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Abstract 

Investigating the potential interaction of RBM4 with Translational machinery 

in C2C12 cells undergoing myogenic differentiation. 

RBM4 has already been shown to be involved in myogenic differentiation 

and it has also been shown to interact with eIF4G and eIF4A in HeLa cells while 

under arsenite stress, what has not been investigated is whether RBM4 interacts 

with eIF4G or eIF4A or other parts of the translational machinery during myogenic 

differentiation. This work is divided into 3 parts that each focus on RBM4 during 

myogenic differentiation.  

 In the first section, I present data that looks at RBM4 expression levels total 

and both its isoforms RBM4a and RBM4b. Both total rbm4 and RBM4b increase in 

expression whereas RBM4a decrease as differentiation progresses. I also present 

data investigating potential regulation of RBM4 with data showing RBM4a mRNA 

expression decrease while RBM4b mRNA expression increases. 

 The second section focus on the potential role of p38MAPK kinase 

phosphorylation of serine 309 on RBM4 as a regulator of localisation of RBM4 and 

of RBM4 on general protein translation and its incorporating into the eIF4F complex 

and the data presented shows that RBM4 appears to not respond to p38 MAPK 

activity as observed in hela cells and that RBM4 is incorporated into eIF4F complex 

and that when overexpressed has a negative effect on RBM4 especially when it can 

not be phosphorylated on serine 309. 

The final section focuses on RBM4 interaction with eIF4G and eIF4A both of which 

it binds during myogenic differentiation, but does not appear to bind eIf4G in vitro 

directly. 
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Introduction 

1.1 The central dogma of gene expression in eukaryotes 

    Gene expression in eukaryotes is regulated at a multitude of points. To start 

with DNA is transcribed into pre-mRNA which is then spliced into mRNA and 

then exported into the cytoplasm. The mRNA can then be silenced, degraded 

by multiple different systems or translated into protein. The latter process can 

be also regulated at multiple steps (see later). Once the protein is made, its 

expression level is regulated by degradation or it can be re-localised (as a 

form of regulation) to decrease or increase its spatial expression. The main 

points of this process that I will focus on are splicing of the pre-mRNA and 

mRNA translation; specifically translation initiation.  

1.2  Splicing of pre-mRNA into mRNA 

    Splicing take places after DNA has begun to be transcribed into pre-mRNA. 

A pre-mRNA contains both introns and exons (Wang & Burge, 2008), with an 

average of 8 exons per pre-mRNA (Faustino & Cooper, 2003). The process of 

splicing removes the introns to create mature mRNA. This process is 

controlled by the spliceosome which is made up of 5 RNAs (snRNAs) and a 

multitude of associated, regulatory proteins (Wang & Burge, 2008) which there 

are thought to be at least 145 distinct proteins (Zhou et al, 2002). These 

snRNAs  are called  U1, U2, U4, U5, and U6 and the spliceosome is thought to 

be one of the most complicated systems in cells (Zhou et al, 2002). The 

spliceosome interacts with the core splicing signals which are found in every 

intron, these being the 5’splice site (5’ss), the 3’ splice site (3’ss) and the 

branch point sequence (BPS). The spliceosome does this by the U1 snRNA 
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binding to the 5’ss and the splicing factor 1 (SF1) binding the branch point in 

an ATP-dependent manner, to form the E’ complex. The recruitment of the U2 

auxilary factor (U2AF) heterodimer to the 3’ss changes the complex to the E 

complex. The E complex is then converted to the A complex by the 

replacement of SF1  with U2 snRNP at the branch point. U4/U6-U5 tri-snRNP 

associates with the complex converting it to B complex. This is then 

remodelled  with the release of U1 and U4 snRNPs leading to the formation 

complex C which is catalytically active (Chen & Manley, 2009). 

    Splicing is not only a process which produces translatable mRNAs from 

immature mRNAs, it is a process that can give rise to many different isoforms 

of protein from a single gene, a process called alternative splicing. This ability 

allows proteomes to be larger than the genome that encodes them; 74% of 

multi-exon genes in humans are alternatively spliced. The most common 

splicing events are presented in figure 1.1. These events are often regulated 

by cis-regulatory elements which can be further dived into four categories; 

exonic splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic 

splicing enhancers (ISEs) and intronic splicing silencers (ISSs) (Chen & 

Manley, 2009). These sites differ by their location and the proteins that bind 

them. PTB is known to bind the polyrimidine tract in the intron sequence and 

act as an inhibitor of the binding of U2AF, therby causing the exclusion of the 

3’ exon. Some of the elements are 100-200 bp away from the splicing site so 

a bind and block model will not work in such cases. A model for such sites 

suggest the formation of a loop of the pre-mRNA including the exon that will 

be excluded by the formation of bonds between two proteins situated either 

side of the exon (Chen & Manley, 2009). Splicing activators have been show 



Figure 1.1 Major forms of potential alternative splicing. A selection of some of 

the major forms of alternative splicing events observed in mammilian cells. 

Coloured boxes = exons and Coloured dashed lines = potential splice events. 

Figure adapted from  Chen & Manley (2009)

Exon skipping 

Intron retention 

Alternative 5’ss 
site 

Alternative 3’ss 
site 
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to work at least in part by binding ISE’s and ESE’s and causing the 

recruitment of the splicing machinery. An example of this is the T cell-

restricted intracellular antigen 1 (TIA1) which binds a U rich region 

downstream of a weak 5’ splice site and causes the recruitment of the U1 

snRNP (Chen & Manley, 2009). Overall splicing is a complex system in which 

many proteins are required for the standard splicing and even more are 

required to regulate alternative splicing. 

1.3.1 An overview of translation in eukaryotes  

     Translation is a process that converts information encoded in mRNA into 

protein which can then fulfil roles in the cell. Further modification of the protein 

by post translational modification can also be used to alter its function. 

Translation is split into three stages; initiation, elongation and termination. 

Translation initiation brings the initiator tRNA, the 40S and 60S  ribosomal 

subunits together to form the 80S ribosome at the initiation codon of an mRNA 

(Pestova et al, 2001). This is followed by the elongation stage where the 80S 

ribosome moves along the mRNA adding amino acids to the nascent peptide 

(Preiss & W Hentze, 2003). In the final stage (termination) occurs when the 

elongating 80S ribosomal complex reaches a stop codon and the completed 

polypeptide is released and most likely the ribosome dissociates from the 

mRNA (Preiss & W Hentze, 2003). The initiation step will be discussed in 

detail here as it is related directly to my work.  

1.3.2 Translation initiation 

     The initiation phase of protein synthesis is an intricate multi-step process 

whereby an 80S initiation complex is formed in a series of co-ordinated 
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protein:protein and protein:RNA interactions involving 5’ m7GTP cap structure 

and the 3’ poly(A) tail as well as at least 12 eukaryotic translation initiation 

factors (eIFs) (reviewed by (Gingras et al, 1999); (Preiss & W Hentze, 2003). 

The process can be divided into four major sequential events: (i) recruitment 

of initiator methionyl tRNA (Met-tRNAi) to the 40S ribosomal subunit; (ii) 

recruitment of the 40S ribosomal subunit to mRNA; (iii) ‘scanning’ of the 5’ 

untranslated region (UTR) and initiation codon recognition; (iv) 60S ribosomal 

subunit joining at the start codon (Figure 1.2).  

1.3.3 Recruitment of the 43S preintiation complex to the 5’ end of the 

mRNA 

    The formation of the 43S preintiation complex requires eIF3 and eIF1A to 

keep the 40S subunit separate from the 60S subunit as the 80S ribosome is 

more favourable in physiological conditions (Preiss & W Hentze, 2003). eIF2, 

Met-tRNAi
Met and GTP form  a ternary complex which then binds to eIF1, 

eIF1A, multi-subunit factor eIF3 and eIF5 forming the multifactor complex 

(MFC) (Asano & Sachs, 2007). This has been shown in yeast to form before 

binding to the 40S ribosomal subunit, indicating that Met-tRNAi binding to the 

small ribosomal subunit might be accomplished by a preassembled multi-

initiation factor complex. The interactions within the MFC have been 

extensively analysed by a combination of in vitro binding assays, and 

purification of MFC sub-complexes formed in vivo by affinity-tagged eIF3 

subunits lacking discrete binding domains for other MFC components (Verlhac 

et al, 1997); (Asano et al, 1998); (Asano et al, 2000; Asano et al, 1999); (Phan 

et al, 1998); (Hanachi et al, 1999). The results of these studies suggest that 

each of the three largest subunits of eIF3 (a,b and c) have binding sites for the 



Figure 1.2 Overview of protein translation initiation. Methionyl-tRNAi binds to 
GTP bound eIF2, this then associates with the 40S subunit already associated with 
eIF1, eIF1A and eIF3 to form the 43S preinitiation complex. This complex is then 
recruited to mRNA via interaction between eIF3 and eIF4G (part of eIF4F). Scan-
ning occurs along the mRNA in a 5’-3’ direction until a start codon is reached at 
which point GTP hydrolysis occurs leading to the dissociation of eIF2 bound to the 
GDP, eIF5,eIF3 and eIF1, with recruitment of GTP bound eIF5B and the 60S subu-
nit. The GTP bound to eIF5B is hydrolysed and leads to the release of eIF5B/GDP 
and  eIF1A. The 80S subunit is now formed and can begin elongation. Taken from 
Jackson et al, (2011).
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other two largest subunits. Further interaction studies established that the N- 

terminal domain of eIF3a and an internal segment of eIF3c can interact with 

the ribosomal protein, RPS04, a protein predicted to reside on the solvent side 

of the 40S ribosomal subunit, which is the opposite side to the 60S-interface 

side; (Spahn et al, 2001). In addition, the C-terminal domain of eIF3a can 

specifically interact with a short segment of 18S ribosomal rRNA positioned on 

the 60S interface side. Based on these findings, a ‘wrap-around’ model for 

MFC binding to the small ribosomal subunit was proposed (Valasek et al, 

2003). According to this model, whilst eIF3 binds to the solvent side (Valasek 

et al, 2003); (Mayeur et al, 2003), it has access to the 60S-interface side of 

the 40S ribosomal subunit through the interaction of the C-terminal domain of 

eIF3a with the 18S rRNA, placing eIF1, eIF2, eIF5 at the 60S-interface 

(Siridechadilok et al, 2005). 

    eIF3 is required for the association of the 43S preintiation complex with 

eIF4F by binding to eIF4G, which is part of eIF4F (Asano & Sachs, 2007). 

eIF4F is a complex of eIF4E, eIF4G, and the helicase, eIF4A as shown in 

figure 1.3. This complex binds to the 5’ cap of the mRNA and associates 

mRNA with the 43S preintiation complex (Asano & Sachs, 2007).  Mammalian 

eIF4E is a 25-kDa protein that interacts specifically with the m7GTP cap 

structure at the 5’ end of cellular mRNAs and directs the eIF4F complex to the 

5’ end of the mRNA. Mammalian eIF4A is a 46-kDa protein exhibiting RNA-

dependent ATPase (Grifo et al, 1984) and bi-directional RNA helicase activity 

(Ray et al, 1985); (Pause & Sonenberg, 1992); (Pause et al, 1994b); (Li et al, 

1999). eIF4A is the prototype member of a large family of RNA helicases 

containing the specific DEAD box motif (Rogers et al, 2002). eIF4A helicase 
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activity is strongly enhanced by the co-factors eIF4B (Gingras et al, 1999) or 

eIF4H ((Richter-Cook et al, 1998); see later). The function of eIF4A is believed 

to be the unwinding of secondary structures in the 5’ UTR of the mRNA to 

create an attachment site for the 40S ribosomal subunit (Ray et al, 1985). 

Mammalian eIF4G is a large protein that is thought to serve as an assembly 

platform for other components of the translational apparatus (reviewed in 

(Gingras et al, 1999); (Prevot et al, 2003)). Poly(A) binding protein (PABP),is a 

protein which binds to the mRNA 3’ untranslated region (3’UTR) and eIF4G 

and causes the functional circularisation of the mRNA (Proud, 2007). This 

allows for translational regulation of some mRNAs whose poly(A) tail length 

varies in length depending on developmental conditions (Richter, 1999). 

Besides serving as a scaffold for the assembly of the translational machinery, 

eIF4G also influences the activity of other initiation factors. Binding of eIF4G 

to eIF4E markedly increases its binding affinity for the mRNA cap (Haghighat 

& Sonenberg, 1997) and the interaction of eIF4G with PABP has been 

suggested to increase the helicase activity of eIF4F (Bi & Goss, 2000b).  

1.3.4 Ribosome scanning and start codon recognition  

    The 43S ribosomal complex is assembled near the 5’ end of the mRNA and 

has to scan along the 5’UTR to reach the start codon which is usually AUG as 

part of a consensus sequence which is GCC(A/G)CCAUGG: the underlined 

region being the start codon and the bold letters being crucial bases; (Kozak, 

1989). There are other start codons used to a lesser extent such as ACC 

(Cavener & Ray, 1991) and CUG, which codes for leucine rather than 

methionine (Schwab et al, 2004). eIF4A, eIF4B, eIF4F, eIF1 and eIF1A are 

required for scanning along the 5’ UTR (Proud, 2007). eIF4A, eIF4B and 
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eIF4F are thought to be involved in remodelling the mRNA secondary 

structure in the 5’ UTR to allow the 43S preintiation complex to scan past 

secondary structure that would have otherwise inhibit  its progression (Oberer 

et al, 2005). eIF4A cycling in and out of eIF4F could be the source of 

movement during scanning (Preiss & W Hentze, 2003). eIF1 and eIF1A are 

thought to be required for affecting the structure of the 40S subunit  to change 

the mRNA binding cleft  or reposition the tRNA in the 43S complex (Pestova 

et al, 2001). 

1.3.5 Recruitment of the 60S ribosomal subunit and recycling of the 

initiation factors 

    The final stage of initiation is the binding of the 60S subunit to form the 80S 

ribosomal complex. When the 43S initiation complex reaches the start codon, 

the codon and the anticodon on the tRNA bind, which may cause a 

conformational change in eIF2 which leads to hydrolysis of the GTP bound to 

it (Preiss & W Hentze, 2003). This hydrolysis step causes the dissociation of 

eIF2-GDP and possibly other factors. A second hydrolysis of GTP also occurs, 

promoted by the 60S subunit binding, causing the GTPase of the eIF5B to 

increase (Preiss & W Hentze, 2003). This hydrolysis promotes a decrease in 

the affinity of eIF5B for the ribosome and allows it to dissociate; it may also 

cause the release of eIF1A which it interacts with. Once the 80S ribosomal 

complex is formed elongation of the polypeptide chain can begin (Lee et al, 

2002); (Pestova & Kolupaeva, 2002). 

    The GDP bound to eIF2 has to be replaced with GTP to allow the eIF2 to 

keep cycling through initiation complexes and performing its role in initiation 
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(Proud, 2007). This conversion is performed by eIF2B which is a guanine 

nucleotide exchange factor (GEF) which is a heteropentamer made up of α, β, 

γ, δ and ε subunits (Proud, 2007). eIF2Bε is the catalytic subunit and contains 

the binding site for eIF2 (Proud, 2007). This point is a crucial regulatory point 

and is controlled by eIF2α which can be phosphorylated on serine 51 which 

turns the subunit into a competitive inhibitor for eIF2 (Proud, 2007). This point 

of regulation is a global protein synthesis regulatory point as it does not 

control specific mRNA but rather regulates the total level of protein synthesis 

(Proud, 2007). 

1.3.6 Cellular Internal Ribosome Entry Sites (IRESes)  

    Internal ribosome entry sites are regions in a mRNA that allows internal 

initiation of the translation and are found in the 5’ UTR and in some cases 

inside the coding sequence of the mRNA (Komar & Hatzoglou, 2005). Internal 

initiation quite often does not require the 5’ cap and involves either the direct 

recruitment of the 40S ribosomal subunit to the vicinity of the initiation codon 

or to the start codon directly (Komar & Hatzoglou, 2005). There is a belief 

amongst some workers in the community that these IRES activities may in fact 

be caused by cryptic promoters or different splicing patterns of mRNA (Kozak, 

2005), but there has been much data that supports the existence of  cellular 

IRESes (Komar & Hatzoglou, 2005).  Consequently, protocols for determining 

IRES activity have been altered to take into account these factors (Bert et al, 

2006).  

    IRESes are thought to be found in at least 3% of cellular mRNAs (Johannes 

et al, 1999), found to be mainly in mRNA that encode proteins regulating gene 
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expression in differentiation, development, cell cycle (G2/M phase) 

progression, apoptosis and stress (Komar & Hatzoglou, 2005; Spriggs et al, 

2008). C-myc is an example of a mRNA reported to contain an IRES (Gerlitz 

et al, 2002). IRESes allow the cell to maintain the translation of the protein 

their mRNA’s encode when general protein translation is decreased under 

such conditions following eIF2α phosphorylation (Komar & Hatzoglou, 2005); 

(Jopling et al, 2004). Some IRES are thought to have a reduced need for 

eIF4G,eIF4B, eIF2α and the p35 subunit of eIF3 (Komar & Hatzoglou, 2005). 

It has also been shown that eIF4A activity is absolutely essential for c-myc 

and BiP IRES activity  (Thoma et al, 2004), but information about the 

requirement for eIF4A and initiation factors in other cellular mRNAs hosting an 

IRES is limited (Komar & Hatzoglou, 2005). In general, most mRNAs 

containing internal ribosome entry sites are not translated using their 5’ 

m7GTP cap as they often contain long and highly structured 5’ UTRs, but 

there are cases, they can utilise both cap-dependent  and –independent 

modes of translation (e.g. neurogranin mRNA) (Pinkstaff et al, 2001). Some 

IRESes are also not found close upstream of the start codon but are found 

inside the coding region. Such IRESes lead to translation of shortened 

proteins by IRES-driven translation, with full-length products derived from cap-

dependent translation (Komar & Hatzoglou, 2005). FGF-2 is a good example 

of a protein regulated in this way, but the mRNA actually contains four IRES 

sites and produces different products as determined by the IRES used to 

initiate translation (Bonnal et al, 2003). C-myc is also thought to be regulated 

this way yielding two isoforms; one translated cap-dependently the other by a 

cellular IRES (Stoneley et al, 2000). 
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    Cellular IRESes are thought to between 150 to 330 nucleotides in length, 

but some have been shown to be a small as 18 nucleotides. IRES have been 

shown to often contain pseudoknots, stem loop structures and 5’UTR’s 

containing IRES’s have also shown to be GC rich (Bert et al, 2006). However, 

no sequence homology has been found between different cellular IRESes 

(Komar & Hatzoglou, 2005). A proposed recruitment method is that the short 

IRES of 18 nucleotides found in the GTX mRNA is complementary to 

sequences in 18S rRNA ,potentially allowing binding of the 18S RNA and thus 

the rest of the 40S subunit to the IRES (Chappell et al, 2000). Also, tRNA-like 

structures found in some IRES are thought to potentially bind to the P or E 

sites on the 40S ribosome thus bind the 40S ribosome to the IRES 

(Fernandez et al, 2005). Proteins, called ITAFs (King et al, 2010), are thought 

to be involved in the regulation of IRES translation by interacting with the 

IRES and modulating its structure (Stoneley & Willis); (Bushell et al, 2006); 

(Lewis et al, 2007) and possible forming interactions with the ribosome directly 

(Kim et al, 2010; Majumder et al, 2009) and have been shown to up-regulate 

IRES activity.  

    PTB has been shown to be involved in regulating multiple cellular IRESs 

(Kim et al, 2010; Majumder et al, 2009). PTB has been shown to interact with 

hnRNP Q and upregulate the activity of an IRES in the mRNA coding for  Rev-

erb α, a protein crucial for the maintenance of cicardian rhythm in mice (Kim et 

al, 2010). PTB has also been found to interact with hnRNP L during amino 

acid starvation conditions and bind to the Cat-1 Arginine/Lysine Transporter 

mRNA and upregulate the IRES dependent translation of the mRNA 

(Majumder et al, 2009).  
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1.4  A detailed review of the components eIF4F structure function and 

regulation 

1.4.1 eIF4E 

     eIF4E as mentioned before stimulates cap-dependent translation but 

different mRNAs have different dependencies on eIF4E. mRNAs with large 

amounts of structure in their 5’ UTR have a greater dependency on eIF4E 

than those that have lesser structure (Robert et al, 2009). The three-

dimensional structure of slightly truncated mouse and yeast eIF4E bound to 

the cap analogue m7GDP was solved by X-ray crystallography and NMR, 

respectively (Marcotrigiano et al, 1997); (Matsuo et al, 1997). In addition, high-

resolution crystal structures of human eIF4E bound to the cap analogues 

m7GTP and m7GpppA were determined (Tomoo et al, 2003). Collectively, 

these high-resolution structures revealed that the cap-binding protein shows 

the overall shape of a cupped hand or baseball glove. Cap-binding occurs in 

narrow hydrophobic slot on the concave surface of eIF4E by specific 

interactions with the m7GTP moiety and with the ‘downstream’ phosphate 

groups. eIF4E associates with the mRNA via the binding with the cap and to 

eIF4G via a site on eIF4G which it also shares with 4E-BP1 (YXXXXLφ, where 

φ is either Leu, Met or  Phe; (Asano & Sachs, 2007) (Robert & Pelletier, 

2009).  

    eIF4E is a phosphoprotein and its major phosphorylation site is found at 

serine 209 in humans (Roux & Blenis, 2004). The phosphorylation of this site 

is implicated in protein synthesis regulation. The kinases responsible for this 
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are Mnk1 and Mnk2. A conserved region at the extreme C-terminus of eIF4G, 

the W2 domain, which shows homology to eIF5 and eIF2B  (Aravind & 

Koonin, 2000), serves as a binding site for the eIF4E kinases, Mnk1 and Mnk2 

(Pyronnet et al, 1999); (Morino et al, 2000). Mouse embryonic fibroblasts 

devoid of Mnk1 and Mnk2 show no eIF4E phosphorylation and this also 

appeared to have no effect on general protein synthesis (Ueda et al, 2004). 

However, another study has shown the inhibition of Mnk1 by the inhibitor, 

CGP57380, led to a reduction in Angiotensin-II-induced eIF4E 

phosphorylation and protein synthesis (Ishida et al, 2003). eIF4E 

phosphorylation at serine 209 has been shown to be required for the 

oncogenic properties of eIF4E (Furic et al, 2010); (Ueda et al, 2010). One 

reason for this could be that eIF4E phosphorylation leads to increased 

translation of mRNAs with long 5’-UTR by allowing the eIF4E to dissociate 

from the mRNA before it has finished scanning to allow more preintiation 

complexes to scan the mRNA (Raught & Gingras, 1999). These data suggest 

that even though eIF4E phosphorylation is not required in all cell types and 

situations, it is important in regulation of translation in response to certain 

situations.  

    4E-BP1 is also involved in the regulation of translation by its association 

with eIF4E, blocking the association of eIF4G with eIF4E (Figure 1.4) via the 

binding site YXXXXLφ (where φ is either Leu, Met or  Phe) which they both 

share (Marcotrigiano et al, 1999).. This mutually exclusive association is 

regulated by hyperphosphorylation of 4E-BP1 by the mammalian Target Of 

Rapamycin Complex 1 (mTORC1) (Rapley et al), causing the disassociation 

of 4E-BP1 from eIF4E (Sonenberg & Hinnebusch, 2009). mTORC1 is involved 
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in integrating signals from extracellular stimuli, amino acid availability, oxygen 

and energy status of the cells, allowing the energy state of the cell to control 

translation rates (Sonenberg and Hinnebusch 2009).4E-BP1 is a member of a 

family of proteins which contains 4E-BP2 (Pause et al, 1994a) and 4E-BP3 

(Poulin et al, 1998) 4E-BP2 and 4E-BP3 shares 56% (Gingras et al, 2001). 

and 57% (Poulin et al, 1998) sequence identity with 4E-BP1 respectivley and 

are most conserved in the eIF4E binding region. 4E-BP2 is phosphorylated on 

less residues than 4E-BP1 and appears to dissociate slower from eIF4E in 

response to phosphorylation than 4E-BP1(Gingras et al, 2001). Wheras 4E-

BP 1 and 2 are expressed in most tissue types 4E-BP3 has a more restricted 

expression profile (Rong et al, 2008). All 3 isoforms bind eIF4E and inhibit its 

formation with eIF4G (Pause et al, 1994a; Poulin et al, 1998) which indicates 

that regulation at this point is important for cells to regulate their translation. 

