University of Sussex

A University of Sussex DPhil thesis
Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Learning programming via worked-examples: The ¢ffef
cognitive load and learning styles

Siti Soraya ABDUL RAHMAN
(Student registration no: 20710654)
Human-Centred Technology Group (IDEAs Lab)
Department of Informatics
School of Engineering and Informatics
University of Sussex, UK

19" September 2011

Acknowledgements

All praise be to Allah for His mercy and blessinggon me. | am grateful to Allah the
Almighty for granting me the strength and perseweeato complete this thesis and thus

getting a degree of Doctor of Philosophy in Cogeitcience from the University of Sussex.

Special thanks go to my husband, Mstr. Mohd Admin His love and support to get me
through the hard times in PhD life. Thank you foug precious time in taking care of our
lovely children. To my children, Siti Umairah andukbmmad Danial, | owe you big time
after all your patience and understanding. For bapy PhD’, Mir Zara, thank you for giving

me the strength and courage to accomplish thigystud

My heartfelt thanks go to both my parents to whorowle a debt of gratitude for their
blessings and prayers, Haji Abdul Rahman and Maldahma Lajium.

| am sincerely thankful to my supervisor, EmeriRrsfessor Benedict du Boulay who did a
brilliant job of supervising and, not least becabmsepriceless advice over the past four years
of my life as a PhD student at the University ofs&x. A big thank you also goes to

Professor Andy Field for his invaluable guidanaetigh the statistics.

Notable thanks are due to the University of Malaya the Ministry of Higher Education
(Malaysia) for granting me a scholarship to purau@octoral programme in the UK.

Lastly, thanks to Mr. Regan Rajan for his dedigatamd a magnificent job in developing
LECSES. Without it, | would not have been abledaduct the experiment!

TABLE OF CONTENTS

LIST OF TABLES ...ttt ettt ettt et e e e e e e e st et e e e e e s nr e e e s nn e e e nnnneas VI
LIST OF FIGURES ... oottt sttt ettt et sa ekt e eme e ekt e ekt e s s et e et n e e e nn e e e nnnne e ennnes X
ABSTRACT ittt e ettt e e et e e ot h e e et e e R e e e Rt a Rt e R e e n e e e nnnee s Xl
CHAPTER 1 INTRODUGCTIONcoiiiiiiiiiiieiimre ettt ettt et sme e et e e snre e s nnnn e e e s e e s nnneeeaas 1
1.1 Statement Of the ProbIEM ... ——————————— 2
1.2 PUrpose Of thiS FESEAICI ettt e e 5.
1.3 Aims and objectives of the present reSEarCh. ... 5
1.4 Methodology of the PreSEeNnt FESEAICI ... eeeeeiee e e e eee e 6
1.5 Significance of the PreSeNnt rESEAICH .o a e 8
1.6 The organisation Of the theSIS ... e 8
CHAPTER 2 LEARNING PROGRAMMING VIAWORKED-EXAMPL ESccociiiiiiieeeee e 12
2% R [1 (o To [Tox 1o o ST 12
2.2 Analogical problem solving and tranSfer.o 12
2.3 Learning from WOrked-eXampPIESccceueeeeermmmriiiiieieeeeeeaseesisssssstrrreeereeeaeaeeeeeeesaesaaesnnnnnnnnnes 14
2.3.1 Instructional principles from worked-examp8earch...............ccccccoiiiiiiiiiiiiiiccc s 16
2.4 Cognitive load and WOrKiNG MEMOTYooiiiiiiiiiiiitie ettt e e e e e e e e e e e s e s sb e e eeeeeeeeeaaaaaaaeans 17
2.4.1 Measuring COgNItiVE I0Adcciiiiiiiiie e r e e e e e e e e e e e e e e aa e e 20
24.1.1 SUDJECHIVE MEASUIES........eee. o ettt tttaaaaeaeeaatessssas s s eeeaeeeaaaaaaeeaeesessanaanassnsennennennns 21
24.1.2 Task- and performance-based or secondsltypErformanceooooiiiiiiiiiieeeeennn s 21
24.13 PhysiologiCal tECHNIQUES.......... ettt ettt e e e e e e e e e e 22
24.1.4 Performance on transfer and effiCienCy MIEAS.............uuvviiiiiiiiiiieeee e 22
2415 TIME ON TASK...eceeiiieiree e nnnee e e e nnnee e B0 2
2416 Measuring three different cognitive loagisaBatelyccoveeiiiiiiiiiii e, 24
2.5 Cognitive and learning styles: effects on paogming performancecccocuviiiiieccccceeeeeeeenn. 26
2.5.1 Learning StyleS MOUEISoeeiii e eeeeeeeeeee e e e e et e s s e e st eeeeaaeeaeaeesssssnnnsntenrananneneeeeeees 26
2.5.2 Individual learner differences and prograngpBrformancCe.........ccccccvvvveeeeeeeieeivcccnieeeeeeeeee 28
2.6 REIAIEA WOTK ...ttt ettt e e e e e e e e e e e e e e a e b et b et e e et e e et e e eaaaaeaaeaaeaaeaannnns 30
2.6.1 Example-based [earning SYSIEIMS ... e e e e e e e as 30
26.1.1 Example-based Programming System (EBP.S)..cc....ovvviiiiiiiieeeei et 30
2.6.1.2 EXAMPIE TOOI (ET) 1oeeeeeeieiies i s ettt e e e e e e e aeeaeaeesesssannnssstaesaeeeeeeeaaaaeeeaseesansnnnnnnns 31
26.13 Episodic Learner Model Programming Envirent(ELM-PE)cccccccoiiiiiiiiciiiiinnen. 31
26.14 Episodic Learner Model Adaptive Remote TEELM-ART)oeiiiiiiiiiiiiiiieeee e 32
2.6.15 WWVEDEX ..ot 33
2.6.1.6 Structural Example-based Adaptive TutoBRgtems (SEATS).......cccoovviviieiciienvvveeeeeenneenns 33
2.6.1.7 CORT (Code ReStruCturing TOOI)ceeceeeieee et ee e 33
2.6.1.8 27T [0 [P UPUUPPRUR 34
2.6.2 Cognitive load theory as a basis for therucsional design of a programming course............. 35

P2 A O o o] 1113 o] o 36

CHAPTER 3 RESEARCH QUESTIONS AND HYPOTHESESccoiiiiiiieei e 43
3.1 T 10 o 181 1 o] o IO PRPR PRSPPI A3
3.2 AN exploratory POt STUAYuuee ittt e e e e e e e e e e e e e e e eeees 44
2 R 111 5 o T SRR UPSURSPPPRRR 44
3.2.1.1 Learning StYlE INVENIOTYuuiiitceccc e eee e e e e e e ee s et e e et e e e aee s s e s st nb s aeeenreereaeaeaaeens 44
I N = U i Tod] o - | £ OSSO A5
T e B o (o o7 =T [F ¢ TP U U TOSOUPRPIY A7
3.2.1.4 Coding 0bServational dataeeeeeieiiiiiiiiia et 49
B.2.2 RESUILS ettt e e e e e e bt e e e e e a b ba e e e e e e nrrees 51
3.2.2.1 Correlation @NalYSIScooiiiieeeeeee e araaaaaaaaaaaaan 52
3.2.2.2 Programming tasks PerfOrManCe oottt 53
3.2.2.3 Observation of the PartiCIPaNtS ... a e e e 55
3.3 Planning for the main ©XPEIIMENL e eeeieeiieinnrenrieereeerrerrereeeeeeeeesaassnnrenrrrrrrrrrrrrrarraaaees 56
3.4 Research questions and NYPOtNESES... e cerveeeeeeiieiieeee e e et r e e e e e ae e e e e e e s e e s enaanns 61

3.4.1 The H1 hypothesis
3.4.2 The H2 hypothesis
3.4.3 The H3 hypothesis
3.4.4 The H4 hypothesis
3.4.5 The H5 hypothesis

35 (070 o Tox (1] o PP 66.
CHAPTER 4 LECSES ...ooiii oottt ettt ettt e e s ettt e e e sttt e e e e sannnaeaeessssnaeaeessnnssnneeeessnnnnnneeeesd 6.7.
4.1 T o To [0 ox o] o PSPPSR OPRRROP 67
4.2 The paired-Method StrAtEOYuuuuiiiieeeeeeii e e e e e e e e e e e e errereaaaaeeaaes 67
4.2.1 Theoretical assumptions and rationale fod#sign of the Paired-method strategycm.... 70
4.2.2 Related work underlying the interface designmn............ooooiiiiiiiiiii e 73
4.3 Web-based worked-example SYStEM: LECSES i ieecciniirereen e e e e e e e e e s s 75
4.3.1 The development ENVIFONMENTiieeeeeiie st r e e e e e e e e e e e esass s e rrrrraaeaaaaeaeesans 75
N T I o oI 01 (=T o = ot PP PPPPPPRRT 78
4.3.2.1 Structure-emphasiSing SrAtEQY ...« eeeaeeaiauuntieiieiiieeeeeetaaaaeeeaaaaaaeaneeebaeseeeeeeeeaaaaaaaaaaaaaas 79
4.3.2.2 COMPIELION SIrAtEOY . iviiiiieee e e e e e e e e e e e s as bt a e e e et e eaaaaaeaaaaaaann 88
e T T I 0T =T (o PP PP PP PUPRTURPRRPRI 95
4.3.4 THE rePOIt GBNEIALONeutteiteet e ettt et ee e et e e eaaaaaaaasaaaaabsebesbeeeeeeeeaaaaaaaaaaeaasaasaaaannns 8.9
4.3.5 The administrator MOUUIE ettt e e e e e e e e e e e e 99
4.4 (070 g Tox [V 11T] o P PP P PSPPSRI oa
CHAPTER 5 EXPERIMENTAL DESIGN......cciiiiiiiiieiie ettt s ettt e e s st ee e e s ssiaae e e s esssaneeeeessnnsaeeae s 101
5.1 T i goTe [0 ox o] o O PSPPI OURP 101
5.2 (o1 a St 01T 0 4 =T o | TP 102
5.3 The design of the main eXPEriMENTeeeii e 105
5.3.1 Phases and procedure of the main experiment.............cccccciiiiiieiiieiee e 105

5.3.1.1 Pre-experimental PRASEo e oot e e iesiee sttt e e e e e e e e e e e esa s rrraraaaaaaaaaan 106

5.3.1.2 LEAINING PRESEettetieieieietett ettt ettt e e e e e e e e e e e e ettt e e e et e e e e e e e e e e e e e e e e e e e nannane 107
5.3.1.3 TraNSIer PRASE ...t e e e e e e e e e e e e e e e e e aaanas 810
5.3.1.4 Post-experimental PRASEcoccmmmiiiiiiiiiiieerr e e e e 108
5.3.2 LECSES learning environment, experimentakenis and variationscccccccceeeeevennnennnn. 109
5.3.2.1 EXperimental MAterialS o oottt r e e e e e e e e e e 109
5.3.2.2 EXPErimental VAIALIONSeuiiiiiaiaa ittt et e e e e e e e e e e e ee e e e e e e aaaaaaaaaaaas 114
5.3.3 INSITUMENTS ..ttt e e e e e e s e e s s bbb bbb e e e e e et e et e e aaeeeeeans 119
5.3.3.1 Index of Learning Styles iINVENIOrY (ILS)cooiiuriiiiiiiiiiieeeee e e e e e e e e e e e seeseeevnereaeeeeeeeeee s 119
5.3.3.2 Operation Word SPan (OSPAN) ...ttt e e e e e e e e e aaaaaaaaaaans 120
5.3.3.3 Programming Pre-tESt e it aeeeaae e e e ettt e e e e e e e e e e e e e e aa s aaan b e b e e et e e e e e aaaaaaaaaaaaas 121
5.3.3.4 The 5-point rating scale for cognitive ITREASUIEScccevviieeeeiiiiiiiie i cmmeeee e e eees 121
IR - 4 Tt 0= L OSSP 122
RS T T Tolo] 1o o PP UUUUPURPPRP: 122
5.4 Proposed statistical analyses and measure@bl@Si..............uuuueeiiiiiiiiiiiiiiaiee e 123
S R VLY =T o B @ 11 = N PSPPI 123
Y =Y 1 o 11 o o g = T PR 251
5.4.3 TranSfer PRASEttt e e e e e e e e e e e e e e aanaaee 127
5.4.4 Learnin@UtCOMEETTICIENCYuuuiiiiiiiiiiii i e 130
5.4.5 LearningroCeSEAfICIENCYccoii i e s e e e e e e e e e 130
5.4.6 TasSK INVOIVEMENT ...ttt s et sttt e e e s bbb e e e e s e nnneeeeee s 131
55 (©70] o Tox (1170 o TS PPPPPPRR 32
CHAPTER 6 THE LEARNING PROGCESScoiiiiiiiiiiiaeiiiiiiet et e s sttt e e sttt a e e s s snbbee e e e s s nneeeeas 133
6.1 [a1 doTo [UT1 i o] o USSP 133
6.2 Overview of research questions and hypothesebé learning phaseccccccvvvvvi e 134
6.3 Y=g T Yo L PSPPSR 136
LR T R - 4 (o0 o T= 1 PP U TP PP 136
SRS T Y/ - 1 (=T = PP PR TSP 138
6.3.2.1 Assessment Of LEArNiNG StYIE......ocuueeee e 138
6.3.2.2 Assessment of WOrking MemOIY CAPACITY. cuueerrvrrrrrrrrriiiiiiieeeeeeeeee e s es e e rreaeaeaeeae e 138
6.3.2.3 Assessment Of COgNItIVe [0AJ.........cccoiiiiiiiiiie e 138
6.3.2.4 Programming Pre-tESt e it aeeaaae e ettt et e e e e e e e e e e aaaeaa e e aben b e e e et e e e e e aaaaaaaaaaaaas 139
6.3.2.5 Worked-example ProbIEMSoii e 139
6.3.3 Method for statistical data ANAIYSIS . e e vrrrererrriiiieieeeeeeiiee e e e e e e e e e e e e 140
6.3.3.1 Analysis for Web-OSPAN MEASUIESccccaaeitiiiiiiiiiaiiaaae e e ettt e e e e e e e e e e e e e e e e e annes 142
6.3.3.2 Analysis for comparing the effects of thrategies and learning stylesccccceeeeeinine. 143
6.4 Effort and diffiCUIty SCOIES ... e e e e e e e aea s 144
6.5 RESUILS ...t e e e e e e e sttt e e e e s a b e e e e e e e e e e e nres 149
6.5.1 INLEINAI VAIIAILY ...ceeeiiiiiieeeie ettt e e e e e e e e et bbb et et e e e e e e e aaaaaaaaaaeans 151
6.5.2 Measures from WED-OSPAN ...t e e e e e e 152

6.5.3 Comparing the effects Of the StrAtEQIES e rrrrrrrriiiiiiiiiee e 155

6.5.3.1 The analysis of results of total efforfidiflty SCOres...........ccvvviiiiiiiiiiiiic 156
6.5.3.2 The analysis of results of overall effdffitlilty SCOres..........ccouviiiiiiiiiiiii e, 159
6.5.3.3 The analysis of results for repeated meadior effort/difficulty scores.............ccoeeeeeenn.. 162
6.5.4 Comparing the effects of the learning StYleS.........ooovveeeiie e 163
6.5.4.1 The alternative (H4-A1) and (H4-A2) NYPEBR.coooiiiiiiiiiiieeereee e 164
6.5.4.2 The Null (H4-01) NYPOLNESISeueiiiiiiiieaaeee ettt eeeeeeas 169
6.5.4.3 The Null (H4-02) hYPOLNESISuvviiiiiieeie e e e e e e s e e e e eeeee s 171
6.5.4.4 The null (H4-03) NYPOLNESISuvviiiiiieiieeee e e e e e e e e ereeeee s 175
6.5.4.5 The POSt-NOC COMPAIISONccoiiiiieeeeetiie ettt ettt e e e e e e e e e e e e e s e e e e e aannnnaees 177
6.6 (070 o [ox (17T o PP 82
CHAPTER 7 LEARNING OUTCOMEccoiiitiiie ettt e e stteea et e e e e e ntbee e e e e s ensaaeaaeeeennees 183
7.1 [a1 doTo [UT i o] o PSPPI 183
7.2 Overview of the research hypotheses for thesfest phasecccccvvviviieiiiiii s e 183
7.3 Mental effort scores, time on tests, and PESELCOIESccovveiiiiiiiieeereee s e eeveeaeeeeeees 184
7.4 RESUIES ...ttt e e e e e e e e e e e e e e b b e b b e e et e e e e eaaaaaaaaeans 190
A R [0 (=T g o IR 7= 1o {1 PP PEPPRRRPPR 191
7.4.2 Comparing the effects Of the StrAt@QIES e rrrrrrrriiiiiiiiie e 191

7.4.2.1 The analysis of the correlation betweenvalies and reported mental effort.................... 193
7.4.2.2 The analysis of the correlation betweenvalies and post-test scores (and time on tests)193
7.4.2.3 The analysis of the correlation betweer tim tests and post-test scores............uumm-..... 195
7.4.2.4 The analysis of results investigating aiffeinces across the strategy groups.................. 196
7.4.2.5 The analysis of results for repeated meadior mental effort scores and post-test scores.197

7.4.3 Comparing the effects of the learning Styles...........oo e 199
7.4.3.1 The null (H5-01) NYPOLNESISuuiviieiiieeiee e e e e e e s e e s e e eeeae s 200
7.4.3.2 The null (H5-02) hYPOLNESISuviiiiiiieiieeee e e e e e e e e e e eeeee s 202
7.4.3.3 The null (H5-03) NYPOLNESISeueiiiiiiiiaeeaee et eeeeeeas 205
7.4.3.4 The alternative (H5-A1) NYPOtheSIS . oo 207
7.4.3.5 The alternative (H5-A2) NYPOINESIS . commmmi ittt a e 210
7.4.4 Instructional effiCIENCY MEASUIEScmmmerrerereireitietteeeee et e e iisssse s earerereeraaaaeaeaaeasessassnnnannrnnes 212
7.4.4.1 Learning process effiCiENCYocauiiiiieei e 213
7442 TaSKINVOIVEMENT ..ottt e e e e e e ettt e e e e e e e aaaaaaaeaaeaaan 213
7.4.4.3 Learning outcome EffiCIENCYcceiiiiiii e 213
7.4.4.4 Efficiency measures for active learnerhéthree strategy groups...........ocooevvvvvvveeeeeenenn. 215
7.4.45 Efficiency measures for reflective learriarthe three strategy groups..........ccooeeeeeeeeeeeeeenn. 217
7.4.5 Comparing effects of prior KNOWIEAQEcceei i 218
7.5 (@70 o3[1] T o PP PRRT 22
CHAPTER 8 PUTTING THE EXPERIMENTAL RESULTS IN CO NTEXTcoiiiiiiiiiieeeeeiiiie e 226
8.1 INEFOTUCTION ...ttt e e ettt e e e e e st e e e e s sabb et e e e e e sbbbeeeeeessnbbeeeeeenann 226
8.2 Current formulation of cognitive 10ad thEOIYuviviiiiiiiii e 226

8.3 Self-reporting on cognitive 10ad MEASUIES ...cc...oicc i e e e e e e 227
8.4 Individual differences: Learning styles and king memory capacity............cccoeeeeeiiicccennnnnnns 231
8.5 Comparing the effects of the strategies
ST N @0 41][] 1] g T3 (= 1 (= o YRS
8.5.2 Paired-method SIrat@QYuuuuuiieiieeeieii i iii s e e e e e e e s e e e e e e eaaaaeeeeaeaaanan
8.5.3 Structure-emphasiSING SLFALEQY e «eeeeeeettetieaaaa e eereee e e e e aaaaaaaaaaaaaeaaaaaannnraees
8.6 Comparing the effects of the learning Styles..........cccuuiiiiiii e 242
8.7 (@0 To a1 1)Y= [0 T= 1o [= 1= 1 T PEUEPRRRR 244
8.8 (O70] o Tox [V 11T] o P OO 5@
CHAPTER 9 CONGCLUSIONS..... ..ottt e et n e e e s nnnne e e 254
9.1 Contributions Of the theSISoi e 254
9.2 RESEAICH IIMILATIONSttt e e e e e e e e ettt e e e et e e e aaaaaaaesaesaaaannnnnneenes 256
0.2, 1 SAMPIE SIZE .oeiiiiiiieee ettt oottt e et e e e e e e e e e e e b aa bttt e e et e et eaaaaaaeaeaaaeaaeaaaannn 256
9.2.2 WMC and ILS INSIIUMENLScuvriiiiiieee ittt sre e e e e s 257
0.2.3 LECSES ... oottt 258
9.2.4 Other lIMItAtIONSoiiiiiiiiiii ettt e e e e e e e e e e e e e e s e e s nnnranbenreeeeeeeeeesd 6@
9.3 FULUIE WOTK .ot e+ttt et ettt e e e e e aaeesaa e nnnnnbnsbnnnneeeeeeeaaaaaaaeeeeees] 612
APPENDIX A PARTICIPANT CONSENT FORM ...ttt 263
APPENDIX B QUESTIONNAIRE ON PROGRAMMING BACKGROU ND........ccocvviiiiiieineee e 264
APPENDIX C INDEX OF LEARNING STYLES INSTRUMENT (ENGLISH VERSION) 265
APPENDIX D INDEX OF LEARNING STYLES INSTRUMENT (MALAY VERSION)cccccverninen. 270
APPENDIX E PAPER-BASED INSTRUMENT FOR RECORDING WEB-OSPAN SCORES............ 274
APPENDIXF PROGRAMMING PRE-TEST INSTRUMENTottt e 275
APPENDIX G EXAMPLE PROBLEMS FOR THE LEARNING PHA SE......ccccoiiiiiiiiieiee e R7
APPENDIXH TRANSFER PROBLEMS FOR THE TRANSFER PHASE..........cocooiiiiiiiiiee e A1
APPENDIX | QUESTIONNAIRE ON WORKED-EXAMPLE STRA TEGIES AND LECSES........... 321
APPENDIX J LIST OF PUBLICATIONS ..ottt ittt ettt ettt e s ssbae s sae e e s sbbeaesbaeassnnaea s 325
REFERENCES ...ttt ittt ettt a1tk e 4kt e 44k ket e 22k ket o4 ohbe 22 ab e e oo kbt e e aab b e e e anbe e e e smbeeeanbbeaeesnens 326

vi

LIST OF TABLES

Table 2.1 :
Table 3.1 :
Table 3.2 :
Table 3.3 :
Table 3.4 :
Table 3.5 :
Table 3.6 :

A review of the worked-example deAgl Strate€gyccvvrrrieiiriiieeieeccrcerreeereerr e e e e e e e 37
Frequency fOr the LS SCOIES ...t e e e e e e e e s e e eeeees 54
Preferences for learning styles orAittere/Reflective dimension of the ILSccccvveeieeeeee. 46

4-point rating scale for observatiahetia analySiS ... 49
Coding categories and scheme for aimgjyobservational datacommmmmeeeeerenenneneeenn. 50

Factors assessed (that influencegbeftiexample programs) in the pilot study 51
Results of the correlations betweami@g style scores and the factors ... eeeeeieriiinnnn. 52

Table 3.7 : Marking scheme for TASK 2 ... ueeiimiimiiiiiiiiiieiieeeeeeee e e e e e A D
Table 3.8 : Results of programming task performa@ctive [€arners)ccccccccvvieiiiceccceiiiiieiieieeeeeeeeeen 54
Table 3.9 : Results of programming task perforreaineflective learners)ccocociiceeeeeeee e, 54
Table 3.10: ReSearch hypOothESES ...ttt eeeeee e 65
Table 4.1 : A summary of the design of the Paimesthod Strategy ... 68
Table 4.2 : Feedback COMMENTSioccmem ettt sn e 95
Table 4.3 : Administrator module for LECSESoooiiiiiiiiiciie e 100
Table 5.1 : The quality of explanations and tO@IECt ANSWET'Seeiieiiiiiiiees et e e 103
Table 5.2 : Average solving time and reportedréffdifficulty (rounded)ccccceeeviiiiiiiiiniiiiie e 104
Table 5.3 : Worked-example problems for the [@aIphaseccccoiiiiiiiiieees i 112
Table 5.4 : Word problems statement for the tRNBRASE ... 118
Table 5.5 : Marking scheme for Bus Ticket Machin@blem ..o iicmee e 122
Table 6.1 : Participants’ programming bDackgrOUNAS.uueeeiiiiiiiiiiiaaaa et 137
Table 6.2 : Methods for COMPAriSON ANAIYSIS......uuuieiriiiiiiieeeee e e e e e e e e e s s e s eeeees 144
Table 6.3 : Tests of normality (Learning PhaSE)..c...uueeeiiiiieeeeeeiie e e e e e 146
Table 6.4 : Tests of homogeneity of variance (hB8y phase)ooooiiiiiiiiiiiiee s 147
Table 6.5 : Hypotheses and planned COMPAIiSONS........cooii ittt a e e eeeaeas 149
Table 6.6 : Descriptive statistics for pre-tesires for the three strategy groupscccceceevvvvvviineennnn. 151

Table 6.7 :
Table 6.8 :

Table 6.9 :

Table 6.10:

Table 6.11:

Table 6.12:

Table 6.13:
Table 6.14:

Descriptive statistics for Web-OSPARasures for the three learning stylescccceee........... 153
Results from Spearman’s rho invesdtigatorrelation between WMC values and other messsur
OF WBD-OSPAN ..ttt ettt ettt e e st e e e e s bt e ekt e e e e sabe e e s bbe e e sbaeeesneeann 153
Results from Spearman’s rho investigatorrelation between ILS values and Web-OSPAN

L TST2 LU OO 154
Descriptive statistics for effort anfficllty scores {otal andoverall) for the three strategy

[0 (o101 oL TP OUUPPUPPPPPPPRTPON 155
Results from Spearman’s rho correlaioth Mann-Whitney U test investigatitmfal difficulty
o1 0] (=TSR (=3 022 PSSR 156
Results from Kruskal-Wallis and Mannitiéy U test investigatingptal difficulty scores

(SBE B) eeiiiiutiie ettt ettt etttk b e e b b e e e R e e bt e e e R b et e e hb e e e e R bt e e abbe e e e beeeenn e e e anneas 157

Results from Kruskal-Wallis and Mannitily U test investigatingptal effort scores (Set 3) .. 158
Results from Kruskal-Wallis and Mannitiéy U test investigatingverall difficulty scores ... 159

Vii

Table 6.15: Results from Wilcoxon Signed Ranketitegstigating change in scores on the efforticlifty
scale across two sets of workeample problem (i.e. Set2 and 3)ccccoeeeiiiiiiiiiiiiiiiiiee 162

Table 6.16: Descriptive statistics for effort anfliclilty scores {otal/overall) for active and reflective in the

LU TSI = L (=10 VAo 0T o 1R 163
Table 6.17a: Results from Mann-Whitney U test itigadingHA4-ALoovvvvviiiieeeiiiie e 164
Table 6.17b: Results from Mann-Whitney U test iIgERINGHA-A2 ... 165
Table 6.18: Results from Mann-Whitney U test iniggdingHA-0L........cooooiiiiiiiiiiiiieeeee e, 170
Table 6.19: Results from Mann-Whitney U test inkgB ngH4-02...........ccoooeeiiiiiiiiiiiieeeee e 171
Table 6.20: Results from Mann-Whitney U test inkgB®ngHA4-03..........ooovviieiiieiiiieeee e, 175
Table 6.21: Results from Mann-Whitney U tespobt-hoccompariSoNnsccccocvieeeeeiiiiiemmeesieeeee s 177
Table 6.22: A summary of analysis for comparingéffects of the strategiescemmmeeeveiciieneen. 179
Table 6.23: A summary of analysis for comparingeffects of the learning stylesccceeeeeiiiiiivinnnnn. 180
Table 7.1 : Tests of normality (TranSfer PhasE)............uuuuiiiiiiiiiiiiieie e 187
Table 7.2 : Tests of homogeneity of variance (STanphase)cccccviiiiiiiieiiiiieeeeee e 187
Table 7.3 : Hypotheses and planned COMPAIiSONS........cooii ittt e e e eeeeaaeas 190

Table 7.4 : Descriptive statistics for mental dfftime on tests, and post-test scores (nearfanttansfer)
for the three Strategy grOUPS........oii i i e e e e e s s e e e e e e e eaeaeaaeeeessenanas 192
Table 7.5 : Results from Spearman’s rho corrafagiod Mann-Whitney U test (Transfer phase)192
Table 7.6 : Results from Wilcoxon Signed Ranked itevestigating change on ttetal mental effort scores
antbtal post-test scores across the two sets of trareses (i.e. near and far transfer) 197.
Table 7.7 : Descriptive statistics for mental dfftime on tests, and post-test scores (nearfanttansfer)

for active and reflective in tigee Strategy groUpSeeeeeeeeeetccccc e 199
Table 7.8 : Results from Mann-Whitney U test itigadingH5-01 ... 200
Table 7.9 : Mean rank and median for Active anfldRéve learners in Group Povvveeeeeeivviiinnnnnnnn. 200
Table 7.10: Results from Mann-Whitney U test inkgB® ngH5-02coovvveeiieiiiiiieeeee e, 202
Table 7.11: Mean rank and median for Reflectiveriees in Group Sand Pcoooiiiiicccmmeieeeeiiiiieen. 203
Table 7.12: Results from a Mann-Whitney U test 8tigatingH5-03..........ooooiieeeeee e 205
Table 7.13: Mean rank and median for Reflectiverees in Group Cand Pccceeee e ssmwneeeeeeeeeeen. 205
Table 7.14: Results from Mann-Whitney U test inlg@ngHS5-AL ..., 207
Table 7.15: Mean rank and median for Active anddRéifze learners in Group Sc.oocceeeeceieeeeennenn, 208
Table 7.16: Results from Mann-Whitney U test ini@@ingH5-A2 ... 210
Table 7.17: Mean rank and median for Active anddréifze learners in Group Cooooeeeeeeiciccinnnnns 210

Table 7.18: Descriptive statistics for reportedidlifity/effort/mental effort, performance, and eféncy

means for the three StrateQYIIBO0 e e bttt e e e e e e e e aaaaeeeaeas 212
Table 7.19: Descriptive statistics for reportedidifity/effort/mental effort, performance, and eféncy

means for active learners inttree strategy groUpsSeeeeeeeeriesccccccmeeeureriirirreereerereeeeeeeeeees 215
Table 7.20: Descriptive statistics for reportedidlifity/effort/mental effort, performance, and eféncy

means for reflective learnerghia three strategy groupscoooceeeeriiiiiieeeen e 217
Table 7.21: Descriptive statistics for pre-testresdor low and high prior knowledge (post-hoc gatésed)

iN the three StrateQy GrOUPS.coiic ettt er e e e e e e e e e e e seess e e e e e e e eeeeeeeeaeesaesenannnnnnns 218

viii

Table 7.22: Results from Spearman’s rho investigatorrelation between pre-test scores avetall

post-test scores for the thEEEETY GroUPScoiiiiriiiieiiiiiie et 219
Table 7.23: Results from the Mann-Whitney U tesestigatingoverall post-test scores of low and high

Prior KNOWIEAQE [CAINEISuuiiiiiiiiiiiii et e e e e e e e e e s e e aeeeeeees 220
Table 7.24: Results from T-test investigatogerall post-test scores on low and high prior knowledge

