

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Trusted Content-Based

Publish/Subscribe Trees

Stephen Murugapa Naicken

Submitted for the Degree of Doctor of Philosophy

University of Sussex

October 2011

ii

Declaration

I hereby declare that this thesis has not been and will not be submitted in whole or in

part to another University for the award of any other degree.

Signature:

Stephen Murugapa Naicken

iii

Abstract

Publish/Subscribe systems hold strong assumptions of the expected behaviour of clients
and routers, as it is assumed they all abide by the matching and routing protocols. As-
sumptions of implicit trust between the components of the publish/subscribe infrastructure
are acceptable where the underlying event distribution service is under the control of a
single or multiple co-operating administrative entities and contracts between clients and
these authorities exist, however there are application contexts where these presumptions
do not hold. In such environments, such as ad hoc networks, there is the possibility of
selfish and malicious behaviour that can lead to disruption of the routing and matching
algorithms.

The most commonly researched approach to security in publish/subscribe systems is
role-based access control (RBAC). RBAC is suitable for ensuring confidentiality, but due
to the assumption of strong identities associated with well defined roles and the absence of
monitoring systems to allow for adaptable policies in response to the changing behaviour
of clients, it is not appropriate for environments where: identities can not be assigned to
roles in the absence of a trusted administrative entity; long-lived identities of entities do
not exist; and where the threat model consists of highly adaptable malicious and selfish
entities.

Motivated by recent work in the application of trust and reputation to Peer-to-Peer
networks, where past behaviour is used to generate trust opinions that inform future trans-
actions, we propose an approach where the publish/subscribe infrastructure is constructed
and re-configured with respect to the trust preferences of clients and routers. In this thesis,
we show how Publish/Subscribe trees (PSTs) can be constructed with respect to the trust
preferences of publishers and subscribers, and the overhead costs of event dissemination.
Using social welfare theory, it is shown that individual trust preferences over clients and
routers, which are informed by a variety of trust sources, can be aggregated to give a
social preference over the set of feasible PSTs. By combining this and the existing work
on PST overheads, the Maximum Trust PST with Overhead Budget problem is defined
and is shown to be in NP-complete. An exhaustive search algorithm is proposed that is
shown to be suitable only for very small problem sizes. To improve scalability, a faster
tabu search algorithm is presented, which is shown to scale to larger problem instances
and gives good approximations of the optimal solutions.

The research contributions of this work are: the use of social welfare theory to provide
a mechanism to establish the trustworthiness of PSTs; the finding that individual trust is
not interpersonal comparable as is considered to be the case in much of the trust literature;
the Maximum Trust PST with Overhead Budget problem; and algorithms to solve this
problem.

iv

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor, Dr. Ian Wakeman
for his time, constructive criticisms, guidance and encouragement. I must also extend my
thanks to the rest of my thesis committee: Dr. Des Watson and Dr. Dan Chalmers for
their encouragement, insightful thoughts, and constructive criticisms of my work.

I consider myself fortunate to have had the opportunity to work alongside past and
present members of the Foundations of Software Systems group. During my time here,
I learnt a great deal from them that will stand me in good stead for many years to
come. My discussions about the intricacies of trust with Dr. Anirban Basu and Dr .
Jian Li helped me to develop my understanding of trust, while the strenuous badminton
sessions with Dr .Lachman Dhomeja and Dr. Yasir Malkani ensured that I maintained a
somewhat reasonable work-life balance. I thank them for their time, as I do of the others:
Dr. Jon Robinson, Dr. David Ellis, James Stanier, Simon Fleming, Renan Krishna, Barney
Livingston and Dr. Roya Feizy.

I am deeply indebted to my mother and father, Kistnamah Naicken and Vadivel
Naicken. Without their emotional and financial support, I would not have been able
to undertake and complete this work. I dedicate this thesis to my mother, to my late
Aunt Biga and to my late maternal grandparents, Soopaya Rungasamy and Veeramah
Nallee.

v

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Research Motivation . 1

1.2 Research Contributions . 5

1.3 Thesis Outline . 7

2 Background 9

2.1 Introduction . 9

2.2 Publish/Subscribe Trees . 10

2.2.1 Publish/Subscribe Tree Roles . 11

2.2.2 Publish/Subscribe Tree Overheads 11

2.2.3 Publish Subscribe Tree Definition . 13

2.2.4 The Minimum Overhead Publish/Subscribe Problem 13

2.3 Publish/Subscribe Security . 14

2.4 Confidentiality . 15

2.4.1 Definitions of Confidentiality . 15

2.4.2 Definition of Confidential Content-Based Publish/Subscribe 17

2.5 Availability . 18

2.5.1 CBPS Denial of Service Attack Characteristics 18

2.5.2 Solutions to Denial of Service Issues 20

2.6 Review of Existing Solutions . 20

2.6.1 Confidential Content-Based Publish/Subscribe 21

2.6.2 Access Control . 24

2.6.3 Spam . 28

2.7 Summary . 29

vi

3 Trusted Publish/Subscribe Trees 31

3.1 Social Choice and Welfare Preliminaries . 31

3.1.1 Introduction . 31

3.1.2 Social Welfare Function . 34

3.1.3 Social Welfare Functionals . 35

3.1.4 Leximin Social Welfare Functional 38

3.1.5 Analytical Formulation of Leximin 38

3.2 Trust and Publish/Subscribe Trees . 40

3.2.1 Definition of Trust . 40

3.2.2 Semiring-based Trust . 41

3.2.3 Trust Relationships in Publish/Subscribe Trees 43

3.2.4 Trust Evaluation Functions for PSTs 44

3.2.5 Trust and Interpersonal Comparability 47

3.3 Summary . 49

4 Minimum Overhead-Maximum Trust PST Problem 51

4.1 Problem Definition . 51

4.2 An Exhaustive Search Algorithm for MTPSTO 53

4.3 Spanning Tree Enumeration . 54

4.3.1 Char’s Spanning Tree Enumeration Algorithm 54

4.4 Tabu Search Algorithm for MTPSTO Problem 60

4.4.1 Tabu Search Preliminaries . 60

4.4.2 Algorithm . 63

4.5 Summary . 72

5 Evaluation and Computational Results 75

5.1 Evaluation Overview . 75

5.2 Evaluation Environment . 77

5.3 Evaluation Data Sets . 77

5.3.1 Publish/Subscribe Properties . 79

5.3.2 Connectivity Graph . 81

5.3.3 Trust Graph and Trust Functions . 84

5.4 Evaluation of Tabu Search Algorithms . 86

5.4.1 Problem Set A . 86

5.4.2 Problem Set B . 95

vii

5.4.3 Problem Set C . 103

5.5 Takahashi-Matsuyama and SPT Heuristics 106

5.6 Summary . 111

6 Conclusions and Future Work 117

6.1 Research Contributions . 117

6.1.1 Trust Metric for PSTs . 117

6.1.2 Inter-personal Incomparability of Trust 118

6.1.3 The Maximum Trusted PST with Overhead Budget Problem 118

6.2 Future Work . 119

6.2.1 Monitoring . 119

6.2.2 Improvements to the Tabu Search Algorithms 119

6.2.3 Self-organising Trusted PST Algorithm 120

6.3 Closing Remarks . 120

Bibliography 122

viii

List of Tables

5.1 Problem Set A . 80

5.2 Execution Times of Exhaustive Search Results for Problem Set A 81

5.3 Problem Set B . 82

5.4 Problem Set C . 83

5.5 Solutions for Problem Set A using Tabu Search with Static Penalty and

Best PST Selection . 88

5.6 Solutions for Problem Set A using Tabu Search with Static Penalty and

Adaptive PST Selection . 90

5.7 Solutions for Problem Set A using Tabu Search with NFT Penalty and Best

PST Selection . 92

5.8 Solutions for Problem Set A using Tabu Search with NFT Penalty and

Adaptive PST Selection . 94

5.9 Average Results Overview for Problem Set A 95

5.10 Solutions for Problem Set B using Tabu Search with Static Penalty and

Best PST Selection . 97

5.11 Solutions for Problem Set B using Tabu Search with Static Penalty and

Adaptive PST Selection . 99

5.12 Solutions for Problem Set B using Tabu Search with NFT Penalty and Best

PST Selection . 101

5.13 Solutions for Problem Set B using Tabu Search with NFT Penalty and

Adaptive PST Selection . 102

5.14 Average Results Overview for Problem Set B 103

5.15 Algorithm Finding Best Solutions for Problem Set B 104

5.16 Solutions for Problem Set C using Tabu Search with Static Penalty and

Best PST Selection . 107

ix

5.17 Solutions for Problem Set C using Tabu Search with Static Penalty and

Adaptive PST Selection . 108

5.18 Solutions for Problem Set C using Tabu Search with NFT Penalty and Best

PST Selection . 109

5.19 Solutions for Problem Set C using Tabu Search with NFT Penalty and

Adaptive PST Selection . 110

5.20 Average Results Overview for Problem Set C 111

5.21 Algorithm Finding Best Solutions for Problem Set C 112

5.22 Solutions for Problem Set A using the Takahashi-Matsuyama Steiner Tree

Heuristic & the Shortest Path Tree Heuristic 113

5.23 Solutions for Problem Set B using the Takahashi-Matsuyama Steiner Tree

Heuristic & the Shortest Path Tree Heuristic 114

5.24 Solutions for Problem Set C using the Takahashi-Matsuyama Steiner Tree

Heuristic & the Shortest Path Tree Heuristic 115

x

List of Figures

4.1 Flowchart Describing Algorithm 11 . 74

5.1 Average Execution Times of Exhaustive Search Results for Problem Set A . 84

5.2 Power-law fit to Empirical CCDF of Advogato Out-degree 85

1

Chapter 1

Introduction

1.1 Research Motivation

Given the scalability of the Internet and online services, it is common for users to interact

with others who are unknown to them. Such interactions are at greater risk of failure due

to the increased likelihood of malicious and selfish behaviour. Consider an online auction

system where a buyer must decide if he wishes to enter into an agreement to purchase

an item from a seller, but has not conducted any transactions with him in the past. The

buyer is clearly unable to reach an informed decision on the reputation of the seller and

consequently it may choose not to trust it. In the absence of information on the past

behaviour of the seller, it may be able to make use of indicators, such as attributes of

the item’s textual description that is provided by the seller to determine if it should place

its trust in the seller. For some individuals this may be sufficient for a transaction to

proceed, while for others it may not. In the absence of trust in an online auction system,

the number of high-value transactions that take place will be greatly reduced, as users’

perceived risk will be too great.

The use of reputation systems is a widely adopted approach to addressing the issue of

the absence of trust between users of Internet services (Resnick et al., 2000). These sys-

tems utilise the past behaviour of entities to determine their reputation and consequently

their trustworthiness, which can then be used by users to determine the risk entailed in

future interactions with others. A reputation system consists of three components (Marti

and Garcia-Molina, 2006): information gathering; scoring and ranking; and response. Fol-

lowing on from the online auction example given above, a reputation system would gather

information by requesting that users provide feedback on transactions, with positive and

negative feedback aggregated to give a score for each user that would then be used by

2

others to decide upon the risk entailed in future transactions. Aside from the disincentive

of being ostracised due to poor reputation, incentives could be introduced by the service

provider to encourage good behaviour. An area in which there has been significant re-

search in the use of reputation management is Peer-to-Peer (P2P) networks. A number of

reputation systems have been proposed to address the issues of malicious and selfish be-

haviour (Kamvar et al., 2003) (Xiong and Liu, 2004), such as the distribution of corrupted

files and freeloading, respectively. Another example of the use of reputation to secure a

system is CONFIDANT (Buchegger and Le Boudec, 2004), which secures mobile ad hoc

network (MANET) routing by monitoring the routing behaviour of nodes and using this

information as input to a Bayesian trust model. Paths consisting of untrusted nodes are

ignored at the path selection stage of routing and requests for routes from untrusted nodes

are dropped.

Trust is not restricted to individuals and agents, non-atomic structures can also be

trusted. To say that one trusts the government to govern the state implies that the

one sufficiently trusts the governance provided by the components of government. For

the British government, these are: the Sovereign; the Crown; the Cabinet; the Privy

Council; and the Civil Service. The same is also true when one says that we trust society1,

however as it is not well defined, it is much harder to determine its components. To date,

computational trust models have not addressed composite trust, that is trust in an entity

as a function of the trust of its components, and yet it is central to following question, do

users trust the network? A network consists of inter-connected nodes of various types, all

responsible for the execution of various algorithms to ensure reliable, efficient and when

required, secure communications. Interactions take place within the network and not with

it, so it is reasonable to assume that if a node trusts a network of which it is a member,

then it trusts the other nodes to implement their roles and responsibilities correctly. Each

node will have a preference over the set of feasible network topologies, which is informed

by its trust of the nodes and paths for each topology. The preferences of nodes may be in

conflict, but despite this, they must all be aggregated to yield a single, socially acceptable

preference over the network topologies. This must be done in a manner that is as equitable

as possible unless some policy dictates otherwise.

The motivation for trusted network structures is that the risk posed by malicious and

selfish nodes is reduced, as their presence is minimised or eradicated from the network.

The construction of trusted networks and more specifically trusted publish/subscribe trees

1This is of course under the assumption that it exists, which would contradict a former British Prime
Minister.

3

is the crux of this thesis. The motivation for the choice of publish/subscribe is given in

the remainder of this section.

Publish/Subscribe is a communication paradigm where events generated by producers

are delivered to interested consumers. A publish/subscribe system consists of publishers,

subscribers and an event notification service of brokers whose responsibility is to facil-

itate event dissemination from publishers to interested subscribers. A subscriber issues

a subscription that expresses its interests to the event notification service. Publishers

submit events to the event notification service, which are delivered to subscribers who

have issued matching subscriptions. The event notification service is responsible for the

following: the matching of subscriptions and notifications; and the routing of notifications

from publishers to those subscribers where notifications and subscriptions match.

The primary advantage of publish-subscribe over other forms of network communica-

tion models such as the client-server model is decoupling (Eugster et al., 2003), which is

defined along the following three dimensions:

• Time - Publishers and subscribers do not need to be participating in the interaction

at the same time. Events may be published when some subscribers are disconnected

and events may be received by subscribers when the publisher is disconnected.

• Space - Publishers and Subscribers need not be aware of one another. Publishers

push events to subscribers using the event notification service without the need for

the identifiers of the subscribers. Subscribers do not require the identities of pub-

lishers in order to receive events that they issue. Space decoupling gives a degree of

sender and receiver anonymity, as only the brokers to which the subscribers and pub-

lishers are connected will be able to associate their identity with their subscriptions

and notifications, respectively.

• Synchronisation - Publish/Subscribe communication is asynchronous. Publishers

do not block when pushing notifications as no acknowledgement is required from the

subscriber. Subscribers can be notified using callback of the arrival of an event of

interest.

It is this decoupling that makes publish/subscribe advantageous for a number of applic-

ations, such as real-time sports scores distribution2, stock quotations services and online

auctions. The drawback to this decoupling, particularly the space decoupling, is that there

2http://www.research.ibm.com/distributedmessaging/gryphon.html

4

is a restriction on accountability and consequently there is the potential for a number of

security issues and also difficulties in addressing them.

Although there has been little research in identifying and understanding the secur-

ity vulnerabilities of publish/subscribe systems, a taxonomy of denial-of-service (DoS)

attacks (Wun et al., 2007) and confidentiality issues (Wang et al., 2002) have been presen-

ted. Typically, designers of event-based notification services have assumed that implicit

trust exists between clients, clients and the event notification service, and the components

of the event notification service. Where this assumption is relaxed, the research emphasis

has been on the use of Role-based Access Control (RBAC) (Belokosztolszki et al., 2003)

(Pesonen et al., 2006) (Pesonen et al., 2007), and matching and routing algorithms us-

ing encrypted notifications and subscriptions (Li et al., 2004) (Srivatsa and Liu, 2005)

(Raiciu and Rosenblum, 2006) to address the trust issues. One significant disadvantage

of RBAC and computing on encrypted data techniques is that both are unable to adapt

autonomously to changes in the behaviour of participants. In these systems, changes in

the trust relationships require the re-keying of encryption functions and for RBAC, the

re-specification of policies.

In this thesis, it is proposed that the publish/subscribe tree (PST) - the tree topology

used for event dissemination - is constructed and reconfigured when necessary with respect

to both the trust preferences of the publishers and the subscribers, and the communication

overhead costs. A trusted PST minimises the risk posed by selfish and malicious nodes by

attempting to eliminate them from the network, whilst ensuring that efficient communic-

ation may take place. Should any changes in behaviour by nodes of a PST be observed

by a monitoring service, the PST can be reconfigured to reflect the updated reputation

of the nodes. As noted above, this adaptation to changing behaviour in existing security

systems for publish/subscribe is complex.

The use of trusted PSTs for event dissemination is suitable for a number of application

areas. Where there is an absence of long-lived identities or administrative entities respons-

ible for the publish/subscribe infrastructure, the use of RBAC is not feasible and there is

an increased risk from malicious and selfish behaviour. Examples of such environments are

publish/subscribe applications in MANETs and publish/subscribe based Internet routing.

In addition to publish/subscribe in MANETs, other application areas that are suitable

for RBAC and confidential publish/subscribe may also be suitable for the use of trusted

PSTs. For real time publish/subscribe systems, such as air traffic control data distribution

services, trust is a function of quality of service (QoS). In these systems, the PST can be

5

constructed and reconfigured to maximise trust and consequently performance. With

respect to air traffic control, an area control centre (ACC) can publish radar data using

a trusted PST to other ACCs, where the publishing ACC is the root and subscribing

ACCs are the terminal nodes. The internal nodes of the PST are those of the event

distribution service (e.g. EuroControl’s Radar Network3) that may consist of brokers

under the responsibility of one or many organisations.

The emphasis of the research presented in this thesis is the trust evaluation function

for PSTs and algorithms to find the PST with the greatest trust subject to some overhead

communication budget. Monitoring of PSTs, a component of any reputation system, is

discussed at the end of this thesis as an avenue for future research.

1.2 Research Contributions

Although the use of trust and reputation in P2P applications and ad hoc routing is one of

the inspirations for this research, the application of trust is rather different in those con-

texts. In P2P applications, trust is typically used to determine if one-to-one transactions

should take place, for example file transfers. Here, rather than use trust to determine if

interactions should occur, the objective is to create a trusted network structure, that is a

PST that is trusted by the publisher and its subscribers.

Trust is a mental state and is likely to differ across individuals, as each will use dif-

ferent trust sources combined with their own individual personality traits (captured by

an individual’s trust evaluation function) to come to a trust evaluation of some entity.

More often than not, the trust preferences of publishers and subscribers will differ, so

how can individuals’ preferences over some set of feasible PSTs be aggregated to single

ordering that appeases the desires of all the relevant entities? Fortunately, aggregation of

individual preferences is the core research issue of social welfare and choice theory (Arrow

et al., 2002) and concepts from this field are used extensively to address this issue. In the

absence of policies that prioritise the trust preferences of some subset of nodes over others,

it is evident to ask how the individuals’ trust preferences can be fairly aggregated to a

single social trust preference. A utilitarian approach is rejected, as it is shown by example

that this can punish those that have little trust in the socially chosen PST. Instead, rather

than appease the majority, the motivation for the proposed aggregation function is Rawls’

principles of justice (Rawls, 1971), in particular the difference principle that states that

social and economic inequalities satisfy the condition that they are to be to the greatest

3http://www.eurocontrol.int/surveillance/public/standard page/sur SDDS.html

6

benefit of the least advantaged members of society. Of course, there are philosophical

argument for and against each approach, but we argue that a PST that results in great

risk to one node and little risk to others is not preferable to one where the risk to the least

well off is reduced at the expense of others. The leximin social welfare functional models

Rawls’ difference principle and an analytical form of the functional (Yager, 1997) is used

to aggregate individuals’ trust preferences over PSTs.

The use of the leximin social welfare functional to aggregate individuals’ trust functions

raises an important issue that has been neglected in many computational trust models.

If trust is considered to be cardinal, as is required for the trust maximisation problem

addressed in this thesis, then it must be inter-personal comparable. It is argued that trust

is not inter-personal comparable, unless the unrealistic assumption is made that individuals

determine the trustworthiness of others in the same manner. It is an assumption that is

reluctantly made in this work, but it is hoped that this neglected research issue will be

considered by designers of future computational trust models.

Aside from the issue of aggregating individuals’ trust preferences over a set of feasible

PSTs, there remains the problem of how publishers and subscribers can determine the

trustworthiness of a PST. It seems logical to assume that one’s trust in the PST is given

by the relationships that exist between it and other nodes in the tree, that is an individual

trust evaluation of a PST is a function of the trust of some subset of paths in the PST

of which it is an endpoint. The communication paths for a node in a PST are dependent

upon its role and its depth. For the publisher, the paths that must be considered are

the paths to each subscriber. For subscribers that are terminal nodes, the only path of

interest is that to the publisher, but for an internal node subscriber, not only the path

to the publisher must be evaluated but also the paths to each descendant node that is a

subscriber. Individual PST trust evaluation functions for publishers, internal subscribers

and terminal subscribers are defined. There is, to the best knowledge of the author,

no existing work that addresses the issue determining the trustworthiness of a network

structure.

Having proposed a mechanism to determine the trustworthiness of PSTs, the question

of finding the PST that maximises trust within some overhead budget can be addressed.

The problem is defined and shown to be in NP-complete, so an exhaustive search approach

can not be expected to scale to large problem instances. Instead, a tabu search algorithm

is proposed that has greater scalability than the exhaustive search. The quality of the

solutions found by the tabu search are evaluated and shown to be good approximations of

7

the optimal solutions. Running times are shown to be superior to those of the exhaustive

search except for very small problem sizes.

1.3 Thesis Outline

Chapter 2 consists of two parts: an introduction to PSTs; and a discussion of the security

issues in publish/subscribe systems and various approaches to addressing them. The PST

preliminaries include the definition of a PST and the overhead metric that are used in

the remainder of the thesis. Existing approaches to the minimum overhead PST problem

are also reviewed. The second part of the chapter covers publish/subscribe security, both

the security issues and proposed solutions to address them. The surveyed approaches

can be classified as being of either access-control or computing on encrypted data based.

A number of limitations to these approaches are highlighted and justify the need for an

adaptive trust based mechanism to address security challenges.

Chapter 3 begins with a predominantly mathematical introduction to social welfare

theory. Only the necessary prerequisites are presented with particular emphasis on the

leximin social welfare functional and inter-personal comparability, both central to the PST

trust function that is defined later in the chapter. Following on from the social welfare

theory preliminaries, a trust evaluation function for PSTs is defined, which gives a socially

acceptable ordering over a set of feasible PSTs that maximises the trust in the PSTs held by

the least trusting. As the function is a leximin social welfare functional it requires inter-

personal comparability of utilities, in this case trust. We argue that the inter-personal

non-comparability of trust has been disregarded in existing computational trust models,

and we present a number of assumptions to address this issue for the proposed approach.

Having devised a mechanism to evaluate the trustworthiness of a PST, the maximum

trust PST with overhead budget problem is defined and approaches to solve it are presented

in chapter 4. Although the problem is shown to be in NP-complete, an exhaustive search

algorithm is presented, followed by an algorithm that uses the tabu search metaheuristic.

An evaluation of the proposed algorithms is given in chapter 5. Three problem sets are

defined where the problems increase in complexity with the number of vertices and edges

in the connectivity graph. The mathematical methods used to generate these sets are also

described. The exhaustive search algorithm is used to determine the optimal solutions

for problems of low complexity only, as it does not scale to larger problems, which is

to be expected given that the problem is in NP-complete. Solutions found by the tabu

search algorithm under various configurations are compared to the optimal solution where

8

available. The results of the evaluation are as expected: the tabu search algorithm scales to

larger problem instances than the exhaustive search; and the tabu search algorithm finds

the optimal solution for the majority of problems in execution times that are comparable

to those of the exhaustive search algorithm for problems of considerably less complexity.

In chapter 6, the thesis concludes with a summary of the research contributions. A

discussion of avenues for future research is also given.

9

Chapter 2

Background

2.1 Introduction

The concept of publish/subscribe was originally proposed for the implementation of group

inter-process communication in the System V kernel (Cheriton and Zwaenepoel, 1985),

while the news service of ISIS2 by Frank Schmuck (Birman and Joseph, 1987) is the

first documented implementation of a topic-based publish/subscribe system (definition 1).

Since these initial developments, a great deal of research on publish/subscribe systems

has been conducted. The most notable research developments are the evolution of pub-

lish/subscribe data models from topic-based to the more expressive content-based model

(definition 2) (Rosenblum and Wolf, 1997) and the decentralisation of event distribution

architectures (Cugola et al., 2002) (Carzaniga et al., 2001). More recently, the emphasis

of publish/subscribe research has been on its application in mobile environments (Cugola

and Jacobsen, 2002) (Meier and Cahill, 2002) (Caporuscio et al., 2003) (Fiege et al., 2003),

the use of P2P architectures for the implementation of the event distribution architecture

(Pietzuch and Bacon, 2002) (Gupta et al., 2004) (Triantafillou and Aekaterinidis, 2004)

(Baldoni et al., 2005) (Zhu and Hu, 2005) (Choi and Park, 2006) and optimisation of the

content-based routing and matching algorithms (Fabret et al., 2001) (Carzaniga and Wolf,

2003) (Muhl et al., 2003). An introduction to publish/subscribe is given by Eugster et al.

(Eugster et al., 2003).

Definition 1 (Topic-Based Publish/Subscribe). In topic-based publish/subscribe, each

publisher publishes each of its events to a topic or subject, while a subscriber subscribes

to a topic to receive all events published to it. This scheme typically utilises either flat-

addressing or hierarchical-addressing of topics. Flat-addressing subdivides the event space

into disconnected subspaces. Hierarchical-addressing allows for a structured topic-space,

10

where a subscription to a topic in the hierarchy also implies a subscription to all sub-topics.

Definition 2 (Content-Based Publish/Subscribe). Content-based publish/subscribe ad-

dresses the lack of expressiveness of the topic-based model by defining a subscription as a

function over the event’s content. The cost of this expressiveness is that as the subscrip-

tion complexity increases, the message state and processing complexity at broker nodes

which must perform content-based matching and routing.

The publish/subscribe literature presented and discussed in this chapter covers the two

areas that are most relevant to the research presented in this thesis: publish/subscribe

trees as described by Huang and Garcia-Molina (Huang and Garcia-Molina, 2003), that

is an event-distribution topology where there is no concept of a broker network with

clients external to it, but instead a tree spanning the publisher and its subscribers where

brokers and subscribers may be internal nodes that are responsible for routing notifications;

publish/subscribe security with particular emphasis on the two types of solutions to various

security issues described in (Wang et al., 2002), computing on encrypted data and access

control.

2.2 Publish/Subscribe Trees

Publish/Subscribe Tree (PST) construction with respect to overhead costs was considered

by Huang and Garcia-Molina in the context of publish/subscribe in wireless ad hoc net-

works (Huang and Garcia-Molina, 2003). They proposed an overhead metric for PSTs

and the SHOPPARENT algorithm to construct a PST. Their work makes the simplifying

assumption that there need only be one tree spanning the connectivity graph where any

node can publish an event by routing it to the root of the tree, which then distributes it

to the subscribers.

The SHOPPARENT algorithm adopts a greedy approach to the construction of the

least overhead PST by having each node periodically search for a parent that reduces the

overhead at that node. The algorithm allows for the mobility of nodes by using beacon

messages to inform nodes of potentially better parents that have moved within range

and to notify descendant nodes in the PST of loss of connectivity due to node failure

or movement of the parent to some other part of the connectivity graph. Although the

SHOPPARENT algorithm solves a different problem to the one addressed in this work,

the overhead metric is used as defined by the authors and is discussed futher in section

2.2.2.

11

2.2.1 Publish/Subscribe Tree Roles

Each node in a PST may assume only one of three roles: publisher; subscriber; and

router. As there may be many advertisements from many publishers at a given time and

each advertisement is associated with a unique PST, it is important to note that a node

may assume different roles in different PSTs. For example, in one tree a node may be

a router that facilitates the operation of the event routing and matchmaking, while in

another PST it is the root publishing events. The role of a node is always specified within

the context of a given PST, TAp = (VAp , EAp). These roles can be defined as:

Definition 3 (Publisher Role). The publisher, p, issues an advertisement Ap. The PST,

TAp , for Ap, is rooted at p. p propagates events matching Ap on this tree to the routers

and subscribers in TAp .

Definition 4 (Subscriber Role). The set of all subscribers is S such that S ⊆ V . S = V

is possible due to the multiple roles a node may assume in different PSTs. A node is a

subscriber if it has one or more subscription functions, S = {v | SFv 6= ∅ ∧ v ∈ V } where

SFv is the set of subscriptions functions held by v. Given a PST TAp , the set of subscriber

nodes in TAp is SAp = {s | sfs(Ap) = true ∧ s ∈ S} where sfs is the subscription function

of s. If a subscriber s is an internal node of the PST, it not only receives events to which

it is subscribed to, but also routes events to descendent nodes.

Definition 5 (Router Role). All nodes in a PST that are neither the publisher nor

subscribers are routers. Their role is to forward events to downstream subscribers and

ensure connectivity to subscribers. The set of possible router nodes for a PST TAp is given

by RApc = V \ (SAp ∪ {p}) where V is the set of vertices in the connectivity graph. The

set of router nodes in the PST TAp is given by RAp = VAp \ (SAp ∪ {p}).

2.2.2 Publish/Subscribe Tree Overheads

Before presenting the overhead metric for PSTs, the following three types of subscription

are defined: inherent subscription; effective subscription; and proxied subscription (Huang

and Garcia-Molina, 2003).

Definition 6 (Inherent Subscription). The inherent subscription si of a subscriber i is

given by its subscription function sfi.

Definition 7 (Effective Subscription). The effective subscription Si of a subscriber i is

given by the disjunction of its inherent subscription si and its proxied subscription s
′
i,

Si = si ∨ s
′
i.

12

Definition 8 (Proxied Subscription). The proxied subscription s
′
i of a subscriber i is given

by s
′
i =

⋃
j=1,...,n Sj for each child 1, . . . , n of i.

Huang and Garcia-Molina (Huang and Garcia-Molina, 2003) define the cost of a PST

T , CT (E), as:

CT (E) =
∑
i

CTi(E) (2.1)

where E is the set of events to be published and CTi(E) is the cost of receiving,

processing and forwarding the events in E at node i of T . The cost CTi at a node i, is

given by:

CTi(E) = (r+ pr) ·ΦE(si ∧¬s
′
i) + (r+ f) ·ΦE(¬si ∧ s

′
i) + (r+ pr+ f) ·ΦE(si ∧ s

′
i) (2.2)

where r is the cost to receive an event, pr is the cost to process an event, f is the cost

to forward the event, si is the subscription function at node i, s
′
i is the aggregation of the

subscription functions of all child nodes (and by recursion, all descendant nodes) of i, and

ΦE(α) gives the number of events from the set E that match the subscription function α.

Huang and Molina go on to show that the equations 2.1 and 2.2 can be simplified

to define the overhead rather than cost. In equation 2.2, the first component of the

sum remains constant for all trees, while for the third component, we can remove the

processing and forwarding constants as these are not overheads since the node has an

interest in these events. For the second component, node i has no interest in these events,

so costs associated with this component are entirely overheads. This gives the following

functions to replace equations 2.1 and 2.2:

OT (E) =
∑
i

OTi(E) (2.3)

OTi(E) = (r + f) · ΦE(¬si ∧ s
′
i) + f · ΦE(si ∧ s

′
i) (2.4)

While Huang and Molina state that it is possible to determine for some applications the

event distribution, E, it can be shown that a priori knowledge of the event distribution

is not required for the implementation of tree construction algorithms with respect to

equations 2.3 and 2.4. By inspection of equation 2.4, nodes with subscriptions not covered

by their ancestors’ subscriptions incur greater overheads on their ancestors than those

13

where there is covering. To lower the total overhead at each node, the tree construction

algorithm should attempt to maximise subscription covering in the PST, tending ΦE(si ∧

s
′
i) in 2.4 to larger values and ΦE(¬si ∧ s

′
i) to lower, as greater overheads (r + f) are

incurred with the latter.

Definition 9 (Publish/Subscribe Tree Overhead). Let E be a set of events, r be some

cost associated with receiving an event, f be a cost associated with forwarding an event,

si be the inherent subscription and s
′
i be the proxied subscription. For a PST TAp , its

overhead is defined as OTAp (E) =
∑

i∈VAp
OTApi

(E) where OTApi
(E) = (r+ f) ·ΦE(¬si ∧

s
′
i) + f · ΦE(si ∧ s

′
i).

2.2.3 Publish Subscribe Tree Definition

In this work, a different definition of PST is adopted. For each advertisement, there is a

PST rooted at the publisher of the advertisement. The tree spans all subscribers whose

subscription function matches the advertisement associated with the PST and subset of

router nodes who are not subscribers to the advertisement, but are included in the PST

to facilitate connectivity and reduce overheads.

PSTs are not explicitly defined by Cao and Shen, so the following definition has been

devised. Note that only subscribers may be terminal nodes at any given time in a PST,

as it is illogical to forward events to a router who has no descendants that are subscribers,

as this only increases the overhead cost of the PST.

Definition 10 (Publish Subscribe Tree (PST)). Given an undirected connected con-

nectivity graph G = (V,E), a publisher p such that p ∈ V , an advertisement Ap held by

publisher p, a set of subscribers SAp = {s | sfs(Ap) = true ∧ s ∈ V \ {p}} where sfs is

the subscription function of s, and a set of routers RAp = V \ (SAp ∩ {p}) is the set of

candidate router nodes. A PST TAp for the advertisement Ap is a tree routed at p that

spans all subscribers in SAp and a subset of Rap nodes where all r ∈ Rap can not be a

terminal node of the PST and for all s ∈ Sap , s may be either a branch node or a terminal

node of the PST.

2.2.4 The Minimum Overhead Publish/Subscribe Problem

Following the work of Huang and Garcia-Molina (Huang and Garcia-Molina, 2003), Cao

and Shen (Cao and Shen, 2009) address the same problem of finding the minimum overhead

PST tree, however their approach differs, as they assume that the PST is not a spanning

tree on the connectivity graph, but a Steiner tree that is rooted at the publisher and spans

14

its subscribers. With this definition of a PST, the minimum overhead PST problem (see

problem 1) is shown to be NP-complete (see theorem 1). The authors then go on to present

the DSAPST algorithm where each node selects a parent as a function of the hop count

to the publisher and a measurement of the subscription covering provided by the parent’s

subscription i.e. the overlap of the parent’s subscription with the node’s subscription. The

subscription-aware DSAPST algorithm is compared to a multicast subscription-unaware

MAODV1 approach to event distribution, with the former outperforming the latter with

respect to PST overheads and connectivity of subscribers.

Problem 1 (The Minimum Overhead Publish/Subscribe Problem (MOPST)). Given an

undirected connectivity Gc = (Vc, Ec) where Vc is the set of vertices in Gc and Ec is the

set of edges. Find a minimum overhead tree that is routed at r and spans all subscribers

(Cao and Shen, 2009).

Theorem 1 (The Minimum Overhead Publish/Subscribe Problem in NP-complete). The

MOPST problem is NP-complete (Cao and Shen, 2009).

2.3 Publish/Subscribe Security

Much of the content-based publish/subscribe research has focused on the development

of content-based matching and routing algorithms with the aim of increasing both per-

formance and scalability. Until recently, much less attention had been paid to the issues

of fault-tolerance, security, mobility and congestion control. Security in particular has

yet to be fully explored and addressed, with much of the work constrained to addressing

confidentiality through the use of access control mechanisms.

The design of content-based publish/subscribe systems predominantly assumes that

there are implicit trust relationships between clients, clients and the event distribution

service, and between all brokers within the event distribution service. These assumptions

render the consideration of security issues extraneous as there are no malicious participants

and consequently no potential threats. The application context, an event distribution ser-

vice under the control of a single or multiple co-operating administrative entities, and

contractual obligations between clients are just some of the reasons why such assump-

tions can be justified. Should these not hold true, all components of the system become

vulnerable to a number of security concerns.

The security issues in publish/subscribe can be encapsulated into four groups: generic;

1http://tools.ietf.org/id/draft-ietf-manet-maodv-00.txt

15

confidentiality; accountability; and availability (Wang et al., 2002). The generic issues

are similar to those that exist in other network paradigms and additionally they are also

addressable by the use or modification of existing techniques. Authentication, anonymity

and integrity are classified as generic issues. Confidentiality assumes that implicit trust

no longer holds between publisher, subscribers and infrastructure, raising questions as to

how to perform content-based matching and forwarding when publishers and subscribers

trust neither one another nor the brokers with their events and filters. Accountability

addresses the issue of how to ensure subscribers are correctly billed for events they con-

sume. Availability of the system is susceptible to denial of service attacks that may exploit

resource limitations of the clients and brokers, conceptual and theoretical design flaws of

the content-based scheme, and any implementation vulnerabilities. Although Wang et

al. provide an overview of the security issues of content-based publish/subscribe systems,

there is only discussion of existing research that may provide possible solutions and no

novel solutions are proposed.

This section describes the security issues that are specific to content-based publish/

subscribe and relevant to the trust approach that is presented in this thesis, hence the

exclusion of a discussion on accountability. Having described these issues, a number of

proposed schemes are reviewed, which predominantly make use of either access-control or

computing on encrypted data techniques.

2.4 Confidentiality

2.4.1 Definitions of Confidentiality

Definition 11 (Information, Subscription and Publisher Confidentiality). There are three

types of confidentiality in publish/subscribe systems. These are defined as follows (Wang

et al., 2002):

• The infrastructure can perform content-based routing, without the publishers trust-

ing the infrastructure with the content (Information Confidentiality);

• The subscribers can obtain dynamic, content-based data without revealing their

subscription functions to the publishers or infrastructure(Subscription Confiden-

tiality);

• Publishers can control which subscribers may receive particular publications (Pub-

lication Confidentiality);

16

The implementation of a content-based publish/subscribe system that respects these

confidentiality definitions requires the infrastructure to perform content-based routing

and matching without access to the plaintext notifications and filters. Information and

subscription confidentiality clearly conflict with content-based publish/subscribe, and this

implies that the only suitable scheme is one where content-based matching algorithms can

be implemented to match encrypted notifications and filters. In some application contexts,

publishers and subscribers will not have complete distrust of the event based service, and

may trust a subset of brokers. This gives the following definitions of information and

subscription confidentiality:

Definition 12 (Confidentiality with Partial Trust of Infrastructure (Notification/Filter

level)). Publisher confidentiality remains the same as in definition 11. Information and

Subscription confidentiality are redefined as follows:

• The infrastructure can perform content-based routing, without the publishers trust-

ing part of the infrastructure with the content. (Information Confidentiality)

• The subscribers can obtain dynamic, content-based data without revealing their

subscription functions to the publishers or untrusted parts of the infrastructure.

