

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

__

i

A Policy Language Definition

for Provenance

in Pervasive Computing

Aeshah Alsiyami
a.a.d.alsiyami@sussex.ac.uk

A thesis submitted, on 3 January 2012, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (DPhil) in the School of Informatics, University of Sussex, Brighton, UK

__

ii

DEDICATED TO

MY WHOLE FAMILY,

ESPECIALLY MY MOTHER,

MY HUSBAND AND MY CHILDREN

Rayan, Mohaned, Razan, and Majd

__

iii

ABSTRACT

Recent advances in computing technology have led to the paradigm of pervasive

computing, which provides a means of simplifying daily life by integrating information

processing into the everyday physical world. Pervasive computing draws its power from

knowing the surroundings and creates an environment which combines computing and

communication capabilities. Sensors that provide high-resolution spatial and instant

measurement are most commonly used for forecasting, monitoring and real-time

environmental modelling. Sensor data generated by a sensor network depends on

several influences, such as the configuration and location of the sensors or the processing

performed on the raw measurements. Storing sufficient metadata that gives meaning to

the recorded observation is important in order to draw accurate conclusions or to

enhance the reliability of the result dataset that uses this automatically collected data.

This kind of metadata is called provenance data, as the origin of the data and the process

by which it arrived from its origin are recorded. Provenance is still an exploratory field in

pervasive computing and many open research questions are yet to emerge. The context

information and the different characteristics of the pervasive environment call for

different approaches to a provenance support system.

This work implements a policy language definition that specifies the collecting

model for provenance management systems and addresses the challenges that arise with

stream data and sensor environments. The structure graph of the proposed model is

mapped to the Open Provenance Model in order to facilitating the sharing of provenance

data and interoperability with other systems. As provenance security has been

recognized as one of the most important components in any provenance system, an

access control language has been developed that is tailored to support the special

requirements of provenance: fine-grained polices, privacy policies and preferences.

Experimental evaluation findings show a reasonable overhead for provenance collecting

and a reasonable time for provenance query performance, while a numerical analysis

was used to evaluate the storage overhead.

__

iv

ACKNOWLEDGEMENTS

First of all, I give thanks to God for granting me the strength and courage

to complete this study.

 Special thanks go to my supervisors, Dr. Ian Wakeman and Dr. Dan

Chalmers, for their guidance and inspiration during this work. Without their

support this work would have never been completed.

My in depth love and grateful thanks to my husband who offered his help,

and gave his endless support and encouragement. Also I would like to thank my

brothers and sisters for their continuous prayer, encouragement and assistance,

and particular thanks to my lovely mother (God bless her), who was the most

encouraging and supportive person.

 I am thankful to Dr. Des Watson for his valuable feedback during the annual

review interviews. I am also thankful to all of the members of the Foundations of

Software Systems Group. I am especially indebted to the following people for

their insightful comments, helpful discussions, and proof reading: Simon Fleming,

Yasir Malkani, Lachhman Das Dhomeja, Renan Krishna, and Roya Feizy.

Finally, I would like to express my deep thanks to all my friends who have been

such an asset to me in my study.

__

v

DECLARATION

I hereby declare that this thesis has not been, and will not be, submitted in whole or in
part to another University for the award of a PhD or any other degree.

 Signature

__

vi

CONTENTS

DEDICATION ………………………………………………………………………………………..

ABSTRACT ……………………………………………………….……………………....................

ACKNOWLEDGMENTS ………………………………………………………………………..

DECLARATION ……………………………………………………………………………………..

CONTENTS……………………………………………………………………………………………

LIST OF FIGURES ………………………………………………………………………………….

LIST OF TABLES …………………………………………………………………………………....

LIST OF CHARTS …………………………………………………………………………………..

LIST OF ALGORITHMS…………………………………………………………………………

LIST OF APPENDICES…………………………………………………………………………..

ii

iii

iv

v

vi

x

xii

xiii

xiv

xv

1. INTRODUCTION

 1.1 Introduction and motivation …………………………………….……..………...

1.1.1 Debugging compliance ………………………………….…………..

1.1.2 Legal domain ……………………………..………………..……………

1.1.3 Data quality ………………………………………………………….......

1.1.4 Ownership ……………………………………………………………......

1.1.5 Causality ………………………………………………………………......

 1.1.6 Informational …………………………….…………………...…………

 1.1.7 Proof of context ………………………………………………………...

 1.2 Challenges ……………………………………………………………………………......

 1.3 Contribution ……………………………………………………………………...…......

 1.4 Thesis road map……………………………………………………............................

1

5

6

6

6

8

8

8

9

13

14

2. BACKGROUND

 2.1 Background information ………………………………………………….........….

 2.1.1 Motivation domains ……………………………………………………

16

17

__

vii

 2.1.1.1 Scientific domain ……………………………………………

 2.1.1.2 Business domain ………………………………….………...

 2.1.2 Data processing architecture ………………………………………..

 2.1.2.1 Service-oriented architecture………………………….

 2.1.2.2 Database architecture………………………………….….

 2.1.2.3 Operating system architecture………………………...

 2.2 Provenance approaches …………………………………………………………….

 2.2.1 Representation approach …………………………………………...

 2.2.2 Recording approach …………………………………………………….

 i Workflow provenance …………………………………...............

 ii Data provenance ……………..…………………………………….

2.2.3 Storage approach ………………………………………………………...

2.2.4 Provenance querying approach…………………………………...

 2.3 Provenance security …………………………………………..……………………..

 2.3.1 Confidentiality …………………………………………………………….

 2.3.2 Integrity …………………………………………………………………….

 2.3.3 Availability ………………………………………………………………...

 2.4 Provenance challenge series ……………………………………………………..

 2.4.1 The first provenance challenge……………………………………..

 2.4.2 The second provenance challenge…………………………………

 2.4.3 The third provenance challenge……………………………………

 2.4.4 The forth provenance challenge……………………………………

 2.5 Related work …………………………………………………………………………….

 2.5.1 Workflow provenance …………………………………………………

 2.5.2 Data provenance ………………………………………………………….

 2.5.3 Data stream provenance ………………………………………………

 2.5.4 related work on provenance access control …………………..

2.6 Provenance use case …………………………………………………………………

 2.6.1 Application architecture ……………………………………………...

 2.6.2 Provenance component ……………………………………………….

 2.6.3 Addressing the challenges of provenance ……………………..

 2.7 Summary ………………………………………………………………………………….

17

18

18

19

19

20

20

21

23

24

25

27

28

30

30

31

31

31

32

32

33

33

33

34

37

40

42

43

45

46

47

49

__

viii

3. PROVENANCE POLICY LANGUAGE

 3.1 Collection policy ……………………………..………………………………...………

 3.1.1 Process events …………………………………………………………..

 3.1.1.1 WSN Query start and finish……………………………

 3.1.1.2 Changes in the WSN query execution …………….

 3.1.1.3 Automaton for process events …...…………………..

 3.1.2 Stream events ……………………………………………………………

 3.1.2.1 Reading increased and decreased …………..……….

 3.1.2.2 Null reading …………………………………………..……….

 3.1.3 Extended policy …………………………………………………………..

 3.2 Mapping to Open Provenance Model (OPM) …………………….………..

 3.2.1 Nodes ………………………………………………………………………….

 3.2.2 Dependencies ……………………………………………………………...

 3.2.3 OPM nodes primitive …………………………………………………...

 3.2.4 Time observation ………………………………………………………

 3.2.4 The mapping ……………………………………………………………….

 3.3 Connecting provenance policy language to the structured

 model ………………………………………………………………………………………

 3.3.1 Scenario 1 …………………………………………………………………...

 3.3.2 Scenario 2 …………………………………………………………………...

 3.4 The policy language description…………………………………………………

 3.5 Summary ………………………………………………………………………………….

50

54

54

56

56

57

58

60

61

65

65

66

70

71

72

75

76

83

87

89

4. ACCESS CONTROL POLICY LANGUAGE

4.1 Desiderata for fine-grained access control …………………………………

4.2 Mapping to role based access control model (RBAC) ………….............

4.3 Access control policy ………………………………………………………………...

 4.4 Applying access control policy in a use case example ………………….

 4.5 Summary ………………………………………………………………………………….

90

92

95

100

103

5. MAPPING TO IMPLEMENTATION

 5.1 Experimental setup ………………………………………………………………......

104

__

ix

 5.1.1 Simulated application ………………………………………………….

 5.1.1.1 WSN Query planner ………………………………………

 5.1.1.2 WSN Query execution…………………………….……….

 5.1.1.3 Simulated sensor component ………………………….

 5.1.2 Application functionalities ..…………..……………………………..

 5.1.3 Mapping to implementation ..………………………...……………..

 5.2 Provenance subsystem …..…………………………………………………………

 5.2.1 Data model ……………………………...…………………………………..

 5.2.2 Implementing the Collecting model ..….………………………..

 5.2.3 Implementing the provenance query component …………

5.3 Access control model …………………………...…………………………………...

 5.3.1 Data model ………………………………………………………………….

 5.3.2 Mapping to implementation …………………………………………

 5.4 Summary ………………………………………..………………………………………...

105

105

106

107

108

109

113

114

116

121

123

123

125

126

6. EVALUATION

 6.1 Provenance recording evaluation ……………….……………………………..

 6.1.1 Collecting overhead ……………..………………………………………

 6.1.1.1 Process provenance ……………...………………………..

 6.1.1.2 Event provenance ………………..…………………………

 6.1.2 Collecting scalability …………………………………...……………….

 6.2 Provenance query performance evaluation ……………………………….

 6.2.1 Size of interaction record ……………………………………………..

 6.2.2 Size of result record ………………………...…………………………..

 6.3 Storage overhead evaluation ……………………….…………………………….

 6.4 Summary …………………………………………………………..……………………..

129

129

130

132

134

136

137

138

139

143

7. CONCLUSION

 7.1 Summary of the work and its contribution …………….………………….

 7.2 Future work …………………………………………………………….……………….

 7.3 Closing remark …………………………………………………………………………

145

147

148

REFERENCES …………………………………………………………………………… 149

__

x

LIST OF FIGURES

Figure 1.1: A derivation tree of result 2 ……………………..……………………………….

7

Figure 2.1: Tables content ………………………………………………..……

Figure 2.2: View Definition …………………………………..…………………

Figure 2.3: View Table……………………………………………………………………………...

Figure 2.4: Lineage of the tuple …………………………………….……………

Figure 2.5: Phylogenetic workflow specification and run ………..…………………..

Figure 2.6: Employee table and Department table ………………………………………

Figure 2.7: SQL query ………………………………………..……………………………………...

Figure 2.8: Query Result ……………………………………………..……………………………..

Figure 2.9: System Architecture …………………………..…………………………………….

22

22

22

22

25

26

26

26

46

Figure 3.1: Automaton for process events ………………………………………………….

Figure 3.2: Automaton for increased and decreased events ………………………...

Figure 3.3: Automaton for Null events ………………………………………………………..

Figure 3.4: Automaton for extended policy ………………………………………………...

Figure 3.5: Graphical representation of OPM entities ………………………………….

Figure 3.6: Completion of “WasTriggredBy” edge……………………………………….

Figure 3.7 : Completion of “WasDerivedFrom” edge…………………………………….

Figure 3.8: Victoria Sponge Cake Provenance ……………………………………….........

Figure 3.9: Provenance graph of coarse-grained form ……………………………..….

Figure 3.10: Provenance graph of fine-grained form ………………………………….

Figure 3.11: A provenance graph of events recording ………………………………...

57

59

61

64

66

69

69

71

79

83

86

Figure 4.1: RBAC model …………………………………………………………………………….

Figure 4.2: Role hierarchy …………………………………………………………………………

92

95

__

xi

Figure 5.1: A simple query ………………………………...……………………

Figure 5.2: A complex query ……………………………………………………

Figure 5.3: Query windows of UGI ……………………………………………………………

Figure 5.4: Options to be selected for each attribute …………………………………

Figure 5.5: Query construction window with its result …………………………….

Figure 5.6: System Architecture with provenance component …………………….

Figure 5.7: Provenance Data Model ……………………………………………...

Figure 5.8: DFA for event increased and policy increase ……………………………..

Figure 5.9: Provenance query Page…………………………………………………………

Figure 5.10: Provenance query construction window ……………………………….

Figure 5.9: Access control data model ………………………………………………………..

106

106

110

111

112

113

116

118

122

122

125

__

xii

LIST OF TABLES

Table 2.1: Provenance storage approach and query language support ………

Table 2.2: Summary of characteristics of related work in provenance

 Techniques …………………………………………………………………………….....

29

34

Table 4.1: Roles specification ………………………………………………….…………………

Table 4.2: Permission specification ……………………………………………….…………...

Table 4.3: Owner user (permission and condition) ……………………………….…….

Table 4.4: User friend (permission and condition) ……………………………………...

Table 4.5: Supervisor (permission and condition) ………………………………………

Table 4.6: Assign user to role ……………………………………………………………............

Table 4.7: Assign role to permission …………………………………………………………..

Table 4.8: Assign supervisor to roles …………………………………………………............

Table 4.9: Assign role to permission …………………………………………………………..

93

94

98

98

99

101

101

102

102

Table 6.1: WSN Query provenance overhead ……………………………………………...

Table 6.2: Storage required for stream provenance …………………………………….

Table 6.3: Mathematical symbols for provenance analysis …………….……………

132

140

142

__

xiii

LIST OF CHARTS

Chart 6.1 WSN Query provenance recording time ……………………..…..……………

Chart 6.2: Event provenance overhead ………………………………………………………

Chart 6.3: Recording performance ……………………………………………………………..

Chart 6.4: recording performance with 1000 sensors…………………………………

Chart 6.5: Response time with the increase in the store size ……………………...

Chart 6.6: Response time with increased in result size ………………………………

Chart 6.7: Provenance record size in bytes ………………………………………………..

131

133

135

136

138

139

143

__

xiv

LIST OF ALGORITHMS

Algorithm 4.1: Algorithm for implementing the proposed access control

 model …………………………………………………………………...……………

99

Algorithm 5.1: The Provenance collection graph ……………………………..………. 120

__

xv

LIST OF APPENDICES

Appendix 1: Event Grammar…………………….………………………………...…………… 159

Appendix 2: Policy Grammar…………………………..………………………………..………. 164

__
1. INTRODUCTION 1

INTRODUCTION

This chapter presents an overview of the research area and the
motivation behind the need for the proposed system. It also
describes our contribution, followed by the challenges imposed
by pervasive computing systems. At the end, it describes the
organization of the remaining parts of the thesis.

1.1 Introduction and motivation

Recent advances in computing technology have led to the paradigm of

pervasive computing, also called ubiquitous computing, which provides a means

of simplifying daily life by integrating information processing into the everyday

physical world (Li et al. 2008). It creates an environment combining computing

and communication capability, and is built on two earlier steps: distributed

systems and mobile computing (Satyanarayanan 2001). A pervasive environment

requires traditional computer system inputs and outputs such as keyboard,

microphone and screens, besides the context information, which is the key data

for pervasive systems, such as location, temperature, time, and levels of light and

noise (Chalmers 2007).

In pervasive applications, sensors are most commonly used for connecting

the environment to the computing process and generating context information,

CHAPTER 1

__
1. INTRODUCTION 2

which needs to integrate the information from a diverse range of sources. Sensor

data generated by sensor networks depends on several influences such as

configuration and location of the sensor or the aggregation process performed on

the raw measurements data (Lange 2010). In order to draw an accurate

conclusion from this automatically collected data and provide some form of trust

and credibility concerning the source or the data owner, metadata need to be

stored that give meaning to the recorded observations. This kind of metadata is

called provenance data, as the original data and the process by which the result is

arrived at from its origin are recorded.

In general, provenance is defined, according to the Oxford English

Dictionary (Oxford Dictionaries 2009), as:

The fact of coming from some particular source; origin, derivation.

The history or pedigree of a work of art, book, etc.; a record of the

derivation and passage of an item through its various owners.

Provenance is one kind of metadata and is also referred to as 'lineage' and

'pedigree'; these words describe the creation, recording, processing, ownership,

and version history of data. In computer science, the same definition can be

applied to data and its provenance information. However, provenance is generally

defined as the description of the data source and the process by which it is

derived from its origin (Groth et al. 2006, Szomszor & Moreau 2003, Moreau et al.

2004).

Provenance has been recognized as an important consideration in many

domains, such as scientific experiments and business transactions, where a new

item of data is formed from a variety of diverse resources and complex analysis or

simulation. Keeping a complete record of how it was formed and where it is from

is essential for demonstrating its quality and trustworthiness, and also for finding

errors and reproducing results. In many scientific experiments, recording a

complete history of workflow provenance is important in order to enable these

experiments to be repeated and verified; avoid duplication of effort; recover the

source data of errors; and provide an attribution of the data source (Davidson et

__
1. INTRODUCTION 3

al. 2007, Simmhan et al. 2005). In the business domain, it is essential to provide

an audit trail; inquire about the source in the data warehouse; and track the

creation of intellectual property (Simmhan et al. 2005). Concerning the database,

it is important to determine the reliability and the quality of data; understand the

transport of annotation between data sources; and view updates and

maintenance (Buneman et al. 2007).

Provenance has been studied for many years and a number of techniques

for supporting it have been proposed (e.g. myGrid (Zhao et al. 2004), Trio

(Widom 2005) and Karma (Simmhan et al. 2008)). However, it is still an

exploratory field, and many open research questions remain to be answered

(Simmhan et al. 2005). Some of the emerging research directions are: combining

dataflow provenance and fine grain provenance by breaking the black box in the

workflow and extending ideas from the data provenance (Buneman et al. 2007);

addressing the problem of outsize storage when using the annotation approach

for fine grained provenance recording or when using inversion for an unretained

data source; using provenance in the trust policy; and archiving the provenance

data (Simmhan et al. 2005).

The use of provenance in pervasive systems seems to be different from

that mentioned above, since context information may have multiple

representations in different forms and at different levels of abstraction, and it is

highly interrelated. Context information is not a common kind of data such as a

tuple or an attribute of a table in a database, and is not a workflow process.

Context information in pervasive computing systems can be static or dynamic

(Henricksen et al. 2002). The majority of information is dynamic, such as a

person’s location and activity, which can change from time to time, while the

static context information is invariant, such as a date of birth in personal

information. Additionally, the different characteristics of the pervasive

environment call for different approaches in order to build a provenance-aware

application.

__
1. INTRODUCTION 4

Pervasive computing environments are highly dynamic and acquire their

power from a knowledge of the surroundings. “Much of the context information

involved in pervasive computing is derived from sensors” (Henricksen et al.

2002) (p 170). Sensor networks are widely deployed and range from personal to

scientific applications. Examples of these include: building a smart environment

(Hiramatsu et al. 2005), meteorology forecasting (Liu et al. 2006); body sensors

for health monitoring (Blount et al. 2007); location detection (Ray et al. 2004);

environmental condition monitoring (Gehrke & Madden 2004); home energy

monitoring (Harris et al. 2007); and traffic monitoring (Guitton et al. 2007).

Sensors produce continuous real-time data streams, which are time

ordered. A data stream is a potentially infinite sequence of time-ordered data

elements. All such applications are stream-processing systems, including real-

time analysis of high volume sensor streams (Gaber 2007). In many cases, this

data goes through a process pipeline in order to produce new useful data. Based

on these data, different reactions are programmed, such as triggering the

appropriate service or making decisions. Keeping a record of the entire process

that input data go through in order to alert the output gives the ability to trace

results back to the data set in the stream that caused them (Vijayakumar & Plale

2006). Storing sufficient metadata provides answers to critical questions and

supplies important information such as:

- Justification for any decision made according to incoming data

- Justification for any trigger process on specific data

- Keeping a record of the activity being applied to data

- Having the ability to recreate the processing graph, which represents

the processing provenance data, and to provide the data element of the

stream used to generate the output

- Recording the historical stream data

- Defining the low level sensor data that alerts the event

- Defining which sensor was used to obtain this raw reading.

__
1. INTRODUCTION 5

In such applications, to ensure low storage overhead and efficient

collection of provenance information, a hybrid model needs to be adapted in

order to capture the dependencies and lineage of individual data events. However,

the capture mechanism requires access to the computational process’s relevant

details such as steps, execution information and its arguments. In other words,

each process involved in the task needs to be documented. Newer workflow

systems have been designed to support provenance collection, such as VisTrails,

while earlier systems have been extended to capture provenance, such as

Taverna and Kepler (Freire et al. 2008). Provenance management can be built-in

during the design of new pervasive systems. However, existing systems can be

upgraded to support provenance management, which requires a modification to

the existing process, and awareness about how tasks are modelled. Each process

has to be instrumented to automatically capture provenance and any relevant

information in order to provide documentation of the complete task. So, when

any process is executed, the instrumentation can capture and publish provenance

information.

The idea of blending computing into the environment, with the feature of

being easy to use, raises a number of new uses of provenance information, as

follows:

1.1.1 Debugging compliance

Many applications require proper documentation and audit logs for

electronic records. Such information can be used to trace the lineage of data,

determine the resource usage and optimize the derivation process. Therefore,

tracking provenance has become an important aspect of many pervasive

applications in order to track back and detect the source data or a process that is

the cause of any errors found, and to define the relevant correction (fault

location). Faulty data that introduces errors and propagates them to all derived

data based on it can be detected by reviewing the pedigree of data backwards,

and by reviewing the provenance of the source forwards, all the derived data will

be easily allocated (Simmhan et al. 2005a). For example, in an automated clinical

__
1. INTRODUCTION 6

decision (Wang et al. 2007), the availability of a rich medical history can be used

for proactive anomaly detection, drug side-effects monitoring and trend analysis

of lifestyle activities.

1.1.2 Legal domain

In recent years, electronic records such as pictures and location traces

have been widely used in legal proceedings as evidence (Hasan et al. 2007).

Provenance information of these records is important for their reliability when

used in litigation, digital forensics and intrusion investigations. When the

provenance chain is recorded, investigators can follow the chain for ownership

history, or detect changes performed on the data by malicious intruders.

1.1.3 Data quality

Collecting the provenance of data enables its user to evaluate its quality

based on its source and transformation (Simmhan et al. 2005b). Provenance

information is important in order to improve the ability to judge accuracy and

evaluate trust. In addition, the sensor data stream often misses some reading or is

affected by significant noise and calibration, which is the process of translating

the sensor reading into a unit of measurement. When performing an analysis,

these missing items of data or unacceptable noise levels need to be filled in by

estimating the historical data, in order for it to be easily analysed, visualised and

compared with other data. Therefore, this level of detail of lineage metadata can

assist in estimating the quality of the data and can be a proof of any filters and

interpretation applied.

1.1.4 Ownership

Properly maintained provenance records can help ascertain the ownership

of the source data. The provenance chain can be recorded as a tree, and so users

can look down to the roots of the derivation tree to see the creators of the data

they have used and verify its copyright; or a creator can look up the chain to see

who is using their data (Simmhan et al. 2005a).

__
1. INTRODUCTION 7

As can be seen in figure 1.1, the roots of the derivation tree of result 2 are

the sensors that generate the reading. The data from sensor 1 and sensor 2 are

used by the two aggregation processes, while the data from sensor 3 is used by

aggregation 2 only.

A provenance chain is also used to resolve the dilemma of ownership or

liability in case of errors. In the case of a strange reading from a sensor, it is

possible to identify the cause of the problem, which could be a user default, or a

sensor failure due to the lack of a battery, or wireless transmission limitations.

For example, in the monitoring of electrical energy usage, when a user connects

an extension to a plug, the sensor that measures the electricity usage of that plug

may or may not give a high reading, depending on what is in use; in this case it is

the user’s responsibility.

Data 2

Sensor 2 Sensor 1

Query 1
Reading

Query 2
Reading

Aggregation
process 1

Data 1

Aggregation
process 2

Query 3
Reading

Sensor 3

Result 1
Data 3

Result 2

Figure 1.1: A derivation tree of result 2

__
1. INTRODUCTION 8

1.1.5 Causality

One of the compelling benefits of provenance is the causality of production

data. Causality captures the input data and parameters together with the

sequence of steps that have caused the creation of the derived data (Davidson &

Freire 2008). The information provided by causality explains the dependency

relationships between data products and the processes used to generate them. An

adequate description of a process with the input data and the dependencies

between these processes and data provides useful documentation for the data

generation process. This information can be used to determine the results that

rely on specific data and to reproduce or validate a process.

1.1.6 Informational

Provenance is recorded in order to document data generation and all

processing steps used. This information can be searched or queried in order to

locate data of interest or for data discovery (Simmhan et al. 2005b). A user can

add additional information such as comments or tagging along with provenance,

in order to interpret the data in the context that was intended (Simmhan et al.

2005a).

1.1.7 Proof of context

Context is key data for pervasive applications, and is not a common kind of

data such as a tuple or a document. Sensor data that is used as context

information needs to be interpreted for the user or for an application, in order for

it to be understood (Chalmers 2007); for instance, a temperature sensor report

voltage that may be converted to a temperature in degrees. Sometimes, a sensing

application depends on physical coupling. Tracking the history of the gathered

contextual information and any calculation rules applied can be a statement of

proof, and can be used to define where a fault occurs, such as from poor coupling

or from an analogue/digital conversion.

__
1. INTRODUCTION 9

1.2 Challenges

The ubiquitous computing vision is in providing smart computing services

that are embedded into everyday life (Satyanarayanan 2001). These services rely

on the context information captured by networked sensors, actuators, mobile

devices and appliances. This information has both historical and real-time value

and is useful immediately from the moment the services are provided, but it could

have additional value when combined with other data collected in a larger

distributed area or for historical analysis long after it has been collected. For

example, in an emergency situation of a heart attack (Welsh et al. 2003), data on

heartbeat and blood pressure, collected by biosensors, are important for

monitoring the vital signs of the patient in real time and for doctors to make

decisions. While data and results collected by different sensors are important in

the immediate situation, they are also useful later when these data can be

retrieved by doctors to show the whole treatment carried out on the patient or to

show the patient’s situation before and after treatment. Hence, keeping track of

the provenance of the sensor data or the services provided in a particular

situation is very important in order to reconstruct the subject’s contextual status

that triggered the emergency situation at that time. It can provide a valuable

insight for the interpretation of the episodically collected data stream

(Chowdhury et al. 2009) or to trace the causality reasons in the case of service

failure.

Some of the problems of recording provenance in applications correspond

to those already identified in the related work on provenance such as the

granularity level of the collected provenance data, or storage overhead. However,

data streams produced by sensor networks have different characteristics from

other streaming data such as media streaming or finance streaming. The

fundamental characteristics are as follows (Kim et al. 2005):

1. The sensor data stream is time-ordered and will generally be a

sequence of data elements with a timestamp

2. The sensor data flow rate could be data bursts such as data from traffic

monitoring or a steady rate such as hourly monitoring of water levels

__
1. INTRODUCTION 10

3. Data streams from sensors are often long term and generate a high

volume of data

4. Sensor data streams, in most applications, require real time analysis

5. Data elements may be simple or complex and formed from

single/multiple sensors

The demands of these special characteristics of the sensor data stream and

the different requirements of sensor applications impose novel challenges when

capturing data provenance. The list of these challenges is as follows (Vijayakumar

& Plale 2006; Vijayakumar 2007; Wang et al. 2007; Misra et al. 2008):

- Addressing the high data rate: sensors generate data streaming with a high

data rate and tiny data elements. General provenance models record the

metadata of each data element, but this is not efficient, for stream data

from a storage perspective and will result in burdening the system by

recording overheads. Therefore, the main process is to identify an effective

dataset for collecting provenance, when an interesting change or event

occurs, with a reasonable balance between storage and retrieval, efficiency

and accuracy.

- Expressing lineage dependencies: in sensor applications, enormous

quantities of data need to be processed in order to extract interesting

information and a large number of continuous queries running on newly

arrived data items. In other words, many data streams are derived from

multiple past input streams which themselves could be derived from other

streams. This poses a challenge when tracing back the source of dependent

streams, as the entire set of data items may not be available. The

provenance solution has to be in adequate granularity with meaningful

descriptive capabilities in order to express the dependencies between data

sets.

- Maintaining relevance: queries executed on sensor data streams, with

support for joining data streams and filtering, are typically associated with

a lifetime. For the provenance system to be reactive, it has to be able to

__
1. INTRODUCTION 11

trace back the source of the derived data and describe the condition when

the processes were applied, even after the query is completed.

- Avoiding redundancy: in many instances, multiple data elements in the

stream have invariant primitives such as the time period and value.

Consequently, metadata associated with these data elements are invariant.

In order to avoid redundant provenance data and storage overhead, it is

essential to choose the correct dataset and the critical condition of when to

record the metadata. Systems need to find a way to compactly store them

with respect to the derivation process.

- Addressing node limitations: such applications involve a large number of

sensors that are coordinated to perform a specific measurement. Wireless

sensor networks face a number of challenges including the following:

 Sensor nodes are battery powered with a limited amount of local

processing and storage capacity, and wireless communication.

Energy efficiency is a most important consideration, since the node

has a small and finite source of energy, and needs to last as long as

possible in order to avoid frequent battery replacement. The sensor

network needs to undertake distributed processing, in order to

reduce the communication distance and consequently constrain the

power consumption. Low batteries do not often cause fail-stop

behaviour of the sensor nodes. Rather, nodes may show Byzantine

behaviour at certain low battery states, such as strange sensor

readings (Tolle et al. 2005; Ringwald 2006).

 Communication bandwidth is limited over a wireless connection in

a sensor network. Data aggregation and data reduction techniques

are used to reduce the communication overhead and also the

energy consumption (Gaber 2007).

 A sensor node has limited processing capability and speed to

perform advanced computation tasks.

 Memory is limited in an on-board sensor node, which restricts some

traditional processing.

__
1. INTRODUCTION 12

A stream could experience gaps where no data is present due to loss or

corruption of data caused by node limitations. These limitations impose

challenges when tracking provenance in a wireless sensor network

application.

- Addressing privacy issues: privacy, already a complicated problem in

pervasive computing, is also a sensitive issue in provenance systems. Some

provenance records may contain confidential information about the

ownership chain, or the task performed may be a secret that should not be

revealed (Hasan et al. 2007). The ownership history may be associated

with privacy information about a person, or a user may perform private

actions on his created data. Another example, when gaining access to

sensor information in a home, is that details about the inhabitants’ private

activities can be extracted. Thus, the use of this information has to be

strictly controlled in order to deter malicious insiders or outsiders from

misusing it. The provenance system needs to be confident of the user’s

identity and authorization before revealing any information. Developing a

mechanism to control access with different levels of granularity and

introducing secure provenance information is an important challenge.

