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Identification of the xenometabolome and novel contaminant markers 

in fish exposed to a wastewater treatment works effluent 

Summary 

 
Fish can bioconcentrate complex mixtures of xenobiotics arising from exposure 

to wastewater effluents discharged into surface waters. Wastewaters contain a complex 
mixture of organic compounds and little is known about their uptake into fish and their 
health effects. In this study, a chemical profiling approach was used to characterize the 
profile of xenobiotics and their metabolites (the xenometabolome) in biofluids (bile and 
plasma) of juvenile rainbow trout (Oncorhynchus mykiss) exposed to a wastewater 
effluent. Metabolite profiles of effluent-exposed fish were compared with that from 
control fish exposed to uncontaminated river water. Samples were analysed by ultra 
performance liquid chromatography-time-of-flight mass spectrometry and data analysed 
by multivariate statistics. Exposure to effluent resulted in accumulation in trout bile of 
alkylsulfophenyl and alkylpolyethoxy carboxylates, as well as glucuronide conjugates 
of nonylphenol ethoxylates, alcohol ethoxylates, naphthols, chlorinated xylenols and 
phenoxyphenols, chlorophenes, resin acids, mefenamic acid and oxybenzone. Non-
conjugated or sulphate conjugates of many of these contaminants were also detected in 
plasma of effluent-exposed trout. In addition, changes in the concentrations of 
endogenously derived metabolites were also detected in trout plasma, and these 
included an increase in blood bile acids, methylbutryolcarnitine and a decrease in 
sphingosine levels. These observations were verified in a further exposure of sexually 
mature roach (Rutilus rutilus) to concentrations of the same effluent. Exposure to 50% 
or 100% effluent resulted in dose dependent increases in blood concentrations of 
xenobiotics, taurocholic acid, syprinol sulphate and lysophospholipids and decreases in 
sphingosine levels. This work reveals the complex nature of xenobiotics accumulating 
in effluent-exposed fish together with the identification of changes in concentrations of 
lipid metabolites associated with hepatotoxicity. These results reveal, for the first time, 
that metabolite profiling techniques can be used to screen for uptake of complex 
mixtures of contaminants into fish and also for the detection of natural metabolite 
pathways in the organism that are disrupted due to exposure to multiple xenobiotics. 
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CHAPTER 1: General Introduction 
 

1.1 Overview of emerging contaminants occurring in the aquatic environment 

The term ‘emerging contaminants’ is generally used to describe pollutants either 

newly developed or newly discovered in the environment which have the potential to 

cause adverse effects to human and wildlife. Over the last decades scientific interest in 

the presence of many classes of emerging contaminants in the environment (e.g. 

personal care product compounds, pharmaceuticals, endocrine disruptors and illicit 

drugs) has increased significantly. Hundreds of tonnes of these compounds are used by 

the population every year and many of them are considered potentially hazardous for 

the environment since they can be ubiquitous, relatively persistent and biologically 

active, for example with endocrine disruption properties. Furthermore, due to their 

continuous release into the environment and possible additive or synergistic effects 

through combined action, even weakly persistent compounds might cause unwanted 

effects to wildlife (Daughton and Ternes, 1999, Fent et al., 2006). Concentrations of 

emerging contaminants that can be present in river water can range widely from ng/L to 

µg/L (Halling-Sorensen et al., 1998, Daughton and Ternes, 1999, Kolpin et al., 2002) 

and their levels depend mainly on the extent of water dilution resulting from rainfall as 

well as their concentrations being discharged into the receiving waters. 

Personal care product compounds are mainly released into the aquatic 

environment through wastewater treatment plants (WwTWs). This category of 

contaminants encompasses compounds such as DEET (N,N-diethyl-meta-toluamide, the 

most common active ingredient in insect repellents), parabens (alkyl esters of p-

hydroxybenzoic acid, used as bacteriostatic agents in drugs, cosmetics, and food), 

antifungal agents (e.g. triclosan, which is widely used in many household products), 

polycyclic musks (tonalide and galaxolide used as fragrances in a wide range of 

cleaning agents) and UV sunscreens (organic filters to UV radiation in sunlight, as 

benzophenones and methoxycinnamates) (Stuart et al., 2012). Triclosan and its 

metabolite methyl triclosan have been found in surface water by Lindström et al. (2002) 

whilst tonalide, galaxolide and galaxolide-lactone have been detected in WwTW 

effluents (Horii et al., 2007). Heberer et al. (2002) investigated synthetic musk 

concentrations in sewage, sewage sludge, surface water, aquatic sediment, and biota 

samples in relation to bioaccumulation, metabolism in fish, and environmental and 

human risk assessment. Tonalide and galaxolide were the most relevant compounds in 
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the characterized matrices and relative concentrations differed depending on the 

environmental compartment. Another example of personal care products widely 

distributed in the aquatic environment are sunscreen agents such as benzophenone-type 

UV, which have also been detected in the the watercourses despite their lipophilic 

nature. In river water in Korea, the overall concentrations of the  UV filters in the 

sediment samples were between 500 and 18380 ng/kg  and in water samples were 

between 27 and 204 ng/L (Jeon et al., 2006). 

Pharmaceuticals are another class of emerging contaminants released extensively 

in the aquatic environment and are therefore of concern to the environmental 

community. Although many pharmaceutical compounds are effectively reduced by 

wastewater treatment, others are sufficiently persistent to occur in the environment. A 

wide range of pharmaceutical products have been already detected in surface and 

groundwater, mainly associated with wastewater disposal. Common investigated drugs 

include antibacterial (e.g. trimethoprim, erythromycin-H2O and amoxicillin), veterinary 

and human antibiotics (e.g. ciprofloxacin, erythromycin, lincomycin, sulfamethoxazole 

and tetracyclines), prescription drugs (e.g. codeine, salbutamol and carbamazepine) 

anti-inflammatories and analgesics (e.g. paracetamol, tramadol, naproxen, ibuprofen 

and diclofenac) iodinated X-ray contrast media (e.g. iopromide and iopamidol) and 

psychotic drugs (e.g. gabapentin) (Ternes and Hirsch, 2000, Nikolaou et al., 2007, Pérez 

and Barceló, 2007, Barnes et al., 2008, Watkinson et al., 2009, Vulliet and Cren-Olivé, 

2011). For instance, antibiotics have been found in hospital effluent at concentrations 

ranging from 0.01–14.5 µg/L, dominated by the β-lactam, quinolone and sulphonamide 

groups; and in WwTW influent up to 64 µg/L and in WwTW effluents in the low ng/L 

range up to a maximum of 3.4 µg/L, and up to 2 µg/L in the surface waters including 

freshwater, estuarine and marine samples (Watkinson et al., 2009). Several of these 

pharmaceuticals have been proved to be both ubiquitous and persistent in the aquatic 

environment (e.g. erythromycin-H2O, codeine, carbamazepine, gabapentin and 

valsartan) (Kasprzyk-Hordern et al., 2008). The persistence of the studied compounds 

was evaluated on the basis of the percent concentration reduction after a certain distance 

from the effluent discharge. For instance erythromycin-H2O was reduced by only 12% 

of its original concentration after 25km of river flow. Other potential threats to surface 

water are chemotherapy drugs, such as 5-fluorourcil, ifosfamide or cyclophosphamide 

(Buerge et al., 2006, Zaharie, 2006, Johnson et al., 2008) and illicit drugs as cocaine and 
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amphetamines (Kasprzyk-Hordern et al., 2008, Zuccato et al., 2008). Illicit drugs have 

been detected in rivers at levels of ng/L (amphetamine, cocaine and its main metabolite 

benzoylecgonine). Their occurrence in the environment is primarily associated with 

their high illegal usage and is strongly related to discharge of insufficiently treated 

wastewater effluents (Kasprzyk-Hordern et al., 2008). Caffeine and nicotine, and the 

nicotine metabolite cotinine, have been widely detected in groundwater impacted by 

sewage effluent (Teijon et al., 2010).  

In addition, a wide range of industrial compounds can also be released into the 

environment affecting wildlife health status. Dioxins, chlorinated solvents, petroleum 

hydrocarbons (e.g. polyaromatic hydrocarbons and methyl tertiary-butyl ether), and 

plasticisers (e.g. bisphenols and phthalates) (Moran et al., 2005, Moran et al., 2006, 

Verliefde et al., 2007) are contaminants  which can cause a range of well established 

health problems. Dioxins are also found in the environment as well as a consequence of 

degradation of other micropollutants such as triclosan (Mezcua et al., 2004). 

Surfactants are widely detected in the environment due to their wide usage in 

household products. The priority pollutants octyl- and nonyl-phenol (OP and NP) are 

used in the production of the alkylphenol ethoxylates (APEs). Both the parent 

ethoxylates and their metabolites, the alkylphenols and the carboxylic degradation 

products are detected in surface water and effluents (Soares et al., 2008). 

In addition, endocrine disruption compounds (EDCs) have become important 

emerging contaminants, due to their presence in environmental waters and concern 

about possible harmful effects both to wildlife and humans. Amongst the most common 

EDCs, vertebrate sex hormones are commonly present in wastewater effluents; they 

include androgens (e.g. androstenedione and testosterone),  estrogens (e.g. estrone, 

estriol, 17α- and 17β-estradiol), progestins (e.g. progesterone), synthetic androgens such 

as oxandrolone, nandrolone and more importantly synthetic estrogens such as 17α-

ethinyl estradiol and diethylstilbestrol (Johnson et al., 2000, Standley et al., 2008, 

Vulliet and Cren-Olivé, 2011). 
 

1.2 Sources of contamination in the aquatic environment 

Release of contaminants to the aquatic environment occurs via two primary 

routes: point-source pollution and non-point-source pollution. Point-source pollution 

derives from discrete sources whose inputs can be defined spatially. Examples of point-

source pollution include industrial effluents (pulp and paper mills, steel plants, food 
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processing plants), municipal waste water treatment plants and storm-water overflows, 

resource extraction (mining), and land disposal sites (landfill sites, industrial 

impoundments). On the other hand, non-point-source pollution originates from diffuse 

sources which occur over broad geographical scales. Examples of nonpoint-source 

pollution encompass agricultural run-off (pesticides, pathogens, and fertilizers), storm-

water and urban run-off, and atmospheric deposition (wet and dry deposition of 

persistent organic pollutants) (Ritter et al., 2002).  

1.2.1 Wastewater treatment works 

Often wastewaters contain a wide range of chemicals used in modern life and as a 

result they can be a significant source of newly emerging contaminants. These 

chemicals originate from both industrial and domestic sources (including sewage) and 

depending on the concentration levels may exert toxic effects on wildlife and humans. 

There are four main stages in wastewater treatment (preliminary, primary, secondary 

and tertiary treatment) and the number of stages applied depends on the quality of 

discharge required for a specific environment (Water UK, 2006, EPA Washington, 

2004). 

1.2.1.1 Preliminary treatment 

Sewage undergoes preliminary treatment to make it suitable for the main 

treatment processes. Preliminary treatment includes screening and removing grit, oil 

and grease. 

Screening 

On entering the waste water treatment plant, dirty water passes through screens to 

remove large articles which could damage machinery or block pipe systems. Screens 

consist of vertical bars or perforated plates which are regularly cleaned by rakes or 

water jets. The cleared material (known as screenings) is usually washed and safely 

disposed of at landfill sites.  

Grit removal 

Sewage may contain grit and dirt coming from roads or cleaning activities. This 

inert material cannot be treated and must be removed by a settlement process which 

allows organic material to remain in suspension for the next treatment stage. The grit is 

washed and disposed of to landfill as well as the screenings. 
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Oil and grease removal 

This step is exceptional since theoretically oil and grease should not be poured 

down drains or discharged to a sewer. This process is applied when necessary in order 

to protect the downstream processes of the wastewater treatment plant. 

1.2.1.2 Primary treatment (settlement) 

After the preliminary treatment, the waste water flows into large round or 

rectangular tanks. In these tanks the organic material sinks to the tank floor and is swept 

by a scraper blade to a submerged outlet. Afterwards, it is pumped to a storage tank for 

subsequent treatment. Most of the solids in sewage are removed in this process; the 

concentrated thick slurry deriving from this step is known as sewage sludge and it is 

dealt with separately. The water after removal of the settled solids flows over a weir to 

the next stage of treatment. 

1.2.1.3 Secondary treatment (biological treatment)  

Despite the efficiency of the primary treatment in removing the organic material, 

the discharge of the settled sewage to a watercourse would still cause problems. 

Naturally occurring bacteria in the receiving watercourse use organic material as a food 

source by means of oxidation processes through the oxygen dissolved in the water. 

Discharges of large quantities of organic matter would result in a rapid decrease of the 

oxygen levels with consequent harm to fish and wildlife. Wastewater treatment plants 

use the same process to break down and remove substances harmful to the environment 

but speed them up within a controlled environment. There are two main types of 

secondary treatment: 

Biological filtration 

In this process the settled sewage is distributed via small holes in continuously 

moving arms over 2 m deep circular or rectangular beds of stones. This step does not 

involve a proper filtration but the bed of stones provides an ideal place for bacteria to 

live and grow. The bacteria form a biological film on the stones which oxidises and 

removes the dissolved organic material as the settled sewage trickles downward. 

Oxygen from the spaces between the stones allows the microorganisms to respire and 

multiply. Once the film reaches a maximum thickness, the excess material is 

continuously washed off. After this step, the water flows to a settlement tank (humus 

tank) where the excess biological film is separated and removed as humus sludge, 
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which is normally returned to the primary settlement tanks and removed with the 

sewage sludge.  

Activated sludge 

In this process the settled sewage is mixed with a mixture of bacteria (activated 

sludge) and then aerated by agitators or air blowers in large tanks. The amount of air is 

regulated according to the respiration requirement, depending on the bacteria 

concentration and the load of the settled sewage. The excess of bacteria is drawn off as 

surplus activated sludge which is then mixed with the rest of the sewage sludge. The 

treated water is then separated from the activated sludge in final settlement tanks and is 

normally suitable for safe discharge to the environment. The key factor in order to have 

an effective biological treatment is the efficient separation of the bacteria (activated 

sludge or biological film) from the treated water. Very fine filter membranes can be 

used instead of settlement tanks to obtain a very high quality discharge. This process is 

very expensive though and is normally used for water very sensitive environment. 

Sewage contains also both nitrogen and phosphorus which can lead to nutrient 

enrichment of watercourses (eutrophication), resulting in algal blooms potentially 

harmful to water life. Nitrogen can be removed in specifically designed biological 

treatment plants whilst phosphorus removal is accomplished adding iron or aluminium 

salts before the settlement step.  

1.2.1.4 Tertiary treatment 

Tertiary treatment is applied when very high quality effluents are required. This 

additional process includes sand filters and natural systems such as wetlands. When 

discharges are made to bathing waters or shellfish growing areas, disinfection by UV 

light or removal of bacteria by membrane filtration is required 

Over 95% of UK population is connected to wastewater treatment works, which 

are served by over 300,000 kilometres of sewers. There are 9000 wastewater treatment 

plants in UK with the majority serving populations of less than 2000. Each person 

produces approx 150 L of wastewater per day. 

1.2.2 Removal efficiency in wastewater treatment plants 

The efficiency of the wastewater treatment process plays an important role in 

minimising the release of contaminants into the aquatic environment (Geoff, 2001). 

However, a variety of polar contaminants such as pharmaceuticals or personal care 

product compounds are able to go through the biological wastewater treatment without 
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being fully degraded (Bernhard et al., 2006, Reemtsma et al., 2006). In order to estimate 

a pollutant’s emission to a receiving watercourse, the removal performance of the 

treatment plant is usually evaluated by either full-scale balancing or determination of 

biodegradation rates at lab-scale (Vieno et al., 2007, Wick et al., 2009). Both 

approaches also rely on the residence time of the water in the treatment plant, normally 

referred to as the hydraulic retention time (HRT). The HRT can be calculated from flow 

through and tank volumes and it is therefore an easily accessible parameter. Joss et al. 

(2006) confirmed that the efficiency in contaminant elimination depends on the relative 

rate of degradation and retention times in the plant. For instance, Maurer et al. (2007) 

proved that β-blockers were not totally removed by the wastewater treatment due to 

both limited sorption and half lives (typical values ranging from 6h to 14 h) which were 

similar to the hydraulic retention time in the reactor (6h); the hydraulic retention time is 

defined as the average length of time that a soluble compound remains in a bioreactor. 

In fact, many pharmaceuticals may not be in the fully dissolved state in the wastewater 

or can be often present as the relative more polar glucuronic acid or sulphate conjugates 

and a combination of these factors can make them harder to remove (Ternes et al., 

2004). Rosal et al. (2010) reported typical removal efficiencies of 20% for over 70 

individual pollutants in a WwTW effluent using biological treatment followed by 

ozonation. Diclofenac was found at higher concentrations in the effluent than in the 

influent of a Swedish WwTW (Zorita et al., 2009). Removal efficiencies of >90% have 

been reported for steroid estrogens and for longer chain nonylphenol ethoxylates (NP4-

12EO) (Koh et al., 2009). Horii et al. (2007) evaluated removal efficiencies for 

synthetic musks which ranged from 72% to 98%.  
 

1.3 Bioaccumulation of organic contaminants in fish 

Organic contaminants can be released into the aquatic environment by different 

sources (e.g. effluents, atmospheric deposition, runoff, and groundwater) and then be 

distributed throughout the water column and underlying sediment. Fish accumulate 

pollutants both by ingestion of contaminated food (i.e. organisms contaminated via 

contact with water or sediment and via their own food) and by contact of gills and skin 

with contaminated water. Accumulated contaminants are distributed throughout the 

body, and some can reach sites of action to exert toxic effects. However, chemical 

accumulation and toxicity depend not just on total chemical concentration in the 

environment but also on the chemical speciation of a contaminant, which can affect how 
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readily the fish can absorb the chemical at the gill surfaces, across the skin, and within 

the digestive tract and can also affect how the chemical is distributed throughout the 

organism (Di Giulio and Hinton, 2008). Chemicals exist in different forms in the 

environment (chemical species) and their relative concentrations of different chemical 

species differ among the components of the aquatic ecosystem. A fish can be exposed to 

a mixture of chemical species via water and food. Some pollutants metabolites have 

revealed higher toxicity and persistence than the parent compounds. For instance, 

metabolites deriving from the biodegradation of alkylphenol polyethoxylates (APEOs) 

in WwTWs are more toxic, more lipophilic, more estrogenic and more persistent than 

the parent APEOs to fish (Sheahan et al., 2002a, Ying et al., 2002).  

Definitions of bioavailability vary markedly but all address how readily chemicals 

are accumulated under different conditions. Bioavailability can be defined here as the 

fraction of the bulk amount of the chemical present in soil/sediment and (interstitial) 

water which can potentially be taken up during the organism’s lifetime into the 

organism’s tissues (excluding the digestive tract) (Van der Oost et al., 2003). It is 

extremely important to correlate the chemical concentration in fish to the real 

bioavailable concentration otherwise this might lead to underestimation of the 

bioconcentration potential (Van der Oost et al., 2003). 
 

1.4 Biotransformation in fish 

Many xenobiotics are lipophilic and must be biotransformed in order to generate 

more polar compounds and facilitate renal or biliary excretion. Unfortunately, the 

process to enhance chemical polarity may create reactive intermediates through 

bioactivation and the metabolites can be more biologically hazardous than the initial 

parent compounds (Sarasquete and Segner, 2000). Bioaccumulation of a chemical 

occurs when uptake rates are significantly higher than metabolic clearance rates. 

Xenobiotics, taken up by a vertebrate and transported to the liver, can be metabolised or 

biotransformed by many routes including oxidation, reduction, hydrolysis, hydration, 

conjugation and condensation reactions. Metabolism of exogenously derived 

compounds such as xenobiotics is normally divided into two phases: phase I 

(functionalisation reactions) and phase II (conjugative reactions) (Fil., 2001). In fish, the 

cytochrome P450 (CYP) (Sarasquete and Segner, 2000) enzymes are known to catalyze 

oxidative metabolism of enormous number of compounds in the liver, as well as other 

tissues such as gills, gut epithelium and kidney. The phase I process either adds or 
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exposes polar atoms within the selected compound. The three main phase I reactions 

include oxidation, reduction, and hydrolysis. Phase I reactions involve the cytochrome 

P450 monooxygenases (CYPs) which constitute a superfamily of heme containing 

proteins which catalyze biological oxidation and reduction reactions (e.g. hydroxylation 

of aliphatic or aromatic carbons, epoxidation of double bonds, heteroatom oxygenation, 

hydroxylation or dealkylation, oxidative group transfer, cleavage of esters and 

dehydrogenation). Phase II reactions normally attempt to further increase polarity 

through conjugation of the phase I products with a bulky polar endogenous molecule 

such as glucuronic acid, glutathione, amino acids or peptides, methyl or acetyl groups or 

inorganic sulphate (Hochachka and Mommsen, 1995). In phase II metabolism, 

xenobiotics are conjugated to glucuronide, sulphate or glutathione groups, and in fish 

biliary excretion is considered to be the main pathway for elimination of xenobiotics 

conjugated to glucuronic acid (Clarke et al., 1991). The respective transferases provide 

the moieties for the substrates. Alternatively, phase II reactions may protect against 

bioactivation by masking functional groups (i.e., amines) with groups providing steric 

hindrance (i.e., methyl, acetyl) rather than augmented polarity. The enzymes responsible 

for xenobiotic metabolism in fish are located mainly in the liver, gills, intestine, and 

kidney (Clarke et al., 1991, George et al., 1998, James et al., 1998, Singh et al., 1996). 

Glucuronidation involves the transfer of the glucuronic acid component to a 

substrate by any type of uridine 5'-diphospho(UDP)-glucuronosyltransferases. The 

UDP-glucuronosyltransferases (UGTs) represent a major group of phase II conjugating 

enzymes. Sulphation is the enzyme-catalyzed addition of sulphate to a substrate and this 

process uses its cosubstrate 3'-phosphoadenosine-5'-phosphosulphate (PAPS) to transfer 

sulphate to a xenobiotic. The sulphotransferase (SULT) family of enzymes catalyzes the 

transfer of the sulphonate group to hydroxyl and amine groups in endogenous and 

exogenous substrates (Coughtrie, 2002). The glutathione S-transferases are another 

family of phase II enzymes that give cellular protection against the toxic effects of a 

diversity of endogenous and environmental chemicals (Di Giulio and Hinton, 2008).  

The liver is the main organ involved in the biotransformation processes, however, 

when the substrate is present at low levels, biotransformation in the intestine becomes 

more important. The capacity of the intestine for metabolism is fairly low, because the 

liver is a larger organ; however if  small amounts of xenobiotic are present, the intestine 
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and other extra hepatic organs such as gills and skin, become important sites of first-

pass metabolism (Di Giulio and Hinton, 2008). 
 

1.5 Xenobiotic elimination in fish  

Chemical excretion of a compound depends on its physicochemical properties. In 

fish a toxic compound can be excreted by three principal routes: branchial, urinary and 

biliary. In branchial excretion, chemicals move from the blood through several diffusion 

barriers to finally be excreted into the water (Hochachka and Mommsen, 1995). Fish are 

able to excrete many endogenous and exogenous compounds as well as their 

metabolites via the biliary route (Kennedy et al., 1989, Larsson et al., 1999). Excretion 

is partitioned between the kidney and the bile depending on molecular size and lipid 

solubility of the compounds. The relative importance of biliary excretion as a route of 

elimination increases with molecular weight. In fish, highly polar chemicals with 

molecular weights higher than 350 Da are mainly excreted in bile whilst compounds of 

intermediate molecular weight (<300 Da) and polarity may be eliminated in bile as well 

as by other routes (Di Giulio and Hinton, 2008). Xenobiotic excretion can be achieved 

also by the kidney. Small water soluble compounds are excreted by the kidneys while 

more lipid soluble compounds are excreted by the liver (Hirom et al., 1972, Pritchard et 

al., 1980). Many lipophilic compounds need metabolic conversion before their excretion 

via the kidney since they have higher affinity for plasma proteins and they are not 

filtered by the glomerulus where protein-free filtrate is forced out for further processing 

to form urine (Hochachka and Mommsen, 1995).  
 

1.6 Exposure to a mixture of contaminants (wastewater treatment works) 

Wildlife organisms are seldom exposed to single chemicals but instead are 

exposed to complex mixtures of contaminants which may act in diverse ways (Thorpe et 

al., 2001, Silva et al., 2002, Sumpter, 2003, Thorpe et al., 2003) and may induce 

combination effects (Rajapakse et al., 2002). For instance, wastewater effluents contain 

a mixture of natural and synthetic xenobiotics (e.g. household and agricultural 

chemicals, pharmaceuticals, hormones etc) (Stevens et al., 2003). Ecotoxicological data 

revealed that mixtures might have different effects than single compounds (Cleuvers, 

2003, DeLorenzo and Fleming, 2008, Quinn et al., 2009). The behaviour of chemicals 

in mixtures depends on their mode of toxic action (MOA). When multiple chemicals 

have different target sites, their effect can be evaluated independently, even if an 

integral response of the organism is investigated. Mixtures of chemicals with the same 
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MOA act according to concentration or dose additivity. Concentration Addition (CA) as 

well as Independent Action (IA) assume a non-interaction between the mixture 

components. If the mixture components interact with each other, such interactions can 

lead to either antagonistic (less toxic than expected) or synergistic (more toxic than 

expected) toxicities. Certain binary pesticide mixtures had recently been proved to have 

more than additive toxicity toward salmon by Laetz et. al., (2008). Synergistic mixture 

effects have also been investigated for a mixture of prochloraz (fungicide) and 

esfenvalerate (insecticide) (Bjergager et al., 2011). Cases of more than additive mixture 

toxicity are usually specific for mixture (compound types, concentrations and mixture 

ratios), biological system and end point. Toxicity studies in the literature have shown 

that mixture of pharmaceuticals at environmentally relevant concentrations and with 

similar modes of action may exhibit additive effects (DeLorenzo and Fleming, 2008). In 

this specific study, two different chemical mixtures, simvastatin–clofibric acid mixture 

and triclosan–fluoxetine mixture, revealed additive effects related to the toxicity 

threshold for marine phytoplankton. Levels lower than the toxic threshold may lead to 

harmful effects when in the presence of a mixture of active substances (DeLorenzo and 

Fleming, 2008). Michael (2003) showed that a mixture of diclofenac and ibuprofen had 

a stronger toxicity than predicted in cladoceran Daphnia magna. The exposure of the 

freshwater cnidarian Hydra attenuata to a pharmaceuticals mixture, revealed sub-lethal 

effects for environmentally relevant concentrations (µg/L–ng/L) (Quinn et al., 2009).  

Wildlife exposure to sewage effluents have been associated in the literature with 

alterations in sex steroid hormone levels (Folmar et al., 1996, Folmar et al., 2001, 

Hecker et al., 2002) and impaired gonadal development in adult and juvenile fish 

(Hemming et al., 2001, Jobling et al., 2002, Sheahan et al., 2002b), altered sexual 

differentiation in early life periods (Rodgers-Gray et al., 2000), and induction of the 

egg-yolk precursor protein vitellogenin (VTG) in adult male and juvenile fish of both 

male and female (Harries et al., 1999, Purdom et al., 1994, Rodgers-Gray et al., 2000). 

The alteration of the reproductive system of these species have been related to the 

presence of mixture of estrogenic contaminants in the effluents which can act as 

endocrine disruptors; these compounds encompass natural and synthetic steroids 

(Desbrow et al., 1998, Routledge et al., 1998), alkylphenol polyethoxylates (Gimeno et 

al., 1997, 1998, Jobling et al., 1996, Seki et al., 2003), and phthalates and pesticides 

(Ankley et al., 2001, Christiansen et al., 2000, Jobling et al., 1995, Sohoni and Sumpter, 
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1998). These disorders, however, may not necessarily due to estrogenic effects alone.  

EDCs exhibit multiple mechanisms of toxicity by acting at different sites within the 

body. Therefore, the overall detected toxic impact of a particular chemical can be a 

result of the combination of alterations to the endocrine immune and nervous systems 

and damage to genetic material (Roy and Liehr, 1999, Galloway and Handy, 2003, Choi 

et al., 2004).  

There is now increasing recognition amongst environmental scientists that 

wildlife and humans are often exposed to chemical mixtures from birth to the end of the 

life cycle, and this total exposure to chemical contaminants throughout the life course is 

termed ‘the exposome’. The exposome comprises every exposure to which an 

individual is subjected from conception to death. The concept of exposome was 

originally developed for a more complete environmental exposure assessment in 

epidemiological studies. The exposome therefore complements the genome by 

providing a comprehensive description of lifelong exposure history. However in the 

broadest sense, three categories of (bio)chemical effects and non-genetic exposures can 

be considered: internal, specific external and general external (Wild, 2012). 

Internal exposure: internal processes influencing the body, such as metabolism, 

endogenous circulating hormones, body morphology, physical activity, gut microflora, 

inflammation, lipid peroxidation, oxidative stress and ageing. These internal conditions 

can affect the cellular environment and have been variously described as host or 

endogenous factors. 

 Specific external exposure:  such as radiation, infectious agents, chemical contaminants 

and environmental pollutants, diet etc. 

General external exposures (in human case): such as the social, economic and 

psychological influences on the individual (e.g. social capital, education, financial 

status, psychological and mental stress, urban–rural environment and climate).  
 

 

Hypothetically, different components of the exposome will leave their mark or 

fingerprint, so that it is possible to go not only forward from the molecular 

characteristics to the clinic but also back to the exposures, epidemiology and public 

health. The application of omics technologies to biological samples in epidemiological 

studies has been expressed as a “top–down” approach of measuring the exposome; i.e. 

the measurement of contaminants or markers of exposure in tissues rather than the 

“bottom-up” approach of predicting exposure by measuring chemicals in the ambient 
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environment. The “bottom-up” approach focuses on each category of external exposure 

in order to quantify contaminants subsequently summed over all categories to estimate 

individual exposomes. On the other hand, the “top-down” approach adopts untargeted 

omic methods to characterize features of exposures in a selected biological matrix (e.g. 

biofluids) (Figure 1.1). The top-down approach is more efficient than a bottom-up 

approach. The use of ‘omics’ technologies may result for example in the detection of  

bio(chemical) markers of chemical exposure or toxicity (Wild, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Schematic representation of comparison between bottom-up and top-down exposomics 
approaches. Adapted from ("The exposome: A powerful approach for evaluating environmental 
exposures and their influences on human disease", 2010). 

 

 

1.7 Omics-based technologies 

Omics-based technologies study changes to genes, transcripts, proteins or 

metabolites in response to alterations of the cellular environment. “Omics” cover 

different application fields (Mayer, 2011): 

• Genomics (the quantitative study of protein coding genes, regulatory elements 

and noncoding sequences). 

• Transcriptomics (RNA and gene expression). 

• Proteomics (protein upregulation and downregulation). 

• Metabolomics (metabolites and metabolic networks). 

Identify important agents and 

determine sources of exposure

Test for associations with case status

Measure all analytes in blood from 

cases and controls

Bottom-up Exposomics vs.            Top-down Exposomics

Measure all analytes in air, water, 

food, etc., from cases and controls

Test for associations with case status

Evaluate uptake, metabolism, etc., of 

important agents (to estimate dose)

Stephen Rappaport’s comparison of bottom-up and top-down exposomics
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• Pharmacogenomics (the quantitative study of how genetics affects a host 

response to drugs). 

• Physiomics (physiological dynamics and functions of whole organisms). 

• Nutrigenomics (identification of the genetic factors influencing the body’s 

response to diet and study of the bioactive constituents of food affecting gene 

expression). 

• Phylogenomics (analysis involving genome data and evolutionary 

reconstructions). 

• Interactomics (molecular interaction networks). 

Genomics investigates many genes simultaneously on a genome-wide scale. 

Structural genomics, comparative genomics and functional genomics are the three main 

interrelated areas which have been widely described in the literature. Structural 

genomics determines the genome structure at the sequence level, comparative genomics 

investigates differences on the molecular basis between organisms at a variety of 

taxonomic levels whilst functional genomics focuses on the function of genes. 

Microarrays, either as cDNA or oligonucleotides, and digital transcriptomics are the 

main techniques employed. Santos et al. (2007) utlized a 17,000 oligonucleotide based 

microarray to investigate the expression of genes in zebrafish (Danio rerio) after 

exposure to ethinylestradiol (EE2). Garcia-Reyero et al. (2008)  compared gene 

expression profile of fish caged upstream and downstream a WwTW effluent  with 

laboratory fish reference using  22,000 oligonucleotide microarray. Genomics approach 

in environmental studies is still limited by the lack of sequenced and identified genes in 

ecologically relevant species (Finne et al., 2007). 

Proteomics consists in the characterization of the proteome which is the 

fingerprint of all proteins present in a cell, tissue or organism at a certain physiological 

stage or as a reaction to a specific treatment. The comparison of proteomes deriving 

from contaminant treatments versus controls should provide informative results 

regarding the molecular mechanisms of response to xenobiotics. The main technologies 

employed in proteomics studies are the separation techniques 2-dimension 

polyacrylamide gel electrophoresis and the identification techniques LC-MS and fourier 

transform mass spectrometry FTMS (Miracle and Ankley, 2005). Proteomics has been 

widely applied in environmental monitoring researches in vertebrate and invertebrate 

species (Iguchi et al., 2006). Albertsson et al. (2007) characterized the proteome of  
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rainbow trout (Oncorhynchus mykiss) liver after exposure to WwTW effluents. Three 

proteins (betaine aldehyde dehydrogenase, lactate dehydrogenase and an unidentified 

protein) were down-regulated after exposure, whilst the only up-regulated protein 

consisted of both mitochondrial ATP synthase alpha-subunit and carbonyl 

reductase/20β-hydroxysteroid dehydrogenase (CR/20β-HSD).  

Metabolomics gives an overview of the metabolic status of a biological system by 

the measurement of small molecular size endogenous metabolites. This top-down 

system biology approach gives insights into the metabolic status of complex living 

organisms via the non-targeted analysis of metabolites in biological matrices (Nicholson 

et al., 1999, Lindon et al., 2007). The whole array of metabolites present in the 

investigated matrix can be estimated at the same time, and metabolic changes induced 

by external factors (e.g. environment, diet, disease processes, or pharmaceutical 

interferences) can be screened over time (Nicholson et al., 1999, Lindon et al., 2007). 

The main limitation  in the interpretation of transcriptomics and proteomics results is 

the difficulty of relating observed gene-expression fold changes or protein-level changes 

to altered biochemical phenotypes (the metabolome) (Fiehn et al., 2000, Sumner et al., 

2003). On the contrary, metabolomics offers the advantage of considering the dynamic 

metabolic status of the whole living organism and the ability to predict more precisely 

phenotypical properties (Nicholson et al., 1999, Nicholson and Wilson, 2003, Goodacre 

et al., 2004). The metabolome gives a snapshot of the final stage in the chain of events 

from genes to metabolism, and the metabolic phenotype is the most direct reflection of 

the actual state of a biological system. The terminology relating to metabolomics is still 

controversial (Ryan and Robards, 2006). The term “metabolome” was first used by 

Oliver et al. (1998) to describe the whole set of metabolites synthesized by an organism. 

Recently, this description has been limited to “the quantitative complement of all of the 

low molecular weight molecules present in cells in a particular physiological or 

developmental state” (Goodacre, 2005). The expression “metabolomics” was proposed 

by Oliver Fiehn and defined as a comprehensive analysis of all metabolites in a specific 

biological system (Fiehn, 2001). The confusion in the terminology come from the 

similar term “metabonomics”, proposed by Nicholson et al. (1999). Metabonomics has 

been defined as a subset of metabolomics (Fiehn, 2002) which, on the contrary, aims to 

measure those metabolites which reveal changes in response to a stimulus of one sort. 

So far,  the two expressions have been often used interchangeably. Hence, the 
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expression metabolomics is usually used to describe a comprehensive, non-targeted 

analytical approach (universally applicable to identify and quantify the whole array of 

metabolites characteristic of a selected biological system). Environmental metabolomics 

is the application of metabolomics to the investigation of living organisms either 

obtained from the natural environment or from laboratory conditions mimicing natural 

environment scenarios (Morrison et al., 2007). 

The xenometabolome represents the multivariate description of the xenobiotic 

metabolite profile present in a sample from an individual exposed through any route 

(either deliberately or accidentally) to drugs, environmental pollutants, or dietary 

components which cannot be totally catabolized by endogenous metabolic enzyme 

systems (Holmes et al., 2007). Hence, the xenometabolome can be considered as an 

exogenous part (not under direct genomic control of an organism) of the metabolic 

phenotype (metabotype) characteristic of their general environmental exposures to 

chemicals. Exogenous metabolites represent the biotransformation or metabolism 

products of xenobiotics resulting from phase I (introduction of a functional group) 

and/or phase II (conjugation) enzymatic processes. The xenometabolome is useful as it 

provides potential evaluation of environmental pollutant exposure in an epidemiological 

context (Roux et al., 2011). 

1.7.1 Metabolomic strategies 

Metabolite profiling involves the identification and quantitation of a set of 

unknown metabolites belonging to a selected metabolic pathway (Fiehn, 2001, Dunn 

and Ellis, 2005). Metabolite fingerprinting aims to the rapid classification of several 

samples applying multivariate statistics without differentiation of individual 

metabolites. Target analysis is typically performed for a selected range of metabolite. 

There are many different strategies which have been employed within the metabolomics 

field. The following four approaches are currently the most used (Fiehn, 2001, 

Goodacre et al., 2004, Hollywood et al., 2006):  
 

1. Metabolite target analysis, which is usually limited to metabolites of a specific 

system that can be directly affected by abiotic or biotic perturbation. 

2. Metabolite profiling, which is focused on a particular group of metabolites associated 

with a specific pathway; in clinical and pharmaceutical field this is often called 

metabolic profiling, and is used to trace the fate of a drug or metabolite.  
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3. Metabolomics, which is the comprehensive analysis of the whole metabolome (all 

measurable metabolites), under a certain set of conditions. This approach is often 

confused with metabonomics, which on the contrary measures the fingerprint of 

biochemical perturbations caused by toxins, drugs and disease.  

4. Metabolic fingerprinting, which is used to categorize samples according to 

provenance of either their biological relevance or origin by using a fingerprinting 

approach; this approach is rapid but does not necessarily give particular metabolite 

information. 

1.7.2 Metabolomics applications 

Metabolomics has been applied to study biological systems including 

microorganisms (MacKenzie et al., 2008, Smedsgaard and Nielsen, 2005), plants 

(William Allwood et al., 2006, Hall, 2006), mammals (Douglas B, 2006, Dunn et al., 

2007, Kenny et al., 2008, Lindon et al., 2007), and environment (Tanaka et al., 2007, 

Viant, 2007). This omics-based technology has recently demonstrated significant 

potential in various fields such as responses to environmental stress (Vineis et al., 2009, 

Workentine et al., 2010), toxicology (Nicholson et al., 1999, Hines et al., 2010, Wang et 

al., 2009), nutrition (Pexa et al., 2008, Astle et al., 2007, Lee et al., 2010), studying 

global effects of genetic manipulation (Urakami et al., 2010, Tohge and Fernie, 2010, 

Pluskal et al., 2010), cancer (Nomura et al., 2010, Wu et al., 2010), natural product 

discovery (Kim et al., 2010). Metabolomic analysis of biofluids or tissues has been 

utilized in physiology, diagnostics, functional genomics, pharmacology, toxicology and 

nutrition fields (Wang et al., 2010). 
 

1.8 Analytical technologies used in metabolomics 

Common analytical techniques applied to metabolomics are NMR, GC/MS and 

LC/MS (Dettmer et al., 2007, Pan and Raftery, 2007, Want et al., 2006). Each 

technology shows some advantages and they are basically complementary (Dettmer et 

al., 2007, Pan and Raftery, 2007). Within the field of metabolomics in biofluids, NMR 

provides an excellent technique for profiling biofluids and is especially adapt for the 

characterization of complex solutions. 1H and 13C NMR can measure most of the 

metabolome. However, the extremely large dynamic range which is typical 

encompassed by biological systems as well as the difficulties due to the coupling of 

NMR to chromatographic techniques, are significant drawbacks which limit the use of 

NMR in metabolomics since important aspects of the metabolome composition (e.g. 
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low abundant signalling metabolites) may not be detected or correctly quantified. 

Therefore, due to its high sensitivity, its high dynamic range and the capability to 

analyze extremely complex samples, MS-based approaches have started to complement 

NMR analyses for metabolomic research. The volatile compounds can be analyzed by 

GC-MS after derivatization (Cao et al., 2011) whilst LC/MS technique is becoming a 

useful tool in the study of body fluids, representing a promising micro-separation 

platform in metabolomics (Johnson et al., 2011). Integrated platforms have been used to 

provide the sensitive and reproducible detection of the several metabolites present in a 

biofluid sample. Hence, a combination of different analytical technologies must be used 

to gain a broad perspective of the metabolome. 

Gas chromatography–mass spectrometry (GC–MS) has become more and more 

popular for metabolite profiling and is often employed for the detection of many 

metabolic disorders (Chace, 2001). GC-MS can provide high sensitivity, high 

chromatographic resolution, wide range of detectable metabolite classes and mass 

spectra can be easily searched in many commercially available electron impact (EI) MS 

libraries to help in the structural identification (Bino et al., 2004). This technique offers 

structural information, reasonable quantitative precision and high throughput. So far, 

most of the metabolic profiling studies using GC–MS have been in the field of plant 

metabolomics (Fiehn et al., 2000, Bino et al., 2004, Glinski and Weckwerth, 2006). The 

application of GC–MS for metabolic profiling in pharmacology/toxicology is still 

underdeveloped compared to NMR and LC-MS. Nevertheless, GC–MS allows the 

detection and quantification of many metabolite classes including amino and organic 

acids, fatty acids and some lipids, sugars, sugar alcohols and phosphates, amines, 

amides and thiols, which are often targets in efficacy and/or toxicity studies (Quinones 

and Kaddurah-Daouk, 2009). GC–MS can be a powerful tool for metabolic profiling in 

toxicological evaluations, providing a comprehensive understanding of the response of 

biological systems to xenobiotic exposure (Chace, 2001, Pasikanti et al., 2008). 

However, using GC-MS involves some disadvantages for metabolite profiling, 

including laborious sample preparation often requiring a derivatization step in order to 

improve volatility of the analyte of interest (e.g. nonvolatile, polar macromolecules are 

unsuitable).  

Liquid chromatography mass spectrometry (LC-MS) as technique of choice for 

metabolic profiling facilitates metabolite identification by reducing sample complexity 
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and separating the array of metabolites in the sample prior to detection. High-

performance liquid chromatography (HPLC) allows separation of compounds of a wide 

range of polarity. Furthermore, HPLC coupled to electrospray-ionization mass 

spectrometry (HPLC-ESI-MS) is becoming the most eligible method for detecting 

metabolites in complex biological samples (Bowen and Northen, 2010). Reversed-phase 

HPLC, normally using C18 columns, can efficiently separate many semi-polar 

compounds. Although normal-phase HPLC allows the separation of very polar 

compounds, the use of apolar mobile phases makes it more compatible with 

atmospheric pressure chemical ionization mass spectrometry (APCI-MS) instead of 

ESI-MS. The coupling of HPLC separation with MS detection improves MS sensitivity 

and signal reproducibility by easing sample complexity and thus reducing matrix 

interferences in the ionization process. Additionally, good chromatographic separation 

gives better quality MS data improving the S/N ratio. Accordingly, recent further 

developments in LC technology [e.g. capillary monolithic chromatography and ultra-

performance LC (UPLC)] have accomplished significant progress in order to improve 

peak resolution and speeding analysis up (Guillarme et al., 2007, Xiao et al., 2012).  
 

1.9 Mass spectrometry 

Mass spectrometry (MS) is a very powerful analytical tool which can be 

employed in the identification of both unknown organic and inorganic compounds, in 

the quantification of target compounds, and in the structural elucidation allowing high 

degree of sensitivity and selectivity. Basically, mass spectrometers convert analyte 

molecules into gas-phase ions in the ion source and then separate them according to 

their mass to charge ratio (m/z) in the mass analyser. Once separated, ions are guided to 

the detector where they are counted and the electric signals are recorded by a computer 

to produce the mass spectrum and to process the data (De Hoffmann and Stroobant, 

2007). 

A mass spectrometer is mainly constituted by the following elements:  
 

1. A sample inlet to introduce the compound that is analysed (a direct insertion probe or 

in the case of hyphenated techniques, the GC or LC itself). 

2. An ionization source to convert the analyte in gas-phase ions. 

3. One or more mass analysers to separate the different ions according to their m/z. 

4. A detector to ‘count’ the ions emerging from the analyser. 

5. A data processing system to produce the mass spectrum.  
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1.9.1 Ionization techniques 

Samples can be introduced into the ion source either directly by direct infusion if 

the sample is liquid or direct probe if solid, or as eluate from a chromatographic system 

(as a gas if from a GC or as a liquid if from an LC). The ion source has to convert the 

sample to gas phase if not already so, to ionize the compounds, and then transfer the 

produced ions to the mass analyzer. The most common ionization techniques are the 

electron impact ionization (EI) used in GC chromatography and the electrospray 

ionization (ESI) for the direct sample infusion or combined with LC. Many ionization 

parameters can play an important role for a successful detection and in particular, the 

solvent utilized for sample introduction as the solvent composition is a core part in the 

ionization process. Some ionization techniques are very energetic and cause extensive 

fragmentation (hard ionization, e.g. EI, CI) whilst other techniques only produce ions of 

the molecular species (soft ionization, e.g. ESI, APCI, MALDI). The ion source 

generates ions mainly ionizing a neutral molecule in the gas phase by different 

mechanisms: electron ejection, electron capture, protonation, deprotonation, adduct 

formation or by transfer of a charged species from a condensed phase to the gas phase. 

Ion production normally implies gas-phase ion–molecule reactions (De Hoffmann and 

Stroobant, 2007). 

1.9.1.1 Electron ionisation 

Electron ionisation (El) was one of the first ionisation techniques to be used, 

developed by Dempster. An electron ionisation source uses a heated filament to produce 

accelerated electrons with typically energy of 70eV, enabling them to collide with the 

gaseous analyte molecules introduced into the source. This ionization works well for 

numerous gas-phase molecules but induces extensive fragmentation, for this reason it is 

usually difficult to observe the original molecular ions (De Hoffmann and Stroobant, 

2007). 

19.1.2 Electrospray ionisation 

Electrospray ionisation (ESI) was developed by Fenn et al. (Fenn et al., 1989, 

Mann et al., 1989) and has recently become one of the most popular ionisation methods 

allowing the analysis of big biomolecules directly from the liquid phase. ESI belongs to 

the soft ionisation techniques category since it generates ions with extremely low 

internal energies and gives minimal analyte fragmentation. ESI can reach very high 

sensitivity and is easy to couple to HPLC or capillary electrophoresis. This ionization is 
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achieved by applying under atmospheric pressure a strong electric field to a liquid 

flowing through a capillary (flow 1-10 µl/min). The electric field is generated by a 

potential difference of 3-6 kV between the capillary and a counter-electrode. The 

generated electric field induces a charge accumulation at the liquid surface located at 

the end of the capillary leading to the emission of a spray of small highly charged 

droplets. The solvent contained in the droplets evaporates, passing through a curtain of 

heated inert nitrogen gas. Excess charges accumulate at the surface of the droplet where 

the desorption of the charged molecules occurs. For this reason, sensitivity is usually 

higher for compounds which are more concentrated at the surface. When mixtures of 

compounds are ionised, those molecules predominant at the surface of the charged 

droplets can mask even completely the presence of the other compounds more soluble 

in the bulk (termed ion suppression). The formation of gas phase ions generates 

protonated [M+H]+, deprotonated [M-H]-  or multiply charged ions, especially from 

large molecule having many ionisable groups . However, ESI may also generate adducts 

of the analyte with cations (e. g. Na+, K+, NH4
+) or anions (e. g. CH3COO-, Cl-) (Loo et 

al., 1989, De Hoffmann and Stroobant, 2007). 

Adduct Formation 

An adduct is an ion generated by direct combination of a neutral molecule with an 

ion other than the proton. In +ESI mode the sodium adduct is the most observed adduct, 

giving rise to a signal higher by 22 mass units than the protonated molecule. It is often 

found together with the potassium adduct, another 16 mass units higher. If the eluents 

have not been carefully desalted, the sodium adduct is usually dominant. If an 

ammonium salt is present in solution, the related adduct [M+NH4]
+ can be formed due 

to its ability to create hydrogen bonds. In the -ESI mode, the chloride adduct is normally 

observed with its relative isotopic pattern [M+35]- and [M+37]-. Whilst the acetate 

adduct is observed as [M+59]− (De Hoffmann and Stroobant, 2007). 

Formation of Aggregates or Clusters 

Dimeric ions [2M+H]+ or of higher order [nM+H]+can also be detected in the ESI 

mass spectrum. In some cases, the proton can be replaced by another cation (e.g. Na+). 

Aggregates are seldom detected in the -ESI mode, because negative charge causes an 

expansion of the electronic shell, reducing the electric field around the negatively 

charged ion and this phenomenon can reduce the interactions between the species 

involved (De Hoffmann and Stroobant, 2007). 
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1.9.1.3 Atmospheric Pressure Chemical Ionization 

APCI is an ionization technique analogous to chemical ionization CI generally 

used in GC–MS, where primary ions are generated by corona discharges on a solvent 

spray at atmospheric pressure. APCI is mostly applied to relatively non-polar 

compounds with moderate molecular weight and generated usually monocharged ions. 

In the positive ion mode, either proton transfer or adduction of reactant gas ions occurs 

to produce the molecular ions, depending on the relative proton affinities of the reactant 

ions and the gaseous analyte molecules. In the negative mode, the molecular ions are 

generated by either proton abstraction or adduct formation (De Hoffmann and 

Stroobant, 2007). 

1.9.1.4 Matrix-Assisted Laser Desorption Ionization 

Matrix-Assisted Laser Desorption Ionization (MALDI) was introduced by Karas 

and Hillenkamp (Karas et al., 1987, Karas and Hillenkamp, 1988). It is a common and 

powerful source for the production of intact gas-phase ions from a broad range of large, 

non-volatile and thermally labile molecules (e.g. proteins, oligonucleotides, synthetic 

polymers). The choice of a suitable matrix, which provides for both desorption and 

ionization, is the important factor for a successful ionization method. The method is 

described by easy sample preparation and has a large tolerance to contamination by 

salts, buffers, detergents (Chen et al., 1998, Stump et al., 2002). In MALDI, the analyte 

of interest is dissolved in solution of small organic molecules, called the matrix. The 

matrix must strongly absorb at the laser wavelength. The obtained mixture must be 

dried before analysis, resulting in a ‘solid solution’ deposit of analyte-doped matrix 

crystals. The analyte is then ionized and introduced in the mass spectrometer by 

ablation of bulk portions of this solid solution by intense laser pulses over a short 

duration. Since the ablation process is independent of the absorption properties and size 

of the analyte, MALDI permits desorption and ionization of compounds with very high 

molecular mass (>100 000 Da) (De Hoffmann and Stroobant, 2007).  

1.9.2 Mass Analyzers 

Determination of mass-to-charge ratio (m/z) is achieved using a combination of 

electric and/or magnetic fields. Several kinds of mass analyzers are commercially 

available nowadays and all mass analyzers operate in high vacuum conditions to prevent 

collision of the generated ions with uncharged molecules. Mass analyzers are often 

categorised according to their performance (Villas-Boas et al., 2007):  
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• Nominal mass analyzers, whose mass resolution is unit mass separation. 

Resolving power is usually 1:1000–2000 and they have integer mass accuracy. 

• High resolution mass analyzers, whose mass resolution is higher than 1:7000, 

presenting mass accuracy below 1 ppm.  
 

High resolution mass analyzer can be used to separate all formulas and isotopic 

compositions with relevance to metabolomics at approximately below 1000 Da. 

Resolution (R) or resolving power is the ability to discriminate between close m/z 

values while mass accuracy is the difference between  the measured value and the 

calculated value in relation to the calculated value (m). Mass accuracy is typically 

expressed as a relative error in parts per million (ppm) (Balogh, 2004, Breitling et al., 

2006). 

1.9.2.1 Quadrupole 

The linear quadrupole mass analyser was developed by Paul and Steinwedel in 

1953. It is made of four parallel metal rods positioned along the instrument's z axis. 

Fixed direct current (dc) and alternating radio frequency (rf) potentials applies to them. 

The quadrupole analyser separates ions according to their m/z ratios using the stability 

of the trajectories in oscillating electric fields (Villas-Boas et al., 2007). 

1.9.2.2 Quadrupole Ion trap 

The quadrupole ion trap (QIT) mass analyser was developed in the 1950s by Paul 

and Steinwedel. The QIT consists of three electrodes (3D trap): two end-cap electrodes 

and a ring electrode. Ions are injected from the source into the trap through one of the 

end-caps and trapped by applying an RF-voltage and a DC voltage to the ring electrode 

and endcaps. In order to control ion motions and lowering ion energy a damping gas is 

introduced into the trap. By changing the RF-voltage and the DC potentials on one of 

the end-caps, ions with specific m/z values are ejected from the ion trap, and then 

separated. Ion traps can be classified into two types: the 3D ion trap or the 2D ion trap. 

2D ion traps also known as LITs are based on a four rod quadrupole ending in lenses 

which reflect ions forwards and backwards (Villas-Boas et al., 2007).  

1.9.2.3 Sector instruments 

High resolution sector analyzers were developed by Mattauch and Herzog (1936) 

and Johnson and Nier (1953). These analysers are adaptable to many continuous ion 

sources (e.g. EI, dynamic SIMS, ICP, and ESI). However, they have recently been 
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replaced by Q-TOFs and FT-ICR instruments, since the latter typically provide good 

MS/MS data and are much less demanding, being less expensive and much smaller. 

Nevertheless, sector instruments are still highly performing in high accuracy 

quantitative measurements, such as isotope ratio determination or analysis of toxic 

compounds (Ekman et al., 2009b). 

1.9.2.4 Time-of-flight 

The time-of-flight (TOF) analyser was firstly described by Stephens in 1946 and 

in 1955, Wiley and McLaren designed a linear TOF mass spectrometer becoming the 

first commercial instrument (De Hoffmann and Stroobant, 2007). The TOF analyser 

separates ions initially accelerated by an electric field according to their velocities as 

they drift in a free-field region (flight tube). Ions reach the analyser as bundles either 

produced by an intermittent process (e.g. plasma or laser desorption), or expelled by the 

ionization source focusing lenses. The ions can then be accelerated towards the free-

field region by a difference of potential applied between an electrode and the extraction 

grid. All the ions acquire the same kinetic energy but ions showing a distribution of 

masses present a distribution of velocities as well. Once left the acceleration region, 

ions enter into the field-free region where they can separate according to their velocities, 

before reaching the detector at the other extremity. Mass-to-charge ratios are determined 

by measuring the time that ions take to move through a field-free region between the 

source and the detector (De Hoffmann and Stroobant, 2007).  

In theory, there is no upper limit of mass range for a TOF analyser and this makes 

it particularly suitable for soft ionization techniques. Furthermore, TOF analysers have 

high transmission efficiency which leads to very high sensitivity. TOF analysers have 

very fast analysis speed and a spectrum over a broad mass range is obtained in micro-

seconds. However, the poor number of ions in each individual spectrum does not often 

grant sufficient precision of mass or abundance measurement; for this reason, it is not 

possible to record all the individual spectra without exceeding the speed of data transfer 

and the capacity of data storage. Therefore, recorded spectra are usually obtained by the 

addition of several individual spectra (De Hoffmann and Stroobant, 2007).  

As the mass resolution is proportional to the flight time and the flight path, 

lengthening the flight tube allows enhancing the resolution of these analysers. However, 

too long a flight tube decreases TOF performance due to loss of ions by scattering after 

collisions with gas molecules or by angular dispersion of the ion beam. A possible 
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solution would be increasing the flight time by means of lowering the acceleration 

voltage, but lowering this voltage decreases the sensitivity. In order to allow both high 

resolution and high sensitivity, the use of a long flight tube (length ranging between 1 

and 2m) for a higher resolution and a high acceleration voltage (≥20 kV) to grant high 

sensitivity is required. 

If a pulsed source such as MALDI is coupled to the TOF analyser, the quality of 

its pulsed ion beam is insufficient to obtain high resolution and high mass accuracy. In 

order to improve this outcome, two techniques have been: the delayed pulsed extraction 

and the reflectron (De Hoffmann and Stroobant, 2007). 

Delayed Pulsed Extraction 

Delayed pulsed extraction was initially developed by Wiley and McLaren in the 

1950s. The ions formed in the source using the continuous extraction mode are 

immediately extracted by a continuously applied voltage. Ions with the same m/z ratio 

but with different kinetic energy reach the detector at slightly different times, resulting 

in peak broadening. To reduce this kinetic energy spread, a time lag between ion 

formation and extraction can be introduced. Ions are first allowed to expand into the 

field-free region in the source and after a certain delay (100 ns to few µs) a voltage 

pulse is applied to extract the ions outside the source. The extraction pulse applied after 

a certain delay transmits more energy to the ions which kept for a longer time in the 

source. 

Reflectron 

Another option in order to improve mass resolution is the use of an electrostatic 

reflector also known as reflectron. The reflectron solution was proposed initially by 

Mamyrin (Mamyrin et al., 1973). The reflectron generates a retarding field acting as an 

ion mirror by deflecting the ions, which are then sent back through the flight tube. The 

term reflectron time-of-flight (RTOF) analyser is employed to differentiate it from the 

linear time-of-flight (LTOF) analyser. The simplest type of reflectron, called a single-

stage reflectron, consists of a series of equally spaced grid electrodes or ring electrodes 

connected through a resistive network of equal-value resistors. The reflectron is located 

behind the field-free region opposite to the ion source and the detector is positioned on 

the source side of the ion mirror in order to capture ions which have been reflected. The 

detector can be coaxial with the initial direction of the ion beam or it can be off-axis 

with respect to the initial direction of the ion beam. The reflectron corrects the kinetic 
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energy dispersion of the ions leaving the source with the same m/z ratio. Ions with more 

kinetic energy will penetrate the reflectron more deeply than ions with lower kinetic 

energy, spending therefore more time in the reflectron and reaching in the end the 

detector at the same time than slower ions having the same m/z. However, the higher 

mass resolution obtained using the reflectron decreases the sensitivity and introduces a 

mass range limitation. A two-stage reflectron give better performances reducing the size 

and improving the homogeneity of the electric field by using two successive 

homogeneous electric fields of different potential gradient. The first stage employs an 

intense electric field to strongly decelerate the ions while the second stage applies a 

weaker field. The two-stage reflectrons are usually more compact because of the strong 

deceleration of the ions at the first stage, but they can suffer from a lower transmission 

(De Hoffmann and Stroobant, 2007). 

1.9.2.5 Fourier transform mass spectrometry 

Fourier transform ion cyclotron resonance 

Fourier transform mass spectrometry (FTMS) was firstly described by Comisarow 

and Marshall in 1974 (Comisarow and Marshall, 1974a, Comisarow and Marshall, 

1974b) and then reviewed by Amster (1996) and Marshall et al. (1998). FTMS excites 

simultaneously all of the ions present in the cyclotron by scanning rapidly a large 

frequency range within a short time span (~1 µs). The ions will be forced in a trajectory 

that comes close to the wall perpendicular to the orbit in phase. This allows 

transformation of the complex wave detected as a time-dependent function into a 

frequency-dependent intensity function through a Fourier transform. Ions of each mass 

have their characteristic cyclotron frequency. The performance of FT-ICR instruments 

has steadily improved across time and they have recently reached levels of resolution 

and mass accuracy comparable to the sector analysers (Gross, 2004, De Hoffmann and 

Stroobant, 2007). 

Ions having different masses show characteristic cyclotron frequency. Ions which 

are excited by an AC irradiation at their own frequency and with the same energy, (i.e. 

the same V0 potential), applied during the same time Texc, will have an orbit with the 

same radius, and with an appropriate radius will all pass close to the detection plate as 

described by the following equaton: 

� = 	�����	
�  
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 The ion orbit will have the same radius due to the applied broadband excitation, but at 

frequencies depending on their m/z ratio. The best way to obtain this result is by 

applying a waveform calculated by the inverse Fourier transform (De Hoffmann and 

Stroobant, 2007). 

Fourier transform orbitrap 

The orbitrap is a mass analyser of recent invention. Ions are trapped and stored in 

a potential well as for quadrupole ion traps, however, ions are not injected for external 

detection but it is the oscillation frequency of the trapped ions which is measured by the 

analyzer. This approach allows high mass resolution (100,000 FWHM) and mass 

accuracy (0.5-1ppm). The orbitrap consists of a thin wire central electrode, a coaxial 

outer electrode, and two end-cap electrodes. Between the inner and outer electrodes a 

DC voltage is applied giving a logarithmic potential. Ions injected perpendicular to the 

wire with an appropriate velocity will circulate in an orbit around the wire. By applying 

a potential to the end caps, the ions will also be confined axially (Ekman et al., 2009b). 

1.9.3 Detectors 

The detector measures amount of ions as a function of time. As the m/z 

transmission of the mass analyzer is altered over time, the detector measures the mass as 

a function of m/z. Detection is important for the quality of the data obtained and very 

sensitive high-speed amplifiers and analog to digital conversions are crucial integrated 

parts of all detector systems (Villas-Boas et al., 2007). 

1.9.4 Tandem mass spectrometry 

Generally speaking, tandem mass spectrometry experiments involve the 

performance of two or more mass spectrometric analysis in sequence after an induced 

fragmentation process (Figure 1.2). Dissociations of the selected ions can occur either 

spontaneously in transit through the mass analyzer (metastable ions) or can result from 

collisions with neutral collision gas (collision-induced dissociation) (Gross, 2004). 
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Figure 1.2: Schematic representation of the configuration of a triple quadrupole mass spectrometer for 
scan types, including (a) normal, (b) product ion, (c) precursor ion, (d) neutral loss or neutral gain, and (e) 
multiple reaction monitoring. Abbreviation: CID, collision-induced dissociation. Adapted from Blanksby 
and Mitchell (2010). 

 

Collision-Induced Dissociation 

Tandem-MS experiments use activating or reactive collisions within the mass 

spectrometer to promote ion fragmentation. The most prominent collision technique is 

collision induced dissociation (CID); known also as collisionally activated dissociation 

(CAD) or collisional activation (CA). CID allows fragmentation of gaseous ions which 

were stable before activation. CID is particularly useful for the structure elucidation of 

ions of low internal energy as those produced by soft ionization methods (Gross, 2004). 

1.9.4.1 Tandem-in-space 

A tandem-in-space mass spectrometer consists of an ion source, a collision cell to 

induce fragmentation of the selected precursor ions, and at least two non-trapping mass 

analyzers. The first analyzer selects precursor ions within a narrow m/z range, which are 
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then introduced in the collision cell to be fragmented. Fragments generated by the CID 

experiment are then analysed by the second mass analyzer either acquiring a full scan 

mass fragment spectrum or monitoring a selected m/z range (Ekman et al., 2009b).  

Quadrupole-Time-of-Flight  

Hybrid mass spectrometers are instruments equipped with different kinds of mass 

analyzers coupled together. A particularly successful hybrid tandem-in-time instrument 

is the quadrupole mass filter-TOF (Q-TOF). The Q-TOF can be considered as a triple 

quadrupole where the third quadrupole has been substituted by an orthogonal TOF 

equipped with a reflector. In MS mode the quadrupole mass filter only acts as 

transmission element and the mass spectrum can be acquired by the TOF. In MS/MS 

mode the quadrupole mass filter is set to transmit only the selected precursor ion; 

fragmentation of the precursor ions occurs in the collision cell through low-energy CID 

and the fragment mass spectrum can acquire by the TOF analyzer. Q-TOF instruments 

have high resolution, high mass accuracy, and the chance to record all ions 

simultaneously without scanning. However, for quantification of targeted compounds 

triple quadrupole mass spectrometers show higher sensitivity and linear dynamic range. 

On the other hand, the higher resolution of the TOF can provide a better selectivity, 

which can be extremely beneficial for structural elucidation (Ekman et al., 2009b).  

1.9.4.2 Tandem-in-time 

In tandem-in-time mass spectrometer ions generated in the ion source are trapped, 

isolated, fragmented, and m/z separated in the same physical device. This process is 

only possible in trapping devices (e.g. QIT and FTICR analyzers) (Ekman et al., 

2009b).  
 

1.10 Data analysis 

Omics technologies usually generate very complex multivariate datasets and 

multivariate analysis using unsupervised and supervised projection methods is required 

in order to extract maximum information from complex omic data, to reduce the 

dimension of the data and to allow the class separating metabolites to be distinguished 

(Ramadan et al., 2006). The multivariate statistical methods collect relevant information 

on similarities or differences between the metabolic pathways (Winning et al., 2008, 

Trygg et al., 2007). Furthermore, a visual inspection of the results after multivariate 

analyses can quickly reveal errors, so it is often needed to validate the various outputs 

of the analyses. The methods used in the metabolomics approach include multivariate 
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projection methods, where principal component analysis (PCA) (Xie et al., 2009, Viant 

et al., 2008) and partial least squares (PLS) (Mahadevan et al., 2008, Woo et al., 2009, 

Kim et al., 2008) are the most generally used approaches (Figure 1.3). Multivariate 

analysis techniques can be categorized as either supervised or unsupervised (Brereton, 

2003) (Bernhard Lendl and Karlberg, 2005): 

• Unsupervised pattern recognition (cluster analysis): No prior knowledge about 

the samples to be classified is required. Additionally, when the amount of 

information available is too large, often cluster analysis is the only suitable tool 

enabling a search for similarities. 

• Supervised pattern recognition (classification): Initial information about the 

classes  (e.g gender, doses, time) is required for the set of samples as a training 

set. The training set is used to construct a model and assess necessary 

parameters to be subsequently applied in another set of samples (termed the 

work set). Supervised pattern recognition is usually used to assign samples to a  

groups (or classes). It differs from cluster analysis since the relationship between 

samples is important, there are no predefined groups. 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Fundamental data analysis objectives using a variety of mulitvariate modelling approaches, 
“SIMCA” stands for Soft Independent Modeling of Class Analogy. Adapted from Multivariate Data 
Analysis for Omics, Umetrics workshop, York, UK 2008. 

 

1.10.1 Principal component analysis 

Principal component analysis (PCA) is one of the most widespread exploratory 

techniques in multivariate analysis (Izquierdo-García et al., 2011). PCA is used to 

simplify complex datasets into interpretable models and present the interrelationship 
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between the samples (observations) in a low dimensional space (Eriksson et al., 2006). 

PCA decomposes the data into score vectors and loading vectors, which are used to 

recreate the original data (Kristian Hovde, 2011). The directions of the loadings are 

placed in order to maximize the variation spanned by each vector; most variation is in 

the first component and subsequent orthogonal components show decreasing amounts 

of variation (Kristian Hovde, 2011). The first principal component accounts for the 

maximum of the total variance in the original space; the second (non-correlated with the 

first component) accounts for the maximum of the residual variance, and so on, until the 

total variance is explained (Izquierdo-García et al., 2011). However, the majority of 

components are regarded as uninteresting or noise. On the other hand, orthogonality 

between components in PCA analysis imposes a rigid structure, which is suitable for 

extracting the highest amount of information from the samples but does not separate 

natural phenomena well in the components since most naturally occurring phenomena 

are not orthogonal (Kristian Hovde, 2011). 

Aims of PCA 

• PCA aims to determine underlying information from multivariate raw data. 

• As far as specifically concerns LC-MS data, two pieces of information would be 

extracted: 

• the scores (i.e. clustering of samples or observations)  

• the loadings (i.e. the retention time X spectra variables) contributing to the score 

patterns (Brereton, 2003). 

How PCA works (concept) 

1) It finds a component (dimension vector) which explains  most of the x-variation  

2) It finds a second component orthogonal to the first (i.e. not correlated with) and 

explains most of the remaining x-variation (Figure 1.4). 

How PCA works (Visually) 

PCA visually projects onto a hyperplane defined by the first two components, the 

multidimensional dataset (Figure 1.4). 
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Figure 1.4: A principal component analysis (PCA) model approximates the variation in a data table by a 
low dimensional model plane. This model plane provides a score plot, where the relation among the 
observations or samples in the model plane is visualized, for example, if there are any groupings, trends, 
or outliers. The loading plot describes the influence of the variables in the model plane, and the relation 
among them. An important feature is that directions in the score correspond to directions in the loading 
plot, and vice versa. Adapted from Trygg et al. (2007). 
 
 
Interpretation of the PCA components: 

The most difficult part of the PCA approach lies in the interpretation of the components. 

Generally speaking, PCA takes into account: 

• strength and direction of loadings. 

• clusters of variables which may be related or have a common origin. 

The PCA methodology ensures that components are extracted in decreasing order of 

explained variance. The first component always explains the majority of the variance, 

the second component explains the next most significant amount of variance, and so 

forth. Eventually, the higher-level components represent mainly noise. This is one of 

main reasons why PCA can result in useful data interpretation: since noise is confined 

in the higher-level components and it is not present in the first few components. This is 

due to the fact that all components are orthogonal to each other, therefore statistically 

independent or uncorrelated. 
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1.10.2 Partial least squares-discriminant analysis 

Partial least squares-discriminant analysis (PLS-DA) is a supervised linear 

regression method where the latent variables constructed with the multivariate variables 

(observations  or spectral descriptors) are associated with the class membership for each 

sample.  

PLS-DA aims to: 

Find those components which can significantly describe relevant variations in the 

samples and show maximum covariance with the class information vector. PLS-DA can 

show the goodness of separation between classes and the statistical significance of the 

obtained results (Izquierdo-García et al., 2011). 

Partial least squares methods can do a more efficient and interpretable decomposition 

than PCA when an informative response (e.g. disease state, sex or other sample-specific 

information) is available (Kristian Hovde, 2011).  

How PLS-DA works: 

PLS-DA establishes, through the dataset, an axis as latent variable which attempts to 

best explain the variance in the X matrix as well as showing good correlation to the Y 

matrix (Eriksson et al., 2001). The latent variable basically represents high variation 

within the dataset which can distinguish between sample classes. Similarly to PCA 

scores and loadings, data can be visualised as a scores plot and discriminatory variables 

can be identified by searching for the variables with the highest weighting values 

(Figure 1.5). 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Class information can also be used to construct an additional matrix, hereinafter called the Y 
matrix, consisting of a discrete “Dummy” variable where [1]/[0] indicate belonging to a class. Adapted 
from Trygg et al. (2007). 
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PCA and PLS are the two main tools used in regression analysis since they convert a set 

of highly correlated variables to a set of independent variables by using linear 

transformations and at the same time they reduce the number of variables in the dataset. 

The PLS technique is more efficient than PCA for dimension reduction as it specifies a 

dependent variable for a regression due to the supervised nature of its algorithm (Figure 

1.6). 

 

 

 

 

 

 

 

 

Figure 1.6: Figure to show the potential difference between unsupervised PCA and supervised PLS-DA 
for class separation. Experiment to show scores plots from 4 different wounding treatments of 
Arabidopsis plants. Adapted from metabolomics Fiehn Lab webpage ("Statistics: Metabolomics Fiehn 
Lab").  

 

PLS and PLS-DA models that separate out the X variation as a predictive 

component due to class differences are called OPLS and OPLS-DA, respectively 

(Bylesjö et al., 2006). Basically, these models are rotations of the original PLS and 

PLS-DA models so that they allow easier interpretability, as the rotations are often 

beneficial with regards to plotting and directions of components. This is one of the main 

reason for their popularity in metabolomics studies (Kristian Hovde, 2011). OPLS 

separates the systematic variation in X into two parts: one linearly related to Y and one 

unrelated (orthogonal) to Y (e.g. Figure 1.7). This approach in turn facilitates model 

interpretation and model execution on new samples (Trygg and Wold, 2002, Bylesjö et 

al., 2006). 
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Figure 1.7: Figure to show two types of variation in mulitivariate data. A) predicted variation correlated 
to Y, B) orthogonal variation not correlated to Y. Adapted from Multivariate Data Analysis for Omics, 
Umetrics workshop, Your, UK, 2008. 

