

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

The Application of Workflows to
Digital Heritage Systems

by

 Abdullah Al-Barakati

A thesis submitted in fulfilment of

the requirements for the degree of

Doctor of Philosophy

at the University of Sussex

Interactive Systems: Computer Graphics Centre

School of Informatics

University of Sussex

Brighton, England

February 2012

ii

Declaration

The work presented in this thesis, unless otherwise indicated, was carried out in the

Interactive Systems: Computer Graphics Centre at the University of Sussex and is that

of author and has not been submitted in any form for any other degree at this or any

other University.

Signed: _______________________

Abdullah Al-Barakati

Copyright © 2012

University of Sussex

Interactive Systems: Computer Graphics Centre

School of Informatics,

University of Sussex

Brighton

BN1 9QT

iii

Acknowledgements

The work presented in this thesis would have not been possible without my supervisors:

Dr Martin White and Dr Natalia Beloff. I would like to thank them both for their help,

support and guidance over the course of my degree. I would like to thank my colleagues

in the Computer Graphics Centre whose help was of the utmost importance to the

research carried out.

I would also like to express my highest gratitude to my family members and friends

who sincerely helped and supported me throughout my PhD studies, and gave me the

drive to carry own and realize my dream of submitting this piece of work.

iv

University of Sussex

ABSTRACT

Digital heritage systems usually handle a rich and varied mix of digital objects,
accompanied by complex and intersecting workflows and processes. However, they
usually lack effective workflow management within their components as evident in the
lack of integrated solutions that include workflow components. There are a number of
reasons for this limitation in workflow management utilization including some technical
challenges, the unique nature of each digital resource and the challenges imposed by the
environments and infrastructure in which such systems operate.

This thesis investigates the concept of utilizing Workflow Management Systems
(WfMS) within Digital Library Systems, and more specifically in online Digital
Heritage Resources. The research work conducted involved the design and development
of a novel experimental WfMS to test the viability of effective workflow management
on the complex processes that exist in digital library and heritage resources. This rarely
studied area of interest is covered by analyzing evolving workflow management
technologies and paradigms. The different operational and technological aspects of
these systems are evaluated while focusing on the areas that traditional systems often
fail to address.

A digital heritage resource was created to test a novel concept called DISPLAYS
(Digital Library Services for Playing with Antiquity and Shared Heritage), which
provides digital heritage content: creation, archival, exposition, presentation and
interaction services for digital heritage collections. Based on DISPLAYS, a specific
digital heritage resource was created to validate its concept and, more importantly, to
act as a test bed to validate workflow management for digital heritage resources. This
DISPLAYS type system implementation was called the Reanimating Cultural Heritage
resource, for which three core components are the archival, retrieval and presentation
components. To validate workflow management and its concepts, another limited
version of these reanimating cultural heritage components was implemented within a
workflow management host to test if the workflow technology is a viable choice for
managing control and dataflow within a digital heritage system: this was successfully
proved.

v

List of Publications

Al-Barakati, A.; Patoli, M. Z.; Gkion, M.; Zhang, W.; Newbury, P.; Beloff, N. and
White, M. (2008): “A Dynamic Workflow Management Framework for Digital
Heritage and Technology Enhanced Learning”. Proceedings of the 14th International
Conference on Virtual Systems and Multimedia (VSMM 2008) dedicated to Digital
Heritage, 20-26 October 2008.

Al-Barakati, A.; Zhang, W.; Patoli, M. Z.; Gkion, M.; Newbury, P. and White, M.
(2009): “An Integrated Workflow Management Solution for Heritage Information
Mashups” ASONAM 2009, First International Symposium on Mining Social Networks,
held in Athens, Greece between 20-22 July 2009. The proceedings are published in
IEEE explorer, ISBN: 978-0-7695-3689-7/09, DOI 10.1109/ASONAM.2009.40

Gkion, M.; Patoli, M. Z.; Al-Barakati, A.; Zhang, W.; Newbury, P. and White, M.
(2009): “Collaborative 3D Digital Content Creation Exploiting a Grid Network”, Third
International Conference on Information & Communication Technologies ICICT2009.
The proceedings are published in IEEE explorer, ISBN: 978-1-4244-4609-4/09.

Patoli, M. Z.; Al-Barakati, A.; Gkion, M.; Zhang, W.; Newbury, P.; Beloff, N. and
White, M. (2007): “A Service-Orientation Approach for a Digital Library System
focused on Portable Antiquities and Shared Heritage”, Vast 2007, 26-29 November
2007, submitted to the 8th International Symposium on Virtual Reality, Archaeology
and Cultural Heritage (2007), ISBN 978-963-8046-89-5 (pp. 15-18).

Patoli, M. Z.; Gkion, M.; Al-Barakati, A.; Zhang, W.; Newbury, P. and White, M.
(2008): “How to Build an Open Source Render Farm based on Desktop Grid
Computing”, presented in International Multi-topic Conference IMTIC, Published in
CCIS-20, pp. 268-278, 2008.© Springer-Verlag Berlin Heidelberg 2008. ISBN: 978-3-
540-89852-8.

Patoli, M. Z.; Gkion, M.; Al-Barakati, A.; Zhang, W.; Newbury, P. and White, M.
(2009): “An Open Source Grid Based Render Farm for Blender 3D”, presented in IEEE
Power Systems Conference & Exhibition (PSCE) 2009, held in Seattle, Washington,
USA, 15-18 March 2009, published in IEEE, ISBN: 978-1-4244-3811-2/09.

Zhang, W.; Patoli, M. Z.; Gkion, M.; Al-Barakati, A.; Newbury, P. and White, M.
(2009): “Reanimating Cultural Heritage through Service Orientation, Workflows, Social
Networking and Mashups”, International Conference on CYBERWORLDS 2009,
published in IEEE Computer Society, ISBN: 978-0-7695-3791-7/09, DOI:
10.1109/CW.2009.45

vi

Poster Presentations

Al-Barakati, A.; Patoli, M. Z.; Gkion, M.; Zhang, W.; Newbury, P.; Beloff, N. and
White, M. (2008): Poster presentation on “A Dynamic Workflow Management
Framework for Digital Heritage and Technology Enhanced Learning”, presented in
VSMM 2008 - Virtual Systems for MultiMedia dedicated to Digital Heritage, 24
October 2008, http://www.vsmm2008.org/

Gkion, M.; Zhang, W.; Al-Barakati, A.; Patoli, M. Z.; Newbury, P. and White, M.
(2009): ‘Mashing up’ Digital Worlds for Collective and Exploratory Learning, CAL09 -
Learning in Digital Worlds, Brighton, UK, 23-25 March 2009.

Patoli, M. Z.; Al-Barakati, A.; Gkion, M.; Zhang, W.; Newbury, P.; Beloff, N. and
White, M. (2007): Poster presentation on “Digital Library Services for Portable
Antiquity and Shared Heritage”, Informatics Open day, University of Sussex, 29
January 2007.

Workshop Proceedings

Patoli, M. Z., White, M.; Gkion, M.; Zhang, W. and Al-Barakati, A. (2009): “Touching
the Untouchables”, presented at a workshop on Touching the Untouchables at
University Exeter, UK, http://www.exeter.ac.uk/scienceheritage/MartinWhite.html, 29-
30 May 2009

vii

Glossary

ACMA ARCO Content Management Application

AHRC Art and Humanities Research Council

AMS ARCO Metadata Element Set

ARCO Augment Representation of Cultural Objects

ARIF Augmented Reality Interface

BPEL Business Process Execution Language

BPM Business Process Management

BRICKS Building Resources for Integrated Cultural Knowledge Services

CSS Cascading Style Sheets

CMS Content Management System

CMU Carnegie Mellon University

DCA Digital Content Archival

DCC Digital Content Creation

DCE Digital Content Exposition

DCI Digital Content Interaction

DCP Digital Content Presentation

DHR Digital Heritage Resource

DISPLAYS Digital Library Services for Playing with Antiquity and Shared
Heritage

DL Digital Library

DLI Digital Library of India

DLMS Digital Library Management System

DLS Digital Library Systems

DRIVER Digital Repositories Infrastructure Vision for European Research

DRM Digital Rights Management

EDA Event-Driven Architecture

ERIC Education Resources Information Centre

HCI Human-Computer-Interaction

HP Hewlett-Packard

HTML Hypertext Markup Language

ICT Information and Communications Technology

IDLS Integrated Digital Library System

IES Institute of Education Sciences

IIITH International Institute of Information Technology, Hyderabad

viii

IISc Indian Institute of Science

IS Information Science

J2EE Java 2 Platform Enterprise Edition

LAN Local Area Network

LMS Learning Management System

MIT Massachusetts Institute of Technology

MVC Model-View-Controller

NDAP National Digital Archives Program

NDLP National Digital Library Project

OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting

OPAC Online Public Access Catalogs

PHP Hypertext Preprocessor

RCH Reanimating Cultural Heritage

RCMS RCH Content Management System

SO Service Oriented

SOA Service Oriented Architecture

TDA Taiwan Digital Archives

UI User Interface

URL Unfired Resource Locator

WAN Wide Area Network

WF Windows Workflow Foundation

WfM Workflow Management

WfMC Workflow Management Collation

WfMS Workflow Management System

WfRM Workflow Reference Model

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

X-VRML XML Virtual Reality Modeling Language

YAWL Yet Another Workflow Language

ix

Table of Contents

1 Introduction ... 1

1.1 Problem Statement .. 2
1.2 Research Questions ... 3

1.2.1 Digital Library Systems and Digital Heritage Resources 3
1.2.2 Workflow Management Systems .. 4

1.3 Proposed Solution ... 5
1.3.1 Digital Heritage Resource Workflow Management Development Model 5
1.3.2 Workflow Management for DLSs ... 5

1.4 Contribution to Knowledge ... 5
1.4.1 Validating the DISPLAYS Framework .. 5
1.4.2 Identifying a WfMS Development Model for DLS 6
1.4.3 Design and Implementation of a WfMS for DLS ... 6

1.5 Organization of the Thesis .. 6
2 Digital Library and Workflow Management System Paradigms 10

2.1 Digital Library Systems (DLSs) ... 10
2.1.1 An introduction to Digital Library Systems .. 11
2.1.2 The Anatomy of a DLS ... 13
2.1.3 DLS Functionality and Components ... 14
2.1.4 Digital Library System Implementation Challenges 19
2.1.5 Digital Library Systems Design and Implementation Models 21
2.1.6 DLS Implementations ... 25
2.1.7 Comparison of DLSs ... 29
2.1.8 The Role of DLSs in Digital Heritage Preservation.................................... 30

2.2 Workflow Management Systems .. 32
2.2.1 What is a Workflow Management System? .. 33
2.2.2 WfMSs Functionality .. 34
2.2.3 A Brief History of WfMS ... 35
2.2.4 The Importance of Workflow Management Systems 36
2.2.5 Workflow Management Standards .. 37
2.2.6 Workflow System Examples ... 39
2.2.7 Workflow Management System Comparison ... 43

2.3 WfMS in DLS ... 45
2.4 Summary ... 46

3 DISPLAYS Framework .. 48
3.1 Introduction ... 48
3.2 DISPLAYS Concept ... 50
3.3 DISPLAYS Objectives ... 53
3.4 DISPLAYS Services ... 55

3.4.1 DISPLAYS Digital Content Creation (DCC) Services 56
3.4.2 DISPLAYS Digital Content Archival (DCA) Services 58
3.4.3 DISPLAYS Digital Content Exposition (DCE) Services 60
3.4.4 Digital Content Presentation Services (DCP) ... 62
3.4.5 Digital Content Interaction Services (DCI) .. 63

3.5 The DISPLAYS Architecture ... 64
3.5.1 DISPLAYS Grid Infrastructure .. 67
3.5.2 DISPLAYS Workflow Management .. 68

3.6 DISPLAYS Operational Scenario ... 71
3.6.1 Utilization of the DISPLAYS DCC and DCA Services 71

x

3.6.2 Utilization of the DCE, DCP and DCI Services ... 72
3.6.3 Empowerment of Content Sharing through DCA 73
3.6.4 User Generated Contents... 73

3.7 Summary ... 73
4 RCH - an example DLS System ... 75

4.1 Introduction ... 76
4.2 RCH Context ... 77
4.3 RCH Objectives .. 79
4.4 The RCH Model .. 80

4.4.1 RCH Architecture.. 82
4.5 RCH Services .. 83

4.5.1 The Archival Services ... 83
4.5.2 The Presentation and Interaction Services .. 84

4.6 RCH Web 2.0 Mashups .. 85
4.6.1 RCH Mashups Implementation ... 86

4.7 Social Networking Integration .. 88
4.8 Heritage Workflow Management in RCH .. 89
4.9 Operational Scenario ... 91

4.9.1 Content Sharing and Distribution ... 91
4.9.2 Object Retrieval .. 91
4.9.3 Integration of Web 2.0 Mashups ... 91
4.9.4 Integration of Social Networking Functionality ... 92

4.10 Summary ... 92
5 RCH Archival and Presentation .. 94

5.1 Introduction ... 94
5.2 RCH MVC Model ... 96
5.3 RCH Archival Components .. 98

5.3.1 The Archival Tools ... 99
5.3.2 Data Mapping Tools .. 100
5.3.3 Design and Analysis of the Archival Mapping Tool 103
5.3.4 The Data Mapping Scenario.. 115
5.3.5 The Mapping Workflow .. 117

5.4 RCH Object Presentation .. 121
5.4.1 Design and Analysis of the Presentation Components 122
5.4.2 Dynamic Content Generation .. 127

5.5 RCH Object Retrieval Components .. 129
5.5.1 RCH Object Retrieval Design and Modelling .. 129
5.5.2 RCH XSLT Dynamics .. 135
5.5.3 The RCH Search Interface .. 137

5.6 Summary ... 140
6 Hosting RCH as a Workflow .. 143

6.1 Introduction ... 143
6.2 Solution Formulation .. 145

6.2.1 The Adopted Workflow Model ... 148
6.3 RCH WfMS Implementation .. 149

6.3.1 WfMS Implementation Technology ... 149
6.3.2 RCH WfMS Components ... 152
6.3.3 The RCH WfMS Design ... 153

6.4 The Workflow System Implementation .. 157
6.4.1 Workflow Runtime Construction .. 158

xi

6.4.2 The Archival Components Workflow Runtime Services.......................... 158
6.4.3 The Retrieval Components Workflow Runtime Services 163
6.4.4 The Presentation Components Workflow Runtime Services 166

6.5 RCH Content Management System (RCMS) ... 170
6.5.1 RCMS Illustration ... 170

6.6 Workflow Running and Testing .. 177
6.6.1 Example Testing Scenario: the Object Mapping Process 178
6.6.2 Message Passing Verification ... 179

6.7 Results Analysis .. 181
6.8 Future Adaption of RCH WfMS ... 187
6.9 Summary ... 189

7 Conclusion and Future Work .. 192
7.1 Results Analysis .. 192

7.1.1 Validating the DISPLAYS Concept and WfMS Integration 193
7.1.2 DLS Hosting within a WfMS .. 195
7.1.3 Effective Communication between the RCH Components 196
7.1.4 WfMS Integration Gains and Advantages .. 196

7.2 Future Work .. 197
8 Bibliography .. 199
Appendix A .. 211
RCH New Interface ... 211
Appendix B .. 217
Museum Metadata Examples ... 217
Appendix C .. 221
RCMS Code Samples .. 221
Workflow Management Code Samples ... 223
Appendix D .. 224
RCH Website Code Samples .. 224

xii

List of Figures
Figure 2-1 Typical Structure of a DLS ... 14
Figure 2-2 The DELOS DLS Tiered Approach .. 24
Figure 2-3 Typical WfMS Components .. 35
Figure 2-4 The WfRM Categories .. 38
Figure 2-5 WF’s Extensible Model ... 42
Figure 3-1 Examples of DISPLAYS Type Implementations 52
Figure 3-2 DISPLAYS Services and Their Associated Tools 56
Figure 3-3 DISPLAYS Digital Content Creation Services (DCC) 58
Figure 3-4 DISPLAYS Digital Content Archival (DCA) Services 60
Figure 3-5 DISPLAYS Digital Content Exposition (DCE) Services...................... 61
Figure 3-6 Digital Content Presentation Services (DCP) 63
Figure 3-7 Digital Content Interaction Services (DCI) ... 64
Figure 3-8 DISPLAYS Architectural Components... 66
Figure 3-9 Integration of a Grid Render Farm with DISPLAYS 68
Figure 3-10 Typical DISPLAYS Workflow-managed Scenario 71
Figure 4-1 RCH Overview .. 79
Figure 4-2 The RCH Data and Integration .. 82
Figure 4-3 RCH Architecture .. 83
Figure 4-4 RCH’s Web Interface (presentation services) 85
Figure 4-5 RCH’s Web 2.0 Mashup Scrapbook ... 87
Figure 4-6 Facebook Social Networking Integration with RCH 89
Figure 4-7 Abstraction of a RCH Type System .. 90
Figure 5-1 RCH Components ... 96
Figure 5-2 RCH MVC Implementation .. 97
Figure 5-3 A Snapshot of the Managed Digital Heritage Object Data 102
Figure 5-4 Mapping Tool Components ... 105
Figure 5-5 RCH Mapping Tool Use-Case Diagram ... 107
Figure 5-6 RCH Mapping Tool Class Diagram .. 111
Figure 5-7 Data Export Sequence Diagram .. 113
Figure 5-8 Data Import Sequence Diagram .. 114
Figure 5-9 Adding a New Schema Sequence Diagram ... 115
Figure 5-10 The Mapping Process .. 116
Figure 5-11 The Mapping Workflow .. 118
Figure 5-12 The Online Mapping Tool ... 119
Figure 5-13 RCH Frontend ... 122
Figure 5-14 Presntataion Componenets Use-Case Diagram 124
Figure 5-15 The Adopted Presentation Model .. 126
Figure 5-16 RCH Presentation Components Sequence Diagram 127
Figure 5-17 Object Retrieval Use-Case Diagram ... 130
Figure 5-18 Object Retrieval Class Diagram .. 133
Figure 5-19 The Object Retrieval Sequence Diagram .. 135
Figure 5-20 The RCH Search Interface .. 137
Figure 5-21 The Search Results .. 138
Figure 5-22 Enlarged Object View ... 139
Figure 5-23 Detailed Object View .. 140
Figure 6-1 Hosting RCH Components in a WfMS ... 145
Figure 6-2 RCH Components’ Interaction with the WfMS 148
Figure 6-3 Interaction between the RCH, RCH WfMS and RCMS 155
Figure 6-4 RCH Message Exchange Illustration .. 156

xiii

Figure 6-5 Archival Mapping Workflow Runtime ... 162
Figure 6-6 RCH Search Interface .. 164
Figure 6-7 Retrieval Workflow Runtime .. 165
Figure 6-8 Gallery View Presentation Example ... 168
Figure 6-9 Presentation Workflow Runtime ... 169
Figure 6-10 RCH Content Management System .. 171
Figure 6-11 The Archival Management Interface ... 173
Figure 6-12 The Object Retrieval Management Interface 174
Figure 6-13 The Object Presentation Management Interface 175
Figure 6-14 The Detailed Object Display Mode ... 176
Figure 6-15 The Object Presentation Frontend ... 177
Figure 6-16 Object Mapping Confirmation .. 178
Figure 6-17 The RCH Workflow Monitor .. 179
Figure 6-18 Passing the Source Museum Data from the Workflow Host............. 180
Figure 6-19 Passing the Destination Museum Data from the Workflow Host 180
Figure 6-20 Workflow Runtime Service Invocation ... 180
Figure 6-21 Using the Parameters within the Called Runtime Service 180
Figure 6-22 Workflow Integration Benefits .. 182
Figure 6-23 The latest RCH Search Interface ... 187
Figure 6-24 Enhanced Object Browsing View ... 188
Figure 6-25 Community-oriented Multimedia Feeds ... 189
Figure 6-26 Mapping the WfMS to the RCH Problems 191

xiv

List of Tables
Table 2-1 Comparison of Example Digital Library Systems 30
Table 2-2 WfMS Implementation Tools Comparison .. 44
Table 5-1 The RCH Archival Services Goals ... 99
Table 6-1 WF Features .. 150
Table 6-2 The Utilized WF Code Constructs .. 157
Table 6-3 The Presentation Component’s workflow-managed Services 166
Table 6-4 RCH WfMS Testing Criteria and Results .. 183

1

CHAPTER I

1 Introduction

Advancements in software and hardware technologies (for example, online museum

content management systems, desktop computing systems, Web 2.0, 3D modelling,

etc.) transformed the ways that traditional libraries operate. Such advancements led to

the advent of Digital Library Systems (DLS) and Digital Heritage Resources (DHR).

Consequently, the functions of traditional libraries were further enhanced by means of

giving them more interactive elements (Web 2.0 websites, social networking, mashups,

touch screens, etc.) that enabled them to better achieve their goals and interact more

closely with their users. This transformation was driven by a mix of software and

hardware innovations in conjunction with a proliferation of digital data formats that

facilitated the process of digital object preservation and distribution. As a result, a rich

range of DLS implementations have emerged to serve different needs and purposes.

Technology advancements led to the advent of DHRs in the form of specialized DLSs

that are dedicated to the purpose of ‘digital heritage object preservation and sharing’ [1].

This discipline is directly related to the concept of creating “Digital Library Cultural

Heritage Resources” [2]. Digital Library Cultural Heritage Resources represent a subset

of DLS implementations, which have their own unique characteristics and technical

requirements in light of the complex digital objects that they have to handle (images,

videos, 3D models, etc.), and the distributed environments (usually the Internet) in

which they usually operate.

The proliferation of DLSs was consequently accompanied by parallel advancements in

the standards and conceptual models that are associated with them. These models

include the DELOS Digital Library Reference Model [3] among other standardization

attempts that accompanied the rapid growth of DLSs. This proliferation allowed for the

availability of different DLS and DHR implementations that are designed to meet the

needs of their communities of practice, such as museums.

The role that advanced workflow management applications play in modern software

systems can never be overestimated due to the profound ways in which they have

2

transformed a wide spectrum of software system implementations [4]. Workflow

Management Systems (WfMS) are becoming an integral part of a variety of systems,

especially those that possess convoluted business processes as well as data and control

flows [5]. However, despite the rapid growth that WfMSs have witnessed over the last

few years, it can be seen that their utilization in Digital Repositories and DLSs is still

minimal. This limitation is due to a number of implementation challenges that limit the

ways in which they can be integrated and utilized within such environments.

One of the main focus areas of this research is to investigate current DLS and WfMS

implementations, while identifying the underlying gaps and shortcomings in DLSs to

come up with an appropriate implementation model that can address such problems.

This analysis is then followed with an investigation into how WfMS can be applied to

make such DLSs more efficient in terms of workflow control, efficiency and resource

management. The presented work is based on a methodological approach that combined

the conducted literature review with a series of prototypes. These prototypes contributed

to the validation of an innovative proposal for a new DLS concept called DISPLAYS

(Digital Library Services for Playing with Antiquity and Shared Heritage) [1] [5] [6] [7]

[8] [9]. More importantly, validating the concept of DISPLAYS is carried out in

conjunction with a novel approach to workflow management for the control and

management of DLS infrastructures based on a uniquely devised WfMS model.

1.1 Problem Statement

Despite the relative maturity that DLSs have reached [10], the issue of managing their

workflows is one that still needs to be adequately addressed by effective WfMS

implementation models. The integration of WfMSs within DLSs is an issue that has

always been hallmarked by technical hurdles due to the inherent complexity and

dynamicity associated with DLSs infrastructures [11]. Moreover, despite the fact that

traditional WfMSs were originally based on some of the conceptual elements adopted in

document management systems [12] cited in [13], they still fall short of the

requirements for effective management of the convoluted workflows that usually exist

in DLSs: these requirements are discussed further in Section 2.3. In essence, these

traditional WfMS packages often fail to handle the demands of such complex

environments, for example, adapting to dynamic process changes, simultaneous process

running, etc. This shortcoming is caused by the range of runtime processes, business

3

processes, data and control flow, and the dynamic system and user events that any

devised WfMS should adequately handle. These hurdles also led to the common trend

that workflow management in DLSs is usually achieved through application-specific

models, which are commonly inflexible and have limited customizability and scalability

capabilities. Therefore, it is a challenging task to design and build WfMS models that

are generic enough to meet the needs of different DLS implementations, while having

the right level of flexibility to adapt to the dynamics of these implementations.

1.2 Research Questions

The research presented in this thesis is based on a number of research questions that

form the basis on which the practical research activities were carried out. This spanned

a number of technical areas in relation to the process of devising viable WfMS

implementations for managing DLSs of various contexts as outlined below.

1.2.1 Digital Library Systems and Digital Heritage Resources

Online digital repositories, especially in the form of DLSs, are becoming more

commonplace as they are being utilized to serve the purposes of digital content

preservation and distribution. The proliferation of such systems was the result of the

rapid developments that hardware and software systems have witnessed over the last

two decades. These developments paved the way for DLSs that are more capable of

meeting the goals and objectives of their user communities. This trend was forecast by

Adam et al. [14], who predicted that DLSs would have the capability to impact on

society in a number of areas related to the way society produces and shares digital

content, leading to parallel developments in related disciplines. These disciplines

include Digital Rights Management (DRM) and the laws and regulations that

accompany content distribution and sharing. This is now a reality as can be observed in

the advanced DLS implementations that can be seen virtually everywhere.

However, despite the developments that DLSs have witnessed, it can be observed that

the use of WfMSs within DLSs is still limited and their utilization is minimal; this is

due to a number of reasons, technical or practical. This is notably evident in the lack of

literature that discusses such a combination, i.e. WfMSs integrated with DLSs, despite

the fact that WfMSs have always accompanied the development of traditional document

4

management systems. Therefore, one of the important aspects of this thesis is to cover

this overlooked research area. Fundamental questions concerning this research are:

• What are the major hurdles and technical challenges that prevent the full

utilization of WfMSs within DLSs?

• What are the main considerations that WfMSs should address to successfully

meet the demands of DLSs?

• What are the measures that can be used to assess the success of any WfMS in

meeting the requirements of DLSs?

1.2.2 Workflow Management Systems

It is a notable trend that WfMS are becoming an integral part of a wide spectrum of

enterprise systems due to the vital role that they play in enhancing, improving and

managing task execution [4]. This notion is evident in the range of tools used to manage

and track down the services and processes of the managed systems [4]. The area of

automated workflow management is a rich research area involving a number of

technical aspects that span a varied mix of design and implementation disciplines. The

optimal utilization of WfMSs within existing software infrastructures (for example,

document management systems, archiving systems, etc.) aims at better efficiency, speed

and resource management and utilization. However, it is not as straightforward a task as

it seems to build a WfMS; this is due to the fact that it has to address the needs and

requirements of a complex mix of application and user needs. This fact highlights the

importance of developing sound WfMS conceptual implementation models to suit a

wide variety of enterprise applications that are in need of effective workflow

management.

One of the focus areas of this thesis concentrates on devising a WfMS implementation

model to suit the very nature of cultural heritage DLSs as will be highlighted below.

This necessitated carrying out a comprehensive survey of current WfMSs and the

current design and architectural paradigms that accompany them. As a result, the

following research questions have been identified as a part of that process:

• What are the characteristics that a viable digital heritage resource WfMS

implementation model should provide?

5

• What is the best approach for building generic WfMS solutions that can meet the

needs of a wide range of DLS implementations?

1.3 Proposed Solution

This thesis presents an integrated workflow management solution for online digital

resources that is constituted of two major parts as discussed below.

1.3.1 Digital Heritage Resource Workflow Management Development Model

One of the fundamental parts of the presented thesis is the design of a generic WfMS

development model that is specifically designed to address the needs of DLSs. This

model will adopt some of the concepts adopted in notable existing standards and

paradigms such as the Workflow Management Collation (WfMC) [15], while

complementing them with domain-specific features. The ultimate goal here will be the

provision of a solid framework on which unique individual WfMS implementations can

be based to meet the needs of a varied range of DLS implementations. The details of the

adopted model of implementation can be viewed in Chapter 6.

1.3.2 Workflow Management for DLSs

A major portion of the work presented in this thesis is based on the implementation of a

novel WfMS for the purpose of managing the convoluted and intersecting workflows of

an innovative digital heritage resource for reanimating cultural heritage. The conducted

work is based on the creation of a number of prototypes to examine a conceptual DLS

called DISPLAYS (Digital Library Services for Playing with Antiquity and Shared

Heritage). DISPLAYS offers a number of digital library services including digital

heritage object content creation, archival, exposition, presentation and interaction

services.

1.4 Contribution to Knowledge

The research and practical work conducted as a part of this thesis contributed to

knowledge in a number of areas as outlined below.

1.4.1 Validating the DISPLAYS Framework

The author of this thesis contributed to validating the DISPLAYS Framework [5] [7] [1]

by building archival, retrieval and presentation components for a DISPLAYS based

6

DLS. These components were built from scratch as a part of the Reanimating Cultural

Heritage (RCH) system, which is a DHR shared between three museums: the British

Museum, Brighton Museum and Art Gallery, and the Glasgow Museum [1]. The

archival component comprised a data mapping tool designed to facilitate mapping the

digital objects’ metadata (XML based) from one museum to another. XSLT files played

a major role in the retrieval component as they were utilized to extract search results

from the archival XML files. The search results are presented to the end-user through

the XSLT-rendered HTML code. Details of this contribution can be found in Chapter 5.

The built DLS components were then used as the test bed to validate the proposed

WfMS as detailed in Chapter 6. Contributions can also be found in [1] [5] [6] [7] [8]

[9].

1.4.2 Identifying a WfMS Development Model for DLS

One of the major aims of this thesis is to develop a valid implementation model to

accommodate the workflow management needs of DLS implementations. The

developed model is based on the idea of developing a modular WfMS that is able to fit

within the SO RCH components (see Chapter 4). This WfMS model closely interacts

through message passing with two entities: the DLS (RCH) itself and a host application

that provides UI elements to the end-users. The proposed WfMS model was designed

and implemented as outlined in Chapter 6. Contributions in this regard can be found in

[5] [6].

1.4.3 Design and Implementation of a WfMS for DLS

A novel WfMS was built (see Chapter 6) to manage the components of the RCH

system, which acted as an example DLS (see Chapter 4). The archival, retrieval and

presentation components of RCH were managed through the WfMS that was hosted in a

host application that interacted with the end-users. The host application was called the

RCH Content Management System (RCMS) and represented the medium through

which the users utilized the system’s workflow-managed components. Contributions to

this work can be found in [1] [6] [5] [7].

1.5 Organization of the Thesis

Chapter 2 of this thesis is divided into two main sections that cover the literature related

to the most fundamental aspects of the conducted research and the proposed WfMS

7

implementation. The first section outlines some of the core concepts that are related to

DHRs, DLSs and Digital Library Management Systems (DLMSs). In this regard, the

history of libraries in general is briefly outlined as a preamble for the topics of DLSs

and distributed DHRs. Special emphasis is placed on the gradual improvements that

modern technology has introduced to traditional libraries.

The above discussion is further expanded by covering the technical aspects that are

associated with DLSs while focusing on their implementation models, as well as the

standardization initiatives that contributed profoundly to shaping the current DLSs

landscape. Moreover, the technical challenges that such systems should overcome to

arrive at fully functional models are highlighted and scrutinized by means of examining

some of the most prominent literature in that regard.

The above conceptual and technical overview is further enhanced by showcasing some

of the most notable DLS implementations while focusing on their different technical

and operational aspects, characteristics, issues, and the paradigms that hallmark each of

them. The first section of Chapter 2 concludes by covering a very important aspect of

DLSs, which is the utilization of DLSs for the purposes of Digital Heritage Preservation

and Digital Curation.

While the first part of Chapter 2 focuses on DLSs as they form the medium on which

the proposed workflow management solution is to be implemented, the second part

focuses on the literature and previous work done in relation to WfMS implementations.

This is primarily concerned with the technical and operational aspects of such

convoluted systems while covering their early implementation in the form of office

automation systems leading to the latest state-of-the-art in this area. In a similar

approach to the one adopted in the first section, the standards and conceptual models

that govern WfMS are also discussed while emphasizing the technical and practical

impacts that they impose on WfMS implementations in different contexts. This section

then embarks upon highlighting some of the most prominent open and closed-source

WfMSs while outlining their key features within their respective implementation

contexts. Finally, Chapter 2 concludes by discussing the issues related to the utilization

of WfMSs within DLSs, while focusing on the current implementations and the

challenges that that accompany them.

8

Chapter 3 discusses DISPLAYS [7] [8] [9] [16] which is a DLS framework whose

functionality revolves around the concept of digital heritage resource sharing and

distribution. Chapter 3 highlights the most important aspects of the DISPLAYS

framework, which are its digital heritage content: Creation, Archival, Exposition,

Presentation and Interaction Services for digital heritage collections.

Chapter 4 of this thesis covers a specific digital repository implementation that is based

on the model provided by the DISPLAYS framework. In view of this, the Reanimating

Cultural Heritage (RCH) Project is discussed as it presents an innovative digital heritage

resource that formed a useful model on which the proposed WfMS can be implemented

and tested. The synergy between the DISPLAYS framework and the RCH system is

highlighted, especially in relation to the Service-Oriented (SO) system services and the

techniques they adopt within the devised loosely coupled architectural model. The

unique aspects of the RCH system are covered especially in relation to the tools it

provides to reanimate cultural heritage objects by means of utilizing different media and

technologies such as videos, 3D Models, social networking and Web 2.0 mashups.

Chapter 5 elaborates on the RCH Archival, Retrieval and Presentation Components due

to the pivotal role that they play and the workflow management implications that they

impose. Chapter 5 focuses particularly on the technical details of those components and

the services that they provide. These components acted as the test bed for the RCH

WfMS prototype as detailed in Chapter 6.

Based on the three chapters described above, the DISPLAYS framework acted as a DLS

concept, RCH acted as validation architecture to better refine the WfMS prototype, and

the Archival, Retrieval and Presentation components were used for the actual

implementation, validation and testing of the developed WfMS.

Chapter 6 is dedicated entirely to discussing the underlying details of the proposed

WfMS in relation to the systems elaborated in the three previous chapters. This begins

with exploring the core concepts and ideas behind the proposed system, and the adopted

paradigm that was devised to suit the demands of the targeted DLS. Moreover, a

number of advanced workflow implementation concepts are discussed and examined

within the context of the proposed WfMS. These concepts include workflow runtime

services, workflow design considerations, workflow technology utilization and

9

workflow integration within an existing software infrastructure which is in this case is

the RCH system.

Chapter 7 presents the conclusions and future work in regard to the work carried out as

a part of this thesis. An evaluation of the conducted research is presented in relation to

this thesis’s research questions and its goals. The WfMS implementation is also

analyzed and possible improvements and enhancements are proposed as a part of the

intended future work.

10

CHAPTER II

2 Digital Library and Workflow

Management System Paradigms

This chapter explores two main topics that are related to the proposed novel DLS and

WfMS systems presented in this thesis. The reviewed work includes some positioning

and peer reviewed papers that led to this thesis. The author’s contributions that were

reviewed include the work presented in [1] [5] [6] [7] [8] [9]. Prominent literature is

also reviewed in relation to the main themes of the thesis. This chapter discusses DLSs

and the different technical and practical aspects related to their design, implementation

and operation. The focus here is to cover the history of DLSs while paying special

attention to their implementation paradigms.

The chapter then explores WfMSs in general, especially in relation to their history,

technologies and notable system implementations. Moreover, the benefits of WfMS

implementations are explored while focusing on the latest and most innovative

technologies to implement such systems. Furthermore, emphasis is placed on their

application in distributed software systems and the implementation challenges that they

usually have to overcome. Workflow management standardization efforts and initiatives

are also discussed due to the pivotal role that they play in association with the process

of designing and implementing modern WfMSs. This chapter concludes with a

discussion of the implementation of WfMSs within DLSs.

2.1 Digital Library Systems (DLSs)

Libraries are, and always have been, among the most prominent sources of information

for societies. Furthermore, libraries are traditionally considered to be one of the most

important sources on which communities heavily depend to access information of all

sorts and types. As McGrory et al state [17], “libraries have always been a community’s

‘portal’ to information, knowledge and leisure. Beyond their shelves, libraries are a

community’s gateway to information from many sources nationally and

internationally”. Moreover, libraries are rather meaningfully described by Byrne [18] to

11

be “storehouses of knowledge”; a description that highlights the pivotal role that

libraries play in modern societies, where human heritage data is preserved over the

years to be accessed by knowledge seekers, researchers and learners to serve their

respective goals.

Libraries in general play the imperative role of protecting any society’s heritage by

preserving its data in a retrievable highly accessible format. Libraries also offer (by the

knowledge that they make available) individuals and societies alike the opportunity to

improve their lives and contribute to the development and wellbeing of their respective

communities [18]. Murray et al., in their book The Library: An Illustrated History [19],

argue that libraries play the profound role of recording the human cultural achievements

being preserved from previous generations; this is a worthy goal that contributed to the

rapid advancements that hallmarked the existence of libraries over the years. Therefore,

the importance of libraries can never be overestimated, especially in regard to spreading

knowledge and preserving human heritage across generations.

From an historical perspective, libraries span a long and rich history that accompanied

almost every step of human development as “the collection of written knowledge in

some sort of repository is a practice as old as civilization itself”, Krasner-Khait [20].

Libraries can be traced as far back as 1300-1200 BC when the Ancient Egyptians used

to hold collections of papyrus scrolls to preserve records related to the different aspects

of their civilization [20]. More developed forms of libraries and document collections

date back about 4000 years, represented in the collections of clay tablets that were used

to preserve the heritage and culture of the highly developed society of ancient

Mesopotamia [21]. Libraries evolved over time and their improvement was fuelled by

the rapid proliferation of the mediums used to hold information (books, audio tapes,

CDs, etc.), and the improvements that libraries witnessed in a parallel fashion, as will be

further showcased in this chapter.

2.1.1 An introduction to Digital Library Systems

The advancements that information technology has brought to modern societies paved

the way for traditional libraries to evolve into more advanced and interactive mediums

while, at the same time, being able to better serve their goals and objectives [21]. Such

goals include better information access, better search and retrieval operations, and more

interaction between users and the managed collections. This revolution was driven

12

mainly by the sheer mix of digital data formats and types that technology advancements

made available for the purposes of preserving data objects whether they are textual,

visual, animated or audible.

This notion of better interaction and access to digital libraries was further enhanced by

other key technological innovations (advanced data storage media, distributed systems,

networking technologies and web technologies) that allowed the development of more

complex models of libraries. These advancements in software technologies were

coupled with equally powerful hardware innovations (desktop computing, servers,

LANs, WANs, etc.), which opened new horizons for better and more advanced forms of

library systems. Such developments allowed for better digitization and reanimation

processes for library collections within their respective contexts. This also allowed for

better availability and accessibility opportunities for knowledge seekers through the

utilization of carefully devised DLS services.

2.1.1.1 DLS Definitions

According to Abu Bakar [22] the term “Digital Library System” means different things

to different scholars and researchers. This is partially attributed to the fact that “the

proliferation of digital libraries over the past decade has produced so varied an array of

digital collections and services that the term digital library defies a precise definition”,

Stefanelli and Aldrich [23]. Moreover, DLS implementations mainly represent a

meeting point [24] between a number of computing and library disciplines. For

example, data management, information retrieval, library sciences, document

management, information systems, the web, image processing, artificial intelligence,

human-computer interaction, and digital curation [24].

Therefore, such an inherent multidisciplinary nature is a factor that manifested itself in a

variety of definitions that can be applied to DLSs. For example, according to Pavlova-

Draganova and Paneva [25] a DLS is a managed collection of information associated

with a number of services, whereby the stored information is in digital format while

being accessible online through a distributed networked computing system. On the other

hand, Lesk [26] cited in [22], has defined a DLS as “organized collections of digital

information. They combine the structure and gathering of information, which libraries

and archives have always done, with the digital representation that computers have

made possible”. Furthermore, Janssen [27] considers the World Wide Web to be a DLS

13

of a generic form due to the digital data sharing and distribution possibilities that it

made available to its users. This definition is based on the opportunities that the

presence of the Internet has made available to computing systems, paving the way for

supporting the idea that digital collections can be made available to a variety of users

over a common distributed platform, as argued by Greenaway [28]. A definition that

seems to capture the technical and functional aspects of a DLS is provided by Janssen

[27] as he states that a DLS is considered to be “an integrated set of software, hardware,

and protocol elements that together provide a means of storing, managing and accessing

documents in digital form”.

Despite the varied set of definitions for what constitutes a DLS, all point to a common

goal. This goal is presented in knowledge preservation and delivery in various digital

formats to the members of any given community, whether it is an organization, a

cultural institution or a nationwide body. In view of this, it seems that DLSs have

profoundly transformed the ways in which people share, preserve and view knowledge.

This was foreseen by Adam et al. [14] who predicted that DLSs would impact societies,

necessitating changes to laws and regulations while effectively benefiting a number of

areas such as economics, intellectual property and medicine. Interestingly enough, 14

years after that forecast, it can be seen that DLSs are becoming commonplace and a

prominent popular medium for information distribution and sharing, thus realizing the

above vision. This was inspired by the rapid growth of technological advancements that

hallmarked every step of the gradual evolvement of DLSs.

2.1.2 The Anatomy of a DLS

DLSs have undergone a number of important and notable developments over the years,

and they are now considered to be one of the most powerful means for enabling public

access to information [14]. They have also reached a good level of maturity in terms of

their development paradigms and the ways in which they can be devised to meet the

demands of any given development environment [24].

Figure 2-1 is an illustration of the core components that may constitute a typical DLS. It

can be seen that an integrated combination of data and software services contribute to

the delivery of the overall DLS functionality. Such services include archival and

indexing services, data retrieval services, presentation services, etc. It can also be seen

that effective system functionality is achieved through message passing between the

14

system’s components, which tend to be complex and intersecting in large enterprise

implementations. Custom-made data models and user interfaces play a key role in such

implementations as they contribute to achieving the rich functionality that DLSs deliver

to their user communities. Supported digital objects may include images, videos, audio,

text and 3D objects. Some example DLSs will be discussed in Section 2.1.6 of this

chapter.

Figure 2-1 Typical Structure of a DLS

2.1.3 DLS Functionality and Components

A DLS can be thought of as a combination of services and contents that complement

each other [29]. Despite the various DLS implementations that can be seen everywhere,

they virtually cover a common set of core functionality based on a range of different

interactive services. There are certain user expectations in relation to the functionality

that a DLS should effectively cover; this is consequently reflected in the set of services

seen in most DLSs, such as customized user interfaces and advanced archival, search

and retrieval capabilities.

