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Abstract 

This thesis is concerned mainly with the interplay between identities involving power se- 

ries (which are called q-series) and combinatorics, in particular the theory of partitions. 
The thesis includes new proofs of some q-series identities and some ideas about the gen- 

erating functions for the rank and crank, a new proof of the triple product identity and a 

combinatorial proof of a q-elliptic identity. 
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Chapter 1 

Introduction 

1.1 Partitions 

1.1.1 Partitions and sets of partitions 
A partition is a sequence of positive integers, for example each of the four sequences 
(4,4,1), (8,5,3,2), (6,6,6) and (1) is a partition. Repetition, as in the first and third 

of these four sequences, is allowed. What is not permitted is for the sequence to be 
increasing, for instance (1,4,4) is not a partition, nor is (4,1,4). The Greek letter A is 

used to denote a partition, if A= (4,4,1) then A=4, A2 =4 and A3 =1. 
Thus a partition A is defined as being a finite, nonincreasing sequence of positive 

integers: A= (A1, A2, .., Ak), k is therefore (the letter used to denote) the number of parts, 
which can also be written as k= #(A), some authors use BAI for the number of parts. 
The partition A is said to be composed of, or consist of, the parts, or entries, Ai (where 
1<i< k). The weight of a partition, wt(A), is defined to be the sum of the parts of A, 
some authors use IIAII for the weight, or we may say simply "a partition of n" instead of 
"a partition of weight n" (this may also be written as A I- n). For example A= (4,4,1) 
is a partition of 9 having three parts. The empty partition, 0=(. ), has weight zero and is 
composed of zero parts. 
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The set of all partitions, P, occurs frequently in the thesis and so do certain subsets of 
it. Of particular interest are V. De, D,, and 0, where 

D {A EP: Ai > Ai+lthe set of partitions into distinct parts, 
De {A ED #(A) 0 mod 2}, the set of partitions into an even number of 

distinct parts, 
Do := {A EV: #(A) 1 mod 2}, the set of partitions into an odd number of 

distinct parts, 
d) := {a EP: Ai -1 mod 2}, the set of partitions into odd parts. 
The empty partition is an element of each of the sets P, D, De and 0 but is not in Do. 
If H and H' are two sets of partitions and 0: H -+ H' then the map 0 is said to 

be weight preserving if wt(q5(A)) = wt(A), for all AEH. In this thesis any bijection 
between two sets of partitions is assumed to be weight preserving, unless it is stated 
otherwise. 

Whenever H, say, is a set of partitions and there are m sets such that H is the disjoint 

union of the Hi then H= H1 U H2 U ... U H�, will be called a decomposition of H 
(and where the union is not disjoint the word decomposition will not be used). Thus, for 

example, the set of partitions into distinct parts can be decomposed into D= De U Do. 

For any HCP, the number of partitions in H of weight n will be written as p(H, n). 
For n¢N, the convention is p(H, n) :=0 (the set N is understood to include 0, also 
used is the notation N* :=N\ {0}). The total number of partitions of weight n is written 
simply as p(n), or p-1 (n), as is explained in section 1.2.3. The function p(n) is called the 

partition function. 
The hat sign, :, is used to indicate that an entry has been omitted. 

Thus (5,5,3,3,2) = (5,5,3,2), (7) = 0, (Al) A2, 
..., 

ýj, 
..., 

A) is A with ., omitted and 
(A1, A2) 

..., £i, :., ýj, 
..., 

A, ) is A with parts Ai to Aj omitted (which could, of course, be 

written as (al, A2, 
"""I Ai-1) A +1, """, )k), but the hat is used to emphasise the omission). 

1.1.2 The graph of a partition 
Any nonempty partition can be visualised as the set of rows of coordinates in the bot- 
tom right quadrant of the plane where the ith row contains ) entries. This is called the 

graphical representation or the Ferrers graph (or simply the graph), Ga, of the partition. 
Before describing this explicitly, an example will help to illustrate the idea: If A= (4,4,1) 

then 9a is 

0o00 

0e00 

0 

(in order to be completely unambiguous it would be necessary to distinguish between the 
set {(1, -1), (2) -1), (3, -1), (4, -1), (1, -2), (2, -2), (3, -2), (4, -2), (1, -3)} and the 
diagram above, but it is clear what is happening). 
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Now, given a nonempty partition A= (Al, A2, 
..., 

Ak), for each i in the range 
0<i <_ Al let SA(i) be the maximum 1 for which a, -i>0. The formal definition is that 

the graph is the set of dots with integer coordinates (i, j) in the plane such that (i, j) E ýa 

if and only if 0<i< Al and -c5a (i) <j<0. 

The dual, or conjugate, of a partition is the partition whose graph is the one 

obtained by rotating the graph of the original partition around the falling diagonal (the 

set {(1) -1), (2, -2), ... 
}). Visually, the dual is obtained by interchanging each row with 

its corresponding column in 9a. In terms of the set, ga" :_{ (i, -j) : (j, -i) E 9a}. The 

dual of A will be denoted by A'. In the case A= (4,4,1) the dual is A' = (3,2,2,2). It 

follows immediately that the dual induces a weight preserving involution on P, 

wt(A') = wt(A) and A" =A for any AEP. If A is such that A' =A then A is said to 
be a self-dual, or self-conjugate, partition. Thus, for example, (4,4,1) is not self-dual but 

(4,1,1,1)is. 

1.2 Power Series 

1.2.1 Generating functions and notation 
Given a sequence {a�}, it is often desirable to find an expression, F(q), whose coefficients 

are the elements of the sequence, i. e. F(q) = a°+a, q+... +a; q' +.... When this happens 

the q-series F(q) is said to be the generating function for the sequence {a, 
'}. For example, 

suppose a� =1 whenever 0<n< 100 and a,, =0 for all other n. The generating for 

this sequence is (1 - q10°)/(1- q). A power series in the parameter q is called a q-series. 
The following standard notation will be used frequently throughout: 
For z and qEC, define 

n 
(z; q)n := f[(1 

- zq---1), nE Iii" 

and 
00 

(z; q)... : =11(1 - zý-1) 
i=l 

(the condition lql <1 is assumed in a nonterminating power series, this ensures conver- 
gence). In this thesis, the subscript n is assumed to be a nonnegative integer, which need 
not actually be the case. 
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The identity 

(1.1) (z; q)n = ((q"q4). 

clearly holds for any nE N*, and leads by extension to a definition of (z; q),, for any 
real n. In particular, (z; q)o = 1. Form E Z, the sequence p,.,, (n) is defined by 

, pm(n)g' := (q; q)«. (1.2) 
nEZ 

It follows that, for any m, pm(n) =0 whenever n¢N (in fact the subscript m need 
not even be an integer, but in practice it always is). The product 1/(q; q)a, is sometimes 
written as P(q) or simply as P (which should not be confused with the set P). 

The square bracket notation is defined, when z 0, as 

[z; q] := (z; q)ao(z 14; 4)00. 

It is elementary, provided that z#0, that 

-z 1 [z; q] (1.3) 

and that 

[zq; 4] = -z-1[z; Q]. (1.4) 

Now, an expression in z and q (such as (z; q),,, for some given n) can be seen as a power 
series in q, whose coefficients are expressions in z, for example, 

(z; q)3 = (1 - z) + (-z + z2)q + (-z -}- z2)g2 -I- (z2 - z3)g3 

and it can also be seen as a power series in z whose coefficients are expressions in q, 

(z; (1)3 =1- (1+q+g2)z+(q+q2+q3)z2-g3z3. 

This suggests it might prove helpful to find a general expression for (z; q)n as a power 
series in z, so the question is, what is the coefficient of z= in (z; q)n? With this in mind it 
is now helpful to introduce the q-binomial coefficients. 
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1.2.2 The q-binomial coefficients 
The q-binomial coefficients are defined as 

[i 
= 

(q; q)n (1.5) 
q 

(q; 4)i(q; 4)n-i 

The subscript q can be dropped safely from the expression on the left, except in chapter 3 

where the subscript is q2. The q-binomial coefficients are introduced at this stage because 
they appear in the expression for (z; q),,, but before addressing that a few properties of 
the q-binomial coefficients are worth mentioning: Clearly, 

[n] 

_ 
(q; q)n 

IL Jq (q; q)i (q; q)n-i 

(q; 9')n-i(qn i+l; 9')i 

Now, it can easily be shown that 

(q; q)=(4; q),, -i [n] 
_ 

(4-=+1; 4)=i 

LJ (4; q)1 
[n 

i] 

[n 

Z 
1]+qn_=[2- 

1]. 

(1.6) 

(1.7) 

This is (3.3.3) in [2], and it follows from this identity that, when i and n are both nonnega- 
tive integers and 0 <_ i<n, [_] is in fact a polynomial, of degree ni - P. The q-binomial 
coefficients are also called Gaussian polynomials. Note that the identity [_ [n" 

i] 
follows from the definition (1.5) of the q-binomial coefficients. 

Closely related to the role the q-binomial coefficients play in the expansions for (z; q) n 
and (z; q); 1, that is in identities (1.9) and (1.10) below, is the fact that they are the gen- 
erating functions for partitions where both the largest part and the number of parts are 
forbidden to exceed a given pair of nonnegative integer values, a and b, say. This is dealt 

with in the following 
Lemma: 
Let U(a, b) := {A : al < a, #(A) < b}, thus 1. ß(a, b) is the set of all partitions whose 

graph lies inside a rectangle of length a and height b. Then 

L gwt(A) _ 
Ia + bl 

. 
AEU(a, b) aJ 

(1.8) 

Briefly, the proof involves the inductive step that firstly [°+ä-1] should be the generating 
function for partitions having less than b parts, none of which exceed a (i. e. partitions in 
U(a, b- 1)), and secondly qb [ °4 6ý1] should be the generating function for partitions into 

precisely b parts, no part exceeding a (clearly (1.8) holds whenever either a or b is 0). 
This is explained in (3.4.1. ) in [2] and also in [16]. 
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It follows from (1.8) that the q-binomial coefficients are symmetric, in the sense that 
if [_]= a(O) + a(1)q + ... + a(ni - i2)q"h-12 then a(k) = a(ni - i2 - k). It has also 
been shown, in [16], that the they are unimodal, which is to say that if k< ! L' ' then 

a(k - 1) < a(k). 
Furthermore, 

Qm[Z] 
_\ 

ji 
) 

the familiar binomial coefficient, as maybe seen by applying l'Hopital's rule to (1.6). 
The following identity, due to Euler, states that the coefficient of zi in (z; q)n is 

(-1)z [_] q(=a-=)/2, 
n 

(z; q)n = 
E(-1)'z= [n] 

q(i2_i)/2 (1.9) 

=_o 
i 

and the coefficient of z= in the reciprocal is given by a result of Rothe, 

10 n+i-1 (1.10) 
(z; 4)n Li. -o 

For a proof of the above two identities, see Theorem 3.3 in [2], or see [3] where they are 
derived from the q-binomial theorem. 

Now, since (q; q), a can be defined for any real n, it follows that [_] can be defined 
for i and n any real numbers. In fact the sums on the right in (1.9) and (1.10) can be 

replaced by sums with i ranging over all integers, for if n is a nonnegative integer and 
iEZ\ {0,1, 

..., n} then a limiting argument applied to (1.5) and (1.1) gives zl=0 

(which is to be expected, as (i) =0 for all such i). 
The limiting case as q -4 1 in identity (1.9) is the familiar expansion for (1 - z)" and 

likewise, q -4 1 in identity (1.10) gives the expansion for (1 - z)-n. This illustrates a 
general principle, the limit as q -- 1 in any identity involving q-binomial coefficients is 

an identity involving ordinary binomial coefficients. 

1.2.3 Partitions and q-series 
It is now possible to give an outline of the connection between q-series and partitions. For 
instance, if H is the set {0, (1), (1,1), 

... 
} CP of partitions with each part equal to 1 then 

q =1+q+g2+q3+... 1- 

=1+ ql + q1+1 + g1+1-F-1 + 
... 

1: q40'), 
AEH 

What this means is that (1 - q)-1 is the generating function for p(H, n), 

E p(H, n)gn 
n>O 
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More generally, if H were to be the set of all partitions composed of elements from a 
given subset {al, a2 i ..., all C N*, then it would follow that 

ý1 
qýKa) 

i=1 
1 

AEH 

which is to say that 

ý 
p(H, n)qn = 

T((1 
- q°ý, )-1 

n>O 
li=1 

This includes the case H is the whole of P (as can be seen by taking d= oo and, for 

example, ai = i) so 
00 1-E 

gwt(A) 
i_1 

ý1 
- Q: ) 

AEP 

which is to say that 
Ep(n)q' 

= (4; 9)' . (1.11) 

n>O 
Putting m= -1 in (1.2) gives p(n) = p_1(n). In fact, pm(n) is the number of ordered 
m-tuples of partitions, 

(4', 4)m,, AE 
In particular, if m= -2 then p_2(n) is the number of ordered pairs of partitions. The 
behaviour of p_2 (n), in particular some of its congruences (and an explanation for these 

congruences, namely the birank) is the subject of the second half of chapter 5. 
Some subsets of P have already been defined. Concerning these, it is not hard to show 

that 
00 1E 

wt(A) II (1 g21-1) =q i=1 AEO 

which is to say that 
(1.12) P(O, n)4" = (q; q2)- 00 

n>O 
and 

00 
T(ý1 + qi) _ gwt(a) 
i1=11 AED 

which is to say that 
Ep(D, n)4" = (-4; 4')00 (1.13) 
n>O 

and finally, pl (n) = p(D., n) - p(D0, n), or equivalently, 

(p(D,, n) - P(Do, n))q" = (q; q) . (1.14) 
n>O 

So (q; q), maybe called, with a slight abuse of terminology, the generating function for 
partitions into distinct parts where those having an odd number of parts are counted neg- 
atively. 
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1.3 A bit of history 

1.3.1 Elementary Identities 

In the mid eighteenth cenury Euler observed that 
00 

(1-qz)=1-q-g2+q5+q7-q12-q15+.... 

The product fl j° 
1(1- q=) is sometimes called the Euler product (the notation (q; q),, is a 

twentieth century development). 
He went on to demonstrate that 

00 

i=1 MEZ 

(1.15) 

This is called the pentagonal number theorem, because a number n is said to be pentagonal 
if and only if n=m 32+1 for some integer m. Euler was probably aware that (q; q)oo is 

the generating function for p(De, n) - p(D0, n) but there is no evidence to suggest that he 

considered looking for a combinatorial proof that 

(-1)m' if n=m 
3m-}-1 

p(D., n) - p(D0, n) =2 (1.16) 
0 if n is not pentagonal 

and Franklin was the first to find one (Legendre apparently suggested that there might be a 

combinatorial proof, though he did not give a proof himself). Franklin's proof is described 
in section 2.1. Briefly though, Franklin's proof involves decomposing V into the union 
of three sets. Between the first two sets there exists a bijection (or at least a bijection can 
be defined) and the third set contains no partitions of weight n unless n=m 32+1 for 

some integer m, whence it contains exactly one partition of weight n (which has an even 
number of parts precisely when m is even, as will be explained). 

Franklin's proof, as outlined above, involves pairing off elements of a given set and 
counting those that remain is an instance of a proof by involution. In chapter 4a new proof 
of the Jacobi triple product identity is presented. This proof also involves an involution. 
The triple product identity states 

f2 [z; 
q](q; q),,,, = 

57(-l)neq 
2n 

nEZ 

(1.17) 

This is not to say that involutions are the only approach to q-series identities. For 

example given certain identities it is possible to find a bijection from the set whose gen- 
erating function is the expression on the left to the set with generating function the set on 
the right, as opposed to an involution which `stays on one side of the equation'. 

10 



As an illustration of this, consider 

so 

00 
(-q; q)00 = ý(1 + q`) 

t-i 

00(1_gai) 

l_ll (1- q=) 
°° (1- q2, ) 

(1 - qai-i)(1 - q21) 

00 1 
-ýý1_g2i-1) 

(-4; Q)00 -1 (4'3 4'2)00 
(1.18) 

Thus by (1.13) and (1.12), p(D, n) = p(O, n). This suggests that there might a weight 
preserving bijection between the set of partitions into distinct parts and the set of partitions 
into odd parts. In fact, there is more than one. One of these, the bijection that was found 

by Sylvester, is described in section 2.2 and is related to the bijection in section 3.1. 

Now, having established that p(D, n) = p(O, n), it is clear that p(O, n) -0 mod 2 

if and only if n is not a pentagonal number (by virtue of (1.16), and the obvious fact that 

p(D«, n) - p(D0, n) - p(D, n) mod 2). Hence it seems reasonable to ask if the set 0 can 
be decomposed into two sets in such a way as to ensure that the number of elements of 
O (i. e. partitions, into odd parts) of weight n in one of the sets is the same as the number 

of elements of weight n in the other set, unless n is a pentagonal number (just as V can 
be decomposed into two such sets, De and Do, which is where the identity (1.16) comes 
from). 

The question is then, what property of partitions in 0 is it that `almost half' of 
them have that could give rise to an involution on 0? The Franklin involution reverses 
mod 2 the parity of the number of parts of a partition in D. As, clearly, the first part of 
any nontrivial partition in 0 has first part congruent to 1 mod 2, the proposed involution 

on 0 clearly will not have this effect. The Franklin involution on V also has the effect 
of reversing the parity mod 2 of the number of parts of any partition in D on which it 

acts. This cannot be the case for the involution on 0, as for any partition aE0, 

the number of parts in the partition has the same parity as the weight of the partition: 
#(A) = wt(A) mod 2. 

Instead it transpires that the place to look is the residue of the first part, of a partition 
in 0, mod 4. This to say that an involution on 0 is presented that has the effect of taking 
partitions with Al -1 mod 4 to those with al -3 mod 4, and vice versa. This is done 
in section 3.1. 
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1.3.2 Congruences in the Euler product 
In 1918 the Indian mathematican Ramanujan wrote a letter to Hardy. The letter included, 

amongst other things, the following congruences in the partition function which he (Ra- 

manujan) had conjectured, 

p(5n + 4) =0 mod 5, (1.19) 

p(7n + 5) =0 mod 7, (1.20) 

p(lln + 6) -0 mod 11, (1.21) 

of which he later gave proofs, which can be found in [29]. 
The first two of these are entirely elementary, the following is a sketch of a proof of 

(1.19): Dividing both sides of the triple product identity (1.17) by 1-z gives 

[Z; 4] (4ý q')00 =11z E(-1)nzn 

nEZ 

1-z (z 1-z2) 
lz 

2-z3ý 
q+3 

(z 3-z4) 
6+ 

1-z 1-z 1-z g 1-z 
which is equal to 

1-(z+1+z-1)q+(z2+z-{ i+Z-l+z-2)q3-(z3+Z-2+Z+1+Zl+z-2+z 3)q6+... 

and it follows that 

(z4; q)oo(z 1q; 4)ß(q; q)oo = E(-1)"(z n+ zn-1 + ... + z-n)q ný2 n (1.22) 
n>0 

and then setting z=1 in (1.22) gives, 

(q; q) 0_ ý(-1)(2n + 1)qn a (1.23) 

n>o 

Two power series, ao + alq + a2q 2 +... and b0 + blq + b2q2 +..., are said to be congruent 
modulo r if and only if a= = b= mod r for all i. 

Now for any prime r, (1 - q)'' =1- qr mod r by the binomial theorem, so for 
i=1,2,... ' 

(1 - qz)r _ (1 - q=r) mod r. Taking products over all i in the positive 
integers gives 

r is prime = (q; q) ,= (q''; q")... mod r. (1.24) 
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The generating function for p(n), 

>p(r )qn =1 

n>O 
(q; q),, 

together with (1.24) gives, 

Ep(n)gn _1 
(4; 4)00 

mod 5 
n>0 

(qi Q)00 (45' X5)00 

so 

p(n)q" _ 
(4'; 4)ö0(4; q)ý. 

mod 5 
n>0 (q5; q5)00 

and it follows, by (1.23) and (1.15), that 

- 
(ao(g5) + gai(q5)) (/3o(95) + q, 81 (q5) + g2#2(45)) 

p(n)qn = 
n>0 

(Q5i q5) 
mod 5 

where ao, al, 13o, /. 31 and Q2 are five particular power series (which can of course be deter- 

mined explicitly, but it's not necessary to actually do this). The point is that if t(n), say, 
is the coefficient in the above expression then clearly t(5n + 4) -0 mod 5. 

