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Abstract

This thesis is concerned with the study of the Blow-up phenomena for

parabolic problems, which can be defined in a basic way as the inability to

continue the solutions up to or after a finite time, the so called blow-up time.

Namely, we consider the blow-up location in space and its rate estimates, for

special cases of the following types of problems:

(i) Dirichlet problems for semilinear equations,

(ii) Neumann problems for heat equations,

(iii) Neumann problems for semilinear equations,

(iv) Dirichlet (Cauchy) problems for semilinear equations with gradient terms.

For problems of type (i), (ii), we extend some known blow-up results of

parabolic problems with power and exponential type nonlinearities to problems

with nonlinear terms, which grow faster than these types of functions for large

values of solutions. Moreover, under certain conditions, some blow-up results

of the single semilinear heat equation are extended to the coupled systems of

two semilinear heat equations.

For problems of type (iii), we study how the reaction terms and the nonlinear

boundary terms affect the blow-up properties of the blow-up solutions of these

problems.

The noninfluence of the gradient terms on the blow-up bounds is showed for

problems of type (iv).



The study of blow-up is considerably more

difficult and interesting when the equations

involved are PDEs, and indeed, it has become

both a kind of industry and an art.

Prof. Juan Luis Vazquez, [64]
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Chapter 1

Introduction

Many physical and engineering problems can be modeled mathematically in the

form of evolution equations (partial differential equations depending on time).

We cannot obtain a well-defined solution for these equations without adding

suitable additional conditions (initial and boundary conditions). Since the last

century, many authors have studied the existence and uniqueness for the linear

types of these problems.

Nonlinear partial differential equations are more complicated and have more

properties than linear equations, these properties are related to important fea-

tures of the real world phenomena, on the other hand, these properties are

connected with the difficulties of the mathematical treatment.

In the last decades, partial differential equations became one of the most

active areas of mathematics research because it helped mathematicians to find

answers and explanations to many phenomena of the nonlinear world.

It is known that singularities occur in the solution of linear problems when

the problem has singular coefficients or singular data, the so called fixed singu-

larities. One of the most important properties of nonlinear partial differential

equations is the possibility of eventual occurrence of singularities starting from

smooth data (coefficient and initial or boundary conditions), the so called well

posedness in the small, meaning the existence and uniqueness and continuity

of the classical solutions can be established for small time.

1



1.1. Background

Singularities of nonlinear problems may come from the effects of nonlinear

terms, which occur in the partial differential equations or in the boundary

conditions, usually they depend on the time and the location, the so called

moving singularities.

One of the most remarkable type of these singularities is what we call the

Blow-up phenomena. Basically, in a nonlinear problem, blow-up is a form of the

spontaneous singularities appear when one or more of the depending variables

go to infinity as time goes to a certain finite time.

In this thesis we consider the blow-up phenomena for parabolic problems,

which we will describe in more detail in the next section.

1.1 Background

Blow-up phenomena occur in an elementary form in the theory of ordinary

differential equations, and it is equivalent to global nonexistence (see [49]), for

instance, the problem of reaction equation with positive constant initial value,

namely

ut = f(u), t > 0, u(0) = a > 0,

where f is positive and continuous. It is well known that, for any solution of

this problem, the condition∫ ∞
U

du

f(u)
<∞, U ≥ 1 (1.1)

is the necessary and sufficient condition for the occurrence of blow-up in finite

time, see [31]. For the special case (the power type problem), namely

ut = up, t > 0,

u(t) = a, t = 0,

}
(1.2)

where p > 1, a > 0, it is easy to see that the unique solution to this problem

takes the form

u(t) =
C

(T − t)
1
p−1

, T =
1

ap−1(p− 1)
, C =

1

(p− 1)
1
p−1

. (1.3)

2



1.1. Background

It is clear that this solution is nonsingular if 0 < t < T, and u(t) goes to infinity

as t→ T−. We say that the solution of this problem blows up at t = T. Clearly,

the number 1
p−1

is the (algebraic) blow-up rate for this solution. On the other

hand, for the Cauchy problem for the heat equation, namely

ut = ∆u, x ∈ Rn, t > 0,

u(x, 0) = u0(x), x ∈ Rn,

}
(1.4)

it is known that the fundamental solution of this problem takes the form

u(x, t) =
1

(4πt)(n/2)

∫
Rn
u0(y) exp[−|x− y|

2

4t
]dy, (1.5)

which means, it decays like t−
n
2 .

Fujita [25] has considered the initial value problem of a semilinear equation,

which is a combination of the two problems (1.2), (1.4), namely

ut = ∆u+ up, x ∈ Rn, t > 0,

u(x, 0) = u0, x ∈ Rn.

}
(1.6)

He proved that there are no global, nontrivial solutions of (1.6) whenever
1
p−1
≥ n

2
, while there are both global, nontrivial solutions and blow-up so-

lutions, if the blow-up rate is smaller than the decay rate. Therefore, the study

of ordinary differential equations supplies basic ideas for the theory of blow-up

and singularities.

Starting from these examples above, for partial differential equations defined

in a domain Ω with some t > 0, the concept of blow-up means the solution

cannot be continued globally in time at some or many points in Ω, because of

the infinite growth of some variables of the problem describing the evolution

process. In other words, blow-up occurs if the solution becomes infinite at some

or many points in Ω in finite time.

In general, blow-up can be discussed in any normed space, however in this

thesis we deal with only Blow-up in L∞−norm, which can be defined as follows

Definition 1.1.1. For any parabolic equation, we say that the classical solution

u blows up in L∞− norm or blows up (for short), if there exists T <∞, called

3



1.1. Background

the blow-up time, such that u is well defined for all 0 < t < T, while it becomes

unbounded in L∞ − norm, when t approach to T, that is

sup
x∈Ω
|u(x, t)| → ∞ as t→ T−.

For a system of two coupled semilinear parabolic equations, namely

ut = ∆u+ F (u, v), vt = ∆v +G(u, v), (x, t) ∈ Ω× (0, T ),

we say that a solution (u, v) blows up in finite time, if there exist T <∞ such

that either u or v blows up at t = T, this means

sup
x∈Ω
|u(x, t)| → ∞, or sup

x∈Ω
|v(x, t)| → ∞, as t→ T−,

while

sup
x∈Ω
{|u(x, t)|+ |v(x, t)|} ≤ C <∞, t < T.

Moreover, we say that u, v blow up simultaneously, if both of u, v blow up at

T, see for instance [44].

Remark 1.1.2. It is well known that for some problems, see [35, 56], the

solution stays bounded, while a space derivative may blow up in a finite time,

the so called gradient blow-up (GBU). For some other problems, the time

derivative becomes unbounded (blows up) when the solution reaches a certain

finite level in finite time, the so called guenching phenomena, see [12]. Clearly,

in these two cases, blow-up and global nonexistence are nonequivalent.

Blow-up solutions of partial differential equations have been investigated by

many authors specially after the important results by Kaplan [37], Fujita [25],

Friedman and McLeod [24] and some other authors. There is a very extensive

literature on the blow-up phenomena, however, there is as yet no complete

theory for many problems.

To study the blow-up phenomena for parabolic problems defined on a domain

Ω, t > 0, with the initial function u0, it is natural to ask some important

questions, which have been discussed by many authors (see [31, 64]), such as

blow-up location and its behavior in space and time. In fact, as we will see,

4



1.1. Background

the qualitative properties of blow-up solutions are controlled by three criteria:

the size of the initial data u0, the geometry of the domain Ω and the type on

the nonlinearity of the function of solutions, which appears in the equation as

a reaction term or appears in the problem as a boundary condition term.

We can briefly, summarize these questions as follows:

1- Does blow-up occur?

It is known that the existence and uniqueness can be discussed in different

function spaces, and since blow-up is the inability to continue the solutions

in that function space up to or after a finite time, blow-up may occur in a

function space but not in another one, for instance, blow-up may occur for

classical solutions, while there exists a global weak solution L1 (see [20, 49]).

To study the blow-up for classical solutions, the above question can be split

into two questions:

i-Which problems do have finite time blow-up solutions?

The answer depends on the form of the problem (the coefficients and the

nonlinear terms which appear in the equation or more generally its structural

conditions) and the form of the initial date. For example, consider the Dirichlet

problem for the semilinear heat equation defined in a bounded domain Ω, with

smooth boundary and nonnegative initial condition, namely

ut = ∆u+ f(u), (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0, x ∈ Ω,

 (1.7)

where f ∈ C1, positive for u > 0, convex function and satisfies the condition

(1.1). It has been proved in [37] that if u0 is nonnegative and large enough,

then the nontrival solution to this problem blows up in finite time. For some

other problems, blow-up may occur due to the effect of the boundary conditions

even in case of the equation is linear and has smooth coefficients, for instance,

the problem of heat equation with nonlinear boundary condition, namely

ut = ∆u, (x, t) ∈ BR × (0, T ),
∂u
∂η

= f(u), x ∈ ∂BR,

u(x, 0) = u0, x ∈ BR.

 (1.8)
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1.1. Background

It has been shown in [34], that if f ∈ C1, positive nondecreasing for u > 0 and

satisfies the condition (1.1), then there is a finite blow-up time for any positive

initial data u0.

ii- Which solutions do blow up in finite time?

In case of the problem has a blow-up solution one may ask whether each

solution blows up in finite time. Problems may have both of global and blow-up

solutions for different initial data. For instance, we recall the results of Fujita

[25], which we have discussed before, we see that each nontrivial solution of

problem (1.6) starting from nonzero initial data, blows up in finite time, if

1 < p ≤ 1 + 2/n, while the problem may have global or blow-up solutions, if

p > 1 + 2/n, depending on the size of u0.

2- When does blow-up happen?

The solutions of parabolic problems can be classified into four cases depend-

ing on the location of the blow-up time T, as follows:

(i) Bounded global solution: the solution stays uniformly bounded in

time.

(ii) Unbounded global solution: the solution blows up (becomes un-

bounded) when time goes to infinity (T =∞).

(iii) Blow-up solution in finite time: the solution becomes unbounded in

finite time (T <∞).

(iv) Instantaneous blow-up solution: the solution is unbounded at any

arbitrary small time, t > 0 (T = 0).