1.4.2 eIF4G 

    Two forms of mammalian eIF4G have been characterised, eIF4GI and 

eIF4GII. The predominant form, which probably accounts for 85% of eIF4G 

protein, is known as eIF4GI; the less abundant form is eIF4GII. In addition, 

eIF4GI itself consists of a family of five isoforms, which differ by the length and 

sequence of their amino-termini as shown in figure 1.5 (Imataka et al, 1998); 

(Byrd et al, 2002). The individual isoforms of eIF4G have been found to share 

similar, but distinct biochemical activities (Coldwell et al, 2004); (Coldwell & 

Morley, 2006); (Hinton et al, 2007b). The binding regions for several binding 

partners of eIF4G have been mapped by deletion and mutation analysis and 

are shown in figure 1.5. The amino-terminal fragment of eIF4G interacts 

directly with eIF4E (Mader et al, 1995); (Gradi et al, 1998; Imataka et al, 1998) 



Figure 1.5 The isoform variants of eIF4GI and the binding sites of translation 

initiation factors. Isoforms of eIF4G are labeled a-f with their initiation sites marked. 

The binding sites of PABP, eIF4E, eIF4A, eIF3 and Mnk are labeled. Adapted from 

Morley and Coldwell (2006).
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and PABP (Tarun & Sachs, 1996); (Tarun & Sachs, 1997); (Imataka et al, 

1998); (Piron et al, 1998). PABP is a translation initiation protein and has been 

found to be important in circularisation of mRNA by binding the 3’ poly(A) tails 

(Kahvejian et al, 2005) and up-regulating the translation of the mRNA (Doel & 

Carey, 1976); (Borman et al, 2000). The association of PABP with poly(A) tails 

has been found to increase the affinity of eIF4E for m7GTP cap structures 

(Borman et al, 2000). Apart from eIF4GIa, all isoforms contain PABP binding 

sites; this isoform of eIF4GI was less effective at rescuing translation in cells 

depleted of eIF4GI using siRNA (Coldwell & Morley, 2006). 

    The conserved central fragment of eIF4G contains a binding site for eIF4A 

(Imataka et al, 1997); (Lamphear et al, 1995) and eIF3 (Lamphear et al, 

1995); (Morino et al, 2000) and possesses RNA-binding activity (Goyer et al, 

1993). This central segment constitutes the primary ribosome recruitment site 

(De Gregorio et al, 1999); (Ali & Jackson, 2001); (Morino et al, 2000) and its 

structure has been resolved by X-ray crystallography, demonstrating that it 

folds into 5 HEAT motifs (Marcotrigiano et al, 2001). The carboxyl-terminal 

fragment of eIF4G contains a second, independent binding site for eIF4A 

(Lamphear et al, 1995); (Morino et al, 2000); (Korneeva et al, 2001); (Li et al, 

2001). eIF4G association with eIF3 is required to associate eIF4G with the 

40S ribosomal subunit and its binding site is found in the middle domain of 

eIF4G between amino acids 975-1078. However, inhibition of eIF3 binding to 

eIF4G by mutation of the eIF3 binding site on eIF4G does not have a great 

effect on translation (Hinton et al, 2007a). eIF4G association with eIF3 has 

also been found to be synergistic with eIF4A binding (Korneeva et al, 2000) 

which could potentially indicate redundancy for the eIF3 binding site. The 
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eIF4A binding sites are found either side of the eIF3 binding site; one in the 

middle domain and one in the C-terminal domain (discussed later; (Parsyan et 

al, 2011).   

1.4.3 eIF4A 

    eIF4A (also known as DDX2), is a DEAD box helicase (Oberer et al, 2005)  

whose activity is strongly enhanced by the co-factors eIF4B (Gingras et al, 

1999) or eIF4H (Richter-Cook et al, 1998). The function of eIF4A is believed to 

be the unwinding of secondary structures in the 5’ UTR of the mRNA to create 

an attachment site for the 40S ribosomal subunit (Ray et al, 1985) and to 

facilitate ribosomal scanning towards the AUG codon (Pestova & Kolupaeva, 

2002); (Oberer et al, 2005); (Marintchev et al, 2009); (Parsyan et al). 

Dominant-negative forms of eIF4A inhibit the unwinding of  5’ UTRs containing 

strong secondary structures more than ones containing weak secondary 

structures (Svitkin et al, 2001). eIF4A has 3 isoforms; eIF4AI, eIF4AII and 

eIF4AIII  (Parsyan et al, 2011). The first two (eIF4AI and eIF4AII) share high 

sequence homology and are virtually identical in structure and function. The 

third isoform (eIf4AIII) is not thought to be involved in translation and cannot 

rescue cells that lack eIF4AI and eIF4AII (Rogers et al, 1999). However, 

eIF4AIII has a role in exon junction complex formation after splicing (Parsyan 

et al). eIF4AI and eIF4AII are 406 and 407 amino acids in length and both 

have RNA-dependent ATPase and ATP-dependent bidirectional helicase 

activity (Parsyan et al). eIF4A lacks RNA recognition domains and so has a 

weak affinity for mRNA which is sequence independent. 
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    Structural work on eIF4A suggests that it exists in two states which are in 

equilibrium with each other; the open form and the closed form. The open 

form is the inactive form and the two RecA domains are positioned apart. 

Upon binding of ATP and mRNA, the gap between the two domains closes 

forming the catalytic site. Upon ATP hydrolysis, the domains separate 

releasing the mRNA for further cycles of enzymatic activity (Hilbert et al, 

2011). Binding to eIF4G causes the equilibrium between closed to open to 

shift towards the active conformation. eIF4G does this by acting as a soft 

clamp for eIF4A, stabilising the closed conformation (Oberer et al, 2005). To 

do this two of the HEAT domains in the middle region of eIF4G bind to eIF4A 

via the C-terminal domain of eIF4A; the eIF4G also forms a weaker link with 

the N-terminal domain of eIF4A. (Parsyan et al). The association of the C-

terminus of eIF4A with eIF4G is salt dependent; the N-terminal association is 

not salt dependent, indicating that the C-terminal domain binding is caused in 

part by charge (Oberer et al, 2005). This link between the two domains on 

eIF4A promoted by eIF4G helps stabilise the closed conformation (Parsyan et 

al, 2011). eIF4A is not only regulated by eIF4G; eIF4B and eIF4H  also play 

important roles (Parsyan et al). 

1.4.4 eIF4B and eIF4H 

    eIF4B and eIF4H has been shown to increase the helicase activity of eIF4A 

in vitro (Bi & Goss, 2000a; Rozen et al, 1990). eIF4B and eIF4H have been 

shown to form stable complexes with eIF4A which are mutually exclusive due 

to their overlapping binding sites (Rozovsky et al, 2008) and binding of eIF4H 

or eIF4B to eIF4A requires the association of ATP with eIF4A (Marintchev et 

al, 2009). eIF4B has the ability to bind single stranded RNA (Hinnebusch) but 
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the eIF4A, eIF4A/eIF4B and eIF4A/eIF4H complexes all have very similar 

RNAse protection footprints, indicating that they potentially do not bind mRNA 

(Rozovsky et al, 2008). Supporting this finding is evidence that one  of the two 

eIF4B RNA Recognition Motifs (RRM) is thought to bind a region of the 18S 

RNA (Methot et al, 1996). This RRM has also been shown to be not required 

for binding of eIF4B to eIF4A in the presence of mRNA (Rozovsky et al, 

2008). eIF4H on the other hand has been shown to bind immediately 5’ to 

eIF4A on the mRNA which would mean it is behind the eIF4A with respect to 

the direct of translocation (Marintchev et al, 2009). The binding of eIF4H in 

this fashion could stop the mRNA re-annealing and promote processive and 

unidirectional translocation (Marintchev et al, 2009). eIF4B has also been 

shown to form associations with PABP increasing its affinity for the poly(A) 

region of mRNA (Le et al, 1997). PABP and eIF4A and the 18S RNA are not 

the only components of the initiation complex eIF4B forms associations with; 

in wheat, it also binds eIF4G and eIF3 (Parsyan et al, 2011). 

1.4.5 Pdcd4 

    Pdcd4 is a 469 amino acid protein (Lankat-Buttgereit & Goke, 2009), and is 

known to shuttle between the nucleus and the cytoplasm (Lankat-Buttgereit & 

Goke, 2009). It consists of four domains (RBM1, RBM2, and two MA3 

sequences) and binds mRNA. The RNA binding activity of Pdcd4 (Lankat-

Buttgereit & Goke, 2009) has been localised to RBM1 and RBM2 in the N-

terminus  of the protein (Wedeken et al, 2010). These two regions are rich in 

lysines and arginines, both positive amino acid residues. (Wedeken et al, 

2010). This RNA binding regions were found to be required for localisation of 

Pdcd4 to 48S pre initiation complexes as deletion of the complete N-terminus 
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of Pdcd4, or mutation of both RBM1 and RBM2 led to disassociation from 

mRNA (Wedeken et al, 2010). RBM2 was found to have a greater effect on 

binding of Pdcd4 to 48S preintiation complexes (Wedeken et al, 2010). 

    The two alpha helical MA-3 domains are highly conserved between species 

(Lankat-Buttgereit & Goke, 2009). These two MA-3 domains (MA3-c and MA3-

m (Suzuki et al, 2008),  have been shown to be important in allowing eIF4GI 

and II to interact with other proteins (Lankat-Buttgereit & Goke, 2009). As with 

eIF4G, Pdcd4 has been shown to bind eIF4A (Lankat-Buttgereit & Goke, 

2009) and associate with the 48S preintiation complex. However Pdcd4 is not 

associated with polysomes (Wedeken et al, 2010). MA3-c has been shown to 

be able to compete with eIF4G for eIF4A  binding and also to inhibit 

translation (Suzuki et al, 2008). Addition of recombinant Pdcd4 to an in vitro 

helicase assay has shown that it can  inhibit helicase activity in a dose 

dependent manner (Lankat-Buttgereit & Goke, 2009), with both of the MA3 

domains binding to the N-terminal domain of eIF4A (Suzuki et al, 2008). 

Mutational disruption of the MA3 domains led to a nearly complete disruption 

of the interaction between Pdcd4 and eIF4A (Lankat-Buttgereit & Goke, 2009) 

and also the association of Pdcd4 with the 48S pre initiation complex 

(Wedeken et al, 2010). MA3-m not only binds the C-terminal domain of eIF4A 

inhibiting translation by preventing the binding of eIF4A to eIF4G, it also 

competes with the binding of mRNA to eIF4F (Suzuki et al, 2008). Along with 

this, the Pdcd4 also seems to bind to eIF4G. One possible explanation for this 

is that Pdcd4 binds to eIF4G to localises itself to eIF4A in eIF4F or to increase 

its concentration in the region around eIF4A (Suzuki et al, 2008); (Lankat-

Buttgereit & Goke, 2009).   
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    Pdcd4 can be regulated by the phosphorylation of ser67 and ser457 by 

AKT/protein kinase B (Lankat-Buttgereit & Goke, 2009). The phosphorylation 

of these sites causes a nuclear translocation of Pdcd4 and a decreased 

function to act as an inhibitor to AP-1 mediated transcription (Lankat-Buttgereit 

& Goke, 2009). Pdcd4 is also up-regulated by v-myb and c-myb transcription 

factors and also during apoptosis induced by PMA, ionomycin and 

dexamethasone. Up-regulation of Pdcd4 is not observed in apoptosis caused 

by UV irradiation or topoisomerase inhibitors (Lankat-Buttgereit & Goke, 

2009). Pdcd4 is also down-regulated in tumours and can be degraded by 

phosphorylation by p70 S6 kinase under the control of mTORC1 signalling. 

Phosphorylation marks Pdcd4 for degradation by  recruiting a ubiquitin ligase, 

releasing eIF4A to promote translation initiation (Lankat-Buttgereit & Goke, 

2009). Pdcd4 can also be down-regulated by miR-21 (Lankat-Buttgereit & 

Goke, 2009), a microRNA often over-expressed in tumour cells. 

1.5 An overview of the protein RBM4  

    RNA binding motif 4 protein (RBM4)  is an RNA binding protein (Lin & Tarn, 

2005) which was originally discovered in Drosophila where it is referred to by 

the name LARK. Here it has been shown to have a role in controlling the 

circadian rhythm (Kojima et al, 2007) and regulation of eye development 

(Sofola et al, 2008). RBM4 can be found as two highly homologous isoforms, 

termed RBM4a and RBM4b, which are encoded by two separate genes. In 

humans, the genes are both found on chromosome 11q13 and in mice, on 

chromosome 19A (Markus & Morris, 2009). As shown in Figure 1.6, the whole 

of the gene encoding RBM4a is found within an intron of genomic sequence 

encoding RBM4b (Lai et al, 2003). Lai et al (Lai et al, 2003) postulated that 
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due to the  high sequence homology and structural similarities, RBM4a and 

RBM4b had arisen from gene duplication. The only significant difference in 

sequence between RBM4a and RBM4b lies in their non-coding regions (Lai et 

al, 2003) which might allow alternative splicing to generate the three splice 

variants of RBM4b (Lai et al, 2003). RBM4 has been shown to have many 

different diverse functions and is present in many different subcellular 

compartments in the cell (Lin et al 2005). RBM4 has been shown to be 

involved in translation (Lin et al, 2007) alternative splicing (Kar et al, 2006), 

and miRNA silencing of mRNA (Lin & Tarn, 2009).These will be investigated 

later but all of these functions revolve around mRNA which RBM4 has the 

potential to bind to due to specific motifs in its structure (Markus & Morris, 

2009). 

1.5.1 Structure of RBM4 

    RBM4a and RBM4b are 361 and 357 amino acids long, respectively, and 

both contain two RRMs and a zinc finger in their N-terminus. This is 

summarised in Figure 1.7. The N-terminus shares the highest homology with 

LARK. The mouse and human C-terminal regions contain alanine rich repeats 

which are referred to as the C-terminal Alanine rich Domain (CAD). LARK on 

the other hand, contains several non-consecutive RS dipeptide repeats (Lai et 

al, 2003). However, the alanine rich repeats in the CAD and the non 

consecutive SR dipeptides appear to function in a similar way as binding sites 

for other proteins. RBM4 has been shown to shuttle between the cytoplasm 

and the nucleus this is also true of the CAD which indicates that it contains 

nuclear import and nuclear export signals or that the protein associates with a 

protein that does (Lai et al, 2003). Human and mouse RBM4a have a p38 



Figure 1.7  Domain Structure of RBM4 protein. RNA Recognition Motifs, zinc 
finger and alanine rich stretches are indicated. Image obtained form Markus (2008).
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MAP kinase phosphorylation site at serine 309 and serine 306, respectively 

(Lin et al, 2007). These sites are also found in RBM4b protein (Markus & 

Morris, 2009). 

1.5.2 Role of RBM4 in cellular functions  

(i) RBM4 is involved in splicing regulation 

RBM4 has been found to be involved in multiple splicing events. These 

include: the inclusion of Tau exon 10 (Kar et al, 2006); up-regulation of the 

alternative splicing of alpha tropomyosin leading to the up-regulation of  the 

skeletal muscle specific isoform (Lin & Tarn, 2005); and the down-regulation 

of PTB and nPTB via exclusion of exon 11/10 followed by NMD degradation of 

the truncated isoforms (Lin & Tarn, 2011). 

     The inclusion of exon 10 into Tau, a protein involved in microtubule 

organisation in neurons, is regulated by RBM4. A delicate balance between 

tau exon 10 inclusion and tau exon 10 exclusion is maintained, which if 

disrupted leads to neurodegenerative disorders like dementia (Kar et al, 

2006). Over-expression of RBM4 leads to up-regulation of exon 10 inclusion; 

the knock-down of RBM4 shows the reciprocal effect. RBM4 has been shown 

to bind to an intronic element of Tau but not to the mRNA. This site is believed 

to exist downstream of the 5’ splice site and is believed to be made up of a CU 

rich region (Kar et al, 2006). RBM4 has been observed binding CU rich 

sequences in other systems (Lin et al, 2007).  

     Another protein that RBM4 has been shown to modulate by alternative 

splicing is α-tropomyosin. α-tropomyosin is a protein involved in  regulation of 
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actin function in muscle cells and is required for muscle contraction. α-

tropomyosin has two isoforms regulated by RBM4 called skeletal α-

tropomyosin (SK) and smooth muscle α-tropomyosin (SM). Expression of 

RBM4 has a positive correlation with skeletal muscle isoforms and an inverse 

correlation with the smooth muscle isoforms. If RBM4 is over-expressed SK 

tropomyosin  increases by as much as 500% and SM tropomyosin decreases 

by about 40%; the opposite is observed for knock-down of RBM4 (Lin et al, 

2007). RBM4 has been shown to have CU-rich binding sites in intron 9a, 

termed CU1, CU2 and CU3. CU1 was also found to bind PTB competitively vs 

RBM4 and PTB has the opposite effect on splicing isoform selection to RBM4 

(Lin & Tarn, 2005). CU2 was found to be the most important site for the effect 

of RBM4 effect on the splicing of tropomyosin pre-mRNA and PTB was found 

not to bind to this region (Lin & Tarn, 2005).  

    RBM4 has also been found to be involved in splicing regulation during 

differentiation. However, in this case, RBM4 supports PTB in alternatively 

splicing both neuronal PTB and PTB pre-mRNA. RBM4 causes the exclusion 

of exon 11 from PTB and exon 10 from nPTB (Lin & Tarn, 2011). RBM4 does 

this by binding to CU rich regions inside exon 10/11 and upstream and 

downstream in intronic regions. This binding pattern interferes with the 

spliceosome formation leading to the exclusion of the exon. In previous work 

RBM4 has caused inclusion of exons, the difference  is believed to be caused 

by the binding of RBM4 to CU rich elements inside the exon alongside the 

upstream and downstream binding sites (Lin & Tarn, 2011). When generated, 

PTB-exon 11 and nPTB-exon 10 mRNAs are degraded by the NMD pathway 

and aberrant splice isoforms accumulate when NMD pathways are 
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inactivated. This would indicate that the splice event causes a nonsense 

mutation that leads to the mRNA degradation. (Lin & Tarn, 2011).  

 ( ii) RBM4 is involved in miRNA-dependent mRNA silencing 

    RBM4 has also been found to be involved in miRNA-dependent silencing of 

gene expression, a system which is believed to regulate between 30-90% of 

all mRNA (Ding & Han, 2007). This is a system in which short 18-22nt non 

protein encoding  RNA molecules (miRNAs) bind to the 3’UTR of target 

mRNAs. If the complementary sequence of the mRNA and the miRNA match 

exactly, the cell induces cleavage of the mRNA, as in plants. For sequences 

with close homology, this interaction between miRNA and mRNA leads to 

mRNA degradation (Pasquinelli, 2010).  Recently characterised protein factors 

are required for this process (reviewed in (Kawamata & Tomari, 2010)) which 

are found in the complex called RNA-Induced Silencing Complex (RISC). This 

complex is assembled through paths that are dependent on Dicer, TAR (HIV) 

RNA Binding Protein (TRBP), and dsRNA-binding proteins of the AGO family 

and by other factors including helicases, nucleases and RNA binding proteins. 

(Fazi & Nervi, 2008); (Kawamata & Tomari, 2010).Once the miRNA is part of 

the RISC complex it associates with complementary binding site in the 3’ UTR 

of target mRNAs, mRNAs are often subsequently concentrated in P-bodies. 

These structures are sites of mRNA storage but also contain a wide range of 

enzymes involved in RNA turnover, including de-capping enzymes, de-

adenylases and exonucleases (Fazi & Nervi, 2008).  

    miRNAs are important in myogenic differentiation,  with miR-1, miR-16 and 

miR-133  acting as muscle-specific miRNAs. miR-1 and miR-133 are 
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responsible for regulating apotosis in differentiating muscle cells with miR-1 

down- regulating the pro-apoptotic factors, HSP60 and HSP70 post-

transcriptionally. miR-133 down regulates Caspase-9 so that differentiating 

muscle cells do not die through receptor-independent apotosis. (Xu et al, 

2007). miR-1 has also been shown to be responsible for regulation of myocyte 

enhancer factor 2C (MEF2C) an essential muscle transcription factor  via 

direct post transcriptional down-regulation of histone deacetylase 4 

(Gangaraju & Lin, 2009). miR-1 and miR-206 have been found to regulate the 

levels connexin 43, a protein involved in gap junction formation during 

myogenic differentiation (Gangaraju & Lin, 2009).   

    RBM4 was initially found to transiently localise to cytoplasmic granules, co-

localising with Ago2, Dcp1 and GW182 (Ding & Han, 2007). These proteins 

are miRNP components and indicate that such localisation reflects the 

assembly of P-bodies.  When RBM4 was over-expressed, it formed a RNAse 

resistant complex with Ago2 which was unaffected by the phosphorylation 

state of RBM4 (Lin & Tarn, 2009). This was observed in differentiating and 

proliferating cells but with a larger amount of Ago2 binding RBM4 during 

differentiation. This increase in complex formation was believed to be due to 

an increase in RBM4 shuttling into the cytoplasm where Ago2 is found (Lin & 

Tarn, 2009). This interaction allows RBM4 to recruit Ago2 to mRNAs 

containing CU rich elements resulting in translational inactivation of these 

mRNAs. If RBM4 is over-expressed, mRNAs with CU rich regions are 

preferentially down-regulated (Lin & Tarn, 2009). If Ago2 was knocked-down 

RBM4 was unable to down-regulate CU rich containing mRNAs. mRNAs that 

are associated with RBM4 have been shown to have  lower levels of 
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association with eIF4E but not with eIF4A which can bind RBM4.  RBM4 has 

also been shown to interact with miR-1 and miR-206 but not with muscle 

specific miR-16 (Lin & Tarn, 2009) or miR-133 (Xu et al, 2007). 

(iii) RBM4 interacts with translation factors 

    RBM4 was found to be involved in the regulation of mPER1, a circadian 

rhythm protein found in mice. This protein has a cycle which is affected by the 

dark light cycle the animal is subjected to. This cycle pattern is very similar to 

RBM4 protein expression levels; over-expression of RBM4a or RBM4b leads 

to an up-regulation in mPER1 by 2.8 fold or 5 fold, respectively. A stem loop 

binding site for RBM4 has been discovered in the 3’UTR of mPER1. mRNA; 

binding of RBM4 inhibits translation in a bicistronic assay (Kojima et al, 2007). 

If this structure was disrupted, RBM4 would no longer bind to the mRNA and 

translational up regulation was lost (Kojima et al, 2007). However, point 

mutations that did not disrupt the structure had little effect on RBM4 binding or 

translational up regulation. The exact mechanism behind this inhibition was 

not determined (Kojima et al, 2007).  

    Another case of RBM4 affecting translation of a target mRNA has been 

reported for HeLa cells undergoing arsenite treatment. During arsenite 

treatment, the p38 MAP kinase signalling pathway is activated, resulting in the 

phosphorylation of  RBM4 on ser309. This causes a re-localisation of RBM4 

from the nucleus to the cytoplasm (Lin et al, 2007). Once in the cytoplasm, 

RBM4 binds to eI4A and eIF4G and recruits them to an expressed mRNA 

containing a Encephalomyocarditis Virus (EMCV) IRES sequence. This IRES 

requires eIF4A to initiate translation, with over-expression of eIF4A increasing 
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the activity of this IRES in reporter assays.  If RBM4 was over-expressed in 

these transfected HeLa cells, it had a similar effect to eIF4A on the IRES 

activity. This is thought to be due to RBM4 recruiting more of the eIF4A to the 

IRES (Lin et al, 2007). It has also been postulated that when phosphorylated, 

RBM4 has a greater affinity for the EMCV IRES. There is some evidence of 

RBM4 binding cellular IRES structures, like those reported for c-myc and Bcl-

2. Under these conditions, RBM4 can be found associated with these mRNAs. 

Increased RBM4 levels, or treatment of cells with arsenite increased c-myc 

and Bcl-2 protein levels (Lin et al, 2007). Like EMCV IRES, c-myc IRES 

activity has also been shown to be sensitive to levels of eIF4A (Thoma et al, 

2004). 