 

1.10.3 Validation methods 

The risk of over-fitting is very high for many methods without proper validation. 

Cross-validation and test-set validation are the two most widely used technique in 

multivariate statistics (Kristian Hovde, 2011). Cross-validation splits the calibration 

data into K equally-sized blocks, ranging from single samples to half the data set, and 

these blocks can be sampled consecutive, interleaved or randomized. Each of the K 

blocks is left out once each, and the model is trained on the rest of the blocks using the 

block held out for validation. Cross-validation is usually employed to compare similar 

models or to choose the complexity of the model. It can also give an evaluation of the 

level of error one expected in prediction from new, comparable data.(Kristian Hovde, 

2011). On the contrary, test-set validation requires a separate data set, which is used to 

check the validity and fitting of the results of the statistical analysis. Since the test data 

is completely separate from the calibration process, the validation should reveal the 

reproducibility and the accuracy of the models produced. Calibration data and test data 

must be treated in the same way (data preprocessing). It is important that the validation 

data span a relevant portion of the sample space (Kristian Hovde, 2011). 

1.10.4 Statistical power analysis 

Statistical power is defined as the probability of correctly rejecting a null 

hypothesis which is false. Statistical hypothesis testing is based on 4 interrelated 

components: power, sample size, significance criterion (α-level), and effect size 

(Romesburg, 1981, Robert et al., 1997). Each of these components is a function of all 

the others. Increasing sample size, α, or effect size always increases power (Robert et 

al., 1997). 
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Effect size is the difference between the results predicted by the null hypothesis 

and the actual state of the population being tested and it can therefore measure the 

biological significance. Power analysis determines the chances for a determined 

experiment of producing a statistically significant result when there is a biologically 

significant difference in the population. Values of 0.8 and 0.95 have been suggested in 

the literature  as high power values (Peterman, 1990, Thomas and Juanes, 1996). 

Power analysis is used to improve research design (prospective or a priori) and 

to provide information about results from a previously completed research 

(retrospective or a posteriori). Prospective power analysis has high probability of 

detecting biologically significant effects (i.e., high power). Retrospective power 

analysis can giveinformation about statistical tests in which the null hypothesis was not 

rejected (Robert et al., 1997). Power analysis is employed to evaluate the sample sizes 

required to achieve acceptably high power, or to determine the probability for an effect 

size of interest to be detected with a certain sample size (Peterman, 1990). The 

determination of prospective power requires the establishment of sample size, α, and a 

biologically meaningful effect size. Power can be computed with a range of values for 

each of mentioned parameters and for different experimental designs, yielding a series 

of power curves indicating the influence of each of the evaluated parameters on the 

statistical power of the planned research.  

The number of samples required for a multivariate approach is still 

controversial. Pawitan et al. (2005) suggested that the required sample size for a MVA 

experiment depends on the number and the distribution of the differentiating markers 

and on the amount of false discovery rate can be tolerated. 
 

 

1.11 Metabolomics for ecotoxicological investigations 

Metabolomics can provide a closer link to functional physiological responses; 

additionally, environmental metabolomics is an emerging approach for examining 

metabolic profiles in biological systems exposed to environmental stress. This approach 

has been employed to suggest biomarkers for the risk assessment of chemicals and for 

diagnosing diseases in wild animals (Lin et al., 2006). Since metabolomics is a virtually 

species-independent technique, it results particularly suitable for ecotoxicological 

investigations (Samuelsson et al., 2006). Knowing the metabolic fate of a xenobiotic 

aids greatly in understanding its potential toxicity and also its mechanism of toxicity. 

Metabolomics approaches can determine changes to metabolic pathways which might 
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not be detected by targeted biochemical assays or might be not present due to the time 

delay from gene product to metabolic product (Johnson et al., 2012). Employing 

toxicogenomics to screen the toxicity of chemicals can enable rapid and accurate 

categorisation into classes of defined mode-of-action (MOA), and prioritises chemicals 

for further testing. Knowledge of possible toxic modes of action (MOA) of chemicals 

can provide valuable insights for assessing exposure and effects, diminishing 

uncertainties related to extrapolation across species, endpoints and chemical structure. 

However, testing methods based on MOA has rarely been used to assess the ecological 

risk of chemicals, partly because past regulatory mandates have focused more on 

adverse effects of chemicals than the pathways through which these effects are elicited.  

Metabolomic approaches are increasingly being used in ecotoxicology 

investigations. For instance, the effects of several contaminants (e.g. endocrine-

distrupting chemicals (EDCs), pesticides) on the metabolomes of various aquatic 

species (e.g. fish, water flea) have been studied. One dimensional (1H) nuclear magnetic 

resonance (NMR) metabolomics has been used to compare blood plasma and plasma 

lipid extracts from rainbow trout exposed to the synthetic contraceptive estrogen 

ethinylestradiol (EE2) with plasma from control fish. The plasma metabolite profile was 

affected in fish exposed to 10 ng/L but not 0.87 ng/L of EE2, which was in agreement 

with an induced vitellogenin synthesis in the high dose group only. The main affected 

metabolites were vitellogenin, alanine, phospholipids and cholesterol (Samuelsson et 

al., 2006).  
1H NMR spectroscopy has been used to profile metabolite changes in the livers of 

fathead minnows (Pimephales promelas) exposed to the EE2. The study revealed 

greater impact of EE2 in liver metabolism in males compared to females. Biochemical 

effects observed in the males included changes in metabolites relating to energetics 

(e.g., glycogen, glucose, and lactate) and liver toxicity (creatine and bile acids). Amino 

acids associated with vitellogenin (VTG) synthesis increased in livers of EE2-exposed 

males, a finding consistent with increased plasma concentrations of the lipoprotein in 

the fish (Ekman et al., 2008). In further work, alterations in hepatic lipid profiles of 

fathead minnow exposed to EE2 were also determined using 1H NMR spectroscopy-

based metabolite profiling. The exposure resulted in a number of sex-specific changes 

in lipid profiles that were also highly time dependent. Metabolites most affected by 
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exposure were diglycerides, triglycerides and cholesterol. Changes in the length and 

degree of unsaturation of hepatic fatty acids observed (Ekman et al., 2009a).  

In other work, roach (Rutilus rutilus) were exposed to EE2 for 18 days to 

investigate the effect of estrogen exposure on steroid homeostasis. Exposure to EE2 

resulted in a concentration dependent reduction of estrogens and androgens in bile and 

plasma of both male and female fish. Significant reductions in concentrations of 

hydroxyprogesterone, androstenedione, 11-hydroxyandrostenedione, and 11-

ketotestosterone were detected in the testes metabolome, indicating disruption of steroid 

biosynthesis upstream of androgen metabolism. Estrogen exposure also resulted in 

increased biosynthesis of cortisol and cortisone in testes and ovaries, respectively, but 

did not alter glucocorticoid concentrations in the liver or plasma. This study suggested 

that both sex steroid and glucocorticoid pathways are one of the primary targets of 

estrogen exposure in fish gonads (Flores-Valverde et al., 2010). 

The molecular responses of male roach (Rutilus rutilus) exposed to the 

antiandrogen fenitrothion were investigated using environmentally realistic 

concentrations, for a 28 day exposure period and revealed that O-demethylation was 

confirmed as a major route of pesticide degradation. Fenitrothion significantly depleted 

acetylcholine, confirming its primary mode of action, and 11-ketotestosterone in plasma 

and cortisone in testes, showing disruption of steroid metabolism. Metabolomics also 

revealed significant perturbations to the hepatic phosphagen system and previously 

undocumented effects on phenylalanine metabolism in liver and testes (Southam et al., 

2011). 

Changes in metabolism of Japanese medaka (Oryzias latipes) embryos exposed to 

dinoseb (2-sec-butyl-4,6-dinitrophenol) have been determined by in vivo 31P NMR, 

high-pressure liquid chromatography (HPLC)-UV, and 1H NMR metabolomics. 

Dinoseb exposure at sublethal concentrations resulted in significant declines in (ATP) 

and phosphocreatine (PCr) at 110 h. Reduced eye growth and diminished heart rate 

occurred in a concentration-dependent fashion. Metabolic effects measured by in vivo 
31P NMR showed a significant increase in orthophosphate levels and significant 

decreases in (ATP), (PCr). Metabolomics revealed a dose-response relationship between 

dinoseb and endogenous metabolite changes, with both dinoseb concentrations 

producing significantly different metabolic profiles from controls, including decreased 
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concentrations of ATP, PCr, alanine and tyrosine, and increased concentrations of 

lactate with medaka embryotoxicity (Viant et al., 2006). 
1H NMR-based metabolomics has been used to add a suite of metabolic endpoints 

to the Japanese medaka (Oryzias latipes) embryo assay. Medaka exposed throughout 

embryogenesis to five concentrations of trichloroethylene. While the no-observable-

adverse-effect-level for hatching success, metabolic perturbations detected at all 

exposure concentrations. Twelve metabolites (i.e. amino acids, organic acids, energy 

related, osmolytes, miscellaneous) exhibited highly significant dose-response 

relationships. No significant increases in mortality, gross deformity or developmental 

retardation were observed (Viant et al., 2005). 

Metabolomics has also been used to investiage invertibrate response to pollutants. 

Direct infusion FT-ICR mass spectrometry-based metabolomic has been utilized for 

toxicity testing in Daphnia magna. An OECD (Organisation for Economic Co-operation 

and Development) 24 h acute toxicity test was conducted with neonates at different 

copper concentrations. Significant copper-induced changes to the daphnid metabolome, 

consistent with the documented MOA of copper, was detected thereby validating the 

approach. In addition, N-acetylspermidine was putatively identified as a novel 

biomarker of copper toxicity (Taylor et al., 2009). 

Hines et al., (2007) have characterized the metabolic variability of the mussel and 

determined if inherent variability masked the metabolic response to an environmental 

stressor (hypoxia). Metabolic fingerprints of adductor muscle and mantle have been 

compared from four groups of Mytilus galloprovincialis: animals sampled directly from 

the field with and without hypoxia and those stabilized in a laboratory, also with and 

without hypoxia. Laboratory stabilization increased metabolic variability in adductor 

muscle, therefore completely masking the response to hypoxia. The principal source of 

metabolic variability in mantle was showen to be gender-based, highlighting the 

importance of phenotypic anchoring of samples to known life history traits. This study 

suggested that direct field sampling is recommended for environmental metabolomics 

since it minimizes metabolic variability and enables stress-induced phenotypic changes 

to be observed, whilst species and phenotype of the study organism must be known for 

meaningful interpretation of metabolomics data. In further work, marine mussels 

(Mytilus edulis) have been exposed for 7 days to two different concentrations of copper 

(12 and 50 µg/L) and pentachlorophenol (50 and 350 µg/L). Metabolic signatures 
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predictive of scope for growth (SFG) have been sought using optimal variable selection 

strategies and multivariate regression and then tested upon independently field-sampled 

mussels from rural and industrialized sites. Metabolic signatures predicted considerably 

reduced fitness of mussels from the contaminated (SFG = 6.0 J/h/g) versus rural (SFG = 

15.2 J/h/g) site (Hines et al., 2010).  
 

1.12 Relevance of research to policy of risk assessment 

Most of the commercially used chemicals are not carefully measured in the 

environment, and this lack of information does not allow the correct evaluation of the 

potential hazard for human or wildlife exposure. The environmentally relevant 

chemicals need to be reliably characterized on the basis of both hazard and exposure in 

a rapid and efficient manner, in order to make possible a prioritization of the mentioned 

chemicals based on potential risk. The European Water Policy is mainly concerned with 

the protection, improvement and sustainable use of Europe’s water resources. A key 

piece of legislation across all European states is the European Union Water Framework 

Directive (WFD) (2000/60/EC) (Commission, 2000). This legislation requires the 

periodic assessment of all water bodies, including rivers, lakes, estuaries, coastal waters 

and ground waters. Water bodies are then classified according to a system which grades 

their deviation from normality (high, good, moderate, poor and bad), with normality 

defined as a site with no, or very minor, disturbance from human activities 

(Environment Agency (2002)). The main objective of the WFD is to achieve “good 

ecological” status for all European water bodies by 2015. It is clear due to the amount of 

chemicals released in the environment that there is the need to prioritize chemicals for 

risk assessment and monitoring in the context of the European Union Water Framework 

Directive (EU WFD). Chemical prioritization can be focused on exposure to a chemical 

and it’s hazard, and takes into account the persistence, bioaccumulation, toxicity and 

concentration levels in the environment (Muir and Howard, 2006). However, it is 

extremely difficult to accurately predict bioaccumulation of a chemical in wildlife, such 

as fish, even by using sophisticated models, and usually, analyses of tissue levels are 

required. The most promising fish bioaccumulation markers are body loads of persistent 

organic pollutants such as organochlorines. Easily biodegradable compounds do not 

accumulate in fish tissues in quantities which can significantly reflect exposure to them. 

Therefore, measurements of bioaccumulation and biomarker responses in fish exposed 

to contaminated waters can provide information contributing extensively to 
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environmental monitoring programs since they may reduce the number of chemicals in 

the aquatic environment which should be considered for risk assessment. 
 

1.13 Aims and objectives 

Wastewater effluents are complex mixtures of a wide variety of chemicals 

deriving from both domestic and industrial sources. 

The main aims of this PhD thesis are to: 

1. Fully characterizate the array of organic contaminants and their metabolites 

which are present in biofluids of fish after exposure to a selected wastewater 

effluent in order to understand the impact of effluent discharges on natural water 

bodies. 

2. To identify the metabolite pathways in fish which are disrupted by effluent 

exposure, thereby increasing understanding of the impacts of effluents on these 

aquatic vertebrates.  

In order to achieve these two objectives, chemical profiling and metabolomics 

approaches have been employed.  

This work has been described in detail in the following five chapters. 

� Chapter 2 describes the preliminary work performed to optimize the 

methodology for the xenobiotics profiling in fish bile and includes: 

•  Optimization of the UPLC-TOFMS method (e.g. eluents, modifiers, 

chromatographic separation, ionization modes). 

• Preliminary characterization of the bile matrix in order to ascertain the 

methods are fit for purpose. 

� Chapter 3 details a study of the bioconcentration and depuration of xenobiotics 

in bile of rainbow trout (Oncorhynchus mykiss) exposed to a WwTW for 10 

days. The main aim of this study was to investigate the nature of the 

contaminant chemicals and their mixtures that bioconcentrate in fish exposed to 

a wastewater effluent. Work included: 

• Chemical profiling of organic contaminants by UPLC-TOFMS and 

multivariate analysis targeting the exogenous compounds. 

� In Chapter 4, the profiles of the xenometabolome in blood samples from the 

rainbow trout exposure were investigated together with changes in profiles of 

endogenous metabolites as a result of effluent exposure. Work included:  
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• Chemical profiling of organic contaminants by UPLC-TOFMS and 

multivariate analysis targeting the endogenous compounds. 

� A follow up study on the effects of two concentrations of the same WwTW 

effluent on the (xeno) metabolome profiles in plasma of the cyprinid fish, the 

roach (Rutilus rutilus) are described in chapter 5. The main aim of this study was 

to detect changes in the metabolome obtained from plasma of a different fish 

species exposed to the same wastewater effluent but for longer time and 

employing statistically relevant replicates. This included: 

• Investigation of new potential mechanisms and pathways which can be 

disrupted by effluent exposure. 

• Confirmation of the observed changes in the metabolome of an 

additional fish species exposed to the same effluent. 

• Determination of gender specific changes in the metabolome. 

� A general discussion on the overall findings and suggestions for future work are 

given in Chapter 6. 
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CHAPTER 2: Methodology for UPLC-TOFMS Profiling of Xenobiotics and 

Bile Extracts from Trout 
 

2.1 Introduction 

In order to obtain the maximum information from the chemical analyses of 

samples such as bile, the most appropriate instrumental method should be used to detect 

as many analytes as possible. Many studies have shown that chromatographic 

techniques coupled to mass spectrometry can be a suitable tool to successfully 

characterize the analytical range of metabolites present in complex biological matrices 

(Fiehn, 2002). Gas chromatography-mass spectrometry (GC-MS) provides a sensitive, 

specific and reproducible approach for compound detection and quantitation. However, 

one of the main limits of this technique is its applicability only to volatile molecules, or 

compounds which can become volatile after suitable derivatization. On the other hand, 

LC-MS is much more versatile: it encompasses a wider mass range and many 

compound classes not detectable by GC-MS can be targeted. Thousands of ions in 

biological matrices have been separated and detected by LC-MS using low-resolution 

analysers (triple quadrupole or ion trap) (Idborg-Björkman et al., 2003, Lafaye et al., 

2003). However, these analyzers do not discriminate between compounds with the same 

nominal masses; therefore, high resolution mass spectrometers are more suitable for 

chemical profiling. Ultra performance liquid chromatography (UPLC) coupled to high-

resolution mass spectrometers Time-of-Flight (TOF) and Fourier Transform (FT) 

analyzers offers better options to structurally elucidate unknown metabolites. This 

cutting edge analytical technique provides (i) accurate mass measurement, which allows 

to determine the elemental composition of the studied metabolites for further 

identification, and (ii) structural information after tandem mass experiments, which 

provides enhanced signal-to-noise ratios (Madalinski et al., 2008). However, significant 

drawbacks such as ion suppression and isobaric interferences may result from a poor 

liquid chromatographic separation prior to the MS analysis. The introduction of ultra-

performance liquid chromatography (UPLC)-MS has partially solved these limitations 

providing significantly reduced analysis time and increasing, simultaneously, the 

sample throughput, resolution and sensitivity. For these reasons it has been considered 

highly suitable for large-scale untargeted metabolite profiling (Wilson et al., 2005, 

Nordstrom et al., 2006) and in this study an UPLC system coupled to a high resolution 

mass spectrometer (TOF) was employed. The coupling between liquid chromatography 
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and mass spectrometry requires the use of an ion source, which desolvates the eluate 

and generates ions in gas phase. The number of available ion sources is quite large and 

the choice of ion source depends mainly on the specific application. Soft ion sources as 

electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) can 

produce intact molecular ions of large molecules such as proteins, nucleic acids, or even 

non-covalently bound complexes. ESI offers several advantages: it allows the analysis 

of low and high mass compounds, it grants excellent reproducibility and sensitivity, it is 

a soft ionization technique and it does not require the use of a ionization matrix (as for 

MALDI) (Siuzdak and Lewis, 1998).  

In this chapter preliminary work was focused on the optimization of the analytical 

approach in order to tailor the methodology for the chemical profiling in fish bile. In 

order to do that: 

• Firstly, the chromatographic separation and the mass spectrometry detection 

were developed to guarantee the best selectivity and sensitivity. 

• Secondly, the real matrix (fish bile) was characterized in order to maximize the 

valuable information obtained by the analysis of this specific metabolome. 

 

2.2 Chemicals and standards 

 Cholic acid 98%, deoxycholic acid 99%, taurocholic acid (sodium salt) (>97%), 

taurodeoxycholic acid (sodium salt) (>98%), β-estradiol 98%, testosterone, 

hydrocortisone, progesterone (≥97%), bisphenol A (99>%), 4-octylphenol  (99>%), 4-

nonylphenol  (85>%), igepal CO-210 (average of 2EO units), igepal CO-520 (average 

of 5EO units), igepal CO-720 (average of 12EO units), hexaethylene glycol 

monohexadecyl ether C16EO6 (≥99%) were purchased from Sigma, UK. Diethyl 

phthalate (99%) was purchased from May and Baker LTD, Dagenham, UK. Ammonia, 

formic acid and all solvents (HPLC-grade) were purchased from Rathburn chemicals 

(Walkerburn, UK). 

Individual stock standard solutions were prepared by dissolving 10 mg of standard in 1 

mL of methanol and these were stored at -20 °C. Working standard solutions (1 

ng/10µL) were obtained by further dilution in methanol/water (1:1 v/v). 
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2.3 Development of UPLC-TOFMS methodology for analysis of contaminant 

standards. 

2.3.1 Mobile phase optimization 

The mobile phase composition has a significant effect on peak shape and also 

the sensitivity of detection by ESI MS. Therefore, in order to obtain the best results in 

terms of chromatographic separation and mass spectrometry detection, a preliminary 

optimization of the mobile phases is usually required. For the organic mobile phase, 

acetonitrile was selected rather than methanol since acetonitrile, having lower viscosity, 

gives less pressure fluctuation and less bubble formation when mixed with water. Lower 

solvent strength (εo), the ability of a solvent to elute a particular compound from a 

column, values correspond to stronger eluents for reverse phase chromatographic 

separation. Acetonitrile is usually a stronger solvent (εo = 0.5) for the elution of non-

polar compounds than methanol (εo = 0.73). Another parameter which must be taken 

into account for the selection of the most suitable mobile phase is viscosity (η). In fact, 

higher viscosity can give higher back pressures, requiring the use of shorter HPLC 

columns. Methanol is a more viscous solvent (η=0.60) than acetonitrile (η=0.37). These 

are the main reasons why acetonitrile is usually the most common mobile phase of 

choice and was used in this study. 

The complex nature of bile metabolomes, which encompass a wide variety of 

ionizable moieties and polarities, suggested that a comprehensive UPLC-TOFMS 

profiling should employ both +ESI and -ESI mode in order to guarantee a reliable 

picture of the studied sample. Standard compounds were analysed in both +ESI and –

ESI with four different mobile phase eluents. For ionization in positive mode, 0.2% 

formic acid was used as a modifier with an acetonitrile and water mobile phase. In the -

ESI mode, acetonitrile and water mobile phase was used in a number of different 

compositions: neutral, with 0.2% of formic acid as acid modifier, buffered with 10 mM 

ammonium acetate as modifier and with ammonia as basic modifier at pH 8, pH 9 and 

pH 10. 

A standard solution mixture 1 ng/µL in MeOH:H2O (1:1, v/v) of cholic acid (C), 

taurocholic acid (TC), deoxycholic acid (DC), taurodeoxycholic acid (TDC), 

hydrocortisone (HCTN), β-estradiol (E2), testosterone (T2), progesterone (P), diethyl 

phthalate (DEPH), bisphenol A (BPA), octylphenol (OP), nonylphenol (NP), 

hexaethylene glycol monohexadecyl ether (C16EO6), nonylphenol ethoxylates 
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(NPEOs) was tested in the different mobile phases in –ESI and + ESI to evaluate the 

effect of the mobile phase on the different classes of compounds. 

2.3.2 UPLC-TOFMS analysis 

An ACQUITY UPLC system was employed for the chromatographic separation 

of bile samples. Standards and bile samples were injected onto an Acquity UPLC BEH 

C18 column (1.0 × 100 mm, particle size 1.7µm, Waters, Elstree, UK) which was 

maintained at a constant temperature of 30°C. C18 reversed-phase columns provide 

higher resolution than short chain columns (e.g. C8) which is essential for the analysis 

of complex samples such as bile and plasma. The mobile phases gradient was 0.0-4.0 

min from 0% to 22 % acetonitrile (ACN), 4.0-18.0 min to 50% ACN and then 18.0-28.0 

min to the 100% ACN. Re-equilibration to the initial condition was maintained for 6 

min. 

A Micromass (Waters, Manchester, UK) TOFMS system coupled to UPLC with 

an electrospray ionisation (ESI) source was used to detect the analytes of interest. The 

bile samples were profiled twice, once in positive and once in negative ESI mode. All 

the mass spectrometer parameters were manually tuned to obtain the highest MS signals 

providing optimum sensitivity and selectivity. The tuning parameters were optimized by 

direct infusion of 50 pg/µL leucine enkephalin at a flow rate of 10 µL/min using a 

syringe pump. Previous studies using UPLC-TOFMS indicated that the following 

parameters provided to highest sensitivity for detecting a ragne of organic compounds 

including steroidal metabolites (Flores-Valverde and Hill, 2008). The TOF analyzer was 

used in V mode at 9000 mass resolution. The TOF voltage was set at 9.10 kV and 

capillary voltage was set at 2.60 kV in +ESI mode and at -2.70 kV in -ESI mode. Argon 

was used as collision gas at penning pressures of 5.23x10-7mbar. Collision energy was 

set at 10 eV, the cone and multiplier voltages were 35 and 550 V respectively. The 

source temperature was 100°C, the desolvation temperature 250°C and the desolvation 

nitrogen flow was 300 l h-1. Sulphadimethoxine (C12H14N4O4S) was used as internal 

lock mass at a concentration of 300 pg µL-1 in 1:1 v/v methanol/water in -ESI mode and 

100 pg µL-1 in 1:1 v/v methanol/water plus 0.1% formic acid in +ESI mode. The 

calibrant solution was infused at 50µl/min via a lockspray interface in order to ensure 

accurate mass measurements. The monitored m/z for the internal lock mass were 

311.0814 (+ESI) and 309.0658 (-ESI). Mass spectra were collected in full scan mode 

from 50 to 1200 m/z.  
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The relative response of the analytes under different mobile phase conditions 

and ESI modes was measured by integrating the peak area for the extracted ion 

chromatogram (XIC) for ion form of each compound. XICs were extracted considering 

a mass window of 50-100 ppm, and replicate analytical runs were performed for each 

target analyte. 

Typical analytical parameters used in assay validation include: precision, 

accuracy, linearity, range, ruggedness, limit of detection, limit of quantitation, 

selectivity and specificity (Chan et al., 2004). The two most important matrices of a 

chromatographic method are accuracy and precision.  

Accuracy: is a measure of the closeness of the experimental value to the actual amount 

of the substance in the matrix. It determines by performing the method to samples 

having known amounts of analyte which then analysed against standard and blank 

solutions to guarantee that no interference exists. The accuracy can be calculated from 

the test results as a percentage of the analyte recovered by the assay. 

Precision: measures how close individual measurements are to each other. It is a 

measure of the reproducibility of analytical method, including sampling, sample 

preparation and analysis, under normal performing conditions.  

Precision determines by means of the method to assay a sample for a sufficient number 

of times to achieve statistically valid results. It expresses as the relative standard 

deviation (RSD): 

 

RSD = 	 S. Dmean	× 100 

 

 

 

 

 

 

 

Figure 2.1: The diagram illustrates the differences between the accuracy and precision; a method can 
have good precision but not be accurate. 
 

 

Precise but not accurate Accurate but not precise Accurate and precise
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To assess assay precision, replicate assays are performed and typically at several 

concentrations, and the means and RSDs calculated. Most assays are designed to 

guarantee that the RSD does not exceed 15% irrespective of the concentration. Within-

day precisions (intra-batch) determine from a single analytical run and between-day 

(inter-batch) values by the comparison of values from a number of analytical runs. In 

general, the inter-batch RSDs is greater than corresponding intra-batch values (add ref). 

To order to assess the accuracy, samples having known concentration are required to 

compare results. 

Unfortunately the accuracy and precision of the methods used in this study could not be 

calculated as the measurements were only based on duplicate analytical runs becuase 

some of the raw LC-TOFMS data were corrupted. 
 

2.4 Analysis of selected bile samples 

Bile samples were obtained from female juvenile rainbow trout (Oncorhynchus 

mykiss n=16) which had been exposed either to final undiluted effluent from a WwTW, 

or to charcoal filtered river water (the River Blackwater) abstracted upstream of the 

effluent discharge point (as controls). The details of the wastewater treatment plant and 

fish exposures are give in Section 3.2.2 Chapter 3. Briefly the trout were exposed for 10 

days in 1m3 plastic tanks, and were fed commercial trout food, though no food was 

given 3 days prior to harvesting to maximise bile fluid production. The flow rate of the 

effluent and river water was 10 L/min through each tank. At the end of the experimental 

exposure bile samples were taken by terminally anesthetizing the fish and puncturing 

the gall bladder with a needle and drawing the bile into a syringe. Samples were kept at 

-80°C prior to further analysis. 

Previous work in the Hill laboratory group (Mehinto, 2009) had shown that  

nonhydrolysed bile samples contained more metabolites than the hydrolysed bile 

samples. Enzymatic hydrolysis of bile samples is often used to remove glucuronic acid 

or sulphate groups from conjugated metabolites (Gibson et al., 2005a, Gibson et al., 

2005b). The same study has also reported that a solid phase extraction (SPE) of bile 

sample for clean-up and preconcentration purposes could generate impurities in the 

samples. Furthermore, a lower number of MS signals were obtained for the bile samples 

extracted by SPE when compared with samples injected directly onto the LC-MS, 

which could indicate losses of important metabolites. For this reason, in this study 
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samples were not hydrolysed or extracted by SPE in order to avoid possible loss of 

relevant information. 

Three composite bile samples were prepared combining aliquots from the 16 control 

samples and also from the 16 effluent-exposed samples (1 µL of bile from each 

inidividual fish) in order to provide a representative ‘mean’ sample containing all the 

analytes that will be encountered during the analysis. However, it should be recognised 

that some potential toxicants could be diluted and not detected when using a composite 

sample analysis. The obtained composite samples (assuming bile matrix as aqueous) 

were diluted to a final ratio methanol:water (1:1 v/v). Diluted samples were then filtered 

using a 96-well Strata Protein Precipitation Plates system (0.2µM, Phenomenex, 

Cheshire, UK). The resulting filtrate was transferred to 1 mL HPLC vials and kept at -

20°C before UPLC-TOFMS analysis. 

 

2.5 Results and discussion 

2.5.1 Effect of mobile phase composition and ESI mode on detection of 

contaminant types 

The selected compounds for the test standard mixture were: bile acids (C, TC, 

DC, TDC); surfactants (NP, NPEOs, C16(EO6)); steroids (HCTN, E2, T2, P) and 

phthalates (DEPH). Bile acids were selected since they are the major solute components 

of bile fluid. NPEOs and AEOs are widely used surfactants, commonly found in 

wastewaters. Steroids are also likely to be detected in bile and BPA is commonly 

observed in wastewater due to the daily use of this product. Phthalates could also be 

expected to be accumulated by fish exposed to wastewater effluent. Furthermore, some 

of the listed compounds (E2, NP, NP1EO, NP2EO and BPA) have already been detected 

in bile from fish exposed to wastewaters (Fenlon et al., 2010). 

The mean relative response of duplicate analyses of the standard contaminant 

compounds at different UPLC-TOFMS conditions are reported in Table 2.1. In the +ESI 

mode, free and conjugated bile acids were not detected at concentration levels of 

1ng/µL and higher concentrations were required to give rise to detectable signals 

(3ng/µL) (data not shown). E2, BPA, OP and NP could not be detected at all in positive 

mode. T2 was detected predominantly as protonated form [M+H]+ whilst DEPH could 

only detected as Na-adduct. NPEOs homologues were more abundant as [M+Na]+ and 

[M+NH4]
+ adducts than the protonated form. The NPEO homologues with more than 4 
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ethoxylate units showed affinity to NH4-adducts rather than Na-adducts due to the size 

of the different metallic ions. This could be explained referring to the destabilization of 

a crown ether type of complex (a complex between an ethoxylate compound and a metal 

ion such as Na+ or NH4
+) (Cohen et al., 2001). In this process, the oxygen atoms of the 

polyethoxylate chain can donate their free ion pair electrons to a cation agent; the 

flexible structure of the chain allows the molecule to wrap itself around the cation. The 

same phenomenon was observed for C16(EO)6 which showed a high signal as the NH4-

adduct in +ESI mode. In contrast, the use of the acidic mobile phase in -ESI mode 

allowed only the detection of bile acids (C, TC, DC and TDC) and the steroid HCTN 

amongst the standards injected at the selected concentration (1ng/µL). Bile acids were 

detected as deprotonated ions whilst HCTN was detected as [M-CH2O]- after neutral 

loss of formaldehyde. In the -ESI mode, the neutral mobile phase showed an increase in 

the responses for most of the analytes compared with an acidic mobile phase but the 

chromatography was affected and showed large variation in retention time of the 

standards between repeat injections. Amongst the standards, bile acids (C, TC, DC and 

TDC) gave rise to the highest signals. An abundant peak was also observed for the 

HCTN after loss of formaldehyde. E2, T2 and P, which could not be detected in -ESI 

mode using formic acid as modifier, gave rise to detectable signal in neutral condition. 

BPA showed good response whilst OP, NP, NPEOs and C16(EO)6 could not be 

detected under these conditions. It is likely that the use of formic acid as a modifier 

suppressed ionization of the phenolic and ketonic steroids, and to a lesser extent, 

compounds containing acidic groups such as the bile acid. In negative mode the effect 

of ammonia as modifier was also investigated, taking into account 3 different pHs (8, 9 

and 10). The best responses were obtained for mobile phases added with NH3 at pH 10, 

and E2, BPA, OP and NP showed abundant peaks. Bile acids and HCTN were also 

detected whilst T2, P, DEPH, C16(EO)6 and NPEOs could not be detected using this 

mobile phase. 

In summary, in –ESI mode bile acids and HCTN were detected using either 

acidic, neutral mobile phase conditions or ammonia buffered mobile phases at pH 10. In 

+ESI mode T2 and P gave a high response under acidic conditions. The basic mobile 

phase at pH 10 offered the best sensitivity for the detection of E2, BPA, OP and NP in -

ESI mode. These compounds are ionized more efficiently in basic conditions than in 

acidic or neutral. In +ESI mode DEPH, C16(EO)6 and NPEOs could be detected more 
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easily as Na-adducts or NH4-adducts than in any other form. All the methods resulted in 

good peak shapes of the analytes. The peak width (at 50% height) was less than 20 

seconds (Figure 2.2). From these results it was clear that no one method could be used 

to detect all the target analytes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: UPLC-ESI-TOFMS extracted ion chromatograms of selected standards (1ng/µL) in both ESI 
modes using three different mobile phase compositions (neutral, acidic and basic).  
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Table 2.1: UPLC-TOFMS analysis of selected standards (1ng/µL) in aqueous samples: chemical formula, retention time in min; RT, and area as average of duplicate analytical runs. 

  

+ESI 

ACN:H2O buffered 

0.2%F.A 

-ESI 

ACN:H2O buffered 

0.2%F.A 

-ESI 

ACN:H2O Neutral 

-ESI 

ACN:H2O buffered 10mM 

Ammonium Acetate 

-ESI 

ACN:H2O buffered 

ammonia pH8 

-ESI 

ACN:H2O buffered 

ammonia pH9 

-ESI  

ACN:H2O buffered 

ammonia pH10 

Compound Formula RT Area RT Area RT Area RT Area RT Area RT Area RT Area 

C C24H40O5 - nd 14.80 56 14.31 608 10.26 74 7.57 100 7.22 110 6.51 343 

TC C26H45O7NS - nd 10.73 53 8.00 738 7.41 121 7.78 170 7.56 187 6.97 295 

DC C24H40O4 - nd 19.21 96 19.08 1181 15.41 244 8.89 234 8.28 255 7.98 749 

TDC C26H45O6NS - nd 13.75 71 10.28 1162 9.67 179 8.87 187 8.61 221 8.40 422 

HCTN C21H30O5 8.67 23 8.65 5# 8.72 200# 7.58 105# 7.60 142# 7.59 150# 9.31 236# 

E2 C18H24O2 - nd - nd 12.68 27 - nd - nd - nd 13.20 280 

T2 C19H28O2 13.02 45 - nd 13.06 21 - nd - nd - nd - nd 

P C21H30O2 18.29 55 - nd 18.32 10 - nd - nd - nd - nd 

DEPH C12H14O4 14.20 11* - nd - nd - nd - nd - nd - nd 

BPA C15H16O2 - nd - nd 12.97 79 11.36 51 - nd - nd 13.17 171 

OP C14H22O - nd - nd - nd - nd - nd - nd 22.76 357 

NP C15H24O - nd - nd - nd 22.30 15 - nd - nd 22.83 476 

C16(EO)6 C28H58O7 22.80 2203** - nd - nd - nd - nd - nd - nd 

NP2EO C19H32O3 22.56 66* - nd - nd - nd - nd - nd - nd 

NP3EO C21H36O4 22.56 68* - nd - nd - nd - nd - nd - nd 

NP4EO C23H40O5 22.54 14* - nd - nd - nd - nd - nd - nd 

NP5EO C25H44O6 22.53 9** - nd - nd - nd - nd - nd - nd 

NP6EO C27H48O7 22.53 23** - nd - nd - nd - nd - nd - nd 

NP7EO C29H52O8 22.50 43** - nd - nd - nd - nd - nd - nd 

NP8EO C31H56O9 22.48 68** - nd - nd - nd - nd - nd - nd 

NP9EO C33H60O10 22.43 78** - nd - nd - nd - nd - nd - nd 

NP10EO C35H64O11 22.40 87** - nd - nd - nd - nd - nd - nd 

NP11EO C37H68O12 22.38 79** - nd - nd - nd - nd - nd - nd 

NP12EO C39H72O13 22.35 63** - nd - nd - nd - nd - nd - nd 

+/-ESI: positive/negative electrospray ionization mode; ACN: acetonitrile; FA: formic acid; * sodium adduct; ** ammonium adduct;  # loss of formaldehyde; nd: not detected; C: cholic acid; DC: 
deoxycholic acid; TC: taurocholic acid; TDC: taurodeoxycholic acid; HCTN: hydrocortisone; E2: β-estradiol; T2: testosterone; P: progesterone; DEPH: diethylphthalate; BPA: bisphenol A; OP: 
octylphenol; NP: nonylphenol; C16(EO)6: hexaethylene glycol monohexadecyl ether; NPnEOs: nonylphenol ethoxylates where n represent EO unit. Flow rate 0.075mL/min. 
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2.4.2 UPLC-TOFMS profiles of bile samples 

Bile samples were analysed using the mobile phase compositions tested for the 

standard mixture in order to select the most suitable conditions for the chemical 

profiling purpose. Bile samples in both ionization modes (+/-ESI) revealed many 

saturated peaks in the total ion chromatograms in all tested conditions. It is likely that 

each of the mobile phase composition tested in this study had advantages as well as 

disadvantages; for instance the addition of formic acid to the mobile phases would 

improve the separation efficiency, and facilitated the protonation of the analytes in the 

+ESI mode (García, 2005). However, the signal intensity of some compounds such as 

organic acids would be decreased in –ESI mode due to the less efficient deprotonation 

of the compounds in acidic conditions (Wu et al., 2004). Figure 2.3 shows the 

comparison between the chromatograms obtained from control and effluent-exposed 

fish bile samples which were analysed by UPLC-TOFMS in both ESI modes and in the 

presence of formic acid in the mobile phase. The chromatographic separation with 

acidic modifier revealed saturated peaks caused by the presence of high amounts of 

taurocholic acid (TC) in bile samples (control and effluent-exposed fish) in both ESI 

modes. In -ESI mode, TC produced the ion at m/z 514.2839 as [M-H]-
 (Figure 2.4). On 

the other hand, in +ESI mode three signals (different m/z but same RT) were found 

corresponding to TC at m/z 516.2989 (molecular ion), m/z 498.2883 (loss of H2O from 

the molecular ion), m/z 480.2780 (loss of 2H2O) and m/z 462.2672 (loss of 3H2O from 

the molecular ion) (Figure 2.4). It is interesting to note that TC could not be detected as 

a standard in positive mode (concentration level 1 ng/µL) whilst in the bile sample its 

concentration was very high allowing its detection in +ESI despite the use of an 

unsuitable ionization mode for that specific class of compounds. Other free and 

conjugated bile acids (C, DC and TDC) were not detected in either ESI modes in the 

bile. In addition, analyses of the bile samples were also checked for the presence of 

steroidal and phenolic compounds that were used in the previous analyses of the 

standard mixture, and they were not detected. However a previous study has already 

proved the presence of alkylphenols in rainbow bile as glucuronide conjugates 

(Ferreira-Leach and Hill, 2001). Therefore, UPLC-TOFMS ion chromatograms were 

carefully examined in order to investigate the presence of the alkylphenols present as 

conjugated forms (i.e. glucuronidated conjugates). Glucuronide conjugates of NP and 

it’s ethoxylates (i.e. NP1EO-NP5EO, where EO represents the ethoxymer unit), could 
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be detected as deprotonated ions [M+Glu-H]- in –ESI mode in the presence of acid 

modifier. Sodium/ammonium adducts [M+Glu+Na]+/[M+Glu+NH4]
+ were also 

observed for NP1EO-NP6EO in +ESI mode. An example of the relative abundances of 

the conjugated compounds obtained for the NPEOs in both +ESI and -ESI are shown in 

Figure 2.5. 

In conclusion, it is extremely likely that ionic or ionisable compounds would be 

present in a matrix such as bile, therefore the use of buffered mobile phases is strictly 

recommended in order to ensure reliable results. In the positive mode the best option 

was certainly a mobile phase added with formic acid since these experimental 

conditions allowed the detection of the whole series of alkylethoxylates surfactants 

standards as well as the bile acids and testosterone and progesterone steroids. On the 

other hand, in the negative ionisation mode both acidic and basic mobile phases (added 

with formic acid and ammonia, respectively) permitted the detection of bile acids and 

generally the peak shape was better with the addition of formic acid. However phenolic 

contaminants such as NP, OP and E2, were only detected using neutral or basic mobile 

phases. Analysis of bile samples revealed that NPEO surfactants were present as 

glucuronide conjugates and it was likely that these and many other conjugated 

contaminants could be detected as either ammonium, sodium adducts in +ESI and as the 

deprotonated ion in –ESI even in the presence of formic acid. Hence, samples were 

profiled with formic acid in the mobile phase for both ESI modes. This would ensure 

the same retention time in both ESI modes for the same compounds providing an 

additional confirmation during the identification of unknowns and thus increasing the 

confidence for correctly assignation of unknown compounds. 
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Figure 2.3: Total ion chromatograms (as base peak intensity BPI) of composite bile samples (0.2µL 
equivalent) for both control (river water exposed fish) and 100% effluent-exposed trout in +/–ESI modes. 
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Figure 2.4: TOFMS mass spectra of taurocholic acid found in fish bile (control and effluent-exposed 
trout) in +/–ESI modes. The spectrum shows peaks for the deprotonated form at m/z 514.2815 (molecular 
ion) and protonated forms at m/z 516.2981 (molecular ion), m/z 498.2864 (loss of H2O), m/z 480.2817 
(loss of 2H2O) and m/z 462.2682 (loss of 3H2O). 
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Figure 2.5: UPLC-ESI-TOFMS extracted ion chromatograms in both ESI modes of nonylphenol 
tetraethoxylate (NP4EO) found in bile samples from control and effluent-exposed fish. This metabolite 
was detected in the glucuronide conjugate form as sodium [M+Glu+Na]+ and ammonium [M+Glu+NH4]

+ 
adducts in positive mode and as deprotonated ion[M-H]- in negative mode, where Glu=glucuronide 
moiety. The dashed line points out the retention time of the mentioned analyte across the reported 
chromatograms. 
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CHAPTER 3: Analysis of the Xenometabolome of Bile from Trout Exposed 

to Final Effluent from a Wastewater Treatment Works. 
 

3.1 Introduction 

The increasing use of chemicals in the pharmaceutical, agricultural, building and 

manufacturing industries has led to the production of a wide variety of chemical 

contaminants, many of which may pose a risk to both wildlife and human health. A lot 

of these contaminants enter the aquatic environment via run off or through discharges 

from waste effluents or the sewerage systems. Although in the UK, most of the 

wastewater treatment plants meet UK and EU standards for effluent quality, many 

organic contaminants are incompletely eliminated (for example steroidal estrogens) and 

can still effect health of downstream fish (Viant et al., 2003). Numerous studies have 

documented the presence of different classes of compounds in final effluents such as 

pharmaceuticals, personal care products, surfactants (and their degradation products), 

plasticizers, insect repellents, pesticides, and flame retardants (Terzic et al., 2008). 

Furthermore, in some developing countries the majority of wastewaters are discharged 

directly into the environment either without any treatment or after being treated only 

mechanically (Terzic et al., 2008). The concentrations in the waste or surface waters of 

many of these environmental contaminants are usually extremely low (ng/L) but are still 

toxicologically relevant. Often the analytical techniques currently available cannot 

detect them unless efficient preconcentration steps have been applied. Preconcentration 

can be performed at different stages of the analytical procedure (e.g. during sampling, 

sample treatment, or preconcentration on-line during instrumental analysis). However, 

for the analysis of bioavailable waterborne contaminants in fish, bile fluid has been 

proved to be a useful qualitative and semi-quantitative monitoring aid because it 

efficiently concentrates xenobiotics >1000 fold from contaminated water (Oikari and 

Kunnamo-Ojala, 1987, Wachtmeister et al., 1991). Analysis of bile fluid from fish has 

been performed to detect exposure and uptake of many different substances, e.g. 

surfactants (Jonsson et al., 2008), polycyclic aromatic hydrocarbons (Mazéas and 

Budzinski, 2005), resin acids (Meriläinen and Oikari, 2008), bactericides (Adolfsson-

Erici et al., 2002), and pharmaceuticals (Kallio et al., 2010). In other studies, bile has 

also been used as useful matrix for the indication of uptake and exposure of fish to 

estrogenic substances present in final effluents (Gibson et al., 2005b, Tyler et al., 2005, 

Fenlon et al., 2010, Pettersson et al., 2006). 
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Bile is a fluid produced by the liver of most vertebrates which aids the process 

of digestion of lipids in the small intestine. Bile consists mainly of water (85%) with the 

addition of other components including bile salts (10%), mucus and pigments (3%), fats 

(1%), inorganic salts (0.7%) and cholesterol (0.3%). The liver is one of the major organ 

for detoxification in vertebrates and therefore the prime site for the metabolism and 

excretion of xenobiotics. Most contaminants undergo hepatic metabolism and are then 

excreted, depending on their molecular weight and the species, either predominantly in 

the bile (e.g. molecular weights > 350 Da) or in the urine (< 300 Da) (Di Giulio and 

Hinton, 2008). The analysis of the bile fluid will therefore give an overview of many, 

but not all, of the contaminants taken up by the studied organism.  

Most of the studies analysing xenobiotics and their metabolites in contaminated 

organisms have focussed on individual contaminants or a few classes of chemicals. 

However the introduction of chemical profiling methods, including metabolomics, 

allows many classes of metabolites to be analysed at one time. The metabolome 

includes all organic substances naturally occurring from the metabolism of the organism 

(except biological polymers) and can also include xenobiotics and their 

biotransformation products. The concept of the xenometabolome has been proposed by 

Holmes et al. (2007) as the multivariate description of the xenobiotic metabolite profile 

of an individual exposed to drugs, environmental pollutants, or food components that 

cannot be fully catabolised (the breaking down in living organisms of more complex 

substances into simpler ones, with the release of energy) by endogenous metabolic 

enzymes (i.e. non-nutrient compounds) (Wishart, 2008). Metabolomic analysis is semi-

quantitative and therefore represents a promising tool for biomarker discovery. 

Using available analytical methods for metabolic approach, chemical profiling 

of biological samples provides information on thousands of metabolites via a single 

analytical run. Therefore, chemometric and mathematical modelling methods (e.g. 

principal components analysis (PCA) and partial least-squares discriminant analysis 

(PLS-DA)) are required to interpret the complex resulting data sets (Lindon et al., 2006, 

Coen et al., 2008).  
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The aims of the study in this chapter were to: 

1. Determine the profiles of organic contaminants and their metabolites present 

in bile from trout exposed to a final effluent from a wastewater treatment 

plant.  

2. Investigate how the contaminant profiles in the bile of effluent-exposed trout 

change in response to a depuration period. 

3. Determine the structures of the contaminants in the bile of effluent-exposed 

trout using a variety of mass spectrometry approaches. 
 

Juvenile trout were exposed either to a WwTW effluent or reference river water for up 

to 10 days. At this time, some of the effluent-exposed trout were transferred to reference 

river water to investigate the effect of a depuration period on contaminant profiles in the 

bile. UPLC-TOFMS technique was used to profile the bile samples from the fish. 

Statistical methods (multivariate data analysis) based on data clustering, dimensional 

reduction, and multiple hypothesis testing were performed to prioritize characteristics 

for successive identification of key metabolites. Orthogonal partial least squares 

analysis discriminant analysis (OPLS-DA) was used to identify the discriminatory 

metabolites arising from effluent exposure. The putative identity of the metabolite was 

obtained after examination of the raw chromatograms. Accurate mass measurements 

(<2 ppm) were obtained by performing TOFMS analysis in full scan mode (W mode) in 

order to first examine the possible identity of the detected compounds. However, 

metabolite identification cannot be uniquely based on evaluation of m/z alone since this 

approach does not meet the Metabolomics Standards Initiative criteria for metabolite 

identification (Sumner et al., 2007), and any metabolite identifications must be regarded 

as putative. Kind and Fiehn have highlighted the importance of mass accuracy and how 

it impacts peak identification. High mass accuracy (<1 ppm) alone is not enough to 

eliminate enough candidates with complex elemental compositions (C, H, N, S, O, P, F, 

Cl, Br and Si). Utilization of isotopic abundance patterns as a single further constraint 

can eliminate >95% of false candidates. The application of this orthogonal filter can 

reduce several thousand candidates down to only a limited of molecular formulas (Kind 

and Fiehn, 2006,  "Accurate Mass: Metabolomics Fiehn Lab"). In addition the use of the 

seven rules can lead to automatic exclusion of molecular formulas which are either 

wrong or which contain an erroneous number of elements. These rules are: (1) 

restrictions for the number of elements, (2) LEWIS and SENIOR chemical rules, (3) 
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isotopic patterns, (4) hydrogen/carbon ratios, (5) element ratio of nitrogen, oxygen, 

phosphor, and sulphur versus carbon, (6) element ratio probabilities and (7) presence of 

trimethylsilylated compounds (for GC-MS only). Using these rules, the correct 

molecular formula can be assigned with a probability of 98% if the formula is present in 

a database. Novel compounds which donot exist in databases, can be assigned with the 

correct formula in the first three hits of suggested formuals with a probability of 65–

81% (Kind and Fiehn, 2007). However, in this study additional confirmation was 

provided performing Q-TOFMS experiments (product ion scan mode) based on 

accurate mass measurement of specific product ions. In order to obtain further 

information useful for successful identification, fractions of bile samples were 

hydrolysed by glucuronidase or sulphatase enzymes. After deconjugation parent 

compounds were derivatized and analysed by gas chromatography-mass spectrometry 

(GC-MS). 
 

3.2 Materials and Methods 

3.2.1 Chemicals 

 Tridecanol-EO12 (technical mixture), 1- naphthol (99≥%), 2-naphthol (99%), 1-

hydroxypyrene (98>%), 2,2’-dihydroxybiphenyl (99>%), 2,4-dichlorophenol, 2,4,6-

trichlorophenol (98%), irgasan (triclosan) (97≥%),4-chloro-3,5-dimethyl-phenol 

(chloroxylenol) (99>%), dichlorophene, isopimaric acid (%), mefenamic acid, 

Oxybenzone (2-hydroxy-4-methoxybenzophenone), potassium 4-nitrophenyl sulphate 

(%), 4-nitrophenol β-D-glucuronide (%), β-glucuronidase (type VII-A extracted from 

Escherichia coli), sulphatase (VI from Aerobacter aerogenes), bis(trimethylsilyl) 

triflouroacetamide (BSTFA) containing 1% trimethylchlorosilane (TMCS), and 

pyridine were purchased from Sigma, UK. Abietic acid (85>%), was purchased from 

Acros Organics. 2-benzyl-4-chlorophenol (chlorophene) (95>%) was purchased from 

Tokyo Chemical Industries, UK . Pimaric acid (99%) was purchased from Caltag 

Medsystems, UK. Deuterated internal standards [2,2,4,6,6,17α-21,21,21-2H9] 

progesterone (P-d9), [2,4,16,16-2H4] estrone (E1-d4) and [2,4,16,16-2H4] 17β-estradiol 

sodium 3-sulphate (E2-d4-S) (isotope purity >98%) were obtained from C/D/N Isotopes 

(Quebec, Canada). 
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3.2.2 Fish exposure 

The wastewater treatment plant (WwTP) in this study received influent from a 

population equivalent of 142,370: 99.6% was from domestic sources whilst the 

remaining 0.4% was from commercial vehicle cleaning, laundering, electroplating, 

plastic manufacturing, photographic development, meat processing and electronic 

circuit board manufacturing. The influent was treated by fine bubble diffusion activated 

sludge and trickling filters processes. The flow rate of the effluent discharge ranged 

between 52,000 and 74,500 m3/day and the average residence time was 12 hours. 

Female juvenile rainbow trout (Oncorhynchus mykiss) were obtained from Hatchlands 

fish farm (Rattery, Devon, UK); individuals were measured from the head to the fork-

tail and weighed revealing a mean ± SEM length of 22.8±0.2cm and weight 132.9±3.6g. 

In order to investigate the complex mixture of chemical xenobiotics and their 

persistence in effluent exposed fish, twenty-nine juvenile fish were exposed to final 

undiluted effluent, and further thirty-one fish were used as a reference population. The 

control population was held in charcoal filtered river water (the River Blackwater) 

abstracted upstream of the effluent discharge point. The fish were kept in 1m3 plastic 

tanks, and were fed commercial trout food, though no food was given 3 days prior to 

harvesting. The flow rate of the effluent and river water was 10L/min through each tank. 

Tanks were continually aerated through the time of exposure to ensure oxygen levels 

sufficient to support the biomass of the fish.  After a period of ten days, sixteen fish 

from the effluent tank and from the control tank, respectively, were harvested. The 

remaining 13 fish in the effluent tank were transferred to charcoal-filtered river water to 

evaluate the possible presence of further levels of contaminants after a period of 

depuration. Six of these fish (together with a similar number of control trout) were 

harvested after four days of depuration (referred as day 14 of the study), and seven were 

harvested after eleven days of depuration (referred as day 21 of the study) (see Figure 

3.1). At the end of the experimental exposure, bile samples were taken by terminally 

anesthetizing the fish and puncturing the gall bladder with a needle and drawing the bile 

into a syringe. Samples were kept at -80°C prior to further analysis. 
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Figure 3.1: Scheme for the exposure of rainbow trout to a wastewater effluent and incorporation of 
depuration periods. 

 

Based on the hypthesis that most of the contaminants present in effluent can 

reach the stady state within 10 days of exposure, this study was conducted for 10 days 

to investage the impact of short term of effluent exposure. For instance, previous studies 

have reported that the concentration of EE2 in bile of rainbow trout exposed to EE2 

dosed water was reached the equilibrium with the EE2 dosed water tank after 10 days of 

exposure (Skillman et al., 2006, Flores, 2008).  

The selection of depuration periods were based on the findings in the Hill 

laboratory group. Pedersen and Hill (2002) have documented that 4-tert-octylphenol-

exposed fish that have been placed in clean water for up to 10 days resulted in a rapid 

loss of soluble residues from the tissues with half-lives of between 0.7 and 1.0 days 

(muscle, testis, ovary, gill, blood, kidney), 1.7 days (liver), and 5.9 days (bile). 

Therefore, 4 days and 11 days of depuration times were designed for the present study 

to cover depuration rates on non persistent and persistent contaminants that could be 

present in the effluent. 

A statistical power analysis of data obtained in previous studies on the levels of 

contaminants accumulating in fish (Pedersen and Hill, 2002, Flores, 2008) was 

calculated using an effect size of 2.0. Analysis of this data revealed a power value >0.9 

with a replication of 9. Hence 16 replicates were used in initial exposure in case of 

mortalitly and in order to investigate potential small effects on the metabolome. 

However lower replicate numbers wer used in depuration studies where only a higher 

effect size was needed as the main aim was to investigate depuration of high levels of 

xenobiotics in the fish biofluids. 

Female immature rainbow trout (n=60)

Exposure to river water 
(n=31) 

Exposure to effluent (10 days) 
(n=29)

10 days 
(n=16)

14 days 
(n=6)

21 days 
(n=9)

Depuration
[ river water charcoaled filtered]

4 days 
(n=6)

11 days 
(n=7)
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3.2.3 Analytical procedure 

The schematic summary of the whole analytical procedure applied for the study 

of the fish bile samples is reported in Figure 3.2. As shown in the flow diagram, sample 

preparation was followed by UPLC-TOFMS profiling, and the datasets were analysed 

using a multivariate analysis approach. Selected putative markers of effluent exposure 

were further characterized analysing samples (either whole bile or fractionated bile) by 

both GC-MS and UPLC-Q-TOFMS. In order to confirm the structural identity for the 

different markers, database searches were employed (NIST and various metabolomic 

databases). The whole analytical procedures are fully described in the following 

paragraphs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Analytical scheme for the chemical profiling and structural identification of compounds 
accumulating in the bile of effluent-exposed trout.  

 

3.2.3.1 Sample treatment for analyses of chemical profiles 

Bile samples (6µL) were obtained from trout exposed to both river water and 

100% effluent. Bile was sampled respectively after 10 (n=16), 14 (n=6) and 21 (n=9) 

days of exposure in river water and after 10 (n=16) days of exposure in 100% effluent; 
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Dilution 1:50 in MeOH

Fragmentation pattern

UPLC-MS profiling (V mode)

Structural Identity of marker 
of effluent exposure 

LC fractions

Data Analysis
Multivariate Analysis

PCA → PLS-DA → OPLS-DA

Univariate Analysis

Data pre-processing

GC-MS analysis 
(NIST library)

Enzymatic hydrolysis 

MS/MS mode 
Q-TOF-MS 
(V mode)

Full Scan mode
TOF-MS 
(W mode)

Accurate massWhole bile

Filtration  (96 well Strata plate)

UPLC-MS analysis
(Metabolomicdatabase search)
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further samples were obtained after subsequent depuration of the trout exposed to 100% 

effluent in charcoal-filtered river water for a period of 4 (n=6) and 11 (n=7) days, 

respectively.  

Bile samples were diluted 1:2 in methanol and a known amount of selected internal 

standards (P-d9 & E2-d4-S) (final concentration of 1ng/10µL of sample) was added to 

the samples before further treatment. Diluted samples were then filtered using a 96-well 

Strata Protein Precipitation Plates system (0.2µM, Phenomenex, Cheshire, UK). The 

resulting filtrate was then transferred to HPLC vials and kept at -20°C prior to chemical 

analysis. 
 

3.2.3.2 UPLC-TOFMS chemical profiling 

An ACQUITY UPLC system coupled to a Micromass (Waters, Manchester, 

UK) TOFMS system with an electrospray ionisation (ESI) source was employed for the 

chromatographic separation and analysis of bile samples according to the method 

described in Chapter 2 Section 2.3.2 (injection volume was 7µL for each bile sample).  

3.2.3.3 Data analysis 

Data pre-processing 

MarkerLynx V 4.1 software package (Waters Corporation, Milford, MA, USA) 

was used to deconvolute and align spectral peaks. Data classification was performed 

using the following parameters: 0.03 Da as mass unit window, 0.2 min as retention time 

window, 0.03 Da as tolerance, 20 s as 5% height average peak width, 100 units as the 

threshold acquisition level, 50 as the number of masses per retention time, 1% of the 

base peak as minimum intensity allowed for a spectral peak to be considered as the 

same signal, 0.03 Da as mass window tolerance and 0.2 min as retention time tolerance 

for a spectral peak to be considered as the same signal. The isotopic peaks and 

background noise of the data were eliminated and datasets were then normalised (not 

scaled) to a set maximum total spectral area for each sample prior to exporting to 

SIMCA-P software for subsequent multivariate analysis (Umetrics UK Ltd, Winkfield, 

Windsor Berkshire, UK). 

Multivariate data analysis 

Datasets were Pareto scaled and log-transformed to reduce skewness of the 

datasets. Pareto scaling method has the advantage of enhancing the contribution of less 

abundant metabolites without amplification of artefacts and noise (Cloarec et al., 2005). 



66 

 

 

 
 

Principal component analysis (PCA) was performed in order to obtain an overview of 

the data and to detect any outliers. PCA is a multivariate projection method which 

represents the data matrix as a low-dimensional plane, typically of 2 to 5 dimensions 

(components) providing an overview of the whole dataset (Eriksson et al., 2006). The 

components are uncorrelated variables which are obtained from the original variables of 

the matrix after transformation and they account for most of the variability of the data 

(ibid). The Hotelling’s T2 and the distance to the model in the X-space (DModX) were 

applied to identify in the scores plot strong and moderate outliers, respectively. Partial 

least squares-discriminant analysis (PLS-DA) was then used to identify the metabolites 

affected by effluent exposure. PLS-DA is a supervised pattern recognition technique 

that maximises the covariance between the X matrix (LC-MS data) and the Y matrix 

(treatment class) (Wold et al., 2001). The number of significant components was 

determined by cross validation (CV). CV consists of dividing the data into a number of 

groups (SIMCA-P default = 7) and then building a number of parallel models from the 

data with one of the groups omitted. It then predicts the classification of the excluded 

data by the different models and compares the predictive values with the real ones. CV 

assesses the goodness of fit (R2X for PCA and R2Y for PLS-DA) and the goodness of 

prediction (Q2X or Q2Y) (Eriksson et al., 2006). Most of the reported metabolomics 

studies have more variables than observations and this could cause overfitting of the 

models. Therefore, in order to assess the accuracy of classification of the final PLS-DA 

models, response permutation testing was used for 60% of the replicates. One replicate 

was omitted in turn from each treatment class, and the dataset remodelled, and the 

accuracy of classification of the omitted replicate between the treatment groups was 

tested. 

Finally, to identify the loading variables influencing treatment classification, a 

control and effluent treatment from the PLS-DA models with high predictive ability 

(where Q2Y > 0.5) were analysed using orthogonal PLS-DA (OPLS-DA). OPLS-DA is 

a modification of PLS-DA which is able to separate out the systematic variation in 

matrix X into Y-related (predictive component) and Y-orthogonal (orthogonal 

component) (Bylesjö et al., 2006). The discriminative variables (retention time (RT) and 

x (m/z)) between control and treated samples were selected from the S-plot as loading 

plots of the OPLS models. This plot visualizes the influence of the loading variable in a 

model (magnitude of the variables or covariance) versus its reliability (correlation) 
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(Wiklund et al., 2008). The loading plots (S-plots) are used to describe the correlation 

between the variables of the reference (e.g. control) and the treated (e.g. exposed) 

samples, thus highlighting the markers responsible for the class separation. 

Univariate statistics analysis and false discovery rate 

Statistics was performed (e.g. t-test) by using Statistical Package for the Social 

Sciences (SPSS-V17). After the selection of the potential markers (discriminative 

variables) of effluent exposure from the S-plots, the p-value for each marker ion 

between the controls and the treatment groups was calculated. The data were tested for 

normality and homogeneity of variance using the Kolmogorov-Smirnov and Levene’s 

tests respectively. Normally distributed data were then analysed using a t-test, whilst a 

Mann-Whitney was used for non-normally distributed data. In order to evaluate the 

statistical significance of the discriminative markers and to reduce false positives, data 

were subjected to Bonferroni correction. Bonferroni corrected critical values were 

calculated dividing 0.05 by the number of variables present in each model. 

In addition, for each marker of effluent exposure, the mean of the fold change of the 

marker between control and effluent exposed fish was calculated. The standard error 

(confidence interval) of the mean fold change was calculated as following: 

  

��� = �	�������� +	��� �
�  

 

, where Q indicates the fold change (Q = A/B), M the mean, A the mean of the effluent-

exposed samples and B the mean of the control (Harvey Motulsky, 1995).  

3.2.3.4 Identification of putative markers 

The structural identity of significant the markers (discriminative variables) of 

effluent exposure (detected by means of the ‘S’ plots and confirmed by univariate 

analyses) were further characterized by performing different MS experiments. In initial 

UPLC-TOFMS analyses, the elemental composition of the markers was calculated from 

their accurate mass and isotopic fit using an elemental composition tool embedded in 

MassLynx V4.1 software. Further information on structures were obtained from UPLC-

Q-TOFMS and GC-MS analyses, described in details below. 
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UPLC-Q-TOFMS analysis 

UPLC-MS using Q-TOF as analyzer was used in order to obtain further 

structural information for the selected potential markers of effluent exposure. During 

this analysis, the internal reference standard (lock mass) was continuously infused in 

order to enable accurate mass measurements. Bile samples were analysed in both +/-ESI 

modes. The TOF analyzer was used in both V and W mode. V mode set up details has 

been already reported in Chapter 2 Section 2.3.2. In W mode the instrument gave a 

higher mass resolution of 18,000. 

Therefore two different LC-MS approaches were employed to obtain structural 

information on the markers of effluent exposure: 

1. Determination of accurate mass using high resolution W mode (full scan 

mode). 

2. Product ion scan of  selected parent ion in order to give a characteristic 

fragmentation pattern of the compound of interest using collision energy 

ranging from 30eV to 50eV in V mode (Q-TOFMS mode). 

LC-MS databases used for metabolite identification 

The molecular formulae of all the identified markers and their relative fragment 

ions obtained by means of the different mass spectrometry techniques mentioned above, 

were searched in a number of metabolomic databases in order to confirm the structural 

identity of the marker compounds. The databases used in this study were Human 

Metabolome database (http://www.hmdb.ca/), KEGG LIGAND 

(http://www.genome.jp/ligand/), LIPID MAPS (http://www.lipidmaps.org/), PubChem 

(http://pubchem.ncbi.nlm.nih.gov/), ChemSpider (http://www.chemspider.com/), and 

METLIN (http://metlin.scripps.edu/). 

GC-MS analysis 

Some markers gave insufficient structural information after UPLC-Q-TOFMS 

analysis, therefore bile samples needed to be further analysed by gas chromatography 

coupled to mass spectrometry (GC-MS). For this purpose, bile samples were 

fractionated using UPLC conditions described in section (2.3.2) and an aliquot of the 

fractions were subjected to enzymatic hydrolysis (described in details in the following 

section) before GC-MS analysis. 60µL of the internal standard E1-d4 (1ng/µL) was 

added to each fraction before drying down the fraction under nitrogen stream. 30µL of 

bis(trimethylsilyl) trifluoroacetamide (BSTFA containing trimethylchlorosilane 1% 
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TMCS) as derivatizing agent and 30µL of pyridine were added then to the dried 

fractions and the samples were heated at 65°C for 30 min. The silylated samples were 

evaporated under a stream of nitrogen in order to reduce the volume to about 5µL and 

then 1µL was injected into the GC-MS.  

GC-MS analysis was performed on a gas chromatograph (Trace GC 2000, 

thermoquest CE Instruments, Texas, USA) coupled with an ion trap mass spectrometer 

(Polaris Q, Thermoquest Ce Instruments, Texas, USA). Zebron ZB-5MS fused silica 

capillary column was used (30 m x 0.25 mm x 0.25 µm film thickness plus 5 m guard 

column) with helium as carrier gas at a flow rate of 1.5 ml/min. The source was 

operated in positive ionisation mode (electron impact energy: 70eV) and the detection 

was performed in full-scan mode. The inlet and the transfer line temperatures were both 

maintained at 280°C while the ion source was kept at 250°C. Samples were injected in 

splitless mode and separated using a temperature gradient program as follows:  70°C for 

4 mins,  to 264°C at 8°C/min and then maintained at 264°C for 10 mins; then to 300°C  

at 10°C/min and maintained at 300 C for further 5 mins. GC-MS spectra were evaluated 

by Xcalibur v1.2 software (Thermoquest-Finnigan) and searched in the National 

Institute of Standards and Technology (NIST) MS Search v1.7 and WILEY library 

browsers. In some cases, GC-MS analysis of fractions revealed very low signals for 

some of the markers of interest, and in order to overcome this limitation whole bile 

samples were subjected to enzymatic hydrolysis and derivatized and analysed by GC-

MS as described above. GC-MS analyses of structures obtained from both fractionated 

and unfractionated bile samples were examined and compared with authentic 

commercially available standards and with the corresponding spectra of standards in the 

NIST and WILEY libraries. 

Bile hydrolysis 

Bile fractions obtained after UPLC separation were dried down and hydrolysed 

by adding a mixture of glucuronidase and sulphatase enzymes as reported previously 

(Gibson et al., 2005a, Gibson et al., 2005b). The deconjugation of the  dried fractions 

was achieved by adding 20µL of β-glucuronidase type VII from Escherichia coli (1000 

units/mL), 20 µL sulphatase type VI from Aerobacter aerogenes (2 units/mL) and 50µL 

0.1M phosphate buffer solution at pH 6.05 (0.2M sodium dihydrogen orthophosphate 

and 0.2M disodium hydrogen orthophosphate) to the samples. The fractions were 

vortexed and incubated for 16 hours at 32°C and then 5µL of methanol were added to 
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stop enzyme activity. The activity and specificity of the individual enzymes was 

monitored during the hydrolysis as follows: 10µL of standard substrates were 

deconjugated to monitor β-glucuronidase activity (10mg/mL of standard 4-nitrophenol 

β-D-glucuronide) and sulphatase activity (10mg/mL of standard potassium 4-

nitrophenyl sulphate) in 50µL 0.1M phosphate buffer (pH 6.05) and 20µL of HPLC 

water. The samples were then incubated for 16 hours at 32°C. A colour change from 

colourless to yellow was used to indicate the presence of the enzyme activity and the 

formation of the 4-nitrophenol product. Standards and samples were analysed using an 

UV spectrophotometer (λ=405nm) and quantification of the product was performed by 

comparing the absorbance of the samples with a standard curve of 4-nitrophenol 

concentrations prepared in 0.1M phosphate buffer. 

In some cases, for further characterization of some metabolites in whole bile 

samples after 10 days of exposure a deconjugation step was employed. For this purpose,  

a composite whole bile sample, of 30 µL  was deconjugated by adding 60µL of β-

glucuronidase type VII from Escherichia coli (1000 units/mL), 60 µL sulphatase type 

VI from Aerobacter aerogenes (2 units/mL) and 150µL 0.1M phosphate buffer. 
 

3.3 Results 

3.3.1 Overview of the PCA models of the chemical profiles of bile from effluent-

exposed fish 

Multivariate analyses (PCA) were applied to bile datasets obtained in +ESI and -

ESI TOFMS modes. The PCA models revealed a distinct separation in the metabolome 

between samples from control trout and those obtained from trout exposed to effluent 

for 10 days. As shown in Figure 3.3, the first principal component separated the 

observations (samples) of the effluent-exposed fish (E10: 10 days effluent exposure) 

from those of all other treatments (C10: 10 days river water exposure (control); C14: 14 

days river water exposure (control); C21: 21 days river water exposure (control), E14: 10 

days effluent exposure followed by 4 days depuration, E21: 10 days effluent exposure 

then 11 days depuration). This result suggests significant changes occurred in the 

metabolic profile of trout bile due to the effluent exposure. Dataset of control and 

effluent-exposed trout depurated for 4 or 11 days in river water after the 10 days 

exposure were reanalyzed separately by PCA. The obtained model showed some 

discrimination between the C14 control samples and the depurated E14 samples, but less 

so between C21 and E21 samples (Figure 3.3). The percentages of the explained (R2X) 
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and predicted variation (Q2) for all PCA models were low (R2X < 0.5 and Q2 < 0.3) in 

both positive/negative electrospray ionization (+/-ESI) modes (see Appendix 3.1). 

All the depurated groups, whether they are controls or treated (C14, C21, E14 and E21) 

differ significantly from each other by applying univariate statistical analysis (one-way 

ANOVA) of the score plots and these gave p-values of between 6.4×10-8 and 4.3×10-4. 

Control groups (C14 and C21) were considered significantly different from each other 

according to the first component (PC1) in both ESI modes at p-values of 0.017 (-ESI) 

and 0.019 (+ESI). The significant difference between C14 and C21 control groups was 

likely due to growth of the fish during the experiment altering metabolite profiles, 

changes in food availability thereby altering dietary metabolite profiles, and due to 

changes in the river water composition that was used during the depuration period as 

some contaminants were discovered after analysis of biofluids from the control fish. 

Effluent groups (E14 and E21) were considered different by PC2 in both ESI modes (p-

value 0.007 –ESI, 2.2×10-4 +ESI) but not by PC1. Significant p-values ranging 0.017 

(+ESI) and 0.026 were obtained for C14 versus E14 in PC1. C21 and E21 were 

significantly different only by PC2 in +ESI mode giving a p-value equal to 0.006. 