McGrory et al. [17] indicate that a DLS is always expected to serve the particular needs

of its users by employing the right mix of services complemented with the support of

the user’s preferred technological mediums for accessing information. Such access

15

methods can be in the form of a computer monitor, a touch screen, a screen reader or a

Braille keyboard for instance. Therefore, there is a strong user-centred focus in most

modern DLS implementations.

On the other hand, there is always a certain level of expectation in regard to the

protection of the users’ privacy in connection with their personal information and the

need to make them totally private and secure when using a DLS [17]. The significance

of security and privacy is enhanced by the fact that the vast majority of DLSs are

networked systems that exist in online environments. Such implementations impose a

certain set of security and privacy concerns in regard to the user actions and the

protection of personal data circulated throughout the system.

2.1.3.1 DLS Functionality

DLSs share a number of common features driven from the purposes that they usually

serve. The first of those common-ground features is represented in the fact that a DLS is

typically expected to provide its users with instantaneous access to information.

According to Adam et al [14], it is always expected that a DLS should provide

instantaneous access to information that totally replaces the need for a knowledge

seeker to go physically to a library to retrieve the needed pieces of information. Hence,

such a goal is emphasized in most of the notable DLS implementations in place; for

example, the Goleman Library DLS has the stated prime goal to “get library materials

into the hands of users”, Schermerhorn [30]. This is one of the most important goals that

most of DLSs serve and relate to in one way or another. This goal greatly contributes to

the final user perception in regard to the effectiveness and convenience of the DLS in

use, as information access is one the factors used to gauge the success of any given DLS

implementation.

Another distinctive feature that sets DLSs apart from conventional libraries is the

unlimited possibilities they offer in terms of the ranges and formats of data they can

support and deliver to their users. Technology advancements in relation to data

processing, modelling, visualization, virtualization and presentation made such a feature

commonplace in most DLSs. Therefore, it is possible to present the stored data in a

variety of formats that suit different user needs and software/hardware capabilities in

place, making DLSs one of the most convenient mediums for data preservation and

retrieval. In view of that, a DLS may typically support a comprehensive and varied set

16

of digital data formats including text, audio, video, 3D models, and other multimedia

objects. Hence, DLSs go beyond traditional text-based processing [31] to an almost

unlimited range of supported formats that allow for comprehensive and highly

accessible digital data repositories [32].

The Internet can be thought of as one vast DLS accessed by computers with its

multitude of interfaces (e.g. media player, PDF viewer … web browser) for accessing

and presenting the Internet’s information. Another example is the National Digital

Library Project (NDLP) at the Library of Congress, which utilizes a combination of

digitized text, audio and video to present the objects in its collections [33]. Such digital

data objects are typically associated with the complementary data (metadata) necessary

for the functionality of the archival and retrieval components leading to the advent of

highly sustainable digital collections [32].

In terms of the sources of the contents that constitute the collections of a DLS, they can

be either materials that have been digitized from their original formats, such as books,

or alternatively they can span a wide spectrum of contents that were originally produced

in digital format. Interestingly enough, Sreejaya and Sreekumar in their paper “Digital

Library Initiatives and Issues In India: Efforts On Scholarly Knowledge Management”

[34] have stated that more than 70% of the world’s scholarly literature is born digital,

which naturally necessitates the utilization of DLS to acquire and manage such objects,

adding more importance to the role that DLSs play today.

A typical DLS services are usually implemented within an appropriate implementation

model or framework where all the system services or modules are hosted and managed.

It is therefore always a desirable characteristic in DLSs to adopt some sort of functional

adaptively to meet the user needs [35]. Consequently, there are a number of different

DLS implementations that range from highly distributable customizable packages to

specifically-built versions to suit the underlying needs of the operational environment in

place, some example models will be presented in Section 2.1.6.

2.1.3.2 The User-Centric Nature of DLSs

It can be noted that the user-centred nature of DLSs has manifested itself in the

expectation that their users should be provided with certain levels of help and support to

be able to fully utilize the provided services. This perception is reflected in the design of

most of the notable DLS implementations as the concept of usability, help facilities and

17

user support are always reflected in the efforts to “design these digital libraries for

effective use by different types of users”, Xie [36]. Ideally, this user-centred nature

should be empowered with user-friendly interfaces that would make the process of

utilizing the services of a DLS straightforward.

User interaction with DLSs is a prominent research area in modern DLS literature, as

can be observed in the notable number of research and experimental ventures that

covered that subject [24]. This discipline spans a number of interrelated areas of interest

including “methodological, conceptual and theoretical support in some areas, such as

Human-Computer-Interaction (HCI), for the usability studies, and Information Science

(IS), for the studies about information needs and user’s behaviour during the

information search and use processes”, Ferreira and Pithan [37].

In the paper entitled “Usability of digital libraries: a study based on the areas of

information science and human-computer-interaction”, Ferreira and Pithan [37] have

analyzed the usability of DLSs by means of cognitive usability evaluation while

observing the search and retrieval aspects of user interaction. This process led to the

conclusion that user satisfaction is largely driven by the level of support and ease of use

with which a DLS provides its users. On the other hand, the importance of DLS

usability issues are highlighted by the fact that Yu [38] attributed the lack of full

utilization of DLSs in China to a group of usability issues that undermined a number of

prominent local implementations. This finding gives a clear indication that it is a key

success element to “understand users’ difficulties in working with information and

particularly with DLs, and to equip developers with ways of thinking about users and

their needs that help guide DL development and evaluation”, Yu [38].

2.1.3.3 DLSs Search and Retrieval Capabilities

Another distinctive feature of a DLS implementation is the existence of “Agents for

Search and Selection”, Adam et al. [14], in other words search and retrieval tools and

mechanisms. DLSs tend to support a variety of search and retrieval tools that suit the

range of stored digital objects and the techniques used to archive and index them.

Ideally, the provided search and retrieval capabilities should be “convenient and

efficient”, Yu [38] to exactly meet the information retrieval needs of the end-users.

Search and retrieval is, and always has been, one of the major topics discussed in DLS

literature. In view of this, Schatz [39] argues that the development of mechanisms for

18

information retrieval has been among the important elements that accompanied the

historical development of DLSs. Therefore, efficient search and retrieval capabilities are

considered to be integral parts of DLS implementation models as “the primary purpose

of digital libraries is to enable searching of electronic collections distributed across

networks, rather than merely creating electronic repositories from digitized physical

materials”, Schatz [39].

Devising search and retrieval components often tends to be a complex process in

modern DLS implementations due to the sheer variety of the digital objects being

handled by a DLS’s components. Therefore, it is not a simple matter of text-based

search operations as some collections require a specially-devised search and retrieval

code infrastructure. For example, audio material requires the utilization of complex tune

retrieval mechanisms to retrieve them in association with an appropriate user interface

that enables users to adequately review the retrieved objects [40].

2.1.3.4 DLSs Archival Capabilities

The search and retrieval capabilities of a DLS implementation are just one face of the

coin; the other face is the archival tools which manage the ways by which the DLS’s

collection data is being stored and organized. Having effective archival capabilities is a

pivotal feature in DLSs as “flexible organization of information is one of the key design

challenges in any digital library”, Arms et al [41]. Furthermore, as digital collections

form the data foundation on which a DLS operates [42], archival components do not

only lead to the accumulation of data objects, they also contribute to the process of

enhancing and maintaining the library’s contents by effective and meaningful indexing

of metadata for example. This is directly related to the baseline concept of “digital

preservation” Eakin [43], which all the other DLS functional areas revolve around. The

content archiving process is further complicated by the necessity of managing the

information that usually accompanies the stored data objects, such as the metadata

which is used for the later search and retrieval operations.

It can be observed that DLSs employ different techniques to store and archive their

contents while depending on a data model that is designed to suit the range and

magnitude of the digital data objects being handled. A very important distinction should

be made here between a conventional database and the data model of a DLS as “a

19

database contains representations of facts and of the involved objects”, Spyratos [44],

whereas a DLS handles the actual objects and not a mere representation of them.

2.1.3.5 Other DLS Functionality

It is often the case that the features typically found in a DLS span a wide range of

supportive functionality such as personalized user interfaces, content management tools,

collaboration tools, and advanced augmentation and innovative mashup tools [32]. Such

tools may include, for example, the innovative integration of information mashups and

social networking tools [1].

2.1.4 Digital Library System Implementation Challenges

As outlined in Section 2.1.3, there is always a set of core services and functionality that

a DLS is expected to provide its users with. However, the development of a DLS is not

as a straightforward a task as it seems because such a development necessities

overcoming a number of technical and functional challenges. In view of this, the fact

that, on the one hand, a typical DLS has to handle diverse and highly distributed sources

of digital contents and, on the other hand, a vibrant range of user communities is a

challenge in its own right [45]. This is a key area of DLS competency as indicated by

Greenstein [45] who stated that “digital libraries establish their distinctive identities,

serve their user communities, emphasize their owned collections, and promote their

unique institutional objectives by the way in which they disclose, provide access to, and

support the use of their increasingly virtual collections.” Therefore, it is not only

important to hold rich and large digital object collections, it is equally important to have

the right tools to manage them and deliver the required contents to the end-user in the

required format, within the targeted software platforms.

Fox et al. [46] argue that DLSs should be able to address a number of technical hurdles

that directly stem from the need to handle technological disparities. These disparities are

represented in the various systems that need to interact with a DLS and the different

platforms that users tend to use. DLSs should also be able to deal efficiently with the

changing paradigms in network architectures and protocols (Web 2.0, SOA, SOAP,

etc.) with which they interact heavily. Furthermore, one aspect of the challenges that

face DLS implementations was discussed by the work carried out by Hopkinson in his

paper “Challenges for the Digital Libraries and Standards to Solve them” [47], in which

20

he argues that adopting a high level of digital content standardization would contribute

to solving the problems of data mapping and distribution within a DLS environment.

While the capability of having efficient search and retrieval components is described as

one of the most important features of a DLS as mentioned in Sections 2.1.3.3, it is also

considered to be one of the challenging implementation areas that impose certain

functional hurdles in the face of DLS developers. Furthermore, Hopkinson [47] states

that “searching systems is one of the most difficult operations to achieve satisfactorily”.

This complication can be attributed partially to the rich and varied set of digital data

objects and formats that a DLS usually holds in its collection and the comprehensive set

of data that accompanies them. Moreover, Hopkinson [47] further indicates that the

search and retrieval of digital objects within the collections of a DLS has always been

hallmarked with imprecision; an issue that DLSs should overcome to arrive at search

and retrieval modules that are capable of delivering accurate search results to their end-

users. A good example of complex search and retrieval operations within a DLS is

represented in the work carried out as a part of the Reanimating Cultural Heritage

(RCH) project [1]. This work is discussed in more detail in Chapters 4, 5 and 6.

Another challenging area that DLS literature covers is the issue of applying workflow

management to the intersecting components of a DLS system as identified by McCord

[48]. Based on that view, workflow management for a DLS can be a challenging task

for a number of reasons. These reasons include the set of complex and intersecting

system workflows, the multiple ranges of system stakeholders across a distributed

system, or a semantic network and the inherent complexity and magnitude of the data

objects being transmitted throughout the system. This aspect is discussed in more detail

in Section 2.3of this chapter.

Another area of challenge that prominent DLS literature covers are the issues resulting

from the networked nature of such systems as “the planning and implementation of

networked digital libraries poses new challenges and involves policy making regarding the

members, content, content management, governance, maintenance and the technical know-

how”, Fox et al [46]. Such issues involve technical aspects such as the case with service

distribution and maintenance or organizational ones such as Digital Rights Management

(DRM).

Another implementation challenge is the process of managing the access of the DLS’s

collections by the different user groups that might be accessing the DLS. Therefore, the

21

complex user rights and security issues that might arise in such a scenario should also

be taken into account [45]. This challenge necessitates the provision of appropriate

administrative tools to enable the effective management of the different aspects of user

access to arrive at fully functional secure DLS implementations.

2.1.5 Digital Library Systems Design and Implementation Models

There are a number of common issues that DLS models often aim to address including

content management, content publishing, search and retrieval and content interpretation

[49]. Such areas have always proved to be challenging ones due to their complexity, as

well as their inherently intersecting processes. Moreover, it is often the case that DLSs

are implemented on the foundation of a well-defined conceptual model that is based on

a certain architectural design paradigm; this is evident in the many initiatives to develop

such models, standards and frameworks, which are further discussed below.

A conceptual model of a DLS implementation can be thought of as a combination of the

contents provided as well as a set of associated services and management tools that are

hosted in an appropriate operational host [29]. A DLS model can be implemented based

on a number of architectural design patterns and paradigms depending on the size and

nature of the system and the functionality that it needs to fulfil to meet its goals.

Therefore, the underlying details of a DLS conceptual model may vary from one system

to another. This is because different DLS models adopt different approaches in devising

their underlying components due to the unique nature of each system.

The WfMS prototype presented as a part of this thesis uses a DLS framework as a test

bed for its implementation. This framework is called DISPLAYS (DIgital library

Services for PLAYing with Antiquity and Shared Heritage) which is described in detail

in Chapter 3. The actual implementation of the proposed WfMS was integrated with a

DISPLAYS-based DLS implementation called Reanimating Cultural Heritage (RCH),

which was constructed to validate the proposed workflow management concepts and

implementation approach. RCH components are detailed in Chapters 4 and 5.

2.1.5.1 Library 2.0

Library 2.0 is a relatively new term in the literature covering DLS, and is a paradigm

that is fuelled by the latest advances that Internet technologies have recently been

witnessing. Savastinuk and Casey [50], cited in [51], see Library 2.0 as a paradigm that

22

is centred on the concept of “user-centred change” [50]. Therefore, Library 2.0 is

concerned with the provision of advanced and more interactive DLSs where user

participation is empathized while providing a set of services that make such

participation possible. It is useful to put this paradigm in context when discussing

modern DLS literature as it represents one of the elements that encapsulates the latest

thinking in this arena.

Library 2.0 elements are showcased in a number of modern DLS implementations that

incorporate social networking functionality among other highly interactive features.

Library 2.0 implementations have the tendency to treat DLSs as web applications in

their own right, based on the fact that they all have the common feature of operating on

a networked system which in most cases is the Internet. Hence, the concept of Library

2.0 represents the idea of combining the latest advances of Web 2.0 [52] with DLS

services, resulting in highly interactive DLS implementations that go a step beyond the

functionality provided by traditional implementations. Some of the distinct features that

Library 2.0 implementations provide their users with include virtual references,

different ranges of personalized public online access catalogue interfaces, and a variety

of downloadable material that can be used and manipulated in different ways [50].

Combining the features of Library 2.0 in conjunction with DLS is largely considered to

be a move beyond the static nature that hallmarked early implementations of DLSs.

Early DLS implementations mainly depended on the older web infrastructure that

provided limited content and user interaction capabilities [53]. An example of such a

static trend is provided by Maness in his paper “Library 2.0 Theory: Web 2.0 and Its

Implications for Libraries”, in which he indicates that the online public access catalogs

(OPACs) represent a DLS implementation that lacks the range of interactive services

that Library 2.0 has enabled. For example, OPACs require its users to carry out

traditional search and retrieval processes without providing the kind of support that

would normally exist in Web 2.0 implementations such as search suggestions, preferred

search saving, and so on. On the other hand, good examples of Library 2.0

implementations include the Digital Library of India (see Section 2.1.6.1) and ARCO

(see Section 2.1.6.6).

23

2.1.5.2 DELOS Digital Library Reference Model

A good example of a conceptual model that is generic enough to be applied to a wide

range of DLS implementations is the DELOS Digital Library Reference Model [3],

developed as a part of the Seventh Framework Programme, ICT Programme – “Cultural

Heritage and Technology Enhanced Learning” adopted by the EU. In that rich DLS

model, a group of DLS SO independent components are encapsulated into a generic

framework that supports a number of different intersecting modules that can be utilized

to act as the functional baseline of different types of DLS implementations.

The DELOS model itself is encapsulated in what is called the “DELOS Digital Library

Reference Model” [3], which forms the technical basis of the DELOS project. The

prime objective of the DELOS project is to “define and conduct a joint program of

activities in order to integrate and coordinate the on-going research activities of the

major European research teams in the field of digital libraries for the purpose of

developing the next generation digital library technologies” [29]. Therefore, DELOS

provides a set of highly standardized tools and design patterns that serve the needs of

the participating communities of practice. Such tools are encapsulated within a

conceptual model that includes common user interfaces, API interfaces, DLS

management tools, etc. [29]. The above model is better known as the Digital Library

Manifesto (DL Manifesto) and, as the name suggests, it formulates an elaborated effort

to be presented as a “springboard” for the development of DLSs [54].

The DELOS Reference Model builds on the paradigm of a tiered DLS functional model,

where a three-tier framework comprises three main DLS services that are related to

three different core functional areas: these are Digital Library, Digital Library System,

and Digital Library Management System [3]. Such a tiered approach represents

“different levels of conceptualization of the universe of Digital Libraries”, Candela et al

[3], leading to high levels of flexibility and interoperability between the DLSs that

adopt it because of its modular nature.

Figure 2-2 illustrates the DELOS architectural approach where the interaction between

the three DLS tiers leads to the realization of the system’s functionality while adhering

to a flexible loosely-coupled implementation model. The Digital Library Tier represents

the actual organization’s or community’s DLS implementation that manages a

collection of digital objects. These objects may span a variety of formats including text,

24

images, video clips, audio clips, etc. The Digital Library Tier represents the interface

through which the users interact with the provided DLS services. Finally, the Digital

Library Management System (DLMS) Tier represents the most complex tier within the

DELOS conceptual model [3]. This is due to the fact that the DLMS Tier provides the

core system software components including its archival, search and retrieval,

presentation, security, etc., components.

Figure 2-2 The DELOS DLS Tiered Approach

2.1.5.3 Ontology-Based DLS Framework

Another prominent DLS conceptual model can be seen in the framework that was

proposed by Motta et al. [49], which is an Ontology-Based model that illustrates the

idea of a limited-scale framework that targets a specific area of DLS functionality. The

Ontology-Based Digital Library Server for Research Documents and Discourse [49]

was based on the idea of providing an ontology-based DLS infrastructure that supports

“scholarly interpretation and discourse”, Motta et al. [49]. This concept is centred on the

various services that an ontology-based server can provide to a DLS implementation in

the context of a semantic network that supports multiple user interfaces within a number

of supported software platforms. Motta et al. [49] state that such a model addresses

certain issues that are usually associated with digital preservation such as the issues that

are related to the usability concerns that usually accompany the process of knowledge

formalization within DLSs, as previously discussed in Section 2.1.3.

25

2.1.6 DLS Implementations

As mentioned in Section 2.1.3.2, on the whole DLSs are user-centred applications, as

one of the major concerns that DLS initiatives should address is the fulfilment of the

requirements of the “myriad of users that will access the collections”, Greenaway [28].

The term ‘collections’, refers to the set of digital objects that any given DLS may hold

and manage. Therefore, there are a number of distinct and notable DLS implementations

that span different system and operational environments while serving user and

community needs.

The underlying DLS implementation in any given environment depends on the actual

context it is being designed for. Consequently, this imposes different technical and

operational requirements that any given DLS should be able to adequately address in

order to arrive at a functional model that meets its user needs. In this regard, a

combination of software and hardware components within an appropriate architectural

model contribute to the establishment of a useable DLS model that supports its users at

different application levels, typically within the lifecycle of a digital object (creation,

archiving, exposition, retrieval, presentation). Furthermore, different DLS

implementations drastically differ in the design and architectural paradigms that they

adopt, leading to the availability of an interesting range of systems that have a number

of distinctive architectural and operational characteristics.

Some DLS implementations adopt a totally flexible and scalable Service Orientation

(SO) approach, while others are custom-built implementations that suit a specific

environment. What follows is a summary of some of the notable DLS implementations

that demonstrate the latest developments that DLSs have witnessed, and the range of

services they provide their respective user communities with.

2.1.6.1 Digital Library of India (DLI)

One of the notable DLS implementations is the Digital Library of India (DLI) that is

relayed on more than 20 content creation centres, including the Indian Institute of

Science (IISc), Carnegie Mellon University (CMU), the International Institute of

Information Technology, Hyderabad (IIITH), and many other local content sources

[55]. DLI represents a good example of a research community’s initiative to transform a

collection of books into a digitized collection that is accessible online through the

network of a group of participating institutions. Moreover, one of the prime objectives

26

of DLI is to strengthen and promote the concept of public community access to digital

materials [56]. Furthermore, Chandrashekara and Varatharajan [55] indicate that the

DLI is one of the world leaders in enabling digital content access. It makes digital

contents available to the interested audience for free while supporting a variety of

technological means to view the managed digital collections and objects.

The ultimate objective of DLI is centred on the goal to “preserve all the knowledge of

the human race in digital form and make that content searchable, independent of

language and location, and to ensure that the cultural heritage of countries like India is

not lost during the transition from paper to bits and bytes”, Chandrashekara and

Varatharajan [55]. Hence, it is not just a matter of providing access to the collection of a

single entity; it is also a nationwide initiative whereby a number of disparate institutions

participate in the system to build its overall digital collection. This shared nature

characteristically represents a typical implementation manner in DLSs, where the actual

implemented architecture attempts at integrating heterogeneous digital content sources.

These sources may be spread across a number of distributed databases and digital

repositories [57].

At the time DLI was reviewed, it had no integration with social networking platforms.

This is a disadvantage in an online DLS that aims to provide accessibility to digital

media. Another observed disadvantage is the fact that it does not have a clear

framework for reuse, customization or enhancement. The current implementation seems

to be built to serve a specific purpose; it is not flexible enough to undergo major

customization if needed.

2.1.6.2 Pergamos Digital Library System

The Pergamos DLS is a system that was developed specifically to handle a

heterogeneous and complex set of data objects that belong to the collections of the

University of Athens [58]. Pergamos is a good example of a DLS implementation where

its contents are augmented from a number of disparate sources including the Senate

Archive, the Theatrical Collection, the Folklore Collection, and the Papyri Collection,

which are among the richest digital data sources in Greece [58]. Consequently, the end

result is a unified collection that is in the form of a highly accessible DHR that employs

a powerful digital object manipulation mechanism based on a number of custom-

developed components [58].

27

Despite the complex workflows that this DLS is supposed to handle, it lacks

independent workflow management components. This is a limiting factor in terms of its

ability to handle its convoluted workflows as well as simultaneous user sessions.

2.1.6.3 DSpace

DSpace is the result of collaboration between Hewlett-Packard (HP) and the

Massachusetts Institute of Technology (MIT) library, which resulted in the development

of a unique and rich DLS that acts as an institutional document library [59]. DSpace

encapsulates the concept of a custom-made digital repository that targets a specific

range of digital contents to serve a particular community of users and knowledge

seekers across a number of participating institutions. It was developed to serve as a

generic package that can be customized to suit any particular operational environment in

a paradigm that made it one of the popular frameworks to build customized DLS

implementations, especially within an academic or scholarly context. Based on that, the

DSpace model differs from the two above mentioned systems as it can be customized

and tweaked to suit the particular needs of any given user community due to the flexible

nature of its implementation framework. This flexibility was achieved through an SO

approach that made it a straightforward process to develop different DLSs that are built

by utilizing the DSpace services.

Despite the adopted SO approach, this DLS lacks any sort of workflow management

components. This may result in limiting the efficiency of this DLS as its highly

distributed operations may benefit from a customised workflow management engine for

better management and synchronization. Moreover, it has no social media or

information mashup (see Section 4.6) components despite its academic context.

2.1.6.4 Education Resources Information Centre (ERIC)

One of the most noteworthy educational-oriented DLS implementations is the model

represented in ERIC (Education Resources Information Centre), which is an online DLS

that is oriented around research and information-enabling. This system is sponsored by

the Institute of Education Sciences (IES) of the US Department of Education [60]. The

significance of ERIC is evident in the fact that it is considered to be “World’s largest

digital library of education literature”, ERIC [61].

28

ERIC manages a huge digital collection of more than 1.2 million bibliographical records

that mainly comprise textual contents in the form of journal articles and other related

material [61]. It is a good example of a DLS that has a specific focus on a certain niche

of users while serving their needs based on a specific type of content, which is in this

case is full text journals and academic contents [61].

Similar to DSpace and Pergamos, this DLS does not have any sort of workflow

management components or modules. It also does not have social media integration

despite its rich contents and wide outreach to varied groups of users.

2.1.6.5 Building Resources for Integrated Cultural Knowledge Services (BRICKS)

Building Resources for Integrated Cultural Knowledge Services (BRICKS) is a DLS

developed as part of the European Integrated Project [62]. The prime goal of BRICKS is

to develop an open user SOA to facilitate knowledge sharing within a cultural heritage

context. Moreover, the ultimate goal of BRICKS is to “build a Europe-wide distributed

Digital Library in the field of Cultural Heritage”, Hecht and Bernhard [63].

BRICKS uses the Internet as the backbone of its services while fulfilling the

requirements of “expandability, graduality of engagement, scalability, availability, and

interoperability”, Risse et al. [64]. Such characteristics are highly desirable in DLSs as

they lead to implementations that are highly flexible and are able to handle the evolving

user needs. Hence, BRICKS adopts a similar approach to the one adopted in DSpace, as

shown in Section 2.1.6.3.

Although BRICKS is a system that aims for high levels of scalability, availability, and

interoperability, it does not have a workflow management backend. This could prove to

be a shortcoming especially in large enterprise implementations of BRICKS where its

operations and data flows become complex and intersecting. On the other hand,

BRICKS contents are confined to the data objects obtained from the participating

museums and cultural institutions. This limitation is imposed by the fact that BRICKS

is not integrated with any information mashps or social networking applications, which

usually act as valuable sources of added value contents to digital repositories.

2.1.6.6 ARCO

The Augment Representation of Cultural Objects (ARCO) Project is a project led by the

Computer Graphics Centre at the University of Sussex. The ARCO DLS allows

29

museums and other cultural institutions to manage their own digital objects through the

tools and services it provides. ARCO also empowers its users to build and maintain

virtual museum exhibitions to be presented online. Such virtual exhibitions are built by

utilizing a number of techniques including virtual and augmented reality [65]. It enables

the production of virtual museums in various formats, including, for example, web

pages that have embedded 3D objects [64].

ARCO comprises a number of DLS tools including a content management system

called ACMA (ARCO Content Management Application) that constitutes a cultural

object manager, a presentation template manager, and a presentation manager. ACMA

utilizes a number of technologies that include XVRML (XML Virtual Reality Modeling

Language), Augmented Reality Interface (ARIF), etc. These tools can be installed in

any museum and used to manage its collections of digital heritage objects.

ARCO has no integration with information mashup applications; however, it can be

used as a data source in independent mashup implementations (more on in this in

Section 4.6.1). It can also be observed that despite the possibilities that the richness of

the ARCO contents can offer, it does not have any sort of social networking platform

integration. This limitation confines user interaction with ARCO to the traditional data

browsing and input/output operations.

2.1.7 Comparison of DLSs

Table 2-1 presents a comparison of the discussed DLSs with particular emphasis on

their common features. In the context of this thesis, it is notable that all the discussed

DLSs do not exploit WfMSs, and mostly do not take advantage of social networking

technologies and Web 2.0 mashups. For this, and other practical reasons (such as the

viability resource wise of implementing such large systems as test beds for the research

presented in this thesis) this thesis presents another DLS system (DISPLAYS) as a

conceptual model from which a validating DLS called the Reanimating Cultural

Heritage (RCH) system has been implemented as a DLS to evaluate workflow and

social network technologies for inclusion in DLSs. This work is presented in more

detail in Chapters 4 , 5 and 6 of this thesis.

30

Table 2-1 Comparison of Example Digital Library Systems

Feature DLI Pergamos DSpace ERIC BRICKS ARCO

User

Community

Nation-

wide

Nation-

wide

One

institution

Several

institutions

Europe-

wide

Museums

in

general

Digital

Heritage

Yes Yes No No Yes Yes

Workflow

Management

No No No No No No

Social

Networking

No No No No No No

Content

Creation

Services

Yes Yes Yes No Yes Yes

Archival

Services

Yes Yes Yes Yes Yes Yes

Retrieval

Services

Yes Yes Yes Yes Yes Yes

Presentation

Services

Yes Yes Yes Yes Yes Yes

2.1.8 The Role of DLSs in Digital Heritage Preservation

The discipline of “Digital Library Cultural Heritage Resources” [2] represents a rich

area within modern DLS implementations due to the pivotal role that DLSs play in that

arena [2]. DLSs are utilized to preserve digital heritage objects due to the powerful

features that they provide in relation to the management and preservation of digital

assets. On the other hand, it can be observed from the reviewed DLS literature that the

31

concept of Digital Curation [2] is one that can be naturally linked to DLSs. Pennock [2]

indicates that Digital Curation is a recent term that applies to the process of maintaining

and adding value to a group of digital information for both current and future use.

Moreover, according to Rusbridge [66] the Digital Curation concept is concerned with

the idea of “communication across time”, and this raises the issue of preserving and

interpreting digital heritage objects in a useful way within a suitable preservation and

distribution environment, which can ultimately be a DLS.

It is fairly common to see Digital Curation attempts and initiatives that are usually

accompanied by the implementation of digital resources in one form or another. Such an

approach is described by the work carried out by Marchionini and Shah [67] who

indicate that the process of Digital Curation primarily involves selecting, preserving and

ensuring access to a repository of digital information. Moreover, the work carried out by

Marchionini and Shah [67] involved what is called The Vidarch Project, which aimed to

“develop policies and tools that help video curators discover and add contextual

elements that will help future generations not only find but also make sense of video

content”. This represents a good example of the utilization of an online DLS that aims

at realizing the Digital Curation objectives of a certain community of practice, such as

museums and cultural institutions.

The goals of “long-term access and use of meaningful and authentic digital resources”

Lee et al [68], comes at the forefront of the goals and objectives of digital heritage

preservation systems and their associated digital Curation attempts. Additionally,

according to Ray [69], Curation is all about ensuring that “digital data will be preserved

in meaningful form into the future and managed so that information can be found when

needed by those who want it”. Therefore, Digital Curation mainly involves the entire

life cycle of a digital object, and the efficiency of Digital Curation applications is

measured by the effectiveness by which their management tools can handle such a

complex lifecycle [68].

A number of digital heritage preservation projects are directly linked with the successful

utilization of integrated Digital Curation and DLS implementations. One of the

remarkable examples in this arena is the one cited by Ray [69] who covered the

development of a Digital Curation infrastructure built by Purdue University in the US.

Purdue University established a fully distributed Curation Centre that aimed at

preserving and organizing digital objects, while facilitating the process of managing and

32

accessing them by interested groups of users and scholars. On the other hand, another

notable initiative that can be found in modern DLS literature is the Digital Curation

Centre (DCC), which was developed in the UK to realize the objectives of “long term

stewardship of digital assets”, Rusbridge [66]. This project is a good example of an

attempt that highlights the ways by which online digital resources in general, and DLSs

in particular, are fully utilized to serve the needs and requirements of a particular Digital

Curation initiative.

In the context of this thesis the RCH (Reanimating Cultural Heritage) system was built

to validate the proposed WfMS implementation. RCH has a strong digital Curation

element as it is used to preserve and reanimate the cultural heritage objects of Sierra

Leone, as described in Chapter 4.

2.2 Workflow Management Systems

WfMSs are primarily designed for the goal of improving the businesses process of any

given system by providing it with the necessary tools to automate and manage its

processes [70]. Practical implementations of WfMSs are widely used to improve

organizational performance and efficiency in terms of managing a set of system-specific

workflows that are imposed by the managed system’s processes and data flows [71].

Aalst [4] states that WfMSs innovations formed a promising solution for an age-old

problem, which is concerned with the optimization, monitoring and support of business

processes in a given operational environment such as an enterprise software

infrastructure. Such systems can also prove to be beneficial to DLS implementations as

the author of this thesis showcases in [5].

The term ‘Workflow Management’ refers to “the ideas methods, techniques and

software used to support structured business process”, Aalst and Hee [72]. The main

objectives of workflow management are oriented around the concept of having better

streamlining and ease of management and maintenance of the business processes in any

given system. WfMSs primarily aim at helping users achieve their goals and objectives

with high levels of efficiency by means of sequencing workflow activities and invoking

the appropriate human, application or information resources that are associated with

these activities [73]. This process ultimately aims to arrive at fully orchestrated

controllable managed system services [73]. Workflow management activities are

usually complemented by a number of services that contribute to achieving the above

33

goals while interacting with the underlying managed components. Typical workflow

management services may include process monitoring and tracking services, and

different process management and coordination tools that are usually associated with

modern WfMSs implementations.

2.2.1 What is a Workflow Management System?

According to Schael [74], WfMSs are considered to be one of the innovative solutions

for process improvement and optimization. WfMS play a pivotal role in improving the

overall throughput of the system in question by means of managing its data and control

flows – can this innovation be proved to apply to DLS architectures? To investigate this,

this thesis presents a conceptual DLS in Chapter 3, followed by practical

implementations of this DLS in Chapters 4 and 5, followed by a simple but stable test

bed WfMS that implements the same DLS components as in Chapter 4, but as a WfMS

managed one as shown in Chapter 6.

Aalst and Hee [72] define WfMSs in simpler terms by describing them as generic

software packages that are dedicated for the purpose of business process management.

Notably, WfMS implementations place a certain emphasis on the automation of task

execution as indicated by Munaga et al. [75], who argues that “a workflow aims to

automate business processes, where documents and information are passed between

agents according to a set of rules to achieve or contribute to an overall business goal”.

A more contemporary definition of WfMSs is provided by the Workflow Management

Coalition WFMC [76] cited in [77], where it is stated that a WfMS is “a system consists

of process definition tools, administration and monitoring tools, client applications,

invoked applications and workflow engines”. In such a paradigm tasks are performed

either by the system’s end-users or its applications, based on a workflow design that is

produced by process definition tools [76] cited in [77]. Moreover, according to Yu [78]

a WfMS is responsible for defining, managing and executing workflows on a computing

system at resource level. Therefore, WfMSs can reach high levels of complexity and

sophistication due to the nature of the systems and business process patterns that they

need to handle efficiently and manage fully.

What can be implied here is that WfMSs can be made an integral part of a wide variety

of software systems that need efficient workflow management capabilities to improve

their performance, have better management of their components and data and control

34

flows – and hence this should apply to DLSs. Furthermore, the way that a WfMS

integrates with any software infrastructure varies according to the adopted

implementation technology and architectural paradigm as well as the actual

specifications of the system to be managed. This thesis proposes the integration of a

WfMS within test bed SO DLS components, as detailed in Chapter 6.

2.2.2 WfMSs Functionality

A WfMS typically serves three main dimensions, which are process, organization and

infrastructure [70]. These dimensions are detailed as follows:

 the term ‘process’ primarily refers to “the business logic that captures the activities,

their inter dependencies, and associated people and applications required to meet the

underlying business goals”, Lin et al. [70].

 the ‘organization’ model refers to the different components, which are either

application-based or user-based that a WfMS has to deal with [70].

 the ‘infrastructure’ dimension encapsulates the technical and operational aspects that a

WfMS must be able to integrate with while providing its services; this includes the

network infrastructure and the associated applications that may exist in the concerned

implementation environment [70].

Figure 2-3 illustrates a typical WfMS implementation where a number of baseline

components and services work in coordination with each other. The illustrated model is

based on the five services identified by Lin [70]: a Process Definition Tool, Process

Definition Repository, Workflow Engine, Worklist Handler and Administration and

Monitoring tools.

35

Figure 2-3 Typical WfMS Components

The reviewed workflow management literature shows that, although the above five

services are equally important, there is a general consensus that a WfMS should at least

provide the last three services to pave the way for a functional model that handles the

system processes effectively. The importance of a workflow engine within a WfMS is

evident by the fact that, through its built-in modules, it has the ability to “interpret the

process definition, interact with workflow participants, and invoke the use of

information technology tools and applications”, Zhan [79]. On the other hand, the

importance of having some kind of Worklist Handler is evident in a number of

prominent workflow management solutions. Such solutions provide the necessary

capabilities to effectively handle the different work items or processes that flow

throughout the managed system. It is equally vital to have an appropriate range of

Administration and Monitoring services that provide a number of sophisticated tools

that directly interact with the system’s work items and business processes. These tools

provide different performance indicators as well as administration capabilities

(invocation of a process, termination of a workflow, etc.).

2.2.3 A Brief History of WfMS

Automated WfMSs are not as recent as they seem, as commercial versions can be traced

back to the early 1990s [71]. Additionally, the early implementations of WfMSs are

36

linked to the early attempts to automate as well as support business applications through

devising specialized software applications to manage and monitor their operation [74].

WfMSs can be considered as a resemblance of the early office automation systems as

“using workflow technology to support cooperative activities is an old idea, taking its

sources in Office Information Systems”, Charoy et al. [80].

The earliest examples of WfMSs can be dated as far back as 1977 as seen in the work

done by Zisman [81], cited in [74], which is considered to be among the pioneering

stages in the development of WfMSs. On the other hand, on a conceptual level, the

actual concept of devising specialized software packages to act as mediums for the

purpose of workflow management dates back even earlier than that, as can be seen in

the work carried out by Ellis [82] who discusses the different aspects of devising a

Mathematical Model of Office Information Flow.

2.2.4 The Importance of Workflow Management Systems

The importance of WfMSs in modern distributed software implementations can never

be overestimated due to the role they play in process improvement and resource

utilization (software/hardware). According to Frey [83], WfMSs are becoming more of

a common and prominent medium for handling business processes within software

systems inside organizations of all sorts and types. The anatomy of a WfMS is mainly

connected to the need to automate procedures in software systems where files and data

flow between the system components according to a number of predefined rules [84]. A

WfMS implementation can supplement and improve the functionality of an existing

software infrastructure by providing it with better management and monitoring

capabilities paving the way for more efficiency and flexibility. WfMSs typically support

process execution by means of managing it and the associated flow of data, while

ensuring that the individual workflows are executed at the right time by the right person

and or the designated system processes [72]. Moreover, WfMS can be looked at from

the perspective that they represent a drastic upgrade from traditional unorganized

process management to a more structured and organized way of managing an

organization’s business processes [83].

37

2.2.5 Workflow Management Standards

There are a number of standards and frameworks that govern WfMS implementation

and design paradigms according a set of guidelines that impose a high level of

standardization on WfMS implementations, as detailed below.

2.2.5.1 The Workflow Reference Model

The Workflow Management Collation (WfMC) is one of the most prominent bodies in

standardizing the processes involved with WfMSs design, implementation, operation

and maintenance [15]. Moreover, WfMC is credited to be the first organization that

became actively involved in promoting workflow standards [15]. The development of

such standards adheres to WfMC’s vision and strategic objectives as it represents “a

grouping of companies trying to establish standards that will facilitate the

interoperability between workflow systems”, Eloff and Botha [85].

At the forefront of WfMC’s standardization efforts comes the Workflow Reference

Model (WfRM), which provides a highly advanced conceptual model used to govern

the design and implementation of WfMSs. Hollingsworth [84] indicates that the WfRM

provides a common WfMS implementation model that identifies their characteristics,

underlying terminology and operational components, paving the way for a contextual

model that can be adopted in any WfMS. Moreover, Eloff and Botha [85] indicate that

the WfRM describes the fundamental concepts that are associated with workflow

management, complemented by an architectural model that addresses the interfaces

between the different components of a typical WfMS. More importantly, the WfRM is

considered to be a generic overall model for WfMS implementations [86], with high

levels of applicability to a variety of complex software systems. This paradigm is

encapsulated in Hollingsworth’s [87] view of the WfRM as he states that “the model

attempted to construct an abstract view of the business process in terms of its core

characteristics, separated from the technologies that could be used to deliver its

functionality in a real world situation”.

The WfRM defines a number of standards, guidelines and rules against which the

efficiency of any given WfMS implementation can be measured according the way it is

being designed and implemented. Furthermore, this reference model, that was published

in 1995 [87], has three significant categories that are used to formalize an overall

reference model that can be followed by WfMS implementations of different types and

38

natures. These categories as identified by Hollingsworth [87] are: “a common

vocabulary for describing the business process”, in other words a workflow definition

language, “a functional description of the necessary key software components” and “the

definition, in functional (or abstract) terms, of the interface between various key

software components that would facilitate exchange of information in a standardised

way”. The core conceptual components of WfRM are illustrated in Figure 2-4.

Figure 2-4 The WfRM Categories

Going into the details of the WfRM is outside the scope of this thesis. What should be

explained here is that it plays an important role in contemporary WfMS

implementations due to the wide acceptance that it was met with by the developers and

vendors of WfMSs. Despite some sceptical views about the effectiveness of the levels

of abstraction and generalization that the WfRM provides [87], it still can be considered

as one of the most widely used WfMS standards. It is worth mentioning here that the

WfMS prototype devised as a part of this thesis comprises some of the WfRM

components while interacting with the system it manages (more on this in Chapter 6).

39

2.2.5.2 Business Process Execution Language (BPEL)

The Business Process Execution Language (BPEL) is a business process design

standard that represents a model used for defining process execution rules within a

WfMS [15]. BPEL is different from the WfRM because it merely represents an XML-

based language that models a business process [88]. BPEL comprises a set of basic

activities that constitute the workflow management tasks to be performed [88]. These

rules are complemented with what is called ‘compound activities’ according to BPEL’s

terminology, which are used to model the control flow activities of the managed system.

Additionally, Fernandes [88] argues that what makes BPEL a unique as well as a

powerful WfMS design standard, is the fact that it consists of a mixture of structured

and unstructured representations of workflow patterns. This availability of workflow

patterns makes BPEL suitable for virtually any WfMS implementation. According to

Mendling [15], the heart of a BEPL implementation is the “so-called BPEL engine”,

which has the full capability of executing the process definitions of a BPEL model.

One of the negative sides of BPEL is the fact that it offers limited support for an Event-

Driven Architecture (EDA), and this poses a number of limitations when using it for

systems that adopt that paradigm [89]. This may prove to be a serious shortcoming in

complex implementations that “involve multiple applications (or application

components) that run on distinct physical machines across an enterprise network”, Saini

[89].

2.2.6 Workflow System Examples

There is a number of open-source and closed-source WfMS development tools and

languages that vary in their implementation paradigms and the services that they

provide. This is due to the inherent vibrant nature of WfMSs and the dynamic nature of

the user and system requirements that require such a wide range of solutions. What

follows is a brief outline of some of the noteworthy WfMS development tools and

systems.

2.2.6.1 Yet another Workflow Language (YAWL)

Yet another Workflow Language (YAWL) [90] is one of the notable open-source

WfMS implementation languages. As the name suggests, YAWL is considered to be a

workflow management language rather than an implementation framework. The prime

40

goal of YAWL is to provide more powerful support to complex workflow patterns [10].

In addition, Garcês [10] states that YAWL was developed by “taking Petri nets as a

starting point and adding mechanisms to allow for a more direct and intuitive support of

the workflow patterns identified”.