- Providing multiple administrative domains: pervasive computing

applications may form part of a critical information infrastructure. The

owner and the user expect all the services and data to be confidential and

trustworthy. Provenance information of such applications may reveal

critical information about the owner or the process and actions performed

on data. Some users do not want to reveal their actions or information to

everyone, only to a highly trusted agent (Hasan et al. 2007). In some cases,

the sensitivity of a provenance record and the data it describes are

different (Chong et al. 2005): the data is more sensitive than the

provenance, or vice versa. Therefore, in order to protect this provenance

information and prevent unauthorized access, a selective or differentiated

access mechanism is required. In other words, control of the access to a

provenance record can be achieved by associating an individual user with

__
1. INTRODUCTION 13

one or more administration domains, depending on what level of access is

required.

1.3 Contribution

Provenance is well studied in the field of database and workflow systems,

while very little work has focused on pervasive systems. With the special vision of

these systems, there are many new requirements for a provenance system. This

work is not the first to record provenance information about context data in

pervasive computing. Several techniques have been developed with different

capabilities and for various purposes, depending on the domain in which they are

applied. However, the questions of how, when and where to track provenance are

still a significant challenge that needs to be addressed in context systems (Sheng

et al. 2008). The main objectives of this work are to find an efficient way of

recording the history of the gathered context information and all the calculation

rules applied to this information, so that it can be useful, and to find an efficient

way to represent it so that access is easy and secure.

The proposed solution, which addresses the above-mentioned key

challenges, has to combine low storage and processing overheads with higher

descriptive capabilities. Therefore, our first contribution is to define a policy

language for recording provenance information based on an event alert or when

events of interest occur. The policies specify the different kinds of information

that need to be recorded as provenance data and they describe how events are

filtered. The provenance is collected relative to the data stream and the processes

applied to it, and events associated with data streams and process are specified.

Four atomic units have been identified to represent the provenance structure in a

relation database: process, stream, dependency, and events associated with

streams and process.

The proposed model is mapped to the Open Provenance Model (OPM),

which is used as a model for inter-operability systems by exchanging provenance

__
1. INTRODUCTION 14

information, in order to generate an OPM-compliant provenance graph and

facilitate sharing provenance data with other systems.

Because of the problem of multiple administrative and privacy information,

the second contribution is in defining a policy that provides different levels of

access control in order to provide secure information and address privacy issues.

The proposed access control model provides finer grained control over exactly

which participants can access which details of the provenance information by applying

a Role Based Access Control (RBAC) model.

This work explores the proposed provenance model application within the

context of monitoring electricity usage to support energy saving, in order to

provide the driving impetus for the subsequent design of our solution. Describing

the use case scenario and investigating the model definition in different contexts

of the application, such as debugging on deployment and auditing for correct

operation, are effective methods of clarifying the concept of provenance in the

application.

The work involves analysing the challenging issues of identifying the key

characteristics and requirements of provenance architecture, and serves to

explore some of the design issues. The subject of provenance and its

representation are involved in the cost of the collecting process, while the manner

in which this information is stored is important to its scalability. Therefore, the

main parameters in evaluating this proposed system are collection and storage

overheads.

1.4 Thesis road map

This section presents a brief summary of the thesis:

Chapter 2 – Background: This chapter provides background information on

provenance and discusses the different approaches in representing, recording,

storing and querying. Provenance security is discussed as an important concern,

followed by a discussion of the provenance challenge series. Then, related work in

__
1. INTRODUCTION 15

the field of provenance and provenance security is demonstrated. At the end of

the chapter, a detailed description of the use case application is presented.

Chapter 3 – Provenance policy language: The focus of chapter 3 is on

identifying an event policy language for provenance collection based on

Deterministic Finite Automata. It then presents an Open Provenance Model and

discuses how our proposed structure model is mapped to it, followed by

examples explaining how the proposed language is integrated with the mapped

structure.

Chapter 4 – Access control policy language: This chapter presents the need for

fine-grained access control over provenance information. It then defines an

access control language for the proposed provenance model, which is based on

the Role Based Access Control (RBAC) specification language. The final section

provides examples explaining how this can be applied to our proposed model.

Chapter 5 – Mapping to implementation: Chapter 5 discusses the experimental

requirements for evaluating our proposed model. It also explains how our

collecting model presented in chapter 3 and the proposed access control model

presented in chapter 4 are implemented.

Chapter 6 – Evaluation: Chapter 6 provides an experimental evaluation of

provenance recording and querying performance. The storage overhead is

evaluated by numerical analysis.

Chapter 7 – Conclusion and future work: The final chapter summarises this

thesis by reiterating a summary of its contribution, followed by a description of

future work and closing remarks.

2. BACKGROUND

16

BACKGROUND

The main focus of this chapter is a survey of the literature on the
management of provenance, and a discussion of related work on
provenance and its access control. At the end of this chapter, we
present the use case application that is used in this work.

2.1 Background information

Provenance can be defined in different terms depending on the domain

where it is applied. In data base systems, it is the description of the source data

and the process by which it arrived at the database (Buneman et al. 2001). In the

scientific domain, it is defined as a description of the process in the experiment

workflow and notes about the experiment (Greenwood et al. 2003), while in the

business domain it is the information that is used to trace the data in the

warehouse back from where it was generated (Cui et al. 2003). From a general

view, Simmhan et al. (2005b) define provenance data as “information that helps

determine the derivation history of a data product, starting from its original

sources” (p. 1), and refer the data product or a data set to any form of data such as

files, tables and virtual collection. A data set has two important features: the

source of the data and the process of transformation of that data source. Manually

capturing such information and writing detailed notes has become insufficient

CHAPTER 2

2. BACKGROUND

17

because of its limitation with the increased data volume and the complexity of

analysis (Freire et al. 2008). Recently, systematically capturing and managing

provenance has received significant attention because of its importance and

usage in a wide range of domains and applications. However, few sources are

available in the literature of comparing across approaches (Simmhan et al.

2005b). The following sub-sections discuss the different domains for provenance,

and the different kinds of data processing architecture in which provenance plays

a role.

2.1.1 Motivating domains

 Provenance has been used in the scientific field as well as in business.

However, the way in which provenance is collected and used differs according to

the particular environment (Simmhan et al. 2005b). Below is a discussion of

provenance in these two domains:

2.1.1.1 Scientific domain

 Recently, with the increasing existence of Grid computing, such as the

Large Hadron Collider (LHC), the scientific field has become a more collaborative

environment, where data is shared across multiple distributed systems. With the

advantage of performing scientific tasks in low organizational boundaries,

different issues arise, such as trust and quality when using third party data, and

data copyright (Simmhan et al. 2005b). In addition, experiment and laboratory

information systems attempt to record and retrieve the details of many related

collections of experiments required for sensitive analyses (Bose et al. 2005).

Provenance metadata can address some of these concerns.

 Provenance has been used in the scientific domain in many forms and for

different purposes (Simmhan et al. 2005b). In scientific publications, Digital

Object Identifiers (DOIs) cite all data related to the experiment process and the

description from which the actual data was produced (Brase 2004). Also, the

lineage of a dataset can be used for determining the quality of the dataset and to

help the user in deciding whether the data meets the standard requirement of the

2. BACKGROUND

18

application (Clarke et al. 1995). In the manufacturing field, the design of critical

components is based on statistical analysis (Romeu 1999), which is needed for

recording provenance in order to locate the bad sources of faulty components in

cases where the system fails (Simmhan et al. 2005b). As sensornets have been

increasingly deployed to share data across sensors on-line, understanding the

data flow and its republishing is important in order to track the evolution of data,

reproduce results, and detect and correct anomalies (Park et al. 2008).

All the above examples show the importance of having a detailed history in

order to determine the veracity and quality of these datasets, and credit their

creator.

2.1.1.2 Business domain

In a business environment, it is necessary to work with third-party data

and from different parts of the enterprise within a data warehouse. Traditionally,

business users work with organized data and usually with trusted parties, which

is in contrast to the scientific domain (Simmhan et al. 2005b). However, bad

sources could exist and need to be corrected, in order to avoid costly errors

(Simmhan et al. 2005b). Therefore, data needs to go through a cleansing and

transformation process in order for the relevant information to be identified

before it is loaded in to the warehouse (Bernstein et al. 1999).

Lineage information in a warehouse domain means tracing the data back

to the source, which could create a problem because data could build upon many

layers of earlier data, where data in one layer is derived from data in the layer

below (Vassiliadis et al. 1999). On the other hand, lineage information can help in

analyzing the data source and exploring its characteristics, in addition to tracing

faulty data and correcting it (Simmhan et al. 2005b).

2.1.2 Data processing architectures

Data processing architecture refers to the means by which these processes

execute and bring about the transformation of the data. The way in which

2. BACKGROUND

19

provenance is collected differs according to the architecture used for the data

processing (Simmhan et al. 2005b), while Bose et al. (2005) use data processing

systems to categorize lineage retrieval systems.

2.1.2.1 Service-oriented architecture

 Service oriented architecture, which allows services and transformations

to be discovered and composed dynamically, has been adopted in both the

scientific and business domain (Moreau et al. 2007). These services and

transformations could be specified in the form of a workflow such as web or Grid

services (Simmhan et al. 2005b). Collecting provenance in the workflow services

involves tracing the execution of the workflow and the input and output of each

service in the workflow, and this can be coupled with the workflow system and

enable straightforward capture or it can be extended (Freire et al. 2008).

 Provenance information is formed when the static information of the

workflow is combined with the runtime detail. Some of the available lineage

systems have been extended to support the case of a dynamic workflow such as

Karma (Widom 2005). In some cases, provenance information is collected on

behalf of each service provider and client and generates a log of their invocation,

which is aggregated to form the provenance for the workflow, such as in

Provenance Aware Service Oriented Architecture (PASOA) (Chen et al. 2005).

2.1.2.2 Database architecture

 In this architecture, data can be a table, a tuple, an attribute or a pointer to

external data, and the update queries and functions that form the data processing

are the transformation processes of the data (Simmhan et al. 2005b). The

provenance information of the data product is the series of functions and update

query requests on the source data.

 A particular case for a data processing system is a data warehouse. As

discussed earlier, the processes of extracting and transforming data in the

warehouse are modelled as queries and user defined functions, which construct

2. BACKGROUND

20

the lineage information. This information can be recorded using annotation or

inversion techniques, which are discussed in section 2.2.1. Trio (Widom 2005) is

an example of a lineage technique that use a data base architecture, which is

discussed in detail in the related work.

 Tracing the lineage of a data in a database architecture could face

problems when the data source is externally linked and processed outside the

database boundaries, or the source is a transparent one such as a federated

database, which requires a special technique (Simmhan et al. 2005b).

2.1.2.3 Operating system architecture

 An operating system (OS) is a type of command processing architecture

where the user interacts with the system through commands entered in a shell

interface or batch executed file (Simmhan et al. 2005b). The execution of these

commands is the transformation of data products, which is usually logged, by the

shell interface, with their associated input and output for debugging (Lanter

1990). Lineage information can be collected from these log files with additional

annotation and stored by the data management subsystem (Simmhan et al.

2005b). Detailed information about all system calls and file interactions during a

command execution can be captured at the OS level (Freire et al. 2008). This is an

advantage of OS architecture, that it does not need any modification and has the

ability to transparently capture data and data processes at kernel level

(Muniswamy-Reddy et al. 2006), or at user level via the system call tracer (Frew

et al. 2008).

2.2 Provenance approaches

 Different approaches have been used in the current provenance systems in

order to support its requirements. These approaches and their trade-offs can be

used to help system developers in making decisions when detecting or developing

provenance solutions (Freire et al. 2008). Three major components of provenance

management have been identified, and below is a discussion of the different

approaches used in each of them.

2. BACKGROUND

21

2.2.1 Representation approach

 Different techniques can be used to represent provenance information, and

these have implications for the recording cost and the richness of its usage. There

are two major approaches to represent this information: annotation and inversion

(Simmhan et al. 2005a, Simmhan et al. 2005b).

 Annotation is a formal metadata that describes the source data and the

process where provenance is pre-computed, and it is called an eager form because

the provenance is pre-computed and can be used directly (Bhagwat et al. 2004). It

requires a copy of the source data or a link to it and information related to the

transformation process. Using a link to the source is a good choice when the source

data is large, since it is independent from the size of the source data. It has the

advantage of being readily usable and flexible in its richness because it provides

the derivation history of the data and the derivation process; on the other hand, the

size of the provenance data could be huge (Simmhan et al. 2005a). MyGRID is an

example of an annotation system, where the annotated provenance information

logs are collected during the execution of a workflow.

The inversion method consists of inverting some derivation such as queries and

user defined functions to find the original input (Cui et al. 2000). Provenance

data in the inversion method needs to be computed before it can be used;

therefore it is called a lazy form. The inversion query or the inversion function is

operated on the output data to identify the source data. It has the advantage of

being attractive and compact because it keeps only the inversion function or

query as provenance, and the derived data can be identified using the inverse

query or function. However, it is restricted to certain relational queries and not all

user-defined functions have this inverse function. In addition, the data provided

by the inversion method is limited to identifying the source data that created the

derived data (Simmhan et al. 2005b). An example is presented by Cui et al. (2000b).

Figure 2.1 shows the content of three tables: store, item and sales in warehouse data

with retail store data.

2. BACKGROUND

22

 Figure 2.1: Tables content

In order to follow the selling of California stores, a materialized view Clif is defined as

shown in figure 2.2, and the view table is shown in figure 2.3.

CREATE VIEW Calif AS

SELET s_name, i_name, num

FROM store, item, sales

WHERE sales.s_id = store.s_id AND

 sales.i_id = item.i_id AND

 store.state = “CA”

 Figure 2.2: View Definition

 Figure 2.4: Lineage of the tuple

s_id s_name city state

001 Target PA CA

002 Target AL NY

003 Macy’s SF CA

004 Macy’s NY NY

 Store Table
s_id i_id price num

001 001 4 1000

001 002 1 3000

001 003 30 600

002 001 5 800

 Sales Table

i_id i_name category

001 Binder Stationery

002 Pencil Stationery

003 Skirt Clothing

 Item Table

s_name i_name num

Target Binder 1000

Target Pencil 3000

Target Skirt 600

Figure 2.3: View Table

s_id s_name city state

 001 Target PA CA

 From Store Table

i_id i_name category

001 Pencil Stationery

 From Item Table

s_id i_id Price num

001 002 1 3000

 From Sales Table

2. BACKGROUND

23

Figure 2.4 shows the lineage of the second tuple in the view table, which indicates that

the target store in PA sold 300 pencils at a price of 1 dollar. The main idea of the

provenance derivation process using an inversion approach is to re-execute the view

definition with the information from the tuple; then the source data item contribution is

identified. So, the three base tables (Store, Item and Sales) are joined and form the

intermediate table. Then, the query conditions are obtained from the view table

definition, the tuple is retrieved from the intermediate table; “state = CA s_name =

Target i_name = Pencil num = 3000” is then split into different source tables.

Inversion could be preferred by organizations that have a large number of

datasets and the derivation of data is what is most required. However, the problem

is that the source data has to be available, otherwise the inverse query or the

inverse function cannot be executed (Simmhan et al. 2005b). Trio is one of the

systems that uses an inversion approach to determine the source data, and this will

be discussed in detail in section 2.5.2.

2.2.2 Recording approach

Provenance data can be recorded about different resources and in various

levels of detail, depending on the domain where it is applied. Provenance systems

can be classified based on what the provenance is collected about, and the

granularity of this information (Simmhan et al. 2005b).

Provenance can be collected about the data product, which called the data-

oriented model. For example, the transformation applied to the data is considered

as a lineage of the data product. When the process is the primary entity for

collecting provenance, it called process-oriented. In this model, data is recorded as

an input or output of the process, and the two models can be used in the same

application, depending on the application context (Howe 2002).

The granularity level of provenance collecting depends on the domain

requirements. However, the cost of recording provenance can be in reverse to its

2. BACKGROUND

24

granularity and this can play a role in choosing which approach to develop

(Simmhan et al. 2005b). Two granularity approaches have been presented:

i- Workflow provenance (coarse grained provenance) is the recording of a

complete history of the data derivation. Workflow in the scientific domain is

used to perform complex data processing tasks. Tan (2007) defines a workflow

as “a program which is an interconnection of computation steps and human-

machine interaction steps” (p. 1), and refers a workflow provenance to “the

record of the entire history of the derivation of the final output of the workflow”

(p. 1). The amount of recorded information may vary, and the complete record

can provides a description of how a particular result has been arrived at, by

tracking the interaction of programs and the involvement of any external

devices such as cameras, sensors and other collecting equipment. It is of

considerable value to scientists since it records the research documentation

and the complete process of how the experiment was performed, which can be

useful for avoiding duplication of effort (Buneman & Tan 2007).

Figure 2.5(a) is a simple example of a workflow specification that describes

the process of inference of phylogenetics where a node represents a step with

a unique ID and edges donate the flow of data between these steps (Davidson

et al. 2007). An example of an execution of the phylogenetics workflow is

shown in Figure 2.5(b) where the loop in the workflow is unrolled.

Provenance systems, at a coarse-grained level, capture provenance

information such as the start and the end of a particular step in the run and

corresponding data read and write events while the steps are treated as a black

box. This approach does not provide a detailed analysis of the transformation

taking place in these steps.

Research on workflow provenance and data provenance have so far been

independent. However, in some cases, such as web applications and warehouse

systems, where data go though a sequence of transformation and become like a

workflow, there is a need for fine provenance recording (Tan 2007). Therefore,

Tan (2007) suggests a solution by combining the research effort of workflow

2. BACKGROUND

25

provenance and data provenance toward a uniform approach. Buneman et al.

(2007) mention that some research have break the “black-box” assumption in

order to give a fine-grained level on the workflow provenance such as the one

presented by Bowers et al. (2006).

 Figure 2.5:

 Phylogenetic workflow specification and run (Davidson et al. 2007)

ii- Data provenance (fine grained) records the derivation of part of the resulting

dataset instead of the whole process. It has been defines by Tan (2007) as a

“detailed account of the derivation of a piece of data that is in the result of a

transformation step” (p. 2). It has an advantage when the entire workflow is

large and complicated, and the interesting derived data is simple, or when the

whole workflow is not available. The particular case is a transformation of an

item of data in a database. The following example is discussed in order to

illustrate the differences between workflow provenance and data provenance

(Buneman & Tan 2007).

 The Structured Query Language (SQL) query is considered in two relation

tables: Employee (Name, deptid) and Department (id, DName), as shown in

Figures 2.6 and 2.7.

2. BACKGROUND

26

 Figure 2.6: Employee table and Department table

 Figure 2.7: SQL query

 Figure 2.8: Query Result

 The provenance data of the tuple (Kim, CS) in the output consists of the

source facts Employee (Kim, D01) and Department (D01, CS) according to the

query Q condition. Within fine grained provenance it is essential to distinguish

between ‘where’ and ‘why’ provenance (Buneman et al. 2001). ‘Where’

provenance means ‘Where does a given piece of data come from?’ In other

words, it is the identification of the source element where the data is derived

from, while ‘why’ provenance gives the justification or explanation for why it is

chosen to be part of the data element in the output. In the example, the ‘where’

provenance of (Kim) is the Name attribute of the Employee tuple, and (CS) is

the DName attribute of the Department tuple. The ‘why’ provenance is that the

tuple result satisfies the WHERE of the query and the condition of the query is

agreed, Employee.diptid = D01 = Department.id.

Employee
Name deptid
Kim D01
John D02
Susan D04

Department
Id DName
D01 CS
D02 math
D03 chim

Q = SELECT Employee.Name, Department.DName
 FROM Employee, Department
 WHERE Employee.deptid = Department.Id

Q result
Name DName
Kim CS
John math

2. BACKGROUND

27

2.2.3 Storage approach

The scalability of any provenance system can be affected by the number of

data sets, the level of granularity, the manner in which the data is represented and

the geographical distribution of its store. Provenance information can be larger

than the data it describes, and annotation may not scale well because of the size of

the provenance data to be stored for both granularities. Simmhan et al. (2005b)

suggest solving this problem by recording the immediately preceding

transformation steps, and then inspecting the complete history from this

information. The inversion method scales well except in one case when the source

data is geographically distributed, since it has to be fetched before the inverse

query or the inverse function can be executed (Simmhan et al. 2005b).

For system scalability, multiple stores may be required (Groth et al 2006). A

distributed store can support a large quantity of data, thereby providing the system

with flexibility and scalability. Although it has the advantages of eliminating the

central point of failure and spreading the demand across multiple stores, it also

presents several deployment problems, such as how many provenance stores the

system needs, and the need for a mechanism to facilitate the retrieval of this

information in order to optimize the query performance.

A wide variety of storage systems have been used in storing provenance

information ranging from Web language to tuples in a relational database (Freire et

al. 2008). However, most existing systems use relational databases, XML or RDF,

for provenance storage (Moreau et al. 2008). Each of these techniques has its own

advantages and drawbacks as follows:

i- The relational data model can represent a graph as a list of nodes and edges,

while the path is created by joining the list to itself, so the queries based on

paths must be translated into relational algebra (Holland et al. 2008).

However, it has the advantage of the availability of robust relational database

systems and is ready to deploy (Holland et al. 2008). Another advantage is that

2. BACKGROUND

28

it provides centralized, efficient storage that a group of users can share (Freire

et al. 2008).

ii- XML supports paths in the provenance graph, but has the shortcoming of being

hierarchal yet not naturally representing objects with multiple parents

(Holland et al. 2008). Many systems that use the annotation approach adopt

XML, where XML is the primary format for their message exchange (Simmhan

et al. 2005b). In addition, XML can be stored as files, which do not need

additional infrastructure for storing provenance information (Freire et al.

2008).

iii- RDF (Resource Description Framework) supports graphs and paths to model

provenance, but it lacks fundamental features and some query supports such

as sub-queries and some aggregation functions (Holland et al. 2008). Some of

the annotation systems use domain ontologies in language like RDF and OWL

(Simmhan et al. 2005b). However, there is an open issue as to whether it scales

when handling large provenance stores (Freire et al. 2008).

A provenance system could have the problem of storage size, and may

exceed the data it describes. Some solutions have been suggested for reducing the

provenance storage overhead, such as archiving the less frequently used

information (Cameron 2003) or using a demand supply model, which is based on

usefulness for those frequently used (Simmhan et al. 2005b).

2.2.4 Provenance querying approach

 Provenance queries are user-tailored queries aimed at obtaining the stored

provenance information (Moreau et al. 2007). The full details of captured

provenance could be very large. The full provenance of an experiment would

include, for example, the provenance information of the process performed on the

data input, the provenance of the data input and the result, and the information of

any hardware or software used. Therefore, in a provenance management system,

2. BACKGROUND

29

the infrastructure for effectively and efficiently querying provenance data is an

important component (Freire et al. 2008).

The high volume of information can make it difficult to query and could

return with a large sized result. A solution is proposed by Biton et al. (2008) ,which

allows the user to characterize the data item that is of interest to him or her, and

the system presents the provenance information according to these preferences.

Commonly, the querying approach used for querying provenance is closely

tied to the storage model used in storing the information (Freire et al. 2008). Table

2.1 shows some of the storage approaches used in storing provenance information

and the query language supporting each approach. In a formal way, these

approaches require the user to write a queries specification, which could be

complex for those not familiar with that type of syntax. Some systems such as those

described by Scheidegger et al. (2007), address this problem by developing an

interface to construct an expressive provenance query that is familiar to the user,

and which the latter uses in building workflows.

Storage approach Provenance query support

Relational DataBase Management System

(RDMS)

SQL

RDBMS and files Specialized language

RDBMS SPARQL for metadata and workflow,

SQL for execution log

XML database XQuery, XPath

Filesystem, Berkeley DB XQuery, Java query API

RDF SPATQL

Semistructured data PQL

Berkeley DB nq (proprietary query tool)

Table 2.1: Provenance storage approach and query language support

2. BACKGROUND

30

2.3 Provenance security

Provenance information has gained increasing importance in a wide range

of critical applications for ascertaining their trust level. Therefore, these kinds of

information should be secured and have appropriate access control. Most

provenance research efforts have focused on collection, semantic analysis and

dissemination of provenance information, while little has been done in the field of

its security (Hasan et al. 2008, Braun et al. 2008). Most teams who contributed to

the first provenance challenge have not yet considered security (Braun et al.

2008). Therefore, a workshop on provenance, held in 2007, suggested that

security is one of the potential applications to investigate (Tan 2007).

Several security issues in a SOA (Service Oriented Architecture) based

provenance system have been discussed by Tan et al. (2006), such as enforcing

access control over process documentation and the sensitivity of information in

p-assertion. However, they argue that the unique security requirements for

provenance depend on the architectural and environmental context in which a

provenance system operates.

Provenance has particular characteristics, such as the relationship

between items, which reveals information about both parties in the relationship,

and can be more or less sensitive than the data it describes. Therefore,

provenance information may need a different security setting from that for data.

Provenance systems can provide trustworthy information by handling

confidentiality, integrity and availability (Hasan et al. 2008), which are discussed

below:

 2.3.1 Confidentiality

 Provenance information may contain confidential data about the

ownership or the processes that the data go through. Information about the

owner may reveal confidential information about a person. For example, if the

name appears in the provenance information of a health record held by a third

party, which could be a research or analysis organization, it could reveal that a

2. BACKGROUND

31

person is suffering from a specific disease. In another case, the user might

perform an action on a specific data item and would want to reveal this

information only to the agency. For example, in an assessment of work produced

for a competition, each judge rates all the work and wants the assessment to be

viewed by the organiser only in order not to influence other assessments and to

avoid problems with the contestants. In order to provide privacy, therefore, a

provenance system needs to prevent any unauthorized parties from accessing the

provenance records and to offer selective or differentiated access mechanisms. In

other words, by creating different levels of authorization, this information will be

available only to a selected subset or highly trusted parties.

2.3.2 Integrity

In order to achieve full integrity, provenance records have to be resistant

to any modification by malicious parties. Many techniques can be used for

securing the integrity of the provenance record, such as signatures, checksums or

signed hash. However, protecting the provenance chain is more difficult, as a

provenance record may pass through multiple domain boundaries.

2.3.3 Availability

 In order to ensure information availability, provenance records have to be

stored in a secure form of storage and the possibility of deleting these records has

to be reduced.

2.4 Provenance challenge series

 The growing number and size of collaborating resources in such an open

environment is increasingly motivating researchers to focus on provenance. Many

systems have been developed with different capabilities and for various purposes.

Different systems use different techniques depending on the domain where they

are applied. At the International Provenance and Annotation Workshop (IPAW

2006), a discussion on the need for provenance standardization has led the

community at the International Provenance and Annotation Workshop (IPAW’06)

2. BACKGROUND

32

to decide on the need to understand the capabilities of these systems and explore

their similarities and differences (Provenance Challenge 2011). As a result, they

agreed on setting up a “Provenance Challenge” to understand and compare the

existing systems.

2.4.1 The first provenance challenge

The first provenance challenge was set up using a simple example workflow

inspired from a real experiment in the area of Functional Magnetic Resonance

Imaging (Moreau et al. 2008). In addition, a set of core queries was defined in

order to show how they could be addressed (Provenance Challenge 2011). Sixteen

teams of researchers with different approaches responded and tried to address the

same problems, which made the provenance challenge highly successful and

created a greater understanding of the available systems. The aim of the challenge

was to be more informative than competitive, by making a comparison between

these systems in workflow representation, provenance representation and queries

result representation.

2.4.2 The second provenance challenge

On the first challenge, queries and their expected results were interpreted

differently by different groups because of the absence of a systematic way of

comparing the capabilities of the participant systems. Based on that, the second

challenge focused on understanding the interoperability of the approaches. That

could be by composing the workflow execution system, each system executing a

part of the workflow, and then exchanging and sharing the provenance information

produced by their different systems (Moreau et al. 2010). Thirteen teams

responded to the challenge, and this resulted in discussions about a common data

model, which led to the proposal of the Open Provenance Model (OPM) (Moreau et

al. 2010), which assumes that the provenance of an object is represented by an

annotated causality graph capturing further information pertaining to execution.

2. BACKGROUND

33

2.4.3 The third provenance challenge

The second challenge was followed by the third provenance challenge to

evaluate the OPM v1.01 and aimed at exchanging provenance information encoded

and answering precise provenance queries (Moreau et al. 2010). The main goals

were to identify the weaknesses and strengths of the OPM specification and

determine how it represents provenance for different technologies (Provenance

Challenge 2011). Fifteen teams participated, and this resulted in several proposals

for changes to the OPM specification and the decision to adopt an open source

model for the governance of OPM. This resulted in version 1.1 of the Open

Provenance Model (which will be discussed in detail in the next chapter).

2.4.4 The fourth provenance challenge

The fourth and last provenance challenge (PC4) was to exploit the Open

Provenance Model in a broad end-to-end scenario, and to demonstrate a

functionality that can only be achieved by the presence of an interoperable solution

for provenance (Provenance Challenge 2011). The fourth challenge started early

and terminated early, because of events at the World Wide Consortium Incubator

on Provenance. This was followed by the creation of the W3C Provenance Working

Group, which continues to pursue the motivation of PC4.

2.5 Related work

The problem of systematically capturing and managing provenance for

computations has received significant attention because of its relevance to a wide

range of domains and applications. Previous research on provenance had focused

on transactional systems, which involved a request-respond style and low data

rate. The field of database and workflow systems has been well studied, but little

work has been presented in the field of stream processing systems. A survey by

Simmhan et al. (2005b) describes a taxonomy they developed to compare and

classify five science systems. The main aspect of their taxonomy categorizes

provenance systems based on why they recorded provenance, what they

described, how they represented and stored the provenance, and ways to

2. BACKGROUND

34

disseminate it. Freire and colleagues (2008) identify three major components of

provenance management (capture mechanisms, representation models, and an

infrastructure of storage, access and queries) and discuss different approaches

used in each of them. Their survey covers the recent literature and the current

state of ten provenance systems. A summary of the characteristics of some related

systems can be found in Table 2.2.

 Karma PASOA Trio Pass

Application

Domain

Weather

forecasting
Biology Generic File system

Processing

Framework
Service Oriented Service Oriented Database

Operating

system

Representation Annotation Annotation Inversed Query Annotation

Data/Process

Oriented
Process/data Process Data Data

Granularity
Coarse / Fine

grained
Coarse-grained Fine-grained Fine-grained

Storage XML RDBM and File RDBM Berkeley DB

Querying XQuery
XQuery, Java

query API
SQL

nq (proprietary

query tool)

Table 2.2: Summary of characteristics of related work in provenance techniques

2.5.1 Workflow provenance

Provenance support for workflow-based systems has been conducted for

scientific experiments and web oriented workflows. Several provenance-tracking

solutions exist to support data provenance in workflow systems (Simmhan et al.

