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Abstract

Trapped ions are currently one of the most promising architectures for realising the quan-

tum information processor. The long lived internal states are ideal for representing qubit

states and, through controlled interactions with electromagnetic radiation, ions can be

manipulated to execute coherent logic operations. In this thesis an experiment capable of

trapping Yb+ ions, including 171Yb+, is presented.

Since ion energy can limit the coherence of qubit manipulations, characterisation of an

ion trap heating rate is vital. Using a trapped 174Yb+ ion a heating rate consistent with

previous measurements of other ion species in similar ion traps is obtained. This result

shows abnormal heating of Yb+ does not occur, further solidifying the suitability of this

species for quantum information processing.

Efficient creation, and cooling of trapped ions requires exact wavelengths for the ion-

ising, cooling and repump transitions. A simple technique to measure the 1S0 ↔ 1P1

transition wavelengths, required for isotope selective photoionisation of neutral Yb, is de-

veloped. Using the technique new wavelengths, accurate to 60 MHz, are obtained and

differ from previously published results by 660 MHz. Through a simple modification the

technique can also predict Doppler shifted transition frequencies, which may be required in

non-perpendicular atom-laser interactions. Using trapped ions, the 2S1/2 ↔ 2P1/2 Doppler

cooling and 2D3/2 ↔ 2D[3/2]1/2 repump transitions are also measured to a greater accu-

racy than previously reported.

Many experiments require wavelengths which can only be obtained using complex

expensive laser systems. To remedy this a simple cost effective laser is developed to enable

laser diodes to be operated at sub zero temperatures, extending the range of obtainable

wavelengths. Additional diode modulation capabilities allow for the manipulation of atoms

and ions with hyperfine structures. The laser is shown to be suitable for manipulating

Yb+ ions by cooling a diode from 372 nm to 369 nm and simultaneously generating 2.1

GHz frequency sidebands.

Coherent manipulation such as arbitrary qubit rotations, motional coupling and ground
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state cooling, are required for trapped ion quantum computing. Two photon stimulated

Raman transitions are identified as a suitable technique to implement all of these require-

ments and an investigation into implementing this technique with 171Yb+ is conducted.

The possibility of exciting a Raman transition via either a dipole or quadrupole transitions

in 171Yb+ is analysed, with dipole transitions preferred because quadrupole transitions are

found to be too demanding experimentally. An inexpensive setup, utilising a dipole tran-

sition, is designed and tested. Although currently limited the setup shows potential to be

an inexpensive, high fidelity method of exciting a Raman transition.
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by Matthias Keller. Construction and modification of the lasers was performed by myself,

with assistance from Robin Sterling, Jessica Grove Smith and David Scrivener.

Chapter 4 - Experimental Setup

The vacuum system was designed and constructed by Altaf Nizamani, with assistance

from myself. The macroscopic experimental trap was designed by Robin Sterling, and con-

structed by myself, Marcus Hughes, Altaf Nizamani, James Siverns, and Robin Sterling.

The resonator was designed and constructed by James Siverns while the filter, allowing

a static offset to be applied to the RF signal, was developed by Kim Lake and Sebastian

Weidt. The frequency modulated saturated absorption spectroscopy used to stabilise the

780 nm laser was implemented by Robin Sterling, and the scanning Fabry-Pérot cavities
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“It is a mistake to think you can solve any major problems just with

potatoes.”

Douglas Adams, Life, the Universe and Everything
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Chapter 1

Introduction

“First we thought the PC was a calculator. Then we found out how to turn

numbers into letters with ASCII - and we thought it was a typewriter. Then

we discovered graphics, and we thought it was a television. With the World

Wide Web, we’ve realised it’s a brochure.”

- Douglas Adams.

The idea of programmable computing was first introduced in 1936 when Alan Turning

presented a model for a machine capable of simulating any logic algorithm [2] - a machine

now known as a Turing machine. Following this Turing developed a model for a machine

capable of simulating any other Turing machine; the Universal Turning Machine (UTM).

Shortly following this report the first electronic computers were developed, and over time

have developed to the computers we all use today. While these systems are capable of exe-

cuting a vast range of algorithms, they are limited and not quite UTM’s. These machines

use components which obey classical physics, so are only effective at simulating classical

systems and solving deterministic problems. It is when they are used to simulate quan-

tum systems that the limitations become apparent. To simulate quantum systems, which

operate probabilistically, the number of possible permutations to be computed greatly

surpasses the capabilities of modern electronic computers. In order to overcome this lim-

itation, and effectively simulate quantum systems, a computer based upon components

obeying quantum mechanics is therefore required.

Information processing using quantum systems was first introduced around 1980 by Be-

nioff and Feynman. Benioff presented a quantum mechanical model consistent with the

computational model of the UTM [3], while Feynman proposed how physical quantum

systems, such as photons and atomic particles, can be used to represent and process clas-

sical information [4]. He showed that two distinguishable orientations of these quantum
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system, such as photon polarisation or atomic spin, could be used to represent the binary

states ‘0’ and ‘1’. Furthermore by orientating these systems in a superposition state the

corresponding information would also be in a superposition of 0 and 1. Thus for a system

consisting of N quantum bits (qubits) there are 2N possible encodable states. Unfortu-

nately measurement of this system would collapse the superpositions into arbitrary states

yielding random outputs. It was in 1985 that David Deutsch solved this issue, and showed

how ‘parallel quantum computing’ enables large numbers of qubits to effectively process

information [5]. Utilising entanglement between the qubits a function can simultaneously

act upon a superposition of all 2N input states to compute a single coherent output.

Following Deutsch’s discovery quantum computing algorithms were developed. Perhaps

the most influential algorithm was Shor’s factoring algorithm [6], which showed how quan-

tum computing could factorise a large number on time scales exponentially faster than a

classical computer. Since encryption schemes rely upon the inability of classical computers

to factor large numbers this algorithm posed a serious threat to secure data transfer and

so gained significant interest from intelligence agencies. Another well known algorithm is

the search algorithm presented by Lov Grover [7], which is capable of reducing the average

number of searches of an unsorted database from N/2 iterations to
√
N/2. Although this

may not have had the same impact as Shor’s algorithm it did present further applications

for the quantum computer. Following this Shor and Steane introduced error correction

protocols, which allow any arbitrarily long quantum algorithm to be realised on non-

perfect quantum hardware [8, 9]. Shor then presented fault-tolerant quantum computing,

which showed that calculations and simulations can still be achieved even in the presence

of small errors [10]. These contributions greatly fuelled interest into the quantum com-

puter and, in 2000, Divenczio presented the following requirements for a physical system

to be used for QIP [11]

1. A scalable physical system with well defined qubits.

2. The ability to initialise the state of the qubits to a simple fiducial state, such as

|000...〉.

3. Long relevant decoherence times, much longer than the gate operation time.

4. A “universal” set of quantum gates.

5. A qubit specific measurement capacity.

Several different potentially suitable physical quantum systems have been proposed and

investigated including solid-state systems, optical systems, and atomic systems. Solid-state

systems include quantum dots [12, 13], low-capacitance Josephson-junction arrays [14],
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and the nuclear spin of donor atoms in electronic silicon devices [15]. Optical systems use

orthogonal orientations of polarised light to represent the qubit states [16], while atomic

systems include single atoms strongly coupled to an optical cavity [17], and of course the

different energy states of trapped ions [18]. Although solid state systems have shown a lot

of potential with, in principle, easily scalable fabrication the coherence lifetimes of these

qubits are short lived and complex coherent manipulation is very difficult. Optical based

qubits also have extremely short lifetimes which, without the use of another quantum

system, makes the task of of memory storage impractical. It is the atomic based systems,

with trapped ions in particular, that currently show the most promise for QIP.

There are currently two main approaches towards QIP using traped ions: ions confined

in Penning traps (which use static electric and magnetic fields) or ions confined in radio

frequency (rf) Paul traps (which use static and oscillating electric fields). Implementation

of QIP via Penning traps has demonstrated many of the basic requirements including state

initialisation, state detection and arbitrary qubit rotation [19], and also shuttling of ions

between penning traps [20]. QIP using ions confined in rf Paul traps is, however, the more

popular approach. It was kick started in 1995 with the publication of Cirac and Zoller’s

influential paper [18] which proposed how, through the entanglement of multiple ions, any

arbitrary gate consisting of any number of qubits could be realised. Following this QIP

using trapped ions exploded, with advancements including the realisation of gates such

as Cirac and Zoller’s gate [21, 22], a quantum Toffoli gate [23], Mølmer and Sørensen’s

gate [24], and other geometric phase gates [25]. Entanglement of up to fourteen trapped

ion qubits [24–26], quantum error correction protocols [27–29], and algorithms such as the

Deutsh-Joza algorithm [30] and Grover’s algorithm [31]. Preliminary simulations of physi-

cal systems including quantum magnets [32] and Ising spins [33] have also been performed.

Divenczio’s other requirement of scalability has also been addressed with the ability to

confine ions in microfabricated structures [34]. The demonstration of shuttling ions within

ion trap arrays [35] highlights the ability to use multidimensional trap structures, allowing

for ‘memory’ and ‘interaction’ regions. Trapped ions in rf Paul traps are thus currently a

popular choice for the realisation of the quantum computer.

This thesis focuses on the use of 171Yb+ ions confined in an rf Paul trap for QIP. First

the implementation and characterisation of an ion trap setup is described, and then the

current progress towards manipulation of the 171Yb+ qubit is presented.

In chapter 2 the basic theory for trapping, cooling and manipulating ions for quantum

information processing is described. The chapter includes the principles of operation of a
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linear rf Paul trap, different methods used to photoionise neutral Yb and laser cooling Yb+

ions, and methods of controlling the 171Yb+ qubit. The laser systems used to achieve these

tasks are described in chapter 3. Most of the lasers are constructed in-house in the Littrow

external cavity configuration, and have been modified to provide frequency sidebands or

large mode hop free tuning ranges to access the hyperfine structure of even isotope Yb+

ions and 171Yb+.

Chapter 4 presents the rest of the experiment setup including an ultra high vacuum system

designed for testing different complex trap geometries, and a compatible two-layer macro-

scopic ion trap. The electronic feedback schemes used to stabilise the laser to an atomic

reference are presented as well as the system used to image or measure ion fluorescence.

Operation of the setup is described and successful trapping of ions is shown.

Motional heating due to electric field fluctuations causes decoherence in trapped ion ex-

periments. Heating rates thus impose a limit on the fidelity of quantum logic operations.

In chapter 5 the heating rate of the ion trap is characterised using an 174Yb+ ion, and

found to be consistent with previously reported results.

Creation of Yb+ ions is achieved using two-photon photoionisation, with the first stage

utilising the 1S0 ↔ 1P1 transition. However, published wavelengths for this transition

are not accurate. In chapter 6 a simple method, based upon the alignment of velocity

dependent fluorescence spots, is devised to accurately determine these wavelengths. The

measured wavelengths are found to differ from previously published work by 660 MHz. In

experiments it is common for laser beams and atomic beams to adopt non-perpendicular

angles, and therefore require Doppler shifted wavelengths. By adapting the devised setup

these wavelengths are also predicted. Using trapped ions the 2S1/2 ↔ 2P1/2 Doppler

cooling and 2D3/2 ↔ 3D[3/2]1/2 repumping transition are measured with greater precision

than previously published.

Difficult to obtain wavelengths can require expensive laser systems. Alongside the imple-

mentation and characterisation of the ion trap experiment a new versatile laser system

offering a simple inexpensive means of obtaining difficult wavelengths is developed. The

design of the laser is described in chapter 7, and the laser is shown to be suitable for

cooling Yb+ ions.

Quantum information processing requires the coherent manipulation of the trapped ion

qubit. In chapter 8 an investigation of controlling the 171Yb+ qubit with two photon

stimulated Raman transitions is presented. The suitability of dipole and quadrupole tran-

sitions for Raman transitions is analysed, with consideration taken for obtainable laser



6

sources and realistic experimental considerations. Dipole transitions are identified as the

preferred option and an inexpensive scheme offering reduced off-resonant coupling rates is

tested.
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Chapter 2

Ion traps and the Yb+ Ion

“To catch mice, my lord. I lie on the ground with my mouth open and hope

they scurry in.”

-Baldrick, Blackadder

The radio frequency (rf) ion trap was first introduced by Wolfgang Paul in the late 1950’s

[36, 37], for which he won a Nobel Prize. Following this in 1975 Hänsch and Schawlow

[38] and Wineland and Dehmelt independently proposed the principle of laser cooling.

Then, in 1978, Wineland et al. [39] and Neuhauser et al. [40] reported the first laser

cooling experiments using Mg+ and Ba+ ions respectively. Since then laser cooled trapped

atoms and ions have become common place, and are used for many experiments including

frequency measurements for atomic clocks [41–44], cavity quantum electrodynamics [45,

46] and also as the building block for the quantum computer [39, 47, 48]. Several ionic

species have been investigated as suitbale candidates for trapped ion quantum computing

including Ba+ [49], Be+ [50], Ca+ [51–55], Cd+ [56], Mg+ [57], Sr+ [58, 59], and recently

Yb+ [60–63]. This chapter presents the underlying principles of the rf Paul trap, the ion

species of interest: Yb+, and schemes to cool and manipulate these ions for quantum

information processing.

2.1 Ion Trap Basics

The purpose of the ion trap is to provide electric fields capable of confining ions in three

dimensional free space. As stated in Earnshaw’s theorem, however, a charged particle

cannot be confined in three dimensions using electrostatic forces alone [64]. A result also

embedded in Laplace’s equation: ∇2φ(x, y, z) = 0, where φ(x, y, z) is a three dimensional
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electric potential, which shows that local three-dimensional static maxima or minima

cannot occur in free space. Therefore to enable confinement in all three dimensions a time

dependent oscillating electric potential, φ(x, y, z, t), is required. The simplest geometries

are quadrupole in shape and, in 3D Cartesian coordinates, can be expressed as

φ = U0
1

2
(αx2 + βy2 + γz2) + V0 cos(ΩDt)

1

2
(α′x2 + β′y2 + γ′z2)) (2.1)

where U0 and V0 cos(ΩD) are static and time dependent voltages applied to trap elec-

trodes, ΩD is the frequency of the time dependent voltage, and α, β, γ, and α′, β′, γ′ are

multiplicative constants describing the geometry of the static and oscillating potentials.

Since this general potential must also fulfil Laplace’s condition, ∇2φ = 0, at every instant

in time the following restrictions are imposed onto the overall geometry of the potential

α+ β + γ = 0 (2.2)

α′ + β′ + γ′ = 0 (2.3)

The two simplest solutions which fulfil these restrictions are

α = β = γ = 0 and α′ + β′ = −γ′ (2.4)

−(α+ β) = γ > 0 and α′ = −β′, γ′ = 0 (2.5)

The first solution, equation 2.4, describes a simple potential consisting purely of oscillating

components (α′+β′ = −γ′) and no static components (α = β = γ = 0). This, however, is

the simplest solution but does not describe the potential often implemented. Usually an

additional static potential, with geometry α + β = −γ, is included. The second solution,

equation 2.5, describes a potential which requires both oscillating and static components.

The oscillating component describes confinement in the x− y plane while the static com-

ponent describes confinement along the z-axis. The two geometries described by equations

2.4 and 2.5 can be realised using two different trap structures: cylindrical and linear traps

respectively.

2.1.1 Trap Types

Cylindrical Traps

The general shape of a cylindrical trap is illustrated in figure 2.1. These traps ideally

consist of two hyperbolic endcap electrodes and a ring electrode with a hyperbolic cross
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Figure 2.1: Structure of a cylindrical ion trap. The trapping potentials is achieved by
applying an rf and static potential to the ring electrode while grounding the endcaps, or
vice versa.

section. The three dimensional oscillating potential is generated by applying an oscillating

voltage to the ring electrode while grounding the endcaps, or vice versa. The additional

static potential is then generated by applying a static voltage to the same electrodes as

the oscillating voltage. Considering the general quadrupole potential (equation 2.1), and

geometrical restrictions, the potential at any point inside a cylindrical trap is expressed

as

φ = (U0 + V0 cos (ΩDt))

(
x2 + y2 − 2z2

r2
0

)
(2.6)

where r0 is the distance from the ion to the trap electrodes. Due to the rotational symmetry

and use of oscillating potentials in all three axes cylindrical traps provide a minimum only

at the trap centre.

Linear Paul Traps

The other general trap structure, the linear Paul trap, is illustrated in figure 2.2. These

traps use four long electrodes to provide confinement in the x − y plane, and electrodes

positioned either end of the trap to provide confinement along the z axis. Radial confine-

ment is achieved by applying an rf voltage to a pair of diagonally opposing electrodes (the

long unsegmented electrodes in Fig. 2.2) whilst grounding the other pair. The potential
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at any point on the x− y plane is then described by

φV =
V0 cos ΩDt

2r2
0

(
x2 − y2

)
(2.7)

Figure 2.2: Structure of a liner ion trap. Radial confinement is achieved by applying a rf
potential between a diagonally opposing pair of electrodes, while grounding the other pair.
Axial confinement is achieved by applying a static potential between endcap electrodes.

Axial confinement is achieved by applying a static voltage to the endcap electrodes, with

the potential along any point of the trap axis given by

φU =
U0

2r2
0

(2z2 − (x2 + y2)) (2.8)

As can be seen a static component is also present in the x and y axes. To ensure confine-

ment in all three dimensions the rf potential must therefore overcome this static offset.

The overall trapping potential in a linear trap has a minimum running along the z-axis

of the trap. This ‘stretched’ minimum enables several ingredients desirable for quantum

computing: confining a chain of ions all in the minimum of the same harmonic potential,

the scope for scalable trap geometries, and the ability to shuttle ions [35]. It is for these

reasons that linear traps will be concentrated upon in this thesis. The following analysis,

however, can be equally applied to cylindrical traps.

2.1.2 Ion Motion

An ion confined with a paul trap exhibits oscillatory motion as a result of the dynamic

force from the oscillating quadrupole confining potential. To determine the nature of this

motion the shape of the potnetial, and hence force applied to the ion is analysed.
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Pseudopotential Approximation

To a first approximation the dynamic potential can time averaged over an oscillation to

yield a static time-averaged potential, or ‘pseudopotential’. Under this regime a time-

averaged force is therefore considered and a description of the average motion during an

oscillation obtained. The inhomogeneous pseudopotential within a linear Paul trap is

defined as [65]

Φ =
e

4mΩ2
D

(E0(x, y, z))2 r̂ (2.9)

where m the ion mass, ΩD the trap drive frequency, and E0(x, y, z) the spatially varying

but time independent electric field. The corresponding time averaged force exerted onto

the ion is

F̄ = −e∇Φr̂ (2.10)

where e is the electron charge, r̂ is a unit vector along a coordinate axis. To analyse this

average force, and obtain a description of the ion motion, the time independent electric

field must first be described. Given that an electric field is related to a potential via

E = −∇φ, and the quadrupole potential is described in equation 2.7, the electric field

within a linear Paul trap is:

E(x, y, t) = −∇φV

= −V0

r2
0

(xx̂− yŷ) cos(ΩDt)

= −E0(x, y) cos(ΩDt) (2.11)

Here the terms E0(x, y) = (V0/r
2
0)(xx̂ − yŷ) and cos(ΩDt) are the time independent and

time dependent components respectively. Using this time independent component in equa-

tions 2.9 and 2.10 the time averaged force on the ion is:

F̄ = −e∇Φr̂

= −e ∂
∂x

(
eV 2

0 x
2

4mΩ2
Dr

4
0

)x̂− e ∂
∂y

(
eV 2

0 y
2

4mΩ2
Dr

4
0

)ŷ

= − e2V 2
0

2mΩ2
Dr

4
0

xx̂− e2V 2
0

2mΩ2
Dr

4
0

yŷ (2.12)

Considering now only the x-direction, and using the well known relation F = mẍ, the

acceleration in the x-direction is

ẍ = − e2V 2
0

2m2Ω2
Dr

4
0

x (2.13)
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then by applying another common relation, a(x) = −ω2x, the oscillation frequency in the

x direction is

ωx = ωy =
eV0

21/2mΩDr2
0

(2.14)

This result is the ‘secular motion’ of the trapped ion. The time averaged force from the

oscillating electric field does not equal zero, but instead points towards the area of weaker

field. Thus an ion in a rf Paul trap experiences a net force of towards the potential null

inducing the harmonic motion. For a trap symmetric in the x − y plane this secular

(thermal) motion is the same in both the x and y axis.

Time Dependent Motion

While the previous result is a nice solution describing ion motion, it is only an approxi-

mation. To obtain a more complete solution the time dependence of the potential must

be considered. The resulting motion is shown to comprise not only of secular motion,

but also an additional high frequency low amplitude component. In the time dependent

regime the force from the oscillating potential is

F = −e∇(φ(x, y, z, t))r̂ = m
d2r0

dt2
(2.15)

where r̂ represents a coordinate axis. Again considering the x − y plane and using the

relationship, m d2r0/dt
2 = −e dΦ/dr0, the equations of motion of the trapped ion are

ẍ+
e

mx2
(U0 − V0 cos Ωt)x = 0 (2.16)

ÿ − e

my2
(U0 − V0 cos Ωt)y = 0 (2.17)

Then, by using the substitutions

ax = −ay =
4eU

mr2
0Ω2

(2.18)

qx = −qy =
2eV0

mr2
0Ω2

(2.19)

τ =
Ωt

2
(2.20)

equations 2.16 and 2.17 can be converted into the Mathieu differential equations

d2x

dτ2
+ (a+ 2q cos(2τ))x = 0 (2.21)

d2y

dτ2
− (a+ 2q cos(2τ))y = 0 (2.22)
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Based upon the values used for the parameters a and q these equations can have stable

or unstable solutions which, in turn, describe stable or unstable confinement. The stable

solutions are shown in figure 2.3, with the regions bound by dashed (solid) lines corre-

sponding to stable confinement in the x (y) axis. The symmetry of the plot about a = 0

is a result of the trap symmetry in the x− y plane. The regions of overlap, corresponding

to stable confinement in both the x and y directions, are of key interest, and the region

most commonly used is shown in figure 2.3(b). Here stable trapping is achieved with the

smallest a and q parameters and, since these parameters correspond to the static and rf

voltages applied to the trap electrodes, indicate the lowest static and rf voltages required

for stable confinement.

Figure 2.3: Regions for stable trapping in terms of the parameters a and q, with (a)
showing multiple different stability regions and (b) showing the most commonly used
stability region.

For a stable set of the parameters a and q the Mathieu equations can be solved using the

Floquet theorem, as described in [63, 66–68]. The resulting ion trajectory can then be

expressed as

x(t) = A cos(ωt)[1 +
q

2
cos(ΩDt)] (2.23)

where A is a constant that depends upon inital conditions. It can be seen that the ion

motion not only consists of secular motion at frequency ω, but has additional oscillatory

motion at the drive frequency, ΩD, known as micromotion. The amplitude of this mi-

cromotion is proportional to q which, as shown in equation 2.19, is proportional to the

amplitude of the drive signal and the ion position from the trap centre.

To illustrate micromotion consider an 171Yb+ ion inside a trapping potential with a drive

frequency of ΩD/(2π) = 21.4 MHz and amplitude of V0 = 680 V. If the ion is positioned
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at r0 = 100 µm from the trap null then the ion has the motion shown in figure 2.4. The

blue dashed line illustrates the secular motion while the red solid line illustrates both

the secular motion and micromotion. Typically the amplitude of micromotion is small,

q � 1, however if the static and rf potential minima do not coincide the average position

of the ion can become displaced and induce extra micromotion which can be detrimental

for experiments. Using additional static fields the minimum of the static potential can

be adjusted to directly coincide the rf minimum, thereby reducing micromotion [69]. It

should be noted that since secular motion carries the ion back and forth across the rf

minimum, micromotion cannot be eliminated, only minimised.

Figure 2.4: Motion of an ion within the quadrupole potential of a linear Paul trap. The
blue dashed line shows the secular motion of the ion, while the solid red line shows the
presence of the secular motion and micromotion.

2.2 Ytterbium

First discovered in 1878 by Jean de Marignac, and named after the Swedish village of

Ytterby, ytterbium is an element that has found use in several modern day applications.

Applications including metallurgy, fibre optics, and of course atomic physics experiments

and quantum information processing. There are seven naturally occurring stable isotopes

and are shown in table 2.1 along with their abundances and nuclear spin.

Several of these isotopes have been identified as suitable system for quantum informa-

tion processing (QIP) and have have been used to demonstrated different processing

mechanisms. Coupling between motional and spin states has been demonstrated us-
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Isotope Abundance nuclear spin
168Yb+ 0.13% 0
170Yb+ 3.04% 0
171Yb+ 14.28% 1/2
172Yb+ 21.83% 0
173Yb+ 16.13% 5/2
174Yb+ 31.83% 0
176Yb+ 12.76% 0

Table 2.1: Stable Yb+ isotopes, with their abundance and nuclear spin.

ing 172Yb+ [70], photon mediated quantum gates have been achieved using 174Yb+ [65],

and 171Yb+ boasts a ground state hyperfine doublet ideal for representing quantum bits

(qubits) [63]. In this section methods of creating and manipulating Yb+ are discussed.

2.2.1 Ionising Ytterbium

Yb+ ions are created by liberating a bound electron from the outer orbital of the neutral

atom, and is commonly achieved via either electron impact ionisation or photoionisation.

Of these two techniques photoionisation is usually the preferred approach offering isotope

selectivity, no charge build up on electrodes, and a higher ionisation rate [61].

A partial level diagram of neutral Yb, is shown in figure 2.5, indicating the possible choices

of photoionisation. It can be seen that a single photon with a wavelength less than <199

nm [71] could achieve ionisation, however, this wavelength is difficult and expensive to

obtain and would not be isotope selective. Instead a two-photon ionisation approach is

used. Here a 398.91 nm photon excites the 1S0 ↔ 1P1 transition, where a consecutive

photon, with wavelength λ <394 nm, advances the electron past the continuum. This

is the most efficient two-photon approach as the 1S0 ↔ 1P1 transition is the strongest

in neutral Yb [71] and, unlike 555.8 nm and 326 nm, 398.91 nm is readily available from

inexpensive laser diodes. Furthermore the wavelength required to Doppler cool Yb+, 369.5

nm, is used for the second stage of ionisation.

2.2.2 Gross Energy Level Structure

Singly ionised Yb+ ions share the same gross energy level structure shown in figure 2.6.

Although applicable to all ytterbium isotopes, it is particularly suited for the even isotopes

with zero nuclear spin: 168Yb+, 170Yb+, 172Yb+, 174Yb+, and 176Yb+. The odd isotopes

follow the general structure but exhibit a more complex hyperfine structure, such as 171Yb+

which is discussed in the next section.
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Figure 2.5: Partial level diagram of neutral ytterbium. A single photon with wavelength
<199 nm can ionise a neutral atom. Similarly a photon a 398.9 nm (555.8) followed by a
photon with wavelength <394 nm (<326 nm) will also result in ionisation. Ionisation via
the 1S0 ↔ 1P1 transition is the preferred route.

The strong 2S1/2 ↔ 2P1/2 electric dipole transition at 369 nm, natural linewidth of Γ/2π =

19.6 MHz [72], is used for Doppler cooling and fluorescence detection. This transition,

however, is not a closed two-level system and the ion can decay from the 2P1/2 state to

the metastable 2D3/2 state with a probability of 0.66% [63]. The long lifetime of this

metastable state, τ = 52 ms [43], can result in extended periods without fluorescence and

also ion heating. The 2D3/2 state is therefore depopulated using the 2D3/2 ↔ 3D[3/2]1/2

dipole transition at 935 nm. From the 3D[3/2]1/2 state the ion can decay via a dipole

transition to the ground state and return to the cooling transition. Unfortunately, this

four level system is also not completely closed. Inelastic collisions with background gas

are suspected to result in population transfer from the 2D3/2 state to the 2D5/2 state, the

rate which depends upon the quality of the vacuum surrounding the ion. By confining

ions in an ultra high vacuum environment the number of collisions is reduced to only a

couple per hour. The 2D5/2 predominantly decays (≈80% [73]) to the 2F7/2 state which

has a lifetime of ≈6 years. Depopulation of this low lying F state is therefore vital, and is

achieved using the 2F7/2 ↔ 1D[5/2]5/2 transition at 638.6 nm. From the 1D[5/2]5/2 state

the ion can return to the cooling cycle via either of the lower lying D-states.
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Figure 2.6: Gross energy level structure for Yb+ ions. The structure is particularly ap-
plicable to the even isotopes which have no hyperfine structure. The solid lines indicates
laser driven transitions, while dotted lines indicate possible decays routes.

The unusual notation of the 3D[3/2]1/2 and 1D[5/2]5/2 states is a result of a different

coupling scheme. Unlike the usual LS-coupling, a second electron is promoted from the

f-shell into the outer orbital. In the notation the value in the square brackets, K, is given

by the coupling of the orbital angular momentum of the two outer electrons, L, with the

core angular momentum, Jc, such that K = L + Jc. The superscript describes the coupling

of the spins of the two outer electrons (using the 2S + 1 notation), which is combined

with K to form the total angular momentum subscript, J. [65]

2.2.3 171Yb+

With an odd number of protons and neutrons in the nucleus 171Yb+ possesses a one-half

nuclear spin which generates the hyperfine doublet structure shown in figure 2.7, where the

F states represent the total atomic angular momentum. Doppler cooling, and fluorescence

detection, of this isotope is primarily achieved using the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉

transition. Unfortunately off-resonant coupling to the 2P1/2|F = 1〉 state occurs which

can result in population of the 2S1/2|F = 0〉 state. Depopulation of this state can then

be achieved with either microwave radiation at 12.6 GHz to excite the 2S1/2|F = 0〉 ↔
2S1/2|F = 1〉 transition or exciting the 2S1/2|F = 0〉 ↔ 2P1/2|F = 1〉 transition which is

14.7 GHz detuned from the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 transition. The 2P1/2 manifold
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Figure 2.7: Partial level structure for 171Yb+, indicating the transitions required for
Doppler cooling and repumping. The solid lines indicate the laser driven transitions.

can also decay to either of the 2D3/2 |F = 1, 2〉 states, which are subsequently depopulated

by exciting the 2D3/2|F = 1〉 ↔ 3D[3/2]1/2|F = 0〉 and 2D3/2|F = 2〉 ↔ 3D[3/2]1/2|F = 1〉

transitions, separated by 3.07 GHz. The 2F7/2 ↔ 1D[5/2]5/2 repump transitions occur at

638.610 nm and 638.616 nm.

To efficiently cool 171Yb+ the 369 nm and 935 nm beams are equipped with 14.7 GHz

and 3.07 GHz frequency sidebands respectively, while the 638 nm laser is scanned between

the two required wavelengths. The construction of the lasers, generation of the frequency

sidebands and wavelength scanning are all detailed in chapter 3.

Dark State Destabilisation

The degeneracy of the 2S1/2|F = 1〉 manifold, however, can result in the simultaneous

population of the |mF = −1〉 and |mF = 1〉 states. The resulting transition required to

liberate the ion from this superposition is 2S1/2|F = 1,mF = −1〉 → 2P1/2|F = 0,mF = 0〉

+ 2S1/2|F = 1,mF = 1〉 → 2P1/2|F = 0,mF = 0〉, requiring left + right circularly polarised

light. Unfortunately these two polarisations superimpose to form linearly polarised light

which cannot provide the required momentum change and coupling to the excited state

vanishes [74]. This coherent population trapping is avoided by applying a magnetic field,

known as the quantisation axis, across the ion to induce frequency shifts of the |mF 6= 0〉

magnetic field sensitive states.
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These non-degenerate mF states are then accessed by appropriately orientating the electric

field of the laser radiation relative to the quantisation axis. If linearly polarised laser

radiation is aligned parallel to the quantisation axis only ∆mF = 0 (π) transitions are

excited, while rotating the polarisation perpendicular to the quantisation axis excites only

∆mF = ±1 (σ+/σ−) transitions. Rotating the polarisations to an oblique angle to the

quantisation axis enables π, σ+ and σ− transitions to all be driven simultaneously.

2.3 Laser Cooling

Laser cooling is required to reduce the ion energy to a regime where it is suitable for

quantum information processing. The principle of the technique is to excite an atomic

transition near resonance such that the energy gained from photon absorbtion is less

that lost during photon emission, thereby reducing the ion energy. There are different

techniques of laser cooling, which are used to attain different ion energies. These techniques

can be grouped together into two different regimes, defined by the ratio of linewidth of the

transition used, Γ, to the secular frequency, ωsec. The regime where ωsec � Γ, commonly

referred to as the weak binding regime, uses large linewidth transitions. These large

linewidths allow for faster cooling rates but usually cannot reach suitably low ion energies

for QIP. If instead narrower transitions are used, such that ωsec � Γ, or the strong binding

regime, then sideband cooling techniques are possible and are used to reduce an ion to

its motional ground state. Sideband cooling techniques, however, are not effective on

energetic ions so cooling in the weak regime usually precedes cooling within the strong

regime.