=TT 01T T PP P TP 220
Table 7.25: A summary of analysis for comparingéffects of the strategiesc e evcvveeeennnnnnn. 224
Table 7.26: A summary of analysis for comparingeffects of the learning stylescccoeeeeiiiivvinnnnen. 224

LIST OF FIGURES

Figure 1.1
Figure 2.1
Figure 3.1
Figure 3.2

: Research MethOdOIOQgY PrOCESS . ittt e e e e e e e e e e e e e e s e s s e eannnnes 7
: The active/reflective dimension GFthS ... 27
: Distribution of preferences for Adifleft end) / Reflective (right end) on the ILSm@insion 46

D The programming tASKSccoeiiiiiiiiiiiiiii ettt e e e eeeeeeed A8

Figure 3.3 : The difficulties inherent in learniviga example Programsceeeeeeewommmmmeeeeeeeereeeeeeeenennnnns 57
Figure 4.1 : Client SErVEr arChit@CIUMNE ommeeeieee e e e e e e e e e e e e eaaaaaaeeeaas 76
Figure 4.2 : The learning interaction (the Paingethod strategy)cc.eeeeeeiiiiiiiiiicccccie e, 79

Figure 4.3 :

Figure 4.4 :
Figure 4.5 :

An example problem consisting of peabdescription, a sample run, and an exampleisalut
(EXPIANALION EXEICISE) weeeeeeiuiiiriiiiiiiiiieireeereteeee e e e e e st s s sere e e e e e rraetaeaaaeeseesaassaannnnsnnennnrees 80
Invisible plan structures via maskingchaniSm ..o 81
A prompt dialog box for an explanBtinDpUL ... 82

Figure 4.6 : HINt(S) ON AEMANGottt e e e e e e e e e e e e e e e e e e nnneeeeeeeaeead 83
Figure 4.7 : Editing ©XPIAaNatioNcumeeeeeeermmimmimmeeiiireeieeeeeeeasesisssssssssesereereesaeaeeeessessnsannnnsrnsrnrnee 84
Figure 4.8 : Predict the program’s behaviour @&fbn eXErciSe)cccceeeeeiiiiiiiicccccre e 85
Figure 4.9 : RefleCtioN EXEICISE ...ttt e e et e e e e e e e e e aaaaeaeeaeeeaaennnd 36
Figure 4.10: A qUESHIONNAITE PAOE ...oeeiiieeeeieeeaeeeee ettt e e et e e eaaaaaasaa s e e nnnnbabbesbeeeeeeeeeaaaaaaeeeesend 87
Figure 4.11: An example problem consisting of peabldescription, a sample run, and an example saluti
(0] aa] o] L= (Lo I =Y =] o 1=) R 89
Figure 4.12: Text DOX iN COMPIETION EXEICISE. waaurriieiiiiieee ettt e et e e e e e e e e e e s e e e e e eeeeeeeeeeeeas 90
Figure 4.13: Feedback on the Correctness Of @NSIVEI(.......c.oouvriiiieiiiiiiii et 91
Figure 4.14: Lines of code that are initially inbly sensitive to being clicked onccummvvvvevieennnn, 92
Figure 4.15: Feedback comments dialog DOX eeeeeeeiiiiiiiiiiiii e 94
Figure 4.16: Editor for composing the explanatioflittion eXerciSescccccceiviiieeeiiniiieeee e 95
Figure 4.17: Composing an eXample ProbIEM .o e e e e e e e e 96
Figure 4.18: Editor for composing a COMPIEtION @Kc.c.c.vvvviiiiiiiiiiieeieeeeee e eeereeeaaeaeaaeaeasessnnannns 97
Figure 4.19: Editor for composing a MOdifiCAtiONBENSEcovevieeeiieeii it crmeer e e e e e e e e e e e e e e e ee e 98
Figure 4.20: LECSES RePOI gENEIALIONceeeeiieiiiaiaaaa ettt et e e e e e e e e e e e e s e e e e abbeebeeseeeeeeeeeeas 99
Figure 5.1 : Phases and procedure of the eXperimen............ooi it 106

Figure 5.2 :
Figure 5.3 :
Figure 5.4 :
Figure 5.5 :
Figure 5.6 :
Figure 5.7 :
Figure 5.8 :
Figure 5.9 :
Figure 5.10:
Figure 5.11:

EXperimental MAterialScccoooieeeii i e e e e a e e e e e e 110
Different tactics of prompting quest for the counter loop plancccceeeevvvviiiieeeeennnnn. 111
Excerpt from a program solution fell@ction eXercisSeoooiiiiiiiiiceeeee s 115
The active/reflective dimension G thS ... 119
Exploring relationships between WMilues and other Web-OSPAN measurescccee.. 124
Exploring relationships between IlzBues and Web-OSPAN measuresccceeceeeennn... 124
Exploring relationships between IleBegory and WMC categoryoooouecceceemeeeeeeeeeenn. 124
Exploring relationships between Ilsdues and effort (and difficulty) variables 125
Exploring differences between stratgigups on effort and difficulty variables..................... 125
Exploring repeated measures for effod difficulty variablesccceeeerveeviein, 126

Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Figure 6.6
Figure 6.7
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8

. Exploring between-within differencesadfort and difficulty variablesomoiiiiiiiiiinnnns 126
: Exploring relationships between ILSuea and mental effort/time on tests/post-tests.......... 127

: Exploring relationships between pestd and mental effort/time on testscccccecveeeeeees 127
. Exploring differences between stratgigups on mental effort/time on tests/post-tests....... 128

. Exploring repeated measures for meftait and post-tests variablesccceeeiiiiiiiinnns 128
: Exploring between-within differencesroental effort/time on tests/post-tests 129

: Exploring relationships between pi-tand post-test variablesccccceeeeeiiiiiiieeininnn, 129
: Exploring between and within differes®n overall post-testsccccovceeeeeeieeeeee e, 129
s Experimental MAaterialS ... a e e e e e 140

: The active/reflective dimension af thS ... e 141
: Variables for the 1earning Phase. e 145
: Overall effort scores - Group S andli€tinguishing between the active and reflectdaners 167

. Overall difficulty scores - Group &daC, distinguishing between the active and reflect

1= T4 a1 & TSR UPPERRTRT 168
: Overall effort scorelI€in) of reflective learners in Groups Cand P ceeeeeeooooiiies 173
: Overall difficulty scoredi@n) of reflective learners in Groups C and P a..cceevvvvvvevvevvenneennnn. 174
: Variables for the transfer PhasE...........ooooo oo 185
: Learning process amatcomeefficiencies for the three strategy groups .cccce..evveeeeeeeieeieanenn. 214

: Task involvement for the three SIRGrOUPSeeeiiiiiiiiiiiieiae e
. Learning process amatcomeefficiencies for the active learners

: Task involvement for the acCtiVe [EBN...........oooiiueiiii et e e e e e e e e e e b e e e eeaans

: Learning process amatcomeefficiencies for the reflective learners ..o, 217
: Task involvement for the reflecti@@iNersooo s 218
. Interaction effect in the COMPIEtBIMLEGYccoooviiiiiiiiiee s e e e e e e e e e e 221

Xi

Abstract

This research explored strategies for learning namogning via worked-examples that
promote schema acquisition and transfer. Howewarning style is a factor in how much
learners are willing to experskrious efforon understanding worked-examples, with active
learners tending to be more impatient of them tredlective learnerslt was hypothesised
that these two learning styles might also intevaith learners’ cognitive load. The research
proposed a worked-example format, called a Pairethod strategy that combines a
Structure-emphasising strategy with a Completioatsgy. An experiment was conducted to
compare the effects of the three worked-examplagesfies on cognitive load measures and
on learning performance. The experiment also exathithe degree to which individual
learning style influenced the learning process padormance. Overall, the results of the
experiment were inconsistent. In comparing thea# of the three strategies, there were
significant differences in reported difficulty areffort during the learning phase, with
difficulty but not effort in favour of the Completn strategy. However no significant
differences were detected in reported mental efforing the post-tests in the transfer phase.
This was also the case for the performance ondbketpsts. Concerning efficiency measures,
the results revealed significant differences betwine three strategy groups in terms of the
learningprocessand task involvement, with the learnipgpcessn favour of the Completion
strategy. Unexpectedly, no significant differencesre observed in learningutcome
efficiencies. Despite this, there was a trend endhta that suggestegartial reversaleffect

for the Completion strategy. Moreover, the resphstially replicated earlier findings on the
explanation effect. In comparing the effects of tind learning styles, there were no
significant differences between active and refleciearners in the three strategy groups on
cognitive load measures and on learning performé&maebetween reflective learners in the
Paired-method strategy and the other strategiesallfz concerning efficiency measures,
there was a significant difference between actarers in the three strategy groups on task
involvement. Despite all these, effect sizes ragpgnom a medium to large suggested that

learning styles might have interacted with learnaygnitive load.

Xii

Chapter 1 Introduction

Many learners find learning programming difficuiipt least because of the “abstract nature
of the programming task” (Dunican, 2002 p. 89). #dst concepts such as variables, data
types, and dynamic memory are not closely relabeckal world situations and so learners
find these concepts difficult to grasp (Dunican020 According to Perkins and Martin
(1986), as reported by Gilmore (1990), the maifialifties are two-foldfragile knowledge
and neglected strategiesto use Perkins and Martin’'s (1986) phrases. Towenér is
“knowledge that the student has, but fails to usemwit is needed”. In the latter case,
Carbone, Hurst, Mitchell and Gunstone (2001) fodinat insufficient strategies result in
learners failing in their attempts at solving agreonming task. Carbone, Hurst et al., (2001)
further argued that this can occur at three diffeqgoints: the initial stage of designing a

solution, during coding of the solution, and fiyadit debugging run time errors.

These are just some of the problems faced by leathat affect their performance in an
introductory programming course. Indeed, much mefehas been conducted to study the
difficulties learners have in learning to programdr factors that influence programming
performance (e.g. Bennedsen & Caspersen, 2006jneahtAla-Mutka & Jarvinen, 2005;

Bergin & Reilly, 2005; Mancy & Reid, 2004). Amongamy others is the research done in the

area of analogical problem solving.

1.1 Statement of the problem

The use of examples is one of three types of ar@bieasoning in problem solving (Mayer,
1992; Reimann & Schult, 1996). Past research hawrslthat examples play an important
role in learning and problem solving (e.g. Pird@dliAnderson, 1985; Chi, Bassok, Lewis,
Reimann & Glaser, 1989) and are crucial to the @dtpn of initial cognitive skills

(Atkinson, Derry, Renkl & Wortham, 2000) and hemptay an important role in the learning
of programming. The construction of schemata is ofhethe underlying processes in

acquiring and managing such skills (van Merriént®&&aas, 1990).

Learning via worked-examples has received a sigamti amount of interest from researchers,
including researchers in the programming educatammain and indeed some have developed
web-based systems to support such learning (e.geW&993; Chang, Chiao, Chen & Hsiao,
2000; Weber & Brusilovsky, 2001; Brusilovsky, 20@avidovic, Warrant & Trichina, 2003;
Garner, 2007). Nevertheless, evidence from workeurple research indicates several
limitations of example-based learning. Althoughesal systems have attempted to address
these limitations, various questions remain opEor instance, it is not clear whether these
systems, with the exception of the work done byr@h&hiao et al. (2000) and Davidovic,
Warren et al. (2003) have been sufficiently evadadgainst learning outcomes (in terms of
the quality of acquired cognitive schemata, inahgditransfer). More importantly, the
relationship between individual learning styles dearning outcomes (and cognitive load
effects) resulting from using the system needsi@#tion. Note that Graf, Lin and Kinshuk
(2008) have identified amndirect relationship between working memory capacity and
learning styles, as drawn from the literature. Thlato say, learners with low working

memory capacity tend to prefer an active styleeafihiing, on the contrary, learners with high

working memory capacity tend to prefer a reflectstgle of learning. Note also that an
instructional design based on cognitive load thé@iyT) argues for the careful utilisation of
working memory capacity to encourage more effecigeema construction (Sweller, van

Merriénboer & Paas, 1998).

In addition, previous evidence in the area of leaynstyles research has suggested that
learners differ in the ways they perceive and psaaformation, as well as respond to and
interact with their learning environment (e.g. K&et979, as quoted by Felder and Spurlin,
2005). In line with this, several empirical findggwnithin the programming education
literature have pointed out that reflective leasnperform better than active learners in an
introductory computer science course and/or in aogning performance (e.g. Allert, 2004;
Thomas, Ratcliffe, Woodbury & Jarman, 2002; Chaanil & Karolick, 1999; van
Merrienboer, 1988). One noteworthy point concerrigayning styles is the lack of a clear
relationship between reflection/impulsivity (i.eeflective/active) and teaching methods.
Thus, the question arises as to whether learnexddive given what they like as in the use
of teaching methods that provide an opportunity ifapulsive learners to be active, or
whether learners should be given what should befdieor them, as in the use of teaching
methods that force impulsive learners to behaveemeitectively (van Merriénboer, 2009)
Hence, we argued that investigating the relatigndlgtween learning styles and working
memory capacity, and so the differential effectscofnitive load on active and reflective

learners, appeared to be a promising for reseaot,it became the main focus of this thesis.

! personal communication, 14/11/2009

Another issue worth exploring is why examples areedldom used by learners (see Weber &
Brusilovsky, 2001) and are often neglected in progning instruction (van Merriénboer &
Paas, 1990) given the fact that these are an wkeafay to learn a complex cognitive skill
such as problem solving (Paas & van Gog, 2006)a Aisal point, only a limited amount of
research on instructional design involving workedsaples has been carried out in the area
of programming education (e.g. van Merriénboer,0t9%an Merriénboer & Paas, 1990; van

Merriénboer & de Croock, 1992; Trafton & Reiser93%

In an attempt to improve the effectiveness of wdrkgamples, Atkinson, Derry et al. (2000)
proposed three moderating factors. These include-eaxample features, inter-example
features, and individual differences in examplecpssing (e.g. Chi, Bassok et al., 1989;
Renkl, 1997). In addition to this work focusing tire instructional principles of worked-
examples, recent research is also focusing on ipods to optimise the cognitive load for
learning from worked-examples, (see Paas & van @006; Moreno, 2006). Within the
broader programming education literature, someiesudave used cognitive load theory as a
basis for teaching a programming course (e.g. Casp&& Bennedsen, 2007; Gray, St. Clair,
James & Mead, 2007) Then again, it is not clear thdrethe proposed instructional
mechanism has been sufficiently evaluated agasashing outcomes including transfer using
valid and reliable measures according to cognitvael theory. Finally, recent effort has been
made with respect to a model of measuring cognitvagl during programming instruction

and embedded in an intelligent tutoring system. (éaysoof, Sapiyan & Kamaluddin, 2007).

1.2 Purpose of this research

Taking all these aspects into account, the purmdsthis research is to bridge the gaps
identified above by extending previous researchegample-based learning systems with
regard to the instructional design of the workedregles themselves. This can be done by
taking into consideration instructional principlieem worked-example research (Atkinson,
Derry et al., 2000) and more specifically, by dmagvfrom assumptions laid down within the
current developments of cognitive load theory. Bdjecognitive load theory has provided
guidelines for the development of several instarai formats, including worked-examples

(Kirschner, 2002).

1.3 Aims and objectives of the present research

The present research sets out to explore stratégiedearning programming via worked-
examples, which seek to promote schema acquisathahtransfer. However, we argued that
learning style is a factor that influences how muehious effortlearners are willing to
expend in understanding worked-examples, with adegarners tending to be more impatient
than reflective learners. As a result, active lesmay become overwhelmed and experience
cognitive overload. In view of that, we hypothedishat the two learning styles might
interact with learners’ cognitive load and wouldetenine the quality of acquired cognitive
schemata and hence the transfer of learning. Tpethgsis is consistent with thedirect
relationshipproposed by Graf, Lin et al., (2008) as discusee8lection 1.1. To answer this
guestion, we investigated the differential effectsdifferent worked-example strategies on
the learning process and outcomes (including teahsfs well as on the cognitive load that
occurs during learning, taking into account leashkrarning styles. In so doing, the present

research also investigated the relationship betwkeractive and reflective learning styles

and learners’ working memory capacity. Summingthp, main aim of the present research
was to extend prior work on the design of workedragles in the area of programming
education. Specifically, it investigated the effeetdesign of a worked-example strategy that
particularly aimed at helping active learners berfiedm being exposed to worked-examples
thus improve their learning, and so equalise theniag outcomes of both active and
reflective learners. For the purpose of the ingadion, a web-based worked-example system
for learning programming was built and evaluatedellaon the design of the worked-

example strategy.

To achieve the stated aims, we sought to addres®llbwing objectives. The first objective
was to investigate any differential effects on lg@rning process and outcomes (in terms of
the quality of acquired cognitive schemata, inahgdiransfer) of different worked-example
strategies, taking into account learners’ learnstgles. The second objective was to
investigate any consequential variations of cogeitioad that occur during learning by

means of the valid and reliable measures derivad frognitive load theory.

1.4 Methodology of the present research

Figure 1.1 outlines the methodology used in pursithe aims and objectives of the present
research. Note that the deliverables of each stepeoresearch methodology process are
presented in italics. The work on the thesis wadedd in October 2007. Phase 1 started with
a literature review, followed by an exploratorygpistudy, which was conducted in August
2008. The main experiment was designed and corttdlyeMay 2009, together with the

research questions and hypotheses. The principiderlying the design of the proposed

worked-example strategy, named the Paired-meilasdfinalised during the later months of

the phase. Phase 1 took 19 months (including 3 Imsaoftintermission) to complete. Phase 2
started with the design of the Paired-method siyat®llowed by paper prototyping, which
was piloted in January 2010. The LECSES system |dewent was broadly initiated in
February 2010 and completed by the end of July 20h6 preparations of the experimental
materials were also carried out during the wholeopeof the phase. Phase 3 started in the
middle of July 2010 when the pilot study was coriddcand this led to improvements in the
design of the main experiment and its experimemiaerials. The phase continued with the
main experiment and was completed by the end oi8LB010. Phase 4 started in September
2010 and completed by middle of September 2011ugivag the thesis write up throughout

the period of the phase).

Phase 4

Results and
discussion

Phase 2 Phase 3

Paper prototyping and
system development

Experimental
activities

Review of literature

The design of the

on instructional Pairedt raothod Pﬂ':]': Smdfﬁand Analysis of
design of worked- oo e results
examples, CLT and gy _ improvements of
related work Paper prototyping the main
and the *
experimental . .
Aﬂpieiﬁlstﬁgw development of a deai Discussion
i web-based worked- en
2 -) example system
?jg;;p‘f};mﬁm Preparations of Main experiment Thesis write-up
o experimental in a laboratory
Principles materials Sttt
Hgﬁg?ﬁﬁg Contributions
proposed worked- LECSES) andf utm
examplestrategy Experimental Experimental directions
: data .
materials Thesis

Figure 1.1: Research methodology process

1.5 Significance of the present research

The effectiveness of the instructional design ofrked-examples and strategies has been
widely studied within the framework of cognitiveal theory. It is worth noting, however,
that the majority of these studies have failedrvjgle consistent findings with regard to the
learning process and/or outcomes as well as cogritad effects (Paas & van Gog, 2006;
Moreno, 2006). See Moreno (2006) for an extensexgew of this issue. The research
described here advances our knowledge about ceghitad theory and provides more viable
and alternative explanations for interpreting poegi research findings. That is, the research
help to provide a better understanding of the dhfiié kinds of cognitive load that occur
during learning with different worked-example stgies for the active and reflective
learners. Besides, the research provides both dtiemir and practical implications for
learning via worked-examples in the area of prognamg instruction and learning styles.

Also, it provides preliminary work towards a ma@adaptive system to support such learning.

1.6 The organisation of the thesis

Cognitive load theory developed substantially aber period during which when the thesis
was undertaken. The literature review presentedhapter 2 covers research up to the year
2009, as this influenced the design of the maireargent. Note that, the main experiment
was designed and conceived in the year 2009. Nedetlaat the first few sections of Chapter
4 cover the literature underpinning the detailesigle of the worked-example strategy. The
analyses and discussion of the main experimentcasaged out in September 2010 when the
new cognitive load theory formulation (Sweller, B)Jand other related work (e.g. de Jong,

2010; Moreno, 2010; van Gog & Rummel, 2010) emer§adChapters 8 and 9 cover recent

research published from the year 2010. Researblisphad before the year 2010 is also

included wherever relevant.

Chapter 1 has provided a general overview of tlesgort research, covering a statement of
the problem, and the aims and objectives of theareti. The chapter also highlights the

significance of the research as well as its coatian in various fields.

Chapter 2 provides a review of the literature whaokers interdisciplinary areas of research.
More specifically, it covers research in the aréamalogical problem solving and transfer,
from worked-example research to cognitive load theas well as learning styles, among
others. Then, the chapter presents related wotkiwihe domain of programming education.
Next, the chapter reviews worked-example design strategies within the context of the
instructional principles derived from worked-exampésearch and/or cognitive load theory-

inspired research.

Chapter 3 presents an observational pilot study ékplored the context in which learners
make use of examples as they solve programmingerab In particular, the aim was to
understand learners’ behaviour and the consequerfcdss behaviour on their problem
solving. The findings from the pilot study guiddtetdevelopment of the research questions
and hypotheses. The chapter also discusses problesosiated with learning from worked-
examples as derived from the pilot study as wellras the literature. Finally, suggestions

are made with regard to the design of the proposelled-example strategy.

Chapter 4 starts with a discussion of the theakt@ckground for the design of worked-
example strategies, followed by related work undeg the interface design of a web-based
worked-example system. Next, the chapter preséetsveb-based worked-example system,
LECSES (Learning Examples using Completion andcBire-emphasising Strategies). The
LECSES development environment is described fif$ten, the two types of interface

supporting each of the strategies are discussedl, sgreenshots that illustrate the learning

interaction. Finally, the LECSES editor, report getor, and its main modules are presented.

Chapter 5 starts by briefly describing a secondtmkperiment, which led to improvements
in the design of the main experiment and its expental materials. Next, the chapter
discusses the main experimental design, coverisgphases (learning and transfer),
procedures, the experimental materials, instrumeans its participants. The subsequent

sections briefly explain the proposed statisticellgses and dependent variables.

Chapter 6 starts with a synopsis of the resear@stopns and hypotheses for the learning
phase. Then, the chapter presents a detailed pigseriof the experimental methods and
statistical analysis techniques for the phase. Niva chapter discusses the experimental
results of the learning phase, comparing the effettthe strategies with or of the learning
styles. The chapter also discusses the analysikeofesults of working memory capacity

measures.

Chapter 7 starts with a synopsis of research quresind hypotheses for the transfer phase.

Next, the chapter presents a detailed descriptidcheoexperimental methods and statistical

analysis techniques for the phase. Then, the chdgeusses the experimental results of the

10

transfer phase, comparing the effects of the gfiegewith or of the learning styles,

instructional efficiency measures, and differengifiécts of learners’ prior knowledge.

Chapter 8 reflects on the presents study. It ptedbe experimental results in context. More
specifically, the chapter discusses the researatinigs of the thesis in the light of recent

work, particularly de Jong’s (2010) criticisms.

Chapter 9 presents the research contributions ef thiesis. It considers the research

limitations and finally concludes with potentiabearch questions and future directions.

Finally, the thesis provides list of referencesaias well as appendices as follows:
Appendix A Participant consent form.

Appendix B Questionnaire on programming background.

Appendix C Index of Learning Styles instrument féel& Soloman, n.d.).
Appendix D Index of Learning Styles instrument —Idjaversion.

Appendix E Paper-based instrument for recording \W&FPAN scores.

Appendix F Programming pre-test instrument.

Appendix G Example problems for the learning phase.

Appendix H Transfer problems for the transfer phase

Appendix | Questionnaire on worked-example strategind LECSES.

Appendix J List of publications.

11

Chapter 2 Learning programming via worked-exampés

2.1 Introduction

Chapter 2 provides a review of the literature whaokers interdisciplinary areas of research.
More specifically, this chapter builds on the reskain the area of analogical problem
solving and transfer, from worked-example resedwlcognitive load theory as well as
learning styles, among others. The chapter alssepts related work within the domain of
programming education, covering example-based ilegusystems and work done in the area
of instructional design of a programming courseedew of the worked-example design and
strategy summarised within the context of instuwdl principles from the worked-example
research and/or cognitive load theory-inspired aege conducted in the past is given at the
end of this chapter. This review is largely baseditkinson, Derry et al. (2000)’s article and

related studies from literature.

2.2 Analogical problem solving and transfer

Similar problems solved in the past are often useduide and solve the current problem
(Ross, 1989a; Novick, 1988). For example, Neal (1989) observed that programmders

programming by referring to program fragments imksand manuals, and every so often
they reuse or revise the code that was writtenipously. Among others, Pirolli and Anderson
(1985) identified the role of analogical problemvstg to worked-examples in the attempt

by novice programmers to write recursive functions.

12

In fact, novices, most of the time and regardlessubject area use problem solving by
analogy extensively (Reimann & Schult, 1996). Mot is a preferred mode of learning

by novices (Renkl, Atkinson & Maier, 2000; Renkl & Atkinson, 2002).

The use of examples is one of three types of ai@bgeasoning in problem solving (Mayer
1992; Reimann & Schult, 1996). According to Atkinson, Derry et al. (2000) learning from
examples is crucial to the acquisition of initiadgoitive skills and this can be further
explained by referring to a four-stage model detiveom a framework called ACT-R
(Anderson, Fincham & Douglass, 1997). Atkinson, ipest al. (2000) further state that,
according to this model, learning from examplessas important compared to standard
problem solving that the first two stages are @ablwaihen a learner is in the initial stage of
skill acquisition. In the first stage, learnersv&khe problem analogically, that is to say,
learners refer to some known examples and atteoaidte them to the problem at hand. In
the second stage, learners develop abstract ditarales or schemas, which may guide

them in subsequent problem solving (as cited inm&sm, Derry et al., 2000).

“A schema can be conceptualised as a cognitivectsiiel that enables problem
solvers to recognise problems as belonging to &cpéar category of problems that
require particular operations to reach a solutdogquired schemata can provide
analogies in new problem-solving situations and lbarused in mapping processes
to reach solutions for unfamiliar aspects of thabpgm- solving task” (Paas, 1992 p.

429).

13

Several researchers have proposed different mearmomote schema acquisition. For
instance, van Merriénboer and Paas (1990) clainhedl $uccessful schema acquisition
requires an investment of effort from learners #msl can be achieved by providing learners
with partial worked-example solutions that haveb® completed. Similarly, Quilici and
Mayer (2002) reported that requiring learners tstiaat the underlying structural features of
example problems and so organize them into a gksextaproblem model facilitates the

learners’ development of problem schemas.

Schema acquisition is regarded as one of the uyndgriprocesses in acquiring skills in
programming (van Merriénboer & Paas, 1990). Soloway Ehrlich (1984) argued that
programming plans ought to be considered as schdPteass are generic program fragments
that represent “stereotypic actions in a prograftirlich & Soloway, 1984 p. 115). Aplanis
a chunk of programming knowledge which can be ee&d and applied in future problem

solving (Rist, 1989).

2.3 Learning from worked-examples

“Worked examples are effective instructional metanteach complex problem-solving skills”
(Paas & van Gog, 2006). Worked-examplesalved example problem® use Schworm and
Renkl’s (2006) phrase are problems with a compsetieition Schworm & Renkl, 2006;
Sweller, van Merriénboer et al., 1998) and accagydm Renkl, Stark, Gruber and Mandl
(1998) consist of an example problem, some solwteps along with a final solution to the
problem. Support for the idea that studying workedmples is superior to standard problem
solving has been found in numerous studies, ankirwihe cognitive load theory literature,

this is often referred to as thrked example effediSweller, van Merriénboer et al., 1998).

14

The worked example effect is the result of “a practethod that makes a more efficient use
of learners’ limited cognitive resources than the oesulting from problem-solving practice”

(Moreno, 2006 p. 171).

The benefits of worked-examples have been propbgdd/o different schools of theory, as
cited in Trafton and Reiser (1993). That is, acowdo the example generalisation model,
learning from examples is of importance in acqgmproblem solving rules, as a result of a
self-explanation process (VanLehn, Jones & Chi,2)99nd indeed more effective than
unguided problem solving (Sweller & Cooper, 1986n the other hand, the knowledge
compilation model proposes that problem solvingswdre created through an analogical use
of the examples during problem solving (Anderson, 1987; Pirolli, 1991), and according to
VanLehn, Jones et al. (1992), the learner’s expi@amaan then be applied in future problem
solving, hence leading to effective rule formati@ee Trafton and Reiser (1993) for a brief
review of this issue. Despite these benefits, thedemce from worked-example research

indicates some limitations of example-based le@nin

For example, Chi, Bassok et #1989) state that, in an attempt to solve a problgwood
learnersuse the examples as a reference, urpiker learnerswho re-read the examples as
though to find a solution. Similarly, VanLehn anghés (1993) revealed thpbor solvers
tend to solve the problem analogically insteadabfiag the problem on their own, hence this
prevents them from discovering gaps in their knolgke whereagood solverause analogy
sparingly as an aid to gap filling. In addition,928q1987) describes novice problem solving
according to an example-analogy view. In an attetmphake an analogy between the new

and an earlier problem, Ross argues that novicestterely on superficial similarities of the

15

problems to set up the connections between probtkrasto a lack of understanding of the
problem structure. They also experience an “illasad understanding” when learning from
worked-examples (Renkl, 1999). In addition, thetenfuse examples in a suboptimal way
(Reimann & Schult, 1996nd fail to generalise worked-examples solutionse problems
(Catrambone & Holyoak, 1989), as cited in Moren@0&). Among others, it has been
observed that novices tend to used superficial laiiies of the LISP code to solve

programming tasks when details of the algorithmrateunderstood (Weber, 1993).

2.3.1 Instructional principles from worked-exampleresearch

Atkinson, Derry et al. (2000) have proposed a fraor& drawn from the literature in the
area of worked-example research conducted in tis¢, peading to instructional design
principles. More specifically, they proposed fastothat moderate worked-example
effectiveness. These factors include intra-exanfplatures, inter-example features, and
individual differences in example processing. lrekample features are concerned with how
the worked-example is designed, for example, eitheemploying multiple modalities in
example presentation, i.e. integration of aural asdial information (Mousavi, Low &
Sweller, 1995), as cited in Atkinson, Derry et (@000) or via subgoal labelling of worked-
example solution (Catrambone, 1995). Inter-exanfigédures are concerned with how the
worked-examples are sequenced and/or arrangedeXaonple, the presentation of multiple
examples via their variability in surface featufes a given problem category, that is,
structure-emphasising examples (Quilici & Mayer9@2002), or pairing of an example and
a similar practice problem (Trafton & Reiser, 1993) final factor concerned with example
processing is through self-explanation, i.e. thtopgompting the learner to self-explain the

worked-example (Chi, Bassok et al., 1989) or foiste self-explanation through structural

16

manipulation, i.e. incompleteness of the workedrgxa solution(van Merriénboer, 1990b;
van Merriénboer & Paas, 1990; van Merriénboer & de Croock 1992). A review of
instructional principles from the worked-examplesgarch and their implications for

instructional design is given by Atkinson, Derryaét(2000).

In recent years, conventional research on workemimples has been extended towards
focusing on techniques to optimise cognitive load learning from worked-examples as
derived from current developments of cognitive Idhdory (see Paas & van Gog, 2006

Moreno, 2006).