2005a). The details of these techniques vary, depending on the system domain.

Workflow provenance does not consider stream environment

characteristics. Data provenance of sensor applications differs from workflow

systems in several ways. First, data is often static in a workflow system, or

2. BACKGROUND

35

treated as a static snapshot. Sensor applications deal with live data with high rate

feeds and streaming processing. Second, workflow systems use a coarse grain

model which focuses on the history of inter-component interaction in the

workflow and the input and the output, while sensor applications are needed for

fine grain information in order to provide the necessary provenance information

for reasoning and explaining the dependency relation between streams such as in

health care applications. Lastly, in a scientific workflow, the computations are

often heavyweight, while sensor applications are very lightweight and therefore

the provenance collecting must be scaled accordingly. Examples of workflow

provenance systems are Karma and PASOA.

KARMA

 Karma (Simmhan et al. 2008) has been developed to support a dynamic

workflow, where the execution path can change rapidly according to external

events in a weather forecasting simulation. It is designed for collecting two kinds

of provenance: provenance of workflow, and explicit data provenance. Workflow

provenance – also known as a workflow trace or process provenance – describes

the interaction of services and the process execution. The data provenance

provides the derivation history of the output data including the service used and

the input data source that generates it. Each service that composes a workflow

has its own provenance. The provenance activities are represented as XML

notifications between services and server, and are then stored in a relational

database.

The Karma service has a provenance-querying interface that provides the

essential query primitives to retrieve the provenance graph. Although Karma has

a collect process and data provenance, it adopts a coarse-grained model and does

not target stream data characteristics; it is dynamic and needs fine-grained

provenance. In such applications the provenance needs to be collected for each

stream and the process applied to the streams, while with Karma the emphasis is

on collecting provenance of the interaction between services and process

execution in the workflow.

2. BACKGROUND

36

PROVENANCE AWARE SERVICE ORIENTED ARCHITECTURE (PASOA)

 PASOA (Chen et al. 2005) is a provenance infrastructure for recording

documentation about the invocation of various web services. It is a service-

oriented architecture that identifies different requirements such as verifiability of

actors involved in the process, reproducibility of the process and scalability of the

provenance system. Actors could be a client who invokes the service, or the

service that is invoked. During the workflow execution, interaction provenance

and actor provenance are generated. Interaction provenance describes the input

and output parameters of the invoked service, and the actor provenance is the

metadata about the actor.

In the provenance recording protocol, there are four phases: the

negotiation phase, when the actors agree upon a provenance service to record the

provenance; the invocation phase, when the service invocation is performed; the

provenance recording phase, when the interaction provenance is recorded; and

the termination phase, when the protocol is terminated. All interaction assertions

in a workflow have the same ActivityID in order to be identified later. The

granularity of the provenance collected is at the level of the input and output

parameters to the web service. The PASOA provenance server saves the

provenance records in a relational database and provides methods to access and

update via a web service. Basic queries to retrieve the provenance information

are available, such as locating all data that were derived by the service, or validity

checking the service input and output.

PASOA uses a process-based provenance approach, which stores the

description of the web services that consume and produce data in a given

workflow rather than the actual transformation of the dataset. Pervasive

applications are not simple transactional applications and mostly depend on

changes in the surrounding environment, which needs different approaches to

record the provenance of these changes and its dependency information. It needs

more than an overview of the interaction process, which cannot provide

2. BACKGROUND

37

information about the derived data, the origin data, and the transformation

performed.

2.5.2 Data provenance

Data provenance is a data-oriented model associated with file systems and

databases. Work in data provenance has been classified in the overview paper

(Tan et al. 2007). The data model collects provenance information of individual

data items such as a file or database record. Although data provenance provides

rich provenance information, sensor applications place several additional

requirements on provenance. First, database systems focus on capturing SQL

transformations. Sensor applications need to support arbitrary, external

programs not strictly described by SQL. Second, a data provenance system works

with a single data provider. A sensor application works in a distributed

environment with many data providers. Thirdly, data provenance uses an

annotation approach in recording provenance information, which cannot be used

directly with a sensor application due to the high volume in stream data. Lastly,

database or file systems support the addition, deletion, updating and amending of

already existing data information, while sensor applications constantly add new

sensor data from live sensors and corresponding transformations. The next part

illustrates this with two examples of a data provenance system.

TRIO

 Trio (Widom 2005) is a database system that traces lineage

information and has data accuracy as an inherent component. Trio supports an

inversion model to automatically determine the source data for tuples created by

view queries. A view query is a query tree that evaluates from the bottom up: it

starts with a leaf operator having tables as input and each successive parent

operator taking as input the relation resulting from its child operators (Cui &

Widom 2000a). The inverse queries are at the granularity of a tuple, and the

lineage information for each tuple includes: the creation timestamp, the

derivation type – such as an insert or update query or a user-defined query – and

any additional related data. Therefore, Trio is a data oriented provenance scheme

2. BACKGROUND

38

because the lineage is simply the source tuples and the view query that creates

the tuple. The dataset used in Trio is an individual data item in the database

system, which is persistent. Data stream lineage is different, since it is dynamic

and could be in a specific time period.

The lineage table, where the inverse query and the lineage data are stored,

can be queried using a construct in the Trio provenance query language (TriQL),

which is an SQL-like query language. It supports the querying of both lineage and

accuracy information, since Trio also manages the data accuracy and lineage. Any

scientific data management can apply such techniques to model data

transformation. The inversion method is difficult to adopt in our solution,

although it provides many advantages. The arbitrary aspect of the process

generated on the data, and the instantiation of the data generated by sensors

invalidate the inversion method.

PROVENANCE AWARE STORAGE SYSTEM (PASS)

PASS (Pass n. d., Muniswamy-Reddy et al. 2006) is a storage system that

automatically collects and maintains the complete history or ancestry of an item

(e.g. a file). It is an operating system base that generates system level provenance.

It records information about which program is executed, its inputs, and any new

files created as outputs. The provenance is collected about the derived data, the

original data and the transformation process if it exists. Provenance collection

and management are transparent, as the capture mechanism consists of a set of

LINUX Kernel modules (Freire et al. 2008).

The provenance graph is stored as a set of tables in a database, which can

be queried using proprietary tools that support a recursive search over a

provenance graph. PASS is typically annotation-based provenance and collects

the modification history of files such as information on calling application and the

file description state. It collects provenance at fine granularity, which leads to a

large storage size. However it stores the provenance and the data together in the

storage system to ensure that it is not lost. It also has the limitation of being

2. BACKGROUND

39

restricted to a local file system, which cannot be used to track files in a grid

environment.

Facilitating the automatic collection of provenance is a common goal with

this proposed solution in order to avoid the disadvantage of manually recording

provenance information with the high volume of events generated by the sensor

data stream. However, the annotation approach that is used by PASS can burden

stream systems and cause overheads on the system performance and storage,

which leads to defining a different approach.

Source code control and build system

The main purpose of these systems is to provide versioning and building

capabilities by tracking changes within the source data and providing version

history. However they are actually provenance systems. In these systems, source

files are original data and object files are derived data. Their primary goal is

versioning and reconstruction of derived objects. There is a significant overlap in

functionality between these systems and file systems such as PASS, even though

they have different emphasis goals and different design decisions. For example,

PASS as a file system maintains the complete provenance about an object’s origin,

while a build system maintains some description of how a derived object is

created (e.g. Make File), and does not explicitly track the dependencies between

objects (Seltzer et al. 2005). These systems usually use a mechanism to comment

on the changes, in order to find who made certain changes and the reason.

Such systems are widely used in software engineering to manage the different

versions of source code, and for process documentation for identifying the

provenance of a software application (Gudeet al. 2007). A number of source code

control systems exist and manage provenance, such as Concurrent Versioning

System (CVS), and subversion (SVN) (Collins-Sussman et al. 2004).

CVS consists of software version control repositories that manage the changes

made on documents over time. It records the author and a description and

2. BACKGROUND

40

version of a document in metadata, and holds the information for all file versions

and their metadata in the same file. It is an open source client-server architecture,

where the server stores the current version of the document and the client can

connect to the server and check out the document, work on it, then check in their

changes on the document to the server. The client and the server may run on the

same machine or connected by LAN or over the internet.

Several clients can work on the same document at the same time, but they

each work on their working copy and send their modifications to the server. The

CVS server records the user description, the date and the author’s name to its log

files. The client can review the history of changes, compare versions, or check the

historical changes using a date or a version number.

2.5.3 Data stream provenance

 Only limited works that focus on provenance in data stream systems and

satisfy the unique requirements and constraints of ubiquitous environment

applications have been presented. Time value centric (TVC) (Misra et al. 2008,

Wang et al. 2007) is a biomedical system for online health care analyses. It creates

a model that collects both the provenance of data and its process, and specifies

the dependent relationship between an event and the input stream using stream

segment level semantics. The main goal of the system is to support scalable

automated near-real-time analysis of high volumes of medical sensors. The key

driver for this model is to define the time interval window of the sensor data

stream and to record the causative relationship between the data event of the

output of the stream generated at the output and the dependent input stream

within a finite time window for every processing. The time scale used can vary

widely depending on the different analysis component; for example, monitoring

abnormal weight gain can be determined using a week of weight readings, while

arrhythmia patterns may be monitored on an hourly basis.

TVC provides a low overhead approach for capturing dependencies

compared to the conventional annotation approach; however, its scalability is

2. BACKGROUND

41

limited due to the need for all elements of all data streams to be in persistent

storage in order to derive the set of input causative data in a straightforward

process. The common idea between TVC and our solution is the use of a hybrid

provenance model in recording the dependencies and lineage of the data event.

However, our solution records the provenance information of an event with the

time instance that occurs in the stream, while in TVC, the dependencies of the

event are recorded using the stream segment semantic. Furthermore, the

windowed time interval is not appropriate for our cases when the stream data is

not changed for many windows. Consequently, the provenance metadata is

invariant, which causes redundancy of information and a waste of storage space.

Moreover, our solution allows for capturing the event when it occurs at any time,

which cannot be done with a stream segment approach.

Vijayakumar and Plale (2006, 2007) have proposed a system architecture for

near-real-time provenance collection in data streams. It focuses on identifying

and storing the dependencies’ relation among streams rather than the data

dependencies for various elements of the stream. Users invoke the provenance

services and register the input streams and filters queries, and the system

registers the derived stream when the query is submitted. Additional annotation

and metadata can be added to the provenance data set by users. Their system

captures the provenance history of the streams by encoding the IDs of ancestor

streams of a derived stream as a tree. The collecting provenance of each stream

or filter is stored in a stack with a time stamp, where the base information is

initially collected and then a list is made of any changes in the information. The

system has been proposed for a specific domain, which is meteorology

forecasting (Lim et al. 2009).

Our model has borrowed the idea of recording the input stream and the

output stream of a query, but this information and the provenance information of

any event are automatically recorded. We may share the same concept, but the

emphasis, goals and the design decisions are different. For example, our model

records the event provenance dynamically and does not depend on any previous

2. BACKGROUND

42

process, while in their system, recording the base provenance, which registers the

query and streams, is the key for recording the other provenance information

during the processing.

2.5.4 Related work on provenance access control

Provenance information has been widely used in critical application areas.

Therefore, provenance access control is an important consideration in

provenance security (Groth et al. 2006). Although a large number of research

activities focus on the management of provenance as mentioned earlier, only a

few of them have investigated the area of securing provenance and access control

in particular.

Hasan et al. (2007) present research challenges to secure a provenance

chain and discuss these challenges to secure each phase in the lifecycle model of

provenance recording. They propose and evaluate a cryptographic mechanism

for securing document provenance and maintaining the confidentiality and

integrity of provenance (Hasan et al. 2009). The provenance information is

captured for each change to the document and that information is appended to

the provenance chain. The provenance chain is secured and a particular entry can

be accessed only by an authorized auditor and cannot be removed from or added

to the middle of the chain without detection.

In the scientific workflow provenance, Chebotko et al. (2008) propose a

security specification mechanism for provenance and provide a different access

granularity level. The authors discuss a framework that outputs a partial view of a

workflow which conforms to a set of access permissions. They define the

specification for three security levels: port level security for data value produced

or consumed by the ports of modules, channel level security for edges between

modules, and task level security for all input and output of modules.

2. BACKGROUND

43

A recent piece of research presents a first step towards the formalization

of secure provenance by developing a unifying model that identifies security

properties for the static provenance, and describes a single run or behaviour of a

system (Cheney 2011). The author has developed a high level and generic

framework for provenance by identifying some commonalities and general

properties of systems in domains, based on automata, database queries and

workflow provenance graphs, and regardless of the details of a particular system.

The proposed formalization of security properties of provenance include

disclosure, which means ensuring that a provenance query is always answerable

by using provenance views, and obfuscation, which means ensuring a provenance

query can never be answered by provenance views. Provenance view is a function

in provenance information that hides some of the trace information.

2.6 Provenance use case

This section will discuss the scenario of implementing a system for the

monitoring and feedback of electrical energy usage. The application will consider

shared spaces such as an office environment, and address specific issues around

sustainable energy usage in these spaces through better practice in the use of

electrical devices. Shared spaces are inhabited by a number of people who

contribute to energy consumption by using shared resources such as air-

conditioning or ceiling lights, as well as their individual use. Therefore, the focus

is on collecting individual contributions towards responsibility for energy

consumption in a shared space. It allows them to track their usage, and provides

feedback to the individuals in order to support energy saving. Consumers require

real-time feedback in order to influence their behaviour and consumption habits

and reduce their energy demand. It extends previous work in treating the

household and all its members as a unit and reports the energy usage for the unit

of a household.

Weiss & Guinard (2010) classify the work in the field of residential energy

monitoring and consumption feedback by examining the type of sensor that is

used to acquire the consumption data. The first area classifies systems that use a

2. BACKGROUND

44

single sensor, which is attached to the home fuse box, to obtain information on

the entire energy consumption of a household. Several commercial products are

available, such as Wattson (DIY Kyoto 2010) and Power Cost Monitor (Blue Line

2010), which consist of a central device with a display providing the feedback.

However, these products require a complex installation and are not able to

provide feedback on the consumption by a single device. Other systems, such as

the approach by Lam et al. (2007), use a single sensor situated at the electricity

meter to acquire the consumption information and try to further apportion the

total consumption, using a statistical signature analysis and detection algorithm,

in order to detect which appliances are currently running. The approach of Weiss

et al. (2009) focuses more on the design of the user interface. They have

developed an interactive system that provides instant feedback on the energy

usage by using a portable user interface on a mobile phone and a smart electricity

meter.

The second area includes approaches that use an electrical current sensor,

which is installed in-line with each appliance, or deploy multiple sensors

throughout the household. Commercial examples of products are Kill-a-Watt (P2

International 2010) and the SmartLinc INSTEON Central Controller (SmartLabs

2010). These products are easy to deploy, but do not concentrate on the

electricity feedback. Other approaches focus on developing a system that allows

for monitoring energy consumption at device level and the total load. Jiang et al.

(2009) have developed a wireless sensor network that measures the power

consumption at the outlet and transmits the reading to an application tier in

order to store it in a database. A similar system is that of Weiss et al. (2010),

which consists of a three-layer architecture and uses a wireless sensor for each

outlet, but this system uses off-the shelf products (Plogg sensors) and is easily

extendable.

Our use case is similar to the last two systems, which use a sensor for each

outlet and transmit the reading to the application to be stored in a database and

to be displayed to the user. An example scenario of energy saving is in an office

2. BACKGROUND

45

shared by several users. Sensors are assigned to individual electrical plugs and

switches for each user; they collect details of the voltage and current used. The

collected context data from sensors are converted to the AC current used then

distributed to the user in order to display his/her energy usage, and are also sent

to the system database. Displaying the usage by individuals within a shared space

over the same time of usage is a way to enable them to understand the

contribution of their behaviour to collective energy consumption. Hence, the

interactive element and immediacy can lead to a higher level of savings.

Additional usage data can be retrieved from the database, such as the previous

day’s usage or the total usage for the current day. In many cases, a set of tasks is

executed on the incoming data, such as a query computational process. Storage

and access infrastructure must enable detailed analysis and display personal or

group consumption or relative consumption between spaces.

2.6.1 Application architecture

 The architecture of this implemented application is based on three

independent components (Figure 2.5): a WSN query service component, a WSN

query execution engine, and sensors connected to the monitoring plug and

switches in the shared spaces.

The WSN query service provides a user interface for building a real-time

WSN queries request by selecting the attributes and conditions required, and

sends them to the execution engine where they are executed. After the query is

executed, the result is stored in the database and is sent back to the WSN query

service in order to be displayed to the user.

In a normal operation, the system runs a long-lasting WSN query for

collecting the readings from all sensors. The routing table is populated in order to

obtain access to sensors. The number of sensors is adapted according to the

number of sensors registered. The reading is collected each second; it has a time-

stamp and is given a sequence number, and is then sent to the database and to the

user. A user can query data from sensors or from the database. A query can be

2. BACKGROUND

46

built by selecting the attributes and conditions required, and then submitted. The

WSN query planner accepts the query, translates it and sends it to the execution

engine.

The query is executed in the execution engine and the result is collected.

The result could be from the sensor or from the database, according to the exact

query specification. The execution engine stores the result in the database and

sends it back to the WSN query planner in order to be displayed to the user.

2.6.2 Provenance component

In order to enhance the application with the provenance data, the

necessary lineage need to be kept track of. This information might contain data

about the authority of the sensor row data, or the authority collecting the data,

the time, location, the sensor reading and the process applied to it, such as

aggregation. Additional information about the sensor characteristics, which

describe the situation, is important, such as lifetime and sensor calibration

information.

Storing sufficient metadata can provide critical information, which can be

used for a variety of purposes. In such an energy monitoring system, there are

Query

Service

Query
Execution

Engine

Sensor
Reading

Figure 2.5: System Architecture

DB

Real-time Query

 Query Result

Query

Result

Sensors

2. BACKGROUND

47

many places in the life cycle when provenance may be useful. In our case study

we are going to focus on two examples:

1. Debugging on deployment, when detailed provenance information may be

required.

2. Auditing for correct operation, when the administrator may wish to set up

random probes that are checked against other measurements.

 In later chapters, we will show how the queries required for provenance

monitoring can be specified in our language (at the end of Chapter 3), and show

how they can be implemented in the provenance management system (in Chapter

5).

2.6.3 Addressing the challenges of provenance

 This section will describe the proposed model, which will be explained in

detail in Chapter 3, from the perspective of how it addresses the challenge, which

rise with stream data and a sensor environment. The discussion will describe the

provenance approaches used by this proposed solution:

Representation of provenance

 Data provenance can be represented by using two methods: annotation

and inversion. Although the inversion method – which uses the process property

to invert the derivation process – has the advantage of minimal storage, it is

poorly suited to our solution, due to the arbitrary aspect of the process generated

on the data, and the source data could be data generated by the sensor, which is

instant data.

 The annotation method, which keeps the metadata of each individual data

element, is being used with some restrictions in order to address the problem of

high storage and process overheads. In our proposed model, the provenance data

is collected for each event alert, which mean that event of interest is the dataset

2. BACKGROUND

48

for collecting provenance and not the data element in the stream, in order to

address the challenge of high data rate and avoid the recording overhead.

 Recording approach

 Provenance can be collected about data in a specific way, which is called a

data oriented model, while the process-oriented model is one that collects the

provenance about a deriving process. In the most pervasive application, data

goes through many processes in order to produce new useful data; therefore,

both the data and the process applied require provenance tracking. Our proposed

model needs to combine both types in order to satisfy the application

requirements and provide an adequate level of detail. Provenance has to be

collected about the process performed on the data, and about the data source

used in the process and the data out put from the process.

Granularity

 Coarse-grained records provide an overview of the processing, but not

enough for tracking all the information. Fine grain is a good choice for providing

much detail of each processing data. The cost of collecting and storing provenance

is inversely proportional to its granularity. The proposed system manages the

fine granularity recording and storage overheads by collecting provenance only

when appropriate attributes of interest change or when a specific condition is

satisfied.

 Storage

 A relational database is used as a technique for storing provenance

information, for the advantages mentioned previously. Provenance information is

shredded and stored as tuples in a relational table which can be queried by SQL. A

provenance query should have the ability to reconstruct the whole chain from

these tables.

The base information of any derived stream is all input streams and their

transformation. With this information stored in a dependency table it will be

2. BACKGROUND

49

possible to trace back to the source stream and the transformation that it goes

through and identify the dependency relationship between these streams and the

condition of the processing at different times. In order to avoid storage problems

with a high data rate, the computation of provenance is invoked only when an

event of interest occurs.

2.7 Summary

 This chapter was divided into three parts. The first part provided

background information on provenance by discussing its different approaches, its

challenge series and its security. Provenance information can be represented by

annotation or inversion approaches. Two levels of granularity approaches are

used for provenance recording: workflow provenance (coarse grained) and data

provenance (fine grained). Most existing provenance systems use relational

databases, XML or RDF, for provenance storage. Four provenance challenges were

set up in order to understand the existing systems and establish the

interoperability of these systems, which result in an Open Provenance Model.

Provenance security presents confidentiality, integrity and availability as

important issues for provenance to be trustworthy and emphasises the need for

fine-grained access control.

The second part provided a discussion that related the work of

provenance in the fields of database, workflow and data stream systems. Finally,

it discussed the related work on provenance security and access control.

The third part presented the use case used in this work by demonstrating

the system architecture. Then it presented the system provenance component

and discussed how it addressed the challenges in different provenance

approaches.

__
3. PROVENANCE POLICY LANGAUGE

50

PROVENANCE POLICY

LANGUAGE

 In this chapter, we implement an event definition language for
provenance collection based on Deterministic Finite Automata.
Then, the proposed structured graph model is mapped to the
Open Provenance Model. Finally, we present examples to
connect the collection language to the structure model.

3.1 Collection policy
In most pervasive computing applications, it is necessary to combine and

query the readings produced by a collection of sensors. The middleware needs to

support access and query streaming sensor data, as sensors deliver data in

streams. A combination of the two recording approaches is needed, therefore any

proposed model should be designed to record the provenance of the process,

which could be declarative queries or an application code that is executed on

streams, and the provenance of a data stream. Streams could be base streams or

derived streams. The former are generated by sensors, and in our use case they

typify the electricity usage that the sensor measures. The latter are streams that

are produced by executing real-time queries on a base stream or other derived

stream; an example is the total usage of electricity measured by sensors in a room.

A provenance architecture must be deployable in many different contexts

that support application preferences (Groth et al. 2006). Provenance services in

CHAPTER 3

__
3. PROVENANCE POLICY LANGAUGE

51

any application may be designated to record all or some of the provenance

information. The different levels of recording detail should be stated in a policy

(Groth et al. 2006). Policies are statements of goals for the behaviour of a system

(Heather et al. 1994), and provide a means to control the system processing. The

conditions of policies depend on environmental or contextual information.

Definition: Recording policy: A recording policy should specify the various

different kinds of information that a recording service has to record as provenance

information.

In order to combine addressing the challenges of provenance collection

and storage overheads, which were mentioned in the first chapter, with the

application needs, the collection is based on an event alert, or when an event of

interest occurs. An event is considered as a dataset for provenance collecting

instead of a data element and it can be used to specify when to start collecting.

Definition: Event: An event is a happening that has an effect on an artifact or a

process specified by a condition to enable event filtering, and has a description of

when and how it happens.

 Events of interest include any of the following, which have been extracted

and modified from the solution proposed in Vijayakumar (2006), Wang et al.

(2007), Park (2008), and Chen (2005):

- A WSN query is started or finished: when a user requests a WSN query,

the provenance service starts to record all the processes and inputs of

the WSN query, until the end of the WSN query with the output.

- The stream is started or finished: when a WSN query on sensor data

starts or finishes, or the output stream data starts or finishes, which

are associated with the WSN query starting and finishing time.

- An execution plan of a WSN query is changed: in the case where input

is missing, or a WSN query is interrupted.

- The reading value is changed: in our use case, the usage of electricity

has no prior knowledge of a signature value, since different machines

__
3. PROVENANCE POLICY LANGAUGE

52

consume different watt voltages. The detection depends on a trigger

condition, when the current reading is above or below the previous

one (by considering the noise level of the sensor).

- A data transmission is changed: in the case of lost or strange packets. A

strange packet could be an abnormally small or large sensor reading

(Ringwald et al. 2006). An example of a strange sensor reading as

reported in temperature value > 100 c (Tolle et al. 2005). The current

sensor, which is used in the evaluation experiment, provides a 0 to 5

reading value. Any reading above or below this range is a strange

packet.

- Problems with sensor: the case of adding or removing causes fewer

changes than failure, since a failed sensor can occur suddenly, which

can effect changes in streams and queries.

These events are a happening that affects a process (WSN query) or are

associated with a data stream, each with its own condition that may happen. In

each case, different kinds of provenance information need to be recorded. The

resulting provenance graph describes the historical events related to the process

such as the process start and process end, and events that happened in the data

stream such as the start of the stream, a change in the reading value, or the end of

the stream. There have been a number of general-purpose event query languages,

such as CAYUGA (Demers et al. 2007) and SASE (Gyllstrom et al. 2007), which

filter and correlate the stream data for pattern detection and transform it into

events. However, we have chosen to implement a small event definition language

of our own for provenance collection. Our principal reason is one of scale; in all

our examples, we have yet to define a composite event (e.g. query start, finish,

reading increase and decrease) in our scenarios, which cannot be represented by

simple Deterministic Finite Automata (DFA). We have therefore crafted a small

domain specific language to define composite events and their attributes, and

simple DFAs, which generate the events (Appendix 1, Appendix 2). This is then

used in the provenance filter to maintain state machines and record these events

as provenance information in such systems.

__
3. PROVENANCE POLICY LANGAUGE

53

A DFA consists of 5-tuple M = (Q, , , q, F) where:

 Q is a finite set of states

 is the input alphabet

 : Q Q is a transitive function

 q is the start state

 F Q is the set of acceptance states.

 In our case, the input alphabet () is a finite set of arbitrary happenings

with state transition controlled using the event conditions as a predicate. Each

automaton state is assigned a fixed related event, and the acceptance states are

states for events of interest that are required for provenance recording. Our

model automata operate as follows. Suppose an automaton instance is in state q,

when a happening occurred and that satisfies an event condition in state q1, then

the machine deterministically transitions to that state. Edges that are derived

from a predicate that filters the acceptance state are called filter edges, and the

associated predicates filter predicates.

The recording policy is based on the notion of event occurred as specified

by a condition. Therefore, when the filter predicate has occurred and the

automaton is in the acceptance state, which means the condition of event of

interest is fulfilled, this requires a certain obligation. In other words, for all events

that affect the stream or the process, if the event of interest condition is fulfilled

then the provenance information of that event should be recorded.

 (streamID or processID, event): event.condition = true

[record provenance] (3.1)

The following is a detailed explanation of events and their conditions, which

indicate when and what should be recorded.

__
3. PROVENANCE POLICY LANGAUGE

54

3.1.1 Process events

In many cases, a set of tasks is executed on the incoming data such as a

WSN query’s computational process. The provenance system, which is a

computer-based representation of provenance, has to record the process

performed on these real time data and their historical information by capturing

events associated with queries and the deriving process. The base information of

any process is all the input streams, the output streams and the execution status.

3.1.1.1 WSN Query start and finish

One of the aspects of recording provenance in any pervasive application is

for debugging compliance. Many applications require proper documentation and

data logs to trace the lineage of data and optimize the derivation process. In a

pervasive application, in order to obtain data from a sensor, a request is sent to

sensors and then sensor readings are logged according to any conditions

specified in the request. Therefore, a query start and finish are events that need to

be recorded. In order to document this process, the provenance service has to

record all the information about the request (query) and any process required by

the query or data imposed as sequences of a query. To model this policy, we

assume the following finite sets (Bauer et al. 2009): Q for queries, P for processes,

D for data, and E for events.

A query is a request sent by a user to a sensor or set of sensors. The query

can be to obtain the reading, the total reading or the average. The condition for a

query start event is for the user to send a query. For example, when a query is

sent by the user to obtain the average, the event concerned is the query start. The

information needed for recording is the query information, base stream log

corresponding to the query, and the result. The base stream is bounded by the

query time. In other words, the new stream starts when the query starts and it

ends when the query execution is completed (duration time has expired), or

when the query has been interrupted (the user stops the query). The level of

granularity of the provenance information is linked to the usefulness of the

provenance to the application. The simplest form (coarse grained approach) of

__
3. PROVENANCE POLICY LANGAUGE

55

provenance in this example is recording the information that is externally

observable for calculating the average from the input data by recording the input,

the main process and the output. However, the ‘zoom in’ on the process will

record extra provenance information of what is actually happening inside each

process, which can provide detailed information and allow for tracking each data

and process. The coarse grained approach can be represented as follows:

(query, event): event = start start.condition = true

[record (q) record (data1, …, datan)] (3.2)

The policy specifies that for all events associated with the query, if the event is a

query start and its condition is satisfied, then that implies recording the

provenance information of the query and recording the provenance information

of the data log for the base stream (input) and the derived stream (output result).

The input data log depends on the number of sensors involved in the query.

A query execution includes sequences of process such as summation and

division, to obtain the output result data. The zoom-in form (fine-grained

approach) of collecting provenance information requires recording the detail of

these processes and their input and output data. Therefore, the policy will be as

follows:

(query, event): event = start start.condition = true

[record (query) record(process1, …, processn)

record(data1, …, datan)] (3.3)

As a query is a kind of process, these two can be integrated into one:

Q P

__
3. PROVENANCE POLICY LANGAUGE

56

 (process, event): event = start start.condition -

true [record(process1, …, processn) record (data1, …,

datan] (3.4)

 As mentioned above, the query finish is an event that requires provenance

information recording, which in turn requires recording the end time of the query

and the data stream associated with the query. The condition for a query-finished

event is when the query time duration has expired or the query is stopped by any

interruption condition. This can be specified by:

(process, event): event = finish finish.condition -

true [record(query.endtime) record(data1.endtime, ..,

datan.endtime)] (3.5)

For the fine-grained approach, however, it can be expressed by:

(process, event): event = finish finish.condition -

true [record(process1.endtime, .., processn.endtime)

record(data1.endtime, .., datan.endtime)] (3.6)

3.1.1.2 Changes in the WSN query execution

During the execution, the query can be interrupted by changes such as the

user stopping the query before the intended end time, or one of the input data

associated in the query is missing (the sensor is missing), which leads to ending

the query. These changes are considered as events which need to be recorded as

reasons for the forced end of the query.