2.3.1 Doppler Cooling

The most common method of cooling in the weak binding regime is Doppler cooling, and is

the initial method of cooling trapped ions. As mentioned in section 2.1.2 an ion confined

within a trapping potential exhibits an oscillatory motion. Doppler cooling uses this

motion to induce velocity dependent momentum transfer. The following is a semiclassical

description of the technique and is similar to that present in [75,76], however more detailed

quantum mechanical treatments can be obtained. A two-level ion oscillating in a potential

interacting with a laser detuned from resonance by ∆ has a scatter rate of

dN

dt
=

s0Γ/2

1 + s0 +
(

2(∆+∆D)
Γ

)2 (2.24)
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where Γ is the natural linewidth of the transition, s0 = I/Isat is the saturation parameter

with a laser intensity I and a transition saturation intensity of Isat = πΓhc/(3λ3), ∆D =

k ·v is the instantaneous Doppler shift of the transition frequency which is a function of the

ion velocity v relative to the laser propagation, and k is the wavevector of the beam. When

the ion moves towards the laser beam ∆D becomes negative and, according to equation

2.24, scattering increases. When the ion moves away from the laser, however, ∆D becomes

positive and scatter is reduced. If the laser is red-detuned, such that ∆ > ∆D, photon

absorption is enhanced when the ion moves towards the beam, but suppressed when it

moves away.

Each absorption event imparts a momentum kick of −~k onto the ion, where the negative

sign indicates the momentum kick is opposite to the motion of the ion. The corresponding

spontaneous scatter event also gives the ion a momentum kick, but since scattering is on

average considered isotropic the momentum kicks from spontaneous emission averages to

zero. As photon absorption occurs from only one direction, but scattering occurs in all

directions, the net result is a directionally dependent damping force reducing the ion’s

kinetic energy. Adjusting the propagation of the laser beam to an oblique angle to all the

principle axes enables cooling in all dimensions using just a single laser beam.

The emission of each photon, however, induces a small momentum kick onto the ion,

known as photon recoil, and limits the final ion energy. In appendix A the cooling and

heating rates are compared and shows that when optimally cooled, detuning the laser to

∆ = Γ/2, an ion has a minimum energy of E = ~Γ/2. It is discussed below why this

energy is still to high to be suitable for quantum information processing.

Limits of Doppler Cooling - Lamb Dicke Limit

To be suitable for QIP ion energy must be low enough such that its amplitude of oscillation

is less than λ/2π of the incident radiation, a limit known as the Lamb Dicke limit. Oper-

ating in this regime ensures the whole wavefunction of the ion undergoes phase coherent

interaction with the applied radiation, reducing decoherence. The amplitude, however,

should not be significantly less than the wavevector. When in this regime manipulations

such as motional coupling, are greatly suppressed and the fidelity of subsequent QIP op-

erations greatly severely reduces. This situation is described later in section 2.4.

The amplitude of the oscillations are first quantised by describing ion motion within the

trapping potential as that of a quantised harmonic oscillator. The ion occupies only

quantised states of motion, separated by ωsec, which form an evenly spaced ladder of
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amplitude E = ~ωsecn, where n is the motional quantum number. The Lamb Dicke limit

is then given by:

η
√
n+ 1� 1 (2.25)

where η = kx is the Lamb-Dicke parameter describing the ratio of the extent of the

motional ground state of the ion, x, to the wavevector of the incident radiation, k, and n

is the motional quantum number. k and x are expressed as

k = cos(θ)
2π

λ
x =

√
~

2mωsec
(2.26)

where θ is the angle between the laser beam and axis of ion motion, and m the ion mass.

If we now consider an ion cooled to the Doppler limit, it has energy E = ~Γ/2 and a

motional quantum number of n = Γ/(2ωsec). Inserting this expected motional quantum

number into the Lamb-Dicke limit (equation 2.25) it can be seen that the result is likely

to be >1, indicating that Doppler cooled ions may not be within the Lamb-Dicke limit.

To attain energies suitable for QIP additional techniques, capable of coupling to motion,

are therefore required.

2.3.2 Cooling Below the Doppler Limit

Sub Doppler temperatures are achieved by cooling within the strong binding regime,

ωsec � Γ. In this regime a relatively narrow atomic transition is used to resolve and

couple to the motion of the ion. Mapping out this absorption profile using this narrow

linewidth transition yields not only a resonance at the Doppler free resonance, ω0, but also

additional resonance peaks at ω0 ± ωsec. These additional frequency sidebands are due to

the oscillatory motion of the ion modulating the atomic transition frequency. Tuning the

exciting laser to ω0 − ωsec induces an absorbtion of a photon with energy ~(ω0 − ωsec).

The corresponding spontaneously emitted photon then has an energy ~(ω0 − ωr), where

~ωr = ~2k2/2m is the recoil energy of the ion. If ωsec � ωr the absorption and scatter

event will reduce the ion energy by ~ωsec, reducing the ion energy by a motional quantum.

The common techniques used to achieve sub-Doppler temperatures are direct sideband

cooling [55, 77, 78], Raman sideband cooling [79–81], and electro-magnetically induced

transparency [82–84]. Microwave radiation has also recently been shown to resolve mo-

tional sidebands [85] and cool to the ground state, however this approach is not discussed.
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Direct Sideband Cooling

This technique uses a three-level system with a ground state |g〉, metastable state |m〉 and

excited state |e〉 arranged in a Ξ configuration as shown in figure 2.8. The states |g〉 and

|m〉 are coupled by a narrow linewidth transition Γgm � ωsec while the excited state |e〉

couples to both |g〉 and |m〉 via electric dipole transitions.

Figure 2.8: Transition configuration realising direct sideband cooling. Exciting the narrow
transition |g〉 ↔ |m〉 with a field tuned to ωgm−ωsec enables coupling to a lower motional
state. To increase the effective decay rate |m〉 is quenched via a dipole transition to an
excited state |e〉, from which the ion can decay back to the ground state.

The transition |g〉 → |m〉 is excited using a field with frequency ωgm. Detuning this laser

frequency to ωgm−ωsec enables a transition to a lower motional state, |g,n〉 → |m,n-1〉, to

be driven. The long lifetimes of metastable states, however, result in small spontaneous

decay rates, which can lead to inefficient cooling. To compensate the metastable state is

‘quenched’ by exciting the |m〉 ↔ |e〉 dipole transition using a laser with frequency ωme,

intensity Ωme and detuning δme. Since the excited state is also coupled to the ground state

via dipole transition the ion can effectively decay back to the ground state faster than the

decay rate of the meatastable state.
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To reduce the probability of exciting to a different motional state the quenching transition

is pumped below saturation, sme = 2|Ωme|2/Γ2
me � 1. Excitation through |e〉 therefore

only increases the decay rate, but does not change the final ion energy. The excited state

can therefore be adiabatically eliminated leaving a two-level system between |g〉 and |m〉.

This two-level system has then been shown to have an effective decay rate faster than the

metastable’s natural decay rate Γ′ � Γ [86], where

Γ′ =
(Ωme/2)2

[(Γge + Γme)/2]2 + δ2
me

Γge (2.27)

It can be seen that the decay rate of this two-level system ultimately depends upon the de-

tuning and intensity of the quenching field and not the field exciting |g〉 ↔ |m〉. Increasing

Ωme or decreasing δme will increase the effective decay rate, however this also increases the

rate of off-resonant coupling to higher motional state. A compromise is therefore usually

required between the cooling rate and the final ion energy.

Stimulated Raman Sideband Cooling

This technique uses a three-level system with a ground state |g〉, metastable state |m〉

and excited state |e〉 arranged in a Λ configuration, as shown in figure 2.9. The frequency

separation between |g〉 and |m〉 and the excited state are ωge and ωme respectively. The

transitions |g〉 ↔ |e〉 (|m〉 ↔ |e〉) are excited using fields with intensities Ωge (Ωme) and

frequency ωge + ∆ge (ωme + ∆me) respectively, where ∆ge (∆me) are the detunings of the

respective fields. Both beams are detuned from resonance, ∆ = ∆ge = ∆me, to reduce

the coupling to the excited state and reduce the three-level system to a two-level system

between |g〉 ↔ |m〉. Tuning the beatnote frequency to ωge − ωme = ωgm − ωsec excites the

red sideband |g,n〉 → |m,n-1〉 transition. A third, nearly resonant, laser driving the |m〉

→ |e〉 transition below saturation then re-initalises the ion back into |g〉. Since the recoil

energy from the spontaneously emitted photon will be on the order of 10’s kHz, while ion

secular frequencies are usually on the order of MHz, the spontaneous decay is expected to

have negligible effect on the motion state [87]. The transition rate between |g〉 ↔ |m〉 is

given by [67]

ΩRam =
ΩgeΩme

∆
(2.28)

which shows that the final transition rate scales linearly with the intensity of the laser

radiation, but also inversely with the detuning from the excited state. While larger detun-

ings reduce the rate of coupling to the excited state, reducing the rate of heating due to
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Figure 2.9: Configuration for two photon stimulated Raman transition. Fields at ωge and
ωme, detuned from resonance by ∆, couple the states |0〉 and |1〉 via the excited state
|e〉. Tuning of the beat frequency ωge − ωme = ωmg − ωsec results in coupling to a lower
motional state.

off-resonant coupling, a greater laser power is required to maintain a sufficient transition

rate. A compromise is therefore usually required between the final ion temperature and

the transition rate.

Electromagnetically Induced Transparency

This method exploits the quantum interference effect of electromagnetically induced trans-

parency (EIT) to couple to motional states [83]. The scheme uses a three-level system with

ground state |g〉, metastable state |m〉 and excited state |e〉 arranged in a Λ configuration,

as shown in figure 2.10. State |e〉 is coupled to both |g〉 and |m〉 by dipole transitions. The

|m〉 ↔ |e〉 transition is excited by an intense ‘coupling’ laser field of frequency ωme + ∆me,

where ∆me is the detuning from resonance, and a Rabi frequency Ωme. A second ‘cooling’

laser with frequency ωge + ∆ge and Rabi frequency Ωge excites the transition |g〉 ↔ |e〉.

In this scheme both the coupling and cooling beams are blue detuned from resonance.

Keeping ∆me constant but adjusting the detuning of ∆ge produces the absorption spectrum

of |e〉 shown in figure 2.10. At ∆ge ≈ 0 the absorption profile describes the broad resonance

corresponding to the large linewidth of the dipole transition. At ∆ge = ∆me the absorption
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Figure 2.10: Scheme for sideband cooling using electromagnetically induced transparency
(EIT). An intense ‘coupling’ laser couples the |m〉 ↔ |e〉 states and a weak ‘cooling’ laser
couples the |g〉 ↔ |e〉 states. The coupling laser is blue detuned from resonance by ∆me

and adjusting the detuning of the cooling laser produces the absorption profile shown. At
∆ge = 0 the broad absorption profile corresponds to the large transition linewidth. At
∆ge = ∆me absorption is suppressed, which is EIT, and at ∆ge & ∆me a narrow resonance
occurs. The separation between the transparency and narrow resonance, δ, depends upon
the intensity Ωme. Adjusting it to δ = ωsec allows lower motional sidebands to be driven.

profile reduces to zero, which is the EIT. At a detuning close to the frequency of the

coupling laser, ∆ge & ∆me, a narrow absorption profile exists. The separation of the

transparency and this narrow resonance, δ, is given by the ac Stark shift induced by the

coupling laser.

δ =

√
∆2

me + Ω2
me − |∆me|

2
(2.29)

Setting ∆ge = ∆me the zero of the absorption profile coincides with the |g,n〉 ↔ |e,n〉

carrier transition. By tuning the intensity of the coupling laser the detuning of the narrow

resonance can be adjusted to δ ≈ ωsec to coincide with the |g,n〉 ↔ |e,n-1〉 red sideband

transition. As a result of the asymmetry of the profile, the blue sideband lies in a region

of small absorption and the |g,n〉 ↔ |e,n+1〉 transition probability is low. Once excited on

the red sideband the ion decays back to the ground state at the natural linewidth Γ.
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2.4 Quantum Information Processing with 171Yb+

In trapped ion quantum computing the qubit states are assigned to different internal

energy levels. This allows the system to be treated as a fictitious spin 1/2 particle with

the |↑〉, |↓〉 states corresponding to the lower, upper energy levels of the pseudo spin.

Depending upon the ion species under study the frequency difference between the two

qubit levels can range from a couple of kHz (neighboring Zeeman levels) to the optical

domain where separation are on the order hundreds of THz. For 171Yb+ the qubit states

are encoded on the magnetic field insensitive ground state hyperfine levels, separated by

ω/2π = 12.6 GHz.

|1〉 = | ↑〉 = 2S1/2|F = 1,mF = 0〉

|0〉 = | ↓〉 = 2S1/2|F = 0,mF = 0〉

The model of quantum computing requires the manipulation of this qubit to include the

initialisation into simple fiducial states, qubit specific measurement, and the ability to

form a universal set of quantum gates. This section details the ion-field interactions used

to satisfy these requirements.

2.4.1 State Preparation and Readout

State preparation and readout are achieved by exciting the transitions shown in figure 2.11.

Since selection rules prohibit coupling of the 2S1/2|F = 0〉 ↔ 2P1/2|F = 0〉 transition

preparation into |0〉 is primarily achieved by encouraging decay from the 2P1/2|F = 1〉

state. With the 2S1/2|F = 1,mF = 1〉 ↔ 2P1/2|F = 1,mF = 1〉 transition also prohibited,

coupling to the excited state is achieved via the 2S1/2|F = 1,mF = 0〉 → 2P1/2|F =

1,mF = ±1〉 transitions, figure 2.11(a). Exciting the 2D3/2|F = 2〉 ↔ 3D[3/2]1/2|F = 1〉

transition also enables population of |0〉. Once in |0〉 a coherent operation coupling both the

qubit states can be used to prepare the ion into |1〉. State detection is simply performed by

applying the 369 nm and 935 nm beams without any frequency sidebands, figure 2.11(b).

Detection of fluorescence represents population in |1〉 while no fluorescence indicates |0〉.

To excite the 2S1/2|F = 1〉 ↔ 2P1/2|F = 1〉 transition 2.1 GHz frequency sidebands

are applied to the 369 nm beam, the generation of which are discussed in 3.3.5. To avoid

depopulation of |0〉 the 14.7 GHz frequency sidebands are removed from the 369 nm beam.



27

Figure 2.11: State preparation and detection of 171Yb+ qubit. The qubit is defined as
|1〉 = |2S1/2, F = 1,mF = 0〉 and |0〉 = |2S1/2, F = 0,mF = 0〉. (a) shows the transitions
used to initialise the ion into |0〉, while (b) shows the transitions used for detection. If
fluorescence is detected the ion is in |1〉, otherwise the ion in |0〉.

2.4.2 Single Qubit Operations

For a trapped ion system gates are achieved through combinations of single qubit gates

and multi-qubit entangling gates. Single qubit gates, such as the NOT gate, can be

realised by qubit rotation, while multi-qubit gates, such as the controlled NOT or CNOT

gate, are realised by entangling multiple ions. Rotating the qubit takes advantage of the

quantum mechanical principle of superposition to enable preparation into any arbitrary

state α|↑〉 + β|↓〉. Entangling then connects the superposition states of individual qubits

to form a single coherent system. Rotations, at the simplest level, can be one photon

transitions coupling the two states, while entanglement of multiple qubits requires the

ability to coupling to the external motional.

The following mathematical discussion, which closely follows [67,68,87–89], describes the

manipulation of a single 171Yb+ qubit. Although the qubit states are coupled by a mag-

netic moment, the following framework is equally applicable to other multipole couplings.

In the absence of any electromagnetic fields an ion oscillating in a harmonic potential is

described by the Hamiltonian

H0 = He +Hm (2.30)

=
~ω0

2
σ̂z + ~ωiα̂iα̂†i
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where σ̂z =

1 0

0 −1

 is the Pauli spin operator, ωi is the secular frequency, and α̂i / α̂†i

are the creation / annihilation operators respectively. The state vector for this spin 1/2

system is then

|Ψ(t)〉 =

∞∑
n=0

(c↑,n(t)| ↑, n〉+ c↓,n(t)| ↓, n〉) |n〉 (2.31)

where |n〉 are the harmonic oscillator eigenstates with energy ~ωi. If radiation, with a

frequency resonant with the qubit separation, is now applied to the ion the Hamiltonian

describing the interaction is

Ĥi = −µ̂BB̄ (2.32)

where µ̂B = µ(σ̂+ + σ̂−) is the magnetic dipole moment coupling the qubit states, and

B̄ = B0 cos(kr−ωt+φ)r̂ is the external applied time-varying magnetic field with amplitude

B0, frequency ω and propagation direction r̂. Again a magnetic field is considered since the

qubit states in 171Yb+ are separated by a magnetic dipole, but the framework is equally

applicable to other multipole couplings. The interaction Hamiltonian can be expanded to

Ĥi = ~Ω (σ̂+ + σ̂−)
[
ei(kr−ωt+φ) + e−i(kr−ωt+φ)

]
(2.33)

where Ω = −µB0/2~ is the Rabi frequency for the magnetic dipole transition and the spin

operators are

| ↑〉〈↓ | = σ̂+ =

0 1

0 0

 , | ↓〉〈↑ | = σ̂− =

0 0

1 0

 (2.34)

The interaction in equation 2.33 is described in the Schrödinger picture where only the

state vector has a time dependence. By transforming to the interaction picture a more

realistic description of the system evolution is obtained, where both the state vector and

operators obtain a time dependence. In this frame the qubit state vector becomes time

varying only when the external field is applied, but is otherwise stationary. To perform

the transformation the operator Û0 = e−iH0t/~ = e−i(He+Hm)t/~ is used

Ĥint = Û †0HiÛ0 (2.35)

to yield the Hamiltonian

Ĥint = ~Ω
[
eiω0tσ̂z/2(σ̂+ + σ̂−)e−iω0tσ̂z/2

]
[
eiωiα̂

†α̂
(
ei(kr−ωt+φ) + e−i(kr−ωt+φ)

)
eiωiα̂

†α̂
]

(2.36)
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The terms in the first set of square brackets describe the spin state (qubit state), while the

terms in the second set of square brackets describe the motional state of the ion. The spin

and creation/annihilatin operators commute allowing the two components to be treated

separately. The resulting Hamiltonian, described in appendix B, is shown to take a general

form of

Ĥint = ~Ω
[
σ̂+e

i[η(α̂e−iωit+α̂†eiωit)+kr0+δωt+φ] +H.c.
]

(2.37)

where δω = ω − ω0 is the detuning of the laser from resonance, and η = k · r is the

Lamb Dicke parameter. Since it is desirable for operations to be formed within this limit,

η = k · r � 1, the interaction Hamiltonian (equation 2.37) can be expanded to the lowest

order in η.

ĤLD = ~Ω
[
σ̂+(1 + iη(α̂e−iωit + α̂†eiωit))ei(φ−δωt)

]
+H.c. (2.38)

In this regime only coupling to neighboring motional states is applicable, and coupling to

higher order sidebands is omitted. Depending upon the detuning the interaction described

by equation 2.38 will either couple to the same motional state or the next higher/lower

motional state. The first resonance, occurring at a detuning of δω = 0, describes a

carrier transition, |↑, n〉↔|↓, n〉, which couples the two internal states but does not change

the motional state of the ion. The other two resonances, occuring at δω = ±ωi, excite

transitions |↑, n〉↔|↓, n± 1〉 which couple to the external motion while rotating the qubit.

The evolution and coupling strength of the three resonant transitions are determined by

inserting the respective Hamiltonian and state vector, equation 2.31, into Schrödinger’s

equation. The resulting Hamiltonian and coupling strength for the different transitions,

detailed in appendix B, are

transition detuning Hamiltonian Coupling

|↓, n〉 ↔ |↑, n〉 δω = 0 Ĥcar = ~Ω[σ̂+e
iφ + σ̂−e

−iφ] Ω

|↓, n〉 ↔ |↑, n− 1〉 δω = −ωi Ĥrsb = ~Ω[α̂σ̂+e
iφ + α̂†σ̂−e

−iφ] Ω
√
nη

|↓, n〉 ↔ |↑, n+ 1〉 δω = +ωi Ĥbsb = ~Ω[α̂†σ̂+e
iφ + α̂σ̂−e

−iφ] Ω
√
n+ 1η

Qubit Rotation and Motional Coupling

If we consider first the carrier transition, the state populations can be be described by

ċ↑ = iΩe−i(φ)ċ↓ (2.39)

ċ↓ = −Ωei(φ)ċ↑
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The evolution of this two level system is then described by |Ψ(t)〉 = Û(t)|Ψ(0)〉, where

U(t) is the time-evolution operator.

|Ψ(t)〉 = Û(t) =

 cos (Ωt) −ieiφ sin (Ωt)

−ie−iφ sin (Ωt) cos (Ωt)

 |Ψ(0)〉 = R(Ωt, φ) (2.40)

Figure 2.12: Representation of the Bloch sphere. The two poles represent the |↑〉 and |↓〉
states and correspond to z = ±1 respectively. Rotations by R(θ, φ) determines how the
qubit state evolves.

This matrix describes a rotation on the Bloch sphere, illustrated in figure 2.12. The

position of the state vector is controlled by varying the parameters Ω, t, and φ. A rotation

about the x-axis, described as Rx(θ) = R(θ, 0), is achieved by instigating an interaction

with Rabi frequency Ω for time t. A rotation about the y-axis, described as Ry(θ) =

R(θ, φ), is achieved by again instigating an interaction, but with a phase difference, φ,

of the applied radiation. Finally rotations about the z-axis can then be achieved using

sequences of x and y rotations, such as Rz(θ) = Rx(θ)Ry(θ)Rx(θ).

If we now consider the detunings which allow motional coupling. It can be be seen that

while the carrier has a transition frequency of Ω sideband transitions are scaled by a

factor of η. To maintain motional coupling a sufficiently large η is therefore required,

however this presents a problem when exciting transitions separated by a magnetic dipole.

With the transition requiring microwave radiation, the corresponding η results in severely

reduced motional coupling stengths. To illustrate consider an 171Yb+ ion oscillating with

an axial frequency of ωz/2π = 1 MHz interacting with resonant microwave radiation, ω/2π

= 12.6 GHz. Even if the radiation propagates parallel to the ion motion, the maximum

Lamb Dicke parameter is only η = kz0 = 3.5x10−6. Coupling to different motional states



31

is therefore at best a factor of 10−6 of the carrier transition strength. In order to couple

to motional alternative methods are required.

It has been shown, by Mintert and Wunderlich [85, 90] and Johanning et al. [85], that

applying a static magnetic field gradient across the ion allows motional sidebands to be

resolved, providing a means to couple to motion and ground state cooling. This technique,

however, was not realised until the end of this thesis so is not described here. Instead opti-

cal transitions which provide greater photon momentum and increased motional coupling,

such as those discussed in section 2.3.2, are considered.

2.5 Suitability of Qubit Manipulation Techniques

For trapped ions to be used for QIP they must be cooled to sufficiently low temperatures,

rotated to any arbitrary superposition, and also coupled to the quantised motional states.

Ground state cooling of Yb+ ions can be achieved using the three methods described in

section 2.3.2. Direct sideband cooling would be implemented using the 2S1/2 ↔ 2D3/2

quadrupole transition, with the metastable state quenched using the 2D3/2 ↔ 3D[3/2]1/2

transition. EIT and Raman cooling would both be implemented using the 2S1/2 ↔ 2P1/2

transition. For even isotopes the ground and metastable states can be represented with

a Zeeman splitting of the ground state, while for 171Yb+ the two qubit states can be

used. While direct sideband cooling is conceptually the simplest, it is potentially the most

challenging to implement. To confidently resolve motional sidebands the laser frequency

must be stabilised to less than the secular frequency. Since a secular frequency of ωsec ≈

1 MHz is expected, laser stability of ≤10 KHz is desirable, which is challenging and

expensive. In contrast Raman transitions and EIT only require stability of the beat

frequency between two beams, but not the absolute laser frequency. Since both beams

can be derived from the same laser the relative difference can be easily maintained without

such rigorous laser stability.

Qubit rotation is possible using either a two photon Raman transition or resonant mi-

crowave radiation. EIT and direct sideband cooling are unsuitable since they both rely

upon spontaneous emission. While a microwave transition, in the presence of a large mag-

netic field gradient, has been shown to couple to motional states it was not realised until

the end of this thesis. The preferred approach to cooling and manipulating the trapped

ion qubit, therefore, is with two photon Raman transitions. The investigation into the

implementation of this technique is discussed in greater detail in section 8.1.
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Chapter 3

Lasers

“ The key to this project is the giant laser, which was invented by the noted

Cambridge physicist, Dr. Parsons. So therefore, it is fitting to call it:

‘The Alan Parsons Project’ ”

-Dr Evil, Austin Powers 2.

The use of coherent narrow linewidth laser radiation to efficiently excite atomic transitions

has been extensively implemented. Several different types of lasers have been developed

to provide such radiation, such as dye lasers and gas lasers, however it is the common

semiconductor laser diode that has become the popular choice. These devices, when used in

relatively simple cost effective setups, offer narrow linewidth tunable radiation over a wide

range of wavelengths. Unfortunately not all wavelengths are obtainable directly from laser

diodes, with wavelengths in the ultraviolet UV spectrum being particularly troublesome.

Therefore experiments requiring use of UV laser radiation may require the more complex

systems. This chapter describes the design and construction of the narrow linewidth

semiconductor based laser systems required to create and cool Yb+ ions including 171Yb+.

3.1 Diode Lasers

The basic principle behind the semiconductor laser is the p-n junction. At the interface

between an n-doped and p-doped material the charge carriers from the two materials

(electrons and holes respectively) recombine to form the depletion region. In an equilib-

rium state these charge carriers have insufficient energy to overcome the depletion region.

Applying a forward bias voltage across the diode, however, shifts the band structures of

the doped materials allowing the carriers to cross the depletion region and spontaneously
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recombine. The energy released from each recombination is in the form a photon with a

wavelength related to the bandgap energy of the depletion region, EBG = hc/λ, where h

is Planck’s constant, c the speed of light and λ the photon wavelength. These emitted

photons then stimulate the decay of additional electrons in the conduction band produc-

ing more photons of the same wavelength. The difference in refractive index between

the semiconductor material and external environment reflects the photons back and forth

within the cavity further amplifying the effect of stimulated emission. Lasing occurs when

the stimulated emission is greater than the spontaneous emission and losses within the

cavity, with the resulting wavelength determined by both the bandgap energy and also

the optical path length within the diode.

The emission from a laser diode, however, is not perfectly monochromatic. Spontaneous

emission of random phase photons into the cavity longitudinal mode results in a finite

frequency laser linewidth. The fundamental limit of laser linewidth was initially calculated

by Schawlow and Townes [91], and then adapted by Sennaroglu et al. [92] to be

∆νlaser =
hνlaserθItotToc

4πT 2
rtPout

(3.1)

where, h is the Planck constant, νlaser the central photon frequency, Toc the output coupler

transmission, Itot the total resonator losses, Trt the resonator round-trip time, and θ the

spontaneous emission factor. It can be seen the most influential factor on the linewidth

is the round trip time of the photons, which is related to the coherence of the photons

oscillating within the cavity. A longer cavity increases the coherence of the photons within

the cavity narrowing the linewidth of the resulting laser emission [93].

A common approach of increasing cavity length is to use additional optical elements to feed

a portion of the laser light back into the laser diode. Different techniques for achieving this

include optical feedback from a confocal cavity [94], feedback from high contrast saturated

absorption [95], and use of the Faraday effect [96]. These setups, however, can be expensive

and time consuming to contruct/operate and some do not offer wavelength tunability. A

cheaper, and more popular, option is to use a reflective diffraction grating to increase the

cavity length and feed the narrow linewdith reflections back into laser diode. This setup

is commonly known as an external cavity diode laser (ECDL) [97].
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3.2 External Cavity Diode Lasers

3.2.1 Principle of Operation

In external cavity diode lasers (ECDL’s) optical feedback is achieved using reflective

diffraction gratings. These optical components act as dispersive elements separating any

incident radiation into its different spectral components, with each wavelength propagat-

ing in a different direction. One of these narrower linewidth diffractions are directed back

into the diode to stimulate emission of a similarly narrow linewidth within the diode.

This narrow feedback, coupled with the internal workings of laser diode generates suitably

narrow linewidth radiation.

The final wavelength emitted from an ECDL is a function of the bandgap energy and

cavity length of the diode, as well as the external cavity formed by the diffraction grating

and the wavelength of feedback from the grating. Figure 3.1 provides an understanding of

how these mechanisms combine to reduce the emission linewidth. Figure 3.1(a) illustrates

the relative intensity of the different mechanisms: the laser diode band gap energy (blue

dashed trace), the laser diode internal cavity modes (solid green trace), the feedback from

the grating (red dot-dashed trace), and the external cavity modes (purple dotted trace).

The combination of the mechanisms are shown in figure 3.1(b) to show the summation of

the mechanisms (dashed brown trace) and the resulting emission (solid purple trace).

3.2.2 ECDL Configurations

There are two main configurations for an ECDL: the Littrow and the Littman-Metcalf

configurations, illustrated in figures 3.2(a) and 3.2(b) respectively. In the Littrow config-

uration, the grating is aligned so that the first order diffracted beam, n = 1, is fed back

directly into the laser, while the zeroth order beam, n = 0, undergoes specular reflec-

tion from the grating. The advantage of this configuration is a high percentage of laser

light available for the experiment, however, tuning the wavelength requires adjusting the

grating angle and therefore the beam direction.

In the Littman-Metcalf configuration the diode output is aligned at grazing incidence onto

the grating. Again the zeroth order beam is the experiment beam, but now the first order

diffracted beam is directed towards a mirror and reflected back onto itself. The reflected

beam then undergoes diffraction from the grating for a second time and the first order

order beam is coupled back into the diode. By varying the angle of the mirror, to change

the wavelength fed back into the laser, tuning of the laser is achieved. Since the grating
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Figure 3.1: Different feedback mechanisms in an ECDL. Traces not to scale, but instead
illustrate effect of each mechanism. (a) The intensity and frequency range supported by
the semiconductor band gap energy, internal cavity length, feedback from the diffraction
grating and external cavity length. (b) The resulting profile of all the feedback modes.
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Figure 3.2: Arrangements for an external cavity diode laser in (a) the Littrow configura-
tion. Here the grating is aligned to reflect the first order beam back into the laser diode
and the zeroth order beam available for experiments. (b) The Littman-Metcalf configu-
ration where the beam is incident upon the grating at a grazing angle. The zeroth order
beam is sent to the experiment while the first order beam is sent to a mirror and reflected
back onto the grating. The first order diffraction from this reflected beam is directed back
into the laser diode for wavelength tuning.

does not move, the output beam angle does not change as the laser is tuned. Unfortunately

the second stage of diffraction results in an additional unwanted beam, reducing the power

in the experiment beam.

Out of the two options the Littrow configuration is preferable. The configuration offers

a greater power in the experiment beam, and any wavelength tuning (between different

isotopes) is not expected to result in a detrimental change of beam path. Given the

relatively simple design of these lasers it was decided to developed them in-house. The

design and choice of components are explained in the following section.

3.2.3 ECDL Components

An example of the ECDL’s used in the experiment is shown in figure 3.3. The corner-

stone component of the design, dubbed the ‘L-piece’, provides a single platform upon

which all the optical components are mounted. Mounting the components on a single base

reduces unwanted effects such as vibrations and temperature gradients between optical

components, improving stability of the device. Laser diodes are positioned in a hole in

the vertical wall of the L-piece and clamped using a brass ring. To provide flexibility and

interchangeability laser diode sockets (Thorlabs: S7060R or S8060 depending upon the

diode) provide electrical connection without the need to solder to the diodes directly. The

beam emitted by the diode is collimated using an aspheric lens and incident upon a diffrac-

tion grating affixed to a custom grating mount. A fine pitch screw (Owis: FGS7-7.5) and

piezo actuator (Piezomechanik GmbH: PSt 150/4/5 bS) inside the mount provide coarse

and fine tuning of the grating angle, and horizontal alignment of the reflected first order
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Figure 3.3: A Littrow configured ECDL used in the experiments. The laser diode, aspheric
lens and grating are mounted onto the ‘L-piece’. The grating is aligned using the fine pitch
screws and piezo electric actuator. An AD592 temperature thermistor and thermo-electric
cooler maintain the temperature of the ECDL.

beam back into the diode. An additional fine pitch screw in the L-piece allows for the ver-

tical alignment of the first order retroflected beam. The L-piece is temperature stabilised

using a thermo-electric cooler (TEC, RS: 490-1480) and AD592 temperature thermistor

(Farnell: AD592ANZ). A TEC is used because it can actively regulate the temperature

of the L-piece while an AD592 temperature sensor provides an actual temperature value

as opposed to thermistors which provide a resistance from which temperature is inferred.

Thermal grease (Farnell: 317-962) is used to improve the thermal contact between the

TEC and L-piece / base, where the base provides a heat sink for the ECDL. The L-piece

is secured to the base using nylon screws to maintain thermal isolation.

The whole mount is constructed from aluminium, a relatively inexpensive metal that can

be thermally regulated faster than expected fluctuations of the laboratory temperature.

An enclosure, formed from perspex and aluminium, shields the ECDL from unwanted

external air turbulence. The aluminium parts provide electrical connection to ground,

while the perspex parts allow for visual inspection of the system. Using mounting bases

the heights of the lasers are increased to the height of the optics on the table. The lasers

are operated using a combined laser diode current and temperature controller (Thorlabs:

ITC502). Design drawings for the laser components are shown in appendix C, while the

different components are described below.
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Aspheric Lenses

These lenses, with a profile not a portion of a sphere, are used to reduce spherical ab-

beration that occurs when collimating light from a point source, such as a laser diode.