It is known that for problem (1.7), where f(u) = λu, λ > 1 blow-up in infinite

time occurs, while if f is a superlinear function, then in this case we may have

bounded or unbounded global solutions (see [20] and the examples therein).

In general, by global solution we mean case (i) or (ii). The case (iii) is called

the standard blow-up case. For an example of (iv), consider problem (1.7),

where f(u) = λeu, λ > 0, n ≥ 10, with a singular initial data u0(x) ≥ S(x) =

−2 ln |x|, u0 6≡ S, it has been showed in [31] that u(x, t) =∞ for any arbitrary

6



1.1. Background

small t > 0, which means, the nonexistence of a locally in time, nontrivial

solution of this problem.

Remark 1.1.3. We may ask whether any estimate for the finite blow-up time

can be found. In general for many problems, it is not easy task, however, the

blow-up time estimates have been shown in the literature for some special cases

(see for instance [51]).

3- Where does blow-up happen?

The blow-up set B(u0) is a closed subset of Ω and it is a function of the

initial condition u0, it can be defined as follows

Definition 1.1.4. Let u blows up in finite time T > 0. Then x0 ∈ Ω is a

blow-up point if u(xn, tn) → ∞ for some {xn, tn}∞n=1 ⊂ Ω × (0, T ) such that

(xn, tn) → (x0, T ) as n → ∞. The blow-up set B(u0) is the set of all blow-up

points.

The blow-up set can be only one of the following three cases

(i) Finite blow-up point: where B(u0) has only one point (single blow-up

point) or a finite number of points.

(ii) Regional blow-up: in this case B(u0) ( Ω and the measure of B(u0) is

finite and positive.

(iii) Global blow-up: where B(u0) = Ω.

It was shown in [24] that for problem (1.7), where f is of power or exponential

type, if Ω = BR and u0 is nonzero radially decreasing function, then the blow-

up occurs only at x = 0, therefore, in this case we have a single blow-up point,

while if f(u) = up, Ω = (−1, 1), it was shown in [20], that for given any

integer k and −1 < x1 < · · · < xk < 1, there is u0 such that u blows up at

t = T < ∞ and B(u0) = {x1, . . . , xk}. In [29], it has been shown that in case

of f(u) = (1 + u) log2(1 + u), Ω = R, u0 is radially nonincreasing and satisfies

some additional assumptions, the blow-up set is exactly [−π, π]. Therefore, in

this case we have a reginal blow-up. Another example of regional blow-up is

7



1.1. Background

the problem (1.8), it was shown in [34] that if f ∈ C2 and convex function,

then the blow-up in this problem occurs only on the boundary (∂BR). Global

blow-up may occur in some problems, for instance, in the problem of semilinear

heat equations with a gradient term (see the subsection 5.2.3).

Remark 1.1.5. In first and second cases the blow-up solutions are called lo-

calized blow-up.

4-How does blow-up occur?

In order to understand the space-time behavior of blow-up solutions near

the blow-up points as t approaches the blow-up time, we need to study two

aspects:

Blow-up rate estimate: It is the rate at which each blow-up solution u(x, t)

diverges as t approaches the blow-up time T and x approaches a blow-up point.

For Dirichlet and Cauchy problems for semilinear parabolic equations, blow-

up is said to be of type I, if the solutions blow up with the same rate as the

solutions of the corresponding ordinary differential equation, otherwise blow-

up is said to be of type II (see [55, 56]). For instance, it was shown in [24] for

problem (1.7), where f(u) = up, p > 1, Ω is a ball or convex domain, that there

exist two constants C, c > 0 such that the upper (lower) blow-up rate estimate

to the positive blow-up solution take the following form

c(T − t)−1/(p−1) ≤ max
x∈Ω

u(x, t) ≤ C(T − t)−1/(p−1), t ∈ (0, T ).

It is clear that the above upper (lower) blow-up rate is the same rate as of

the solutions (1.3) of the corresponding ordinary differential equation (1.2),

therefore, the blow-up of this problem is of type I.

In the literature there are some different techniques used to derive the lower

(upper) blow-up rate estimates, some of these techniques depend on the rescal-

ing arguments, which means one rescales only space or both space and time

variables, the limiting equation obtained is either elliptic or parabolic. The

solutions of these new equations are bounded not only at the non blowing

points, but rather at the blow-up set, see for instance [7, 33].The other common

8



1.1. Background

technique relying on maximum principle arguments (applied to some suitable

auxiliary functions), see for instance, [24]. For the problems of parabolic equa-

tions with nonlinear boundary conditions, many authors have used the integral

equation methods to find the blow-up rate estimates, see for instance [36, 44].

Blow-up profile: It is the asymptotic behavior of each blow-up solution u, as

limits of u(x, t) when t → T− near and at the blow-up point. More generally,

the ultimate goal being to describe the blow-up behavior of u at the final time

T, for x close to the blow-up point, the so called the final blow-up profile.

As already pointed out by Giga and Kohn [32, 33], the blow-up rate estimate

is crucial in studying the asymptotic behavior to problem (1.7), where Ω is a

bounded, convex domain or Rn, f(u) = u|u|p−1, and p is in the subcritical

Sobolov parameter range, namely

1 < p < n+2
n−2

if n ≥ 3,

1 < p <∞ if n = 1, 2.

}
(1.9)

They have used the similarity variables and the asymptotic expansion to prove

that

lim
t→T

(T − t)1/(p−1)u(x0 + y
√
T − t, t) = 0 or k,

uniformly for |y| < C, where k = (p− 1)−1/(p−1). This means, if we restrict the

spatial domain to the (time-dependent) domain |x− x0| < C
√
T − t, then the

self similar blow-up profile is given by

u(x, t) ≈ k

(T − t)1/(p−1)
, as t→ T.

Clearly, if x0 is a blow-up point, then the limit above cannot be zero. This limit

describes the asymptotic behavior of u in space-time domain prior to (x0, T ),

for any x0 ∈ Ω. Furthermore, for Ω = BR, u is positive, radially decreasing

solution, it is known [24, 55] that u blows up at only x = 0, moreover, the final

pointwise blow-up profile is given by

u(x, T ) ≈ C

|x|
2
p−1

, as |x| → 0.

9



1.2. Outline of the Thesis

5-What does happen after blow-up occurs?

It is desirable task to study the possibility of continuation of the classical

blow-up solution in some weaker sence after the blow-up time. In general blow-

up of classical solutions of any problem has to be one of the following three

cases:

(i) Complete blow-up: In this case the solution cannot be continued again

after blow-up occurs. For instance, Baras and Cohen [2] have considered

the blow-up solution to problem (1.7), where f(u) = up, and p is in the

subcritical Sobolov parameter range (1.9). They proved that a continua-

tion in any sense is not possible because it leads to the conclusion that

u(x, t) =∞, x ∈ Ω, t > T.

(ii) Incomplete blow-up: In this case the solution can be continued in weak

sense in some subset of Ω, with some t > T. For instance, for problem

(1.7), where f(u) = up, p ≥ n+2
n−2

, n > 2, and Ω is convex, it has been

shown in [20] under some restricted assumptions on u0, that the problem

has an unbounded global weak solution.

(iii) Transient blow-up: In this case the solution becomes bounded imme-

diately after T. For instance, in [31] it was discussed a type of problems

that has a radial solution, which blows up at a momentary single blow-

up point peak at t = T and then evolves immediately into a classical

bounded solution for the rest of time t > T, such blow-up solution called

the peaking solution.

1.2 Outline of the Thesis

The aim of this thesis is to extend the known blow-up results to several

parabolic problems, and further, to address some of the standard blow-up ques-

tions, which have been discussed in the last section, namely, we consider the

blow-up sets and the blow-up rate estimates for these problems. Each of the

forthcoming chapters is devoted to study a specific type of parabolic problems.

10



1.2. Outline of the Thesis

Chapter 2 considers the problems of semilinear parabolic equations with

zero Dirichlet boundary conditions, defined in a ball. Two spatial cases are

studied. Firstly, the heat equation with the exponential of a power type func-

tion. Secondly, coupled systems of two semilinear heat equations. Finally, the

ignition model system is studied as a special case of those systems. For these

problems, we extended the known blow-up results by Friedman and McLeod in

[24], showing that the blow-up occurs at only a single point, as a consequence

of deriving the pointwise estimates of their classical solutions. Moreover,by

using the maximum principle arguments (applied to some suitable auxiliary

functions) we derive the upper blow-up rate estimates for these problems.

Chapter 3 is devoted to study the problems for the heat equation (system)

with the exponential of power type functions as Neumann boundary conditions,

defined in a ball. For the scalar problem, we use the maximum principle argu-

ments to derive the blow-up rate estimate, while the integral equation method

is used to find the blow-up rate estimates for the system problem. Moreover,

depending on these upper blow-up rate estimates, as in the other studied cases

(see [44, 46]), we show that the blow-up occurs only on the boundary for the

system problem.

Chapter 4 considers the problems of a semilinear equation (system) with

nonlinear boundary conditions, defined in a ball. We consider the spatial case,

where the reaction terms and the boundary conditions are of exponential type

functions. The integral equation method is used to derive the lower and the

upper blow-up rate estimate for the scalar problem and the system problem,

respectively, while the maximum principle arguments is used to derive upper

(lower) and lower blow-up rate estimate for the scalar problem and the system

problem, respectively. We show that the reaction terms have an important

effect on the upper blow-up rate estimates which become more singular than

those known for the cases where the reaction terms are absent, while under

certain assumptions the lower blow-up rate estimates take the same forms as

those known for the problem where the reaction terms are absent (see [46]).

Under some restricted assumptions on these problems, we prove that the blow-

up can only occur on the boundary.

11



1.2. Outline of the Thesis

Chapter 5 is devoted to study the problems of semilinear parabolic equa-

tions with gradient terms. Two spatial cases are studied. Firstly, we consider

the zero Dirichlet problem for heat equation with the exponential function of

solutions and a negative sign gradient term function, defined in a ball. Sec-

ondly, we consider the Cauchy and Dirichlet problems for the system of heat

equations with power type functions of solutions and positive sign gradient

terms functions, defined in a ball or Rn. For the first problem, we derive the

upper pointwise and the blow-up rate estimates using the maximum principle

arguments, while for the system problem, we use a technique that depends on

rescaling arguments, to derive the upper rate estimates for the blow-up solu-

tions and their gradients functions. These blow-up bounds take the same forms

as those known for the cases where the gradient terms are absent (see [24, 61]).