(process, event): event = interrupted

 [record event] (3.7)

3.1.1.3 Automaton for process events

__
3. PROVENANCE POLICY LANGAUGE

57

 To illustrate how these events are automated in our model, let the finite

set of states be those states assigned to events associated with the WSN query,

while the acceptance states are: query is started, query is finished, and query is

interrupted. Respectively, the predicate conditions are: query is submitted, query

time has expired and query is stopped or input is missing. At the acceptance state,

for each event the provenance information needs to be recorded as indicated in

the above expression.

 Q = {Query is created, Query is started, Query is

 executed, Query is interrupted, Query is finished}

 = {Submitted, Sent, Time expired, Input missing,

 Query stopped}

 Query is created is the start state

 F = {Query is started, Query is interrupted, query is

 finished}

 As shown in figure 3.1, when a user builds a WSN query:

IF query is submitted THEN state = Query is started

 ELSE state = Query is created

 At the state Query is started, the query is sent to the execution

engine where it is executed. During the execution:

IF (user send a stop command OR input is missing) THEN state = Query is

interrupted

 ELSE state = Query is executed

IF (state == Query is interrupted OR Query time expired)

THEN state = Query is finished

 Send
Query is
Started

Query is
executed

Query is
finished

 Submit Time
Expired

Input missing

Query is stopped

Query is
interrupted

Query is
created

Finished

Figure 3.1: Automaton for process
events

__
3. PROVENANCE POLICY LANGAUGE

58

3.1.2 Stream events

 A sensor data stream is an indefinite sequence of time ordered readings:

R = < r1, r2, , …, rn-1, rn >

where

r1.timestamp < r2.timestamp <…< rn-1.timestamp < rn.timestamp

Collecting the provenance of the sensor readings stream is useful for data

quality and for auditing. However, in order to address the high data rate and

process overhead challenge, the provenance is collected corresponding to events

associated with the data stream, which specify changes happening to the data

stream. This stream can be affected by different changes such as changes in the

reading value, a missing reading, or where the reading is out of range. A

significant change in the reading value could be an important event which needs

to be recorded, since it means a change in the sensed environment, and could be

useful information for finding causality and for informational purposes. While

recording missing or changing values as an event can provide the necessary

information for evaluating the quality level of each stream, an event is not just a

digital representation; it could be a physical embodiment in a physical object such

as sensor failure, which can give a null reading. The collection policy is expressed

by:

 (streamID, event): event.condition = true [record

event] (3.8)

3.1.2.1 Reading increased and decreased

When the current reading is above the previous reading, then the event is

the reading is increased, and when the current reading is below the previous

reading, then the event is the reading is decreased.

IF rn.value > rn-1.value

 THEN event = Increase

IF rn.value < rn-1.value

__
3. PROVENANCE POLICY LANGAUGE

59

 THEN event = Decrease

So, when these conditions are satisfied, the action is to record the

information of these events as provenance information of the stream, where these

two events occur. To discuss this, let M be the DFA given by:

M = (Q, , , Reading, F)

Q = {Reading, Increase, Decrease}

Reading is the start point

Increase is the state when rn.value > rn-1.value

Decrease is the state when rn.value < rn-1.value

 is the input alphabet = { rn.value > rn-1.value (>),

 rn.value < rn-1.value (<), rn.value = rn-1.value (=)}

F = {Increased, Decreased}

The transaction function : Q Q is given by this table:

q (q, >) (q, <) (q, =)

Reading Increase Decrease Reading

Increase Increase Decrease Reading

Decreased Increase Decrease Reading

The detection starts when the second reading arrives.

rn.value = the second reading

rn-1.value = The first reading

Start detection

IF rn.value = rn-1.value THEN move to Reading state

Reading Increase Decrease

> <

<
=

= >

<

>

=

Figure 3.2: Automaton for increased and decreased events

__
3. PROVENANCE POLICY LANGAUGE

60

IF rn.value > rn-1.value THEN move to Increase state

IF rn.value < rn-1.value THEN move to decrease state

rn-1.value = rn.value

rn.value = next reading

End Detection

The detection process will go in a loop until the end of the stream.

3.1.2.2 Null reading

The reading could be null when either the sensor or the connection has

failed. Sensor failed is an event that affects the streaming of the sensor reading

and could be followed by a normal reading when the problem is resolved.

IF (rn.value == Null)

 THEN event = Failed

IF (rn.value = Reading && rn-1.value == Null)

 THEN event = Back

These changes in the stream flow should be recorded as provenance

information of the data stream. To automate these events, let M be the DFA given

by:

M = (Q2, , 2, Reading, F2)

Q = {Reading, Null, Back, Stationary}

Reading is the start point

Failed is the state when r.value = Null

Back is the state when the readings back to normal

 after a Null reading r.value = Normal

Stationary is the state when the reading is not

 changed and is still null.

 = {Null, Reading}

F = {Increased, Decreased, Failed, Back}

The transaction function : Q Q is given by this table:

__
3. PROVENANCE POLICY LANGAUGE

61

q (q, Null) (q, Reading)

Reading Failed Reading

Failed Stationary Back

Back Failed Reading

Stationary Stationary Back

When a null reading is detected, the transition is to Failed state, where the event

needs to be recorded. However, if the next reading is still null, the transition

moves to Stationary, which is not an acceptance state and does not require

recording. Only when a normal reading arrives will the state be Back and need to

be recorded. The reason for the Stationary state is to record only when the start

failed and when it ended.

3.1.3 Extended policy

As discussed earlier, the proposed collection model is based on an event

alert, and the policy definition for each event has been explained. Now, we want

to extend our policy capture language by defining policies, which match simple

predicates on streams, process or user to indicate and specify which events

Reading Failed Back

Null Reading

Reading

Null

Stationary

 Null

Null

Reading

Reading

Figure 3.3: Automaton for Null events

__
3. PROVENANCE POLICY LANGAUGE

62

should be written to the event log. This means that provenance is only recorded

when selected events of interest occur in selected processes or streams.

Example: Create a policy to collect an increased and decreased event of

streams belonging to user1 for 1 hour after 1pm. The increased and decreased

events are of interest only when they occur in streams generated by sensors

belonging to user1, and should be documented in the event log as provenance

information of those streams.

 The example indicates that provenance services start to apply the two

policies for detecting and recording these two events if the condition is satisfied,

which is that the owner of the streams is user1.

Policy NewPolicy {

When stream.owner==user1, $time > 13:00, $time < 14:00

} Capture IncreaseEvent, DecreaseEvent

event DecreaseEvent {

 Long change;

} ReadingEvent[n].value < ReadingEvent[n-1] =>

DecreaseEvent.change = ReadingEvent[n].value –

ReadingEvent[n-1].value

event IncreaseEvent {

 Long change;

} ReadingEvent[n].value < ReadingEvent[n-1] =>

IncreaseEvent.change = ReadingEvent[n].value –

ReadingEvent[n-1].value

To achieve this end, we need a policy attribute. Attributes are used to specify

policies that can be expressed by value (true or false). Thus, they can also be used

to carry an attribute value (true) over the validation of the policy until the

attribute is changed to false when the condition no longer exists.

__
3. PROVENANCE POLICY LANGAUGE

63

Definition: Attribute: An attribute is a characteristic that specifies the valid

policies.

An attribute is defined as 3-tuples with the following syntax:

Attribute (ID, PName, Value)

Where:

ID is the unique identifier of the policy

PName is the name of the policy

Value is its assigned value

 The value of the attribute is assigned according to the policy rules defined

by the creator of the policy. When the attribute is assigned to true, the policy

condition is checked, and if it is met, then the obligated action is performed until

the attribute value is changed to false when the stop condition is met. This can be

expressed by:

 (policy, true): policy.condition =true stop.condition

= false [event.filter] (3.9)

In the example, the assignment rule is required to validate the policy when it

is created. Then the stream is checked, and if the stream generated by the sensor

belongs to user1, the end time is checked. If the Duration <1hour, then the stop

condition is still false, and this point is an integration point between the current

policy and the recording policy of the two events. The server will switch from the

current policy to check the condition of detecting an increased or decreased event.

To use DFA to define this extended policy:

 M = (Q, , , start, F)

 Q = {Create, Policy True, Policy Condition, Stop

 Condition, Policy False, Event Policy}

Create is the start point

__
3. PROVENANCE POLICY LANGAUGE

64

Policy True is the state when the policy attribute is

 assigned to true

Policy Condition is the state to check the policy

 condition (stream owner)

Stop Condition is the state to check the stop condition

 (t < 1 hour)

 Policy False is the state when the policy attribute is

 assigned to false

 Event Policy is the state to switch to the event

 policy

 = {T, F}

F = {Event Policy}

The transaction function : Q Q3 is given by this table:

Q (q, T) (q, F)

Policy True Policy Condition Create

Policy Condition Stop Condition Policy Condition

Stop Condition Policy False Event policy

Policy False Create Create

Event policy Policy Condition Policy Condition

Policy
(true)

Policy
Condition

Event
Policy

T T

F

Policy
(false)

F

T

T, F

Stop

Condition
Create

Create

Policy

T, F

F

F

Figure 3.4: Automaton for extended policy

__
3. PROVENANCE POLICY LANGAUGE

65

The extended policy can be used also to capture events associated with

queries by mapping these queries to processID, streamID or userID. For instance,

to activate a policy to capture the start and finished event of queries sent by user1.

3.2 Mapping to Open Provenance Model

The Open Provenance Model (OPM) (Moreau et al. 2010) has recently been

proposed as a standardized representation of historical provenance for workflow

in the e-science community. OPM v1.1 was the result of a series of proposals

which were publicly reviewed and put to the vote, after using version 1.01 in the

third provenance challenge to exchange provenance information and answer

precise provenance queries. OPM was designed to meet the following different

requirements (Moreau et al. 2010):

 Exchanging provenance information between systems based on a

shared provenance model

 Building shared tools that operate on such a model

 Defining provenance in a precise and technology-agnostic manner

 Supporting a digital representation of provenance for any object,

whether produced by a computer system or not

 Allowing for multiple levels of description to coexist

 Defining a core set of rules that identify the valid inferences on

provenance representation

 OPM defines the general standard for provenance information and

consists of a directed graph expressing the causal dependencies. The graph

consists of nodes, dependencies and roles.

3.2.1 Nodes

OPM is based on three primary nodes: process, artifact and agent, which

are defined as (Moreau et al. 2010):

__
3. PROVENANCE POLICY LANGAUGE

66

Definition: Artifact: Immutable piece of state, which may have a physical

embodiment in a physical object, or a digital representation in a computer system.

Definition: Process: Action or series of actions performed on or caused by an

artifact, and resulting in a new artifact.

Definition: Agent: contextual entity acting as a catalyst of a process, enabling,

facilitating, controlling or affecting its execution.

 Figure 3.5: Graphical representation of OPM entities

OPM represents a historical provenance graph, which means it describes

processes that occurred in the past or are currently running or that explain the

dependencies between artifacts in the past, and are not supporting the state of

artifacts in the future or the activities of a future process. OPM introduces a

graphical notation for a provenance graph in order to facilitate understanding

and provide visual representation.

3.2.2 Dependencies

The graphical representation of the OPM graph also describes the causal

dependencies between these entities, and is represented by an edge. Causal

relationship is defined as follows (Moreau et al. 2010):

Definition: Causal Relationship. A causal relationship is represented by an arc

and denotes the presence of a causal dependency between the source of the arc (the

effect) and the destination of the arc (the cause).

OPM adopts the following five causal dependencies:

Definition: Artifact Used by a Process: In a graph, connecting a process to an

artifact by a “UsedBy" edge is intended to indicate that the process required the

Provenance Aware Sensor Networks for Real-time Data Analysis

Figure 6: Graphical representation of OPM entities

Figure 7: The provenance of baking acake [4]

Challenge” should be set to compare and understand existing approaches. At the time of

writing, two of these provenance challenges were already held and a third was in progress.

Thefirst two challenges resulted in theOpen ProvenanceModel v1.01, which wasevaluated

in the third challenge [34]. The rest of this chapter will describe the OPM, how it can be

used for streaming data and finally an architecture will be presented for web service based

provenance recording and querying.

3.3 TheOpen Provenance Model (OPM)

The OPM is a technology-agnostic provenance model that is aimed at enabling systems to

exchange provenance information. It has been designed to represent any kind of prove-

nance, even if it has not been produced by computer systems. The model defines a causal

graph that consists of Artifacts, Processes, Agents and the causal relationships between

these entities [4]. Figure 6 shows how the different types are represented. An example of

representing theprovenance of baking acakeby using theOPM can be found in figure7. It

consists of the following parts:

• Five Artifacts, namely the cake and the ingredients it is made of. Artifacts are repre-

sented ascircles.

• A Process, the ‘Bake’ process. Processes are always represented as rectangles.

• An Agent named John, represented by ahexagon.

32

__
3. PROVENANCE POLICY LANGAUGE

67

availability of the artifact to complete its execution. When several artifacts are

connected to the same process by multiple “UsedBy" edges, all of them were

required for the process to be completed.

Definition: Artifacts Generated by Processes: In a graph, connecting an artifact

to a process by an edge “wasGeneratedBy" is intended to mean that the process was

required to initiate its execution for the artifact to be generated. When several

artifacts are connected to the same process by multiple “wasGeneratedBy" edges,

the process had to have begun, for all of them to be generated.

Definition: Process Triggered by Process The connection of a process 2 to a

process 1 by a “was triggered by" edge indicates that the start of process 1 was

required for process 2 to be able to complete.

Definition: Artifact Derived from Artifact: An edge "was derived from" between

two artifacts indicates that artifact 1 needs to have been generated for artifact 2 to

be generated.

Definition: Process Controlled by Agent: The assertion of an edge “was

controlled by" between a process and an agent indicates that the start and end of a

process was controlled by an agent.

Roles are used to distinguish the nature of the dependency in the case of

multiple edges connected to the same process according to this definition.

Definition: Role: A role designates an artifact’s or agent’s function in a process.

When a process uses more than one artifact, the artifact is used by more

than one process, an agent controls more than one process, or a process is

controlled by more than one agent, roles are used to differentiate these several

relations. The meaning of roles is defined within the context where they are

defined and not by OPM, therefore it is defined by the application domains.

__
3. PROVENANCE POLICY LANGAUGE

68

The graphical representation of the OPM graph also describes the causal

dependencies between these entities, and is represented by an edge. A variety of

reasoning algorithms can exploit this data model, which explicitly represents all

the dependency relationships between entities on the OPM graph. More detaile

causal relationships are defined as follows (Moreau et al. 2010):

Overlapping and hierarchical description

The need to provide description at multiple levels of detail or from

different viewpoints is common for provenance systems. In order to support

these, OPM allows for overlapping accounts of the same execution, which offers

an explanation at different levels of detail about the same derivation. However,

these accounts may differ in their description semantics. For example, if two

processes are executed to create an artefact, overlapping indicates that an

alternative explanation exists for the process. The first account shows a

description of the two process and their dependencies on the artifact. The second

account indicates that a single process operates on input artifacts and produces

output artifacts.

A hierarchy of accounts is created when the refinement explanation is

repeatedly used. An example is when another account is created to explain how

one of the processes in the last example was performed in more detail.

Completion and inferences

As mentioned above, causal dependencies are captured and represented

by mean of edges in the provenance graph. Moreover, the OPM graph explains

how processes and artifacts came to be. Edges can be a summarisation of a

transitive relationship, which can define completion rules and multi-step

inferences.

A completion rule explains how a sub-graph can be converted into another

sub-graph. For example, a “WasTriggeredBy” edge that describes a relationship

between two processes can be obtained from the existence of “Used” and

“WasGeneratedBy” edges. That refers to a hiding artifact used by process 2 and

generated by process 1. Figure 3.6 shows that a “WasGeneratedBy” edge is a

__
3. PROVENANCE POLICY LANGAUGE

69

summary of the composition of “Used” and “WasGeneratedBy”, which the

completion rules allow to establish the existence of some artifact.

 Figure 3.6: Completion of “WasTriggredBy” edge

Another relationship, which is “was derived from”, refers to an

intermediate process that is hidden. The intermediate process uses an artifact in

order to generate another artifact as shown in figure 3.7.

Figure3.7 : Completion of “WasDerivedFrom” edge

Multi-step inferences are when the indirect causes involved in multiple

transitions are important as a direct relationship. Four new relationships express

inferences in the provenance graph and represent a multi-step version of an

existing dependency relationship.

Process
1

Process
2

Was Triggered By

Process
1 Process

2

Used Was Generated By
Artifact

Was Derived From Artifact
1

Artifact
2

Process

Used Was Generated By
Artifact

1

Artifact
2

__
3. PROVENANCE POLICY LANGAUGE

70

Definition: multi-step WasDerivedFrom: An artifact a1 that was derived from

a2 in multiple steps is written as a1 a2, which expresses that a2 had an

influence on a1.

From this definition the three multi-step relations are as follows:

Definition: secondary multi-step edges:

 A process p used artifact a using multiple steps is written as p a, if

process p used an artifact a or an artifact that is derived from a.

 Artifact a was generated by process p in multiple steps is written as a p,

if a was an artifact or was derived from an artifact that was generated by p.

 Process p1 was triggered by process p2 in multiple steps is written as

p1p2, if p1 used an artifact that was generated or derived from an

artifact that was it self generated by p2.

Artifacts that occur in the chain dependencies can be eliminated in order to

represent the multi-steps edges by a single edge. However inferences do not

allow for process elimination. The multiple steps dependencies are represented

in the graph as a dashed edge, while a single step is represented by a plain edge.

3.2.3 OPM nodes primitive

As OPM represents the provenance information as a graph structure, it

also assumes a few primitive sets of identifiers for the process, artifact and agent

to define the structure of graphs. The five causality edges are specified by: Used,

WasGeneratedBy, WasTriggeredBy, WasDerivedFrom and WasControlledBy. The

following are the building blocks for creating the OPM graph (Moreau et al. 2010).

The overlapping and hierarchical descriptions and inferences have been avoided,

since they did not relate to applications such as this model.

ProcessId: primitive set (Process Identifiers)
ArtifactId: primitive set (Artifact Identifiers)
AgentId: primitive set (Agent Identifiers)
Role: primitive set (Roles)
Value: application specific set (Values)
Time: primitive set (Time)

__
3. PROVENANCE POLICY LANGAUGE

71

Process = ProcessId → Value
Artifact = ArtifactId → Value
Agent = AgentId → Value
OTime = Time ×Time
Used = ProcessId × Role × ArtifactId ×OTime
WasGeneratedBy = ArtifactId × Role × ProcessId ×OTime
WasTriggeredBy = ProcessId × ProcessId ×OTime
WasDerivedFrom = ArtifactId × ArtifactId ×OTime
WasControlledBy = ProcessId × Role × AgentId ×OTime
OPMGraph = { (A, P, AG, US, GN,T, D, C) | A Artifact, P Process, AG Agent, US (Used)

GN (WasGeneratedBy, T (WasTriggeredBy), D (WasDerivedFrom), C

(WasControlledBy)}

 Figure 3.8: Victoria Sponge Cake Provenance

The graph in figure 3.8 illustrates an example of all the concepts and some

of the causal dependencies, which express that John (Agent) baked (Process) a

cake (artifact) with ingredients (artifacts) butter, eggs, sugar and flour (Moreau et

al. 2010).

3.2.4 Time observation

In OPM, time information is optional and is not intended to be used for

deriving causality. However, causal dependencies can be made more explicit with

time. For example, if the same clock is used to measure time for both effect and

cause, then the time of the cause should be before the time of its effect. Time may

100g

Flour

100g

Sugar

2 eggs

Bake Cake

John

100g

Butter

wasGeneratedBy(cake)

use
d(fl

our)

used(sugar)

used(egg)

used(butter)

wasControlledBy(cook)

__
3. PROVENANCE POLICY LANGAUGE

72

be associated to instantaneous occurrences, which are related to the occurrence

of creation and the use of an artefact or the starting and ending of processes.

Time information is expected to be acquired by an observer when an

occurrence occurs, assuming time is measured according to a single clock or

synchronised clocks in order to be compared. Time accuracy is limited to the

granularity of the clock and the observer.

3.2.5 The Mapping

The main reason in mapping our model to the OPM is to facilitate the

exchanging of provenance data and the interoperability with other systems, as

OPM is a standardized model for representing provenance. Therefore, these

definitions can be used to specify how our model can be mapped to OPM.

According to these definitions, when recording the provenance information of a

WSN query, a query is an action performed on an artifact (sensors) where the

catalyst is a user, which means a WSN query is a kind of process. When recording

the process for aggregation or the average, the process is an action on a sensor’s

reading, which is an artifact, enabled by a WSN query.

The OPM’s three entities are represented in this model as follows:

 Artifact: sensor, data stream from sensor or derived data stream (data

stream result from another process), and any event

 Process: WSN Query or any process operating on the data stream such as:

aggregation, summation and division

 Agent: Users, WSN Query or other process

OPM defines five types of causal dependencies:

- Type 1: process used artifact

- Type 2: artifact was generated by a process

- Type 3: process was triggered by another process

- Type 4: artifact was generated by another artifact

- Type 5: process was controlled by an agent

__
3. PROVENANCE POLICY LANGAUGE

73

This model has the following causal dependencies that map to OPM

dependencies:

 Type 1: a query requesting a reading from sensors, or a process has input

data such as summation and aggregation

 Type 2: a derived data stream is generated by a process

 Type 3: a process was triggered by a query

 Type 4: an event was generated in streams or from sensors

 Type 5: a query was controlled by a user, or any process was controlled by

a query or another process

In order to support sensor network circumstances and preferences, a

transformation was performed on the primitive sets that represent the graph

structure of OPM, as in Ringelstein & Staab (2010a,b). The model has four types

of primitive that represent the provenance graph structure: a process primitive, a

data primitive, a dependency primitive and an event primitive.

Definition: process primitive: a process primitive represents the provenance

information of a single process.

 The process primitive represents the provenance information of each WSN

query or any operation performed on the data, which is defined with the syntax:

Process (ID, owner, category, Purpose, start time, end

time)

- ID is the unique identifier of the process

- Owner is the agent controlling or enabling the process

- Category is the category of the process. The possible categories are

defined in domain-specific ontology.

- Purpose is the purpose of the process. The possible purposes are defined in

domain-specific ontology.

- Start time is the time when the process starts

__
3. PROVENANCE POLICY LANGAUGE

74

- End time is the time when the process ends

The ID together with the Owner creates a partial order of the process and

specifies the ControlledBy relationship between the agent and the process.

Category, purpose, start time and end time are properties of the process specified

by the process primitive. The information provided by the process primitive,

additional to the data and the dependency primitive, can express the provenance

information and explain the dependency relationship between the input, the

output and the process. The input and the output could be one element or a

stream of elements, and their provenance information is represented by a data

primitive.

Definition: Data primitive: a data primitive represents the provenance

information of the data, which contains all the properties that describe the data.

Data (ID, category, source, start time, end time), which

express the following:

- ID is the unique identifier of the data

- Category is the category of the data (source – derived)

- Source is the source of the data

- Start time is the starting time for the data stream

- End time is the time when the stream stops

Category specifies the type of the data stream, since it can be a source from the

sensor or derived from another stream. Source specifies which sensor

generates the data stream in the case of the source stream, or the process ID that

the derived stream is an output of.

 The dependencies relationship specifies the causal relationship between

the processes or between the process and the data and is represented as an edge

in the graph structure.

__
3. PROVENANCE POLICY LANGAUGE

75

Definition: Dependency primitive: a dependency primitive specifies the nature of

the causal dependencies between the data and the process and between processes.

Dependency (ID, Object, Owner, Type)

- ID is the unique identifier of the relation

- Object is the related node

- Owner is the other related node

- Type is the type of dependencies relationship

 Since the data primitive represents the provenance information of the data

stream, which has different characteristics as mentioned before, a different primitive is

required to represent the provenance information that occurs during the data stream

interval or during the activationof the process.

Definition: Event primitive: an event primitive represents the provenance

information of any change in the stream or the process by specifying all the

properties that describe the event.

Event (ID, Owner, category, time) where:

- ID is the unique identifier of the event

- Owner is the provenance unique identifier of the artifact or the process

where the event accrues

- Category is the category of the event

- Time is the time stamp of the event

3.3 Connecting provenance policy language to the

structured model

Based on the graph structure model of provenance, which is mapped to the

OPM structure, and the provenance collecting policy, this section may join the two

and specify the policies with regard to collecting the partial order, which

constitutes a provenance graph structure model. Two case scenarios will be

__
3. PROVENANCE POLICY LANGAUGE

76

presented, with an explanation of how the collection language definition built the

provenance structure in a pervasive computing application. A graphical

representation will be provided in order to facilitate an understanding of the

process. The two scenarios focus on:

1- Debugging on deployment, when detailed provenance information may be

required.

2. Auditing for the correct operation, when the administrator may wish to set up

random probes that are checked against other measurements.

3.3.1 Scenario 1

Recording provenance can be used for debugging on initial deployment of

a pervasive computing system: users may want to detect failure symptoms in the

provenance records and diagnose problems in the process that generated an

artifact. Detailed information about the data and the process have to be collected

in order to allow for detecting any error in the data and tracing the process that

the data go through. When an administrator tries to determine whether any error

has been made due to a faulty process or faulty source information, without a

record of the provenance of those data and the process it would be impossible to

determine whether such a 'bug' in the result had indeed occurred.

In the scenario of this example, an administrator creates a policy to record

all the events associated with queries submitted by user1 for 1 hour.

Policy user1Policy {

When query.owner==user1

Capture query start event, query finish event

Duration 1 hour

}

The policy attribute is true. According to the extended policy automaton shown in

figure 3.4, the machine transition is to check the policy condition state.

__
3. PROVENANCE POLICY LANGAUGE

77

IF (query .owner == user1 && time < 1 hour) THEN Capture query

start event, query finish event

 When user1 submits a WSN query to calculate the average usage of

his/her room measured by four sensors (1, 2, 3, 4) for 5 minutes, the condition

for the query start event state is satisfied. Then according to the collection policy

in expression 3.2, which is for the coarse grained approach:

(query, event): event = start start.condition = true

[record (q) record (data1, …, datan)]

The information about the WSN query and the data log responding to the

WSN query is the provenance information that needs to be recorded. As the

process primitive represents the provenance information of a single process, the

process primitive will represent the provenance information of this WSN query:

Query (ID, owner, category, purpose, start time, end time),

which expresses the following constituents of the model:

- P1 is the unique identifier of the process query

- Owner is the ID of user1, who sends the query

- Category is the category of the process, which is the query.

- Purpose is the purpose of the query which is to calculate the average

- Annotation for the query is the time period (5min)

- Start time is the time stamp when the query is sent.

- End time is the time stamp when the execution of the query has finished.

Provenance information of the input data has to contain all the properties that

describe the data. A data primitive represents the properties of the data, which

will be recorded for each data input log. In this case scenario, there will be four

input streams collected from four sensors in the room:

__
3. PROVENANCE POLICY LANGAUGE

78

Input data stream (ID, owner, category, source, start time,

end time) which express the following:

- ID is the unique identifier for data stream (stream1, stream2, stream3,

stream4)

- Owner is the ID of the WSN query (p1)

- Category is the category of the data input, which is a source stream from

the sensor

- Source is the sensor ID that the stream is collected from (sensor1,

sensor2, sensor3, sensor4)

- Start time is the timestamp when the source data stream starts

- End time is the timestamp when the source data stream stops

Additional documentation of the process, which explains the dependency

relationship between the input, the output and the process, has to be recorded. A

UsedBy edge connects the WSN query with the input data in the graph and is

stored as a dependency relationship in the database. A dependency primitive

represents the properties of the dependency relationship for each input stream:

Dependency (ID, Object, Owner, Type)

- ID is the unique identifier of the relation (D1, D2, D3, D4)

- Object is the input stream ID (stream1, stream2, stream3, stream4)

- Owner is the WSN query ID p1

- Type is the type of dependencies relationship, which is the input stream of

the WSN query

 A WasGeneratedBy edge connects the output data with the WSN query in

the graph and is also stored as a dependency relationship in the database. A data

primitive represents the properties of the output data:

Output data stream (ID, owner, category, source, start

time, end time), which express the following:

- S5 is the unique identifier for the data stream

- Owner is the ID of the WSN query (p1)

__
3. PROVENANCE POLICY LANGAUGE

79

- Category is the category of the data output, which is a derived stream

- Source is the process number (WSN query ID p1) that generates the

derived stream

- Start time is the timestamp when the derived data stream starts

- End time is the timestamp when the derived data stream stops

The dependency relationship for the result stream:

Dependency (ID, Object, Owner, Type)

- ID is the unique identifier of the relation (D5)

- Object is the output stream ID (S5)

- Owner is the WSN query ID p1

- Type is the type of dependencies relationship, which is the output stream

of the WSN query output

When the five minutes has expired, the finished event is detected. The WSN

query-finished event specifies that the end time of the WSN query and all the

input and the output data stream have to be recorded as shown in the following

expression:

(process, event): event = finish finish.condition -

true [record(query.endtime)

record(data1.endtime, ..,

datan.endtime)]

 (3.5)

Query

the

averag

e

Input

Stream1

User

Input

Stream2

Input

Stream3

Input

Stream3

Derived

Stream

UsedBy

UsedBy

UsedBy

UsedBy

WasGeneratedBY

WasControlledBy

StreamID: 5
Owner: q1

Source: q1

Start timestamp

End timestamp

StreamID:1
Owner: p1

Source: sensor1

Start timestamp

End timestamp

StreamID: 2

Owner: q1
Source: sensor2

Start timestamp

End timestamp

StreamID:3

Owner: q1

Source: sensor3
Start timestamp

End timestamp

StreamID:4
Owner: q1

Source: sensor4

Start timestamp

End timestamp

QueryID: p1
Owner: u1

Category: query

purpose: Average
Start timestamp

End timestamp

UserID: u1

Figure 3.9: Provenance graph of coarse-grained form

__
3. PROVENANCE POLICY LANGAUGE

80

Figure 3.9 shows the graphical representation of the WSN query provenance

information structure, which expresses that user1 (Agent) queries the average

(Process), and generates the derived stream result (output artifact) from stream1

of sensor1, stream2 of sensor2, stream3 of sensor3 and stream4 of sensor4 (input

artifact).