Lenses are chosen by focal length and numerical aperture. The focal length of the lens

should be short enough such that the diameter of the beam is smaller than the diameter of

the lens when it reaches the lens (determined using simple trigonometry). The numerical

aperture (NA), which characterises the maximum angle of divergence of an incident beam

the lens can accept and transmit, should be sufficient to accept the whole incident beam.

Numerical aperture is defined as

NA = n sin(θ) (3.2)

where n is the refractive index of the medium surrounding the lens, and θ the half-angle

of the maximum cone of light that can enter or exit the lens. Redefining θ as the angle of

divergence of the laser beam, as shown in figure 3.4, allows the minimum NA required by

the lens to be determined.

Figure 3.4: Divergence of a laser beam. The half-angle of the cone of light θ used to
determine the minimum numerical aperture (NA) of the aspheric lens.

To illustrate the lens section choice consider the 399 nm diode used in the experiment

ECDL (Sanyo: DL-4146-301S), which has a divergence of up to 25o from the normal.

Since the lenses typically have a maximum radius of ≈ 2.5 mm, simple trigonometry

dictates a focal length of f <5.3 mm, and to accept and collimate the whole beam NA

>0.34. For this laser a lens with a numerical aperture of 0.53 and focal length of 4.6 mm

is used (Thorlabs A390TM-A).
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Diffraction Gratings

Selection of the diffraction grating is dictated by the groove density, d, and efficiency of

the first order reflection. Groove density determines the angle at which the zeroth order

beam exits the laser diode, and is better understood by analysing the grating equation [98]

nλ = d(sin(θr)− sin(θi)) (3.3)

where n is the mode number (diffraction order), λ the wavelength, d the groove density on

the grating, θi the angle of incidence and θr the angle of reflection. To align the ECDL in

the Littrow configuration the grating is adjusted such that first order diffracted beam is

reflected back into the laser diode. Since both beams are on the same side of the grating

normal the angle of reflection is equal to the negative of the angle incidence, θr = −θi.

Substituting this condition into equation 3.3 yields

θ = sin−1

(
λ

2d

)
(3.4)

which describes the required angle between the incident beam and grating normal for a

specific wavelength and groove density. The angle between the incident and zeroth order

beam is then simply 2θ.

It is important to ensure that the grating groove density is sufficient to allow the zeroth

order beam to exit the ECDL without obstruction. While this is not a big concern for near

infra-red (IR) wavelengths, groove density can be an issue at ultra-violet (UV) wavelengths.

To illustrate this consider the grating used for the 935 nm laser (Thorlabs: GR13-1210),

which has a groove density of 1200 grooves per mm. At this wavelength the angle between

the incident beam and grating normal is ≈34o, while the angle between the incident and

zeroth order beam is ≈68o. If a grating with the same groove density is used in the 399

nm setup, the angle between the incident beam and grating normal becomes ≈14o and the

angle between the incident and zeroth order beam is ≈28o. At this angle the beam will

be obstructed by the laser mount. To achieve an angle of ≈68o between the incident and

zeroth order beam a grating with a groove density of ≈2800 grooves per mm is required.

The efficiency of the first order reflection describes the percentage of light in the first

order beam. Efficiencies are obtained from product specification sheets, and are often

specified for different orientations of the laser polarisation: 1) perpendicular, or ‘S’ (from

the German word senkrecht meaning ‘vertical’ or ‘normal’), or transverse magnetic (TM),

and 2) parallel, or ‘P’, or transverse electric (TE). Perpendicular polarisation describes
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orientation of the electric field perpendicular to the incident-reflection plane, while parallel

polarisation describes orientation of the electric field parallel to the plane formed by the

incident and reflected beams, as illustrated in figure 3.5.

Figure 3.5: S and P polarisation. S (or transverse electric, TE), the electric field oscillates
perpendicular to the plane formed by the incident and reflected beams. P (or transverse
magnetic, TM), the electric field oscillations parallel to the incidence-reflection plane.

It is preferable for the beam to cover the maximum number of grooves, to improve the

dispersion of the diffraction. Beams are usually elliptical in profile and normally polarised

with the electric field oscillating perpendicular to the long axis. When selecting a grating

the S (or TM) polarisation specification is therefore usually considered.

Thermo-Electric Coolers

Thermo-electric coolers (TEC’s) consist of a two dimensional array of alternately doped

semi-conductor pillars, as illustrated in figure 3.6. Applying a DC current through the

pillars causes the charge carriers to move in the same direction, transferring heat with

their motion. Depending upon the polarity of the applied DC current, the TEC acts as

either a heating or cooling element.



41

Figure 3.6: Thermo electric cooler consisting of a two dimensional array of alternately
doped semiconductor pillars. Applying a current through the pillars moves charge carriers
towards the same ceramic plate, transporting heat energy.

3.2.4 ECDL Alignment

Alignment and single mode operation of the ECDL at the desired wavelength is achieved

using the following procedure. First the laser diode is rotated so that the long axis of

beam profile is orientated horizontally. The aspheric lens is positioned, to collimate the

beam, and glued in place, the grating is then aligned to reflect the first order beam back

through the lens and into the diode. The laser is driven well above the current threshold,

and observing the emitted beam reveals a secondary output spot close to the zeroth order

beam. The grating is then coarsely adjusted so the two spots overlap, as shown in figure

3.7. The current of the laser is lowered to just below threshold and, using the two fine

pitch screws, the direction of the first order retroflected beam is adjusted. When the first

order feedback is improved stimulated emission within the diode is increased above the

lasing threshold causing the output power, and hence brightness, of the zeroth order beam

to increase. Feedback is optimised by iteratively lowering the current and adjusting the

direction of the feedback. This procedure is slightly more challenging for infra-red (IR)

lasers. The initial alignment is achieved using IR viewer cards (Thorlabs: IRC3), but

these cards require frequent recharging and are poor indictors of spot brightness. Instead

an IR CCD camera or a power meter is used for the final optimisation of beam alignment.

When feedback is optimised the driving current is set to ≈ 85-90% of the maximum

operating specification. The diode temperature is then adjusted until the wavelength is

.100 GHz from the desired wavelength. It is important to note that the final wavelength

is fundamentally bound by the band gap energy within the laser diode so the ECDL

cannot emit a wavelength that is not generated by the laser diode. Care must be taken,
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Figure 3.7: Method for aligning the grating feedback in an external cavity. Close to
feedback the output resembles (a) where a second spot appears close to the zeroth order
beam. (b) the two spots are overlapped.

however, to not cool the ECDL below the dew-point temperature otherwise condensation

forms on optical surfaces which severely degrades ECDL performance. The grating angle

is readjusted, using the horizontal fine pitch screw in the grating mount, to tune the

wavelength to within a few GHz from the desired wavelength. The final wavelength is

then achieved by fine tuning the grating angle with the piezo and ‘tweaking’ the laser

diode current.

3.3 Experiment Lasers

To create and cool Yb+ ions lasers emitting light at 369 nm, 399 nm, 638 nm and 935

nm are required. An additional laser at 780 nm is also used to frequency stabilise the

other lasers, the details of which are discussed in section 4.3. The 399 nm, 935 nm, 638

nm and 780 nm lasers are all constructed in house in the Littrow configuration, while the

369 nm light is obtained by frequency doubling light at 739 nm. Presented here are the

components used in each laser and the modifications made to enable efficient cooling of

Yb+ ions.

3.3.1 399 nm Photo-Ionisation Laser

Yb+ ions are created via photoionisation, with the first stage utilising the 398.9 nm 1S0

↔ 1P1 transition. This ECDL consists of a 20 mW laser diode (Sanyo: DL-4146-301S),

an aspheric lens with focal length f = 4.6 mm and NA = 0.53 (Thorlabs: A390TM-

A), and a diffraction grating with 2400 grooves per mm and a first order efficiency of

58% (Thorlabs: GH13-24V). At the time of construction laser diodes at 399 nm were

very rare. They previously existed as faulty off-cuts from 405 nm diode wafers, but as

the knowledge and skill for making 405 nm diodes improved the availability of 399 nm
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lasers decreased. It was possible to obtain 399 nm laser diodes that were longitudinally

multimode, but fortunately the 58% grating feedback provided sufficient optical intensity

to dominate the other ECDL modes and achieve single mode operation. The single mode

performance had its limitations, and the ECDL was only able to produce 4 mW, ≈50%

of the expected achievable power, before unwanted longitudinal modes effected the laser

diode performance.

3.3.2 935 nm Rempump Laser

The 2D5/2 ↔ 3D[3/2]1/2 repump transition is excited using light at 935.2 nm. This ECDL

is constructed from a 100 mW laser diode (Roithner: RLT940-100GS), aspheric lens with

focal length f = 3.1 mm and NA = 0.68 (Thorlabs: C330TM-B), and a diffraction grating

with 1200 grooves per mm and 65% first order efficiency (Thorlabs: GR13-1210). Without

operating the laser at maximum performance, 20 mW in the zeroth order beam was easily

achievable, which is sufficient for the experiments discussed in this thesis.

3.07 GHz Sidebands

Cooling and manipulation of 171Yb+ however requires both the 2D3/2|F = 1〉 ↔ 3D[3/2]1/2

|F = 0〉 and 2D3/2|F = 2〉 ↔ 3D[3/2]1/2|F = 1〉 transitions to be driven. While a

second ECDL could be used to access the second transition a cheaper alternative is to

modulate the laser diode to generate frequency sidebands. The generation of sidebands

is explained in detail appendix D, and shows that modulating the laser diode driving

current modulates the refractive index of the path length within the cavity and also the

wavelength supported within the cavity. The emitted beam then contains components at

the carrier frequency, ω, and two extra frequencies at ω+ωm and ω−ωm, where ωm is the

modulation frequency. Modulating the diode at 3.07 GHz allows the carrier to drive the

2D3/2|F = 1〉 ↔ 3D[3/2]1/2|F = 0〉 transition while the +1st order sideband can excite

the 2D3/2|F = 2〉 ↔ 3D[3/2]1/2|F = 1〉 transition. Turning the sidebands on/off provides

a means of state preparation and state detection.

In the experiment the modulation signal is produced by a Systron Donner 1710B-S1087

signal generator, and is combined with the DC current using a bias-t (Minicircuits: ZFBT-

4R2G+). The general electrical schematic of a bias-t is shown in figure 3.8. The DC signal

passes though an inductor (which blocks rf signals) and the AC signal passes though a

capacitor (which blocks DC signals). The output of the bias-t is therefore the sum of the

DC and AC signals. The output signal of the bias-t is transferred to the laser diode using
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Figure 3.8: Electrical schematic of a bias-t. DC passes through an inductor while the rf
input passes through a capacitor. The output consists of both the rf and DC signals.

RG58 co-axial cable to minimise impedance mismatch. While the impedance mismatch

between the cable and diode is expected to be significant sufficient sideband amplitudes are

obtained using small modulation signals. Sending 18 dBm to the diode (before reflections)

generates the 3.07 GHz sidebands shown in figure 3.9, where the spectral components of

the 935 nm laser is measured using a scanning Fabry-Pérot cavity with a free spectral

range of 750(10) MHz and finesse of 134(5). The sidebands are approximately ≈5% the

height of the carrier and although appear at only 70(5) MHz from the carrier correspond

to carrier peaks four free spectral ranges away.

Figure 3.9: Spectrum of the 935 nm beam. The sideband peaks with an apparent frequency
of 70 MHz are the 3.07 GHz sidebands corresponding to a carrier peak 4 free spectral ranges
away.



45

It was shown by Myatt et al. [99] that sideband amplitudes can be enhanced if the mod-

ulation frequency is a multiple of the free spectral range of the external cavity. In this

situation the modulation frequency is supported by, and resonates within, the cavity. For

a littrow configured ECDL the free spectral range is considered to be FSR ≈ c/2L, where

c is the speed of light, and L is the distance between the rear facet of the laser diode and

the grating. The factor 2 occurs due to light propagating the cavity length twice. For 3.07

GHz sidebands to resonate an external cavity length of L ≈ 49 mm is required, however

the laser cavity length is only L ≈ 25 mm. Fortunately Myatt et al. indicate that side-

band amplitude is also dependent upon modulation power. It is therefore believed that

the power of the modulating signal is, to some extent, compensating for the non-resonant

cavity length.

3.3.3 638 nm Repumper

The other repump ECDL, to excite the 2F7/2 ↔ 1D[5/2]5/2 transition, operates at 638.6

nm. This ECDL comprises of a 40 mW laser diode (Sanyo: DL-6148-030), an aspheric lens

(Thorlabs: A390TM-B), and a diffraction grating with 2400 groves per mm and >80%

first order efficiency (Thorlabs: GH13-24V), and emits 7 mW of power.

Frequency Scanning

The 638 nm ECDL is also modified to excite the 2F7/2|F = 4〉 ↔ 1D[5/2]5/2|F = 3〉 and

2F7/2|F = 3〉 ↔ 1D[5/2]5/2|F = 2〉 transitions in 171Yb+. The two transitions occur at

638.610nm and 638.616nm, but since exact frequencies for these transitions are unknown

frequency sidebands would be an unsuitable approach to accessing the transitions. Instead

the laser is scanned between the two transitions, with a separation of ≈4 GHz. In its

original state the ECDL does not have mode hop free tuning range of 4 GHz, but by

scanning the laser diode current and piezo actuator (hence cavity length and grating angle)

simultaneously common mode tracking (and the mode hop free tuning range) is increased.

In the actual setup the ECDL wavelength is more sensitive to the driving current than

the grating angle so a variable potential divider is used to regulate the amplitude of the

current modulation to that of the grating modulation. Scanning of the laser between the

two transition wavelengths is shown in figure 3.10, however this is not the limit of the

scan and in fact a mode hop free tuning range of >20 GHz is possible. Since population

of the 2F7/2 state is expected to occur only a few times an hour so a scan rate of 0.5 Hz

is deemed sufficient to depopulate the state.
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Figure 3.10: Frequency scan of the 638 nm laser. Changing the grating angle and diode
current simultaneously enable the wavelength to be scanned over the range 638.610 nm
and 638.616 nm, required to excite the 2F7/2 ↔ 1D[5/2]5/2 transitions.

3.3.4 780 nm Reference Laser

The 780 nm ECDL, used for stabilising the other lasers, is constructed from a 80 mW

laser diode (Thorlabs: GH0781JA2C), an aspheric lens (Thorlabs: C230TM-B), and a

diffraction grating with 1800 grooves per mm and ≈ 65% first order efficiency (Thorlabs:

GR13-1850), and emits 30 mW.

3.3.5 369 nm Doppler Cooling Laser

The laser system used to generate the Doppler cooling light is a commercial frequency

doubled system (Toptica Photonics: TA-SHG 36), converting 739 nm light to 369 nm

light. In its original configuration the system is suitable for cooling only the even Yb+

isotopes, but with the modifications presented the system can generate the 14.7 GHz

and 2.1 GHz frequency sidebands required to cool and state prepare 171Yb+ respectively

(discussed in section 2.2.3). A schematic of the modified laser system is illustrated in

figure 3.11. The 739 nm light is generated using an external cavity diode laser configured

in the Littrow configuration, which can be current modulated at 1.05 GHz (equipment

not shown). After passing through an optical isolator (LINOS: FI-760-TV), the beam

can be modulated at 7.37 GHz using a bulk phase electro optic modulator (EOM, New

Focus: 4851). As a note the beam is only modulated at one of these frequencies, never

both at the same time. The modulated beam is then amplified with a tapered amplifier

(TA) and passed through another isolator (LINOS: FI-760-TV). En-route to the doubling
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Figure 3.11: Layout of the frequency doubling system used to generate 369 nm light
(Toptica Photonics TA-SHG). 739 nm light is produced by a Littrow configured external
cavity diode laser, and can be current modulated at 1.05 GHz. An electro optic modulator
(EOM) is used to generate 7.37 GHz sidebands on the 739 nm beam and the power of
the modulated beam is increased using a tapered amplifier. Inside the cavity, with a free
spectral range of 1.05 GHz, the high power modulated 739 nm beam undergoes frequency
doubling to produce a 369 nm beam with ± 2.1 GHz or ± 14.7 GHz frequency sidebands.
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cavity a portion of the beam is picked off for locking and wavelength control, the details

of which are described in section 4.3, and the remainder of the beam coupled into the

doubling cavity. The length of the doubling cavity is configured to enable all desired

spectral components to resonate and undergo second harmonic generation (SHG). With

a free spectral range of 1.05 GHz, a subharmonic of the carrier and sideband frequencies,

the modulated 739 nm beam is converted into a 369 nm beam with either ± 14.7 GHz

sidebands or ± 2.1 GHz frequency sidebands.

7.37 GHz Sideband Generation

Sideband generation using an EOM is similar in principle to current modulation and is

described in appendix D. EOM’s contain a crystal (in this case magnesium-oxide-doped

lithium niobate, MgO:LiNbO3) with a voltage dependent refractive index. Exposing the

crystal to a sinusoidally varying voltage modulates the refractive index, hence optical path

length, within the crystal. The periodic change in optical path length induces a periodic

phase shift of the beam passing through it, generating the extra frequency components in

the beam.

Figure 3.12: Spectrum of the modulated 739 nm beam. The sideband peaks with an
apparent frequency of 370 MHz are the 7.37 GHz sidebands corresponding to a carrier
peak 7 free spectral ranges away.

In the setup a HP 8684B signal generator provides the 7.37 GHz modulation signal and

an amplifier (Advanced Microwave Inc: PA2503-3) increases the drive power to 31 dBm.

A pair of lenses (f1 = 200 mm, f2 = 50 mm, with magnification of M = 1/4) produce a

collimated beam of 0.5 mm through the EOM. Fine tuning of the beam path through the
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EOM is achieved using a four tilt alignment platform (New Focus: 9071-M). A half-wave

plate, positioned before the EOM, is used to align the beam polarisation parallel to the

crystal’s electro-optic axis. If not properly aligned the EOM will impose a polarisation

rotation resulting in lower sidebands and reducing the output from the tapered amplifier.

The resulting sidebands, measured using a scanning confocal fabry perot cavity with free

spectral range of 1 GHz, are shown in figure 3.12. The sidebands can be seen to be 5% the

height of the carrier and although appearing at 0.37 GHz actually correspond to a carrier

peaks 7 free spectral ranges away.

Tapered Amplifier

Tapered amplifiers, similar to laser diodes, are semiconductor chips that provide coherent

photons via electron decay across a p-n junction. The TA used in the system, illustrated

in figure 3.13, has a single mode input channel which tapers to a larger output. The

single mode input channel acts as a spatial mode filter, while the angle of the taper is

matched to the diffraction angle of the 739 nm light to maximise the amplification of light

passing through it. Both facets of the TA are anti-reflection coated to prevent the TA

from acting as a cavity, avoiding optical build up within the chip and the introduction of

unwanted frequencies onto the beam spectrum. Light propagating in the reverse direction

will damage the chip so an isolator is positioned directly after the TA to protect against

unwanted back reflections.

Figure 3.13: Illustration of a tapered amplifier chip, with a single mode input waveguide
and and tapered output. The end facets are anti reflection coated to avoid unwanted build
up in the reverse direction and generation of unwanted frequencies in the beam.
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A lens positioned in front of the TA focuses the beam into the single mode channel.

Maximum output power from the TA could not be achieved when using the 0.5 mm beam

from the EOM so a telescope, with magnification M = 4, is positioned between the EOM

and TA. This telescope returns the beam to its original diameter and increases the output

from the TA to 420 mW (measured after the isolator). The efficiency of the amplification

also depends upon the polarisation of the injected beam with respect to the polarisation

of the light generated by the TA. Fortunately this polarisation is the same polarisation

required by the EOM, removing the need for a second half-wave waveplate.

Frequency Doubling Cavity

Inside the doubling cavity second harmonic generation (SHG) is achieved. Here two pho-

tons with frequency ω are destroyed and, in the same quantum mechanical process, a

single photon with frequency 2ω is created. Using a biaxial crystal, in this case Lithium

Triborate (LBO), the modulated 739 nm beam undergoes SHG to produce 369 nm light

with the desired frequency sidebands.

Figure 3.14: Schematic of the doubling cavity.

The crystal is positioned inside a bow-tie cavity, as shown in figure 3.14, where the cavity

is used for optical build-up of the 739 nm light to increase the power of the resulting 369

nm beam. The cavity consists of two plane mirrors (M1 and M2) and two concave mirrors

(M3 and M4), where the concave mirrors focus the beam through the crystal and collimate

it afterwards. Mirror M1, the in-coupling mirror, is partially transmissive. Mirror M2 is
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mounted on a piezo to provide adjustment of the cavity length. A photodiode (internal

photodiode) is mounted on the rear of mirror M3 to measure the laser power within the

cavity. Finally mirror M4, the out-coupling mirror, is coated to reflect 739 nm light and

transmit 369 nm light. A lens positioned after mirror M4 collimates the 369 nm output

beam. A photodiode positioned outside of the cavity (external photodiode) measures the

reflection from mirror M1 and generates a signal used for stabilising the laser and the

cavity.

To initially align the cavity the beam is directed through the entrance aperture of the unit

and onto the centre of mirror M2. Mirror M2 is then adjusted to direct the beam onto

the centre of mirror M3, and M3 adjusted so the beam pases through the doubling crystal

and onto the centre of M4. Mirror M4 is adjusted to reflect the beam back to mirror

M1 and superimpose it with the input beam on the surface of mirror M1. Mirror M1 is

then adjusted so the reflected beam overlaps the incident beam. This final step closes the

cavity and if aligned properly blue light is visible after mirror M4.

It is very unlikely at this stage, however, for the cavity to be optimally aligned. Instead

of supporting just the TEM00 fundamental mode the cavity will likely be supporting

higher order spatial modes. The amplitude of these modes are determined by scanning

the cavity length (by applying an oscillating voltage to the piezo behind mirror M2)

and monitoring the signal from the internal photodiode on an oscilloscope. The resulting

intensity profile consists of series of narrow peaks, with each peak corresponding to a cavity

mode. The regularity of the measured peaks indicates the quality of the beam alignment

within the cavity. Two different situations are shown in figure 3.15, with 3.15(a) indicating

an unaligned cavity, indicated by the irregular pattern of varying amplitude resonances,

and 3.15(b) an aligned cavity where the TEM00 modes are predominant, regularly spaced

and of similar amplitude.

To improve alignment, hence beam path within the cavity, the mirrors M1, M4, or the

two external incoupling mirrors are used to maximise the peaks corresponding to the

fundamental mode. It is not always obvious which peaks need optimising. A useful trick

is to visually observe the physical profile of the blue beam exiting the cavity (using a piece

of paper) and adjust a mirror (either M1, M4, or the two external incoupling mirrors)

until a single mode gaussian profile is visible. The peaks with the greatest amplitude then

correspond to the fundamental cavity mode. By iteratively walking the beam path, first

using the two in-coupling mirrors and then cavity mirrors M4 and M1, the fundamental

cavity peaks are maximised. If, however, there are cavity modes that cannot be removed
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Figure 3.15: Intensity profile of the cavity modes for (a) a misaligned cavity (b) an aligned
cavity.
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by either horizontal or vertical adjustment then the mode-matching lens is incorrectly

placed. Varying the position of the lens and repeating the alignment procedure above

removes the unwanted modes.

An aligned cavity, however, does not necessarily relate to maximum 369 nm power. While

cavity alignment consolidates the power of the 739 nm into a single spatial mode, the

efficiency of SHG is determined by the quality of phase matching between the 739 nm and

369 nm beams. During the process of SHG the 369 nm photons created are polarised 90o

with respect to the 739 nm photons. Since LBO is a biaxial crystal, and refractive index

is wavelength dependent, the 369 nm and 739 nm photons experience different refractive

indices. If the beam does not propagate through the crystal at the correct angle the

created 369 nm photons interfere destructively. Adjusting the beam path to the correct

angle enables the wavefronts of the 739 nm and 369 nm beams to propagate in phase

and the 369 nm photons constructively interfere. However, this can change the alignment

of the beam path within the cavity and can reduce the amplitude of the TEM00 mode.

After adjusting the propagation direction through the crystal the cavity is realigned using

the process above. Optimum alignment is achieved with the use of a third photodiode

positioned outside the system to measure the the amplitude of the emitted 369 nm beam.

While scanning the cavity the signal from this photodiode also consists of a series of

peaks, corresponding to the TEM00 mode becoming resonant with the cavity length and

undergoing SHG. Maximising these peaks optimises alignment of the doubling cavity. It

should be noted that 739 nm light is also emitted from the cavity. Since photodiodes are

more sensitive to 739 nm light than 369 nm light, measuring both wavelength can result

in incorrect alignment. To avoid this a bandpass filter (Semrock; FF01-370/36-25) is used

to block the 739 nm light and transmit the 369 nm light.

Stabilising the Laser System

The setup used to stabilise the laser is shown in figure 3.16. The Pound Drever device

(PDD) control module provides a 100 MHz signal to current modulate the laser diode.

Since current modulation at 1.05 GHz is also required for state preparation a combiner

(minicircuits: ZFSC-2-5+) positioned before the bias-t enables the diode to be modulated

at both frequencies. When the modulated beam reaches the doubling cavity the 1.05

GHz frequency sidebands, resonant with the cavity free spectral range, are transmitted

through the cavity, while the 100 MHz sidebands are reflected away and measured on the

external photodiode. The resulting photodiode signal is sent to the PDD module where
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Figure 3.16: Schematic representation of the electronic setup used to stabilise the laser
system.

it is mixed with the the original 100 MHz frequency. The mixed signal is then passed

through a low pass filter to produce the PDH error signal (also explained in Appendix E).

The error signal, retrieved from the ‘Error Output’ port on the PDD is shown in figure

3.17 (top curve) along with the profile of the frequency dependent intensity within the

cavity (bottom curve). The Pound Drever Hall (PDH) error signal can be regarded as the

derivative of the photodiode signal, with the centre of the signal (and rapid sign change)

corresponding to the top of the intensity peak. Locking to this position on the error signal

stabilises the cavity length supporting the maximum optical power.

The PDH error signal is then used to stabilise both the laser wavelength and the dou-

bling cavity length. Wavelength stability is achieved using a field effect transistor (FET)

connected in parallel with the laser diode. The error signal, applied to the ‘Gate’ port,

adjusts the conductivity between the ‘Source’ and the ‘Drain’ ports, changing the current

applied to the laser diode. Cavity stability is achieved by applying a feedback signal, gen-

erated from the error signal in the PID module, to the piezo behind mirror M2. The laser

feedback stabilises against fast fluctuations while the slower cavity feedback compensates

for thermal fluctuations/drifts during operation.

Before the lock can be activated several conditions must be fulfilled. First the quality and

offset of the error signal are analysed. The error signal should appear the same as the one
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Figure 3.17: Frequency spectrum (bottom), and resulting Pound Drever Hall error signal
(top), of the modulated laser diode as the cavity is scanned.

shown in figure 3.17. An incorrect error signal is a result of a phase mismatch between

the signal from the external photodiode and the modulation signal. The phase between

the two signals is adjusted using the ‘phase’ control on the PDD module. The offset of the

error signal is adjusted to oscillate about ground, which corresponds to locking to the top

of the peak. Second the ‘minimum intensity’ threshold is checked. This is a user defined

threshold describing the minimum intensity required by a cavity mode to be used to for

locking. This feature is designed to ensure that the cavity will only lock to the TEM00

fundamental mode and not higher order modes. To correctly set the minimum intensity

both the cavity peaks and minimum intensity are displayed on an oscilloscope. The voltage

scale of each channel are matched while the ‘ground’ of each channel are adjusted to the

same voltage offset. When comparing the two signals only the peaks corresponding to

the TEM00 mode should be above the minimum intensity. If not, either the cavity needs

realigning or the minimum intensity threshold needs to re-adjusted.

When the checks are done the cavity scan is turned off and the PID lock engaged. The

PID is set by first increasing the I component to initiate a lock and is further increased

until just before the signal on the oscilloscope starts oscillating. The P and D components

are then increased, again until just before the signal begins to oscillate.
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Sidebands for 171Yb+

As explained earlier the 14.7 GHz (2.1 GHz) sidebands required to cool (state prepare)

171Yb+ are generated by frequency summing the 7.37 GHz (1.05 GHz) sidebands gener-

ated by the EOM (current modulation). To enable the cavity to support these multiple

frequencies the free spectral range of the cavity is tuned to be a common factor of all the

frequencies. For the bow-tie cavity FSR = c/L, where c is the speed of light and L the

optical path length within the cavity. The carrier and modulation frequencies all have a

common factor of 1.05 GHz, so adjusting the cavity length to 0.29 m (FSR = 1.05 GHz)

enables all these spectral components to be supported. Since multiple frequencies are en-

tering the cavity frequency summation actually occurs between the the different spectral

components.

Using a scanning Fabry Perot cavity, with a free spectral range of 500(10) MHz, the

spectrum of the modulated 369 nm is analysed. Current modulating the diode at 1.05

GHz generates the spectral profile shown in figure 3.18. It can be seen that the 369 nm

beam is equipped with ±1.05 GHz and ±2.1 GHz sidebands, with the 2.1 GHz sidebands

of ≈5% the height of the carrier beam.

Figure 3.18: Spectrum of the 369 nm beam used to excite the 2S1/2 ↔ 2P1/2 transitions.
The sideband peaks with an apparent frequency of 50 (100) MHz are actually the 1.05
(2.1) GHz sidebands corresponding to a carrier peak 2 (4) free spectral ranges away. The
+2.1 GHz sidebands are used for state preparation.

Similarly when the 739 nm beam is modulated at 7.37 GHz frequency sidebands at ±7.37

GHz and ±14.7 GHz are generated on the 369 nm beam. Damaged cavity mirrors meant

the ±14.7 GHz sidebands could not be measured the successful trapping and cooling of

171Yb+, discussed in chapter 4, demonstrates their presence.
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Chapter 4

Experiment Setup

“Please excuse the crudity of this model, I didn’t have time to build it to

scale or to paint it.”

-Emmit Brown, Back to the future.

Ion trap experiments incorporate a multitude of different components: a structure to gen-

erate the confining potential, a vacuum system to isolate the ion from unwanted external

influences and preserve the quantum nature of any experiments, narrow linewidth fre-

quency stabilised laser radiation to efficiently manipulate the ion, and finally a means of

measuring the state of the ion without interacting with it.

This chapter describes the design, construction and amalgamation of the these various

experimental components. A versatile ultra high vacuum system and compatible macro-

scopic linear ion trap. The schemes implemented to stabilise the laser systems (described

in chapter 3) and the system used to collect the fluorescence from trapped ions. The

procedure used to trap an ion is described and finally the computer system controlling the

experiment.

4.1 Vacuum System

Since interactions with other particles can destroy the quantum state of an ion, or worse

expel it from the trap altogether, trapped ion experiments are required to be performed in

an ultra high vacuum environment (UHV, <10−9 mbar). Additionally a vacuum system

capable of testing of complex surface and multilayer trap geometries was desired. The

resulting vacuum system used in the experiments is shown in figure 4.1. The system is

constructed using mostly off-the-shelf standard stainless steel ConFlat (CF) components,
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with copper gaskets providing the seals between components. The use of an all metal

system is necessary because baking the system is required to obtain an UHV, the process

of which is discussed in section 4.1.3. The chamber, described in detail the next subsec-

tion, is the testing region for the different ion traps. A power feedthrough and custom

flange with two 50-pin sub-D connectors (K.J.Lesker: IFDG501056A) providing exter-

nal connections to the rf and static voltage electrodes. A custom T-piece (Kurt J. Lesker:

SUS090307RHLW) then positions the height of the chamber (and thus the trap centres) to

the same height as the laser beams and imaging system. The system is operated at <10−11

mbar and maintained at this pressure using an ion pump (Varian StarCell: 9191145) and

titanium sublimation pump (TSP, Varian: 9160050). An UHV-24p ion gauge (Varian:

9715015), mounted on the rear flange of the 5-way cross-piece) provides measurement of

the pressure within the system, while a residual gas analyser (RGA, ExTorr: XT200M)

offers information on the species of any contaminants.

4.1.1 Experiment Chamber Assembly

The chamber is constructed from a hemisphere and octagon (Kimball Physics: MCF450-

MH10204/8-A and MCF450-SO20008-C respectively), and is kitted out with a custom

mounting bracket, atomic ovens and optical access to allow testing of multilayer and

surface traps.

The mounting bracket fitted inside the chamber is shown in figure 4.2. The bracket consists

of 90 gold plated receptacles (Mill-Max: 0672-1-15-15-30-27-10-0) sandwiched between two

UHV compatible polyether ether ketone (PEEK) plates. The receptacles are arranged to

be compatible with 101-pin CPGA chip carriers (Global Chip Material: PGA10047002)

allowing for microfabricated traps, mounted onto the chip carriers, to be quickly and easily

interchanged. PEEK is a polymer based plastic so prevents shorting between receptacles,

and its negligible water absorption and outgassing rates make it suitable for operation in

UHV. 88 of the 90 receptacles are connected to the sub-D connectors on the custom flange

with Kapton insulated copper wires, enabling static voltages to be applied to respective

trap electrodes. The two remaining receptacles are connected to the power feedthrough

to enable the application of high rf voltages (>500 V). Kapton, however, was observed to

breakdown at these voltages so 1 mm diameter copper wires insulated with ceramic beads

are used instead.

