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ADAPTIVE OBJECT SEGMENTATION AND TRACKING 

Summary 

Efficient tracking of deformable objects moving with variable velocities is an important 

current research problem. In this thesis a robust tracking model is proposed for the 

automatic detection, recognition and tracking of target objects which are subject to 

variable orientations and velocities and are viewed under variable ambient lighting 

conditions. The tracking model can be applied to efficiently track fast moving vehicles 

and other objects in various complex scenarios. The tracking model is evaluated on both 

colour visible band and infra-red band video sequences acquired from the air by the 

Sussex police helicopter and other collaborators. The observations made validate the 

improved performance of the model over existing methods. 

The thesis is divided in three major sections. The first section details the development of 

an enhanced active contour for object segmentation. The second section describes an 

implementation of a global active contour orientation model. The third section describes 

the tracking model and assesses it performance on the aerial video sequences. 

In the first part of the thesis an enhanced active contour snake model using the 

difference of Gaussian (DoG) filter is reported and discussed in detail. An acquisition 

method based on the enhanced active contour method developed that can assist the 

proposed tracking system is tested. The active contour model is further enhanced by the 

use of a disambiguation framework designed to assist multiple object segmentation 

which is used to demonstrate that the enhanced active contour model can be used for 

robust multiple object segmentation and tracking. The active contour model developed 

not only facilitates the efficient update of the tracking filter but also decreases the 

latency involved in tracking targets in real-time. As far as computational effort is 

concerned, the active contour model presented improves the computational cost by 85% 

compared to existing active contour models. 

The second part of the thesis introduces the global active contour orientation (GACO) 

technique for statistical measurement of contoured object orientation. It is an overall 

object orientation measurement method which uses the proposed active contour model 

along with statistical measurement techniques. The use of the GACO technique, 

incorporating the active contour model, to measure object orientation angle is discussed 

in detail.  A real-time door surveillance application based on the GACO technique is 

developed and evaluated on the i-LIDS door surveillance dataset provided by the UK 

Home Office. The performance results demonstrate the use of GACO to evaluate the 

door surveillance dataset gives a success rate of 92%. 

Finally, a combined approach involving the proposed active contour model and an 

optimal trade-off maximum average correlation height (OT-MACH) filter for tracking is 

presented. The implementation of methods for controlling the area of support of the OT-

MACH filter is discussed in detail. The proposed active contour method as the area of 

support for the OT-MACH filter is shown to significantly improve the performance of 

the OT-MACH filter‟s ability to track vehicles moving within highly cluttered visible 

and infra-red band video sequences. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

Image is an information carrier according to a computer vision scientist [1], [2]. The 

information contained in an image may not always be perceivable with the human eye. 

The information may be corrupted by noise or simply be combined with information 

that is of no interest creating a confusion. The first and most important step in image 

processing or analysis involves segmentation of the objects in an image. Segmentation 

divides an image into its constituent parts. Segmentation algorithms are generally based 

on discontinuities and similarities in an image. It is often difficult to identify and 

classify similarities such as edges, especially if they are spurious. Hence, high level 

segmentation methods involve techniques utilising a priori knowledge about the 

object‟s shape, texture, colour or position which are included in the search procedures. 

 Object tracking involves the detection of moving objects over multiple frames captured 

from a video source. The objects must be associated with the same object observed or 

segmented in the previous frames in order to successfully track an object. With the 

tracking information of an object it is possible to ascertain a great deal of information 

regarding the nature of the object that is considered for tracking. The task of tracking an 

object becomes particularly challenging when there are multiple moving objects 

involved, when the objects are moving at high velocities or when the camera is 

constantly in motion making the whole scene dynamic. 

The tracking process can be divided into the processes of target representation, 

localisation, filtering and association. The target representation and localisation process 
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attempts to recognise objects in the scene and represent them in a simplified way. Blob 

detection is one the common methods for achieving this, where the regions of the image 

are segmented from the background using a known characteristic of the object such as 

its relative speed, its intensity or colour. Moving regions can be extracted using a 

number of methods such as optical flow [14], [6], which continually updates the 

velocity vectors across the image. Multiple cameras can be used to acquire the position 

and movement information in three dimensions. The use of multiple cameras is by far 

the most robust method to extract moving objects in three dimensions but  it is not 

practical for most applications. The most common method for extracting moving 

regions from a single static camera is by using the background subtraction method to 

distinguish between the area of movement and the areas of the background.  

Objects can also be represented by the shape of their boundaries and can be tracked 

across consecutive frames using active contour methods [2], [3], [11], [18]. Active 

contour methods attempt to identify the target boundary points using random and active 

contour segmentation and hence allow tracking between frames. These methods are 

useful in tracking deformable dynamic objects based on several image characteristics 

such as intensity, colour or edges [48], [32], [29], [28], [26] and can therefore track 

objects in moving backgrounds thus making them suitable for most real-time object 

segmentation and tracking scenarios. Chapter 2 of the thesis discusses an adaptive 

segmentation and tracking technique using the enhanced active contour snake (EACS). 

When a particular type of target is to be tracked in a scene containing similar moving 

objects, it is often necessary to use correlation pattern recognition methods, such as  

maximum average correlation height (MACH) filters [75], [67], [77], [98], to classify, 

locate and track the objects in the scene. This can be used in conjunction with enhanced 

active contour techniques to reduce the computational cost involved in the training of 
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the correlation filters for pattern recognition and tracking purposes. An adaptive area of 

support based on the enhanced active contour method, together with the optimal trade-

off maximum average correlation height (OT-MACH) filter, can be used for robust 

object segmentation and tracking in challenging scenarios. This method is described and 

demonstrated in Chapter 5 of the thesis.  

1.2 Deformable templates 

Deformable templates are an important approach for object estimation for segmentation 

and tracking. The theory of deformable templates can be related to the shape class 

description based on pattern theory [32], [29], [24], [12], [10], [8].  

Deformable templates utilise prior knowledge of the shape of the object specified in the 

form of a sketch, binary template or parametric prototype. The a priori knowledge is 

encoded either in the form of the edge information computed from the binary template 

or the parameter vector. The difference between snakes and deformable templates is that 

snakes are form-free energy minimising functions [3], [13], [15], [17], [20].  In snake 

models, there is no global structure of the curves except for the general regularisation 

constraints such as continuity and smoothness of the boundary to be contoured. The 

parametric deformable templates control deformations using a pre-defined set of 

parameters capable of encoding a specific shape to initiate deformation. Hence, the 

deformable templates are used when more specific shape information is available than 

can be described either by a binary template or a set of parameters [35], [32], [27]. 

The prototype template describes the most prominent instance of the object boundary 

defining the shape of the object to be contoured. A parametric transformation is applied 

to the prototype to deform its boundaries varying the deformation parameters in order to 

capture a large variety of possible instances of the object. Several variations may be 



4 
 

captured by making random deformations to the prototype so that the deformed 

template matches the object of interest. However, the object of interest may be noise 

corrupted or degraded causing the original shape to be lost. In such a circumstance, a 

deformed template may match the object better than the original prototype defined.  

By using an appropriate edge detector [14], [64], [46], the object boundaries can be 

extracted from the image. The deformable templates can be matched for all objects 

found using the template base. A potential energy function can be used to check for 

similar objects by aligning the templates from the database with the image being used.  

The detection can be simplified and improved by imposing a probability distribution on 

the images in the database. It is assumed that the prototype template defined is the most 

likely a priori shape of the object. One of the earliest approaches to deformable 

template analysis was aimed at finding facial features for human recognition purposes 

[8], [7], [17], [62]. The deformable template techniques depend on a number of 

parameters which is cumbersome for optimisation purposes. Thus an alternative is to 

investigate techniques that use fewer parameters. Snakes are a more popular approach, 

that evolve a set of points (a contour) to match the object in the image data rather than 

evolving a set of shapes to match the object [24] [29]. 

1.3 Active contours (Snakes) 

Active contours or Snakes are a completely distinct approach to feature extraction [3]. 

The active contour is featured as a set of points enclosing a target feature to be 

extracted. It can be visualised like a balloon that is placed outside the object, enclosing 

it to find the shape of the object in an image [2]. Similarly, the active contours arrange a 

set of points in a way to describe the shape of the target object.  Active contour snakes 
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were originally designed for interactive extraction of the object shape, though they are 

now usually deployed for automatic feature extraction [6], [11], [5], [29]. 

Active contours are described as an energy minimisation process. The target object 

feature is a minimum of a suitably formulated and balanced energy functional. The 

energy functional includes more information than just the edge information of the object 

under consideration. The energy functional includes properties that control the snake or 

contour‟s progression. 

A snake represents a compromise between its own properties, known as intrinsic 

properties, and the image properties, also known as extrinsic properties. Based on this 

the active contour snake energy functional is the addition of a function of the contour‟s 

internal energy, constraint energy and the image energy. These are denoted as Eint, Eimage 

and Econ, respectively. The energy terms are the function of the set of points that make 

up the snake, represented as v(s) which is a set of the x and y co-ordinates of the points 

in the snake. 

The energy functional is defined as the integral of all the energy functional of the snake, 

given that s is a member of the set [0,1] is the normalised length around the snake. The 

energy functional of the snake Esnake is given by equation 1.1: 

        dssvEsvEsvEE
s

conimagesnake 



1

0

int    (1.1) 

where the internal energy Eint controls the natural behaviour of the snake and the 

arrangement of the snake points in a contour and the image energy Eimage controls the 

emphasis of the snake in choosing low-level features of the image such as the edges of 

the object [25], [32], [2]. The constraint energy allows the higher level information to 

control the snake evolution. The criterion used to make the active contour evolve is to 
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minimise the energy in equation 1.1 for each point in the contour. A set of new contour 

points are chosen with lower energy that is a better match to the target object shape 

based on the values of the energy terms around it. The active contours seek a set if 

points v(s) to choose a lower energy than the original set of points. This can be 

expressed mathematically as in equation 1.2: 

0
dv

dEsnake        (1.2) 

The energy functional is expressed in terms of functions of the snake and the image in 

which the object is contoured. These functions form the snake energy according to the 

values chosen for the weighting coefficients. The internal energy of the snake is defined 

to be a weighted sum of first order and second order derivatives of the contour v(s) [10] 

[3]. This can be expressed as shown in equation 1.3: 

 
 

 
 

2

2

22

int
ds

svd
sb

ds

sdv
saE     (1.3) 

The first order differential measures the energy due to stretching, also referred to as 

elastic energy of the snake. A higher value of this differential implies a high rate of 

change in the region of the contour. The second order differential measures the energy 

due to bending, also known as the curvature energy. The first order differential is 

weighted by a(s) controlling the rate of the contribution of the elastic energy due to 

point spacing in the contour. The second order differential is weighted by b(s) 

controlling the rate of contribution of the curvature energy due to point variation. The 

parameters a and b control the shape of the snake that is needed to contour an object. 

Low values of a imply that the points can change in spacing flexibly, whereas higher 

values imply that the snake is formed by evenly spaced contour points which are known 



7 
 

as snaxels. Lower values of b imply that the curvature is minimised and the contour can 

form corners in its length, whereas higher values of b imply that the contours are 

smooth. The image energy attracts the contour to low-level features such as brightness 

or edge data. For instance, the edges and intensity values in the image can be used to 

contribute to the energy functional. Each of these energies can be controlled by 

weighting factors. The image energy function can be expressed as in equation 1.4: 

gradientgradientensityIntensityimage EWEWE .. int     (1.4) 

where the intensity based energy is denoted as Eintensity and the corresponding weighting 

parameter is denoted as Wintensity. The energy based on the gradient value is represented 

as Egradient and the corresponding weighting coefficient controlling the emphasis of the 

gradient energy is denoted as Wgradient. Several combinations of low-level features can 

be emphasised and extracted using them as the image energy in the snake energy 

equation [31], [32], [35]. The work in the thesis discusses the use of the difference of 

Gaussian (DoG) filtered image term in the energy equation so emphasising the negative 

polarity around the zero-crossing edge detected by the application of this band pass 

filter to the image. Figure 1.1 illustrates an active contour snake deformed on to a hand 

image; note that the contour is an open contour, meaning that the first snaxel and the 

last snaxel of the contour are not connected to each other to form a closed contour. 
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Figure 1.1: Active contour snake contouring the shape of the hand in the image (drawn 

in yellow) 

The active contours can be finite element based or finite difference based. The most 

common and easier way of realising the active contours was proposed by Shah et al 

[19], [16], [25]. It is known as the Greedy algorithm for snakes. It implements the 

energy minimisation process purely as a discrete algorithm. The greedy process starts 

by a user defined specification of an initial contour. More recent work suggests several 

automatic methods of specifying an initial contour of the snake [3], [8], [27]. The 

greedy algorithm evolves the snake in an iteration based local neighbourhood scan for 

the lowest energy snaxel points. The new set of points are those neighbourhood points 

which have the overall lowest energy points computed for each snaxel based on the 

energy minimisation expression for the snake. The technique is called „greedy‟ by virtue 

of the fact that the search propagates over the contour for each snaxel around its local 

neighbourhood [21]. The enhanced active contour snake technique discussed and 

designed in this thesis uses the greedy search technique for the energy computations. 
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More detailed discussion of the enhanced active contour snakes (EACS) is given in 

Chapter 2 of this thesis. 

1.4 Correlation pattern recognition 

Correlation pattern matching or recognition provides a mechanism for comparing two 

image signals. It has the benefit of being shift invariant so it can also provide tracking, 

if implemented via the Fourier domain, at no extra computational cost. If f(.) and g(.) 

are two continuous functions, the correlation between the two signals c(x) is given by: 

     xgxfxc *      (1.5) 

Equation 1.5 is in fact the integral equation shown in equation 1.6; 

     




  dxgfxc *
     (1.6) 

where  is a dummy variable. The function c(x) gives a measure of the similarity of the 

function f(.) and the function g(.) at position x. The function f (.) is now referred to as 

the input signal and the function g(.) as the target signal [76], [77]. However, when 

dealing with discrete digitised images, it is more common to modify the integral 

equation 1.6 so that it is expressed as a discrete summation, as shown in equation 1.7: 

      
k l

nlmklknm gfc ,,,     (1.7) 

where m and n are valid 2-D pixel co-ordinates. For larger images this can be rather 

computationally expensive so it is common to use the Fourier transform relationship 

which can be expressed as in equation 1.8: 

        nmgFnmfFFnmc ,.,, *1     (1.8) 
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where the F(.) indicates a Fourier transform operation and F
-1

(.) denotes the inverse 

Fourier transform of the function contained in the brackets. In a discrete image, 

equation 1.7 is therefore replaced by two forward fast Fourier transforms (FFTs) and a 

complex multiply of the conjugate Fourier spectrum of the target function with the 

Fourier spectrum of the input signal function, the result of which is then inverse fast 

Fourier transformed (IFFT) [93], [92], [99]. Since it is convenient for the answer to be 

real, the modulus squared of c(m,n) is used by convention. 

The component F[g
*
(m,n)] of equation 1.8 can be treated as a filter function. This is the 

most basic form of correlation filter and is also known as the matched filter. However, 

correlation filters have a few shortcomings [91], [92], [89], namely: 

1. The filter has a very large bandwidth; this means that it is poor at discriminating 

against similar targets 

2. Only one template image can, in practice, be used to train the filter due to the broad 

correlation response produced. 

3. Knowledge of image noise, out of class targets, and background clutter is neglected 

4. The filter has some scale or rotation invariance but less than that of an appropriately 

multiplexed filter. 

The drive behind correlation pattern recognition research is to overcome these 

limitations by modifying the filter function. Hester and Casasent made a major 

contribution to the field in 1980 with the formulation of the synthetic discriminant 

function (SDF) [89], [76] that allows multiple training images to be included in a single 

filter design. A plethora of synthetic discriminant function (SDF) based filters have 

been proposed since then to accommodate various kinds of arbitrary distortions in the 
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filter training images caused by changes in the viewing angle, scale and rotation of the 

target object [84], [87]. 