(Subscription Confidentiality)

These modified definitions imply the use of trust domains within the broker network,

which can weaken reliability and efficiency of routing. Consequently, the confidentiality

definitions can be further modified to allow distrusted brokers to perform content-based

routing on attributes of events that are not considered confidential. This gives the following

modification:

Definition 13 (Confidentiality with Partial Trust of Infrastructure (Attributes/Attribute

Filter level)). Publisher confidentiality remains the same as in definition 11. Information

and Subscription confidentiality are redefined as follows:

• The infrastructure can perform content-based routing, without the publishers trust-

ing part of the infrastructure with all or some of the content. (Information Con-

fidentiality)

• The subscribers can obtain dynamic, content-based data without revealing some or

all of the attribute filters of their subscription functions to the publishers or untrusted

parts of the infrastructure. (Subscription Confidentiality)

17

2.4.2 Definition of Confidential Content-Based Publish/Subscribe

A formal definition of confidential content-based publish/subscribe is given by Raiciu and

Rosenblum (Raiciu and Rosenblum, 2006), which uses definition 11 of confidentiality. An

ideal confidential content-based publish/subscribe protocol is defined by the authors as

one where a broker has no access to plaintext notifications and subscriptions, only their

indices, and so an oracle with access to the plaintext notifications and subscriptions is used

to perform content-based matching that given the indices of a notification and subscription,

returns true if the two match. Any confidential content-based publish/subscribe scheme

must not leak any additional information to the broker. This definition is formalised and

shows that the following properties must hold in such a scheme:

• Notification Security - notification ciphertext indistinguishability is guaranteed.

• Subscription Security - ciphertext representations are distinguishable using cov-

ering, however a stricter threat model may assume that they should not be.

• Notification Unforgeability - the inability of an attacker to forge arbitrary noti-

fications appearing to be valid.

• Subscription Unforgeability - the inability of an attacker to forge arbitrary sub-

scriptions that appear to be authentic.

• Match Isolation - the inability to perform any further computation other than

testing for matching and covering using the oracle.

Raiciu and Rosenblum determine the following five algorithms that are essential for any

confidential content-based publish subscribe implementation as given by their definition:

• KeyGen(t) - given a security parameter t, return a shared key K between a publisher

and associated subscribers.

• IndexSub(K,S) - executed by a subscriber and given its subscription S and key K,

returns an encrypted subscription, Se.

• IndexNot(K,N) - executed by a publisher and given its notification N and key K,

returns an encrypted notification Ne.

• Match(Ne, Se) - returns 1 if Ne ≺NS Se, 0 otherwise.

• Cover(Se1 , Se2) - returns 1 if Se2 ≺SS Se1 , 0 otherwise.

18

Raiciu and Rosenblum go on to present a confidential content-based publish/subscribe

scheme that abides by this definition(section 2.6.1.1). Prior to this research, Li et al.

proposed a confidential publish/subscribe scheme using prefix-preserving cryptography

(Li et al., 2004), but it does not guarantee notification security.

2.5 Availability

A Denial of Service (DoS) attack is performed by a malicious entity to disrupt legitimate

access to a network service. If the attack is performed by multiple entities, then it is

a Distributed Denial of Service (DDoS) attack. These attacks can vary significantly in

their characteristics (Mirkovic and Reiher, 2004) and consequently there are a variety of

mitigation techniques.

Mitigating against denial of service attacks that attempt to reduce the availability

of publish/subscribe systems has surprisingly received very little research attention. A

comprehensive taxonomy of DoS attacks in content-based publish/subscribe systems that

categorises their effects and their properties is given by Wun et al. (Wun et al., 2007).

Using the event-based middleware, PADRES (Fidler et al., 2005), the authors were able

to identify the effects of these attacks, and classify the properties of DoS attacks. While

no solutions are proposed, the authors express the hope that their work will lead to others

instigating further research, however, this does not appear to have been the case.

2.5.1 CBPS Denial of Service Attack Characteristics

The experiments performed by Wun et al. allow the identification of three effects resulting

from DoS attacks: localisation; workload complexity and message state. Localisation

describes the behaviour where an attack that induces heavy load at an external broker

may inhibit propagation of the attack due to very high input queuing delay, and therefore

resulting in internal brokers being unaffected. A publication attack results not only in

input queuing delays at the broker serving the attacker, but also increased input and output

queuing delays at other external brokers with subscriptions matching the notifications

being flooded, in spite of the localisation effect. This property is referred to by the authors

as the transmission of the attack, as it disrupts resources beyond the initial broker node

under attack.

The expressiveness of the content-based model allows for the crafting of notifications

and filters that consist of many attributes or attribute filters respectively, and as these

increase in number, so does the message complexity. The matching of complex notifications

19

and filters requires increased processing and memory requirements when compared to

lower ones, so an attacker can take advantage of this by utilising a high complexity attack

workload. As is expected, the authors’ experimental results show that the effects of such

an attack are more significant than ones of low complexity. At an affected broker, the rate

of increase in response times is much greater and the rate of decrease after the conclusion

of an attack is slower. The latter due to the backlogged messages of the workload that

are contained in the input queue of the broker. These messages must be processed by the

broker even after the attack has ended and this leads to a continuing increase in response

time despite the attack having concluded.

In addition to transmission and workload complexity, attackers can also benefit from

the maintenance of state in content-based publish/subscribe systems. Subscription flood-

ing capitalises on the maintenance of filter state at the brokers by injecting malicious sub-

scriptions at a high rate into the infrastructure and consequently increasing the memory

consumption at brokers. The results of a low complexity constant rate subscription flood-

ing attack experiment are given and they show that this attack, when compared to a pub-

lication flooding attack with similar properties, yields a more severe increase in memory

consumption. The impact of the reduction of free memory at the broker leads to an in-

crease in processing time of approximately two orders of magnitude, and consequently

exponential growth in the response time of the broker.

The authors draw a number of conclusions having identified these effects from their

DoS experiments: mitigating solutions might be able to utilise localisation to prevent

attacks; workload complexity can currently be measured by attribute and attribute filter

counts; and attacks taking advantage of message state could be mitigated by limiting the

lifetime of notifications and subscriptions, and the use of policies to manage state. To this,

it should be added that covering can help in limiting the effects of a message state based

attack by not requiring the propagation of covered subscription filters, while merging may

reduce the memory requirements at a broker. Disallowing blackhole advertisements (an

advertisement that covers all subscriptions) and blackhole subscriptions (a subscription

that covers all events) helps to prevent an attacker gain an understanding of the interests

of clients, potentially limiting the number of brokers affected by an attack.

Having discussed these effects, a taxonomy of denial of service attacks in content-based

publish/subscribe is given. The taxonomy proposes six classes of properties for attacks,

these are: exploitation; source; target; propagation; statefulness; techniques; and content-

dependence. The authors used the taxonomy to classify a number of attacks as to be using

20

either the stockpiling technique or to be of semantic weakness type. An example attack

using stockpiling would be one where the attacker uses a blackhole advertisement to match

all subscriptions in an effort to cause maximum disruption by a flooding of notifications.

Semantic weakness allows an attacker to utilise theoretical or conceptual design flaws, for

example the SIENA content-based model (Carzaniga et al., 2001) allows for unsubscribe

and unadvertise operations which can be abused by attackers to remove advertisements

and filters that they do not own from the infrastructure.

2.5.2 Solutions to Denial of Service Issues

In addition to attempting to address authentication and confidentiality, Eventguard (Sriv-

atsa and Liu, 2005) implements a number of mechanisms that attempt to address DoS

attacks. The authors identify three types of DoS attacks: flooding-based; fake unsubscribe

and unadvertise; and selective or random message dropping. The use of signatures to pre-

vent the dissemination of fake notifications and the rejection of duplicate notifications

on the input queue are used to mitigate against flooding-based DoS, spam and spoofed

messages.

2.6 Review of Existing Solutions

Wang et al. (Wang et al., 2002) suggest the application and in some cases modification

of existing techniques to address the various classes of security issues. End-to-end and

point-to-point authentication can be achieved by the use of public-key infrastructure.

Computing with encrypted data (Abadi et al., 1987), secure circuit evaluation (Abadi and

Feigenbaum, 1990) and private information retrieval (Chor et al., 1995) (Di Crescenzo

et al., 2000) are proposed areas of interest that may help to provide confidentiality, but no

solutions are given. The authors propose a number of techniques to provide accountability,

including out-of-band solutions such as providing users with decryption keys with respect

to any service level agreements, infrastructure-based solutions such as allowing perimeter

broker nodes to perform accounting and trusted brokers to perform auditing tasks, and

alternatively by the possible use of verifiable secure computation (Gennaro and Micali,

1995). Although many initial ideas and areas of further related research are proposed, it

appears that most of these have not been further explored by the research community. To

date, the key contribution of this work has been to identify and raise awareness of security

issues, and to define confidentiality in the context of publish/subscribe.

21

2.6.1 Confidential Content-Based Publish/Subscribe

2.6.1.1 Raiciu and Rosenblum

The definition of a confidential content-based publish/subscribe system has been formal-

ised by Raiciu and Rosenblum (Raiciu and Rosenblum, 2006) (section 2.4.2). Confidential

content-based techniques are proposed for equality, substring and numeric matching. An

implementation based on SIENA and requiring little modification is presented and addi-

tionally the authors claim that their proposed techniques can be implemented in other

content-based event-distribution systems. The basis of the techniques is to implement

content-based matching on encrypted data.

Equality matches are implemented using a pseudorandom function F . A subscription

value S is passed to function F that is keyed with a shared secret key K, i.e. FK(S).

Notifications are encrypted by first passing the notification value to F keyed with S,

then using the returned value as the key for encrypting a uniform random nonce, rnd,

i.e. FFK(N)(rnd). An encrypted notification Ne matches an encrypted subscription Se if

FFK(N)(rnd) = FSe(rnd), so in addition to Ne and Se the only information revealed to the

infrastructure is rnd. Given two subscriptions Se1 and Se2 , Se1 covers Se2 if Se1 = Se2 .

As substring matching is computationally expensive, this motivates the authors to

implement keyword matching, as they believe this to be adequate for most applications.

The mechanisms proposed are an application of those originally devised by Goh (Goh,

2003). Given r hash functions in a Bloom filter (Bloom, 1970) BF , a master key is

K = (k1, k2, . . . , kr) drawn uniformly at random from {0, 1}rt where t is some security

parameter, a subscription is encrypted as (Fk1(S), . . . , Fkr(S)). A notification N is en-

crypted by first extracting keywords w1, w2, . . . , wn, then for each keyword wi is encrypted

as if a subscription, (xi,1, . . . , xi,r) = (Fk1(wi), . . . , Fkr(wi)), codification is completed by

setting each bit of the Bloom filter, BF [Frnd(xi,r)] = 1 for each r. An encrypted noti-

fication and subscription, Ne = (rnd,BF) and Se = (x1, x2, . . . , xr) respectively, are not

matched if for some i to r, BF [Frnd(xi)] = 0. The covering test is identical to that of

equality matching.

Techniques for inequality and range subscriptions are presented that are both based on

the secure index scheme proposed by Chang and Mitzenmacher (Chang and Mitzenmacher,

2005), however they are not without their disadvantages. The inequality operator is not

a function on a pair of real values, but instead an approximation that operates on a pair

(x, y) where x ∈ R and y ∈ D such that D ⊂ R and D must be agreed upon between

publisher and subscribers. This reduces expressiveness and introduces additional coupling.

22

The range matching algorithm is an approximation scheme with a trade-off between the

subscription size and matching times against the number of false positives and likelihood of

information leakage. Despite these disadvantages, the techniques are proven to be correct

implementations of confidential content-based publish/subscribe.

Evaluation of these encrypted matching techniques is performed using a modified ver-

sion of SIENA. Inequality matching with and without covering is 1.7 and 3 times more

expensive, respectively. Range matching times similarly see a benefit from utilising cov-

ering, as they are only 3 times more expensive than plaintext compared to 6 times more

expensive without the use of covering. Equality matching times are also six times more on

average than plaintext. Increases in communication overhead are more significant in scale,

with notifications 15 times larger, and subscriptions 10 times larger than their plaintext

representations.

The authors identify several limitations applicable to all confidential content-based

publish/subscribe schemes as defined by definition 11: the “Attack at Dawn” problem;

limited indistinguishability; confidentiality-generality tradeoff; and trust. While the “At-

tack at Dawn” problem can be mitigated using anonymising techniques, the use of a shared

key between publisher and subscriber not only increases the coupling between these entit-

ies, but also requires the assumption that they will not leak it. Determining when a leak

has occurred, its source, and its recipients is non-trivial.

In addition to the issues that are applicable to all confidential publish/subscribe

schemes, there are a number that are specific to the techniques described above. The

content-based model is limited in its expressiveness, substring support is replaced by the

less granular keyword matching, and the inequality tests can only be preformed against

a subset of real numbers, although perfect matching is possible with high space and con-

sequently time complexity. The overhead of the inequality scheme is 2 · l where l is the

size of the dictionary, i.e. number of reference points.

All forms of confidentiality given in definition 11 are met (it is the only work surveyed

that achieves this) and there no longer needs to be any trust between entities with no-

tification and subscription content, however, this is replaced by a trust relationship over

the shared key. Unless a mechanism is devised allow for effective monitoring such that

key leakage can be detected and the access rights of the source of the key revoked, then a

dependence on implicit trust remain.

23

2.6.1.2 Li et al.

Prior to the scheme of Raiciu and Rosenblum, Li et al. (Li et al., 2004) proposed a

confidential publish/subscribe scheme that is based on the premise that interval matching

can be transformed to prefix matching, and that using a prefix preserving encryption

function, notifications and subscriptions can be encrypted and matched in their non-

plaintext form by a broker. As is the case with the Raiciu and Rosenblum scheme, a

shared key between publisher and subscribers is required, however, Li et al. propose some

justification for this by arguing that their scheme is designed for private publish/subscribe

systems with an event infrastructure under the control of a single entity.

An interval [32, 111] using 8-bit binary representation can be transformed to the set

of prefixes, {001∗, 010∗, 0110∗}, an algorithm for which is given by the authors. The

encryption and decryption algorithms for prefix-preserving IP address anonymisation (Fan

et al., 2004) can then be applied to the set of prefixes. Having agreed upon a shared key

K, a pseudorandom prefix-preserving function FK , is used to encrypt the attributes of

a notification, N . A subscriber uses the authors’ interval to prefix algorithm for each

attribute filter, encrypting each using the same pseudorandom prefix-preserving function.

Brokers are able to establish if notifications are covered by subscription filters by matching

the encrypted set of prefixes against the encrypted bits of the notification.

The algorithm is shown to be computationally efficient and in the order of n where

n is the number of bits in the interval, however, this technique leaks information with

the justification given by the authors that it is a necessary trade-off against efficiency.

A malicious entity in the publish/subscribe system given a plaintext-ciphertext pair, can

attempt to ascertain the prefix bits given another ciphertext. The more pairs an entity

is able to acquire, the probability of prefix bits being leaked increases. As a result of

this, notification indistinguishability can not be guaranteed. While the authors go on to

propose the use of different keys for each attribute and time bounded prefix-preserving

pseudorandom function, these only help to mitigate against this security issue.

2.6.1.3 Other work on Confidentiality

The SIENA fast forward implementation2 contains an implementation of confidential exact

matching, but that it is insecure as notification are distinguishable (Raiciu and Rosenblum,

2006). Eventguard (Srivatsa and Liu, 2005) implements confidentiality using per-topic

shared keys for topic-based publish/subscribe systems.

2http://www.inf.usi.ch/carzaniga/cbn/forwarding/index.html

24

2.6.2 Access Control

2.6.2.1 Access Control Upper Bound Filters

Miklós describes a method to define access control policies on clients’ advertisement and

subscription filters (Miklós, 2002). These policies are upper bound filters that use the

covering and strict covering semantics in conjunction with client credentials to define

positive access rights for subscriptions and notifications. Using the SIENA content-based

model, upper bounds access rights for publishers and subscribers can be given by access

control filters that are associated with clients’ credentials. The access control filter only

allow a broker to accept a filter or notification from a client if it is covered by the control

filter and if the control filter is associated with the client’s credentials.

The approach adopted addresses a number of attack scenarios as defined by the author.

Fake advertisements, blackhole advertisements and blackhole subscriptions can not be per-

formed if control filters are appropriately defined by the access control management entity,

and this leads to a reduced risk to stockpiling and message state based attacks. Message

state attacks can be further limited as an attack can not enact a flooding of arbitrary

subscriptions to the infrastructure in an attempt to increase the memory consumption at

brokers. Publisher flooding is also restricted and access violations can no longer occur due

to the use of credentials.

The techniques proposed do not address any form of confidentiality. Clients must

submit their advertisement, notifications and subscriptions to the infrastructure with the

assumption that it can be trusted. A screening technique is proposed that attempts to

provide some form of publisher confidentiality by allowing a publisher to permit subscribers

to only view the notification attributes that are matched by an attribute filter in their

subscription.

2.6.2.2 Scopes

Fiege et al. (Fiege et al., 2004) attempt to address the issue of implicit trust between

publishers, subscribers and infrastructure by defining the concept of scopes which can

be used to map external trust defined by external contracts between entities to the pub-

lish/subscribe system. Scopes allow for the grouping of a publisher and its trusted sub-

scribers, thereby limiting the visibility of notifications to these clients, however, there is

an inheritance relationship between scopes that allows notifications to be propagated to a

super-scope if the scope interface between the two allows this.

An implementation of scopes using REBECA (Mühl, 2002) is described with particular

25

focus on the changes required to the routing tables, such that these are split between

scopes, and as a result grouping brokers within the infrastructure in a given scope in

addition to the clients, effectively creating an overlay. A scope join request issued at a

broker is processed by the first broker in the scope, with the reply to the requesting broker

sent on the return path to allow all brokers on it to a create routing table entries for the

scope. All nodes on this path join the scope.

Access control is implemented at the external brokers of the infrastructure. A publisher

submits an advertisement to an external broker along with an attribute certificate3 that

is used as the publisher’s credential. Given the credential, the advertisement is either

discarded if not valid, or propagated within the scope along with an additional certificate,

containing the public key of the publisher, which is used to authenticate subscribers at

external brokers. A subscriber requesting to join the scope, submits its attribute certificate

to the external broker, which verifies the signature of the certificate using the publisher’s

public key. Border brokers ensure that only authorised clients participate in the scope and

ensures through the attributes of the content providers’ attribute certificate that there are

no access violations on publish/subscribe API calls.

The authors address a number of the security issues of scopes. As mentioned above,

the scope can be extended, and the addition of the broker not only adds it to the scope, but

also adds brokers on the path to the scope. These nodes may be distrusted and should not

be included. The proposed mechanism to prevent this is for each broker on the path, from

the joining broker to the broker currently in the scope, to append its attribute certificate

to the request. The broker processing the join request then tests the attribute certificates

with respect to any trust management policies. For those circumstances where the broker

has only distrusted paths to a scope that it wishes to join, tunnelling can be used to create

a connection to it.

The work addresses trust explicitly through the creation of trusted overlays upon the

publish/subscribe network to create a trusted environment for communication. While

the use of scopes does indeed overcome the security issues induced through the implicit

trust assumed by content-based publish/subscribe, scopes reduce the fault-tolerance, as

there is a trade-off between trust and path redundancy of the infrastructure. Application

of the techniques to application contexts where there are no external contracts between

publishers and subscribers is not discussed, however, with the addition of monitoring

techniques and reputation management, scopes could be extended to these scenarios.

3http://www.ietf.org/rfc/rfc3281.txt

26

2.6.2.3 Role-based Access Control

Belokosztolski et al. (Belokosztolszki et al., 2003) propose the use of Role-based Access

Control (RBAC) (Sandhu et al., 1996) in publish/subscribe systems with the research goal

of implementing security management in the publish/subscribe middleware with minimal

modifications to the publish/subscribe API and its algorithms. The proposed system

implements RBAC on the HERMES event-based middleware (Pietzuch and Bacon, 2002)

using the Open Architecture for Secure Interworking Services (OASIS). RBAC provides

the following three mechanisms (Mühl et al., 2006): restrictions on the interaction of event

clients; trust levels for event-brokers; and encryption of event data to control information

flow in the system on a fine-grained basis.

In confidential publish/subscribe, the assumption held is that the entire infrastructure

is distrusted, however, this is not the case for the proposed RBAC solutions. Instead, the

infrastructure is assumed to be trusted to perform content-based matching and forwarding,

but certain brokers may not be trusted to access all attributes of notifications. Clients

are not implicitly trusted, requiring the use of access control mechanisms at edge brokers.

These trust relationships imply that the strict definition of confidentiality given in 11 is

not met, but instead the weaker form that is given in definition 13.

The RBAC publish/subscribe model assumes that the publish/subscribe model is

defined with respect to type-based publish/subscribe, however, Mühl et al. (Mühl et al.,

2006) state that it supports access control policy specification using notification attributes

and subscription filters. Each client is assigned a credential that is used to determine

its role. Using OASIS, the model allows the event type owner to specify the following

role-based access control policies at the edge brokers:

• Broker-Client Connection Policy - given a client’s credential, it is used to de-

termine if the client should be hosted by the broker.

• Type Management Policy - given a client’s credential, it is used to determine if

the client is allowed to create, modify or remove event types.

• Advertisement Policy - allows the event type owner to restrict the roles that are

permitted to publish matching notifications.

• Subscription Policy - allows the event type owner to define the roles that are

allowed to issue subscriptions for the given event type.

These policies are implemented at the edge brokers. Any client performing an action at

27

an edge broker must provide its credentials so that the relevant policy can be used to permit

or disallow the action and ensure that no access violation can occur. For advertisement and

subscription policies, restriction techniques are proposed that transforms an advertisement

or subscription filter to one that is more restrictive. For content-based publish/subscribe

this is defined by an upper bound control filter as described by Miklós (see section 2.6.2.1).

Under certain conditions, it is not possible to assume that the infrastructure can be

trusted to access the content of notifications and subscription filters. By assigning brokers

to roles, access to a set of event types and their sub-types can be specified by policies

defined with respect to these roles. The use of a web of trust of X.509 certificates rooted

at the event type owner is proposed to implement this mechanism. The web of trust allows

brokers to ensure that for a given event, it can be forwarded to other brokers that have

been assigned to a role, which is permitted to access the event’s type. It can also be used

by a publisher to ensure that its hosting broker is permitted to accept and propagate its

advertisement.

Belkosztolski et al. (Belokosztolszki et al., 2003) propose that if required, events may

be encrypted to prevent eavesdropping, however, the approach of specifying access control

on event types creates trust domains in the infrastructure, resulting in partitioning that

reduces redundancy and efficiency (Mühl et al., 2006). Pesonen et al. (Pesonen et al.,

2007) propose the implementation of access control using encryption of either event types

or attributes. For event type security, types are associated with a key, and for attrib-

ute security, each attribute is associated with a key. Attribute encryption allows for a

much finer granularity of access control, so brokers can perform content-based routing on

attributes that they are permitted to access. Where the broker has no access rights to

the event contents, routing is performed using the unencrypted event type identifier. The

proposed system uses the Advanced Encryption Standard (AES) (Nechvatal et al., 2001)

in EAX mode (Bellare et al., 2004), and consequently symmetric key use. A capability-

access model (Pesonen et al., 2006) is used to determine if a broker has been granted

access rights to the encryption keys by the event type owner. As expected, experimental

results show that event throughput is greater with event type encryption than attribute

encryption due to the increased overhead of the latter, but attribute encryption results in

lower hop counts, as more information is available to the broker network for routing.

The use of RBAC in conjunction with publish/subscribe addresses a number of security

issues. Publisher confidentiality can be guaranteed, but the strictest forms of information

and subscription confidentiality can only be met in part. At least some of the infrastruc-

28

ture must be trusted so that the content-based matching and forwarding algorithms can

operate correctly, thereby breaching information and subscription confidentiality, but for

many applications this will likely be acceptable. As expected, experimental results show

attribute encryption results in lowered throughput in the infrastructure when compared

to event-type encryption and no encryption, but reduced hop counts against event-type

encryption.

RBAC will not prevent attacks by entities assumed to be trusted, but who have become

malicious, and this is complicated further when trusted clients and brokers sporadically

do not behave as expected. Policies would have to be manually modified by the event

type owners and if encryption is used, keys revoked and reissued to comply with the

new policy and to expel the malicious entity from those that are trusted. To implement

this more successfully, without the opportunity for malicious reporting of misbehaviour,

monitoring mechanisms must be defined whose observations are used to determine the

reputation and trustworthiness of entities which are then used to influence policy. Finally,

the RBAC publish/subscribe model only considers trust relationships between publisher

and infrastructure, and subscriber and infrastructure. Scenarios where brokers do not

trust one another are not considered. These issues are also true for the for scope technique

described above.

2.6.3 Spam

Publish/Subscribe is a many-to-many form of communications where, as is the case with

e-mail, the cost of communication is cheap. This allows attackers to propagate unsolicited

and bogus messages, such as spam and bogus messages. It is this that motivates Tarkoma

(Tarkoma, 2006) to investigate the problem of content-based spam and leads to the pro-

posal of a system that blacklists the public-key identities of publishers and brokers that

disseminate spammers.

Content-based spam can be classified as either inbound or outbound. Inbound de-

scribes unwanted messages in the input queue of a broker that are matched by a filter in

its routing table. Outbound are malicious messages that a broker attempts to not propag-

ate on matching filters. A number of mitigating techniques such as sender verification and

blacklisting are proposed by the author for both types of spam.

With e-mail, endpoints are defined by the unique e-mail address, so an attacker only

needs to have a list of addresses to target to perform the attack. In content-based pub-

lish/subscribe, the endpoints are described by filters and not addresses. Only if a no-

29

tification matches a filter will it be forwarded. As a result of the content-based model,

an attacker must be aware of the subscription filters in the infrastructure to maximise

the subscribers who will receive the spam. Should the publish/subscribe API allow it,

blackhole advertisement and subscriptions allow the attacker to learn about the interests

of the clients, where the former can be used to determine all subscriptions at a given time,

and the latter matching all notifications submitted to the infrastructure. Depending on

the structure, an alternative to the blackhole techniques is for an attacker or clique of

attackers to infiltrate the structure of the broker network at particular positions to sample

filters and notifications. For example, in a publish/subscribe system that makes use of

a hierarchical structure the root node would be the optimal position at which to sample

communications.

Tarkoma’s proposed solution to spam is to allow publishers and brokers to be marked

as blacklisted in a blacklist that is implemented using a distributed hash table (DHT).

This requires the use of public key identities issued by a certificate authority, so the pub-

lish/subscribe system must be augmented with not only a DHT, but also public-key infra-

structure. Each advertisement and notification submitted to the infrastructure is signed at

each hop and dropped by a broker if it is signed by a blacklisted public-key identity. In or-

der to ensure that a publisher or broker is not maliciously blacklisted, several observations

of malicious behaviour are required for blacklisting. The author cites two disadvantages

with this solution, the first is that may give rise to network partitioning, and the second

is that the additional calls to the DHT and the verification of signatures can introduce

overheads such as increased response times and larger messages sizes respectively.

As with scopes, the proposed system could be extended with monitoring and reputation

management to provide a more comprehensive solution to ensure trustworthy behaviour in

publish/subscribe. Unfortunately, due to an absence of experimental results, it is difficult

to assess the extent of the potential for network partitioning and the overheads due to

DHT lookups and signature verification.

2.7 Summary

In this chapter, the PST preliminaries have been presented, followed by a survey of se-

curity issues in publish/subscribe systems and approaches to address these. The PST

preliminaries include a definition of a PST and the overhead metric that is used in later

chapters. Disadvantages to the various security approaches surveys are identified when

juxtaposed to the proposed creation of a trusted PST, most notably that the systems are

30

unable to adapt changes in behaviour of nodes.

31

Chapter 3

Trusted Publish/Subscribe Trees

3.1 Social Choice and Welfare Preliminaries

3.1.1 Introduction

Social choice theory is described as being “concerned with relationships between indi-

viduals’ preferences and social choice” (Fishburn, 1973) and alternatively by Suzumura as

“being concerned with the evaluation of alternative methods of collective decision-making,

as well as with the logical foundations of welfare economics” (Arrow et al., 2002). The

latter goes on to state that “as soon as multiple individuals are involved in making de-

cisions for their common cause, one or other method of collective decision-making cannot

but be invoked”. Social choice theory is the study of the specification of preferences, their

motivating utilities, and the aggregation mechanisms of individual preferences to a socially

acceptable preference, all underpinned by concepts from welfare economics.

The history of social choice theory dates back to the late 1700s. Its theoretical found-

ations in collective-decision making begin in 1781 when the Académie Royale des Sciences

published Borda’s positional voting scheme1 (Borda, 1781) and adopted it for the election

of members to the academy from 1780 to 1784 when the voting scheme was attacked by

Napoléon and consequently revoked. As a member of the academy and the First Consul of

the First French Republic, Napoléon2, was not the only detractor of the Borda count. A

fellow member, the Marquis de Condorcet, opposed Borda’s scheme, and so he proposed

an alternative using simple majority pairwise comparisons of all candidates’ rankings and

defined the voting paradox in which social preference may be cyclic despite individual

preferences being transitive3 (Condorcet, 1785). Suzumura cites the Condorcet paradox

1http://gallica.bnf.fr/ark:/12148/bpt6k35800/f787
2Membership of the academy was not restricted to scientists.
3http://gallica.bnf.fr/ark:/12148/bpt6k417181/f4

32

as signalling the requirement for a formal treatment of collective decision making (Arrow

et al., 2002), but it was well over one hundred years later that significant research contri-

butions were made towards this by Arrow with his definition of the social welfare function

and his impossibility theorem (Arrow, 1951) (Arrow, 1963). Arrow’s axiomatic framework

allows for the analysis and comparison of social welfare functions, and proves that none

can satisfy all of a set of reasonable conditions.

The origin of welfare economics is widely regarded to be the work of Bentham who

proposed that moral actions were those that maximised pleasure as opposed to those that

maximised pain and presented the Felicific calculus (Bentham, 1781) to measure utility.

One property of this calculus is to take into account the number of individuals who obtain

pleasure from the action under consideration. Mill drew upon this to formulate the greatest

happiness principle that is widely described in the literature as “greatest happiness of the

greatest number”4 (Mill, 1863), that is the maximisation of the utility of the majority.

Rather than adopt a utilitarian approach to determining the most trusted PST, the

trust framework prefers a PST that maximises the trustworthiness of the least well-off

node. This method is motivated by Rawls’ principles of justice, and more precisely, the

difference principle (Rawls, 1971). This principle is part of the second principle of justice

and states that social and economic inequalities satisfy the condition that they are to be

to the greatest benefit of the least advantaged members of society. Rawls’ goes on to state

that under these principles of justice, a society would favour a social choice that maximises

the least well-off, the maximin principle. In this work, the leximin social welfare functional

is used, which is an extension of the maximin principle.

Another aspect of social theory considered in this section is interpersonal compar-

ability of utility. There has been much discussion as to whether utility is individually

measurable and interpersonally comparable. Utilitarians supported this view, as it allows

for the maximisation of the utility of a society, but it was later rejected by others and

ultimately so by Arrow in his definition of the social welfare function that assumes prefer-

ences to be ordinal and of incomparable interpersonal utility (Arrow, 1951), and proposing

that “interpersonal comparison of utilities has no meaning and, in fact, that there is no

meaning relevant to welfare comparisons in the measurability of individual welfare”. To

justify this, it is claimed that measurability of utility is meaningless as comparing mar-

4This quote used to describe the principle is from prior work on morals by Hutcheson in Inquiry
concerning Moral Good and Evil, 1725.

33

ginal utility differences at different levels of well-being is not possible5. This implies that

Arrow disagreed with Gossen’s first law (Gossen, 1854), commonly referred to as the law

of diminishing marginal utility, which states that the marginal utility (the utility gain or

loss) of the consumption of a unit of service decreases as the supply of units increases (i.e.

the utility gain from the first unit of consumption is greater than the second and so on),

as this assumes the measurability that he postulates is not possible. Robbins argues that

it is questionable that mental states can be measured (Robbins, 1935), as is assumed to

be the case for Gossen’s laws. He proposes that while it is possible to determine if some

individual has a greater marginal utility from one state than another (intrapersonal com-

parability), as one can ascertain this from the subject’s introspection or by observation,

it is not possible to compare the magnitude of satisfaction of different individuals, neither

by comparing the individuals’ introspection nor by observation. This theory contradicts

Gossen’s first law, as it is not possible to measure and compare the marginal utilities of

individuals, and it contradicts interpersonal comparability of utility.

Sen argues that interpersonal comparability of utility is possible using the following

as an example to justify his argument: “We may, for example, have no great difficulty in

accepting that Emperor Nero’s utility gain from the burning of Rome was smaller than the

sum-total of the utility loss of all the other Romans who suffered from the fire” (Sen, 1999).

Clearly such a statement is not rational given the theory put forward by Robbins, but it

is difficult to disagree with it. Sen also urges caution as there is not a one-to-one mapping

between individuals’ utilities in all scenarios (as may be the case in the example of the

burning of Rome), and this leads to his conclusion that utility may be fully comparable,

partially comparable or incomparable. As the social welfare function defined by Arrow

can not consider interpersonal comparability, Sen proposed the Social Welfare Functional

(Sen, 1977). These differ to social welfare functions in that they aggregate individuals’

utility functions to a social preference without making any assumptions as to the type of

the utility function, and allow for interpersonal comparability.

Social choice theory has a long history, but much of the work covered in this chapter and

used to determine the trust metric for publish/subscribe trees is relatively recent. In this

chapter, a predominantly mathematical treatment of social choice and welfare theory is

given that covers social welfare functions, a discussion of cardinal and ordinal preferences,

impossibility theorems and egalitarianism. Social choice theory is a vast domain, so this

5Temperature differences are often given in the literature, as an analogy to support this argument.
Arrow gives the example of a 1 ◦C from 0 ◦C to 1 ◦C having a different impact than of 100 ◦C to 101 ◦C.
We add that the significance is dependent upon the individual.

34

review is not complete, and covers only the necessary topics that are required to understand

the formulation of the trust metric for PSTs.

3.1.2 Social Welfare Function

Definition 14 (Preference Ordering). A preference ordering is a binary relation R over

a set of alternatives C that satisfies the following properties:

1. R is complete. ∀x, y ∈ C.xRy ∨ yRx.

2. R is transitive. ∀x, y, z ∈ C.xRy ∧ yRz =⇒ xRz.

The binary relation, R, is a weak order. In order to fully capture the properties of

preference, both preference, P , and indifference, I, are defined in terms of R.

1. xRy (Weak Preference)

2. xPy =⇒ ¬yRx (Strict Preference)

3. xIy =⇒ xRy ∧ yRx (Indifference)

Definition 15 (Society). A society is a set of individuals N = {1, 2, . . . , n}.

Definition 16 (Profile). Given a society of n individuals, a profile is an n-tuple of pref-

erence ordering, (π1, π2, . . . , πn) where πi is the preference ordering of the ith individual

of the society.

Definition 17 (Social Welfare Function). A social welfare function is a mapping F : O →

Π where the domain, O, is the set of all profiles for a society’s n individuals and over the

set of C alternatives, and the co-domain is the set of all preference orderings, Π over the

set C of alternatives.

3.1.2.1 General Possibility Theorem

Arrow originally proposed five reasonable conditions for social welfare functions (Arrow,

1951), however, non-imposition (the social welfare function is a surjective function) and

monotonicity (if an alternative rises in one or more individual preferences, the alternative

will not fall in the social preference ordering) were later replaced by pareto-efficiency

(Arrow, 1963), as the latter can be derived from the two replaced axioms and independence

of irrelevant alternatives. Given the axioms of unrestricted domain, pareto-efficiency,

independence of irrelevant alternatives and non-dictatorship, Arrow presented the General

35

Possibility Theorem, which proved that no social welfare function can satisfy all these

reasonable conditions.

Axiom 1 (Unrestricted Domain). Arrow defines this axiom as “All logically possible

orderings of the alternative social states are admissible”. The domain O of the social

welfare function F is the set of all logically possible n-tuples over the set of alternatives

C.

Axiom 2 (Pareto-Efficiency). For all x, y ∈ C and for each individual i of a society, if

xPiy then xPy.

Axiom 3 (Independence of Irrelevant Alternatives). Let (π1, π2, . . . , πn) and

(π′1, π
′
2, . . . , π

′
n) be two profiles for a society of n-individuals and where each πi and π′i is

a preference ordering over the set of alternatives C. For all individuals i and all x, y ∈ C,

xRiy ⇐⇒ xR′iy =⇒ xRy ⇐⇒ xR′y. That is the social preference ordering of x and y

are solely dependent on their orderings in the individual preference orderings.

Axiom 4 (Non-Dictatorship). A social welfare function is dictatorial if there is an indi-

vidual i in a society such that for all x, y ∈ C, xPiy =⇒ xPy.

Theorem 2 (Arrow’s General Possibility Theorem). If |C| ≥ 3 then there is no social

welfare function F that satisfies the axioms of unrestricted domain, pareto-efficiency, in-

dependence of irrelevant alternatives and non-dictatorship. The above axioms are proved

to be inconsistent.

3.1.3 Social Welfare Functionals

Arrow’s proof shows that the only social welfare function to be of unrestricted domain,

pareto-efficient and independent of irrelevant alternatives is dictatorship. Sen identified

that the absence of interpersonal comparability of preferences as the reason for this, and

as a result, proposed the social welfare functional that mapped profiles of individual util-

ity functions to a social preference ordering (Sen, 1970, 1977). By allowing ordinal and

cardinal comparability, the General Possibility Theorem result no longer applied, however

it is important to note that utility can not always be considered to be comparable.

Definition 18 (Individual Evaluation Function). An individual utility function is a real-

valued function to the set of alternatives C for an individual i, ui : C → R.

Definition 19 (Representable). A preference ordering, R is said to be representable by

an evaluation function u, if and only if ∀x, y ∈ C.xRy ⇐⇒ u(x) ≥ u(y).

36

Definition 20 (Profile). A profile U is an n-tuple of utility functions, (u1, u2, . . . , un). It

can also be defined as a real-valued function, U : C × N → R|N | where U(·, i) = ui and

U(c, ·) is a restriction of U to c, the evaluation vector of alternative c ∈ C.

Definition 21 (Social Welfare Functional). A social welfare functional is a function F :

U → R where U is the set of all permissible profiles and R is the set of all preference

orderings.

By allowing interpersonal comparability, social welfare functionals need not be dictat-

orial and hold the other desirable properties given by Arrow, thereby avoiding the general

possibility theorem. The leximin social welfare functional used in the trust metric for

PSTs utilises the cardinal full comparability (definition 29). All of the following defini-

tions in the remainder of this subsection can be found in (Sen, 1970, 1977). Definitions 25

to 29 define the various types of ordinal and cardinal comparability for individual utility

functions. Definitions for partial comparability (Sen, 1970) are omitted, as they are not

utilised.

Definition 22 (Set of Individual Real-Valued SWFLs). Let Li be the set of real-valued

social welfare functionals over the alternatives C for individual i.

Definition 23 (Set of all profiles). Let L be the cartesian product,
∏n
i=1 Li (L = U in

definition 21).