The four atomic ovens are mounted inside the chamber and orientated relative to the

mounting bracket as shown in figure 4.2. The two rear ovens provide atoms for multilayer
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Figure 4.2: (a) Front and (b) rear view of the mounting bracket showing the 100 pin recep-
tacles and the four atomic ovens providing natural Yb and enriched 171Yb for multilayer
and surface traps.

traps while the two front ovens provide ytterbium for surface traps. One of each of the

front and rear ovens provides natural ytterbium (Goodfellow: 424-562-81) while the other

provides enriched 171Yb (Oak Ridge, Tennessee). The ovens are constructed from 20 mm

stainless steel hypodermic needle tubing (Small Parts: B000FMUSNM) with an inner and

outer diameter of 0.83 mm and 1.07 mm respectively, and one end crimped shut. The

crimps are connected to a feedthrough using Kapton insulated wire, and passing a current

through the crimps ohmically heats the tubes generating the atomic streams.

Figure 4.3: Inside view of the chamber illustrating (a) how the mounting bracket is fitted
and (b) the laser access for multilayer and surface traps.

The mounting bracket and atomic ovens are attached to the chamber hemisphere using

groove grabbers (Kimball Physics: MCF450-GG-CT02-A) as illustrated in figure 4.3. Also

shown is the laser access to the traps via conflat mounted (CF) anti reflection coated UV-

grade quartz fused silica viewports. Two 1.33” and one 2.75” viewports (Kurt J. Lesker:
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VPZL-133Q and VPZL-275Q respectively) mounted on the hemisphere offer laser access

to multilayer traps, while seven 1.33” viewports attached to the octagon provide optical

access for surface traps. A custom re-entrant window, with recessed glass (Kurt J. Lesker:

SUS300407GBR) is positioned on the chamber to enable diffraction limited imaging of

ions.

4.1.2 Atomic Source Testing

Figure 4.4: Setup used to test the atomic ovens. The magnified image shows the position
and orientation of the atomic ovens.

Before operation it is vital to ensure the atomic ovens provide the necessary atomic vapour.

Using the setup shown in figure 4.4 each oven is tested and characterised before being

installed into the chamber. The ovens are operated under a vacuum of ≈ 10−7 mbar,

achieved using a turbo molecular pump (Pfeiffer: PM S03 525), while a residual gas

analyser measures the partial pressures of the vapours emitted from each oven. Since

ytterbium sticks to surfaces accurate measurements are obtained by directing the open

end of the ovens towards the RGA. Current is applied to the ovens using Kapton insulated

wires connected to a 1.33” CF flange 6-pin power electrical feedthough (Kurt J. Lesker:

EFT 0265062).

The partial pressures of the main isotopes emitted from the ovens are shown in figure 4.5.

The plots on the left (right) correspond to the rear (front) ovens providing ytterbium to

multilayer (surface) traps. The plots at the top (bottom) show the partial pressures of the

different isotopes from the ovens containing natural (171-enriched) ytterbium. In each plot

the solid, dotted, dashed and dot-dashed traces represent the partial pressures of 171Yb,
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172Yb, 173Yb and 174Yb respectively. A background measurement is taken before each

oven is operated, and subtracted from the partial pressure measurements to determine

the actual emission from each oven. It can be seen that operating the ovens at ≈6.5 A

produces a noticeable increase in the atomic vapour in each oven.

4.1.3 Obtaining Ultra High Vacuum

The required ultra high vacuum environment is obtained using the following procedure.

First the all-metal components are cleaned with HPLC grade Acetone (Fisher Scientific)

in an ultrasonic bath for at least 10 minutes. This removes any residual organic materials

from component surfaces. The cleaned parts are then ‘pre-baked’ in a home-built oven for

a week. This pre-baking is performed to create a chromium-oxide layer on the surface of

the steel which reduces the rate of outgassing of hydrogen [100]. The all-steel parts are

pre-baked at 300 oC but due to temperature limitations of seals the viewports are baked

at only 200 oC. Following the pre-bake all the components are re-cleaned in the ultrasonic

bath, using the same method as before, and assembled into the vacuum system shown in

figure 4.1.

The assembled system is placed inside an oven and connected to a turbo molecular pump

(Pfeiffer: PM S03 525) and a 20 ls−1 ‘external’ ion pump (Varian StarCell: 9191145),

positioned outside of the oven, using a one metre 2.75” CF flexible hose (Kurt J. Lesker:

MH-CF-C36). Initially the vacuum system is pumped down using the turbo molecular

pump. When the pressure stabilises to ≈1x10−6 mbar the electrical components inside

the system are degassed. Degassing of the RGA and ion gauge is achieved using a simple

in-built command, while the atomic ovens are degassed by passing a current of 5 A through

them for a few minutes. The TSP filaments are degassed by running them at 37-42 Amps

for 1 minute and then at 35 Amps for 1 hour and, finally, the trap is degassed by increasing

the RF voltage to the electrodes. During degassing the pressure is monitored to ensure it

does not drastically increase, and when degassing the trap visual inspection is performed

to ensure no sparking (shorting) occurs.

After degassing, the oven temperature is ramped up to 200 oC at a rate of ≤10-15 oC per

hour. This slow temperature gradient is used to avoid detrimental stress gradients between

the viewports and steel components. After the vacuum pressure stabilises (≈1x10−6 mbar),

the external ion pump is switched on. An hour later an angle valve (Kurt J. Lesker:

SA0150MCCF) is closed to isolate the roughing pump. After the pressure once again

stabilises the ‘internal’ ion pump is turned on and a few hours later a bakeable UHV all
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metal angle valve (Kurt J. Lesker: VZCR40R) is closed. Baking of the system at 200 oC

then continues until the pressure stabilises. Once stabilised the temperature is ramped

down, again at a rate of ≤10-15 oC per hour. The pressure of the system during the

baking procedure is shown in figure 4.6. The solid line indicates the pressure within the

system while the dashed line indicates the system temperature. At room temperature the

vacuum system is removed from the oven, and the sublimation pump run for one minute

every two hours until the desired pressure is reached (≈4x10−11 mbar).

Figure 4.6: Vacuum pressure and oven temperature during bakedown.

4.2 Macroscopic Linear Ion Trap

The macroscopic linear rf-Paul used in this thesis is shown in figure 4.7. To be compatible

with the vacuum system it is limited to a footprint of 3 cm × 3 cm and a height of 1 cm.

The trap consists of several parts: a base made from UHV compatible PEEK, a stainless

steel mount, and gold plated stainless steel electrodes. The PEEK base provides a platform

upon which the trap can be mounted while removing the risk of electrical shorting between

trap electrodes and to other connections in the vacuum system. Exposure to ultra violet

(UV) laser radiation, however, has been shown to result in the discolouring and increased

outgassing of PEEK. It is also suspected that the dielectric becomes charged and introduces

unwanted fields into the trapping potential. To prevent this a stainless steel mount is used

to cover the PEEK, and shield the ion from any potentially charged dielectrics.
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Figure 4.7: Top: Ion trap used in the experiments. Bottom right: Cross-sectional view
of the radial plane of the trap, showing the spacings between the radio frequency (rf)
electrodes and the static voltage electrodes (SE). Bottom left: View of the trap showing
the length of the centre electrode and trapping region.

The stainless steel mount is constructed with ‘walls’ from which the electrodes are sus-

pended. The electrodes are wire eroded into blades and electroplated with 5 µm of gold.

The blade shapes enable smaller ion electrode separations to be achieved whilst still pro-

viding a close approximation to an ideal quadrupole trapping potential. The electrodes

are separated by 343(14) µm in the x axis and 554(14) µm in the y axis, producing a

trap aspect ratio of 1.6, and an ion-electrode separation is 310(10) µm. The rf electrodes

span the entire axial length of the trap, while the static voltage electrodes are segmented

to provide end cap potentials and rotation of the principal axes. The length of the cen-

tre electrode is 1008(14) µm. This electrode arrangement provides for a reduced residual

rf ponderomotive potential along the z axis to < 2% of the radial frequency [101], and

allows trapping of long ion chains without appreciable rf micromotion in the axial direc-

tion. Three parallel gold plated wires run the length of the trap to provide micromotion
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compensation. Compensation electrodes 1 and 2 are electrically connected to result in

a compensation along the y-axis only, while compensation electrode 3 acts in the x axis

only. Gold plated wires, passing through holes in the mount, connect the trap electrodes

to pin receptacles in the mounting bracket.

4.2.1 Application of High RF voltages

To generate the potential required for successful trapping a narrow bandwidth rf voltage is

required. Narrow bandwidth ensures the trapping potential does not oscillate at multiple

frequencies, causing unwanted complex motion, while high voltages provide suitably deep

trapping potentials and secular frequencies on the order of MHz. Impedance mismatch

between the voltage source and trap however can result in potentially damaging signal

reflections, and also reduce voltage at trap electrodes. To enable signal filtering, as well

as impedance match the voltage source and the ion trap, an inductively coupled helical

quarter wave resonator is used.

In its most basic form an inductively coupled resonator consists of a single conducting wire

inside a conducting can, and an antenna coil positioned at one end of the can. Applying an

rf voltage to the antenna coil generates an oscillating magnetic field which in turn induces

an rf voltage into the conducting wire. The wavelength at which maximum coupling

between the antenna and conducting wire occurs is determined by the length of the wire

as L = λres/4, i.e. a quarter of the wavelength. Wavelengths not resonant with the wire

length are reflected away, thereby providing signal filtering. The bandwidth of transmitted

radiation is expressed as its quality factor ‘Q’. The voltage output from a resonator is then

expressed as

V = κ
√
PQ (4.1)

where P is the input RF power, and κ is a geometrical efficiency factor.

Typical frequencies used in ion trap experiments are on the order of 10’s MHz, so require

impractical wire lengths of several metres. To reduce these to more manageable sizes the

wire is wound into a helix, forming a helical quarter wave resonator. The helix geometry,

however, introduces additional capacitances and inductances which further affects the

resonant frequency. The final resonant frequency (of an unloaded resonator) is therefore

determined by the exact dimensions of the coil and the shielding can, the relationship of

which are described in detail by Macalpiner [102] and Siverns [103]. When the trap is

attached to the resonator however, the additional resistances and capacitances from the

connecting cables and trap electrodes again cause the resonant frequency to change.
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Figure 4.8: Quarter wave helical resonator used in the experiments. The left image shows
the helix inside the conducting can, while the right image shows the antenna coil.

The resonator used in the experiments is shown in figure 4.8, and has dimensions detailed

in table 4.1. When loaded with the trap it has a quality factor, Q = 200(20), a geometric

factor κ = 24(8) [103], and a resonant frequency of ≈25 MHz. Impedance matching is

achieved by adjusting the position of the antenna relative to the coil position. A direc-

tional power-meter (Rhode and Schwarz, part number: NAUS 3) is used to measure the

power applied to, and reflected from, the resonator. By minimising reflection coupling is

maintained at ≥ 95%.

Shield Diameter, D [mm] 76(1)
Shield length, B [mm] 103(1)
Coil Diameter, d [mm] 52(3)
Coil Length, b [mm] 63(5)
Coil diameter, d0 [mm] 3.14(3)
Winding pitch, τ [mm] 6(2)
Number of turns, N 9.50(25)
Resonant frequency with

21.5(1)
trap load, f0 [MHz]

Q with trap load 200(20)

Table 4.1: Resonator design specifications.

Some experiments require a static offset to be applied to the rf signal. For these experi-

ments the filter illustrated in fig 4.9 is attached to the coil. The red dashed section acts

as an rf ground preventing the high rf signal from reaching the static voltage supply. The

blue dotted section is used to remove an unwanted 10 Hz signal occurring on the offset

voltage.
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Figure 4.9: Circuit used to apply a static bias to the radio frequency signal. The red
(dashed) section prevents rf from reaching the static voltage supply while the blue (dotted)
section removes an unwanted 10 Hz signal present on the static voltage.

4.3 Laser Stabilisation

Efficient laser cooling requires narrow linewidth frequency stabilised laser radiation. Nar-

row linewidth radiation is achieved using Littrow configured external cavity diode lasers

(ECDL’s), described in detail in section 3.2, however these systems are prone to current

fluctuations, vibrations, and temperature drifts. To compensate for these unwanted ef-

fects the lasers are actively stabilised to the stable D2 atomic line in 87Rb using a series

of locking schemes. First an ECDL at 780 nm is stabilised to the Rb atomic transition

using feedback from frequency modulated (fm) saturated absorption spectroscopy. The

stability of the 780 nm laser is then transferred to the 739 nm and 935 nm lasers using a

transfer cavity locking scheme [104]. Due to experimental constraints, however, the 399nm

and 638 nm lasers are instead stabilised using feedback based upon absolute wavelength

measurement with a commercial wavemeter (High Finesse: WS7).

4.3.1 Stabilisation of the 780nm Laser

The fm saturated absorption spectroscopy setup is shown in figure 4.10. Here the 780

nm laser is separated into three beams: a ‘reference beam’, ‘pump beam’ and ‘probe

beam’. The pump and probe beams counter propagate and overlap through an in-house

built Rb vapour cell, while the reference beam propagates through the vapour cell without

interacting with either the pump or probe beams. The intensity of the probe and reference

beams transmitted through the vapour are measured using photodiodes, and monitored

as the laser wavelength is scanned.
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Figure 4.10: Saturated absorption spectroscopy of 87Rb. The laser beam is split into the
‘pump’, ‘probe’, and ‘reference’ beams, which propagate through an inexpensive Rb vapour
cell built by the university glass blowing facility. Photodiodes measure the intensity of the
probe and reference beams transmitted through the vapour.

The resulting intensity profiles during a scan represent the absorption profile of the atomic

vapour as a function of wavelength. Since the velocities of the atoms in the vapor are

distributed in all directions this absorption profile becomes Doppler broadened. When the

laser is resonant with a Doppler free transition frequency, however, all the beams interact

with atoms with the same relative velocity group, i.e. zero velocity. At this frequency

the greater intensity of the pump beam ‘saturates’ the atomic transition and absorption

of the probe beam by the vapour is reduced. The beam intensity detected by the probe

photodiode increases and produces narrow peaks in the Doppler broadened absorption

profile, corresponding to the narrow hyperfine transitions. Since the reference beam does

not interact with either of the other beams the corresponding frequency-varying intensity

profile describes only the Doppler broadened absorption profile. Subtracting this reference

signal from the hyperfine rich probe signal produces a Doppler free saturated absorption

signal consisting of only the narrow hyperfine transition peaks.

The 780 nm laser is stabilised to these peaks using the setup shown in figure 4.11. The laser

diode is current modulated at 160 kHz such the signals from the photodiodes also contain

an oscillating component. A differential amplifier then subtracts the reference signal from

the probe signal. The resulting modulated Doppler free signal is passed into a lock-in

amplifier where it is mixed with a reference signal with a frequency equal to that of the

modulation frequency. As described appendix E this mixing generates a signal comprising
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Figure 4.11: Setup used to stabilise the 780 nm laser to the Rb spectroscopy signal. The
modulated 780 nm laser results in modulated photodiode signals. The probe and reference
beam are subtracted using a differential amplifier and the Doppler free absorption signal
is sent into a lock-in amplifier, where the error signal is generated. The error signal is
passed through a PI controller to produce the error signal which is sent back to the laser.

several frequency components and a slowly time-varying DC component. Passing this

mixed signal thorough a low pass filter extracts the DC component, which is the error

signal.

An example of an error signal, in relation to a Doppler free saturated absorption signal, is

shown in figure 4.12. The lower (black) trace shows the Doppler free signal corresponding

to the different hyperfine transition in 87Rb, with each peak corresponding to different

hyperfine transition between 52S1/2|F = 2〉 and 52P3/2|F ′ = x〉. The upper (red) trace

shows the error signal produced from each hyperfine transition. To a first approximation

this error signal is the derivative of the Doppler free trace and by locking to the mid-point

of the cross over on the error signal the laser is stabilised to the top of a transition peak.

The error signal is passed through a proportional-integral (PI) controller to generate a

feedback voltage, the amplitude of which is determined by the duration and magnitude of

the error signal. The feedback signal then adjusts the grating angle in the external cavity

diode laser, changing the laser wavelength. Using the error signal derived from the peak

corresponding to the 52S1/2|F = 2〉 ↔ 52P3/2|F = 2× 3〉 crossover resonance the 780 nm

laser is stabilised to <1 MHz for over an hour.
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Figure 4.12: The lower trace shows the fm doppler free saturation spectroscopy signal. The
different peaks correspond to different hyperfine transitions, with crossover transitions
indicated by ×. The upper trace shows the error signal derived from the doppler free
signal. The data was taken by Robin Sterling.

4.3.2 Stabilisation of External Cavity Diode Lasers

The stability of the 780 nm laser is transferred to the 739 nm and 935 nm lasers using

the transfer cavity locking scheme [104]. Here the wavelengths of the 739 nm and 935 nm

beams are compared to that of the stabilised 780 nm laser using scanning confocal Fabry-

Pérot cavities, with the resulting fringe patterns identifying the relative wavelengths of

the different lasers. With computer controlled feedback the fringe separations are held

constant, stabilising the 739 nm and 935 nm lasers to the 780 nm laser.

Transfer Cavities

Confocal Fabry-Pérot cavities use two highly reflective concave mirrors separated by a

distance equal to the radius of curvature of the mirrors, L = R1 = R2. This separation

determines the characteristic feature known as free spectral range (FSR) which describes

the frequency separation between successive resonances of the same wavelength. For a

confocal Fabry-Pérot cavity FSR = c/4L, where c is the speed of light, and the factor 4

arises as a result of the beam propagation inside the cavity as shown in figure 4.13.

The cavities used are shown in figure 4.14 and consist of a brass ‘male’ part, an aluminium

‘female’ part, and custom mirror mount. A fine pitch thread on the male and female

parts allow for fine tuning of the cavity length, with different materials used to avoid

mechanical ‘jamming’ when length tuning. Technical drawings for the cavities and custom

adaptor piece shown in appendix F. The 780 nm / 739 nm cavity uses mirrors with a
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Figure 4.13: Beam path through a confocal optical cavity.

reflectivity of >99% at both wavelengths, and a radius of curvature of R1,2 = 75 mm

(CVI: TLM2-750-0-0537-0.075CC) yielding a FSR = 1 GHz. The 780 nm / 935 nm cavity

mirrors have a reflectivity of >99.3% and a radius of curvature of R1,2 = 100 mm (CVI:

TLM1-369/399/780/935-0-0537-UV-0.010CC), resulting in a FSR = 750 MHz. To enable

scanning one mirror from each cavity is mounted to a ring piezo with a thread adaptor

(Piezomechanik: HPSt 150/14-10/12 HAg) using the custom adaptor.

Figure 4.14: The different components used to make the scanning confocal cavities.

Transfer Cavity Lock Setup

The transfer cavity locking scheme is implemented using the setup shown in fig 4.15. The

739 nm and 935 nm beams are each combined with the 780 nm beam using polarising beam

splitters and directed into separate cavities. The transmitted beams are separated, again

with polarising beam splitters, and detected using photodiodes (Hamamatsu: S5972).

Since the measured beams have different powers and the photodiodes have different spec-

tral sensitivities the signals from the photodiodes have significantly different amplitudes.

To equalise the photodiode signals inverting amplifiers with different gains are used after

each photodiode.
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Following the amplifiers low pass filters with a cut off frequency of fc = 10 kHz (consisting

of Rf = 100 Ω and Cf = 16 nF) remove noise from each signal. An example of the

cleaned resonance fringes obtained from a cavity scan are shown in figure 4.16. The blue

(solid) trace is the signal from the 739 nm photodiode, while the red (dashed) trace is the

signal from the 780 nm photodiode. The small peaks in the centre of the 739 nm signal

correspond to the 7.37 GHz sidebands. The peaks on the 739 nm trace occurring at the

same position as the 780 nm peaks correspond to 780 nm light leaked onto the 739 nm

photodiode.

Figure 4.16: Combined signal from two photodiodes. The free spectral range of the 780
nm reference laser, a, is measured as well as the separation between the first 780 nm peak
and the first 739 nm peak, b.

The signals are read into a ‘target’ computer, operating on LabVIEW Real Time, via

an analog input card (National Instruments PCI-6143). A custom LabVIEW program

compares the separation of two 780 nm resonance peaks, a, to the separation of the first

780 nm peak and 739 nm (935 nm) peak, b, to generate the ratio b/a. A change in this ratio

corresponds to the wavelength drift of the 739 nm (935 nm) lasers. A virtual PI control

in the program generates a feedback signal corresponding to the duration and magnitude

of this deviation. The feedback signal is sent to the lasers via an analogue output card

(NI PCI-6722) and amplifiers (Piezomechanik Gmbh: SVR 150/3).

This techniques stabilises the lasers and also allows for remote frequency tuning. By

changing the ratio the wavelength of either the 739 nm (hence 369 nm) or 935 nm beams

can be tuned. An issue that arose from current modulation is a shift in the carrier emission

wavelength, caused by the extra power applied to the diode, but the stabilisation of the
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resonance peak separation compensates for this. Additionally, monitoring the spectral

components in real time provides up-to-date status of frequency sidebands and single

mode performance.

Stabilisation via Absolute Wavelength Measurement

The 399 nm and 638 nm lasers are stabilised using feedback based upon the wavelengths

measured by the wavemeter (High Finesse: WS7). The low transmission of ultra violet

light through the Fabry-Pérot cavities and poor response of photodiodes at these wave-

lengths meant stabilising the 399 nm laser via the transfer cavity technique is impractical.

Since the exact wavelengths for the 2F7/2 ↔ 1D[5/2]5/2 transitions are also unknown

stabilising the 638 nm laser using the transfer cavity technique is deemed unnecessary.

Laser stability is achieved by transmitting the measured wavelengths into the target com-

puter using a COM port. The locking program compares the recorded wavelength to a

desired set point wavelength and generates a feedback signal relating to the magnitude

and duration of the wavelength difference. The error signals are then sent back to the re-

spective lasers via the analogue output card (NI PCI-6722) and amplifiers (Piezomechanik

Gmbh: SVR 150/3).

Laser Stabilisation Program

The front end of the LabVIEW program used to achieve this is shown in figure 4.17 and

described below

1 The plots show the cavity resonances measured by the photodiodes, similar to those

shown in figure 4.16. The top plot shows the 739 nm and 780 nm fringes while the lower

plot shows the 935 nm and 780 nm fringes. The signals are inverted purely as a result of

the inverting amplifiers after the photodiodes. The 7.37 GHz sidebands can be seen on

the 739 nm trace.

2 These controls ensure that undesired peaks, such as those relating to frequency sidebands

or a wrong wavelength detected by a photodiode, are not considered. These unwanted

peaks are neglected using the fields labelled ‘Peak Threshold’ which dictate the minimum

amplitude required for a peak to be used for locking. To account for fluctuations in signal

amplitude, and unwanted peaks rising above the amplitude threshold, an additional dial

indicating a minimum width required for a peak to be considered is used. With both of
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these controls only the desired resonance peaks are recognised and the number of usable

peaks are shown in the ‘Peak Variables’ controls.

3 These fields choose the specific resonance peaks to be used to generate the ratio b/a.

The labels above each field refer to the peak used for each laser, and ‘C1’ corresponds to

the 739 nm / 780 nm while ‘C2’ corresponds to the 935 nm / 780 nm cavity.

4 These controls hold the positions of the 780 nm peaks constant with respect to the

cavity scan, to ensure the parameter a is kept constant. The ‘Peak Position Set Point’

field describes the position of the 780 nm peak on the x-axis of the graphs shown in box

1. The ‘Polarity’, ‘Proportional gain’ and ‘Integral time’ fields are input controls for a

virtual PID used to maintain the position of the 780 nm peaks.

5 The measured ratio b/a is shown in the ‘Laser Ratio’ fields, while the desired ratio is indi-

cated in the ‘Set Point’ fields. The ‘Polarity’, ‘Proportional gain’ and ‘Integral time’ fields

are again input controls to a virtual PID to maintain the current ratio at the desired ratio.

6 These controls are used to stabilise the 399 nm, 638 nm, and 935 nm lasers using the

the wavemeter measurements. The fields at the top of each section show the measured

wavelength, the ‘Setpoint’ fields show the desired wavelengths, and the ‘Polarity’, ‘Pro-

portional gain’ and ‘Integral time’ fields control another virtual PI controlling the feedback.

4.4 Table Setup

Figure 4.18 shows a unifying picture of the different aspects of an ion trap experiment

so far discussed: the lasers, the rubidium spectroscopy setup and transfer cavities used

for laser stabilisation, the wavemeter couplers used for wavelength measurement, and the

vacuum chamber with ion trap. Between the lasers and vacuum system optical isolators

are used to protect the lasers from unwanted feedback, optical fibres are used to maintain

beam quality and pointing stability, and an AOM to enable fast switching of the 369 nm

beam. The beams are then combined and focused through the centre of the trap.
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Isolators

Unwanted feedback can effect the wavelength of the light emitted by the external cavity

diode lasers (ECDL’s), or worse can permanently damage the semiconductor diodes. Each

ECDL is therefore protected using an optical isolator, the design of which is illustrated in

figure 4.19.

Figure 4.19: Optical isolator, comprising of two polarising beam splitter cubes and a
faraday rotator. Light emitted from the ECDL (solid) is transmitted through the isolator,
while light reflected back towards the ECDL (dashed) is reflected away.

Isolators consist of three components: an input polarising beam splitter, a Faraday ro-

tator, and an output polarising beam splitter. The input polariser filters light from the

ECDL (solid lines) to allow only linearly polarised light into the Faraday rotator. The

Faraday rotator consists of a material which, when exposed to a magnetic field, rotates the

polarisation of light transmitting through it. The rotator rotates the polarisation by 45o,

and the output polariser is orientated to allow light to be transmitted out of the isolator.

Reflections back into the isolator (dashed lines) are first filtered by the output polariser,

and any light transmitted into the Faraday rotator undergoes a further rotation of 45o.

Fortunately, the direction of rotation is independent of the direction of propagation. At

the input polariser the reflected beam is polarised 90o with respect to the beam from

the ECDL so is reflected away by the polarising beam splitter. Isolator performance is

characterised in terms of the percentage of light transmitted in the forward direction and

the proportion of unwanted reflected transmitted back through the isolator, measured in

dB. The isolators used for the 399 nm, 638 nm, 780 nm, and 935 nm lasers, along with

performance specifications, are shown in table 4.2.
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ECDL Isolator Transmission [%] Attenuation [dB]

399 nm OFR: IO-5-399-LP 92 -33.6
638 nm OFR: IO-5-638-PBS 93.2 -39.5
780 nm OFR: IO-5D-780-VLP 87.9 -42.9
935 nm OFR: IO-5D-935-VLP 92.7 -43.1

Table 4.2: Specifications of the isolators used for each external cavity diode laser.

Fibres

Following the isolators the beams used for ionisation, cooling and repumping pass through

single mode polarisation maintaining fibres. Since the lasers often need readjusting the

path of each beam is expected to change. Coupling each beam immediately through a fi-

bre eliminates the need for realignment through any subsequent optical components. The

fibres are single mode to ensure only TEM00 beam profiles reach the ion, and polarisation

maintaining to ensure only linearly polarised light is transmitted. Light transmitted from

non-polarisation maintaining fibres consists of all polarisation types: linear, circular, el-

liptical, etc, regardless of the input polarisation. The fibres used, and lenses coupling light

into and out of the fibres, are identified in the table 4.3.

Wavelength Fibre [Thorlabs] Lenses [Thorlabs]

369 nm PM-S350-HP-CUSTOM A390TMA
399 nm PM-S350-HP-CUSTOM A390TMA
638 nm P3-630PM-FC-2 C220TME-B
935 nm P3-780PM-FC-2 C220TME-B

Table 4.3: The optical fibres and input/output coupling lenses used for the ionising, cooling
and repumping beams.

It was found that elliptical beam profiles resulted in lower coupling than circular beam

profiles. While this is considered unimportant for the 638 nm and 935 nm beams, due to

the high powers, it is considered important for the 369 nm beam. Using two cylindrical

lenses, first a plano-concave lens (Thorlabs: LK1936L1-A) with a focal length of -100 mm

and then a second plano-convex lens (Thorlabs: LJ1144L2-A) with a focal length of 500

mm a circular beam profile is produced. Using this circular profile power transmitted

through the fibre is increased from 25% to 40%.

Acousto Optic Modulator

Blocking of the 369 nm beam is often required in experiments. As timescales for ex-

periments can be as short as a few microseconds switching of the beam must occur on

sub-microsecond timescales. Mechanical components with maximum switching rates on
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the order of kHz are too slow. Instead an acousto-optic modulator (AOM, Isomet: 1212-

2-949) which can divert a beam path on timescales of 100-nanosecond is used.

Figure 4.20: Internal working of an acousto optic modulator (AOM). The piezo induces
periodic density changes within the crystal. Light incident into the AOM is diffracted in
a fashion similar to Bragg diffraction.

As the name suggests AOM’s are devices which mediate an interaction between acoustic

and optical waves. The internal design of an AOM, illustrated in figure 4.20, consists of an

optically isotropic medium with a piezoelectric transducer attached to one end. Applying

an oscillating voltage to the piezo causes an acoustic wave to propagate through the crystal,

resulting in a periodic change in the crystal density with the period equal to the acoustic

wavelength Λ. Since the speed of sound is approximately six orders of magnitude slower

than the speed of light any light propagating in the medium views this periodic density

profile as stationary. Light is then diffracted from the density planes in a fashion similar

to Bragg diffraction. Bragg diffraction is expressed as nλ = 2d sin(θ), where λ is the

wavelength of the light, d the atomic spacing, n an integer, and θ the angle of incidence

with respect to the atomic planes. Similarly diffraction in an AOM is expressed as

nλ = 2ηΛ sin(θB) =
2ηv

f
sin(θB) (4.2)

where n is an integer corresponding the order of the diffracted beam, λ the wavelength

of the light, Λ the acoustic wavelength, f the acoustic frequency applied to the AOM,

η the refractive index of the crystal medium, v the acoustic velocity in the medium,

and θB the angle formed between the incident beam and the acoustic wavefronts. The

diffracted beams are separated from the zeroth order beam by angles of 2θB and acquire a

frequency shift of ±nf , where the sign of this frequency shift is determined by the relative
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propagation of the optical and acoustic waves. Since the optical wave is incident at an

angle of θB to the wavefronts of the acoustic wave, there is a component of propagation

parallel/antiparallel to the acoustic wave. If this component is parallel to the direction of

the acoustic wave the diffracted beam is reduced in frequency, while propagation opposite

to the acoustic frequency increases the frequency of the diffracted beam. The resonance

frequency, magnitude of the frequency shift and separation between diffracted beams are

ultimately determined by the the crystal used.

Several experiments require tuning of the optical frequency, which can be achieved by

tuning the modulation frequency. As can be seen from equation 4.2 however, frequency

tuning changes the direction of the diffracted beam. By redirecting the diffracted beam

back through the AOM any path change occurring from the first pass is compensated for

on the second pass. This double pass technique can be configured in two ways, with the

preferred method dependent upon the diffraction efficiency at different polarisations. If

performance is similar at both horizontal and vertical polarisations a suitable double pass

configuration uses a concave mirror, quarter wave-plate and polarising beam splitter [105,

106]. The mirror reflects the beam back through the AOM while the quarter waveplate,

positioned between the AOM and mirror, rotates the polarisation of beam between the

first and second passes. A polarising beam splitter before the AOM separates the incident

and second pass beams. Unfortunately the diffraction efficiency of the AOM used in the

experiments drops to 25% with non-optimal polarisation. Instead the double pass would

be implemented by laterally translating the beam, using a lens and right angled prism,

before directing it back through the AOM [107].

Since frequency tuning is possible using the locking control described in section 4.3 only

a single pass configuration is required. To align the AOM in a single pass the beam

is first directed through the centre of the crystal. The AOM is then coarsely rotated

until the different order diffracted beams are visible. Turning the AOM off shows only the

zeroth order beam, then turning the AOM back on again the ±1st order beams correspond

to the spots neighbouring the zeroth order beam. The AOM is rotated using a four-

axis tilt aligner (New Focus: 9071M) enabling θB to be adjusted to improve the power

in the diffracted beam. Rotating the beam polarisation with a half wave plate further

optimises the diffraction efficiency. Once aligned the power driving the AOM is adjusted

to obtain maximum diffraction efficiency. The separation between the first and zeroth

order diffracted beams is ≈5 mrad, requiring a beam path >1 m to resolve and isolate the

first order diffracted beam.
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Coupling Beams Through The Trap

Figure 4.21: Coupling beams through the trap. The 369 nm and 935 nm beams are
combined using a bandpass filter (Semrock: FF01-370/36-25), and then combined with
the 638 nm beam using a cold mirror (CVI: HT-1.00). The beams are focused through
the trap using lenses mounted on XYZ translation stages, while adjustable telescopes
positioned in 399 nm and 638 nm beams account for chromatic abberation.

Following the fibres and AOM the beams are combined and focused through the centre

of the trap using the arrangement shown in figure 4.21. The 369 nm and 399 nm beams

are combined using a bandpass filter (Semrock: FF01-370/36-25) which transmits light

between 347 nm and 393 nm, but reflects light >393 nm. These two blue beams are

then combined with the 638 nm beam using a cold mirror (CVI: HT-1.00) which reflects

(transmits) light below (above) 550nm. The multi-chromatic beam, and the 935 nm beam

are focused through the trap using the XYZ translation stage mounted lenses positioned

directly in front of the chamber’s right and left viewports respectively. Chromatic abber-

ation, however, causes the 369 nm, 399 nm, and 638 nm beams to each focus at different

distances from the lens, resulting in only one beam being focused at the trap centre. Ad-

justable telescopes (with magnification of M=1) are therefore positioned in the 399 nm

and 638 nm beam paths, before the combing optics, to compensate for this. The 369 nm

beam is focused in the trap using the lens in front of the chamber, while the 399 nm and

638 nm beams are positioned using the adjustable telescopes.
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Helmholtz Coils

As discussed in section 2.2.3 a magnetic field is required to avoid coherent population

trapping in 171Yb+. The magnetic field is applied using Helmholtz coils positioned around

the vacuum chamber, as indicated in figure 4.22. The coils each have 80 turns, a diameter

of 170 mm, are separated by 120 mm, and passing a current of 2 A through them generates

a magnetic field of 0.5 mT over the ion. Depending upon the experiment the direction

of the required magnetic field may vary so three pairs of coils are used to enable the

quantisation axis to be orientated in any direction.