The primary issues that are to be borne in mind while designing a correlation filter are 

[93]:  

1. the filter should be tolerant to distortions  

2. it should be able to suppress clutter and/or noise 

3. the correlation peak should be easily detectable  

It has been reported in the literature that early SDFs, by and large, failed to meet any of 

the above three design criteria [75], [77], [76], [87]. Progress in the design process was 

achieved with the rigorous development of the minimum variance synthetic 

discriminant function (MVSDF) by Kumar in 1986 [96], [97]. Kumar and co-workers 

proved that the minimum variance synthetic discriminant function (MVSDF) should be 

treated as the optimum filter that minimises the effects of additive noise. However, the 

MVSDF has some serious drawbacks. The downsides of implementing the filter include 

the inversion of a large covariance matrix making the process computationally 

intensive. Moreover, performance of the filter suffers because of the fact that clutter 

noise is not additive white Gaussian noise (AWGN). Another filter improvement in the 

SDF family that has received some attention from the automatic target recognition 

(ATR) community is the minimum average correlation energy (MACE) filter by 

Mahalanobis et al [90], [89]. Although the MACE filter is capable of generating 

detectable correlation peaks by suppressing the image clutter, it is too sensitive to image 

distortions. 
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The maximum average correlation height filter (MACH) was also proposed by 

Mahalanobis et al [93], [98], [99]. One of the hard constraints involved in the SDF 

based design method is to have the correlation peaks pre-specified and of constant 

value. This requirement is absolutely unnecessary, not only because it limits the number 

of possible SDF solutions [88], [89], but also because of the fact that in practice there is 

very low probability of correlating the filter function with a scene where a target will 

have exactly the same orientation as that of any view included in the training set. The 

MACH filter theory thus allows a better filter solution by removing the peak-height 

constraint from the SDF based design techniques. The MACH filter design includes the 

minimisation of an average similarity measure (ASM) that leads to a compact set of 

correlation planes that resemble each other and exhibit the least possible variation [93]. 

This statistical approach to the correlation filter design process makes the filter more 

robust as compared to other designs based on SDFs with hard constraints. 

Since the motivation of the work in the thesis is to enable adaptive segmentation and 

tracking of moving objects of a given type, embedded in clutter, an Optimal trade-off 

maximum average correlation height (OT-MACH) filter, assisted by the enhanced 

active contour snake (EACS) in the tracking research presented in this thesis, has been 

found to outperform any other traditional SDF based filter design.  

The MACH filter maximises the relative height of the average correlation peak with 

respect to the expected distortions. An improved version of this can be designed to cope 

with specific clutter noise. The Optimal trade-off (OT) MACH filter transfer function in 

the frequency domain can be expressed as [79], [88] in equation 1.9:  

xx

x

SDC

m
h

 


*

    (1.9) 
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where, α, β and γ are non-negative OT parameters, mx is the frequency domain average 

of the training vector and C is related to the power spectral density matrix of the 

additive clutter. The quantity Dx is the average power spectral density of the training 

images. Sx denotes a similarity matrix of the training image set. The different values of 

α, β and γ control the OT-MACH filter‟s behaviour to match different application 

requirements. 

As an example, a tank dataset used to train the OT-MACH filter, is considered. The 

training images are rendered for different rotation angles (between 0 to 360 degrees) 

and for different look-down angles and scales (view range). One such dataset is depicted 

as shown in  Figure 1.2. 

   

   

   

Figure 1.2: An example tank training dataset (angle of rotation between 0 and 180 

degrees) 
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A sub-set of the training images can be used to compute the OT-MACH filter transfer 

function as expressed in equation 1.5. The correlation plane obtained by correlating the 

filter function with an in-class tank image can be represented as a correlation mesh plot 

as shown in Figure 1.3. 

 

Figure 1.3: Correlation plot for an in-class target image correlated with an OT-MACH 

filter function 

The location of the matched target is computed from the correlation plane by scanning 

for the maximum peak height in the two dimensional correlation plane thus obtained 

[74], [85], [84], [79]. 

1.5 A brief overview of the thesis chapters 

Chapter 2: An enhanced active contour snake (EACS) computational model to track 

dynamic a moving object in a scene has been developed and discussed in this chapter. It 

is demonstrated how the active contour snakes can be enhanced to perform accurately in 

real-time, with the use of the difference of Gaussian (DoG) filter. The DoG filter energy 
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term is incorporated in the enhanced active contour expression to increase the model‟s 

ability to contour the exterior edges of a moving target. Automatic initial contour 

extraction along with the snake deformation and progression techniques is discussed in 

detail. Finally, the chapter presents several example results of the enhanced active 

contour technique. Evaluations of the computational model are discussed and 

summarised. 

Chapter 3: An extension to the enhanced active contour snake (EACS) technique to 

perform multiple object tracking is proposed in this chapter. The contour splitting, 

merging and selection criteria used for multiple object contouring are described along 

with a few examples demonstrating the contour splitting and multiple object contouring 

process. The statistical parameters of the EACS, such as the active contour boundary 

rectangle and the active contour centroid, are discussed in detail. An application to 

perform upper body humanoid skeletal modelling is designed to demonstrate the 

importance of computing accurate active contour vectors using the EACS framework. 

Results determining the skeletal stick model for the upper body of a humanoid are 

presented and summarised. 

Chapter 4: The overall enhanced active contour vector orientation, called the global 

active contour orientation (GACO) measure, of the EACS is proposed in this chapter. It 

is demonstrated how the GACO statistical measurement for each active contour vector 

is computed using simple geometric calculations and assumptions. A robust algorithm 

for door surveillance (DS) is developed and presented in detail in order to evaluate the 

performance of the proposed GACO measure computation. The door surveillance 

application developed is evaluated on the i-LIDS door surveillance dataset provided by 

the UK Home office. The performance results demonstrating the use of GACO to 

evaluate the i-LIDS dataset is discussed and summarised. 
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Chapter 5: The enhanced active contour snake (EACS) based optimal trade-off 

maximum correlation height (OT-MACH) filter tracker is designed and demonstrated in 

this chapter. The dynamic filter update and rotational multiplexing techniques are 

proposed for robust tracking. The results obtained are discussed and illustrated to 

evaluate the OT-MACH tracker on Sussex police and DSTL videos. 

Chapter 6: In the final chapter the entire thesis is discussed. Conclusions are drawn and 

future work is outlined. 
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Chapter 2 

ENHANCED ACTIVE CONTOUR SNAKES 

INCORPORATING A DIFFERENCE OF A 

GAUSSIAN FILTER 

2.1 Introduction 

Contour extraction is one of the basic tasks in image and video processing. A snake can 

be described as an energy minimisation spline or a curve that represents several salient 

features of the object being contoured. Active contours are extensively used in computer 

vision particularly to identify object boundaries [19], shape modelling [21], 

segmentation [25] and motion tracking [59]. Active contours or snakes are curves 

defined within an image that move based on the influence of internal forces inside the 

curve and the external forces derived from the object data.  

Snakes are a more general technique of matching a deformable model to an image by 

means of energy minimisation. The basic snake model is a controlled continuity curve 

under the association of image forces, external constraint forces and internal forces. The 

external image forces propel the snake towards the salient image features. The internal 

snake force serves to improve the smoothness constraint of the contour and the external 

constraint forces drive the snake to near the desired local minimum points, in this case 

exterior edges [48], [47], [39], [70]. 

The position of the snake can be parametrically represented by:  

        1,0,,  ssysxsv                        (2.1) 
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The energy functional can be expressed in the continuous domain as: 

     
1

*

int

0

. . .snake extE a E v s b E v s ds      (2.2) 

where intE  and extE  are the internal and external energies. The internal energy signifies 

the energy due to bending and the external energy signifies the image energy and the 

constraint energies to contour the required point on an object. The parameters a  and b  

are the constants controlling the influence of different energies giving importance to the 

object data to be contoured [3], [2]. 

There are two key issues while contouring an object using the active contour techniques 

in real-time [28], [32]. Firstly, the initial contour must be close enough to the boundary 

of the object being contoured. If the initial contour is near to the boundary of the object, 

the active contours require less iteration to dynamically contour the object boundary.  

The second issue is that the active contours require an external energy term to 

distinguish between the internal and external edges of the object. An external energy 

force is also required for disambiguation of two or more objects or their edges joined 

together forming a cluster.  

The first issue of having an initial contour close enough to the boundary of the object is 

solved in the following sections making use of a Difference of Gaussian (DoG) filter 

term in the overall snake expression for energy minimization. The following sections 

discuss a new technique of incorporating a term derived from a thresholded Difference 

of Gaussian (DoG) filtered image in the equation to allow quick and accurate 

contouring of the edges of the object being tracked. A technique for initialising snake 

points at the first iteration using the thresholded DoG filtered images to improve 

accuracy is introduced. Methods to decrease the number of snake points in the contour 
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is discussed to improve the robustness in real-time tracking of an object in a sequence. 

Unlike most other techniques for finding salient contours, the model is active and fast. 

2.2 Chapter Organisation 

The chapter is organised as follows: the design of the difference of Gaussian filter is 

discussed in detail in the next section. The following sections describe how the DoG 

filter term is implemented and incorporated into the snake expression to assist in the 

initialisation of the active contours. Section 2.4 discusses in detail the enhanced active 

contour expression using the DoG filter energy term. In Section 2.5 an automatic initial 

contour extraction process is discussed in detail along with a few results. Snake 

deformation and progression along with a full flowchart depicting the design of the 

enhanced active contour extraction technique is discussed in the Section 2.6. Finally, 

Section 2.7 displays several results of the enhanced active contour technique discussed. 

Conclusions are drawn in Section 2.8. 

2.3 Design of the Difference of Gaussian filter 

A Difference of Gaussian (DoG) filter is implemented in the spatial frequency domain 

of the image as a band-pass filter. The Difference of Gaussian (DoG) function is 

calculated as a convenient good approximation to the scale normalized Laplacian of 

Gaussian (LoG) filter as it is accurately and readily implementable in the spatial 

frequency domain as a band-pass filter [53], [58]. In standard practice the first order or 

second order derivative functions are applied to an image in order to detect edge 

locations or zero-crossings. The major disadvantage of using a first order function to 

detect edges is that there is a need to preselect the thresholds. The use of a second order 

derivative function implemented using a Laplacian kernel is also disadvantageous due 

to its acute sensitivity to noise [33], [41]. Hence, the use of the Laplacian kernel to 

detect edges may result in high frequency noise which disrupts the process of  finding 
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edges. In order to remove the over-sensitiveness of the Laplacian kernel, the image may 

be low pass filtered using a Gaussian kernel to remove any high frequency noise. An 

appropriate way of applying the entire scheme to an image is to combine both the 

kernels into a single Laplacian of Gaussian (LoG) kernel [41] as shown below: 

     2, , ,LoGI u v G u v I u v     

           2 , ,G u v I u v        (2.3) 

where in equation (2.3)  :,:I is the intensity of the image,  2 :,:G is the combined 

operator also called as LoG operator and  :,:LoGI is the output image obtained after 

applying the LoG operator. The Gaussian kernel  ,G u v  is applied to the image as a 

low pass filter to smoothen the high frequency noisy edges. The Gaussian kernel is 

dependent on the standard deviation   and is given as: 

 
 2 2

22
1

,
2

u v

G u v e 

 

 

   (2.4) 

where, the standard deviation is , and the value of u and v lie between -∞ and +∞ [58]. 

A two dimensional Gaussian function mesh plot is shown in Figure 2.1, for illustration  
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Figure 2.1: Gaussian filter function mesh plot, with σ = 92 pixels with a mesh size of 

512 x 512 pixels. 

The problem associated with the second order derivative function is the fact that the 

operator results in multiple pixel thick edges. In order to avoid this problem and to 

localise the edges, zero-crossings in the image are detected after applying the combined 

operator [48], [33], [32]. 

The DoG operator has the advantage of being a better fit numerically when 

implemented for small kernel sizes. In addition to this, the spatial domain numerical 

approximation of the LoG operator has a high tendency to have a ringing effect. The 

ringing effect results in the appearance of spurious or ring like edges near the sharp 

transitions at the edges of an object in the image. The DoG filter is implemented in the 

frequency domain by using the σ value for the inhibitory Gaussian as 1.6 times to that 

of the excitatory Gaussian ensuring a good approximation of LoG filter. It is important 



22 
 

to note that the output obtained after DoG filtering is distortion or illumination-change 

sensitive depending on the pass band scale selected. Hence, the pass band or, 

equivalently, the patch size of the filter are appropriately selected based on the object to 

be contoured in the image. The DoG filter plotted as a band pass filter in the spatial 

frequency domain is shown in Figure 2.2. 

 

Figure 2.2: DoG filter shown as a band-pass filter in the spatial frequency domain 

From equation 2.4 for Gaussian filter function, the DoG filter function can be described 

as the difference of excitatory and inhibitory Gaussian filter functions: 
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  (2.5) 

where, σ2 and σ1 are the two standard deviations of the excitatory and inhibitory 

Gaussian functions. In order to have an optimum performance as a bandpass filter and 
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to allow accurate zero-crossing detection at the edge locations in the image, the ratio 

between the two standard deviations is maintained at 1.6 [48], [55], [58]. 

2.4 Enhanced active contour expression using the DoG filter energy term 

Consider an example test frame as shown in Figure 2.3 with a DoG filtered output of the 

frame as shown in Figure 2.4 with an appropriate bias added so the bi-polar filtered 

image can be displayed as an intensity image. 

 

 

Figure 2.3: Test frame from a colour video 
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Figure 2.4: DoG band-pass filtered image with an appropriate bias added for display 

From Figure 2.4, it can be seen that the edge locations of the object under consideration 

are detected by applying a DoG band-pass filter to the image in Figure 2.3. Due to the 

second differential operation performed by the DoG filter, the pixel values at the image 

edges have zero-crossings between positive and negative values. The negative pixel 

values at the location of the edges can be utilized for the addition of a new parameter 

into the Snake equation.  

Considering Equation 2.2, this can be expressed at any point vi as:  

   
iextisnake

vEbvEaE ..
int

*     (2.6) 

where, i = 1 to n, n being the number of points in the active contour (AC) Snake and the 

* signifies that this is a continuously updated snake energy [2], [10]. 
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The internal energy function is intended to enforce a shape on the deformable contour 

and to maintain a constant distance between the points in the contour. It consists of 

continuity energy denoted as Econt and curvature energy denoted Ecurv.  

An average distance between the contour points is computed and denoted as Daverage 

[31], [34]. The variable a is initialized and the continuity term is calculated. This can be 

computed according to: 

    ::,PPDiE
iaveragecont
     (2.7) 

where, 
i

P  denotes the current contour position and  ::,P  represents the initial contour 

point vector. The mathematical symbols  and represent the absolute and norm of 

the terms contained in them, respectively. 

The constraint energy can be of many kinds and here the curvature energy is considered. 

The curvature energy is computed using the initial Contour point vector [31], [19]. The 

curvature energy, denoted as Ecurv, controls the curve or bending of the contour and can 

be computed according to: 

 
2

11
2




iiicurv
PPPiE     (2.8) 

where, Pi denotes the current contour position and Pi-1 and Pi+1 represent the previous 

and next contour position in the contour point vector. 

The external energy functional attracts the deformable contour to interesting features, 

such as object boundaries, in the image. The image energy is computed for each 

neighbourhood pixel. The image energy can be manipulated to contain the DoG filtered 

image energy denoted as EDoG, along with the sum of intensity energy and the gradient 

energy. The magnitude of the intensity of a corresponding image point in the 
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neighbourhood gives the image intensity energy, Ein , and the gradient magnitude of the 

same point gives the image gradient energy, Egrad [2], [1]. The bipolar value of the DoG 

filtered image at the point in consideration gives the DoG filtered energy term, EDoG. 