On the basis of the Hotelling’s T2 (critical limit 95%), three observations 

(samples) were considered as strong outliers: 1 outlier in +ESI dataset and 2 in the –ESI 

dataset (see Figure 3.3). For subsequent PLS-DA and OPLS-DA analyses, these outliers 

should be excluded from the datasets. However, excluding the detected outliers did not 

improve the explained and the predicted variation percentages and also produced new 

outliers in PCA. Thus, these outliers were not omitted from further analyses and the 

whole datasets were then reanalysed by PLS/OPLS-DA regardless. 
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Figure 3.3: Principal component analyses (PCA) scores plots of the chemical profiles of bile samples 
from trout exposed to either control river water or wastewater effluent in both ESI modes. On the left 
hand-side, (a) PCA of whole dataset [( ), ( ) and ( ) symbols represent C10, C14 and C21 for control 
trout where n=16, 6, and 9 respectively. ( ), ( ) and ( ) symbols represent E10, E14 and E11 for effluent-
exposed trout where n=16, 6 and 7 respectively] and on the right hand-side (b) PCA of dataset only for 
the depuration period. The percentages of explained variation (R2X) for the first two components (t1 and 
t2) are displayed on the relative axes. One outlier (C14 group) and two outliers (C14) were detected in 
models of the whole datasets from + and – ESI modes respectively. 
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3.3.2 PLS-DA and OPLS-DA analyses of the bile from control and effluent-exposed 

trout 

Due to the inability of PCA models to fully separate all the treatment groups, 

PLS-DA of the datasets was employed to further investigate class separation between 

the different treatments. PLS-DA correlates matrix X (variation in the dataset) with 

matrix Y (class membership). Datasets of bile extracts (C10, C14, C21, E10, E14, E21) 

resulted in good models in both +/-ESI modes as described by their predicted variation 

(Q2 >0.97, calculated by seven-fold cross validation) and the % of explained variation 

(R2Y >0.77, which is the total sum of variations in Y explained by the model) (Figure 

3.4 and Appendix 3.2). In order to improve the class separation, PLS-DA between the 

depurated groups (C14, C21, E14, E21) were also modelled. This resulted in a clear 

separation between the depurated treatments, with a high degree of explained 

(R2Y>0.98) and predicted variation (Q2>0.78) (see Figure 3.4 and Appendix 3.2). This 

indicates that the elevated or reduced metabolites due to effluent exposure persisted in 

the bile even after an 11 day depuration period. 

Response permutation testing was used to assess the validity of the PLS-DA 

(Q2>0.5) models in terms of over-fitting. This resulted in more than 89% accuracy for 

the classification of treatment groups (control and effluent-exposed fish for 10 days and 

control and effluent-exposed fish after 4 and 11 days of depuration, respectively) (see 

Appendix 3.2). 

The dataset for each comparison (i.e. C10 vs E10, C14 vs E14, and C21 vs E21) were 

reanalysed using OPLS-DA to identify the class separating variables. The analyses 

resulted in models with one significant component (predictive component) and one not 

significant component (orthogonal component). The OPLS-DA analyses for the control 

and effluent-exposed fish after 10 days of exposure gave good models as indicated by 

the explained (R2Y>99%) and predicted variation (Q2>98%) in both +/-ESI modes (see 

Appendix 3.2). The comparison between C14 and E14 produced acceptable models, 

whilst, the resulting OPLS-DA models for C21 versus E21 did not represent accurately 

the dataset as highlighted by the low values of explained and predicted variation (see 

Appendix 3.2). 
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Figure 3.4: Partial least squares-discriminant analyses (PLS-DA) scores plots of the chemical profiles of 
bile of trout exposed either to 100% wastewater effluent or control river water in both ESI modes. On the 
left hand-side, (a) PLS-DA of whole dataset [( ), ( ) and ( ) symbols represent C10, C14 and C21 for 
control trout where n=16, 6, and 9 respectively. ( ), ( ) and ( ) symbols represent E10, E14 and E21 for 
effluent-exposed trout where n=16, 6 and 7 respectively] and on the right hand-side (b) PLS-DA of 
dataset only for the depuration period. The percentages of explained variation (R2Y) modelled for the first 
two or three latent variables (t1, t2 and/or t3) are displayed on the related axes. 
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In order to investigate which variables (RT-m/z) were influential in class 

separation, a ‘S’ plot of the OPLS models of bile samples from the control and effluent-

exposed fish (10 day, 14 day, and 21 day exposure) were constructed. ‘S’ plot analysis 

of OPLS for C10 versus E10 model indicated over 150 potential markers (RT-m/z signal) 

in both +/-ESI modes (see Table 3.1a,b). The scores plot of the OPLS-DA model for the 

first two components is shown in Figure 3.5a,b for + and -ESI modes. An example of a 

‘S’ plot obtained from the OPLS model of the –ESI dataset is given in Figure 3.5c. An 

example of the profiles of selected markers which were significantly elevated or 

reduced by effluent exposure is shown in Figure 3.3d,e. This graph shows that the m/z 

462.9759 and m/z 610.2809 markers were increased and decreased, respectively, by the 

effluent exposure. Fewer markers were obtained from the analysis of the loading plot of 

OPLS-DA for C14 versus E14 (10 days effluent exposure followed by 4 days depuration) 

and C21 versus E21 (10 days effluent exposure followed by 11 days depuration) of bile 

samples (see Table 3.1a,b). 

The discriminative variables or markers were confirmed as significant markers 

by comparing their concentrations (intensities from normalised data) in the effluent-

exposed fish to intensities in the control fish for each treatment, using parametric (t-test) 

and non-parametric (Mann-Whitney test) statistical analyses followed by Bonferroni 

correction. Table 3.1 summarises the p values of markers detected in bile extracts from 

control and effluent-exposed fish after10 days of exposure. 
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Figure 3.5: a) and b) OPLS-DA scores plots of the chemical profiles of bile of trout exposed either to 
100% wastewater effluent or control river water. The samples were profiled in both +/-ESI modes by 
UPLC-TOFMS; ( ) and ( ) symbols represent C10 for control and E10 for effluent-exposed trout for 10 
days, respectively, analysed in – or + ESI modes. 
c) ‘S’ plot (contribution of variables versus confidence) from the OPLS-DA model in -ESI. 
d) and e) Example of plots of signal intensity of a markers found at the extreme of the ‘S’ plot, where the 
marker concentration was either increased or decreased as a response to effluent treatment. 
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Table 3.1a: Markers of effluent exposure in bile from rainbow trout in -ESI mode. 
Marker

No. 

Observed ion 

(m/z) RT 

P value 

C10 vs E10
a C14 vs E14 C21 vs E21 

1 257.0482 4.54 3.33E-09 2.00E-03 nd 
2 505.1747 4.79 3.33E-09 1.00E-00 nd 
3 271.0640 5.16 3.33E-09 1.50E-02 4.37E-01 
4 343.1217 5.32 3.33E-09 nd nd 
5 291.0866* 5.83 6.65E-09 5.89E-01 4.20E-02 
6 371.1165 5.84 3.33E-09 nd nd 
7 557.0959 5.90 3.33E-09 nd nd 
8 285.0800 5.91 3.33E-09 2.00E-03 4.47E-01 
9 319.0815 6.19 3.33E-09 4.00E-03 nd 
10 336.9882 6.39 3.33E-09 6.10E-02 nd 
11 370.9493 6.56 3.33E-09 nd nd 
12 395.0302 6.58 3.33E-09 2.00E-03 5.00E-03 
13 299.0954 6.66 3.33E-09 nd nd 
14 313.1111 6.72 3.33E-09 1.00E-00 nd 
15 327.1267 7.32 3.33E-09 nd nd 
16 331.0588 7.41 3.33E-09 2.00E-03 4.23E-01 
17 388.1403 7.41 3.33E-09 4.00E-03 4.68E-01 
18 361.0694 7.85 3.33E-09 1.82E-01 nd 
19 395.0302 8.62 3.33E-09 6.10E-02 4.37E-01 
20 365.0197 8.67 3.33E-09 4.55E-01 nd 
21 331.1758 9.07 3.33E-09 1.00E-00 nd 
22 656.3105 9.23 1.46E-07 1.50E-02 nd 
23 423.0853 10.48 3.33E-09 1.00E-00 nd 
24 393.0745 10.70 3.33E-09 1.82E-01 4.37E-01 
25 429.0146 11.16 3.33E-09 4.55E-01 nd 
26 479.2859 11.69 3.33E-09 nd nd 
27 416.1345 12.39 3.33E-09 nd nd 
28 383.2073 12.39 3.33E-09 1.82E-01 nd 
29 462.9759 12.49 3.33E-09 2.00E-03 8.00E-03 
30 433.1831 13.39 3.33E-09 2.00E-03 1.75E-4 
31 403.2329 13.45 3.33E-09 6.10E-02 4.37E-01 
32 449.2178 15.64 3.33E-09 3.03E-01 2.12E-01 
33 491.3222* 12.77 4.00E-08 9.30E-02 8.37E-01 
34 433.2801* 13.3 1.33E-08 1.32E-02 2.99E-01 
35 464.2470* 13.68 2.33E-08 2.00E-03 1.20E-02 
36 425.2171 13.88 3.33E-09 6.10E-02 nd 
37 397.1859 14.14 3.33E-09 1.00E-00 nd 
38 381.1922 14.22 3.33E-09 1.82E-02 nd 
39 393.1924 14.64 3.33E-09 1.00E-00 4.37E-01 
40 407.2071 14.71 3.33E-09 2.00E-03 nd 
41 361.2231 14.76 3.33E-09 1.50E-02 nd 
42 389.2169 16.13 3.33E-09 4.55E-01 nd 
43 395.2072 16.42 3.33E-09 2.00E-03 5.50E-02 
44 405.2488 16.79 3.33E-09 6.10E-02 nd 
45 375.2383 16.94 3.33E-09 1.82E-01 nd 
46 479.3374* 17.5 3.22E-06 2.40E-01 1.14E-01 
47 449.2751 17.73 3.33E-09 3.03E-01 2.12E-01 
48 439.2331 18.72 3.33E-09 2.00E-03 3.40E-02 
49 419.2645 18.82 3.33E-09 2.00E-03 5.74E-01 
50 483.2597 19.42 3.33E-09 2.00E-03 1.00E-00 
51 463.2908 19.64 3.33E-09 2.00E-03 3.06E-01 
52 477.2492 19.80 3.33E-09 7.77E-01 2.35E-01 

ESI: electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); C as Control and E as 
effluent exposure: C10: 10 days river water exposure; C14: 14 days river water exposure; C21: 21 days river 
water exposure; E10: 10 days effluent exposure, E14: 10 days effluent exposure followed by 4 days 
depuration, E21: 10 days effluent exposure then 11 days depuration; nd: not detected. All markers signals 
in bile were increased after effluent exposure except those labelled by *.  
a The lowest value given for Mann-Whitney test for non-parametric marker data was 3.33×10-9. 
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Table 3.1a: (continued) Markers of effluent exposure in bile from rainbow trout in -ESI mode. 
Marker

No. 
Observed ion 

(m/z) 
 P value 

RT C10 vs E10
a C14 vs E14 C21 vs E21 

53 527.2860 20.23 3.33E-09 1.43E-01 1.57E-01 
54 493.3008 20.31 3.33E-09 nd nd 
55 542.3336 20.31 3.33E-09 4.55E-01 nd 
56 507.3171 20.35 3.33E-09 6.10E-02 nd 
57 571.3118 20.56 3.33E-09 4.55E-01 2.12E-01 
58 389.2541 20.66 3.33E-09 nd nd 
59 537.3271 20.75 3.33E-09 nd nd 
60 615.3391 20.80 7.00E-03 nd nd 
61 581.3547 21.01 3.33E-09 nd nd 
62 610.2809* 21.12 1.50E-07 1.32E-01 2.99E-01 
63 433.2801 21.59 3.33E-09 6.10E-02 nd 
64 403.2695 21.74 3.22E-06 nd nd 
65 551.3430 21.82 3.33E-09 1.82E-01 2.12E-01 
66 595.3699 21.97 3.33E-09 nd nd 
67 639.3967 22.10 3.33E-09 nd nd 
68 477.3068 22.13 3.33E-09 1.00E-00 nd 
69 683.4214 22.21 3.33E-09 ND nd 
70 521.3326 22.47 3.33E-09 1.50E-02 nd 
71 447.2959 22.47 3.33E-09 4.55E-01 nd 
72 565.3592 22.68 3.33E-09 2.20E-02 1.00E-03 
73 609.3851 22.79 3.33E-09 6.10E-02 nd 
74 653.4116 22.90 3.33E-09 ND nd 
75 491.3223 22.93 2.48E-04 1.00E-00 nd 
76 697.4371 22.98 3.33E-09 nd nd 
77 535.3484 23.20 3.33E-09 nd nd 
78 579.3748 23.41 3.33E-09 2.00E-03 8.80E-02 
79 623.4008 23.51 3.33E-09 nd nd 
80 667.4275 23.60 3.33E-09 nd nd 
81 711.4532 23.65 3.33E-09 1.00E-00 nd 
82 755.4787 23.70 3.33E-09 nd nd 
83 585.3431* 24.13 1.15E-05 8.18E-01 1.14E-01 
84 403.3060 24.17 3.33E-09 1.50E-02 nd 
85 447.3325 24.13 3.33E-09 6.10E-02 4.37E-01 
86 491.3585 24.12 3.33E-09 6.10E-02 6.08E-01 
87 535.3850 24.12 3.33E-09 4.55E-01 nd 
88 579.4102 24.09 3.33E-09 nd nd 
89 461.3480 24.60 5.66E-08 nd nd 
90 505.3742 24.60 3.33E-09 2.00E-03 nd 
91 549.4006 24.60 3.33E-09 4.55E-01 nd 
92 593.4269 24.60 3.33E-09 1.00E-00 nd 

ESI: electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); C as Control and E as 
effluent exposure: C10: 10 days river water exposure; C14: 14 days river water exposure; C21: 21 days river 
water exposure; E10: 10 days effluent exposure, E14: 10 days effluent exposure followed by 4 days 
depuration, E21: 10 days effluent exposure then 11 days depuration; nd: not detected. All markers signals 
in bile were increased after effluent exposure except those labelled by *.  
a The least value given for Mann-Whitney test for non-parametric marker data was 3.33×10-9. 
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Table 3.1b: Markers of effluent exposure in bile from rainbow trout in +ESI mode. 
Marker

No. 

Observed ion 

(m/z) RT 

 P value  

C10 vs E10
a C14 vs E14 C21 vs E21 

1 341.1816 4.35 3.33E-09 1.82E-01 nd 
2 317.1578 5.13 3.33E-09 nd nd 
3 287.1475 5.32 3.33E-09 nd nd 
4 509.1564* 5.85 1.33E-08 4.10E-02 3.51E-01 
5 565.1577 6.58 3.33E-09 nd nd 
6 229.0863 7.06 3.33E-09 nd nd 
7 468.1426 8.09 3.33E-09 8.14E-01 8.07E-01 
8 233.1905 8.67 3.33E-09 2.00E-03 1.75E-04 
9 343.1885 9.16 3.33E-09 2.55E-01 2.00E-02 

10 418.1505 12.39 3.33E-09 nd nd 
11 449.2148 13.88 2.48E-04 2.00E-03 4.80E-02 
12 378.1705 13.89 3.33E-09 nd nd 
13 473.2175 13.93 3.33E-09 2.00E-03 1.75E-04 
14 287.2378 14.17 3.33E-09 nd nd 
15 548.2391 14.96 3.33E-09 1.00E-00 nd 
16 257.1905 15.59 3.33E-09 2.00E-03 1.75E-04 
17 243.2114 15.95 3.33E-09 2.00E-03 8.74E-05 
18 429.2461 16.79 3.33E-09 4.55E-01 1.75E-01 
19 473.2727 17.73 3.33E-09 4.55E-01 7.00E-01 
20 503.2833 18.14 5.66E-08 nd nd 
21 463.2311 18.72 3.33E-09 1.50E-02 nd 
22 443.2622 18.82 3.33E-09 1.50E-02 nd 
23 507.2574 19.42 3.22E-06 nd nd 
24 487.2884 19.64 3.33E-09 2.00E-03 nd 
25 447.2958 19.7 3.33E-09 1.00E-00 nd 
26 551.2836 20.23 3.22E-06 nd nd 
27 517.2990 20.31 3.33E-09 nd nd 
28 531.3151 20.35 3.33E-09 4.55E-01 nd 
29 595.3088 20.56 3.33E-09 nd nd 
30 639.3357 20.76 3.33E-09 nd nd 
31 561.3253 20.80 3.33E-09 nd nd 
32 683.3620 20.92 3.33E-09 nd nd 
33 605.3518 21.01 3.33E-09 nd nd 
34 518.3239* 21.42 3.33E-09 2.40E-01 8.37E-01 
35 575.3410 21.82 3.33E-09 4.55E-01 nd 
36 619.3672 21.97 3.33E-09 1.00E-00 nd 
37 663.3934 22.10 2.00E-03 nd nd 
38 501.3036 22.13 3.33E-09 4.55E-01 nd 
39 707.4200 22.21 3.33E-09 nd nd 
40 545.3307 22.47 3.33E-09 2.00E-03 nd 
41 589.3560 22.68 7.00E-03 nd nd 
42 633.3826 22.79 3.33E-09 6.30E-02 nd 
43 677.4083 22.90 3.33E-09 nd nd 
44 443.2983 22.90 3.33E-09 2.00E-03 6.82E-01 
45 515.3198 22.93 5.60E-02 1.50E-02 8.00E-03 
46 721.4349 22.98 5.36E-07 1.00E-00 9.40E-02 
47 765.4606 23.01 3.33E-09 nd 1.00E-00 
48 559.3458 23.20 3.33E-09 2.00E-03 nd 
49 603.3724 23.41 3.33E-09 nd nd 
50 573.3608 23.41 3.33E-09 nd nd 
51 647.3979 23.51 3.33E-09 nd nd 
52 413.2881 23.56 3.33E-09 2.00E-03 nd 
53 457.3139 23.56 3.33E-09 2.00E-03 nd 
54 501.3401 23.54 3.33E-09 6.10E-02 nd 

ESI: electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); C as Control and E as 
effluent exposure: C10: 10 days river water exposure; C14: 14 days river water exposure; C21: 21 days river 
water exposure; E10: 10 days effluent exposure, E14: 10 days effluent exposure followed by 4 days 
depuration, E21: 10 days effluent exposure then 11 days depuration; nd: not detected. All markers signals 
in bile were increased after effluent exposure except those labelled by *.  
a The least value given for Mann-Whitney test for non-parametric marker data was 3.33×10-9. 
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Table 3.1b: (continued) Markers of effluent exposure in bile from rainbow trout in +ESI mode. 
Marker

No. 
Observed ion 

(m/z) 
  P value  

RT C10 vs E10
a C14 vs E14 C21 vs E21 

55 545.3668 23.52 3.33E-09 nd nd 
56 691.4239 23.60 3.33E-09 nd nd 
57 735.4518 23.65 3.33E-09 1.77E-01 3.11E-01 
58 779.4720 23.70 3.33E-09 nd nd 
59 631.4040 23.99 3.33E-09 1.50E-02 4.37E-01 
60 427.3042 24.12 4.63E-07 2.00E-03 2.91E-01 
61 471.3300 24.13 6.65E-09 2.00E-03 nd 
62 515.3560 24.12 3.33E-09 2.00E-03 nd 
63 559.3830 24.12 3.33E-09 1.50E-02 nd 
64 603.4080 24.09 3.33E-09 nd nd 
65 441.3197 24.59 5.66E-08 2.00E-03 nd 
66 485.3453 24.60 4.95E-04 2.00E-03 nd 
67 529.3718 24.60 3.33E-09 2.00E-03 nd 
68 573.3981 24.60 3.33E-09 4.00E-03 1.72E-01 
69 617.4253 24.60 3.33E-09 1.90E-02 1.50E-02 
70 661.4506 24.56 3.33E-09 2.00E-03 nd 
71 705.4774 24.54 3.33E-09 nd nd 

ESI: electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); C as Control and E as 
effluent exposure: C10: 10 days river water exposure; C14: 14 days river water exposure; C21: 21 days river 
water exposure; E10: 10 days effluent exposure, E14: 10 days effluent exposure followed by 4 days 
depuration, E21: 10 days effluent exposure then 11 days depuration; nd: not detected. All markers signals 
in bile were increased after effluent exposure except those labelled by *.  
a The least value given for Mann-Whitney test for non-parametric marker data was 3.33×10-9. 

 

3.3.3 Identification and verification of chemical markers due to wastewater 

effluent exposure 

Data obtained from UPLC-TOFMS analysis can be extremely complex, 

especially with biological matrices; therefore simple visualization of the chromatograms 

does not allow full interpretation of the results. For this reason chemometric tools are 

essential to extract the useful information and assist in the analysis of metabolomics 

data sets. 

Data from UPLC-TOFMS analysis allow the use of accurate mass; however 

many different chemicals formula can account for the same accurate mass. Therefore, as 

one of the most crucial step in the identification of unknown, it is necessary to select the 

correct molecular formula for the selected compound. The next step consists in finding 

likely structures for the chosen molecular formula by searching different available 

databases. The candidate structures must be then checked using information coming 

from fragmentation experiments from the product ion. Finally, the identity of the 

compound must be confirmed by comparison to relevant commercial standards, 

verifying both retention time and accurate mass of the characterised compound (Ferrer 

et al., 2005, Ferrer et al., 2006). 
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A total of 92 (-ESI mode) and 71 (+ESI mode) of the most abundant markers 

metabolites were detected after ten days of exposure (Table 3.1a,b). Most of these 

metabolites were increased in concentration in bile and only nine of them (7 in –ESI and 

2 in +ESI) were decreased as a result of effluent exposure. The mass spectra of the 

decreased markers were examined carefully to ensure they did not result from ion 

suppression during MS analyses. These down-regulated markers were considered as 

metabolites of endogenous origin whose concentrations decreased in response to 

effluent exposure. Further analysis (as described in details in the following sections) 

revealed that most of the elevated markers were xenobiotics taken up into fish from the 

effluent water. 

The empirical formulae of each marker metabolite were obtained operating the 

TOF analyser in W mode. The accuracy of the detected masses ranged between 0 and 

2.3 ppm. In many cases, a number of signals (RT-m/z) were detected for each 

metabolite marker and these represented adducts of the molecular ions. For instance, 

markers were detected as positively charged [M+H]+, negatively charged [M-H]- 

species, as adducts (i.e. [M+Na]+, [M+NH4]
+, [M+FA-H]-; where FA=formic acid) 

and/or clusters (i.e. [M+M+H]+, [M+M+Na]+, [M+M-H]-). Markers with multiple ion 

forms (e.g. adducts) showed similar fold changes between the control and effluent 

treatments (data not shown) and this result increased the degree of confidence for the 

correct assignation of studied empirical formulae of the marker metabolite. Additional 

information coming from the evaluation of the isotopic fit (i-fit) was used to facilitate 

the identification of the peaks of interest. The fit value is the least square error between 

the theoretical data and the experimental data.  The peak that gives the lowest isotopic 

fit value is assumed to be the correct monoisotopic peak. Therefore, the closer the i-fit 

value is to 0 the better is the matching between theoretical and experimental data.  I-fit 

values ranging between 0 and 21.2 were obtained for most of the markers (with an 

exception of few of them where there was coelution with interfering compounds). 

In order to provide additional information besides the accurate mass value, 

collision induced dissociation (CID) experiments were employed to obtain the 

fragmentation pattern for the detected markers. The achieved results were then searched 

against the metabolite formulae within available databases to determine putative 

metabolite structures. 
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3.3.4 Identification of metabolite markers of effluent exposure. 

Evaluation of the results as described in the previous section (3.3.3) led to the 

identification of different classes of metabolites present in fish bile after effluent 

exposure. The identified classes encompassed the most common environmental 

contaminants and were surfactants, pharmaceuticals, personal care products and 

disinfectants. In the following sections each of these classes will be described and 

characterized. Most of the selected markers were present in the sample as conjugated 

compounds (as either glucuronides or sulphates). In order to characterize the 

fragmentation pattern of conjugates, two known conjugated standards (nitrophenyl 

sulphate and nitrophenyl glucuronide) were analysed by Q-TOFMS and the most 

informative ions were used to confirm analyses of conjugated markers. The Q-TOFMS 

analyses of the standards in –ESI mode is shown in Appendix 3.3. From the analysis of 

the nitrophenyl glucuronide (C12H13NO9), a fragment ion was detected at m/z 138.0191 

(C6H4NO3), which corresponds to the aglycone [M-Glu-H]- (where Glu=glucuronide 

moiety). The fragments at m/z 175.0243 (C6H7O6), at m/z 157.0137 (C6H5O5) due to 

loss of H2O and at m/z 113.0239 (C5H5O3) due to loss of CO2, respectively, were 

considered as characteristic ions for the glucuronide conjugates (Wen et al., 2007). On 

the other hand, Q-TOFMS spectrum of the nitrophenyl sulphate (C6H5O6NS) showed 

mainly a deprotonated fragment at m/z 138.0191, which corresponds to the 

deconjugated nitrophenyl [M-SO3-H]-. This fragment ion resulted from the neutral loss 

of the sulphate moiety (loss of 80 Da) (see Appendix 3.3). The elemental composition 

tool assisted in the calculation of the theoretical mass formulae of the fragment ions 

giving the deviation range of 0 to 5ppm between the predicted and the experimental m/z. 

3.3.4.1 Identification of linear alkylbenzene sulfonic acid (LAS) anionic surfactants 

and their metabolites in trout bile 

A series of LAS anionic surfactants or their metabolites were detected in the bile 

of effluent-exposed trout. LAS are compounds widely used in the formulation of 

household detergents and other cleaning products. They are commercially sold as a 

mixture of different homologues, with alkyl chain lengths ranging from C10-LAS to 

C13-LAS and each homologue consists of two different isomers which differ on the 

relative position of the sulfophenyl group respect to the alkyl chain: the LAS 

homologue is defined as an internal isomer when the sulphophenyl group is linked to 

the middle of the alkyl chain whilst it is considered as an external isomer when the 

sulphophenyl group is positioned at the end of the alkyl chain. LAS isomers can be 
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expressed as mCn-LAS, where m indicate the C atom of the alkyl chain which is linked 

to the sulfophenyl group whilst n refers to the total length of the alkyl chain. LAS 

surfactants can be metabolized by ω-oxidation mechanism to the sulfophenyl carboxylic 

acids (SPCs). SPCs are identified in a similar way to LAS homologues except for the C 

atom counting which starts from the C atom of the carboxylic group at the end of the 

alkyl chain. LAS and SPCs isomer examples are shown in Figure 3.6 (HERA, 2009a, 

Lara-Martín et al., 2007). 

A series of peaks (markers 1, 3, and 6-9; Table 3.2) was detected in the bile of 

effluent-exposed fish in –ESI mode as deprotonated ions [M-H]-. The ions of the series 

differed from each other by 14 Da, which corresponds to the methylene group. These 

markers were identified as the LAS metabolite sulfophenyl carboxylic acids (SPCs) 

with alkyl length ranging from C5 to C10 (Figure 3.7). The elution order of these 

metabolites was related, as expected, to the respective length of the alkyl chain, due to 

the interaction between the alkyl chain on the other side of the carboxylic group and the 

C18 stationary phase.  

As briefly mentioned before, the biodegradation pathway of C10-C13LAS 

homologues in surface waters is via generation of sulfophenyl carboxylic acids (SPCs) 

due to the initial ω-oxidation of the alkyl chain and its progressive shortening by 

successive α- and β-oxidations until the completed LAS mineralization (Swisher, 1987). 

However, detection of both odd and even carbon chain series of SPCs could possibly be 

explained with the degradation of longer alkyl chain via β-oxidation starting from two 

different original molecules (i.e. C10-LAS and C11-LAS) (see Figure 3.8). 

An ion at m/z 343.1271 (Marker 4; Table 3.2) was detected in effluent-exposed 

fish bile and this signal can correspond to the mono-hydroxylate C10-SPC. The 

presence of hydroxylated SPC could be due phase I biotransformation of C10-SPC 

(functionalisation reactions) either within the fish or by bacteria in the environment (see 

explanation for biotransformation of xenobiotics in section 3.1). 

The ion m/z 371.1165 (marker 5) was also detected and it can be putatively 

identified as sulfophenyl dicarboxylic acid (C11-SPdC), assuming it is formed via the 

ω/β-oxidation mechanism of both alkyl chain free ends of C13-LAS. All LAS 

metabolites were observed as non-conjugated compounds with exception of the ion m/z 

505.1747 (marker 2), which was identified as the glucuronide conjugate of the 

dihydroxylated C10-LAS.  
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All the above metabolites were identified with high agreement between the 

theoretical and experimental masses (error <2ppm) whilst fragments generated by Q-

TOFMS experiments showed an accuracy within 5 ppm (Table 3.2). 

Based on Q-TOFMS fragmentation experiments, the most abundant product ion 

shared between LAS and SPC metabolites was the ion at m/z 183.0116 (C8H7SO3), 

which corresponds to styrene-4-sulfonate (ethenylbenzene-4-sulfonate). According to 

previous studies, the ion m/z 183.0116 was considered as a characteristic ion of LAS 

and SPC metabolites (González-Mazo et al., 1997). Additional ions at m/z 170.0038 

(C7H6SO3) and/or m/z 197.0272 (C9H9SO3) were also observed; these two ions 

correspond to the methyl- and the propenyl-substituted benzenesulfonates, respectively. 

In Figure 3.9, an example is given for the fragmentation pattern of both internal and 

external isomers at m/z 257.0482 and m/z 271.0640 which were positively identified as 

C5-SPC and C6-SPC, respectively. In both cases, the alkyl chain is fragmented via 

McLafferty rearrangement, which consists of a hydrogen migration from the C4 of the 

alkyl chain, considering the carbonyl oxygen in the carboxylic group as C1, followed by 

a bond cleavage between C2 and C3. As a result, the molecular ions (m/z 257.0484 and 

m/z 271.0640) are broken and the fragment ions m/z 183.0116 and m/z 211.0429 are 

formed (Figure 3.9) (Lara-Martín et al., 2010). 

The metabolites C7-SPC and C9-SPC appeared to be the most abundant 

amongst the other metabolites detected in the bile extracts (Appendix 3.4). This maybe 

a result of the rapid chain shortening of the alkyl chain of the longer parent SPCs (C11 

and C13) (Lara-Martín et al., 2007). 
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Figure 3.6: Chemical structure of: a) linear alkylbenzene sulfonic acid (LAS) and b) sulfophenyl 
carboxylic acids (SPCs) isomers. Adapted from Lara-Martin et al. (2007) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Chemical structures of linear alkylbenzene sulfonic acid metabolites identified in trout bile. 
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Figure 3.8: Proposed pathway for degradation of linear alkylbenzene sulfonic acid (LAS) in either 
wastewater effluent or in trout bile. 

 

 

 

SO O
-

O

CH3 OH

O

SO O
-

O

CH3

OH

O

SO O
-

O

CH3 OH

O

SO O
-

O

CH3
CH3

SO O
-

O

CH3 CH3

SO O
-

O

CH3

OH

O

2-C10-LAS 

2-C10-SPC 

2-C8-SPC 

2-C6-SPC 

3-C11-LAS 

3-C11-SPC 

3-C9-SPC 

3-C7-SPC 

3-C5-SPC 

ω-oxidation 

β-oxidation 

β-oxidation 

β-oxidation 

C2 unit 

C2 unit 

C2 unit 

O2 

SO O
-

O

CH3

OH

O

SO O
-

O

CH3 OH

O

SO O
-

O

CH3

OH

O



87 

 

 

 
 

 

a) C5-SPC 
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Figure 3.9: Q-TOFMS spectra of two SPCs homologous (C5-SPC and C6-SPC) and tentative structures 
of their fragment ions using Q-TOF as analyzer and a collision energy of 30eV. 
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Table 3.2: Linear alkylbenzene sulfonic acids (LAS) and their metabolites identified in trout bile in -ESI mode. 

Marker 

No. 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments
#
 

Parent 

compound 

formula
§
 

Ion 

form Putative identity 

           
1 257.0482 4.54 C11H13O5S 257.0484 -0.8 1.3 197.0270, 183.011 C11H14O5S [M-H]- C5-SPC 
2 505.1747 4.79 C22Η33Ο11S 505.1744 0.6 0.5 329.1425, 193.0345, 183.0112, 

175.0237 
C16Η26O5S [M-H]- Dihydroxylated C10-LAS 

glucuronide 
3 271.0640 5.16 C12H15O5S 271.0640 0.0 1.0 253.0532, 211.0429, 183.0116, 

170.0033 
C12H16O5S [M-H]- C6-SPC 

4 343.1217 5.32 C16H23O6S 343.1215 0.6 0.9 325.1122, 197.0273, 183.0120, 
170.0043 

C16H24O6S [M-H]- Putative monohydroxylated C10-
SPC 

5 371.1165 5.84 C17H23O7S 371.1165 0.0 0.4 353.1052, 183.0117, 170.0036 C17H24O7S [M-H]- Putative C11-SPdC 
6 285.0800 5.91 C13H17O5S 285.0797 1.1 0.1 225.0583, 183.0118, 170.0036 C13H18O5S [M-H]- C7-SPC 
7 299.0954 6.66 C14H19O5S 299.0953 0.3 1.1 183.0117, 170.0033 C14H20O5S [M-H]- C8-SPC 
8 313.1111 6.72 C15H21O5S 313.1110 0.3 1.1 295.1011, 183.0117, 197.0277, 

170.0037 
C15H22O5S [M-H]- C9-SPC 

9 327.1267 7.32 C16H23O5S 327.1266 0.3 0.1 183.0111 C16H24O5S [M-H]- C10-SPC 
           

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit; #Q-TOFMS fragments 
within ± 5ppm; §aglycone compound; [M-H]-: deprotonated ion; LAS: linear chain alkylbenzene sulfonate, SPC: sulfophenyl carboxylate; SPdC: sulfophenyl di-carboxylate. 
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3.3.4.2 Nonylphenol ethoxylates (NPEOs) non-ionic surfactants and their 

metabolites. 

A series of nonylphenol ethoxylates non-ionic surfactants and their metabolites 

were detected in effluent-exposed trout bile. Amongst non-ionic surfactants, alcohol 

polyethoxylates (AEOs) and alkyl phenol polyethoxylates (APEOs) are the two major 

products used in Europe. APEOs are widely used in a variety of applications, for 

instance as detergents and emulsifiers in household and industry (Ying et al., 2002). 

APEOs are generally composed of an hydrophobic (mono-alkylphenol) and hydrophilic 

part (polyethylene glycol chain); the polyethylene glycol chain has a range of 2-25 

ethoxylate units (Figure 3.10) (Lee, 1999). 

Metabolite structures detected by Q-TOFMS analysis were mainly glucuronide 

conjugates which were detected in both +/–ESI modes (Figure 3.11 and Table 3.3). The 

only two exceptions were the glucuronide conjugate of nonylphenol (NP) (marker 1), 

which gave response only in –ESI mode providing the deprotonated molecule at m/z 

395.2072, and the NP6EO (marker 7), which was detected only in +ESI mode as both 

Na and NH4-adduct at m/z 683.3620 and m/z 678.4075, respectively. The order of 

elution in RP-HPLC (C18 stationary phase) depended on the polyethoxy chain length 

(see Table 3.3 and the ion chromatogram of the NPEOs series detected in the bile 

shown in Appendix 3.5). 

Product ion scan experiments (Q-TOFMS) were performed for the whole range 

of NPEO homologues found in the bile samples after applying collision energies of 20-

50 eV. In -ESI mode, a number of different fragments were detected. The molecular ion 

of the aglycone molecule [M-Glu-H] for each member of the NPEO series was detected, 

as well as a fragment due to loss of H2O.  The glucuronide moiety gave rise to typical 

fragments at m/z 175.0243, at m/z 157.0137 after loss of H2O and at m/z 113.0239 after 

loss of CO2 (see previous section 3.3.4). In –ESI mode, Q-TOFMS mass spectra of each 

ethoxylate homologue showed the characteristic signal at m/z 219.1749, which 

corresponds to the nonylphenoxy ion (C15H23O), therefore all their molecular structures 

could be related to the NPEOs series.  

In +ESI mode, the Na-adduct of the NPEO glucuronides, gave only the aglycone 

fragment (as the Na-adduct) during Q-TOFMS analyses corresponding to loss of 176 

Da which was the neutral loss of the glucuronide moiety. NH4-adducts of glucuronide 

conjugated NPEOs were also detected, and likewise their fragments showed 
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predominantly the loss of the glucuronide moiety plus NH3 (loss of 193 Da). However, 

unlike the Na-adduct, fragmentation of the NH4-adduct gave rise to a number of other 

ions (Table 3.3). The different fragmentation behaviour of Na and NH4-adducts is due 

to the strength of the interaction between the molecule and the cation. 

In fact, NH4-adducts are usually more unstable than Na-adducts due to the 

higher ionic radii (Na: 0.98Å, NH4: 1.43Å) which destabilizes the interaction between 

the analyte and the adduct. Furthermore, the alkali metals have a high charge density 

and therefore they have a stronger interaction with the adduction site resulting in a more 

stable compound (Cowan et al., 2008). Metallic cations can behave as Lewis acid 

(empty orbitals in the external shell) and therefore allow unshared pair-empty orbital 

interactions with molecule having available lone pairs of electrons. On the contrary, the 

charge in the NH4
+ ion is delocalised on all its atoms and this allows only the formation 

of weaker hydrogen-bonds (Cowan et al., 2008). For this reason, NH4-adducts were 

chosen for fragmentation studies in order to obtain further structural information for the 

NPEOs series, since Na-adducts do not give relevant fragmentation in Q-TOFMS mode 

due to their higher stability. 

The aglycone fragment of the NH4-adducts of the NPEO glucuronides gave rise 

to a number of further fragments including neutral loss of nonene (loss of 126 Da). 

Table 3.4 summarises the fragments of NH4-adducts of the nonylphenol ethoxylates in 

+ESI mode. Fragment ions at m/z 209.1178 (C12H17O3), m/z 165.0916 (C10H13O2), and 

m/z 121.0653 (C8H9O) were detected after sequential loss of ethoxylated alcohols plus 

H2O. Further fragments characteristic of ethoxylated compounds were observed at m/z 

177.1127 (C8H17O4) and m/z 133.0865 (C6H13O3): these two ions resulted from the 

simultaneous loss of nonylphenol and ethoxylated alcohol at both sites of the ethoxylate 

chain (Plomley et al., 1999). 

Additional information of the types of fragments obtained from [M+Na]+, 

[M+NH4]
+ and [M-H]- species are given in Figure 3.12. Here, an example is given for 

the fragmentation pattern of the positively identified marker NP4EO glucuronide 

(marker 5, Table 3.3) in both +/-ESI modes. Fragmentation was performed on three 

different parent ions:  m/z 571.3118 [M-H]-, m/z 595.3088 [M+Na]+, and m/z 590.3544 

[M+NH4]
+ , respectively. 
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Further ions at m/z 791.4218 (C42H63O14) and m/z 879.4742 (C46H71O16) were 

also detected in –ESI as potential markers of NPEOs (data not shown). However, their 

Q-TOFMS fragmentation confirmed their identity as clusters [M+M-H]- for NP and 

NP1EO, respectively. The formation of clusters in the spectrum could also be explained 

by the very high ion abundance of the molecular ions for these metabolites: high ion 

abundances correspond to high amounts of the ion in the source and therefore this 

facilitates agglomeration processes. Clusters for the other ethoxylated homologues were 

not detected either due to the mass cut-off applied on the full scan mode (50-1000 m/z) 

or due to their concentration possibly below the LOD value (minimum required 

intensity 100 counts as one of the data preprocessing parameters). The structural 

information obtained from the Q-TOF analysis were sufficient to fully characterized all 

the compounds belonging to this specific class of contaminants. However, the GC-MS 

analysis of the whole bile samples for other purposes gave additional information also 

regarding this class of compounds worth to be mentioned. 

In order to further confirm the identity of the detected compounds, LC fractions 

of bile samples were subjected to enzymatic hydrolysis and then analysed by GC-MS. 

However, in some cases the response for the peaks of interest in the LC fractions was 

too low to allow proper structural characterization. Therefore, whole composite bile 

samples for both control and effluent exposed fish (10 days exposure) were also 

subjected to enzymatic hydrolysis in order to overcome the limitations due to poor 

signals. Analysis of the derivatized samples revealed the characteristic ions and RT of 

the trimethylsilyl ether (TMS) derivatives of NP, NP1EO and NP2EO (Appendix 3.6). 

The electron impact mass spectra EI-MS fragmentation pattern of NP, NP1EO and 

NP2EO presented abundant ions at [M-29]+, [M-71]+, and [M-99]+  which correspond to 

loss of alkyl radicals from the nonyl chain (C2H5
•, C5H11

•, and C7H15
•, receptively). The 

molecular ion was only observed for NP1EO at m/z 336 whereas the trimethysilyl group 

at m/z 73 was obtained for all three compounds. The trimethylsiloxy tropylium ion at 

m/z 179 was only detected for NP and NP1EO homologues. Formation of tropylium ion 

indicates that the hydroxyl group is attached directly to the ring (Wheeler et al., 1997). 

As shown in Appendix 3.7 the glucuronide conjugates of NP and the ethoxylate 

homologue NP1EO appeared to be the most abundant compounds in the bile extracts 

amongst all the detected homologues. 
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In summary a number of NPEO homologues were detected as marker of effluent 

exposure in fish bile. These were all glucuronide conjugates and ranged from NP itself, 

to NP6EO. 

 

 

 

 

 

 

Nonylphenol polyethoxylate (NPnEO) 

 

 

Alcohol polyethoxylate (AxEOn)                                         Alkyl polyethoxy carboxylate (AxECn) 

 

Figure 3.10: The structures of NPnEO, AxEOn and AxECn products; x represents the number of methyl 
groups in the alkyl chain; n denotes number of ethoxy units. 
 
 
 
 

 

                                                                                           Glucuronide conjugate of nonylphenol 

Glucuronide conjugate of nonylphenol polyethoxylate (NPnEO+Glu)      

 

 

 

 Glucuronide conjugate of alcohol polyethoxylate (AxEOn+Glu) 

 

Figure 3.11: Glucuronide conjugates of NPEO and AEO series detected in bile from effluent-exposed 
fish; Glu denotes glucuronide moiety; x represents the number of methyl groups in the alkyl chain; n 
denotes number of ethoxylate units. 
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Figure 3.12: Q-TOFMS spectra of nonylphenol-4EO glucuronide and structures of relative fragment 
ions: a) -ESI mode, b) +ESI mode (Na adduct), c) +ESI mode (NH4 adduct) and d) +ESI mode magnitude 
m/z range 70-270 (NH4 adduct). 
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Table 3.3: Nonylphenol ethoxylates (NPEOs) and their metabolites identified in trout bile in both ESI modes (+/-ESI). 

Marker 

No. 

ESI 

mode 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit 

Q-TOFMS fragments  

(plus fragments from GCMS analysis 

of the derivatized aglycone)
#
 

Parent 

compound 

formula
§
 Ion form Putative identity 

            
1 -ESI 395.2072 16.42 C21H31O7 395.2070 0.5 7.8 377.1972, 219.1748, 175.0245, 113.0243 

 (263,221,193,179,73) 
C15H24O [M-H]- Nonylphenol 

glucuronide 
2 +ESI 463.2311 18.72 C23H36O8Na 463.2308 0.6 0.1 287.1986 C17H28O2 [M+Na]+ Nonylphenol-1EO 

glucuronide  +ESI 458.2760  C23H40NO8 458.2754 1.3 1.9 265.2171, 139.0761  [M+NH4]
+ 

 -ESI 439.2331  C23H35O8 439.2332 -0.2 1.0 421.2224, 263.2012, 219.1758, 175.024 
(307,265,251,221,193,179,73) 

 [M-H]- 

3 +ESI 507.2574 19.42 C25H40O9Na 507.2570 0.8 1.0 331.2241 C19H32O3 [M+Na]+ Nonylphenol-2EO 
glucuronide  +ESI 502.3018  C25H44NO9 502.3016 0.4 0.9 309.2426, 183.1026, 165.0915, 121.0655  [M+NH4]

+ 
 -ESI 483.2597  C25H39O9 483.2594 0.6 0.1 465.2504, 307.2273, 219.1750, 175.0239 

(351,309,281,221,193,73) 
 [M-H]- 

4 +ESI 551.2836 20.23 C27H44O10Na 551.2832 0.7 0.5 375.2498 C21H36O4 [M+Na]+ Nonylphenol-3EO 
glucuronide  +ESI 546.3277  C27H48NO10 546.3278 -0.2 2.8 353.2689, 227.1281, 165.0923, 133.0871, 

121.0647 
 [M+NH4]

+ 

 -ESI 527.2860  C27H43O10 527.2856 0.8 0.0 509.2747, 351.2552, 219.1754, 175.0240  [M-H]- 
5 +ESI 595.3088 20.56 C29H48O11Na 595.3094 -1.0 0.9 419.2777 C23H40O5 [M+Na]+ Nonylphenol-4EO 

glucuronide  +ESI 590.3544  C29H52NO11 590.3540 0.7 2.3 397.2951, 271.1538, 209.1180, 177.1119, 
165.0924, 133.0863, 121.0655, 89.0607 

 [M+NH4]
+ 

 -ESI 571.3118  C29H47O11 571.3118 0.0 0.1 553.2998, 395.2781, 219.1749, 175.0241, 
157.0133, 113.0242 

 [M-H]- 

6 +ESI 639.3357 20.76 C31H52O12Na 639.3356 0.2 1.5 463.3029 C25H44O6 [M+Na]+ Nonylphenol-5EO 
glucuronide  +ESI 634.3804  C31H56NO12 634.3803 0.2 0.6 441.3211, 315.1798, 209.1175, 177.1124, 

165.0916, 133.0869, 121.0651 
 [M+NH4]

+ 

 -ESI 615.3391  C31H51O12 615.3381 1.6 0.4 439.3059, 219.1739, 175.0235  [M-H]-  
7 +ESI 683.3620 20.92 C33H56O13Na 683.3619 0.1 0.9 507.3287 C27H48O7 [M+Na]+ Nonylphenol-6EO 

glucuronide  +ESI 678.4075  C33H60NO13 678.4065 1.5 2.1 485.3484, 359.2072, 209.1177, 177.1134, 
165.0920, 133.0860 

 [M+NH4]
+ 

            
+/-ESI: positive/negative electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed 
mass; i-fit: isotope fit; #Q-TOFMS fragments within ± 5ppm and additional fragments observed from GC-MS of the aglycone and after derivatization to TMS ether; §aglycone 
formula; [M-H]-: deprotonated ion; [M+Na]+: sodium adduct; [M+NH4]

+: ammonium adduct; nEO where n: represents number of ethoxy units. 
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                            Table 3.4: Q-TOFMS fragments of nonylphenol ethoxylates (ammonium adducts) in +ESI mode. 

 

Observed 

ion (m/z) 

Q-TOFMS fragments (m/z) 

Metabolite identity Aglycone 

Loss of 

nonene(C9H18) Ethoxylate residuals 

          
NP1EO glucuronide 458.2760 265.2171 139.0761       
NP2EO glucuronide 502.3018 309.2426 183.1026  165.0915 121.0655    
NP3EO glucuronide 546.3277 353.2689 227.1281  165.0923 121.0647  133.0871  
NP4EO glucuronide 590.3544 397.2951 271.1538 209.1180 165.0924 121.0655 177.1119 133.0863 89.0607 
NP5EO glucuronide 634.3804 441.3211 315.1798 209.1175 165.0916 121.0651 177.1124 133.0869  
NP6EO glucuronide 678.4075 485.3484 359.2072 209.1177 165.0920  177.1134 133.0860  
          

                      m/z: mass to charge ratio; NP: nonylphenol; nEO where n: represents number of ethoxy units. 
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3.3.4.3 Alcohol ethoxylates (AEOs) non-ionic surfactants and their metabolites 

A series of alcohol ethoxylate (AEO) non-ionic surfactants and their metabolites 

were detected in effluent-exposed trout bile (Figure 3.10). Commercial AEOs are a 

mixture of homologues with different alkyl chain length (12-18 carbon atoms) and the 

alkyl chain is connected to an ethylene oxide chain by means of an ether bond (Figure 

3.11). As the above mentioned NPEOs, they are mainly used as industrial or household 

detergents (HERA, 2009b). 

AEOs (AxEOn; where x=12-15; n=0-8) were detected as glucuronide conjugates 

in effluent-exposed fish bile in both +/-ESI modes (Table 3.5). These metabolites were 

detected as deprotonated ions [M+Glu-H]- in -ESI mode, whereas Na and NH4 adducts 

[M+Glu+Na]+/[M+Glu+NH4]
+ were predominant in +ESI mode. Some of these 

different homologues coeluted on the C18 reversed-phase column, probably due to 

similarities in their chromatographic behaviour. A mixture of branched and linear alkyl 

chain isomers with same molecular formula was detected for each AEO homologue (see 

Appendix 3.8 for the extracted ion chromatograms). According to previous studies 

(Cohen et al., 2001), the major peak in the chromatogram can be  assigned to the linear 

form whilst the broader and smaller peaks correspond to the branched forms. 

In order to characterize the fragmentation pattern of ethoxylate compounds, a 

technical mixture of C13(EO)12 was selected as a standard of known ethoxylates 

products. The C13(EO)8 homologue was selected as parent ion and analysed by Q-

TOFMS and fragmentation experiments gave rise to informative ions which led to the 

confirmation of the identity for the ethoxylated markers. The Q-TOFMS analysis of the 

Na-adduct at m/z 575.4135 did not give any fragments, even using very high collision 

energy (50 eV) due to its high stability as an ion (data not shown). On the other hand, 

the spectrum of the NH4-adduct was rich of informative fragment ions. Characteristic 

ions were detected at m/z 553.4316 (loss of NH3), at m/z 371.2281 (subsequent loss of 

NH3 and tridecanene C13H26), and at m/z 221.1389, 177.1127, 133.0865 due to 

simultaneous loss of alkyl group and ethoxylated alcohol at both sides of the ethoxylate 

chain (see Appendix 3.9). 

Analysis of AEOs from the fish bile revealed fragments corresponding to [M-

H2O-H]- and [M-CH3COOH-H]- in –ESI mode as well as fragments associated with the 

glucuronide moiety (m/z 175.0243, 157.0137, 113.0239). An additional ion at m/z 

193.0348 (C6H9O7) was detected, which corresponds to the glucuronic acid anion, 
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where the glucuronide moiety is attached to an alcohol (Wen et al., 2007). The Na-

adducts of the AEO metabolites were too stable to allow substantial fragmentation in Q-

TOFMS mode (Houde et al., 2002), therefore the aglycone (Na-adduct) was the only 

fragment detected in this series (Table 3.5). 

Table 3.6 summarises the Q-TOFMS fragments of alcohol ethoxylates (NH4-

adducts) in +ESI mode. Characteristic fragment ions were obtained from the 

fragmentation of NH4-adducts (ions at m/z ranging from 107.0708 to 371.2281, 

separated by 44 Da). These ions were generated after neutral loss of an alkene molecule 

(loss of CnH2n; where n=12-15) from the aglycone ion of each AEO homologue. 

Aglycone ions were also detected due to loss of the glucuronide moiety plus NH3. 

Ethoxylate series at m/z ranging from 89.0603 to 309.1913 were also observed as 

consequence of the cleavage of the aglycone parent ion at both extremes (simultaneous 

loss of alkyl group and ethoxylated alcohol). A fragmentation pattern example for a 

selected AEO [C13(EO)4] is shown in Figure 3.13 in both +/-ESI modes and for Na and 

NH4 adducts. 

Appendix 3.10 shows the relative distribution for the series of detected AEOs 

(C12-C15) according to the different number of ethoxylate units. The C13 homologue 

was the most predominant for ethoxymers with less than 3EO units and detected as the 

Na adduct. In the series with 4EO units the C13 and C14 homologues were found 

equally predominant whilst when the number of EO units increased (> 4EO) the C14 

and C15 homologues were the most abundant. 
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Figure 3.13: Q-TOFMS spectra of tridecanol-4EO [C13(EO)4] glucuronide metabolite using Q-TOF as 
analyzer and a collision energy of 20 eV: a) -ESI mode [M-H]-, b) +ESI mode [M+Na]+, and c) +ESI 
mode [M+NH4]

+. 
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Table 3.5: Alcohol ethoxylates (AEOs) and their metabolites identified in trout bile in both electrospray ionization modes (+/-ESI). 
 

ESI 

mode 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments 

Parent 

compound 

formula
§
 Ion Form Putative identity 

Marker 

No. 

            
1 -ESI 361.2231 14.76 C18H33O7 361.2226 1.4 0.2 343.2121, 301.2001, 175.0244 C12H26O [M-H]- Dodecanol 

glucuronide  
2 +ESI 429.2461 16.79 C20H38O8Na 429.2464 -0.7 1.4 253.2142, 199.0217, 181.0112 C14H30O2 [M+Na]+ Dodecanol-1EO 

glucuronide  +ESI 424.2904  C20H42NO8 424.2910 -1.4 2.1 231.2327  [M+NH4]
+ 

 -ESI 405.2488  C20H37O8 405.2488 0.0 0.4 387.2371, 175.0248  [M-H]-  
3 +ESI 473.2727 17.73 C22H42O9Na 473.2727 0.0 0.6 297.2405 C16H34O3 [M+Na]+ Dodecanol-2EO 

glucuronide  +ESI 468.3175  C22H46NO9 468.3173 0.4 1.7 275.2585, 107.0705  [M+NH4]
+ 

 -ESI 449.2751  C22H41O9 449.2751 0.0 0.1 431.2652, 389.2538, 175.0246, 157.0134, 
113.0240 

 [M-H]- 

4 +ESI 517.2990 20.31 C24H46O10Na 517.2989 0.2 0.7 341.2666 C18H38O4 [M+Na]+ Dodecanol-3EO 
glucuronide  +ESI 512.3435  C24H50NO10 512.3435 0.0 0.4 319.2852, 151.0966, 133.0861  [M+NH4]

+ 
 -ESI 493.3008  C24H45O10 493.3013 -1.0 0.5 475.2920, 433.2794, 175.0248, 157.0143  [M-H]- 

5 +ESI 561.3253 20.80 C26H50O11Na 561.3251 0.4 0.4 385.2924 C20H42O5 [M+Na]+ Dodecanol-4EO 
glucuronide  +ESI 556.3699  C26H54NO11 556.3697 0.4 0.2 363.3112, 195.1236, 177.1123, 133.0869, 

89.0599 
 [M+NH4]

+ 

 -ESI 537.3271  C26H49O11 537.3275 -0.7 3.4 175.0247  [M-H]- 
6 +ESI 605.3518 21.01 C28H54O12Na 605.3513 0.8 0.2 429.3177 C22H46O6 [M+Na]+ Dodecanol-5EO 

glucuronide  +ESI 600.3966  C28H58NO12 600.3959 -1.0 0.9 407.3359, 239.1499,221.1382, 177.1128, 
133.0869 

 [M+NH4]
+ 

 -ESI 581.3547  C28H53O12 581.3537 1.7 1.0 175.0243  [M-H]- 
7 -ESI 375.2383 16.94 C19H35O7 375.2383 0.0 0.8 357.2283, 315.2153, 199.2068, 175.0240, 

157.0130, 113.0237 
C13H28O [M-H]- Tridecanol 

glucuronide  
8 +ESI 443.2622 18.82 C21H40O8Na 443.2621 0.2 1.2 267.2300, 199.0224, 181.0110 C15H32O2 [M+Na]+ Tridecanol-1EO 

glucuronide  +ESI 438.3064  C21H44NO8 438.3067 -0.7 2.7 245.2476  [M+NH4]
+ 

 -ESI 419.2645  C21H39O8 419.2645 0.0 0.1 401.2540, 359.2431, 175.0246, 157.0140, 
113.0238 

 [M-H]- 

+/-ESI: positive/negative electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed 
mass; i-fit: isotope fit; #Q-TOFMS fragments within ± 5ppm; §aglycone formula; [M-H]-: deprotonated ion; [M+Na]+: sodium adduct; [M+NH4]

+: ammonium adduct; nEO 
where n: represents number of ethoxy units. 
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Table 3.5: (continued) Alcohol ethoxylates (AEOs) and their metabolites identified in trout bile in both electrospray ionization modes (+/-ESI). 

Marker 

No. 

ESI 

mode 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments 

Parent 

compound 

formula
§
 Ion Form 

Identity of 

compound 

            
9 +ESI 487.2884 19.64 C23H44O9Na 487.2883 0.2 1.0 311.2552 C17H36O3 [M+Na]+ Tridecanol-2EO 

glucuronide  +ESI 482.3329  C23H48NO9 482.3329 0.0 0.3 289.2740, 107.0712  [M+NH4]
+ 

 -ESI 463.2908  C23H43O9 463.2907 0.2 0.2 445.2795, 403.2696, 175.0246, 157.0137, 
113.0239 

 [M-H]- 

10 +ESI 531.3151 20.35 C25H48O10Na 531.3145 1.1 0.5 355.2821 C19H40O4 [M+Na]+ Tridecanol-3EO 
glucuronide  +ESI 526.3591  C25H52NO10 526.3591 0.0 0.6 333.3005, 151.0977, 133.0861  [M+NH4]

+ 
 -ESI 507.3171  C25H47O10 507.3169 0.4 0.2 489.3064, 447.2956, 175.0244, 157.0135, 

113.0242 
 [M-H]- 

11 +ESI 575.341 21.82 C27H52O11Na 575.3407 0.5 2.0 399.3088 C21H44O5 [M+Na]+ Tridecanol-4EO 
glucuronide  +ESI 570.3856  C27H56NO11 570.3853 0.5 0.9 377.3265, 195.1236, 177.1129, 133.0858, 

89.0608 
 [M+NH4]

+ 

 -ESI 551.3430  C27H51O11 551.3431 -0.2 1.2 533.3345, 491.3204, 175.0241, 113.0240  [M-H]- 
12 +ESI 619.3672 21.97 C29H56O12Na 619.3669 0.5 0.9 443.3336 C23H48O6 [M+Na]+ Tridecanol-5EO 

glucuronide  +ESI 614.4119  C29H60NO12 614.4116 0.5 2.0 421.324, 239.1497,221.1395, 177.1123, 
133.0865 

 [M+NH4]
+ 

 -ESI 595.3699  C29H55O12 595.3694 0.8 0.7 577.3591, 175.0238  [M-H]- 
13 +ESI 663.3934 22.10 C31H60O13Na 663.3932 0.3 1.2 487.3616 C25H52O7 [M+Na]+ Tridecanol-6EO 

glucuronide  +ESI 658.4372  C31H64NO13 658.4378 -0.9 0.4 465.3795, 283.1757, 265.1654, 221.1397, 
177.1120, 133.0860 

 [M+NH4]
+ 

 -ESI 639.3967  C31H59O13 639.3956 1.7 0.2 193.0353, 175.0239  [M-H]- 
14 +ESI 707.4200 22.21 C33H64O14Na 707.4194 -0.6 1.9 531.3859 C27H56O8 [M+Na]+ Tridecanol-7EO 

glucuronide  +ESI 702.4647  C33H68NO14 702.4640 1.0 2.0 509.4032, 327.2017, 309.1901, 221.1388, 
177.1127, 133.0871 

 [M+NH4]
+ 

 -ESI 683.4214  C33H63O14 683.4218 -0.6 1.1 175.0250  [M-H]- 
15 -ESI 389.2541 20.66 C20H37O7 389.2539 0.5 0.4 193.0352, 175.0243, 113.0242 C14H30O [M-H]- Tetradecanol 

glucuronide 
16 -ESI 433.2801 21.59 C22H41O8 433.2801 0.0 0.9 415.2682, 373.2607, 175.0240, 157.0133, 

113.0242 
C16H34O2 [M-H]- Tetradecanol-1EO 

glucuronide 
+/-ESI: positive/negative electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed 
mass; i-fit: isotope fit; #Q-TOFMS fragments within ± 5ppm; §aglycone formula; [M-H]-: deprotonated ion; [M+Na]+: sodium adduct; [M+NH4]

+: ammonium adduct; nEO 
where n: represents number of ethoxy units. 
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Table 3.5: (continued) Alcohol ethoxylates (AEOs) and their metabolites identified in trout bile in both electrospray ionization modes (+/-ESI). 

Marker 

No. 

ESI 

mode 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments 

Parent 

compound 

formula
§
 Ion Form Putative identity 

            
17 +ESI 501.3360 22.13 C24H46O9Na 501.3040 -0.8 0.2 325.2719, 199.0216, 181.0118 C18H38O3 [M+Na]+ Tetradecanol-2EO 

glucuronide  +ESI 496.3487  C24H50NO9 496.3486 0.2 5.1 303.2901, 107.0705  [M+NH4]
+ 

 -ESI 477.3068  C24H45O9 477.3064 0.8 2.0 459.2952, 417.2859, 175.0242, 157.0138, 
113.0236 

 [M-H]- 

18 +ESI 545.3307 22.47 C26H50O10Na 545.3302 0.9 0.4 369.2974 C20H42O4 [M+Na]+ Tetradecanol-3EO 
glucuronide  +ESI 540.3746  C26H54NO10 540.3748 -0.4 0.2 347.3161, 151.0974, 133.0868  [M+NH4]

+ 
 -ESI 521.3326  C26H49O10 521.3326 0.0 0.1 503.3214, 461.3107, 175.0246, 113.0238  [M-H]- 

19 +ESI 589.3560 22.68 C28H54O11Na 589.3564 -0.7 0.7 413.3248 C22H46O5 [M+Na]+ Tetradecanol-4EO 
glucuronide  +ESI 584.4008  C28H58NO11 584.4010 -0.3 0.5 391.3421, 195.1232, 177.1122, 133.0859, 

89.0607 
 [M+NH4]

+ 

 -ESI 565.3592  C28H53O11 656.3588 0.7 0.0 547.3482, 505.3366, 175.0243, 157.0135, 
113.0242 

 [M-H]- 

20 +ESI 633.3826 22.79 C30H58O12Na 633.3826 0.0 1.1  457.3497 C24H50O6 [M+Na]+ Tetradecanol-5EO 
glucuronide  +ESI 628.4274  C30H62NO12 628.4272 0.3 0.3 435.3681, 239.1495,221.1387, 177.1127, 

133.0871 
 [M+NH4]

+ 

 -ESI 609.3851  C30H57O12 609.3850 0.2 0.7 591.3727, 549.3620, 175.0239, 157.0142, 
113.0242 

 [M-H]- 

21 +ESI 677.4083 22.90 C32H62O13Na 677.4088 -0.7 1.4 501.3758 C26H54O7 [M+Na]+ Tetradecanol-6EO 
glucuronide  +ESI 672.4534  C32H66NO13 672.4534 0.0 0.6 479.3947, 283.1756, 265.1659,  

221.1381, 177.1125, 133.0869 
 [M+NH4]

+ 

 -ESI 653.4116  C32H61O13 653.4112 0.6 0.0 635.4011, 175.0247, 157.0140, 113.0241  [M-H]- 
22 +ESI 721.4349 22.98 C34H66O14Na 721.4350 -0.1 0.4 545.4030 C28H58O8 [M+Na]+ Tetradecanol-7EO 

glucuronide  +ESI 716.4798  C34H70NO14 716.4796 0.3 0.5 523.4230, 327.2016, 309.1928,  
221.1391, 177.1123, 133.0861 

 [M+NH4]
+ 

 -ESI 697.4371  C34H65O14 697.4374 -0.4 1.7 193.0343, 175.0241, 113.0234  [M-H]- 
23 +ESI 765.4606 23.01 C36H70O15Na 765.4612 -0.8 0.3 589.4287 C30H62O9 [M+Na]+ Tetradecanol-8EO 

glucuronide  +ESI 760.5055  C36H74NO15 760.5058 -0.4 1.8 567.4473, 371.2283, 221.1388, 177.1124, 
133.0870 

 [M+NH4]
+ 

24 -ESI 403.2695 21.74 C21H39O7 403.2696 -0.2 0.3 175.0240 C15H32O [M-H]- Pentadecanol 
glucuronide 

+/-ESI: positive/negative electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed 
mass; i-fit: isotope fit; #Q-TOFMS fragments within ± 5ppm; §aglycone formula; [M-H]-: deprotonated ion; [M+Na]+: sodium adduct; [M+NH4]

+: ammonium adduct; nEO 
where n: represents number of ethoxy units. 
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Table 3.5: (continued) Alcohol ethoxylates (AEOs) and their metabolites identified in trout bile in both electrospray ionization modes (+/-ESI). 

Marker 

No. 

ESI 

mode 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments 

Parent 

compound 

formula
§
 Ion Form 

Identity of 

compound 

            
25 -ESI 447.2959 22.47 C23H43O8 447.2958 0.2 0.8 429.2845, 175.0243, 157.0143 C17H36O2 [M-H]- Pentadecanol-1EO 

glucuronide 
26 +ESI 515.3198 22.93 C25H48O9Na 515.3196 0.4 2.6 339.2860 C19H40O3 [M+Na]+ Pentadecanol-2EO 

glucuronide  +ESI 510.3640  C25H52NO9 510.3642 -0.4 1.3 317.3059, 107.0711  [M+NH4]
+ 

 -ESI 491.3223  C25H47O9 491.3220 0.6 1.8 175.024  [M-H]- 
27 +ESI 559.3458 23.20 C27H52O10Na 559.3458 0.0 4.3 383.3135 C21H44O4 [M+Na]+ Pentadecanol-3EO 

glucuronide  +ESI 554.3906  C27H56NO10 554.3904 0.4 0.4 361.3315, 151.0972, 133.0860  [M+NH4]
+ 

 -ESI 535.3484  C27H51O10 535.3482 0.4 1.4 517.3395, 475.3261, 175.0250, 157.0140, 
113.0241 

 [M-H]- 

28 +ESI 603.3724 23.41 C29H56O11Na 603.3720 0.7 0.3 427.3398 C23H48O5 [M+Na]+ Pentadecanol-4EO 
glucuronide  +ESI 598.4166  C29H60NO11 598.4166 0.0 0.6 405.3581, 195.1239, 177.1124, 133.0860, 

89.0604 
 [M+NH4]

+ 

 -ESI 579.3748  C29H55O11 579.3744 0.7 0.3 561.3619, 519.3519, 175.0243  [M-H]- 
29 +ESI 647.3979 23.51 C31H60O12Na 647.3982 -0.5 0.0 471.3653 C25H52O6 [M+Na]+ Pentadecanol-5EO 

glucuronide  +ESI 642.4432  C31H64NO12 642.4429 0.5 0.1 449.3824, 239.1495, 221.1397, 177.1127, 
133.0868 

 [M+NH4]
+ 

 -ESI 623.4008  C31H59O12 623.4007 0.2 3.1 605.3892, 563.3814, 175.0249  [M-H]- 
30 +ESI 691.4239 23.60 C33H64O13Na 691.4245 -0.9 1.6 515.3939 C27H56O7 [M+Na]+ Pentadecanol-6EO 

glucuronide  +ESI 686.4694  C33H68NO13 686.4691 0.4 0.8 493.4114, 283.1760, 265.1647, 221.1390, 
177.1122, 133.0859 

 [M+NH4]
+ 

 -ESI 667.4275  C33H63O13 667.4269 0.9 0.1 649.4175, 175.0231  [M-H]- 
31 +ESI 735.4518 23.65 C35H68O14Na 735.4507 1.5 1.3 559.4166 C29H60O8 [M+Na]+ Pentadecanol-7EO 

glucuronide  +ESI 730.4956  C35H72NO14 730.4953 0.4 0.6 537.4373, 327.2010, 309.1915, 221.1397, 
177.1128, 133.0868 

 [M+NH4]
+ 

 -ESI 711.4532  C35H67O14 711.4531 0.1 0.2 693.4417, 175.0239  [M-H]- 
32 +ESI 779.4720 23.70 C37H72O15Na 779.4769 0.4 1.5 603.4444 C31H64O9 [M+Na]+ Pentadecanol-8EO 

glucuronide  +ESI 774.5209  C37H76NO15 774.5215 -0.8 2.2 581.4631, 371.2267, 221.1386, 177.1129, 
133.0871 

 [M+NH4]
+ 

 -ESI 755.4787  C37H71O15 755.4793 -0.8 3.7 175.0243  [M-H]- 
+/-ESI: positive/negative electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed 
mass; i-fit: isotope fit; #Q-TOFMS fragments within ± 5ppm; §aglycone formula; [M-H]-: deprotonated ion; [M+Na]+: sodium adduct; [M+NH4]

+: ammonium adduct; nEO 
where n: represents number of ethoxy units. 
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                         Table 3.6: Q-TOFMS fragment ions for alcohol ethoxylates (ammonium adducts) in +ESI mode. 

Metabolite identity 

Observed 

ion (m/z) 

Q-TOFMS fragments (m/z) of NH4 adduct 

Aglycone 

Loss of 

Alkene(CnH2n) Ethoxylate residuals 

          
C12(EO)1 glucuronide 424.2904 231.2327        
C12(EO)2 glucuronide 468.3175 275.2585 107.0705       
C12(EO)3 glucuronide 512.3435 319.2852 151.0966     133.0861  
C12(EO)4 glucuronide 556.3699 363.3112 195.1236    177.1123 133.0869 89.0599 
C12(EO)5 glucuronide 600.3966 407.3359 239.1499   221.1382 177.1128 133.0869  
          
C13(EO)1 glucuronide 438.3064 245.2476        
C13(EO)2 glucuronide 482.3329 289.2740 107.0712       
C13(EO)3 glucuronide 526.3591 333.3005 151.0977     133.0861  
C13(EO)4 glucuronide 570.3856 377.3265 195.1236    177.1129 133.0858 89.0608 
C13(EO)5 glucuronide 614.4119 421.3224 239.1497   221.1395 177.1123 133.0865  
C13(EO)6 glucuronide 658.4372 465.3795 283.1757  265.1654 221.1397 177.1120 133.0860  
C13(EO)7 glucuronide 702.4647 509.4032 327.2017 309.1901  221.1388 177.1127 133.0871  
          
C14(EO)2 glucuronide 496.3487 303.2901 107.0705       
C14(EO)3 glucuronide 540.3746 347.3161 151.0974     133.0868  
C14(EO)4 glucuronide 584.4008 391.3421 195.1232    177.1122 133.0859 89.0607 
C14(EO)5 glucuronide 628.4274 435.3681 239.1495   221.1387 177.1127 133.0871  
C14(EO)6 glucuronide 672.4534 479.3947 283.1756  265.1659 221.1381 177.1125 133.0869  
C14(EO)7 glucuronide 716.4798 523.4230 327.2016 309.1928  221.1391 177.1123 133.0861  
C14(EO)8 glucuronide 760.5055 567.4473 371.2283   221.1388 177.1124 133.0870  
          
C15(EO)2 glucuronide 510.3640 317.3059 107.0711       
C15(EO)3 glucuronide 554.3906 361.3315 151.0972     133.0860  
C15(EO)4 glucuronide 598.4166 405.3581 195.1239    177.1124 133.0860 89.0604 
C15(EO)5 glucuronide 642.4432 449.3824 239.1495   221.1397 177.1127 133.0868  
C15(EO)6 glucuronide 686.4694 493.4114 283.1760  265.1647 221.1390 177.1122 133.0859  
C15(EO)7 glucuronide 730.4956 537.4373 327.2010 309.1915  221.1397 177.1128 133.0868  
C15(EO)8 glucuronide 774.5209 581.4631 371.2267   221.1386 177.1129 133.0871  
          

                        m/z: mass to charge ratio; AxEOn: x represents the number of methyl groups in the alkyl chain; n denotes number of ethoxy units. 
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3.3.4.4 Alkyl polyethoxy carboxylates (AECs) anionic surfactants and their 

metabolites. 

