
   

 

A University of Sussex DPhil thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



 
 

1 
 

  

 
Collaborative Modulation Multiple Access 

for Single Hop and Multihop Networks 
 
 
 
 
 

By 
Marwan Aldroubi 

 
 
 
 
 
 
 
 
 
 
 

A Thesis Submitted for the Degree of Doctor of Philosophy 
 
 

School of Engineering and Informatics 
 
 

University of Sussex 
 

 

January 2012 

 

 

  



2 
 

 

 

Declaration 

 

I hereby declare that this thesis has not been submitted, either in the same or different form, 

to this or any other University for a degree and the work produced here is my own except 

stated otherwise. 

 

 

 

 

 

Signature: ........................................ 

Marwan Aldroubi 

Date: 

 

  



3 
 

University of Sussex 
 

Thesis Submitted in Fulfilment of the Requirements for the Degree of 
Doctor of Philosophy 

 
Collaborative Modulation Multiple Access for Single Hop and Multihop Networks  

 
By: Marwan Aldroubi 

 
Summary 

While the bandwidth available for wireless networks is limited, the world has seen an unprecedented 

growth in the number of mobile subscribers and an ever increasing demand for high data rates. 

Therefore efficient utilisation of bandwidth to maximise link spectral efficiency and number of users 

that can be served simultaneously are primary goals in the design of wireless systems. To achieve 

these goals, in this thesis, a new non-orthogonal uplink multiple access scheme which combines the 

functionalities of adaptive modulation and multiple access called collaborative modulation multiple 

access (CMMA) is proposed.  CMMA enables multiple users to access the network simultaneously 

and share the same bandwidth even when only a single receive antenna is available and in the 

presence of high channel correlation.  

Instead of competing for resources, users in CMMA share resources collaboratively by employing 

unique modulation sets (UMS) that differ in phase, power, and/or mapping structure. These UMS are 

designed to insure that the received signal formed from the superposition of all users’ signals 

belongs to a composite QAM constellation (CC) with a rate equal to the sum rate of all users. The 

CC and its constituent UMSs are designed centrally at the BS to remove ambiguity, maximize the 

minimum Euclidian distance (𝑑𝑚𝑖𝑛) of the CC and insure a minimum BER performance is 

maintained.  Users collaboratively precode their transmitted signal by performing truncated channel 

inversion and phase rotation using channel state information (CSI ) obtained from a periodic 

common pilot to insure that their combined signal at the BS belongs to the CC known at the BS 

which in turn performs a simple joint maximum likelihood detection without the need for CSI. The 

coherent addition of users’ power enables CMMA to achieve high link spectral efficiency at any 

time without extra power or bandwidth but on the expense of graceful degradation in BER 

performance.  

To improve the BER performance of CMMA while preserving its precoding and detection structure 

and without the need for pilot-aided channel estimation, a new selective diversity combining scheme 
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called SC-CMMA is proposed. SC-CMMA optimises the overall group performance providing 

fairness and diversity gain for various users with different transmit powers and channel conditions 

by selecting a single antenna out of a group of L available antennas that minimises the total transmit 

power required for precoding at any one time.   

A detailed study of capacity and BER performance of CMMA and SC-CMMA is carried out under 

different level of channel correlations which  shows that both offer high capacity gain and resilience 

to channel correlation. SC-CMMA capacity even increase with high channel correlation between 

users’ channels.  

CMMA provides a practical solution for implementing the multiple access adder channel (MAAC) 

in fading environments hence a hybrid approach combining both collaborative coding and 

modulation referred to as H-CMMA is investigated. H-CMMA divides users into a number of 

subgroups where users within a subgroup are assigned the same modulation set and different 

multiple access codes. H-CMMA adjusts the 𝑑𝑚𝑖𝑛of the received CC by varying the number of 

subgroups which in turn varies the number of unique constellation points for the same number of 

users and average total power. Therefore H-CMMA can accommodate many users with different 

rates while flexibly managing the complexity, rate  and BER performance depending on the SNR.  

Next a new scheme combining CMMA with opportunistic scheduling using only partial CSI at the 

receiver called CMMA-OS is proposed to combine both the power gain of CMMA and the multiuser 

diversity gain that arises from users’ channel  independence. To avoid the complexity and excessive 

feedback associated with the dynamic update of the CC, the BS takes into account the independence 

of users’ channels in the design of the CC and its constituent UMSs but both remain unchanged 

thereafter. However UMS are no longer associated with users, instead  channel gain’s probability 

density function is divided into regions with identical probability and each UMS is associated with a 

specific region. This will simplify scheduling as users can initially chose their UMS based on their 

CSI and the BS will only need to resolve any collision when the channels of two or more users are 

located at the same region .  

Finally a high rate cooperative communication scheme, called cooperative modulation (CM) is 

proposed for cooperative multiuser systems. CM combines the reliability of the cooperative diversity 
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with the high spectral efficiency and multiple access capabilities of CMMA. CM maintains low 

feedback and high spectral efficiency by restricting relaying to a single route with the best overall 

channel. Two possible variations of CM are proposed depending on whether CSI available only at 

the users or just at the BS and the selected relay. The first is referred to  Precode, Amplify, and 

Forward (PAF) while the second one is called Decode, Remap, and Forward (DMF). A new route 

selection algorithm for DMF based on maximising  𝑑𝑚𝑖𝑛 of  random CC is also proposed using a  

novel fast low-complexity multi-stage sphere based algorithm to calculate the  𝑑𝑚𝑖𝑛 at the relay of 

random CC that is used for both relay selection and  detection. 
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1 Introduction  

1.1 Motivation  

Wireless communication has become an indispensable part of everyday life and a major 

driver for economic growth and human development in the developed and developing 

worlds alike. No other technology has managed to find its way to, and change, every aspect 

of human activity from the way we socialise and entertain ourselves to the way we bank and 

do business. No wonder then that the number of mobile subscribers has mushroomed from 

just over 2 billion to 5.3 billion (76% of world inhabitants) in the period between 2005 and 

2011 according to the latest survey by the International Telecommunication Union (ITU). 

Moreover, the emerging trends of embedding high resolution camera  (8 megapixels and 

above), Global Positioning System (GPS) chips, the merger between mobile phones and 

computers in the form of smart phones and tablet computers, and the emergence of cloud 

computing has transformed mobile phones (and with it cellular traffic) from voice-

telephony devices to portable interactive computers. In turn that has opened the way for 

many new position-based, data, and multimedia applications such as voice over IP (VoIP), 

video and audio downloads, and upload of user-created content, mapping services, location-

based online search, mobile TV, and interactive games developed for mobile phones.  

However the fulfilments of the promises of the wireless revolution and the wider 

deployment, customer acceptance and commercial success of new multimedia services 

depend on satisfying several requirements. Firstly the number of users that can be 

accommodated within a cell need to be significantly increased without necessarily 

increasing the number of base stations (BS). Secondly data and multimedia traffic require a 

high data rate in order of 100 Mb/s for high mobility users and up to 1 GB/s for low 

mobility or fixed users as recommended by the ITU for International Mobile 

Telecommunication IMT-Advanced. An acceptable quality of service (QOS) and high data 
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rate should also be available to users depending on their needs rather than their location 

within the cell. Thirdly the projected increase in data traffic should not come at the expense 

of reduced battery life and increased transmission power due to health hazards and the 

simple fact that the ability of being wireless is ultimately limited by the size and battery-life 

of the mobile unit. Finally the cost of delivering high quality services and high data rate 

should be kept affordable.  

Fulfilling the above mentioned requirements is particularly challenging in wireless 

environments due to some intrinsic characteristics of wireless networks. Firstly the 

broadcast nature of wireless transmission causes inter-and intra-cell interference at both the 

BS and the mobile users. Secondly the fading nature of wireless channels not only cause 

attenuation in radio signals which increases with frequency but also causes rapid variations 

in the signal to noise ratio (SNR) of the received signal. Finally wireless resources (such as 

bandwidth, time, and power) are limited and can’t be increased with demand as is the case 

with fibre-optic networks. Therefore, maximising bandwidth efficiency, exploiting all 

available degrees of freedom (time, frequency, code and space), minimising power 

consumption and adaptation to fading and interference are the main research objectives 

enabling improved performance and capacity.  

To address these challenges, the latest and evolving wireless networking standards such as 

the Worldwide Interoperability for Microwave Access (WiMAX), Third Generation 

Partnership Project (3GPP), represented by IEEE 802.16m and Long Term Evolution 

advanced (LTE)-Advanced and the ITU’s IMT-Advanced, all envisage the concurrent 

deployment of a number of compatible technologies in the physical and multiple access 

layers [1].  

One of these key technologies is multi-carrier multiple access schemes (MAS) which are 

based on orthogonal frequency division multiplexing such as OFDMA and multi-carrier 

CDMA. These schemes enable efficient and high bandwidth efficiency as well as robust 
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performance against fading by converting the cell bandwidth into many parallel orthogonal, 

yet overlapping and flat fading sub channels.   

Another technology that is envisioned to be used concurrently with OFDMA is multiple-

input multiple output communication (MIMO) which exploits the rich scattering 

environment and the availability of multiple antennas at the receiver to allow many users to 

access the network, simultaneously achieving linear increase in system capacity without 

consuming extra bandwidth or power. In addition to its capacity gain, MIMO can provide 

spatial diversity to improve the bit error rate (BER) performance and reduce users’ transmit 

power. However MIMO is limited by the number of receive antennas, the amount of 

feedback required for scheduling and precoding, and by channel correlations due to 

insufficient antenna separation at the terminals and/or poor scattering environment. As a 

result, the sum rate capacity and bit error rate (BER) performance are significantly 

degraded. Moreover the cost of employing multiple Radio Frequency RF chains remains 

high.  

Although MIMO and OFDMA have the potential to greatly improve cell capacity and link 

spectral efficiency, they are constrained by the finite nature of wireless resources, channel 

fading and correlation, size of handheld devices, battery life and computational complexity. 

This will put a huge burden on the infrastructure-based nature of cellular networks where 

users communicate directly with the BS hence requiring a substantial increase in cell 

density which is expensive and not practical.  However the high density of mobiles users in 

urban areas and their multiple air-interfaces capabilities (WLAN, Bluetooth, and 4G) will 

see the emergence of new hybrid architecture combining both ad-hoc and infrastructure-

based networks also known as cooperative communication or multihop cellular networks 

[2]. These schemes allow users to utilise each other’s independent channels to shorten the 

range of communication links, decrease path loss, increase diversity gain, mitigate 

shadowing effect, and decrease inter and intra cell interference.  
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1.2 Research Aims and Objectives 

● To design low-feedback high-capacity non-orthogonal multiple access schemes based 

on signal set expansion.   

● To design low-complexity low-overhead spatial diversity schemes for non-orthogonal 

multiuser MAS based on superposition coding. 

● Design high-rate cooperative diversity schemes that allow users to utilise high order of 

cooperative diversity without comprising their transmission rate suing adaptive 

modulation and relaying. 

1.3 Contributions of the thesis   

A number of contributions have been made in this work; below is a summary of main 

findings and contributions: 

1) A novel high-capacity multiple access scheme called CMMA is proposed.  CMMA 

utilises well-established physical-layer concepts of collaborative multi-user transmission 

over Multiple Access Adder Channel (MAAC), superposition coding, and adaptive 

modulation in an innovative manner to enable multiple users transmitting over fading 

channels to share the same bandwidth simultaneously and combine their power 

collaboratively to achieve high link spectral efficiency.  

● CMMA is resilient to channel correlation, so it can be applied to retain spatial 

multiplexing, improve BER performance and maximise the channel and user capacity 

for multi-user MIMO in the presence of high channel correlation.   

● CMMA can serve multiple users even with a single receive antenna, therefore it can 

provide a practical solution to retain spatial multiplexing and high spectral efficiency in 

many applications where employing multiple antennas is impractical due to size 

constraints such as wireless sensor networks.  
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● CMMA offers a new model to exploit superposition coding (SPC). Instead of viewing 

superimposed users as interference to each other. CMMA view them as partners who 

collaborate to form a composite QAM constellation with maximum possible rate and 

minimum Euclidian distance. This new approach departs from user-specific power 

control and successive interference cancellation receivers to a new approach that 

optimises power, phase, and/or constellation mapping across users by common 

feedback and collaborative precoding. CMMA offers higher capacity and can 

accommodate more users (even with equal power) than that of conventional 

implementations of SPC. 

● CMMA allows reliable multiple access with very little overhead and minimum 

feedback, since users perform precoding independently of each other without access to 

each other’s data or CSI using a simple common feedback from the BS. Also detection 

at the BS doesn’t require CSI. 

● CMMA presents a practical low-overheard technique for the coherent combining of 

multiple signals over fading channels thus implementing the MAAC in realistic wireless 

environments. In addition, CMMA attains multiple access through modulation instead of 

multiple access codes. This is significant since these codes achieve multiple access on 

the expense of a significant reduction in rate per user while our scheme preserves the 

rate per user and is shown to achieve a much higher capacity compared with 

collaborative coding multiple access.  

2) A new diversity selection combining algorithm for CMMA called SC-CMMA is 

proposed to benefit from spatial diversity without incurring the substantial increase in both 

complexity and overheads which result from the feedback of CSI from users back to the BS.  

● SC-CMMA maintains the simple feedback, precoding, and detection structure of 

CMMA.  
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● Unlike conventional selection combining which was designed for single-input-multiple-

output communication, SC-CMMA optimise the group performance by selecting a 

single antenna which minimises the total transmit power required for precoding at any 

one time.  

● The BS uses the output of the ML detector at the selected antenna as a training sequence 

to estimate the CSI at the remaining antenna and update the selection process.   

● The diversity gain achieved by SC-CMMA increases with transmit correlation between 

users’ channels,  thus SC-CMMA offers a low overhead alternative to other uplink 

multi-user MIMO in the presence of high transmit correlation. 

3) A new scheme called CMMA-OS combining opportunistic scheduling using only partial 

CSI at the BS with dynamic allocation of unique modulation sets according to users’ 

channel conditions is proposed.   

● With feedback and complexity equal to that of multi-user diversity (MUD), CMMA-OS 

can retain not only the diversity gain associated with MUD but also the power gain 

offered by CMMA.  

● CMMA-OS allows all users to transmit at once, so it doesn’t suffer the same delay and 

fairness setbacks of MUD, which makes it suitable for delay-sensitive applications. 

●  A new selection-combining scheme that maximises the aggregate channel gain across 

all users is proposed for CMMA-OS. It exploits receive spatial diversity assuming 

multiple antennas at the receiver but only a single RF chain as a trade-off between 

performance and complexity. The BS scans all available antennas sending a common 

pilot from each, which users utilise to extract CSI and simultaneously transmit one 

symbol back to the BS all using the same power and phase. The BS then uses a simple 

envelope detector and selects the branch with the highest signal plus noise.  

4) A new hybrid approach combining both collaborative coding and modulation referred to 

as H-CMMA has been investigated to improve the BER performance and reduce the 
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complexity of CMMA. H-CMMA can adjust the minimum distance of the received 

composite constellation by varying the number of unique constellation points for the same 

number of users and average total power to accommodate large number of users with 

different rates while flexibly managing the complexity and BER performance of the 

combined simultaneous transmissions depending on the SNR.   

5) This thesis also investigates how opportunistic scheduling and collaborative modulation 

can be employed in relay networks like cooperative and multihop cellular communication to 

achieve high spectral efficiency, mitigate the half-duplex constraint, and maintain reliable 

communication through cooperative diversity. A number of schemes have been proposed to 

fulfil these goals:  

● First we propose a new two user’s low-overhead channel-aware cooperative diversity 

scheme that uses scheduling and adaptive modulation to take advantage of the spatial 

diversity achieved through cooperation while maintaining the same bandwidth 

compared with non-cooperative schemes. It restricts relaying to the user with the 

stronger channel and adjusts the size of the QAM constellation used according to 

whether cooperation occurs or not. It was shown that while having double the spectral 

efficiency of conventional adaptive decoded and forward, this scheme can still deliver a 

significant improvement in BER performance with modest reduction in diversity gain.    

● A high spectral efficiency communication scheme, called cooperative modulation (CM) 

is proposed for cooperative multiuser systems. CM combines both the reliability and 

QOS resulting from the cooperative diversity with order equal to the number of users 

with the high spectral efficiency and multiple access capabilities of CMMA.  CM 

maintains low feedback and high spectral efficiency by restricting relaying to a single 

route with the best overall channel. The number of consecutive transmissions required 

to deliver data from users to the BS is always equal to two, therefore the cost of the half 

duplex constraint doesn’t increase with the number of users. Two possible variations of 
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CM are proposed depending on whether CSI is available only at the users or just at the 

BS and the selected relay. The first is referred to Precode, Amplify, and Forward (PAF) 

while the second one is called Decode, Remap, and Forward (DMF).  

● A new route selection algorithm for DMF based on maximising the Euclidian minimum 

distance of the resulting random composite constellation at relay is proposed. It was 

shown that it offers significant improvement in BER performance compared with 

conventional selection methods based on just measuring SNR.  

● Finally a fast low complexity multi-stage sphere based algorithm to calculate the 

minimum distance of random composite constellation is proposed. It exploits several 

common geometric properties of the composite constellation to greatly reduce the 

number of calculations needed to obtain the minimum distance which simplify both 

selection and detection at the relays.    

1.4 Outline of the Thesis 

This thesis is organised as follows. In chapter two, technical background and literature 

review of the related work to this thesis are provided. The fading channel principles 

including parameters, classifications and estimation techniques are studied. Next the 

principles and features of the most important wireless multiple access techniques are 

presented.  An overview of MIMO communication system is carried out before ending this 

chapter with a review of MIMO communication. 

In Chapter 3, CMMA multiple access scheme is proposed, first related work and motivation 

is presented before introducing the principles and operation of CMMA. Next a detailed 

description of CMMA system model is given including signal model, collaborative 

precoding, joint ML detection, feedback, and synchronisation acquisition. This is followed 

by the design and properties of composite constellations. Then a new selection combining 
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scheme for CMMA referred to as SC-CMMA is presented including selection criteria and 

maintenance using blind channel estimation. Finally an analysis of BER and outage 

probability combined with simulation results and comparisons are presented to evaluate its 

performance.  

In chapter 4, a thorough study of CMMA and SC-CMMA capacity is carried out to find 

closed form expressions for spectral efficiency as a function of average received SNR. Next 

we will compare the performance of CMMA with that of Multiuser Diversity. Finally this 

thesis will study the effect of channel correlation on the performance of CMMA.   

Chapter 5 presents two novel schemes to improve the capacity and BER performance of 

CMMA. The first, referred to as CMMA-OS, increases the capacity of CMMA using 

opportunistic scheduling, while the second scheme referred to a H-CMMA, combines both 

collaborative coding and modulation to improve the BER performance and reduce the 

complexity of joint ML detection. Detailed description of related work and system model for 

these schemes are presented. In addition, the performance of both schemes was validated 

through simulations and relevant comparisons. Furthermore the capacity of CMMA-OS was 

analysed and new selection combining and opportunistic scheduling schemes for CMMA-

OS are proposed.  

Chapter 6 investigates several schemes employing opportunistic scheduling and 

collaborative modulation in cooperative communication to achieve high spectral efficiency, 

mitigate the half-duplex constraint, and maintain reliable communication through 

cooperative diversity. First an overview of cooperative communication and related work is 

presented a new full rate low-overhead channel-aware cooperative diversity scheme called 

COOP-AM is presented for the two user case.  Then a high spectral efficiency 

communication scheme, called cooperative modulation (CM) is proposed for cooperative 

multiuser systems where all users utilise the same orthogonal resource and the number of 
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consecutive transmissions required to deliver data from users to the BS is always equal to 

two. Therefore the cost of the half duplex constraint doesn’t increase with the number of 

users. Two possible variations of CM are proposed depending on whether CSI is available 

only at the users or just at the BS and the selected relay. The first is referred to Precode, 

Amplify, and Forward (PAF) while the second one is called Decode, Remap, and Forward 

(DMF). Two relay selection algorithms employing norm-based and minimum distance-

based selection are proposed for DMF. A fast low complexity multi-stage sphere-based 

algorithm to calculate the minimum distance of random composite constellation is proposed 

to simplify relay selection and detection for DMF. The performance of these proposed 

schemes is validated through appropriate simulations.  

Finally, chapter 7 concludes the thesis, with a summary of main findings and contributions 

and some discussion on future work. 
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2 Overview of Multiuser Cellular Communications   

2.1 Introduction 

In this chapter, technical background and literature review of the related areas to the work 

in this thesis are provided. Fading channel model was first explained, followed by an 

overview of channel estimation methods and finally an overview of most common used 

wireless multiple access schemes was provided before ending this chapter with a review of 

MIMO communication. 

2.2 Multipath Fading channels 

One of the most important characteristics of wireless networks is the broadcast and 

multipath fading nature of the wireless channel. The wireless environment in which the 

signal propagates is usually rich in scatterers such as building, cars, trees, ground terrain, or 

the atmosphere (atmospheric ducting and ionospheric reflection) in outdoor scenarios, or 

walls, furniture, and people in indoor scenario [4][3] [3]. 

This causes the radio signal to reflect of, refract through, or diffuse around these scattering 

obstacles, which not only dissipate signal power causing path or propagation loss, but also 

these obstacles act as secondary sources causing the originally transmitted signal from the 

source to arrive at the receiver from different paths, each one of these paths has a different 

length (usually larger in distance than the direct line of sight (LOS) ) and thus will arrive at 

the received antennas at different times, from different directions, and with different power 

and phase. Depending on the relative phase between signals from different paths, they 

might add up constructively (thus increasing the combined signal power) or add 

destructively, (thereby decreasing the combined signal power).  

The signal to noise ratio (SNR) and the phase of the received signal will fluctuate over both 

time and frequency domain due to the relative movement of not only the communication 
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terminals but also the scatterers (cars on a highway). Furthermore the SNR of the combined 

received signal will vary considerably over space even within short distances on the scale of 

half wavelength due the high frequencies used in wireless communication. This random 

fluctuation in the received signal power in time, frequency, and space domains is referred to 

as multipath fading.  An example of multipath fading channel is shown in Fig 2.1.  

 

 
Figure 2- 1: An example of multi-path fading channel 

 

In addition to fading, another important effect caused by the multipath phenomena is 

dispersion which refers to expansion in time of the duration of a single transmitted symbol 

which may in worst case scenario lead to it overlapping with successive symbols causing  

inter-symbol interference (ISI). Dispersion can also be due to the band pass filter nature of 

the wireless channel, if the bandwidth of the transmitted signal exceeds that of the channel, 

the channel becomes frequency selective where different frequency components of 

transmitted signal fade independently distorting the shape of the transmitted pulse and 

causing it to expand and collide with successive symbols.  

2.2.1 Characteristics of Fading Channel  

Fortunately, although the multipath phenomena are highly complex, random and often non-

linear, practical measurements of the multipath fading channel show that fading channels 
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can be fairly accurately modelled as a linear time-variant filter and a number of statistical 

models has been proposed and widely used to study the effects of the wireless channel.  

Variations in the SNR of the received signal caused by fading can be classified into two 

main categories: large-scale fading and small scale fading. [3][4] 

 large scale fading represents the average signal power attenuation or path loss due to 

motion over large areas.  It is the result of shadowing, where a large obstruction such as a 

hill or large building obscures the main signal path between the transmitter and the receiver. 

Statistically, large scale fading is described by average path-loss and log-normally variation 

about the mean. 

While small scale fading causes severe variation in received signal power and phase over 

small distances in the order of half wavelength. In urban environment the mobile user is 

surrounded by many scatters and located much lower than the BS therefore usually no 

dominant direct line of sight (LOS) exists and fading is usually caused by many reflective 

paths. Small scale fading in the absence of dominant LOS path is usually modelled using 

Rayleigh probability distribution and often referred to as multipath Rayleigh fading. 

The time and frequency response of a multipath fading channel can be defined by several 

important parameters: 

Coherence bandwidth: denoted by 𝑓𝑐,  is the maximum frequency separation within which 

all frequencies experience coherent or identical fading over time.  Any two frequencies 

separated by more than 𝑓𝑐 experience independent fading. This frequency selectively of 

wireless channel is caused by the time delay between reflected paths. Therefore the 

coherent bandwidth is calculated by measuring the delay spread 𝑇𝑚 which is defined as 

maximum delay between the first and last received paths of significant power. The relation 

between multi-path delay spread of a channel and the coherence bandwidth is 

approximately given by 
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 𝑓𝑐 ≈
1
𝑇𝑚

  (2-1) 

Coherence time 𝒕𝒄: is defined as the duration over which the channel impulse response 

remains unchanged. Therefore, if a symbol duration is smaller than 𝑡𝑐, the channel can be 

considered as time invariant throughout the detection of a symbol.  

Doppler shift:  refers to the maximum shift of the received carrier frequency due to the 

relative motion between the transmitter and the receiver.  The Doppler power spectral density 

(𝑓) of the mobile channel is often expressed as 

 

𝑠(𝑓) =
1
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       (2-2) 

where 𝑓 is the carrier frequency and ±𝑓𝑑 is the maximum range of frequency Doppler shifts 

which is given   

 𝑓𝑑 =
𝑉
𝜆         (2-3) 

 

where 𝑉 is the relative velocity of transmitter and receiver; and 𝜆 is the signal wavelength.  

The Doppler phenomenon causes the channel to be time variant. Therefore the coherence 

time is often measured by calculating the maximum Doppler shift where the relationship 

between the two is given by  

 𝑡𝑐 ≈
1
𝑓𝑑

        ( 2-1) 

 Transmitted signals over fading channels can undergo different fading profiles depending 

on the relationship between signal parameters (like symbol duration and bandwidth) and 

channel parameters (coherent time and bandwidth).  If the coherence bandwidth is greater 

than the signal bandwidth, the transmitted signal is said to undergo   flat fading. Otherwise, 

the transmitted signal undergoes frequency-selective fading. Frequency selective fading 
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causes the received signal impulse to expand in time and collide with adjacent symbols 

which result in inter-symbol interference (ISI). 

 On the other hand, the relationship between the Doppler shift and signal bandwidth 

determines where fading can be classified as fast or slow.  If the Doppler shift of the 

channel is much less than the signal bandwidth, the signal is said to undergo slow fading 

and hence fading remains unchanged for a block of consecutive symbols. 

2.2.2 Channel Estimation Techniques 

 Channel estimation performs an indispensable part in communication system. In fact most 

detection, precoding, scheduling, diversity combining schemes can’t be implemented 

without accurate channel estimation. There are several techniques used in wireless 

networking for channel estimation depending on  what type of CSI are required (full, 

statistical, or partial)  and the overhead or cost associated with estimation. However most 

channel estimation scheme fall into four main categories   

• Pilot-based estimation: [5]pilots also known as training sequences are a block of data 

transmitted which is known at the receiver and is used to determine the unknown 

parameters. This category of estimation techniques provide an acceptable performance 

and hence are used in many practical systems. However, the training sequences are 

often long and introduce large overhead resulting in reduced bandwidth efficiency. In 

the literature many research work has been conducted to find optimum training 

sequences [6]. A well-known example of training based estimation technique is least 

squares (LS) estimation [7].  

• Blind channel estimation: In these techniques the estimator relies on the statistical 

knowledge of the fading channel or data. Blind estimation requires complex processes 

that often have slow convergence time and the performance results are not as good as 



36 
 

training-based techniques (J. J. Werner, 1999). Most popular examples of the blind 

techniques are minimum mean squared error (MMSE) [7].  

• Semi-blind techniques: In this category of techniques the high bandwidth redundancy 

of training-based estimations and low performance of blind methods are compensated 

by combining small training sequences and statistical knowledge of the required 

parameters in order to improve the performance of the estimator [8][9][10].  

• Superimposing –based estimation: There is a wide range of channel estimation 

methods which embed the training sequence to the data and namely are known as pilot 

hiding[11], implicit[12], and superimposed [13][14] training techniques. In 

superimposing the training sequence is arithmetically added to the information data. In 

this way, no bandwidth is lost for training sequence. To make use of the training 

sequence, knowledge of statistical characteristics of the sequence is vital. Since the 

training sequence is periodic, the received data will exhibit periodically time-varying 

mean that is used for channel estimation. 

2.3 Wireless Multiple Access Schemes  

Multiple access schemes (MAS) perform a fundamental function in wireless networks, 

allowing users to share resources fairly while maximizing network throughput. The most 

common multiple access model is that where many users transmit to a common receiver 

(such as BS in wireless cellular networks). In the following sections, the main 

characteristics of some important multiple access techniques are briefly reviewed. 

2.3.1 Frequency Division Multiple Access (FDMA) 

FDMA[3][4][17][18] was the first MAS used for cellular networks due to its ease of 

implementation in analogous continuous communications. FDMA divides the available cell 

bandwidth W into N frequency channels thus it can serve up to N users simultaneously 
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where each one of these N users are allocated a unique frequency band for its exclusive use 

as shown in Figure 2- 2. If one of these frequency channels is not used, it become a wasted 

resource that can’t be used to increase the capacity or rate of other active users, making 

FDMA is inflexible MAS when it comes to serving users with different rate requirement , 

on the other hand however FDMA does not require synchronization or timing control, 

which makes it simple to implement, Moreover  FDMA channels usually have narrow 

bandwidth (30 KHz in APMS) and therefore they are usually implemented in narrowband 

systems where no or little equalization is required.  Even though each user transmit in a 

dedicated portion of the system bandwidth , guard bands -where no transmission  is 

allowed- are observed between channels to minimize inter-channel interference caused by 

the nonlinear effects of power amplifiers operating near saturation which spread the signal 

bandwidth and generate inter-modulation frequencies. Therefore not all of the available 

bandwidth can be used for data transmission.    
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Figure 2- 2 Time ,frequency, and code illustration of FDMA 

2.3.2 Time Division Multiple Access (TDMA) 

In digital wireless systems, data transmission are often discrete hence there is no need to 

allocate a dedicated frequency channel to a user for the whole duration of the 

communication session. Furthermore data rate requirement differs between the downlink 

and uplink and between users.  To address these issues, TDMA is widely used in wireless 
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cellular networks (such as Global System for Mobile Communications (GSM) and General 

Packet Radio Service (GPRS))  as a complementary multiple access scheme to FDMA 

[3][4][17][31]as illustrated in Figure 2- 3 , TDMA allows each user to transmit using the 

entire available bandwidth for a portion of the time. Each frequency channel is divided into 

a number of periodically recurring time slots and multiple users are allocated a number of 

time slots which can vary according to their rate requirements. The assignment of time slots 

to users can either be static where 𝑖𝑡ℎ time slot of each frame is assigned to the 𝑖𝑡ℎ user or 

dynamic where the user with the strongest channel at time slot 𝑖𝑡ℎ is permitted to transmit to 

make use of multiuser diversity.  The number of slots in a frame, how many time slots are 

assigned to each user, and how this assignment is performed, depends on a number of 

factors such as permissible delay, available bandwidth, modulation technique etc.  Since 

users are only allowed to transmit during their allocated time slots, accurate time 

synchronizations and guard periods of no transmission between slots are required to 

eliminate inter-user interference. Higher transmission rates (larger bandwidth) than FDMA 

makes TDMA more vulnerable to ISI thus adaptive equalization is needed, however the 

bursty discrete nature of TDMA  can reduce power consumption for mobile phones since 

users’ RF circuitry are only turned on during the users designated time slots .  
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Figure 2- 3 Time, frequency, and code illustration of TDMA 



39 
 

2.3.3 Coding Division Multiple Access (CDMA) 

CDMA [3][4][19][20][21][31] allows multiple users to access the network simultaneously 

and over the same bandwidth by multiplying the data of each user by a unique spreading 

code with a rate much higher than that of the user’s signal which in turn lead to bandwidth 

expansion or the spreading of the original user’ narrowband signal over a much larger 

bandwidth. The receiver has a priori knowledge of the spreading codes used for 

transmission and will simply multiply the received signal with the original code to dispread 

the signal to its original bandwidth and cancel or minimize the interference from other 

users.   

The wideband nature of CDMA makes it highly likely to result in large delay spread and 

frequency selective fading. This large delay between paths allows the receiver to reliably 

detect and resolve a number of independent paths which can be coherently combined to 

provide high path diversity making it highly resilient to multipath fading. Spreading the 

signal over large bandwidth also results in lower power spectral efficiency making it harder 

to jam and more resilient to interference.    

In a CDMA system, each user is assigned a particular pseudo-random PN-code with noise-

like properties which is used to spread its data signal as shown in Figure 2- 4.  These PN-

codes are generated using shift registers of length i which generate a deterministic and 

repeated sequences of length 2i − 1. These PN-sequences should posses a number of 

important characteristics to have multiple-access capabilities:  

A. Different PN-codes should have low or zero cross-correlation to minimize or cancel the 

interuser interference at the receiver.  

B. The relative frequency of 1s and 0s in a PN-sequence should be balanced in order to 

avoid having a DC-component in the spreaded data signal. 
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There are a number of spreading codes that are widely used in wireless systems which may 

differ in correlation, orthogonally and implementation complexity such as: Walsh-

Hadamard codes, m-sequences, Gold-codes and Kasami-codes. Walsh sequences are 

orthogonal while the other sequences have non-zero low cross-correlation values. 

Orthogonal Walsh codes have zero cross-correlation properties but are highly sensitive to 

any offsets between sequences which actually lead to large cross-correlation values and 

high interference. Therefore their implementation is restricted to the downlink of the 

wireless networks where perfect synchronization can be achieved since all data streams are 

transmitted from the BS. For a given bandwidth W the number of unique orthogonal codes 

that can be generated is limited as well as the number of users that can accommodated.   

Non-orthogonal codes therefore are used for the uplink of the wireless channel where 

synchronization between users is difficult to achieve. There nonzero but low cross 

correlation means that the contribution from other users can’t be completely nulled at the 

receiver although they will be greatly minimized assuming perfect power control among the 

received signals from all users. This cohcannel interference from other users will increase 

linearly with the number of users leading to a degradation in BER performance and thus the 

rate that can be achieved per user. Therefore although the number of users that can access 

the network is not limited by the availability of orthogonal resources like TDMA and 

FDMA which place a hard limit on user capacity, the capacity of CDMA depends on the 

average bit error rate degradation that can be tolerated which correspond to a threshold for 

the ratio of the incoming signal power over the interference power and noise (SINR), and 

thus CDMA is said to be interference-limited. 