This can be expressed as follows: 

 
DoGgradinimage

EEEcE  .                               (2.9) 

Here, the constant c is the term controlling the rate of importance given to the image 

energy Eimage while computing the overall AC energy at any given point. The DoG 

filtered image pixel values are added to the equation for each pixel external energy 

computation. If the value of each DoG filtered output pixel is considered as the energy 

of the DoG filtered image at that pixel then the energy term EDoG contains a positive or a 

negative value due to the bipolar characteristics of the DoG filtered resultant image. 

This contributes towards reducing the overall snake energy at the point in consideration. 

Equation 2.9 can be modified to contain three different constant values controlling the 

emphasis given to each energy term while computing the overall energy of the Snake. 

This can be expressed as: 

DoGgradinimage
EcEcEcE

321
    (2.10) 

The constant c3 gives a measure of the influence of the DoG filtered image energy at the 

pixels being considered. For full derivation of the enhanced active contour snake 

expression please refer to Appendix 1. Thus, by adhering to the energy minimization 

rule of the Snake algorithm, an improved selection of the correct edge pixel for the 

contouring process is achieved leading to a greater accuracy in the choice of contour 

edges for the object [2], [3].  
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2.5 Automatic initial contour extraction 

In classical methods, an initial contour point is selected by the user, near to the contour 

of the target object. Various methods use circular or rectangular initial contour points 

around the object of interest [34], [35], [28], [27]. The minimum energy functional, its 

co-ordinates and the weighting parameters are then initialized. The energy functional is 

calculated, as explained in the previous section, by considering several feature 

parameters to calculate the overall snake energy. By giving importance to the image 

energy term in the overall snake equation, the active contour can be made to stick to the 

zero-crossing edge of the object under consideration. 

The new method, designed to initialize the contour on the given object, is based on 

locating a moving object in the scene and employing the DoG filter image boundary 

extraction technique. For any given frame (say frame 1) DoG filtering is performed, 

followed by threshold and morphological operations. The morphological operation, 

binary erosion, is employed in order to remove unconnected noisy edges. The basic 

effect of binary erosion is to erode away the boundary regions of foreground pixels so 

as to remove isolated and discontinuous pixels in the binary image. A subsequent frame 

(say frame 2) is also processed in a similar manner to obtain two different edge images. 

This step is illustrated (after adding an appropriate bias to allow display of the images) 

in Figures 2.5 to Figure 2.8 below. 
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Figure 2.5: Frame 1 of a colour video to be DoG filtered 

                                  

 

Figure 2.6: Frame 2 of the colour video to be DoG filtered 
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The images shown in Figure 2.5 and Figure 2.6 are DoG filtered at user selected 

standard deviations with a pre-condition that their ratio is maintained at 1.6. The images 

are converted from colour to greyscale before applying the DoG filter. The colour 

images are converted to greyscale by performing a weighted summation of the colour 

space components of the image to obtain the single channel greyscale image. The DoG 

filtered and appropriately biased results of both the frames under consideration are 

shown in Figure 2.7 and Figure 2.8. 

   

Figure 2.7: DoG filtered frame 1 with an appropriate bias added for display                      
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Figure 2.8: DoG filtered frame 2 with an appropriate bias added for display 

An absolute subtraction of the DoG filtered output of the frames 1 and 2, shown in 

Figure 2.7 and Figure 2.8, is performed after a threshold operation. An optimal 

thresholding technique by Otsu et al [54] is used to perform thresholding. The threshold 

level is automatically selected by Otsu‟s technique for thresholding. This gives only the 

moving object edges, comprising both edges in the position of the object in frame 1 and 

frame 2. Binary erosion is performed on the resultant image to get rid of the residual 

noisy edges resulting from the subtraction. The resultant image is shown in Figure 2.9.  
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Figure 2.9: Resultant image after performing absolute subtraction of the thresholded 

DoG filtered images                 

The resultant image is now further processed; the coordinates of the first non-zero pixel 

chain in the image are located by scanning the entire image starting from the top left 

corner of the image. The non-zero pixel is selected, after verifying that the pixel is not 

an isolated pixel, to perform robust boundary tracing of the object being contoured. 

From the first non-zero and non-isolated pixel of the pixel chain, a boundary tracing 

operation is initiated to obtain a boundary traced image, as shown in Figure 2.10. 
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Figure 2.10: Boundary traced resultant image (boundary drawn in green for display)  

The boundary thus extracted is placed in a coordinate vector array containing the 

coordinates of all pixels in the boundary. The number of boundary pixels is too large for 

fast and efficient calculation of the Snake contours. The coordinate vector is reduced so 

as to achieve fixed pixel spacing between each snake point element, so-called „snaxels‟. 

For instance, in this case this is done by selecting every 5
th

 coordinate point in the array 

to produce a reduced resolution contour vector with fixed pixel spacing of five pixels 

thus reducing the number of snaxels, n, in the contour. This forms the initial contour 

vector of the snake and is shown below in Figure 2.11. The Table 2.1 describes each 

energy term included in the Snake energy minimization equation for reference. 
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Figure 2.11: Initial reduced contour vector of snaxels plotted as blue dots for display 

 
Energy term in the 

Snake equation 
Description 

1 Econt 
Energy computed based on the continuity of the Snaxel 

vector 

2 Ecurv Energy due to the effect of curvature in the Snaxel vector 

3 Eint 
External energy of the snake based on the image intensity 

at each Snaxel in the contour 

4 Egrad 
External energy of the snake derived from as the gradient 

value at each Snaxel in the gradient image 

5 EDoG 

External energy of the snake deduced from the DoG 

filtered image at each Snaxel location on the contour 

vector 

 

Table 2.1 Energy terms of the snake listed and described 
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2.6 Snake deformation, progression and algorithm design flowchart 

2.6.1 Snake deformation 

The energy functional and the initial contour are computed as explained in the previous 

sections considering several feature parameters to calculate the energy (see equations 

2.6, 2.7, 2.8, 2.9 and 2.10). Eight point neighbourhood pixels are traversed and the 

energy functional of each of these points is computed. The total energy of each point 

calculated is compared with the minimum energy and the new points are appended in 

the contour point vector, based on the minimum energy criterion. Thus, by iterating for 

all contour points in the initial contour, the active contour (AC) fits around the moving 

object under consideration [18], [19].  

The active contour of the next frame is based on the active contour vector of the current 

frame. Thus the current frame contour vector becomes the initial contour vector of the 

next frame. After setting the initial contour, the snake deformation takes place in an 

iterative manner, as explained earlier, in order to fit on to the object being contoured. 

Contouring the same object under motion in subsequent frames, the snake acts as a 

dynamic deforming contour. This then allows tracking of the moving object. In the 

frames in which the object becomes static, the Snake remains on the final boundary 

locations of the object thus locking onto the object.  

2.6.2 Snake progression 

Due to the dynamic change in shape of the object tracked, there can be an addition or 

removal of extra snake points into the contour vector. When the length of any segment 

between two coordinate points in the active contour array goes higher than the average 

distance (denoted as Daverage) an addition of a coordinate point takes place to 

compensate for the changes in the object. Similarly, when the length of any segment 
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between two coordinate points in the array goes lower than the average distance Daverage 

a coordinate point is removed from the contour array to compensate for the shrinkage in 

size of the object being traced. This allows the snake to efficiently define the object 

shape even if there is a change in the scale or rotation of the object during a tracked 

sequence in the scene [62], [61], [67]. Figures 2.12 and 2.13 illustrate the snake 

deformation and progression in an example sequence. Figure 2.13 shows an example of 

the progressive snake tracking the object moved from its initial location in Frame 3 as 

shown in Figure 2.12. 

 

 

Figure 2.12: Snake deformation onto moving object at Frame 3 in a video sequence 
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Figure 2.13: Snake progression on moving object at Frame 30 in a video sequence 

Thus, the modified Snake progresses to follow the object deformation and motion. It 

then stops and appends onto the same points when the object ceases to move.  

2.6.3 Overall design flowchart of the enhanced active contour framework 
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Ø Frame data from video 

sequences or live camera 

feeds

Ø Pre-processed to grayscale 

images

EACS

Fetch pre-defined parameters:

1. DoG filter sigma  values

2. Threshold value

3. a, b, c1, c2, c3 active 

contour constants

DoG filtering the 

frame data

ImgDoG

If Frame number > 2
Thresholding the DoG filtered 

image set (Wait until 2 frames)

· Absolute subtraction of the 

two Thresold DoG Images

· Boundary extraction from a 

non-zero, non-isolated pixel

· Reduction of contour vector 

to form a set of snaxels

Previous contour or initial 

active contour

Compute overall Snaxel energy Esnake 

Determine the lowest energy snaxel based on the 8 point 

neighbourhood search

· Set new snake point co-ordinate to new active 

contour vector

· Store previous co-ordinate in previous active 

contour vector

More snaxels or 

snake points?

Contour target 

using the Active 

contour vector

No

No

Yes

Yes

 

Figure 2.14: Flowchart of the enhanced active contour snake (EACS) framework 
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Figure 2.14 depicts the overall flow diagram of the enhanced active contour snake 

technique discussed so far in the previous sections. The algorithm progresses by 

fetching the user defined active contour parameters and greyscale frame data from a 

video source. For the first two frames, the initial contour is extracted by using the 

automatic initial contour extraction technique discussed in Section 2.5. After the initial 

active contour vector is obtained the snake deformation and progression takes places 

based on the energy minimisation condition by computing the energy for each of the 

snaxels or snake points in the contour vector according to the equation 2.6. The 

previous active contour vector is then utilised in the next frame as the starting contour 

vector for snake deformation and progression in order to lock on to the moving target. 

Due to the automatic initial contour extraction and the use of DoG filtered bipolar 

images for energy minimisation, the active contour technique is enhanced and so can be 

used in real time robust target tracking applications.  

2.7 Results and discussion 

A few more examples of colour video sequences are shown below in Figures 2.15 to 

Figure 2.18 to describe the enhanced active contour snake technique discussed so far. 

For colour video sequences it is observed that a higher threshold value ranging between 

140 and 255 is suitable for accurate initial contour extraction. The patch size of the DoG 

filter designed for the colour band videos is considerably smaller as compared to infra-

red or near infra-red band video sequences. The colour frames [44] are converted to 

greyscale data before the application of the enhanced active contour technique. Figure 

2.15 shows the frame before the snake deformation is performed. A subsequent frame 

showing the deformed snake on the moving target is shown in Figure 2.16. The snake 

progression and deformation along with the active contour vector shrinkage due to scale 

change of the object is shown in Figure 2.17 and Figure 2.18. 
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Figure 2.15: Frame 1 of the colour video sequence (before deformation)[44] 

 

Figure 2.16: frame number 3 after deformation of the enhanced AC 
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Figure 2.17: Frame 60 of the video sequence after deformation and progression 

 

Figure 2.18: Frame 103 of the colour video sequence continuously tracked even after 

the object scale changes 
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In a further example, frames from an infrared traffic video are shown in Figures 2.19 

and 2.20, illustrating the tracking of a motor vehicle. The threshold value pre-defined 

for the initial active contour computation is considerably low (in the range of 50 to 150) 

for infrared video sequences. Figure 2.19 shows the snake deformation on target at the 

10
th

 frame and Figure 2.20 shows the snake deformation and continuous tracking of the 

target at the 22
nd

 frame in the video sequence.   

 

 

Figure 2.19: Enhanced active contour snake on infrared video at the 10
th

 frame showing 

the snake deformation on target 
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Figure 2.20: Enhanced active contour on target in infrared video sequence, depicting 

continuous tracking and progression in the 22
nd

 frame 

From Figure 2.19 and Figure 2.20 it can be observed that the size of the contour vector 

and the total number of snaxels change dynamically for the infrared band video 

sequences. This is due to the change in intensity values because of varying temperatures 

in the moving vehicle being tracked. Note that the images in Figure 2.19 and Figure 

2.20 are from a static camera with a constant view angle. 

2.8 Summary 

This chapter introduces a modified model for active contours which is fast, robust and 

accurate as compared to other available methods for Active Contours or Snake models. 

The described method is based on DoG filtered images thus giving more emphasis to 

the edges of the object under study. The DoG filter is designed using a pre-defined set 

of parameters such as the standard deviation values, obeying the rule that their ratio be 
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equal to 1.6, as explained in Section 2.3. This method can either be used in an image 

sequence or on frame data from a continuous video source. The active contours are set 

as soon as the object in a video is in motion and the contour follows the object by 

deforming onto the object in each frame, thus providing robust tracking of the acquired 

object in the video. The introduction of the new energy functional term derived from the 

DoG filtered image, as explained in Section 2.4, reduces the snake energy to give 

emphasis to the object edges, thus making the snake deformation faster and more 

robust. 

The method of automatic contour initialization makes it possible for the algorithm to 

work on video sequences with limited user intervention, unlike previously presented 

methods [9], [11], [19], [15], [13]. The initial contour set, based on moving objects and 

the boundary data of the object, makes the snake fitting and deformation quicker than 

the other methods previously reported in the literature. Due to the initialization on the 

edges of the object, the snake requires less iteration for the first frame the object is 

acquired, thus reducing the processing time. This not only reduces processing time but 

also makes it accurate, as the initial contour fits readily onto the object. The progression 

of the snake onto future frames is also made accurate and fast due to the presence of the 

DoG energy parameter in the minimization equation. The method also works when an 

object being tracked stops moving and becomes static in the scene, as discussed in 

Section 2.6. Addition or removal of contour coordinates into the AC allows the contour 

to fit onto the moving object precisely even when the scale and orientation of the object 

changes subsequently. The enhanced active contour discussed in this chapter works on a 

single moving object and can be further enhanced to work for multiple object tracking 

and contouring applications. 
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The results and discussion in Section 2.7 shows that the enhanced active contour snake 

(EACS) framework performs accurately in real-time for variable scale and orientations 

of the object being contoured. It is also evident that the enhanced active contour 

technique not only works on colour video sequences but also on infrared band 

sequences. The computational model for single object contouring can be modified and 

improved for multiple objects contouring and tracking. This is discussed in detail in 

Chapter 3 where it will be explained how multiple contours can be constructed out of a 

single contour vector deformed on to the moving objects in video sequences. 
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Chapter 3 

ENHANCED ACTIVE CONTOUR SNAKES 

FOR MULTIPLE OBJECT TRACKING AND 

ITS APPLICATIONS 

3.1 Introduction 

Many advanced computer vision tasks such as recognition, tracking and scene 

understanding require accurate tracking of the complete contour of the objects. It is 

often observed in real-time scenarios that the objects undergo dynamic deformations 

and occlusions. It is common for the deformable objects to encounter crossing 

trajectories. The non-rigid objects often get occluded causing a merger of their contours 

into a single contour vector. Classical active contour methods fail to track multiple 

objects at once [2], [3], [7], [8], [22]. Tracking non-rigid objects in dynamic scenarios is 

a challenging task as the objects split and merge when they come closer and move apart. 

The extended computational model proposed in this chapter enables topographical 

change to the contour vector contouring the target objects.  Contour merging and 

splitting operations are performed when the objects come closer and move apart, 

respectively. The proposed topographical change computational model also increases 

the tolerance to noise due to high frequency edge intensity changes in dynamic scenes.  

Enhanced active contour snake based statistical measurements such as the contour 

bounding rectangle and contour centroid are discussed in detail. Contour bounding 

rectangle is a measure of overall space occupied by the object in the frame. Contour 

boundary rectangle measure assists in computing the centroid of the contour. The 
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centroid of the active contour can be utilised to integrate the enhanced active contour 

system with several target tracking techniques to improve the efficiency of tracking in 

difficult vision conditions. This has been discussed in Chapter 5 along with promising 

results. 

Based on the active contour centroid measure a real-time upper body skeletal modelling 

application has been designed. An upper body stick skeleton model is derived from the 

enhanced active contour vector and its centroid. This can be utilised in estimating the 

pose of the human body and to track salient body parts of the humanoid being 

contoured. 

