) - (c) the mesh after 1, 2, 3 and 4 global
refinements respectively. By incorporating the nodal projection to the mesh refinement
process we observe that a better approximation of the unit disk is obtained with successive
global refinements.

For time t > 0 the number of mesh points remains constant and the position of the
nodes of the mesh ΩΩΩh,t , t ∈ I are specified by the displacement solution of the force
balance equation using (??).
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(a) (b) (c)

(d)

Figure 4.2: An illustration of the technique of global refinement with node projection. Re-
finement edge midpoints denoted by ◦ are projected to the surface g(x,y) = x2+y2−1= 0
and are added to the nodes of the mesh denoted by •. (a) shows the macro triangulation
and the surface g(x,y) = 0 in dash line. (b), (c) and (d) show the refinement edge mid-
points ◦, the projection of the refinement edge midpoints to the line g(x,y) = 0 and the
mesh after one global refinement of the macro triangulation respectively. This technique
eventually produces an affine mesh for linear finite element discretisation of ΩΩΩt after a
few global refinements.
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Figure 4.3: Affine mesh for linear finite element discretisation of ΩΩΩ0: (a), (b) and (c)
show the grid after two, three and four global refinements of the macro triangulation re-
spectively. Successive refinement with nodal projection produces a better approximation
of the boundary g(x,y) = x2+ y2− 1 = 0.

4.6.2 Computation of the unit normal

The force vector F in (4.35) consists of two terms: one with an integration over the do-
main and another with integration over the boundary. The term requiring an integration
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over the boundary consist of the unit vector n = (n1,n2) normal to the boundary ∂Ω∂Ω∂Ω. We
discuss below the technique for the computation of n on the polygonal unit circle corre-
sponding to the boundary of ΩΩΩh,0. The exact normals of a unit circle can be calculated
analytically and are known (Zill and Cullen 2000). We show that as the number of bound-
ary nodes increases (via global refinement of the mesh) the mesh height h decreases and
the numerically computed unit normals converges to the exact normal of a unit circle.

Given a line L with end points P1 = (x1,y1) and P2 = (x2,y2). Then a vector N =

(N1,N2) normal to the line N is (Burkardt 2009)

N1 = y1− y2

N2 = x2− x1.

The unit normal vector n = (n1,n2) to L is then obtained by dividing the normal vector N
by its magnitude such that

n1 =
y1− y2√

(y1− y2)2 +(x2− x1)2

n2 =
x2− x1√

(y1− y2)2 +(x2− x1)2
. (4.41)

Given a boundary of a closed surface with nodal points Pi (i = 1, . . . ,nde) having coor-
dinates (xi,yi), where nde denotes the total number of nodes, then the outward pointing
unit vector normal to any line segment [i, i+1] (see for example Figure 4.4(a)) is

n1 =
yi− yi+1√

(yi− yi+1)2 +(xi+1− xi)2
,

n2 =
xi+1− xi√

(yi− yi+1)2 +(xi+1− xi)2
. (4.42)

For the sake of simplicity, we describe below the procedure for the computation of the
vectors normal to the boundary of the initial mesh ∂Ω∂Ω∂Ωh,0 which corresponds to a unit cir-
cle. Let us assume that we traverse ∂Ω∂Ω∂Ωh,0 in an anticlockwise direction then the direction
of the thumb in the right hand thumb rule specifies the outward pointing direction of the
unit normal. And the unit vector normal to a line segment is defined by (4.42) (see for ex-
ample Figure 4.4(a)). We check the accuracy of the computed normals by comparing the
computed normal vectors ncomp at nodal positions to the exact value of the normal vectors
nexct to a circle. The exact normal vectors to points (x,y) on a unit circle defined by a
function g(x,y) = x2 + y2− 1 = 0 is n(x,y) = ∇g(x,y) (Zill and Cullen 2000). We note
that at the nodal points of ∂Ω∂Ω∂Ωh,0, two outward pointing normal vectors occur as a result
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(a) (b)

Figure 4.4: (a) is a cross-section of a polygonal circle showing the outward pointing unit
vector normal to a line segment. (b) shows the two outward pointing normal vectors that
occur as a result of the intersection of two line segments at a nodal position. The resultant
normal n is computed by applying the parallelogram law of forces

Mesh No. of global refinement Mesh size ‖nexct−ncomp‖L2(∂Ωh,0∂Ωh,0∂Ωh,0)

1 0 1.414 0.8284
2 1 0.707 0.3045
3 2 0.353 0.1087
4 3 0.177 0.0385

Table 4.1: L2 errors of computed normal vectors to a circle.

of the intersection of two line segments at these points (see 4.4(b)). Hence the resultant
normal vector ncomp at nodal points is computed by applying the parallelogram law of
forces.

In Table 5.2 we show that the computed normals converge to the exact normal in
the L2 norm as the number of mesh points increases. In Table 5.2 the mesh with no
global refinement corresponds to a macro triangulation. Now that we have computed the
normals, we show in the next section how to assemble/compute global matrices required
for the moving grid finite element method.

4.6.3 Evaluation of the global matrices and force vectors

Here we describe the technique of evaluating the global mass matrix M(t), the global
stiffness matrices K(t), the block matrices [A(t)] and [B(t)] and the load vectors F(t) and
H(t).

Assembly of the global mass and stiffness matrices corresponding to M(t) and K(t)

respectively

In practice, the entries of these matrices are usually computed by summing the local
contributions from the different triangular elements of the mesh. The local basis functions
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on an element S are given implicitly by the basis functions on the reference simplex S̄ by
the mapping λ S (as described in Section 4.4). In view of these we write the entries of
the global mass matrices Mi j(t) and the global stiffness matrix Ki j(t) as follows. Let
Ξi, j = supp(ϕi)

⋂
supp(ϕ j) then

Mi j(t) = ∑
S∈ΩΩΩh,t

∫
S

ϕi(x(t))ϕ j(x(t)) dΩΩΩh,t

= ∑
S∈ΩΩΩh,t
S∈Ξi, j

∫
S

ϕ̄
iS (λ (x(t))) ϕ̄

jS (λ (x(t))) dΩΩΩh,t ,

and

Ki j(t) = ∑
S∈ΩΩΩh,t

∫
S

∇ϕi(x(t)) ·∇ϕ j(x(t)) dΩΩΩh,t

= ∑
S∈ΩΩΩh,t
S∈Ξi, j

∫
S

∇λ ϕ̄
iS (λ (x(t))) ·

(
Λ(t)Λ

(t)
)

∇λ ϕ̄
jS (λ (x(t))) dΩΩΩh,t ,

for all t ∈ I, where supp(ϕi) denotes the support of the basis function ϕi and iS and jS
denote the local indices on the element S corresponding to the global indices i and j. Also
Λ(x):

Λ =


∂λ1
∂x

∂λ1
∂y

∂λ2
∂x

∂λ2
∂y

∂λ3
∂x

∂λ3
∂y

 ∈ RRR3×2

is the Jacobian of the barycentric coordinates on S.

Assembly of the block matrices [A(t)] and [B(t)]

In order to assembly/compute the block matrices [A(t)] and [B(t)] occuring in (4.38a) we
define

D1133 =
(D11 0

0 D33

)
, D3322 =

(D33 0
0 D22

)
and D1233 =

( 0 D12
D33 0

)
.

For the block matrix [A(t)] we define the entries by A11
i j (t), A22

i j (t), A12
i j (t), A21

i j (t) (as
in (4.35)). Next we compute the entries of these block matrices by summing the local
contributions from the different triangular elements of the mesh and then we let the local
basis functions on an element S be given implicitly by the basis functions on the reference
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simplex S̄ by the mapping λ S (as described in Section 4.4) and we obtain the following:

A11
i j (t) = ∑

S∈ΩΩΩh,t

∫
S

(
D11

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂x

+ D33
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂y

)
dΩΩΩh,t

= ∑
S∈ΩΩΩh,t
S∈Ξi, j

∫
S

∇λ ϕ̄
iS (λ (x(t))) ·

(
Λ(t)D1133 Λ

(t)
)

∇λ ϕ̄
jS (λ (x(t))) dΩΩΩh,t ,

A22
i j (t) = ∑

S∈ΩΩΩh,t

∫
S

(
D33

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂x

+ D22
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂y

)
dΩΩΩh,t

= ∑
S∈ΩΩΩh,t
S∈Ξi, j

∫
S

∇λ ϕ̄
iS (λ (x(t))) ·

(
Λ(t)D3322 Λ

(t)
)

∇λ ϕ̄
jS (λ (x(t))) dΩΩΩh,t ,

and

A12
i j (t) = A21

i j (t)

= ∑
S∈ΩΩΩh,t

∫
S

(
D12

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂y

+ D33
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂x

)
dΩΩΩh,t

= ∑
S∈ΩΩΩh,t
S∈Ξi, j

∫
S

∇λ ϕ̄
iS (λ (x(t))) ·

(
Λ(t)D1233 Λ

(t)
)

∇λ ϕ̄
jS (λ (x(t))) dΩΩΩh,t ,

for all t ∈ I. We also define

C1133 =
(C11 0

0 C33

)
, C3322 =

(C33 0
0 C22

)
and C1233 =

( 0 C12
C33 0

)
.

For the block matrix [B(t)] we define the entries by B11
i j (t), B22

i j (t), B12
i j (t), B21

i j (t) (as
in (4.35)). Next we compute the entries of these block matrices by summing the local
contributions from the different triangular elements of the mesh and then we let the local
basis functions on an element S be given implicitly by the basis functions on the reference
simplex S̄ by the mapping λ S (as described in Section 4.4) and we obtain the following:

B11
i j (t) = ∑

S∈ΩΩΩh,t

∫
S

(
C11

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂x

+ C33
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂y

)
dΩΩΩh,t

= ∑
S∈ΩΩΩh,t
S∈Ξi, j

∫
S

∇λ ϕ̄
iS (λ (x(t))) ·

(
Λ(t)C1133 Λ

(t)
)

∇λ ϕ̄
jS (λ (x(t))) dΩΩΩh,t ,
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B22
i j (t) = ∑

S∈ΩΩΩh,t

∫
S

(
C33

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂x

+ C22
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂y

)
dΩΩΩh,t

= ∑
S∈ΩΩΩh,t
S∈Ξi, j

∫
S

∇λ ϕ̄
iS (λ (x(t))) ·

(
Λ(t)C3322 Λ

(t)
)

∇λ ϕ̄
jS (λ (x(t))) dΩΩΩh,t ,

and

B12
i j (t) = B21

i j (t)

= ∑
S∈ΩΩΩh,t

∫
S

(
C12

∂ϕi (x(t))
∂x

∂ϕ j (x(t))
∂y

+ C33
∂ϕi (x(t))

∂y
∂ϕ j (x(t))

∂x

)
dΩΩΩh,t

= ∑
S∈ΩΩΩh,t
S∈Ξi, j

∫
S

∇λ ϕ̄
iS (λ (x(t))) ·

(
Λ(t)C1233 Λ

(t)
)

∇λ ϕ̄
jS (λ (x(t))) dΩΩΩh,t ,

for all t ∈ I. The integrals in the above mass matrix M(t), stiffness matrix K(t) and block
matrices [A(t)] and [K(t)] are evaluated numerical using the Gauss numerical quadrature.
The Gauss numerical quadrature will be described later in this section. We describe below
the assembly of the force vectors F1(t), F2(t) and H(t).