24 Cognitive load and working memory

One major assumption of cognitive load theory iat thuman working memory has very
limited capacity. During the process of learningysinof the cognitive capacity or resources
are restricted by the working memory. The basiet@f cognitive load theory is to optimise
such loads so that more working memory is availdbieactual learning to take place. In
other words, the freed resources can (in principkedirected to the learning activities that

are relevant to the process of schema acquisitidreatomation.

Cognitive load theory defines three different typafs cognitive load, namely intrinsic
cognitive load (ICL), extraneous load (ECL), andngane cognitive load (GCL) (Paas,
Renkl & Sweller, 2003; Paas & van Gog, 2006). The load which places digmands on
working memory because of element interactivite. (elements of the task that must be
processed concurrently, which are intrinsic to thsk), is referred to as ICLThe load

imposed by the task that is ineffective for leaghanm that may impedes acquisition of schema

17

and automation) is called ECL whereas when itfiscéle for learning (i.e. being helpful to
acquisition of schema and automation), it is reféto as GCLSee Paas and van Gog (2006)
for an overview of different types of cognitive tbaCognitive load can be optimised in three
different ways (Moreno, 2006). First, by decreadimg ECL, for instance, by asking learners
to work on completion problems, that is, workedragée solutions that have to be completed
(van Merriénboer1990b; van Merriénboer & Paad990; van Merriénboer & de Croock,
1992). For example, this can be achieved by usirfgding technique by successively
introducing elements of problem-solving into theles until the learners are able to solve
problems by themselves, i.e. complete examplmcreasingly more incomplete exampites
problem (Renkl, Atkinson et al2000; Renkl, Atkinson & Merill, 2003). Also, this can be
achieved by introducing problem-example pairs andkample-problem pairs as introduced

by Trafton and Reiser (1993) and Reisslein, Atkim<geeling and Reisslein (2006).

Second, by reducing the ICL, for instance, by reuyithe interacting elements of complex
learning material. This can be achieved by praésgrihe material as isolated elements that
could be processed in working memory sequentiadther than simultaneously (Pollock,

Chandler & Sweller, 2002), or by scaffolding simpdecomplex sequencing, in other words,
learning materials designed to start with relativ@mple task and progress toward complex
tasks (van Merriénboer, Kirschner & Kester, 20@8)by presenting learners with a modular
example format (Gerjets, Scheiter & Catramb@i®4; 2006). Whereas the modular format
focuses on breaking down complex solutions intollemaeaningful elements, thus allowing

only a limited number of elements to be processedilsaneously in working memory, and

accordingly reducing intrinsic cognitive load, thelar format treats complex solutions as

the basic unit that cannot be broken down further.

18

Third, by increasing the GCL, such as by providuagying representations of and multiple
solutions to, a problem (GroRe & Renkl, 2006). sTten also be achieved by increasing the
variability of the worked-example problems (Paawvah Merriénboer, 1994a), and making
use of high contextual interference, that is, thenipulation of the practice schedule (van
Merriénboer, Schuurman, de Croock & Paas, 2002).reMgpecifically, contextual
interference refers to the practice schedule bemagipulated which may hinder smooth
mastery of the skills being practised. Low contakinterference refers to a blocked practice
schedule. Skills for solving one type of problene a@ractised before progressing to a next
type of problem (i.e. B-B-B, A-A-A). In contrast,idgh contextual interference refers to
random practice schedule, that is, different pnoisl@re sequenced randomly (e.g. C-A-B, B-
A-C) (van Merriénboer, Schuurman et al., 2002). 8mtudies within the worked-example
research include prompting learners to self-explaeénworked-example (Chi, Bassok et al.,
1989), by asking learners to provide example ektibmr on writing database queries, for
instance, elaborations of the connection betweenctimditions and actions of SQL queries
(Catrambone & Yuasa, 2006), and finally by askegyhers to abstract the structural features

of the examples (Quilici & Mayer, 1996; 2002).

An instructional implication of worked-example dgsiis that example-based instruction
should decrease learners’ use of cognitive ressuoce activities that are ineffective for
learning and increase learners’ use of cognitieueces on activities that are relevant to
schema acquisition and automation, so long thenilegrtakes place within the overall

capacity of the working memory (Moreno, 2006).

19

The instructional effectiveness resulting from eliéint worked-example designs that build on
cognitive load theory has been widely researcheds worth noting, however, that the
majority of these studies have failed to providensistentfindings for the instructional
effectiveness with regard to learning outcomes @ghitive load effects (Paas & van Gog,
2006; Moreno, 2006). Moreno’s review points out some possible new dioest Among
others, one is to reconsider the assumptions achdy the cognitive load theory under the
view of the studies conducted in the area workealvgte research in designing the worked-
examples (e.g. Atkinson, Derry et al., 2000) asl waslto include individual differences as

mediating factor that may be interacting with cdigeiload and learning outcomes.

2.4.1 Measuring cognitive load

“Cognitive load, a multidimensional construct, reggnts the load that performing a
particular task imposes on the cognitive systemPaas, van Merriénboer and Adam (1994),
guoted from Paas and van Merriénboer (1994b). Tihmermkions of cognitive load can be
conceptualised with regard tmental loadand mental effort both of which affect the
learner’s associategperformance (Paas, van Merriénboeet al., 1994; Sweller, van
Merriénboer et al., 1998Mental loadis imposed by theéask demandahereasnental effort

refersthe total of cognitive capacity or resources beihgcated to perform a task.

It should be noted that, the perceived intensitythed mental effort being expanded by
learners can be regarded as the essence of cegloéid (Paas, 1992), thus it can be used as
an index of cognitive loadPgas, 1992; Paas & van Merriénboer, 1994&aas, van
Merriénboer et al., 1994). A detailed theoreticgdlanation of the cognitive load construct is

given by Paas and van Merriénboer (1994b).

20

According to Wierwille and Eggemeier (1993), measuents of mental effort can be
distinguished as they are, based on three differesttegories, namely subjective,
physiological, and task- and performance-based&sdfas cited in Sweller, van Merriénboer
et al., 1998) and can be measured either subjéctissing rating scales or objectively using
task- and performance-based techniques and phggialotechnique (see Paas & van
Merriénboey 1994a; Paas, van Merriénboeret al., 1994; Sweller, van Merriénboer et al.,

1998 van Gog & Paas, 2008).

2.4.1.1 Subjective measures

Subjective measures consist of rating scales aslafgad by Paas (1992). The rating scales
ranging from 1 (very, very low mental effort) to(@ery, very high mental effort) against

which the participant can indicate their perceiaedount of mental effort. Paas’s scale is a
modified version of Bratfisch, Borg and Dornic’s9{R) scale for measuring perceived task
difficulty. Subjective ratings of mental effort heween demonstrated to be valid, reliable,
and revealed good internal consistency (Paas, &fdroer et al., 1994). Moreover, the

subjective rating is frequently used by researclterd appears numerous times in the

cognitive load literature (see Paas, Tuovinen, €abB Van Gerven, 2003).

2.4.1.2 Task- and performance-based or secondary task performance

Task- and performance-based measures are alscetkteras a dual task approach (Brunken,
Plass & Leutner, 2003) or as a secondary task rdetbgy (Paas, Tuovinen et al., 2003),
which require a primary task to be performed coremity with a secondary task, both of

which use the same working memory resources.

21

Performance on the secondary task (i.e. to reacthéo colour change of the screen
background) is believed to indicate the level ofratve load imposed on working memory
by the primary task (i.e. the learning activitypridrmance variables include reaction time,
accuracy, and error rate (Paas, Tuovinen et ai3RMespite the fact that secondary task
performance proved to be reliable and highly semgsiiPaas, Tuovinen et al., 2003), it may
still affect the performance of tipeimary task (Paas, Tuovinen et al., 2003; Brunken, Plass et

al., 2003). In other words, the secondary task c#erfere with the primary task
performance, especially when cognitive capacityesources are limited and the primary

task is complex (Paas, Tuovinen et al., 2003).

2.4.1.3 Physiological techniques

Another form of cognitive load measure is to analiee changes in the trend and the pattern
of the load as reflected by physiological variab{esy. heart rate, pupil dilation, among
otherg and their correlation with the learning activities (Paas, Tuovinen et al., 2003;
Brunken, Plass et al., 2003). A review of variohggiological techniques is not in the scope

of this thesis.

2.4.1.4 Performance on transfer and efficiency measure

Another method of investigating the effects cogmitioad is to measure performance on
transfer (Brunken, Plass et al., 2003). Two pertorae criteria commonly employed are the
percentage of the problem correctly solved and taken to solve the problem. Mental effort
on the task combined with a performance measunade® information on relative efficiency

of instructional conditions (Paas & van Merriénhd®04a; van Gog & Paas, 2008).

22

This is the original instructional efficiency measyproposed by Paas and van Merriénboer
(1993). Based on this construct, high task or pestormance combined with a low mental
effort (attributable to efficiency of schemas acqdias a result of instructional format) is
called high-instructional efficiency. By contrakiyw task or test performance combined with
high mental effort is called low-instructional effncy fan Gog & Paas, 2008; Paas,
Tuovinen et al., 2003). The efficiency measure [les a more sensitive indicator of the
guality of acquired cognitive schemata than justqremance tests scores on their own as it

takes account of the mental effort in using thean(og & Paas, 2008).

Many studies have used an adapted version of fheal instructional efficiency measure,
(see van Gog & Paas, 2008) for an overview. Thetadameasure looks at perceived mental
effort or effort / perceived difficulty during le@ng and performance in the post-tests. It
should be noted, however, that the two measurevese different in terms of what they
actually measured. Whereas the original measuiaageinstructional efficiency in terms of
the learningoutcomesthe adapted measure defines instructional effoyien terms of the
learningprocesgvan Gog & Paas, 2008). A detailed explanatioths issue is given by van

Gog and Paas (2008) and Paas and van Gog (2006).

Among others, Paas, Tuovinen, van Merriénboer aachld) (2005) proposed an alternative
motivational perspective that looks at the relatb@tween mental effort and performance in
the post-tests. Specifically, this construct defin@structional efficiency in terms of

instructional motivation.

23

2.4.1.5 Time on task

Time-on-task is an important factor that has natrbaddressed extensively in either the
measurement of cognitive load or the calculatiomsefructional efficiency (Paas, Tuovinen
et al.,, 2003; Tuovinen & Paas, 2004). Time-on-task can be considered as an objective
measure of cognitive load (van Gog & Paas, 2008).efficiency measure incorporating
mental effort, performance, and the time-on-tasitdia(e.g.Paas, Tuovinen et al., 2003;
Tuovinen & Paas, 2004), where time to completetéls& is not restricted, provide a more
subtle measure (van Gog & Paas, 2008). The wonke dry Salden, Paas, Broers and van
Merriénboer (2004) provides a first step in thisediion. However, they proposed total
training time (instead of time-on-task) as the dhiimension of the efficiency formula. In
Salden, Paas et al.’s study, the three-dimensieffaliency measure was computed for

adaptive/dynamic task selection during training.

2.4.1.6 Measuring three different cognitive loads separately

Despite cognitive load theory’s distinction betwd€h, ECL, and GCL, both objective and
subjective measures indicate the total cognitivaed loather than its constituent elements
(Paas, Tuovinen et al., 2003; van Gog & Paas, 2008). However, recent attempte haen
made to measure different cognitive load types reg¢gly (e.g.Brunken, Plass et al., 2003;

Ayres, 2006; DeLeeuw & Mayer, 2008; Cierniak, Scheiter & Gerjets, 2009).

For instance, Brunken, Plass et al. (2003) arghatisecondary task measures were sensitive
to detecting variations in extraneous cognitivedl@nd they have demonstrated that the
approach was feasible. Brunken, Plass et al., durtiate that, to validate differences in

cognitive load induced by different instructiondtasegies, both the primary task and

24

secondary task performance should be measured tameolusly within the same
experimental setting. On the other hand, Ayres §200und that subjective measures were

sensitive to detecting variations in intrinsic citye load within tasks.

DeLeeuw and Mayer (2008) reported that differenasoees of cognitive load were sensitive
to detecting intrinsic, extraneous and germane itiwgnoad separately. In particular, they
found thatreaction timeto the secondary task was the most sensitive decations of
extraneous cognitive loadffort ratings during learning were the most sensitiviadications

of intrinsic cognitive load, andlfficulty ratings after learning were the most sensitive to

indications of germane cognitive load.

Cierniak, Scheiter et al. (2009) used subjectitengascales with a labelled six-point scale
(from 1 - not at all, to 6 - extremely) to measulifferent load types, namely intrinsic,
extraneous, and germane separately. Specificéléy,intrinsic cognitive load scale asked
“How difficult was the learning content for youThe extraneous cognitive load scale asked
“How difficult was it for you to learn with the ne&ial” as adopted from Kalyuga, Chandler
and Sweller (1998). The germane cognitive loadesaakedHow much did you concentrate
during learning?” as adopted from Salomon (1984). The validity & subjective ratings
was proved to be successful in their studgwever, their approach to measuring different
kinds of cognitive load using subjective ratingsgigestionable. A closer look shows that
these questions (as described above) are very malated. It is uncertain as to whether
learners will really be able to answer these quaastiby introspection since it is hard to
distinguish one question from the other two. Hemtleer means of measuring different kinds

of cognitive load using subjective ratings are dieaalled for.

25

2.5 Cognitive and learning styles: effects on progmming performance

2.5.1 Learning styles models

The distinction between cognitive styles and laagrstyles is subtle. For instance, Messick
(1984) describes cognitive styles as “consisterdividual differences in organizing
information, and processing both information anghezlence” as quoted by Bishop-Clark
(1995 p. 242). Keefe (1979) define learning sty@es'characteristic cognitive, affective and
psychological behaviours that serve as relativiple indicators of how learners perceive,
interact with, and respond to the learning envirenth as quoted by Felder and Spurlin
(2005 p. 104). Based on this background, both ¢ognstyles and learning styles will be
treated under the umbrella of a similar theoretmaistruct Several different, well-known
learning style models are available in the literatuhese include the Kolb's Experiential
Learning model (Kolb, 1984) and the Felder-Silvennmaodel (Felder & Silverman, 1988).

Each model proposes a different classificatioreafriing styles.

The Kolb's Experiential Learning model suggestsr fdifferent learning styles which are
based on a four-stage learning cycle, each of wtnictesponds to four modes of the learning
process, namelZoncreteExperience Reflective Observation,AbstractConceptualization,
andActive Experimentation. The learning styles are the Dive@E/RO), the Assimilator
(AC/RO), the Converger (AC/AE), and the AccommoddoE/AE). The Kolb’s Learning
Style Inventory (Kolb, 1984) measures an individueatlative emphasis on each of the four
modes of the learning process as described abadearother two combination scores that
specify the extent to which the individual prefeisstractness over concreteness (AC-CE)

and the extent to which the individual prefers@tiover reflection (AE-RO).

26

By contrast, the Felder-Silverman model suggests fearning style dimensions, namely
active/reflective, sensing/intuitive, visual/verpbahd sequential/global. Learner learning style
is defined in terms of having a preference for @agegory or the other in each of the
dimensions (Felder & Spurlin, 2005). Sensing leesrege concrete thinkers, practical, and
prefer facts and procedures while intuitive leasnare abstract thinkers, innovative, and
prefer theories and meanings. Visual learners laapeeference for pictures, diagrams, and
flow-charts while verbal learners have a preferefurewritten and spoken explanations.
Active learners learn by trying things out and hkerking in groups while reflective learners
learn by thinking things through and prefer workialpne or with a partner. Sequential
learners are oriented toward linear thinking preessand learn in small incremental steps
while global learners oriented toward holistic #img processes and learn in large leaps. See

Felder and Spurlin (2005) for a detailed explamatbthese learning styles.

Active Balanced Reflective
-2 9 7 5 -3 -1 1 3 5 7 9 11

Figure 2.1: The active/reflective dimension of the ILS

The Felder-Silverman Index of Learning Styles (Ili8)entory (Felder & Soloman, n.d.) is
an instrument that consists of 44 gquestions andesl to assess learning style preferences on
the four dimensions of the Felder-Silverman mo#&@ich dimension has 11 questions, with
two possible options for answers correspondingi® ar the other category of the dimension
(e.g. active or reflective, see Figure 2.1) (Fel@eBpurlin, 2005). The categorisation of a
learner according to his/her score in a dimensim lge interpreted as moderate to strong
active (scores from -5 to -11) and moderate tongtneflective (scores from 5 to 11), and

balanced (scores from +3 to -3).

27

2.5.2 Individual learner differences and programmirg performance

Several studies have attempted to examine the labore between individual learner
differences and programming performance. Severefofs. have been investigated that
contributed to these differences. The factors uhelugender, cognitive/learning style,
personality traits, problem solving or programmatfility, first language, prior programming
experience, prior academic performance, and insbned strategy. In our opinion, problem
solving ability, cognitive/learning styles and insttional strategies appear to be a lot more

promising for further research, hence the focuhisfthesis.

There are several studies into the relationshipvéen learners' learning styles and their
programming performance (e.g. Byrnel&ons, 2001; Thomas, Ratcliffe et al, 2002; Pillay

& Jugoo, 2005) and/or performance in an introdyctmmputer science courg&llert, 2004;
Chamillard & Karolick, 1999). The study conducteyg Byrne and Lyons (2001 p. 52)
indicated that there is “a clear link between papgming ability and existing aptitude in
mathematics and science subjects”. Pillay and J{g005) revealed that learners’ problem
solving ability has an impact on programming perfance. In Pillay and Jugoo’s study,
learners’ performance in Mathematics and other sasifocusing on problem solving was
used to measure their problem solving ability. TRemRatcliffe et al. (2002) found that
reflective learners scored higher than active kei@ion the exam portion of a course and also
that verbal learners scored higher than visualnkxar Similarly, Allert (2004) as well as
Chamillard and Karolick (1999) found that refleetilearners outperformed their scale
opposites (i.e. active learners) in an introductooynputer science course. By contrast, the
studies conducted by Byrne and Lyons (2001) an®ibbgy and Jugoo (2005) revealed that

no general conclusions can be drawn from the stfitBarning styles with regard to learners’

28

achievement in programming. Among others, Carman&x Pereira and Mendes (2006)
conducted a preliminary investigation to see ifr¢heere any correlation between learners’
learning style and the way they solve the probldmsfound none. The study conducted by
Mancy and Reid (2004) argues that cognitive charestic such as field dependence appears
to be a crucial skill in learning to program. vanemiénboer (1988) investigated the
relationship between the reflectivity-impulsivityognitive dimension and computer
programming. His study suggests that the morect¥le learners tended to achieve higher
program comprehension test scores. Also van Mdroién(1990a) has examined the effects
of two instructional strategies, namely program ptation and program generation, on
reflectivity-impulsivity. In two experiments, a cqansatory model was tested on the
supposed negative effects of impulsivity to sedtitould be compensated for by an
instructional strategy that emphasises program t&tiop as opposed to program generation.
The results of the two experiments revealed no @udpr this model. In experiment two (a
longer duration of the course was used), the dabaved that there was a relation between
instructional strategy and reflectivity-impulsivitthat is to say, providing support for the

preference model.

Finally, Bishop-Clark (1995) has conducted an esitan review of past studies relating
cognitive style and personality traits to compupeogramming. The review revealed that
these characteristics have failed to provide comsisfindings in terms of individual
differences in programming performance. The majodf these studies have measured
learner achievement as a single activity (BishopHCl1995). More specifically, Bishop-
Clark stated: “Computer programming has been desdras an activity having separate and

distinct phases: problem representation, prograsmgdecoding, and debugging ” (p. 242). In

29

other words, perhaps certain cognitive styles ardgnality traits affect some phases but not
others. In conclusion, the empirical literatureiegxed above does not provide conclusive
findings in terms of individual differences in pragiming performance. Moreover, in the

majority of these studies, the learners’ achievanremprogramming has been measured as

single activity oroverall performance.

2.6 Related work

2.6.1 Example-based learning systems

2.6.1.1 Example-based Programming System (EBPS)

EBPS (Neal, 1989) has a simple menu-based inteffa@ecessing the examples. EBPS uses
a template approach and programming involves refissode. The system was developed
based on the fact that novice programmers tendtherereuse previously written code or
reuse code from books and manuals when coding phegrams. The system was tested on
twenty-two undergraduate and graduate learners wahous levels of programming
experience. The subjects were asked to write argnogo compute change i.e. to give
guarters, dimes, nickels and pennies as changenfarteger value. Only six, out of twenty-
two subjects did not utilize the example facililalf of the remaining sixteen subjects made
the most of the examples before and during theotisiee main editing window whereas the
others used them only during editing. Examples weed by learners in two fundamental
ways: (1) for help with syntactic structure (2) fmmparing their program to an example to

verify the difference that caused the errors.

30

2.6.1.2 Example Tool (ET)

ET (Bowles & Robertson, 1994) is a system that asegpproximate specificatiolanguage
(AS language) as an intermediate language to stppowsing examples in a database. The
language is intermediate between a problem statear&hthe solution code in a way that
makes the links between them become more app&@ewles and Robertson (1994) claimed
that the approach addressed the two major pitfallanalogical problem solving, namely
“failure to find an appropriate example” (p. 2) dffiglure to adapt appropriate features in the
example solution” (p. 3). However, the system hasmeans to permit learners to add new
examples to the database in a way that allows ¢henérs to reflect on their learning
experience. Taking this into consideration, aceuydio Bowles and Robertson (1994), it
would then be necessary to provide a means to dmeclearner’s solution is correct to be

worth keeping it.

2.6.1.3 Episodic Learner Model Programming Environment (ELM-PE)

ELM-PE (Weber, 1993) is an intelligent programmiagvironment supporting novices
learning LISP by making use of analogies. ELM-PEswased on the premise that novices
tend to use examples and remindings of solution@@wious problems to solve the current
problem. ELM-PE presents remindings and analogig¢ke learner when errors are detected
in the learner’s code or if the code is detected agboptimal solution. Also when the learner
asks for help with writing the code, ELM-PE respery giving analogies to similar past
problems or examples. An explanation-based retrimethod (EBR) is used within ELM-PE
to retrieve examples and remindings from an indigldepisodic case base, i.e. the Episodic
Learner Model (ELM). The example selection mechanis collaborative and is based on

both the learner and the system: (1) the learneagigation through examples and (2)

31

system-suggested examples by taking into considar#ie individual learner model. ELM-
PE was tested with ten novices and ten advancedrgnoners. An experiment was
conducted to test the hypothesis that novices Hdfieulty in identifying suitable analogies,
(see Pirolli & Anderson, 1985). The results obtdine Weber’s study supported the
hypothesis, that novices prefer examples whichsaperficially related and tend to neglect

structurally related examples.

2.6.1.4 Episodic Learner Model Adaptive Remote Tutor (ELM-ART)

ELM-ART (Weber & Brusilovsky, 2001) is a WWW-baseersion of introductory LISP
course based on ELM-PE. An experiment was conduote@étermine how well learners can
learn with a web-based educational system. ELM-AIRD provides the same collaborative
mechanism for example selection as its precursomvekier with slightly improved
navigation, i.e. with adaptive annotation. Anotlararacteristic of ELM-ART is that it
provides ‘live examples’ of LISP expressions anabjgm-solving examples. ‘Live examples’
can be executed by way of a stepping mode, a visieg-by-step execution. Weber and
Brusilovsky (2001) compared the results of learnmith ELM-ART (tested with twenty-
three learners) to the previous results from lemynvith ELM-PE (tested with twenty-eight
learners) and reported that web-based educatigstdras can be as effective as Intelligent
Tutoring Systems. From the feedback of users legrnvith ELM-ART, Weber and
Brusilovsky (2001 p. 378) noted that “the adapteseamples were used not very often,
however, in cases when examples were used thegdwut to be very helpful”. Both ELM-
PE and ELM-ART have addressed one of the limitatiohET by providing learners with

remindingto their solutions to past problems.

32

2.6.1.5 WebEXx

WebEx (Brusilovsky, 2001), is a web-based tool dgploring tutor-explainedorogramming
examples anddopted alissectiormethod (Kelley & Pohl, 1996) of explained exampmssused
in programming textbooksThe exploration strategies differ in the detailstbé textual
explanation of the examples which is sensitive @arder’s current knowledge (Gomez-

Albarran, 2005).

2.6.1.6 Structural Example-based Adaptive Tutoring Systems (SEATYS)

SEATS (Davidovic, Warren et al., 2003) is a systiat teaches JavaScript programming
language by presenting examples side-by-side agtaigihting their structural components
using a colour-coding scheme. This technique lessbe worked-example problem of
mapping by surface features. SEATS provides adaptresentations based on a learner
model. SEATS was tested with 117 learners learreagrsion. The results show that using an
(1) adaptive presentations mechanism with (2) theewiral example-based feature increases
the speed of learning and the learning gains aatgr when compared with the features that
are used alone, (i.e. either the adaptive mechanisimghlighting structural features) or

when both the features are absent.

2.6.1.7 CORT (Code Restructuring Tool)

CORT developed by Garner (2Q03007) supports the completion method of learning
programming.The CORT interface consists of two windows. Whsrélae right window
contains the part-complete program, the left winadawtains lines of code to be used in the part-

complete task. To complete the task, learners meveral lines of code between the windows

33

and rearrange these lines in the right windéte results of initial evaluation of the CORT tool
suggest that there was no difference between CORY raon-CORT learners in the
performance of a final examination. However, theRTOearners took less time to solve

problems and required less help.

2.6.1.8 Bridge

Bridge (Bonar & Cunningham, 1988) is an intelligantorial environment for novice
programmers. Bridge is intended to provide an attive feedback to learners’ programming
activities. Apart from finding and reporting erroBridge also allows learners to talk about
their designs and partial programs via informaluratlanguage dialogues. Fundamental to
Bridge design are programming plans. The studiesavice programmers conducted by
Soloway & Ehrlich (1984) have proved that programgnplans play a crucial role to their
success in program comprehension. Programming lieonnsde abridge between informal
language and programming language code. That igjg®rallows learners to move
successively from informal language descriptionghefsolution through a plan specification

to programming code.

In conclusion, most of the example-based systerasritbed above have been developed for
relatively narrow experimental purposes. Apart frime work of Davidovic, Warren et al.

(2003), it is not clear whether these systems lh@en sufficiently evaluated against broader
learner learning outcomes including transfer. If what is the impact of these systems on

learner learning and problem-solving ability?

34

2.6.2 Cognitive load theory as a basis for the instructional design of a programming

course

Further studies have embedded instructional metdedsed from cognitive load theory in
example-based learning. For instance, van Merri@ntO90b), van Merriénboer and Paas
(1990), van Merriénboer and de Croock (1992) suggdgesompletion tasks tharesent the
learners with worked-example solutions that havédocompleted. The strategy forces the
learners to be more reflective in studying the mptete worked-examples provided in the
completion assignment or else they cannot solve dhpletion tasks correctly (van
Merriénboer, 1990a). Several experiments repotata completion strategy is superior than
a generation strategy (van Merriénho&990b; van Merriénboer & de Croock, 1992).
Chang, Chiao et al. (2000) continued this line egelarch by developing a programming
learning system using a completion strategy invigva template technique. The system was
tested with 45 high school freshman learning theSEA programming language. The
learners were randomly divided into two differemgps, i.e. control group and experimental
group. The results show that the learners in theegmental group who used a completion
strategy performed better than the learners irctimérol group who studied programming by
themselves, especially with respect to the knowdedyapplying statements and designing
programs. Finally, Trafton and Reiser (1993) introed pairing technique, called example-

problem pair that presents learners with an exafotitaved by a matched practice problem.

Within the broader programming education literatw@me studies have used cognitive load
theory as a basis for the instructional design ogbragramming course. For example,
Caspersen and Bennedsen (2007) proposed an imstalalesign for an introductory object-

oriented programming course by adopting severalribg, including cognitive load theory as

35

well as through deploying a well-known strategylezhifaded guidance, proposed by Renkl,
Atkinson et al. (2000) and Renkl, Atkinson et &0@3). Similarly, Gray, Clair et al. (2007)
proposed a fading worked example strategy for fegcan early programming course. Also
Yousoof, Sapiyan et al. (2007) proposed a modemefsuring cognitive load during
programming instruction and this model was useanimntelligent tutoring system to provide
adaptive support for learning programming. On the bandjt remains unclear whether the
proposed mechanisms describe above have been ientffic evaluated against learner
learning outcomes and transfer using valid andhbbédi measures according to the cognitive

load theory.

2.7 Conclusion

This chapter has briefly reviewed the literaturattbovers related interdisciplinary areas of
research from analogical problem solving and tem&f worked-example research, and also
research done in the area of the cognitive loadrthas well as learning styles. The chapter
also presented related work within the domain ofjpgimming education. Lastly, the chapter
presents Table 2.1 that provides a review of woskesimple design and strategy summarised
within the context of instructional principles dexd from the worked-example research

and/or cognitive load theory-inspired research.

36

Table 2.1:Areview of the worked-example design and strategy

Strategy/technique
Structure-emphasising
technique

(Quilici & Mayer, 1996; 2002)
- Statistics

Structural example-based
format

(Davidovic, Warren et al.,
2003) — Programming domain

Learners engage in the proce
of abstracting the structural
features from superficial
features of the examples.

Implication

Structure-emphasizing technique is effective as
“demonstrates to students that a reliance on suf
features does not work” (Quilici & Mayer, 2002 |
339).

Problems of similar structure that share similar
superficial features would help learners in
categorising the problem types, and consequen
assists them in solving the problems by applying
appropriate method (Ross, 1989b), as cited in
sg\tkinson, Derry et al. (2000).

“Superficial features influence the retrieval of
analogous cases in that they determine to a larg
degree what the problem solver perceives as
similar problems” (e.g. Ross, 1987) as cited in
Reimann and Schult (1996 p. 126).

“As students become more able and confident, {
could weaned away from their reliance on
superficial similarities until they are able to
categorize the problems by structural aspects o
(Ross, 1989b p. 464) as quoted by Atkinson, De
et al. (2000).

Promote structure-based schema construction
(Quilici & Mayer, 2002).

Increase GCL.

Worked-example instructional design
itEncourage learners to search for
faommonalities between examples’
).structures through comparison
(VanLehn, 1996; Cummins, 1992; Ross

Warren et al. (2003).
lfJse surface features strategically to
structure (Atkinson, Derry et al. 2000),

Encouragestructural awarenesby
instruction (Quilici & Mayer, 2002).
e

Question arises:

What are the structural features in
henogramming problem solving? In othe
words, what are programmingprd
problem®

nly”

rry

& Kennedy 1990) as cited in Davidovi¢

L

J encourage search for deep conceptual Cons

Effects on learning

Pros

Learners are able to categorize the
problems structurally, likely to solve thg
problems by generalisation, promote
,“structural awareness” therefore
structure-based schema (Quilici &
Mayer, 2002 p. 326).

Can learner perform structural
comparison between examples when
they have lack of basic conceptual
understanding of the domain
knowledge?

Learners do not spontaneously recogn
the problem’s structure.

=

A%

ise

37

Strategy/technique
Completion problem

(van Merriénboer1990b; van
Merriénboer & Paas, 1990; van
Merriénboer & de Croock,
1992; Chang, Chiao et al.,
2000; Garner, 2003; 2007)

- Programming domain

Incomplete solution steps
(Stark, 1999)

These strategies present
learners with worked-example
solutions that have to be
completed.