This shows that under certain assumptions these gradient terms have no effect

on the blow-up bounds.

In Chapter 6, we briefly summarize our main results and conclusions and

discuss some possible areas of further research.

This thesis contains two appendices:

In Appendix A, we introduce the domain notation and symbols, which have

been used throughout the thesis, furthermore, we review the standard function

spaces and the definitions of superlinear functions, radial functions, uniformly

parabolic equations, classical and weak solutions.

In Appendix B, we recall same maximum and comparison principles, which

we frequently use in this thesis.

12



Chapter 2

Dirichlet Problems for

Semilinear Parabolic Equations

Introduction

It is well known that semilinear parabolic equations arise in many physical

situations, where diffusive phenomena and source terms have to be modeled. In

[39] Lacy presents a number of physical situations including chemical reactions

and electrical heating, where blow-up has physical significance.

The purpose of this chapter is to study the blow-up rate estimates and the

blow-up set for a semilinear parabolic equation (system) with zero Dirichlet

boundary conditions defined in a ball. In section one we consider the problem

of heat equation with a special reaction term, which is the exponential of a

power type function.The second section is devoted to study a general form of

systems of semilinear heat equations, and then we study the special case where

the reaction terms are of exponential type functions, as an example of our

results.

13



2.1. The Semilinear Heat Equation

2.1 The Semilinear Heat Equation

This section is concerned with the problem of the semilinear heat equation with

zero Dirichlet boundary condition:

ut = ∆u+ f(u), (x, t) ∈ BR × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

u(x, 0) = u0(x), x ∈ BR,

 (2.1)

where f ∈ C1(R)∩C2(R\{0}) is positive and increasing function in (0,∞), u0 ∈
C2(BR) is nonzero, nonnegative, radially nonincreasing function, vanishing on

∂BR. That is, it satisfies the following conditions

u0(x) = u0(|x|), x ∈ BR,

u0(x) = 0, x ∈ ∂BR,

u0r(|x|) ≤ 0, x ∈ BR.

 (2.2)

Moreover, it satisfies

∆u0(x) + f(u0(x)) ≥ 0, x ∈ BR. (2.3)

Blow-up phenomena for reaction-diffusion problems in bounded domain have

been studied for the first time in [37] by Kaplan, he showed that, if the convex

source terms f = f(u) satisfying the condition∫ ∞
U

du

f(u)
<∞, U ≥ 1, (2.4)

then diffusion cannot prevent blow-up when the initial state is large enough.

In fact, the dynamics of equation (2.1) can be understood as a competition

between the Laplacian term and nonlinear reaction term.

The problem of semilinear parabolic equation defined in a ball has been

introduced in [24, 47, 56, 66]. For instance, in [24] Friedman and McLeod have

studied problem (2.1) with (2.2), under fairly general assumptions on u0, f,

they proved that the solutions of this problem are positive, radially decreasing

and blow up in finite time at only a single point x = 0. They have considered

problem (2.1) with two special cases of f, namely, the power type (f(u) =

14



2.1. The Semilinear Heat Equation

u|u|p−1, p > 1. Here up ≡ u|u|p−1), and the exponential type (f(u) = eu). For

the power type, they showed that for any α ≥ 2/(p − 1), the upper pointwise

estimate takes the following form

u(x, t) ≤ C|x|−α, x ∈ BR \ {0} × (0, T ),

which shows that the only possible blow-up point is x = 0. Moreover, under an

additional assumption of monotonicity in time (2.3), the corresponding lower

estimate on the blow-up profile can be established (see [56]) as follows

u(x, T ) ≥ C|x|−2/(p−1), x ∈ BR∗ \ {0},

for some R∗ ≤ R, C > 0. On the other hand, it has been shown in [24] that

the upper (lower) blow-up rate estimates take the following form

c(T − t)−1/(p−1) ≤ u(0, t) ≤ C(T − t)−1/(p−1), t ∈ (0, T ).

For the second case (the exponential type), Friedman and McLeod showed

similar results, they proved that the point x = 0 is the only blow-up point due

to the upper pointwise estimate, which takes the following form

u(x, t) ≤ logC +
2

α
log(

1

|x|
), (x, t) ∈ BR \ {0} × (0, T ),

where 0 < α < 1, C > 0. Moreover, the upper (lower) blow-up rate estimate

takes the following form

log c− log(T − t) ≤ u(0, t) ≤ logC − log(T − t), t ∈ (0, T ). (2.5)

The aim of this section is to show that the results of Friedman and McLeod

hold true for problem (2.1), where f takes the special case f(u) = eu|u|
p−1
, p > 1,

namely

ut = ∆u+ eu|u|
p−1
, (x, t) ∈ BR × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

u(x, 0) = u0(x), x ∈ BR.

 (2.6)

In other words, we prove that x = 0 the only possible blow-up point for this

problem. Furthermore, we show that the upper blow-up rate estimate takes

the following form

u(0, t) ≤ logC − 1

p
log(T − t), t ∈ (0, T ).

15



2.1. The Semilinear Heat Equation

2.1.1 Preliminaries

Since f is a C1 function, the existence and uniqueness of local classical solutions

to problem (2.1) are well known, see (Ch. 7, Th. 6, [22]). Moreover, for the

regularity results ( u ∈ C2,1(BR × [0, T )), see [56]. On the other hand, there

are various conditions in the literature which ensure that T <∞, for instance,

it has been shown in [37] that if f is convex, then the codition (2.4) is the

necessary and sufficient condition on f to achieve a blow-up solution.Therefore,

the solution of problem (2.1) with conditions (2.2) may blow up in finite time

for large initial data.

The next lemma shows some properties of the solutions of problem (2.1)

with conditions (2.2). We denote for simplicity u(r, t) = u(x, t).

Lemma 2.1.1. Let u be a classical solution of (2.1) with (2.2). Then

(i) u(x, t) is positive and radial, ur ≤ 0 in [0, R) × (0, T ). Moreover, ur < 0

in (0, R]× (0, T ).

(ii) ut > 0, (x, t) ∈ BR × (0, T ).

(iii) For f(u) = eu
p
, u blows up in finite time for large initial data and the

blow-up set contains x = 0.

Proof of (i):

The proof that u is positive in BR×(0, T ) is followed directly by Proposition

B.1.1.

Next, the aim is to show that the solution of problem (2.1) is radial.

Define the function v as follows:

v(x, t) = u((|x|, 0, . . . , 0), t), (x, t) ∈ BR × (0, T ).

Clearly, v is a solution to problem (2.1) with the initial function

v0(|x|) = u0((|x|, 0, . . . , 0), t).
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2.1. The Semilinear Heat Equation

Since u0 is radial, it follows that

u0(x) = v0(x), x ∈ BR.

Therefore, v(x, t) is a solution to problem (2.1) with u0 as well.

Since it is known that for any initial function u0 the problem (2.1) has a

unique solution in BR × (0, T ), thus

u(x, t) ≡ v(x, t), (x, t) ∈ BR × (0, T ).

By using Lemma A.2.5, it follows that u is radial.

The final aim is to show that ur < 0, for (x, t) ∈ BR × (0, T ) ∩ {r > 0}.

Set z = rn−1ur. Since f ∈ C1([0,∞)) ∩ C2(0,∞) and u > 0 in Ω × (0, T ),

by parabolic regularity results (see Ch. 3, Theorem 13,[22]), we obtain

u ∈ C4,2(BR × (0, T )) ∩ C2,1(BR × [0, T )). (2.7)

The first equation in (2.1) can be written as follows:

ut −
1

rn−1
zr = f, (x, t) ∈ BR × (0, T ) ∩ {r > 0}.

Differentiating with respect to r

zt +
n− 1

r
zr − zrr − f

′
(u)z = 0, (x, t) ∈ BR × (0, T ) ∩ {r > 0}. (2.8)

From the zero Dirichlet boundary condition in (2.1) and since u > 0 in BR ×
(0, T ), it follows that

z(x, t) = Rn−1ur(R, t) < 0, (x, t) ∈ ∂BR × (0, T ).

Moreover, from (2.2), we have

z(x, 0) = rn−1u0r(x) ≤ 0, x ∈ BR ∩ {r > 0},
z(0, t) = 0, t ∈ (0, T ).

Also, by (2.7)

ur ∈ C2,1((0, R)× (0, T )) ∩ C([0, R]× [0, T )).
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2.1. The Semilinear Heat Equation

Since f
′

is continuous, f
′
(u) is bounded in [0, R]× [0, t], for t < T.

From above, it follows by the maximum principle B.1.1 that

ur < 0, for (x, t) ∈ BR × (0, T ) ∩ {r > 0}.

Proof of (ii):

Set v = ut, by (2.7)

v ∈ C2,1(BR × (0, T )) ∩ C(BR × [0, T )).

Clearly, v satisfies

vt = ∆v + f
′
(u)v, (x, t) ∈ BR × (0, T )

v(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

v(x, 0) = ∆u0 + f(u0) ≥ 0, x ∈ BR.


From Proposition B.1.1, it follows that

v > 0, (x, t) ∈ BR × (0, T ).

Moreover, by Proposition B.1.5, it follows that

∂v

∂η
< 0, on ∂BR × (0, T ).

Proof of (iii):

Since the function f(u) = eu
p

is convex on (0,∞) (f
′′
(u) > 0,∀u > 0) and

satisfies the condition (2.4), the solutions of problem (2.6) blow up in finite time

for large initial function. On the other hand, from the comparison principle

B.1.2, it is easy to see that if u∗, u are classical solutions (starting from u0) to

problems (2.6) and (2.1), where f(u) = up, p > 1, respectively, then

u∗ ≥ u, in BR × (0, T ).

It is well known that x = 0 is the only blow-up point to problem (2.1), (2.2),

where f(u) = up. Therefore, the blow-up solutions of problem (2.6) with (2.2),

blow up at x = 0. Thus (iii) holds.