3.2 Chapter organisation 

The entire chapter is organised in the following way: the extension to the enhanced 

active contour snake (EACS) model for multiple object tracking is discussed in detail 

along with a few results in the following section. The Section 3.3 also describes the 

snake termination, separation, merger and constraint conditions using a detailed 

mathematical model. The statistical measures of the enhanced active contour model are 

detailed in Section 3.4. The active contour bounding rectangle and the AC centroid 

computations are discussed and demonstrated using several examples. The upper body 

humanoid skeletal modelling application is described in Section 3.5 along with some 

results. Conclusions are drawn in the summary Section 3.6. 

3.3 Multiple object contouring 

The active contour model described in the previous chapter is only able to track a single 

moving object. There is a need to extend the enhanced active contour technique to work 

for multiple moving objects in dynamic scenarios. In order to accomplish multiple 

object tracking, the enhanced active contour needs to be improved to differentiate 
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between multiple objects interacting and moving apart from each other. Multiple object 

tracking can only be possible if the contour can be split into multiple contours or 

merged into a single contour depending on the interaction between the objects in motion 

[29], [18].  

Extension to the enhanced active contour model is proposed to solve the problems 

described above. A contour process termination step is introduced to stop the snaxels 

from moving after a stable lower minimum energy contour vector is attained. The 

contour splitting step is also introduced in the following section describing the 

conditions and procedure to divide the snake into several contours. A contour selection 

step is also described to eliminate irrelevant contour vectors after the contour is split 

into separate contour vectors. These extensions to the EACS assist in tracking multiple 

moving objects at the same time. These extension steps are only performed after the 

final active contour vector is obtained using the EACS model [18], [20], [19]. 

3.3.1 Contour termination 

The active contour deformation process dynamically changes the position of each 

snaxel contained in the contour until the lowest energy point for all the snaxels is 

obtained. This process is often computationally intensive. The constraint criteria for 

stopping the snake deformation can be included to improve the efficiency by decreasing 

the computational cost. This can be achieved by adhering to the criterion of maintaining 

a constant distance equal to the average distance Daverage between each neighbouring 

snaxel in a contour vector [26], [34], [18]. 

3.3.2 Contour splitting step 

 The active contour can be divided into several contours by evaluating the length of 

every segment vi-vi+1 connecting two successive snaxel points vi and vi+1 contained in 
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the contour vector. If  the objects move apart from each other, the length of the segment 

increases. A segment length threshold can be computed as the product of a fixed 

coefficient with the average distance Daverage between each neighbouring snaxel pair 

forming a segment. If the length of a segment in the contour vector is greater than the 

threshold, the segment is divided by introducing new contour points (snaxels) between 

the two consecutive snaxels. The segments whose lengths are greater than the threshold 

is divided into three equal segments by introducing two intermediary points between 

them (say vi and vi+1) [18]. An initial contour considered for splitting is depicted as 

shown in Figure 3.1.  

 

Figure 3.1 Contour „v’ analysed for segments before splitting [18] 

The segments to be divided, due to their lengths being greater than the threshold, are 

identified as shown in Figure 3.2. 
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Figure 3.2 Identified contour segments to be divided are highlighted [18] 

Points pi
1
 and pi

2
 denote the two intermediate points between the snaxels vi and vi+1. 

Three new segments, namely vi- pi
1
, pi

1
- pi

2
 and pi

2
- vi+1 are appended into the contour 

‘v’. This can be illustrated as shown in Figure 3.3. 

 

Figure 3.3. The segments identified that need splitting; two new points are appended to 

create three new segments 

If the lengths of segments keep increasing over the defined threshold, the contour vector 

can then be divided into separate closed contours at the new segments created. This is 

illustrated in Figure 3.4 [19], [18].  
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Figure 3.4 New set of segments reorganised to form three separate active contours 

The active contour snake is split into three separate contours and will now contain the 

additional set of segments as described in the contour vector segment equations 3.1, 3.2 

and 3.3: 

 
1

2211

1 


kkkiii
vppppv     (3.1) 

 
1

2211

2 


iiijjj
vppppv     (3.2) 

 
1

2211

3 


jjjkkk
vppppv     (3.3) 

The three separate active contour vectors, X1, X2 and X3 are formed due to the contour 

splitting operation when the segment lengths calculated are higher than the defined 

threshold. Figure 3.4 illustrates the three separate contours produced by rearranging the 

new set of segments created from the original active contour vector „v’  [22], [19].  

3.3.3 Contour selection step 

Distinct active contour vectors are obtained by performing contour splitting on a single 

active contour vector. This is followed by a contour selection step to identify the 
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relevant active contour vectors from the new set of contour vectors created during the 

splitting process, as explained in the previous section. The new sets of contours are size 

filtered to decrease the number of false contour vectors fitting into the noisy background 

pixels. Inter-snaxel coherence is verified for each sub-set of contour vectors, isolated 

snaxels forming a separate contour vector containing a point or a line being discarded. 

The resultant sub-set of contour vectors so obtained are maintained in a separate contour 

array for each moving object being contoured [21].  

Figure 3.5 and Figure 3.6 illustrate an example of contour vector splitting and the 

forming two distinct active contour vectors. An active contour vector that locked on to a 

human being carrying a box is as shown in Figure 3.5.  

 

Figure 3.5 Contour vector locked onto the human holding a box (drawn in green, 

signifying the original contour vector considered for subsequent splitting). 
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The original contour vector shown in Figure 3.5 is split due to the objects (human and 

box) separating themselves by a distance in subsequent frames. After the contour 

splitting and relevant contour selection process, the two distinct contour vectors 

contouring the human and the box, respectively, are depicted as shown in Figure 3.6. 

 

Figure 3.6. Two distinct contour vectors created from the single contour present in 

previous frames as shown in Figure 3.5 

In Figure 3.6 note that the contour drawn in green signifies the original contour and the 

contour drawn in yellow signifies the new contour vector created. The yellow coloured 

contour is affixed onto the static box and will remain contouring the box until it is 

displaced due to the contour process termination criteria, as discussed in Section 3.3.1. 

Another example of contour splitting, where the objects continue their motion in the 

scene, is illustrated in Figure 3.7 and Figure 3.8. The objects being considered here are 



53 
 

two human targets, occluding each other and forming a single active contour vector as 

shown in Figure 3.7. 

 

Figure 3.7. Single contour vector drawn in green covering two people occluding each  

other in a scene 

The contoured objects subsequently move apart and continue moving along their 

respective trajectories. The single contour is now split into two distinct contours when 

the two people contoured move apart. It is followed by the contour selection process to 

minimise the possibility of assigning false contours to track the people. After splitting 

into two distinct contour vectors, each person being contoured moves in his own 

direction. The enhanced active contour snake (EACS) continues to track the objects 

separately, maintaining a distinct contour vector for each moving object in the scene. 

The split contours of each person in the image in Figure 3.7 are shown in Figure 3.8.  
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Figure 3.8. Two distinct contour vectors created from the single contour present in the 

previous frames as shown in Figure 3.7 

The new contour vector created is marked in yellow to signify that the contour will now 

track a new target moving in a different direction. 

3.4 Statistical measures of the enhanced active contour snakes (EACS) 

3.4.1 Active contour bounding rectangle 

The enhanced active contour vector obtained from an object being tracked can be used 

to compute a minimum area bounding rectangle covering the circumference of the 

contour vector. Mathematically, the active contour vector can be scanned to find the 

highest and lowest x-axis and y-axis coordinate values. This can be done by considering 

one axis point vector at a time. Thus, by considering the x-axis coordinate point set of 

the snaxel array, the minimum and maximum x-axis value can be computed as 

described in equations 3.4 and 3.5. A set of snaxels Si is considered where „i’ ranges 
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between 1 and N; N being the total number of snaxels in the contour vector. The 

maximum x-axis coordinate Xmax and the minimum x-axis coordinate Xmin can be 

derived as the shown in equations 3.4 and 3.5, respectively: 

 NiXSX
ii

:1)),(max(
max

     (3.4) 

 NiXSX
ii

:1)),(min(
min

     (3.5) 

where, max(.) is the function scanning for the maximum value between all the x-axis 

coordinates of the snaxel array. The min(.) function scans for the minimum value out of 

all the x-axis coordinates of the snaxel array [44], [32].  

Note that the symbol „ ‟ is used to signify a „for each‟ condition, which means the 

maximum or minimum value is searched throughout the contour vector. Similarly, the 

maximum y-axis coordinate Ymax and the minimum y-axis coordinate Ymin are computed 

using equations 3.6 and 3.7: 
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 NiYSY
ii

:1)),(min(
min

    (3.7) 

Using the values obtained from equations 3.4 to 3.7, the bounding rectangle coordinates 

can be obtained as described by equation 3.8. The minimum x-axis and y-axis 

coordinate point is considered as the top-left corner of the bounding rectangle. The 

bottom-right corner of the bounding rectangle is the point described by the maximum x-

axis and y-axis coordinate points. If the bounding rectangle is denoted as B, then the 

top-left and bottom-right coordinate of the bounding rectangle can be computed from 

equations 3.8 and 3.9, respectively: 
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   minmin,, YXyxB lefttop      (3.8) 

   maxmax,, YXyxB rightbottom     (3.9) 

From equation 3.4 to 3.7, the width and height of the bounding rectangle can be 

computed as described in equations 3.10 and 3.11: 

 minmax XXBwidth      (3.10) 

 minmax YYBheight       (3.11) 

The minimum up-right bounding rectangle of an active contour vector can be deduced 

using the above equations. The EACS contouring a person is shown in Figure 3.9. 

 

Figure 3.9. The active contour vector plotted on the object being contoured 
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The minimum bounding rectangle of the contour vector is computed using equations 3.8 

and 3.10 and it is drawn in red as illustrated in Figure 3.10. 

 

Figure 3.10 The minimum bounding rectangle bounding the contour vector 

3.4.2 Active contour centroid 

The coordinate of the active contour centroid can be computed using the AC bounding 

rectangle coordinate values as computed in equations 3.8 to 3.11. If the centroid of the 

active contour vector is denoted by CAC it can expressed as in equation 3.12: 

     
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lefttopAC
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B
xByxC   (3.12) 

The centroid is computed for the bounding rectangle as depicted in Figure 3.10 and 

plotted in green to display the computed centroid point from the active contour vector 
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drawn in yellow, as illustrated in Figure 3.11. The centroid point plotted in green is used 

as a centre to draw a small circle in yellow for display purposes. 

 

Figure 3.11 Active contour centroid point plotted in green surrounded by a yellow circle 

for display 

3.5 Upper body humanoid skeletal modelling application 

Human pose estimation has been an important research problem in computer vision 

applications. The active contour statistical parameters discussed in Section 3.4 can be 

utilised in constructing a skeletal stick model for the humanoid being contoured. A 

simple humanoid skeletal modelling application for pose estimation of the frontal pose 

upper body is designed and discussed in detail in this section [66].  
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The active contour centroid is the important parameter considered while deducing the 

skeletal model for the contoured humanoid. The EACS contour vector computed on the 

humanoid is illustrated in Figure 3.12. 

 

Figure 3.12 The EACS contour vector drawn in yellow for the humanoid being 

contoured 

The active contour bounding rectangle and the centroid are computed for the contour 

vector shown in Figure 3.12. This is illustrated in Figure 3.13 with the centroid point 

plotted in green with a yellow circle around it for display purposes. The bounding 

rectangle is drawn in red as shown in Figure 3.13. 
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Figure 3.13 Active contour centroid point computed from the EACS contour, plotted in 

green surrounded by a yellow circle for display 

The active contour centroid is one of the salient skeletal points of the humanoid. The 

location of the AC centroid can be used to deduce a stick model for the frontal pose 

estimation of the humanoid under consideration.  

Using the active contour bounding rectangle and the centroid data, it is possible to 

compute the top most point on the head of the humanoid denoted as Skelhead. This can be 

computed as expressed in equation 3.13 (considering also equations 3.8 and 3.12): 

      yBxCyxSkel lefttopAChead  ,,     (3.13) 
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A line is drawn between the active contour centroid to the Skelhead (top-most point of the 

head) forming the upper body skeletal stick model. This is depicted in Figure 3.14. 

 

Figure 3.14 The upper body skeletal stick drawn between the centroid and the top most 

point of the head determined using equation 3.13 

The anthropometric data from NASA‟s anthropometric data source book [65],[66] used 

to estimate the size of body parts is utilised to compute the neck (or the centre of the 

shoulder) point of the humanoid. According to the data the neck point of the humanoid 

should lie at a point at one-third the distance from the top of the head to the centroid of 

the body. The distance calculated here is the Euclidian distance [62] (denoted as 

Eeuclidian) that can be computed between any two points given by the expression in 

equation 3.14: 



62 
 

         22
ySkelyCxSkelxCD headACheadACeuclidian   (3.14) 

where the active contour centroid coordinate CAC and Skelhead are given by equation 3.12 

and 3.13, respectively. The Euclidian distance computed is used to find the neck point at 

one-third the distance from the top most point of the head. This has been illustrated 

using a yellow circle at the computed neck point for display as shown in Figure 3.15.  

 

Figure 3.15 The center of the neck point deduced using the Euclidian distance between 

the centroid and the top of the head in the humanoid being contoured 

Using the centre of the neck point the left most and right most points of the arms can be 

derived by simple linear scanning inside the active contour vector surrounded by the 

bounding rectangle. The linear scanning is performed by calculating the left most and 

right most points of the active contour vector touching the bounding rectangle. The lines 
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drawn between the neck point to the tip of both the arms represent the upper body 

skeletal stick model of the humanoid being contoured. The computed left most and right 

most points on the left and right arms connected to the neck point form the upper body 

humanoid skeletal stick diagram as illustrated in Figure 3.16.  

 

Figure 3.16 The upper body humanoid skeletal stick model derived from the active 

contour centroid and AC bounding rectangle parameters 

The upper body humanoid skeletal modelling application is only designed to 

demonstrate the use of active contour statistical parameters. It is not a complete human 

skeletal tracking solution. The upper body humanoid skeletal modelling application can 

be further enhanced to perform as a full body skeletal tracking system by utilising 
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several geometric computations. The future work involved in improving the skeletal 

modelling application is discussed in Chapter 6 of the thesis.  

3.6 Summary 

An extension to the enhanced active contour snake (EACS) technique to perform 

multiple object tracking has been proposed in this chapter. The contouring process 

termination criterion has been described in order to enhance the computational 

efficiency. It is demonstrated that the active contour vector tracking a group of occluded 

moving objects can be divided into distinct contour vectors that can maintain a separate 

track of each moving object in the scene. The contour splitting and selection criteria 

responsible for causing the active contour to split and then maintain distinct contour 

vectors for multiple objects are discussed in Sections 3.3.2 and 3.3.3. Several results 

incorporating the contour splitting and selection process for tracking multiple objects 

have been discussed. From the results documented, it is clear that the enhanced active 

contour model is also suitable for multiple object tracking in real-time applications. 

EACS statistical parameters, such as the active contour boundary rectangle and the 

active contour centroid, have been described in detail in Section 3.4. Several results 

have been discussed to demonstrate the use of these statistical measures. A simple 

application to perform upper body humanoid skeletal modelling has been designed and 

discussed to demonstrate the importance of computing an accurate active contour vector 

using the EACS. Several results determining the skeletal stick model for the upper body 

of a humanoid have been presented and discussed. How the enhanced active contour 

framework can be utilised to derive an important statistical measure known as the global 

active contour orientation (GACO) is discussed in the next chapter and a description of 

an application for a robust door surveillance system is presented. 
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Chapter 4 

GLOBAL ACTIVE CONTOUR ORIENTATION 

AND ITS APPLICATIONS 

4.1 Introduction 

A popular approach for estimating the direction of motion of moving objects in a scene 

is the application of optical flow techniques [14], [16]. These focus on the observation 

of the differential changes in pixel values. The optical flow approach has been used in 

automatic gait recognition amongst many other applications with a static background 

and a single object in motion [6]. In real time applications such as estimating the 

direction of flow of a selected object in motion as opposed to the overall flow of motion  

in a dynamic scene, the optical flow approach becomes unsuitable. This is partly due to 

the fact that optical flow methods consider the differential changes in the pixel values of 

the whole frame.  