Assembly of the force vectors F1(t), F2(t) and H(t)

The entries of the force vectors F1
j(t), F2

j(t) and H j(t) are also computed by summing
over the local contributions from the different triangular elements of the mesh. Thus for
F1

j(t), F2
j(t) and H j(t) we obtain

F1
j(t) =− ∑

S∈ΩΩΩh,t

∫
S

f1 (x(t))
∂ϕ j (x(t))

∂x
dΩΩΩh,t + ∑

L=S∩∂Ω∂Ω∂Ωh,t

∫
L

n1 f1 (x(t))ϕ j (x(t)) ds

=− ∑
S∈ΩΩΩh,t

S⊂supp(ϕ j)

∫
S

f1 (x(t))

(
3

∑
k=1

∂ ϕ̄ jS (λ (x(t)))
∂λk

∂λk(x(t))
∂x

)
dΩΩΩh,t

+ ∑
L=S∩∂Ω∂Ω∂Ωh,t
S⊂supp(ϕ j)

∫
L

n1 f1 (x(t)) ϕ̄
jS (λ (x(t))) ds,

97



4.6. Numerical implementation of the moving grid finite element method

F2
j(t) =− ∑

S∈ΩΩΩh,t

∫
S

f2 (x(t))
∂ϕ j (x(t))

∂x
dΩΩΩh,t + ∑

L=S∩∂Ω∂Ω∂Ωh,t

∫
L

n2 f2 (x(t))ϕ j (x(t)) ds

=− ∑
S∈ΩΩΩh,t

S⊂supp(ϕ j)

∫
S

f2 (x(t))

(
3

∑
k=1

∂ ϕ̄ jS (λ (x(t)))
∂λk

∂λk(x(t))
∂x

)
dΩΩΩh,t

+ ∑
L=S∩∂Ω∂Ω∂Ωh,t
S⊂supp(ϕ j)

∫
L

n2 f2 (x(t)) ϕ̄
jS (λ (x(t))) ds,

and

H j(t) = ∑
S∈ΩΩΩh,t

∫
S

ϕ j (x(t)) dΩΩΩh,t = ∑
S∈ΩΩΩh,t

S⊂supp(ϕ j)

∫
S

ϕ̄
jS (λ (x(t))) dΩΩΩh,t

for all t ∈ I. The integrals in the force vectors F1, F2 and H are evaluated using Gauss
numerical quadrature and requires the use of Gauss quadrature points and weights. The
Gauss points and weights are usually defined on a standard element Ŝ:

Ŝ := conv hull{x̂1 = 0, x̂2 = e1, x̂3 = e2},

where ei, (i = 1,2,3) are the unit vectors inRRR2 and conv hull denotes the convex hull. The
convex hull of the set ηηη := {x̂1 = 0, x̂2 = e1, x̂3 = e2} is the smallest 2D polygon that
contains ηηη . This necessitates that we first transform all integrals to the standard element
before the application of the Gauss numerical quadrature.

Transformation of integrals from a typical element S to the standard element Ŝ

The numerical integration of the matrices and vectors are carried out over the standard
element. We transform the integrals to the standard element and afterwards numerical
integration is carried out using a quadrature formula.

Given an element with vertex coordinates x1,x2,x3, we assume that there exist a map-
ping FS : Ŝ→ S which is invertible and differentiable. Then the vertices x1,x2 and x3 of
the element S are the points FS(x1) FS(x2) and FS(x3) respectively defined by

FS(x̂) := QS x̂+x1,

with the matrix QS := [x2− x1 x3− x1]. Once the integrals are transformed from a
typical element S to the standard element Ŝ numerical quadrature is applied for numerical
integration. For illustrative purpose, we consider a given function ϕ̄ jS , jS = 1,2,3. The
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integral transformation from S to Ŝ yields,∫
S

ϕ̄
jS (λ (x(t))) dΩΩΩh,t =

∫
Ŝ

ϕ̄
jS (λ (x̂(t))) |DFS(x̂)| dx̂

= 2|S|
∫

Ŝ
ϕ̄

jS (λ (x̂(t))) dx̂, (4.43)

where DFS is the Jacobian of FS. After the integral have been transformed from a typical
element S to the standard element Ŝ we implement the Gauss numerical quadrature for the
numerical integration.

Gauss numerical quadrature

A Gauss numerical quadrature on Ŝ is a set {(wk,λk) ∈ RRR×RRR3; k = 1, . . . ,nq}, where
wk are the Gaussian weights and λk are the Gauss quadrature points. Each λk is given in
barycentric coordinates such that

∫
Ŝ

g(x̂) dx̂ =
nq

∑
k=1

wk g(x̂(λk)).

In the implementation, we take nq = 6 on a triangular element and nq = 3 on a line
element. The number of Gauss points nq required to integrate a polynomial of degree deg

(exactly) over a line L is (Reddy 1993):

nq =


1
2 [(deg +1)] , if (deg +1) is even,

1
2 [(deg +2)] , if (deg +1) is odd.

4.7 Summary

In this Chapter, we developed a moving grid finite element method of the cytomechanical
model. In Section 4.3.1 and Section 4.3.2 we derived the weak formulation of the force
balance equation and the weak formulation of the reaction-diffusion equation respectively.
Finite element discretization of the model was carried out in Section 4.4 using the classical
Galerkin method. The resulting semi-discrete finite element model of the force balance
equation and the reaction-diffusion equation was then discretised in time to obtain a fully
discrete scheme. The time discretisation of the semi-discrete finite element model of the
force balance equation and the reaction-diffusion equation was carried out by using a
modified implicit finite differentiation formula. The moving grid finite element method
requires a specification of the grid movement. Thus in Section 4.5 we described the
method for the computation of the grid movement. Numerical implementation of the
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4.7. Summary

moving grid finite element method was given in Section 4.6.
In the next chapter we will present numerical results obtained from the moving grid

finite element model. We will begin by validating the moving grid finite element numer-
ical scheme using predicted solutions from linear stability theory. We will also study the
dynamics of actin and its effect on cell deformation.
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Chapter 5

Numerical simulation of cell movement

5.1 Introduction

The first aim of this chapter is to verify the moving grid finite element numerical scheme
described in Chapter 4 for consistency with predictions from linear theory close to bi-
furcation points. The second is to use the scheme to investigate actin dynamics, cell
deformations and movements.

The initial domain we consider is a unit disk ΩΩΩ0. We assume that at time ts 0 <

ts << 1 the domain evolution is negligible and based on this assumption we are able
to compare the finite element solutions to predictions from linear stability theory. Thus
by assuming slow domain evolution, we validate the numerical results by comparing the
moving grid finite element solutions to those predicted by linear stability theory. We
show in Section 5.2 that the numerical scheme computes spatially inhomogeneous steady
state solutions which are consistent with those predicted by linear stability theory close to
bifurcation points.

We show in Section 5.3 that far from bifurcation points the numerical scheme is also
able to replicate predicted results from linear theory and depends on the perturbation used
in the initial conditions.

Also far away from instability, we show that this model is able to describe the intra-
cellular actin dynamics and the resulting shapes and movements of the membrane. In
particular, by varying the pressure coefficient and the measure of the contractile tonic-
ity parameter, the model behaviour gives uniform expansions, contractions and irregular
deformations of the cell membrane with the cell centre staying mostly unchanged in the
majority of the cases considered. The model also allow us to compare the actin distribu-
tion at the vicinity where large deformations occur and the results we obtain are found
to be consistent with those observed experimentally. The perturbations used in the initial
conditions determines the dynamics of actin and cell shape. The simulation results for
cell deformation and movement are given in Section 5.4.
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5.2. Validating numerical results close to bifurcation points

Throughout this chapter we let t = n∆t, where ∆t and n denote the time-step size
and number of time-steps respectively. In all our simulations rnd denotes a randomly
generated number between 10−3 and 10−5 selected from a uniform distribution.

5.2 Validating numerical results close to bifurcation points

In this section we validate the numerical results by comparing the numerical results to
those obtained by using linear stability theory close to bifurcation points.

5.2.1 Excitation of the eigenmode w1,1

We present the numerical results for actin concentration ah and the displacement so-
lutions uh in Figure 5.1(b) and 5.1(c) respectively. These results are consistent with
those predicted by linear stability theory as given in Figure 3.5. The initial conditions
used were 1.0009+ rnd ∗ sin(x), a finite element mesh with 2113 nodes was used and
∆t = 1.0228×10−2. Numerical results in Figure 5.1(b) and 5.1(c) were obtained after 2
and 4 time-steps respectively.

Unlike the analytical solution given in Figure 5.1 which was plotted using Matlab the
numerical simulation results are visualized and plotted in Paraview. An attempt at insert-
ing an axes for the coordinates in Paraview was made but the coordinates of the resulting
axes was not legible. Hence the axes were omitted. This is a limitation of Paraview.
I would like to note that during the validation of a numerical scheme using predictions
from linear stability theory, the replication of the predicted pattern as show in Figure 5.1
is usually required. Also the amplitude of the predicted pattern is often different from
those obtained from numerical simulation (Madzvamuse 2000). Thus no comparision of
the coordinates of the predicted pattern with the numerical result is required.

We note that if the initial conditions are choosed to be equal to 1.0+ rnd, with all
parameters unchanged then the mode −w0,2 is excited.

5.2.2 Excitation of the eigenmode: −w0,2

Let us fix p̃ = 1.646 and ψ̃ = 38.24 respectively. For these parameter choices, the disper-
sion relation again isolates the lowest non-zero wavenumber k2

1,1. The initial conditions
of the actin concentration are chosen to be equal to ac + rnd ∗ cos(x). We found that by
choosing the perturbations in the initial conditions to be rnd ∗ cos(x), we encouraged the
excitation of the eigenmode −w0,2, where w0,2 is the lowest eigenmode. The numerical
simulation results are shown in Figure 5.2 for the actin concentrations ah and the displace-
ment solutions uh. For the sake of the comparison of the eigenmode w0,2 to the numerical
solutions we present in Figure 5.2(a) a plot of the eigenmode w0,2.
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1
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w1,1

(a)

actin conc.

(b)

disp. soln.

(c)

Figure 5.1: Surface plots of the numerical results for actin concentration ah and displace-
ment solution uh. Parameter values used in the numerical simulations are selected such
that the lowest non-zero wavenumber k2

1,1 is excited. (a) is the predicted solution for w1,1
from linear theory. (b) is the numerical result for actin concentration ah while (c) is the
numerical result for displacement solution uh . . (a), (b) and (c) are all surface plots. In
(b) and (c) a bar is used to specify the variation along the z-plane such that red signifies
high values and blue signifies low values.