Implication

Working on problem at the same time as referrin
worked-example results in working-memory
overload. Completion problem provides an
alternative approach to counteract this problem
combining the strong points of both the worked-
example and the conventional problem solving
tasks (Sweller, van Merriénboetral., 1998; van
Merriénboer, Kirschner et al., 2003).

With regard to the construction of new programs
completion group outperformed generation grou
(van Merriénboer, 1990b) in Sweller, van
Merriénboer et al. (1998).

Incomplete example fosters self-explanation, he
the transfer of learned incomplete solution
materials (Stark, 1999) as cited in Renkl, Atkins
et al. (2000).

Learners who received completion strategy
required significant less help and spent less ton
solve problems than learners who have
conventionaprogramming exercise (Garner,
2003).

Decrease ECL and subsequently increase GCL

Worked-example instructional design

gPart of the solution steps left for learng
to complete should be carefully
considered (Sweller, van Merriénboer
bwl., 1998).

Incomplete examples ought to contain
enough clues to guide the learners in

& Paas, 1990) in Garner (2003).

p

D

their completion task (van Merriénboer

Effects on learning
2rBros
Learners are able to reason about the
etelation between solutions steps that a
left out for them to complete.

Promote schema acquisition and trans
performance (Sweller, van Merriénboe
et al., 1998).

Fosters “mindful abstraction” (van
Merriénboer & Paas, 1990 p. 279).

Cons
Not suitable for learners who just
beginning to learn programming.

The technique has not incorporated
dynamic fading component (see Renk
Atkinson et al., 2000).

fer

38

Strategy/technique
Example-problem pairs
(Trafton & Reiser, 1993)
- Programming domain

Example-problem, problem-
example

(Reisslein, Atkinson et al.,
2006)

- Electrical circuit analysis

The technique presents learng
with an example followed by g
matched practice problem.

Implication

“The most efficient way to present material to
acquire a skill is to present an example, and ¢he
similar problem immediately following” (Trafton
& Reiser, 1993).

2I'S
1

nto practice problems (Atkinson, Derry

Worked-example instructional design
To presents examples in close proxim

al., 2000).

Need to consider how examples and
matched practice problems should be
selected and intermixed (Atkinson,
Derry et al., 2000).

etl_earners took less time to solve proble

Effects on learning

tyPros

and produce more accurate solutions
(Trafton & Reiser, 1993).

Learners with low prior knowledge
benefited from example/problem pair.
contrast, learners with high prior
knowledge benefited from
problem/example pair (Reisslein,
Atkinson et al., 2006).

Cons

Abrupt transitions from studying
example in initial stages of cognitive
skill acquisition to solving problems in
later stage (Renkl, Atkinson et al., 200

Fading technique

(Renkl, Atkinson et al., 2000)
- Physics domain

(Renkl, Atkinson et al., 2003)
Mathematics/probability
(Gray, Clair et al., 2007)

- Programming domain

The technique successively
introduces elements of
problem-solving into example
until learners able to solve
problems by themselves (i.e.
complete example-»
increasingly more incomplete
examples— problem) (Renkl,
Atkinson et al., 2000).

Fading technique fosters learning, at least near
transfer performance. This effect mediated by
fewer errors under the fading conditions when

+ compared to traditional method of example-
problem pairs (Renkl, Atkinson et al., 2000).

Decrease ECL.

As a method of fading out the worked-
example solution steps, employ either
backward or forward fading (Renkl,
Atkinson et al., 2000).

Use of fading component that allow for

smooth transition from scaffolded
problem solving to unaided problem
solving (Renkl, Atkinson et al., 2000).

Questions arise:

Which method of fading is more
appropriate for programming domain?

What is the fading component?

Pros
Fading technique foster learning.

Learners likely to produce fewer errors
(Renkl, Atkinson et al., 2000).

Cons

Fading effect is restricted to near
transfer performance (Renkl, Atkinson
al., 2000)

Note: To address this, Renkl, Atkinson
et al. (2003) introduce combined fadin
with the introduction of self-explanatiof

prompts designed to fosters both neart

and far-transfer performance.

m

et

- D

39

Strategy/technique
Modular example format
(Gerjets, Scheiter et a004;
2006)

- Mathematics/Probability

The modular format focuses g
breaking down complex
solutions into smaller
meaningful elements. The
molar format treats complex
solutions as the basic unit tha
cannot be broken down furthe

Implication

This format reduces task-intrinsic, therefore, $re
cognitive resources for germane activities to tak
place, for instance example elaboration (Gerjets
Scheiter et al., 2006).

nDecrease ICL.

=

Worked-example instructional design
e Design an example in such a way that
ebothstructural problem featureand
, solution procedureare treated as

individual unit (Gerjets, Scheiter et al.,

2006).

Effects on learning

Pros

Structural problem features and
solutions procedures that are broken
down into smaller meaningful units car
be easily conveyed separately thus
enhance learning (Gerjets, Scheiter et
al., 2006).

Subgoal learning
(Catrambone 1998; Atkinson &
Catrambone, 2000)

- Statistics

“A subgoal denotes a
meaningful conceptual piece
an overall solution procedure”
(Atkinson & Catrambone,
2000).

Examples that are labelled or segmented will
induce learners to self-explain why/how the stef
go together, that is, to describe the purposespfss
(Catrambone, 1998; Atkinson & Catrambone,

2000)

pfFoster “generalizations across problems in a
domain” (Atkinson & Catrambone, 2000).

Facilitate transfer.

Example should highlight a problem’s
ssubgoal structure using structural
t manipulations, such as either the use
solution step labels or visually isolating
parts of example (Atkinson &
Catrambone, 2000).

Pros
Able to reason about why/how the stej

) 2000).

Foster generalisation, learners able to
solve novel problem thus likely to

increase transfer performance (Atkinsg
& Catrambone, 2000).

ofvork together (Atkinson & Catrambone

N

DS

N

40

Implication

Worked-example instructional design

Effects on learning

Strategy/technique

Multiple representations (or
multiple solutions) to worked
example

(GroRe & Renkl, 2006)

— Mathematics/Combinatorics

and probability

Multiple example

(Scheiter, Gerjets & Schuh,
2004; Scheiter & Gerjets,
2005).

- Statistics

D

Learning from multiple solution methods can ca
cognitive overload as learners has to mentally
integrate information from disparate sources
(GroRe & Renkl, 2006) — a phenomenon known
split attention effect (Tarmizi & Sweller, 1988).

Moreover, this technique results in redundancy

effect (Sweller, van Merriénboer et al., 1998) as
structural features of every example is repeated
presented within a problem category (Scheiter &
Gerjets, 2005).

Multiple representations (or multiple solutions) g
worked-examples do not necessarily have posit
effects on learning (see de Jong, Ainsworth,
Dobson, van Der Hulst, Levonen & Reimann,
1998) as learners do not spontaneously distingu
interrelations between different representations
(Van Someren, Boshuizen, de Jong & Reimann,
1998), as cited in GrolRe and Renkl (2006).

Multiple solution methods can foster learning, b
do not necessarily do so. Multiple solutions
decrease anticipation and even distract learners
from noticing coherence between them (Grol3e
Renkl, 2006).

Multiple examples may be helpful for schema
acquisition if learners studied the examples

thoroughly and when they are guided to compare

examples (Scheiter & Gjets, 2005; Scheiter,
Gerijets et al., 2004)

LSHith respect to worked example desig
three factors should be taken into
consideration, since these factors mig

asfluence learning from multiple
solutions, i.e. theontext condition
under which learning from multiple
solutions are effective, different kinds
multiplicity, and thdearning goals

[W(Grol3e & Renkl, 2006).

{
Encourage learners to compare multip
solutions in order to optimise learning

f potential and by prompting self-

vexplanations (Grol3e & Renkl, 2006).

Requires optimal learning conditions
igBcheiter & Gerjets, 23; Scheiter,
Gerjets et al., 2004).

Question arises:

To what extent this strategy effect
Iltschema acquisition and transfer?

KO

nPros

Foster the process of abstraction and
higeneralisation (Ainsworth, 2006) as
cited in GroRRe and Renkl (2006).

Cons

piCan learner perform example
comparison when they have lack of
basic conceptual understanding of the
domain knowledge?

le
Examples comparison can cause
cognitive overload, i.e. split attention
effect (Tarmizi & Sweller, 1988) and
redundancy effect (Sweller, van
Merriénboer et al., 1998).

Learners do not spontaneously spot th
interrelations between multiple
examples (Van Someren, Boshuizen €
al., 1998), as cited in Grol3e and Renk
(2006).

Decrease learners’ anticipation (Grof3e
Renkl, 2006).

Requires optimal learning condition
(Scheiter & Gejets, 2005; Scheiter,
Gerjets et al., 2004).

41

Comparing multiple examples within a problem
category foster two processes of abstraction (i.€.
identify commonalities and differences between
example) - (Scheiter & Ggets, 2005; Scheiter,
Gerjets et al., 2004).

It should be noted that this technique do not
necessary contributes to schema acquisition
(Scheiter, Gerjets et al., 2004).

42

Chapter 3 Research questions and hypotheses

3.1 Introduction

Previous evidence in the area of learning styleearch has discovered, among other things
that (1) learners differ in the ways they perceane process information, as well as respond
to and interact with their learning environment ¢f& 1979) in Felder and Spurlin (2005);
(2) learners with low working memory capacity teodorefer an active style of learning, on
the other hand, learners with high working memapacity tend to prefer a reflective style
of learning (Graf, Lin et al., 2008); (3) refleaivearners perform better than active learners
in an introductory computer science course anarg@rogramming performance (e.g. Allert,
2004; Thomas, Ratcliffe et al., 2002; Chamillardk&rolick, 1999; van Merriénboer, 1988);
and (4) there is an unclear relationship betwedeation/impulsivity and teaching methods

(van Merriénboer, 2009)

In this chapter, we describe an exploratory pitadg to explore the context and factors in
which learners make use of worked-examfpte&ing into account learners’ learning styles.
The chapter begins with a discussion of the pitatdg Next, the chapter notes problems
associated with learning from example programsas/ed from the findings of the pilot
study as well as drawn from the literature. It theskes suggestions with regard to the design
of a worked-example strategy and finally concludéth the research questions along with

research hypotheses explored in the body of tlesish

! Personal communication, 14/11/2009
2 Also referred to as an example or an example pragn this pilot study

43

3.2 An exploratory pilot study

The pilot study was carried out at the Faculty ainfputer Science and Information
Technology, University of Malaya from the 28th ofyto the 4th of August 2008. The pilot
study was designed with the intent to uncover tiwing issues for later investigation.
These included but were not limited to the follogrin(1) to identify the contextual and other
factors that influence learners’ use of exampleg@ms, i.e. from learning via examples to
solving a programming task, more specifically (@)understand learners’ behaviour within
such a context and the consequence of this behlramotheir programming problem solving,
taking into account individual learning styles, {8)gain some insight into various aspects of
learners’ possible difficulties in learning via exple programs, and as a final point, (4) to
gain experience of the target population, espgcialirners who were characterised as active

or reflective. Specifically, the pilot study wasnclucted to explore the following hypothesis:

HAL Learners make little use of available examplegmms. However, for those who make
better use of example programs, then there isaa obéationship between individual learning

style and the way they approach solving a progrargrtask.

3.2.1 Method

3.2.1.1 Learning style inventory

The Index of Learning Styles (ILS) inventory (Feld& Soloman, n.d.), available at

http://www.ncsu.edu/felder-public/ILSpage.htmtecently accessed on 19/8/2011, was

administered to the participants so as to evalineie individual learning style preferences.

44

3.2.1.2 Participants

The pilot study involved 22 undergraduate studethts, majority of whom were first year

undergraduate students undertaking the WXES111dseqProgramming 1) in Semester 1
(2008/2009) and who had no prior programming bamlgd. A small number of students
repeating the course in that semester were algsicipants. The participants were given
RM10 as an incentive for taking part in this pitaidy. A total of 22 participants responded
to the ILS questionnairélean= -.73,SD = 4.15). Table 3.1 shows the statistical datatier

ILS scores.

Table 3.1: Frequency for the ILS scores

ILS scores Frequency Percent

-7 1 4.5
-5 4 18.2
-3 7 31.8
-1 1 4.5
1 2 9.1
3 4 18.2
5 1 4.5
7 2 9.1
Total 22 100.0

Figure 3.1 shows the distribution of ILS scores tfeg Active/Reflective dimension, which

was slightly skewed toward the Active end of thatoauum.

45

Histogram

Mean =-0.73
Std. Dev. =4.154
N =22

Frequency

ILS score

Figure 3.1: Distribution of preferences for Active (left endRéflective (right end) on the ILS
dimension

Table 3.2 shows the preferences of the studentsée categories: moderate to strong active
(scores from -5 to -11), moderate to strong reflec{scores from 5 to 11), as well as
balanced (scores from +3 to -3). These data wengpaced with the results compiled by
Felder and Spurlin (2005) from the past studies waitd that of the work done by Graf,
Viola, Kinshuk and Leo (2006). The data from thibtpstudy were consistent with those
obtained in the past studies. This indicates tlnt $ample data of this study was

representative.

Table 3.2: Preferences for learning styles on the Active/gaiVe dimension of the ILS

Moderate to strong

Moderate to strong

Balanced)
reflective

active

This study (n = 22) 22.7% 63.6% 13.6%
A (n = 183) 24% 61% 15%
B (n = 207) 24% 61% 15%
C (n=87) 27% 58% 15%

Note: A (Felder & Spurlin, 2005); B (Graf, Viola &k, 2006); C (Felder & Spurlin, 2005)

46

3.2.1.3 Procedure

Each participant was given a description of thetmtudy and asked to sign a consent form.
The study consisted of programming tasks to beesbin Java. For the purpose of the study,
the tasks were designed around the topics of th®M@d DIV operators. These tasks were
concerned with the three main program developniages: designing a solution, coding the

solution, and finally debugging and/or executing finogram solution.

The participants were given 3 problem sheets jfregramming tasks) and they could start
working with any of the problems, in no particutader. Each problem sheet consisted of a
description of the problem to be solved and a blspéce for them to write their solution.
These tasks were accompanied with a booklet of pleaprograms that illustrated the use of
MOD and DIV operators. One of the example progravas directly related to the program
modification task, i.e. Task 3, see Figure 3.2. eskhtasks involved the use of a Java

development editor.

Some of the early participants who took part is fhiiot study received a booklet consisting
of 5 example programs, two of which included a CAS&tement. However, one of the
example programs written with a CASE statement t@mde changed to an IF/ELSE
statement while the other one was simply excludenhfthe booklet after the experimenter
has been informed that the majority of the partioig have yet to learn the CASE statement.
So, for the later participants, the booklet comsisif 4 program examples, all written with an
IF/ELSE statement. This oversight, however, did afdéct the analysis of the data as the
main goal of this study was to observe the extenthich the participants were able to use

MOD and DIV operators in solving the programmingkis

47

1. Towrite a program that calculates a change due and deteimow many RM notes (i.¢
RM1, RM5, or RM10) a customer should recéive

N4

2. Towrite a program that converts 24 hour format into theiedent time in AM/PM.

3. To amenda program (i.e. example program 4 in the bookled} will assign a “+” o
“~* sign after a letter grade, based on the lagit dif scores. For example 98 is A+ ahd
that 93 is A%,

Figure 3.2: The programming tasks

Time-on-task was not strictly controlled. Howevae tparticipants were told to finish the
three problem sheets within a time frame of 50 t@swr so. The experimenter encouraged
participants to attempt all three tasks. The expenier observed the participants solving the
tasks and took notes about what they did and Wiest said. Screen video captlveas used

to record the coding activity.

As we employed a semi-structured observationalysttlte participants were merely told
about the booklet for them to look at and the oV¢irae given to solve the tasks, however
they were not informed about how to approach sgharprogramming task (i.e. step-by-step
approach to program development and coding). Theereéxent took approximately 50
minutes (per participant). Finally, the participantere asked to complete the ILS online

guestionnaire (i.e. after each individual session).

% Unknown source

* Problem taken from Practical C programming by Gue| Steve, 8 Edition, O'Reilly (1997)

® Freez screen video capture, availablettt://www.smallvideosoft.com/screen-video-captifretently
accessed on 20/8/2011).

48

3.2.1.4 Coding observational data

Table 3.4 presents the coding scheme, consistidg chtegories (i.e. A1-A4, B1-B6, and so
on) for noting and analysing the observational d&tate that, categories Al-A4 were
obtained from the study conducted by Chi, Bassa{.€t1989), where these were the factors
observed in their study on how learners study aselaxamples while they solve problems.
Note also that category C2 was obtained from thystonducted by Neal (1989). The
coding scheme was indirectly drew on the study ootetl by Garner (2007) who identified
five distinct levels of cognitive strategy in retat to the usage of the CORT system to
support learning programming. The coding scheme gidsluded observational behaviour
data directly relevant to this pilot study, e.gpgdines of code from an example program to
an editor and execute it to check the output. Inegal, the recording and coding process
involved three distinct steps:
1. Assign a category (i.e. Al, or B2, etc.) to eadrpiof data observed (with reference
to the coding scheme described below).
2. Calculate number of times such a category occured recurrence rate) within
specified period of time (i.e. 50 minutes).
3. Based on the calculated recurrence rate, assigreafis value, see Table 3.3. The
values, as described in the table are then usadalysis of correlation to investigate

a relationship between the factors assessed andgciy@s.

Table 3.3:4-point rating scale for observational data analys

Rate of recurrence #Values

Never 0 1
Rarely (i.e. hardly ever) 1-3 2
Occasionally (i.e. sometimes) 4-6 3
Frequently >=7 4

Note? the values and their associated meaning are ® iooal ordinal variables

49

Table

Coding categories
What the learner do with the example programs
Al: Look at example programs superficially (on thg
surface).

3.4:Coding categories and scheme for analysing obenzh data

Coding scheme

2 Scan or glance through example programs.

A2: Refer or read example programs with
understanding / self-explain example programs.

Shows some evidence of carefully read, study, affeegplain example program(s):
- Study the algorithm and look at the output (i.engke run) of example program(s).
- Copy lines of code from an example program to atoednd execute it to check the output.
- Compare between example programs.
- Compare a program solution with an example proggams to determine how the program should exearieUtput
should be displayed.

A3: Refer or read example programs as gearch
for a solution

Shows some evidence of thoughtless approach (spemia):
- Choose example program(s) in arbitrary manner.
- Refer to incorrect/dissimilar example program(s).
- Partially read example program(s) / re-read examppigram(s).
- Indicates some evidence attemptingto solve algorithm though an example program reteto is incorrect/dissimilar.
- Indicates some evidence of failing to apply analsgexample program’s algorithm.
- Asif searching for clues (surface features, ireet convert, and currency).

A4: Refer to an example program asocarce of
specific reference

Shows some evidenaé thoughtful approach (on purpose):
- Thoughtfully choose example program(s).
- Refer to analogous example program(s).
- Carefully read example program(s).
- For algorithmic guidelines.
- For syntax guidelines.
- For semantic guidelines (meaning of example program
- For structural guidelines (related to task / pragraquirement especially for Task 3; program stmect language
construct i.e. placement of code, varialeglelaration).

Point at which the learner make use of example prograis

B1: Before attempting the tasks to reflect on wthatlearner have learned. - Related to A2

- Todebug a program solution.

B2: Understanding the programming problem / prol

blepresentation. - Related to A2, A4

B3: Designing ¢program solutio.

- Related to A

B4: Coding a program solution.

B5: Debugging a program solution.

- Related to A4, C1, C2, C3

How example programs are used

B6: After executing a program for checking solution - Related to A2, C4

C1: As anmplementatiorof algorithm / arattemptto solve algorithm. - Related to A4 (i.e. impleraion), A3 (i.e. an attempt)

C2: To prompt / hint at syntactic, semantic (N&éaB9
specification, program structure (or langeiagns

), program - Related to A4, B3, B4, B5, C3
truct).

C3: To debug errors.

- Related to A4, B5, C2

C4: To check solution.

- To test a program solution / an example prograto compare a program solution with an
example program so as to determine how the pnogmution should execute / an output should be
displayed.

- Related to A2, B6

50

3.2.2 Results

In this section, the results of the pilot study presented. The section starts with the results

of a correlation analysis between learning stylel éine factors assessed, followed by

programming tasks performance, and lastly, a sumofasbservations of the participants.

Table 3.5 summarises the results, representednrstef mearfrequencyper participantin

which the factors assessed in the pilot study @eduiior a given time period, i.e. 50 minutes.

Note the lists of factors that influence the usexdample programs.

Table 3.5: Factors assessed (that influence the use of dggmpgrams) in the pilot study

(n=22)

Mean SD
What the learner do with the example programs (Chi, Bassok et al., 1989)
Al: Look at example programs superficially (on sueface) 3.27 2.27
A2: Refer or read example programs with understapdself-explain 1.77 2.71
example programs
A3: Refer or read example programs as #éarch for a solution 5.00 6.64
A4: Refer to an example program ascairce of specific reference 6.68 6.13
Paint at which the learner make use of example programs
B1: Before attempting the tasks to reflect on vthatlearner have learned 0.82 1.92
B2: Understanding the programming problem / problepresentation 2.32 2.01
B3: Designing a program solution 1.64 3.76
B4: Coding a program solution 7.09 6.74
B5: Debugging a program solution 1.64 1.99
B6: After executing a program for checking solution 0.14 0.35
How example programs are used
C1: As anmplementatiorof algorithm / arattemptto solve algorithm 6.45 6.54
C2: To prompt / hint at syntactic, semantic (N&889), program 4.41 4.59
specification, program structure (or language coiest
C3: To debug errors 1.18 1.89
C4: To check solution 0.55 1.79

51

3.2.2.1 Correlation analysis

This section presents the results of the correlatioalysis between ILS scores and factors
that influence the use of example programs. Whereladed with learning style scores, most
of the factors assessed were not highly correlatély one factor, C1 showed negative
correlation, and that was very weak and not sigaifi. Table 3.6 shows the five highest

positive correlations, indicated by a significantalue of small to medium.

Table 3.6: Results of the correlations between learning sgteres and the factors

rho)
What the learner do with the example programs.
A2: Refer or read example programs with understaptiself-explain o8 0.21
example programs. ' '
A4: Refer to an example programs asoarce of specific reference 40 0.06
Point at which the learner make use of example programs:
B1: Before attempting the tasks to reflect on whatlearner have

learned. AT 0.03
How example programs are used:
C2: To prompt / hint at syntactic, semantic (N&8B9), program 37 0.10

specification, program structure (or language qoobt
C3: To debug errors. .28 0.20
Note: Correlation is significant at the 0.05 le{2itailed) and highlighted in bold.

As shown in Table 3.6, as might be expected, thelteshow moderate correlations between
Bl (also A4) and learning style scores. The twalifigs, with respect to the B1 and A4

factors will be further discussed in the followipgragraphs. On the other hand, the results
show weak correlations between A2, C3 and learsiyig scores; and a moderate correlation

for C2. These were not statistically significaneda the small sample size.

There was a positive correlation between B1 andedmning style scores, (rho (22) = 0.47,

= 0.03). This correlation indicates that the martective learners tended to reflect on the

example programs given before starting the tasks.

52

Similarly, there was a positive correlation betwéehand the learning style scores, though
not significant, (rho (22) = 0.40). This correlationdicates that the more reflective learners
tended to refer to the example programs as a saidirsgecific reference. In agreement with
the past evidence, (Keefe, 1979) in Felder and IBp(#005), the results of the correlation

analysis show a link between learning styles amdwhy learners approach a task, in this

pilot study’s case, solving a programming task.

Note that we have conducted multiple tests usinga8pan’'s rho for investigating
correlations between the ILS scores and severandizmt variables (i.e. factors). This may
have caused a Type 2 error to occur — getting rafsignt result by chance. To minimise the
possibility of reaching a wrong conclusion, we uaedunadjusted alpha valuepat .05 and
considered it to be significant if an effect sirachedat leasta small to medium effect (e.g.
.25 to .30). A non-significant result merely indes a trend if the result reached at least the
minimum criteria of an effect size. Finally, th#Al hypothesis was somewhat supported.
Nevertheless, this hypothesis remains tentative tduthe small sample size. Thus further

investigation is clearly called for.

3.2.2.2 Programming tasks performance

The task scores were determined by a set of @i{ge. marking scheme) as described in

Table 3.7 An example of a marking scheme for Task 2 was kk®ne:

53

Table 3.7:Marking scheme for Task 2

Criteria Points

Input 1
Use of MOD and DIV operators 2
Selection statement (i.e. IF/ELSE statement) 2
Total points that could be earned 5

Note: Points varies depending on the accuracy sfvangiven. The selection statement was also cduntthe
score for it was an essential element of the smiuti

Table 3.8 and Table 3.9 show the participants’ @ogning task scores for those whose
learning style preference were either moderateradigcores from -5 to -7) or moderate-
reflective (scores from 5 to 7). In general, thfleative participants scored better in the
programming tasks than the active participants,thisdwas broadly consistent with the past
evidence, (e.g. Allert, 2004; Thomas, Ratcliffeabt 2002; Chamillard & Karolick, 1999;

van Merriénboer, 1988).

Table 3.8: Results of programming task performance (actiaeners)

Name (not ILS Scoreon| Time Scoreon Time Scoreon Time
areal score Task1l | spenton Task2 spenton Task3 spenton
name) Task 1 Task 2 Task 3

Maziah -7 15 25 1 25

Rohana -5 2 20 3 30

Brian -5 2.5 33 1 14 3 3
Aziz -5 2.5 15 4 35
Izlan -5 3 21 1 15 3.5 14
Mean 2.3 22.8 15 21 35 17.3

1 Indicates that participant failed tteaipt the task due to the time constraint. Prograngniask scores
(0-5). Time spent in minutes.

Table 3.9:Results of programming task performance (refleckarners)

Name (not ILS Scoreon Time Score on Time Scoreon| Time
a real score Task 1l spenton| Task2 | spenton Task3 | spenton
name) Task 1 Task 2 Task 3

Lillian 5 5 29 1 21

Peter 7 5 12 1 23 5 15
Cindy 7 5 16 0.5 12 4 16
Mean 5 19 0.83 18.7 4.5 155

1 Indicates that participant failed tteaipt the task due to the time constraint. Prograngniask scores
(0-5). Time spent in minutes.

54

3.2.2.3 Observation of the participants

This section presents a selection of the obsematimade of the participants while they were
working and is also derivefdom the interviews held after they had finished.
e Lillian did not study and self-explain example prags prior to solving the
programming tasks. She could not find any simiksitbetween the example

programs and the to-be-solved tasks.

* Peter did not self-explain example programs. Hg dked at the example programs
superficially (on one occasion) prior to solvingpgramming tasks. He found that the

example programs were not very useful.

* lIzlan has previous programming background (C grade)

* Cindy studied and self-explained example programsr jo solving programming

tasks. She found that the example programs wesehadpful.

« Almost all the participants seemed to refer to #weample programs rather
superficially (as reported by Ross, 1987) in orttesolve the programming tasks.
More specifically, they referred to the surfacetdeas of the example programs
without being able to recognise the common strattieatures between the
programming tasks and the example programs (i.e.uke of MOD and DIV

operators).

* Some participants said that they knew that onewar éxample programs in the

booklet might aid them in solving the programmirgks. However they failed to

55

relate the tasks given to the example programsth&liparticipants (except one who
failed to recall them) had learnt the MOD and DIpecators in class and in one of the
lab assignments which required the use of theseatips. Indeed, all of the example

programs illustrated the use of these operatotgobiitle effect.

* Almost all the participants spent little time raaglior self-explaining the example
programs. Some of the participants used the exapiplgrams as a reference, while
the rest of the participants relied heavily on ¢éixample programs as if looking for a
solution (as reported by Chi, Bassok et al., 1988)e participant self-explained an
example program (by copying the program to theoedéditing it, and running it) and
tried to understand the algorithm, but failed t@lagise, especially with regards to

the use of MOD and DIV operators.

* Some of the participants preferred not to lookhat éxample programs, the reason
being that they wanted to explore and learn mothout having to depend too much
on the example programs. One participant believed he could solve the tasks

without even looking at the example programs.

3.3 Planning for the main experiment

In this section, we identify various aspects ofrieas’ difficulties in learning via example
programs, derived from the findings of the pilaidst as well as drawn from the literature,

see Figure 3.3 below.

56

» Failed toanalogies (see Ross,
1987) between the example
programs and the tasks.

* Referred to the surface
features (Ross, 1987) of
the example programs
to solve the tasks.

* Jllusion of understanding
(Renkl, 1999)

* Referred to the example
programs as if to search for a
solution, as reported by Chi et

* Could not benefit from the
example programs to solve
the tasks, 1.e. use of the

Analogical Use of example programs in 2

suboptimal way, touse

problem example Remaes il (000
solving programs

N\
\—/

Others

* Active learners spent
little time reflecting (or

explaining) the example
programs prior to solving
the tasks.

al. (1989)

Figure 3.3: The difficulties inherent in learning via exampl@grams

In developing the materials and hypotheses forrtiaén experiment, we focused on the
instructional principles from the worked-exampleaarch (Atkinson, Derry et al., 2000), by

incorporating their three moderating factors ifte tlesign of worked-example strategy.

More specifically, we addressed the above issupvifl intra-example features (how the
worked-example is designed), i.e. the incompleteoéshe worked-example solution, (2) via
inter-example features (how the worked-examplessarpienced), i.e. providing example-
problem pairs and/or variability of surface featuvathin a problem category, and finally (3)

via prompting to self-explain the worked-example.

We concluded that the Structure-emphasising stygt@gilici & Mayer, 1996; 2002) and the
Completion strategy (van Merriénboer, 1990b; vanrrMaboer & Paas, 1990; van

Merriénboer & de Croock 1992) were the two mostcpcal strategies for incorporating the

57

three moderating factors into the design of a wirkeample strategy, see Table 2.1 in
Chapter 2 for an overview of the two strategies. pitgposed a Paired-method strategy that
combines a Structure-emphasising strategy with engletion strategy to implement the
example-problem pair (Trafton & Reiser, 1993) whamed at helping active learners gain
more benefit from being exposed to worked-examplehile at the same time not

disadvantaging reflective learners.

The paragraphs that follow briefly discuss the raxtdons between the worked-example
strategy and learning styles (and working memorpacay) to justify the proposed
preferential model in predicting outcomes as opgdeehe compensatory model. There are

three main strands to the argument.

1. Effective design of a worked-example strategy doefsin itself guarantee positive
learning outcomes (see Atkinson & Renkl, 2007). Woeked-example strategy is an
instructional strategy that requires learners tatiValy process the examples”
(Atkinson & Renkl, 2007 p. 378) and requires “miniddbstraction” from the learners
(Paas & van Merriénboer, 1990 p. 279). The beéfihe worked-example, strategy
however, also depends on the learner's willingnessexpend serious effort on
understanding the worked-examples (Paas, Tuovinen, Merriénboer & Darabi,
2005). Nevertheless, it is worth noting that, imgm®l, a strategy based on worked-
examples is not necessarily suited for active k@ nResearch in the area of learning
styles indicates that active learners learntiyyng things outand prefer working
dynamically and in a group (Felder & Spurlin, 2006)us learning via a worked-

example strategy can be inferior for active leasreey they may become overwhelmed

58

by the strategy. In contrast, reflective learmedit from studying worked-examples
as they learn byhinking things throughto use Felder and Spurlin’s (2005) phrase.
Indeed, as Atkinson and Renkl (2007 p. 377) arduethe way in which learners’
study and process examples has a dramatic impashether learning occurs”. Note
that van Merriénboer’'s (1990a) studies found littlgpport for the idea that the
negative effects of impulsivity (a feature of aetiearners) could be compensated by
an instructional strategy which emphasised progmpletion (as described in

Chapter 2, section 2.5.2).