(iv) RBM4 regulation of circardian rhythm and eye development in           

Drosophila  

    RBM4 has been shown to be involved in the regulation of the cicardian 

rhythm of Drosophila (Huang et al, 2007; Huang et al, 2009; Sofola et al, 

2008). LARK has been shown to have an expression profile that is regulated 

by the cicardian clock and when overexpressed caused an abnormal 

circardian rhythm (Schroeder et al, 2003). RBM4 has also been shown to 

interact with a mRNa encoding E74, which is a transcription factor required for 

regulation of the circadian clock. RBM4 up- regulates the expression of E74 

without changing the expression of its mRNA, indicating a potential role in 

regulating translation (Huang et al, 2007). RBM4 has also been shown to 

regulate the development of Drosophila eye. It does this by forming a complex 

with dFMRP (Sofola et al, 2008) but how they mediate there effect is 

unknown.  
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1.6 Skeletal myogenic differentiation  

    Myogenic differentiation (Figure 1.8) is the process by which satellite cells 

terminally differentiate into multi-nucleated myotubes which then undergo 

further differentiation leading to fully functional muscle fibres (Grounds et al, 

2002). The differentiation process is a highly organised switch requiring the 

cells to proliferate, exit the cell cycle and then begin expression of muscle 

specific proteins leading to fusion and subsequent production of contractile 

proteins (Hawke & Garry, 2001). Satellite cells are found below the basement 

membrane next to myofibres in a satellite cell-niche (Mauro, 1961). They 

express a key transcription factor, pax7 which is thought to be crucial in the 

development of satellite cells. These cells are normally in a quiescent state 

(Hawke & Garry, 2001), as indicated by a large nuclear to cytoplasmic ratio 

along with a smaller number of organelles and more heterochromatin (Charge 

& Rudnicki, 2004b). The satellite cells remain in this quiescent state until they 

are activated in response to numerous signals including myotrauma (Hawke & 

Garry, 2001), possibly due to a factor released by the damaged myofibres. 

The activation does not cause only local satellite cells to become active. More 

distant cells also become active and migrate towards the site of injury (Schultz 

& Jaryszak, 1985). These activated cells then go on to proliferate and are 

often referred to as adult myoblasts. Upon activation of satellite cells, Myf5 

and MyoD are up regulated. These proteins which are Myogenic Regulatory 

Factors (MRF), drive the formation of a large pool of myoblasts which begin to 

differentiate by up-regulating myogenin and MRF4 protein levels. This is 

followed by increased levels of p21 which inhibits cell cycle progression, and 



Cell fusion

Cell proliferation

Myoblasts Myoblasts 
(Confluent)

Myocytes Myotubes

Terminal differentiation

Figure 1.8 myogenic differentiation of C2C12 myoblast cells. C2C12 cells prolif-

erate to confluenlency and once the cells are contacted inhibitiexd the cells begin to 

terminally diffferentiate and align into myocytes. These myocytes then begin to fuse 

to form multi nucleated myotubes.
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is followed by fusion.  M-cadherin and M-calplain are thought to play central 

roles in this latter process, promoting cell-cell interactions, cytoskeleton 

reorganisation and up-regulation of muscle specific proteins like myosin heavy 

chain (Charge & Rudnicki, 2004). Overall, myogenic differentiation is 

regulated by a number of specific signalling pathways like mTOR (Ge et al, 

2009), p38 MAPK (Baeza-Raja & Munoz-Canoves, 2004), PKR (Alisi et al, 

2008) calcineurin (Scicchitano et al, 2005) and CaMKIV (Xu et al, 2002). I will 

focus on the p38 MAPK pathway as this has been shown to induce 

phosphorylation of RBM4, the main focus of the work described in this thesis. 

1.6.2 p38 MAPK in myogenic differentiation 

    p38 MAPK is a protein kinase primarily involved in signalling inflammatory 

and environmental stresses (Roux & Blenis, 2004). It has also been found that 

p38 MAPK signalling is required for myogenic differentiation (Wang et al, 

2008). This effect is mediated by a sustained signalling via p38 MAPK (Alisi et 

al, 2008) which is different to inflammatory signalling via p38 MAPK which is 

transient (Alisi et al, 2008).  p38 MAPK has a variety of different isoforms (, 

,  and  (Wang et al, 2008)  and phosphorylation of their substrates require 

activation of p38 MAPK by phosphorylation of a Thr-Gly-Tyr motif which is 

found in the T-loop of the kinase (Roux & Blenis, 2004). p38 MAPK targets 

include phospholipase A2, the microtubule-associated protein Tau, the 

transcription factors ATF1 and -2, Sap-1, MEF2A, NF- B, Elk-1, Ets-1, and 

p53. It has also been found that p38 MAPK can activate kinases such as 

MSK1, MSK-2, Mnk1, Mnk2, MK2 and MK3 in the stress pathways (Cuenda & 

Rousseau, 2007). 
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    As mentioned above, p38 MAPK is required for myogenic 

differentiation(Alisi et al, 2008), and p38 MAPK activity is upregulated upon 

serum removal and is maintained throughout myogenic differentiation. The 

sustained activity of p38 MAPK during differentiation and the fact that there is 

not a parallel increase in JNK activity separate this responsce from stress 

related p38 activity which is more transient and has a parell activation of JNK 

(Wu et al, 2000).  . The , , and  isoforms (Wang et al, 2008) are important 

during myogenic differentiation and the activity of  and  isoforms increases 

in protein expression during differentiation (Alisi et al, 2008), a process 

essential for myogenic differentiation (Wang et al, 2008).  One of the 

redundant roles of the isoforms is the up-regulation of E2F2 (transcription 

factor), which has been thought to regulate myogenin expression. The 

P38MAPK isoform has been found to be responsible for the up regulation of 

cyclin D3 which forms a complex with unphosphorylated Rb, CDK2, CDK4, 

p21 and Proliferating Cell Nuclear Antigen (PCNA). This complex has been 

associated with irreversible exit from the cell cycle which is a requirement for 

differentiation to occur (Wang et al, 2008). The p38MAPK and  isoforms 

have been found to be phosphorylated and activated by N-cadherin signalling 

and led to an up-regulation of IGF-II protein expression, which is also crucial 

for myogenic differentiation (Lovett et al, 2006). The increase in 

phosphorylation of  p38 MAPK has been found to be mediated by  Abl (a non 

receptor tyrosine kinase (Bae et al, 2010))  and Cdo (a cell membrane protein 

that is involved in regulation of cell-cell interaction and is a cell surface 

receptors (Kang et al, 1998)), both of which if knocked-down reduce p38 

MAPK phosphorylation and activity and lead to failed myogenic differentiation 



31 
 

(Bae et al, 2009). The two proteins are thought to ineract with each other, 

which allows activation of p38 MAPK pathway by the kinase activity of Abl 

(Bae et al, 2010). 

 

    Another role for multiple  p38 MAPK isoforms is in the activation of NF-B 

signaling by inducing the degradation of I-B and activating p65 (forms a 

heterodimer with NF-B). These effects lead to the up-regulation of IL-6 

protein expression which is a promyogenic factor (Baeza-Raja & Munoz-

Canoves, 2004). PKR is also involved in myogenic differentiation. It has been 

shown to cross talk with p38 MAPK and it regulates p38 MAPK kinase activity 

and is required for differentiation (Alisi et al, 2008). Previous examples 

mentioned have all indicated that p38 MAPK activity is required for 

differentiation but another group have found p38 MAPK activity to have a 

negative effect on late myogenic differentiation (post myotube formation), 

indicating a possible dual role for p38 MAPK during myogenic differentiation 

(Weston et al, 2003). 
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1.7 The Aim of this thesis  

        The aim of this thesis is to investigate the potential for RBM4 to regulate 

myogenic differentiation by directly influencing translation as RBM4 has been 

shown to up-regulate differentiation when over expressed and to interact with 

translation initiation proteins and to associate with IRES containing mRNAs. 

Previous work has shown that RBM4 shuttles from the nucleus to the 

cytoplasm in response to p38 MAPK signalling which is up-regulated in a 

sustained manor during myogenic differentiation. The work described here 

aims to investigate the interaction of isoforms of RBM4 with the translational 

apparatus using differentiating C2C12 myoblasts as a model system. This will 

be done by investigating the expression level of RBM4 total protein and its two 

isoforms RBM4a and RBM4b during myogenic differentiation, the association 

of RBM4 with the intiation factors eIF4G and eIF4A, the localisation of RBM4 

during myogenic differentiation and the association between RBM4 and 

actively translating ribosomes. 
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Materials and Methods 

 

2.1 Chemicals and Biochemicals  

2.1.1 Reagents and reagent suppliers 

    Fetal Calf Serum (FCS) was from Labtech International (UK) and all other 

materials for tissue culture were from Invitrogen. [35S]-methionine was from 

MP Biomedicals (Brussels, Belgium). m7GTP-Sepharose 4B resin and 

uncoupled resin were from GE Healthcare (UK). C2C12 and HeLa cells were 

from the European Collection of Cell Cultures (ECACC; UK) and American cell 

Type Culture Collection (ATCC; USA).  Mammalian expression plasmids 

encoding wild-type Homo sapiens  RBM4a  and RBM4a containing a 

Ser309Ala mutation  and bacterial expression vectors for Homo sapiens 

RBM4 Wild type and RBM4 RRM silenced mutant were a gift from Dr Woan-

Yuh Tarn (Korea). All other kits and reagents were supplied by the companies 

indicated in the text and unless otherwise stated, all chemical were of 

analytical quality from Sigma Aldrich (UK). 

2.1.2 Antibodies  

    All primary antibodies used in this work are presented in Table 2.1. Anti 

RBM4a and anti RBM4b monoclonal rat antibodies where a gift from Dr 

Friedrich A. Grässer (Germany). 

2.1.3 Cell permeable inhibitors  

    SB202190 (a p38 MAPK inhibitor shown below) was stored at 20mM in 

DMSO and used at 20µM (MERK Chemicals). 



Table 2.1 Primary Antibodies  

Target Predicted 
kDa 

Antibody name Immunogen Dilution 
µl:µl 

Donor  
animal 

Supplier 

RBM4 Total 40 RBM4 Total RBM4 Homo Sapiens fusion protein 
 

1:1000 Rabbit Protein Tech 

RBM4a 40 RBM4a GST-RBM4a fusion protein 
 

1:250 Rat Dr Friedrich A. 
Grässer 

RBM4b 40 RBM4b Synthetic peptide: 
QSTTVTSHLNSTSVD 
corresponding to amino acids 
residues 255-269 of RBM4b 

1:250 Rat Dr Friedrich A. 
Grässer 

eIF4A 46 Bloo4 Synthetic peptide: 
DLPANRENYIHRTGRGGRFGRK, 
corresponding to amino acid 
residues 348-369 of xenopus eIF4AI 

1:1000 Rabbit Dr Simon Morley 

eIF4GI 220 Edith Synthetic Peptide: 
RTPATKRTFSKEVEERSRERPSQP
EGCR, corresponding to amino acid 
residues 1179-1206 of human 
eIF4GI 

1:1000 Rabbit Dr Simon Morley 

PABP 70 Red2 Synthetic peptide: 
IPQTQNRAAYYPPSQIAQLRPS 
corresponding to amino acids 388-
409 of human PABP 

1:3000 Rabbit Dr Simon Morley 

eIF4E 25 Xavier Synthetic peptide: 
TATKSGSTTKNRFVVC 
corresponding to amino acid 
residues 203-217 of human eIF4E 

1:2000 Rabbit Dr Simon Morley 



Myogenin 34 Myogenin Recombinant GST fusion protein 
corresponding to amino acids 30-
224 of rat myogenin 

1:1000 Mouse  BD Pharmingen 

Actin 42 Anti-actin  Synthetic peptide corresponding to 
the carboxyl-terminal 11 residues, 
which is identical in most species 

1:3000 Rabbit Sigma-Aldrich 

Caveolin-3 21 Caveolin-3 Synthetic peptide: 
MMTEEHTDLEARIIKDIH(C) 
corresponding to amino acid 
residues 1-18 of human caveolin-3  

1:2000 Rabbit Abcam 

P-p38 38 Phospho-p38 
MAP Kinase  

(Thr180/Tyr182) 

Synthetic phospho-peptide 
corresponding to residues 
surrounding Thr180 and Tyr182 of 
human p38 MAPK 
 

1:500 Rabbit  Cell signaling 
technologies 

Myosin 
heavy chain 

204 MYC Raised against synthetic peptide 1:1000 Mouse  National 
Hybridoma Bank 

wisconcen  

c-myc 62 c-myc Synthetic peptide AEEQKLISEE 
DLLRKRREQL 

KHKLE corresponding to C terminal 
amino acids 408-432 of Human c-

Myc. 

1:1000 Mouse  Abcam 
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2.2 Cell culture 

2.2.1 C2C12 cell culture 

     C2C12 are mouse C3H muscle myoblast cells (Yaffe & Saxel, 1977). The 

cells used in this thesis have been passaged 12 times and where maintained 

for 12 further passages before fresh stocks were used. C2C12 cells were 

maintained at sub-confluent levels in C2C12 growth-medium at 37oC with 5% 

carbon dioxide. Transfer of semi-confluent cells was achieved using trypsin-

EDTA. 

C2C12 growth medium  DMEM (Dulbecco’s Minimal Essential 

Medium) supplemented with 20% (v/v) 

Foetal calf serum (FCS) 

 

2.2.2 HeLa Cell culture 

     HeLa are human cervical epitheloid carcinoma cell (Gey et al, 1952). Hela 

cells were maintained at sub-confluent levels in HeLa growth-medium at 37oC 

with 5% carbon dioxide. Transfer of semi-confluent cells was achieved using 

trypsin-EDTA. 
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HeLa growth medium MEM (Minimal Essential Medium) with 10% 

(v/v) FCS, 2mM sodium pyruvate, 1x non 

essential amino acids and 2mM L-glutamine  

 

2.2.3 Myogenic differentiation of C2C12 cells  

     Cells were seeded at 1 million cells on a 6cm plate in 3ml C2C12 growth 

medium (as described in Section 2.2.1) and incubated at 37oC with 5% CO2 

for two days until completely confluent. Medium was aspirated and cells were 

briefly washed with serum-free culture medium (DMEM). 3ml of Differentiation 

Medium was added and was replaced every 24 hours of culture. 

Differentiation Medium (DM) DMEM with 10μg/ml transferrin, 10μg/ml 

insulin and 2% (v/v) horse serum. 

 

2.2.4 Transfection of HeLa cells with cDNA encoding RBM4  

 Hela cells were plated out on 6cm plates at a density of 60,000 cells and 

were incubated at 37oC with 5% CO2 for 24 hours in 2ml of HeLa growth 

medium. Following this, between 3-6 µl Fugene (Roche, UK) was added to 

100 µl serum-free MEM supplemented with 1-2µg of cDNA encoding RBM4 

WT or RBM4 MT (S309A) (Lin et al, 2007), as outlined in the individual figure 

legends. This was mixed gently by tapping the tube and incubated for 20 mins 

at room temperature. The medium on the HeLa cells was reduced to 1ml and 

the DNA/Fugene complex was added in a drop-wise manner. The cells were 
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incubated for 24 hours at which point experiments could be conducted upon 

the transfected cells. 

2.2.5 Transfection of C2C12 myoblasts with cDNA encoding RBM4 

    C2C12 cells were plated out at a density of 50,000 cells on a 6cm plate and  

incubated at 37oC with 5% CO2 in C2C12 growth medium. These were mixed 

gently by tapping the tube and incubated for 30 mins at room temperature. 

Following this, between 3-6 µl Fugene (Roche, UK) was added to 100 µl 

serum-free MEM supplemented with 1-2µg of cDNA encoding RBM4 WT or 

RBM4 MT (S309A), and incubation and transfection was carried as described 

as for HeLa cells in Section 2.2.4.  

2.2.6 Inhibition of p38 MAPK in C2C12 undergoing differentiation 

    C2C12 cells were setup for differentiation as described in Section 2.2.3 and 

incubated in the absence or presence of 20 µM SB202109. The cell medium 

was changed for fresh differentiation medium every 24 hours also 

supplemented with 20 µM SB202109. 

2.2.7 Arsenite treatment of cells  

    C2C12 cells were setup for differentiation as described in Section 2.2.3 and 

incubated in the absence or presence of 0.5 μM arsenite. The cells were then 

incubated for 30 mins before experiments were conducted upon them. 
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2.3 Cell lysis  

2.3.1 Standard cell lysis 

    The cell medium was removed and replaced with 1ml of cold PBS (scaled 

up or down if bigger or smaller plates than 6cm plate were used) and the cells 

were scraped on ice and aspirated into cold 1.5ml microcentrifuge tubes. The 

cells were then isolated by centrifugation at 15,000 x g for 1 min at 4oC. The 

supernatant was removed and the pellet resuspended in 100µl of lysis buffer 

and then supplemented with 0.5% (v/v) Igepal and 0.5% (v/v) Deoxycholic 

acid (volume scaled up or down if larger or smaller plates were used) followed 

by a vigorous vortexing. The ressupended cells were centrifuged at 15,000 x g 

for 10 mins at 4oC and the recovered supernatant flash frozen in liquid 

nitrogen and stored at –80oC. 

Lysis buffer:  20mM MOPS (KOH) pH 7.2, 2mM 

benzamidine, 2mM MgCl2, 2mM EGTA, 

0.1mM GTP, 0.5 mM DTT, EDTA-free 1x 

protease inhibitor cocktail (Roche, UK). 

 

2.3.2 Estimation of protein concentration (Bradford assay) 

    Coomassie dye (Bradford reagent; Bio-Rad UK) stock solution was diluted 

1:5 with H2O. 200µl of this was added per well to a 96 well plate. A standard 

curve was prepared by adding 0,0.5, 1, 2, 3 or 4µg of BSA per well (stock 10 

mg/ml; New England Biolabs, UK). Extracts were diluted 1:2 to ensure the 

protein concentrations were in the range of the standard curve and 1µl was 

pipeted into each well, in triplicate. The colour reaction was quantified by 
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measuring absorbance (A620) minus background absorbance (A405) using the 

standard curve to calculate protein concentrations of the diluted extracts. 

2.3.3 Sub-cellular fractionation of C2C12 myoblast extracts 

    Sub-cellular fractionation was performed using ProteoExtract® Subcellular 

Proteome Extraction Kit (Calbiochem, UK), as described in the supplied 

manual.   

2.4 Western blotting 

2.4.1 Sodium Dodecyl Sulphate-PolyAcrylaymide Gel Electrophoresis 

(SDS-PAGE) 

    Mini gels were used (Protean II, Bio-Rad, UK) and resolving gel was poured 

into the assembled apparatus and allowed to set for 30 mins under a layer of 

water-saturated butanol. The water-saturated butanol was removed and the 

stacking gel was poured into the mini gel followed by a gel comb and was 

allowed to set for 10 mins. Once the gel had set, the comb was removed and 

the gel was placed into the running rig. The central well was filled up with SDS 

running buffer and samples and markers were loaded (samples were diluted 

in sample buffer). The external chamber was then filled up with SDS running 

buffer to cover the base of the gels. The gel was then subjected to 100V and 

resolved until the loading dye was run off the end of the gel. To change the 

percentage of the gel to allow different size proteins to be resolved, 

acrlyamide concentrations were varied as described in individual figure 

legends. 
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Resolving gel: 10ml of separating gel mix (5ml per gel) 

3.7ml pure H20, 2.5ml 1.5M  Tris/(HCl) pH 

8.8, 50µl  20% (w/v) SDS, 3.7ml acrylamide 

/bisacrylamide mix (30%:0.8%), 50µl 10% 

(w/v) APS, 10µl TEMED. 

Stacking gel: 3ml of stacking gel mix: 4.98% (w/v) 

acrylamide, 0.13% (w/v) bisacrylamide, 

125mM Tris (HCl) pH6.8, 30µl 20% (w/v) 

SDS, 20µl 10% (w/v) APS, 10µl TEMED.

  

Sample Buffer: 1.4M -Mercaptoethanol, 530mM Tris (HCl) 

pH 6.8, 0.85% (w/v) SDS, 42.5% (v/v) 

glycerol, 0.05% (w/v) Bromophenol blue and 

0.05% (w/v) phenol red. 

Running Buffer: 25mM Tris/ (HCl) pH 8.5, 0.16% (w/v) SDS, 

192mM glycine.    

  

 

2.4.2 Transfer of proteins to PDVF membrane 

    A semi-dry transfer was used for transferring proteins between the 

polyacrlyamide gels and PDVF membrane (GE Healthcare). Whatman 3MM 

chromatography paper was used during the process. A stack of Whatman 

paper was made up of four sheets soaked in Anode 1 buffer, two sheets 

soaked in Anode 2 buffer, one sheet of PDVF membrane hydrated in 
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methanol, the polyacrylamide gel and four sheets soaked in Cathode buffer. 

The stack was gently squeezed to remove air bubbles and excess fluid and 

placed in the transfer apparatus and 0.8mA/cm2 was applied for 90 mins. 

Anode 1 buffer:    0.3M Tris base, 20% (v/v) methanol. 

Anode 2 buffer:    25mM Tris base, 20% (v/v) methanol. 

Cathode buffer: 25mM Tris base, 40mM 6-NH2 

hexanoic acid, 20% (v/v) methanol . 

 

2.4.3 Immunoblotting  

    After the protein transfer, the PDVF membrane was placed in blocking 

solution for 30 mins. Primary antibodies (Table 2.1) were diluted into blocking 

buffer and incubated with membrane overnight at 4oC on a rocking platform. 

TBS/Tween:  50mM Tris (HCl) pH7.4, 150mM 

NaCl, 0.5% (v/v) Tween-20. 

Blocking solution: 3% (w/v) BSA, TBS/Tween. 

 

2.5 Cell imaging 

2.5.1  Immunofluorescence 

   Cells were washed once in 2ml warm PBS and then fixed with 4 % (v/v) 

paraformaldehyde for 20 mins. After washing three times with PBS, the cells 

were permeabilised for 5 mins in 0.1 % (v/v) Triton X100 and incubated for 1 
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hour in blocking buffer. The blocking buffer was aspirated, replaced with 

blocking buffer containing primary antibodies and incubated for 1 hour at room 

temperature. The cells were then washed three times in PBS and incubated 

with secondary antibodies and phalloidin (Sigma, UK; diluted in blocking 

buffer) for 1 hour at room temperature. The secondary antibodies were 

aspirated and the cells were washed three times with PBS. The fixed cells 

were then incubated with 1ml of 7.7 ng/ml DAPI (Sigma, UK) in H2O for 5 

mins. The cells were washed in distilled water three times and mounted for 

confocal microscopy using Mowiol mounting medium on coverslips, which 

were sealed with nail varnish and stored in the dark at 4oC for at least a day 

before images were captured. Images of the cells were captured using a Zeiss 

axiovert LSM510 laser scanning confocal microscope. 

Blocking buffer:    PBS with 3% (w/v) BSA. 

Mowiol mounting medium: 0.2M Tris (HCl) pH 8.5, 33% w/v glycerol, 

13% (w/v) Mowiol, 2.5% (w/v) 1,4-

diazobicyol [2,2,2]-octane (DABCO). 

4% paraformaldehyde solution: PBS with 4% paraformaldehyde (v/v). 

 

2.5.2 Analysis of confocal images  

Colocalisation analysis was performed as described in Coste et al (2004). 

Correlation data was obtained using MBF ImageJ software 

(www.macbiophotonics.com). Briefly, pixel co-variation between individual 

channels was measured by linear regression using Pearsons Correlation 

Coefficient (Manders et al, 1993) and images were thresholded using Coste’s 
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threshold; The Pearsons Correlation Coefficient was sequentially measured 

between two channel images at each individual pixel intensity from 255-0. The 

pixel intensity value where Pearsons Correlation Coefficient became zero (i.e. 

random correlation) was defined as the threshold, and any information below 

this intensity was disregarded from the colocalisation analysis. 

The control for the Pearsons Correlation Coefficient was obtained using 

Coste’s Randomisation Method; Briefly, the pixel distribution of one of the 

channel images was randomised according to half width point spread function. 

The Pearsons Correlation Coefficient was then obtained by comparing the 

randomised image to the non-randomised channel image. This procedure was 

repeated multiple times (n=200). Pearson’s Correlation Coefficient for sample 

images was considered significant if it was above 0.5 and Coste’s 

randomisation was close to 0. 

 

2.5.3 Capturing light microscopy images  

    Images of cells in cell culture were captured using a Moticam 2000 2.0M 

pixel USB 2.0 attached to light microscope via a 10X objective and converted 

to gray scale in Adobe Photoshop. 