As mentioned above, the fine granularity of recording provenance

information could express the detailed information that describes the process. If

detailed information is needed when recording the process of calculating the

average, the WSN query execution includes sequences of the process to obtain

data results as follows: the summation process will obtain the sum of the readings

from the four sensors, then the results will be divided by 4, which is the number

of sensors in the room, in order to obtain the result. If all these items of

information have been recorded, the debugging process can accordingly check if

the summation process has included all the input data or if the summation result

has been divided by the correct number of sensors. Therefore, two process

records and one data record will be added to the provenance structure and the

collection policy of these processes is shown in expression 3.4:

(process, event): event = start start.condition - true

 [record(process1, …, processn) record (data1, …,

datan]

 The WSN query information and the input data stream information will be

the same as mentioned before in the coarse grained form. However, the query

process triggers the summation process and creates a TriggeredBy edge. The

process primitive is used for representing the summation process as follows:

Summation process (ID, input, output, owner, category,

purpose, start time, end time), which expresses the following

constituents of the model:

__
3. PROVENANCE POLICY LANGAUGE

81

- P2 is the unique identifier of the summation process

- Owner is the WSN query ID p1

- Category is the category of the process, which is the summation

- Purpose is the purpose of the summation process which is calculated as

the sum of the four readings

- Annotation is the number of input streams

- Start time is the time stamp when the process starts

- End time is the time stamp when the process finished

The derived stream of the summation process is expressed by:

Output data stream (ID, owner, category, source, start

time, end time) which express the following:

- S5 is the unique identifier for the data stream

- Owner is the ID of the WSN query (p2)

- Category is the category of the data output of the summation process,

which is the derived stream

- Source is the process number (WSN query ID p1) that generates the

derived stream

- Start time is the timestamp when the derived data stream starts

- End time is the timestamp when the derived data stream stops

 This output stream has two roles, since it has a dependency relationship

with two processes: it is an output of the summation process and an input for the

division process. A WasGeneratedBy edge connects the output stream with the

summation process, a UsedBy edge connects it with the division process in the

graph, and it is stored as a dependencies relationship in the database. The process

primitive represents the division process:

Division process (ID, input, output, owner, category,

purpose, start time, end time), which expresses the following

constituents of the model:

- P3 is the unique identifier of the process

__
3. PROVENANCE POLICY LANGAUGE

82

- Owner is the WSN query ID p1

- Category is the category of the process, which is division

- Purpose is the purpose of the division process which is to calculate the

average

- Annotation is the number of sensors for division

- Start time is the time stamp when the process starts

- End time is the time stamp when the process finishes

The derived stream of the division process is expressed by:

Output data stream (ID, owner, category, source, start

time, end time), which expresses the following:

- S6 is the unique identifier for the data stream

- Owner is the ID of the WSN query (p3)

- Category is the category of the data output of the division process, which

is the derived stream

- Source is the process number (summationID p2) that generates the

derived stream

- Start time is the timestamp when the derived data stream starts

- End time is the timestamp when the derived data stream stops

 The following provenance graph (figure 3.10) is the graphical

representation of the provenance structure for the fine-grained form, which

expresses that user1 (Agent) queries the average usage (Process), which triggers

the summation process (process). The summation process generates the sum

(stream5 derived output artifact) from the four input streams (input artifact)

stream1 of sensor1, stream2 of sensor2, stream3 of sensor3 and stream4 of

sensor4. The output stream of the summation process (stream5) has two causal

dependencies: one is the WasGeneratedBy relationship (output artifact) to the

summation process and the other is the UsedBy relationship (input artifact) to

the division process, which is used to generate the average of the room usage

(stream6 output artifact).

__
3. PROVENANCE POLICY LANGAUGE

83

Query the

Average

Source

Stream1

Source

Stream4

Source

Stream1

Source

Stream3

User

Division

Summation

Derived

Stream5

Derived

Stream6

StreamID:4

Owner: p1
Source: sensor4

Start timestamp

End timestamp

StreamID:3

Owner: p1
Source: sensor3

Start timestamp

End timestamp

StreamID:2
Owner: p1

Source: sensor2

Start timestamp

End timestamp

StreamID:1

Owner: p1

Source: sensor4
Start timestamp

End timestamp

UserID: u1

ProcessID: p1

Owner: u1
Category: query

purpose: Average

Start timestamp

End timestamp

Used

By Used

By

Used

By Used

By

Was

Controlled

By

Was

Generated

BY

Was

Triggered

BY

Was

Generated

BY

Used

BY

ProcessID: P2

Owner: p1
Category:

Summation

purpose: sum
Start timestamp

End timestamp

ProcessID: P3

Owner: p1

Category: Division
purpose: Average

Start timestamp

End timestamp

StreamID:5

Owner: p1
Source: p2

Start timestamp

End timestamp

StreamID:6

Owner: p1
Source: p3

Start timestamp

End timestamp

Figure 3.10: Provenance graph of fine-grained form

__
3. PROVENANCE POLICY LANGAUGE

84

3.3.2 Scenario 2

 The second scenario is for auditing, when the provenance information has

to be collected for checking random probes, which means the provenance

information of any interesting event that occurs needs to be recorded. The

scenario for this example is monitoring the usage of a user, by checking the

reading of the sensor that measures the electricity usage of that user, and

recording the provenance information of the major events that occur in a five

minute period. The scenario is that the sensor is measuring a plug for the user:

after one minute the user connects a device to the electrical plug and starts using

the electricity, a sensor fails after 30 seconds and is fixed one minute later, then

the device stops using electricity in the fourth minute.

Therefore, the major events are: when the user starts to use the electricity

(the sensor reading greater than 0); when the sensor fails (the reading is null);

when the sensor starts work normally again (the reading become normal); and

when the user stops using the electricity (the reading is equal to 0). The collecting

policy states that:

 (streamID, event): event.condition = true

[record event]

 The provenance graph consists of a data stream and the events that occur

in the data stream. The data stream log properties are expressed in:

Data stream (ID, owner, category, source, start time, end

time)

- S1 is the unique identifier for the data stream

- Owner is the ID of the WSN query for monitoring the sensor reading

- Category is the category of the data, which is the source stream

- Source is the sensor number (sensor1) that generates the stream

- Start time is the timestamp when the stream starts

__
3. PROVENANCE POLICY LANGAUGE

85

- End time is the timestamp when the stream stops

When the user starts to use the electricity, the sensor reading is changed from 0

to 4, which is the condition of increase event:

IF rn.value > rn-1.value

 THEN event = Increase

At this acceptance state, according to figure 3.2, the information about the event

needs to be recorded. This event information is expressed by the Event primitive:

Event1 (ID, Owner, category, time) where:

- ID is the unique identifier of the event (1)

- Owner is the provenance unique identifier of the stream where the event

accrues (s1)

- Category is the category of the event, which increases in the sensor

reading

- Time is the time stamp of the event (timestamp1)

According to figure 3.3, when the sensor gives a null reading, the condition of

Failed state is satisfied, and at this state the event is expressed by:

Event2 (ID, Owner, category, time) where:

- ID is the unique identifier of the event (2)

- Owner is the provenance unique identifier of the stream where the event

accrues (s1)

- Category is the category of the event, which is Sensor failed

- Time is the time stamp of the event (timestamp2)

The machine transition is in state Stationary until the reading becomes a normal

reading. Then it moves to Back state, which is the third event and is expressed by:

Event3 (ID, Owner, category, time) where:

- ID is the unique identifier of the event (3)

- Owner is the provenance unique identifier of the stream where the event

accrues (s1)

__
3. PROVENANCE POLICY LANGAUGE

86

- Category is the category of the event, where the reading is back to

normal

- Time is the timestamp of the event (timestamp3)

The last event, when the usage stopped, means the reading = 0 and that implies:

rn.value < rn-1.value

With this condition satisfied, then the event is decrease. The event that has to be

recorded is expressed by:

Event4 (ID, Owner, category, time) where:

- ID is the unique identifier of the event (4)

- Owner is the provenance unique identifier of the stream where the event

accrues (s1)

- Category is the category of the event, which is decrease

- Time is the timestamp of the event (timestamp4)

Event2 Event1

Sensor1

Event3
Event4

EventID:1

Owner: s1

Category: increased
Time: timestamp1

EventID: 2

Owner: s1

Category: null reading
Time: timestamp2

EventID:4

Owner: s1

Category: decreased
Time: timestamp4

EventID:3

Owner: s1

Category: changed
Time: timestamp3

StreamID:s1

Owner: query1
Category: source

Source: sensor1

StartTime: timestamp
EndTime: timestamp

SensorID: sensor1

Owner: User1

Location: plug1
.

.

.

WasGeneratedBY

WasControlled
BY

WasControlled

BY

WasControlledBY

WasControlledBY

Stream1

Figure 3.9: A provenance graph of events recording structure

__
3. PROVENANCE POLICY LANGAUGE

87

The provenance graph in Figure 3.9 illustrates that stream1, which is generated

by sensor1, shows the first event that occurs (usage starts when the reading

increases) at timestmp1. In the mentioned period, at timestamp2 a sensor fails,

and at timestamp3 the sensor goes back to giving a normal reading. At

timestamp4, the electricity usage stops (reading =0).

3.4 The policy language description

This proposed policy language specifies the various kinds of information that

need to be recorded as provenance information in such pervasive systems, when

the filter predicate has occurred and conditions of the event of interest are

fulfilled. It is similar to a policy-based framework such as Ponder2 (Twidle et al.

2009) or PMAC (Agrawal et al. 2005), which focus on a condition-action or an

event-condition-action paradigm. There are two basic policy types: obligation

policies, which specify the action that must be performed by the system when

certain events occur; and authorization policies, which define the activities that

can be performed on the target by the subject – or in other words it is an access

control policy. However, this specific language defines composite events and their

attributes, which are used in the provenance filter for filtering events and

recording the information of certain events as provenance information. Therefore,

it is a combination of an event monitoring that needs to process massive streams

of events in real-time and obligate policies that specify the action that must be

performed by the system.

For example, when a user is interested in finding matches to an event

pattern such as finding upward raise events, which define when there are three

consecutive correlated readings and reading n > reading n-1> reading n-2. The

language has to define the event patterns that need to be detected and the event

trigger reaction, which specify the obligated action and what information needs to

be recorded as provenance information of the event.

In this proposed language, the causal relationship between the model

entities (e.g. process and artifact or process and agent) are implicitly recorded by

__
3. PROVENANCE POLICY LANGAUGE

88

defining new meta events, except some relationships such as the dependency

relationship between the input and output stream with their related process,

which are represented by the UsedBy and WasGeneratedBy relationship in the

OPM causal graph.

The causality relationship can be decorated with time information.

Instantiation time for occurrence of events and occurrence of starting or ending

of process is observed and added to the metadata. Time can be useful in

validating causality claims and can be comparable if it is measured according to a

single clock or synchronised clock. Many wireless sensor network applications

need the local clocks of sensor nodes to be synchronised. However these clocks

are subject to clock drift. Therefore, many networking protocols require a

common view of time to exist and be available to all nodes in the network at any

particular time (Sivrikaya et al. 2004). Moreover, increasing research proposes

synchronisation methods explicitly designed for sensor networks. In a wired

sensor application, such as in our use case, a computer clock is used for time

observation when any of the intended occurrences occur.

In some cases, when a bug is discovered in the provenance system, which

needs changes in the data in order to correct it, fixing the problem and recurring

the path of the metadata requires an ad-hoc human recording systems

involvement.

The necessary policies to collect the metadata are an application-specific

scenario. The domain requirements can call for a different kind of metadata and a

different level of detail. For example, when debugging on deployment, the

transformation process and sensors must be named, while for auditing, more

detailed information is needed.

The design and implementation of the proposed policy language puts an

emphasis on flexibility and interactivity, where the administrator interacts with

the system by defining new events and creating new policies, or cancels an

existing one. Another consideration was in addressing the challenges that arise

__
3. PROVENANCE POLICY LANGAUGE

89

with stream data, and ensuring low overheads in tracking and collecting

provenance. However, it has the limitation of not recording the provenance of

policy creation or deletion, which could form valuable information when

reviewing the provenance information recorded. Another concern is whether the

causal relation needs to be explicitly noted. In our policy grammar, as mentioned

before, most causal relationships are implicitly recorded and this is needed for a

recursion query in order to retrieve the complete components of the provenance

information. The reason behind this is to save storage space, but a recursion

query is expensive. Therefore, a greater analysis is needed in comparing which

cost is more acceptable. In the policy grammar set up at the moment, this doesn't

quite happen except implicitly by defining new meta events.

3.5 Summary

 This chapter defines the requirements on the policy language of the

provenance collection in a pervasive computing application, which is based on an

event alert and represented by it. The policies specify the different kinds of

information that need to be recorded as provenance data and they describe how

events are filtered. Then the chapter provides an overview of the open

provenance model and presents the three basic entities of the provenance

information, which are process, entities and agent,. It also introduces the

graphical notion for a provenance graph, which describes the causal

dependencies between these entities, represented by an edge. It then explains

how the proposed model is mapped to the OPM’s entities and its causal

dependencies. Two case studies are demonstrated in order to explain how the

proposed provenance collection policies can be applied and connected to the

structured graph model. Finally is a description of the proposed policy and event

collection language.

__

4. ACCESS CONTROL POLICY LANGAUGE

90

ACCESS CONTROL POLICY

 This chapter starts by analyzing the requirements of provenance
access control and introduces the Role Based Access Control
model. The next section develops the access control language
model based on the provenance model that supports fine-
grained access and privacy policies. At the end a use case
example is presented to explain how the proposed access
control language is applied.

4.1 Desiderata for Fine-grained access control
Pervasive computing applications may form part of a critical information

infrastructure, and it is expected to be confidential and trustworthy. Provenance

information of such applications may reveal critical information about the owner

or the process and actions performed on the data. In some applications, the data

is more important and needs to be protected more than the provenance; in other

cases the provenance is more critical than the data. In the use case scenario, the

question “What amount of electricity has been used by a user?” asks about the data.

The questions “How has this amount been used?”, “When was this amount used?”,

or “What machines have been used?” relate to the provenance information. The

electricity usage by a user is abstracted as data items for which provenance

information is collected. The provenance of the usage data is the detailed

CHAPTER 4

__

4. ACCESS CONTROL POLICY LANGAUGE

91

information that has been collected about the electricity usage such as the plug or

switch that has been used, the time and the duration. Each user’s usage or real

time WSN query may generate a provenance record. Provenance records may

contain private information about users such as their electricity usage or personal

habits. When gaining access to electricity usage information, the details about the

user’s private activities can be inferred. Therefore, both data and their

provenance are sensitive and have different concerns as to why they need a

different granularity level of access control. Given that the reasons for accessing

the data and its provenance differ, we have chosen to separate the mechanisms

for protecting the provenance from data.

 Provenance records will be available for access and query by different

participants. However, some records cannot be revealed to everyone. In our use

case application, users will have access to detailed data of their usage only and

can decide who other than their supervisor and manager can access this

provenance information. In other words, users can see the usage information of

other users only if they have received permission from the owner. Supervisors

have more detailed information about the data of users under their purview; on

the other hand, they can access only the data of users from other purviews. The

manager is made aware of the big picture and has full access to the data and the

provenance information of the subordinates that he/she manages. Therefore, the

individual user has associated access depending on the level this user is granted.

Provenance access control has been considered as one of the primary

components in provenance systems. One of the challenges in provenance access

control is the need for an access control language that supports fine-grained

policies, privacy and preferences. It is not sufficient for the storage facility to

provide multiple copies of provenance records depending on the principle of

authority, due to the size of provenance information and the potential large

number of participants. For example, one copy contains one field and another

copy contains various fields. In order to provide finer grained control over exactly

which participants can access which details of the provenance information, and to

__

4. ACCESS CONTROL POLICY LANGAUGE

92

overcome the problem of storing multiple copies of provenance records, one of

the solutions that can be used is to assign each participant (user) to an

appropriate role based on their particular responsibilities and qualifications

(Ferraiolo, Barkley et al. 1999). Roles can be created for a job function or job title

in relation to the authority required for meeting the goals of the organization, and

these roles can be associated with permission or access rights. The role is an

intermediary that brings a collection of users and a collection of permissions

together (Sandhu 1996). A permission or privilege is an approval of access to data

resources, or approval of a particular executable part of a program to be

performed on data objects.

4.2 Mapping to Role Based Access Control

In the use case application, by applying a Role Based Access Control

(RBAC) model, the user can grant access only to resources that he/she has

permission for. The model has four components, as shown in figure 4.1:

 User (U) is a human being or it could be generalized to include

intelligent autonomous agents such as computers or a network of

computers; or a human being who needs to obtain access to the

resources and perform actions on data. Each user is assigned to one

.
.
.
.

P
PERMIS-

SION

U
USER

R
ROLES

USER
ASSIGNMENT

PERMISSION
ASSIGNMENT

S
SESSION

Figure 4.1: RBAC model

__

4. ACCESS CONTROL POLICY LANGAUGE

93

or more roles depending on the user's authority and responsibility.

A relationship between users and roles is many-to-many, which

means a role can be associated with one or more users, and a user

can be associated with one or more roles depending on his/her

authority

 Roles (R) can be defined as a combination (Schaad, Moffett et al.

2001) of official position and an attribute as shown in table 4.1. An

official position could be that of a supervisor, manager, electricity

user or an outside party such as an Electricity Company or Analysis

Company. Attribute represents an additional description of a user

such being a supervisor of the area or a friend of a user.

Role Official Position Attribute

A Electricity User Normal

B Electricity User Owner

C Electricity User Friend

D Supervisor Normal

E Supervisor Section

… … ….

… … ….

K Manager System manager

… … …

X Third Party Electricity Company

Y Third Party Analysis Company

… … …

 Table 4.1: Roles specification

 Permission (P) is an approval of a particular mode of access to a

data object. It confers the ability of the holder to perform some

actions, which could be from a very coarse grain mode such as

access to all records, to a very fine grain one such as access to a

particular field in the records (Ferraiolo, Barkley et al. 1999). In

__

4. ACCESS CONTROL POLICY LANGAUGE

94

our application, the provenance data is stored in a relational

database. Therefore the nature of permission is accessing tuples,

attributes and relations or tracking the dependencies of data in

order to view the provenance information. The relationship again

could be many-to-many between roles and permissions. Assigning

permission to roles and users to roles provides flexibility and

granularity control on user action. Table 4.2 defines the semantics

of permission in the use case.

Permission Access right

1 The usage of the user

2 The detail provenance of a WSN query

3 The input and output of the WSN query

4 The usage of a sensor

5 Location provenance of a sensor

6 All provenance of a sensor

7 Event of a stream

8 Event of a process

… …

 Table 4.2: Permission specification

 Session (S) is established when the user is authenticated and it

involves a set of processes which act on behalf of a user and is

permitted by the roles (Barkley 1997). A user may have multiple

sessions but a session in only associated with a single user.

Therefore the relation between user and session is one to many.

Since the role is based on the combination of job position (J) and an

attribute (A), the total number of roles would be the product of every job position

and every attribute:

R = J * A

__

4. ACCESS CONTROL POLICY LANGAUGE

95

However, the actual number is a subset of the theoretical number, as the user

cannot combine it with supervising the same area or a different area to define a

role.

R J * A

It was mentioned in Schaad, Moffett et al. (2001) that the oral estimation of the

number of roles, discussed at the RBAC2000 workshop, is approximately 3-4% of

the user population.

All components of RBAC have to be under the control of the system

administration. In order to reduce errors in administration, the assignment of

access rights to a role and mapping users to a set of roles has to be at a different

level, not under a single security officer. For example, a permission administrator

assigns all permission numbers that are allowed to each role; the supervisor of

the section has access control to all the provenance information of users of that

section and some general information on users from other sections. A role

administrator maps each user to a role or sub-set of roles that he/she is a

member of.

The model RBAC1 (Sandhu 1996) introduces role hierarchies in which one

role is superior to another. In this application a role hierarchy can be defined as

shown in figure 4.2, when a section supervisor is one of the electricity users in

that section. It is the capability of one role to inherit another role, or in other

words, the parent role inherits permission from all children roles.

MANAGER

SECTION
SUPERVISOR

SUPERVISOR
NORMAL

USER
OWNER

USER
NORMAL

Figure 4.2: Role hierarchy

__

4. ACCESS CONTROL POLICY LANGAUGE

96

4.3 Access control policy

Definition: Access Control Policy: a set of rules (authorization requirement) that

answer the question of who is allowed to perform which actions.

User authentication is performed externally and is outside the scope of

this section. A Role Based Access Control model (RBAC) is used in order to

provide finer-grained control over exactly which participants can access which

details of the provenance information, and address the requirement discussed in

the previous section.

The basic concept of RBAC is that users are assigned to roles and roles are

assigned to permissions. Permissions are defined as privileges associated with

roles for each data object. The relationship between users and roles is many-to-

many, which means users can be assigned to multiple roles and roles can have

different users, and there is the same relationship between roles and permission.

Users are mapped to roles and acquire permission in a session.

eXtensible Access Control Markup Language (XACML) is a standardized

RBAC specification language that provides the core RBAC specification and

defines XML based policy framework. XACML defines three policy elements:

permission, restriction and obligation. These policies define rules by connecting a

set of subjects (actors) with a set of targets (data) and specifying the conditions of

the rule. When the conditions are met, the rule results in a given effect: ‘Allow’ or

otherwise ‘Deny’. In some rules, an obligation needs to be met before permission

is granted.

XACML is used as a starting point for this model. In the application, roles

are created for a job function or job title regarding their authority.

ROLES

{users, supervisor, manager, administrator, third party}

__

4. ACCESS CONTROL POLICY LANGAUGE

97

User: electricity users

Supervisors have users under their purview

Manager is made aware of the subordinates that he/she manages.

Administrator assigns users to a set of roles and permission to roles

Third Party is an outside party such as an electricity company or analysis

company

The following plain-language rules are to be enforced:

Rule 1: A user, identified by his number, may read any provenance record for

which he/she is the designated user.

Rule 2: A user can access some static provenance information of his sensor

location.

Rule 3: A user may access a WSN query result and the corresponding input of a

friend without the detailed process that the data goes through.

Rule 4: A supervisor may access any provenance record for those under his/her

purview.

Rule 5: A manager has full access to the data and the provenance information.

Rule 6: An administrator shall not be permitted to read any provenance record, as

he/she works only as an application controller.

Rule 7: A third party has access to specific parts of provenance information

depending on their level of involvement. For example, an analysis

company can access the information about the electricity usage of a group

of user in a room, in daytime or night-time.

According to these rules, an additional description (attribute) is needed for

roles in order to specify the fine granularity level of access that can be assigned to

each role with different attributes. For instance, a User, which is an electricity

user, can have different attributes as shown in table 4.1. A User with the attribute

Normal has access to the total usage of the other users. A User with the attribute

Owner has access to all the provenance information specified in rule numbers 1

and 2. A User with the attribute Friend has access to some of his/her friend

provenance information specified in rule number 3.

__

4. ACCESS CONTROL POLICY LANGAUGE

98

Provenance information is recorded as tuples in a table. In our case, each

primitive described in chapter 3 is stored in a table, therefore four tables are

created: a table for stream provenance information; a table for process

provenance information; a table for event provenance information; and a table for

dependencies relationships. In order to provide a granularity level of tuple or a

granularity level of table, permission can be defined as access to a field in a table

tuple.

Rules 1 and 2 illustrate a simple rule with a single condition: the user is

the owner of the data. Table 4.3 shows the permission access for the user with the

condition required

Permission Condition

Stream table

Process table

Event table

Location field in

sensor table

UserID = OwnerID

 Table 4.3: Owner user (permission and condition)

Rule 3 shows restrictions on the process applied to the data and any changes. A

user can access only some information of his/her friend WSN query input and

output. However, the permission is on condition of being a friend, as shown in

table 4.4.

Permission Condition

Stream table

(WSN Query input and result)

UserID has a friend attribute

User friend id = Ownerid

 Table 4.4: User friend (permission and condition)

__

4. ACCESS CONTROL POLICY LANGAUGE

99

Rule 4 includes all the permissions that are allocated for a user role, in addition to

other permissions assigned to a supervisor role, but under a condition of being a

supervisor of the area where the user is. Table 4.5 shows the permission that is

allocated to a supervisor if the user is under his purview.

Permission Condition

Stream table

Process table

Event table

Sensor table

Owner Users in the

supervisor purview

 Table 4.5: Supervisor (permission and condition)

Rule 5 shows a full permission without any condition and Rule 6 shows full

restriction.

Rule 7 shows part of permission allocated according to the role attribute. In this

example, the condition is that the attribute is an analysis company.

The system’s RBAC has two states. A persistent state must be available

throughout the lifetime of the system. Its components are the policy definition,

which includes user and role identifiers, role hierarchies, user assignment and

permission assignment. A soft state, which is throwaway, can be reconstructed

from the persistent state. This state includes the session state, which consists of

active user sessions and their currently active roles. The process of a session state

is shown in the following algorithm:

Algorithm 4.1: Algorithm for implementing the proposed access control model

1: sid SESSIONS [REQEST.UID];

2: rolessid ROLES [sid];

3: att request.att

4: r mini. rolessid

5: for all r rolessid do

6: found DFS(att, perms)

7: perms PERMS[r]

__

4. ACCESS CONTROL POLICY LANGAUGE

100

8: cond perms.cond

9: if match = true then

10: effect (REQUEST.query)

11: return

12: end if

13: end for

14: deny (MSG);

15: return

Algorithm 4.1 shows the algorithm used for permission evaluation. The

algorithm uses the incoming request as input and uses attributes contained in it

(UID) to identify the set of active roles (lines 1-2). The request attribute is for

identifying and evaluating the role condition (line 3). The least privileged role is

required to perform a search (line 4). Finally, a depth first search (DFS) is

performed on the role hierarchy defined by the policy starting at the current role

(line 5). If the target role (defined by the permission) is found during the DFS and

the condition is satisfied, the message is allowed. Otherwise, if all active roles are

exhausted, the request is denied (line 14).

4.4 Applying access control policy in a use case

example

In our first use case scenario, where the user sends a WSN query

requesting the average usage of the room including four sensors, the detailed

provenance information recorded are: the reading of the four sensors (input

stream), the information about the WSN query, the information about the

summation process with its input and out dependencies, and the information

about the division process with its input and output dependencies. The user can

access the result data and all detail provenance information of his WSN query,

since the condition (the user is the owner of the data) of the first rule and the

second rule has been met:

Rule 1: A user, identified by his/her number, may read any provenance record for

which he is the designated user.

Rule 2: A user can access some static provenance information of his/her sensor.

__

4. ACCESS CONTROL POLICY LANGAUGE

101

Therefore, the user (User1) who sends the provenance query is the owner of the

four sensors and these sensors are measuring his electricity usage. The roles

assigned to this user are:

 Role A, which has the official position of electricity user and attribute Normal

 Role B, which has the official position of electricity user and attribute Owner

 In the case where User1 has a friend (User2) from another section and

Role C, which has the official position of electricity user and attribute Friend, is

assigned to User1 and his/her friend (User2), this means that User2 has access to

the provenance information of the WSN query such as time, input and to show the

result without the detailed information of the WSN query provenance

information, since he/she satisfies the Rule3 condition of being a friend of User1

(the WSN query owner):

Rule 3: A user may access a WSN query result and the corresponding input of a

friend without the detailed process that the data goes through.

Emp Role Official Position Attribute Description

U1

U1

U1

A

B

C

Electricity User

Electricity User

Electricity User

Normal

Owner

Friend

Electricity user

Sensor and WSN query

owner

U1 is a friend of U2

 Table 4.6: Assign user to role

Role Permission Access right for role

 A 1 The usage of the user

B 2, 4, 5 The detail provenance of a WSN query, The usage

ususage of a sensor, Location provenance of a sensor

C 3 The input and output of the WSN query

 Table 4.7: Assign role to permission

__

4. ACCESS CONTROL POLICY LANGAUGE

102

Table 4.6 shows the assignment of user1 to roles, specified in table role

specification in table 4.1, according to the application of Rule 1, 2, and 3. Table

4.7 shows the permissions that are associated with each role. Therefore, from the

two assign tables: U1 has the permission specified in table 4. 3 and the

permission specified in table 4.4.

A supervisor, where user1 is under his purview, is assigned to Roles D and

E. Role D has an official position of Supervisor and attribute normal. Role E has

an official position of Supervisor and attribute section. He/she can have access to

all provenance information of user1 WSN query and usage, because he/she met

the condition of Rule 4:

Rule 4: A supervisor may access any provenance record for those under his/her

purview.

However, he/she cannot access the provenance information of any WSN query

and usage of User2, because User2 is not under his/her purview.

Emp Role Official Position Attribute Description

S1

S1

D

E

Supervisor

Supervisor

Normal

Section

Normal supervisor for U2

Supervise U1

 Table 4.8: Assign supervisor to roles

Role Permission Access right for role

D 1, 3 The usage of the user, The input and output

of the WSN query

E 2, 4, 6 The detail provenance of a WSN query, The

usage of a sensor, All provenance of a

sensor

 Table 4.9: Assign role to permission

__

4. ACCESS CONTROL POLICY LANGAUGE

103

From tables 4.8 and 4.9, the normal supervisor has access to the usage and the

WSN query input/output of any other user not under his/her purview, where the

supervisor of the section has access specified in table 4.5 of users in his/her

section.

The manager satisfies the condition in Rule 5 and has access to all the provenance

information of User1 and User2 without any condition.

Rule 5: A manager has full access to the data and the provenance information.

The manager is assigned to Role K, which has the official position of manager and

attribute System Manager.

In the second use case scenario, the provenance information of any event

is recorded for five minutes as provenance information of that stream. The

stream is generated by a sensor; therefore the owner of the sensor and his/her

supervisor only has access to that provenance information according to rule 1

and rule 4 respectively. Permission numbers 7 and 8 from table 4.2 are assigned

to role B for the user and to role E for the supervisor.

4.5 Summary

This chapter discussed the need for an access control model that supports

the fine-grained and privacy policies. Then it introduced the role based access

control model and reviewed its four main components: roles, users, permissions

and sessions. RBAC was presented as a solution for providing the requirement

access control to provenance information. The proposed access control language

has been influenced by XACML, which is a standardized RBAC specification

language that provides the core RBAC specification. The access control policy is a

set of rules that answers the question of who is allowed to perform which actions.

These rules are translated into permissions and conditions of the proposed access

control model, which have been applied and explained in the case study.

__

5. MAPPING TO IMPLEMENTATION

104

MAPPING TO IMPLEMENTATION

In this chapter, we describe the experimental setup required to
evaluate the proposed system and briefly discuss some
implementation aspects required for simulating the use case
system and the sensor component. Following this, the focus is on
the prototype implementation of the proposed provenance
solution and access control.