Enhanced active contour techniques discussed so far can be utilised for locking on to a 

moving object of interest. The active contour vector comprising a finite number of 

snake points or snaxels for estimating the direction of motion is a better approach for 

computing the localised motion and orientation of an object in a frame. The orientation 

of the active contour vector can be computed for each contour co-ordinate or snaxels 

using simple geometry. This chapter introduces the global active contour orientation 

(GACO) technique for statistical measurement of contoured object orientation. It is an 

overall active contour orientation measurement method which uses the proposed 
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enhanced active contour model along with statistical measurement techniques. The 

computation of global active contour orientation angle is discussed in detail. 

A real-time door surveillance application based on the global active contour orientation 

has been developed and discussed to evaluate the technique for its application in 

determining the contoured object orientation in a localised region of the frame. The door 

surveillance application developed is evaluated on the i-LIDS (an acronym for the 

„Imagery library for intelligent detection systems‟) door surveillance dataset provided 

by the UK Home Office [43]. The door surveillance application uses an edge-map based 

Harris corner detector in a localised area of the door for generating an alarm. 

Furthermore, the system accuracy is enhanced by using a Hough transform based error 

correction technique. The performance results demonstrate the use of GACO to evaluate 

the door surveillance dataset gives an overall success rate of 92%, thus proving the 

proposed GACO technique to be useful in real-time applications. 

4.2 Chapter organisation 

The entire chapter is organised in the following way: the global active contour 

orientation (GACO) and the statistical measurement of the contoured object orientation 

is discussed in detail in the following section. The Section 4.3 also describes the radian 

angle computations for each defined quadrant of the image. The following Section 4.4 

describes the overall design flowchart for the GACO technique along with a few results. 

The door surveillance system developed is introduced in Section 4.5.1. The following 

sub-section describes the edge-map based Harris corner detector for primary 

surveillance alarm generation. Section 4.5.3 describes the door surveillance system 

algorithm design along with an overall flowchart of the system. A system to perform 

error correction using Hough transforms is discussed in the Section 4.5.4. Finally, 

Section 4.6 presents several results of the GACO based door surveillance system. The 
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section also discusses the i-LIDS dataset evaluation results along with a result table 

estimating the detection rate and the probability of genuine alarms. Conclusions are 

drawn in the summary Section 4.7. 

4.3 Global active contour orientation measurement 

The enhanced active contour snake model discussed in Chapter 2 is utilised in 

contouring an object in motion in order to compute its global active contour orientation. 

The energy of each coordinate point is calculated based on the 8- point neighbourhood 

pixels at each snaxel. A difference of Gaussian (DoG) filtered image of the frame is 

computed to emphasise the exterior edges of the object being contoured. The process is 

maintained and controlled by the number of iterations throughout the contour vector. 

The enhanced active contour vector determined is stored in a snaxel vector array after 

the (EACS) snake deformation. The total number of snaxels, N, contained in the snaxel 

vector is also stored for geometric computations. 

The orientation of the contour vector can be computed for each contour coordinate point 

or snaxel using simple geometric calculations. The overall contour orientation is then 

computed as the mean of all the snaxel or vector point orientations. The calculations are 

carried out based on the defined quadrant of the image in which the coordinate point 

lies. The orientation of each point in the contour denoted as ),( yxi can be calculated by 

equation 4.1, if ii
xx * : 
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where ix*  and iy* denote the previous coordinate position of the i
th

 coordinate point. 

The 
i

x  and 
i

y  denote the current coordinate of the i
th

 snaxel.  
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If ii xx * , ),( yxi  is set to „π/2‟ or „3π/2‟ radians depending on the y-coordinate points. 

This can be expressed:  

 
iii yyyx  *

2
),(


      (4.2) 

 iii yyyx  *

2

3
),(


      (4.3) 

If ii
yy * , ),( yxi  is set to „0‟ or „π‟ radians depending on the x-coordinate points. 

This can be expressed as: 

 iii xxyx  *),(       (4.4) 

 
iii

xxyx  *0),(      (4.5) 

When ii xx *  the angle ),( yxi  is computed based on equation 4.1 with additional 

calculations given by; 
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If ii xx *  the angle ),( yxi  is computed based on equation 4.1 with additional 

calculation given by: 

 

    iiii xxyxyx  *),(5.1),(     (4.7) 
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Note that the symbol   in equations 4.2 to equation 4.7 denotes the „if‟ condition 

described within the bracket. 

The overall orientation of the contour, also known as the active contour global 

orientation, is then computed as the mean of all the angles ),( yxi  where „i‟ ranges 

between 1 to N.  

This can be described by the expression: 

 



N

i
ic yx

N 1

,
1

         (4.8) 

Here, N denotes the total number of snaxels or contour points contained in the active 

contour of the object being considered [38], [45].  

4.4 Global active contour orientation design flowchart 

The radian angle can be converted to degrees using equation 4.9. Figure 4.1 shows a 

typical example of the global active contour orientated at 345
0
, computed on a 

contoured moving object.  




1800
 cc

      (4.9) 
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Figure 4.1: Global active contour of the object contoured in blue with AC vector (345
0
) 

The contour vector of the previous frame is stored and used for computing the global 

AC orientation in the current frame. The summation of all the angles calculated for each 

snaxel divided by the total number of snaxels, N, gives the overall GACO of the object 

considered. From Figure 4.2 it is evident that for the initial frame the GACO cannot be 

computed due to its dependency on a previous AC vector for its calculation. (Note that 

the angles calculated are in radians which can be converted to degrees using the 

equation 4.9).  
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The overall flowchart describing the computation of GACO is as shown in Figure 4.2. 

Enhanced active contour 

snake

(EACS)

Computed active 

contour vector

If Frame 

number > 1

Store current and previous 

frame active contour vectors 

in an array

Store initial 

frame active 

contour vector 

For each ‘i’ snaxel (xi,yi) or contour 

point in current AC vector  and 

(x’i,y’i) of the previous AC vector

If (xi’ != xi’) If (y’i > yi)

Ɵi = π/2

Ɵi = 3π/2

If (yi’ != yi’) If (x’i > xi) Ɵi = 0

Ɵi = π

Ɵi = tan-1{(yi’ - yi)/(xi’-xi)}

If (x’i > xi)
Ɵi using 

equation 4.6

Ɵi using 

equation 4.7

Ɵn = mean(Ɵi)

GACO

N

Y

N N

N N

N

Y

Y

Y

Y

Y

 

Figure 4.2 Overall flowchart for computing the global active contour orientation 

(GACO) 
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Figure 4.3 shows an example of the GACO at 162
0
 being calculated in the 2

nd
 quadrant 

(i.e. 90
0
 to 180

0
). 

 

Figure 4.3: Global active contour of the object contoured in blue with AC vector 

computed as 162
0
 

4.5 Real-time door surveillance application 

4.5.1 Door surveillance introduction 

Some of the prominent surveillance solutions are centered on an entrance or an exit 

door. Doors pose difficult problems to most surveillance systems as they usually violate 

the basic assumption about the nature of the background. The movements involved with 

doors are relatively infrequent compared to camera noise or jittering clutter objects. 

People or objects dynamically occluding the moving door add in to the foreground and 
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hence create ambiguity in detecting the activity at the door. Generating an alarm when a 

door event occurs during an obscured entrance at the door is challenging. The detection 

of door activity is even more challenging with the presence of varying illumination 

conditions. A number of door surveillance techniques can be found in the literature. A 

mixture of Gaussians (MoG) background model technique is very popular due to its 

flexibility and stability in complex scenes [80] [57], [62], [61]. A technique of 

modelling scene appearance by storing Gaussian pixel distributions corresponding to a 

discrete sample of the door‟s range of motion has also been implemented [81], [60]. An 

algorithm to detect doorways in a scene by observing vertical edge features from 

camera images fused with laser range information has been developed [82], [45]. A 

technique of using a generative probabilistic model of the scene to generate a 

maximum-likelihood map of the walls and doors from visual range data has been 

presented in [83], [45]. The biggest disadvantage of such methods is either that the 

camera view is just above the door or they address scenarios devoid of complex doors, 

moving cameras, occlusions and varying illumination conditions.  

The proposed door surveillance application uses edge-map information to detect 

moving Harris corners in a small localised window at the top of the door. An 

assumption is made that the top end of the door is normally not occluded due to human 

activity. The window in which the Harris corner detector is applied is called the Harris 

window (HW). The window around the door is selected for activity detection when the 

door is displaced. This window is called a surveillance window (SW). The proposed 

overall method also generates an alarm to signify whether the door was displaced to 

provide entry or exit. To do this the activity at the surveillance window is classified 

based on the global active contour orientation (GACO). An overall active contour object 

orientation is computed within the surveillance window to classify the activity. The 
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algorithm also aims at compensating for the effects due to camera motion. A Hough 

transform is applied to a distinct region in the frame to detect a line. In case of camera 

movement the detected line coordinates are used to readjust the Harris and surveillance 

window for accurate surveillance. The novel contribution of this work is the application 

of these methods along with the GACO to a new problem involving doors and the use 

of problem-specific constraints to improve the accuracy of the surveillance. 

4.5.2 Edge-map based Harris corner detector 

In order to detect the door event, the frames of the „Door-Zone‟ videos are pre-

processed with an average-estimating kernel and a Gaussian kernel. The presence of 

multi-directional lighting effects from artificial lighting sources and different 

illumination effects originating from transparent windows in the doors and elsewhere in 

the scene, complicate the processing considerably. An omni-directional edge detector 

[55] is used to estimate the door edges as it helps to remove the effect of both impulse 

and Gaussian noise present in each frame. It is particularly effective in picking up the 

weak edges created due to the movement of the door during an event. It has been 

observed that the edge detector is also efficient in being invariant in the presence of 

burst noise due to variation in the bulb filament lighting. 

The application of the multi-stage edge detector on each frame can be demonstrated by 

choosing a typical frame from the i-Lids Door Zone single door videos [55]. Figure 4.4 

shows a typical Single Door Zone video frame from the dataset. Figure 4.5 (a) shows 

the greyscale intensity image of the top-left rectangle (Harris window) of the single 

door and Figure 4.5 (b) shows the edge detected at the top-left corner of the door using 

the edge detector. 
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Figure 4.4. The single door video frame from i-LIDS door surveillance dataset to be 

processed 

                        

(a)                                                                    (b) 

Figure 4.5. (a) Left: The top-left corner of the door frame converted to greyscale 

intensity image; (b) Right: the edge detector used on the left image to find Omni-

directional edges for further processing. 
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The search of local maxima of the Harris response function gives the Harris corner 

detected in the specified window. It is suggested in [64] a local maxima search of the 

Harris response function is used to obtain corners in an image.  

   Harrislocalidxn RCorners max,     (4.10) 

In the equation 4.10, the Harris response function is denoted as HarrisR  and the local 

maxima search function is denoted as  localmax . The process works by finding the 

maximum value point in the Eigen value vector derived by Taylor series expansion of 

the pixel intensities in a particular area of the image. The edges detected in the Harris 

window of each frame are used to detect the Harris corners of the door by employing a 

Harris corner detector [64]. The most significant corners in the Harris window (HW) of 

the door are detected for each frame. The changes in count of the corners and 

displacement of the detected corners as the event progresses are estimated and used for 

deciding whether the event occurred or not. The algorithm checks for any change in the 

displacement or the count of the corners and gives out an alarm. The number of corners, 

n, and their indices „idx‟ can be obtained as described in equation 4.10. A statistical 

decision algorithm is also implemented to decide whether the door is opened or closed 

based on the fact that the detected corners displace back into the same position after the 

door closes.  

The Harris corner detected in the Harris window for the two kinds of doors namely: 

single and double door, are shown in Figure 4.6 and 4.7, respectively.  
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Figure 4.6. The single door video frame with Harris corner detector applied to the Harris 

window showing the displaced corner at the top when the door opens  

The corners detected in the Harris window for each kind of door displace when the door 

opens and return back into the same position when the door closes. 
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Figure 4.7. The double door video frame with the displaced corner at the top  

Thus the capability to reliably detect the door corners based on the edge detector [55] is 

exploited in the decision algorithm to aid in reliable Door-Zone surveillance. Further, 

due to the effective estimation of the door activity, the decision algorithm is enhanced 

using the global active contour orientation (GACO) technique to indicate if people exit 

or enter the door.  

4.5.3 Door surveillance algorithm design 

The initial set up of the algorithm comprises the user interface designed to initiate 

surveillance. The interface prompts the user to signify if the door being used is a single 

or a double door. A designed mouse interface is then activated to signify the Harris 

window and the surveillance window for the algorithm to actively monitor the specified 
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regions of the frame. The location of the Harris and surveillance window is stored for 

segmenting the region. The flowchart of the algorithm is depicted in Figure 4.8. The 

user interface part of the algorithm is used only at the first frame or during the initial set 

up of the system. 

Frame data
User interface to select HW, 

SW and type of door

DS

Edge-map based Harris corner detector

Corners (C)

If ( C) displaces or varies

Global active contour orientation, ɵc, 

(GACO)

If (ɵc between threshold 

ɵc1 and ɵc2)

Alarm display (Entry) or (Exit)

No door 

activity 

detected

Door activity 

detected

Activity type:

Exit

Activity type:

Entry

 

Figure 4.8. The Door surveillance system designed to evaluate the i-LIDS door 

surveillance dataset 
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Note that DS signifies the proposed door surveillance system, Corners(C) contains both 

the total number of corners and the index and threshold (θc1) and threshold (θc2) are the 

range of angles through which objects/people can enter the door. The Harris (HW) and 

surveillance windows (SW) are initialised at the first frame and stored for further 

processing. 

4.5.4 Hough transform based error correction 

The Hough transform is a feature extraction method used to analyse images and has 

been used in several computer vision applications [38], [39]. The Hough transform 

is concerned with the identification of lines, circles, ellipses and arbitrary shapes. The 

generalised Hough transform (GHT) is the modification of classical Hough transform 

using the principle of template matching [39]. Although the „i-Lids Door Zone‟ 

dataset contains videos from fixed cameras, it has been observed that the cameras are 

often subject to movement due to wind and other environmental changes. Thus an 

additional Hough transform error correction module has been used in the door 

surveillance system designed. 

The proposed technique uses a specific region in the frame containing a line-like object 

near to the door to extract a fixed length line using Hough transforms. The position (x, 

y) of the line is stored for correction of the Harris and surveillance window positions. If 

there is a camera movement due to environmental changes, the position of the line 

detected in the specified region changes. The change in the line position is used to 

update the position of the Harris window (HW) and the surveillance window (SW) for 

further processing. The line and region selected for the two types of doors, namely 

single and double doors, are shown in Figure 4.9 and Figure 4.10, respectively. 
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Figure 4.9: Hough transform region and the line detected for Single door i-LIDS video  

 

Figure 4.10: Hough transform region and the line detected for the double door i-LIDS 

video 
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It has been observed that the error correction implemented avoids most of the false 

alarms due to the camera motion and enhances the accuracy of the proposed 

surveillance system. The error correction is performed every 10 minutes of the video to 

minimize computational cost thus making the surveillance system robust and real-time.  

4.6 Results and discussion 

The proposed technique is tested on all the videos provided with the i-LIDs dataset, [43] 

with encouraging results. The HW for the single door is located at the top-left corner of 

the door. During an activity the Harris corners in the HW displace, generating the 

primary alarm. The primary alarm activates the global active contour orientation module 

to determine if the door was displaced to make an entry or an exit. Figure 4.11 below 

depicts the continuous surveillance at the Harris window.  

 

Figure 4.11: Active surveillance on single door videos HW on top-left corner 

The door activity primary alarm is displayed in Figure 4.12 showing the primary alarm.  
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Figure 4.12: Primary alarm on single door videos with 2 corners detected in HW 

The secondary alarm signifying entry or exit at the door is shown in Figure 4.13. 