In Figure 5.2(c), we observe that the displacement solutions uh has its highest value
around the points where x2 + y2 = 0.8. These points correspond to the points where δ (l)

is discontinuous. From the linear analysis in Section 3.7.1, we know that the dispersion
relation is discontinuous at the points where δ (l) is discontinuous. To further illustrate
the effect of the discontinuity of δ (l) on the numerical results, we redefine δ (l) such that
δ (l) = 1 on the boundary of the domain and zero elsewhere, i.e.

δ (l) =

1 on the cell membrane (i.e the domain boundary),

0 elsewhere.
(5.1)

The numerical simulation with δ (l) defined as in (5.1) gives numerical results where the
displacement solution uh has its highest value around the boundary (see Figure 5.3 for a
surface plot of the displacement solutions).
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Figure 5.2: Surface plots of the numerical results for the actin concentration ah and the
displacement solution uh showing the replication of the eigenmode−w0,2. (a) is a surface
plot of the eigenmode w0,2. (b) and (c) display the simulation results of actin concentra-
tion ah and displacement solutions uh respectively at time t = 3.61× 10−3. (d) displays
the displacement solutions uh at time t = 0.024 having no oscillations at the points of
discontinuity. The initial conditions used for actin concentrations are ac + rnd ∗ cos(x).

disp. soln.

Figure 5.3: A surface plot of the numerical result for the displacement solution uh. Pa-
rameter values used in the numerical simulation are consistent with those displayed in
Table 3.1 except that δ (l) is as defined in (5.1). Initial conditions as in Figure 5.2.

5.3 Validating numerical results far from bifurcation points

Far from the bifurcation points of k2
1,1, we have the possibility of exciting mixed or higher

modes. Below we present the numerical results for actin concentration ah and displace-
ment solutions uh showing the excitation of mixed and higher modes.
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5.3. Validating numerical results far from bifurcation points

Table 5.1: Values of ψ and the initial conditions used for the excitation of mixed and
higher modes presented in Figure 5.4.

Figure Value of ψ Initial conditions for the No. of nodes Time-step size
(dyn/cm2) actin concentration ∆t

Figure 5.4(b) and 5.4(c) 3.1×102 1.0+
∣∣0.1cosx

∣∣ 8321 1.0228×10−3

Figure 5.4(e) and 5.4(f) 2.0×102 1.0+
∣∣0.1sin2 y

∣∣ 8321 1.0228×10−3

Figure 5.5(b) and 5.5(c) 3.67×102 1.0+
∣∣0.1sinxsiny

∣∣ 8321 1.0228×10−3

Figure 5.5(e) and 5.5(f) 1.1×102 1.0+
∣∣ 20

∑
i=1

0.1sinxsiny
∣∣ 2113 1.0228×10−2

5.3.1 Excitation of mixed modes

The excitation of mixed modes is possible if the value of ψ̃ is allowed to vary while all
other parameters value are fixed (see Table 3.5 for possible values of ψ̃ and the corre-
sponding number of modes the dispersion relation isolates). We present in Figure 5.4 the
simulation results for actin concentration ah and the displacement solutions showing the
excitation of mixed modes. All graphics were saved after no more than 15 time-steps.
We present in Table 5.1 the value of ψ used in the numerical simulations. A comparison
of the predicted solutions from linear theory (Figure 5.4(a) and (d)) with the numerical
results (Figure 5.4(b)-(c) and Figure 5.4(e)-(f)) show that the numerical scheme repro-
duces results in close agreement to those predicted by linear stability theory for the mixed
modes for the actin concentration.The displacement solutions are naturally small with
small amplitudes since they generate the velocity for the domain deformation. Hence we
do not expect solution profiles corresponding to the displacement to have high amplitudes
compared the actin concentration profiles.

5.3.2 Excitation of higher modes

The excitation of higher modes is also possible if the value of ψ̃ is allowed to vary while
all other parameters value are fixed (see Table 3.5 for possible values of ψ̃ and the cor-
responding number of modes the dispersion relation isolates). We present in Figure 5.5
the simulation results for actin concentration ah and the displacement solutions showing
the excitation of higher modes. All graphics were saved after no more than 15 time-steps.
We present in Table 5.1 the value of ψ used in the numerical simulations. A comparison
of the predicted solutions from linear theory (Figure 5.5(a) and (d)) with the numerical
results (Figure 5.5(b)-(c) and Figure 5.5(e)-(f)) show that the numerical scheme repro-
duces results in close agreement to those predicted by linear stability theory for the mixed
and higher modes for the actin concentration.The displacement solutions are naturally
small with small amplitudes since they generate the velocity for the domain deformation.
Hence we do not expect solution profiles corresponding to the displacement to have high
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5.4. Numerical simulations of cell dynamics far away from bifurcation points

1
0

1

1

0

1
1.5

1
0.5

0
0.5

1

w0,2 + 2*w2,1

(a)

actin conc.

(b) ah

disp. soln.

(c) uh

1
0

1

1

0

1

1

0

1

2

w3,1  w0,2  3*w2,1

(d)

actin conc.

(e) ah

disp. soln.

(f) uh

Figure 5.4: Surface plots of the numerical results of the actin concentration ah and dis-
placement solutions uh having mixed modes excited together with the reproduced solu-
tions predicted from linear theory. (a) and (d) are the predicted solutions from linear
theory for w0,2 +2w2,1 and w3,1−w0,2−3w2,1 respectively. The numerical results repro-
duce the following modes: (b)-(c) w0,2+2w2,1, (e)-(f) w3,1−w0,2−3w2,1. ψ is chosen as
given in Table 5.1 such that mixed modes are excited (refer to the list given in Table 3.5
for more detail on the eigenmodes isolated by a dispersion relation depending on the value
of ψ̃ and ψ).

amplitudes compared with the actin concentration profiles.

5.4 Numerical simulations of cell dynamics far away from
bifurcation points

From now onwards, we will present the numerical experiments carried out in Section 5.2
by considering the long time behaviour far away from the unit disk where linear stability
theory no longer holds.

The numerical results show that regions where there is a high actin concentration re-
sult in large cell deformations and movement. If the actin concentration is uniformly
distributed, then cell deformation and movement is also uniform and isotropic. In all our
results, from now onwards, we only present 2D plots corresponding to the actin concen-
tration. The 2D plots corresponding to the displacement are either in (or out of) phase
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Figure 5.5: Surface plots of the numerical results of the actin concentration ah and dis-
placement solutions uh having higher modes excited together with the reproduced solu-
tions predicted from linear theory. (a) and (d) are the predicted solutions from linear the-
ory for w4,1 and w2,1 respectively. The numerical results reproduce the following modes:
(b) - (c) w4,1, and (e) - (f) w2,1. ψ is chosen as given in Table 5.1 such that higher modes
are excited (refer to the list given in Table 3.5 for more detail on the eigenmodes isolated
by a dispersion relation depending on the value of ψ̃ and ψ).

with those of the actin concentration.

5.4.1 Cell deformation for the case where the eigenmode w1,1 is ex-
cited

In Figure 5.6 we present numerical results computed with parameter values selected such
that w1,1 is excited initially (see Figure 5.1). It can be observed that at the early stages
(t = 0.5114), Figure 5.6(a)) the cell expands uniformly, with actin uniformly distributed
around the periphery (boundary) of the cell. Further growth ( t = 1.7183, Figure 5.6(b)),
the cell moves in the positive x - direction and continues to expand. It is clear that where
there is a high actin concentration, the cell moves preferentially in that direction. At time (
t = 3.365, Figure 5.6(c)), the cell has translated and expanded significantly and continues
to do so. We present in 5.6(d) a plot of the area of the cell against the number of time-steps
demonstrating clearly cell expansion during translation and in 5.6(e) we plot the index of
polarity against the number of time steps. The index of polarity is the ratio between the
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5.4. Numerical simulations of cell dynamics far away from bifurcation points

short axis and long axis of the smallest ellipse in which the simulated cell is defined.

5.4.2 Cell deformation for higher and mixed modes

Here we consider the cell deformation and cell movement for the cases when mixed or
higher modes are excited initially.

Cell deformation for the case when the mixed mode w2,1 is excited initially

In Figure 5.7 we present numerical results with parameter values selected such that w2,1 is
excited initially. In this plot we observe that as time increases the domain size is increasing
and protruding in 2 fronts but not translating. Actin density is highest at the periphery
where protrusion occurs. We present in Figure 5.7(d) a plot of the area of the cell against
the number of time-steps. It is clear that the cell is expanding but its centre of origin
remains fixed. A plot of the index of polarity against the number of time-steps taken is
given in Figure 5.7(e).

Cell deformation for the case when w3,1−w0,2−3∗w2,1 is excited initially

The cell deformation for the case when the mixed mode w3,1−w0,2− 3 ∗w2,1 is excited
initially is shown in Figure 5.8. We observe in this plot that the cell size is increasing along
the y-axis and protruding on two fronts. It is not translating and the x-range is decreasing
(i.e. in some parts of the domain the cell is contracting inwards). After n = 130 time-
steps ( t = 0.1329) actin concentration is still high at the regions where protrusion occurs.
In general the area of the cell is decreasing. A plot of the index of polarity against the
number of time-steps taken is shown in Figure 5.8(d).

Cell deformation for the case when the mixed mode w0,2−2∗w2,1 is excited

The cell deformation for the case when the mixed mode w0,2−2 ∗w2,1 is excited is pre-
sented in Figure 5.9. In this figure, we observe that the size of the cell is increasing along
the y-axis and protruding on two fronts. It is not translating and the x-range is decreasing
(i.e. some parts of the cell domain are contracting). Initially actin is high in the middle
region of the cell domain. After n = 50 time-steps (t = 0.0511) actin concentration is
high around the centroid and this is also observed to be the case after n = 146 (t = 1.493)
though the region of highest actin concentration decreases. A plot of the index of polarity
against the number of time-steps taken is shown in Figure 5.9(d).

Cell deformation for the case when the mode w4,1 is excited

The cell deformation for the case when the mixed mode w4,1 is excited is presented in
Figure 5.10. From Figure 5.10 we observe that the cell is increasing in size and actin con-
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5.5. Numerical investigation of the dynamics of parameter space (ψ̃, p̃)

centration is highest at regions were protrusion is highest. We present in Figure 5.10(d) a
plot of the area of the cell against the number of time-steps illustrating the increase in cell
area.

5.5 Numerical investigation of the dynamics of parame-
ter space (ψ̃, p̃)

On carrying out numerical simulations with parameter values selected from the parameter
space (ψ̃, p̃) close to bifurcation points (see Figure 3.9(a)), we observed that for some
choices of (ψ̃, p̃) in the Hopf region close to the oscillatory region the simulation result
gives stationary solutions for actin chemical concentrations that are consistent with those
predicted for the eigenmode c1w0,1 when the initial conditions used for actin concentra-
tions are ac + rnd ∗ cos(x). Fixing ψ̃ = 38.24 and decreasing p̃ vertically from 1.75 to 0
we observe that the solutions of the actin concentration reproduce the stationary solutions
that are predicted for the eigenmode c1w0,1 for all values of p̃ considered.