The capacity of CDMA is highly dependent on an effective power control to manage the 

cochannel interference between users and maintain an acceptable SINR at the BS.  Two 

main ways of providing power control are used in practice: an open-loop power control 

where users adapt their power based on the power of the pilot signal received from the base 



41 
 

station and closed loop power control which relies on a feedback channel between the BS 

and users. The choice of power control employed usually depends on whether TDD or FDD 

is used to separate between the uplink and downlink channels. Usually the feedback is sent 

every 0.67ms from the BS to users to adapt their power up or down in the range of 0.5-1 dB 

[22]. 

Equal power control between users minimise the co-channel interference at the BS however 

that comes at the expense of low sum rate since the rate per user is limited to that with the 

weakest channel. Therefore to achieve higher rates, multiuser detection using superposition 

coding and successive interference cancellation (SIC) receiver can be employed to 

maximise capacity and enable users with different rates to communicate together.[23] 
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Figure 2- 4: Time, frequency and code illustration of the CDMA 

2.3.4 Space Division Multiple Access (SDMA) 

SDMA [4][24][25] is a high spectral efficiency and power-efficient MAS that maintains 

orthogonally between users by exploiting the space degree of freedom allowing multiple 

users to communicate simultaneously without subdivision in time, frequency, or code. An 

illustration of SDMA is shown in Figure 2- 5 SDMA employs highly directional antenna 

arrays consisting of N antenna elements sufficiently spaced out and individually power and 

phase weighted so that the array response achieves high antenna gain in the desired 

direction while experiencing low or null array response elsewhere. This high antenna 
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directionality and beam steering focuses power towards desired users while minimising 

interference from other active users which enables the BS to serve users over longer 

distances and with better QOS. The number of users that can be served simultaneously 

depends on the separation between users and number of elements in the antenna array since 

the number and width of beams is highly dependent on this number. By using 𝑁 antenna 

array, SDMA can support simultaneous transmission of up to 𝑁 − 1 users in a given system 

bandwidth 𝑊. SDMA therefore can enable frequency reuse even within the same cell which 

linearly increases the cell capacity however it is likely that a number of users are located 

within the same beam therefore SDMA is usually used in  it conjunction with other MAS 

such as CDMA, TDMA, and FDMA. Where these MAS are used to service users located 

within the same beam width while SDMA is used to increase cell range and enable 

frequency reuse within the cell. 

 

Figure 2- 5: illustration of SDMA 

2.3.5 Orthogonal Frequency Division Multiple Access (OFDMA) 

Orthogonal frequency division multiplexing (OFDM) is a narrowband orthogonal multi-

carrier MAS used for LTE and 4G networks [1] [26][26][27][28][29]. In OFDM, the 

information to be transmitted is mapped onto several parallel overlapping sub-carriers 
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which are chosen so that they are orthogonal to each other by separating the carriers by 

𝑛 𝑇𝑆⁄  (where 𝑇𝑆 is the symbol time and n is a nonzero integer usually chosen as one). 

Additionally, a guard interval called cyclic prefix (CP) is added to each symbol to mitigate 

ICI. The bandwidth of each subcarrier overlaps with neighbouring subcarriers insuring high 

spectral efficiency. In addition, the bandwidth of each sub-carrier is narrower than the 

coherence bandwidth of the channel insuring flat fading eliminating the need for complex 

equalization.  In practical implementations, OFDM modulation is performed with an 

Inverse Fast Fourier Transform (IFFT) while a Fast Fourier Transform (FFT) is used for 

demodulation.  

Orthogonal frequency division multiple access (OFDMA) is basically a FDMA/OFDM 

hybrid MAS and is currently used in wireless LAN (IEEE 802.11a & 11g), WiMAX (IEEE 

802.16), and 3GPP LTE downlink systems. A Block diagram of a 𝑁-user BPSK OFDMA is 

shown in Figure 2- 6.   

OFDMA divides the system bandwidth into many sub-channels then allocates a number 

of dedicated sub-channels to each user allowing up to N simultaneous multiuser 

transmissions. The number of sub-carriers per user can differ to porivde mulitrate 

transmission and diffrentianted Qos. Also Sub-carrier allocation to different users can 

be either adaptive tor fixed.   

Fixed sub-carrier allocation doesn’t adapt to users’ channel conditions and remain 

unchanged throughout the communication session which makes it simple to implement 

without incurring high overheard. The subcarriers allocated to each user in this method 

can either by adjacent which simplifies frequency and time synchronization on the 

expense of vulnerability to deep fading [27]or the sub-carriers assigned to each user can 

be separated by more than the coherent bandwidth of the channel to exploit maximum 
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frequency diversity at the expense of a minimum separation between sub-carriers from 

different users requiring stringent cross-user synchronization to avoid ICI [28] 

Adaptive sub-carrier allocation on the other hand dynamically allocates sub-carriers to 

users based on their channel condition in order to optimise performance criteria such as 

minimise the total transmit power ,maximise sum capacity  [29]. 

Despite its many advantages, OFDMA suffers from two main challenges: 

Peak to Average Power Ratio (PAPR): OFDM may exhibit high signal peak with respect to 

the average signal level due to the superposition of modulated symbols over many sub-

carriers.  Practical amplifiers in the transmitters have a limited amplitude range, in which 

they behave linearly. Also the power consumption of a power amplifier depends largely on 

the peak power than the average power [26].  PAPR can be reduced by: (a) coding over 

long time intervals which reduces the data throughput. (b) Clipping: The peak signal is 

clipped before transmission which although is simple to implement, leads to in-band 

distortion and out-of-band radiation problems. (c) Adding extra sub-carriers with zero 

power.  

Time and Frequency Synchronization: OFDM is very sensitive to lack of time and 

frequency synchronization which leads to frequency and phase offset causing   ICI and ISI 

[27]. Synchronization is especially critical for the uplink where data streams are transmitted 

from different users each with its own multipath channel and local oscillator.  OFDMA 

synchronization consists of two stages: estimation and correction. The estimation stage is  

achieved either using periodic pilots embedded in users’ data or by using virtual sub-

carriers with no transmission which the BS monitors to insure that they always have zero-

power [27]. After estimation stage, the BS feedbacks the time and frequency correction 

required by users.  Time synchronization is usually done by adjusting the length of the 
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cyclic prefix. For frequency synchronization, this is usually done by adjusting their voltage 

controlled oscillator (VCO).[27] 

 

Figure 2- 6: Block diagram of a N-user BPSK OFDMA uplink system. 
. 

2.3.6 Multi-Carrier CDMA  

Both CDMA and OFDM offer resilience against frequency selective fading in very different 

ways. CDMA exploits the multipath nature of frequency selective channel by employing 

Rake receivers which resolve and coherently combine the multipath components achieving 

path diversity. However at high data rates in the order of 100s Mbits/sec envisioned for 4G, 

The delay spread becomes excessive leading to severe ISI and code synchronization 

becomes quite challenging.  

OFDM on the other hand transmits data in multiple overlapping narrowband subcarriers 

converting the frequency selective channel into several parallel flat fading channels. 

However, as the rate per sub-carrier increase, time and frequency synchronization becomes 

very difficult leading to frequency offset, and intolerable ICI.   Hence combining CDMA 

with OFDM known as Multi-carrier CDMA [26][30] is beneficial for both systems as it can 
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lower the symbol rate at each sub-carrier so that a longer symbol time is easier to 

synchronise and maintain frequency orthogonally.   

Multi-carrier CDMA retains most advantages of both schemes such as the flat fading and 

high spectral efficiency properties of OFDM and the soft capacity, multipath diversity and 

the flexibility to the asynchronous nature of the multimedia traffic properties of CDMA. In 

addition MC-CDMA also simplifies sub-carrier selection since all the subcarriers are 

assigned to all users. 

Multicarrier CDMA schemes can be classified into two main groups depending on whether 

spreading is performed in time or frequency domains.  The first group referred to as MC-

CDMA first spreads the serial data stream of each user by using a unique spreading code 

before modulating each sub-carrier with a single chip hence spreading the chips in the 

frequency domain. Therefore while in conventional DS-CDMA each user symbol is 

transmitted in the form of sequential chips, each of which is narrow in time and wide in 

bandwidth, In MC-CDMA due to the FFT transform, chips are not transmitted sequentially 

in time but in parallel over many subcarriers therefore chips are longer in time and narrower 

in bandwidth. The modulation and demodulation of MC-CDMA are performed using 

simple FFT and IFFT operators. The MC-CDMA not only mitigates the ISI but also 

achieves high degree of frequency diversity. MC-CDMA is usually used in the downlink 

therefore orthogonal Walsh-Hadamard codes are used to fully eliminate interference 

between users. 

The second group of multi-carrier CDMA converts the data stream of each user into parallel 

data streams then spread each sub-stream in the time domain by multiplying it with a 

spreading code such as Walsh-Hadamard or PN sequences and then modulating them into 

sub-carriers. In fact each sub-carrier is a DS-CDMA system. Thus, single- and multiuser 

detection techniques known for DS-CDMA can be applied in each data stream over the sub-

carriers. Depending on the frequency separation between sub-carriers this category can be 
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divided into two schemes. If the frequency separation is equal to (1/ data symbol time) then 

the system is referred to Multi-tone CDMA (MT-CDMA). Otherwise if frequency 

separation is equal to (1/ chip time) then the scheme is referred to as Multicarrier DS-

CDMA (MC-DS-CDMA). The MT-CDMA uses spreading codes in multiples of the number 

of subcarriers as compared to MC-DS CDMA. Hence while MC-DS-CDMA maintains 

them minimum frequency orthogonality between subcarriers while MT-CDMA, frequency 

separation between subcarriers no longer satisfies the orthogonality condition therefore 

longer spreading codes with length multiples to that of  the number of subcarriers has to be 

used but that also enables  MT-CDMA to  accommodate more users than  DS-MS-CDMA. 

In all three schemes, all the sub-carriers are used by each user and the multiple access 

functionality is provided by CDMA. Figure 2- 7 demonstrates the time, frequency and code 

dimensions of MC-CDMA and MC-DS-CDMA techniques.   

 

Figure 2- 7 : Time, frequency and code dimensions of MC-CDMA and MC-DS-CDMA. 
 

2.3.7 Collaborative Coding Multiple Access (CCMA) 

CCMA [32][33][34][35][36][37][39][40] is narrowband non-orthogonal MAS which allows 

several users to transmit simultaneously over a common channel without any subdivision in 

time, frequency, or code. Hence unlike CDMA, CCMA allows multiple access functionally 

without expanding the bandwidth of the transmitted signal. In CCMA, each user is provided 

with a unique codebook to insure that the sum transmission of users over a common channel 
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form uniquely decodable codewords that can be jointly decoded at the receiver to 

unscramble individual users’ data.  These codebooks are chosen from a family of codes 

referred to as multiple access coding. The majority of these codes are constructed for the 

multiple access adder channel model (MAAC). Although these codes are mainly designed to 

guarantee unique decodablity, they can also have error and detection and correction 

capabilities. However short block codes with no error correction capability used in 

synchronous CCMA are shown to achieve better performance and are simpler to implement. 

A block diagram of M-user CCMA is shown in Figure 2-8 where M users transmit 

independent data over a common multiple access channel (MAC). Each user i, 1 ≤ i ≤ M   

is assigned a set of 𝑙𝑖 codewords of length n bits chosen from a unique set of collaborative 

codes 𝐶𝑖 = {𝑐1𝑖,𝑐2𝑖, … . , 𝑐𝑙𝑖𝑖}. The data of each user is first encoded using its unique 

collaborative codebook then its mapped using a linear digital modulation scheme.  The 

received signal is a composite codeword of length n bits formed from the superposition of 

consistent users’ codewords. At the receiver joint ML joint detection and decoding is 

performed by calculating the squared Euclidian distance between the received composite 

codeword and all ∏ 𝑙𝑖𝑀
𝑖=1  allowable codeword combinations and choosing the one with 

smallest distance which is finally de-mapped to the corresponding data of each user. The 

total sum rate 𝑅𝑠𝑢𝑚  in bits per channel use for this coding scheme is given by: 

 𝑅𝑠𝑢𝑚 = � log2
𝑙𝑙
𝑛

𝑀

𝑙=1

 (2.5) 
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Figure 2- 8: Block diagram of a M-user CCMA system 

Collaborative coding with a sum rate higher unity than that which can achieve a higher 

capacity than orthogonal MAS like TDMA and FDMA has been constructed for CCMA , 

for example the coding scheme proposed for two users in [32] can achieve a sum rate of 

1.29 bits/channel use . Another coding scheme proposed in [33] for three users achieve a 

sum rate of 1.5 bits/channel use. However despite its high sum rate and non-orthogonal 

nature, the implementation of CCMA especially in wireless networks suffers from a number 

of important setbacks:  

A. CCMA suffers from degradation in BER performance caused by the increase in the size 

of the composite symbol constellation formed from the linear addition of independent 

codewords over the channel.  

B. Since coherent combining of signals over a baseband common channel is fairly straight 

forward, CCMA has been successfully employed in [40] on the downlink of CDMA to 

extend users capacity by allowing two users to share the same spreading sequence. However 

on the uplink side, when signals from multiple users are transmitted in fading environments, 

fading causes independent distortion and delay to users’ signals making coherent combining 

and synchronization extremely challenging. Few works have been done to address this issue 

such as complex-valued CCMA (CV_CCMA) in [37] which uses joint channel estimation 
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and detection in addition to spatial diversity to implement CCMA in flat fading channels.  

The minimum length of a codeword in CV_CMMA is 1+M to guarantee that each codeword 

is unique and linearly independent however much longer codes are required to achieve a 

sum rate higher than unity. For example in the 2-user CV_CCMA using BPSK modulation , 

the length of the codeword needs to be increased to 5 in order to achieve a sum rate of 1.2 

bit/channel use.  

C. The minimum length of the codeword increases with the number of users leading to only 

a modest increase in sum rate on the expense of a significant drop in BER performance and 

an increase in the complexity of  joint ML detection. Hence in reality the number of users 

that can be accommodated by CCMA is restricted to two or three users in most cases.  

2.4 Multiple-Input Multiple-Output (MIMO) Communications 

MIMO communications refers to a set of wireless communications schemes that exploit the 

spatial dimension through the use of multiple antennas at both communication ends. 

Provided that a rich scattering environment and enough separation between antenna-

elements exist to allow for independent uncorrelated channels between any two pair of 

receive-transmit antennas, MIMO attains a linear increase in system capacity in the order of 

minimum number of received /transmit antennas 𝑁𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑁𝑡 ,𝑁𝑟) without any extra 

power or bandwidth [3][43][52].  The benefits of MIMO can be realised through spatial 

multiplexing which allows for the concurrent transmission over the same bandwidth of up 

to  𝑁𝑚𝑖𝑛 independent data streams. MIMO can also be used to attain a reliable 

communication over fading channel through spatial diversity where a maximum diversity 

gain with an order of  𝑁𝑡 × 𝑁𝑟 can be achieved through space-time coding when a single 

data stream is transmitted. A combination of both spatial diversity and multiplexing gain 

can also be realized. MIMO was originally proposed and extensively studied for a single 
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user scenario when a single transmitter/ receiver are both equipped with multiple antennas. 

However recent research shows that multiple users equipped with a one antenna can form a 

virtual multi-antenna user, hence extending MIMO to multiuser scenario. In the following 

sections we will provide an overview of both single user (SU) and multiple users (MU) 

MIMO and explain various linear and non-linear precoding and detection techniques used 

in MIMO.  

2.4.1 Single-User MIMO (SU-MIMO) 

SU-MIMO as the name suggests [3][41][42], involves a point to point transmission where a 

single transmitter equipped with 𝑁𝑡 antennas transmit to a single receiver equipped with 𝑁𝑟 

antennas as shown in Figure 2- 9. Where the received signal y is given by 

�
𝑦1
⋮
𝑦𝑁𝑟
� = �

ℎ11 … ℎ𝑁𝑡1
⋮ ⋱ ⋮

ℎ1𝑁𝑟 … ℎ𝑁𝑡𝑁𝑟
� �
𝑥1
⋮
𝑥𝑁𝑡
� + �

𝑛1
⋮
𝑛𝑁𝑟

� ⟺  𝐲 = 𝐇𝐱 + 𝐧 (2.6) 

 where 𝐲 ∈ 𝒞𝑁𝑟×1  is the complex 𝑚 × 1 received signal vector , 𝐛 = �𝑏�1 ⋯ 𝑏�𝑁𝑡�
𝑇

is 

𝑁𝑡 × 1 data vector  , 𝐇 ∈ 𝒞𝑁𝑡×𝑁𝑟   is 𝑁𝑡 × 𝑁𝑟 complex channel matrix which assumed to be 

available at the receiver, 𝐱 ∈ 𝒞𝑁𝑟×1  is 𝑁𝑡 × 1 complex transmitted symbol vector and 

𝐧 ∈ 𝒞𝑁𝑟×1  is 𝑁𝑟 × 1 vector of i.i.d complex AWGN with each element having 𝜎2 variance. 

Eq (2-34) is a linear set of equations with 𝑁𝑡 variables and 𝑁𝑟 equations. A solution for this 

equation exists as long as 𝑁𝑟 ≥ 𝑁𝑡 and H is linearly independent or has full algebraic rank.   

 In other words, the number of streams that can simultaneously transmitted using SU-

MIMO is limited by the by min(𝑁𝑡 ,𝑁𝑟) and the availability of uncorrelated channels or the 

lack of dominant LOS.  Sufficient separation between antennas is therefore essential to 

avoid fading correlation.  At the BS antenna separation in the order of 10 wavelengths 
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(1.5m at 2GHz) is required; while  more than half a wavelength at the mobile handset 

(7.5cm at 2GHz) is required [44] [45]. 
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Figure 2- 9 Illustration of a SU-MIMO system 
  

 

 Depending on the average received SNR, SU-MIMO can be used either to increase the 

reliability of data transmission through maximising spatial diversity gain or increase the 

system capacity through spatial multiplexing. The first is usually referred to in literature as 

D-BLAST while the second is called V-BLAST architecture [3][55][56].   

The essential difference between the two architectures lies in how data streams are encoded. 

In D-BLAST, redundancy between the data streams is introduced through the use of 

specialized space-time block coding. In other words, the same data are transmitted from 

different spatial streams (antennas) after being encoded by a suitable space-time code and 

interleaved in time. High diversity gain attained by space-time coding allows the transmitter 

to use high order modulation and to reduce the redundancy from error reduction coding 

which leads to high spectral efficiency. The choice of different space time coding schemes 

offers a trade-off between diversity gain obtained and complexity of encoding and 

detection. For example space-time trellis code (STTC) can offer maximum diversity gain in 

order of 𝑁𝑡 × 𝑁𝑟. However decoding at the receiver requires the extensively complex 
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multidimensional Viterbi algorithm. Space-time block codes (STBC) on the other hand 

attains only a diversity order equal to 𝑁𝑡 but only requires simple ML detection [46][47].  

In V-BLAST on the other hand, divides serial data streams into parallel data streams which 

are independently modulated and coded before being transmitted from different transmit 

antennas.  However, the orthogonally among the transmitted streams totally depends on the 

fading correlation. Hence, the receiver can separate then decode and merge bit streams to 

the original transmitted data. An example of 2 × 2 spatial multiplexing scheme using V-

BLAST   is shown in Figure 2- 10. in addition to spatial multiplexing gain, V-BLAST can 

retain a diversity gain with an order up to 𝑁𝑟 which varies according to which detection 

scheme is employed. For example, zero-forcing ZF has the lowest complexity of all 

schemes however it offers no diversity gain while the optimum ML detection can retain a 

diversity order equal to 𝑁𝑟 on the expense of high computational complexity [49]. 
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Figure 2- 10 an example of Spatial multiplexing in 2×2 SU-MIMO communication system 
 

Optimal performance can be achieved by switching between the two schemes to achieve 

high spectral efficiency without comprising BER performance also referred to adaptive 

MIMO switch (AMS) [48]. A number of schemes have been proposed in literature to 

optimize this switching like [50]which is based on SNR information and time/frequency 

selectivity indicators and [51] which exploits the spatial selectivity of the channel. 
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2.4.2 Multiuser MIMO (MU-MIMO) 

MU-MIMO allows multiple users equipped with a single or multiple antennas to 

communicate with a BS equipped with a multiple antenna by exploiting the spatial 

dimension between users who transmit simultaneously and over the same bandwidth 

[3][52][53]. MU-MIMO shares many of the principles and technologies used in SU-MIMO 

especially in uplink communication. However since users can’t jointly decode their data 

streams in the downlink and are unaware of each other CSI, precoding at the BS becomes 

necessary to implement SM.  In Figure 2- 11 an example of MU-MIMO system where 𝑁 

active users each equipped with 𝑢𝑘 antennas chosen from a set of 𝑈 users communicate 

with 𝑚 antenna at the BS. At the uplink, the received signal 𝐲  at the BS can be defined as  

 𝐲 = �𝐇𝑖𝐱𝑖 + 𝐧
𝑁

𝑖=1

 (2.7) 

where 𝐱𝑖 ∈ 𝒞𝑢𝑖×1 is transmitted signal vector of the 𝑖𝑡ℎ user. 𝐇𝑘 ∈ 𝒞𝑚×𝑢𝑘   is complex 

Rayleigh flat fading channel matrix of the 𝑖𝑡ℎ user and assumed to be available at both 

communication ends, and 𝐧 ∈ 𝒞𝑚×1 is vector of i.i.d complex AWGN with each element 

having variance of 𝜎𝑛2.  

Each user is subject to an individual power constraint of 𝑃𝑖 which implies 𝑡𝑟(𝐐𝑖) ≤ 𝑃𝑖  ; 𝑖 =

1, … ,𝑁  where the transmit covariance matrix of the 𝑖𝑡ℎ user is defined to be 𝐐𝑘 ≜

𝔼�𝐱𝑖𝐱𝑖H�. 

At the MU-MIMO, the received signal vector  𝐲𝑖 ∈ 𝒞𝑢𝑘×1 at the 𝑖𝑡ℎ user’s  is given as  

 𝐲𝑖 = 𝐇𝑖
T𝐱 + 𝐧𝑖   ;   𝑖 = 1, … ,𝑁 (2.8) 

where 𝐱 = ∑ 𝐱𝑖𝑁
𝑖=1 ∈ 𝒞𝑚×1 is the superposition of modulated users’ symbols transmitted 

from BS . 𝐇𝑖 ∈ 𝒞𝑚×𝑢𝑘   is complex Rayleigh flat fading downlink channel matrix  for user i 

and assumed to be available at both communication ends, and 𝐧 ∈ 𝒞𝑢𝑖×1 is vector of i.i.d 
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complex AWGN at 𝑖𝑡ℎ user with each element having variance of 𝜎𝑛2 . The BS is under 

power constraint of P=∑ 𝑃𝑖𝑁
𝑖=1  which is defined 𝑡𝑟(𝐐) ≤ 𝑃 where 𝐐 ≜ 𝔼[𝐯𝐯H] is the 

transmit covariance matrix.  
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Figure 2- 11 An example of MU-MIMO system 

 

MU-MIMO has many important advantages over SU-MIMO:  

• It can provide multiple access gain allowing a number of users equal to that of the 

number of antennas at the BS to simultaneously access the network without consuming 

extra band or bandwidth.  

• Geographical separation of users makes MU-MIMO less vulnerable to high channel 

correlation or LOS propagation than SU-MIMO.    

• SM can be realised using a single-antenna mobile terminals which reduces the 

complexity, size, and cost of mobile terminals.  

Unfortunately realizing the full benefits of MU-MIMO is constrained by a number of 

factors [64][65][66][67] 

• Unlike SU-MIMO, MU-MIMO requires the availability of CSIT for the downlink; this 

places a significant burden on users which have to feedback their CSI to the BS, the 
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overhead per user increases with the number of users which ultimately can reduce the 

capacity of the uplink and the number of users that can be served. 

•  MU-MIMO requires cross-layer design and cross-user optimisation to perform user 

scheduling, antenna selection, precoding and detection. These processes often involve   

exhaustive search and iterative process which increase exponentially with the number of 

users. 

2.5 Conclusion  

In chapter two, technical background and literature review of the related work to this thesis 

was provided. The fading channel principles including parameters, classifications and 

statistical distributions, estimation, and fading mitigation techniques were studied. Next the 

principles and features of the most important wireless multiple access techniques were 

presented and finally an overview of MIMO communication was presented. 
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3 Collaborative Modulation Multiple Access (CMMA) 

3.1 Introduction  

In this chapter, we propose a new non-orthogonal multiple access scheme that combines the 

functionalities of modulation and multiple access referred to as collaborative modulation 

multiple access (CMMA). It employs collaborative modulation precoding using unique 

modulation sets jointly designed at the base station to remove ambiguity and minimize 

interference. The received composite signal belongs to a higher constellation set with a rate 

equal to the sum rate of all users and with a structure that aims to maximize the minimum 

Euclidian distance. Users utilises a simple common pilot feedback to adjust their 

transmission adaptively to maintain the desired received composite signal. CMMA provides 

a practical solution for implementing the multiple access adder channel (MAAC) in fading 

environments. Our results show that CMMA can achieve a linear increase in link spectral 

efficiency on the expense of graceful degradation in BER performance. It can also be easily 

integrated with conventional multiple access techniques to extend user capacity and 

improve link utilization. Furthermore, a new CMMA antenna selection is proposed to 

improve performance while preserving the same simple precoding and without the need for 

pilot-aided channel estimation. Diversity gain is attained at any channel correlation and 

increase with transmit high correlation contrary to MIMO systems.  

The remainder of this chapter is organized as follows. In section 3.2, we present related 

work and motivation. Then in Section 3.3, we introduce the principles and operation of 

CMMA. In Section 3.4 to 3.5, we describe system and signal model and how feedback and 

synchronizations is provided. This is followed in Section 3.6 by a description of how 

multiuser constellations are formed and their main properties. In Section 3.7, An CMMA 

antenna selection algorithm is proposed. We then analyse the BER of CMMA in Section 3.8 

and present simulation results and discussion in section 3.9, and end with concluding notes. 
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3.2 Motivation and Related work  

Multiple access schemes (MAS) perform a fundamental function in wireless networks, 

allowing users to share resources fairly while maximizing network throughput. Two major 

approaches to MAS exist. Orthogonal MAS aims to eliminate user interference by 

distributing finite resources such as time division multiple access (TDMA), frequency 

division multiple access (FDMA) and orthogonal frequency division multiple access 

(OFDMA) [31], or effectively the number of receive and transmit antennas and the 

availability of uncorrelated channels in space division multiple access (SDMA). However, 

these resources are limited in nature, which restricts cell ability to accommodate a big 

number of users with a high data rate. Non-orthogonal MAS (NOMAS) allow non-zero 

cross correlation among users. Examples of such schemes are random waveform code-

division multiple-access (CDMA), trellis-coded multiple-access (TCMA) and interleave-

division multiple-access (IDMA) [31]. Relaxing the orthogonality requirement for these 

schemes enables a soft limit on the number of users at the expense of increased interference 

and receiver complexity that limits the quality of service and user data rate - making the 

systems interference limited.   

NOMAS can also be achieved using multiple access coding, also widely referred to as 

collaborative coding multiple access (CCMA) [34].  The majority of these codes are 

constructed for the multiple access adder channel model (MAAC). In CCMA, each user is 

provided with a unique codebook to insure that the sum transmission of users over a 

common channel form uniquely decodable codewords that can be jointly decoded at the 

receiver to unscramble individual user’s data. Since Coherent combining of signals over a 

baseband common channel is fairly straight forward, CCMA has been successfully 

employed in [40] on the downlink of CDMA to extend users capacity by allowing two users 

to share the same spreading sequence. However on the uplink side, when signals from 
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multiple users are transmitted in fading environments, fading causes independent distortion 

and delay to users’ signals making coherent combining and synchronization extremely 

challenging. Few works has been done to address this issue such as complex-valued CCMA 

(CV_CCMA) in [37] which proposed joint channel estimation and detection as well as 

utilising receive spatial diversity to implement CCMA in flat fading channels.   

NOMAS can also be realized without any form of coding by exploiting the spatial or/and 

temporal disparities in the received SNR of multiple users using superposition coding (SPC) 

[57][61][62]. SPC employs multistage detection technique referred to as successive 

interference cancellation (SIC) [62]. SPC with effective power control and scheduling has 

been proven to increase the system capacity and throughput when used in conjunction with 

other MAS [57][61] especially in the downlink of CDMA [57]. However, SIC error 

propagation and the requirement for large power separation has limited its application to 

only a handful of users. Signals from multiple users spatially multiplexed over rich fading 

channels can be separated by employing multiple receive antennas. Spatial multiplexing 

(SM) in multiple input multiple output (MIMO) systems offers a linear increase in system 

capacity without incurring additional resources in terms of power and bandwidth [63][52]. 

However, it has some fundamental limitations. Firstly, the number of users that can be 

simultaneously served is limited by the less number of transmit and receive antennas [63]. 

Secondly, the orthogonality among the transmitted streams depends on correlation among 

users’ channels therefore high correlation due to insufficient antenna separation and/or poor 

scattering environment leads to a significant degradation in the sum rate capacity and bit 

error rate (BER) performance [64]. Thirdly, the amount of overhead increase with the 

number of users both in terms of pilots needed for channel estimation [68][69]  and for user 

scheduling and precoding [65].     

In this chapter, we propose a bandwidth efficient NOMAS called CMMA that utilises well 

known technologies like SPC, adaptive modulation, precoding, and joint maximum 
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likelihood (ML) detection in an innovative manner. The novelty aspect of CMMA is the use 

of modulation to provide multiple access functionality and how it can integrate the above 

mentioned techniques together in a practical and low-overhead manner. The proposed 

scheme addresses many limitations of conventional NOMAS mentioned earlier and can be 

integrated within OMAS such as OFDMA. CMMA assigns users with unique modulation 

sets designed by the Base-station (BS) so that their sum transmission belongs to a higher 

constellation with full decodability. Users need to adjust the power and phase of their signal 

so that it is received according to users’ assigned unique modulation sets. The main 

contributions of the paper are summarized below: 

• A new model is proposed to exploit superposition coding by departing from user-

specific power control and SIC receivers to a different approach that optimises power, 

phase, and/or constellation mapping using common feedback and collaborative 

precoding. CMMA offers higher capacity and can accommodate more users (even with 

equal power) than that of conventional SPC.  

• CMMA maintains capacity and robust BER performance in highly correlated channels 

without the need for multiple receive antennas, channel state information (CSI) at the 

receiver or excessive feedback between the BS and individual users. 

• A new simple uplink multiuser MIMO based on CMMA with antenna selection that 

maintains CMMA common feedback and simple precoding while achieving high 

diversity gain that is resilient to channel correlation and increases with high correlation. 

Furthermore, a low complexity iterative sphere decoding is designed to fully exploit the 

remaining receive antennas. This offers substantial performance improvement and is 

able to accommodate more users than the available number of receive antennas.  

• A practical low-overhead scheme for coherent combining of multiple signals in fading 

channels essential for the implementation of joint ML detection and composite 

constellation design in SPC and in the multiple access adder channels. 
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3.3 Principles of CMMA 

The main design philosophy for CMMA is the notion that users can share a common 

channel as long as any combination of their data combined over the channel produces a 

unique interference pattern that belongs to a valid composite constellation known at the 

receiver. Also the minimum separation between these unique interference patterns 

(composite constellation points) measured by the minimum distance (𝑑𝑚𝑖𝑛) should be 

sufficient to mitigate noise and enable successful detection. In other words, CMMA 

combines signals from N different users each using a linear modulation set of size 2𝑘𝑖 to 

form a composite signal that belongs to an M-QAM constellation R formed from the sum of 

all the possible mutation of signals from these N users.  To ensure that the new composite 

signal is non-ambiguous, uniquely decodable, and has a data rate equal to the sum rate of all 

individual users, R must contain M unique constellation points given by  

𝑀 = 2∑ 𝑘𝑖 𝑁
𝑖=1   (3.1) 

where ki is the ith user number of bits per symbol. The composite constellation R can be 

written as: 

𝑅 = 𝑈 × 𝑊 (3.2) 

where U is a 𝑀 × 𝑁 matrix whose rows represent the possible combinations of N signals 

and W is a precoding complex matrix 1 × 𝑁 whose entries represent the power and phase of 

these N users’ signals.  

An important question remains, can a composite constellation R that satisfies Eq(1) be 

formed from any number of users. The answer is yes only if a precoding matrix W exists for 

any N. Note that for any value of N, R can take infinite number of choices. However, U 

always stays the same for a given user modulation set and has a row rank of M/2 and a full 

column rank, hence there always exists a left inverse to U and any M-QAM constellation R 

can be constructed for any N users. Nevertheless, in practice the size of R increases with that 
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of the number of users; hence as expected with M-QAM modulation, the BER performance 

degrades as the modulation order increases, however this is partially offset in CMMA by the 

coherent addition of users’ signals which leads to a linear increase in average symbol power. 

Now let’s summarize the basic operation of CMMA systems:  

The base station in cellular systems holds a lot of useful information about users in its cell 

(such as number of active users, their average channel gain, location and mobility) and 

conventionally, it is responsible for resource allocation. Furthermore, it is the sink for all 

uplink communications. Therefore, the task of designing the composite constellation and 

decoding table is better done at the BS.  

So first, the BS station uses its knowledge of users ‘average channel gain’ to divide users 

into subgroups. A Monte-Carlo type simulation is used to calculate the average SNR and 

𝑑𝑚𝑖𝑛 corresponding to each possible formation and the one with the highest number of users 

and/or highest sum rate that satisfy a specific BER requirement is chosen.  