Remark 2.1.2. Since u ≥ 0 in BR × (0, T ), we have

eu
p ≡ eu|u|

p−1

, in BR × (0, T ).
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2.1. The Semilinear Heat Equation

2.1.2 Pointwise Estimates

This subsection considers the pointwise estimate of the solutions of problem

(2.6) with (2.2), which shows that the blow-up cannot occur if x is not equal to

zero. In order to prove that, we need first to recall the following lemma, which

has been proved by Friedman and McLeod in (p. 428, [24]).

Lemma 2.1.3. Let u be a blow-up solution of problem (2.1) with (2.2). Also

suppose that

u0r(r) ≤ −δr, for 0 < r ≤ R, where δ > 0. (2.9)

Consider F ∈ C2(0,∞) ∩ C1([0,∞)), such that F is positive in (0,∞) and

satisfies

F
′
, F
′′ ≥ 0 in (0,∞). (2.10)

Also if it satisfies with f the following condition,

f
′
F − fF ′ ≥ 2εFF

′
in (0,∞). (2.11)

Then the function J = rn−1ur +εrnF (u) is nonpositive in BR× (0, T ) for some

ε > 0.

Proof. Set z = rn−1ur, c(r) = εrn.

Since

ur ∈ C2,1((0, R)× (0, T )) ∩ C([0, R]× [0, T ))

and F ∈ C2(0,∞) ∩ C1([0,∞)), it follows

J ∈ C2,1((0, R)× (0, T )) ∩ C([0, R]× [0, T )).

By using (2.8), a direct calculation shows

Jt +
n− 1

r
Jr − Jrr = f

′
(u)z + cF

′
f +

2(n− 1)

r
cF
′
ur

+
n− 1

r
c
′
F − cF ′′u2

r − 2c
′
F
′
ur − c

′′
F ≡ B.
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2.1. The Semilinear Heat Equation

Using ur = z/rn−1 and z = −cF + J, it follows that

B = bJ − c(f ′F − fF ′)− c3

r2n−2
F
′′
F 2 +

2cc
′

rn−1
F
′
F

+
n− 1

r
c
′
F − 2(n− 1)c2

rn
F
′
F − c′′F,

where

b = f
′
+

2(n− 1)

rn
cF
′ − 2c

′
F
′

r(n−1)
= f

′ − 2εF
′

when c = εrn.

Clearly, b is a bounded function for 0 < r < R, 0 < t ≤ T ∗ < T.

Thus

Jt +
n− 1

r
Jr − Jrr − bJ ≤ 0, (r, t) ∈ (0, R)× (0, T )

provided

f
′
F − fF ′ − 2c

′

rn−1
F
′
F +

2(n− 1)

rn
cF
′
F + (c

′′ − n− 1

r
c
′
)
F

c
≥ 0.

Since c = εrn, and with choosing ε small enough the last inequality becomes

f
′
(u)F (u)− f(u)F

′
(u) ≥ 2εF (u)F

′
(u), in (0, R)× (0, T ).

From (2.11), it is clear that the last inequality holds.

Since ut > 0 in (0, R)×(0, T ) and from the zero Dirichlet boundary condition,

it clear that

ur(R, t) < u0r(R), t ∈ (0, T ).

Thus

J(R, t) ≤ Rn−1[u0r(R) + εRF (0)] ≤ Rn[−δ + εF (0)] ≤ 0, t ∈ (0, T ),

J(r, 0) = rn−1[u0r(r) + εrF (u0(r))] ≤ rn[−δ + εF (u0(r))] ≤ 0,

provided

ε ≤ δ

max(0,R] F (u0)
.

Morevor, J(0, ·) = 0.

From above and Proposition B.1.3, it follows that

J ≤ 0, in [0, R]× (0, T ).
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Hence

J ≤ 0, in BR × (0, T ).

The last lemma has been used in [24] for the cases where the reaction term

is of power or exponential type functions, to prove that the blow-up can only

occur at a single point. The next theorem extends these results to the problem

(2.6) with (2.2).

Theorem 2.1.4. Let u be a blow-up solution of problem (2.6) with (2.2). Also

suppose that u0 satisfies (2.9). Then x = 0 is the only blow-up point.

Proof. Let

F (u) = eδu
p

, 0 < δ < 1.

It is clear that F satisfies (2.10). The next aim is to show that the inequality

(2.11) holds.

A direct calculation shows

f
′
(u)F (u)− f(u)F

′
(u) = pup−1e(1+δ)up − δpup−1e(1+δ)up (2.12)

= pup−1e(1+δ)up [1− δ].

On the other hand,

2εF (u)F
′
(u) = 2εδpup−1e2δup . (2.13)

From (2.12), (2.13) it is clear that (2.11) holds true provided ε, δ are small

enough.

Thus, by Lemma 2.1.3

J = rn−1ur + εrneδu
p ≤ 0, (r, t) ∈ (0, R)× (0, T ),

or

− ur
eδup
≥ εr. (2.14)

Let G(s) =
∫∞
s

du
eδu

p .
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2.1. The Semilinear Heat Equation

It is clear that

d

dr
G(u(r, t)) =

d

dr

∫ ∞
u

du

eδup
= − d

dr

∫ u

∞

du

eδup
= − d

du

∫ u

∞

ur
eδup

du = − ur
eδup

.

Thus, by (2.14), we obtain

G(u(r, t))r ≥ εr.

Now, integrate the last equation from 0 to r

G(u(r, t))−G(u(0, t)) ≥ 1

2
εr2.

It follows

G(u(r, t)) ≥ 1

2
εr2. (2.15)

If for some r > 0, u(r, t) → ∞, as t → T, then G(u(r, t)) → 0, as t → T, a

contradiction to (2.15).

Remark 2.1.5. Under the assumptions of Theorem 2.1.4, it follows from (2.15)

that the upper pointwise estimate for problem (2.6) with (2.2) takes the fol-

lowing form

u(x, t) ≤ logC +
2

δ
log(

1

|x|
), (x, t) ∈ BR0 \ {0} × (t0, T ),

where R0 ∈ (0, R) and t0 ∈ [0, T ) such that u(R0, t0) ≥ 1.

2.1.3 Blow-up Rate Estimates

The following theorem considers the upper bound of the blow-up rate for prob-

lem (2.6) with (2.2), following the procedure used in [24].

Theorem 2.1.6. Let u be a solution of (2.6) with (2.2) and (2.9), which blows

up in finite time T. Then there exists a positive constant C such that

u(0, t) ≤ logC − 1

p
log(T − t), t ∈ (0, T ). (2.16)
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Proof. Define the function F as follows,

F (x, t) = ut − αf(u), (x, t) ∈ BR × (0, T ),

where f(u) = eu
p
, α > 0.

Since F ∈ C2,1(BR × (0, T )) ∩ C(BR × [0, T )), a direct calculation shows

Ft −∆F = utt − αf
′
ut −∆ut + α∆f(u),

= utt −∆ut − αf
′
[ut −∆u] + α|∇u|2f ′′ ,

= f
′
ut − αf

′
f(u) + α|∇u|2f ′′ .

Thus

Ft −∆F − f ′(u)F = α|∇u|2f ′′ ≥ 0, (x, t) ∈ BR × (0, T ), (2.17)

due to f
′′
(u) > 0, for u in (0,∞).

Since f
′

is continuous, f
′
(u) is bounded in BR × [0, t], for t < T.

By Lemma 2.1.1, ut(x, t) > 0, in BR× (0, T ), and since u blows up at x = 0,

there exist k > 0, ε ∈ (0, R), τ ∈ (0, T ) such that

ut(x, t) ≥ k, (x, t) ∈ Bε × [τ, T ).

Also, we can find α > 0 such that ut(x, τ) ≥ αf(u(x, τ)), for x ∈ Bε. Thus

F (x, τ) ≥ 0 for x ∈ Bε. (2.18)

On the other hand, because of u blows up at only x = 0, there exists C0 > 0

such that

f(u(x, t)) ≤ C0 <∞, in ∂Bε × (0, T ),

If we choose α is small enough such that k ≥ αC0, then we get

F (x, t) ≥ 0, (x, t) ∈ ∂Bε × [τ, T ), (2.19)

By (2.17), (2.18), (2.19) and Proposition B.1.1 (starting from τ instead of

0), it follows that

F (x, t) ≥ 0, (x, t) ∈ Bε × (τ, T ).
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Thus

ut(0, t) ≥ αeu
p(0,t), for τ ≤ t < T. (2.20)

Since u is increasing in time and blows at T, there exist τ ∗ ≤ τ such that

u(0, t) ≥ p
1

(p−1) for τ ∗ ≤ t < T,

provided τ is close enough to T, which leads to

eu
p(0,t) ≥ epu(0,t), τ ∗ ≤ t < T. (2.21)

From (2.20), (2.21), it follows that

ut(0, t) ≥ αepu(0,t), for τ ≤ t < T. (2.22)

Integrate (2.22) from t to T∫ T

t

ut(0, t)e
−pu(0,t) ≥ α(T − t).

Thus

− 1

p
e−pu(0,t)|Tt ≥ α(T − t). (2.23)

Since

u(0, t)→∞, e−pu(0,t) → 0, as t→ T,

the inequality (2.23) becomes

1

epu(0,t)
≥ pα(T − t).

Thus

epu(0,t)(T − t) ≤ C∗, C∗ = 1/(pα), t ∈ [τ, T )

Therefore, there exist a positive constant C such that

u(0, t) ≤ logC − 1

p
log(T − t), t ∈ (0, T ).

Remark 2.1.7. Depending on the size of the initial data, at a large time

enough, the solution of problem (2.6) is larger than or equal to the solution

of problem (2.1), where f(u) = epu, and this can be shown by the compari-

son principle B.1.2. However, from Theorem 2.1.6, we observe that the two

problems have the same upper blow-up rate estimate (2.16).
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2.2. Coupled Systems of Reaction Diffusion Equations

2.2 Coupled Systems of Reaction Diffusion

Equations

In this section, we consider the system of two semilinear heat equations with

zero Dirichlet boundary conditions defined in a ball:

ut = ∆u+ f(v), vt = ∆v + g(u), (x, t) ∈ BR × (0, T ),

u(x, t) = 0, v(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ BR,

 (2.24)

where f, g ∈ C1(R) ∩ C2(R \ {0}), are positive and increasing superlinear

functions on (0,∞), 1/f, 1/g are integrable at infinity, moreover, the functions

f
′
, g
′
, f
′′

and g
′′

are positive in (0,∞), u0 and v0 are smooth, nonnegative,

radially nonincreasing functions, vanishing on ∂BR, this means they satisfy the

following conditions:

u0(x) = u0(|x|), v0(x) = v0(|x|), x ∈ BR,

u0(x) = 0, v0(x) = 0, x ∈ ∂BR,

u0r(|x|) ≤ 0, v0r(|x|) ≤ 0, x ∈ BR.