A series of alkyl polyethoxy carboxylates (AEC) anionic surfactants and their 

metabolites were detected in effluent-exposed trout bile. AECs structure is similar to 

that of AEOs, except for the terminal carboxylic group instead of the alcoholic group 

(Figure 3.10). AECs could be formed from ω-oxidation of the ethoxylate group 

belonging to the corresponding AEO compounds during wastewater treatment (Di 

Corcia et al., 1998). AECs are also used as anionic surfactants in the textile industry and 

in household and personal care products and thus could contribute as an additional 

source to the effluent contamination. 

Unlike NPEOs and AEOs, AxECn series (where; A=alkyl group and n= number 

of ethoxy units plus a terminal CH2COOH moiety) were detected as non-conjugated 

compounds in both +/-ESI modes (Table 3.7). As in the case of the AEOs, no efficient 

chromatographic separation was observed for most of the analytes and due to coelution, 

and the MS spectra for each series were overlapping. 

The deprotonated ions of AECs revealed fragments at m/z 211.2062 and m/z 

225.2218 in –ESI mode, which corresponded to molecular formula C14H27O and 

C15H29O respectively. This can be possibly explained by the loss of the 

ethoxycarboxylate moiety from the molecular ion.  

An example of the fragmentation pattern for Na and NH4 adducts of two 

selected AEC metabolites is shown in Figure 3.14, and the list of Q-TOFMS fragments 

of NH4 and Na adducts are given in Table 3.8. The fragmentation of AEnCs Na-adducts 

(A=C13-C15, and n=4-10) in +ESI highlighted loss of 58 Da which corresponds to the 

loss of the acetate group and/or central cleavage of the parent ion, giving rise to the ion 

[M-CnH2n+Na]+, where n=13-15. This process leads to the loss of 182, 196 or 210 Da, 

corresponding to the loss of tridecanene (C13H26), tetradecanene (C14H28) or 

pentadecanene (C15H30), respectively. Characteristic ions were also detected after 

fragmentation of the NH4-adducts, showing loss of alkene plus NH3 (ethoxylate 

residual), subsequently followed by loss of H2O and CO (Ding et al., 1994). 

Furthermore, a series of fragments corresponding to [M+H-2EO-H2O]+ were obtained 

from the aglycone. 
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The relative concentration of the ethoxycarboxylated series (AECs) in bile 

extracts of effluent-exposed fish was predominated by C14ECs and C15ECs (see 

Appendix 3.11). Like those ethoxylates previously mentioned (NPEOs and AEOs), 

AECs demonstrated higher signals for Na-adducts than NH4-adducts. For AECs the 

homologues with 6EC and 7EC units had the highest signal amongst their series (e.g. 

C14(EC)6 and C14(EC)7) (Figure 3.15). However, the lower signal observed for the 

homologues with fewer ethoxylate units could be caused by ion suppression due to 

coelution with the more abundant homologues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.14: Q-TOFMS spectra of two AECs metabolites tetradecanol-6EC [C14(EC)6] (a & b) and 
pentadecanol-6EC [C15(EC)6] (c & d) using Q-TOF as analyzer in +ESI mode. 
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Figure 3.15: TOFMS spectra of tetradecanol ethoxycarboxylates (C14ECs) and pentadecanol 
ethoxycarboxylates (C15ECs) homologues using Q-TOF as analyzer and a collision energy of 10eV in 
+ESI mode (full scan mode). 
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Table 3.7: Alkyl polyethoxycarboxylates (AECs) and their metabolites identified in trout bile in both electrospray ionization modes (+/-ESI). 

ESI 

mode 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments 

Parent 

compound 

formula
§
 Ion form Identity of compound 

           
+ESI 443.2983 22.90 C22H44O7Na 443.2985 -0.5 5.5 385.2911 C22H44O7 [M+Na]+ Dodecanyl-5EC metabolite 
+ESI 438.3430  C22H48NO7 438.3431 -0.2 8.9 253.1284, 235.1180, 207.1239, 147.0661  [M+NH4]

+ 
+ESI 413.2881 23.56 C21H42O6Na 413.2879 0.5 0.8 355.2822, 231.0846 C21H42O6 [M+Na]+ Tridecanol-4EC metabolite 
+ESI 408.3331  C21H46NO6 408.3325 1.5 3.6 209.1033, 191.0925, 163.0965  [M+NH4]

+ 
+ESI 457.3139 23.56 C23H46O7Na 457.3141 -0.4 0.5 399.3083, 275.1110, 217.1063 C23H46O7 [M+Na]+ Tridecanol-5EC metabolite 
+ESI 452.3589  C23H50NO7 452.3587 0.4 0.1 253.1280, 235.1183, 207.1240, 147.0667  [M+NH4]

+ 
+ESI 501.3401 23.54 C25H50O8Na 501.3403 -0.4 0.5 443.3354, 319.1371, 261.1310 C25H50O8 [M+Na]+ Tridecanol-6EC metabolite 
+ESI 496.3850  C25H54NO8 496.3849 0.2 1.7 297.1551, 279.1452, 251.1499, 191.0916  [M+NH4]

+ 
+ESI 545.3668 23.52 C27H54O9Na 545.3666 0.4 1.4 487.3607, 363.1648, 305.1566 C27H54O9 [M+Na]+ Tridecanol-7EC metabolite 
+ESI 540.4111  C27H58NO9 540.4112 -0.2 0.5 341.1814, 323.1707, 295.1755, 235.1181  [M+NH4]

+ 
+ESI 427.3042 24.12 C22H44O6Na 427.3036 1.4 1.4 369.2978, 231.0852 C22H44O6 [M+Na]+ Tetradecanol-4EC metabolite 
+ESI 422.3484  C22H48NO6 422.3482 0.5 0.6 209.1034, 191.0927, 163.0978  [M+NH4]

+ 
-ESI 403.3060  C22H43O6 403.3060 0.0 0.4 211.2071  [M-H]-  
+ESI 471.3300 24.13 C24H48O7Na 471.3298 0.4 0.7 413.3229, 275.1109, 217.1049 C24H48O7 [M+Na]+ Tetradecanol-5EC metabolite 
+ESI 466.3741  C24H52NO7 466.3744 -0.6 1.1 253.1284, 235.1182, 207.1228, 147.0651  [M+NH4]

+ 
-ESI 447.3325  C24H47O7 447.3322 0.7 0.3 211.2057  [M-H]- 
+ESI 515.3560 24.12 C26H52O8Na 515.3560 0.0 1.0 457.3510, 319.1365, 261.1313 C26H52O8 [M+Na]+ Tetradecanol-6EC metabolite 
+ESI 510.4002  C26H56NO8 510.4006 -0.8 1.3 297.1545, 279.1445, 251.1494, 191.0928  [M+NH4]

+ 
-ESI 491.3585  C26H51O8 491.3584 0.2 0.4 211.2066  [M-H]- 
+ESI 559.3830 24.12 C28H56O9Na 559.3822 1.4 1.9 501.3774, 363.1620, 305.1581 C28H56O9 [M+Na]+ Tetradecanol-7EC metabolite 
+ESI 554.4265  C28H60NO9 554.4268 -0.5 0.6 341.1805, 323.1700, 297.1753, 235.1180  [M+NH4]

+ 
-ESI 535.3850  C28H55O9 535.3846 0.7 1.0 211.2064  [M-H]- 
+ESI 603.4080 24.09 C30H60O10Na 603.4084 -0.7 2.8 545.4028, 407.1907, 349.1847 C30H60O10 [M+Na]+ Tetradecanol-8EC metabolite 
+ESI 598.4530  C30H64NO10 598.4530 0.0 0.4 385.2066, 367.1965, 339.2015, 279.1446  [M+NH4]

+ 
-ESI 579.4102  C30H59O10 579.4108 -1.0 0.6 211.2059 C30H60O10 [M-H]-  

+/-ESI: positive/negative electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed 
mass; i-fit: isotope fit; #Q-TOFMS fragments within ± 5ppm; §aglycone formula; [M-H]-: deprotonated ion; [M+Na]+: sodium adduct; [M+NH4]

+: ammonium adduct; nEC 
where n: represents number of ethoxy units  plus a terminal CH2COOH. 
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Table 3.7: (continued) Alkyl polyethoxycarboxylates (AECs) and their metabolites identified in trout bile in both electrospray ionization modes (+/-ESI). 

ESI 

mode 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments 

Parent 

compound 

formula
§
 Ion form Identity of compound 

           
+ESI 441.3197 24.59 C23H46O6Na 441.3192 1.1 0.3 383.3127, 231.0856 C23H46O6 [M+Na]+ 

Pentadecanol-4EC metabolite 
+ESI 436.3640  C23H50NO6 436.3638 0.5 1.9 209.1022, 191.0921, 163.0978  [M+NH4]

+ 
+ESI 485.3453 24.60 C25H50O7Na 485.3454 -0.2 1.3 427.3387, 275.1116, 217.1062 C25H50O7 [M+Na]+ 

Pentadecanol-5EC metabolite +ESI 480.3893  C25H54NO7 480.3900 -1.5 0.6 253.1293, 235.1180, 207.1226, 147.0655  [M+NH4]
+ 

-ESI 461.3480  C25H49O7 461.3478 0.4 0.2 225.2234 C25H50O7 [M-H]- 
+ESI 529.3718 24.60 C27H54O8Na 529.3716 0.4 0.1 471.3653, 319.1363, 261.1315 C27H54O8 [M+Na]+ 

Pentadecanol-6EC metabolite +ESI 524.4163  C27H58NO8 524.4162 0.2 2.3 297.1552, 279.1445, 251.1492, 191.0922  [M+NH4]
+ 

-ESI 505.3742  C27H53O8 505.3740 0.4 0.2 225.2230 C27H54O8 [M-H]- 
+ESI 573.3981 24.60 C29H58O9Na 573.3979 0.3 21.2 515.3925, 363.1637, 305.1564 C29H58O9 [M+Na]+ 

Pentadecanol-7EC metabolite +ESI 568.4423  C29H62NO9 568.4425 -0.4 0.1 341.1811, 323.1701, 295.1755, 235.1187  [M+NH4]
+ 

-ESI 549.4006  C29H57O9 549.4003 0.5 0.7 225.2226 C29H58O9 [M-H]- 
+ESI 617.4253 24.60 C31H62O10Na 617.4241 -1.9 4.5 559.4181, 407.1895, 349.1837 C31H62O10 [M+Na]+ 

Pentadecanol-8EC metabolite +ESI 612.4689  C31H66NO10 612.4687 0.3 3.3 385.2075, 367.1960, 339.2021, 279.1445  [M+NH4]
+ 

-ESI 593.4269  C31H61O10 593.4265 0.7 0.4 225.2208 C31H62O10 [M-H]- 
+ESI 661.4506 24.56 C33H66O11Na 661.4503 0.5 2.8 603.4435 , 451.2148, 393.2113 C33H66O11 [M+Na]+ 

Pentadecanol-9EC metabolite 
+ESI 656.4947  C33H70NO11 656.4949 -0.3 1.7 429.2316, 411.2235, 383.2294, 323.1700  [M+NH4]

+ 
+ESI 705.4774 24.54 C35H70O12Na 705.4765 1.3 6.3 647.4705 , 495.2407, 437.2348 C35H70O12 [M+Na]+ 

Pentadecanol-10EC metabolite 
+ESI 700.5203  C35H74NO12 700.5211 -1.1 1.1 473.2620, 455.2514, 427.2547  [M+NH4]

+ 
+/-ESI: positive/negative electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed 
mass; i-fit: isotope fit; #Q-TOFMS fragments within ± 5ppm; §aglycone formula; [M-H]-: deprotonated ion; [M+Na]+: sodium adduct; [M+NH4]

+: ammonium adduct; nEC 
where n: represents number of ethoxy units  plus a terminal CH2COOH. 
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                          Table 3.8: Q-TOFMS fragment ions for alkyl polyethoxy carboxylate (sodium and ammonium adducts) in +ESI mode. 

Identity of 

compound 

 

Observed 

ion (m/z) 

MS/MS fragments (m/z) 

Ion form 

Loss of 

acetate group 

Loss of 

Alkene(CnH2n)
#
 

Loss of (alkene 

plus acetate group) 

Loss of 

H2O 

Loss of 

CO 

Loss of (2EO 

units plus H2O) 

C12(EC)5 [M+Na]+  385.2911      
 [M+NH4]

+ 438.3431  253.1284  235.1180 207.1239 147.0661 
C13(EC)4 [M+Na]+ 413.2879 355.2822 231.0846     
 [M+NH4]

+ 408.3325  209.1033  191.0925 163.0965  
C13(EC)5 [M+Na]+ 457.3141 399.3083 275.1110 217.1063    
 [M+NH4]

+ 452.3587  253.1280  235.1183 207.1240 147.0667 
C13(EC)6 [M+Na]+ 501.3403 443.3354 319.1371 261.1310    
 [M+NH4]

+ 496.3849  297.1551  279.1452 251.1499 191.0916 
C13(EC)7 [M+Na]+ 545.3666 487.3607 363.1648 305.1566    
 [M+NH4]

+ 540.4112  341.1814  323.1707 295.1755 235.1181 
C14(EC)4 [M+Na]+ 427.3036 369.2978 231.0852     
 [M+NH4]

+ 422.3482  209.1034  191.0927 163.0978 211.2071 
C14(EC)5 [M+Na]+ 471.3298 413.3229 275.1109 217.1049    
 [M+NH4]

+ 466.3744  253.1284  235.1182 207.1228 147.0651 
C14(EC)6 [M+Na]+ 515.3560 457.3510 319.1365 261.1313    
 [M+NH4]

+ 510.4006  297.1545  279.1445 251.1494 191.0928 
C14(EC)7 [M+Na]+ 559.3822 501.3774 363.1620 305.1581    
 [M+NH4]

+ 554.4268  341.1805  323.1700 297.1753 235.1180 
C14(EC)8 [M+Na]+ 603.4084 545.4028 407.1907 349.1847    
 [M+NH4]

+ 598.4530  385.2066  367.1965 339.2015 279.1446 
C15(EC)4 [M+Na]+ 441.3197 383.3127 231.0856     
 [M+NH4]

+ 436.3640  209.1022  191.0921 163.0978  
C15(EC)5 [M+Na]+ 485.3453 427.3387 275.1116 217.1062    
 [M+NH4]

+ 480.3893  253.1293  235.1180 207.1226 147.0655 
C15(EC)6 [M+Na]+ 529.3718 471.3653 319.1363 261.1315    
 [M+NH4]

+ 524.4163  297.1552  279.1445 251.1492 191.0922 
C15(EC)7 [M+Na]+ 573.3981 515.3925 363.1637 305.1564    
 [M+NH4]

+ 568.4423  341.1811  323.1701 295.1755 235.1187 
C15(EC)8 [M+Na]+ 617.4253 559.4181 407.1895 349.1837    
 [M+NH4]

+ 612.4689  385.2075  367.1960 339.2021 279.1445 
C15(EC)9 [M+Na]+ 661.4506 603.4435 451.2148 393.2113    
 [M+NH4]

+ 656.4947  429.2316  411.2235 383.2294 323.1700 
C15(EC)10 [M+Na]+ 705.4774 647.4705 495.2407 437.2348    
 [M+NH4]

+ 700.5203  473.2620  455.2514 427.2547  
                        #loss of alkene plus NH3 from ammonium adduct. Additional fragments were obtained at m/z 211.2062 (C14H27O) and m/z 225.2218 (C15H29O) in -ESI mode. 
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3.3.4.5 Chlorinated phenols and their metabolites 

Several chlorinated compounds and their metabolites were detected in effluent-

exposed trout bile. Chlorinated phenols were only detected in -ESI mode and were 

detected as glucuronide conjugates (Table 3.9); the charge site was probably located on 

the carboxylic group of the glucuronide moiety. Chlorophenol compounds substituted as   

monochlorine to pentachlorine compounds are commonly used as biocides and as 

intermediates in the synthesis of dyestuffs and pesticides (Gao et al., 2008).  

Elemental compositions were calculated for the deprotonated ions at m/z 

336.9882 (marker 1, Table 3.9) and 370.9493 (marker 2, Table 3.9) corresponded to the 

theoretical formulae of C12H11O7Cl2 and C12H10O7Cl3, respectively. These two markers 

were identified as glucuronide conjugates of 2,4-dichlorophenol and an isomer of 

trichlorophenol (structures shown in Figure 3.16). The typical chlorine isotopic pattern 

was observed in the mass spectra of both di- and tri-chlorinated compounds, aiding in 

the confirmation of the identity of these compounds (Figures 3.17a and 3.18a). 

Q-TOFMS spectra of the deprotonated ions [M-H]- showed mainly two signals 

at m/z 160.9561 and 194.9163 (Figures 3.17b and 3.18b), which correspond to the 

deprotonated aglycone [M-Glu-H]- (loss of 176 Da) of dichlorophenol and 

trichlorophenol, respectively, in addition to other fragments characteristic of the 

glucuronide moiety (i.e. m/z 175.0243, m/z 113.0239). Elimination of a neutral 

glucuronide moiety by cleavage of the glycoside bond led to a very stable product ion. 

Its stability can probably be due to resonance stabilization and it is responsible of no 

further fragmentation at higher collision energies. Therefore, GC-MS analysis was 

needed to obtain further characteristic fragments for these two chlorinated phenols 

(dichlorophenol and trichlorophenol). 

UPLC fractions containing the above mentioned conjugated chlorinated phenols 

were subjected to enzymatic hydrolysis first and then derivatised for further GC-MS 

analysis. Analysis of corresponding derivatized UPLC fractions by GC-MS showed the 

characteristic fragment ions and RT of the trimethylsilyl ether (TMS) derivatives of 

dichlorophenol whilst trichlorophenol TMS derivatives (RT=15.64) differed in RT 

when compared to the available commercial standard (2,4,6-trichlorophenol, RT=15.36) 

(for GC-MS fragmentation see Figure 3.17c and Figure 3.18c). This might indicate that 

the trichlorinated compound identified in the bile sample is a positional isomer of 2,4,6-

trichlorophenol, differeing only in the relative position of the three chlorine atoms on 
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the phenolic ring. The peak at m/z 219 and m/z 253 in the spectra of dichlorophenol and 

trichlorophenol were produced by the loss of the methyl group from the molecular ions 

m/z 234 and m/z 268, respectively. The ions at m/z 219 and m/z 253 further fragmented 

by elimination of hydrogen chloride HCl (loss of 36 Da) and gave signals at m/z 183 

and m/z 217, respectively. Furthermore, the characteristic ions at m/z 93 and m/z 95 

corresponded to the dimethylsilyl chloride fragments [35Cl-Si(CH3)2]
+ and [37Cl-

Si(CH3)2]
+ due to a rearrangement mechanism and elimination of CH3Cl. This 

elimination could possibly occur when the chlorine atom is located on the same ring of 

the phenolic group; ions will show different intensities depending on the number of 

chlorine atoms and on their relative position respect to the aromatic –OH (ortho-, meta- 

or para-) (Stalling and Hogan, 1978, Heberer and Stan, 1997). Chlorine isotopic patterns 

of the derivative molecular ions and their fragments were also observed in the spectra 

for both phenols compounds, confirming the presence of halogens in the molecule. 
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Figure 3.16: Chemical structures of chlorinated compounds and their metabolites found in bile of 
effluent-exposed fish. 
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Figure 3.17:  
(a) TOFMS mass spectrum of 2,4-dichlorophenol glucuronide detected in bile of effluent-exposed fish. 
The molecular ion shows the characteristic chlorine isotopic distribution at A, A+2 and A+4. 
(b) Q-TOFMS mass spectrum of the glucuronide conjugate of 2,4-dichlorophenol obtained applying a 
collision energy of 10 eV.  
(c) EI mass spectra of 2,4-dichlorophenol as the TMS derivative detected in an UPLC fraction of bile 
from fish exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS 
analysis. 
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Figure 3.18: 
(a) TOFMS mass spectrum of trichlorophenol glucuronide detected in bile of effluent-exposed fish. The 
molecular ion shows the characteristic chlorine isotopic distribution at A, A+2 and A+4. 
(b) Q-TOFMS mass spectrum of the glucuronide conjugate of trichlorophenol obtained applying a 
collision energy of 10 eV.  
(c) EI mass spectra of a trichlorophenol as the TMS derivative detected in an UPLC fraction of bile from 
fish exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS analysis. 
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Table 3.9: Chlorinated markers and their metabolites identified in trout bile in -ESI mode. 

Marker 

No. 

ESI 

mode 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit 

Q-TOFMS fragments 

(plus fragments from GCMS analysis 

of the derivatized aglycone)# 

Parent 

compound 

formula
§
 

Ion 

form Putative identity 

            
1 -ESI 336.9883 6.39 C12H11O7Cl2 336.9882 0.3 1.7 175.0248, 160.9561, 113.0125 

(219,234,183, 93) 
C6H4OCl2 [M-H]- Glucuronide conjugate of 2,4-

dichlorophenol 
2 -ESI 370.9493 6.56 C12H10O7Cl3 370.9492 0.3 1.0 194.9163, 175.0237 

(268,253,217,183,93) 
C6H3OCl3 [M-H]- Glucuronide conjugate of a 

trichlorophenol 
3 -ESI 395.0302 6.58 C15H17O8Cl2 395.0300 0.5 1.1 175.0224 C9H10O2Cl2 [M-H]- Glucuronide conjugate of 

putative methoxy metabolite of 
a dichloroxylenol isomer 

4 -ESI 331.0588 7.41 C14H16O7Cl 331.0585 0.9 1.0 175.0243, 155.0271, 113.0241 
(228,213,177,163,93) 

C8H9OCl [M-H]- Chloroxylenol glucuronide (4-
chloro-3,5-dimethyl-phenol) 

5 -ESI 361.0694 7.85 C15H18O8Cl 361.0690 1.1 0.5 185.0372, 175.0245, 170.0136, 113.0240 
(258,243,228,193) 

C9H11O2Cl [M-H]- Glucuronide conjugate of a 
methoxy metabolite of 
chloroxylenol 

6 -ESI 395.0302 8.62 C15H17O8Cl2 395.0300 0.5 0.1 175.0233 C9H10O2Cl2 [M-H]- Glucuronide conjugate of  
putative methoxy metabolite of 
a dichloroxylenol isomer 

7 -ESI 365.0197 8.67 C14H15O7Cl2 365.0195 0.5 0.9 188.9879, 175.0249, 157.0144, 113.0240 
(262,247,211,197,93) 

C8H8OCl2 [M-H]- Dichloroxylenol glucuronide 

8 -ESI 423.0853 10.48 C20H20O8Cl 423.0847 1.4 1.7 247.0537, 232.0282, 175.0244 
(320,305,290,255) 

C14H13O2Cl [M-H]- Glucuronide conjugate of a 
methoxy metabolite of 
chlorophene 

9 -ESI 393.0745 10.70 C19H18O7Cl 393.0741 1.0 0.0 217.0428, 175.0251, 113.0241 
(290,275,255,197,165,152,135,91,75) 

C13H11OCl [M-H]- Chlorophene glucuronide (2-
benzyl-4-chlorophenol) 

10 -ESI 429.0146 11.16 C18H15O8Cl2 429.0144 0.5 1.7 252.9823, 175.0248, 113.0239 
(326,311,276,218,200,185,170) 

C12H8O2Cl2 [M-H]- Diclosan glucuronide 

11 -ESI 462.9759 12.49 C18H14O8Cl3 462.9754 1.1 0.0 286.9434, 175.0245, 113.0238 
(360,345,310,252,200,185,170) 

C12H7O2Cl3 [M-H]- Triclosan glucuronide 

            
+/-ESI: positive/negative electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed 
mass; i-fit: isotope fit; #Q-TOFMS fragments within ± 5ppm and additional fragments observed from GC-MS of the aglycone and after derivatization to TMS ether; §aglycone 
formula; [M-H]-: deprotonated ion. 
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3.3.4.6 Chlorinated xylenols and their metabolites 

Two xylenols and their metabolites were detected only in -ESI mode and were 

detected as glucuronide conjugates in effluent-exposed trout bile (Table 3.9). 

Chlorinated xylenols are commonly used as antiseptics in household products. Amongst 

this class of compounds, chloroxylenol is used as disinfectant in the pharmaceutical, 

industrial, and cosmetic products (Bruch, 1996). 

The analysis of the S-plot of markers metabolites included two ions that were 

significantly increased in bile from effluent-exposed trout; m/z 331.0588 (marker 4, 

Table 3.9) and 365.0197 (marker 7, Table 3.9). Accurate mass measurement, Q-TOFMS 

fragmentation, and GC-MS analysis led to the identification of the compounds as 

glucuronide conjugate of chloroxylenol (4-chloro-3,5-xylenol) and dichloroxylenol 

(structures shown in Figure 3.16). Q-TOFMS fragmentation revealed ions 

corresponding to the aglycone compounds at (m/z 155.0264 chloroxylenol and m/z 

188.9874 dichloroxylenol), as well as glucuronide moiety fragments. TOFMS spectrum 

and high collision energy Q-TOFMS spectrum of both xylenols are shown in Figures 

(3.19a,b and 3.20a,b). 

UPLC fractions containing the xylenol conjugates were subjected to enzymatic 

hydrolysis, and derivatised for GC-MS analysis. In the electron impact mass spectrum 

(EI-MS) of the mono- and di-chlorinated xylenol TMS derivatives, the presence of the 

respective molecular ions [M]•+ at  m/z 228 and m/z 262 indicated that the hydroxyl 

groups were successful derivatized (Figure 3.19c and Figure 3.20c). Fragment ions at 

m/z 213 and m/z 247 were observed after loss of methyl [M-15]+ from the trimethylsilyl 

group for both derivative compounds. Abundant ions at m/z 177 and m/z 211 were 

obtained due to loss of methyl and further loss of HCl from the molecular ions of 

chloroxylenol and dichloroxylenol, respectively, together with ions at m/z 93 and m/z 

95, which corresponded to dimethylsilyl chloride. Loss of CH3Cl following loss of 

methyl from the trimethylsilyl group was observed giving rise to ions at m/z 163 and 

m/z 197 for both xylenol compounds (Balmer et al., 2003, Cowan et al., 2008). The 

observed chlorine isotopic patterns of the fragments and molecular ions were consistent 

with the structures of the mono- and di-chlorinated compounds and relative fragments. 
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Methoxy metabolites of glucuronide conjugated chloroxylenols (Table 3.9; 

marker 3, 5 and 6) were also detected in –ESI mode in effluent-exposed trout bile 

(Figure 3.21a). Fragment ions corresponding to the aglycone ion of 

methoxychloroxylenol at m/z 185.0369 and ion due to loss of a methyl group from the 

aglycone itself at m/z 170.0135 were obtained by Q-TOFMS experiments (Figure 3.21b) 

(Thomas and Kotchevar, 2010). However, no sufficient fragmentation was achieved for 

putative methoxydichloroxylenol metabolite (data not shown). Further GC-MS analysis 

of the relevant UPLC fractions revealed an ion at m/z 258 (Figure 3.21c), which 

corresponded to the molecular ion of methoxy metabolites of chloroxylenol TMS 

derivative. The ion at m/z 243 resulted from either loss of a methyl from the TMS group 

or from the elimination of methyl from the methoxy group. The loss of 30 Da from the 

molecular ion could be due to cleavage of the methoxy group (OCH3) generating the 

very stable base peak ion at m/z 228 stabilized by resonance. The putative metabolite 

methoxydichloroxylenol was not detected by analysis of its corresponding fraction by 

GC-MS, possibly due to its low abundance in the bile samples. 
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Figure 3.19:  
(a) TOFMS mass spectrum of chloroxylenol glucuronide detected in bile of effluent-exposed fish. The 
molecular ion shows the characteristic chlorine isotopic distribution at A and A+2. 
(b) Q-TOFMS mass spectrum of the glucuronide conjugate of chloroxylenol obtained applying a collision 
energy of 20 eV. 
(c) EI mass spectrum of chloroxylenol as the TMS derivative detected in an UPLC fraction of bile from 
fish exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS analysis. 

 

100 150 200 250 300 350

0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e
 A

b
u
n
d
a
n
c
e

213

228

177

230
9391 178119 149

7775 95 183163 231
127 336

337278 328292 370 399258

R
e
la

ti
v

e
 A

b
u

n
d

a
n

t

m/z

O

Cl

CH3 CH3

Si

CH3

CH3

CH3 (c)

C18_100mm_FA_0.07ml/min

m/z
100 120 140 160 180 200 220 240 260 280 300 320 340

%

0

100

Neg_msms_bileTr_E1Comp_0-16ul-20eV_1 44 (8.133) 3: TOF MSMS 331.00ES- 
112155.0269

113.0256 129.0191

157.0186

175.0271

331.0519
184.2876

220.0804
237.1324

257.7369 296.2125 339.5531
m/z

R
el

a
ti

v
e 

a
b

u
n

d
an

ce

(b)O
-

Cl

CH3 CH3

C 1 8 _ 0 .0 7 5 m l/m in _ F A

m /z
3 2 7 3 2 8 3 2 9 3 3 0 3 3 1 3 3 2 3 3 3 3 3 4 3 3 5 3 3 6 3 3 7 3 3 8 3 3 9

%

0

1 0 0

ra 2 8 0 2 1 0 n e g _ E 1 C -C o m p _ 0 -1 7 u l_ 1 0 C o l 6 7 9  (6 .6 6 7 ) 1 : T O F  M S  E S -  
3 .6 1 e 33 3 1 .0 5 8 4

3 2 7 .1 3 2 9

3 2 8 .1 3 8 5 3 2 9 .1 2 8 9

3 3 3 .0 5 7 5

3 3 2 .0 6 4 7

3 3 4 .0 6 0 9
3 3 9 .1 4 2 33 3 8 .4 3 3 53 3 7 .1 3 3 5

(a)

m/z

R
el

a
ti

v
e 

A
b

u
n

d
a

n
ce

O O

OH

OH

OH

Cl

CH3 CH3

O

O
-



119 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20:  
(a) TOFMS mass spectrum of dichloroxylenol glucuronide detected in bile of effluent-exposed fish. The 
molecular ion shows the characteristic chlorine isotopic distribution at A, A+2 and A+4. 
(b) Q-TOFMS mass spectrum of the glucuronide conjugate of dichloroxylenol obtained applying a 
collision energy of 20 eV. 
(c) EI mass spectra of dichloroxylenol as the TMS derivative detected in an UPLC fraction of bile from 
fish exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS analysis. 
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Figure 3.21:  
(a) TOFMS mass spectrum of glucuronide conjugate of methoxy chloroxylenol detected in bile of 
effluent-exposed fish. The molecular ion shows the characteristic chlorine isotopic distribution at A and 
A+2. 
(b) Q-TOFMS mass spectrum of the glucuronide conjugate of methoxy chloroxylenol obtained applying 
collision energy of 20 eV.  
(c) EI mass spectra of methoxy chloroxylenol as the TMS derivative detected in an UPLC fraction of bile 
from fish exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS 
analysis. 
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3.3.4.7 Chlorophenes and their metabolites 

Chlorophenes and their metabolites were detected amongst the variety of 

chlorinated compounds detected in bile from effluent-exposed fish. UPLC-TOFMS 

analysis (-ESI mode) showed peaks, for glucuronide conjugates of chlorophene and for 

its methoxy metabolite. Prominent ions for these two metabolites were m/z 393.0745 

(marker 9, Table 3.9) and m/z 423.0853 (marker 8, Table 3.9), respectively 

corresponding to [M+Glu-H]-, (where Glu=glucuronide moiety). Both ions presented 

the typical isotopic pattern characteristic of mono-chlorinated molecules (Figure 3.22a 

and Figure 3.23a). Chlorophene (4-chloro-2-(phenylmethyl) phenol) is widely used as 

germicide in disinfectant solutions and soap formulations used in hospitals and 

household products (Werner et al., 1983). Structures for both identified markers are 

given in Figure 3.16. Clusters of chlorophene glucuronide [M+M-H]- was also detected 

as potential marker at m/z 787.1567 (C38H37O14Cl2) (data not shown);  the formation of 

clusters in the source can be further justified by the fact that the molecular ion for 

chlorophene glucuronide in the mass spectrum showed a high abundance (i.e. due to a 

high concentration of ions in the source, they are likely to be combined as clusters).  

Q-TOFMS fragmentation experiments led to the formation of signals at m/z 

217.0428 and m/z 247.0537 which were identified as the corresponding aglycone [M-

Glu-H] for chlorophene and methoxy chlorophene, respectively, along with the 

glucuronide moiety fragments (Figures 3.22b and 3.23b). One further fragment at m/z 

232.0282 was obtained for methoxy chlorophene due to loss of a methyl group. In order 

to verify the identity of this marker and its metabolite, GC-MS analysis was performed 

on relevant fractions previously subjected to enzymatic hydrolysis. Fragmentation 

patterns of the compounds of interest were compared to those obtained from the 

commercial standard i.e. the TMS derivative of chlorophene standard. In Figure 3.22c, 

the EI mass spectrum of the chlorophene TMS derivative clearly shows signals at m/z 

290 (molecular ion), m/z 275 (loss of CH3 from trimethylsilyl group), m/z 255 (loss of 

Cl from molecular ion) together with ions at m/z 197, 165, 152, 135, 91 and m/z 75, 

which have not been fully characterized. On the other hand, methoxy metabolite of 

chlorophene TMS derivative revealed signals at m/z 320 (molecular ion), m/z 305 (loss 

of CH3 either from TMS group or from methoxy group), m/z 290 (loss of OCH3 from 

molecular ion), and m/z 255 which derived from the loss of CH3Cl, as previously 

observed in the methoxy metabolite of chloroxylenol compound (Figure 3.23c). 
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Some other xenobiotics in the bile were also detected by chance during 

confirmation of the marker chemical structures during GC-MS analysis of the 

hydrolysed bile fractions. For instance, dichlorophene was not detected either as 

conjugated or as non-conjugated form in bile extracts by UPLC-TOFMS. However, 

GC-MS analysis of its TMS derivative (Figure 3.24) showed the characteristic ions, RT 

and isotopic pattern of the TMS derivatives of dichlorophene standard (i.e. the 

molecular ion of m/z 412 and a signal at m/z of 377 due to loss of a methyl from TMS 

group, in addition to the characteristic fragment at m/z 73 which corresponds to 

((CH3)3Si). The base peak at m/z 73 corresponded to a typical fragment of TMS 

derivatives, indicating the occurrence of efficient derivatization of the two hydroxyl 

groups in the molecule. 
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Figure 3.22:  
(a) TOFMS mass spectrum of the glucuronide conjugate of chlorophene detected in bile of effluent-
exposed fish. The molecular ion shows the characteristic chlorine isotopic distribution at A and A+2. 
(b) Q-TOFMS mass spectrum of the glucuronide conjugate of chlorophene obtained applying collision 
energy of 20 eV.  
(c) EI mass spectra of chlorophene as the TMS derivative detected in an UPLC fraction of bile from fish 
exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS analysis. 
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Figure 3.23:  
(a) TOFMS mass spectrum of the glucuronide conjugate of methoxy chlorophene detected in bile of 
effluent-exposed fish. The molecular ion shows the characteristic chlorine isotopic distribution at A and 
A+2. 
(b) Q-TOFMS mass spectrum of the glucuronide conjugate of methoxy chlorophene obtained applying 
collision energy of 20 eV.  
(c) EI mass spectra of methoxy chlorophene as the TMS derivative detected in an UPLC fraction of bile 
from fish exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS 
analysis. 

 

 

C 1 8 _ 1 0 0 m m _ F A _ 0 .0 7 5 _ 2 0 0 7 c o l

m /z
5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

%

0

1 0 0

N e g _ V m _ m s m s _ B ile T r_ 0 -4 8 u l-2 0 e V -1  3 0  (9 .7 9 1 ) 3 : T O F  M S M S  4 2 3 .0 0 E S - 
9 4 .24 2 5 .2 1 8 7

2 4 7 .0 5 5 3

2 3 2 .0 3 8 31 7 5 .0 3 1 7

1 1 3 .0 2 9 0 1 8 8 .6 9 8 1

2 4 9 .0 5 8 0

4 2 4 .2 3 9 7

3 7 9 .1 6 4 6

3 4 9 .1 9 3 82 4 9 .2 6 0 2 4 2 5 .5 3 3 4 4 8 2 .9 7 5 7

m/z

Glucuronide moiety

Loss of CH3

Aglycone (b)O
-

Cl

OCH3

R
el

a
ti

v
e 

a
b

u
n

d
an

ce

100 150 200 250 300 350

0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e
 A

b
u
n
d
a
n
c
e

290

255

305

320

256
32275 25415212973 117 213 33179 169 257178 239

346 357 398

O
Si

Cl

CH3

CH3
CH3

OCH3

R
e
la

ti
v

e
 A

b
u

n
d

a
n

t

m/z

(c)

C 1 8 _ 1 0 0 m m _ F A _ 0 .0 7 m l /m in

m /z
4 2 1 4 2 2 4 2 3 4 2 4 4 2 5 4 2 6 4 2 7 4 2 8 4 2 9 4 3 0 4 3 1 4 3 2 4 3 3

%

0

1 0 0

R A 0 8 F e b 1 1 N e g _ W m _ fu l ls c a n _ B ile T r_ E 1 c o m p _ 0 -2 8 u l_ 1 0 e V  1 0 8 5  (1 0 .7 4 6 ) 1 :  T O F  M S  E S -  
1 1 84 2 3 .0 8 4 8

4 2 1 .9 7 4 1

4 2 5 .2 1 8 5

4 2 5 .0 8 6 2

4 2 4 .0 8 9 5
4 2 6 .2 2 0 5

4 2 8 .2 3 9 5 4 2 9 .3 6 2 3
4 3 1 .6 4 4 7

O O

OH

OH

OH

Cl

O

O
-

OCH3

R
el

a
ti

v
e 

a
b

u
n

d
an

ce

m/z

(a)



125 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3.24: Electron impact (EI) mass spectrum of dichlorophene as the TMS derivative in an UPLC 
fraction of bile from fish exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to 
GC-MS analysis. 

 

3.3.4.8 Chlorinated phenoxyphenol and their metabolites 

Chlorinated phenoxyphenol compounds (i.e. triclosan) were detected in bile 

from effluent-exposed fish. Triclosan is one of the most common broad spectrum 

antibacterial, antimicrobial and preservative agents. It is primarily used in personal care 

products and likewise incorporated in plastic kitchenware, footwear and clothing (Dann 

and Hontela, 2011). 

Amongst the selected markers responsible for the class separation between 

control and exposed trout, two ions were observed at m/z 429.0146 (marker 10, Table 

3.9) and m/z 462.9759 (marker 11, Table 3.9). These markers were only detected in –

ESI and were then identified as glucuronide conjugates of diclosan and triclosan (5-

chloro-2-(2,4-dichlorophenoxy) phenol), respectively, (Figure 3.16). In addition, two 

other RT-m/z signals co-eluting with triclosan glucuronide were extracted as potential 

markers from the S-plot. According to their elemental composition, they were 

confirmed as the aglycone ion [M-Glu-H]- and the cluster [M+M-H]- for triclosan 

glucuronide, showing a typical 3- and 6-chlorine isotopic pattern, respectively (data not 

shown). As observed in Figures 3.25a and 3.26a UPLC-TOFMS profiling (full scan 

mode; collision energy 10eV) shows the mass spectrum relative to the glucuronated 

compounds. Q-TOFMS fragmentation experiments gave rise mainly to the deprotonated 

aglycone ions, which showed signals at m/z 252.9823 and m/z 286.9433 for diclosan 

and triclosan, respectively, as well as other fragments characteristic of the glucuronide 

moiety (Figures 3.25b and 3.26b).  
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In the EI MS spectrum of the phenoxyphenol TMS derivatives (Figures 3.25c 

and 3.26c), signals at m/z 326 and m/z 360 were obtained, corresponding to the relative 

molecular ions [M]•+  of diclosan and triclosan, respectively. The [M-15]+ fragment ion 

(m/z 311 and m/z 345) was generated for both markers after loss of methyl from the 

TMS group. Elimination of CH3Cl from the two molecular ions was observed, giving 

rise to peaks at m/z 276 (diclosan) and m/z 310 (triclosan). Both chemical markers 

showed the same base peak at m/z 200 with one chlorine pattern. Sequential losses of 

CH3 from this ion led to the ions observed at m/z 185 and m/z 170 with characteristic 

one Cl-pattern. RT time and fragmentation pattern were compared for confirm the 

identity of the mentioned compounds with those obtained from a commercial standard 

of triclosan (as the TMS derivative) showing good matching results. 
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Figure 3.25:  
(a) TOFMS mass spectrum of diclosan glucuronide detected in bile of effluent-exposed fish. The 
molecular ion shows the characteristic chlorine isotopic distribution at A, A+2 and A+4. 
(b) Q-TOFMS mass spectrum of glucuronide conjugate of diclosan obtained applying collision energy of 
20 eV.  
(c) EI mass spectra of diclosan as the TMS derivative detected in an UPLC fraction of bile from fish 
exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS analysis. 
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Figure 3.26:  
(a) TOFMS mass spectrum of triclosan glucuronide identified in bile of effluent-exposed fish. The 
molecular ion shows the characteristic 3-chlorine isotopic distribution for A:A+2:A+4 signals, matching 
with the theoretical ratio of (3:3:1). 
(b) Q-TOFMS mass spectrum of glucuronide conjugate of triclosan obtained applying a collision energy 
of 20 eV. 
(c) EI mass spectrum of the TMS triclosan derivative detected in an UPLC fraction of bile from fish 
exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS analysis. 
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3.3.4.9 Chlorinated parabens 

A water disinfection by-product (dichloromethylparaben) was found in exposed-

effluent trout bile. Chlorine is known to generate disinfection by-products by reacting 

with organic components. Chlorinated parabens can be formed when parabens come in 

contact with chlorinated water, and is more likely for parabens containing phenolic 

groups. Parabens are commonly used as preservatives in personal care products and 

pharmaceuticals due to their antimicrobial activity (Canosa et al., 2006). However 

dichloromethylparaben was only identified by chance during GC-MS analysis of the 

whole bile sample and was not a marker detected from UPLC-TOFMS analysis of trout 

bile. Nevertheless GC-MS analyses showed that it was present in bile from effluent-

exposed trout but not present in the same fraction from control trout. Since no 

commercial standard was available for this compound, in order to confirm its identity, 

the corresponding EI-MS spectrum of the derivatized compound was compared to the 

one obtained from the synthesised standard characterized in previous studies (Terasaki 

and Makino, 2008).  As shown in Figure 3.27, there are several similarities between the 

two EI mass spectra: specifically, the presence of the molecular ion at m/z 292, the base 

peak corresponding to the loss of a methyl group at m/z 277, the ion at m/z 261 due to 

loss of the methoxy group from the ester side chain, and the characteristic ion at m/z 93 

corresponding to the dimethylsilyl chloride fragment [35Cl-Si(CH3)2]
+. However, some 

additional fragment ions can be observed in the bile sample: the ion at m/z 227 

generated after loss of CH3Cl from the base peak at m/z 277, and further ions at m/z 203 

and at m/z 135. The mass spectrum of this metabolite presented a highly characteristic 

M+2 isotopic distribution patterns for 2-chlorine atoms.  
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Figure 3.27: Comparison of mass spectra for methyldichloroparaben (a) in an UPLC fraction of bile 
subjected to enzymatic hydrolysis of fish exposed to effluent and (b) adopted from previous study 
(Terasaki and Makino, 2008). 

 

3.3.4.10 Metabolites of aromatic hydrocarbons 

 A group of aromatic hydrocarbons was also detected in this study. Within this 

class of contaminants, naphthol and 1-hydroxypyrene were found present in bile from 

effluent-exposed trout. Naphthol was detected as marker metabolite from UPLC-

TOFMS profiling whilst the 1-hydroxypyrene was identified only by GC-MS analysis 

(Figure 3.28). Additional information obtained from GC-MS analysis confirmed the 

presence of naphthol in the bile as two different isomers, 1-naphthol and 2-naphthol. 

UPLC-TOFMS analysis in –ESI mode revealed the presence of a potential marker at 

m/z 319.0815 (marker 1, Table 3.10), which was attributed to the glucuronide conjugate 

of naphthol. Q-TOFMS experiments selecting a parent ion at m/z 319.0815 did not 

provide an informative fragmentation pattern; however, a low signal for a fragment ion 

at m/z 143.0497 corresponding to [M-Glu-H]- was observed (data not shown). High 
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collision energy did not give any further fragmentation of the aglycone ion due to the 

high stability of the polycyclic aromatic molecule. The above mentioned marker was 

further characterized by GC-MS analysis of the relevant UPLC fraction after TMS 

derivatization of the hydroxyl group. Two peaks (at retention time 16.3 min and 16.7 

min) were observed (Figure 3.29), showing the same characteristic ion: this indicates 

the presence of two isomers of the same metabolite. EI fragmentation pattern were 

compared to the one obtained from standards of 1-napthol and 2-naphthol and resulted 

comparable mass spectra. The MS spectrum showed a number of different informative 

ion peaks: the molecular ion [M]•+ (m/z 216),  the ion [M-CH3]
+ (m/z 201) due to the 

loss of methyl from the TMS group, and the ion [M-31]+ (m/z 185) due to the cleavage 

of the trimethylsilyl ether moiety followed by cyclization involoving the silyl group to 

obtain a five member ring (Schummer et al., 2009). This mechanism is characteristic of 

compounds having another aromatic ring in the α-position to the hydroxyl group. The 

same loss [M-31]+ (m/z 185) was also found in the fragmentation pattern of 2-naphtol, 

although it should not have been present if considered the mechanism mentioned above. 

However, in this specific case the ion m/z 185 showed lower intensity if compared to 

the spectrum of 1-naphthol (base peak), indicating lower ion stability. This result might 

be explained by a different mechanism leading to the same loss and the formation of a 

four member ring instead, which would result less stable due to the higher ring tension. 

Additional unidentified fragments were observed at m/z 141 [M-75]+, m/z 115 [M-101]+ 

for 1-naphthol and at m/z 145 and m/z 115 for 2-naphthol. 
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Figure 3.28: Chemical structures of non-chlorinated markers identified in trout bile. 
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Table 3.10: Markers identified in trout bile in both ionization modes (+/-ESI). 

Marker 

No. 

ESI 

mode 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit 

Q-TOFMS fragments 

(plus fragments from GCMS 

analysis of the derivatized 

aglycone)# 

Parent 

compound 

formula
§
 

Ion 

form Putative identity 

            
1 -ESI 319.0815 6.19 C16H15O7 319.0818 -0.9 1.0 175.0246, 113.0244, 143.0493 

(216, 201,185,144,115,73) 
C10H8O [M-H]- Glucuronide conjugates of 

1-naphthol and 2-naphthol 
isomers. 

2 +ESI 229.0866 7.06 C14H13O3 229.0865 0.4 1.7 151.0398, 105.0339 C14H12O3 [M+H]+ Glucuronide conjugate of 
oxybenzone (2-hydroxy-4-
methoxybenzophenone) 

  405.1195  C20H21O9 405.1186 2.3 2.2 (299,283,225,73)   

3 +ESI 418.1505 12.39 C21H24NO8 418.1502 0.7 0.1 400.1392, 242.1184, 224.1076, 
209.0831 

C15H15NO2 [M+H]+ Glucuronide conjugate of 
mefenamic acid 

 -ESI 416.1345 12.39 C21H22NO8 416.1345 0.0 1.3 240.1026, 196.1120,175.0244, 
113.0244 
(313,298,223,208, 180) 

C15H15NO2 [M-H]-  

4 -ESI 477.2492 19.80 C26H37O8 477.2488 0.8 0.5 301.2165, 175.0245 
(374, 359,257,241,73) 

C20H30O2 [M-H]- Glucuronide conjugate of a 
resin acid mixture (abietic 
acid, neoabietic acid, 
pimaric acid, isopimaric 
acid) 

+/-ESI: positive/negative electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed 
mass; i-fit: isotope fit; #Q-TOFMS fragments within ± 5ppm and additional fragments observed from GC-MS of the aglycone and after derivatization to TMS ether; §aglycone 
formula; [M+H]+: protonated ion; [M-H]-: deprotonated ion. 
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Figure 3.29: (a) GC-MS extracted ion chromatogram of derivatised naphthol isomers; mass spectra of (b) 
1-naphthol and (c) 2-naphthol as TMS derivatives identified in an UPLC fraction of bile from fish 
exposed to effluent. The bile had been subjected to enzymatic hydrolysis. 
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In the GC-MS analyses (but not in the UPLC-TOFMS), another peak only 

present in bile from effluent-exposed fish and not in control fish was identified as the 

TMS derivative of 1-hydroxypyrene (Figure 3.28). To confirm the identity of this 

compound, its retention time and mass spectrum were compared to those of the TMS 

derivative of a pure standard. The diagnostic ions for the TMS derivative of this 

compound included the molecular ion at m/z 290 (base peak) and the ion at m/z 275 due 

to the loss of CH3 from the trimethylsilyl group (Figure 3.30a). A further ion at m/z 259 

could be associated to the cleavage of the trimethylsilyl group followed by cyclization 

to a five member ring as mentioned above.  An abundant peak at m/z 189 [M-101]+ was 

present in the spectrum but not identified.  

Further examination of the whole bile sample subjected to enzymatic hydrolysis 

highlighted the presence of an another compound at retention time 18.9 min (GC-MS 

analysis); this peak corresponded to a derivatized phenolic compound, 2,2’-

dihydroxybiphenyl (Figure 3.28). The compound identity was confirmed comparing the 

experimental mass spectrum to the mass spectrum of a pure standard. Good agreement 

was found for the main diagnostic ions: m/z 330 (molecular ion), m/z 315 (loss of CH3 

from TMS), and an abundant ion at m/z 73, indicating that both hydroxyl group were 

efficiently derivatized (Figure 3.30b). 
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Figure 3.30: Electron impact (EI) mass spectra of (a) 1-hydroxypyrene and (b) 2,2’-dihydroxybiphenyl as 
TMS derivatives identified in an UPLC fraction of bile from fish exposed to effluent. The bile had been 
subjected to enzymatic hydrolysis. 
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3.3.4.11 Metabolite of a sunscreen product 

Analysis of marker signals from the UPLC-TOFMS profiling revealed that a 

sunscreen product was another marker metabolite responsible for the class separation in 

the OPLS model (Figure 3.28). Oxybenzone was detected only in +ESI mode, giving 

the protonated molecule at m/z 229.0863 (aglycone). A careful examination of the 

obtained spectra led to the detection of a small peak at m/z 405.1195, corresponding to 

the glucuronide conjugate of oxybenzone (Table 3.10, marker 2, Figure 3.31a,b). This 

result indicates that the glycoside bond between oxybenzone and glucuronic acid is not 

strong enough to avoid the cleavage of the glycoside bond in the source at the applied 

collision energy (10 eV). In order to further investigate this molecular structure, Q-

TOFMS experiments were performed on the aglycone ion (m/z 229.0865), giving 

fragment ions at m/z 151.0395 (C8H7O3) and m/z 105.0340 (C7H5O). The ion at m/z 

151.0395 was probably generated after cleavage of the phenyl group, whilst the ion at 

m/z 105.0340 could correspond to a bicyclic ion as shown in Figure 3.31c. 

The EI MS fragmentation pattern of oxybenzone TMS derivative (Figure 3.32) 

presented two abundant ions at m/z 299 [M]•+ and m/z 73 [(CH3)3Si]+ and two less 

intense ions at m/z 283 ([M-16]+ possibly due to loss of CH4) and m/z 225 ([M-74]+ can 

be due to neutral loss of the TMS group. Due to high similarity of the RT and MS 

spectra between the sample and a pure standard, the marker m/z 229.0866 was therefore 

assigned to the structure of the oxybenzone. 
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Figure 3.31:  
Ion chromatograms and mass spectra of (a) oxybenzone glucuronide and (b) the aglycone of oxybenzone 
glucuronide identified in bile from effluent-exposed fish analyzed in +ESI mode. 
(c) Q-TOFMS mass spectrum of the aglycone of oxybenzone glucuronide obtained with collision energy 
of 20 eV. 
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Figure 3.32: EI mass spectra of silylated oxybenzone as the TMS derivative identified in bile from an 
UPLC fraction of bile from fish exposed to effluent. The bile had been subjected to enzymatic hydrolysis 
prior to GC-MS analysis. 

 

 3.3.4.12 Metabolite of anti-inflammatory pharmaceutical 

Glucuronide conjugate of mefenamic acid was indicated as potential marker by 

S-plot analysis in both +/-ESI modes (Figure 3.28). Mefenamic acid is non-steroidal 

anti-inflammatory drug which reduces inflammation and treats pain in primary care 

(e.g. back pain, migraine, fever or arthritis). This metabolite was detected as 

deprotonated ion [M+Glu-H]- at m/z 416.1345 in -ESI, whilst the protonated ion 

[M+Glu+H]+ at m/z 418.1505 was predominant in +ESI (marker 3, Table 3.10). 

Two additional RT-m/z signals (different mass but same RT) were also detected 

as potential markers at m/z 240.1027 (-ESI) and m/z 242.1181 (+ESI), respectively, 

corresponding to the relative aglycone ions in both +/-ESI modes. These ions were 

significantly more abundant than their conjugated form at the same experimental 

conditions (CE: 10 eV). As mentioned previously for the oxybenzone, the aglycone was 

generated after in-source fragmentation due to the weak linkage to the glucuronide 

moiety. TOFMS spectrum and high collision energy Q-TOFMS spectrum of mefenamic 

acid are shown in Figure 3.33a,b. Q-TOFMS fragmentation experiments assisted in the 

characterization of these two ions. In +ESI Q-TOFMS analysis fragments were 

observed at m/z 400.1392 (loss of H2O), m/z 242.1184 (loss of glucuronide moiety), m/z 

224.1076 (loss of H2O from the aglycone), and m/z 209.0831 (loss of CH3) (Figure 

3.33b) whilst aglycone at m/z 240.1026 and further loss of CO2 at m/z 196.1120 along 

with glucuronide moiety were obtained from -ESI Q-TOFMS experiment (data not 

shown). 
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Figure 3.33:  
Mass spectra in +ESI mode of mefenamic acid as (a) glucuronide conjugate and (b) aglycone identified in 
bile from effluent-exposed fish analyzed. 
(c) Q-TOFMS mass spectrum of the glucuronide conjugate of mefenamic acid obtained using a collision 
energy of 20 eV. 
(c) EI mass spectrum of mefenamic acid as the TMS derivative identified in an UPLC fraction of bile 
from fish exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS 
analysis.  
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The GC-MS hydrolysed EI mass spectrum of mefenamic acid obtained from a 

bile fraction that had been subjected to enzymatic hydrolysis (Figure 3.33c) exhibited 

ions at m/z 313 [M]•+ and m/z 298 [M-15]+. Neutral loss of the trimethylsilylnol group 

[(CH3)3SiO] from the TMS derivative led to the formation of a very stable ion (base 

peak) stabilized by resonance at m/z 223 [M-90]+. This fragment showed sequential loss 

of a methyl group attached to the benzene ring and loss of CO, giving rise to the ions at 

m/z 208 and m/z 180, respectively. Mass fragments and retention times were compared 

to a pure standard and good agreement was obtained between the two set of data. 

3.4.10 Metabolites of resin acids 

A mixture of different resin acid isomers were found in effluent-exposed fish 

bile (Figure 3.28). Resin acids (RAs) are tricyclic diterpenes which arise naturally in the 

tree wood and bark. These acids can be released to wastewater effluent during pulping 

processes (Lindon et al., 2007). The glucuronide conjugates of different RAs isomers 

gave a number of non-resolved peaks on UPLC-TOFMS separation and they were only 

detected in –ESI as glucuronide conjugate (Table 3.10; marker 4, Figure 3.34a). The 

spectrum showed the molecular ion at m/z 477.2492 (its cluster ion at m/z 955.5056 

[M+M-H]- was also observed). The aglycone ion at m/z 301.2165 was generated by Q-

TOFMS fragmentation and the typical fragment ion corresponding to the glucuronide 

moiety was detected at m/z 175.0245 (Figure 3.34b). 

Representative GC chromatograms and EI MS spectra of the RAs aglycone 

mixture are given in Figure 3.35. The extracted ion chromatogram showed a total of 8 

isomeric RAs peaks; three of them were positively identified by comparison to relative 

standards as pimaric, isopimaric and abietic acid. The molecular ion [M]•+ was observed 

at m/z 374 and loss of CH3 either from the trimethylsilyl group or from the molecular 

ion itself generated the fragment ion at m/z 359. The fragment ion at m/z 256 was 

probably due to loss of the trimethylsilyl group plus the carboxylic group, followed 

afterwards by further loss of CH3 producing a signal at m/z 241. The presence of an ion 

at m/z 213 could be linked to the loss of the isopropyl group from the ion at m/z 256. 
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Figure 3.34:  
(a) Ion chromatogram and mass spectrum of glucuronide conjugate of mixture of resin acid identified in 
bile from effluent-exposed fish and analyzed in -ESI mode. 
(b) Q-TOFMS mass spectrum of glucuronide conjugate of resin acid obtained with collision energy of 10 
eV. 
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Figure 3.35: (a) GC-MS ion chromatogram of resin acids isomers detected in an UPLC fraction of bile 
from fish exposed to effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS 
analysis. Mass spectra of (b) pimaric acid, (c) isopimaric acid and (d) abietic acid as TMS derivatives. 
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3.3.4.14 Metabolite of bisphenol A 

Bisphenol A (BPA) was detected in bile extract of effluent-exposed trout (Figure 

3.28). BPAs are a broad-spectrum product which is used as antioxidants in plastics, 

coatings on cans, additives in thermal paper, powder paints and in dental fillings 

(Robertson, 2005). BPA was only identified by GC-MS analysis of the whole bile 

sample subjected to enzymatic hydrolysis and not by UPLC-TOFMS analysis. The di-

TMS derivative of the bisphenol A was detected in the bile sample by GC-MS analysis 

(Figure 3.36). The EI MS spectrum showed the relative molecular ion at m/z 372, the 

base peak at m/z 357 due to loss of methyl from the trimethylsilyl group, and the ion at 

m/z 73 corresponding to the trimethylsilyl fragment ion [(CH3)3Si]+; RT and 

fragmentation pattern were confirmed by GC-MS analysis of the relative commercial 

standard as TMS derivative. 

 

 

 

 

 

 

 

 

 

Figure 3.36: Mass spectra of bisphenol A detected in an UPLC fraction of bile from fish exposed to 
effluent. The bile had been subjected to enzymatic hydrolysis prior to GC-MS analysis. 

 

 

Table 3.11 summarizes the identified markers detected in exposed fish bile. 

Appendix 3.12 summarizes the unidentified markers detected in the bile extracts in both 

+/-ESI modes. Only some of these markers could be putatively identified while the rest 

could not be characterised due to time limitations and poor spectrum abundance. 
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Table 3.11: Chemical markers present in bile of trout exposed to a WwTW effluent. 

Class of chemical Chemical identity 

Fold change#### 

C10 vs E10 

Relative 

abundance in 

E10  in either 

+ESI or –ESI 

datasets 

(mean±S.E) 

% Decrease 

during 

depuration 

period 

4 day 11 day 

      

Metabolites of linear 
alkylbenzene sulfonic 
acid (LAS) anionic 
surfactants 

C5-SPC 336.8±24.9 3.8±0.3 77.1 100 
C6-SPC 178.1±30.8¶ (754.6) 8.5±0.2 88.8 98.8 
C7-SPC 57.1±11.7¶ (1678.4) 19.0±1.7 91.3 99.1 
C8-SPC 717.7±79.6 8.1±0.9 100 100 
C9-SPC 1100.7±119.6 12.4±1.4 98.5 100 
C10-SPC 470.4±31.4 5.3±0.4 100 100 
Monohydroxylated C10-SPC 377.0±9.7 4.3±0.1 100 100 
Putative sulfophenyl dicarboxylate C11-SPdC 116.4±29.2¶ (254.2) 2.9±0.1 100 100 
Dihydroxylated C10-LAS glucuronide 96.7±24.3¶ (269.7) 3.0±0.1 97.7 100 

Metabolites of 
nonylphenol 
polyethoxylate (NPEO) 
non-ionic surfactants 

Nonylphenol glucuronide 20.9±1.6¶ (4458.0) 50.4±1.1 81.6 96.4 
Nonylphenol-1EO glucuronide  15.4±1.9¶ (3465.8) 39.2±1.5 67.7 100 
Nonylphenol-2EO glucuronide 1889.5±122.9 21.4±1.4 82.0 99.5 
Nonylphenol-3EO glucuronide 12.8±2.4¶ (1158.7) 13.1±0.8 92.4 98.5 
Nonylphenol-4EO glucuronide 26.2±12.1¶ (428.9) 4.8±0.3 100 100 
Nonylphenol-5EO glucuronide 35.9±12.3 0.4±0.1 100 100 
Nonylphenol-6EO glucuronide* 41.6±20.1 3.8±0.4 100 100 

Metabolites of alcohol 
polyethoxylate (AEO) 
nonionic surfactants 

Dodecanol glucuronide 195.1±5.6 2.2±0.1 80.2 100 
Dodecanol-1EO glucuronide 644.5±22.6 7.3±0.3 94.8 100 
Dodecanol-2EO glucuronide 1174.8±61.1 13.3±0.7 94.0 100 
Dodecanol-3EO glucuronide 590.8±35.1 6.7±0.4 100 100 
Dodecanol-4EO glucuronide 191.8±8.7 2.2±0.1 100 100 
Dodecanol-5EO glucuronide 107.0±5.3 1.2±0.6 100 100 
Tridecanol glucuronide  398.2±13.5 4.5±0.2 88.0 100 
Tridecanol-1EO glucuronide 141.3±49.4¶ (2310.3) 26.1±0.4 73.3 100 
Tridecanol-2EO glucuronide 72.9±16.1¶ (2734.1) 30.9±1.6 91.3 100 
Tridecanol-3EO glucuronide 2312.9±92.0 26.1±1.0 98.5 100 
Tridecanol-4EO glucuronide 947.6±61.2 10.7±0.7 99.5 100 
Tridecanol-5EO glucuronide 711.3±48.3 8.0±0.5 99.6 100 
Tridecanol-6EO glucuronide 176.0±13.4 2.0±0.2 100 100 
Tridecanol-7EO glucuronide 76.4±7.6 0.9±0.1 100 100 
Tetradecanol glucuronide 155.3±5.9 1.8±0.1 100 100 
Tetradecanol-1EO glucuronide 390.4±15.6 4.4±0.2 80.6 100 
Tetradecanol-2EO glucuronide 445.4±15.3 5.0±0.2 96.9 100 
Tetradecanol-3EO glucuronide 2466.0±186.4 27.9±2.1 91.0 100 
Tetradecanol-4EO glucuronide 95.8±32.1¶ (2833.8) 32.0±1.8 95.9 98.8 
Tetradecanol-5EO glucuronide 2996.9±178.6 33.9±2.0 97.3 100 
Tetradecanol-6EO glucuronide 883.0±81.9 10.0±0.9 100 100 
Tetradecanol-7EO glucuronide 447.0±50.9 5.1±0.6 100 100 
Tetradecanol-8EO glucuronide* 311.4±26.9 2.0±0.2 100 99.7 
Pentadecanol glucuronide 117.7±15.2 1.3±0.2 100 100 
Pentadecanol-1EO glucuronide 288.4±11.9 3.3±0.1 74.1 100 
Pentadecanol-2EO glucuronide 242.5±52.4 2.7±0.6 97.2 100 
Pentadecanol-3EO glucuronide 198.6±8.0 2.2±0.1 100 100 
Pentadecanol-4EO glucuronide 2174.6±153.1 24.6±1.7 100 100 
Pentadecanol-5EO glucuronide 2623.5±173.0 29.6±2.0 100 100 
Pentadecanol-6EO glucuronide 996.9±91.7 11.3±1.0 100 100 
Pentadecanol-7EO glucuronide 607.2±63.8 6.9±0.7 99.7 100 
Pentadecanol-8EO glucuronide 181.0±18.1 2.0±0.2 100 100 

      

C10: 10 days river water exposure (control); E10: 10 days effluent exposure; p values were based on one 
tank only; Bonferroni correction threshold used was 1.1×10-6 in +ESI and 9.3×10-7 in –ESI; p values of all 
markers were< 3.3×10-9 with exception of pentadecanol glucuronide was 3.2×10-6. 
¶ Compounds detected in the control bile samples (fish exposed to river water) at levels > LOD, where 
LOD= 0.013 in –ESI; LOD=0.0064 in +ESI LOD units are relative to the intensities of the normalized 
total mass spectra signals in the mass chromatograms of the datasets (concentrations were detected in 
reference trout due to exposure to contaminated control river water). 
All markers were from –ESI datasets except those labelled by * were from +ESI datasets.  
# Fold change values are reported as mean ± standard error (mean±S.E); in brackets are fold change 
values assuming an LOD value in the control samples was detected. 
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Table 3.11: (continued) Chemical markers present in bile of trout exposed to a WwTW effluent. 

Class of chemical Chemical identity 

Fold change#### 

C10 vs E10 

Relative 

abundance in E10  

in either +ESI or 

–ESI datasets 

(mean±S.E) 

% Decrease 

during 

depuration 

period 

4 day 11 day 

Metabolites of alcohol 
polyethoxy 
carboxylates (AECs) 

Dodecanol-5EC* 26.7±7.3¶ (707.4) 4.5±0.1 59.2 94.8 
Tridecanol-4EC* 858.6±63.6 5.5±0.4 26.0 100 
Tridecanol-5EC* 2183.4±113.5 14.0±0.7 58.2 100 
Tridecanol-6EC* 1690.6±85.6 10.8±0.5 80.5 100 
Tridecanol-7EC* 1122.6±46.2 7.2±0.3 100 100 
Tetradecanol-4EC 111.0±6.8 1.3±0.1 11.4 100 
Tetradecanol-5EC 193.1±10.4 2.2±0.1 77.0 98.9 
Tetradecanol-6EC 152.9±83.4¶ (356.6) 4.0±0.2 86.4 98.6 
Tetradecanol-7EC 390.4±24.3 4.4±0.3 96.3 100 
Tetradecanol-8EC 166.9±10.6 1.9±0.1 100 100 
Pentadecanol-4EC* 398.3±34.6 2.5±0.2 8.0 100 
Pentadecanol-5EC 78.5±8.3 0.9±0.1 100 100 
Pentadecanol-6EC 315.8±14.1 3.6±0.2 79.7 100 
Pentadecanol-7EC 513.1±30.6 5.8±0.3 95.6 100 
Pentadecanol-8EC 244.5±13.6 2.8±0.2 98.7 100 
Pentadecanol-9EC* 621.3±20.0 4.0±0.1 90.2 100 
Pentadecanol-10EC* 338.9±12.5 2.2±0.1 100 100 

Metabolites of aromatic 
hydrocarbons 

Glucuronide conjugates of 1-
naphthol and 2-naphthol isomers. 

189.0±6.6 2.1±0.1 75.3 100 

Chlorinated phenols 

Glucuronide conjugate of  2,4-
dichlorophenol 

237.4±10.4 2.7±0.1 88.8 100 

Glucuronide conjugate of an isomer 
trichlorophenol 

232.6±16.8 2.6±0.2 100 100 

Chlorinated xylenols 

Chloroxylenol glucuronide (4-
Chloro-3,5-dimethyl-phenol) 

104.3±28.1¶ (653.4) 7.4±0.3 92.3 100 

Glucuronide conjugate of a 
methoxy metabolite of 
chloroxylenol 

293.2±12.7 3.3±0.1 93.0 100 

Dichloroxylenol glucuronide 353.4±21.5 4.0±0.2 95.3 100 
Glucuronide conjugate of putative a 
methoxy metabolite of a 
dichloroxylenol isomer 

341.2±18.1 3.9±0.2 68.2 87.1 

Glucuronide conjugate of  a 
methoxy metabolite of a 
dichloroxylenol isomer 

52.3±2.0 0.6±0.02 71.9 97.7 

Chlorophenes 

Chlorophene glucuronide (2-
Benzyl-4-chlorophenol) 

1558.2±346.0 17.6±3.9 96.2 99.8 

Glucuronide conjugate of a 
methoxy metabolite of chlorophene 

206.3±49.5 2.3±0.6 97.1 100 

Chlorinated 
phenoxyphenols 

Diclosan glucuronide 121.9±6.0 1.4±0.1 92.6 100 
Triclosan glucuronide 46.4±5.9¶ (4447.4) 50.3±1.2 85.2 96.0 

Pharmaceutical 
Glucuronide conjugate of 
mefenamic acid  

121.9±3.2 1.4±0.03 100 100 

Sunscreen product 
Oxybenzone (2-hydroxy-4-
methoxybenzophenone) 
glucuronide* 

325.3±13.5 2.1±0.1 100 100 

Resin acids 
Glucuronide conjugate of resin acid 
mixture 

7.1±0.7¶ (1848.6) 20.9±0.7 93.6 97.1 

C10: 10 days river water exposure (control); E10: 10 days effluent exposure; p values were based on one 
tank only; Bonferroni correction threshold used was 1.1×10-6 in +ESI and 9.3×10-7 in –ESI; p values of all 
markers were< 3.3×10-9 with exception of pentadecanol glucuronide was 3.2×10-6. 
¶ Compounds detected in the control bile samples (fish exposed to river water) at levels > LOD, where 
LOD= 0.013 in –ESI; LOD=0.0064 in +ESI LOD units are relative to the intensities of the normalized 
total mass spectra signals in the mass chromatograms of the datasets (concentrations were detected in 
reference trout due to exposure to contaminated control river water). 
All markers were from –ESI datasets except those labelled by * were from +ESI datasets.  
# Fold change values are reported as mean ± standard error (mean±S.E); in brackets are fold change 
values assuming an LOD value in the control samples was detected. 
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3.3.5 Elimination of markers of effluent exposure from fish bile after depuration 

The elimination rate for each marker metabolite was calculated as the decrease 

of the relative metabolite concentration in the fish bile during the depuration period (see 

Table 3.7). The rates of elimination ranged from 8.0 % to 100% after 4 days and from 

87% to 100% after 11 days of depuration in river water (Table 3.11). 

The relative concentrations of all the LAS metabolites (i.e. SPC metabolites) in 

the analyzed bile were reduced by between 77-100% in the fish which were transferred 

to river water (non-contaminated water) for 4 days, and were all reduced by at least 98% 

after 11 days of depuration. This result indicates that longer periods of depuration allow 

the fish to excrete all of these metabolites efficiently from the organism. Nonylphenol 

polyethoxylates (NPEOs) were reduced by between 67-100% after 4 days and 96% after 

11 days of depuration. The higher EO oligomers were eliminated more efficiently than 

NP, NP1EO and NP2EO glucuronides. Similarly alcohol polyethoxylates (AEOs) (i.e 

C12EOs, C13EOs, and C14EOs) were eliminated by at least 73% and 98% after 4 and 11 

days, respectively. Elimination of alcohol polyethoxy carboxylates (AECs) ranged from 

8% to 100% after 4 days, and was at least 94% after 11 days. For all these surfactant 

molecules, there was a tendency for more efficient elimination of the longer chain 

oligomers compared with the short chains after 4 days depuration. However, after 11 

days depuration, concentrations of all the remaining surfactant residues in the bile were 

negligible. For aromatic hydrocarbons (i.e naphthol isomers), > 75% of the original 

concentrations in the bile were reduced after 4 days and the compounds were not 

detected after 11 days. Clearance of the chlorinated compound (chlorophenols, 

chloroxylenols, chlorophens and chlorophenoxyphenols) ranged from 68% to 100% 

after 4 days of depuration and from 87% to 100% after 11 days of depuration. 

Mefenamic acid and oxybenzone glucuronide were not detected in bile samples of fish 

after depuration in river water for 4 days and this indicated that these compounds are 

unlikely to be persistent in the fish bile. After 4 days of depuration, over 93% of resin 

acid isomers were eliminated and more than 97% after 11 days in river water. 