We note that the parameter p̃ can be chosen such that at regions close to the boundary
of the domain an oscillatory instability exists and further away from the boundary a Hopf
instability occurs. This is possible because of δ (l) in b(k2). In such a case where an
oscillatory instability exists close to the boundary and further away from the boundary a
Hopf instability occurs, numerical simulations give results that are consistent with those
predicted for the Turing space from linear theory for the eigenmode c1w0,1 (results not
shown).

We present below the simulation results of parameter spaces with initial conditions
for the actin concentrations equal to ac + rnd ∗ cos(x) fixed. The observed dynamics of
the cell where uniform expansion, uniform contraction and non-uniform deformations of
the cell. A finite element mesh with 8321 nodes was used with ∆t = 6.0228×10−4.

Uniform cell expansion

If we choose the value of the pressure coefficient p̃ to be equal to 3.0 (with all other
parameter values staying unchanged as given in Table 3.2), we observe that the cell de-
formations correspond to those obtained when c1w0,1 is excited.

From numerical simulations, we observed that the deformation of the cell is consistent
with those obtained when c1w0,1 is excited, provided b(k2) isolates only the first non-zero
unstable mode k2

1,1 and the initial conditions are chosen to be equal to ac + rnd ∗ cos(x).
We also observe that for fixed values of p̃ such that 0 < p̃ < 1.75 the dynamics of

the cell (corresponding to uniform expansions of the cell) is dependent on the value of
the contractile tonicity ψ̃ (refer to Figure 3.9(a) for a parameter space plot (ψ̃ , p̃). An
example is the following: Taking (ψ̃ , p̃) = (70.366,0.026) or (ψ̃ , p̃) = (70.366,0.433)
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gives uniform cell expansions while (ψ̃ , p̃) = (3.033×104,0.026), gives non-uniform cell
deformations (results not shown). The simulation results showing the actin concentration
solutions with uniform expansions are shown in Figure 5.12 for (ψ̃ , p̃) = (70.366,0.433).
In Figure 5.12(e) we present a plot of the area of the cell against the number of time-steps
taken to show the rate at which the area is increasing. (ψ̃ , p̃) = (70.366,0.433)

Uniform cell contraction

For the sake of numerical experiment, we allow p to take a negative value. By choosing
p̃ = −0.433 and ψ̃ = 70.366 we observe the cell contracting uniformly at positions that
are equidistant from the centroid of the cell domain. And the concentration of actin in-
creases from the boundary to the centroid. We show in Figure 5.13 the actin concentration
solutions at a time (a) t = 1.2046× 10−3, (b) t = 3.6137× 10−3, (c) t = 0.0361 and (d)
t = 0.5180. The initial conditions of actin concentration are still equal to ac+rnd∗cos(x).

Non-uniform cell deformation

Non-uniform cell deformations occur if all parameter values in Table 3.2 stay unchanged
but ψ̃ is increased or by choosing parameter values ψ̃ and p̃ far away from bifurca-
tion points (refer to Figure 3.9(a) for a parameter space plot of (ψ̃, p̃)). Below we
give the parameter values and the simulation results for both cases were non-uniform
cell deformations occur. Here the initial conditions of actin concentration are given by
ac + rnd ∗ cos(x).

• If all model parameter values are kept fixed as given in Table 3.2, taking increas-
ing values of ψ̃ results in non-uniform cell deformations. For example taking
ψ̃ = 1.04×105, we observed from the numerical results that the cell deforms non-
uniformly and rapidly making it impossible to capture the solutions and the numer-
ical algorithm fails.

• If we choose ψ̃ and p̃ arbitrarily such that the parameter space (ψ̃, p̃) is very far
from bifurcation points (for example, ψ̃ = 7.8× 103 and p̃ = 0.026), we observe
non-uniform cell contraction with actin localised around the centroid of the cell (see
Figure 5.14). In Figure 5.14(d) we present a plot of the cell area. A plot of the index
of polarity against the number of time-steps taken is given in Figure 5.15.

• We recall that the simulation results presented in Figure 5.15 was obtained for
p̃ = 0.026 and ψ̃ = 7.8×103. Now if we decrease only ψ̃ such that ψ̃ = 1.3×103,
we observe cell deformations which agree qualitatively to those observed experi-
mentally (Senju and Miyata 2009). It can be observed that actin concentration is
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high at the periphery of the cell boundary and is highest at regions were protrusions
occur. In Figure 5.16, we present the graphical display of the simulation results
of the actin concentration. A plot of the index of polarity against the number of
time-steps taken is given in Figure 5.17. We can infer from these results that the
dynamics of the cell domain, the distribution of actin filaments are related to the
pressure coefficient p and the contractile tonicity ψ .

5.6 Numerical simulation on a realistic cell

Here we choose parameters such that they are consistent with those available in the lit-
erature such that Young’s modulus E of the actin filament is 4000 dyn/cm2 (Dayel et al.
2009), diffusion coefficient Da of the actin filament is 1.6×10−10 cm2/s (Lanni and Ware
1984); (Simon et al. 1988), the polymerization rate ka is 66/s (Watanabe 2010), the val-
ues of the poisson ratio ν , shear and bulk viscosities µ1 and µ2 respectively are as given
in Table 3.1. A cell of radius 10 µm (0.001 cm) is assumed. We also assume that the
pressure coefficient is 800 dyn/cm2 and the contractile tonicity is 6.9×104 dyn/cm2. We
note that for these choice of dimensional parameter values the equivalent non-dimensional
parameter values would have a dispersion relation that isolates more than 7 wavenumbers
inclusive of k2

4,1. We used an initial perturbation for actin equal to |rnd sinxsiny| in order
to bias the excitation of the mode w4,1. The numerical simulation result gives protrusion
on four fronts and is similar to the result given in Fig. 5.10.

5.7 Qualitative comparison with experimental observa-
tions I

Here we compare Figure 5.16(f) with experimental observations. The distribution of F-
actin in cells has been well studied and epifluorescence images are available in the lit-
erature. Figure 5.18(a) shows an epifluorescence image of a Swiss 3T3 fibroblast cell
obtained from (Senju and Miyata 2009). The fibroblast was stained by the authors for
F-actin after being allowed to spread for 1 hour. The epifluorescence image shows that
F-actin is predominant at the cell periphery and is highest at the regions were protrusions
occur. The simulation results presented in Figure 5.18(b) are thus consistent with the
experimental observations.
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5.8 Qualitative comparison with experimental observa-
tions II

Here we compare Figure 5.8 showing the deformation of a cell with experimental ob-
servations of isolated fibroblast spreading in vitro on a substrate as given in Stéphanou
et al. (2008). We present this in Figure 5.19. In this figure, we observe that the simulated
fibroblast cell deforms similar to that observed experimentally. The rates of deformations
are different in both cases. We note that though some experimentally measured param-
eter values were used in the numerical experiments some model parameter values were
estimated or normalized hence we do not expect the simulated cell to have the same rate
of deformation with the experimentally observed cell. Thus we neglect the time scale of
deformation and make a qualitative comparison of the cell shape as it changes from being
roughly circular to being elongated as it spreads out (refer to Figure 5.19).

Remark 5.8.1 (Key model parameters). Based on the linear stability analysis and the

numerical simulation results we are able to identify key parameters that control cell de-

formations with respect to the model problem. The contractile tonicity ψ is the bifurcation

parameter and determines the transition from stable to unstable state. The actin satura-

tion concentration asat and the pressure coefficient were also found to play a key role in

cell deformations.

5.9 Limitation of the model

Through our the numerical simulations, we observe that the volume of the cell changes
continuously with time. This means that the cell will either expands to infinity or collapses
to zero. Clearly the model lacks volume conservation. A remedy would be to introduce
a mechanism for volume conservation of the cell and stop the infinite expansions and
contractions of the cell.

Our model succeeds in presenting a general methodology that describes the hypothesis
of the existence of a pressure-driven protrusion in the cell but a lot more parameters and
variables would have to be incorporated in to the model in order to accurately model the
complete process of cell movement.

112



5.9. Limitation of the model

actin conc.

 

(a) t = 0.5114

actin conc.

 

(b) t = 1.7183

actin conc.

 

(c) t = 3.365

0   50 100 150 200 250 300 350
3.0

3.5

4.0

4.5

No. of time steps

54

(d)

0 100 200 300
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

No. of time steps

In
de

x 
of

 p
ol

ar
ity

(e)

Figure 5.6: (a) - (c) are graphical displays of the numerical results of the actin concen-
tration ah with ∆t = 1.0228× 10−2. Blue signifies the lowest values and red the highest
values. Figure 5.6(d) is a plot of the area of the cell against the number of time-steps
taken. It shows the area of the cell increasing with the number of time-steps taken. (e)
shows a plot of the index of polarity against number of time steps. A black plus sign
specifies the position of the cell centroid at time t = 0.
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Figure 5.7: (a) - (c) are graphical displays of the numerical results of the actin concen-
tration ah. A finite element mesh with 2113 nodes was used, ∆t = 1.0228× 10−2. Blue
signifies the lowest values and red the highest values. (d) is a plot of the area of the cell
against the number of time-steps taken. It shows the area of the cell increasing with the
number of time-step taken. (e) is a plot of the index of polarity against the number of
time-steps taken.
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Figure 5.8: (a) - (c) are graphical displays of the numerical results of the actin concen-
tration ah. A finite element mesh with 8321 nodes was used, ∆t = 1.0228× 10−3. Blue
signifies the lowest values and red the highest values. (d) is a plot of the index of polarity
against the number of time-steps taken.
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Figure 5.9: (a) - (c) are graphical displays of the numerical results of the actin concen-
tration ah. A finite element mesh with 8321 nodes was used, ∆t = 1.0228× 10−3. Blue
signifies the lowest values and red the highest values. (d) is a plot of the index of polarity
against the number of time-steps taken.
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actin conc.

(a) t = 6.1368×10−3

actin conc.

(b) t = 0.9205
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(c) t = 0.1636
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Figure 5.10: (a) - (c) are graphical displays of the numerical results of the actin concen-
tration ah with ∆t = 1.0228× 10−3. Blue signifies the lowest values and red the highest
values. (d) is a plot of the area of the cell against the number of time-steps taken. It
shows the area of the cell increasing with the number of time-step taken.
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(a)

(b)

Figure 5.11: A graphical display of the finite element mesh. At time t = 0.1636, the
cell has deformed significantly but the finite element mesh is still suitable for numerical
computations and describes the domain properly. (b) is the finite element mesh of the
graphics given in (a) and has been enlarge for the sake of clarity.
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(a) t = 1.2046×10−3 (b) t = 3.6137×10−3 (c) t = 0.0361

(d) t = 0.5180
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Figure 5.12: Graphical display of the simulation results of the actin concentration. Blue
denotes the lowest values and red the highest. These results were obtained at the following
times: (a) t = 1.2046×10−3, (b) t = 3.6137×10−3, (c) t = 0.0361, and (d) t = 0.5180.
The numerical value of the contractile tonicity ψ̃ = 70.366 and that of the pressure co-
efficient p̃ = 0.433. (e) is a plot of the area of the cell against the number of time-steps
taken.
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actin conc.