Not only did Ramanujan conjecture the congruences (1.19), (1.20) and (1.21), he also 
made conjectures for higher powers of 5,7 and 11. He conjectured that 

x=5or 11= p(n)=0mod x', if 24n=1mod x'. (1.25) 

Ramanujan was correct to conjecture (1.25). In fact he conjectured that (1.25) was true 
for x=5,7 and 11, which is not actually the case. Chowla noticed that whilst p(243) is 
divisible by 49, it is not divisible by 343 (so (1.25) fails for m=3, if x= 7). 

The correct statement for powers of 7 is 

p(n) =0 mod 7Lm/21+1, if 24n -1 mod 7"`. (1.26) 

The brackets here denote the floor function (the greatest integer no more than m/2), i. e. 
Lm/2i is m/2 if m is even or (m - 1)/2 if m is odd. 

The corrected version of (1.25) was proved by Atkin, [4]. 
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Chapter 2 

Franklin and Sylvester 

2.1 The Franklin bijection 

This section outlines Franklin's combinatorial proof of (1.16) 

(-1)m if n=m 
3m+1 

2 p De, n) - p(Do, n) =0 if n is not pentagonal. 

Franklin's approach was to construct a function F defined on most partitions into distinct 

parts that satisfies the following conditions 

F is weight preserving: wt(F(A)) = wt(A), 

F reverses the parity of the number of parts: #(F(A)) #(A) mod 2, 

F is an involution: F(F(A)) = A. 

The reason for the word most should become clear shortly. 
It is necessary to introduce some more (standard) notation before outlining his idea, 

which appears in 14.5 in [1], and as theorem 1.6 in [2], as theorem 19.5 in [6], in [7], 
in chapter III of [8], as 19.10 in [20], as theorem 15.5 in [25], as 256 in [26], as § 100 in 
[27], in chapter 5 in [31] and in [12]. For a partition into distinct parts, the slope, o (A) or 
simply a, of the partition is the maximum value of i for which Al- - Aj =i-1. Also, for 

a partition into distinct parts, s(A), or simply s, is the smallest part of the partition. The 

o, and s here defined (on partitions into distinct parts) are analogous to (but not the same 
as) the E and S defined (on partitions into odd parts) in section 3.2 and to the u and s 
defined (on partitions into nested parts) in subsection 3.4.2. The sets A and B are defined, 

provisionally at this stage, as 

A= {X : Q(A) <3 (A)} 
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and 
B={A: a(A)>s(a}}. 

It is now possible to tentatively define F: D -4 V as the map that removes the slope and 

places it as the smallest part if AEA, or if AEB then F does the opposite, removes the 

smallest part and adds 1 to the appropriate number of entries at the start, 

ý, (ý) 
._ 

(al - 1, ..., aQ -1, aQ+l, ... ý ýºk-iý ýk, d) if u(A) < s(A) 

(A, + 1, ..., As + 1, iºß+li ... ' Ak-1) ak) if UM > s(A) 
where the hat, :, indicates omission. 

Clearly F is weight preserving, and F(A) has either one part more than A or one part 
less. Furthermore F reverses the inequality o , (A) < s(A) (meaning a(A) < s(A) if and 

only if a(F(A)) > s(F(A))) and from this it follows that F(F(A)) = A. Hence F satisfies 
the above conditions. But there are some `exceptional' partitions on which it is impossible 

to define F, it is necessary to establish precisely which partitions these are. 
For any nonempty partition in D, the inequality a(A) < #(A) will hold, 

since the slope of such a partition cannot exceed the number of parts in the 

partition. If A= (Al) A2, 
..., 

Ak) is such that a(A) < #(A), i. e. there exists some i such 

that 1<i<k for which there is a strict inequality A< A1_1 - 1, then there is no 

problem in defining F(A) (although F(A) itself might be a partition having slope equal to 

number of parts). Thus it is only necessary to consider A= (Ar, A2, ..., 
Ak) EV for which 

o(A) = #(A), i. e. partitions of the form A= (A1, At - 1, Al - 2,..., Al -k+ 1). Any 

such partition satisfies either k< al - k, k= Al - k, k= Al -k+1 or k> Al -k+1. 
These four cases are now considered: 

Case 1: a(A) = #(A), k< Al - k: In this case A= (Al, Al - 1, ..., 
al -k+ 1), and 

so s(A) = A1- k+1 and a(A) = k. Thus, since, \1- k>k, s(A) >o (A) and so AEA. 

Hence F(A) = (A1 - 1, al - 2, ..., Al - k, k) is well defined, since al -k>k ensures 

that the penultimate entry exceeds the last entry (and k, being the number of parts, is a 

positive integer implies that the last entry in F(A) is positive). 
Case 2: o , (A) = #(A), k= Al - k: As in case 1, A= (A,, Al - 1, ..., 

Al -k+ 1), 

and so s(A) = Al -k+1 and o, (A) = k. Thus, since Al -k=k and s(A) > Q(A), 
if F(A) were indeed defined, then A would be an element of A. This would give 
F(A) = (A1 - 1, \1 - 2, ..., Al - k, k) but, since Al -k=k, F(A) is not permitted 

on account of the last two entries being equal. Hence, in this case, F(A) is not defined. 

Since these partitions are those having length k and \1 = 2k, they are of the form 
A= (2k, 2k - 1, ..., 

k+ 1). Hence, if X is the set of partitions in V for which F is not 
defined then 0, (2), (4,3), (6,5,4), 

... E X. Note that this illustrates why the set A was 
initally defined only provisionally, there are some elements AEV for which a(A) < s(A) 
but for which the map A -p F(A) can not be defined. Case 3 now demonstrates that the 

same is true for some of the partitions that should, it seems at first, belong in B. 
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Case 3: a (A) _ #(A), k= al -k+1: Again A= (al, Al -1, ..., A1- k+ 1), and so 

s(A) = Al -k+1 and a(A) = k. Since A, -k+1=k, it follows that s(A) =a (A) and 

so A should be an element of B, provided that F(A) is indeed defined. This would imply 

that A has length k and so F(A) should have length k-1, i. e. F(A) = (A1 + 1, al,, \1 - 
I, -, 

Al-k+2). Now wt(A) = Al+(A1-1)+... +(Al -k+l) = kA1- (2) and similarly 

wt(F(A)) = (k - 1)A1 + 1- (k22). But this gives wt(A) - wt(F(A)) = Al - 2k +2=1 
(since A= 2k - 1) and so wt(F(A)) ; wt(\). Hence for these such partitions, F 

is not defined. These partitions have length k and Al = 2k - 1, so are of the form 

)A = (2k -1,2k - 2, ..., 
k). Hence (1), (3,2), (5,4,3), 

... C X. 

Case 4: a(A) = #(A), k> A1- k+1: Again A= (A,, Al -1, ..., Al -k+ 1), and so 
s(A) = Ai -k+1 and v(A) = k. Now A1- k+1<k and so s(A) < v(A), hence ACB. 
There is no problem here, as F(A) = (A1+1, al, al-1, ..., ai-s+2,. 11-s, ..., al-k+2). 

Thus no problems arise from cases 1 and 4, from cases 2 and 3 it is seen that the set 
of exceptional partitions on which F is not defined is X= {O, (1), (2), (3,2), (4,3),... 1. 
Clearly V is the disjoint union of the set of nonexceptional partitions and X, the set of 
exceptional partitions, and 

x={(2k, 2k-1,..., k+l): k>o}u{(2k+1,2k-1,..., k+l) : k>o}. 
The set X can be split into Xe and Xo where Xe := De nX and Xo := Do fl X. Note 

that Xe = Xe U Xe and Xe = Xö U Xö where 

Xe = {(4k, 4k-1,..., 2k+1) : k> 0}, 

Xe = {(4k+3,4k+2,..., 2k+2) :k> 0}, 

Xi = {(4k + 2,4k + 1, ..., 2k + 2) :k> 0}, 

X2 = {(4k + 1,4k,..., 2k + 1) :k> 0}. 

It follows that 
E gwt(A) =>q 6k2+k (2.1) 

AEXj k>O 

(because 4k + 4k -1+... + 2k +1= 6k2 + k) and 

E gwt(a) =E g6k2+11k+51 (2.2) 

AEXý2 k>O 

L 
`'` 

gwt(A) =Z g6ka-} 7k-}-2 
7 

(2.3) 

XEXö k>O 

gwt(J1) _ 
`ý` 

g6k215k+ 1 (2.4) 
AEXX kk>O 
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The sets A and B having been provisionally defined above can now be properly de- 

fined, 
A: = JA : Q(a) < S(A): Ae X} 

and 
B := JA: Q(A) > s(A) :A¢ X}. 

Having thus defined A and B, it is correct to say that F: A -4 B is a bijection. 
It might seem unfortunate that establishing which set, A or B, a particular nonex- 

ceptional partition is an element of is not the same as establishing whether the number 
of parts in that partition is even or odd. Given that the motivation for the above was to 

prove (1.16), and yet what has actually been accomplished is the construction of a map 
that alters the relationship between the slope and the smallest part of the partition, what 
was the point? Looking at the map A -+ F(. \) again, however, two observations can be 

made: Firstly it is clear that F reverses the parity of the first part of the partition, because 
the first part is either increased or decreased by 1, and secondly F reverses the paritiy of 
the number of parts, for again this number is either one more or one less in F(A) than 
in the original A. The first of these observations, it will be shown leads to identity (2.5) 
below, but before that the train of thought in the second observation needs to be followed 
through. 

The set A can be written as the disjoint union of AO and Al where 

A;: =JA EA: #(A)=imod 2} 

and similarly for B. Just as F: A -+ B is a bijection, so too is F: (AoUBo) -+ (AZUBI). 

As has been noted, (-1)#(al (-1)#F(a) and since \E Ao U Bo = +1 

and, \ E Al U Bl = (-i)#ýal = -1, it follows that to determine p(D,, n) - p(D0, n) for 

some given n it suffices to consider only those partitions in V that are also in X (because 

any nonexceptional partition, A, can be paired off with F(A) which has the same weight 
and opposite sign). Thus 

ý(-1)#(a)gwt(a) _> (_l)#(A)gwt(a)+ (_1ý#(a)gwt(a)+ý(_1ý#(a)gwt(a) 
AED AEAoUBo )EAiUBi XEX 

so 

ý(-1)#(a)gwt(ý) 
_ gWt(a) - 

'ý gwt(a) + E'(-1)#(A)qwt(A) 
AED AEAOUBo aEAIUBI AEX 

and the expression reduces to a sum over X. Now the sum over X is equal to the (sum of 
the) sums over the four subsets, 

>(-1)#(a)gwt(') 
=j gwt(A) +E et(a) - gwt(A) -E gwt(A) 

AEX AEXX XEX. 2 AEXp AEXö 

which, from (2.1), (2.2), (2.3) and (2.4) is equal to 1-q- q2 + q5 + .... This is the 
combinatorial proof of (1.16). 
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Now, the first observation about F was that it reverses the parity of the first part. This 

means that, as well as thinking of F as a map from the set of nonexceptional partitions (in 
V) having an even number of parts to those having an odd number of parts, it is equally 
valid to consider it as a map from the set of nonexceptional partitions having first part 
even to those having first part odd. So if D. denotes the set of partitions in D having first 

part even and D. the set of such partitions with first part odd, then 

ýý-1}aigwt(a) _ -1) gwt(a) + 
AED AEDý\X AEDQ\X 

so 

ý(-1)algwt(a) - gwt(a) - 
JýED ýEDe\X \EV. \X 

and, similarly to the above case, this becomes 

i-1)Jlgwt()) + ý(-1))lgwt(A) 
\EX 

gwt(A) + 1: (_l)a1Q+vt(A) 
AEX 

q"'t(, ') -E gwt(A) + q+Vt(a) -> gwa(a) =1-q+ q2 - q5 + ... 
AEXl AEX. 2 AEXö AEXö 

hence 
1 +1 ifn=3m+1 andm>0 

p (D' 
, n) - p(D', n) _ -1 if n= "' 32 +1 and m<0 (2.5) 

0 if n is not pentagonal 

2.1.1 The generating function for p(D., n) - p(D., n) 
Let D(k) be the set of partitions into distinct parts with first part k. The generating 
function for p(D(k), n) is 

E p(D(k), n) qn = qk(1 + qk-1) + qk-2)... (1 + q) 
n>O 

= qk(-q; q)k-I 

and summing over kE N'` gives 

>p(D, n)4n =1+E 4k(-q; Q')k-1 
n>O k>O 

(so the sum on the left is equal to (-q; q),,., the generating function for p(D, n), see (1.13) 
above). Similarly, 

E(p(V, n) - p(V, n))qn =1 + E(-1)kgk(-q; 4)k-i (2.6) 
n>O k>O 

which, by (2.5) is equal to 1-q+ q2 - q5 + .... 
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2.2 Sylvester's bijection 

The equality between the generating functions for the sequences p(D, n) and p(O, n) 
is identity (1.18). The formula for the difference between the number of partitions in 
0 with first part congruent to 1 mod 4 and those with first part congruent to 3 mod 4, 

p(Ol, n) - p(O3i n), will be given later (3.8). But first a combinatorial proof that 

p(D, n) = p(O, n) is presented. 
Sylvester constructed a weight preserving bijection from the set of partitions into odd 

parts to the set of partitions into distinct parts. The bijection, T: D -+ 0, described here 
is the inverse of Sylvester's. 

A good way to illustrate the nature of the map T is through an example of how it acts 

on the graph of a given partition. Let A= (19,18,17,16,15,12,9,5,2). Below is the 

graph of A, or at least what would be the graph if the letters, which are used here because 

they make the description of T slightly clearer, were replaced by dots. 

a a w w w b b b b x x x c c c y d z e 

a a w w w b b b b x x x c c c y d z 

a a w w w b b b b x x x c c c y d 

a a w w w b b b b x x x c c c y 

a a w w w b b 6 6 x x x c c c 

a a w w w b b b b x x x 

a a w w w b b b b 

a a w w w 

a a. 

So instead of dots the columns of odd height are composed of letters from the start of 
the alphabet (each dot in the first such column is replaced by an a, each dot in the second 
such column is replaced by a b, and so on). The columns of even height consist of letters 
from the end of the alphabet, z for dots in the columns (or column in this case) of height 

one, y for each dot in the columns of height three and so on. 

Now, the `double block' of 9 as is transposed to give two columns of as, both 

of length 9. This can be written as (2,91a) -3 (9,2f a). Likewise (4,71b) - (7,41b), 

(3,51c) -+ (5,31c), (1,31d) -} (3,11d) and (1, lie) -* (1, Ile). The block of 24 ws is 

halved in height and doubled in length, (3,81w) -3 (6,41w), similarly (3,61x) -+ (6,31x), 

(1,41y) -+ (2,21y) and (1,21z) -+ (2,11z). The resulting blocks are stacked in such a 

way that the left most column has the e at the top, to its right are two columns, both with 
ds at the top and so on to the last pair of columns with as at the top (see below). Also the 
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ws, xs, ys and zs are aligned so to produce one row starting with the letter z at its left, the 

next row starts with y, the next row after this starts with x and the last one starts with w, 

as shown below, 

ezzyyxxxxxxwwwwww 

dddyyxxxxxxwwwwww 

cccccxxxxxxwwwwww 

ccccc wwwwww 
ccccc 

bbbbbbb 

bbbbbbb 

bbbbbbb 

bbbbbab 

aaaaaaaaa 

aaaaaaaaa 

Now, raise the column with e at the top to the point (1, -1) 
and slide the z column along, 

so it starts at (1, -2). Then raise the next two columns so the two top ds occupy the points 
(2, -2) and (3, -2) and slide the next row in so the first y is at (4, -2). Then raise the 
fourth and fifth columns so the two top cs in these colums are at (4, -3) and (5, -3) and 
slide the row starting with x along so that the first x is at (6, -3). Then raise the next 
two columns so that the two top bs occupy (6, -4) and (7, -4) and slide the row of six 
ws along so the leftmost of these is at (8, -4) and finally insert the remaining four as as 
shown, 

e z z y y x x x x x x w w w w w w 
d d d y y x x x x x x w w w w w w 
c c c c c x x x x x x w w w w w w 
c c c c c b b w w w w w w 
c c c c c b b a a 
b b b b b b b a a 
b b b b b b b 
b b b b b a a 
b b b b b a a 
a a a a a 
a a a a a 

This diagram (viewed as a collection of dots, not letters) is the graph of T(A), 
so T(A) = (17,17,17,13,9,9,7,7,7,5,5). 
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The map T has some interesting properties. In the above example, the first part of 
T (A) is 17 and T (A) has 11 parts. Now (17 - 1)/2 + 11 = 19, which is A1, the first 

part of the original partition. This is true in general. It is also true that the number of 
sequences of consecutive integers in A is the number of distinct odd numbers in T(A). 

This is an exercise in chapter 7 of [17], which also defines the bijection of Sylvester. An 
immediate consequence is that the number of partitions of n into odd parts (repetition 

allowed), where there are k distinct parts is the same as the number of partitions of n 
into distinct parts where the are k sequences of consecutive numbers, a proof based on 

generating functions is given in [2]. As an aside, it is worth noting that the partitions for 

which T (A) =A are those of the form (2n - 1,2n - 3,..., 3,1). 
There is another weight preserving bijection from V to 0. It is defined by breaking 

each even part, n= alb of A, into 2b copies of a (where a is the largest odd divisor of 

n). Thus (19,18,17,16,15,12,9,5,2) -+ (19,92 17,116,15,34,9,5,12) = (19,17,15,93,5,34,118), 

where the powers denote multiplicities. 
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Chapter 3 

A combinatorial approach to some 

partition identities 

3.1 The three identities 

The following identities are to be proved in this chapter. The identities are not new, but 

the proofs given here are. 

J: 
n 

m 9m-1 
(1 - qm), (3.1) (-1)n 

-q2 
=1-q2 2. q2) 

n>O n m>0 

qn 
=1+q (-1)mg2m(3m+2) (1 + g4m+2), (3.2) 

n>0 
(-qi q2 )n 

m>0 

E qn(q; q2 )n =E (-1)mgm(3m+2) (1 + q2m+l). (3.3) 
n>0 m>0 

The proofs presented here involve considering partitions into odd parts and partitions into 
distinct parts. 

Identity (3.1) is equivalent to identity (23.2) in [11], due to the fact that 

In-1 1ý2n-L qm 

n>0 \q; q2)n 
m, >0 `-q2+ q2)m . 

This is so because each side of the above equation is the generating function for p(Oi, n)- 
p(O3i n) (see (3.8) below). Identity (3.2) is equivalent to (26.96) and (27.97) in [11]. 

The approach taken here is different from that of Fine. Whereas he uses the Hyper- 

geometric series to prove (3.1) and (3.2) (and lots more besides), here all that is used are 
combinatorial arguments (adapting the Franklin bijection) and q-binomial coefficients. 
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3.2 A combinatorial proof of a result of Fine 

There is, as indicated earlier, an expression similar to (1.16) but involving partitions into 

odd parts. It was found by Fine using hypergeometric series, see 23.7 in [11]. In this 

section a weight preserving involution, G, is constructed that acts on most of the partitions 
into odd parts. It also has the property that (on all the partitions on which it is defined) 

it reverses the residue mod 4 of the first part of the partition (this is the raison d'etre 

of the map G). Just as the Franklin bijection depends on whether the partition satisfies 

u(A) < s(A) or not, it is necessary to know if a certain inequality holds (for a given 

partition) in order to determine the action of G on that partition. In order to discuss the 

terms in this inequality it is necessary to introduce some new notation. 
For Aa given partition (into odd parts), let t be such that at > 2t -1 but At+l < 2t -1, 

e(A) := At - 2t +1 and define d(A) as the maximum l such that at+i = 2t - 1. Also for 

i from 1 to t let xa(2i - 1) := #{l :. 1i = 2i - 1} and xa(2i) :=., - Ai+l. Now, define 

r(A), E(A) and S(A) by 

2t-1 ife(A)=0, 
r(ý) 2t if e(A) > 0, 

E(A): =min(j: xa(j)>0), 

d(a) +1 if e(A) = 0, 

e(A)/2 if e(X) > 0. 