 

Figure 4.13: Secondary alarm on single door videos showing „exit‟ at the SW 
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The active contour global orientation module decides whether the door is displaced for 

„entry‟ or an „exit‟ to activate a secondary alarm around the surveillance window (SW). 

Robust surveillance during surveillance window (SW) occlusions is shown in Figure 

4.14. 

 

Figure 4.14: Robust surveillance during SW occlusion due to external activity (no false 

alarm) 

During occlusions and people moving in front of the door the system produces no false 

alarms, thus improving the accuracy of the system.  

The top-centre window containing the two edges of the door is used as the Harris 

window for the double door scenarios. The double door is continuously monitored at the 

HW as shown in Figure 4.15.  
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Figure 4.15: Active surveillance on double door videos HW at top-center 

During door activity the two corners of the door displace and initiate a primary alarm as 

shown in Figure 4.16 

 

Figure 4.16: Primary alarm on double door videos with 2 corners displaced in the HW 
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The primary alarm triggers the global active contour orientation (GACO) module to 

detect the type of activity at the door as shown in Figure 4.17.  

 

Figure 4.17: Secondary alarm on double door videos when 2 corners move in the HW 

 

Figure 4.18: Robust surveillance at the double door during occlusions in the SW 
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The robust surveillance during SW occlusions is shown in Figure 4.18. The door is 

subject to activities around the surveillance window. The false alarms due to the 

movements around the door are avoided due to the selection of the Harris window. The 

system‟s tolerance to false alarms is as shown in Figure 4.18. 

The reason for computing an overall active contour orientation is due to the fact that the 

door is frequently occluded and the surveillance window is subject to continuous human 

activity during busy hours of the day. Hence, the use of the centroid of the active 

contour for computing the exit or entry angle produces inefficient and false secondary 

alarms. Thus, computing the global active contour orientation (GACO) of the object is 

of paramount importance in obtaining accurate secondary alarms and assists in deciding 

if the door activity occurred for entry or exit.  

The proposed method was also tested on several difficult scenarios containing 

sequences where the camera goes out of focus and the image quality is deteriorated. The 

surveillance system designed is found to be tolerant to camera noise and yields accurate 

alarms during door activity. The Hough transform based error correction is applied 

every 10 minutes of the surveillance time. The differential distance error calculated 

between the previous Hough line coordinate and the current Hough line coordinate is 

used in compensating for the camera movement due to wind or other environmental 

factors. The error calculated is utilised in moving the Harris window (HW) and the 

surveillance (SW) in order to carry out robust surveillance at all times. The system‟s 

accuracy with deteriorated frame quality is shown in Figure 4.19 and Figure 4.20. 

Figure 4.19 shows the primary alarm due to door activity. Figure 4.20 shows the Hough 

transform error corrected and occlusion tolerant secondary alarm calculated using the 

proposed GACO technique to signify an exit at the door. 
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Figure 4.19. Primary alarm as the double door displaces in poor quality frame 

 

Figure 4.20. Secondary alarm signifying an exit at the door after Hough transform error 

correction 
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The i-LIDS door surveillance dataset was evaluated using the techniques discussed in 

the previous sections. The performance results on the video sequences demonstrates that 

the use of GACO to evaluate the door surveillance dataset gives a detection rate of 

91.2% and a probability of genuine alarms of about 92%. Overall performance of the 

proposed door surveillance algorithm on a set of i-LIDS door surveillance videos is 

tabulated in Table 4.1. 

Stage Total 

Alarms 

True 

positive 

Alarms 

False 

positive 

Alarms 

False 

negative 

Alarms 

Detection 

Rate ‘r’ 

Probability of 

Genuine Alarm 

‘p’ 

DSTEA101a 22 21 2 1 95.45% 91.3% 

DSTEA101b 18 15 2 3 83.33% 88.24% 

 DSTEA105a 30 29 2 1 96.67% 93.55% 

DSTEA202b 27 24 1 3 88.89% 92.31% 

DSTEA202a 36 33 2 3 91.67% 94.29% 

Combined 

Results 

133 122 9 11 91.20% 91.94% 

 

Table 4.1: Overall performance of the proposed door surveillance application using the 

GACO secondary alarm approach 

In the Table 4.1, the true positive alarm denoted as „a‟ signifies a genuine alarm event 

and the false positive alarm denoted as „b‟ signifies that the system alarmed without the 

presence of a genuine alarm event. The false negative alarm denoted as „c‟ is the 

number of times the system missed a genuine alarm event during surveillance. The 

detection rate „r‟ is computed using equation 4.11. 

ca

a
r


       (4.11) 
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The precision or the probability of an alarm being genuine „p‟ can be calculated using 

equation 4.12. The precision „p‟ is calculated by dividing the number of true positive 

alarms by the sum of  true positive and true negative alarms as shown in equation 4.12. 

ba

a
p


       (4.12)  

From Table 4.1, it is evident that a high number of true positive alarms are generated for 

each video sequence giving an overall detection rate of 91.2%, thus proving that the 

system is a robust surveillance system. The probability of a genuine alarm of almost 

92% signifies that the surveillance system is reliable under varying conditions[43]. 

4.7 Summary 

The overall enhanced active contour vector orientation method known as the global 

active contour orientation (GACO) measure has been discussed in detail in this chapter. 

It is found that by using simple geometric calculations and assumptions, it is possible to 

determine the direction of motion of a selected object using the GACO technique as 

discussed in Section 4.3. The GACO statistical measurement calculations have been 

discussed by choosing an appropriate quadrant in which the movement occurs. The 

expressions determining the local snaxel orientation have been described in detail. 

GACO is the mathematical average of the complete set of local snaxel orientations 

contained in a contour. It is computed as the total sum of the orientation angles of each 

snaxel divided by the total number of snaxels. The GACO statistical measurement 

system is further described using a design flowchart along with a few examples in 

Section 4.4. 

A robust algorithm for door surveillance has been presented in this chapter in order to 

evaluate the performance of the proposed GACO measure. The edge-map based Harris 



91 
 

corner detector has been used to provide a primary alarm of door activity. The Harris 

corner detection is found to be more accurate due to the pre-processing steps involving 

Gaussian smoothing and multi-stage edge detection as discussed in Section 4.5.2. The 

algorithm is designed to use the Harris corner data to decide whether the door is 

displaced to produce a primary alarm. The primary alarm triggers the global active 

contour orientation (GACO) module as described in Section 4.5.3, to compute the 

object‟s angle of movement at the door. The calculated global orientation angle is used 

to decide whether the objects entered or moved out of the door, producing a secondary 

alarm. The system is improved by the addition of a Hough transform error correction 

module, to append the Harris and surveillance window locations based on the error 

calculated due to camera motion. The system is found to be accurate even when the 

frame quality is reduced due to the camera movements. The selection of the Harris 

window at the top of the door assists in making the system robust and efficient even in 

the presence of occlusions at the door. The overall performance of the algorithm is 

found to be accurate and robust on several i-LIDS door-zone dataset sequences as 

discussed in Section 4.6. The Table 4.1 shows that the proposed GACO based door 

surveillance system has a success rate of 91.94%. The enhanced active contour model 

can be modified and used in several applications. A robust moving object tracking 

system using an optimal trade-off maximum average correlation height (MACH) filter 

assisted by the EACS is discussed in detail in Chapter 5 of the thesis, together with 

several challenging target tracking scenarios. 
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Chapter 5 

ENHANCED ACTIVE CONTOUR ASSISTED 

OT-MACH FILTER TRACKER 

5.1 Introduction 

Accurately tracking moving targets in a complex scene involving moving cameras, 

occlusions and targets embedded in noise is a very active research area in computer 

vision. This chapter presents methods on implementing and enhancing an optimal trade-

off maximum average correlation height filter (OT-MACH) as a tracker. The enhanced 

active contour technique discussed in the previous chapters has been utilised to assist an 

OT-MACH filter to provide robust detection and tracking. Several techniques involving 

the area of support to the filter has been discussed with results to conclude that the 

aforementioned active contour technique gives consistent accurate tracking. The tracker 

has been tested both on colour visible band as well as infra-red band video sequences 

acquired from the air by the Sussex police helicopter and on the videos provided by the 

DSTL.  

An interrupt based user interface which is active for the whole duration of tracking in 

the videos or live feed has been developed. The user defines a circular area around the 

target using an interrupt to start tracking the selected target. The user interface is 

designed so as to allow the user to select a different target for tracking at any time. The 

filter is updated at a frequency selected by the user. The filter parameters are initialised 

and amended using an initialisation text file. The initialisation file is used to fetch the 

frequency of up-date, i.e. rate of correlation, and filter parameter values provided by the 
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user. The design makes the filter more resistant to progressive changes in the object‟s 

orientation and scale.  

The Kalman and Particle filter used as a tracker are implemented and utilised to trace 

the target in multi-target environments. This allows the tracker to continuously track the 

selected target by ignoring adjacent identical non-target objects in the scene. The OT-

MACH tracker is also compared with the Kalman and particle filter [68], [67]tracking 

for its accuracy and efficiency in tracking selected targets in real-time scenarios; results 

are compared with [71], [73], [75] and [67]. 

5.2 Chapter Organisation 

The entire chapter is organised in the following way: the design of OT-MACH filter is 

discussed in the next section. The following sections describe how the OT-MACH filter 

has been implemented as a robust target tracker in real-time situations. Section 5.4 

describes the design of a unique user interface developed to enhance the usability of 

OT-MACH filter as a tracker. In Section 5.5 several techniques on reference image 

extraction for the OT-MACH filter have been discussed in detail with flowcharts 

depicting the procedures involved. Sections 5.6 and 5.7 discuss the issue of real-time 

implementation of the OT-MACH tracker. Comparison of the OT-MACH tracker with 

an extended Kalman filter and a colour based Particle filter have been discussed in 

Section 5.8. Multiple target-like object confusion problems and their solution have been 

discussed in the Section 5.9. Finally Section 5.10 displays several results of the OT-

MACH acting as a robust tracker. Conclusions are drawn in Section 5.11. 
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5.3 Design of Optimal trade-off (OT) MACH filter 

The maximum average correlation height filter (MACH) has been proposed by 

Mahalanobis et al. [93], [92]. The MACH filter theory allows a better filter solution by 

removing the peak-height constraint from the SDF based design methods [96], [89], 

[76]. The MACH filter design includes the minimisation of an average similarity 

measure (ASM) that leads to a compact set of correlation planes that resemble each 

other and exhibit the least possible variation [93].  

To understand the MACH and related OT-MACH filter it is useful to review its 

derivation given by Vijaya Kumar et al [93], [91], [97]. A variation of the MACH filter 

that includes an additional output noise variance (ONV) term to offer better clutter 

resistance [99], [98] is known as the optimum trade-off maximum average correlation 

height filter (OT-MACH). It is assumed that the training set consists of N true-class 

images and M images from the false class. The i
th

 training image is denoted by  

and is represented in the frequency domain by a vector qi, obtained by lexicographically 

reordering its 2-D FFT. The filter transfer function is denoted by the vector h. 

The ONV (denoted as C) is defined as:  

PhhC         (5.1) 

where P is the zero mean stationary noise power spectral density arranged into the 

diagonal of a matrix, h  is the filter transfer function. The average correlation height 

(ACH denoted as W) is defined as: 

_1
qhqh

N
W T

i

T        (5.2) 

 

),( nmi
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The OT-MACH seeks to minimise the energy function expressed as equation 5.3: 

         

      












_

qhhShhhDPhh

ACHASMACEONVhE

T

xx 



  (5.3) 

where α, β, δ, and γ are variables whose sum equals one, Dx is the diagonal average 

power spectral density of the training images and the average correlation energy (ACE) 

now refers to the true class. The Sx denotes the similarity matrix of the training image 

set [93]. Rearranging the equation 5.3 gives us: 

     xx SDC

q
h

 


_

    (5.4) 

where, C is the diagonal power spectral density matrix of additive noise. This version of 

the filter is used throughout this chapter. 

5.4 Interrupt based user interface 

A user interface has been developed to select the target from the source. The user 

interface is activated once the user finds a visual target in the scene by pressing any key 

from the keyboard. The interface creates a mouse interaction protocol on the current 

frame. The interface takes a snap shot of the current frame and displays the image for 

user target selection. With the assistance of the mouse, the user can draw and drag a 

circle over the target to be selected for tracking. The initialised parameters such as the x 

and y co-ordinates of the centre and the diameter of the circle are stored for further use 

to allow real-time fabrication of the filter. The circular area around the target is traced to 

find the coordinate vector at the circumference of the circle. These coordinate points are 

used to extract the reference image from the target. The extracted circular target is then 

passed on to one of the supporting methods namely: rectangular, circular and active 



96 
 

contour based extraction, to process the reference image selected from the target. The 

processed target is automatically cropped and used for training the filter. Figure 5.1 

below illustrates an original frame in which the initialised circle has been drawn over 

the target using the developed interface. 

 

Figure 5.1: Initialisation circle over the target vehicle to be tracked 

5.5 Reference Image extraction 

5.5.1 Rectangular target extraction 

The rectangle coordinate is obtained from the initialisation step by computing a 

bounding rectangle around the selected circle. The rectangle parameters (x1, y1) and (x2, 

y2) are computed and stored in the configuration file. Width and height are calculated as 

the difference of the parameters stored. A blank reference template image of frame size 

is created. The centre of the frame is computed as frame_width/2 and frame_height/2 

for x and y coordinates respectively. The current frame is cropped at the initialised 
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rectangle and copied into the blank image at the centre. The starting point for copying 

the target to the centre is straightforwardly calculated as: 

  









2

htFrame_heig
 ,

2

hFrame_widt
  ,Xc cY    (5.5) 

where the centre of the blank frame is denoted as (Xc, Yc). The co-ordinates used to 

copy the cropped target into a blank frame are, clearly, then given as: 

  









2

_
,

2

_
,

heightrect
Y

widthrect
XYX cctocopy    (5.6) 

The windowed target, shown in Figure 5.2, can then be used to train the filter. If „theta‟ 

from the user defined initialisation file is 2 degrees, the windowed reference is rotated 

in 2 degree increments to +6 and -6 degrees, thus obtaining 7 reference images to 

multiplex into the filter function. This ensures some degree of in-plane rotation 

tolerance of the filter and facilitates its ability to maintain a track on the vehicle for n 

frames, after which the filter is up-dated.  

 

Figure 5.2: Target reference image used to train the filter 
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The flowchart depicting the rectangular target extraction method is shown in Figure 5.3. 

A

Click from mouse (x,y) 

with radius r

Drag – active 

Find/scan bounding rectangle around 

the circle

Store rectangular parameters – (x1 , y1) ,     

(x2 , y2)

Compute rectangle Width – (x2 ~ x1)

Compute rectangle Height – (y2 ~ y1) 

Compute (Xc, Yc) – Centre of the frame

Store for future fabrication of the filter

Extract Rectangle using the parameters at 

(x, y) in the frame

Create a blank Reference template of 

frame size (m, n)

Paste the Rectangle extracted at Xc and 

Yc

 

 

Figure 5.3: Flowchart for rectangular target extraction (A) 
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5.5.2 Circular target extraction 

The circle coordinates are computed from the circle selected on the target. The centre of 

the circle (x, y) is obtained from the initialisation step. The circumference (C) is 

obtained by tracing the circle. The centre of the frame is computed as frame_width/2 

and frame_height/2 for x and y coordinates, respectively. The current frame is cropped 

at the initialised circle and copied into the blank image at the centre. The starting point 

for copying the target to the centre is calculated according to equation (1). The 

flowchart depicting the Circular target extraction method is shown in Figure 5.4. 