Definition 24 (Comparability Set/Invariance Requirement). Let L̄ ⊂ L be a comparab-

ility set if and only if ∀U,U ′ ∈ L̄ : F (U) = F (U ′) where F is a social welfare functional.

Definition 25 (Ordinal Non-Comparability). For all (u1, u2, . . . , un), (u′1, u
′
2, . . . , u

′
n) ∈ L̄,

there is a n-tuple of positive monotonic functions, Ψ = (ψ1, ψ2, . . . , ψn), such that ∀i ∈

N.u′i = ψi(ui).

Definition 26 (Ordinal Level Comparability). For all (u1, u2, . . . , un), (u′1, u
′
2, . . . , u

′
n) ∈

L̄, there is a positive monotonic function, ψ, such that ∀i ∈ N.u′i = ψ(ui).

Definition 27 (Cardinal Non-Comparability). For all (u1, u2, . . . , un), (u′1, u
′
2, . . . , u

′
n) ∈

L̄, there is a n-tuple of positive affine functions, Ψ = (ψ1, ψ2, . . . , ψn), such that ∀i ∈

N.u′i = ψi(ui).

Definition 28 (Cardinal Unit Comparability). For all (u1, u2, . . . , un), (u′1, u
′
2, . . . , u

′
n) ∈

L̄, there is a positive real n-vector a and a positive real number b, such that ∀i ∈ N.u′i =

ai + b · ui.

37

Definition 29 (Cardinal Full Comparability). For all (u1, u2, . . . , un), (u′1, u
′
2, . . . , u

′
n) ∈

Ū , there is a positive affine function, ψ, such that ∀i ∈ N.u′i = ψ(ui).

For cardinal full comparability (definition 29), there is a one-to-one mapping between

the individuals’ utility functions, so not only are the units of welfare comparable, but also

their origins, implying that absolute values and differences of utility are inter-personally

comparable. This is not the case for cardinal unit comparability (definition 28), where

the transformation shifts the origin with respect to the individual specific parameter,

ai, so origins are not comparable across individuals. This rules out the inter-personal

comparison of absolute values of utility, but differences of utility are still comparable.

Ordinal full comparability (definition 26) requires that a monotonic function that preserves

the ordering across individuals’ utility functions.

Below, axioms 1 - 4 are redefined for social welfare functionals and the impossibility

theorems with respect to these axioms are presented. Sen proves that no ordinal and

cardinal non-comparable SWFLs can satisfy all the axioms, theorems 3 (identical to the-

orem 2) and 4. By weakening the axioms, that is by removing one of them as a requirement,

or by weakening theorem 3 so that the SWFL is ordinal level comparable, a possibility

arises.

Axiom 5 (Unrestricted Domain (SWFL)). Identical to Axiom 1.

Axiom 6 (Pareto-Efficiency (SWFL)). For all x, y ∈ C and for each individual i of a

society, if ui(x) > ui(y) then xPy.

Axiom 7 (Independence of Irrelevant Alternatives (SWFL)). Let (π1, π2, . . . , πn) and

(π′1, π
′
2, . . . , π

′
n) be two profiles for a society of n-individuals and where each πi and π′i is

a preference ordering over the set of alternatives C. For each individual i, xRiy ⇐⇒

xR′iy =⇒ xRy ⇐⇒ xR′y.

Axiom 8 (Non-Dictatorship (SWFL)). A social welfare function is dictatorial if there is

an individual i in a society such that for all x, y ∈ C, ui(x) > ui(y) =⇒ xPy.

Theorem 3 (Ordinal Non-comparable SWFL Impossibility). There is no social welfare

function that is ordinally non-comparable and for which the axioms 5, 6, 7, and 8 hold

true.

Theorem 4 (Cardinal Non-comparable SWFL Impossibility). There is no social welfare

function that is cardinally non-comparable and for which the axioms 5, 6, 7, and 8 hold

true.

38

3.1.4 Leximin Social Welfare Functional

The leximin social welfare functional captures the definition of the difference principle

by maximising the welfare of the least well-off individual. Unlike the maximin approach,

leximin allows for ties to be broken by maximising the welfare of the n−1, n−2, . . . least-

well off until the tie is broken. In the following definition of the leximin social welfare

functional, pareto-efficiency and non-dictatorship are substituted by the stricter strong

pareto and anonymity axioms, respectively. Either ordinal level comparability or cardinal

full comparability with Hammond’s equity axiom (Hammond, 1976) must be satisfied by

the leximin SWFL. In this work, the latter is used, as the individual utility functions to

be aggregated are cardinal trust functions.

Axiom 9 (Strong Pareto Efficiency). For all x, y ∈ C and for each individual i of a society,

if ui(x) ≥ ui(y) then xRy and if there is an individual i such that ui(x) > ui(y) then xRy.

Axiom 10 (Anonymity). If U ′ is a reordering of U , then F (U ′) = F (U).

Axiom 11 (Hammond’s Equity Axiom). If there is a profile U over a set of alternatives

C, any two individuals m,n ∈ N and any two alternatives, x, y ∈ C, such that um(y) <

um(x) < un(x) < un(y) and ∀i ∈ N \ {m,n} : ui(y) = ui(x) then xRy.

Definition 30 (Leximin Social Welfare Functional). Let i(x) be the ith worst-off indi-

vidual under the alternative x, that is there is a subset M ⊂ N where |M | = i − 1

individuals such that for all m ∈ M , ui(x) ≥ um(x). For any given pair of alternatives

x, y ∈ C, xPy if and only if there is an i ∈ N such that:

1. ui(x)(x) > ui(y)(y); and

2. um(x)(x) = um(y)(y) where m ∈M .

If ∀i ∈ N : ui(x)(x) = ui(x)(x) then xIy.

Theorem 5 (Leximin Properties). Any social welfare functional satisfying axioms 5, 9, 7,

10, 11 and cardinal inter-personally comparable (definition 29) is a leximin social welfare

functional.

3.1.5 Analytical Formulation of Leximin

In this subsection, an analytical approach to the leximin social welfare functional (Yager,

1997) is presented. Rather than implementing the leximin social welfare function as one

of pairwise comparisons, Yager’s defines an ordered weighted average (OWA), Fleximin :

39

such that xRy if and only if Fleximin(x) ≥ Fleximin(y), xPy if and only if Fleximin(x) >

Fleximin(y), and xIy if and only if Fleximin(x) = Fleximin(y). The analytical leximin OWA

allows for the specification of a trusted PST maximisation problem where the PST that

maximises Fleximin is the most trustworthy.

Definition 31 (Ordered Weighted Average (OWA)). An ordered weighted average op-

erator F of dimension n is a mapping F : Rn → R that has an associated vector of

weights W = [w1, w2, . . . , wn] such that
∑n

i=1wi = 1 and each wi ∈ [0, 1] and where

F (y1, y2, . . . , yn) =
∑n

j=1wj · zj where zj is the j-largest yi.

Definition 32. (Analytical Leximin Aggregation) The analytical leximin aggreg-

ation operator, Fleximin, is an ordered weighted average where the weight vector W =

[w1, . . . , wn−2, wn−1, wn] is defined as follows:

w1 =
∆n−1

(1 + ∆)n−1
,

wj =
∆n−j

(1 + ∆)n+1−j for all 2 ≤ j ≤ n.

If |a− b| < ∆ then a = b. If a > b then |a− b| > ∆.

Theorem 6 (The Analytical Leximin Aggregation is a Leximin SWFL). For all x, y ∈

C, xPleximiny ⇐⇒ Fleximin(u1(x), u2(x), . . . , un(x)) > Fleximin(u1(y), u2(y), . . . , un(y))

and xIleximiny ⇐⇒ Fleximin(u1(x), u2(x), . . . , un(x)) = Fleximin(u1(y), u2(y), . . . , un(y))

where ui(x) ∈ R, ui(x) is the utility of individual i for the alternative x, xPleximiny implies

that x is preferred to y by a leximin social welfare functional and xIleximiny implies that

x is indifferent to y by the same leximin social welfare functional.

Yager does not explicitly discuss inter-personal comparability, but it is clear that it ap-

plies to the analytical leximin aggregation. Definition 24 implies that ∀U,U ′ ∈ L̄ : F (U) =

F (U ′), that is ∀x, y ∈ C : xRy ⇐⇒ ∀(u1, u2, . . . , un) ∈ L̄ : F ((u1(x), u2(x), . . . , un(x))) ≥

F ((u1(y), u2(y), . . . , un(y))) and from this xPy and xIy can be defined as in defini-

tion 14 (Sen, 1970). For Yager’s analytical leximin function, the following invariance

must hold true given theorems 6 and 24, xRleximiny ⇐⇒ ∀(u1, u2, . . . , un) ∈ L̄ :

Fleximin((u1(x), u2(x), . . . , un(x))) ≥ Fleximin((u1(y), u2(y), . . . , un(y))). However, all ele-

ments of L̄ can not be cardinal non-comparable or cardinal unit-comparable given theorem

5 that states that leximin SWFLs must be cardinal fully comparable, as it would be a con-

tradiction to the invariance requirement.

40

3.2 Trust and Publish/Subscribe Trees

3.2.1 Definition of Trust

Trust is “the firm belief in the competence of an entity to act dependably, securely and

reliably within a specified context” and distrust is “the lack of firm belief in the competence

of an entity to act dependably, securely and reliably within a specified context” (Grandison

and Sloman, 2000). Typically, the terms trust and reputation have been considered to

be interchangeable, particularly in the areas of peer-to-peer and mobile ad hoc network

routing. For some applications, this may be a justifiable assumption, as the only trust

source is past behaviour, however other trust sources such as a priori knowledge and

knowledge external to the system may be of value in making a trust judgement. In

the context of publish/subscribe, behavioural history is of too coarse a granularity to be

evaluated as a single property due to an entity’s ability to assume multiple roles within

the system. For example, a node may be a publisher in one tree and a subscriber in

another with differing competences of each role. A trust evaluation function may benefit

by considering the role under which past behaviours occurred.

The sources to determine trust are varied, with their importance to trust evaluation

dependent on the trustor, who may consider some properties to be of more significance

than others depending on the context. Vector-based trust models have been proposed to

represent the properties that determine the competence of an entity within a given context

(Ray and Chakraborty, 2004), a generalisation of which is provided below. Note that no

assumptions are made as to either the properties to be considered or the context, as it is

not of any significance to the PST problems addressed in this thesis and their solutions.

Definition 33 (Trust Vector). A trust vector is a d-dimensional real-valued vector Ληi,j =

[ληi,j1 , λ
η
i,j2
, . . . , ληi,jd] such that for each ληi,jn is a real value, each representing a different

property of trust, such as reputation, within some context η. Ληi,j is the trust vector

representing i’s trust opinion of j within some context η.

Definition 34 (Individual Trust Function). For each individual i ∈ N , i has a trust

function τi : Rd → R which is a mapping of trust vectors to trust values. Given a pair of

individuals i and j, a trust vector Ληi,j , τi(Λ
η
i,j) is a real value representing i’s trust in j

within the context η.

Axiom 12 (Consistency of Individual Trust Functions). For each i, j, k ∈ N , if i has

trust vectors Ληi,j and Ληi,k such that Ληi,j = Ληi,k, then τi(Λ
η
i,j) = τi(Λ

η
i,k). If this is untrue

41

for some node i, then it is bias and can be determined to be malicious. No external

information other than that from the trust vector should be considered.

Definition 35 (Trust Ordering). For each i, j, k ∈ N , a trust preference ordering can be

defined as follows:

1. τi(Λ
η
i,j) ≥ τi(Λ

η
i,k) =⇒ jRik;

2. τi(Λ
η
i,j) > τi(Λ

η
i,k) =⇒ jPik;

3. τi(Λ
η
i,j) = τi(Λ

η
i,k) =⇒ jIik.

As per Arrow’s definition of preference given in definition 14, R is complete and transitive.

3.2.2 Semiring-based Trust

Theodorakopoulos and Baras propose a semiring-based trust framework that allows users

to determine the trustworthiness of others, even in the absence of first-hand trust inform-

ation (Theodorakopoulos and Baras, 2006). Given two nodes, i and j, the i’s trust in

j is determined by the aggregation of the trustworthiness of the nodes on some path or

set of paths between the two nodes. Their proposed model can be used to express the

a variety of trust models, such as Eigentrust (Kamvar et al., 2003) and the PGP web of

trust (Zimmermann, 1995).

Semirings can not only be used as a framework for trust models, but can also be used to

determine the trustworthiness of paths in some graph, in this case a connectivity graph.

The path trust semiring presented in definition 37 is a generalisation of the path trust

rating used in SPROUT (Marti et al., 2005) and allows an individual i to determine the

trust of the path to some individual j. This differs to the Theodorakopoulos and Baras

framework that gives the trust of the individual.

Definition 36 (Semiring). A semiring (S,⊕,⊗) is a set, S, with two binary operators, ⊕

and ⊗ that meets the following axioms:

• (S,⊕) is commutative semigroup with neutral element 0:

a⊕ b = b⊕ a

(a⊕ b)⊕ c = a⊕ (b⊕ c)

a⊕ 0 = a

• (S,⊗) is a semigroup with a neutral element 1 and an absorbing element 0:

42

(a⊗ b)⊗ c = a⊗ (b⊗ c)

a⊗ 1 = 1⊗ a = a

a⊗ 0 = 0⊗ a = 0

• ⊗ is distributive ⊕:

(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

A semiring (S,⊕,⊗) with a partial order that is monotone with respect to both oper-

ators is called an ordered semiring (S,⊕,⊗,≤):

a ≤ a′ ∧ b ≤ b′ ⇒ a⊕ b ≤ a′ ⊕ b′ ∧ a⊗ b ≤ a′ ⊗ b′

An ordered semiring (S,⊕,⊗,≤) is ordered by the difference relation, or naturally

ordered, if,

∀a, b ∈ S . (a ≤ b)⇔ ∃z ∈ S.a⊕ z = b

A semiring (S,⊕,⊗) is idempotent if the idempotent law holds for ⊕:

a⊕ a = a

For idempotent semirings, the relation defined by:

a ≤ b⇔ a⊕ b = b

is a partial order.

Definition 37 (Path Trust Semiring). The trusted path semiring is a semiring, (S,⊕,⊗)

where S = [0, 1] and ⊕ and ⊗ are defined as:

for all s1, s2 ∈ S, s1 ⊕ s2 = max(s1, s2)

for all s1, s2 ∈ S, s1 ⊗ s2 = s1s2

Example 1 (Example Use of Trusted Path Semiring). Assume the presence of a simple

path σ1 = (e1, e2, ..., en) where n is the number of edges, and the vertices on the path are

given by δ(e1) = {v1, v2}, δ(e2) = {v2, v3}, ..., δ(en) = {vn, vn+1}. Let vertex v1 and vn+1

be the initial and final vertex respectively. Let the trustworthiness of the path σ1 be τσ1

and is determined by the initial vertex to be τ(v1, v2)⊗ τ(v1, v3)⊗ ...⊗ τ(v1, vn+1) where

τ : V × V → S and gives the trust that one vertex has in another, represented by values

from the set S of the semiring. Additionally, given p alternative simple paths from v0 to

vn+1, the most trusted one is given by τσ1 ⊕ τσ2 ⊕ ...⊕ τσp = max(τσ1 , τσ2 , ..., τσp).

43

Example 1 demonstrates how the path trust semiring given in definition 37 can be

used to rate the trustworthiness of a path. As stated above, it is a semiring representation

of the reliability path rating metric defined by Marti et al. (Marti et al., 2005). The

metric can be interpreted as the likelihood that a given message is correctly routed to the

destination, as the trust of each node is the probability that the node will execute the

routing protocol as defined. In the context of publish/subscribe, this translates to the

path trust rating being the probability that the nodes on the path correctly execute the

content-based routing and matching algorithms.

3.2.3 Trust Relationships in Publish/Subscribe Trees

The trust definitions provided allow for an entity to evaluate the trustworthiness of oth-

ers, but it does not define how an entity can determine the trustworthiness of a pub-

lish/subscribe tree. To do this, first it is important to understand the trust relationships

between nodes in a PST. These relationships can then be evaluated using the individual

trust functions and aggregated to give a trust value for a PST. Using the confidentiality

and role definitions, the following trust relationships can be identified:

1. Does the publisher trust the subscribers to receive its publications? (from Modified

Publisher Confidentiality)

2. Does the publisher trust the internal nodes (be it subscribers or routers) with its

publications? (from Modified Information Confidentiality)

3. Do the subscribers trust the internal nodes with their subscription functions so that

content-based matching and routing can take place (from Modified Subscription

Confidentiality)

4. Do the subscribers trust the publisher to publish correct and timely publications?

5. Do the subscribers, both leaf and internal, trust upstream nodes to route events to

it correctly?

6. Do the internal nodes, excluding subscribers, trust the publisher, so as to want to

route its events?

7. Do the internal nodes trust the downstream internal nodes on the PST to correctly

route events that they propagate?

44

8. Do the internal nodes trust the upstream internal nodes to route events correctly

from the publisher?

9. Do the internal nodes trust the downstream subscribers so as to want to route events

to them?

3.2.4 Trust Evaluation Functions for PSTs

From the list of relationships given in section 3.2.3, trust evaluation is dependent on the

role of the node and its depth in the PST. The definitions below show how the trust of a

PST is evaluated for the publisher, the internal subscribers and the terminal subscribers.

The publisher has a contract to deliver events to each subscriber in the publish/

subscribe tree, so it is logical to conclude that it wishes to maximise the trustworthiness

of each path to the subscribers. The publisher may reject a subscriber’s attempt to join

the tree, that is implement some kind of trust-based access control. The publisher trust

function gives the publisher’s trust value of a PST by aggregating the trust of each path

to each subscriber in the PST. Note that paths to subscribers may share sub-sequences of

vertex and edge sequences, but irrespective of this, each path is evaluated. Additionally,

where the publisher is neighbouring the subscriber, the trust value of the path is 1, as the

subscriber has been trusted to receive events and there is no intermediate path that must

be considered in the evaluation of the path.

Definition 38 (Publisher PST Trust). Let T = (V,E) be a PST, where V = S ∪R∪ {p}

for a publisher p, set of subscribers S and set of routers R, and let α be some aggregation

function, α : R|S| −→ R. For each s ∈ S, there is a path σp,s = {p, . . . , s}, a vertex

sequence with initial vertex p, final vertex s and if |σp,s| > 2, it has intermediate vertices

{v1, v2, . . . , v|σp,s|−2}, and whose trustworthiness is given by:

τp(σp,s) =

 1 if |σp,s| = 2

τp(Λ
η
p,v1)⊗ τp(Ληp,v2)⊗ · · · ⊗ τp(Ληp,v|σ|−2

)⊗ τp(Ληp,v|σ|−1
) if |σp,s| > 2

The trust of T for p is a function of the trust of the paths to each subscriber and is

given by τp(T) = α(τp(σp,s1), τp(σp,s2), . . . , τp(σp,s|S|)).

Terminal nodes, always subscribers given the PST definition, receive events along a

path sourced at the publisher and with at least one node on the path being aware of its

subscription. Their trust in the PST is determined exclusively by the trust of this path.

45

Again, as with the publisher, if the subscriber is adjacent to the publisher, its trust value

of the path to the root is given as 1 because it has expressed a willingness to receive

notifications from the publisher by joining the PST.

Definition 39 (Terminal Subscriber PST Trust). Let T = (V,E) be a PST, where V =

S∪R∪{p} for a publisher p, set of subscribers S and set of routers R. For each subscriber

s ∈ S such that s is a terminal of T and σs,p = {s, . . . , p} is a path in T with initial vertex

s to terminal vertex p and if |σs,p| > 2 with intermediate vertices {v1, v2, . . . , v|σs,p|−2},

then the trust of s in T is given by:

τs(T) =

 1 if |σs,p| = 2

τs(Λ
η
s,v1)⊗ τs(Ληs,v2)⊗ · · · ⊗ τs(Ληs,v|σs,p|−2

)⊗ τs(Ληs,v|σs,p|−1
) if |σs,p| > 2

For each internal subscriber node, not only does it receive notifications on the path to

the publisher, but it also propagates the notification on the subtree of which it is the root,

but only if the notification matches its proxied subscription. An internal subscriber can

be considered as simultaneously sharing the roles of terminal subscriber and publisher, so

it also shares their associated trust relationships. An internal subscriber’s trust of a PST

is a function of the trust in the path to the publisher and the trustworthiness of the paths

to the subscribers in its subtree.

Definition 40 (Internal Subscriber PST Trust). Let T = (V,E) be a PST, where V =

S∪R∪{p} for a publisher p, set of subscribers S and set of routers R. For each subscriber

s ∈ S such that s is an internal node, there is a path σs,p = s, . . . , p where s is the

initial vertex, p is the final vertex and with intermediate vertices {v1, v2, . . . , v|σs,p|−2} if

|σs,p| > 2. The trust of the σs,p is given by:

τs(σs,p) =

 1 if |σs,p| = 2

τs(Λ
η
s,v1)⊗ τs(Ληs,v2)⊗ · · · ⊗ τs(Ληs,v|σ|−2

)⊗ τs(Ληs,v|σ|−1
) if |σs,p| > 2

Additionally, for each s ∈ S such that s is an internal node, let Ts = (Vs, Es) be the

subtree rooted at s. For each s′ ∈ (S \ s) ∩ Vs, there is a path σs,s′ = {s, . . . , s′} that has

initial vertex s, final vertex s′, and intermediate vertices {v1, v2, . . . , v|σs,s′ |−2}. The trust

of the path σs,s′ is given by:

46

τs(σs,s′) =

 τs(Λ
η
s,s′) if |σs,s′ | = 2

τs(Λ
η
s,v1)⊗ τs(Ληs,v2)⊗ · · · ⊗ τs(Ληs,v|σ|−1

)⊗ τs(Ληs,s′) if |σs,s′ | > 2

For each internal subscribe node s in a PST T , the trust of s in T is given by τs(T) =

β(τs(σs,p), τs(σs,s′1), . . . , τs(σs,s′d−1
)) where β : Rd −→ R is some aggregation function of

trust values, and d = |Vs ∩ S|+ 1.

In the implementation of this model, the aggregation functions α and β in definitions

38 and 40 are the leximin aggregation function given in definition 32 and the minimum

aggregation function. If d were not variable across PSTs, then β would also be given by

definition 32. Although other aggregation functions such as arithmetic mean could have

been used, this would not have been fitting with Rawls’ difference principle.

Consider two PSTs t1 = (Vt1 , Et1) and t2 = (Vt2 , Et2), and an internal subscriber

s ∈ Vt1 , Vt2 , such that τs(T1) = β(0.7, 0.8, 0.9, 0.1) and τs(T2) = β(0.5, 0.5, 0.5, 0.5). If β is

the arithmetic mean then t1Pt2, however, if β is the minimum aggregation function then

t2Pt1. It can be argued that t2Pt1 is a more appropriate trust preference for s because of

two reasons, the first fairness and the second, the increased likelihood of damage to the

reputation of s if the path with trust value 0.1 has a subscriber as its final vertex.

Assuming that in t1, τs(σs,s′) = 0.1 and in t2, τs(σs,s′) = 0.5, then it is evident that

s′ is better off under in t2, as the path to it from s is of a higher trust value. t2 is a

fairer choice and benefits the least well-off, but this comes at a cost to the trust of other

paths. Additionally, in this scenario, choosing t1 over t2 is not wise, as even through

the other paths are of very high trust value, the path of trust value 0.1 is liable to loss

or corruption of events that are re-broadcast to s′ and consequently resulting in lower

reputation feedback of s from s′.

Having defined the individual trust functions for PSTs, the only remaining issue is

how to aggregate these to give a trust value for PSTs. As discussed in section 3.1.1, an

egalitarian approach is rejected and the reasons for this have been illustrated above. The

social ordering of PSTs must improve the well-being of the least well-off with respect to

trust, so it follows that the leximin social welfare functional is used, since it is assumed

that all nodes are to be treated equally and there is consequently an absence of policies

defining a subset of preferred nodes. However, a quantitative measure is required because

the problem to be solved is one of finding the PST that maximises the trustworthiness

of the PST used for a given advertisement, so Yager’s analytical leximin function given

47

in definition 32 must be used instead. Unfortunately, its use is not without issue, as it

requires cardinal full comparability and it is, at the least, questionable if trust functions

comply with this property (see section 3.2.5).

Definition 41 (Socially Trusted PST Aggregation). Let t = (Vt, Et) be a PST where

Vt = S ∪ R ∪ {p}. For each i ∈ S ∪ {p}, there is a real-value τi(T) representing i’s trust

value of t. The social trust value of t is given by Fleximin(τi1(T), τi2(T), . . . , τi|S∪{p}|(T)).

3.2.5 Trust and Interpersonal Comparability

There has been much discussion in fields of social sciences and computer science regarding

trust, with a variety of trust definitions, trust evaluation functions and trust metrics

proposed. In section 3.1, a brief overview of social choice theory is given and includes a

discussion of interpersonal comparability. Here, this theory is used to show that individual

trust evaluation functions are interpersonally non-comparable when used to determine

preference over a set of possible PSTs, and can only be interpersonally comparable under

strict conditions.

Assuming that trust is measured as a real value, for trust evaluation functions to meet

cardinal full comparability, as required by the leximin social welfare functional, there

must be a one-to-one correspondence between individuals’ trust evaluation functions. To

assume this is not logical due to the heterogeneous nature of the individuals whose under-

standing of trust and the manner in which trust sources (e.g. reputation from behavioural

history) are evaluated can not only differ given the context, but also given the personal

characteristics of the individual, which can evolve with interactions over time.

Many different trust metrics have been proposed, with some trust management systems

using discrete trust values, and others using real-valued representations of trust. Metrics

classified as the latter are typically represented by the unit interval or [-1, 1] with 0 as the

origin indicating indifference and/or uncertainty, -1 representing absolute distrust and 1

representing absolute trust. It is assumed that trust can be expressed using real values,

but irrespective of the metric chosen, if two individuals i and j have trust opinions 0.5

and 0.75 of two PSTs t1 and t2 respectively, is t2 more trustworthy than t1? It seems

obvious to assume 0.75 > 0.5 =⇒ t2Pt1 for i and j, but this ignores how the two trust

values have been derived. This is a problem of interpersonal comparability. There is also

the issue of interpersonal comparability of differences or comparison of marginal utility.

If τi(T2) − τi(T1) > τj(T1) − τj(T2), is the gain in trust for i when the PST T2 is chosen

instead of T1 greater than the loss (or gain) for j? Due to the complex nature of trust,

48

there are arguments against this.

Definition 41 gives the socially trusted PST aggregation, which uses the analytical

leximin aggregation function (definition 32) to define an ordering over a set of PSTs with

respect to each individual’s trust evaluation of the PSTs. As the aggregation function im-

plements a leximin social welfare functional using cardinal individual PST trust functions,

these must be inter-personally comparable given theorem 5. The inter-personal compar-

ability of trust requires that a unit of trust exists and that its definition is shared by

all individuals, and that the origin of the trust continuum used to measure trust at each

individual is identical. Under these criteria, absolute trust values between individuals can

be compared, however it is unrealistic to assume these to be true for trust. An individual

may determine that the values -1, 0 and 1 represent absolute distrust, indifference or ig-

norance, and absolute trust, while another may assume that trust is represented by the

unit interval where 0 represents absolute trust and ignorance and 1 represents absolute

trust. Even if some continuum can be defined such that the definitions of the extremes

and the origin are identical and it can be imposed upon all individuals, there is no notion

of a unit of trust.

Trust can be formed using a number of trust sources, but typically in the literature,

it is a function of reputation, which is in turn a function of past interactions. In a given

application context, such as a P2P file sharing system, users may have different perceptions

of identical behaviour. Some may tolerate corrupted file downloads more than others, and

in this scenario may rate identical transactions differently. For example, in Eigentrust

(Kamvar et al., 2003), a given user i downloads a corrupted file from a user k and rates

the transaction as -1, but a user j may download the same corrupted file from k and rate

the transaction 0, perhaps due to having a higher tolerance of such malicious behaviour

or citing communication errors as the reason for the transaction failure. In this scenario,

i and j interpret the trust sources differently, j is more tolerant of malicious behaviour,

perhaps because the file has less value to it or perhaps because of its characteristics.

Assume that τi and τj are identical and that some origin on the trust continuum exists,

if i and j both hold a trust value of 0.7 in some entity k, the meaning of that value

differs between the two, as their interpretation of the trust sources that is their individual

trust functions are different. Given two PSTs T1 and T2, it is not possible to state that

τi(T1)− τi(T2) > τj(T2)− τj(T1) is true or false, that is the differences in the trust of two

PSTs are not comparable across individuals. It is postulated that trust is inter-personally

incomparable.

49

The trust mechanisms described above provide a social preference ordering of the feas-

ible PSTs such that the socially preferred choice maximises the trust of the node with the

lowest trust evaluation of the trees, that is the least well off as implied by the leximin so-

cial welfare functional. Mapping individuals’ cardinal trust evaluation functions to a social

preference ordering using the leximin social welfare function requires that the trust eval-

uation functions are interpersonally comparable, but arguments have been presented that

contradict this. The proposed solution to this issue is to assume that each individual’s

trust evaluation function is identical, along with all other auxiliary functions required,

such as reputation functions (definition 42). This assumption appears to be overly strict

and unrepresentative of the nature of trust. Nodes are considered to homogeneous with

respect to trust evaluation, valuing properties and behaviours of others identically. Trust

values between pairs of nodes would only differ because of different instances of trust

sources used as input to the trust function. Some may consider the following assumptions

to be unreasonable, however they are no worse than the ignoring the issue of interpersonal

comparability of trust, which is currently the case in trust-related literature. A greater

understanding of how trust is derived from the perspective of social sciences and a form-

alisation of this are both beyond the scope of this thesis, but certainly warrants further

academic research.

Definition 42 (Inter-personal Comparable Trust Assumption). ∀i, j ∈ S∪{p} : ∀T ∈ T :

τi(T) = τj(T) where T is the set of PSTs for some connectivity graph G. It must also be

assumed that for all i, j ∈ S∪{p} and for all k ∈ V , if Ληi,k = Ληj,k, then τi(Λ
η
i,j) = τj(Λ

η
i,k).

3.3 Summary

The first part of this chapter provides an introduction to social welfare and choice the-

ory, with the emphasis on the following areas: social welfare functions; social welfare

functionals; the leximin social welfare functional; and inter-personal comparability. The

introduction provides only the necessary prerequisites for an understanding of the motiv-

ations of the trust functions that are given later in the chapter.

In the remainder of the chapter, the trust functions for PSTs are presented and the issue

of inter-personal comparability of trust is addressed. The flow of communications in the

PST is used to define PST trust evaluation functions for the publisher, internal subscribers

and terminal subscribers. The individual trust functions give the trustworthiness of the

PST as function of some subset of paths in the PST, which is dependent on its role and

height in the tree. Using the analytical leximin function, a leximin ordering over a set of

50

PSTs can be derived by aggregating each individual’s evaluation. As the approach uses the

leximin social welfare function, cardinal full inter-personal comparability is required, but

it is argued that such an assumption for trust is unrealistic, so simplifying assumptions

are proposed to address this. This is an issue that is widely disregarded in the trust

literature.

51

Chapter 4

Minimum Overhead-Maximum

Trust PST Problem

In this chapter, the PST trust maximisation problem with overhead budget is defined

and algorithms are presented to solve the problem. As the problem is shown to be in

NP-Complete, two algorithms are proposed to solve it. An exhaustive search algorithm

enumerates all feasible PSTs and selects the one that maximises trust within some overhead

budget. As the problem is in NP-Complete, evidently the algorithm can not be expected to

scale to large problem instances, so a tabu search algorithm is presented that approximates

the solution. Both algorithms are dependent upon a modification to Char’s spanning tree

enumeration algorithm to find all PSTs in a graph, which is also described in this chapter.

4.1 Problem Definition

Problem 2 (The PST Trust Maximisation Problem with Overhead Budget (MTPSTO)).

Given an overhead budget B > 0, an event distribution E, an undirected connectivity

graph Gc = (Vc, Ec), a publisher p that holds an advertisement Ap, a set of subscribers

S = {s | sfs(Ap) = true} where sfs is the subscription function of s, a set of routers

R = Vc \C where C = {p} ∪ S, find a PST T that is rooted at p, spans C and maximises

the trust value τ(T) = Fleximin(τc1(T), . . . , τc|C|(T)) where τci(T) is the trust evaluation

of ith node in C, subject to OT (Ev) ≤ B.

Problem 3 (The PST Trust Maximisation Problem with Overhead Budget (MTPSTO)

- Decision Problem). Given an overhead budget B > 0, q ∈ [0, 1] is a trust quota in the

unit interval, an event distribution E, an undirected connectivity graph G = (V,E), a

publisher p that holds an advertisement Ap, a set of subscribers S = {s | sfs(Ap) = true}

52

where sfs is the subscription function of s, a set of routers R = Vc \C where C = {p}∪S,

is there a PST T that is rooted at p and spans C such that τ(T) ≥ q ∧OT (E) ≤ B.

Problem 2 is a PST trust maximisation problem within a given overhead budget, B.

This approach is preferred to a multi-objective problem as this allows for the budget to

be tunable to suit the application requirements. For example, if performance is of great

importance then a strict overhead budget is required. This will restrict the search space

of the feasible PSTs to those that provide low communication overheads, but possibly

at the expense of the trustworthiness of the PST that solves the problem. Applications

that are suited to this model are real-time data distribution applications, such as radar

data distribution, and media distribution where the QoS required is dependent upon the

properties of the media.

Theorem 7 (MTPSTO is NP-complete). The PST Trust Maximisation Problem with

Overhead Budget is NP-complete.

Proof of Theorem 7. To show that MTPSTO ∈ NP, for a given PST TPST = (VPST ,

EPST), the overhead of the tree OTPST (E) with respect to some event distribution E

and the trust value τ(TPST) must be established in polynomial time. The algorithm to

calculate OTPST (E) for TPST must start at the publisher vertex of the PST and perform a

post-order tree traversal of the tree, so that the Oti(E) = (r+f)·ΦE(¬si∧s
′
i)+f ·ΦE(si∧s

′
i)

is calculated for each node i ∈ VPST . At each i, every event e ∈ E must be tested to

establish if si(e) = true, so this algorithm has O(|VPST ||E|) complexity. This part of the

proof is similar to the MOPST ∈ NP proof by (Cao and Shen, 2009).

To complete this first part of the proof, it must be shown that the trust value of the

PST can be calculated in polynomial time. The analytical leximin aggregation function

Fleximin, given in definition 32, which is used to aggregate the individual trust evaluations

of a PST must sort the set of trust values to be aggregated, which can be performed by a

tuned quicksort algorithm of O(c · log(c)) (Bentley and McIlroy, 1993) and then calculate

the OWA which has a total cost of 2c as there are two constant time operations, the

multiplication of a trust value with its weight and the summation, so the running time of

Fleximin isO(c+c·log(c)) where c = |C|. Next, the complexity of establishing the individual

trust evaluations that are the inputs to Fleximin must be determined. Assume that a data

structure containing for all a, b ∈ Vc, τa(Λ
η
a,b). Given a pair of nodes a, b ∈ VPST , the

lookup time for τa(Λ
η
a,b) is dependent on the data structure used and is assumed to be

polynomial time, α. Each of the following roles, the publisher, the internal subscribers and

the terminal subscribers are considered. For each terminal subscriber s, the total cost of

53

calculating τs(σs,p) where σs,p is the path from s to p in TPST is y ·α where y = |σs,p| − 2.

For the publisher p in TPST , a pre-order tree traversal algorithm is used to find all the

paths to all s ∈ VPST ∩ S where at every s the trust value τp(σp,s) is calculated, so the

time complexity of this algorithm is O(n+ α · w) where n = |VPST | and w = |VPST ∩ S|.

The internal subscriber must calculate the trust to the publisher and all subscribers in

the subtree rooted at the internal subscriber, so it must execute both algorithms, giving

O(n+ α(w + y)). A PST can be verified in polynomial time, so MTPSTO ∈ NP.

To prove that MTPSTO is NP-hard, it must be shown that there is a polynomial time

reduction from MOPST, that is MOPST ≤P MTPSTO. The MOPST problem is given in

problem 1. A polynomial-time reduction from any instance of MOPST to MTPSTO can

be performed, as follows:

1. ∀a, b ∈ VPST , τa(Λ
η
a,b) = 1 ⇐⇒ τ(T) = 1.

2. The decision version of the MOPST problem returns true if Ot(E) ≤ k, so let B = k

in MTPSTO.

3. Let q = 1 in the decision problem version of MTPSTO.

Given an instance of MOPST such that OTPST (E) ≤ k, after reduction of this instance

to an instance of MTPSTO using the rules presented above, assume that MTPSTO returns

false, that is either OTPST (E) > B or τ(TPST) < q. τ(TPST) = 1 is true for every PST

found by MTPSTO given the definition of the analytical leximin function in definition 32

and the fire rule of the reduction, so OTPST (E) > B must hold. However, B = k, so it

follows that OTPST (E) > B and OTPST (E) ≤ k is a contradiction.

Given an instance of MTPSTO such that there is a PST TPST where τ(TPST) ≥

q ∧ OTPST (E) ≤ B, and assume that in MOPST OTPST (Ev) > k. Let k = B as defined

the polynomial-time reduction, substituting B for k, OTPST (E) > k ∧ OTPST (E) ≤ k is a

contradiction.

4.2 An Exhaustive Search Algorithm for MTPSTO

To solve the MTPSTO problem, an exhaustive search algorithm of all possible PSTs is

presented. The algorithm must calculate the trust value and the overhead value of every

PST in the connectivity graph Gc = (Vc, Ec) that is rooted at the publisher p and spans

all subscribers S for a given advertisement Ap. The set of all PSTs for Ap is a subset of

the set of all Steiner trees in Gc. Using this property and the fact that the set of all Steiner

54

trees is given by the enumeration of all spanning trees for Gc and all its subgraphs, an

exhaustive search algorithm must find all the spanning trees of Gc and all its subgraphs

that are eligible PSTs, and calculate the trust and overhead values of each. As the set

C = {p}∪S must be present in every eligible PST for the advertisement Ap, the considered

subgraphs of G must also contain these vertices. Also note that subgraphs with router

vertices with only one adjacent edge are not examined as all spanning trees found will

not be PSTs as this router vertex will be a terminal router vertex in every PST and this

contradicts the definition of a PST.

Algorithm 1 presents an exhaustive search to find the PST that solves the MTPSTO

problem. At line 2, all subgraphs containing the publisher and the set of subscribers are

found. At line 6, for each subgraph, the PSTEnumeration algorithm is executed, which

finds all spanning trees in the subgraph that are also PSTs. The overhead values for each

PST is calculated at line 9 and if the overhead is less than or equal to the assigned budget,

the trust of the PST is evaluated at line 11. Should the PST have the same trust value

as the best PST found so far by the algorithm, ties are broken by selecting the PST with

the least overhead.