. To summarise the main issue, we argued that legstyle is a factor in determining
whether learners benefit from studying worked-exi@spThis is consistent with
Graf, Lin et al.’s (2008) view on thadirect relationshipbetween learning styles and
working memory capacity. While reflective learnexsth high working memory

capacity benefit from studying worked-examplesjvactearners with low working

memory capacity do not - for they may become ovetmied by the strategy, and
accordingly may experience cognitive overload. Mg, instructional design based
on cognitive load theory argues for the careflaaiion of working memory capacity
to encourage more effective schema constructioref8wy van Merriénboer, & Paas,

1998).

. The proposed Paired-method strategy is expectethdderate worked-example

effectivenessfor active learners, while not disadvantagingeetilve learners. In the
Structure-emphasising strategy, it is argued thss reflective activity is required as

learners are guided through explanation activityri®ans of self-explanation prompts

59

and hints. In other words, extraneous cognitivadlas expected to decrease as
learners’ attention is directed to processing eldmeelevant to schema acquisition.
In the Completion strategy, learners are given tpportunity to apply their
knowledge into practise. Similarly, it is arguedttkess reflective activity is needed in
solving a completion task - attributable to theldeative knowledge acquired from
studying the worked-example using the Structurefemsing strategy. Accordingly,
extraneous cognitive load is expected to decreasthek and more cognitive
resources can be allocated for actual learningndJsihe Paired-method strategy,
extraneous cognitive load is expected to drasyiccrease when compared to either
of the single strategies on their own. Consequemtigre effort can be invested in
processes germane to the learning activity. The okapter (i.e. Chapter 4) deals
with the detail designed of the Paired-method sgmat its theoretical assumptions as

well as the rationale for the design of the strateg

In conclusion, the expectation was that activenee would engage well with the Paired-
method strategy of interacting with the worked-epbes and would show learning gains
approaching those of reflective learners usingshme strategy. Active learners would be
expected to do worse than reflective learners vengrosed only to a single strategy of using
worked-examples. Finally reflective learners using Paired-method strategy would show
learning gains slightly better than reflective heens using either of the single strategies on

their own.

60

3.4 Research questions and hypotheses

The findings from the pilot study and the previaesearch discussed above suggested
several interesting research questions. Specifictilis research was driven by the following
guestions: To what extent does the design of wedsinple strategy foster schema
acquisition and transfer? Are they mediated bywvildial learning style? Perhaps, one of the
most important aspects to explore is the interacbetween learning style and learners’
cognitive load. Finally, the underlying issue idyat/difference does the learning via worked-
examples strategy make to the quality of the cogngchemata acquired and to the transfer

of programing problem solving skills?

To answer the research questions, the researcistigated any differential effects of the
different worked-example strategies on the learnprgcess and outcomes(including

transfer) as well as on the cognitive load thatuoaturing learning, taking into account
learners’ learning styles. The research also inyatstd the relationship between learning

styles and learners’ working memory capacity.

With regard to the differential effects of the difént worked-example strategies, the research

investigated the following predictions:

61

3.4.1 The H1 hypothesis

Given the same amount of time on task with simiiatructional content, it was hypothesised
that the Paired-method strategy would lead to b&aning than with either the Structure-

emphasising strategy or the Completion strateggealdlo prediction was made with regard
to the direct comparison between the Structure-asiping strategy and the Completion

strategy.

3.4.2 The H2 hypothesis

The Paired-method strategy would lead to better aed far transfer performance than with
either the Structure-emphasising strategy or th@@etion strategy alone. No prediction was
made with regard to the direct comparison betwéenStructure-emphasising strategy and

the Completion strategy.

With regard to learning styles, the research ingastd the following prediction: given the
same amount of time on task with similar instrucéibcontent, it was hypothesised that the
Paired-method strategy would lead to better legrar active learners and that reflective
learners would do no worse than with either theu@trre-emphasising strategy or the
Completion strategy alone. The subsequent segti@sent the specific research hypotheses

that were addressed. Table 3.10 summarises thes¢hieges.

® In terms of the learningrocess(i.e. higher effort and lower difficulty)

62

3.4.3 The H3 hypothesis

It was hypothesised that the effectiveness of lagrfrom worked-examples is very much
dependent on individual learning styles. This agstion was made based on the work of
Graf, Lin et al. (2008) who identified the relatsbip between working memory and learning
styles. In particular, learners with high workinggmmory capacity tend to prefer a reflective
learning style. On the contrary, learners with Marking memory capacity tend to prefer an

active learning style.

3.4.4 The H4 hypothesis

It was expected that reflective learners who haigh hworking memory capacity would
perceive their effort (source of germane cognitoad) and difficulty (source of extraneous
cognitive load) as high and low respectively, withth the Structure-emphasising strategy
and with the Completion strategy. The reason bé#iag, these strategies provide reflective
learners with more opportunity fahinking things throughto use Felder and Spurlin’s

(2005) phrase, thus these instructional formateHeetive for this type of learner.

By contrast, it was expected that active learnene Wwave low working memory capacity
would perceive their effort and difficulty as lowndh high respectively, with both the
Structure-emphasising strategy and with the Congplestrategy. This is because these
strategies forced active learners into an uncormdjemiore reflective style of learning. Neither
format provides an opportunity for active learneéos work with the learning material
dynamically bytrying things out again to use Felder and Spurlin’'s (2005) phratce

these instructional formats are ineffective fosttype of learner.

63

However, it was expected that reflective learneasildl show no difference with respect to
their perceived effort and difficulty with the Pad-method strategy. Also, it was expected
that active learners would perceive their effortl afficulty just about or equally high and

low respectively, with the Paired-method stratetge Ireflective learners. Therefore the

Paired-method strategy would be effective for aattive and reflective learners.

3.4.5 The H5 hypothesis

There should be relative merits concerning near fandransfer performance of the three
worked-example strategy conditions with differeearhing style categories. In particular,
active learners would show worse near and far teaqerformance than reflective learners,
in both the Structure-emphasising strategy andCibrapletion strategy. In the Paired-method
strategy, reflective learners would show just gliglbetter or equal near and far transfer
performance as compared to their reflective copargs in the other two strategies. By
contrast, active learners would show just abouéqual near and far transfer performance

like reflective learners.

64

The H3 hypothesis

Individual learning styles.

High working memory capacity, learners
tend to prefer a reflective learning style.

The H4 hypothesis

Table 3.10:Research hypotheses

Low working memory capacity, learners teng
to prefer an active learning style.

Difficulty ratings and effort ratings for differetgpes of load, namely ECL and GCL,

respectively.
Structure-emphasising

Completion strategy

Paired-method strategy

Structure-emphasising

Completion strategy

strategy
Reflective Active Reflective Active Reflective Acd
No difference
with respect to Just about or
Effort as Effort as effort and equally high
. Effort as low | . Effort as low | difficulty as
high i high i effort and
2. Difficulty as o Difficulty as | compared to e
Difficulty as . Difficulty as . . . | low difficulty
high. high. their reflective| |. :
low. low. like reflective
counterparts I
. earners.
in the other
two groups.

The H5 hypothesis
Near and far transfer performance

Paired-method strategy

strategy
Reflective Active Reflective Active Reflective Act
Just slightly
T e org st bt o
Better near | Worse near | Better near | Worse near | -0 equal near
far transfer to
and far and far and far and far and far
those of .
transfer. transfer. transfer. transfer.) transfer like
reflective ;
reflective
counterparts learners
in the other)
two groups.

Note: ECL = Extraneous cognitive load; GCL = Germangnitive load

65

3.5 Conclusion

This chapter has briefly discussed the pilot stilndy explored learners’ difficulty in learning
via example programs and the roles that examplgranos and learning styles might play. It
has also investigated the interaction between ilegrstyles and individual problem solving

in a programming task and tested a hypothesis, Iyathat learners make _little use of

available example programs. However, for those whonake better use of example

programs, then there is a clear relationship betweaeindividual learning style and the

way they approach solving a programming taskvas somewhat supported. This found that

learning style is a factor in determining whethearhers benefit from studying worked-

examples.

66

Chapter4 LECSES

4.1 Introduction

In employing worked-examplésto teach programming effectively to both actived an
reflective learners, the research proposed a weekadhple strategy, called a Paired-method
that combines a Structure-emphasising strategy witiCompletion strategyStructure-
emphasisingto use Quilici and Mayer’s (2002) phrase is ttiategy that requires learners to
explain the examples’ underlying plan structurdse Tompletion strategy requires learners
to complete the example’s solution where some efdhbde is missing (van Merriénboer,
1990b; van Merriénboer & Paas, 1990; van Merriénldele Croock 1992). This chapter
starts with a brief introduction of the proposedr&&method strategy. Then, the chapter
presents a discussion of the theoretical assung#nd rationale for the design of the Paired-
method strategy, followed by related work undeudythe interface design. Next, the chapter
briefly discusses the LECSES development environntei types of web-based interfaces
supporting Structure-emphasising and Completioratesgies, the LECSES editor, the

LECSES administrator module, and finally the coeus.

4.2 The paired-method strategy
Table 4.1 describes the principles underlying thsigh of the Paired-method strategy. A
central notion is the instructional principles froine worked-example research (see Atkinson,

Derry et al. 2000).

! Also referred to as an example or an example propparticularly when describing the interactiovoived as
the learner engages in learning with LECSES (eetisn 4.3.2)

67

Table 4.1: A summary of the

design of the Paired-method gate

Worked-example strategies

Instructional principles from
the worked-example research
(Atkinson et al., 2000)

Structure-emphasising strategy
(Quilici et al., 1996; 2002)

Completion strategy
(van Merriénboer, 1990b; van
Merriénboer et al., 1992)

Paired-method strategy

Intra-example features

Promote “structural awareness”
(Quiilici et al., 2002 p. 326) via
emphasising programming plan
structures in an example solution,
hence self-explanation can be
readily encouraged.

Incompleteness of programming
plan structures, embedded in an
example solution.

Complement the intra-example
features of the Structure-
emphasising strategy and the
Completion strategy.

"Inter-example features

Variability of surface features
within a problem category (Quilici
et al., 1996; 2002; Gerjets et al.,
2008). That is, presenting sequeng

of worked-example using the same of worked-example using the samé

Structure-emphasising strategy
format.

Variability of surface features
within a problem category (Quilici
et al., 1996; 2002; Gerjets et al.,

€008). That is, presenting sequenc¢e€008). That is, presenting a
b structure-emphasising worked-

Completion strategy format.

Variability of surface features
within a problem category (Quilici
et al., 1996; 2002; Gerjets et al.,

example followed by a matched

problem that has to be completed {

Example/problem pairs (Trafton &
Reiser, 1993).

Self-explain worked-example

Structure-based (i.e. programming
plan - Soloway, 1986) self-
explanation guidance through plan
focused prompts.

Largely concerned with self-
explanation (and reflection) on
proceduralaspects of an example
solution.

Promote self-explanations via
structural manipulations. That is,
-partial example solution (i.e.
programming plan structures) that
has to be completed (Atkinson et g
2000) or that has to be modified.

Promote learning how to construct
an explanation and directs attentig
to mechanism, i.e. how an
incomplete solution should be
\Icompleted (Soloway, 1986).

68

=]

Acquisition of declarative
and/or procedural knowledge

Plan schematadeclarative
knowledgeonly and to a lesser
extent, procedural understanding.

Problem solving rules procedural
knowledge

An opportunity to applgleclarative
knowledgeacquired from studying &
worked-example using the
Structure-emphasising strategy int
practise through solving a
completion task. Hence, acquisitio
of effective problem solving rules
(i.e.procedural knowledge

Cognitive load account

Extraneous cognitive load is
expected to decrease as learners’
attention is directed to processing
elements relevant to schema
acquisition, thus increasing germa
cognitive load.

Extraneous cognitive load is
expected to decrease as learners’
attention is directed to processing
elements relevant to schema
nacquisition, thus increasing germal
cognitive load.

Extraneous cognitive load is
expected to drastically decrease a
less reflection is heeded in solving
the completion task - attributable t
nehe declarative knowledgacquired
from studying the worked-example
using the Structure-emphasising
strategy.

"2

Accordingly, more cognitive
resources can be invested in
processes germane to the learning
activity.

Note:” The benefits of presenting pairing sequence okaexamples using two different strategies (he.Raired-method) may be readily observed

when compared with a paired sequence of worked-pbenusing the same Structure-emphasising strétegyompletion strategy) format.

69

=

O

In designing an effective worked-example strategy,note one important point of concern,
as Anderson (2009)aid, the success of the strategy (Paired-metteadly turns very much
on how this early stage is organised. Get thistughfront. Identify what the real appropriate
organisation is for student to have at this lelreladdition, we formulate the Paired-method
strategy based on van Merriénboer and Krammer'8q)Lproposed tactics, used to design or

evaluate strategies for introductory computer progning courses.

The following paragraphs discuss the theoretisaumption of the proposed approach with

reference to the research literature.

4.2.1 Theoretical assumptions and rationale for thedesign of the Paired-method

strategy

Knowledge compilation theory suggests that studgxamples can help learners to construct
declarative knowledge only and this view furtheaimis that learners can acquire problem
solving rules by applying this knowledge througitvieng a problem (Anderson, 1987), as
reported by Trafton and Reiser (1993). Trafton &aiser’s finding is consistent with the
theory and they found that learning is hamperedmvthe sources of the analogous examples
are not readily accessiBléo the target problems. More specifically, Traftand Reiser
claimed that “...for an example to be most effectivewever, the knowledge gained from
the example must be applied to solving a new problEhe most efficient way to present

material to acquire a skill is to present an exanphd then a similar problem immediately

2 personal communication, 29/7/2009
% That is, analogous examples provide some kin@ieval cue, i.e. directly accessible for solvthg current
problem.

70

following”. In brief, problem solving guided by atcessible example helps to form effective

problem solving rules (Trafton & Reiser, 1993).

The proposed strategy combines the Structure-engumgisstrategy with a Completion
strategy to implement an example-problem pair {dra& Reiser, 1993). Whereas studying
an example directly concerned with the acquisitadndeclarative knowledge, solving a
problem is specifically concerned with the acqiosit of procedural knowledge (van

Merriénboer & Krammer, 1987).

According to van Merriénboer and Krammer (1987), important aspect of declarative
instruction is teachingschema-likeknowledge, such as programming plans — a theory
proposed by Ehrlich and Soloway (1984). Plans aeeland of generic program fragments,
for example, a running total loop plan, a runniotak variable plan (among others). These
plans represent “stereotypic actions in a progréatirlich & Soloway, 1984 p. 115). The
fundamental idea is that “...there is a relationdgtween types of problems and types of
programs, and that the notion of programming ptarsserve to highlight the commonalities
that do exist” (Soloway, 1985 p. 171). The theofyprogramming plans has been applied
within the programming education domain. Indeed esomasearchers have developed
intelligent tutoring systems (BRIDGE: Bonar & Cungham, 1988; PROUST: Johnson &
Soloway, 1985) to teach programming via plans. Naé¢ fundamental to the Paired-method
design is the use of programming plans (see Talileahd thus the teaching of a structured

programming technique.

71

Self-explanation may influence the effects of wakdexamples in that it “helps to create a
deeper understanding of material, eventually legrmjood procedure” (Anderson, 2009)

According to Conati and VanLehn (2000 p. 389),-s&lblanation refers to the process of
“...generating explanations to oneself to clarifyeample’s worked-out solution”. From a
programming perspective, Soloway (1986 p. 851) edgthat “...learning to program

amounts to leaning how to construct mechanismshamdto construct explanations”. Thus, a
central notion of the Paired-method strategy isf-esgblanation, such as explaining

proceduralaspects of an example solution (i.e. programmiag ptructures).

Procedural instruction is primarily concerned withcilitating knowledge compilation
processes that is applying acquired declarativewlaage to practice. In this context,
worked-examples can be an effective means to peasuth instruction (see van Merriénboer
& Krammer, 1987; van Merriénboer & Paas, 1990). idoegr, for an example to be effective,
an “investment of effort” (p. 283) from learners risquired and this can be assisted by
providing learners with partial example solutiohatthave to be completed (van Merriénboer
& Paas, 1990). The technique requires the leameatudy the partial code provided in the
completion assignment otherwise they cannot cdyrestilve the task (van Merriénboer,
1990b; van Merriénboer & Paas, 1990). Partial exanmgwlutions promote “mindful
abstraction” (van Merriénboer & Paas, 1990 p. 2a8) support self-explanation (Stark,

1999), in Renkl, Atkinson et al. (2000).

As described in Chapter 3, the Completion strat@gy the Structure-emphasising strategy

provide reflective learners with more opportunitiesthinking things throughto use Felder

4 Personal communication, 29/7/2009

72

and Spurlin’s (2005) phrase. By contrast, neitloemft provides an opportunity for active

learners to work with the examples dynamicallytiyyng things out again to use Felder

Spurlin’s (2005) phrase. As a consequence, acgaeners may become overwhelmed and
experience cognitive overload as they are forcemlan uncongenial, more reflective style of
learning. Note that learners with a low working noeyncapacity tend to prefer an active
style of learning (Graf, Lin et al., 2008). Moreoyv@structional design based on cognitive
load theory argues for the careful utilisation afriing memory capacity to encourage more

effective schema construction (Sweller, van Melvigar et al., 1998).

Using cognitive load theory, it is argued that Bikeucture-emphasising strategy increases
germane cognitive load because learners are gumedlan-focused self-explanation
prompts. A similar benefit should be achieved witb Completion strategy. This is because,
following the study of a structure-emphasising veaHexample, cognitive schemata (i.e.
plan) are further strengthened through solvingci@pletion task. In line with the notion of
“worked-out examples function analogie$ (van Merriénboer & Krammer, 1987 p. 267),
the completion task can be solved without muchaliffy by mapping the task with existing
schemata — thus drastically decreasing extraneogsittve load and accordingly more

cognitive resources could be allocated for gernsantiities.

4.2.2 Related work underlying the interface design

We adopted a “dissection” method (Kelley & Pohl9&P of explained worked-examples as
used in programming textbooks, similar to that iempénted in WebEx (Brusilovsky, 2001) -
a web-based tool for learning from tutor-explaime@mples in a programming course. The

WebEX interface comprises a program example witletsu| white and green) appended to

73

the left side of each line of the program. A whitgllet indicates that no explanation is
available for that line; on the other hand wheneeeg bullet is clicked, the interface displays
a textual explanation for the chosen line. Insteb@roviding explanations for each line of
the program, as in WebEx, we propose eliciting-egfilanation on various instances of plan

structures in the example solutions.

SE-COACH (Conati & VanLehn, 2000) is a computerdahself-explanation tutor within the
Newtonian physics domain. Like SE-COACH, we usaedasking mechanism for the initial
presentation of example solutions and to emplolycgedstioning prompts (see Webb, 1989).
In the SE-COACH, grey boxes are used to maskedaeparts of the example. As learners
uncover part of the example, the interface revesale text or graphics. Learners are
prompted to provide an explanation by means oflfaegplain button next to the uncovered
part. The self-explain button is designed to pravtie learner to provide an explanation by
means of self-questioning (e’this choice is correct because..............)-.fh place of grey
boxes, we use a collapsible button (as in WebEXjde and unhide the plan structures. Our
mechanism has four different rationales. First,diaws the learner’'s attention to the
underlying plan structure so that self-explanataam be promoted. Second, it helps the
learner to abstract away the details of the planctires linked to the example problem.
Third, plan names may well serve as cues to ra&riglan schemas for future problem

solving. Finally, it encourages “structural awaresigQuilici & Mayer, 2002 p. 326).

CORT (Code Restructuring Tool) developed by Gail2&07) supports the part-complete

solution method (PCSM) of learning programming. T®@RT interface consists of two

windows, namely a left and a right window. Theghti window contains the part-complete

74

program whereas the left window contains linesarfecto be used in the part-complete task
along with extra lines serving aBstracters(Garner, 2007). Some of the lines from the
program are left missing for learners to compl&® complete the task, learners move lines
of code between the windows and rearrange thess iimthe right window via arrow buttons
on the toolbar provided within the CORT tool. WHearners have completed it, they can
copy the program and paste it into a program e@ita run it. In this respect, CORT gives
freedom to learners to solve the completion taskvextheless, this may result in learners
coming up with several different solutions to th@gramming problem, hence it may be
difficult to provide specific feedback to learners their particular final program solution. To
alleviate this problem, we used a cloze procedarepfogram completion, similar to that

used by Chang, Chiao et al. (2000).

The next sections describe the two types of inteffaone supporting the Structure

emphasising strategy and the other supporting trepletion strategy.

4.3 Web-based worked-example system: LECSES

4.3.1 The development environment

LECSES was developed based on a client-servertactime (see figure 4.1) and is a web
database application that uses MySQL as its datalide database stores learning materials
(which can be retrieved upon request), keeps legiragswers to exercises and a log file that

records learners’ interaction with the application.

75

LECSES was built using PHP: Hypertext Pre-processosimply known as PHP. It is an
HTML embedded scripting language (Ullman, 2004)dutsecreate dynamic web application
and commonly used as a server-side scripting laggt@ interact with MySQL. Interaction
occurs by establishing a connection between thécapipn, i.e. LECSES (via PHP, which
resides on a web server) and the MySQL servenrdatien with MySQL is via the standard
database language called Structured Query Lang(a@¢) (Valade, 2004 p. 15). The
following diagram depicts how an interaction occhetween the client (i.e. web browser)

and the web server that serves the LECSES web pages

http://www.LECSES.com/login.php

Server

Figure 4.1: Client server architecture

The client sends the requéstp://www.LECSES.com/login.phpver the Internet connection

to the web server that holds the LECSES web palge web server reads the PHP script and
either processes it or communicates with the MyS@tver (where the SQL message is
interpreted) and then sends the request back talignet web browser. The web browser
displays the HTML page on the screen. Other webeldgment techniques used in

developing LECSES are discussed in the subseqaeag@aphs.

76

JavaScript is another scripting language that afgiananages activities that occur on the
client side (Ullman, 2004). Assisted by jQuery, asoript was used to extend some special
functions of LECSES, such as the collapsible dowmyng triangular button. Clicking on

the button unhides / hides the content or a papagra this context, the plan structure (see

Figure 4.4).

Style is a set of formatting instructions (i.e.eypf font, colour of font, background) that can
be used to lay out a web page. Cascading styleagribat a set of styles inside a web page
override any set of styles included earlier in Web page (Bates, 2006 p. 88). For example,
LECSES provides feedback on the correctness orwithe of an answer for a line of code
inserted in a textbox by highlighting its textbaxa different font colour (see Figure 4.13) - a

correct answer is highlighted in green and a wramgwer in red.

Asynchronous JavaScript and XML (Ajdxs a means of transferring data asynchronously
between a client and a server without interferinthwhe content or behaviour of the web
page the user is currently viewing. In other wordgx provides dynamic client-server
interaction without reposting or reloading the wege (Vohra, 2008). For example, as the
user clicks on a Hint button, the LECSES interfdcgplays a hint withouteloading the

whole of the web page (see Figure 4.6).

® hitp://en.wikipedia.org/wiki/Ajax_(programming)

77

The LECSES editor was customised based on TinyM@&i editor developed by Moxiecode
Systems AB (released as Open Source under LGPLg.dtJavaScript-based WYSIWYG
(What You See Is What You Get) editor. Customigaactions were especially written for
the creation of a plan structure, see Figure 4Q&er features include a Content

Management System for creating learning materials.

4.3.2 The interface

The following section presents a series of snagstudt the interface, describing the
interactions involved as the learner engages imileg with the Paired-method strategy.
Figure 4.2 depicts the interactions. Each exampdblpm consists of two exercises, and so
learning with the Paired-method strategy starthvaibh explanation and then a reflection
exercise (the Structure-emphasising strategy),o@d by a completion and then a
modification exercise (the Completion strategy).this illustrating example, the time to
complete each exercise is specified as 15 mindies.dashed line indicates the transition
from the Structure-emphasising to the Completioatsgy. A questionnaire page is presented

to the learner after each problem has been studielded.

8 http://tinymce.moxiecode.com/

78

: estionnaire Completion Completion estionnaire
eml:'l;atsising emlt’:?“in’ Qc::| perceived str:tegy strftegy Qt::l perceived
E:p -~ I:ejkcetgu effort and Completion Modification effort and

AT eeries difficulty exercise exercise difficulty
15 minutes I Sninutes 2 minutes 15 minutes 15 minutes 2 minutes

Average score
problem

Average rainfall
problem

Figure 4.2: The learning interaction (the Paired-method stygte

4.3.2.1 Structure-emphasising strategy

The first type of interface, supporting the Struetemphasising strategy is designed to
encourage the learner to abstract away the staladietails of the example problem and to

explain various instances of any plan structurab@énexample solution.

Explanation exercise

The interface provides a means by which the ledsnale to construct a textual explanation,
guided by plan-focused prompts. The interface pitssthe learner with an example problem
consisting of a problem description, a sample ama, an example solution (pale blue section,

see Figure 4.3) together with a list of programnpitan names (see Figure 4.4).

79

E) http://www lecses.com/leaming. php?mid=17&tid=30&gid=6&sid=18&sp=18&pp=1aieid=44&ep=18&key= AFBA2GBASF

x Google [7] B search - <) - a- | @ share B~ | A Check~) Translate - & AutoFill = - U Signln -
i Favorites ﬁﬁ'@j @ suggested Sites v] Web Slice Gallery v

46 LECSES.com: Start Exercise = [5 -8 -0 & - pger sty Toos~ @~ 7
Problem

Zara is a freelance academic consultant who has been appointed by the principal of Permata Kolej to assess students’ personalities based on two test scores, namely Test A and Test B. The personality tests were administered
on 20 students. Zara had a program written for her that calculated and displayed the average of the two test scores for each student. Additionally, the program displayed atits end the overall average test score for Test B for female
students who scored above 15. This example illustrates a program that prompts the user to input the student's gender and test scores (in the range of 0 to 20) obtained by each student Assume that the user will enter a valid
input.

Sample run: L

Gender (F for Female / M for Male):
Score for TestA: 12

Score for TestB: 15

The average of the two test scores was 13.50

Gender (F for Female / M for Male): F
Score for TestA: 12
Score for TestB: 16
The average of the two test scores was 14.00 |

Gender (F for Female / M for Male): F
Score for TestA: 15

Score for TestB: 17

The average of the two test scores was 16.00

Gender (F for Female / M for Male): F
Score for TestA: 10

Score for TestB: 12

The average of the two test scores was 11.00

The average score for Test B (score > 15) for female student was »ox
Solution

Pone € Intenet | Protected Mode: On v Ri% v

Figure 4.3: An example problem consisting of problem desaripta sample run, and an example solution (expamakercise)

80

The underlying plan structures are initially inbi& via a masking mechanism (see Figure 4.4). Xpomtion of the programming

plans is fully under the learner’s control. Thattige learner can open several plans at the sameeatind in no particular order.

Solution

Figure 4.4: Invisible plan structures via the masking mechanism

81

Clicking on a down-pointing triangular button néata plan name reveals its structure. A promptodidlox immediately appears on
the right, next to the plan structure being expmlote start an explanation exercise (see Figure #e prompt dialog box provides a

text area for explanation input and a hint buttmhelp the learner with the explanation exercise.

Solution

Explain how the expression (counter < 20) in the
while statement is evaluated.

|t [submit |

-

Figure 4.5: A prompt dialog box for an explanation input

The interface uses a different font colour for pemg code. Dark blue denotes various instanceseopldin structure in the example

solution and red denotes the plan structures cilyrbaing explored.

82

Solution

The value of counter at which the loop starts is

initialised to 0. Explain the reasoning behind this
initialisation taking into account the expression
(counter < 20) in the while statement.

Hint 1: Keep track the number of times the user has
entered data.

Hint 2: counter will increment itself by 1 each time
through the loop.

Figure 4.6: Hint(s) on demand

Clicking on a Hint button displays Hint 1 and thextclick will display Hint 2 (see Figure 4.6). Thearner can get one hint or in
most cases, two hints. Clicking on an up-pointimgngular button will hide the plan structure. Tie of hints to aid explanation is
similar to that used in the English Grammar Tuldylie, Koedinger & Mitamura, 2009). The tutor (withthe domain of English

articles) provides the learner with access to @s@f on-demand hints for selecting an article fanexplaining that article selection.

83

Solution

Explain how the running total variables are updated.

The variables are updated if the statement gender =='F
&& scoreB > 15is TRUE.

Hint 1: Condition under which, the running total
variables are updated with the currentvalues.

Figure 4.7: Editing explanation

The learner can edit their explanations by clickimgthe edit button (see Figure 4.7). When antadibn is clicked, the text area for
explanation input appears. No feedback is givetherlearner’'s explanation. However, after a spedifperiod of time, the interface
presents complete descriptions of each of the ptauctures to allow the learner to reflect on thawn previously generated
explanations (i.e. a reflection exercise). Thedeaworks with the explanation exercise within aafied period of time and when

the time limit is reached, a response dialog bgeaps to inform learner to proceed with the reftecexercise.

84

Reflection exercise

The interface presents complete descriptions ol eédiche plan structures to allow the learner tibeot on their own previously
generated explanations. The underlying plan strastare initially invisible (see Figure 4.8) andrplexploration for the reflection
exercise is similar to that of the explanation eis&r. Some parts of the program are shown in gfi@e(s) of code). The learner is
required to predict the program’s behaviour witepect to these lines and illustrate their answarguan appropriate sample run

showing inputs/outputs.

Solution

Figure 4.8 Predict the program’s behaviour (reflection eisal

85

Clicking on a down-pointing triangular button néata plan name reveals the complete descriptidheoplan structure together with
the learner’s previous answers to the explanatisestipn on the right. The interface also providdsxt area at the bottom of an

example solution for the learner to type in theiswer, as shown in Figure 4.9 (i.e. 9a).

2] http://wwwlecses.com/leaming php?mid=178tid=30&gid=68sid=18&sp=1&pp=18ueid=44 &ep=2&key=5DEIBCBLE v | 2] 4| x |28 Google P~
x Google I:Ii!m'+ﬂ' G- | @sharer B | Ay Check - F Translate - & AutoFill = %~ U Signln -
g Favorites | <% &) @ suggested Sites v @] Web Slice Gallery v
Ji’m«m”"”" Statbxercise =] fd v B - @ v Pagev Sofetyv Took~ @~
The average score for Test B (score > 15) for female student was o &
solution

Explain how the running total variables are updated. 3
The variables are updated when the condition if
(gender == "F* && scoreB > 15) evaluates to true, The
loop adds the value of female_scoreB with the new
value of scoreB and increments the value of
female_count by 1.

Your answer. The variables are updated if the
statement gender == " && scoreB > 15is TRUE. E

L swmt | 3

€ Intemet | Protected Mode: On Qv Rk v

Figure 4.9 Reflection exercise

86

The learner works with the reflection exercise dospecified period of time and he or she can &dstdanswer if there is still time.