In summary, none of the identified xenobiotic markers of effluent exposure were 

highly persistent in the fish bile, and remaining concentrations after a 11 day depuration 

period were generally less than 2% of the original concentrations present in the effluent-

exposed fish. 
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3.4 Discussion 

3.4.1 The analytical approach 

The metabolomics approach used in this study has allowed non-targeted 

chemical profiling of bile fluid in order to analyse the variety of xenobiotics in fish 

exposed to a wastewater effluent. Mass spectrometry-based approaches are one of the 

commonly used analytical techniques for profiling of (bio)chemicals present in 

organisms. In the literature many metabolomics studies have already been focused on 

the applicability of different hyphenated MS based techniques such as CE-MS 

(Ramautar et al., 2011) and GC-MS (Joachim, 2006) but LC-MS is usually the 

technique of choice for this kind of applications (Metz et al., 2008, Theodoridis et al., 

2008, Bowen and Northen, 2010). However, the data obtained from the UPLC-TOFMS 

analysis are too complex to be interpreted by simple visualization of the 

chromatograms. In fact, metabolomics studies have to deal with a number of variables 

much higher than the number of available observations (samples) and this could lead to 

overfitting of any models used to analyse the data. However, if used with care, then 

bioinformatic and chemometeric tools are essential for the analysis of metabolomics 

data sets (Trygg et al., 2007, Shulaev, 2006). Principal component analysis (PCA) was 

initially conducted to overview general clustering, trends, and to spot outlier samples in 

the bile extracts (i.e. the observations). In order to further identify the diversely 

expressed metabolites responsible for the separation between the different classes 

(treatment groups), supervised techniques known as partial least square-discriminant 

analysis (PLS-DA) and orthogonal partial least squares analysis (OPLS) were applied to 

the datasets of the bile extracts.  

The choice of fish bile as sample matrix was due to several reasons: generally a 

small sample volume is required, it allows an estimate of the uptake process and it gives 

a measure of the internal exposure of bioavailable compounds to the fish (Pettersson et 

al., 2006). Additionally, analysis of bile from fish exposed to contaminated water 

facilitates the structural identification of bioavailable contaminants present in the 

surrounding water, since xenobiotics can accumulate in the fish bile resulting in 

concentrations several orders of magnitude higher than in the water (Gibson et al., 

2005a, Fenlon et al., 2010).  A wide variety of xenobiotics can be excreted in fish bile 

including antibiotics, insecticides, dyes, herbicides, polyaromatic hydrocarbons, metals 

and natural products (Di Giulio and Hinton, 2008). 
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The main goal of the present study was the identification of chemical markers of 

effluent exposure. The use of high resolution mass spectrometry can provide high mass 

accuracy values which allows for the calculation of the elemental composition of the 

putative structure. However, the elemental composition in not enough to assure a 

reliable identification of the compound of interest because many molecular structures 

can account for the same molecular formula. Therefore tandem mass spectrometry 

(MS/MS) information is essential to obtain extremely useful structural information in 

order to support the identification process. In the present research, MS/MS 

fragmentation using Q-TOF as analyzer allowed accurate mass estimation of the 

obtained fragments; this piece of information can be advantageous to increase the 

confidence for a correct assignment of the candidate identity. Furthermore, this study 

has showed how mass spectrometry can significantly help in the analysis of classes 

having common structural elements (i.e. phase II metabolites; glucuronides). 

3.4.2 Characterization of fish bile xenometabolome 

Many parts of the UK are heavily populated and river and estuarine fish are 

exposed to effluent discharges on a daily basis, which implies that there is a chronic 

exposure to a complex mixture of chemicals. In this study, many different classes of 

widely used chemicals were detected in the bile of trout exposed to a final wastewater 

effluent. Six compound classes were fully characterised: surfactants (LAS, SPCs, 

NPEOs, AEOs, AECs), aromatic hydrocarbons, chlorinated compounds (phenols, 

xylenols, phenoxyphenols, chlorophenes, parabens), pharmaceuticals, sunscreen agents 

and resin acids. Most of these compounds were detected using chemical profiling by 

UPLC-TOFMS followed by multivariate modelling. However, some xenobiotics in the 

bile (e.g. dichlorophene) were also detected by chance during confirmation of the 

marker chemical structures using GC-MS analysis of bile fractions. This suggests that 

many other xenobiotics were present in the fish bile, that either were present in too low 

concentrations to be detected by UPLC-TOFMS or did not ionize readily and needed 

other approaches such as GC-MS to detect them. 

3.4.2.1 Surfactants 

Many different synthetic surfactants were detected in the bile of effluent-

exposed fish. NPEO, LAS and AEO series were present together with their main 

degradation products (e.g. NP from NPEOs, SPCs from LAS and AECs from AEOs, 

respectively). These compounds are commonly used in household cleaning detergents, 
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personal care products, paints, textiles, and polymers and are therefore likely to be 

detected in contaminated water. Based on the data reported in 2007 by CESIO 

(European Committee of Organic Surfactants and their Intermediates), 1200 kilotons of 

anionic and 1400 kilotons of non-ionic surfactants were produced in Europe; this 

amount represents 87% of the total European production of synthetic surfactants 

(CESIO, 2007). 

Nonylphenol ethoxylates (NPEOs) are widely used in industrial, institutional, 

commercial and household applications and thus are prevalent in influent and effluent of 

sewage treatment works due to their extensive use (Ying et al., 2002). They are 

manufactured with ethoxylate chain lengths between 2-25, and the alkylphenol moiety 

comprises a complex mixture of branched secondary and tertiary nonyl groups (Lee, 

1999). Previous studies have showed that short chain NPEOs and NP result from the 

degradation of long chain polyethoxylates surfactants in WwTWs (Di Corcia et al., 

2000). Biodegradation is an important process for the removal of surfactants in raw 

sewages in wastewater treatment plants reducing their impact on the environment. 

Degradation of surfactants in the environment occurs primarily through microbial 

activity. Surfactants can be either used as substrates by microorganisms for energy and 

nutrients or surfactants can be co-metabolized by microbial metabolic reactions. The 

degradation behaviour is surfactant class dependent. In the case of NPEOs, the 

biodegradation of APEOs is thought to start with a shortening of the ethoxylate chain, 

ultimately leading to short-chain APEOs with one or two ethoxylate units and 

nonylphenol (NP) itself (Maguire, 1999). In this study, the detection in fish bile of 

nonylphenol ethoxylates with ethoxymer numbers ranging from 1 to 6 (NP1EO to 

NP6EO) indicates the presence of poorly degraded residues in the WwTW effluents.  

The physiochemical parameters of NP (log Kow=4.48 and water 

solubility=5.4mg/L) and short chain NPEOs (log Kow =4.17 and water solubility=3.0 

mg/L for NP1EO and log Kow =4.20 and water solubility=3.4 mg/L for NP2EO) (Ahel 

and Giger, 1993) indicate that they are likely to bioaccumulate in aquatic organisms. 

This behaviour has already been documented in a bioconcentration study of 4-NP in 

marine animals: Ekelund et al. (1990) documented bioconcentration factor for shrimps 

Crangon grangon L. and mussels Mytilus edulis L. of 1300 and 3400, respectively. 

Other studies have revealed bioconcentration factors of NPEOs in bile of dosed roach 

using [14C] radiolabelled NPEOs, averaging either 3 ethoxy units (NP3avEO) or 7 
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ethoxy units (NP7avEO), and these were 5457 and 3296, respectively (Smith and Hill, 

2006). Amongst this class of surfactants, the NP degradation product from NPEOs 

(NP1EO and NP2EO) have raised particular scientific concern due to their estrogenic 

activity (Ying and Kookana, 2002). In vitro studies, NP is a 1000 times less active than 

17-β-estradiol in affinity for the estrogen receptor however it is often present in the 

environment at 100 times higher concentration compared with steroidal estrogens 

(Jobling et al., 1996, Routledge and Sumpter, 1996). Alkylphenols can be rapidly 

metabolized by phase I and II transformations in fish. Arukwe et al. (2000) has found 

that in juvenile salmon  4-n-NP was mainly metabolized to its corresponding 

glucuronide conjugate, as in the present work, and to a minor extent to diverse 

hydroxylated and oxidised compounds. In the present study, NPEOs were only detected 

as the glucuronide conjugate in the bile indicating this was major metabolite in the trout. 

Although previous studies showed the presence of nonylphenol ethoxycarboxylates 

(NPEC) as NPEO metabolites, they were not detected in the characterized bile samples 

of effluent-exposed fish in this study. 

LAS surfactants are employed in cleaning products and many studies have 

documented levels in marine and fresh water ranging from few µg/L to several hundred 

µg/L (Corada-Fernandez et al., 2011). They are manufactured as C10-C13 carbon chain 

length. A previous study has demonstrated that LAS homologues were taken up by 

rainbow trout from water via the gills and then bioconcentrate in liver and other internal 

organs (Tolls et al., 2000). However, in the present study the majority of LAS 

metabolites were observed as short alkyl chain sulfophenyl carboxylates (SPCs) and 

only one LAS structure glucuronide conjugate of dihydroxylated C10-LAS was detected. 

This metabolite could be formed from phase I biotransformation by β-oxidation of C10-

LAS and subsequently phase II conjugation. It would appear that in the wastewater 

treatment works, LAS are mainly transformed to short alkyl chain SPCs (C5-C10) as 

these were the predominant LAS metabolites detected in fish bile. Detecting short alkyl 

chain SPCs in the metabolome can indicate degradation of the long alkyl chain SPCs 

following ω-oxidation (the first step of phase I biotranformation) of LAS to form SPCs, 

followed by α- and/or β-oxidation, which leads to odd and/or even carbon chain SPC 

metabolites (Swisher, 1987, Alvarez-Munoz et al., 2010). Another explanation for 

detecting both odd and even carbon chain series of SPCs could be the degradation of the 
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long alkyl chain via β-oxidation starting from two different parent compounds (i.e. C10-

LAS & C11-LAS). 

Mono- and dicarboxylic C10 sulfophenyl acids were also observed in the bile of 

effluent-exposed trout and could be generated by ω-oxidation of the alkyl chain 

(terminal carbon) of LAS which followed by successive β-oxidation (Di Corcia et al., 

1994, Yadav et al., 2001). A variety of SPCs have been reported with an alkyl chain 

length of 4 to 13 in sea water, interstitial water, sediments and fungi (González-Mazo et 

al., 1997, Yadav et al., 2001).  

AEOs are manufactured with a carbon length (12-18) and EO (2-25) are used in 

industrial or household formulations. Studies have shown that the main source of input 

the environment for these compounds and their metabolites is by wastewater discharges 

and industrial activities, where they have been detected at concentrations between 1 and 

30 µg/L in sewage plant influent and effluent samples (Matthijs et al., 1999, Dunphy et 

al., 2001, Eadsforth et al., 2006, Belanger et al., 2006). Eadsforth et al. (2006) reported 

similar results in a study monitoring AEOs in wastewater effluent in Europe and 

Canada, revealing overall mean concentration of 5.7 µg/L (range 1.0–22.7 µg/L). In a 

previous study, AEOs homologues with shorter alkyl chains (C12) revealed higher 

relative percentages in water when compared with their longer chain homologues (C18), 

which exhibited higher affinity for suspended solids and sediments. For AEO 

ethoxymers up to 9EOs were the most abundant in the water column, whilst the 11EOs 

was the most relevant in the sediment (Lara-Martín et al., 2008).  The distribution of 

alkyl ethoxylates in the fish bile was very similar to that of some commercial mixture 

and comprised glucuronide conjugates of C12-C15 EO(1-10). The presence of up to 8 

ethoxymers of AEOs indicates the presence of undegraded residues in the WwTW 

effluents. A number of different degradation pathway are possible for the AEOs but the 

aerobic biodegradation mechanism that is the most common, and comprises central 

cleavage of the molecule to form polyethylene glycols and free fatty alcohols (Ying, 

2006). The three main routes of chain shortening for AEOs are shown in Figure 3.37. 

In addition to AEOs, alkyl polyethoxy carboxylates (AECn where A= alkyl 

groups and n= number of ethoxy units plus a terminal CH2COOH moiety) were detected 

in trout bile. AECs could be formed from ω-oxidation of the ethoxylate group of the 

parent AEO during wastewater treatment (Di Corcia et al., 1998), however AECs are 

also used as anionic surfactants in the textile industry and in household and personal 
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care products and thus maybe an additional source of detergent-derived contaminants in 

WwTWs effluents. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.37: Three degradation routes have been described in the literature for AEOs: (a) degradation 
initiated on the alkyl chain with ω/β-oxidation followed by nonoxidative cleavage of C2-units; (b) central 
fission into an alkyl chain and a polyethoxylate chain followed by individual degradation of the two 
moieties; (c) degradation is initiated at the polyethoxylate chain. Predominately the polyethoxylate is 
mineralised by oxidative cleavage of C2-units, simultaneously the alkyl part is shortened by ω/β-
oxidation. This latter route is most pronounced for branched secondary AEOs. Under anaerobic 
conditions only route (b) and (c) take place. Adapted from Krogh et al. (2003). 

 

3.4.2.2 Aromatic compounds 

Polycyclic aromatic hydrocarbons (PAH) have always raised wide scientific 

concern due to their mutagenic, carcinogenic and teratogenic characteristics. PAHs are 

the most wide-spread organic pollutants. In addition to their presence in fossil fuels, 

they are also generated by incomplete combustion of fuels (i.e. wood, coal, tobacco, or 

incense). In this study only two different PAHs metabolites were detected in the bile of 

effluent-exposed trout: 1-hydroxypyrene and the glucuronide conjugates of naphthols. 

Previous studies have already revealed the presence of 1-hydroxypyrene in bile of 

effluent-exposed fish e.g. (Mazéas and Budzinski, 2005). 1-Naphthol has been detected 

as glucuronide conjugate in rat, where most of the 1-naphthol glucuronide was excreted 

into the renal vein (Narukawa et al., 2004). Zang et al. (2010) demonstrated that 

naphthalene derivatives substituted at position 2 can be more toxic than those at position 

1 while Viravaidya et al. (2004) reported that metabolites of naphthalene can decrease 

glutathione levels in lung cells. For this class of compounds, only the two isomers of 

CH3(CH2)n-O(CH2CH2O)mH

Alkyl chain                    PEG chain
CH3(CH2)n-2CH2COOH + HO(CH2CH2)mOH CH3(CH2)n-O(CH2CH2O)m-xH

HOOCCH2(CH2)n-x-O(CH2CH2O)mH

HOOCCH2-O(CH2CH2O)m-xCH2COOH

CH3(CH2)n-x-COOH
HO(CH2CH2O)m-xH

+
HOOCCH2O(CH2CH2O)m-xCH2COOH
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ω/β-oxidation

Oxidative or non-oxidative 
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naphthol (1-naphthol and 2-naphthol) were detected by UPLC-TOFMS as glucuronide, 

whilst 1-hydroxypyrene was detected only by GC-MS analysis. 
 

3.4.2.3 Chlorinated compounds 

A number of chlorinated compounds were detected as markers of effluent 

exposure in this study. The characterized markers belonged to five main classes of 

compounds: chlorinated phenols, chlorinated xylenols, chlorophenes, chlorinated 

phenoxyphenols, chlorinated parabens. 

Chlorinated phenols 

In the analyzed bile samples, dichlorophenol and trichlorophenol were both 

detected both as glucuronide conjugates. The presence of chlorinated phenols in surface 

waters could be due to their formation from other contaminants. For instance studies 

have revealed that 2,4-dichlorophenol and 2,4,6-trichlorophenol could be present in the 

water as by-products of triclosan degradation in chlorinated water (K.L. Rule, 2005, P. 

Canosa, 2005). The presence of 2,4-dichlorophenol has recently been related to the 

fragmentation of triclosan after cleavage of the ether bond (Thomas and Kotchevar, 

2010). However trichorophenol and dichorophenol are also used as bactericides, 

fungicides and preservatives. Concentrations of 2,4-dichlorophenol and 2,4,6-

trichlorophenol have been reported to be ranged from <1.1 ng/L to 28650.0 ng/L in 

some Chinese surface waters (Gao et al., 2008). Chlorophenol compounds are toxic to 

aquatic species (Buikema Jr et al., 1979) and dichlorophenol is an uncoupler of 

mitochondrial respiration (Penttinen, 1995). 

Chlorinated xylenols  

Chloroxylenol is widely used in pharmaceuticals and cosmetic products as 

disinfectants and have been detected in bile of river fish in the Netherlands and in 

WwTW effluents (Houtman et al., 2004, Rostkowski et al., 2011). In this study, two 

chloroxylenols (i.e. chloroxylenol and dichloroxylenol) and their methoxy metabolites 

were detected as glucuronide conjugates in bile of effluent-exposed fish. The presence 

of methoxy metabolites can be explained as part of the detoxification process for 

lipophilic compounds. This process consists of an activation step (phase I) which 

involves the oxidation or hydroxylation of the toxic compound, followed by the phase II  

step (conjugation; methylation) via covalent binding to endogenous hydrophilic 

molecules. 
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Chlorophenes 

Chlorophene is commonly used as germicide in disinfectant products and has 

been detected in surface water and WwTW effluents as reported in previous studies 

(Kasprzyk-Hordern et al., 2008, Martínez Bueno et al., 2007). Bile extracts of effluent-

exposed fish showed the presence of two types of chlorophenes, chlorophene and 

dichlorophene. Chlorophene and its methoxy metabolites were detected as glucuronide 

conjugates by UPLC-TOFMS while the dichlorophene could be detected only by GC-

MS in hydrolysed bile fractions. Previous studies have reported that dichlorophene can 

be accumulated in fish exposed to WwTW effluents and this compound was also 

detected in wastewater effluents too, a fact which indicates that its presence is mainly 

due to its widespread use as a bactericide and fungicide in a variety personal care 

product formulations (Hill et al., 2010, Rostkowski et al., 2011). Chlorophene is an 

androgen receptor antagonist (antiandrogenic) in vitro assays with a potency 13 fold 

higher than the standard antiandrogen flutamide. Alongside triclosan (see below) 

chorophene contributes 50% of the antiandrogen activity in bile of fish exposed to 

WwTW effluents (Rostkowski et al., 2011). 

Chlorinated phenoxyphenols 

Triclosan is widely used in cosmetic formulation as antibacterial and has been 

detected in wastewater treatment work effluents at concentrations between 50-100 ng/L 

(Rostkowski et al., 2011). Adolfsson‐Erici et al. (2002) measured triclosan levels in 

rainbow trout (Oncorhynchus mykiss) exposed to WwTW in Sweden. Analysing fish 

bile revealed concentrations of 0.44–120 mg/kg in trout exposed to sewage water. 

Houtman et al. (2004) also identified triclosan in the bile of male bream (Abramis 

brama) in Dutch surface waters. Triclosan was detected at relatively high concentrations 

of 14 and 80 µg/ml of bile. In the present research the molecular ion [M-H]- associated 

with triclosan glucuronide was highly detected abundant in effluent-exposed fish bile 

indicating that it was a prominent marker of effluent exposure. The antiandrogenic 

activity of triclosan is 5 fold greater than flutamide indicating that it is a potent 

antiandrogen in vitro (Rostkowski et al., 2011).  

A triclosan analogue (diclosan) was also detected in bile as glucuronide conjugate. 

Diclosan concentration has already been determined in treated effluent and activated 

sludge. Diclosan in the treated effluent was found 0.3, and in the activated sludge, <0.3. 
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Aquatic toxicity for this metabolite has been reported as well, showing LC50 value of 

0.7 mg/L in fish (NICNAS, 2004). 

Chloroxylenol, chlorophene and triclosan are broadly detected in surface waters 

and effluents. Previous study in the South Wales region of the UK  has documented  

concentrations of 30-358ng/L  for chloroxylenol, 3-16ng/L for chlorophene and 5-

24ng/L for triclosan (Kasprzyk-Hordern et al., 2008). Previous metabolomics studies of 

chloroxylenol in dogs, and chlorophene and triclosan in rats have shown that the 

majority of these chlorinated antiseptics are excreted as glucuronide and sulphate 

conjugates in urine of higher vertebrates (rat) (Tulp et al., 1979, Kao and Birnbaum, 

1986, Ridley et al., 1986, Dorantes and Stavchansky, 1992). This information indicate 

that these contaminants maybe hydrolysed to their non-conjuated forms in WwTW, 

however there are no studies to date to confirm this. 

Chlorinated parabens  

Dichloromethylparaben was also detected in effluent-exposed fish bile. 

Monochloro- and dichloro-methyl paraben (ClMeP and Cl2MeP) have been documented  

in wastewaters at levels between 0.01 and 0.1 mg/L (González-Mariño et al., 2011).  

Parabens can react with free chlorine dissolved in the water after disinfection treatment 

giving rise to several halogenated by-products. Chlorinated parabens can be formed 

through chlorine substitution of the phenolic group by electrophiles such as HOCl and 

ClO-, as a consequence of the high negative charge on the nucleophilic substrate (Ge et 

al., 2008, Terasaki and Makino, 2008). 

The parabens chlorinated by-products have shown higher acute toxicity 

responses in the Daphnia magna (Terasaki et al., 2009) However, the occurrence of 

these derivatives in the environment has not been fully investigated yet and still little is 

known about the biodegradability of parabens and their by-products during wastewater 

treatments. 

3.4.2.4 Pharmaceuticals 

The majority of pharmaceutical compounds are introduced in the aquatic 

systems after ingestion and subsequent excretion by either humans or animals 

(veterinary pharmaceuticals). Mefenamic acid is a non-steroidal anti-inflammatory drug 

classified as “anthropogenic” pharmaceuticals (Werner et al., 2005). Glucuronide 

conjugate of mefenamic acid was identified and isolated from human urine (McGurk et 

al., 1996). In fish bile it was detected as the glucuronide form. Mefenamic acid has been 



157 

 

 

 
 

detected in wastewater influent, effluent and sewage sludge during wastewater 

treatment, revealing concentrations of 16 ng/L in influent, 5 ng/L in effluent and 0.4 

ng/g in sludge, respectively (Jelic et al., 2011). This pharmaceutical has specifically 

been designed to inhibit prostaglandin biosynthesis; therefore it is tempting to speculate 

that this represents their primary mechanism of action also in the fish (Lemke et al., 

2007). 

3.4.2.5 Sunscreen agents 

Oxybenzone is a commercial sunscreen product and is widely used in cosmetics 

and plastic applications. In vitro studies have shown that oxybenzone has estrogenic 

activity, as well as antiestrogenic and antiandrogenic (Kunz and Fent, 2006). Other 

studies have shown that oxybenzone can induce vitellogenin production in two fish 

species (i.e. juvenile rainbow trout and Japanese medaka) at similar concentrations and 

also significantly decreases fertilized eggs hatchability in Japanese medaka (Coronado 

et al., 2008). In trout bile sample this compound was detected as the glucuronide 

conjugate.  

3.4.2.6 Resin acids 

A mixture of resin acids (RAs) was detected as glucuronide conjugates. The 

group of isomers included abietic acid, pimaric acid, and isopimaric acid). RAs have 

already been detected in paper mill effluents at concentrations ranging from 20µg/L to 

12000µg/L  (Quinn et al., 2003). Although these isomers are mainly found in pulp and 

paper mill effluents they are also used as varnishes and can be therefore transferred to 

waste water. Different resins are used for specialty varnishes, for metal, paper, leather 

and  to protect oil and watercolor paintings (Langenheim, 2003). The presence of resin 

acids in their glucuronide forms have been already reported in bile of fish exposed to 

pulp mill effluent (Meriläinen and Oikari, 2008). The RAs (abietic acid, pimaric acid, 

isopimaric acid, neoabietic acid) have been proved to have antiandrogenic activity with 

a relative potency when compared to the flutamide standard of 4.00 for the abietic acid, 

2.73 for the pimaric acid and 5.00 for the isopimaric acid  (Rostkowski et al., 2011). 

3.4.2.7 Other compounds detected in effluent exposed fish bile by GC-MS analysis 

Bisphenol A and 2,2’-dihydroxybiphenyl were only detected by GC-MS 

analysis in effluent-exposed fish bile. Bisphenol A is used in the manufacture of 

polycarbonate plastics, and has previously been detected in fish bile (Fenlon et al., 



158 

 

 

 
 

2010). In UK concentration of bisphenol A in crude and treated effluents were 1.2µg/L 

and 0.046µg/L, respectively (Jiang et al., 2005, Ifelebuegu, 2011). Bisphenol A has 

shown endocrine disrupting activity in both in vivo and in vitro experiments (Welshons 

et al., 2003, Vom Saal and Hughes, 2005, Richter et al., 2007).  

3.4.3 Toxicity implications 

These analyses of the more highly abundant xenobiotics present in bile reveals 

that fish are exposed to a diverse group of chemical contaminants present in 

wastewaters. Most of the xenobiotics detected in the bile were present as glucuronide 

conjugates and these polar metabolites would be rapidly eliminated from the fish via the 

faeces. Glucuronide conjugates are mainly excreted via the bile of fish, and depuration 

studies revealed that with exception of some metabolite, >75% of the xenobiotic load 

was eliminated from the bile after 4 days in clean water and >99% after 11 days. 

Although some of this decrease is due to elimination via the bile there could also be 

renal excretion of the parent compound or other metabolites present in the blood. Gills 

and skin can also contribute to the elimination of the parent compound or its metabolite 

via diffusive elimination (Di Giulio and Hinton, 2008). Many of the glucuronide 

metabolites of xenobiotics are likely to be formed by conjugation of the parent 

compound within the fish itself as glucuronide conjugates formed by human metabolism 

(for instance the glucuronide conjugate of mefenamic acid) can be readily hydrolysed 

by bacteria during the WwTWs resulting in the detection of the parent compound in the 

final effluent (Gomes et al., 2009). Although the majority of xenobiotics were not 

persistent in the fish tissues, it is possible that exposure to such as variety of 

contaminants that are substrates for glucuronosyl transferase enzymes expressed in liver 

and other tissues of the fish could disrupt the metabolism and excretion of endogenous 

metabolites such as steroids and bile pigments that are also conjugated prior to 

excretion. 

Although the complex mixtures of xenobiotics in the fish are not persistent, it is 

likely that in many UK catchments, some fish are semicontinuously exposed to these 

mixtures throughout their life cycle as contaminants from WwTW effluents can be 

detected many km downstream of the discharges (Chapter 1 Section 1.6). It is not clear 

what the overall health implications of repeated exposure to such as complex mixture of 

contaminants would be. The ethoxymer content of many of the surfactants was high 

enough to give detergent properties to the molecules, and so could disrupt the structure 
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and function of cell membranes in a variety of tissues or organs including the liver. 

Many of the chlorinated contaminants and the RAs have been shown to be androgen 

receptor antagonists (at least in vitro) and may disrupt sexual differentiation and gonad 

development in exposed fish. Likewise oxybenzone, bisphenol A and NP are estrogenic 

and could contribute the endocrine disrupting activity of the contaminant mixture in the 

fish. Mefenamic acid is a potent inhibitor of prostaglandin syntheses, and these 

metabolites play important roles in immune function, and reproduction. Therefore 

exposure to the complex mixture of xenobiotics present in WwTW effluent may result 

in disruption of function of a number of tissues and physiologies within the fish, and 

further studies are needed to determine the long term effects of exposure to these 

contaminants present in WwTW effluent on fish health. Other studies which could be 

conducted include an examination of fish exposure to a number of wastewater treatment 

effluents across the UK for varying lengths of time, to investigate how the 

xenometabolome and fish metabolite profile vary with effluent composition and to 

examine any assications between contaminant profiles and fish health. 
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CHAPTER 4: Analysis of Markers of Effluent Exposure in the 

Xenometabolome of Trout 
 

4.1 Introduction 

Biofluids such as urine and blood have been frequently used as biological 

matrices to investigate the systematic alteration of the metabolome (Fancy et al., 2006, 

Yu et al., 2007) and to evaluate the effects of xenobiotic exposure, as they are easily 

sampled and simple to analyze (Aresta et al., 2006, Lutz et al., 2008). For instance, 

Brown et al. (Brown et al., 2007) have used fish plasma as a biofluid model to assess 

the capability of pharmaceuticals to bioconcentrate into fish blood. The choice of the 

biofluid to be investigated influences the kind of contaminants which can be monitored 

in the selected matrix. Bile usually shows high concentration of glucuronic acid and 

other conjugated forms of lipophilic compounds whilst blood and urine usually are 

mainly characterized by the presence of either deconjugated forms or sulphate 

conjugates of the metabolites of interest. Therefore, in order to have a complete of the 

metabolome of a vertebrate and to encompass all the possible contaminants taken up by 

the organism, a combination of different biofluid matrices is required.  

In chapter 3 the study was focused on the characterization of the metabolome in 

fish bile, identifying mainly lipophilic compounds in their glucuronide forms. In this 

chapter the attention will focus on the characterization of plasma as different matrix to 

check whether the same classes of compounds could have been detected and to 

investigate the presence of other possible chemical species which were not detected in 

the bile sample.  

The blood was selected as biofluid to be investigated mainly because as reported 

in the literature, sulphate conjugates are more likely to be detected in this kind of matrix 

(Mulder and Scholtens, 1978). Sulphation of compounds predominates at low substrate 

concentrations and glucuronidation at high substrate concentrations when sulphation has 

been saturated (Pang et al., 1994). Thus, the glucuronidation of circulating xenobiotics 

is likely after saturation of the sulphotransferase enzymes. The analysis of blood for 

markers of effluent exposure is also advantageous as it is readily sampled without 

necessitating sacrifice of the animal. Therefore methodology to analyse markers of 

effluent exposure in small volumes of plasma samples could be useful for 

biomonitoring purposes. 
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The study in this chapter aimed to: 

1) Investigate the presence of organic contaminants and their metabolites (the 

xenometabolome) in the plasma that are markers of effluent exposure in trout. 

2) Assess the effect of depuration on persistence of markers of effluent exposure in 

the plasma. 

3) Analyse the blood metabolome to investigate how the blood biochemistry is 

disrupted by exposure to wastewater effluent. 

4) Determine the structures of the endogenous and exogenous metabolites and 

confirm the structures of contaminants using different mass spectrometry 

techniques. 

Proteins in plasma samples were precipitated by methanol extraction method to a 

final ratio of 80:20 methanol/water (v/v). Plasma samples were profiled applying same 

methodology as for bile samples. Multivariate data analyses were performed using 

PCA, PLS-DA and OPLS-DA techniques. Accurate mass measurements were obtained 

in W mode for the selected discriminatory makers due to effluent exposure. Q-TOFMS 

experiments were then performed to obtain fragment information for structural 

identification. 
 

4.2 Materials and Methods 

4.2.1 Chemicals 

Taurochenodeoxycholic acid (sodium salt), sphingosine, O-acetyl-L-carnitine 

hydrochloride, L-α-phosphatidylcholine from egg yolk (≥99%), L-α-

phosphatidylethanolamine from egg yolk (~98%), and ammonium formate (99%) were 

purchased from Sigma Aldrich, UK. 

4.2.2 Extraction of plasma samples 

Blood samples were obtained by terminally anesthetizing the fish and sampling 

blood from the caudal vein at the end of the experimental exposure described in details 

in Chapter 3, section 3.2.2. Blood samples were transferred to Eppendorf tubes 

containing aprotinin and tubes were centrifuged at 10,000 g for 15 min at 4°C (Biofuge 

fresco, Heraeus, Germany). Plasma was then transferred to methanol rinsed glass vials 

and stored at -80°C for chemical profiling. In this study plasma extraction was 

performed adapting the protocol reported by Bruce et al. (Bruce et al., 2008). Frozen 

plasma samples (300µL) were thawed on ice. Proteins were precipitated by adding 

1200µL of cold methanol in order to obtain a final ratio of 80:20 methanol/water (v/v) 
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(assuming that plasma is 100% aqueous). The mixture was vortexed for 1 min and then 

left for 1 h at -20°C. Afterwards, samples were centrifuged at 10,000 g for 5 min and 

the separated supernatant was kept at -20°C for further 30 min before further 

centrifugation at 10,000g for 5 min in order to remove any unprecipitated protein. The 

supernatant was evaporated to dryness using a SpeedVac concentrator (Savant 

Instruments, Inc., Holbrook, New York), and the residue was then reconstituted in 

300µL methanol:water (1:1, v/v). Plasma extracts were filtered using a 96-well Strata 

Protein Precipitation Plates system (0.2µM, Phenomenex, Cheshire, UK) prior to 

UPLC-TOFMS analysis. 

4.2.3 Chemical profiling of fish plasma samples 

4.2.3.1 UPLC-TOFMS analysis 

20µL aliquots of extracted plasma sample were analysed according to the 

experimental method described in Chapter 2 Section 2.3.2. Samples were injected in 

random order to avoid any instrument bias. 

4.2.3.2 Data elaboration 

MarkerLynx V 4.1 software package (Waters Corporation, Milford, MA, USA) 

was used to align and deconvolute spectral peaks. Required parameters for sample 

alignment were optimized as follows: minimum peak width 20s, minimum required 

intensity 50 counts, minimum signal to noise 10, maximum number of peaks 20, 

retention time tolerance 0.2 min, and mass window tolerance 0.03. Before exporting 

data to SIMCA-P software (Umetrics UK Ltd, Winkfield, Windsor Berkshire, UK) for 

subsequent multivariate analysis isotopic peaks were eliminated and datasets were 

normalised to the maximum spectral area observed in the sample set. 

4.2.3.3 Multivariate data analysis 

As described in Chapter 3 Section 3.2.3.3, data were exported into the 

multivariate analysis software SIMCA-P. Data were log transformed before analysis to 

reduce skewness and then pareto scaled.  In order to obtain an overview of the whole 

datasets and to detect any outliers within the dataset, principle component analysis 

(PCA) was employed.  Strong outliers were identified using Hotelling’s T2 which were 

then excluded for further analysis. The data were examined by partial least square-

discriminate analysis (PLS-DA) followed by orthogonal projections to latent structures 

discriminant analysis (OPLS-DA). OPLS-DA approach gives an overview of the 
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existing relationships between variables (extracted metabolites) and observations 

(samples) as well as among the variables themselves and highlights deviating behaviour 

within the observations showing groups/trends. OPLS-DA is particularly useful in 

separating two classes of observations (such as samples from control and effluent 

exposed fish) along the first principal component and modelling other influences of the 

data on other orthogonal components (Wagner et al., 2007). The performance of the 

described models can be evaluated considering the R2 and Q2 values (high R2 and Q2 

values are desirable). Cross-validation procedure was used to determine the number of 

significant principal components. Loadings plots of an OPLS-DA were analyzed to 

identify significant metabolites with the highest confidence and greatest contribution to 

the group separation. 

4.2.3.4 Identification of metabolites 

Metabolites identified as being altered in response (intensity) after exposure to 

effluent water were further analyzed using elemental composition tools of MassLynx 

4.1 software in order to determine their elemental composition. Their structural identity 

was then verified performing Q-TOFMS approaches using different collision energies 

ranging from 12 eV to 50 eV. Collision energy was properly optimized for each 

considered marker. Ammonium formate was used as ion-pairing reagent to improve the 

fragmentation experiments replacing sodium with ammonium in the adduct molecule 

since ammonium adducts are usually less stable than the relative sodium adducts and 

therefore more likely to fragment. For this purpose, UPLC separation was then 

performed adding ammonium formate buffer (10 mM) adjusted to pH 3.0 by formic 

acid to solvent A and B. However, wherever possible deprotonated [M-H]- (negatively-

charged compounds) or protonated [M+H]+ (positively charged compounds) markers 

were mainly selected as product ions to obtain structural information after 

fragmentation. Commercial standards were used for the identification of the 

unconjugated markers by comparing their retention times, masses, and characteristic 

fragments with the target analytes. Sulfadimethoxine standard was added as a lock mass 

to compensate for the mass drift during the sample analysis. Metabolomic databases 

were also utilized in order to assist the metabolite identification as described in Chapter 

3 Section 3.2.3.4.  
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4.3 Results 

4.3.1 PCA overview of plasma sample in effluent-exposed fish 

In –ESI mode, PCA analysis of the datasets showed clear separation between the 

control sample (C10, control trout exposed to reference river water) and the treated 

sample (E10, effluent exposed trout) after 10 day of exposure (Figure 4.1a); however, 

there was a significant overlap in model space between the controls and the different 

depuration groups (4 and 11 days of depuration in clean water after 10 days of effluent 

exposure) (Figure 4.1b).  

The PCA overview of the same datasets did not reveal any groups of 

observations or trends in +ESI mode (Figure 4.1a,b). Therefore the comparison of the 

depurated groups did not provide clear class differentiation in both ESI modes. In some 

cases, auto-fitted PCA models showed no significant components; therefore, the models 

had to be forced to fit by calculating the first two components (Appendix 4.1). Poor 

values for the explained (R2X) and predicted variation (Q2) of all the datasets were 

obtained (Appendix 4.1). Two outliers (samples) were also detected using Hotelling’s 

T2 test (one outlier from class E10 in each ESI mode) (Figure 4.1a). 

Univariate statistical analysis was utilized to confirm the results obtained from the 

multivariate analysis for the depurated groups (C14, C21, E14 and E21). In both ESI 

modes, C14 versus C21 did not give a significant value of p. Differences between effluent 

groups (E14 versus E21) were only significant in positive mode by the second component 

(PC2). This outcome is possibly due to high variation of endogenous metabolites 

present in plasma samples. 
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Figure 4.1: Principal component analyses (PCA) scores plots of the chemical profiles of plasma samples 
from trout exposed to either control river water or wastewater effluent in both ESI modes. On the left 
hand-side, (a) PCA of whole dataset [( ), ( ) and ( ) symbols represent C10, C14 and C21 for control 
trout where n=16, 6, and 9 respectively. ( ), ( ) and ( ) symbols represent E10, E14 and E11 for effluent-
exposed trout where n=16, 6 and 7 respectively] and on the right hand-side (b) PCA of dataset only for 
the depuration period. The percentages of explained variation (R2X) for the first two components (t1 and 
t2) are displayed on the relative axes. 
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4.3.2 Overview of PLS-DA and OPLS-DA models for fish plasma 

The PLS-DA approach was employed to further examine class separation. In 

both ESI models, PLS-DA models of all the classes revealed good separation between 

control and treated samples after 10 days of exposure and also between control and 

depurated samples after different depuration time points (4 and 11 days of depuration 

after 10 days of effluent exposure) (Figure 4.2). The obtained models showed good 

values of explained variation (R2Y >0.98) and predicted variation (Q2 >0.72) (Appendix 

4.2). Reanalysis of the depurated groups (C14, C21, E14, and E21) omitting datasets for the 

10 days of exposure, also resulted in a model with clear separation between the different 

classes and good predictive value (Q2>0.65) (Figure 4.2 and Appendix 4.2). Subsequent 

OPLS-DA analyses between control and effluent exposed groups for each time point 

revealed good class separation between the two treatments in both ESI modes as 

described by their reasonable predictive value (Q2>0.51) (Appendix 4.2 and Figure 4.3). 

However, class separation was poor for the control and treated groups at time point of 

11 days of depuration after 10 days of effluent exposure (C21 versus E21). This result 

highlights the high similarity between the E21 group and the control group C21 indicating 

that after 11 days of depuration most of the xenobiotics accumulated in the exposure 

period have been efficiently excreted and any other biochemical changes in the blood 

have been restored to normal physiological status.  

In order to obtain statistically valid models and to ensure that high values of 

predictability were not occurring due to over-fitting on noise data, response permutation 

testing was performed. The models showed a classification achievement of >90% for 

almost of the datasets with the exception of the dataset of all treatments together (66% 

in +ESI and 78% in –ESI) and in the classification of the depurated datasets (C14, C21, 

E14, and E21), which was only 40% accuracy in both ESI modes (Appendix 4.2). 
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Figure 4.2: Partial least squares-discriminant analyses (PLS-DA) scores plots of the chemical profiles of 
plasma from trout exposed either to 100% wastewater effluent or control river water in both ESI modes. 
On the left hand-side, (a) PLS-DA of whole dataset [( ), ( ) and ( ) symbols represent C10, C14 and C21 
for control trout where n=16, 6, and 9 respectively. ( ), ( ) and ( ) symbols represent E10, E14 and E11 
for effluent-exposed trout where n=16, 6 and 7 respectively] and on the right hand-side (b) PLS-DA of 
dataset only for the depuration period. The percentages of explained variation (R2Y) modelled for the first 
two or three latent variables (t1, t2 and/or t3) are displayed on the related axes. 
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OPLS-DA analyses were conducted between each of the two groups (control 

and treated at different time points) to identify the loading variables influencing the 

classification. The OPLS-DA models of C10 versus E10 resulted in 1 predictive and 1 

orthogonal significant component whilst the depurated groups showed no significance 

of their orthogonal components in both ESI modes (see Appendix 4.2). S-plots of the 

OPLS-DA models for the plasma datasets were used to extract the discriminatory 

chemicals responsible for group separation. Most of the detected markers were 

exogenous (xenobiotics and their metabolites) and already identified in fish bile. These 

variables were removed and the data remodelled to investigate changes in the levels of 

endogenous origin metabolites. A total of 77 variables (RT-m/z) were assigned as 

potential markers (exogenous and endogenous metabolites) in both ESI modes (Table 

4.1a,b). 

 

 

 

 

 

                                                                                                            

 

 

 

 

 

Figure 4.3: a) and b) OPLS-DA scores plots of the chemical profiles of plasma from trout exposed either 
to 100% wastewater effluent or control river water. The samples were profiled in both +/-ESI modes by 
UPLC-TOFMS; ( ) and ( ) symbols represent C10 for control and E10 for effluent-exposed trout for 10 
days, respectively, analysed in both ESI modes. 
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4.3.3 Identified chemical marker classes 

Biofluids (e.g. blood) are very complex matrices containing a huge number of 

potential biomarkers, i.e. endogenous metabolites which change in response to 

xenobiotic exposure, as well as xenobiotics or their metabolites. Compounds were 

detected that either increased or decreased in concentration as a result of effluent 

exposure. Accurate mass measurement and MS/MS fragmentation using Q-TOF as 

analysers (accurate mass for the fragments) were used to further characterise the 

candidate markers. Many of the markers were chemical contaminants already identified 

in fish bile: surfactants, chlorinated phenols, chlorinated xylenols, chlorophenes, and 

chlorinated phenoxyphenol (see Chapter 3). In addition to these, changes in 

concentrations of endogenously derived metabolites such as bile acids, and 

sphingolipids and acyl carnitines were also observed in plasma samples. Table 4.1a,b 

contains the full list of the detected markers in the plasma extracts m/z and relative p-

values from the datasets studied: these were control versus effluent-exposed fish after 

10 days of exposure (C10 vs E10), 10 days effluent-exposure then 4 days depuration in 

river (C14 vs E14) and 10 days effluent-exposure then 11 days depuration in river water 

(C21 vs E21).  
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Table 4.1a: Markers of effluent exposure in rainbow trout (plasma extracts) in -ESI mode. 
Marker

No. 

Observed ion 

(m/z) RT 

P value 

C10 vs E10 C14 vs E14 C21 vs E21 

1 571.3837 4.39 6.77E-05 nd nd 
2 331.0587 7.39 3.33E-09 nd nd 
3 361.0691 7.83 3.33E-09 nd nd 
4 274.8743 7.85 2.48E-04 nd nd 
5 249.0218 8.04 4.84E-01 nd nd 
6 234.9831 8.06 5.09E-07 nd nd 
7 229.0561 8.07 3.33E-09 nd nd 
8 512.2705 8.34 9.98E-08 8.94E-01 4.12E-01 
9 264.9940 8.67 3.33E-09 nd nd 
10 250.9783 8.77 5.09E-07 nd nd 
11 514.2841 8.78 3.04E-06 1.00E00 3.45E-01 
12 393.0741 10.71 3.33E-09 nd nd 
13 498.2884 11.10 3.00E-03 5.15E-01 1.81E-01 
14 531.2992 11.53 2.01E-04 6.97E-01 nd 
15 327.1633 11.55 5.66E-08 nd nd 
16 296.9988 11.87 7.00E-03 nd nd 
17 462.9755 12.49 3.33E-09 nd nd 
18 482.2920 12.52 3.22E-06 nd nd 
19 332.9397 13.68 5.09E-07 nd nd 
20 409.9730 14.18 5.66E-08 nd nd 
21 366.9001 15.42 3.33E-09 2.00E-03 7.69E-01 
22 347.9540 15.75 7.30E-06 2.00E-03 1.00E-03 
23 395.2073 16.45 5.09E-07 nd nd 
24 397.9537 18.43 3.33E-09 2.00E-03 3.00E-03 
25 497.9463 20.28 3.33E-09 2.00E-03 1.00E-03 
26 262.8394 21.33 3.33E-09 nd nd 
27 450.9278 21.69 3.33E-09 1.00E00 4.29E-01 
28 325.1838 22.17 4.63E-07 9.30E-02 1.00E00 
29 569.9671 22.41 1.61E-05 2.00E-03 1.50E-02 
30 321.2068 22.58 3.22E-06 nd nd 
31 339.1996 23.36 3.33E-09 8.18E-01 6.62E-01 
32 403.3075 24.15 3.33E-09 nd nd 
33 329.2695 24.57 5.66E-08 nd 7.36E-01 
34 373.2960 24.63 3.33E-09 nd nd 
      

ESI: electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); C10: 10 days river water 
exposure (control); C14: 14 days river water exposure (control); C21: 21 days river water exposure 
(control); E10: 10 days effluent exposure, E14: 10 days effluent exposure followed by 4 days depuration, 
E21: 10 days effluent exposure then 11 days depuration; nd: not detected. 
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Table 4.1b: Markers of effluent exposure in rainbow trout (plasma extracts) in +ESI mode. 
Marker

No. 

Observed ion 

(m/z) RT 

 P value  

C10 vs E10 C14 vs E14 C21 vs E21 

1 287.2014 4.30 6.77E-05 4.55E-01 nd 
2 349.1902 4.30 3.33E-09 4.55E-01 6.59E-01 
3 573.3970 4.31 3.22E-06 1.00E00 1.00E00 
4 246.1707 4.48 3.04E-06 6.50E-02 4.34E-01 
5 915.0385 4.10 4.73E-01 5.82E-01 5.43E-01 
6 801.2529 4.27 3.28E-04 1.50E-02 6.62E-01 
7 961.3014 4.27 1.00E-03 4.10E-02 7.55E-01 
8 710.7023 4.69 2.00E-03 1.00E00 nd 
9 711.0378 4.69 6.77E-05 1.00E00 nd 

10 799.4448 5.18 6.40E-02 1.00E00 nd 
11 849.7238 5.61 6.77E-05 1.00E00 6.64E-01 
12 679.9779 5.63 1.00E-03 1.00E00 4.13E-01 
13 566.8147 5.63 1.00E-03 8.48E-01 7.90E-01 
14 445.3036 5.39 2.48E-04 nd nd 
15 498.2889 8.80 3.92E-06 7.06E-01 4.66E-01 
16 398.3427 10.13 3.33E-09 2.00E-03 3.33E-04 
17 400.3571 10.57 6.77E-05 2.00E-03 3.33E-04 
18 464.2841 11.15 6.00E-03 nd 5.38E-01 
19 300.2900 20.08 6.89E-06 9.30E-02 6.62E-01 
20 327.0769 20.28 3.33E-09 nd 4.29E-01 
21 330.3380 21.58 4.30E-02 nd nd 
22 454.2910 21.63 1.00E+00 1.00E+00 1.00E+00 
23 284.3318 22.34 5.09E-07 6.10E-02 9.10E-02 
24 355.2827 22.90 2.00E-03 nd nd 
25 344.3165 23.13 3.22E-06 nd nd 
26 251.0509 23.28 4.84E-01 nd nd 
27 427.3036 24.15 3.33E-09 nd nd 
28 471.3306 24.16 3.33E-09 nd nd 
29 515.3564 24.14 6.77E-05 nd nd 
30 559.3819 24.11 4.30E-02 nd nd 
31 369.2982 24.31 3.33E-09 nd nd 
32 413.3238 24.30 5.66E-08 nd nd 
33 457.3506 24.27 3.33E-09 nd nd 
34 501.3767 24.25 3.33E-09 6.97E-01 2.03E-01 
35 545.4028 24.23 4.40E-01 2.10E-01 2.45E-01 
36 441.3199 24.63 7.00E-03 nd nd 
37 485.3454 24.64 3.33E-09 nd nd 
38 529.3716 24.63 3.33E-09 nd nd 
39 573.3977 24.62 3.33E-09 1.00E00 1.00E00 
40 427.3399 24.78 3.33E-09 nd nd 
41 471.3658 24.77 3.33E-09 nd nd 
42 515.3923 24.76 3.33E-09 nd nd 
43 559.4185 24.76 3.33E-09 nd nd 

      
 

ESI: electrospray ionization; m/z: mass to charge ratio; RT: retention time (min); C10: 10 days river water 
exposure (control); C14: 14 days river water exposure (control); C21: 21 days river water exposure 
(control); E10: 10 days effluent exposure, E14: 10 days effluent exposure followed by 4 days depuration, 
E21: 10 days effluent exposure then 11 days depuration; nd: not detected. 
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4.3.3.1 Chlorinated metabolites 

UPLC-TOFMS profiling in –ESI mode showed the occurrence of many markers 

of effluent exposure relating to the presence of different classes of chlorinated 

compounds and their metabolites. Four main classes of chlorinated compounds were 

identified in plasma of effluent-exposed fish (Table 4.2): chlorinated phenols (a sulphate 

conjugate of trichlorophenol at m/z 274.8743), chlorinated xylenols (two peaks 

corresponding to the glucuronide conjugates of  chloroxylenol and its methoxy 

metabolite at m/z 331.0587 and m/z 361.0691, respectively), and two peaks 

corresponding to the sulphate conjugate of chloroxylenol and its methoxy metabolite (at 

m/z 234.9831 and m/z 264.994, respectively), chlorophenes (two peaks corresponding to 

the glucuronide and sulphate conjugate of chlorophene at m/z 393.0741 and 296.9988, 

respectively) and chlorinated phenoxyphenols (one peak with a mass corresponding to 

the sulphate conjugate of diclosan at m/z 332.9397 and two peaks corresponding to the 

glucuronide and sulphate conjugate of triclosan at m/z 462.9755 and m/z 366.9001, 

respectively). The extracted ion chromatograms of the chlorinated metabolites detected 

in plasma samples from effluent-exposed trout plasma samples in –ESI mode are shown 

in Figure 4.4. None of these metabolites were detected in any control sample. Exact 

mass and fragmentation pattern were employed to fully characterize the structure of 

these metabolites. The retention time, exact mass, and Q-TOFMS fragmentation pattern 

of the glucuronide conjugates of chloroxylenol, a methoxy metabolite of chloroxylenol, 

chlorophene, and triclosan were the same as previously described to those detected in 

the bile samples (see Chapter 3). In –ESI mode, the Q-TOFMS spectra of the 

deprotonated glucuronide conjugates were dominated, as explained in Chapter 3, by the 

aglycone molecules together with the characteristic fragments of the glucuronide moiety 

(m/z 175.0243, m/z 157.0137, m/z 113.0239). In contrast, the sulphate esters of a 

trichlorophenol, chloroxylenol, a methoxy metabolite of chloroxylenol and triclosan 

showed the characteristic loss of 80 Da (loss of SO3) leading to the fragment ion [M-H-

SO3]
- for the detected chlorinated components. Sulphate conjugates can be formed when 

compounds with hydroxyl (especially phenolic groups) and amine groups come in 

contact with sulphuric acid after activation of 3′-phosphoadenosine-5′-phosphosulphate 

(PAPS) by the sulphotransferases (see Figure 4.5) (Levsen et al., 2005). The 

sulphotransferase enzyme catalyzes the transfer of the sulphonate group from PAPS to 

the hydroxyl group in a range of endogenous and exogenous substrates (Coughtrie, 

2002). The identity of the sulphate conjugate of a trichlorophenol was based on the 
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presence of a small peak at m/z 194.9171, corresponding to the parent ion after loss of 

the SO3 group (Figure 4.6 where the 3-Cl isotopic distribution for the molecular ion and 

the relative fragment are highlighted in yellow), whilst Q-TOFMS analysis was not 

possible for this compound due to its low response in full scan. This result indicated that 

the sulphate ester bond between the discussed chlorinated compounds and the sulphuric 

acid is not strong enough to avoid the cleavage of the ester bond in the source at the 

applied collision energy (10 eV). Parent ions at m/z 155.0264, m/z 185.0369 and 

286.9433 were generated by Q-TOFMS fragmentation for sulphate conjugate of 

chloroxylenol, methoxychloroxylenol and triclosan, respectively, after loss of the SO3 

group (Figure 4.7, 4.8 and 4.9). 

The sulphate conjugate of chlorophene and diclosan were putatively identified 

based on their exact mass obtained from UPLC-TOFMS analysis in –ESI mode (see 

Table 4.2). As observed in this study, the sulphate group when attached to phenylic 

groups can be easily cleaved from the bulk molecule (collision energy < 20 eV is 

required) whilst it is very hard to cleave when linked to a cyclic alkyl residual (e.g. 

cyprinol sulphate). 
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Table 4.2: Markers identified in trout plasma in -ESI mode. 

Class of chemical 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments
#
 

Parent 

compound 

formula Putative identity 

          
Chlorinated phenols 274.8743 7.85 C6H2O4SCl3 274.8739 1.5 0.9 194.9165 C6H3OCl3 Sulphate conjugate of a trichlorophenol 

Chlorinated xylenols 

331.0587 7.39 C14H16O7Cl 331.0585 0.6 0.3 175.0247, 155.0267, 113.0243 C8H9OCl Chloroxylenol glucuronide 
361.0691 7.83 C15H18O8Cl 361.0690 0.3 0.8 185.0371, 175.0243, 113.0239 C9H11O2Cl Glucuronide conjugate of a methoxy 

metabolite of chloroxylenol 
234.9831 8.06 C8H8O4SCl 234.9832 -0.4 1.5 155.0263 C8H9OCl Chloroxylenol sulphate 
264.9940 8.67 C9H10O5SCl 264.9937 1.1 0.3 185.0368 C9H11O2Cl Sulphate conjugate of a methoxy 

metabolite of chloroxylenol 

Chlorophenes 
393.0741 10.71 C19H18O7Cl 393.0741 0.0 0.2 217.0418, 175.0242, 113.0243 C13H11OCl Chlorophene glucuronide 
296.9988 11.87 C13H10O4SCl 296.9988 0.0 2.3  C13H11OCl Putative chlorophene sulphate 

Chlorinated 
phenoxyphenols 

332.9397 13.68 C12H7O5SCl2 332.9391 1.8 2.7  C12H8O2Cl2 Putative diclosan sulphate 
462.9755 12.49 C18H14O8Cl3 462.9754 0.2 0.0 286.9419, 175.0239, 113.0238 C12H7O2Cl3 Triclosan glucuronide 
366.9001 15.42 C12H6O5SCl3 366.9002 -0.3 0.8 286.9431 C12H7O2Cl3 Triclosan sulphate 

Nonionic surfactants 395.2073 16.45 C21H31O7 395.2070 0.8 0.4 219.1751, 175.0243 C15H24O Nonylphenol glucuronide 

Anionic surfactants 
325.1839 22.17 C18H29O3S 325.1837 0.6 1.7 183.0115, 170.0042 C17H30O3S C12-LAS 
339.1996 23.36 C19H31O3S 339.1994 0.6 0.8 197.0272, 183.0114, 170.0036 C19H32O3S C13-LAS 
403.3070 24.15 C22H43O6 403.3060 2.5 0.4 359.2791, 211.2053 C22H44O6 Tetradecanol-E4C metabolite 

Bile acids 
(biochemicals) 

514.2841 8.78 C26H44NO7S 514.2839 0.4 0.0 496.2724, 353.2473, 124.0066, 
106.9807, 79.9564 

C26H45NO7S Taurocholic acid 

498.2884 11.10 C26H44NO6S 498.2889 -1.0 0.3 124.0068, 106.9807 C26H45NO6S Taurochenodeoxycholic acid 
531.2992 11.53 C27H47O8S 531.2992 0.0 1.4 513.2864, 96.9592 C27H48O8S Cyprinol sulphate 

          
m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit; #Q-TOFMS fragments 
within ± 5ppm; LAS: linear alkylbenzene sulphonic acid. 
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Table 4.3: Markers identified in plasma of effluent-exposed trout in +ESI mode. 

Class of 

Chemical 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments
#
 

Parent 

compound 

formula
§
 Putative identity 

          
Non-ionic 
surfactants 

355.2827 22.90 C19H40O4Na 355.2824 0.0 0.1  C19H40O4 Tridecanol-3EO; Na adduct 
350.32 24.27 C19H44NO4 350.3270   151.0978  NH4-adduct 

Non-ionic 
surfactants 

369.2982 24.31 C20H42O4Na 369.2981 0.3 0.7  C20H42O4 Tetradecanol-3EO; Na adduct 
364.34 24.52 C20H46NO4 364.3427   151.0977, 133.0872  NH4-adduct 

413.3238 24.30 C22H46O5Na 413.3243 -1.2 0.7  C22H46O5 Tetradecanol-4EO; Na adduct 
408.36 24.49 C22H50NO5 408.3689   195.1230, 177.1132, 133.0862  NH4-adduct 

457.3506 24.27 C24H50O6Na 457.3505 0.2 0.0  C24H50O6 Tetradecanol-5EO; Na adduct 
452.39 24.53 C24H54NO6 452.3951   239.1483, 221.1383, 177.1118, 

133.0871 

 NH4-adduct 

501.3767 24.25 C26H54O7Na 501.3767 0.0 0.2  C26H54O7 Tetradecanol-6EO;  Na adduct 
496.42 24.49 C26H58NO7 496.4213   283.1756, 265.1661, 221.1380, 

177.1128, 133.0866 

 NH4-adduct 

545.4028 24.23 C28H58O8Na 545.4029 -0.2 2.7  C28H58O8 Tetradecanol-7EO; Na adduct 
540.44 24.44 C28H62NO8 540.4475   327.2025, 309.1905, 221.1394, 

177.1131, 133.0864 

 NH4-adduct 

Non-ionic 
surfactants 

427.3399 24.78 C23H48O5Na 427.3399 0.0 0.9  C23H48O5 Pentadecanol-4EO; Na adduct 
422.38 25.07 C23H52NO5 422.3845   195.1229, 177.1128 133.0863  NH4-adduct 

471.3658 24.77 C25H52O6Na 471.3662 -0.8 0.2  C25H52O6 Pentadecanol-5EO; Na adduct 
466.41 25.08 C25H56NO6 466.4108   239.1501, 221.1392, 177.1131, 

133.0867 

 NH4-adduct 

515.3923 24.76 C27H56O7Na 515.3924 -0.2 0.3  C27H56O7 Pentadecanol-6EO; Na adduct 
510.43 25.05 C27H60NO7 510.4370   283.1743, 265.1656, 221.1379, 

177.1126, 133.0860 

 NH4-adduct 

559.4185 24.76 C29H60O8Na 559.4186 -0.2 0.8  C29H60O8 Pentadecanol-7EO; Na adduct 
554.46 25.05 C29H64NO8 554.4632   327.2017, 221.1400, 177.1125, 

133.0869 

 NH4-adduct 

          

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit; #Q-TOFMS fragments 
within ± 5ppm; fragments obtained from ammonium adduct are labelled in italic font. 
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Table 4.3: (continued) Markers identified in plasma of effluent-exposed trout in +ESI mode. 

Class of 

Chemical 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments
#
 

Parent 

compound 

formula
§
 Putative identity 

          

Anionic 
surfactants 

427.3036 24.15 C22H44O6Na 427.3036 0.0 1.1 369.3009, 231.0855 C22H44O6 Tetradecanol-4EC metabolite; Na adduct 
422.34 24.44 C22H48NO6 422.3482   209.1021, 191.0921, 163.0970  NH4-adduct 

471.3306 24.16 C24H48O7Na 471.3298 1.7 0.1 413.3242, 275.1119 C24H48O7 Tetradecanol-5EC metabolite; Na adduct 
466.37 24.38 C24H52NO7 466.3744   253.1284, 235.1170, 207.1222  NH4-adduct 

515.3564 24.14 C26H52O8Na 515.3560 0.8 2.3 457.3483, 319.1364 C26H52O8 Tetradecanol-6EC metabolite; Na adduct 
510.4005 24.38 C26H56NO8 510.4006   297.1540, 279.1434, 251.1486  NH4-adduct 

559.3819 24.11 C28H56O9Na 559.3822 -0.5 0.9  C28H56O9 Tetradecanol-7EC metabolite; Na adduct 
554.42 24.34 C28H60NO9 554.4268   341.1821, 295.1763  NH4-adduct 

Anionic 
Surfactants 

441.3199 24.63 C23H46O6Na 441.3192 1.6 0.9  C23H46O6 Pentadecanol-4EC; Na adduct 
436.36 24.95 C23H50NO6 436.3638   209.1035, 191.0928, 163.0978  NH4-adduct 

485.3454 24.64 C25H50O7Na 485.3454 0.0 0.7 427.3390, 275.1094 C25H50O7 Pentadecanol-5EC metabolite; Na adduct 
480.39 24.88 C25H54NO7 480.3900   253.1284, 235.1182, 207.1227, 

147.0651 

 NH4-adduct 

529.3716 24.63 C27H54O8Na 529.3716 0.0 0.4 471.3655, 319.1374 C27H54O8 Pentadecanol-6EC metabolite; Na adduct 
524.41 24.87 C27H58NO8 524.4162   297.1542, 279.1447, 251.1598, 

191.0928 

 NH4-adduct 

573.3977 24.62 C29H58O9Na 573.3979 -0.3 0.6 515.3900, 363.1618 C29H58O9 Pentadecanol-7EC metabolite; Na adduct 
568.44 24.84 C29H62NO9 568.4425   341.1795, 323.1721, 295.1745, 

235.1180 

 NH4-adduct 

Steroid alkaloid 
398.3427 10.13 C27H44NO 398.3423 1.0 0.6 380.3514, 366.3158, 157.1012, 

98.0962 
C27H45NO Solanidine 

400.3577 10.57 C27H46NO 400.3579 -0.5 0.6 382.3475, 161.1327,  98.0952 C27H47NO Dihydrosolanidine 

Bile acids 
498.2889 8.80 C26H44NO6S 498.2889 0.0 1.1 462.2689, 337.2533, 126.0221 C26H45NO7S Taurocholic acid (loss of H2O) 
464.2841 11.15 C26H42NO4S 464.2835 1.5 0.7 339.2672, 126.0221 C26H45NO6S Taurochenodeoxycholic acid (loss of 2H2O) 

Acyl carnitines 
246.1707 4.48 C12H24NO4 246.1705 0.8 0.5 187.0975 C12H25NO4 Acyl-L-carnitine (putative 2-

methylbutyroylcarnitine) 
Sphingolipids 300.2900 20.08 C18H38NO2 300.2903 -1.0 0.0 282.2794, 264.2693, 252.2689 C18H37NO2 Sphingosine 

          

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit; #Q-TOFMS fragments 
within ± 5ppm; fragments obtained from ammonium adduct are labelled in italic font. 
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Figure 4.4: Extracted ion chromatograms of chlorinated metabolites detected in plasma from effluent-
exposed trout in –ESI mode. 
 
 

 

 

 

C18_100mm_FA_0.07ml/min

Time
5.00 10.00 15.00 20.00 25.00

%

0

100

5.00 10.00 15.00 20.00 25.00

%

0

100

5.00 10.00 15.00 20.00 25.00

%

0

100

5.00 10.00 15.00 20.00 25.00

%

0

100

5.00 10.00 15.00 20.00 25.00

%

0

100

5.00 10.00 15.00 20.00 25.00

%

0

100

5.00 10.00 15.00 20.00 25.00

%

0

100

5.00 10.00 15.00 20.00 25.00

%

0

100

5.00 10.00 15.00 20.00 25.00

%

0

100

5.00 10.00 15.00 20.00 25.00

%

0

100

Ra280310Neg_Trblood_E1comp_40ul Sm (Mn, 2x3) 1: TOF MS ES- 
366.9 100PPM

381

Ra10May11_Neg_fullscan_bloodTr-E1-89_5ul Sm (Mn, 2x3) 1: TOF MS ES- 
462.976 100PPM

89.1

Ra280310Neg_Trblood_E1comp_40ul Sm (Mn, 2x3) 1: TOF MS ES- 
332.94 100PPM

35.2

Ra10May11_Neg_fullscan_bloodTr-E1-89_5ul Sm (Mn, 2x3) 1: TOF MS ES- 
296.999 100PPM

16.3

Ra280310Neg_Trblood_E1comp_40ul Sm (Mn, 2x3) 1: TOF MS ES- 
393.074 100PPM

139

Ra280310Neg_Trblood_E1comp_40ul Sm (Mn, 2x3) 1: TOF MS ES- 
264.994 100PPM

145

Ra280310Neg_Trblood_E1comp_40ul Sm (Mn, 2x3) 1: TOF MS ES- 
234.983 100PPM

79.8

Ra280310Neg_Trblood_E1comp_40ul Sm (Mn, 2x3) 1: TOF MS ES- 
361.069 100PPM

75.6

Ra280310Neg_Trblood_E1comp_40ul Sm (Mn, 2x3) 1: TOF MS ES- 
331.059 100PPM

344

Ra280310Neg_Trblood_E1comp_40ul Sm (Mn, 2x3) 1: TOF MS ES- 
274.874 100PPM

52.0

R
e
la

ti
v

e
 a

b
u

n
d

an
c
e

Time

Sulfate conjugate of a trichlorophenol

Chloroxylenol glucuronide

Glucuronide conjugate of a methoxy
metabolite of chloroxylenol

Chloroxylenol sulfate

Sulfate conjugate of a methoxy
metabolite of chloroxylenol

Chlorophene glucuronide

Chlorophene sulfate

Diclosan sulfate

Triclosan glucuronide

Triclosan sulfate



178 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: The enzymatic sulphation of phenol. Adapted from Levsen, Schiebel et al. (2005). 
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Figure 4.6: TOFMS spectra for isomer of trichlorophenol sulphate (a) and full scan extracted ion 
chromatograms for the molecular ion m/z 274.8740 (b) and in-source fragment m/z 194.917 (c) (collision 
energy=10 eV) detected in plasma from effluent-exposed trout in -ESI mode. 3-Cl isotopic pattern for the 
molecular ion and the fragment are highlighted in gray. 
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Figure 4.7: a) Mass spectrum of sulphate conjugate of chloroxylenol obtained with collision energy of 10 
eV and b) its relative Q-TOFMS spectrum obtained with collision energy of 12 eV detected in plasma 
from effluent-exposed trout in –ESI mode. 
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Figure 4.8: Mass spectrum of sulphate conjugate of a methoxy chloroxylenol obtained with collision 
energy of 10 eV (a) and its relative Q-TOFMS spectrum obtained with collision energy of 12 eV (b) 
found in plasma from effluent-exposed trout in –ESI mode. 
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Figure 4.9: a) Mass spectrum of sulphate conjugate of triclosan obtained with collision energy of 10 eV 
and b) its relative Q-TOFMS spectrum obtained with collision energy of 20 eV found in plasma from 
effluent-exposed trout in –ESI mode. 
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4.3.3.2 Surfactant metabolites  

Anionic and non-ionic surfactants were also detected as potential marker 

compounds in effluent-exposed fish plasma in both ESI modes. UPLC-TOFMS analysis 

showed two peaks of linear alkylbenzene sulfonic acid (LASs) which were identified as 

(C12-LAS and C13-LAS) in –ESI mode (Table 4.2). Q-TOFMS fragmentation spectra 

of these metabolites revealed the same characteristic ions, as described in Chapter 3, at 

m/z 183.0116 (C8H7SO3), m/z 170.0038 (C7H6SO3) and/or m/z 197.0272 (C9H9SO3) 

(Figure 4.10). 

Glucuronide nonylphenol (non-ionic surfactant) was detected in fish plasma in –

ESI mode (Table 4.2) showing comparable RT, accurate mass and Q-TOFMS 

fragmentation pattern to the one detected in fish bile (see Chapter 3). 

Alkyl ethoxylates (AxEOn; where x=13-15; n=3-7) were also detected in fish 

plasma but only in +ESI mode as sodium adducts [M+Na]+ (Table 4.3). Unlike in bile 

samples, in the plasma samples these metabolites were not conjugated by the 

glucuronide moiety. As observed in Chapter 3, sodium adducts of AEOs series that 

were detected as markers of effluent exposure were too stable to give significant 

fragmentation, therefore, addition of ammonium formate was employed for a second 

batch of analysis (composite sample of control and effluent-exposed fish for 10 days of 

exposure, C10 and E10) in order to replace the sodium ion with the ammonium adduct 

and therefore enhance the chance of fragmentation for the studied compounds. Selected 

ammonium adducts of AEOs resulted a good choice for further Q-TOFMS experiments 

as demonstrated in Chapter 3. Ammonium adducts gave rise to neutral loss of alkene 

(CnH2n; where n=13-15) plus NH3 at m/z ranging from 151.0970 (C6H15O4) to 327.2019 

(C14H31O8) (44 Da apart from each other). Furthermore, many fragments characteristic 

of the ethoxylated compounds were obtained at m/z ranging from 133.0865 (C6H13O3) 

to 265.1651 (C12H25O6) (each ion separated by 44 Da) (for details see Chapter 3). In 

Figure 4.11, an example is given for the fragmentation pattern of the ammonium adduct 

ions at m/z 452.3951 and m/z 466.4108, which were positively identified as 

tetradecanol-5EO and pentadecanol-5EO, respectively. 

An additional series with m/z ranging from 427.3036 to 559.3819 and from 

441.3199 to 573.3977 were also detected in +ESI mode as potential markers, differing 

by 44 Da from each other (EO unit) (Table 4.3). These peaks were identified as 

tetradecanol and pentadecanol polyethoxy carboxylates (C14ECn and C15ECn; where 

n=4-7), respectively. Characteristic ions were obtained from the fragmentation of the Na 
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and NH4 adducts:  ammonium adducts showed loss of alkene plus NH3 followed by loss 

of H2O and CO, whilst fragmentation of sodium adducts led to the loss of the acetate 

group (-58 Da) and alkene by central cleavage of the parent ion (-196 Da and -210 Da 

for the two series, respectively). These results were comparable to the ones obtained for 

the bile samples (see Chapter 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Molecular structure and relative Q-TOFMS spectra for linear alkylbenzene sulfonic acid 
(LASs): a) C12-LAS and b) C13-LAS detected in plasma from effluent-exposed trout in –ESI mode.  
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Figure 4.11: Q-TOFMS spectra of ammonium adducts for Alkyl polyethoxylates (AEOs): a) 
tetradecanol-5EO and b) pentadecanol-5EO detected in plasma from effluent-exposed trout in +ESI mode 
(collision energy=20 eV). 
 
 

4.3.3.3 Steroid alkaloids 

 UPLC-TOFMS profiling of plasma extracts revealed the presence of two 

steroid alkaloids which could be detected only in +ESI mode giving rise to signals at 

m/z 398.3427 and m/z 400.3577, respectively (Table 4.3). These compounds were 

identified as solanidine and dihydrosolanidine, by means of exact mass data (m/z 

accuracy < 1ppm) and high energy collisional dissociation fragmentation patterns in full 

scan mode (CE: 50eV)(data not shown). An abundant in-source fragment ion at m/z 

98.9869, corresponding to the heterocyclic ring (C6H12N), was obtained for both 

compounds as well as the signal at m/z 382.3474 generated by the loss of H2O from the 

dihydrosolanidine molecule. Further mass spectrometry information will be given in 

Chapter 5 since these compounds were also present in roach plasma (detected as 

sulphate conjugates). 
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Analysis of the UPLC-TOFMS profiles for the plasma samples revealed the 

presence of highly saturated peak in all the treatments (C10, C14, C21, E10, E14, E21). This 

peak has been identified as the anaesthetic tricaine mesilate (MS222). In fact, tricaine 

mesilate, a methane sulfonate salt of 3-aminobenzoic acid ethyl ester, together with 

benzocaine (another popular anaesthetic and structural analogue), is one of the most 

widely used anaesthetics in marine and freshwater fish (Allen and Hunn, 1986, 

Meinertz et al., 1999) (Figure 4.12). MS222 was not included in the peak list because it 

was present in both control and treatment groups. This compound was detected only in 

+ESI mode, giving a signal corresponding to the protonated molecular ion at m/z 

166.0868 [C9H12NO2]
+. A careful examination of the obtained spectra led to the 

detection of another saturated peak at m/z 138.0555 [C7H8NO2]
+, corresponding to the 

loss of C2H4 from the molecular ion. In addition, two signals (different m/z but same 

RT) due to the presence of MS222 were found at m/z 120.0449 [C7H6NO]+ and m/z 

94.0657 [C6H8N]+ (Figure 4.13). This result indicates MS222 can be subjected to in 

source CID fragmentation under the experimental condition employed in this study. 