YAWL was developed by Wil van der Aalst, Lachlan Aldred, Marlon Dumas and

Arthur ter Hofstede, members of the Faculty of Information Technology of Queensland

University of Technology [10], and based on their identification of a number of

shortcomings that conventional workflow management development languages and

paradigms fail to address. What is really significant about YAWL is that it provides for

a flexible development model that can be used for the development of flexible and

adaptable WfMS applications. Additionally, YAWL is considered to be one of the most

expressive and mature open-source WfMS development tools when compared to other

open-source WfMS development languages and frameworks [91]. The powerfulness of

YAWL stems from its ability to overcome the limitations of traditional workflow

modelling techniques by means of the innovative and direct support of virtually all

workflow patterns [92].

YAWL is the result of the analysis of existing WfMSs and their related standards by

utilizing a number of comprehensive workflow patterns. Moreover, Aalst et al [92]

indicate that such analysis led to the conclusion that WfMS-relevant standards, as well

as their associated theoretical models, have problems in supporting optimal workflow

management patterns. This shortcoming inspired the development of YAWL to fill such

gaps, and provide developers with the tools they need to build comprehensive WfMS

solutions that can handle any level of workflow complexity [92]. Additionally, YAWL

effectively covers the different areas of workflow management that a system might

need, such as the collaboration, monitoring and the data and control flow aspects of a

WfMS implementation [92].

2.2.6.2 Bonita

Bonita is an open-source system that features a number of innovative tools that can be

exploited to deliver sophisticated WfMS implementations [93]. It differs from YAWL

in that it is actually a standalone application that provides a set of built-in workflow

design and management tools that can be used by developers to build customized

WfMSs.

41

According to Siddiqui [94], Bonita relies on Java’s J2EE as an implementation

foundation. Its components are centred around three main tools: an innovative studio for

process modelling, a powerful BPM & Workflow engine, and a user interface which can

be utilized to build a variety of workflow designs [95]. Bonita provides a graphical tool

for designing workflow patterns by means of using a number of easy-to-use controls

that can be utilized to build complex workflow management models [93]. Moreover,

Bonita is fully compliant with WfRM [10] and is capable of handling long-running and

complex business and user oriented workflows [10].

2.2.6.3 Windows Workflow Foundation (WF)

Windows Workflow Foundation (WF) is considered to be one of the most prominent

technological solutions for devising WfMSs. WF is based on Microsoft’s .NET

Framework and offers a range of development tools that support the full implementation

of WfMSs of any scale. WF offers a number of advanced tools that are dedicated to

building comprehensive workflow solutions by the utilization of a dedicated

programming model, consisting of a number of .NET components supported by a

powerful workflow engine [96]. Furthermore, according to Scott [97], WF represents a

solution that encapsulates a set of tools that enables the process of defining, executing

and managing workflows.

The development environment that WF delivers consists of a number of standard code

controls that contribute to optimal development time and unlimited customization and

integration possibilities. Although WF is a Microsoft technology, it can still be

integrated with software solutions provided by other vendors, as can be seen in the

scenario highlighted by Farahbod [96]. Farahbod [96] covered the process of integrating

WF applications with an IBM database by utilizing Microsoft’s Visual Studio (WF’s

development environment).

According to Bukovics [98] there are a number of advantages that WF provides WfMS

developers. These advantages include the flexible and powerful framework that WF

provides, the consistent development model that it supports and maintains, its support of

a variety of advanced workflow models and patterns, its advanced support of domain-

specific problem solving, infinite extensibility and its support of the development of

complete workflow ecosystems [98]. Such advantages are complemented with an

architectural approach that provides for a flexible implementation framework in an SO

42

manner, this ensures effective and modular workflow infrastructure implementation

[99].

Figure 2-5 illustrates WF’s extensible model showing a number of services from its

baseline functional model. These services include the Persistence, Tracking, Scheduling

and Transaction services. These services have the flexibility to be hosted within a host

application that can be assigned the task of providing extra user functionality, as well as

user interaction elements if needed. The provided services can also interact with a

database model that can be either Microsoft’s SQL Server or any of the database

technologies that the .NET Framework supports.

Figure 2-5 WF’s Extensible Model

What is unique about the aforementioned paradigm is that a WF workflow management

solution has the flexibility to be hosted in a number of software platforms and

applications. This flexibility is evident in the fact that WF applications can run within a

host, for example, a SharePoint Portal Server, a Windows Application, Console

Application or an ASP.NET Application [100]. It is also worth mentioning here that

what is fundamental to the whole WF model is its powerful Workflow Runtime Engine

that is pivotal in providing the necessary workflow execution functionalities as well as

43

responding to the system’s events. Furthermore, the WF Workflow Runtime Engine

provides other services such as the workflow state management, threading, tracking and

persistence services [30]. WF was the chosen technological medium to implement the

proposed WfMS for a number of practical reasons, as detailed in Chapter 6.

2.2.7 Workflow Management System Comparison

When comparing WfMS implementation tools and frameworks, a number of similarities

and differences can be found. In the context of this thesis, three sample WfMSs are

illustrated (YAWL, Bonita and WF). Among these WF was chosen as the

implementation medium for the proposed WfMS prototype (this will be discussed

further in Section 6.3.1).

Wu et al. [101] indicate that YAWL (see Section 2.2.6.1) and WF (see Sections 2.2.6.3

and 6.3.1) are designed to be “general purpose” workflow management implementation

tools. YAWL is inherently supported by a workflow execution engine as well as a

graphical workflow design editor. It also supports an extensible model that allows

external applications to connect to a devised workflow engine in an SO approach. On

the other hand, WF supports a flexible programming model and “rehostable” [101]

runtimes that can be used to implement complex and long-running workflows. In a

similar fashion to YAWL, WF’s workflow runtime services can be designed and edited

by a visual workflow designer which is the Visual Studio application. Furthermore,

according to Roy [102], WF is specifically designed to provide developers with the

necessary base components that are needed for building workflow management and

process automation modules in an SO manner.

Bonita (see Section 2.2.6.2) is more domain-specific when compared to YAWL and

WF, as it is designed to be a browser-based system for implementing and hosting

workflows within J2EE implementations [94]. Moreover, Bonita depends entirely on

web services (also supported by WF) in conjunction with SOAP to provide workflow

management functionality in distributed systems.

According to Jang et al. [103], one of the distinctive features of WF is the flexibility it

provides by combining its graphical design tools with the ability to build lower-level

code modules programmatically. It therefore can deliver more complex customized

workflow management functionality supported by WF’s extensible model. It is also

possible to devise workflow components that are entirely written in code. These

44

independent custom-built components can be then hosted in either web-based or

custom-built client applications (hosts).

Table 2-2 below compares YAWL and Bonita (open-source solutions) with WF (a

closed-source solution) in relation to a number of workflow management functional

areas, based on those identified by Garcês et al. [10]. These features are mainly related

to workflow runtime creation, running and monitoring, which are pivotal to WfMS

implementations.

Table 2-2 WfMS Implementation Tools Comparison

Feature WF YAWL Bonita

Process definition

tools and support

Yes Yes Yes

Built-in workflow

client application

No Yes No

Administration and

monitoring tools

Yes Yes Yes

Runtime Platform

independence

Yes Yes Yes

Support for Web-

based

implementations

Yes

Yes

Yes

Support for

Standalone

implementations (i.e.

no need for a host)

No

Yes

Yes

Other software

required

No Yes Yes

DBMS Integration Yes Yes Yes

45

Although WF and YAWL seem to share a number of similarities, there are a number of

factors that favoured utilizing WF to build the proposed WfMS prototype. The main

shortcoming of YAWL includes its limited support of workflow hosting in independent

hosting mediums. This imposes certain limitations especially in terms of creating

multiple views (interfaces) for the same workflow engine. As RCH needed a workflow

management engine that would not interfere with its UI elements, WF seemed to be a

better solution in this regard. More details about the factors that favour WF are

discussed in more details in Section 6.3.1.

2.3 WfMS in DLS

It can be noted that the dominant paradigm in DLSs is to provide their services to a

wide spectrum of users within an inherently complex distributed system. Despite the

apparent need of effective workflow management capabilities within DLSs (due to their

intersecting processes), WfMS literature rarely discusses integrated workflow solutions

that are fully utilized in DLSs. This gap in the literature raises a number of questions in

regard to this apparent lack of effective integration with all the performance and system

management implications that this shortcoming might have.

According to Gang [11], traditional WfMs often fail to meet the dynamic demands of

distributed systems, such as those that are web-based due to their inherent dynamicity

and interactivity. Such complications require the adoption of flexible tools that are able

to manage the vibrant processes and components of a DLS. Although it is a traditional

trend that WfMSs are taking some conceptual elements of document management

systems [12] cited in [13], conventional WfMSs solutions often fail to address the needs

of the most fundamental components of a DLS due to their complexity. These

components are the archival, retrieval and presentation components.

The research work that was conducted as a part of this thesis aimed to pave the way for

a viable implementation model to integrate a WfMS within a DLS. The paper entitled

“A Dynamic Workflow Management Framework for Digital Heritage and Technology

Enhanced Learning” [5] written by the author of this thesis, was aimed at devising a

WfMS prototype that integrated with a digital heritage system. The paper “An

integrated workflow Management solution for heritage information mashups” [6] goes a

step further and aims to develop a WfMS to accommodate rich information mashups.

46

These attempts formed part of the groundwork of the implementation model proposed

in this thesis, which will be fully discussed in Chapters 6 and 7.

2.4 Summary

This chapter discussed the different practical and technical aspects of DLSs and

WfMSs. It was evident that technological advancements made the utilization of DLSs a

common trend, as they played a more integral role in the attempts to preserve and

distribute digital data objects within digital resources and repositories [21]. The

reviewed literature showed the DLSs evolved over time in parallel with the unlimited

possibilities offered by the proliferation in data digitization formats and tools as well as

computer networking technologies. It was also observed that DLSs are always

accompanied by a set of user expectations that must be adequately addressed to arrive at

fully functional models. Such expectations range from the need to provide an

instantaneous access to information to the provision of highly interactive and efficient

user interfaces.

In the literature review, it was also demonstrated that DLSs are complex in nature, and

that their implementation often faces a number of technical and practical hurdles. These

hurdles include the demanding needs of managing the rich digital collections that they

usually hold, the challenges related to the process of providing rich archiving

capabilities, the challenges of arriving at viable search and retrieval components, and

the issues related to user actions and the need to maintain a certain level of security and

privacy. Therefore, rather than resorting to generic ready-made off-the-shelf solutions

that may fail to deal with such challenges, custom-made DLSs to address domain-

specific problems were often created. This notion was highlighted with a number of

representative DLS implementations that included, the Digital Library of India (DLI),

Pergamos Digital Library System, the DSpace System, Education Resources

Information Centre (ERIC), the Building Resources for Integrated Cultural Knowledge

Services (BRICKS) project, and the Augment Representation of Cultural Objects

(ARCO) system. As WfMSs play an effective role in improving the business process

and efficiency of various software systems, their utilization within DLSs seem a viable

option necessitated by their complex nature. However, such integration has to overcome

a number of implementation challenges as will be explained in Chapter 6.

47

WfMSs were also discussed with a particular emphasis on their underlying functionality

and the important role that they play in managing the business processes of any given

system. Within that context, WfMS standardization efforts were discussed while

covering the Workflow Reference Model (WfRM) and the Business Process Business

Process Execution Language (BPEL). Moreover, representative WfMS solutions that

comprised a group of open-source as well as closed-source development tools and

techniques were discussed. The range of the examined systems provided different

services in terms of the workflow management capabilities that they empower. The

discussed systems included Yet another Workflow Language (YAWL), Bonita and

Windows Workflow Foundation (WF).

This thesis proposes the utilization of an integrated WfMS solution within a DLS

implementation. Based on that, the subsequent chapters of this thesis will outline the

practical and technical aspects of devising the proposed solution. Chapter 3 will

highlight the DISPLAYS system, which is a DLS implementation framework. Chapter 4

showcases the RCH system, which is an actual DLS implementation based on the

DISPLAYS framework and which acted as the test bed for the proposed WfMS

solution. Chapter 5 showcases the RCH components (archival, presentation and

retrieval), while Chapter 6 illustrates how these components are being hosted within an

integrated WfMS.

48

CHAPTER III

3 DISPLAYS Framework

This chapter presents an innovative digital library framework called DIgital library

Services for PLAYing with Antiquity and Shared Heritage (DISPLAYS). This

DISPLAYS Framework [5] [7] [1] represents a digital resource model whose

functionality revolves around the concepts of cultural heritage resource sharing and

distribution. Chapter 4 then presents an implementation of a limited version of

DISPLAYS as a validation architecture called the Reanimating Cultural Heritage

(RCH) system. Chapter 5 takes a closer a look at some of the key processes or

components of the RCH system (the archival, retrieval and presentation components).

These components are then implemented as a workflow based system in Chapter 6.

The current chapter gives a detailed description of the proposed DISPLAYS framework

while emphasizing its main services. These are the Digital Content: Creation,

Archival, Exposition, Presentation and Interaction services for digital heritage

collections in addition to management services in the form of a set of workflow

processes.

3.1 Introduction

Digital object management, sharing and distribution are major considerations when

handling digitized cultural objects, due to their complexity and diversity on the one

hand and the heterogeneity of the systems that usually handle them on the other. The

task of creating common digital heritage application tools and repositories is further

convoluted by the fact that different communities of practice use different standards,

data formats and media to interpret and use their objects. Such complexities limit the

ways by which such communities can share their collections unless they are provided

with common shared tools (and standards) to create and maintain shared digital

repositories. Such challenges make it necessary to devise effective DLS models that are

capable of handling varied collections, while being flexible enough to be utilized by

different communities of practice from the citizen and diasporas to museums.

49

It is proposed that the DISPLAYS framework provides a comprehensive conceptual

model for building enterprise digital heritage data repositories that can be shared

between a number of cultural institutions, leading to the organization of augmented data

into meaningful information. This can be compared to the paradigm followed in some

similar systems, such as the well-known Digital Repositories Infrastructure Vision for

European Research (DRIVER) [104]. DRIVER promotes open access to European

digital data across a network of physically distributed repositories throughout Europe

while providing a set of specialized shared DLS services [105]. In a similar fashion,

DISPLAYS offers a unique digital heritage resource infrastructure while exploiting a

number of novel solutions that form its constituent components, as will be further

illustrated in this chapter.

DISPLAYS functionality revolves around five core services: Digital Content: Creation,

Archival, Exposition, Presentation, Interaction services, and an additional management

service (or set of workflow processes) for digital heritage collections. Using the

DISPLAYS framework, prototype DLS components and implementations were then

built to allow the testing and evaluation of DISPLAYS concepts. One such

implementation is the Reanimating Cultural Heritage (RCH) system [1], which is a

DISPLAYS-based shared online DLS that is used in the context of this thesis to

demonstrate effective workflow management (see Chapter 6). Thus, RCH is used as a

‘proof of concept’ system in the context of this thesis to validate its findings. A detailed

description of RCH and its components is given in Chapters 4 and 5 of this thesis.

Another example of a system that can be used to create a DLS implementation that

adopts DISPLAYS concepts is the Augment Representation of Cultural Objects

(ARCO) system [65] (see Section 2.1.6.6).

A DISPLAYS type implementation should build on the capabilities of Web 2.0 [106] by

exploiting the Web as an effective medium for data-intensive operations. DISPLAYS

does this by adopting a service orientation approach where the different system

functions are organized into separate specialized web services. For example,

DISPLAYS components could operate within a highly scalable distributed application

framework [1] that acts as a functional baseline for the DISPLAYS services.

DISPLAYS services should be flexible and customizable so that they can integrate with

any existing digital heritage or knowledge management system. This flexibility paves

the way for the creation of effective digital repositories that are capable of meeting the

50

digital object management and sharing needs of their communities of practice.

Moreover, the complex and intersecting system workflows should be managed through

specialized control and management services that control the different aspects of the

system’s data and control flows. A goal of the research presented in this thesis is to

show that workflow management can be applied within a DISPLAYS type of system;

this work is further detailed in Section 3.5.2 as well as Chapter 6.

3.2 DISPLAYS Concept

Cultural institutions, such as libraries, museums, archives, galleries, etc., are commonly

considered to be natural partners due to the common grounds that they have with each

other and the common interests that they share. Among those areas of interest, the

process of digital content sharing and distribution is considered to be among the most

significant [107]. DISPLAYS considers the process of ‘sharing and distribution’ of

digital content to be refined into five distinct services that need managing through

workflows. These are the Digital Content (1) Creation (DCC), (2) Archival (DCA), (3)

Exposition (DCE), (4) Presentation (DCP), and (5) Interaction (DCI) services. This

division generates a requirement for tools and services that can execute these processes

for users (museum creators or visitors) to ‘create’, ‘interpret’, ‘use’ and ‘explore’

collections of objects in digital online spaces. Such services allow for better digital

object management, distribution and presentation capabilities for the communities that

collect and use digitized cultural objects.

The implementation of such tools and services is made possible through specialized

software and hardware innovations, such as advanced open-source and commercial

digital archive software, 3D modelling tools, touch screens, advanced web interfaces,

etc. This trend of exploiting modern sophisticated technologies that can be utilized to

build DLSs is further enhanced by the advent of Web 2.0, which itself was a milestone

that profoundly changed the way that the web is used and utilized [106]. Through the

exploitation of creative technical innovations (for example, web services, social

networking, wikis, blogs, etc.), Web 2.0 transformed the Internet into to a common

platform that can be used by its users to serve their common interests. Web 2.0 paved

the way for the provision of effective and powerful online tools for users to connect,

collaborate and share information in an environment that can handle various media such

as, text, audio, videos, images, 3D objects, etc. This ability to share information online

51

using readily exploitable Web 2.0 technologies and sophisticated open-source (and

commercial, but ideally not) software, can be exploited to build DISPLAYS type DLS

for the communities of practice. Therefore, the opportunities that modern technology,

especially web-related ones, has enabled can never be overestimated as “the emergence

of web-based communities and services (such as social-networking sites), mobile and

Wi-Fi technology offer new opportunities for citizens to create and share personal

media and for cultural institutions to interact with their audiences”, Minerva [108]. Such

advancements are of particular importance to heritage resource sharing applications as

they usually depend on high levels of content sharing and delivery to enable effective

digital content sharing services. These services are typically used among the disparate

entities that may use the devised digital resource.

An example of a simple hypothetical implementation of a DISPLAYS type DLS is

illustrated in Figure 3-1. Here, a simple DISPLAYS-based DLS can be implemented

using common components such as Word and Excel to create appropriate text and

metadata for digital objects, Adobe tools could be used to process images, videos, and

even Flash presentations, and 3ds Max can be used to create 3D objects. This data can

all be readily exported as XML data archives (requiring only appropriate XML schemas

for validation). Such data can then be organized into expositions (folders giving

meaning to the data) by, for example, Windows Explorer. Use of XML technologies,

such as XSLT, can then be utilized to present these expositions to a web browser as a

virtual museum or archive collection, etc. The web browser can have interactivity built

in through other technologies such as Flash, or 3D web plugins, etc. This would make a

very simple local DLS that could be further expanded by introducing web services to

connect components and distribute each process across the Internet.

In such a scenario, the archival process or workflow would begin to use more

sophisticated technologies such as appropriate database systems and even social

networking to store and manage digital objects. A workflow management solution in

such a context can be used to manage the main DLS services such as the archival and

presentation services. The system services themselves can be utilized by different user

groups such as content creators (e.g., 3D model creators), the content managers (e.g.,

archivists who manage a museum’s collections), the developers (e.g., web developers

who build and maintain a museum’s website) and the users who use the system to view

and explore the objects on display.

52

Figure 3-1 Examples of DISPLAYS Type Implementations

53

The DISPLAYS framework has been devised as a generic model that is a modular

system based on a service orientation (SO) paradigm. It should exploit the latest

advancements in commodity components (preferably open-source or low cost),

networking and web technologies to allow for the creation of highly customizable

online digital repositories and DLS implementations. The DISPLAYS framework

essentially proposes a heritage-oriented model based on the concept of integrating five

core services that map to digital entities, which in turn map to user process as illustrated

in Figure 3-1. For example, a user creates digital object data with ‘create service’, using

tools such as 3ds Max to create a 3D representation of the physical object. In this case,

the user could be, for example, a museum digital content creator. Another user could be

a museum visitor who explores the digital object through an interactive digital

experience. Thus, these example implementations represent a heritage data model that

benefits from the DISPLAYS services: these are discussed further in Section 3.4.

As implied above, the framework presented by DISPLAYS has the flexibility of being

implemented in a number of different ways. Another example is where all the system

services can be used to construct a total DLS solution built from scratch as is the case

with the RCH system [1]. Alternatively, some of its services, such as the DCC or DCA

for instance, can be used to complement current DLS implementations that may need

such advanced functionality. This process was made possible by the modular nature of

DISPLAYS due to the SO approach that it adopts, as will be detailed in Section 3.5 of

this chapter.

Another area that the DISPLAYS framework empowers is the use of social networking

technologies such as Facebook, YouTube and Flickr, to create customized Web 2.0

information mashups. These mashups are used to present the managed digital objects in

more meaningful ways to their communities of practice [1]. Additionally, integration

with social networking platforms is also used to enable the collection and management

of user-generated contents that are used to enhance the managed collections. Again,

RCH is a good example of a system that makes use of such services and this will be

detailed in Chapters 4 and 5 of this thesis.

3.3 DISPLAYS Objectives

The main objectives of the DISPLAYS framework span a number of areas that revolve

around the idea of enabling effective sharing and distribution of digital cultural objects.

54

The first of these objectives is to develop a set of services for a DLS, i.e. archival,

exposition, presentation and interaction services [7]. DISPLAYS services are meant to

have the flexibility to handle digital objects that may span a number of different formats

and come from a variety of sources.

As another objective, DISPLAYS aims at empowering its communities of practice to

create, interpret and use their own digitized cultural objects by utilizing the possibilities

offered by multimedia, 3D, virtual and augmented realities [1]. This objective aims at

paving the way for enhancing learning and data sharing through the exploitation of

advanced innovative technologies, e.g. social networking, within an appropriate

architectural framework. This objective can be achieved through the development of a

set of DCC services that are designed to empower the communities of practice to create

and maintain their own digitized collections. Such collections may involve the creation

of complex multimedia-oriented data and 3D models to suit the different needs that a

community of practice might have. For example, communities would submit their user-

generated contents to the DLS via a social network service, Facebook for instance,

using a Facebook web service (service orientation).

Based on these two objectives, the DISPLAYS framework needs to have effective

digital object creation and archival capabilities. DISPLAYS DCA services aim at

allowing users to easily index, retrieve and manipulate digitized cultural objects data

within a central digital library service, while emphasizing on optimal digital

preservation [7]. Content creation is complemented with the development of DCC

services [7] that enable participating communities of practice to distribute their own

multimedia-based heritage experiences to the interested bodies such as local cultural

institutions. Furthermore, the DISPLAYS DCP and DCI services are there to enable the

users of the devised DLS to visualize their own multimedia heritage objects within

multi-lingual and multi-disciplinary contexts, by means of exploiting various

visualization techniques including virtual, mixed and augmented realities on the web

[5].

There are many other services that are of pivotal importance to a DISPLAYS type

system, such as the creation of a set of Digital Library Management Services (DLMS)

that include a number of custom designed components. These components include

rights description and management schemes, identity, trust and security services,

discovery services that use semantic descriptions (of data and application) and file

55

system management services. These services are used to provide advanced capabilities

in terms of the distribution and storage of digital Portable Antiquity repositories in

enterprise environments. However, this is beyond the scope of this thesis; instead the

discussion of DISPLAYS is limited to that necessary to set the contributions of this

thesis in context.

3.4 DISPLAYS Services

The operation of DISPLAYS is based on a number of specialized modular services that

serve different purposes within the developed DLS model. Each service is intended to

be a component that is accessible via a web service (e.g. the ARCO ACMA Cultural

Object Manager and Presentation Manager are based on a SOAP web service to access

the ARCO database (see Section 2.1.6.6), while most typical social networking APIs

use a RESTful web service to provide access to their API functionality). These services

may interact with the other modular system components to achieve the required

functionality. What follows is an outline of each of the DISPLAYS services.

Figure 3-2 illustrates the DISPLAYS services (DCC, DCA, DCE, DCP and DCI)

alongside the tools and processes associated with each of them. The focus of the work

of the author of this thesis is related to workflow management of data-intensive

operations within the DISPLAYS Framework.

The bottom row of Figure 3-2 highlights the key areas that the workflow management

application created as a part of this thesis aimed to manage (see Chapter 6 for more

information about the created WfMS). These areas of focus are mainly concerned with

the data flow between the DISPLAYS Framework’s components within its practical

implementations (Such as the RCH prototype, see Chapters 5).

The sequence of green arrows at the bottom of Figure 3-2 highlights the key areas

where the workflow management system implementation presented in this thesis gets

involved. These areas are related to data-intensive operations by nature starting with

content rendering through to digital content archiving, digital content exposition via

XML files, query processing within retrieval services and digital content presentation

through online web interfaces. It was decided to focus on these areas as they present a

number of the most challenging use-cases to manage within a DLS.

56

The DISPLAYS services are further detailed in Sections 3.4.1, 3.4.2, 3.4.3, 3.4.4 and

3.4.5 respectively.

Figure 3-2 DISPLAYS Services and Their Associated Tools

3.4.1 DISPLAYS Digital Content Creation (DCC) Services

The concept of building specialized modules for digital object creation is one that is

commonly used in DLSs, and it greatly contributes to building unique and sustainable

digital repositories [109]. The digital objects that usually circulate around a DLS tend to

be rich and varied in terms of their formats, and the data that accompany them, which

consequently necessitates the existence of the appropriate tools to create and manage

them. Furthermore, Radoslav and Pavlov [110] indicate that it is a key feature in

modern DLS implementations to have powerful as well as flexible content creation

services. This is because they play a key role in enhancing the digital collections being

held by the shared resource in use: this applies to the model adopted by DISPLAYS.

Effective content creation is particularly important in the case of DISPLAYS due to its

interaction with cultural objects that are rich by nature and require content creation

services that are able to adequately model and store them. DISPLAYS DCC services are

considered to be among the fundamental services in the DISPLAYS framework as they

form the main source through which the system’s digital collections are built. DCC

services contribute to building the collections of the created DLS, regardless of the

digital object formats used by content creators. When talking about DISPLAYS DCC

services, it can be observed that they cover the full workflow of digital content from

57

creation to interpretation to use and exploration through the DISPLAYS operational

model [5].

According to Patoli et al [5], the created services deal with DISPLAYS content creation

needs within three broad major categories that are designed to cover the range of media

that the built system is likely to handle. These services are as follows:

 Document Creation Services

 Video and Image Creation Services

 3D Graphics Creation Services

Therefore, the DCC services contain a number of sub-services that are dedicated to the

creation of digital objects of different types and standards. The created objects can be

sourced from either non-digitized contents, such as normal books, or contents that are

originally in digital format but converted to other formats that suit the ones used by the

concerned community of practice.

Data indexing and retrieval is maintained through the assignment of appropriate

metadata to accompany the created contents: this serves the needs of the communities of

practice to meet their long term data preservation requirements. This process adheres to

the common standards used in contemporary DLS implementations, as indicated by the

principles outlined in the ‘Framework of Guidance for Building Good Digital

Collections’ as set out by NISO [111] stating “collections should be described so that a

user can discover characteristics of the collection, including scope, format, restrictions

on access, ownership, and any information significant for determining the collection’s

authenticity, integrity, and interpretation”. The importance of maintaining effective

content preservation and retrieval practices is further highlighted by NRGL [112] that

states “various metadata formats are important for indexing, upload of content, making

it accessible and content protection”.

Figure 3-3 illustrates some of the tools that may be used in content creation. These tools

may include 3D model creation tools such 3ds Max, 3D animation creation tools such as

Blender, image editing software such as Adobe Photoshop, etc. The contents created by

these tools are rendered so that they can be appropriately handled by the DCA services.

58

Figure 3-3 DISPLAYS Digital Content Creation Services (DCC)

3.4.2 DISPLAYS Digital Content Archival (DCA) Services

Archival services play an important role in digital resources and DLS implementations,

as these systems are actually considered to be the natural progress from the traditional

forms of digital archives [113]. Archival services have always been an integral part of

DLS implementations, as explained in Section 2.1.3.4, due to the key role they play in

managing the collections held in digital repositories. Likewise, DISPLAYS heavily

depends on an advanced archival services that are utilized towards the goals of

providing advanced digital object archiving and management capabilities.

The DISPLAYS DCA services primarily work on providing DLS users with a set of

archival application tools that can be used to archive the digital contents being used in

any given context. This process covers the different data types and media that an

organization is likely to use, such as digitized documents, audio, video, images and 3D

graphics. Furthermore, the underlying DISPLAYS DCA services are primarily aimed at

facilitating the storage and management of the contents created by the DCC services,

paving the way for re-using them by the system’s communities of practice [5].

The functionality of the DISPLAYS DCA services revolve around the processes of

inserting data (create), getting existing data (retrieve), modifying existing data (update)

59

and deleting data (delete), so called CRUD operations, which directly interact with the

system’s digital heritage objects [7]. So, in the context of a DISPLAYS implementation

the CRUD operations for archiving a digital heritage object would require interfaces for:

1. Inserting a digital object into the DISPLAYS repository

• Examples are the ARCO ACMA Cultural Object Manager, or an Excel

XML generator to create an XML file for a flat file repository.

2. Modifying existing data in the DISPLAYS repository

• Examples are the ARCO ACMA Cultural Object Manager, or the Excel

interface to an XML file.

3. Retrieving digital objects from the DISPLAYS repository

• Examples are the ARCO ACMA Cultural Object Manager, or a website

that queries XML files through XSLT files.

4. Deleting digital objects from the DISPLAYS repository

• Examples are the ARCO ACMA Cultural Object Manager, or a website

that enables the deletion of objects’ data by sending SQL delete

commands to a database that holds the managed objects.

DCA services are ideally customizable by the communities of practice so that they can

be adapted to suit their evolving needs. An example of this would be to build social

networking functionality such as comments boxes, and photo and video upload, etc.,

into the DLS [1]. More specifically, an existing digital object in a DISPLAYS system

could be modified using the Facebook comment API to add a comment to the digital

object record by a visitor; this is actually implemented in the current version of RCH

described in Chapter 4 of this thesis. More importantly, the DISPLAYS DCA services

have built-in metadata, ontology and resource discovery standards to facilitate the data

preservation and retrieval operations by means of the effective interpretation of the

metadata introduced by the DCC services [7]. DISPLAYS implementations can utilize a

variety of metadata standards, for example the RCH implementation uses the Dublin

Core standard. DCA services are further illustrated in Figure 3-4. Again, a typical DCA

service may be associated with a variety of archiving tools such as relational database

packages (SQL Server, MySQL, Oracle, etc.). The ACMA Object Manager is used in

60

this instance as the management medium within the DCA (see Section 2.1.6.6). Other

simpler (lite) archiving methods can also be used, such as Excel and XML files.

Figure 3-4 DISPLAYS Digital Content Archival (DCA) Services

3.4.3 DISPLAYS Digital Content Exposition (DCE) Services

The utilization of virtual digital object expositions is a common notion that

accompanies cultural heritage applications due to the need to virtually expose the

managed collections in more meaningful ways [114]. In view of this, a project with a

similar implementation that can be mentioned in this context is the Biblioteca

Universalis Digital Library Project [115], which aims to “make the major works of the

world’s scientific and cultural heritage accessible to a vast public via multimedia

technologies” [115]. DISPLAYS virtually shares the same above object exposition

goals, and this is reflected in the range of exposition functionalities that it provides its

DLS implementations with.

DISPLAYS DCE services represent a set of pivotal services that heavily interact with

heritage objects that are rich by nature. Moreover, the DCE services are utilized towards

the goal of providing highly customizable heritage object virtual exposition services that

can be manipulated in a number of ways by the system users, especially in relation to

the process of building virtual museums – ARCO for example has a major goal to

provide DCE services that allow museums to create virtual museums. Another aspect

that highlights the importance of DISPLAYS DCE services is the fact that they act as

61

agents to create knowledge out of the underlying cultural heritage context in place. That

is, it is the DCE services that museum professionals use to capture their interpretation of

the managed digital objects via themes, exhibitions or virtual museums (online). Thus,

DISPLAYS DCE services allow the communities of practice to build and publish their

own custom-made multimedia-based heritage expositions on the networks of shared

enterprise systems [116]. This fulfils one of DISPLAYS principle functional goals,

which is concerned with the objective of creating virtual expositions especially in the

form of virtual museum expositions. Such expositions can then be used and explored

through DCP and DCI services respectively by the community, thus sharing this

knowledge leading to more understanding of heritage in the collections [116].

The DISPLAYS DCE services can be based on template technologies [7] in association

with Extensible Markup Language (XML) based languages such as X-VRML, VR-

BML and VRML/X3D [1]. This variety of formats aims to allow for the correct

presentation of the handled heritage objects. The functionality of the DCE services is

complemented with the DCP and DCI services as discussed in Sections 3.4.4 and 3.4.5.

The DCE services may comprise a number of content exposition tools such as 3D

exhibition creators as shown in Figure 3-5. The ACMA Presentation Manager is utilized

here (as an example) to present the results of the exposition process to the targeted end-

users.

Figure 3-5 DISPLAYS Digital Content Exposition (DCE) Services

62

3.4.4 Digital Content Presentation Services (DCP)

Presentation needs in a DLS are notably addressed in a number of similar systems and

implementation models, such as the DELOS Digital Library Reference Model [117] that

was discussed in Section 2.1.5.2. DELOS provides its users with a personalized object

browsing experience by exploiting proprietary information visualization via some

custom devised novel user interfaces. Another example is the ARCO Presentation

Manager, which is typically integrated into a museum’s website [65].

Avis et al [118] define the process of digital object presentation as an interdisciplinary

activity that involves the use of computing resources to visualize data objects. In a DLS

context, the object presentation process involves visualizing the handled objects into

formats that can be viewed by the system users. One of the main motivations behind the

development of the DISPLAY DCP services is to address a long-standing problem in

digital heritage contexts, which is the lack of coordinated digital resources and tools to

“access, analyze and visualize archaeological data for research and publication”,

Pettersen [116].

DISPLAY DCP services provide highly innovative application tools that have the

capability of enabling the communities of practice to effectively visualize their own

heritage objects within multi-lingual and multi-disciplinary contexts. This process is

achieved by using different techniques including virtual, mixed and augmented realities

on the web [7].

Figure 3-6 illustrates a typical DISPLAYS DCP service. A number of tools are used to

present the results of the DCE services. Such tools include, for example, Panda3D for

3D object presentation. Another example is the ACMA Presentation Template Manager

that can be used to define the layout of the virtual museums to be used in conjunction

with the DCI services.

63

Figure 3-6 Digital Content Presentation Services (DCP)

3.4.5 Digital Content Interaction Services (DCI)

The importance of effective digital object interaction services in the context of shared

DLSs is discussed by Clubb et al [107] who state “institutions are now looking at

outreach and other ways to be more relevant to their communities and their customers’

daily lives. The focus is now on the experience, both real and virtual, of the institution

itself, as well as the institution’s collections”.

The DISPLAYS DCI services empower the communities of practice to interact with and

manipulate their own objects by using some innovative multimedia interfaces, such as

gaming interfaces that add a ‘user interactivity’ dimension to the managed cultural

heritage object collections [7]. DISPLAYS DCI services support a variety of interaction

modes such as website interfaces, touch screens, 3D Models, etc., within a variety of

environments (Intranet, the Internet, computer kiosks, etc.).

Figure 3-7 illustrates a typical DISPLAYS DCI service where a number of mediums can

be used by the end-users to interact with the displayed contents. For example, users can

interact with virtual museums by using touch screens and joysticks. Alternatively,

contents can be displayed in interactive websites that comprise interactive 3D virtual

museums for instance.

64

Figure 3-7 Digital Content Interaction Services (DCI)

3.5 The DISPLAYS Architecture

The DISPLAYS framework is based on a service orientation (SO) approach where the

different system services are provided by highly customizable independent code

modules, or off-the-shelf components, or any combination in-between [1]. This loosely-

coupled approach paves the way for unlimited opportunities in terms of the services that

a DISPLAYS based system can provide for its communities of practice, as stated by

Patoli et al [1] “by using an SO approach it is envisaged that each element of the

heritage data model can be created with either specifically designed components or

existing components that are distributed and whose functionalities can be accessed

through web services to create heritage applications”.

The adopted paradigm has manifested itself in the DISPLAYS services, as explained in

Section 3.4. For example, the DCA services have the sole role of providing innovative

and customizable archival facilities for the communities of practice while being flexible

enough to meet their individual needs. In a typical DISPLAYS DLS, the required

functionality (in this example DCA services) can be achieved via a web services model

that is consumable by the communities of practice through a specific interface for that

service. More concretely, a DCA service can be a social network component such as a

Facebook photo or video storage and retrieval mechanism. In this example, by

65

definition, a DISPLAYS implementation is distributed – this has actually been

implemented in the latest RCH system (see Chapter 4).

The very nature of DISPLAYS, and its aims and objectives, makes it necessary to adopt

a distributed implementation approach, where interaction between the system services

can be complex at times, especially when it comes to the process of handling the data

and control flows of the system [5]. In an ideal world, a DISPLAYS implementation

would make use of semantic web services, together with associated services such as

semantic service descriptions [7], service level agreements, workflow and orchestration,

management, trust and security, and transport and messaging. However, this is beyond

the scope of this thesis, which focuses on showing how workflow management can be

applied to DLS (see Chapter 6).

However DISPLAYS sets up its services, a community of practice, such as a museum,

should be able to store and retrieve the information of the artefacts that it possesses,

including their textual descriptions, photographs, videos, 3D models and audio clips, by

utilizing the DISPLAYS DCC and DCA services. DISPLAYS can utilize several

different architectures to implement its storage mechanism. For example, DISPLAYS

data could be stored in a distributed implementation based on the use of web services to

connect the distributed components, as implied in the discussion above [7]. Another

method could be to adopt a data Grid approach. This paradigm can be observed in some

similar ventures such as the work done by Larson et al [119], which involved the

creation of a Grid-based DLS with advanced distributed archival and retrieval

capabilities. As the system’s (any DISPLAYS based DLS) archive builds up over time,

the data gets organized into more meaningful information that is beneficial to the

communities of practice for the purposes of digital object preservation and re-use.

The DISPLAYS components themselves can be thought of as being built in a tiered

manner, where the different system modules are grouped in separate layers [7] as shown

in Figure 3-8. In this paradigm, there are two main layers, which are the application

layer and the SOA layer. The application layer provides the actual DISPLAYS user

interfaces (for example, the Facebook interface mentioned above) that directly interact

with the DLS users to achieve a variety of functions, such as content creation and

archiving (of photos and videos). The SOA layer comprises the main system’s web

services that act as functional components providing a number of specialized services

such as workflow management, security framework, database file systems, etc. The

66

DISPLAYS repositories are accessed through service orientation, and this approach has

the flexibility of adding more repositories if the need for that arises.

Figure 3-8 DISPLAYS Architectural Components

A DISPLAYS implementation is envisaged as being distributed in nature, thus the

layers illustrated in Figure 3-8 above imply that these components can be distributed.

DISPLAYS could also be implemented using a P2P Grid approach for storage and

retrieval of data [113] [91].

A more specific example where Grid based services could be useful in a DISPLAYS

implementation, which is distinct from the concept of implementing DISPLAYS as

Grid architecture itself, is the use of a Grid to build a rendering facility [16]. Here, the

computing resources of the DISPLAYS system users may work collectively to produce

complex 3D models, as will be further showcased in the DISPLAYS operational

scenario in Section 3.6.

67

3.5.1 DISPLAYS Grid Infrastructure

Grid computing has been identified as a significant emerging technology that has been

rapidly introduced into software systems [120]. Computer Grids help virtual

organizations, where resources are geographically and physically distributed, to tackle

complex computational challenges by means of integrating efforts and resources that are

available within the enterprise. Moreover, Grid-based implementations particularly suit

virtual systems where intensive data sharing and modelling functions are required

within an enterprise that spans multiple actors who possess different computational

powers.

The nature of the DISPLAYS framework requires the existence of efficient and cost-

effective techniques to serve the data processing and visualization needs of the system.

This is further necessitated by the fact that the system’s communities of practice often

use complex multimedia-based objects, such as 3D and animated models, that require

adequate computing resources to render and process. The use of Grid-based

technologies meets the DISPLAYS framework needs and requirements as it provides

efficient computational, storage and access control capabilities that are much needed by

the system services.

Grid solutions perfectly suit the adopted DISPLAYS SOA approach where there is a

need for Distributed Resource Management in conjunction with the operation of the

different system services and workflows. For example, the system resources can be

pooled to handle computationally strong problems, such as 3D modelling. In this

scenario, custom designed Grid-based Render Farms [16] are utilized to produce the

required computational power that is necessary to undertake such resource-intensive

tasks. By adopting this infrastructural model, the system resources are utilized very

efficiently as they can be orchestrated into achieving certain tasks within a reasonable

timeframe and resource consumption.

Figure 3-9 below shows how a Grid infrastructure can integrate the DISPLAYS services

with the ability to perform different tasks across the system layers. A typical Grid

render farm is illustrated that can be utilized in different DISPLAYS scenarios such as

the production of 3D models as mentioned above.

68

Figure 3-9 Integration of a Grid Render Farm with DISPLAYS

Going into the detail of DISPLAYS Grid implementation is outside the scope of this

thesis, but its importance is further highlighted in the DISPLAYS operational scenario

in Section 3.6.

3.5.2 DISPLAYS Workflow Management

Devising viable workflow solutions for the DISPLAYS framework was a major part of

the research and practical work conducted as a part of this thesis. The integration of a

workflow management component within the DISPLAYS architecture is based on the

idea of integrating a dynamic workflow solution with a heterogeneous DLS

infrastructure. This integration is aimed at providing a number of advanced workflow

management and control services, as proposed by the author of this thesis in the paper

entitled ‘A Dynamic Workflow Management Framework for Digital Heritage and

Technology Enhanced Learning’ [5].

69

The DISPLAYS concept has been practically validated in the case of the RCH DLS as

further outlined in Chapters 4 and 5 of this thesis, thus DISPLAYS as a concept or

framework now became a practical implementation, at least in part. This practical

implementation has implicit workflows that can now be investigated to see how a

formal workflow management service can be applied. For this the archival, retrieval and

presentation components (see Chapters 5 and 6) have been chosen to validate and test

the workflow management service.