When the time limit is reached, a response diatogdppears to inform learner to proceed with thestjannaire (see Figure 4.10).

w- [2] nttp:/7www.lecses.com/leaming.php?mid=17&tid=30&gid=68&sid=188sp=18&pp=2&eid=18&ep=3&key=TBC62BF4D MEIEIEY |39 Google p -
x Google E]i’Search'“é]' e~ | @ sharer [~ Ay Check ~) Translate - & AutoFill ~ %" U Signin -
g Favoiites | < &) @ Suggested Sites v @] Web Slice Gallery v
| @ LECSES.com: Start Exercise ; N~ v (% dm v Pagev Ssfetyv Tooks~v @~

-

© Questionaires
Remaining time 0:00

How much new knowledge and skill did you acquire from working on this particular problem?
Nothing at all Alittle Moderate Quite a bit Alot

Please explain.

A You have now completed this set of problems. Do you want to start

V' working on next set of problems?

oK | [cance | -

How difficult did you

Very easy Fairly easy Neither difficult nor easy Somewhat difficult Very difficult
©

Please explain

Done € Intemet | Protected Mode: On A~ R10% -~

Figure 4.10: A questionnaire page

&7

The questionnaire asks two different questions: “How much new knowledge and skill did you acquirem working on this
particular problem?” on a scale ranging from “nbal’ to “very much”; (ii) “How difficult did youfind it to learn things in the
recent activity?” on a scale ranging from “veryyas “very difficult”. The questionnaire page isgsented to the learnafter each

example problem solved The same questionnaire is used throughout theseoThe learner works with the questionnaire for a

specified period of time and when the time limitré&ached, a response dialog box appears to infeamér to proceed with the

completion exercise.

4.3.2.2 Completion strategy

The second type of interface, supporting the Cotigplestrategy, is designed to encourage the leameomplete partial code

pertaining to a number of instances of plan stmectu the example solution.

Completion exercise

The interface presents the learner with a workexivgte consisting of an example problem, a sampte and a partial example
solution (pale blue section, see Figure 4.11) togewith a list of programming plan names. Theiahipresentation of the example
solution and code exploration for the Completioratsgy is very similar to that of the Structure-é@gising strategy, as already

described.

88

2] http://wwwlecses.com/leaming.php?mid=178tid=308gid=68tsid=188sp=1&pp=2&eid=42&ep=18key=TFCIN46A3 v [&[4[x |28 Google P~

x_Google [v] $Bsearch - [- o~ | @ share~ B+ | Ap Check ~ g Translate - & AutoFill =) v U Signln -
Tk Favortes | 55 &) @ suggested Sites v @) Web Siice Gallery v
| 4 LECSES com: Stant Brercise [] B B -3 @ - Page~ Sety~ Took> @~

" Completion exercise
—

Instructions Read the problem and the partial Solution program. Click on each blue Program Plan name in turn 1o find input boxes within the program thal are either
menu-based or allow free text. Choose how those boxes should each be filled in order 1o complete the solution as specified in the problem. You can
checkthe comrectness of your answer by clicking on the Check Answrer button.

Remaining time 14:29
Problem
You have been asked to write a simple program to help a clerk 1o work with data on daily rainfall figures for several weeks. The program should calculate and display the average rainfall just for those days thatit rained each
week This example illustrates a program that will read in total rainfall figures (in mm) for each day over the past few weeks. The program should work in situations such that the clerk should be able to decide number of weeks
the program should calculate the average. Assume that the user will enter a valid input A sample run is as follows: 1 |
Rainfall report for: 2 week(s)
Total rainfalls (in mm)for week 1 day 1=> 235
Total rainfalls (in mm)for week 1 day 2 => 15

Total rainfalls (in mm) for week 1 day 3=>0

The average rainfall per rainy day for week 1 was: 16.0
Solution

Done € Intemet | Protected Mode: On Qv K10k v

Figure 4.11: An example problem consisting of problem desasipta sample run, and an example solution (congpletkercise)

Clicking on a down-pointing triangular button ndmta plan name (e.g. loop entry condition, coustartrolled plan) reveals the

partial code of the plan structure that is eith@nmbased or allows free text. That is, the interfarovides the learner with (i) a

89

menu to choose a line of code or (ii) a text bowlrich they have to insert suitable code in ordezdmplete the solution as specified

in the example problem (see Figure 4.12).

Solution

IW

Figure 4.12: Text box in completion exercise

Note that, certain parts of the example solutigrafafrom the plan structure) are partially coded aave to be completed by the

learner, as shown in Figure 4.12 (i.e. 12a).

90

When a Check Answer button is clicked, the leareeeives immediate feedback on the correctnesasyfers for the line of code
chosen from the menu or the line of code insen¢al the textbox (the learner's answer must matehctirrect answer). A correct
answer will be highlighted in green and a wrongwaersin red (see Figure 4.13). Also, a dialog boX appear and provide the
following response, “Well done” if all answers arerrect, otherwise “Some of the completions youehewvade are not correct”.
Correcting and re-checking answer is possible plexvithat the time limit is not reached. When theetiimit is reached, a response

dialog box appears to inform learner to proceedh wie program modification exercise.

Solution

total_rainfalls = total rainfalls + rainfall v

e ——

Figure 4.13: Feedback on the correctness of answer(s)

91

Modification exercise

The page for the program modification exercise ldigpthe final example solution to a previous catiph exercise together with
instructions to modify the program. For this exsegithe learner should think about what additiortsdeletions the program needs to

ensure that it solves the modified problem. Exploreof the code is fully under the learner’s coht in no particular order.

overall_rainfails = total_rainfalls
overall rainfalls = total rainfalls + rainfall

31

Figure 4.14 Lines of code that are initially invisibly sengé to being clicked on

92

Certain parts of the program angtially invisibly sensitive to being clicked on- collapsible paragraph(s). That is, when thenear

clicks on a non-sensitive part, nothing happen. e, if the learner clicks on a sensitive parthaf program see Figure 4.14 (i.e.
14a), to which they think a change should be méwteinterface responds by giving one of five passds as follows:
* A menu will open and the learner should make aash@iiom the list of possible lines of code to inseee Figure 4.14 (i.e.
14b).
» A text box will appear and the learner should ihseline of code. This is a short-answer questiat aiccepts a word or a
short phrase (with blank spaces) into a text box.
» Extra code will just appear (serving as a hint) Hralearner need take no further action
* A symbol will appear at the end of the line. Tharfeer should click on the symbol if they think tkfz line should be deleted.

* Nothing will happen, in which case no modificatican be made at that place in the program.

When the Submit button is clicked, the learner ikeseimmediate feedback on the correctness of nsavers. He or she can make
further changes if necessary and if there is ttile available. Upon clicking the button, a dialegx appears to provide one of the

feedback comments, see Table 4.2. Likewise, a coamswer will be highlighted in green and a wramgwer in red as shown in

Figure 4.15.

93

] http://wwvlecses.comleaming php?mid=1784id=308igid=68sid=188sp=18&pp=2&eid=43&ep=28key=631 FDEGIGE BEICE R D P~

x Google |;|5|smdn+ﬂv - | @ share~ B~ | A Check -) Translate - & AutoFill > &+ _ Signln~
i Favortes | 5 &) 4 suggested Sites v @] Web Slice Gallery v

Jimsmm || % v B v @ v Pagev Sefetyv Toolsv @~
T e 3

Some of the modifications you have made are not

The average rainfall per rainy day for week 1 was: o corr
o e Ve ra0 TR e eI There are further modification to be made.

soton o
overall rainfalls = overall rainfalls + rainfall v
overall rainydays = total rainydays + 1~

L swm |

1

'@ Intemet | Protected Mode: On v 0% v

Figure 4.15:Feedback comments dialog box

When the time limit is reached, a response dialmg dppears in order to inform the learner to prdosgh the same questionnaire

page as previously encounterédter working with a set of two example problems the learner can choose to discontinue and

resume later or proceed with the next set of exarppblems.

94

Table 4.2: Feedback comments

There is no further There are further
modification to be made (3) modifications to be made (4)
All of the modifications you Display “Well done” Display response 1 and 4

have made are correct (1)

Sl RGEING iUl Display response 2 and 3 Display response 2 and 4
have made are not correct (2)

4.3.3 The editor

The following section presents the LECSES editoedugor composing the example

problems.

3| B I U #8¢|| Fontfamly ~ Fontsize | A 22 || 3|V

Plan_Name:Running total loop plan :]
Prompt:Explain what happens if the user entered 5 for the total rainfalls of the day.
Answer: The condition (rainfalls > 0) evaluates to true. The loop updates the value of
total_rainfalls by adding 5 to it and increments the value of total_rainydays by 1.
Hint_l:Updates that are to take place when certain condition is met.
PLAN Running total loop plan
total_rainfalls = total_rainfalls + rainfall;
total_rainydays = total_rainydays + 1;
Assume the the following line of codes are added.
overall rainfalls = overall rainfalls + rainfall;
overall rainydays = overall rainydays + 1;

}

Plan_Name:Counter lecop plan
Prompt:Explain the role of counter loop variable day_counter.
Answer: The variable represents the day number (i.e. 1 represents Monday and so on). The statement
day_counter++ updates the value of day counter from 1 to 7 and increases its value by one each time
through the loop.
Hint_1:The role of counter loop variable, day counter.
Hint_2:Keep track the number of days in a week, from 1 to 7.
PLAN Counter loop plan
day counter++;

} =~

Path: p

N

Figure 4.16:Editor for composing the explanation/reflection reises

Above is a sample screenshot for composing an ebeaprpblem based on the Structure-
emphasising format (see Figure 4.16). The editomwal for the creation of a plan structure,
by highlighting a line(s) of code in an exampleusioin, (e.g. day_counter++;), in that case

the Counter loop plan.

95

Every plan structure created consists of a meanindén name, a prompt to encourage the
learner to construct a textual explanation andshimtaid explanation. Note that some lines of
code in the program are highlighted in green. Thesm¢s are associated with the reflection

exercise in which the learner must predict the mogbehaviour.

el e | —————————
&> [mmes —c)[@-oe 7) 8 0

Learning from Examples using
SET QUESTIONAIRE STUDENT GROUP LOGOUT

" Tasks
Format A

Exercise Title |AverageRa|nfaIl E: and refl

Instructions Read the problem and the Solution program. Click on each blue Program Plan name in turn and submit an
Seu»e_xplanahon lexplanation about the code in the associated input box that appears on the right. There are four Program Plan
exercise Iname altogether. You can get one or two hint(s) before submitting by clicking on the Hint button.

Instructions [Read the problem and the Solution program. You will see your previous answers to the explanation question on

Se""e_ﬂeCﬁO" the right. Note that some parts of the program are in green. Go to the text box at the bottom of the program. Predict

excercise the program behayiour with respect to the line(s) of code highlighted in green. Demonstrate your answer using
appropriate sample run showing inputs and outputs. When you are confident that you have finished your answer,
press the Submit button. You can edit this answer if there is still time.

Problem 'You have been asked to write a simple program to help a clerk to work with data on daily rainfall figures for -
several weeks. The program should calculate and display the average rainfall just for those days that it rained
leach week. This example illustrates a program that will read in total rainfall figures (in mm) for each day over
the past few weeks. The program should work in situations such that the clerk should be able to decide
Inumber of weeks the program should calculate the average. Assume that the user will enter a valid input. A ﬂ
[sample run is as follows:

Solution Steps
Self-explanation
exercise

Solution Steps |

brsen| o @@ i 2 [0 G 343pm

Ey o s/Mf011

Figure 4.17:Composing an example problem

Figure 4.17 shows a sample screenshot for compasitagk (i.e. an example problem) in
LECSES. Every task created consists of a titleasne of the example problem, instructions
for the learner, and a description of the exampleblem together with its sample run /

solution steps.

96

iTll|B Z U #B€ Fontfamly ~ Fontsize N A'i}' e 3| W —I@

GROUP Loop entry condition, counter-controlled plan _.J
while (day_counter <= 7---day counter<=7) {

System.out.print (" Total rainfalls (in mm) for week " + week_counter + " day " + day_counter +
=)
rainfall = keyboard.nextDouble():;

if (rainfall > 0---rainfall>0) { < lg
GROUP Running total loop plan
total_rainydays = total_rainydays + 1---total_rainydays=total rainydays+l;

}

GROUP Counter loop plan
day_counter++---day_counter=day_counter+l---day counter+=1; 180

} L

GROUP Guard and division plan

if (total_ rainydays != 0---total_ rainydays!=0)

System.out.printf (" The averaqe rainfall per rainy day for week " + week counter + " was: ﬂ
Path: p

N

Figure 4.18: Editor for composing a completion exercise

Above is a sample screenshot for composing a cdroplexercise (see Figure 4.18). The
creation of a plan structure is achieved by hidtilligg a line(s) of code in an example
solution, e.g. while (day_counter <= 7), in thaseahe Loop entry condition, counter-
controlled plan. Every plan structure created csinsof a meaningful plan name and user-
input elements within the example solution that @iteer menu-based or allow a free text
box (highlighted in red and orange, respectivelj)e menu-based option contains a list of
possible lines of code whereas the text box caepca word or short phrase with blank
spaces. That is, the text box can accept sevessilge correct answers, as long as these
answers are listed within the program solution, & In this case there are three possible
answers, separated by “---“. Note that, certairispaf the example solution (apart from the
plan structure) argartially codedand have to be completed by the learner, as shown

Figure 4.18 (i.e. 18a).

97

@B Z U || Fontfamly ~ Fontsze v |A ~¥ ~{wm 3|V | QI

if (rainfall > 0){
total_rainfalls = total_rainfalls + rainfall;
total_rainydays = total_rainydays + 1;

*** INVISIBLE***

}

day_counter++;

}

if (total_rainydays != 0)

System.out.printf (" The average rainfall per rainy day for week " + week_counter + " was:
$.2f ", total_rainfalls/total_rainydays):

else

System.out.println(” No average calculated. ");

week_counter++;

}

Path: p

o

Figure 4.19:Editor for composing a modification exercise

Above is a sample screenshot for composing a nuoadifin exercise (see Figure 4.19).
Certain lines of code within the program solutiae @itially invisibly sensitive to being
clicked on (purple region). The creation of invisitines of code is achieved by highlighting
these lines and through defining one of the follayinput elements, a menu or a text box; or
by inserting an invisible symbol that will appedrthe end of the line (which indicates

whether that line should be deleted); or simplerting extra line(s) of code.

4.3.4 The report generator

The learner’s learning activities with LECSES améoanatically logged, as depicted in Figure
4.20. Logging occurs each time the learnméeractswith the system. The pale blue section

shows the learner’s final answers to an exampigisol in a completion exercise.

98

total_rainfalls/total_rainydays

[No. Log ID Date Time Type Element ID Activity or Message

1 34673 2010-08-14 12:59:04 Starting 0 First time this user starting the exercise
2 35228 2010-08-14 13:00:22 Plan Structure groupl 1 Opened this plan structure

3 36107 2010-08-14 13:02:07 Plan Structure group2 2 Opened this plan structure

4 36368 2010-08-14 13:02:29 Plan Structure group3 3 Opened this plan structure

5 36422 2010-08-14 13:02:37 Plan Structure group4 4 Opened this plan structure

6 42203 2010-08-14 13:10:44 Check Answers 0 Check Answers button clicked

7 42204 2010-08-14 13:10:44 Response textboxl 1 Wrong: day<=7

8 42205 2010-08-14 13:10:44 Response textbox2 2 Correct: rainfall>0

9 42206 2010-08-14 13:10:44 Response textbox4 4 Wrong: day++

10 42207 2010-08-14 13:10:44 Response textbox5 5 Wrong: day==7

11 42208 2010-08-14 13:10:44 Response textboxé € Wrong: total_rainfalls/7

12 42209 2010-08-14 13:10:44 Response menuboxl 1 Correct: total_rainfalls = total_rainfalls + rainfall

Figure 4.20: LECSES Report generation

4.3.5 The administrator module

Table 4.3 summarises the administrator module /BCEES. The administrator module
consists of 5 different sub-modules, from settiny aitopic to assigning task(s) to each

different group.

99

Table 4.3: Administrator module for LECSES

Setting up a topic - publish new topic for the course.
- add/edit/remove topic(s).

Creating tasks - add/edit/remove specific instruction.

- create a set of 2 example problems. Example prob&amnbe
created in two different formats, namely A (struetemphasising
and B (completion)..

- set time on task (time restricted).

- Creating task for the three strategies.

Setting up a group / - create/edit/remove group.

assigning task(s) to - assign learners to one of the 3 groups.
each group - assign tasks to each group.
Questionnaire page - add/edit/remove specific instruction.

- create a questionnaire that consists of 2 questiithss point
rating scales and a text area for an open-endedeain

Student records - edit/remove record.
- insert learners’ learning style and working memuapacity to
existing records.

4.4 Conclusion

This chapter has presented the design of the Paistidod strategy that aimed to help active
learners gain more benefit from being exposed tdkedrexamples, while at the same time
not disadvantaging reflective learners. More speadlfy, the chapter has discussed the
theoretical assumptions and rationale for the desigthe Paired-method strategy and then
briefly discussed the LECSES development environmé&he chapter also described the
web-based interfaesupporting the two component strategies of theeBlanethod, argued

for the approach with reference to the researehalitire, and outlined their specific interface
designs. The next chapter discusses the desigm @Xxperiment that tested the research

hypotheses that underlie the proposed approach.

" LECSES was designed by the author and developeldirbyRegan Rajan, freelance web-based application
developer.

100

Chapter 5 Experimental design

51 Introduction

With reference to the research questions and hgpeth (see Chapter 3), the following
objectives for the main experiment were identifi€de first objective of the main experiment
was to examine any differential effects with resgecthe learningorocess To answer this
guestion, we examined variations of cognitive Idael. germane and extraneous cognitive
load) that occur during learning, either with thieuSture-emphasising strategy or with the
Completion strategy or with the Paired-method sttt The second objective was to
investigate any differential effects with respeatthe learningoutcomesin terms of the
quality of acquired schemata, including transfeffggenance, from learning with any of the
three worked-example strategies. The third objectisas to examine the degree to which
individual learning style might influence the lesngprocessandoutcomesSpecifically, the
aim was to investigate whether the Paired-methadesty could be employed to equalise the
learning outcomeson both active and reflective learners. The founthjective was to
investigate the interaction between the active egftictive learning styles and learners’
working memory capacity, i.e. thedirect relationshipidentified by Graf, Lin et al. (2008).
We chose the topic of loops in the Java programrtanguage as the domain for the main
experiment. This chapter is organised as followse Thapter starts by briefly describing a
pilot experiment conducted prior to the main expemt. Next, the chapter discuss the phases
and procedures of the main experiment, coveringgiperimental materials, the instruments,

and the participants. The later sections explarptioposed statistical analyses and variables.

101

5.2 Pilot experiment

A pilot experiment was carried out at the FacultyGmmputer Science and Information
Technology, University of Malaya from 17th to 1&hJune 2010. The pilot experiment was
conducted with the intention of highlighting anyagtical issues related to experimental
design, which included but were not limited to flelowing: to check that the worked-

example problems were of appropriate complexity,aszertain any problems with or
effectiveness of the instruments for measuring itivgnload, to determine the time needed
for the tasks, and to gauge learners’ reactionsanasv the different worked-example

strategies, i.e. the Structure-emphasising an@€trepletion strategies.

A total of 6 participants who were repeating Pragrang 1, subject code WXES1114 during
the Special Semester (2009/2010) voluntarily agtededke part in this pilot experiment. The
participants were asked to study/solve any fourkegdrexample problems on loops (there
were six worked-example problems altogether), aackviold that time-on-task was not to be
strictly controlled. However, the participants wékl to remain within a time frame of about
an hour or so. The participants were given ans\weets on which to write their solutions
(i.e. pen and paper based) and received one wakaaple problem at a time and in random
order. Thus, the sequence of worked-example prohleaints category (i.e. average problem,
vending machine problem, and game-based problemg¢dvamong the participants, see
Table 5.1. Upon completion of each problem, paréinis were asked to give an estimation of
the degree to which they had learned from, andiiffieulty of, the materials each using a 5-
point rating scale, i.e. for assessing extranegus germane cognitive load, respectively.
Table 5.1 provides a summary of the quality ofgihgticipants’ explanations (i.e. explanation

exercise) and total correct answers (i.e. compietixercise) to the problems they worked on.

102

Table 5.1: The quality of explanations and total correct agrsw

Not a real Worked-example problems (in the Quality of explanation or GCL ECL Solving time
name order the problems were solved) *total correct answer (in minutes)
Azri Average score All correct but insufficient daipations (partial) 4 2 18

Coffee machine 5 points 4 3 9
Coin tossing 4 points 4 4 22
Photocopy machine All correct but insufficient exations (partial) 3 2 8
Asha Photocopy machine All correct explanations 5 2 21
Coffee machine 2 points 4 3 13
Rock, paper, scissors All correct but insufficient explanations (partig 3 4 16
Coin tossing 4 points 3 3 13
Huda Average score Some correct / incorrect explama 4 3 21
Average rainfall 4 points 4 4 10
Rock, paper, scissors Some correct / incorrectaagions 4 3 14
Coin tossing 2 points 4 3 10
Farish Photocopy machine Some correct / incorrect explanations 4 2 19
Coffee machine 2 points 3 3 8
Rock, paper, scissors Some correct / incorrect explanations 2 4 14
Coin tossing 3 points 3 4 9
Azlina Coffee machine 3 points 4 12
Photocopy machine Some correct / incorrect expilamsit 4 3 17
Coin tossing 3 points 4 5 17
Rock, paper, scissors Insufficient explanationisl et explain 5 4 20
Farah Coffee machine 2 points 5 5 34
Rock, paper, scissors Incorrect explanations / did not explain 5 4 28

Note:” Total points that could be earned (0-6) for the Plation strategy.

Table 5.2 presents a summary of the mean solving, tand recorded effort as well as reported diltfycior the six worked-example problems.

103

Table 5.2: Average solving time and reported effort / diffigu{rounded)

o e DIy
" Average scoren(= 2) 20 4 3
Average rainfall it = 1) 10 4 4
" Photocopy machinen(= 4) 16 4 2
Coffee machinen(=5) 15 4 3
Coin tossingt1f = 5) 14 4 4
"Rock, paper, scissors € 5) 18 4 4

Note: ~ Starred worked-example problems were presentedyubi Structure-emphasising strategy while the
others were presented using the Completion strat®gge participant (i.e. Farah, see Table 5.1) cauly
study/solve two of the worked-example problems inithe time frame givert.including time it took to study
theword problem statemeif®2 minutes or so).

A survey questionnaire was sent out to the padrdip via electronic mail for further inquiry
regarding their overall experience of working witie two worked-example strategies. In
particular, the questionnaire covered a questiayuabny difficulty they experienced with
the English language as a medium for the pilot Brpnt, a question about any preference
for either of the two worked-example strategies amofe importantly, several questions

related to the instruments for measuring cognitael.

In conclusion, even though we only piloted an emateon exercise and a completion exercise
using the Structure-emphasising and the Completiategy, respectively, we still managed
to gather useful data on the issues highlighted/@bAs was determined through the pilot
experiment, we decided that time-on-task (includihg time it takes to study th&ord
problem statemeptshould be 17 minutes for each exercise. In tigg ehe slightly shorter
time of 15 minutes had to be allocated (this igsw#scussed in Chapter 9), but that was still

close to the average time taken in this pilot study

104

We also assessed the level of difficulty of the enats. It appeared that the sequence of
worked-example problems were of appropriate conexsee Table 5.2, the column
labelled ‘difficulty’. Note that the Average Raitifgproblem was supposed to be simple but
was regarded as complex by one participant (Hugka,Table 5.1): the reason being that the
word problem statemerwas difficult to follow. In addition, the level dlifficulty for the
other materials written in English was regarde@d@=eptable, thus indicating that the use of
English rather than Malay would not hinder theartgng. We also identified an issue related
to the plan-focused prompts in that some cases vaher confusing. We made several
changes and restructured the prompts, making d@retefor participants how to construct a
correct explanation. Moreover, there was a stromfepence for the Structure-emphasising
strategy over the Completion strategy, even thoongimy of the participants constructed
correct but insufficient explanations. As a finaimg, only one participant clearly understood
the questions asked which were meant to assesmentrs and germane cognitive load. So

the instrument for assessing cognitive load was et

5.3 The design of the main experiment

5.3.1 Phases and procedure of the main experiment

This section discusses the activities of the mapeament that took place in three separate
phases (i.e. pre-experimental, learning, and tesnghases) as well as post-experimental

phase, see Figure 5.1 for further illustration.

105

Participants do not belong to any of
the strategy groups

-

'
1

I

i

i

i Participants are no longer attached to any of
: the strategy groups

1
i
1
\

Legend:

Pre-expenmental
phase

Learning phase

Transfer phase

Post-experimental
phase

D Structure-emphasismg D Completion D Paired-method

Figure 5.1: Phases and procedure of the experiment

5.3.1.1 Pre-experimental phase

during the normal lecture session (2 hours).

106

The pre-experimental phase comprised 3 main pahs.first part of the phase started by
asking the participants to sign a consent form (8@pendix A) and to complete a
questionnaire on their programming background fggeendix B). The first part of the phase
was also concerned with establishing the parti¢dgddearning style and working memory

capacity. The second part of the phase involvedotksentation of the loop theory in Java

In addition, the participants were also asked fgesbwo programming questions on loops
during their normal laboratory session (2 hourg)aly, participants were asked to undertake
a pre-test to assess their knowledge of a rangg@®it programming topics including loops.

The pre-test will be further discussed in Sectid& on Instruments.

Specifically, participants were allocated pseududamly (based on learner’s learning style)
into the three strategy groups - each group hadsame number of active, balanced, and
reflective learners irrespective of their level mfor knowledge (i.e. programming pre-test
scores). Participants were not allocated basedh@n pre-test scores, the reason being, that
the aim of the main experiment was to investigate differential effects of the strategies on

the active and reflective learners.

5.3.1.2 Learning phase

The learning phase started with a briefing sessanntroduction to LECSES (a web-based
worked-example system), the aims and objectivethefexperiment. During the briefing

session, participants were introduced to the cognitoad questions concerning their
perceived effort and difficulty associated withridag the materials. During the learning
phase, the participants were asked to study theses pf isomorphic worked-example

problems, depending on the worked-example strategi®ing LECSES (see Appendix G).
Each problem consisted of two exercises and a ¢6taD minutes (15 minutes per exercise)
was allocated for the learning time. Thus the didemrning time was restricted to a

maximum of 180 minutes. The activity of learningltwLECSES was automatically logged
(e.g. the number of times a hint was requested)tene-logged for subsequent analysis.

After working with each problem, participants weaiked to give an estimate of the difficulty

107

of the learning method and of the degree to whidy thad learned new Java concepts from

the materials.

5.3.1.3 Transfer phase

The transfer phase started with a briefing sessiothe procedure and instructions for the
transfer test. During the briefing session, pgraaits were introduced to another cognitive
load measure, this time concerning an estimatéaif tental effort in solving the transfer
problem. In particular, this phase was concerndll aiprogram development and coding test
and participants were asked to solve 2 near andr2trdnsfer problems (4 problems
altogether), see Appendix H. After each problem s@sed, participants were requested to

give an estimate of the mental effort they had stee in solving the problem.

Note that the worked-example problems for the liegrphase (and the transfer problems for
the transfer phase) as well as the instrument feasuring cognitive load will be further
discussed in the section on the LECSES learning@mment and experimental variation and

in the instruments section, respectively.

5.3.1.4 Post-experimental phase

In the post-experimental phase, participants wekedto complete a questionnaire on their
overall experience of taking part in the experimehbe questionnaire largely covered
guestions on worked-example strategy and LECSESAgpendix). Finally, an individual
follow-up with a few selected participants who smbiin either the Active or Reflective

dimension of learning style of the ILS was conddatelividually.

108

5.3.2 LECSES learning environment, experimental matrials and variations

5.3.2.1 Experimental materials

Figure 5.2 depicts a schematic representation pémmxental materials. The letters S, C, and
P represent strategy format, i.e. Structure-empimagi Completion, and Paired-method,

respectively.

The experimental materials for the learning phasesisted of 3 sets of two isomorphic
worked-example problems, namely Set 1, Set 2 and3S&et 1 consisted of warm-up
materials to let learners familiarise themselveshwiECSES. Numerals represent the
worked-example problem number. Each worked-exangaesisted of a programming
problem, a sample run along with a final prograrnutsan to the problem. The worked-
example problems in each set were similar with eespgo the program’s underlying
structures (i.e. similar problem category) howeeach was exemplified by a different
surface story. The worked-example problem sets wdeetical across the strategy groups,
but the problems were presented differently acogydo the strategy format (i.e. Structure-

emphasising).

The experimental materials for the transfer phasesisted of 2 sets of two transfer problems.
That is, a set of two near transfer problems aisétaof two far transfer problems. All the
transfer problems were identical across the styatggups (i.e. strategy-independent).
Similarly, the numerals 1-4 represent transfer |enols. The following paragraph further

describes worked-example problems for the learphese.

109

Warm-up Learning phase
Setl Set 2 Set 3

S S1|S2| S3 | S4| S5 | S6

Groups Transfer phase

C ClL| C2| C3|C4| C5] Cb TT1-TT4

P S1 | C2| S3|C4| S5 | C6

Figure 5.2: Experimental materials

We adopted a within-category example comparisorjé®e Scheiter et al., 2008), but with
single worked-example presented at a time. The wias to help learners to extract
similarities and differences between the pair ofked-example problems within the same
problem category. As previously mentioned, the phiworked-example problems shared
common structural features (i.e. isomorphic plamcstires), however they differed with
respect to the problem’s surface story. In this whg aim was for the learners to be able
“...to identify features that vary between the catgtpexamples (i.e., differences) and that
are therefore obviously irrelevant with regardre applicability of the solution principle that
is attached to this particular problem category’erfj€s, Scheiter et al., 2008 p. 77).
Furthermore they should have been able to learh dapendence simply on the surface

features does not help them in solving a probleml® & Mayer, 2002).

Table 5.3 describes the worked-example problermanged in three sets, each involving a
different problem category (e.g. Set 1, averagdlpros; Set 2, vending machine problems;
and so on). The materials were arranged followengimple-to-complex sequence as

proposed by van Merriénboer, Kirschner et al. (3003

110

Each worked-example problem comprised four programgmlan structures (or three for Set
2). Some programming plans appeared in two diftesets (e.g. the counter loop plan) and
though these plans served a similar role, thekstasmewhat varied depending on the nature
of the problem. To avoid repetitive explanation ppts, we employed different types of
prompting question, e.g. to explain the rationadgibd an initialisation value of a variable at
which the loop starts; to explain how the loop ngaite progress; or to explain the condition

under which the loop continues / terminates. FiguBefurther illustrates this.

Average score

Prompt: The value of counter at which the loop starts is initialised to 0. Explain the
reasoning behind this initialisation taking into account the expression
(counter < 20) in the while statement.

Answer: Thatinitialisation makes that the expression (counter < 20) in the while
statement true before any loopis executed. Counter ensures that each repetition
makes progress towards the expression becoming false by increasing its value by
one until it reaches 20.

Rock, paper, Scissors

Prompt: Explain why is the statement try count = try count+1 needed within
the while loop.

Answer: The statement ensures that each iteration makes progress toward the condition
try count < MAX TRIES ALLOWED becoming false. That is, the
statement keeps track of the number of tries the user has spent.

Figure 5.3: Different tactics of prompting questions for treunter loop plan

111

Average problem
Average score

Table 5.3:Worked-example problems for the learning phase

Descriptions \

A program that calculates and displays the averafjéwo test scores for each student as well ag
average of one of those tests for female studeémissaored above 15 points.