2.6 Polysome gradients 

    Cell extracts were prepared using the standard lysis method as described in 

Section 2.3 and 200µl of extract was layered onto a 5ml linear gradient of 10-

40% (w/v) sucrose (in sucrose buffer) and centrifuged for 60 mins at 192,000 

x g in a SW55 Ti rotor at 4oC. Optical density profiles were obtained by 

upward displacement of the sucrose gradient with 60% (w/v) pumping sucrose 
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through an ISCO UA6 gradient fractionator machine coupled to a UA5 

spectrophotometer measuring the absorbance at 254nm. All steps of this 

protocol was performed under RNAse free conditions. 

Sucrose Buffer:  20mM MOPS (KOH) pH 7.2, 75mM KCl, 

2mM MgCl2 . 

Pumping sucrose:  60% (w/v) sucrose in H2O, phenol red 

(trace). 

 

2.6.1 Phenol chloroform isolation of RNA from Polysome fractions  

    Phenol chloroform extraction was performed using Tri reagent as 

recommended by the manufacture scaled up for 4ml fractions. Tri reagent 

(12ml) was added to 4ml of pooled polysome fractions, incubated at room 

temperature for 5 mins and 3.2ml of 100% chloroform added followed by 

mixing. The samples were then incubated at room temperature for 15 mins, 

transferred to a 50ml Corex glass centrifuge tube and then subjected to 

12,000 x g for 15 mins at 4oC. The aqueous phase was transferred to a fresh 

Corex tube and 8.04ml isopropanol was added, the sample left to stand for 5 

mins at room temperature and then subjected to 12,000 x g for 8 mins at 4oC.  

The resulting pellet was washed in 16ml of 75% (v/v) ethanol and vortexed off 

the side of the Corex tube and then subjected to 7,500 x g for 5 mins at 4oC. 

The supernatant was removed and the pellet was air dryed for 5-10 mins and 

re-suspended in 25µl of elution solution (pre-heated to 70oC) from the RNA 

aqueous kit. 
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2.7 RNA extraction and processing 

2.7.1  RNA isolation  

    RNA was isolated from cultured cells using RNAaqueous (Ambion, UK) as 

described in the manufacturer’s instructions and briefly here. Cells were lysed 

in 100µl of lysis buffer and 50µl of ethanol was added followed by a vigorous 

vortexing. The lysate was then passed through a filter cartridge assembly, 

followed by 180µl of wash buffer 1 and two applications of 180µl each of wash 

buffer 2. This was carried out by centrifugation for 1 min in a microfuge and 

the flow through was discarded between each addition. An extra centrifugation 

step was performed to remove possible contaminants. The RNA was finally 

eluted using two elutions each of 10µl of water applied to the centre of the 

filter and centrifugation for 1 min.   

2.7.2  Reverse transcription  

    Reverse transcription was performed using Improm-II reverse transcription 

systems (Promega, UK) as described in manufacturer’s manual and briefly 

here. To make the reaction mixture, 4µl of Improm reaction buffer, 1.2µl of 

MgCl2, 1µl of dNTP mix, 20U of recombinant RNAasein ribonuclease inhibitor 

and 1µl of Improm reverse transcriptase were combined and made up to 15µl 

with nuclease-free water.  RNA (1µg)  was diluted to 5µl with nuclease-free 

water and incubated at 70oC for 5 mins followed by a 5 min incubation in ice 

water. The RNA was then added to the reaction mixture, mixed and incubated 

at 25oC for 1 hour. The temperature was then increased to 42oC  for 1 hour to 

allow extension, then followed by a final increase to 70oC for 15 mins to 

inactivate the reverse transcriptase. 
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2.8. QRT-PCR 

    cDNA was diluted 1: 20 for most mRNA targets and 1:1000 for 18S rRNA. 

Forward and reverse primers were diluted 1:66 from a 100µM stock. Master 

mix plus (22µl) was pipetted into each well of the strip tube and 3µl of diluted 

cDNA was also added. For the minus cDNA control, the cDNA was replaced 

with 3µl of sterile filtered distilled H2O. The caps were placed on the tube 

strips and the tube strips briefly vortexed and placed into the Stratagene qRT-

PCR machine. A programme was set up using standard qRT-PCR conditions, 

as described in the PCR manual for this machine, which had an extension and 

annealing temperature of 60oC and a denaturing step of 90oC with a 30 secs 

extension time.   

    Relative RBM4 mRNA abundance was derived from qPCR data using the 

relative quantification method as described in Willett et al, (Willett et al). 18S 

rRNA was chosen as a housekeeping RNA due to its long t50 and slow 

turnover. The formula 2-DDct was used to calculate fold change in mRNA 

concentration where DCt (1), the calibrator is the Ct of the control sample 

normalised to the housekeeping 18S Ct, and DCt (2) is the unknown sample 

Ct normalised to the housekeeping 18S Ct. 

 DDCt is the difference between the sample DCt and the calibrator DCt .  

As the PCR reaction is exponential, the natural antilog of the DDCt is then 

calculated to yield the fold change between the sample and the control.  
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Master mix plus: 2 x Master mix (Stratagene, UK) 500µl, 

primer mix 50µl and 330µl filter sterile H2O 

Forward RBM4a primer GAGACTGCATTCCACAAGCA 

Reverse RBM4a Primer GGCTCCTCACTGAATCCAAA 

Forward RBM4b primer GACCATGTAGTGGCAAGCAA 

Reverse RBM4b primer  CAACAAAACCCAATGGTCCT    

 

2.9 Mini prep isolation of cDNA and recombinant protein production 

2.9.1 Transformation of competent E.Coli  

    Competent E.Coli cells were inoculated with 1µl of plasmid solution and left 

on ice for 15 mins and then heat shocked for 45 secs at 42oC. LB broth 

(Sigma, UK), pre-warmed to 37oC was added and cells were left for 1 hour. 

Cells were then seeded out onto agar plates supplemented with selective 

antibiotic (either ampicillin 100µg/ml or kanamycin 50µg/ml, depending on 

plasmids resistance gene) and left overnight for colonies to form. Colonies 

were then picked and placed into LB containing selective medium and allowed 

to grow overnight. 

2.9.2 Mini prep of plasmids 

    Mini preps were performed on E.Coli cultures using a mini prep kit (Qiagen, 

UK) as described in manufacturer’s manual and briefly described here. The 

transformed E.Coli cells were centrifuged at 8,000 x g for 3 mins at room 

temperature, the supernatant removed and the recovered cells lysed in 250µl 
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of buffer P1. The lysed cells were pipetted into a microcentrifuge tube, 250µl 

of buffer P2 was added followed by 4-6 inversions to mix. Then 350µl of buffer 

N3 was added and immediately mixed by 4-6 inversions. The lysed cells were 

then centrifuged at 17,900 x g for 10 mins and the supernatant removed and 

pipetted into a QIAprep spin column. This was centrifuged for 30 to 60 secs in 

a microfuge and the flow-through discarded. Buffer PB (0.5ml) was added into 

the QIAprep column followed by centrifugation for 30 to 60 secs, with the flow-

through discarded. This step was repeated using 0.75ml of buffer PE but with 

an extra centrifugation and discarding of flow-through to ensure no ethanol 

contamination of the sample. The DNA was eluted in 50µl of water, which was 

pipetted onto the centre of the QIAprep filter and left to stand for 1 min 

followed by centrifugation for 1 min in a microfuge.  

2.9.3 Expression of RBM4 WT and MT (RRM silenced) His tagged in 

E.Coli 

    A small sample of frozen BL-21  E.Coli cells (stratagene) transformed with 

RBM4 WT and MT (RRM silenced) obtained from the Tarn group (Kar et al, 

2006) was added to 5ml of LB and allowed to grow for 6 hours. Subsequently, 

this was added to 200 ml of LB and allowed to grow overnight for 14 hours at 

37oC at which point the cells were treated with 0.5 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG) for 1 hour. The cells were then harvested and 

protein isolated as described below. 
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2.9.4 Nickel agarose purification of RBM4 WT and MT (RRM silenced) His 

tagged protein 

    Cells were isolated using a Sorvall J6B centrifuge at 4,000rpm for 20 mins 

at 4oC. The cells were re-suspended in 10ml of Buffer A1,  200Units of  

DNAse 1 added and the cells lysed by French press. The lysed cells were 

then centrifuged in a Sorvall SS34 rotor at 4oC  for 20 mins and 9,800rpm. The 

supernatant was removed and 1ml of 50% (v/v) NTA-Agarose resin/litre of cell 

culture was added to the supernatant which was then mixed end-over-end for 

60 mins at 4oC. The resin was recovered by centrifugation using a Sorvall 

RT6000 for 5 mins at 1,100rpm, then washed twice with 25ml Buffer A each. 

This process was repeated with Buffers B, C and D. The beads were then 

transferred to a 2ml microfuge tube and protein eluted with 0.75ml of Buffer E 

for 15 mins at 4oC with end-over-end mixing. The resin was recovered by 

centrifugation in a microfuge and the supernatant removed. This process was 

repeated four times, the fractions pooled and then dialysed for at least 4 hours 

into Buffer F at 4oC.  
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Buffer A1  40mM MOPS (KOH) pH7.2, 300mM NaCl, 

2mM benzamidine, 20mM imidazole, 3.5 

mM β-mercaptoethanol, 1x complete protein 

inhibitor cocktail (Roche), 1mM ATP. 

Buffer A 40mM MOPS (KOH) pH7.2, 300mM NaCl, 

2mM benzamidine, 20mM imidazole, 3.5 

mM β-mercaptoethanol, 1x complete protein 

inhibitor cocktail (Roche). 

Buffer B 40mM MOPS (KOH) pH7.2, 300mM NaCl, 

2mM benzamidine, 20mM imidazole, 3.5 

mM β-mercaptoethanol, 1x complete protein 

inhibitor cocktail (Roche) 1% (v/v) Igepal. 

Buffer C  40mM MOPS (KOH) pH7.2, 1000mM NaCl, 

2mM benzamidine, 20mM imidazole, 3.5 

mM β-mercaptoethanol, 1x complete protein 

inhibitor cocktail (Roche) 1% (v/v) Igepal.                                               

Buffer D 40mM MOPS (KOH) pH7.2, 300mM NaCl, 

2mM benzamidine, 20mM imidazole, 3.5 

mM β-mercaptoethanol, 1x complete protein 

inhibitor cocktail (Roche). 
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Buffer E 40mM MOPS (KOH) pH7.2, 300mM NaCl, 

2mM benzamidine, 20mM imidazole, 3.5 

mM β-mercaptoethanol, 100mM EDTA. 

Buffer F 20mM MOPS (KOH) pH7.2, 25mM KCl, 

10mM NaCl, 1.1mM MgCl2 7 mM β-

mercaptoethanol, 2mM benzamidine. 

 

2.9.5 Heparin-Sepharose purification of RBM4 WT and RRM silenced 

mutant his tagged protein 

    The dialysed RBM4 protein described above was added to 2 ml of 50% 

(v/v) Heparin-Sepharose beads (GE Healthcare, UK) and incubated for 1 hour 

at 4oC with end-over-end mixing. The beads were then recovered by 

centrifugation and washed with 2ml dialysis buffer (Buffer F); this step was 

repeated three times.  The protein was eluted by vortexing the recovered 

beads with Buffer F with either 100 mM, 250 mM, 500 mM or 1M NaCl in 

succession. Each elution was then dialysed into Buffer F for at least 4 hours at 

4oC, flash frozen in liquid nitrogen and stored at -20 oC. 

2.9.6 FFQ anion exchange purification of RBM4 WT and RRM silenced 

mutant his tagged protein 

    The RBM4 protein was further purified using anion exchange 

chromatography using FFQ resin (GE Healthcare, UK). The dialysed RBM4 

protein was added to 2 ml of 50% (v/v) FFQ-Sepharose beads and incubated 

for 1 hour at 4oC with end-over-end mixing. The beads were then recovered 
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by centrifugation and washed with 2ml dialysis buffer (Buffer F); this was 

repeated three times.  The protein was eluted by vortexing the recovered 

beads with Buffer F with either 100 mM, 250 mM, 500 mM or 1M NaCl in 

succession. Each elution was then dialysed into Buffer F for at least 4 hours at 

4oC, flash frozen in liquid nitrogen and stored at -20 oC. 

2.9.7 Preparation of FLAG-tagged  eIF4Ga from baculovirus-infected SF9 

cells 

    eIF4Ga  is a form of eIF4G that was originally thought to reflect the whole 

open reading frame (Coldwell et al, 2006). However, this protein sequence 

lacks the PABP binding site subsequently found in the N-terminus of eIF4Ge 

and eIF4Gf (Coldwell et al, 2006). In conjunction with Prof. S. Morley 

(Sussex), SF9 insect cells were infected with virus containing DNA encoding  

FLAG-tagged eIF4Ga at the optimum multiplicity of infection of 5 (Hinton et al, 

2007). The cells were incubated for 72 hours at 27oC and were harvested by 

centrifugation at 3,500 rpm at 4oC in the Sorvall J6B centrifuge. The isolated 

cells were  re-suspended in 20 ml of ice cold Buffer F (see Section 2.9.4) with 

2X complete protease inhibitor cocktail (Roche, UK) and vortexed. The 

preparation was left on ice for 45 mins then centrifuged at 9,800rpm for 10 

mins at 4oC. The supernatant from this step was mixed with 50% (v/v) M2 

affinity purified anti-FLAG Agarose resin (Sigma, UK) at 1ml/litre of culture, 

already pre-washed in Buffer F. This slurry was incubated for 2 hours at 4oC, 

and the beads  recovered by centrifugation at 1,500rpm for 5 mins in a Sorvall 

RT6000 at 4oC, resuspended in 10ml Buffer F with protease inhibitors, 

washed by inversion ten to twelve times in the cold and then re-recovered by 

centrifugation. These washing steps were repeated until the supernatant was 
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essentially free of unbound protein. The beads were then re-suspended in 

Buffer G and transferred into 1.5ml microcentrifuge tubes and centrifuged for 

1.5 mins at 13,000rpm to recover the beads. The eIF4G protein was then 

eluted with 1ml and then 5ml of Elution buffer. The final eluate was  

immediately adjusted to pH 7.2 with 2M Trizma base, flash frozen in liquid 

nitrogen and stored at -20 oC. All buffers used are as described in Section 

2.9.4 above. 

2.9.8 Preparation of (His)6-tagged eIF4A protein from baculovirus-

infected SF9 cells   

    In conjunction with Prof. S Morley (Sussex), SF9 cells (one litre) were 

infected with baculovirus encoding (His)6-tagged eIF4A virus at the optimum 

multiplicity of infection of 2 and incubated in spinner flasks for 72 hours at 

27oC (Hinton et al, 2007). Cells were then harvested by centrifugation at 

3,500rpm in a Sorvall J6B centrifuge at 4oC, and the pellet re-suspended in 

10ml per litre of Buffer D (Section 2.9.4), with 2x concentration of complete 

protease inhibitor cocktail. To lyse the cells, Igepal was added to 1% (v/v) final 

concentration, vortexed, and the lysate centrifuged at 9,800rpm in a Sorvall 

SS34 rotor  at 4oC for 30 mins. The resulting supernatant was added to 1ml of 

50 % (v/v) Ni-NTA Agarose beads and mixed end-over-end at 4oC for 1 hour . 

The Ni-NTA Agarose beads were washed with five times with 10ml each of 

Buffer D containing 1% (v/v) Igepal, followed by twice with 10ml of the same 

buffer containing 1M NaCl. This was followed by two washes of 10ml each 

with Buffer D containing 0.5M NaCl but with no Igepal. eIF4A protein was then 

eluted from the resin with Buffer E in two elutions each of 250µl. Fractions 

were pooled and dialysed against Buffer F for at least 4 hours at 4oC, flash 
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frozen in liquid nitrogen and stored at -20 oC.  All buffers used here are as 

described in Section 2.9.4. 

2.10 Protein Interaction experiments  

2.10.1 Immunoprecipitation of RBM4  

    Protein A/G (25µl of a 50% (v/v) slurry) magnetic beads (New England 

Biolabs, UK;) were added to 100 µl of 1mg/ml protein cell extract prepared by 

the standard lysis method as described above, and agitated for 1 hour at 4oC. 

The extract was then subjected to a magnetic field and the supernatant 

aspirated into a new microfuge tube. Anti RBM4 antibody (5 µl) was added 

and the mix agitated for 1 hour at 4oC. Protein A/G magnetic beads (25µl) 

were added to the pre-cleared extract which was then agitated for a further 

hour at 4oC. The magnetic beads were washed three times with 1ml of IP 

wash buffer  and the recovered protein eluted in 30µl SDS-PAGE sample 

buffer. 

IP wash buffer:  150mM NaCl, 10mM Tris (HCl) pH7.4, 1mM 

EDTA, 1mM EGTA, 0.2mM sodium ortho 

vanadate, 0.2mM PMSF, 1% (v/v) Triton X-

100, 0.5% (v/v) Igepal. 

 

2.10.2 RNAse A and  T1 degradation of RNA 

Cell extracts had 10µl of RNAse cocktail (Ambion) which was deemed in 

excess of normal levels to ensure complete digestion as instructed in manual. 
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The cells extracts were then incubated on ice for 1 hour to allow digestion to 

occur experiments were then conducted as required. 

2.10.3 m7GTP-Sepharose-mediated purification of eIF4E 

    Firstly, 50% (v/v) m7GTP-Sepharose 4B resin was centrifuged for 5 mins at 

10,000 × g and the storage buffer discarded. M7 Buffer  (containing 1 mg/ml 

cytochrome c) was added to the resin to bring it back to the original volume.  

Cell extracts containing equal protein concentration were added to the washed 

resin, and incubated at 4 ºC with gentle shaking for 15 mins.  The optimum 

conditions were achieved using 30 μl of 50% (v/v) resin per 30 μg protein 

(data not shown).  The resin was subsequently isolated by centrifugation at 

10,000 × g for 5 mins at 4 ºC.  The resulting supernatant was aspirated and 

non-specifically bound proteins removed by washing the resin twice with 200 

μl of M7 Buffer .  Finally, bound proteins were eluted by boiling the Sepharose 

beads in SDS-PAGE sample buffer for 5 mins and centrifugation at 10,000 × g 

for 5 mins.  The supernatants were stored at -20 ºC.   

M7 Buffer: 20mM MOPS (KOH) pH 7.2, 25mM KCl, 

2mM benzamidine, 7mM  β 

mercaptoethanol , 1 mM Mg(CH3COO)2, 0.1 

mM GTP, 0.25% (v/v) Igepal, 10 mM NaF, 1 

μM microcystin. 
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2.10.4  eIF4G and RBM4a in vitro binding assay 

    Recombinant RBM4a WT and eIF4G protein (3µg) isolated as described 

above, were mixed together in 1ml of Interaction buffer and incubated at 4oC 

for 1 hour with gentle mixing. M2 Anti FLAG antibody (5µl) was added and the 

incubation continued for another hour. Protein G magnetic beads (50µl of 50% 

(v/v) slurry) were subsequently added and incubated for a further hour. The 

beads were then recovered using the magnetic recovery system and washed 

with 1 ml of Interaction buffer. This wash was repeated three times and the 

proteins bound were eluted using 50µl of SDS-PAGE sample buffer and 

vortexing. 

Interaction buffer: 100mM NaCl, 50mM Tris (HCl) pH 6.9. 

 

2.10.5 Supplementation of extracts with recombinant proteins  

    Extracts were obtained using the lysis protocol above in Section 2.3.1 and 

aliquots containing 250 µg total protein were diluted into 1 ml of Interaction 

buffer. To this, 3 µg of either eIF4A, RBM4 WT or RBM4 MT (RRM silenced) 

recombinant protein was added and the tubes were allowed to incubate for 1 

hour at 4oC with gentle mixing. Subsequently, 50µl of 50% (v/v) NTA-nickel 

Agarose beads were added and allowed to incubate for 1 hour as before. 

Once this was completed, the beads were recovered by centrifugation in a 

cooled microfuge and washed three times with 1ml each of Interaction buffer. 

The recovered proteins were eluted using 50µl of SDS-PAGE sample buffer 

as described Section 2.4.1. 
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2.11 [35S]-methionine labelling of cellular proteins 

    Prior to harvesting, C2C12 myoblasts were pulse-labelled with [35S]-

methionine (10 µCi/ml) for 30 mins at 37oC with 5% carbon dioxide. Cells were 

then harvested with the lysis conditions described in Section 2.3.1.  Protein 

concentrations of extracts were determined as described above (Section 

2.3.2) and 5 μl aliquots were also spotted onto Whatman filter paper. The 

papers were air-dried and transferred to 10% (v/v) TCA containing 5 mM 

unlabelled methionine for 15 mins, then boiled in 5% (v/v) TCA to degrade any 

radioactively-labelled tRNA.  Once cooled, the filters were washed once in 

100% IMS, once in acetone, dried and subjected to liquid scintillation 

counting. Incorporation of radioactive methionine into protein was expressed 

as cpm/μg protein. 

2.12 Coomassie stain 

    Acrlyamide gel trimmed of stacking gel was placed into Coomassie stain for 

30 mins on a rocker at room temperature. Stained gels were then placed into 

Coomassie destain on a rocker and incubated at room temperature until 

bands appeared and background stain decreased. The destain was replaced 

at regular intervals.   

Coomasie stain: 1g coomasie briliant blue, 100ml glacial 

acetic acid, 400ml methanol, 500ml dH2O. 

Coomasie destain 100ml glacial acetic acid, 200ml methanol, 

700 ml dH2O  
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Investigation of RBM4 protein expression and regulation during 

myogenic differentiation 

3.1 Introduction 

    RBM4 has been shown to be involved in regulating myogenic differentiation 

via the miRNA system (Lin & Tarn, 2009), and in part by altering the splicing 

of PTB. As the total level of RBM4 protein increases slightly as differentiation 

progresses (Lin & Tarn, 2011), RBM4  may still have other as yet undetected 

or defined  roles during the differentiation process. One such possible role 

could be that RBM4 possesses the ability to recruit initiation factors to specific 

mRNAs to up-regulate or down-regulate specific protein expression. In 

support of this is the finding that in HeLa cells in response to arsenite stress, 

RBM4 has previously been shown to recruit eIF4A and eIF4G to mRNAs that 

are thought to contain an Internal Ribosome Entry Site (Lin et al, 2007). 

Arsenite treatment up-regulates signalling via the p38MAPK pathway, a 

process which also happens during differentiation (Wang et al, 2008) and has 

been also been shown to inhibit translation of mRNAs that contain CU rich 

elements in their 3’ untranslated region (UTR) (Lin et al, 2007). RBM4 has 

been shown to be phosphorylated as differentiation progresses when it is 

over-expressed in differentiating cells (Lin & Tarn, 2009).  The same authors 

also showed that RBM4  protein phosphorylation increases as differentiation 

progresses (Lin & Tarn, 2011).  The elevation of RBM4 phosphorylation during 

differentiation probably reflects elevated p38MAPK pathway, and RBM4 

contains an identified p38MAPK phosphorylation site (Lin et al, 2007). These 

previous investigations could indicate that RBM4 may be recruiting eIF4G and 

eIF4A to specific mRNAs by phosphorylation of RBM4 during myogenic 
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differentiation akin to what has been seen in HeLa cells in response to 

arsenite. 

     What has not been investigated is the relative contribution of the isoforms 

of RBM4 (RBM4a and RBM4b) in myogenic differentiation. Most published 

work has focussed on RBM4a and total RBM4.  The work described in this 

chapter will focus on characterising RBM4a and RBM4b protein expression 

profiles during differentiation. I will describe work investigating their 

translational efficiency, protein degradation and mRNA expression levels. A 

bioinformatics investigation will also be presented to highlight the differences 

and similarities between the two RBM4 isoforms.  