Workflow management forms an important part of the DISPLAYS Web Services layer

where there was a need to effectively manage the complex data and control flows of the

system. The proposed workflow solution for the DISPLAYS framework was discussed

further in the paper ‘A Service-Orientation Approach for a Digital Library System

focused on Portable Antiquities and Shared Heritage’ [7], which formed a part of the

research contributing to the theme of this thesis. The work done as part of the above

mentioned paper describes the DISPLAYS framework as a DLS implementation model

that was “implemented through a set of user tools and services that are managed

through a workflow management service. This workflow is a set of web services that

implement data and control flow between the user tools and services and the underlying

distributed application framework (e.g. Grid and P2P infrastructure)”. Such a perception

makes it necessary to have a well-formed custom-made workflow management engine

that is capable of orchestrating the different system services and workflows within the

DISPLAYS convoluted infrastructure.

In a typical DISPLAYS scenario, workflow management starts from the point where a

new object is created, through use to the point where it is actually consumed and

manipulated by the system services such as the DCP and DCI services. As a result,

workflow management should be taken into consideration to provide total automation

and control tools by the workflow management component, leading to autonomous

workflow monitoring and tracking capabilities within the adopted implementation, a

Grid environment for instance.

Two major characteristics are considered in the DISPLAYS workflow management

engine, which are the integration and interoperability between the application and

infrastructural components of the system [5]. This means that the devised workflow

management solution should integrate seamlessly within the SO components of the

70

system as a service layer that provides specialized workflow management and

monitoring services.

In this way, the system workflows can be manipulated in different ways to achieve

application-wide objectives that involve the coordination and management of the

system services and code modules. Such tasks may include, for example, 3D modelling,

object retrieval, visualization, etc. [9]. By adopting this paradigm, specific system

workflows can be adapted to provide the system with the capability to distribute tasks

and data between the internal system components, or among the resources of the users

who interact with the system.

The DISPLAYS workflow management services are categorized into specialized sub-

services that manage the main DISPLAYS services. These workflow management

services manage all DISPLAYS services, starting from content creation and ending with

the presentation and interaction services. Therefore, a custom-built workflow

management framework should be integrated within the system in the form of a

dynamic integrated workflow solution that is hosted within the system’s Grid (assuming

DISPLAYS is implemented in a Grid). This model of implementation should achieve

separation between the business logic [5] and the control elements of the system in a

paradigm that suits the adopted SO approach.

The process of workflow management within the DISPLAYS framework is one that

works in line with all the system processes by coordinating their operations and

providing the necessary tracking and control tools. Furthermore, sequential workflows

[5] are used intensively within the proposed WfMS, whereby the system’s actions are

handled as workflow tasks that can branch into other related paths based on the pre-

defined workflow rules and conditions. This was employed effectively within the RCH

DLS implementation, as will be further detailed in Chapter 6 of this thesis.

An example of a typical sequence of DISPLAYS workflow management is illustrated in

Figure 3-10, where a number of the functional points that workflow management is

involved with are highlighted. This scenario shows a simplified typical digital heritage

object retrieval process within a DISPLAYS implementation.

71

Figure 3-10 Typical DISPLAYS Workflow-managed Scenario

3.6 DISPLAYS Operational Scenario

The following scenario highlights the different operational and practical aspects of the

DISPLAYS framework. It is based on the scenario whereby digital archaeological

artefacts data is being shared between four museums.

3.6.1 Utilization of the DISPLAYS DCC and DCA Services

Four British museums share an interest in the cultural heritage of a certain African

country. When a research archaeologist in any of the four museums finds an artefact

that is related to that country, he initially records its details in a raw format at the site

where it was found. Photographs are taken of the artefact and a brief textual description

72

is written about it. Then, when delivered to the museum, the DISPLAYS DCC and

DCA Services, accessible through a web interface, are used to record and archive the

details of the found artefact.

The other three museums also managed to find other artefacts in different locations in

that country, and used the same archival services to record the findings of their

expeditions. Any additional material, which can span a number of different digital

formats such as videos, images and digital documents, is usually associated with the

necessary metadata that is used for indexing and retrieval purposes. The shared

collection between the four museums gets larger as time passes, as more objects are

added to it on a regular basis.

3.6.2 Utilization of the DCE, DCP and DCI Services

Each museum uses the DISPLAYS DCE services to render the found objects. One of

the participating museums has the necessary expertise to create accurate 3D models of

the discovered artefacts, but it lacks adequate computing resources to create the actual

models. This problem is resolved by utilizing the DISPLAYS Grid that provides the

necessary processing power by means of combining the computing capabilities of the

participating museums. DISPLAYS presents this service in the form of a shared Grid-

based 3D rendering engine. The created models are then utilized in different ways in

each museum. For example, one of the museums uses the DISPLAYS DCP and DCI

services to display the objects on a touch screen that the museum’s visitors can interact

with.

One of the museums decides to run a workshop about its findings so far. The head of

the workshop uses DISPLAYS object retrieval services to find all the objects that had

been found over the last year. The retrieval process returns a number of objects with a

variety of data formats including images, text, video and 3D models. These objects are

augmented into a digital virtual museum exposition that will be an integral part of the

workshop activities and discussions. The virtual museum is created by means of

exploiting the DISPLAYS DCE services that provided the necessary tools to organize

the pooled data into a virtual museum space that can be accessed on the web. Once the

customized virtual museum space was designed, the DCP and DCI services came into

play by giving it interactive features that made it highly interactive.

73

3.6.3 Empowerment of Content Sharing through DCA

An archaeological researcher who works in one of the museums is interested in finding

objects that are similar to the ones that he found, to draw meaningful comparisons and

determine their geographical distribution within the country of interest. DISPLAYS

makes this possible by the techniques it uses to organize data into meaningful

knowledge that is stored in highly accessible digital repositories. He views the other

objects by interacting with the DISPLAYS DCP and DCI services that enable him to get

an exact accurate view of the found objects, including their 3D models, images and

textual descriptions. Moreover, the system enables advanced object retrieval by means

of utilizing the custom-made retrieval tools that can be used by all the museums sharing

the system.

An American museum starts excavation operations in the same country and asks to join

the digital repository shared by the four museums. It seamlessly joins the network based

on DISPLAYS Grid-based scalability that allowed for the expansion of the system with

ease, paving the way for the rapid aggregation and organization of the data that come

from different sources.

3.6.4 User Generated Contents

User-generated contents are collected by allowing the interested researchers and

archaeologists to add their findings via a public Web 2.0 website. This website provides

a number of tools that allow the users to interact with the managed collections. The

provided services include the provision of highly flexible Web 2.0 mashups, and

integration capabilities with social networking platforms such as Facebook, YouTube

and Flickr. Such a rich web interface allows the interested users to share their

experiences and interests on the one hand, and interact with the DLS objects on the

other.

3.7 Summary

This chapter has described the DISPLAYS framework and its services. It was observed

that the DISPLAYS framework was devised to meet a number of goals and objectives

including the creation of highly accessible and sustainable digital heritage repositories.

The DISPLAYS functionality is achieved based on a number of SO services that should

operate on a distributed architecture, e.g. a Grid, but other solutions are possible, such

74

as a simple client server system for a small implementation – web services make this

possible.

The DISPLAYS framework is based on five main services, which are the Digital

Content: Creation, Archival, Exposition, Presentation and Interaction services, in

addition to a Workflow Management service for digital heritage collections.

Furthermore, the DISPLAYS framework is implemented in a layered approach that

encompasses two main system layers, the application layer and the SOA layer. This

allowed for total modularity within the adopted SO approach.

The modular nature of DISPLAYS makes it an easy task to customize it to work in a

variety of environments and scenarios to serve different data sharing and distribution

needs. It helps convert heritage data objects, that are varied in their nature and types,

into meaningful knowledge that can be shared by communities of practice such as

museums, digital libraries and cultural institutions.

The DISPLAYS framework utilizes social networking platforms for greater user

participation and content sharing opportunities. Web 2.0 and social networking

platforms are also used to produce rich information mashups that are used to present the

managed collections in more meaningful ways: this is demonstrated in Chapter 4.

It is a necessary requirement to develop an appropriate workflow management solution

for DISPLAYS due to the complexity of the data objects that it handles and the

intersecting nature of its components. The devised dynamic integrated workflow

management solution provides the necessary tools for managing the sequential heritage

workflows that comprise the system’s functionality. These workflows can be either data

or control workflows that interact with the system services throughout its layers. The

Reanimating Cultural Heritage (RCH) DLS implementation in the following chapter is a

DISPLAYS-based DLS that will be used as a test bed to show that workflow

management is a viable component to achieve its goals (see Chapters 5 and 6).

75

CHAPTER IV

4 RCH - an example DLS System

This chapter discusses the RCH system, which is a DLS implementation that effectively

employs complex heritage workflows in its operation. These workflows need to be

understood before attempts can be made to design effective workflow managers. This

chapter therefore describes the RCH implementation in terms of its workflows. Chapter

5 then takes a more detailed look at some of these workflows: archival, retrieval, and

presentation of digital heritage objects in an RCH website (a virtual museum). Chapter

6 implements this workflow in a workflow hosting environment to test the validity of

workflow management in the context of DLS components.

RCH is based on the generic DISPLAYS framework that was discussed in Chapter 3. In

this chapter, the services of the online digital heritage resource that RCH provides are

discussed while covering the adopted architectural approach. RCH exploits various

technologies, such as Web 2.0 mashups and social networking platforms, to enhance its

functionality. Such functionality is accessed through web services connecting user

generated contents to the RCH system. RCH is implemented as a digital heritage

resource that holds the digital collections of several museums, i.e. the British Museum,

the Brighton Museum and Art Gallery, and the Glasgow Museum (other museums are

also adding their collections). Thus, RCH highlights the DISPLAYS concepts within a

practical scenario that showcases the technical and functional capabilities of the adopted

framework. RCH services are covered in more detail in Chapter 5 while focusing on

their technical aspects.

Finally, the role that workflow management plays within RCH is covered. This is done

while illustrating where and how workflow management should be applied to the RCH

system to contribute to managing, coordinating, monitoring and tracking its complex

heritage workflows.

76

4.1 Introduction

Contemporary museum practices tend to complement the textual information that

accompanies museum collections with animated media. This association of media with

descriptive text is used to display cultural heritage objects in exhibitions that closely

depict the actual contexts that originally animated them [121]. Emerging software

technologies and innovations, such as social networks, can provide cultural institutions

and shared interest groups with new opportunities to create their own shared

‘reanimated collections’ of cultural heritage objects. This sharing of reanimated

collections (i.e. museum collections integrated with user generated content) is achieved

through an RCH mashup interface while exploiting social networks. Users or

communities are able to connect their diverse social networks to augment data related to

a specific area of interest such as a certain group of artefacts (a museum collection for

instance). Additionally, the advent of interactive digital technologies, especially those

that are web-based, have paved the way for the creation of virtual digital heritage

environments, i.e. a virtual museum, particularly if it has 3D digital contents to better

justify the term virtual. These environments can effectively reanimate cultural heritage

objects in digital space as discussed in the ARCO system in Section 2.1.6.6.

The concept of ‘Reanimating Cultural Heritage Objects’ [1] represents the main focus

of the RCH project where a combination of innovative technological solutions are

utilized to achieve that goal. This is done through the development of a flexible and

unique DLS that is capable of addressing the complex requirements of such an

implementation. Therefore, RCH represents a system that provides sophisticated online

heritage data repositories as a highly accessible digital resource. RCH is a DLS that

adopts the DISPLAYS framework by means of a range of custom-made components

that are based on the DISPLAYS SO conceptual services outlined in Section 3.4.

RCH is actually based on an Arts and Humanities Research Council (AHRC) funded

project to create a digital heritage repository of Sierra Leone’s cultural heritage objects

distributed through the networks of a number of international museums. In the context

of this thesis, this has afforded the ideal opportunity to implement an RCH prototype

(described in this chapter) to test workflow concepts. Reanimating the handled

(physical) objects is done through various media such as images, videos, audio, 3D

models, etc. The main objective here is to link the created digital objects with the actual

oral and performative contexts that originally animated them [1]. By doing this, the gap

77

between the object and its original context is breached allowing for richer, more

accurate, and interactive user experiences. The presented information is further

complemented with social networking features and Web 2.0 mashups that contribute to

adding more information to the managed objects, as illustrated in Sections 4.6 and 4.7.

Zhang et al [1] indicate that RCH depends heavily on a number of innovative software

solutions. These solutions include Web 2.0, Library 2.0, Social Networking

technologies and information mashups. The utilized technologies accompany a number

of custom-made SO functional components. The end result is a number of tools and

applications including Social Networking Data Repositories, Web 2.0 Dynamic

Heritage Mashups, Content Management tools, Data Visualization and Presentation

tools, and other customized management and tracking tools. Moreover, RCH

components are managed through a custom-made dynamic integrated workflow

management engine. This engine is based on the conceptual DLS workflow

management model that was discussed in Section 3.5.2. RCH components and its

operational scenario are discussed in the subsequent sections of this chapter as well as

in Chapter 5, the WfMS solution is discussed in Chapter 6.

4.2 RCH Context

Sierra Leone is a country that has always been renowned for the diversity and vibrancy

of its cultural heritage, including the music, dance, masquerade and storytelling

practices of its various ethnic groups [122]. Despite its rich cultural heritage, Sierra

Leone is one of the least developed countries in the world, impacted with a series of

civil wars and violence that profoundly affected its economic and cultural infrastructure

[123]. The RCH project operates within the context of the Sierra Leonean cultural

heritage and the attempts to reanimate it by utilizing modern software technologies. It

forms an important part of the research work that led to this thesis as it represents the

environment in which the final proposed workflow solution was implemented, as

detailed in Chapter 6. RCH has two major focus areas as indicated by Basu [123] as

follows:

 to examine and validate the practical aspects of utilizing ICT innovations for the

purpose of ‘reanimating cultural heritage through digital repatriation’;

78

 to conduct an anthropological study utilizing the resulting ‘digital heritage

resource’ that the ICT solution provides to explore ”knowledge networks and the

strengthening of civil society in post-conflict Sierra Leone”, Basu [123].

RCH is a multidisciplinary project that involves a number of interrelated specialized

disciplines including anthropology, museum studies, and informatics. Moreover, the

concept of reanimating cultural heritage objects mainly revolves around the process of

reanimating the objects that became totally isolated from the contexts and environments

that originally animated them [119]. An important goal here is to facilitate

“personalizing heritage exhibitions”, Zhang et al [1]. This goal aims at providing a

better contextual connection between the presented cultural heritage objects and their

source communities, hence enabling the provision of a more meaningful set of museum

objects.

Three museums are participating in the RCH project; the British Museum, Brighton

Museum and Art Gallery, and the Glasgow Museum. These museums supplied the

objects that formed the digital collection that is handled by the RCH system. The

participating museums used the RCH system to share and exchange their digital objects

by using its data mapping and distribution tools to convert their digital objects to RCH

digital objects and vice versa: this process will be detailed in Section 5.3.2. Moreover,

the digital heritage resource that RCH represents has an online user interface that

allowed interested users to interact with the managed objects, as will be elaborated in

Section 5.4.

Figure 4-1 illustrates the concept of RCH while highlighting its functional model. RCH

typically handles a variety of Sierra Leonean cultural objects that come from different

disparate sources. The aggregated data belongs to a variety of media that reflects the

richness of the represented objects; this includes videos, audio clips, text, and

potentially 3D objects. The digital resource that is the focal point of the system is

formulated by adopting the DISPLAYS framework, where service orientation is

employed as the main service provision paradigm. Additionally, RCH utilizes a number

of custom-made tools and social networking platforms to achieve its goals, as will be

detailed in Sections 4.5, 4.6 and 4.7.

79

Figure 4-1 RCH Overview

4.3 RCH Objectives

The first goal of RCH is to explore and survey the latest state-of-the-art in digital

museology, including the utilization of new media in cultural applications such as

virtual exhibitions and repatriation applications [124]. RCH also aims to explore how

the reanimation of cultural objects in digital environments can impact on ethnographic

collections and their associated knowledge [1].

RCH aims to investigate the relationships that can be drawn between the elements of

cultural sensory experience and knowledge/memory transmission in Sierra Leone. This

investigation is meant to explore the impact of conflict and political unrest on such

relationships. This goal is compounded with the need to explore the relationships

between material culture, sensory experience and knowledge/memory transmission in

Sierra Leone, which form the actual context of system’s collections [1]. Discussion of

these anthropological issues is beyond the scope of this thesis, instead this thesis

focuses on the ICT needed to implement the project’s goals, which is modelled on a

DISPLAYS concept.

80

One of the important goals of RCH is to create a highly accessible digital online

resource that enables the sharing of Sierra Leonean cultural heritage objects. This goal

is meant to be achieved through the use of advanced web technologies such as Web 2.0,

social networking platforms, information mashups, etc., to enable the creation of highly

accessible knowledge networks.

4.4 The RCH Model

RCH has two broad technical areas:

 the provision of an innovative ICT solution for the reanimation of cultural

heritage objects through the use of digital repatriation;

 the creation of an online digital heritage resource that can be shared among a

number of users within a distributed DLS environment.

RCH’s implementation is based on the DISPLAYS Framework. Therefore, its

components are built as a number of specialized code modules or services based on an

SO approach. DISPLAYS represented a suitable framework to meet the objectives of

the RCH system. Implementation of RCH will validate the concepts, at least in part,

behind the DISPLAYS framework. The DISPLAYS framework was specified to deal

with complex heterogeneous DLS implementations, as was discussed in Section 3.5.

Each of the DISPLAYS services is represented in a number of application tools and

interfaces that supply a DISPLAYS-based system with a set of functionalities that serve

its different needs. Such services can take the form of either standalone or networked

components depending on the purpose for which they were devised.

In synergy with the DISPLAYS framework, the underlying RCH implementation

comprises four of the five main DISPLAYS services. These are the digital heritage

object: archival, exposition, presentation and interaction services. The archival services

(e.g. database, Excel, XML import and export) provide the necessary tools to archive,

exchange and retrieve the digital cultural heritage objects as detailed in Section 4.5.1.

On the other hand, the exposition (e.g. XML data and configuration files, windows

folders) and presentation (e.g. XSLT processing, JavaScript, PHP and web servers such

as Apache) and interaction (e.g. the website configured as a virtual museum) services

provide a variety of ways by which the RCH contents can be visualized and displayed

via different technological mediums, as will be explained in Sections 4.5.2 and 4.5.2.

Finally, a workflow management infrastructure is necessary to manage the system’s

81

convoluted workflows, as will be explained in Chapter 6. The WfMS component is

based on the model that was outlined in Section 3.5.2 as a part of the DISPLAYS

framework.

The participating museums share an interest in Sierra Leone’s cultural objects, and use

RCH’s tools and services as a medium for exchanging the cultural object data that they

have in their collections. RCH gave these museums a common Web 2.0 online interface

(a shared collection) that is accessible by various user groups. This is a practical

example of a combination between the concepts of Library 2.0 and advanced distributed

DLSs that were discussed in Chapter 2.

Figure 4-2 illustrates the RCH data components and workflow. It can be seen that the

different RCH services are at the heart of the system as they form its functional core.

These services run on the foundation of a networked distributed infrastructure that is

accessible by the participating museums. The RCH services interact with the system’s

users through a number of custom-devised user interfaces. RCH interacts with its users

mainly through a Web 2.0 website frontend that can be tailored to suit the needs of its

users. Furthermore, RCH has the capability to import the data related to the digital

collections held in each of the participating museums. This is achieved via a number of

data mapping and distribution tools that are used to facilitate data exchange between the

RCH data model and the models used in the participating museums. One of the most

distinct characteristics of RCH is the innovative approach in which heritage object data

representation was combined with some emerging social networking technologies and

Web 2.0 mashups. This integration paves the way for a richer user interaction and a

variety of ways in which the system’s data can be presented, preserved, enriched and

manipulated, as will be further showcased in Sections 4.6 and 4.7.

82

Figure 4-2 The RCH Data and Integration

4.4.1 RCH Architecture

The RCH system depends on an active database backend (XML based) due to its data-

centric nature. The system’s components operate on top of database services that are

implemented in two main ways. An RCH implementation can have either a traditional

database backend or customized XML-based data management services. An XML

implementation exploits the universal nature of XML files [125], while allowing the

participating cultural institutions to freely distribute and exchange their data. The

utilization of XML overcomes the barriers of the various data storage formats and

standards used in the participating museums. On the other hand, a traditional integrated

database backend is also possible, which can act as a central data storage repository that

can be used by the system users. This backend can be an SQL Server database, an

MySQL database, an Oracle database, or any other database technology depending on

the context of RCH’s implementation. Hence RCH’s generic data model can be adapted

to a wide variety of data storage and management solutions that can be used by the

cultural institutions that might be using its services.

Figure 4-3 illustrates the RCH architecture and its data model. An ARCO data model

[65] is adopted as an example in the database-based implementation, and an XML based

data model (the adopted one) is also shown. These in effect are two separate

implementations with different associated services, because the database (ARCO), or

the XML model, can be used to drive the data services. For example, if an XML

83

backend is adopted, it will consequently require the existence of appropriate XML

management tools and Extensible Stylesheet Language Transformation (XSLT) files for

the purposes of data retrieval and presentation in some cases. Whereas, the utilization of

a traditional database model, such as a Relational Database, necessitates the existence of

a set of supporting tools and technologies, such as the Structured Query Language

(SQL), for the purpose of data retrieval. On the other hand, the RCH database backend

interacts with the core system services and components, which in turn interact with the

system’s users via a number of custom-made interfaces, as illustrated in Section 4.5.2.

Figure 4-3 RCH Architecture

4.5 RCH Services

RCH comprises a number of services that perform different tasks according to the needs

of the participating museums. The archival, presentation (and its associate retrieval

services) and interaction services are among the ones that were used to prove the

workflow concepts proposed in this thesis. These services were built (as actual DLS

components) and then managed by the devised WfMS prototype as illustrated in

Chapter 6.

4.5.1 The Archival Services

The RCH archival services consist of a number of application tools that are used by the

participating museums to submit their data to the system, exchange data and retrieve

cultural objects’ data. RCH’s archival services overcome the problem of the diversity of

the data and storage formats used by the different RCH users. This is achieved by

providing a set of common tools to be utilized by each museum. These tools include a

84

number of data mapping and conversion tools that allow for effective and standard-

compliant data exchange operations, as will be explained in Section 5.3.2.

The archival services are designed as independent code modules that can fit within the

existing collection management systems used in the participating museums.

Consequently, two versions of the RCH archival services were created as follows:

• a desktop version that is DLL-based and is designed to suit users who have

limited or no online access. So, this version allows them to perform data

conversion operations locally;

• an online version that is based on web services and is designed to be distributed

within RCH’s enterprise to be shared by the participating museums.

4.5.2 The Presentation and Interaction Services

The RCH implementation uses web pages as the main medium for visualizing its

contents including the different media types that are associated with each object. If an

XML flat file system is used as the database backend, XSLT (and potentially XQuery)

is utilized to dynamically present the system’s objects within a template-based website

frontend. The website UI is complemented with a number of additional features, such as

Web 2.0 mashups and social networking functionality, to provide the RCH users with

richer online experiences. Such experiences include the ability to create and preserve

custom-made Web 2.0 mashups on the one hand, and the addition of community-

generated contents on the other.

The presentation services are complemented with data retrieval services that aid the

system users to retrieve the cultural heritage objects that they are looking for. As the

data of displayed cultural objects is stored in XML files, the retrieval operations are

based on the exploitation of XSLT logic to extract the required subset of cultural

objects, as detailed in Section 5.5.

The RCH interaction services allow the system users to interact with the visualized

objects within the system’s web frontend. Such an interaction is enabled through a

number of tools such as a ‘drag and drop’ functionality, touch screen interfaces, etc., or

even augmented reality if the ARCO ARIF is deployed [65]. An RCH web interface is

illustrated in Figure 4-4 where a snapshot of the presentation of the stored objects is

shown. The aggregated data is displayed within a museum-specific categorization.

Objects can be then more finely listed, either by browsing the different object categories

85

such as Mende, Susu, Temne, etc., or by using the provided advanced search

functionality. The different characteristics of the RCH presentation and interaction

services are discussed in Section 5.4.

Figure 4-4 RCH’s Web Interface (presentation services)

4.6 RCH Web 2.0 Mashups

The advent of Web 2.0 has transformed the web, paving the way for a number of

innovative solutions that made the creation of effective data aggregation tools and

applications a reality. Web 2.0 has allowed web users to effectively share contents of

different media while being able to fully interact with other users who share the same

interests [106]. Web 2.0 mashups are an emerging technology for the creation of

dynamic data-rich web applications that aggregate open and subscribed data from a

variety of sources, such as YouTube for videos, Flicker for images, Facebook for social

contents, etc. [1]. Such rich contents can complement the contents or themes of

knowledge-oriented websites by providing them with related contents that add more

information to them [1].

86

RCH exploits the opportunities offered by Web 2.0 by the creative mix between the data

it processes and enterprise Web 2.0 mashups. Integration of Web 2.0 mashups aims to

enhance the displayed objects by means of pooling related data from different online

sources. This is done to present the managed objects in custom-designed virtual

museums or exhibitions that can be manipulated and preserved in different ways.

Furthermore, integration of Web 2.0 mashups also allowed the end-users to build their

own data-expositions that can be used for presentation and preservation purposes.

Coupling the museums’ rich Sierra Leone’s heritage objects with user generated

contents in Web 2.0 mashups, contributes to the creation of unique online experiences

within the created distributed online heritage resource (virtual museum). The resulting

Web 2.0 mashups are not meant to be a replacement for the original museum contents;

rather they are used to enhance them by giving the RCH users better tools to group

museum and user generated contents together. In such a virtual museum, museum and

user generated contents are aggregated into a single meaningful interface that can be

used for different purposes. For example, Web 2.0 mashups are used to create virtual

exhibitions that present digital objects collected from different sources, as will be

further explained in the example implementation below.

4.6.1 RCH Mashups Implementation

An example implementation of Web 2.0 mashups in RCH is represented in the form of

a 3D Scrapbook [1]. The RCH’s Scrapbook was devised as a mashup that is used to

retrieve data from different online sources. These sources include Bing (which is a

search engine), Flickr (which is an image sharing website), YouTube (the video sharing

website), and a museum’s archive (ARCO for example). Data is retrieved through the

web services and APIs of the respective data sources being used in the Scrapbook. It is

then presented in virtual 3D exhibitions that can be designed by end-users using a set of

interactive tools provided within the RCH’s web interface.

The provided mashup can be utilized in different ways. For example, a participating

museum may create its own virtual exhibition by using the scrapbook’s mashup

functionality. This can be achieved by grouping related objects in a virtual showroom

that has a 3D interface. Furthermore, the RCH mashup functionality comprises a search

and retrieval capability that is used to search the data collections present in the online

sources being used. For example, the videos that are related to a specific object can be

87

retrieved by using the integrated YouTube search functionality. Moreover, the search

capability is further complemented with a catalogue functionality that is used to aid

users to select their desired objects and save them for later presentation purposes.

The Scrapbook interface is illustrated in Figure 4-5 that highlights its functionality. The

RCH Scrapbook is based on two main operations: the object retrieval operation and the

exhibition (exposition) creation process. The search capability is provided by means of

utilizing the RCH mashup search engine to locate the data related to the objects in

which the user is interested. The found objects, which may comprise text, images and

videos, can then be presented within a 3D virtual exhibition. Users are equipped with a

simple drag-and-drop interface that allows them to arrange the gathered object into a

virtual 3D museum space, which can be saved, either online or locally, for preservation

and presentation purposes.

Figure 4-5 RCH’s Web 2.0 Mashup Scrapbook

88

4.7 Social Networking Integration

The concept of ‘reanimating cultural heritage’ cannot entirely rely on curators’

interpretation; source communities and interested users should also have the ability to

add their input to the visualized objects. By allowing communities to enhance the

cultural and heritage object collections, they will be able to add their own perspective to

the managed objects while preserving their curatorial integrity. Therefore, in addition to

exploiting Web 2.0 mashups, RCH utilizes social networking technologies to give its

contents an extra depth while enhancing user interaction and participation.

Social networking is an emerging computing paradigm that allows web users to interact

and socialize online by means of using a number of shared tools and databases [126].

Social networking technologies allowed web users to communicate and collaborate

beyond the technological and geographical barriers imposed by any given ICT

infrastructure [1]. They also allowed for the creation of rich online communities that

generate contents made by their users. Such contents evolve and become enhanced over

time as the social network grows in size. RCH utilizes a number of social networking

platforms to enhance the contents that it is presenting to its users by adding user-

generated contents to them. An example of social networking integration can be seen in

Figure 4-6, where users are able to add their input in regard to the displayed digital

objects by using an integrated Facebook component (comments textbox).

Social networking integration with RCH is centred on the idea of a ‘Shared Interest

Focus’ [1], as a number of users share their interest in a certain topic leading to sharing

discussions and objects related to it. This process leads to the creation of user-generated

digital contents where shared online repositories are generated based on the users’

focus. By doing this, the user communities are able to communicate and discuss their

heritage objects’ data. They are also empowered to submit digital representations of

their objects (for example images and videos) to appropriate social networking mediums

such as YouTube and Flickr. Within RCH’s context, YouTube and Flickr components

are utilized as a part of the RCH mashup services, as was illustrated in Section 4.6, thus

they then become part of the virtual museum. Moreover, Facebook was also integrated

to gather user-generated contents and feedback as will be highlighted below.

In a typical social networking scenario a user will search for a specific object through

the system’s object browser. The RCH search engine will return a list of the objects that

89

match the entered keywords. The user then clicks on the object that he is interested in to

view its full details. Being logged into his/her Facebook account, the user will be able to

comment on the object on display and this will be associated with the object and the

RCH’s pages in Facebook. This scenario is illustrated in Figure 4-6.

Figure 4-6 Facebook Social Networking Integration with RCH

4.8 Heritage Workflow Management in RCH

In a digital heritage resource such as RCH, data flows can be very convoluted (they can

be simple or complex) due to the different scenarios and user cases that are related to

the operation of RCH’s different components and services [5] [6], thus requiring many

complicated and varied workflows. Such services may require sequential or

simultaneous operations within the system’s workflow hosting environment. These

operations are compounded with a number of complex operational scenarios and

workflows that necessitate the existence of effective tools to manage, coordinate, track

and monitor them. Hence, within the context of RCH, a workflow management system

(WfMS) needs to be designed to allow the different museums’ digital collections to

90

integrate with each other while using the shared environment and tools provided by

RCH. RCH’s workflow management solution is based on the implementation model

highlighted in Section 3.5.2, the details of its implementation are shown in Chapter 6.

RCH workflows can be either manual or automatic. An example of a manual workflow

is the act of taking a photo of an object. A good example of an automatic workflow is

the process of mapping the museums’ data from one format to another, which is done

through the system’s archival services. These two categories encapsulate all the

system’s workflows (heritage workflows) that operate either sequentially or in parallel

according to their underlying scenarios and user actions. It is possible to design many

different groups of workflows depending on how the RCH system is implemented.

Figure 4-7 shows an abstraction of an RCH (or DISPLAYS) type system, where we can

see the five main services and a set of four layers: digital, process, system and user.

Figure 4-7 Abstraction of a RCH Type System

In Figure 4-7, we can see that we could create ‘system’ (to manage the overall RCH

based virtual museum), ‘content’, ‘archival’, ‘exposition’, ‘presentation’ and

‘interaction’ workflow managers that match the service based components. On the other

hand, we could build the ‘create’, ‘interpretation’, ‘use’ and ‘explore’ workflow

91

managers implied at the ‘process’ operational level. Whichever approach is used, each

of these workflow managers is composed of two parts: 1) a host, which is the

underlying application environment, and 2) the actual workflow, which is a runtime

object that is populated with the service components. For example, archival and

exposition services would be runtime objects used during the execution of the

‘interpretation workflow’, which is hosted in an application environment. The full

details of RHC’s integrated workflow system implementation are comprehensively

covered in Chapter 6 of this thesis.

4.9 Operational Scenario

The set of scenarios below highlight some of the functional areas that are related to the

use of RCH by the participating museums.

4.9.1 Content Sharing and Distribution

The Brighton Museum wishes to add its data to the RCH digital resource. It utilizes

RCH’s archival services to convert the data of its latest objects to a format displayable

in RCH’s interface. The same applies to the two other museums, which constantly

enhance the created shared heritage resource by adding more objects from their

collections. This is a two-way operation as museums can also import data from RCH to

enhance their own collections. Each museum uses the RCH data mapping and

conversion tools to import/export the required data.

4.9.2 Object Retrieval

A user is looking for traditional tribal Sierra Leonean masks. He opens the RCH web

interface (see Figure 4-4) and uses the keyword-based retrieval services to locate the

objects that he is looking for. He views a list of search results and clicks on a mask that

he is interested in to obtain its details. The RCH presentation services display the

mask’s image and textual details to be viewed by the user. The user gets to see more

results via the related objects gallery in the object details page.

4.9.3 Integration of Web 2.0 Mashups

A user browses the RCH frontend and opens the Scrapbook page (see Figure 4-5). He

searches for the item “Mask” and chooses to find results in Flickr and YouTube. He

then drags and drops some of the results in the 3D virtual museum space to use them to

92

illustrate some of the concepts that he intends to illustrate to a study group. The user can

then save and publish the scrapbook to virtual space, thus adding knowledge to the

collections.

4.9.4 Integration of Social Networking Functionality

A researcher is interested in finding African shields: he uses the RCH interface to locate

some Sierra Leonean shields. Using his own knowledge, he notices that one of the

shields is similar to one found in Ghana. He uses the Facebook commenting box to add

that comment, which gets published under the object (see Figure 4-6). Other users start

adding comments trying to explain the reasons behind such similarities.

4.10 Summary

The RCH system represents a good implementation or validation model for the

DISPLAYS conceptual framework. RCH’s utilization by the three museums that use it

proves that it can be effectively used to serve the purpose of reanimating Sierra Leone’s

cultural objects. This reanimation is complemented by allowing RCH users to share and

exchange their data. This model led to the creation of a highly available and accessible

online digital resource that can be shared and accessed by a number of users in a

distributed environment.

RCH is an SO application where modular services provide its overall functionality. In

this regard, RCH has four main services, which are the archival, exposition,

presentation and interaction services. It also employs some emerging web technologies,

such as Web 2.0 mashups and social networking platforms, to enhance the contents

displayed in its web presentation layer.

Web 2.0 mashups form an integral part of RCH’s web interface where users are allowed

to aggregate contents from different online sources such as YouTube and Flickr.

Objects are located by means of using a set of advanced search and retrieval tools to

locate the data that is related to the cultural objects of interest. The aggregated data can

then be further animated by representing it in a virtual museum or a collection of web

based exhibitions that are highly customizable and can be preserved for later online and

offline use.

Social networking is also integrated within the system for the vital goal of adding the

community’s perspective into the objects on display. This integration is achieved via the

93

integration of Facebook, where, for example, users can comment on the displayed

objects via a Facebook comment box. Facebook integration led to enabling the RCH

users to have more interaction modes with the displayed contents, which consequently

led to enriching the data on display with community-oriented contents.

Finally, the complex and intersecting system workflows make it necessary to devise an

appropriate workflow management engine that is hosted within the system’s enterprise.

This workflow system aims to provide the necessary workflow management, tracking,

coordination and monitoring capabilities for the RCH services and components. The

RCH’s data and control workflows are classified into six interrelated categories which

are system, content, archival, expositions, presentation and interaction workflows.

These workflows are meant to be managed by the devised workflow system. Based on

that, workflow management formed an integral part of the RCH system as it managed

its different functional operations, such as data mapping and conversion, content

creation, object retrieval, etc., as will be detailed in Chapter 6.

94

CHAPTER V

5 RCH Archival and Presentation

This chapter discusses in more detail two of the RCH system services or components

that will be modelled in Chapter 6 as a hosted workflow environment to test the validity

of workflows in digital library systems (DLS). The architectural details presented in this

chapter are based on the SO implementation model discussed in Chapter 4. This

particular prototype implementation of the RCH archival and presentation components

is described in terms of the Model-View-Controller (MVC) design pattern. The

functionality of the archival create, read, update and delete (CRUD), and presentation

(retrieve and display) components are illustrated in terms of creating digital objects for

archiving in an XML store using the prototype archival processes. Retrieval of the same

objects is achieved using a search and browse functionality to present these objects on

the virtual museum interface. Additionally, this chapter also discusses the underlying

implementation of the tools that the system provides, while focusing on their

management and data flow aspects. These will be discussed in more depth in Chapter 6.

The design of each of the highlighted RCH components is outlined in conjunction with

the technical solutions used to build and manage it. The interaction between the

illustrated components is also highlighted. This interaction and message passing

between the system components is also detailed in Chapters 6 and 7. This chapter also

discusses the involved user interaction elements wherever applicable, especially RCH’s

website frontend.

5.1 Introduction

A system that is as convoluted as RCH has to overcome a number of challenges to be

able to meet its goals and objectives. Such challenges range from the varied data

formats that need to be handled by the system, to the need to effectively manage its

workflows. A typical RCH workflow starts with the process of content creation and

ends with content presentation. This process involves a number of intersecting data flow

and control workflows that are inherently complex. Furthermore, RCH has to deal with

a variety of digitized museum collections that belong to the participating museums. It

95

also has to deal with other digital museum systems and databases, such as the case with

the ARCO system as explained in Section 4.4.1. This challenge is compounded by the

fact that different museums use different data formats and collection management

systems, which causes a number of compatibility issues [127].

Another important challenge that should be looked at in this context is the object data

mapping needs. What is meant by ‘mapping’ is the process of mapping the object-

related data from the formats and naming conventions used in the participating

museums against the ones used in RCH, and vice versa. This process is an XML-based

mapping process and required building custom-made mapping tools to facilitate data

transfer and exchange operations, as outlined in Section 5.3.2.

In order to effectively manage the stored Sierra Leone’s collection objects, RCH

employs customized tools that support a fully-fledged digital heritage resource

workflow. This workflow spans the process of archiving and presenting the stored

objects (starting with retrieval using search and browse and then displaying the result).

This is achieved through specialized components that interact with each other within the

system’s architectural model. Each component does not operate in isolation from the

others; rather all components work in coordination with each other via message passing

and parameter exchange (either directly or as a web service), as will be further

showcased in Section 5.2 and Chapter 6.

The RCH components and their related tools are illustrated in Figure 5-1.In the archival

component’s block, it can be observed that the archival related activities revolve around

CRUD operations performed on XML files. The presentation component retrieves and

displays data through the interaction with the devised search/exposition tools within

RCH. These components interact with each other via message passing, as further

illustrated in Section 6.6.2.

96

Figure 5-1 RCH Components

5.2 RCH MVC Model

As highlighted in Chapter 4, it was necessary to adopt a loosely coupled SO approach to

be able to manage the complex RCH components. Hence, it was decided to adopt the

MVC model to implement the RCH digital heritage resource. Using such a model was

coupled with a number of operational and workflow management implications as

further highlighted in this chapter as well as Chapter 6.

According to Marston [128], the MVC model is a software implementation paradigm in

which an application is broken down into three parts, which are the Model, the View

and the Controller. Furthermore, the MVC model aims to map the traditional software

input, processing and output rules that are usually associated with an application’s

Graphical User Interface (GUI) [128]. The main concept behind the MVC model is

based on the idea of totally isolating an application’s business logic layer (the

controller) from its data (model) and presentation (view) components. This paradigm

aims to pave the way for separate and independent development, testing and

maintenance for each of the developed components [129]. Moreover, the MVC model is

the recommended architectural design paradigm for interactive web applications [130]

as it provides a range of practical benefits. These benefits include centralized

application control and flexibility in building multiple UI elements (views).

97

The MVC model provided RCH with a flexible model where it is possible to easily

manage and maintain the different system components. The underlying RCH MVC

implementation is highlighted in Figure 5-2 where the relationship between the Model,

View and Controller parts of the RCH system is illustrated. Figure 5-2 shows that the

RCH MVC implementation has three core components: the archival XML files, which

represent the Model, the business logic XSLT files (and associated PHP server side

scripting), which represent the Controller, and a number of dynamically rendered

XHTML files that represent the View part of the model. The particular RCH

functionality discussed in this chapter focuses on three distinct specialized RCH

components that are encapsulated within the MVC model, which are the archival,

presentation and retrieval components. The details of these components are discussed in

Sections 5.3, 5.4 and 5.5 of this chapter.

Figure 5-2 RCH MVC Implementation

98

5.3 RCH Archival Components

As was highlighted in Chapter 4, RCH comprised a number of interrelated components.

From now on the term component rather than service is used, because the goal is to

implement a prototype system to test the validity of workflows, rather than focus on

whether the system uses web services or components. These components work in

coordination with each other to achieve the required functionality. The RCH

implementation as an MVC model focuses on components that are related to the

archival, retrieval and presentation services, which are of significant importance to the

RCH users. These components were built from scratch by the author of this thesis to

validate the DISPLAYS concept and, more importantly, the use of WfMS within a

DLS, as illustrated in Chapter 6.

Digital archiving systems, especially those that are used in cultural institutions, play a

pivotal role in building and maintaining rich and accessible online digital resources.

Furthermore, Kawano [131] indicates that such systems are usually associated with

various types of digital contents such as textual information, images, videos and 3D

object models. Moreover, Kawano [131] also argues that innovative technologies

contribute to the long-term preservation of such objects; a worthy goal that RCH is

pursuing in relation to Sierra Leone’s cultural heritage objects in a practical way, as was

explained in Chapter 4.

The implementation hurdles that the RCH archival components had to overcome can be

compared to the ones faced in a number of similar implementations. For example, the

team that developed the project of ‘Digitizing the National Commission for the

Protection of Human Subjects of Biomedical and Behavioral Research Collection’ [132]

moved through the whole archiving workflow while encountering a number of

challenges. According to Kelley et al [132], these challenges included determining the

appropriate settings, standards, and efficient workflow steps. The RCH project faced the

same set of challenges, especially in relation to the different data formats and

conventions used in the participating museums. Such problems were further

complicated by the need to map each museum’s data to the standard RCH format to be

displayed in the designated RCH website frontend. The techniques that RCH adopted in

its prototype archival components were aimed at overcoming such challenges, as

highlighted in Section 5.3.2.

99

The goal of allowing the participating museums to share and distribute their data was

realized by means of creating a number of specialized distributed archival tools. These

tools perform a number of tasks related to the underlying needs of the archiving process.

These tools include custom-made data mapping and migration utilities; they were built

from scratch to validate the archival workflows as illustrated in Section 5.3.2.

Moreover, the provision of the archiving tools was instrumental in the operation of the

whole RCH system as it allowed the participating museums to achieve the key goals

listed in Table 5-1.