The BS then assigns users with unique modulation sets and waiting periods to compensate 

for delay. Each user then waits for the common pilot to synchronize its transmission and 

extract CSI. Due to channel reciprocity and assuming channel coherent time is long enough 

for CSI to remain valid at the receiver. Precoding converts the fading channel into a 

Gaussian channel by averaging the transmit power around the mean channel gain over a 

suitable time-cycle.  The aim is to find the maximum data rate that maintains fixed average 

transmit power and SNR at the receiver. This approach is similar to adaptive modulation 

where users vary their modulation and code rate according to channel conditions to 

maximise data rate [70]. But in CMMA, channel inversion rather than water filling is used 

to combine maximising rate with collaborative precoding.  
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Each user utilizes CSI to adjust the phase and power of its signal so that the received signal 

corresponds with the modulation set assigned by the BS. Users act independently unaware 

of channel correlation levels. Individual users act independently from each other and are 

unaware of how many users are simultaneously transmitting in their group or correlation 

levels between their channels, thus there are no requirements for any feedback between 

users in the group. 

Then the BS station will simultaneously receive a combined signal corresponding to the sum 

transmission of all users. This signal will belong to the predesigned higher composite 

constellation R. Because the BS determines R, the receiver decodes users’ signals 

simultaneously without CSI at the receiver (CSIR) and with a single RF circuit at the same 

complexity of a single user with the same modulation level. This is an advantage in over 

multiuser detection like SIC where the detection process has several serial stages equal to 

the number of users causing latency and unfairness due to error propagation.  

3.4 An Illustrative Example of CMMA Operation  

1. The BS uses its knowledge of users ‘average channel gain, fading characteristics, and 

data rate requirement to divide active users within its cells into subgroups. A Monte-

Carlo type simulation is used to calculate the average SNR and  𝑑𝑚𝑖𝑛 corresponding to 

each possible group formation to identify the formation with the highest number of 

users and/or highest sum rate; where the composite group constellation at the resulting 

average SNR will satisfy a predefined BER performance. For example the optimum 

joint constellation for a group of two users each transmitting a QPSK signal will be 

achieved when the average power ratio between them is 0.25, so choosing one of users 

near the BS with strong channel and the other at the edge of the cell will be optimum.  
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2. The BS then assigns each user with a phase rotation/power control precoding 

parameters, modulation level to be used and the delay period from the recovering of the 

common pilot signal initial frame to compensate for different delays among users and 

synchronise their transmission. 

3. Each user then listens to the common pilot channel to synchronize the start of its 

transmission and extract instant CSI information (channel gain and phase). Due to the of 

channel  reciprocity in Time-division duplex systems and assuming that in slow fading 

the coherent time of the channel is long enough so  this information will still be valid by 

the time the transmitted packets reach the receiver. The user then adjusts the phase and 

power of its transmitted signal according to the CSI so that its received signal at the BS 

station will be the same as the precoding parameters set by the BS. For example , if the 

instant channel gain is 0.5 and the phase induced by the channel is -60 ,let’s assume that 

the predefined power/phase  precoding parameters set by the BS to this user is 0.75/45 

and the user uses BPSK then , the corresponding constellation set for this user will be  

0.75/45 ,0.75/-135. Thus Taking account of the CSI, this user need to transmit at 

(0.75/0.5=1.5)/(-60+45=-15) , (0.75/0.5=1.5)/(-60-135=-195) . 

4. Finally the BS receives simultaneously a combined signal corresponding to the sum of 

transmission of all users; this signal will correspond to a higher composite constellation 

(16-QAM rectangular constellation in our example)  which the BS will decode as if it 

belongs to a single user. 

3.5 System Model 

As shown in Figure 3- 1, we consider the uplink of a cellular system consisting of N single-

antenna users transmitting to a single-antenna BS.  
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Figure 3- 1 System architecture of a CMMA system with N users. The two headed arrows refer to data traffic 
from users to BS and for common pilot from BS to users where both are sent through the same channel. The 

highlighted boxes at the receiver side are only needed for CMMA with antenna selection system. 
 

3.5.1 Channel Model 

Typically the BS is notably elevated relative to users which are located in a rich scattering 

environment causing their channels to experience Rayleigh multipath fading. This channel 

is modelled as a complex Gaussian-distributed with zero-mean and unit variance. We will 

generate N uncorrelated fading channels with Rayleigh distribution using  improved sum of 

sinusoids [78] where a  complex Gaussian noise is generated by  finite sum of weighted 

sinusoids. The baseband representation of 𝐻𝑖 for user i is:  

 

𝐻𝑖(𝑡) = 𝐻𝑥𝑖(𝑡) + 𝑗𝐻𝑦𝑖(𝑡) = 𝛼𝑖(𝑡)𝑒−𝑗 ∅𝑖(𝑡) (3.3) 

 

𝑤ℎ𝑒𝑟𝑒 𝛼𝑖(𝑡), ∅𝑖(𝑡) are respectively the fading amplitude and phase of user i channel at t.  

𝐻𝑥𝑖(𝑡) and  𝐻𝑦𝑖(𝑡) are in-phase and quadrature samples of zero mean Gaussian random  

processes with σ 2
o  variance given by : 

𝐻𝑥𝑖(𝑡) = �2
𝐺� cos �𝑤𝑑𝑡 cos(𝛽𝑖) + iψ �

𝐺

𝑖=1

 (3.4) 
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𝐻𝑦𝑖(𝑡) = �2
𝐺� cos �𝑤𝑑𝑡 sin(𝛽𝑖) + iϕ �

𝐺

𝑖=1

 
(3.5) 

𝛽𝑖 =
2𝜋𝑖 − 𝜋 + 𝜃𝑖

4𝐺  (3.6) 

where G is the number of sinusoids, 𝑤𝑑 is the angular Doppler frequency.  

iϕ and iψ  are the wave initial phase related to the quadrature components and are 

statistically independent and uniformly distributed on �–𝜋,𝜋�, ∀i ∈{1,…,G}. 

The mean channel gain for a user i over a period of time T is defined as 

𝐻𝚤𝑇���� = �
1
𝑇
��𝛼𝑖(𝑡)

2�
𝑡=𝑇

𝑡=0

 (3.7) 

3.5.2 Signal model 

The baseband presentation of transmitted signal from user i at time instant t is: 

)()()( )( tcetPts i
tj

ii
iθ−=  (3.8) 

where )(tci  is a complex signal representing data symbol chosen from a set of ik2 -QAM 

constellation 𝐶𝑖 = [𝑐1, 𝑐2, … , 𝑐2𝑘𝑖] where 𝑘𝑖  is the number of bit/symbol for user i and the 

average constellation power is fixed to one, and 𝑃𝑖(𝑡) and 𝜃𝑖(𝑡) are respectively the power 

weight and phase shift of user i  at time instant t to ensure that its received signal 

corresponds to the precoding indexes 𝐺𝑖 ,𝜗𝑖 assigned by the BS at the beginning of the data 

session. 𝑃𝑖(𝑡) and 𝜃𝑖(𝑡) are defined as 

𝑃𝑖(𝑡) = ��
𝐺𝑖
𝛼𝑖(𝑡)

�
2

, 𝛼𝑖(𝑡) < 𝜇

 0        , 𝛼𝑖(𝑡) ≥ 𝜇
 (3.9) 

)()( tt iii φνθ −=  (3.10) 

 𝐺𝑖 is chosen by the BS not to exceed iTH  to ensure that precoding is sustainable and does 

not deplete user’s battery therefore. 
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𝐺𝑖 ≤  
1
𝐻𝚤𝑇���� →

1
𝑇��𝑃𝑖(𝑡) ≤

𝑇

𝑡=0

1
𝐻𝚤𝑇���� (3.11) 

The channel inversion performed by precoder  provide a simple way to compensate for 

fading locally while minimizing interference enabling multiuser modulation (MU) using 

only a small common periodic feedback. However, to ensure that the majority of power is 

not spent only during deep fading which may exceed peak power permitted in the 

transmitter, we consider a truncated inversion that only compensates for fading above a 

certain cut-off fade 𝜇 defined by the user’s peak power. Although waterfilling is proven to 

be the optimum adaptive modulation strategy in point to point single user systems; it is very 

difficult to apply for a multiuser case as considered in CMMA. Because this will require 

EITHER users to change their constellations independently which may result in ambiguous 

composite constellation for the group in addition to the need for CSI at the BS, OR the BS 

has to adaptively update the design of the composite constellation based on CSIs from all 

users then feedback changes to users which will result in an excessive overhead and delay.   

 

The baseband representation of the received signal of all users at the BS at time instant t is  

)()()()()()(
1

tntsthtntrty
N

i
ii +=+= ∑

=

 (3.12) 

where, ℎ𝑖(𝑡) represents the complex channel gain of user i at time t, n(t) represents white 

Gaussian noise vector at t and is modelled as complex  Gaussian-distributed signal with zero 

mean and variance 2
nσ  and r(t) is the composite received signal at time t. In order for r(t) to 

be decodable, the BS should choose a subset N from total active users in the cell to form a 

combined constellation R that satisfies the following conditions:  

if ir & Rrj ∈ and ji ≠ then ir ≠ jr . (3.13) 
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22
min4

1
nd σ≥  (3.14) 

3.5.3 Joint Maximum Likelihood Detection 

Since fading is compensated in the transmitter side, the detection process is reduced to that 

of ML detection in AWGN channels. Furthermore, as the received constellation R is 

designed by the BS, ML detector uses R as a reference to compare with the received signal 

y(t) with no CSIR required. The detector performs an exhaustive search between the 

received signal y(t) and all constellation points in R to find the constellation point which is 

the closest to y(t) in terms of Euclidean distance as follows 

)}||)((||minarg{ˆ 2tyRr
iy

−=  (3.15) 

The number of calculations needed to perform joint ML detection for a group of N users 

each transmitting with a modulation level 2𝑘𝑖 is ∏ 2𝑘𝑖𝑁 . This is the same detection 

complexity for a single user (SU) QAM using the same order constellation as that of MU-

QAM. However, various schemes proposed to reduce the complexity of ML in point to point 

communication or for MIMO like sphere decoding [71] and multistage ML detection [72] 

can greatly reduce the complexity of ML for CMMA with a very modest reduction in BER 

performance. For example, for 6x6 MIMO system employing QPSK modulation, [72] can 

achieve the BER performance close to that of the ML scheme with only 0.01 times 

complexity of the ML. 

3.6 Common Pilot Channel (CPC) 

Users acquire CSI from pilots sent from the BS to perform collaborative precoding over B 

symbols. We assume the channels are reciprocal which is widely accepted in TDD systems 

where uplink and downlink share a common frequency [68][69]. we consider a three-stage 

TDD transmission scheme, in which the total duration for transmission of B symbols is less 

than the minimum coherent time of users’ channels to ensure that channel remain constant 
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over B symbols (usually B ranges from 10s to 100s of symbols depending on channel fading 

statistics [68]) as shown in figure 3.2.  In the first stage, the BS broadcasts a common pilot 

with power 𝒫𝑟 to users which estimate their channels using LMMSE estimator. Let’s 

denote the channel estimates and the estimation errors by ĥ  and h~ respectively where

hhh ~ˆ += . h~  is modelled as a random variable with complex Gaussian distribution with 

zero mean and Variance 𝜎𝑒2 = 1/(1 + 𝒫𝑟/𝑁𝑜). In the second stage, users use ĥ  to precode 

their data, we assume that the duration of the precoding stage is negligible. Finally, users 

transmit B-1 symbols. The channel estimation accuracy depends on the effective SNR 

during the estimation period. At low SNR, the estimation quality is poor which leads to 

degradation in channel capacity [68]. Therefore, the number of pilots, their placement, and 

how much power is allocated to them should be optimised to sustain a high SNR. In 

systems with multiple transmitters, the orthogonality of pilots to symbols from other users 

must be considered as well. Bearing in mind that users are hand-held devices with low gain 

antennas and limited batteries, while BS is connected to the grid (the downlink power is 

usually 20 dB higher than that of the uplink in Mobile Wimax IEEE 802.16e), therefore our 

reversed pilot can be transmitted with more power than that of forward link pilots achieving 

higher SNR with lower number of pilots. Not only accurate estimation due to higher power 

is achieved through reversed training but also 20-25% of total transmit power typically 

spent on training on the uplink of MIMO systems [69] can be reused for data transmission. 

The number of required pilots in CMMA is independent of the number of users, since pilots 

are broadcasted to users allowing more data to be transmitted each frame, while with 

forward training the minimum number of pilots is equal to the number of users in high SNR 

and when the power of data and pilots symbols are allowed to be different, while in low 

SNR and when the power of pilots and data is the same, pilots/data ratio can jump to 50% 

of transmitted symbols [16-17]. 
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Figure 3- 2 Frame structure of a CMMA system with N users. The power and phase shift of users change every 

frame according to their instantaneous channel condition obtained from the common pilot. 

The accuracy of channel estimation and hence precoding and detection is limited by two 

factors. Firstly, the accuracy of CSI obtained from the common pilot (CP) by the users and 

secondly the validity of the estimation at the BS. The first requirement can be addressed by 

increasing the power of the CP to guarantee that it is received at high SNR. The second 

requirement however requires a fairly accurate estimation of the coherent time (CT) of the 

channel and adjusting the size of frame accordingly. The channel’s CT is directly and 

closely related with the relative speed between communication ends. This speed can be 

measured at the users for example by tracking the Doppler shift of one of the control 

channels transmitted from the BS and then feeding a quantized value to the BS whenever a 

significant change in coherent time occurs. The BS then can use this speed to estimate the 

coherent time of the frequency channel used by users and adjust its frame size to be at least 

twice that of the shortest coherent time between users’ channels and the BS. It is also quite 

important to allocate users with similar level of mobility to the same group.  Finally, while 

the use of pilots to obtain CSI is well used and studied technique, CMMA’s common pilot 

design is different than conventional piloting schemes in several ways: a) our pilot is 

common to all users, unlike user-specific power control used in conventional SPC. b) the 

common pilot is not only used for channel estimation but also to achieve and maintain 

synchronization and as a control flag informing users when to send their next burst of data.    
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3.7 Synchronization in CMMA 

Synchronization is essential to ensure that signals arrive simultaneously to form the 

designed composite signal and enable joint detection. Therefore, users should take into 

account the relative delay between them and adjust their transmission accordingly.  Most 

synchronization schemes are based on an initial acquisition of reference time between the 

BS and users followed by a closed-loop tracking control procedure for maintaining 

synchronisation [73][74]. For CMMA, users transmit in flat fading environment, i.e. their 

respective signals arrive by a single resolvable path. The delays between arriving paths are 

considered independent and identically distributed. As part of the communication session 

setup, the BS broadcasts synchronization request (syn-r) to users, upon receiving the syn-r, 

each user waits for a predefined time before transmitting a reply to the BS. The BS then 

measures the delay and assigns each user with an initial transmit delay (ITD) which is 

defined as the time period that a user has to wait after it receives the common pilot before it 

starts transmitting. This value is initial due to delay changes caused by user mobility and/or 

channel variations. However, even though the relative delay between users should be 

calculated centrally by the BS, any delay changes can be measured locally. Since the BS 

broadcasts pilots at fixed intervals, users calculate delay changes by measuring time 

differences between consecutive pilots and adjust their ITDs accordingly. 

3.8 CMMA Composite Constellation Design 

For a given power constraints on average transmit power per user, the main objective of 

composite constellation design is to maximise the number of users who can simultaneously 

access the network while maintaining a minimum QOS or BER performance.  

CMMA assumes a fixed design for the composite constellation throughout the 

communication session in order to eliminate the need for the two-way feedback required for 
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coherent detection and the updating of composite constellation design that may seriously 

reduce the net data rate of the system.  In the following sections a step by step guide for the 

design of composite constellation is provided.  

3.8.1 Calculation of the average received power per user   

Since users perform a truncated channel inversion to maintain a fixed received power of 

their assigned modulation set, the first task required in constellation design is to calculate a 

sustainable level of average received power that maintains the users’ transmit power 

constraint. This level corresponds to the average channel gain or path loss which is 

determined by the location of the user, the distance between the user and the BS, and the 

geometry of the path profile between that user and the BS.  The average path loss of a 

mobile user is proportional to 𝐺𝐴/𝑑𝑖
𝜗 where 𝑑𝑖  is the distance between that user and the BS, 

𝐺𝐴 captures the effects of antenna gain and carrier wavelength, and  𝜗 is a constant whose 

measured value typically lies in the range 3 > 𝜗 >5 [79]. 

In reality the location of the mobile user is available at the BS by measuring the difference 

in times of arrival (round trip time), angle of arrival, and received power between that 

mobile user and a number of nearby BSs. Alternatively, a mobile user equipped with a GPS 

receiver can locally calculate its location and then forward it to the BS [80].  Once the 

location of that user is obtained, field measurement stored at the BS can be used to obtain 

the average channel gain associated with that location.  

3.8.2 Minimum distance selection criteria based on BER performance  

The size of the composite constellation or the number of users that can be multiplexed 

within a single constellation is limited by the minimum QOS or BER that should be 

maintained for all constituent users who form the composite constellation.  



73 
 

The minimum SNR (𝜆𝑚𝑖𝑛,𝑀) required for a QAM modulation with rate M  bits/channel use 

transmitting over a bandwidth W to maintain a specified bit error rate BER under channel 

inversion adaptation policy can be obtained by modifying Eq. 26 in [81] and is given by  

𝜆𝑚𝑖𝑛,𝑀 =
2
3 �1− 2

𝑀
𝑊� ln(5𝐵𝐸𝑅) (3.16) 

The mapping (structure) of the composite QAM constellation is often irregular and varies 

considerably depending on the power correlation between constituent users. However, 

regardless of the structure of the resulting QAM constellation, the BER performance of any 

QAM constellation depends primarily on the minimum Euclidian distance (𝑑𝑚𝑖𝑛) between 

any two constellation points.  Therefore, the effective SNR 𝜆𝑒𝑓𝑓,𝑀 of a composite QAM 

constellation with rate M is equivalent to that of a rectangular QAM constellation with the 

same rate and minimum distance and is given by 

𝜆𝑒𝑓𝑓,𝑀 =

⎩
⎪⎪
⎨

⎪⎪
⎧

� 4𝑗−1𝑑𝑚𝑖𝑛,𝑖
2

𝑗=(𝑀)/2

𝑗=1

2𝜎𝑛2�      𝑒𝑣𝑒𝑛 𝑀

(1 + � 4𝑗)𝑑𝑚𝑖𝑛,𝑖
2

𝑗= (𝑀−1) 2⁄

𝑗=1

4𝜎𝑛2�      𝑜𝑑𝑑 𝑀

 (3.17) 

Equation 3.17 was obtained by calculating the average symbol power derived in relation to 

minimum distance of a regular rectangular QAM constellation with size of 2𝑁 and a 

minimum distance equal to 𝑑𝑚𝑖𝑛.  

In summary, in order to maintain a minimum BER for all constituent users whose signals 

are combined to form a composite QAM constellation with rate M, the effective SNR 𝜆𝑒𝑓𝑓,𝑀  

of that constellation should fulfil the following condition: 

𝜆𝑒𝑓𝑓,𝑀 ≥ 𝜆
𝑚𝑖𝑛,𝑀

 (3.18) 
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3.8.3 Initial rate allocation per user 

The average received powers for user i is  𝐻𝚤���
2𝑃𝑖 where  𝐻𝚤��� , 𝑃𝑖 respectively are the average 

channel gain and average transmit power for user i.  

Hence, according to Shannon capacity, the maximum rate (ℛ𝑚𝑎𝑥) that can be realized from 

the superposition of N users is  

ℛ𝑚𝑎𝑥 = 𝑙𝑜𝑔2 �1 + �𝐻𝚤���
2𝑃𝑖/𝜎𝑛2

𝑁

𝑖=1

� (3.19 ) 

It follows that individual rates 𝑘𝑖 , 𝑖 = {1, … ,𝑁} assigned to consistent users should fulfil the 

following two conditions: 

ℛ𝑚𝑎𝑥 ≥�𝑘𝑖

𝑁

𝑖=1

 (3.20 ) 

𝑘𝑖 ≤ log2 �1 + 𝐻𝚤���
2𝑃/𝜎𝑛2𝑖� ( 3.21) 

Equations (3.20) and (3.21) show that although CMMA is flexible with regards to allocating 

users with different rates, allocating high rate to users with a strong channel (closer to the 

BS) will reduce the rate that can be allocated to other users and  ultimately reduce the 

number of users  that be served within a single CMMA group.   

3.8.4 Multi-stage successive composite QAM constellation design algorithm 

In order to simplify the design of composite constellation, we propose a N-1 stage 

composite constellation design where a single user at each stage is added to the composite 

constellation formed from the superposition of all users in the preceding stages. A step by 

step summary is shown below. 

1)  Sort all active users in the cell in a descending manner according to their average 

received power.  This sorting is optimal as the effect of phase optimization between users 

on the 𝑑𝑚𝑖𝑛 of their composite constellation becomes more critical as the power differences 

between the users gets smaller. 



75 
 

2)  Assign users 1 and 2 respectively with modulation sets 𝐶1,𝐶2 of size 2𝑘1 , 2𝑘2 and an 

average symbol power of 𝐻1���
2𝑃1,𝐻22�����𝑃2  where 𝑘1,𝑘2, are chosen to satisfy the conditions in 

Eq. (3.20) and (3.21). 

3)  Depending on the power ratio between users 1 and 2, the power ratio between them 

𝜌12 =   𝐻12�����𝑃1/ 𝐻22�����𝑃2 and the size of constellation sets used, find the optimum phase 

rotation for 𝐶2 to maximize the Euclidian minimum distance 𝑑𝑚𝑖𝑛,1 of stage one composite 

constellation 𝑅1 of size 2𝑘1+𝑘2 formed from the superposition of all possible combinations 

of 𝐶1,𝐶2.  

4) Assign user 3 with modulation set 𝐶3 = [𝑐31, 𝑐32, … , 𝑐32𝑘3] of size 2𝑘3and an average 

symbol power of 𝐻32�����𝑃3, find the optimum phase rotation of 𝐶3 that maximize the minimum 

distance 𝑑𝑚𝑖𝑛,2 of stage two  composite constellation 𝑅2 of size 2𝑘1+𝑘2+𝑘3  formed from the 

superposition of all possible combinations of 𝑅1 and 𝐶3. 

5) Repeat step 4 for all the remaining users as long as the effective SNR of the resulting 

composite constellation at the output of each stage satisfies the minimum QoS criteria set in 

Eq. (3.18).  

6) If the effective SNR of the resulting composite constellation 𝑅𝑗 at the output of stage j 

doesn’t satisfy the QoS criteria in Eq. (13) then skip user j+1 and repeat step 4 for user j+2 

and composite constellation 𝑅𝑖−1. 

Finding the optimum phase rotation at each stage can be performed using exhaustive search 

over a range of phases [0−1/2𝜑𝑗,𝑚𝑖𝑛] where 𝜑𝑗,𝑚𝑖𝑛 represents the minimum phase 

separation between any two constellation points that belongs to the composite constellation 

formed at the preceding stage.   

This optimum phase rotation depends on two factors: the modulation set assigned to each 

user and the power ratio between users’ signals. Therefore, an offline exhaustive search can 

be performed for different number of users with different rates and power distribution to 
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find the optimum phase and 𝑑𝑚𝑖𝑛associated with each possibility and a look-up table can 

then be stored at the BS to reduce complexity and enable a quick phase optimization. 

3.8.5 Design Consideration  

To show the importance of phase rotation between users’ constellations, Figure 3- 2 shows 

the minimum distance of composite constellation vs. phase rotation of individual 

constellations for  two users employing QPSK with different power correlation and with 

total transmit power equal to two in all three scenarios.  In all three manifestations of power 

correlation between the two constellations, the minimum distance of the composite 

constellation varies greatly depending on the value of phase rotation. Even when the power 

separation between users are equal to 6dB, the square minimum distance  of the resulting 

16-QAM constellation can vary by up to 9 dB depending on the value of phase rotation.  

Further in case of equal power between the two QPSK constellation, the 𝑑𝑚𝑖𝑛 can fall to 

zero causing ambiguity and making detection impossible at any SNR value.  

 
Figure 3- 3 Minimum distance of composite constellation vs. phase rotation of individual constellations 
for 2-users employing QPSK with different power correlation and with total transmit power equal to 2 
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Figure 3- 4 Minimum distance of composite constellation vs. phase rotation of individual constellations for 2-
users with equal power  employing (a) QPSK  and (b) 4-QAM {0o,180o,54o,234o} with total transmit power 

equal to 2 and equal symbol power of 1 for all symbol 

With the right phase rotation, users with any power allocation can be combined to form non-

ambiguous composite constellations. However, when the choice of users’ constellations is 

confined to regular constellation sets like QPSK, the resulting composite constellation in 

most cases have irregular structure and suboptimal BER performance compared with 

rectangular constellation with the same average power and constellation size. For example, 

two regular QPSK with equal power and phase rotation of 30 degrees yields the best 

possible performance for equal power distribution as shown in Figure 3- 3.  However, the 

𝑑𝑚𝑖𝑛 of resulting composite constellation shown in Fig 3.4 is 18% lower than that of 

rectangular 16-QAM which translates into a 3dB loss. This significant drop in performance 

can be avoided by replacing regular QPSK with irregular 4-QAM constellations with equal 

power and phase allocation {0o, 180o, 54o, 234o}. Even though this 4-QAM constellation are 

suboptimal in terms of minimum distance when users transmit orthogonally, combining 

these two constellations together with a phase rotation of 90o yields a 16-QAM regular 

constellation as shown in Figure 3- 5 which is easier to detect and has better Performance. 

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Phase Rotation (degrees)

M
in

im
um

 d
is

ta
nc

e 
of

 th
e 

co
m

po
si

te
 c

on
st

el
la

tio
n

 

 

irruglar 4-QAM
QPSK



78 
 

 
Figure 3- 5 16-QAM Composite constellation formed from the superposition two users with equal power  

employing regular  QPSK  constellation with average symbol power equal to 1 
  

 
Figure 3- 6 16-QAM Composite constellation formed from the superposition of  two users with equal power  

employing 4-QAM {0o,180o,54o,234o} with total transmit power equal to 2 and equal symbol power of 1 for 
all symbols 

It is worth noting that 16-QAM regular constellation shown in Figure 3- 6 can also be 

formed from two QPSK users with power allocation ( 1P =4 2P ) and zero phase rotation, or 

from one QPSK user and two BPSK users with power allocation ( 1P =8 2P , 3P = 2P ) and 

phase rotation of {0o,0o,90o}, or from a 8-QAM and  BPSK user with power allocation ( 1P
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=5 2P ) and phase rotation 135o.
 
Since composite constellations can be formed from users 

with different modulation levels, CMMA provides differential user treatment to adapt to 

channel quality, required data rate and QoS.  

The 𝑑𝑚𝑖𝑛 of composite constellation formed from N users’ signals, is equal or less than that 

of any composite constellation formed from any subgroup of 𝑁1 ≤ 𝑁 constituent users. 

Hence, if one or more users leave the group or temporarily stop transmitting during deep 

fading, the composite constellation formed from the remaining 𝑁1 remains non-ambiguous 

and maintains at least the same QoS compared with that of N users.  Also, adding a new 

user to a group of N users can by achieved by optimising the existing composite 

constellation with that of the new user without the need for changing the unique modulation 

sets assigned to existing users.  Hence the multi-stage composite design can allow the BS to 

add or remove users without affecting other active users. While it is possible to add users in 

this way while maintaining non-ambiguous composite constellations; all users suffer some 

degradation in their BER performance compared with the case before adding the new user. 

Also, while this method of adding users requires very small feedback involving only the 

new user, it might not always result in the best possible new composite constellation. 

Therefore it can be a trade-off between complexity and performance. 

3.9 CMMA with Selective Diversity  

3.9.1 Principle  

With a single receive antenna, precoding can always fix the received constellation 

regardless of channel correlation. Therefore, users’ precoding indexes remain unchanged 

during the communication session and only a common pilot feedback is required. However 

with multiple receive antennas, users experience multiple channels with random 

correlations - hence they are unable to fix the composite constellation at each receive 
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antenna which varies in structure and mind according to the random phase and gain channel 

correlation. To optimise the 𝑑𝑚𝑖𝑛 across receive antennas, individual precoders now need to 

be aware not only of CSIT at their users but also of the transmit channel correlations across 

all users as in [64]. Also, the variation in constellation structures makes it necessary to have 

CSIR for detection. The diversity gain (DG) therefore comes at the expense of substantial 

increases in complexity, overheads, and requires two-way feedback. These reasons make 

selection diversity where only a single antenna is chosen from a group of L antennas, an 

attractive choice to achieve DG. However, conventional selective combining (SC) isn’t 

optimal for CMMA. Since unlike SU transmission where the received constellations only 

change in intensity but never in structure among diversity branches, our received signal is 

composite consisting of N signals transmitted over  independent fading channels per receive 

antenna causing both the intensity and structure of the received constellation to vary. In 

addition, one user may suffer deep fading in one antenna while the other suffers on another. 

If one of these users is much stronger, conventional SC favours this user which lead to 

unfairness. For these reasons designing an antenna selection algorithm should optimise 

overall group performance to provide fairness among users with different power and 

channel conditions.  

We propose an effective selection algorithm that satisfies these conditions while preserving 

the structure, complexity, and overhead of CMMA. Our selection process consists of two 

stages. First, each receive antenna j calculates the total power 𝑃𝑡𝑜𝑡,𝑗 required by users to 

transmit their composite signal 

𝑃𝑡𝑜𝑡,𝑗(𝑡) = �
𝑃𝑖𝑗(𝑡)
�ℎ𝑖𝑗(𝑡)2�

𝑁

𝑖=1

 (3.22) 

where Pij(t) and ℎ𝑖𝑗  are the ith user power needed for precoding and the complex channel 

gain at jth receive antenna, respectively. Then the BS selects the antenna s that requires the 

least total transmit power. The total transmit power at the selected antenna s is given by:  
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𝑃𝑡𝑜𝑡 ,𝑠(𝑡) = 𝑎𝑟𝑔 min
𝑗=1→𝐿

{𝑃𝑡𝑜𝑡,𝑗(𝑡)} (3.23) 

By reducing the instantaneous transmit power, the average received power increases 

enabling composite constellations with higher 𝑑𝑚𝑖𝑛. Furthermore, the probability that users 

will suffer fading levels below µ is reduced, increasing system capacity for truncated 

channel inversion. To guarantee fairness when users have different power allocation, 

quantile normalization is employed. 

3.9.2 Selection evaluation through blind channel estimation 

The BS tracks changes in channel conditions to ensure that the best antenna is always 

selected. This is carried out by using the detected data from the output of the selected 

antenna s as a training sequence to estimate the channel gains for the other L-1 antennas. 

Since the same channel estimation process is performed at each receive antenna, we only 

need to consider estimation at one receive antenna. The received signal at the receive 

antenna j at time t is 

𝑦𝑗(𝑡) = �𝑔𝑖𝑗(𝑡)𝑐𝑖(𝑡)
𝑁

𝑖=1

+ 𝑛𝑗(𝑡) (3.24) 

where 𝑔𝑖𝑗is the channel gain between user i and antenna j weighted by the power and 

phase adjustments required for the selected antenna s given by 

𝑔𝑖𝑗(𝑡) = ℎ𝑖𝑗�𝑃𝑖𝑠(𝑡)𝑒−𝑗𝜃𝑖𝑠(𝑡) (3.25) 

where  𝑃𝑖𝑠(𝑡) and 𝜃𝑖𝑠(𝑡) are respectively the power weight and phase shift of user i  at time 

instant t to ensure that its received signal at the selected antenna s corresponds to the 

precoding indexes 𝐺𝑖  𝑎𝑛𝑑 𝜗𝑖 assigned by the BS. We assume the channel ℎ𝑖𝑗 remains 

constant over a period of B symbols.  

The joint estimation problem is to extract individual users’ channel gains ℎ𝑖𝑗 from the 

received composite signal y. To enable joint channel estimation, a subgroup of symbols 𝐵𝑝 

must be chosen from the available B symbols to satisfy the following condition: the cross 

correlation of the individual user’s data sequence formed from these 𝐵𝑝 symbols is zero or 
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low. Sequences with such properties are widely used for CDMA like pseudorandom binary 

sequences (PRBS). Since 𝑁 ≤ 𝐵𝑝 ≪ 𝐵 therefore there is high possibility of finding such 

sequences within B. Let’s state 𝑌𝑃 as 𝐵𝑃 × 1 matrix representing the received composite 

signal of 𝐵𝑝 disjoint symbols chosen from a block of B symbols  

𝑌𝑝 = 𝐶𝑝𝑔𝑝 + 𝑛𝑝 (3.26) 

where 𝑔𝑝 is 𝑁 × 𝐵𝑝  matrix defined as 𝑔𝑝 = �
𝑔𝑝,1
⋮

𝑔𝑝,𝑁

� where 𝑔𝑝,𝑗 = [𝑔1,𝑗 … 𝑔𝐵𝑝,𝑗] 

and 𝐶𝑝 =  [𝐶1,𝐶2, …𝐶𝑁]𝑇, where 𝐶𝑗 is the circulant training matrix derived from 𝑐𝑗 =

�
𝑐1,𝑗
⋮

𝑐𝐵𝑝,𝑗

�.  

The least square (LS) channel estimates can be found simultaneously for the N CMMA users 

by minimising the square error quantity, which produces the following solution:  
 

𝑔𝑝� = 𝑎𝑟𝑔𝑚𝑖𝑛�𝑌𝑝 − 𝐶𝑝𝑔𝑝�
2 = �𝐶𝑝𝐻𝐶𝑝�

−1𝐶𝑝𝐻𝑌𝑝 (3.27) 

where ( ) ( ) 1, −H  represent the Hermitian and inverse matrixes respectively. 

3.9.3 CMMA with selective diversity and iterative decoding (SC-CMMA-ID) 

SC-CMMA provides an effective mechanism to achieve diversity gain and good 

performance even at the presence of high channel correlation and without the need for pilot-

based channel estimation at the receiver or any form of feedback between users and the BS. 

However in SC-CMMA, detection is only performed at the selected antenna where the 

predesigned composite constellation is formed; while the composite signals received from 

the L-1 remaining antennas are not used for decoding and only utilised for maintaining 

selection which results in a low-complexity but sub-optimal performance. Therefore in this 

section, an iterative decoding (ID) process that preserves the structure and simple precoding 

of SC-CMMA but achieves a superior performance is proposed. The number of iterations is 
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always limited to two regardless of the number of users involved or the number of receive 

antennas available.  Hence SC-CMMA-ID consists of two successive stages. 