3.2 Bioinformatics investigation of the RBM4a and RBM4b proteins 

    Sequence alignment of RBM4a and RBM4b protein shows that they are 

highly homologous (Figure 3.1) with an amino acid sequence identity of 87%; 

the highest homology is found in the N-terminal half of the proteins which have 

a sequence identity of 99%. The N-terminal half allows RBM4 to bind mRNA 

via its two RNA Recognition Motifs (RRMs) and its CHCC zinc finger (Markus 

& Morris, 2009). The C-terminal half has a sequence identity of 75% and 

contains a p38MAPK phosphorylation site which in Homo sapiens is found at 

Serine 309 (RBM4a); in  Mus musculus, the phosphorylation site is found at 

Serine 306 (RBM4a) and Serine 302 (RBM4b). In addition, the C-terminus 

also contains regions of alanine rich repeats of unknown function. When 

mouse RBM4a protein is compared to human RBM4a (Figure 3.2) a high 

sequence homology is also observed (96% homology), especially in the N-

terminal half of the protein. This suggests that any possible functional 



RBM4a
MVKLFIGNLPREATEQEIRSLFEQYGKVLECDIIKNYGFVHIEDKTAAEDAIRNLHHYKL 60
RBM4b
MVKLFIGNLPREATEQEIRSLFEQYGKVLECDIIKNYGFVHIEDKTAAEDAIRNLHHYKL 60
************************************************************
RBM4a
HGVNINVEASKNKSKASTKLHVGNISPTCTNQELRAKFEEYGPVIECDIVKDYAFVHMER 120
RBM4b
HGVNINVEASKNKSKASTKLHVGNISPTCTNQELRAKFEEYGPVIECDIVKDYAFVHMER 120
************************************************************
RBM4a
AEDAVEAIRGLDNTEFQGKRMHVQLSTSRLRTAPGMGDQSGCYRCGKEGHWSKECPIDRS 180
RBM4b
AEDAVEAIRGLDNTEFQGKRMHVQLSTSRLRTAPGMGDQSGCYRCGKEGHWSKECPVDRT 180
********************************************************:**:
RBM4a           
GRVADLTEQYNEQYGAVRTPYTMSYGDSLYYNNTYGALDAYYKRCRAARSYEAVAAAAAS 240
RBM4b           
GRVADFTEQYNEQYGAVRTPYTMGYGESMYYNDAYGALD-YYKRYR-VRSYEAVAAAAAA 238
*****:*****************.**:*:***::***** **** * .***********:
RBM4a           
AYSNYAEQTLSQLPQVQNTAMASHLTSTSLDPYNRHLLPPSGAAAAAAAAAACTAASTSY 300
RBM4b           
SAYNYAEQTMSHLPQVQSSAVPSHLNSTSVDPYDRHLLQNSGSAATSAAMAA--AASSSY 296
:  ******:*:*****.:*:.***.***:***:****  **:**::** **  ***:**
RBM4a           
YGRDRSPLRRATGPVLTVGEGYGYGHDSELSQASAAARNSLYDMARYEREQYADRARYSA 360
RBM4b           
YGRDRSPLRRNAAVLPAVGEGYGYGPESEMSQASAATRNSLYDMARYEREQYVDRTRYSA 356
********** :. : :******** :**:******:***************.**:****
RBM4a 
F 361
RBM4b          
F 357
*

Figure 3.1. RBM4a shares high amino acid sequence homology with RBM4b. 

RBM4a and RBM4b Mus musculus protein complete sequences sourced from 

PUBMED were aligned to determine sequence homology by using ClustalW2 soft-

ware. Stars signify a perfect match whereas double dots show similar amino acids 

and single dots show those with lower similarity. Green indicates RRM domains 

(RNA Recognition Motifs), yellow indicates Zinc finger structures and purple indi-

cates the p38 MAPK phosphorylation site.

Amino Acid sequence  identity = 87%

N-terminus  sequence (1-180)   identity = 99%

C-Terminus  sequence  identity = 75%



Figure 3.2. RBM4a from Mus musculus shares high amino acid sequence homology with 

RBM4a from Homo sapiens. RBM4a Mus musculus (Mus) and Homo sapiens (Homo) protein 

sequences sourced from PUBMED were aligned as before to determine the level of sequence 

homology using the ClustalW2 software. Stars signify a perfect match whereas double dots show 

similar amino acids and single dots show those with low similarity. Green indicates RRM domains 

(RNA Recognition Motifs), yellow indicates Zinc finger structures and purple indicates the p38 MAPK 

phosphorylation site.

Amino acid sequence identity = 96%

N-Terminus sequence (1-180) identity = 99%

C-Terminus sequence identity = 93%

Mus             
MVKLFIGNLPREATEQEIRSLFEQYGKVLECDIIKNYGFVHIEDKTAAEDAIRNLHHYKL 60
Homo            
MVKLFIGNLPREATEQEIRSLFEQYGKVLECDIIKNYGFVHIEDKTAAEDAIRNLHHYKL 60
************************************************************

Mus             
HGVNINVEASKNKSKASTKLHVGNISPTCTNQELRAKFEEYGPVIECDIVKDYAFVHMER 120
Homo            
HGVNINVEASKNKSKTSTKLHVGNISPTCTNKELRAKFEEYGPVIECDIVKDYAFVHMER 120
***************:***************:****************************

Mus             
AEDAVEAIRGLDNTEFQGKRMHVQLSTSRLRTAPGMGDQSGCYRCGKEGHWSKECPIDRS 180
Homo            
AEDAVEAIRGLDNTEFQGKRMHVQLSTSRLRTAPGMGDQSGCYRCGKEGHWSKECPIDRS 180
************************************************************

Mus             
GRVADLTEQYNEQYGAVRTPYTMSYGDSLYYNNTYGALDAYYKRCRAARSYEAVAAAAAS 240
Homo            
GRVADLTEQYNEQYGAVRTPYTMSYGDSLYYNNAYGALDAYYKRCRAARSYEAVAAAAAS 240
*********************************:**************************

Mus             
AYSNYAEQTLSQLPQVQNTAMASHLTSTSLDPYNRHLLPPSG----AAAAAAAAAACTAA 296
Homo            
VY-NYAEQTLSQLPQVQNTAMASHLTSTSLDPYDRHLLPTSGAAATAAAAAAAAAAVTAA 299
.* ******************************:*****.**    ********** ***

Mus             
STSYYGRDRSPLRRATGPVLTVGEGYGYGHDSELSQASAAARNSLYDMARYEREQYADRA 356
Homo            
STSYYGRDRSPLRRATAPVPTVGEGYGYGHESELSQASAAARNSLYDMARYEREQYADRA 359
****************.** **********:*****************************

Mus             
RYSAF 361
Homo            
RYSAF 364

*****
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difference in proteins function is more likely to be ascribed to the C-terminal 

half of the protein. A prosite scan was performed on mouse RBM4a to identify 

any putative motifs; none were found but some post translational modifications 

were predicted, including phosphorylation sites for casein kinase II (found 

throughout), protein kinase C (found only in C-terminus), and a single cAMP 

dependent protein kinase site in the C-terminus. There were also a predicted 

N-myristoylation site, an N-glycosylation site and an amidation site. The 

p38MAPK phosphorylation site observed by (Lin et al, 2007) was not 

predicted in the prosite analysis which supports the idea that this software 

does not predict all motifs and phosphorylation sites.  

3.3 C2C12 myogenic differentiation markers  

    RBM4 is thought to be involved in myogenic differentiation as investigated 

by  (Lin & Tarn, 2009). However, before I could look at the possible role for 

RBM4 in differentiation and translation initiation in C2C12 cells, the system 

had to be characterised and markers for myogenic differentiation had to be 

investigated to provide a means to identify the progress the cells are making 

through the differentiation process. A selection of proteins known to be 

muscle-specific and up-regulated during myogenic differentiation were 

selected for analysis, including myogenin (Cuenda & Cohen, 1999), αβ-

crystalin (Kamradt et al, 2002), and caveolin-3 (Madaro et al).  Myogenin was 

selected as it is a transcription factor responsible for up-regulating the 

expression of many different proteins required for differentiation and if not 

expressed, causes defects in the mid to late stages of differentiating 

myoblasts (Lin & Tarn, 2009). Caveolin-3 was selected because it is a muscle-

specific scaffolding protein crucial for the regulation of caveolae by recruitment 
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of lipids, signalling molecules and other structural proteins; specific and 

defined mutations in caveolin-3 have been associated with four different 

human, muscle-specific diseases (Fanzani et al, 2007). αβ-crystalin was 

selected for analysis as it is involved in the regulation of the dynamic nature of 

microtubles which are thought to be required to maintain cell stability in 

myotubes (Sakurai et al, 2005). 

    Initially, C2C12 cells were grown to confluency, as described in Section 

2.2.3. Cells were then placed into differentiation medium and induced to 

differentiate; samples were prepared for SDS-PAGE and Western blot 

analysis, as described in (Section 2.4). As shown in Figure 3.3A, myogenin 

expression was first detected at 24 hours and continued to rise to a peak at 48 

hours after the induction of differentiation. αB-crystalin and caveolin-3 were 

expressed later in the differentiation process at 48 hours, with expression 

increasing to 72 hours. eIF4E was used as a loading control as previous work 

had shown that the protein levels do not change significantly during 

differentiation. Alongside protein markers there are visual indications of 

myogenic differentiation in cells. As seen in Figure 3.3B, with confluent C2C12 

cells at 0 hours of the differentiation process, cells are mononucleated and are 

referred to as myoblasts; after 24 hours they have exited the cell cycle and are 

beginning to line up. At 48 hours of differentiation, cells have lined up and 

some have begun to fuse, with larger numbers of the myoblasts having fused 

at 72 hours to form multinucleated myotubes.  

  



Figure 3.3. Expression level of myogenic markers during myogenic 

differentiation.  Panel A. C2C12 cells were grown to confluency and their medium 

was changed to differentiation medium, as described in Materials and Methods 

Section 2.2.3. Cells were then harvested at 0, 4, 8, 24, 48 and 72 hours post 

addition of differentiation medium and extracts prepared as in Section 2.3.1. Total 

protein (10µg) was then analysed by SDS-PAGE and membranes probed with 

the antibodies shown above and visualised using an ECL system, as described in 

Materials and Methods Sections 2.4 . These data are from a single experiment but 

are representative of those obtained in 5 separate experiments. Panel B. Cells were 

induced to differentiate as above and images taken at 0, 24, 48 and 72 hours using 

a Moticam 2000 with a 10X objective.
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3.4 RBM4 protein and isoform expression levels change during 

differentiation  

    Published work by Lin et al., (Lin & Tarn, 2009) has shown that total levels 

of RBM4 protein increased during differentiation of C2C12 myoblasts. To 

investigate any difference in expression between the two isoforms of RBM4 

(RBM4a and RBM4b) during differentiation, initially their combined expression 

level was determined in C2C12 cells using antibodies that recognize both 

RBM4 isoforms.  C2C12 cells were grown to confluency, as described in 

Section 2.2.3 and then induced to differentiate as described in section 2.2.3. 

As shown in Figure 3.4, Western blot analysis of extracts prepared from a 

number of independent experiments showed that RBM4 protein expression 

increase significantly at 24 hours and 48 hours, with the greater increase 

being at 48 hours when compared to the loading control PABP. These findings 

were in agreement with those presented previously (Lin & Tarn, 2009). The 

increase in total RBM4 protein level at early times was followed by a small, but 

significant decrease in levels at later times of differentiation. The progression 

of the differentiation process was confirmed in these experiments both by 

monitoring the expression of caveolin-3 (figure3.4) and visually, using 

microscopy (data not shown).   

    As there are two isoforms of RBM4, this increase in RBM4 protein 

expression could reflect a change in either isoform or in both isoforms of 

protein. To address this, I obtained isoform-specific antibodies raised against 

RBM4a or RBM4b (Pfuhl et al, 2008) and determined the isoform protein 



Figure 3.4 Total RBM4 protein expression increases during C2C12 myogenic 

differentiation. C2C12 cells were grown to confluency and their medium was 

changed to differentiation medium as described in Materials and Methods Section 

2.2.3. Cells were then harvested at 0, 24, 48 or 72 hours post addition of 

differentiation medium. Aliquots of extract containing 10µg of protein were then 

analysed by SDS-PAGE and Western blotting, the membrane  probed with 

antibodies shown  and visualised using an ECL system, as described in Materials 

and Methods (Section 2.4). These data are representative of three separate, 

independent experiments. 

Time in DM (Hours)
0 24 48 72

RBM4

Caveolin-3

PABP
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expression during differentiation. As shown in Figure 3.5, RBM4a protein 

expression increased at 24 hours of differentiation. However, after this time its 

expression profile relative to total RBM4  protein levels diverge greatly, with 

RBM4a protein expression reducing at 48 followed by another reduction to 

around 40% of the starting levels at later times. Compared to this, the RBM4b 

expression profile matches what was seen with total RBM4 protein; at 24 

hours a small increase is seen followed by a greater increase at 48 hours, with 

a small decrease at 72 hours. These data indicate that the RBM4b isoform is 

the protein with the greatest abundance during differentiation (Figure 3.4 vs 

Figure 3.5); however, this does not mean that RBM4a is not involved in 

modulating myogenic differentiation at some level.  

3.5 RBM4a and RBM4b mRNA are  also differentially expressed during 

differentiation 

    Protein expression in cells can be modulated by many different pathways; 

one of these is an up-regulation of transcription of the encoding mRNA. To 

investigate if RBM4a or RBM4b are regulated in this manner their mRNA 

expression levels were analysed during differentiation using q-RT PCR and 

isoform-specific primers (Figure 3.6).  When compared to the 18S RNA 

expression, RBM4a mRNA levels were found to decrease at every time point 

relative to the undifferentiated cells, falling to 20% of the starting level. In 

contrast, RBM4b mRNAs levels (once again compared to 18S RNA) increases 

significantly at 24 hours to a peak at 650% relative to undifferentiated cells, 

falling to around 200% of control level at 72 hours after the induction of 

differentiation.  18S rRNA was chosen as a comparison as its turnover is low 

(Retz & Steele, 1980) and levels have been seen previously not to change 
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Figure 3.5 RBM4a and RBM4b are differentially expressed during myogenic 

differentiation. Panel A. C2C12 cells were grown to confluency and differentiated 

as described in the Materials and Methods Section 2.2.3. The cells were harvested 

at the indicated time points and aliquots of extract containing 10µg protein were 

analysed by SDS-PAGE and Western blotting using antibodies raised against the 

specific isoforms of RBM4. Panel B. Experiments were repeated twice and densi-

tometry was performed using ImageJ to determine changes in protein expression 

levels normalised to PABP relative to undifferentiated cells (set at 1.0). Errors bars 

are standard error of the mean.
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Figure 3.6. Differential  expression of RBM4a and RBM4b mRNA during dif-

ferentiation. C2C12 cells were prepared and differentiated as described in the 

Materials and Methods. mRNA was isolated and converted into a cDNA library as 

described in the Materials and Methods Sections 2.7.1 and 2.7.2 at the time points 

indicated. To quantify the mRNA, the library was then analysed by q-RT PCR as 

described in Materials and Method Section 2.8. Graphs are derived from 3 separate 

experiments with the error bars showing standard error of the mean. 
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dramatically in the differentiating cells within these time periods (data not 

shown). 

    Therefore, RBM4a mRNA expression levels (Figure 3.6) when compared to 

RBM4a protein expression (Figure 3.5), generally appear to follow a similar 

pattern during differentiation; a decrease in both the level of protein and 

mRNA. At 24 hours of differentiation there did appear to be an increase in 

RBM4a protein levels when RBM4a mRNA were shown to fall; the reasons for 

this are unclear. RBM4b mRNA expression levels (Figure 3.6) peaked 24 

hours before RBM4b protein expression (Figure 3.5) RBM4b mRNA then 

decreases to 2 fold the starting expression, whereas RBM4b protein increase 

at 48 hours and reduces slightly at 72 hours. These data indicate that changes 

in RBM4a and RBM4b mRNA levels could be important for the regulation of 

their protein levels but other factors such as the half life of the protein or 

translation efficiency may be important in regulating total protein levels.   

3.6 RBM4a and RBM4b mRNA loading onto polysomes changes during 

differentiation 

     The data presented in Figure 3.6 indicated that RBM4b mRNA may be 

actively recruited for translation early during the process of myogenic 

differentiation. In light of the fact that the antiserum was not of high enough 

titre to be used to immunoprecipitate RBM4 protein isoforms from cell extracts 

(data not shown), the loading of RBM4a or RBM4b mRNA onto polysomes 

was be used as a way of predicting protein expression rates. The polysome 

loading of RBM4a and RBM4b mRNA was measured as described in the 

Materials and Methods Section 2.8. Briefly, extracts prepared at different 
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times following the induction of differentiation were fractionated on sucrose 

gradients to resolve the mRNA in mRNPs/monosomes from the mRNA in 

polysomes. The polysome fractions from each time point were collected, 

pooled and q RT-PCR was performed using specific primers for RBM4, 

RBM4b and 18S rRNA. 18S rRNA level was also measured to observe any 

change in number of total number of ribosomes in the polysomes fraction.  

    The data presented in Figure 3.7 shows that the recovery of RBM4b mRNA 

in the actively translating polysomes fractions partially echoes the protein 

expression profile as seen in Figure 3.5. In both cases, relative to 

undifferentiated cells, the polysome loading of mRNA (Figure 3.7) and the 

protein expression show their greatest increases at 48 hours. However, this 

correlation does not hold for the 24 and 72 hour time points where protein 

expression is increased with no change in polysome loading of mRNA. The 

differences seen at 72 hours could be due to changes in protein degradation 

rates; even though the polysome loading of mRNA has decreased and 

potentially the RBM4b synthesis rate has decreased, the protein levels might 

not change due to increased stability of the RBM4b protein. In contrast, 

RBM4a mRNA loading onto polysomes does not match RBM4a protein 

expression in any way. At both 24 and 72 hours of differentiation, there was a 

large increase in RBM4a mRNA loading efficiency onto polysomes which did 

not correlate with protein levels at these times.  One potential reason for this is 

that the degradation rate of RBM4a protein could have increased dramatically 

at later times of differentiation, meaning that any RBM4a that is produced at 

24 and 72 hours is destroyed rapidly before it can accumulate. An alternative 

explanation for this could be that the RBM4a mRNA is loaded onto pseudo-
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Figure 3.7. RBM4a and RBM4b mRNA loading onto polysomes during differ-

entiation. C2C12 cells were induced to differentiate as described in Materials and 

Methods Section 2.2.3.  The cells were harvested at indicated time points by the 

standard lysis method as described in Materials and Methods Section 2.3.1 under 

RNAse free conditions. The extracts were then fractionated by sucrose density 

centrifugation (Panel A) to obtain polysomes as described in Materials and Meth-

ods Section 2.6. The RNA was extracted from the polysomes and converted into a 

cDNA library as described in Materials and Methods Section 2.7.1 and 2.7.2. The 

cDNA was then analysed by q RT-PCR using primers designed to target RBM4A or 

RBM4b (Panel B)  as described in Materials and Methods Section 2.8.1. N= 2 error 

bars are standard error of the mean.
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polysomes at 24 and 72 hours. Pseudo-polysomes, as described by 

Thermann (Thermann & Hentze, 2007), are dense miRNPs these have the 

same sedimentation characteristics as polysomes. However mRNAs that are 

incorporated into these pseudo-polysomes are arrested in the elongation 

phase and not translated. miRNAs have been shown by Thermann (Thermann 

& Hentze, 2007) to lead to specific miRNAs to be incorporated into these 

pseudo-polysomes. Further work would need to be carried out to verify this, 

but it does suggest that RBM4a is partially regulated by miRNAs.  

3.7 The 5’ and 3’ UTRs of RBM4a and RBM4b mRNAs show low 

sequence homology  

    The differences seen in the differential mRNA loading of RBM4a and 

RBM4b onto polysomes led to a sequence investigation of their 5’ and 3’ 

untranslated regions (UTR) as these can influence polysome loading and 

translation efficiency (reviewed in (Wilkie et al, 2003)). The 5’ UTRs were 

compared (Figure 3.8A) and they were shown to share low sequence 

homology, with the 5’UTR for RBM4b mRNA being significantly shorter. 

However, interspersed amongst the area of low homology are some areas 

that have a higher level of homology. These higher homology areas could be 

conserved motifs but further analysis using a motif scanner suggested that 

this was unlikely to be the case (data not shown). This does not mean that 

such motifs do not exist as sequence analysis is not perfect. Furthermore, 

mRNA motifs: protein interaction can be sequence-dependent, structural-

dependent or a mixture of both (Gupta & Gribskov, 2011). What the 5’UTRs 

from RBM4a and RBM4b do share in common is that they are both predicted 

to form quite stable structures, one of which is presented (Figure 3.8B). All of 



RBM4a   ATTTTAGCGTTTTGTCAGAACCGTCCGCGCTGCAAGGAGGAGGACCTGCAGGTATCCATG 60
RBM4b   ---------------CAGG-CAGCGCGCACTC---------GCGCGTGCGTGAGCTGGCG 35
                       ***  * *  *** **          *  * ***  *       *

RBM4a   CGGTGAGATACTCCACGTTCTTCCACTGTGTTCTTTTCTCTGTTAAAAAAACTTACCTGA 120
RBM4b   CG-CGAGAAA----GCGCCCGGTCGC---------------GCCGA------------GG 63
        **  **** *     **  *   * *               *   *            * 

RBM4a   CTCCGGTGGGTGTCAGGGTTGGCATAGTGGGGTTGCGGTCTG-CGC---ACCCGTCCCTG 176
RBM4b   CTCGAGCGGCCGTCGCCATT----TTGTAGGGTT-CTCTCTGACGCGGGACCCGCCGCC- 117
        ***  * **  ***    **    * ** ***** *  **** ***   ***** * *  

RBM4a   AGAGCCGACATCGGTCCTCGACTTAGTGCGGCTGTGTGGAG 217
RBM4b   ACCGCCGGCACCA---CCCGG---AG-GCTCTTGTCAGG-- 149

        *  **** ** *    * **    ** **   ***  **  

Figure 3.8 RBM4a and RBM4b 5’ UTRs share little homology.  Panel A. The nu-

cleotide sequence of the 5’UTR from the two isoforms of Mus Musculus RBM4 were 

aligned using the Clustal Lalign programe. Stars indicate a match between the two 

sequences. The AUG start codon is indicated.  Panel B. Sequences of the 5’UTRs 

of RBM4a and RBM4b where analysed by mFOLD and the most structurally stable 

structures where chosen to demonstrate potential secondary structures.
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the predicted structures produced by the mFOLD software were highly 

structured. Obviously, the existence of any of these structures would have to 

be proven by RNA probing experiments (Ehresmann et al, 1987). The reason 

their structural complexity is important is that the 5’ UTR structure can 

modulate translation efficiency by modulating the requirement of initiation 

factors involved in unwinding of complex 5’ UTRs like eIF4A  (Svitkin et al, 

2001). The 3’ UTRs of these mRNAs showed an even lower overall level of 

homology as shown in Figure 3.9, with the RBM4a 3’ UTR showing only 24% 

the length of the RBM4b 3’UTR sequence (respective lengths of 149nt and 

617nt). This huge difference in length allows for plenty of scope for the 

presence of isoform-specific regulatory motifs such as a miRNA binding site.  

3.8 Discussion 

    The majority of work on the role for, and the expression of RBM4 during 

differentiation has been directed at the total RBM4 or the RBM4a isoform (Lin 

& Tarn, 2011b) My work described in Figure 3.4 has shown that the protein 

expression level of the RBM4 isoforms is differentially regulated, with RBM4b 

potentially accounting for the majority of the rise in total RBM4 protein 

expression observed during differentiation. This would lead to concerns with 

previous studies using over expression of RBM4a alone to study the effect of 

RBM4 on differentiation (Lin & Tarn, 2011b). Due to the highly conserved 

amino acid sequence of RBM4a and RBM4b, it is more likely that there could 

be little or small functional differences between the isoforms.  However, a 

potential reason for having two isoforms of RBM4 is a greater ability to 

regulate RBM4 protein expression via their highly divergent 5’ and 3’ UTRs.  