In order to define G on a given partition AE0 it is necessary to know if E(A) < S(A) 

or E(A) > S(. ). But, whereas in the case of the Franklin map there were only two 

possibilities, for G there are eight possibilities. Any given partition, AE0, is in precisely 
one of the following sets, 

Al := JA: E(A) < S(A), 
A2 := {A : E(A) < S(A), 
A3 := {A : E(A) < S(A), 
A4 :_ {A : E(A) < S(A), 
Bl := {a : E(A) ? S(A), 

B2 := {A : E(i1) >_ S(A), 
B3 := (A: E(X) > S(A), 
B4 := {A : E(A) >_ S(A), 

E(A) = 2Q, 
E(A) = 2a + 1, 

E(A) = 2v, 
E(A) = 2Q + 1, 

S(A) = 2s, 

S(\) = 2s + 1, 
S(A) = 2s, 

S(A) = 2s + 1, 

r(A) 0 mod 21, 

r(A) 0 mod 21, 

r(A) 1 mod 2}, 

r(A) 1 mod 2}, 

r(A) 0 mod 2}, 

r(A) 0 mod 21, 

r(A) 1 mod 21, 

r(A) 1 mod 2}. 
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Depending on whether AE Al, A2, A3, A4, B1, B2, B3 or B4, G(A) is defined (for 

most such partitions) as 

(A1- 4o- - 2, ..., A, - 4a - 2, A, +l - 4Q, ..., At - 4a, 2t + 1, ..., 2t + 1, At+1, ..., Ak), 

20 

(al - 4a - 2, ..., 
At - 4a - 2,2t + 1, ..., 2t + 1ý A +1, ... 7 

Ak-1), 

241 

(Ai + 4Q - 2, ..., aQ + 4o, - 2, aQ+i + 4Q, ..., At + 4a, ......, 't+2a+i, ..., ak), 

(Al +4Q+ 2,..., At + 4a+2, 
...... 7 

At+27+2,..., Ak-1), 

(ill-4s+2,... ) -4s+2, As+1-4s,..., At-4s, 2t-1,..., 2t-1 At+,,..., Ak), 
ti as 

(Al - 4s - 2, ..., At - 4s - 2,2t -1, ..., 2t - 1ý At+i, ..., )k-i, Ak, 2s + 1), 
2sß-1 

(A, +4s+2,..., as+4s+2, As+i+4s,..., At-i+4s,...... 
IAt+2s,... ) 

Ak), 

(A, + 4s + 2,..., Ac-, + 4s +2,......, At+2s+1) ..., Ak-Iý Ak, 2s + 1). 

The six dots ,......, are used to emphasise the omission of some entries, which can be seen 
by looking at the subscript. Writing A= (17,17,17,13,9,9,7,7,7,5,5), for example, 

gives A5 = 9, so t=5. Now, e(A) =0 and d(A) = 1. The sequence x. \(j) starts 
(0,0,0,0,2,... ) and so has first nonzero entry at j=5, giving E(A) = 5. Since e(A) = 0, 

it follows that S(A) = d(A) +1=2 (and so s= 1). Hence E(A) > S(A), r(A) =9 is 

odd but S(A) is even. This is case B2, and G((17,17,17,13,9,9,7,7,7,5,5)) = (17 + 
6,17+4,17+4,13+4,9,9,7,7,7,5,5)= (23,21,21,17,7,7,7,5,5). 

Clearly G reverses al mod 4. It is also a weight preserving involution. Thus, to find 

an expression for p(01, n) - p(03, n) it is only necessary to consider the partitions for 

which G is not defined, these fall into four families, 0, (7), (132), (193),..., ((6n + 1)fz) 

and (1), (34), (57),..., ((2n+1)3n+l) and (12), (35), (58),..., ((2n+1)3n+a) and (5), (112), 
(173),..., ((6n + 5)n-ß-1). 
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Thus, if Ol :={. E0: Al -1 mod 4} and 03 := {A E 0: al =3 mod 4}, then 
it follows that p(Oi, n) - p(03, n) =0 unless n= m(3m + 1)/2 whence, 

p(Oj, m(3m + 1)/2) - p(03, m(3m + 1)/2) = 

f1 if m=0,4,8, ..., or f1, f5, f9, ..., or -2, -6, -10, ... (3.4) 
1 -1 ifm=-4, -8, -12,..., orf3, f7, ±11,..., or2,6,10,... 

Whereas the Franklin map is a fairly intuitive construction, as can be seen by considering 
the effect it has on the graph of the partition (this is done in all the references mentioned 
in section 2.1), the map G seems somewhat contrived. The idea behind G is simply that 
for AE0, G (A) = TFT-1 (A) (except for the exceptional partitions, for which the 
Franklin bijection is not defined). In fact, for AED, #A = r(T(A)), a(A) = E(T(A)) 

and s(A) = S(T(A)). 
Finally note that (3.4) implies 

1: (P(Oi, n) - P(0)3, n))qT =1+q+ q2 + q5 - q7 _ q12 _ q'5 - q22 + q26 +... (3.5) 

n>o 

3.3 A different approach 

In this section a, rather long-winded, proof of (3.1) is given. The proof involves the 
concept of the hook, defined below, of a partition into odd parts. 

The following identity will be needed, it follows from (21.21) in [11], 

n qý _ (-qi Q)n. (3.6) 
Z 

i=0 42 

Now, recall that U(a, b) is the set of all partitions having no more than b parts, the 
largest of which is no greater than a. Similarly, let U' = Li (2a, b) be the set of partitions 
into not more than b even parts, the largest of which is no greater than 2a. It follows from 

(1.8) that 
E gwt(a) _ 

[a + b] 
(3.7) 

4 AEU' 

La 

The next step is to obtain the generating function for p(Oi, n) - p(03, n). 
For AE0, let ea := (-1)()1-1)/2. By considering the graph of all such A it can be 

seen, where O(k) denotes the number of partitions into precisely k odd parts, that 

E 
, \gwt(A) = qk(1- q2k + q4k -I- ... 

)(1- q2(k-1) + q4(k-1) + ... 
)... (1 - q2 + q4 + ... 

) 

AEO(k) 

Qk 
(-42; 42)k 
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hence (taking co = 1), 

Eagwt(A) = 
Qk 

l--q2; XEO(k) k>O 
ýZýk 

and so, 
j>(01, 

n) - p(ds, n))qn = 
qm 

2)m. 
(3.8) 

n>o m>o 
(-q2; i ý1 

As was seen in section 2.1.1., similar arguments give (2.6) which, to recap, states, 

lp(De, n) - p(Do, n))qn = 
ýl-1)mgm(-qi 

q)m-1. (3.9) 

n>O m>0 

Now the sum on the left of (3.8) is the sum over partitions in o of (-1) 2 
qwt()) 

The number of parts of such a partition is congruent mod 2 to its weight. So q -q in 

identity (3.8) gives 

E 
-J)Alý ý"#(a)gt0t(a) _ -1)m 

qm (3.10) 
AEO m>0 

(-q2; q2)m. 

Now, define h(A) :_ (al - 1)/2 + #(A). This is a sort of modified hook (the hook is 

usually Al -1+ #(A), but here h(A) is only defined for partitions into odd parts). A 

partition, A, has h(A) =m if and only if both (A) Al = 2i +1 and (B) #(A) =m-i, for 

some i for which m>i>0. For a given i, summing over all partitions (into odd parts) 

which satisfy both (A) and (B) gives (using (3.7)), 

gwt(a) = qm+i 
[m 

- 11 

Z 
q2 

and summing over i gives from 0 to m-1 gives 
M-1 

gwt(A) _E qm+i 
[m 

- 11 

h(A)=m i=0 

J 

42 

and by (3.6) this becomes 
E 

gwt(A) = qm(-q; 4')m-1 
h(a)=m 

considering the partitions with h(A) = 1,2, ... gives the following identity 
E 

zh(a)gwt(a) => zmgm(_q; 4)m-1 
AEO* m>0 

where 0* :=0\0. Setting z= -1 and taking h(O) =1 gives 
>(-1)' (')qwt(") = 1-I- E(-1)"`4'(-4; tl)m-,. (3.11) 
AEO m>O 

The sum on the right of (3.11) is that in (3.9). As was noted at the end of chapter 2, the 
sum on the left of (2.6) (and so (3.9)) is 1-q+ q2 - q5 + .... So, given (3.10), (3.1) is 

proved. Note that, having done all this, (3.1) follows directly from q -+ -q in (3.5) and 
(3.8) (so actually there is no need to invoke (3.6) or the hook of a partition). 
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3.4 The second and third identities 

In this section identities (3.2) and (3.3) are proved. The method of proof requires in- 

troducing the (new) concept of nested partitions. Then it is shown that the generating 
function for nested partitions with those into an odd number of parts counted negatively 
is the sum on the left hand side of (3.2). Next, using two elementary identities ((3.12) and 
(3.16) below), it is shown that this simplifies to F, q2m+l (q2; q4)�j which is essentially the 

sum on the left in (3.3). This being so means that if (3.3) were to be proved, then so 
would (3.2). The proof of (3.3) relies on the fact that the sum on the left of this identity 
is also related to nested partitions: it is the generating function for nested partitions into 
distinct parts, again those into an odd number of parts being counted negatively. Finally 

an involution is defined for most such nested partitions, proving (3.3) (and so also proving 
(3.2)). 

Having outlined the method of this section it is now necessary to introduce the two 

q-binomial elementary identities required here, this is done in the next subsection. Note 

that the two identities form part of theorem 3.4 in [2] where they are proved, and attributed 
to Gauss (the proof given here of (3.12) is different to that in [2]). 

3.4.1 Two q-binomial identities 

The first identity is 
m n+i 

igLi]=[n+m+ll. m i=O 
(3.12) 

This is a consequence of the lemma in section 1.2.2. It follows from that lemma (identity 
(1.8)) that the generating function for partitions with no more than n+1 parts and first 

part no greater than in is [t 1 ], which is to say that 

E wt(A) n+m+ 1 
q=mý. (3.13) 

. \EU(m, n+1) 

Now, if I4(m, n+ 1) is defined to be the set of such partitions having first part al =i 
then it is clear that if (m, n+ 1) is the disjoint union of the sets U3 (m, n+ 1) (as i ranges 
from 0 to m). So 

m 

gwt(a) =E> gwt(a) (3.14) 
. \EU(m, n+1) i=0 )ýEU; (m, n+1) 

and a partition in U (m, n+ 1) has (by definition) a first part of size i and no more than n 
additional parts. Hence 

gwt(A) = q' 4"'t(a) (3.15) 
AEU; (m, n { 1) AEU(i, n) 
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the sum on the right in the above equation is clearly equal to ["s' (by (1.8), again). Thus 
(3.15) becomes 

gWt(a) = qi 
[n + i] 

AEU (m, n+1) 

which, together with (3.14), implies that 

EE gwt(A) _m qi 
n+i [iI 

, \EU(m, n+l) i=0 

Finally, the fact that the sum on the right in the above equation is (by (1.8), once again) 
equal to ["+m+l] implies the veracity of identity (3.12), as desired. 

The second identity is 

E 
_1 z 

(q; g2)�ti if n= 2m, E( [n] 

0 if n is odd. 
(3.16) 

: -o 

This, like the previous identity, is proved in [2] where it is part of theorem 3.4. 

3.4.2 Nested partitions 
A nested partition is here defined as a sequence, A= Ni [A1], 

..., 
[Ah]) where (for i such 

that 0<i< k) Ai > Ai-1-1 > 0. For i>0, the entry [Ai] signifies the pair (Ai, A, - 1), 

and will be called a nested entry (so the only non-nested entry is A0). The weight of A is 

defined as wt(A) = Ao -k+2 E= 1 Ai where k, clearly, is the number of (nested) parts. 
A typical nested partition is A= (9, [9], [9], [6], [4], [4], [1], [1], [1]). Now k=8 but there 

are 14 rows in the graph, each nested entry greater than 1 is represented by two rows, the 

second entry in the second row has an empty dot in its place, thus the graph for A defined 

above is 
""""""""" 

"""""00 "" 

"0"""""" 

""""""""" 

"00""000" 

"""""" 

"0"""" 

"""" 

"0"" 

"""" 

"0"0 

" 

" 

" 
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so wt(A) = 71 (the number of black dots). Let A denote the set of all (nonempty) nested 
partitions. For AEA, define h(A) := A0 +k (this is the hook for nested partitions). Now 
h(A) =a+b+c where a= Ao, b= #{i >0: A> 1} and c= #{j >0: AA = 1}. 
Such a partition is said to have type (a, b, c), for instance, in the above example A has type 
(9,5,3). Considering all nested partitions of type (9,5,3) 

qwt()) = q27 
12 1 

qs 
To see this, consider the graph for (9, [2], [2], [2], [2], [2], [1], [1], [1]), which has weight 27. 

There is a7 by 5 rectangle that can be filled (by pairs of dots) in various ways. Every 

nested partition of type (9,5,3) arises this way. This is basically the same idea as that in 

section 3.3 where it was observed that for a partition in 0 to have a given value for its 

hook, it must satisfy two conditions. Now 

qn 
-n 

2n-1 4n-2 2n-3 4n-6 2 
- (1- q -I- q+... }(1- q -}- q -}- ... 

}... (1 -q -{- q+... } 
(-4. q2 )n 

which implies 
" 

(-q; 42)n a 
ý- } 

So the approach is: for a given 1, investigate all partitions with h(A) =l and sum over 1. 

Suppose 1=a+b+c. Then there are a dots in the top row (of the graph), 3b (nonempty) 

dots for the b nested parts that are >1 (because there are three dots for each such part) 

and c dots for the c parts that are equal to 1. In the above example a+ 3b +c= 27. Also 

there is, in general, a (a - 2) by b rectangle that may be filled with pairs of dots. So, 

counting those partitions where k is odd negatively gives 

(_1)kgwt(A) = (_1)b+cga+36+c ra +b-2j 
\jbJ 

qa 

for a fixed, summing over b gives 

i-a I-a [a+b-2] 

bE((E 
(-1)kgwt(a)` _ /_1)1-aql > q26 

By (3.12) this can be written as 

1-a 
(-1)kgwt(a)) = (_1)ý-aq! Il- 

a] 2 b-0 \ A-a(a, b, c) 
JL4 

and summing over a gives 

t-a 
-1 (-l)kgwt(a) = (-1)1gl 

rI 
(-I)a l EE 

a=1 b=0 A-º(a, b, c) a=11 
l- a 

4ý 
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Now, by (3.16) the expression on the right is q2m+l (q2; q4)�y when l= 2m+1 and 0 when 
1 is even. Thus, for 1= 2m +1 

(-1)kgwt(A) _ q2m+l (q2; q4)m 

so summing over l gives 
1: (_1)kgwt(a) =E g2m+l(42; q4)m. 

AEA m>0 

Thus identity (3.2) has been shown to follow from identity (3.3) (by q -4 q2 and then 

multiplication by q). 
In order to prove (3.3), it is necessary to consider nested partitions into distinct parts. 

Let B be the set of these partitions, that is B= {a E Abi >0= Ai > at+l} U {0}. Note 

that ao = al is allowed. Now, 

qn(q; q2 )n = qn(1 - q(n)+(n-1))(1- q(n-1)+(n-2))... (1 - q(1)+(0)) 

_> (_1)kgwt(A) 
AEB(n) 

where B(n) := {a EB: Ao = n} (with B(O) = {0}). Summing over n gives 
E 

qn(q; q2)n = 
E(-1)kgwt(a). (3.17) 

n>O AEB 

This means that proving 
>(_1)kgwt(A) = 

E(_1)mgm(3m+2)(1 + g2m-1-1) (3.18) 
AEB 

is equivalent to proving (3.3) (and so (3.2)). In order to prove (3.18) it is necessary 
to construct a map A -+ A'. This map plays the same role as A -* F(A) (Franklins' 

bijection) defined on normal (i. e. not nested) partitions into distinct parts in chapter 2 

and A -+ G(A) defined on (normal) partitions into odd parts earlier in this chapter. In 

particular, wt(A') = wt(A), u(A) < s(A) 4* a(\') > s(A) (a and s for nested partions 

are defined below), A -4 A' -} A" = A, and A' is defined for most such partitons. 
The proof is similar to Franklin's. Define 

2Ak-1 ifk>0 

00 ifk=O 

and, if i is defined to be 0 if A0 0 Ai and as the maximum j such that A0 - A3 =j-1 if 
A0 = Al then 

Q=v(A): =2i+1. 

Now, define A' by 

(Xo -1, [Al -1), ..., [Ai -1], [A%+1], ..., [Akl, [i + 11) if a<s, 
(Ao + 1a ++ 1a 7 [Ak-11) 4) if 1> s. 

Note that if A= (n) (which happens if k= 0) and n>1 then A' = (n, [1]). The only 
other partition where k<1 and A' is undefined is the empty partition. 
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All that needs to be done is identify the exceptional partitions (for which k> 0). Now 
if o , (A) < s(A) then 2i +1< 2Ak -1 so i+1< Ak. The only possible problem (in the 

case o, < s) is at i+1= Ak - 1. For the penultimate entry in A' is either [Ah] or [Ak - 1] 

and the last is [i + 1], which is not a problem if i+2< Ak. However if i+2= Ak, 

then the last entries in A' could be [Ak - 1] followed by [i + 1]. This would occur if and 

only if i=k, which is equivalent to saying that )tp = Ap+1 +1 for all p=1,2, ..., 
k-1 

(and that A, = A1). This reduces the set of possible exceptional (for the case Cr < s) 
partitions to those of the form (n, [n], [n - 1], ..., 

[m]). In short, what is required is to 
find all such partitons satisfying both (a) Q<s and (b) i+1= Ah - 1. But (for such 
partitions), i=n-m+1, Ak =m so s= 2m -1 and a= 2n - 2m + 3. Hence (a) gives 
n< 2m -2 and, more importantly, (b) becomes n= 2m - 3. Clearly, for a<s, the 

only problematic partitions are (3, [3]), (5, [5], [4]),..., (2m - 3, [2m - 3], ..., 
[m]). These 

partitions have k=m-2 and wt(A) = (m - 1)(3m - 5) (form > 2). 
Now, if o , (A) > s(A) then 2. ßk -1 < 2i +1 soak -1 < i. Clearly i<k with equality 

at (and only at) those partitions mentioned above that have successive entries differing by 

precisely 1 (except Ao = A1). So Ah -1<k and (from the definition of A'), problems 

occur precisely when equality holds. This happens when m-1=n-m+1 and so 
(for s< a) the exceptional partitions are those of the form (2, [2]), (4, [4], [3]),..., (2m - 
2, [2m - 2],... [m]). These partitions have k=m-1 and wt(A) = (m - 1)(3m - 1) (for 

m> 1). 
Let B' be the set of non exceptional partitions. Now, A -4 A' is indeed a weight 

preserving involution on B' with a(A) < s(A) e* s(A) < a(A) and so 

E(_t)kgwt(a) =E (_l)kgwt(a) +Z (_1)kgwt(A) 
. XEB AEB\B' 

l 

AEB' 

_E (_1)kgwt(a) =1+q+1: (-1)m-2q(m-1)(3m-5) 
AEB' m>2 

m-1Q(m-1)(3m-1). 

m>1 

This proves (3.3), and so (3.2) is proved too. 
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3.5 Two identities, one old and one new 

3.5.1 An identity of Subbaro and Vidyasagar 

In [30] Subbaro and Vidyasagar prove the following identity: 

2n n2 -fn E(-1)" 
z 

qq 
2) = 

E(_1)mz3mg3m2+2m(1 + zg2m+1) (3.19) 

n>0 ` 
q, ý n+1 m>0 

(it is (1.5) in their paper, they use a and x instead of z and q). Their proof involves alge- 
braic manipulation of power series such as these and relies on the triple product identity, 

and (a version of) what is known as the quintuple product identity. What follows here is a 
direct, combinatorial, proof of the above identity. 