4.3 Spanning Tree Enumeration

A number of algorithms have been proposed to solve the problem of enumerating all

spanning trees of a graph. Backtracking-based techniques proposed by (Minty, 1965)

and (Gabow and Myers, 1978) have O(m + n + mt) and O(m + n + nt) complexity for

undirected graphs respectively, where m = |E|, n = |V |, and t is the number of spanning

trees. Prior to the publication of these algorithms, an alternative was proposed (Char,

1968), and although a complexity analysis was not given, it was later shown to be of

O(m + n + n(t + t0)) running time where t0 is the number of subgraphs found by the

algorithm that are not spanning trees (Jayakumar et al., 1984). Char’s approach differs to

the backtracking-based techniques as it lexicographically tests subgraphs to determine if

each is a spanning tree. It is shown to be suitable for enumerating PSTs, as the spanning

tree test of a subgraph can be modified to determine if the subgraph is a PST.

4.3.1 Char’s Spanning Tree Enumeration Algorithm

Char’s algorithm, presented in algorithm 2, begins with the initialising of Tinit, the initial

spanning tree at line 1. The original algorithm, as described by (Jayakumar et al., 1984),

55

Algorithm 1: MTPSTO-Exhaustive(Gc, p, S, B)

Input : Gc = (Vc, Ec) /* Connectivity Graph */

Input : p /* Publisher */

Input : S /* Subscribers */

Input : B /* Overhead Budget */

Input : E /* Event Set */

Output: TAp /* PST */

1 begin
2 Gc = {(Vx, Ex) | Vx ⊂ Vc ∧ C ⊆ Vx ∧ ∀(a, b) ∈ Ec, (a, b) ∈ Ex =⇒ a, b ∈ Vx}

/* Gc is the set of all subgraphs of Gc including Gc */

3 Tbest ← null
4 Obest ←∞
5 τbest ← −∞
6 for (Vx, Ex) ∈ Gc do
7 A← PSTEnumeration(G)
8 for TAp ∈ A do
9 OTAp ← EvaluateTreeOverhead(TAp , E, p)

10 if OTAp ≤ B then

11 τTAp ← EvaluateTrust(TAp , p, S,)

12 if τTAp > τbest then

13 τbest ← τTAp
14 Obest ← OTAp
15 Tbest ← TAp

16 else if τTAp = τbest ∧OTAp < Obest then

17 τbest ← τTAp
18 Obest ← OTAp
19 Tbest ← TAp

utilises Breadth-first Search (BFS) to determine the initial spanning tree and label the

vertices from n to 1 in the order that they are visited. In the algorithm below and in the

implementation used in this work, Depth-first Search (DFS) is chosen instead, as it shown

to reduce the value of t0 (Jayakumar et al., 1984).
Having found the initial tree and labeled the vertices, let REF(i) give the index of the

parent of the vertex i. Line 4 initialises the first tree sequence λ0 to be that found by the

BFS or DFS. The sequence DIGIT holds a subgraph of the graph, and is at first set to

the initial spanning tree. DIGIT(k) gives the index of a node that is adjacent to k. The

length of DIGIT is n − 1 and there must be a DIGIT(i) = n where 1 ≤ i ≤ n − 1 for the

subgraph defined by DIGIT to be a connected graph. Let SUCC be a function such that

SUCC(DIGIT(k)) gives the next vertex in adjacency list of k.

A DIGIT sequence is tested for tree compatibility using the IsTreeSeq procedure. A

sequence gives a tree if and only if for each DIGIT(i) such that 1 ≤ i ≤ n − 1, there is

56

Algorithm 2: CharEnumeration(G)

Input : G = (V,E) /* Connectivity Graph */

Output: Tspan /* Set of all spanning trees in G */

1 begin
2 Tinit = DFS(G) /* Find initial tree and label vertices */

3 Tspan ← {Tinit}
4 λ0 ← (REF(1),REF(2), ...,REF(n-1)) /* Tinit seq. representation */

5 DIGIT(i)← REF(i), 1 ≤ i ≤ n− 1
6 k ← n− 1
7 while k 6= 0 do
8 if SUCC(DIGIT(k)) 6= null then
9 DIGIT(k)← SUCC(DIGIT(k))

10 if IsTreeSeq(DIGIT) then
11 Tspan ← Tspan∪{Translate(DIGIT)}
12 k ← n− 1

13 else
14 DIGIT(k)← REF(k)
15 k ← k − 1

a vertex sequence (i,DIGIT(i),DIGIT(DIGIT(i)), . . . , j) giving a path from i to j where

j > i. It is, however, not necessary to test each i for tree compatibility. Given a tree

compatible sequence, (DIGIT(1),DIGIT(2), . . . ,DIGIT(n-1)), the next sequence is given by

changing DIGIT(k) to SUCC(DIGIT(k)), resulting in a sequence (DIGIT(1),DIGIT(2), . . . ,

DIGIT(k-1), SUCC(DIGIT(k)),REF(k+1), . . . ,REF(n-1)), so the test for tree compatibility

need only take place at position k in the sequence, as all other positions will pass the test.

Lines 7 to 15 present the process of enumerating the remaining spanning trees. The

algorithm, starting with the initial spanning tree sequence, generates a series of sub-

graph sequences. Rather than test each of the sequences from the set of all possible

sequences of n − 1 edges, if for some k, DIGIT(k) is set to the index of a vertex at line 9

such that there is no path k,DIGIT(k), . . . , n then sequences containing the subsequence

(DIGIT(1),DIGIT(2), . . . ,DIGIT(k)) at positions 1, 2, . . . , k respectively, can not be a tree

so these sequences are ignored by the algorithm, reducing the search space.

The running time of Char’s algorithm is dominated by n(t+ t0). The number of non-

tree compatible subgraphs, t0 is shown to be dependent on the the initial spanning tree.

Jayakumar et al. (Jayakumar et al., 1984) propose DFS search must start at the vertex

in the graph with the maximum degree, as t+ t0 is shown to be a function of the degree

of all n − 1 vertices. Additionally, the following three properties are identified that may

further reduce t0 (Jayakumar et al., 1984):

57

1. Maximising the number of leaf nodes of the initial spanning tree found by DFS, as

for each leaf node s, there will be no sequence generated by changing DIGIT(s) that

is a non-tree compatible sequence.

2. Maximising the number of ancestors of each vertex in the DFS, as this reduces t+t0.

3. Minimising the number of descendants of each vertex k, as this is the upper bound

the number of times the block from lines 8 - 12 is executed for k.

These properties lead to two DFS techniques being proposed by Jayakumar et al.

(Jayakumar et al., 1984), both beginning the search at the vertex with the highest degree.

The first heuristic selects the next node to visit that maximises the number of ancestors

in the tree, and in the event of a tie, chooses the vertex that minimises the degree. The

second heuristic visits vertices of minimum degree, deciding ties by choosing the vertex

with the most ancestors in the tree. Experimental results show there is little difference

between the two techniques with respect to the value of t0 and both techniques greatly

reduce t0 when compared to BFS. The second heuristic is used for the implementation of

DFS in this work.

The second proposed optimisation is path compression (Jayakumar et al., 1984). As-

sume a tree sequence is found by the algorithm when k = i, this gives a tree sequence

λ1 = (DIGIT(1), . . . ,DIGIT(i-1),DIGIT(i),REF(i+1), . . . ,REF(n-1)). Let the next tree λ2

be found for some k > i such that position λ2 differs to λ1 at position k only implying

that the first i positions of DIGIT remain the same, as those in λ1. The tree compatability

test for λ1 tests for a path i,DIGIT(i), . . . , j where j > i and this must be true for λ1

to be a tree. For λ2, this path is also present in the tree. Assume that the path found

by the tree compatability test for λ2 is k,DIGIT(k), . . . , i, . . . , j, . . . ,m such that k < m.

It is known that the path from i to j is unique and j > i from the tree compatibility

test for λ1, so if the pair (i, j) is available to tree compatability test for λ2 the path can

be “compressed” thus reducing the complexity of the procedure. The test can terminate

successfully if j ≥ m or proceed from position j. Algorithm 3 shows the tree compatib-

ility test with path compression, where the NEXTVERTEX sequence is used to store the

compressed path and to perform the test.

Theorem 8 (Leaf Node Property). Let λ = (DIGIT(1),DIGIT(2), . . . ,DIGIT(n-1)) be a

DIGIT sequence representation of a spanning tree of some graph G and let k be the index

of a vertex where 1 ≤ k ≤ n− 1 such that there is no DIGIT(i) = k where 1 ≤ i ≤ n− 1.

58

Algorithm 3: isTreeSeq(DIGIT, NEXTVERTEX, k)

Input : DIGIT /* Tree Sequence */

Input : NEXTVERTEX /* Path Compressed Sequence */

Input : k /* Position of changed DIGIT(k) */

1 begin
2 i← k
3 j ← DIGIT(k)
4 while i ≥ j do
5 if i = j then
6 return false

7 if j < i then
8 j ← NEXTVERTEX(j)

9 NEXTVERTEX(k)← j
10 for m← k + 1 to Length(DIGIT) do
11 NEXTVERTEX(m)← REF(m)

12 return true

The vertex k is a leaf node in the tree represented by the sequence λ. If k = n and

there is only one DIGIT(i) = k then the vertex n is a leaf node in the tree represented by

sequence λ.

Proof of Theorem 8. First, the case where 1 ≤ k ≤ n − 1 is considered. Let λ =

(DIGIT(1),DIGIT(2), . . . ,DIGIT(n-1)) be a DIGIT sequence representation of a spanning

tree of some graph G and let k be the index of a vertex where 1 ≤ k ≤ n− 1.

Assume that there is some set I of vertex indices, where:

1. ∀i ∈ I.1 ≤ i ≤ n− 1 ∧ i 6= k;

2. ∀i, j ∈ I.i 6= j;

3. |I| ≥ 1;

4. ∀i ∈ I.DIGIT(i) = k

There must also be a DIGIT(k) = m where 1 ≤ m ≤ n and ∀i ∈ I.m 6= k 6= i (i.e.

no loop). The values at DIGIT(k) and DIGIT(i) for all i ∈ I, give the following edges in

the tree represented by λ, (k,DIGIT(k)) and all edges (i, k) for all i ∈ I. The presence of

these edges contradicts k being a leaf node, as if this were the case then there would only

be one edge adjacent to k, but there are instead |I| + 1 adjacent edges. As 1 ≤ k ≤ n− 1

is true, there will always be one edge (k,DIGIT(k)), so k is a leaf vertex in λ if and only

if |I| = 0.

59

Finally, the case where k = n is considered. Again, k is a leaf vertex if and only if k

is adjacent to one edge. As k > n − 1 there is no value DIGIT(k) in the sequence λ and

consequently no edge (k,DIGIT(k)) in the spanning tree represented by λ, so if k is a leaf

vertex, there must only be one edge (i, k) where 1 ≤ i ≤ n− 1. Therefore, when k = n, k

is a leaf vertex in the tree given by λ if and only if |I| = 1.

Algorithm 4: isPST(DIGIT)

Input: DIGIT /* Tree Sequence */

1 begin
2 for k ← n to 1 do
3 if isRouter(k) then
4 l← 1
5 if k = n then
6 l← 2

7 for i← n− 1 to 1 do
8 if DIGIT(i) = k then
9 c← c+ 1

10 if c = l then
11 return true

12 return false

Theorem 9. Let λ be a DIGIT sequence that is a spanning tree and also a PST of some

graph G. For each k, 1 ≤ k ≤ n− 1, if k is the index of a router then there is at least one

DIGIT(i) = k and if k = n and k is the index of a router there are at least two DIGIT(i) = k

where 1 ≤ i ≤ n− 1 and i 6= k.

Proof of Theorem 9. Given the definition of a PST (definition 10, no router node can be a

leaf vertex and given theorem 8, for a given leaf vertex k, a tree sequence DIGIT has either

no DIGIT(i) = k if 1 ≤ k ≤ n−1 or one DIGIT(i) = k if k = n where 1 ≤ i ≤ n−1∧ i 6= k.

Therefore, if k is the index of a router and 1 ≤ k ≤ n − 1, then there is at least one

DIGIT(i) = k and if k = n then there are at least two DIGIT(i) = k.

Theorem 9 implies that the algorithm to test if a tree sequence is a PST must check if

each router index is not a leaf vertex in the tree represented by the sequence. Algorithm 4

makes use of this property to implement the PST test that must be executed immediately

before line 11 in algorithm 2. This gives algorithm 5 to find all spanning trees in a graph

that are also PSTs.

60

Algorithm 5: PSTEnumeration(G)

Input : G = (V,E) /* Connectivity Graph */

Output: Tspan /* Set of all spanning trees in G */

1 begin
2 Tinit = DFS(G) /* Find initial tree and label vertices */

3 Tspan ← {Tinit}
4 λ0 ← (REF(1),REF(2), ...,REF(n-1)) /* Tinit seq. representation */

5 DIGIT(i)← REF(i), 1 ≤ i ≤ n− 1
6 NEXTVERTEX(i)← REF(i), 1 ≤ i ≤ n− 1
7 k ← n− 1
8 while k 6= 0 do
9 if SUCC(DIGIT(k)) 6= null then

10 DIGIT(k)← SUCC(DIGIT(k))
11 if IsTreeSeq(DIGIT, NEXTVERTEX, k) ∧ IsPST(DIGIT) then
12 Tspan ← Tspan∪{Translate(DIGIT)}
13 k ← n− 1

14 else
15 DIGIT(k)← REF(k)
16 k ← k − 1

4.4 Tabu Search Algorithm for MTPSTO Problem

4.4.1 Tabu Search Preliminaries

All problems in NP-complete can be solved by exhaustive search, but as the size of the

problem instance increases, the running times become impractical. Unless P = NP holds

true, it is unlikely that there exists a polynomial-time algorithm to solve these and NP-

hard problems. For these problems, approximate solutions that are at least close to the

optimal can be found within reasonable time bounds by using approximation or metaheur-

istics algorithms. Approximation algorithms differ to metaheuristics, in that the former

guarantees that the solution found is within a factor of the optimal solution for all problem

instances and has provable running time bounds (Talbi, 2009). Despite this, metaheurist-

ics have been shown to find good solutions for a variety of optimisation problems, including

graph theory problems. One of these metaheuristics for combinatorial optimisation prob-

lems is tabu search (Glover, 1989, 1990), which extends local search by marking recent

moves as tabu and not to be remade for some number of iterations. Tabu search reduces

the likelihood of cycling, by allowing for the search to progress beyond localised areas of

the search space. This allows solutions that may be better than the local optimum to be

found.

A number of approaches to the Steiner problem in graphs that use the tabu search

61

metaheuristic have been proposed (Ribeiro and De Souza, 2000) (Gendreau et al., 1999).

The proposed algorithm by Ribeiro and De Souza, finds solutions that are better than the

Takahashi-Matsuyama heuristic (Takahashi and Matsuyama, 1980) and F-tabu (Gendreau

et al., 1999). As this metaheuristic is shown to be successful for finding the minimum

Steiner tree in graphs, the use of tabu search for finding the PST that is close to the

optimal for a MTMOPST problem is explored in the remainder of this section.

For combinatorial optimisation problems (definition 43), the search space can be ex-

plored by defining a move that when applied to an existing current solution gives a new

solution. In the case of the Steiner tree problem, these moves are the addition and removal

of Steiner nodes from an existing Steiner tree. Local search heuristics, such as hill climb-

ing, find the local optimum when no improving moves are feasible (the stopping criterion),

but this may not be the global optimum. The tabu search heuristic overcomes the local

optimum problem by allowing moves that do not yield an improvement in the solution

and through the use of a short-term memory structure, the tabu list, which stores recent

moves that can not be reapplied to solutions for some given number of iterations.

The tabu search algorithm for a minimisation combinatorial problem is described in

algorithm listing 6, however it is only a simple approach and may be extended and modified

in a number of ways, as described below. Let S(x) be the set of moves that are feasible

to apply to solution x and s(x) be the solution given when move s is applied to x. At

line 1, the initial solution x, is initialised, and next it is set to xbest. To complete the

initialisation phase, the iteration counter k begins at zero and the tabu list T is the empty

set. The tabu search executes until the stopping criteria at line 6 is true, that is either the

maximum number of iterations, kmax is met, or there are no non-tabu moves available for

the search to follow. At line 7, of all the legitimate moves available at a given iteration,

the move that yields the best neighbouring solution to the current solution x, is set as sk

and the new current solution becomes sk(x). Regardless of whether the current solution

x, is better than than the best solution found up to iteration k (lines 8 and 9), the move

sk becomes tabu at line 12 and is followed by the removal of an existing tabu move.

Definition 43 (Combinatorial Optimisation Problem). Given a set of feasible solutions

F and a function F : F → R, find the optimal solution x ∈ F for a minimisation problem

such that F (x) ≤ F (y) for all y ∈ F , or F (x) ≥ F (y) for a maximisation problem.

The choice of the move structure is dependent upon the problem. For the Steiner tree

problem in graphs, a move is defined as the addition to or removal of a Steiner node from

the solution. When a move is applied to a solution, it is marked as tabu by storing it

62

Algorithm 6: Tabu Search

Output: xbest /* Tabu search best solution */

1 begin
2 Let x ∈ F be an initial, feasible solution.
3 xbest = x
4 k = 0
5 T = ∅
6 while k < kmax ∨ S(x)− T 6= ∅ do
7 x = sk(x) such that for all s ∈ S(x)− T , F (sk(x)) < F (s(x))
8 if F (x) < F (xbest) then
9 xbest = x

10 if |T | > tlimit then
11 T = T − {s | s ∈ S ∧ s 6= sk}
12 T = T ∪ {sk}
13 k = k + 1

14 return xbest

in the tabu list for some number of iterations. A number of strategies for the tabu list

have been proposed, that can generally be classified as recency-based or frequency-based.

Recency-based tabu lists are commonly used and examples include lists that: store the

moves of the last k-iterations; store the inverse moves of the moves for the last k-iterations;

store the moves and their inverses of the last k-iterations. For recency-based tabu lists,

k is typically a small value, and it is therefore short-term memory, but it is shown to

yield good results. The alternative is frequency-based tabu lists that keep track of the

frequency of moves (long-term memory), allowing the search to tend to less frequent moves

and consequently allowing it to diversify the exploration of the search space, however this

is not strictly a tabu list, as moves are not marked as tabu.

While the use of a tabu list of moves is effective at preventing cycles, they may prevent

good moves from being executed where there is no risk of cycling. Aspiration functions

are used to allow certain tabu moves to be chosen by the tabu search in lieu of the best

non-tabu move. The most commonly used form allows a tabu move to applied to the

current solution if it yields a solution that is better than the best solution, xbest, that is

if there is a t ∈ T such that F (t(x)) < F (xbest) ∧ F (t(x)) < F (sk(x)) ∧ ∀t′ ∈ T \ {t} :

F (t(x)) < F (t′(x)), then xbest = t(x).

The use of diversification strategies allow the tabu search to continue from a solution

at some point in the search space other than the existing current solution. After some

number of iterations, the diversification strategy is executed and the search restarts from

the solution found by the strategy. The motivation for the use of diversification is to allow

63

the search space to explore other regions of the search space, as local search heuristics

explore a localised search subspace. As described by Gendreau (Gendreau, 2003), the use

of diversification gives the search breadth and is the most critical issue in the design of

tabu search algorithms. Diversification also breaks any cycling if the diversified solution

is not part of the cycle. For the tabu search algorithm to solve the Steiner tree problem in

(Ribeiro and De Souza, 2000), the diversification strategy uses the Takahashi-Matsuyama

heuristic to find a Steiner tree, which is rooted at a different vertex each time it is executed.

This is a form of restart diversification, which determines the point in the search space

where the search restarts. An informed restart diversification strategy could make use of

a frequency-based tabu list to diversify to lesser explored regions of the search space. The

other principal diversification strategy is continuous diversification, in which the objective

function is modified to penalise moves to solutions with respect to their frequency in the

tabu list. The penalty is increased for moves that feature either entirely or in part (given

the moves’ components) more frequently in the tabu list.

At each iteration of the tabu search, the solutions given by each move must be eval-

uated using the objective function, but this may be a time consuming operation. Rather

than evaluate each candidate solution for the exact objective value, a surrogate objective

function can be used instead. A good surrogate function is representative of the objective

function, that is the ordering defined by the function over the set of feasible solutions is

identical or the inverse to that of the objective function. After evaluation using the sur-

rogate objective function, a subset of potentially favourable moves can then be evaluated

using the objective function with the best being selected. An alternative of this can-

didate list strategy is the probabilistic tabu search, which select moves with probability

proportional to its surrogate objective value.

In algorithm 6, the termination criteria is k < kmax ∨ S(x) − T 6= ∅, that is either

some maximum number of iterations is met or there are no permissible non-tabu moves to

explore. Other termination criteria include (and as listed in (Gendreau, 2003)): reaching

a limit on CPU time; the number of iterations without an improvement in F (xbest) being

equal to some limit; and when the objective value reaches some threshold.

4.4.2 Algorithm

To solve the MTPSTO problem, the use of the tabu search metaheuristic is proposed.

The presentation of the tabu search algorithm begins with algorithm listings 7 and 8,

which describe the procedure to find insertion and removal candidate moves, respectively.

64

Similar to the move structure defined in (Ribeiro and De Souza, 2000), a tabu search move

is defined as the addition or removal of a router node from the PST. As is the case with

Steiner trees, there is a subset of nodes that must always be included in the vertex set of

the tree, these are the publisher node and the subscriber nodes. It follows that only the

combination of router nodes is variable, hence the choice of move structure.

Definition 44 (MTPSTO Tabu Search Insertion Move). The function m+ is the in-

sertion move function m+ : Tc × R → Hc where Tc is set of all PSTs in Gc, Hc is

the set of all subgraphs in Gc. Let Gc = (Vc, Ec) be a connectivity graph, TPST =

(VPST , EPST) be a PST in Gc, r be a node in the set R \ VPST (i.e. not in the PST)

to be added to TPST . m+(TPST , r) = (Vmod, Emod) where Vmod = VPST ∪ {r}, Emod =

{(a, b) | (a, b) ∈ Ec ∧ a = r ∧ b ∈ VPST } ∪ EPST , and (Vmod, Emod) ∈ Hc.

Definition 45 (MTPSTO Tabu Search Deletion Move). The function m− is the insertion

move function m− : Tc × R → Hc where Tc is set of all PSTs in Gc, Hc is the set of

all subgraphs in Gc. Let Gc = (Vc, Ec) be a connectivity graph, TPST = (VPST , EPST)

be a PST in Gc, r be a node in the set R∩VPST to be removed from TPST . m−(TPST , r) =

(Vmod, Emod) where Vmod = {v | v ∈ VPST ∧ v 6= r}, Emod = {(a, b) | (a, b) ∈ EPST ∧ a 6= r},

and (Vmod, Emod) ∈ Hc.

4.4.2.1 Determining Moves

Algorithm 7 returns a set M+ of routers that can be added to a PST, TPST . The algorithm

guarantees that for all r ∈M+, there is at least one PST that has a vertex set {p} ∪ S ∪

{r}∪{x | x ∈ R∧x ∈ VPST } in the connectivity graph Gc. The algorithm iterates over the

set of routers that are in the connectivity graph, but not in TPST (line 2). The insertion

move of the router r is a potential candidate move, but only if its addition to the TPST

will result in a subgraph of Gc that contains a PST. At line 3, Er is an edge set that

contains all adjacent edges to r in Gc that are also adjacent to VPST . If the cardinality

of Er is 1, then r will be a vertex of degree 1 in the subgraph induced by the algorithm,

so r would be terminal vertex of any PST. This is a contradiction of the definition of a

PST, so a test for this property is performed at line 4. The addition to TPST of r and its

edges adjacent to TPST , need only contain one PST for the move to be feasible. For every

pair of edges that are adjacent to r and two distinct nodes, x and y in VPST (line 5), a

cycle in is formed in TPST . At line 6, pTxyPST
is the set of edges between x and y in TPST .

Line 7 is an optimisation that ignores the pairs of edges under consideration if the path

that it encloses is of length 1, as an edge can not be removed from pTxyPST
to break the

65

cycle. A node can not be removed from the pTxyPST
, as it may not contain a router node

and even if it did, it would result in a more complex move structure. It must be possible

to remove an edge e from pTxyPST
such that the two vertices which are endpoints of e are

not router nodes (lines 8 to 10). To ensure that this is the case, one of the following

predicates must be true: ∃(u, v) ∈ pTxyPST
: u, v ∈ S (terminal vertices are subscribers);

∃(u, v) ∈ pTxyPST
: u ∈ S ∧ v ∈ R ∧ |(u, x) | (v, x) ∈ EPST | (there is a PST where u

is a terminal subscriber and v is an internal router); or ∃(u, v) ∈ pTxyPST
: u ∈ R ∧ v ∈

R∧|(u, x) | (u, x) ∈ EPST | ≥ 2∧|(u, x) | (u, x) ∈ EPST | ≥ 2 (two routers with at least one

descendant in TPST , which is reconnected by the router r and a pair of edges adjacent to

TPST). For each r whose addition to TPST results in one of these predicates being true, it

is added to M+.

Algorithm 7: FindInsertionMoves(Gc, TPST , R, S)

Input : Gc = (Vc, Ec) /* Connectivity graph */

Input : TPST = (VPST , EPST) /* Current PST */

Input : R /* Set of routers R = V \ C where C = {p} ∪ S */

Input : S /* Set of subscribers */

Output: M+ /* Set of routers that can be added to TPST */

1 begin
2 foreach r ∈ VPST \R do
3 Er ← {(a, b) | (a, b) ∈ Ec ∧ (a = r ∧ b ∈ VPST) ∨ (a ∈ VPST ∧ b = r)}
4 if |Er| > 1 then
5 foreach ((r, x), (r, y)) ∈ Er2 do
6 pTxyPST

← FindPath(TPST , x, y)

7 if
∣∣∣pTxyPST ∣∣∣ > 1 then

8 foreach (u, v) ∈ pTxyPST do

9 if u, v ∈ S ∨ (u ∈ S ∧ v ∈ R ∧ deg(v) > 2) ∨ (u ∈ R ∧ v ∈
S ∧ deg(u) > 2)∨ (u ∈ R∧ v ∈ R∧ deg(u) > 2∧ deg(v) > 2)
then

10 M+ ←M+ ∪ {r}
11 break outer;

12 return M+

Algorithm 8 describes the procedure by which removal moves are found. The algorithm

determines if the graph induced by the removal of a router node from a PST and the

addition of all edges between all pairs of nodes remaining in the PST will result in a graph

that has at least one PST. The for loop at line 2 iterates over each router node in the

PST, TPST , where r is the current route node under consideration. Lines 3 to 5 create a

graph Gmod that is a copy of the PST without the router r and its adjacent edges. In the

66

block that begins at line 6, for each edge in Gc, if its endpoints are in Gmod, then it is

added to Gmod’s edge set. At line 5, Gmod may be a disconnected graph, so the addition

of edges from Gc that have both endpoints in Gmod may reconnect the graph. If Gmod is

not connected, then it will not contain a PST, so the algorithm tests for this at line 9.

If Gmod is connected, the next condition for the graph to contain a PST is that for all

routers in (R ∩ Vmod) \ {r}), no router must have only one adjacent edge. If a router has

one adjacent edge, it will be a terminal node of a PST for Gmod, and this is a contradiction

to the definition of a PST. If Gmod contains no dangling router nodes, then it is added to

the set of feasible moves M−.

Algorithm 8: FindRemovalMoves(Gc, TPST , R)

Input : Gc = (Vc, Ec) /* Connectivity Graph */

Input : TPST = (VPST , EPST) /* Current PST */

Input : R /* Set of routers R = V \ C where C = {p} ∪ S */

Output: M− /* Set of routers that can be removed from TPST */

1 begin
2 foreach r ∈ VPST \ ({p} ∪ S) do
3 Vmod ← {v | v ∈ VPST ∧ v 6= r}
4 Emod ← {(a, b) | (a, b) ∈ EPST ∧ (a 6= r ∧ b 6= r)}
5 Gmod ← (Vmod, Emod)
6 foreach (x, y) ∈ Ec do
7 if x, y ∈ Vmod then
8 Emod ← Emod ∪ {(x, y)}

9 if IsConnectedGraph(Gmod) then
10 foreach r ∈ R ∩ Vmod do
11 if |{(a, b) | (a, b) ∈ Emod ∧ (a = r ∨ b = r)}| < 2 then
12 Continue at line 2

13 M− ←M− ∪ {r}

14 return M−

4.4.2.2 Move Evaluation

The application of a move to a PST gives a subgraph of the connectivity graph (defin-

ition 44 and definition 45). Algorithms 7 and 8 ensure that the subgraph will contain

at least one PST. Algorithm 9 finds the PST in a graph that maximises the trustwor-

thiness within the overhead budget constraint. If no PST is found within the overhead

budget constraint, the PST that maximises the trustworthiness is found. Although the

algorithm describes the evaluation of an insertion move, the evaluation of a deletion move

only differs at line 4. The for loop at line 5 iterates over each PST found by the PST

67

enumeration algorithm (algorithm 5). The PST is evaluated and if found to be a better

PST than those previously evaluated, then Tmax, τmax and Omax are set appropriately.

The algorithm terminates at line 22 by returning the best PST Tmax that has been found

in the subgraph Gmod, along with its trust value (τmax) and its overhead value (Omax).

Algorithm 9: EvaluateMove(Gc, TPST , r, B)

Input : Gc = (Vc, Ec) /* Connectivity graph */

Input : TPST = (VPST , EPST) /* Current PST */

Input : r /* Router to be added */

Input : B /* Overhead Budget */

Output: (Tmax, τmax, Omax)

1 begin
2 τmax ← −∞
3 Omax ←∞
4 Gmod = m+(TPST , r) /* If removal move, function m− is used */

5 foreach Tnext ∈ PSTEnumeration(Gmod) do
6 τTnext ← EvaluateTreeTrust(Tnext)
7 OTnext ← EvaluateTreeOverhead(Tnext)
8 if Omax > B ∧OTnext > B then
9 if τTnext > τTmax then

10 Tmax ← Tnext
11 τmax ← τTnext
12 Omax ← OTnext

13 else if Omax < B ∧OTnext < B then
14 if τTnext > τTmax then
15 Tmax ← Tnext
16 τmax ← τTnext
17 Omax ← OTnext

18 else if Omax > B ∧OTnext < B then
19 Tmax ← Tnext
20 τmax ← τTnext
21 Omax ← OTnext

22 return (Tmax, τmax, Omax)

4.4.2.3 Surrogate Objective Function

Given a set of moves M+ ∪M−, each move must be evaluated to determine which gives

the best PST tree with respect to the objectives of maximising trust within some overhead

budget. As mentioned in section 4.4.1, evaluation of each move to determine the exact

objective value of the solution it yields can be time consuming. To address this issue, the

use of surrogate evaluation function is proposed that can be used to reduce the cardinality

of the set M+ ∪M−. The smaller set of moves is then evaluated fully for exact objective

68

values of the solutions that result from their application.

The PST solution to a MTPSTO problem maximises the trust held in the PST by

the least trusting node (through the use of the leximin social welfare functional) within

some overhead budget. A greedy approach is adopted for the surrogate objective function,

which seeks to maximise the improvement to the least well-off node. Given the subgraph

Gmod that is induced by the application of a move m to the current PST solution, TPST ,

the surrogate objective value is given by the most trusted path between the node with

the least trust in TPST and the publisher, p. Due to the fact that a semiring-based trust

model for path trust is used (section 3.2.2), it is possible to to use the generic shortest

distance algorithm algorithm defined in (Theodorakopoulos and Baras, 2006) to find the

most trusted path between two nodes.

Definition 46 (Surrogate Objective Function for MTPSTO Tabu Search). The surrogate

objective function is defined as, sobj : Hc → R[0,1] whereHc is the set of all subgraphs of Gc

and R[0,1] is the unit interval. Given a PST TPST and a router insertion move r ∈ VPST \

({p} ∪ S), let Gmod = (Vmod, Emod) be the graph induced by the addition of r to TPST ,

where Vmod = VPST ∪r and Emod = EPST ∪{(a, b) | (a, b) ∈ Ec ∧ (a = r ∧ b ∈ VPST)}, and

is a subgraph of the connectivity graph, Gc. sobj(Gmod) = max∀σx,p∈Px,p(τx(σx,p)) where

∀y ∈ VPST \ {x} : τx(TPST) < τy(TPST), Px,p is the set of paths in Gmod between x and p

and τx is the trust function of x.

4.4.2.4 Penalty Function

Tabu search is designed for combinatorial problems in the form given by definition 43. The

MTPSTO problem differs to this in that not only does it maximise the trust objective,

but it does so within the overhead budget constraint. There are a number of approaches

to modifying tabu search to handle these types of problems, these are: a static penalty

on solutions that do not respect the constraint; or an adaptive penalty function where the

penalisation value applied to solutions that breach the problem constraint is dependent

upon some other variable.

Two techniques are proposed for the MTPSTO problem. The first is a simple static

penalty function that penalises any over-budget solution by decreasing the trust value

by 50%. The second is the Near Feasibility Threshold (NFT) technique for tabu search

(Kulturel-Konak et al., 2004), which determines the penalty to be applied to an over-

budget solution with respect to the short-term and long-term memory structures of the

tabu search. The method uses the properties of moves in the tabu list to determine the

69

NFT. Solutions that are infeasible are mildly punished if within the NFT region, and more

significantly so if beyond it. The NFT approach is compared to alternative methods by

Nonobe and Ibaraki (Nonobe and Ibaraki, 1998) and Gendreau et al. (Gendreau et al.,

1994). While it outperforms the Nonobe and Ibaraki method with respect to best solution

quality for a number of problems, results in comparison to the method devised by Gendreau

et al. are mixed. For the orienteering problem, which is a maximisation problem with a

single constraint, both the NFT approach and the Gendreau et al. approach are shown to

be effective.

Definition 47 (NFT for Tabu Search (Kulturel-Konak et al., 2004)). The feasibility ratio,

Rj at iteration j of an instance of a tabu search is given by equation 4.1 where Fj is the

number of moves in the tabu list that have yielded feasible solution at iteration j and Tj

is the size of the tabu list at iteration j.

Rj =
Fj
Tj

(4.1)

The NFT for a constraint i is determined by equation 4.2. If the current move gives

a feasible solution, the NFT increases to encourage searching in infeasible region. If the

move is infeasible, then the NFT decreases. This increases the region beyond the NFT,

which is subject to greater penalisation than that within the NFT.

NFTi,j+1 =

 NFTi,j

(
1 +

Rj
2

)
, if move is feasible

NFTi,j

(
1+Rj

2

)
, if move is infeasible.

(4.2)

Should a solution x be beyond the NFTi, its objective value F (x) is penalised to give

Fp(x) as defined in equation 4.3 where Fall is the unpenalised objective value of the best

solution found, Ffeas is the objective value of the best feasible solution found, n is the

number of constraints, di(x,B) is the value by which x is over the i’s constraint value B,

NFTi is the NFT of constraint i, and ki is an exponent for the constraint i that amplifies

the penalty when x is beyond NFTi.

Fp(x) = F (x) + (Fall − Ffeas)×
n∑
i=1

(
di(x,B)

NFTi

)ki
(4.3)

70

4.4.2.5 Diversification

Two restart diversification techniques are proposed: Takahashi-Matsuyama diversifica-

tion, which uses the Steiner tree heuristic by Takahashi and Matsuyama (Takahashi and

Matsuyama, 1980) to form a PST (algorithm 10); and SPT diversification that creates

PSTs that are also shortest path trees to some arbitrary node. After every n iterations of

the tabu search algorithm or when there are no moves for the tabu search to exploit, the

diversification method is invoked.

Takahashi and Matsuyama present a Steiner tree heuristic in (Takahashi and Mat-

suyama, 1980) that can easily be modified to find a Steiner tree that is a PST. The only

modification required is to stipulate that the initial vertex of the algorithm is either a

publisher or a subscriber, and that the remaining subscribers and, if not the initial vertex,

the publisher are the Steiner nodes. Algorithm 10 describes the Takahashi-Matsuyama

diversification method. Lines 3 to 6 initialise the diversified PST to contain a randomly

chosen node from the set of C containing the publisher and subscribers. At each iteration

of the while loop at line 7, the node y ∈ C \ VPST with the shortest path to any node

z ∈ VPST is added to TPST (line 16 and 17). At line 12, the ShortestPath function is a

single-pair shortest path algorithm, which can be implemented using Dijkstra’s algorithm

(Dijkstra, 1959). The Endpoint function at line 16 returns the vertices for a given edge

set.

Algorithm 10: Takahashi-Diversification(Gc, p, S)

1 begin
2 C = S ∪ {p}
3 Let x be a randomly chosen node from the set C
4 VPST = {x}
5 EPST = ∅
6 TPST = (VPST , EPST)
7 while |VPST ∩ C| 6= C do
8 length←∞
9 δmin ← null

10 foreach y ∈ C \ VPST do
11 foreach z ∈ VPST do
12 δy,z ← ShortestPath(Gc, y, z)
13 if |σy,z| < length then
14 δmin ← δy,z
15 length← |δy,z|

16 VPST = VPST ∪ Endpoints(δmin)
17 EPST = EPST ∪ δmin
18 return TPST

71

The SPT diversification method chooses a node x at random from the set S ∪ {p}.

The initial PST tree TPST = (VPST , EPST) is created, where VPST = {x} and EPST = ∅.

For each y ∈ (S ∪ {p}) \ VPST , VPST = VPST ∪ σy,x where σy,x is the set of vertices of

the shortest path between x and y in Gc, and EPST = EPST ∪ δx,y where δx,y is the set of

edges of the shortest path between x and y in Gc.

4.4.2.6 Tabu Search Algorithm for MTPSTO

The tabu search algorithm for the MTPSTO problem is given in algorithm 11 and is

described by a flowchart in figure 4.1. At line 4, the initial solution is found using the

diversification algorithm, either the Takahashi-Matsuyama diversification (as listed) or the

SPT diversification. The initial solution is stored as the current PST solution, TPST and

evaluated for its trust value at line 5. Should the initial solution be over budget, it is

penalised using the penalty function of choice (lines 6 and 7). The initial solution is made

the best solution at line 8.

The tabu search executes until imax iterations without any improvement in the best

solution have occurred. From line 11 to 14, the set of feasible insertion and removal

moves for the current PST, TPST are found. Rather than evaluate every moves found,

an aggressive optimisation is performed where only the best insertion and best deletion

moves with respect to the surrogate objective function are considered (lines 13 and 14),

however if both of these moves are tabu, diversification is invoked (lines 15 and 18). These

moves are evaluated and if over budget, they are penalised using the penalty function

(lines 19 to 20). Of the two moves under consideration during an iteration of a tabu

search, the one leading to the more trustworthy PST (lines 25 to 28) is chosen as the

next current solution of the search. Two approaches are considered for the selection of the

most trusted PST given the chosen moves. The adaptive PST policy chooses the PST that

maximises trust and has not been visited previously, while the best PST policy considers

previously visited PSTs. The preferred move is placed in the tabu list and the oldest

move in the list removed if the tabu list has reached some maximum (line 29). Should

the PST found during the current iteration be the most trustworthy one found so far,

then it is set as the best solution and the value i, which counts the number of iterations

since an improvement in the best solution found, is set to zero. If this is not the case, i is

incremented. The number of iterations since the last diversification has not reached the

maximum, the current solution (upon which moves are applied in the next iteration) is

set to the best solution of those given by the moves m+ and m−.