Table 5-1 The RCH Archival Services Goals

Goal Purpose

Collection Unification

To unify the collections of the ‘communities

of practice’ (i.e. the participating museums)

into a single shared and highly accessible

digital resource.

Data Archiving

To allow the participating museums to

archive their own collections within the RCH

repository.

Data Mapping

To allow the participating museums to

export/import their objects to/from the RCH

repository.

Data Exchange

To allow the participating museums to

exchange digital object collections among

themselves.

5.3.1 The Archival Tools

The current RCH implementation is a ‘lite’ implementation, where the data is stored in

XML files rather than using a traditional relational database backend (see Section

4.4.1). Using XML files is justified by the need for a flexible medium to allow for quick

and accurate data mapping and exchange operations between the participating

museums. The data belonging to each museum is stored in a separate XML file that is

100

handled by RCH’s code modules for the data mapping, retrieval and presentation

purposes. Furthermore, the RCH archival component comprises a number of tools that

enable the participating museums to submit their collection-related data to be added to

the RCH repository; hence, the archival mapping process can be a two-way operation.

The archival tools have two operational modes that are managed by the devised

workflow management infrastructure as illustrated in Chapter 6. The first operational

mode is an online mode where the data mapping and transfer tools are provided as a set

of application tools that are published in a shared network. This network can be either

the Internet or an LAN.

The other mode of operation is the offline mode that serves the needs of the museums

that are unable to directly connect to the published archival tools. In this context, a set

of independent application tools that can work in isolation from the system’s enterprise

are provided. These tools have the ability to synchronise their data with the main system

when connected to the appropriate network resources. The RCH archival components

comprise a number of specialized tools outlined in Section 5.3.2.

5.3.2 Data Mapping Tools

Data transfer from the participating museums to RCH and vice versa is not a

straightforward operation. This is because the participating museums use diverse

naming conventions, standards and file formats for capturing, managing and archiving

the cultural objects in their collections. Additionally, the data migration process is

further complicated by the fact that some museums use proprietary non-standard

metadata schemas that include complex nested data records that need accurate mapping

procedures.

Such a complexity made it necessary for the RCH mapping tools to be flexible enough

to handle the different formats and conventions used in the participating museums. The

author of this thesis transformed the manual mapping operation into an autonomous one

by devising a data mapping tool within RCH’s archival component. This tool was then

hosted and managed by the RCH WfMS as illustrated in Chapter 6.

The devised RCH data mapping tool allowed the participating museums to effectively

export their data to RCH to be displayed in its frontend. A snapshot of the data to be

mapped between the three participating museums is illustrated in Figure 5-3. Each

museum uses its own metadata naming conventions for its Sierra Leonean cultural

101

heritage objects. Therefore, to unify the managed collections RCH adopted the ARCO

Metadata Element Set (AMS) [133] to enable a more visitor friendly mapping for the

objects that it stores and distributes. Hence, transferring data from a museum to the

RCH repository involves mapping the migrated data to the RCH format.

The mapping tool itself is flexible enough to be updated with new schema mapping

information when the need arises. Such an update is needed when a museum changes

the naming conventions in use, or adds new data fields to be mapped to the

corresponding RCH fields for instance.

The data mapping process is a two-way operation as it is possible to map the museums’

data to RCH format and vice versa. The need to map from RCH’s format to the

museums’ format arises when museums need to import data from RCH to enhance and

complement their own collections. The different mapping scenarios are detailed in

Section 5.3.4.

102

Figure 5-3 A Snapshot of the Managed Digital Heritage Object Data

103

5.3.3 Design and Analysis of the Archival Mapping Tool

An online mapping tool was created to fulfil the required data management and

distribution producers between RCH and the participating museums. The term ‘online’

is used here as the tool was developed as a web application that interfaced with RCH

and the participating museum repositories. The devised mapping tool had a number of

key requirements as follows:

• the mapping tool needed to be flexible enough to be able to accommodate new

schema mapping rules, or modifications to the current defined rules and

conventions.

• it needed to be effective enough to handle complex mapping operations within

reasonable conversion time and resource consumption rates.

• it should be able to handle any exceptions such as missing tags, blank records,

runtime errors, etc. without crashing (effective error handling).

• it must have a user-friendly interface for fast and straightforward mapping

operations.

• it should have a mechanism whereby new schemas can be introduced and saved

easily.

• It should be able to effectively handle a variety of file types (XML, Excel, PDF,

TXT, etc) for the data import and export operations.

The functionality of the mapping tool revolves around manipulating the ‘node’ attribute

within the handled XML files, which are used to hold the data associated with the

managed cultural heritage objects. The node names represent the names of the cultural

object attributes stored in the participating museums’ data repositories. So, at a higher

level, the mapping process involves mapping the node names of the museum from

which the mapping process is initiated to the names being used in the target museum’s

data schema.

It can be seen in the data sample in Figure 5-3 that ‘<ObjectCategory>Musical

Instruments</ObjectCategory>’ represents a typical node that gets mapped when

conducting the mapping process. So, when involved in the mapping process, the

attribute <ObjectCategory> (cultural heritage object property name) will be mapped to

the corresponding name in the target museum’s XML schema. The actual object data is

not altered in any way in the mapping process as the entire process aims only at

104

mapping the node name (object attributes). The goal of this process is to facilitate the

cultural heritage object data import and export operations between RCH and the local

museums repositories as further highlighted in Section 5.3.4.

One of the key functional aspects of the created mapping tool is the data import and

export mechanism. As the devised mapping tool is data-intensive in nature, it needed to

have powerful data import and export capabilities to enable the participating museums

(or communities of practice) to perform the needed data mapping procedures. The

mapped data is then used in the data import/export activities between RCH and the

museum repositories. Hence, it was taken into consideration to firstly allow the

mapping tool to accept a variety of file types such as the standard XML files as well as

other formats that hold structured data sets such as Excel Sheets and delimited text files,

Furthermore, for data output, XML and other output file formats are also supported

according to the user preferences.

The mapping tool was created as a web application as the aim was to make it available

online to the participating museums while overcoming any hardware or software

limitations. This implementation also suited the distributed nature of DHRs and

provided the infrastructure for potentially publishing the same application as a set of

public web services. Such web services have the flexibility to be utilized in an online

environment in many ways according to the specific needs of the DHR using them.

The UI elements of the created mapping tool comprised a number of basic controls used

for the file manipulation operations (import/export) and the actual mapping process.

Basic indicators are also being displayed such as the total number of converted records

(see Figure 5-12).

The main approach in designing the mapping tool was an Object Oriented one. The

mapping tool was built from a number of specialized classes and components. These

components performed the required mapping and data import/export functionality. The

functionality of the created classes ranged from as basic tasks as a file upload to

complicated tasks such as schema mapping and runtime exception handling.

For the sake of flexibility, the mapping tool’s users were provided with the ability of

saving their preferred schemas. This facility meant that mapping rules can be defined

and stored permanently within the mapping tool itself. Moreover, appropriate error and

105

exception handling is applied. Runtime errors are handled via special exception handlers

so that the tool does not crash in the middle of the mapping process.

5.3.3.1 Mapping Tool Components

From a structural point of view, the mapping tool comprises three main components,

which are the Mapping Classes, Schema Manager, and User Interface (UI) as shown

in Figure 5-4. The Mapping Classes are responsible for carrying out all the mapping-

related functionality and handling any errors and exceptions during the mapping

process. The Schema Manager is the component responsible for storing the schemas

used in the mapping process and their associated mapping rules. The above two

components interact with system users through its online UI that can be viewed in

standard internet browsers. The whole mapping tool primarily interacts with two types

of cultural heritage object data repositories. The first type is the RCH repository itself

that acts as the prime storage medium within the mapping tool as it holds the managed

cultural heritage objects. The second type of repositories is represented in the actual

museum repositories. The mapping tool interacts indirectly with these repositories via

their users (data administrators) as will be further highlighted in Section 5.3.3.4.

Figure 5-4 Mapping Tool Components

5.3.3.2 Mapping Tool Use-Cases

Figure 5-5 below represents a high level view at the mapping tool’s use-cases from the

perspective of the museum data administrators. The data administrators represent the

main system users who use the mapping tool to perform data import and export

activities as well as schema management tasks. It can be seen from the use-case diagram

106

that there are 4 main system operations. These operations include adding a new schema,

managing the exciting schemas, exporting museum data and importing museum data

(we mean by museum data the cultural heritage objects’ data).

The process of adding a new XML schema to the mapping tool is one of the key use-

cases involved within the operation of the mapping tool. This process has the goal of

defining a new set of schema mapping rules to be used when performing the cultural

heritage object data mapping process. It can be seen in the use-case diagram below that

the whole workflow of the schema introduction process starts with adding the attributes

of the schema file such as its version, source, etc. This procedure is followed by the

process of defining the mapping rules for the concerned schema i.e identifying the

corresponding nodes in the RCH schema. Then, the new schema gets stored within the

mapping tool for later data import and export activities. The stored schemas can also be

managed by the mapping tool’s users via the provided management interface. Typical

schema management operations involve editing an existing schema, deleting a schema,

replacing an excising schema and changing an existing schema’s mapping rules.

Another important use-case is the one involved with the process of exporting data to the

RCH repository via the mapping tool. This process starts with uploading the actual file

that contains the data whether it is an XML file, an Excel Sheet or any other supported

file types. The mapping tool then converts the XML nodes of the uploaded file into the

format of RCH based on the stored schema mapping rules. The mapping (conversion)

process starts with firstly identifying the source and target formats and then by

performing the actual mapping process. This process ends with storing the converted

data objects into the RCH repository resulting in expanding it overtime.

The process of importing data from the RCH repository is exactly the opposite of the

cultural heritage data import process. In a typical data import use-case, a museum’s data

administrator may want to add more cultural heritage objects’ data to the database

(repository) the museum he is managing. In this case, the whole process starts with

specifying the data records that are required to be imported, converting them to the

target museum’s XML format and finally outputting the resulted file in the preferred

format that the user has chosen.

107

Figure 5-5 RCH Mapping Tool Use-Case Diagram

108

5.3.3.3 Mapping Tool Classes

The RCH mapping tool consists of a number of classes that cover the functionality it

needed to perform. What follows is a brief listing and description of the main classes

and objects used within the mapping tool, which are illustrated in the class diagram in

figure 5-6. These classes collectively represent the overall functionality of the mapping

tool.

 The File Class

The File class represents the file objects that are being handled through the

mapping tool. For example, schemas are being exchanges in standard XML

schema files, museum data is being transferred in the form of XML or Excel

files and so on. Therefore, the File class has the necessary attributes and

methods (functions) to handle the file-related functionality within the mapping

tool. Such functionality includes create, open, save, delete and move file. Basic

attributes include fileName, Type, Size, Path, etc. The File class is the parent

class of the two subclasses which are the inputDataFile and the outputDataFile

classes which are used in the data input and out operations respectively. These

classes inherit the attributes and methods of the base File class as explained

below.

 The inputDataFile Class

The inputDataFile class is a class that inherits the characteristics of the File class

that is a generalization of this class. This specialised class is used in the data

input operations that are based on file exchange. The file exchange operations

are usually conducted between the RCH repository and the local repositories of

the participating museums. Within the context of the RCH mapping tool,

instances of the inputDataFile class are created and used when performing either

the data import or the schema addition operations.

 The outputDataFile Class

Similar to the inputDataFile class, this class is a specialization of the generic File

class. It is mainly used in the data output operations involved with the mapping

process. For example, after concluding any of the performed mapping processes

within the data export operations, the result is represented in a file that holds the

mapped data. This file is passed to the user who initiated the export process to be

added to the target museum’s repository.

109

 The Schema Class

As illustrated in the use-case diagram in Figure 5-6, one of the main use-cases

within the mapping tool is the one of adding and managing the cultural object

data schemas. This class performs the actual schema management tasks within

the mapping tool. The Schema class is the one responsible for storing and

managing the data schemas being used during the mapping process. The defined

methods include Add, Delete and Edit schema. The used attributes include

Name, ID, Version and Source of the schema.

 The mappingRules Class

The mappingRules class is concerned with storing and managing the mapping

rules within the mapping tool. These rules are used when performing the actual

cultural heritage data import and export activities. As can be seen from figure 5-

6, the mappingRule class has a number of key attributes including Source (the

museum from which the schema came), Destination (which can be RCH’s or

any of the participating museums’ repositories), nodeArray (the XML node

names within the schema) and Version (used to manage and track down the

different versions of the same schema mapping rules). There is an association

link between the mappingRules and the Schema classes as mapping rules are

based on the schemas supplied by the system users. This class has 4 main

operations that are: Define, Store, Update and Delete schema mapping rules.

 The Mapper Class

This class is responsible for performing the actual data mapping operations

according to the rules defined within the mappingRules class. This is indicated

in the class association between the mappingRules and the Mapper Classes. This

class bases the mapping process on the predefined mapping rules and the

preferred user criteria. Such criteria include the source and destination museum

formats and the location where the user prefers the final XML file to be stored

in. This class comprises a number of key mapping functions including:

loadSchemaRules(to load the schema rules needed in the mapping operation),

returnNodeAlerts(to alert the user about any exceptions that he needs to handle),

returnErrorMessages(to return any runtime error messages), returnIndicators(to

return the final results of the mapping process) and returnMappedFiles(to return

the mapped files in the user’s desired format).

110

 The Repository Class

A repository can be either the RCH repository that stores the cultural heritage

objects’ data managed through RCH, or the local museum repositories that vary

in their technologies and structure. As indicated in the class diagram in Figure

5-6, an inheritance relationship exists between the Repository class and two sub-

classes, which are the relationalDatabase and the fileDatabase classes. These

classes represent the actual data storage mediums that might be used in the

participating museums and inherit the actual repository management

functionality that exists in the Repository class. Such functionality constitutes

the following core methods: checkStatus, Connect, terminateConnection and

flushData.

 The relationalDatabase Class

While inheriting the basic repository management functions from the Repository

class, the relationalDatabase class has its own attributes and functionality that

conforms to its nature and structure. For example, it has attributes such as

connectionString, databaseType and functions such as queryDatabase.

 The fileDatabase Class

Similar to the relationalDatabase class, the fileDatabase class has its own

attributes and methods. The unique attributes of this class include: Path,

fileType, fileName, dateCreated, dateLastModified and methods such as

searchFile.

 The Museum Class

This class represents the attributes of actual museums that deal with the RCH

repository. Each museum has one or more data administrators who directly

interact with the interface of the mapping tool and perform tasks such as schema

definition, data import and export, etc. (see Section 5.3.3.2 for more details).

 The museumAdminsitartor Class

The museum administrators are managed through the museumAdminsitartor

class that stores the details of the concerned administrators. Each museum may

have one or more data administrators who represent the main users of the

mapping tool.

111

Figure 5-6 RCH Mapping Tool Class Diagram

112

5.3.3.4 Sequence of Events

The operation of the mapping tool is governed by a certain sequence of events

depending on the user actions as highlighted in the following set of sequence diagrams.

 Export Data

The process of data export has the purpose of adding new cultural heritage

object data to the RCH repository. The goal of this operation is to expand the

RCH repository and to share the added data among the participating

communities of practice. The sequence of events during the data export

operation is highlighted in the sequence diagram in Figure 5-7. The sequence of

events in a typical data export scenario starts with the user opening the mapping

tool in his preferred online browser. The interface of the mapping tool gets

loaded into the browser and the user chooses the desired operation, in this case,

the operation is the action of exporting new cultural heritage objects’ data to the

RCH repository. Then, the user starts adding the attributes associated with this

operation, such as adding a description and remarks to be added to the data if

required.

The actual export process starts with passing the data from the museum’s

repository to the RCH interface. In this case, the user either uploads a data file

(XML or Excel for example) or connects the mapping tool to the database of his

museums through the provided connection interface. The mapping tool then

checks for any errors or data corruption in the entered parameters and passes

them to the specialised mapping classes. These classes start mapping the

exported data into the RCH format. The mapping classes start off by identifying

the source and destination formats to determine the required mapping rules to be

loaded from the Schema Manager, which represents the code infrastructure used

to manage the mapping rules as per the defined museum schemas. Then, the data

gets mapped into the RCH format based on the loaded predefined mapping rules.

The cultural heritage object data export process is concluded by passing the

mapped data to the RCH Repository component. This component represents the

physical storage medium within RCH. The new data gets stored within the

repository and the confirmation of the successful export process gets passed to

the user through the mapping tool’s interface.

113

Figure 5-7 Data Export Sequence Diagram

 Import Data

Another frequent operational scenario within the mapping tool is the process of

importing cultural heritage objects’ data from RCH to the local repositories of

the participating museums. This process is exactly the opposite of the data

export sequence and starts off by the launching the mapping tool’s interface

through the user’s internet browser, as shown in Figure 5-8. Then, the required

parameters are entered by the user. These parameters include the range of the

data objects to be imported to the target museum’s repository. After error

checking, these parameters are passed to the RCH repository itself to extract the

required data items. The extracted data undergoes the intermediate process of

mapping before being passed to the user. The mapping process is a necessary

step in this instance; this is because the data needs to be converted to the format

being used in the target museum’s repository. After performing the mapping

114

process the resulted data (either in the form of XML files, Excel files, database

records, etc.) gets passed to target repository to be added to its existing records.

Figure 5-8 Data Import Sequence Diagram

 Schema Definition

One of the main use-cases in the mapping tool is involved with the process of

adding new mapping schemas as highlighted in Section 5.3.3.2. This is an

important operation as the outcome of the mapping process depends on the

stored schemas and their associated mapping rules (a practical implementation

of the mapping process is illustrated in Section 6.6.1).

The process of adding a new schema starts by opening the interface of the

mapping tool as shown in sequence diagram in Figure 5-9. The mapping tool

then confirms the mapping rules by prompting the user to review the mapped

nodes and make any corrections and modifications if required. These mapping

rules are then stored permanently within the RCH mapping tool for later use.

The specialised mapping classes use these rules to perform the data export and

import operations as highlighted above.

115

Figure 5-9 Adding a New Schema Sequence Diagram

5.3.4 The Data Mapping Scenario

To meet the requirements of the participating museums, the mapping tool is capable of

handling a variety of file formats including XML files. Each file contains the objects’

data and their associated attributes and metadata. Each of the participating museums

(the British Museum, Brighton Museum and Art Gallery, and the Glasgow Museum)

has its own format (naming conventions). During the mapping process, all these formats

are transformed to the standard RCH format so that the data can be unified and

displayed in a single unified interface (RCH website or virtual museum) while adhering

to a single unified format as mentioned above. Once the data is fully mapped by using

the provided tools it is then listed in the RCH’s frontend in the designated data sections.

116

The end result of the mapping process is a single valid XML file for each museum that

is manageable by the RCH web application, allowing for control of data presentation

and retrieval operations.

The mapping tool handles the mapping procedure through a set of predefined mapping

conventions. For example, the Glasgow Museum uses the term ‘Classifications’ for

describing the categories of its objects, whereas RCH uses the term ‘Object Category’

for the same purpose, as shown in Figure 5-3. Therefore, when transferring object data

from the Glasgow Museum to RCH, the Glasgow schema is mapped into RCH’s to

enable such a migration.

Another important role that the mapping process plays is enabling the participating

museums to expand their own collections data by importing the data used in other

museums. Therefore, a museum can import the details of the objects that do not exist in

its collections directly from the RCH repository. The steps of the mapping process are

illustrated in Figure 5-10.

Figure 5-10 The Mapping Process

117

According to Figure 5-10, the steps involved in the mapping process are as follows:

 Define schema: the RCH data schema is defined within the mapping tool.

 Initialize the mapping tool: launch either the online or offline mapping tool.

 Upload the data: upload the data to be mapped. Data can be in the form of an

XML file.

 Generate Schema: generate a schema that depicts the format of the entered

data.

 Map the data: map the schema of the entered data to the RCH schema

according to the predefined mapping rules.

 Validate XML: validate the resulting XML by checking that the resulting files

contain valid XML tags. This process is conducted to make sure that the

imported objects’ data can be displayed in the RCH website frontend correctly.

5.3.5 The Mapping Workflow

RCH’s mapping logic comprises a number of modular code units that facilitate the

mapping process. The system also has the ability to deal with any change in the

structure of the entered data. This is achieved through the system’s administrative end

that enables its users to dynamically redefine the mapping rules whenever necessary.

Furthermore, the mapping tool can also handle any level of complexity in regard to the

entered XML files, including the successful mapping of nested XML nodes. The

workflow of the whole mapping process is further highlighted in Figure 5-11.

118

Figure 5-11 The Mapping Workflow

The interface of the RCH online data mapping tool is highlighted in Figure 5-12. The

illustrated interface provides a number of controls as a user friendly medium to perform

the mapping operations.

119

Figure 5-12 The Online Mapping Tool

As mentioned above, the mapping process transforms the metadata attributes of one

museum to the ones used by the other participating museums or to the RCH format. The

XML code snippet below shows an excerpt from an XML file that holds the metadata of

one of the Glasgow Museum’s cultural objects.

<CulturalObject>

<ObjectName>dagger and sheath</ObjectName>

<Description>Dagger, back of blade inlaid with brass, in
carved wooden sheath. Used by followers of Mahomet at
Sierra Leone. From collection of African ethnological
specimens.</Description>

<Materials>metal, brass, wood</Materials>

<Culture/School>No Data</Culture/School>

<Measurements>overall: 437 mm x 32 mm x 15 mm 263.5
g</Measurements>

<PlaceMade>Africa, Equatorial Africa (place of
manufacture)</PlaceMade>

<Source>Neil, Thomas and John</Source>

<Museum>Glasgow Museum</Museum>

<IDNumber>GLAMG:1877.18.x</IDNumber>

</CulturalObject>

120

For illustration purposes, the devised mapping tool was used to map the Glasgow

object’s data shown above to the formats of RCH and the British Museum. The XML

code snippet below shows the results of converting to the British Museum’s format.

The XML code snippet below shows the results of converting the Glasgow object data

to the RCH format.

<CulturalObject>
<Name>dagger and sheath</Name>
<Description>Dagger, back of blade inlaid with brass, in
carved wooden sheath. Used by followers of Mahomet at
Sierra Leone. From collection of African ethnological
specimens.</Description>
<Material>metal, brass, wood</Material>
<Dimension>overall: 437 mm x 32 mm x 15 mm 263.5
g</Dimension>
<ObjectProductionPlace>Africa, Equatorial Africa (place
of manufacture)</ObjectProductionPlace>
<AcquisitionSource>Neil, Thomas and
John</AcquisitionSource>
<CurrentLocation>Glasgow Museum</CurrentLocation>
<Source>GLAMG:1877.18.x</Source>
</CulturalObject>

<CulturalObject>
<ObjectCategory>No Data</ObjectCategory>
<ObjectName>dagger and sheath</ObjectName>
<Description>Dagger, back of blade inlaid with brass, in
carved wooden sheath. Used by followers of Mahomet at
Sierra Leone. From collection of African ethnological
specimens.</Description>
<Material>metal, brass, wood</Material>
<Dimensions>overall: 437 mm x 32 mm x 15 mm 263.5
g</Dimensions>
<ProductionPlace>Africa, Equatorial Africa (place of
manufacture)</ProductionPlace>
<AcquisitionDetails>Neil, Thomas and
John</AcquisitionDetails>
<Museum>Glasgow Museum</Museum>
<RegistrationNumber>GLAMG:1877.18.x</RegistrationNumber>
</CulturalObject>

121

5.4 RCH Object Presentation

The object presentation components served the purpose of visualizing the RCH objects

and collections with their various data formats. These formats include 3D models and

complex multimedia formats. The main medium for object presentation is a website

frontend that displays a number of HTML pages to showcase the cultural objects stored

within the RCH repository. It is also used in conjunction with the retrieval operations to

display the search results.

The actual implementation of the object presentation components involved the

utilization of a number of web and data sharing and distribution technologies, including

Hypertext Preprocessor (PHP), XML and XSLT. The presentation of the stored objects

is achieved through the utilization of XSLT files, which are designed to transform the

XML files of each museum into well-formatted valid XHTML that is further styled

through Cascading Style Sheets (CSS). This XHTML code is in turn displayed in the

RCH website frontend.

The utilization of XSLT files meant that any changes in managed objects are

immediately reflected in RCH’s frontend: this approach suits the needs of dynamic

object data display. This dynamicity in data display is achieved through dynamic XSLT

transformation that maintains a constant link with the backend XML files. From a

lightweight architectural approach, the key thing to note here is that RCH is effectively

using an XML software stack.

An example of the dynamic RCH pages is shown in Figure 5-13 that illustrates the

object browsing page. This page displays the latest list of the Sierra Leone’s cultural

heritage objects augmented from the collections of the participating museums. Each

museum’s collection is presented in a separate content slider that represents thumbnails

of the objects on display. The system users are provided with a number of options in

relation to the general object listing, including the use of a number of filters for viewing

a subset of the displayed objects. Object views can be customized further by making

appropriate changes in the corresponding XSLT files. Therefore, the dynamically

produced XHTML code can meet the evolving needs of the RCH users.

122

Figure 5-13 RCH Frontend

5.4.1 Design and Analysis of the Presentation Components

The RCH object presentation components were built as independent encapsulated

functional modules that include a number of specialised functions. These components

involve a number of use-cases that vary in their complexity according to the user actions

and the performed tasks. They also involve a set of sequential events to achieve

different object presentation objectives as illustrated below.

5.4.1.1 RCH Presentation Components Use-Cases

The presentation components involve a number of use-cases that are illustrated in

Figure 5-14. The main presentation activities in RCH are oriented around the process of

viewing the details of the stored cultural heritage objects. The process of viewing the

details of the stored cultural heritage objects is associated with a number of operational

scenarios within the RCH system.

123

For example, when carrying out search (object retrieval) operations, it is vital to have

the necessary means by which the retrieved objects’ can be presented to the end-users.

Furthermore, basic object browsing operations also require adequate presentation

services to enable users to go through the stored archive of cultural heritage objects.

Hence, RCH users are likely to need two core object presentation services; a one is

involved with object search and retrieval and the other is involved with basic cultural

heritage object browsing. The details of the retrieved objects include detailed textual

descriptions in addition to their associated images. The use-case diagram below

highlights 4 main user actions in relation to object presentation. These actions include:

Browse Objects, View Objects and Browse Search Results.

The ‘Browse Objects’ use-case is involved with browsing the RCH objects through

RCH’s web interface. This use-case consists of a number of sequential actions starting

with opening the RCH website through the user’s preferred browser. Then objects are

viewed in the objects listing page (the RCH browse page, see Figure 5-13) where

thumbnails and brief information about each object are presented to the end-user (for

the actual technical details of object presentation, please refer to section 5.4.2).

The browsing operations are complemented with the actions of viewing the underlying

details of the objects browsed through the RCH website. The ‘View Object’ use-case

involves firstly locating the wanted object and then viewing its full details via the

provided links. Clicking on an object’s name or image leads to viewing its full details in

a designated dynamically-generated object details page.

Another user operation within this context is the process of viewing the results of the

search process. Any search process within RCH is associated with presentation of a

basic listing that presents brief details of the retrieved objects. Similar to the ‘View

Object’ use-case, the ‘View Search Results’ use-case involves viewing the presented

list of search results in the form of thumbnails of objects associated with brief textual

descriptions. Users can then view the actual object details via the provided navigational

links. These links provide an access to the object’s details page where the full range of

its images and attributes can be viewed. A list of related objects is also provided in the

details page for further browsing.

124

Figure 5-14 Presntataion Componenets Use-Case Diagram

5.4.1.2 RCH Object Presentation Components Structure

If we look at the presentation components from a structural point of view, we will be

able to see that they comprise a number of basic sub components that interact with each

other to provide the required object presentation functionality. Figure 5-15 represents

the presentation components adopted in RCH and their main constituent parts. This

model comprises three main entities, which are the Data Repositories, the actual

Presentation Model and the Presentation Technology Stack.

125

The left side of the diagram represents the range of repositories that the presentation

model has to deal with to retrieve the required data for accurate cultural heritage object

presentation operations. The main repository in the current scenario is the actual RCH

repository which interacts with the RCH code components to perform the object

presentation operations.

The middle part of Figure 5-15 represents the core presentation sub-components within

RCH’s presentation model. These sub-components are further categorized into data-

related and layout-related modules. The data-related modules include the functionality

necessary to connect with and retrieve the required presentation information (object

details and images) from the RCH repository. On the other hand, the layout-related

modules represent the actual tools used for object presentation such page themes,

dynamically-generated web pages, CSS styling, etc.

Object presentation is not possible without the technologies that would facilitate such

presentation operations. Therefore, what is called the ‘Presentation Technology Stack’

includes a number of web technologies that collectively contribute to the accurate

presentation of RCH’s cultural heritage objects. These technologies include XHTML

for final object presentation within the RCH website, CSS for unified presentation

styling throughout the RCH website, XSLT for rendering the information extracted

from the archival XML files into valid XHTML, JavaScript for complementary

functionality especially image and gallery related layouts and PHP for dynamic content

and page generation when needed.

In a typical illustrative scenario, a user would carry out a search process, which will

invoke the RCH code classes to retrieve the details of the required object/s (text and

images) in coordination with the data-related modules of the presentation model. The

layout-related modules then render the required XHTML page to display the retrieved

object/s details. This process involves calling the correct XSLT file to retrieve the

object. This is followed by applying CSS styling to unify the layout of the generated

page with the rest of the RCH website (we are talking here about dynamically-generated

content pages). Object presentation is complemented with extra functionality that aims

to make the retrieval process more efficient. For example, when viewing the details of

any of the retrieved objects, users are presented with links to related objects (if

available) for further browsing.

126

Figure 5-15 The Adopted Presentation Model

5.4.1.3 RCH Object Presentation Sequence of Events

The presentation components perform a number of sequential steps to achieve the

desired object presentation operations. The sequence diagram in Figure 5-16 highlights

a typical object presentation sequence when a user carries out a search operation

through the RHC website interface. This sequence involves the interaction between the

user from one side and 3 main components from the other. These components are the

RCH Frontend, RCH Logic, UI Generator and the RCH Repository.

The ‘RCH Frontend’ represents the actual RCH website that users interact with. The

‘RCH Logic’ encapsulates the functional code modules of RCH which perform the

overall RCH functionality. The 'UI Generator’ is encapsulating the presentation

elements of the RCH website including XSLT files, CSS, JavaScript and PHP which

collectively produce rendered XHTML that can be displayed in RCH Frontend.

The illustrated sequence of events in Figure 5-16 starts with the action of opening the

RCH website; this will result in calling the UI Generator to display the home page

elements to the user to start navigating through the website. As an example in this

scenario, the user requests to view a specific cultural heritage object. This request is

passed to the RCH Logic which interacts with the RCH Repository to retrieve the

details of the requested object. The details of the retrieved object will typically contain

127

images and XML tags that hold the object’s details. These details are passed to the UI

Generator, which performs a 3-step operation to render the retrieved data to a

displayable form. The first step is to apply XSLT styling to the retrieved XML elements

so that valid XHTML is produced out of this process. Then CSS styling is applied to

unify the presentation of retrieved object with the rest of the RCH website pages.

Finally, the produced XHTML is rendered for final display within the main RCH page

template to be viewed by the end-user.

Figure 5-16 RCH Presentation Components Sequence Diagram

5.4.2 Dynamic Content Generation

XSLT is an effective template-based language that has the sole purpose of transforming

XML documents to other types of manageable knowledge representations [134].

The use of a combination of XML and XSLT files is a common approach in creating

dynamic HTML or XHTML contents. This approach allows for the seamless integration

128

between the business logic and the presentation layers of any given web application,

while providing a model that is easy to build and maintain [136]. Another benefit of this

approach is the ability to build multiple dynamic frontends (views) that can serve the

different evolving needs of the end-users. So, the same contents can be displayed in

different ways to suit the different operational contexts of the system.

The RCH website (the View) receives the user input in the form of HTTP requests, for

example as a part of a search query. These requests are then passed to the Model and

Controller parts of the adopted MVC model. This process results in the provision of

rendered XHTML code that represents a subset of the data stored in the archival XML

files (i.e. the data store), note that this could be a database that generates the XML files

as in the ARCO system, which can do this through its XML Data Exchange Interface

[65] in response to the user actions. Moreover, RCH’s frontend handles the necessary

parameters for XSLT operation; for example, the search keywords that are used to query

the underlying XML files. These parameters are passed to the XSLT files that produce

correct XHTML code representations.

An example of parameter passing is the process of passing the search keywords to the

RCH’s backend through its website frontend. The PHP code snippet below shows that

the variable ‘Keyword’ gets passed to the search file “search.xsl” where the search

query is handled. The search results are then returned as rendered XHTML pages that

are displayed to the user who performed the search operation. Object presentation is the

end result of querying the ‘britishMuseum.xml’ file that holds the data related to the

British Museum’s collection for instance.

$xsl->load(‘search.xsl’);
$xml_doc->load(‘britishMuseum.xml’);
$xp->setParameter(‘‘, ‘keyword’,$keyword);
$xp->setParameter(‘‘, ‘numrows’, ‘3’);
if ($html = $xp->transformToXML($xml_doc)) {
 echo $html;
 } else {
 trigger_error(‘XSL transformation
failed.’, E_USER_ERROR);

129

Parameter passing and message exchange is instrumental in achieving some of the

system’s functionality. This significance is further highlighted in Chapter 6 of this

thesis.

5.5 RCH Object Retrieval Components

The data-intensive nature of RCH made it necessary to have powerful retrieval (search

and browse) tools to complement its archival and presentation components. The RCH

object retrieval operations work in coordination with the other system components

within the adopted MVC model. RCH provides its users with a sophisticated search

logic that enables them to carry out advanced keyword search operations to locate the

objects that they are looking for. The search module that is built-in within the system’s

XSLT files responds to the users’ queries and retrieves the required results from the

backend XML files. Moreover, the utilization of XSLT for the search operations was an

effective option as it suited the system’s XML data infrastructure (XSLT is considered

to be among the best mediums for querying XML files [135]). The underplaying details

of the object retrieval process and are discussed in Sections 5.5.1.3, 5.5.2 and 5.5.3.

5.5.1 RCH Object Retrieval Design and Modelling

The object retrieval operations within RCH involve a number of key use-cases and

events. These events and use-cases are derived from the interaction of RCH users with

its user interface as further explained below.

5.5.1.1 RCH Retrieval Components Use-Cases

The actual object retrieval processes within RCH can be categorised into two main use-

cases: ‘Basic Search’ and ‘Advanced Search’. As shown in Figure 5-17, a typical

retrieval operation starts with opening the RCH website and then utilizing the provided

search interface to locate the required objects. A basic search operation involves the sole

use of textual keywords to locate the required cultural heritage objects. This is a basic

traditional text-based search operation where the entered keywords are compared with

the descriptions of the stored cultural heritage objects. Object descriptions are stored

within the archival XML files in the RCH repository. Once an object is found, its details

are returned to the user after undergoing the necessary PHP, XSLT, CSS and XHTML

processing (see Section 5.4 for more details about RCH object presentation).

130

The advanced search operation differs from the basic search operation in the fact that

keywords are combined with a number of search filters (museum collection, cultural

group, category and theme) to arrive at a narrower and more accurate set of results.

These filters are compared with the actual object details in the archival XML files. The

details of the found objects are returned to the end-user via the RCH website frontend

for further browsing.

Figure 5-17 Object Retrieval Use-Case Diagram

131

5.5.1.2 RCH Retrieval Components Classes

The object retrieval components consist of a number of specialized classes and code

modules that are capable of performing complex object retrieval operations. Figure 5-18

highlights a snapshot of the main classes used in the retrieval process and the

relationships between them. This diagram intends to highlight the different components

involved in the retrieval process and their internal processes. The involved classes

include: Query, objectQuery, Keywords, Attributes, culturalGroup, museumCollection,

objectCategory, Theme, SearchPackage, searchFilters, queryBox, objectLocator,

imageFinder, Repistory, and resultsInterface.

 The Query Class

A typical retrieval process starts with a search query entered by the user via the

RCH online search interface. The search interface is encapsulated within the

searchIntreface class that receives the query, packages it and passes it to the

retrieval classes. The search query itself is initially handled through the Query

class that is a generalization of a sub-class called objectQuery.

 The objectQuery Class

This class specializes solely in the operation of retrieving the details of cultural

heritage objects from the RCH repository. An objectQuery is constructed of two

main attributes, which are the ‘keywords’ used by the user and the actual ‘search

attributes’ used to narrow down the search results. According to the RCH

structure, 4 types of search filters (attributes) exist which are the: Theme,

Cultural Group, Museum Collection and Category. Some or all of these filters

can be used in the retrieval process. The combination of the keywords and the

search filters represent the final search query. Search queries are rendered into

search packages as explained below.

 The searchInterface Class

The search queries are passed through the searchInterface class that creates

instances of the searchPackage class. The searchInterface class is composed of

two main sub-classes, which are queryBox and searchFilters. An instance of the

queryBox class represents the actual field used to collect the search keywords

entered by the user. The searchFilters class collects and handles the combination

of search filters entered by the user.

132

 The queryBox and searchFilters Classes

These classes represent the visual elements of the searchInterface class and are

used to collect the search attributes entered by the user.

 The searchPacakge Class

A searchPacakge is basically the combination of the entered keywords and

search filters alongside any other attributes entered by the user during the search

process. The generated search packages are passed to the Searcher class that is

the central functional entity within the retrieval components of RCH.

 The Searcher Class

The Searcher class simultaneously processes the searchPacakge instances and

returns the retrieved results to the end-user. The Searcher class uses two main

classes to perform the retrieval operations. These classes are the objectLocator

and the imageFinder classes. These classes retrieve the details (text and images)

of the required objects according to the attributes of the searchPacakge class.

 The objectLocator Class

The objectLocator class specializes in retrieving the textual information related

to the object/s being searched. This class basically queries the XML files that

hold the details of the available cultural heritage objects. Once an object is

found, its details are retrieved such as name, description, cultural group, owner,

etc.

 The imageFinder Class

The imageFinder class locates the images related to the objects being searched.

Images are handled separately due to their special nature and the fact they are

stored in special directory structure within the RCH repository. This class

locates the group of images associated with each object to be displayed along its

other details to the end-user.

 The resultsInterface Class

Once the results are retrieved by the Searcher class, they are passed to the

resultsInterface class which renders them for final display. This class is a part of

RCH’s presentation components mentioned in Section 5.4. This class applies the

final XSLT, CSS and PHP processing to present the search results as fully

optimized XHTML.

133

Figure 5-18 Object Retrieval Class Diagram

134

5.5.1.3 RCH Object Retrieval Sequence of Events

As RCH applies the MVC design pattern in its architecture, its object retrieval

components fall under the Controller part of the adopted model where all the search and

retrieval oriented operations are conducted. Therefore, the Controller component allows

the search logic to interact closely with the View component where the Controller reads

the user queries that come through the system’s website (the View).

Search queries are consequently passed to the data retrieval components which reside

within the Controller part of the system. The Controller queries the Model and this

process results in returning the search results to be displayed in the View. This sequence

is further highlighted in Figure 5-19 that shows how the different system components

communicate with each other within the context of the data retrieval process.

The retrieval process sequence diagram illustrated in Figure 5-19 involves the

interaction between three main components which are the RCH Frontend (the view), the

XSTL files (the controller) and the XML archival files (the model). The sequence

diagram shows that the whole retrieval scenario is initiated with a user’s request to

retrieve specific object/s by means of submitting a query through the RCH’s frontend

(the View). A search process may be a basic keyword-based search operation or an

advanced search operation. An advanced search operation comprises keywords in

addition to the chosen search filters for a more accurate set of results.

Search queries are passed to the XSLT search module (the Controller) for further

processing. The entered search terms are compared with the actual contents of the

archival XML files resulting in extracting the details of the matching cultural heritage

objects. The actual retrieval process is based on the devised search logic within the

XSLT files. Designated retrieval XSLT files loop through the actual contents of the

XML files and retrieve the required objects’ details.

The retrieval process is combined with the process of wrapping the retrieved

information (in the form of raw text) with the appropriate XHTML tags. This process

aims to make the retrieved objects suitable for web display. The rendered XHTML is

returned to RCH frontend to be displayed to user who initiated the retrieval process.

CSS styling contributes to making the retrieved objects conform to the overall look and

feel of the RCH website.

135

Figure 5-19 The Object Retrieval Sequence Diagram

5.5.2 RCH XSLT Dynamics

When a search operation is conducted, the specialized search XSLT files process the

corresponding XML files to retrieve the search results to be displayed in RCH’s

frontend. The built-in search modules loop through the XML nodes while returning the

ones that match the search criteria used. The search process itself can be a plain

keyword-based search, or a more advanced process whereby the keywords are

associated with a number of attributes and filters to narrow down the returned results.

XSLT files are used optimally by applying a combination of template matching ‘match’

functions and XPath expressions. These expressions are used to extract data from the

target subtrees within the designated data XML files. For example, the “contains”

expressions are used to perform the straightforward keyword search operations as

highlighted in the code snippet below:

136

The code snippet above illustrates that the “contains” expressions are used to locate

objects within the stored collection of the Glasgow Museum. The same is applied to the

other museums when there is a need to search their collections. Moreover, content

filtering (Museum, Tribe, Category, Theme, etc.) can be programmatically achieved

through the introduction of a series of XSLT ‘if’ and ‘contains’ expressions that allow

for the accurate incorporation of search filters. The above code snippet also illustrates

the actual process of extracting the textual information of the found objects while

wrapping them with the appropriate XHTML tags. Such tags include <p>, <div>, etc.,

which aim at displaying the retrieved objects correctly within the RCH website as can

be seen in the screenshot in Figure 5-21.

The code snippet below shows another example that illustrates the process of outputting

an image as well as a link to view the full details of a cultural object, where the

(to display the image) and <href> (for a dynamic link) tags are used in conjunction with

variables extracted from the queried XML file/s.

<xsl:when test="contains($selector,’GLA’)">
 <div class="object-details">
 <p>

 <xsl:value-of select=“Object“/></p>
 <p><spanclass=“label”>
 Culture:
 <xsl:value-of select=“cultureGroup“/></p>
 <p>Category:
 <xsl:value-of select=“objectCategory“/></p>
 <p>Museum:Glasgow Museum
</p></div>
</xsl:when>

<xsl:when test="contains($selector,’GLA’)">
 <div style="width:85px; height:105px; float:right;" >

 <img src=“objects/glasgow/{$link}“ rel=“shadowbox“
width=“68“ height=“90“ style=“border-style: none“>

 </div>
</xsl:when>
<p>
 Category:
 <xsl:value-of select=“ObjectCategory“/>
</p>
<p>
 Museum:Glasgow Museum
</p>
</div>
</xsl:when>

137

It should be noted here that it is not the intention of this thesis to build an efficient and

sophisticated search engine using XSLT. The intention was more to build a set of

components (i.e. a test bed) based on the archival and presentation concepts discussed in

the previous chapter that could be used to test the validity of workflows (see Chapter 6).