Firstly, for nEN consider the set S(n) defined by 

S(n) := Ili = (7r0,7r1,7r1,7r2,7f2i 
..., irn; 7rn) : 1Cp i 7f1 i 

... 
ý! ? fn i0} 

(the reason why an arbitrary element of this set is denoted by µ, whilst its parts are labelled 

ir= will become clear shortly). The elements of S(n) can be viewed as partitions having 

the property the second part is equal to the third, the fourth part equal to the fifth, and so 

on. Viewed in this light it is seen that the dual of an element of S(n) is a partition into 

odd parts, the biggest of which does not exceed 2n +1 (the largest part of the dual of an 

element pE S(n) is 2n +1 if, and only if, irn 0). It follows that 

1= 
WOO) (qi q2)n Fl 

g 
1ES(n) 

(where the weight is the sum of the parts of µ, wt(p) = wo + 21r1 + 2ir2 + ... + 2irn). 
In fact, since the first part (i. e. 7ro) of an element of S(n) is the number of parts of the 

element's dual, 
1 

z7pgwt(R) (zq; q2)n 
DES(n) 

hence 
zY 

zarp-{-2nQwt(µ)-{-n2-}-n (zq; Q2)n+ 
pES(n) 

which implies that 

2n n2-}ýn ý(-1)n zq_ ý(-l)n E 
z7ro+2ngwt(ic)+n2+n 3 

. 20 (zq; q2)n+l n>0 n>O 7rES(n) 

Now if T (n) is defined to be the set of all ordered pairs with first part an element of 
5(n) and second part the sequence (2n, 2n - 2,..., 4,2), 

T(n) := {ir = (/c, (2n, 2n - 2,..., 4,2)) :µE S(n)} 
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(so T(O) consists of all pairs ((iro), 0), T(1) consists of all pairs of the form ((iro, irl, 7rl ), (2)) 

etc) and, for 7r = (Oro, 7rl, 7r1, ..., it a, irn), (2n, 2n - 2,... ' 4,2)) E T(n), the statistics k (ir) 

and 1(7r) are defined as 
k(ir) :=n, l(ir) := 7ro + 2n 

and the Weight, Wt(7r) as 

Wt(7r) := wt(7r) + n2 + n. 

then it follows that 

-111n 
E 

z7'o+2ngwt(ir)+n2+n =E (-1)k(ir)zl(7r)q 't(7r). (3.21 

IrES(n) aET(n) 

Hence, defining T to be the union of all T (n), 

T: = {7r = (? r., 1r1,7r1, ..., 7'n, 7n), (2n, 2n - 2,..., 4,2): n> O} 

it follows that, after summing over n in (3.21), (3.20) becomes 

E(-i)k(7r)zi(7r)gwt(7r) 
_'ý`(_11n 

z2ngn2+n 

?r ET nn>>OO 
1 (zq; q2)n+1 

So, in order to prove (3.19), it suffices to show that 

E(-1)k(ir)zt(ir)gWt(lr) = E(_1)mz3mg3m2+2m(1 +zg2m+1) (3.22) 
7rET m>0 

Proof of (3.22): An involution r -+ ir' is to be defined on (most of) T. The involution will 
be Weight preserving, i. e. Wt(ir) = Wt(ir). The involution will also have the property 
that l(ir) = l(ir), but k(ir') 0 k(7r) mod 2 (ensuring that (-1)k(7r) A (-1)k( r)). As 

usual there will be a small subset XCT containing the exceptional elements on which it 

is impossible to define the involution, and the sum on the left of (3.22) reduces to a sum 
over X (on account of most elements 7r being paired off with a corresponding 7r'). 

As usual the involution depends on whether or not an inequality of the 
form a(7r) < s(ir) is satisfied. In this case the two statistics are given, for 

7r _ ((70,71, irl, ..., 7r i, 7rn), (2n, 2n - 2,..., 2)), by 

Q(7r) := max(r : ir,. = gyro) and s(ir) := 7r, ß 

and define the sets A an B as 

A: ={irET: Q(ir) <s(ir)} and B: ={irET : or (ir) > s(7r)}. 

A bijection between these two sets, or at least bijection that works for all elements except 
those that give rise to the expression on the right side of (3.22)) is required. This would 
be an involution on T. The proposed involution, A -4 Aý, is defined as 
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((iro - 2,7r1 - 2,7r1 - 2, ..., it - 2,7r, - 2,7rQ+l - 1,7Ta+l - 1, ..., ir, - 1, firn - 1, a, a), 
(2n+2,2n,..., 2)) ifitEA 
((iro + 2, irl + 2, ir1 + 2, ..., 7r9 + 2, ir8 + 2, ic, +l + 1, i'8+1 + 1, ..., in-1 + 1, irn-1 + 1), 
(2n - 2,2n - 4,..., 2)) if 7r EB 

It is now necessary to establish for which 7r ET the map it -4 7r is not defined on: 
Firstly, for ir EB it is clear that if o, (7r) <n then the map ir -+ 7r is defined 

(by definition the slope a(ir) cannot be greater than the number of parts, n). If ir is 

such that a (ir) =n then irtz < n, for if in =m>n (and a (ir) = n) then 7r = 
((m, m) m, ... m, m), (2n, 2n - 2,... 4,2)) and then a(ir) =n<m= s(7r) and so ir E 
A. For it such that o, (7r) = n, it -+ 7r' is defined if and only only if 7r,, < n. Thus 

the elements ((0), 0), ((1,1,1), (2)), ((2,2,2,2,2), (4,2)), 
... are those in B for which the 

map is undefined. These form X0 where 

Xo = {((n, n, n,..., n, n), (2n, 2n - 2, ..., 4,2))}. 

Secondly if 7r EA then the definition of o, implies that 7rß > 7r, +1 and so 7rQ -2> 
7rQ+1 - 1, which is required (at least if Q(7r) < n). Furthermore, for it E A, s(7r) > a(7r) 

and so irn -1 >_ a, so there is no problem unless Q(7r) = n. If ir EA is such that 

a(lr) =n then the first half of the sequence ir' ends (..., in - 2, a, a) = (..., ir z-2, n, n). 
Thus, for ir E A, there is a problem if a(ir) =n and 7rn <n+2. So suppose that 7r is 

such that a(ir) =n and 7rn <n+1, in this case Q(7r) =n> 7rn = s(7r) so a(ir) > s(ir) 

and is E B. If, on the other hand, 7r� =n+1, so s(7r) =n+1 and a(ir) =n then 

s(ir) > a(7r) and 7r E A, and it is impossible to define the map it -4 7r'. These are the 

elements ((1), 0), ((2,2,2), (2)), ((3,3,3,3,3), (4,2)),.... Defining 

Xl : ={((n+1, n+1, n+1,..., n+1, n+1), (2n, 2n-2,..., 4,2))}, 

it is clear these are the elements of A for which there is a problem. If X is the set of 

elements it for which the map is undefined then X= X0 U X1. 

Now 

E(-1)k(1r)zr(')gwt(1r) =E (-1)k(ir)z' @)gwc(n) + E(-1)k(7r)zl(1)gWt(1r) 

irET 7rE7AX irEX 

and the sum over T\X is 0, so 

D-1) k( it)zt(hr)gwt(ir) = E(_1)k(ir)zt(it)gwt(it) 
irET irEX 

which is equal to 

E (-i)k(")zt(")gN't(") +E (-1)k(w)zt(ir)gwt(1r) 
irEXO rEXI 

and the first sum is equal to 1- z3 q5 + zsg16 + ... and the second to zq - z4 q8+z7 q 21+ 
.... 

This proves (3.19). 
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3.5.2 A new identity 

The following identity is, I believe, new: 

D-1)ri znqn2 
=1 (3.23) 

n>o 
(zq; 42)n+i 

It is proved in a similar way to (3.19) above: 
Let it = (iro) 7r1, irl, ..., 7r,,, 7rn) as above. The set U is now defined to be 

U={ir=(p, (2n-1,2n-3,..., 3,1)): µES(n), nEN}. 

For example, ((0), 0), ((4), 0) and ((5,5,5,3,3), (3,1)) are all elements of U. 
The statistics K(ir) and L(7r) are defined, for it E U, as 

K(7r) = n, L(ir) = iro + n. 

The weight, W (7r) is defined to be 

W (ir) = iro + 21r1 + 2ir2 + ... + 27rfz + n2. 

Thus (3.23) is equivalent to 

E(-1)x(")zL(")qw(") = 1. (3.24) 
7rEU 

What is required is a weight preserving involution on U, it-+ir', for which K(am) =K(ir) 
and L(7r) # L(7r) mod 2. The only element of U on which the map is undefined should 
be it = ((0), 0). 

With this in mind the sets A and B are defined by 

A: = {i EU: 7rn = 0} and B := fir U: irn 7t O}. 

Once this has been done, the map it -3 it can be defined (the trick here is to notice that 
the first entry of the second part of any element it is 2n -1 and the length of the first part 
is 2n + 1). 

So, for 7r = ((iro, 7r1, irl, ..., 7rn, 7rn), (2n -1,2n - 3,..., 3,1)) E U, the map is defined 

as 7r -+ it where ir is given by 

((7ro + 1,7ri + 1,1r, ++1,7rn_1 + 1), (2n- 3,2n - 5, ..., 3,1)) if 1r E A, 
((Iro - 1,7r1 - 1,7ri - 1, ..., ern - 1,7rn -1,0,0), (2n + 1,2n -1, ..., 3,1)) if it E B. 

For instance, if it= ((7,6,6,6,6,0,0), (5,3,1)) then irEA and 7r'= ((8,7,7,7,7), (3,1)). 
It is clear that the only element for which the map is undefined is , 7r = ((0), 0). It is also 
clear that the map has all the desired properties and so (3.24) is proved, and so therefore 
is (3.23). 
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Chapter 4 

An involutive proof of the triple product 

identity 

The triple product identity states that 

[-z; q] (q; q)... = Ez" z_ 
qn 2n (4.1) 

nEZ 

(this is (1.17), but with z replaced by -z). 
Now, the set D has already been defined as the set of strictly decreasing sequences 

of positive integers, i. e. D is the set of partitions into distinct parts. The set Do is now 
defined to be the set of decreasing sequences of nonnegative integers (the set Do is not to 
be confused with Do, the set of partitions into an odd number of distinct parts, which does 

not appear in this chapter). Clearly DE Do. The weight of a sequence in Do is defined 

to be the sum of the parts of the sequence and for a= (al, a2) ..., ak) E Do, #(a) :=k, 
the number of parts (these defintions are the same as for sequences in D). 

It follows that 
E 

, z*(a)gt(a) = [-z; q] 
aED0 

and that 
E z-#(6)gwt(15) = [-z-lq; q]. 
, 6ED 
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This means that if J := Do xDxD, and for it = (a, #, 'y) EJ (where 
a= (a,, a2, ... ak), 0= (ßi, $2, 

... ý 
$j) and then by setting 

c(7r) := #(ry) =m and d(ir) #(a) - (ß) =k -1 allows the triple product identity 
(4.1), to be stated as 

>(-1)c(lr)zd(lr)gwt(n) =E znq(n2-n)/a (4.2) 
irEJ nEZ 

where the weight of it is defined as the sum of the weights of its three parts: 

Wt(7r) := wt(a) + wt(ß) + wt(-y). 
A crucial step in this proof of the triple product identity, as in the case of Franklin's 

proof of the pentagonal number theorem, is finding (for any given 7r E J) two statistics 
s(ir) and o , (7r) and a map ir -> it (which is a weight preserving involution) such that the 
inequality s(ir) >o (ir) is satisfied precisely when s(7r) < a(ir ). 

It will be seen shortly that whether or not the inequality is satisfied is, in some cases, 
dependent on whether or not ßi > yj +1-k (because this is s(ir) >o (7r)). It will 

also be seen that, in some cases, it will be necessary to know whether or not ak =0 
and whether or not #1 = 1. Because of this it is necessary to adopt the following two 

conventions: Firstly, the first part of the empty sequence 0 is 0 (it is perhaps better to say 
that the weight of the first part of 0 is 0). For example, if /j =0 (and ry is some other 

sequence) then 81 > ryl +1-k is equivalent to k> 7yl, because ý8 =0= #l =0 and 
1=0, /31 being the first part of ß and l its length. Secondly, that the last part of an empty 

sequence is neither 0 or 1, i. e a=0= ak i6 0 or 1. 
Now, for 7r = ((ai, a2, ..., ak), (01,01), (71,72, 

..., 7m)) E J, the two statistics 

are defined by 

Co if#, >'yl+l-k, ak=0, ß=0, 'y=o, 
s(7r) :_ 'Ym if ßl > ryl +l-k, ak = 0, ß=0, 'Y 0, 

/31 else 

and 

I max(r: a, -a,. =r-1) if Pi >71+l-k, ak=0, ß=0, 

yl +l-k else. 

Thus, if the set T is defined as T := {ir : 01 > 'Yl +l-k, aA; = 0, ß= 0} then it ET 
implies that s (7r) is either oo or the last entry in y, depending on whether or not 'y = 0, 

and that a(7r) is the maximum r such that ai - a,. =r-1 (so a (7r) is the slope of the 
first part of ir, when it E T). Conversely, it ýT= s(ic) = ßi and or (7r) = y1 +l-k. 
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The action of the map zr -+ it is dependent on which subset of J it is that ir is a 

member of, the subsets being defined as 

Al : ={ir: s(ir)>a(7r), ck9`O, Qj4 0}, 

A2 := fir : s(ir) > Q(lr), cEk o, ß= 01, 
A3: ={ir: s(lr)>o(7r), ak=0, ß 34- 01, 

A4 := fir : s(7r) > a(ir), ak = 0, ß= 01, 

81 := {ir : s(ir) < a(ir), ßi =1}, 
B2: ={ir: s(7r)=Q(ir), ß=O, 7reT}, 

B3 := {ir : s(ir) < Q(7r), '3 = 0,7r e T} U {s(7r) < Q(7r), ßi 1�ß ; 01, 

B4 {ir : S(7r) <_ Q(ir), ir E T}. 

The set B3 is defined as the union of two sets, specifically B3 = B3 U B** where 

B3 := {rr : s(ir) < a(ir), ß=0, it % T} 

and 
B3* :_ {7f : s(7r) < 6(7f), ßl 

7' 
1, 

h' 7' 
0I 

Now, it is clear from the above definitions that if 

A := {ir EJ: s(7r) > u(7r)} and J: 

then J=AUB and A= Al U A2 U A3 U A4. It needs to be shown that B can be likewise 
decomposed. 

Clearly B= {ir EJ: s(ir) < or), f Q} U jr EJ: s(ir) <o (ir), Q= O} and the 
first of these two sets is B1 U B3*. The second set is {7r EJ: s(ir) < v(7r), Q= 0} = 
{7r EJ: s(7r) < a(ir), ß=0,7r ý T} U fir EJ: s(ir) < Q(ir), Q=0, it E T} and the 
first of these two sets is B2 U B. The second set is B4, because it ET ,B=0 so the 

second part of any element in B4 is empty. Hence B= B1 U B2 U B3 U B4. 

It is now possible to define, provisionally at least, an involution 7r -4 7ri on J. Depend- 
ing on which subset of J it is that it = (a, ((al) 

..., ak), (ß1, 
... ), 

81)) ('yi, 
... ' 7m)) 

is a member of, is defined as: 

I 
((al - 1, ..., ak - 1)eß2 + 1, ..., ß1 + 1,1), ßßl -1 + ký'Yl, ... ý'Ym)) ir E Al 
((al -1, ..., ak - 1), 0, (k, 71, ..., 'Ym)) ir E A2 
«al - 1, ... e ak-1 - 1), (ß2 + lý "ý Qt + l), (Ql -l+ k�7'1, 

..., 7'm)) 7i c- A3 
((al 

- 
11 

... au - 
1, au+1) 7t' E A4 

7i = 
((al + 1, ..., ak + 1), (71 + 1-k, ß1 - 1, ... ) ßt-1- 1), (72) 

..., 7m)) it E B1 
«al + 1, 

..., ak + 1) 
2 

07 (72) 
... 2 7m)) it E B2 

((a1 + 1, ..., ak + 1, ý), ý'Y1 +Z-k, Äi -1, ..., 1ßt -1)i ý'Y2, 
".., ý'm)) ir E B3 

«al + 1, 
..., as + 1, as+1, ..., ak) > 

O, (111, 
... 3 Ym-1)) it E B4 
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The element 7r may be written as 7f' = (6, p, T) _ ((S11 
... �5K), 

(/1, 
... ) AL); (Ti, 

..., rM)) " 

For instance if it is such that 0T then s(Tr') =p and a (mm) = rl +L-K. 

Now, by checking each of the eight cases it is easy to see that whenever it is defined 

the map it -ý lr is weight preserving, wt(7r) = wt(ir). It is also easy to see that 
#(r) = #(, y) ±1 so c(7r) = c(7r) f1 which implies that it -4 it reverses the sign, 
(-1)c(ß) ; (-1)*). It is also easy to see that the difference in length between the first 

and second sequence is unaltered in each of the eight cases, i. e. that K-L=k-I so 
d(7r) = d(7r). 

What remains to be checked is that this is actually an involution 7r '_ ir, that it E A; 

implies that 7r' E Bz, and to find the exceptional elements of J on which the map is not 
defined. This can be done by looking at each of the eight cases one at a time, before doing 

this it is shown that T= A4 U B4. 

Note that, since ir ET= ak ,00 (and B 0), Tn Al = 0. Similarly an element 

of A2 has ak #0 so Tn A2 = 0, and Tn A3 =0 because ,B 5E 0. Now suppose 

that, for some ir E A4, the element it were to be such that , ßi < ryl +l-k. Then 

ßl < yj +l-k= 7r 0 T, so (again, since ßl < 'yl +I- k) s(ir) < a(7r), which can't 
happen for rE A4. So if it E A4 then 01 > yl +I-k, which together with ak =0 and 

,B=0, implies that it E T. Hence TnA=Tn A4 = A4. Similarly if it ET then ,B=0 
so it is not in Bl or B**, and neither is it in B2 or B. Hence TnB=Tn B4 = B4 

(because irEB4=>. 7rET=ß=0), soT=A4UB4. 
Now let S be a subset of J having the property that if zr ES then it -> is is defined 

(i. e. the map is defined on all elements of S). Let 9 be the set defined by 
S' := {7r' : ir E S}, i. e. S' is the image of S under the map it -* . Now for the eight 
cases: 

Case 1,7r E Al: From the definition of Al, any element it in this set is such that the 
last entry of its first part is nonzero, i. e. ak ; 0. Hence for 7r E Al either a=0, in which 

case the first part 6 of 7r' is also empty, or ak -1>0 and 6E Do (because aEV and 

each entry in S is 1 less than the corresponding entry in a). 
For any 7r E Al ß 0, and if ß is a singleton ß= (ßl) then µ= (1) E D. 

If, on the other hand, ß has more than one element then ß= ßi) where 
ßl > ß2 > ... > ßi so ß2+1 > ß3+1 > ... > ßi+1 >1 and it follows that 

µ= (ß2 +1, ßs+1,..., ßt+1,1) ED. 
For any 7r E Al, i0T so s(7r) =, 61+1-k and Q(ir) = yl. The fact that s(ic) > Q(7r), 

together with it 0 T, implies that ßl -l+k> 71 (which ensures that ßl -l+k>0, even 
if ry = 0) and so r= (ßl -l+k, yl, .... 'ym) E D. Thus 6E Do, µED and -r ED and 
so ?r= (6, p, r) E J, i. e. for each it E Al, it is defined. What remains to be established 
is in which subset of J it is that 7r' lies. 

Clearly pr, = 1, so 7r' 0 T, and ßl > 92 so 02 +1< ßi and so (since, as always is the 
case, k-1 =K- L) #2+1 < (ßi -l+ k) +L-K which is to say that µ1 < Ti +L-K. 
It follows that, in this case, s(7r') < Q(mm) so ir' E B1, i. e. Al C B1, and so that 7r' = ir. 
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Case 2, it E A2: Firstly note that, for any it E A2, the first part is nonempty. For 

ir E A2 = 7r ý T, so s(ir) = ßl and v(or) = ryl +l-k. Thus s(7r) > or(7r) implies that 
ßl > ryl +l - k, which is k> ryi (since ß=0, for ir E A2). If there were to be an element 

ir E A2 with a=0, so k=0, then k> ryl would imply 0> ryl. This can't happen as 

ryl >0 (with equality if and only if y= 0), so any element of A2 has nonempty first part. 

Now, a= (al, 
..., ak) ED (but not Do, since ak A 0) and so S= (a, -1, ..., ak -1) E DO. 

Clearly µ=0 and since k> yi, T= (k, ryl, ..., y, ) EV (as in case 1, if ry =0 then 
k> ryl =k>0 and so T= (k) E D). Hence, for any it E A2,7r' is defined. 

Clearly it =0 and K=k (the length of the first sequence is unaltered). So, since 

Ti = k, µl = ri +L-K (because µl =0 and L= 0). The fact that µl = Ti +L-K 

ensures that 7r ý T, so µl = ri +L-K= s(ir) =o (W), and it E B2. It is clear that 
A2 C B2, and also that . 7r" _ 7r. 

Case 3i, it E A3 and ß= (ßl): It is necessary to check that 

7r = ((a, -1, ..., ak_1-1), 0, (ßl -l+k, ryl, ..., 7m)) is actually defined (i. e. it is in J) 

for all such elements ir: 
Now 7r E A3 = ak =0= ak_1 -1>0 (note that ak =0 ensures that a 0, so 

there is no problem in removing the last entry from a). 
Since it E A3, it follows that it 0 T. Thus s(ir) = ßl and a(ir) = 7i +l-k. Hence 

s(ir) > Q(7r) = ßl -l +k > yl (as in case 1, this ensures that if y=0 then ßl -l +k >0 

and so (ßl -l+ k) E D). When y 5L 0 this ensures that r= (ßl -l+k, 7i, ..., 'ym) ED. 