 The first stage is identical to that of SC-CMMA explained in sections 3.8.1 and 3.8.2 

respectively whereby joint ML detection is performed at the selected antenna and the output 

of the decoder is used for blind channel estimation as explained in section 3.8.2. 

 Once the complex values of 𝑔𝑖𝑗 are obtained by blind channel estimation, the BS can attain 

the random composite constellation formed from all users at the remaining L-1 antennas. 

Let’s assume that 𝑅𝑗  is the composite constellation formed from the superposition of signals 

from N users at antenna j where 𝑗 ∈ {1,2, . . , 𝐿}, 𝑗 ≠ 𝑠 then : 

�𝑅𝑗� = [𝐶] × [𝑔𝑗] (3.28) 

 Where [𝐶] is a 𝑀 × 𝑁 matrix representing all the possible combinations of N-1  transmitted 

signals. When users employ BPSK and assume the average symbol power is unity, the 

entries on 𝐺𝑒 will be either +1 or -1.  And [𝑔𝑗] is a 1 × 𝑁 matrix representing complex 

channel coefficients between antenna j and N users weighted by the power and phase 

adjustments required for the selected antenna. 

The second stage of SC-CMMA-ID is identical to that of MIMO with ML equalization 

which involves finding the distance squared 𝑑𝑖𝑗2   between the received signal at each 

antenna j and the 𝑖𝑡ℎ possible combination signals 𝑟𝑖 ∈ [𝑅𝑗]  then calculating the mean 

square distance  𝑑𝚤2��� across all the received antennas  

 𝑑𝑖𝑗2 = �𝑦𝑗 − 𝑟𝑖�
2, 1 ≤ 𝑖 ≤ 𝑀;  1 ≤ 𝑗 ≤ 𝐿 (3.29) 

 𝑑𝚤2��� = 𝑚𝑒𝑎𝑛{𝑑𝑖12 ,𝑑𝑖22 , … ,𝑑𝑖𝐿2 } (3.30) 
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Using the set of 𝑀 calculated mean distances, the receiver makes its decision based on 

𝑑𝑚𝑖𝑛 criterion. The possible transmitted signals are selected as a symbol r𝑗 which produces 

the minimum mean distance as 

 {𝑟̂1, … , 𝑟̂𝑀} = arg  min
𝑖=1,…,𝑀

𝑑𝚤2��� (3.31) 

However, the complexity of joint ML detection at the second stage grows exponentially not 

only with the number of users but also with the number of received antennas. Therefore in 

order to maintain the optimum performance of joint ML while reducing its complexity to a 

manageable level, we propose a sphere-based detection that uses the output of the selected 

antenna at the first stage to determine the number of calculations required for the second 

detection stage as follows:  

Lets 𝑟̂𝑖𝑠 ∈ [𝑅] be the estimated composite symbol of the selected antenna obtained from the 

output of the decoder at the first stage.  Now lets �𝑅𝑠𝑢𝑏,𝑠� ∈ [𝑅𝑠] by a sub constellation that 

contains 𝑟̂𝑖𝑠 and all other constellations points directly adjacent to 𝑟̂𝑖𝑠, then at the second 

stage limit the process described at equation’s 24 and 25 to calculate the distance between 

the received composite signal at each antenna and the �𝑅𝑠𝑢𝑏,𝑗� ∈ �𝑅𝑗�;  1 ≤ 𝑗 ≤ 𝐿.  Using the 

detected data from the selected antenna to determine the sphere of detection at the second 

stage and across all remaining receive antennas can greatly reduce the complexity of 

iterative decoding. For example, in the case of regular rectangular MQAM constellation, the 

maximum number of constellation points contained in a sphere is seven. For 4x4 

communication system where users employ QPSK, the number of calculations required for 

SC-CMMA-ID is 277 compared with 1024 for MIMO with ML equalization. This amounts 

to a reduction of 73% in total number of calculations.   



85 
 

3.10 Analysis OF BER and Outage Probability for CMMA  

3.10.1 BER for CMMA  

The average probability of error in an AWGN channel for M-QAM using coherent detection 

can be approximated [29] to 
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where 𝐸𝑎𝑣  is the average signal energy.  For a CMMA scheme with N users forming a 

regular constellation, the  𝐸𝑎𝑣,𝑟𝑒𝑔 can be defined as  

𝐸𝑎𝑣,𝑟𝑒𝑔 = �� (Pr(𝜆𝑖)/𝜆𝑖)𝑑𝜆
∞

𝜇

𝑁

𝑖=1

=
E1�𝜇/𝑁𝜆̅�

𝑁𝜆̅
 (3.33) 

However since the mapping and the resulting 𝑑𝑚𝑖𝑛 of a composite QAM constellation can 

vary greatly according to user’s power correlation. In general, the average signal power 𝐸𝑎𝑣 

for a composite QAM constellation with mapping 𝜋(∙) and minimum distance 𝑑𝑚𝑖𝑛,𝜋 can be 

derived from that a regular QAM constellation with the same rate and a minimum distance 

𝑑𝑚𝑖𝑛,𝑟𝑒𝑔 as: 

𝐸𝑎𝑣 =
E1�𝜇/𝑁𝜆̅�

𝑁𝜆̅
− �

𝑑𝑚𝑖𝑛,𝑟𝑒𝑔

𝑑𝑚𝑖𝑛,𝜋
�
2

 (3.34) 

To show the power gain of CMMA compared with a single user transmission, if the average 

transmits power per user is fixed to P then the minimum distance of the multiuser CMMA 

constellation will be 

sumu dNd min,min, =  (3.35) 

where N is the number of users and sudmin,  is the received constellation’s minimum distance 

for single user case.  It can be proven that for any 2 M -QAM: 
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where equations (3.36) and (3.37) are respectively for even and odd M values.  

 

Figure 3- 7  Minimum distance (Power gain) vs. number of bits per symbol/user for Single user M-QAM and 
Multiuser M-QAM 

 

Figure 3-7 shows the power gain of CMMA constellation over that of a SU when the 

average power per user is fixed to one. CMMA bandwidth efficiency increases with the 

number of users due to combined higher modulation at the expense of a reduction in BER 

performance since the power gain of multiuser modulation is not sufficient to compensate 

for the drop in mind . However, due to the multiuser nature of CMMA, the burden of increase 

in symbol power required to sustain a fixed BER is distributed. Conventionally, due to 

limited mobile power, higher-order modulation is restricted to users with good channel 

located near the BS, while those on the edge of the cell use lower-order modulation. 

However, since dedicated resources are assigned to users irrespective of their location, links 

assigned to users on the cell edge have lower bandwidth efficiency compared with those 

near the BS. With CMMA, several users located at the cell edge with only a modest BER 
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degradation can share one channel and quadruple bandwidth efficiency compared with a 

single user case freeing more channels for new users.  

3.10.2 CMMA outage probability with antenna selection    

The total power required to sustain a specific SNR λ for N users in CMMA can be written 

as: 

∑
=

=
N

i i

i
tot th

GtP
1

2)(
)(  (3.38) 

 As shown in (3.38), 𝑃𝑡𝑜𝑡  has a chi-square distribution with N degrees of freedom, therefore 

the outage probability of a CMMA system with a single receive antenna at threshold λ can 

be written as  
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where 𝛾 denotes the lower incomplete gamma function and Г denotes the Gamma function. 

For L receive antennas with uncorrelated channels, the probability that totP  for all of L 

branches is below λ  is simply the product of individual probabilities of N users with single 

receive antenna. 

L

Lout N
N
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



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
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=
)2/(

)2/,2/(Pr ,,
λγ

λ  (3.40) 

DG is defined as the reduction in total transmit power for a CMMA group with L receive 

antennas compared with single antenna case when both have equal outage probability 

therefore.  
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where 𝜆1,𝜆𝐿 are respectively the SNR of a single and L receive antennas required to produce 

the same outage probability.  In Figure 3-8, we calculated the DG as a function of the outage 

probability. As expected, the DG decreases as the number of users’ increases, since the 

probability that most users experience their strongest channel at the same antenna decrease.  

 
Figure 3- 8 Comparison of  CMMA Selective diversity gain for different number of users 

 
 

3.11 Simulation Results 

This section presents the results of our Monte Carlo simulations using several possible 

CMMA formations constructed according to Table 3.1.  

Table 3.1.  Best possible formation of composite QAM constellations for different number of users (N) 
employing BPSK with different power distribution. The SNR field in the table refers to the total power 
increase required to achieve the same performance as a single user employing BPSK.  
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/Complexity BER  
2 𝑃1 = 𝑃2 𝜃1 = 0,  𝜃2 = 90 2 4 1.1120 0 
3 𝑃1 = 𝑃2 = 𝑃3 𝜃1 = 0,  𝜃2 = 90 

𝜃3 = 60 
3 8 0.5870 5.5 

3 𝑃1 = 𝑃2 = 2𝑃3 𝜃1 = 0,  𝜃2 = 90 
𝜃3 = 45 

3 8 0.8875 2 

4 𝑃1 = 𝑃2 = 𝑃3 = 𝑃4 𝜃1 = 0,  𝜃2 = 90 
𝜃3 = −30,  𝜃4 = 60 

4 16 0.5788 5.7 

4 𝑃1 = 𝑃2 
𝑃3 = 𝑃4 = 4𝑃1  

𝜃1 = 𝜃3 = 0 
𝜃2 = 𝜃4 = 90 

4 16 0.7057 4 

5 𝑃1 = 𝑃2 
𝑃3 = 𝑃4 = 4𝑃1  
𝑃5 = 2𝑃3 

𝜃1 = 𝜃3 = 0 
𝜃2 = 𝜃4 = 90 
𝜃5 = 135 

5 32 0.5217 6.6 

6 𝑃1 = 𝑃2 
𝑃3 = 𝑃4 = 4𝑃1  
𝑃5 = 𝑃6 = 4𝑃3  

𝜃1 = 𝜃3 = 𝜃5 = 0 
𝜃2 = 𝜃4 = 𝜃6 = 90 

6 64 0.4225 8.4 

 

Our model assumes transmission over block Rayleigh fading channel with a channel 

memory of 50 consecutive symbols. For the case of two users, we multiply the channels by 

a colouring matrix to generate arbitrary channel correlation levels. We compared CMMA 

with the conventional SPC where N users send their data over a common channel using SIC 

or joint ML detection. We also compared our scheme with theoretical results for TDMA 

system where every user sends its information during its time slot with a rate equal to the 

sum rate of equivalent CMMA group. We assume perfect CSIT for CMMA and perfect 

CSIR otherwise and we restricted the average power per user in all cases to unity.  
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Figure 3- 9 BER Performance of equal power 2-user CMMA compared with superposition coding with SIC and ML, 
all employing BPSK for correlated (cor=1) and uncorrelated (cor=0) channels. The single user QPSK presents the 

performance of orthogonal MAS with same rate as 2-user CMMA. 
 

Figure 3- 8 presents the simulation results for two BPSK users, which clearly shows that the 

performance of SPC schemes drops considerably with high channel correlation. Even with 

uncorrelated channels, the BER performance drops by 1.6 dB compared with the single user 

case. This degradation worsens for  higher number of users, dropping to 2.6 dB for the case 

of four users compared with a single 16-QAM user (Figure 3- 12) and 3.5dB for six users 

compared with 64-QAM (Figure 3- 10). This happens because not only the intensity of the 

composite constellation fluctuates due to fading but also its structure due to channel 

correlation. As can be seen in Figure 3- 5, CMMA is not affected by channel correlations as 

precoding fixes the constellation structure to that of a regular QAM at any correlation level. 

Another inherent advantage of precoding is the significant gain from power control on the 

expense of a small common feedback that is fixed to one pilot regardless of the number of 

users. By optimizing the available transmit power according to channel variation, a feedback 

gain of 18 dB and 14 dB at BER of 10 4−  is achieved respectively for two and four BSPK 
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users as shown respectively in Figure 3- 9 and Figure 3- 12. In the two BPSK users case and 

due to the orthogonally between users, the BER performance remains unchanged compared 

with a single BPSK user with perfect power control while the bandwidth efficiency doubles.  

 

Figure 3- 10 Comparison of BER performance for CMMA with different number of users employing 
BPSK forming regular QAM constellation 

 
 
CMMA bandwidth efficiency increases with the number of users due to combined higher 

modulation. However, this is achieved at the expense of a reduction in BER performance as 

shown in Figure 3- 9 where performance drops by 6 dB at BER of 10 5−  when the number of 

user increase from 1 to 5 BPSK users since the power gain of multiuser modulation is not 

sufficient to compensate for the drop in mind .  
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Figure 3- 11 Comparison of  BER Performance of 2-User CMMA  with selective diversity and different 

MIMO linear and non-linear precoding schemes,  all using BPSK 

 
Figure 3- 12 Comparison of  BER Performance of 2-users CMMA with selective diversity and different 
MIMO linear and non-liner precoding schemes  all using QPSK . In the case of CMMA, Two irregular 

QPSK with phases of {0o,180o,54o,234o} with equal power and  90o phase rotation. 

In Figure 3- 10 and Figure 3- 11 respectively, we compare the performance of two CMMA 

users using BPSK and QPSK modulation with selective diversity with that of 3 by 2 MIMO 
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scheme over which 2 independent data streams are sent employing MMSE linear precoder 

[76] and max mind  precoder [77] with ML detection and assuming perfect CSI available at 

both transmitter and receiver side. Even with the reduced complexity and feedback overhead 

compared to [24-25], CMMA achieves a 0.9 dB gain over max mind  precoder at BER of 

510− and a 10.5 dB over MMSE linear MIMO precoder for two QPSK users. As expected 

with spatial diversity, the highest DG is achieved from the second receive antenna and the 

addition of more receive antennas leads only to smaller increases. As shown in Figure 3- 10, 

adding a second antenna to two users yield a DG of 4 dB. The DG achieved by adding a 

third antenna only yields an additional 1.5 dB.  

With fully correlated channels ,a maximum DG regardless of the number of users can be 

achieved as shown in Figure 3- 12 where 5dB can be achieved from two receive antennas 

serving four users. However with uncorrelated channels the diversity gain that can be 

achieved becomes dependent on the number of users dropping in the case of two receive 

antennas from 4 dB for two users (Figure 3- 10) to 2.6 dB for six users (Figure 3- 13).  
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Figure 3- 13 BER Performance of 4-user CMMA with Unequal Power with selective diversity in the 

presence of high transmit correlation 
 

 
Figure 3- 14 BER Performance of 6-User CMMA with Unequal Power 
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Figs. 15 and 16 show the BER performance of five and six users, respectively using CMMA 

with selective diversity combining (SC) and iterative decoding (ID). It can be seen that on 

the expense of a small increase in complexity, ID significantly improve the performance of 

CMMA. For example, in the case of 5-user CMMA with two receive antennas, a BER 

performance improvement of 1.2 dB can be achieved with ID over that of SC-CMMA (Fig. 

13). The gain of using ID over just SC-CMMA increase with the number of receives 

antennas. For example; for 6-user CMMA as shown in Fig. 16, ID improves BER over SC-

CMMA by an extra 1.8 dB for three receive antennas and by 3.5 dB for four receive 

antennas. This is expected since as the number of receive antennas increase, the more likely 

that the random composite constellations formed at one or more them are non-ambiguous.  

 
Figure 3- 15 BER performance of 5-user CMMA with unequal power, all CMMA and SPC using BPSK per user 
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Figure 3- 16 BER performance of 6-user CMMA with unequal power, all CMMA and SPC using BPSK per 

user 

3.12 Conclusion   

A novel NOMAS employing collaborative modulation precoding, composite signal design 

and joint ML detection has been proposed. It has been shown that using only a small reverse 

common pilot, users with different channel conditions and rate requirements can share the 

same link without ambiguity achieving high spectral efficiency in every available link as 

well as flexibility on the number of users that can be admitted to the network.  Due to power 

gain CMMA offers substantial increase in capacity with comparable orthogonal MAS 

scheme with TCI. Furthermore unlike SPC, results show that CMMA is resilient to channel 

correlation and the feedback diversity inherent in precoding provide a substantial gain in 

BER performance where up to 17.6 dB gain can be achieved in the case of two BPSK users. 

For a power constraint system, a higher order modulation can be achieved compared with a 

single user without degradation in performance. We also proposed a new a selection 

diversity combining algorithm for CMMA to benefit from spatial diversity without changing 
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sphere decoding is designed to fully exploit the remaining receive antennas, the complexity 

of which is less than comparable MIMO with ML detection. This offers a low overhead 

alternative to uplink multiuser MIMO with diversity gain that increases with transmit 

channel correlation and is able to accommodate more users than the number of receive 

antennas. CMMA has also a wide range of applications. For example, it can be easily 

integrated with other conventional MAS such as OFDMA employed on LTE advance to 

increase the number of users beyond the number of orthogonal channels. It also provides a 

practical solution for schemes that require coherent combining of signals over fading 

channels such as multiple access adder channel and physical network coding. 
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4 Capacity of CMMA and SC-CMMA 

4.1 Introduction  

In this chapter, a thorough study of CMMA capacity using a single receive antenna and 

selection diversity combining will be carried out to find closed form expressions for spectral 

efficiency (capacity per unit of bandwidth) as a function of average received SNR. Next we 

will compare the performance of CMMA with that of Multiuser Diversity which is another 

multiuser adaptive modulation scheme widely used in cellular networks to provide multiple 

access for several users over the same bandwidth while trying to maximise the long term 

total throughput. Finally we will study the effect of channel correlation on the performance 

of CMMA.   

4.2 Capacity of CMMA  

The average symbol power for 2 M -QAM constellation with mapping 𝜋𝑖(∙) and minimum 

distance  𝑑𝑖  is equal whether this Constellation is transmitted from a single user with 

transmit power 𝑃𝑠𝑢  or formed through the superposition of N different signals with total 

power 𝑃𝑡𝑜𝑡 = 𝑁𝑃 = 𝑃𝑠𝑢.  Therefore, a CMMA system with N users whose signals are 

multiplexed to form a predesigned 2 M -QAM constellation with mapping 𝜋𝑖(∙)  and 𝑑𝑖 is 

equivalent to a scheme where a single user with average power P transmits to N receive 

antennas using a 2 M -QAM constellation with mapping 𝜋𝑖(∙) and where N received signals 

are  coherently added before detection .  However since users act independently to precode 

their signals and transmit constantly regardless of relative channel correlation, the 

probability density function (PDF) of the received signal amplitude assuming Raleigh fading  

is simply that of a single user  given by [82] as 

Pr(λ) = 𝑒−𝜆/𝜆𝑥  (4.1) 
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Where λ𝑥 is the average SNR per receive antenna.  

For CMMA, channel inversion using variable power and fixed rate is essential to enable the 

coherent combining of multiple signals from N different users experiencing N independent 

Rayleigh fading channels and to insure that users can fix the amplitude and phase of their 

received signal according with the unique modulation set assigned to that user by the base 

station.  Channel inversion with variable power and fixed rate will convert the fading 

channel model into a time-invariant AWGN channel model therefore the channel capacity ℂ 

follows that of the capacity of an AWGN channel and can be derived from  [36] as : 

ℂ = 𝐵 log2 �1 +
1

∑ ∫ (Pr(𝜆𝑖)/𝜆𝑖)𝑑𝜆𝑖
∞
0

𝑁
𝑖=1

� (4.2) 

 Replacing Pr in (4.2) with its value in (4.1) we find: 

ℂ = 𝐵 log2 �1 +
1

𝑁∫ 𝜆−1𝑒−𝜆/𝜆𝑥𝑑𝜆∞
0

� = 0 (4.3) 

As can be seen from (4.2) and conformed in [3-4].  Channel inversion by itself will yield 

zero capacity due to the fact precoding is done locally and independently at transmitters 

therefore most of the transmitted power will be used to compensate for deep fading. For 

these reasons, a truncated channel inversion is used instead where users only compensate for 

fading above a certain threshold  𝜇 . Any user experiencing fading below 𝜇 will stop 

transmitting.  

To maximise the capacity per user, the optimal cut-off SNR level 𝜇 below which data 

transmission is suspended must satisfy [36] 

� �
1
𝜇 −

1
𝜆�𝑃𝑟𝑠𝑢

(𝜆)𝑑𝜆 = 1
+∞

𝜇

 (4.4) 

Where 𝑃𝑟𝑠𝑢(𝜆) is the probability density function (PDF) of the received signal amplitude for 

a single user under flat fading and is given in (4.1) . 
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It has been proven in [38] that there is a unique value for 𝜇 that satisfies (4.4) and 𝜇 always 

lies in the interval [0, 1] and 𝜇
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯�  1 𝑎𝑠 𝜆𝑥

𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯�∞.  

The capacity of a communication system with truncated channel inversion is given in [38] 

as:  

ℂ = 𝐵 log2 �1 +
1

∫ (Pr(𝜆)/𝜆)𝑑𝜆∞
𝜇

� (1 − 𝑃𝑟𝑜𝑢𝑡) (4.5) 

Where 𝑃𝑟𝑜𝑢𝑡  is the probability of outage defined as the probability equal to the probability 

that received SNR falls below 𝜇  or in other words 𝑃𝑟𝑜𝑢𝑡  is the probability of no 

transmission. Since precoding is performed locally at each user, the value of 𝜇 is chosen to 

satisfy (4.4) in order to maximise the capacity per user. This will insure that users transmit 

most of time to provide fairness and minimize delay. Hence the capacity of a CMMA 

scheme with N users at any one time is that of a CMMA system with N-N1 where N1 is the 

number of users whose channels falls below 𝜇 at time t.  

Therefore the capacity of CMMA with N users under truncated channel inversion  can be 

derived from (4.5)  and defined as :   

ℂ = �
𝑁!

(𝑁 − 𝑖)! 𝑖!ℂ𝑖(1 − 𝑃𝑟𝑜𝑢𝑡)𝑖
𝑁

𝑖=1

𝑃𝑟𝑜𝑢𝑡𝑁−𝑖) (4.6) 

Where ℂ𝑖 is the capacity of a CMMA system with i users and where all channels of all of the 

constituent users stay above 𝜇 therefore  

ℂ𝑖 = 𝐵 log2 �1 +
1

∫ (Pr(𝜆)/𝑖𝜆)𝑑𝜆∞
𝜇

� (4.7) 

Replacing Pr in (4.7) with its value in (4.1) we find: 

ℂ𝑖 = 𝐵 log2 �1 +
𝑖

∫  𝜆−1𝑒−𝜆 𝜆𝑥⁄ 𝑑𝜆∞
𝜇

� (4.8) 

This is the exponential integral of first-order function E1(𝑥)  as defined in [84]: 
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𝐸1(𝑥) = � 𝑥−1𝑒−𝑥𝑑𝑥
∞

1

 

Lets  

(4.9) 

𝑥 = 𝜆 𝜆𝑥⁄  then 𝑑𝑥 = 𝑑𝜆/𝜆𝑥 (4.10) 

Therefore replacing the value of (4.9) in (4.10) and changing the values of integration we 

find: 

ℂ𝑖 = 𝐵 log2 �1 +
𝜆𝑥𝑖

E1(𝜇/𝜆𝑥)� (4.11) 

𝑃𝑟𝑜𝑢𝑡 is the probability that a single user experience fading above a certain level 𝜇 and 

defined as  

𝑃𝑟𝑜𝑢𝑡 ,𝑠𝑢 = 1 −� Prsu(𝜆)𝑑𝜆
∞

𝜇

 (4.12) 

Replacing Pr in (4.12) with (4.1) and integrating we find: 

Prout,su = 1 −�
1
λx

e−
λ
λxdλ

∞

µ

= 1 −  e
−µ
λx  (4.13) 

Fig. 4.1 shows the theoretical spectral efficiency as a function of average received SNR, 𝜆𝑥  

for a CMMA system with truncated channel inversion for different number of users. These 

curves are obtained in MATLAB using the closed form expressions, (4.6), (4.11), (4.13).   

The capacity of CMMA increases with the number of users due to the power gain. However, 

due to the reduction in minimum distance of the composite receive constellation, this 

increase is not linear and the rate of increase drops when the number of users is increased. 

For example as can be seen in Fig.4.1 the capacity at SNR=25 dB increases from 7 

bits/sec/Hz for two users to 9 for eight users.  This is expected as at the absence of any 

diversity gain, the power gain brought by the new users is accompanied by increased 

interuser interference.  
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Figure 4-1 Capacity of CMMA with single receive antenna 

4.3 CMMA Vs Multiuser Diversity (MUD) 

 In this section, we will compare the performance of CMMA with that of a well-known and 

widely implemented technique referred to as multiuser diversity (MUD) . Both CMMA and 

MUD aim to provide multiple accesses for several users over the same bandwidth while 

trying to maximise the long term total throughput (sum capacity) by exploiting the fading 

nature of the channel and feedback from the receiver to transmitter. However MUD 

achieves these goals by using a packet scheduler at the medium-access control (MAC) layer 

at the BS which always allocates the common radio resource to the user that has the best 

channel quality. In a system with large number of users, each experiencing independent 

fading, there is high probability that at least one user will have a very good channel at any 

one time. MUD therefore is equivalent to a system where single user transmits to N receive 

antenna and where selection combining is used to achieve diversity. However the challenge 

for implementing MUD is to exploit virtual diversity gain while sharing the benefits fairly 

and without excessive delay among users with asymmetric channel statistics. This is 
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addressed by using a proportional fair scheduler [85] where users are served when they are 

near their peak within a fixed latency time-scale. Another important challenge for MUD is 

the rate of change in channel condition, the faster the channel changes, the lower the delay 

among users and the higher the possibility that users experience good channels. If the 

fluctuation in the channel is slow, more fluctuations can be induced artificially using 

opportunistic beamforming by employing dumb antennas which randomly sweep out a 

beam and opportunistically send data to the user closest to the beam. Dumb antenna can 

approach the performance of true beamforming when the number of users is large, but with 

much less feedback and channel measurements [86]. 

The capacity of a single input single output system using multiuser diversity and adaptive 

and adaptive transmission with variable rate and power is given in [83] by : 

ℂ𝑠𝑖𝑠𝑜𝑀𝐷 = 𝐵 log2(𝑒) �(−1)𝑘 �𝑁 − 1
𝑘 �

𝐸1 �(1 + 𝑘) 𝜇𝑀𝐷𝜆𝑥
�

1 + 𝑘

𝑁−1

𝑘=0

  (4.14) 

Where 𝐸1(𝑥) is the exponential integral function and 𝜇𝑀𝐷  is the optimal SNR cut-off value 

below which data transmission is suspended and is calculated using the approximation given 

in [83] as :  

𝜇𝑀𝐷 = 𝑁
∑ (−1)𝑘 �𝑁 − 1

𝑘 � 1
1 + 𝑘

𝑁−1
𝑘=0

1 + 𝑁
𝜆𝑥
∑ (−1)𝑘+1 �𝑁 − 1

𝑘 � [log(1 + 𝑘) + 𝐸]𝑁−1
𝑘=0

 (4.15) 

in which E is the Euler constant (E=0.577215665) 

Fig. 4- 2 shows the theoretical spectral efficiency (capacity per unit of bandwidth) as a 

function of average received SNR, 𝜆𝑥  for both a CMMA system with truncated channel 

inversion and multiuser diversity system with adaptive modulation using water filling with 

variable power and rate. These curves are obtained in MATLAB using the closed form 

expressions, (4.6), (4.11), (4.13) for CMMA and (4.14) and the approximation in (4.15) for 

MUD. As can be seen in Fig .4.2, the capacity of CMMA is higher than that of MUD in low 
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to medium SNR while MUD achieves higher capacity at high SNR. However, the difference 

in performance between the two schemes in high SNR decreases as the number of users 

increase and CMMA becomes superior to MUD. This is because the capacity of MUD is 

equivalent to that of a selection diversity combining [83] where only diversity gain is 

exploited while that of CMMA has power gain but no diversity gain. The increase in 

diversity gain for MUD tends to diminish as the number of users increase while the power 

gain in CMMA remains constant. 

 

Figure 4- 2 Capacity of CMMA Vs. MUD 
CMMA is superior to MUD in terms of feedback, fairness, and delay (especially when the 

number of users is large) since all users transmit at any time as long as their channel is 

above the cut-off SNR μ.  In addition, for MUD , the BS  needs to have partial or full CSI 

about all users in order for the scheduler to choose the one with best channel and select the 

user with the best channel. The receiver in CMMA does not require any CSI at the receiver 

and only a small common pilot feedback is required. Finally like other types of diversity 

MUD is sensitive to channel correlation among users’ channels as the diversity gain 
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diminish with higher channel correlation, whereas CMMA is unaffected by channel 

correlation.  

4.4 CMMA capacity with antenna selection  

In this section we will calculate the capacity of a CMMA system with selective diversity 

combining assuming that there are L receive antenna and the BS will select the antenna S 

that requires the least total transmit power over all. 

The instantaneous total transmit power for a group of N CMMA users required to maintain a 

fixed receive SNR 𝜆𝑥  per user is defined as : 

𝑃𝑡𝑜𝑡(𝑡) = �
𝜆𝑥
𝜆𝑖(𝑡)

𝑁

𝑖=1

  ,𝑤ℎ𝑒𝑟𝑒 𝜆𝑖(𝑡) =
|ℎ𝑖(𝑡)|2

𝑁𝑜
 (4.16) 

𝜆𝑖 has an exponential distribution with 𝜆𝑥 mean, it follows that since 𝑃𝑡𝑜𝑡  is the sum of N 

exponential variables, its probability distribution function will follow that of Erlang 

distribution given by :   

Pr(λ) =
𝜆𝑁−1𝑒−𝜆/𝜆𝑥

𝜆𝑥𝑁(𝑁 − 1)! 
(4.17) 

The probability of outage for a CMMA system of N users and a single receive antenna  is 

defined as : 

𝑃𝑟𝑜𝑢𝑡,𝐶𝑀𝑀𝐴 = 1 −� PrCMMA(𝜆)𝑑𝜆
∞

𝜆

 (4.18) 

Substituting (4.17) into (4.18) and integrating we find : 

𝑃𝑟𝑜𝑢𝑡,𝐶𝑀𝑀𝐴 = �
𝑡𝑁−1𝑒−𝑡/𝜆𝑥

𝜆𝑥𝑁Γ(𝑁) 𝑑𝑡 =
𝛾(𝑁, 𝜆/𝜆𝑥)
Γ(𝑁)

𝜆

0

 (4.19) 

Where 𝛾 denotes the lower incomplete gamma function. For L receive antennae with 

uncorrelated channels, the probability of outage for all L branches that falls below a  certain 
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threshold λ  is simply the product of individual probabilities of N users with single receive 

antenna. 

𝑃𝑟𝑜𝑢𝑡𝑆𝑒𝑙 =  � 𝑃𝑟𝑜𝑢𝑡,𝐶𝑀𝑀𝐴�
𝐿
 (4.20) 

𝑃𝑟𝑜𝑢𝑡𝑆𝑒𝑙  also represents the PDF of the output SNR as a function of the threshold s. The 

probability density function is therefore 

𝑃𝑟𝑆𝑒𝑙 =
𝑑𝑃𝑟𝑜𝑢𝑡𝑆𝑒𝑙(𝜆)

𝑑𝜆  (4.21) 

Substituting (4.20 ) into (4.21) and deriving we find : 

𝑃𝑟𝑆𝑒𝑙 =
𝐿
𝜆𝑥

 [Γ(𝑁)]−𝐿 �
𝜆
𝜆𝑥
�
𝑁−1

𝑒−
𝜆
𝜆𝑥  [𝛾(𝑁, 𝜆/𝜆𝑥)]𝐿−1 (4.22) 

 The average total transmit power required to sustain a fixed SNR 𝜆𝑥 is given by : 

 𝑃𝑡𝑜𝑡𝑎𝑙������� = �
1
𝜆 Pr (𝜆)

∞

0

  𝑑𝜆 (4.23) 

For a single receive antenna and replacing Pr in (4.23) with its value in (4.17) we find: 

 𝑃𝑡𝑜𝑡𝑙=1������ =
∫ 𝜆𝑁−2𝑒−𝜆/𝜆𝑥𝑑𝜆∞
0
𝜆𝑥𝑁(𝑁 − 1)!  

(4.24) 

Gamma function Γ(𝑁)  is defined as [84] as : 

Γ(𝑁) = (𝑁 − 1)! = � 𝑥𝑁−1𝑒−𝑥𝑑𝑥
∞

0

 (4.25) 

Therefore replacing the value of (4.24) with (4.25) we find : 

𝑃𝑡𝑜𝑡𝑙=1������ =
Γ(𝑁 − 1)
𝜆𝑥𝑁Γ(𝑁)  (4.26) 

 

Finally from [84]  

Γ(𝑁) = (𝑁 − 1)Γ(𝑁− 1) (4.27) 

It follows that the average total transmit power for a single receive antenna is :  

𝑃𝑡𝑜𝑡𝑙=1������ = 1/(𝑁 − 1)𝜆𝑥 (4.28) 
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The average total transmit power required to maintain the same average received power 

𝜆𝑥will decrease as the number of receive antenna increase.  In other words, using the same 

transmit power a higher average received SNR can be maintained as the number of receive 

antennas increase achieving higher capacity. 

It is not possible to find a closed-form expression for total transmit power for any N number 

of user with any L receive antennas therefore we will derive a close form expression for any 

N when L=2,3. 