(a) t = 1.2046×10−3

actin conc.

(b) t = 3.6137×10−3

actin conc.

(c) t = 0.0361
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Figure 5.13: Graphical display of the simulation results of the actin concentration. Blue
denotes the lowest values and red the highest. These results were obtained at the following
times: (a) t = 1.2046×10−3, (b) t = 3.6137×10−3, (c) t = 0.0361, and (d) t = 0.5180.
The numerical value of the contractile tonicity ψ̃ = 70.366 and that of the pressure coef-
ficient p̃ = −0.433. (e) is a plot of the area of the cell against the number of time-steps
taken.
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(a) (b) (c)

12010080604020  02.0

2.5

3.0

3.5

No. of time steps
(d)

Figure 5.14: Graphical display of the simulation results of the actin concentration. Blue
denotes the lowest values and red the highest. These results were obtained at the following
times: (a) t = 1.2046×10−3, (b) t = 3.6137×10−3, and (c) t = 0.0722. The numerical
value of the contractile tonicity ψ̃ = 7.8× 103 and that of the pressure coefficient p̃ =
0.026. (d) is a plot of the area of the cell against the number of time-steps taken.
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Figure 5.15: A plot of the index of polarity against the number of time-steps for simula-
tion results with contractile tonicity ψ̃ = 7.8×103 and the pressure coefficient p̃ = 0.026.
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(a) t = 1.2×10−3 (b) t = 0.012 (c) t = 0.12

(d) t = 0.18 (e) t = 0.21 (f) t = 0.24

Figure 5.16: Graphical display of the simulation results of the actin concentration. Blue
denotes the lowest values and red the highest. The numerical value of the contractile
tonicity ψ̃ = 1.3×103 and the pressure coefficient p̃ = 0.026.
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Figure 5.17: A plot of the index of polarity against the number of time-steps for simula-
tion results with contractile tonicity ψ̃ = 1.3×103 and the pressure coefficient p̃ = 0.03.
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1.30! 0.18 mm/min (mean!SD, n=6). Another arc was
formed at 72min (arrows). Then, the two arcs were
joined at the position indicated by a grey arrowhead at
73min. At 76min, the arcs formed a circle, indicating
that they formed a circular bundle (Supplementary
Movie 1).
Figure 2B shows the enlarged view of the boxed region

in Fig. 2A. An arc was generated at the cell periphery
and flowed towards the nucleus (arrowheads). During
the process of transport, the vertical position of circular
bundles appeared to become higher, because they could
only be brought into focus at higher focus levels. This
result indicates that circular bundles were translocated
along the cytoplasmic side of the apical cell surface.
Stress fibres consist of myosin-II (1, 2), a-actinin

(1, 3, 4) and tropomyosin (5) and generate tension in a
myosin-II-dependent manner (8). We investigated the
myosin-II and a-actinin distribution in circular bundles
in the cells 1h after the plating (Fig. 2C). Circular
bundles contained myosin-II (arrow) and a-actinin (data
not shown), suggesting a role of these proteins as

bundling factors. On the other hand, myosin-II was
excluded from lamellipodia and existed in lamella as
previously reported (34–37). Thus, during the process of
the flow of the arc from the base of the lamellipodia to
the lamella, myosin-II seemed to be incorporated into
arcs (2).
To elucidate the structural relationship between

circular bundles and focal adhesions, we observed the
distribution of F-actin and vinculin (Fig. 2D). The left-
most panel (a) shows fluorescence staining of F-actin in
the cell that had been allowed to spread for 1 h. The
boxed region is magnified and shown in (b). As indicated
by arrowhead, circular bundles associated with dorsal
stress fibres (arrows) oriented in the radial direction.
We investigated the process of formation of dorsal stress
fibres in the cells expressing GFP-actin by epifluores-
cence and TIRF microscopy and found that dorsal stress
fibres formed at the cell periphery and elongated towards
the cell nucleus as in migrating cells (2). The elongation
rate of dorsal stress fibres before they were bound to
the arcs was 0.34! 0.15 mm/min (mean!SD, n=30).

Fig. 2. Formation and dynamics of circular bundles of
F-actin in Swiss 3T3 fibroblasts expressing GFP-actin.
(A) Successive images of Swiss 3T3 fibroblast expressing GFP-
actin. The top left panel represents the epifluorescence image at
67min after the plating. An arc was formed at the cell periphery at
68min and then underwent elongation (white arrowheads).
At 72min, another arc was formed (white arrow). At 73min, the
two arcs were joined together in the region indicated by grey
arrowhead. At 76min, circular bundles were formed by closure of
the joined arcs (grey arrow). Scale bar =20 mm. (B) Magnified image
of the boxed region in (A). An arc was formed at the cell periphery
(arrowhead) moved in the downward direction towards the
nucleus. At 75min, a new arc (arrow) was formed and moved in

the same direction. Scale bar= 10mm. (C) Epifluorescence images of
stained F-actin (left panel) and myosin-II (right panel) showed
localization of myosin-II along circular bundles (arrow). Scale
bar= 20mm. D: (a) Epifluorescence image of a Swiss 3T3 fibroblast
had been allowed to spread for 1h and then fixed and stained for
F-actin. Scale bar= 20mm. (b) Boxed region in (a) is magnified.
Circular bundles (arrowheads) are associated with dorsal stress
fibres (arrows). Scale bar =10 mm. (c) Fluorescence staining of
F-actin in the same cell was observed by TIRF microscopy. The
inset shows a magnified image of dorsal stress fibres indicated by
grey arrowhead. (d) Immunofluorescence staining of vinculin in the
same cell was observed by TIRF microscopy. The inset shows
a magnified image of vinculin indicated by grey arrow.
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Figure 5.18: (a) Epifluorescence image of a Swiss 3T3 fibroblast cell (Senju and Miyata
2009). F-actin is predominant at the cell periphery and is highest at the region were
protrusions occur. (b) A simulated cell deformation for contractile tonicity ψ̃ = 1.3×103

and the pressure coefficient p̃ = 0.026. The distribution of F-actin in the simulated cell is
in qualitative agreement with experimental observations (Senju and Miyata 2009).
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Cell membrane oscillations and the related actin fluctuations in
the cortex can lead locally to the formation of an adhesion spot, if the
membrane extension and actin density both reach given thresholds
(Table 2). These thresholds reflect the fact that the highest
probability to form an adhesion occurs if the membrane offers a
greater contact area to the substrate, with a sufficient amount of
actin to connect/nucleate the integrins. Then the maturation of the
adhesions, according to the rules described in the flowchart (Fig. 4),
ultimately leads to cell translocation, that is effective cell migration.
All the parameters related to the formation and maturation of the
adhesions are given in Tables 2 and 3.

Fig. 10 presents snapshots of migration of the virtual cell. Each
snapshot shows: (i) the cell shape, (ii) the cell migratory path

(trajectory) and (iii) cell adhesion spots with their corresponding
level of maturation (A, FX or FA). The snapshots are not evenly
distributed in time, as the aim is rather to show some
representative examples of the distribution of the different types
of adhesions along the cell membrane during migration.

Three different phases in the migration process can be identified
in the simulation (Fig. 10), which correspond to the three different
migrating behaviours experimentally observed. First a bi-directional
migrating phase (palindromic migration) from snapshot A–C then a
slow migrating phase from D to E, where the cell centroid randomly
moves with a very small amplitude around an ‘‘equilibrium’’ spot,
and finally a fast migrating phase from F to H characterized by a
persistent direction of migration.

ARTICLE IN PRESS

Fig. 7. Time-lapse microscopy of NIH 3T3 fibroblasts. Cells were seeded on an uncoated polystyrene cell culture dish and their spontaneous migratory tracks were captured
every 10min for 4 h. The phenotypic alterations of a slow (Cell 1), a fast (Cell 2) and a palindromic (Cell 3) migrating fibroblast are depicted in 40-min intervals.
Magnification bar represents 20mm.
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(d) t = 10 mins

Cell membrane oscillations and the related actin fluctuations in
the cortex can lead locally to the formation of an adhesion spot, if the
membrane extension and actin density both reach given thresholds
(Table 2). These thresholds reflect the fact that the highest
probability to form an adhesion occurs if the membrane offers a
greater contact area to the substrate, with a sufficient amount of
actin to connect/nucleate the integrins. Then the maturation of the
adhesions, according to the rules described in the flowchart (Fig. 4),
ultimately leads to cell translocation, that is effective cell migration.
All the parameters related to the formation and maturation of the
adhesions are given in Tables 2 and 3.

Fig. 10 presents snapshots of migration of the virtual cell. Each
snapshot shows: (i) the cell shape, (ii) the cell migratory path

(trajectory) and (iii) cell adhesion spots with their corresponding
level of maturation (A, FX or FA). The snapshots are not evenly
distributed in time, as the aim is rather to show some
representative examples of the distribution of the different types
of adhesions along the cell membrane during migration.

Three different phases in the migration process can be identified
in the simulation (Fig. 10), which correspond to the three different
migrating behaviours experimentally observed. First a bi-directional
migrating phase (palindromic migration) from snapshot A–C then a
slow migrating phase from D to E, where the cell centroid randomly
moves with a very small amplitude around an ‘‘equilibrium’’ spot,
and finally a fast migrating phase from F to H characterized by a
persistent direction of migration.
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Fig. 7. Time-lapse microscopy of NIH 3T3 fibroblasts. Cells were seeded on an uncoated polystyrene cell culture dish and their spontaneous migratory tracks were captured
every 10min for 4 h. The phenotypic alterations of a slow (Cell 1), a fast (Cell 2) and a palindromic (Cell 3) migrating fibroblast are depicted in 40-min intervals.
Magnification bar represents 20mm.
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(e) t = 90 mins

Cell membrane oscillations and the related actin fluctuations in
the cortex can lead locally to the formation of an adhesion spot, if the
membrane extension and actin density both reach given thresholds
(Table 2). These thresholds reflect the fact that the highest
probability to form an adhesion occurs if the membrane offers a
greater contact area to the substrate, with a sufficient amount of
actin to connect/nucleate the integrins. Then the maturation of the
adhesions, according to the rules described in the flowchart (Fig. 4),
ultimately leads to cell translocation, that is effective cell migration.
All the parameters related to the formation and maturation of the
adhesions are given in Tables 2 and 3.