Figure 4.22: Helmholtz coils providing the quantisation axis and removing degeneracy in
171Yb+. Three pairs of coils enable the quantisation axis to be orientated in any direction.

4.5 Ion Detection

Ions are detected by collecting the fluorescence from the 2S1/2 ↔ 2P1/2 369 nm cooling

transition using the system illustrated in figure 4.23. The emitted photons are collected

using a triplet lens (Special Optics: 54-17-29-369, coated for 369 nm), which reduces

abberation, especially spherical aberration, and provides a magnified ion image. The

magnification of the triplet lens isMT = −17.5, where the negative sign indicates the image

position is behind the lens. Positioning the lens 23.5 mm from the ion generates a magnified

image 549.7 mm behind it. Mounting an aperture at this same position removes unwanted

photon scatter without interfering with the ion image. After the aperture a doublet lens,
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comprising of two plano-convex lenses with the flat surfaces facing the outside, further

magnifies the ion image. The overall magnification of the doublet is determined by the

focal lengths of the two lenses, and also the ratio of the object to image distance.

Figure 4.23: Optical setup used to detect and image trapped ions. Photons are collected
and magnified by the triplet lens. An aperture is used to remove unwanted scatter before
the image is magnified a second time using a doublet lens. The collected photons are
measured using either a PMT or EMCCD.

In terms of object and image distance the magnification is expressed as

MD =
di

−do
(4.3)

where do is the object distance (distance between the doublet and iris) and −di is the

image distance (distance between the doublet and the detector). Again the image distance

is negative since it is behind the lens. The object and image distances are related to the

focal lengths of the two lenses via

1

f1
+

1

f2
=

1

do
− 1

−di
(4.4)

where f1 and f2 are the focal lengths of the two individual lenses. Thus choosing specific

lenses as well as the object and image distances the magnification of the doublet can

be designed. In the experiment the doublet is formed using lenses with focal lengths of

f1 = 200 mm and f2 = 300 mm to yield a doublet focal length of fD =120 mm. Positioning

the doublet and detectors at do = 180 mm and di = 360 mm produces a magnification of

MD = −2, yielding a total magnification of the imaging system of MTot = MTMD = 35.

With the detector area of the EMCCD being 8 x 8 mm an area of 230 x 230 µm is imaged,

an area just smaller than the ion-electrode separation.
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The triplet, iris and doublet are mounted in lens tube mounts and extensions. The tube

in turn is mounted on an XYZ translation stage to allow different positions of the trap

to be imaged. A bandpass filter (Semrock: FF01-370136, with a transmission of 94%

between 347 nm and 393 nm and ≤0.008% for all other wavelengths) is positioned between

the doublet and detectors to filter away any light not at 369 nm. A motorised flipper

mirror mount (NewFocus: 8892-M) allows the collected photons to be measured on either

an electron multiplied CCD array (EMCCD, Andor: iXon885) or photomultiplier tube

(PMT, Hamamatsu: H8259-01), where the device chosen depends upon the experiment

being performed.

4.6 Trapping an Ion

To successfully create, trap, cool and image ions several experimental parameters must be

correctly adjusted: the voltages applied to the trap electrodes must result in a stable three

dimensional trapping potential, the beams must pass through the null of the trapping

potential, each laser must be lasing at the correct wavelength, and finally the imaging

system must be positioned to image the desired region.

The first step is to map out the electrode geometry. This enables suitable electrode voltages

and the position of the trapping null to be determined. The electrodes are identified by

intentionally scattering 369 nm light from them and imaging the scatter with the EMCCD.

The resulting electrode structure for the experiment trap is shown in figure 4.24. As can be

seen the electrodes are not perfect, the null of the trapping potential is therefore unlikely

to occur at the geometrical centre of the trap. Using analysis techniques, as described by

Hucul et al. [108], the voltages to apply to electrodes to provide stable confinement and

position of the corresponding potential null are calculated. The set of electrode voltages

used in the experiment are shown in table 4.4, along with an rf drive signal of Ω/2π =

21.48 MHz. Due to the imperfect electrodes the calculated displacement of the null from

the geometric centre is 10, 18 and 24 µm in the x, y and z-axes respectively.

Using the translation stages the beams are readjusted to focus through this newly described

potential null, with the width of the beam adjusted to compromise the uncertainty of

beam position against the uncertainty of wavelength. Quite simply wider beams reduce

the uncertainty of beam overlap in the trapping null. Smaller beam waists, however,

increase the laser intensity and power broadening of the transition, reducing the accuracy

required for each wavelength. When first trying to trap the 399 nm and 369 nm beams,

with powers of ≈500 µW and ≈1 mW respectively, are focused to beam waists of 30(5)
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Figure 4.24: Image of the trap electrodes taken with the EMCCD camera. Images taken
by illuminating the electrodes with 369 nm light.



88

Electrode Voltage [V]
1 148.88 (1)
2 7.36 (1)
3 25.03 (1)
4 0.00 (1)
5 0.00 (1)
6 167.76 (1)

compensation 1 169.22 (1)
compensation 2 169.22 (1)
compensation 3 -2.70 (1)

RF 680 (10)

Table 4.4: Voltages applied to the trap electrodes.

µm. The 638 nm and 935 nm beams with power of ≈7 mW each allow for wider radii of

60(5) µm while maintaining sufficiently high beam intensities. The polarisation of all the

beams are rotated at 45o to the quantisation axis to excite the σ+, σ− and π transitions

required for 171Yb+ .

The wavelengths of the 399 nm 1S0 ↔ 1P1 dipole transition, required for ionisation,

are determined using a newly developed spot technique, discussed in detail in chapter

6. Approximate 369 nm, 935 nm and 638 nm transition wavelengths are obtained from

previously published results. These values were reported to only several GHz, so the final

wavelengths were determined through trial and error. More accurate wavelengths for these

transitions for most of the stable isotopes are also presented in chapter 6.

Using these parameters the isotopes: 170Yb+, 171Yb+, 172Yb+, 174Yb+ and 176Yb+ are

trapped and cooled. Figure 4.25 (a) shows a 3-ion crystal, while figure 4.25(b) shows

a multi-isotope crystal, highlighting the potential for many isotope experiments such as

sympathetic cooling, figure 4.25(c) shows a zigzag crystal, and figure 4.25(d) shows an ion

cloud.

The secular frequencies of the trapped ions are determined by applying an ac ‘tickle’

voltage to one of the end-cap electrodes. When the ac voltage equals a secular frequency

the ion is resonantly heated resulting in visible de-crystallisation. The electrode voltages

shown in table 4.4 result in secular frequencies of (ωx, ωy, ωz)/2π = (2.069, 2.110, 1.030)

± 0.001 MHz. Using these secular frequencies in electric field simulations the depth of the

trapping potential is estimated to be 4.9(2) eV.
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(a)

Three Yb+ ions

(b)

Multi-ion chain

(c)

Zigzag structure

(d)

Large ion crystal

Figure 4.25: Crystal of (a) three Yb+ ions, (b) a multi-ion chain of mixed species, (c) a
zigzag structure of nine Yb+ ions, and (d) a large ion crystal.

4.7 Experimental Control

Computer control of the experiment is achieved using a field programmable gate array

(FPGA: National Instruments: NI-PXI-7842R), and a custom built ‘host’ computer. The

FPGA is used to synchronise the operation of the different components and receive data

from the PMT, while the computer is used to receive data from the EMCCD camera

directly. To avoid potential interrupts associated with common operating systems the

FPGA is mounted in an external chassis (National Instruments: NI-RIO PXI-1033) and

connected to the host computer using a PCIe x1 card. Control sequences and data are

transferred between the computer and FPGA at pre determined periods to ensure mini-

mum intrusion upon experiment times.

The FPGA has 96 digital input/output channels offering and receiving TTL pulses, as well

as 8 analogue input and 8 analogue output channels. In the present setup only the digital

channels are used. The channels are connected, via a connector block (National Instru-

ments: SCB-68), to switches positioned between signal generators and EOM/AOM/lasers

and also the PMT. A switch (American Microwave Corporation: SWN-218-2DT) is used

to turn the 7.37 GHz sidebands on/off, while additional switches (Minicircuits: ZFSWA2-

63DR+) turn the 1.05 GHz and 3.07 GHz on/off. The ‘off’ ports of these switches are

grounded using 50 Ω terminators to minimise any reflections back to the signal generators.
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Switching of the AOM is achieved by adjusting the gain of the amplifier attached to the

AOM. Changing the gain between zero and maximum effectively turns the AOM off/on.

The TTL signals sent to the PMT and EMCCD are used to start and stop data collection.

Data from the PMT is sent to the FPGA while data from the camera is sent to the host

computer.

The PMT is specified to produce a single TTL pulse for every photon collected, where the

pulses have 30 ns duration followed by a dead time of 5 ns. When choosing the FPGA

it was important to ensure the sample rate of the FPGA was sufficient to cope with the

output rate of the PMT. If the PMT released pulses at its maximum rate the FPGA

would require a sample rate of at least 1 GHz (1 ns) to ensure an accurate photon count

and the 40 MHz sample rate of the FPGA would be unsuitable. Fortunately this is not

the case. Since the Doppler cooling transition has a maximum scatter rate of ≈10 MHz

and the imaging system has an estimated detection efficiency of 0.06%, a count rate from

the PMT of only ≈12 kHz is expected. In this situation the dead time between pulses

from the PMT increases to ≈83 µs, and the 40 MHz (25 ns) sample rate of the FPGA is

more than sufficient to distinguish single pulses. To ensure a pulse is only counted once,

the FPGA is programmed to acknowledge only a positive change in the received signal.

Measuring ‘0’ then ‘1’ results in a photon count, whereas measuring ‘1’ then ‘1’ produces

no change in count rate.

The host computer is created to handle the more demanding data transmission from the

EMCCD camera. The host computer contains a motherboard (Asus E3303) with a PCI-

2.2 slot for the EMCCD camera and a PCIe x1 slot for the external chassis, a Nvidia

GeForce 7300LE graphics card, an Intel core 2 quad processor (2.6 GHz), 4 GB of RAM,

and Windows XP. A redundant array of independent disks (RAID) configuration, required

to cope with increased data transmission when the camera is operated in its ‘kinetic mode’,

is created with two hard disk drives (Western digital RE3 250GB SATA 2).

With this control system it is possible to remotely operate the different aspects of the

experiment as well as enable the rapid repetition of trapped ion experiments. Indeed this

system was used to control the experiments performed in the following chapters. The large

number of unused channels on the FPGA also allow numerous features to be controlled

including, for example, electrode voltages for automatic micromotion minimisation or

shuttling.
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Chapter 5

Heating Rate Measurement of

Linear Ion trap

“The Elders tell of a young ball much like you. He bounced three metres in

the air. Then he bounced 1.8 metres in the air. Then he bounced four metres

in the air. Do I make myself clear?”

- Brain Ball, Futurama

To be suitable for quantum information processing ion’s must have sufficiently low en-

ergies otherwise incoherent laser-ion interactions occur, resulting in reduced fidelities of

quantum logic operations. Ion energy and heating rates are therefore important when con-

sidering trapped ion quantum manipulations for reliable information processing. Heating

is induced by noise such as electric field fluctuations (from thermal electric Johnson-

Nyquist noise) and fluctuating patch potentials (patch noise) on trap electrodes [109–112].

Conventional approaches of determining heating rates include the detection of motional

sidebands [77–79,81,112], however these techniques can be quite demanding. As an alter-

native Wesenberg et al. [1] presents a simpler method of determining heating rates, based

upon the measurement of ion fluorescence during Doppler cooling. This method was sub-

sequently implemented by Epstein et al. [113] and shown to be in reasonable agreement

with the more sophisticated methods. In this chapter the model developed by Wesenberg

et al. [1] to determine ion energy is explained and then the procedure is implemented to

determine the heating rate of the ion trap.
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5.1 Model

The model used by Wesenberg et al. [1] describes a weakly bound ion oscillating in a one-

dimensional harmonic potential, such that ωsec � Γ where ωsec the ion secular frequency

and Γ is the excited state decay rate. The ion is Doppler cooled using a laser detuned

from resonance by ∆ = νlaser − νtrans, where νlaser is the laser frequency and νtrans is

the resonant transition frequency. The oscillatory motion of the ion, however, creates

additional instantaneous Doppler shifts, ∆D = −kzvz, where vz is the ion velocity in the

z axis and kz the laser beam wave vector in the z-axis. The negative sign indicates that

photon absorption only occurs when the ion is travelling opposite to the propagation of the

laser beam. During an oscillation the effective instantaneous laser detuning, experienced

by an ion, is ∆eff = ∆ + ∆D. As the ion is weakly bound the excited state population, ρee,

can be approximated to be in a steady state with respect to the effective instantaneous

detuning. Under this regime the excited state population is expressed as

ρee(vz) =
s/2

1 + s+ (2∆eff
Γ )2

(5.1)

where s is the saturation intensity parameter. The instantaneous photon scatter rate

dN/dt is then
dN

dt
= Γρee(vz) =

Γs/2

1 + s+ (2∆eff
Γ )2

(5.2)

The resultant velocity dependent force imposed onto the ion from photon absorption is

then

Fz(vz) = p
dN

dt
(5.3)

where p = ~kz is the momentum kick from the ion from each photon absorption. If the

relative change in energy over an oscillation is small the effect of Fz(vz) can be averaged

over the oscillatory motion. The evolution of the ion energy can then be expressed as

〈
dE

dt

〉
= 〈vzFz(vz)〉 =

〈
pvz

dN

dt

〉
(5.4)

Similarly, the average energy evolution per oscillation can be expressed as

〈
dE

dt

〉
=

〈
dE

dN

dN

dt

〉
(5.5)

where dE/dN = −~kzvz = −~∆D is the average energy lost per scattered photon over an

oscillation, with the negative sign indicating a loss of energy from each absorption/scatter
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event. If now the time during cooling is considered the evolution of the ion energy during

the cooling process can be determined.

5.2 Time Dependent Energy Evolution

The following description for the change of ion energy during Doppler cooling follows the

work presented by Wesenberg et al. [1]. The scatter rate is dependent upon the effec-

tive instantaneous laser detuning experienced by the ion and therefore the instantaneous

Doppler shift, as indicated in equation 5.2. For an ion undergoing harmonic motion inside

the trapping potential the distribution of the instantaneous shifts ∆D during an oscillation

is described using the probability density function

PD =

∫ 2π

0
δDirac[∆D −∆max sin(φ)]

dφ

2π
(5.6)

where ∆max is the maximum instantaneous Doppler shift for an oscillation, φ is the angular

position of the ion during an oscillation, and δDirac is the Dirac delta function. This

equation compares all possible instantaneous Doppler shifts against the maximum Doppler

shift over all angular positions during an oscillation. The solutions to the density function

have been shown to be [1]

PD =


N

2π
√

∆2
max−∆2

D

for|∆D| < ∆max

0 for|∆D| ≥ ∆max

(5.7)

The average scatter rate during an oscillation, 〈dN/dt〉, is then defined as the instantaneous

scatter rate, dN/dt, weighted by the probability density of experienced Doppler shift

integrated over all possible Doppler shifts.

〈
dN

dt

〉
=

∫
dN

dt
PDd∆D =

∫
ΓρeePDd∆D (5.8)

As shown in equation 5.4, the average energy removed per scatter event is ∆E = −~∆D.

The average energy change per oscillation 〈dE/dt〉 can therefore be expressed as

〈
dE

dt

〉
=

∫
~∆D

dN

dt
PDd∆D =

∫
~∆DΓρeePDd∆D (5.9)

The average scatter rate and average energy removed during an oscillation depend upon the

relationship between instantaneous scatter rate dN/dt, or transition linewidth L, and the
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Figure 5.1: Comparison between the probability density of Doppler shift, PD (solid line)
with the transition linewidth L (dashed line). (a) Diagram showing the case for a hot ion,
with a maximum Doppler shift greater than the broadened transition linewidth and laser
detuning, ∆max � |Γ

√
1 + s/2| + |∆|. The overlap of both functions is low, leading to a

low scatter rate. (b) Diagram showing the case for a cold ion with less energy. The peaks
of PD move closer together, resulting in a stronger overlap and an increase in scatter rate.

expected Doppler shift experienced by the ion during an oscillation PD. The relationship

is illustrated in figure 5.1, where 5.1(a) shows the situation for a ‘hot ion’ with ∆max �

|L|+ |∆|, where ∆ is the laser detuning from resonance. Here the Doppler shift probability

density and transition linewidth poorly overlap, resulting in a low absorption/scatter rate.

Figure 5.1(b) shows the effects of a cold ion, where the probability density overlaps well

with the transition linewidth producing an increased scatter rate. In the hot ion regime

the scatter rate can be considered constant over the transition linewidth allowing further

simplification of the energy evolution and average scatter rates.

A more detailed evaluation of this relationship can be found in appendix G, and shows

that after applying the hot ion approximation equations 5.8 and 5.9 can be simplified to

〈
dN

dt

〉
=

sΓ2

4∆max

√
1 + s

(5.10)〈
dE

dt

〉
=

sΓ2~∆

4∆max

√
1 + s

(5.11)

The energy associated with a maximum Doppler shift is ∆max = kz

√
2E/m. Using this
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equations 5.10 and 5.11 become

〈
dN

dt

〉
=

sΓ2

4
√

1 + s
√

2E
m kz

(5.12)

〈
dE

dt

〉
=

sΓ2~∆

4
√

1 + s
√

2E
m kz

(5.13)

which show the average scatter rate and energy evolution during cooling to be dependent

upon the ion’s energy at that instant. The ion energy at time t is therefore determined by

integrating equation 5.13 over t to give [1]

E(E0, t) =

E3/2
0 +

3sΓ2~∆

8
√

1 + s
√

2
mkz

t

2/3

(5.14)

where E0 is the ion energy at the start of cooling. The average scatter rate as a function

of ion energy is then determined by substituting equation 5.14 into equation 5.12, which

yields 〈
dN

dt
(E(E0, t))

〉
=

sΓ2

4
√

1 + s
√
E(E0, t)

√
2
mkz

(5.15)

Due to the stochastic nature of heating the initial energy of the ion, E0, is also stochas-

tically distributed. The initial ion energy is therefore described with a 1D-Maxwell-

Boltzmann distribution

PB(E0) =
E0

Ē
e−(E0/Ē) (5.16)

where Ē is the mean energy gained after a certain heating time. The average scatter

rate dN/dt, with an average start energy E0, is therefore the average energy dependent

scatter rate dN/dt(E(E0, t)) weighted by the distribution describing the average start

energy PB(E0) 〈
dN

dt

〉
E0

=

∫ ∞
0

PB(E0)
dN

dt
(E(E0, t))dE0 (5.17)

This equation describes the fluorescence rate as a function of the ion energy at the start

of recooling, E0, and the energy of the ion during recooling E.

5.3 Experiment Procedure

The heating rate is determined using the experiment performed by Epstein et al. [113].

The Doppler cooling laser is blocked allowing the ion to heat for a known delay period,
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then reapplied and the fluorescence measured during the recooling process. The model is

then used to determine the ion energy after the heating period, then repeating at different

heating periods enables a heating rate to be obtained.

The heating measurement is performed on an 174Yb+ ion, and the trap voltages are set

to comply with the restrictions dictated by the model. An effective one-dimensional har-

monic oscillator is created by adjusting the trap voltages to produce secular frequencies

of (ωx, ωy, ωz)/2π = (2.069, 2.110, 0.178) ± 0.001 MHz. Since heating is assumed to have

a 1/ω2 dependence [112], these secular frequencies allow dominant heating to occur along

the z-axis. Use of the 369 nm 2S1/2 ↔ 2P1/2 Doppler cooling transition ensures the weak

binding regime ωz � Γ and so the steady state approximation for the excited state. The

ion is cooled using a 369 nm laser with saturation parameter of 1.0(2), and detuning of

∆ = 6(2) MHz. The angle of incidence of the laser with respect to the quantisation axis

results in the z component of the laser beam wave vector to be kz = 0.45k.

Before each measurement ion micromotion is minimised. First the amplitude of the rf

drive signal is increased to generate a steep trapping potential. The corresponding ion

position, imaged using the electron multiplied ccd array (EMCCD), indicates the location

of the potential null. The amplitude of the rf signal is then reduced and the ion position

monitored. A movement of the ion indicates that the nulls of the static and rf potentials

do not overlap, which will induce excess micromotion. To compensate the voltages on

the static electrodes (endcaps, rotation and compensation electrodes) are adjusted to

reposition the ion at it’s original location, corresponding to an improved overlap between

the static and rf potentials. This is repeated until ion movement cannot be detected. The

2S1/2 ↔ 2P1/2 transition linewidth is then determined by measuring the ion fluorescence

as the laser is scanned over resonance. The resulting fluorescence profile indicates half

of the atomic linewidth since photon absorption is significantly reduced when the laser is

blue-detuned past resonance. The minimum linewidths obtained are L = 40(5) MHz, with

this wide transition expected to be a result of power broadening and residual micromotion.

Measurement

The experiment is performed using the control sequence shown in figure 5.2. The ion is

first Doppler cooled for one second to ensure consistency between measurements. The

beam is blocked using an acousto optic modulator (AOM: Isomet:1212-2-949) for delay

periods ranging from 1-7 seconds. 1 ms before the end of the heating period, the PMT

is turned on to provide a suitable background count and also eliminate any lag that may
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exist between the signals controlling the PMT and AOM. The laser is then reapplied and

the ion fluorescence measured in 50 µs bins for 4 ms. The AOM has a response time of

100 ns, so is not expected to effect photon counts.

Figure 5.2: Experimental sequence to determine heating rate.

To account for the thermal averaging of E0 the experimental control sequence is repeated

500 times for each delay period. The fluorescence from each measurement bin is then

averaged and the average fluoresce rate for the whole cooling period normalised. An

example of the change in fluorescence during cooling is shown in figure 5.3, for which

ωz = 178 kHz and the delay period is 3 seconds. The red curve shows the fit provided by

equation 5.17, and is adjusted by altering the ion energy before recooling E0. Since each

measurement is ultimately related to the spontaneous decay from the excited state the

overall uncertainty of these measurements is stochastic in nature. The standard deviation

the fluorescence measurements thus corresponds to the error of each bin, and the standard

deviation of the range of acceptable fits determines the error on E0.

Figure 5.3: Ion fluorescence during first 4 ms of cooling after a delay period of 3 seconds,
ωz = 178 kHz. Each point corresponds to a 50 µs bin averaged over 500 runs.
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This energy is converted in to motional quanta, using 〈n〉 = E0/~ωz. The motional quanta

measured after heating periods of 1, 3, 5, and 7 seconds are shown in fig. 5.4, and the

error bars correspond to the standard deviation of E0.

Figure 5.4: Change of motional quanta after different heating periods of 1, 3, 5, and 7
seconds.

To determine the electric field noise density SE(ωz), and also ensure the validity of the

ṅ ∝ 1/ω2 assumption, the heating rate measurement was repeated at different axial secular

frequencies. By adjusting the endcap voltages and the voltage applied to the rf electrodes

three secular frequencies of ωz/2π = (178, 287, 355) ±1 kHz, were used. The results

are shown in figure 5.5, with the uncertainty of each measurement determined as the

uncertainty of the gradient of each heating rate measurement. The straight line fit on

a log-log plot justifies the earlier assumption that ṅ ∝ 1/ω2 and also the creation of a

one-dimensional system by setting ωz � ωx,y. The offset of the gradient is expected to

an effect of the residual micromotion on the ion, and also radiation pressure exerted by

the laser. The laser used to Doppler cool the ion is expected to apply a pressure onto the

ion causing it to rest at a position off the potential null. When the laser is turned off the

ion has an initial unwanted motional quanta, introducing an offset on the measurements.

With a constant intensity used throughout the experiment this is expected to cause a

systematic offset only, and not significantly effect the heating rate measurement.

These frequency dependent heating rates enable the electric field noise density to be de-

termined. Electric field noise density SE(ωz) is a more useful measure of heating as it is

independent of ion mass. SE(ωz) is related to the change in motional quanta, 〈ṅ〉 [111,112]
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Figure 5.5: Heating rate as a function of secular frequency. Heating measurements at sec-
ular frequencies of ωz/2π = (178, 287, 355) ±1 kHz, are consistent with a 1/ω2 dependence
of the trap heating rate.

〈ṅ〉 =
q2

4m~ωz
SE(ωz) (5.18)

where q is the ion charge, m the ion mass. Extrapolating our data to ωsec = 1 MHz a

prediction of SE(1MHz) = 3.6(9)×10−11 V2m−2Hz−1 is obtained.

Our measured value for SE is compared to other previously measured values in figure 5.6.

Each label shows ion species and electrode material used, with out result indicated by the

royal purple triangle: Yb+ - Au. It can be seen that the heating rate for our trap, with an

ion electrode distance of 310(10) µm, is consistent with other traps of similar dimension

and with different ion species. This heating measurement, the first for a ytterbium ion in

such a small ion trap structure, has mitigated a concern that electrodes coated with small

amounts of ytterbium may lead to abnormally high heating rates. It is an encouraging

result for the use of Yb+ ions in quantum information processing.
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Chapter 6

Ionisation, Doppler Cooling and

Repump Wavelengths

“First of all we measured the speed of light. Jeff got a torch. When you

shout ‘go’ switch on the torch and I will time how long it takes to see the

light, OK. Oh hold on... I’ll hear that after I see the light. Say go slightly

earlier so I can hear that and time how long...’

Eddie Izzard, Definite Article

Ytterbium is an element widely used in atomic physics experiments including frequency

standards [73,115–117], atomic clocks [118–121], quantum optics [122], trapping of neutral

atoms and ions [43, 123–133], and of course quantum computing [61, 79]. The 1S0 ↔ 1P1

transition line, and isotope shifts, in neutral Yb have gained particular importance since

they are used for laser cooling and isotope selective photoionisation. The 2S1/2 ↔ 2P1/2

and 2D3/2 ↔ 3D[3/2]1/2 transitions in singly ionised ytterbium are also important as they

are used for Doppler cooling and repumping.

Published frequencies for these transitions, however, are either inconclusive or lack the

accuracy required for atomic physics experiments. While various spectroscopy methods

have been employed to investigate the neutral transition [134–138] few report absolute

transition frequencies and state only isotope shifts instead. The absolute transitions that

have been published also do not agree with each other other. Published results of the ionic

transitions are also limited, with transition frequencies for the Doppler cooling and repump

transitions reported to a precision of only several GHz [139]. This chapter describes

experiments used to obtain more accurate wavelengths for these transitions [140,141].
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6.1 1S0 ↔1 P1 Wavelength Study

6.1.1 Fluorescence Spot Technique

The neutral 1S0 ↔ 1P1 transition wavelengths are measured using a simple technique

based upon the observation of fluorescence spots resulting from directionally dependent

laser-atom interactions. The principle of the technique is illustrated in figure 6.1. Two

pairs of non-overlapping counter propagating laser beams are aligned through an un-

collimated atomic beam. The atom-laser interactions result in four resolvable fluorescence

spots which, depending upon the laser wavelength relative the transition frequency, adopt

one of the three configurations shown. When the laser is resonant with the Doppler free

transition wavelength each beam interacts with atoms of the same velocity group (i.e. the

zero velocity group) and the four spots align perpendicular to the beam propagation, as

seen in 6.1(b). When the wavelength is detuned from resonance the beams become resonant

with the Doppler shifted transition frequencies of atom moving non-perpendicularly to the

beams. The four spots adopt a zigzag formation, as shown in figs. 6.1(a) and 6.1(c), with

the orientation dependent upon the sign of the detuning. It should also be noted that this

technique requires the atoms to propagate in a known direction. If a vapour cell was used,

for example, the random direction of the atoms would generate fluorescence across the

entire laser beam arm. Fluorescence would not be localised and the effects of wavelength

tuning could not be observed.

Figure 6.1: Fluorescence spot orientations when the laser frequency is (a) red-detuned
from resonance, (b) at resonance, and (c) blue detuned from resonance.
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Experiment Setup

The setup for this technique is illustrated in figure 6.2. The 1S0 ↔ 1P1 399 nm dipole

transition is excited using an in-house built external cavity diode laser (ECDL), the con-

struction of which is described in section 3.2. The output from the laser is split into four

beams, each with an intensity of 4.5 mWcm−2, and aligned through the atomic beam. The

Yb atomic beam is generated using a resistively heated stainless steel oven tube with an

inner diameter of 0.83 mm, and a wall thickness of 0.24 mm. A small piece of natural Yb

(Goodfellow: GO0196) is placed inside the oven and running an electric current of 5 - 6 A

through the oven produces the atomic beam. The oven is similar in construction to those

used in the main vacuum chamber (described in section 4.1.1) to simulate future exper-

imental conditions. To avoid interactions with the external lab environment, the atomic

oven is positioned inside a beljar, and the beljar evacuated to 10−8 torr. The fluorescence

spots are imaged using an inexpensive CCD camera, which is positioned orthogonal to

both the atomic beam and laser beams. A lens positioned between the beljar and CCD

camera aids in fluorescence collection.

To obtain initial estimates of the 1S0 ↔ 1P1 resonances the laser wavelength is coarsely

scanned, by varying the voltage to the piezo, and the appearance/disappearance of the

fluorescence spots monitored. After narrowing down a frequency range for each resonance

(≈ 80 MHz), the laser frequency is fine tuned using LabVIEW operated feedback. The

LabVIEW program (discussed in detail in section 4.3) compares the wavelength measured

by a commercial wavemeter (High Finesse: WS-7) to that of a desired wavelength. To

correct for any wavelength deviation the program generates a feedback signal proportional

to the wavelength difference, which is then sent to the ECDL piezo via a multifunction data

acquisition card (National Instruments: NI-6143). Adjusting this set point wavelength

enables wavelength tuning.

The resulting spot configurations when the laser is tuned over resonance are shown in figure

6.3. In figure 6.3(c) the laser is resonant with the Doppler free transition wavelength and

the four spots align perpendicular to the laser beams. In figures 6.3(b)/(d) the laser

frequency is detuned by -20 MHz/+20 MHz from resonance respectively, while in figures

6.3(a)/(e) the laser frequency is detuned by -40 MHz/+40 MHz respectively. With a

detuning of only 20 MHz resulting in a visually observable zig zag formation, the potential

resolution of the technique can be estimated at <20 MHz. Furthermore the relative

intensity of the spots provides a qualitative indication of the relative abundance of the

isotope under study.
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Figure 6.2: Schematic diagram (a) shows the counter propagating laser beams crossing
the atomic beam and (b) shows the direction of laser beams and ccd-camera setup.
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(a)

λ=398.91130 nm (∆f=+40 MHz)

(b)

λ=398.91129 nm (∆f=+20 MHz)

(c)

λ=398.91128 nm (∆f=0 MHz)

(d)

λ=398.91127 nm (∆f=-20 MHz)

(e)

λ=398.91126 nm (∆f=-40 MHz)

Figure 6.3: Images of the fluorescence spot technique. Pictures show the atomic ovens and
fluorescence spots where the laser beams intersect the atomic beam taken at (a) +40MHz
detuning, (b) +20MHz detuning, (c) on resonance, (d) -20MHz detuning, and (e) +40MHz
detuning.

1S0 ↔ 1P1 Wavelength Measurements

The 1S0 ↔ 1P1 transition wavelengths measured using the fluorescence spot technique

are shown in table 6.1, with the corresponding frequency for 174Yb being 751.52665

THz ±60 MHz. This frequency, however, disagrees with a previously published value

of 751.525987761 THz ±60 kHz by Das et al. [135], by ≈660 MHz. This discrepancy is ex-

pected to be a result of Das et al. basing their measurements on a home-built wavemeter.

The authors stated the accuracy of their wavemeter to be 20 MHz, but it is speculated

that the actual uncertainty was larger than they claimed. Our measurement also differs

from the NIST Atomic Spectra Database [142] by 260 MHz, which lists the energy of the

Yb 1P1 level at 25068.222 cm−1 (751.52639 THz). Closer examination of this discrepancy

shows the database lists Meggers et al. [134] as the most recent source of their data. Meg-
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gers et al., however, list the energy of the level at 25068.227 cm−1 (751.52654 THz) which

is only 110 MHz away from our measurement. This points to a possible typographical

error on the NIST Atomic Spectra Database. Considering that Meggers et al. [134] used a

natural mixture of Yb isotopes, their result is consistent with our measurement, but shows

a 550 MHz discrepancy with Das et al. [135]. A recent independent measurement of the

atomic transition by Schauer et al. [143] further supports the measurements obtained via

the spot technique.

Isotope
Doppler Free Wavelength [nm]

±60 MHz
168Yb 398.91028

170Yb, 171Yb (1/2) 398.91067
171Yb (3/2) 398.91084

172Yb, 173Yb (3/2, 7/2) 398.91099
174Yb 398.91128

173Yb (5/2) 398.91142
176Yb 398.91155

Table 6.1: Doppler free resonant transition wavelengths for the 1S0 ↔ 1P1 in stable
isotopes Yb isotopes.