B

Click from mouse (x,y) 

with radius r

Drag – active 

Find circumference co-ordinates of the 

circle (C)

Store Circle parameters (x, y), radius ‘r’ and 

Circumference (C)

Compute (Xc, Yc) – Centre of the frame

Store for future fabrication of the filter

Extract Circle using the parameters at 

radius ‘r’, Circumference (C) at (x, y) in the 

frame

Create a blank Reference template of 

frame size (m, n)

Paste the Circle extracted at Xc and Yc

 

Figure 5.4: Circular target extraction (B) 
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5.5.3 Active contour based target extraction 

The Active contour work discussed in previous chapters employs the principle of 

energy minimization. The energy of each coordinate point is calculated based on the 

neighbourhood pixels of each point. A difference of Gaussian (DoG) filtered image of 

the circular area is computed to emphasise the exterior edges of the target. The energy 

minimisation process is executed until the exterior edge of the target is contoured. The 

process is maintained and controlled by the number of iterations throughout the contour 

vector points. The number of iterations required and the snake parameters are also 

included in the configuration file for standardised usage of the algorithm in software. 

The energy functional computed and iterated for each coordinate point is described by 

the expression in Equation 5.7 [31], (for the full derivation of the snake equation please 

refer to Appendix 1): 

     simagessnake vEvEsE  int

*
    (5.7) 

where * means that this is a continuously updating snake energy. 

This can be expressed as: 

Edge
ss

snake Esc
ds

vd
sb

ds

dv
saE )().().(

2

2

22

*    (5.8) 

where the first-order and second order differentials are approximated for each point that 

is searched in the local neighbourhood of the currently selected coordinate point. The 

weighting parameters a, b and c are all functions of the contour. *

snakeE  is thus the 

overall Snake energy term and edgeE  the computed edge energy. A complete derivation 

of the Snake energy minimisation expression is given in Appendix 1. By calibrating the 

Snake, the exterior edge of the target is contoured. The edge contour gives the 
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coordinate vector of the target in the frame. The shape vector thus obtained is used to 

segment and extract the target object from the scene, Figure 5.5. It is placed at the 

centre of a blank zero background image, as shown in Figure 5.6 to create training 

images for filter initialisation and computation [73], [88].  

The contour‟s coordinate vector of the exterior edge of the target is used to extract the 

target from the frame interrupted. A blank reference template image of frame size is 

created. The centre of the frame is computed as frame_width/2 and frame_height/2 for x 

and y coordinates, respectively. The current frame in which the target is contoured is 

used to extract the contoured object and is copied to the centre of the blank frame.  

The figures below show the steps for generating the reference images. 

 

Figure 5.5: Initialisation by selecting circular area around the target 
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Figure 5.6: The reference image generated for training the filter 

The selected target, shown in Figure 5.6, can then be used to train the filter. If „theta‟ is 

2 degrees, the reference image is rotated by 2 degree increments to +6 and -6 degrees, 

thus obtaining 7 reference images to multiplex into the filter function. This ensures 

some degree of in-plane rotation tolerance of the filter and facilitates its ability to 

maintain a track on the vehicle for n frames, n being the frequency of the filter upgrade 

parameter fetched from the configuration file. Unlike rectangular and circular target 

extraction techniques, the active contour based target extraction is found to produce 

accurate correlation peaks to distinguish between the target and the background. A 

flowchart depicting the active contour extraction is given in Figure 5.7 [31]. 

 



103 
 

C

Click from mouse (x,y) 

with radius r

Drag – active 

Find co-ordinates vector of the DoG 

filtered exterior edge of the target.

‘n’ being the no.  snake points.

α,β, and γ are defined in config file

Starting with first snake point

Initialise minimum energy and co-ordinates as 

extracted from the circle

Determine co-ordinates of neighbourhood 

point with lowest energy based on 

equation (4)

Set new snake point co-ordinates to new 

minimum determined

Make snake 

points?

Finish Iteration, store co-

ordinate vector for extraction

Yes

No

Extract contour using the parameters at 

(x, y) in the frame

Create a blank Reference template of 

frame size (m, n)

Paste the segmented contour at Xc and 

Yc (Centre of blank frame)

 

Figure 5.7: Active contour extraction method [31] 
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5.6 Computing rotationally multiplexed reference image 

A double precision addition of several rotated reference templates is performed to 

compute a rotationally multiplexed reference image. The reference image obtained from 

the processing, as explained in the previous sections, is rotated in increments and 

decrements of „theta‟ degrees. The „theta‟ and the level of rotational multiplexing are 

fetched from the configuration file and are user defined. For example if the „theta‟ value 

is 2 degrees and the level is „3‟, then the reference image is rotated in increments and 

decrements of 2 degrees between -6 and +6 degrees to obtain 7 rotated reference 

images. The reference images are of double precision and are added to obtain a 

multiplexed reference image, which is further used in fabricating the OT-MACH filter. 

A typical example of a rotationally multiplexed reference image is shown in Figure 5.8 

[97], [99]. 

 

       Figure 5.8: Rotationally multiplexed reference image 
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5.7 Real-time implementation of the OT-MACH filter 

The OT-MACH filter is designed by passing the set of reference images to the filter 

design function. The filter is applied to every m
th

 input video frame to generate a 

correlation peak, the location of which indicates the position of the target vehicle in the 

video frame. The rate of cross-correlation peak generation is controlled by parameter 

„m‟ initialised in the configuration text file by the user. The target location is then 

displayed using cross-hair markers as shown in the example of Figure 5.9 below. The 

filter can be updated in real-time or changed, based on the user‟s requirement, by 

initialising the update frequency in the configuration file. The rotational multiplexing 

increases the tolerance of the filter to changes of vehicle rotation angle between filter 

up-dates. There are also progressive changes in scale, due to variations in distance of the 

camera from the target vehicle, but these are sufficiently small that they can be 

accommodated by the filter up-date process described below. 

 

Figure 5.9: Cross-hair on target 
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Figure 5.10: Correlation plane with peak location at (X, Y) = (195,342) 

At every m
th

 frame (for example if m =25 in the initialisation file, then every second of 

the video sequence) the filter is updated. To do this, a correlation of the filter and target 

frame takes place and a measurement of the height of the correlation peak at the target 

location is made. To ensure the filter function has correctly identified the target vehicle, 

the correlation peak height obtained is compared to the average of the previous values at 

the rate of correlation set by the user in the configuration file. This allows the algorithm 

to take account of those cases in which the target may not be visible during the m
th

 

frame cycle of measurement. Once a correlation peak of sufficient height has been 

obtained, the filter is up-dated using the current image. The reference image for the 

current frame is obtained, and a new rotationally multiplexed filter is created, as 

described previously. If the user decides to change the target at anytime, a keyboard 

interrupt can be used to switch „on‟ the user interface to select a new target. This 

captures the current interrupted frame and allows the user to retrain the filter with a new 

target. The updating of the filter takes place as explained in the previous sections. The 

X Y 
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correlation of every frame at the rate interval is again carried out to maintain the track 

for the next m frame sequence. The flowchart describing the OT-MACH tracker is 

shown in Figure 5.11. 

Frame Data

User selection interface Block

To re-activate – Press spacebar

Select target by 

clicking, and press

‘i’ - select

‘r’ - reset

‘q’ - quit

Area of Support module options

1 – Rectangular

2 – circular

3 – Active contour

A

B

C

Computing Rotationally Multiplexed 

reference image

OT-MACH filter 

module
D

Correlation module – Threshold 

selection from file  
E

Draw cross-hairs on target. 

Fetch user defined data from 

configuration file

A –Rectangular selection

B – Circular selection

C– Active contour selection

D – OT-MACH filter

E – Correlation module
 

Figure 5.11: The OT-MACH tracker  
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Here „D‟ signifies the OT-MACH filter module and „E‟ signifies the correlation 

module. The Fastest Fourier transform in the West (FFTW) [94] is a C subroutine 

library for computing the discrete Fourier Transforms (DFT) in one or more 

dimensions. Using C library linkers the FFTW has been interfaced to the C program 

developed for the filter design. The output from the FFTW is not a shifted FFT. Shifting 

the zero component of the fast Fourier transform (FFT) to the centre of the spectrum is 

performed using the function FFTWSHIFT() implemented in C. The FFTWSHIFT() 

function rearranges the output obtained from the FFTW by swapping the first quadrant 

with the third quadrant and the second quadrant with the fourth quadrant. The swapping 

operation is depicted Figure 5.12 below.  

 

 

Figure 5.12: FFT Shift operation 

The Fourier transformed output from the FFTW routine is converted to an image in the 

IPL_IMAGE format of the OpenCV library. Several OpenCV library functions were 

used to perform the swap operations to obtain the Shifted FFT (FFTSHIFT). The 

flowcharts for „D‟ and „E‟ are shown below in Figure 5.13 and 5.14. 
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Rotationally 

multiplexed reference 

image t

Fourier transformed and shifted 

reference image ‘t’

FFTWSHIFT(t)

 

Sequence of frames m

Fourier transformed and shifted 

frame image ‘s’

FFTWSHIFT(s)

D

E

 

Figure 5.13: OT-MACH filter module 

Corr_Plane = IFFT(h.FFTWSHIFT(s))

Result = conj(Corr_Plane) x Corr_Plane

The amplitude of the maximum peak in the Result is compared to 

the detection threshold to classify the sub-images as in-class or 

out-of-class targets

E

 

Figure 5.14: Correlation and decision module 
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5.8 Comparison of OT-MACH tracker with Kalman and Particle filters 

An extended Kalman filter and colour based particle filter tracker have been tested to 

compare with the accuracy of the OT-MACH filter tracker discussed in the previous 

sections. The results of the comparison have clearly proven the OT-MACH filter tracker 

as being robust and efficient in non-linear, noisy and dynamic environments. The 

particle filter tracker tested is colour based and hence has not been used to verify the 

accuracy of OT-MACH filter tracker on infra-red video sequences [68], [69]. 

In the video sequences (snapshot figures shown below) the Kalman filter result, 

signifying the predicted position of the target, is indicated with a red cross-hair marker 

while the OT-MACH tracker result is marked with a yellow cross-hair. The particle 

filter result uses blue markers to signify the particles composing the filter along with a 

red track marker to trace the trail of the target. The noisy, dynamic and non-linear target 

scenes that have been used as test sequences have resulted in the inability of the Kalman 

and particle filters to perform as accurate trackers. The OT-MACH filter tracker has 

some degree of in-plane rotation and scale invariance as well as tolerance to orientation 

changes of the target object. Due to dynamic and frequent filter updates it has a higher 

track accuracy with varying velocity and other non-linear target real-time alterations. 

Figure 5.15 and 5.16 show examples of tracking failure using the Kalman and particle 

filter in situations where the OT-MACH filter is able to maintain successful tracking. 

The particle filter lags behind due to complex computation time required to decide on 

the location of the target as opposed to the OT-MACH filter tracker as shown in Figure 

5.16. The Kalman filter gets diverted in a linear path loosing the target when the target 

changes its direction of motion dynamically, this is shown in the Figure 5.15 below. 
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Figure 5.15: Kalman filter (Red) and OT-MACH filter tracker (Yellow) 

 

 

Figure 5.16: Particle filter (blue, green and red) and OT-MACH filter tracker (Yellow) 
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5.9 Use of an Extended Kalman filter to distinguish between target and non-target 

objects when in close proximity 

There may be situations when multiple target-like objects are found in a scene. If the 

objects are identical, then the OT-MACH filter will detect multiple objects as targets. In 

order to help avoid loss of the selected target and to differentiate between targets and 

non-targets (in situations, for instance, in which very similar vehicles pass close to each 

other on a road), an extended Kalman filter has been developed; this allows a predictive 

track to be applied to the target object. It is implemented by estimating the uncertainty 

of the predicted position. A weighted average of the predicted value is then computed 

and most weight given to the value with least uncertainty. The maximum correlation 

peak location of the target is used in the filter as the original location. After obtaining 

about 10 coordinates of the target from the correlation result, the Kalman filter is trained 

to predict approximate future locations. The Kalman filter estimated coordinate is then 

used as a reference point to retrain the OT-MACH filter.  

The extended Kalman filter, although a non-linear filter, it is not an optimal estimator 

when dealing with noisy frames, varying velocity targets and extreme scale variations. 

Encouragingly, the OT-MACH tracker has been found to work accurately with varying 

scale, orientation and velocity of the target object. In contrast, the original Kalman 

filter, as a target predictor, is feasible only for constant speed target scenes. The colour 

based Particle filter has been found to fail to precisely locate the target in noisy 

sequences and in infra-red band videos [70], [71], [73], [75]. 

The results of the partially successful Kalman filter are shown in Figures 5.17 and 5.18. 

The Kalman filter coordinates are indicated with red cross-hairs and the OT-MACH 

tracker coordinates with yellow cross-hairs.  
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Figure 5.17: Kalman filter and OT-MACH tracker outputs (frame 104) 

 

 

Figure 5.18: Kalman filter and OT-MACH tracker outputs (frame 122) 
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5.10 Representative examples of tracking results 

Several tests were conducted and several examples of tracking targets at different scales 

and orientations in DSTL videos are shown in Figures 5.19-5.22 below. 

 

Figure 5.19: DSTL Video (1) frame 10 target acquired 

 

Figure 5.20: DSTL Video (1) continuous tracking at frame 30 
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The OT-MACH tracker‟s ability to retain track of the target acquired during camera 

motion is demonstrated as shown in Figure 5.19 and 5.20. The Figure 5.21 and 5.22, 

demonstrate the tracker‟s efficiency to continuously track while the target undergoes 

continuous orientation changes. The DSTL videos shown in Figure 5.19 – Figure 5.22, 

are de-interlaced and low-pass Gaussian filtered as pre-processing steps before the OT-

MACH tracker is applied in order to remove camera noise and distortions due to video 

compression and digitisation. 

 

Figure 5.21: DSTL Video (2) frame 100 target acquired 
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Figure 5.22: DSTL Video (2) continuous tracking, scale and orientation changed at 

frame 130 

Figure 5.23 to 5.28, shows the result of the OT-MACH tracker on Sussex police 

helicoptor videos. The frames displayed in Figure 5.23 and 5.24, contain multiple false 

objects. Due to rotational multiplexing and robust target template acquisition based on 

enhanced active contour snakes, the tracker displays good discriminability during the 

presence of false objects in the scenarios. The tracker efficiently discriminating the 

target and the false objects is demonstrated as shown in Figure 5.23 and 5.24.  



117 
 

 

Figure 5.23: Sussex Police video (1) Frame 5 target acquired in the presence of false 

objects 

 

Figure 5.24: Sussex Police video (1) Frame 15 with multiple false objects 
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The tracking results shown in Figure 5.25 to Figure 5.27, demonstrate the tracker‟s 

ability to track the moving target undergoing considerable dynamic scale changes. 

 

Figure 5.25: Sussex Police video (1) Frame 100, dynamic scale changes 



119 
 

 

Figure 5.26: Sussex Police video (1) Frame 120, scale changed false object present in 

close proximity 

 

Figure 5.27: Sussex Police video (1) Frame 240, scale changed 
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Figure 5.28, depicts continuous tracking of the acquired target during noisy frames due 

to changes in the camera focus and movement. 

 

Figure 5.28: Sussex Police video (1) scale changed and noisy frame at Frame 250 

Another example of the OT-MACH tracker tracking a different coloured car drastically 

changing scale and lighting, is shown in Figure 5.29 and Figure 5.30. It has been 

demonstrated in the Figure 5.30 that the tracker is not only robust and tolerant to scale 

changes but also to varying lighting conditions. The Figure 5.31 is a typical example of 

the tracker performing accurate tracking on Sussex Police infrared noisy videos. The 

future frames as shown in Figure 5.32, Figure 5.33 and Figure 5.34, demonstrates that 

the OT-MACH tracker can efficiently tracking during dynamic scale change combined 

with several orientation changes.  
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Figure 5.29: Sussex Police video (2) Frame 50, scale changed 

 

 

Figure 5.30: Sussex Police video (2) Frame 65, scale changed, varying lighting 

conditions 
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Figure 5.31: Sussex Police infra-red video frame 65, scale changed 

 

Figure 5.32: Sussex Police infra-red video frame 104, scale changed with Gaussian 

noise 
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Figure 5.33: Sussex Police infra-red video frame 265, dynamic scale change 

 

Figure 5.34: Sussex Police infra-red video frame 435, dynamic scale and orientation 

changes 
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The Figure 5.35 shows a green coloured car with dynamic scale changes being tracked 

efficiently for several orientation changes.  