Fig. 10 presents snapshots of migration of the virtual cell. Each
snapshot shows: (i) the cell shape, (ii) the cell migratory path

(trajectory) and (iii) cell adhesion spots with their corresponding
level of maturation (A, FX or FA). The snapshots are not evenly
distributed in time, as the aim is rather to show some
representative examples of the distribution of the different types
of adhesions along the cell membrane during migration.

Three different phases in the migration process can be identified
in the simulation (Fig. 10), which correspond to the three different
migrating behaviours experimentally observed. First a bi-directional
migrating phase (palindromic migration) from snapshot A–C then a
slow migrating phase from D to E, where the cell centroid randomly
moves with a very small amplitude around an ‘‘equilibrium’’ spot,
and finally a fast migrating phase from F to H characterized by a
persistent direction of migration.
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Fig. 7. Time-lapse microscopy of NIH 3T3 fibroblasts. Cells were seeded on an uncoated polystyrene cell culture dish and their spontaneous migratory tracks were captured
every 10min for 4 h. The phenotypic alterations of a slow (Cell 1), a fast (Cell 2) and a palindromic (Cell 3) migrating fibroblast are depicted in 40-min intervals.
Magnification bar represents 20mm.

A. Stéphanou et al. / Journal of Theoretical Biology 253 (2008) 701–716708

(f) t = 170 mins

Figure 5.19: A qualitative comparison of the simulation result of cell deformations for
mixed modes with those observed experimentally for an isolated fibroblast allowed to
spread on a substrate in vitro (Stéphanou et al. 2008). Observe that the cell shape chang-
ing from a roughly circular shape to an elongated one, consistent with the numerical
experiment.
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h ∆t = 0.1h2 L∞(L2) eoc
3.1415930 0.986961 0.56233220 -
1.5707970 0.246740 0.3173985 0.825

7.8539850 ×10−1 0.061685 0.8405291 ×10−1 1.917
3.9269925 ×10−1 0.015421 0.2121861 ×10−1 1.986

1.96349625 ×10−1 3.85532 ×10−3 0.5315953 ×10−2 1.997
9.81748120 ×10−2 9.63830 ×10−4 0.1329648 ×10−2 1.998

Table 5.2: Errors L∞(L2) := sup(0,T ) ‖a−ah‖L2(Ω) and experimental order of convergence
(eoc) for the heat equation (5.2). The errors L∞(L2) decreases with decreasing mesh height
h and the eoc approaches 2.0 with decreasing mesh height h.

5.10 Numerical experiments

1). Here we neglect the domain velocity βββ by assuming that βββ = 0 and verify the finite
element numerical simulation result for the actin concentrations on a fixed unit disk. In
the absence of domain velocity the reaction-diffusion equation takes the form of a heat
equation with exact solution a = ac, a constant function. Numerical simulation with ac =

1.0 on a fixed unit disk gives the solution a = 1.0. Thus the numerical result is consistent
with the exact result.

We now seek to show that the finite element method satisfies the aprior estimate ‖a−
ah‖L2(Ω) ≈ hα , where α is the order of convergence (Reddy 1993). We consider the
function e−t cos(x) an exact solution of

∂a
∂ t
−Da∆a = (Da−1)e−t cos(x) in ΩΩΩ⊂RRR2× (0,T ), (5.2a)

n ·∇a = 0 for x ∈ ∂Ω∂Ω∂Ω× (0,T ), (5.2b)

where ΩΩΩ corresponds to [0,π]× [0,π] with the boundary denoted ∂Ω. Initial data is
a0(x) = cos(x). In order to show the order of convergence for L2 errors we choose the
coupling ∆t = ch2, where h denotes the mesh height and c is a constant. Here we assume
that c = 0.1. Any positive value can be assigned to Da. Here we assume that Da := 0.3.
In Table 5.2 we show the experimental order of convergence for the norm

L∞(L2) := sup
(0,T )
‖a−ah‖L2(Ω).

for the time interval [0,T ], T = 6. Let Er(h1) and Er(h2) denote the errors for the mesh
height h1 and h2 respectively then the experimental order of convergence is eoc(h1,h2) =

log Er(h1)
Er(h2)

(
log h1

h2

)−1
(Dziuk and Elliott 2007). The value of eoc corresponds to α and

converges to 2.0 as shown in Table 5.2. We note that on a continuously deforming cell,
the exact solutions are unknown and as such we are unable to show any order of conver-
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gence.

2). We consider a time interval [0,T ], T > 0. We present in Figure 5.20 the numer-
ical simulation results of the moving grid finite element method of the cytomechanical
model. We note that in Figure 5.20 the time interval used is small and initially the defor-

(a) (b)

Figure 5.20: (a) is a plot of the simulation result for actin concentration at time T =
0.10228 with timestep size ∆t = 1.0228×10−2. (b) is a plot of the simulation result for
actin concentration at time T = 0.10228 with timestep size ∆t = 1.0228×10−3.

mations are small and this makes the two graphs appear to be in agreement but for larger
time intervals this is not the case. This is due to the fact that the equations are nonau-
tonomous and there are no uniform steady states during domain evolution. We would also
like to state that a plot of the errors ‖an+1−an‖L2(ΩΩΩh,t)

against time shows that the errors
grows exponentially with time.

5.11 Summary

In this Chapter, we validated the moving grid finite element scheme for consistency with
predictions from linear stability theory. We showed that the moving grid finite element
method produced results that are consistent with predictions from linear stability theory.
Upon validating the numerical scheme we proceeded to study the dynamics of actin and its
influence on cell deformation. Numerical simulations of cell deformation gave uniform
expansion, uniform contraction and irregular deformation of the cell. The distribution
of actin filaments is related to the pressure coefficient, p and the contractile tonicity ψ .
Depending on the values of p and ψ the simulation results gave rise to uniform expansion,
uniform contraction or non-uniform cell deformations. For the cases where contractions
occur, actin density was highest around the centroid of the cell while for the cases where
expansions occur actin density was highest around the cell periphery. For the case of
non-uniform cell deformations actin density was predominant at the periphery of the cell
and was highest at regions with the highest curvature. We also observed cell membrane
protrusions on two and four fronts. We note that experimental observations realised on
L929 fibroblasts show that cells exhibit a maximum of four simultaneous protrusions
(additional ones are transitory) (Stéphanou et al. 2004).
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A limitation of the model is the lack of cell volume conservation. It was observed that
the cell volume increased or decreased infinitely which is not consistent with experimental
studies. A future work would be to incorporate a mechanism for volume conservation in
the model to aid in conserving the cell volume.
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Chapter 6

Conclusions and future work

6.1 Conclusion

In this work, we proposed and implemented an efficient numerical method to study cell
dynamics. Cells are the smallest basic unit of life but highly complex in structure and dy-
namics. More than 200 different types of cells make up the human body and each of them
is physiologically and biochemically specialised for a specific function (Stéphanou 2010).
Though the different cells are specific in their roles, in higher and structurally complex
organisms, different cells come together to form tissues which work in harmony for the
well being or detriment of the organism. As the structural complexity of an organism
increases, tissues are organised into organs which are in turn organised into systems. The
importance of studying cell movements cannot be overemphasised because vital processes
like reproduction, maintenance and development in multicellular organisms involve cell
replication and movement (Le Clainche and Carlier 2008). Also cell movement plays a
crucial role in many physiological and pathological processes (Le Clainche and Carlier
2008) such as immune response (Fleischer et al. 2007; Lauffenburger and Horwitz 1996;
Ridley et al. 2003), wound healing, development of tissues (Xue et al. 2010), embryogen-
esis (Clark 1996; Stéphanou 2010), inflammation and the formation of tumour metastasis
(Lauffenburger and Horwitz 1996; Stéphanou et al. 2008). In this work, we studied cell
deformation and movement as a consequence of the dynamics of actin filaments and their
interaction with associated proteins. Three key phases were covered: Mathematical mod-
elling, linear stability analytical study and numerical simulations using the moving grid
finite element.

Mathematical modelling and theoretical studies have played a significant role in un-
ravelling the processes involved in cell migration (Zaman et al. 2005) and is projected to
take a leading role in future developments of cell movement (Flaherty et al. 2007). The
increasing relevance of mathematical modelling is due to high performance of sophis-
ticated computer programs in solving complex equations describing biological systems
even at the cellular level. The high cost and time consumption associated with laboratory
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experiments can be highly reduced with the help of the sophisticated computer programs
(Flaherty et al. 2007).

The mathematical model that we considered is a cytomechanical model consisting of
two coupled system of equations. The equations takes into account both the biochemical
and biomechanical properties of the actin filaments and their interaction with associated
proteins: the first equation is a force balance mechanical equation describing the dis-
placement of the cell generated by the actin network. In deriving this equation we assume
that at the intracellular level, the cell complies to Newtonian dynamics such that inertial
terms are negligible compared to viscous and elastic forces hence motion ceases as soon
as the forces are turned off (Lewis and Murray 1991; Purcell 1977). Thus at any given
time, the actin network is in mechanical equilibrium under the action of the viscoelastic,
contractile and pressure forces generated by the actin network. And the second equation
is a reaction-diffusion equation describing the polymerization kinetics of actin filaments
and its movement via diffusion and convective effects as a result of changes in cell shape
(Stéphanou et al. 2004).

In order to understand the behaviour of the system close to bifurcation points, a de-
tailed linear stability analytical theory was carried out. This enabled us to reduce the
number of parameter values within the system but more importantly, we were able to iden-
tify two critical parameters underpinning the bifurcation process: the contractile tonicity
and the pressure. The contractile tonicity was identified as the bifurcation parameter that
determines the transition from a stable homogeneous steady state to non-uniform inho-
mogeneous solutions. Far away from the bifurcation points, linear theory does not hold,
thereby necessitating the use of novel numerical methods.

Unlike previous studies (Alt and Tranquillo 1995; Stéphanou et al. 2004), we proposed
a moving grid finite element method introduced in 2000 by (Madzvamuse 2000) to study
partial differential equations posed on complex evolving domains. This numerical method
is a natural candidate capable, not only of solving the model system, but also of dealing
with complex cell shape deformation and movement. By using linear stability theory
close to bifurcation points we validated our numerical results which gave confidence in
the applicability of the choice of the numerical method. Far away from the bifurcation
points, numerical solutions of the model system produced a variety of scenarios of the cell
deformation and cell movement such as uniform cell expansion and contraction, and non-
uniform cell deformations (for example, cell protrusions). The numerical results clearly
demonstrate that regions with high actin concentrations result in large cell deformation
and cell movement in complete agreement with experimental observations (Senju and
Miyata 2009). Equivalently, regions of the cell with large displacements result in high
actin concentrations. If the actin concentration is uniformly distributed, then the cell
either expands or contracts uniformly and isotropically.

We summarise our observations as follows:
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• The distribution of actin filaments is related to the pressure coefficient, p and the
contractile tonicity ψ . Depending on the values of p and ψ the simulation results
gave rise to uniform expansion, uniform contraction or non-uniform cell deforma-
tions.