72

4.5 Summary

This chapter begins with the definition of the Maximum Trusted PST with Overhead

Budget (MTPSTO) problem and a proof that shows that the problem is in NP-complete.

The algorithms presented in this chapter make use of Char’s spanning tree enumeration

algorithm (Char, 1968), which is modified to provide an enumeration of PSTs. An exhaust-

ive search algorithm for the problem is presented, which is expected to be of little use for

anything but the smaller problem instances due to the problem complexity. This provides

the motivation for the use of the tabu search metaheuristic. A brief background on tabu

search is provided, followed by the tabu search algorithm for the MTPSTO problem.

73

Algorithm 11: TabuSearch(G, p, R, S, B, imax, ∆max)

Input : G = (V,E) /* Connectivity Graph */

Input : R /* Set of routers in V (R ⊂ V) */

Input : S /* Set of subscribers in V (S ⊂ V) */

Input : B /* Overhead budget */

Input : imax /* Maximum iterations without improvement */

Input : ∆max /* Maximum iterations before diversification */

1 begin
2 i = 0; ∆ = 0
3 L← ∅ /* Tabu List */

4 TPST ← Takahashi(G)

5 τTPST ← EvaluateTreeTrust(TPST)
6 if EvaluateTreeOverhead(TPST) > B then
7 τTPST ← PenaltyFunction(τTPST)

8 τbest ← τTPST ; Tbest ← TPST
9 while i < imax do

10 Onext ←∞; τnext ← −∞
11 M+ ← FindInsertionMoves(G, TPST , R, S)
12 M− ← FindRemovalMoves(Gc, TPST , R)

13 m+ ← max∀m∈M+(sobj(m))
14 m− → max∀m∈M−(sobj(m))
15 if m+ ∈ L ∧m− ∈ L then
16 TPST ← Takahashi(G)

17 ∆← 0
18 Continue at line 9

19 (Tm+ , τm+ , Om+)← EvaluateMove(G, Tc, m
+)

20 (Tm− , τm− , Om−)← EvaluateMove(Gc, TPST , m−)
21 if Om+ > B then
22 τm+ ← PenaltyFunction(τm+)

23 if Om− > B then
24 τm− ← PenaltyFunction(τm−)

25 if τm+ > τm− then
26 mtabu ← m+; Tnext ← Tm+ ; τnext ← τm+

27 else
28 mtabu ← m−; Tnext ← Tm− ; τnext ← τm−

29 L← L ∪ {mtabu}
30 if τnext > τbest then
31 Tbest ← Tnext;
32 τbest ← τnext
33 i← 0; ∆← 0

34 else i← i+ 1
35 if ∆ < ∆max then
36 TPST ← Tnext; ∆← ∆ + 1

37 else
38 TPST ← Takahashi(G)

39 ∆← 0

74

TPST Overbudget?
τbest = τ(TPST);

Tbest = TPST;

[Set as best PST]

YES

i < imax

START

END

m
+
 & m

-
 tabu?

Δ = 0;

i++;

Om- > B

Create

initial PST

TPST

Evaluate TPST

trust and

overhead

Penalise

Trust of TPST

Find best insertion and

remove moves (m
+
 and m

-
)

wrt. to surrogate objective

Find most

trusted PST in

Tm+ = TPST + m
+

Diversify to

new PST TPST

YES

Evaluate trust

& overhead of

Tm+

YES Penalise Trust

of Tm+

Δ < Δmax

NO

TPST = Tnext;

Δ++;

i++;

YES

τ(Tm+) > τ(Tm-)

m
+
 set to tabu;

Tnext=Tm+;

τnext = τ(Tm+)

m
-
 set to tabu;

Tnext=Tm-;

τnext = τ(Tm+);

Penalise

Trust of Tm-

m
+-

 tabu?

NO

NO

YES

NO

YES

NO

Om+ > B

m
-
 tabu?

Find most

trusted PST Tm-

in TPST + m
-

Evaluate trust

and overhead of

m
-

NO

YES

YES

Tnext > Tbest
Tbest = Tnext

τnext = τnext

NO

YES

YES

NO

NO

NO

Figure 4.1: Flowchart Describing Algorithm 11

75

Chapter 5

Evaluation and Computational

Results

5.1 Evaluation Overview

The mathematical analysis of tabu search is an open area of research (Glover et al., 1993),

so to analyse the performance of the tabu search algorithms that are proposed in chapter

4, an evaluation based on experimental results is presented in this chapter.

The evaluation is concerned with two properties, the quality of the solutions found and

the running times of the algorithm. The former is given by the relative error of the trust

and overhead values with respect to the optimal solution, and the latter is measured by

subtracting the values returned from the System.nanoTime() method of the Java class

library, which is called immediately prior to and after the experiment. Note that the

running times exclude any operations required to initialise the experiment, such as the

instantiation of the connectivity graph from its GraphML1 representation. The aim of

the evaluation is to draw conclusions on the suitability of tabu search for the MTPSTO

problem by:

• comparing the quality of the solutions found by the tabu search algorithms to the

optimal solutions;

• comparing the running times of the tabu search algorithms to the exhaustive search

algorithm;

• assessing the difference in the quality of solutions found by the algorithms using the

static and NFT penalty functions;

1http://graphml.graphdrawing.org/

76

• assessing the difference in running times between algorithms using the static and

NFT penalty functions;

• determining if either the Takahashi-Matsuyama or the Shortest Path Tree diversific-

ation strategies yield better solutions with respect to running time and/or solution

quality;

• examining the difference in solution quality and running times between the best and

adaptive PST selection strategies;

• comparing the shortest path tree and the Steiner tree (found by the Takahashi-

Matsuyama heuristic), both rooted at the publisher and spanning the set of sub-

scriber nodes, to the optimal solutions and those found by the tabu search algorithms;

• comparing the average running times, average relative errors in trust and overhead

values, and the number of exact and over budget solutions found by each algorithm.

The algorithms described in chapter 4 have been implemented using the Java pro-

gramming language. The implementations are dependent upon two third-party libraries,

the Java Universal Network/Graph Framework (JUNG)2 (ver. 2.01) and the OpenTS lib-

rary3 (ver. 1.0-exp10), a tabu search framework. The JUNG library provides a framework

that allows for the modelling, analysis and manipulation of graphs. The OpenTS library

provides a tabu search framework that is used as the basis of the implementations of the

tabu search algorithms.

Each experiment was executed five times unless stated otherwise. The running times

given in the results tables and in the discussion throughout the remainder of this chapter

are averages over these five execution runs unless stated otherwise. The solution quality is

measured by the relative errors in the trust and overhead values between the approximation

and the exact solution. Equation 5.1 defines relative error where v is a value greater than

0 and va is an approximation of v.

η =

∣∣∣∣v − vav

∣∣∣∣ (5.1)

2http://jung.sourceforge.net/
3http://www.coin-or.org/Ots/index.html

77

5.2 Evaluation Environment

All experiments were performed on the Amazon Elastic Compute Cloud (Amazon EC2)

service4 using a High-Memory Extra Large instance (m2.xlarge). The instance has a

specification of 17.1 Gb of RAM, two virtual cores with 3.25 EC2 Compute Units (one

EC2 compute unit is equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon)5 reported

as two 2.67 GHz Intel Xeon X5550 CPUs by the command cat /proc/cpuinfo, and

420 Gb of instance storage. Amazon Linux AMI 64-bit with Linux kernel 2.6.35.11 was

the chosen operating system image. All implementations were executed using the Java

runtime environment available in this image, IcedTea6 1.9.16. For each experiment, the

only option passed to the Java virtual machine was to set the maximum heap size to 16

Gb, -Xmx16G.

The choice of this evaluation environment was motivated by the high memory require-

ment of the exhaustive search algorithm. To ensure fair comparability of the running

times of the proposed tabu search algorithms with those of the exhaustive search, the

same instance type was used, despite the tabu search algorithms having a smaller memory

footprint.

5.3 Evaluation Data Sets

Motivated by the need of Operations Research (OR) researchers to compare algorithms

for identical problems, a number of test data sets was devised for a variety of OR problems

(Beasley, 1990). The OR library7 includes test data sets for Steiner problems, such as the

Steiner tree in graphs and the prize collecting Steiner tree. As the problem addressed in

this thesis is novel one, it was not possible to make use of this library, so a series of test

data sets was generated for the evaluation of the proposed algorithms. The design choices

for the evaluation test data sets are given in the remainder of this section.

The three problem sets, A, B, and C, used in the evaluation are described in tables 5.1,

5.3, and 5.4 respectively. For each problem in the test data set, the problem input with

reference to the problem definition given in problem definition 2 consists of three types of

variable:

• publish/subscribe inputs,

4http://aws.amazon.com/ec2/
5http://aws.amazon.com/ec2/instance-types/
6http://icedtea.classpath.org/
7http://people.brunel.ac.uk/ mastjjb/jeb/info.html

78

– E (set of events randomly chosen from the event distribution Ev)

– B (overhead budget)

– Ap (publisher’s advertisement)

– S (set of subscribers)

– SFS = {sfs | s ∈ S} (set of subscription functions for each subscriber where

sfs is the subscription function of subscriber s)

– R (set of routers);

• connectivity graph, Gc = (V,Ec);

• the trust graph used as input to the individuals’ trust functions, Gτ = (V,Eτ);

The test data sets are comprised of problem instances with varying |R|, as the primary

objective is to analyse the proposed algorithms with respect to connectivity graphs of

increasing sizes in both V and Ec, the latter achieved by maintaining the graph density

within a test data set to be approximately equal across the problem instances as |R|

increases. By increasing the number of routers in each problem, the test data sets allow

for the evaluation of algorithms with respect to problems of increasing complexity, as both

the number of possible moves at each iteration of the tabu search and the dominant factor

of the PST enumeration algorithm n(t+ t1) increase. For all problems, the cardinality of

the set of subscribers, S, is 5.

For a given test data set, each problem is identified by an identifier in the follow-

ing format, <Problem Data set><Subset Number>-<Problem Number> where <Problem

Data set> is the data set identifier (A, B, or C), <Subset Number> indicates the subset

within the problem data set and is equal to value of |R| for each problem in the subset, and

<Problem Number> is the problem identifier where 1 =⇒ B = 2000, 2 =⇒ B = 3000,

3 =⇒ B = 4000, 4 =⇒ B = 5000 and 5 =⇒ B = 231 − 1 (Java’s largest max-

imum integer). Test data sets are made of subsets of five problems, each problem sharing

identical parameters other than the value of the overhead budget, B. The values chosen

for B exclude 1000 as there is no optimal PST solution with an overhead value that is less

than or equal to 1000 for all problems where the optimal solution is known. No budgets

are considered where 5000 < B < 231−1, as all optimal solutions found where B = 231−1

are identical to those where B = 5000, implying that there is no PST, T , with higher

trust values where 5000 < OT < 231 − 1 and OT is the overhead value of T . The choice

of B = 231 − 1 is so that the algorithms can find the most trusted PST with the largest

permitted integer overhead budget.

79

Problem set A (table 5.1) consists of problems where 1 ≤ |R| ≤ 9. Set A is the only

problem set where optimal solutions are available for comparison to those found by the

tabu search algorithms, as for larger problems, the running times of the exhaustive search

are excessive. Table 5.2 shows the execution times of the exhaustive search for each subset

of problems in problem set A. The average times given are those of the five algorithm runs

for each subset of problems, except for A9 where this was impractical. Each experiment

run finds the solutions where the overhead budget is 2000, 3000, 4000, 5000, and 231 − 1.

For problem subsets A0 to A4, the exhaustive search executes quickly, however, there is

an order of magnitude difference in the execution time with the addition of an additional

router to problems of subsets A5 and A8. The timings exhibit non-linear growth, which

is to be expected, as the problem under consideration is in NP-Complete. Given the

execution time of the exhaustive search for problem A9, attempts to solve larger problems

were not attempted.

The remaining problem sets B (table 5.3) and C (table 5.4), allow for the evaluation

of the algorithms with respect to larger cardinalities of the set R. For problem set B,

problems with between 10 to 19 routers are defined, and for problem set C, from 20 to

100 routers in increments of 10. Problems C100-1, C100-2, C100-3, C100-4 and C100-5

are the largest problems by |V |, |Ec| and |R| that are considered, where the connectivity

graph has 106 vertices and 2782 edges, and the trust graph of the same number of vertices

and 1020 edges.

5.3.1 Publish/Subscribe Properties

To generate the advertisement Ap for the publisher p, the set of events E drawn from

the event distribution Ev and the subscriptions sfs for all s ∈ S, the Numbers Interval

(NI) model is used (Huang and Garcia-Molina, 2003). The model defines a subscription

as an interval on the real line, with events represented as real values. Given a subscrip-

tion of interval [x, y], event i matches the subscription if and only if x ≤ i ≤ y is true,

where x, y, i ∈ R. Huang and Molina define three variants of the NI model to generate

subscriptions: the NI-R (random center) model where a real value is chosen at random

to be the centre of the subscription interval; the NI-X model where the location of the

subscriber (x-coordinate) is used as the centre of the interval; and the NI-Xmod model

where some random offset is added to the x-coordinate of the subscriber to give the centre

of the interval. The NI-X and NI-Xmod models generate localised subscriptions, which

is of interest when evaluating the overhead metric, but is irrelevant with respect to the

80

Properties Solution

Pr |Vc| |Ec| |S| |R| B Gc Density |Vtrust| |Etrust| τTbest OTbest

A0-1 6 7 5 0 2000 0.467 6 20 - -
A0-2 6 7 5 0 3000 0.467 6 20 0.0322 2179
A0-3 6 7 5 0 4000 0.467 6 20 0.0322 2179
A0-4 6 7 5 0 5000 0.467 6 20 0.0322 2179
A0-5 6 7 5 0 231 − 1 0.467 6 20 0.0322 2179

A1-1 7 10 5 1 2000 0.476 7 30 - -
A1-2 7 10 5 1 3000 0.476 7 30 0.0181 2398
A1-3 7 10 5 1 4000 0.476 7 30 0.0181 2398
A1-4 7 10 5 1 5000 0.476 7 30 0.0181 2398
A1-5 7 10 5 1 231 − 1 0.476 7 30 0.0181 2398

A2-1 8 14 5 2 2000 0.5 8 40 0.0931 1850
A2-2 8 14 5 2 3000 0.5 8 40 0.0931 1850
A2-3 8 14 5 2 4000 0.5 8 40 0.0931 1850
A2-4 8 14 5 2 5000 0.5 8 40 0.0931 1850
A2-5 8 14 5 2 231 − 1 0.5 8 40 0.0931 1850

A3-1 9 18 5 3 2000 0.5 9 50 - -
A3-2 9 18 5 3 3000 0.5 9 50 0.0224 2917
A3-3 9 18 5 3 4000 0.5 9 50 0.0224 2917
A3-4 9 18 5 3 5000 0.5 9 50 0.0224 2917
A3-5 9 18 5 3 231 − 1 0.5 9 50 0.0224 2917

A4-1 10 22 5 4 2000 0.489 10 60 - -
A4-2 10 22 5 4 3000 0.489 10 60 0.1855 2224
A4-3 10 22 5 4 4000 0.489 10 60 0.1855 2224
A4-4 10 22 5 4 5000 0.489 10 60 0.1855 2224
A4-5 10 22 5 4 231 − 1 0.489 10 60 0.1855 2224

A5-1 11 27 5 5 2000 0.491 11 70 - -
A5-2 11 27 5 5 3000 0.491 11 70 0.0542 2262
A5-3 11 27 5 5 4000 0.491 11 70 0.0812 3196
A5-4 11 27 5 5 5000 0.491 11 70 0.0812 3196
A5-5 11 27 5 5 231 − 1 0.491 11 70 0.0812 3196

A6-1 12 33 5 6 2000 0.5 12 80 - -
A6-2 12 33 5 6 3000 0.5 12 80 - -
A6-3 12 33 5 6 4000 0.5 12 80 0.0360 3846
A6-4 12 33 5 6 5000 0.5 12 80 0.0360 4414
A6-5 12 33 5 6 231 − 1 0.5 12 80 0.0360 4414

A7-1 13 39 5 7 2000 0.5 13 90 - -
A7-2 13 39 5 7 3000 0.5 13 90 - -
A7-3 13 39 5 7 4000 0.5 13 90 0.0692 3570
A7-4 13 39 5 7 5000 0.5 13 90 0.0692 3570
A7-5 13 39 5 7 231 − 1 0.5 13 90 0.0692 3570

A8-1 14 45 5 8 2000 0.495 14 100 - -
A8-2 14 45 5 8 3000 0.495 14 100 - -
A8-3 14 45 5 8 4000 0.495 14 100 0.0031 3657
A8-4 14 45 5 8 5000 0.495 14 100 0.0031 4031
A8-5 14 45 5 8 231 − 1 0.495 14 100 0.0031 4031

A9-1 15 52 5 9 2000 0.495 15 110 0.2184 1885
A9-2 15 52 5 9 3000 0.495 15 110 0.2184 1885
A9-3 15 52 5 9 4000 0.495 15 110 0.2184 1885
A9-4 15 52 5 9 5000 0.495 15 110 0.2184 1885
A9-5 15 52 5 9 231 − 1 0.495 15 110 0.2184 1885

Table 5.1: Problem Set A

81

Pr. Min. (s) Max. (s) Avg. (s)

A0 0.0153 0.0871 0.0339
A1 0.0239 0.1522 0.058
A2 0.1238 0.3774 0.1852
A3 0.8051 1.2791 0.9304
A4 1.7682 2.4166 1.9041
A5 19.5833 20.212 19.7224
A6 285.8669 287.4492 286.3381
A7 945.8277 949.9657 947.4963
A8 6149.868 6164.197 6158.712
A9 97672.93 97672.93 -

Table 5.2: Execution Times of Exhaustive Search Results for Problem Set A

evaluation objectives described above. In addition, as the generated connectivity graphs

do not encapsulate any location information, the NI-R model is used.

Advertisements are not specified in the NI-R model, so it is extended such that Ap

is defined as an interval [a, b] on the real line. For each e ∈ E, a ≤ e ≤ b and is

chosen at random from the event distribution Ev, a normal distribution N (µ, σ2) where

µ = (b− a)/2 (mean) and σ = (µ− a)/3 (standard deviation). Where e > b ∧ e < a, the

value is discarded. The set of events is identical for all problems within a problem set and

consists of one thousand events. For each subscriber s ∈ S, the subscription sfs = [x, y]

such that a ≤ x ≤ b ∧ a ≤ y ≤ b ∧ x ≤ y. The values x and y are drawn from the same

normal distribution as the events. In all experiments, the chosen values for a and b are

0.333 and 0.666 respectively.

5.3.2 Connectivity Graph

Many networks topologies exhibit the power-law property in the number of adjacent edges

at vertices such that a small set of vertices have a much higher degree than others (i.e.

there exists a small set of hub vertices). These topologies are referred to as scale-free

networks, examples of which include the World Wide Web (Barabási et al., 2000) and

social networks, such as the e-mail network where e-mail addresses are vertices and e-

mails are edges (Ebel et al., 2002). For each problem instance, the connectivity graph

Gc = (V,Ec) was generated using the EppsteinPowerLawGenerator class from the JUNG

library that generates a graph with power law properties (Eppstein and Wang, 2002).

The algorithm begins by generating a random graph with m-edges and then running for

a number of iterations, during which an edge is removed from the graph and a new edge

added that connects two nodes where one is chosen with probability that is proportional

to its degree, subject to the edge not being a member of the edge set and not being a

82

Pr |Vc| |Ec| |S| |R| B (Budget) Gc Density |Vtrust| |Etrust|

B10-1 16 60 5 10 2000 0.5 16 120
B10-2 16 60 5 10 3000 0.5 16 120
B10-3 16 60 5 10 4000 0.5 16 120
B10-4 16 60 5 10 5000 0.5 16 120
B10-5 16 60 5 10 231 − 1 0.5 16 120

B11-1 17 68 5 11 2000 0.5 17 130
B11-2 17 68 5 11 3000 0.5 17 130
B11-3 17 68 5 11 4000 0.5 17 130
B11-4 17 68 5 11 5000 0.5 17 130
B11-5 17 68 5 11 231 − 1 0.5 17 130

B12-1 18 76 5 12 2000 0.496 18 140
B12-2 18 76 5 12 3000 0.496 18 140
B12-3 18 76 5 12 4000 0.496 18 140
B12-4 18 76 5 12 5000 0.496 18 140
B12-5 18 76 5 12 231 − 1 0.496 18 140

B13-1 19 85 5 13 2000 0.497 19 150
B13-2 19 85 5 13 3000 0.497 19 150
B13-3 19 85 5 13 4000 0.497 19 150
B13-4 19 85 5 13 5000 0.497 19 150
B13-5 19 85 5 13 231 − 1 0.497 19 150

B14-1 20 95 5 14 2000 0.5 20 160
B14-2 20 95 5 14 3000 0.5 20 160
B14-3 20 95 5 14 4000 0.5 20 160
B14-4 20 95 5 14 5000 0.5 20 160
B14-5 20 95 5 14 231 − 1 0.5 20 160

B15-1 21 105 5 15 2000 0.5 21 170
B15-2 21 105 5 15 3000 0.5 21 170
B15-3 21 105 5 15 4000 0.5 21 170
B15-4 21 105 5 15 5000 0.5 21 170
B15-5 21 105 5 15 231 − 1 0.5 21 170

B16-1 22 115 5 16 2000 0.498 22 180
B16-2 22 115 5 16 3000 0.498 22 180
B16-3 22 115 5 16 4000 0.498 22 180
B16-4 22 115 5 16 5000 0.498 22 180
B16-5 22 115 5 16 231 − 1 0.498 22 180

B17-1 23 126 5 17 2000 0.498 23 190
B17-2 23 126 5 17 3000 0.498 23 190
B17-3 23 126 5 17 4000 0.498 23 190
B17-4 23 126 5 17 5000 0.498 23 190
B17-5 23 126 5 17 231 − 1 0.498 23 190

B18-1 24 138 5 18 2000 0.5 24 200
B18-2 24 138 5 18 3000 0.5 24 200
B18-3 24 138 5 18 4000 0.5 24 200
B18-4 24 138 5 18 5000 0.5 24 200
B18-5 24 138 5 18 231 − 1 0.5 24 200

B19-1 25 150 5 19 2000 0.5 25 210
B19-2 25 150 5 19 3000 0.5 25 210
B19-3 25 150 5 19 4000 0.5 25 210
B19-4 25 150 5 19 5000 0.5 25 210
B19-5 25 150 5 19 231 − 1 0.5 25 210

Table 5.3: Problem Set B

83

Pr |Vc| |Ec| |S| |R| B (Budget) Gc Density |Vtrust| |Etrust|

C20-1 26 162 5 20 2000 0.498 26 220
C20-2 26 162 5 20 3000 0.498 26 220
C20-3 26 162 5 20 4000 0.498 26 220
C20-4 26 162 5 20 5000 0.498 26 220
C20-5 26 162 5 20 231 − 1 0.498 26 220

C30-1 36 315 5 30 2000 0.5 36 320
C30-2 36 315 5 30 3000 0.5 36 320
C30-3 36 315 5 30 4000 0.5 36 320
C30-4 36 315 5 30 5000 0.5 36 320
C30-5 36 315 5 30 231 − 1 0.5 36 320

C40-1 46 517 5 40 2000 0.4995169 46 420
C40-2 46 517 5 40 3000 0.4995169 46 420
C40-3 46 517 5 40 4000 0.4995169 46 420
C40-4 46 517 5 40 5000 0.4995169 46 420
C40-5 46 517 5 40 231 − 1 0.4995169 46 420

C50-1 56 770 5 50 2000 0.5 56 520
C50-2 56 770 5 50 3000 0.5 56 520
C50-3 56 770 5 50 4000 0.5 56 520
C50-4 56 770 5 50 5000 0.5 56 520
C50-5 56 770 5 50 231 − 1 0.5 56 520

C60-1 66 1072 5 60 2000 0.4997669 66 620
C60-2 66 1072 5 60 3000 0.4997669 66 620
C60-3 66 1072 5 60 4000 0.4997669 66 620
C60-4 66 1072 5 60 5000 0.4997669 66 620
C60-5 66 1072 5 60 231 − 1 0.4997669 66 620

C70-1 76 1425 5 70 2000 0.5 76 720
C70-2 76 1425 5 70 3000 0.5 76 720
C70-3 76 1425 5 70 4000 0.5 76 720
C70-4 76 1425 5 70 5000 0.5 76 720
C70-5 76 1425 5 70 231 − 1 0.5 76 720

C80-1 86 1827 5 80 2000 0.4998632 86 820
C80-2 86 1827 5 80 3000 0.4998632 86 820
C80-3 86 1827 5 80 4000 0.4998632 86 820
C80-4 86 1827 5 80 5000 0.4998632 86 820
C80-5 86 1827 5 80 231 − 1 0.4998632 86 820

C90-1 96 2280 5 90 2000 0.5 96 920
C90-2 96 2280 5 90 3000 0.5 96 920
C90-3 96 2280 5 90 4000 0.5 96 920
C90-4 96 2280 5 90 5000 0.5 96 920
C90-5 96 2280 5 90 231 − 1 0.5 96 920

C100-1 106 2782 5 100 2000 0.49991015 106 1020
C100-2 106 2782 5 100 3000 0.49991015 106 1020
C100-3 106 2782 5 100 4000 0.49991015 106 1020
C100-4 106 2782 5 100 5000 0.49991015 106 1020
C100-5 106 2782 5 100 231 − 1 0.49991015 106 1020

Table 5.4: Problem Set C

84

Problem Subset

T
im

e
(s

)

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

● ● ● ● ● ● ● ●

●

●

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

Figure 5.1: Average Execution Times of Exhaustive Search Results for Problem Set A

self-loop. The algorithm ran for one thousand iterations and the number of required edges

was set such that the generated graphs had graph density approximately equal to 0.5. The

connectivity graphs are simple graphs where no router vertex has only one adjacent edge.

This ensures that all routers in R can be considered as a candidate router of the solution

PST, as any router with only one adjacent edge can only be a leaf of a PST, which is

contradictory to the definition of a PST.

5.3.3 Trust Graph and Trust Functions

Analysis of social networks shows that they have both scale-free and small-word properties

(Guha et al., 2004), however, there is some initial research to suggest that the Pareto-

lognormal distribution may provide a better fit, as the power-law model over estimates

the number of nodes with high degree (Sala et al., 2010). Experiments conducted on the

85

Advogato trust data set8 support the theory of an over-estimation of high degree nodes by

the power-law distribution. Figure 5.2 shows the complementary cumulative distribution

function (CCDF) of the out-degree of vertices in the Advogato trust graph. As the graph

is a log-log plot, the CCDF would fit a Pareto distribution only if it were a straight line,

however this is not the case. The Pareto distribution where α = 1.621746 is shown on the

figure and is the best-fit for the empirical data as given by the R library, igraph9. Further

research on the suitability of the Pareto-lognormal distribution is required, so in this work

it is assumed that the trust graph has a high clustering property (small-world) and fits

the power-law model.

Outdegree (log10)

P
(X

≥
x)

10−4

10−3

10−2

10−1

100

100 100.5 101 101.5 102 102.5

Empirical Pareto Fit (alpha = 1.621746)

Figure 5.2: Power-law fit to Empirical CCDF of Advogato Out-degree

To generate trust graphs with both power-law and high clustering properties, the

model described by Klemm and Egúıluz is used (Klemm and Eguiluz, 2002). It requires

8http://www.trustlet.org/datasets/advogato/
9http://igraph.sourceforge.net/

86

two parameters, µ and m, where µ ∈ [0, 1] is a tunable parameter such that µ = 0 gives a

high clustering model and µ = 1 is the Barabasi-Albert model (scale-free) (Barabási et al.,

2000), and m is the number of active nodes at any given iteration. The initial graph has

m vertices and is complete with each node in an active state. At any given iteration only

m vertices can be active, and it is to these vertices that a new vertex, n, is connected

to at each iteration. The algorithm continues by determining with random probability,

proportional to the vertex degree (i.e. preferential attachment), if each newly added edge

(n, y), where y is an active vertex, is replaced by an edge (n, x) where x is a randomly

chosen vertex that is a member of the graph’s vertex set and maybe in either the active

or inactivate state. An iteration of the algorithm ends with r being set to the active state

and one of the existing active vertices being deactivated with probability that is inversely

proportional to the ratio of a given active vertex’s degree to the sum of the degrees at all

active vertices.

To generate the trust graph for a given problem instance, µ = 0.1 and m = 5 were

selected. µ = 0.1 is chosen for two reasons: the experimental results by Klemm and

Egúıluz show that µ = 0.1 gives short average path lengths, which is a property of scale-

free networks, and that they grow logarithmically with the graph size, a property of

small-world networks; the clustering coefficient is shown to be near to constant where

0 < µ � 1. Each edge represents a trust relationship, but given two adjacent vertices, a

and b, the trust value of their relationship may not be identical, that is τ(a, b) 6= τ(b, a),

so the undirected edge is replaced by two directed and weighted edges. Due to the absence

of analytical research on directed trust graphs with real-valued edge weights representing

trust, the trust values of the relationships encapsulated by the trust graph were chosen at

random from a normal distribution with mean µ = 0.5 and variance σ2 = (0.5/3)2 where

any random values greater than 1 and less than 0 were discarded. Note that trust values

must be between 0 and 1 inclusive, as this is a requirement inherited from the analytical

leximin function. The user-set parameter of this function is ∆ = 0.001.

5.4 Evaluation of Tabu Search Algorithms

5.4.1 Problem Set A

This test data set comprises of problems where 1 ≤ |R| ≤ 9 and |S| = 5. For all solutions

found by the tabu search algorithms, the relative errors to the optimal solutions found by

the exhaustive search algorithm (table 5.1) are given. The following subsections provide

87

an analysis of the results for the tabu search algorithm with respect to each combination

of penalty function, PST selection policy, and diversification technique. The section ends

with a summary of the conclusions drawn from the results tables and the averages for the

properties under evaluation (table 5.9).

5.4.1.1 Static Penalty Function and Best PST Selection

The results for the tabu search algorithm with static penalty function and best PST

selection policy are given in table 5.5 with problems where no optimal solution exists

omitted. They show that the optimal solution is found for all problems in problem subsets

A1, A2, A3, A4, A7, and A9, regardless of the diversification strategy used. In addition,

optimal solutions are found for subset A8 when the SPT diversification policy is used. Of

the 35 problems in the test data set, 30 optimal solutions are found by the algorithm when

SPT diversification is used and 28 are found with Takahashi-Matsuyama diversification.

The problem subsets A1, A2, A3, A4, A7, and A9, each contain problems whose

optimal solutions have identical trust and overhead values, however, this is not the case

for A5, A6, and A8, where the algorithm finds non-optimal solutions. The algorithm,

using either diversification strategy, finds the optimal solution for A5-2, A6-3, and A8-3,

the problems with the strictest budget in their subsets where an optimal solution exists.

For A5-3, A5-4, and A5-5, the diversification policies yield the same solutions with no

relative error in the trust values and 0.1202 relative error in the overhead values. For A6-

4 and A6-5, the solutions are identical for both diversification strategies with a relative

error of 5×10−7 in the trust value and 0.1287 in the overhead values. Problems A8-4

and A8-5 are the only ones where there is a difference in the solutions between the two

diversification strategies. The use of SPT diversification leads to the algorithm finding

the optimal solutions for A8-3, A8-4 and A8-5, but the Takahashi-Diversification does

not, although there is only a small relative error of 1×10−6 in the trust value and 0.00928

in the overhead value. With reference to table 5.22, the initial solutions found by the

Takahashi-Matsuyama and SPT heuristics are different for the problems A8-4 and A8-5,

where the SPT solution is the less favourable. In practise, the solutions found for A8-4

and A8-5 with Takahashi-Matsuyama diversification could be considered preferable, as the

relative trust error is negligible and the solutions are of a lower overhead value, however

given the problem definition, they are not optimal. No solution found by the algorithm is

over the given budget, B, for all problems.

There is little difference in the running times between the diversification policies until

88

problem A8-4. The differences in the average running times for A8-4 and A8-5 are 10.74

and 10.82 seconds slower with SPT diversification respectively. For problems in A9, the

difference increases to approximately 21 seconds. For the problem subsets A1 to A4, the

running times of the exhaustive search outperforms those of this tabu search algorithm

regardless of the diversification strategy used. The exhaustive search running time for

problem subset A1 is approximately 205 times faster, but this declines to 4.5 times faster

for problem subset A4.

Takahashi SPT

PST Rel. Error PST Rel. Error

Pr τT OT ητ ηO Sec τT OT ητ ηO Sec

A1-2 0.0181 2398 - - 2.90 0.0181 2398 - - 2.92
A1-3 0.0181 2398 - - 2.90 0.0181 2398 - - 2.92
A1-4 0.0181 2398 - - 2.89 0.0181 2398 - - 2.92
A1-5 0.0181 2398 - - 2.89 0.0181 2398 - - 2.90

A2-1 0.0931 1850 - - 11.77 0.0931 1850 - - 11.93
A2-2 0.0931 1850 - - 11.78 0.0931 1850 - - 11.93
A2-3 0.0931 1850 - - 11.77 0.0931 1850 - - 11.94
A2-4 0.0931 1850 - - 11.75 0.0931 1850 - - 11.93
A2-5 0.0931 1850 - - 11.79 0.0931 1850 - - 11.90

A3-2 0.0224 2917 - - 9.39 0.0224 2917 - - 9.35
A3-3 0.0224 2917 - - 9.40 0.0224 2917 - - 9.34
A3-4 0.0224 2917 - - 9.42 0.0224 2917 - - 9.36
A3-5 0.0224 2917 - - 9.39 0.0224 2917 - - 9.33

A4-2 0.1855 2224 - - 9.06 0.1855 2224 - - 9.03
A4-3 0.1855 2224 - - 9.06 0.1855 2224 - - 9.05
A4-4 0.1855 2224 - - 9.04 0.1855 2224 - - 9.02
A4-5 0.1855 2224 - - 9.01 0.1855 2224 - - 8.99

A5-2 0.0542 2262 - - 9.13 0.0542 2262 - - 9.09
A5-3 0.0812 3580 - 0.1202 5.84 0.0812 3580 - 0.1202 5.81
A5-4 0.0812 3580 - 0.1202 5.82 0.0812 3580 - 0.1202 5.80
A5-5 0.0812 3580 - 0.1202 5.80 0.0812 3580 - 0.1202 5.79

A6-3 0.0360 3846 - - 39.50 0.0360 3846 - - 39.54
A6-4 0.0360 3846 5×10−7 0.1287 41.45 0.0360 3846 5×10−7 0.1287 41.41
A6-5 0.0360 3846 5×10−7 0.1287 42.91 0.0360 3846 5×10−7 0.1287 42.86

A7-3 0.0692 3570 - - 88.41 0.0692 3570 - - 88.17
A7-4 0.0692 3570 - - 88.74 0.0692 3570 - - 88.61
A7-5 0.0692 3570 - - 88.77 0.0692 3570 - - 88.52

A8-3 0.0031 3657 - - 20.66 0.0031 3657 - - 24.12
A8-4 0.0031 3657 1×10−6 0.0928 20.71 0.0031 4031 - - 31.45
A8-5 0.0031 3657 1×10−6 0.0928 20.70 0.0031 4031 - - 31.52

A9-1 0.2184 1885 - - 48.98 0.2184 1885 - - 70.19
A9-2 0.2184 1885 - - 48.95 0.2184 1885 - - 70.05
A9-3 0.2184 1885 - - 48.94 0.2184 1885 - - 70.23
A9-4 0.2184 1885 - - 48.90 0.2184 1885 - - 70.33
A9-5 0.2184 1885 - - 48.92 0.2184 1885 - - 70.33

Table 5.5: Solutions for Problem Set A using Tabu Search with Static Penalty and Best
PST Selection

89

5.4.1.2 Static Penalty Function and Adaptive PST Selection

The results for problem set A (table 5.6) are identical to those of the tabu search with

static penalty and best PST selection, for both diversification strategies. It is likely that

the absence of any improvement is due to: the initial solution being optimal for some

problem subsets (see table 5.22); and the small problem sizes with respect to |R| and

consequently the size of the connectivity graph and the number of PSTs (i.e. elements of

the search space).

The running times for problem subsets A1 to A4 are similar to those of the tabu search

with static penalty and best PST selection policy for both diversification strategies and

they are similarly inferior to those of the exhaustive search. For problem subset A6, the

use of the adaptive PST selection policy results in slower running times (a little over four

times slower), but for problem subsets A7, A8, and A9, the opposite is true.

5.4.1.3 NFT Penalty Function and Best PST Selection

The static penalty function penalises PSTs found by the tabu search that are over budget

by decreasing their objective value to 50% of the solution’s trust value. Such an approach

may prove to be disadvantageous, as a move to a worse current solution may eventually

lead to finding a better overall solution, but the static penalty discourages this by fa-

vouring PSTs that are within budget. The NFT penalty function attempts to encourage

exploration of the search space in a manner that is dependent upon the previously found

solutions. It penalises solutions that are over budget to a lesser extent (i.e. within some

feasible threshold) if the solutions in the algorithm’s memory structures have been under

budget, and more so if the opposite is true. According to its authors, such a technique

should be expected to yield improvements to the results in comparison to a static pen-

alty function (Kulturel-Konak et al., 2004), but the results for this particular problem

set (table 5.7) show otherwise. The algorithm with Takahashi-Matsuyama diversification

finds 27 optimal solutions and with SPT diversification, 29 optimal solutions are found,

one less in each case than the algorithm using the static penalty function with identical

diversification strategy.