5.1 Experimental setup

The experimental setup for evaluating the proposed collection model

requires an application that combines the monitoring of an electrical energy

usage feature with the sensor middleware functionality. Any sensor applications

need middleware to query a reading from sensors or to process that data then

store the result in a database. The provenance service tracks and records

provenance information by interacting with the middleware. Several solutions

for middleware systems have already been implemented and assessed (Horré et

al. 2007). However, these middleware systems and existing monitoring

applications require a real sensor network and are not efficient enough for

evaluating the requirements of the proposed provenance collection and access

control.

CHAPTER 5

__

5. MAPPING TO IMPLEMENTATION

105

TinyDB, sensor Query Processing in TinyOS, can connect to TOSSIM: a

simulator for the TinyOS network, but it does not support multiple users and,

consequently, is unable to apply the access control model. Therefore, the solution

lies in implementing a sensor middleware with the essential functionalities, and

simulating a system for the monitoring of electrical energy usage, as mentioned in

the use case section.

Furthermore, most sensor network simulators and test-beds are for

examining and comparing issues in the sensor network design such as the routing,

protocols and performance. They do not support any real-time contact with the

sensor readings. In our case, the main concern is, therefore, to work with real-

time sensor readings and the operations applied to these data, without going into

the detailed design of sensor networks. This has led us to design a simple sensor

component that generates events in order for these to be detected by the

proposed provenance collection model.

5.1.1 Simulated application architecture

The architecture of this simulated application is, as discussed in the

background chapter, based on three components: the WSN query planner service

component, the WSN query execution engine component and the simulated

sensor component.

5.1.1.1 WSN Query planner

A WSN query planner provides a declarative language for specifying

queries, where the user describes what he/she wants by selecting the set of

attributes and conditions such as the time period, selected sensors and operation.

Queries can be real time queries, data obtained directly from a sensor, or data

retrieved from a database. The incoming WSN query is parsed and translated into

an internal representation. The WSN query planner accepts the WSN query

requests and deploys the optimized queries to the query execution engine, where

they are executed.

__

5. MAPPING TO IMPLEMENTATION

106

In order to illustrate the query planner, an example of a query and an optimized query

are presented. Figure 5.1 shows a simple query, which requests a sensor reading. It is

not complex and does not need a plan for executing.

SELECT Reading

FROM sensor1, sensor2 …

Figure 5.1: A simple query

A complex query may require aggregation and grouping that need a plan for executing,

which is called query optimization. An example of such a query is shown in figure 5.2.

The query requests the average usage of light in each room for five minutes.

SELECT Average (light)

FROM sensors

GROUP BY roomno

DURATION 5min

Figure 5.2: A complex query

Bemana (2012) has proposed a new method for executing optimized queries by

defining three rules:

1- Do select before all operations

2- Do project after selection, before other operations

3- After following rules 1 and 2 you can join operator.

Therefore, the query planner executes this query by following these rules. The

execution requires selection of the readings of the sensor that measures the electricity

usage of light switches, then grouping of the readings of each room, then calculates the

average.

5.1.1.2 WSN Query execution

The WSN query execution component receives the transformed queries

from the WSN query planner and executes them for the duration of their lifetime.

__

5. MAPPING TO IMPLEMENTATION

107

It supports standard query features such as filtering, joins, grouping and

aggregation.

The WSN query execution component is configured to collect data from a

number of sensors. It obtains the sensor reading using the ID of the sensor and

the analogue input number that the sensor is connected to. It then time-stamps

the reading and gives it a sequence number, then forwards it to the database. The

current AC is calculated from the sensor reading and the usage amount is sent to

the user. The reading could also be sent as WSN queries result in a case where it

was the result of a user’s WSN query. In the case of sending the result to the user,

a buffer interface is supported by the WSN query execution for the WSN query

result. A buffer interface is where the result tuples are temporarily stored in a

buffer and sent to the web page when the result set count is completed. This

method of interaction is supported in order to reduce the webpage reloading

process.

5.1.1.3 Simulated sensor component

In order to understand how the electricity usage is measured, a ccurrent

sensor was attached to the outlet that it is sensing to measure the electrical

energy consumed. The current sensor, i-Snail-VC, is a self-powered AC current

transducer, and it provides a 0-5V DC analogue signal proportional to the AC

current flowing through the device wire window (Phidgets 2011). The sensor is

connected, using a cable included with the sensor, to an analogue input on a

Phidget Interface Kit that is used to measure continuous quantities of the AC

current. The formula for converting the sensor value into AC Amps(RMS) is:

AC Amps(RMS) = sensor value / 10.

And the formula to convert Amps to watts is:

Watts = Amps * volt

The experiment was performed on one sensor. However, according to the

information collected, a simple simulator has been implemented to simulate the

__

5. MAPPING TO IMPLEMENTATION

108

sensor component. The reading is collected from the simulator periodically, when

a user sends any queries. Any process applied on the data will be performed in

the execution service. The simulator generates events for the purpose of the

evaluation, such as where the out of range reading is corrupted, the sensor fails

by sending a null reading, the reading is increased or the reading is decreased.

5.1.2 Application functionalities

 Generally, the required functionalities may differ depending on the

environment, the sensor used and how the sensor data is analysed. The following

essential functionality requirements for the implemented system have been

partly derived from existing sensor middleware systems (Madden et al. 2003, Loo

et al. 2006) and partly from existing energy monitoring systems (Kappler et al.

2004, Harris et al. 2007):

 WSN Querying: the system provides a means of querying real-time sensor

data, as well as offline database data, in an efficient way. A query can aggregate,

filter and transform one or more data streams on behalf of the user, and generate

a new stream.

 Presentation: keeping the user up to date with the system by presenting

sensor or usage data.

 Sensor access: sensors have a communication protocol and different ways

to connect, such as by a serial connection, or USB. In this system the sensor is

connected to the board using a cable, and the board is connected to the computer

through a USB cable (Phidgets). The system maintains a routing table with entries

for all sensors containing a sensor ID and the analogue input number that the

sensor is connected to. However, in our use case the application is connected to

the simulated sensor component.

 Sensor discovery: sensors can be added to or removed from the system.

The number of sensors is changed in the database, and accordingly the content of

the routing table needs to be adapted in addition to the sensor count.

 Sensor specification: the system knows the sensor’s characteristics such

as output structure and location, as well as how to identify the sensor. The system

records this information and also when changes to the configuration occur.

__

5. MAPPING TO IMPLEMENTATION

109

 Fault tolerance: with a sensor, data could be corrupted or communication

could fail. The system should take this into account and react appropriately, by

regularly scanning for missing sensors, and sending an alarm message in case of

any fault.

 Shared execution: many users may be involved in analysing sensor data.

The system allows multiple users to access it at the same time and provides

access control on sensor data.

 Storage: a stream management system usually needs three types of data

storage (Golab et al. 2003). Temporary storage should be in the memory for

storing windows queries or caching. Disk space will be used in recording

historical data and aggregated results, while static storage such as a relational

database is used to store sensor metadata such as location, manufacturer and

output specification.

5.1.3 Mapping to implementation

In order to include all the functionalities discussed earlier, the simulated

application is implemented as a web server that allows for multithreaded

execution in order to allow multiple users to access the system with an

authentication security. The application provides a facility for adding or removing

sensors and detects some of the fault tolerances such as when a sensor is missing.

In normal operation, the system runs a long-lasting WSN query for

collecting the readings from all sensors. The routing table is populated in order to

obtain access to sensors. The number of sensors is adapted according to the

number of sensors registered. The reading is collected each second; it has a time-

stamp and is given a sequence number and is then sent to the database. The

sensor reading value is converted to the AC current and displayed to the user, and

is then sent to the database.

A user can query data from sensors by building a query and submitting it.

The WSN query planner accepts the query, translates it and sends it to the query

execution engine. A WSN query planner service provides a declarative language

__

5. MAPPING TO IMPLEMENTATION

110

for specifying queries where the user describes what he/she wants by selecting

the set of attributes and conditions such as the time, selected sensors and

operation. The WSN query execution engine receives the query and starts to

execute it. The result could be from the sensor or from the database, according to

the exact query specification, and is sent back to the WSN query services in order

to be presented to the user.

TinyDB extends and implements a query-based interface for extracting

information from a network of TinyOS sensors. TinyDB query language is based

on SQL, which refers to as TinySQL, and consists of a set of attributes to select, a

set of aggregation expressions, a set of selection predicts for filtering, and a

grouping expression for partitioning the data before aggregation. Aggregation is

commonly used in a sensor environment. The five basic data aggregations are:

count, min, max, sum, and average (Madden et al. 2002).

 Our query interface has borrowed some TinyDB features, which are listed

below:

 A set of attributes to select such as sensor IDs, or the duration of the query

 A set of aggregation expressions such as Summation and Average

 A grouping expression such as group by room number or sensor type.

A graphical interface, a query window, has been implemented for building queries

and choosing the attributes and aggregation expressions to apply on the data as

shown in figure 5.3.

 Figure5.3: Query windows of UGI

__

5. MAPPING TO IMPLEMENTATION

111

As shown in figure 5.4, the query time specifies the interval time in seconds,

which is the query duration. A Group By drop list shows the available grouping

expressions, which group by room number, by user ID or by sensor type. The

sensor IDs list all sensors registered with the system and allow for selecting many

items. The operation menu lists the available aggregation expressions, which are

Summation and Average, and Reading is to get the reading of the sensor.

 Figure5.4: Options to be selected for each attribute

For example, when the user requests the average reading of sensor numbers 1, 2,

4, 7, 8, and 9 group by the room number, this means the average is calculated for

the sensor according to the room number. Therefore, if sensor numbers 1, 2, and

4 are in room no. 1, and sensor numbers 7, 8, and 9 are in room 2, the average is

calculated for each room. The SQL statement is as follows:

SELECT RoomNo, Average

FROM Sensors

GROUP BY RoomNo

QUERY DURATION 5 min

Figure 5.5 shows the query window that constructs this query. The duration time

is 300 seconds (5 minutes), the sensor has been selected by selecting the sensor

IDs, a room number was selected as a group filtering and Average was selected as

an operation expression.

__

5. MAPPING TO IMPLEMENTATION

112

.

.

 Figue 5.5: Query construction window with its result

__

5. MAPPING TO IMPLEMENTATION

113

5.2 Provenance subsystem

The application architecture can be extended to capture provenance by

including the provenance component as shown in figure 5.6.

The Provenance Subsystem (Provenance component) is the

implementation of the provenance model in checking, collecting and storing the

provenance information of the measurement data and queries. When a new WSN

query is submitted, the WSN query service parses it and sends it for query

execution. The WSN query execution engine executes the query and records the

sensor real-time data in a relational database. During the execution, data streams

are subject to rate and accuracy changes (Vijayakumar 2006). The WSN query

execution engine contacts the provenance services when the condition of the

extended policy of stream event collecting is satisfied. The provenance service

detects the event of interest that is specified in the policy and captures the

changes in the stream and the association effect dynamically. As provenance data

has to be permanently stored and maintained, the updated information with its

time-stamp is stored as tuples in relational data tables. In addition, if a WSN

query or any changes associated with it are specified in the collecting policy as an

event of interest, the provenance service should go through the same process.

Query

Exe

 Sensors

Provenance

Policy

Provenance

(Event)
Checking

Access
Policy

Query
Service

App
Database

Provenance
Database

Query

 Data

Query

 Result

Check

Approve

 Check

Approve

Provenance
Record

Event

Provenance
Record

 Data

Figure 5.6: System architecture with

provenance component

__

5. MAPPING TO IMPLEMENTATION

114

The query interface of the provenance component must support complex

query facilities to search, analyse and reason over the collected provenance

information. Different levels of query capability are required, such as a recursive

query and a distributed query. Each stream or process registered with the system

is uniquely identified by an ID. The full provenance information of a usage stream

or a process can be retrieved using its own ID or WSN query ID, while a subset of

an event associated with a stream or process can be identified by any information

related to the event such as a type of change, or a change timestamp.

5.2.1 Data model

In the use case scenario, the provenance information consists of two parts:

base provenance information and dynamic provenance information. The base

provenance information is the information about sensors, networks, users, and

administrative information, which is gathered when these are first registered

with the system and is amended only when they are added or removed. The

dynamic provenance information is the information about the usage and the

changes, which is gathered during the measurement of the usage by sensors or

during the execution of the process. The three atomic units of dynamic

provenance collection are: streams, processes and events, while dependency is

recorded to connect the input and output data to the process. Streams could be

base streams, which are generated by sensors, or derived streams. A process is a

transformation applied to the data, while an event can be related to processes or

streams.

The provenance information of a stream contains the sources that

generate it, the owner of the stream, the stream start time and the stream end

time. For the process, the provenance information contains a list of input streams

that the process has been applied to the type of process, start time, end time and

the derived stream as an output. The event information contains its type, its time-

stamp and where it happened.

__

5. MAPPING TO IMPLEMENTATION

115

The additional provenance information about sensors, phidgets and

networks can be used to describe the environment when the action happened.

This information could be added to a process as an annotation within the

provenance graph, in order to record the state of a process. Sensor provenance

characteristics may include hardware information such as: type, lifetime, and

phidget kit interface; and software information such as: time period for each

reading, time-stamping and reading package. The user information contains the

number of sensors assigned to measure that user’s usage and other information

required by the application.

The dynamic provenance information needs to be stored in order to be

used and queried to reconstitute the provenance of some data or process;

therefore, it is saved in a relational database management system for the

advantages discussed in section 2.2.3. Provenance information can grow to an

immense size and needs to be supported by efficient management tools. MySQL

has been considered because it is a popular choice for use in many high profile,

large-scale World Wide Web products such as Wikipedia, Google, Facebook and

Twitter (MySQL 2011). It is an open source, which works on many different

system platforms and provides a full-featured database management system.

A table is created for each of the three provenance entities and for the

dependency relationships:

 The process table is used to store the provenance information of the process

and each row represents the attribute information of a process primitive

 The stream primitive attribute is stored in a stream table, which is used to

store the provenance information of a source or derived streams

 The event table is used to store event information specified in the event

primitive

 The dependency table is used to store the dependency relationships with

the specific attribute in the dependency primitive.

__

5. MAPPING TO IMPLEMENTATION

116

The information in these tables needs to be connected to information in

the sensor and user tables. A stream contains change events and participates in

process input and output. A process has changes, accepts inputs, and generates a

new stream. Sensors generate source streams, and sensors and queries have an

owner. The data model of the proposed solution consists of the major entities, as

shown in figure 5.7, to keep track of the provenance information.

5.2.2 Implementing the collecting model

Recording provenance is controlled by collecting policy definitions as

specified in Chapter 3. These policies can be created and be active or inactive at

any time in the application lifetime and controlled by the system administrator.

Figure 5.7: Provenance Data Model

Use

Derive

Measure for

has

has

Source

Participates in
Participates in

Stream

Stream ID: Integer (8 byte)

Owner: Integer (8byte)

Source: Integer (8 byte)

Stream type: Char (10 byte)

Start Time: Timestamp (7 byte)

End Time: Timestamp (7 byte)

Process

Process ID: Integer (8 byte)

Process type: Char(4 byte)

Ownership: Integer (10 byte)

Category: Char (225)

Annotation: Char (225)

Start Time: Timestamp (7 byte)

End Time: Timestamp (7 byte)

Sensor

Sensor ID: Integer (8 byte)

User ID: Char (10 byte)

Location: Char (10 Byte)

Other Sensor information

.

Dependency

Dependency ID: Integer (8byte)

Owner: Integer (8 byte)

Object: Integer (8 byte)

Type: Char (225)

User

User ID: Integer (8 byte)

Total usage: Integer (10 byte)

Other User information

.

Event

Event ID: Integer (8 byte)

Owner ID: Integer (8byte)

Change Type: Char (10 byte)

Time: Timestamp (7 byte)

Annotation: Char (225)

Own

__

5. MAPPING TO IMPLEMENTATION

117

To validate the set of policies in the recording phase of stream events, we built a

domain specific language that is used to define events of interest and their

attributes using ANTLR (Parr 2007). Grammar is the highest-level construct of

ANTLR, which is a list of rules describing the structure of the policy language.

ANTLR automatically analyses the grammar and generates the lexical analyser

and parser. Lexical analysis is the first phase in the translation, which breaks up

the incoming stream into tokens. Parsing is the second phase, which operates on

these tokens and tries to recognise the sentence structure.

By recognising these policies, ANTLR generates executable DFAs that

match the stated policies, and these are used to filter the incoming stream of

reading for event detection. The whole code is written in Java, which requires an

ANTLR jar file to run.

Two grammar files are created: one file for recognising the definition of

the event (Appendix 1), and the other for recognising the policy of capturing

provenance (Appendix 2). The following is an example of an increase event

definition:

event IncreaseEvent {

 Long totalChange;

}

ReadingEvent[n].value > ReadingEvent[n-1].value

=>

IncreaseEvent.totalChange = ReadingEvent[n].value-

ReadingEvent[n-1].value;

This definition implies that when the current reading is greater than the

previous reading the difference value is caught. The grammar file reads this file

and translates it to create the DFA states. An example of a policy definition for

capturing the provenance information of this specific event is shown below. The

policy states that if the difference between the current reading and the previous

reading is greater than 2 then the provenance information of that event is

captured.

__

5. MAPPING TO IMPLEMENTATION

118

policy Increase {

IncreaseEvent.totalChange > 2

} capture IncreaseEvent

 The event file and the policy file are a well-defined set of sentences that

represent the language. ANTLR builds a recognizer which checks that the

sequence input sentences from these files follow the rules of the language

described by their grammar file. According to the definition of the event, an array

list is created for its states transition table. The array list start with a start state,

and has an acceptance state depending on the translation of the event expression

and the specification of its condition and attribute. The event attribute defines the

number of the value that needs to be held during the checking process. In our

example, one value is being held, which is the previous value (n-1) in order to

compare it with the current value (n). Each state has its attribute and transaction,

which is stored in another array list. At the beginning, the start state becomes the

current state. When the first reading is put in, the compiler checks its attribute

and according to that the transaction will be decided, which could mean moving

to the next state, staying in the same state, or whatever it is according to the event

state transition table, and this will be the new current state.

In the example, according to the parser event file, an array list of the DFA states is

created and the accept state is reached when the attribute of the parse policy file

has become true, as shown in figure 5.8.

The start state Q1 is the current state. When the first reading is put in, the

transition moves to state Q2, and it become the current state. When the second

reading is put in, the transition moves to state Q3. State Q3 had to make a

comparison in order to decide what the next state would be.

Q1 Q2 Q5
Reading[n]

TotalChange >2

Reading[n]
<=Reading[n-1]

Q3

Figure 5.8: DFA for event increased and policy increase

Reading[n]

Q4

Reading[n] >
Reading[n-1]

TotalChange <=2

Reading[n]

__

5. MAPPING TO IMPLEMENTATION

119

IF Reading.event[n].value > Reading.event[n-1].value THEN moves to state Q4

 ELSE moves to state Q2 hold the last reading and wait for the next reading

If the current state is Q4, the action is:

IF TotalChange >2 THEN moves to Q5, which is the accept state

 ELSE moves to state Q2 waiting for the next reading

 At state Q5, the event provenance information is captured. Then the

current state will be Q2, hold the last reading and wait for new reading input.

The recording policies for events associated with a WSN query are

dependent on actions such as WSN Query Submit, or WSN Query Stopped, which

do not require specific language like the events associated with streams.

Therefore, when this action happens, the provenance service checks the policy

and performs according to this. In relation to the first scenario example, when

the user sends a WSN query required to calculate the average of the consumption

energy of his/her room, which includes four sensors, for one hour: when the WSN

query instance is detected, the provenance component will check the active

policies and filter this event according to that. The function Confirm is used for

the filtering:

Confirm (event) IF condition

In this case, the event is WSN Query Start, so the function will be:

Confirm (query start) IF (policy is active)

If the policy is active, then the function will return (True) and the

provenance information is recorded within the context of the WSN query

instances. The recording model will annotate the three types of entities and their

relationship, as illustrated in the following algorithm 5.1. The query process

__

5. MAPPING TO IMPLEMENTATION

120

primitive is mapped to the Insert Process function that records the WSN query

information specified in the primitive and stores them in the process table in the

database. The data primitive, for each input stream and output stream, is mapped

to the Insert Stream function and saves all the input and output stream

information in the stream table. The dependency relation between the input

stream and the process, and between the process and the output stream is

recorded in the dependency table by the Insert Dependency function.

If the policy of recording detailed information is active, then the

summation process and the division process with their input and output stream

and dependencies will be recorded.

Algorithm 5.1 The Provenance Collection Graph

QI = {qi}: a set of queries instances,

G = {(A, P, AG, US, GN,T, D, C }: the provenance graph in OPM.

1: for each query instance qi in QI do

2: if policy = true then

3: add agent AG to G,

4: for each process instance process i in qi do

5: add process Pi to G,

6: add dependency “ControlledBy” between AG to Pi in G,

7: add dependency “Trigger” between Pi-1 to Pi in G,

8: for each input data input j of process i do

9: add artifact Aj to G,

10: add dependency “USedBy ” between Pi and Aj in G,

11: end for

12: for each output data output k of process i do

13: add artifact Ak to G,

14: add dependency “GNeratedBy” between Pi and Ak in G,

15: add dependency “Derived” between Aj and Ak in G,

16: end for

17: end for

18: for each event in qi do

19: if event condition is satisfied then

20: add artefact An to G

21: add dependency “Derived” between Aj and An in G,

22: end if

23: end for

24: end if

25: end for

26: output G.

__

5. MAPPING TO IMPLEMENTATION

121

The algorithm uses the submitted WSN query as an input and uses it to identify

the set of active recording policies (line 2). If the policy is active, the provenance

service records the WSN query information with its input and output (lines 4 -17). For

each event associated with streams or process, the provenance services record the

events that match the condition of the stated policies (lines 18-23).

5.2.3 Implementing the provenance query component

Two models are used for querying provenance information: retrieval query and

filter query. Retrieval query is used when the complete provenance information

of a process or artifact is involved, while the filtering model is used for searching

for specific provenance information using information filter criteria. These two

models require provenance systems to support complex queries such as nested

sub-queries and aggregation (Glavic et al. 2010). Different levels of query

capability are required, such as a recursive query and a distributed query.

However, a distributed query was not used in our provenance component, since

not all the provenance data was distributed in different database services.

In our use case, the provenance query was planned to implement an

interface that allows us to query the provenance information of a query, a stream,

a sensor, a process, and a user’s usage, as shown in figure 5.9. However, only the

query provenance information has been implemented with all options shown in

figure 5.10.

 Figure 5.9: Provenance query Page

__

5. MAPPING TO IMPLEMENTATION

122

Figure 5.10: Provenance query construction window

Choosing the query ID can retrieve the complete provenance of that query.

The query provenance information can be filtered by choosing the duration time

of the query or the sensors that generate the source stream used by the query.

For example, when the user requests the provenance information of a query that

lasts for 1 hour, in this case we have a nested provenance filtering query.

SELECT *

FROM Dependency,

 (SELECT *

 FROM (SELECT *, end_time-start_time AS Duration

 FROM Process

) AS InnerQuery

 WHERE Duration <=60

) AS Queryreq

WHERE Queryreq.process_id = Dependency.owner

An example of using a recursive query is when the user requests the provenance

information of all the processes that use the stream generated by sensor number

10 directly as an input, or any process that uses a stream derived from a stream

generated by sensor number 10. The recursive query is over a table stream, that

contains information about streams and the processes related to those streams.

The query returns the process that directly or indirectly uses a stream generated

by a specific sensor by recursion from the sensor ID. That is defined by a Union

All with an initialization full select that seeds the recursion and an iterative full-

select that contains a direct reference to itself in the FROM clause.

SELECT *

FROM Process,

 (SELECT Stream.owner

 FROM Stream

 WHERE Source =sensorID AND type = 'source'

__

5. MAPPING TO IMPLEMENTATION

123

 UNION ALL

 SELECT Stream.owner

 FROM Stream, (SELECT *

 FROM Stream

 WHERE Source = sensorID

AND type = 'source'

) AS InnerQuery

 WHERE Stream.Source= InnerQuery.owner) AS

NextQuery

WHERE NextQuery.owner = process_id

5.3 Access control model

As mentioned before, provenance information needs its own right of

access. The proposed access control model is based on the RBAC specification,

which can provide fine-grained control over a tuple or attribute in the

provenance database. As the application uses MySQL for store provenance

information, the access control model is also built in MySQL.

5.3.1 Data model

In order to implement the proposed access control in MySQL, all the data is stored

in tables. These tables need to be created in order to define the three main

entities of the RBAC: the user, role and permission:

 Table for User, who needs to obtain access to the provenance data. Users

could be the application users or outside third parties.

 Table for the Roles specification, which matches the application

requirement as mentioned in Table 4.1.

 Table for the Permission specification, which defines the semantics of

permission as described in Table 4.2.

Four additional tables are needed to specify the assignment, relationship and

conditions:

 Table for the Role-User assignment, which assigns each user to a role,

based on their responsibilities and authority, as in Tables 4.6 and 4.8. The

__

5. MAPPING TO IMPLEMENTATION

124

assigned relationship between the user and their role is 'many-to-many',

which means the user can be assigned to many roles and one role is

assigned to many users.

 Table for the Role-permission assignment, which assigns roles to the

permission and specifies which access is approved for each role. Again, the

relationship between role and permission is 'many-to-many', which means

a role can be assigned to many permissions and a permission can be

assigned to many roles.

 Table Condition, which specifies the condition of each permission

according to the policy rule, as mentioned in Tables 4.3, 4.4 and 4.5. The

Condition table is needed because some permissions can be allowed by

more than one condition; for example, in our case, the WSN query

input/output can be accessed if the user is the owner of the WSN query or

a friend of the owner or a supervisor of the owner.

 Table Relationship, which specifies the relationship between users, such as

which user is a friend of which other user. This table is used to check the

condition of some permissions; for instance, the permission is allowed if

the provenance query sender is a friend of the data owner.

Figure 5.11 shows all the tables and the relationship between them. These

tables, which are to maintain the state, are required for permission evaluation.

The Role-User table, which contains a mapping of the user identifier and the role

identifier, maintains the set of active roles of each user session. This role

identifier indexes into the Roles table. The Role-permission table maintains the

permission assignment and the role numbers.

__

5. MAPPING TO IMPLEMENTATION

125

5.3.2 Mapping to implementation

When implementing the access control model, a permit function is needed

for permission evaluation. Each request query to the provenance database, which

is sent by a user, needs permission evaluation and responses of ALLOW or DENY.

When user1 signs into the application and starts a new session, he/she has all the

access rights of all roles to which he/she is assigned. The roles activated for that

user's session, as mentioned in Table 4.6, are A and B, therefore all permissions

assigned to these two roles are activated.

 1

 Participates in

 *

 *

Participates in

 1

*

 Participates in

 1

 *

 Participates in

 1

 *
 Participates in

 1

Role-Permission

ID: Integer (8 byte)

Role ID: Integer (8 byte)

Permission ID: Integer (8 byte)

Role

Role ID: Integer (8 byte)

Official Position: Char (255)

Attribute: Char (255)

Permission

Permission ID: Integer (8

byte)

Description: Char (225)

User Relationship

ID: Integer (8 byte)

Part1: Integer (8byte)

Part2: Integer (8 byte)

Relationship: Char (225)

Role-User

ID: Integer (8byte)

Role ID: Integer (8 byte)

User ID: Integer (8 byte)

User

User ID: Integer (8 byte)

Total usage: Integer (10 byte)

Other User information

.

Figure 5.11: Access control data model

Condition

ID: Integer (8 byte)

Permission ID: Integer (8 byte)

condition: Char (225)

 1

 *

__

5. MAPPING TO IMPLEMENTATION

126

According to the first scenario example, user1 sends WSN query1, which

requests the average to be calculated. If user1 sends a provenance query

requesting the detailed provenance information of WSN query1, then by

following algorithm 4.1, the Permit function will go through all the permissions in

each role and check. If the permission is found, the condition for accessing the

detailed provenance information is that the user who requests the information is

the owner of the WSN query. In this case, the condition is met in permission 2 of

Role B, because user1 is the owner of the WSN query. Therefore, the function will

return ALLOW and the user will have access to the information he/she has

requested.

The second example, which records the provenance information of a user1

sensor data stream, the stream has four events recorded in a period of time. In the

case where user2 logs onto the system and requests the provenance information

of a sensor stream related to his/her friend user1, the permit function will check

all the permissions and detect permission 7 for role B. However, the condition for

this permission states that the user who requests the information has to be the

owner of the sensor that generates the stream. Therefore, the function will return

a DENY message, because the condition is not valid and the loop of checking all

the permissions of each role has finished and none of the conditions has been

satisfied.

5.4 Summary

This chapter has discussed the experimental setup requirements for evaluating

the proposed provenance collection model and access control. The electrical

monitoring system and sensor network have been simulated and implemented in

order to be used for the evaluation stage. The provenance component can be

added to the application architecture with little modification. The provenance

subsystem architecture is based on collecting and data models. The data model of

the proposed solution consists of six major entities to keep track of the

provenance information. The collecting model is based on an event alert and

these events are filtered according to the policy language specified in Chapter 3.

__

5. MAPPING TO IMPLEMENTATION

127

The implementation of the collecting model involves building a small domain-

specific language for capturing events associated with streams using ANTLR. The

access control data model consists of seven entities which are used to maintain

the required information for applying RBAC. The implementation is mapped to

the implementation algorithm in Chapter 4.

__

6. EVALUATION

128

EVALUATION

In this chapter, we describe how the first set of experiments
were set up to evaluate the overhead of the proposed collecting
model and to measure its scalability. The second set of
experiments were set up to evaluate the time response of the
provenance query. The storage overhead was evaluated by a
numerical analysis.

Several techniques have been used to meet the provenance requirements

for individual domains. Based on a survey of the literature on provenance,

provenance systems can be analyzed and compared according to several

taxonomies (Simmhan et al. (a) 2005). These taxonomies are based on why the

provenance is recorded, what it describes, how it is represented and stored, and

the way to disseminate it. The subject of provenance and its representation affect

the cost of the collecting process, while the manner in which this information is

stored is important in relation to its scalability.

The management of provenance incurs costs for its collection and storage

(Simmhan et al. (b) 2005). Therefore, the main parameters for evaluating our

proposed system are collection and storage overheads and provenance query

performance.