 

Figure 5.35: Sussex Police video (3) frame 35 with a difficult coloured car being 

tracked 

Figure 5.36 depicts a scenarios where, the target is being tracked despite evident change 

in the direction of motion along with dynamic scale changes as the car turns into a side 

road.  
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Figure 5.36: Sussex Police video (3) frame 548, scale and orientation changed 

Figure 5.37 and 5.38 shows a typical tracking scenarios provided by the DSTL for 

testing the ability of the tracker to track targets during noisy frames combined with 

orientation and scale changes. The OT-MACH tracker shows considerable promise and 

has the capability to perform accurately in cluttered and noisy sequences as 

demonstrated in the Figure 5.37 and Figure 5.38 below. 
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Figure 5.37: Noisy DSTL video (3) frame 15, scale and orientation changed 

 

Figure 5.38: Noisy DSTL video (3) frame 75, continuous tracking during scale and 

orientation changes 
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5.11 Summary 

In this chapter an enhanced active contour based OT-MACH tracker has been optimised 

and implemented as a robust vehicle tracker. The filter is rotation multiplexed and 

applied at a frame rate initialised by the user on the video sequences, with a filter up-

date being implemented every m
th

 frame. On the video sequences for which it has been 

tested, a few typical examples have been displayed in previous sections. The algorithm 

can switch from using rectangular, circular or active contour based extraction methods. 

Compared to rectangular and circular extraction methods the active contour snake is 

found to allow the maintenance of a strong and accurate correlation peak at the target 

location. The user interface is designed so as to allow the user to interrupt and select a 

new target from a desired current frame. The OT-MACH filter is dynamically and 

frequently updated by retraining with rotationally multiplexed reference images 

extracted and processed during an interval period chosen by the user. An extended 

Kalman filter predictor is implemented and utilised to conditionally solve the problem 

of multiple targets in the scene. The Kalman filter as described in section 5.8 is useful 

for disambiguation when multiple targets are in close proximity and in application to 

constant velocity targets; hence running the two algorithms in parallel is a useful 

approach to solve the problem of tracking multiple target-like objects. The results 

obtained have been discussed and illustrated in section 5.9. From the tests performed on 

Sussex police and DSTL videos, the OT-MACH tracker shows considerable promise 

and has the capability to perform accurately in cluttered and noisy sequences. It is found 

to be accurate in recognising and tracking the target, out-performing an extended 

Kalman filter (EKF) [101] and colour based Particle filter (PF) [69] approach in noisy, 

velocity variant and dynamic sequences.  
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions  

In this thesis adaptive object segmentation and tracking models and methods based on 

the enhanced active contour snake (EACS) technique and the optimal trade-off 

maximum average correlation height (OT-MACH) filter have been studied, designed 

and developed to address the need for robust object tracking in complex scenarios. It 

has been demonstrated that active contour techniques can be exploited to perform the 

task of deformable object segmentation and tracking to fulfil typical moving deformable 

object segmentation and tracking system requirements. In challenging circumstances, 

such as in the presence of similar moving deformable objects in dynamic scenarios, the 

enhanced active contour techniques are used to assist an optimal trade-off maximum 

average correlation height (OT-MACH) filter to accomplish the realisation of a robust 

correlation pattern recognition based tracking system. 

In the first part of this thesis, a computational model (CM) has been developed that can 

be used to adaptively segment and track deformable objects in motion using enhanced 

active contour snake (EACS) techniques. The EACS computational model is extended 

for multiple moving object segmentation and tracking. The EACS based statistical 

measurement parameters are also discussed in detail, along with real-time applications 

demonstrating the use of the active contour statistical measures.  

In the second part of this thesis the EACS computational model is employed to assist an 

optimal trade-off maximum average correlation height (OT-MACH) filter to perform as 

a robust and variable speed object tracker. Several other methods for defining the area 
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of support for the OT-MACH filter, such as rectangular and circular target extraction 

methods, have been discussed, also. The OT-MACH based tracker has been evaluated 

on several video sequences from the Sussex police and the DSTL fast moving vehicle 

video datasets for its accuracy and performance in challenging scenarios.  

Chapter 2 of this thesis introduces a modified computational model for active contours 

which is fast, robust and accurate, as compared to other available methods for active 

contour snake models. The developed computational model is based on a difference of 

Gaussian (DoG) filtered image thus emphasising on the exterior edges of the object 

under consideration. The DoG filter is designed using a pre-defined set of standard 

deviation values adhering to the rule that their ratio is equal to 1.6 so as to produce a 

bandpass filter. It is demonstrated that the active contours are initialised as soon as the 

object in a sequence is in motion and the contour thus obtained follows the object by 

deforming onto it during each subsequent frame. The introduction of the new energy 

term into the energy minimisation equation of the active contours is to emphasise the 

object edges and has been described in detail. The method of automatic contour 

initialisation has been introduced for automatic segmentation and tracking of moving 

objects in video sequences without user intervention. It has been demonstrated that due 

to the automatic initialisation of the contour, the snake requires fewer iterations to 

acquire the boundary of the object being tracked. It is also found that the method not 

only reduces computational time but also makes it accurate, as the initial contour fits 

readily into the object exteriors. It is reported that the presence of the DoG energy term 

in the energy minimisation equation makes the snake progression accurate and fast as 

compared to the classical active contour methods. It is also discussed that the designed 

computational model works when the object being tracked stops moving and becomes 

static. It is concluded that the enhanced active contour snake model discussed in this 
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chapter works on a single moving object. The supporting results presented demonstrate 

that the enhanced active contour snake framework performs accurately in real-time for 

variable scale and orientations of the object being contoured. 

In Chapter 3 of this thesis, an extension to the enhanced active contour snake technique 

to perform multiple object segmentation and tracking is developed. The termination 

criteria for the contouring process is described and found to enhance the computational 

efficiency. It is demonstrated that the active contour vector tracking a group of occluded 

moving objects can be sub-divided into distinct contour vectors that can maintain a 

separate track of each moving object in the scene. The contour splitting and selection 

criteria responsible for allowing active contours to split and maintain distinct contour 

vectors for multiple objects are described in detail. The results documented demonstrate 

that the enhanced active contour model is suitable for robust multiple object tracking in 

real-time situations. The statistical parameters of the EACS model, such as the active 

contour boundary rectangle and the active contour centroid, are discussed in detail. 

Several results are discussed to demonstrate the use of these statistical measures. In 

order to evaluate and demonstrate the importance of computing accurate active contour 

vectors using the EACS model, a simple application to perform upper body humanoid 

skeletal modelling has been designed and described in detail. Several results showing 

the skeletal stick model for the upper body of a humanoid are presented and discussed. 

In Chapter 4 of the thesis, the overall enhanced active contour vector orientation 

estimation method known as the global active contour orientation (GACO) measure is 

discussed in detail. It is demonstrated that by using simple geometric calculations and 

assumptions, it is possible to determine the direction of motion of a selected contoured 

object using the GACO measure technique. The mathematical calculations of the 

GACO statistical measure are described by choosing appropriate quadrants in which the 
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snaxel movements occur. The local snaxel orientations are computed using the detailed 

expressions. It is concluded that the GACO is the mathematical average of the local 

snaxel orientations and can be computed using these expressions. The GACO measure 

is further described by the use of a detailed design flowchart together with a several 

results. In order to evaluate the performance and importance of the proposed GACO 

measure, a robust algorithm for door surveillance is presented in this chapter. It is 

shown that an omni-directional edge-map based Harris corner detector can be used to 

provide the primary alarm during a door activity. The algorithm is designed to use the 

Harris corner data to decide whether the door is displaced to produce a primary alarm. 

The secondary alarm determining whether objects entered or moved when the door is 

displaced is designed and demonstrated using the global active contour orientation 

module.  The improvement made to the door surveillance system by the addition of a 

Hough transform error correction module to append the Harris and surveillance window 

locations is developed and described in detail. The overall performance of the door 

surveillance application is evaluated on several i-LIDS door-zone dataset sequences. 

The results obtained are reported to evaluate the door surveillance system based on a 

GACO measure to show a success rate of almost 92% on several i-LIDS door-zone 

dataset scenarios. 

In Chapter 5, an enhanced active contour assisted OT-MACH tracker is optimised and 

implemented as a robust moving vehicle tracker. The rotational multiplexing and 

dynamic filter update techniques are discussed in detail. The flexibility of the designed 

algorithm to switch between rectangular, circular and active contour based target 

extraction for filter training is described in detail. It is concluded that, compared to the 

rectangular and circular target extraction methods, the active contour based extraction is 

able to assist in maintaining a strong and accurate correlation peak at the target locations 
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recognised. It is demonstrated that the OT-MACH filter can be dynamically and 

frequently updated by retraining with rotationally multiplexed reference images 

extracted and processed during an interval period defined by the user. An extended 

Kalman filter predictor is found to conditionally solve the problem of confusion due to 

multiple targets in the scene. It is demonstrated that the Kalman filter applied in parallel 

with the OT-MACH tracker is useful in disambiguation when multiple targets are in 

close proximity at constant velocity thus solving the problem of tracking multiple 

target-like objects in the scene. The results obtained are discussed and illustrated. 

Several tests performed on Sussex police and DSTL (an acronym for the Defence 

Science and Technology Laboratory) videos are documented to conclude that the OT-

MACH tracker shows considerable promise and has the capability to perform accurately 

in cluttered and noisy sequences. Thus the OT-MACH tracker is capable of accurately 

tracking a target object, out-performing an extended Kalman filter and colour based 

Particle filter approach in noisy, velocity variant and dynamic scenarios. 

6.2 Future work 

The design and implementation of an enhanced active contour assisted OT-MACH filter 

tracker has yielded promising results for several challenging videos provided by the 

Sussex police and DSTL tracking video dataset. It has been observed that the tracker is 

found to be dependant on several parameters as described in Table 6.1. 
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Type of videos Changes to parameters Ideal parameters 

Ideal colour videos 

· Lower DoG filter 

patch size.    

· Threshold value 

higher than 100 below 

255. 

·  α-OT parameter 

lower than 10
-4

 

· DoG filter patch size 8             

· Threshold value 125-145                                

· α = 0.00005 

Noisy colour videos 

· Lower DoG filter 

patch size. 

· Threshold value 

higher than 150 below 

255.                               

· α-OT parameter lower 

than 5x10
-4

                                                                                          

· Needs low pass 

Gaussian filter to 

remove noise 

· DoG filter patch size 10-

15 

·  Threshold value higher 

than 180.                                       

· α= 0.0005                                                                                          

· Low pass Gaussian filter 

is applied to the target 

frame before filtering. 

IR videos 

· Higher DoG filter 

patch size.               

· Threshold value 

higher than 50 below 

100.                               

· α-OT parameter lower 

than 10
-5

                                                                                          

· Needs low pass 

Gaussian filter to 

remove noise 

· Higher DoG filter patch 

size 20-30                                     

· Threshold value 50-90                               

· α = 0.00001                                                                                       

· Low pass Gaussian filter 

is applied tn the target 

frame before filtering. 

Noisy IR videos 

· Higher DoG filter 

patch size. 

· Threshold value 

higher than 50 below 

100.                               

· α-OT parameter lower 

than 10
-5

                                                                                          

· Needs low pass 

Gaussian filter to 

remove noise                           

· Quicker filter update 

and correlation rate 

· Higher DoG filter patch 

size 20-30 

· Threshold value 50-90                               

· α = 0.00001                                                                                       

· Low pass Gaussian filter 

is applied to the target 

frame before filtering.                                     

· Quicker filter update and 

correlation rate 

 

Table 6.1: OT-MACH filter tracker ideal parameters and changes required for different 

scenarios 

From the Table 6.1, it can be concluded that the tracker parameters, such as the 

difference of Gaussian filter scale and threshold values, need changing for different 
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kinds of scenarios. Hence, there is a need to further develop the tracker into a  

completely automatic tracking system without the requirement for user intervention in 

setting the filter parameters. One possible approach to accomplish this can be the use of 

a multi-layer perceptron based neural network prediction system. A multi-layer 

perceptron (MLP) can be trained for a set of videos to predict possible parameter values 

in order to accomplish robust tracking. Several weighting conditions for the neural 

network algorithm can be derived by analysing the object being considered for tracking 

along with the characteristics of the environment in which the target is to be tracked. 

The OT-MACH filter parameters, such as α, can be estimated by analysing the 

correlation plane data obtained for previous frames.  

Further work could consider modifications in the area of support for more robustly 

resolving multiple target confusion. Current techniques such as the SIFT (scale 

invariant feature transform) [102] and SURF (speeded up robust feature detector) [103] 

algorithms for scale invariant feature recognition could be considered for enhancing the 

performance of the OT-MACH tracker. Combinations of  these methods may allow the 

target to be continuously tracked even in the presence of close proximity multiple 

target-like objects in the scene and will help provide a predictive track to assist the re-

acquisition of the target vehicle if the track is interrupted. A new approach to train a 

Particle filter using the correlation plane result obtained from the OT-MACH tracker 

could also be investigated to improve the accuracy and the ability to track in multi-

target scenarios. Further study could also be conducted in the area of low pixel count 

object detection and tracking in low signal-to-noise ratio conditions to assist in real-time 

target tracking applications from an extended range. 
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Appendix 1 

A complete snake implementation of Kass Snake [2],[3] solves for all snake points in one step 

to ensure that the snake moves to the best local energy minimum. 

The snake points chosen are in such a manner so as to make sure that energy is minimised. The 

snake points chosen can be represented as: 

      sysxsv ,       (A.1) 
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The perturbation is spatial and affects the x and y co-ordinates of a snake point as: 

 )(),()( sssv yx      `   (A.3) 

Equation (A.3) gives the perturbed snake solution as: 
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According to Kass [1,2], the energy functional is an integral; s є [0, 1] is the normalised length 

around the snake. The energy functional is then given as: 
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where, intE  is the internal energy, imageE  is the image energy or the external energy and conE  is 

the constraint energy [3]. By substituting the constraint energy conE  and forcing to zero, the 

snake energy becomes: 

 




1

0

int ))(())(())((
s

imagesnake dssvEsvEsvE    (A.6) 

Edge magnitude information is often used to make the snake attracted to the edges in the image. 

Here, we consider a DoG filtered edge image: 

 
DoGgradinimage

EEEcE  .      (A.7) 

where, EDoG is the DoG filtered energy term, Ein and Egrad are the energy due to the intensity and 

gradient at that pixel point. Substituting the same for a perturbed snake point we get: 
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By expanding 
image

E  at the perturbed solution by a Taylor series, we obtain for EDoG, 
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This implies that the image information must be twice differentiable which holds for edge 

information, but not for other forms of image energy (ignoring higher order terms since є is 

small). Since the perturbed solution is at a minimum, the integration terms must be identically 

zero. By integrating with constants we get: 
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Equation (A.10) is in the general form of the Greedy algorithm for snakes, and is used to 

accurately contour the exterior edges of deformable objects or targets (in this particular 

application). The constant a(s) controls the contribution of the elastic energy due to point 

spacing. The second order differential is weighted by constant b(s) which controls the 

contribution of the curvature energy due to point variation. The image energy Eimage is weighted 

by constant c(s), controlling the external image energy emphasising on the exterior edges of the 

object while contouring.  

The equation (A.7) can be modified to contain three different constant values 

controlling the emphasis given to each energy term while computing the overall energy 

of the Snake. This can be expressed as: 

 DoGgradinimage
EcEcEcE

321
     (A.11) 

The DoG filtered image energy, DoGE , is weighted by constant c3 controlling the emphasis on 

exterior edges or the negative value around the zero-crossing located at the edge of the object 

being contoured. Several variations of the Snake are possible by adjusting the energy terms and 

the constants [2]. 
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