This idea along with the large number of different systems RBM4 has been 



RBM4a   ------CAGGCAG------CGCGCACT------------CGCG--CGTGCGTGAG---CT 31
RBM4b   AAACTGGAGGTAGGATAATTGCGGACTGAACCCTCGGGCTGCGGTCATATATGAGAACTT 60
               *** **       *** ***             ***  * *   ****    *

RBM4a   GG--CGCGCG-----------------------------------------------AGA 42
RBM4b   GGTCCTCGCGGTCCCCTTTGCCAGGATGTTTCCATTGCTTCATGTTTCAGTAAACAAAGG 120
        **  * ****                                               ** 

RBM4a   AA---GCGCCCGGTCGCGC----------------------------------------- 58
RBM4b   AATTTGTGACCAACTATGTTTTCTTTCTTAATTTAATTCTTCTAAGTTGACTTTTCTTTC 180
        **   * * **      *                                          

RBM4a   --CGAGGCT------------------------------------------CGAGCGGCC 74
RBM4b   CTCGATGCTAGTTGTCTGTAGCTTTTCACTGTTCCTTATACCCTCAGCCTCTGAACAGCC 240
          *** ***                                           ** * ***

RBM4a   ----------GTC-------------------------------GCC-------ATTTTG 86
RBM4b   CTAGGTAAGGGTTATGCTGACATCCCTTTTCCTGTACAGTAGAAGCCCCTCTTAATCTTG 300
                  **                                ***       ** ***

RBM4a   -------TAGGG---------TTCTCTCTGAC-----GCGG------------------- 106
RBM4b   CTTTTCTTAGGAGTTGAGCCCTTCTCCCTGCCTTCCTGCAGCATCTCCTTTCCCTTTAAA 360
               ****          ***** *** *     ** *                   

RBM4a   --GACC--------------------------CGCCGCCACCGCCGG--------CAC-- 128
RBM4b   ATGACCATGTAGTGGCAAGCAACCTTTAACTCTTCTGTCAGTGCTGGACTCTTAGCATTG 420
          ****                            * * **  ** **        **   

RBM4a   ------------------CACCCGGA-----GGCTCTTGTCA-------GG--------- 149
RBM4b   AAGCTGGTCTTCTGAAGTCGCTAGGACCATTGGGTTTTGTTGTTGTCTTGGTTTGATTTT 480
                          * *  ***     ** * ****         **         

RBM4a   ------------------------------------------------------------
RBM4b   GTTTTGGTTTTCGGTTTTGTCTGACCTGTGATCGTGGTACAGCATTTGCTGAAATTTAGC 540
                                                                            

RBM4a   ------------------------------------------------------------
RBM4b   CTTGTTTTATTCCACTCCTCCCAATTTTTTTTTGAAAAAAAAAAAATAAATGTTTCTAAT 600
                                                                            

RBM4a   -----------------
RBM4b   ACTTAAAAAAAAAAAAA 617

Figure 3.9 Mus Musculus RBM4a and RBM4b 3’ UTRs share little homology.  

The nucleotide sequence of the 3’UTR from the two isoforms of RBM4 were aligned 

using the Clustal Lalign programe. Stars indicate a match between the two se-

quences. The TAG stop codon is indicated.

TAG
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shown to be involved in, would indicate that regulation of RBM4 protein level 

is very important for the cell.  Little is known about the rate of synthesis of 

RBM4 in C2C12 cells during differentiation. Unfortunately, due to the low titre 

of the anti-RBM4 isoform-specific antisera, I was unable to measure this 

directly by using [35S] methionine labeling of the protein in cells followed by 

immunoprecipitation and autoradiography. Instead, I was limited to analysing 

the association of mRNA with polysomes as an indication of possible 

translational efficiency.  The disagreement between the polysome loading of 

the mRNA encoding RBM4a and protein expression of RBM4a (Figures 3.7 

and 3.5) can be potentially explained by some of the RBM4a mRNA going into 

actively translating polysomes at 24 and 72 hours in differentiation medium 

and some going into pseudo-polysomes which are not actively translated 

(Thermann & Hentze, 2007). This does not account for the fact that the level 

of RBM4a mRNA found in polysomes or pseudo-polysomes goes up even 

though the total mRNA expression of RBM4a decreases as differentiation 

progresses. Indeed, total RBM4a mRNA drops to 20% of the starting level 

whilst the polysome/pseudo-polysome loading increased by 8-fold. In contrast, 

the data presented in Figure 3.7 shows that the recovery of RBM4b mRNA in 

the actively translating polysomes at early times is reflected in protein levels 

(Figure 3.5). However, this correlation does not hold for the later time points 

where protein expression is increased with no change in polysome loading of 

mRNA. This may reflect changes in RBM4 protein degradation rates.  

Unfortunately, I was unable to investigate protein degradation rate changes 

between myoblasts and myotubes; the levels of RBM4a protein were too low 

to be detected at 48 or 72 hours and RBM4b protein expression was too low 



70 
 

in undifferentiated cells for such an experiment approach. To further 

investigate the regulation of the RBM4 isoforms new antibodies would have to 

be sourced to allow for immunoprecipitation of labeled protein to allow me to 

perform pulse chase assays in the presence of cycloheximide. 

    In summary, the data presented in this chapter has shown that the RBM4 

isoforms, RBM4a and RBM4b, are differentially regulated and potentially have 

different functions during differentiation. it is predicted that these differences in 

function  will most likely be reflected in isoform specific protein complexes. 

Protein-protein interactions of RBM4 and proteins involved in translation 

initiation is the focus of the data presented in Chapter 5. 
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Investigation of RBM4 localisation during myogenic differentiation 

4.1 Introduction 

    RBM4 has been observed to have a predominantly nuclear localisation in 

HeLa cells (Lin et al, 2007). However, following treatment of the cells with 

arsenite, a proportion of RBM4 was re-localised to the cytoplasm where it has 

been shown to affect the level of expression of specific proteins. A role for 

p38MAPK signalling in the subcellular localisation of RBM4 has been 

suggested following the observation that down-regulation of p38MAPK activity 

results in a predominantly nuclear localisation of RBM4 (Lin et al, 2007). 

p38MAPK has also been observed to be active during myogenic differentiation 

of C2C12 cells and inhibition of this signalling pathway leads to a decreased 

rate of differentiation (Wang et al, 2008). This has led me to investigate the 

localisation of RBM4 in C2C12 cells undergoing differentiation.  

4.2 RBM4 protein localisation during myogenic differentiation 

    To investigate the localisation of RBM4 in C2C12 myoblasts, cells were 

grown to confluency and induced to differentiate for up to 72 hours. Cells were 

fixed, permeabilised and the localisation of actin (for the cytoskeleton), myosin 

heavy chain (a marker for differentiation (Matheny & Nindl, 2011), nuclei 

(stained with DAPI) and RBM4 were visualised by confocal microscopy. As 

can be seen in Figure 4.1 (and quantified from three separate experiments in 

Figure 4.2), in confluent cells before the induction of differentiation, RBM4 

staining was diffuse, but the protein showed a slight predisposition for the 

cytoplasmic compartment. However, as differentiation progressed, the 

cytoplasmic levels of RBM4 protein increased significantly (Figure 4.2), 



Figure 4.1. Localisation of RBM4 protein during myogenic differentiation. Cells 

were grown to confluency and their medium was changed to differentiation medium 

(DM) as described in Materials and Methods Section 2.2.3. The cells were fixed us-

ing 4% paraformaldehyde at the indicated time points and permeabilised with Triton 

X-100 before being incubated with indicated antibodies (RBM4 and Myosin heavy 

chain) and stains (phalloidin and DAPI). The samples were then incubated with 

fluorescently labelled secondary antibodies and visualised using confocal micros-

copy as described in Section 2.5.1 of the Materials and Methods. Images shown are 

representative of those obtained in 3 separate experiments.
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Figure 4.2. Quantification of cytoplasmic and nuclear localisation of RBM4 

protein during myogenic differentiation. Images represented in Figure 4.1 were 

analysed for the density of total RBM4 found in the nucleus and cytoplasm; using 

ImageJ, 40 cells were analysed for each time point for both cytoplasmic and nuclear 

staining. The experiments were repeated 3 separate times and these data are the 

combined results of those experiments. Error bars are standard error of the mean. 
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showing an enrichment in the perinuclear region at 48-72 hours when multi-

nucleated cells were clearly visible (Figure 4.1). The RBM4 staining was 

granular in appearance, an observation made in other studies (Lin & Tarn, 

2009). This pool of RBM4 is believed to have a role in miRNA regulation of 

gene expression (Lin & Tarn, 2009). In contrast, the nuclear RBM4 levels 

initially increased significantly at 24 hours (Figure 4.2) but did not continue to 

increase in a manner seen for the cytoplasmic pool.  

    To further support these data, differentiating C2C12 cells were subjected to 

sub-cellular fractionation and the location of RBM4 visualised by Western 

blotting. As described in the Materials and Methods, this sub-cellular 

fractionation yields three fractions: a cytoplasmic fraction; a membrane bound 

protein fraction; and a nuclear fraction. As shown in Figure 4.3, fractionation 

was performed on cells undergoing a time course of differentiation with cell 

extracts prepared at 0, 24, 48 and 72 hours after the induction of 

differentiation. Antibodies against myc and caveolin-3 were used to 

demonstrate the purity of the nuclear and cytoplasmic fractions, respectively. 

As predicted, myc protein was only detected in the nuclear fraction (Figure 

4.3A, lanes 3 and 6). In contrast, caveolin-3 can be observed in the 

cytoplasmic fractions (lanes 1 and 4) and to a greater extent the membrane 

bound fractions (lanes 2 and 5). These observations show that the sub-cellular 

fractionation was successful as caveolin-3 was not observed in the nuclear 

fraction and myc, which is a transcription factor, was found only in the 

nucleus. Western blotting of these fractions showed that RBM4 was found to 

be present in only the cytoplasmic fractions of  cells harvested at 0, 24, and 48 

hours of differentiation (Figure 4.3B, lanes 1, 4, and 7). The expression level 



Figure 4.3. Localisation of RBM4 protein during myogenic differentiation as 

determined by sub-cellular fractionation.  C2C12 cells were induced to differenti-

ate as described in Materials and Methods Section 2.2.3. The cells were harvested 

at daily intervals as using the ProteoExtract® Subcellular Proteome Extraction Kit 

(Calbiochem) to separate cytoplasmic (C), membrane (M)  bound and nuclear frac-

tions  (N), as described in Materials and Methods Section 2.3.3. Aliquots containing 

10µg  of each fraction were resolved by  12% SDS PAGE and subjected to West-

ern blotting with the indicated antibodies, as described in Materials and Methods 

Section 2.4. Panel A shows Fractionation markers Caveolin-3 and c-myc. Panel B 

shows RBM4 sub cellular fractionation. N=2.
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of the protein varied between each time point but as this experiment was set 

up to see the relative changes between compartments; this did not hamper 

interpretation of these data. Extracts prepared from cells induced to 

differentiate for 72 hours showed that the RBM4 signal in present in the 

cytoplasm as well in the nuclear fraction (Figure 4.3B, lanes 10 and 12). 

These data support the microscopy data in that a pool of RBM4 is nuclear 

although little evidence was obtained for the presence of the protein in the 

nuclear pool at other time points as shown by the microscopy. This difference 

could be caused by the detection method used between the two techniques; 

whilst immunoflorescence measured RBM4 level by volume, the sub-cellular 

fractionation and Western blotting measured RBM4 by mass of protein. The 

difference could also be caused by variations in the amount of protein loaded 

onto the gels at the different time points. This experiment would need to be 

repeated to ensure that the increase of the RBM4 protein in the nuclear 

fraction at 72 hours is reproducible. One interesting observation from Figure 

4.3B is that the RBM4 protein found in the nuclear fraction at 72 hours (lane 

12) appears to be migrating at a slightly higher molecular weight than that of 

RBM4 in the cytoplasmic fraction (lane 10). This could be because RBM4 has 

been phosphorylated or subjected to another post translational modification. 

RBM4 is known to be phosphorylated in response to p38MAPK signalling but 

this has only been demonstrated in HeLa cells when the protein was over-

expressed and localised to the cytoplasm (Lin & Tarn, 2009).  
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4.3 p38MAPK is active during differentiation  

    Previous work has clearly shown that p38MAPK activity is required for 

myogenic differentiation. Treatment of C2C12 cells with the cell-permeable 

p38MAPK inhibitor, SB203580, blocked myogenic differentiation (Cowan 

unpublished observation) and knock-down of any of the p38MAPK isoforms 

also effectively blocked the differentiation process (Wang et al, 2008). To 

determined whether p38MAPK was active in my C2C12 cells under my 

culturing conditions, I examined the phosphorylation state of p38MAPK as an 

indicator of its activity; when p38MAPK is phosphorylated on Thr180/Tyr182 it 

is activated due to changes in its conformation (Roux & Blenis, 2004). As can 

be seen in Figure 4.4, p38MAPK phosphorylation is barely detected in 

undifferentiated cells (lane 1). However, at 24 and 48 hours after the induction 

of differentiation, p38MAPK is transiently activated (lanes 2 and 3 vs lane 1), 

declining by 72 hours to a level lower than in undifferentiated cells (lane 4 vs 

lane 1).  

4.4 p38MAPK inhibition with SB202190 delays myogenic differentiation 

    To complement previous work with SB203580 (Cowan unpublished 

observation), I have investigated the effect of a more recently developed 

p38MAPK inhibitor, SB202190, on myogenic differentiation. Cells were grown 

to confluency and then induced to differentiate in the absence or presence of 

SB202190; the drug was replenished every 24 hours when the medium was 

changed. Figure 4.5 shows that in the absence of the drug, cells fuse to form 

myotubes which were visible at 48 hours and clearly evident at 72 hours after 

the induction of differentiation. However, inhibition of p38MAPK with 
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Figure 4.4. p38 MAPK is phosphorylated during myogenic differentiation. 

C2C12 cells were induced to differentiate as described in Materials and Methods 

Section 2.2.3. The cells were then harvested at daily intervals using the standard 

lysis conditions as described in Materials and Methods Section 2.3.1. Aliquots of ex-

tract containing 10µg of protein were resolved by a 12% SDS PAGE and subjected 

to Western blotting with the indicated antibodies.
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Figure 4.5. p38 MAPK inhibition by SB202190 inhibits the progression of myo-

genic differentiation. C2C12 cells were induced to differentiate in duplicate as de-

scribed in the Materials and Methods Section 2.2.3. SB202190 (p38 MAPK inhibitor) 

was added to one half of the plates at 20µM  final concentration as described in Ma-

terials and Methods Section 2.2.6. The cells were then imaged at daily intervals using 

a Moticam 2000 2.0M pixel USB 2.0 attached to a light microscope as described in 

Materials and Methods Section 2.5.3.
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SB202190 did not allow cells to align or fuse into multi-nucleated myotubes, 

indicating that p38MAPK activity is required for efficient myogenic 

differentiation. Similar effects have been seen by other groups utilising the 

silencing of p38MAPK isoforms (Wang et al, 2008). 

4.5 Does inhibition of p38MAPK affect RBM4 localisation? 

    As RBM4 localisation in HeLa cells has been shown to be regulated in part 

by p38MAPK activity (Lin & Tarn, 2009), I have investigated the localisation of 

RBM4 in C2C12 cells in the presence or absence of p38MAPK activity. 

C2C12 cells were grown to confluency and induced to differentiate for up to 72 

hours in the absence or presence of SB202190. Cells were then fixed, 

permeabilised and the localisation of actin (for the cytoskeleton) and RBM4 

visualised by confocal microscopy; nuclei were stained with DAPI. As can be 

seen in Figure 4.6, and in agreement with the data presented above, in 

undifferentiated cells RBM4 was distributed throughout the cell but more 

visible in the cytoplasm. The observed ratio between nuclear and cytoplasmic 

RBM4 levels appeared to be higher in these cells when compared with those 

shown in Figure 4.1. At 72 hours following the induction of differentiation with 

myotubes, RBM4 levels in the nucleus appeared to have decreased 

significantly and the levels in the cytoplasm increased dramatically. When 

cells were incubated in the presence of SB202190, actin staining showed that 

the cell shape had changed dramatically (the cells had lined up and become 

elongated compared to 0 hours) and RBM4 was predominantly cytoplasmic, 

with what appears to be slightly lower amount of RBM4 protein in the nucleus 

relative to undifferentiated cells. However, these data do not provide a 

conclusive result as to the role of p38MAPK in the localisation of RBM4 to the 
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Figure 4.6. Does p38 MAPK inhibition effect the localisation of RBM4 during 

myogenic differentiation? C2C12 cells were induced to differentiate in duplicate 

as described in the Materials and Methods Section 2.2.3. SB202190 (shown above 

as SB202) was added to one half of the plates at 20µM as described in Figure 4.5. 

The cells were fixed, permeabilised and analysed using immuno fluorescence with 

antibodies and stains indicated and as described in Materials and Methods Section 

2.5.1. 

50µm



77 
 

cytoplasm as SB202190 blocked both p38MAPK and differentiation. A 

different approach could be performed to see if p38MAPK affects RBM4 

localisation during differentiation conducted by allowing cells to differentiate 

and an hour before harvesting, treating cells with p38MAPK inhibitor to see if 

this affects the acute localisation of RBM4 without interfering with the stage in 

differentiation reached. Unfortunately, time constraints did not allow me to 

carry out this experiment. 

4.6 Optimisation of RBM4 over-expression in HeLa cells  

    As I wanted to investigate the role for phosphorylation in the localisation of 

RBM4 or its association with other cellular proteins, I obtained from the Tarn 

group (Lin & Tarn, 2009) a cDNA encoding wild-type (WT) human RBM4 and 

another with the phosphorylation site (Ser309) on human RBM4 mutated to 

alanine (MT).  Initially, I optimised the transfection conditions for these 

constructs using HeLa cells. Figure 4.7 shows the effect on RBM4 protein 

expression following transfection of cells with two different amounts of WT or 

MT (S309A) cDNA encoding RBM4; 1μg was used in lanes 3,F 5, 6 and 7 and 

2μg of the applicable construct used in lanes 4 and 7. Alongside the variations 

in construct amount, the Fugene transfection reagent levels were varied 

between 6μl (lanes 3 and 6) or 3μl (lanes 4, 5, 7 and 8). The transfected cells 

were then harvested after 24 hours and RBM4 levels visualised by Western 

blotting. Figure 4.7 shows that optimal WT RBM4 expression was obtained 

with 3μl Fugene and 1μg WT cDNA whilst MT RBM4 required 6μl Fugene and 

1μg RBM4 MT cDNA. Another experiment was conducted to determine that 

the optimal time for RBM4 expression after transfection was 24 hours for both 

WT and MT RMB4 (data not shown).   
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Figure 4.7. Optimisation of over-expression of RBM4 protein in HeLa cells. 

Hela cells were plated out at 60,000 cells per 6cm plate, allowed to proliferate for 1 

day and then transfected with RBM4 WT or RBM4 MT (S309A) constructs as de-

scribed in Materials and Method Section 2.2.4 using the quantities of Fugene (µl)  

and plasmid (µg) indicated. C contains no fugene and F contains 6µl of fugene. 

Cells were harvested after 24 hours using standard lysis conditions and aliquots 

containing 10µg of protein were resolved using SDS-PAGE and visualised by West-

ern blotting using the antibodies shown  as described in Materials and Methods 

section 2.4.
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4.7 Over-expression of WT and S309A MT RBM4 in HeLa cells  

    To investigate if the phosphorylation of RBM4 affected its incorporation into 

initiation factor complexes, RBM4 WT and S309A MT were over-expressed in 

HeLa cells using the conditions determined above. Cell extracts were then 

prepared and the ability of the two forms of RBM4 to bind to eIF4E and 

associated proteins was determined using m7GTP-Sepharose affinity 

chromatography. This resin binds eIF4E directly and any associated proteins 

can be recovered by limited washing of the resin and visualisation by Western 

blotting; a resin lacking the m7GTP moiety was used as a control for non-

specific binding to the scaffold resin. As shown in Figure 4.8, even with limited 

washing of the resin, eIF4E was recovered to a greater extent in tubes that 

contained m7GTP-Sepharose than those with the 4B-Sepharose control resin 

(lanes 1, 3 and 5 vs lanes 2, 4 and 6). RBM4 was co-recovered with eIF4E 

(lanes 3 and 5), but not with the control resin even though lower levels of 

eIF4E were present (lanes 4 and 6); RBM4 protein was not recovered in the 

absence of transfection (lanes 1 and 2). These data show that the over-

expressed RBM4 was not binding the Sepharose resin directly. Therefore, it 

appears that when RBM4 is expressed in HeLa cells, the protein can be 

incorporated into the eIF4F complex. It is unlikely to bind to eIF4E directly as 

previous work has shown eIF4E and RBM4s interaction to be sensitive to 

RNAse treatment (Lin et al, 2007). These data are in agreement with the 

findings of (Lin & Tarn, 2009). Furthermore, these data also indicates that 

mutation of Ser309 to alanine (and potentially phosphorylation at this site) 

does not influence the ability of RBM4 to associate with eIF4F. However, this 

does not mean that the phosphorylation site is not involved in regulating 
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Figure 4.8. Does RBM4 associate with eIF4F when over-expressed in HeLa 

cells? HeLa cells were plated out at 60,000 cells per 6cm plate allowed to prolifer-

ate for 1 day and then transfected with RBM4 WT or RBM4 MT (S309A) cDNA (3µl 

of fugene and 1µg of RBM4 WT plasmid; 6µl fugene and 1µg of RBM4 MT plasmid). 

The transfected cells were then left for 1 day before the cells were harvested by the 

standard lysis conditions. The extracts were subjected to  m7GTP-Sepharose af-

finity chromatography as described in Materials and Methods Section 2.10.2. Each 

fraction was then  resolved by 12% SDS PAGEand subjected to Western blotting 

with the indicated antibodies as described in the Materials and Methods Section 

2.4.  M7= m7GTP-Sepharose beads; 4B = 4B-Sepharose beads (control ); WT = 

RBM4 wild type transfected cells; MT= RBM4 mutant (S309A) transfected cells; 

C=untransfected cells
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binding partners because the Ser309 may not be phosphorylated under these 

conditions. Further experiments would be needed to determine if the 

phosphorylation site is required. This would require a new mutation to be 

created which mimics phosphorylation at Ser309; mutating the serine into 

aspartic acid or glutamic acid which act as a phosphomimetics would be the 

approach to take.  

4.8 The effect of RBM4 WT and MT (S309A) on translation rates in HeLa 

cells  

    As I have shown that RBM4 can interact with initiation factors, it is possible 

these interactions cause a global effect on translation rates in transfected 

cells. To investigate this possibility, HeLa cells were transfected in duplicate 

as described above with cDNAs encoding WT or MT (S309A) RBM4 

alongside untransfected cells (C) or those exposed only to Fugene (F). After 

23 hours, cells were pulse-labelled with [35S] methinone for 1 hour and cell 

extracts were prepared. The level of RBM4 protein expression in these HeLa 

cells was visualised by Western blotting (Figure 4.9A). These data show that 

the level of WT RBM4 expression in these cells was relatively equal when the 

duplicates where compared (lanes 3 and 6 ). However, MT (S309A) 

expression was significantly lower in both MT (S309A) cases (lanes 4 and 5). 

As shown in Figure 4.9B, these cell extracts were also used to analyse the 

incorporation of [35S] methionine into protein which is indicator of global 

translation (see Materials and Methods). The rate of protein synthesis was 

determined as cpm/µg protein and the rate in untransfected cells was set to 

100%. These data show that Fugene alone causes a slight, but not significant 

inhibition of protein synthesis. When RBM4 WT was expressed, WT1 (Figure 
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Figure 4.9. Does over expression of RBM4 have an effect on global transla-

tion in HeLa Cells? HeLa cells were transfected with cDNA encoding  RBM4 WT 

and MT as described in Figure 4.8. After the 23 hour incubation [35S] methionine 

was introduced to the medium a for 1 hour before harvesting using the standard 

lysis conditions. Panel A. Aliquots cointaining 10µg of each fraction was resolved by 

a 12% SDS page and subjected to Western blotting with the indicated antibodies 

as described in the Materials and Methods section 2.4.  Panel B. The methionine 

incorporation into proteins was analysed as described in Materials and Methods 

Section 2.11 and the protein concentration was also measured (section 2.3.2) to 

allow methionine incorporation to be expressed as cpm/µg protein incorporation of 

radioactive methionine into protein at time 0 was set at 100%. 
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4.9A, lane 3) shows a significant drop in methionine incorporation into protein. 

However, WT2, which showed a similar level of RBM4 expression to WT1 

(Figure 4.9A, lane 6), showed no difference in protein synthesis rates when 

compared to Fugene alone. MT2 (S309A) and MT1 (S309A) both show 

significant decrease in methionine incorporation into protein when compared 

to Fugene alone even though overall RBM4 protein expression is less than 

seen with WT RBM4. These data indicate that RBM4 may modulate general 

protein translation to a small degree and that the unphosphorylatable mutant 

has a greater effect on translation rates. This observation fits with the findings 

of (Lin & Tarn, 2009) who have proposed that unphosphorylated RBM4 binds 

to mRNA and inhibits its translation. One limitation of this experiment is that 

the RBM4 is transfected into a cell that does not contain a measurable level of 

RBM4 and so this response may not be physiological.  