CHAPTER 6

__

6. EVALUATION

129

In order to evaluate the provenance recording and querying performance,

the simulated use case has been built that queries a simple sensor simulator, as

mentioned in the previous chapter. The simulated sensor network works as

sensors that send a reading periodically when a user sends any queries. The

simulated application consists of a WSN query service, WSN query execution

engine and provenance service. The user builds his/her WSN query at the WSN

query service; the WSN query execution engine connects the WSN query service

and the sensor simulator. The provenance service detects the event of interest

and records its provenance information.

The simulated sensors and the application are written entirely in Java and

hosted on MacBook Pro with Intel Core 2 Due 2.66 GHZ and 4 GB Memory. The

application is deployed within a Tomcat 6.0 web server container and uses a

MySQL database.

The experimental evaluation was performed in different stages and for

different purposes. The first set of experiments measured the provenance-

collecting overhead and measured the scalability of the provenance service in

tracking and recording the provenance information. The second set was for

evaluating the response time of the provenance query. The storage overhead is

evaluated using a numeral analysis.

6.1 Provenance recording evaluation

6.1.1 Collecting overhead

In our system, provenance management is transparent, which means the

users are freed from manually recording the provenance information. The system

middleware will automatically capture the provenance of the sensor stream data,

and this should be during the data creation process (Simmhan et al. (a) 2005).

Instrumentation could incur a performance loss (Vijayakumar et al.2006), so

ideally, a collection overhead could be imposed on the normal functionality of the

system, and has to be reasonable.

__

6. EVALUATION

130

The collection process overhead can be defined by measuring the time

taken to record the provenance when an event of interest occurs. For instance,

when a sensor reading changes, which means a user starts to use electricity, the

provenance component sends this information such as the change value and the

time to the database. When the reading goes down, which means the electricity

stops being used, the time and the information about the change is recorded. Any

other changes that happen during the usage, such as packet loss or connection

failure, should be recorded also as provenance information. The time of recording

all the provenance information of electricity usage compared to the overall

execution time of the system is the overhead of provenance collection.

The other case is to record the time that is taken to record the provenance

information of a WSN query. For the purpose of this experiment, the WSN query

service generates a WSN query and deploys it to the execution engine. The WSN

query time is measured by recording the time it takes from starting to send the

WSN query until it has finished, which includes the time it takes to record any

provenance information. The overhead is to compare the provenance recording

time with the query execution time without recording the provenance

information.

6.1.1.1 Process provenance

The first experiment is to measure the time taken to register the WSN

query information at the provenance service. Registering a WSN query includes

checking the validation of the policy and recording the WSN query as a process in

a process table, then recording the information of each sensor stream in the

stream table. This is the standard process for each WSN query. In order to

measure the time that the system takes to check and register the WSN query

information with the provenance service, the WSN query service generates 120

WSN queries sequentially that request a reading from a sensor. The time is

measured from submitting the WSN query until it finishes by displaying the

reading. We assume that the simplest WSN query is for obtaining the current

reading from one sensor, and the WSN query and the stream are the only events

__

6. EVALUATION

131

that need to be recorded. In chart 6.1, the X-axis shows the recording time in

milliseconds (MS) and the Y-axis shows the serial number of the WSN query. The

recording time is between 5 and 10 milliseconds.

 Chart 6.1: WSN Query provenance recording time

The range can be calculated as:

Range = highest value which is 10 – lowest value which is 5 = 5

The mode is 8 milliseconds, which has the highest frequency accruing of 95 out of

120, in the frequency distribution.

To calculate the recording time standard deviation, the difference of each time

from the mean has to be calculated, and the result of each has to be squared.

The average is 7.19

The standard deviation is 1.16

The above average standard deviation is 8.35

The below average standard deviation is 6.03

Table 6.1 below shows the overhead of registering the WSN query, which

imposes an overhead of 7.19 MS on the overall query execution, about 10.8% of

the total time, which is reasonable (Vijayakumar et al. 2006, Groth et al. 2005).

0

2

4

6

8

10

12

1 4 7 1
0

 1
3

 1
6

 1
9

 2
2

 2
5

 2
8

 3
1

 3
4

 3
7

 4
0

 4
3

 4
6

 4
9

 5
2

 5
5

 5
8

 6
1

 6
4

 6
7

 7
0

 7
3

 7
6

 7
9

 8
2

 8
5

 8
8

 9
1

 9
4

 9
7

 1
0
0

R
e

co
rd

in
g

 T
im

e
 (

 m
il

li
se

co
n

d
)

Query serial Number

WSN Query Provenance Recording Time

Provenance Recording Time

Average

STD

STD

__

6. EVALUATION

132

Measure Average (MS) STD (MS)

WSN Query execution time 66.34 4.63

Recording WSN query information 7.19 1.16

Table 6.1: WSN Query Provenance Overhead

The time required for recording query provenance is the time for checking

the policy and contacting the database for persistent storing of the query

information. By breaking down the cost of recording the provenance information

of the query, the result shows that only 0.6.5 milliseconds of the total time for

provenance recording, which is 7.19 milliseconds, is for performing the checking

process. The higher percentage, which is not under control, is used to locate the

database server, to establish a communication channel with it, and for exchanging

information; it is called the database connection overhead. This overhead is not

fixed and depends on different factors such as data traffic.

6.1.1.2 Event provenance

The second experiment is to measure the time for monitoring and

checking an event and then recording the provenance information. A single WSN

query was set up and run, and a single stream was recorded. Events were

generated every five seconds for the provenance service to check the policy and

record the event information. In this experiment, events were changes in the

reading value and null reading, as the overhead time was similar in these cases.

The experiment lasted for 10 minutes and 100 events were generated. The time

that the provenance service took to record event information was between 1 and

5 milliseconds. The chart 6.2 shows the recording time of 100 events, the X-axis

shows the time in milliseconds and the Y-axis represents the event serial

numbers.

__

6. EVALUATION

133

 Chart 6.2: Event provenance recording time

 The range = highest value which is 5 – lowest value which is 1 = 4

The mode is 2 milliseconds, which has the highest frequency accruing of 65 out of

100, in the frequency distribution.

The average is 2.42

The standard deviation is 0.62

The above average standard deviation is 3.15

The below average standard deviation is 1.69

As these results show, there are vast differences between event and query

provenance recording, in both time consumption and storage overhead. The

average time required to record query information is 7 milliseconds, while 2.42

milliseconds is the average time for recording the event provenance information.

Query provenance has a higher overhead in time and storage. That is because

recording query information involves recording a query as a process provenance,

the reading of each sensor as an input stream; and a derived stream, in the case of

the query requiring a transformation on the input streams as an output stream.

The query that is used in the evaluation of recording query information is an

example of the minimum query information, which is a query of one reading of

one sensor. This involves recording the information of the query in the process

provenance table, and the reading of the sensor in a stream provenance table.

Two tuples are recorded and the database has been contacted twice. The event

0

1

2

3

4

5

6

1

4

7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

R
e

co
rd

in
g

 T
im

e
 (

m
il

li
se

co
n

d
)

Event Serial Number

Recording Time of Event Provenance
Record Time

Average

- Standard Deviation

+ Standard Deviation

__

6. EVALUATION

134

provenance, which records changes that have occurred in the stream data,

requires the recording of one tuple in the event provenance table.

6.1.2 Collecting scalability

Performance scalability is the ability of the system to scale with an

increased number of sensors and events. The experiment will measure the

overall execution time measured from when the WSN query is sent until the

result is displayed (Groth et al. 2005). The time includes detecting the event

condition and updating the database in order to keep the system updated with

the event provenance information. The scalability performance can be done by

analysing the process time to record events information with an increasing

number of events and the size of the data recording (Groth et al. 2005). The

experiment can show an increase in the execution time with an increasing

number of sensors. Accordingly, it can show the scalability of provenance

collecting to an increasing rate of event recording.

In the experiment, in order to show big number of sensors, the WSN query

was for calculating the average of different numbers of sensor readings, starting

from 10 sensors and going up to 100 sensors with an increase of 10 sensors each

time, and for different configuration recordings:

- Without provenance recording

- With recording provenance information of the WSN query, sensor

stream, the average as a process, and the dependency.

- With detailed information of the process for calculating the average

such as: the summation process and division process, and the input

and output of each process.

Chart 6.3 plots the execution time in milliseconds on the X-axis and the increasing

number of sensors on the Y-axis. The observations are as follows:

- Overall, the different execution times remain linear with the number of

sensors to be processed. Each plot has a correlation coefficient greater

than 0.99;

__

6. EVALUATION

135

- Overall, the overhead of provenance performance remains less than

20%;

- The granularity coarseness has an acceptable cost. However, the

developer has to schedule the required granularity that offsets the

overhead.

 Chart 6.3: Recording performance

In order to show big number of sensors, other set of experiment is

performed for calculating the average of different numbers of sensor readings,

but starting from 100 sensors and going up to 1000 sensors with an increase of

100 sensors each time, and for the same configuration recordings as above.

Chart 6.4 plots the execution time in milliseconds on the X-axis and the increasing

number of sensors on the Y-axis. The observations are as follows:

- Overall, the different execution times show still linear behavior with

the number of sensors to be processed. Each plot has a correlation

coefficient greater than 0.99;

- The overhead of provenance performance is between 20% and 40%.

The overhead is increased with the increased number of sensor. The

overhead start to increase at recording the provenance of a query

! "

#! ! "

$! ! "

%! ! "

&! ! "

' ! ! "

(! ! "

) ! ! "

* ! ! "

+! ! "

#! " $! " %! " &! " ' ! " (! ") ! " * ! " +! " #! ! "

!
"
#
$%
&&
'(
)
#
*+
,-
.
/
'0
-1
#
'2
1
-&
&-
3#
*.
/
4
5'

6+1 7#$'. 8'3#/3. $'

Recording Performance

, - ". /0- 12345"

61- 7/4840/". /0- 12345"

9/:83;"61- 7/4840/". /0- 12345"

__

6. EVALUATION

136

involved with 300 sensors. However, 4.89 seconds is reasonable time

when dealing with 1000 of sensors;

- The detailed provenance recording almost cost double provenance

recording overhead starting at dealing with 300 sensors. However,

granularity coarseness still has an acceptable cost of 5.88 second when

collecting details information of a query deals with 1000 sensors.

 Chart 6.4: recording performance with 1000 sensors

6.2 Provenance query performance evaluation

Users can use the provenance information and search the database in

order to locate the information they are interested in. The provenance query

performance is evaluated by measuring the request response time. The time that

the system takes to process the provenance query and search the provenance

database then send the result of the user provenance query is called the request

response time. Two factors can affect the provenance response time: the size of

the provenance store and the size of the result. Therefore, the response time is

measured against the different number of records contained in the store (Groth et

al. 2005). Secondly, different queries with different result sizes are examined in

0

1000

2000

3000

4000

5000

6000

7000

100 200 300 400 500 600 700 800 900 1000

O
v

e
ra

ll
 E

x
e

cu
ti

o
n

 T
im

e
 (

m
il

li
se

co
n

d
)

Number of sensor

Recording Performance with 1000 number of sensors

No Recording

Provenance Recording

Detail Provenance Recording

__

6. EVALUATION

137

order to determine how these factors can increase the time required to search

and respond (Groth et al. 2005, Simmhan et al. 2006b).

The size of the data result is built on three levels of provenance

documentation details: a data provenance, a process provenance with its

dependency of input and output, and the details of all processes that are

performed on the input for a specific output.

 The experimental use case provenance query was the provenance

information of an average result. The provenance information was, for example:

the streams that contribute to this result, the sensors that generate the stream,

and the events that accrue in a stream. More detailed information, such as the

process that the calculation goes through, includes: the summation process and

its input and output, the division process and its input and output, and the

process that uses this result (the result was its input).

6.2.1 Size of interaction record

The first experiment is to measure the response time for querying the

provenance information of an average process and to perform a comparison

against the number of interaction records contained in the store. The time taken

to retrieve the provenance information is dependent on the size of the store. The

response time has been measured when querying simple provenance information

such as the input data, the output data and the average process. The detailed

provenance information includes the input data, the summation process, the

result of the summation process, the division process, and the output of the

division process.

__

6. EVALUATION

138

 Chart 6.5: Response time with the increase in the store size

The time to query the store for these two levels of provenance information

was measured against the increased number of records in the store starting with

1000 of interaction records and increasing toward 5000 records. Chart 6.5 shows

linear behaviour with the size of the store, which means with the increased size of

the store the response time is also increased. The size of the interaction records

with the response time of querying simple provenance information has a

correlation coefficient of 0.98, while it has 0.94 with the response time of

querying detailed provenance information. The findings also show a reasonable

response time even with the increase of store size, since with 5000 records in the

store and the detailed information request, the response time is 20.54 MS.

6.2.2 Size of result records

The second experiment is to examine how the increase in the result size

can affect the response time. The number of records in the store was 30,000

records, while the results started from 10 records and increased towards 100

records. The first case was performed by increasing the result size while the

number of SELECT statements remained the same, while the other case was

performed by increasing the number of records in the result and SELECT

statements. As can be seen from Chart 6.5, increasing the number of records in

the result has a low increase in the response time, while the increase in the

SELECT statement in the second case takes more time to retrieve the required

0

5

10

15

20

25

1000 2000 3000 4000 5000

R
e

sp
o

n
se

 T
im

e
 (

m
il

li
se

co
n

d
)

Number of Interaction Records

Query Response Time

Simple Peovenance
Information
Detail Provenance
Information

__

6. EVALUATION

139

result. Thus, the increase in the result size has little impact on the response time

if it does not require many interactions with different tables.

 Chart 6.5: Response time with increase in result size

6.3 Storage overhead evaluation

The size of provenance information can grow larger than the data it

describes and this has an effect on storage cost. The storage overhead of the

provenance collection can be examined by measuring the size of the provenance

records when any event accrues. Each event involves the creation of one or more

provenance records, and each record is one row in a provenance database table.

As we use MySQL for the provenance storage, each row needs a fixed number of

bytes depending on the attribute type of each record. For example, a row in a

stream table needs 26 bytes, as shown in Table 6.2.

Provenance systems can scale with the number of datasets, their granularity and

depth of lineage (Simmhan et al. 2005b). The annotation method has been used

with some restrictions in order to address the problem of high storage and

process overheads. In pervasive systems, provenance storage scale with the number

of sensors, the number of events, their granularity, and the depth of the lineage. The

number of events needed for provenance recording is domain dependent and related to

the granularity approach that the system adopts. The storage cost of recording this

information increases exponentially with the depth of provenance. In our solution a

fine-grained model has been used which could lead to outsize storage. However, it has

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100 110

R
e

sp
o

n
se

 T
im

e
(m

il
li

se
co

n
d

s)

Number of Records

Query Response Time

Records in the result

__

6. EVALUATION

140

been reduced by recording just the event of interest, which is specified in the policy

language, instead of all events over all time. Moreover, the dependency relationship

between events is not explicitly recorded in order to minimize the consumption storage.

However, that may require a recursive inspection of the provenance of each event in

order to assemble the complete provenance.

Attribute Type Storage

required

Stream ID INT 4 byte

Source INT 4 byte

Start time Timestamp 4 byte

End time Timestamp 4 byte

Owner INT 4 byte

Type var char 10 byte

 Total 26 bytes

 Table 6.2: Storage required for stream provenance

This section will present a simple numerical analysis of the storage

overhead of the annotation-based provenance vs. our proposed solution. Clearly,

each WSN query must carry the ID of all the input and the output streams, in

addition to the WSN query information. TVC (Wang et al. 2007) records

provenance information based on stream segments, which are bounded by time

intervals, rather than at the data element level. Over a specific time interval t, the

output is periodically generated and the provenance of the process is recorded.

When using the annotation approach in this instance, the overall overhead

storage will be the total overheads of all streams of provenance produced in t

additional to the cost of total per output overhead. If a WSN query lasts for T of

time, which includes many time intervals t, then the total overhead of the

provenance of the WSN query is calculated as follows:

__

6. EVALUATION

141

 Figure 6.6: Query overhead of the annotation approach

Table 6.3 below lists the various mathematical symbols used in the

analysis. The overhead of the annotation approach when recording WSN query

provenance is the average of the total overhead of n number of query provenance

overheads. The query overhead is the size of process provenance (P), and the

input and the output overhead. The input overhead includes: the number of

segments in the WSN query time (Seg) multiplication the size of each input

stream (S) and its related dependency (D) for all sensors involved in the query

(N), while the number of segments in the WSN query (Seg) multiplying the size of

the derived stream (SD) by its dependency (D) is considered as an output

overhead.

For our proposed solution, the provenance of all base streams and the

derived stream will be collected only once in the WSN query lifetime. The stream

segment is not in fixed time – it could be one second or one minute, either more

or less, depending on the WSN query duration conditions. For the dependency,

the provenance is recorded with each stream. With the extended recording policy

there is a significant saving in per WSN query provenance, as shown below. The

overhead of the query provenance in our proposed solution is the average of the

total size of only the query concerned. The query overhead is still the size of

process provenance (P), and the input and the output overhead. However the

input overhead is only the size of the input stream (S) and its dependency

relationship (D) for each of the sensors (N), since there is one segment for each

query. For the same reason, the output overhead is the size of the derived stream

(SD) and its dependency size (D):

Output overhead

Query overhead = Average (P + N * (Seg * (S + D))

 + Seg * (SD + D))

Input overhead

n

I=1

__

6. EVALUATION

142

Figure 6.7: Query provenance overhead of the proposed language

Table 6.3: Mathematical symbols for provenance analysis

 In order to record the changes in the monitoring environment, an event of

interest in a stream is recorded when it occurs. So, the size of change events

associated with a stream depends on the number of times it happened. Therefore,

the size of stream event overhead is the average of the total size of all event

provenance size (E) of all sensors (N) as shown:

 Figure 6.8: Stream event overhead

The following chart represents the data in the provenance record size.

Symbol Meaning

N No. of sensors

T Time period

P Size of process provenance

S Size of stream provenance

SD Size of output stream

D Size of dependency provenance

E Size of event provenance

Seg No. of stream segments in T

Query provenance overhead = Average (Interest (P +

 N * (S + D) + SD + D))

 Input overhead

n

I=1

 Output overhead

Overhead of stream event = Average (E * N)

n

I=1

__

6. EVALUATION

143

 Chart 6.9: Provenance record size in Bytes

In Chart 6.6, it can be clearly seen that the size of the provenance

information of the process records has the highest number of bytes. However, the

process information will only be recorded for each WSN query and any operation

performed on the data if it is specified in the policy. This indicates that 250KB of

storage is required for 5,000 records of process provenance. The dependency

information is recorded only when an operation is performed on the data and

does not require many bytes: 1MB is enough for 50,000 dependency records.

The stream record has been inserted for each sensor in the WSN query and

an output for each operation, therefore the number of stream records is increased

by the increase in the number of sensors: 5,000 records of stream information

requires only 130KB.

The number of event records depends on the number of changes accruing

in the stream or the process during the WSN query, which cannot be predicted.

However, 1MB is the size that fits for 28,000 records, and that is rational enough.

6.4 Summary

 This chapter described the experimental setup for evaluating the proposed

model. The first set of experiments was for evaluating the collecting model by

examining the collection overhead and the performance scalability. The collection

overhead was measured by evaluating the overhead of recording WSN query

provenance and event provenance. The findings demonstrated a reasonable

0

50000

100000

150000

200000

250000

300000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e

co
rd

 S
iz

e
 (

b
y

te
)

Number of Records

Provenance Record Size in Bytes

Process
Stream
Event
Dependency

__

6. EVALUATION

144

overhead on the system functionality. The system performance scalability was

examined by measuring the time required to record the provenance with an

increased number of sensors and information to collect. The experimental result

showed a linear increase. The second set of experiments was for evaluating the

provenance query response time, which was examined with the increased

number of provenance stores and with the increase in the result size. The result

showed a linear increase in the response time with the increase in the

provenance store, and the total time was still acceptable. The increase in the size

of the result had little impact on the response time; however, a higher impact

occurred when it required many interactions with many tables in the database.

Finally, the provenance storage overhead was evaluated by comparing the

storage size required in our proposed model with the annotation model, and

showed a significant saving.

__

7. CONCLUSION

145

CONCLUSION

This chapter presents a summary of the overall work, followed
by a summary of its contribution. At the end, it discusses future
work and concludes with closing remarks.

7.1 Summary of the work and its contribution

Pervasive computing is a model of human-computer interaction where

information processing integrates into everyday activities. It is a rapidly

developing area and has many potential applications from domestic ubiquitous

computing to environmental monitoring and intelligent spaces. Most of these

applications involve responding to real time events in the environment as well as

the need sometimes for decision-making, and require provenance recording in

order to justify any action and draw an accurate conclusion. However, pervasive

applications present challenges when integrated with provenance support.

Provenance is well studied in the field of scientific workflow and database, but is

still an exploratory field in pervasive computing.

This work discusses the need for provenance in such an application and

introduces a model for supporting provenance by making two contributions. The

first contribution is in defining a provenance policy language for recording the

provenance information. The recording policy specifies the different kinds of

CHAPTER 7

__

7. CONCLUSION

146

information that need to be recorded with the ability to identify and address

challenges that are unique to such a system, which is brought about by the

dynamic nature and high rate of data streams. The proposed collection model,

according to the provenance recording policy language, captures and stores

provenance data based on an event alert, which is considered as a dataset for

provenance collecting instead of a data element. The data model identifies four

main units: streams, processes, their relationship to one another, and changes

that occur in the stream and the process, which are used to maintain the

construct of provenance information. This solution has been mapped to the Open

Provenance Model structure in order to generate a compliant provenance

structure and allow for its interoperability with other systems.

The second contribution is in introducing a fine-grained access control

over the details of provenance information by defining an access control policy. It

is a set of rules (authorization requirement) that specifies who is allowed to

perform which action and so avoids the problem of storing multiple copies of

provenance records depending on the principle of authority. The proposed access

control model is mapped to RBAC (Role Based Access Control), which supports

provenance specific requirements such as supporting both fine-grained policies

and personal preferences. The basic concept of RBAC is that users are assigned to

roles and roles are assigned to permissions. Roles are created for job functions or

job titles regarding their authority, and permission is an approval of a particular

access to a data object. The standardized RBAC specification language defines

three policy elements: permission, restriction and obligation. These policies

define rules by connecting a set of subjects (users) with a set of targets (data) and

specifying the conditions of the rule. In order to provide a granularity level of

access, permission can be defined as access to a field in a table tuple.

 The model is validated by implementation in a use case of an energy

monitoring system. Two examples from the system lifecycle have been discussed

in detail, which are debugging on deployment and auditing for correct operation.

The two examples show how the provenance information which needs to be

__

7. CONCLUSION

147

recorded for such functionality is specified in the collection language policies.

Accordingly, the provenance graph structure has been developed. The proposed

access control policy has been applied on the two use case scenario in order to

illustrate how roles should be allocated for access to the provenance information

and how permission is allowed or denied. In order to evaluate the proposed

solution, a simple sensor simulator and a simulated application have been built.

Provenance collection overhead and provenance query performance were

quantified by experimental evaluation, while the storage overhead has been

evaluated by a numerical analysis.

7.2 Future work

As provenance management is advancing rapidly, several directions can be

potentially extended to this work in order to increase its reliability and usage in

the future. The following are some of the possible extensions that can be added:

 Sensornets are becoming widely deployed and sharing sensor data online

across multiple parties has become much more common. The process of

transforming sensor data online is called republishing, and can involve a

variety of processes and multiple users (Park 2008). The provenance, in

this case, is defined as a record of actions taken on particular sensor data

over its transformation life cycle. Each use of data online may generate a

provenance record. In general, a provenance record may include the

identity of the principle, a log action (e.g., aggregation, filtering), a

description of the environment when the action was performed (such as

the time and software), and confidentiality information. Keeping track of

the provenance chain of time-ordered records by addressing the special

requirement of sensor data streams and cross-domain demand could

create an interesting challenge to be tackled.

 Data is increasingly shared across organizations; it is therefore essential to

share provenance information along with the data. OPM as a standard

provenance data model can be a starter for collaborative provenance

information on a large scale, which would enable a combination of

provenance resources to be exchanged.

__

7. CONCLUSION

148

 The problem of access control for provenance will become more complex

as data may cross multiple domain boundaries. An access control policy

requires a language that combines different access controls from different

sources such as organization high-level security policies, the policies of the

different involved parties, and privacy laws and regulations. The

aggregation of authorization decisions from different policies with

different purposes could be a new area to explore.

7.3 Closing remarks

 This work has focused on defining the language for collecting and securing

provenance information, and finding efficient approaches for storing and

representing it. The provenance component service can be extended to a larger

context management service by providing a method to query this information

effectively For example, using a method for queries time to be largely

independent from the total provenance size (Kementsietsidis et al. 2009).

Another service could be to provide a usage pattern for this information in the

application domain. Furthermore, it can be extended by considering the

implication of data collected from multiple administration domains instead of a

centralized approach. This could involve efficiently federating the collecting,

storage and retrieving of provenance information across these domains.

__

REFERENCES

149

REFERENCES

Aberer, K., Hauswirth, M. and Salehi, A. (2006) "A Middleware for Fast and
Flexible Sensor Network Deployment". Proceedings of the 32nd International
Conference on Very Large Data Bases (VLDB ’06), pp. 1199-1202. ACM Press, New
York.

Agrawal, D., Calo, S. B., Giles, J., Lee, K.-W. and Verma, D. C. (2005) “Policy
management for networked systems and applications,” in IFIP/IEEE Symp. on
Integrated Network Management, Nice, France, pp. 455–468.

Barkley, J. (1997) "Comparing Simple Role Based Access Control Models and
Access Control Lists". Proceedings of the Second ACM Workshop on Role-based
Access Control. Fairfax, Virginia, United States, ACM.

Bauer, A., Gore, R. and Tiu, A. (2009) "A First-Order Policy Language for History-
Based Transaction Monitoring", in Leucker, M. and Morgan, C. (eds), ICTAC,
Lecture Notes in Computer Science, vol. 5684, pp. 96-111.

Bemana, A. (2012) “optimized query processing for wireless sensor networks”.
International Journal of Science and technology, vol. 1(2): pp. 67–71.

Bernstein, P. A. and Bergstraesser, T. (1999) "Meta-Data Support for Data
Transformations Using Microsoft Repository," in IEEE Data Engineering Bulletin,
vol. 22, pp. 9-14.

Bhagwat, D., Chiticariu, L.,Tan, W. C. and Vijayvargiya, G. (2004) "An Annotation
Management System for Relational Databases," in VLDB, pp. 900-911.

Biton, O., Cohen-Boulakia, S., Davidson, S. and Hara, C. (2008) “Querying and
Managing Provenance through User Views in Scientific Workflows,” in
Proceedings of ICDE (to be published).

Black, K. (2004). Business Statistics for Contemporary Decision Making. Wiley,
India.

Blount, M., et al. (2007) "Century: Automated Aspects of Patient Care", in
Embedded and Real-Time Computing Systems and Applications. RTCSA, 13th IEEE
International Conference.

Blue Line Innovations Inc. (2010)
Available at: http://www.bluelineinnovations.com. (Accessed Dec 2010).

Bose, R. and Frew, J. (2005) "Lineage retrieval for scientific data processing: a
survey," in ACM Computer Survey, vol. 37. New York, NY, USA, pp. 1-28.

http://www.bluelineinnovations.com/

__

REFERENCES

150

Braun, U., Shinnar, A. and Seltzer, M. (2008) "Securing Provenance". Proceedings
of the 3rd USENIX Workshop on Hot Topics in Security (HotSec).

Brase, J. (2004) "Using Digital Library Techniques - Registration of Scientific
Primary Data," in Lecture Notes in Computer Science, vol. 3232, pp. 488-494.
Buneman, P., Khanna, S., Tan, W. C. (2000) "Data Provenance: Some Basic Issues",
in Proceedings of the 20th Conference on Foundations of Software Technology and
Theoretical Computer Science.

Buneman, P., S. Khanna, and W.C. Tan (2001) "Why and Where: A
Characterization of Data Provenance", in Proceedings of the 8th International
Conference on Database Theory. Springer-Verlag, pp. 316-330.

Buneman, P. and W.-C. Tan (2007) "Provenance in databases". Proceedings of the
2007 ACM SIGMOD International Conference on Management of Data 2007. ACM,
Beijing, China pp. 1171-1173. Available at:
http://doi.acm.org/10.1145/1247480.1247646 (Accessed 3 May 2008).

Cameron, G. (2003) Provenance and Pragmatics, Workshop on Data Provenance

and Annotation, Edinburgh.

Chalmers, D. (2007) "Classification and Use of Context". Pervasive Computing
Course Notes.

Chen, L., Tan, V., Xu, F., Biller, A., Groth, P., Miles, S., Ibbotson, J., Luck, M. and
Moreau, L. (2005) "A Proof of Concept: Provenance in a Service Oriented
Architecture", in Proceedings of the Fourth All Hands Meeting (AHM), September
2005.

Cheney, J. (2011) "A Formal Framework for Provenance Security", in The 24th
IEEE Computer Security Foundations Symposium.

Chebotko, A., Chang, S. Lu, S., Fotouhi, F. and Yang, P. (2008) "Scientific Workflow
Provenance Querying with Security Views". WAIM, pp. 349-356.

Chong, S. K., Krishnaswamy, S. and Loke, W. (2005) "A Context-Aware Approach
to Conserving Energy in Wireless Sensor Networks". Proceedings of the Third IEEE
International Conference on Pervasive Computing and Communications Workshops,
IEEE Computer Society.

Clarke, D. G. and Clark, D. M. (1995) "Lineage," in Guptill, S.C. and Morrison, J.L.
(eds.), Elements of Spatial Data Quality. Oxford, Elsevier Science.

Collins-Sussman, B., Fitzpatrick, B. W. and Pilato, C. M. (2004) “Version Control
with Subversion”. O’Reilly Media, first edition.

http://doi.acm.org/10.1145/1247480.1247646

__

REFERENCES

151

Concurrent Versioning System. http://www.nongnu.org/cvs/. Access date March
2012.

Cui, Y. and Widom, J. (2000a) "Practical Lineage Tracing in Data Warehouses", in
ICDE, pp. 367-378.

Cui, Y., Widom, J. and Wiener, J. (2000b) “Tracing the lineage of view data in a
warehousing environment”. ACM Transactions on Database Systems, vol. 25(2): pp.
179–227.

Davidson, S., Ludäscher, B., McPhillips, T. and Freire, J. (2007) Provenance in
Scientific Workflow Systems. Available at:
http://sites.computer.org/debull/A07dec/susan.pdf (Accessed 20 April 2008).

Davidson, S. B. and Freire, J. (2008) "Provenance and Scientific Workflows:
Challenges and Opportunities". Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data. Vancouver, Canada, ACM.
Demers, A., Gehrke, J., Panda, B., Riedewald, M., Sharma, V. and White, W. (2007)
"Cayuga: A general purpose event monitoring system",in Proc. CIDR, pp 412-422.