The program additionally calculates and displays aits end the overall average (i.e. class averagge)

test score for the two tests separately.

Average rainfafl

Vending machine

A program that calculates and displays the averegefall just for those days that it rained eacheke
(i.e. weekly average rainfall) for several weeks.

The program additionally calculates and displays aits end the average rainfall for those days that
it rained in the whole period.

Descriptions

Plan structures
tt@op entry
condition, counter-
controlled plan.

Running total loop
plan.

Counter loop plan.

Guard and division
plan.

Plan structures

problem 2
Photocopy machine

A program that prompts the user to make photocapgiices until N is entered (i.e. stop makinghert
choices). The program then computes the cost ophieéocopying given the types of document and

the

number of copies the user has chosen. The progrash keep track of the amount of money deposited by

the user one coin at a time, calculates and giwek the total change.

The program allows the user to deposit more moneyio the machine thanneeded. When the usef
wishes to discontinue, -1’ must be entered, howeweéf the amount of money deposited to this point
is not enough, an appropriate message will be dispted.

Coffee machine

A program that prompts the user to choose a cdtiee choice of coffee per transaction). Coffee lnal

Loop entry
condition, sentinel-
controlled.

Running total and
limit plan.

dispensed when at least the cost of the choseeecbéfs been deposited. The program must keepdfack

the amount of money deposited by the user oneatairtime, calculates and gives back the total gean

Valid data entry

Finally, the machine should prompt the user to nekather selection after a coffee has been purachaselan.

The program allows the user to purchase another sattion of coffee with the total change from the

previous transaction. The remaining cost of the newoffee must be deposited into the machine

before receiving a coffee.

! Problem adapted from Java Gently: Programmingcilies Explains by Judy Bishopl®Edition, Addison-Wesley (1998)
2 Problem adapted from An Introduction to Prograngnitsing C++ by Kenneth C. Mansfield Jr. and Jame&nitonakos, Prentice Hall (1997)

112

Game-based problem
Coin tossing

Descriptions

that seven, but not necessarily in a row. Finalhg program displays at its end a message deperuir]
whether the user won (a message indicating how maunyds the user took to win the game) or lost
game (a message indicating how many correct guéissasser made prior to losing the game).

The program lets the user make at least two correaguesses in a row in order to win the game
There is now no maximum of seven coin tosses, bubte that the game terminates the first time that
the user makes an incorrect guess. Finally, the pgoam displays at its end a message depending
whether the user has won (a message indicating thember of correct guesses in a row) or lost th
game (a message indicating “You lost”).

\ Plan structures
A guessing game program that lets the user playls thie computer-simulated coin-tossing. A game
consists of a maximum of seven coin tosses. Ttheigame, the user must make five correct guesses i

g
the

2.Loop exit condition,
counter- and flag-

pigontrolled plan.
Running total loop
plan.

Rock, paper, scissofs

A hand-sign game program that lets the user plas the computer-generated hand-sign. The maximum

number of tries allowed is fiv&@he game terminates if the user wins a round bdfadive tries are use
up. When the user chooses a hand-sign, the progepfies with a message depending on whether
game is tied, or the user won or lost. Finally, fvegram displays at its end a message indicatirey
number of tries it took for the user to win the gaar a message indicating the user has reacheg
maximum number of tries along with number of draa(sl lost(s) the user made.

The program prompts the user (at the end of everyame) to see if they want to have another go ¢
not. Finally, the program displays at its end a mesage indicating the number of times the user wo
out of number of games played along with number afiraw(s) and lost(s) the user made.

dCounter loop plan.
the

tFlag reset plan.
the

=

Note: The worked-example problem for the first el is highlighted in italics. The slightly diffawt problem requirement for the second exercisfdsvn in bold, yet is

the same underlying problem as the first exer@se. experimental variations section for furtheoiinfation on the exercises.

% Problem adapted from C by Dissection: The EsssrtfaC Programming by Al Kelly and Ira Pohl® &dition, Addison-Wesley (1996)
* Problem adapted from Java Gently: Programmingcilies Explains by Judy Bishop!®Edition, Addison-Wesley (1998)

113

5.3.2.2 Experimental variations

The experimental variations for the learning phasee realised as follows. In the Structure-
emphasising condition, participants received twifedknt exercises, namely an explanation
and a reflection exercise. The first exercise neglparticipants to identify the problem’s
underlying structure and, in particular, to constra textual explanation (aided with one or
two hints) of various instances of the plan striegun the program solution. No immediate

feedback was given to the participants’ explanaibthis point.

Following the first exercise, participants weregengted with complete descriptions of each
of the plan structure and they are asked to reflact their previously constructed
explanations. In addition, they were presented waislightly different problem requirement
(in bold, see table 5.3), yet involving the samealartying problem as the explanation
exercise (in italics). Note that, for the reflectiexercise, the participants were not given any
clue apart from the line(s) of code highlightedgimeen in the program solution (see Figure
5.4). This time participants were asked to pretiietprogram’s behaviour with respect to the
line(s) of code highlighted and to demonstraterthaswer using an appropriate sample run

showing inputs and outputs.

114

A Running total and limit plan
while (payment < amount_due) {

System.out.print ("Please insert coin: ");
coins = keyboard.nextInt():;

switch(coins) {
case 50 : payment += 0.50;
break;
case 20 : payment += 0.20;
break;
case 10 : payment += 0.10;
break;
A Valid data entry plan
default : System.out.println("This machine accepts 50 cent, 20 cent, and 10 cent;
coin only.") break;

}

System.out.printf ("Amount of money deposited: $.2f ", payment);

}
Assume that the following line of code is added.

balance = payment - amount due;
System.out.printf (" Your coffee is ready. Balance: %.2f ", payment - amount_due):

System.out.print (" Another selection of coffee? (N to stop the program): "):;
coffee = keyboard.next().charAct(0);

Figure 5.4: Excerpt from a program solution for reflection exse

In the Completion condition, participants receiveslo different exercises, namely a
completion and a modification exercise. The com@teexercise required participants to
complete the partial program solution pertaining taumber of instances of plan structure. In
particular, they had to complete questions conaogrthe structure of incomplete solutions to
the worked-example based on the given problem Sp&ioon (van Merriénboer & Paas,

1990). The participants received immediate feedlmackhe correctness of their answers for

the line of code chosen from the menu or the lineode inserted into the textbox.

Following the completion exercise, participants evpresented with a complete solution to
the previous program completion exercise togeth#r imstructions to modify the program.
For this exercise, participants had to determinatwddditions and deletions the program

needed to ensure it solved the modified problem.

115

In the Paired-method strategy, participants reckave&ombination of both worked-example

strategies, starting with the Structure-emphasistragegy and then the Completion strategy.

After studying or working with each worked-exampleblem, participants were requested to
give an estimation of the difficulty of the leargimethod and of the degree to which they

had learned any new Java concepts from the mat€rial effort).

In the transfer phase, a program development adohgdest was administered to measure
the participants’ ability to transfer their knowtgd In this phase, the participants were asked
to solve four programming problems for which trensfer distance varied, i.e. distinguishing

between near and far transfer problems.

Near-transfer problems were characterised as hawvined-example problem’ structures
similar to those studied in the learning phasevatit new surface stories not encountered

previously (see Table 5.4).

Far-transfer problems were characterised as stalltudifferent from the worked-example
problems encountered in the learning phase, sjightire complexvord problem statements

and required different problem solving procedures.

The procedure for the transfer phase was as foll&Wf the four transfer problems were

identical across the three strategy groups. Theatas accompanied with an answer booklet
in which participants were to write their prografns. pen and paper based). One problem
sheet was given at a time and participants onlytigetnext problem sheet when they had

completed and handed in the current one. The paatits were given up to 30 minutes to

116

solve each task, though they could hand in theeatiwmne much earlier than the time allotted
to proceed with the next problem. Thus, the ovamlk given to complete these problems
was 2 hours. Participants were advised not to gk ba a previous problem to continue
working on its program solution. After working wigmach problem, the participants were
requested to give an estimation of the mental effery had invested in solving the problem

and the time at which they had completed the prolda the problem sheet given.

Note that the experiment compared the effects migusorked-examples in three ways, with
all three designed to encourage learners to enigag@gnitive processes relevant to schema
construction. Moreover, the experiment was designesuch a way that the intrinsic load
was constant as much as possible across the tiadegy groups (i.e. without altering what
needed to be learned). In other words, the elem&tactivity essential to the materials to be
learned was constant across the three groups. Hangedifferential effects of the three
strategy groups could be regarded as a functidheoflifferent instructional procedures. Note
further, that the experiment was not concerned tiehrelative strength and weaknesses of
the three strategies described above as opposedpsaprogram generation strategy, given
the latter's negative consequences for schema stiqni (see Sweller, 1988). Finally,
although there is some overlap between the threstegies used, the experiment was
designed to tease out the subtle differences betwesn in terms of their ability to promote

schema acquisition and transfer.

117

Near transfer
Vending machine
problem®
Bus ticket machine

Table 5.4:Word problemstatementor the transfer phase

Descriptions
To write a program that accepts money for the caygaself-service ticket machine. The program stiadmpute the price d
the bus ticket, given the Zone the user wisheottogand the type of journey. The price is comguirce the user types N
the Zone (i.e. stop making further choices). Tiket will be dispensed when at least the pricehef hus ticket has been
inserted. The program must keep track of the amotimioney deposited by the user one coin at a tocakulates and gives
back the total change.

=

Game-based problem
Hi-Lo number guessing
game®

Finance-related
problem
Savings accourt

Far transfer Descriptions

To write a program, called Hi-Lo number guessingigdhat lets the user guesses the computer-gedesatest-number in the
least number of tries. The secret number is améntbetween 1 and 100, inclusive. When the useemakguess, the program
replies with Hi or Lo depending on whether the guesigher or lower than the secret number.

To write a program that prompts the user to emeairaount to be deposited for number of months.s Should continue unt
the user types -1 for the amount. The program ldhtalculate and display the total amount in theoaat at the end of every
month. The program should also display at its &edadtal interest earned since the start (i.efiteemonth). The interest rate |s
fixed at 5% per annum.

Finance-related
problem
Depreciatior®

To write a program to calculate depreciation ofageet worth RM10,000 over 5 years with expectedpsealue of RM1000.
The program should display a table summarising epretiation (e.g., depreciation expense, accunuiidéereciation, and o
on). The annual depreciation rate is 40%. Note ttaak is needed so as to prevent the calculatad eadepreciation at end
the fifth year falling below the estimated scrajuea

® Problem adapted from An Introduction to Prograngnitsing C++ by Kenneth C. Mansfield Jr. and Jame&ntonakos, Prentice Hall (1997)
® Problem taken from An introduction to object-otighprogramming with Java by Wu, C. Thomd¥ Etlition, McGraw-Hill Higher Education (2006)
” Problem adapted from Introduction to Java Programgry Y. Daniel Liang, 8 International Edition, Pearson (2009)

8 Source: Wikipedia

118

5.3.3 Instruments

5.3.3.1 Index of Learning Stylesinventory (ILS)

The Felder-Soloman Index of Learning Styles questire (ILS) (Felder & Soloman, n.d.)
is an instrument that helps to determine partidiggreferred learning style. The instrument
was chosen partly because it has been used privioushe programming education
literature. Also, it is freely available and can beaccessed at

http://www.engr.ncsu.edu/learningstyles/ilsweb.htfhe ILS questionnaire consists of 44

guestions and was administered to the participnessess their learning style preferences
on the four dimensions (i.e. active/reflective, smg/intuitive, visual/verbal, and
sequential/global). Each dimension has 11 questiwitl two options for answers related to
one or the other category of the dimension (Fefd8purlin, 2005). For example, Figure 5.5
depicts the active/reflective dimension of the IW#here scores -/+ 5 to 11 indicate a

moderate to strong preference and scores +3 tali@ates a balanced learning style.

Active Balanced Reflective
-2 9 -7 5 -3 1 1 3 5 7 9 11

Figure 5.5: The active/reflective dimension of the ILS

The experiment was particularly concerned with dabgve/reflective dimension of learning
styles. Two versions (pen and paper based) ofltBenlere administered to the participants.
These were an English version and a Malay versenr, Appendix C and D. The English
version was administered to the International sitgleand that the Malay version was

administered to the local students in order to mése the effectiveness of the instrument.

119

5.3.3.2 Operation word span (OSPAN)

The operation word span (OSPAN) is a task thatsh&dpdetermine participants’ working
memory capacity, as introduced by Turner and En@@e89). The OSPAN task was
administered online using Web-OSPAN, developed layyd Lin and is available at

http://kinshuk.athabascau.ca/webospavié decided to opt for the online version of OSPAN

task mainly because it is much easier to adminisigd monitor a large number of
participants at one time. For this task, the pgoaicts were shown an arithmetic equation
such as (2 * 5) + 3 = 13 and they had to answetthvanehis was true or false. A word was
presented after each operation. The equation-wandvpas repeated several times (2 to 6
times) and at the end, participants were askeddallrthe words in the correct order. At the
end of OSPAN task, participants were asked to wiite/n the scores obtained (as the tool
could not provide an automatic recordirfgcility). See Appendix E for the pen and paper
based method for recording the scores. As propbgetiurner and Engle (1989), the three
OSPAN scores include a process measure, a workamgary capacity value (WMC value),
and a set size memory span. Whereas the processumae@fers to the total number of
correct calculations (scores ranging from 0 to @, WMC value refers to the total number
of correctly recalled wordécores ranging from 0 to 60). The set size merspan refers to
the maximum set size of the words recalled cowydsttores ranging from 0 to 6). The latter

two measures were also concerned with the corrder of the words recalled.

® Web-OSPAN is built using PHP 4 in which some & #yntax and class used is out dated and no longer
supported by the latest PHP version.

120

5.3.3.3 Programming pre-test

The programming pre-test consisted of two secti@ection 1 covered questions on the
declaration and initialization of variables, Boaleaperators, and selection statements.
Section 2 covered questions related to the topioabs. The maximum total score was 20

marks. See Appendix F for the programming pre-test.

5.3.3.4 The 5-point rating scale for cognitive load measures

Two different types of cognitive load were assesdadng the learning phase, namely
germane cognitive (GCL) and extraneous cognitiael IiECL) by adapting the 9-point rating
scale developed by Paas (1992) to use a 5-poingrstale. The adapted 5-point rating scale
has been used with the aim of assisting the ppaints toaccuratelyevaluate their perceived
effort and difficulty. The question for evaluatiggrmane load or effort was “How much new
knowledge and skill did you acquire from working tims particular problem?” (the scale
ranging from “Not at all” to “Very much”). The quisn for evaluating extraneous load or
difficulty was “How difficult did you find it to larn things in the recent activity?” (the scale
ranging from “Very easy” to “Very difficult”), asdapted from Kalyuga, Chandler et al.
(1998) and Cierniak, Scheiter et al. (2009). Thedengs were logged by LECSES. With
regard to the transfer phase, participants weredask rate their reported mental effort in
solving the problem on a 5-point rating scalesgnag from “very low mental effort” to
“very high mental effort”. The question for evalungt mental effort was “Please rate your
perceived mental effort on solving this problemheTparticipants were asked to write down
the rating on the problem sheet. The other maimcgoof cognitive load, intrinsic cognitive
load (ICL) was not measured. That is, the ICL wagtlkconstant as much as possible across

the three strategy groups i.e. by not altering wied needed to be learned across the groups.

121

5.3.4 Participants

The participants were undergraduate students atFdwilty of Computer Science and
Information Technology, University of Malaya and@fed in an introductory programming
course. The bulk of the participants were beginngl® had no prior programming

experience, however, some participants had a fitbgramming experience.

5.3.5 Scoring

The quality of acquired schemata were determined gt of criteria (i.e. a marking scheme)
applied to the answers to the problems in the teartests, as described in Table 5.5. An

example of a marking scheme for the Bus Ticket Maeproblem is as follows:

Table 5.5: Marking scheme for Bus Ticket Machine problem

Criteria Points

Logical flow of a program. The following sub-proses must be

represented in correct, logical order in a way thakes a program

execute its specified task.
- Select aticket 1
- Make a payment 1
- Calculate total change 1

Plan structures. Answer must show correct undedstgrof plan’s

usage and its role.
- Initialisation plan 1
- Loop entry condition, sentinel-controlled plan 1
- Running total and limit plan 1
- Valid data entry plan 1

Correct usage of selection statement (i.e. if/efsease). 3

Total points that could be earned:
Note: 1 points for correct answer or 0 points fararrect answer.

The selection statement was also counted in thee oo it was an essential element of the
solution. For the selection statement, a total gots was given for a completely correct

usage of the selection statement, however poimisdrdepending on theccuracyof answer.

122

5.4 Proposed statistical analyses and measured valies

The main experiment was largely quantitative. herémpirical evaluation, several measures
were taken using subjective ratings (e.g. menfalf objective measures (e.g. performance

post-tests) and instructional efficiency measueeg. (earningputcomeefficiency).

Other measures included the Web-OSPAN values, ¢hees on the ILS instrument that
determined preferred learning style and the scamesthe programming pre-test, an
instrument to measure participants’ prior progranmgnknowledge. Analysis of data was

undertaken through the use of Statistical Packag8dcial Science (SPSS).

Prior to doing any statistical analysis, descripthtatistics were performed in order to obtain
the mean and standard deviation of each varialtleerQests checked the scale’s internal
consistency (reliability of a scale) with Cronbachlpha coefficient. Exploratory analyses of
the data for each strategy group were conductedhnihcluded a test of normality using the
Kolmogorov-Smirnov test and a test of homogeneftywariance using Levene’s test. The
following sections further describe the statistiaahlysis, together with the dependent and

independent variables.

5.4.1 Web-OSPAN

Pearson’s r or Spearman’s Rank-order correlatios wsed to describe the relationship
between the WMC values and the process measures@rgize memory span), in terms of
the strength of the relationship and its direct{igure 5.6). Spearman’s rho was used to
investigate a relationship betweenadinal and acontinuousvariable (Muijs, 2004 p. 155).

Figure 5.7 shows the relationship between ILS \@ahrel the three Web-OSPAN measures.

123

Variable
Continuous:WMC values

Continuous:Process measure and set
Size memory span
Note: Parametric statistic: Pearson’s r, non-patacnalternative: Spearman’s rho.

Variables

Figure 5.6: Exploring relationships between WMC values angoiWeb-OSPAN measures

Independent variable
ContinuousILS values

Dependent | Continuous:Process measure, set
variables size memory span, WMC values
Note: Parametric statistic: Pearson’s r, non-patacnalternative: Spearman’s rho.

Figure 5.7: Exploring relationships between ILS values and WO&PAN measures

The Chi-square measure describes the relationstipelen twonominal (i.e. categorical)
variables, i.e. different learning style categoaasd WMC categories, see Figure 5.8. The test
also determines whether high WMC learners and loMGNlearners were differently

represented in the different ILS categories.

Independent variable
Nominal: ILScategory’

Dependant Nominal: WMC category
variable

Note:*High WMC (>= 30), low WMC (< 30)° Active (scores from -5 to -11), Balanced (scoresnfr-3 to 3),
Reflective (scores from 5 to 11). Non-parametrig:square.

Figure 5.8: Exploring relationships between ILS category and@/category

124

5.4.2 Learning phase

A correlation analysis was used to describe thaticglship between the ILS values and the
recorded effort (and reported difficulty) in terroEboth the strength of the relationship and

its direction, see Figure 5.9.

Independent variable
ContinuousILS values

Dependant | Continuous:effort and difficulty
variables scores
Note: Parametric statistic: Pearson’s r, non-pataocnalternative: Spearman’s rho.

Figure 5.9: Exploring relationships between ILS values andreffand difficulty) variables

An independent-samples t-test or Mann-Whitney W wess used to test differences between
the two independent strategy groups on a continunaasure, i.e. recorded effort and
difficulty. In contrast, a one-way ANOVA or Krusk#Vallis test was used to describe
differences between the three independent strajegyps on the measured variables. See

Figure 5.10.

Independent variable
Nominal: strategy group
Group S Group C Group P

Dependent | Continuous:effort and difficulty
variables scores

Note: Parametric statistic: Independent-samplesstti-tOne-way ANOVA (three or more groups), non-
parametric alternative: Mann-Whitney U test, KrusRéllis test (three or more groups).

Figure 5.10: Exploring differences between strategy groupsftorteand difficulty variables

125

A paired-samples t-test or Wilcoxon Signed Rank tess used for repeated measures when
the participants were measured under two diffecenditions, i.e. Set 2 and 3. See Figure
5.11. More specifically, the test was used in parénsure that the sets corresponded to the
desired levels of difficulty, from simple to complesequencing as proposed by van

Merriénboer, Kirschner et al. (2003).

Independent variable
Nominal: strategy group
Group S Group C Group P
Set2| Set3 Set? Setl3 Sef2 Set2

Dependent | Continuous:effort and difficulty
variables scores
Note: Parametric statistic: Paired-samples t-temt;parametric alternative: Wilcoxon Signed RanktTe

Figure 5.11: Exploring repeated measures for effort and difficuariables

An independent-samples t-test or Mann-Whitney U te@as used to investigate any
differential effects of the three different workedample strategies on the active learners and

the reflective learners, see Figure 5.12.

Independent variables
Nominal: strategy group, ILS category
Group S Group C Group P
Act Ref | Act Ref | Act Ref

Dependent | Continuous:effort and difficulty
variables scores

Note: Act = Active learners, Ref = Reflective learsi Parametric statistic: Independent-samplestt-ten-
parametric alternative: Mann-Whitney U test.

Figure 5.12: Exploring between-within differences on effort aifficulty variables

126

5.4.3 Transfer phase

A correlation analysis was used to describe thaticglship between the ILS values and the

dependent variables, as shown in the following rdiag(see Figure 5.13).

Independent variable
ContinuousILS values

Ordinal: mental efforf
Dependent
variables Continuous:mental efforf, time on
tests, post-tesfs

Note:® mental effort rating score on the post-t8she sum of mental effort scores (distinguishinteen near
and far transfer testsf. the sum of post-test scores (distinguishing betweear and far transfer tests).
Parametric statistic: Pearson’s r, non-parameliéecraative: Spearman’s rho.

Figure 5.13: Exploring relationships between ILS values and tadegffort/time on tests/post-tests

A correlation analysis was used to describe thaticglship between the transfer tests and

mental effort (and time on tests), as shown infdlewing diagram (see Figure 5.14).

Variable
Continuous:post-tests

Ordinal: mental efforf
Variables Continuous:mental efforf, time on
tests

Note: ® mental effort rating score on a post-t8she sum of mental effort scores (distinguishingreen near
and far transfer testsf. the sum of post-test scores (distinguishing betwaear and far transfer tests).
Parametric statistic: Pearson’s r, non-parameligcraative: Spearman’s rho.

Figure 5.14: Exploring relationships between post-tests andtaheffort/time on tests

For the analysis of the transfer tests, the samanpetric and non-parametric techniques as
with the learning phase were used to test diffe¥sroetween independent strategy groups on

the measured variables. See Figure 5.15.

127

Independent variable
Nominal: strategy group
Group S Group C Group P

Ordinal: mental efforf
Dependent
variables Continuousmental efforf, time on
tests, post-tesfs

Note: ? mental effort rating score on a post-t8she sum of mental effort scores (distinguishingneen near
and far transfer testsf. the sum of post-test scores (distinguishing betwsear and far transfer tests).
Parametric statistic: Independent-samples t-tesg-@Way ANOVA (three or more groups), non-parametric
alternative: Mann-Whitney U test, Kruskal-Wallistéthree or more groups).

Figure 5.15: Exploring differences between strategy groups ental effort/time on tests/post-tests

The same statistical techniques for the repeateasunes as for the learning phase were used
to investigate any change in the participants’ es@cross the two conditions (i.e. near and
far transfer tests), see Figure 5.16. More spexificthe test was used in part to find out if
any of the strategies showed significant changesames, and if so, the extent to which that

strategy promoted the transfer of programming gob$olving skills.

Independent variable
Nominal: strategy group
Group S Group C Group P
Near| Far| Neanq Farl Near Far

Dependent
variables
Note: Parametric statistic: Paired-samples t-temt;parametric alternative: Wilcoxon Signed RanktTe

Continuous:mental effort, post-tests

Figure 5.16: Exploring repeated measures for mental effortzost-tests variables

For the analysis of the results, the same pararnatid non-parametric techniques as for the
learning phase were uséal investigate any differential effects of the thmdifferent worked-

example strategies on the active learners anceflextive learners. See Figure 5.17.

128

Independent variables
Nominal: strategy group, ILScategory
Group S Group C Group P
Act Ref | Act Ref | Act Ref

Dependent Continuoug: mental effort, time on
variables tests, post-tests

Note: Act = Active learners, Ref = Reflective learsi” distinguishing between near and far transfer tests
Parametric statistic: Independent-samples t-test;parametric alternative: Mann-Whitney U test.

Figure 5.17:Exploring between-within differences on mentabeftime on tests/post-tests

A correlation analysis was used to describe thaticglship between the programming pre-
test scores and the overall post-test scoresnmstef both the strength of the relationship and

its direction, see Figure 5.18.

Independent variable
Continuous:pre-test scores

Dependant
variables
Note: Parametric statistic: Pearson’s r, non-pataecnalternative: Spearman’s rho.

Continuous:overall post-test scores

Figure 5.18: Exploring relationships between pre-test and pesttvariables

The same parametric and non-parametric technigaidsrahe learning phase were used to
compare the post-test scores of the high prior kedge learners and the low prior

knowledge learners in each of the three strategypy. See Figure 5.19.

Independent variables
Nominal: strategy group, Hi/Lo category
Group S Group C Group P
Hi Lo Hi Lo Hi Lo

Dependent
variables
Note: Act = Active learners, Ref = Reflective learsi Parametric statistic: Independent-samplestt-ten-

parametric alternative: Mann-Whitney U test.

Continuous:overall post-tests

Figure 5.19: Exploring between and within differences on ovguakt-tests

129

5.4.4 Learningoutcome efficiency

Learningoutcomeefficiency was measured using the formula intreduby Paas and van
Merriénboer (1993). The formula looks at the mertibrt reported by the participants

during their post-tesand their post-test scores, so deriving learoutgomeefficiency (E) :

(Z post-test — Z reported mental effort on post—test)

V2

First, the raw mental effort scores and post-tesires (i.e. henceforth referred as
performance) for each participant were standarda®edss the three strategy groups, yielding
z-scores. Then, the mean mental effort z-scores raedn performance z-scores were

combined via the learningutcomeefficiency formula, giving efficiency meankky.

The means of the mental effort z-scores (R) andpw®ormance z-scores (P) for each
strategy group were plotted in a Cartesian grajpigus point PR, P)coordinate system. The
upper left of the graph indicates a relative insee@n efficiency whereas the lower right
indicates a relative decrease in efficiency. Thagdnal line R = P indicates zero efficiency
(IE =0). ThelE is determined as a perpendicular distance fromirat p1 the graph to the line
(Paas & van Merriénboer, 1993). Finally, particiggarearningoutcomeefficiency scores

were analysed using a one-way ANOVA.

5.4.5 Learningprocess efficiency

The formula for computing the learningocessefficiency is similar to the one used in
computing learningutcomeefficiency. This time, the reported difficulty es and post-test

scores were transformed into z-scores using thedgmaean across the three strategy groups.

130

Specifically, the formula looks at the reportedidifity (R) during learningand performance

in the post-tests (P), so deriving learnprgcessefficiency CE) as shown below. The mean

z-scores for each strategy group were represesiad a point AR, P coordinate system.

(Z post-test — Z repoted difficulty)

V2

In the same way as favutcomeefficiency (E), the relativeprocessefficiency LE) is

determined as a perpendicular distance from a pothte graph to the R = P line.

5.4.6 Task involvement

(Z recorded effort + Z post—test)

V2

The above formula is an adapted version of the itasdvement formula introduced by Paas,
Tuovinen et al. (2005). The adapted formula oftdek involvement was computed based on

effort (i.e. germane) investetlring learningand performance in the post-tests, so deriving

task involvementI\V), where the Zs were standardised scores. In adystve used effort
invested during learning as opposed to mental teff@. the amount of cognitive resources
allocated (Paas, Tuovinen et al., 2005 p. 28). W¢kned to use perceived effort as it makes
sense to determine relative involvement of learneiertain instructional conditions during

the learningprocess

Note that, the studies conducted by Corbalan, Kesté van Merriénboer (2008; 2009) used
effort (i.e. germane) or mental effort invested idgrtraining, combined with learning

outcomes or transfer test scores to calculateitashvement. Nevertheless, the formula used

131

to calculate task involvement was somewhat diffenertheir two studies; that in the 2008
StUdy: (Zlearning outcomes™ Z germane Ioa}j/ \/2. whereas in the 2009 StUdy: &%sfer testt Z mental
efiort) / V2. According to Paas, Tuovinen et al. (2005), thpangight of the Cartesian graph

indicates a relative high task involvement wheitbaslower left indicates a relative low task

involvement.

55 Conclusion

The chapter has briefly discussed a pilot expertnwdnich led to an improvement in the
design of the main experiment and its instrumeiitee chapter has also presented the
experimental design, covering the phases and puoesdof the main experiment, the
experimental materials, the instruments and theggaants. Lastly, the chapter explained the

statistical analyses for measuring the dependaidhlas of the main experiment.

132

Chapter 6 The learningprocess

6.1 Introduction

This chapter describes an experiment on learniogramming via worked-examples. It
focuses on the learning phase of the experimeihte riext chapter focuses on the transfer

phase.

The aim of this experiment was to investigate howrk&d-examples affect learning
programming. The experiment also examined the @etgrevhich individual learning style
might influence the learning process. In particulae main objective of this experiment was
to observe any differential effects on learningngsithree different worked-example
strategies, taking into account learners who sitoegther the Active or Reflective dimension
of learning style of the Felder-Soloman Index oaireng Style (ILS) questionnaire (Felder
& Soloman, n.d.). These strategies are the Streitorphasising strategy, the Completion
strategy, and the Paired-method strategy (that swslboth the Structure-emphasising and
Completion strategies). The effects are cognitieadl (i.e. germane cognitive load,
extraneous cognitive load), the quality of cogmitischemata acquired, and transfer
performance. The focus of the experiment was ondpie of loops in the Java programming

language.

The main experiment was conducted from 14th of gml§0th of August 2010 at the Faculty
of Computer Science and Information Technology,vdrsity of Malaya. Prior to the main

experiment, a pilot study (as discussed in Chapteras carried out at the same faculty from

133

17th to 18th of June with 6 learners who were répgdhe course in the Special Semester
(2009/2010). The pilot study was conducted in otdeissess whether the worked-examples
were of appropriate complexity, to ascertain protdeof measuring different kinds of

cognitive load and to gauge learners’ reaction tawalifferent worked-example strategies.

6.2 Overview of research questions and hypotheseas the learning phase

This section provides an overview of the reseansdstions and hypotheses for the learning

phase. More specifically, we addressed the follgwasearch questions:

1. Effective design of worked-example strategy does inoitself guarantee positive

learning outcomes (see Atkinson & Renkl, 2007).

a. To what extent does the design of worked-exampégegjy foster schema acquisition

and transfer?

2. Learning style is a factor in determining whethearhers benefit from studying

worked-examples.

a. Does the benefit from studying worked-examples matedi by individual learning

styles?