Furthermore, fragmentation of tricaine has been previously described by Scherpenisse 

and Bergwerff (2007). 

 

 

 

 

 

Figure 4.12: Chemical structure of tricaine mesilate (MS222). 
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Figure 4.13: a) Full scan extracted ion chromatograms and b) spectrum of the in-source fragmented 
MS222 in plasma of trout in +ESI  mode (collision energy = 10 eV). 
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4.3.3.4 Bile acids 

Three different bile acids were detected in plasma from fish exposed to effluent 

wastewater:  taurocholic acid (TC), taurochenodeoxycholic acid (TDC) and cyprinol 

sulphate (putative identity). TC and TDC were detected in both ESI modes (Table 4.2 

and Table 4.3) whilst cyprinol sulphate could be detected only in –ESI mode (Table 

4.2). Their intensities were increased in plasma samples after 10 days of effluent 

exposure (fold change and p-value for TC= 9.5;3.0×10-6, for TDC 9 and 3.0×10-3 and 

for cyprinol sulphate  12.4 and 2.0×10-4). Only the identity of TC and TDC was further 

confirmed by comparison to standards (retention time and mass spectra) since no 

standard for cyprinol sulphate was commercially available. Furthermore, TC and TDC 

standards were also analysed by Q-TOFMS experiments to obtain accurate mass for the 

fragments and the informative ions were used to confirm and characterize these bile 

acids in both ESI modes (Appendix 4.4). 

Bile acids were effectively ionized in -ESI mode, producing a prominent [M-H]- 

ion at m/z 514.2841 (TC), m/z 498.2884 (TDC) and m/z 531.2992 (cyprinol sulphate), 

respectively. 

Q-TOFMS spectra of the deprotonated ion for cyprinol sulphate (m/z 531.2992) 

showed a characteristic fragment at m/z 96.9596, which corresponds to the deprotonated 

sulphate group [HSO4]
-, and an ion at m/z 513.2886 corresponding to loss of H2O 

(Figure 4.14). High collision energy (50eV) was applied in order to obtain a detectable 

signal at m/z 96.9596 and no further fragmentation was observed. This poor 

fragmentation behaviour could be explained by the high stability of the molecular ion. 

Full characterization of this bile acid structures will be described in Chapter 5 because 

the signal for this compound in trout plasma was too poor to allow further detailed 

study.  

The diagnostic fragmentation of taurine conjugates (TC and TDC) was obtained 

after selection of the corresponding deprotonated ion for Q-TOFMS experiments. The 

relative fragmentation pattern showed fragment ions at m/z 353.2481, m/z 124.0068, 

m/z 106.9803, and m/z 79.9568 (only for TC). These ions correspond to the loss of 

taurine moiety plus 2H2O from the molecular ion [C24H34O2]
-, taurine moiety 

[C2H6NO3S]-, ethenesulfonate [C2H3O3S]-, and sulphate [SO3]
-, respectively. Neutral 

loss of H2O from the molecular ion was also observed at m/z 496.2724 in the –ESI Q-

TOFMS spectra (Figure 4.14).  
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In +ESI mode, three markers ions (different m/z but same RT) were assigned to 

TC (molecular ion C26H46NO7S at m/z 516.2991, loss of H2O C26H44NO6S at m/z 

498.2889 and loss of 2H2O C26H42NO5S at m/z 480.2786, respectively) and one to TDC 

(loss of 2H2O C26H44NO6S at m/z 464.2841). An ion at m/z 462.2667 (C26H40NO4S) 

corresponding to the loss of 3 molecules of H2O from the molecular ion was also 

present in the TC mass spectrum but was not indicated as marker by S-plot analysis. 

The most abundant ion amongst the three markers proposed for TC was the ion at m/z 

498.2889 (loss of H2O). 

There was not enough plasma sample to undertake Q-TOFMS analysis so in 

order to confirm the fragmentation pattern of these bile acids in +ESI mode and 

potentially obtain additional structural information, high energy collisional dissociation 

fragmentation in full scan mode was performed on the same plasma samples previously 

profiled. A range of collision energies (15eV to 20eV) was used to obtain different 

fragmentation patterns for the molecular ions. As clearly shown in Figure 4.15 for TC 

molecule, the extracted ion chromatogram (XIC) for the in-source generated fragment 

ion at m/z 498.2889 (loss of H2O) was aligned with the XICs of the fragment ions at m/z 

480.2784, m/z 462.2689, m/z 337.2533, and m/z 126.0221 which correspond to loss of 

2H2O, loss of 3H2O, loss of taurine moiety, and taurine moiety itself, respectively. TDC 

gave rise to the ion at m/z 337.2533 using a collision energy of 20eV, which 

corresponds to loss of taurine moiety from the fragment ion at m/z 464.2835 (loss of 

2H2O) (Figure 4.16).  
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Figure 4.14: Q-TOFMS spectra for: a) taurocholic acid, b) taurochenodeoxycholic acid and c) cyprinol 
sulphate in plasma from effluent-exposed fish in -ESI mode. 
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Figure 4.15: Full scan extracted ion chromatograms of the in-source fragmented taurocholic acid in 
plasma from effluent-exposed trout in +ESI  mode (collision energy = 20 eV). 
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Figure 4.16: Full scan extracted ion chromatograms of the in-source fragmented Taurochenodeoxycholic 
acid in plasma from effluent-exposed trout in +ESI  mode (collision energy = 20 eV). 
 

 

4.3.3.5 Acylcarnitine 

The detected acylcarnitine was putatively identified as methylbutryolcarnitine 

and it increased (3-fold; p= 3.04×10-6) in plasma of effluent-exposed fish. 

Methylbutryolcarnitine was detected in +ESI mode as the protonated molecule [M+H] 

at m/z 246.1707 (Table 4.3). A careful examination of methylbutryolcarnitine spectrum 

obtained from the UPLC-TOFMS profiling led to the detection of a small peak at m/z 

187.0970 at the same RT corresponding to C9H15O4 (Figure 4.17).  
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Q-TOFMS experiments selecting the ion at m/z 246.1707 as parent ion also confirmed a 

small fragment ion at m/z 187.0975 (Figure 4.18). The neutral loss of 59 Da can be 

related to the loss of C3H9N (corresponding to the polar head of the molecule). Since the 

relative commercial standard was not available, in order to further investigate this 

molecular structure, Q-TOFMS experiments of a similar standard (O-acetyl-L-carnitine) 

were performed (Figure 4.18). Results showed the presence of both characteristic 

fragment ion at m/z 85.0279 and characteristic loss of 59 Da as also described for the 

fragmentation of carnitines by McClellan et. al. (2002). However, exact structure 

elucidation can only be confirmed by further MSn experiment. The daughter ion at m/z 

187.0996 could be fragmented resulting in another generation of daughter ions to assist 

the structure elucidation. However, this experiment could not be performed in the 

present study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.17: Full scan extracted ion chromatograms for putative methylbutryolcarnitine in plasma from 
effluent-exposed trout in +ESI mode as molecular ion m/z 246.1710 and in-source fragment m/z 197.0980 
(collision energy = 10 eV). 
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Figure 4.18: Comparison of Q-TOFMS spectra for acylcarnitine (methylbutryolcarnitine) in (a) plasma 
from effluent-exposed trout and (b) standard acetyl carnitine in +ESI mode (collision energy = 15 eV). 
 

4.3.3.6 Sphingolipids 

Sphingosine revealed a concentration decrease (2-fold; p= 6.89×10-06) when 

compared to the control level. It was detected by S-plot as potential marker only in 

+ESI mode as molecular ion at m/z 300.2900 (Table 4.3). A very abundant in-source ion 

at m/z 282.2800 due to loss of H2O from the molecular ion (CE 10 eV) was also 

proposed as marker at the same RT. Q-TOFMS experiment of the sphingosine molecule 

in +ESI mode showed a very abundant ion at m/z 282.2797 (C18H35NO), corresponding 

to the loss of H2O. Other fragment ions at m/z 264.2691 (C18H33N) and m/z 252.2691 

(C17H33N), corresponding to loss of H2O and formaldehyde group respectively, were 

also present in the fragmentation pattern (Figure 4.19). METLIN database assisted in 

the confirmation of the obtained fragmentation pattern for this biomarker, and in order 

to fully characterize its structure, a comparison to sphingosine standard was then 

performed, showing same RT, exact mass and MS-MS fragmentation pattern as the 

sample. 
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Figure 4.19: Comparison of Q-TOFMS spectra for sphingosine and structures of relative fragment ions in 
(a) plasma from effluent-exposed trout and (b) standard compound in +ESI mode at collision energy of 15 
eV. 
 

 

 

Table 4.4 summarizes the identified markers detected in exposed fish plasma. 

Other contaminants and possible biochemicals were also detected as potential markers 

but they could not be fully characterized either due to poor signal in the sample or limit 

of time. However, some of them appeared to belong to the classes of bile acids, 

ceramides and phospholipids. Further work is needed though in order to confirm the 

identity of these potential markers (see Appendix 4.3 for full list of unidentified 

markers). 
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Table 4.4a: Chemical markers present in plasma of trout exposed to a WwTW effluent. 

Class of chemical Chemical identity 

Fold change#### 

C10 vs E10 

p-value 

C10 vs E10 

Relative 

abundance in 

E10  in either 

+ESI or –ESI 

datasets 

(mean±S.E) 

% Decrease 

during 

depuration 

period 

4 day 11 day 

Chlorinated phenol 
metabolites 

Sulphate conjugate of a 
trichlorophenol 

23.6±5.4 2.5×10-4 0.4±0.1 100 100 

Chlorinated xylenol 
metabolites 

Chloroxylenol glucuronide 91.4±7.0 3.3×10-9 1.5±0.1 100 100 
Glucuronide conjugate of a 
methoxy metabolite of 
chloroxylenol 

29.2±1.7 3.3×10-9 0.5±0.0 100 100 

Chloroxylenol sulphate 6.4±2.9 5.1×10-7 0.1±0.0 100 100 
Sulphate conjugate of a methoxy 
metabolite of chloroxylenol 

73.1±5.3 3.3×10-9 1.2±0.1 100 100 

Chlorophene metabolites 
Chlorophene glucuronide 54.4±3.7 3.3×10-9 0.9±0.1 100 100 
Putative chlorophene sulphate 12.6±3.8 7.0×10-3 0.2±0.1 100 100 

Chlorinated 
phenoxyphenols 

Triclosan glucuronide 46.8±3.1 3.3×10-9 0.8±0.1 100 100 
Putative diclosan sulphate 27.5±3.4 5.1×10-7 0.5±0.1 100 100 
Triclosan sulphate 369.6±37.6 3.3×10-9 6.2±0.6 88.8 92.3 

Linear alkylbenzene 
sulphonic acid (LAS) 

C12- LAS 2.6±0.4¶ (627.5) 4.6×10-7 10.6±0.8 49.5 67.5 
C13-LAS 7.6±1.4¶ (3374.6) 3.3×10-9 57.0±6.1 84.6 89.0 

Metabolites of nonylphenol 
polyethoxylate (NPEO) 

Nonylphenol glucuronide 86.7±14.1 5.1×10-7 1.5±0.2 100 100 

Alcohol polyethoxylate 
(AEO) 

Tridecanol-3EO* 73.1±20.2 2.0×10-3 0.2±0.1 100 100 
Tetradecanol-3EO* 65.1±20.1 3.3×10-9 0.4±0.1 100 100 
Tetradecanol-4EO* 97.3±25.7 5.7×10-8 0.5±0.1 100 100 
Tetradecanol-5EO* 187.6±34.4 3.3×10-9 1.0±0.2 100 100 
Tetradecanol-6EO* 9.1±4.2¶ (116.0) 3.3×10-9 0.6±0.2 87.6 92.6 
Tetradecanol-7EO* 4.1±2.0¶ (60.7) 1.1×10-6 0.3±0.1 50.0 59.0 
Pentadecanol-4EO* 89.4±14.6 3.3×10-9 0.5±0.1 100 100 
Pentadecanol-5EO* 121.4±15.2 3.3×10-9 0.7±0.1 100 100 
Pentadecanol-6EO* 302.0±28.2 3.3×10-9 0.7±0.1 100 100 
Pentadecanol-7EO* 115.0±10.5 3.3×10-9 0.6±0.1 100 100 

Alcohol polyethoxy 
carboxylates (AECs) 

Tetradecanol-4EC* 89.3±26.5 3.3×10-9 0.5±0.1 100 100 
Tetradecanol-5EC* 358.9±40.6 3.3×10-9 0.3±0.1 100 100 
Tetradecanol-6EC* 111.9±21.3 6.8×10-5 0.3±0.1 100 100 
Tetradecanol-7EC* 32.1±12.6 4.3×10-2 0.9±0.0 100 100 
Pentadecanol-4EC* 50.4±16.3 7.0×10-3 0.3±0.1 100 100 
Pentadecanol-5EC* 41.1±12.3 3.3×10-9 0.2±0.1 100 100 
Pentadecanol-6EC* 89.5±5.4 3.3×10-9 0.2±0.0 100 100 
Pentadecanol-7EC* 65.7±4.8 3.3×10-9 0.1±0.0 100 100 

Steroid alkaloid 
Solanidine 84.7±8.8 3.3×10-9 84.7±8.8 100 100 
Dihydrosolanidine 37.7±7.1 6.8×10-5 37.7±7.1 100 100 

C10: 10 days river water exposure (control); E10: 10 days effluent exposure; p values were based on one tank only; 
Bonferroni correction threshold used was 4.1×10-6 in –ESI and 3.7×10-6 in +ESI. 
¶ Compounds detected in the control plasma samples (fish exposed to river water) at levels > LOD, where 
LOD=0.0054 in –ESI; LOD=0.0169 in +ESI. LOD units are relative to the intensities of the normalized total mass 
spectra signals in the mass chromatograms of the datasets (concentration were detected in reference trout due to 
exposure to contaminated control river water). 
* Markers detected in +ESI mode as [M+Na]+; all other markers detected in –ESI mode as [M-H]-. 
#### Fold change values are reported as mean±standard error (mean±S.E); in brackets are fold change values assuming 
an LOD value in the control samples was detected. 
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Table 4.4b: Biochemical markers present in plasma of trout exposed to a WwTW effluent. 

Class of chemical Chemical identity 

Fold change#### 

C10 vs E10 

p-value 

C10 vs E10 

Relative 

abundance in 

E10  in either 

+ESI or –ESI 

datasets 

(mean±S.E) 

% Metabolite 

change 

4 day 11 day 

Bile acids 
Taurocholic acid 9.5±5.1¶ 3.0×10-6 29.2±9.3 88.4↓ 89.7↓ 
Taurochenodeoxycholic acid 9.0±4.2¶ 3.0×10-3 8.9±3.7 91.5↓ 87.0↓ 
Cyprinol sulphate 12.4±9.2¶ 2.0×10-4 1.0±0.3 75.8↓ 100↓ 

Acylcarnitines 2-Methylbutyroylcarnitine* 3.0±0.4¶ 3.0×10-6 1.0±0.1 64.5↓ 84.2↓ 
Sphingolipids Sphingosine* 0.5±0.1¶ 6.9×10-6 0.1±0.0 37.8↑ 33.0↑ 

C10: 10 days river water exposure (control); E10: 10 days effluent exposure; p values were based on one tank only; 
Bonferroni correction threshold used was 4.1×10-6 in –ESI and 3.7×10-6 in +ESI. 
¶ Compounds detected in the control plasma samples (fish exposed to river water) at levels > LOD, where 
LOD=0.0054 in –ESI; LOD=0.0169 in +ESI. LOD units are relative to the intensities of the normalized total mass 
spectra signals in the mass chromatograms of the datasets. 
* Markers detected in +ESI mode as [M+H]+; all other markers detected in –ESI mode as [M-H]-. 
#### Fold change values are reported as mean±standard error (mean±S.E) 
↑Metabolites where depuration period caused a percentage increase; all other metabolites reported as percentage 

decrease ↓. 
 

4.3.4 The rate of elimination of markers of effluent exposure from trout blood 

The rate of elimination of the metabolites in the fish blood during the depuration 

periods were calculated as the percent decrease in the metabolite concentration in the 

fish blood relative to the amounts present after 10 days of effluent exposure (see Table 

4.4). Many of the xenobiotic compounds could not be detected after 4 days depuration 

indicating that they were rapidly eliminated from the fish blood (equivalent to 100% 

decrease in concentration during the depuration period). However other compounds 

such as the LAS metabolites, and certain long chain tetradecanol-EO surfactants were 

detected in the plasma after 4 days depuration. These metabolites, e.g. C12-LAS and 

tetadecanol-7EO, were also present after 11 days depuration. A high percentage 

clearance were observed after 4 days of depuration for most compounds (ranging 

between 84% and 100%) with the exception of the non-ionic surfactant C14(EO)7 

(46%) and C12-LAS (49%). After 11 days of depuration, 100% elimination was 

achieved for all metabolites at this sampling time with exception of C14(EO)6 (92%), 

C13-LAS (89%), C14(EO)7 (67%) and C14(EO)7 (59%). This suggests that these 

xenobiotics were rapidly metabolised and/or eliminated from the fish body. The relative 

concentrations in the analyzed plasma for the endogenously derived markers TC and 

TDC were reduced by at least 88% after 4 days of depuration in river water and by 87% 

after 11 days of depuration. This result indicates that 4 days of depuration is the time 

required by the organism to restore to near normal physiological status after changes 

due to the effluent exposure. In the case of cyprinol sulphate, more than 75% of the 

original amount found in the plasma of fish exposed to effluent for 10 days was reduced 
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after 4 days of depuration whilst the compound was back to normal levels after 11 days 

of depuration. This trend also suggests that the effluent exposure induced temporal 

increases in cyprinol sulphate blood levels in female trout under the exposure conditions 

used. Amounts of 2-methylbutyroylcarnitine were reduced by over 64% after 4 days of 

depuration and more than 82% after 11 days in river water. The relative concentration 

of sphingosine was increased by at least 37% and 33% after 4 days and 11 days, 

respectively. 
 

4.4 Discussion 

Many studies have already demonstrated that bile can efficiently concentrate a 

varaity of contaminants from the environment at levels which facilitate chemical 

analysis and quantification (Larsson et al., 1999, Gibson et al., 2005a). The levels of 

contaminants in the bile are often much higher (up to 1000 fold) when compared to the 

corresponding circulating blood levels (Smith and Hill, 2006). However the analysis of 

blood or plasma is necessary in order to determine which contaminants are actually 

present in the circulatory system and can be therefore bioavailable to the other tissues. 

The xenometabolomes obtained from bile and plasma samples of effluent-

exposed fish showed some similarities and some differences (see Tables 3.11 and 4.4). 

Glucuronide conjugates of some chlorinated compounds (chloroxylenol, chlorophene, 

triclosan) and nonylphenol were detected in both matrices. However other xenobiotics 

that were detected in bile (as glucuronide conjugates) such as mefenamic acid, resin 

acids, oxybenzone and naphthols were not detected as markers of effluent exposure in 

the plasma. In addition, not all the surfactants or their metabolites that were found in the 

bile were detected in the plasma. For instance SPCs, NPEOs, dodecanol EOs, short 

chain ethoxymers of the other AEOs, and tridecanol ECs were not detected in the 

plasma as either conjugates or the parent compound. This is despite that observation 

that tetradecanol 3-7EOs, tetradecanol and pentadecanol ECs were detected in both bile 

and plasma as either the free parent compound or as the glucuronide conjugate. The 

plasma samples had been concentrated 20 fold unlike the bile samples which were 

analysed diluted i.e. 1 µL of bile equivalent and 20 µL of plasma equivalents were 

profiled on column. Despite preconcentration of the plasma samples, the data suggest 

that a number of xenobiotics that could be present in the plasma were not detected, 

either as a result of too low concentrations in the blood, or due to ion suppression 

caused by the plasma matrix. This result highlights the need of further optimization for 
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the method used in this study in order to maximize the concentration and detection of 

the full range of factor for significant markers. Sulphate conjugates of some xenobiotics 

were detected only in plasma samples and these were the conjugates of chloroxylenol, 

triclosan, diclosan, chlorophene and trichlorophenol. Their absence in the bile could be 

due to their excretion via the urine, especially as they are small molecules.  

It is well established that xenobiotic conjugates whose molecular weight are 

usually above the threshold for biliary elimination, are preferentially translocated into 

bile and only a small proportion of the xenobiotic mass that is conjugated as the 

glucuronide (as well as sulphate conjugates) can be transferred to the systemic 

circulation and to finally reach the kidneys to be excreted via urine (Hirom et al., 1972, 

Chipman and Walker, 1981). In this study, glucuronide conjugates of triclosan, 

chlorophene and chloroxylenol were present in the bile (corresponding to molecular 

weights of 462, 393 and 331) whereas both the glucuronide and sulphate conjugates 

(molecular weight of sulphates 336, 296 and 234) of these xenobiotics were 

predominant metabolites in the plasma samples. 

As explained in details in section 4.4, the cofactor for the sulphonation reaction 

is 3′-phosphoadenosine-5′-phophosulphate (PAPS) (Figure 4.5). This compound is 

synthesized from adenosine triphosphate (ATP) and inorganic sulphate, and because 

two molecules of ATP are needed in this biotransformation process (a high energy 

content is required) (Falany, 1997), the cellular levels of this cofactor are usually low as 

a result of relatively slow rate of PAPS formation. The low level of this cofactor may 

explain why, in many studies, the relatively low effectiveness of sulphonation compared 

to other biotransformation pathways when the organism is exposed to an unexpected 

increase of potential substrates (Di Giulio and Hinton, 2008). Sulphotransferase activity 

in the channel catfish (Ictalurus punctatus) has already been investigated for phenolic 

and alcoholic xenobiotic substrates. Sulphonation of phenolic compounds revealed 

higher activity than alcoholic substrates (Tong and James, 2000). The same results were 

observed in this study where chlorinated phenolic compounds (e.g. chloroxylenol and 

chlorophene) were metabolized to their glucuronide and sulphate conjugates while 

alcoholic surfactants were just detected as parent molecules. In previous studies 

triclosan was proved to inhibit glucuronidation and sulphonation processes for phenolic 

xenobiotics (Wang et al., 2004). In this study, the presence of triclosan in the plasma 
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samples could have affected the metabolism of the other phenolic compounds present in 

the same matrix. 

Although both sulphate and glucuronide conjugates can be directly excreted 

from the fish via urine or bile, they can also hydrolysed back to the parent xenobiotic 

and recirculated in the blood system prior to reconjugation and excretion. Sulphatase 

enzyme activity is generally more relevant in the liver, but sulphation process might 

become more important in the intestine either when substrate concentrations are very 

low or when some specific species are involved (e.g. catfish) (Tong and James, 2000, 

Di Giulio and Hinton, 2008). Glucuronide conjugates can be hydrolysed in the lower 

gut, and the parent xenobiotic can then pass through the epithelial wall and recirculate 

in the body prior to reconjugation in the liver (where it may undergo another round of 

biliary cycling); a process known as enterohepatic circulation (Jandacek and Tso, 2007). 

These processes can increase the persistence and toxicity of the parent compound within 

the organism. 

The detection of a complex mixture of xenobiotics circulating in the blood of 

effluent exposed fish suggests that there could be a number of toxicological effects on 

fish health. For instance, as discussed in Chapter 3, many of the chlorinated compounds 

are antiandrogenic and have the capacity to disrupt sexual differentiation of male fish. 

Triclosan can also disrupt lipid biosynthesis in bacteria and may target related enzymes 

in higher organisms. Specifically, triclosan inhibits bacterial fatty acid synthesis binding 

at the enoyl-acyl carrier protein reductase (FabI) as primary site for action (Heath et al., 

1999). Binding of triclosan to enoyl reductases has been reported in both gram-positive 

(Staphylococcus aureus) and gram-negative (Escherichia coli, Pseudomonas 

aeruginosa, and Haemophilus influenzae) bacteria (McDonnell, 2007). There is less 

information on the mode of action and toxicology of chlorophene and chloroxylenol in 

vertebrates. 

Most of the surfactants detected in the plasma were detected as non-conjugated 

free compounds. The toxicity of non-ionic surfactants mainly depends on their 

hydrophobicity, which generally increases as the number of ethoxymer units decreases 

(Boeije et al., 2006, Roberts et al., 2007). Surfactants can interact with the biological 

membranes modifying the lipid and protein metabolism and therefore causing increase 

in permeability and disruption of trans-membrane solute transport. (Müller et al., 1999). 

The mechanisms of toxicity of AEOs are similar to other non-ionic surfactants acting as 
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general narcotics, and their toxicity depends on their hydrophobicity, generally 

increasing with the decreasing of EO content (Boeije et al., 2006, Roberts et al., 2007). 

Previous studies proved that the structure of mitochondria in gill tissue can be altered 

due to exposure to surfactants, leading to a decrease in the oxygen consumption 

(Cardellini and Ometto, 2001).  

Anionic surfactants may behave differently to non-ionic surfactants, Verge et al. 

(2001) tested LAS acute toxicity to D. magna and toxicity increased either with the 

alkyl chain length or with the homologue molecular weight. This behaviour was 

explained by the higher interaction of heavier homologues with cell membranes. 

The analysis of plasma extracts of effluent-exposed fish also revealed that some 

endogenous metabolites were potential markers of effluent exposure (Table 4.4). These 

included bile acids, a sphingolipids and an acyl carnitine metabolite. Bile acids (BAs) 

are the major components of bile and are synthesized in hepatocytes starting from the 

cholesterol molecule. BAs are usually conjugated with glycine or taurine, and secreted 

into the small intestine via bile (Chiang, 2003, Hofmann, 1999). Bile acids have 

important roles in the cholesterol homeostasis, lipid absorption, and intestinal signalling 

(Gu et al., 1992). Recently, BAs have been recognized as signaling molecules, which 

can activate several target genes, such as the farnesoid X receptor, the pregnane X 

receptor and the vitamin D receptor as well as selected G protein receptor and a number 

of other signalling pathways in liver cells (Chiang, 2002, Zollner et al., 2006). However, 

BAs can also be cytotoxic (Latta et al., 1993) and can cause hepatotoxicity (Hofmann, 

1999). Taurocholic acid (TC) is the major component of bile acids in rainbow trout and 

to a lesser extent so is taurochenodeoxycholic acid (TDC) (Yeh and Hwang, 2001). 

Cyprinol sulphate is a bile acid specific to carp bile (detailed in chapter 5); however, 

this component was also found at detectable levels in juvenile female trout. This 

research revealed a significant increase of all three bile acids levels in plasma from 

effluent-exposed fish and this trend may indicate liver and gastrointestinal diseases in 

the animal, which might be partially related to the effluent exposure. As bile acids can 

be released from dysfunctional hepatocytes into the blood, cholestasis and other types of 

liver injury can also increase bile acids concentrations in plasma (Pauli-Magnus and 

Meier, 2006, Zollner and Trauner, 2008). It is possible that exposure to the xenobiotics 

such as the surfactants in the effluent have resulted in disruption of liver cell membranes 

and also disrupted  transport of bile acids from the hepatocyte to the bile canaliculis. 
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Elevated serum or plasma bile acids have therefore long been used as prognostic and 

diagnostic markers for liver injury and diseases in mammals (Xiang et al., 2010) and 

may indicate similar toxicologies in the fish. 

Acylcarnitine was also detected as a possible endogenous marker of effluent 

exposure in the plasma samples. A 3-fold increase of an acylcarnitine was observed in 

plasma from effluent-exposed trout (putatively identified as 2-methylbutyroylcarnitine). 

L-carnitine plays a key role in fatty acid oxidation; it facilitates the transport of fatty 

acids into mitochondria where oxidation takes place (Evans and Fornasini, 2003). It can 

be conjugated to a range of short-, medium- and long-chain fatty acids to form 

acylcarnitines. Acylcarnitines have become important biomarkers for diverse kinds of 

diseases, including inborn errors of metabolism (e.g. deficiency of 3-methylcrotonyl-

CoA carboxylase, isobutyryl-CoA dehydrogenase, 2-methyl-3-hydroxybutyryl-CoA 

dehydrogenase, or 3-ketothiolase) (Pasquali et al., 2006, Jones et al., 2010) and diabetes 

mellitus type 2 (Möder et al., 2003). Patients with 2-3 times higher of total 

acylcarnitines (i.e. short-chain and medium chain acylcarnitines) are usually diagnosed 

with these types of metabolic disorders (Millington et al., 1989). Little is known about 

the effect of chemical exposure on the levels of acylcarnitines in vertebrates, however 

their levels are regulated via peroxisome proliferator-activated receptor (PPAR) 

signalling and the PPAR is activated by a number of different chemical contaminants 

such as  di-(2-ethylhexyl)phthalate (DEPH) (Feige et al., 2009), diisobutyl phthalate 

(Boberg et al., 2008), trichloroethylene, di- and trichloroacetic acids (Christopher 

Corton, 2008), bisphenol A (Kwintkiewicz et al., 2009), butylparaben (Boberg et al., 

2008), perfluoroalkyl acids (PFAAs) (Wolf et al., 2008), and organotins (Hiromori et 

al., 2009). 

Sphingolipids are constituted of a sphingoid base (sphingosine, sphinganine or 

other species) which is derived from the combination of serine and a fatty acyl-

coenzyme A (Figure 4.20).  Sphingolipids can then be converted into more complex 

compounds (ceramides, phosphosphingolipids, glycosphingolipids and protein adducts) 

which are keys to the structures of cell membranes, lipoproteins, and the lamellar water 

barrier of the skin. Many sphingolipids, both complex and simple structures, are highly 

bioactive as extra- and intra-cellular regulators of growth, differentiation, migration, 

survival and numerous cellular responses to stress (Hirabayashi et al., 2006). In this 

study, the concentration of sphingosine was 2 times lower (2-fold decrease) in the 
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effluent-exposed fish samples than in the controls. This result indicated that exposure to 

contaminants in the effluent either resulted in a decrease in sphingosine synthesis or an 

increase in its metabolism to sphingolipids (Figure 4.20). However to date there is no 

information on whether these pathways are targeted by environmental contaminants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.20: A simplified scheme of sphingolipids biosynthetic pathway and their metabolizing enzymes. 
Bold arrows reflect changes in plasma concentrations of metabolites of effluent-exposed fish as a result of 
effluent exposure. 

 

4.4.3 Rate of elimination of endogenous compounds and markers of effluent 

exposure from trout blood 

The elimination of many of the xenobiotics detected in the plasma suggested a 

very low systemic persistence of xenobiotics after exposure to effluent wastewater 

treatment; this can be due to efficient hepatic metabolism and biliary or urine excretion 

of their conjugated forms. Some xenobiotics (C12-LAS, tetradecanol-7EO) were 

present at detectable concentrations even after 11 days of depuration and were therefore 

not completely eliminated by the organism despite this long depuration period in river 

water; this could be possibly due to the high abundance of these chemicals present after 

10 days of exposure, for which 11 days might have not been enough to fully excrete the 

contaminants from the organism body. More likely it was also due to the fact that the 
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river water used during the depuration period contained significant concentrations of 

these chemicals. 

After 11 days depuration the bile acids decreased back to near normal levels 

indicating the return to the normal physiological status, however sphingosine levels 

were still markedly decreased in the plasma indicating possible longer term effect on 

this metabolite.  

The selection of endogenous and xenobiotic markers of effluent exposure in the 

trout plasma was based on univariate statistics using the p-value. The p values were 

generally an order of magnitude higher for endogenous markers than for the xenobiotics 

and ranged from 3.0×10-6 – 3.0×10-4 for the endogenous markers but in many cases was 

3.3×10-9 for the exogenous xenobiotic derived markers. However this statistical analysis 

was based on one tank replicate per treatment and therefore based on pseudoreplication. 

Therefore this work on the identification of markers of effluent exposure in fish plasma 

should be repeated with replicate tanks to confirm the findings. 
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CHAPTER 5: Analysis of the Xenometabolome and Identification of 

Markers of Chemical Contamination in Plasma from Roach Exposed to a 

Wastewater Effluent 
 

5.1 Introduction 

In the previous two chapters, a chemical profiling approach was developed to 

detect chemical contaminants and their metabolites bioaccumulated in biofluids of 

juvenile rainbow trout (Oncorhynchus mykiss) after exposure to a wastewater treatment 

work effluent. In addition in chapter 4 it was found that exposure to WwTW effluent 

altered the concentrations of endogenously derived metabolites (i.e. bile acids, 

carnitines and sphingolipids) in plasma of the trout after 10 days of effluent exposure. 

However, a full toxicological evaluation of the results could not be achieved due to lack 

of tank replicates and, in order to perform reliable investigation of the alteration of 

metabolic pathways, higher number of replicates is usually required to support 

statistical tests. These previous observations were followed up by investigating the 

impact of effluent exposure on both the xenometabolome and metabolome in plasma of 

sexually mature roach (Rutilus rutilus).  

Roach are found in many lowland Europe rivers, and have already been shown 

to be affected by WwTW effluents in terms of endocrine disruption. Accordingly, 

Jobling et al. (1998) demonstrated a high incidence of intersexuality in populations of 

roach (Rutilus rutilus) in the United Kingdom.  

Features of the roach that make it appropriate as a sentinel species to assess 

effluent exposure impact on fish include (Tyler et al., 2007): 
  

1. It is a member of the carp family (Cyprinidae), one of the most ecologically 

important groups of freshwater fish, commonly used for ecotoxicological 

studies. 

2. It is a gonochoristic species (developing as either male or female). 

3. It is widespread and abundant in the UK and in Europe, where it lives naturally 

in lowland rivers in waters often contaminated by effluent sewage. 

4. It shows tolerance to wide and varying chemical and physical conditions. 

5. Its high abundance allows for destructive sampling without adverse effect on the 

fishery. 

6. Good knowledge of it’s normal reproductive development has been established. 
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One of the goals of toxicology is the study of adverse effects due to xenobiotics 

exposure on living organisms. The toxicity of a certain compound depends on its ability 

to alter some biological functions at a given level of biological organization (i.e. cell, 

tissue, or organ). It is usually associated with the amplitude and the duration of the 

exposure and also to the degree of uptake of the substance by the organism, its 

distribution, biotransformation and elimination or accumulation (Roux et al., 2011). A 

full understanding and describing the mechanism of a toxic event in vivo is an 

extremely challenging task and many in vitro, and cell and animal models are used to 

investigate toxicity mechanism but they cannot be easily extrapolated to real 

environment conditions. Biomarkers are a useful tool to predict toxic events and to 

monitor exposure to toxic agents (biomarkers of exposure) including the impacts of 

complex mixtures of contaminants with the same mechanism of action, e.g. the use of 

vitellogenin to monitor exposure to mixtures of oestrogenic pollutants.  

The impact on fish due to effluent exposure will depend on the proportion of 

effluent present in the river at the time of the exposure. In the UK, a considerable 

proportion of the flow of rivers is made up of treated WwTW effluent; a river 

concentration of 10% WwTW effluent is a common level of contamination, but in some 

rivers it can reach more than 50% of the flow. In extreme cases in England, and 

generally in the summer months during periods of low rainfall, treated wastewater 

effluent can make up the entire flow of some rivers. For this reason, it is important to 

investigate how the effluent proportion can differently affect the fish health status. For 

this purpose, in this study two different effluent proportions (50% and 100%) were 

considered, in order to mimic extreme conditions in the environment.  
 

The study reported in the following chapter aims to:  

1. Identify the profile of xenometabolites present in plasma of roach exposed to a 

WwTW effluent. 

2. Identify metabolic biomarkers indicating specific changes in the plasma 

metabolome caused by the effluent exposure. 

3. Determine whether there are sex specific differences in xenometabolite or 

responses of endogenously derived metabolites of roach to effluent exposure.  

4. Investigate the correlation between the levels of xenobiotics and the disruption 

of metabolite concentrations in plasma of roach exposed to WwTW effluent. 
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5.2 Materials and Methods  

5.2.1 Chemicals 

All materials used are reported in Chapter 3 Section 3.2.1 and Chapter 4 Section 4.2.1. 

5.2.2 Fish exposure 

  The wastewater effluent used for this study was the same as described in Chapter 

3 Section 3.2.2. A population of sexually mature roach (Rutilus rutilus) were obtained 

from same farm reported in Chapter 3 Section 3.2.2 with a mean±SEM length of 

10.85±0.20 cm and weight 22.96±1.20 g. Roach were caged in duplicate tanks and 

exposed to either charcoal treated river water (n=16 females, n=21 males), 50% effluent 

from the WwTWs diluted with river water (n=12 females, n=21 males), or 100% 

effluent (n=17 females, n=23 males) for 28 days. At harvest, fish were anesthetized and 

blood was obtained from the caudal vein.  

5.2.3 Sample treatment 

Plasma samples (60µL) were obtained from roach exposed to river water, 50% 

effluent and 100% effluent. Final ratio of 80% of cold methanol (240 µL) were added to 

the samples in order to precipitate plasma protein; precipitation were performed in 

duplicate to ensure remove most of the interfering protein. Internal standards 

(1ng/10µL) of P-d9 & E2-d4-S were added to the samples. Samples were then processed 

and transferred to HPLC vials prior to chemical analysis as described in Chapter 4 

Section 4.2.2. 

5.2.4 UPLC-TOF-MS chemical profiling 

Plasma samples (10 µL plasma equivalent) were separated using an Acquity 

UPLC BEH C18 column and the analytes were detected using a Micromass TOF-MS. 

Samples were analysed by UPLC-TOF-MS system in both ESI modes with acid in the 

mobile phases performing the same gradient program described in Chapter 2 Section 

2.3.2.  

5.2.5 Data analysis 

Raw data obtained from UPLC-TOF-MS was preprocessed using MarkerLynx. 

The parameters used for the detection of the spectral signals were optimised similarly as 

in Chapter 4 Section 4.2.2 with exception of the tolerance of the retention time window 

which was set at 1.0 min only in the +ESI mode due to machine drift of the UPLC 

separation for these analyses. Data was then exported to SIMCA P-11 software for 
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multivariate analysis. Principal Component Analysis (PCA) was performed to provide 

an overview of the data followed by partial least squares projections to latent structures 

discriminant analysis (PLS-DA) to find class-separating differences in the data sets. To 

filter the information that was only due to class separation, the models were reanalyzed 

using orthogonal partial least squares to latent structures discriminant analysis (OPLS-

DA). Shared and unique structure plots (SUS-plots) were also conducted to highlight 

the differences between two different treatments when compared to a common reference 

(e.g. control) and to locate the class-distinguished variables (metabolites) contributing 

to the class separation. SUS-plots were constructed in order to discover the difference 

between the female and male metabolome in their response to effluent exposure in 

comparison to the same reference control group.  In the SUS-plot, the correlation from 

the predictive component of each model is plotted against each other using the 

combination of two predictive loadings obtained from two different OPLS-DA models. 

The SUS-plot visualizes both the shared and unique information; shared markers are the 

markers that are varying in the same direction in both models whilst unique markers 

vary in a unique direction. After the selection of  potential markers from the S-plots and 

SUS-plots, univariate analysis (i.e. Mann-Whitney test) was employed  for every 

variable (marker) to check for significant differences between treatments, and due to the 

likely number of false positives (Type 1 errors), a false discovery rate (FDR) correction 

was then applied to determine the significance of the marker. The Benjamini and 

Hochberg (BH) procedure was applied to control the false positives that pass a 

statistical test; the individual p-value of the variables was sorted from smallest to largest 

value for the FDR calculation.  

The significance level was calculated for each marker as following:  
 

= 0.05 × i/m 

 

, where i indicates the ranked p-value of the variable and m the total number of 

variables. This approach starts from the largest p-value and continues along all variables 

in rank order. The difference is considered significant only if it’s p-value is equal or less 

than the corrected significance level (Benjamini et al., 2001). 
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In order to investigate correlations between selected variables, Spearman’s 

correlation of pairwise comparisons among individual variables (metabolites) was 

employed. This correlation is based on ranked intensity of variables and used when the 

data have violated parametric assumptions such as non-normally distributed data.  

The structural information of each chemical and biochemical marker detected in 

effluent exposed fish was based on their accurate mass measurements (W mode), in-

source fragmentation by applying different collision energy (W mode), and wherever 

possible performing Q-TOF-MS on selected parent ion and then searching in 

metabolomic databases for the structural confirmation of unknown markers (detailed in 

Chapter 3 and 4).  
 

5.3 Results 

5.3.1 Multivariate analysis of plasma samples 

In order to obtain an overview of the dataset (outliers and trends) from plasma of 

roach exposed to wastewater effluent, principal component analysis PCA was 

employed. Scores plots of PCA models for roach plasma datasets using two principal 

components (t1 and t2 in –ESI mode whilst t3 and t4 in +ESI mode due to instrumental 

drift) are shown in Appendix 5.1. In –ESI mode, the first principal component (t1) was 

responsible of the separation of the effluent-exposed fish samples (E100: 100% effluent 

exposure) from the other two treatment groups (C: river water exposure as control and 

E50: 50% effluent exposure). Discrimination between the C, E50 or E100 treatment groups 

was observed in both +/-ESI modes (Appendix 5.1). However, the percentages of the 

explained (R2X <40%) and predicted variation (Q2 < 0.3) were low in both +/-ESI 

modes (see Appendix 5.2). Outliers were observed in both +/-ESI mode datasets, but 

were not excluded for further analysis since their exclusion caused the generation of 

other outliers in these preliminary PCA studies (data not shown). 

PLS-DA models were used for the exploration of the differences between the 

treatment groups. Clear discrimination between treatments (C, E50 or E100) was observed 

in both +/-ESI modes (Figure 5.1). The first three components (t1, t2 and t3) were used 

to generate a three-dimensional scores plot of a PLS-DA model in –ESI mode whilst in 

+ESI mode t3, t4 and t5 were selected since t1 and t2 had to be excluded due to high 

variability in this dataset due to instrumental drift during UPLC separation.  

Response permutation testing was used in order to confirm that the high values 

of predictability in PLS-DA models had not occurred because of over-fitting. This test 
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revealed more than 70% accuracy for the classification of treatment groups with the 

only exception of the dataset in +ESI mode for the model of all the three treatments 

together which gave a 38% accuracy (see Appendix 5.3). 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Partial least squares-discriminant analyses (PLS-DA) scores plots of the chemical profiles of 
plasma samples from roach exposed either to wastewater effluent or control river water. The samples 
were profiled in both +/-ESI modes by UPLC-TOFMS. Control (C)= river water exposure where n=16 
females, n=21 males. E50=exposure to 50% effluent where n=12 females, n=21 males. E100= exposure to 
100% effluent where n=17 females n=23 males. Female roach symbols: ( ), ( ) and ( ) represent C, E50 
and E100 respectively. Male roach symbols: ( ), ( ) and ( ) symbols represent C, E50 and E100, 
respectively. The percentages of explained variation (R2Y) modelled for three latent variables (t1, t2 and 
t3) in –ESI and (t3, t4, and t5) in +ESI mode are displayed on the related axes. 

 

 

Since duplicate tanks were used for each of the treatment considered, it was necessary 

to check the consistency between the two sample datasets. No difference was observed 

in the clustering of the samples between the two tanks in both +/-ESI modes for any of 

the treatment groups of the plasma from reference roach or those exposed to wastewater 

effluent (Figure 5.2).  
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Figure 5.2: Partial least squares-discriminant analyses (PLS-DA) scores plots of the chemical profiles of 
plasma samples from roach exposed either to wastewater effluent or control river water. The samples 
were profiled in both +/-ESI modes by UPLC-TOFMS. Fish were kept in duplicate tanks (tank 1: circle, 
tank 2: triangle). Control (C): river water exposure where n=16 Females, n=21 Males. E50: exposure to 
50% effluent where n=12 Females, n=21 Males. E100%: exposure to 100% effluent exposures where n=17 
Females, n=23 Males. Female roach symbols: ( / ), ( / ) and ( / ) represent C, E50 and E100, 
respectively. Male roach symbols ( / ), ( / ) and ( / ) represent C, E50 and E100, respectively. The 
percentages of explained variation (R2Y) modelled for three latent variables (t1, t2 and t3) in –ESI and 
(t3, t4, and t5) in +ESI mode are displayed on the related axes. 

 

5.3.2 Metabolite differences due to WwTW exposure 

The most discriminative variables (RT-m/z) were extracted from the S plots 

obtained from the OPLS-DA models for each two treatment groups: (FC versus FE50), 

(FC versus FE100), (MC versus ME50) and (MC versus ME100), where C is the 28 days 

river water exposure control, E50  the 28 days 50% effluent exposure, E100 the 28 days 

100% effluent exposure,  FC the female control,  MC the male control,  FE50 the female 

50% effluent exposure, ME50 the male 50% effluent exposure,  FE100 the female 100% 

effluent exposure and ME100 the male 100% effluent exposure. The most discriminative 

markers between C, E50 or E100 for both females and males are summarised in Tables 

(5.1, 5.2 and 5.3) and Appendix 5.6.  

5.3.4 Metabolite differences due to sex 

As shown in Figure 5.1, a distinct separation according to the sex (males versus 

females) was observed in control tanks in –ESI using the first three components (t1, t2 

and t3). However, in –ESI mode a PLS-DA scores plot using t2, t3 and t4 components 

was also checked and it revealed a good separation as well between the two sexes in all 

the three treatments considered (C, E50 or E100) (data not shown). The values of the 
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predicted and explained variation were improved by reanalysing the datasets using PLS-

DA considering the two sexes separately (see Appendix 5.3). In order to determine 

whether there were sex specific differences in the roach plasma metabolome, OPLS-DA 

models were employed. The OPLS-DA model for female (n=16) roach versus male 

(n=21) from the control tank (C, river water) gave a high explained (R2Y>0.9) and 

predicted (Q2>0.4) variation in –ESI mode, whilst a poor model was obtained in +ESI 

(Appendix 5.3 and 5.4). The same approach was employed for the 50% and 100% 

effluent-exposed roach plasma samples to discover the discriminative variables between 

females and males (Appendix 5.3. and 5.4). These models revealed poor percentages of 

predicted and explained variation in +ESI mode but models improved in –ESI mode. 

Discriminative variables (RT-m/z) were found at the extreme of the S-plot 

obtained from the OPLS-DA model for female control roach versus male controls and 

also for females and males at the two different effluent exposures. The discriminative 

variables are listed in Appendix 5.5 but their exact structures were not analysed due to 

time limitation. 

An additional statistical approach “shared and unique structure ‘SUS’ plot, 

explained in details in Section 5.2.5, was used to compare two different treatments 

using the same reference group (Wiklund et al., 2008). SUS-plots were obtained by 

plotting two OPLS-DA models against each other. In order to test differences due to the 

sex of the fish, a reference group considered as the sum of female and male control 

samples was used. SUS plots were obtained by plotting the OPLS-DA model for the 

reference group  and 100% effluent-exposed fish (female) versus OPLS-DA model for 

the reference group and 100% effluent exposed fish (male), respectively (Figure 5.3a). 

The same approach was used to test the 50% effluent-exposed samples (Figure 5.3b).  

No unique variables from the two SUS plots were extracted and most of the 

variables associated with effluent exposure were shared i.e. common to both females 

and males. As the SUS plots did not give informative results, this indicated that there 

are no variables unique to one sex of the fish but rather (from the S plots obtained from 

the OPLS-DA models) there were differences in the concentration of metabolites 

between the two sexes.  
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Figure 5.3: Shared and unique structure (SUS) plot analyses of the correlation (reliability) of loading 
variable from two OPLS models (a) 50% effluent female and 50% effluent male, both sharing a common 
reference (control female+male), (b) 100% effluent female and 100% effluent male, both sharing a 
common reference (control female+male) of the chemical profiles of plasma samples from roach exposed 
either to wastewater effluent or control river water. The samples were profiled in -ESI mode by UPLC-
TOFMS. Variables located on x-axis (right and left direction) corresponded to signals unique for either 
(a) E50 treatment (b) E100 treatment (female roach). Variables located on y-axis (up and down direction) 
corresponded to signals unique for (a) E50 (b) E100 treatment (male roach). 
 

5.3.5 Identification of metabolites due to wastewater effluent exposure 

The markers identified in the roach plasma metabolome responsible for the 

discrimination between control and effluent-exposed fish could be classified in two 

main groups: exogenous compounds and their metabolites (steroid alkaloid, chlorinated 

compounds and surfactant) and endogenous compounds (bile acids, sphingolipids see 

Table 5.1 and phospholipids Table 5.3). 

Markers which were only putatively identified were summarized in Table 5.2. 

Other potential markers whose signals were not good enough to allow full structural 

characterization were summarized in Appendix 5.6. The classes of chemicals which all 

these markers belonged to will be described in details in the following sections. In the 

present study, Q-TOF-MS analysis of individual parent ions was not possible for most 

of the detected markers due to lack of enough plasma sample. Therefore, additional 
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structural information for the markers due to effluent exposure was based on data 

obtained applying different collision energies in full scan mode (collision energy: CE= 

25eV). 

5.3.5.1 Exogenous metabolites 

Identified exogenous markers in plasma from 50% and 100% effluent-exposed 

roach (females and males) encompassed some chlorinated compounds, surfactants and 

some other putatively identified compounds. 

The two chlorinated markers were detected only in -ESI mode giving signals at 

m/z 366.9002 and m/z 264.9937; they were positively identified as sulphate conjugates 

of triclosan and a methoxy metabolite of chloroxylenol, respectively. Both markers 

were detected in 50% and 100% effluent-exposed fish samples (females and males). 

Higher signals for both markers were observed in fish exposed to 100% effluent; male 

fish showed higher fold changes than female for the triclosan sulphate (Table 5.1). 

Retention times and exact masses were compared to those found in plasma from 

effluent-exposed trout and resulted in comparable data. As shown in Figure 5.4, high 

collision energy mass spectrum (CE: 25eV) revealed signals for both conjugated 

(triclosan sulphate m/z 366.9002) and triclosan itself (m/z 286.9437), showing the 

typical 3-Cl isotopic distribution. 

Two anionic surfactants were selected as potential markers in the OPLS-DA 

loading plot of plasma from effluent-exposed roach and were only detected in –ESI 

mode. These markers were identified as linear alkylbenzene sulphonic acids (C12-LAS 

and C13-LAS). For C12-LAS, signals were more abundant in 100% effluent-exposed 

fish (females > males) than 50% effluent-exposed fish. C13-LAS showed similar 

abundance in both females and males but was more abundant in 100% effluent exposed 

fish plasma. These two compounds showed same RT and exact masses as found in 

effluent-exposed trout. 

Q-TOF-MS experiments were possible only for C13-LAS since C12-LAS 

signals were too low. Q-TOF-MS fragmentation gave rise to the same characteristic 

fragment ions (m/z 183.0116, m/z 170.0038 and/or m/z 197.0272) as fully explained in 

Chapter 4 Section 4.3.1.2. 
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Figure 5.4: TOFMS spectra of triclosan sulphate and triclosan in full scan mode (collision energy=25 
eV) detected in -ESI mode in plasma from effluent-exposed roach. Three Cl-isotopic pattern for the 
molecular ion and the fragment are highlighted in gray. 
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Table 5.1: Chemical and biochemical markers identified in plasma of effluent-exposed roach in both +/-ESI modes. 

Class of 

chemical 

Observed 

ion (m/z) 

RT 

(min) 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit 

Q-TOF-MS or high energy 

collisional dissociation 

fragments
#
 

Parent 

compound 

formula Gender 

Control vs 

50%effluent 

Control vs 

100%effluent 

Putative identity 

Fold 

change p-value 

Fold 

change p-value 

Chlorinated 
xylenol 

264.9937 8.60 C9H10O5SCl 264.9937 0.0 0.5  C9H11O2Cl F 7.1 2.40E-02 67.4 1.71E-09 Sulphate conjugate of a 
methoxy metabolite of 
chloroxylenol [M-H]- 

        M 7.6 2.10E-02 59.7 1.01E-06 

Chlorinated 
phenoxyphenol 

366.9002 15.40 C12H6O5SCl3 366.9002 0.0 0.3 286.9437 C12H7O2Cl3 F 364.0 5.59E-07 855.0 1.71E-09 Triclosan sulphate [M-H]- 
        M 565.0 8.18E-11 1378.0 9.94E-13 

Steroid alkaloid 478.2991 8.2 C27H44NO4S 478.2991 0.0 1.1 398.3452, 380.3315, 98.0967 C27H43NO F 470.2 1.29E-07 987.7 3.54E-09 Sulphate conjugate of 
solanidine [M+H]+         M 349.3 3.72E-12 767.4 3.72E-12 

480.3146 8.3 C27H46NO4S 480.3148 -0.4 0.2 400.3589, 382.3478, 98.0968 C27H45NO F 193.2 1.60E-05 421.0 1.17E-07 Sulphate conjugate of 
dihydrosolanidine [M+H]+         M 161.5 4.06E-06 417.4 2.80E-11 

Surfactant 325.1837 22.20 C18H29O3S 325.1837 0.0 0.2  C18H30O3S F 2.0¶ 4.00E-03 5.0¶ 1.12E-08 C12-LAS [M-H]- 
        M 1.8¶ 1.42E-05 2.6¶ 3.48E-09 

339.1994 23.38 C19H31O3S 339.1994 0.0 0.5 197.0267, 183.0122, 170.0039 C19H32O3S F 7.3¶ 4.31E-06 10.6¶ 5.76E-06 C13-LAS [M-H]- 
        M 3.5¶ 3.41E-08 10.4¶ 1.69E-07 

Bile acid 516.2994 8.78 C26H46NO7S 516.2995 -0.2 0.8 498.2887, 480.2780, 462.2678, 
337.2532, 319.2426 

C26H45NO7S F 2.9¶ 2.80E-02 4.9¶ 4.00E-03 Taurocholic acid [M+H]+ 
       M 2.2¶ 6.78E-01 3.3¶ 1.70E-01 

480.2780 8.78 C26H42NO5S 480.2784 -0.8 0.3  C26H45NO7S F 3.0¶ 8.60E-02 5.2¶ 3.00E-03 [M+H-2H2O]+ 
        M 2.1¶ 6.38E-01 3.5¶ 1.94E-01 

538.2814 8.78 C26H45NO7SNa 538.2814 0.0 1.5  C26H45NO7S F 2.9¶ 2.10E-02 4.9¶ 2.00E-03 [M+Na]+ 
        M 2.1¶ 5.00E-01 2.8¶ 2.93E-01 

514.2841 8.74 C26H44NO7S 514.2838 0.5 0.6 124.0062, 106.9805 C26H45NO7S F 3.0¶ 6.30E-02 5.6¶ 2.00E-03 [M-H]- 
        M 2.3¶ 6.13E-01 3.8¶ 1.57E-01 

533.3146 11.5 C27H49O8S 533.3148 -0.4 0.7  C27H48O8S F 2.1¶ 1.00E-03 2.8¶ 4.27E-05 Cyprinol sulphate [M+H]+ 
        M 1.7¶ 1.70E-02 2.3¶ 3.00E-03 

555.2969 11.5 C27H48O8SNa 555.2968 0.2 0.6 475.3397 C27H48O8S F 2.0¶ 1.00E-03 2.2¶ 2.01E-04 [M+Na]+ 
        M 1.4¶ 3.70E-02 1.7¶ 2.00E-03 

550.3412 11.5 C27H52NO8S 550.3414 -0.4 0.2 470.3850, 453.3577, 435.3469, 
417.3370, 339.3261 

C27H48O8S F 2.1 2.3E-04 2.6 4.9E-05 [M+NH4]+ 
       M 1.5 6.6E-02 1.9 3.0E-03 

531 .2990 11.46 C27H47O8S 531.2992 -0.4 0.2 513.2879, 96.9595 C27H48O8S F 2.3¶ 1.32E-04 2.5¶ 5.56E-05 [M-H]- 
        M 1.4¶ 1.68E-01 1.7¶ 8.00E-03 

Sphingolipids 282.2794 20.05 C18H36NO 282.2797 -1.1 0.7  C18H37NO2 F 0.7¶ 8.00E-02 0.5¶ 2.23E-05 Sphingosine [M+H-H2O]+ 
        M 0.9¶ 5.43E-01 0.5¶ 1.71E-06 

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit. # fragments were obtained 
from Q-TOFMS or high collisional dissociation fragmentation in full scan mode within ±5ppm; F: female; M: male; [M+H]+: protonated ion; [M-H]-: deprotonated ion; 
[M+Na]+: sodium adduct; [M+H-H2O]+: loss of water. Fold Mean fold change calculated from relative concentrations of the compound in plasma from roach exposed to 
either 50% or 100% effluent for 28 days compared with the levels in control roach held in river water (n=16-20 fish for each gender). ¶Concentrations above the limit of 
detection were detected in plasma of the control roach. Non-normally distributed data (determined as such by the Kolmogorov-Smirnov test) were log transformed prior to 
statistical analysis; p-value was calculated from t-test between control and the effluent exposure, and values below the BH threshold are statistically significant with a false 
discovery rate of <5% (Benjamini and Hochberg (BH) threshold was 4.0×10-02). 
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Two further potential markers exogenously derived were detected in plasma 

from roach exposed to wastewater effluent. The two markers were detected only in 

+ESI mode, giving signals as [M+H]+ at m/z 478.2991 and m/z 480.3146 (Table 5.1). 

These compounds were identified as sulphate conjugates of solanidine and 

dihydrosolanidine, respectively. Both markers were higher in 100% effluent-exposed 

fish than 50% effluent-exposed fish. In order to confirm the identity of these two 

markers, high energy collisional dissociation fragmentation in full scan mode was 

employed on plasma samples to obtain their relative fragmentation patterns. In Figure 

5.5a,b, alignment was observed between the extracted ion chromatograms for the 

molecular ions (m/z 478.2991 for solanidine and m/z 480.3146 for dihydrosolanidine) 

and for the corresponding in-source fragment ions (m/z 398.3452-m/z 380.3315) for 

solanidine and (m/z 400.3589 and m/z 382.3478) for dihydrosolanidine, respectively. 

The two different fragment ions for both solanidine and dihydrosolanidine were 

generated by loss of SO3 and loss of H2O, respectively. Furthermore, an additional 

fragment at m/z 98.0970 generated by the cleavage of the ring containing the nitrogen 

atom and corresponding to the formula C6H12N was obtained by applying a collision 

energy of 50eV to both solanidine and dihydrosolanidine parent ions (Cahill et al., 

2010). However, the identity of these two markers was not fully confirmed due to 

unavailability of relative commercial standards. These two markers where also detected 

in plasma of trout exposed to the same wastewater effluent, but were found as non-

conjugated forms.  
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Figure 5.5a: Full scan extracted ion chromatograms of the in-source fragmented of the putative sulphate 
conjugate of solanidine in plasma from effluent-exposed roach in +ESI  mode (collision energy = 25 eV). 
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Figure 5.5b: Full scan extracted ion chromatograms of the in-source fragmented of the putative sulphate 
conjugate of dihydrosolanidine in plasma from effluent-exposed roach in +ESI  mode (collision energy = 
25 eV). 
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Other signals (RT-m/z) were extracted in the S-plot which theoretically 

corresponded to other potential xenobiotic compounds since they were not detected in 

any of the control samples, showed very low p-values and increased in effluent-exposed 

fish to >100 fold compared with controls (see Appendix 5.6). The elemental 

composition tool assisted in the calculation of the theoretical chemical formula of the 

selected protonated ions. Ions of some markers at m/z 366.3007, m/z 302.3061, m/z 

328.3215 and m/z 356.3530 corresponded to elemental composition C22H40NO3, 

C18H40NO2, C20H42NO2 and C22H46NO2, respectively. Q-TOF-MS analysis (CE: 20eV) 

of the marker at m/z 366.3007 gave rise to fragment ions at m/z 348.2901 (loss of H2O) 

and m/z 274.2509 (loss of 92 Da from the molecular ion) (Appendix 5.7a). The other 

two molecular ions at m/z 302.3061 and m/z 356.3530 gave only fragments due to loss 

of H2O from the molecular ion (Appendix 5.7b,c). There was not enough mass 

spectrometry information to ascertain the structures of these compounds but it is 

possible that C18H40NO2, C20H42NO2 and C22H46NO2 could be fatty acid ethanolamide 

surfactants corresponding to hexadecoylethanolamide, stearoylethanolamide and 

arachidoylethanolamides, respectively. These are common detergents used in shampoos 

and soaps.  

It is likely that many other xenobiotics were also present in the plasma samples 

from effluent-exposed fish but they could not either be detected or identified due to lack 

of sufficient plasma sample and due to the limit of sensitivity using ESI TOFMS 

(Appendix 5.6). 

Analysis of the UPLC-TOFMS profiles for the plasma samples revealed the 

presence of highly saturated peak in all the treatments (C, E50, E100). This peak has been 

corresponeded to the anaesthetic tricaine mesilate (MS222) (detailed in Chapter 4). 
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Table 5.2: Chemical and biochemical markers putatively identified in plasma from effluent-exposed roach in both +/-ESI modes. 

Class of 

chemical 

Observed 

ion (m/z) 

RT 

(min) 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit 

Q-TOF-MS or high energy 

collisional dissociation 

fragments
#
 

Parent 

compound 

formula Gender 

Control vs 

50%effluent 

Control vs 

100%effluent 

Putative identity 

Fold 

change p-value 

Fold 

change p-value 

               
Steroid 541.2642 5.6 C27H41O11 541.2649 -1.3 2.0 523.2530, 505.2445, 347.2216, 

329.2123, 311.2017, 293.1905,  
281.1904, 269.1887 

C21H32O5 F 1.1¶ 6.02E-01 0.5¶ 6.00E-03 Glucuronide conjugate of 
putative tetrahydrocortisone 
[M+H]+ 

        M 1.4¶ 4.80E-02 0.6¶ 8.00E-03 

 539.2490 5.5 C27H39O11 539.2492 -0.4 0.1   F 1.9¶ 4.81E-04 0.4¶ 1.86E-04 [M-H]- 
         M 1.1¶ 7.48E-01 0.5¶ 1.00E-03 

Bile acid 500.3414 10.1 C27H50NO5S 500.3410 0.8 0.8 465.3036, 402.3738, 367.3368,  
257.2276 

C27H49NO5S F 2.1¶ 2.70E-02 3.5¶ 2.00E-03 Bile acid sulphate like 
[M+H]+         M 0.8¶ 1.82E-01 1.5¶ 1.20E-02 

 498.3253 10.0 C27H48NO5S 498.3253 0.0 0.8 96.9598 C27H49NO5S F 1.8¶ 1.27E-01 2.8¶ 1.00E-03 [M-H]- 
         M 0.7¶ 2.60E-02 1.4¶ 2.80E-02 
               

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit. # fragments were obtained 
from Q-TOFMS or high collisional dissociation fragmentation in full scan mode within ±5ppm;  
F: female; M: male; [M+H]+: protonated ion; [M-H]-: deprotonated ion. 
Fold Mean fold change calculated from relative concentrations of the compound in plasma from roach exposed to either 50% or 100% effluent for 28 days compared with the 
levels in control roach held in river water (n=16-20 fish for each gender). ¶Concentrations above the limit of detection were detected in plasma of the control roach.  
Non-normally distributed data (determined as such by the Kolmogorov-Smirnov test) were log transformed prior to statistical analysis; p-value was calculated from t-test 
between control and the effluent exposure, and values below the BH threshold are statistically significant with a false discovery rate of <5% (Benjamini and Hochberg (BH) 
threshold was 4.0×10-02). 
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5.3.5.2 Endogenous metabolites 

From the S-plot analyses, a number of biochemical markers were detected in 

plasma from roach exposed to wastewater effluent. Endogenous compounds revealed in 

this research mainly belonged to four different classes: steroids, bile acids, 

sphingolipids and phospholipids. 

A putatively identified glucuronide conjugate of tetrahydrocortisone was 

identified in both +/-ESI modes as a marker upregulated by effluent exposure. 

Elemental compositions were calculated for both protonated (m/z 541.2642) and 

deprotonated ion (m/z 539.2490) as listed in Table 5.2. In +ESI TOFMS analysis (CE: 

10eV) fragments were observed at m/z 523.2530 (M-H2O), m/z 505.2445 (M-2H2O) and 

m/z 347.2216 (M-Glu-H2O) (Appendix 5.8).  An increase of collision energy to a value 

of 25eV led to additional fragment ions at m/z 329.2123, m/z 311.2017, m/z 293.1905, 

m/z 281.1904 and m/z 269.1887. The fragmentation pattern obtained for the aglycone 

(CE: 25eV) from the roach plasma sample resulted very similar to the pattern of the 

tetrahydrocortisone standard available in METLIN database, therefore this marker was 

putatively assigned to the structure of the glucuronide conjugate of tetrahydrocortisone. 

Two bile acids (cyprinol sulphate and taurocholic acid) were detected in plasma 

of effluent-exposed roach (upregulated markers). These two bile acids were detected in 

a number of forms in both +/-ESI modes (Table 5.1): deprotonated ions [M-H]-, 

protonated ions [M+H]+, Na/NH4 adducts [M+Na]+/[M+NH4]
+ and in-source fragments 

such as [M+H-H2O]+ and [M+H-2H2O]+. TOFMS analysis of cyprinol sulphate in +ESI 

mode at collision energy of 10eV showed a very abundant ion at m/z 555.2969 (Na-

adduct) and less so at m/z 550.3412, which corresponds to the NH4-adduct of cyprinol 

sulphate. The protonated ion at m/z 533.3146 was also detected as potential marker in 

+ESI mode. The Q-TOFMS analysis of the Na-adduct gave only the fragment at m/z 

475.3397 (C27H48O5Na) corresponding to neutral loss of the sulphate moiety SO3 (M-

80) (Figure 5.6a). On the other hand, NH4-adduct gave rise to a number of different 

fragment ions (Figure 5.6b): m/z 470.3850 (C27H53NO5) due to loss of SO3 from the 

molecular ion, m/z 453.3577 (C27H49O5) due to loss of NH3, m/z 435.3469 (C27H47O4) 

due to loss of 1H2O, m/z 417.3370 (C27H45O3) due to loss of 2H2O and m/z 399.3261 

(C27H43O2) due to loss of 3H2O (Figure 5.6b). Q-TOFMS analysis of cyprinol sulphate 

in –ESI mode (CE: 50eV) revealed only two fragments at m/z 513.2879 corresponding 

to [M-H2O-H]- and at m/z 96.9595 corresponding to [HSO4]
- (Figure 5.6c). 
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Other m/z-RT signals were detected in +ESI mode as upregulated markers at m/z 

538.2814, m/z 516.2994 and m/z 480.2780, which corresponded to [M+Na]+, [M+H]+ 

and [M+H-2H2O]+ ions, respectively of taurocholic acid. The Na-adduct was more 

abundant than other forms at the experimental conditions used (CE: 10 eV). Retention 

time, exact mass and TOFMS fragmentation pattern (full scan mode) were compared to 

those found in plasma samples of trout and also a commercial available standard and 

resulted in the same data (see Chapter 4 Section 4.3.1.3). 

Amongst the markers responsible for the class separation between control and 

effluent-exposed samples, two ions were present at m/z 500.3414 (+ESI mode) and m/z 

498.3253 (-ESI mode). These metabolite markers were putatively assigned to a sulphate 

conjugate of a bile acid (Table 5.2). In order to further investigate the molecular 

structure, TOFMS experiments in full scan mode at collision energy of 25eV were 

performed on the roach plasma sample. In the +ESI TOFMS analysis fragment ions at 

m/z 465.3036 (C27H45O4S), m/z 402.3738 (C27H48NO), m/z 367.3368 (C27H43) and m/z 

257.2276 (C19H29) were detected (Appendix 5.9). The ion at m/z 465.3036 could have 

been generated by sequential losses of H2O plus NH3 (loss of 35 Da) from the molecular 

ion. The ion at m/z 402.3738 could be due to the neutral loss of H2SO4 from the 

molecular ion (m/z 500.3414). In –ESI Q-TOFMS analysis, the product ion at m/z 

96.9598, corresponding to the deprotonated sulphate group [HSO4]
-, was the only 

fragment detected at CE 50eV. The exact structure of this bile acid is currently 

unknown and it could not be found in the available databases either, but it is likely to be 

a sulphated C27 sterol. 

Sphingosine was also detected in roach plasma in +ESI mode as a marker 

downregulated by effluent exposure (Table 5.1). It was identified from it’s RT which 

was comparable to that obtained in trout plasma and also from a pure standard (see 

Chapter 4 Section 4.3.1.5) and from the in-source fragment ion at m/z 282.2800 due to 

loss of H2O from the molecular ion. 
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Figure 5.6: Q-TOFMS mass spectra of cyprinol sulphate detected as Na-adduct (a), NH4-adduct (b) in 
+ESI and as [M-H]- (c) in –ESI mode in plasma of effluent-exposed roach. 
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A number of lysophospholipids (LP) were detected in both ESI modes in roach 

plasma and which were increased as a result of effluent exposure. 

Lysophosphatidylethanolamine (LPE) was detected as positively charged [M+H]+ in 

+ESI and as negatively charged [M-H]- in –ESI (Table 5.3). Lysophosphatidylcholine 

(LPC) co-eluted with LPE and was detected in both ESI modes as [M+H]+, [M-H]- and 

formate adduct [M+FA-H]- where FA=formic acid. Significant increase in LPE 

concentrations was detected, with fold-change values ranging between 1.4-2.3 for 

female and 1.3-1.7 for male of roach exposed to 100% effluent compared with control 

samples. LPC concentrations increased as well, giving fold-change values ranging 

between 1.2-2.0 for female and 1.2-1.7 for male of roach exposed to 100% effluent 

compared with control samples (Table 5.3). In most cases LPE and LPC signals in 

100% effluent-exposed fish were higher than in 50% effluent-exposed fish and the fold 

increase in females was generally higher than males for both LPCs and LPEs (Table 

5.3).  

Wherever possible, the precise structure of the LPs was determined from 

fragments formed from Q-TOFMS. Phospholipids can be usually fragmented at the 

glycerol-phosphate bond, leading to the diglyceride ion and the ion corresponding to the 

polar head group (Fang and Barcelona, 1998). The presence of the polar head group 

leads to a typical neutral loss which results in an abundant fragment ion which gives 

extremely valuable information for the characterization of these compounds in Q-

TOFMS experiments. For instance, loss of 141 Da [M-141]+ constitutes  very strong 

evidence to support the identification of the compound as glycerophosphoethanolamine 

lipid (Fang and Barcelona, 1998, Murphy, 2002). An example of fragmentation pattern 

for different LPE structures is shown in Figure 5.7a,b. This figure shows the Q-TOFMS 

spectra for the protonated ions at m/z 454.2937 and m/z 480.3092 of PE (16:0/0:0) and 

PE (18:1/0:0), respectively. Q-TOFMS of the parent ion at m/z 454.2937 showed a 

signal at m/z 436.2816 (C21H43NO6P) due to loss of H2O and a base peak at m/z 

313.2733 [M-141]+ due to loss of the ethanolaminephosphate head group (Figure 5.7a). 