 (2.25)

Moreover, we assume that they satisfy the following conditions

∆u0 + f(v0) ≥ 0, ∆v0 + g(u0) ≥ 0, ∀x ∈ BR. (2.26)

According to [11], the problem (2.24) has been formulated from physical models

arising in various fields of applied sciences, for example, in the chemical reaction

process, the chemical concentration and the temperature are governed by a

coupled system of reaction diffusion equations in the form of (2.24).

The problem of a semilinear parabolic system defined in a ball was intro-

duced in [11, 23, 43, 61]. For instance, in [23] Friedman and Giga have studied

the blow-up solution to the system (2.24) in one dimensional space, namely

ut = uxx + f(v), vt = vxx + g(u), (x, t) ∈ (−R,R)× (0, T ),

where f, g are positive, increasing and superlinear functions, and u0, v0 are

defined as in (2.25) and suitably large. It was proved (under some assumptions
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on f, g), that the blow-up to this problem occurs at only a single point. They

have studied as examples of their results, two special cases of f, g; firstly, the

power model

f(v) = v|v|p−1, g(u) = u|u|q−1, p = q, (2.27)

secondly, the exponential model

f(u) = Aeu, g(u) = Beu A,B > 0. (2.28)

Recently, in [61], it has been considered the positive solutions to problem

(2.24) in general dimensional space, where f, g are of power type functions,

namely

ut = ∆u+ vp, vt = ∆v + uq, (x, t) ∈ BR × (0, T ) p, q > 1. (2.29)

For this problem, it was proved single point blow-up for the radially decreasing

solutions. Moreover, it was shown that the lower pointwise estimates for the

final blow-up profiles take the forms

u(x, T ) ≥ c1|x|−2α, v(x, T ) ≥ c2|x|−2β,

where

α =
p+ 1

pq − 1
, β =

q + 1

pq − 1
.

On the other hand, the blow-up rate estimates for this problem have been

considered by many authors (see for instance [11]), it was shown that if the

condition (2.26) is satisfied, then the upper (lower) blow-up rate estimates take

the following forms:

c1(T − t)−α ≤ u(0, t) ≤ c2(T − t)−α, t ∈ (0, T ),

c3(T − t)−β ≤ u(0, t) ≤ c4(T − t)−β, t ∈ (0, T ).

Similar results were obtained for the second special case of problem (2.24),

where f, g are of exponential type , namely

ut = ∆u+ epv, vt = ∆v + equ, (x, t) ∈ BR × (0, T ), p, q > 0. (2.30)
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For this problem, it has been shown in [11] that the only blow-up point is x = 0

and the blow-up rate estimates take the following forms:

log c− log[q(T − t)] ≤ qu(0, t) ≤ logC − log[q(T − t)], t ∈ (0, T ),

log c− log[p(T − t)] ≤ pv(0, t) ≤ logC − log[p(T − t)], t ∈ (0, T ).

The aim of this section is to study some conditions under which the blow-up

in problem (2.24) occurs only at a single point, furthermore, to derive a formula

for the upper (lower) blow-up rate estimates under some restricted assumptions

on f, g. Finally, the special case, where f, g take the forms as in (2.28) (the so

called Ignition system, [71]), will be studied in general dimensional space as an

example of the results of this section.

2.2.1 Preliminaries

Since f, g are C1 functions, which means they are locally Lipschitz functions,

the local existence of the unique classical solutions to problem (2.24) is guar-

anteed (see [40]). On the other hand, it is well known [27, 28] that T <∞ for

a large class of functions f, g, when the initial data (u0, v0) are suitably large.

Moreover, since (2.24) is coupled system, only simultaneous blow-up can occur.

The next lemma shows some properties of the classical solutions of problem

(2.24) with (2.25). We denote for simplicity u(r, t) = u(x, t), v(r, t) = v(x, t).

Lemma 2.2.1. Let (u, v) be a classical solution to the problem (2.24), (2.25).

Then

(i) u and v are positive and radial, ur ≤ 0, vr ≤ 0 in [0, R)×(0, T ). Moreover,

ur < 0, vr < 0 in (0, R]× (0, T ).

(ii) ut > 0, vt > 0, (x, t) ∈ BR × (0, T ).

(iii) If (u, v) is a blow-up solution, then x = 0 is a blow-up point.

Proof. The proofs of (i) and (ii) are similar to the proof of Lemma 2.1.1, with

using some of maximum principles from Appendix B, for parabolic systems.
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From (i) we conclude that the blow-up sets for u and v coincide with some

intervals [−a, a] and [−b, b] respectively, where a, b < R. This means, the blow-

up set for (u, v) contains r = 0. Thus (iii) holds.

2.2.2 Blow-up Set

In this subsection we show under some assumptions that the only possible

blow-up point to problem (2.24), (2.25) is x = 0.

Theorem 2.2.2. Let (u, v) be a blow-up solution of problem (2.24) with (2.25).

Suppose that

u0r(r) ≤ −δ1r, v0r(r) ≤ −δ2r for 0 < r ≤ R, where δ1, δ2 > 0. (2.31)

If there exist two functions F,G ∈ C2([0,∞)) such that F,G are positive in

(0,∞) and their first and second derivatives are nonnegative in (0,∞), more-

over, they satisfy with f, g the following conditions∫ ∞
s

dv

F (v)
<∞,

∫ ∞
s

du

G(u)
<∞, for s > 0,

f
′
(v)F (v)− f(v)G

′
(u) ≥ 2εG(u)G

′
(u), in (0, R)× (0, T ),

g
′
(u)G(u)− g(u)F

′
(v) ≥ 2εF (v)F

′
(v), in (0, R)× (0, T ),

}
(2.32)

for some ε ∈ (0, 1), then the blow-up set has only one point x = 0.

Proof. We follow the procedures of Friedman and McLeod used in [24] for the

scalar problem (2.1).

Since both u and v are radial, we denote for simplicity

u(r, t) = u(x, t), v(r, t) = v(x, t).

Clearly, the system (2.24) can be written as follows:

ut = urr + n−1
r
ur + f(v), (r, t) ∈ (0, R)× (0, T ),

vt = vrr + n−1
r
vr + g(u), (r, t) ∈ (0, R)× (0, T ).

}
(2.33)
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Set

J1 = rn−1ur + εrnG(u), J2 = rn−1vr + εrnF (v).

By parabolic regularity results

ur, vr ∈ C2,1((0, R)× (0, T )) ∩ C([0, R]× [0, T )).

Since F,G ∈ C2([0,∞)),

J1, J2 ∈ C2,1((0, R)× (0, T )) ∩ C([0, R]× [0, T )).

Denote for convenience

w1 = rn−1ur, w2 = rn−1vr, , c(r) = εrn.

Thus

J1 = w1 + c(r)G(u), J2 = w2 + c(r)F (v).

A direct calculation shows

w1t =rn−1urt,

w1r =rn−1urr + (n− 1)rn−2ur,

w1rr =rn−1urrr + (n− 1)rn−2urr + (n− 1)(n− 2)rn−3ur

+ (n− 1)rn−2urr.

This leads to

w1t +
n− 1

r
w1r − w1rr = rn−1urt + (n− 1)rn−2urr + (n− 1)2rn−3ur

−rn−1urrr − (n− 1)rn−2urr

−(n− 1)(n− 2)rn−3ur − (n− 1)rn−2urr.

From (2.33), it follows that

urrr = utr −
n− 1

r
urr +

n− 1

r2
ur − f

′
vr.

Thus

w1t +
n− 1

r
w1r − w1rr = w2f

′
(v).
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In the same way we can show

w2t +
n− 1

r
w2r − w2rr = w1g

′
(u).

Also it is clear

[c(r)G(u)]t = c(r)G
′
(u)ut = εrnG

′
(u)(urr +

n− 1

r
ur + f(v)),

[c(r)G(u)]r = εrnG
′
(u)ur + εnG(u)rn−1,

(n− 1)

r
[c(r)G(u)]r = ε(n− 1)rn−1G

′
(u)ur + εn(n− 1)G(u)rn−2,

[c(r)G(u)]rr = εrn(G
′
(u)urr + u2

rG
′′
(u)) + εG

′
(u)urnr

n−1

+ εnG(u)(n− 1)rn−2 + εnrn−1G
′
(u)ur.

From above, it follows that

J1t +
n− 1

r
J1r − J1rr = f

′
(v)[J2 − εrnF (v)] + εrnG

′
(u)f(v)

− 2εG
′
(u)[rn−1ur]− εrnG

′′
(u)u2

r.

Using the relation rn−1ur = w1 = J1 − εrnG(u), we obtain

J1t +
n− 1

r
J1r − J1rr ≤ f

′
(v)[J2 − εrnF (v)]

+ εrnG
′
(u)f(v)− 2εG

′
(u)[J1 − εrnG(u)]

Thus

J1t +
n− 1

r
J1r − J1rr − bJ1 − cJ2 ≤ −εrnH, (2.34)

where

H = F (v)f
′
(v)− f(v)G

′
(u)− 2εG(u)G

′
(u).

From our assumption (2.32), it follows that H ≥ 0 in (0, R)× (0, T ).

Thus

J1t +
n− 1

r
J1r − J1rr − bJ1 − cJ2 ≤ 0, (x, t) ∈ (0, R)× (0, T ).

where, b = −2εG
′
(u), c = f

′
(v).
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In the same way we can show that

J2t +
n− 1

r
J2r − J2rr − dJ2 − hJ1 ≤ 0, (x, t) ∈ (0, R)× (0, T ),

where, d = −2εF
′
(v), h = g

′
(u).

Clearly, c, h, d and b are bounded functions on (0, R) × [0, t] for any fixed

t ∈ (0, T ), moreover, c, h ≥ 0.

Also,

J1(0, t) = J2(0, t) = 0, t ∈ [0, T ).