3. Learning style might interact with learners’ cogret load and will determine the

quality of cognitive schemata acquired, hence fear learning.

134

a. Is there any interaction between learning stylelaadhers’ cognitive load?

b. What difference does the learning via worked-exasstrategy make to the quality
of the cognitive schemata acquired and to the fieared programing problem solving

skills?

In comparing the learning styles with respect takivg memory capacity, we tested the

following hypothesis:

1. Learners with high working memory capacity tengbtefer a reflective learning style.
On the contrary, learners with low working memoapacity tend to prefer an active

learning style (Graf, Lin et al., 2008) — (H3).

In comparing the effects of the strategies, weetk#ite following hypothesis:

2. Given the same amount of time on task with simitestructional content, it was
hypothesised that the Paired-method strategy wieald to better learnifighan with
either the Structure-emphasising strategy or then@etion strategy alone (one-
tailed). No prediction was made with regard to tieect comparison between the

Structure-emphasising strategy and the Completrategyy (H1).

Y In terms of the learningrocess(i.e. higher effort and lower difficulty)

135

In comparing the effects of the learning styles following hypotheséswere tested:

3. Active learners would perceive their effort andfidiflty as lower and higher
respectively, than reflective learners in the Strrteeemphasising strategy (H4-Al)

and in the Completion strategy (H4-A2).

4. Reflective learners would show no difference widspect to their perceived effort
and difficulty in the Structure-emphasising strat€gl4-01) and in the Completion

strategy (H4-02) as compared to the Paired-methrategy.

5. Active learners would perceive their effort andfidiflty just about or equally high

and low, respectively in the Paired-method stratégyreflective learners (H4-03).

Note the hypotheses for the transfer phase witldszribed in the next chapter.

6.3 Methods

6.3.1 Participants

The experiment involved 117 participants. The mgjoof the learners were first year
undergraduate learners undertaking the WXES1116/824H4 course (Programming 1) in
Semester 1 (2010/2011). A small number of learnepgating the course in this semester

were also participants. The experiment was condwesepart of the course topic on loops and

2 The H4 hypothesis in Chapter 3 is broken down fnsmib hypotheses: H4-A1, H4-A2, H4-01, H4-02, 134-0

136

the transfer test was administered as the learnacs’'semester test (i.e. near transfer tests).
Learners were given an extra 5% as part of ovasséssment as an incentive for taking part
in the experiment. Prior to group allocation, a-fg& was administered to assess the
learners’ level of knowledge in programming. Leasneere allocated equally and pseudo-
randomly (based the learner’s learning style) ithte three strategy groups. That is, each
group had the same number of active, balancedredledtive learners irrespective of level of
prior knowledge (i.e. pre-test scores). We didetpially allocate learners based on their pre-
test scores, the reason being that the main aithi@experiment was to measure the effects
of the strategies on the active and reflectiverlees. Out of the 117 learners who took part in
the experiment; data for just 110 learners who ¢@dpleted all the tasks required for the
main phases of the experiment were finally usedf@lysis. The participants’ programming
backgrounds across the three strategy groups uet8te-emphasisingi(= 37), Completion

(n = 36), Paired-methodh (= 37) -- are summarised in Table 6.1.

Table 6.1: Participants’ programming backgrounds

= Background = ‘

Group S Act 3 6 9
Ref 1 4 5

Bal 9 14 23

Total 13 24 37

Group C Act 5 4 9
Ref 3 3 6

Bal 4 17 21

Total 12 24 36

Group P Act 2 6 8
Ref 0 6 6

Bal 7 16 23

Total 9 28 37

Note: Group S = Structure-emphasising, Group C mgetion, Group P =
Paired-method; Act = Active, Ref = Reflective, BaBalanced. Yes means
the participant had some background in programming.

137

The participants’ categorical programming backgobwas roughly equal (i.e. the pattern of

numbers with and without programming backgroundpsthe three strategy groups.

6.3.2 Materials

6.3.2.1 Assessment of Learning Style

The ILS questionnaire (Felder & Soloman, n.d.) vealsninistered to the participants to
determine their preferred learning style. The expent was particularly concerned with the
active/reflective dimensions of learning styles.olwersions (pen and paper based) of the
ILS were employed, i.e., the English version wasiagstered to the International students

and that the Malay version was administered tddbal students.

6.3.2.2 Assessment of working memory capacity

The operation word span (OSPAN) (Turner & Engle899was administered to the
participants using Web-OSPAN, developed by Taiyu Oihe OSPAN is a task that helps to

determine participants’ working memory capacity.

6.3.2.3 Assessment of cognitive load

Two different types of cognitive load were assedgsethe learning phase, namely germane
and extraneous cognitive load using 5-point ratsogles. The question for evaluating
germane load oeffort was “How much new knowledge and skill did you aocgurom

working on this particular problem? “ (the scalagimg from 1 Not at all to 5 Very much).

138

The question for evaluating extraneous loadifficulty was “How difficult did you find it to
learn things in the recent activity? (the scaleggnag from 1 Very easy to 5 Very difficult).
With regard to the transfer phase, participantsevasked to rate their reported mental effort
in solving the problem on a 5-point rating scalasging from “very low mental effort” to
“very high mental effort”. The question for evalungt mental effort was “Please rate your

perceived mental effort on solving this problem”.

6.3.2.4 Programming pre-test

As mentioned in the previous chapter, the instrunf@nthe programming pre-test consisted
of two sections. The first section covered questioglated to fundamental programming
knowledge (e.g. declaration and initialization aifriables, Boolean operators, and selection
statements). The second section covered questtaigd to the topic of loops. The pre-test
was administered 2 days after the learners werengav2 hour lecture on the topic of loops
(both the lecture and the pre-test were conductélde same week). The following week, the
learners were given two lab questions on the topioops to work with during their normal
laboratory hours (2 hours) and after a further gsd@uring the same week), the learning

phase (the main experiment) was conducted.

6.3.2.5 Worked-example problems

The experimental materials for the learning phase Figure 6.1) consisted of 3 sets of two
isomorphic worked-examples, namely Set 1, Set 23%atd3. Set 1 was treated as warm-up
materials to help the learners familiarise themeselwith the LECSES system. Letters (S, C,

and P) indicate strategy format, (i.e. Structurgleasising, Completion, and Paired-method)

139

for Group, respectively. Numerals represent thekedrexample problem number. The
worked-example problem sets were identical acrbssstrategy groups, but the problems
were presented differently according to one of theee strategy formats. The worked-
example problems in each set were similar witheespo the program’s plan structures (i.e.
similar problem category) however each was exemgliby a different surface story. The
nature of the worked-example problems were disclss€hapter 5. Each worked-example
consisted of a programming problem, a sample rongaWith a final program solution to the

problem.

Warm-up Learning phase
Setl Set 2 Set 3

S S1|S2| S3 | S4| S5 | S6

Groups Transfer phase

C Cl| C2 | C3|C4|C5] Cb TT1-TT4

P S1 | C2| S3|C4| S5 | Co6

Figure 6.1: Experimental materials

Materials for the transfer phase consisted of 2 séttwo near and far transfer problems.

These materials will be described in the next arapt

6.3.3 Method for statistical data analysis

Preliminary analyses were conducted prior to rugramy of the statistical analysis. The
preliminary analysis involved running descriptiviatsstics on each variable in order to
ascertain the characteristics of the sample (famgte, mean and standard deviation) as well
as to check the variables for violation of the agstions of normality, linearity, and

homoscedasticity (Pallant, 2007 p. 53). The véemlwere discussed in detail in Chapter 5.

Another pre-analysis test was to check each scateéynal consistency, calculated by

140

Cronbach’s alpha coefficient; that is to check thkability of subjective ratings such as

reported mental effort.

The analysis for the learning phase and the traqdfase were conducted separately. The
analysis was conducted in two ways, by comparirey e@ffects of the strategies and by
comparing the effects of the learning styles. Thalysis for comparing the effects of the

strategies aimed to observe atifferential effects across the three strategy graoes. By

contrast, the aim of the analysis for comparing d¢fffects of the learning stylesas to

investigate anyifferential effects using the three different worled-examples strategies

for the active learners and the reflective learnersThe analysis for comparing the effects

of the learning styles involved only data repres@na preference for active learning style
(values smaller than or equal to -5) and refleckeagning (values greater than or equal to 5)
on the active/reflective dimension of the ILS. Ndfeat the balanced learning style scores

ranges from -3 to 3. Figure 6.2 depicts the ag®flective dimension of the ILS.

Active Balanced Reflective
-1 9 -7 5 -3 41 1 3 5 7 9 11

Figure 6.2: The active/reflective dimension of the ILS

In addition,comparisonanalysis methods (see section 6.3.3.2) were peebetweerthe
different strategy groups as well asthin each of the strategy group. The subsequent
paragraphs discuss the analysis for the Web-OSPANsutes as well as the analysis for

comparing the effects of the strategies and legrsiyles in detail.

141

6.3.3.1 Analysis for Web-OSPAN measures

An analysis of correlation was performed between working memory capacity (WMC)
values and the other measures of Web-OSPAN (praneasure and set size memory span)
using Spearman’s rho. Note that the distributiasprocess measure and set size memory
span were significantly non-normal. This correlatielped to determine just how significant
the WMC values were in relation to working memoaypacity (Graf, Liu, Kinshuk, Chen &
Yang, 2009). An analysis of correlation was alsacuwted between the ILS values and all
the measures of Web-OSPAN, using Spearman’s rhtheaslistributions for the ILS data
were significantly non-normal. This correlation waemputed in order to identify any
relationship between the ILS values on the acwflelctive dimension and working memory
capacity. That is, to see if the result of the elation analysis was in agreement with the
identified indirect relationship(Graf, Lin et al., 2008). A follow-up analysis wasnducted

using the Kruskal-Wallis test if the results indexha significant correlation.

Additionally, cross tabulation and chi-square testye used to explore the relationship
between pairs of categorical variables. Prior tonmg any of the tests, the values of WMC
were transformed into two categories, namely higi®and low WMC. Values greater than
or equal to 30 indicated high WMC whereas valuesllemthan 30 indicated low WMC.

Also, the values of ILS were divided into threeegptries (active, balanced, and reflective)
following Felder and Spurlin’s (2005) recommendasiqas cited in Chapter 2). The tests
were conducted in order to find out whether high @/Marners and low WMC learners were
differently represented in the different ILS catege as well as to check if there was an

association between the measured variables.

142

6.3.3.2 Analysis for comparing the effects of the strategies and learning styles

The analysis for comparing the effects of the sg@s consisted of a tegh explore
differencesbetween the three strategy groujmsaddition, for each of the strategy groups, a

test using aepeated measurevariable was conducted to investigate any chamdgarners’

scores under the two conditions (i.e. Set 2 andrefgr to Figure 6.1. Additionally, an

analysis of correlationto _explore the relationship between measured variables was

conducted for each of the strategy groups. Theyaisabf correlation helped to identify the
strength and direction of the correlation coefiiteeamong the measured variables. Note that

the ILS values were used in this instance.

In the analysis for comparing the effects of tharméng styles, the same tests were
undertaken (with the exception of test for repeate@dsures) to explore differences between
the two learning styles. This time the ILS categ®envere explored by runningcamparison

analysis method.

The comparisonanalysis was carried olttetweenthe different strategy groups and also
within each of the strategy groups. The former was dgnephitting the dataset into two
different learning style categories and by selgcangrouping variable called Group. On the
other hand, the latter was done by splitting thasizt into three different strategy groups and
by choosing a grouping variable named ILScategbhe betweengroups analysis aimed at
comparing differences between the strategy grdopssing on active and reflective learning
styles separately. Conversely, thighin groups analysis explored for differences betwéen t
two learning styles in each of the strategy grolUgble 6.2 summarises the comparison

analysis methods.

143

Table 6.2: Methods for comparison analysis

Split dataset Grouping variable:
Group
. "Active
betweerthe different groups Reflective Group S and Group P
Group C and Group P
Group S
*within each of the groups Group C Acti\lléi?]?jtel?g(;‘gctive
Group P

Note: # splitting the dataset causes the statistcalysis that follows to repeat for each strateggup
separately whereas the grouping variable is usettain statistical reports on the differences leetwthe two
learning styles within each strategy group; vicesador the between groups analysjgost-hoc comparison.

The subsequent sections discuss the measured leariabd analysis of results for the
learning phase. The same sections, specificallyHertransfer phase will be discussed in

Chapter 7.

6.4 Effort and difficulty scores

Prior to the learning phase analysis, tittal effort scores for each learner were calculated by
adding up the recorded effort scores from the tsammiorphic worked-example problems of
each set (see Figure 6.3). Similarigtal difficulty scores consisted of the addition of the
reported difficulty scores from the two worked-exdenproblems of each set. Edcial was
needed to investigate any change in learners’ sa@omss the two conditions (Set 2 and Set
3). Note that the 2 sets were measured at twordiftepoints and that the two worked-
example problems of each set were very differehatTs, each set contained two isomorphic

problems of a single type that varied in termshefrt complexity and loop structure.

Theoverall difficulty or effort scores were each the sumhagtotal difficulty or effort scores
from Set 2 and Set 3. In other words, tiverall scores consisted of the addition of the scores

from all four of the worked-example problems altibige. Theoverall scores were needed to

144

reflect the accumulated germane and extraneousito@gioad (i.e. effort and difficulty,

respectively) experienced during the whole learmihgse.

Learning phase
Set 2 Set 3

S3 S4 S5 S6

Total effort / Total effort /
difficulty scores difficulty scores
of Set 2 of Set 3

Overall effort / difficulty scores

Figure 6.3: Variables for the learning phase

Note that there were several missing values duméxpected technical problems associated
with the LECSES system (will be discussed in Cha@}eln calculating, théotal or overall
reported difficulty scores, if one of the difficyltscores associated with a learner was
missing, theiotal or overall value was treated simply as missing (nil) and m@&seplaced by
the meanvalue on the remaining difficulty score(s). Thensaprocedure was undertaken for

calculating other measured variables.

An exploratory analysis of the data for each grasys conducted which consisted of a test of
normality using the Kolmogorov-Smirnov test (or Ki&st) and a test of homogeneity of
variance using Levene’s test. The results of thé& Kest (see Table 6.3) faotal
effort/difficulty for the Set 2 and for the Set atd (all groups) showed that the distributions
appeared to be significantly non-normal. Despit#,tthe results of Levene’s test showed
(Table 6.4) that the variances were not signifigadifferent. The results of the K-S test for
the overall effort data (all groups) showed that the distiitmg appeared to be normal. For
the overall difficulty data for Group S, the distributions &aped to be significantly non-

normal, whereas for Group C and Group P, the Higiions appeared to be normal. The

145

results of Levene’s test showed that the variamegsesentingoverall data were not

significantly different.

Table 6.3: Tests of normality (Learning phase)

Group Kolmogorov-Smirnov
Statistic df Sig.
Structure- .149 36 .043

Totaleffort €mphasising
(Set 2) Completion .166 34 .018
Paired-method .220 36 .000
Structure- 192 37 .001

Total effort emphasising
(Set3) completion 135 34 118
Paired-method .139 29 157
Structure- .148 36 .044

Total emphasisin

difficulty phasising
(Set 2) Completion 216 34 .000
Paired-method 175 36 .007
Structure- 161 37 .016

Total emphasisin

difficulty phasising
(Set 3) Completion 165 35 .017
Paired-method .206 28 .004
Structure- 117 36 .200

Overall emphasising
effort Completion 145 32 .083
Paired-method 143 28 .149
Structure- .159 36 .021

Overall emphasising
difficulty completion 126 33 200
Paired-method 132 27 .200

Note:™ This is a lower bound of the true significance.

146

Thus, for the learning phase, non-parametric tesi®e applied (with the exception of the
overall effort scores), despite the fact that the variancecores was equal across the three
strategy groups. Moreover (specifically, the anialysr comparing the effects of the learning
styles), such tests were suitable given that eamhpgconsisted of small, unequal numbers of

active learners and reflective learners.

Table 6.4: Tests of homogeneity of variance (Learning phase)

Levene

Statistic dfl df2 Sig.
Total effort (Set 2) .586 2 103 .558
Total effort (Set 3) 246 2 97 .783
Total difficulty (Set 2) .300 2 103 741
Total difficulty (Set 3) 190 2 97 .828
Overall effort .604 2 93 .549
Overall difficulty .565 2 93 570

The analysis for comparing the effects of the stj@s was undertaken using the Kruskal-
Wallis test to explore differences in ttagal effort scores antbtal difficulty scores (for each
of the sets, distinguishing between Set 2 and Fati®ss the three different strategy groups.
A follow-up analysis was conducted using a non-petaic post hocprocedurdoy means of
the Mann-Whitney test if the results of the KrusWéllis test indicated significant
differences. Note that, the same set of analysasreg@eated fooverall difficulty scores. As
previously mentioned, the data for theerall effort scores were normal and a parametric test
was used. That is, an analysis was undertaken asome-way between-groups analysis of
covariance (ANCOVA) to compare the three differsttategy groups omverall effort
scores, while controlling for learners’ ILS valuésdditionally, a one-way between-groups
analysis of variance (ANOVA) was conducted to explthe difference iroverall effort

scores between the groups.

147

In addition, an analysis was undertaken using thiedAbn Signed Rank test to find out if
any of the strategy groups showed any changetal difficulty or total effort scores from
Set 2 to Set 3 and to ensure that the sets comdedao the desired level of difficulty, as

described in Chapter 5.

Besides, an analysis was performed by correlatimgtatal effort scores and théotal
difficulty scores on continuous scales with an petedent variable, namely the ILS values.
This analysis used Spearman’s rho rank-order @iioal coefficient (Spearman’s rho).
Specifically, these tests were used to find outtivrethere was a relationship between the
total effort scores or theotal difficulty scores and ILS values. If the resulttbé correlation
showed a significant association between, for msathe positive pole of active/reflective
dimension of the ILS (see Figure 6.2 for illustwal and the measured variables, a follow-up
analysis was conducted to compare a reflectiveepgate to a balanced preference over the
measured variables using non-paramegbast hocprocedure by means of Mann-Whitney
test. The comparison was performed in order to 6ot whether there existed significant
differences between the two learning style prefezenn terms of effort and difficulty scores.
In addition, since the focus of this experiment wasmedium to strong active and reflective

preferences, the comparison was conducted betwesga preferences.

In the analysis for comparing the effects of trerméng stylescomparisonanalysis methods
were employed using the Mann-Whitney U test, ongaenleasuringotal effort scores and
total difficulty scores for each of the sets, and ongeneasuring theverall scores for effort
and difficulty. Planned comparisons were appliedetst the research hypotheses. Table 6.5

presents the hypotheses and planned comparisons.

148

Table 6.5:Hypotheses and planned comparisons

Hypotheses Planned comparisons
H4-Al: Active learners would perceive theiffort (difficulty) | within group:
as lower (higher) than reflective learners in thetr&tegy Active compared to reflective and
(one-tailed). particularly looking at Group S.

H4-A2: Active learners would perceive theiffort (difficulty) | within group:

as lower (higher) than reflective learners in theti@tegy Active compared to reflective ang
(one-tailed). particularly looking at Group C.
H4-01: Reflective learners would show no differenctn betweerthe different groups:
respect to their perceivexffort anddifficulty with the S Group S compared to Group P.
strategy as compared to the P strategy.

H4-02: Reflective learners would show no differenctn betweerthe different groups:
respect to their perceivexifort anddifficulty with the C Group C compared to Group P.

strategy as compared to the P strategy.

H4-03: Active learners would perceive theffort (difficulty) | within group:
just about or equally high (low) with the P stratdige Active compared to reflective ang
reflective learners (one-tailed). particularly looking at Group P.

Note: Letters S, C, and P represent strategy foforatGroup S, Group C and Group P, respectively= S
Structure-emphasising strategy, C = Completiortestisg P = Paired-method strategy that combines thatts
and the C strategies.

6.5 Results

An alpha level of .05 was used for all the analyge8onferroni adjustment to the alpha
value was applied for the follow-up analysis if aaf the results indicated significant
differences. That is, the alpha value of .05 wasddd by the number of comparisons made,
hence giving a more stringent alpha value for aeit@ng significance level (Pallant, 2007 p.
228). As an effect size measure for parametricstase used the eta squargtt that is,
values <.06 indicate a small effect, values inrtirege between .06 and .13 indicate a medium
effect, and values >.13 indicate a large effecth@xp 1988). For a non-parametric test, we
used the effect size that is, values of .1 indicate small effect, nd8icate medium effect, .5
indicate large effect (Cohen, 1988). Significargules with an effect size are presented and

discussed. In addition, non-significant results@esented only if they provide at least an

149

effect size ofr| >= .05 (with the exception of the results of etation) and discussed if the
results provide at least a small to medium effext. Note that we conducted multiple tests
using Spearman’s rho for investigating the correet between several dependant variables.
This may have caused a Type 2 error to occur,ishaetting a significant result by chance.
To minimise the possibility of reaching such a wgaonclusion, a further analysis using the
Mann-Whitney U test was used to follow up the datren finding by adjusting the alpha

value according to the number of comparisons beiade.

Conclusions are based on a significant result autleffect size and also on a non-significant
result, but indicated by at least a small to medeffect size. In the latter case, the result
merely indicates a trend. The following paragraphsvide further guidelines on how we

derived conclusions.

For a null hypothesis: (1) The null hypothesis ve&septed if there was no significant

difference and the effect size was small. (2) Wiedato reject a hypothesis if there was no
significant difference, but there was at least alsto medium effect size. (3) We rejected the
null hypothesis if there was a significant diffecerand there was at least a small to medium
effect size. For an alternative hypothesis: (1) Blernative hypothesis was supported if
there was a significant difference and there wdsaat a small to medium effect size. (2) The
alternative hypothesis was also supported if theas a significant difference and there was
only a small effect size, however a caveat remaingd regard to the effect size. (3) The

alternative hypothesis was not supported if theas no significant difference and there was

only a small effect size.

150

6.5.1 Internal validity

Prior programming knowledge was analysed, usingedgst as an instrument, to identify its
possible effect on learning and transfer. Despitasgrandomisation of the participants to
groups, the Kruskal-Wallis test revealed that thetpst scores differed significantly across
the three strategy groups (GroupnS; 35; Group Cn = 36; Group Pn = 37),2% (2,n =
108) = 9.55p = .008. Specifically, there was a significant eliince between Group ®ldn
=9.00) and Group AMdn = 6.50),U = 374.50z = -3.23,p = .001, with a medium effect size

(r =-.38). Note that the distribution for pre-testes of Group C was non-normal.

Table 6.6: Descriptive statistics for pre-test scores forttivee strategy groups

Group S Group C Group P
n M SD N M SD n M SD
Pre-test scores 35 7.73 3.25 36 8.72 2.64 37 6.76 291

Note: Pre-test scores (0-20)

Note that, the learners scored largely in the Besttion of the pre-test, i.e. on declarations
and initialisation of variables, the use of Booleaperators, and IF/ELSE and CASE
structures (10 points altogether). The second@ecii the pre-test was so difficult that very
few learners actually scored in that sectionvisgte out the loop’s output and write a simple
program containing a loop (10 points). We concltide the learners across the three strategy
groups came to the experiment with basic programgnkinowledge, but with very little
knowledge on the topic of loops. It was unfortiendnat there was an apparent floor effect
for the pre-test and that there were some diff@gmc elementary programming knowledge
between the three groups. However the relativeljoum lack of knowledge of loops across
the three groups means that the groups were bregdiyalent as far as the main topic of the

worked examples was concerned.

151

Additional analyses (see Chapter 7) were conductethe transfer data to investigate any
differential effect of the learners’ level of prieknowledge (categorised post-hoc, based on

their pre-test scores) for the three strategy gggeparately

The reasons for not using pre-test score as aietedo remove the influence of the pre-test
score in the dependent variables were two-foldstFimost of the dependent variables
measured had significantly non-normal distributicared that there is no non-parametric
alternative to ANCOVA. Second, one of the assummatiof using ANCOVA is that the

covariate must be independent from the experimaitatt (Field, 2009 p. 397). Given that
the three strategy groups significantly differedtbe pre-test score, the differential effect of
the strategies is to some extent confounded withetfect of the covariate (i.e. pre-test
score). In other words, using the pre-test scome @svariate even after log-transformation on
the dependant variables would not ‘control’ or d&ale out’ those differences (see Lord,

1967; 1969) in Field (2009 p. 397).

Finally, the 5-pointeffort and difficulty rating scales used in our study revealed good

reliability via Cronbach’s: coefficient = .79 and .75, respectively.

6.5.2 Measures from Web-OSPAN

In the following paragraphs, the results of thelysia of the Web-OSPAN measures are
presented. Table 6.7 shows the mean scores andastadeviations on the Web-OSPAN

measures for the three learning styles.

152

Table 6.7: Descriptive statistics for Web-OSPAN measuregherthree learning styles

Active Balanced Reflective
n M SD n M SD n M SD
Process measure 26 55.96 5.72 67 55,51 4.87 17 5465 3.69
WMC 26 30.12 9.54 67 26.75 11.14 17 26.53 9.95
Set size memory span 26 5.12 0.77 67 4.82 0.97 16 5.13 1.03

The analysis of correlations between the WMC valuas other measures of Web-OSPAN,
namely the process measure and the set size mapanywere calculated using Spearman’s
rho. Prior to the correlation analysis, a pre-asialyvas performed so as to check for any
violation of the assumptions of normality, linegritand homoscedasticity. The results
showed high significant correlationp & .001) between WMC values and other Web-
OSPAN measures. The process measure (rho = .380hanset size memory span (rho =

.811) indicate strong positive correlations to WikIC values. Table 6.8 presents the results.

Table 6.8: Results from Spearman’s rho investigating con@tabetween WMC values and other
measures of Web-OSPAN

Correlation between WMC values and
Process measure rho = .350, p <.001

Set size memory span rho =.811, p<.001

The analysis of correlations (see Table 6.9) catedl using Spearman’s rho indicated that no
significant association were found between the vaies and the WMC values (rho = -.140,
ns), set size memory span (rho = -.068), Instead, there was a significant but weak negati

correlation between the ILS values and the prooesssure (rho = -.22p,= .018).

153

On the other hand, further analysis calculated ty Kruskal-Wallis test revealed no
significant difference in the values of the processasure between active £ 26), balanced

(n = 67), and reflectiven(= 17) learnersy? (2,n = 110) = 3.18ns

Table 6.9: Results from Spearman’s rho investigating cori@iabetween ILS values and Web-
OSPAN measures

Correlation between ILS values and

WMC values rho =-.140p = .145
Process measure rho =-.225,p=.018
Set size memory span rho = -.058p = .547

Note: The significant result is highlighted in bold

Additionally, a chi-square testas conducted to find out if there was an assaridtietween
high or low WMC categories and the three diffedearning style categories. The chi-square
test revealed no significant association betweenlt® categories and the WMC categories,

x£%(2,n = 110) = 4.32ps, with a small effect size (Cramer’s V = .20).

Conclusion.The analysis of the results for the Web-OSPAN messof this study provides
no indication of thandirect relationshipdrawn from the literature (Graf, Lin et al., 2008)
Moreover, the results provide no evidence for tbactusion found from the recent study
conducted by Graf, Liu et al. (2009). This coulddue to several factors associated with the
data of this study and the method used, as braifigussed in Chapter 9. Thus, the WMC
variable could not be used for further analysisabse the relationship between working
memory capacity and learning styles could not h@icated. Finally, the alternative (H3)
hypothesis, that learners with high working memagpacity (low working memory

capacity) tend to prefer a reflective (an actiwearhing style was not supported.

154

6.5.3 Comparing the effects of the strategies
This section presents the analysis comparing tfextsfof the strategies. The section starts
with the results of the analysis of correlation dne Mann-Whitney U test, followed by the

Kruskal-Wallis test and ANCOVA/ANOVA, and finallyhe Wilcoxon Signed Rank test.

Table 6.10 shows the mean scores and standardidasiaf the dependent measures for the

three strategy groups.

Table 6.10:Descriptive statistics for effort and difficultg@res (otal andoverall) for the three
strategy groups

Group S Group C Group P
n M SD n M SD n M SD

Pre-test scores 35 7.73 3.25 36 8.72 2.64 37 6.76 291
Total

effort scores (Set 2) 36 5.92 1.86 34 5.79 2.07 36 5.22 1.66

difficulty scores (Set 2) 36 7.03 1.83 34 6.41 .651 36 6.86 1.53

effort scores (Set 3) 37 6.08 2.03 34 6.26 1.80 29 5.21 1.59

difficulty scores (Set 3) 37 7.59 1.71 35 5.69 .471 29 6.96 1.82
Overall

effort scores 36 11.89 3.26 32 12.19 3.67 28 .280 2.78

difficulty scores 36 1461 3.21 33 12.12 2.75 27 13.96 2.77

Note: Pre-test scores (0-20); effort scores (dBficulty scores (1-5)

155

6.5.3.1 Theanalysis of results of total effort/difficulty scores

In the following paragraphs, the results of thelygsia of thetotal effort andtotal difficulty

scores are presented.

Table 6.11:Results from Spearman’s rho correlation and Marmtiéy U test investigatingtal
difficulty scores (Set 2)

Group C
Correlationbetween
ILS valuesand
total difficulty scores (Set 2) rho = .381,p = .026(2-tailed)
U-test’
Act/Bal U=28.00p=.012r =-48
Act/Ref U=11.00p=.139,r = -.42 (2-tailed)

Note: Significant results are highlighted in bobMbn-significant results are only presented if tpegvide at
least a small effect size of |r| >= .05. * Aftee tBonferroni adjustment (.05/2), significant vaisiec .025. The
value represents 2-tailed significance if the resals not in the expected direction.

The relationship between the ILS values andake difficulty scores (of Set 2) for Group C,
measured by Spearman’s rho indicates a modestvgositrrelation, rho = .381p = .026,
(see Table 6.11). This correlation indicates tl& more active learners tended to report
lower levels of difficulty in studying the worked&mple problems from Set 2. Further
inspection using the Mann-Whitney U test was usefbilow up this finding. A Bonferroni
adjustment to the alpha value was applied and fibrereall results are reported at the
significance level of .025. Since the results @ torrelation showed a significant association
between the negative pole of the active/reflectimension and théotal difficulty scores,
the U-test compared an active learning style toakrted learning style. In addition, a
comparison was also conducted between the actedlective learning styles. It appeared
that total difficulty scores of learners with an active laam style Mdn = 6.00,n = 7)

differed significantly from learners with a baladdearning styleNldn = 6.00,n = 21),U =

156

28.00,z = -2.53,p = .012, with a medium effect size= -.48. Active learners had a mean
rank of 8.00 while balanced learners had a meak oarl6.67. On the other hanthtal
difficulty scores of learners with an active leagistyle did not differ significantly from
learners with a reflective learning styMdn = 6.50,n = 6),U = 11.00,z=-1.51,ns In spite

of the fact that the result was non-significang #ffect size was medium € -.42). Active

learners had a mean rank of 5.57 while refleceagriers had a mean rank of 8.67.

Conclusion.Active learners in Group C reportdower levels of difficulty than balanced
learners in studying worked-example problems fragh Susing the Completion strategy. In
contrast, a medium effect size indicated a treatl iéflective learners tended to report higher

levels of difficulty than active learners.

Table 6.12:Results from Kruskal-Wallis and Mann-Whitney Uttiesvestigatingtotal difficulty
scores (Set 3)

K-test (Group): x%=20.68,p < .001
U-test':
s/C U =261.00,p