Using the measured wavelengths the isotope shifts of the 1S0 ↔ 1P1 transition, relative

to 174Yb, are calculated. Figure 6.4 illustrates the isotope shifts [135] while table 6.2

shows the shifts obtained with the spot method and other recently published results. It

can be seen that the isotope shifts determined using the spot technique are in very good

agreement with previously published work [135–137,144]. The precision of the technique,

however, is limited by the linewidth of the transition, with any transitions separated by

less than this linewidth resulting in overlapping and unresolvable fluorescence spots. In

this situation it is only possible to observe a broadened absorption peak comprising of the

narrower lines. Given that the frequency shifts between the 172Yb 1S0 ↔ 1P1 and 173Yb

1S0|F = 1/2〉 ↔ 1P1|F = 3/2〉 / 173Yb 1S0|F = 1/2〉 ↔ 1P1|F = 7/2〉 transitions are 18

/ 55 MHz respectively [135] the wavelength measured using this technique represents an

average of these three lines. Similarly since the 170Yb 1S0 ↔ 1P1 and 171Yb 1S0|F = 1/2〉

↔ 1P1|F = 1/2〉 transitions are separated by 38 MHz [135], the measured wavelength also

describes the broadened absorption peak.
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Figure 6.4: Diagram showing the frequency shifts between different isotopes, as measured
by Das et al. [135].

Error Analysis

The resonant frequencies, and isotope shifts, are measured using a commercial wavemeter

(High Finesse: WS7). The wavemeter is calibrated using a 780 nm laser, locked to <1

MHz of the 87Rb D2 line, and a He-Ne laser (SIOS SL02/1 calibrated to 1 MHz) is

used to provide confirmation of the calibration. Using the frequency doubling system a

further two point check is performed to ensure calibration in the ultra-violet frequency

range. The laser system converts 739 nm light into 369 nm and by measuring the two

wavelengths simultaneously the wavemeter is confirmed to operate within specifications.

The wavemeter is calibrated before and after measurements and no change in calibration

measurements are observed. The accuracy of the wavemeter is specified to 60 MHz for

absolute frequency measurements between 370 nm and 1200 nm. For relative frequency

measurements of closely spaced transitions (i.e. the isotope shifts) the accuracy improves

to the display resolution. At 399 nm the relative accuracy (display resolution) is 20

MHz, which relates to an uncertainty on the isotope shift of 28 MHz. The isotope shifts

involving the overlapping transition lines, however, could not be resolved better than 60

MHz. Other sources of error include non-parallel alignment of the laser beams where

misalignment by 1o would result in a 15 MHz error on the measured wavelength. Since

the technique can resolve <20 MHz detuning misalignment of a single beam would result



109

in a visible deviation of the corresponding spot with respect to the other aligned spots.

The beams can therefore be aligned to better than 1 degree and the uncertainty caused by

beam misalignment can be neglected. The relative beam intensities (4.5± 0.9 mWcm−2)

compared to the transition saturation intensity (60 mWcm−2) result in power broadening

of the transition by 3 MHz. Combining these errors results in an uncertainty of 60 MHz

for absolute wavelength measurements and 30 MHz for isotope shifts.

6.1.2 Saturation Absorption Spectroscopy

To provide a comparison for the results obtained using the fluorescence spot technique, a

typical saturation absorption spectroscopy experiment was performed (the details of which

are described in section 4.3.1). The experimental setup used is shown in figure 6.5. A

picker (Thorlabs: PSF10-A1) splits the 399 nm beam into a ‘pump’ and ‘probe’ beam with

intensities of 127 mWcm−2 and 2 mWcm−2 respectively. The photodiode used to measure

the intensity of the probe beam (Hamamatsu: S5972) has poor sensitivity at ultraviolet

wavelengths so an amplifier, with a gain of 1x106, is used to increase the signal. A low-pass

filter, with a cut off frequency of 100 Hz, is used after the amplifier to remove noise.

Figure 6.5: Schematic of the experimental setup for saturated absorption spectroscopy of
neutral ytterbium.

Based upon the calculated isotope shifts (section 6.1) the frequency separation between all

the isotopes spans ≈2.5 GHz. The 399 nm laser is therefore required to scan over a range of

≈3 GHz. Wavelength tuning by adjusting the grating angle alone, however, only provides

a mode hop free tuning range of only 800 MHz. To increase the mode hop free tuning

range the signal used to adjust the piezo voltage is simultaneously used to adjust the laser
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diode current. This resulting ‘frequency tracking’ between the feedback frequency from

the grating angle and preferred emission wavelength from the diode increases the mode

hop free tuning range to >5.5 GHz.

Figure 6.6: 1S0↔ 1P1 transition peaks for different isotopes of Yb obtained with saturation
absorption spectroscopy. The transitions corresponding to labels 1 to 4 are shown in Table
6.3. The dashed line represents the Doppler background.

Scanning the wavelength at 10 Hz produces the saturation profile shown in figure 6.6.

The dashed trace represents the Doppler background, obtained by blocking the pump

beam, while the solid trace shows the resulting resonance peaks when the the pump

beam is included. The saturation peaks for different isotopes can be seen by labels 1,

2, 3 and 4 on the profile, and the corresponding frequencies are listed in table 6.3. Also

shown in table 6.3 are the results obtained with the spot method, and it can be seen

that the wavelengths obtained from both methods are in good agreement. However, it

can be seen that the signal-to-noise ratio using the saturation spectroscopy setup is poor

compared to that of the spot method. Furthermore, saturation spectroscopy can only be

used to determine Doppler free transition frequencies. The spot technique, on the other

hand, can be adapted to measure Doppler shifted transition frequencies, thereby providing

interaction wavelengths when the laser-atomic beam configuration is not perpendicular.

Measurement of these Doppler shifted transition frequencies are presented below.
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6.1.3 Doppler Shifted Fluorescence Spot Technique

In many experiments the atomic motion is not necessarily perpendicular to the laser

beams. In this situation a component of the atoms velocity is parallel (or antiparallel)

to the laser beam and the frequency of the resonance line becomes Doppler shifted. The

resulting frequency shift, ∆f , can therefore be expressed as [75]

∆f =
f

c
v cos(θ) (6.1)

where f is the Doppler free transition frequency, c is the speed of light, v is the mean

velocity of the atoms along the direction of reference axis and θ is the angle between the

atom motion and laser beam. The v cos(θ) term represents the mean velocity component

of the atoms parallel to the laser beam.

With a slight modification to the setup used in section 6.1 these Doppler shifted wave-

lengths can be measured. The change to the setup is illustrated in figure 6.7, with the

modification being the rotation of atomic oven. The motivation behind the rotation is to

increase the atomic flux along the desired direction, and also to use the cylindrical axis

of the atomic oven as reference axis. It should be noted that the rotation is motivated

purely for convenience and does not affect the final wavelength measurement. With these

Figure 6.7: Illustration of the modified setup used to determine the Doppler shifted tran-
sition wavelengths. Laser beams 2 and 4 make an acute angle α while beams 1 and 3 make
an obtuse angle β with the reference axis. In (a) the laser is red detuned from resonance,
(b) the laser is on resonance and (c) the laser is blue detuned.
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non-perpendicular geometries the direction of propagation of the laser beams is now an

important factor. One pair of the laser beams (2 and 4) forms an acute angle, α, while the

other pair of lasers (beam 1 and 3) form an obtuse angle β with reference axis. In both

cases the magnitude of the angular difference from 90o (and hence the frequency shift) is

the same, but the sign is different. To align a pair of spots to the reference axis the laser

is detuned from resonance. Blue detuning aligns the spots corresponding to lasers 2 and

4 to the reference axis, while red detuning aligns the fluorescence spots corresponding to

lasers 1 and 3 to the reference axis.

Demonstration of the Doppler shifted fluorescence spot technique is shown in figure 6.8.

Here the laser is (a) red detuned to align the spots to the reference axis for an angle

of α = 70o and (c) blue detuned to align the spots for an angle of β = 110o. When

the laser is tuned to the Doppler free resonance measured in section 6.1, (b), the spots

align perpendicular to the laser beams. This confirms the measured wavelengths are

independent of the angle between the laser beam and atomic oven.

(a)

λ=398.91116 nm (angle = 110o)

(b)

λ=398.91128 nm (angle = 0o)

(c)

λ=398.91140 nm (angle = 70o)

Figure 6.8: Images of the modified fluorescence spot technique. Pictures show the atomic
ovens and fluorescence spots where the laser beams intersect the atomic beam taken at
angles of (a) 110o, (b) 0o, and (c) 70o.

The reference axis is then rotated to angles of α = 63o, 70o, 75o and 80o with one pair of

lasers, and hence β = 117o, 110o, 105o and 100o with the other pair of lasers respectively.

The measured Doppler shifted frequencies of 174Yb atoms at each of these angles is shown

in figure 6.9. The measured data is in good agreement with the theoretical fit provided

by equation 6.1. To provide confirmation of these measured Doppler shifted wavelengths,
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they are used in the final experimental setup, where laser and atomic beam form an angle

of 63 o. Using these wavelengths and a laser at 369 nm selective ionisation and trapping

of the different ytterbium isotopes was successful [141].

Figure 6.9: Doppler frequency shift in 1S0 ↔ 1P1 transition of 174Yb as a function of angle
between the laser beams and atomic beam.

6.2 Yb+ Doppler Cooling and Repump Wavelengths

The resonant wavelengths of the 2S1/2↔ 2P1/2 Doppler cooling and the 2D3/2↔ 3D[3/2]1/2

repump transitions are measured by scanning the respective laser, monitoring the fre-

quency dependent fluorescence, then measuring the wavelength on a wavemeter (High

Finesse; WS7). The wavelengths the 2S1/2 ↔ 2P1/2 transition wavelengths are deter-

mined as the wavelengths just before the fluorescence rapidly drops to background level,

which corresponds to heating of the ion. The 2D3/2 ↔ 3D[3/2]1/2 transition wavelengths

are determined as the wavelengths at which maximum fluorescence is obtained. For the

experiment the intensity of the 369.5 nm and 935.2 nm beams are reduced to 0.4 Wcm−2

and 0.02 Wcm−2 respectively to reduce the effects of power broadening and ac Stark shifts.

The measured cooling and repumping wavelengths (in vacuum) for the different Yb iso-

topes are shown in table 6.4. For 171Yb+ an external static magnetic field of 0.5 mT was

applied to the ion to remove degeneracy within the hyperfine states, but keep the Zeeman

shifts at a manageable level. The even isotopes however have no hyperfine states so the

magnetic field was removed.
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Isotope
2S1/2 ↔ 2P1/2 transition 2D3/2 ↔ 3D[3/2]1/2 transition

wavelength [nm] wavelength [nm]
170Yb+ 369.52364(6) 935.19751(19)
171Yb+ 369.52604(6) 935.18768(19)
172Yb+ 369.52435(6) 935.18736(19)
174Yb+ 369.52494(6) 935.17976(19)
176Yb+ 369.52550(6) 935.17252(19)

Table 6.4: Wavelengths (vacuum) for the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 and 2D3/2|F = 1〉
↔ 3D[3/2]1/2|F = 0〉 transitions in Yb+.

The measured 369.5 nm cooling wavelengths are in good agreement with those previously

published by E. W. Streed et al. [139] who, using an Yb+ hollow cathode lamp, ob-

served a Doppler absorption line centred about 369.525nm. As a hollow cathode lamp was

used, however, the observed line contained overlapping lines from the multiple ytterbium

isotopes and was broadened to ≈3 GHz. While both measurements are consistent the

results presented here are more precise. Due to infrequent population, precise transition

wavelengths for the 638 nm 2F7/2 ↔ 1D[5/2]5/2 transition are difficult to obtain. During

experiments 120 Wcm−2 of 638 nm light is applied to the ion. Setting the laser wavelength

to 638.618 nm for the even isotopes, and scanning between 638.610 nm and 638.616 nm

for 171Yb+, no obvious fluorescence interrupts were observed, indicating these values are

reasonably close to the exact transition wavelengths.

6.2.1 Error Analysis

The main sources of uncertainties of the measurements are from the absolute accuracy of

the wavemeter, power broadening of the transition linewidths, ac Stark shifts, and Zeeman

shifts. Each of these source are analysed below.

Wavemeter Uncertainty

This source of error is the most significant of those listed. The absolute accuracy of the

wavemeter is specified to 60 MHz between 370 nm - 1100 nm and to 200 MHz below 370

nm. The 369.5 nm wavelengths are therefore inferred by halving the measured 739.05 nm

wavelengths. This results in an uncertainty of 120 MHz compared to 200 MHz if the 369.5

nm wavelengths are measured directly. To eliminate systematic offsets the wavemeter is

calibrated with a 780 nm laser, stabilised to 1 MHz, and a He-Ne laser, calibrated to <1

MHz. The wavemeter is also calibrated before and after each measurement and no change

in calibration measurement were observed.
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Power Broadening

Power broadening of a transition is expressed as Γ′ = Γ
√

1 + s0, where Γ is the transition

natural linewidth, and s0 = I/Isat is the laser-ion saturation parameter relating the laser

intensity, I, to the saturation intensity of the transition, Isat [75]. The 369.5 nm beam,

with an intensity of 0.4 Wcm−2, broadens the 2S1/2 ↔ 2P1/2 transition by 40 MHz while

the 935 nm beam, with an intensity of 0.02 Wcm−2, broadens the 2D3/2 ↔ 3D[3/2]1/2

transition by 32 MHz. Since the 2S1/2 ↔ 2P1/2 Doppler cooling transition frequency is

determined by the immediate drop in fluorescence, which occurs when the laser is blue-

detuned from resonance, it is insensitive to power broadening. The widened transition

linewidth therefore is expected to be a negligible source of measurement uncertainty.

AC Stark Shift

The first order AC stark shift is given by [75]

Ee,g = −~
2

(
∆±

√
∆2 + |Ω|2

)
(6.2)

where ~ is the reduced Plank constant, ∆ the laser detuning and Ω =
√

(Γ2I)/(2Isat) the

transition Rabi frequency. As the wavelengths are measured on resonance ∆ = 0 the 369.5

nm beam, with an intensity of 0.4 Wcm−2, shifts the 2S1/2 ↔ 2P1/2 transition by 38 MHz

while the 935.2 nm beam, with an intensity of 0.02 Wcm−2, shifts the 2D3/2 ↔ 3D[3/2]1/2

transition by 17 MHz.

Zeeman Shift

The frequency shift of atomic magnetic hyperfine states due to a magnetic ∆f are ex-

pressed using the Breit-Rabi formula [145]

∆E =
Ehf

2(2I + 1)
− gIµBmFB±

1

2

√
E2

hf +
4mF

2I + 1
(gJ − gI)µBBEhf + (gJ − gI)

2µ2
B
B2 (6.3)

where Ehf is the energy splitting of the hyperfine states when no magnetic field applied,

B the applied magnetic field, µB is the Bhor magnetron, h is the Plank constant, mF the

magnetic hyperfine state, and gI and gJ are the nuclear and electronic g-factors respectively.

gI is several orders of magnitude lower than gJ so can be neglected, and gJ is expressed

as [76]
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gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
(6.4)

where J , L and S are the total, orbital and spin angular momenta of the electron respec-

tively. A 0.5 mT external magnetic field applied when measuring 171Yb+ is estimated to

change the ∆mF = ±1 transitions by ≈ ±7 MHz, while transition wavelengths between

the magnetic field insensitive mF = 0 state are not expected to change. Reducing the

magnetic field to 0.25 mT reduces the ∆mF = ±1 transitions to ≈ ±3.5 MHz, but due to

the relatively large uncertainty associated with the wavemeter, no observable change in the

resonance wavelengths were measured. The magnetic field is removed for measurements

of the even isotopes, leaving the ions exposed to low magnetic fields such as that from the

Earth, which are estimated to induce a shift of only ≈1 MHz.

By combining all above errors, the overall uncertainty associated for the 2S1/2 ↔ 2P1/2

transition is ±126 MHz, while for the 2D3/2 ↔ 3D[3/2]1/2 transition is ±63 MHz.
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Chapter 7

369 nm “ColdLase” Doppler

Cooling Laser

“A common mistake that people make when trying to design something

completely foolproof is to underestimate the ingenuity of complete fools.”

-Douglas Adams, Mostly Harmless

At the start of the experiment light at 369 nm was achieved using expensive complex laser

systems, such as dye lasers or frequency doubling systems. During the course of the exper-

iment, however, laser diodes at 371 nm became available which, if cooled, could emit light

at 369 nm. Operating these cold diodes in a standard external cavity arrangement would

greatly reduce the expense and maintenance associated with obtaining this wavelength.

Systems capable of cooling an external cavity diode laser to sub-zero temperatures have

been constructed (Fletcher and Close [146], Kielspinski et al [62] and Nguyen et. al. [147]),

however these systems have limitations. The Fletcher and Close system is not air-tight,

which presents the risk of condensation on optical components. The Kielpinski system has

no diode modulation capabilities so without external modulation it is restricted to cool-

ing even isotope ions. The Nguyen system is housed inside a vacuum system, requiring

the need for a vacuum pump and offering limited access once the system is in operation.

The ColdLase system presented in this chapter is designed to improve upon the previous

systems - to produce a cost effective, easy to maintain laser that can provide stable, single

mode 369 nm light, which can also be modulated to enable cooling of 171Yb+.
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7.1 Design Criteria

The first obvious criterion is to cool and stably maintain the diode at sub zero tempera-

tures. It was advised by the manufacturer [148] that a temperature of -10 oC is required

to obtain 369 nm from a 371 nm laser diode. To provide a comfortable error margin

stable cooling down to at least -20 oC is therefore desired. The easiest and cheapest way

to control the temperature is using a thermoelectric cooler (TEC). TEC’s transfer heat

through controlled electron movement so do not introduce the risks of vibrations or leaks

associated with mechanical parts or cooling fluids. They are also relatively inexpensive to

operate. Exposing the diode to the laboratory environment, however, can make cooling

extremely difficult if not impossible. Hermetic isolation of the diode from this damp, hot

and uncontrollable environment is therefore required. A second criterion is adjustability

during operation. To achieve this only the diode and lens are mounted inside the en-

closure, and the grating positioned outside. The enclosure must therefore have suitable

feedthrough connections for the electrical components housed within it, as well an opti-

cal port that allows the beam to exit but minimises unwanted feedback into the diode.

A means to reduce/remove the moisture from the air in the chamber is also required to

avoid condensation on any of the optical surfaces. The system must be capable of passive

heat dissipation to avoid unwanted vibrations onto the system. Finally a means to create

frequency sidebands to access the hyperfine states in 171Yb+ would be advantageous.

7.2 ColdLase Design

The laser is based upon a Littrow configured external cavity diode laser (explained in

detail in section 3.2). The design for the system is shown in figure 7.1. The whole ECDL

is mounted on a single base which acts as the heatsink (1). The laser diode and aspheric

lens are mounted inside the enclosure (2), and the diffraction grating (3) is positioned

outside.

Inside the chamber the laser diode (10, Nichia: NDU1113E) and aspheric lens (13, Thor-

labs: A390TM-A) are mounted in a collimation module (9) using a brass clamp ring (12)

and a locking nut (not shown) respectively. The module is in contact with the cold side

of a two stage thermoelectric cooler (15, TE Tech: te-2-(127-127)-1.3), while a thermistor

recess (14) accepts a thermistor (Farnell: AD592ANZ) providing constant measurement of

the module temperature. The hot side of the TEC is in contact with a podium (8), which

acts as a thermal conduit to the bulk of the heat sink as well as positioning the beam at
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the optical height of the table. Thermal grease (16) is used to improve the thermal contact

at the module/TEC and TEC/podium interfaces. A clamp (17), constructed from teflon

to minimise unwanted thermal conduction, secures the module to the podium.

The chamber is fitted with an anti-reflection coated window (4, Thorlabs: WL41050-C6)

to allow the beam to exit while minimising reflections. The window is also mounted at

an oblique angle to prevent any reflections being directed back into the diode. A second

port on the chamber (5) is fitted with a sub-D9 connector, providing connections to the

TEC and thermistor, and an SMA feedthrough allowing for a modulated signal to reach

the laser diode. A third port (6) is designed to either accept a cup of desiccant (7) or to

be fitted with a vacuum pump to reduce the moisture within the chamber. The desiccant

used is ‘Molecular Sieve’ (Baltimore Innovations: BIL-10127-WSG), which can absorb up

to 20% of its own weight in moisture. The volume (and therefore weight) of desiccant that

can be held by the cup is enough to remove all moisture from within the chamber. The

chamber is in thermal contact with the heatsink to ensure it has a temperature above the

dew-point and that no condensation will occur on either side of the anti-reflection coated

window.

An additional feature to this laser, which is not included in other designs, is the ability

to change the diode grating distance. Changing this distance (and hence the free spectral

range of the external cavity) changes the frequencies which resonate within the cavity,

enabling the carrier frequency and any frequency sidebands to resonate simultaneously [99].

7.3 Thermal Considerations

Normally laser diodes are not cooled below ≈15 oC, and issues such as diode heating rates,

cooling rates and energy dissipation can be treated as negligible. When cooling a diode to

-20 oC, however, these considerations become more prominent, and can in fact limit the

system’s performance. To determine if a diode can be stably maintained at these sub-zero

temperatures an in depth heat flow analysis of the systems is required.

For the ColdLase system the different aspects of the thermal system are shown in figure

7.2 and, as a result of the system design, are interconnected. The enclosure causes heating

of the diode via black body radiation which is removed using the TEC and deposited onto

the heat sink, along with the energy required to operate the TEC. The heat sink, however,

is not a perfect emitter and will increase in temperature. The chamber temperature will

subsequently increase and so will heating of the diode. To maintain the diode at the same

temperature the TEC now has to remove energy from the diode faster while maintaining
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an increased temperature gradient. This deposits more energy onto the heat sink again

adjusting this interconnected thermal system. The system is expected to equilibrate, but

the diode temperatures that can be maintained at equilibrium depends upon the efficiency

the TEC and heat sink. To determine if the system can maintain a diode at -20 oC the

different diode heating mechanisms are considered and compared against the performance

of the TEC and heat sink.

Figure 7.2: Heat flow through the system including heat sources onto and out of the diode.

Diode Operation

Laser diodes are not 100% efficient. A proportion of the electrical energy used to drive

the lasers is converted into phonon modes that can heat the diode. For the analysis, any

drive power not converted into light is assumed to be converted into phonon modes, and

heating of the diode. Thus

Pp = IdVd − Popt (7.1)

where Pp is the phonon heating per unit time, Id is the diode drive current, Vd is the

diode drive voltage, and Popt is the optical power emitted from the laser diode. The diode

is specified to generate 20 mW at a maximum drive current and voltage of 85 mA and 5

V respectively. The worst case would therefore result in the diode at room temperature

generating up to 405 mW of phonon heating per second. Diode efficiency is expected to

increase as it is cooled, thereby decreasing phonon related heating. The change of this

heating with temperature, however, is difficult to predict and assuming it as constant

allows for the worst case scenario.
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Optical Feedback

In the Littrow configuration the external diffraction grating reflects light back into the

diode, with the magnitude of reflected light dependent upon the grating efficiency. As-

suming this optical power is completely converted to heat within the diode, the power

increase due to optical feedback is

Pfb = PoptGeff (7.2)

where Pfb is the power of the reflected first order beam, and Geff the first order diffraction

efficiency of the grating. The grating used has an efficiency of 52% which, when considering

20 mW is emitted from the diode, results in an extra 10.4 mW of power within the diode.

Blackbody Radiation

All surfaces with temperatures above absolute zero naturally emit radiation, and the power

radiated is given by the back body equation [149]

P = εσAT 4 (7.3)

where ε is the emissivity of the radiating material (unitless), σ the Stephen-Boltzmann

constant (5.67x10−8W m−2 K−4), A the surface area, and T the surface temperature. It

is assumed that all the radiation emitted by the chamber walls is absorbed by the module,

and in turn all the radiation emitted by the module is absorbed by the chamber. The

resulting heat flow onto the diode is described as

Pbb = εcσAcT
4
c − εmσAmT 4

m (7.4)

where the subscripts c and m refer to the chamber and module respectively. The surface

area and emissivity of the chamber are (7.44 ± 1)x10−3m2 and 0.057 respectively, while the

surface area and emissivity of the module are (1.58 ± 1)x10−3m2 and 0.023 respectively.

Thermal Conduction

For two separated objects at different temperatures, heat will flow from the the hot object

to the cold object. The rate of heat flow is expressed as [149]

Pc = Ak
∆T

x
(7.5)
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where k is the thermal conductivity of the insulating material between the objects, A is

the surface area of the ‘hot’ object, ∆T = Tc − Tm is the temperature gradient between

the objects, and x the distance between the objects. In the model the two objects are

the chamber and module. They have a minimum separation of 6 ± 1 mm and air (k =

0.0245Wm−1K−1) is the medium between them. If a vacuum pump is used to evacuate

the chamber then conduction heating can be reduced to almost zero. Since it is preferred

for the system to operate without a vacuum pump this heating source is considered in the

calculations.

Thermo-Electric Cooler

The module and laser diode are cooled using a thermo-electric cooler (TEC). The current

and voltage needed to operate the TEC depend upon the required rate of energy transfer

across the TEC and the temperature gradient between the cold side (laser diode) and hot

side (heat sink), and are obtained from the device’s performance plots. The TEC chosen

for the system (TE Tech: te-2-(127-127)-1.3) is a two stage TEC, and has the performance

plots shown in figure 7.3. The top plot indicates the current required to achieve a desired

energy flow through the TEC at a given temperature gradient. The lower plot indicates the

corresponding voltage required. The Qcold=0 curve (ticks) indicates the voltage required

when no heat load is considered and only a temperature gradient is required. The DT=0

curve (squares) indicates the voltage required when only a heat load needs to be removed,

but no temperature gradient is present. Since a heat load is removed across a temperature

gradient the system operates at an intermediate gradient. As this curve is unknown the

upper curve, which results in the highest heating power, is used.

Heat Sink

Heat sink performance, referred to as thermal resistance, is defined as the power required

to increase the temperature of the heat sink by 1 oC. A heat sink with a low thermal

resistance can dissipate heat quickly and will experience a lower temperature rise. The

temperature rise can therefore be expressed as

Ths = PhsRth (7.6)

where Phs is the power load deposited into the heat sink and Rth is the thermal resistance.

Since the heat sink temperature affects the chamber temperature, which in turn affects

the heating of the diode and subsequently Phs, reducing the thermal resistance is of great



125

Figure 7.3: Electrical performance plots for the TEC (TE Tech: te-2-(127-127)-1.3). The
top plot indicates the current required to achieve a desired energy flow at a given temper-
ature gradient, while the lower graph indicates the voltage required.

importance. Given that heat is required to be dissipated passively (via radiation and

conduction only) the thermal resistance is ultimately dependent upon the emissivity of

the material used, and the surface area of the heat sink. It was decided to construct

the heat sink using aluminium. Aluminium offers an emissivity of 0.057, and while other

materials boast superior emissivities they are considerably more expensive. The expected

reduction in thermal resistance from these materials is not justified by the price. The

surface area is increased by machining fins into the side of the heat sink. The fin design

is based upon a heat sink from Ficher Elektronik (sk101), however the fins on ColdLase
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are slightly longer and also two sets of fins are used (one on each side). Based upon the

efficiency of the Ficher Elektronik design the thermal resistance for the ColdLase heat sink

is estimated to be 0.5 KW−1. Oxidising the aluminium can further increase emissivity,

but based upon the calculations shown in the next section this is not required.

7.3.1 Heat Flow Analysis

The diode heating mechanisms, TEC performance, heat sink efficiency, and the intercon-

nected effects between these elements are now considered. The first stage of the thermal

analysis is to determine the heating rate of the diode, and is estimated by adding the

different heating influences

Pm = Pp + Pfb + Pbb + Pc (7.7)

where Pm is the heating rate of the module. To maintain a diode temperature the rate

of cooling must equal the rate of heating. The power to be extracted by the TEC must

therefore equal Pm. The electrical requirements of the TEC to maintain this power flow

and also the temperature gradient are measured from the performance plots. The TEC

drive power, PTEC is then combined with the power removed from the diode to yield a

total power deposited onto the heat sink of

Ptot = Pm + PTEC (7.8)

Using this total power and the thermal efficiency estimate the increase in the heat sink

temperature is determined. As mentioned before this increase in heat sink temperature

increases the chamber temperature which increases diode heating from black body ra-

diation and thermal conduction. The greater heat sink temperature also increases the

temperature gradient across the TEC. Both of these influences increase the drive power of

the TEC, which further increases the heat sink temperature. The heat flow analysis just

described is therefore reiterated, but using the new heat sink and chamber temperature.

Monitoring the heating rates, TEC drive power and heat sink temperature after each iter-

ation determines whether or not the system will stabilise. Converging parameters indicate

that the thermal flow within the system will equilibrate and the diode can be maintained

at the desired temperature. Diverging parameters, however, indicate an unstable system

and the diode temperature cannot be maintained. The thermal analysis for the ColdLase

system is as follows.
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1st Iteration

Initially the module temperature is set to -20 oC and the chamber is assumed to be at room

temperature (25 oC), creating a temperature gradient of 45 oC across the TEC. The power

onto the module from black body radiation and thermal conduction, at room temperature,

are estimated to be Pbb = 0.18 W and Pc = 1.47 W respectively. When combined with

the heating from phonons and optical feedback the heating rate of the module is Pm =

2.05 W. The TEC is therefore required to transfer 2.05 W across a temperature gradient

of 45 oC and is achieved using an operating current of 1.1 A and voltage of 7 V (as shown

by the solid line in figure 7.4). The total power deposited onto the heat sink is therefore

Ptot = 9.75 W, and will cause the temperature of the heat sink and chamber to increase

by 4.88 oC to 29.88 oC.

2nd Iteration

Using the new external temperature of 29.88 oC diode heating due to black body radiation

and conduction increase to Pbb = 0.21 W and Pc = 1.61 W respectively. The temperature

gradient across the TEC increases to 49.88 oC, and the operating current and voltage for

the TEC increase to 1.3 A and 8.1 V respectively (dashed line). The total power deposited

onto the heat sink is now Ptot = 12.75 W and the heat sink temperature increases to 31.38

oC. It can be seen that the temperature rise between the first and second iterations (1.74

oC) is less than the temperature rise between initial conditions and the first iteration (4.88

oC). These converging parameters suggest stability.

3rd Iteration

With a base temperature of 31.38 oC, heating from black body radiation and thermal

conduction become Pbb = 0.215 W and Pc = 1.67 W respectively and the temperature

gradient across the TEC increases to 51.38 oC. The TEC now requires PTEC = 11.9 W

of electrical power (dotted line) resulting in a power of Ptot = 14.21 W deposited into

the heat sink. The heat sink temperature raises to 32.11 oC, which is only an increase of

0.59 oC from the last iteration. Since this increase is also within the error associated with

reading the TEC performance plot, the system can be said to stably maintain the diode

at -20 oC.
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Figure 7.4: Electrical performance plots for the TEC (TE Tech: te-2-(127-127)-1.3), indi-
cating the specific values used in the heat flow calculations.

7.4 ColdLase Performance

The laser is first operated with a diode at 800 nm, (Thorlabs: L808P010), and the ability

to drag the wavelength with temperature is tested. For this test the grating is not included

as it can also change the final emission wavelength of the laser. Instead the collimated

beam from the diode is measured directly using a commercial wavemeter (High Finesse:

WS7). The diode wavelength at different temperatures is shown in figure 7.5. It can be

seen that the system can in fact stably cool the diode down to -35 oC and at 800 nm the

wavelength changes at ≈0.2 nmoC−1.

The 800 nm diode is replaced with the 371 nm Nichia laser diode and the system cooled
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Figure 7.5: Wavelength vs temperature plot for the 800 nm laser diode.

again. The emission wavelength as a function of temperature is shown in figure 7.6. It can

be seen that at 371 nm the wavelength changes at a rate of ≈0.05 nmoC−1, and in order

to obtain 369.5 nm the diode only has to be cooled to ≈-4 oC, instead of the expected -20

oC.

Figure 7.6: Wavelength vs temperature plot for the 371 nm laser diode.

The grating is then included to form the external cavity. Single mode performance at

369.05 nm was achieved by operating the diode at a temperature of -3.9 oC and driving

it with a current of 42.7 mA. Unfortunately the diode also exhibits multimode behaviour

and a maximum power of 2.8 mW is obtained from the ECDL, as opposed to the expected
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maximum power of ≈10 mW. A bias tee (Pulsar Microwave: BT-29-400S) is connected to

the SMA feedthrough adaptor and a 5 dBm 2.1 GHz signal, generated from a HP 8673C

signal generator, is sent to the laser diode. The resulting 2.1 GHz sidebands, observed

using a scanning transfer cavity with a free spectral range of 500(10) MHz, are shown

in figure 7.7. The frequency sidebands are measured to be 116(10) MHz and have an

amplitude of 13(2)% that of the carrier. The poor resolution in this figure is a result of

the poor transmission through the cavity and only a small beam power measured by the

photodiode. Although this lower resolution does increase the uncertainty of the frequency

and amplitude of the sidebands, figure 7.7 has demonstrated that 2.1 GHz sidebands can

be applied to the cold laser.