By (2.31), we obtain

J1(r, 0) = rn−1[u0r(r) + εrG(u0(r))] ≤ rn[−δ1 + εG(u0(r))],

J2(r, 0) = rn−1[v0r(r) + εrF (v0(r))] ≤ rn[−δ2 + εF (v0(r))].

Since u, v are increasing in time in the domain BR × (0, T ), it follows that

u > u0, v > v0, (x, t) ∈ BR × (0, T ),

and from the zero Dirichlet boundary conditions, it is easy to see that

ur(R, t) < u0r(R) < 0, vr(R, t) < v0r(R) < 0, t ∈ (0, T ).

Thus

J1(R, t) ≤ Rn−1[u0r(R) + εrG(0)] ≤ Rn[−δ1 + εG(0)], t ∈ (0, T ),

J2(R, t) ≤ Rn−1[v0r(R) + εrF (0)] ≤ Rn[−δ2 + εF (0)], t ∈ (0, T ).

Therefore, each of the functions J1(r, 0), J2(r, 0), J1(R, t), J2(R, t), are non-

positive, for r ∈ (0, R), t ∈ (0, T ), provided

ε ≤ min{ δ1

max(0,R] G(u0)
,

δ2

max(0,R] F (v0)
}.

From above and Proposition B.2.1, it follows that

J1, J2 ≤ 0, (x, t) ∈ BR × (0, T ). (2.35)
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Define

G∗(s) =

∫ ∞
s

du

G(u)
, F ∗(s) =

∫ ∞
s

dv

F (v)
.

From (2.35), it follows that
−ur
G(u)

≥ εr

Clearly,

d

dr
G∗(u(r, t)) =

d

dr

∫ ∞
u

du

G(u)
= − d

dr

∫ u

∞

du

G(u)
= − d

du

∫ u

∞

ur
G(u)

du = − ur
G(u)

.

Thus

G∗(u(r, t))r ≥ εr.

Now, integrate the last equation from 0 to r

G∗(u(r, t))−G∗(u(0, t)) ≥ 1

2
εr2.

It follows that

G∗(u(r, t)) ≥ 1

2
εr2. (2.36)

In the same way we can show that

F ∗(v(r, t)) ≥ 1

2
εr2. (2.37)

If for some r > 0 u(r, t) → ∞ or v(r, t) → ∞ as t → T, then G∗(u(r, t)) → 0

or F ∗(v(r, t))→ 0 as t→ T, a contradiction to (2.36), (2.37).

Remark 2.2.3. Theorem 2.2.2 implies that any point x 6= 0 does not belong

to the blow-up set. Therefore, under the assumption of Theorem 2.2.2, the

blow-up set of the problem (2.24), (2.25) has only a single point x = 0.

In section 2.2.4, we study an example for the assumptions assumed in the

last theorem.

2.2.3 Blow-up Rate Estimates

The following theorem considers the lower (upper) bounds on the blow-up rate

estimates for problem (2.24), (2.25) with some restricted assumptions on f, g.
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Theorem 2.2.4. Let (u, v) be a solution to (2.24), (2.25), which blows up at

only one point (x = 0). Assume there exsits γ > 1 such that

g(u) ≤ γf(v), f(v) ≤ γg(u), (x, t) ∈ BR × (0, T ). (2.38)

Then there exist positive constants c1, c2, c3 and c4 such that

G−1
1 (c1(T − t)) ≤ u(0, t) ≤ G−1

1 (c2(T − t)), t ∈ (0, T ), (2.39)

F−1
1 (c3(T − t)) ≤ v(0, t) ≤ F−1

1 (c4(T − t)), t ∈ (0, T ), (2.40)

where

G1(s) =

∫ ∞
s

du

g(u)
, F1(s) =

∫ ∞
s

dv

f(v)
. (2.41)

Proof. We first consider the lower bounds.

Set

U(t) = u(0, t), V (t) = v(0, t), t ∈ [0, T ).

Since (u, v) attains its maximum at x = 0, we obtain

∆U(t) ≤ 0, ∆V (t) ≤ 0, 0 ≤ t < T.

From (2.24) it follows that

Ut(t) ≤ f(V (t)), Vt(t) ≤ g(U(t)), 0 < t < T. (2.42)

From (2.38) and (2.42), it follows that

Ut(t) ≤ γg(U(t)), Vt(t) ≤ γf(V (t)), 0 < t < T.

Thus
Ut(t)

g(U(t))
≤ γ,

Vt(t)

f(V (t))
≤ γ, 0 < t < T. (2.43)

Clearly,

−dG1(u(0, t))

dt
= − d

dt

∫ ∞
u(0,t)

du

g(u(0, t))
= − d

dt

∫ T

t

(du/dt)

g(u(0, t))
dt =

d

dt

∫ t

T

ut
g(u(0, t))

dt,

which leads to

−dG1(u(0, t))

dt
=

ut(0, t)

g(u(0, t))
,
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where G1 defined as in (2.41). From the last equation and equation (2.43), it

follows that

− dG1(u)

dt
≤ γ, 0 < t < T. (2.44)

Integrate (2.44) from t to T

G1(u(0, t))−G1(u(0, T )) ≤ γ(T − t).

Clearly, G1(u(0, T )) = 0.

Thus

G1(u(0, t)) ≤ γ(T − t), 0 < t < T.

Since G1 is decreasing, by the last equation

u(0, t) ≥ G−1
1 (γ(T − t)), 0 < t < T.

For v in the same way we can show that

v(0, t) ≥ F−1
1 (γ(T − t)), 0 < t < T.

Next, we consider the upper bounds.

As in the proof of Theorem 2.1.6, define the functions Q,H as follows

Q(x, t) = ut − θf(v), H(x, t) = vt − θg(u), (x, t) ∈ BR × (0, T ),

where θ > 0. By parabolic regularity, we have

ut, vt ∈ C2,1(BR × (0, T )) ∩ C(BR × [0, T )),

and since f, g ∈ C2(0,∞) ∩ C([0,∞)), it follows that

F,G ∈ C2,1(BR × (0, T )) ∩ C(BR × [0, T )).

A direct calculation shows

Qt −∆Q = utt − θf
′
vt −∆ut + θ∆f(v),

= utt −∆ut − θf
′
[vt −∆v] + θ|∇v|2f ′′ ,

= f
′
vt − θf

′
g(u) + θ|∇v|2f ′′ .
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Thus

Qt −∆Q− f ′(v)H = θ|∇v|2f ′′ ≥ 0, in BR × (0, T ),

due to f
′′

is a positive function in (0,∞). In the same we can show that

Ht −∆H − g′(u)Q = θ|∇u|2g′′ ≥ 0, in BR × (0, T ).

Since f
′
, g
′

are continuous functions, f
′
(v), g

′
(u) are bounded in BR× [0, t] for

t < T.

By Lemma 2.2.1, ut, vt > 0, in BR× (0, T ), and since u, v blow up at x = 0,

there exist k1 > 0, k2 > 0, ε ∈ (0, R), τ ∈ (0, T ) such that

ut(x, t) ≥ k1, vt(x, t) ≥ k2, (x, t) ∈ Bε × [τ, T ).

Also, we can find θ > 0 such that

ut(x, τ) ≥ θf(v(x, τ)), vt(x, τ) ≥ θg(u(x, τ)), for x ∈ Bε.

Thus

F (x, τ) ≥ 0, G(x, τ) ≥ 0 for x ∈ Bε.

Since, u, v blow up at only x = 0, there exists C1, C2 > 0 such that

f(v(x, t)) ≤ C1 <∞, g(u(x, t)) ≤ C2 <∞, in ∂Bε × (0, T ),

If we choose θ is small enough such that

θ ≤ min{ k1

C1

,
k2

C2

},

then, we can get

F (x, t) ≥ 0, G(x, t) ≥ 0 (x, t) ∈ ∂Bε × [τ, T ),

From above and by Proposition B.2.1 (starting from τ instead of 0), it follows

that

F (x, t) ≥ 0, G(x, t) ≥ 0 (x, t) ∈ Bε × (τ, T ).

This leads to

ut(0, t) ≥ θf(v(0, t)), vt ≥ θg(u(0, t)), for τ ≤ t < T. (2.45)
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By (2.38), we obtain

ut(0, t) ≥
θ

γ
g(u(0, t)), vt ≥

θ

γ
f(v(0, t)), τ ≤ t < T. (2.46)

Since

−dG1(u(0, t))

dt
=

ut(0, t)

g(u(0, t))
.

From (2.46) and the last equation, it follows that

−dG1(u(0, t))

dt
≥ θ

γ
, τ ≤ t < T.

Integrating the last inequality from t to T∫ T

t

−dG1(u(0, t)) = G1(u(0, t))−G1(u(0, T )) ≥ θ

γ
(T − t).

Thus

G1(u(0, t)) ≥ θ

γ
(T − t), τ ≤ t < T. (2.47)

Since G1 is decreasing, from (2.47), it follows that

u(0, t) ≤ G−1
1 (

θ

γ
(T − t)), τ ≤ t < T.

Thus, there exist c2 > 0 such that

u(0, t) ≤ G−1
1 (c2(T − t)), 0 < t < T.

Similarly, we can find c4 > 0 such that

v(0, t) ≤ F−1
1 (c4(T − t)), 0 < t < T.

In next section, we study an example for the assumptions assumed in the

last theorem.
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2.2.4 The Ignition System

Theorems 2.2.2 and 2.2.4 can be applied to a large class of functions f, g,

including the following forms

f(v) = Aev, g(u) = Beu, (2.48)

where A,B are positive constants. To show that the condition (2.38) holds for

such type of system, we prove the following lemma, which has been proved in

[23] for one dimensional space.

Lemma 2.2.5. Let (u, v) be a nontrivial solution to problem (2.24), (2.25),

where f, g take the forms of (2.48).Then there exist M > 1 such that

ev ≤Meu, eu ≤Mev, (x, t) ∈ BR × (0, T ). (2.49)

Proof. Define

J = Meu − ev, (x, t) ∈ BR × (0, T ).

Clearly, J ∈ C2,1(Ω× [0, T )). A direct calculation shows

Jt = Meuut − evvt,

∇J = Meu∇u−∇vev, (2.50)

∆J = Meu∆u+Meu|∇u|2 − ev∆v − ev|∇v|2.