Unlike the tabu search utilising the static penalty function, the tabu search with NFT

penalty function, best PST selection and Takahashi-Matsuyama diversification finds a

non-optimal solution for problem A5-2, which has high relative errors, 0.4976 in the trust

value and 0.4129 in the overhead value, and is also over-budget. These are the highest

errors of any non-optimal solution found for data set A, but this solution is the optimal

90

Takahashi SPT

PST Rel. Error PST Rel. Error

Pr τT OT ητ ηO Sec τT OT ητ ηO Sec

A1-2 0.0181 2398 - - 3.01 0.0181 2398 - - 2.89
A1-3 0.0181 2398 - - 3.02 0.0181 2398 - - 2.88
A1-4 0.0181 2398 - - 3.01 0.0181 2398 - - 2.89
A1-5 0.0181 2398 - - 3.00 0.0181 2398 - - 2.87

A2-1 0.0931 1850 - - 8.44 0.0931 1850 - - 8.42
A2-2 0.0931 1850 - - 8.49 0.0931 1850 - - 8.41
A2-3 0.0931 1850 - - 8.40 0.0931 1850 - - 8.40
A2-4 0.0931 1850 - - 8.37 0.0931 1850 - - 8.35
A2-5 0.0931 1850 - - 8.36 0.0931 1850 - - 8.36

A3-2 0.0224 2917 - - 11.12 0.0224 2917 - - 8.91
A3-3 0.0224 2917 - - 11.12 0.0224 2917 - - 8.93
A3-4 0.0224 2917 - - 11.03 0.0224 2917 - - 8.88
A3-5 0.0224 2917 - - 11.06 0.0224 2917 - - 8.89

A4-2 0.1855 2224 - - 7.28 0.1855 2224 - - 7.08
A4-3 0.1855 2224 - - 7.21 0.1855 2224 - - 7.01
A4-4 0.1855 2224 - - 7.20 0.1855 2224 - - 7.02
A4-5 0.1855 2224 - - 7.21 0.1855 2224 - - 7.02

A5-2 0.0542 2262 - - 13.63 0.0542 2262 - - 13.67
A5-3 0.0812 3580 - 0.1202 8.26 0.0812 3580 - 0.1202 8.26
A5-4 0.0812 3580 - 0.1202 8.24 0.0812 3580 - 0.1202 8.24
A5-5 0.0812 3580 - 0.1202 8.22 0.0812 3580 - 0.1202 8.25

A6-3 0.0360 3846 - - 139.19 0.0360 3846 - - 139.87
A6-4 0.0360 3846 5×10−7 0.1287 138.96 0.0360 3846 5×10−7 0.1287 139.87
A6-5 0.0360 3846 5×10−7 0.1287 127.22 0.0360 3846 5×10−7 0.1287 127.98

A7-2 0.0692 3570 - - 70.95 0.0692 3570 - - 71.02
A7-3 0.0692 3570 - - 72.92 0.0692 3570 - - 72.75
A7-4 0.0692 3570 - - 78.38 0.0692 3570 - - 78.33

A8-3 0.0031 3657 - - 9.77 0.0031 3657 - - 9.30
A8-4 0.0031 3657 1×10−6 0.0928 9.77 0.0031 4031 - - 12.11
A8-5 0.0031 3657 1×10−6 0.0928 9.82 0.0031 4031 - - 12.13

A9-1 0.2184 1885 - - 20.39 0.2184 1885 - - 36.06
A9-2 0.2184 1885 - - 14.69 0.2184 1885 - - 29.70
A9-3 0.2184 1885 - - 20.55 0.2184 1885 - - 37.15
A9-4 0.2184 1885 - - 20.49 0.2184 1885 - - 37.19
A9-5 0.2184 1885 - - 20.51 0.2184 1885 - - 37.21

Table 5.6: Solutions for Problem Set A using Tabu Search with Static Penalty and Ad-
aptive PST Selection

91

one for A5-3, A5-4 and A5-5, and peculiarly it is not found for these problems. All other

optimal and non-optimal solutions are identical to those found by the static penalty tabu

search algorithms. In comparison to the tabu search algorithm using the static penalty

function, the best PST selection policy and the Takahashi-Matsuyama diversification, the

running times are similar except for the problems in A8 which are on average 2.55, 2.56,

and 2.55 times faster for problems A8-3, A8-4, and A8-5 respectively. As is the case for the

tabu search with static penalty algorithms, the exhaustive search runs faster for problem

subsets A1-A4.

With the SPT diversification strategy, better performance is observed than with the

Takahashi-Matsuyama, as more optimal solutions are found and for the problem A5-2, the

relative trust error is eliminated, the relative overhead error is reduced to 0.1698, and the

solution found is not over budget. In problem subsets A6 and A8, the algorithm finds the

optimal solutions where the budget B is 5000 and 231 − 1, but not for B = 4000. This is

the opposite behaviour to that of the Takahashi-Matsuyama diversification strategy, where

the solution is found for the strictest budget problems, but is not found for problems with

a larger budget. Two solutions found by the algorithm are over budget, problem A6-3

(14% error) and A8-3 (10% error). Compared to the tabu search with static penalty

function, there is an improvement in problem subset A6 (two optimal solutions found

rather one) and a deterioration in problem subset A8 (two optimal solution rather than

all three). The running times, for the most part, are comparable to those of the tabu

search algorithm with static penalty, best PST selection and SPT diversification, however

there is an improvement when using the NFT penalty function for the problems in the

subset A8 and the problem A5-2, and a deterioration for those in the subset A9. For

A5-2, A8-3, A8-4, and A8-5 the running times are 3, 1.96, 2.56 and 2.54 times faster

respectively. For A6-3, A6-4 and A6-5, the running times are 1.58, 2.13, and 2.05 times

slower respectively. In comparison to the exhaustive search running times, the use of SPT

diversification results in slower running times for problem subsets A1-A4 and problem

A5-2. The latter is not true of with the use of the Takahashi-Matsuyama strategy.

5.4.1.4 NFT Penalty Function and Adaptive PST Selection

The tabu search with NFT penalty and adaptive PST selection policy finds identical

solutions to those found by the tabu search with NFT penalty and best PST selection

policy where both use the Takahashi-Matsuyama diversification strategy. Although the

solutions found are identical, there are notable differences in the running times for the

92

Takahashi SPT

PST Rel. Error PST Rel. Error

Pr τT OT ητ ηO Sec τT OT ητ ηO Sec

A1-2 0.0181 2398 - - 3.21 0.0181 2398 - - 3.63
A1-3 0.0181 2398 - - 3.05 0.0181 2398 - - 3.62
A1-4 0.0181 2398 - - 3.01 0.0181 2398 - - 3.63
A1-5 0.0181 2398 - - 3.03 0.0181 2398 - - 3.61

A2-1 0.0931 1850 - - 11.74 0.0931 1850 - - 12.76
A2-2 0.0931 1850 - - 11.84 0.0931 1850 - - 12.79
A2-3 0.0931 1850 - - 11.93 0.0931 1850 - - 12.73
A2-4 0.0931 1850 - - 11.87 0.0931 1850 - - 12.66
A2-5 0.0931 1850 - - 11.97 0.0931 1850 - - 12.68

A3-2 0.0224 2917 - - 7.76 0.0224 2917 - - 9.65
A3-3 0.0224 2917 - - 7.76 0.0224 2917 - - 9.62
A3-4 0.0224 2917 - - 7.73 0.0224 2917 - - 9.66
A3-5 0.0224 2917 - - 7.73 0.0224 2917 - - 9.68

A4-2 0.1855 2224 - - 8.90 0.1855 2224 - - 11.64
A4-3 0.1855 2224 - - 8.84 0.1855 2224 - - 11.76
A4-4 0.1855 2224 - - 8.84 0.1855 2224 - - 11.80
A4-5 0.1855 2224 - - 8.84 0.1855 2224 - - 11.80

A5-2 0.0812 3196 0.4976 0.4129 9.87 0.0542 2646 - 0.1698 27.27
A5-3 0.0812 3580 - 0.1202 5.84 0.0812 3580 - 0.1202 6.11
A5-4 0.0812 3580 - 0.1202 5.81 0.0812 3580 - 0.1202 6.09
A5-5 0.0812 3580 - 0.1202 5.85 0.0812 3580 - 0.1202 6.07

A6-3 0.0360 3846 - - 39.46 0.0360 4414 5×10−7 0.1477 62.62
A6-4 0.0360 3846 5×10−7 0.1287 41.22 0.0360 4414 - - 88.34
A6-5 0.0360 3846 5×10−7 0.1287 42.56 0.0360 4414 - - 87.68

A7-3 0.0692 3570 - - 87.22 0.0692 3570 - - 94.41
A7-4 0.0692 3570 - - 86.90 0.0692 3570 - - 94.62
A7-5 0.0692 3570 - - 87.48 0.0692 3570 - - 94.77

A8-3 0.0031 3657 - - 8.09 0.0031 4031 1×10−6 0.1023 12.30
A8-4 0.0031 3657 1×10−6 0.0928 8.08 0.0031 4031 - - 12.30
A8-5 0.0031 3657 1×10−6 0.0928 8.09 0.0031 4031 - - 12.40

A9-1 0.2184 1885 - - 50.32 0.2184 1885 - - 69.85
A9-2 0.2184 1885 - - 50.36 0.2184 1885 - - 69.54
A9-3 0.2184 1885 - - 50.69 0.2184 1885 - - 69.95
A9-4 0.2184 1885 - - 50.60 0.2184 1885 - - 69.64
A9-5 0.2184 1885 - - 50.26 0.2184 1885 - - 69.62

Table 5.7: Solutions for Problem Set A using Tabu Search with NFT Penalty and Best
PST Selection

93

problem subsets A6 and A9. For problem subset A6, there is a deterioration in the running

times with the adaptive policy resulting in problems A6-3, A6-4 and A6-5, running on

average 3.54, 3.39 and 3.00 times slower. The opposite effect is observed for A9, with the

adaptive policy resulting in faster running times for the problems in this subset by at best,

30% (A9-2).

The tabu search with NFT penalty function, best PST selection policy, and SPT

diversification found six non-optimal solutions, but when the adaptive PST selection is

used, five non-optimal solutions are found, the improvement being in the solution to

problem A6-3. The number of over budget solutions remains the same. Comparing the best

and adaptive PST policies for the tabu search algorithm utilising the NFT penalty function

and the Takahashi-Matsuyama diversification strategy, the adaptive PST selection policy

gives three less non-optimal solutions, but the running times for all problems are slower.

The adaptive policy has an adverse effect on the solution found for problem A5-3, where

the relative error in the overhead value increases to 0.4129 and the relative error in the

trust value is 0.4976. The running times for A6 and A9 differ significantly when compared

to those of the tabu search with NFT penalty, best PST selection and SPT diversification.

For problems A6-3, A6-4, and A6-5, the running times are 2.84, 2.34, and 2.60 times slower

on average. For all problems in the subset A9, there is an improvement in the running

times.

5.4.1.5 Summary

Table 5.9 shows that the static penalty function outperforms the NFT penalty function

with respect to the number of non-optimal and over-budget solutions found, the average

trust error of the non-optimal solutions, and the average overhead error of the non-optimal

solutions. For each algorithm, the static penalty function variant finds more optimal

solutions than those that use the NFT penalty function, except when the adaptive PST

selection policy and SPT diversification are used, where they find the same number. All

algorithms using the static penalty function find no over-budget solutions, but for the NFT

penalty function this is not the case, as in conjunction with the Takahashi-Matsuyama

diversification strategy, one over budget solution is found, and with SPT diversification,

two over budget solutions are found. The average trust error is less for all static penalty

tabu search algorithms when compared to the algorithm with identical properties other

than the penalty function. The algorithms using the NFT penalty function, other than

the variant with best PST selection policy and SPT diversification, have average trust

94

Takahashi SPT

PST Rel. Error PST Rel. Error

Pr τT OT ητ ηO Sec τT OT ητ ηO Sec

A1-2 0.0181 2398 - - 2.90 0.0181 2398 - - 3.06
A1-3 0.0181 2398 - - 2.88 0.0181 2398 - - 3.06
A1-4 0.0181 2398 - - 2.88 0.0181 2398 - - 3.04
A1-5 0.0181 2398 - - 2.90 0.0181 2398 - - 3.03

A2-1 0.0931 1850 - - 8.43 0.0931 1850 - - 8.74
A2-2 0.0931 1850 - - 8.41 0.0931 1850 - - 8.81
A2-3 0.0931 1850 - - 8.37 0.0931 1850 - - 8.77
A2-4 0.0931 1850 - - 8.36 0.0931 1850 - - 8.75
A2-5 0.0931 1850 - - 8.36 0.0931 1850 - - 8.73

A3-2 0.0224 2917 - - 9.02 0.0224 2917 - - 11.32
A3-3 0.0224 2917 - - 9.04 0.0224 2917 - - 11.28
A3-4 0.0224 2917 - - 9.06 0.0224 2917 - - 11.33
A3-5 0.0224 2917 - - 9.11 0.0224 2917 - - 11.19

A4-2 0.1855 2224 - - 7.47 0.1855 2224 - - 9.47
A4-3 0.1855 2224 - - 7.35 0.1855 2224 - - 9.40
A4-4 0.1855 2224 - - 7.30 0.1855 2224 - - 9.32
A4-5 0.1855 2224 - - 7.30 0.1855 2224 - - 9.36

A5-2 0.0812 3196 0.4976 0.4129 13.64 0.0812 3196 0.4976 0.4129 14.75
A5-3 0.0812 3580 - 0.1202 8.30 0.0812 3580 - 0.1202 8.35
A5-4 0.0812 3580 - 0.1202 8.23 0.0812 3580 - 0.1202 8.33
A5-5 0.0812 3580 - 0.1202 8.25 0.0812 3580 - 0.1202 8.28

A6-3 0.0360 3846 - - 139.74 0.0360 3846 - - 178.15
A6-4 0.0360 3846 5×10−7 0.1287 139.72 0.0360 4414 - - 206.86
A6-5 0.0360 3846 5×10−7 0.1287 127.82 0.0360 4414 - - 228.70

A7-3 0.0692 3570 - - 70.76 0.0692 3570 - - 78.84
A7-4 0.0692 3570 - - 72.65 0.0692 3570 - - 78.54
A7-5 0.0692 3570 - - 77.97 0.0692 3570 - - 86.64

A8-3 0.0031 3657 - - 8.09 0.0031 4031 1×10−6 0.1023 12.30
A8-4 0.0031 3657 1×10−6 0.0928 8.08 0.0031 4031 - - 12.30
A8-5 0.0031 3657 1×10−6 0.0928 8.09 0.0031 4031 - - 12.40

A9-1 0.2184 1885 - - 21.14 0.2184 1885 - - 36.14
A9-2 0.2184 1885 - - 15.22 0.2184 1885 - - 29.87
A9-3 0.2184 1885 - - 21.08 0.2184 1885 - - 37.14
A9-4 0.2184 1885 - - 21.07 0.2184 1885 - - 36.99
A9-5 0.2184 1885 - - 21.07 0.2184 1885 - - 36.95

Table 5.8: Solutions for Problem Set A using Tabu Search with NFT Penalty and Adaptive
PST Selection

95

values that are five orders of magnitude greater than those of the tabu search algorithms

using the static penalty function. Given these observations, the NFT penalty function

gives no benefits. This may be because the technique is less beneficial when there are few

constraints (Kulturel-Konak et al., 2004), or due to the choice of value for the amplification

exponent, k, of the NFT penalty function. Increasing k would penalise the non-optimal

PSTs that are beyond the NFT to a greater degree, but reduce the penalty applied to

those solutions within the NFT.

Comparing the static penalty tabu search algorithms, it is evident that of the two

diversification strategies, SPT outperforms Takahashi-Matsuyama (this is also true of the

tabu search algorithms using the NFT penalty function, with respect to the number of non-

optimal solutions, but not the number of over budget solutions). Both pairs of algorithms

using the same diversification policies have the same results, so it can be concluded that

the initial and diversified SPTs result in more optimal solutions being found, despite the

fact that in some cases the initial SPT solution can be a worse PST than that given by

the Takahashi-Matsuyama heuristic.

For the average running time, the use of the Takahashi-Matsuyama policy results

in faster running times. Static penalty algorithms outperform the exhaustive search for

problem subsets A5 and above. This is also true of the NFT tabu search algorithms except

where the best PST selection and SPT diversification are used, where A5-2 is slower than

the exhaustive search.

Algorithm Non-optimal Over-budget Avg ητ Avg ηO Avg Time

Static, Best, Takahashi 7 0 9×10−7 0.1148 24.78
Static, Best, SPT 5 0 5×10−7 0.1236 28.53
Static, Adaptive, Takahashi 7 0 9×10−7 0.1148 26.27
Static, Adaptive, SPT 5 0 5×10−7 0.1236 28.47

NFT, Best, Takahashi 8 1 0.0995 0.1521 25.06
NFT, Best, SPT 6 2 9×10−7 0.1301 33.57
NFT, Adaptive, Takahashi 8 1 0.0995 0.1521 26.00
NFT, Adaptive, SPT 5 2 0.2487 0.1752 35.72

Table 5.9: Average Results Overview for Problem Set A

5.4.2 Problem Set B

This test data set has the same number of subscribers, |S| = 5, as problem set A, but the

cardinality of R is greater, 10 ≤ |R| ≤ 19. All other parameters used in the generation of

this problem set are identical to those used to generate problem set A. No relative errors

are given as it was impractical to run the exhaustive search algorithm on this problem set.

96

The last column in each table of results for problem set B contains SPT where the SPT

solution is better than the Takahashi-Matsuyama one, Tak where the opposite is true,

N/A where the solutions found using both diversification policies are over-budget, or ’-’

where the solutions found are identical and neither are over budget.

5.4.2.1 Static Penalty Function and Best PST Selection

The results of the application of this algorithm to the problem set B are given in table 5.10.

Although in every problem instance, SPT diversification results in a slower running time

(for some problems by an order of magnitude difference) than the Takahashi-Matsuyama

diversification. The use of the former gives better solutions for eleven problem instances.

This follows from the tabu search results for problem set A where the use of SPT diversi-

fication gives more optimal solutions. The number of problems where no solution is within

budget is 12.

The longest average running time (748.67s) is that of problem A16-5 where the SPT

diversification strategy is used. This is longer than any of the average running times for

problem set A, but it is less than that of the exhaustive search for problem subset A7.

5.4.2.2 Static Penalty Function and Adaptive PST Selection

The use of the adaptive policy gives rise to a reduction in the number of problem instances

where the SPT diversification gives a better solution than the Takahashi-Matsuyama di-

versification. Two problems, B16-4 and B16-5, have a better solution when SPT di-

versification is used and one problem, B14-2, when Takahashi-Matsuyama diversification

is used. This change is due to the adaptive policy resulting in an improvement in the

solutions found with the Takahashi-Matsuyama diversification, and not a deterioration in

those found with SPT diversification. For Takahashi-Matsuyama, improvements are seen

in B10-2, B12-3, B12-4, B12-5, B14-3, B16-4, B16-5, B17-2, B17-3, B17-5 when adaptive

PST selection rather than the best PST selection policy. The number of problems where

no solution within budget is found is 12, all of which are for the same problems as the

over budget PSTs found by the tabu search with static penalty function and best PST

selection.

As with the best PST selection policy, the use of the adaptive PST selection shows

that running times are slower when SPT diversification is used. The extent of the dif-

ference is dependent on the problem subset. For problems in B9, SPT diversification is

approximately seven times slower than that of Takahashi-Matsuyama, but the difference

97

Takahashi SPT

PST PST

Pr τT OT Sec τT OT Sec Best

B10-1 0.1095 3592 30.88 0.1095 3592 102.42 N/A
B10-2 0.0850 2912 31.06 0.1095 2912 65.36 SPT
B10-3 0.1095 3592 45.59 0.1095 3592 127.72 -
B10-4 0.1095 3592 40.37 0.1095 3592 146.14 -
B10-5 0.1095 3592 40.41 0.1095 3592 145.93 -

B11-1 0.0722 3495 30.49 0.0722 3495 592.05 N/A
B11-2 0.0722 3495 30.63 0.0722 3495 592.70 N/A
B11-3 0.0722 3495 74.09 0.0722 3495 379.10 -
B11-4 0.0722 3495 69.61 0.0722 3495 144.23 -
B11-5 0.0722 3495 69.60 0.0722 3495 144.17 -

B12-1 0.0394 3002 35.71 0.0395 3682 89.38 N/A
B12-2 0.0394 2944 12.93 0.0394 2944 30.34 -
B12-3 0.0394 3753 44.90 0.0395 3812 74.98 SPT
B12-4 0.0394 3002 13.44 0.0395 3812 33.08 SPT
B12-5 0.0394 3002 13.45 0.0395 3812 34.24 SPT

B13-1 0.0770 1479 10.43 0.0770 1479 11.29 -
B13-2 0.0770 1479 10.43 0.0770 1479 11.27 -
B13-3 0.0770 1479 10.45 0.0770 1479 11.27 -
B13-4 0.0770 1479 10.46 0.0770 1479 11.25 -
B13-5 0.0770 1479 10.44 0.0770 1479 11.28 -

B14-1 0.0705 3359 15.13 0.0705 3743 311.10 N/A
B14-2 0.0628 2791 15.52 0.0705 3743 311.15 Tak.
B14-3 0.0705 3390 18.09 0.0705 3587 142.02 SPT
B14-4 0.0705 3774 30.75 0.0705 3587 145.03 -
B14-5 0.0705 3774 30.83 0.0705 3587 85.70 -

B15-1 0.1368 3977 9.96 0.0719 4493 28.51 N/A
B15-2 0.1368 3977 9.97 0.0719 4493 28.43 N/A
B15-3 0.1368 3813 12.92 0.1368 3603 31.38 -
B15-4 0.1368 3813 12.48 0.1368 3603 45.72 -
B15-5 0.1368 3813 12.47 0.1368 3603 44.92 -

B16-1 0.0177 4414 85.29 0.0178 5236 201.69 N/A
B16-2 0.0177 4414 85.36 0.0178 5236 201.92 N/A
B16-3 0.0177 4414 85.51 0.0178 5236 201.92 N/A
B16-4 0.0177 4930 88.11 0.0178 4852 200.25 SPT
B16-5 0.0177 5418 46.12 0.0178 5752 748.67 SPT

B17-1 0.1124 2079 29.12 0.1124 2970 117.99 N/A
B17-2 0.1124 2079 29.09 0.1124 2970 45.49 SPT
B17-3 0.1124 2079 29.05 0.1124 3912 49.69 SPT
B17-4 0.1124 2079 29.08 0.1124 3912 58.93 SPT
B17-5 0.1124 2079 29.05 0.1124 3912 66.49 SPT

B18-1 0.2218 1829 20.60 0.2218 1829 30.11 -
B18-2 0.2218 1829 20.64 0.2218 1829 30.09 -
B18-3 0.2218 1829 20.62 0.2218 1829 30.10 -
B18-4 0.2218 1829 20.69 0.2218 1829 30.13 -
B18-5 0.2218 1829 20.62 0.2218 1829 30.16 -

B19-1 0.1457 1720 1.75 0.1457 1720 14.14 -
B19-2 0.1457 1720 1.73 0.1457 1720 14.11 -
B19-3 0.1457 1720 1.72 0.1457 1720 14.62 -
B19-4 0.1457 1720 1.72 0.1457 1720 14.61 -
B19-5 0.1457 1720 1.72 0.1457 1720 14.62 -

Table 5.10: Solutions for Problem Set B using Tabu Search with Static Penalty and Best
PST Selection

98

for problems in B13 is less than a second. The times for the problems in B16 are con-

siderably higher than all others for both diversification strategies, where there is an order

of magnitude difference between the running times of the problem in B16 and the non-

B16 problem with the longest running time. However, the longest running times, B16-5

at 1683.23s and 3562.55s, for the Takahashi-Matsuyama and SPT diversifications respect-

ively are a significant improvement over what would be expected from an exhaustive search

for these problems, as both are faster than the exhaustive search time for problem subset

A9. Although the use of the adaptive PST selection policy leads to longer running times

for problem subset B16, there is an improvement in the quality of the solutions. Despite

this, the solutions found with Takahashi-Matsuyama diversification still remain inferior to

those found when SPT diversification is used.

5.4.2.3 NFT Penalty Function and Best PST Selection

The results for the tabu search algorithm using the NFT penalty function and best PST

selection policy are given in table 5.12. When implemented with SPT diversification, it

finds identical solutions (excluding those where the solution found is over-budget) to those

found where the static penalty function and the same PST selection and diversification

policies are used. For Takahashi-Matsuyama diversification, there are differences in the

solutions found for the problems B10-2, B12-2 and B14-2 between NFT and static penalty

function variants using the best PST selection and either diversification policies. Each PST

found for these problems has a higher trust value, but the overheads are all over-budget.

The number of solutions where the SPT diversification finds a better solution than

Takahashi diversification is 12, one more than the tabu search with static penalty, best

PST selection and SPT diversification (B12-2 degrades for Takahashi-Matsuyama). As

with problem set A, there is an increase in the number of over-budget solutions found when

compared to the algorithms using the static penalty function. The number of problems

where both SPT and Takahashi solutions are over-budget is 13, one more than the tabu

search with static penalty, best PST selection and SPT diversification (B14-2 degrades for

Takahashi-Matsuyama).

There is little difference between the running times when the algorithm is compared

to that with the static penalty and best PST selection for both diversification strategies, a

similar finding to that of problem set A results. The running times for the tabu search with

NFT penalty function and best PST selection policy are slower for all problems where the

SPT diversification strategy is used instead of Takahashi-Matsuyama, a recurring theme.

99

Takahashi SPT

PST PST

Pr τT OT Sec τT OT Sec Best

B10-1 0.1095 3592 29.05 0.1095 3592 76.74 N/A
B10-2 0.1095 2912 32.62 0.1095 2912 78.90 -
B10-3 0.1095 3592 41.03 0.1095 3592 96.70 -
B10-4 0.1095 3592 56.93 0.1095 3592 123.66 -
B10-5 0.1095 3592 56.92 0.1095 3592 123.72 -

B11-1 0.0722 3495 13.22 0.0722 3495 374.69 N/A
B11-2 0.0722 3495 13.25 0.0722 3495 374.81 N/A
B11-3 0.0722 3495 26.98 0.0722 3495 143.87 -
B11-4 0.0722 3495 23.48 0.0722 3495 64.20 -
B11-5 0.0722 3495 23.51 0.0722 3495 64.57 -

B12-1 0.0395 3682 27.34 0.0395 3682 50.13 N/A
B12-2 0.0394 2944 27.17 0.0394 2944 49.74 -
B12-3 0.0395 3812 43.79 0.0395 3812 74.08 -
B12-4 0.0395 3812 35.60 0.0395 3812 61.27 -
B12-5 0.0395 3812 35.59 0.0395 3812 61.39 -

B13-1 0.0770 1479 11.83 0.0770 1479 12.32 -
B13-2 0.0770 1479 11.81 0.0770 1479 12.34 -
B13-3 0.0770 1479 11.80 0.0770 1479 12.39 -
B13-4 0.0770 1479 11.83 0.0770 1479 12.34 -
B13-5 0.0770 1479 11.81 0.0770 1479 12.36 -

B14-1 0.0705 3359 24.24 0.0705 3498 133.28 N/A
B14-2 0.0628 2791 25.42 0.0705 3498 133.28 Tak.
B14-3 0.0705 3774 41.15 0.0705 3774 116.23 -
B14-4 0.0705 3774 64.50 0.0705 3587 142.68 -
B14-5 0.0705 3774 68.37 0.0705 3587 117.68 -

B15-1 0.1368 3977 6.40 0.0867 3637 17.27 N/A
B15-2 0.1368 3977 6.39 0.0867 3637 17.29 N/A
B15-3 0.1368 3977 9.94 0.1368 3603 26.55 -
B15-4 0.1368 4493 11.56 0.1368 3603 46.34 -
B15-5 0.1368 4493 11.73 0.1368 3603 45.73 -

B16-1 0.0178 5236 1,154.96 0.0178 5236 1,825.15 N/A
B16-2 0.0178 5236 1,155.46 0.0178 5236 1,829.69 N/A
B16-3 0.0178 5236 1,155.62 0.0178 5236 1,830.59 N/A
B16-4 0.0178 4852 1,403.36 0.0178 4852 1,435.04 SPT
B16-5 0.0178 5120 1,683.23 0.0178 5120 3,562.55 SPT

B17-1 0.1124 3426 24.31 0.1124 2970 111.84 N/A
B17-2 0.1124 2970 23.24 0.1124 2970 39.37 -
B17-3 0.1124 3426 24.78 0.1124 3912 44.66 -
B17-4 0.1124 3912 28.84 0.1124 3912 57.80 -
B17-5 0.1124 3912 28.83 0.1124 3912 65.30 -

B18-1 0.2218 1829 13.53 0.2218 1829 21.30 -
B18-2 0.2218 1829 13.57 0.2218 1829 21.28 -
B18-3 0.2218 1829 14.84 0.2218 1829 22.21 -
B18-4 0.2218 1829 14.79 0.2218 1829 22.21 -
B18-5 0.2218 1829 14.82 0.2218 1829 22.22 -

B19-1 0.1457 1720 1.93 0.1457 1720 14.30 -
B19-2 0.1457 1720 2.20 0.1457 1720 14.57 -
B19-3 0.1457 1720 2.14 0.1457 1720 15.25 -
B19-4 0.1457 1720 2.16 0.1457 1720 15.00 -
B19-5 0.1457 1720 2.14 0.1457 1720 14.97 -

Table 5.11: Solutions for Problem Set B using Tabu Search with Static Penalty and
Adaptive PST Selection

100

The average times for Problem B16-5 is where the greatest difference is found with SPT

diversification being close to 17 times slower.

5.4.2.4 NFT Penalty Function and Adaptive PST Selection

As with the static penalty tabu search algorithms, the use of an adaptive PST policy sees

an improvement in quality of the solutions when the Takahashi-Matsuyama diversification

policy is used. There are only two problems, B16-4 and B16-5, where the SPT diversific-

ation solution is better, compared to 12 where the best PST selection policy is used. No

solution found with the Takahashi-Matsuyama diversification is better than that found

by SPT diversification, as is also the case when the NFT penalty function and best PST

selection is used.

The running times are similar to those of the algorithm with the static penalty function

with adaptive PST selection irrespective of the diversification policy used. For all prob-

lems, the SPT diversification has longer running times than the Takahashi-Matsuyama

strategy. Problem subset B16 has the longest running time with problem B16-5 being

the longest (1700.79s —Takahashi-Matsuyama, 3578.68s —SPT), an order of magnitude

greater than the next longest running non-B16 problem running time.

5.4.2.5 Summary

Table 5.14 shows the number of best solutions found, the number of over-budget solutions

found and the average running time for each algorithm. Similar observations made for

problem set A can also be made for this problem set with respect to the quality of the

solutions found and the running time.

For each algorithm, the static penalty variant finds more best solutions and less over-

budget ones than the NFT variant, except for where the best selection policy and SPT

diversification are used, where they are both equal. Of the static algorithms, the tabu

search with static penalty, adaptive PST selection, and SPT diversification finds the most

number of best solutions, 38, but given the 12 over budget solutions, and the excessive

running times of problems in B16, the tabu search with static penalty, best PST selection,

and SPT diversification offers a better compromise between solution quality and running

time. However, even for this algorithm the B16-5 problem has a running time of 12 minutes

28 seconds. The running times do not significantly differ between static and NFT penalty

functions, but do so considerably between the best PST selection and adaptive selection

policies, primarily due to the increased running times of problems in B16. The adaptive

101

Takahashi SPT

PST PST

Pr τT OT Sec τT OT Sec Best

B10-1 0.0255 2564 17.82 0.1095 2912 65.99 N/A
B10-2 0.1095 3602 30.44 0.1095 2912 66.11 SPT
B10-3 0.1095 3592 44.63 0.1095 3592 129.26 -
B10-4 0.1095 3592 39.39 0.1095 3592 147.96 -
B10-5 0.1095 3592 39.37 0.1095 3592 148.06 -

B11-1 0.0722 3495 31.16 0.0501 3682 557.31 N/A
B11-2 0.0722 3495 30.95 0.0722 3260 557.48 N/A
B11-3 0.0722 3495 74.81 0.0722 3495 385.37 -
B11-4 0.0722 3495 71.17 0.0722 3495 146.39 -
B11-5 0.0722 3495 70.49 0.0722 3495 146.68 -

B12-1 0.0394 3002 36.13 0.0394 3002 58.19 N/A
B12-2 0.0394 3002 13.56 0.0394 2944 30.83 SPT
B12-3 0.0394 3753 45.25 0.0395 3812 76.59 SPT
B12-4 0.0394 3002 13.61 0.0395 3812 33.67 SPT
B12-5 0.0394 3002 13.71 0.0395 3812 34.64 SPT

B13-1 0.0770 1479 10.52 0.0770 1479 11.59 -
B13-2 0.0770 1479 10.56 0.0770 1479 11.58 -
B13-3 0.0770 1479 10.56 0.0770 1479 11.58 -
B13-4 0.0770 1479 10.55 0.0770 1479 11.59 -
B13-5 0.0770 1479 10.57 0.0770 1479 11.41 -

B14-1 0.0198 3222 14.84 0.0175 3390 238.91 N/A
B14-2 0.0705 3359 14.75 0.0285 3570 238.76 N/A
B14-3 0.0705 3390 17.55 0.0705 3587 141.91 SPT
B14-4 0.0705 3774 29.84 0.0705 3587 145.05 -
B14-5 0.0705 3774 29.92 0.0705 3587 85.44 -

B15-1 0.0438 3035 8.66 0.0167 3813 18.62 N/A
B15-2 0.0438 3035 8.71 0.0438 3035 18.65 N/A
B15-3 0.1368 3813 12.94 0.1368 3603 32.63 -
B15-4 0.1368 3813 12.48 0.1368 3603 47.26 -
B15-5 0.1368 3813 12.52 0.1368 3603 46.53 -

B16-1 0.0157 5340 85.48 0.0034 5916 201.60 N/A
B16-2 0.0157 5340 85.36 0.0034 5916 201.96 N/A
B16-3 0.0177 5478 85.47 0.0157 5778 202.22 N/A
B16-4 0.0177 4930 88.06 0.0178 4852 200.24 SPT
B16-5 0.0177 5418 45.97 0.0178 5752 747.87 SPT

B17-1 0.1124 2079 29.05 0.1124 2079 117.70 N/A
B17-2 0.1124 2079 29.14 0.1124 2970 45.88 SPT
B17-3 0.1124 2079 29.32 0.1124 3912 50.37 SPT
B17-4 0.1124 2079 29.32 0.1124 3912 59.04 SPT
B17-5 0.1124 2079 29.13 0.1124 3912 66.79 SPT

B18-1 0.2218 1829 20.90 0.2218 1829 30.12 -
B18-2 0.2218 1829 20.88 0.2218 1829 29.83 -
B18-3 0.2218 1829 20.93 0.2218 1829 29.87 -
B18-4 0.2218 1829 20.88 0.2218 1829 29.84 -
B18-5 0.2218 1829 21.07 0.2218 1829 29.93 -

B19-1 0.1457 1720 1.77 0.1457 1720 14.25 -
B19-2 0.1457 1720 1.75 0.1457 1720 14.25 -
B19-3 0.1457 1720 1.76 0.1457 1720 14.75 -
B19-4 0.1457 1720 1.74 0.1457 1720 14.76 -
B19-5 0.1457 1720 1.74 0.1457 1720 14.74 -

Table 5.12: Solutions for Problem Set B using Tabu Search with NFT Penalty and Best
PST Selection

102

Takahashi SPT

PST PST

Pr τT OT Sec τT OT Sec Best

B10-1 0.0255 2564 30.09 0.1095 2912 75.92 N/A
B10-2 0.1095 2912 32.54 0.1095 2912 79.37 -
B10-3 0.1095 3592 41.27 0.1095 3592 97.70 -
B10-4 0.1095 3592 57.30 0.1095 3592 124.23 -
B10-5 0.1095 3592 56.93 0.1095 3592 123.71 -

B11-1 0.0722 3495 13.40 0.0501 3682 372.94 N/A
B11-2 0.0722 3495 13.47 0.0722 3260 372.85 N/A
B11-3 0.0722 3495 27.55 0.0722 3495 142.94 -
B11-4 0.0722 3495 23.98 0.0722 3495 63.78 -
B11-5 0.0722 3495 23.77 0.0722 3495 64.21 -

B12-1 0.0394 3002 27.14 0.0394 3002 48.01 N/A
B12-2 0.0394 3002 27.39 0.0394 3002 47.92 N/A
B12-3 0.0395 3812 44.10 0.0395 3812 71.17 -
B12-4 0.0395 3812 35.50 0.0395 3812 59.23 -
B12-5 0.0395 3812 35.46 0.0395 3812 58.84 -

B13-1 0.0770 1479 11.54 0.0770 1479 12.32 -
B13-2 0.0770 1479 11.52 0.0770 1479 12.33 -
B13-3 0.0770 1479 11.54 0.0770 1479 12.43 -
B13-4 0.0770 1479 11.51 0.0770 1479 12.52 -
B13-5 0.0770 1479 11.52 0.0770 1479 12.55 -

B14-1 0.0198 3222 24.90 0.0175 3390 132.68 N/A
B14-2 0.0705 3359 25.28 0.0285 3570 132.87 N/A
B14-3 0.0705 3774 42.50 0.0705 3774 116.23 -
B14-4 0.0705 3774 66.66 0.0705 3587 142.62 -
B14-5 0.0705 3774 71.11 0.0705 3587 118.02 -

B15-1 0.0438 3035 5.52 0.0167 3813 15.64 N/A
B15-2 0.0438 3035 5.58 0.0438 3035 15.63 N/A
B15-3 0.1368 3977 9.99 0.1368 3603 27.30 -
B15-4 0.1368 4493 11.62 0.1368 3603 47.43 -
B15-5 0.1368 4493 11.76 0.1368 3603 47.32 -

B16-1 0.0157 5340 1,037.95 0.0034 5916 1,436.47 N/A
B16-2 0.0157 5340 1,039.50 0.0034 5916 1,434.91 N/A
B16-3 0.0177 5478 1,040.55 0.0157 5778 1,429.08 N/A
B16-4 0.0178 4852 1,418.33 0.0178 4852 1,439.70 SPT
B16-5 0.0178 5120 1,700.79 0.0178 5120 3,578.68 SPT

B17-1 0.1124 2079 22.58 0.1124 2079 112.19 N/A
B17-2 0.1124 2970 23.16 0.1124 2970 40.03 -
B17-3 0.1124 3426 24.69 0.1124 3912 45.15 -
B17-4 0.1124 3912 28.69 0.1124 3912 58.16 -
B17-5 0.1124 3912 28.66 0.1124 3912 66.39 -

B18-1 0.2218 1829 13.66 0.2218 1829 21.50 -
B18-2 0.2218 1829 13.76 0.2218 1829 21.55 -
B18-3 0.2218 1829 15.03 0.2218 1829 22.59 -
B18-4 0.2218 1829 14.99 0.2218 1829 22.78 -
B18-5 0.2218 1829 14.85 0.2218 1829 22.80 -

B19-1 0.1457 1720 1.95 0.1457 1720 14.73 -
B19-2 0.1457 1720 2.23 0.1457 1720 14.82 -
B19-3 0.1457 1720 2.24 0.1457 1720 15.42 -
B19-4 0.1457 1720 2.20 0.1457 1720 15.55 -
B19-5 0.1457 1720 2.19 0.1457 1720 15.41 -

Table 5.13: Solutions for Problem Set B using Tabu Search with NFT Penalty and Ad-
aptive PST Selection

103

PST policy leads to a significant increase in the number of best solutions found for the

Takahashi-Matsuyama diversification regardless of the other properties of the tabu search.

A direct comparison between the running times of the tabu search and exhaustive

search algorithms can not be made for this problem set, as the running times for the

exhaustive search would be excessive, thus rendering the experiments impractical. The

average running time shown in table 5.14 are favourable when compared to the running

times given for the exhaustive search in table 5.2, the longest average running time of

273.24s is approximately equal to that of the exhaustive search average running time of

A6. In the worst case, the longest running times are those of B16-5 when the tabu search

utilises that of the adaptive SPT policy, but is still faster than the exhaustive search for

|R| = 7. Despite this, the running times for B16 for both PST selection policies are

impractical for real-world problems.