Thus for all ir E A3 with ßa singleton, the map 7r -} it is defined. Now it is shown 
that for such ir, 7r E B3: 

Clearly ßl >0 so 0< (ßl -l+ k) +L-K which, since I T, means that 

s(7r) = µ1 =0<r, +L-K= o(ir ), hence s(ir) < a(ir ). Clearly µ=0 (and i0 T) 

so it E B;. It is clear that W1 = ir. 
Note that in the above case ß has length 1 so I=1. 

Case 3ii, Ir E A3 and ß; (ßl): As in case 3i, 5= (at - 1, ..., ak_1- 1) E Do and b 

is always defined (because, again, a0 0). Also as in case 3i, r= (ßi -1+k, 71, ..., 7m) 
is a partition in to distinct parts, even if y=0. 

Since, in this case, ß= (ßi, 
..., 

ßi) and t>2, it must be the case that 

µ= (ßa + I, -, 
ßz + 1) ED and that µ0 so 1r' 0 T. Now µL = ßi +1>1 and 7r 0T 

implies that s (7r) = µi =, 82+1 and that Q(ir) = -r1 +L-K= ßl -1 +k+L-K= ßl. 

Since ßl > ß2, it follows that ß2 +1< ßl and so s(ir) < o(ir ). The last inequality, 

together with µL > 1, implies that E B**. 

Hence, any it E A3 with two or more entries in the second part is such that I is 
defined and an element of B3*. It is clear that ir' = 7r. 

Hence for any it E A3, it is the case that iT' E B3 so A3 C B3, and that ir" = ir. 
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Case 4i, ir E A4 and y=0: An element ir in the set A4 for which y=0 must be of 
the form ir = ((al, a2, ... ) 0), 0,0). Conversely, any element which is of this form has 

s(7r) = oo > a(ir) and is thus in A4. 

Now any such element it of A4 has u(7r) < k, because the slope cannot 

exceed the number of parts. For it such that o=o, (ir) <k it is the case that 

7r = ((al -1, ..., aQ - 1, aQ+l, ... ) ak), 0, (a)). Note that 0> a(ir) -k=o, (ir) +l-k 

and so, since pi =0 and r1 = a(ir), pi > Tl +L-K. Thus pi > Tl +L-K, together 

with SK = ak =0 and p=0, gives it E T. 

Now s(7r) = TM =U= U(7r) which is the slope of a. The slope of a is less than or 

equal to the slope of 6 which is u(i'). Thus s(7r) <o (7r ), which together with ir ET 
implies that 7r E B4. For such it it is clear that ir' = Tr. 

If, on the other hand such an element it of A4 is such that the slope of the first part is 

equal to its length, then ir = ((k, k-1, ..., 1,0), 0,0) for some k>0. Clearly the map 

it -+ ir' is not defined on these elements (note that the sequence (k, k-1, ..., 1,0) has 

length k+ 1). 
Case 4ii, 7r E A4 and y 0: For such 7; it is the case that s (7r) = ym and that a= o(7r) 

is the slope of a. Since s(7r) > a(ir), it follows that T= o) E V. Note that 

there are at least two elements in r, as opposed to case 4i above where T was a singleton. 
It appears that there is a problem, if u(7r) =ki. e. if the slope of a were to equal its 

length then, for since ak = 0, it would follow that 8K = -1. It is necessary to investigate 

whether there are any elements for which this happens: 
Suppose it is such that, for some k>0,7r = ((k - 1, k-2, 

..., 1,0), P), y) E A4 (and 

y= ('y,..., y ,)# 
0). Since 7r e A4 = ir E T, it must be the case that ß1 > yl +l-k 

which, as ,ß=0, is to say that k> yl. Clearly yl > ym (with equality if and only if 

m= 1). But s(ir) > a(7r) = y,,, > k. So this would give k> yl > y,,, > k, which 
implies the contradiction k>k. Thus no such memebers of A4 exist, i. e. if it E A4 is 

such that y00 then there must be some entry in a which exceeds by more than 1 the 
following entry (the slope is is less than the length). 

The fact, in this case, or (7r) <k (as has just been shown) ensures that 6K = ak = 0. 

Clearly p=0. As was shown above, k> yl. Thus 0> -yi +0-k which is to say that 

p, > rl +L-K and it follows that ir' E T. As in case 4i, the slope of 7r' is at least 

that of ir and so it E B4, and it is easy to see that ir' = 7r. As stated earlier, an element 

7r E A4 having y=0 maps to an element 1E B4 for which r= (Ti) is a singleton, and 
an element it E A4 having 70 maps to an element 7r' E B4 for which there are at least 

two entries in T. 
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Case 5i, iv E Bl and y=0: The action of the map it -+ 7' involves, for, 7r E B1, the 

removal of the first entry in y. Thus the map map is not defined for iv E Bl when y=0. 
Thus, it is necessary to estabish which elements of Bl have third part empty: 

If it E Bi has y=0 then s(ir) < Q(mm) = ßi <l-k, as yl = 0. Now since Q is 

a partition into distinct parts, it follows that its first part is at least the number of parts: 
#l > 1. Thus problematic elements of Bl satisfy both #l <1-k and j1 > 1, i. e. are such 

that k=0 so a=0. This implies that /31 = 1, which happens if and only if the number of 

entries in ß is the number of parts, ß= (l, l-1, ..., 2,1) so it = (0, (l, l -1, ..., 2,1), 0) 

for 1a positive integer. It is clear that the map it -+ 7r' is not defined on such elements. 
Case 5ii, iv E Bl and y 0: Firstly (al, 

..., ak) E Do so either a=0, in which case 
S=0, or a= (al, 

..., ak) 0 and S= (al + 1, ..., ak + 1). Either way SE Do (and the 

last part of J is nonzero). 
Since it 0 T, it follows that s(ir) = #l and a(7r) = yl +l-k. Now s(ir) < a(7r) 

implies yl +1-k> ßl -1 and µED. Note that yj +l-k>ß-1 ensures that 

yl +l -k>0 and that if the second part of 7r is a singleton, ß= (1) then µ= (yl +l - k). 

Clearly p is nonempty. 
Now r= (y2, 

..., ym) EV (so r is empty if and only if y is a singleton). 
Thus for each iv E Bl which has y 0, ir' exists and has 5K 0 and p 54 0 (either 

of which imply it 0 T). Now, for such ir, yl > y2 (if y is a singleton then y2 = 0) so 

yl +l -k> y2 +L -K= it, > rl +L -K which, since it 0 T, implies s(ue) > a(7 r'). 
Thus i' E Al, and it is clear that 7r" = ir. 

Case 6, it E B2: Since 7r ý T, it follows that s(7r) = ßl and a(ir) = yl +I-k. Thus 

k= yl (since ,ß= 
0). Now if y= (yi, 

..., 'y) 0 then S= (a, + 1, ..., a, + 1) G. Da 

and the last entry, SK = ak +1>0, clearly u=0 and 7- = (y2i 
..., -ym} E D. Hence the 

map iv -+ it is defined and iv' E A2. It is clear that iv" = ir. 
Suppose, on the other hand, that an element 7r E B2 is such that the third part y=0. 

Then, as above, k= yl so k=0, i. e. a=0. Since the other other two parts are empty 

too, it follows that the only such element of B2 is it = (0,0,0) and that this is the only 

element of B2 for which the map ar -4 it is undefined. 
Case 7i, 7r E B3*: Firstly it 0 T, so s(7r) =01 and Q(7r) = yl +l-k. Since s(ue) < 0-(7r), 

it follows that ßl < 71 +I-k, and since 1=0 (so ßl =0 and l= 0) this implies that 

yi-k>0. 
Now it is impossible for an element it E B3 to have y ='O. For, as shown in the 

remarks at the start of Case 4i, any element it EJ of the form it = ((a,,..., 0), 0,0) has 

s(ir) = oo and thus s(ir) > o(7r) (in fact it was shown that such elements are necessarily 
in A4). Hence it E B3 =y; 0. Thus there is no problem in removing the first entry in 

the third part, for any 7r E B. 
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Thus for any such 7r the map is defined, specifically it -+ it where, 

it = ((al + 1) ... ) ak + 1,0), (71 - k), (72i 
..., -Y,. )) - Clearly 5K = 0. It also follows that 

(-I, it 0 T. Thus s(7r) = ryl -k= ryl +1 -k and u(7r) = rye +L-K 
(as in case 5ii, if y= (ryl) then rye = 0). Since yj > rye, it follows that it E A3 and it is 

clear that iv" = iv. 
Case Iii, it E B**: For any it E B3, the map is -+ 7r involves removing the first entry 

from -y, as happened in case 5i (and case 6). This is a problem if 7=0. It is thus necessary 
to establish whether there are any elements it of B** which have third part empty: 

Suppose iv E B** is such that ry = 0. Then it ET so s(ir) = ßl and 

a(7r) = yj +l-k=l-k. Thus the fact that s(7r) < a(ir) ensurses that , ßl <1-k. 

As noted in case 5i, a partition into distinct parts has first part no less than the number 

of parts, , Bl >1 but since 7r e B3* ßj > 1, it follows that in this case , ßl > 1. Thus 

an element of B3* having 7=0 must satisfy both ßl <l-k and ßl > 1, which is 

impossible. Thus it E B3* . ry ,E0. 
It remains to investigate what happens when it E B3* and ry 56 0: 
Clearly a= (a, + 1, ..., ak + 1) 0) E Do, and so SK = 0. Since it 0 T, it follows that 

s(ir) = ßl and a(7r) = yj +l-k. Thus s(ir) <o (ir) 'yl +l-k> Ql - 1. From the 
definition of B3*, #1 >1 and so I. c = (-yl +l-k, 01 - 1, ..., 

ßt -1) E D. Clearly µ 0, 

so it 0 T. Note that third part of it is empty if and only if ry = (7yl). 

Thus 7r is defined for all it E B3*. For these such it, since V T, it follows that 

s(ir) = p, = yl +l-k and u (7r) = ri = 'Y2 +L-K (as usual y=0 rye = 0). 
Clearly yj > ßy2 and so s(ir) >o (7r ). Hence for these such it, ir' E A3 and it" = iv. 

Looking at case 7i and case Iii together, it is seen that for any it E B3, is defined 

and is an element of A3. Hence BB C A3, and it is clear that 7r" = i. 
Case 8, iv E B4: Firstly, no element it E B4 has y=0. For if there were such an 

element with y=0 then the fact that it ET would imply that s(ir) = oo > a(ic) (this 

was explained in the remarks in case 4i, and also in case 7i). 

Since any it E B4 is an element of T and has y; 0, it follows that s= s(7r) = ym 

and or(7r) is the slope of a. Since it E T, it must be the case that flu > 7i +l-k. Hence 

(since /3 = 0) k> -yl, and clearly yl (with equality if and only if m= 1). Thus 
k> 

So it = ((a, + 1, ..., ay + 1, a3+1, ..., ak), 0) (717 
... ' 7`m-1)), i. e. the map 7i -+ it is 

defined for all it E B4. 
Clearly the length of the first part of iv is left unchanged, i. e. 6 has the same number of 

parts as a does. Hence k=K and this, together with 7-1 = -yl (unless y=(, yl)) implies 

that K> 7-1. If, on the other hand, y=(, yl) then r1 = 0, so clearly K> r1. Either way 
K> -tj =0> rl +0 -K so µl > 7-1 +L- K (because µ= 0). Now k> ym means that 

the last element of a is left unchanged, so 5K = ak = 0. Thus it E T. All that remains 
to do is show that s(7r) > u(ir ): 
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Now if ir' has last part empty, i. e. T=0, then (since 7r' E T)s(l) = oo > Q(ir'). If, 

on the other hand, T0 then s(ir) = TM = y�, -1 and Q(ir') is the slope of 5, which is 

S='irºi. Thusrym-1>'Ym=s(7r')>U(7r'). 

Thus, for all 7r E B4, it is defined and since s(ir) > o(ir ), SK =0 and p=0 it 
follows that 7r' E A4. Hence B4 C A4 and it is clear that ir" _ jr. 

Looking at the above eight cases it can be seen that whenever it EJ is such that 7r' is 

defined then so is 7r' and in fact ir" _ ir. 
From case 3 it is seen that A' C B3 and from case 7 that B3 C A3. This, together 

with ir" = ir, implies that A3 = B3 and B' = A3. This can't be done for the other three 

pairs of sets, because Bi, B' and A'4 are not defined (since they contain elements on for 

which the map is not defined). To remedy this, the following sets are now defined: 

X+ := {7r EJ: 7r = ((k, k -1, ..., 1,0), 0,0), k? 0}, 

xo := {(r, 0,0)}, 
1, X-: = {ir EJ: it = (0, (1,1- 

Now, given that 7r" = it (whenever ir` is defined), it follows from cases 1 and 5 that 
Ai = Bl \ X_ and that (B1 \ X_)ý = Ai. 

Similarly, again given that r" _ ir (whenever it is defined), it follows from cases 2 

and 6 that A'3 = B3 \ Xo and that (B3 \ X0)ß = A3. 

Finally, given that i= ir (whenever 7r is defined), it follows from cases 4 and 8 that 
(A4\X4'=B4 and that B4=A4\X+. 
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What all this means is that if iýX := X+ U Xo U X_ then 7r and it can be paired off 

with each other. Recall that the map it --} it is weight preserving, i. e. wt(7r) = wt(ir), 

and also d(am) = d(ir) but (-1)°('r') # (-Thus the map preserves everything apart 
from the sign, so the contribution made by a given it in the sum 

E(-1)c(")zd(")gwt(") 

7rEJ 

is cancelled out by the contribution made by it , and so the above sum reduces to a sum 

over X. To be precise, 

E(-1)c(a)zd(a)gwt(lr) =E (-l)c(a)zd(1r)gwt(lr) + E(-l)c(7r)Zd(? r)gwt(lr) 
irEJ irEJ\X 

l 

aEX 

zd(7r) gwt(rr) -E zd(ir) gwt(Tr) +E (_ 1)c(a) zd(a) gwt(lr) 
wEEJJ\\X rEJ\X 7rEX 
c(a)even c(, )odd 

and since, for 7r EJ\X, c(7r) is even if and only c(ir') is odd, the first two sums cancel 

out and so 
E(- 1)c(r)zd(ir)gwt(w) _ 

E(_i)c(1r)zd(7r)gwt(7r) 

irEJ 7rEX 

l 

_j 1)c(7r)zd(7r)gwt(Tr) 

IrEXouX+UX_ 

_ (_1)c(? r)zd(? r)gwt(r) +> (_1)c(s)zd(r)gwt(7r) +E (-1)c(a)zd(7r)Qwt(a) 

7rEXo nEX+ irEX_ 

which, since c(am) =0 for all 7r E X, becomes 

E 
zd(a)gwt(lr) +E zd(a)gwt(lr) +E zd(7r)gwt(7r) 

7rEXo lrcx+ 7rEX_ 

=1+E zk+1 qk+k-1+... +l+o +z lql+t-1+... +2+1 

k>O lj>>11 

=1 
2 

-1 1 
+Ezk+lq a +Ez q2 

k>O l>1 

=1+ zk+1 
(k+1)2-(k+, ) +z lq q2q2 

k>O 1>1 

1+ 

.ý 

RZ-A 
+ Zn 

f32-n 
nq 2q2 

n>O n<0 

and so 
_1)c(7r)zd(a)gwt(ac) znnq"22 ". 

irEJ n>O 

This proves (4.2), and so (4.1). 
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Chapter 5 

Ranks and biranks 

5.1 A generalisation of an identity of Fine 

The following new identity is a generalisation of an identity due to Fine: 

(tlxngi q)ntn 
_. 

(-1)m(Lmtmxm2q... ý2 ý 

n>o 
(q; On 

m>O 
(q; q)m(txm; q). 

(5.1) 

Convergence is ensured by stipulating that jai < 1, Iil < 1, Ist <1 (and, as usual for 
infinite series, tqI < 1). 

This identity is now proved by showing that the coefficient of t' on the right is the 
same as that on the left: 

Firstly the coefficient of tk on the right is the coefficient of tk in the finite sum 
zm (-1)'namtmx'nýq 2 

kE 

m=0 
(q; q) (txm; q),,,, 

Now, putting n- oo and z= txtm in the identity of Rothe, (1.10), gives 
1 tlxml 

(txm; q) 1>0 
(q; q) 1 

and so the coefficient of tk on the right of (5.1) is the coefficient of tk in 

.k 
(t xml 

-k 

(-1)mamT n2gZa' M tlxmii-m) 

m)L_/0 

(q; q)m 
1>0 

(q; q)t 
mL_`0 

(q; q),. 
! >m 

(q; q), 
-m 

and the coefficient of tk in this is 
k ! 

_ilmamxm'q'"22 
m xm(k-m) 

k f_1`mamxkmqm! P- 

m\ý_o` 

l1 
(qi q)m (qi q)k-m 

, m\ý_`0 

\ 
(q; q)m(q; Q)k-m 
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which, in terms of q-binomial coefficients, is 

k 
^'2 m 

([k] 4)k 
Z(-1)mamx km q2m (5.2) 
m=0 

Finally, by putting z= axkq in identity (1.9), it can be seen that the coefficient of tk on 
the left of (5.1) is 

k4i q}k 1kz ýaý 
_ 

ýý_1)mamxkmgrn2- IC 
(5.3) 

(4'i 4)k (Qi q)k 
, n1-0 

m 

Identity (5.3) shows that the coefficient on the right of (5.1) equals the coefficient of tk 

on the left of (5.1), proving (5.1) as required. 

5.1.1 The above identity and partitions 

When x=q is put into in (5.1) the resulting special case is 

(aqn+l; q)ntn (_1)'amtmg3m: m 

(q; q) (tqm; q) 00 

which is due to Fine, it is identity 25.94 in [11]. Fine uses this identity to find the gener- 

ating function for the rank. This is done here too, but in more detail than in Fine's book. 
Before doing this it is of course necessary to define the rank of a partition, this is done 
in the next section, but first it should be noted that putting t= q2 into the above identity 

gives 
lagn+li 4)ng2n 1 EC-1)mamn8m2+5m rl 

- q-+') 

n>0 

l 
(qi ýi)n (qi q),,,, 

m>0 
Yl 

and for ha nonnegative integer putting a= qh and rearranging gives 

z E (2n± h]q2n E(-1)mggm , 
am+hm(1 

qm+1). (5.4) 
n>O 

L (4'' 4')°° m>o 

5.2 The rank generating function 

The partition function, p(n), is known to satisfy certain congruences: including (1.19), 
(1.20) and (1.21) above which, to recap, state 

p(5m + 4) =0 mod 5, 

p(7m + 5) -0 mod 7, 

p(11m + 6) =0 mod 11. 

These can be proved by considering the generating function, (q; q); of p(n), how to do 
this for (1.19) was outlined in section 1.3.2. Now proving that p(5m + 4) =0 mod 5 
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by invoking the generating function is an instance of a non-combinatorial proof: It has 

been established that 5 divides p(4), p(9), p(14), ... but the proof does not describe how to 

write the set of partitions of weight 4,9 or 14 etc as the disjoint union of five equinumerous 

subsets. 
Suppose that there were to be a map g: P -4 Z5 with the property that for 

n-4 mod 5, it were the case that 

xe Z5 =>: #{, \ EP: wt()) =n and g(\) = x} = 5p(n) 

then there would indeed be five equinumerous sets. 
The first person to actually invent a statistic with the properties described above was 

Dyson. He defined, in [9], the rank of a partition as the first part minus the number of 

parts: 
rk(A) := A1- #(A) (5.5) 

or, equivalently, rk(A) := Al -k where A= (A1, A 2P ..., )ºk). The rank of the empty 

partition is taken to be zero, rk(o) = 0. The rank is therefore a map from P to Z, not Z5, 

but reduction mod 5 remedies this. 
To do this it helps to introduce the following standard notation: 

N(m, n) := #{A EP: wt(A) =n and rk(A) = m} (5.6) 

and 
N(r, m, n) := #{a EP: wt(A) =n and rk(A) -r mod m}. (5.7) 

Thus N(m, n) is, by definition, the number of partitions of weight n having rank m 

and N(r, m, n) is defined to be the the number of partitions of weight n whose rank is 

congruent to r mod m. 
If r' =r mod m then N(r', m, n) = N(r, m, n), so it suffices to find N(r, m, n) for 

0 <_ r<m. By considering the dual, Aý of a given partition A, it is easy to see that 

rk(A') = -rk(A). Hence N(m, n) = N(-m, n) and so N(m - r, m, n) = N(r, m, n). 
Hence it transpires that it suffices to determine N(r, m, n) in the range 0<r< Lm/2j. 