Thus

Jt −∆J = Meu[ut −∆u]− ev[vt −∆v] + ev|∇v|2 −Meu|∇u|2

= (MA−B)eu+v + ev|∇v|2 −Meu|∇u|2. (2.51)

From (2.50), we obtain

∇u =
1

Meu
[∇vev +∇J ].

This leads to

|∇u|2 =
1

M2e2u
[e2v|∇v|2 + 2ev∇v · ∇J + |∇J |2].
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Therefore, (2.51) becomes

Jt −∆J = (MA−B)eu+v + [ev − e2v

Meu
]|∇v|2

−[
2ev

Meu
∇v +

1

Meu
∇J ] · ∇J.

Since

ev − e2v

Meu
= ev

J

Meu
,

the last equation can be rewritten as follows:

Jt −∆J − b · ∇J − cJ = (MA−B)eu+v ≥ 0, (x, t) ∈ BR × (0, T )

provided M ≥ B/A, where

b = −[
2ev

Meu
∇v +

1

Meu
∇J ], c =

ev

Meu
|∇v|2.

It is clear that, c is bounded in BR × (0, t], for t < T.

Moreover, J(R, ·) = M − 1 > 0 and J(·, 0) = Meu0 − ev0 ≥ 0, provided M

is large enough.

From above and Proposition B.1.3, we deduce that

J ≥ 0, (x, t) ∈ BR × (0, T ).

Similarly, we can show that the function H = Mev − eu is nonnegative in

BR × (0, T ).

The next theorem shows that Theorem 2.2.2 can be applied to the ignition

system (problem (2.24), (2.25) with (2.48)) with appropriate choice for F,G.

Theorem 2.2.6. Let (u, v) be a blow-up solution to problem (2.24), (2.25),

where f, g are given as in (2.48), (u0, v0) satisfies (2.31). Then there exist only

a single blow-up point. Moreover, the pointwise estimates take the following

forms:

u ≤ logC − 2

α
log(r), v ≤ logC − 2

α
log(r), (r, t) ∈ (0, R]× (0, T ).
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2.2. Coupled Systems of Reaction Diffusion Equations

Proof. Let

F (v) = eαv, G(u) = eαu, α ∈ (0, 1). (2.52)

In order to make use of Theorem 2.2.2, we need to show that F,G satisfy the

condition (2.32).

A direct calculation shows

f
′
F − fG′ = Aev[eαv − αeαu]. (2.53)

By (2.49)

ev ≥ 1

M
eu, (x, t) ∈ BR × (0, T ).

Thus (2.53) becomes

f
′
F − fG′ ≥ A

M
eu[

1

Mα
eαu − αeαu]

≥ A

M
[

1

Mα
− α]e2αu ≥ 2εαe2αu = 2εGG

′

provided α < 1
M
, ε is small enough such that

ε ≤ A

2M
[

1

αMα
− 1].

In the same way we can show that

g
′
G− gF ′ ≥ B

M
[

1

Mα
− α]e2αv ≥ 2εαe2αv = 2εFF

′
, (2.54)

provided

ε ≤ B

2M
[

1

αMα
− 1].

Thus the condition (2.32) is met. Therefore, according to Theorem 2.2.2, we

conclude that x = 0 is the only blow-up point.

The next aim is to derive the pointwise estimates. As in Theorem 2.2.2,

define the functions G∗, F ∗ as follows

G∗(s) =

∫ ∞
s

du

G(u)
, F ∗(s) =

∫ ∞
s

dv

F (v)
, s ≥ 0.

From (2.52), we get

G∗(s) = F ∗(s) =
1

αeαs
, s > 0.
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2.2. Coupled Systems of Reaction Diffusion Equations

Therefore, (2.36), (2.37) become

1

αeαu
≥ ε

r2

2
,

1

αeαv
≥ ε

r2

2
.

Thus

eαu ≤ 2

αεr2
, eαv ≤ 2

αεr2
, (r, t) ∈ (0, R]× (0, T )

or

u ≤ logC − 2

α
log(r), v ≤ logC − 2

α
log(r), (r, t) ∈ (0, R]× (0, T ).

The next theorem considers the blow-up rate estimates for problem (2.24),

(2.25), where f, g take the forms of (2.48).

Theorem 2.2.7. Let (u, v) be a blow-up solution to ignition system (problem

(2.24), (2.25), where f, g take the forms of (2.48)). Moreover, assume that

(u0, v0) satisfies (2.31). Then the upper (lower) blow-up rate estimates take the

following forms

logC1 − log(T − t) ≤ u(0, t) ≤ logC2 − log(T − t), t ∈ (0, T ),

logC3 − log(T − t) ≤ v(0, t) ≤ logC4 − log(T − t), t ∈ (0, T ),

where C1, C2, C3 and C4 are positive constants.

Proof. Define the functions G1, F1 as in Theorem 2.2.4 as follows:

G1(s) =

∫ ∞
s

du

Beu
, F1(s) =

∫ ∞
s

dv

Aev
ds.

It is obviously that

G1(s) =
1

Bes
, F1(s) =

1

Aes
, s ≥ 0.

Moreover,

G−1
1 (s) = − log(Bs), F−1

1 (s) = − log(As), s > 0.
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2.2. Coupled Systems of Reaction Diffusion Equations

Therefore, from (2.39) it follows that

− log(Bc1(T − t)) ≤ u(0, t) ≤ − log(Bc2(T − t)), t ∈ (0, T ).

Thus, there exist C1, C1 > 0 such that

logC1 − log(T − t) ≤ u(0, t) ≤ logC2 − log(T − t), t ∈ (0, T ).

In the same way, depending on (2.40), there exist C3, C4 > 0 such that

logC3 − log(T − t) ≤ v(0, t) ≤ logC4 − log(T − t), t ∈ (0, T ).
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Chapter 3

Neumann Problems for Heat

Equations

The problems of heat equation with nonlinear boundary conditions have been

formulated from many physical models arising in various fields of the applied

sciences, for example, in the chemical reactions, heat transfer and population

dynamics. Also the problem of two heat equations coupling the nonlinear

Neumann boundary values, describes some cross boundary flux. See [50] and

the references therein.

The main objective here is to establish estimates on the blow-up rates and

find the blow-up set for such type of problems defined in a ball. In the first

section of this chapter we consider the scalar problem, while the problem for

the system is studied in section two. The nonlinear boundary conditions, which

we consider in this chapter are the exponential of power type functions.
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3.1. The Heat Equation with a Nonlinear Boundary Condition

3.1 The Heat Equation with a Nonlinear Bound-

ary Condition

In this section we consider the problem of the heat equation with a nonlinear

boundary condition, namely

ut = ∆u, (x, t) ∈ BR × (0, T ),
∂u
∂η

= f(u), (x, t) ∈ ∂BR × (0, T ),

u(x, 0) = u0(x), x ∈ BR,

 (3.1)

where f ∈ C1(R) and is positive increasing function in (0,∞), u0 is smooth,

nonnegative, radial function and satisfying the compatibility condition

∂u0

∂η
= f(u0), x ∈ ∂BR. (3.2)

Moreover, it satisfies

∆u0 ≥ 0, u0r(|x|) ≥ 0, x ∈ BR. (3.3)

The problem of heat equation with nonlinear Neumann boundary conditions

defined in a ball, has been introduced in [9, 16, 18, 34]. For instance, in [34]

it has been shown that if f is nondecreasing and 1/f is integrable at infinity

for u > 0, then the blow-up occurs in finite time for any positive initial data

u0 (not necessarily radial), moreover, if f is C2(0,∞), increasing and convex

in (0,∞), then blow-up occurs only on the boundary.

For the special case of problem (3.1), where f(u) = u|u|p−1, it has been

proved in [16] that for any u0, the finite time blow-up occurs, where p > 1, and

it occurs only on the boundary. Moreover, it has been shown in [18, 36] that

the upper (lower) blow-up rate estimate take the following form

C1(T − t)
−1

2(p−1) ≤ max
x∈BR

u(x, t) ≤ C2(T − t)
−1

2(p−1) , t ∈ (0, T ).

In [9], it has been considered the second special case of problem (3.1), where

f(u) = eu, in one dimensional space defined in the domain (0, 1) × (0, T ), it

has been proved that every positive solution blows up in finite time and the
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3.1. The Heat Equation with a Nonlinear Boundary Condition

blow-up occurs only on the boundary (x = 1). Also, the upper (lower) blow-up

rate estimates take the following forms

C1(T − t)−1/2 ≤ eu(1,t) ≤ C2(T − t)−1/2, 0 < t < T.

This section is concerned with the blow-up solutions of problem (3.1), where

f(u) = eu|u|
p−1
, p > 1, namely

ut = ∆u, (x, t) ∈ BR × (0, T ),
∂u
∂η

= eu|u|
p−1
, (x, t) ∈ SR × (0, T ),

u(x, 0) = u0(x), x ∈ BR.

 (3.4)

We prove that the upper blow-up rate estimate takes the following form

max
BR

u(x, t) ≤ logC − 1

2p
log(T − t), 0 < t < T.

3.1.1 Preliminaries

The local existence of the unique classical solutions to problem (3.1) is well

known from the next theorem, which has been proved in [34].

Theorem 3.1.1. Let f ∈ C1 and let u0 ∈ C2+α(BR), where α ∈ (0, 1), satisfies

the condition (3.2).Then there exists T ∗ > 0 such that problem (3.1) admits

a solution u ∈ C2+α,1+α/2(BR × [0, T ∗]). Moreover, there is a unique maximal

solution. If f is bounded in C1(R), there exists a solution for any T > 0.

The following lemma shows some properties of the solution of problem (3.1).

We denote for simplicity u(r, t) = u(x, t).

Lemma 3.1.2. Let u be a classical unique solution to problem (3.1).Then

(i) u > 0, radial on BR × (0, T ). Moreover, ur ≥ 0, in [0, R]× [0, T ).

(ii) ut > 0 in BR × (0, T ). Moreover, if ∆u0 ≥ a > 0, in BR, then ut ≥ a, in

BR × [0, T ).

(iii) For f(u) = eu
p
, u blows up in a finite time and the blow-up occurs only

on the boundary.
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3.1. The Heat Equation with a Nonlinear Boundary Condition

Proof of (i):

We can show that u > 0 in BR × (0, T ), by just applying Proposition B.1.5

to problem (3.1), or alternatively, by the following proof, which has been given

in [34].