4.9 The localisation of over-expressed RBM4 WT and MT(S309A)  in 

C2C12 myoblasts  

    The results presented above show that RBM4 has a predominantly 

cytoplasmic localisation during differentiation. My previous experiments to 

determine if the cytoplasmic localisation in C2C12 cells, required 

phosphorylation at Ser309 had limitations and was inconclusive. So another 

experiment was devised to address this question, where RBM4 WT and MT 

(S309A) protein was over-expressed in C2C12 cells. Attempts to generate 

plasmids encoding the murine forms of these proteins were unsuccessful so I 

had to use the human cDNAs described above. Initial experiments determined 

that a low transfection efficiency in C2C12 cells hampered an investigation 

using cell fractionation techniques (data not shown). However, I was able to 
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use cells transiently over-expressing RBM4 in conjunction with confocal 

microscopy from the pool of mixed cells. Figure 4.10 shows that both over-

expressed WT RBM4 and MT (S309A) RBM4 had a nuclear localisation in 

sub-confluent myoblasts. To determine if RBM4 phosphorylation at Ser309 

was required for the localisation of RBM4 to the nucleus in C2C12 myoblasts, 

the cells were treated with arsenite for 30 minutes at a level that had been 

titrated not to cause immediate apoptosis. Arsenite was used at this level as it 

activates the p38MAPK pathway which can then phosphorylate RBM4 on 

Ser309. These data show that following p38MAPK activation, WT RBM4 re-

localised from the nucleus to granules in the cytoplasm. Whereas the MT 

(S309A) RBM4 also re-localised to the cytoplasm, it was not associated with 

distinct granules. These finding disagree with previous work from (Lin et al, 

2007); the most likely sources of this difference the cell type used as the 

arsenite concentration was similar and the constructs for the WT and MT 

(S309A) RBM4 were obtained from Tarn (Lin et al, 2007). To allow for a 

greater understanding, SB202190 should have been used to determine if the 

arsenite was affecting the RBM4 localisation via p38MAPK signalling. 

Unfortunately, time constraints did not allow me to carry out this experiment.

   

4.10 Discussion 

    This experiments described in this chapter have shown that RBM4 is 

predominantly cytoplasmic in its cellular localisation and that the cytoplasmic 

level of RBM4 increases as differentiation progresses. A pool of RBM4 was 

found to be nuclear but this level only increased a small amount during 

myogenic differentiation. One interpretation of these data is that a level of 
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Figure 4.10. Does the RBM4 MT (S309A) protein localise differently to the wild 

type RBM4 in C2C12 cells?  C2C12 cells were transfected in duplicate with plas-

mids encoding RBM4 WT and RBM4 MT (S309A) as described in Figure 4.8. The 

cells were incubated for 24 hours and then half of the plates were incubated with 

0.5mM arsenite for 30 mins as described in Materials and Methods Section 2.2.7. 

These cells were then analysed by immunofluorescence using the indicated anti-

bodies and stains as described in Figure 4.1. 
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RBM4 is required in the nucleus to promote pre-mRNA splicing and the 

demand for this protein does not change dramatically during differentiation. 

Interestingly, RBM4-mediated splicing of pre-mRNA regulates PTB pre-mRNA 

splicing in a way which reduces the expression of PTB protein. PTB has been 

shown to act antagonistically with RBM4 in controlling splicing, and the ratio of 

PTB to RBM4 has been found to be important in controlling such events (Lin & 

Tarn, 2011b). Therefore, even though RBM4 protein levels in the nucleus do 

not increase dramatically, it has been shown that the PTB protein levels 

actually decrease, altering the RBM4:PTB ratio and allowing the RBM4 to 

have greater effect on splicing reactions, as they share binding sites and have 

opposite effects on splicing to each other .  

    RBM4 has also been shown to have its localisation regulated by p38MAPK 

signalling (Wang et al, 2008) a process which has been shown to be required 

for differentiation. Investigating the role of p38MAPK signalling on RBM4 

during differentiation has proven to be problematic. Inhibition of p38MAPK 

inhibited differentiation which changes so many variables such that 

determining if p38MAPK had a direct effect on RBM4 by this approach was 

impossible. Over-expression of RBM4 WT and the form where the Ser309 site 

was mutated to alanine (MT) was at too low transfection efficiency to allow for 

biochemical analysis, or for enough cells to be obtained at confluency to allow 

for differentiation experiments to be conducted on a large scale. Stable 

transfection of the C2C12 cells with vectors encoding RBM4 had the problem 

of rejection of the RBM4-encoding sequence whilst the cells maintained 

resistance to the selective agent without RBM4 expression (data not shown). 

Transient expression studies in conjuction with arsenite treatment to activate 
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p38MAPK cast doubts upon the role for p38MAPK signalling causing the re-

localisation of RBM4 from the nucleus to the cytoplasm via phosphorylation of 

Ser309 in C2C12 cells. MT (S309A) RBM4 still re-localised from the nucleus; 

however it did not localise to granules as seen with the wild-type protein.  The 

work in the next chapter describes an investigation into cytoplasmic proteins 

which interact with RBM4. 
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Investigation of the putative interaction of RBM4 with translation 

initiation factors during myogenic differentiation 

5.1 Introduction 

    When over-expressed in HeLa cells, RBM4 has previously been shown to 

interact with the translation initiation factors eIF4A and eIF4G via co-immuno 

precipitation (Lin et al, 2007) The way RBM4 is thought to interact with factors 

which promote translation initiation depends on the state of the cells. In 

unstressed cells, over-expressed RBM4 binds CU rich elements in target 

mRNAs and inhibits their translation by an unknown mechanism. This could 

potentially be regulated via the interaction of RBM4 with eIF4A (Lin et al, 

2007). When HeLa cells are stressed with arsenite, over-expressed RBM4 is 

phosphorylated, interacts with eIF4A and eIF4G and recruits them to 

transfected EMCV IRES structures (Lin et al, 2007). However, at this time, it is 

not known whether RBM4 interacts with initiation factors during the process of 

myogenic differentiation. The work described in this chapter will address this 

using a variety of methods including: immunoprecipitation (IP) of endogenous 

protein; introduction and IP of recombinant proteins with endogenous proteins; 

and in vitro binding assays using expressed proteins. 

5.2 eIF4A and eIF4G are co-isolated with RBM4 during differentiation  

    To investigate the potential binding of RBM4 to eIF4G and eIF4A in 

differentiating cells a co-IP was performed (Figure 5.1). The RBM4 recovered 

by the IP during differentiation matches the level of total RBM4 protein 

expression (as shown in Figure 3.4).  However, the lanes showing RBM4 

protein levels in 5% of the input into the IP show no apparent RBM4 protein at 

any time after the induction of myogenic differentiation. This is most likely 
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Figure 5.1 RBM4 forms complexes with eIF4A and eIF4G during myogenic 

differentiation. C2C12 cells were grown to confluency and induced to differentiate 

as described in Materials and Methods Section 2.2.3. The cells were then harvested 

at the time points shown above. Aliquots of extracts containing 100µg protein were 

used for immunoprecipitation (IP) of RBM4 using 5µg of a pan RBM4 antibody, as 

described in the Materials and Methods Section 2.10.1. The co-isolated proteins 

were visualised using Western blotting as described in Materials and Methods 

Section 2.4 with antibodies raised against eIF4A and eIF4G alongside the antibody 

used for the IP to show recovery of RBM4. Beads only shows IP using extract pre-

pared at 48 hours but in the absence of RBM4 antibody. This figure is representa-

tive of results obtained in two separate experiments. 
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because the RBM4 protein expression level was too low for detection with the 

5µg of total protein resolved on the gel. eIF4A is observable at a similar level 

in the 5% input at all time points. In contrast, the eIF4A co-recovered with the 

RBM4 increases in line with the level of recovery of RBM4, being maximal at 

48 hours of myogenic differentiation. This could possibly indicate that RBM4 

interacts with eIF4A in a dose-dependent manner. eIF4G shows a large 

increase at 48 hours, this then reduces to a significantly lower level at 72 

hours whilst the total levels of eIF4G in the extracts does not change 

significantly. This rapid change in recovery of eIF4G which does not match the 

change in RBM4 protein level indicates that there could be a regulatory 

system affecting the interaction of RBM4 and eIF4G during differentiation. 

    To further investigate the interaction of RBM4 with eIF4A and eIF4G, the 

dependency on RNA for their interaction with RBM4 was tested. Figure 5.2 

shows that treatment of a cell extract derived from cells induced to 

differentiate for 48 hours with an excess of RNAse A and T1 prior to IP did not 

affect the co-IP of eIF4A or eIF4G with RBM4. The eIF4G signal appears to 

be weaker in both RNAse-treated and control lanes when compared to that 

observed in Figure 5.1. Unfortunately, this was not taken further due to a 

shortage of the commercial antibody used for the study shown in Figure 5.1; 

subsequent batches of anti-RBM4 serum were not of high enough titre for 

immunoprecipitation.  What these data indicate is that eIF4A interaction with 

RBM4 is potentially RNA-independent, but the experiment would need to be 

repeated to clarify if this is the case.  
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Figure 5.2 Co-isolation of RBM4 with eIF4A is resistant to RNAse treatment. 

C2C12 cells were grown to confluency, differentiated, then harvested at time points 

shown, as described in Figure 5.1. The extract was split in two, one half treated with 

excess RNAse A and T1 as described in Materials and Methods Section 2.10.3.  IP 

of the extracts was performed using a pan RBM4 antibody as described in the 

Materials and Methods Section 2.10.2. The co-isolated proteins were visualised 

using SDS-PAGE and Western blotting (Section 2.4) with antibodies raised against 

eIF4A and eIF4G alongside the antibody used for the IP to show recovery of RBM4. 

+-



87 
 

5.3 Expression and Purification of RBM4a for in vitro assays  

    To further investigate the interactions of eIF4G and eIF4A with RBM4, 

recombinant RBM4a was produced in bacteria to determine if eIF4A and 

eIF4G bind directly to RBM4a. A vector to allow for the recombinant 

expression of His-tagged RBM4a was obtained from Tarn (Lin et al, 2007). 

The vector was transformed into E.Coli and colonies were picked, grown up 

and induced. Cells were harvested from the cultures at 0, 1 and 2 hours and 

analysed by SDS-PAGE with a pan anti-RBM4 antibody. Figure 5.3 shows 

that the highest level of RBM4a expression was observed in Colony I (lanes 

1,4 and 7) and the optimal induction time here was 1 hour (lane 4). There was 

some leaky expression of RBM4a seen without IPTG induction especially in 

Colonies I and III (lanes 1 and 3). The selected colony was then grown on a 

larger scale and expression of RBM4a induced with IPTG for 1 hour and cell 

extract prepared as described in Section 2.9.4. The cell extract was then 

subjected to Nickel Agarose affinity chromatography to isolated the His-tagged 

RBM4a following elution from the resin with imidazole. As shown in Figure 5.4, 

relative to the unbound material (FT, lane 1), elution from the resin resulted in 

the purification of recombinant RBM4a (lanes 2-6). Most of the non-specific 

bands have been removed except for a few faint bands observed in lanes 2 

and 3. However, a proportion of the His-tagged RBM4a did not bind to the 

resin; either the tag was obscured in some way by the folding of the RBM4a 

protein or else interacting proteins prevented RBM4a binding to the resin. In 

an attempt to increase the yield of RBM4, I investigated whether RBM4 was 

being expressed and moved into insoluble inclusion bodies and therefore 

being discarded with the pellet during the lysis step. To recover the proteins in 
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Figure 5.3 Colony selection for RBM4a expression. BL21 E.Coli were trans-

formed with plasmids encoding RBM4a WT as described in Materials and Meth-

ods Section 2.9.1 and 3 colonies (CI-III) were picked. The cells were grown up as 

described in Section 2.9.3. The cells were then induced to express RBM4 protein 

by addition of IPTG for 0, 1 or 2 hours as described Section 2.9.3 and 1ml of cell 

culture removed, pelleted and lysed in 1ml of SDS-PAGE sample buffer. Aliquots 

containing 10µl of sample were analysed resolved on a 12% SDS-PAGE gel and 

analysed by Western blot with pan RBM4 antibody.
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Figure  5.4. Nickel Agarose purification of RBM4a WT. A selected colony of BL21 

E.Coli cells containing RBM4 WT expression plasmids (C-I as described in Figure 

5.3) was amplified, and induced to express RBM4 protein by the addition of IPTG 

for 1 hour. Cells were lysed and RBM4 purified using Nickel Agarose, as described 

in Section 2.9.4.  Samples of 10µl were resolved by SDS-PAGE and analysed by 

Western blot with a pan anti-RBM4 antibody. 
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the inclusion bodies guanidine hydrochloride was used. Figure 5.5A shows a 

flow diagram of 3 different methods employed for lysing the cells, resulting in 

Fraction GL (cells lysed in guanidine hydrochloride), Fraction GP (guanidine 

hydrochloride lysed pellet) and Fraction N (cells lysed by the original method). 

In each instance, RBM4a expressed in these samples was purified using 

Nickel Agarose and 5µg of recovered protein resolved by SDS-PAGE and 

Western blotting. As shown in Figure 5.5B, the greatest amount of RBM4a 

protein was recovered from the normal lysis conditions (lane 3) and very little 

RBM4a was recovered in the cell pellet recovered with guanidine lysis (lane 

2). The RBM4a recovered from Fractions GL (lane 1) and GP (lane 2) had a 

higher amount of non-specific bands post Nickel Agarose purification (data not 

shown). Therefore, all of the elutions shown in Figure 5.4, lanes 2-6 were 

pooled for further use.  

    Analysis of this pooled material by SDS-PAGE and coomassie staining 

showed the presence of a number of non-specific bands not observed with 

Western blotting (Figure 5.6B, lane 1). To remove as many of these bands as 

possible before using the RBM4a for interaction studies, I tried to further purify 

RBM4a by using anion exchange chromatography with FFQ resin. This was 

used as different proteins have varying affinity for the resin as determined by 

their overall charge and the localisation of the charge on the protein. As can 

be seen in Figure 5.6A, when analysed by Western blotting, RBM4a binds the 

FFQ beads and can be eluted from the resin using NaCl. However, Figure 

5.6B shows by coomassie staining that the overall protein purity of the sample 

remains low as another protein with a higher molecular weight makes up a 

large percentage of the protein in the sample.  
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Figure 5.5 Optimisation of lysis conditions for recovery of RBM4 protein from 

E.Coli.  BL21 E.Coli cells containing RBM4 WT expression plasmids were amplified 

as described in Figure 5.4. The cells were then lysed and purified as described in 

Section 2.9.4 with the alterations as shown in Panel A and 10µl of each sample was 

resolved by 12% SDS PAGE and visualized by Western blotting with pan anti-RBM4 

antibody (Panel B).
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Figure 5.6 Purification of RBM4 by FFQ anion exchange chromatography. 

RBM4 previously purified by Nickel Agarose affinity chromatography was further 

purified by FFQ anion exchange chromatography, as described in Materials and 

Methods  Section 2.9.6.  Samples (10µl) were resolved by 12% SDS-PAGE and 

analyzed by Western blotting with pan anti-RBM4 antibody (Panel A) or coomassie 

staining (Panel B). L= Load; FT=unbound materials; W=Wash.
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    As the FFQ did not further purify RBM4a to a great extent (Figure 5.6B), 

another purification method was tried, which was Heparin-Sepharose. Heparin 

has similar characteristics to the backbone of mRNA and so should purify 

RBM4a by the RRMs having a high affinity for the heparin. The experiment 

was conducted as with FFQ but with heparin beads substituting for the FFQ 

beads. As shown in Figures 5.7A and B, RBM4a binds heparin but there was 

a significant amount of RBM4a observed in the flow through (lane 2) and to a 

lesser extent the wash (lane3). Western blotting (Panel A, lanes 5 and 6) and 

coomassie staining (Panel B, lanes 5 and 6) show that RBM4a is 

predominantly eluted from the resin at 250 and 500mM NaCl. The overall 

purity of RBM4a in these fractions was also higher than before as the major 

impurity that is seen in the FFQ isolation is still present but to a lower level. 

Therefore, fractions 5 and 6 were pooled and dialysed against buffer 

containing 100mM NaCl and used for experiments described in the rest of the 

chapter.  

    To complement this work, a vector encoding for a mutant form of His-

tagged RBM4a was also obtained from Prof. Tarn (Lin et al, 2007) . This 

mutation (Kar et al, 2006) disrupts the RRMs by mutation of conserved 

aromatic amino acids in the binding region (Y37A, F39A, Y113A and F115A), 

thereby preventing mRNA binding. This vector was transformed into E.Coli 

and colonies were picked, grown up and induced, as described above. The 

His-tagged mutant RMB4a (RRM silenced) was then purified as described 

above using sequential Nickel agarose and Heparin chromatography steps, 

with the resultant Mt (RRM silenced) protein showing a similar level of purity to 

that of the wild-type protein (Figure 5.8).   
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Figure 5.7 Purification of RBM4 by Heparin-Sepharose chromatography. RBM4

previously purified by Nickel Agarose affinity chromatography was further purified by 

Heparin-Sepharose chromatography, as described in Section 2.9.5.  Samples (10µl) 

were resolved by 12% SDS-PAGE and analyzed by Western blotting with pan anti-

RBM4 antibody (Panel A) or coomassie staining (Panel B).
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Figure 5.8 SDS-PAGE analysis of recombinant eIF4A, eIF4G and RBM4a WT. 

Aliquots of recombinant protein were resolved by SDS-PAGE as indicated and 

RBM4 was analysed by Western blot (Panel A), as described in Section 2.4 using a 

pan anti-RBM4 antibody. In addition, aliquots of eIF4GI (Panel B) and eIF4A (Panel 

C) were subjected to SDS-PAGE and analysed by coomassie staining as described 

in Section 2.12.
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5.4 Recombinant RBM4a Wt and Mt (RRM silenced) can bind eIF4A and 

eIF4G 

    I have previously shown that RMB4 can interact with eIF4A and eIF4G 

(Figure 5.1) and it has also been observed to bind these proteins when over-

expressed in cells (Lin et al, 2007). To analyse this interaction further, I have 

added recombinant, His-tagged wild-type (Wt), RRM silenced mutant protein 

(Mt) and eIF4A (purified as described in Section 2.9.8) into extracts prepared 

from confluent C2C12 cells (0 hour differentiating cells). Following recovery of 

the tagged RBM4a protein using Nickel Agarose beads, Western blotting 

showed that eIF4G could be isolated with RBM4a and eIF4A (Figure 5.9A, 

lanes 1-3). This interaction was not dependent on intact RRMs in the RBM4a 

as similar levels of eIF4G were recovered with the wild-type and RRM mutant 

proteins (compare lane 2 with lane 1). In addition, His-tagged wild-type (Wt) 

and RRM silenced mutant RBM4a protein were able to interact with eIF4A 

(Figure 5.9B, lanes 1 and 2). In the absence of added recombinant protein, 

but in the presence of cell extract (Panels A and B, lane 4), no significant 

amount of either eIF4G or eIF4A was recovered. In Figure 5.9B, the eIF4A 

blot has two sets of bands, with the upper band reflecting recombinant eIF4A. 

The eIF4A recovered in lane 3 was at levels sufficient to allow it to leak across 

into lane 2. RBM4 was not recovered from the extract using Nickel Agarose 

beads in the absence of added recombinant protein (Figure 5.9C, lane 2 vs 

lane1). These data indicate that the eIF4A and eIF4G can bind RBM4 in cell 

extracts. His-tagged eIF4A added to the cell extract was also able to co-

isolate RBM4 (Figure 5.9C). 
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Figure 5.9 Recombinant RBM4 WT and RRM mutant (MT) protein form com-

plexes with eIF4G and eIF4A when introduced into C2C12 cell extracts. Re-

combinant protein (3µg) was added to 250µg of cell extract from undifferentiated 

cells and incubated for 1 hr at 4oC, as described in Materials and Methods Section 

2.10.5. The His-tagged recombinant protein were recovered by Nickel Agarose af-

finity chromatography by addition of 50µl of 50% Nickel agarose beads, the beads 

were washed with interaction buffer eluted using sample buffer. The recovered 

protein and co-isolated proteins were resolved by 12% SDS-PAGE and analysed 

by Western blotting with antibodies specific to eIF4GI (Panel A), eIF4A (Panel B) or 

RBM4a (Panel C).  This figure represents data obtained from two separate experi-

ments.
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    To investigate the binding of RBM4 and eIF4A further, cell extracts from 

differentiating cells were used in a similar experiment. Cell extracts were 

prepared from C2C12 cells induced to differentiate for different times (Figure 

5.10A) and recombinant eIF4A was introduced into them (lanes 1-4), with a 

duplicate of each time point without eIF4A acting as controls (lanes 5-8). As 

before Nickel Agarose beads were used to isolate the His-tagged eIF4A from 

the extracts and the presence of either RBM4a or RBM4b was visualised by 

Western blotting. Figure 5.10A shows that in the absence of added His-tagged 

eIF4A, no recovery of RBM4a and RBM4b was observed (lanes 5-8). With 

added, tagged protein, both RBM4a and RBM4b were pulled down with eIF4A 

in cell extracts prepared from differentiating cells, with a peak of interaction 

observed in extracts from cells induced to differentiate for 24 hours (lane 2). 

As shown in figure 5.10B and in contrast, little RBM4a was recovered with 

eIF4A in undifferentiated cells (lane 1). In agreement with previous data 

(Figure 3.5) this probably reflects in part the low level of RBM4a protein 

expression at this time. In contrast to RBM4a, levels of RBM4b protein 

increased during the differentiation time course (Panel B vs Panel C). Both 

RBM4a and RBM4b where compared to a loading control which was PABP. 

    These data support the idea that eIF4A and eIF4G can form complexes 

with RBM4a and it even adds to this by showing that the RRM sites are not 

required for this interaction. This conclusion is supported by the data shown in 

Figure 5.2 as RNAse A and T1 treatment had little effect on complex 

formation. The RRMs could still be required for the formation of different 

complexes and to allow the RBM4 complexes to interact with mRNA or pre-

mRNA. A complication with the data shown in Figure 5.10 is that protein 
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Figure 5.10 Is there a difference in the ability of recombinant eIF4A protein to 

form complexes with RBM4a and RBM4b when introduced into differentiating 

C2C12 cell extracts? Panel A Recombinant eIF4A protein was added to cell ex-

tracts and incubated as described in Figure 5.9 except that extracts were prepared 

from cells induced to differentiate for the indicated times. The recombinant protein 

was recovered by Nickel Agarose affinity chromatography as described in figure 5.9 

and recovered protein and co-isolated proteins were resolved by 12% SDS-PAGE 

and analysed by Western blotting with indicated antibodies.  Panels B and C. 

Aliquots of the total extract containing 10µg of protein were resolved by 12% SDS-

PAGE and analysed by Western blot with antibodies indicated. This figure is repre-

sentative of results obtained in three separate experiments.
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Figure 5.11 Does RBM4 bind directly to eIF4GI? Recombinant RBM4 (3µg) and 

3µg of recombinant FLAG tagged-eIF4GIa were combined in 1ml of interaction 

buffer as described in Materials and Methods Section 2.10.4. Anti-FLAG antibodies 

were used to perform an IP as described in Section 2.10.4 and the recovered pro-

teins resolved by 12% SDS-PAGE and analyzed by Western blotting with indicated 

antibodies.
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beads or tubes non-specifically. Lane 4 shows eIF4G alone with beads and 

shows a small amount of RBM4a signal which is likely caused by protein from 

lane 3 leaking into lane 4.  

    As Figure 5.11 shows signal in all the control lanes as well as the actual 

experimental lane, this protocol needed to be optimised. To start with, the 

beads or tubes were found to be binding RBM4a (Figure 5.11 lane 3). To 

inhibit the binding of RBM4a to the tube walls siliconised tubes were used in 

the next experiment and also a greater amount of controls were used to try 

and determine the source of the background binding. FLAG-eIF4GIa was 

incubated with RBM4a in IP buffer (containing 100mM NaCl) and resulting 

complexes isolated and visualised by Western blotting for the presence of 

RBM4a. Figure 5.12 contains controls to account for binding of RBM4 non-

specifically to the anti-FLAG antibody (lane 2), Agarose beads (lane 4) and 

tube walls (lane 6). Signal for RBM4 was seen in lanes 1, 2 and 4 and a very 

small amount in lane 6. Therefore, these data show that some of the non-

specific binding of RBM4a seen in Figure 5.11 was caused by direct binding to 

the tubes. The assay still had problems with non-specific binding of RBM4a to 

the beads and potentially to the anti-FLAG antibodies themselves. This 

background binding could be caused by inadequate blocking of the beads with 

other proteins. In all the previous experiments the beads were blocked for 1 

hour at 4oC in 1mg/ml cytochrome C in IP buffer therefore, in the following 

experiment (Figure 3.13) this was increased to 5mg/ml Cytochrome C  and the 

incubation time was increased to overnight to allow the cytochrome C to block 

the beads. In this experiment, the recovery of FLAG-eIF4GIa was also 

investigated to ensure that it was actually being pulled down by the anti-FLAG 
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Figure 5.12 Does siliconised tubes decrease non-specific binding of RBM4 to 

tubes? The experiment described in Figure 5.11 was repeated except with the use 

of siliconised tubes.
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complexes are already formed when the recombinant proteins were added to 

the cell extracts and this means that the proteins that are co-isolated with the 

recombinant protein have either come from complexes that have been altered 

by the addition of the recombinant protein or are part of a free pool of protein.  