In table 5.15, the algorithms that find the best solution (it is not possible to de-

termine if these are also optimal due to running time of the exhaustive search) for each

problem are given. Algorithm (1) is the static/best/takahashi tabu search, (2) is the

static/best/spt, (3) is the static/adaptive/takahashi, (4) is the static/adaptive/spt, (5) is

the nft/best/takahashi, (6) is the nft/best/spt, (7) is the nft/adaptive/takahashi, and (8)

is the nft/adaptive/spt.

Algorithm Best Over-budget Avg Time

Static, Best, Takahashi 28 11 29.02
Static, Best, SPT 37 12 120.96
Static, Adaptive, Takahashi 37 11 151.60
Static, Adaptive, SPT 38 12 273.24

NFT, Best, Takahashi 26 14 28.74
NFT, Best, SPT 37 12 115.44
NFT, Adaptive, Takahashi 35 13 145.41
NFT, Adaptive, SPT 37 13 249.47

Table 5.14: Average Results Overview for Problem Set B

5.4.3 Problem Set C

The results for problem set C show the least deviation in results. Of the static penalty

tabu search algorithms, three find identical results: best PST selection and Takahashi

diversification (table 5.16); best PST selection and SPT diversification (table 5.16); and

Adaptive PST selection and Takahashi-Matsuyama diversification (table 5.17). The same

is also true when then the tabu search algorithm utilises the NFT penalty function, the

results for these algorithms can be found in tables 5.18 and 5.19. The tabu search al-

104

Pr Algorithms

B10-1
B10-2 (2) (3) (4) (6) (7) (8)
B10-3 (1) (2) (3) (4) (5) (6) (7) (8)
B10-4 (1) (2) (3) (4) (5) (6) (7) (8)
B10-5 (1) (2) (3) (4) (5) (6) (7) (8)

B11-1
B11-2
B11-3 (1) (2) (3) (4) (5) (6) (7) (8)
B11-4 (1) (2) (3) (4) (5) (6) (7) (8)
B11-5 (1) (2) (3) (4) (5) (6) (7) (8)

B12-1
B12-2 (1) (2) (3) (4) (6)
B12-3 (2) (3) (4) (6) (7) (8)
B12-4 (2) (3) (4) (6) (7) (8)
B12-5 (2) (3) (4) (6) (7) (8)

B13-1 (1) (2) (3) (4) (5) (6) (7) (8)
B13-2 (1) (2) (3) (4) (5) (6) (7) (8)
B13-3 (1) (2) (3) (4) (5) (6) (7) (8)
B13-4 (1) (2) (3) (4) (5) (6) (7) (8)
B13-5 (1) (2) (3) (4) (5) (6) (7) (8)

B14-1
B14-2 (1) (3)
B14-3 (2) (3) (4) (6) (7) (8)
B14-4 (1) (2) (3) (4) (5) (6) (7) (8)
B14-5 (1) (2) (3) (4) (5) (6) (7) (8)

B15-1
B15-2
B15-3 (1) (2) (3) (4) (5) (6) (7) (8)
B15-4 (1) (2) (3) (4) (5) (6) (7) (8)
B15-5 (1) (2) (3) (4) (5) (6) (7) (8)

B16-1
B16-2
B16-3
B16-4 (2) (4) (6) (8)
B16-5 (4) (8)

B17-1
B17-2 (2) (3) (4) (6) (7) (8)
B17-3 (2) (3) (4) (6) (7) (8)
B17-4 (2) (3) (4) (6) (7) (8)
B17-5 (2) (3) (4) (6) (7) (8)

B18-1 (1) (2) (3) (4) (5) (6) (7) (8)
B18-2 (1) (2) (3) (4) (5) (6) (7) (8)
B18-3 (1) (2) (3) (4) (5) (6) (7) (8)
B18-4 (1) (2) (3) (4) (5) (6) (7) (8)
B18-5 (1) (2) (3) (4) (5) (6) (7) (8)

B19-1 (1) (2) (3) (4) (5) (6) (7) (8)
B19-2 (1) (2) (3) (4) (5) (6) (7) (8)
B19-3 (1) (2) (3) (4) (5) (6) (7) (8)
B19-4 (1) (2) (3) (4) (5) (6) (7) (8)
B19-5 (1) (2) (3) (4) (5) (6) (7) (8)

Table 5.15: Algorithm Finding Best Solutions for Problem Set B

105

gorithm with adaptive PST selection and SPT diversification, utilising either the static

(table 5.17) or NFT penalty function (table 5.18), outperformes the other techniques by

finding better solutions for problems D100-4 and D100-5, as show in table 5.21, where al-

gorithm (1) is the static/best/takahashi tabu search, (2) is the static/best/spt, (3) is the

static/adaptive/takahashi, (4) is the static/adaptive/spt, (5) is the nft/best/takahashi,

(6) is the nft/best/spt, (7) is the nft/adaptive/takahashi, and (8) is the nft/adaptive/spt.

While the combination of adaptive PST selection and SPT diversification yields more

better solutions, its average running time is only third fastest for both static and NFT

penalty functions. Unlike previous problem sets, the NFT penalty tabu search algorithms

do not find more over budget solutions than the static ones, as all algorithms find six over

budget PSTs for the same problems.

The running times are dependent on the PST selection policy and diversification

strategies. For problem sets A and B, the use of the adaptive PST selection policy resulted

in an increase in the running time for each tabu search algorithm where all other proper-

ties remain identical. For problem set C, the opposite behaviour is observed, as changing

the PST selection policy from best to adaptive gives faster running times, a little over

three seconds improvement when the Takahashi-Matsuyama diversification is used and

1.90 times faster when the diversification strategy is SPT on average. Although the PST

selection policy has an impact on running times, the diversification strategy contributes to

it to a much greater extent. The tabu search with static penalty and best PST selection

is on average 9.8 times faster when the Takahashi-Matsuyama diversification is used, and

for the tabu search with NFT penalty function and the same PST selection policy, use

of the Takahashi-Matsuyama diversification gives a running time that is 9.3 times faster.

For the tabu search with static penalty and adaptive PST policy, and for the tabu search

with NFT penalty and adaptive PST policy, the running times when used in conjunction

with the Takahashi-Matsuyama diversification strategy are 5.47 and 5.38 times faster re-

spectively. The average running times of the tabu search with SPT diversification are

elevated as a result of the increased running times for problem subsets C20, C40, C80

and C90, which are an order of magnitude slower than those of the Takahashi-Matsuyama

diversification.

With respect to the number of best solution found, the static and NFT penalty tabu

search algorithms with adaptive PST selection and SPT diversification, find the most best

solutions for the problem set, but some of the running times are impractical for real-

world use. For the static variant, the running times of problem subsets C20 and C40

106

are in the order of hundreds of seconds, with the longest running time being 643.89s for

problem C20-4. For the NFT variant, the running times for C20 and C40 are similar

with the longest running time being 626.41s for problem C20-4. These running times are

impractical in real-world applications where the connectivity graph is subject to change

due to churn or mobility, and likely to change within these lengths of time, so for practical

applications and given the results for this problem set, that tabu search algorithms using

Takahashi-Matsuyama diversification are preferable.

5.5 Takahashi-Matsuyama and SPT Heuristics

The Steiner tree rooted at the publisher p, spanning the set of subscribers S, and the

shortest path tree rooted at p, where each s ∈ S is a terminal node, are in the set of all

possible PSTs of an MTPSTO problem. These trees are the initial solutions to the tabu

search algorithms. In tables 5.22, 5.23, and 5.24, the trust and overhead values of the

initial PSTs using these methods are given for the three problem sets. In addition, for

problem set A, their relative error with respect to the trust and overhead values, but as

this information is not available for problem sets B and C, the relative errors to the best

solution found by the tabu search algorithms is given for each problem.

Both heuristics are naive, in the sense that neither uses the trust information nor the

subscriptions of the subscribers to estimate or to seek to reduce overheads, perhaps by

maximising subscription covering. Despite this, for problem subset C, solutions are found

to C60 and C90 using the Takahashi-Matsuyama heuristic, and for C80 and C90 by the

SPT heuristic. The connectivity graph for problem subset C90, has the publisher directly

connected to all the subscribers, so both the heuristics find the most trusted tree, however

for almost all problems in problem sets B and C, the relative errors are high. Problem

subset C30 is of particular interest as the solution for C30-1 is not selected by any tabu

search algorithm as the best solution, instead they find an over budget solution and despite

the solution being the initial solution of the search. This is due to the penalty functions

penalising the initial solution such that inferior ones are preferred. For small connectivity

graph size, where the publisher is located nearer to the publishers, the use of either of

these heuristics may be preferable to the tabu search and the exhaustive search given the

solutions found and the running times for the smaller problems of problem set A, however

this may not always be the case, as is shown by the relative error for the problem subset

A1 when the Takahashi-Matsuyama heuristic is used.

107

Takahashi SPT

PST PST

Pr τT OT Sec τT OT Sec Best

C20-1 0.1210 2948 71.76 0.1210 2948 493.05 N/A
C20-2 0.1210 2948 71.57 0.1210 2948 493.83 -
C20-3 0.1210 3254 70.10 0.1210 3934 498.79 -
C20-4 0.1210 3254 70.15 0.1210 3934 631.74 -
C20-5 0.1210 3254 70.08 0.1210 3934 489.76 -

C30-1 0.1329 2234 59.38 0.1329 2234 98.42 N/A
C30-2 0.1329 2234 95.97 0.1329 2234 237.14 -
C30-3 0.1329 2234 95.65 0.1329 2234 237.92 -
C30-4 0.1329 2234 95.77 0.1329 2234 237.95 -
C30-5 0.1329 2234 95.94 0.1329 2234 238.15 -

C40-1 0.0245 2564 58.11 0.0245 3132 518.75 N/A
C40-2 0.0245 2564 57.97 0.0245 2564 520.06 -
C40-3 0.0245 2564 57.90 0.0245 3132 519.93 -
C40-4 0.0245 2564 57.80 0.0245 3132 530.84 -
C40-5 0.0245 2564 57.84 0.0245 3132 530.01 -

C50-1 0.0124 2224 15.05 0.0124 2224 26.08 N/A
C50-2 0.0124 2224 15.03 0.0124 2224 26.11 -
C50-3 0.0124 2224 15.03 0.0124 2224 26.09 -
C50-4 0.0124 2224 15.03 0.0124 2224 26.06 -
C50-5 0.0124 2224 15.06 0.0124 2224 26.00 -

C60-1 0.0661 1630 9.26 0.0661 1630 40.16 -
C60-2 0.0661 1630 9.25 0.0661 1630 40.05 -
C60-3 0.0661 1630 9.22 0.0661 1630 39.88 -
C60-4 0.0661 1630 9.24 0.0661 1630 40.12 -
C60-5 0.0661 1630 9.24 0.0661 1630 40.08 -

C70-1 0.0381 2838 14.39 0.0381 2838 41.97 N/A
C70-2 0.0381 2838 14.39 0.0381 2838 41.98 -
C70-3 0.0381 2838 14.79 0.0381 2838 40.38 -
C70-4 0.0381 2838 14.80 0.0381 2838 40.46 -
C70-5 0.0381 2838 14.82 0.0381 2838 40.40 -

C80-1 0.1320 1962 9.89 0.1320 1962 103.20 -
C80-2 0.1320 1962 9.89 0.1320 1962 103.40 -
C80-3 0.1320 1962 9.88 0.1320 1962 103.48 -
C80-4 0.1320 1962 9.88 0.1320 1962 103.54 -
C80-5 0.1320 1962 9.86 0.1320 1962 103.64 -

C90-1 0.0354 1282 27.12 0.0354 1282 1,412.56 -
C90-2 0.0354 1282 27.09 0.0354 1282 1,412.63 -
C90-3 0.0354 1282 27.03 0.0354 1282 1,412.73 -
C90-4 0.0354 1282 27.10 0.0354 1282 1,414.15 -
C90-5 0.0354 1282 27.06 0.0354 1282 1,413.67 -

C100-1 0.0112 2968 22.91 0.0128 2788 47.25 N/A
C100-2 0.0128 2798 18.91 0.0128 2798 38.46 -
C100-3 0.0128 2798 19.24 0.0128 2798 37.31 -
C100-4 0.0128 2798 19.26 0.0128 2798 36.00 -
C100-5 0.0128 2798 20.39 0.0128 2798 35.87 -

Table 5.16: Solutions for Problem Set C using Tabu Search with Static Penalty and Best
PST Selection

108

Takahashi SPT

PST PST

Pr τT OT Sec τT OT Sec Best

C20-1 0.1210 2948 42.00 0.1210 2948 463.82 N/A
C20-2 0.1210 2948 41.97 0.1210 2948 456.55 -
C20-3 0.1210 3254 36.33 0.1210 3934 458.79 -
C20-4 0.1210 3254 33.76 0.1210 3934 643.89 -
C20-5 0.1210 3254 33.73 0.1210 3934 445.46 -

C30-1 0.1329 2234 57.19 0.1329 2234 91.39 N/A
C30-2 0.1329 2234 61.82 0.1329 2234 105.19 -
C30-3 0.1329 2234 72.58 0.1329 2234 101.00 -
C30-4 0.1329 2234 88.44 0.1329 2234 113.33 -
C30-5 0.1329 2234 84.46 0.1329 2234 120.65 -

C40-1 0.0245 2564 56.52 0.0245 3132 505.12 N/A
C40-2 0.0245 2564 60.04 0.0245 2564 512.88 -
C40-3 0.0245 2564 50.73 0.0245 3132 499.93 -
C40-4 0.0245 2564 50.77 0.0245 3132 505.03 -
C40-5 0.0245 2564 50.81 0.0245 3132 508.89 -

C50-1 0.0124 2224 18.96 0.0124 2224 32.27 N/A
C50-2 0.0124 2224 18.87 0.0124 2224 32.12 -
C50-3 0.0124 2224 18.70 0.0124 2224 31.83 -
C50-4 0.0124 2224 19.70 0.0124 2224 33.61 -
C50-5 0.0124 2224 19.96 0.0124 2224 33.95 -

C60-1 0.0661 1630 9.86 0.0661 1630 41.32 -
C60-2 0.0661 1630 9.98 0.0661 1630 41.03 -
C60-3 0.0661 1630 9.82 0.0661 1630 41.26 -
C60-4 0.0661 1630 9.89 0.0661 1630 41.32 -
C60-5 0.0661 1630 9.91 0.0661 1630 41.39 -

C70-1 0.0381 2838 30.00 0.0381 2838 61.08 N/A
C70-2 0.0381 2838 29.99 0.0381 2838 61.28 -
C70-3 0.0381 2838 46.44 0.0381 2838 81.15 -
C70-4 0.0381 2838 46.77 0.0381 2838 82.05 -
C70-5 0.0381 2838 45.85 0.0381 2838 80.47 -

C80-1 0.1320 1962 17.84 0.1320 1962 114.96 -
C80-2 0.1320 1962 13.54 0.1320 1962 109.63 -
C80-3 0.1320 1962 13.56 0.1320 1962 109.79 -
C80-4 0.1320 1962 13.55 0.1320 1962 109.82 -
C80-5 0.1320 1962 13.57 0.1320 1962 109.80 -

C90-1 0.0354 1282 11.56 0.0354 1282 131.76 -
C90-2 0.0354 1282 11.59 0.0354 1282 131.87 -
C90-3 0.0354 1282 11.59 0.0354 1282 132.09 -
C90-4 0.0354 1282 11.57 0.0354 1282 131.87 -
C90-5 0.0354 1282 11.57 0.0354 1282 131.71 -

C100-1 0.0112 2968 28.40 0.0128 2788 66.01 N/A
C100-2 0.0128 2798 23.02 0.0128 2798 51.20 -
C100-3 0.0128 2798 18.89 0.0128 2798 49.50 -
C100-4 0.0128 2798 19.64 0.0128 2978 53.15 SPT
C100-5 0.0128 2798 19.52 0.0128 2978 53.08 SPT

Table 5.17: Solutions for Problem Set C using Tabu Search with Static Penalty and
Adaptive PST Selection

109

Takahashi SPT

PST PST

Pr τT OT Sec τT OT Sec Best

C20-1 0.1210 2948 72.17 0.0198 2564 477.44 N/A
C20-2 0.1210 2948 71.80 0.1210 2948 477.92 -
C20-3 0.1210 3254 70.83 0.1210 3934 482.08 -
C20-4 0.1210 3254 70.29 0.1210 3934 611.87 -
C20-5 0.1210 3254 70.70 0.1210 3934 474.06 -

C30-1 0.1329 2234 57.40 0.1329 2234 97.70 N/A
C30-2 0.1329 2234 92.82 0.1329 2234 234.46 -
C30-3 0.1329 2234 92.88 0.1329 2234 235.38 -
C30-4 0.1329 2234 92.87 0.1329 2234 235.41 -
C30-5 0.1329 2234 92.85 0.1329 2234 235.40 -

C40-1 0.0245 2564 58.55 0.0045 2564 517.87 N/A
C40-2 0.0245 2564 58.58 0.0245 2564 518.35 -
C40-3 0.0245 2564 58.51 0.0245 3132 519.12 -
C40-4 0.0245 2564 58.32 0.0245 3132 529.66 -
C40-5 0.0245 2564 58.39 0.0245 3132 530.63 -

C50-1 0.0124 2224 16.09 0.0124 2224 26.90 N/A
C50-2 0.0124 2224 16.08 0.0124 2224 26.95 -
C50-3 0.0124 2224 16.09 0.0124 2224 26.92 -
C50-4 0.0124 2224 16.07 0.0124 2224 26.87 -
C50-5 0.0124 2224 16.08 0.0124 2224 26.88 -

C60-1 0.0661 1630 9.62 0.0661 1630 40.00 -
C60-2 0.0661 1630 9.59 0.0661 1630 40.05 -
C60-3 0.0661 1630 9.57 0.0661 1630 40.06 -
C60-4 0.0661 1630 9.58 0.0661 1630 40.03 -
C60-5 0.0661 1630 9.58 0.0661 1630 40.13 -

C70-1 0.0381 2838 14.19 0.0381 2838 41.83 N/A
C70-2 0.0381 2838 14.20 0.0381 2838 41.77 -
C70-3 0.0381 2838 14.61 0.0381 2838 40.21 -
C70-4 0.0381 2838 14.58 0.0381 2838 40.39 -
C70-5 0.0381 2838 14.59 0.0381 2838 40.22 -

C80-1 0.1320 1962 9.71 0.1320 1962 104.78 -
C80-2 0.1320 1962 9.66 0.1320 1962 105.21 -
C80-3 0.1320 1962 9.65 0.1320 1962 104.97 -
C80-4 0.1320 1962 9.65 0.1320 1962 105.23 -
C80-5 0.1320 1962 9.68 0.1320 1962 105.18 -

C90-1 0.0354 1282 27.45 0.0354 1282 1,418.56 -
C90-2 0.0354 1282 27.43 0.0354 1282 1,420.29 -
C90-3 0.0354 1282 27.47 0.0354 1282 1,418.59 -
C90-4 0.0354 1282 27.43 0.0354 1282 1,418.93 -
C90-5 0.0354 1282 27.52 0.0354 1282 1,421.42 -

C100-1 0.0038 2448 20.42 0.0031 2628 38.92 N/A
C100-2 0.0128 2798 19.21 0.0128 2798 37.90 -
C100-3 0.0128 2798 19.12 0.0128 2798 37.56 -
C100-4 0.0128 2798 19.21 0.0128 2798 36.22 -
C100-5 0.0128 2798 19.71 0.0128 2798 36.04 -

Table 5.18: Solutions for Problem Set C using Tabu Search with NFT Penalty and Best
PST Selection

110

Takahashi SPT

PST PST

Pr τT OT Sec τT OT Sec Best

C20-1 0.1210 2948 42.49 0.0198 2564 451.71 N/A
C20-2 0.1210 2948 42.31 0.1210 2948 444.22 -
C20-3 0.1210 3254 36.61 0.1210 3934 445.57 -
C20-4 0.1210 3254 34.08 0.1210 3934 626.41 -
C20-5 0.1210 3254 34.05 0.1210 3934 433.22 -

C30-1 0.1329 2234 57.16 0.1329 2234 93.44 N/A
C30-2 0.1329 2234 61.67 0.1329 2234 107.19 -
C30-3 0.1329 2234 72.13 0.1329 2234 103.09 -
C30-4 0.1329 2234 87.94 0.1329 2234 115.90 -
C30-5 0.1329 2234 84.20 0.1329 2234 122.99 -

C40-1 0.0245 2564 56.92 0.0045 2564 523.61 N/A
C40-2 0.0245 2564 60.52 0.0245 2564 529.70 -
C40-3 0.0245 2564 51.25 0.0245 3132 517.41 -
C40-4 0.0245 2564 51.34 0.0245 3132 522.35 -
C40-5 0.0245 2564 51.25 0.0245 3132 526.18 -

C50-1 0.0124 2224 20.13 0.0124 2224 32.22 N/A
C50-2 0.0124 2224 20.16 0.0124 2224 32.10 -
C50-3 0.0124 2224 19.95 0.0124 2224 31.86 -
C50-4 0.0124 2224 20.98 0.0124 2224 33.57 -
C50-5 0.0124 2224 21.20 0.0124 2224 33.98 -

C60-1 0.0661 1630 10.21 0.0661 1630 41.28 -
C60-2 0.0661 1630 10.38 0.0661 1630 41.06 -
C60-3 0.0661 1630 10.21 0.0661 1630 41.26 -
C60-4 0.0661 1630 10.25 0.0661 1630 41.34 -
C60-5 0.0661 1630 10.25 0.0661 1630 41.33 -

C70-1 0.0327 2838 30.40 0.0327 2838 63.12 N/A
C70-2 0.0381 2838 30.47 0.0381 2838 62.59 -
C70-3 0.0381 2838 47.12 0.0381 2838 83.22 -
C70-4 0.0381 2838 47.50 0.0381 2838 84.08 -
C70-5 0.0381 2838 46.52 0.0381 2838 82.36 -

C80-1 0.1320 1962 18.13 0.1320 1962 116.49 -
C80-2 0.1320 1962 13.77 0.1320 1962 111.15 -
C80-3 0.1320 1962 13.77 0.1320 1962 111.02 -
C80-4 0.1320 1962 13.77 0.1320 1962 111.29 -
C80-5 0.1320 1962 13.80 0.1320 1962 111.39 -

C90-1 0.0354 1282 11.48 0.0354 1282 128.57 -
C90-2 0.0354 1282 11.53 0.0354 1282 129.00 -
C90-3 0.0354 1282 11.51 0.0354 1282 129.17 -
C90-4 0.0354 1282 11.57 0.0354 1282 129.25 -
C90-5 0.0354 1282 11.66 0.0354 1282 129.35 -

C100-1 0.0038 2448 28.06 0.0031 2628 46.02 N/A
C100-2 0.0128 2798 22.92 0.0128 2798 40.36 -
C100-3 0.0128 2798 18.84 0.0128 2798 39.03 -
C100-4 0.0128 2798 19.57 0.0128 2978 41.90 SPT
C100-5 0.0128 2798 19.44 0.0128 2978 41.92 SPT

Table 5.19: Solutions for Problem Set C using Tabu Search with NFT Penalty and Ad-
aptive PST Selection

111

Algorithm Best Over-budget Avg Time

Static, Best, Takahashi 37 6 34.80
Static, Best, SPT 37 6 324.22
Static, Adaptive, Takahashi 37 6 31.21
Static, Adaptive, SPT 39 6 170.93

NFT, Best, Takahashi 37 6 34.68
NFT, Best, SPT 37 6 322.80
NFT, Adaptive, Takahashi 37 6 31.50
NFT, Adaptive, SPT 39 6 169.61

Table 5.20: Average Results Overview for Problem Set C

5.6 Summary

Given the results and their analysis in this chapter, it is possible to draw a number of

conclusions with respect to the evaluation objectives given at the beginning of this chapter.

The principle conclusion is that the tabu search algorithms are well suited to the MTPSTO

problem, outperforming the exhaustive search and naive heuristics for all but problems of

small graph sizes. The tabu search is able to find solutions to problems with much larger

connectivity graphs than the exhaustive search within a reasonable time, with optimal

solutions being found for problems where they are known. Compared to the Takahashi-

Matsuyama and SPT heuristics, the relative error of the solutions found by the naive

heuristics are, for the most part, very high.

The properties of the tabu search, the penalty function, the PST selection policy, and

the diversification strategy were also considered. The use of the NFT penalty function was

expected to give improved results when compared to the static penalty function, however

this proved not to be the case, with the NFT penalty function finding some over-budget

solutions for problem set A and B, while none were found when the static penalty was used.

For problem set C, there was no difference between the two. The poor performance of the

NFT method may be due to the user-set parameter of the NFT penalty function not being

ideal, or it may be due to the method being less effective where there are few constraints,

as highlighted by its authors. The static penalty function is by no means perfect, with

one particularly interesting case where the initial solution is a better solution than that

eventually found by the tabu search using this penalty method.

For the PST selection policy, conflicting conclusions can be drawn. For problem set

B, the running times increase with the use of the adaptive policy, but for problem set C,

they decrease. The impact on the results can be seen when it is used with the Takahashi-

Matsuyama diversification for problem set B and the SPT diversification for problem

set C. Clearly, further research is needed on the PST selection policy. For many of the

112

Pr Algorithms

C20-1
C20-2 (1) (2) (3) (4) (5) (6) (7) (8)
C20-3 (1) (2) (3) (4) (5) (6) (7) (8)
C20-4 (1) (2) (3) (4) (5) (6) (7) (8)
C20-5 (1) (2) (3) (4) (5) (6) (7) (8)

C30-1
C30-2 (1) (2) (3) (4) (5) (6) (7) (8)
C30-3 (1) (2) (3) (4) (5) (6) (7) (8)
C30-4 (1) (2) (3) (4) (5) (6) (7) (8)
C30-5 (1) (2) (3) (4) (5) (6) (7) (8)

C40-1
C40-2 (1) (2) (3) (4) (5) (6) (7) (8)
C40-3 (1) (2) (3) (4) (5) (6) (7) (8)
C40-4 (1) (2) (3) (4) (5) (6) (7) (8)
C40-5 (1) (2) (3) (4) (5) (6) (7) (8)

C50-1
C50-2 (1) (2) (3) (4) (5) (6) (7) (8)
C50-3 (1) (2) (3) (4) (5) (6) (7) (8)
C50-4 (1) (2) (3) (4) (5) (6) (7) (8)
C50-5 (1) (2) (3) (4) (5) (6) (7) (8)

C60-1 (1) (2) (3) (4) (5) (6) (7) (8)
C60-2 (1) (2) (3) (4) (5) (6) (7) (8)
C60-3 (1) (2) (3) (4) (5) (6) (7) (8)
C60-4 (1) (2) (3) (4) (5) (6) (7) (8)
C60-5 (1) (2) (3) (4) (5) (6) (7) (8)

C70-1
C70-2 (1) (2) (3) (4) (5) (6) (7) (8)
C70-3 (1) (2) (3) (4) (5) (6) (7) (8)
C70-4 (1) (2) (3) (4) (5) (6) (7) (8)
C70-5 (1) (2) (3) (4) (5) (6) (7) (8)

C80-1 (1) (2) (3) (4) (5) (6) (7) (8)
C80-2 (1) (2) (3) (4) (5) (6) (7) (8)
C80-3 (1) (2) (3) (4) (5) (6) (7) (8)
C80-4 (1) (2) (3) (4) (5) (6) (7) (8)
C80-5 (1) (2) (3) (4) (5) (6) (7) (8)

C90-1 (1) (2) (3) (4) (5) (6) (7) (8)
C90-2 (1) (2) (3) (4) (5) (6) (7) (8)
C90-3 (1) (2) (3) (4) (5) (6) (7) (8)
C90-4 (1) (2) (3) (4) (5) (6) (7) (8)
C90-5 (1) (2) (3) (4) (5) (6) (7) (8)

C100-1
C100-2 (1) (2) (3) (4) (5) (6) (7) (8)
C100-3 (1) (2) (3) (4) (5) (6) (7) (8)
C100-4 (4) (8)
C100-5 (4) (8)

Table 5.21: Algorithm Finding Best Solutions for Problem Set C

113

Takahashi SPT

PST Rel. Error PST Rel. Error

Pr τT OT ητ ηO Sec τT OT ητ ηO Sec

A0-2 0.0322 2179 - - 0.0071 0.0322 2179 - - 0.0087
A0-3 0.0322 2179 - - 0.0071 0.0322 2179 - - 0.0087
A0-4 0.0322 2179 - - 0.0071 0.0322 2179 - - 0.0087
A0-5 0.0322 2179 - - 0.0071 0.0322 2179 - - 0.0087

A1-2 0.0023 2884 0.873 0.2027 0.0064 0.0181 2398 - - 0.006
A1-3 0.0023 2884 0.873 0.2027 0.0064 0.0181 2398 - - 0.006
A1-4 0.0023 2884 0.873 0.2027 0.0064 0.0181 2398 - - 0.006
A1-5 0.0023 2884 0.873 0.2027 0.0064 0.0181 2398 - - 0.006

A2-1 0.0931 1850 - - 0.0076 0.0931 1850 - - 0.0059
A2-2 0.0931 1850 - - 0.0076 0.0931 1850 - - 0.0059
A2-3 0.0931 1850 - - 0.0076 0.0931 1850 - - 0.0059
A2-4 0.0931 1850 - - 0.0076 0.0931 1850 - - 0.0059
A2-5 0.0931 1850 - - 0.0076 0.0931 1850 - - 0.0059

A3-2 0.0223 3297 0.00128 0.1303 0.0086 0.0223 3436 - - 0.0059
A3-3 0.0223 3297 0.00128 0.1303 0.0086 0.0223 3436 - - 0.0059
A3-4 0.0223 3297 0.00128 0.1303 0.0086 0.0223 3436 - - 0.0059
A3-5 0.0223 3297 0.00128 0.1303 0.0086 0.0223 3436 - - 0.0059

A4-2 0.1855 2224 - - 0.0083 0.0933 2564 0.4968 0.1529 0.0052
A4-3 0.1855 2224 - - 0.0083 0.0933 2564 0.4968 0.1529 0.0052
A4-4 0.1855 2224 - - 0.0083 0.0933 2564 0.4968 0.1529 0.0052
A4-5 0.1855 2224 - - 0.0083 0.0933 2564 0.4968 0.1529 0.0052

A5-2 0.0542 2262 - - 0.0078 0.0369 2968 0.3192 0.3121 0.0079
A5-3 0.0542 2262 0.3323 0.2922 0.0078 0.0369 2968 0.5454 0.0713 0.0079
A5-4 0.0542 2262 0.3323 0.2922 0.0078 0.0369 2968 0.5454 0.0713 0.0079
A5-5 0.0542 2262 0.3323 0.2922 0.0078 0.0369 2968 0.5454 0.0713 0.0079

A6-3 0.0241 3911 0.3318 0.0169 0.0185 0.0253 3828 0.2966 0.0047 0.0081
A6-4 0.0241 3911 0.3318 0.114 0.0185 0.0253 3828 0.2966 0.1328 0.0081
A6-5 0.0241 3911 0.3318 0.114 0.0185 0.0253 3828 0.2966 0.1328 0.0081

A7-3 0.0644 3512 0.0685 0.0162 0.0091 0.0057 3132 0.9458 0.1124 0.0053
A7-4 0.0644 3512 0.0685 0.0162 0.0091 0.0057 3132 0.9458 0.1124 0.0053
A7-5 0.0644 3512 0.0685 0.0162 0.0091 0.0057 3132 0.9458 0.1124 0.0053

A8-3 0.00031 4293 0.9011 0.1739 0.0106 0.00017 4484 0.9458 0.2261 0.0053
A8-4 0.00031 4293 0.9011 0.065 0.0106 0.00017 4484 0.9458 0.1124 0.0053
A8-5 0.00031 4293 0.9011 0.065 0.0106 0.00017 4484 0.9458 0.1124 0.0053

A9-1 0.0193 2278 0.9114 0.2085 0.0093 0.0359 2104 0.8358 0.1162 0.0058
A9-2 0.0193 2278 0.9114 0.2085 0.0093 0.0359 2104 0.8358 0.1162 0.0058
A9-3 0.0193 2278 0.9114 0.2085 0.0093 0.0359 2104 0.8358 0.1162 0.0058
A9-4 0.0193 2278 0.9114 0.2085 0.0093 0.0359 2104 0.8358 0.1162 0.0058
A9-5 0.0193 2278 0.9114 0.2085 0.0093 0.0359 2104 0.8358 0.1162 0.0058

Table 5.22: Solutions for Problem Set A using the Takahashi-Matsuyama Steiner Tree
Heuristic & the Shortest Path Tree Heuristic

114

Takahashi SPT

PST Rel. Error PST Rel. Error

Pr τT OT ητ ηO Sec τT OT ητ ηO Sec

B10-1 0.00147 3871 N/A N/A 0.0294 0.0254 4916 N/A N/A 0.0181
B10-2 0.00147 3871 0.9865 0.3293 0.0294 0.0254 4916 0.768 0.6882 0.0181
B10-3 0.00147 3871 0.9865 0.0777 0.0294 0.0254 4916 0.768 0.3686 0.0181
B10-4 0.00147 3871 0.9865 0.0777 0.0294 0.0254 4916 0.768 0.3686 0.0181
B10-5 0.00147 3871 0.9865 0.0777 0.0294 0.0254 4916 0.768 0.3686 0.0181

B11-1 0.0134 4820 N/A N/A 0.0268 0.05 5354 N/A N/A 0.0185
B11-2 0.0134 4820 N/A N/A 0.0268 0.05 5354 N/A N/A 0.0185
B11-3 0.0134 4820 0.8149 0.3791 0.0268 0.05 5354 0.307 0.5319 0.0185
B11-4 0.0134 4820 0.8149 0.3791 0.0268 0.05 5354 0.307 0.5319 0.0185
B11-5 0.0134 4820 0.8149 0.3791 0.0268 0.05 5354 0.307 0.5319 0.0185

B12-1 8×10−4 4699 N/A N/A 0.0473 0.0394 4674 N/A N/A 0.0211
B12-2 8×10−4 4699 0.9787 0.5961 0.0473 0.0394 4674 - 0.5876 0.0211
B12-3 8×10−4 4699 0.9787 0.2327 0.0473 0.0394 4674 0.001 0.2261 0.0211
B12-4 8×10−4 4699 0.9787 0.2327 0.0473 0.0394 4674 0.001 0.2261 0.0211
B12-5 8×10−4 4699 0.9787 0.2327 0.0473 0.0394 4674 0.001 0.2261 0.0211

B13-1 0.00244 3224 0.9683 1.1799 0.023 0.0207 3223 0.7317 1.1792 0.0192
B13-2 0.00244 3224 0.9683 1.1799 0.023 0.0207 3223 0.7317 1.1792 0.0192
B13-3 0.00244 3224 0.9683 1.1799 0.023 0.0207 3223 0.7317 1.1792 0.0192
B13-4 0.00244 3224 0.9683 1.1799 0.023 0.0207 3223 0.7317 1.1792 0.0192
B13-5 0.00244 3224 0.9683 1.1799 0.023 0.0207 3223 0.7317 1.1792 0.0192

B14-1 0.0198 4271 N/A N/A 0.0263 0.0175 5062 N/A N/A 0.0234
B14-2 0.0198 4271 0.6849 0.5303 0.0263 0.0175 5062 0.7205 0.8137 0.0234
B14-3 0.0198 4271 0.7196 0.1317 0.0263 0.0175 5062 0.7513 0.3413 0.0234
B14-4 0.0198 4271 0.7196 0.1317 0.0263 0.0175 5062 0.7513 0.3413 0.0234
B14-5 0.0198 4271 0.7196 0.1317 0.0263 0.0175 5062 0.7513 0.3413 0.0234

B15-1 3×10−4 3811 N/A N/A 0.0282 0.0167 5267 N/A N/A 0.0209
B15-2 3×10−4 3811 N/A N/A 0.0282 0.0167 5267 N/A N/A 0.0209
B15-3 3×10−4 3811 0.9976 0.0417 0.0282 0.0167 5267 0.8778 0.3244 0.0209
B15-4 3×10−4 3811 0.9976 0.1518 0.0282 0.0167 5267 0.8778 0.1723 0.0209
B15-5 3×10−4 3811 0.9976 0.1518 0.0282 0.0167 5267 0.8778 0.1723 0.0209

B16-1 7×10−4 5738 N/A N/A 0.0291 0.00343 7588 N/A N/A 0.0284
B16-2 7×10−4 5738 N/A N/A 0.0291 0.00343 7588 N/A N/A 0.0284
B16-3 7×10−4 5738 N/A N/A 0.0291 0.00343 7588 N/A N/A 0.0284
B16-4 7×10−4 5738 0.9963 0.1826 0.0291 0.00343 7588 0.8069 0.5639 0.0284
B16-5 7×10−4 5738 0.9963 0.1207 0.0291 0.00343 7588 0.8069 0.482 0.0284

B17-1 0.0539 4001 N/A N/A 0.0301 0.0540 3743 N/A N/A 0.0252
B17-2 0.0539 4001 0.5207 0.3471 0.0301 0.0540 3743 0.5197 0.2603 0.0252
B17-3 0.0539 4001 0.5207 0.0228 0.0301 0.0540 3743 0.5197 0.0432 0.0252
B17-4 0.0539 4001 0.5207 0.0228 0.0301 0.0540 3743 0.5197 0.0432 0.0252
B17-5 0.0539 4001 0.5207 0.0228 0.0301 0.0540 3743 0.5197 0.0432 0.0252

B18-1 0.0935 3491 0.5785 0.9087 0.033 0.0360 3635 0.8378 0.9874 0.0192
B18-2 0.0935 3491 0.5785 0.9087 0.033 0.0360 3635 0.8378 0.9874 0.0192
B18-3 0.0935 3491 0.5785 0.9087 0.033 0.0360 3635 0.8378 0.9874 0.0192
B18-4 0.0935 3491 0.5785 0.9087 0.033 0.0360 3635 0.8378 0.9874 0.0192
B18-5 0.0935 3491 0.5785 0.9087 0.033 0.0360 3635 0.8378 0.9874 0.0192

B19-1 0.1117 2971 - - 0.0224 0.1457 3392 - - 0.0216
B19-2 0.1117 2971 - - 0.0224 0.1457 3392 - - 0.0216
B19-3 0.1117 2971 - - 0.0224 0.1457 3392 - - 0.0216
B19-4 0.1117 2971 - - 0.0224 0.1457 3392 - - 0.0216
B19-5 0.1117 2971 - - 0.0224 0.1457 3392 - - 0.0216

Table 5.23: Solutions for Problem Set B using the Takahashi-Matsuyama Steiner Tree
Heuristic & the Shortest Path Tree Heuristic

115

Takahashi SPT

PST Rel. Error PST Rel. Error

Pr τT OT ητ ηO Sec τT OT ητ ηO Sec

C20-1 0.0213 4456 N/A N/A 0.0212 0.0198 4620 N/A N/A 0.0192
C20-2 0.0213 4456 0.8241 0.5115 0.0212 0.0198 4620 0.8366 0.5672 0.0192
C20-3 0.0213 4456 0.8241 0.1327 0.0212 0.0198 4620 0.8366 0.1744 0.0192
C20-4 0.0213 4456 0.8241 0.1327 0.0212 0.0198 4620 0.8366 0.1744 0.0192
C20-5 0.0213 4456 0.8241 0.1327 0.0212 0.0198 4620 0.8366 0.1744 0.0192

C30-1 0.0170 1758 N/A N/A 0.0164 0.0170 1758 N/A N/A 0.0116
C30-2 0.0170 1758 0.8723 0.2131 0.0164 0.0170 1758 0.8723 0.2131 0.0116
C30-3 0.0170 1758 0.8723 0.2131 0.0164 0.0170 1758 0.8723 0.2131 0.0116
C30-4 0.0170 1758 0.8723 0.2131 0.0164 0.0170 1758 0.8723 0.2131 0.0116
C30-5 0.0170 1758 0.8723 0.2131 0.0164 0.0170 1758 0.8723 0.2131 0.0116

C40-1 0.00322 2280 N/A N/A 0.0178 0.00445 3002 N/A N/A 0.00978
C40-2 0.00322 2280 0.8686 0.1108 0.0178 0.00445 3002 0.8179 0.1708 0.00978
C40-3 0.00322 2280 0.8686 0.272 0.0178 0.00445 3002 0.8179 0.0415 0.00978
C40-4 0.00322 2280 0.8686 0.272 0.0178 0.00445 3002 0.8179 0.0415 0.00978
C40-5 0.00322 2280 0.8686 0.272 0.0178 0.00445 3002 0.8179 0.0415 0.00978

C50-1 0.00267 2224 N/A N/A 0.0171 0.00937 2564 N/A N/A 0.013
C50-2 0.00267 2224 0.7852 - 0.0171 0.00937 2564 0.2454 0.1529 0.013
C50-3 0.00267 2224 0.7852 - 0.0171 0.00937 2564 0.2454 0.1529 0.013
C50-4 0.00267 2224 0.7852 - 0.0171 0.00937 2564 0.2454 0.1529 0.013
C50-5 0.00267 2224 0.7852 - 0.0171 0.00937 2564 0.2454 0.1529 0.013

C60-1 0.0661 1630 - - 0.021 0.0661 1720 2×10−4 0.0552 0.0126
C60-2 0.0661 1630 - - 0.021 0.0661 1720 2×10−4 0.0552 0.0126
C60-3 0.0661 1630 - - 0.021 0.0661 1720 2×10−4 0.0552 0.0126
C60-4 0.0661 1630 - - 0.021 0.0661 1720 2×10−4 0.0552 0.0126
C60-5 0.0661 1630 - - 0.021 0.0661 1720 2×10−4 0.0552 0.0126

C70-1 0.00424 3222 N/A N/A 0.024 0.0131 2564 N/A N/A 0.0101
C70-2 0.00424 3222 0.8886 0.1353 0.024 0.0131 2564 0.6564 0.0965 0.0101
C70-3 0.00424 3222 0.8886 0.1353 0.024 0.0131 2564 0.6564 0.0965 0.0101
C70-4 0.00424 3222 0.8886 0.1353 0.024 0.0131 2564 0.6564 0.0965 0.0101
C70-5 0.00424 3222 0.8886 0.1353 0.024 0.0131 2564 0.6564 0.0965 0.0101

C80-1 0.0316 2253 0.7607 0.1483 0.0314 0.1319 1962 - - 0.0148
C80-2 0.0316 2253 0.7607 0.1483 0.0314 0.1319 1962 - - 0.0148
C80-3 0.0316 2253 0.7607 0.1483 0.0314 0.1319 1962 - - 0.0148
C80-4 0.0316 2253 0.7607 0.1483 0.0314 0.1319 1962 - - 0.0148
C80-5 0.0316 2253 0.7607 0.1483 0.0314 0.1319 1962 - - 0.0148

C90-1 0.0354 1282 - - 0.0291 0.0354 1282 - - 0.012
C90-2 0.0354 1282 - - 0.0291 0.0354 1282 - - 0.012
C90-3 0.0354 1282 - - 0.0291 0.0354 1282 - - 0.012
C90-4 0.0354 1282 - - 0.0291 0.0354 1282 - - 0.012
C90-5 0.0354 1282 - - 0.0291 0.0354 1282 - - 0.012

C100-1 3×10−4 2738 N/A N/A 0.0262 8×10−4 2968 N/A N/A 0.0137
C100-2 3×10−4 2738 0.9792 0.0214 0.0262 8×10−4 2968 0.9382 0.0608 0.0137
C100-3 3×10−4 2738 0.9792 0.0214 0.0262 8×10−4 2968 0.9382 0.0608 0.0137
C100-4 3×10−4 2738 0.9792 0.0806 0.0262 8×10−4 2968 0.9382 0.0034 0.0137
C100-5 3×10−4 2738 0.9792 0.0806 0.0262 8×10−4 2968 0.9382 0.0034 0.0137

Table 5.24: Solutions for Problem Set C using the Takahashi-Matsuyama Steiner Tree
Heuristic & the Shortest Path Tree Heuristic

116

problems, the tabu search algorithms using the Takahashi-Matsuyama diversification finds

less optimal solutions or better solutions than the SPT diversification, but the latter results

in longer running times.