4.4.1 Capacity of CMMA with two receive antennas 

For L=2  , Lets x= 𝜆/𝜆𝑥 then  substituting  𝑃𝑡𝑜𝑡𝑙=2������ with its value from (4.22) and (4.23) we find 

: 

𝑃𝑡𝑜𝑡𝑙=2������ =
2
𝜆𝑥

 [Γ(𝑁)]−2 �(𝑥)𝑁−2𝑒−𝑥  𝛾(𝑁, 𝑥)𝑑𝑥
∞

0

 (4.29) 

From [84] 𝛾(𝑛, 𝑥)  and 𝑑𝛾(𝑛, 𝑥) can be written as: 

𝛾(𝑛, 𝑥) = (𝑛 − 1)𝛾(𝑛 − 1, 𝑥)− (𝑥)𝑛−1𝑒−𝑥 (4.30) 

𝑑𝛾(𝑁,𝑥)
𝑑𝑥 = (𝑥)𝑁−1𝑒−𝑥 (4.31) 

Then substituting (4.30) and (4.31) into (4.29) and integrating  

𝑃𝑡𝑜𝑡𝑙=2������ =
2
𝜆𝑥

 [Γ(𝑁)]−2 � � (𝑁 − 1)𝛾(𝑁 − 1, 𝑥)𝑑𝛾(𝑁 − 1,𝑥)

Γ(𝑁−1)

0

− � 2𝑥2𝑁−3𝑒−2𝑥  𝑑𝑥
∞

0

� 

(4.32) 

� 𝑥𝑛−1𝑒−𝑎𝑥𝑑𝑥
∞

0

=
Γ(𝑛 + 1)
𝑎𝑛+1  (4.33) 

Then substituting (4.32) into (4.33) and integrating  
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𝑃𝑡𝑜𝑡𝑙=2������ =
2
𝜆𝑥

 [Γ(𝑁)]−2 �
(N − 1)Γ(𝑁)2

2 −
Γ(2𝑁 − 2)

(𝑁 − 1)22𝑛−2� (4.34) 

4.4.2 Capacity of CMMA with three receive antennas 

Now For L=3  

Substituting  𝑃𝑡𝑜𝑡𝑙=3������ with its value from (4.22) and (4.23) we find : 

𝑃𝑡𝑜𝑡𝑙=3������ =
3
𝜆𝑥

 [Γ(𝑁)]−3 �(𝑥)𝑁−2𝑒−𝑥  [𝛾(𝑁,𝑥)]2𝑑𝑥
∞

0

 (4.35) 

Then performing integration by parts yields 

𝑃𝑡𝑜𝑡𝑙=3������ =
3
𝜆𝑥

 [Γ(𝑁)]−3 �[𝛾(𝑁,𝑥)2𝛾(𝑁 − 1,𝑥)]0∞ − � 2𝛾(𝑁,𝑥)(𝑥)𝑁−1𝑒−𝑥 𝛾(𝑁 − 1, 𝑥)𝑑𝑥
∞

0

� (4.36) 

Substituting (4.30) into (4.36) and performing integration by parts  

𝑃𝑡𝑜𝑡𝑙=3������ =
3
𝜆𝑥

 [Γ(𝑁)]−3 �Γ(𝑁)2Γ(𝑁 − 1)− �
2𝛾(𝑁, 𝑥)2 𝑑𝛾

(𝑁 − 1)

Γ(𝑁)

0

− �
2𝛾(𝑁, 𝑥)(𝑥)2(𝑁−1)𝑒−2𝑥  𝑑𝑥

(𝑁 − 1)

∞

0

� 

(4.37) 

𝑃𝑡𝑜𝑡𝑙=3������ =
3
𝜆𝑥

 [Γ(𝑁)]−3 �
Γ(𝑁)3

(𝑁 − 1)−
2Γ(𝑁)3

3(𝑁 − 1)−�
2𝛾(𝑁,𝑥)(𝑥)2(𝑁−1)𝑒−2𝑥  𝑑𝑥

(𝑁 − 1)

∞

0

� 
(4.38) 

 

From [84] 𝛾(𝑛, 𝑥) can be written as : 

𝛾(𝑁, 𝑥) = Γ(𝑁) �1 − 𝑒−𝑥  �
𝑥𝑘

𝑘!

𝑁−1

𝑘=0

� (4.39) 

Substituting (4.39)into (4.38) and performing integration by parts  
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𝑃𝑡𝑜𝑡𝑙=3������ =
3
𝜆𝑥

 [Γ(𝑁)]−3 �
Γ(𝑁)3

3(𝑁 − 1)−�
2Γ(𝑁)(𝑥)2(𝑁−1)𝑒−2𝑥  𝑑𝑥

(𝑁 − 1)

∞

0

+
2Γ(𝑁)

(𝑁 − 1)� 𝑒−3𝑥  �
𝑥2𝑁−2+𝑘𝑑𝑥

𝑘!

𝑁−1

𝑘=0

∞

0

� 

(4.40) 

 

Substituting (4.33) into (4.40) and integrating we find : 

𝑃𝑡𝑜𝑡𝑙=3������ =
3
𝜆𝑥

 [Γ(𝑁)]−3 �
Γ(𝑁)3

3(𝑁 − 1)−
2Γ(𝑁)Γ(2𝑁 − 1)

(𝑁 − 1)22𝑛−1

+
2Γ(𝑁)

(𝑁 − 1)�
Γ(2𝑁 − 1 + 𝑘)
𝑘! 32𝑛−1+𝑘

𝑁−1

𝑘=0

� 

(4.41) 

4.4.3 Results and Discussion  

Fig. 4- 3 shows the theoretical spectral efficiency as a function of average received SNR 𝜆𝑥,  

for a CMMA system with selection diversity for different number of users and when up to 

three antennas are available at the receiver. These curves are obtained in MATLAB using 

the closed form expressions, (4.6), (4.34), (4.41).  The probability of outage in CMMA 

follows that of a Poisson distribution also known as the law of small numbers.  It defines 

the probability distribution of an event that happens rarely but has very many opportunities 

to happen. Therefore as the number of users in a CMMA group increases the difference in 

SNR between receive antennas tend to diminish;  Therefore for a large number of users, a 

higher number of receive antennas is required to achieve the same improvement in capacity 

as will be the case with lower number of users and smaller number of receive antennas. For 

example for N=L=2  the capacity an improvement of capacity of up to 3 dB is obtained; 

while three receive antennas are required to achieve this improvement … the same 

improvement for a group of three users.   
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Figure 4- 3 Capacity of CMMA with selection diversity combining 

4.5 Correlation effect on CMMA capacity  

In this section we will analyse the effect of channel correlation on the capacity of CMMA 

by calculating the closed form expression for the CMMA capacity under fully correlated 

channels and comparing it with the capacity when all channels are uncorrelated, this will 

provide the lower and upper bound of CMMA capacity in regard to channel correlation.  

4.5.1 Capacity of CMMA with fully correlated channels:  

Let first consider the case for a group of N users each  equipped with a single receive 

antenna assuming fully correlated channels among the users and the BS. When the channels 

are fully correlated they will all have the same envelopes or amplitude i.e. |ℎ𝑖| =

|ℎ|,𝑤ℎ𝑒𝑟𝑒 𝑖 = {1, . .𝑁}. Therefore CMMA in this case can be remodelled as a single-input 

single-output (SISO) system where a single user equipped with a single antenna is 

transmitting using a 2 M -QAM constellation with mapping 𝜋𝑖(∙) and minimum distance  𝑑𝑖   
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identical to  that of the composite constellation formed from the superposition of the N users 

and with power equal to the total power of all users. The closed form expression of capacity 

of CMMA with fully correlated channel can be derived from that of a SISO system using 

truncated channel inversion with fixed rate and variable power is given in [37] as : 

ℂ𝐶𝑀𝑀𝐴𝑐𝑜𝑟=1 = 𝐵 log2 �1 +
𝑁𝜆𝑥

𝐸1(𝜇/𝜆𝑥)� 𝑒
−𝜇 𝜆𝑥⁄  (4.42) 

 

Figure 4- 4 Capacity of CMMA with uncorrelated and fully correlated channels 

Fig. 4- 4 shows the theoretical spectral efficiency as a function of average received SNR 𝜆𝑥 

for a CMMA system with uncorrelated and fully correlated  Rayleigh fading channels. 

These curves are obtained in MATLAB using the closed form expressions, (4.6) and (4.42).   

It is clear that correlation does not have any effect on the capacity of CMMA with a single 

receive antenna. This result is expected since precoding is locally performed at transmitters 

acting independently of each other.  
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4.5.2 Capacity of SC-CMMA under full transmit correlation 

Consider the case for a CMMA group of N users each  equipped with a single receive 

antennas and a BS equipped with L receive antennas using selective diversity combining.  

We assume full correlation at the transmitters but the receive antennas to be uncorrelated. In 

other words, all the channels between users and any receive antenna will have the same 

envelope  but the channels between any user and L receive antenna will vary independently. 

This models an environment where users are close together with poor scattering in their 

immediate proximity while the receive antennas are sufficiently spaced and users’ signals 

experience a rich scattering environment before they are received at the BS. CMMA with 

selective combining can be in this case remodelled to a single user using a 2 M -QAM 

constellation with mapping 𝜋𝑖(∙) and minimum distance  𝑑𝑖   identical to that of the 

composite constellation formed from the superposition of the N users and with power equal 

to the total power of all users transmitting using truncated channel inversion with cut-off 

frequency N 𝜇𝑀𝐷 to a multi antenna receiver with selective combining , where𝜇𝑀𝐷 is the 

optimum cut-off SNR for a single user with L receive antennas calculated using the 

approximation in (4.15).  The closed form expression of sum capacity in this scenario will 

follow that of  a MISO system using truncated channel inversion with fixed rate and 

variable power  at transmitters and selective combining  at the receiver and can be derived 

from  [37] as : 

ℂ𝐶𝑀𝑀𝐴,𝑆𝑒𝑙
𝑐𝑜𝑟=1 = 𝐵 log2 �1 +

𝑁𝜆𝑥

𝐿 ∑ (−1)𝑘 �𝐿 − 1
𝑘 �𝐸1 �

(1 + 𝑘)𝜇𝑀𝐷
𝜆𝑥

�𝐿−1
𝑘=0

� (1 − 𝑃𝑟𝑜𝑢𝑡,𝑠𝑒𝑙) (4.43) 

Where 𝑃𝑟𝑜𝑢𝑡,𝑠𝑒𝑙  is given in [37] as :  

𝑃𝑟𝑜𝑢𝑡,𝑠𝑒𝑙 = 1 −�(−1)𝑘 �𝐿 − 1
𝑘 �

𝐿𝑒−(1+𝑘)𝜇𝑀𝐷/𝜆𝑥

1 + 𝑘

𝐿−1

𝑘=0

 (4.44) 
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Figure 4- 5 Capacity of CMMA with selective diversity under full transmit correlation 

Fig. 4- 5 shows the theoretical sum capacity per unit of bandwidth as a function of average 

received SNR (𝜆𝑥) for a SC-CMMA with two receive antennas under full transmit 

correlation.  These curves are obtained in MATLAB using the closed form expressions 

(4.43) and (4.44).  It is clear that the capacity increases with transmit correlation for 

example at an average SNR of 30 dB the sum capacity increase from 8.3 bits/sec/Hz to  9.3 

when the channels are uncorrelated but with full transmit correlation the capacity increase 

further to 10.5 . It is also interesting that unlike the uncorrelated channel case, the diversity 

gain with full transmit correlation becomes independent of the number of CMMA users, as 

can be seen from Fig. 4.5 the increase in rate at 30 dB for a group of 16 CMMA users with 

two receive antennas drops to just 0.2 bits/sec/Hz when the channels are uncorrelated. 

However the increase remains constant at 2.2 bits/sec/Hz with full transmit correlation 

compared with the two users case.  This is expected with transmit correlation since all users 

will experience their strongest channels at exactly the same receive antennas therefore 

achieving a diversity order equal to the number of receive antennas. 
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4.5.3 Capacity of SC-CMMA under full transmits and receives correlation 

With full transmit and receive correlation, all channels between users and across receive 

antennas will have the same envelope. As a result the instantaneous total receive SNR at all 

receive antennas will be the same. This reduces the achievable diversity gain to null. 

However due to full channel correlation, the identical composite constellations will be 

formed at all receive antennas. Therefore it is possible to coherently combine all the 

received signals from L receive antennas to take advantage of the antenna gain (Power gain) 

as can be seen from Fig. 4-6. 

 
Figure 4- 6 Capacity of 2-User CMMA under different transmit and correlation scenarios 

 

4.6 Conclusion  

In this chapter, a thorough study of CMMA capacity using single receive antenna and 

selection diversity combining has been carried out. Closed form expressions for spectral 

efficiency (capacity per unit of bandwidth) as a function of average received SNR were 
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found and the performance of CMMA was compared with that of  equivalent  system using 

TDMA with multiuser diversity (MUD).   

It was shown that the capacity of CMMA increases with the number of users but so does the 

multiuser interference between them which leads to only non-linear logarithmic increase in 

capacity.  The capacity of CMMA is not affected by channel correlation since users precode 

their signals independently.  However, although very small latency and overheads  can be 

achieved by independent precoding, this comes at the expense of not utilising the inherent 

multiuser diversity gain when users’ channels are uncorrelated; therefore MUD can offer 

higher capacity than CMMA on the expense of latency and  scheduling overheads. However 

when the number of users increases, the power gain due to superposition increases linearly 

while additional improvement in diversity gain tend to diminish. Hence the increase in 

power gain will be more significant therefore the difference in capacity between MUD and 

CMMA tends to become smaller. 

Assuming uncorrelated channels between users, the increase in CMMA capacity due to 

selection combining for a  fixed number of receive antennas tends to drop as the number of 

users increase.  Therefore a higher number of receive antennas is required to achieve the 

same improvement in capacity.  However the capacity of CMMA with selection combining 

improves remarkably with correlation and becomes independent of the number of users ; as 

with correlation more users tend to experience their strongest channel at the same receive 

antenna  hence achieving full diversity order.  
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5 Improved CMMA using Opportunistic Scheduling and 

Collaborative Coding  

5.1 Introduction     

This chapter is divided into two main parts.  In the first part of the chapter, a new scheme is 

proposed to combine CMMA with a low complexity opportunistic scheduling algorithm to 

exploit the multiuser diversity gain inherent due to the independence of users’ channel. The 

second part of this chapter introduces a new scheme combining both collaborative coding 

and modulation referred to as hybrid CMMA (H-CMMA).     

5.2 CMMA with Opportunistic Scheduling (CMMA-OS) 

5.2.1 Motivation  

In CMMA, the composite constellation is designed centrally at the BS which assigns users 

with static unique modulation sets that remain constant regardless of the instantaneous 

channel conditions by employing local precoding at transmitters using only CSI between 

individual users and the BS. This static assignment of unique modulation sets and local 

independent precoding was chosen to remove ambiguity and allow simultaneous multiple 

accesses with the minimum possible feedback and without CSI at the receiver. However 

this simplicity in design and implementation of CMMA comes at the expense of 

underutilization of the inherent multiuser diversity that arises from the independence of 

channels between users and the BS. It naturally follows that a dynamic assignment of 

modulation sets and code rates to users according to their instantaneous channel conditions 

and instantaneous correlation among their channels will result not only in the power gain 

achieved by conventional CMMA but also in  diversity gain. However, this dynamic 

resource allocation using opportunistic scheduling requires both CSI at the transmitters (for 
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precoding and channels) and at the receivers (for scheduling). Moreover, updating the 

mapping of the composite receive constellation in accordance with real-time CSI adds a 

significant complexity burden on the BS and requires updating  of user’s individual 

modulation sets through a feedback channel from the BS to individual users. This will 

translate into much higher overhead and require a sizable portion of the channel coherent 

time to be used for feedback reducing the time available for data transmission. To overcome 

the above-mentioned problems, in this section we will introduce a new opportunistic 

scheduling scheme for CMMA which achieves both power and diversity gain with low 

feedback using only partial CSI at the receiver.  

5.2.2 System Model  

5.2.2.1 Composite constellation design  

To avoid the complexity and excessive feedback associated with the dynamic real-time 

update of the composite constellation mapping and the consequential requirement to 

feedback users individually with their new unique modulation sets. The BS will design the 

composite constellation at the beginning of the data session and this constellation and its 

constituent unique modulation sets will remain unchanged for the rest of data session. 

However, unlike conventional CMMA, the BS will take into account the multiuser diversity 

gain due to the independence of users’ channels. Furthermore, although the resulting unique 

modulation sets will remain constant and will only be fedback to users once at the start of 

their data session. These modulation sets will no longer be associated with specific users as 

in conventional CMMA but with the user with a specific diversity order at every frame.  

To illustrate how CMMA with opportunistic scheduling works, let’s consider a group of N 

users with fully uncorrelated channels and an average received SNR per user of 𝜆𝑥.  If we 

sort users according to their instantaneous channel gain into a new equivalent group of N 
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virtual users where user one in the new group represents the user with the strongest channel 

at any one time and user N represents the user with the weakest channel at any one time, 

then the probability density function of user 𝑖 ∈ {1,⋯ ,𝑁}  is  

𝑃𝑟𝑖(𝜆) =  
𝑁
𝜆𝑥

� (−1)𝑘 �𝑁 − 1
𝑘 � 𝑒−(1+𝑘)𝜆/𝜆𝑥

𝑁−1

𝑘=𝑖−1

 (5.1) 

And the average received SNR for user i is: 

 λ𝚤��� = � λPri(λ)dλ
∞

0

= �
 λx
k

N

k=i

 (5.2) 

In other words, the problem now is finding the optimum composite constellation for N users 

with average power � 𝜆1����,  𝜆2����,⋯ ,  𝜆𝑁���� �. This can be achieved through a Monte Carlo search to 

find the optimum modulation sets and phase offsets for the new virtual N users that form a 

non-ambiguous composite constellation with the highest possible minimum distance and/or 

highest possible sum rate for a specific required BER.   

The variation in the average received SNRs in the new group makes it easier to design a 

composite QAM constellation with regular mapping thus achieving higher minimum 

distance. In addition, assigning users with unique modulation sets according to their 

instantaneous CSI rather than their long term average reduces the user’s probability of 

outage as when the users experience a weak channel, the corresponding unique modulation 

set has low average amplitude thus it no longer requires wasting a large proportion of the 

transmit power to compensate for deep fading.    

Once the composite constellation has been designed, its constituent unique modulation sets 

are sent to all users before the data session starts. Although the N unique constellation sets 

used to construct the composite received constellation remains constant throughout the 

session and regardless of instantaneous channel conditions, they are no longer associated 
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with specific users like conventional CMMA but with diversity order.  In other words, at the 

start of each frame the user with the strongest channel always gets issued the unique 

modulation set containing 2𝑘1 constellation points with mapping  𝜋1(∙), the second strongest 

user will be issued unique modulation set containing 2𝑘2 constellation points with mapping 

𝜋2(∙) and so on. 

5.2.2.2 Scheduling using opportunistic feedback  

In this section, we will introduce a novel mechanism to minimize the feedback required for 

opportunistic scheduling in CMMA by taking advantage of collusion-free and distributed 

nature of CMMA. First, we will present an overview of opportunistic scheduling in the first 

half of this section before moving to introduce our opportunistic feedback approach for 

CMMA-OS.   

5.2.2.2.1 Related work  

Excessive feedback, especially when the number of users is large, can outweigh any 

benefits derived from opportunistic scheduling [93], therefore the issue of reducing the 

amount of required feedback has been an active area of research. In [93], a simple threshold 

based scheme restricts feedback only to users whose channel gain is above a predefined 

threshold. This approach significantly reduces the amount of required feedback at the 

expense of a small reduction in the overall maximum throughput.  

The assumption in [93] is that resources used to feedback CSI are not shared among users. 

However, this is not the case for most practical systems where feedback is usually done in a 

TDMA manner thus the feedback period increases linearly with the number of users.  

To address this issue, opportunistic splitting was proposed in [94] where each data 

transmission is preceded by a number of mini slots, which the BS uses to obtain the current 

CSI of users in a distributed manner. Once the user with strongest channel is identified, data 
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transmission begins. Initially, a number of thresholds depending on the number of users are 

set and each threshold is assigned to one mini slot. At the start of the first mini slot, every 

user with current channel gain between the pair of thresholds transmits to the BS. The BS 

then broadcasts to all the users whether no user transmitted, exactly one user transmitted, or 

a collision occurred. Depending on the broadcast message received, each user modifies its 

threshold according to a binary search like algorithm and users whose channel gain is 

between the new thresholds transmit in the next mini slot. This process continues until 

collision is eliminated, therefore the number of mini slots before a transmission vary. It was 

shown that an average of only 2.5 mini slots are required for the algorithm to find the user 

with the strongest channel. This is significant reduction compared to the linear number of 

slots required for a centralized feedback scheme. 

However, opportunistic splitting requires two way feedback which may constitute a high 

overhead, especially with the channel coherent time is small or/and the number of users are 

large. To overcome this coordination problem, a random access based feedback protocol 

called static splitting was proposed in [91][92], where only users transmit to the BS during 

the feedback stage. Here, each data transmission is preceded by a fixed number of mini 

slots. In each mini slot, users with instantaneous channel gain above a predefined threshold 

transmit with some probability. When no collision occurs the identified user is selected, 

otherwise one user is selected at random. As expected, opportunistic splitting outperforms 

static splitting. However, it requires a higher feedback especially when the number of users 

is large. 

5.2.2.2.2 Opportunistic feedback algorithms for CMMA   

As in conventional CMMA, the BS will broadcast a common pilot at the start of each frame 

to enable users to track their CSI and perform precoding. However, in this case, users need 

to know the relative strength of their channel compared to other users in order to choose 
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which one out of N unique modulation sets they ought to use. To achieve this, we will divide 

each frame into two periods: a scheduling-period (SP) followed by a data transmission 

period (TP). Before the scheduling-period (SP) and at the start of every frame, the BS 

broadcasts a common pilot to all users, so users can use it to locally synchronize their 

transmission and  estimate their channel gain (due to reciprocity property of a wireless 

channel). The probability density function (pdf) of the channel-gain is divided into regions 

with identical probability measure defined by a set of thresholds 𝜆𝑖 , i = 1,...,N such that 𝜆1 

≥𝜆2 ≥ ... 𝜆𝑁, where N is the total number of unique modulation sets. These regions and their 

associated thresholds can be computed locally at the users in a distributed manner using CSI 

obtained from the common pilot. If the channel gain |ℎ𝑖| of user i satisfies 𝜆𝑖  ≤|ℎ𝑖| < 𝜆𝑖−1, 

then the user will quantize its channel gain and send a message i out of N possible messages 

to the BS during the scheduling period using  the modulation set assigned to that user in the 

previous frame. Employing collaborative precoding to send the quantized channel gain 

messages in the scheduling period will reduce the time required for feedback as all users 

will send their quantized channel gains simultaneously. Furthermore, if two users happen to 

transmit the same quantized message (i.e. their channel gains are in the same region), then 

their feedback messages will not collide, since each user uses a unique modulation set. That 

is contrary to the commonly used approach of Opportunistic Feedback (OF) in [95] [96], 

where the SP is divided into a number of time slots and the pdf of the channel gain is 

quantized into one of these slots. The BS will then simply arrange users in the order of their 

channel gains and choose one out of N! ordering-combinations to feedback to users.  

However, as the number of ordering-combinations increases significantly with the number 

of users, the amount of feedback required becomes prohibitive for a large number of users. 

Fortunately, since the CSI are already available at the transmitters, users can associate each 

channel gain region with a specific modulation set out of N possible sets. Therefore, the BS 

task is no longer informing all users of which modulation sets to be used, but only to correct 
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the choice of modulation set when more than one user experience an instantaneous channel 

gain in the same region and thus choose the same unique modulation set causing ambiguity 

in the composite constellation. Since the pdf of the channel gain is divided into N regions 

with equal probability, the probability that a user i falls within a specific region at time t is 

1/N. The probability that 𝑁𝑥  (where 𝑁𝑥  < 𝑁 ) users falls within the same region is (1/

𝑁)𝑁𝑥 . Therefore, the collusion probability decreases with the number of users in this case 

making the feedback manageable.  The BS will resolve any collision by broadcasting the 

identities of 𝑁𝑥 − 1 followed by the new order (modulation set) to be assigned to these 

users. All other users will assume that their prediction is correct. Then the BS will broadcast 

a short flag to indicate the end of the SP and to inform users to start sending their data using 

their new unique modulation sets for the remaining duration of the frame.   

5.2.3 Numerical Example 

In this section we will demonstrate through simulation how opportunistic scheduling can 

improve the BER performance of CMMA without incurring any power penalties. We 

assume that all users and the BS are each equipped with a single antenna. Users transmit 

over uncorrelated flat-fading Rayleigh channels modelled as a complex Gaussian-distributed 

with zero-mean and unit variance. Channels change at a rate much slower than the data rate. 

Therefore, they remain constant over hundreds of symbols.  Finally we assume perfect CSI 

at the transmitters and the BS has perfect knowledge of the order of users’ channels.  

Let’s consider the case where three users transmit simultaneously to a BS employing QPSK 

modulation with an average symbol power of one per user.  Using exhaustive Monte-Carlo 

search, we will obtain the optimum value for the amplitude and phase rotation between the 

three users to achieve non-ambiguous composite constellation with the highest possible 

minimum distance giving the users’ power constraint and the average channel gain per user. 
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For conventional CMMA, the BS allocates a single unique modulation set per user and the 

precoding is performed locally and independently of other users. Figure 5-1 shows the 

unique modulation set assigned to the three users and the resulting composite constellation 

formed from the superposition of these sets. Although the composite constellation is non-

ambiguous, it has irregular mapping where constellation points on the periphery enjoy a 

large separation compared with central points where the majority of constellation points are 

packed close together. This irregular mapping leads to small overall minimum distance and 

a considerable difference in error protection between constellation points.  

 
Figure 5-1 composite constellation for three equal power QPSK users with CMMA 

CMMA-OS on the other hand, allocates three unique constellation sets to all the three users 

and the BS ensures that no more than one user employs the same modulation set at any one 

time. Using the same power constraint and average channel gain of unity per user as before, 

each user will partition its channel into three virtual independent sub-channels by assuming 

i.i.d. fading statistics.  Each sub-channel is associated with a particular order of that user’s 

channel at any one time compared to other users. One fixed modulation set is assigned to 

each sub-channel. The average sub-channel gains for users from strongest to weakest 
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according to (5.2) are 1.83, 0.83 and 0.34. The optimal transmit power adaptation is the 

well-known water-filling where more power is allocated to“better”sub-channels with high 

SNR, so as to maximize the sum of data rates in all sub channels. Therefore, the average 

symbol power per modulation set  for the three sub channels set are chosen respectively as 

1.56, 0.86 and 0.53.  This power distribution is chosen to enable the formation of a regular 

64-QAM constellation which in turn maximises the minimum distance of the composite 

constellation for a given power constraint.  

Figure 5-2 shows the unique modulation set assigned to each sub-channel and the resulting 

composite constellation formed from the superposition of these sets. Contrary to 

conventional CMMA and even though the same power constraint and average channel gain 

are used, opportunistic scheduling enabled the formation of a non-ambiguous composite 

constellation with regular mapping. Although the error protection of constellation points on 

the periphery is still higher than central points, the difference is greatly minimized, leading 

to 56% increase in minimum distance compared with the case in Figure 5- 1 where no 

opportunistic scheduling is employed. 
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Figure 5- 2 Composite constellation for three equal power QPSK users with CMMA-OP 
 

Figure 5-3 presents the simulation results for three equal power QPSK users simultaneously 

transmitting to BS using both CMMA and CMMA-OS. The results show that opportunistic 

scheduling provides a significant improvement of BER over a system where only CMMA is 

employed. As can be seen from Figure 5-3, the power gain of CMMA-OP is 7dB at BER of 

10−5. This increase in power is due both to multiuser diversity gain and constellation 

mapping gain since CMMA-OS allow the formation of regular constellation. 
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Figure 5-3 BER performance of three equal power QPSK users with CMMA-OP and CMMA 

5.2.4 Capacity of CMMA-OS 

In CMMA with opportunistic scheduling, the amount of instantaneous transmit power 

required for precoding varies not only with the channel gain per user but also with the 

correlation between users’ channels. In other words, precoding is no longer local and 

independent per user but takes account of correlation among users’ channel for optimum 

recourse allocation, hence the total instantaneous transmit power required for channel 

inversion in this case is linearly related to the sum of channel gains for all users.  

Assuming flat Rayleigh fading channel, the average received SNR per user has an 

exponential distribution with mean 𝜆𝑥. The probability distribution for a CMMA system 

with N users with opportunistic scheduling is the sum of N exponential variables which 

follows a Erlang distribution  whose probability density function is given in [84] as  

0 2 4 6 8 10 12 14 16 18 20 22

10
-4

10
-3

10
-2

10
-1

10
0

EbNo(dB)

B
E

R

 

 

CMMA

CMMA-OS



127 
 

Pr(λ) =
𝜆𝑁−1𝑒−𝜆/𝜆𝑥

𝜆𝑥𝑁(𝑁 − 1)! 
(5.3) 

where λ𝑥 is the average SNR per user.  

In conventional CMMA, the capacity with total channel inversion is zero since precoding is 

done locally and independently at each user with a fixed modulation set, based on the 

average channel gain at each user leading to a large portion of the transmit power being used 

to compensate for deep fading. However, when opportunistic scheduling is used with 

CMMA, the modulation set for each user depends on its instantaneous channel gain, hence 

when the user experience a weak channel, the corresponding modulation set will have a low 

average symbol power as well as limiting the amount of transmit power needed to 

compensate for the weak channel, and thus making total channel inversion feasible. 

Channel inversion with variable power and fixed rate will convert the fading channel model 

into a time-invariant AWGN channel model. Therefore, the channel capacity ℂ follows that 

of the capacity of an AWGN channel is given in [36] as  

ℂ = 𝐵 log2 �1 +
1

∫ (Pr(𝜆)/𝜆)𝑑𝜆∞
0

� (5.4) 

 

Replacing Pr in (5.3) with its value in (5.4) we find: 

ℂ = 𝐵 log2 �1 +
𝜆𝑥𝑁(𝑁 − 1)!

∫ 𝜆𝑁−2𝑒−𝜆/𝜆𝑥𝑑𝜆∞
0

� (5.5) 

Therefore, replacing the value of (4.25) in (5.5) we find: 

ℂ = 𝐵 log2 �1 +
𝜆𝑥𝑁Γ(𝑁)
Γ(𝑁 − 1)� (5.6) 

Therefore the capacity of a CMMA system with N users using channel inversion and 

opportunistic scheduling is given as   
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ℂ = 𝐵 log2(1 + (𝑁 − 1)𝜆𝑥) (5.7) 

The capacity of  N users CMMA with channel inversion and opportunistic scheduling given 

in (5.7) is equal to that of the capacity given in [83] for a system where a single user 

transmitting to N receive antenna with maximum ratio combining (MRC) equalization and 

total channel inversion. This is expected as in addition to the power gain provided by 

collaborative modulation through the coherent addition of users’ signals. Opportunistic 

scheduling enables a diversity gain of order N through the dynamic allocation of unique 

modulation sets. In summary, a CMMA system with N users whose signals are multiplexed 

to form a predesigned 2 M -QAM constellation with mapping 𝜋𝑖(∙) and 𝑑𝑖 is equivalent to a 

scheme where a single user with average power P transmits to N receive antennas using a 2

M -QAM constellation with mapping 𝜋𝑖(∙), where N received signals are coherently added 

before detection. 

 

Figure 5- 4 Capacity of CMMA with opportunistic scheduling 
 

Figure 5-4 shows the theoretical sum capacity per unit of bandwidth as a function of average 

received SNR, 𝜆𝑥 for a CMMA system with opportunistic scheduling and channel inversion 
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for different numbers of users. These curves are obtained in MATLAB using the closed 

form expressions (5.7). To show the advantage of using opportunistic scheduling with 

CMMA, we also compared our new system with conventional CMMA using truncated 

channel inversion, closed form expression (4.6) and with multiuser diversity using water 

filling with adaptive rate and power using (4.14).  As can be seen in Figure 5- 4 the capacity 

of CMMA with opportunistic scheduling is higher than that of MUD and the difference in 

performance between the two schemes increases with the number of users. This is because 

the capacity of MUD is equivalent to that of a selection diversity combining [83] where only 

diversity gain is exploited, while that of CMMA-OS resembles that of MRC where both 

power and diversity gain are exploited.  

5.2.5 Selective diversity combining for CMMA-OS 

In this section, we propose a new simple selection diversity combining (SC) to improve the 

BER performance and capacity of CMMA with opportunistic scheduling by exploiting the 

spatial receive diversity, made available by having multiple antennas at the receiver. Selection 

diversity combining is ideal for CMMA-OS for two main reasons. Firstly, our scheme requires 

only a single RF chain to operate which greatly reduces the cost of the BS in terms of size, 

power and hardware. Secondly, selective diversity where only a single antenna is selected is as 

a trade-off between performance and complexity as it ensures that the composite constellation 

remains fixed and eliminates the need for full CSI at the receiver.   

At the start of every frame, the BS need to scan the L available receive antennas and select the 

one with the highest total channel gain across all N users. In other words, the BS does not 

really need to know the individual channel gain between users and every receive antenna but 

only the sum channel gain at every receive antenna. Therefore, if users ‘signals can be 

coherently added at each receive antenna, then the BS only needs to measure the SNR at each 

antenna and choose the one with highest SNR, or even simply use an envelope detector and 
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select the branch with the highest signal plus noise. Embracing this principle, the BS will 

successively broadcast a pilot from each receive antenna to all N users. Users will use this pilot 

to extract CSI and then simultaneously transmit one symbol back to the BS all using the same 

power P while adjusting their phase using CSI, so that all their signals add coherently at the 

receiver. The BS will then simply measure the SNR of the combined receive signal and switch 

to the next antenna and repeat the same steps. At the end of the selection process, the BS 

broadcasts a short message indicating which antenna is selected to initiate the scheduling 

period (SP).  

Since the duration of the selection process scales with the number of receive antennas, when 

the number of receive antennas is large or when the coherent time of the channel is small (and 

thus the frame duration is small), the BS can reduce the antenna scanning period by switching 

to the first receive antenna where a predefined SNR threshold for total channel gain is 

observed.  

It is also worth noting that in a system, the BS limits the number of users per CMMA group to 

N and divide all active users within the cell into T groups with N users each. If the BS has a 

single receive antenna and only the group with highest total channel gain is allowed to transmit 

at any one time, then the BS can use our proposed selection algorithm to select the best group 

to transmit with relatively small amount of feedback achieving the same capacity and BER 

performance as a system where N CMMA users are transmitting to a BS with T receive 

antennas and a single RF chain.   