5.5.3 The RCH Search Interface

The RCH website provides the necessary tools to facilitate the data retrieval process.

Keyword-based searches can be made more accurate by means of associating a number

of attributes including object category, museum, theme, etc. The main prototype search

interface is highlighted in Figure 5-20.

Figure 5-20 The RCH Search Interface

The rendered XHTML results are then displayed in the search results page, as illustrated

in Figure 5-21.

138

Figure 5-21 The Search Results

The interface of the results page shows a summary of the retrieved objects. Clicking on

an object’s image opens an enlarged version of it with a brief summary of the object

details, as shown in Figure 5-22.

139

Figure 5-22 Enlarged Object View

Clicking on “View Record” opens a page containing the full details of the object,

including a full textual description and a number of important attributes (material,

production date, source, etc.), as highlighted in Figure 5-23

140

Figure 5-23 Detailed Object View

5.6 Summary

This chapter provided an insight into the technical aspects of a DLS implementation

(RCH) constructed to validate both some of the DISPLAYS concepts, but more

importantly in the context of this thesis, to act as a test bed for validating the use of

workflows (see Chapter 6). It covered the adopted MVC design pattern and the ways by

which it succeeded in separating the different system code and design components. This

separation paved the way for achieving modularity in terms of the core system

components (archival and presentation (with its associated retrieval components)).

These components work in coherence with other components within a custom workflow

management infrastructure, as will be detailed in Chapter 6.

141

All the RCH components are architected within a hierarchical MVC design pattern that

separated the business logic, data and presentation aspects of RCH. The object

presentation components formed the View part of the model and actively integrated

with the Controller part. The Controller part is represented in the data retrieval

components and their associated XSLT files. The Model part is constructed from the

system’s archival backend (XML files) which allowed for the creation and expansion of

a shared digital heritage resource, one of the main goals of the RCH system.

The highlighted RCH components are carefully constructed and uniquely integrated to

provide a fully functional RCH implementation model as a prototype system, which in

the context of this thesis will be used in Chapter 6 to validate the workflow approach.

This RCH system is now being further developed into a fully operational model that

covers the DISPLAYS services. The RCH archival tools provided the necessary data

storage capabilities for the participating museums, complemented with advanced data

mapping and validation tools. These tools enabled the creation of a shared resource by

allowing the participating museums (or other entities such as ARCO) to submit their

data to RCH while converting it to a custom XML format (RCH format). This process is

not straightforward due to the complexity and diversity of the data that each museum

possesses which require highly customized mapping tools. The created RCH mapping

tools allowed the communities of practice to export/import Sierra Leonean digital

heritage object data to and from the RCH repository.

The RCH object retrieval tools provided the necessary data retrieval functionality by

querying the XML archival files and returning the corresponding results to the system

users. These tools allowed for sophisticated data retrieval operations by exploiting

XSLT files that query the system’s XML archival files. The object retrieval tools act to

transform a subset of the stored data to be displayed in the system’s website frontend

based on user queries. Moreover, the search logic is capable of handling a combination

of search keywords and filters paving the way for advanced retrieval options for the

end-users.

The object presentation services represent UI of the system that displays the augmented

data into a unified website frontend that is highly dynamic and interactive. The contents

of the RCH website are driven from the RCH’s XML files that acted as the main data

storage medium of the system. The RCH website also provided the search interface to

query the available data objects and display the returned rendered XHTML in a highly

142

structured way. Search queries are rendered as HTTP requests that are treated by the

search logic (in XSLT files).

The prototype RCH system has proved to be a successful representation of a functional

online digital heritage resource that can be accessed and utilized by a number of

communities of practice with a different set of data sharing and distribution needs. The

separation between the presentation, data and business logic parts of the system by

adopting the MVC model proved to be a practical approach especially in terms of

providing multiple user interfaces (views), while relying on a single backend data model

(XML files). Also, the utilization of XSLT files as a part of the RCH’s MVC model

Controller has proved to be a natural choice as it smoothly integrated with the system’s

XML files. This integration allowed for advanced and fast data manipulation operations,

including search and retrieval operations that responded to the parameterized search

queries coming through RCH’s frontend.

143

CHAPTER VI

6 Hosting RCH as a Workflow

This chapter discusses an innovative workflow management solution that was devised

to manage the convoluted components of the RCH prototype discussed in Chapter 5.

The RCH Workflow Management System (WfMS) was designed and implemented to

validate the proposed concept of workflow management integration within DLSs and

DHRs (as discussed in Chapter 3 within the context of the DISPLAYS services). The

architectural approach used in the devised WfMS is discussed in relation to the

managed system components (archival, retrieval and presentation), which were

discussed in detail in Chapters 4 and 5. The way by which these loosely-coupled

components were hosted within a WfMS hosting environment is also discussed while

exploring the actual building blocks of the RCH WfMS.

Another important aspect of the RCH WfMS was the concept of workflow hosting

(hosting of the workflow runtime services), which has materialized into a standalone

host application. This application that incorporates workflow technology is called the

RCH Content Management System (RCMS), which provides the actual WfMS UI

(itself a prototype to prove the concept of workflow management, see Figure 6-10). The

discussed technical details are complemented with a number of test scenarios that aimed

at assessing the efficiency of the devised workflow management solution. Testing

involved the process of examining the different functional areas of the RCH WfMS

including message passing, service invocation, workflow monitoring, etc., as shown in

Section 6.6.

6.1 Introduction

RCH is a digital repository that interacts with a disparate set of users and systems (for

example, collection management systems in museums). Additionally, RCH depends on

a number of data-centric operations (e.g. archival and retrieval operations) that require

dynamic and complex data processing and mapping operations, as outlined in Chapter

4. The complexity and intersecting nature of the RCH components made it a good case

with which to experiment (i.e. test the validity of workflows for this type of system),

and provide an innovative solution for managing the system’s workflows. Such a

144

solution needed to suit the underlying RCH SOA as well as the way that its different

components operate and interact with each other. The concept of the devised solution is

oriented around the idea of providing an embedded workflow management component,

as will be explained in Section 6.3.

Integrating a WfMS with RCH had a number of goals including:

 the provision of a layered WfMS that is capable of managing the RCH

components;

 maximizing the underlying usability of the RCH resources;

 enhancing RCH’s scalability and ability to handle multiple parallel running

workflows;

 the effective support and utilization of the SO nature of RCH that is based on

the DISPLAYS framework;

 enhancing RCH’s flexibility, scalability, interpretability and expandability;

 providing RCH’s users with a management UI to enable them to interact with

and utilize the RCH components.

The devised solution was built to provide a flexible medium to host and manage the

RCH modular components (archival, retrieval and presentation). Figure 6-1 illustrates

the idea of hosting the RCH components in a workflow management host. The

workflow host comprises a number of services that perform the different workflow

management tasks (more on this in Section 0). Effective communication between the

workflow host and the RCH components is maintained via message passing (request

parameters and other commands) as illustrated in Section 6.6.2.

145

Figure 6-1 Hosting RCH Components in a WfMS

6.2 Solution Formulation

The implementation of the RCH WfMS took the form of an integrated dynamic

workflow solution that hosted the RCH components. The devised solution provided a

UI element, which acted as a content management medium for RCH; this was called the

RCH Content Management System (RCMS) as detailed in Section6.5. One of the main

concepts behind the RCH WfMS implementation was the process of hosting it within an

appropriate workflow host. This paradigm is based on the idea of deploying workflow

runtime services by the WfMS based on user actions. For example, Service invocation

is enabled via a UI that enables the end-users to call the services that they need, such as

the search and retrieval services. The UI itself (RCMS) acts as a host for the RCH

WfMS while giving it the ability to interact with the end-users. In the prototype

illustrated in this chapter, the UI is implemented as a simple windows desktop

application for convenience (see Figure 6-10). In reality, this could be a web page

admin function, which is normally accessed by an admin link or typing /admin from the

root URL.

The RCH WfMS host application hosted the devised workflow management

components (including the workflow runtime services as shown in Section 6.4.1). Based

on this, the devised WfMS works at a higher level above the RCH components where it

manages their operation and interaction with each other. Such an approach allows for

better user control over the managed RCH’s components, which are – in this case – the

archival, retrieval and presentation components.

146

The first layer of the workflow solution formulation was to host the SO RCH

components within the designed workflow management ‘middle layer’. In such an

approach, the effective message passing between the WfMS and the system components

contributes to a coordinated and managed operation of the different system processes. It

is worth noting here that some of the core workflow management processes are also

prompted and managed through message passing and exchange, as will be illustrated in

Section 6.6.2.

The main workflow management services and activities within the RCH WfMS revolve

around the following areas:

 Service Invocation

Service calling, or invocation, has the purpose of invoking the RCH services

according to user actions. User interaction, which leads to service invocation, is

achieved through the RCMS. This interaction can be in the form of a button

click, opening a form, etc. Service invocation leads the devised WfMS to call

the services of the concerned system components; for example, initiating the

object mapping process as a part of the archival process (see Section 5.3.2). It is

worth noting here that the RCH system components may, in turn, call services of

some other system components. For example, the heritage object search and

retrieval operations depend on the coordination between the object retrieval and

presentation components, as was detailed in Sections 5.4 and 5.5.

 Managing Data Flow between the RCH Components

RCH is a data-intensive application as data processing and exchange come at the

forefront of its operations. RCH’s data model was discussed in detail in Chapter

4, where it was indicated that RCH’s functionality revolves around its lite XML-

based data model. Therefore, the system’s service calls are associated with

certain parameters that are needed by the called services. For example, a service

call to map one museum’s data to another should be associated with the source

and destination museum parameters. These parameters (and many others as

shown in Section 6.6.2) form a part of the data flow that accompanies the

movement of the data objects within RCH.

147

 Service Response (Feedback)

Once a service is called, it performs its designated actions (data mapping, object

retrieval, etc.). These actions can be associated with the production of certain

data items that are passed to the workflow host while containing some indicators

(for example, process execution confirmation), or data to be returned to the end-

user (for example, mapped object files). This data is then presented to the end-

user or consumed by other system components or processes if needed.

 Workflow Runtime Service Invocation

Workflow invocation refers to the process of invoking or creating a workflow

instance based on the system’s events [137]. The process of invoking the system

workflows within RCH is the result of accessing the workflow runtime services

via the workflow host application (more on this in Section 6.4.1). This action

results in initiating the different workflow activities that are defined within the

RCH WfMS, as will be illustrated in the testing scenario in Section 6.6.

 Message Passing and Exchange

According to Huang [138], message passing is one of the most important

elements when implementing WfMS in SO environments. This significance is

driven from the fact that message passing plays the instrumental role of

initiating and coordinating the managed system’s services. Message passing is

conducted between three main components: the RCH WfMS, RCH components,

and the RCH WfMS host, as illustrated in Section 6.6.2.

 Correlation

The concept of workflow correlation is described by Schmitz and Hanemann

[139] as the process of addressing the correlation of events as they are reported

from a system’s management tools. This concept was explored by Blewett [140]

where he indicates that workflow correlation largely depends on effective

message passing between a caller, which can be a custom UI, and the workflow

host, which responds by initiating the appropriate workflow runtime instances to

run. In RCH’s SO context, correlation applies to the process in which messages

are passed to the WfMS to launch the indented workflow instances.

148

Figure 6-2 illustrates that a typical workflow scenario in RCH is initiated by a user

action. This action can be in the form of a search query for instance, submitted through

the system’s UI (the WfMS host). The RCH WfMS that hosts the main RCH

components (archival, retrieval and presentation) receives the user’s requests and

consequently initiates the appropriate workflow runtime services. For example, in the

context of a search and retrieval operation, the RCH retrieval component is invoked,

and this results in running a retrieval workflow runtime instance that will handle the

retrieval process from start to finish. To present the search results, an instance of the

presentation workflow runtime service is invoked and run. The operation of the

archival, retrieval and presentation components is governed by a set of sequential

workflow management definitions as further illustrated in Section 6.4.1.

Figure 6-2 RCH Components’ Interaction with the WfMS

6.2.1 The Adopted Workflow Model

The implementation of the RCH WfMS was based on a sequential workflow rule-based

model. Sequential workflow implementations involve the creation of workflow models

that are based on the sequence of the managed system’s events [141]. Moreover,

sequential workflow management applications are based on a declared set of steps that

149

are executed according to a certain order. The actual flow control in this model is

defined by using a number of custom code constructs, including loops and if-else

branching statements. Such constructs are considered to be among the most commonly

used techniques in this kind of workflow model [98]. For example, the RCH archival

components, including the data mapping tools, were mapped into the devised WfMS

where the different steps and parameters of the mapping process were identified and

controlled.

The defined execution sequence was also associated with the execution rules that

controlled the sequential flow of the system’s processes. Consequently, the independent

SO RCH components were controlled by the workflow management components

following a specified sequence of events. The workflow design is further detailed in

Sections 6.4.26.4.3 and 6.4.4

6.3 RCH WfMS Implementation

The current implementation of the RCH system spans a number of different

implementation technologies that collectively provided the different RCH functional

components and services. As outlined in Chapter 4, the actual system implementation

involved the utilization of PHP for the production of the system’s web-based

functionality, in conjunction with XML and XSLT to provide the system’s data-oriented

services. The RCH components were implemented based on the MVC design pattern

that supported the SO nature of RCH, as explained in Section 5.2. Therefore, it was

imperative to choose a WfMS implementation technology that would fit seamlessly

with the other RCH components.

6.3.1 WfMS Implementation Technology

The chosen implementation technology was the Windows Workflow Foundation (WF),

which is a part of the .NET Framework family of products. It was used to build the core

WfMS that controlled the different RCH components. Incorporating WF with an

existing online code infrastructure is a common approach and can be seen in a number

of similar implementations [142]. Therefore, resorting to using WF suited the loosely-

coupled nature of the RCH components and the way they communicate with each other,

as further detailed in Section 6.4.

150

According to Roy [102] there are a number of features that set the WF apart from other

WfMS development tools. Some of these features are particularly relevant to the

workflow management needs of RCH. These features are related to workflow

management: hosting, tracking infrastructure, extensible activities, programmability and

workflow designer [102], and are listed in Table 6-1 below. The column named

‘Significance for RCH’ outlines their significance in relation to the workflow

management needs in the context of the RCH implementation.

Table 6-1 WF Features

Feature Description Significance for RCH

Hosting

The ability to host the

created workflow runtime

services in client

applications. The host

application can be either a

website or a normal

application in the form of a

management utility or a

CMS.

The flexibility to provide the

RCH users with multiple

workflow-managed interfaces

(MVC Views). The particular

scenario adopted in this thesis

is to devise a standalone

management application for

testing purposes as illustrated

in Section 6.5.

Tracking
infrastructure

It is possible to build

customized workflow

tracking infrastructure to

track the managed system’s

workflows.

Tracking services are necessary

for tracking down the

intersecting workflows of the

RCH components (archival,

retrieval and presentation).

Extensible activities

Extensible activities are

natively supported within

the WF development

framework.

The unique nature of RCH

requires building customized

workflow management

modules for some of the

complex system operations

such as object mapping,

workflow runtime service

hosting, etc.

151

Programmability

WF is a development

framework. Thus, it

requires the implementation

of applications and custom

modules to host its services.

The WF supports a number of

programming languages and

implementation paradigms to

host its services. WF workflow

runtime services can be hosted

in either web-based or

standalone applications in a SO

paradigm. They can also be

implemented as distributed

web services within a SOAP

paradigm.

Workflow Designer

Workflow management

applications can be created

by suing the visual design

tools provided by the Visual

Studio, .NET’s main

development environment.

The WF comes with a standard

workflow designer within its

development environment (the

Visual Studio). This designer

facilitates the process of

designing and building

workflow management

implementations. It is also

possible to complement the

created designed with custom

written lower level code for

extra functionality.

In addition to the advantages listed above, one of the WF’s strengths is its suitability for

scenarios that involve the management of existing applications. Such scenarios usually

include UI page controller, long running business logic, dynamically updateable process

flow, web service composition, and abstraction of rules from business logic [143].

The WF based RCH WfMS needed a visual interface to allow its users to interact with

its services. Therefore, it was an important issue to choose an implementation

technology to host the actual WfMS. The most practical and straightforward option for

prototyping to test workflow concepts was to create a Windows based WfMS

Application, while bearing in mind that the actual final RCH system will be a web

152

application, requiring a final WfMS to be mapped to this web application. In addition, it

is relatively easy to map from a Windows Application to a web application. Windows

Applications are a part of the .NET family of products, which meant that compatibility

issues are eliminated in the process of integrating with WF solutions. The created host is

represented in the form of a standalone application, called the RCH Content

Management System (RCMS), that integrated with the devised RCH WfMS, as will be

further illustrated in Section 6.5.

6.3.2 RCH WfMS Components

The RCH WfMS comprised a number of components that collectively provided the

workflow management functionality. The key elements of the RCH WfMS contained

the Workflow Runtime Services, the Workflow Execution Engine and the

Administration and Management Tools. The functionality and role of the utilized

components are summarized as follows:

 Workflow Runtime Services
The RCH WfMS workflow runtime services provided a set of core workflow

management functionalities that were responsible for launching and managing

the different RCH components. The most important elements within the runtime

services are the persistence and tracking services. The persistence services

provided the necessary workflow maintenance services, including functionalities

such as workflow serialization and restoration. The tracking services within the

created runtime services provided a set of event-based tracking functionalities in

relation to the running workflow instances (these are discussed further in Section

6.4.1).

 Workflow Execution Engine

The workflow execution engine included a number of code routines used to

execute the different workflow instances according to the system events. The

execution engine was integrated within the workflow runtime services as it

interacts with the data and flow control events of the RCH components. The

code constructs used to build the custom workflow execution engine are based

153

on specialized VB.NET classes that provided the necessary workflow execution

functionalities, as will be further illustrated in Section 6.4.

 Administration and Management Tools

The Administration and Management Tools comprised a number of code

modules and controls that complemented the functionality of the other WFMS

components. The administrative tools comprised the RCMS, as will be

illustrated in Section 6.5.

6.3.3 The RCH WfMS Design

A layered approach was adopted in the process of designing the WfMS for RCH. Three

different workflow runtime services were created to fulfil some of the core workflow

management functionalities: the archival, presentation and retrieval workflow runtime

services. Each workflow runtime service was designed separately as a subsystem of the

overall RCH WfMS. These separate workflow implementations were then integrated

together within the workflow host that managed them according to the system events

(the object retrieval operations for instance).

Each individual workflow runtime service performs a set of specialized tasks related to

the area that it is handling. For example, the archival runtime services are involved with

invoking and managing the system’s archival components, including the object mapping

processes (mapping the museums data as explained in Section 5.3.2) and their

associated data flows. The same applies to the interrelated retrieval and presentation

workflow runtime services that perform their own specialized tasks respectively.

The reason for breaking up the RCH WfMS into three subsystems (workflow runtime

services) was the need for a flexible implementation model that can be easily

manipulated and adapted while maintaining certain levels of flexibility, scalability,

expandability and customizability. For example, it would be possible to host the three

workflows for archival, retrieval and presentation on separate machines over the

internet. By building three separate workflow runtime services based on functionality, it

was a straightforward process to initiate the appropriate workflow instances from the

user end without interfering with the other system’s functionality. These separate

workflow runtime services (can be considered as sub-engines in the context of the

154

overall RCH WfMS) were then hosted within the devised workflow host, as explained

in Section 6.3.3.1.

The implemented workflow runtime services are logically separate in a paradigm

similar to the concept of encapsulation used in Object Oriented Programming (OOP).

According to Snyder [144] encapsulation is usually utilized to radically minimize

dependencies between separately written code components by means of writing totally

separate internal code interfaces. In fact, the concept of encapsulation is implemented

throughout the RCH components, as highlighted in Chapters 4 and 5.

One of the advantages that workflow runtime encapsulation provides is the support of

flexible workflow management in distributed and highly heterogeneous environments

[145]. Such a support is achieved via the utilization of a hierarchical modular

architectural design pattern that includes a number of collaborative sub-processes.

Adding more complex workflow features and enchantments involves the operation of

adding more encapsulated workflow runtime services. Therefore, the adopted model has

high levels of expandability and scalability. Hence, regardless of the workflow

complexity, an RCH WfMS prototype will still be able to effectively deal with it. The

details of each of the implemented workflow runtime services are outlined in Sections

6.4.2, 6.4.3 and 6.4.4.

It is worth noting here that the concept of encapsulation is not only applied between the

workflow runtime services, it is also applied in the relationship between the workflow

host and the workflow runtime services. In this instance, the workflow host for RCH,

which acts as a service consumer, does not know the internal processes and procedures

of the runtime services, an archival service for instance, etc. Moreover, the runtime

services work to provide the most cost effective process execution. Each workflow

runtime service can be considered as an independent unit of code that directly interacts

with the workflow host, which directly interacts with the system users. Each workflow

runtime service performs a process execution based on the messages passed to it by the

other system components.

The concept of encapsulation within RCH and its workflow management components is

illustrated in Figure 6-3. There are three encapsulated main components that interact

with each other to achieve the workflow-managed functionality of RCH. These

155

components are the RCH Components (archival, retrieval and presentation), the RCH

WfMS, and the WfMS host (RCMS).

Figure 6-3 Interaction between the RCH Components, RCH WfMS and RCMS

6.3.3.1 RCH Workflow Hosting

A WF workflow is a runtime and not an application, as indicated by Allen [146]. The

implication of this is that any workflow runtime built by using WF needs an appropriate

workflow host to invoke and control it. This approach provides certain flexibility when

implementing workflow solutions, as the underlying workflow can be hosted in an

appropriate application or interface to present its services. Another advantage of this

approach is highlighted by Allen [146], who indicates that a host can provide an extra

functionality to the actual workflow runtime.

What is meant by “hosting the workflow system” is the process of utilizing an

application to host the workflow management components and facilitate their

interaction with the system users and other software components. In the case of RCH,

this interaction is achieved through message and parameter passing between the created

WfMS, the WfMS host, and the hosted RCH components. A host application can be a

website or a standalone application, depending on the adopted implementation scenario:

156

in the context of this thesis, for convenience only, a Windows application was chosen to

provide the host.

The hosting process aimed to provide the functionality necessary to invoke and run the

designed workflow runtimes. Figure 6-4 illustrates the interaction between the WfMS,

the WfMS host and the hosted RCH components. Effective message passing and

collaboration between the workflow runtimes and the RCH workflow host, leads to the

invocation and running of the intended workflow activities. Workflow activities are

initiated via the messages that are passed from the workflow host leading to invoking

the needed workflow runtime instances. The results of running the initiated workflow

instances are then passed back to the host to provide some sort of feedback to the

system users. This feedback may constitute confirming the running of a certain

workflow instance or process termination for instance.

Figure 6-4 RCH Message Exchange Illustration

157

6.4 The Workflow System Implementation

The actual implementation of the RCH WfMS was based on utilizing the different code

controls and constructs that WF provides. According to Pegasus [147], the main

approach adopted in WF is the declarative creation of workflows within a visual design

while using a number of standard code building blocks. These code building blocks

provide comprehensive workflow functionality, such as the creation of workflow

runtime, persistence, tracking and monitoring services. The WF controls that were

utilized within the RCH WfMS prototype are summarized in

Table 6-2. The practical use of these controls is illustrated in Section 6.4.1

Table 6-2 The Utilized WF Code Constructs

Code Construct Purpose

ifElse Activities

ifElse Activities are among the most common WF

control-flow activity types [148]. They were used to

handle the different rules and conditions that are

associated with running the different workflow runtimes

associated with the devised WfMS. Nested ifElse

branches were also used to support different levels of

code execution according the parameters passed to the

WfMS.

Executable Code Activities

Executable Code Activities are considered to be

among the most fundamental workflow management

building blocks [149]. They were intensively utilized

within the created WfMS to provide application-specific

workflow management functionality. They provided

most of the customized workflow management and

control functionality including handling the data inputs

and outputs as well as interacting with RCH functional

components (archival, retrieval and presentation).

158

Fault Handlers

The WF Fault Handlers were used to ensure a smooth

running of the workflow activities while being able to

effectively handle any workflow exceptions without

interrupting the running processes. They were used in

the error prone areas of the system especially those that

involve decision making, runtime service invocation,

runtime service termination and message and parameter

passing.

Listen Activities

The WF Listen Activities define a set of event-driven

activities that typically wait for a specific workflow

event to occur before taking the appropriate course of

action [150]. These code constructs were used to exert

some level of control over the operation of the

underlying runtime services as well as the process

execution activities that are promoted by the system

components. For example, WF Listen Activities in RCH

WfMS wait for a number of possible events to happen

in the mapping process including file upload,

source/destination specifications, etc.

6.4.1 Workflow Runtime Construction

The created workflow runtime services were built by the utilization of the WF’s code

constructs that are listed in Table 6-2. Each workflow runtime service was created

separately and integrated within the workflow host application. What follows is a

description of each of the devised workflow runtime services.

6.4.2 The Archival Components Workflow Runtime Services

The RCH archival functionality that was highlighted in Section 5.3 handled the different

data-centric tasks in relation to the managed cultural heritage collections. Among the

most important components of the RCH archival tools is the data mapping services that

facilitated mapping the cultural objects data from one museum to another, as detailed in

Section 5.3.2. The mapping component was built by the author of this thesis to act as a

159

test bed for the integration of WfMS within the RCH archival components. Such a

complex component with its input and output data flows, needed an appropriate WfMS

to host its services and govern their behaviour. In this context, all the procedural

workflow activities were performed by a set of dedicated workflow runtime services,

which are self-contained units of functionality within the devised WfMS.

A separate workflow runtime service was created to handle the sequential workflow

requirements of the system’s archival components. Such an approach was facilitated by

the WF architecture that allows for the creation of specialized runtime services that can

span a number of customized code modules [151]. For example, an instance of the

created archival runtime service was created each time a user performed a mapping

operation. This workflow runtime service instance’s running and invocation is

associated with messages from the WfMS host. The passed messages specify the

intended operation and the data associated with it. This process leads the called runtime

service to execute the right sequence of events within its sequential rule-based workflow

model.

RCH is a system that has to handle simultaneous users at all times due to its distributed

nature as a shared DHR. Therefore, the concept of simultaneous workflow runtime

instance running proved to be a key feature in the archival components WfMS.

Exploiting this feature meant that the archival components can be used by as many

users as possible at any specific point of time. This is because any number of workflow

runtime instances can be initiated and invoked to handle the different user sessions.

An example of the managed archival processes is the object data mapping process. This

process starts with reading the user input, including the source and destination

museums. A set of ifElse activities that execute the right code blocks depending on the

user choice govern the mapping process. The internal workflow runtime processing

follows the process of reading the user input where the right range of archival

components are called. Successful workflow execution results in producing the

correctly mapped data to be used by the system users. The produced mapped file along a

confirmation message is returned to the end-user via the RCMS. On the other hand,

faults and runtime errors are also handled by the customized WF fault handlers. The

used fault handlers make sure that any running workflow instance continues to run until

terminated by the system users or one of its components.

160

The workflow design of the mapping process that represents a good example of one of

the archival components workflows is illustrated in Figure 6-5. The sequential

workflow design that represents a typical mapping operation starts with reading the user

input through an executable code activity named readInput. The readInput code

activity reads the user request for a mapping operation (containing source museum,

destination museum, and the details of the source file of the data to be mapped). The

inputConfirmed code activity gets the user confirmation that the inputted parameters

are correct to proceed with the mapping operation. A responseDelay activity is

introduced after collecting the user input allowing for calling the corresponding runtime

services to start the mapping process. The mappingOptions ifElse code activity

branches into three executable code activities. Each of these code activities represents

the mapping rules from one museum and performs the mapping operation to the target

museum according to the user input. The actual mapping process is achieved via

invoking an instance of the archival runtime service.

User interaction is achieved through the utilization of the workflow host. Message

handling is done through customized code routines that are able to read and interpret the

received messages. The main mechanism used here is based on the process of creating

public workflow runtime properties that take the value of the parameters entered by the

user. An example of such public properties is the public property used to determine the

source museum as shown in the code snippet below:

The public workflow runtime property, which is called sourceParameters, takes a

single value, the sourceMuseum, and passes it to be used within the workflow

management operations when performing data mapping operations. Public property

Public Property sourceParameters() As String

 Set(ByVal value As String)

 sourceMuseum = value

 End Set

 Get

 Return sourceMuseum

 End Get

 End Property

161

parameter passing is a two-way operation, as parameters are passed from the workflow

host to the workflow management components and vice versa.

Another example of the process of parameter passing is highlighted in the code snippet

below:

WfParameters represent the actual parameters that get passed to the initiated workflow

runtime service to be used in association with the executed processes. The actual

parameters are the result of the operation of the host application code classes and

methods that act on passing the correct parameters to the WfMS host. Furthermore, the

same mechanism is followed in all the other host/runtime interactions, regardless of the

type of workflow runtime service instance being initiated. The data mapping scenario is

illustrated in the testing scenario in Section 6.6.1.

The code snippet below illustrates the actual process of running the created workflow

runtime services via the Instance.Start() method. The workflow runtime indicators are

collected in a variable called wFIndicators, which is used within the workflow tracking

monitor (see Figure 6-17) to output different workflow indicators to the end-users.

WorkflowInstance=myWfRuntime.CreateWorkflow(GetType(RCHAr

chivalWorkflowWorkflowApplication1.Workflow1),

WfParameters)

WorkflowInstance Instance.Start()

Dim wFIndicators = “Workflow Instance ID:” &

WorkflowInstance.InstanceId.ToString & vbCrLf & “Runtime

Name:” & WorkflowInstance.WorkflowRuntime.Name.ToString &

vbCrLf & “Runtime Status: Running”

Return WfIndicators

162

Figure 6-5 Archival Mapping Workflow Runtime

163

6.4.3 The Retrieval Components Workflow Runtime Services

The Retrieval components workflow runtime services formed a part of the overall RCH

WfMS. This workflow runtime implementation provided the necessary functionality to

handle the user’s search queries to retrieve the required cultural objects. The retrieval

results are then displayed to the end-user by using the RCH presentation components, as

highlighted in Section 6.4.4. The main challenge here was developing an appropriate

approach to handle the complex workflows of the retrieval process.

The retrieval components workflow proved to be the most complex among the

implemented workflow runtime services due to the complexity of the rules that are

associated with its sequential design. Figure 6-6 shows the latest search interface as a

web page interface: the actual workflow prototype uses a Windows application to test

the workflow concepts.

This complexity of the retrieval components workflow runtime services stemmed from

the need to be able to handle all the combinations of the user queries while taking care

of the search options and filters (museum, category, region, etc.) that might be applied.

In the context of this thesis it should be noted that the goal was not to design an optimal

search engine with appropriate interface, but to produce prototype search functionality

as a part of the retrieval component to be able to validate a WfMS for the object

retrieval operations within RCH.

164

Figure 6-6 RCH Search Interface

Figure 6-7 illustrates the design of the retrieval components workflow runtime services.

In a similar fashion to the archival components workflow, the whole workflow process

starts with a specific user action. User actions are represented in the search operations

that come through from the RCH UI (Figure 6-6). Each search operation is associated

with a number of parameters, including the keyword search (read through the

readInput code activity) and the associated filters (such as object category, theme,

cultural group, etc.) which are read through the readFilters code activity. These

parameters are collectively handled by the getInput Listen Activity which passes the

entered parameters to the chooseMuseum code activity. This code activity precedes an

ifElse workflow activity that channels the search operations to the appropriate code

activities that query the collections of the searched museums. After the completion of

the retrieval process, the results alongside the appropriate workflow termination

messages are sent to the workflow host via another listenActivity called

‘returnResults’. This listenActivity has the task of sending the retrieved results to the

host in conjunction with the associated workflow indicators, which are controlled by a

165

delay Activity (delayConfirmation) so that they are delivered as the last bit of

information to the end-user.

Figure 6-7 Retrieval Workflow Runtime

166

6.4.4 The Presentation Components Workflow Runtime Services

Although it is not a common approach to manage the presentation aspects of an

application by using a WfMS, there exist some practical implementations that proved to

be viable and feasible in this respect [152]. For example, this concept was explored by

Chao et al [152] where a workflow management infrastructure was utilized to produce a

workflow-based Content Management System (CMS). This system was used to manage

the different operational aspects of a Learning Management System (LMS), including

its presentation layer’s services and activities.

Similar to the archival and retrieval components, a separate workflow runtime service

was created to handle the presentation aspects of the RCH system. The main concept

here was to handle all the object presentation tasks through a customized workflow

runtime service that interacts with the system’s workflow host. The devised presentation

workflow runtime services provided a comprehensive set of presentation-oriented

services as summarized in Table 6-3.

Table 6-3 The Presentation Component’s workflow-managed Services

Service Description

Object Display

Services

These services involve displaying the participating museums’ data in

a gallery view where all objects are displayed and grouped according

to the user preferences. These services also respond to the users’

requests to display the museums’ objects while adhering to a

predefined set of XSLT based display templates. An example of

object display within RCMS is illustrated in Figure 6-13.

Customised

View Services

These services provide the users with the facility to choose a number

of custom views to browse the stored cultural heritage objects. This

process is based on loading a certain XSLT file that presents the

retrieved objects in the required mode (for example, list view, gallery

view, etc.).

167

The Filtered

Display

Services

These services allow the end-users to view a limited subset of the

stored cultural heritage objects as requested. For example, the

presentation services can confine the displayed objects to only those

objects that are related to a specific museum. This process is similar

to object retrieval but it relies entirely on a pre-defined set of filters

(museum, tribe, etc.).

As the RCH presentation components are dependent on XSLT, as highlighted in

Chapter 5, their workflow runtime services are involved with manipulating the different

XSLT files that are used to present RCH’s objects. As shown in Figure 6-9, the

presentation component’s workflow starts with a user’s request for object presentation.

Such a request usually comes associated with two parameters. The first parameter is the

museum/s from which the data is going to be fetched and the other is the display mode

that the user wants to view. The latter option is concerned with the way that the objects

are going to be displayed. There are a number of supported XSLT-governed display

modes in RCH including gallery view, list view and summary view. The user’s

preferences are interpreted resulting in the workflow runtime requesting the

corresponding XSLT file to be loaded to the workflow host’s UI. Consequently, the

workflow host displays the returned XSLT-generated XHTML in an embedded browser

within the RCMS as illustrated in Figures Figure 6-13 Figure 6-14.

The range of the displayed objects can also be controlled by dynamically switching the

loaded XSLT. For instance, if a user chooses to view just a subset of the stored objects

such as the objects of a specific museum, the RCH WfMS manages the process of

loading the appropriate XSLT file. Figure 6-8 illustrates an example presentation mode

which is the gallery view (this time within the actual RCH website). In this mode, the

displayed objects are presented in separate galleries belonging to each of the

participating museums.

168

Figure 6-8 Gallery View Presentation Example

Again, a combination of workflow code constructs was utilized to allow for the efficient

operation of the object presentation process, as illustrated in Figure 6-9. The

getMuseum code activity reads the user’s inputs that specify the museum from which

the data is to be presented. The getDisplayMode activity reads the display mode

specified by the user (gallery view, list view, etc.). The loadXML code activity is used

to load the XML file from which the objects’ data is to be fetched. The data is then

presented by using one of the pre-built XSLT files (handled through loadGlasgowXSL,

lodaBrightonXSL and loadBritishXSL code activities). The returnResults

ifElseActivity activity is used to display the rendered XHTML (produced by the loaded

XSLT file).

169

Figure 6-9 Presentation Workflow Runtime

170

6.5 RCH Content Management System (RCMS)

The created workflow runtime services were collectively hosted in a workflow host

application. The RCMS application provided a UI that interacts with the system users

while prompting and invoking the appropriate workflow runtime service instances. The

chosen technological medium to implement the host application was the .NET

Framework and the associated VB.NET programming language. These technologies

were used to build a standalone Windows-based host application. The same can also be

achieved through a web-based host, but a Windows application is used here to

complement the functionality of the already existing RCH website.

Choosing a Windows application to host the custom-built workflow runtime services

was justified for a number of practical reasons. Choosing a .NET implementation

technology for the workflow host meant that the created application would not have

compatibility or interoperability problems while interfacing with the created workflow

runtime services. This is based on the fact that compatibility and interoperability

between Windows applications and WF-implemented WfMSs is fully supported by the

.NET Framework. Additionally, the .NET Framework allows for hosting workflow

runtimes in any Windows implementations including Windows forms, regardless of the

implementation language in use [153]. Therefore the created Windows application

addressed the UI needs of the RCH WfMS. Such a UI component can be further

customized or replaced when needed while preserving the core workflow management

infrastructure.

6.5.1 RCMS Illustration

The RCMS comprised a user-friendly Windows application that included a number of

Windows Forms that provided a range of managed RCH services. The different controls

and options that the RCMS’s UI provided facilitated the process of responding to user

actions (requests for data retrieval, object mapping, presentation, etc.). The performed

tasks were achieved while passing the appropriate parameters associated with each

operation to be handled by the backend workflow management runtime services. The

RCMS included three main interactive forms (Windows Forms): the Archival Services

Management Interface, the Object Retrieval Management Interface and the Object

Presentation Management Interface.

171

Figure 6-10 illustrates the home screen of the RCMS where the user can choose from

one of three system management choices: Retrieval, Presentation and Mapping.

Choosing each option results in displaying its relevant services and user controls as

detailed below. It is important to understand that RCMS is not about building a content

management system per se. RCMS from the UI perspective is merely the manifestation

of the workflow system, which is the control flow code and rules implied in Figure 6-5,

Figure 6-7 and Figure 6-9. In Figure 6-10, we can see that the grey background

represents the RCH Workflow Manager; this is the host environment, which can return

reports, stats, etc., in the Workflow Monitor (the black window). The RCMS is the

central part which is a really simple interface, but it illustrates the concept of how

WfMS can be built into a CMS.

Figure 6-10 RCH Content Management System

the actual UI elements of the RCMS are built by utilizing the .NET’s Visual Studio

controls that were used to build the interactive elements of the RCMS UI. The used

controls included buttons, text fields, panels, etc. The code snippet below illustrates the

actual controls used to build the home screen shown in Figure 6-10. These controls

include panels, group boxes, buttons, labels, etc.

172

Figure 6-11 illustrates the Archival Management interface, accessed through the Map

link (the term map was chosen because in this prototype, which is testing the validity of

WfMS, the main archival functionality chosen was the mapping of museum metadata to

RCH metadata and vice versa). The system users are provided with the option of

mapping the data of one museum to another. The UI deals with the users’ preferred file

location preferences, and performs the mapping operation while outputting valid

mapping results in the desired format and location. For testing purposes, the file

location can be either a local file directory or a web server. The latter scenario allows

for the dynamic update of the RCH website frontend every time a mapping operation

happens. For example, when a museum submits new objects to the shared heritage

resource represented by RCH, they get reflected immediately in the relevant sections of

the website, leading to the continuous availability of the most up-to-date data objects.

Private Sub InitializeComponent()
 Me.Panel2 = New System.Windows.Forms.Panel
 Me.GroupBox1 = New System.Windows.Forms.GroupBox
 Me.Panel3 = New System.Windows.Forms.Panel
 Me.Label3 = New System.Windows.Forms.Label
 Me.ReportsToolStripMenuItem = New
System.Windows.Forms.ToolStripMenuItem
 Me.Panel1 = New System.Windows.Forms.Panel
 Me.Button1 = New System.Windows.Forms.Button
 Me.Button2 = New System.Windows.Forms.Button
 Me.Button3 = New System.Windows.Forms.Button
 Me.StatsToolStripMenuItem = New
System.Windows.Forms.ToolStripMenuItem
 Me.Label1 = New System.Windows.Forms.Label
 Me.ExitToolStripMenuItem = New
System.Windows.Forms.ToolStripMenuItem
 Me.mpanel = New System.Windows.Forms.Panel
 Me.Label2 = New System.Windows.Forms.Label
 Me.MenuStrip1 = New
System.Windows.Forms.MenuStrip
 Me.Label4 = New System.Windows.Forms.Label
 Me.Button4 = New System.Windows.Forms.Button
 Me.Label5 = New System.Windows.Forms.Label
 Me.Panel2.SuspendLayout()
 .
 .
End Sub

173

Figure 6-11 The Archival Management Interface

The Object Retrieval management interface is illustrated in Figure 6-12. It shows that

users are provided with a set of options for object retrieval facilitated and managed by

the retrieval workflow runtime services. A user can carry out a keyword search or

associate the search process with a number of search filters to narrow down the range of

returned objects. The provided filters include Museum, Cultural Group and Object

Category. A combination of search keywords and search filters can also be used to

obtain different perspectives about the objects that are being searched. Figure 5-20

above illustrates the latest web version of the RCH search interface, whereas Figure

6-12 illustrates a limited version for WfMS testing purposes.

The actual search operations are carried out by querying the backend XML files with

the invoked retrieval components workflow runtime services, as was detailed in Section

6.4.3. In this case the ‘runtime service’ is, in effect, executing an XSLT search file in

the Glasgow, British, and Brighton code blocks in Figure 6-7.

174

Figure 6-12 The Object Retrieval Management Interface

Object presentation involves the dynamic loading of an appropriate XSLT file to the

embedded browser based on the user actions and the associated parameters. Figure 6-13

illustrates the Object Presentation management interface where the system users can

carry out different presentation-oriented operations. The snapshot in Figure 6-13 shows

that clicking on any museum’s option results in displaying its objects in an embedded

browser within the used form. Users can choose from a variety of display modes to

view the managed objects.

175

Figure 6-13 The Object Presentation Management Interface

The object presentation management tools support a number of presentation modes, as

detailed in Section 6.4.4. These display modes include the detailed object display mode

as illustrated in Figure 6-14.

176

Figure 6-14 The Detailed Object Display Mode

In reality, this WfMS system would be hidden behind an admin interface, perhaps as a

web page application, and the normal result would be something like that illustrated in

Figure 6-15.

177

Figure 6-15 The Object Presentation Frontend

6.6 Workflow Running and Testing

The process of testing the implemented WfMS involved running and evaluating a

number of test scenarios that spanned the three core workflow runtime services

(archival, retrieval and presentation). Process execution was monitored through the

different runtime indicators that associated the operation of the tested workflow runtime

services.

Each test scenario was associated with a set of messages as well as data and control

flows to be exchanged between the system components. An effective technique to test

the workflow management operation was the WF standard workflow runtime properties.

These properties determine the workflow status at any given point during the system

running. Such properties include the Runtime Name and ID that represent the unique

identifiers of each workflow runtime service. Another example property that was also

used in conjunction with the RCH WfMS testing is the workflow isRunning Boolean

property, which indicates whether a workflow is being run or not.