• For the cases were contractions occur, actin density was highest around the centroid
of the cell while for the cases where expansions occur actin density was highest
around the cell periphery.

• For the case of non-uniform cell deformations actin density was predominant at
the periphery of the cell and was highest at regions with the highest curvature (see
Fig. 5.16). For ψ̃ = 7.8×103 actin density was localized at the centroid of the cell
and the boundary was contracting non-uniformly (see Fig. 5.14).

• Actin filaments play a key part in cell deformations and such deformations are a
function of the contractile tonicity and an adequate counter pressure is required in
the cell to prevent it from shrinking as a result of the contractile forces.

• We assumed that the pressure in the cell was due to the contraction of the network
creating cytoplasmic flows throughout the cell thus increasing the pressure and was
reenforced by a polymerization induced pressure at the vicinity of the cell bound-
ary. We modelled this by introducing the heavy-side function which allowed us to
study the pressure-induced protrusions and actin filaments polymerization-induced
protrusions.

6.2 Future work

Possible future works are

I ). Introduce a mechanism for volume conservation of the cell to stop the infinite
expansions and contractions of the cell.

II ). Coupling the force balance equation with a coupled system of reaction-diffusion
equations modelling the interactions of actin filaments with myosin II and integrin
proteins responsible for cell adhesions.

III ). Introducing an additional model for chemotaxis.
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6.2. Future work

IV ). Introducing obstacles (rigid bodies) such that cells can move around these as they
move towards some sources.

V ). Modelling interactions between multiple moving cells.
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A. Schmidt, K. G. Siebert, D. Köster, and C. Heine. Design of adptive finite element soft-

ware: The finite element toolbox ALBERTA, 11 December 2006. Version: ALBERTA-
2.0. 89

Y. Senju and H. Miyata. The role of actomyosin contractility in the formation and dynam-
ics of actin bundles during fibroblast spreading. J. Biochem, 145(2):137–150, 2009. 15,
41, 110, 111, 123, 128

J. A. Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics,

Computer Vision and Materials Sciences. Cambridge University Press, 1996. 15, 16,
73

J. R. Simon, A. Gough, E. Urbank, F. Wang, and F. Lanni. Analysis of rhodamine and
fluorescein-labeled f-actin diffusion in vitro by flourescence photobleaching recovery.
Biophys. J., 54:801–815, 1988. 111

J. V. Small. Organization of actin in the leading edge of cultured cells: influence of
osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J. Cell

Biol., 91:695–705, 1981. 30

140



REFERENCES

J. V. Small, G. Isenberg, and J. E. Celis. Polarity of actin at the leading edge of cultured
cells. of the peripheral weave of microfilaments in glia cells. Nature, 272:638–639,
1978. 30

J. V. Small, T. Stradal, E. Vignal, and K. Rottner. The lamellipodium: where motility
begins. TRENDS in Cell Biology, Vol. 12(No. 3), March 2002. 36

J. Sroka, M. von Gunten, G. A. Dunn, and H. U. Keller. Phenotype modulation in
non-adherent and adherent sublines of walker carcinosarcoma cells: the role of cell-
substratum contacts and microtubules in controlling cell shape, locomotion and cy-
toskeletal structure. Int. J. Biochem. Cell Biol., 34:882–899, 2002. 40
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Appendix A

Stability analysis

The reaction-diffusion equation is a linear equation hence its error analysis is easy to
show but for force balance equation this is more involved and complicated because of the
presence of non-linearity. Hence we only show some stability estimates for the reaction-
diffusion equation.

A.1 Stability analysis of the reaction-diffusion equation

A stability analysis of a linear advection diffusion problem in an arbitrary Lagrangian Eu-
lerian frame is given in Formaggia and Nobile (1999). We show some stability estimates
for the reaction-diffusion equation equation by applying some of the techniques used in
Formaggia and Nobile (1999). We recall the following identities. Let g(x, t) ∈ H1(ΩΩΩt)

be a function defined on ΩΩΩt , t ∈ I then from Reynolds transport theorem the following
identities hold for any arbitrary subdomain VVVt ⊆ΩΩΩt :

d
dt

∫
VVVt

g dΩt =
∫
VVVt

(
Dg
Dt

+g∇ ·βββ
)

dΩt , (A.1)

where βββ is the flow velocity. Similarly

d
dt

∫
VVVt

g2 dΩt =
∫
VVVt

(
D
Dt

(g2)+g2
∇ ·βββ

)
dΩt

=⇒
∫
VVVt

D
Dt

(g2)dΩt =
d
dt

∫
VVVt

g2 dΩt −
∫
VVVt

g2
∇ · ẋdΩt

=
d
dt
‖g‖2

L2(VVVt)
−
∫
VVVt

g2
∇ · ẋdΩt . (A.2)
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A.1. Stability analysis of the reaction-diffusion equation

We recall the reaction-diffusion equation for the actin biochemical dynamics below for
the sake of completeness.

∂a
∂ t
−Da∆a+∇ · (aβββ )− ka(ac−a) = 0 in ΩΩΩt , t ∈ I, (A.3)

Let Da/Dt be a material derivative, then the material derivative of the actin concentration
a is defined as (Reddy 1993);

Da
Dt

=
∂a
∂ t

+(∇a) ·βββ

We write the reaction-diffusion equation in terms of the material derivative as given below

Da
Dt
−Da∆a+a(∇ ·βββ )− ka(ac−a) = 0 (A.4)

We multiply by a and integrate over ΩΩΩt to obtain

∫
ΩΩΩt

a
(

Da
Dt

+ a(∇ ·βββ )
)

dΩt +
∫

ΩΩΩt

(
D∇a ·∇a + kaa2) dΩt =

∫
ΩΩΩt

kaaca dΩt . (A.5)

From product rule, we have that

a
Da
Dt

=
1
2

D
Dt

(a2).

Thus (A.5) becomes;

∫
ΩΩΩt

(
1
2

D
Dt

(a2) + a2
∇ ·βββ

)
dΩt + Da‖∇a‖2

L2(ΩΩΩt)
+ ka‖a‖2

L2(ΩΩΩt)

= kaac‖a‖L1(ΩΩΩt)
. (A.6)

By applying the identity (A.2) to (A.6) we obtain the following estimate;

1
2

d
dt
‖a‖2

L2(ΩΩΩt)
+ Da‖∇a‖2

L2(ΩΩΩt)
+ ka‖a‖2

L2(ΩΩΩt)
= kaac‖a‖L1(ΩΩΩt)

− 1
2

∫
ΩΩΩt

a2
∇ ·βββ dΩt . (A.7)
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A.1. Stability analysis of the reaction-diffusion equation

Time integration

We integrate (A.7) in time from t0 to Tf . And we obtain that

∫ Tf

t0

d
ds
‖a‖2

L2(ΩΩΩs)
ds + 2Da

∫ Tf

t0
‖∇a‖2

L2(ΩΩΩs)
ds + 2ka

∫ Tf

t0
‖a‖2

L2(ΩΩΩs)
ds =

2kaac

∫ Tf

t0
‖a‖L1(ΩΩΩs)

ds−
∫ Tf

t0

∫
ΩΩΩs

a2
∇ ·βββ dΩs ds. (A.8)

Which yields

‖a(t)‖2
L2(ΩΩΩt)

+ 2Da

∫ Tf

t0
‖∇a‖2

L2(ΩΩΩs)
ds + 2ka

∫ Tf

t0
‖a‖2

L2(ΩΩΩs)
ds = ‖a(t0)‖2

L2(ΩΩΩt0)

+ 2kaac

∫ Tf

t0
‖a‖L1(ΩΩΩs)

ds −
∫ Tf

t0

∫
ΩΩΩs

a2
∇ ·βββ dΩs ds. (A.9)

We assume that the following bounds exist;

∫
ΩΩΩt

a2
∇ ·βββ dΩt ≤

∫
ΩΩΩt

|a|2 |∇ ·βββ |dΩt

≤ ‖∇ ·βββ‖L2(ΩΩΩt)

∫
ΩΩΩt

|a|2 dΩt = ‖∇ ·βββ‖L2(ΩΩΩt)
‖a‖2

L2(ΩΩΩt)
.

Therefore (A.9) becomes

‖a(t)‖2
L2(ΩΩΩt)

+ 2Da

∫ Tf

t0
‖∇a‖2

L2(ΩΩΩs)
ds + 2ka

∫ Tf

t0
‖a‖2

L2(ΩΩΩs)
ds ≤ ‖a(t0)‖2

L2(ΩΩΩt0)

+ 2kaac

∫ Tf

t0
‖a‖L1(ΩΩΩs)

ds +
∫ Tf

t0
‖∇ ·βββ‖L2(ΩΩΩt)

‖a‖2
L2(ΩΩΩs)

ds. (A.10)

Using a Gronwall argument we arrive at the estimate

‖a(t)‖2
L2(ΩΩΩt)

+ 2Da

∫ Tf

t0
‖∇a‖2

L2(ΩΩΩs)
ds + 2ka

∫ Tf

t0
‖a‖2

L2(ΩΩΩs)
ds ≤

C2 +
∫ Tf

t0
C1(s) C2 exp

(∫ Tf

s
C1(g) dg

)
ds, (A.11)

where

C2 = ‖a(t0)‖2
L2(ΩΩΩt0)

+ 2kaac

∫ Tf

t0
‖a‖L1(ΩΩΩs)

ds and C1(t) = ‖∇ ·βββ‖L2(ΩΩΩt)
.
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A.1. Stability analysis of the reaction-diffusion equation

From (A.11) we obtain the following estimate;

‖a(t)‖2
L2(ΩΩΩt)

+ 2Da

∫ Tf

t0
‖∇a‖2

L2(ΩΩΩs)
ds+2ka

∫ Tf

t0
‖a‖2

L2(ΩΩΩs)
ds

≤ C2 exp
(∫ Tf

t0
C1(s) ds

)
. (A.12)

Thus the stability estimate of the differential equation (A.3) is dependent on the flow
velocity. The flow velocity βββ :

βββ =
∂u
∂ t

< ∞. (A.13)

Since u are small displacements of the domain ΩΩΩt . Hence the stability estimate of the
differential equation (A.3) is bounded. We note that u is the solution of the force balance
equation and it determines the displacement (or velocity) of the domain ΩΩΩt . By consid-
ering the cytomechanical model to be a reaction-diffusion equation that is coupled to a
domain velocity βββ , we state that the stability estimate of the cytomechanical model is
bounded.
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Appendix B

Weak form and wellposedness

Definition B.0.1. (Weak solution) Let GT :=
⋃

t∈[t0,Tf ]Ω
ΩΩt ×{t} be the union of ΩΩΩt ×{t}

for t ∈ [t0,Tf ]. We say that a function a ∈ H1(GT ) is a weak solution of (4.15), if for

almost every t ∈ (t0,Tf )

∫
ΩΩΩt

ϕ

(
Da
Dt

+ a(∇ ·βββ )
)

dΩt +
∫

ΩΩΩt

(D∇a ·∇ϕ + kaaϕ) dΩt =
∫

ΩΩΩt

kaacϕ dΩt (B.1)

for every ϕ(., t) ∈ H1(ΩΩΩt).