5.2.6 Capacity of CMMA-OS with selective diversity combining  

In this section, we will calculate the capacity of a CMMA-OP system with selective 

diversity combining assuming that there are L receive antennas and the BS will select the 

antenna S with the highest average channel gain.  
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The probability of outage for a CMMA-OP system of N users and a single receive antenna is 

calculated by replacing the value of (5.3) in (4.18) and integrating 

𝑃𝑟𝑜𝑢𝑡,𝐶𝑀𝑀𝐴−𝑂𝑃 = �
𝑡𝑁−1𝑒−𝑡/𝜆𝑥

𝜆𝑥𝑁Γ(𝑁) 𝑑𝑡 =
𝛾(𝑁, 𝜆/𝜆𝑥)
Γ(𝑁)

𝜆

0

 (5.8) 

where 𝛾 denotes the lower incomplete gamma function. For L receive antennas with 

uncorrelated channels, the probability of outage for all of L branches below λ  is simply the 

product of individual probabilities of N users with single receive antenna. 

𝑃𝑟𝑜𝑢𝑡𝑆𝑒𝑙 =  � 𝑃𝑟𝑜𝑢𝑡,𝐶𝑀𝑀𝐴�
𝐿
 (5.9) 

𝑃𝑟𝑜𝑢𝑡𝑆𝑒𝑙  also represents the pdf of the output SNR as a function of the threshold s. The pdf of 

the output SNR is therefore obtained by substituting (5.8) into (5.9) and deriving 

𝑃𝑟𝑆𝑒𝑙 =
𝑑𝑃𝑟𝑜𝑢𝑡𝑆𝑒𝑙(𝜆)

𝑑𝜆 =
𝐿
𝜆𝑥

 [Γ(𝑁)]−𝐿 �
𝜆
𝜆𝑥
�
𝑁−1

𝑒−
𝜆
𝜆𝑥  [𝛾(𝑁, 𝜆/𝜆𝑥)]𝐿−1 (5.10) 

It follows that for a CMMA-OP scheme with N users and L receive antennas using channel 

inversion and selection diversity combining, the channel capacity follows that of the 

capacity of an AWGN channel given in [48].  It is not possible to find a closed-form 

expression for the capacity for any N number of users with any L receive antennas where we 

will derive a closed form expression for any N when L=2, 3. 

5.2.6.1 Capacity of CMMA-OP with two receive antennas 

For L=2  

ℂ𝑆𝑒𝑙,2 = 𝐵 log2 �1 +
1
𝑦2
� (5.11) 

Let x= 𝜆/𝜆𝑥, substitute  𝑦2 with its value from (5.10) and (5.4) we find: 
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𝑦2 =
2
𝜆𝑥

 [Γ(𝑁)]−2 �(𝑥)𝑁−2𝑒−𝑥  𝛾(𝑁, 𝑥)𝑑𝑥
∞

0

 (5.12) 

Then substituting (4.30) and (4.31) into (5.12) and integrating  

𝑦2 =
2
𝜆𝑥

 [Γ(𝑁)]−2 � � (𝑁 − 1)𝛾(𝑁 − 1,𝑥)𝑑𝛾(𝑁 − 1,𝑥)

Γ(𝑁−1)

0

− � 2𝑥2𝑁−3𝑒−2𝑥  𝑑𝑥
∞

0

� 

(5.13) 

Then substituting (4.33) into (5.13) and integrating  

𝑦2 =
2
𝜆𝑥

 [Γ(𝑁)]−2 �
(N − 1)Γ(𝑁)2

2 −
Γ(2𝑁 − 2)

(𝑁 − 1)22𝑛−2� (5.14) 

5.2.6.2 Capacity of CMMA with three receive antennas 

Now for L=3  

ℂ𝑆𝑒𝑙,3 = 𝐵 log2 �1 +
1
𝑦3
� (5.15) 

Then substitute  𝑦3 with its value from (5.10) and (5.4) we find: 

𝑦3 =
3
𝜆𝑥

 [Γ(𝑁)]−3 �(𝑥)𝑁−2𝑒−𝑥  [𝛾(𝑁, 𝑥)]2𝑑𝑥
∞

0

 (5.16) 

Then perform integration by parts yields 

𝑦3 =
3
𝜆𝑥

 [Γ(𝑁)]−3 �[𝛾(𝑁,𝑥)2𝛾(𝑁 − 1, 𝑥)]0∞

− � 2𝛾(𝑁,𝑥)(𝑥)𝑁−1𝑒−𝑥  𝛾(𝑁 − 1,𝑥)𝑑𝑥
∞

0

� 

(5.17) 

Substitute (4.30) into (5.17) and perform integration by parts  
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𝑦3 =
3
𝜆𝑥

 [Γ(𝑁)]−3 �Γ(𝑁)2Γ(𝑁 − 1)− �
2𝛾(𝑁, 𝑥)2 𝑑𝛾

(𝑁 − 1)

Γ(𝑁)

0

− �
2𝛾(𝑁, 𝑥)(𝑥)2(𝑁−1)𝑒−2𝑥  𝑑𝑥

(𝑁 − 1)

∞

0

� 

(5.18) 

𝑦3 =
3
𝜆𝑥

 [Γ(𝑁)]−3 �
Γ(𝑁)3

(𝑁 − 1)−
2Γ(𝑁)3

3(𝑁 − 1)−�
2𝛾(𝑁, 𝑥)(𝑥)2(𝑁−1)𝑒−2𝑥  𝑑𝑥

(𝑁 − 1)

∞

0

� (5.19) 

Substitute (4.39) into (5.19) and perform integration by parts  

𝑦3 =
3
𝜆𝑥

 [Γ(𝑁)]−3 �
Γ(𝑁)3

3(𝑁 − 1)−�
2Γ(𝑁)(𝑥)2(𝑁−1)𝑒−2𝑥  𝑑𝑥

(𝑁 − 1)

∞

0

+
2Γ(𝑁)

(𝑁 − 1)� 𝑒−3𝑥  �
𝑥2𝑁−2+𝑘𝑑𝑥

𝑘!

𝑁−1

𝑘=0

∞

0

� 

(5.20) 

Substitute (4.33) into (5.20) and integrate it, we find: 

𝑦3 =
3
𝜆𝑥

 [Γ(𝑁)]−3 �
Γ(𝑁)3

3(𝑁 − 1)−
2Γ(𝑁)Γ(2𝑁 − 1)

(𝑁 − 1)22𝑛−1

+
2Γ(𝑁)

(𝑁 − 1) �
Γ(2𝑁 − 1 + 𝑘)
𝑘! 32𝑛−1+𝑘

𝑁−1

𝑘=0

� 

(5.21) 

 

5.2.6.3 Results and Discussion 

Figure 5- 2 shows the theoretical spectral efficiency as a function of average received SNR, 

λ for a CMMA-OP system with selection diversity for different number of users and when 

up to three antennas are available at the receiver. These curves are obtained in MATLAB 

using the closed form expressions, (5.20), (5.13) and (5.4). Since the probability of outage 

in CMMA follows that of a position distribution, therefore as the number of users increase, 

the differences in SNR between receive antennas tend to diminish. Therefore, for a large 

number of users, a higher number of receive antennas is required to achieve the same 
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improvement in capacity as will be the case with lower number of users and smaller number 

of receive antennas.  

 

Figure 5- 5 Capacity of CMMA-OP with selection diversity combining  
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5.3 Hybrid CMMA/CCMA (H-CMMA) 

5.3.1 Motivation  

CMMA allows a linear increase in sum rate without any reduction in individual rate per 

user by ensuring the formation of non-ambiguous composite constellation at the receiver. 

However, the number of constellation points increases exponentially with the number of 

users while the power gain from the coherent addition of users’ signals only increase 

linearly. In addition, the optimum mapping of the composite constellation is highly related 

to the average distribution of users’ channels (i.e. their large-scale fading and location 

within the cell). Users located near each other in respect to the BS are likely to have 

correlated channel with similar average channel gain which in return leads to the formation 

of composite constellation with irregular mapping and sub-optimal minimum distance. 

Reduction in the minimum distance due to number of users or channel distributions will 

lead to degradation in BER performance compared with a single user transmission.  

Hence while CMMA is very bandwidth efficient, it is power limited, since more power is 

needed to compensate for the drop in BER performance when the number of users 

increases. In addition to the BER performance degradation, the complexity of the joint ML 

detection in CMMA increases significantly in an exponential manner with the number of 

users.  

These two issues raise some important questions: how can CMMA maintain an acceptable 

QoS while serving large number of users without increasing the users’ transmit power? And 

how can the BS limit the complexity of ML detection when the number of users is large?  

The answer to these questions lies in the flexible design of composite constellation that, 

while making use of all the available transmit power of users and maintaining the simple 
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one-way feedback structure of CMMA can also vary the size of the composite constellation, 

and thus the resulting minimum distance according to the required QOS.  

To avoid the above mentioned problems and contrary to CMMA, Collaborative Coding 

Multiple Access (CCMA) allows ambiguity in the received composite constellation, i.e. the 

number of unique constellation points is less than all the possible mutations of users’ data. 

This ambiguity makes the power gain resulting from the coherent addition of users’ signals 

sufficient to compensate for the reduced expansion in constellation size thus maintaining 

the same minimum distance for the composite constellation compared with a single user. 

However, this ambiguity is resolved using multiple access codes which in turn reduce the 

rate per user compared with a single user. Hence, although CCMA has robust BER 

performance, the length and/or size of code words increases with the number of users, thus 

reducing the rate per user and leading to a diminishing gain in sum rate. 

However, the implementation of CCMA in Rayleigh fading channels is difficult since the 

varying gain, phase and delay of the fading channel makes the coherent addition of users’ 

channels challenging. However, the centralized composite constellation design and the 

distributed independent local precoding strategy proposed to implement CMMA can also be 

used for the coherent combining of codewords in CCMA.  

Both the synergies and contrasting characteristics of CCMA and CMMA make them quite 

easy to integrate and very compatible to provide both a power and bandwidth efficient 

collaborative multiple access, especially in environments with low-to-medium SNR and/or 

when the number of users that need to access the network is large.  

A hybrid CCMA/CMMA scheme which will be referred to as H-CMMA can increase the 

minimum distance of composite constellation, reduce the complexity of ML detection and 

provide a robust BER performance without any increase in transmit power at the expense of 
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a small reduction in rate per user. H-CMMA allows the BS to adapt to changes in SNR and 

number of users by adjusting the ratio between the number of unique collaborative codes 

and unique modulation sets. For example, for a group of N users each employing BPSK 

modulation, H-CMMA  can switch from a system with N unique collaborative codes and a 

single modulation set when the SNR is low (to maximise the minimum distance) to a 

system with N unique modulation sets and no collaborative coding when the SNR is high 

(to maximise the rate). An example of H-CCMA is shown in Figure 5.6 where four users 

are divided into two groups. Users inside each of the two groups in Figure 5.6 use the same 

modulation set to precode the amplitude and phase of their data according to the value of 

the received forward pilot transmitted from the BS. Before performing precoding, both 

users inside each group encode their data with a unique MAC code. Modulation sets used in 

groups A and B are designed at the BS to form non-ambiguous fully decodable 

constellations according to composite constellation design explained in the third chapter.  
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Figure 5- 6 Example of 4-user H-CMMA 
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5.3.2 System model 

Below is a summary of the basic operation of H-CMMA: 

• The BS station uses its knowledge of users’ average channel gain to divide users into T 

subgroups. Users with similar average channel gain (i.e. similar distance to the BS) will 

be grouped together. The number of users in each subgroup can also be different.  

• Users within a single subgroup will be assigned unique collaborative codes of length z 

to guarantee full decodability. These codes can be reused for users in other subgroups. 

Since the length of collaborative codes increases with the number of users within a 

subgroup leading to a reduction in individual users’ rate, the number of users per 

subgroup should be kept to a minimum.    

• The BS will treat each subgroup as a single CMMA user and assign all users within that 

subgroup with the same collaborative modulation set.  Unique modulation sets will be 

used for different subgroups designed by the BS to remove ambiguity among different 

subgroups and to maximise the minimum distance of the composite constellation.  

• The data session will be divided into a number of frames where the duration of each 

frame is less than the coherent time of the channel so that the channel can be assumed to 

remain static for the duration of at least one frame and change independently between 

frames 

• Each frame is preceded by a common pilot broadcasted from the BS to enable users to 

extract their CSI to adjust their transmission and maintain synchronization.   

• Users will first encode their data using their assigned collaborative codebook (if one is 

assigned) and then perform collaborative precoding to adjust the amplitude and phase of 

their transmitted signal according to their CSI to ensure that their received signal 

belongs to the unique modulation set assigned to that user by the BS. 
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• During every symbol interval, the received symbol value 𝑦(𝑡) formed from the 

superposition of all signals from N users will belong to the composite constellation 

predesigned by the BS.  

• The number of unique constellation points within this composite constellation will be 

less than the sum rate of all users, since users belonging to the same subgroup use the 

same modulation set which leads to ambiguity. However, due to collaborative coding 

any sequence of z consecutive composite signals will form a unique code word. 

Therefore, the optimum detection technique is joint ML detection which finds the 

nearest valid code word of length z out of all permissible code words.  

5.3.3 Code and Constellation Construction 

A collaborative multiuser codebook of length z is said to be fully decodable if all the 

received composite code words resulting from users’ transmission are unique. Various code 

constructions for the synchronous MAAC have been proposed over the years assuming full 

bit and block synchronisation [1-4]. Codes with short block length were found to be the 

simplest and proven to give the highest sum rate [33].  The most widely used uniquely 

decodable collaborative codes are the two-user and three-user [82][33] codes given below 

in Table 5- 1  and  Table 5- 2, respectively. For the two users case, a widely used code is 

proposed by [82] where user one has two code words 𝐶1= (00, 11) and user two has three 

code words 𝐶2= (00, 01, 10) where the subscripts represent the user number. The individual 

rates for users one and two are 𝑅1=0.5 and 𝑅2=0.792, respectively. The composite coding 

scheme, shown in Table 5-1, has therefore a sum rate 𝑅𝑠𝑢𝑚=𝑅1+𝑅2=1.292 (bits/channel 

use). 

     

   Table 5- 1 Two-user uniquely decodable code 

User1/User2 00 01 10 
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00 00 01 10 

11 11 12 21 

 

 

Figure 5- 7 Composite constellation for two users using collaborative coding as in Table 5.1 
 

For three active users, we consider the coding scheme introduced in [33] where the uniquely 

decidable code 𝐶1 = (11, 00), 𝐶2 = (10, 01), 𝐶3 = (10, 00) are used. Table 5.2 represents the 

encoding table for the three-user scheme where User 1 and User 2 codes have already been 

combined. Since only two code words of length z=2  are assigned per user in this scheme, 

the individual rate is 𝑅1 = 𝑅2 = 𝑅3 = 0.5 bits/channel use, and the total rate sum in this 

case is 𝑅𝑠𝑢𝑚  = 1.5 bits/channel use. 

 

  

Table 5-2 Three-user uniquely decodable code 

User3/User1+User2 21 10 12 01 

10 31 20 22 11 

00 21 10 12 01 
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Figure 5- 8 constellation for three users using collaborative coding as in Table 5.2 
 

A collaborative coding schemes for five users where z=3 and sum rate 𝑅𝑠𝑢𝑚  = 1.67 has 

been proposed in [36]. 

In [37], a new set of collaborative codes was introduced for various numbers of users N 

using multi-level digital modulation of order M, it was shown that the minimum codeword 

length in this case will be N+1 and the number of unique code words per user is M. 

Figures 5.6 and 5.7 respectively shows the composite constellations formed from the 

coherent addition of two and three users with equal power and BSPK modulation, the 

number of unique constellation points in this case is N+1 as opposed to 2𝑁 unique 

constellation points required for full decodability without the need for collaborative coding. 

However, the interesting observation from these figures is that the minimum distance 

between the unique constellation points remain unchanged when compared with a signal 

user case, this combined with optimum joint ML detection and short code lengths imply the 

BER performance of these composite constellations will not degrade when more than one 

users are multiplexed together using CCMA in contrast to that of CMMA. 

Let’s now consider an uplink communication system where N users each employing BPSK 

modulation simultaneously transmits to a BS with a single receive antenna using H-CMMA. 

We divide users into T subgroups where the number of users for each subgroup is 

 ∑ 𝑁𝑐𝑗 = 𝑁𝑇
𝑗=1 . Each user within a subgroup is assigned with a unique collaborative code of 
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length 𝑧𝑗 then added coherently with the rest of the users within that subgroup to form a 

composite constellation  consisting of 𝑁𝑐𝑗 + 1, j={1,2,….T} unique constellation points. 

Each subgroup will then be treated as a single user and a Monte Carlo search will be carried 

out to find the optimum power and phase rotation between the T composite constellation 

that ensures both full decodability and a maximum achievable minimum distance for a 

given total average transmit power. The number of unique constellation points for the 

received composite constellation formed from the N users will be ∏ (𝑁𝑐𝑗 + 1)𝑇
𝑗=1  compared 

to 2𝑁 for CMMA.  

In Table 5- 3, we compared the size of the received composite constellation for different 

number of users under CMMA and H-CMMA with a variable number of subgroups T 

assuming equal number of users in each subgroup. It can be clearly seen that for the same 

number of users and total transmit power, the number of constellation points in H-CMMA 

can be reduced significantly compared with CMMA which in turn significantly reduce the 

number of calculations required for ML detection and increase the minimum distance of the 

composite.  

  

Table 5- 3 : Number of unique composite constellation points for N users employing BPSK modulation 
under CMMA and H-CMMA with variable number of subgroups 

N 4 8 12 

CMMA  16 256 4096 

H-CMMA (T=N/2) 9 81 729 

H-CMMA (T=N/4) 5 25 125 

5.3.4 Simulation Results  

In this section, we will demonstrate through simulation how H-CMMA improves the BER 

performance of CMMA. We assume that users and the BS are each equipped with a single 
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antenna. Users transmit over uncorrelated flat-fading Rayleigh channels are modelled as a 

complex Gaussian-distributed with zero-mean and unit variance. Channels change at a rate 

much slower than the data rate, therefore remaining constant over 100s of symbols. We 

assume perfect CSI at the transmitters. 

5.3.4.1 Example 1: Four equal-power users  

Let’s consider four users transmitting simultaneously employing BPSK modulation with an 

average symbol power of one per user.  Using exhaustive Monte-Carlo search, we obtained 

the optimum value for amplitude and phase rotation between users to achieve non-

ambiguous composite constellation with the highest possible minimum distance giving the 

users’ power constraint and the average channel gain per user. Figure 5-8 shows the 

received composite constellation formed from the superposition of four users’ signals at 

SNR of 15 dB. Now let’s divide the four users into two groups where users within the same 

group use the same unique modulation set (coherently combined) and are separated by the 

collaborative coding scheme shown in Table 5-1.  Figure 5-9 shows the received composite 

constellation in this case where the minimum distance of composite constellation formed 

using H-CMMA scheme remain unchanged compared with that of a single user while in the 

CMMA it drops by 48%. Figure 5-10 shows the BER performance of the two different 

scenarios. CMMA can achieve a rate of 4 bits per channel use on the expense of 5.7 dB 

drops in BER performance compared with a single user case. H-CMMA on the other hand 

achieved only a sum rate of 2.584 bits per channel use while preserving the BER 

performance of a single user. It is worth noting that the BER performance can also be 

reserved by dividing the users in a TDMA fashion into two time slots and where two users 

with a 90 degree phase rotation transmit per time slot but the achievable sum rate in this 

case is 2 bits/channel use (22.6 % reduction compared with H-CMMA). 
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Figure 5- 9  Receive composite constellation of four equal- power users using CMMA at SNR of 15 dB 
 
 

 
Figure 5- 10  Receive composite constellation of four equal-power users using H-CMMA at SNR of 15 

dB 
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Figure 5- 11 BER  performance of four users with equal powers using CMMA and H-CMMA 

5.3.4.2 Example 2: Six equal-power users  

Let’s consider the case where six users transmit simultaneously employing BPSK 

modulation with an average symbol power of one per user. Using exhaustive Monte-Carlo 

search, we obtained the optimum value for amplitude and phase rotation between users to 

achieve non-ambiguous composite constellation with the highest possible minimum 

distance giving the users’ power constraint and the average channel gain per user. 

As the number of users increases, H-CMMA becomes even more effective as more 

combinations of subgroups can be formed from the main group and the rate vs. BER 

performance can be varied more flexibly depending on the received SNR and QOS 

requirement for different users. Table 5-4 shows a number of possible combinations for a 

group of six users ranging from a rate of 3 bits/channel use with no degradation in BER 

performance to a maximum rate of 6 bits/channel use on the expense of 12.5 dB in BER 

performance.  It can also be seen that users can be allocated different rates depending on 
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their QOS requirement. For example, if one or more users require a higher rate, no 

collaborative code is assigned to these users and they are directly multiplexed with other 

subgroups employing only collaborative modulation. Figures 5-11 to 5-14 shows the 

received composite constellations and their constituent modulation sets for H-CMMA 

combinations configured as in Table 5-4. As expected the number of unique constellation 

points and the mapping of the composite constellation can be varied to achieve the required 

minimum distance and manageable complexity. For example, the number of constellation 

points can be reduced by four folds compared with the 64 constellation points formed from 

using only CMMA as can be seen in Figure 5- 11.  

 

Table 5- 4 Different group configuration of six BPSK users employing CMMA, CMMA/TDMA, and H-
CMMA showing trade off between sum rate and required SNR to achieve a fixed BER compared with a 
single BPSK user (non-collaborative case). 

Scheme Collaborative Code 
(CC)   

R(bits/sec)  
per user 

𝑹𝒔𝒖𝒎 
(bits/sec) 

cosnt. 
size 

𝒅𝒎𝒊𝒏 SNR(dB) 

CMMA None 𝑅𝑖=1, 
i={1,2...,6} 6 64 0.345 12.5 

CMMA/TDMA 
(T=2) None 𝑅𝑖=0.5, 

i={1,2...,6} 3 8 1.05 5.5 

CMMA/TDMA 
(T=3) None 𝑅𝑖=0.34, 

i={1,2...,6} 2 4 2 0 

H-CMMA  
(T=2) 
 

𝐶1 = 𝐶4 = (11,00); 
𝐶2 = 𝐶5 = (10,01); 
𝐶3 =𝐶6 (10,00) 

𝑅𝑖=0.5, 
i={1,2...,6} 3 16 2 0.2 

H-CMMA 
(T=3) 

𝐶1 = 𝐶3 =
𝐶5=(00,11) 
𝐶2 = 𝐶4 =

𝐶6=(00,01,10) 

𝑅1=𝑅3 =
𝑅5 =0.792 
𝑅2=𝑅4 =
𝑅6 =0.5 

3.876 27 1.1 5.2 

H-CMMA 
(T=3) 

𝐶1 = (11,00); 𝐶2 = 
(10,01); 

𝐶3 = (10,00) 
𝐶4=(00,11) ; 
𝐶5=(00,01,10) 
𝐶6=None 

𝑅1=𝑅2 = 𝑅3 =
𝑅4 =0.5 
𝑅5=0.792 
𝑅6=1 

3.792 24 1.528 2.35 

H-CMMA 
(T=4) 

𝐶1=𝐶2=None; 
𝐶3=𝐶5=(00,01,10); 
𝐶4 = 𝐶6=(00,11) 

𝑅1=𝑅2=1 
𝑅3 = 𝑅5=0.792 
𝑅4 = 𝑅6=0.5 

4.584 36 1.04 5.6 
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Figure 5- 12 composite constellation for six equal power BPSK users with H-CMMA (T=2 (3, 3)) 
 

 
Figure 5- 13 Composite constellation for six equal power BPSK users with H-CMMA (T=3(2, 2, 2)) 
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Figure 5- 14 Composite constellation for six equal power BPSK users with H-CMMA (T=4(2,2,1,1)) as 

configured by Table 5- 4 
 

 
Figure 5- 15 Composite constellation for six equal power BPSK users with H-CMMA (T=3(3, 2, 1)) as 

configured by Table 5- 4 
 

Figure 5- 15 shows the BER performance of various H-CMMA combinations obtained from 

Monte Carlo simulations using MATLAB. It can be seen that even with a small reduction in 

rate as in the case for H-CMMA with T=4(2, 2, 1, 1), 𝑅𝑠𝑢𝑚=4.584, the BER performance 

improves by 7 dB compared with CMMA. This is due both to the reduction in the number 
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of unique constellation points from 64 to 36 and the more regular mapping (more equal 

distribution of constellation points) which leads to increased minimum distance between 

constellation points. It can also be seen that with an H-CMMA T=2(3, 3), the BER 

performance approaches that of a single user while achieving a threefold increase in rate 

compared with a single user case. It also achieves a gain of 5 dB in BER performance over 

a TDMA based approach with the same sum rate where the six users are divided into two 

time slots. This rate can be increased to 3.792 bits/channel use by adding another subgroup 

with configuration T=3(3, 2, 1) with only a modest 2.35 degradation in BER performance.  

 
Figure 5- 16 BER Performance of six users with equal Power employing BPSK modulation under 

different H-CMMA formation as configured in Table 5.4 

5.3.5 Conclusion  

In this section, we introduced a hybrid approach combining both collaborative coding and 

modulation referred to as H-CMMA. H-CMMA can adjust the minimum distance of the 

received composite constellation by varying the number of unique constellation points for 

the same average total power. This hybrid approach enables CMMA to accommodate large 
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number of users while flexibly managing the complexity and BER performance of the 

combined simultaneous transmissions of these users. H-CMMA can also simultaneously 

accommodate users with different QOS requirements (in terms of rate and BER 

performance). It was shown that for a fixed sum rate and same number of users, H-CMMA 

is superior to a more conventional approach to reduce complexity and increase minimum 

distance using time division with CMMA. H-CMMA can also be seen as a practical method 

of implementing CCMA in fading environments while achieving higher rates and user 

capacity than that possible with conventional CCMA.     
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6 Cooperative Modulation (CM) 

6.1 Introduction  

Conventionally, the advantages of cooperative diversity come at the expense of a reduction 

in spectral efficiency due to the half-duplex constraint and the orthogonal relaying 

transmissions since users must transmit on orthogonal channels in order to take full 

advantage of the multiple available paths. In this chapter, we introduce a new two user’s 

low-overhead channel-aware cooperative diversity that uses scheduling and adaptive 

modulation to take advantage of the spatial diversity achieved through cooperation while 

maintaining the same bandwidth compared with direct transmission. To extend our adaptive 

scheme for more than two users, we propose a new set of high spectral efficiency 

cooperative diversity schemes referred to as cooperative modulation (CM).  CM utilises the 

concepts of opportunistic scheduling and collaborative modulation to enable N active users 

to share the same bandwidth over two consecutive time slots and retain a diversity gain in 

the order of N.  

6.2 Overview of Cooperative Communications 

In cooperative communications, neighbouring mobile users with a single receive antenna 

can achieve spatial diversity by relaying each other data due to the broadcast nature of the 

wireless channel and the fact that these users experience independent fading channels. Due 

to practical restrictions, mobile devises cannot perform perfect echo-cancelation; hence 

most practical cooperation schemes consider half-duplex transmission where users transmit 

and receive at different times. Although users allocate some of their resources (i.e. time, 

power, etc.) to relay other users’ data , the achieved spatial diversity gain is big enough to 

offset any costs enabling higher throughput, reliability, net power saving, and extended cell 
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coverage. The origin of cooperative communication can be traced to the pioneering work by 

Van der Meulen [97] who introduced the relay channel and by Cover and El Gamal [98] 

who proposed a number of relaying schemes and analysed the capacity of the degraded 

relay channel. Despite the importance of their work, cooperative communication is different 

than relay networks in two aspects. Firstly, in its purpose to provide spatial diversity in a 

fading channel and secondly users in cooperative networks act both as sources and relays. 

Sendonaris in [99] presented a Code-Division Multiple Access (CDMA) implementation of 

decode and forward cooperation scheme where two users (each with its own spreading 

code) cooperate with each other over three-bit-interval cycles. In the first and second 

intervals, each user transmits its own bits and tries to detect its partners’ bits. In the third 

interval both users transmit a linear combination of their own second bit and the partners 

second bit, each multiplied by the appropriate spreading code using superposition coding. 

The powers for the three intervals are allocated such that an average power constraint is 

maintained and varied accordingly to the conditions of the uplink and interuser channels. 

Also the BS needs to know the interuser channel information for optimal decoding.  

However, the first practical cooperation schemes based on time division among users was 

proposed by Laneman in [100][101]where nodes transmit their data using separate time 

slots each consisting of B channel uses in the non-cooperative case. When they cooperate, 

each user divides its time slot into two equal periods.  In the first B/2 channel uses of a user 

designated time slot, it transmits its own data which will be received by both its partner and 

the BS.  During the second B/2 channel uses, it relays the data received from its partner 

during the previous time slot.  Laneman proposed three relaying approaches using amplify-

and-forward and adaptive decode-and-forward, respectively in [100] [101]. In the amplify-

and-forward scheme, users will not attempt to decode their partner signal and will just scale 

the power of the partner’s received signal to satisfy a power constraint and relay it to the BS 

which will in turn combine it with the previously received signal from the original user. For 
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the adaptive decode-and-forward scheme, users will try to decode their partner’s signal, if 

successful, they will re-encode the partner’s data and transmit it during the second half of 

their time slot, and otherwise the user will return to non-cooperative mode and re-transmit 

its own data. This scheme therefore takes into account the strength of inter-user channel and 

insures that cooperation is only performed when it is beneficiary.  

However, both schemes don’t make efficient use of the available degrees of freedom of the 

channel, users relay their partners’ data, even when it has been successfully received by the 

BS during the original transmission from the source, therefore Lineman [101] in proposed 

an incremental relaying scheme that exploits limited feedback from the BS to indicate 

whether the direct transmission was successful, therefore decreasing unnecessary relaying 

and improve spectral efficiency. Due to the half-duplex constraint and the fact that users 

repeat each other data constituting a low-coding-gain repetition code, these schemes 

provided through spatial diversity enable increased reliability and lower transmit power  on 

the expense of doubling  the  bandwidth  compared with  direct transmission for a given 

rate.  

To avoid the use of repetition coding and maintain the same rate as in direct transmission, 

Hunter proposed in [102] [103] [104] [105] coded cooperation where cooperation is 

integrated with channel coding. In coded cooperation, each user will encode K information 

into B coded bits per block, so that R = K/B. Then the N bits codewords will be partitioned 

into two segments of lengths B1 and B2 transmitted over two successive time frames. In the 

first frame, a sub-codeword of rate R1 = K/B1 is broadcasted to both the BS and the partner. 

The partner will attempt to decode B1 and if successful will generate and transmit the B2 

bits for the partner; Otherwise B2 additional parity bits for the user’s own data will be 

transmitted instead. Since different segments of the codewords are transmitted by two 

independent fading channels, spatial diversity gain as well as coding gain can be achieved. 

Different channel codes can be used in coded cooperation, Hunter employed Rate-
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Compatible Punctured Convolutional (RCPC) codes in [102] and space-time and turbo 

coding in [105] which are more suitable in fast fading scenarios.  

Chen in [106] proposed a network coding approach to cooperation to enable more than two 

users to cooperate thus achieving a diversity gain in the order of the number of users while 

maintaining a fair distribution of resources between participating users and  without 

employing extra resources compared with conventional cooperative schemes. Like other 

schemes mentioned earlier, each user divide its transmission into two time slots. During the 

first time slot, it transmits its own data to both the BS and its partners. However, during the 

second time slot it will combine the data received from its partners during previous time 

slots using linear network coding and transmits the result.   

Xiao in [107] proposed another network coding approach to cooperative diversity featuring 

the algebraic superposition of convolutional channel codes over a finite field.  Each user 

will pseudo-randomly interleave previously detected data from its partner before combining 

it with its own encoded data using linear network coding and then broadcasting the 

combined packet over its own time slot to both its partner and the BS. Its partner will use its 

a priori knowledge of its own data relayed within its partner packet to extract its partner 

data while the BS will detect users’ data by iterative processing in a back-and-forth manner 

over a window of B consecutive codewords from both users. The extrinsic information from 

the codewords immediately before and after a given codeword is used in processing that 

codeword. After B iterations, the decoder makes a decision and the window is advanced by 

one codeword. 

Larsson in [108] proposed a similar scheme to Xiao in which users simultaneously transmit 

their own data packet and the packet for which they act as relay by using superposition 

coding instead of network coding with appropriate power allocation between the two 

packets.  
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Another approach based on superposition coding to achieve full rate transmission called 

superposition coding assisted cooperative multiple access is proposed by Zhiguo in 

[109],where N users each transmitting over N orthogonal channels (frequency, time, or 

code) superimposes their own data along with previously received data from the N-1 

remaining users. The pre-coding and channel matrices used by each user should be known 

to all other users and the BS to achieve successful detection. This requires closed loop 

operation with feedback channels, leading to higher complexity and overheads compared 

with conventional cooperative systems. Nevertheless, this scheme achieves optimum 

diversity-multiplexing trade-off due to the fact that the data of each user is sent N times 

through N independent channels without adding any extra time slots compared with direct 

communication.  

Reducing the effect of half duplex constraint can also be achieved with spatial multiplexing. 

This concept was introduced by Kannan in [110][101] which proposed a Space Division 

Relaying (SDR) that allows two users to exchange their data in first and second periods, and 

in the third period, space division multiplexing rather than time division is used for 

simultaneous relaying of users’ data. It shows that improved rate of 2/3 compared with 1/2 

in [101] while achieving full diversity order. 

Full rate and second-order diversity can also be achieved using multiple alternating relays 

per source. For example, a scheme referred to as opportunistic multipath for bandwidth-

efficient cooperative multiple access, is proposed in [111] for CDMA where each user is 

assigned two idle relays that forward its estimated data in turn over two consecutive time 

periods. It exploits the capability of CDMA pseudo noise spreading codes to resolve the 

multipath from the relays to meet the above objective, however at the cost of increased 

multiuser interference as the system loading increases. 
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6.3 Full-rate Cooperative Diversity with Adaptive Modulation  

6.3.1 System Model 

Our aim is to provide spatial diversity through cooperation for an uncoded system without 

compromising the rate and spectral efficiency due to the half-duplex constraint, compared 

with direct transmission with no cooperation and without the need to allocate multiple 

relays per user as in [111], or complex iterative detection at the receivers as in 

[108][109][110]We achieve this goal using channel-aware adaptive cooperative system with 

limited one bit feedback. Our scheme restricts the relaying to the user experiencing the 

stronger channel to the BS. Furthermore, users switch to higher modulation orders during 

the cooperative mode to compensate for the half-duplex constraint and maintain the same 

spectral efficiency as direct non-cooperative mode. 