It also appears to indicate that there is a larger pool of free RBM4a and 

RBM4b at 24 hours (Figure 5.10A) or that the complexes they are part of are 

more transient. The limitations of the experiments already described is that 

they only show that RBM4 is part of a complex with eIF4A and eIF4G which is 

RNAse resistant (potentially in the case of eIF4A and unknown for eIF4G) but 

it does not allow me to determine if this interaction was direct or indirect. To 

investigate whether RBM4 binds to either eIF4A or eIF4G directly the 

recombinant proteins would need to be assayed by an in vitro binding assay. 

5.5 Optimizing in vitro binding assays for eIF4G and RBM4 

    To determine if RBM4 and eIF4G directly interact with each other, an in 

vitro binding assay was performed. To this end, FLAG-tagged eIF4GIa 

(Coldwell et al., 2006) was expressed in insect cells and purified as described 

in Section 2. 8.7 and figure 5.8B and C. FLAG-eIF4GIa was then incubated 

with RBM4a in IP buffer (containing 100mM NaCl) and resulting complexes 

isolated by the use of anti-FLAG antibodies bound to agarose which bind the 

tag on the N-terminus of the eIF4G. The beads were blocked for 1 hour at 4oC 

with 1mg/ml cytochrome C in IP buffer prior to use and the presence of 

recovered RBM4a was visualised by Western blotting. Figure 5.11 shows that 

RBM4a could be co-isolated with FLAG-eIF4GIa under these conditions (lane 

1). However, there is signal for RBM4 in the absence of added FLAG-eIF4GIa 

(lane 2) or anti-FLAG antibody (lane 3) indicating that RBM4a is binding to the 
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antibody beads. As shown in Figure 5.13 (lane 1), eIF4GIa was recovered 

efficiently in this assay compared to resin alone (lane 5). RBM4a was also 

recovered with eIF4GIa (lane 1). However, the RBM4 signal was actually 

highest in lane 4 which contained beads and no eIF4GIa. In addition, the 

recovery of RBM4a with the anti-FLAG antibodies beads in the absence of 

added FLAG-eIF4GIa (lane 2) was also greater than that seen in lane 1, 

suggesting the antibodies and eIF4G were actually blocking sites that RBM4 

can bind to non-specifically in the assay. The increased levels and time of 

blocking indicate that cytochrome C had reduced the background in some of 

the lanes but crucially not in one of the controls. 

    To try and reduce non-specific binding to the resin, another approach taken 

was to increase the salt concentration in the binding buffer. However, this can 

also inhibit the interaction of the proteins with each other so this variable was 

optimised to try and reduce the background but not prevent protein complex 

formation. This experiment was carried out and it was determined that the salt 

concentration could be increased to 200mM NaCl from 100mM NaCl (data not 

shown).  The increased salt concentration was used in the binding assays 

shown in Figure 5.14. These data show that increased salt reduced the 

binding of RBM4a to the resin alone (lane 5 vs lane 2). Lane 1 shows that 

RBM4a can be recovered with FLAG-eIF4GIa; however, there was still 

substantial binding of RBM4a to the anti-FLAG beads in the absence of added 

FLAG-eIF4GIa (lane 2) which could account for a large proportion of this 

binding. As the RBM4a was binding to the anti-FLAG antibodies I looked at 

potential causes of increased background here. Upon analysis of the RBM4a 

protein sequence, I found a region that had moderate homology with the 
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Figure 5.13 Does increased blocking of magnetic protein G beads reduce non-

specific RBM4 recovery? The experiment described in Figure 5.12 was repeated 

except that the incubation of beads with cytochrome C was increased to 5mg/ml 

and to overnight. 
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Figure 5.14 Does increased NaCl concentration reduce non-specific RBM4 

recovery? The experiment described in Figure 5.12 was repeated except that NaCl 

in the interaction buffer was increased from 100mM to 200mM.



95 
 

FLAG tag found on eIF4GIa (Figure 5.15). This could potentially cause 

RBM4a to bind to the anti-FLAG antibodies. This binding would not be as 

strong as eIF4GIa but could contribute some of the increased background 

observed in Figure 5.14, lane 2. To overcome this potential binding problem I 

obtained some triple-FLAG peptide (3xFLAG tag) to try and out-compete this 

binding by the antibodies. To determine what effect the FLAG peptide had on 

the binding of RBM4 to anti-FLAG antibodies, an experiment was set up with 

RBM4a alone with anti-FLAG antibodies and the beads in the presence of 0, 

6.25, 12.5, 25, 50 and 100μg/ml triple-FLAG peptide. 100µg/ml was chosen as 

the top end as this is the stage at which the 3xFLAG peptides manual 

indicates elutes FLAG-tagged proteins from M2 FLAG affinity gels. Figure 

5.16A shows that the peptide had little effect on the binding of RBM4a to the 

antibody. Alongside this, another experiment was carried out looking at the 

effect of the FLAG peptide on eIF4GIa recovery to ensure that the 3xFLAG 

peptide did not elute the eIF4GIa from the resin. This was set up in the same 

way as above but with added eIF4GIa in the presence of 0, 6.25, 12, 25, 50 

and 100μg/ml triple-FLAG peptide. As shown in Figure 5.16B, FLAG peptide 

at 25-50μg/ml caused a slight reduction in the recovery of RBM4a with 

eIF4GIa (lanes 4 and 4 vs lane 1). Increasing the peptide concentration to 

100μg/ml did not have any further effect on recovery of RBM4a but did reduce 

that of FLAG-eIF4GIa (lane 6 vs lane 5). The data shown in Figure 5.14 show 

a potential binding of eIF4G to RBM4 but attempts to reduce background 

further failed and more attempts to reduce this background would be needed 

to increase confidence in the validity of this interaction. 

  



RBM4a      MVKLFIGNLPREATEQEIRSLFEQYGKVLECDIIKNYGFVHIEDKTAAEDAIRNLHHYKL 60
Flag       ------------------------------------------------------------
                                                                            

RBM4a      HGVNINVEASKNKSKASTKLHVGNISPTCTNQELRAKFEEYGPVIECDIVKDYAFVHMER 120
Flag       ------------------------------------------------------------
                                                                            

RBM4a      AEDAVEAIRGLDNTEFQGKRMHVQLSTSRLRTAPGMGDQSGCYRCGKEGHWSKECPIDRS 180
Flag       ------------------------------------------------------------
                                                                            

RBM4a      GRVADLTEQYNEQYGAVRTPYTMSYGDSLYYNNTYGALDAYYKRCRAARSYEAVAAAAAS 240
Flag       ------------------------------------------------------------
                                                                            

RBM4a      AYSNYAEQTLSQLPQVQNTAMASHLTSTSLDPYNRHLLPPSGAAAAAAAAAACTAASTSY 300
Flag       ------------------------------------------------------------
                                                                            

RBM4a      YGRDRSPLRRATGPVLTVGEGYGYGHDSELSQASAAARNSLYDMARYEREQYADRARYSA 360
Flag       ---------------------------------------------DYKDDD--DK----- 8
                                                         *: ::  *:     

RBM4a      F 361
Flag       -

Figure 5.15 Alignment of FLAG peptide epitope and RBM4 sequences. The 

FLAG peptide sequence was aligned against RBM4a Mus Musculus protein se-

quence obtained from PUBMED using ClustalW2 software. Stars signify a perfect 

match whereas Double dots show similar amino acids and single dots show those 

with low similarity.



Flag peptide

- 2512.56.25 50 100 µg/ml

RBM4

Flag peptide

- 2512.56.25 50 100 µg/ml

RBM4

eIF4GI

Figure 5.16 Does addition of FLAG peptide affect the non-specific recovery of 

RBM4a? 3µg of RBM4a alone (Panel A) or 3µg of each RBM4a and eIF4GIa (Panel 

B) were diluted into 1ml interaction buffer containing indicated levels of triple-FLAG 

peptide. Subsequently, M2 anti-FLAG antibody (5µl) and magnetic beads were 

added as described in Materials and Methods Section 2.10.4. The antibodies and 

co-isolated proteins were recovered and resolved by 12% SDS-PAGE and analysed 

by Western blotting using indicated antibodies.
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5.6 eIF4GI, eIF4A and actively translating ribosomes are localised to the 

cell periphery during myogenic differentiation  

    As RBM4 has been shown to bind to eIF4A and eIF4GI during myogenic 

differentiation, I used confocal microscopy to determine their intracellular 

localisation to look for colocalisation. Figure 5.17 shows that eIF4GI has a 

diffuse cytoplasmic stain at 0 hours with very little eIF4GI observed in the 

nucleus. 48 hours after induction of differentiation the stain becomes more 

localised to the periphery of the cell, and as differentiation progresses to 72 

hours, localisation of eIF4G becomes more continuous. eIF4A also shows a 

similar pattern during differentiation (figure 5.18) but across multiple images, 

the perphipheral stain was not as distinct. The eIF4A showed a greater degree 

of localisation to the nucleus except at 72 hours, with the stain more granular 

at 24, 48 and 72 hours of differentiation. 

    As eIF4GI were localised to the periphery of the cell during differentiation at 

later time points, the localisation of ribosomes and actively translating 

ribosomes was investigated using a method developed using puromycin to 

allow visualisation of ribosomes actively translating (Willett et al, 2011). 

    What was found using this technique was that ribosomes in differentiating 

cells generally had a diffuse granular stain in the cytoplasm at later time points 

(48 and 72 hours). However, the actively translating ribosomes, as indicated 

by the puromycin stain, were found enriched at the periphery of the cells. This 

was seen to the greatest extent in cells induced to differentiate for 48 hours 

(Figure 5.19) The finding that eIF4A, eIF4GI and actively translating 



0

72

48

24 

H
ou

rs
 in

 D
iff

er
en

tia
tio

n 
m

ed
iu

m
Merge DAPI

(Nuclear stain)
Phalloidin

(Actin stain)
eIF4GI

Figure 5.17 Localisation of eIF4GI during myogenic differentiation.  Cells 

were induced to differentiate as described in Materials and Methods Section 2.2.3. 

The cells were then fixed and permeabilised before being incubated with indicated 

antibodies and stains at the indicated time points. Following incubation with fluores-

cently linked secondary antibodies, the samples were visualised by confocal mis-

croscopy as described in Materials and Methods Section 2.5.1.



0

Merge DAPI
(Nuclear stain)

Phalloidin
(Actin stain)

eIF4A

72

48

24 

H
ou

rs
 in

 D
iff

er
en

tia
tio

n 
m

ed
iu

m

Figure 5.18 Localisation of eIF4A during myogenic differentiation.  Cells were 

induced to differentiate, fixed and permeabilised before being incubated with the 

indicated antibodies and stains as described in Figure 5.17.
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Figure 5.19  Actively translating ribosomes are localised to the cell periphery 

during myogenic differentiation. Cells were induced to differentiate as described 

in Materials and Methods Section 2.2.3. Before harvesting cells were incubated for 

5 minutes with 91µM puromycin, (10mg/ml stock Sigma), 208µM emetine (10mg/

ml Sigma) and 100µg/ml cycloheximide (Sigma). The cells were then harvested as 

described in Section 2.5.1 with 100µg/ml cycloheximide added to the pre-warmed 

PBS wash step. Antibodies and Stains were used as indicated.
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ribosomes were localised to a similar region of the cell during differentiation 

indicates that local translation is required for some reason at these times. This 

could be to do with the fusion of cells that is occurring at these time points but 

further work would be required to investigate this. 

5.7 RBM4 co-localises with actively translating ribosomes after 72 hours 

of myogenic differentiation. 

    As RBM4 has been shown to bind to translation intiation factors eIF4GI and 

eIF4A (Figure 5.1) The potential interaction of RBM4 with actively translating 

ribosomes was investigated. C2C12 cells were induced to differentiate and the 

co-localisation of RBM4 and puromycin positive ribosomes was detected by 

confocal microscopy as shown in Figure 5.20. At 0, 24, or 48 hours of 

differentiation RBM4 shows low levels of co-localisation with translating 

ribosomes. however at 72 hours of differentiation their co-localisation 

increased dramatically. The images were analysed for the co-dependency of 

the RBM4 and puromycin channels by linear regression with the Pearsons co-

efficient, which yielded the data in Figure 5.20B. Pearson’s values of 0.5 are 

deemed to be significant at 72 hours the Pearson’s increases to a significant 

result of 0.571. The co-localisation of the RBM4 and actively translating 

ribosomes indicates that RBM4 may be potentially involved in modulating 

translation of certain mRNAs in a positive manner at 72 hours. In fact 

published data has shown  RBM4 binding and up regulating c-myc and Bcl-2 

translation which is believed to occur via IRES sites. C-myc is reported to be a 

negative regulator of myogenic differentiation (Miner & Wold, 1991); (La 

Rocca et al, 1994) and Bcl-2 is present at early stages of myogenesis but 

once mid stages has been reached and myotubes have begun to form Bcl-2 is 
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Pearson’s Coeffient of the co-dependency of RBM4 and Puromyocin 
during differentiation of C2C12 cells.

0h r  = 0.403   48h r = 0.393
 r (random) = 0.0±0.03  r(random) 0.0±0.049

24h r = 0.381   72h r = 0.671
 r(random) = 0.0±0.03  r(random) = 0.0±0.003

Figure 5.20 Does RBM4 colocalise with active translation during myogenic 

differentiation? Cells were induced to differentiate as described in Materials and 

Methods Section 2.2.3. Before harvesting cells were incubated as in Figure 5.19. 

Panel A. Antibodies and Stains used as indicated and co-localisation was deter-

mined by digital subtraction of non-overlapping pixels.  Panel B. These data show 

the Pearsons co-efficient (r) for the co-dependency of the RBM4 and puromycin 

channel during myogenic differentiation  as described in the Materials and Methods 

Section 2.5.2. 
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no longer expressed (Dominov et al, 1998). Further work is required to 

determine which mRNAs are binding RBM4 at these sites in the myotubes. 

5.8 Discussion 

    The work described in this chapter has focused on the binding interaction of 

RBM4 with initiation factors. Using two different methods, these data suggest 

that endogenous RBM4 forms complexes with eIF4A and eIF4GI in 

differentiating myogenic cells. These data are in agreement with studies from 

HeLa cells over-expressing RBM4 (Lin et al, 2007). The availability of eIF4GI 

to bind RBM4 also appears to be modulated as it has been shown to bind 

initiation factors to a greater extent at 48 hours of differentiation. In contrast, 

eIF4A appears to bind to RBM4 at all times (Figure 5.1). The interaction 

between RBM4 and eIF4A at 48 hours also appears to be RNAse resistant 

and therefore not dependent on mRNA (or the RNA component is well 

protected). As shown by optimised in vitro binding assays, the interaction of 

eIF4G with RBM4 appears not to be direct. When recombinant eIF4A was 

combined with extracts from differentiating cells, RBM4a and RBM4b were 

found to be recruited to it to a greater extent  in extracts prepared from cells 

induced to differentiate for  24 hours. This potentially means that either there 

is a larger free pool of RBM4 at this time or that the complexes it forms are 

more easily disrupted by the recombinant protein. I believe the latter is the 

case as the maximal binding of RBM4a or RBM4b does not coincide with 

times of maximal RBM4a or RBM4b protein expression. To carry this work 

further, the IP RNAse A and T1 experiment shown in Figure 5.2 would need to 

be expanded and repeated but as mentioned before this would require finding 

a new source of antibody that works with IP. Another experiment that would 
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need to be done would be to look at the direct interaction of RBM4 with eIF4A 

via an in vitro binding assay. This was not possible as both protein possessed 

the same affinity tag; I was unsuccessful at cloning the murine RBM4 

sequence into a different tagged vector and time pressures did not allow me to 

re-clone the eIF4A. Interestingly, RBM4 was found to be localised to actively 

translating ribosomes during myogenic differentiations at 72 hours without a 

significant localisation at earlier time points. This along with the interaction 

with eIF4A and eIF4GI gives a good indication that RBM4 is involved in 

regulation of translation during later times of myogenic differentiation 

especially at 72 hours. 
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Discussion 

    The aim of the work described in this thesis was to determine if RBM4a or 

RBM4b played a role in the regulation of myoblast cell differentiation into 

muscle myotubes. Previous work in HeLa cells (Lin et al, 2007) has suggested 

that RBM4 interacts with the translational machinery but little is known about 

the role for this protein in myogenic differentiation. My data presented in this 

thesis show that total levels of RBM4 increase during differentiation (Figure 

3.4). Whilst levels of RBM4b increase during differentiation, RBM4a protein 

expression decreased significantly (Figure 3.5). These data are in contrast to 

published findings where another group (Lin & Tarn, 2011) showed that RBM4 

levels only increase by a small amount during differentiation. However, on 

closer examination of their data, the Western blots appear to be highly 

exposed which could indicate that the signal was outside of the linear range 

for this antibody. I have also examined the intracellular localisation of RMB4. 

My data shows that during differentiation, levels of RBM4 protein present in 

the cytoplasm increased, with levels found in the nucleus remaining relatively 

stable (Figures 4.1 and 4.2). Nuclear levels of PTB have been reported to 

decrease during differentiation (Lin & Tarn, 2011). Together these data may 

support the idea that a decrease in the ratio of RBM4 to PTB regulates 

splicing during myogenic differentiation. Further work investigating the relative 

expression levels of RBM4 and PTB in the nucleus may provide a better view 

of what is occurring as splicing occurs in the nucleus (Wang & Burge, 2008). 
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    Using C2C12 cells induced to exit the cell cycle and differentiate, I have 

shown that RBM4 co-IPs with eIF4A and eIF4GI (Figure 5.1). The binding of 

RBM4 to eIF4GI and eIF4A most likely reflects recovery of RBM4b as levels of 

this isoform increase during myogenic differentiation (Figure 3.5). RBM4 

interaction with initiation factors is interesting because as shown in Figure 5.1, 

the association of RBM4 with eIF4GI is not constant and peaks at around 48 

hours following the induction of differentiation. In contrast, RBM4 binds to 

eIF4A at early times. This leads me to suggest that RBM4 is somehow 

interfering with the activity of eIF4A in an act of inhibition (Figure 6.1). RBM4 

has been shown to cause down-regulation of cap-dependent translation by 

interacting with mRNAs containing CU rich elements. However, this effect on 

translation was only observed with cells transfected with reporter constructs 

and not with endogenous mRNAs (Lin et al, 2007). RBM4 could be functioning 

as an inhibitor by binding both CU rich elements and eIF4A as part of a 

complex attached to the mRNA, stopping the association of eIF4A in an active 

complex. After myoblasts have fused to form large myotubes, RBM4 forms a 

productive complex together with eIF4GI and eIF4A (Figure 5.1) which can 

drive translation of specific mRNAs (Figure 6.1). RBM4 has been shown to be 

involved in the selective activation of mRNA, having a direct role in the 

regulation of Period 1 (mPER1), a protein regulating circadian rythm in mice. 

Over-expression of RBM4a or RBM4b led to an up-regulation in mPER1 by 

2.8 fold or 5 fold, respectively. Studies by Kojima et al., (2007) suggest that 

this is most likely through translational regulation, with RBM4 binding directly 

to a stem-loop cis element in the 3' UTR of the mPer1 mRNA. Alterations of 

RBM4 levels in cycling cells caused significant changes in circadian period, 
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with RBM4 knockdown by siRNA resulting in a shorter circadian period, and 

the over-expression resulting in a lengthened period (Kojima et al, 2007). 

However, the exact mechanism behind this inhibition was not determined  

    The study by Kojima et al., (2007) also suggested that RBM4 had a 

functional interaction with eIF4GI/PABP. In my work, I have shown that the 

interaction between the RBM4 and eIF4GI does not appear to be direct or too 

weak to detect (Figure 5.14). As this interaction has been shown to be RNAse 

resistant (Figure 5.2), it is most likely to be via another protein. RBM4 can also 

co-isolate with eIF4E but this was RNAse sensitive, indicating a bridging 

function of mRNA (Lin et al, 2007). Further work would focus upon 

determining if eIF4A can bind directly to RBM4, which domains on each 

protein were important for such an interaction and which other components of 

the initiation complex can be co-isolated with RBM4 during differentiation 

(Figure 6.1).  

    One possible link in the inhibition of translation mediated by RBM4 is Ago2. 

This forms part of the RISC complex, binds to eIF4E in a RNAse sensitive 

manner (Iwasaki et al, 2009) and directly to RBM4 (Hock et al, 2007). The 

interaction of RBM4 and Ago2 was reduced, but not prevented by RNase A 

was added (Hock et al, 2007), and RBM4 interaction with eIF4E has been 

shown to be RNAse sensitive (Lin et al, 2007). These data suggest that RBM4 

could enhance the binding of Ago proteins to mRNAs by increasing the 

accessibility of miRNA target sites (Hock et al, 2007) and prevent eIF4E-

dependent translation (Figure 6.1). This model is consistent with the report 

that if RBM4 is over-expressed, mRNAs with CU rich regions are preferentially 

down-regulated (Lin & Tarn, 2009). Another protein that functions as an 
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inhibitor of eIF4A is Pdcd4, which binds mRNA and ribosomal RNA. It is 

believed that such interactions increase the localisation of Pdcd4 to eIF4A 

(Wedeken et al, 2010). RBM4 could act similarly by binding CU rich elements 

in mRNA (Lin et al, 2007) and then binding and inhibiting eIF4A that associate 

with this mRNA (Figure 6.1). 

    At the later stages of differentiation, RBM4 also co-localises with actively 

translating ribosomes to a significant degree (Figure 5.20) adding more 

support for RBM4 being involved in the regulation of protein synthesis at the 

later stages of differentiation. Previous work from Lin et al., (2007) has shown 

that RBM4 acts in conjunction with eIF4A on IRES-mediated translation 

initiation. Following arsenite stress, RBM4 binding to cellular mRNAs encoding 

Bcl-2 and c-Myc was increased, suggesting that RBM4 may activate their 

expression either through IRES-mediated events or via an undetermined 

eIF4A-dependent mechanism (Figure 6.1). However, the role for eIF2 

phosphorylation in this response remains to be addressed. Interestingly, 

neither Bcl-2 nor c-myc proteins are expressed at 48 hours following the 

induction of myogenic differentiation. c-myc is an inhibitor of myogenic 

differentiation and is not expressed at this time (Miner & Wold, 1991); (La 

Rocca et al, 1994). Bcl-2, an anti-apoptotic protein, is expressed at early time 

points (prior to myotube formation) but not at later time points (Dominov et al, 

1998). These data suggest that while RBM4 has the potential to activate 

cellular IRESes, it would most likely not up-regulate these mRNA by this 

process. One possible mechanism in regulating RBM4 activity and function 

could be the phosphorylation at ser309 (Lin et al, 2007) following activation of 

p38MAPK signalling (Figure 4.4). During myogenic differentiation, there is an 
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increase of p38MAPK activity before and during the dramatic association of 

eIF4GI and RBM4 at 48 hours (Figure 4.4), at a time when RBM4 undergoes 

ser309 phosphorylation (Lin & Tarn). This phosphorylation may be a key 

switch in activity or function of RBM4 towards stimulating IRES-dependent 

translation by mediating the binding of RBM4 with eIF4GI (Figure 6.1). This 

correlation would need to be verified directly in my C2C12 system using 

phospho-specific ser309 RBM4 antibodies which could not be performed as 

no antibodies where available that worked with endogenous expression levels.  

    Another interesting finding is described in Chapter 5 regards the localisation 

of initiation factors in cells undergoing myogenic differentiation. Both eIF4GI 

and eIF4A show staining at the cell periphery at 48 and 72 hours after 

differentiation (Figures 5.18 and 5.19, respectively). This could potentially be 

to allow translation of proteins required at the cell membrane to facilitate cell 

fusion or communication. Further work would need to be done to fully 

understand the role of RBM4 in myogenic differentiation and to investigate the 

observed localisation of active translation to the cell periphery. 
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