Although the tabu search algorithm is largely successful in finding optimal solutions

and has a significantly lower growth rate in the running time, there are some problems

in the experimentation that led to excessive running time. While these still outperform

what one would expect of the exhaustive search, these rare cases give impractical times

for real-world application. For these problems, and perhaps others too, there would be an

improvement in the running times if the PST enumeration could be eliminated from the

algorithm and replaced by a tabu search move selection heuristic that not only considers

the impact of the trust by applying the move to a PST, but also the change in overhead

value. This would result in the application of a move to a PST giving a new PST and

not a subgraph, upon which PSTs must be enumerated. While this and the penalty

functions require further investigation, it is clear that the tabu search methods proposed

provide good approximations where the optimal solutions are not found, and outperform

the running times of the exhaustive search.

117

Chapter 6

Conclusions and Future Work

6.1 Research Contributions

6.1.1 Trust Metric for PSTs

The application of trust in P2P networks has been proposed as a means to prevent selfish

and malicious behaviour by peers. Inspired by this work and the security issues that

afflict publish/subscribe systems, the primary research objective of this thesis was to

investigate the construction of PSTs with respect to the trust preferences of publishers

and subscribers, and the communication overhead costs. The premise for this is that a

PST constructed with respect to these properties will reduce the likelihood of attacks

against its participants, whilst ensuring that communication remains efficient.

Trust metrics in P2P networks define either local or global trust values of peers that

can be used to determine if an entity is sufficiently trustworthy for an interaction with

it to take place. This differs greatly to the trust metric required in this thesis, where it

defines the trustworthiness of a network structure. Defining the trustworthiness of a PST,

as a function of the trust held by the PST’s publisher and subscribers in each other, was

achieved by using social choice and welfare theory. After identifying the relationships in

the PST between publishers, internal subscribers and leaf subscribers, a trust metric was

defined that is based upon Rawls’ principles of justice through the use of the Leximin

social welfare functional. The trustworthiness of a PST is dominated by that of vertex

with the least trust in the PST and the trust held in a PST by a vertex is given by the

trustworthiness of the end-to-end communication paths between it and the other clients.

Given the proposed mechanism to determine the trustworthiness of a PST, a set of feasible

PSTs can be socially ordered with respect to the individuals’ trust functions.

118

6.1.2 Inter-personal Incomparability of Trust

An important observation was made regarding the interpersonal incomparability of trust.

In the existing literature, trust is assumed to be interpersonal comparable, however, we

are argue that this is not the case. Regardless of the trust metric, ordinal or cardinal, two

individuals may differ in how they value the trustworthiness of some entity even if the trust

sources are identical, that is their trust functions used to evaluate the trustworthiness of

an entity may not be the same. This has important ramifications to much of the existing

work on computational trust, where it is assumed that individuals’ trust functions and

local trust values are comparable. As the proposed approach to devise the trustworthiness

of PSTs utilises the analytical leximin aggregation function, cardinal full comparability

of the individuals’ trust functions must hold true, however arguments against this are

presented. The strict assumptions made in this thesis in order to address this issue are

to assume that evaluation of the trust sources and the individuals’ trust functions are

identical. Although it is unrealistic to assume such homogeneity of publishers, routers,

and subscribers, it is no worse than not addressing the issue at all. Additionally, we

postulate that the individual trust evaluation functions may evolve to a state where they

are inter-personally comparable. If we assume the mechanism, that is the socially trusted

PST social welfare function (definition 41), described in this thesis to determine the most

trusted PST to be incentive-compatible, then the individuals’ trust functions (that is their

notions of trust) will evolve some common understanding, a Nash equilibrium.

6.1.3 The Maximum Trusted PST with Overhead Budget Problem

Having defined a trust metric for PSTs, the problem of finding the most trusted PST

within some overhead budget was shown to be NP-Complete. As expected, the exhaustive

search algorithm for this problem was shown to be unable to scale beyond small problem

sizes. Algorithms using the tabu search metaheuristic were devised and shown to scale

to problem sizes where |R| = 100 with good approximation solutions found and running

times that are comparable to the exhaustive search for much smaller problems.

In a real-world deployment, the proposed tabu search algorithms would be executed

at the publisher vertex. Algorithm execution could then take place in rounds, at regular

intervals or when change in the state of any of the inputs warrants the reconfiguration

of the PST. Subscribers would provide the required inputs such as trust information and

subscriptions to the algorithm publisher prior to a round, while the connectivity graph

could be maintained by the use of a gossip protocol.

119

6.2 Future Work

6.2.1 Monitoring

There are three components to P2P reputation management systems (Marti and Garcia-

Molina, 2006): information gathering; scoring and ranking; response. If the past behaviour

of nodes is to used as an input to individuals’ trust functions, and consequently the social

trust ordering of PSTs, then an information gathering stage is required. For P2P systems,

this is typically feedback pertaining to transactions between peers, however this alone is

not adequate for PSTs.

Consider a path in a PST, from a publisher to a terminal subscriber of length greater

than two. The terminal subscriber does not receive a notification from the publisher, and

as a consequence it may wish to reduce its trust of its parent node and the publisher’s child

node. This would be unfair on one of these nodes, as only one of them can be the culprit

responsible for dropping notification (if we exclude communication error as a cause). This

example assumes that terminal subscriber has a means to determine that it has missed

a notification, which given the nature of publish/subscribe, can not be the case unless it

verifies this to be true with the publisher or some other trusted subscriber. The space, time

and synchronisation decoupling that give rise to scalability of publish/subscribe systems

(Eugster et al., 2003) are attributes that inhibit determining the source of selfish and

malicious behaviour.

Clearly the monitoring of PSTs presents unique challenges, however for PSTs in mobile

ad hoc networks (MANETs), existing work on the use of reputation in MANET routing

may prove to be a starting point for further research. CONFIDANT (Buchegger and Le

Boudec, 2004) is a reputation management system for mobile ad hoc network routing that

allows the routing protocol to determine trustworthy paths and reject route requests from

untrustworthy nodes. Monitoring is conducted by nodes in promiscuous mode, observing

the routing behaviour of others.

6.2.2 Improvements to the Tabu Search Algorithms

Although the tabu search algorithms provide good approximations of the optimal solutions

and have a faster running time than the exhaustive search algorithm, there are a number of

possible improvements that could be made. Spanning tree enumeration is used to find the

set of PSTs in the subgraph formed by applying a tabu move (the addition or removal of a

router) to the current PST solution. Char’s spanning tree enumeration algorithm (Char,

120

1968) is used for this and has a running time of O(m + n + n(t + t0)), however Knuth

(Knuth, 2011) documents an algorithm by Malcolm Smith (Smith, 1997) that generates

spanning trees in gray code order (Gray, 1953) that has a running time of O(m+ n+ t).

Smith’s algorithm could provide a faster means to finding PSTs.

6.2.3 Self-organising Trusted PST Algorithm

Algorithms have been proposed for self-organising broker networks with respect to com-

munication cost (Jaeger et al., 2007) (Baldoni et al., 2007) (Migliavacca and Cugola,

2007), and for the PST structure considered in this work, the SHOPPARENT (Huang

and Garcia-Molina, 2003) and DSAPST (Cao and Shen, 2009) algorithms self-organise

the PST with respect to the overhead costs as given in equations 2.3 and 2.4.

When executed at the publisher, the tabu search algorithms require knowledge of the

connectivity graph, these subscriptions of the subscribers, the individual trust functions

of the subscribers and the inputs to these functions. As the number of subscribers and the

graph size increases, maintaining global state at the publisher increases in message and

state complexity at this node. The development of a distributed heuristic may present a

solution to this issue, however it is not clear how privacy of individuals’ trust relationships

could be preserved by the technique. A logical assumption of the distributed heuristic

would be that it must not leak trust information to other routers and subscribers, even if

they are trusted, as the information may reveal a loss in trust in them.

6.3 Closing Remarks

Publish/Subscribe has evolved a great deal from its precursor of group communication

systems, the latter originally introduced in the System V kernel for interprocess commu-

nication (Cheriton and Zwaenepoel, 1985). Subsequent research had led to developments

such as topic-based and content-based models, the use of decentralised event notification

services, and routing and matchmaking algorithm optimisations. In comparison, there is

significantly less research on security, which is at least in part due to the decoupled prop-

erties of publish/subscribe that are contradictory to the coupling that is required of most

security techniques. The proposed approaches described in chapter 2 are either purely

cryptographic-based or a form of role-based access-control, and while they address the

issues of trust and confidentiality to varying degrees, the approach presented in this work

has a number of advantages over them.

The trusted PST approach provides a greater degree of adaptability to the changing

121

behaviour in the publish/subscribe system, and it is suitable for ad hoc publish/subscribe

applications, as the identities of entities need not be associated with roles and there is

no requirement for administrative entities to define access-control policies. Although the

monitoring system is beyond the scope of this work, its presence allows for PSTs to adapt

to changes in the behaviour of entities. As trust evaluations change with interactions

and over time, the PSTs can be reconstructed to eliminate selfish or malicious nodes.

The network structure evolves in response to the behaviour of its participants, something

that is not possible in the approaches evaluated in chapter 2. For example, in RBAC

systems, the reconfiguration of policies, and the revoking and reissuing of keys is required

to replicate this behaviour. No previously proposed approach allows for the clients of

a publish/subscribe system to be considered either trustworthy or untrustworthy given

their past behaviour and for their removal from the communication infrastructure given

this information.

In this work, a trust evaluation function based on social choice and welfare theory

has been proposed to define the trustworthiness of a PST, the problem to find the most

trustworthy PST within some overhead budget has been shown to be NP-complete, and

the tabu search metaheuristic has been shown to be effective at solving this problem. It

has been shown that individual trust can be used to construct network structures that are

socially trusted by its users, however consideration must be given to the inter-personal

comparability of the individuals’ trust functions.

122

Bibliography

Abadi, M. and Feigenbaum, J. (1990). Secure circuit evaluation. Journal of Cryptology,

2:1–12. Cited on 20

Abadi, M., Feigenbaum, J., and Kilian, J. (1987). On hiding information from an oracle.

In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC

’87, pages 195–203, New York, NY, USA. ACM. Cited on 20

Arrow, K. J. (1951). Social Choice and Individual Values. Yale University Press, First

edition. Cited on 32, 34

Arrow, K. J. (1963). Social Choice and Individual Values. Yale University Press, Second

edition. Cited on 32, 34

Arrow, K. J., Sen, A. K., and Suzumura, K., editors (2002). Handbook of Social Choice

and Welfare, volume 1. Elsevier. Cited on 5, 31, 32

Baldoni, R., Beraldi, R., Querzoni, L., and Virgillito, A. (2007). Efficient publish/subscribe

through a self-organizing broker overlay and its application to SIENA. The Computer

Journal, 50(4):444. Cited on 120

Baldoni, R., Marchetti, C., Virgillito, A., and Vitenberg, R. (2005). Content-based

publish-subscribe over structured overlay networks. In Proceedings of the 25th IEEE

International Conference on Distributed Computing Systems, ICDCS 2005, pages 437–

446. IEEE. Cited on 9

Barabási, A., Albert, R., and Jeong, H. (2000). Scale-free characteristics of random net-

works: the topology of the world-wide web. Physica A: Statistical Mechanics and its

Applications, 281(1-4):69–77. Cited on 81, 86

Beasley, J. E. (1990). OR-Library: Distributing test problems by electronic mail. The

Journal of the Operational Research Society, 41(11):pp. 1069–1072. Cited on 77

123

Bellare, M., Rogaway, P., and Wagner, D. (2004). The EAX mode of operation. In

Fast Software Encryption, volume 3017 of Lecture Notes in Computer Science, pages

389–407. Springer Berlin/Heidelberg. Cited on 27

Belokosztolszki, A., Eyers, D. M., Pietzuch, P. R., Bacon, J., and Moody, K. (2003). Role-

based access control for publish/subscribe middleware architectures. In Proceedings of

the 2nd International Workshop on Distributed Event-Based Systems, DEBS ’03, pages

1–8, New York, NY, USA. ACM. Cited on 4, 26, 27

Bentham, J. (1781). An Introduction to the Principles of Morals and Legislation. T.

Payne. Cited on 32

Bentley, J. L. and McIlroy, M. D. (1993). Engineering a sort function. Software: Practice

and Experience, 23(11):1249–1265. Cited on 52

Birman, K. and Joseph, T. (1987). Exploiting virtual synchrony in distributed systems.

SIGOPS Operating Systems Review, 21:123–138. Cited on 9

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 13:422–426. Cited on 21

Borda, J. C. d. (1781). Mémoire sur les élections au scrutin. Histoire de l’Académie Royale

des Sciences. Cited on 31

Buchegger, S. and Le Boudec, J. (2004). A robust reputation system for mobile ad-hoc

networks. In Proceedings of the 2nd Workshop on Economics of Peer-to-Peer Systems,

P2PEcon 2004, Cambridge, MA, USA. Cited on 2, 119

Cao, X. and Shen, C. (2009). Subscription-aware publish/subscribe tree construction in

mobile ad-hoc networks. In Proceedings of the 13th International Conference on Parallel

and Distributed Systems (ICPADS 2007), volume 2, pages 1–9. IEEE. Cited on 13, 14,

52, 120

Caporuscio, M., Carzaniga, A., and Wolf, A. (2003). Design and evaluation of a sup-

port service for mobile, wireless publish/subscribe applications. IEEE Transactions on

Software Engineering, 29(12):1059–1071. Cited on 9

Carzaniga, A., Rosenblum, D., and Wolf, A. (2001). Design and evaluation of a wide-area

event notification service. ACM Transactions on Computer Systems (TOCS), 19(3):332–

383. Cited on 9, 20

124

Carzaniga, A. and Wolf, A. L. (2003). Forwarding in a content-based network. In Proceed-

ings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications, SIGCOMM ’03, pages 163–174, New York, NY, USA.

ACM. Cited on 9

Chang, Y.-C. and Mitzenmacher, M. (2005). Privacy preserving keyword searches on

remote encrypted data. In Applied Cryptography and Network Security, volume 3531 of

Lecture Notes in Computer Science, pages 391–421. Springer Berlin/Heidelberg. Cited

on 21

Char, J. (1968). Generation of trees, two-trees, and storage of master forests. IEEE

Transactions on Circuit Theory, 15(3):228–238. Cited on 54, 72, 119

Cheriton, D. R. and Zwaenepoel, W. (1985). Distributed process groups in the V Kernel.

ACM Transactions on Computer Systems, 3(2):77–107. Cited on 9, 120

Choi, Y. and Park, D. (2006). Mirinae: A peer-to-peer overlay network for content-based

publish/subscribe systems. IEICE Transactions on Communications, E89-B(6):1755–

1765. Cited on 9

Chor, B., Goldreich, O., Kushilevitz, E., and Sudan, M. (1995). Private information

retrieval. In Proceedings of the 36th Annual Symposium on Foundations of Computer

Science, pages 41–50. IEEE. Cited on 20

Condorcet, M. J. A. N. d. C. d. (1785). Essai sur l’ application de l’ analyse à la probabilité

des décisions : rendues à la pluralité. L’imprimerie royale. Cited on 31

Cugola, G., Di Nitto, E., and Fuggetta, A. (2002). The JEDI event-based infrastructure

and its application to the development of the OPSS WFMS. IEEE Transactions on

Software Engineering, 27(9):827–850. Cited on 9

Cugola, G. and Jacobsen, H. (2002). Using publish/subscribe middleware for mobile

systems. ACM SIGMOBILE Mobile Computing and Communications Review, 6(4):25–

33. Cited on 9

Di Crescenzo, G., Malkin, T., and Ostrovsky, R. (2000). Single database private inform-

ation retrieval implies oblivious transfer. In Advances in Cryptology - EUROCRYPT

2000, volume 1807 of Lecture Notes in Computer Science, pages 122–138. Springer Ber-

lin/Heidelberg. Cited on 20

125

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271. Cited on 70

Ebel, H., Mielsch, L.-I., and Bornholdt, S. (2002). Scale-free topology of e-mail networks.

Physical Review E, 66(3):1–4. Cited on 81

Eppstein, D. and Wang, J. Y. (2002). A steady state model for graph power laws. ACM

Computing Research Repository. Cited on 81

Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, A. (2003). The many faces of

publish/subscribe. ACM Computing Surveys, 35(2):114–131. Cited on 3, 9, 119

Fabret, F., Jacobsen, H. A., Llirbat, F., Pereira, J., Ross, K. A., and Shasha, D. (2001).

Filtering algorithms and implementation for very fast publish/subscribe systems. In

Proceedings of the 2001 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’01, pages 115–126, New York, NY, USA. ACM. Cited on 9

Fan, J., Xu, J., Ammar, M. H., and Moon, S. B. (2004). Prefix-preserving IP address

anonymization: measurement-based security evaluation and a new cryptography-based

scheme. Computer Networks, 46(2):253 – 272. Cited on 23

Fidler, E., Jacobsen, H.-A., Li, G., and Mankovski, S. (2005). The PADRES distributed

publish/subscribe system. In Feature Interactions in Telecommunications and Software

Systems VIII, pages 12–30. IOS Press. Cited on 18

Fiege, L., Gärtner, F. C., Kasten, O., and Zeidler, A. (2003). Supporting

mobility in content-based publish/subscribe middleware. In Proceedings of the

ACM/IFIP/USENIX 2003 International Conference on Middleware, Middleware ’03,

pages 103–122, New York, NY, USA. Springer-Verlag New York, Inc. Cited on 9

Fiege, L., Zeidler, A., Buchmann, A., Kilian-Kehr, R., and Muhl, G. (2004). Security

aspects in publish/subscribe systems. IEE Seminar Digests, 2004(918):44–49. Cited on

24

Fishburn, P. C. (1973). The Theory of Social Choice. Princeton University Press. Cited

on 31

Gabow, H. N. and Myers, E. W. (1978). Finding all spanning trees of directed and

undirected graphs. SIAM Journal on Computing, 7(3):280–287. Cited on 54

126

Gendreau, M. (2003). An introduction to tabu search. In Handbook of Metaheuristics,

volume 57 of International Series in Operations Research & Management Science, pages

37–54. Springer New York. Cited on 63

Gendreau, M., Hertz, A., and Laporte, G. (1994). A tabu search heuristic for the vehicle

routing problem. Management Science, 40(10):1276–1290. Cited on 69

Gendreau, M., Larochelle, J.-F., and Sans, B. (1999). A tabu search heuristic for the

steiner tree problem. Networks, 34(2):162–172. Cited on 61

Gennaro, R. and Micali, S. (1995). Verifiable secret sharing as secure computation. In

Advances in Cryptology - EUROCRYPT 95, volume 921 of Lecture Notes in Computer

Science, pages 168–182. Springer Berlin/Heidelberg. Cited on 20

Glover, F. (1989). Tabu Search–Part I. INFORMS Journal on Computing, 1(3):190–206.

Cited on 60

Glover, F. (1990). Tabu Search–Part II. INFORMS Journal on Computing, 2(1):4–32.

Cited on 60

Glover, F., Taillard, E., and Taillard, E. (1993). A user’s guide to tabu search. Annals of

Operations Research, 41:1–28. Cited on 75

Goh, E.-J. (2003). Secure indexes. Cryptology ePrint Archive, Report 2003/216. http:

//eprint.iacr.org/2003/216/. Cited on 21

Gossen, H. (1854). Die Entwickelung der Gesetze des menschlichen Verkehrs, und der

daraus flieenden Regeln für menschliches Handeln. F. Vieweg. Cited on 33

Grandison, T. and Sloman, M. (2000). A survey of trust in internet applications. IEEE

Communications Surveys & Tutorials, 3(4):2–16. Cited on 40

Gray, F. (1953). Pulse code communication. US Patent 2,632,058. Cited on 120

Guha, R., Kumar, R., Raghavan, P., and Tomkins, A. (2004). Propagation of trust and

distrust. In Proceedings of the 13th International Conference on World Wide Web,

WWW ’04, pages 403–412, New York, NY, USA. ACM. Cited on 84

Gupta, A., Sahin, O. D., Agrawal, D., and Abbadi, A. E. (2004). Meghdoot: content-based

publish/subscribe over P2P networks. In Proceedings of the 5th ACM/IFIP/USENIX

International Conference on Middleware, Middleware ’04, pages 254–273, New York,

NY, USA. Springer-Verlag New York, Inc. Cited on 9

http://eprint.iacr.org/2003/216/
http://eprint.iacr.org/2003/216/

127

Hammond, P. J. (1976). Equity, Arrow’s Conditions, and Rawls’ Difference Principle.

Econometrica, 44(4):pp. 793–804. Cited on 38

Huang, Y. and Garcia-Molina, H. (2003). Publish/subscribe tree construction in wireless

ad-hoc networks. In Mobile Data Management, volume 2574 of Lecture Notes in Com-

puter Science, pages 122–140. Springer Berlin/Heidelberg. Cited on 10, 11, 12, 13, 79,

120

Jaeger, M. A., Parzyjegla, H., Mühl, G., and Herrmann, K. (2007). Self-organizing broker

topologies for publish/subscribe systems. In Proceedings of the 2007 ACM Symposium

on Applied Computing, SAC ’07, pages 543–550, New York, NY, USA. ACM. Cited on

120

Jayakumar, R., Thulasiraman, K., and Swamy, M. (1984). Complexity of computation of

a spanning tree enumeration algorithm. IEEE Transactions on Circuits and Systems,

31(10):853–860. Cited on 54, 55, 56, 57

Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H. (2003). The Eigentrust algorithm

for reputation management in P2P networks. In Proceedings of the 12th international

conference on World Wide Web, WWW ’03, pages 640–651, New York, NY, USA. ACM.

Cited on 2, 41, 48

Klemm, K. and Eguiluz, V. (2002). Growing scale-free networks with small-world behavior.

Physical Review E, 65(5):57102. Cited on 85

Knuth, D. E. (2011). The Art of Computer Programming, Volume 4A: Combinatorial

Algorithms, Part 1. Addison Wesley Professional. Cited on 120

Kulturel-Konak, S., Norman, B. A., Coit, D. W., and Smith, A. E. (2004). Exploiting tabu

search memory in constrained problems. INFORMS Journal on Computing, 16(3):241–

254. Cited on 68, 69, 89, 95

Li, J., Lu, C., and Shi, W. (2004). An Efficient Scheme for Preserving Confidentiality

in Content-Based Publish-Subscribe Systems. Technical report, Georgia Institute of

Technology. Cited on 4, 18, 23

Marti, S., Ganesan, P., and Garcia-Molina, H. (2005). SPROUT: P2P routing with social

networks. In Current Trends in Database Technology - EDBT 2004 Workshops, volume

3268 of Lecture Notes in Computer Science, pages 511–512. Springer Berlin/Heidelberg.

Cited on 41, 43

128

Marti, S. and Garcia-Molina, H. (2006). Taxonomy of trust: Categorizing P2P reputation

systems. Computer Networks, 50(4):472 – 484. Cited on 1, 119

Meier, R. and Cahill, V. (2002). Steam: Event-based middleware for wireless ad-hoc

networks. In Proceedings of the 22nd International Conference on Distributed Computing

Systems Workshops, pages 639–644. IEEE. Cited on 9

Migliavacca, M. and Cugola, G. (2007). Adapting publish-subscribe routing to traffic

demands. In Proceedings of the 2007 Inaugural International Conference on Distributed

event-based systems, DEBS ’07, pages 91–96, New York, NY, USA. ACM. Cited on 120

Miklós, Z. (2002). Towards an access control mechanism for wide-area publish/subscribe

systems. In Proceedings of the 22nd International Conference on Distributed Computing

Systems Workshops, pages 516–521. IEEE. Cited on 24

Mill, J. S. (1863). Utilitarianism. Parker, Son and Bourne. Cited on 32

Minty, G. (1965). A simple algorithm for listing all the trees of a graph. IEEE Transactions

on Circuit Theory, 12(1):120–120. Cited on 54

Mirkovic, J. and Reiher, P. (2004). A taxonomy of DDoS attack and DDoS defense

mechanisms. ACM SIGCOMM Computer Communication Review, 34(2):39. Cited on

18

Mühl, G. (2002). Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,

Berlin Institute of Technology. Cited on 24

Muhl, G., Fiege, L., Gartner, F., and Buchmann, A. (2003). Evaluating advanced routing

algorithms for content-based publish/subscribe systems. In Proceedings of the 10th

IEEE International Symposium on Modeling, Analysis and Simulation of Computer

and Telecommunications Systems, MASCOTS 2002, pages 167–176. IEEE. Cited on 9

Mühl, G., Fiege, L., and Pietzuch, P. (2006). Distributed Event-Based Systems. Springer.

Cited on 26, 27

Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, J., and Roback,

E. (2001). Report on the development of the Advanced Encryption Standard (AES).

Journal of Research – National Institute of Standards and Technology, 106(3):511–576.

Cited on 27

129

Nonobe, K. and Ibaraki, T. (1998). A tabu search approach to the constraint satisfac-

tion problem as a general problem solver. European Journal of Operational Research,

106(23):599 – 623. Cited on 69

Pesonen, L. I. W., Eyers, D. M., and Bacon, J. (2006). A capability-based access control

architecture for multi-domain publish/subscribe systems. In Proceedings of the Inter-

national Symposium on Applications on Internet, SAINT 2006, pages 222–228. IEEE.

Cited on 4, 27

Pesonen, L. I. W., Eyers, D. M., and Bacon, J. (2007). Encryption-enforced access control

in dynamic multi-domain publish/subscribe networks. In Proceedings of the 2007 In-

augural International Conference on Distributed event-based systems, DEBS ’07, pages

104–115, New York, NY, USA. ACM. Cited on 4, 27

Pietzuch, P. and Bacon, J. (2002). Hermes: a distributed event-based middleware archi-

tecture. In Proceedings of the 22nd International Conference on Distributed Computing

Systems Workshops, pages 611–618. IEEE. Cited on 9, 26

Raiciu, C. and Rosenblum, D. (2006). Enabling confidentiality in content-based pub-

lish/subscribe infrastructures. In Proceedings of the Second IEEE/CreatNet Interna-

tional Conference on Security and Privacy in Communication Networks, Securecomm

’06, pages 1–11. IEEE. Cited on 4, 17, 21, 23

Rawls, J. (1971). A Theory of Justice. Belknap. Cited on 5, 32

Ray, I. and Chakraborty, S. (2004). A vector model of trust for developing trustworthy

systems. In Computer Security ESORICS 2004, volume 3193 of Lecture Notes in

Computer Science, pages 260–275. Springer Berlin/Heidelberg. Cited on 40

Resnick, P., Kuwabara, K., Zeckhauser, R., and Friedman, E. (2000). Reputation Systems.

Communications of the ACM, 43(12):45–48. Cited on 1

Ribeiro, C. and De Souza, M. (2000). Tabu search for the Steiner problem in graphs.

Networks, 36(2):138–146. Cited on 61, 63, 64

Robbins, L. C. (1935). An Essay on the Nature and Significance of Economic Science.

Macmillan, London, Second edition. Cited on 33

Rosenblum, D. S. and Wolf, A. L. (1997). A design framework for Internet-scale event

observation and notification. ACM SIGSOFT Software Engineering Notes, 22(6):344–

360. Cited on 9

130

Sala, A., Zheng, H., Zhao, B. Y., Gaito, S., and Rossi, G. P. (2010). Brief announcement:

revisiting the power-law degree distribution for social graph analysis. In Proceedings

of the 29th ACM SIGACT-SIGOPS Symposium on Principles of distributed computing,

PODC ’10, pages 400–401, New York, NY, USA. ACM. Cited on 84

Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. (1996). Role-based access control

models. Computer, 29(2):38–47. Cited on 26

Sen, A. K. (1970). Collective Choice and Social Welfare. Holden-Day. Cited on 35, 36, 39

Sen, A. K. (1977). On weights and measures: Informational constraints in social welfare

analysis. Econometrica, 45(7):pp. 1539–1572. Cited on 33, 35, 36

Sen, A. K. (1999). The possibility of social choice. The American Economic Review,

89(3):349–378. Cited on 33

Smith, M. J. (1997). Generating Spanning Trees. Master’s thesis, University of Victoria.

Cited on 120

Srivatsa, M. and Liu, L. (2005). Securing publish-subscribe overlay services with Event-

guard. In Proceedings of the 12th ACM conference on Computer and Communications

Security, CCS ’05, pages 289–298, New York, NY, USA. ACM. Cited on 4, 20, 23

Takahashi, H. and Matsuyama, A. (1980). An approximate solution for the Steiner problem

in graphs. Mathematica Japonica, 24(6):573–577. Cited on 61, 70

Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation. John Wiley and

Sons. Cited on 60

Tarkoma, S. (2006). Preventing spam in publish/subscribe. In 26th IEEE International

Conference on Distributed Computing Systems Workshops, ICDCSW 2006, pages 21–21.

IEEE. Cited on 28

Theodorakopoulos, G. and Baras, J. (2006). On trust models and trust evaluation metrics

for ad hoc networks. IEEE Journal on Selected Areas in Communications, 24(2):318–

328. Cited on 41, 68

Triantafillou, P. and Aekaterinidis, I. (2004). Content-based publish-subscribe over struc-

tured P2P networks. IEE Seminar Digests, 2004(918):104–109. Cited on 9

Wang, C., Carzaniga, A., Evans, D., and Wolf, A. (2002). Security issues and requirements

for internet-scale publish-subscribe systems. In Proceedings of the 35th Annual Hawaii

131

International Conference on System Sciences, HICSS ’02, pages 3940 – 3947. IEEE.

Cited on 4, 10, 15, 20

Wun, A., Cheung, A., and Jacobsen, H.-A. (2007). A taxonomy for denial of service

attacks in content-based publish/subscribe systems. In Proceedings of the 2007 Inaugural

International Conference on Distributed event-based systems, DEBS ’07, pages 116–127,

New York, NY, USA. ACM. Cited on 4, 18

Xiong, L. and Liu, L. (2004). Peertrust: Supporting reputation-based trust for peer-to-

peer electronic communities. Knowledge and Data Engineering, IEEE Transactions on,

16(07):843–857. Cited on 2

Yager, R. (1997). On the analytic representation of the Leximin ordering and its ap-

plication to flexible constraint propagation. European Journal of Operational Research,

102(1):176–192. Cited on 6, 38

Zhu, Y. and Hu, Y. (2005). Ferry: an architecture for content-based publish/subscribe

services on P2P networks. In Proceedings of the 2005 International Conference on

Parallel Processing, ICPP 2005. IEEE. Cited on 9

Zimmermann, P. R. (1995). The official PGP user’s guide. MIT Press, Cambridge, MA,

USA. Cited on 41

	Coversheet
	Naicken, Stephen Murugapa
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Research Motivation
	1.2 Research Contributions
	1.3 Thesis Outline

	2 Background
	2.1 Introduction
	2.2 Publish/Subscribe Trees
	2.2.1 Publish/Subscribe Tree Roles
	2.2.2 Publish/Subscribe Tree Overheads
	2.2.3 Publish Subscribe Tree Definition
	2.2.4 The Minimum Overhead Publish/Subscribe Problem

	2.3 Publish/Subscribe Security
	2.4 Confidentiality
	2.4.1 Definitions of Confidentiality
	2.4.2 Definition of Confidential Content-Based Publish/Subscribe

	2.5 Availability
	2.5.1 CBPS Denial of Service Attack Characteristics
	2.5.2 Solutions to Denial of Service Issues

	2.6 Review of Existing Solutions
	2.6.1 Confidential Content-Based Publish/Subscribe
	2.6.2 Access Control
	2.6.3 Spam

	2.7 Summary

	3 Trusted Publish/Subscribe Trees
	3.1 Social Choice and Welfare Preliminaries
	3.1.1 Introduction
	3.1.2 Social Welfare Function
	3.1.3 Social Welfare Functionals
	3.1.4 Leximin Social Welfare Functional
	3.1.5 Analytical Formulation of Leximin

	3.2 Trust and Publish/Subscribe Trees
	3.2.1 Definition of Trust
	3.2.2 Semiring-based Trust
	3.2.3 Trust Relationships in Publish/Subscribe Trees
	3.2.4 Trust Evaluation Functions for PSTs
	3.2.5 Trust and Interpersonal Comparability

	3.3 Summary

	4 Minimum Overhead-Maximum Trust PST Problem
	4.1 Problem Definition
	4.2 An Exhaustive Search Algorithm for MTPSTO
	4.3 Spanning Tree Enumeration
	4.3.1 Char's Spanning Tree Enumeration Algorithm

	4.4 Tabu Search Algorithm for MTPSTO Problem
	4.4.1 Tabu Search Preliminaries
	4.4.2 Algorithm

	4.5 Summary

	5 Evaluation and Computational Results
	5.1 Evaluation Overview
	5.2 Evaluation Environment
	5.3 Evaluation Data Sets
	5.3.1 Publish/Subscribe Properties
	5.3.2 Connectivity Graph
	5.3.3 Trust Graph and Trust Functions

	5.4 Evaluation of Tabu Search Algorithms
	5.4.1 Problem Set A
	5.4.2 Problem Set B
	5.4.3 Problem Set C

	5.5 Takahashi-Matsuyama and SPT Heuristics
	5.6 Summary

	6 Conclusions and Future Work
	6.1 Research Contributions
	6.1.1 Trust Metric for PSTs
	6.1.2 Inter-personal Incomparability of Trust
	6.1.3 The Maximum Trusted PST with Overhead Budget Problem

	6.2 Future Work
	6.2.1 Monitoring
	6.2.2 Improvements to the Tabu Search Algorithms
	6.2.3 Self-organising Trusted PST Algorithm

	6.3 Closing Remarks

	Bibliography