It is clear that 
N(r, m, n) N(t, n) 

t_r mod m 

and that 
p(n) =E N(m, n) 

mEZ 

n-1 
E N(m, n) 

m=-n+l 

and also that 
m-1 

p(n) N(r, m, n) 
r-o 
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As an example, consider the partitions of weight 9: There are six such partitions 
having rank congruent to 0 mod 5; 

(2,2,1,1,1,1,1), (3,3,3), (4,3,1,1), 

(4,2,2,1), (5,1,1,1,1), (7,2). 

Hence N(0,5,9) = 6. Likewise N(1,5,9) = 6, because there are six partitions of weight 
9 having rank congruent to 1 mod 5; 

(3,1,1,1,1,1,1), (2,2,2,1,1,1), (4,3,2), 

(4,4,1), (5,2,1,1), (8,1). 

and so it also follows that N(4,5,9) = 6, as the dual of any of the above partitions has 

rank congruent to 4 mod 5. Finally N(2,5,9) =6 (and so, by looking at the duals, 

N(3,5,9) = 6) because of the following six partitions; 

(1,1,1,1,1,1,1,1,1), (3,2,1,1,1) 1), (2,2,2,2,1), 

(5,2,2), (5,3,1), (6,1,1,1). 

So 
N(0,5,9) = N(1,5,9) = N(2,5,9). 

Dyson, noticing equalities such as the one above, conjectured that 

N(0,5,5m + 4) = N(1,5,5m + 4) = N(2,5,5m + 4) (5.8) 

which is both a proof, and a combinatorial interpretation of the statement p(5m + 4) 

0 mod 5. Dyson also conjectured that 

N(0,7,7m+5) = N(1,7,7m+5) = N(2,7,7m+5) = N(3,7,7m+5) (5.9) 

which is likewise related to the congruence p(7m + 5) -0 mod 7. Dyson stated his 

conjectures in [9]. Later they were proved by Atkin and Swinnerton-Dyer, [5]. 

5.3 The generating function 

Let P denote the set of all partitions. The generating function for the Dyson rank alluded 
to earlier is 

rk a wt a 
(1 

- Z) n 
n(3n+1)/2 

Ez Oq _ E(-1) 
1-zn (5.10) 

AEP 
(qi q),,,, 

nEZ 
q 

The generating function for the rank was first presented in [5], in a slightly different form 

to (5.10) above. 
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Identity (5.10) is now proved by writing the expression on the right as a power series 
in z, where the coefficients are q-series, and then using (5.4) to show that this is the same 

as the expression on the left of (5.10). 

Now, the expression on the right of (5.10) is 

(1 
- z) 1 n(3n+I)/2 

(q, q)oo 1-z+ 
(-1)n 

1- zqn nEZ\{o} 

and the sum in the above expression is 

(-1)nqn(sri+i)/z - 
gn(sn+_ 

- 
gn(3n-t-_ 

nEZ\10) 
1- zqn n cý 

1- zqn 
n odd 

1- zqn 
(n#o) 

Egn(3n+1)/2 gn(311+1)/2 
- 

gn(3n+1)/2 
- 

gn(3fl+l)/2 

n>o 
1- zqn 

+ 
n<O 

1- zqn n>o 
1- zqn 

n<0 
1- zqn 

n even n even n odd n odd 

E q(3fl2+n)/2 q(3n2-n)/2 q(3fl2+n)/2 q(3n2-n)/2 
n>0 1- zqn 

+1- 
zq-n - 1- zqn 

+1- 
zq-n 

n even n odd 

which is equal to 

q(3n2+n)/2 
z-1 

q(3n2+n)/2 q(3n2+n)/2 
z-1 

q(3n2+n)/2 
-- 

E1- 
zqn 1- z-ign �=2m-1 

1- zqn 1- z-ign 
m> O m> O 

- 
g6ma+m 

-1 
g6m2+m g6m2-5m-}-1 

-1 
g6m2-5m-}-1 h1- 

zg2m -z1- z-lg2m 
m>O 

1- zg2m-1 -z1- z-1g2m-1 

ý"` (zhg6m2+m+2hml 
-z1 

[ý 
(E 

z-hg6m2+m+2hm 
ý'` 

/t j_. j_. 
m>0 h>0 

) 

m>0 h>O 

(Z 
zhg6m2-5m+1+h(2m-1)» +Z-' E 

`(Z z-hg6mz-5m+I+h(2m-1) 

m> O) m>0 h>0 m>0 h>0 

(EZh(E 

g6m2+(2h+1)m) Z -h 
(E 

g6m2+(2h-1)m 
ý 

h>O m>O h>O m>O 

E- 
zh 

(> 
g6m2+(2h-5)m-h+1 + z-h 

(Z 
g6m2+(2h-7)m-h+2 j> 

)) 

h>0 m>0 h>0 m>0 
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Multiplying through by 1-z gives 

gn(3n+I)/2 
(1- z) (-1)n 

1- zqn 
nEZ\{0} 

E 
Zh ( /l 

Z 
g6m2+(2h+1)m) Z -h Q, 

6m2+(2h-1)m 1 

L {\ J h>0 m>0 h>0 m>0 

E 
g6m2+(2h-5)m-h+11 +^ z-h 

(`ý"` 
g6m2+(2h-7)m-h+21 -E zh 

(J 
fý jý J h>0 m>0 h>0 m>0 

_E zh+l 
( 

g6m2+(2h+1)ml + ý` 
z-h-1-1([ß g6m2+(2h-1)ml 

hh>OO 
1\ 

m>O /J hh>>00 
t\ 

mf>>O 
1 

+E zh+1 ( j_, 
[ý 

g6m2+(2h-5)m-h+11 _Ez 
h+l 

(E 
g6m2+(2h-7)m-h+2) 

/% 1\ 
h>0 m>0 h>0 m>0 

and so n(3n+1)/2 
(1 - z) E(-1)ng 

1- zqn 
nEZ 

=1+E zh 
( 

g6m2+(2h+1)ml _zh 

(Eq 
6m2+(2h-I)ml 

h>0 

( 

m>0 h>0 m>0 

J 

_E zh 
(Eq6m2+(2h-5)m-h+l` 

+E z-h 
(ý 

g6m2+(2h-7)m-h+21 
h>00 m>0 1 h>0 l m>0 J 

_ zh 
(f 

g6m2+(2h-1)m) + z-h 
( 

g6m2+(2h+1)m1 

h>0 
`m>0 

h>0 m>0 
J 

+E zh 
E 

g6m2+(2h-7)m-h+21 _Ez -h 
(E 

g6M2+(2h-5)m-h+ll . 
(5.11) 

h>0 m>0 h>0 m>0 

The above expression is clearly invariant under z -3 z-1. When z=1 the whole 

thing is equal to 1 and so, dividing by (q; q),. implies that, the left of (5.10) is invariant 

under z -+ z-1 (which is to be expected as the rank of each partition is minus the value 

of the rank of its dual) and equal to P(q) _ (q; q)- when z=1. 
Now, for h>0, the coefficient of zh in the expression on the right of (5.11) is 

E 
g6m2+(2h+1)m _> g6m2+(2h-5)m-h+1 _ g6m2+(2h-1)m +E g6m2+(2h-7)m-h-ß-2 

rn>>O m>0 m>0 m>0 

(note that if the h in the above expression were replaced by IhI, then it would also hold 
for negative h). This is equal to 

C'` 
g6m2+(2h-7)m-h+2(1 - q2m-1 - gsm+h-2 + q8m+h-2) 

mj>>O 
l 

51 



=qE g6m2+(2h+5)m+h (1 
-q 

2m+l 
- q6m+h+4 + 48m-t-h--6 

m>>0 

`J 

_ qh+l 
E 

g2mh. q6m2+5m (1 
- g2m+1J 1-E 

q(2m+1)h. g6m2+llm+4 (1 
- ß, 2m+2\ 

m>>0 

` 

m>0 
`J 

ýh Fl qhg+3e22 
58 (1 

- qg+l) qhg { 3x22 ba (1 
- qs+1) 

s=2m s=2m+1 
m>0 m>O 

_ qh+l y(_l)sghsý-s ä as (1 
- q'+1) 

s>ol 

and the coefficient of z° on the right of (5.11) is 1- 2q2 + 2q7 + ... + (-1)82g3eý '+ 
It has been shown that the coefficient of zh in 

(1 z n(3n+1)I2 

(qi q)) 
nEý nEz 

(1 - zqn) 

is 

qn+l E-1)Sgrs+ý- (1- 
q'+1) if h>0, (5.12) (4; q),,,, 

8>0 
1 (1+2(_l)8q) 

if h=0. (5.13) (q, q)oo 
s>o 

5.4 Ranks 

If a partition A has rk(A) = h, where h>0 then it must have first part Al=n+h+1 

and number of parts #(A) =n+1 parts some n>0. Conversely whenever it is the case 
that, for some fixed h, there exists some n such that Al =n+h+1 and #(A) =n+1 
then it must be the case that rk (A) = h. Thus the graph of a partition having rank h has 

n+h+1 dots in the top row and h+1 dots in the left column, as shown 

" " " " " " " 

" 

0 

this leaves and n+h by n rectangle `inside' that is to be filled with some partition. Thus, 
by lemma (1.8) summing over all such partitions gives 

ý-` gwt(a) = q, 2n+h+l [2n + hi 
f-' n 

and summing over all n gives 

E 
gwt(A) = qh+1 E q2n 

r2n +h 
(5.14) LnJ 

rk(A)_h n>o 
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For partitions having rank 0 there is a problem as the empty partition has not been 

counted. This is easily remedied; for h=0 identity (5.14) becomes 

gwt(A) = 1, + q 1: q2n 
I"2n l 

(5.15) 

rk(. 1)=0 n>O 

Now the expression on the right of (5.14) is qh+l multiplied by the expression on the 

left of (5.4), so for h>0 

gwt(A) 
qh+l 22 Sm+ýttFl(1 

- qm+l). (5.16) 
m(>_"i0 

(rk(A)=h qi q). 

and by (5.12), it is seen that for h>0, it is indeed the case that summing gTDt(A) over all A 

having rank h is the coefficient of zh in the expression on the right of (5.10). This being 

the case, it must also hold for h<0, for it has been shown that this expression is invariant 

under z --p- z-1. 
It remains to check the case h=0: Because 

1 +( qýoo E(-1)mqSm 2 ism (1- qm+1) _q1,. 
(1+ 

+2 (-lýsqý2 ) 

`ýý m>0 `ý s>0 

it follows that (5.15) together with h=0 in (5.4) and (5.13) imply that qu(a) summed 

over all partitions having rank zero is indeed the coefficient of z° in (5.10). This proves 
(5.10). 

5.5 The Birank 

The rank was invented to explain congruences in the sequence p_1(n), that it does so is 

seen from (5.8) and (5.9). There are similiar congruences in sequences having the form 

pk (n) where k; -1. In particular, for x=2,3 or 4, 

p_2(5n + x) -0 mod 5 (5.17) 

which, given that p_2(n) is the coefficient of qn in (q; q)- , can be proved by an argument 

similar to that used to prove (1.19). 

There is, so far at least, a relative shortage of Dyson-type ranks related to such se- 

quences, but [14] looks at the sequence p_24(n). What follows here is about the sequence 

p_2(n): a birank is introduced related to the congruences in (5.17). The behaviour of 
the birank modulo 2,3,4,6 and 8 is investigated, as well as modulo 5 which is perhaps 
the most interesting case as this gives rise to actual congruences in the sequence p_2(n). 
A paper on the mod 5 case, which is dealt with in theorem 4 below has recently been 

published [19]. 
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The birank of an ordered pair of partitions, ir = (A, iz) is here defined to be the number 
of parts of the first partition minus the number of parts of the second partition: 

b(7r) := #(ir) - #(u) (5.18) 

or, equivalently, b(7r) :=k-1 where A= (A1, A27 
..., Ah) and it = (µl, µ2) ..., µt)" 

The following notation is analogous to that for the rank ((5.6) and (5.7)), 

R(m, n) := #{7r E P2 : wt(7r) =n and b(7r) = m}, (5.19) 

where the weight of the ordered pair it = (A, µ), is defined to be wt(ir) := wt(A) +wt(µ), 

and 
R(r, m, n) := #{ir E P2 : wt(7r) =n and b(ir) -r mod m}. (5.20) 

Clearly b(A, p)=-b(µ, A) and so R(m, n)=R(-m, n) and R(m - r, m, n)=R(r, m, n). 
In this respect the birank introduced here is similar to the rank of Dyson. 

As with the rank, it is necessary to look at the generating function for the birank. 
Fortunately this is easier than for the rank. It is clear that 

E 
zb(") qwt(") _ 

zrEP2 

1 

(zq; q),,,, (z-1q; q),,. 
(5.21) 

which is to say that 

E R(m, n)zmq' =/1 
mEZ n>0 lzgi q)oo(z-1Qi q)oo 

(5.22) 

In the next section, the behaviour of the birank is investigated by substituting suitable 

values for z into (5.22). The approach is (for a specified value of k) to put z=w, where 
2xi 

w is some root of unity, usually w=ek in which case it follows that 

R(m, n)wmq" = R[0, k] + wR[1, k] + ... + wk-1R[k - 1, k] 
mEZ n>O 

where R[r, k] is defined as 

R[r, k] :=E R(r, k, n)q" 
n>O 

=>> R(s, n)ßn 
s_kr n>O 

b(ar)=kr 

(here -k means congruent mod k). 
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5.6 The behaviour of the birank 

The following theorems hold for n any natural number, bar the exceptions listed. 

Theorem 1: 

R(0,2,2n) > R(1,2,2n), R(0,2,2n + 1) < R(1,2,2n + 1). (5.24) 

Theorem 2: 
R(0,3,3n) > R(1,3,3n), 

R(0,3,3n+1) <R(1,3,3n+1), R(0,3,3n+2) <R(1,3,3n+2). (5.25) 

The only exception is R(0,3,5) = R(1,3,5). 

Theorem 3: 

R(0,4,4n) > R(2,4,4n), R(2,4,4n + 2) > R(0,4,4n + 2), 

R(0,4,2n) > R(1,4,2n), R(2,4,2n) > R(1,4,2n), 

R(0,4,2n + 1) = R(2) 4,2n + 1) < R(1,4,2n + 1). (5.26) 

With two exceptions, R(0,4,2) = R(1,4,2) and R(0,4,4) = R(2,4,4). 
Theorem 4: 

R(O, 5,5n) > R(1,5,5n) = R(2,5,5n), 

R(1,5,5n + 1) > R(0,5,5n + 1) = R(2,5,5n + 1), 

and the following equalities (which imply (5.17)), 

R(0,5,5n + 2) = R(1,5,5n + 2) = R(2,5,5n + 2), 

R(0,5,5n + 3) = R(1,5,5n + 3) = R(2,5,5n + 3), 

R(0,5,5n+4) = R(1,5,5n+4) = R(2,5,5n+4). (5.27) 

The only exception is R(0,5,6) = R(1,5,6). 

Theorem 5: 
R(0,6, n) > R(2,6, n), 

R(0,6,2n) > R(3,6,2n), R(0,6,2n + 1) < R(3,6,2n + 1). (5.28) 

With exceptions: n=1,2,4= R(0,6, n) = R(2,6, n) and n=1,3,5,7=>. R(0,6, n) 
R(3,6, n). 

Theorem 6: 

R(0,8, n) > R(4,8, n), R(l, 8, n) > R(3,8, n). (5.29) 

The first inequality failing only at n=1, the second only at n=0. 
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In the following proofs, repeated use will be made of the triple product identity, 

n2-n [z; q](q; q). = 
E(-1)nq 2 (5.30) 

nEZ 

This is identity (4.2), proved in chapter 4. 

The triple product is useful here because it be used to obtain dissections of q-series. 
A dissection of a series, F(q), is an expression of the form 

F(q)n) + ... -{- qn-i Fn-i (qn) 
" 

For example, 
1_1q q2 

1-q 1-q3 
++ 

1_q3 q3 
is the 3-dissection of 1/(1 - q). 

When looking at dissections of certain q-series, the following notation will prove use- 
ful: 

[a, b,..., x; q] := [a; q][b; q]... [x; q]" 

Theorem 1. 

It is necessary to consider only R(0,2, n) - R(1,2, n). Putting z= -1 in (5.22) gives 

ZER(m, 
n) (-1)mq' =/1 

mEZ n>O 

and so 

which is to say that 

R(m, n)(-1)mgn = (q; q2 )0 
mEZ n>O 

R(m, n)qn - R(m, n)qn = (q; g2)o 

m even n>O m odd n>0 

so, by (5.23) (with k=2, since w= -1), 

R[O, 2] - R[1,2] = (q; q2)'.. (5.31) 

Thus it is necessary to show that the coefficient of qn in (q; q2)ß is positive if n is 

even and negative if n is odd. Now 

(q; g2)ö0 = [Q; q2] 

so 

(q; g2)öo = 
[q; q2] (q2; g2)oo 

(q2; q2)"" 

and so, by the triple product identity (q -+ q2 in (5.30) and then set z= q), 

(qi g2)oo =1 
E(_1)nnz 

(ql; q2 )00 
ncz 
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1 (qn2 

2 _qn2' ) 
oo Haven 

ff 
q' X1' 

n odd 

1E 
(qn2 

2 _> Qns )00 (q2; g 
n=2m 
mEZ 

n=2m-] 
mEZ 

_1E q(2m)2 _E 
(2m-1)2 

`q2; 
g2)OO 

MEZ mEZ 

1EQ, 
4m2 

_qE g4m2-4m 

`q2; 
q2)O° 

mEZ mEZ 

This is the 2-dissection of (q; q2),,. This, together with (5.31), gives 

2 R O )- R(1 2 n)] n= 4m2 E( 
- ,> 4m2-4m 

,n 
E[ ( 

, , , q (92, Q2)c 
q q g 

n>0 MEZ mEZ 

which is equivalent to 

E[R(0,2,2n) 
-R(1,2,2n)]g2'z =1 >q4"', 

Z' . qa) 
n>U 

4 °° mEz 

and 

E[R(0,2,2n + 1) - R(1,2,2n + 1)]q 1=-q` g4m2-4m 

n>O 
(q2; q2)°° 

mjEEZ 

and it is clear that the above two equations may be written as 

E[R(O, 2,2n) - R(1,2,2n)]qn 
1 

(4i 4)00 
E 

qMs 

n>0 MEZ 

and 
Y[R(1,2,2n + 1) - R(0,2,2n + 1)]q" _ (q; q1 

2M2 _21n 

)0 q. 
n>0 mEZ 

All the coefficients of both these q-series are positive, which proves theorem 1. 

Theorem 2. 

Again, there is only one thing to look at, namely R(0,3, n) - R(1,3, n). Putting 
znc 

z=w, where w=e9 in (5.22) gives 

L, Z R`m, n)wmgn = 

mEZ n>0 

1 
(wq; q)oo(w-lq; q)oo 

so, by (5.23) (here k= 3), 

R[0,3] + wR[1,3] + w2R[2,3] _ 
(q; q)°° 

(q3; q3)00 
(5.32) 
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Now 
(q; 4)00 = 

1: (-1)"g3n22 n 

nEZ 

which is identity (1.15) and is equivalent to (1.16), the latter having been proved by using 
the bijection of Franklin in section 2.1. The above identity may be written as 

[q; g3](q3; q 3)00 
_ 

3w2 n (5.33) 
nEZ 

which is also an instance of the triple product identity, specifically q -+ q3 and then set 

z=q in (5.30). The sum on the right, over all integers n can be split into three seperate 

sums, i. e. (5.33) may be written as 

[q; g3] (q3; g3)00 

n Sn2 n n 
Sn2 n+E( 

-1)nq3nß 
n 

+ (-1) q 

n=-3m n=3m-1 n=-3mß1 
27m2-Sm 47mß____ 27mß- 

_m `ý(-1)"`q 2-q 
E(-1)mq 2- q2 

ý(-1)mq 
s 

MEZ mEZ mEZ 

and putting q -4 q27 in (5.30), followed by the appropriate value of z (z = q12, z= q6 

and z= q3 for the first, second and third sums) gives 

[q; q'3] (g3; g3)oo = [q'2; g27](q27; 427)00 - q[4'6; 4'27](g27' g27)0o - 92[43; 9'27] (427' 427)0o 

and so 1_2 
[q; 43] = [Qs, 4s, q9; q27] [93,99,412; q27] [q6,49,9'12; q27] 

which, together with (5.32), implies that 

2 
R[0,3] + wR[l, 3] + w2R[2,3] =Iq-, 3 6) s 27- 3 9) 276[q 

,qq ;q] [q 1q q12 ,q] [q , q9, q12; q271 
but w2 = -1 -w and R[2,3] = R[1,3], so 

E[R(0,3, n) - R(1,3, n)]qn =1-q- [q3, qs, q9; 4'271 [q3,9'9, q12; g271 
n>o 

which implies the following three results, from which (5.25) follows, 

1 E[R(0,3,3n) 
- R(1,3,3n)]gn = [q, q2,43; q9]' n>0 

q2 
[q6,49, q12; 927] 

1 >[R(1,3,3n + 1) - R(0,3,3n + 1)]qn = [q, q3, q4; q9] , 
n>o 

j, "[R(1,3,3n+2)-R(0,3,3n+2)]q' =2 31 q4; s 
n>o 

[4 
, 9,4] 
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Theorem 3. 