We assume slow flat fading and that channel remains constant during a specified time 

period (frame). The duration of each frame is fixed and corresponds with channel’s 

coherent time. During a frame, each user will transmit a total of B bits regardless of whether 

cooperation takes place or not. Upholding the half duplex constraint, we will divide each 

frame into a number of time slots whereby only a single user is always to transmit at one 

time. 

At the beginning of each frame, users will consecutively broadcast their training sequences 

to both the BS and their partners for channel estimation which will be used throughout the 

duration of the frame for both coherent detection of users’ data at the relay and the 

destination as well as for users’ scheduling, relay selection, and determining transmission 

mode (i.e. cooperative or direct transmission). It is worth noting that by rearranging the 

position of the training sequences in that way, we can employ them to facilitate scheduling 

and adaptive cooperation without adding any overhead compared with direct transmission.  
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The BS uses these sequences to estimate the channels between it and the users, while the 

users will estimate inter-user channel between them.  The BS will use its knowledge of 

users’ channels to send a single bit feedback indicating which user is allowed to transmit at 

the first time slot. The BS always chooses the user with the weaker channel to the BS to 

transmit first to insure that the limited time and power available for cooperation is used 

efficiently.  On the other hand, users utilise CSI about their inter-user channel to determine 

if they will cooperate or not based on a predefined threshold for cooperation. Since the 

inter-user channel is reciprocal, users can make this decision locally without the need to 

inform their partner.  

Non-cooperative mode: In the non-cooperative transmission mode shown in figure 6.1.a, 

users divide the reminder of the frame into two equal time slot and consecutively transmit 

their data encoded in a basic modulation set 2𝑀1-QAM and using the same average power 

(2P). To preserve power, the user experiencing the strong channel to the BS is turned off 

during the first time slot and no listening will take place.   

Cooperative mode: In the cooperative mode shown in figure 6.1.b, users will transmit using 

a modulation set 2𝑀2-QAM, 𝑀2 = 1.5𝑀1. The reminder of the frame will be divided into 

three equal time slots. In the first time slot the user with the weaker channel to the BS will 

transmit first with an average power of 1.5P, in the second time slot the user with the 

stronger channel to the BS will relay its partner data with an average power 1.5P, while it 

will use the third time slot to transmit its own data with an average power of 3P. The BS 

will combine the signals from the first two time slots using maximum ratio combining to 

detect the data from the weaker user.  
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Figure 6- 1 Frame structure for direct and cooperative modes 

 

Power allocation: It is worth noting that the average power per frame is the same for both 

non-cooperative and cooperative modes. However, in the cooperative case, three quarters of 

the available power will be emitted from the user experiencing the stronger channel to the 

BS. In both modes,  power is equally distributed between the two transmitted packets of 

both users, hence the data packet of the strong user is assigned double the power of that of 

the weak user because it is only transmitted once while that of the weak user is also relayed 

by the strong user. 

Adaptive modulation: In the cooperative mode, users transmit with higher-order 

modulation than that used for direct transmission. The new modulation level is chosen to 

increase the spectral efficiency to compensate for the extra time slot required to relay the 

weak user’s data by the user with the stronger channel. This will ensure that the total 

number of bits per frame remain unchanged compared with direct transmission. Even 

though increasing the modulation order leads to a reduction in the constellation minimum 

distance for the same energy per bit. This new higher modulation is accompanied by full 

diversity order which offsets this degradation leading to a net improvement in BER 

performance over direct transmission with lower order modulation. This is validated 
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through MATALB simulation (Table 6.1)  by comparing the SNR required to achieve a 

fixed BER between direct transmission where regular 2𝑀-QAM  is used and a cooperative 

system using our proposed protocol  where  21.5𝑀-QAM is used in the cooperative mode. It 

was shown from these results than the cooperative gain is reduced when high order 

modulation is used which usually corresponds to users close to the centre of the cell with 

good overall channels. However even in this scenario; a significant improvement in BER 

performance can be achieved without compromising bandwidth efficiency.  

Table 6- 1: Net diversity gain (DG) at fixed BER for adaptive modulation cooperation where (D) refers to 
direct transmission and (C) refers to cooperative case. DG is defined as the reduction in SNR required for 
achieving the same BER in cooperative mode with higher order modulation as compared with that of 
direct transmission with lower MQAM modulation.  

BER/DG   4-QAM(D) 

 8-QAM (C) 

16- QAM (D) 

 64- QAM (C) 

64- QAM (D) 

512-QAM (C) 

256- QAM (D) 

 4096-QAM(C) 

𝟐𝟏𝟎- QAM (D) 

 𝟐𝟏𝟓- QAM (C) 

𝟏𝟎−𝟒 15 dB 13 dB 9 dB 7 dB 2.7 dB 

𝟏𝟎−𝟓 20 dB 18 dB 14 dB 12 dB 8 dB 

𝟏𝟎−𝟔 25 dB 23 dB 19 dB 17 dB 13 dB 

6.3.2 Numerical example 

We present a numerical example to illustrate the potential of the new scheme. For 

our simulations, the channels are Rayleigh fading with unit variance. We consider 

the case where two users employing QPSK modulation with an average transmit 

power of unity transmit in (a) direct non-cooperative way, (b) classical decode and 

forward cooperative transmission employing QPSK modulation, (c) adaptive 

decode and forward cooperative transmission employing QPSK modulation, (d) 

our proposed scheme employing QPSK for direct transmission and 8-QAM for 

cooperative mode.  In all cooperative cases, we consider the inter-user channel 

between the two users (a) to have the mean channel gain equal to that of the 

channels between users and the BS (b) 10 dB higher.  
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Figure 6-2 shows the BER performance of various cooperative schemes, it can be seen that 

while preserving the spectral efficiency of uncoded direct transmission, COOP-AM still 

manages to deliver a significant improvement in BER performance even when the inter-user 

channel has the same average channel gain as users due to its inherent adaptive nature. 

Furthermore the loss in performance due to the use of higher level modulation in the 

cooperative mode compared with adaptive decode and forward is relatively small 

accounting to 0.5 dB considering that COOP-AM have double the spectral efficiency of  

conventional adaptive decode and forward.   

 
Figure 6- 2 BER Performance of cooperation with adaptive Modulation for two QPSK users 

  

6.4 Cooperative Modulation for Multiuser Communications  

In this section, a high spectral efficiency communication scheme, called Cooperative 

Modulation (CM) is proposed for cooperative multiuser systems. CM combines both the 
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reliability and QOS resulting from the spatial diversity due to cooperation with the high 

spectral efficiency and user capacity due to the instantaneous superposition of multiuser 

signals resulting from collaborative modulation. CM can be seen as a direct expansion of 

Coop-AM introduced earlier when more than two users are involved. Both schemes 

maintain low feedback and high spectral efficiency by restricting relaying to the user with 

the strongest channel to the BS. Signals from multiple users are simultaneously transmitted 

to the relay without subdivision in time, frequency, or code. Instead, it relies on expansion 

in signalling space accompanied by a cooperative diversity with an order equal to the 

number of users. 

6.4.1 System Model  

Each communication session will be divided into frames, we assume that the channels 

remain constant during a frame and change independently between frames.  Users transmit 

over uncorrelated flat-fading Rayleigh channels modelled as a complex Gaussian-distributed 

with zero-mean and unit variance. Channels change at a rate much slower than the data rate. 

Therefore, they remain constant over hundreds of symbols.   

Each frame will be divided into three time slots or periods, the first time slot referred to as 

scheduling period (SP) will be used for relay selection and providing CSI required for pre-

coding or detection. The second time slot referred to as the feeding period (FP) during 

which users will simultaneously transmit their data using collaborative modulation to the 

selected relay. And the final time slot referred to as the cooperative period (CP), the 

selected relay will add its own data and transmit a combined signal representing the data of 

all users in the group to the BS employing a high-level QAM constellation with a sum rate 

equal to the sum rate of all users in the group.   

We will introduce two possible variations of CM depending on whether CSI are utilised at 

the BS and the selected relay or if CSI are utilised at the users.  
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Figure 6- 3 Illustration of CM cooperative communication protocol 

6.5 Precode, Amplify, and Forward (P&A&F) 

In this section, we will consider how CMMA can be used to implement cooperative 

modulation in a system where CSI are only utilised at users. We will refer to this form of 

cooperative modulation as Precode, Amplify, and Forward (PAF), below is a basic 

description of PAF according to the CM’s system model explained earlier. 

6.5.1 Scheduling Period for PAF  

Before the scheduling-period (SP) and at the start of every frame, the BS broadcasts a 

common pilot to all users, so users can utilise it to locally synchronize their transmission 

and  estimate their channel gain (due to reciprocity property of a wireless channel). The 

probability density function (pdf) of the channel-gain is initially divided into regions with 

identical probability measure defined by a set of thresholds 𝜆𝑖 , i = 1, N such that 𝜆1 ≥𝜆2 ≥ . . 

. 𝜆𝑁, where N is the number of users. These regions and their associated thresholds can be 

computed locally at the users in a distributed manner using CSI obtained from the common 

pilot. If the channel gain |ℎ𝑖| of user i satisfies 𝜆𝑖  ≤|ℎ𝑖| < 𝜆𝑖−1, then the user will quantize 

its channel gain into one of the N possible mini-time slots and broadcast a training sequence 

of  𝐵𝑝 during its mini-time slot while licensing to other users during  other mini-slots. At the 

end of each mini-slot the BS will transmit a flag indicating whether no user transmitted 

(transmit second mini slot), exactly one user transmitted (end scheduling period and start 
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feeding period), or a collision occurred (start collision resolution).  In the case of collision, 

the collided users will modify their threshold according to a binary search like algorithm 

and users whose channel gain is between the new thresholds transmit in the next mini slot 

until collision is eliminated.  

For PAF, We assume that the distance between users is much smaller than that between 

users and the BS. Therefore,  The average gain of interuser channels are much higher than 

that between users and the BS, while instantaneous interuser channel gain is kept constant 

by precoding at the users.  Therefore the relay selection process is reduced to selecting the 

user with the best channel to the BS.    

6.5.2 Feeding and cooperative period for PAF 

CMMA will be used in the feeding period (FP) in order to simultaneously transmit data 

from the N-1 remaining users to the selected relay by assigning each user within a 

cooperative group with a unique modulation set centrally designed at the BS to ensure that 

the received signal formed from the superposition of users’ signals belongs to a composite 

constellation with higher modulation level and a data rate equivalent to the sum of rates of 

all the individual streams. Due to the local collaborative precoding at the users, the mapping 

of this composite constellation is fixed throughout the session and already known to the BS 

which predesigned the constellation.  

The baseband representation of the received signal at the selected relay i formed from the 

super position of precoded signals from the remaining N-1 users is  

𝑦𝑠𝑟 = � �𝑃𝑘

𝑁,𝑘≠𝑖

𝑘=1

𝑒𝑗𝜃𝑘𝑐𝑘ℎ𝑘𝑖 + 𝑛𝑟 (6.1) 

Where 𝑃𝑘 and 𝜃𝑘are respectively the power weight and phase rotation of user k  at time 

instant t to insure that its’ received signal at relay i corresponds to its unique modulation set  

𝑆𝑘 . kc  is a complex signal representing data symbol of user k where the average symbol 
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power is unity.  ℎ𝑘𝑖  represents the complex channel gain of the interuser cannel between 

users k and  i and, 𝑛𝑟 represent white Gaussian noise vector at the relay and is modelled as 

complex Gaussian-distributed signal with zero mean and variance 𝜎𝑟2. 

The relay i will then add its own data modulated according to its assigned unique 

modulation set  𝑆𝑖 = {𝑠1, 𝑠2, … . 𝑠𝑚} before adjusting the combined signal using channel 

inversion.  

The baseband representation of received signal at the BS from relay i is:  

𝑦𝑑 = �𝑃𝑖ℎ𝑖𝑑 � � �𝑃𝑘

𝑁,𝑘≠𝑖

𝑘=1

𝑒𝑗𝜃𝑘𝑐𝑘ℎ𝑘𝑖 + 𝑠𝑖� + 𝑛𝑟�𝑃𝑖ℎ𝑖𝑑 + 𝑛𝑑 (6.2) 

Where  ℎ𝑖𝑑 represent the complex channel gain of channel between relay i and the BS , 

𝑛𝑑 represent white Gaussian noise vector at the BS and is modelled as complex Gaussian-

distributed signal with zero mean and variance 𝜎𝑑2, and 𝑃𝑖 is the transmit power of relay i  at 

time t .  

Channel inversion is done by varying the relay transmit power 𝑃𝑖 according to its channel 

 ℎ𝑖𝑑   to insure that:  

𝑦𝑑 = 𝑟𝑗 + 𝑛𝑟�𝑃𝑖ℎ𝑖𝑑 + 𝑛𝑑 (6.3) 

Where 𝑟𝑗 ∈ 𝑅 is a complex vector representing a unique point at the composite constellation 

R predesigned and known at the BS. The BS can then perform a simple joint ML detection 

identical to that of CMMA to recover users’ data.  

6.5.3 Simulation Results  

In this section we will validate through simulation the BER performance of PAF. We 

assume that all users and the BS are each equipped with a single antenna. Users transmit 

over uncorrelated flat-fading Rayleigh channels modelled as a complex Gaussian-distributed 

with zero-mean and unit variance. Channels change at a rate much slower than the data rate; 

therefore they remain constant over the duration of one frame and change independently 
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between frames. Also perfect CSI at the transmitters was assumed.  𝜌 is defined as the ratio 

of average channel gain of interuser channel over that of average channel gain between users 

and the BS.  

Figure 6.4 shows the BER performance of a PAF involving four users employing BPSK 

digital modulation. The BER performance of PAF is worse than that of conventional 

CMMA when 𝜌 = 0 𝑑𝐵.   This is expected due to the added noise at the relay. However a 

significant improvement of BER performance can be realized due to cooperative diversity as 

𝜌 increase. At 𝜌 = 10 𝑑𝐵 the BER performance of PAF shows an improvement over 

conventional CMMA equal to 5 dB at BER of 10−5. The cooperative diversity gain in this 

case offsets the BER degradation caused by modulation space expansion due to CMMA and 

the BER performance per user shows 1.5 dB improvement over a scenario where users 

transmit to the BS using channel inversion and over four orthogonal channels.   

Figure 6.5 shows the BER performance of a PAF involving six users employing BPSK 

digital modulation. The BER performance of PAF improves remarkably by as much at 8.5 

dB at a BER of 10−5 and 𝜌 = 20 𝑑𝐵 compared with direct CMMA transmission from users 

to the BS.  However due the exponential increase in composite constellation size at the 

relay, the BER performance of PAF in this case is slightly worse than that of conventional 

orthogonal MAS where users transmit to the BS using channel inversion over six orthogonal 

channels.  
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Figure 6- 4 BER Performance of Precode & Amplify & forward (coop-CMMA) for four users employing 

BPSK modulation 

 
Figure 6- 5 BER Performance of Precode & Amplify & forward (coop-CMMA) for six users employing 

BPSK modulation 
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6.6 Decode, Remap, and Forward (DMF) 

6.6.1 Introduction 

The aim of this section is to design a new cooperative scheme that provides both a spatial 

diversity gain of the order of the number of cooperating users and spatial multiplexing gain 

where all users share the same orthogonal channel and achieve a combined sum rate that 

increases with the number of users. This is achieved through a new concept referred to as 

cooperative modulation which allows users to simultaneously superimpose their signals 

using the same bandwidth and signal signature while offsetting their mutual interference by 

the use of cooperative diversity. Furthermore, the benefits of CM are realized without the 

need to allocate dedicated relays to users or the need for complex iterative detection at the 

receivers. 

The main contribution of this section can be summarized as follows: 

• A novel cooperative communication protocol named decodes re-modulate and 

forward (DMF) is proposed to implement CM by restricting the relaying to the user 

with the best overall route to the BS. All constituent users of a CM system are 

active users, furthermore all participating users benefit from cooperation unlike 

other schemes. 

• In addition to the spatial diversity gain provided by cooperation, CM enables spatial 

multiplexing of many users signals even when the BS is equipped with a single 

receive antenna.  

• A new relay selection scheme based on maximising the minimum distance of the 

composite constellation formed from the superposition of N users at the relay is 

proposed to obtain an optimum performance for CM.  

• A novel sphere-based algorithm based on the geometric properties of the composite 

constellation is proposed for measuring the minimum distance of these 
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constellations for relay selection and joint detection. This algorithm greatly reduces 

the number of calculation required for selection and detection compared with 

exhaustive search and conventional ML detection.  

6.6.2 Overview of DMF 

 
Figure 6.6 illustrates the basic concept of CM where up to N active users each equipped 

with a single antenna cooperate with each other to deliver their data to a base station (BS) 

with a single receive antenna. At any time instant t, one of these users is selected as a relay 

and the remaining N-1 users will simultaneously transmit their data to the selected relay 

using the same transmit power and without any subdivision in time, frequency, or code. The 

combined signal at the relay belongs to a composite constellation formed from all the 

possible summation of users’ signals.  The relay utilise channel state information (CSI) of 

inter-user channels between the relay and the remaining users to construct this composite 

constellation and perform a joint ML detection to extract users’ data. The relay then add its 

own data and forward the combined data from all users to the BS utilising a regular M-

QAM constellation with a rate equal to sum rate of all users.  This process is repeated over 

fixed time periods referred to as frames where each frame interval corresponds to the 

coherent time of the fading channel.   

 
Figure 6- 6 : Illustration of CM cooperative communication system where the solid arrows refers to the feeding 

stage from users to the selected relay at time slot 1 while the shadowed arrows refer to the cooperative stage 
from the relay to the BS. 
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To implement CM, Decode, reModulate, and Forward (DMF) cooperation protocol is 

introduced. DMF is two-hop cooperative communication protocol where N users utilise the 

independence of their inter-user channels and the channels between them and the BS to 

perform both superposition coding (to achieve high spectral efficiency) and cooperative 

diversity (to achieve good QoS and reliable communication). The main idea is, as the 

number of users increase, the modulation order of the composite QAM constellation formed 

from the superposition of users’ data will also increase leading to degradation in BER 

performance. However, this degradation will be offset by full diversity order due to 

cooperation. The number of consecutive transmissions required to deliver data from users to 

the BS is always two, therefore the cost of the half duplex constraint does not increase with 

the number of users.  

In DMF, each communication session is divided into frames, we assume that the channels 

remain constant during a frame and change independently between frames.  Users transmit 

over uncorrelated flat-fading Rayleigh channels. Channels change at a rate much slower 

than the data rate. Therefore, they remain constant over hundreds of symbols.    

As shown in Figure 6.7, each frame is divided into three time slots or periods, the first time 

slot referred to as Scheduling Period (SP) is used for relay selection and exchanging of 

pilots between users and the BS to obtain channel state information (CSI) required for 

coherent detection in later periods. The second time slot referred to as the Feeding Period 

(FP) during which users simultaneously transmit their data to the selected relay with an 

average power per user equal to𝐸𝑎𝑣. And the final time slot referred to as the Cooperative 

Period (CP), the selected relay will add its own data and transmit a combined signal 

representing the data of all users in the group to the BS employing a high-order QAM 

constellation with a sum rate equal to the sum rate of all users and using a transmit power 

equal to (N+1) 𝐸𝑎𝑣. Since all channels are assumed independent and uncorrelated, all users 
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will have an equal chance of being selected as a relay which translated into a probability of  

1/N and an average transmit power per user per time slot equal to 𝐸𝑎𝑣.  Since no precoding 

is used at the FP in order to form the composite QAM constellation at the relay, the 

structure of the resulting composite QAM constellation is highly random. Therefore, it is 

very important to understand how these composite QAM constellations are formed and 

detected and how their structure will affect the relay selection process before proceeding to 

explaining the three periods of a DMF scheme. 

 
Figure 6- 7 Frame structure for DMF 

 
6.6.3 Composite QAM constellations at the Relay 

During the FP and assuming full synchronization between users, N-1 users will 

simultaneously transmit to the selected relay which in turn utilizes CSI about users’ channel 

obtained during the scheduling period to perform joint ML detection to decode individual 

users’ data.  

Let’s assume that user i is selected as a relay at time t, this user can calculate the mapping  

𝜋𝑖 of the composite constellation 𝑅𝑖 formed from the superposition of the N-1 signals from 

the remaining users, 𝑖 ∈ {1,2, . . ,𝑁} as follows,  

[𝑅𝑖] = [𝐺𝑒] × [𝐻𝑖] (6.4) 

Where [𝑅𝑖] is a 1 × 2𝑁−1 matrix representing 2𝑁−1 complex constellation points formed 

from superposition of N-1 users transmitting using BPSK modulation.  
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[𝐺𝑒] is a 2𝑁−1 × (𝑁 − 1) matrix representing all the possible combinations of N-1  

transmitted signals. When users employ BPSK digital modulation and assume the average 

symbol power is unity, the entries on 𝐺𝑒 will be either +1 or -1.  

[𝐻𝑖] is a 1 × (𝑁 − 1) matrix representing complex inter-user channel coefficients between 

user i and N-1 remaining users within its group. 

Due to the physical separation of users and the multipath fading nature of the wireless 

channel, the amplitude and phase of the received signal of each user is highly likely to be 

independent leading to the formation of non-ambiguous (fully decodable) composite 

constellations formed the superposition of all signals. However due to the random nature of 

this superposition it is also highly likely that the mapping of this received composite 

constellation is irregular and has lower minimum distance between constellation points 

compared with that of a regular QAM constellation with the same modulation order and the 

same average symbol power transmitted from a single user.  

The BER performance of this composite QAM constellation is linearly related to the square 

of the minimum distance between any two constellation points (𝑑𝑚𝑖𝑛). 𝑑𝑚𝑖𝑛 fluctuates in 

value over time in a rate equivalent to the channel’s coherent time which is what usually 

happen in a conventional single user transmitting over Rayleigh fading channel. However 

for a single user point to point transmission, the mapping of M-QAM constellation is fixed 

and usually chosen to maximize 𝑑𝑚𝑖𝑛 for any given average symbol power, unlike in our 

case where not only the intensity of the composite QAM signal will vary due to fading but 

also the mapping (structure) of the constellation due to the gain and phase correlation 

between fading channels.  

The performance of the composite QAM constellation will therefore be a degraded version 

of that of a single user with equivalent rate transmitting at the same average power over 
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Rayleigh fading channel. The rate of degradation will be directly related to the drop in 

average 𝑑𝑚𝑖𝑛 compared with conventional single user point to point case.   

For a group of N users, the number of inter-user channels between any two users is equal to 

∑ 𝑖𝑁−1
𝑖=1 .  These inter-user channels between any one user i and all the remaining users in the 

group are independent not only in their individual channel coefficients but also in the 

correlation between channels at each potential relay. The channel matrix [𝐻𝑖] representing 

complex inter-user channel coefficients between user i and N-1 remaining users within its 

group is different by N-2 rows that any other channel matrix �𝐻𝑗� formed at any other user j 

where 𝑗 ≠ 𝑖. Therefore the N possible constellations sets [𝑅𝑖], 𝑖 = {1, … ,𝑁} will all have 

different and independent mapping and it is highly likely that at least one of these 

constellations will have sufficient 𝑑𝑚𝑖𝑛 enabling successful detection. 

To illustrate this point, Figures  6.8 and 6.9 respectively show the probability density 

function (pdf) of the minimum distance between any two composite constellation points 

formed from the superposition of four and six users, simultaneously transmitting over fully 

uncorrelated Rayleigh fading channels modelled as complex variable with Gaussian 

distribution with zero mean  and unity variance. We assume that all users employ BPSK 

modulation with an average energy per bit equal to unity. PDFs were obtained through 

simulations from a random sample of 106 channel realizations. As can be seen from these 

figures, the degradation in average 𝑑𝑚𝑖𝑛 between a composite constellation and that of a 

QAM constellation with the same modulation order transmitted from a single user over 

fading channel increases with the number of users.  However since each user can be used as 

a potential relay and the composite constellation formed at each user is independent due to 

the independent nature of the inter-user channel, selecting the user with the best  𝑑𝑚𝑖𝑛 out 

of N users not only offsets the effect of random structures of QAM constellation but leads to 

a significant increase in 𝑑𝑚𝑖𝑛 compared with a single point to point transmission as shown 
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in figure 6.9.   Therefore, the combination of multiuser superposition and cooperation leads 

to a new form of cooperative diversity referred to as Constellation Diversity (CD). 

 
Figure 6- 8 Probability density function of minimum distance of received composite constellation for four 

users employing BPSK with uncorrelated Rayleigh fading channels 

 

Figure 6- 9 Probability density function of minimum distance of received composite constellation for six 
users employing BPSK with uncorrelated Rayleigh fading channels 

 

An example of constellation diversity is shown in Figure 6.9 where various 16-QAM 

composite constellations formed at different users in a DMF system consisting of four users 
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employing BPSK transmitting over uncorrelated channels. The mapping and 𝑑𝑚𝑖𝑛 of 

composite constellations formed at each of the four potential relays differ greatly ranging 

from 0.16 to 0.95. Constellation diversity creates a virtual multiuser MIMO system while 

spatial multiplexing of  various independent signals from N  users can be achieved even 

when the BS are only equipped with a single receive antenna and even when only a single 

relay equipped with a single antenna is utilised.  

As in the case of MIMO systems high channel correlation will lead to a significant 

degradation in capacity and performance as it results in a significant reduction in 𝑑𝑚𝑖𝑛.  

However, the high channel correlation experienced in some potential relays (for example 

Figure 6.9d) will be offset by constellation diversity since the composite constellation at 

other users are formed from different channels and its highly unlikely that all groups of 

interuser channels are correlated.   

(a) composite constellation formed at user 1  (b) composite constellation formed at user 2  
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(c) composite constellation formed at user 3  
(d) composite constellation formed at user 3  

 
Figure 6- 8   Examples of composite constellation formed from the superposition of four users employing 

BPSK modulation and transmitting over uncorrelated fading channels. 

6.6.4 Route (Relay) selection algorithms for DMF 

At any time, any one of the N active users can act both as a source transmitting its own data 

as well as a relay between the remaining N-1 users and the BS. Hence there are N possible 

routes between the users and the BS each consisting of two hops. The first being the link 

between the users and the relay and the latter one is that between the relay and the BS. As is 

the case for multi-hop communication, the performance of each possible route is limited by 

that of the weakest hop at each route. Let’s assume that 𝜆𝑖1, 𝜆𝑖2 respectively, represent the 

equivalent SNR of the first and second hop in route 𝛹𝑖 , i={1,2,....N}, then the quality of 

route 𝛹𝑖 is limited by the SNR of the weakest hop. Therefore the SNR of route 𝜆𝑖 can be 

defined as: 

𝜆𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝜆𝑖1, 𝜆𝑖2} (6.5) 

Therefore the best possible route between users and the BS (optimum relay selection) is  

𝜆𝑜𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝜆1,𝜆2, … … . , 𝜆𝑁} (6.6) 

The first hop of each route is Multiple-Input-Single-Output (MISO) connection where N-1 

users transmit simultaneously over uncorrelated channels to a single relay. Hence, it is 

essential for relay selection to convert this MISO connection into an equivalent Single-
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Input-Single-Output (SISO) system and calculate the equivalent SNR for the first hop in 

order to compare it to that of the second SISO hop and to that of other possible routes 

(relays).  Two different approaches for calculating the equivalent SNR of the first MISO hop 

are proposed. The first is based on low-complexity norm-based conversion while the more 

computationally-complex optimum-performance second approach is based on 𝑑𝑚𝑖𝑛  based-

conversion.   

a) Norm-based conversion: Let’s assume that 𝜆𝑒𝑞,1,𝑖 represents the equivalent SNR of the 

first hop at route i then 𝜆𝑒𝑞,1,𝑖 is proportional to the Frobenius norm of the channel 

matrix[𝐻𝑖] representing complex inter-user channel coefficients between user i and N-1 

remaining users given by: 

𝜆𝑒𝑞,1,𝑖 =
𝐸𝑠�∑ �ℎ𝑖𝑗�

2𝑁,𝑗≠𝑖
𝑗=1

𝜎𝑛2
 (6.7) 

Where 𝐸𝑠 is the average symbol power per user,  �ℎ𝑖𝑗� represents the gain of the channel 

between users i and j, and 𝜎𝑛2 is the mean noise power. 

b ) Minimum distance-based conversion:  The SNR of the first hop at route i is equivalent 

to that of a SISO transmission where a single user employing a rectangular QAM 

constellation of size 2𝑁−1  and unity 𝑑𝑚𝑖𝑛 transmit over a fading channel ℎ𝑒𝑞 whose 

instantaneous channel gain at time t is equal to the minimum distance of the composite 

constellation formed at relay i at time t (𝑑𝑚𝑖𝑛,𝑖). 

𝜆𝑒𝑞,1,𝑖 =

⎩
⎪⎪
⎨

⎪⎪
⎧

� 4𝑗−1𝑑𝑚𝑖𝑛,𝑖
2

𝑗=(𝑁−1)/2

𝑗=1

2𝜎𝑛2�      𝑜𝑑𝑑 𝑁

(1 + � 4𝑗)𝑑𝑚𝑖𝑛,𝑖
2

𝑗= (𝑁−2) 2⁄

𝑗=1

4𝜎𝑛2�      𝑒𝑣𝑒𝑛 𝑁

 (6.8) 
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Eq. (6.8) is obtained by calculating the average symbol power derived in relation to 

minimum distance of a regular rectangular QAM constellation with size of 2𝑁−1 and a 

minimum distance equal to 𝑑𝑐𝑜𝑚,𝑖.  

The SNR of the second hop of route i representing the link between user i and the BS is 

defined as: 

𝜆𝑖2 =
(𝑁 + 1)𝐸𝑠|ℎ𝑖𝑑|2

𝜎𝑛,𝑖𝑑
2  (6.9) 

Where |ℎ𝑖𝑑| represents the gain of the channel between users i and the destination (BS).     

6.6.5 Norm based vs. minimum distance based conversion  

In a point (source) to multi-point (N-1 relays) transmission, the received signal at each relay 

belongs to a QAM constellation with a fixed mapping (structure). This QAM constellation 

is rotated in phase and scaled in amplitude due to multipath fading between the user and any 

specific relay.  Therefore, it is sufficient to measure the SNR of the received signal at the 

relays and choose the highest.  However, in multi-point to multi-point transmission, the 

received signal formed from the superposition of N-1 users at the N-1 potential relay form 

random constellations with variable mapping hence measuring the SNR as a relation to the 

norm of users’ channels does not give the real picture about the quality of link between that 

relay and the remaining users. 

To illustrate this point, Figure 6.11 shows the mapping of two composite constellations 

formed from the superposition of two users employing BPSK modulation at two relays 

𝑅1,𝑅2. Since the channels between users and the relays are assumed to be independent, the 

phase and gain correlation between channels at each relay leads to two constellations with 

different mapping. The average symbol power for the constellation at 𝑅1 is more than 

double of 𝑅2. However, due to the mapping of the constellations, the minimum distance 

between any two points in 𝑅2 is 33% more than that of 𝑅1. Hence, although  𝑅2 has lower 
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SNR that of 𝑅1; it is superior to 𝑅1 in terms of BER performance by 2.5 dB .  Therefore, 

optimum relay selection should be based on choosing the relay with highest minimum 

distance between any two composite constellation points rather than the SNR of the received 

constellation.   

 
Figure 6- 9  Example of Two composite constellations formed form the superposition of two users employing 

BPSK modulation at two relays R1, R2 

6.6.6 Sphere-based search minimum distance algorithm 

 Although the optimum criteria for relay selection is based on 𝑑𝑚𝑖𝑛, the computational 

complexity of finding  𝑑𝑚𝑖𝑛 is prohibitively large. For a group of N users employing BPSK 

modulation, there are N potential relay and the number of calculations required to obtain the 

𝑑𝑚𝑖𝑛 per relay is equal to∑ 𝑖2𝑁−1−1
𝑖=1 . Therefore it becomes essential to reduce this 

complexity to a manageable level.   

While the mapping of the composite constellation varies according to the gain and phase 

correlations between constituent users’ channels, all composite constellations regardless of 

their mapping have the following common characteristics:   

1. The 𝑑𝑚𝑖𝑛 of the composite constellation formed from the superposition of N individual 

constellations each with a minimum distance 𝑑𝑖  , 𝑖 = {1, … .𝑁} is equal to or less than 
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the smallest received minimum distance of any constituent constellation. In other words,  

𝑑𝑚𝑖𝑛 ≤ 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑑𝑖|ℎ𝑖|} 

2. 𝑑𝑚𝑖𝑛 is equal to or less than that of any composite constellation formed from any 

subgroup of  (𝑁1 ≤ 𝑁) constituent users. 

3.  The two sub-constellations [𝑅𝑖𝑈], �𝑅𝑖𝑙� formed respectively from the upper and lower 

halves of [𝑅𝑖] (Eq.6.4) have identical mapping because the constituent constellations 

forming  [𝑅𝑖] are symmetrical. 

4. For every point 𝑟𝑖 ∈ [𝑅𝑖𝑈], there exists another point −𝑟𝑖 ∈ �𝑅𝑖𝑙�. Therefore, if  𝑟𝑖, 𝑟𝑗 ∈

[𝑅𝑈] and ∅𝑟𝑖− 𝑟𝑗 ≤ 90° then  �𝑟𝑖 − 𝑟𝑗� ≤ �−𝑟𝑖 −  𝑟𝑗�.  Therefore in order to find the 

𝑑𝑚𝑖𝑛,  it is sufficient to calculate the distances between points in [𝑅𝑖𝑈]  where the 

distance between any two points in [𝑅𝑖𝑈] is equal to �𝑟𝑖 − 𝑟𝑗� if ∅𝑟𝑖− 𝑟𝑗 ≤ 90° and to 

�𝑟𝑖 + 𝑟𝑗� otherwise.  