Figure 7.7: Spectrum of the 369 nm ColdLase beam when current modulated at 2.1 GHz.
The apparent sideband peaks occurring at 100 MHz are 2.1 GHz sidebands corresponding
to a carrier peak 4 free spectral ranges away. The +2.1 GHz sidebands are used for state
preparation.

Unfortunately it was not possible to obtain 14.7 GHz sidebands using current modulation.

This is not too surprising since the response of the laser diode is expected to be significantly

slower than this. A means of obtaining these sidebands would be to position a 7.37

GHz bulk phase electro-optic modulator in the beam and use the second order sidebands.

Alternatively applying 12.6 GHz microwave radiation to the ion will couple the 2S1/2|F =

0〉 ↔ 2S1/2|F = 1〉 states, thereby providing access to the 2S1/2|F = 0〉 states. At the time

of writing the system has been used to successfully cool the even Yb+ isotopes. A lack

of 14.7 GHz optical sidebands or a 12.6 GHz microwave source meant trapping of 171Yb+

with this system could not be shown.
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Chapter 8

Qubit Manipulation

-I’m a genius again!... Ask me a question. Any question, and I’ll answer it.

-Any question...How to break the speed of light?... How to marry quantum

mechanics and classical physics?... anything? OK, would you like some toast?

-Holly and Talkie Toaster, Red Dwarf

Trapped ions are regarded as an extremely suitable system for realising the quantum

information processor. The basic tools for reliable information processing are the rotation

of the qubit and the ability to couple to the external motion. Rotating the qubit takes

advantage of the quantum mechanical principle of superposition enabling arbitrary states

of α| ↑〉+β| ↓〉 to be created. Motional coupling enables ions to become entangled, allowing

for the exchange of information between qubits and the formation of complex gates.

It is also preferable for the ion to be cooled to the motional ground state. Decoherence of

a superposition or entangled state is a limiting factor of the fidelity of any corresponding

operation. While many factors contribute to decoherence high ion energies provide a

significant limitation. Cooling to the motional ground state increases the coherence, and

fidelities, of any logic operations.

Qubit rotation is achieved through transitions that couple both of the qubit states. Entan-

glement and ground state cooling, however, also require the ability to couple to motion.

In chapter 2 different techniques of qubit manipulation are discussed and it is the two pho-

ton stimulated Raman transitions, capable of driving all the required manoeuvres, that

is the preferred approach. In this chapter different approaches of implementing a Raman

transition in 171Yb+ are discussed and a novel setup to exciting a Raman transition tested.
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8.1 Stimulated Raman Transitions

Two-photon Raman transitions involve three states: the two qubit states (|↓〉 and |↑〉) and

an excited state |e〉, arranged in a Λ configuration as shown in figure 8.1. The frequency

span between the qubit states, |↑〉 and |↓〉, and the excited state are ω↑,e and ω↓,e = ω↑,e+ω0

respectively, and are coupled using optical fields, Ēl(r) = El(r) cos(k̄l · r̄−ωt−φl)εl, where

l = α, β respectively. Both fields are detuned from the excited state by ∆ and have a

frequency difference of ωα − ωβ = ω0 + δω.

Figure 8.1: Two photon stimulated Raman transition. Fields at ωα and ωβ, detuned from
resonance by ∆, couple the qubit states |↑〉 and |↓〉 via the excited state |e〉.

To understand the process of a Raman transition first consider the Hamiltonian describing

the interaction: Ĥi = −µ̂ · (Ēα + Ēβ), where µ̂ is the electric dipole transition and the

subscripts indicate the different optical fields. Inserting the expressions for the electric

fields into the interaction Hamiltonian then yields

Ĥi = −~
[
gαe

i(k̄α·r̄−ωαt+φα) + gβe
i(k̄β ·r̄−ωβt+φβ) + h.c.

]
(8.1)

where gl = −µ̂ · Elεl(r)/(2~) is the coupling strength between the qubit states and the

excited state. This Hamiltonian, however, describes transitions within a three-level sys-
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tem. To be suitable for coherent population transfer between the two qubit states direct

interaction with the excited state must be removed, reducing the configuration to a two

level system.

Adiabatic Elimination of Excited State

In the situations where the Raman beams are far-detuned from the excited state |e〉, such

that ∆R � γ, |g2
l |, population of the excited state can neglected. Several derivations show-

ing adiabatic elimination can be found [67,89] with perhaps the more intuitive derivations

provided by Deslauriers [87] and King [68], who present the elimination using state pop-

ulations. Following Deslauriers and King the state population of the three level system is

first obtained:

ċe,m = i
gα
2

∞∑
m=0

eit[ωx(n−m)+∆+δω]〈m|eikα·x|n〉c↑,n

+i
gβ
2

∞∑
m=0

eit[ωx(n−m)+∆]〈m|eikβ ·x|n〉c↓,n (8.2)

ċ↑,m = i
g∗α
2

∞∑
m=0

eit[ωx(n−m)−∆−δω]〈m|e−ikα·x|n〉ce,n (8.3)

ċ↓,m = i
g∗β
2

∞∑
m=0

eit[ωx(n−m)−∆]〈m|e−ikβ ·x|n〉ce,n (8.4)

These state populations are then transformed to a rotating frame given by ce,n → c′e,ne
i∆t,

yielding

ċ′e,m =
gα
2

∞∑
m=0

ei[ωx(n−m)+δω]t〈m|eikα·x|n〉c↑,n

+
gβ
2

∞∑
m=0

ei[ωx(n−m)]t〈m|eikβ ·x|n〉c↓,n − i∆c′e,n (8.5)

ċ↑,m =
g∗α
2

∞∑
m=0

ei[ωx(n−m)−δω]t〈m|e−ikα·x|n〉c′e,n (8.6)

ċ↓,m =
g∗β
2

∞∑
m=0

ei[ωx(n−m)]t〈m|e−ikβ ·x|n〉c′e,n (8.7)

The term ċ′e,m from equation 8.5 is now neglected using the assumption ċ′e,m � i∆c′e,m.

This assumption implies that changes in the excited state population do not affect the long

term populations of the resulting two level system. Under this assumption the average

excited state population, c′e,m, can therefore be described using the dynamics of the two
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qubit levels as

c′e,m = i
gα
2∆

∞∑
m=0

ei[ωx(n−m)+δω]t〈m|eikα·x|n〉c↑,n

+
gβ
2

∞∑
m=0

ei[ωx(n−m)]t〈m|eikβ ·x|n〉c↓,m (8.8)

Plugging this into equations 8.6 and 8.7, yields the dynamics of the two-level system

ċ↑,n =
|gα|2

2∆
c↑,n + i

gαg
∗
β

2∆

∞∑
m=0

ei[ωx(m−n)−δω]t〈n|ei∆kx|m〉c′↓,m (8.9)

ċ↓,n =
|gβ|2

2∆
c↓,n + i

g∗αgβ
2∆

∞∑
m=0

ei[ωx(n−m)+δω]t〈n|e−i∆kx|m〉c′↑,m (8.10)

The first terms in these equations, |gα|
2

2∆ and
|gβ |2
2∆ , are the ac Stark shifts experienced by

|↑〉 and |↓〉 respectively. To simplify the derivation these contributions can be removed by

either redefining the energies of |↑〉 and |↓〉 to include the shifts or by transforming to a

rotating frame of the ac Stark shifted resonance.

The remainder of equations 8.9 and 8.10 describe the system dynamics, and how qubit

and motional states can undergo a population transfer. These expressions can be seen

to be similar to the single photon coupling described earlier, but with k replaced by ∆k̄,

where ∆k̄ = k̄2 − k̄1 is the wavevector difference between the two beams. While the

increased wavevector of the optical radiation enables stronger motional coupling, the final

coupling strength in a Raman transition is determined by the wavevector difference, ∆k̄,

from the beam orientation. The optimum geometry uses two counter propagating beams

aligned along a trap axis, yielding ∆k̄ = 2k. For co-propagating beams, however, ∆k̄ = 0

which cannot induce motional coupling. Similarly if the resultant wavevector is ∆k̄ · z = 0

motional coupling is not possible.

Provided ∆k̄ offers sufficient coupling strength, the motional states that can be coupled

are determined by the detuning of the beat-note frequency, δω. As illustrated in figure

8.2, using a detuning of δω = 0 results in coupling to the same motional state, |m〉 = |n〉,

while a detuning of δω = ±ωi couples motional states |m〉 = |n± 1〉.

If we now consider the system to be in the rotating frame of the Stark shifted resonance

and the beatnote tuned near a motional resonance, δω ≈ (n −m)ωi, applying a rotating

wave approximation results in a single stationary term in each equation. The equations
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Figure 8.2: Coupling between different motional states using a stimulated Raman transi-
tion. Detuning the beat frequency δω = 0 results in a carrier transition, δω = +ωi couples
to a lower motional state, and δω = −ωi couples to a higher motional state.

of motion then become

ċ↑,n = −iΩn,me
−iδωtc↓,m (8.11)

ċ↓,n = −iΩ∗n,meiδωtc↑,m (8.12)

where Ωn,m = Ωm,n is the generalised Rabi frequency between the qubit states and mo-

tional states, and is expressed as

Ωn,m =
gαg
∗
β

2∆
〈m|e i∆kzz|n〉 (8.13)

where g∗αgβ/2∆ is the base Raman transition frequency. It can be seen that the resultant

transition frequency of a two-photon Raman transition has a quadratic dependence upon

the electric field strength.

Off Resonant Scattering

Unfortunately coupling to the excited state is an unavoidable source of decoherence. Al-

though the lasers are detuned from the excited state off resonant coupling is only reduced,

not eliminated. The rate of spontaneous coupling depends upon the laser intensity and
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detuning and can be estimated by considering the general expression for scatter rate [75].

γp =
γs/2

1 + s+ (2∆
γ )2

(8.14)

where ∆ is the detuning, γ the natural linewidth and s the saturation parameter. When

exciting a Raman transition the lasers are detuned from resonance such that (2∆/γ)2 �

(1 + s), the spontaneous emission rate can then be approximated to

γp ≈
sγ3

8∆2
(8.15)

It is more informative to show the probability of a spontaneous scatter event occurring

during a stimulated Raman transition. This is achieved by comparing the off-resonant

coupling rate to the Raman transition rate. The probability is then

P =
γp

ΩRam
=

γ

8∆
(8.16)

where ΩRam = sγ2/∆. It can be seen that the probability of off resonant coupling scales

as 1/∆, however the Raman transition rate, as shown in equation 8.13, also scales as 1/∆.

By increasing the detuning to reduce off resonant scattering a greater laser intensity is

required to maintain a sufficiently high transition frequency. A compromise must be made

between achievable laser power and off resonant scattering is usually required.

It has been shown by Ozeri et al. [150] that for detunings beyond the fine structure splitting

∆ � ωf coherence can be preserved even during spontaneous scattering. Spontaneous

scattering is the sum of spontaneous Rayleigh (elastic) scattering and spontaneous Raman

(inelastic) scattering. Rayleigh scattering returns the ion to the same internal state while

Raman scattering transfers the ion to a different internal state. A Rayleigh scattered

photon therefore preserves the quantum nature of the system, however, Raman scattering

carries information relating to a hyperfine state and effectively measuring the atomic state,

destroying any coherence. In the regime defined by ∆ > ωf total scattering scales as 1/∆2

while Raman scattering scales as 1/∆4, suppressing the decohering scattering. In this

regime however, Raman, transition frequencies also scale as 1/∆2 so requires significant

laser intensities to maintain transition rates. If sufficient laser power can be achieved

then this is the preferred regime as the probability of an unwanted scatter event during a

Raman transition scales as 1/∆2, (as opposed to 1/∆ in the ∆ < ωf regime).
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8.2 Raman Transitions in 171Yb+

Previous implementations of Raman transitions use an S ↔ P dipole transition, which

would suggest the 2S1/2 ↔ 2PJ in 171Yb+ should be used. However, the light required

to access the 2P1/2 and 2P3/2 manifolds is at 369 nm and 329 nm respectively, which

would require an additional expensive laser source. A study of the energy level structure

of 171Yb+ presents possible alternatives: the quadrupole transitions to the low lying 2DJ

manifolds. At first glance this might seem ridiculous since Raman transition rates depend

upon transition linewidths, but the wavelengths of the two manifolds are at 411 nm and 435

nm. These wavelengths can be obtained from inexpensive laser diodes which, if they can

supply sufficient optical power, could make a quadrupole transition a suitable alternative.

To analyse both approaches the Raman transition rate, equation 8.13, is first re-expressed

into a more general form using a derivation presented by D.F.V. James [151]. The deriva-

tion, found in Appendix H, shows that Raman transitions via dipole and quadrupole

transitions can be expressed as

ΩRam =
e2Γ

4~2cαk3

P

πrε0c

∑
J

I+J∑
F=|I−J |

F∑
m=−F

(
σ

(s)
i χ∆m

i σ
(s)
j χ∆m

j

∆J

)
(8.17)

where e is the electron charge, Γ the spontaneous decay rate of the excited state, ~ the

reduced Plank constant, c the speed of light, α the fine structure constant, k the wavevector

of the light used, P the total power incident upon the ion from both beams, r the beam

waist, and ε0 the permittivity of free space. The σ(s) terms are the Clebsch-Gordan

coupling coefficients between specific mF states with s = 1, 2 representing a dipole and

quadrupole transition respectively, and i, j correspond to the transitions |↓〉 ↔ |e〉 and | ↑〉

↔ |e〉 respectively. ∆J is the detuning of the radiation from the specific J manifold, and

the χ∆m term describes the relative direction and radiative patterns of the radiation and

quantisation axis. The sums indicate that all available channels for exciting a transition are

considered. For excitation via the P -manifold J = 1/2 and 3/2, while for the D-manifold

J = 3/2 and 5/2.

The coupling coefficients between different mF states, and available channels between the

qubits states and excited states, are shown in appendix I. To excite a Raman transition

both qubit states must couple to the same excited state. As illustrated in the appendix,

only the |2P1/2,3/2, F = 1,mF = ±1〉 states or the |2D3/2,5/2, F = 2,mF = ±1, 2〉 states can

be used. Due to geometrical restrictions however, the available states in the D manifolds

are reduced to |2D3/2,5/2, F = 2,mF = ±1〉, which is discussed next.
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8.2.1 Geometrical Considerations

The expected experimental setup is shown in figure 8.3, indicating the relative beam paths,

and the direction of the quantisation axis. Since a multilayer trap is used the beams are

restricted to propagate at an angle of 45o to the trap axis and 90o with respect to each

other. The required beam polarisations are then dictated by the transition to be excited

and also the coupling coefficients.

Figure 8.3: Non co-propagating Raman beam setup. The beams propagate 45o to the trap
axis and 90o with respect to each other. The resulting wavevector difference ∆k̄ is along
the z-axis. The beam polarisations and orientation relative to the quantisation axis result
in optimal coupling for the 2S1/2↔2PJ manifolds.

When coupling via the |2PJF = 1,mF = ±1〉 states the optimum Raman transition

rate is achieved using the polarisation arrangement shown in figure 8.3 [89]. Since only

∆mF = ±1 transitions can be used both beams should be polarised perpendicular to the

quantisation axis. The product of the coefficients describing coupling via the |2P1/2,3/2,=

1,mF = −1〉 states (−1/
√

3×−1/
√

3,
√

2/3×−1/
√

6) has equal amplitude, but opposite

sign compared to coupling via the |2P1/2,3/2, F = 1,mF = −1〉 states (1/
√

3 × −1/
√

3,√
2/3 × 1/

√
6). To account for this ‘π’-phase shift the product of the field components

driving a transition via the mF = −1 states, E−,αE
∗
−,β, must have a π phase shift relative

to the fields exciting a transition via the mF = +1 states, E+,αE
∗
+,β [89]. This phase shift

is created using the configuration illustrated in figure 8.3. The σ+ and σ− components of

the beam travelling parallel to the quantisation axis have the same phase. However the

beam travelling perpendicular to the quantisation axis is polarised in the y-axis and the

circular components have a π phase shift. The resulting product of the fields E−,αE
∗
−,β =

−E+,αE
∗
+,β has the phase shift required for the transition amplitudes to constructively

interfere.
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To excite via the D manifolds the required polarisations are inferred from the results pre-

sented by Roos [152] and Kirchmair [153]. According to Kirchmair mF ↔ m′
F

quadrupole

transitions can be treated asmj ↔m′j transitions, and both Roos and Kirchmair have iden-

tified polarisations that enable ∆mF = ±1, 2 transitions. To optimally excite a ∆mF = ±2

transition the quantisation axis, laser propagation, and laser polarisation must be mutu-

ally orthogonal. However, the coefficients describing coupling via the mF = ±2 excited

states also have the π-phase shift. The resulting configuration to excite a Raman transi-

tion would therefore require both beams to be polarised mutually orthogonal to each other

and to the quantisation axis. As it is impossible to achieve this configuration, exciting

a Raman transition via the ∆mF = ±2 states is impossible. Kirchmair and Roos have

shown that to excite a ∆mF = ±1 transition circularly polarised light can be used. This

however will only couple to either the mF = 1 or mF = −1 state, but not both.

Assuming the above configurations the geometric factor when coupling via either mF state

in the |2PJ〉 manifolds is χ±1 = 1/
√

2. When coupling via either of the mF states in |2DJ〉

manifolds, each beam results in a different geometric factor. For the beam perpendicular

to the quantisation axis χ±1 = 1/(2
√

3), while for the beam parallel to the quantisation

axis χ±1 = 1/
√

3 [153].

8.2.2 Comparison

The ability to excite a Raman transition via the 2S1/2|F = 1,mF = 0〉 and the |2DJ , F =

2,mF = 1/ − 1〉 states is now assessed. Due to the narrow linewidths of quadrupole

transitions the detunings from either the 2D3/2 or 2D5/2 manifolds are expected to be

significantly less that the separation of the D states. Thus the contribution from one

manifold is expected to be negligible when coupling to the alternative manifold. The two

manifolds can therefore be considered as two different states. The larger linewidths of the

dipole transitions, however, demand larger detunings and if detuning is on the order of

the fine structure splitting coupling to both of the manifolds must be considered.

Previous experiments have achieved rates of ΩRam/2π = 100 kHz [81]. Thus a transition of

at least ΩRam/2π = 50 kHz should be achieved. Based upon the available light sources at

411 nm and 435 nm, it is expected to achieve a Raman beam pair providing a total intensity

of 500 Wm−2 at the ion. This corresponds to two beams each of 0.5 mW focused to waists

of r = 50µm. Although the the 369 nm beams are expected to provide a greater intensity

an intensity of 500 Wm−2 is assumed for the comparison. The spontaneous decay rates of

the excited states are ΓD3/2
/2π = 3 Hz [154], ΓD5/2

/2π = 22 Hz [73], and ΓP1/2
/2π = 19.6
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MHz [72] and the Clebsch-Gordan coefficients and geometric factors have been described

in appendix I. For the analysis the ion is assumed to be oscillating along the z-axis with

with a secular frequency of ωz/2π = 1 MHz. The resulting Raman transition rates as a

function of detuning are shown in figure 8.4. The dashed line indicates a Raman transition

rate of ΩRam2π = 50 kHz. The first curve corresponds to coupling via the 2D3/2 manifold,

the second curve represents coupling via the 2D5/2 manifold, and the last curve represents

coupling via the 2P1/2 manifold. The detuning from this P manifold is small considered

to the fine structure splitting, so is considered independent of the 2P3/2 manifold. Each

curve corresponds to red or blue detuning from the respective excited state.

Figure 8.4: Raman transition rate as a function of detuning for two beams with intensities
of 500 mW−2. The three curves represent required detunings when exciting via the 2S1/2

↔ 2D3/2, 2S1/2 ↔ 2D5/2 and 2S1/2 ↔ 2P1/2 manifolds.

When coupling via the 2D3/2 manifold a detuning of ∆/2π ≈ 75 kHz is required, while

coupling via the 2D3/2 requires a detuning of ∆/2π ≈ 750 kHz, and coupling via the 2PJ

manifold requires a detuning of ∆/2π ≈ 280 GHz. When considering a transition via

the 2D3/2 state maintaining a detuning of ≈ 50 kHz causes concern. To ensure reliable

performance the detuning should vary by no more than 1%, which dictates that laser

stability on the order of 500 Hz is required. While this has previously been achieved [155]

stability of this magnitude requires expensive components, such as ultra low expansion

glass, and sophisticated control electronics. For the purpose of the experiments for this

thesis and for future experiments this is an impractical option. Exciting via the 2D3/2

manifold is slightly more forgiving as requiring a detuning ≈ 500 kHz, but this still requires
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laser stability of ≈1 kHz, which is again challenging.

Increasing the detuning would ease the laser stability requirements when exciting via the

D manifolds. A fluctuation in the detuning of 2% would be acceptable which, assuming a

laser stability of 100 kHz, corresponds to a minimum detuning of ∆/2π = 50 MHz. The

expected Raman transition frequencies as a function of power at the ion at this detuning

are shown in figure 8.5. It can be seen that to achieve ΩRam/2π = 50 kHz at ∆/2π =

50 MHz the power at the ion is required to be ≈ 210 mW and ≈ 18 mW when coupling

via the 2D3/2, and 2D5/2 states respectively. Obtaining 210 mW from any laser source is

extremely demanding so coupling via the 2D3/2 seems completely unsuitable. Coupling

via the 2D5/2 requires a comparatively lower 18 mW (9 mW per beam). At the time of

writing there was no simple/ cost effective method of achieving this power at 411 nm. For

now coupling via the 2PJ manifold is the preferred option however should the technology

improve then coupling via the 2D5/2 manifold may become a viable option.

Figure 8.5: Raman transition rate as a function of beam power for a detuning of ∆/2π =
100 MHz. The two curves represent the powers required when exciting via the 2S1/2 ↔
2D3/2 and 2S1/2 ↔ 2D5/2 manifolds.

8.3 Implementing Raman Transitions

To excite a Raman transition via the 2PJ manifolds several laser options are considered.

An obvious candidate would be another frequency doubling system generating light near

369 nm (similar to the system used for Doppler cooling described in section 3.3.5). These

systems however, are costly and can be temperamental so a more cost effective, robust
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system is investigated. The most promising option in fact came in the form of laser diodes

at 405nm boasting up to 120 mW of power (Egismos: AS-D6-7-405-120). At 405 nm the

relative detuning from the 2P1/2 state is ∆ ≈80 THz. The power of the diodes is sufficient

to compensate for this detuning and the off resonant scatter rate per Raman transition

would be on the order of 10−7. Furthermore the diodes could be operated in home-built

external cavity diode lasers (ECDL) greatly reducing expense and maintenance issues.

To achieve a transition rate of ΩRam = 50 kHz at this detuning requires two beams each

with a power of 60 mW at a radius of r=50 µm. Obtaining two beams, each of 60 mW and

separated by 12.6 GHz, from just one diode is clearly impossible. Fortunately Shahriar

et al., who demonstrated injection locking of laser diodes using the frequency sidebands

from a modulated laser beam, provided a solution [156].

Figure 8.6: Proposed setup to generate two beams at 405 nm capable of driving Raman
transitions. The beam from the master ECDL is immediately modulated at 6.3 GHz.
The modulated beam is split using a 50/50 beam splitter, and two etalon cavities isolate
the desired spectral components. The remaining beams injection lock two slave lasers.
The emission for the slave lasers are extracted using faraday rotators, half-waveplates and
polarising beam splitters.

The proposed setup is illustrated in figure 8.6. A master laser, in the littrow configura-

tion, generates a beam of 405nm which is immediately modulated to generate ±6.3 GHz

frequency sidebands. The modulated beam is split, using a 50/50 beam splitter, and each
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beam is then passed through a different etalon cavity which isolates different frequency

sidebands. The resulting monochromatic beams are then used to injection lock slave lasers

to produce two beams separated by 12.6 GHz each offering 120 mW. The beams emitted

from the slave lasers are then separated from the seed beams using faraday rotators, half-

waveplates and polarising beam splitters. Using this arrangement simple tuning of the

modulation frequency by ωsec/2 enables coupling between different motional states.

External Cavity Diode Laser

The ECDL is constructed in the littrow configuration, similar to those described in chapter

3.2, and consists of the Egismos diode (AS-D6-7-405-120), a diffraction grating (Thorlabs:

GH13-24V) and an aspheric lens (Thorlabs: A390TM-A). Under standard operating con-

dition the ECDL generates 70 mW of single mode light.

Sideband Generation

Two options are available for generating the frequency sidebands: current modulation, or

with an electro optic modulator. Current modulation is tested by applying a 6.3 GHz

modulation signal to the laser diode. The signal is generated using a HP 8673C signal

generator, amplified to 15 dBm (minicircuits: ZX60-V82-S+) and combined with the DC

drive signal using a bias t (minicircuits: ZX05-153LH-S+). To minimise losses associated

with cable attenuation the diode is soldered directly to the SMA connector on the bias

tee. Using this approach a sideband amplitude of only ≈ 2% the amplitude of the carrier

peak could be achieved and, at this modulation frequency, the single mode performance of

the diode became very sensitive to current and temperature fluctuations. Thus generating

the 6.3 GHz sidebands via current modulation was deemed an unsuitable approach.

Sideband generation was then tested with the 7.37 GHz EOM (New Focus: 4851) used

in the frequency doubling system (section 3.3.5). Although this particular modulator

operates at a different frequency this model EOM can be tuned to 6.3 GHz. Testing

sideband modulation with this particular EOM is therefore deemed a suitable indication

of performance. Using a drive signal, provided by a HP 8684B signal generator and

amplified to 31 dBm (Advanced Microwave Inc: A2503-3) sidebands ≈10% the height of

the carrier are obtained, and are stable. Sideband generation with an EOM is therefore

the preferred option.
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Injection Locking

To test the injection locking, a simplified setup similar to figure 8.6 is used. The test

setup uses just two lasers: the master ECDL, and a slave laser consisting of a laser diode

(Egismos: AS-D6-7-405-120) and aspheric lens (Thorlabs: A390TM-A). The aspheric lens

is mounted on an XYZ translation stage to allow fine adjustment of the focused beam

into the slave diode. A beam picker (Thorlabs: PSF10-A1) is used to separate the beam

emitted by the slave laser from the seed beam. The picker however can result in unwanted

feedback into the master laser, resulting in an uncontrollable mutual injection-locking

between the two lasers. To prevent this an optical isolator (Lambda Photometrics: IO-

5-36-HP) is used to protect the master laser from any feedback from the slave laser that

might result in mutual injection locking. The power of the unwanted feedback reaching

the master laser is only 7 µW, which when compared to the 50 mW feedback from the

grating is expected to have a negligible effect. The emission wavelengths from both lasers

are measured on a commercial wavemeter (High finesse: WS7).

It has been reported, by P. Kohns and W. Süptiz [157], that a single frequency can

be obtained from a slave laser even when seeded with a modulated beam, provided the

sidebands frequency is outside the ‘locking’ range of the carrier peak. If the 6.3 GHz

frequency sidebands are outside this locking range then the need for etalon cavities can

be removed, simplifying the setup. Unfortunately when the slave laser is seeded with 2

mW (corresponding to the expected power in each sideband after losses) injection locking

was possible at detunings >10 GHz from the master laser. The greater power of the

carrier wavelength would definitely dominate any wavelength generation in the slave lasers,

therefore demanding the need for frequency sideband isolation.

It is assumed an additional 30% loss would be incurred from the etalon cavities. The

power of the seeding beam is then reduced to 1.4 mW to simulate the power expected in

each sideband after the cavities. The injection locking obtained under these conditions

is shown in figure 8.7. The solid red and dashed blue curves in the upper plot show the

wavelength of the master and slave laser respectively and the difference between the two

lasers is shown in the lower plot. A distinct correlation can be seen between the two

wavelengths. The magnitude of the frequency difference can be seen to be typically ≈

5 MHz, with a maximum fluctuation of 12 MHz. When compared against the 20 MHz

relative uncertainty of wavemeter at 405 nm, and considering that both wavelength are

not measured exactly simultaneously but in 2 ms intervals, the result suggests injection

locking was, to a first approximation, successful. To accurately determine the stability
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of the beat-note both beams would have to be mixed and the resultant beat frequency

monitored.

Figure 8.7: Top plot shows the wavelengths of the master (solid red) and slave (blue
dashed) lasers during injection locking. Bottom plot shows the frequency difference be-
tween the two wavelengths.

Unfortunately beat frequency stability is not the limiting issue. The downfall of the scheme

arises from the multimode behaviour of the diodes. Single mode performance from the

slave laser is only possible when operating at a low driving current. When the slave laser

is operated at high currents the relatively low power of the seed beam is insufficient to

generate a dominant single mode. With a seed beam power of 1.4 mW the output power of

the slave laser, inferred by measuring the beam after the picker, is only 13 mW. Assuming
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power losses of ≈ 50% the resulting power on the ion is only ≈7 mW and the Raman

transition rate is only ≈ 6 kHz. The flexibility of the setup can be expanded to include

a second stage of injection locking. Indeed it is found that injecting the slave laser with

8 mW (simulating the power of the second seed beams) produced a single mode beam

with a power 120 mW. Unfortunately, introducing this second stage of injection locking

increased the cost, setup time, and concerns relating to possible instabilities to a level that

deemed this approach unsuitable.

Based upon the experimental work performed, generation of Raman beams via injection

locking blue/ultraviolet laser diodes is perhaps too complex and time consuming when

compared to alternative approaches. Should the single mode performance of these diodes

improve then only a single stage of injection locking may be possible, or injection locking

may not even be required at all. This approach could provide an inexpensive effective

method of motional coupling. Currently, however, an alternative approach is required.

8.4 Alternative Schemes

An alternative option utilises the laser systems already described in this thesis. The

ColdLase system, in conjunction with a 12.6 GHz microwave horn, could be be used for

trapping, Doppler cool and state preparation. The frequency doubled system could then

be used to generate a suitable Raman beam pair, as demonstrated by Deslauriers [87].

Here the fundamental 739 nm beam would be modulated at ω0/2 = 6.3 GHz. Since

the doubling cavity is already tuned to have a free spectral range a subharmonic of the

modulation frequency (FSR = 1.05 GHz) the different spectral components would resonate

and undergo frequency summation. The resulting UV beam would consist of a comb of

frequencies centred around 369 nm separated by ω0/2 = 6.3 GHz. The beam would then

be split, using a series of two AOM’s, and recombined at the ion. The pairs of spectral

components separated by ω0 can then stimulate Raman transitions. With this setup

forming a Mach-Zehender interferometer the relative phases of the spectral components of

the beams can be controlled, and total destructive interference of the beatnotes removed.

By adjusting the frequency of the two AOM’s the beatnote frequency of the Raman beam

pair can be adjusted to access the various resonances.

The output power of the frequency doubling system is ≈50 mW. The EOM, as tested

earlier, is expected to generate frequency sidebands ≈ 10% of the carrier. While the

amplitude of these sidebands is expected to increase as a result of summation between 739

nm carrier ±6.3 GHz sidebands 10% assumes a worst case. At 10% the sidebands will have
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a power of ≈ 4 mW. Selecting 40% from the first AOM and 66% from the second AOM

generates two Raman beams each of 1.6 mW. Assuming additional losses of 50% from

other optical components resulting in beam powers of 800 µW. As shown earlier in the

comparison section of this chapter two beams each of 500 µW at a detuning of ∆/2π ≈ 280

GHz can achieve a transition rate of ΩRam/2π = 50 kHz. This approach should therefore

provide a suitable Raman transition rate.

Towards the end of this thesis Hayes et al. [158] and Campbell et al. [159] demonstrated

qubit rotations, motional coupling, ground state cooling and entanglement using an ul-

trafast pulsed laser. Similarly Wunderlich’s group has shown motional coupling using

microwaves and magnetic field gradients [85]. These can also be suitable approaches for

controlling the qubit.
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Chapter 9

Conclusion

“A learning experience is one of those things that says: ’You know that thing

you just did? Don’t do that’ ”

-Douglas Adams, The Salmon of Doubt

In this thesis an experimental setup to trap and manipulate Yb+ ions for quantum infor-

mation processing has been described. The construction and implementation of the lasers

used to cool and prepare the ions is described in detail. The experiment as a whole is pre-

sented, operation of the setup and successful trapping of Yb+ including 171Yb+ is shown,

and then characterised. Using a trapped 174Yb+ ions the heating rate of the ion trap was

measured and found to be consistent with previously reported rates of other ion species in

different ion traps using established scaling laws. This result removes previous concerns

regarding ytterbium having a higher heating rate, and further solidifies the suitability of

the Yb+ ion for quantum information processing.

New wavelengths required for ionising neutral Yb and cooling Yb+ ions were also mea-

sured. A simple technique was devised to measure the 1S0 ↔ 1P1 transition wavelengths

in neutral Yb, with the results obtained differing from previously published work by 660

MHz. The devised method has additional ability to predict Doppler shifted transition

frequencies which are required when the laser and atomic beam are non-perpendicular.

The 2S1/2 ↔ 2P1/2 Doppler cooling and 2D3/2 ↔ 3D[3/2]1/2 repump transitions have been

measured to a greater precision than previously published. These measurements are par-

ticularly useful for groups setting up an ytterbium ion trap experiment, as the availability

of more precise frequency measurements significantly simplifies initial trapping.