The quintuple product identity can be stated in the form, 

[z; q] [qz 2; g21(q; q)00 =E z3ngn(3n-1)/2 ý1 - zqn). (5.34) 
n 

A proof (of an equivalent version of (5.34)) can be found in 3.2 in [18]. 

The quintuple product identity will be used to find the 2-dissection of the Euler prod- 
uct, which is needed when looking at the behaviour of the birank mod 4. 

Starting with (1.15), 
3n n (q; q),,,, 

22 

nEZ 

n 3n2 n 3n2 nn 3n2 n 3nß n 
= (-1) q a+ (-1) q 2+ (-1) q2 -{- (-1)"q s 

n=-4m n=4m+1 n=-4m-1 n=4m-}-2 

E 
g24m2-2m -E g24m2+14m+2 -1 g24m2+10m+1 +> g24m2+26m+7. 

mEZ mEZ mEZ 

ýL 

rnnERZ 

_ 
E(g2)3m(q16)m 32-1 

(1 -(q 2) (q 16)m) 
- gE(q6)3m(q16)m 

3m-1 

(1- (g6)(q16)m) 
mEZ mEZ 

and so, putting q -4 q16 and z= q2 and then z= q6 in (5.34), gives 

(q; q).. )= 
[q2; 4'16][9'12; g32}(q16; g16)00 - q[q6 ; 4161 [14; 432](9'16; gls)oo. (5.35) 

Now, putting z=i in (5.22) gives 

EE R(m, n)imgn =( 
1 

mEZ n>O 
(iq; q)00(i-'q; q)00 

(q2; q')... 
(g4; 44)00 

but, 

thus 

1: 1: R(m, n)imgn = R[0,4] + iR[l, 4] - R[2,4] - iR[3,4] 
m n>O 

= R[0,4] - R[2,4] 

E[R(O, 4, n) - R(2,4, n)]q' = (q2; 94),.. (5.36) 
n>O 

Now (q; q2)<, is the generating function for partitions into distinct odd parts, those parti- 
tions having an odd number of parts being counted negatively. Such a partition of an even 
integer will have an even number of parts, and conversely a partition of an odd number 
will have an odd number of parts. Furthermore the only positive integer for which no 
such partition exists is 2. This proves that n1= R(0,4,4n) > R(2,4,4n) and that 
R(0,4,4n) < R(2,4,4n). It also proves that R(0,4,2n + 1) = R(2,4,2n + 1). 
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It has already been seen, by putting z= -1 into (5.22), that R[0,2] -R[1,2] = (q; q2)ß. 
Since R[0,2] = R[0,4] + R[2,4] and R[1,2] = R[1,4] + R[3,4] = 2R[1,4], it follows 
that 

E[R(0,4, n) + R(2,4, n) - 2R(1,4, n)]qn = (q; (12) ,. (5.37) 
n>O 

Adding (5.36) to (5.37) gives 

1 E[R(0,4, 
n) - R(l, 4, n)]qn = 21 

((q2; 
g4)00 + (q; 42)2 f 

n>O / 

(q; 92)00 ((_4; 
g2)00 + (q; 

` 42)0) 
(q4; 44)00 

2 (q4; q4)00 
(4; 4'2)00 [-4; g4](q4; 4'4)00 + [q; 4'4 (4'4; 4'4)00 

2 (q4; q4)oo 

Putting q -+ q4, and then z= -q and z=q into (5.30), it is seen that 

and so 

R[0> 4] - R[1> 4] =1 
(q; g2)oo (q2n2ný(_1)nq2n2_n) 
(q4; 44)00 

nEZ nEZ nEZ 

R[0,4] - R[l, 4] = 
(q; g2)oo E 

g8na-2n (5.38) (q4; )O° 
nEZ 

which, together with q -4 q16 and z= -qs in (5.30), shows that 

R[0,4] - R[1,4] 
(q; q)ý[-q6; g16](q16; q16). 

(q2; 4)00(q4; q4)00 

and so 
R[0 4] - R[1,41 - 

(q; q)o0[g12' g32](q16; q16)ß 
>> (q2; g2)o, (q4; g4)oo[q6; qls] 

(5.39) 

now the expression on the right is (q; q),,. multiplied by a function of q2, so with the 
2-dissection of the Euler product (5.35), this becomes 

R[0,4] - R[1,4] = 
[q2; 4'16] [412; g32]2 (q1 4l6)ä0 [4'6; 416] [4'4; 432] [412; q32] (ql6' gl6)2 
(q2; 92)0044; 44)00[46; q16] -q (q2; q2)00(ß4; 44)co[g6; ql6] 

so 

R[0,4] - R[l, 4] =1 sa a-q 
(416' gls). 

[q6; 4i6]2[44,48; 9 ] (q2; qa). (4si4a). 

This proves identities (5.42) and (5.43) below. 

(5.40) 
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For the two other identities, the process is very similar. Subtracting (5.37) from (5.36), 

instead of adding them together, gives 

E[R(1,4, n) - R(2,4, n))4'" = 2((42; 44). - (q; 42)2 
) 

n>o 

(q; g2)00 ((-q; 
42)00 - (q; q2), 

) (q4; 94)00 
2` (q4; q4). 

(q; g2)00 [-q; g4](q4; g4)ao - 
[q; q4] (q4; g4)00 

2 (q¢, q4)0 

and so, similarly to (5.38), this gives 

R[1,4] - R[2,4] =q 
2ý 

)o 
,, o 

E 
g8n2-6n 

(q4; 
nEZ 

which, together with q -+ qls and z= -q2 in (5.30), shows that 

R[l, 4] - R[2,4] =q 
(q; q)00[-g2; gls](q4 ; ql6)ý (5.41) (4,4 )00(4 

;4 
)co 

Now all that needs to be done, as above, is replace (q; q)... by the right hand side of (5.35) 

and simplify. This results in 

R[10 -q21 , 4] - R[2,4] =q 
(q16 . 16)0q 

(42; g2)00(98; q8)0 [4a. gl6]2[q8, q12; q32]2 

from which (5.44) and (5.45) below follow. 

1 E[R(0,4,2n) 
- R(1) 4,2n)]q' == [q3; 4s]z[g2,44; 416] 7 (5.42) 

n>0 

L[R(l, 4,2n + 1) - R(0,4,2n + 1)]qn = 
(qa' qa)O° (5.43) 

n>0 
(qi q)oo(g4i g4)oo 

1 E[R(2,4,2n) 
- R(1,4,2n)]gn = q( az4 is 

(5.44) 

n>o 
[q; q ] [q 

, q6; 4] 

E[R(1,4,2n + 1) - R(2,4,2n + 1)]qn = 
(qa' q4)2 

4. 
(5.45) 

n>0 lqý 4)oo(q iq )oo 

This concludes the proof of theorem 3 (5.26), and also shows directly that 
R(0,4,2n + 1) = R(2) 4,2n + 1). 
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Theorem 4. 

Putting w= e27ri/5 in (5.22) gives 

R(m, n)wmg __ 
mEZ n>0 

1 
(wq; Q)oo(w-1q; q)oo 

_ 
(w2gi q)oo(w-2qi q)oo(gi q)00 

(q5; g5)00 

the term on the right, by q -4 q5 and z= wq in the other version of the triple product 
identity, namely (1.22), is equal to 

1 
(q5; q5)ß 

(1 + (w ++ w-i)qs - qio... ) 

1 ((_1rq25n2+1on 
+ (w + w-i)q E(_1)ng25n2+5nl 

(q5; g5)00 
nEZ nEZ 

l 

which by suitable values in (1.22) is equal to 

(q25' . 25 

q5; 

qq5 )co ([qlo; 
q25]+(w+w_1)q[q5; q251) = 51 25 

i' lW 'i' W-1) 
10_ 25 

but, 

ZE R(m, n)wmgn = R[0,5] + wR[1,5] + w2R[2,5] + w3R[3,5] + w4R[4,5]. 
rnEZ n>0 

Thus (since w2 = -1 -w- w3 - w4, and R[l, 5] = R[4,5] and R[2,5] = R[3,5]), 

R[0,5] - R[2,5] + (w + w4) (R[l, 5] - R[2,5]) = r- 
1 

ß 425] 
+ (w + w-1) [4104425] 

This (and the irrationality of w+ w-1) proves (5.46) and (5.47), and so proves (5.27), 

1 [R(0,5, n) - R(2,5, n)] qn =5 2s , (5.46) 
n>o 

ýq 4 

E [R(1,5, n) - R(2,5, n)] q" = [qlo; q25] 
(5.47) 

n>o 
Theorem 5. 

The proof uses the well known expansion for (q; q),,,,, i. e. Euler's Pentagonal Number 
Theorem. Also needed is that q -4 q3 and then z= -q in (5.30) gives 

(g2i 42)oo(Q3i g3)oo 
=' ºý` gn(3n-1)/2 (5.48) (q; q)00(g6i q6) 00 nEZ 

and that q -4 q2 and then z= -q in (5.30) gives 
2 

loo 
(q2; 42)00 = E(_1)nq'ý2 (5.49) 

nEZ 
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and finally q -* q6 and then z= -q in (5.34) gives 

(g2i g2)oo(q3i g3)oo 
_ 

E(_1)ng9na(1 + 6n-f 1). 
(q; 4)0o(g6i 46)00 

nEZ 
l 

Now, putting w= e2'r='6 in (5.22) gives 

1 (g2; q2)oo(Q3iq3)00 

mEZ n>O 
(wq; q)ao(W-1q; q),,. (q; q),,. (q6; g6)oo 

but 

(5.50) 

E R(m, n)wmgn = R[O, 6] +wR[l, 6]+w2R[2,6]+w3R[3,6]+w4R[4,6]+w5R[5,6] 
tnEZ n>O 

= R[0,6] + R[1,6] - R[2,6] - R[3,6] 

R[0,6] + R[l, 6] - R[2,6] - R[3,61 _ 
(q2' q2) "" (q3; q3)(5.51) 
(q; q)ý(q6; q6). . 

Putting w= e2"'/3 in (5.22) gives 

E R(m, n)W mqn =1= 
(4'; 4). 

mEz n>0 
(wq; Q),,. (w-lq; q),,. (q3; g3)00 

but 

EE R(m, n)wmgn = R[0,6] +wR[1,6]+w2R[2,6]+w3R[3,6]+w4R[4,6]+w5R[5,6] 
mEZ n>O 

= R[0,6] - R[1,6] - R[2,61 + R[3,61 

R[0,6] - R[1,6] - R[2,61 + R[3,61 
(q; q). (5.52) (q; q3). " 

Also 
1 (qý q) R(m, n)(-1)mgn 

rnEZ n>0 
(-q; q)00 (q2; 42)00 

R[0,6] - 2R[1,6] + 2R[2,61 - R[3,61 = 
(q; q) (5.53) 00 

(q q2)2 
The identity 

ýnEi g6n2-}n E[R(0,6, n) - R(2,6, n)]qn = (q3i 93)00 
n>o 

follows from multiplying both equations (5.51) and (5.52) by (q3; q3),, adding the sum, 
using (5.48) (and the pentagonal number theorem), and dividing by 2(q3; q3).. This 

proves the first part of (5.28), the rest comes from 

1: [R(0,6, n) - R(3,6, n)]qn = . 
(-1)ng9n2 

n>0 
(q2; floc 
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which follows in a similar way from (5.51) and (5.53) and then (5.49) and (5.50). 
Theorem 6. 

Putting w= e27i/8 in (5.22) gives 

R(m' n)W mqn 
(wq; ýi)oo(W-lei q)oo 

(44; 8q))0 ((w3q; 
q)oo(W-3qi q)oo(gi 4)00) 

mEZ n>_0 

which, by (1.22) is equal to 

(R'4; 48)"ý 1+(ý-1)q-(ý-I)q3-q6-q10-{-... l 
(q; q)0 

_ 
(q4; q8)ß (> 

a(n)gn(n+ß)l2 +E ß(n)gm(n+1)/2 (q; q)ý `L 
n>_o n>o 

where a(n) =1 if n-0,2,5,7 mod 8 else = -1, and ß(n) =1 if n=1,6 mod 8, 

= -1 if n-2,5 mod 8, else = 0. But, by q -+ q2 and z=q in the triple product identity 
this becomes 

But 
EE R(m, n)wgn 
mEZ n>O 

= R[0,8] + wR[1,8] + iR[2,8] + w3R[3,8] - R[4,8] + w5R[5,8] - iR[6,8] +W7 R[7,8] 

= R[0,8] - R[4,8] + v(R[1,8] 
- R[3,8]). 

This implies 

and 

(q4; gl)oo [q; 48] [46; 416] (48; q co + gV2[q2; 4'161(416; 4'16)00l (q; q 00 

([q3; 

q8l(q4; q8).,, (ql6; ql6)co 

Y[R(0,8, n) - R(4,8, n)]4n = 
(-q4; 4'3) 82 (5.54) 

n>o 
[q2; q ý[4 4 

E[R(1,8, n) - R(3,8, n)lq' = (q; q2) , (g8; gls)ý[q6; q16] (5.55) 
q 

n>o 

which together imply (5.29). 
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5.7 Related Identities 

There is another approach to the birank, based on the following observation: 

E z#(a) gwa(a) =E (zngn (5.56) 
. XE, p n>0 `T 

q)n 

This implies that, summing over all ordered pairs having birank congruent to r mod k, 

E qwt(") =E h(s, k)h(t, k) (5.57) 
b(vr)-kr s+t=hr 

where 
h(s, k) 

qkn+9 

n>o 
(q; q)kn+s 

This suggests that it may be worthwhile looking at the sum of zm/(q; q)m, summed over 
the (positive) values of m that satisfy a certain congruence. This in turn leads to the well 
known identity 

z"` 

m>0 
(Q; 4)m (z; 4)00 

which follows from n -+ oo in (1.10). It follows from this that for n any natural number, 

and w := e2ait", 
wjmzm ri 

( 
(zd, qd)-1L("I d) (5.58) 

j m>0 
(q; q)m 

din 

where the product on the left is over all positive integers coprime to, and not greater than, 
n (and p is the mobius function). For instance, if n=6 then w=e am : -i a and (5.58) 
becomes 

Wz W2Z2 w5z W10Z2 (z2; g2)oo(z3; q3)o, 
1+(4; 

4)i+(q; 4)2+... 
1+ C 4)1 

+ (4; 4)2 
+ (z; Q)oo 

(z6; 
q6)00 (4; C 

Now, consider the case n=3. It follows from (5.56) that 

zb(7r) gwt(7r) = 
zngn ) (,: z-nqn 

(5.59) E 1: 

lrEPE n>0 
(q; q)n 

n>0 
(q; 4)n 

which is equal to 

(h(0,3) + zh(1,3) + z2h(2,3)) (h(0,3) + z-lh(1,3) + z-2h(2,3)) 

(this is true in general, but there's no point writing it like so unless n= 3). 

65 



Now, putting z=q and expanding out gives the expression 

h(0,3)2 + h(1,3)2 + h(2,3)2 - h(0,3)h(l, 3) - h(1,3)h(2,3) - h(2,3)h(0,3) 

which by (5.58) is equal to [q; q3]. This is equivalent to (5.32), it can be written as 

q3n 
2 

q3n }12 q3n {-2 
2 

n>0 
(qi q) 3n 

+ 

n>0 
(Qi q)3n 11 

+ 

n>0 
(Qi Q)3n }2 

- 
q3n g3nt1 

- 
q3n 1 g3fl+2 

(q; q)3n (T q)3n+1 (qi q)3n+1 (q; q)3n+2 
1: 

0 n>o n>o n>, ) o 

- 
g3nt2 q3n 

- 

(q; q) 00 

n>0 
(qi q) 3n+2 

n>0 
(qi q)3n (q3; g3)00 

Now for the case n=4. Putting z=q into (5.58) gives 

(h(0,4) + ih(1,4) - h(2,4) - ih(3,4)) (h(0,4) + ih(1,4) - h(2,4) - ih(3,4)) = [q2; q4] 

which is (5.36). It may be written as 

h(0,4)2 + h(1,4)2 + h(2,4)2 + h(3,4)2 - 2h(0,4)h(2,4) - 2h(1,4)h(3,4) 

- 
(42i q 

4)00, 

or as 22 
E((_1)fl(qq)2) q 2n 

+ 
(E(-, 

). Q2n+1 
- 

(42; 42)00 

n>0 ;n n>0 
(q; Q)2n+1 (q4; g4)oo . 

So (5.58) can be used to help understand the birank, the above two identities are maybe 
not very interesting in themselves because (5.58) is probably not very interesting (but, as 
just explained, can be a way of tackling the birank). 