5. For two equal-power  users employing BPSK modulation, the minimum distance of the 

composite constellation 𝑑𝑚𝑖𝑛 formed from the superposition of these two users over 

fading channels is:  

𝑑𝑚𝑖𝑛 =

⎩
⎨

⎧
𝑎𝑟𝑔𝑚𝑖𝑛 {𝑑|ℎ𝑖|}
𝑎𝑟𝑔𝑚𝑖𝑛 {𝑑|ℎ𝑖|}
𝑑|ℎ1 − ℎ2|
𝑑|ℎ1 + ℎ2| 

                0.5 ≥ |ℎ1|/|ℎ2| ≥ 2
                45° ≤ ∅12 ≤ 135°

                0° ≤ ∅12 ≤ 45°
                90° ≥ ∅12 ≥ 135°

    (6.10) 

By utilising these properties of the composite constellation, we propose a sphere-based 

search (SBS) algorithm in order to find 𝑑𝑚𝑖𝑛 accurately and with minimal complexity 

compared with the basic exhaustive search algorithm. Below is a step by step description of 

how sphere-based search works: 

• Channel ordering is performed using the rows of the channel matrix [𝐻𝑖]. Channel rows 

are ordered in a descending way according to the magnitude of each column.  



180 
 

• Using Eq (6.10) we obtain the vector 𝑣1����⃗  whose magnitude represents the minimum 

distance of the composite constellation formed from the superposition of the first two 

users with the strongest channel.  We replace the first two elements in [𝐻𝑖] with 𝑣1����⃗  

maintaining the ascending order and reducing the size of  [𝐻𝑖] by 1. 

• We repeat the process described in the previous step N-2 times until [𝐻𝑖] is reduced to a 

single element 𝑣𝑚𝚤𝑛��������⃗  whose magnitude |𝑣𝑚𝑖𝑛| ≥ 𝑑𝑚𝑖𝑛.  𝑣𝑚𝑖𝑛 represents an upper bound 

on the minimum distance of the composite constellation.   

• Sort the rows of  [𝑅𝑖𝑈] in a descending order according to the magnitude of each 

column.  

•  Calculate the distance between the first row of [𝑅𝑖𝑈] and all consecutive rows whose 

magnitudes are equal to or less than |𝑣𝑚𝑖𝑛| before repeating the same process for the 

second row and so on.  

• If the distance between any two points is less than  |𝑣𝑚𝑖𝑛|, this new distance will 

replace the initial value of |𝑣𝑚𝑖𝑛|  obtained in step 3.  

• The runtime measured by the required operations to find 𝑑𝑚𝑖𝑛 is highly dependent on 

mapping of the composite constellation.  

To validate the accuracy of  SBS , we performed a simulation in MATLAB using up to 10 

users (1024-QAM) transmitting over uncorrelated fading channels. Results show that SBS 

is 100% accurate and offers a significant reduction in the number of calculations compared 

with exhaustive search (ES) as shown in Table 6.2. In order to put things into prospective, 

the number of calculation with SBS required to find the 𝑑𝑚𝑖𝑛 of 64-QAM formed from six 

users is 125 which is equivalent to the same number required for ML detection of two 

symbols while that of ES is 2080 which is equivalent to the same number required for ML 

detection of 33 symbols. 
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Table 6- 2 Number of calculations required to obtain the minimum distance of a composite QAM 
constellation using both sphere-based search and conventional exhaustive search 

No. of  

users 

Size of  

Composite  QAM 

constellation 

Minimum 

number of 

calculations for 

sphere-based 

search (SPS) 

Average 

number of 

cal. for SPS 

maximum 

number of 

cal. for SPS 

Number of 

cal. for 

conventional 

search 

 

4 16 7 21 31 136 

6 64 21 125 381 2080 

8 256 91 681 1787 32896 

10 1024 541 3447 9457 524800 

 

6.6.7 Scheduling Period for DMF  

At the start of every frame, the SP will be divided into N equal mini time slots each 

associated with a single user out of N users. During its designated mini time slot, each user 

will broadcast a training sequence to the BS and other users within its group. Since our 

assumption that the channels remain constant during the whole duration of the frame, it is 

worth noting that by rearranging the position of the training sequences in that way, we can 

employ them to facilitate both relay selection and coherent detection (at the Relay and BS 

during FP and CP, respectively) without adding any overhead compared with direct 

transmission since CSI at the receiver is necessary for detection even in direct 

communication. The BS will utilise CSI about the channels between it and other N users in 

order to estimate the SNR of the second hop at each potential relay while the users will 

utilise the extracted CSI about their inter-user channels to calculate the equivalent SNR of 

the first hop associated with this user either by using norm-based conversation or minimum 

distance based conversion.  
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To simplify the relay selection process and to avoid having to feed the quantized values of 

the equivalent SNR from users to BS making the scheduling period prohibitively long, a 

minimum equivalent SNR referred to as  𝜆1𝑚𝑖𝑛 is chosen to guarantee a successful detection 

at the feeding stage.  

After the end of last mini-slot, the BS will send a flag identifying the user with the strongest 

channel to the BS. Upon receiving the flag, this user will transmit an acknowledgment to 

the BS indicating whether its equivalent SNR is higher than  𝜆1𝑚𝑖𝑛 (end scheduling period 

and start feeding period), or its equivalent SNR is lower than  𝜆1𝑚𝑖𝑛 (the BS will then 

transmit another flag identifying the user with the second strongest channel ).  

6.6.8 Feeding and cooperative periods for DMF 

Once a user has been selected as a relay, the remaining N-1 users within its group will 

simultaneously transmit their signals to the selected relay without any subdivision in time, 

frequency or code.  

Let’s assume that user i was selected as a relay then the baseband representation of the 

composite received signal at the relay 𝑦1𝑖 can be written as: 

𝑦1𝑖 = � 𝑥𝑗ℎ𝑖𝑗

𝑁,𝑗≠𝑖

𝑖=1

+𝑛1 (6.13) 

Where, 𝑥𝑗∀ 𝑗 ∈ {1, … ,𝑁} 𝑗 ≠ 𝑖 ,is independent modulated data for the 𝑗𝑡ℎ user, ℎ𝑖𝑗  is 

complex-valued Rayleigh fading channel from user 𝑗 to the relay i, and 𝑛𝑖  is a complex-

valued AWGN at relay i modelled as a Gaussian variable with zero mean and 𝜎𝑛𝑖
2  variance. 

The composite constellation formed at the relay has a modulation order of  2𝑁−1 assuming 

individual users employing BPSK modulation. Due to the irregular and suboptimum 

structure of the composite constellation, joint ML detection is required for detection at the 

relay. Joint Maximum likelihood (ML) Joint detection method calculates the maximum a 

posteriori probabilities (MAP) for all the 2𝑁−1 possible received data vectors[𝑅𝑖]. 
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Estimation of users’ data will be provided by selecting a vector which maximizes this 

probability. 

The distance squared between the received signal and the 𝑖𝑡ℎ possible combination signals 

𝑟𝑖 ∈ [𝑅𝑖] can be calculated as  

 𝑑𝑖2 = |𝑦1𝑖 − 𝑟𝑖|2, 1 ≤ 𝑖 ≤ 2𝑁−1 (6.14) 

Using the set of 2𝑁−1 calculated distances, the receiver makes its decision based on 

minimum distance criterion. The possible transmitted signals are selected as a symbol r𝑖 

which produces the minimum distance as 

 {𝑟̂1, … , 𝑟̂2𝑁−1} = arg  min
ri∈[𝑅𝑖]

 𝑑𝑖2 (6.15) 

Finally user’s data are found by remapping these symbols as used at the transmitters. 

However, the complexity of joint ML detection grows exponentially with the number of 

users making it prohibitive for a large number of users especially considering that relays are 

mobile nodes with limited power and processing capabilities. Therefore, in order to 

maintain the optimum performance of joint ML while reducing its complexity to a 

manageable level, we propose extending our sphere-based search algorithm for finding the 

minimum distance to enable a low-complexity ML-based detection for the composite 

constellation at the relay. Below is a step by step summary of how this composite 

constellation sphere-decoding works. 

1. Sort the rows of  [𝑅𝑈] in a descending order according to the magnitude of each column 

then insert  𝑦1𝑖 into [𝑅𝑈] in the right order.  

2. Calculate all distances between 𝑦1𝑖  and all consecutive rows whose magnitudes are 

equal to or less than 𝑑𝑚𝑖𝑛 before repeating the same process for the proceeding rows. 

3. If  𝑟𝑖 ∈ [𝑅𝑈]  |𝑟𝑖|− |𝑦1𝑖| ≤ 𝑑𝑚𝑖𝑛 𝑎𝑛𝑑 ∅𝑦1𝑖  − 𝑟𝑖 ≥ 90° then ignore  𝑟𝑖 and calculate the 

distance between 𝑦1𝑖 and 𝑟𝑗 = −𝑟𝑖 ∈ [𝑅𝐿].  
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4. If more than one point is found within a sphere of radius 𝑑𝑚𝑖𝑛 choose the closest point 

to 𝑦1𝑖. Otherwise double the radius of the sphere and repeat the earlier search process 

until a point is found.  

The estimated data from N-1 users obtained from the output of the detector will then be 

added to that of the relay and transmitted it to the BS during the CP after it has been re-

modulated using a regular rectangular QAM constellation of size 2𝑁.  In other words, while 

the mapping of the composite constellation received at the relay is variable and random, the 

remapping of detected users’ data at the relay ensures that the received constellation at the 

BS has a fixed rectangular mapping. Remapping at the relay is necessary for a number of 

reasons:   

• Remapping Gain: The relay is usually located much closer to the rest of the users 

compared with the BS, hence the path loss between the relay and users are relatively 

small and high SNR is expected   compared with direct communication from users to the 

BS. This combined with the constellation diversity embedded in the selection process 

should enable it to successfully decode the composite constellation despite the 

suboptimum 𝑑𝑚𝑖𝑛 due to the irregular composite constellation. However, due to the 

larger distance between users and the BS, optimising  𝑑𝑚𝑖𝑛 for a given power constraint 

becomes very important for successful detection at the BS. Remapping therefore leads to 

a remapping gain 𝐺𝜋 which is defined as the reduction in total transmit power which 

results from using a rectangular QAM constellation compared to a composite QAM 

constellation with random mapping when both have equal BER, average symbol power, 

and size.  Simulation results show that this remapping gain grows with the size of the 

constellation varying from 1.6 dB for QPSK to 2.6 and 3.4 respectively for 16-QAM and 

64-QAM. 
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• User identification: since both the relay and the BS use the same mapping table to 

encode and decode data from users, the BS can perform user identification without 

requiring any additional overhead. A different relaying strategy like amplify and 

forwards would require the relay to forward its inter-channel matrix [𝐻𝑖] to the BS to 

enable detection and user identification. 

• Gray coding gain: The BER performance of QAM constellation is not only affected by 

𝑑𝑚𝑖𝑛 but also by the Hamming distance (𝑑𝐻) between neighbouring constellation points 

which is defined as the difference in bits between successive symbols. The composite 

nature of QAM constellation formed at FP leads to suboptimal bit mapping where the 

𝑑𝐻   is higher than one. Figure 6-11a shows the bit mapping for 16-QAM composite 

constellation formed from the superposition of two QPSK users with a power ratio of 

four.  The maximum 𝑑𝐻  is two, making it more prone to errors. Remapping this 

constellation at the relay using Gray mapping as in Figure 6-12 reduces the 𝑑𝐻  to one. 

The BER performance due to bit mapping can be significant. For example [112] shows 

that the performance difference between binary and Gray mapped 16-QAM in Rayleigh 

fading is around 10 dB.  

 
Figure 6- 10 Bit mapping for 16-QAM composite constellation formed from the superposition of two 

QPSK constellations with a power ratio of four 
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Figure 6- 11 Gray Bit Mapping for 16-QAM constellation 

6.6.9 Simulation Results 

In this section, the BER performance of DMF is validated through simulation. All users and 

the BS are each equipped with a single antenna. Users transmit over uncorrelated flat-fading 

Rayleigh channels modelled as a complex Gaussian-distributed with zero-mean and unit 

variance. Channels change at a rate much slower than the data rate; therefore they remain 

constant over the duration of one frame and change independently between frames. Also 

perfect CSI at the relay and the BS were assumed. Figures 6.13 and 6.14 shows the BER 

performance of a group of four and six users, respectively. DMF were implemented using 

both basic norm-based selection (DMF-NBS) and optimum 𝑑𝑚𝑖𝑛-based selection (DMF-

dmBS). Simulation results were obtained by varying the ratio 𝜌  which represents the 

average channel gain of inter-user channel over that of average channel gain between users 

and the BS.  𝜌 is assumed to be high when the distances between users are much smaller 

than that between users and the BS.  
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 DMF is compared with direct multiuser non-cooperative transmission based on 

superposition coding and joint ML detection and with that of a single user transmitting using 

the same total average power as the DMF group to a BS equipped with N receive antennas.  

Both DMF relay selection schemes provide BER performance improvement even when 

𝜌 = 0 𝑑𝐵 over direct transmission using SPC and joint ML detection (non-coop SPC). 

However DMF-dmBS greatly outperforms basic DMF-NBS especially for low value of 𝜌. 

For example at 𝜌 = 0 𝑑𝐵 and BER=10−4, NBS only attains 1 dB BER improvement over 

non-coop SPC in both four and six users grouping while 𝑑𝑚𝑖𝑛-based selection attains a BER 

improvement over non-coop SPC of 17 dB and 20 dB for four and six users grouping, 

respectively. As the value of 𝜌 increases, the difference in performance between the two 

relay selection schemes gradually narrows down but remain significant at around 7 dB at 

BER of 10−5and 𝜌 = 20 𝑑𝐵 for the four users grouping. 

The expansion of constellation size at the relay which leads to BER degradation compared 

with that of individual users’ BPSK modulation is greatly offset by the cooperative diversity 

gain of DMF. For four users grouping as can be seen in Figure 6.13, the BER of DMF with 

𝑑𝑚𝑖𝑛-based selection shows a 17 dB improvement at BER of  10−4  and 𝜌 = 0 𝑑𝐵 compared 

to single user employing BPSK. For six users grouping the BER improvement is still 

excellent at 12 dB as can be seen in Figure 6.14. This shows that a BER improvement over a 

single-user orthogonal transmission can be achieved while increasing the rate and achieving 

spatial multiplexing at the same time.   Finally as 𝜌 → ∞, the BER of DMF with both relay 

selection schemes becomes identical to that of 1 × 𝑁 scheme with selective diversity 

combining at the BS and where a single user transmit using a regular QAM constellation 

with size 2𝑁.  This is expected as when the users are very close together, they can be 

remodelled as a single user with N transmit antennas with uncorrelated channels.  
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 Figure 6- 12 BER Performance of Decode & Remap & Forward (D&M&F) using basic relay 

selection and optimum selection (OS) for four users employing BPSK modulation. 

 
Figure 6- 13 BER Performance of Decode & Remap & Forward (D&M&F) using basic relay selection 

and optimum selection (OS) for six users employing BPSK modulation 
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6.7 Data Rate Analysis for CM 

In cooperative communication schemes, exchange of data is required among the users 

where time, frequency or code is used to maintain orthogonality among the exchanged data. 

The most popular method for this purpose is time sharing, where the users transmit only in 

the allocated time slot using TDMA [113]. Assuming that each symbol is transmitted in a 

single time slot, the number of time slots required for the time sharing cooperative 

communication method with a single BS is  equal to 𝑁 + 𝑁(𝑁 − 1).  Another more 

efficient way to exchange data is by using superposition coding [107-109] where users 

transmit a linear combination of their own data and that of other users during their 

designated time slot, hence the number of times slots required for superposition based 

cooperative methods in a 𝑁-user system with a single BS is equal to N.  

In CM, the number of time slots required for cooperative communications using CM for a 

𝑁-user system is always equal to 2. Therefore CM requires significantly smaller number of 

time slots in comparison to time sharing cooperation or superposition based cooperation. 

Reducing number of time slots, improves the users’ data rate. Assuming that users have 

equal transmission rates, the data rate per user is defined as the total number of transmitted 

bits over the total number of time slots required for transmission  

In Table 6.3, the data rate per user for CM, time sharing and SPC-based schemes are 

provided for the case where each user transmits a single bit. It is shown that the data rate per 

user is higher in the CM as a result of fewer required time slots for cooperation. 

Furthermore, in CM method, the rate improves as the number of users increase achieving a 

higher then unity rate for more than two users.  

  

Table 6- 3 Comparison of data rate per user in CM, time sharing, and SPC sharing methods. 

Number of users 2 3 4 5 6 

Total transmitted 2 3 4 5 6 
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bits 
Data 
rate 
per  user 
(𝓡) 
bits/time 
slot 

CM 2
2 = 1 

3
4 = 1.5 

4
2 = 2 

5
2 = 2.5 

6
2 = 3 

Time 
Sharing 

2
4 = 0.5 

3
9 = 0.33 

4
16 = 0.25 

5
25 = 0.2 

6
36 = 0.16 

SPC 
Sharing 

2
2 = 1 

3
3 = 1 

4
4 = 1 

5
5 = 1 

6
6 = 1 

 

6.8 Conclusion  

This chapter introduced a simple two-user cooperative diversity scheme that utilises 

adaptive modulation and relaying to achieve a full-rate full-diversity communication with 

only a modest reduction in BER performance compared with conventional adaptive decode 

and forward.  Next a novel high-rate multiuser cooperative scheme referred to as 

cooperative modulation (CM) has been proposed. The data rate analysis has demonstrated 

that CM provides a rate per user that actually increase with N contrary to time sharing 

cooperative communications and superposition based sharing.  Two relaying schemes based 

on CM were proposed: PAF and DMF.  PAF assumes that CSI at available only at the users.  

In PAF, a simple relay selection based on choosing the user with the best channel to the BS 

is employed to minimise feedback. After selection, users simultaneously transmit using 

CMMA to the selected relay which adds its own date using its own unique modulation set 

then amplifies the composite signal and retransmit it to the BS using simple channel 

inversion.  PAF achieves high spectral efficiency and cooperative diversity using only a 

small overhead for relay selection and without the complexity of detecting the composite 

QAM constellation at the relay. Simulation results show that PAF offers a significant 

improvement in BER performance compared with direct CMMA when > 0 . 

A second system based on CM called DMF which only utilise CSI at the relay and the BS 

has been proposed.  Two DMF relay selection algorithms has been proposed, the first is 

based on simple norm-based selection, while the second one incorporate the 𝑑𝑚𝑖𝑛 of the 
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composite QAM constellation formed at each potential relay into the selection process.  To 

minimise the computational complexity required to calculate the 𝑑𝑚𝑖𝑛 at the relay, a new 

sphere-based search algorithm was proposed that exploits the geometric common properties 

of the composite constellation.  Simulations result demonstrates that DMF using  𝑑𝑚𝑖𝑛-

based selection provide a remarkable improvement in BER performance; compared with 

single user employing BSPK modulation Even when  𝜌 = 0 𝑑𝐵. 𝑑𝑚𝑖𝑛-based selection 

outperforms that using norm-based selection by huge margin especially at lower value of 𝜌 

where the latter only attains a modest improvement in performance.  
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7 Conclusions and Future work  

7.1 Conclusions   

In this thesis, we have created a framework for designing and evaluating a new set of 

wireless non-orthogonal multiple access schemes that take advantage of physical-layer 

collaboration among users. Specifically, in these collaborative modulation schemes, as we 

have referred to them throughout this thesis, A group of users pull their transmit power 

together in a collaborative manner to create a virtual user with power and rate equal to those 

of all users combined. By doing so, users trade off costs in BER performance, rate, and 

complexity for a net gain in group spectral efficiency and efficient utilisation of available 

network bandwidth. We showed that these gains in multiple access and spectral efficiency 

can be achieved with small feedback, regardless of channel correlation, and independent of 

the number of receive antennas.    

In order to fulfil these design objectives in chapter 3, a new non-orthogonal multiple access 

scheme called collaborative modulation multiple access (CMMA) was proposed. The main 

design philosophy for CMMA is the notion that users can be allowed to share a common 

channel as long as any combination of data from these users combined over the common 

channel produces a unique interference pattern or constellation point (remove ambiguity) 

that is known at the receiver and the separation between these unique interference patterns 

(the minimum distance between constellation points) is sufficient to mitigate noise and 

enable successful detection.   

CMMA assigns users with unique modulation sets centrally designed to fulfil these two 

design objectives. Users on the other hand, perform collaborative precoding which involves 

a simple truncated channel inversion and phase rotation of user’s transmitted signal 



193 
 

according to CSI obtained through a common pilot. This pilot is also used to independently 

maintain synchronization between users. Collaborative precoding insures that users’ signals 

arrive at the BS according to their unique modulation sets and combine coherently to form a 

complex vector which belongs to the predesigned composite constellation hence CSI is not 

required for detection.  Finally a simple joint ML detection is used at the BS.  

A centralized multi-stage composite constellation design algorithm was proposed for 

CMMA. It optimises the power, phase, and modulation mapping of individual users in order 

to produce a composite QAM constellation that maximises the number of users while 

maintaining a minimum BER performance. It was shown that non-ambiguous composite 

constellations can still be formed from users with equal power by optimising phase rotation 

between their individual constellations; however the resulting composite constellation in this 

case has an irregular mapping with 𝑑𝑚𝑖𝑛 between constellation points smaller than that of a 

rectangular constellation with the same average power and size formed from users with 

unequal power. It was also demonstrated that replacing individual user’s constellation with 

regular mapping like QPSK by irregular sub-optimal mapping with the same constellation 

size, can result in composite constellations with regular mapping and higher 𝑑𝑚𝑖𝑛 even 

when users have the same power. CMMA multi-stage composite constellation design is 

flexible and can accommodate users with different rates and BER requirement. It also allows 

the BS to add or remove users with little or no effect on other active users. 

Through simulation and analysis, it was shown that CMMA can achieve a linear increase in 

link spectral efficiency at the expense of graceful degradation in BER performance, since 

increasing the number of users leads to an exponential increase in constellation size while 

the increase in power is only linear. For example while maintaining a rate of 4 bits/sec, a 4-

user CMMA scheme endures a 2.6 dB drop in BER performance compared with a single 

user transmission with a rate of only 1 bit/sec.  Hence like other non-orthogonal MAS, 
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CMMA has a soft user capacity but is interference limited.  Therefore it is envisaged that 

CMMA can be easily integrated with orthogonal multiple access techniques (such as 

TDMA, OFDMA) to extend user capacity and improve link utilization.  Due to the channel 

adaptation which is an integral part of CMMA, the BER performance of CMMA shows a 

significant BER performance compared with non-adaptive transmission. For example 4-user 

CMMA system achieves 14 dB improvement at BER of 10 4−  compared with non-adaptive 

TDMA system where users employ 16-QAM modulation. 

To improve the BER performance of CMMA, a new selection combining receive diversity 

scheme called SC-CMMA is proposed. SC-CMMA preserves the simple precoding, 

feedback, and detection structure of CMMA. The selection process chooses the antenna s 

which minimises the total transmit power required by users in a CMMA group to transmit 

their composite signal. By reducing the instantaneous transmit power, the average received 

power increases enabling composite constellations with higher mind . SC-CMMA updates the 

selection process periodically by using the detected data from the output of the selected 

antenna s as a training sequence to estimate channel gains at other antennas. With much 

reduced complexity, it was shown that the performance of 2 × 3 SC-CMMA outperforms 

that of a linear MMSE precoders used in 3 × 2 MIMO by up to 10.5 dB at BER 510− where 

users in both cases employ QPSK.  However at a fixed number of receive antennae, the 

diversity gain obtained from SC-CMMA tend to decrease as the number of users increase. In 

the case of two receive antennae, the diversity gain drops from 4 dB for 2-user CMMA to 

2.6 dB for 6-user CMMA. Contrary to MIMO, SC-CMMA benefit from high transmit 

correlation between users as all users in this case tend to experience  their strongest channel 

at the same receive antenna maximising the attainable diversity gain at any number of users.  

In chapter 4, closed form expressions of CMMA and SC-CMMA spectral efficiency 

(capacity per unit of bandwidth) as a function of average received SNR were derived.   It 
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was shown that the capacity of CMMA increases with the number of users but so does the 

multiuser interference between them which leads to only non-linear logarithmic increase in 

capacity.  The capacity of CMMA is not affected by channel correlation since users precode 

their signals independently.  The capacity of CMMA was compared with that of MUD. It 

was shown that MUD offers a higher capacity than CMMA on the expense of latency and 

scheduling overheads. The performance gap between the two schemes tends to decrease as 

the number of users increase because the power gain in CMMA increases linearly while 

additional improvement in diversity gain in MUD tends to diminish. 

Next a new scheme combining both opportunistic scheduling using only partial CSI at the 

receiver and CMMA referred to as CMMA-OS was proposed in Chapter 5 to combine both 

the power gain of CMMA and the multiuser diversity gain that arises from users’ channel 

independence. To avoid the complexity and excessive two-way feedback associated with 

dynamic real-time update of the composite constellation, the BS takes into account the 

independence of users’ channels in the design of the composite constellation and its 

constituent modulation sets which remains fixed thereafter. However these constituent sets 

are no longer associated with specific users but assigned dynamically to users depending on 

their instantaneous channel gain. Users utilise their CSI to estimate which modulation set to 

use and then feedback their estimation concurrently using their previous modulation set. 

The BS then corrects the choice of modulation set when more than one user experiences an 

instantaneous channel gain in the same region and thus chose the same unique modulation 

set causing ambiguity. Capacity analysis of CMMA-OS shows significant improvement 

over conventional CMMA. For example, the capacity of 4-user CMMA-OS increases from 

8 to 10 bits/sec/Hz at SNR of 25 dB compared with conventional CMMA. A BER 

improvement of 7dB can also be realised in this case due to both better constellation 

mapping and multiuser diversity gain.  CMMA-OS also offers higher capacity than MUD 
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schemes at a comparable level of overhead and complexity and without excessive delays 

making it an attractive choice in high-capacity delay-sensitive applications.  

The second part of Chapter 5 introduced a hybrid approach combining both collaborative 

coding and modulation referred to as H-CMMA. H-CMMA can vary the 𝑑𝑚𝑖𝑛 of the 

received composite constellation by changing the number of unique constellation points for 

the same average total power. This hybrid approach enables CMMA to accommodate large 

number of users while flexibly managing the complexity and BER performance of the 

combined simultaneous transmissions of these users. H-CMMA can also simultaneously 

accommodate users with different QoS requirements (in terms of rate and BER 

performance). For example a 6-user H-CMMA can improve the BER performance by 

almost 7 dB with a small reduction in rate from 6 to  4.584 bits/sec compared with CMMA. 

This is due both to the reduction in the number of unique constellation points from 64 to 36 

and the more regular mapping (more equal distribution of constellation points) which in 

turn improves 𝑑𝑚𝑖𝑛. It was also demonstrated that for a fixed sum rate and same number of 

users, H-CMMA is superior to a more conventional approach to reduce complexity and 

increase minimum distance using time division with CMMA. H-CMMA can also be seen as 

a practical method of implementing CCMA in fading environments while achieving higher 

rates and user capacity than that possible with conventional CCMA.     

Chapter 6 introduced a simple two-user cooperative diversity scheme that utilises adaptive 

modulation and relaying to achieve a full-rate full-diversity communication with only a 

modest reduction in BER performance compared with conventional adaptive decode and 

forward. Our scheme restricts relaying to the user experiencing the stronger channel to the 

BS. Furthermore, users switch to a higher modulation order during the cooperative mode to 

compensate for the half-duplex constraint and maintain the same spectral efficiency as 

direct non-cooperative mode.   
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Next a novel high-rate multiuser cooperative scheme referred to as cooperative modulation 

(CM) has been proposed. CM allows N active users to share the network simultaneously 

while retaining a cooperative diversity gain in order of N.  CM does not require any code, 

time or frequency sharing for providing multiple access, instead it relies on expansion in 

signalling space.  The number of time slots required for cooperation is always kept to two 

by restricting relaying of users’ data to the user with best overall connection. The data rate 

analysis has demonstrated that CM provides a rate per user that actually increases with N 

contrary to time sharing cooperative communications and superposition based sharing. For 

a 6-user system, CM provides 3 bits/channel use in comparison to time sharing cooperation 

and SPC-based sharing which respectively only obtains rates of 0.16 and 1 bits/channel use.   

Two relaying schemes based on CM have been proposed: PAF and DMF.  PAF assumes 

that CSI is available only at the users.  In PAF, a simple relay selection based on choosing 

the user with the best channel to the BS is employed to minimise feedback. After selection, 

users simultaneously transmit their data using collaborative precoding identical to that of 

CMMA to the selected relay which adds its own date using its own unique modulation set 

then amplifies the composite signal and retransmits it to the BS using simple channel 

inversion.  PAF achieves high spectral efficiency and cooperative diversity using only a 

small overhead for relay selection and without the complexity of detecting the composite 

QAM constellation at the relay. Simulation results show that PAF offers a significant 

improvement in BER performance compared with direct CMMA transmission from users to 

the BS. For example a 6-user PAF scheme attains a 8.5 dB improvement at a BER of 10−5 

and 𝜌 = 20 𝑑𝐵  compared with conventional CMMA.  

A second system based on CM called DMF which only utilise CSI at the relay and the BS 

has been proposed.  DMF allows users to transmit their data simultaneously to the selected 

relay over a common channel. Since no precoding is used at the users in order to form the 

composite QAM constellation at the relay, the structure of the resulting composite QAM 
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constellation is highly random and unknown to the BS. Hence DMF requires the detection 

and remapping of users’ data at the relay to maximise the 𝑑𝑚𝑖𝑛 of QAM constellation and 

enable user identification at the BS. Moreover it requires more sophisticated relay selection 

algorithms that consider the two-hop nature of each potential route. Two DMF relay 

selection algorithms have been proposed, the first is based on simple norm-based selection 

utilising only information about the channel gain at the relays, while the second one 

incorporates the 𝑑𝑚𝑖𝑛 of the composite QAM constellation formed at each potential relay 

into the selection process.  To minimise the computational complexity required to calculate 

the 𝑑𝑚𝑖𝑛  at the relay, a new sphere-based search algorithm was proposed that exploits the 

geometric common properties of the composite constellation.  For example, the number of 

calculations with sphere-based search required to find the 𝑑𝑚𝑖𝑛 of 64-QAM formed is 125 

while that of conventional exhaustive search is 2080. Simulation result demonstrates that 

DMF using  𝑑𝑚𝑖𝑛-based selection provides an remarkable improvement in BER 

performance; even when  𝜌 = 0 𝑑𝐵 , the performance of 4-user  DMF with 𝑑𝑚𝑖𝑛-based 

selection shows a 17dB improvement at BER of  10−4 compared with single user 

employing BSPK modulation. 𝑑𝑚𝑖𝑛-based selection outperforms norm-based selection by 

huge margin especially at lower value of 𝜌 where the latter only attains a modest 

improvement in performance. However the performance gap between the two DMF based 

selection schemes gradually reduces with increasing value of 𝜌 therefore DMF can switch 

to lower-complexity NB-selection at high 𝜌. 

 

7.2 Future work  

• CMMA with blind precoding: throughout this thesis we assumed that CSI and 

collaborative precoding is used to optimise the 𝑑𝑚𝑖𝑛 of composite QAM constellation 

formed from the superposition of multiple users. It is worth investigating if   𝑑𝑚𝑖𝑛 can 
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still be maximised even when CSI are not available at the transmitters by utilising the 

block fading nature of users’ channels to perform blind precoding.  To give a general 

idea of how such a system will work.  Let’s assume that two users transmit their data 

over independent Rayleigh fading channels to a single receive antenna simultaneously 

using the same frequency and orthogonal signature. Each cycle, one of the users 

transmits two symbols with a predefined phase rotation between them, while the other 

sends the same symbol twice. This phase rotation is chosen so that at least one of the 

two consecutive composite signals belongs to a constellation with a high 𝑑𝑚𝑖𝑛. The 

optimum signal will be jointly decoded first using ML detection and then the repeated 

symbol is subtracted from the signal with the suboptimal constellation to decode the last 

symbol. The new scheme increases the spectrum efficiency of two users’ link by 50% 

compared with a single user case while maintaining a BER performance of a single user 

with the same sum rate over uncorrelated channels and significantly reducing the 

performance degradation caused by high channel correlation.  

• Grouping for CMMA: despite the optimality of joint ML detection at the BS, its 

complexity grows exponentially with the number of users. A possible solution will be to 

divide users into a number of high and lower power groups where inter group detection 

is done by using a simple SIC receiver while users within each group are detected using 

joint ML detection. A grouping design algorithm must insure that the all composite 

constellation points formed from the lower power group must be at least 50% lower 

than the square minimum distance of the high-power composite constellation. This will 

insure that the overall composite constellation formed form the superposition of the two 

groups is non-ambiguous. Grouping should allow CMMA to accommodate a large 

number of users with greatly reduced complexity at the receiver and without suffering 

from an error floor in BER performance which usually occurs in conventional SIC 

receivers.   
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• Iterative decoding for SC-CMMA: In this thesis, detection in SC-CMMA is 

performed only at the selected antenna; however since blind channel estimation can 

extract full CSI for the channels in the remaining antennas, a joint multi-antenna ML 

detection similar to that used in MIMO can be performed across all antennas to improve 

the performance of initial detection. This should enable a comparable BER performance 

and capacity to that of MU-MIMO without the need to allocate any power or time for 

training sequences at the uplink.    

• Overloaded MIMO using multi-group cooperative modulation: one attractive 

application of CM is to provide low-overhead low-latency technique to extend the 

number of users that can be served simultaneously in MU-MIMO beyond the number of 

antennas at the BS. This can be achieved by allowing more than one group to perform 

scheduling and feeding periods simultaneously then the selected relays at each group 

will use spatial multiplexing to transmit their group data.  Inter-group interference 

during the scheduling and feeding periods can be suppressed by sufficient geographic 

separation between groups combined with power control.   
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