Elimination of ethenamine (C2H5N) was also observed from the fragment ion [M+H-

H2O]+ at m/z 436.2827 generating the ion at m/z 393.2407. This ion fragmentation 

pathway is characteristic of phophatidylethanolamines, and can be used together with 

the information deriving from other fragments to fully characterize the structure of the 

phospholipids-PE. PE (18:1/0:0) showed a fragmentation pattern similar to the one 
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explained for PE (16:0/0:0): the protonated parent ion at m/z 480.3092 gave fragment 

ions at m/z 462.2930, m/z 419.2543, and m/z 339.2878 (Figure 5.7b). A fragmentation 

pattern example for a selected PE from Lipidmap database [PE(18:1(9Z)/0:0)] is shown 

in Figure 5.7c, where loss of H2O at m/z 462.32, loss of ethenamine at m/z 419.28, and 

loss of head group at m/z 339.12 were observed. Q-TOFMS analysis in –ESI mode of 

the PE (16:0/0:0) deprotonated ion m/z 452.2776 (Figure 5.8a) revealed a base peak at 

m/z 255.2330 (C16H31O2) corresponding to the carboxylate anion (fatty acyl; 16:0) and a 

peak at m/z 196.0381 (C5H11NO5P) corresponding to the diagnostic polar head group for 

the phosphatidylethanolamines. The same fatty acyl (16:0) and polar head anion were 

observed as well in the spectrum obtained from Lipidmap database for [PE(16:0/0:0)] 

(Figure 5.8b). 

Due to sample size limitations, LPC fragmentation patterns were mainly 

investigated in –ESI mode selecting the formate adduct as parent ion. Q-TOFMS 

spectra of the deprotonated ions [M+FA-H]- for [PC (16:1/0:0)] and [PC (18:2/0:0)] 

showed four peaks: a peak due to loss of formate plus CH3, a peak corresponding to the 

fatty acyl group and a peak characteristic of the head group (Figure 5.9a,b). The loss 

methyl formate from the deprotonated parent ion at m/z 538.3145 gave rise to the 

fragment at m/z 478.2931 (C23H45NO7P) (Myers et al., 2011). Fatty acyl and the polar 

head group ions can be recognized at m/z 253.2166 (C16H29O2) and m/z 224.0692 

(C7H15NO5P), respectively (Figure 5.9a). The Q-TOFMS mass spectrum for a PC 

structure from Lipidmap database [PC(18:1(9Z)/0:0)] revealed similar fragmentation 

pattern with the exception of the loss of methyl chloride instead of methyl formate 

(Figure 5.9c). This difference can be explained by the fact that spectra reported in the 

Lipidmap database  are relative to chloride adducts while in this study the same 

compound was detected as formate adduct due to the addition of formic acid as modifier 

in the mobile phase. 
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Figure 5.7: Comparison between +ESI mode Q-TOFMS spectra (CE=15eV) for 
Lysophosphatidylethanolamine (a) [PE (16:0/0:0)] or (b) [PE (18:1/0:0)] in plasma from effluent-exposed 
roach and (c) 1-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine [PE(18:1(9Z)/0:0)] from Lipidmap 
database (EPI mode, CE=30eV). 
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Figure 5.8: Comparison between -ESI mode Q-TOFMS spectra (CE=20eV) for (a) 
Lysophosphatidylethanolamine [PE (16:0/0:0)] in plasma from effluent-exposed roach and (b) 1-
hexadecanoyl-sn-glycero-3-phosphoethanolamine [PE(16:0/0:0)] from Lipidmap database (EPI mode, 
CE=30 eV). 
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Figure 5.9: Comparison between -ESI Q-TOFMS spectra (CE=20eV) for Lysophosphatidylcholine (a) 
[PC (16:1/0:0)] or (b) [PC (18:2/0:0)] in plasma from effluent-exposed roach and (c) 1-(9Z-
octadecenoyl)-sn-glycero-3-phosphocholine [PC(18:1(9Z)/0:0)] from Lipidmap database (EPI mode, 
CE=40eV).
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Table 5.3: Phospholipid markers detected in roach plasma in both +/-ESI modes. 

Observed 

ion (m/z) 

RT 

(min) 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit 

Q-TOFMS or high energy 

collisional dissociation 

fragments
#
 

Parent 

compound 

formula Gender 

Control vs 

50%effluent 

Control vs 

100%effluent 

Putative identity 

Fold 

change p-value 

Fold 

change p-value 

452.2777 20.64 C21H43NO7P 452.2777 0.0 1.9  C21H42NO7P F 1.3¶ 8.70E-02 1.9¶ 6.06E-05 Lyso PE 16:1 [M+H]+ 
        M 1.0¶ 5.97E-01 1.3¶ 2.10E-02 

494.3252 20.80 C24H49NO7P 494.3247 1.0 1.5  C24H48NO7P F 1.4¶ 8.70E-02 2.0¶ 4.27E-06 Lyso PC 16:1 [M+H]+ 
        M 1.2¶ 1.28E-01 1.7¶ 5.55E-05 

450.2621 20.60 C21H41NO7P 450.2621 0.0 0.2  C21H42NO7P F 1.0¶ 3.47E-01 1.4¶ 3.00E-03 Lyso PE 16:1 [M-H]- 
        M 0.9¶ 3.43E-01 1.0¶ 4.01E-01 

538.3145 20.77 C25H49NO9P 538.3145 0.0 0.2 478.2931,  253.2166, 224.0692 C24H48NO7P F 1.1¶ 1.33E-01 1.3¶ 2.41E-05 Lyso PC 16:1 [M+FA-H]- 
        M 1.0¶ 8.03E-01 1.3¶ 1.62E-04 

478.2934 21.32 C23H45NO7P 478.2934 0.0 1.0  C23H44NO7P F 1.3¶ 2.70E-02 2.1¶ 1.80E-06 Lyso PE 18:2 [M+H]+ 
        M 1.2¶ 9.30E-02 1.4¶ 2.80E-02 

520.3402 21.47 C26H51NO7P 520.3403 -0.2 0.2  C26H50NO7P F 1.2¶ 3.30E-01 1.8¶ 4.14E-04 Lyso PC 18:2 [M+H]+ 
        M 1.1¶ 3.58E-01 1.1¶ 7.00E-02 

476.2776 21.30 C23H43NO7P 476.2777 -0.2 0.0  C23H44NO7P F 1.1¶ 3.71E-01 1.6¶ 3.00E-05 Lyso PE 18:2 [M-H]- 
        M 1.2¶ 2.1E-02 1.1¶ 8.60E-02 

564.3300 21.44 C27H51NO9P 564.3301 -0.2 0.7 504.3095, 279. 2321, 224.0674 C26H50NO7P F 1.1¶ 2.23E-01 1.4¶ 3.69E-05 Lyso PC 18:2 [M+FA-H]- 
        M 1.0¶ 7.84E-01 1.1¶ 5.30E-01 

526.2939 21.22 C27H45NO7P 526.2934 1.0 0.4  C27H44NO7P F 1.7¶ 2.00E-03 1.6¶ 2.00E-03 Lyso PE 22:6 [M+H]+ 
        M 1.4¶ 1.20E-02 1.3¶ 6.60E-02 

524.2778 21.21 C27H43NO7P 524.2777 0.2 0.1  C27H44NO7P F 1.3¶ 8.00E-03 1.2¶ 5.80E-02 Lyso PE 22:6 [M-H]- 
        M 1.3¶ 2.00E-03 1.1¶ 4.56E-01 

454.2937 21.52 C21H45NO7P 454.2934 0.7 0.7 436.2816, 393.2407, 313.2733 C21H44NO7P F 1.2¶ 9.90E-01 1.7¶ 2.16E-04 LysoPE 16:0 [M+H]+ 
        M 1.1¶ 6.56E-01 1.1¶ 4.07E-01 

452.2776 21.50 C21H43NO7P 452.2777 -0.2 0.4 255.2330, 196.0381 C21H44NO7P F 1.1¶ 3.24E-01 1.4¶ 1.00E-03 LysoPE 16:0 [M-H]- 
        M 1.0¶ 9.40E-01 1.0¶ 7.27E-01 

528.3090 20.88 C27H47NO7P 528.3090 0.0 12.0  C27H46NO7P F 1.8¶ 1.00E-03 2.3¶ 7.32E-06 Lyso PE 22:5 [M+H]+ 
        M 1.5¶ 1.00E-03 1.5¶ 5.00E-03 

570.3560 20.96 C30H53NO7P 570.3560 0.0 0.6  C30H52NO7P F 1.6¶ 3.20E-02 1.7¶ 1.00E-03 Lyso PC 22:5 [M+H]+ 
        M 1.3¶ 1.70E-02 1.4¶ 1.00E-02 

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit. # fragments were obtained 
from Q-TOFMS or high collisional dissociation fragmentation in full scan mode within ±5ppm. Fold Mean fold change calculated from relative concentrations of the 
compound in plasma from roach exposed to either 50% or 100% effluent for 28 days compared with the levels in control roach held in river water (n=16-20 fish for each 
gender). ¶Concentrations above the limit of detection were detected in plasma of the control roach. Lyso PC: lysophosphatidylcholine; Lyso PE: 
lysophsophatidylethanolamine; F: female; M: male; [M+H]+: protonated ion; [M-H]-: deprotonated ion; [M+H-H2O]+: loss of water molecule; [M+FA-H]-: formate adduct.  
Non-normally distributed data (determined as such by the Kolmogorov-Smirnov test) were log transformed prior to statistical analysis; p-value was calculated from t-test 
between control and the effluent exposure, and values below the BH threshold are statistically significant with a false discovery rate of <5% (Benjamini and Hochberg (BH) threshold was 
4.0×10-02). 
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Table 5.3: (continued) Phospholipid markers detected in roach plasma in both +/-ESI modes. 

Observed 

ion (m/z) 
RT 

(min) 
Putative 

formula 
Theoretical 

mass of ion 
∆ 

ppm i-fit 

Q-TOFMS or high energy 

collisional dissociation 

fragments
#
 

Parent 

compound 

formula 

Gender Control vs 

50%effluent 
Control vs 

100%effluent 

Putative identity 
Fold 

change p-value 

Fold 

change p-value 

526.2935 20.85 C27H45NO7P 526.2934 0.2 1.2  C27H46NO7P F 1.5¶ 3.00E-03 1.7¶ 2.41E-05 Lyso PE 22:5 [M-H]- 
        M 1.4¶ 1.00E-03 1.3¶ 1.80E-02 

614.3458 20.86 C31H53NO9P 614.3458 0.0 0.7  C30H52NO7P F 1.4¶ 1.00E-01 1.5¶ 1.74E-04 Lyso PC 22:5 [M+FA-H]- 
        M 1.3¶ 4.00E-03 1.2¶ 2.30E-02 

480.3092 20.78 C23H47NO7P 480.3090 0.4 0.7 462.2930, 419.2543, 339.2878 C23H46NO7P F 1.4¶ 8.00E-03 1.7¶ 1.12E-04 LysoPE 18:1 [M+H]+ 
        M 1.2¶ 1.90E-01 1.4¶ 1.60E-02 

478.2934 20.77 C23H45NO7P 478.2934 0.0 0.2  C23H46NO7P F 1.3¶ 3.7E-02 1.5¶ 5.56E-05 Lyso PE 18:1 [M-H]- 
        M 1.0¶ 4.70E-01 1.1¶ 1.75E-01 

506.3327 21.30 C25H49NO7P 506.3247 0.0 0.1  C25H48NO7P F 1.6¶ 1.00E-03 1.9¶ 3.23E-6 LysoPE 20:2 [M+H]+ 
        M 1.3¶ 1.80E-02 1.5¶ 5.00E-03 

548.3719 21.39 C28H55NO7P 548.3716 0.5 1.7  C28H54NO7P F 1.2¶ 1.48E-01 1.6¶ 1.00E-03 Lyso PC 20:2 [M+H]+ 
        M 1.1¶ 6.70E-01 1.4¶ 1.60E-02 

504.3090 21.28 C25H47NO7P 504.3090 0.0 9.0  C25H48NO7P F 1.2¶ 8.20E-02 1.5¶ 1.00E-03 Lyso PE 20:2 [M-H]- 
        M 1.2¶ 5.90E-02 1.1¶ 3.63E-01 

592.3615 21.28 C29H55NO9P 592.3614 0.2 0.6 532.3391, 307.2644, 224.0701 C28H54NO7P F 1.1¶ 2.23E-01 1.4¶ 4.66E-07 Lyso PC 20:2 [M+FA-H]- 
        M 1.1¶ 5.17E-01 1.1¶ 1.40E-01 

464.3145 21.70 C23H47NO6P 464.3141 0.9 0.3  C23H48NO7P F 1.4¶ 1.00E-03 1.7¶ 1.71E-05 Lyso PE 18:0 [M+H-H2O]+ 
        M 1.2¶ 3.80E-02 1.5¶ 1.00E-03 

482.3250 21.70 C23H49NO7P 482.3247 0.6 1.5  C23H48NO7P F 1.7¶ 1.00E-03 2.0¶ 1.32E-6 Lyso PE 18:0 [M+H]+ 
        M 1.3¶ 5.50E-02 1.7¶ 1.00E-03 

480.3089 21.67 C23H47NO7P 480.3090 -0.2 0.0  C23H48NO7P F 1.3¶ 1.94E-01 1.7¶ 1.00E-02 Lyso PE 18:0 [M-H]- 
        M 1.3¶ 8.20E-02 1.6¶ 7.00E-03 

508.3407 22.01 C25H51NO7P 508.3403 0.8 62.0  C25H50NO7P F 1.7¶ 5.00E-03 2.0¶ 9.12E-05  Lyso PE 20:1 [M+H]+ 
        M 1.2¶ 4.73E-01 1.2¶ 3.16E-01 

550.3869 22.08 C28H57NO7P 550.3873 -0.7 3.0  C28H56NO7P F 1.3¶ 1.09E-01 1.5¶ 3.00E-03 Lyso PC 20:1 [M+H]+ 
        M 0.9¶ 5.61E-01 1.2¶ 2.18E-01 

506.3246 22.02 C25H49NO7P 506.3247 -0.2 0.6  C25H50NO7P F 1.3¶ 7.51E-01 2.0¶ 9.00E-02 Lyso PE 20:1 [M-H]- 
        M 1.2¶ 7.29E-01 0.8¶ 4.20E-01 

594.3770 22.09 C29H57NO9P 594.3771 -0.2 0.5  C28H56NO7P F 1.3¶ 7.40E-02 1.3¶ 2.00E-03 Lyso PC 20:1 [M+FA-H]- 
        M 1.0¶ 7.09E-01 1.0¶ 9.81E-01 

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit. # fragments were obtained from Q-TOFMS or 
high collisional dissociation fragmentation in full scan mode within ±5ppm. Fold Mean fold change calculated from relative concentrations of the compound in plasma from roach exposed to 
either 50% or 100% effluent for 28 days compared with the levels in control roach held in river water (n=16-20 fish for each gender). ¶Concentrations above the limit of detection were detected 
in plasma of the control roach. Lyso PC: lysophosphatidylcholine; Lyso PE: lysophsophatidylethanolamine; F: female; M: male; [M+H]+: protonated ion; [M-H]-: deprotonated ion; [M+H-
H2O]+: loss of water molecule; [M+FA-H]-: formate adduct. Non-normally distributed data (determined as such by the Kolmogorov-Smirnov test) were log transformed prior to statistical 
analysis; p-value was calculated from t-test between control and the effluent exposure samples, and values below the BH threshold are statistically significant with a false discovery rate of <5% 
(Benjamini and Hochberg (BH) threshold was 4.0×10-02). 
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5.3.6 Correlation analysis 

Since Spearman (rank) correlation does not depend on linearity and is more 

robust towards outliers (e.g. abnormality in concentration levels between replicates of 

biological samples), this pair-wise statistic was used to check correlation between 

datasets. Data were not normally distributed and sample size was >10, thus Spearman’s 

analysis requirements were fully fulfilled (Camacho et al., 2005). In this study the 

sample size was >30 for each exposure (control, E50 and E100): Spearman’s analyses 

revealed positive and negative significant correlations in plasma from female roach 

exposed to river water (control), 50% or 100% effluent, ranging from very strong (1.0-

0.9) to strong (0.9-0.7) and moderate (0.7-0.5) (see Table 5.4 as matrix correlation for 

selected markers). 

Firstly, the correlation between xenobiotics was investigated. The Spearman’s 

correlation coefficient values ranged from 0.9 to 0.5 for both female and male groups, 

with just two exceptions, the correlation between C12-LAS versus methoxy 

chloroxylenol sulphate and the correlation between C13-LAS versus methoxy 

chloroxylenol sulphate, whose Spearman’s correlation coefficient values were 0.3 and 

0.4, respectively. High correlation was observed between xenobiotics having similar 

molecular structures. For instance, Spearman’s correlation coefficient >0.9 was 

obtained from the correlation between the sulphate conjugates of solanidine and 

dihydrosolanidine (Figure 5.10). Triclosan sulphate and solanidine sulphate highlighted 

a significant positive correlation in both females and males (female: r=0.939, p=1.3×10-

20; male: r=0.885, p=3.2×10-21; Tables 5.4a,b). This result suggests that uptake and/or 

metabolism pathway is clearly correlated between different xenobiotics. The correlation 

between the endogenously derived metabolites was examined as follows:  

Bile acids: In female roach, Spearman’s coefficient of >0.5 was observed for the 

correlation between cyprinol sulphate and the listed xenobiotics in Table 5.4a,b while 

taurocholic acid showed poor correlation with the same array of xenobiotics, with the 

exception of C13-LAS and methoxy chloroxylenol sulphate, which gave Spearman’s 

coefficient values of >0.5. In roach males, correlation coefficients varied between 0.1 to 

0.3 for the correlation of cyprinol sulphate versus the selected xenobiotics, whereas 

taurocholic acid revealed no correlation at all. Positive correlation was observed 

between cyprinol sulphate and taurocholic acid revealed a strong correlation for females 



233 

 

 

 
 

and moderate correlation for males as revealed by their Spearman’s and p-values 

(female: r=0.801, p=1.1×10-10; male: r=0.627, p=6.3×10-8). 

Sphingosine: The decrease in concentration of sphingosine was also tested by 

Spearman’s analysis. A negative correlation was observed between sphingosine and the 

listed xenobiotics with Spearman’s coefficient values ranging from -0.7 to -0.4 for 

female roach and from -0.5 to -0.2 for male roach, respectively. The Spearman’s 

coefficient for the correlation of sphingosine versus bile acids (cyprinol sulphate and 

taurocholic acid) resulted less than -0.5 for female roach and -0.2 for male roach. 

Phospholipids: Spearman’s correlation coefficients were computed to investigate the 

existing correlation between lysophospholipids (LPs) levels in the fish and xenobiotics 

or other upregulated endogenous compounds already detected in this study in both 

females and males of effluent-exposed roach. The results varied depending on the LPs 

type (LPEs or LPCs). Correlation between LPs and xenobiotics gave coefficients 

ranging between 0.7 and 0.1 for roach females, while in males correlation coefficient 

resulted less than 0.4. LPs versus bile acids showed poor correlation for both females 

and males (Spearman’s coefficient range 0.1-0.4 for females and >0.3 for males). No 

correlation was observed between LPs and sphingosine in both females and males. 

LPCs versus LPEs resulted in correlation coefficients ranging between 0.8 and 0.4 for 

female roach and between 0.7 and 0.2 for male roach. 
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Figure 5.10: Correlation between the concentrations of the sulphate conjugates of solanidine and 
dihydrosolanidine in plasma from roach exposed to river water, 50% or 100% effluent. The samples were 
profiled by UPLC-TOFMS in +ESI mode. Female roach symbols: ( ), ( ) and ( ) represent C, E50 and 
E100 exposure, respectively. Male roach symbols: ( ), ( ) and ( ) represent C, E50 and E100 exposure, 
respectively. The Spearman’s coefficient for females was 0.91 (n=43, p (2-tailed) = 1.3×10-17) and for 
males was 0.97 (n=61, p (2-tailed) = 2.9×10-23). 
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Table 5.4a: Correlation matrix of concentrations of xenobiotics and metabolites in plasma from female roach exposed to river water, 50% or 100% effluent.  
  SD+SO3 DSD+SO3 Surf Xyl+SO3 TCS+SO3 C12-LAS C13-LAS Cyp+SO3 TC BA+SO3 SP LPE18:2 LPC18:2 LPE22:5 LPC22:5 LPE20:1 LPC20:1 
Spearman’s Coeff. (+ESI)Solanidine sulphate (SD+SO3) 1 0.914 0.916 0.815 0.939 0.762 0.584 0.600 0.395 0.552 -0.549 0.689 0.557 0.652 0.606 0.591 0.404 
p-value  X 1.3×10-17 6.6×10-18 3.0×10-11 1.3×10-20 3.0×10-9 3.9×10-5 2.1×10-5 9.0×10-3 1.3×10-4 1.4×10-4 3.2×10-7 1.0×10-4 2.2×10-6 1.7×10-5 3.0×10-5 7.0×10-3 
Spearman’s Coeff. (+ESI)Dihydrosolanidine sulphate 

(DSD+SO3) 
0.914 1 0.901 0.689 0.847 0.665 0.514 0.526 0.323 0.500 -0.426 0.741 0.645 0.645 0.628 0.578 0.489 

p-value  1.3×10-17 X 2.0×10-16 3.2×10-7 8.3×10-13 1.1×10-6 4.2×10-4 2.9×10-4 3.4×10-2 6.5×10-4 4.0×10-3 1.3×10-8 3.0×10-6 3.1×10-6 6.4×10-6 4.9×10-5 1.0×10-3 
Spearman’s Coeff. (+ESI)366.3007 surfactant (Surf) 0.916 0.901 1 0.824 0.925 0.756 0.595 0.598 0.402 0.543 -0.583 0.724 0.597 0.611 0.547 0.615 0.526 
p-value  6.6×10-18 2.0×10-16 X 1.1×10-11 7.5×10-19 4.7×10-9 2.6×10-5 2.3×10-5 8.0×10-3 1.7×10-4 4.0×10-5 4.2×10-8 2.4×10-5 1.4×10-5 1.5×10-4 1.1×10-5 2.9×10-4 
Spearman’s Coeff. (-ESI)methoxy xylenol sulphate (Xyl+SO3) 0.815 0.689 0.824 1 0.873 0.731 0.588 0.663 0.614 0.553 -0.704 0.622 0.431 0.527 0.422 0.447 0.291 
p-value  3.0×10-11 3.2×10-7 1.1×10-11 X 2.4×10-14 2.6×10-8 3.3×10-5 1.3×10-6 1.2×10-5 1.2×10-4 1.4×10-7 8.5×10-6 4.0×10-3 2.8×10-4 5.0×10-3 3.0×10-3 5.8×10-2 
Spearman’s Coeff. (-ESI)Triclosan sulphate (TCS+SO3) 0.939 0.847 0.925 0.873 1 0.762 0.644 0.646 0.436 0.556 -0.658 0.633 0.506 0.610 0.532 0.550 0.396 
p-value  1.3×10-20 8.3×10-13 7.5×10-19 2.4×10-14 X 2.9×10-9 3.1×10-6 2.8×10-6 3.0×10-3 1.1×10-4 1.7×10-6 5.2×10-6 1.0×10-3 1.4×10-5 2.4×10-4 1.3×10-4 9.0×10-3 
Spearman’s Coeff. (-ESI)C12-LAS 0.762 0.665 0.756 0.731 0.762 1 0.604 0.549 0.313 0.604 -0.668 0.462 0.277 0.259 0.314 0.366 0.116 
p-value  3.0×10-9 1.1×10-6 4.7×10-9 2.6×10-8 2.9×10-9 X 1.8×10-5 1.4×10-4 4.1×10-2 1.8×10-5 1.0×10-7 2.0×10-3 7.2×10-2 9.4×10-2 4.0×10-2 1.6×10-2 4.6×10-1 
Spearman’s Coeff. (-ESI)C13-LAS 0.584 0.514 0.595 0.588 0.644 0.604 1 0.584 0.508 0.439 -0.440 0.435 0.185 0.554 0.403 0.601 0.318 
p-value  3.9×10-5 4.2×10-4 2.6×10-5 3.3×10-5 3.1×10-6 1.8×10-5 X 3.9×10-5 1.0×10-3 3.0×10-3 3.0×10-3 4.0×10-3 2.3×10-1 1.2×10-4 7.0×10-3 2.1×10-5 3.7×10-2 
Spearman’s Coeff. (-ESI)Cyprinol sulphate (Cyp+SO3) 0.600 0.526 0.598 0.663 0.646 0.549 0.584 1 0.801 0.409 -0.449 0.468 0.227 0.491 0.263 0.400 0.192 
p-value  2.1×10-5 2.9×10-4 2.3×10-5 1.3×10-6 2.8×10-6 1.4×10-4 3.9×10-5 X 1.1×10-10 7.0×10-3 3.0×10-3 2.0×10-3 1.4×10-1 1.0×10-3 8.9×10-2 8.0×10-3 2.2×10-1 
Spearman’s Coeff. (-ESI)Taurocholic acid (TC) 0.395 0.323 0.402 0.614 0.436 0.313 0.508 0.801 1 0.306 -0.397 0.441 0.162 0.491 0.283 0.316 0.200 
p-value  9.0×10-3 3.4×10-2 8.0×10-3 1.2×10-5 3.0×10-3 4.1×10-2 1.0×10-3 1.1×10-10 X 4.6×10-2 8.0×10-3 3.0×10-3 3.0×10-1 1.0×10-3 6.6×10-2 3.9×10-2 2.0×10-1 
Spearman’s Coeff. (-ESI)Bile acid sulphate (BA+SO3) 0.552 0.500 0.543 0.553 0.556 0.604 0.439 0.409 0.306 1 -0.380 0.451 0.406 0.333 0.285 0.203 0.310 
p-value  1.3×10-4 6.5×10-4 1.7×10-4 1.2×10-4 1.1×10-4 1.8×10-5 3.0×10-3 7.0×10-3 4.6×10-2 X 1.2×10-2 2.0×10-3 7.0×10-3 2.9×10-2 6.4×10-2 1.9×10-1 4.3×10-2 
Spearman’s Coeff. (+ESI)Sphingosine (SP) -0.549 -0.426 -0.583 -0.704 -0.658 -0.668 -0.440 -0.449 -0.397 -0.380 1 -0.237 -0.146 -0.074 -0.009 -0.159 -0.138 
p-value  1.4×10-4 4.0×10-3 4.0×10-5 1.4×10-7 1.7×10-6 1.0×10-7 3.0×10-3 3.0×10-3 8.0×10-3 1.2×10-2 X 1.3×10-1 3.5×10-1 6.4×10-1 9.6×10-1 3.0×10-1 3.8×10-1 
Spearman’s Coeff. (+ESI)LPE18:2 0.689 0.741 0.724 0.622 0.633 0.462 0.435 0.468 0.441 0.451 -0.237 1 0.699 0.681 0.605 0.615 0.500 
p-value  3.2×10-7 1.3×10-8 4.2×10-8 8.5×10-6 5.2×10-6 2.0×10-3 4.0×10-3 2.0×10-3 3.0×10-3 2.0×10-3 1.3×10-1 X 1.9×10-7 5.1×10-7 1.7×10-5 1.2×10-5 1.0×10-3 
Spearman’s Coeff. (+ESI)LPC18:2 0.557 0.645 0.597 0.431 0.506 0.277 0.185 0.227 0.162 0.162 -0.146 0.699 1 0.561 0.750 0.489 0.663 
p-value  1.0×10-4 3.0×10-6 2.4×10-5 4.0×10-3 1.0×10-3 7.2×10-2 2.3×10-1 1.4×10-1 3.0×10-1 3.0×10-1 3.5×10-1 1.9×10-7 X 9.0×10-5 7.1×10-9 1.0×10-3 1.3×10-6 
Spearman’s Coeff. (+ESI)LPE22:5 0.652 0.645 0.611 0.527 0.610 0.259 0.554 0.491 0.491 0.333 -0.074 0.681 0.561 1 0.804 0.700 0.514 
p-value  2.2×10-6 3.1×10-6 1.4×10-5 2.8×10-4 1.4×10-5 9.4×10-2 1.2×10-4 1.0×10-3 1.0×10-3 2.9×10-2 6.4×10-1 5.1×10-7 9.0×10-5 X 8.5×10-11 1.7×10-7 4.2×10-4 
Spearman’s Coeff. (+ESI)LPC22:5 0.606 0.628 0.547 0.422 0.532 0.314 0.403 0.263 0.283 0.285 -0.009 0.605 0.750 0.804 1 0.530 0.498 
p-value  1.7×10-5 6.4×10-6 1.5×10-4 5.0×10-3 2.4×10-4 4.0×10-2 7.0×10-3 8.9×10-2 6.6×10-2 6.4×10-2 9.6×10-1 1.7×10-5 7.1×10-9 8.5×10-11 X 2.6×10-4 1.0×10-3 
Spearman’s Coeff. (+ESI)LPE20:1 0.591 0.578 0.615 0.447 0.550 0.366 0.601 0.400 0.316 0.203 -0.159 0.615 0.489 0.700 0.530 1 0.652 
p-value  3.0×10-5 4.9×10-5 1.1×10-5 3.0×10-3 1.3×10-4 1.6×10-2 2.1×10-5 8.0×10-3 3.9×10-2 1.9×10-1 3.0×10-1 1.2×10-5 1.0×10-3 1.7×10-7 2.6×10-4 X 2.2×10-6 
Spearman’s Coeff. (+ESI)LPC20:1 0.404 0.489 0.526 0.291 0.396 0.116 0.318 0.192 0.200 0.310 -0.138 0.500 0.663 0.514 0.498 0.652 1 
p-value  7.0×10-3 1.0×10-3 2.9×10-4 5.8×10-2 9.0×10-3 4.6×10-1 3.7×10-2 2.2×10-1 2.0×10-1 4.3×10-2 3.8×10-1 1.0×10-3 1.3×10-6 4.2×10-4 1.0×10-3 2.2×10-6 X 

+/-ESI: electrospray ionization; LAS: linear alkylbenzene sulphonic acid; LPE: lysophosphatidylethanolamine; LPC: lysophosphatidylcholine; xenobiotics are labelled in red; 
bile acids in green; sphingolipid in blue and phospholipids in purple. 
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Table 5.4b: Correlation matrix of concentrations of xenobiotics and metabolites in plasma from male roach exposed to river water, 50% or 100% effluent.  
  SD DSD Surf Xyl+SO3 TCS+SO3 C12-LAS C13-LAS Cyp+SO3 TC BA+SO3 SP LPE18:2 LPC18:2 LPE22:5 LPC22:5 LPE20:1 LPC20:1 
Spearman’s Coeff. (+ESI)Solanidine sulphate (SD) 1 0.971 0.916 0.604 0.885 0.682 0.716 0.356 0.230 0.183 -0.484 0.296 0.253 0.367 0.354 0.200 0.204 
p-value  X 2.9×10-38 4.2×10-25 2.5×10-7 3.2×10-21 1.4×10-9 8.8×10-11 5.0×10-3 7.4×10-2 1.6×10-1 7.9×10-5 2.1×10-2 5.0×10-2 4.0×10-3 5.0×10-3 1.2×10-1 1.1×10-1 
Spearman’s Coeff. (+ESI)Dihydrosolanidine sulphate (DSD) 0.971 1 0.905 0.548 0.879 0.678 0.694 0.344 0.227 0.201 -0.486 0.305 0.272 0.385 0.372 0.226 0.243 
p-value  2.9×10-38 X 1.4×10-23 4.9×10-6 1.3×10-20 1.9×10-9 5.8×10-10 7.0×10-3 7.8×10-2 1.2×10-1 7.1×10-5 1.7×10-2 3.4×10-2 2.0×10-3 3.0×10-3 8.0×10-2 6.0×10-2 
Spearman’s Coeff. (+ESI)366.3007 surfactant (Surf) 0.916 0.905 1 0.528 0.949 0.746 0.759 0.239 0.067 0.124 -0.565 0.213 0.177 0.303 0.287 0.110 0.141 
p-value  4.2×10-25 1.4×10-23 X 1.2×10-5 3.2×10-31 5.1×10-12 1.4×10-12 6.3×10-2 6.1×10-1 3.4×10-1 2.1×10-6 9.9×10-2 1.7×10-1 1.8×10-2 2.5×10-2 4.0×10-1 2.8×10-1 
Spearman’s Coeff. (-ESI)methoxy xylenol sulphate (Xyl+SO3) 0.604 0.548 0.528 1 0.570 0.333 0.441 0.356 0.462 0.322 -0.462 0.182 0.141 0.127 0.167 0.051 0.161 
p-value  2.5×10-7 4.9×10-6 1.2×10-5 X 1.7×10-6 9.0×10-3 3.7×10-4 5.0×10-3 1.8×10-4 1.1×10-2 1.8×10-4 1.6×10-1 2.8×10-1 3.3×10-1 2.0×10-1 7.0×10-1 2.2×10-1 
Spearman’s Coeff. (-ESI)Triclosan sulphate (TCS+SO3) 0.885 0.879 0.949 0.570 1 0.697 0.670 0.240 0.075 0.158 -0.563 0.258 0.229 0.341 0.367 0.117 0.163 
p-value  3.2×10-21 1.3×10-20 3.2×10-31 1.7×10-6 X 4.5×10-10 3.6×10-9 6.2×10-2 5.7×10-1 2.2×10-1 2.3×10-6 4.5×10-2 7.5×10-2 7.0×10-3 4.0×10-3 3.7×10-1 2.1×10-1 
Spearman’s Coeff. (-ESI)C12-LAS 0.682 0.678 0.746 0.333 0.697 1 0.779 0.143 -0.055 0.097 -0.243 0.135 -0.013 0.245 0.168 0.202 0.027 
p-value  1.4×10-9 1.9×10-9 5.1×10-12 9.0×10-3 4.5×10-10 X 1.4×10-13 2.7×10-1 6.8×10-1 4.6×10-1 5.9×10-2 3.0×10-1 9.2×10-1 5.7×10-2 2.0×10-1 1.2×10-1 8.3×10-1 
Spearman’s Coeff.  (-ESI)C13-LAS 0.716 0.694 0.759 0.441 0.670 0.779 1 0.165 0.043 0.069 -0.413 0.134 -0.076 0.279 0.086 0.195 -0.055 
p-value  8.8×10-11 5.8×10-10 1.4×10-12 3.7×10-4 3.6×10-9 1.4×10-13 X 2.1×10-1 7.5×10-1 6.0×10-1 1.0×10-3 3.0×10-1 5.6×10-1 2.9×10-2 5.1×10-1 1.3×10-1 6.7×10-1 
Spearman’s Coeff. (-ESI)Cyprinol sulphate (Cyp+SO3) 0.356 0.344 0.239 0.356 0.240 0.143 0.165 1 0.627 0.362 -0.194 0.255 0.219 0.167 0.094 -0.034 0.252 
p-value  5.0×10-3 7.0×10-3 6.3×10-2 5.0×10-3 6.2×10-2 2.7×10-1 2.1×10-1 X 6.3×10-8 4.0×10-3 1.4×10-1 4.7×10-2 9.0×10-2 2.0×10-1 4.7×10-1 8.0×10-1 5.0×10-2 
Spearman’s Coeff. (-ESI)Taurocholic acid (TC) 0.230 0.227 0.067 0.462 0.075 -0.055 0.043 0.627 1 0.321 -0.124 0.285 0.229 0.024 0.081 0.110 0.320 
p-value  7.4×10-2 7.8×10-2 6.1×10-1 1.8×10-4 5.7×10-1 6.8×10-1 7.5×10-1 6.3×10-8 X 1.2×10-2 3.4×10-1 2.6×10-2 7.6×10-2 8.5×10-1 5.4×10-1 4.0×10-1 1.2×10-2 
Spearman’s Coeff. (-ESI)Bile acid sulphate (BA+SO3) 0.183 0.201 0.124 0.322 0.158 0.097 0.069 0.362 0.321 1 -0.168 0.185 0.306 -0.090 0.157 0.150 0.368 
p-value  1.6×10-1 1.2×10-1 3.4×10-1 1.1×10-2 2.2×10-1 4.6×10-1 6.0×10-1 4.0×10-3 1.2×10-2 X 2.0×10-1 1.5×10-1 1.6×10-2 4.9×10-1 2.3×10-1 2.5×10-1 4.0×10-3 
Spearman’s Coeff. (+ESI)Sphingosine (SP) -0.484 -0.486 -0.565 -0.462 -0.563 -0.243 -0.413 -0.194 -0.124 -0.168 1 0.178 -0.071 0.171 0.091 0.275 -0.082 
p-value  7.9×10-5 7.1×10-5 2.1×10-6 1.8×10-4 2.3×10-6 5.9×10-2 1.0×10-3 1.4×10-1 3.4×10-1 2.0×10-1 X 1.7×10-1 5.9×10-1 1.9×10-1 4.9×10-1 3.2×10-2 5.3×10-1 
Spearman’s Coeff. (+ESI)LPE18:2 0.296 0.305 0.213 0.182 0.258 0.135 0.134 0.255 0.285 0.185 0.178 1 0.546 0.630 0.552 0.620 0.426 
p-value  2.1×10-2 1.7×10-2 9.9×10-2 1.6×10-1 4.5×10-2 3.0×10-1 3.0×10-1 4.7×10-2 2.6×10-2 1.5×10-1 1.7×10-1 X 5.3×10-6 5.4×10-8 3.9×10-6 9.9×10-8 1.0×10-3 
Spearman’s Coeff. (+ESI)LPC18:2 0.253 0.272 0.177 0.141 0.229 -0.013 -0.076 0.219 0.229 0.306 -0.071 0.546 1 0.355 0.741 0.311 0.676 
p-value  5.0×10-2 3.4×10-2 1.7×10-1 2.8×10-1 7.5×10-2 9.2×10-1 5.6×10-1 9.0×10-2 7.6×10-2 1.6×10-2 5.9×10-1 5.3×10-6 X 5.0×10-3 9.9×10-12 1.5×10-2 2.2×10-9 
Spearman’s Coeff. (+ESI)LPE22:5 0.367 0.385 0.303 0.127 0.341 0.245 0.279 0.167 0.024 -0.090 0.171 0.630 0.355 1 0.699 0.524 0.208 
p-value  4.0×10-3 2.0×10-3 1.8×10-2 3.3×10-1 7.0×10-3 5.7×10-2 2.9×10-2 2.0×10-1 8.5×10-1 4.9×10-1 1.9×10-1 5.4×10-8 5.0×10-3 X 3.7×10-10 1.5×10-5 1.1×10-1 
Spearman’s Coeff. (+ESI)LPC22:5 0.354 0.372 0.287 0.167 0.367 0.168 0.086 0.094 0.081 0.157 0.091 0.552 0.741 0.699 1 0.461 0.528 
p-value  5.0×10-3 3.0×10-3 2.5×10-2 2.0×10-1 4.0×10-3 2.0×10-1 5.1×10-1 4.7×10-1 5.4×10-1 2.3×10-1 4.9×10-1 3.9×10-6 8.9×10-12 3.7×10-10 X 1.8×10-4 1.2×10-5 
Spearman’s Coeff. (+ESI)LPE20:1 0.200 0.226 0.110 0.051 0.117 0.202 0.195 -0.034 0.110 0.150 0.275 0.620 0.311 0.524 0.461 1 0.560 
p-value  1.2×10-1 8.0×10-2 4.0×10-1 7.0×10-1 3.7×10-1 1.2×10-1 1.3×10-1 8.0×10-1 4.0×10-1 2.5×10-1 3.2×10-2 9.9×10-8 1.5×10-2 1.5×10-5 1.8×10-4 X 2.7×10-6 
Spearman’s Coeff. (+ESI)LPC20:1 0.204 0.243 0.141 0.161 0.163 0.027 -0.055 0.252 0.320 0.368 -0.082 0.426 0.676 0.208 0.528 0.560 1 
p-value  1.1×10-1 6.0×10-2 2.8×10-1 2.2×10-1 2.1×10-1 8.3×10-1 6.7×10-1 5.0×10-2 1.2×10-2 4.0×10-3 5.3×10-1 1.0×10-3 2.2×10-9 1.1×10-1 1.2×10-5 2.7×10-6 X 

+/-ESI: electrospray ionization; LAS: linear alkylbenzene sulphonic acid; LPE: lysophosphatidylethanolamine; LPC: lysophosphatidylcholine; xenobiotics are labelled in red; 
bile acids in green; sphingolipid in blue and phospholipids in purple. 
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5.4 Discussion 

Chemical profiling of trout biofluids performed in Chapter 3 and 4 gave 

interesting and informative results about the possible effects in fish due to exposure to 

wastewater effluents. Nevertheless, the short term experiment and the availability of 

only one tank replicate would not have allowed the adequate determination of toxicity 

pathways and health effects. In this chapter the results of a further experiment are 

reported, where replication issues have been taken into account. The main aim of this 

study was to detect changes in the metabolome obtained from plasma samples of a 

different fish species (roach) exposed to the same wastewater effluent but for longer 

time (28 days) and employing statistically relevant replicates (2 tanks per each 

treatment). No depuration step was employed in this particular case since the 

preliminary trout study showed little persistence of the bioconcentrated xenobiotics. 

Different proportions of effluent in the exposure tanks were investigated (50% of 

effluent and 100% of effluent) in order to understand how different dilution conditions 

of effluents in the field can affect fish health status. The effluent contribution to 

watercourses can change drastically throughout the year, depending on the rainfall and 

seasonal conditions. Usually in the UK, in winter a 1 in 2 dilution of the effluent can be 

reached whilst during the summer, in some extreme cases, due to the much lower level 

of dilution, rivers can be made of 100% effluents. These seasonal changes in effluent 

concentration need to be taken into account when assessing the possible impacts of 

effluent discharges in wild fish (Harries et al., 1999). In this study the exposure of roach 

to either 50% or 100% effluent resulted in the detection of a number discriminatory 

metabolites of endogenous and exogenous origin in the plasma of the effluent-exposed 

roach. Many of these metabolites were similar to those reported as markers of effluent 

exposure in trout (Chapter 4).  

The sulphate conjugate of triclosan and an isomer of the methoxy metabolite of 

chloroxylenol were detected in both fish exposures. However, other xenobiotics which 

were detected in trout plasma as glucuronide conjugates (e.g. triclosan, chlorophene and 

chloroxylenol), were not detected as markers of effluent exposure in roach plasma. 

Linear alkylbenzene sulphonic acids C12-LAS and C13-LAS were found in both fish 

species, but all other surfactants and their metabolites previously found in the trout 

plasma could not be detected in roach plasma. For instance, NP, AEOs, and ECs were 

not detected in roach plasma either as conjugates or as parent compounds. It is possible 
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that these surfactants had been taken up by the roach but they were present in the 

samples in concentrations below the detection limit. For instance, the amount of plasma 

extract injected on column was 2-fold lower for the roach samples compared with trout, 

due to the lack of available sample.  

In addition to chlorinated organics and surfactant contaminants, the steroidal 

alkaloids putatively identified as solanidine and dihydrosolanidine were determined as 

sulphate conjugates in roach plasma whilst they were detected as parent compounds in 

the trout plasma. The presence of these metabolites as sulphate conjugates in roach 

plasma could be due to the higher efficiency of the sulphate conjugation of xenobiotics 

in cyprinids (Kobayashi et al., 1984). These steroidal metabolites are formed from the 

glycoalkaloids α-solanine and α-chaconine, which are natural toxins produced by 

potato plants. α-Solanine and α-chaconine share the same aglycone, solanidine, but 

have different carbohydrate component. These two glycoalkaloids, together with their 

aglycone solanidine, have been detected in soil extracts due to leakage of these 

compounds from potato tubers that are left on the field after harvesting; losses to soil 

could potentially impact shallow groundwater and freshwater ecosystems (Jensen et al., 

2008). Both glycoalkaloids have been detected in human blood serum samples collected 

from volunteers after a meal of potatoes (Hellenäs et al., 1992). The elimination of α-

chaconine and α-solanine is similar with the major metabolite being the aglycone, 

solanidine (Donald G, 2008). As reported previously, the human stomach hydrolyzes 

glycoalkaloid to the relative shared less toxic aglycone, solanidine and elimination 

occurs rapidly in the faeces and to a lesser extent in urine (Donald G, 2008). α-solanine 

and α-chaconine have biological half-lives in serum of about 11 hours and 19 hours, 

respectively suggesting they are rapidly eliminated from the body (Hellenäs et al., 

1992). Unaltered α-chaconine and the major metabolite solanidine have been detected 

in the urine and faeces of golden hamsters orally administered labelled α-chaconine 

(Alozie et al., 1979). 

As revealed by Hellenas and Donald studies, both glycoalkaloids can be present 

in human waste, together with their shared aglycone solanidine. Therefore, the presence 

of solanidine in wastewater could be related both to discharge of human waste already 

containing it and to microbial degradation of the original glycoalkaloids directly in the 

environment. 
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As already mentioned above, triclosan was found in both fish species: in trout 

samples it was present as both conjugated forms (glucuronide and sulphate) whilst in 

the roach samples the sulphate conjugate was the predominant form. In aquatic 

ecosystems, triclosan exists in the ionized form (Orvos et al., 2002) and it is mainly the 

neutral form which is responsible for most of its toxic effects. The half‐life of triclosan 

in surface water is about 41 min; most of the parent compound is converted to 

2,4‐dichlorophenol, although degradation rates can vary considerably depending on the 

aquatic conditions (Reiss et al., 2002, Lyndall et al., 2010). As mentioned in chapter 3, 

2,4-dichlorophenol was  detected in trout bile in this research and so its presence could 

be hypothetically related to triclosan degradation. Numerous studies have already 

assessed the toxicity of triclosan in a variety of organisms, (e.g. algae, invertebrates, 

amphibians, fish, birds and mammals). The structural similarity of triclosan to known 

estrogenic and androgenic contaminants (e.g. polychlorinated biphenyls, 

polybrominated diphenyl ethers, and bisphenol A)) could suggest endocrine disruption 

behaviour, according to the structure–activity relationships (Veldhoen et al., 2006, 

Allmyr et al., 2008). Several studies have proved that triclosan has the ability to disrupt 

endocrine function in many species (reviewed by Hontela (2011)). This result raises a 

considerable public and scientific concern, since large amounts of triclosan are used on 

a regular basis by the population. Besides the aquatic environment (Chalew and Halden, 

2009), triclosan has also been detected in human plasma (Hovander et al., 2002), breast 

milk (Adolfsson-Erici et al., 2002), and urine (Calafat et al., 2008).  

Besides xenometabolites or metabolites of exogenous origin (i.e triclosan 

sulphate), endogenously derived metabolites were also detected in trout and roach 

samples. Bile acids (e.g. taurocholic acid and cyprinol sulphate) were found to be up-

regulated in both trout and roach blood after effluent exposure. The bile acid cyprinol 

sulphate was predominant in roach, taurocholic acid was more abundant in trout while 

taurochenodeoxycholic acid was detected in trout but absent in roach (both in control 

and effluent-exposed samples). Another C27 bile acid like was detected only in roach 

plasma. The occurrence of C27 bile acid sulphates is common in the wild: they are 

present as the main biliary surfactants in cartilaginous fish (sharks, rays, and skates), 

herbivorous bony fish (carp, arapima, and angelfish), and amphibians as well 

(salamanders and frogs)  (Goto et al., 2003). Cyprinol sulphate has been reported to be 

the major bile acid for grass carp and common carp (family Cyprinidae) (Yeh and 
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Hwang, 2001). C27 bile acids are more cytotoxic than the C24 bile acids found in more 

evolved animals and can be potent inhibitors of oxidative phosphorylation enhancing 

mitochondrial reactive oxygen species (ROS) production by inhibiting the respiratory 

chain (Ferdinandusse et al., 2009). 5α-Cyprinol sulphate was found to have highly 

enhance mucosal membrane permeability to water-soluble compounds (Murakami et al., 

2000). 5α-Cyprinol and its sulphate can be toxic and can cause renal and hepatic failure 

after ingestion of goldfish or carp gallbladders (Yeh et al., 2002, Xuan et al., 2003). 

Goto et al., (2003) have found that 5α-cyprinol can inhibit taurocholate uptake, since 

hepatocellular bile salt uptake is mediated predominantly by the Na(+)-taurocholate 

cotransport proteins. 5α-Cyprinol sulphate inhibited taurocholate uptake in COS-7 cells 

transfected with rat asbt, the apical bile salt transporter of the ileal enterocyte.  

A veriaty of phospholipids were up-regulated due to effluent exposure only in 

roach plasma. One of the possible reason of the lack of detection of these metabolites in 

trout plasma could be the use of different statistical approaches. In the roach study, p-

test using the non-parametric test Mann-Whitney was used to screen for significant 

changes in the MS signals. The obtained p-values were adjusted to check for false 

discovery rates (FDR) by employing Benjamini and Hochberg (BH) procedure, whilst 

Bonferroni correction has been used in chapter 3 and chapter 4 data (trout samples). 

Reasons for using BH correction are its simple set up in Microsoft Excel and has a high 

efficiency in controlling FDR whereas the Bonferroni correction may over correct for 

the FDR (Robertson et al., 2006). In the Bonferroni correction case some true 

metabolites (as lysophospholipids in the roach samples) may not pass the Bonferroni 

corrected threshold, leading to an increase (inflation) of type II errors (Broadhurst and 

Kell, 2006).  

Phospholipids consist of a glycerol back-bone esterified on the sn-1 and sn-2 

positions with two fatty acids and a phosphate ester on the sn-3 position (Figure 5.9); 

the moiety esterified on the sn-3 position is referred to as polar head group, while the 

alcohol esterified on the phosphate group is referred as R.  
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Figure 5.11: General structure of phospholipids. 

 

Phospholipids (PLs) are essential constituents of cell membranes, but their 

importance in living organisms is not limited to this function (Vance, 2002; D'Arrigo 

and Servi, 2010). Among the different existing classes of lipids, lysophospholipids 

(LPs) represent only 0.5 to 6% of the total PL content of cell membranes (Birgbauer and 

Chun, 2006, Torkhovskaya et al., 2007) and their structural role is considered minor. 

However, they act as second messenger molecules in cellular signal transduction 

processes (Torkhovskaya et al., 2007, D'Arrigo and Servi, 2010) and have a wide range 

of biological activities. For this reason, they are among the most interesting lipids for 

pharmaceutical formulations (Moolenaar, 2000, Birgbauer and Chun, 2006). LP 

receptors are required for the correct development and functioning of cardiovascular, 

nervous, immune, respiratory, and reproductive systems in mammals (Rivera and Chun, 

2008). They also seem to have a critical role in pathological operations such as 

inflammatory reactions, autoimmune diseases, cancer, and atherosclerosis (Mills and 

Moolenaar, 2003, Gardell et al., 2006). LPEs and LPCs can be generated from 

phosphatidylethanolamine (PE) and phosphatidylcholine (PC), respectively, and are 

cleavage product generated by increased activity of phospholipase A-type (PLA). Other 

studies have shown that excessive levels of LPC have been implicated in hepatocellular 

apoptosis (Han et al., 2008). 

Previous studies which have provided strong evidence that halogenated 

pollutants can alter lipid profiles, altering the lipid-mediated storage and transport of 

Head group (X):          Phospholipid class:   
CH2CH2NH3

+ Phosphatidylethanolamine (PE)
CH2CH2N(CH3)3

+ Phosphatidylcholine (PC)
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lipophilic contaminants. In this study, many different halogenated xenobiotics have 

been detected in both fish species (e.g. triclosan, chloroxylenol and chlorophene); 

therefore disruption of LP concentations maybe related to their presence in the fish. 

Capuzzo and Leavitt (1988) observed increases in lipid content and lipid:protein ratios 

in the tissues of PAH/PCB contaminated mussels and hypothesised that these 

contaminants mediated a decrease in the conversion of storage lipids to membrane 

lipids. Their analysis of lipid class composition revealed differences in response to 

contaminant gradients and reflected alterations in mobilization of triacylglycerols to 

phospholipid pools, sterol turnover and reductions in phospholipid content. In another 

study, exposure to the chlorinated insecticide toxaphene increased sterols and decreased 

triacylglycerol levels in hepatocytes of yellowtail flounder both in vivo (Scott et al., 

2002) and in vitro (Fåhræus-Van Ree and Spurrell, 2000). Capuzzo et al. (1984) 

showed that exposure to hydrocarbons disrupted triacylglycerol synthesis in larval 

lobsters, while PCB exposure dramatically reduced whole body triacylglycerol levels in 

oysters (Mommsen and Moon, 2005).  

Acylcarnitine was increased in concentration after exposure in trout plasma 

while no alteration in this metabolite was detected in roach plasma. Decreases in 

sphingosine levels were confirmed in both species (trout and roach plasma) after 

effluent-exposure (see Chapter 4 for further details). 

Correlation between metabolites were investigated using Spearman’s correlation 

test, conducting a correlation matrix in order to find out any kind of correlation between 

xenobiotics and endogenous metabolites (i.e. xenobiotics versus xenobiotics, 

endogenous versus endogenous and xenobiotics versus endogenous). Positive 

correlation was observed between the two bile acids cyprinol sulphate and taurocholic 

acid. These two bile acids are involved in primary bile acid biosynthesis, deriving both 

from cholesterol. Sphingosine revealed a negative correlation to some xenobiotics (e.g. 

triclosan sulphate). Sphingosine is generated by lysis of ceramide in the lysosome by 

ceramidase enzymes, leading to an increase in cellular sphingosine levels. However, in 

this specific study, the concentration of sphingonsine was decreased after effluent 

exposure; this trend could indicate a possible inhibition of the ceramidase enzymes, 

leading therefore to a depletion of the sphingosine levels in the cell. Further studies 

would be needed to determine which xenobiotic(s) accumulating in the fish cause the 

observed disruption in plasma concentrations of bile acids and lipid metabolites. 
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CHAPTER 6: General Discussion 

Many parts of river catchments in the UK are densely populated and rivers and 

estuaries are contaminated by effluent discharges on a daily basis, with the implication 

that aquatic wildlife (e.g. fish) is exposed to complex mixtures of contaminants often 

throughout their life cycle. Furthermore, an increasing demand on water resources due 

to an expanding population, and a probable reduced river flow due to climate change are 

likely to result in even lower dilution of effluents in many UK catchments, increasing 

the pressure on the sustainability of wildlife (Johnson et al., 2009). In some UK river 

sites, especially during low rainfall in the summer, WwTW effluents discharges already 

comprise between 50% and 90% of the river flow. In contrast, in catchments that 

receive increased rainfall, the greater demands on the sewerage treatment system will 

inevitably lead to discharge of poorly treated sewage into receiving waters via storm 

overflow systems. In order to aid understanding of the impacts of effluent discharges 

into water bodies, this research aimed to characterise the array of organic contaminants 

and their metabolites present in biofluids (bile and plasma) of two species of fish (trout 

and roach) after exposure to a selected WwTW effluent. In this work, juvenile rainbow 

trout, commonly used as a model organism for ecotoxicology work, were initially used 

to investigate the (xeno)metabolome of fish exposed to a final wastewater effluent. As 

described in details in Chapter 2, preliminary work was focussed on the analytical 

approach optimization in order to provide the best methodology for correct 

interpretation of the information obtained from the metabolomics approach. A fit for 

purpose UPLC-TOFMS was developed and the biofluid matrices were fully 

characterized. Bioconcentration and depuration mechanisms for the xenobiotics 

detected in the bile of the effluent exposed trout were described in Chapter 3. This first 

exposure study investigated the effect of a 4 and 11 day depuration period on the trout 

xenometabolome. To do this, parallel control groups of trout were held in reference 

river water. Furthermore, in Chapter 4 profiles of the xenometabolome in blood samples 

from the same rainbow trout exposure were also investigated in order to evaluate 

changes in profiles of endogenous metabolites as a result of effluent exposure. It is 

worth mentioning that in this study, there was a clear separation between the different 

control treatment groups (C10, C14 and C21) in the PLSDA models of both the bile and 

blood datasets of trout exposed to the reference river water, proving the need to use a 

separate control group for each treatment. In these studies it was clear that the river 



244 

 

 

 
 

water abstracted upstream of the effluent contained low levels of contaminants as some 

of these were detected in the bile of the reference trout (see Chapter 3). It was possible 

that the contaminant of the river water changed during the exposure period. In addition, 

some of the differences between the control groups may have also been due to changes 

in the metabolic status of the trout at the different time points.  However for this first 

study, samples from only one tank replicate were available and a follow up 

investigation was needed with duplicate exposures to confirm some of the results 

relating to the disruption of the endogenous metabolites comprising the metabolome. 

This point has been fully examined in Chapter 5, where the main aim was to detect 

changes in the plasma metabolome from different fish species exposed to the same 

wastewater effluent but for longer time and employing statistically relevant replicates. 

In this second study, roach was used as the test organism as it is a species that was the 

first to be discovered with a high incidence of intersex condition due to exposure to 

oestrogenic effluents (Purdom et al., 1994). Roach are therefore considered to be 

sensitive to the effects of contaminants in wastewater effluents, and they are also 

representative of cyprinid fish that occur in European rivers. In addition, sexually 

mature roach were available which meant that gender specific responses to effluent 

exposure could be evaluated. Exposures in duplicate tanks were undertaken for 28 days, 

and at two different concentrations of effluent which enabled responses to be 

determined for wastewater concentrations that represented low flow conditions in many 

UK river sites. This second approach confirmed most of the data observed in the first 

piece of work on the trout species. Additionally, it allowed the investigation of some of 

the pathways disrupted by effluent exposure and the determination of gender specific 

changes in the metabolome. PLS-DA models of the metabolomic profiles of roach 

plasma revealed that there was little variability between samples from the duplicate 

tanks for any one treatment (Chapter 5). This suggested that the differences in the 

endogenously derived metabolome of trout plasma (changes in bile acids, carnitine and 

sphingosine concentrations) were likely due to effluent exposure rather than variability 

in trout metabolite status between individual tanks.  
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6.1 Main implications of using a chemical profiling approach to identify 

bioavailable contaminants 

In this study, a chemical profiling approach was used to identify not only 

changes in the metabolome but also uptake of xenobiotics into the fish as a result of 

exposure to a wastewater effluent. The approach was based on analytical (LC-MS) and 

multivariate methods used for metabolomics, and thus allowed analysis of 

xenometabolites as well as metabolites themselves. The concept of the xenometabolome 

has only been recently recognised and has been applied to the study of metabolites of a 

single drug as well as to the profile of drugs, pollutants, and dietary or other products 

that an organism is exposed to or ingested (Holmes et al., 2007, Holmes et al., 2008). A 

step further is to consider the exposome, defined as the cumulative effects of diverse 

environmental exposures over a life time and the organism's response to them (Wild, 

2012). The exposome complements the genome in understanding the association 

between the health status of an organism in relation to specific environmental exposures 

(Wild, 2012). In this context, this study of the profile of xenometabolites 

bioconcentrating in bile or plasma of fish represents a snapshot of the fish exposome 

arising from exposure to a wastewater effluent. The fish bioconcentrated not only 

contaminants such as surfactants and chlorinated organics, but also dietary metabolites 

such as solanidine from the effluent. Further studies comprising exposure to other 

wastewater effluents, as well as to river sites in catchments will aid understanding of the 

exposome of fish in rivers receiving point and diffuse sources of pollutants and other 

inputs. 

It should be recognized that a chemical profiling approach using comparative 

(xeno)metabolite profiling can be much more easier with wildlife than with human 

populations, since in the former case it is possible to obtain an uncontaminated 

reference population to compare xenometabolite profiles. With wildlife, reference 

populations can be obtained from organisms kept in clean water in the laboratory, or 

present at sites with little or low contamination. This is often not the case with the 

human population, where even the most geographically extreme sites, such as the Arctic 

Circle, contain contaminated indigenous populations (Van Oostdam et al., 2005). In 

addition, the use of a population that can be transferred from contaminated to clean 

waters allows the use of depuration experiments in order to evaluate persistence and 
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clearance rates of contaminants and the recovery of the organism health to normal 

status.  

6.1.1 The analytical methodology 

It was clear from this study that the chemical profiling approach used in this 

study encompassed a variety of bioavailable organic contaminants present in the 

effluent, however there were many contaminants and other xenobiotics that were not 

detected using UPLC-ESI TOFMS analysis of the bile and plasma. This could be due to 

a number of possible reasons: some compounds may have been excreted in urine rather 

than bile, or present at too low concentrations in the plasma to be detected without 

preconcentration. Some compounds may not have been ionised by ESI e.g. alkanes or 

chlorinated hydrocarbons such as polychlorinated biphenyls. Other compounds such as 

phenolics or steroidal oestrogens would not have been detected due to the use of an 

acidic mobile phase, and would only have been detected –ESI when they were ionised 

more efficiently in the presence of a basic modifier (see Chapter 2). Apart from 

steroidal oestrogens, it is likely that many pharmaceuticals that are known to be in 

wastewater effluents e.g. non-steroidal anti-inflammatory drugs such as diclofenac, 

antiepileptic drugs such as carbamazepine and selective serotonin reuptake inhibitors 

such as citalopram should have been detected in the fish (Zhang et al., 2008, Vasskog et 

al., 2008). It was also apparent in the current work that the range of contaminants which 

can be detected greatly depended on the choice of the biofluid to be investigated. Fish 

bile was chosen as sample matrix because it can bioconcentrate contaminants from 

ambient water by a factor of many 1000 fold, increasing chances for a successful 

identification of unknowns. However analysis of plasma may give a more representative 

picture of the range of xenobiotics circulating in the fish. However, it was clear that 

analysis of the plasma in this study, detected only a proportion of the compounds that 

were present in the bile, despite the fact that the amount injected for plasma on column 

was 20 times higher than bile. For instance, mefenamic acid, resin acids, oxybenzone 

and naphthols were detected (as glucuronide conjugates) in bile of effluent-exposed 

trout but were not detected in the plasma samples from the same fish (see chapters 3 and 

4).   

It is clear that the profiling method needs to be further optimized to detect a 

more complete range of contaminants and other xenobiotics in the fish plasma. This 

could be focused on reducing matrix effects in LC-ESI-MS analysis by improving 
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sample preparation techniques and/or increasing the resolution by using nanoflow LC. 

The use of nanospray technology instead of electrospray ionisation could also increase 

the sensitivity of analysis and lower the limit of detection by up to 100 fold. To detect 

contaminants that do not ionise using nanospray, then samples could be additionally 

analysed by GC-MS profiling after suitable derivatization. Together these measures 

could allow a more complete profiling of xenobiotics present in microlitre volumes of 

fish plasma. 

6.1.2 Detection of xenobiotics in effluent-exposed fish 

Many different classes of widely used chemicals were detected in the bile of 

trout exposed to a final wastewater effluent. Six compound classes were characterised 

as: surfactants (LAS, SPCs, NPEOs, AEOs, AECs), aromatic hydrocarbons, chlorinated 

compounds (phenols, xylenols, phenoxyphenols, chlorophenes, parabens), 

pharmaceuticals, sunscreen agents and resin acids. Most of these compounds were 

detected using UPLC-TOFMS; however, some xenobiotics in the bile (e.g. 

dichlorophene) were identified by chance during GC-MS analysis of bile fractions. 

Surfactants are widely detected in the environment due to their broad usage (e.g. in the 

formulation of household products). Series of nonionic (NPEOs and AEOs) and anionic 

surfactants (LAS) and were found alongside their potential degradation products (e.g. 

NP from NPEOs, SPCs from LAS and AECs from AEOs) in trout bile. The detection of 

SPCs as metabolites of LAS could have been due to either the fish metabolism or to 

degradation processes occurred in the effluent by microbial activity (Alvarez-Munoz et 

al., 2010). The presence of AECs in fish, which were found as non-conjugated forms in 

the bile samples, could be explained either by ω-oxidation of AEOs in effluent (Di 

Corcia et al., 1998) or by input into the effluent due to their usage as anionic detergents. 

In addition to SPC metabolites, mono- and dicarboxylic C10-sulfophenyl acids were 

observed by analysis of bile from fish exposed to wastewater effluent. These 

metabolites were possibly generated by ω-oxidation of alkyl chain followed by β-

oxidation. The detection of these surfactants as the parent compounds (i.e. LAS) in the 

plasma samples and as oxidised SPCs in the bile samples could be a proof of the 

occurrence of the metabolism of these contaminants within the fish. Many of the NPEO 

AEO and AECs were detected with ethoxymers of 6-10 EOs, which indicated that the 

effluent from the WwTW was poorly treated and failed to degrade these surfactants to 

shorter ethoxylate chains.  
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Analysis of bile and plasma matrices of effluent-exposed fish showed the 

presence of some chlorinated compounds. These belonged to five main classes of 

compounds: chlorinated phenols (i.e. 2,4-dichlorophenol and an isomer of 

trichlorophenol), chlorinated xylenols (chloroxylenol, dichloroxylenol and their 

methoxy metabolites), chlorophenes (chlorophene, methoxychlorophene and 

dichlorophene), chlorinated phenoxyphenols (diclosan and triclosan), chlorinated 

parabens (dichloromethylparaben). With the exception of chlorinated parabens, all 

chlorinated compounds were detected as glucuronide or sulphate conjugated 

metabolites. All these compounds are generally used as anti-microbial in personal care 

and household products and have been proved to be acutely toxic to aquatic species in 

various studies (for details see Section 3.4 Chapter 3). Amongst these xenobiotics, 

triclosan and chlorophene especially raised scientific concern due to their apparent 

androgen receptor antagonist activity (antiandrogen) in in vitro assays (Rostkowski et 

al., 2011). However, there is little information on the health effects of exposure of 

sublethal concentrations of these compounds to fish or whether they possess anti-

androgen activity in vivo. The presence of chlorinated parabens can be explained as by-

products of the reaction of parabens in the effluent with free chlorine dissolved in the 

water. Sulphate conjugates of some of these xenobiotics (chloroxylenol, triclosan, 

diclosan, chlorophene and trichlorophenol) were detected only in blood samples, 

whereas glucuronide conjugates of triclosan, chlorophene and chloroxylenol were 

present in the bile and in trout blood. This result could be explained either by the 

relatively low effectiveness of sulphation when compared to other biotransformation or 

by the excretion of sulphate conjugates via urine due to their relatively small molecular 

size.  

Two PAHs metabolites, 1-hydroxypyrene and the glucuronide conjugates of 

naphthols, were found in the bile of effluent-exposed trout but not in the blood of both 

species (trout and roach). PAHs have widely been recognised as mutagenic, 

carcinogenic and teratogenic properties and may have been present in wastewater 

effluents thought road runoff of car exhaust emissions, and other sources of carbon 

combustion (see Section 3.4 for details).  

The non-steroidal anti-inflammatory drug mefenamic acid was detected in fish 

bile as the glucuronide form. This drug has been designed to inhibit prostaglandin 

biosynthesis; therefore this might represent its primary mechanism of action also in the 
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fish (Lemke et al., 2007). Oxybenzone, a commercial sunscreen well known for its 

estrogenic activity, as well as antiestrogenic and antiandrogenic in vitro (Kunz and Fent, 

2006) has been identified as well in the fish bile as a glucuronide conjugate. 

Furthermore, a mixture of resin acids (RAs, including abietic acid, pimaric acid, and 

isopimaric acid) were detected as glucuronide conjugates in the bile. RAs are usually 

detected in pulp mill effluents and these RA isomers have recently been proved to have 

relevant antiandrogenic activity (Rostkowski et al., 2011). Lower detection levels would 

be needed to detect mefenamic acid, oxybenzone and the mixture of resin acids in 

plasma as these compounds were not detected in blood plasma samples from either the 

trout or roach exposures. 

Bisphenol A, dichlorophene and 2,2’-dihydroxybiphenyl were compounds 

which could only be detected in the bile samples by means of the GC-MS analysis and 

their relevance as xenobiotics is due to the fact that they show endocrine disrupting 

activity in in vitro experiments and (for bisphenol A) in in vivo studies too (Welshons et 

al., 2003, Vom Saal and Hughes, 2005, Richter et al., 2007, Rostkowski et al., 2011). 

Their identification by GC-MS analysis supports the conclusion that using only one 

analytical approach may not detect the whole array of contaminants present in the 

samples. For this reason the use of other techniques such as GC-TOFMS could be 

useful in order to cover the majority of xenobiotics taken up by the fish. 

Not all the xenobiotics detected in the effluent exposed fish were chemical 

contaminants arising from household waste. Solanidine and dihydrosolanidine were 

likely metabolites of potato consumption in the human population. Interestingly, these 

were present as the parent compounds in trout plasma but were detected as sulphate 

conjugates in roach plasma. This observation may reflect differences in the metabolism 

of xenobiotics between salmonid and cyprinid fish and has been observed previously for 

metabolism of phenolic substrates (Ferreira-Leach and Hill, 2001, Pedersen and Hill, 

2002). 

As far as concerns the endogenously derived compounds, the bile acids (i.e. 

taurocholic acid and cyprinol sulphate), were found to be up-regulated in both trout and 

roach plasma after effluent exposure. Cyprinol sulphate was the most abundant bile acid 

in roach, whereas taurocholic acid was the predominant bile acid in trout and 

taurochenodeoxycholic acid was detected in trout but absent in roach. These results 

supported previous findings that cyprinol sulphate is the major bile acid in cyprinid fish 
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(Yeh and Hwang, 2001). Exposure to 100% effluent resulted in a 9-12 fold increase for 

bile acids in trout plasma compared with a 2-6 fold increase in roach. This result could 

indicate species differences in response to effluent exposure. However as the trout and 

roach exposures were carried out at different times, further work would be needed to 

determine whether there were differences between salmonid and cyprinid fish in bile 

acid biomarker responses to effluent exposure. Lysophospholipids were up-regulated 

predominantly in roach blood plasma after effluent exposure, whereas an acylcarnitine 

was observed as an up-regulated marker of effluent exposure exclusively in the trout 

blood sample. Again, further work is needed to determine whether these differences are 

due to fish species or to the length of time of the exposure period (trout 10 days, roach 

28 days), or due to differences in effluent composition. Interestingly, with both fish 

species, exposure to 100% effluent resulted in a two-fold decrease in plasma 

sphingosine levels indicating that this could be a consistent response to this wastewater 

effluent.  
 

6.2 Evaluation of the depuration process in trout exposed to wastewater effluent 

Many of the xenobiotics detected in the trout plasma were completely eliminated 

after 4 days depuration and this trend suggests a very low systemic persistence of 

xenobiotics after exposure to effluent, possibly due to efficient hepatic metabolism and 

biliary or urine excretion of their conjugated forms. Many of these xenobiotics were 

present as glucuronide conjugates in bile and these polar metabolites can be rapidly 

eliminated from the fish via the faeces. Only some xenobiotics, such as some 

ethoxymers of AECs and NPEOs,  were still present in the bile after a 4 day depuration 

period and this could be possibly related either to their very high concentrations after 

the initial effluent exposure, or due to contamination of the river water used for the 

depuration study. The use of a depuration treatment allowed the persistence of the 

changes in the levels of some endogenously derived metabolites in the plasma to be 

investigated. Bile acids that were increased by effluent exposure, were then decreased 

back to almost normal levels after a 4 day depuration period, indicating a rapid return to 

the normal physiological status of the fish. On the other hand, sphingosine levels were 

decreased two fold by effluent exposure and only slightly increased (by 30%) back to 

normal levels after either 4 and 11 days of depuration, indicating possible longer term 

effect of effluent exposure on the concentrations of this metabolite. This result could be 

explained either by a prolonged downregulation of enzymes involved in sphingosine 
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synthesis or by an upregulation of enzymes involved in the metabolism to sphingolipids 

(see chapter 4). 
 