Existence of unique weak solution

The existence of a weak solution for an advection-diffusion equation on an evolving sur-
face is given in Dziuk and Elliott (2007). Following his work we show that there exist a
weak solution of the differential equation (4.15). For this we require the following energy
equations.

Lemma B.0.1. Let a be a weak solution of (4.15). Then it can be shown that

1
2

d
dt

∫
ΩΩΩt

a2 dΩt +
∫

ΩΩΩt

(
D|∇a|2 + kaa2

)
dΩt +

1
2

∫
ΩΩΩt

a2 (∇ ·βββ ) dΩt

=
∫

ΩΩΩt

kaaca dΩt . (B.2)
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Proof. We choose ϕ = a in

d
dt

∫
ΩΩΩt

aϕ dΩt +
∫

ΩΩΩt

(D∇a ·∇ϕ + kaaϕ) dΩt =
∫

ΩΩΩt

kaacϕ dΩt +
∫

ΩΩΩt

a
Dϕ

Dt
dΩt . (B.3)

and we obtain that

d
dt

∫
ΩΩΩt

a2 dΩt +
∫

ΩΩΩt

(
D|∇a|2 + kaa2) dΩt =

∫
ΩΩΩt

kaac a dΩt +
∫

ΩΩΩt

a
Da
Dt

dΩt . (B.4)

Using product rule we can write that a(Da/Dt) = 1/2
(
D(a2)/Dt

)
. Applying Reynolds

transport theorem we obtain that

1
2

D
Dt

(a2) dΩt =
1
2

d
dt

∫
ΩΩΩt

a2 dΩt −
1
2

∫
ΩΩΩt

a2
∇ · (βββ ) dΩt . (B.5)

We substitute (B.5) into (B.4) and we get

1
2

d
dt

∫
ΩΩΩt

a2 dΩt +
∫

ΩΩΩt

(
D|∇a|2 + kaa2

)
dΩt +

1
2

∫
ΩΩΩt

a2 (∇ ·βββ ) dΩt

=
∫

ΩΩΩt

kaaca dΩt , (B.6)

which is (B.2).

Lemma B.0.2. Let a be a weak solution of (4.15). Then we have that

∫
ΩΩΩt

(
Da
Dt

)2

dΩt +

(
ka

(
1
2
−ac

))
d
dt

∫
ΩΩΩt

a2 dΩt +
∫

ΩΩΩt

(a∇ ·βββ ) Da
Dt

dΩt

+
D
2

d
dt

∫
ΩΩΩt

|∇a|2 dΩt + kaac

∫
ΩΩΩt

a∇ ·βββ dΩt

=
ka

2

∫
ΩΩΩt

a2
∇ ·βββ dΩt +

D
2

∫
ΩΩΩt

|∇a|2∇ ·βββ dΩt . (B.7)

Proof. To prove (B.7) we now choose ϕ = Da
Dt in (B.1) and we obtain

∫
ΩΩΩt

(
Da
Dt

)2

dΩt +
∫

ΩΩΩt

(a∇ ·βββ ) Da
Dt

dΩt +
∫

ΩΩΩt

(
D∇a ·∇

(
Da
Dt

))
dΩt

+
∫

ΩΩΩt

(
ka a

Da
Dt

)
dΩt =

∫
ΩΩΩt

kaac
Da
Dt

dΩt . (B.8)
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Here

∫
ΩΩΩt

(
D∇a ·∇

(
Da
Dt

))
dΩt =

D
2

∫
ΩΩΩt

D
Dt

(
|∇a|2

)
dΩt

=
D
2

d
dt

∫
ΩΩΩt

|∇a|2 dΩt −
D
2

∫
ΩΩΩt

|∇a|2∇ ·βββ dΩt , (B.9)

∫
ΩΩΩt

(
ka a

Da
Dt

)
dΩt =

ka

2

∫
ΩΩΩt

(
D(a2)

Dt

)
dΩt

=
ka

2
d
dt

∫
ΩΩΩt

a2 dΩt −
ka

2

∫
ΩΩΩt

a2
∇ ·βββ dΩt , (B.10)

and

∫
ΩΩΩt

kaac
Da
Dt

dΩt = kaac

∫
ΩΩΩt

Da
Dt

dΩt = kaac

[
d
dt

∫
ΩΩΩt

a dΩt −
∫

ΩΩΩt

a∇ ·βββ dΩt

]
. (B.11)

We substitute (B.9) - (B.11) into (B.8) and we get

∫
ΩΩΩt

(
Da
Dt

)2

dΩt +
∫

ΩΩΩt

(a∇ ·βββ ) Da
Dt

dΩt +
D
2

d
dt

∫
ΩΩΩt

|∇a|2 dΩt −
D
2

∫
ΩΩΩt

|∇a|2∇ ·βββ dΩt

+
ka

2
d
dt

∫
ΩΩΩt

a2 dΩt −
ka

2

∫
ΩΩΩt

a2
∇ ·βββ dΩt

= kaac

[
d
dt

∫
ΩΩΩt

a dΩt −
∫

ΩΩΩt

a∇ ·βββ dΩt

]
. (B.12)

By factorizing some terms in the expression (B.12) we obtain

∫
ΩΩΩt

(
Da
Dt

)2

dΩt +

(
ka

(
1
2
−ac

))
d
dt

∫
ΩΩΩt

a2 dΩt +
∫

ΩΩΩt

(a∇ ·βββ ) Da
Dt

dΩt

+
D
2

d
dt

∫
ΩΩΩt

|∇a|2 dΩt + kaac

∫
ΩΩΩt

a∇ ·βββ dΩt

=
ka

2

∫
ΩΩΩt

a2
∇ ·βββ dΩt +

D
2

∫
ΩΩΩt

|∇a|2∇ ·βββ dΩt , (B.13)

which is (B.7)

Theorem B.0.1. (Existence and uniqueness of weak solution) There exist a unique weak
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solution of (A.4). And the following energy estimate holds

sup
t∈(0,Tf )

∫
ΩΩΩt

aN(·, t)2 dΩt +
∫ Tf

0

∫
ΩΩΩt

(
D|∇aN(·, t)|2 + kaaN(·, t)2

)
dΩt dt

≤C3. (B.14)

∫ Tf

0

∫
ΩΩΩt

(
D
Dt

aN(·, t)
)2

dΩt dt +
(

ka

(
1
2
−ac

))
sup

t∈(0,Tf )

∫
ΩΩΩt

aN(·, t)2 dΩt

+
D
2

sup
t∈(0,Tf )

∫
ΩΩΩt

|∇aN(·, t)|2 dΩt ≤C4. (B.15)

Proof. Our ansatz for a Galerkin solution of (B.1) from XN = span {ϕ1(·, t), . . . ,ϕN(·, t)}

is

aN(x, t) =
N

∑
j=1

a j(t)ϕ j(x, t).

The material derivative of aN gives

D
Dt

aN(x, t) =
N

∑
j=1

ϕ j(x, t)
D
Dt

a j(t)

as a consequence of the transport property of basis function (i.e Dϕ j
Dt = 0) (Dziuk and

Elliott 2007). From linear ODE theory, it can be shown that aN satisfies

d
dt

∫
ΩΩΩt

aNϕ dΩt +
∫

ΩΩΩt

(D∇aN ·∇ϕ + kaaNϕ) dΩt

=
∫

ΩΩΩt

kaacϕ dΩt +
∫

ΩΩΩt

aN
Dϕ

Dt
dΩt . (B.16)

for all ϕ(·, t) ∈ span{ϕ1(·, t), . . . ,ϕN(·, t)}. From Lemma B.0.1 we have the following

energy equation

1
2

d
dt

∫
ΩΩΩt

a2
N dΩt +

∫
ΩΩΩt

(
D|∇aN |2 + kaa2

N

)
dΩt +

1
2

∫
ΩΩΩt

a2
N (∇ ·βββ ) dΩt

=
∫

ΩΩΩt

kaacaN dΩt . (B.17)
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and a Gronwell argument yields the estimate

sup
t∈(0,Tf )

∫
ΩΩΩt

aN(·, t)2 dΩt +
∫ Tf

0

∫
ΩΩΩt

(
D|∇aN(·, t)|2 + kaaN(·, t)2

)
dΩt dt

≤C2 exp
(∫ Tf

t0
C1(s)ds

)
, (B.18)

where

C2 = ‖aN(t0)‖2
L2(ΩΩΩt0)

+ kaac

∫ Tf

t0
‖aN(s)‖2

L1(ΩΩΩs)
ds and C1(t) = ‖∇ ·βββ‖L2(ΩΩΩt)

.

Let us define C3 :

C3 =C2 exp
(∫ Tf

t0
C1(s)ds.

then from (B.18), we obtain that

sup
t∈(0,Tf )

∫
ΩΩΩt

aN(·, t)2 dΩt +
∫ Tf

0

∫
ΩΩΩt

(
D|∇aN(·, t)|2 + kaaN(·, t)2

)
dΩt dt

≤C3. (B.19)

which is (B.14). Similarly from Lemma B.0.2 we obtain the following energy equation

∫
ΩΩΩt

(
DaN

Dt

)2

dΩt +

(
ka

(
1
2
−ac

))
d
dt

∫
ΩΩΩt

a2
N dΩt +

D
2

d
dt

∫
ΩΩΩt

|∇aN |2 dΩt

= c
∫

ΩΩΩt

|aN |
∣∣∣Da

Dt

∣∣∣dΩt + c
∫

ΩΩΩt

aN dΩt

+ c
∫

ΩΩΩt

a2
N dΩt + c

∫
ΩΩΩt

|∇aN |2 dΩt , (B.20)

and a Gronwell argument yields the estimate

∫ Tf

0

∫
ΩΩΩt

(
D
Dt

aN(·, t)
)2

dΩt dt +
(

ka

(
1
2
−ac

))
sup

t∈(0,Tf )

∫
ΩΩΩt

aN(·, t)2 dΩt

+
D
2

sup
t∈(0,Tf )

∫
ΩΩΩt

|∇aN(·, t)|2 dΩt ≤C4. (B.21)

which is (B.15). By combining the estimates (B.19) and (B.21) we obtain the bounded-
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ness of the sequence (aN)N∈N ∈ H1(GT ). Thus there exist an a = a(x, t), a ∈ H1(GT )

such that for a subsequence say am ⊂ aN ; m,N ∈ N (Dziuk and Elliott 2007),

am ⇀ a as m→ ∞ in H1(GT ). (B.22)

We do not show the existence of a unique solution of the force balance equation and
of the coupled problem because this is more involved. The force balance equation has
been well studied by Lewis and Murray (1991; 1992); Murray (1993) and numerous other
authors. Their solutions are known to exist and are well-posed.
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