178

6.6.1 Example Testing Scenario: the Object Mapping Process

The object mapping process is a representative scenario of one of the main system

services that is managed by the devised WfMS. The other system operations share the

same basic principles that are associated with the RCH process invocation and

management. Figure 6-16 illustrates the RCH Mapping Manager, which is a part of the

RCMS. A successful mapping process was associated with outputting a message to the

end-user as a feedback that indicates the conclusion of the mapping process. It can also

be seen that the same screen comprises what is called the RCH Workflow Monitor

(the black panel down the bottom) which displays a number of workflow monitoring

and tracking indicators. This monitor provides the system users with a real-time runtime

monitoring of the different workflow activities taking place during process execution.

Figure 6-16 Object Mapping Confirmation

Figure 6-17 illustrates the RCH Workflow Monitor where a sample of three workflow

runtime properties is displayed. These properties are the workflow Runtime ID, the

179

Workflow Runtime Name and the Workflow Runtime Current Status (i.e. running/

not running).

Figure 6-17 The RCH Workflow Monitor

The code snippet below illustrates a typical workflow runtime handler used within the

devised WfMS. A standard WF handler is used here to handle workflow completion

(workflowRuntime.WorkflowCompleted). Workflow runtime termination is handled

through the (workflowRuntime.WorkflowTerminated) handler.

6.6.2 Message Passing Verification

Another important aspect of testing the devised WfMS was examining the message

exchange between the system components, namely the workflow host, the WfMS

components, and the RCH functional components. Message passing was tested at two

levels:

 message passing from the host application to the workflow engine and vice

versa;

 message passing from the workflow engine to the RCH components and vice

versa.

Figure 6-18 and Figure 6-19 show a tracked code snippet from the workflow host.

These code snippets illustrate the process of passing two parameters to workflow

Shared Sub Main()
 Using workflowRuntime As New WorkflowRuntime()

 AddHandler workflowRuntime.WorkflowCompleted,
 AddressOf OnWorkflowCompleted
 AddHandler
workflowRuntime.WorkflowTerminated,
 AddressOf OnWorkflowTerminated
 Dim workflowInstance As WorkflowInstance
 workflowInstance =
 workflowRuntime.CreateWorkflow_
 (GetType(mapping_workflow))
 workflowInstance.Start()
 WaitHandle.WaitOne()

 End Using
 End Sub

180

components (runtime services) during the object mapping process. The first parameter

is the source museum, which is in this case is the Glasgow Museum. The second

parameter is the destination museum, which is the British Museum.

Figure 6-18 Passing the Source Museum Data from the Workflow Host

Figure 6-19 Passing the Destination Museum Data from the Workflow Host

The invocation of the required workflow runtime services is associated with the

messages passed from the RCMS as shown above. During the mapping process, the

mapping runtime services are invoked by the WfMS while passing a string containing

the source and destination museum received through the RCMS. This process is

illustrated in Figure 6-20, where two parameters are associated with the process of

invoking the object mapping workflow runtime services. These parameters are the

source and destination museums as highlighted in Figure 6-18 and Figure 6-19 above.

Figure 6-20 Workflow Runtime Service Invocation

As shown in Figure 6-21, the inputted parameters are then passed to the actual invoked

runtime service instance to be used in its operations.

Figure 6-21 Using the Parameters within the Called Runtime Service

181

6.7 Results Analysis

The implemented system involved the creation of a custom-made WfMS that integrated

with the RCH components. The devised RCH WfMS provided workflow management

and monitoring components that were hosted in a Windows application that acted as a

workflow client application. The process of integrating and running the WfMS for RCH

was hallmarked with intensive message exchange and communication between the

system components. This approach suited the highly encapsulated loosely-coupled code

constructs that constituted the RCH components. At the level of the baseline system

services, it was possible to track and monitor the different system workflow activities

by using various workflow runtime properties supported by the WF tools. Such

properties (Workflow ID, Status, etc.) allowed for testing the highly hierarchical RCH

WfMS at different execution points.

It is worth noting here that a particular emphasis was placed on the performance and

flexibility aspects of the system as “there is always a conflict between flexibility and

performance, although they are two of the first important goals of WfMS”, Zhan and

Xiaohui [154]. Hence, in order to improve flexibility it was very important to adopt a

totally modular encapsulated approach that is independent and can seamlessly integrate

with RCH components. This approach was evident in the actual RCH WfMS

implementation, which comprised three separate encapsulated workflow runtime

services (archival, retrieval and presentation). Flexibility was achieved here by means of

facilitating the incorporation of any further workflow management functionalities by

simply adding new independent workflow runtime services.

It should be noted that the incorporation of a WfMS was a valuable addition to the RCH

system. First and foremost, it provided total separation between the system’s functional

components and its visual elements including the content management tools. This

supported the SO nature of RCH and offered a number of advantages, including better

management capabilities of RCH’S components. The adopted approach represents a

clear exploitation of the idea of having a workflow management software middle layer

with operational benefits for the existing code infrastructure.

RCH WfMS increased the RCH’s capacity to serve its users while being able to handle

the complex data being flown through its components; a characteristic that increased

RCH’s efficiency and scalability especially within its distributed environment. Figure

182

6-22 illustrates the interaction between RHC and the components that it manages at an

abstract level. It can be seen that the RCH WfMS sits as a middle workflow

management layer between RCMS and the RCH repository itself.

RCH WfMS provides better scalability possibilities to RCH due to the fact that it acts as

a middle management layer. This workflow management middle layer is able to accept

new user sessions and extra components without changing the actual structure of the

RCMS or RCH itself. As the operation of the adopted model is based on workflow

runtime instances and message passing, scalability is supported by default. This is an

important enhancement to RCH due to its distributed nature and varied user groups.

On the other hand, expandability is also made easier by the integrated workflow

management layer. Providing total isolation between the functional modules of RCH

and its UI elements meant that enhancements can be introduced easily without

disturbing the operation of the unchanged components. In this context, the RCH WfMS

accommodates new enchantments and components by managing their message passing

and creating the appropriate workflow runtime services to manage their operation. On

the other hand, new additions to the UI elements of RCH will not disturb the operations

of its internal components due to their independent workflow-managed nature. The

testing results and WfMS integration advantages are further detailed in Table 6-4.

Figure 6-22 Workflow Integration Benefits

183

Table 6-4 RCH WfMS Testing Criteria and Results

Component/Process Description Criteria Results

The workflow host
(Client Application)

The main purpose here is to test

the different functional and

integration aspects of the

workflow host.

Activation of individual work

items.

Autonomous workflow initiation was

achieved through the host application

(RCMS) in corporation with the RCH

WfMS as opposed to manual

workflows/hardcoded system event

management.

Functionality of the UI controls.

The controls (buttons, dropdown menus,

etc.) which we were wired up to the

backend code classes functioned as

expected as illustrated in Section 6.5.1.

Integration between the

workflow runtime services and

the host.

Control over the workflow runtime

services was achieved via the WfMS host.

This allowed for the flexibility of having

multiple system interfaces (MVC views)

and multiple user sessions as shown in

Sections 6.4.2, 6.4.3, 6.4.4 and 6.6.

184

Service Invocation

The aim is to test the base level

workflow host and workflow

engine functions that are used for

the purpose of invoking the system

services and workflow runtimes.

Workflow runtime service

invocation.

Successful invocation was achieved

through message passing as seen in Section

6.6.2.

System function invocation and

effective communication with

the RCH components.

Function invocation was achieved through

the interaction between the WfMS and the

RCH components. For example, the

mapping services are invoked through the

messages that are passed to the RCH

mapping component as seen in Section

6.6.2.

Workflow Runtime
Instances

Testing the workflow runtime

instances aimed at assessing the

efficiency of workflow instance

initiation and communication with

the host application.

Workflow instance creation.

Successful workflow instance creation was

achieved (See Figure 6-20).

Workflow instance running and

termination.

Instance creation and running was achieved

through the messages passed to the WfMS

from its host, e.g. creating and running the

archival workflow runtime instance as

shown in the test scenario in Section 6.6.1.

185

Message Passing

Efficiency of message passing was

a determinant factor in assessing

the efficiency of the RCH WfMS

and its communication with the

RCH components.

Data and message passing

between the workflow host and

the WfMS.

Successful parameter passing as shown in

the examples in Figure 6-18 and Figure

6-19.

Parameter passing to the

workflow runtime services.

Successful parameter passing as shown in

Figure 6-20.

Parameter passing from the

workflow runtime services to

the system’s components.

Successful parameter passing as shown in

Figure 6-21.

Code Execution

Code Execution testing was

conducted to assess RCH WfMS’s

efficiency in calling the right

executable code blocks and

executing them according to the

defined workflow rules.

Method calling and code

execution.

The messages and requests passed to RCH

from the WfMS succeeded in achieving the

required functionality by executing the

right code blocks in the right sequence. For

example, the data mapping process as

shown in Section 6.6.1

186

Error Handling

Error handling testing was

conducted to ensure that all

runtime errors are handled

properly without causing the

program or process running to be

interrupted in any way.

Runtime exception handling.

Building WfMS exception handling

routines is outside the scope of this thesis,

but the WF exception handling controls

were used effectively to tackle any possible

exceptions.

Other software
required?

Is there a need for any other

software to complement the

WfMS functionality?

To assess the sufficiency and

practicality of the devised

WfMS.

The produced WfMS and its host are self-

contained and do not require the support of

any other software.

187

6.8 Future Adaption of RCH WfMS

RCH is a dynamic system by nature: this is due to the evolving needs of the

communities of practice that use it and the varied digital objects that it manages.

Therefore, it undergoes constant updates and upgrades to accommodate new

functionality as well as enhancements to its current components. Such enhancements are

usually accompanied with updates to the UI elements of RCH, namely its website

frontend as well as the related RCH components. Figure 6-23 illustrates the object

browsing page of the latest RCH version which has an enhanced look and feel.

Figure 6-23 The latest RCH Search Interface

The question that manifests itself in this context is: will the RCH WfMS be able to

accommodate future enhancements and new RCH components? In other words, will it

be dynamic enough to adapt to the changes and upgrades that are applied to the RCH

infrastructure. In fact, the RCH WfMS prototype was built in such a way that enables it

to accommodate any upgrades within the RCH system (at database level, application

level and presentation level). The RCH WfMS prototype was built with flexibility and

adaptability in mind, as illustrated in Sections 6.26.3 and 6.4 as well as the results

analysis in Table 6-4.

188

Typically, there are two types of change that an RCH implementation may undergo. The

first is concerned with the UI elements of RCH and is related to its website frontend.

These changes usually involve graphical and visual enhancements to the current RCH

website at XHTML/CSS level (i.e. The View). For example, Figure 6-24 illustrates an

enhanced search interface as opposed to the older version illustrated previously in

Figure 5-20. The changes here are purely aesthetic and do not involve changes to the

functionality of the page itself.

Figure 6-24 Enhanced Object Browsing View

Such changes at the UI level pose no problem to the RCH WfMS due to its SO nature

and the interaction it maintains with the UI via message passing. Hence, non-functional

changes do not require any changes in the devised RCH WfMS prototype.

The second types of change that the RCH WfMS has to accommodate are the ones

concerned with business logic (i.e. Controller) within the application and database (i.e.

Model) levels of the RCH implementation. Such changes involve actual code changes

and extra functionality added to the RCH components. For example, the latest version

of RCH has enhanced community-oriented functionality (community feeds) as well as

189

multimedia (videos) enchantments, which required making some changes to RCH’s

archival, retrieval and presentation components. Figure 6-25 illustrates some functional

enhancements that are reflected in the RCH website frontend. Various community feeds

are incorporated including videos. Such functional changes will require adding the

appropriate workflow runtime services (or modifying the existing ones) to be plugged-

in within the existing workflow management engine.

This flexibility is empowered by the flexible model that WF provides, as presented

earlier in Table 6-1 and the way it was innovatively utilized to manage RCH

components. Such newly-added/modified workflow runtime services will handle the

new functionality and will perform the usual tasks of calling, invoking and managing

the concerned RCH components.

Figure 6-25 Community-oriented Multimedia Feeds

6.9 Summary

This chapter showcased the different aspects of incorporating a WfMS within the RCH

system to manage its different components. The main technological medium that was

used to build the prototype WfMS comprised the Windows Workflow Foundation (WF)

that was used to build the actual workflow runtime services. The workflow runtime

190

services represented the core workflow management constructs that managed the

illustrated representative RCH components (archival, retrieval and presentation).

The actual RCH WfMS is a highly hierarchical system where a number of rule-based

sequential workflows were created to handle the different RCH components. The

Windows .NET Framework was used to create a host (client) application in the form of

a Windows Application (a web-based application can also be used but a Windows

application was chosen to test the concept of integrating it with the already existing

RCH website). The RCH WfMS utilized the UI provided by its host application to

interact with its users through what is called the RCH Content Management System

(RCMS).

The highly modular SOA that the RCH system adopted allowed for seamless integration

with the encapsulated WfMS components. Such a paradigm paved the way for a smooth

integration and interoperability between the integrated components. The second

operational characteristic that made such integration possible was the effective message

passing routines that were applied throughout the system components. Effective

message exchange allowed the involved components to communicate with each other,

allowing for process execution that involves various functionalities such as object

mapping, search and retrieval, etc.

Running and testing the devised WfMS involved testing a number of its key operational

scenarios. One of the illustrated scenarios was the object mapping process, which is a

part of the archival component’s services. A number of features were tested and

evaluated, such as the efficiency of message passing and process execution. The WF

workflow runtime indicators were used to determine the successes of runtime

invocation and termination. Message passing was intercepted by utilizing the code

debugging tools within the .NET Framework, allowing for assessing the efficiency of

message exchange and process invocation and termination.

Incorporating the devised WfMS within the RCH system proved to be highly beneficial.

RCH WfMS helped separate the visual elements of the RCH implementation from its

baseline code infrastructure. This separation meant that optimal flexibility and

scalability can be maintained while being able to serve the evolving system needs.

Moreover, the incorporation of a WfMS provided management, monitoring and tracking

191

tools that helped better manage and coordinate the complex workflows that govern the

RCH’s behaviour. The benefits of such integration are further discussed in Chapter 7.

Figure 6-26 shows how the RCH WfMS prototype maps to some of the operational

problems in the current RCH implementation. The problem of having some manual or

semi-manual workflows (some steps in the archival object mapping process for

example) is resolved by automated workflows that are run and managed by the devised

WfMS. The WfMS provided tracking and management capabilities and contributed to

enhancing the RCH system as a whole, resulting in better management of its digital

heritage workflows as illustrated in Sections 6.5 and 6.6. On the other hand, the

problem of inflexibility was overcome by the expansion and scalability opportunities

that the RCH WfMS has offered. Inflexibility is tackled by the WfMS’s tolerance for

accepting enhancements both functional and at the UI levels, as was illustrated in

Section 6.8. This flexibility is supported by the adopted SO approach and the modular

nature of the RCH WfMS components.

Figure 6-26 Mapping the WfMS to the RCH Problems

Chapter 7 discusses the conclusions in relation to the overall research work carried out

as a part of this thesis, as well as the planned future work that will build on what has

already been achieved.

192

CHAPTER VII

7 Conclusion and Future Work

This chapter provides the conclusions in relation to the research work carried out and

presented in this thesis. It outlines the results of integrating a WfMS with an online

digital heritage resource (represented in the RCH system) to manage its different

components (archival, retrieval and presentation). The underlying details of the

operational gains (more on this in Section 6.7) that resulted from WfMS integration are

analysed in the context of the adopted architectural model and implementation

paradigms (mainly the adoption of MVC within an SO implementation approach). The

RCH WfMS implementation is discussed in terms of the key implementation issues that

it encountered and overcame, and the actual mechanisms it used to manage the RCH

components.

The contribution to knowledge that this thesis has made is discussed in conjunction with

the examined concepts and the implemented prototypes (RCH and WfMS). The

discussed contributions include the process of validating the DISPLAYS DLS

framework by devising a DLS implementation (RCH) and building workflow

prototypes of three of its core components (archival, retrieval and presentation). This

was done to assess the validity of using managed workflows within a DLS. Emphasis is

placed here on the advantages of integrating a WfMS within a digital heritage resource

in terms of process and resource optimization and the management capabilities that it

provides. The creative mix between a WfMS, a WfMS host and a digital heritage

resource (RCH), is also discussed in terms of the mechanism used to make such

integration a functional and viable one. This discussion is followed by elaborating on

future work, planned to build on what has already been achieved in this thesis.

7.1 Results Analysis

The results analysis and findings are outlined below in sections that represent the key

contributions made as a part of this thesis.

193

7.1.1 Validating the DISPLAYS Concept and WfMS Integration

RCH is a digital heritage resource implementation that is based on the DISPLAYS

Framework (see Chapter 3). DISPLAYS acted as a DLS conceptual framework that

encapsulated a number of SO services specifically designed to accommodate the

functional needs of DLSs and DHRs. The main DISPLAYS services are the Digital

Content: Creation, Archival, Exposition, Presentation and Interaction services for digital

heritage collections. These services were mapped into actual DLS components within

the RCH system, as presented in Chapters 4 and 5.

The RCH system was developed based on the DISPLAYS Framework while providing

a number of functional components; the archival, retrieval and presentation components.

These components were based on the equivalent DISPLAYS services and were

implemented accordingly in an SO loosely-coupled manner. The RCH components

were encapsulated within a flexible MVC model that separated the UI and presentation

aspects of the system from its business logic. Therefore, the technological solutions

(PHP, XML, XSLT and XHTML) and code modules (comprised of specialized code

classes and routines) that constituted the RCH implementation were mapped into the

MVC model. Consequently, the archival XML files represented the Model, the business

logic XSLT/PHP files represented the Controller, and the dynamically generated

XHTML code represented the View part of the model. These technologies suited an

MVC implementation that met the needs of the RCH system and provided it with a

flexible scalable model. The utilized XSLT files provided flexibility and efficiency in

extracting data from the XML data model that held the details of the managed objects.

XSLT files also suited the presentation layer (view) part of RCH (PHP, XHMTL and

CSS) by producing well-formatted valid XHTML to be displayed within RCH’s UI.

The work presented in this thesis revolved around the idea of integrating a WfMS with

an online digital heritage resource represented in the RCH prototype. Such integration

aimed at managing the archival, retrieval and presentation components of RCH (built as

example DLS components to validate the proposed WfMS) while offering a number of

practical gains, as explained in Sections 6.7. Consideration was given to devise the

RCH WfMS to fit within the SOA of RCH, without having to drastically modify or

redesign the existing components to accommodate the WfMS components. The RCH

WfMS was therefore built as an encapsulated component that hosted and managed the

RCH components and their associated services (see Section 6.3). The RCH WfMS was

194

in turn hosted in an application program (Windows application) to provide the RCH

users with an interactive UI, as illustrated in Section 6.5. It should be noted that the

WfMS version was a limited prototype compared to the prototype RCH version, and

later production versions of RCH (see Section 6.8).

The RCH components that were emphasized within the context of validating the

proposed WfMS are the archival, retrieval and presentation components. These

components were chosen because they represent some of the most complex components

to manage due to the complex intersecting nature of their workflows. The actual

implementation of the devised WfMS solution involved building an independent

dynamic and adaptive workflow engine that comprised a number of workflow

management components (workflow runtime services, workflow monitoring and

tracking services, persistence service, etc.) as presented in Chapter 6. This solution was

integrated with RCH while emphasizing its specific operational dynamics, such as

message passing and object mapping operations, user interaction, etc., as can be seen in

the testing scenario in Section 6.6.

The devised RCH WfMS was designed in such a way that it sat on top of the already

built online heritage resource represented by RCH’s functional components. This

approach overcame the challenges of adapting to the dynamic changes that the system

witnesses while it is being run. The adopted WfMS implementation model also

comprised a consistent and flexible model that provided a number of modular services

which interacted with RCH components. Such an interaction was achieved via effective

communication between the WfMS and the RCH components via message passing and

data exchange (for example digital heritage objects data mapping processes, archival

procedures, search and retrieval, etc., as illustrated in Section 6.4).

The technological medium that was used to build the RCH WfMS prototype was the

WF that was chosen for a number of practical reasons (see Section 6.3.1). One of the

main reasons for choosing the WF was its support of modular workflow runtime

services that can easily integrate with existing software systems. This feature was

particularly important in the case of RCH due to its modular nature. The WF provided a

solid and consistent implementation model that optimized the data transmission

operations between the RCH components. The complex and intersecting control and

data workflows of the RCH system were modelled within the devised WfMS as a set of

sequential workflow runtime services as detailed in Section 6.4. A separate workflow

195

runtime service was created for each of the examined RCH components. The created

workflow runtime services acted as a host for the RCH components and comprised the

archival, retrieval and presentation workflow runtime services.

The RCH WfMS prototype was hosted in a host application represented in a standalone

.NET Windows application. Hosting the WfMS was necessitated by the need to provide

the system users with a UI to be able to utilize the management capabilities that the

devised WfMS provides. The host application (RCMS) acted as another encapsulated

modular component that interacted with the WfMS via message passing (the RCMS

represented the actual manifestation of the devised WfMS functionality and services).

7.1.2 DLS Hosting within a WfMS

As explained in Chapter 6, the integration of a WfMS with the RCH system followed a

layered approach that offered scalability and expandability capabilities that suited the

heterogeneous nature of RCH (and potentially any similar DLS). One of the adopted

techniques was to provide an independent presentation frontend that contributed to

separating the workflow management logic (workflow management runtime services)

from the exposition, presentation and interaction aspects of RCH. This separation

proved to be a significant one imposed by the heterogeneous nature of RCH and the

need for multiple views (multiple website frontends, standalone applications, touch

screens, etc.) to suit the available user interaction modes (see Section 3.4.5).

The provided workflow management functionality revolved around the interaction

between three main components, which are the RCH components, the WfMS prototype

(the actual workflow engine), and the WfMS host. Flexibility was achieved by the

development of a number of separate specialized workflow runtime services that were

independent from the other RCH components (see Section 6.4.1). The RCH WfMS

provided a workflow management middle layer (a medium between the RCH

components and the RCMS) that is capable of adapting to the evolving system needs.

The flexibility of the RCH WfMS stems from its flexibility to accommodate specialized

workflow runtime services (current and future) to manage the operation of the RCH

components and the needs of its communities of practice.

196

7.1.3 Effective Communication between the RCH Components

Effective communication was maintained through message passing between the system

components. Message passing involved a number of key system processes that included

RCH service invocation, data exchange, service response, workflow service invocation

and correlation. Message passing provided for a simple and efficient approach for

maintaining the system’s state, while ensuring that the right sequence of workflow

activities are being invoked and terminated in response to the system events (for

example, search operations, data mapping, etc., as shown in the testing scenario in

Section 6.6).

This approach had the advantage of being code and technology independent as it

depended on parameter passing (requests and commands, see Table 6-4) between the

RCH components, regardless of their underlying implementation details (RCH

prototype is a PHP website, the WfMS is based on the WF and the RCMS is a Windows

application). Successful running of message passing was illustrated in Section 6.6,

where it was shown that workflow runtime service invocation and termination was

adequately handled through the managed service and function calls. Message passing

was also utilized at the UI level (RCMS) where parameters are passed from the frontend

to the workflow host. The workflow host in turn passes the received messages to the

other system components to perform the required operations.

7.1.4 WfMS Integration Gains and Advantages

Testing the WfMS as outlined in Section 6.6 and the results in Section 6.7, gave an

indication that it succeeded in meeting the workflow management needs of RCH across

the tested functional components. The integration of a WfMS within RCH offered a

number of practical operational advantages as listed below. The examined operational

scenarios in Chapter 6 show that the incorporation of the prototype WfMS led to a

number of operational and management gains including:

 the provision of integrated management, tracking, threading and monitoring

services that contributed to better running of RCH as well as optimum

management of its resources components;

 autonomous workflow initiation and running was achieved through the host

application (RCMS) in conjunction with the RCH WfMS, as opposed to manual

workflows/hardcoded system event management;

197

 separating the system’s business logic from its presentation, exposition and

interaction components, paving the way for multiple MVC Views to serve the

different user needs;

 modularity, scalability and expandability were enhanced by the RCH WfMS’s

ability to accommodate and manage any new code components without

disturbing the overall operation of the system (compared to non-managed

components that require restructuring to accommodate new additions);

 the utilization of a workflow management model within a number of separate

runtime services succeeded in mapping the different system processes. An

example is the digital heritage data mapping process as shown in Section 6.4.2

and tested in Section 6.6.1;

 the way that the devised components (RCH components, the WfMS and the

RCMS) interfaced with each other meant that they had the ability to adapt to the

changes that any of them may undergo.

 the adopted SO approach meant that the RCH communications are purely

service-based, i.e. based on the process of calling or terminating a certain service

regardless of its underlying implementation details. Hence, flexibility was

provided in terms of integrating different DLS services and components;

 while the demonstrated scenarios involved a selective set of functionality

involving the examined components, the prototype WfMS can be expanded to

accommodate any new functional requirements by exploiting the adopted SO

architectural approach.

7.2 Future Work

The planned future work will build on the code infrastructure and the developed

conceptual model that formed the solution presented in this thesis. The intended future

work will involve a number of steps to incorporate a more advanced WfMS

implementation model, especially in terms of handling the dynamic change of

sequential process running, specifically within the workflow runtime services. The

adopted SOA meant that the improvement of such a model is a relatively

straightforward process that involves adding more functional modules that are capable

of complementing the current functionality.

198

RCH itself can also be improved by accommodating more complex operational

scenarios that involve the integration of disparate databases and DLSs, while acting as

an integration and service provision medium. Such a medium can consolidate and

utilize the resources available in any given digital heritage resource environment. The

provided SOA model can be further enhanced by the provision of a web-service based

version that handles the system’s services through published web services that comprise

better distribution and accessibility features. These web services can also provide

workflow management functionality. The future work plans also include improving the

created WfMS prototype to be integrated within the latest version of RCH as illustrated

in Section 6.8.

The automated archival mapping process can be further improved by incorporating

more sophisticated functionality and error checking routines. One of the common

problems in the mapping process is the existence of missing object information.

Therefore, the future versions of the RCH mapping tool are planned to have intelligent

logic to handle such a problem. Ideally, the mapping tool will be able to spot any

missing object information, alert the user about that, suggest possible values or prompt

the user to enter a suitable alternative attribute. This mechanism will enhance the

validity of the outcome of the mapping process, thus minimize errors during the cultural

heritage object data import/export operations.

One of the ambitious goals that form a part of the overall attempt presented in this thesis

is to arrive at a more generic WfMS model (based on the RCH WfMS prototype) that

can suit virtually any DLS or DHR implementation. The main goal here is to provide a

set of highly customizable tools that can be easily integrated with existing code and

system infrastructures to provide flexible, customizable and user-friendly workflow

management capabilities.

199

8 Bibliography
[1] Wei Zhang, Zeeshan Patoli, Michael Gkion,Abdullah Al-Barakati, Paul Newbury

and Martin White "Reanimating Cultural Heritage through Service Orientation,
Workflows, Social Networking and Mashups," in International Conference on
CYBERWORLDS, Bradford, 2009, p. 7.

[2] Maureen Pennock, "Digital Curation and the Management of Digital Library
Cultural Heritage Resources," vol. 25, no. 2, 2006.

[3] L. Candela, D. Castelli, P. Innocenti, Y. Ioannidis, A. Katifori, A. Nika, G. Vullo,
S. Ross G. Athanasopoulos, "The Digital Library Reference Model," Glasgow,
2009.

[4] W.M.P. Aalst, "Flexible Workflow Management Systems: An Approach Based
on Generic Process Models," Database and Expert System Application vol. 1677,
no. 1, 1999.

[5] Abdullah Albarakati, Zeeshan Patoli, Michael Gkion, Wei Zhang, Paul Newburry,
Natalia Beloff, and MartinWhite "A Dynamic Workflow Management
Framework for Digital Heritage and Technology Enhanced Learning," in Virtual
Systems for Multimedia dedicated to Digital Heritage, limassol, 2008.

[6] Abdullah Albarakati, Zeeshan Patoli, Michael Gkion, Wei Zjang, Natalia Beloff,
Martin White "An Integrated Workflow Management Solution for Heritage
Information Mashups," in IEEE ASONAM, vol. 1, Athens, 2009, p. 6.

[7] Zeeshan Patoli, Abdullah Al-Barakati, Michael Gkion, Wei Zhang, Paul
Newburry, Natalia Beloff, and Martin White "A Service-Orientation Approach
for a Digital Library System focused on Portable Antiquities and Shared
Heritage," in The 8th International Symposium on Virtual Reality, Archaeology
and Cultural Heritage, Brighton, 2007.

[8] Zeeshan Patoli, Michael Gkion, Abdullah Al-Barakati, Wei Zhang, Paul
Newbury, Martin White "How to Build an Open Source Render Farm based on
Desktop Grid Computing," in International Multi-topic Conference IMTIC 2008 ,
vol. 20, karachi , 2008.

[9] Michael Gkion, Zeeshan Patoli, Abdullah Al-Barakati, Wei Zhang, Paul Newbury
and Martin White, "Collaborative 3D Digital Content Creation Exploiting a Grid
Network," in Third International Conference on Information & Communication
Technologies 2009, Karachi, 2009, p. 6.

[10] Ricardo Garcês, Tony de Jesus, Jorge Cardoso, "Open Source Workflow
Management Systems: A Concise Survey," Madeira, 2007.

[11] Nie Gang, "A Scheme Of Workflow Management System Based On Web
Services," in Electronic Commerce and Security, 2008 International Symposium
on Electronic Commerce and Security , vol. II, Guangzhou, 2008.

[12] Philippa Collins, "Document and workflow management '99," vol. 44 pp.23-26,
no. 1, 2000.

[13] Edmund Balnaves. (2000) Digital Assets Content Management System. PDF.
[14] Nabil Adam, Bharat K. Bhargava, Milton Halem, Yelena Yesha, "Digital

Libraries. Research and Technology Advances: ADL'95 Forum," McLean,

200

Virginia, 1996.
[15] Jan Mendling. (2006) Business Process Execution Language for Web Service

(BPEL). PDF.
[16] Zeeshan Patoli, Michael Gkion, Abdullah Al-Barakati, Wei Zhang, Paul Newbury

and Martin White "An Open Source Grid Based Render Farm for Blender 3D," in
IEEE Power Systems Conference & Exhibition, vol. 12, Seattle Washington,
2009.

[17] Margaret McGrory, Carol Pollitt, Paivi Bente Dahl Rathje, "Designing and
Building Integrated Digital Library Systems - Guidelines," Hague, 2005.

[18] Alex Byrne, "The end of history: censorship and libraries," in Beacon on
Freedom of Expression Conference, vol. 1, Alexandrina, 2003.

[19] Donald G., Jr. Davis, Nicholas A. Basbanes, Stuart A. P. Murray, The Library: An
Illustrated History. Chicago: American Library Association, 2009, vol. II.

[20] Barbara Krasner-Khait, "Survivor: The History of the Library," New York, 2001.
[21] Scott Bennett, "Libraries and Learning: A History of Paradigm Change," vol. 9,

no. 3, 2009.
[22] Ahmad Bakeri Abu Bakar, "Education For Digital Libraries In Asian Countries,"

in Asia-Pacific Conference on Library & Information Education & Practice,
2009, vol. 1, Tsukuba, 2009.

[23] Duncan M. Aldrich, Greggory Stefanelli, "Library Services for a Digital Future,"
vol. 29, no. 15, 2006.

[24] Yannis Ioannidis, "Digital libraries at a crossroads," vol. 5, no. 4, 2007.
[25] Lilia Pavlova-Draganova, Desislava Paneva, "Digital Libraries For Presentation

And Preservation Of East-Christian Heritage," Sofia, 2005.
[26] Michael Lesk, "Understanding Digital Libraries, Second Edition (The Morgan

Kaufmann Series in Multimedia and Information Systems)," vol. 1, no. 1, 2004.
[27] William C. Janssen, "International Conference on Digital Libraries," vol. 14, no.

1, 2003.
[28] Stacey Greenaway, "Digital Libraries – Literature Review," Wolverhampton,

2006.
[29] Vittore Casarosa, "DELOS Reference Model for Digital Libraries," in Elag 2007

Conference, vol. 1, Barcelona, 2007.
[30] Steven M. Schermerhorn, "Integrated Library System goals and accomplishments

at Goleman Library," Stockton, 2008.
[31] Jamie Callan, Jie Lu, "Merging retrieval results in hierarchical peer-to-peer

networks," in Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval, vol. 15,
Sheffield, 2004.

[32] Georg Rehm, Andreas Witt, Felix Zimmermann, Timm Lehmberg, "Digital Text
Collections, Linguistic Research Data, and Mashups: Notes on the Legal
Situation," vol. 57, no. 1, 2008.

[33] LC NDLP, "Digital Libraries Initiative," 2010.
[34] P. Sreejaya, M.G. Sreekumar, "Digital Library Initiatives and Issues in India :

Efforts on Scholarly Knowledge Management," Calicut, 2005.
[35] Leonardo Candela, David Lievens, Pasquale Pagano, Manuele Simi Fabio

201

Simeoni, "Functional adaptivity for digital library services in e-infrastructures:
the gCube approach," in ECDL'09 Proceedings of the 13th European conference
on Research and advanced technology for digital libraries, vol. 36, Corfu, 2009.

[36] Hong (Iris) Xie, "Help features in digital libraries: types, formats, presentation
styles, and problems," vol. 34, no. 6, 2007.

[37] Sueli Mara Ferreira, Denise Nunes Pithan, "Usability of digital libraries: a study
based on the areas of information science and human-computer-interaction," in
World Library and Information Congress: 71st IFLA General Conference and
Council, vol. 1, Oslo, 2005.

[38] Yaohua Yu, Zhengjie Liu, "Research on System Usability of Digital Libraries in
China," in 4th IEEE International Symposium on Electronic Design, Test &
Applications, vol. 1, Hong Kong, 2008.

[39] Bruce R. Schatz, "Information Retrieval in Digital Libraries: Bringing Search to
the Net," vol. 275, no. 3, 1997.

[40] Lloyd A. Smith, Ian H. Witten, Clare L. Henderson, Sally Jo Cunningham,
Rodger J. McNab, "Towards the digital music library: tune retrieval from acoustic
input," in the first ACM international conference on Digital libraries, vol. 84,
Bethesda, 1996.

[41] William Y. Arms, Christophe Blanchi, Edward A. Overly , "An Architecture for
Information," Reston, Virginia, 1997.

[42] Brian Hoffman, "Supporting Digital Archival Workflows at NYU," New York,
2000.

[43] Amy Friedlander, Roger Schonfeld, Sayeed Choudhury Lorraine Eakin, "A
Selective Literature Review on Digital Preservation Sustainability," La Jolla,
2007.

[44] Nicolas Spyratos, Carlo Meghini, Jitao Yang, (2009) A Data Model for Digital
Libraries. Power Point.

[45] Daniel Greenstein, "Digital Libraries and Their Challenges," vol. 49, no. 3, 2001.
[46] Edward A. Fox, Devika P., Madalli Hussein Suleman, "Design and

Implementation of Networked Digital Libraries: Best Practices," Bangalore, 2003.
[47] Alan Hopkinson, "Challenges for the Digital Libraries and Standards to Solve

them," in 7th International CALIBER-2009, vol. 2, Puducherry, 2009.
[48] Alan McCord, "Overview of Digital Asset Management Systems," Michigan,

2002.
[49] Enrico Motta, John Domingue, Simon Buckingham Shum, "ScholOnto: an

ontology-based digital library server for research documents and discourse," vol.
3, no. 1, 2000.

[50] Laura C. Savastinuk, Michael E. Casey, "Service for the next-generation library,"
vol. 33, no. 14, 2006.

[51] Jane Secker, "Social Software, Libraries and distance learners: literature review,"
London, 2008.

[52] Hu Xiaojing, Fan Bingsi, "Library 2.0: Building the New Library Services," 2006.
[53] Jack M. Maness, "Library 2.0 Theory: Web 2.0 and Its Implications for

Libraries," vol. 8, no. 2, 2006.
[54] Donatella Castelli, Pasquale Pagano, Constantino Thanos, Leonardo Candela,

"Setting the Foundations of Digital Libraries," vol. 13, no. 1, 2007.

202

[55] M. Chandrashekara, N. Varatharajan, "Digital Library Initiatives at Higher
Education and Research Institutions in India," vol. 1, no. 1, 2007.

[56] Rick Prelinger, Mary E. Jackson, Brewster Kahle, "Public Access to Digital
Material," vol. 7, no. 1, 2001.

[57] Mark Martinez, Jeff Scott, Mariella Di Giacomo, "A Large-Scale Digital Library
System to Integrate Heterogeneous Data of Distributed Databases," vol. 3149, no.
10, 2004.

[58] Kostas Saidis, Mara Nikolaidou, Vassilios Karakoidas, George Pyrounakis,
"Introducing Pergamos: A Fedora-based DL System Utilizing Digital Object
Prototypes," Athens, 2005.

[59] David Bainbridge, David M. Nichols, Ian H. Witten, How to Build a Digital
Library (Morgan Kaufmann Series in Multimedia Information and Systems).
Massachusetts: Morgan Kaufmann, 2009, vol. 2.

[60] Hwwilson. (2010, Mar.) Hwwilson. [Online].
http://www.hwwilson.com/databases/flyers/ERICflyer.pdf

[61] ERIC. (2010, Apr.) ERIC. [Online].
http://www.eric.ed.gov/ERICWebPortal/resources/html/about/about_eric.html

[62] Cesare Concordia, Carlo Meghini, Nicola Aloia, "Querying A Bricks Digital
Library," in IADIS International Conference WWW/Internet, vol. 1, Vila Real,
2007.

[63] Robert Hecht, Bernhard Haslhofer, "Joining the BRICKS Network - A Piece of
Cake," Wien, 2005.

[64] Thomas Risse, Predrag Kneˇzevic, Carlo Meghini, Robert Hecht, Fiore Basile,
"The BRICKS Infrastructure - An Overview," 2005.

[65] Nicholaos Mourkoussis, Joe Darcy, Panos Petridis, Fotis Liarokapis, Paul Lister,
Krzysztof Walczak, Rafał Wojciechowski, Wojciech Cellary, Jacek Chmielewski,
Mirosław Stawniak, Wojciech Wiza, Manjula Patel, James Stevenson, John
Manley, Fabr Martin White, "ARCO — An Architecture for Digitization,
Management and Presentation of Virtual Exhibitions," in Computer Graphics
International 2004, Crete, Greece , 2004, pp. 622-625.

[66] Chris Rusbridge, Peter Burnhill, Seamus Ross, Peter Buneman, David Giaretta,
Liz Lyon, Malcolm Atkinson, "The Digital Curation Centre: A Vision for Digital
Curation," in The Digital Curation Centre: a vision for digital curation, vol. II,
Edinburgh, 2005.

[67] Gary Marchionini, Chirag Shah, "Capturing Relevant Information for Digital
Curation," in Bulletin of IEEE Technical Committee on Digital Libraries, vol. 4,
North Carolina, 2008.

[68] Christopher A. Lee, Helen R. Tibbo, John C. Schaefer, "Defining what digital
curators do and what they need to know: the digccurr project," in 7th ACM/IEEE-
CS joint conference on Digital libraries, vol. II, Vancouver, 2007.

[69] Joyce Ray, "Managing the Digital World: the Role of Digital Curation,"
Edinburgh, 2008.

[70] Joe Lin, Charley Ho, Wasim Sadiq, Maria E. Orlowska, "Using Workflow
Technology to Manage Flexible e-Learning Services," vol. 1436, no. 3, 2002.

[71] Wil M.P. van der Aalst Hajo A. Reijers, "The effectiveness of workflow
management systems: Predictions and lessons learned," vol. 25, no. 1, 2005.

203

[72] van der Aalst, Kees van Hee, Workflow Management: Models, Methods, and
Systems. Cambridge, US: The MIT Press, 2004, vol. I.

[73] Yang Guang-Xin, Xiang Yong, WU Shang-Guang SHI Mei-Lin,
"WFMS:WORKFLOW MANAGEMENT SYSTEM," vol. III, 1999.

[74] Thomas Schael, Workflow management systems for process organisations. Rome:
Springer, 1996, vol. 12.

[75] Lalitha Munaga, Kamalakar Karlapalem, Rupa Krishnan, "XDoC-WFMS: A
Framework for Document Centric Workflow Management System," vol.
2465/2002, no. I, 2002.

[76] WFMC. (1996) Reference model and API specification. PDF.
[77] Hongbing Liang, Bin Xu, Mingkui Yang, "S-WFMS: A Service-based Workflow

Management System," in International Conference on Advanced Information
Networking and Applications (AINA’05), vol. V1, Taipei, 2005.

[78] Jia Yu, Rajkumar Buyya, "A Taxonomy of Workflow Management Systems for
Grid Computing," vol. 3, no. 1, 2006.

[79] Qinglong Zhan, "Workflow Technology Enabled e-Training System: Toward
Work Process," in Information Engineering and Electronic Commerce, 2009.
IEEC '09. International Symposium on , vol. 108, Tianjin, 2009.

[80] François Charoy, Adnene Guabtni, Miguel Valdes Faura, "A Dynamic Workflow
Management System for Coordination of Cooperative Activities," Business
WorkShop vol. 4103, no. 1, 2006.

[81] M Zisman. (1977) Representation, Specification and Automation of Office. PDF.
[82] Clarence A. Ellis, "Information Control Nets: A Mathematical Model of Office

Information Flow," vol. 8, no. 1, 1979.
[83] Ingmar A. Frey, "Measuring the Effectiveness of a Workflow Management

System in a Pre-Surgical Process," vol. 1, no. 1, 2009.
[84] David Hollingsworth, "Workflow Management Coalition The Workflow

Reference Model," vol. 1003, no. 1.1, 1994.
[85] J.H.P. Eloff, R.A. Botha, "A Security Interpretation of the Workflow Reference

Model," in th Working Conference of WG11.1 and WG11.2 of IFIP TC11, vol. 34,
Vienna, 1998.

[86] Daniel Rolli, Rudolf K. Keller,Peter Kropf, Sarita Bassil, "Extending the
Workflow Reference Model to Accommodate Dynamism," Montréal, 2003.

[87] David Hollingsworth, "Workflow Management Coalition The Workflow
Reference Model," Winchester, 1995.

[88] Martinho Fernandes, Sergio Miguel, (2006) A Workflow Virtual Machine. PDF.
[89] Saini. (2007) Seven Showstopper Problems with BPEL Servers for Event-Driven

SOA. Website.
[90] Lachlan Aldred, Marlon Dumas, Arthur H.M. ter Hofstede, Wil M.P. van der

Aalst, "Design and Implementation of the YAWL System," vol. 3084/2004, no. I,
2004.