6.3 Toxicity implications of effluent exposure for fish health 

The presence of the above mentioned bioavailable xenobiotics in the wastewater 

effluent may result in a number of toxic endpoints in fish: 

6.3.1 Membrane damage  

The composition of many of the surfactant structures detected in the fish, which 

contained ethoxymers of up to 10 units, could have caused disruption of the structure 

and function of cell membranes in different organs including the liver. A high 

concentration of bioavailable surfactant structures circulating in the plasma, and being 

metabolised in the liver, could have disrupted liver cell membranes and therefore 

affected the transport of bile acids from the hepatocyte to the bile canaliculi. This could 

result in liver toxicity and inflammation, and this is borne out by the fact increased bile 

acids levels were detected in fish blood plasma after 10 days of effluent exposure in 

trout and after 28 days exposure in roach. The liver damage however,  may be 

reversible, since bile acids reached nearly normal levels back to the normal 

physiological status (>80%) after depuration. Some bile acids can act as ligands for a 

variety of receptors (the farnesoid X receptor, the pregnane X receptor and the vitamin 

D receptor,  selected G protein receptor) and interact in a variety of signalling pathways 

in  the liver cells (Chiang, 2002, Zollner et al., 2006). They may in turn affect lipid 

metabolism, and this maybe reflected by changes in lysophospholipids (i.e. LPC and 

LPE), which were increased in effluent-exposed roach when compared to the control 

(river water exposure). Additionally, increasing levels of acylcarnitine and decreasing 

levels of sphingosine could have been caused by disruption of lipid metabolism and 

mediated by an increase in plasma bile acid concentrations.  However, there is strong 

evidence that exposure to halogenated pollutants can alter lipid profiles, and can alter 

the storage lipid metabolism in different species. Exposure to halogenated organic 

compounds can alter profiles of fatty acids, triacylglycerols, phospholipids and plasma 

lipids in rats (Mommsen and Moon, 2005). An increase in sterols and a decrease in 

triacylglycerol levels in hepatocytes of yellowtail flounder have been related to 

exposure to the chlorinated insecticide toxaphene in in vivo (Scott et al., 2002) and in 

vitro studies  (Fåhræus-Van Ree and Spurrell, 2000). In this study in particular, a 
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number of different halogenated xenobiotics have been identified in both the fish 

exposures (e.g. triclosan, chloroxylenol and chlorophene). The observed alterations in 

plasma lysophospholipid concentrations might be related to the presence of halogenated 

contaminants in the fish. In the roach study some disruption of LPE concentrations were 

apparent even at exposure to 50% effluent; however, further work is needed in order to 

investigate effects with lower effluent levels at prolonged exposures. In addition, 

improved lipid profiling techniques should be used to investigate disruption of lipid 

metabolism in more detail.  

This study also identified potential gender differences in response of roach to 

effluent exposure. Generally, females seemed to be more responsive to effluent 

exposure compared with males, and the increase of plasma bile acid and phospholipid 

levels were higher in females than males, whilst sphingosine levels were almost equally 

affected in both females and males. A correlation approach was used to further 

investigate the relationships between the concentrations of the xenobiotic and 

endogenous metabolites detected in roach plasma. Significant positive correlations were 

observed particularly between related metabolites (e.g. between the two bile acids 

cyprinol sulphate and taurocholic acid, or between solanidine and dihydroloanidine). 

However, although significant correlations were also observed between concentrations 

of many of the xenobiotics and endogenously derived metabolites, no one xenobiotic 

stood out as being strongly associated with disruption of a specific metabolite. It was 

possible that some of the disruption in bile acid and lipid levels were due to exposure to 

mixtures of the contaminants in the effluent. A particular problem in the interpretation 

of these types of profiling studies is the determination of the particular mixtures of 

contaminants that are responsible for the disruption of organism health and metabolite 

homeostasis.    

6.3.2 Reproductive axis 

Many of the chlorinated contaminants and RAs detected in this study have been 

shown to be androgen receptor antagonists (at least in vitro) and may disrupt sexual 

differentiation and gonad development in exposed fish. Mefenamic acid (detected in 

trout bile) belongs to the NSAIDs (non steroidal anti-inflammatory drugs), and in 

mammals is a potent inhibitor of prostaglandin synthesis (see Chapter 3 for details) and 

these latter metabolites play important roles in immune function and reproduction. 

Hence the reproductive axis of male fish may be affected by the presence of variety of 
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anti-androgenic contaminants: chlorophene, triclosan, resins acids, chloroxylenol and 

mefenamic acid). In addition, oxybenzone (Kunz and Fent, 2006), bisphenol A 

(Welshons et al., 2003, Vom Saal and Hughes, 2005, Richter et al., 2007) and NP (Ying 

and Kookana, 2002) are well-known estrogenic compounds which were detected in the 

trout exposures and could significantly contribute to the endocrine disrupting activity of 

the xenobiotic mixture present in the fish. Furthermore, there is the possibility that these 

xenobiotics may act in a combined manner to demasculinize male fish and to reduce 

male fertility. In vitro studies have proved that exposure to contaminant cocktail 

mixtures at concentrations below their individual no observed effect level (NOEC) can 

generate significant biological effects (Silva et al., 2002). Evidence has been given 

about the additive effects for the same class of EDCs assessing the combined effects of 

estrogen receptor agonists on induction of biomarkers in fish in vivo (Brian et al., 2007). 

However, little is known about combination effects for EDCs with different modes of 

action as occurs in the wild. There is the risk that fish reproductive health arising from 

the exposure to estrogens in surface waters may have been significantly underestimated 

because of the ability of anti-androgens to potentiate the estrogenic effects in the fish 

(Katsiadaki et al., 2006, Kiparissis et al., 2003). Molecular approaches studying changes 

in gene expression have revealed that the feminizing effects of estrogens and anti-

androgens in fish share both common and distinct gene pathways (Filby et al., 2007a, 

Filby et al., 2007b). Modelling studies at sites below WwTWs effluents in UK rivers 

has shown a strong correlation between the incidence of feminized fish to levels of both 

anti-androgens and estrogens compared with exposure to estrogens alone. Therefore it is 

highly likely that exposure to this very complex mixture of endocrine disrupting 

xenobiotics present in WwTW effluents identified in these profiling studies may result 

in disruption of reproductive function of male fish. However, further work to develop 

more sensitive profiling approaches are needed to determine whether effluent exposure 

disrupted endocrine levels and in particular biosynthesis of sex steroids in the fish.  
 

6.4 Potential for future work  

It is clear from this work that using chemical profiling approaches could result in the 

identification of xenobiotic markers of exposure to WwTW effluents in fish. In 

addition, effluent exposure also results in disruption of the plasma metabolome and 

investigation of these associated pathways could also result in the identification of 

biomarkers of effluent exposure. However many metabolites isolated from either the 
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bile or plasma, and that were increased by effluent exposure, remain to be identified and 

were not present in metabolite or chemical databases. The establishment of a database 

incorporating xenobiotic structures as well as metabolites associated with fish 

metabolism would aid these types of profiling studies. 

Most aquatic monitoring programmes based on collecting grab samples of water 

at a given time. Some pollutants are present at trace levels and in such a case large 

volumes of water need to be collected. Laboratory analysis of these samples can only 

provide a snapshot of the levels of pollutants at the time of sampling. The drawbacks of 

this approach are that the contaminant concentrations in the environment can vary over 

time. Passive sampling techniques have been used as tools for measuring aqueous 

concentrations of a wide range of priority pollutants (Vrana et al., 2005). Moreover, fish 

is one of the species of wildlife that can be used as indicators of the health of the 

environment, for instance, effects of disease, pollutants, and other stressors (e.g. climate 

change) can be assessed by monitoring fish species. For instance, National Marine 

Monitoring program (UK) uses several fish species to assess a verity of stressors on fish 

in the aquatic environment. Previous study has domenstrated that bile fluid from 

stationary fish can be effectively used in monitoring the exposure of fish to aquatic 

pollutants based on the high bioconcentration factor values obtained using a labelled 

phenolic compound (Wachtmeister et al., 1991). Therefore, based on the use of fish for 

biomonitoring of aquatic pollution, this high throughput approach used in this study 

supports the use of fish as a tool in environmental monitoring. 

At present, one of the problems in using chemical profiling approaches is that 

there are not organised databases for metabolomics and xenobiotic metabolites and the 

general approach in the scientific community involves the construction of personal 

databases including data on detected masses, retention times although mass spectra and 

fragmentation information. This study however has led to valuable information 

regarding: 

• xenometabolome/metabolome 

• biological matrixes (bile and blood) 

• fish species (roach, trout) 

• analytical techniques (LC-MS, GC-MS) 

and these data could be extremely useful and informative when compared to results 

obtained by different research groups. Most of the contaminant metabolites in bile were 
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identified but in the plasma samples, only approximately 60% of metabolites could be 

fully characterized. The identity of the remaining 40% could not be established. This is 

a very common problem in metabolomic analyses, particularly with wildlife species 

where many metabolites are different to those which are well characterised in humans 

and higher mammals. The non-identified and/or putatively identified metabolites could 

also be useful and informative if compared with similar structures discovered other 

research studies. 

New techniques for metabolomic profiling are continually being developed 

complicated and one LC run cannot cover the diverse range of analyte polarities present 

in most biological samples (Theodoridis et al., 2008). Hence, both reversed phase and 

normal phase or hydrophilic interaction chromatography should be tested to provide a 

deeper insight into the metabolome. Furthermore, as analytes might ionise preferably in 

one ionization mode (either positive or negative depending on the functional moieties 

present in the molecule), analysis in both modes is recommended to ensure a wide 

detection of different metabolites in the sample. Unlikely electrospray ionization, 

atmospheric pressure chemical ionisation has shown potential in revealing apolar 

metabolites (Sana et al., 2008). Additionally, the employment of nano ESI would allow 

detection of metabolites at much lower concentrations due to the significant increase in 

sensitivity. For instance, a reduction in flow rate from electrospray (100µL/min) to 

nanospray (1µL/min) would increase the sensitivity of analyte detection by 100 fold. 

However use of many of these approaches entails multiple analyses of each sample. For 

large scale studies, even with relatively short analysis times this is clearly quite 

impractical, therefore alternative methods are needed to expand metabolome coverage 

by LC–MS. An alternative approach to improve the quality of the metabolomics data 

would be an optimization of the sample preparation. The use of micro-SPE could lead to 

a reduction of the matrix effect in the sample increasing the selectivity and sensitivity of 

the analysis. There is a clear need to develop more sensitive and comprehensive 

methods of analysis of (xeno)metabolites present in a few microliters of fish plasma. As 

discussed previously, this may utilise SPE or chemical extraction and preconcentration 

of low volumes of plasma, and the use of nanoflow linked nanospray TOFMS to 

increase sensitivity. The use of GC-TOFMS would also allow analysis of compounds 

that are poorly ionised using nanospray technology. The analysis of low volumes of 

plasma would also aid non destructive and repeated testing of wild or caged fish to 
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evaluate the effects of contaminant or effluent exposure. The development of more 

sensitive analyses would allow a more complete examination of the effects of lipid 

homeostasis to be examined, and also to determine effects on other endpoints such as 

the reproductive axis. 

Further studies are needed to identify markers of effluent exposure using a variety of 

WwTW effluents with different industrial inputs and treatment processes. The effects of 

prolonged exposures to different concentrations of final effluent could be investigated. 

This study identified potential gender and species differences in response to effluent 

exposure and these could be examined in more detail using replicated treatments. 

Implementation of further exposure studies, in combination with improved analytical 

methods is likely to results in identification of contaminant and metabolite markers of 

recent exposure that could be used in monitoring fish health in river and estuarine 

habitats. 
 

6.5 Conclusions 

This study of the profiles of xenobiotics in fish biofluids revealed that fish are 

exposed to a diverse variety of contaminants via uptake from river water contaminated 

by wastewater effluent. In many UK catchments fish might be exposed to these 

complex mixtures of xenobiotics semi-continuously throughout their life cycle as 

wastewater contaminants can be detected many km downstream of the effluent 

discharge e.g. estrogens (Jobling et al., 2005). The xenobiotics detected in bile and 

plasma were often present as glucuronide and sulphate conjugates and were rapidly 

eliminated by the fish organism via faeces or urine. Many of the glucuronide 

metabolites of the detected xenobiotics were likely to be formed by conjugation of the 

parent compound within the fish itself, since glucuronide conjugates formed from 

human metabolism can be readily hydrolysed by bacteria during the wastewater 

treatment process. This study also revealed that effluent exposure resulted in 

perturbation of plasma lipid profiles and disruption of bile acid concentrations which 

could be associated with hepatotoxicity. Chemical profiling techniques can be used to 

screen for uptake of complex mixtures of contaminants into fish and also for the 

detection of natural metabolite pathways in the organism which are disrupted by 

exposure to multiple xenobiotics. 
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APPENDICES 

Chapter three appendices 

 
 
Appendix 3.1: Performance parameters of principal component analyses (PCA) for the comparison of 
trout exposed to river water and effluent (bile extracts). 

Ionization 

mode Groups 

Multivariate 

method 

Principal 

Components R2X Q2 

+ESI C10,C14,C21,E10,E14,E21 PCA 5 0.418 0.277 

-ESI C10,C14,C21,E10,E14,E21 PCA 6 0.426 0.258 

+ESI C10,C14,E10,E14 PCA 4 0.415 0.246 

-ESI C10,C14,E10,E14 PCA 2 0.305 0.227 

+ESI C10,C21,E10,E21 PCA 3 0.387 0.277 

-ESI C10,C21,E10,E21 PCA 4 0.401 0.259 

+ESI C14,C21,E14,E21 PCA 2 0.256 0.097 

-ESI C14,C21,E14,E21 PCA 2 (1) 0.251 0.090 

+ESI C10,E10 PCA 2 0.36 0.247 

-ESI C10,E10 PCA 2 (1) 0.334 0.218 

+ESI C14,E14 PCA 2 (2) 0.368 -0.035 

-ESI C14,E14 PCA 2 (2) 0.358 -0.050 

+ESI C21,E21 PCA 2 (2) 0.287 0.012 

-ESI C21,E21 PCA 2 (2) 0.293 0.002 

+/-ESI: positive/negative electrospray ionization; C10: 10 days river water exposure (control); C14: 14 
days river water exposure (control); C21: 21 days river water exposure (control); E10: 10 days effluent 
exposure, E14: 10 days effluent exposure followed by 4 days depuration, E21: 10 days effluent exposure 
then 11 days depuration; R2X: variation explained by the models; Q2: cumulative variation predicted by 
the models. Discriminating components that are not significant are shown in brackets. 
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Appendix 3.2: Performance parameters of multivariate discriminant models for the comparison of trout 
exposed to river water and effluent (bile extracts). 

Ionization 

mode Groups 

Multivariate 

method 

Number of 

projections R2X R2Y Q2 

External 

Validation 

+ESI C10,C14,C21,E10,E14,E21 PLS-DA 9 0.471 0.978 0.776 100% 

-ESI C10,C14,C21,E10,E14,E21 PLS-DA 9 0.455 0.978 0.777 89% 

+ESI C10,C14,E10,E14 PLS-DA 5 0.414 0.984 0.865 90% 

-ESI C10,C14,E10,E14 PLS-DA 5 0.392 0.987 0.866 95% 

+ESI C10,C21,E10,E21 PLS-DA 6 0.443 0.990 0.868 100% 

-ESI C10,C21,E10,E21 PLS-DA 6 0.431 0.990 0.874 100% 

+ESI C14,C21,E14,E21 PLS-DA 6 0.421 0.990 0.792 100% 

-ESI C14,C21,E14,E21 PLS-DA 6 0.416 0.987 0.781 100% 

+ESI C10,E10 PLS-DA 2 (1) 0.324 0.999 0.987 100% 

-ESI C10,E10 PLS-DA 2 (1) 0.306 0.999 0.985 100% 

+ESI C14,E14 PLS-DA 2 0.358 0.990 0.800 100% 

-ESI C14,E14 PLS-DA 2 0.352 0.995 0.826 100% 

+ESI C21,E21 PLS-DA 3 0.322 0.999 0.820 100% 

-ESI C21,E21 PLS-DA 3 0.331 0.999 0.809 100% 

+ESI C10,E10 OPLS-DA 1+1 (1) 0.324 0.999 0.986 - 

-ESI C10,E10 OPLS-DA 1+1 (1) 0.306 0.999 0.985 - 

+ESI C14,E14 OPLS-DA 1+1 (1) 0.358 0.990 0.630 - 

-ESI C14,E14 OPLS-DA 1+1 (1) 0.352 0.995 0.651 - 

+ESI C21,E21 OPLS-DA 1+1 (1) 0.244 0.989 0.473 - 

-ESI C21,E21 OPLS-DA 1+1 (1) 0.257 0.968 0.464 - 

+/-ESI: positive/negative electrospray ionization; C10: 10 days river water exposure (control); C14: 14 
days river water exposure (control); C21: 21 days river water exposure (control); E10: 10 days effluent 
exposure, E14: 10 days effluent exposure followed by 4 days depuration, E21: 10 days effluent exposure 
then 11 days depuration; R2Y and Q2 represent the cumulative variation explained and predicted by the 
models, respectively. Discriminating components that are not significant are shown in brackets. 
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Appendix 3.3: Q-TOFMS mass spectra of the standard compounds a) nitrophenyl glucuronide and b) 
nitrophenyl sulphate and structures of their fragment ions analyzed in -ESI mode with collision energy of 
10 eV. 
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Appendix 3.4: Distribution of the relative concentration for SPC homologues (mean area) in bile extracts of 
effluent-exposed fish. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Appendix 3.5: Extracted ion chromatograms for detected of NPEO homologues. All compounds were 
detected as sodium adducts with the exception of NP, which was considered as the protonated form. 
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Appendix 3.6: a) GC-MS extracted ion chromatograms for NPEO homologues and relative mass spectra 
for b) NP, c) NP1EO and d) NP2EO as TMS derivatives. 
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Appendix 3.7: Distribution of the relative abundance as mean area for NPEO homologues as glucuronide 
conjugates (NPnEO+Glu) in bile extracts of effluent-exposed fish. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Appendix 3.8: a) Extracted ion chromatograms for C12EO glucuronide homologues. All compounds were 
detected in +ESI mode as sodium adducts with the exception of dodecanol glucuronide (C12H25OH-Glu) 
detected in –ESI mode as deprotonated form. 
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Appendix 3.8: b) Ion chromatograms for C13EO homologues elution. All compounds were extracted as 
sodium adducts species with exception of tridecanol (C13H27OH) as deprotonated form. 
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Appendix 3.8: c) Ion chromatograms for C14EO homologues elution. All compounds were extracted as 
sodium adducts species with exception of tetradecanol (C14H29OH) and C14(EO)1 as deprotonated form. 
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Appendix 3.8: d) Ion chromatograms for C15EO homologues elution. All compounds were extracted as 
sodium adducts species with exception of (C15H31OH) and C15(EO)1 as deprotonated form. 
 

 

 

 

 

 

 

 

 

 

 

Appendix 3.9: +ESI Q-TOFMS spectrum (CE=20eV) for C13EO8 (technical mixture). 
 

C8_100ml_0.085ml/min_F.A

Time
19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25

%

0

100

19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25

%

0

100

19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25

%

0

100

19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25

%

0

100

19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25

%

0

100

19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25

%

0

100

19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25

%

0

100

19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25

%

0

100

19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25

%

0

100

ra120310bilePos-E1-86 Sm (Mn, 3x3) 1: TOF MS ES+ 
779.472 100PPM

431

ra120310bilePos-E1-86 Sm (Mn, 3x3) 1: TOF MS ES+ 
735.452 100PPM

1.00e3

ra120310bilePos-E1-86 Sm (Mn, 3x3) 1: TOF MS ES+ 
691.424 100PPM

1.64e3

ra120310bilePos-E1-86 Sm (Mn, 3x3) 1: TOF MS ES+ 
647.398 100PPM

5.74e3

ra120310bilePos-E1-86 Sm (Mn, 3x3) 1: TOF MS ES+ 
603.372 100PPM

4.37e3

ra120310bilePos-E1-86 Sm (Mn, 3x3) 1: TOF MS ES+ 
559.346 100PPM

4.19e3

ra120310bilePos-E1-86 Sm (Mn, 3x3) 1: TOF MS ES+ 
515.32 100PPM

665

ra050210bileNeg-E1-86 Sm (Mn, 3x3) 1: TOF MS ES- 
447.296 100PPM

688

ra050210bileNeg-E1-86 Sm (Mn, 3x3) 1: TOF MS ES- 
403.269 100PPM

284

Time

R
el

a
ti

v
e
 a

b
u

n
d

an
c
e

C15EO0

C15EO1

C15EO2

C15EO3

C15EO4

C15EO5

C15EO6

C15EO7

C15EO8

C18_100mm_FA_0.07ml/min

m/z
50 100 150 200 250 300 350 400 450 500 550 600 650 700

%

0

100

RA14Jan11_Pos_msms_C13EO2-STD_100ng_NH4-20eV-2 143 (22.912) 1: TOF MSMS 570.00ES+ 
1.25e3553.4274

371.2261
177.1164

133.0902

127.1522

315.2929221.1418
271.2674

327.2035
372.2335

465.3776373.2261 509.4060

554.4293

571.4591

572.4653 614.4039
647.8514

m/z

R
e
la

ti
v

e
 a

b
u

n
d

a
n

c
e



 

 

 

 
 

302

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3.10: Distribution of the relative abundance mean area for AEO series with EO units ranging from 0 to 8 in bile extracts from effluent-exposed fish. 
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Appendix 3.11: Distribution of the relative abundance for AEC homologues (mean area) in bile extracts 
of effluent-exposed fish. 
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Appendix 3.12a: Unidentified markers of effluent exposure in bile of trout in -ESI mode. 

Observed 

ion (m/z) RT 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments
#
 

Parent 

compound 

formula
§
 

Fold change 

C10 vs E10 

% Decrease during 

depuration period 

Identity of compound (see 

legend for explanation) 4 day 11day 

291.0866 5.83 ?    164.0686  0.2±0.0¶ 69.9ɸ 67.5ɸ Unidentified compound 

557.0959 5.90 C23H25O14S 557.0965 -1.1 0.2 
 381.0650, 285.0794, 205.0347, 
175.0239, 113.0236 C17H18O8S 156.8±10.7 100 100 

Glucuronide conjugate of an 
unidentified LAS metabolite 

388.1403 7.41 C20H22NO7 388.1396 1.8 0.8 
212.1075,193.0345,175.0241, 
113.0188 C14H15NO 12.3±2.0¶ 76.4 93.8 

Glucuronide conjugate of 
unidentified compound (possibly 
dibenzylhydroxylamine or 
aminodiphenylethanol) 

331.1758 9.07 C16H27O7 331.1757 0.3 0.1  313.1661,175.0237,113.0219 C10H20O 263.4±22.4 98.6 100 
Glucuronide of putative menthol 
metabolite 

656.3105 9.23 ?    480.2789,193.0344,175.0263  140.2±78.0 92.8 100 
Glucuronide conjugate of 
unidentified compound 

479.2859 11.69 C23H43O10 479.2856 0.6 1.0 
461.2734, 419.2577, 175.0251, 
157.0148,113.0243 C17H36O4 367.4±34.1 100 100 

Glucuronide conjugate of putative 
monohydroxy tridecaonl-2EO 
metabolite 

383.2073 12.39 C20H31O7 383.2070 0.3 0.8 
365.1959, 248.9621, 193.0356, 
175.028, 113.0239 C14H24O 41.0±13.3¶ 92.6 100 

Glucuronide conjugate of an 
unidentified compound 

433.1831 13.39 C21H31O8Na 433.1838 -1.6 0.1 257.1518, 175.0245 C15H24O2 7.1±1.8¶ 18.3 46.5 
Unidentified compound; Na 
adduct 

403.2329 13.45 C20H35O8 403.2332 -0.7 0.8 
 385.2234, 359.2065, 343.2132, 
175.0259, 157.0130, 113.0239 C14H28O2 744.1±32.3 94.2 99.3 

Glucuronide conjugate of an 
unidentified compound 

449.2178 15.64 C24H33O8 449.2175 0.7 1.6 175.0241,113.0242 C18H26O2 21.4±6.6¶ 13.3 65.8 
Glucuronide conjugate of 
unidentified compound 

491.3222 12.77 C25H47O9 491.3220 0.4 0.6 
471.3108, 193.0345, 175.0241, 
113.0241 C19H40O3 0.2±0.0¶ 62.4ɸ 80.0ɸ 

Glucuronide conjugate of 
unidentified compound (two 
isomers on LCMS); endogenous 

433.2801 13.3 C22H41O8 433.2801 0.0 0.1 
415.2705, 257.2474,175.0245, 
113.0234 C16H34O2 0.2±0.0¶ 80.6 99.7 

Glucuronide conjugate of 
unidentified compound 

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit; #Q-TOFMS fragments 
within ± 5ppm; §aglycone formula; fold change calculated from relative concentrations of [M-H]- in bile of effluent-exposed trout compared with the values in control trout 
held in river water (10 day exposure); ¶ indicates compound was detected at levels >LOD (LOD=0.0113) in bile from reference fish held in river water; C10: 10 days river 
water exposure (control); E10: 10 days effluent exposure; ɸ represents % increase in metabolite concentrations after a 4 or 11 day depuration period following effluent 
exposure.  
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Appendix 3.12a: (continued) Unidentified markers of effluent exposure in bile of trout in -ESI mode. 

Observed 

ion (m/z) RT 
Putative 

formula 
Theoretical 

mass of ion 
∆ 

ppm i-fit Q-TOFMS fragments
# 

Parent 

compound 

formula
§ 

Fold change 

C10 vs E10 

% Decrease during 

depuration period Identity of compound (see 

legend for explanation) 4 day 11day 

464.2470 13.68 ?    377.2278, 343.2282, 205.1225  0.002±0.0¶ 99.2ɸ 99.7ɸ Unidentified compound 

425.2171 13.88 C22H33O8 425.2175 -0.9 13 
407.2070, 381.1915, 249.1857, 
193.0341, 175.0234, 113.0234 C16H26O2 889.3±34.8 74.0 100% 

Glucuronide conjugate of putative 
octylphenol-1EO metabolite 

397.1859 14.14 C20H29O8 397.1862 -0.8 2.5 221.1539, 193.0344, 175.0248 C14H22O2 446.2±17.0 97.8 100% 
Glucuronide conjugate of 
unidentified compound 

381.1922 14.22 C20H29O7 381.1913 2.4 16 
205.1587, 175.0241, 157.0136, 
113.0238 C14H22O 794.6±22.6 86.5 100 

Glucuronide conjugate of 
unidentified compound 

393.1924 14.64 C21H29O7 393.1913 2.8 10 217.1597, 175.0241, 113.0234 C15H22O 573.1±32.7 98.1 99.2 
Glucuronide conjugate of an 
unidentified compound 

407.2071 14.71 C22H31O7 407.207 0.2 2.9 231.1754, 175.0245, 113.0237 C16H24O 1151.1±35.3 71.9 100 
Glucuronide conjugate of 
unidentified compound 

389.2169 16.13 C19H33O8 389.2175 -1.5 1.1 213.1854, 193.0353, 175.0244 C13H26O2 174.6±6.8 96.4 100 
Glucuronide conjugate of putative 
tridecanoic acid 

479.3374 17.5 C28H47O6 479.3373 0.2 0.7 
351.2017, 317.2126, 245.1331, 
162.0272  0.6±0.2 99.5ɸ 99.5ɸ Unidentified compound 

542.3336 20.31 C28H48NO9 542.3329 1.3 0.4 175.0271, 113.0310 C22H41NO3 234.2±16.8 91.9 100 
Glucuronide conjugate of 
unidentified metabolite 

610.2809 21.12 ?    
552.3074, 481.2363, 327.2330, 
299.1394  0.4±0.1¶ 21.3ɸ 50.2ɸ Unidentified compound 

585.3431 24.13 C34H49O8 585.3427 0.7 0.2 
409.3108, 277.1228, 175.0246, 
113.0241 C28H42O2 0.3±0.1¶ 52.1ɸ 75.3ɸ 

Glucuronide conjugate of 
unidentified compound 

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit; #Q-TOFMS fragments 
within ± 5ppm; §aglycone formula; fold change calculated from relative concentrations of [M-H]- in bile of effluent-exposed trout compared with the values in control trout 
held in river water (10 day exposure); ¶ indicates compound was detected at levels >LOD (LOD=0.0113) in bile from reference fish held in river water; C10: 10 days river 
water exposure (control); E10: 10 days effluent exposure; ɸ represents % increase in metabolite concentrations after a 4 or 11 day depuration period following effluent 
exposure.  
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Appendix 3.12b: Unidentified markers of effluent exposure in bile of trout in +ESI mode. 

Observed 

ion (m/z) RT 
Putative 

formula 
Theoretical 

mass of ion 
∆ 

ppm i-fit Q-TOFMS fragments
# 

Parent 

compound 

formula
§ 

Fold change 

C10 vs E10 

% Decrease during 

depuration period Identity of compound (see 

legend for explanation) 4 day 11day 

341.1816 4.35 C14H29O9 341.1812 1.2 1.7 301.1434  400.9±24.7 94.7 100 Unidentified compound 
317.1578 5.13 C13H26O7Na 317.1576 0.6 0.5  259.1545, 245.1386  307.1±18.2 100 100 Unidentified compound 
287.1475 5.32      215.1286  493.7±23.9 100 100 Unidentified compound 

509.1564 5.85 C29H26O7Na 509.1576 -2.4 0.1 333.1260 C23H18O 0.2±0.0¶ 71.8ɸ 68.3ɸ 
Glucuronide conjugate of 
unidentified compound 

565.1577 6.58 ?     389.1220  409.0±0.0 100 100 
Glucuronide conjugate of 
unidentified compound 

468.1426 8.09 ?    292.1101, 275.1057, 246.0948  1.6±0.8¶ 47.2 77.6 

Glucuronide conjugate of 
unidentified compound(two 
isomers on LCMS) 

233.1905 8.67 C16H25O 233.1905 0.0 0.8 191.1439  1005.9±42.3 42.4 82.3 
Unidentified Compound (isomers 
on LCMS) 

343.1885 9.16 C19H28O4Na 343.1885 0.0 0.6 285.1672  14.4±1.8¶ 95.5 99.2 Unidentified compound 

449.2148 13.88 C22H34O8Na 449.2151 -0.7 1.2 
273.1841, 251.2003, 233.1903, 
199.0210 C16H26O2 622.3±139.8 29.6 77.1 

Glucuronide conjugate of putative 
octylphenol-1EO metabolite; Na 
adduct (isomers on LCMS) 

444.2598  C22H38NO8 444.2597 0.2 6.1 251.2010, 233.1900     NH4-adduct 

378.1705 13.89 ? 378.1805 0.0 7.8 
336.1688, 290.1619, 186.0282, 
152.0406  7.1±3.4¶ 100 100 Unidentified compound 

473.2175 13.93 C24H34O8Na 473.2175 0.0 7.0 297.1830, 199.0221 C18H26O2 6.9±0.8¶ 33.4ɸ 44.2 
Glucuronide conjugate of 
unidentified compound 

287.2378 14.17 C20H31O 287.2375 1.0 1.4 269.2365 C20H30O 374.5±14.4 100 100 Unidentified compound 

548.2391 14.96 C30H34N3O7 548.2397 -0.5 2.2 372.2076 C24H25N3O 383.8±19.8 100 100 
Glucuronide conjugate of 
unidentified compound 

257.1905 15.59 C18H25O 257.1905 0.0 1.9 229.1993 C18H24O 7.1±1.2¶ 11.3ɸ 46.5 Unidentified compound 
243.2114 15.95 ?    228.1906, 213.1662, 173.1368  450.9±20.7 26.1 59.6 Unidentified compound 

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit; #Q-TOFMS fragments 
within ± 5ppm; §aglycone formula; fold change calculated from relative concentrations of [M+H]+ or [M+Na]+ in bile of effluent-exposed trout compared with the values in 
control trout held in river water (10 day exposure); ¶ indicates compound was detected at levels >LOD (LOD=0.0064) in bile from reference fish held in river water; C10: 10 
days river water exposure (control); E10: 10 days effluent exposure; ɸ represents % increase in metabolite concentrations after a 4 or 11 day depuration period following 
effluent exposure.  
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Appendix 3.12b: (continued) Unidentified markers of effluent exposure in bile of trout in +ESI mode. 

Observed 

ion (m/z) RT 
Putative 

formula 
Theoretical 

mass of ion 
∆ 

ppm i-fit Q-TOFMS fragments
# 

Parent 

compound 

formula
§ 

Fold change 

C10 vs E10 

% Decrease during 

depuration period Identity of compound (see 

legend for explanation) 4 day 11day 

503.2833 18.14 C23H44O10Na 503.2832 0.2 0.2 
327.2519 
 C17H36O4 1195.5±112.6 100 100 

Glucuronide conjugate of 
unidentified ethoxylate compound 
(3EO) 

498.3281  C23H48NO10 498.3281 0.6 1.0 305.2690, 151.0977, 133.0871     NH4-adduct 

447.2958 19.7 C23H43O8 447.2958 0.0 1.1 289.2746, 265.0950  977.4±37.7 97.2 100 Unidentified compound 

518.3239 21.42 ?    
459.2377, 313.2710, 146.9847, 
104.1075  0.3±0.0¶ 68.6ɸ 69.2ɸ Unidentified compound 

573.3608 23.41 C28H54O10Na 573.3608 0.0 2.5 397.3311 C22H46O4 13.3±6.1¶ 100 100 
Glucuronide conjugate of 
unidentified ethoxylate compound 

568.4051  C28H58NO10 568.4061 -1.8 5.0 375.3479, 177.1122, 133.0866     NH4-adduct 

631.404 23.99 C31H60O11Na 631.4033 1.1 2.8 455.3712 C25H52O5 616.5±36.4 64.6 97.7 

Glucuronide conjugate of 
unidentified compound; Na 
adduct 

626.4476  C31H64NO11 626.4479 -0.5 0.2 

433.3883, 415.2560, 177.1121, 

133.0866     NH4-adduct 

            

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit; #Q-TOFMS fragments 
within ± 5ppm; §aglycone formula; fold change calculated from relative concentrations of [M+H]+ or [M+Na]+ in bile of effluent-exposed trout compared with the values in 
control trout held in river water (10 day exposure); ¶ indicates compound was detected at levels >LOD (LOD=0.0064) in bile from reference fish held in river water; C10: 10 
days river water exposure (control); E10: 10 days effluent exposure; ɸ represents % increase in metabolite concentrations after a 4 or 11 day depuration period following 
effluent exposure.  
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Appendix 4.1: Performance parameters of principal component analyses (PCA) for the comparison of 
trout exposed to river water and effluent (plasma extracts). 

Ionization 

mode Groups 

Multivariate 

method 

Principal 

Components R2X Q2 

+ESI C10,C14,C21,E10,E14,E21 PCA 3 0.230 0.126 

-ESI C10,C14,C21,E10,E14,E21 PCA 3 0.206 0.104 

+ESI C10,C14,E10,E14 PCA 2 0.186 0.092 

-ESI C10,C14,E10,E14 PCA 2 0.178 0.079 

+ESI C10,C21,E10,E21 PCA 2 0.196 0.114 

-ESI C10,C21,E10,E21 PCA 2 0.174 0.090 

+ESI C14,C21,E14,E21 PCA 2 (1) 0.215 0.066 

-ESI C14,C21,E14,E21 PCA 2 (1) 0.199 0.038 

+ESI C10,E10 PCA 2 (1) 0.207 0.074 

-ESI C10,E10 PCA 2 (1) 0.210 0.073 

+ESI C14,E14 PCA 2 (2) 0.337 -0.015 

-ESI C14,E14 PCA 2 (2) 0.337 -0.028 

+ESI C21,E21 PCA 2 (2) 0.263 -0.006 

-ESI C21,E21 PCA 2 (2) 0.262 -0.028 
 

+/-ESI: positive/negative electrospray ionization; C10: 10 days river water exposure (control); C14: 14 
days river water exposure (control); C21: 21 days river water exposure (control); E10: 10 days effluent 
exposure, E14: 10 days effluent exposure followed by 4 days depuration, E21: 10 days effluent exposure 
then 11 days depuration; R2X: variation explained by the models; Q2: cumulative variation predicted by 
the models. Discriminating components that are not significant are shown in brackets. 
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Appendix 4.2: Performance parameters of multivariate discriminant models for the comparison of trout 
exposed to river water and effluent (plasma extracts). 
 

Ionization 

mode Groups 

Multivariate 

method 

Number of 

projections R2X R2Y Q2 

External 

Validation 

+ESI C10,C14,C21,E10,E14,E21 PLS-DA 10 0.383 0.984 0.772 66% 

-ESI C10,C14,C21,E10,E14,E21 PLS-DA 11 0.395 0.987 0.724 78% 

+ESI C10,C14,E10,E14 PLS-DA 7 0.357 0.993 0.851 100% 

-ESI C10,C14,E10,E14 PLS-DA 6 0.321 0.983 0.796 100% 

+ESI C10,C21,E10,E21 PLS-DA 7 0.356 0.990 0.857 91% 

-ESI C10,C21,E10,E21 PLS-DA 6 0.304 0.981 0.738 100% 

+ESI C14,C21,E14,E21 PLS-DA 6 0.375 0.993 0.739 40% 

-ESI C14,C21,E14,E21 PLS-DA 6 0.375 0.984 0.659 40% 

+ESI C10,E10 PLS-DA 3 0.215 0.999 0.863 100% 

-ESI C10,E10 PLS-DA 2 0.163 0.988 0.790 100% 

+ESI C14,E14 PLS-DA 2 0.320 0.993 0.677 100% 

-ESI C14,E14 PLS-DA 2 0.311 0.991 0.653 100% 

+ESI C21,E21 PLS-DA 2 0.226 0.994 0.589 100% 

-ESI C21,E21 PLS-DA 2 0.188 0.996 0.354  

+ESI C10,E10 OPLS 1+1 0.156 0.988 0.722  

-ESI C10,E10 OPLS 1+1 0.163 0.988 0.815  

+ESI C14,E14 OPLS 1+1 (1) 0.320 0.993 0.513  

-ESI C14,E14 OPLS 1+1 (1) 0.311 0.991 0.549  

+ESI C21,E21 OPLS 1+1 (1) 0.226 0.994 0.202  

-ESI C21,E21 OPLS 1+1 (1) 0.188 0.996 0.065  
 

+/-ESI: positive/negative electrospray ionization; C10: 10 days river water exposure (control); C14: 14 
days river water exposure (control); C21: 21 days river water exposure (control); E10: 10 days effluent 
exposure, E14: 10 days effluent exposure followed by 4 days depuration, E21: 10 days effluent exposure 
then 11 days depuration; R2Y and Q2 represent the cumulative variation explained and predicted by the 
models, respectively. 
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Appendix 4.3a: Unidentified markers of effluent exposure in plasma of trout in -ESI mode. 

Observed 

ion (m/z) RT Putative formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments
#
 

Parent 

compound 

formula
§
 

Fold 

change 

C10 vs E10 

% Decrease 

during 

depuration 

period 

Identity of compound 4 day 11 day 

 
571.3837 4.39 C31H55O9 571.3846 -1.6 0.1 527.3581 C31H54O9 71.2±20.7 100 100 Unidentified compound 
249.0218 8.04 C12H9O4S 249.0222 -1.6 0.8 169.0654 C12H10O 4.2±3.1 100 100 Sulphate conjugate of putative 

hydroxybiphenyl 
229.0561 8.07 C6H13O9 229.0560 0.4 3.7   69.9±4.2 100 100 Unidentified compound 
512.2705 8.34 C26H42NO7S 512.2707 -0.4 7.5 124.0072, 106.9808 C26H43NO7S 6.9±2.1¶ 72.3 55.6 Taurine conjugate of unidentified 

bile acid 
250.9783 8.77 C8H8O5SCl 250.9781 0.8 1.3 171.0216 C8H9O2Cl 42.7±6.8 100 100 Sulphate conjugate of putative 

chlorinated phenol 
327.1633 11.55 C17H27O4S 327.1630 0.9 0.5 183.0112 C17H28O4S 49.7±4.1 100 100 Putative monohydroxy C11-LAS 
482.2920 12.52 ?      20.8±2.8 100 100 Unidentified compound 
409.9714 14.18 C10H14NO10SCl2 409.9715 -0.2 1.7 330.0133 C10H14NO7Cl2 28.3±2.3 100 100 Sulphate conjugate of unidentified 

chlorinated compound 
347.9540 15.75       24.4±3.2¶ 33.8ɸ 11.5ɸ Unidentified compound 
397.9537 18.43 ?     295.1954, 277.1877  2.1±0.1¶ 3.2ɸ 22.1 Unidentified compound 
497.9463 20.28 ?    255.2321, 153.9952  2.3±0.1¶ 0.0 20.1 Unidentified compound 
262.8394 21.33 ?      48.2±2.3 100 100 Unidentified halogenated 

compound 
450.9278 21.69 ?    414.9528, 345.9497, 281.9895, 

255.2363 
 12.8±8.8¶ 87.7 93.1 Unidentified compound 

569.9671 22.41 ?    511.9587, 482.9446, 418.9709, 
218.9920, 168.9868  

 60.9±9.2 14.6ɸ 37.8 Unidentified compound 

321.2068 22.58 C19H29O4 321.2066 0.6 4.2 219.1744  46.4±6.0 100 100 Unidentified compound 
329.2695 24.57 C19H37O4 329.2692 0.9 1.7 281.2480 C19H38O4 66.8±5.8 100 100 Unidentified compound 
373.2960 24.63 C21H41O5 373.2954 1.6 3.3   36.4±1.4 100 100 Unidentified compound 

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit; #Q-TOFMS fragments 
within ± 5ppm; §aglycone formula; fold change calculated from relative concentrations of [M-H]- in plasma of effluent-exposed trout compared with the values in control 
trout held in river water (10 day exposure); ¶ indicates compound was detected at levels >LOD (LOD=0.0169) in plasma from reference fish held in river water; C10: 10 days 
river water exposure (control); E10: 10 days effluent exposure; ɸ represents % increase in metabolite concentrations after a 4 or 11 day depuration period following effluent 
exposure.  
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Appendix 4.3b: Unidentified markers of effluent exposure in plasma of trout in +ESI mode. 
Observed 

ion (m/z) 
RT Putative formula Theoretical 

mass of ion 
∆ 

ppm 
i-fit Q-TOFMS fragments

# Parent 

compound 

formula
§ 

Fold 

change 

C10 vs E10 

% Decrease 

during 

depuration 

period 

Identity of compound 

4 day 11 day 

287.2014 4.30 C19H27O2 287.2011 1.0 3.4 147.1137 C19H28O2 76.6±18.4 91.1 100 Steroid like 
349.1902 4.30 ?      4.9±1.5¶ 50.7 68.1 Unidentified compound 
573.3974 4.31 C29H58O9Na 573.3974 -0.9 3.2 373.2820, 314.1804 C29H58O9 211.5±45.5 96.2 99.5 Unidentified compound 
915.0370 4.10 ?      0.8±0.1¶ 58.6 74.7  
801.2529 4.27 ?      0.4±0.1¶ 67.3ɸ 58.1ɸ Phospholipid like 
961.3008 4.27 ?      0.3±0.1¶ 73.1ɸ 68.0ɸ Phospholipid like 
710.7023 4.69 ?      162.3±51.0 79.1 100 Phospholipid like 
799.4440 5.18 ?    790.3388, 719.3889, 618.3337, 

583.3423, 470.2602, 339.2231 
 2.9±1.3¶ 86.6 100 Phospholipid like 

849.7238 5.61 ?      0.03±0.00¶ 89.3ɸ 94.1ɸ Phospholipid like 
679.9800 5.63 ?      0.05±0.00¶ 83.6ɸ 78.1ɸ Possibly fragmented from 

849.7238 
566.8147 5.63 ?      0.01±0.00¶ 98.8ɸ 98.2ɸ Possibly fragmented from 

849.7238 
445.3036 5.39 ?    314.2055, 245.1862, 201.1239, 

173.1292 
 323.1±138.9 100 100 Unidentified compound 

327.0796 20.28 ?    251.0654, 215.0405, 228.1049  32.1±1.3 100 91.5 Unidentified compound 
330.3380 21.58 ?      4.9±1.9 100 100 Unidentified compound 
284.3318 22.34 ?    155.1180  31.3±3.3¶ 37.6 45.4 Unidentified compound 
344.3165 23.13 C20H42NO3 344.3165 0.0 2.2 326.3024, 283.2635 C20H43NO3 64.2±8.5 100 100 Unidentified compound 
251.0477 23.28 ?      8.3±5.9 100 100 Unidentified compound 
            

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit; #Q-TOFMS fragments 
within ± 5ppm; §aglycone formula; fold change calculated from relative concentrations of [M+H]+ or [M+Na]+ in plasma of effluent-exposed trout compared with the values 
in control trout held in river water (10 day exposure); ¶ indicates compound was detected at levels >LOD (LOD=0.0054) in plasma from reference fish held in river water; C10: 
10 days river water exposure (control); E10: 10 days effluent exposure; ɸ represents % increase in metabolite concentrations after a 4 or 11 day depuration period following 
effluent exposure.    
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Appendix 4.4: Q-TOFMS spectra for the standard compounds: a) and c) taurochenodeoxycholic acid and 
b) and d) taurocholic acid in both ESI modes. 
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Appendix 5.1: Principal component analyses (PCA) scores plots of the chemical profiles of plasma 
samples from roach exposed to either control river water or wastewater effluent in both +/-ESI modes. 
Control (C)= river water exposure where n=16 female, n=21 male. E50=exposure to 50% effluent where 
n=12 female, n=21 male. E100= exposure to 100% effluent exposures where n=17 female n=23 male. 
Female roach symbols :( ), ( ) and ( ) represent C, E50 and E100 respectively. Male roach symbols: ( ), 
( ) and ( ) symbols represent C, E50 and E100, respectively. The percentages of explained variation (R2Y) 
modelled for the two selected components (t1, t2) in –ESI and (t3, t4) in +ESI mode are displayed on the 
related axes. Outliers were detected in both –ESI (4 outliers) and +ESI (3 outliers). 
 
 

Appendix 5.2: Performance parameters of principal component analyses (PCA) for the comparison of 
roach exposed to river water, 50% effluent and 100% effluent. 

Ionization mode Gender Groups Multivariate method Principal Components R2X Q2 

+ESI F & M C, E50, E100 PCA 6 0.396 0.295 

-ESI F & M C, E50, E100 PCA 4 0.179 0.094 

+ESI F C, E50, E100 PCA 3 0.384 0.268 

-ESI F C, E50, E100 PCA 2 (1) 0.158 0.050 

+ESI M C, E50, E100 PCA 4 0.388 0.266 

-ESI M C, E50, E100 PCA 2 0.132 0.060 

+ESI F C, E50 PCA 2 (1) 0.380 0.251 

-ESI F C, E50 PCA 2 (2) 0.151 -0.020 

+ESI M C, E50 PCA 2 (1) 0.358 0.255 

-ESI M C, E50 PCA 2 (2) 0.127 -0.003 

+ESI F C, E100 PCA 2 0.358 0.255 

-ESI F C, E100 PCA 2 (1) 0.200 0.060 

+ESI M C, E100 PCA 2 (1) 0.342 0.243 

-ESI M C, E100 PCA 2 (1) 0.166 0.066 

+ESI F & M C PCA 2 (1) 0.349 0.245 

-ESI F & M C PCA 2 (2) 0.141 0.016 

+ESI F & M E50 PCA 2 (1) 0.388 0.283 

-ESI F & M E50 PCA 2 (2) 0.127 -0.032 

+ESI F & M E100 PCA 2 0.377 0.293 

-ESI F & M E100 PCA 2 (2) 0.139 0.018 

+/-ESI: positive/negative electrospray ionization; C: 28 days river water exposure (control); E50: 28 days 
50% effluent exposure; E100: 28 days 100% effluent exposure; F: female; M: male; R2X: variation 
explained by the models; Q2: cumulative variation predicted by the models. Discriminating components 
that are not significant are shown in brackets. 
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Appendix 5.3: Performance parameters of multivariate discriminant models for the comparison of roach 
exposed to river water, 50% effluent and 100% effluent. 

Ionization 

mode Gender Groups 

Multivariate 

method 

Number of 

projections R2X R2Y Q2 

External 

Validation 

+ESI F & M C, E50, E100 PLS-DA 9 0.407 0.965 0.651 38% 

-ESI F & M C, E50, E100 PLS-DA 4 0.146 0.680 0.433 73% 

+ESI F C, E50, E100 PLS-DA 5 0.419 0.995 0.855 74% 

-ESI F C, E50, E100 PLS-DA 4 0.210 0.991 0.800 100% 

+ESI M C, E50, E100 PLS-DA 6 0.416 0.996 0.849 88% 

-ESI M C, E50, E100 PLS-DA 5 0.200 0.995 0.882 100% 

+ESI F C, E50 PLS-DA 3 0.409 0.997 0.889 100% 

-ESI F C, E50 PLS-DA 2 0.132 0.994 0.778 100% 

+ESI M C, E50 PLS-DA 4 0.406 0.998 0.913 100% 

-ESI M C, E50 PLS-DA 3 0.145 0.999 0.854 100% 

+ESI F C, E100 PLS-DA 3 0.387 0.997 0.833 100% 

-ESI F C, E100 PLS-DA 2 (1) 0.167 0.998 0.900 100% 

+ESI M C, E100 PLS-DA 3 0.367 0.995 0.919 100% 

-ESI M C, E100 PLS-DA 2 0.136 0.996 0.921 100% 

+ESI F C, E50 OPLS-DA 1+2 (1) 0.413 0.998 0.418  

-ESI F C, E50 OPLS-DA 1+1 (1) 0.132 0.994 0.680  

+ESI M C, E50 OPLS-DA 1+2 (2) 0.379 0.996 0.383  

-ESI M C, E50 OPLS-DA 1+1 (1) 0.106 0.992 0.734  

+ESI F C, E100 OPLS-DA 1+2 (1) 0.395 0.997 0.730  

-ESI F C, E100 OPLS-DA 1+1 (1) 0.270 0.993 0.912  

+ESI M C, E100 OPLS-DA 1+2 (1) 0.364 0.998 0.701  

-ESI M C, E100 OPLS-DA 1+1 (1) 0.136 0.996 0.919  

+ESI F & M C OPLS-DA 1+1 (1) 0.329 0.917 0.287  

-ESI F & M C OPLS-DA 1+1 0.107 0.973 0.460  

+ESI F & M E50 OPLS-DA 1+1 (1) 0.378 0.963 0.273  

-ESI F & M E50 OPLS-DA 1+1 0.091 0.994 0.406  

+ESI F & M E100 OPLS-DA 1+2 0.383 0.994 0.289  

-ESI F & M E100 OPLS-DA 1+1 0.102 0.987 0.515  

+/-ESI: positive/negative electrospray ionization; C: 28 days river water exposure (control); E50: 28 days 
50% effluent exposure; E100: 28 days 100% effluent exposure; F: female; M: male; FC: female control; 
MC: male control; FE100: female 100% effluent; ME100: male 100% effluent; R2X and R2Y: variation 
explained by the models; Q2: cumulative variation predicted by the models. Discriminating components 
that are not significant are shown in brackets. 
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Appendix 5.4: OPLS-DA scores plots of the chemical profiles of plasma samples from roach exposed 
either to wastewater effluent or control river water. The samples were profiled in both +/-ESI modes by 
UPLC-TOF-MS. Control (C): river water exposure where n=16 females, n=21 males. E50: exposure to 
50% effluent where n=12 females, n=21 males. E100: exposure to 100% effluent exposures where n=17 
females, n=23 males. Female roach symbols: ( ), ( ) and ( ) represent C, E50 and E100, respectively. 
Male roach symbols: ( ), ( ) and ( ) represent C, E50 and E100, respectively. 
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Appendix 5.5: list of discriminatory variables between female and male in plasma from roach exposed to 
river water, 50% or 100% effluent. 

Ionization 

mode 

m/z value of 

marker ion RT (min) 

Groups 

FC MC FE50 ME50 FE100 ME100 

+ESI 386.2161 3.63 ↑      

+ESI 456.2281 3.63 ↑      

+ESI 481.2425 5.74 ↑      

+ESI 465.2487 7.26   ↑  ↑  

+ESI 425.1378 12.28   ↑    

+ESI 395.1846 12.54   ↑    

+ESI 310.2746 14.72    ↑   

+ESI 532.3298 15.05     ↑  

-ESI 496.3018 16.20  ↑     

+ESI 466.3301 16.24      ↑ 

+ESI 513.2925 16.57   ↑    

+ESI 401.3373 17.09  ↑     

+ESI 583.2663 17.09   ↑    

-ESI 498.2916 17.20  ↑     

+ESI 547.2992 17.49  ↑     

+ESI 512.3724 17.82  ↑     

+ESI 562.3480 18.08    ↑   

-ESI 524.3327 18.20      ↑ 

+ESI 504.3399 18.74      ↑ 

-ESI 556.3585 19.04  ↑     

-ESI 464.2957 19.21  ↑     

+ESI 277.1805 19.34    ↑   

-ESI 436.2821 20.37      ↑ 

-ESI 470.3464 20.71  ↑     

-ESI 537.3248 20.88     ↑  

-ESI 550.3489 20.88      ↑ 

+ESI 283.6567 21.12 ↑      

-ESI 479.2813 22.04     ↑  

-ESI 508.3376 22.21  ↑     

-ESI 534.3545 22.55  ↑     

-ESI 423.3420 23.71 ↑      

+/-ESI: positive/negative electrospray ionization; RT: retention time (minute); m/z: mass to charge ratio; 
↑ elevated markers; C: 28 days river water exposure (control); E50: 28 days 50% effluent exposure; E100: 
28 days 100% effluent exposure; F: female; M: male; FC: female control; MC: male control; FE50: female 
50% effluent; ME50: male 50% effluent; FE100: female 100% effluent; ME100: male 100% effluent. 
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Appendix 5.6a: Unidentified markers of effluent exposure in plasma of roach in +ESI mode. 

Observed 

ion (m/z) 

RT 

(min) 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments#### 

Parent 

compound 

formula Gender 

Control vs 

50%effluent 

Control vs 

100%effluent 

Putative identity 

Fold 

change p-value 

Fold 

change p-value 

361.1837 3.9 C15H30O8Na 361.1838 -0.3 0.6  C15H30O8 F 0.4¶ 1.10E-02 0.3¶ 6.00E-03  
        M 0.6¶ 4.25E-01 0.5¶ 3.49E-01  
271.1160 4.8 C11H20O6Na 271.1158 0.7 1.0  C11H20O6 F 0.3¶ 7.50E-02 5.9¶ 3.38E-07  
        E 1.4¶ 5.80E-01 4.8¶ 2.27E-08  
331.2095 5.3 C15H32O6Na 331.2097 -0.6 0.4  C15H32O6 F 4.3¶ 2.00E-03 5.6¶ 7.36E-06  
        M 2.3¶ 2.00E-04 3.8¶ 1.69E-06  
453.1868 5.4 ?      F 0.5¶ 2.50E-02 0.3¶ 1.00E-03  
        M 0.5¶ 4.82E-01 0.3¶ 2.96E-01  
387.2381 6.6 C20H37O7 387.2383 -0.5 1.3  C20H36O7 F ND 1.00E+00 90.9 1.43E-04  
        M 5.4 4.88E-01 46.4 3.00E-03  
313.1992 7.3 C15H30O5Na 313.1991 0.3 0.1  C15H30O5 F 8.2 1.69E-01 89.5 1.40E-05  
        M 8.0 1.07E-01 49.6 1.00E-03  
366.3007 11.3 C22H40NO3 366.3008 -0.3 0.8 348.2901, 274.2509 C22H39NO3 F 205.8 1.21E-07 684.9 2.25E-10  
       M 228.6 9.34E-11 804.3 2.60E-11  
274.2751 12.1 C16H36NO2 274.2746 1.8 0.2  C16H35NO2 F 22.8¶ 2.00E-03 70.1¶ 3.54E-09 Possibly C16-sphinganine 
        M 8.7 1.00E-02 41.1 4.22E-09 
200.2380 12.7 C13H30N 200.2378 1.0 0.7   F 55.4 2.40E-04 76.7 1.23E-08  
        M 43.8 9.95E-07 82.9 7.09E-09  
853.2957 13.0 ?      F 0.8¶ 5.40E-01 0.2¶ 5.36E-05 fragment from 959.8316 
        M 1.3¶ 9.90E-02 0.4¶ 1.00E-03  
959.8316 13.0 ?      F 0.3¶ 8.00E-03 0.06¶ 1.86E-05 Phospholipid like 
        M 0.7¶ 3.55E-01 0.5¶ 9.60E-02  
344.2799 15.6 C19H38NO4 344.2801 -0.6 0.4  C19H37NO4 F 1.0¶ 8.22E-01 0.6¶ 1.00E-03 Acyl carnitine like 
        M 1.4¶ 1.44E-01 0.9¶ 5.71E-01 
302.3061 16.7 C18H40NO2 302.3059 0.7 0.7 284.2947 C18H39NO2 F 154.0 1.17E-05 283.7 1.63E-07  
        M 211.8 1.34E-11 441.2 2.16E-11 
540.3669 16.8 ?    441.8062, 184.0734  F 6.8¶ 7.00E-03 11.1¶ 4.03E-07  
       M 2.0¶ 2.40E-02 5.1¶ 8.20E-07  
492.3089 18.5 C24H47NO7P 492.3090 -0.2 0.9 474.2973,184.0739 C24H46NO7P F 30.3¶ 1.00E-03 51.5¶ 3.54E-09 LysoPC like 
        M 4.3¶ 2.00E-03 16.2¶ 7.43E-12 
228.2688 18.6 C15H34N 228.2691 -1.3 1.3   F 162.6 2.95E-05 217.0 1.23E-06  
        M 171.7 2.09E-08 279.6 2.41E-12  

m/z: mass to charge ratio; RT: retention time (min); ∆ppm: part per million difference between the theoretical and observed mass; i-fit: isotope fit. # fragments were obtained from Q-TOFMS or 
high collisional dissociation fragmentation in full scan mode within ±5ppm. Fold Mean fold change calculated from relative concentrations of the compound in plasma from roach exposed to 
either 50% or 100% effluent for 28 days compared with the levels in control roach held in river water (n=16-20 fish for each gender). ¶Concentrations above the limit of detection were detected 
in plasma of the control roach. Lyso PC: lysophosphatidylcholine; F: female; M: male. Non-normally distributed data (determined as such by the Kolmogorov-Smirnov test) were log 
transformed prior to statistical analysis; p-value was calculated from t-test between control and the effluent exposure samples, and values below the BH threshold are statistically significant with 
a false discovery rate of <5% (Benjamini and Hochberg (BH) threshold was 4.0×10-02). 
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Appendix 5.6a: (continued) Unidentified markers of effluent exposure in plasma of roach in +ESI mode. 

Observed 

ion (m/z) 

RT 

(min) 

Putative 

formula 

Theoretical 

mass of ion 

∆ 

ppm i-fit Q-TOFMS fragments#### 

Parent 

compound 

formula Gender 

Control vs 50%effluent Control vs 100%effluent 

Putative identity Fold change p-value Fold change p-value 

328.3215 18.9 C20H42NO2 328.3216 -0.3 0.9  C20H41NO2 F 21.9 7.00E-03 74.2 2.83E-06  
        M 17.0 9.00E-03 97.8 7.52E-09  
242.2850 20.0 C16H36N 242.2848 0.8 0.3   F 15.8¶ 2.59E-07 15.5¶ 3.54E-09  
        M 22.5¶ 7.43E-12 35.4¶ 7.43E-12  
641.2710 20.5 ?      F 1.6¶ 9.00E-03 1.9¶ 9.87E-06  
        M 1.3¶ 3.70E-02 1.9¶ 2.05E-05  
313.2369 20.6 ?      F 34.4¶ 4.01E-06 117.9¶ 3.54E-09  
        M 6.0¶ 2.29E-04 33.7¶ 7.43E-12  
330.3373 20.7 C20H44NO2 330.3372 0.3 0.6  C20H43NO2 F 163.2 3.63E-07 210.3 1.25E-08  
        M 177.2 3.15E-11 256.6 1.73E-12  
374.3637 20.8 C22H48NO3 374.3634 0.8 0.1  C22H47NO3 F 65.8 4.70E-06 93.2 7.83E-07  
        M 68.4 1.06E-08 106.9 4.08E-10  
356.3530 21.7 C22H46NO2 356.3529 0.3 0.3 338.3415 C22H45NO2 F 112.1 1.29E-07 137.8 3.54E-09  
        M 84.3 3.72E-12 159.9 3.72E-12  
627.2927 21.8 ?      F 3.1¶ 8.00E-02 6.4¶ 1.18E-05 Fragment from  683.2527 
        M 1.7¶ 1.56E-01 3.0¶ 2.00E-03  
667.2849 21.8 ?      F 1.7¶ 1.00E-02 2.8¶ 1.80E-08 Fragment from  683.2527 
        M 1.1¶ 4.81E-01 1.7¶ 1.53E-04  
683.2527 21.8 ?      F 1.7¶ 9.00E-03 2.8¶ 1.05E-09  
        M 1.1¶ 4.44E-01 1.6¶ 1.00E-03  
284.3322 20.7 C19H42N 284.3317 1.8 1.2   F 3.7¶ 9.10E-09 3.7¶ 4.30E-12 Possibly a fragment 
        M 4.8¶ 1.71E-11 5.5¶ 7.32E-16  
468.3089 21.1 C22H47NO7P 468.3090 -0.2 0.5 184 C22H46NO7P F 1.3¶ 1.20E-02 1.7¶ 1.05E-04 Lyso PC like 
        M 1.1¶ 3.59E-01 1.2¶ 1.75E-01  
295.1671 21.2 C18H24O2Na 295.1674 -1.0 0.4  C18H24O2 F 22.0 6.30E-02 244.4 4.24E-08  
        M 17.4 1.07E-01 284.3 3.72E-12  
618.3542 21.2 ?      F 1.4¶ 4.70E-02 2.5¶ 7.48E-05  
        M 0.9¶ 5.97E-01 0.8¶ 5.61E-01  
493.2345 21.4 ?      F 1.9¶ 7.65E-01 16.0¶ 7.07E-09  
        M 3.2¶ 2.50E-02 10.8¶ 1.58E-09  
494.3322 21.5 ?      F 1.5¶ 2.00E-03 1.7¶ 8.28E-06  
        M 1.3¶ 1.10E-02 1.5¶ 1.00E-03  
405.2400 21.5 ?      F ND 1.00E+00 148.1 2.83E-06  
        M 4.5¶ 3.56E-01 61.9¶ 1.96E-06  
341.3057 21.5 C21H41O3 341.3056 0.3 1.0  C21H40O3 F 1.4¶ 5.00E-03 1.7¶ 2.25E-04  
        M 1.5¶ 3.70E-02 2.0¶ 4.29E-04  
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Appendix 5.6a: (continued) Unidentified markers of effluent exposure in plasma of roach in +ESI mode. 

Observed 

ion (m/z) 
RT 

(min) 
Putative 

formula 
Theoretical 

mass of ion 
∆ 

ppm i-fit Q-TOFMS fragments#### 

Parent 

compound 

formula Gender 

Control vs 50%effluent Control vs 100%effluent 

Putative identity Fold change p-value Fold change p-value 

331.2216 21.7 ?      F 19.5¶ 2.59E-07 44.1¶ 3.54E-09  
        M 2.1¶ 1.70E-02 7.1¶ 2.23E-10  
367.3266 22.0 ?      F 1.6¶ 1.30E-02 1.9¶ 1.95E-04  
        M 1.1¶ 2.85E-01 1.2¶ 1.83E-01  
345.2047 21.9 ?      F 3.9¶ 2.59E-07 11.1¶ 3.54E-09  

        M 3.2¶ 1.30E-07 10.3¶ 1.49E-11  
270.2796 22.2 C17H36NO 270.2797 -0.4 0.7   F 43.6 3.00E-03 245.9 1.10E-06 Possibly fragment 
        M 35.6 3.00E-03 247.1 6.28E-09  
247.2059 22.3 C17H27O 247.2062 -1.2 0.5   F 24.9¶ 1.29E-07 74.9¶ 3.54E-09 Possibly fragment 
        M 27.0 7.43E-12 113.0¶ 7.43E-12  
355.2845 22.4 C21H39O4 355.2848 -0.8 0.4  C21H38O4 F 3.0¶ 6.08E-06 6.8¶ 2.04E-07  
        M 2.5¶ 3.58E-04 8.2¶ 1.02E-08  
519.2508 22.4 ?      F 2.7¶ 5.00E-01 26.0¶ 2.48E-08  
        M 3.1¶ 1.90E-02 11.6¶ 6.99E-09  
235.2064 22.4 C16H27O 235.2062 0.9 0.4   F 5.8¶ 2.59E-07 18.0¶ 3.54E-09 Possibly fragment 
        M 8.6¶ 7.43E-12 41.0¶ 7.43E-12  
369.2647 22.4 C21H37O5 369.2641 1.6 1.7  C21H36O5 F 2.9¶ 1.17E-05 4.9¶ 7.07E-09  
        M 2.0¶ 2.28E-04 3.8¶ 1.41E-10  
399.3112 22.3 C23H43O5 399.3110 0.5 1.0  C23H42O5 F 1.6¶ 2.94E-04 2.9¶ 6.89E-06  
        M 1.5¶ 6.00E-03 3.3¶ 1.28E-07  
259.2065 22.3 C18H27O 259.2062 1.2 0.6   F 26.6¶ 2.59E-07 84.8¶ 3.54E-09 Possibly fragment 
        M 43.1¶ 7.43E-12 159.0¶ 7.43E-12  
219.1751 22.4 C15H23O 219.1749 0.9 1.3   F 1.6¶ 2.70E-02 3.2¶ 2.03E-04 Possibly fragment 
        M 1.9¶ 6.00E-03 1.3¶ 2.25E-01  
251.0484 22.7 ?      F 2.7¶ 8.65E-05 4.5¶ 6.08E-11  
        M 1.4¶ 5.60E-02 3.3¶ 2.96E-09  
385.1567 22.7 ?      F 5.3¶ 4.00E-03 11.0¶ 6.20E-07  
        M 2.2¶ 2.34E-01 12.5¶ 5.29E-08  
407.2586 23.0 C27H35O3 407.2586 0.0 3.7   F 2.4¶ 5.92E-01 15.1¶ 1.79E-07  
        M 4.9¶ 5.00E-03 20.8¶ 8.87E-09  
413.3263 23.0 C24H45O5 413.3267 -1.0 0.7   F 1.6¶ 1.00E-03 2.8¶ 6.13E-07  
        M 1.5¶ 1.00E-03 2.8¶ 6.30E-06  
297.2793 23.0 C19H37O2 297.2794 -0.3 0.2   F 11.0¶ 4.87E-05 21.6¶ 1.13E-07  
        M 4.6¶ 2.64E-05 8.6¶ 1.29E-08  
353.2689 23.4 C21H37O4 353.2692 -0.8 7.4   F 38.7 2.20E-02 152.6 4.66E-05  
        M 7.0¶ 2.70E-02 15.0¶ 8.00E-03  
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Appendix 5.6a: (continued) Unidentified markers of effluent exposure in plasma of roach in +ESI mode. 

Observed 

ion (m/z) 
RT 

(min) 
Putative 

formula 
Theoretical 

mass of ion 
∆ 

ppm i-fit Q-TOFMS fragments#### 

Parent 

compound 

formula Gender 

Control vs 50%effluent Control vs 100%effluent  

Fold change p-value Fold change p-value Putative identity 
383.3161 23.4 ?      F 1.9¶ 5.42E-05 3.1¶ 8.33E-07  
        M 1.5¶ 4.00E-03 3.4¶ 2.76E-07  
782.5387 23.7 ?      F 31.3¶ 4.87E-05 50.0¶ 1.61E-07  
        M 3.7¶ 1.68E-07 5.0¶ 5.39E-08  
866.5905 23.8 ?      F 2.7¶ 6.50E-02 12.0¶ 4.30E-06  
        M 1.9¶ 2.90E-02 6.5¶ 6.48E-09  
954.6312 24.0 ?      F 2.1¶ 2.20E-02 2.8¶ 4.24E-08  
        M 1.1¶ 7.57E-01 2.0¶ 1.00E-03  
702.5140 24.4 ?      F 1.4¶ 1.80E-02 2.4¶ 1.52E-07  
        M 1.2¶ 4.10E-02 1.7¶ 5.89E-06  
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Appendix 5.6b: Unidentified markers of effluent exposure in plasma of roach in -ESI mode. 

Observed 

ion (m/z) 
RT 

(min) 
Putative 

formula 
Theoretical 

mass of ion 
∆ 

ppm i-fit Q-TOFMS fragments#### 

Parent 

compound 

formula Gender 

Control vs 50%effluent Control vs 100%effluent 

Putative identity 
Fold 

change p-value Fold change p-value 

634.3027 10.0 ?      F 1.8¶ 1.37E-01 3.1¶ 1.65E-04  
        M 0.7¶ 1.78E-01 1.8¶ 3.00E-03  
643.2881 20.5 ?      F 1.6¶ 1.10E-02 3.2¶ 6.51E-07  
        M 1.5¶ 5.20E-01 1.5¶ 2.10E-02  
658.3326 20.8 ?      F 1.2¶ 1.75E-01 1.7¶ 3.85E-05 Formate adduct 
        M 1.1¶ 8.94E-01 1.1¶ 5.67E-01  
999.6437 21.0 ?      F 1.4¶ 1.00E-03 2.1¶ 9.84E-09 Possibly cluster 
        M 1.2¶ 3.25E-01 1.2¶ 5.40E-02  
621.3051 21.2 ?      F 1.2¶ 5.78E-01 3.4¶ 2.79E-06  
        M 1.4¶ 3.97E-01 1.4¶ 1.35E-01  
987.6355 21.2 ?      F 1.8¶ 1.00E-03 2.6¶ 2.16E-07  
        M 1.4¶ 9.00E-03 1.4¶ 2.00E-03  
466.2929 21.3 C22H45NO7P 466.2934 -1.1 0.0  C22H46NO7P F 0.9¶ 4.00E-01 1.2¶ 6.60E-02 Lyso PC like 
        M 1.2¶ 9.00E-03 1.2¶ 4.40E-02  
640.3613 21.4 ?      F 1.2¶ 1.00E-01 2.2¶ 1.93E-05  
        M 0.8¶ 3.82E-01 0.8¶ 3.39E-01  
616.3633 21.5 ?      F 1.6¶ 1.00E-03 1.9¶ 9.17E-06  
        M 1.0¶ 3.24E-01 1.0¶ 8.50E-01  
665.2913 21.5 ?      F 1.4¶ 5.00E-03 1.6¶ 7.58E-05  
        M 1.4¶ 1.25E-01 1.4¶ 2.05E-04  
469.2355 21.5 ?    301.2174,257.2290,167.0154  F 6.6¶ 2.69E-01 30.3¶ 1.71E-09  
        M 2.8¶ 1.20E-02 9.1¶ 9.64E-11  
323.1683 21.6 ?      F 36.8 6.14E-06 163.0 1.76E-04  
        M 19.8 1.63E-04 112.0 1.33E-16  
277.1805 21.7 C17H25O3 277.1804 0.4 0.7 219.1782 C17H26O3 F 16.2¶ 6.57E-08 62.9¶ 1.71E-09 Fatty alcohol like 
        M 14.5¶ 7.43E-12 64.2¶ 9.94E-13  
845.4563 22.2 ?      F 0.5¶ 3.00E-03 0.3¶ 1.21E-04  
        M 0.6¶ 2.60E-01 0.6¶ 2.52E-01  
337.187 22.5 ?      F 93.1 3.29E-08 708.0 1.71E-09  
        M 62.5 8.18E-11 188.0 9.94E-13  
960.5995 24.1 ?      F 0.6¶ 1.60E-02 0.4¶ 2.81E-06  
        M 1.2¶ 7.30E-02 1.2¶ 3.30E-02  
716.5263 25.4 ?      F 2.3¶ 2.41E-01 5.2¶ 5.24E-05  
        M 0.6¶ 3.60E-02 0.6¶ 2.24E-01  
742.5351 25.4 ?      F 1.5¶ 5.80E-02 4.7¶ 1.00E-03  
        M 0.8¶ 5.70E-02 0.8¶ 1.97E-01  
986.8198 27.7 ?      F 22.5¶ 1.30E-02 29.4¶ 1.23E-07  
        M 3.3¶ 2.81E-06 3.3¶ 2.51E-08  
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Appendix 5.7: Q-TOFMS mass spectra of three unidentified xenobiotics found in plasma from effluent-
exposed roach at collision energy of 20eV. 
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Appendix 5.8: Ion chromatograms of the in-source fragmented of the putative glucuronide conjugate of 
tetrahydrocortisone in plasma from effluent-exposed roach in +ESI mode (collision energy = 10 eV and 
25 eV). 
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Appendix 5.9: Ion chromatograms of the in-source fragmented of a bile acid sulphate in plasma from 
effluent-exposed roach in +ESI  mode (collision energy = 10 eV and 25 eV). 
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