Dey, A.K. (2001) Understanding and Using Context. Available at:
http://dx.doi.org/10.1007/s007790170019 Personal Ubiquitous Computing, 5
(1): p. 4-7

DIY Kyoto (2010)
Available at: http://www.diykyoto.com/uk/wattson/about (Accessed Dec 2010).

Ferraiolo, D, Barkley, J. and Kuhn, D.R. (1999) "A Role-Based Access Control
Model and Reference Implementation within a Corporate Intranet." ACM Trans.
Inf. Syst. Secur. 2(1): 34-64.

Freire, J. Koop, D. Santos, E. and Silva, C. (2008) "Provenance for Computational
Tasks: A Survey". Computing in Science & Engineering, 10(3) pp. 20-30.

Frew, J., Metzger, D. and Slaughter, P. (2008) “Automatic Capture and
Reconstruction of Computational Provenance,” Concurrency and Computation:
Practice and Experience, vol. 20, no. 5, pp. 485–496.

Gaber, M. (2007) "Data Stream Processing in Sensor Network", in Gama, J. and
Gaber, M.M. (eds.) Learning from Data Streams: Processing Techniques in Sensor
Networks, Springer Verlag, pp. 41-48.

Gehrke, J. and Madden, S. (2004) "Query Processing in Sensor Networks".
Pervasive Computing, IEEE, 3(1) pp. 46-55.

Glavic, B., Miller, R., Alonso, G. (2010) “Using SQL for Efficient Generation and
Querying of Provenance Information”.

http://www.nongnu.org/cvs/
http://sites.computer.org/debull/A07dec/susan.pdf
http://dx.doi.org/10.1007/s007790170019
http://www.diykyoto.com/uk/wattson/about

__

REFERENCES

152

Golab, L. and Ozsu, M. T. (2003) “Issues in data stream management,”
ACMSIGMOD Record, vol. 32, pp. 5–14.

Greenwood, M., Goble, C., Stevens, R., Zhao, J., Addis, M., Marvin, D., Moreau, L. and
Oinn, T. (2003) "Provenance of e-Science Experiments – Experience from
Bioinformatics," in Proceedings of the UK OST e-Science second All Hands Meeting.

Groth, P., Miles, S. and Moreau, L. (2005) "PReServ: Provenance Recording for
Services". Proceedings of the UK OST e-Science second All Hands Meeting (AHM’05),
Nottingham, UK.

Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S. and Moreau, L. (2006)
An Architecture for Provenance Systems. Available at:
http://eprints.ecs.soton.ac.uk/12023/. Accessed 12 May 2008.

Groth, P., Tan, V., Munroe, S., Jiang, S., Miles, S. and Moreau, L. (2006) Process
Documentation Recording Protocol. Technical report, University of Southampton.

Gude, R. and Oster, M. (2007) “Provenance-CSL: A provenance client side library”.
Technical report, Fachhochschule Bonn-Rhein-Sieg, Fachbereich Informatik.

Guitton, A., Skordylis, A. and Trigoni, N. (2007) "Utilizing Correlations to
Compress Time-Series in Traffic Monitoring Sensor Network", in IEEE Wireless
Communication and Networking Conference (WCNC).

Gyllstrom, D., Wu, E., Chae, H., Diao, Y., Stahlberg, P. and Anderson, G. (2007)
"SASE: Complex Event Processing over Streams (Demo)", in CIDR Conference,
Asilomar, CA.

Harris, E., Krishna, R., Chalmers, D., Fitzpatrick, G., Stringer, M. (2007) "From
Development in the Laboratory to Deployment in the Home: Trouble and strife
with sensor networks", in Proceedings of the 32nd IEEE Conference on Local
Computer Networks. IEEE Computer Society.

Hasan, R., Sion, R., Winslett, M. (2007) "Introducing Secure Provenance: Problems
and Challenges". Proceedings of the 2007 ACM Workshop on Storage Security and
Survivability. Alexandria, Virginia, USA. ACM.

Hasan, R., Sion, R., Winslett, M. (2009) "The Case of the Fake Picasso: Preventing
History Forgery with Secure Provenance". Proceedings of the 7th Conference on
File and Storage Technologies. San Francisco, California. USENIX Association.

Henricksen, K., Indulska, J. and Rakotonirainy A. (2002) "Modeling Context
Information in Pervasive Computing Systems", in Proceedings of the Conference on
Pervasive Computing, Zurich.

http://eprints.ecs.soton.ac.uk/12023/

__

REFERENCES

153

Hinton, H. and Stewart Lee, E. (1994) "The compatibility of policies", in CCS '94:
Proceedings of the 2nd ACM Conference on Computer and Communications Security,
pages 258-269, New York, NY, USA. ACM

Hiramatsu, K., Hattori, T, Yamada, T and Okadome T, (2005) "Finding Small
Changes Using Sensor Networks", Proceedings of Ubicomp 2005 Workshop on
Smart Object Systems, 37-44, Tokyo, Japan.

Holland, D. A., Braun, U., Maclean, D., Muniswamy-Reddy, K.-K., Seltzer, M. I.
(2008) "Choosing a Data Model and Query Language for Provenance", in Int.
Provenance and Annotation Workshop.

Horré, W., Matthys, N., Michiels, S., Joosen, W. and Verbaeten, P. (2007) A Survey of
Middle-Ware for Wireless Sensor Networks. Technical Report CW 498, Department
of Computer Science, K.U.Leuven, Belgium.

Howe, B. and Maier, D. (2002) "Modeling Data Product Generation," in Workshop
on Data Derivation and Provenance, Chicago.

Imran, M. and K. A. Hummel (2008) "On Using Provenance Data to Increase the
Reliability of Ubiquitous Computing Environments". Proceedings of the 10th
International Conference on Information Integration and Web-based Applications
\& Services. Linz, Austria, ACM.
Jiang, X., Dawson-Haggerty, S., Dutta, P. and Culler, D. (2009) "Design and
Implementation of a High-Fidelity AC Metering Network", in Proceedings of the
8th ACM/IEEE International Conference on Information Processing in Sensor
Networks.

Kappler, C. and Riegel, G. (2004) "A Real-World, Simple Wireless Sensor Network
for Monitoring Electrical Energy Consumption".Springer, Berlin / Heidelberg, vol.
2920, pp 339-352

The Kepler Project. Available at: https://kepler-project.org/ (Accessed 12 March
2012).

Kementsietsidis, A. and Wang, M. (2009) "Provenance query evaluation: what's so
special about it? ", in Proceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM '09).

Kim, C.H., Park, K., Fu, J. and Elmasri, R. (2005) "Architectures for Streaming Data
Processing in Sensor Networks in Computer Systems and Applications". The 3rd
ACS/IEEE International Conference.

Lange, R-J. (2010) Provenance aware sensor networks for real-time data analysis.
Available at http://essay.utwente.nl/59473/1/scriptie_R_de_Lange.pdf
(Accessed 12 May 2010).

https://kepler-project.org/
http://essay.utwente.nl/59473/1/scriptie_R_de_Lange.pdf

__

REFERENCES

154

Lanter, D. P. (1990) "Lineage in GIS: The Problem and a Solution," in Technical
Report: National Center for Geographic Information and Analysis.

Ledlie, J., Ng, C., Holland, D., Muniswamy-Reddy, K., Braun, U. and Seltzer, M.
(2005) "Provenance-Aware Sensor Data Storage". Proceedings of the 21st
International Conference on Data Engineering Workshops, IEEE Computer Society.

Li, S., Balfe, S. , Zhou, J. , Chen , K. (2008) "Enforcing trust in pervasive computing".
International Journal of Systems Engineering. vol. 1, pp. 96-110.

Lim, H., Moon, Y. and Bertino, E. (2009) "Research Issues in Data Provenance for
Streaming Environments". Proceedings of the 2009 ACM SPRINGL, November 3,
2009, Seattle, WA, USA, pp. 58 - 62.

Liu, Y., Vijayakumar, N. N., Plale, B. (2006) "Stream Processing in Data-Driven
Computational Science", in Grid Computing, 7th IEEE/ACM International
Conference.

Loo, B., Condie, T., Garofalakis, M., Gay, D., Hellerstein, J., Maniatis, P.,
Ramakrishnan, R., Roscoe, T. and Stoica, I. (2006) "Declarative Networking:
Language, Execution and Optimization", in ACM SIGMOD.

Madden, S., Szewczyk, R., Franklin, M. and Culler, D. (2002) “Supporting aggregate
queries over ad-hoc wireless sensor networks”. In Workshop on Mobile Computing
and Systems Applications.

Madden, S., Hellerstein, J. and Hong, W. (2003) TinyDB: In-Network Query
Processing in TinyOS. Available at:
http://telegraph.cs.berkeley.edu/tinydb/doc/index.html (Accessed 20 Nov 2010).

Misra, A., Blount, M., Kementsietsidis, A., Sow, D. and Wang, M. (2008) "Advances
and Challenges for Scalable Provenance in Stream Processing Systems".
Provenance and Annotation of Data and Processes: Second International
Provenance and Annotation Workshop, IPAW 2008, Salt Lake City, UT, USA, June
17-18. Revised Selected Papers, Springer-Verlag, pp. 253-265.

Moreau L, Groth P, Miles S, Vazquez J, Ibbotson J, Jiang S, Munroe S, Rana O,
Schreiber A, Tan V, Varga L. (2007) "The provenance of electronic data".
Communications of the ACM. 51(4): pp. 52–58

Moreau, L., Chapman, S., Schreiber, A., Hempel, R., Rana, O., Varga, L., Cortes, U.
and Willmott, S. (2004) Provenance-based Trust for Grid Computing – Position
Paper. Available at: http://eprints.soton.ac.uk/262571/ (Accessed 2 Sep 2009)

Moreau, L., Ludäscher, B., Altintas, I., Barga, R. S., Bowers, S., Callahan, S., Chin Jr.,
G., Clifford, B., Cohen, S., Cohen-Boulakia, S., Davidson, S., Deelman, E.,
Digiampietri, L., Foster, I., Freire, J., Frew, J., Futrelle, J., Gibson, T., Gil, Y., Goble, C.,
Golbeck, J., Groth, P., Holland, D., Jiang, S., Kim, J., Koop, D., Krenek, A., McPhillips,
T., Mehta, G., Miles, S., Metzger, D., Munroe, S., Myers, J., Plale, B., Podhorszki, N.,

http://telegraph.cs.berkeley.edu/tinydb/doc/index.html
http://eprints.soton.ac.uk/262571/

__

REFERENCES

155

Moreau, L. (ed.), Plale, B., Miles, S., Goble, C., Missier, P., Barga, R., Simmhan, Y.,
Futrelle, J., McGrath, R., Myers, J., Paulson, P., Bowers, S., Ludaescher, B.,
Kwasnikowska, N., Van den Bussche, J., Ellkvist, T., Freire, J., Groth, P. (2008) The
open provenance model (v1.01). Technical report, University of Southampton (July
2008), Available at: http://eprints.soton.ac.uk/266148/ (Accessed 12 Oct 2010).

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N.,
Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den Bussche, J.V.
(2010) "The open provenance model core specification (v1.1)". Future Generation
Computer Systems. In press, accepted manuscript (2010)

Muniswamy-Reddy, K. K., Holland D. A., Braun, B., Seltzer, M. (2006) "Provenance-
Aware Storage Systems", in Processing of the 2006 USENLX Annual Technical
Conference.

MySQL (2011) Available at : http://www.mysql.com/ (Accessed 1 Sep 2011)

Oxford Dictionaries (2009) Available at:
http://oxforddictionaries.com/definition/provenance (Accessed 30 June 2009).

Park, U., and Heiddemann, J. (2008) "Provenance in Sensornet Republishing"
Springer Berlin/Heidelberg, vol. 5272, pp 280-292.

Parr, T. (2007) The Definitive ANTLR Reference: Building Domain-Specific
Languages. The Prgamatic Programmers, USA.

PASS (not dated) Available at: www.eecs.harvard.edu/syrah/pass (Accessed Sep
2009).

Phidgets (products for USB sensing and control). Available at:
http://www.phidgets.com/products.php?category=8&product_id=3503
(Accessed Dec 2010).

Provenance Challenge. (2011) The Fourth and Last Provenance Challenge.
Available at:
http://twiki.ipaw.info/bin/view/Challenge/FourthProvenanceChallenge
(Accessed Oct 2011).

P3 International (2010) Available at: http://tinyurl.com/436sw (Accessed Sep
2011).

Ratnakar, V., Santos, E., Scheidegger, C., Schuchardt, K., Seltzer, M., Simmhan, Y. L.,
Silva, C., Slaughter, P., Stephan, E., Stevens, R., Turi, D., Vo, H., Wilde, M., Zhao, J.,
Zhao, Y. (2006) The First Provenance Challenge. Concurrency and Computation:
Practice and Experience. Published online. DOI 10.1002/cpe.1233.

http://eprints.soton.ac.uk/266148/
http://www.mysql.com/
http://oxforddictionaries.com/definition/provenance
http://www.eecs.harvard.edu/syrah/pass
http://www.phidgets.com/products.php?category=8&product_id=3503
http://twiki.ipaw.info/bin/view/Challenge/FourthProvenanceChallenge
http://tinyurl.com/436sw

__

REFERENCES

156

Ray, S., Starobinski, D., Trachtenberg, A., Ungrangsi, R. (2004) "Robust location
detection with sensor networks". Selected Areas in Communications, IEEE Journal
on, 2004, vol. 22(6), pp. 1016-1025.

Ringelstein, C. and Staab. S. (2010a) "PAPEL: A Language and Model for
Provenance-Aware Policy Definition and Execution", in BPM 2010 – International
Conference on Business Process Management.

Ringelstein, C. and Staab, S. (2010b) "Provenance-Aware Policy Definition and
Execution", in BPM 2010 – International Conference on Business Process
Management.

Ringwald, M., Romer, K., and Vialetti, A. (2006) "SNIF: Sensor Network Inspection
Framework" Technical Report 535, Department of Computer Science, ETH Zurich.

Romeu, J. L. (1999) "Data Quality and Pedigree," in Material Ease.

Roychowdhury, A., Falchuk, B. and Misra, A. (2010) "MediAlly: A Provenance-
Aware Remote Health Monitoring Middleware", 8th IEEE International Conference
on Pervasive Computing and Communications (PerCom).

Sandhu, R., Coyne, E., Feinstein, H., Youman, C. (1996) "Role-Based Access Control
Models." IEEE Computer, vol. 29(2), pp. 38-47.

Satyanarayanan, M. (2001) "Pervasive Computing: Vision and Challenges".
Personal Communication, IEEE, vol. 8(4): pp. 10-17.

Schaad, A., Moffett, J. and Jacob, J. (2001) "The Role-Based Access Control System
of a European Bank: a Case Study and Discussion". Proceedings of the sixth ACM
Symposium on access control models and technologies. Chantilly, Virginia, United
States, ACM.

Scheidegger, C., Koop, D., Vo, H., Freire, J. and Silva, C. (2007) "Querying and
creating visualizations by analogy". IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1560-1567.

Seltzer, M., Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U. and Ledlie, J. (2005)
“Provenance-Aware Storage Systems”. Technical report, Harvard University
Computer Science Technical Report TR-18-05.

Sheng, Q.Z., Nambiar, U., Sheth, A., Srivastava, B., Maamr, Z. and Elnaffar, S. (2008)
"WS3 International Workshop on Context-Enabled Source and Service Selection,
Integration and Adaptation" (CSSSIA 2008), in Proceedings of the 17th
international conference on World Wide Web. ACM: Beijing, China pp. 1263-1264

Simmhan, Y.L., Plale, B. and Gannon, D. (2005a) A Survey of Data Provenance
Techniques. Available at:

__

REFERENCES

157

http://www.cs.indiana.edu/l/www/ftp/techreports/TR618.pdf (Accessed March
2008).

Simmhan, Y.L., Plale, B. and Gannon, D. (2005b) "A Survey of Data Provenance in
e-Science". SIGMOD Rec. vol. 34 (3), pp. 31-36

Simmhan, Y.L., Plale, B. and Gannon, D. (2006a) "A Framework for Collecting
Provenance in Data-Centric Scientific Workflows", in International Conference on
Web Services.

Simmhan, Y.L. , Plale, B. , Gannon, D. and Marru, S. (2006b) "Performance
Evaluation of the Karma Provenance Framework for Scientific Workflows ". In L.
Moreau and I. T. Foster (eds), International Provenance and Annotation Workshop
(IPAW), Chicago, IL, vol. 4145 of Lecture Notes in Computer Science, pp. 222–236.

Simmhan, Y.L., Plale, B. and Gannon, D. (2008) "Karma2: Provenance Management
for Data Driven Workflows", to be published in International Journal of Web
Services Research, vol. 5, no. 1.

Sivrikaya, F. and Yener, B. (2004) “Time synchronization in sensor networks: a
survey”, IEEE Network 18 (4) pp. 45–50.

SmartLabs Inc.(2010) Available at: http://tinyurl.com/34d23n8 (Accessed Sep
2011)

Szomszor, M. and Moreau, L. (2003) "Recording and Reasoning over Data
Provenance in Web and Grid Services". Springer Berlin / Heidelberg, 2003, vol.
2888, pp. 603-620.

Tan, V., Groth, P., Miles, S., Jiang, S., Munroe, S., Tsasakou, S., and Moreau, L. (2006)
"Security Issues in a SOA-Based Provenance System", in Third International
Provenance and Annotation Workshop, Springer.

Tan, W.C. (2007) "Provenance in Databases: Past, Current, and Future", IEEE
Data Eng. Bull. 30(4), pp.3-12.

The Taverna Project. Available at: http://taverna.sourceforge.net. (Accessed 12
March 2012).

Tolle, G., Polastre J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson,
T., Buonadonna, P., Gay, D., Hong, W. (2005) "A macroscope in the redwoods".
Proceedings of the 3rd International Conference on Embedded Networked Sensor
Systems. San Diego, California, USA, ACM.

Twidle, K., Dulay, N., Lupu, E. and Sloman, M. (2009) “Ponder2: A policy system
for autonomous pervasive environments,” Autonomic and Autonomous Systems,
ICAS ’09. Fifth International Conference, pp. 330–335.

http://www.cs.indiana.edu/l/www/ftp/techreports/TR618.pdf
http://tinyurl.com/34d23n8
http://taverna.sourceforge.net/

__

REFERENCES

158

Vassiliadis, P., Bouzeghoub, M. and Quix, C. (1999) "Towards Quality-Oriented
Data Warehouse Usage and Evolution," LNCS 1626.

Vijayakumar, N. and Plale, B. (2006) "Towards Low Overhead Provenance
Tracking in Near Real-Time Stream Filtering", Springer Berlin/Heidelberg vol.
4145, pp. 46-54.

Vijayakumar, N.and Plale, B. (2007) "Tracking Stream Provenance in Complex
Event Processing Systems for Workflow-Driven Computing". Second International
Workshop on Event-driven Architecture, Processing and Systems (EDA-PS'07).
Vienna, Austria.

The VisTrails Project. Available at:
http://www.vistrails.org/index.php/Main_Page (Accessed 12 March 2012).

Wang, M., Blount, M., Davis, J., Misra, A., Sow, D. (2007) "A Time-and-Value Centric
Provenance Model and Architecture for Medical Event Streams". Proceedings of
the 1st ACM SIGMOBILE International Workshop on Systems and Networking
Support for Healthcare and Assisted Living Environments. San Juan, Puerto Rico,
ACM.

Weiss, M., Guinard, D.(2010) "Increasing Energy Awareness Through Web-
enabled Power Outlets", in Proceedings. of MUM 2010.

Weiss, M., Mattern, F., Graml, T., Staake, T. and Fleisch, E. (2009) "Handy
Feedback: Connecting Smart Meters with Mobile Phones, in Proceedings of MUM
(The 8th International Conference on Mobile and Ubiquitous Multimedia).

Welsh, M., Myung, D., Gaynor, M. and Moulton, S. (2003) "Resuscitation
Monitoring with a Wireless Sensor Network", in Circulation: Journal of the
American Heart Association.

Widom, J. (2005) "Trio: A System for Integrated Management of Data, Accuracy,
and Lineage", in CIDR, pp. 262-276.

Zhao, J., Goble, C. A., Stevens, R. and Bechhofer, S. (2004) "Semantically Linking
and Browsing Provenance Logs for E- science," in ICSNW, pp. 158–176

http://www.vistrails.org/index.php/Main_Page

__

APPENDIX 1

159

APPENDIX 1

grammar Event;

tokens {

EXTENDS = 'extends';

IMPORT = 'import';

EVENT = 'event';

LONGTYPE = 'Long';

STRINGTYPE = 'String';

DOUBLETYPE= 'Double';

NULL = 'null';

EVENT = 'event';

AND = 'and';

OR = 'or';

COMMA = ',';

BECOMES = '=>';

LCURL = '{';

RCURL = '}';

}

@header {

package uk.ac.susx.inf.foss.provenance.event.parser;

import uk.ac.susx.inf.foss.provenance.event.Operation;

import uk.ac.susx.inf.foss.provenance.event.Event;

import java.util.List;

import java.util.ArrayList;

}

@lexer::header {

package uk.ac.susx.inf.foss.provenance.event.parser;

}

@members {

ArrayList<Condition> conditionList = new

ArrayList<Condition>();

ArrayList<AttributeAssignment> assignmentList = new
ArrayList<AttributeAssignment>();

}

definition returns [DFACollector dfa]

:

importList*

type=event {$dfa = new DFACollector

($type.evType,conditionList,assignmentList);}

;

event returns [String evType]

:

EVENT type=ID {Event.legalEvents.put($type.text,null);$evType =

$type.text;}

(EXTENDS supertype=ID)?

__

APPENDIX 1

160

LCURL

propertyList

RCURL

dfa?

;

propertyList : property*

;

property : (

LONGTYPE

| STRINGTYPE

| DOUBLETYPE

) ID ';'

;

dfa : conditionList BECOMES attributeAssignments ';'

;

conditionList : cond=condition {conditionList.add(cond);}

(COMMA cond1=condition {conditionList.add(cond1);}

)*

;

condition returns [Condition cond]

:

eventDefn {cond = new ConditionEvent($eventDefn.ev);}
| attributeTest {cond = new ConditionTest

($attributeTest.attr);}

;

eventDefn returns [EventMatch ev]

: type=ID '[' temporalPattern ']' {ev = new EventMatch

($type.text,$temporalPattern.temp);}

;

attributeTest returns [AttributeTest attr]

: arg1=eventAttr

op = ('>' | '<' | '==' | '!=') {$attr = new AttributeTest

($arg1.attr,$op.text);}

(arg2=eventAttr {$attr.setArg2($arg2.attr);}

| STRING {$attr.setArg2($STRING.text);}

| INT {$attr.setArg2(Long.parseLong($INT.text));}

| FLOAT {$attr.setArg2(Double.parseDouble ($FLOAT.text));}

| NULL {$attr.setArg2((String)null);}

)

;

eventAttr returns [EventAttribute attr]

: ev=eventDefn '.' attribute=ID {attr = new EventAttribute

($ev.ev,$attribute.text);}

;

temporalPattern returns [Temporal temp]

:

__

APPENDIX 1

161

| 'n' {temp = new TemporalRelative(0l);}

| 'n' '-' INT {temp = new TemporalRelative(Long.parseLong

($INT.text));}

;

attributeAssignments

:

attr0=attributeAssignment {assignmentList.add($attr0.attr);}

(','

attr1=attributeAssignment {assignmentList.add($attr1.attr);}

)*

;

attributeAssignment returns[AttributeAssignment attr]

:

type=ID

'.'

field=ID

'='

(

expr {$attr = new AttributeAssignment($type.text,

$field.text,$expr.expr);}

|STRING {$attr = new AttributeAssignment($type.text,

$field.text,new ExpressionString($STRING.text));}

|INT {$attr = new AttributeAssignment($type.text,

$field.text,new ExpressionLong(Long.parseLong($INT.text)));}

|FLOAT {$attr = new AttributeAssignment($type.text,

$field.text,new

ExpressionDouble(Double.parseDouble($FLOAT.text)));}

)

;

expr returns [Expression expr]

:

arg0=eventAttr {$expr = new ExpressionSingle($arg0.attr);}

|arg1=eventAttr op=('+' | '-') arg2=eventAttr {$expr = new

ExpressionCompound($arg1.attr,$arg2.attr,$op.text);}

;

ID : ('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'0'..'9'|'_')*

;

INT : '0'..'9'+

;

FLOAT

: ('0'..'9')+ '.' ('0'..'9')* EXPONENT?

| '.' ('0'..'9')+ EXPONENT?

| ('0'..'9')+ EXPONENT

;

COMMENT

: '//' ~('\n'|'\r')* '\r'? '\n' {$channel=HIDDEN;}

| '/*' (options {greedy=false;} : .)* '*/'

__

APPENDIX 1

162

{$channel=HIDDEN;}

;

WS: (''

| '\t'

| '\r'

| '\n'

) {$channel=HIDDEN;}

;

STRING

: '"' (ESC_SEQ | ~('\\'|'"'))* '"'

{

String tmp = getText().substring(1, getText().length()-1);

setText(tmp);

}

;

fragment

EXPONENT : ('e'|'E') ('+'|'-')? ('0'..'9')+ ;

fragment

HEX_DIGIT : ('0'..'9'|'a'..'f'|'A'..'F') ;

fragment

ESC_SEQ

: '\\' ('b'|'t'|'n'|'f'|'r'|'\"'|'\''|'\\')

| UNICODE_ESC

| OCTAL_ESC

;

fragment

OCTAL_ESC

: '\\' ('0'..'3') ('0'..'7') ('0'..'7')

| '\\' ('0'..'7') ('0'..'7')

| '\\' ('0'..'7')

;

fragment

UNICODE_ESC

: '\\' 'u' HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT

;

__

APPENDIX 1

163

__

APPENDIX 2

164

APPENDIX 2

grammar Policy;

tokens {

CAPTURE = 'capture';

POLICYTOKEN = 'policy';

TIMEID = '$time';

DURATION = 'duration';

STARTTIMEID = '$startTime';

WILDCARD = '*';

COMMA = ',';

START = 'start';

END = 'end';

}

@header {

package uk.ac.susx.inf.foss.provenance.policy;

import uk.ac.susx.inf.foss.provenance.event.Event;

}

@lexer::header {

package uk.ac.susx.inf.foss.provenance.policy;

}

@members {

ArrayList<Expr> expressions = new ArrayList<Expr>();

ArrayList<Expr> startExpressions = new ArrayList<Expr>();

ArrayList<Expr> endExpressions = new ArrayList<Expr>();

ArrayList<String> events = new ArrayList<String>();

}

definition returns [Policy policy]

:

POLICYTOKEN name=ID

startConditions?

collectConditions

endConditions?

CAPTURE

events {$policy = new Policy($name.text,startExpressions,

expressions, endExpressions, events);}

;

startConditions

:

START '{'

exp0 = expr {startExpressions.add($exp0.exp);}

(

COMMA

exp1 = expr {startExpressions.add($exp1.exp);}

)*

__

APPENDIX 2

165

'}'

;

endConditions

:

END '{'

exp0 = expr {endExpressions.add($exp0.exp);}

(

COMMA

exp1 = expr {endExpressions.add($exp1.exp);}

)*

'}'

;

collectConditions

:

'{'

exp0 = expr {expressions.add($exp0.exp);}

(

COMMA

exp1 = expr {expressions.add($exp1.exp);}

)*

'}'

;

expr returns [Expr exp]

:

intExpr {$exp = $intExpr.exp;}

|

stringExpr {$exp = $stringExpr.exp;}

|

timeExpr {$exp = $timeExpr.exp;}

|

durationExpr {$exp = $durationExpr.exp;}

;

intExpr returns [ExprInteger exp]

:

attribute

op = ('>'|'<'|'=='|'!=')

val = INT {$exp = new ExprInteger($attribute.attr,

$op.text,Long.parseLong($val.text));}

;

durationExpr returns [ExprDuration exp]

:

DURATION '=' duration = INT

('minutes' {$exp = new ExprDuration(); $exp.setMinutes

(Integer.parseInt($duration.text));}

|'hours' {$exp = new ExprDuration(); $exp.setHours

(Integer.parseInt($duration.text));}

|'seconds' {$exp = new ExprDuration(); $exp.setSeconds

(Integer.parseInt($duration.text));}

)

;

__

APPENDIX 2

166

stringExpr returns [ExprString exp]

:

attribute

op=('=='|'!=')

str=STRING {$exp = new ExprString($attribute.attr,$op.text,

$str.text);}

;

attribute returns [Attribute attr]

:

ev = (WILDCARD | ID) '.' att = ID {$attr = new

Attribute($ev.text, $att.text);}

;

timeExpr returns [ExprTime exp]

:

TIMEID

op=('>' | '<')

t = time

{$exp = new ExprTime($t.hour,$t.minute,$op.text);}

;

catch [PolicyException pe]{throw new RecognitionException();}

time returns [int hour, int minute]

:

hours = INT {$hour = Integer.parseInt($hours.text);}

':'

minutes = INT {$minute = Integer.parseInt($minutes.text);}

;

events :

ID+ {events.add($ID.text);}

;

ID : ('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'0'..'9'|'_')*

;

INT : '0'..'9'+

;

FLOAT

: ('0'..'9')+ '.' ('0'..'9')* EXPONENT?

| '.' ('0'..'9')+ EXPONENT?

| ('0'..'9')+ EXPONENT

;

WS: (''

| '\t'

| '\r'

| '\n'

) {$channel=HIDDEN;}

;

STRING

__

APPENDIX 2

167

: '"' (ESC_SEQ | ~('\\'|'"'))* '"'

{

String tmp = getText().substring(1, getText().length()-1);

setText(tmp);

}

;

fragment

EXPONENT : ('e'|'E') ('+'|'-')? ('0'..'9')+ ;

fragment

HEX_DIGIT : ('0'..'9'|'a'..'f'|'A'..'F') ;

fragment

ESC_SEQ

: '\\' ('b'|'t'|'n'|'f'|'r'|'"'|'\''|'\\')

| UNICODE_ESC

| OCTAL_ESC

;

fragment

OCTAL_ESC

: '\\' ('0'..'3') ('0'..'7') ('0'..'7')

| '\\' ('0'..'7') ('0'..'7')

| '\\' ('0'..'7')

;

fragment

UNICODE_ESC

: '\\' 'u' HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT

	Coversheet
	Alsiyami, Aeshah