[91] Wil van der Aalst, Carmen Bratosin. (2007) Workflow Management Systems for
Grid Computing. Web.

[92] Wil van der Aalst, A.H.M. ter Hofstede, "YAWL: yet another workflow
language," vol. 245–275, no. 12, 2004.

204

[93] Jordi Anguela Rosell, Christophe Loridan, "BONITA – Workflow patterns
support," Les Clayes-sous-Bois, 2006.

[94] Bilal Siddiqui. (2010) Bonita for business process management, Part 1: Configure
a simple workflow. PDF.

[95] BonitaSoft. (2009) Bonita Open Solution, a comprehensive Open Source BPM
Suite. Website.

[96] Farzad Farahbod, Ajay Aggrwal, "Create a Windows workflow application using
Windows Workflow Foundation in IBM Database Add-ins for Visual Studio,"
USA, 2008.

[97] Allen Scott, Programming Windows Workflow Foundation: Practical WF
Techniques and Examples using XAML and C#: A C# developer's guide to the
features and programming interfaces of Windows Workflow Foundation.
Birmingham: Packt Publishing, 2006, vol. II.

[98] Bruce Bukovics, Pro WF: Windows Workflow in.NET 3.5. New York: Apress,
2008, vol. 1.

[99] Marcel de Vries. (2007) Practical Windows Workflow Foundation. PDF.
[100] Inala Uma Shankar. (2008) Using the Windows Workflow Foundation (WF) for

Developing an Issue Management System. Website.
[101] Y. Wu, F. Hernandez, F. Ortega, P. J. Clarke, R. France, "Measuring the effort for

creating and using domain-specific," in Proceedings of 10th DSM Workshop,
2010.

[102] Robin Roy. (2009, July) Comparison between Windows Workflow Foundation
and Biz Talk Server. [Online]. http://www.codeproject.com/KB/biztalk/BizTalk-
WF-Compare.aspx

[103] Julian Jang, Alan Fekete, Paul Greenfield, Surya Nepal, "An Event-Driven
Workflow Engine for Service-based Business Systems," in Enterprise Distributed
Object Computing Conference - EDOS, Hong Kong, 2006, pp. 233-242.

[104] Muriel Foulonneau. (2007) Digital repositories infrastructure vision for European
research - Review of technical standards. PDF.

[105] Donatella Castelli. (2007) DRIVER: Digital Repository Infrastructure Vision for
European Research. PDF.

[106] Amy Shuen, Web 2.0: A Strategy Guide.: O'Reilly Media, 2008, vol. 1.
[107] Barbara Clubb, Jennifer-Lynn Draper, Alexandra Yarrow, "Public Libraries,

Archives and Museums: Trends in Collaboration and Cooperation," Edinburgh,
2008.

[108] Minerva. (2008) Technical Guidelines for Digital Cultural Content Creation
Programmes. PDF.

[109] Jeffrey Pomerantz. (1999) Integrating Digital Reference Service into the Digital
Library Environment. PDF.

[110] Radoslav Pavlov, Desislava Paneva, , "Toward Ubiquitous Learning Application
of Digital Libraries withMultimedia Content," vol. 6, no. 3, 2006.

[111] NISO. (2008, June) National Information Standards Organization. [Online].
http://framework.niso.org/node/8

[112] NRGL. (2008) Comparison of Selected Software Systems for Creation of Digital
Libraries. PDF.

[113] Stephan Kiemle, "From Digital Archive to Digital Library - A Middleware for

205

Earth-Observation Data Management," in ECDL '02 Proceedings of the 6th
European Conference on Research and Advanced Technology for Digital
Libraries, vol. 22, Roma, 2002.

[114] Konstantin Rangochev, Detelin Luchev, Desislava Paneva, "Knowledge
Technologies For Description Of The Semantics Of The Bulgarian Folklore
Heritage," in Fifth International Conference (Information Research And
Applications 2007), vol. 2, Varna, 2007.

[115] David Raitt. (2000) Digital Library Initiatives Across Europe. Website.
[116] Oystein Pettersen, Nicole Bordes, Sean Ulm, David Gwynne, Terry Simmich,

Bernard Pailthorpe, "Grid services for e-archaeology," in AusGrid '08
Proceedings of the sixth Australasian workshop on Grid computing and e-
research, vol. 82, Australasian, 2008.

[117] Gert Brettlecker, Tiziana Catarci, Stavros Christodoulakis, Tom Crecelius,
Nektarios Gioldasis, Hans-christian Jette , Mouna Kacimi, Diego Milano, Paola
Ranaldi, Harald Reiterer, Hans-jörg Schek, Heiko Schuldt Ceri Binding,
"DelosDLMS: Infrastructure and Services for Future Digital Library Systems,"
Basel, 2007.

[118] Nick J. Avis, Omer F. Rana, Gao Shu, "Bringing semantics to visualization
services," vol. 39, no. 1, 2008.

[119] Ray R. Larson, Robert Sanderson, "Grid-based digital libraries: cheshire3 and
distributed retrieval," in JCDL '05 Proceedings of the 5th ACM/IEEE-CS joint
conference on Digital libraries, vol. 15, Denver, 2005.

[120] P. Jabisetti, N. Joshi, U. Lee, Y. Uppuluri, "P2P grid: service oriented framework
for distributed resource management," in Services Computing, 2005 IEEE
International Conference on, vol. 1, Orlando, 2005.

[121] Paul Basu. (2009) Reanimating cultural heritage: digital repatriation, knowledge
networks and civil society strengthening in post-conflict Sierra Leone. [Online].
http://projects.beyondtext.ac.uk/reanimatingculturalheritage/index.php

[122] Sallieu Turay. (2004) Sierra Leone Book Trust Sierra Leone Book Trust For The
Dialogue Of African Partners-Ii. PDF.

[123] Paul Basu, "Confronting the Past? Negotiating a Heritage of Conflict in Sierra
Leone," Journal of Material Culture, vol. 13, no. 2, pp. 153-167, 2008.

[124] Paul Basu, Sharon Macdonald, Exhibition Experiments, 1st ed.: Wiley-Blackwell,
2007.

[125] Akmal B. Chaudhri, Awais Rashid, and Roberto Zicari, XML Data Management:
Native XML and XML-Enabled Database Systems.: Addison-Wesley
Professional, 2003, vol. 1.

[126] Jay Liebowitz, Social Networking: The Essence of Innovation.: The Scarecrow
Press, Inc, 2007.

[127] Ralph LeVan, Bruce Washbur, Günter Waibel. (2010) Museum Data Exchange:
Learning How to Share. PDF.

[128] Tony Marston. (2010, May) Rapid Application Development toolkit for building
Administrative Web Applications. [Online]. http://www.tonymarston.net/php-
mysql/model-view-controller.html

[129] Frederic P. Miller, Agnes F. Vandome, John McBrewster, Model-view-controller:
Software Engineering, User Interface, Active Record Pattern, Architectural
Pattern (computer science), Model 1, Observer Pattern, Presentation-

206

abstraction- control.: Alphascript Publishing, 2010.
[130] Sun. (2009, Jan.) Designing Enterprise Applications with the J2EE. [Online].

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/w
eb-tier/web-tier5.html

[131] Hiroyuki Kawano, "Towards Digital Archive Systems: Architecture," in The
Eighth International Symposium on Operations Research and Its Applications,
Zhangjiajie, China, 2009.

[132] Shana D. Kelley, Amy J. Hatfield. (2007) Case study: lessons learned through
digitizing the National Commission for the Protection of Human Subjects of
Biomedical and Behavioral Research Collection. Document.

[133] Martin White, Manjula Patel, Jacek Chmielewski, Krzysztof Walczak Nicholaos
Mourkoussis, "AMS: metadata for cultural exhibitions using virtual reality," in
Dublin Core Conference 2003: Supporting Communities of Discourse and
Practice - Metadata Research and Applications, Seattle, Wa., USA, 2003.

[134] Gregory Sherman, "A Critical Analysis of XSLT Technology for XML
Transformation," 2008.

[135] IBM. (2008, Aug.) DB2 solution Information Center home. [Online].
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.
db2.luw.xml.doc/doc/c0050648.html

[136] Victor Pavlov. (2003) Build an XML/XSLT driven Website with.NET. PDF.
[137] Ruizhi Sun, Dong Wang, Realization Of Workflow Service Invocation Interface

For Integration Of Agricultural Network Resources.: Springer, 2009, vol. 2.
[138] Qifeng Huang, Yan Huang, "WS-based workflow description language for

message passing Symposium on ," in Cluster Computing and the Grid, 2005.
CCGrid 2005. IEEE International , vol. 1, 2005.

[139] David Schmitz, Andreas Hanemann, "Service-Oriented Event Correlation -
Workflow and Information Modeling Approached," Munich, 2005.

[140] Richard Blewett, "Windows Workflow Foundation," Los Angeles, 2005.
[141] Ann Q. Gates, Leonardo Salayandía, "Towards a workflow management system

for service," vol. 3, no. 18-25, 2007.
[142] Philipp Leitner, Anton Michlmayr, Predrag Celikovic, Schahram Dustdar, Florian

Rosenberg, "Towards Composition as a Service - A Quality of Service Driven
Approach," in IEEE International Conference on Data Engineering, vol. III,
2009.

[143] Kent Brown. (2007, February) BizTalk Server 2006 or WF? Choosing the Right
Workflow Tool for Your Project. [Online]. http://msdn.microsoft.com/en-
us/library/cc303238.aspx#BizTalk06_or_WF_topic3

[144] Alan Snyder, "Encapsulation and Inheritance in Object-Orlented Programming
Languages," vol. 204-7, 1986.

[145] Suk-Ho Kang, Dongsoo Kim, Joonsoo Bae, Kyung-Joon, Ju, Yeongho Kim,
"WW-FLOW: Web based workflow management with runtime encapsulation," in
Internet Computing, IEEE , vol. 4, 2000.

[146] K. Scott Allen. (2006, August) odeTocode.com. [Online].
http://odetocode.com/Articles/457.aspx

[147] Pegasus. (2008) Building Image‐Based Workflows with Windows Workflow
Foundation. PDF.

207

[148] Kenji Takeda, Simon J., Cox A.Paventhan, "LeveragingWindows Workflow
Foundation for ScientificWorkflows in Wind Tunnel Applications," in the 22nd
International Conference on Data Engineering Workshops, vol. II, 2006.

[149] C. S. Shin, T. S. Chou, Y.C. Wang, H. Y. Huang, W. S. Chen, J.W. S. Liu,
"EMWF: A Middleware for Flexible Automation and Assistive Devices," Taipei,
2009.

[150] G. Salaün, C. Canal, E. Pimentel, Javier Cubo, "Relating Model-Based
Adaptation and Implementation Platforms: A Case Study with WF/.NET 3.0,"
berlin, 2007.

[151] Brian Noyes, "Workflow Driven Windows Applications," Las Vegas, 2006.
[152] Hubert Chao, Theodore Chao, Yim Cheng, Raymond Doyle, Sergey Grankin, Jon

Guarino, Saikat Guha, Pei-Chen Lee, Dan Perry, Christopher Re, Ilya Rifkin,
Tingyan Yuan, Dora Abdulla, Chavdar Botev, "Supporting Workflow in a Course
Management System," USA, 2005.

[153] Chappell & Associates David Chappell, Introducing Microsoft Windows
Workflow Foundation: An Early Look.: Microsoft Corporation, 2005, vol. 1.

[154] Zhao Xiaohui, Zhan Dechen "Performance Analysis of Hierachical Workflow
Management Systems on the Basis of BCMP-Queueing Networks," in European
Accounting Information Systems Conference, vol. 3, Copenhagen, 2002.

[155] Kristof Steurbaut, Sofie Van Hoecke, Filip De Turck, Bart Dhoedt, Bart J.F. De
Smet, "Dynamic Workflow Instrumentation for Windows Workflow Foundation,"
in International Conference on Software Engineering Advances (ICSEA 2007),
Cap Esterel, French Riviera, France , 2007.

[156] Frank Rennie, Robin Mason, e-Learning and Social Networking Handbook. New
York: Routledge, 2008, vol. 1.

[157] Meredith G. Farkas, Social Software in Libraries Building Collaboration,
Communication, and Community Online.: Information Today, Inc., 2007, vol. 1.

[158] Marc Mezquita, Performance Characteristics of Windows Workflow Foundation.:
Microsoft Corporation, 2006.

[159] Kevin McArthur, Pro PHP: Patterns, Frameworks, Testing and More.: Apress,
2008, vol. 1.

[160] Steve Holzner, Real World XML (2nd Edition).: Peachpit Press, 2002, vol. 2.
[161] Hans Gellersen, "Conference on Computer-Supported Cooperative Work," in

ECSCW 2005: Proceedings of the Ninth European, Paris, 2005.
[162] Hsueh-hua Chen, "Digital Library Projects in Taiwan," vol. 3, no. 1, 2006.
[163] Nicole Ellison, Charles Steinfield, Cliff Lampe, "A face(book) in the crowd:

social Searching vs. social browsing," in the 2006 20th anniversary conference on
Computer supported cooperative work, New York, 2006.

[164] Prasun Dewan, Vassil Roussev, Supporting High Coupling and User-Interface
Flexibility. New York: Springer-Verlag , 2005.

[165] Tanmoy Pal, Barnan Das, "Development of a Digital Library using DSpace Open
Source Platform," Kharagpur, 2008.

[166] Martin Fowler, Patterns of Enterprise Application Architecture (The Addison-
Wesley Signature Series).: Addison Wesley, 2002, vol. 1.

[167] Manoj Mansukhani. (2005) Service Oriented Architecture White Paper. PDF.
[168] Eric C. Kansa, Jason M. Schultz, Sarah Whitcher Kansa. (2007) An Open Context

208

for Near Eastern Archaeology. PDF.
[169] Peter Thiemann, A typed representation for HTML and XML documents in

Haskell. New York: Cambridge University Press, 2002, vol. 12.
[170] Mengchi Liu, Tok Wang Ling, Zhiyong Peng Shijun Li, "Automatic HTML to

XML Conversion ," in Advances inWeb-Age Information Management.: Springer,
2004, vol. 3129.

[171] Spyros Tsipidis, Kostas Kotsakis, Alexandra Kousoulakou, Markos Katsianis, "A
3D digital workflow for archaeological intra-site research using GIS," vol. 35, no.
3, 2008.

[172] Lu Liu, Baosen Yang, A Case Study of Enterprise Application Integration Based
on Workflow Management System.: Springer, 2008, vol. 1.

[173] Yang Yu, Grace Agnew, "The Rutgers Workflow Management System:
Migrating a Digital Object Management Utility to Open Source," vol. II, no. 1,
2007.

[174] MSDN, "Designing Workflow Components," 2009.
[175] J. Jackson, N. Araujo, D. Guo, N. Gautam, Y. Simmhan, R.S. Barga, "The

Trident Scientific Workflow Workbench," in eScience, 2008. eScience '08. IEEE
Fourth International Conference on , vol. II, Redmond, WA, USA , 2008.

[176] Roger Barga1, Beth Plale, Nelson Araujo, Eran Chinthaka, "Workflow Evolution:
TracingWorkflows Through Time," Redmond, Washington, 2009.

[177] Ke Liu, Ke Liu, Joel Lignier, Hai Jin, Yun Yang, "Peer-to-Peer Based Grid
Workflow Runtime Environment of SwinDeW-G," in Third IEEE International
Conference on e-Science and Grid Computing (e-Science 2007), Bangalore, India,
2007.

[178] Alberto B. Raposo, Marcelo Gattass, Ismael H. F. dos Santos, "A Software
Architecture for an Engineering Collaborative Problem Solving Environment," in
Software Engineering Workshop, 2008. SEW '08. 32nd Annual IEEE , Kassandra ,
2008.

[179] Song Ouyang, Implementation of Policy Based Management in Workflow
Management System.: Springer, 2007, vol. 4402/2007.

[180] Jean Barmash, Ranju Saroch. (2007) Architecting a Knowledge-Management
System. Report.

[181] Chappell, Associates David Chappell, "The Workflow Way," USA, 2009.
[182] Joe Fallon Rockford Lhotka, Expert VB 2008 Business Objects. New York:

Apress, 2009.
[183] Bruce Bukoics, Pro Windows Workflow in.NET 3.0. New York: Apress, 2007.
[184] P Grefen, J Vonk M Koetsier, "Contracts for Cross-Organizational Workflow

Management," in First International Conference on Electronic Commerce and
Web Technologies, London, 2000.

[185] Christian Hocken, Thomas M. Deserno, Christoph Grouls, Rolf W. Günther Petra
Welter, "Workflow management of content-based image retrieval for CAD
support in PACS environments based on IHE," vol. 5, no. 4, 2010.

[186] Gerardo Canfora, Andrea De Lucia, Pierpaolo Gallucci, Lerina Aversano,
"Integrating Document and Workflow Management Systems," vol. 328, 2001.

[187] Kwanghoon Kim, "An Enterprize Workflow Grid/P2P Architecture for Massively
Parallel and Very Large Scale Workflow Systems," vol. 3842/2006, no. 1, 2006.

209

[188] Ewan Fairweather, Rama Ramani, Mike Sexton, Stephen W. Thomas, Richard
Seroter, Applied Architecture Patterns on the Microsoft Platform. Birmingham:
PACKT PUBLISHING, 2007, vol. 12.

[189] Shaohua Zhang, Johann, Schlichter, Guangwen Yang, Jinlei Jiang, "Workflow
management in grid era: from process-driven paradigm to a goal-driven one," vol.
I, no. 1, 2007.

[190] William Y. Arms, "Automated Digital Libraries: How Effectively Can Computers
Be Used for the Skilled Tasks of Professional Librarianship?," vol. 6, no. 1, 2000.

[191] Sushan Dhakal, "Open Digital Library, Implementation In Open Educational
Perspective," vol. III, no. 1, 2007.

[192] Matthew Battles, Library: An Unquiet History.: Paw Prints, 2008, vol. 1.
[193] Paul Miller. (2005) Web 2.0: Building the New Library. HTML.
[194] N. Ferro, M. Agosti, "Adding Advanced Annotation Functionalities to an Existing

Digital Library System," vol. II, no. 1, 2008.
[195] Kostas Saidis, Mara Nikolaidou, Irene Lourdi George Pyrounakis, "Designing an

Integrated Digital Library Framework to Support Multiple Heterogeneous
Collections," vol. 3232, no. 1, 2004.

[196] B.K. Choudhury, Y. Srinivasa Rao, "Availability of Electronic Resources at NIT
Libraries in India : A Study," in International Conference on Academic Libraries
(ICAL-2009), vol. 1, Delhi, 2009.

[197] Rajkumar Buyya, Mustafizur Rahman, "An Autonomic Workflow Management
System for Global Grids," in Cluster Computing and the Grid, 2008. CCGRID
'08. 8th IEEE International Symposium on , vol. 1, Lyon, 2008.

[198] N.C. Russell, W.M.P. van der Aalst, A.J. Moleman, P.J.M. Bakker R.S. Mans,
"Augmenting a workflow management system with planning facilitites using
colored petri nets," in Ninth workshop and tutorial on practical use of coloured
petri nets and the CPN tools, vol. 588, Aarhus, 2008.

[199] E.R.M. Madeira, C.B. Medeiros, W.M.P van der Aalst E. Bacarin, "SPICA’s
Multi-party Negotiation Protocol: Implementation using YAWL," Londrina,PR
Brazil, 2009.

[200] Todor A. Stoilov, Krasimira P. Stoilova, "Evolution of the workflow management
systems," Bulgarian, 2006.

[201] B.J.F. Steurbaut, K. Van Hoecke, S. De Turck, F. Dhoedt, B. De Smet, "Dynamic
Workflow Instrumentation for Windows Workflow Foundation," in International
Conference on Software Engineering Advances, 2007. ICSEA 2007, vol. 10.11,
Cap Esterel , 2007.

[202] C S Somu, M V Sunil, N S Harinarayana. (2009) Digital Rights Management in
Digital Libraries: An Introduction toTechnology, Effects and the Available Open
Source Tools. PDF.

[203] Cathy Nelson Hartman, Daniel Gelaw Alemneh. (2002) Meeting Digital
Resources Preservation Challenges: University of North Texas Libraries
Initiative. Power Point.

[204] Preet Kanwal, Payare Lal, Anita Chhatwal, "Digital Heritage Archiving in India:
A Case Study of Panjab University Library, Chandigarh," in 2nd International
Conference The Future of Information Sciences (INFuture), vol. 14, Zagreb,
2009.

210

[205] J. David Schloen, "Archaeological Data Models and Web Publication Using
XML," vol. 35, no. 123, 2001.

[206] Microsoft. (2006, Dec.) Italian Railway. [Online].
http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBQQFjAA&url=h
ttp%3A%2F%2Fwww.microsoft.com%2Fcasestudies%2FServeFileResource.asp
x%3F1000000309&rct=j&q=Italian%E2%80%99s%20Railway%20Police%20do
cument%20management%20system%20%5BMicrosoft%202006%5D&ei=7

[207] S. Esakkirajan, S. Sumathi, Fundamentals of Relational Database Management
Systems (Studies in Computational Intelligence). USA: Springer, 2007, vol. 35.

[208] Paul Basu. (2007, November) Reanimating Cultural Heritage. [Online].
http://sites.google.com/site/drpaulbasu/projects/reanimating-cultural-heritage

[209] Paul Basu. (2007) Reanimating Cultural Heritage. [Online].
http://sites.google.com/site/drpaulbasu/projects/reanimating-cultural-heritage

[210] (2010, July) Beyond the Text Project. [Online].
http://projects.beyondtext.ac.uk/reanimatingculturalheritage/index.php

[211] W.Zhang, M. Z. Patoli, M. Gkion, Al-Barakati, P. Newbury and M. White
"Reanimating Cultural Heritage through Service Orientation, Workflows, Social
Networking and Mashups," , Bradford, UK, 2009.

211

Appendix A

RCH New Interface

Figure A-1. The Home Page

Figure A-2. The Object Browsing Page

212

Figure A-3. The Object Retrieval Page

Figure A-4. Summary View of a Cultural Object

213

Figure A-5. Enlarged Image View

Figure A-6. Glossary

214

Figure A-7. Glossary Term Details

Figure A-8. Glossary Term Details

215

Figure A-9. Object Data Retrieval from Facebook

Figure A-10. Facebook Integration

216

Figure A-11. Social Feeds

Figure A-12. Video Page

217

Appendix B

Museum Metadata Examples

<CulturalObject>
<Classifications>furniture</Classifications>
<ObjectName>hammock</ObjectName>
<Description>Hammock of dyed grass, from Sierra Leone,
West Africa.</Description>
<Materials>dyed grass</Materials>
<CultureSchool>West African</CultureSchool>
<Measurements>overall: 1151.5 g</Measurements>
<DateMade>No Data</DateMade>
<PlaceMade>Africa, West Africa, Sierra Leone (place of
manufacture)</PlaceMade>
<Maker>No Data</Maker>
<Source>Seanlan, Dr K</Source>
<Collector>No Data</Collector>
<Museum>Glasgow Museum</Museum>
<IDNumber>GLAMG:1878.137.a</IDNumber>
</CulturalObject>

<CulturalObject>
<ObjectCategory>furniture</ObjectCategory>
<ObjectName>hammock</ObjectName>
<Description>Hammock of dyed grass, from Sierra Leone,
West Africa.</Description>
<Material>dyed grass</Material>
<EthnicName>West African</EthnicName>
<Dimensions>overall: 1151.5 g</Dimensions>
<Date>No Data</Date>
<ProductionPlace>Africa, West Africa, Sierra Leone
(place of manufacture)</ProductionPlace>
<ProducerName>No Data</ProducerName>
<AcquisitionDetails>Seanlan, Dr K</AcquisitionDetails>
<Collector>No Data</Collector>
<Museum>Glasgow Museum</Museum>
<RegistrationNumber>GLAMG:1878.137.a</RegistrationNumber
>
</CulturalObject>

 Glasgow Museum British Museum

Glasgow Museum’s cultural heritage objects metadata, and attributes and the
results of converting them to the British Museum’s format.

218

<CulturalObject>
<SubCollection>furniture</SubCollection>
<ObjectName>hammock</ObjectName>
<Description>Hammock of dyed grass, from Sierra Leone,
West Africa.</Description>
<Materials>dyed grass</Materials>
<CultureGroup>West African</CultureGroup>
<Measurements>overall: 1151.5 g</Measurements>
<DateProduced>No Data</DateProduced>
<PlaceProduced>Africa, West Africa, Sierra Leone (place
of manufacture)</PlaceProduced>
<Producer>No Data</Producer>
<Source>Seanlan, Dr K</Source>
<Collector>No Data</Collector>
<Museum>Brighton Museum</Museum>
<IDNumber>GLAMG:1878.137.a</IDNumber>
</CulturalObject>

<CulturalObject>
<ObjectCategory>furniture</ObjectCategory>
<Name>hammock</Name>
<Description>Hammock of dyed grass, from Sierra Leone,
West Africa.</Description>
<Material>dyed grass</Material>
<CultureGroup>West African</CultureGroup>
<Dimension>overall: 1151.5 g</Dimension>
<ObjectProductionDate>No Data</ObjectProductionDate>
<ObjectProductionPlace>Africa, West Africa, Sierra
Leone (place of manufacture)</ObjectProductionPlace>
<Creator>No Data</Creator>
<AcquisitionSource>Seanlan, Dr K</AcquisitionSource>
<FieldCollector>No Data</FieldCollector>
<CurrentLocation>Brighton Museum</CurrentLocation>
<Source>GLAMG:1878.137.a</Source>
</CulturalObject>

 Brighton Museum AMS Format

Brighton Museum’s cultural heritage objects metadata and attributes, and the
results of converting them to the AMS format.

219

<CulturalObject>
<Classifications>No Data</Classifications>
<ObjectName>sheath</ObjectName>
<Description>Leather sheath with fringe, from Sierra
Leone, West Africa. For knife
1916.73.b.[1]</Description>
<Materials>leather</Materials>
<Culture/School>No Data</Culture/School>
<Measurements>No Data</Measurements>
<DateMade>No Data</DateMade>
<PlaceMade>West Africa, Sierra Leone (place
found)</PlaceMade>
<Maker>No Data</Maker>
<Source>Robb, James</Source>
<Collector>No Data</Collector>
<Museum>Glasgow Museum</Museum>
<IDNumber>GLAMG:1916.73.b.[2]</IDNumber>
</CulturalObject>

<CulturalObject>
<ObjectCategory>No Data</ObjectCategory>
<Name>sheath</Name>
<Description>Leather sheath with fringe, from Sierra
Leone, West Africa. For knife
1916.73.b.[1]</Description>
<Material>leather</Material>
<CultureGroup>No Data</CultureGroup>
<Dimension>No Data</Dimension>
<ObjectProductionDate>No Data</ObjectProductionDate>
<ObjectProductionPlace>West Africa, Sierra Leone
(place found)</ObjectProductionPlace>
<Creator>No Data</Creator>
<AcquisitionSource>Robb, James</AcquisitionSource>
<FieldCollector>No Data</FieldCollector>
<CurrentLocation>Glasgow Museum</CurrentLocation>
<Source>GLAMG:1916.73.b.[2]</Source>
</CulturalObject>

AMS Format Glasgow

Conversion from the AMS format to the Glasgow format.

220

<CulturalObject>
<ObjectName>dagger and sheath</ObjectName>
<Description>Dagger, back of blade inlaid with brass, in
carved wooden sheath. Used by followers of Mahomet at
Sierra Leone. From collection of African ethnological
specimens.</Description>
<Material>metal, brass, wood</Material>
<EthnicName>No Data</EthnicName>
<Dimensions>overall: 437 mm x 32 mm x 15 mm 263.5
g</Dimensions>
<Date>No Data</Date>
<ProductionPlace>Africa, Equatorial Africa (place of
manufacture)</ProductionPlace>
<ProducerName>No Data</ProducerName>
<AcquisitionDetails>Neil, Thomas and
John</AcquisitionDetails>
<Collector>No Data</Collector>
<Museum>Brighton Museum</Museum>
<RegistrationNumber>BR:1877.18.x</RegistrationNumber>
</CulturalObject>

</CulturalObject>
<ObjectName>dagger and sheath</ObjectName>
<Description>Dagger, back of blade inlaid with brass,
in carved wooden sheath. Used by followers of Mahomet
at Sierra Leone. From collection of African
ethnological specimens.</Description>
<Materials>metal, brass, wood</Materials>
<CultureGroup>No Data</CultureGroup>
<Measurements>overall: 437 mm x 32 mm x 15 mm 263.5
g</Measurements>
<DateProduced>No Data</DateProduced>
<PlaceProduced>Africa, Equatorial Africa (place of
manufacture)</PlaceProduced>
<Producer>No Data</Producer>
<Source>Neil, Thomas and John</Source>
<Collector>No Data</Collector>
<Museum>Brighton Museum</Museum>
<IDNumber>BR:1877.18.x</IDNumber>
</CulturalObject>

 Brighton British

Brighton Museum’s cultural heritage objects metadata and attributes and the
results of converting them to the British Museum’s format.

221

Appendix C

RCMS Code Samples

1. Sample controls used in the home screen.

 ‘Addition of various RCMS controls including labels,
buttons, panels, etc.

<System.Diagnostics.DebuggerStepThrough()> _Private Sub
InitializeComponent()
 Me.Panel2 = New System.Windows.Forms.Panel
 Me.GroupBox1 = New System.Windows.Forms.GroupBox
 Me.Panel3 = New System.Windows.Forms.Panel
 Me.Label3 = New System.Windows.Forms.Label
 Me.ReportsToolStripMenuItem = New
System.Windows.Forms.ToolStripMenuItem
 Me.Panel1 = New System.Windows.Forms.Panel
 Me.Button1 = New System.Windows.Forms.Button
 Me.Button2 = New System.Windows.Forms.Button
 Me.Button3 = New System.Windows.Forms.Button
 Me.StatsToolStripMenuItem = New
System.Windows.Forms.ToolStripMenuItem
 Me.Label1 = New System.Windows.Forms.Label
 Me.ExitToolStripMenuItem = New
System.Windows.Forms.ToolStripMenuItem
 Me.mpanel = New System.Windows.Forms.Panel
 Me.Label2 = New System.Windows.Forms.Label
 Me.MenuStrip1 = New System.Windows.Forms.MenuStrip
 Me.Label4 = New System.Windows.Forms.Label
 Me.Button4 = New System.Windows.Forms.Button
 Me.Label5 = New System.Windows.Forms.Label
 Me.Panel2.SuspendLayout()
 Me.GroupBox1.SuspendLayout()
 Me.Panel3.SuspendLayout()
 Me.Panel1.SuspendLayout()
 Me.mpanel.SuspendLayout()
 Me.MenuStrip1.SuspendLayout()
 Me.SuspendLayout()
 '
 'Panel2
 '
 Me.Panel2.BackColor =
System.Drawing.SystemColors.InactiveCaption
 Me.Panel2.Controls.Add(Me.GroupBox1)
 Me.Panel2.Location = New System.Drawing.Point(12,
573)
 Me.Panel2.Name = "Panel2"
 Me.Panel2.Size = New System.Drawing.Size(653, 115)
 Me.Panel2.TabIndex = 28

222

 'GroupBox1
 '
 Me.GroupBox1.Controls.Add(Me.Panel3)
 Me.GroupBox1.Location = New
System.Drawing.Point(9, 8)
 Me.GroupBox1.Name = "GroupBox1"
 Me.GroupBox1.Size = New System.Drawing.Size(621,
100)
 Me.GroupBox1.TabIndex = 0
 Me.GroupBox1.TabStop = False
 Me.GroupBox1.Text = "Workflow Monitor"
 '
 'Panel3
 '
 Me.Panel3.BackColor =
System.Drawing.SystemColors.ControlText
 Me.Panel3.Controls.Add(Me.Label3)
 Me.Panel3.Location = New System.Drawing.Point(6,
19)
 Me.Panel3.Name = "Panel3"
 Me.Panel3.Size = New System.Drawing.Size(609, 75)
 Me.Panel3.TabIndex = 1
 '
 'Button4
 '
 Me.Button4.Enabled = False
 Me.Button4.Font = New
System.Drawing.Font("Microsoft Sans Serif", 16.0!,
System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
 Me.Button4.Location = New System.Drawing.Point(24,
12)
 Me.Button4.Name = "Button4"
 Me.Button4.Size = New System.Drawing.Size(159, 66)
 Me.Button4.TabIndex = 4
 Me.Button4.Text = "Home"
 Me.Button4.UseVisualStyleBackColor = True

223

2. Some Workflow Handlers.

Appendix A

Workflow Management Code Samples

Shared Sub Main()
 Using workflowRuntime As New WorkflowRuntime()
 AddHandler
workflowRuntime.WorkflowCompleted, AddressOf
OnWorkflowCompleted
 AddHandler
workflowRuntime.WorkflowTerminated, AddressOf
OnWorkflowTerminated
 Dim workflowInstance As WorkflowInstance
 workflowInstance =
workflowRuntime.CreateWorkflow(GetType(retrieval_workflow)
)
 workflowInstance.Start()
 WaitHandle.WaitOne()
 End Using
 End Sub

 Shared Sub OnWorkflowCompleted(ByVal sender As
Object, ByVal e As WorkflowCompletedEventArgs)
 WaitHandle.Set()
 End Sub

 Shared Sub OnWorkflowTerminated(ByVal sender As
Object, ByVal e As WorkflowTerminatedEventArgs)
 Console.WriteLine(e.Exception.Message)
 WaitHandle.Set()
 End Sub

224

Appendix D

RCH Website Code Samples

1. Object Browser Page Code Sample

1.1. JavaScript function calls within HTML and PHP

Displaying contents of a specific tribe by calling various JavaScript function embedded

within the XHTML and PHP code blocks of the page.

<!-----------/ Cultural Links ------------------------>

<div id=brows-outer>
<div class="links large0" >

<a href =
"javascript:displayResult('Mende'),displayResult2('Mende'
),displayResult3('Mende')">
 <div class="style2 link1" >
 <div align="center" id="style3">
 <h5>Mende </h5>
 </div>
 </div>

<a href =
"javascript:displayResult('Susu'),displayResult2('Susu'),
displayResult3('Susu')">
 <div class="style2 link2">
 <div align="center" id="style3">
 <h5> Susu </h5>
 </div>
</div>

<a href =
"javascript:displayResult('Temne'),displayResult2('Temne'
),displayResult3('Temne')">
<div class="style2 link3">
 <div align="center" id="style3">
 <h5> Temne </h5></div>
</div>

.
.
.

225

1. 2. Content Presentation Blocks

Example block used to display various page contents.

<!--/ Display British Museum Images Here --------------->

<div class="title_box1 title">
 <div id="title_text" >
 <h3>British Museum</h3>
 </div>
</div>

<div class="British-objects large" >
<div id="dom1" style="display:none;"></div>
<div id="dom2" style="display:none;"></div>
<div id="dom3" style="display:none;"></div>
<div id="dom4" style="display:none;"></div>
<div id="dom5" style="display:none;"></div>
<div id="dom6" style="display:none;"></div>
<div id="dom7" style="display:none;"></div>
<div id="dom8" style="display:none;"></div>
<div id="example2" class="yui-skin-sam"></div>
</div>

<!------/ Display Glasgow Museum Images Here ---------->
<div class="title_box2 title">
 <div id="title_text" >
 <h3>Glasgow Museum </h3>
 </div>
</div>
<div class="glasgowmuseum large">
<div id="dom1" style="display:none;"></div>
<div id="dom2" style="display:none;"></div>
<div id="dom3" style="display:none;"></div>
<div id="dom4" style="display:none;"></div>
<div id="dom5" style="display:none;"></div>
<div id="dom6" style="display:none;"></div>
<div id="dom7" style="display:none;"></div>
<div id="dom8" style="display:none;"></div>
<div id="example1" class="yui-skin-sam"></div>
</div>
.
.
.

226

2. Example XSLT Snippets

3.1. Parameter Passing from PHP pages

Catching and reading the parameters that are coming from the PHP search frontend.

3.2. XSLT Parameter Definitions

Search parameter definition within the main retrieval XSLT file.

<!--The main search variables-->
<!--This is to get the image-->
<xsl:variable name="link"
select='concat(MediaObjects/MediaObject1/MediaFileName,"")
'/>
<!--This is to get the object description to search
within-->
<xsl:variable name="te" select='concat(Description,"")'/>
<!--This is to get the object name to display in the
search results-->
<xsl:variable name="n1" select='concat(Object,"")'/>
<!--This is to trim the object name for display purposes--
>
<xsl:variable name="name"
select='concat(substring($n1,0,8),"...")'/>
<!—This is to create the link to display the object
details; the object ID will determine which object to
display-->
<xsl:variable name="AccNumb"
select='concat(AccessionNumber,",object=")'/>

<!--Variables below to create the link to the object to
open in a new page-->
<xsl:variable name="final" select='concat($AccNumb,$n1)'/>
<xsl:variable name="olink"
select='concat("Browse_Results.php?id=",$final)'/>
<xsl:variable name="ID"
select='concat(AccessionNumber,"")'/>
<!--To determine the museum, as the first few characters
in the ID determine the museum-->
<xsl:variable name="selector"
select='concat(substring($ID,0,4),"")'/>
<!--This is the link when clicking on the object image-->
<xsl:variable name="object"
select='concat("object.php?id=",AccessionNumber)'/>
.
.

<!--Variables coming through from search.php -->
<xsl:param name="title"/>
<xsl:param name="cult"/>
<xsl:param name="cat"/>
<xsl:template match="/">

227

3.3. Retrieval Results Presentation

The following XSLT code snippet shows how the search results are rendered as HTML

code.

<!--Check if the selected cultural group matches the one
in the object, this is passed from search.php -->
<!--The same applies to category and title-->
<xsl:if test="contains($cult,$culte)">
 <xsl:if test="contains($cat,$cate)">
 <xsl:if test="contains($te,$title)">
 <!--Output the result-->
 <div class="object-result clearfix"
style="position:relative;left:20; width:800;border-
bottom:#CCC 1px solid;PADDING-top: 8px;">

 <h2 id="resultsTitle" class="clearfix">

 </h2>

 <div style="width:85px; height:105px;
float:left;">

 <xsl:choose>

 <xsl:when test="contains($link,'No Data')">

 <img src="objects/glasgow/no-image.jpg"
rel="shadowbox" width="68" height="90" style="border-
style: none">

 </xsl:when>

 <xsl:when test="contains($selector,'BM:')">

 <img src="objects/british/{$link}"
rel="shadowbox" width="68" height="90" style="border-
style: none">

 </xsl:when>

 <xsl:when test="contains($selector,'BMA')">

 <img src="objects/brighton/{$link}"
rel="shadowbox" width="68" height="90" style="border-
style: none">

 </xsl:when>

 .
 .
 .

3.4. Online Mapping Tool

3.4.1. A function to upload an XML file to the desired location

3.4.2. A function to produce the final mapped XML file

Protected Sub Upload_This_File(ByVal upload As FileUpload)
 'If upload.HasFile Then
 fileName = upload.FileName
 ext = fileName.Substring(fileName.LastIndexOf("."))
 xmlFileName = fileName.Substring(0,
fileName.LastIndexOf(".")) & ".xml"
 'This is where the upload location is specified
 Dim theFileName As String =
Path.Combine(Server.MapPath("~/App_Data"), upload.FileName)
 upload.SaveAs(Server.MapPath(xml_name))
End Sub

Function Make_XML()
'Perform mapping by calling the mapping function
 map_mim()

'Create DB/XML connections

 Dim myConnection As New
System.Data.SqlClient.SqlConnection

 myConnection.ConnectionString =
ConfigurationManager.ConnectionStrings("conString").Connection
String

'SQL Commands for reading/writing operations
'Data goes to DB in this version for filtering and then gets

 Dim cmdXML As System.Data.SqlClient.SqlCommand
 Dim DScmdXML As System.Data.SqlClient.SqlDataAdapter
 Dim DSXML As New System.Data.DataSet()
 Dim sqlXML = "SELECT * FROM ObjectData"
 cmdXML = New System.Data.SqlClient.SqlCommand(sqlXML,
myConnection)
 DScmdXML = New
System.Data.SqlClient.SqlDataAdapter(cmdXML)
 DScmdXML.Fill(DSXML, "ObjectData")
 Response.Flush()
'Write the results to the XML file
 DSXML.WriteXml(tabelname.ToString & ".xml",
XmlWriteMode.WriteSchema)
 Dim xmlSW2 As System.IO.StreamWriter = New
System.IO.StreamWriter(Server.MapPath("xml/" &
tabelname.ToString & ".xml"))

 DSXML.WriteXml(xmlSW2, XmlWriteMode.IgnoreSchema)
 xmlSW2.Flush()
 xmlSW2.Close()
End Function

3.4.3. A function to determine the required mapping type

3.4.4. A function to handle Excel files in case data is coming from them

 'Get Mapping Type
 'Analyse the gathered data in the DB
 Dim myconnection As New
System.Data.OleDb.OleDbConnection
 myConnection.ConnectionString =
"Provider=Microsoft.Jet.OLEDB.4.0; Data Source=" & dbname &
""
 myConnection.Open()
 Dim delTable As New
'Read data
System.Data.OleDb.OleDbCommand()
 delTable.Connection = myconnection
 delTable.CommandType = CommandType.Text
 delTable.CommandText = "select mType from type
where ID=1"
 dim type = delTable.ExecuteScalar
 myConnection.Close()

Dim FileName As String = lblFileName.Text
 Dim Extension As String =
Path.GetExtension(FileName)
 Dim FolderPath As String = Server.MapPath(_
 ConfigurationManager.AppSettings("FolderPath"))
 Dim CommandText As String = ""
 Select Case Extension
 Case ".xls"
 CommandText = "px_ImportFromExcel"
 Exit Select
 Case ".xlsx"
 'Excel 07
 CommandText = "px_ImportFromExcel07"
 Exit Select
 End Select
 'Read Excel Sheet using Stored Procedure
 'and import the data into Database Table
 Dim strConnString As String = ConfigurationManager
_
 .ConnectionStrings("conString").ConnectionString
 Dim con As New SqlConnection(strConnString)
 Dim cmd As New SqlCommand()
 cmd.CommandType = CommandType.StoredProcedure
 cmd.CommandText = CommandText
 cmd.Parameters.Add("@SheetName",
SqlDbType.VarChar).Value = ddlSheets.SelectedItem.Text
 cmd.Parameters.Add("@FilePath",
SqlDbType.VarChar).Value = FolderPath + FileName
 cmd.Parameters.Add("@HDR", SqlDbType.VarChar).Value
= 1
 cmd.Parameters.Add("@TableName",
SqlDbType.VarChar).Value = "ObjectData"

	Coversheet
	Al-Barakati, Abdullah