Alongside the implementation and characterisation of the ion trap setup a new laser sys-

tem was developed. The motivation for the laser was to provide a simple inexpensive
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alternative to obtaining wavelengths that are otherwise achieved using complex expen-

sive lasers systems. The system, based upon a Littrow configured external cavity setup,

operates with any Fabry-Pérot laser diode so can be used with a wide range of atoms

and ions. The inclusion of current modulation capabilities further enables control of ions

with hyperfine structures. The first incarnation of the system, although not perfected, is

demonstrated to be suitable for use with Yb+ ions including 171Yb+. Future revisions to

the models should provide a cheap alternative to complex expensive lasers.

Lastly the foundations for implementing a Raman transition using the 171Yb+ trapped

ion qubit were investigated. Raman transitions are a powerful tool that can be used to

induce arbitrary qubit rotations as well as couple the qubit states to the external motion.

Previously reported implementation of these transitions have all utilised dipole transitions,

however the internal energy level structure of 171Yb+ presented the possibility of using a

quadruple transition. Analysis of the two options showed that use of quadrupole transi-

tions may, at present, not be the most optimum option and the use of dipole transitions is

preferable. However, with the increase of power from blue laser diodes or ease of achieving

increased levels of laser stability quadrupole transitions could become a viable alternative.

A setup to implement a Raman transition via a dipole transition using injection locked

laser diodes was tested. The setup was also unfortunately limited by the unexpected per-

formance of blue laser diodes. However, with the improvement of these diodes the scheme

may offer a cost effective, and high fidelity, alternative to other available laser systems.

9.1 Outlook

Looking to the future the next step is the implementation of a scheme capable of qubit

manipulations. The different approaches include utilising the ColdLase and frequency dou-

bling system, described at the end of chapter 8, the use a picosecond pulsed laser [158,159],

or microwave radiation and a large magnetic field gradient [85]. The pulsed laser approach

does offer incredibly fast, sub microsecond, gates however it is expensive and has very sen-

sitive experimental parameters, such as the pulse repetition rate and the phase between

pulses. Small differences in these parameters can be extremely detrimental to qubit oper-

ations. At present the level of accuracy required for these parameters cannot be provided

by manufacturers, making pulsed lasers an expensive and risky approach to take. The

microwave option, although resulting in slower gate speeds, is significantly cheaper, more

rugged, and offers simple scalability. With future gates involving large numbers of ions,

and given that additional research projects within the group are developing multidimen-
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sional trap arrays, simple scalability is a powerful tool. The simpler optical technique

(utilising ColdLase and the frequency doubled system) is also being considered since most

of the equipment is already in the laboratory and therefore requires little additional over-

head to implement. With both optical and microwave schemes the suitability of different

gates can be compared.

The implementation of either scheme requires an upgrade of the setup described in this

thesis. The scanning cavity lock used to stabilise the lasers is being replaces with a dual

resonance cavity lock, and the implementation of phase stability of between experimental

components is also underway. A microwave horn has been included into the setup and

initial results are being obtained for qubit state detection fidelities and basic one photon

rotation of the qubit. Once mastered motional coupling is the next tool to demonstrate,

followed then by the realisation of the Mølmer Sørensen gate. From there more complex

gates involving multiple ions could be achieved which, depending upon the progression

of trap development, could be in multiple dimensions. The realisation of large scale en-

tanglement is an exciting prospect, and the work in this thesis has laid the first stepping

stones for our research group, and contributed towards the large scale effort of making the

quantum computer a reality.
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Appendix A

Doppler Cooling Limit

Doppler cooling is the primary means for cooling trapped ions. The technique utilises

the oscillatory motion of trapped ions to induce velocity dependent photon absorption to

reduce the ion’s energy. However, a small amount of energy is returned to the ion during

photon emission. The limit of Doppler cooling is lowest steady state temperature, where

the rate of energy loss due to photon absorption equals the heating rate due to photon

recoil.
dE

dt
|cooling =

dE

dt
|heating (A.1)

Cooling Rate

Ion cooling is velocity dependent, where the rate of cooling is expressed as

dE

dt
|cooling = F̄ · v̄ (A.2)

where F̄ is the velocity dependent damping force and v̄ the ion velocity. This force is

related to ion fluorescence via

F̄ = ~k̄
dN

dt
= ~k̄

Γs0/2

1 + s0 +
(

2(∆−∆D)
Γ

)2 (A.3)

where ∆D = k̄ · v̄ is the velocity dependent instantaneous Doppler shift of the transition

frequency as a result of the ion motion. Assuming the ion velocity is small compared to

the detuning ∆ > ∆D, the force applied to the ion can be Taylor expanded as

F̄ = F̄0 +
dF̄

d∆
|0 · k̄v̄ + ..... (A.4)
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By setting F0 = 0 the change in energy as a result of Doppler cooling is

dE

dt
|cooling ≈

4~k̄2∆

Γ

s0v̄
2(

1 + s0 +
(

2∆
Γ

)2)2 (A.5)

Heating Rate

The energy associated with each scatter event, recoil energy, is

E =
(~k̄)2

2m
(A.6)

where k̄ is the wavevector of the emitted photon and m the ion mass. Considering the

scatter rate of an ion is
dN

dt
=

s0Γ/2

1 + s0 +
(

2∆
Γ

)2 (A.7)

where s0 is the ion saturation parameter, Γ the natural linewidth of the ion, ∆ the laser

detuning. The ion, however, receives a momentum kick through both photon absorption

and emission. The resulting ion heating rate is then

dE

dt
|heating =

1

2m

~2k̄2s0Γ

1 + s0 +
(

2∆
Γ

)2 (A.8)

Cooling Limit

In a steady state regime the heating rate and cooling rate are the same, and corresponds to

the minimum ion velocity. Comparing equations A.8 and A.5 the ion velocity is expressed

as

v̄2 =
~Γ2

8m∆

(
1 + s0 +

(
2∆

Γ

)2
)

(A.9)

Assuming a small laser intensity, s0 � 1, and relating ion temperature to ion energy

mv̄2/2 = kBT/2, the ion temperature can be expressed as

T =
~Γ

4kB

[
Γ

2∆
+

2∆

Γ

]
(A.10)

The minimum ion temperature, and hence the optimum cooling, is achieved when ∆ =

Γ/2. The ion temperature is then

Tmin =
~Γ

2kB
(A.11)
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Appendix B

Qubit Manipulation

Through the interaction with electromagnetic radiation it is possible to control the state

of the qubit as well as couple to the motion of the harmonic oscillator. Presented here is

the development of the Hamiltonian describing these interactions.

The interaction Hamiltonian in the interaction picture is expressed as

Ĥint =
~Ω

2

[
eiω0tσ̂z/2(σ̂+ + σ̂−)e−iω0tσ̂z/2

]
[
eiωiα̂

†α̂
(
ei(kr−ωt+φ) + e−i(kr−ωt+φ)

)
eiωiα̂

†α̂
]

(B.1)

The terms in the first set of square brackets describe the spin state (qubit state), while

the terms in the second set of square brackets describe the motional state of the ion. Since

the spin and creation/annihilatin operators commute the two components can be treated

separately. Considering first the spin component of equation B.1, these components can be

simplified using the identities [σ̂z, σ̂+] = 2σ̂+ and [σ̂z, σ̂−] = −2σ̂− and the relationship [?]

eαÂB̂e−αÂ ≈ B̂ + α[Â, B̂] +
α2

2!
[Â[Â, B̂]] +

α3

3!
[Â[Â[Â, B̂]]] (B.2)

The spin terms reduce to

eiω0t/2σ̂z σ̂+e
−iω0t/2σ̂z = σ̂+ + ω0tσ̂+ +

(ω0t)
2

2!
σ̂+ +

(ω0t)
3

3!
σ̂+ + · · ·

= eiω0tσ̂+ (B.3)

and

eiω0t/2σ̂z σ̂−e
−iω0t/2σ̂z = σ̂− − ω0tσ̂− +

(ω0t)
2

2!
σ̂− −

(ω0t)
3

3!
σ̂− + · · ·

= e−iω0tσ̂− (B.4)
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enabling the spin component of Hint to be written as

eiω0tσ̂z/2(σ̂+ + σ̂−)e−iω0tσ̂z/2 = eiω0tσ̂+ + e−iω0tσ̂− (B.5)

Turning now to the motional component in equation B.1. It can be rewritten as

eiωiα̂
†α̂
(
ei(kr−ωt+φ) + e−i(kr−ωt+φ)

)
e−iωiα̂

†α̂

= ei(kr0−ωt+φ)eiωiα̂
†α̂eiη(α̂+α̂†)e−iωiα̂

†α̂

+ e−i(kr0−ωt+φ)eiωiα̂
†α̂e−iη(α̂+α̂†)e−iωiα̂

†α̂ (B.6)

where the factor eik·r is separated into a phase factor, eikr0 , and a position operator,

ek·zt . The position operator is also rewritten as k · zt = kz0(α̂ + α̂†) = η(α̂ + α̂†), with

z0 =
√

~/(2mωz) the spread of the ground state harmonic oscillator wavefunction. The

exponent in eiη(α̂+α̂†) is then Taylor expanded and each term treated separately, yielding

[89]

eiωiα̂
†α̂(iη(α̂+ α̂†))ne−iωiα̂α̂

†
= (iη(α̂e−iωit + α̂†eiωit)n (B.7)

then summing over all terms in the Taylor expansion produces [89]

eiωiα̂
†α̂eiη(α̂+α̂†)e−iωiα̂α̂

†
= eiη(α̂e−iωit+α̂†eiωit) (B.8)

The motional part of Ĥint can then be written as

eiωiα̂
†α̂
(
ei(kr−ωt+φ) + e−i(kr−ωt+φ)

)
e−iωiα̂

†α̂ = ei(kr0−ωt+φ)eiη(α̂e−iωit+α̂†eiωit) + c.c.

Combining the spin and motion components (equations B.5 and B.9 respectively) the

interaction Hamiltonian in the interaction picture becomes

Ĥint =
~Ω

2

[
eiω0tσ̂z σ̂+ + eiω0tσ̂z σ̂−

] [
ei(kr0−ωt+φ)eiη(α̂e−iωit+α̂†eiωit) + c.c.

]
(B.9)

Assuming the applied field is close to resonance (ω ≈ ω0) the Hamiltonian can be simplified

by applying the rotating wave approximation (RWA). This approximation assumes that

over the time scale required for the system to evolve all rapidly oscillating terms (i.e. those

oscillating at ω+ω0) average to zero. Applying the RWA the rapidly oscillating terms are

removed and the interaction Hamiltonian can be written

Ĥint =
~Ω

2

[
σ̂+e

i[η(α̂e−iωit+α̂†eiωit)+kr0+δωt+φ] + σ̂−e
−i[η(α̂e−iωit+α̂†eiωit)+kr0+δωt+φ]

]
(B.10)
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where δω = ω − ω0 is the detuning of the laser from resonance. Depending upon the

detuning the interaction Hamiltonian will couple specific internal and motional states.

To determine the evolution of the two level system the generalised Hamiltonian (equa-

tion B.10) is inserted into Schrödinger’s equation, along with the state vector |Ψ(t)〉 =∑∞
n=0(c↑,n(t)|↑, n〉+ c↓,m(t)|↓,m〉). The solution to the two-level system is [68]

ċ↑,n = −i1+|n−m|e−i(δt−φ) Ωm,n

2
c↓,m (B.11)

ċ↓,m = −i1−|n−m|ei(δt−φ) Ωm,n

2
c↑,n (B.12)

where Ωn,m = Ωm,n is the Rabi frequency, or coupling strength, between |↑, n〉 ↔ |↓,m〉.

This expression for the Rabi frequency can then be further generalised [68]

Ωm,n = Ω〈m|eiη(α̂+α̂†)|n〉

= Ωe−η
2/2

√
n<!

n>!
η|n-m|L

|m-n|
n<

(
η2
)

(B.13)

where Ω is the coupling strength of the carrier transition (|↑, n〉↔|↓, n〉), n< and n>

are the smaller and larger of n and m respectively, and L
|m-n|
n< is an associated Laguerre

polynomial.
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Appendix C

Laser Mount Drawings

The home built external cavity diode lasers used in the experiments is illustrated in figure

C.1. Technical drawings for the individual components are shown in figures C.2 to C.11.

Figure C.1: Overview of a constructed external cavity diode laser.
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Appendix D

Frequency Sideband Generation

To access the hyperfine states in 171Yb+ frequency sidebands are applied to 739 nm (and

369 nm) and 935 nm beams via an electro optic modulator (EOM) and current modulation

respectively, as discussed in chapter 3. Both of these approaches generate sideband by

modulating the phase of the laser beam. Current modulation changes the refractive index

of the laser diode, effectively changing the optical path length of the diode and hence the

phase of the light propagating within the diode. Similarly the EOM uses a crystal with

a voltage dependent refractive index, whereby a voltage across the crystal changes the

optical path length within the crystal and the phase of light travelling through it.

To understand how modulating path length generates frequency sidebands first consider

the electric field of the light of an unmodulated laser beam

EI = E0 cos(ω0t+ Φ) (D.1)

where E0 is the electric field amplitude, ω0 the frequency of the unmodulated light, and

Φ the phase of the beam. Modulating the optical path length, and phase of the electric

field Φ = φ sin(ωmt), where ωmt is the modulation frequency and φ is the modulation

amplitude, the modulated electric field becomes

Em = E0 cos(ω0t+ φ sin(ωmt)) (D.2)

which can be rewritten as

Em =
E0

2

[
ei(ω0t)ei(φ sin(ωmt)) + c.c.

]
=

E0

2

[
ei(ω0t)e

φ
2

(eiωmt−e−iωmt) + c.c.
]

(D.3)
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Using the Bessel function relation

e(x/2)(t−1/t) =
inf∑

n=− inf

Jn(x)tn (D.4)

equation (D.3) can be rewritten as

Em =
E0

2

[
ei(ω0t)

inf∑
n=− inf

Jn(φ)einωmt + c.c.

]
(D.5)

where n is an integer and Jn(φ) an ordinary Bessel function of order n. To drive the

desired transition we are mostly interested in the carrier and first order sidebands, i.e.

n = 0,±1. Under this consideration the resulting electric field can be written as

Em ≈
E0

2

[
ei(ω0t) + J1(φ)ei(ω0t+ωm)t + J−1(φ)ei(ω0−tωm)t + c.c.

]
(D.6)

which shows that the electric field consists not only of the carrier frequency, ω0, but two

extra frequencies at ω0 + ωm and ω0 − ωm. It can therefore be seen that the frequency

separation of the sidebands, from the carrier, is the same as frequency used to modulate

the laser diode. Using current modulation 3.07 GHz (1.05 GHz) sidebands are applied to

the 935 nm (739 nm) beam, while the EOM generates the 7.37 GHz sidebands on the 739

nm beam.
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Appendix E

Derivation of Locking Error

Signals

In section 3.3.5 the Pound Drever Hall technique is used to stabilise the frequency dou-

bling laser, while in section 4.3.1 the 780 nm external cavity diode laser is stabilised using

frequency modulated (fm) spectroscopy. In both techniques a modulated laser beam is

directed towards a frequency reference and the frequency dependent beam intensity, rela-

tive to the resonance frequency of the reference, is measured. In the Pound Drever Hall

lock the beam intensity corresponds to the proportion of the beam reflected from a cavity,

which is a function of the laser frequency with respect to the cavity resonance. In fm

spectroscopy the beam intensity is related to the amount of light transmitted through an

atomic vapour, and therefore a function of the laser frequency with respect the atomic

transition frequency. Although the mechanisms are different for both techniques the prin-

ciple of generating an error signal using this frequency dependent beam intensity holds

many similarities.

The following discussion describes how the error signal is generated via the Pound Drever

Hall technique, so considers reflections from a cavity rather than transmission through

an atomic reference. In both cases, however, the resulting error signals have the same

profile. Following work by Eric Black [160, 161], the electric field of the modulated signal

(considering up to first order sidebands only) is expressed as

E = E0[J0(β)eiωt + J1(β)ei(ω+Ω)t − J1(β)ei(ω−Ω)t] (E.1)

where Jn(β) is an ordinary Bessel function of order n, ω is the laser frequency and Ω is the

modulation frequency. When the beam is incident upon the cavity, a proportion of the



186

beam is reflected, with the reflected portion given by Eref = F (ω)E. Where the reflection

coefficient, for an ideal cavity, is

F (ω) =
r(eiφ − 1)

1− r2eiφ
(E.2)

where r is the amplitude reflection coefficient of each mirror, and φ the phase gained after

one round trip in the cavity. φ can be expressed as

φ =
ω

∆νfsr
(E.3)

where ∆νfsr is the cavity free spectral range. The signal reflected from the cavity can

therefore be expressed as

Eref = E0[F (ω)J0(β)eiωt + F (ω)J1(β)ei(ω+Ω)t − F (ω)J1(β)ei(ω−Ω)t] (E.4)

When the cavity is resonant with the laser frequency the reflection co-efficient goes to zero,

corresponding to complete transmission through the cavity. The signal reflected from the

cavity and measured by the photodiode is Pref = |Eref|2. Using the relationships

P0 = |E0|2 (E.5)

Pc = J2
0 (β)P0 (E.6)

Ps = J2
1 (β)P0 (E.7)

where P0 is the total power of the incident beam, Pc and Ps is the power in the carrier and

first order sidebands. After some algebra the signal from the photodiode can be expressed

as

Pref = Pc|F (ω)|2 + Ps

(
|F (ω + Ω)|2 + |F (ω − Ω)|2

)
+2
√
PcPs(<[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] cos(Ωt)

+=[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] sin(Ωt)) (E.8)

where F (ω), F (ω+ Ω) and F (ω−Ω) are the reflection coefficients at the carrier and side-

band frequencies respectively, and the symbols < and = represent the real and imaginary

components of the reflected signal. The shape of the error signal is then determined by

the modulation frequency relative to the cavity linewidth.

When the modulation frequency is much greater than the linewidth of the cavity, such as
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that used in the frequency doubling system, the frequency sidebands are assumed to be

completely reflected. Black [160] has then shown that in this regime the cosine component

of the signal reflected from the cavity, becomes negligible and the error signal can be

written as

ε = −2
√
PcPs=([F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)]) (E.9)

Taking the example of the frequency doubling system where the modulation frequency Ω

is approximately 10 times the free spectral range of the cavity. Plotting ε/2
√
PcPs as a

function of ω and ω ± Ω generates the profile shown in figure E.1. Which can be seen to

be the same as the error signal generated by the frequency doubling system as shown in

figure 3.17.

Figure E.1: Illustration of the locking error signal when Ω is greater than the cavity
linewidth.

If however, the modulation frequency is small compared to the cavity linewidth, then the

carrier and sidebands are all partially transmitted and partially reflected. In this case the

power reflected from the cavity is Pref = P0|F (ω)|2, and Black has shown that only the

cosine part of the reflected signal, equation E.8, survives [160]. The error signal is then

ε = −2
√
PcPs=([F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)]) (E.10)

Plotting ε/2
√
PcPs as a function of ω and ω±Ω, where Ω is approximately half a linewidth,

yields the error signal shown in figure E.2.
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Figure E.2: Illustration of the locking error signal when Ω is less than the cavity linewidth.

This signal resembles the error signal obtained via fm spectroscopy as shown in figure 4.12.

The resulting sideband features present in figure E.1 have now been swallowed into the

linewidth of the cavity. It should be noted however that the gradient of the zero crossing

in either case depends upon the linewidth of the cavity only and not the modulation fre-

quency. The modulation frequency does however limit the speed of any feedback. Higher

modulation frequencies enable faster feedback. For slow thermal feedback a lower mod-

ulation frequency would be used, while for faster feedback it is preferable to use higher

modulation frequencies.
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Appendix F

Scanning Fabry Përot Cavity

Drawings

The confocal cavities used in the transfer locking scheme, described in section 4.3.2, are

shown here. The combined cavity is illustrated in figure F.1, while technical drawings for

the individual components are shown in figures F.2 to F.6.

Figure F.1: Illustration of a scanning confocal Fabry-Pérot cavity used in the transfer
locking scheme.
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Appendix G

Simplification of Ion Energy

Evolution

The model proposed by Wesenberg et al. [1] discussed in chapter 5.1 describes the change

in ion energy as a function of the scatter rate during Doppler cooling [1]. Expressions for

the energy evolution and change in scatter rate are given by equations 5.8 and 5.9, but

are somewhat complicated. The simplification of these expressions, following Wesenberg

et al. [1], is presented here.

First of all the instantaneous scatter rate 5.2 and the probability density function 5.7 are

simplified using the following substitutions

N = L/2 = Γ
√

1 + s/2

T = Γ(s/2(1 + s))

∆max/L/2 = δmax, ∆D/L/2 = δD, ∆/L/2 = δ
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the instantaneous scatter rate and the probability density function then take the form

dN

dt
=

Γs/2

1 + s+
(

2∆eff
Γ

)2

=
Γs/2

1 + s+
(

2L/2
Γ

)2
(δ + δD)2

=
Γs/2

1 + s+ (1 + s) (δ + δD)2

= T
1

1 + (δ + δD)2
(G.1)

PD(∆D) =
N

2π
√

∆2
max −∆2

D

(G.2)

=
L/2

2π
√

(L/2δmax)2 − (L/2δD)2

=
1

2π
√
δ2

max − δ2
D

(G.3)

The time averaged scatter rate and energy evolution (eqns 5.8 and 5.9) become

〈
dN

dt

〉
= T

∫
1√

δ2
max − δ2

D

1

1 + (δ + δD)2

dδD

2π
(G.4)

〈
dE

dt

〉
= −~TL/2

∫
δD√

δ2
max − δ2

D

1

1 + (δ + δD)2

dδD

2π
(G.5)

From here it is more informative to work with 〈dE/dt〉 but the following approach can

also be applied to 〈dN/dt〉. Equation G.5 can be simplified using δD = δmax sin(φ) and

dδD/dφ = δmax cos(φ)

〈
dE

dt

〉
= −~TL/2

∫ 2π

0

δmax sin(φ)

δmax

√
1− sin2(φ)

× δmax cos(φ)

1 + (δ + δmax sin(φ))2

dφ

2π

= −~TL/2

∫ 2π

0

δmax sin(φ)

1 + (δ + δmax sin(φ))2

dφ

2π
(G.6)

To evaluate equation G.6, the following relation is used [1]

Z(a, b) ≡
∫ 2π

0

1

sin(φ)− z
dφ

2π
= −1

z

√
z2

z2 − 1
(G.7)

By demonstrating the integrals in equations G.6 and G.7 are the same 〈dE/dt〉 can then
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be described by the last part of equation G.7. To convert the integral in equation G.7 into

the form in equation G.6 the substitutions z = (a + i)/b, b = −δmax and a = δ are used.

Z(a, b) can then be written as

Z(a, b) =

∫ 2π

0

1

sin(φ)− z
dφ

2π

=

∫ 2π

0
b
((b sin(φ)− a) + i)

1 + (a− b sin(φ))2

dφ

2π

=

∫ 2π

0
−δmax

(i− δ − δmax sin(φ))

1 + (δ + δmax sin(φ))2

dφ

2π
(G.8)

The integral in equation G.6 can now be described in terms of real and imaginary compo-

nents of Z(a, b)

−
∫ 2π

0

δmax sin(φ)

1 + (δ + δmax sin(φ))2

dφ

2π
=
<(Z) + δ=(Z)

δmax
(G.9)

The expressions for 〈dN/dt〉 and 〈dE/dt〉 can then be expressed in terms of the real and

imaginary components of Z(a, b) as

〈
dN

dt

〉
=

T

δmax
=(Z) (G.10)〈

dE

dt

〉
=

~TL/2

δmax
(<(Z) + δ=(Z)) (G.11)

As equations G.6 and G.7 are equivalent the same substitutions as before: z = (a+ i)/b,

b = δmax, a = −δ, along with
√

(−iz)2 = −iz. Z(a, b) are inserted into the final term in

equation G.7. Z(a, b) can then be rewritten as

Z(a, b) = −1

z

√
(−iz)2

−i2(z2 + 1)

=
b√

(a+ i)2 − b2
i

i

=
iδmax√

δ2
max − (i+ δ)2

(G.12)

which shows the scatter rate, and energy evolution to be determined by the maximum

Doppler shifts experienced, the laser detuning, and the transition linewidth. Considering

the regime where the maximum Doppler shift is greater than the sum of the broadened

linewidth L and detuning from resonance ∆max � |L|+ |∆|, equation G.12 can be simpli-

fied. In this ‘hot ion’ regime

δmax �
√

1 + δ (G.13)
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and the expression for Z(a, b) in equation G.12 can be reduced to Z = i. The average

average scatter rate and energy evolution G.6 can then be reexpressed as

〈
dN

dt

〉
=

T

δmax
(G.14)〈

dE

dt

〉
=

~δTL/2

δmax
(G.15)

which converting to the original terms are

〈
dN

dt

〉
=

sΓ2

4∆max

√
1 + s

(G.16)〈
dE

dt

〉
=

sΓ2~∆

4∆max

√
1 + s

(G.17)

providing more manageable expressions of equations 5.8 and 5.9.
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Appendix H

Re-expression of Raman

Transition Rate

To help with the analysis of the Raman transition frequency the following derivation,

provided by D.F.V. James [151] is used describe the Raman transition rate in terms of

experimentally realisable parameters such as excited state lifetimes, coupling coefficients,

laser power, and detunings etc. The general Raman transition rate, equation 8.13, is

expressed as

ΩRam =
g

(s)
i g

(s)∗
j

2∆J
(H.1)

where g is the Rabi frequency for an atomic transition, s = 1, 2 represents a dipole or

quadrupole transition respectively, and i, j describe the | ↓〉↔|e〉 and | ↑〉↔|e〉 transitions

respectively. For dipole and quadrupole transitions g is expressed as

g(1) =

∣∣∣∣eE~ 〈J, F,mF |(ε̄ · r̄)|J
′, F ′,m′

F
〉
∣∣∣∣ (H.2)

g(2) =

∣∣∣∣eEω21

2~c
〈J, F,mF |(ε̄ · r̄)(k̄ · r̄)|J

′, F ′,m′
F
〉
∣∣∣∣ (H.3)

where e is the electron charge, E the electric field amplitude, ~ the reduced plank constant,

and c the speed of light, the terms in the bra-kets are the matrix elements describing the

electric dipole (quadruople) transitions, and J , F , and mF describe the electronic state

with the primed terms describing the excited state. The matrix elements first in equations

H.2 and H.3 can then be written as [151]

〈J, F,mF |(ε̄ · r̄)|J
′, F ′,m′

F
〉 = 〈J, F,mF ‖ rC

(1) ‖ J ′, F ′,m′
F
〉σ(1)χ∆m (H.4)

〈J, F,mF |(ε̄ · r̄)(k̄ · r̄)|J, F
′,m′

F
〉 = 〈J, F,mF ‖ r

2C(2) ‖ J ′, F ′,m′
F
〉σ(2)χ∆m (H.5)
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where the matrix elements in double bars indicate reduced matrix elements, and σ are

the Clebsch-Gordan coefficients describing the relative coupling between specific ∆mF

states. The term χ∆m describes the direction and radiative patterns of the incident beam

and orientations of the quantisation axis. As shown by D.F.V. James the reduced matrix

elements are related to the spontaneous decay rates via [151]

ΓP =
4cαk3

P

3(2J ′ + 1)
|〈J, F,mF ‖ rC

(1) ‖ J ′, F ′,m′
F
〉|2σ(1)χ∆m (H.6)

ΓD =
cαk5

D

15(2J ′ + 1)
|〈J, F,mF ‖ r

2C(2) ‖ J ′, F ′,m′
F
〉|2σ(2)χ∆m (H.7)

where c is the speed of light, α the fine structure constant and kP and kD the wavevectors

of the light resonant with the dipole and quadrupole transitions respectively. Combining

equations H.2 to H.7 the Rabi coupling between either qubit state and the excited state

become [151]

g1 =
eE

2~

√
3ΓP(2J ′ + 1)

cαk3
σ(s)χ∆m (H.8)

g2 =
eE

2~

√
15ΓD(2J ′ + 1)

cαk3
σ(s)χ∆m (H.9)

The effective Raman transition can then be written as

ΩRam =
e2EiEj

8~2

Γ

cαk3

∑
J= 1

2
, 3
2

I+J∑
F=|I−J |

F∑
m=−F

(
σ

(s)
i χ∆m

i σ
(s)
j χ∆m

j

∆J

)
(H.10)

where the sums indicate that all transitions along all available channels are considered.

The electric field amplitude, E, is related to the intensity of a Gaussian beam via E =√
2P/(πrε0c), where P is the beam power, r the beam waist, ε0 is the permittivity of free

space, and c is the speed of light. Assuming that both beams have the same electric field

strength the Raman transition frequency can be expressed as

ΩRam =
e2Γ

4~2cαk3

P

πrε0c

∑
J= 1

2
, 3
2

I+J∑
F=|I−J |

F∑
m=−F

(
σ

(s)
i χ∆m

i σ
(s)
j χ∆m

j

∆J

)
(H.11)
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Appendix I

Clebsch-Gordan Coupling

Coefficients

The possibility of exciting Raman transitions via either dipole or quadruple transitions

are discussed in section 8.2. Coupling is considered using dipole transitions via the 2P1/2

and 2P3/2 manifolds, and quadrupole transitions via the 2D3/2 and 2D5/2 manifolds. In

all cases the both qubit states must couple to the same excited state to enable a Raman

transition to be driven. To determine coupling between the qubit states and various

excited mF states the Clebsch-Gordan coupling coefficients are calculated using [75,162]

σ(s) = (−1)1+s+J+Jd+I−m′
F ×√

(2F + 1)(2F ′ + 1)(2J ′ + 1)

 J ′ F ′ I

F J 1


 F s F ′

mF q −m′
F

 (I.1)

where the round (curly) brackets represent the Wigner 3(6)-j symbols with the integers

s = 1, 2 represents the change of momentum during each transition (i.e. dipole and

quadrupole transitions respectively), and q represents the momentum of the incoming

photon. The Clebsch-Gordan coefficients are only non-zero when q = mF − m′
F

. The

available transitions and coupling coefficients between the ground states and excited 2PJ

and 2DJ manifolds are shown in figures I.1 to I.4. Due to the complexity of the possible

quadrupole transitions the respective Clebsch-Gordon coefficients are only shown in the

accompanying tables.
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2S1/2|F,mF 〉

|0, 0〉 |1,−1〉 |1, 0〉 |1, 1〉

2P1/2|1,mF 〉 |0, 0〉 0
√

1
3 −

√
1
3

√
1
3

2P1/2|1,mF 〉

|1,−1〉 −
√

1
3

√
1
3 −

√
1
3 0

|1, 0〉 −
√

1
3

√
1
3 0 −

√
1
3

|1, 1〉 −
√

1
3 0

√
1
3 −

√
1
3

Figure I.1 & Table I.1: Allows transitions between the 2S1/2 ↔ 2P1/2 manifolds.
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2S1/2|F,mF 〉

|0, 0〉 |1,−1〉 |1, 0〉 |1, 1〉

2D3/2|1,mF 〉

|1,−1〉
√

2
3

√
1
2 −

√
1
6 0

|1, 0〉
√

2
3

√
1
6 0 −

√
1
6

|1, 1〉
√

2
3 0

√
1
6

√
1
2

2D3/2|2,mF 〉

|2,−2〉 0 1 0 0

|2,−1〉 0
√

1
6

√
2
3 0

|2, 0〉 0
√

1
6

√
2
3

√
1
6

|2, 1〉 0 0
√

1
2 −

√
1
6

|2, 2〉 0 0 0 1

Figure I.2 & Table I.2: Allowed transitions between the 2S1/2 ↔ 2P3/2 manifolds.
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2S1/2|F,mF 〉

|0, 0〉 |1,−1〉 |1, 0〉 |1, 1〉

2D3/2|1,mF 〉

|1,−1〉 0 −
√

1
10

√
3
10 −

√
3
5

|1, 0〉 0 −
√

3
10

√
2
5 −

√
3
10

|1, 1〉 0 −
√

3
5

√
3
10 −

√
1
10

2D3/2|2,mF 〉

|2,−2〉
√

2
5 −

√
1
5

√
2
5 0

|2,−1〉
√

2
5 −

√
3
10

√
1
10

√
1
5

|2, 0〉
√

2
5 −

√
3
10 0

√
3
10

|2, 1〉
√

2
5 −

√
1
5 −

√
1
10

√
3
10

|2, 2〉
√

2
5 0 −

√
2
5

√
1
5

Figure I.3 & Table I.3: Allowed transitions between the 2S1/2 ↔ 2D3/2 manifolds.
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2S1/2|F,mF 〉

|0, 0〉 |1,−1〉 |1, 0〉 |1, 1〉

2D5/2|2,mF 〉

|2,−2〉
√

3
5 − 2√

15
− 2√

5
0

|2,−1〉
√

3
5

√
1
5 −

√
1
15 −

√
2
15

|2, 0〉
√

3
5

√
1
5 0 −

√
1
5

|2, 1〉
√

3
5 − 2

15

√
1
15 −

√
1
5

|2, 2〉
√

3
5 0 2√

15
−
√

2
15

2D5/2|3,mF 〉

|3,−3〉 0 1 0 0

|3,−2〉 0
√

2
3

√
1
3 0

|3,−1〉 0
√

2
5 2

√
2
15

√
1
15

|3, 0〉 0
√

1
5

√
3
5

√
1
5

|3, 1〉 0
√

1
15 2

√
2
15

√
2
5

|3, 2〉 0 0
√

1
3

√
2
3

|3, 3〉 0 0 0 1

Figure I.4 & Table I.4: Allowed transitions between the 2S1/2 ↔ 2D5/2 manifolds.
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