Now for the interesting part: It follows from (5.40), together with (5.57), that 

h(0,4)2 + h(1,4)2 + h(2,4)2 + h(3,4)2 

-h(0,4)h(1,4) - h(1,4)h(2,4) - h(2,4)h(3,4) - h(3,4)h(0,4) _ 
(4; 42)00 [-4s; 416}(416' gls)oo, (q4; q4)00 

and from (5.41), together with (5.57), that 

h(0,4)h(1,4) + h(1,4)h(2,4) + h(2,4)h(3,4) + h(3,4)h(0,4) 

-2h(0,4)h(2,4) - 2h(l, 4)h(3,4) =q 
(q' q2 

\ 
[-q2; gls](qis' gis),, (ql, g4)oo 

and these two identities do not follow from (5.58). 
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5.8 Other Ranks 

In this section, the 5 dissection of the Euler product is required. It is 
10.25 25.25 25.25 

\qi q)oo -_ 
[q 

;4 
_(q 

_q 
)O° 

_ q(g25. q, 25)". 
_ q, 2 [q-5; q2,51 (q 

'q). (5.60) [q5i q25] [gloi q25] 

which follows from lemma 6 in [5]. This chapter has dealt with the existence of a `2 

dimensional rank', namely the birank. The aim here is to briefly describe a4 dimensional 

rank, i. e. one defined on members of P4. This is not an unnatural avenue to persue, given 
the following easily proved congruence: 

p4 (5n + 3) - p4(5n + 4) -0 mod 5. (5.61) 

So what `super-rank' can be used to explain this congruence? One answer is: For 

= (A(1), A(2), A(3), A(4)) any ordered 4-tuple of partitions, define the super-rank s(rc) 
as s(r. ) = 2#A(1) + #A(2) - #A(3) - 2#A(4). If w= e2"/5 then 

_ 
E 1: R* (m' n)W mqn = (W24; q)(wq; 4) (1 w-14; 4) (W -24; q) _ 

(g; 
(45; g) 

mEZ n>0 q5) 

where R* (m, n) denotes the number of members of P4 having weight n and whose super- 
rank is m. So, by (5.60), 

E R* (m, n)wmgt 
mEZ n>0 

[q10; g25}(q25; q25) 1 (q25; q25) 
_ 

5; q25] (qý25. 
l 1l \ q25) 

[q5; q25] (45; 4'5) 
-q 

(q5; Q5) 
q2 

[q 
[q1O; q25] (q5; i5) 

But, for this super-rank, 

R* [0,51 - R* [2,5] + (w + w4) (R* [l, 5] - R* [2,5]) _ 

[g10,. g25](g25,. g25) 
25.25 (g5, . q25] (q25; . g25) (g , g) 

[q5; g25] (q5; ßi5) -q (q5; 45) - (j 2L [410; 425](4'5; 45) 
Hence, for all n, R* (1,5, n) = R* (2,5, n) (which is not immediately obvious) and 

E[R* (0,5,5n) - R* (1,5,5n)] qn = [q; 
1 

]2 
rio 

1: [R*(1,5,5n + 1) - R*(0,5,5n + 1)]q" = 11 
(1 

1 

q=) n>O s16 

(where the product is over all i coprime to 5) 

ý[R*(1,5,5n + 2) - R*(0,5,5n + 2)]qn = [q2ý q5]2 n>o 
implying that R* (0,5,5n) > R* (1,5,5n), R* (1,5,5n + 1) > R* (0,5,5n + 1) and 
R* (1,5,5n + 2) > R* (0,5,5n + 2) except for R* (0,5,2) = R* (1,5,2). The equality 
R*(0,5,5n + j) = R*(1,5,5n + j) for j=3 or 4 also follows. This equality, together 

with R* (1,5, n) = R* (2,5, n), implies (5.61). 
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5.9 Summary 

It is worth noting that the only tools used in this paper have been the Jacobi Triple Product 

Identity, the Quintuple Product Identity and elementary results about algebraic indepen- 

dence (\ is irrational, for example). This appears to be perhaps somewhat ironic, given 

that the super-ranks are a generalisation of Dyson's rank, and there is no equally elemen- 

tary proof of his identities (see [5]). The appearance is deceptive. Whereas the Dyson 

rank involves both the first part and the number of parts of a partition, the super-rank of 

this paper is defined only in terms of the number of parts (of each partition in the ordered 

pair or k-tuple). An example of a proper generalisation would be: for an ordered pair of 

partitions, define a rank as "Dyson rank of first partition plus twice Dyson rank of second 

partition". Does this rank explain the congruence p_2(5n + 2) -0 mod 5? Just as there 

are other statistics similar to the rank, the crank for example, for ordinary partitions, there 

may well be other super ranks for ordered pairs (or triples or whatever) of partitions. 
Finally, is there some combinatorial proof of these equalities and inequalities? Either 

a bijection that proves (say) R(1,5,5n) = R(2,5,5n) or indeed some argument showing 

that R(0,5,5n) > R(1,5,5n). 
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Chapter 6 

A q-elliptic identity 

6.1 The identity. 

The aim of this chapter is to present a new approach to the following identity, which is 

stated as a 
Theorem : Suppose that that al, ..., aN and bi, ..., 

bN are nonzero complex numbers 

for which 

ala2... aN = blb2... bN (6.1) 

and no two b% are q-equivalent, which is to say that the ratio of two distinct bis is not an 
integer power of q, i. e. 

ijýb, 0 bbgt (6.2) 

for any integer t. When these conditions are satisfied the following identity holds; 

N [ai' br; q] [a2 I br; q]... [a1 br; q] 
=0 (6.3) L=1" [bi ibri 4'][b21bri q]... [brbr li q]... [brb- . ql 

(the .. indicates that the term [b,. b, -. '; q] is omitted). The standard proof (which can be 

found in [18]) of this involves analytic arguments, but my aim here is to present an invo- 

lutive approach to this identity for the cases N=3 and N=4. For both these cases a 
bijective proof of an identity that follows from (6.3) and the Jacobi triple product identity 

is given. The triple product identity, which was proved in chapter 4, states 
s 

[z; 4](Q; q)0 ý(-1)nz"gn 2 (6.4) 
nE? 

Now, let it = (irl, 72i .. ") irn) be an ordered n-tuple of integers, so it can be viewed as an 

element of V" or as a row matrix. The transpose of will be written in bold, ir. In this 
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chapter a(7r) will be defined as o, (ir) :_ 7rl + 7r2 + ... + 7r, ti, the sum of the parts and the 

weight of it is defined as 

222 
wt(7C) := 

7ri - 7rl 
+ 

7ý2 -2+... + 
7rn - 7rn 

222 

6.2 The case N=3. 

The identity obtained from (6.3) by choosing particular values for (al, a2, a3) 
and (b1, b2, b3) is the same as that which is obtained by chosing (Aal, A a2, Aas) and 
(tbl, Abe, ab3), where A is any nonzero scalar. In particular, we can divide through by bl, 

say. Having done this (6.1) ensures that when four of the five other entries are set, the last 

one is also determined. So if instead of (al, a2, a3) and (b1, b2, b3) in the above theorem 

one picks (al, a2, a3) and (1, bi, b2) then (6.1) ensures that a3 = blb2/(ala2). It follows 

that there is the following equivalent version of the theorem (in the case N= 3): 

Whenever no two of 1, bl and b2 are q-equivalent, the following identity holds; 

[ai'; g] [ai 1; q] [ala2bi' b21; q] + 
[ai' bi; q] [a l bi; q] [a1a2 '; 9'J 

[bi'; q] [bz 1; q] [bi; q] [bib21; q] 

[a, -'b2; q][a21b`i; g][a, a2bi l; 4'] 
= 0. 

[b2; q] [bi 1 b2; q] 
(6.5) 

By using [z-1; q] = -z-1 [z; q], i. e. identity (1.3), this can be written as 

bl 
[a-, '; 4][a2 1; 9][ala2b1 ib2 1; q] 

_ 

b2 [dl lbi; 
4] [aa lbi; 

q] [aiaab21; q] 

[bi; q] [b2; q] bi [bi; q] [bi' l; q] 

+ 
[a, -'b2; q] [az 1 b2; q] [al a2b11; q] 

=Q (6.6) [b2; q] [bi b2; 9] 

and multiplication by [bi; q] [b2; q] [bl1b2; q] gives 

bi ba[ai1; q][aa 1; q][Qia2bilbi1; 4][b-1b2; 4) 

- 
bi [al-lbi; q] [a 1 b1, q] [al a2bz'; q] [b2; q] 

+[ai lb2; q][a21b2; q][ala2bi 1; q][b1; q] = 0. (6.7) 

Multiplying through by (q; q), and using the Triple Product Identity (1.17) gives 

bibs (-1)f ßl 
f4 E (-190.2 °q' ý(-1)hal 

a2bl 
hbZ h, 

22-j= E (-1)k bi hbZq 

fEZ gEZ hEZ kEZ 

i E(-1)fai Ibfq E(1 a0. gbs II- F(1 hah hb-h "I- 
1 -) 2, q -) ia2 2q 

F(-1)kb2 

fEZ gEZ hEZ kEZ 

+E(-i)fal f bfq 
'ý I. E(-i)haha b] hqhý- E(-1)kbi9ý- 

= 0. (6.8) 
fEZ OEZ hEZ kEZ 
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This in turn can be written as an expression involving three sums, each of which is over 
all elements of V. To do this, let W1, W2 and W3 be sets of ordered 4-tuples (so each W= 
is the set Z4). Thus (6.8) becomes (with, for it E Wi, W2 or W3,7r1 = f, ire = g, 713 = h, 

7r4 = k), 
3 144(1r)gwt(R) E (r)b, 

2 
7rE Wl 

- EW 
[ý (_l)'()ai'()a (ý')b, (ý')b2a(ý)qýc(, ý) 

IrEW2 

-ý (-1}(ýr)ali(ý)a(ý)bls(ý)b2a(ý)gwt(ý) =0 (6.9) 
lrEW3 

where 

/-ti(7r) = -f + h, pa(ir) = -9 + h, P3(7r) = -h -k+1,114(7x) = -h +k+1, 

vi (ir)=-f+h, va(g)=-g+P, v3(ir)=f+g-1, v4(ir)=-h+k+1, 

T1 (lr) =-f+ hý T2 (7r) = -g + h, 73 (7r)= 
-h + k, 'r4 (7r) =f+ /g. 

What is required is a means by which an element of one of the three sets can be paired 
off with a particular element of one of the other sets in a `nice' way. What this means 
precisely will become clear later, but first it is helpful to decompose each of the three sets 
by defining Wj' := {ir E W2 : a(ir) -x mod 2} (x =0 or 1). It is now possible to define 

six maps (three pairs of maps), 

x: W° -+ W2 , Xä : W2 -+ W °, 

Xl : Wl -+ 
W3 

7 X3 : W3 
-* Wl 

X2 : W2 -4 W3 , X3 : W3 -> W2 . (6.10) 

Thus, the notation x has been used to denote a map from a subset of Wi to a subset of Wj. 
In fact, for x' (ir) to be defined it is necessary that it E W; and that either u(7r) =0 mod 2 

and (i, j) E {(1,2), (2,1), (3,1)} or a(7r) -1 mod 2 and (i, j) E {(1,3), (2,3), (3,2)}. 
Also, X' (ir) may be written as it and similarly, the transpose of X? (1r) may be written in 
bold, ir'. 
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The maps are defined by 

7c := Aiir + c; (6.11) 

where the Ai's are four by four matrices and the ct's are column matrices. They are 

1 -1 -1 -1 1 

z1_- 1 -1 1 -1 -1 2- i1 Al A2 
2 ci - c2 =1 

-1 -1 -1 11 

1 -1 -1 11 

s-1 -1 1 -1 1 a_1 1 
Al 

2 -1 -1 11' C1 21' 

-1 -1 -1 -1 3 

1 -1 -1 -1 1 

1- 1 -1 1 -1 -1 11 A3 
2 -1 -1 1 -1 

C3 =1' 

111 -1 0 

1 -1 -1 11 

A3_A3= 
1 -1 1 -1 1 

cZ-c3- 
11 

2 -1 -1 1121 

1111 -1 

Thus, for example, Xi ((f, g, h, k)) = (2 (f -g - h+ k+ 1), 2 (- f +g - h+ k+ 1), 2 (- f- 

g+h+k+1), 2(-f -g-h-k+3)). 
As an example, take it := (-3,7,10,2) E W°. Now, ir' = Xi(zr) = (-10,0,3, -5). 

What is nice is that wt(7r) =6+ 21 + 45 +1= 73 and wt(7r) = 55 +0+3+ 15 = 73, 

the map is weight preserving. Furthermore, µl (ir) = -(-3) + 10 = 13 and 
vl (7r) _ -(-10) +3= 13. In fact vT(ir) = AT (r) for TE {1,2,3,4}. The other nice 
thing is that Xä(Xi (ir)) = Xä(-10) 0,3, -5) 7r, or 7r = 7r. What all this means is that 
(-3,7,10,2) E W° and (-10,0,3, -5) E W2 can be paired off with each other. From 
(6.9), (-3,7,10,2) contributes 

_1)a( 
)d'1(ý)aP2(ý)bigtý) 4(ý)Qý, t(, r) _ +Qi3a2bi i'b2rg73 2 

in the first sum, whilst (-10,0,3, -5) gives 

ý_lýQ(ý )a 1 )a2 b24(N )qwt(ý) =+ Q13Q3 "b2 7g73 

in the second sum (and so, since the second sum in (6.9) is preceeded by a minus sign, 
the expressions cancel each other out). 
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There is nothing unusual in the choice of it in the above paragraph. It is always the 

case that 

it E W° = wt(Xi(ir)) = wt(ir). 

This follows from the fact that 

(f__h_k+1)) ((f__h_k+1)2_ 

+1 2(-f 
+g-h-k)+1 C 

+1 
a 

C'(-f -g+h-k)+1 

+1( (_i -g-h+k)+1)2 

(_f+_h_k+1)) 
-- 

2((_f_+h_k+1)) 

1 ((_f_9_h+k)+1)) 
-2 

f2- f g2g h2-h k2-k 
=2+2+2+2 

Indeed, for any ir, the map defined on 7r is weight preserving; wt(x? (ir)) = wt(7r). Fur- 

thermore, since 
Aj (Ailr + c; ) + cj = ir 

it follows that that Xj' (d (ir)) = ir, or 7rß` _ ir so the maps are involutions. Equally 

straightforward are (for 1<D< 4), 

VD(X1(7r)) = D(7r)) /-tD(X2(7r)) = VD(7r), 

TD(Xl(*7r)) = {LD(7r), ILD(X3(7r)) = TD(7r), 

TD(X2(7r)) = VD(E), VD(X3(7r)) = TD(lr)" 

It remains to investigate the effect of the relevant map on the parity of the sum 

of the parts of a given 4-tuple. This has been dealt with implicity in (6.10). In 

stating, for example, that Xi : W° -+ W2 and not just X1 : W° _+ W2, it is implicit 

that o (X2(ir)) = a(ir) mod 2. In fact, it is easy to verify that the maps Xi, X2, X3 2 and Xs 

preserve parity whereas Xi and X3 reverse parity. Or more succintly, 

i-j mod 2 -4=* 7((1r))Q (7r) mod 2. (6.12) 

This implies cancellation occurs, since the expression in (6.9) involves sums that are 

alternately preceeded by plus and minus signs. 
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6.3 The case N=4. 

The following notation will be used in the proof of the theorem when N=4. For 

7r = (1r1,72 , 13,74 , 15,76 , 77 )E Z7, define 

81(7r) := 21r5 - 2ir6 + 21r7 -1, 

S2 (7r) := -7r, - 7r2 - ir3 - ir4 + ir6 + 7i7 + 1, 

63(ir) :_ -Tfl - 7r2 - lt3 - 74 + 7f5 - lt7 -I- 2ý 

84(7r) := -1! '1 - 7r2 - 7r3 - 7r4 - 7r5 - 7r6 + 3" 

Let #(ir) := #{y E {1,2,3,4} : Sy(7r) =0 mod 3}. It can be shown that for any 

is E Z7, either #(ir) =4 or #(7r) = 1. Without specifying at this stage what the subscript 
i is, define U, to be the set {ir E Z7 : bl (7r) =0 mod 3}. For y=2,3 or 4, define UjY 

to be the set {7r EV: öb(ir) =0 mod 3,5i(ir) #0 mod 3}, the last condition ensuring 
that no it occurs in more than one of the four sets. Thus, for a given it E Z7, either 
#(7r) =4 and so it E Ul and none of the other three sets, or there is precisely one y 
such that S,, (ir) -0 mod 3 (because ß(7r) 4 #(7r) = 1) and this is the y for which 

it E UY. So any lr EZ is a member of precisely one UjY. 

When N=4, the theorem can be stated as: whenever no two of 1, bi, b2 and b3 are 

q-equivalent the following identity holds; 

[a, '; q] [a2 1; Q] [d3 1; q] [ai a2a3b 1 b2 1 b3 

[bi 1; q][b21; g] [b31; R] 

+[a, 
1bi; 4'][a21bl; q][a31bl; q][aia2a3b21bs 1; 4) 

[bi; 4} [b1b21; 4) [bib3'; q] 

+[al 
1b2; q][a21b2; q][a3lb2; q][aia2a3b11b31; q] 

[1k; q] [bi ib2; q] [b2b3'; q] 

[a, 1b3; q][a2lb3; q] [a313; q][ala2a3bj 
ib2'; 

4] 
- +-0. (6.13) [b3; q] [bi 1b3; q] [b2 ib3; 9) 

which, using (1.3), can be rearranged to give 

-b1b2b3 
[a1; q][a2 l; q][a31i q][a1a2a3b1 lb21b31; 

q] 

[bi; q] [b2; q] [b3; 4'] 

b2b3 [ai-'bi; q] [a2'bi; q] [a3 bi; q}[a, a2a3b2 ib '; q] 
bi [bi; q] [bi 1 b2; q] [bi l b3; q] 

_b3 
[a, 

lb2; q][a21b2; q][a3 
lb2i q][aia2a3b1'b '; q] 

b2 [b2; 4] [bi 'b2; q] [b21 b3; 4] 
LQl lb3; q][a2 lb3; g1[a3 %; g][aja2a3bl lb21; q] 

+=0. (6.14) [b3; q] [bi-' b3; q] [b21b3; 4] 
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Multiplication by [bi; q][b2; q][b3; q][bi lb2; q][bi 1b3; q][b21b3; q] gives 

-bib2b3[ai 
1; q][a21; q][as 1; q][ala2a3bl ib21b3'; 4][bi lb2; q][bi ib3; q][b 'b3; q] 

+ 
bbb3 

[ai-lbi; q] [ai' bi; q] [a "bi; q] [a, a2a3b21 b31; q] [b2; Q][b3; q] [bz l b3; q] 

-L [a11 b2; q] [aa 1 b2; q] [as l b2; q] [al aza3bi l bs 1; q] [bi; q] [b3; q][bi i b3; q] 

+[al'b3; q][a2'b3; q] [a 'b3; q][ala2a3bi lb21; q][bl; 9' [62; q][bi'b2; q] = 0. (6.15) 

Multiplying through by (q; q)7 and using the triple product identity (1.17) gives 

r_1ýQ(ýýaiý(ý)a22(ý)a33(ý)4(ar)Lpb(ý)b3 

7rEEUU1l 

ai()Q2 
(ß)Q3 (7)bi4(ý)b25(7r)V36(7r)wt(7r) 

IrEU2` 

_ al(r)a2 
()a3 (ý)b14(1r)b2 (7')b38(7r)ýwt(7r) 

irEUsl 

+E (_1)a( )a'l'( )a2a( )Q3s()bia('r)bPa(")bgs(")Qwt(a) 
=0 

IrEU4 

where Ul, U2, U3 and U4 are four sets of ordered 7-tuples, it = (k, 1, m, n, p, r, s) E Z7, 

and 
jtl(ir) = -k+n, µa(lr) = -t+n, P 3(7r) = -m+n, 

µ4(7r) =-n-p-r+1, p5(ir) = -n+p-s+1, p6(ir) =-n+r+s+1, 

vl (7r) = -k + n, v2 (7r) = -l + n, v3 (7r) = -m -{- n, 

v4(7r)=k+l+m-2, v5(7r)=-n+p-s+1, v6(lr)=-n+r+s+1, 

7-1 (7r) = -k + n, 7.2 (ir) = -1 + n, 113 (7r) = -m + n, 

T4(lr)=-n+p-s, T5(ir)=k+l+m-1, r6(ar)=-n+r+s+1, 

Pi (ir) = -k + n, P2(7r) = -l + n, Ps (-7r) = -m + n, 

p4(1r) _ -n+p-s, ps(ir) _ -n+r+s, p6(lr) =k+l+m. 

Now, consider an element in any one of the four sets, it E U. By earlier remarks there is 

a unique y such that it E U= . For this y define Sy :=J . 
(7r)/3. 
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There are sixteen maps, 

X=: U1-}U; 

24 
X, - ui -3U2" 

x: U1 -> U3 ) 
424 

XýU1U4, 
3 X2 2 U2' u33 
423 

X2 U2 U4 3 
X3 : U3 -ý U4 i 

(i = 1,2,3 or 4), 

44 
X2: U2 Ul 

43 X3 . 
Ü3 Ül 

42 X4"U4 u1 

33 
.3 

U3 + U2 
, 

32 

4: U4 U2 , 
X4: U4 U3. 

They are given by 

X! (7r) _ (k, 1, m, n, p- 51, r-I-61, s-81), 

Xi(7r) = X2(7r) = (k + 84,1 + 54, m+ 54, n + 84, p + 64, r + ä4, s), 

x (r) = (k+S3, l+S3, m+63, n+63, -p+d3+1, s+63, r), 

X3(7') _ (k+S4, l+S4, m+S¢, n+S4, -p-S4+1, s, r+S4), 

X14(7r) = (k+S2, l+S2, m+S2, n+d2, -r+S2+1, -s+S2+1, p), 

X41 (7r) = (k+S4, l+64, m+S4, n+S4, s, -p-S4+1, -r-64+1), 

X2(7r) =X3(7r) _ (k+S3, Z+S3, m+S3, n+S3, p-S3, r, 8+S3), 

X4 (7r) _ (k+S2, l+S2, m+S2, n+S2, r-S2, p, -s+S2+ 1), 

X4(7r) = (k+S3, l+ 53, m+S3, n+63, r, p-63, -s-63+ 1), 

X3(7r) =X3(7r) (k+S2, l+S2, m+S2, n+S2, p, r-S2, s-S2). 

It is a straightforward task to show that the maps are weight preserving involutions and 
that 

AD(Xl(7r)) - AD (7r), VD(x2(7r)) - VD (7r), 

TD (X3 (10) ý-- TD (70 

I'D (Xl (7r)) = AD (lr) 
, 

TD (x (7r)) = ILD (7r) 

PD (Xl 
(1r)) = AD (7r), 

PD (X44 (70) = TD (7r) 

i-ID(X2(7T)) = VD(7r), 

pD(X3(1r)) = TD(7r), 

pD(X4(1r)) = PD(lr), 

TD (X2 (7r)) VD (7r), 

PD (X2 (7r)) VD (7r) 
, 

PD (X3 (1r)) = TD (lr), 

VD(X3(7r)) = TD(TC), 

VD W (7r)) PD (7r), 

TD(X4(1r)) = PD(7r). 

It remains only to check that cancellation occurs. This is so because for any 
(i, j) E {1,2,3,4} the statement (6.12) is true. 
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