Let δ > 0, and

||u||L∞(BR×[0,T−δ)) ≤M.

Let f ∗ ∈ C1 be a bounded function such that

f ∗(u) = f(u), 0 ≤ u ≤M + 1

and f ∗ > 0 in R1 \ {0}. Let v be the global solution to problem (3.1) with f

replaced by f ∗.

We claim that v ≥ 0. In fact suppose v attains a negative minimum in

BR× [0, T − δ). As it is a solution of the heat equation it should be attained at

the parabolic boundary point. As u0 ≥ 0 there should exist x0 ∈ ∂BR, t0 > 0

such that

v(x0, t0) = min
BR×[0,T−δ)

v.

Thus

0 ≥ ∂v

∂η
(x0, t0) = f(v(x0, t0)) > 0.

This a contradiction and thus v ≥ 0.

Now, we claim that

v = u, in BR × [0, T − δ),

if not, let 0 ≤ τ0 < T − δ be such that

v = u in BR × [0, τ0).

By continuity,

v ≤M + 1 in BR × (0, τ0 + ε).

Thus

f ∗ = f in BR × [0, τ0 + ε).
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3.1. The Heat Equation with a Nonlinear Boundary Condition

By uniqueness v = u in BR × [0, τ0 + ε). Therefore, u = v in BR × [0, T − δ).
Thus

u ≥ 0, in BR × [0, T − δ).

We claim that

u > 0, in BR × (0, T − δ).

If u = 0 at (x0, t0) ∈ ∂BR × (0, T − δ) it would be a minimum of u on BR ×
(0, T − δ). Thus

∂v

∂η
(x0, t0) < 0.

On the other hand
∂v

∂η
(x0, t0) = f(u(x0, t0)) > 0.

Thus u > 0 on ∂BR × (0, T − δ). As u is a solution of the heat equation it

cannot attain interior minimum without being constant. Therefore,

u > 0, in BR × (0, T − δ).

As δ is arbitrary, thus

u > 0, in BR × (0, T ).

Now, we prove that u is radial. Let x ∈ BR, and x
′

be a rotation of x given

by x
′
= Ax, where A = (aij) is an orthogonal matrix, that is

AAT = ATA = I.

It is well known that the solution of heat equation is invariant under rotations

(see [34]), therefore, each of u(x, t), u(x
′
, t) is a solution of problem (3.1) at the

point x with the initial conditions u0(x), u0(x
′
) respectively. Since |x| = |x′ |

(from the properties of orthogonal matrix) and u0 is radial, we obtain

u0(x
′
) = u0(x).

But, for any u0, the problem has a unique solution, therefore

u(x, t) = u(x
′
, t),
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3.1. The Heat Equation with a Nonlinear Boundary Condition

which means that u is radial.

The next aim is to show that ur is nonnegative.

Set z(x, t) = ur(r, t). Clearly, z is a solution of

zt −∆z + n−1
r2
z = 0, (x, t) ∈ BR × (0, T ),

z(x, t) = f(u), (x, t) ∈ ∂BR × [0, T ),

z(x, 0) = u0r(r), x ∈ BR.


Suppose that z(x, t) < 0 for some points in BR × [0, T ). Let z attends its

negative minimum in BR × [0, T ) at the point (x0, t0).

Since z(x, 0) ≥ 0, t0 > 0. If x0 ∈ BR, then

∆z(x0, t0) ≥ 0, zt(x0, t0) ≤ 0.

Thus

0 ≥ zt(x0, t0)−∆z(x0, t0) = −(n− 1)

r2
z(x0, t0) > 0.

If x0 ∈ ∂BR, then

0 > z(x0, t0) = f(u(x0, t0)) > 0.

Clearly, in each of both cases above it follows a contradiction.

Therefore,

z(x, t) ≥ 0, in BR × [0, T ).

Proof of (ii):

Set w = ut. Clearly, w is the solution of the following problem

wt = ∆w, (x, t) ∈ BR × (0, T )
∂w
∂η
− f ′(u)w = 0, (x, t) ∈ ∂BR × (0, T ),

w(x, 0) = ∆u0 ≥ 0, x ∈ BR.


It is well known that this problem has a unique nonnegative solution (see [50],

Theorem 2.1). Moreover, by Proposition B.1.5, it follows that

w > 0, in BR × (0, T ).
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3.1. The Heat Equation with a Nonlinear Boundary Condition

Next, we consider the case, when ∆u0 ≥ a > 0 in BR. We follow the

proof of (Proposition 1.3, [34]).

Since u is a classical solution, ∆u ∈ C(BR × [0, T )).

Let 0 < b < a, there exist ε0 > 0 such that ε < ε0 implies

ut(x, ε) = ∆u(x, ε) > b, x ∈ BR,

which leads to

u(x, ε) > u(x, 0) + bε.

Let

uε = u(x, t+ ε)− bε

It is clear that uε is a solution of the heat equation in BR × (0, T − ε),

uε(x, 0) > u(x, 0) in BR

and

∂uε
∂η

(x, t) =
∂u

∂η
(x, t+ ε) = f(u(x, t+ ε)) = f(uε(x, t) + bε) ≥ f(uε(x, t)).

From Proposition B.1.6, it follows that

uε(x, t) > u(x, t), in BR × (0, T − ε).

This implies that

ut ≥ b in BR × [0, T ).

As b < a is arbitrary

ut ≥ a in BR × [0, T ).

Proof of (iii):

Clearly, f(u) = eu
p

is C2(0,∞), increasing, positive function in (0,∞) and

1/f is integrable at infinity for u > 0, moreover f is convex (f
′′
(u) > 0,∀u > 0).

Therefore, according to the result of [34], it follows that (iii) holds.

48



3.1. The Heat Equation with a Nonlinear Boundary Condition

3.1.2 Blow-up Rate Estimates

The following theorem considers the upper blow-up rate estimate for problem

(3.4).

Theorem 3.1.3. Let u be a blow-up solution to (3.4), where ∆u0 ≥ a > 0 in

BR, T is the blow-up time.Then there exists a positive constant C such that

max
BR

u(x, t) ≤ logC − 1

2p
log(T − t), 0 < t < T. (3.5)

Proof. We follow the idea of [9], consider the function

F (x, t) = ut(r, t)− εu2
r(r, t), (x, t) ∈ BR × (0, T ).

Clearly, F ∈ C2,1(BR × (0, T )) ∩ C(BR × [0, T )).

By a straightforward calculation

Ft −∆F = 2ε(
n− 1

r2
u2
r + u2

rr) ≥ 0.

Since ∆u0 ≥ a > 0, and u0r ∈ C(BR),

F (x, 0) = ∆u0(r)− εu2
0r(r) ≥ 0, x ∈ BR.

provided ε is small enough.

Moreover,

∂F

∂η
|x∈SR = urt(R, t)− 2εur(R, t)urr(R, t)

= (eu
p(R,t))t − 2εeu

p(R,t)(ut(R, t)−
n− 1

r
ur(R, t))

≥ (p[u(R, t)]p−1 − 2ε)eu
p(R,t)ut(R, t).

Since

ut > 0, on BR × (0, T ).

Thus
∂F

∂η
|x∈SR ≥ 0, t ∈ (0, T )
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3.1. The Heat Equation with a Nonlinear Boundary Condition

provided

ε ≤ p[u0(R)]p−1

2
.

From the comparison principle B.1.1, it follows that

F (x, t) ≥ 0, in BR × (0, T ),

in particular F (x, t) ≥ 0, for |x| = R, that is

ut(R, t) ≥ εu2
r(R, t) = εe2up(R,t), t ∈ (0, T ).

Since u is increasing in time and blows at T, there exist τ < T such that

u(R, t) ≥ p
1

(p−1) for τ ≤ t < T,

which leads to

ut(R, t) ≥ εe2pu(R,t), t ∈ [τ, T ).

By integration the above inequality from t to T, it follows that∫ T

t

ute
−2pu(R,t) ≥ ε(T − t).

So

− 1

2p
e−2pu(R,t)|Tt ≥ ε(T − t). (3.6)

Since

u(R, t)→∞, e−pu(R,t) → 0 as t→ T,

the inequality (3.6) becomes

1

epu(R,t)
≥ (2pε(T − t))1/2,

which means

(T − t)1/2epu(R,t) ≤ 1√
2pε

,

Therefore, there exist a positive constant C such that

max
BR

u(x, t) ≤ logC − 1

2p
log(T − t), 0 < t < T.
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Remark 3.1.4. Depending on the size of the initial data, at a large time

enough, the solution of problem (3.4) is larger than or equal to the solution

of problem (3.1), where f(u) = epu, and this can be shown by the compari-

son principle B.1.2. However, from Theorem 3.1.3, we observe that the two

problems have the same upper blow-up rate estimate (3.5).

3.2 Systems of Heat Equations with Nonlinear

Coupled Boundary Conditions

In this section we consider the system of two heat equations with coupled

nonlinear Neumann boundary conditions, namely

ut = ∆u, vt = ∆v, (x, t) ∈ BR × (0, T ),
∂u
∂η

= f(v), ∂v
∂η

= g(u), (x, t) ∈ ∂BR × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ BR,

 (3.7)

where f, g ∈ C1(R) ∩ C2(R \ {0}), increasing functions such that f, g > 0 in

(0,∞), u0, v0 are smooth, radial, nonzero, nonnegative functions and satisfying

the compatibility condition

∂u0

∂η
= f(v0),

∂v0

∂η
= g(u0), x ∈ ∂BR, (3.8)

Moreover, they satisfy

∆u0,∆u0 ≥ 0, u0r(|x|), v0r(|x|) ≥ 0, x ∈ BR. (3.9)

The problem of the system of two heat equations with nonlinear Neumann

boundary conditions defined in a ball was introduced in [10, 11, 44, 46]. For

instance, in [10] it was studied the blow-up solutions to a special case of the

system (3.7), where

f(v) = v|v|p−1, g(u) = u|u|q−1, p, q > 1. (3.10)

It was proved that for any nonzero, nonnegative initial data (u0, v0), the finite

time blow-up can only occur on the boundary, moreover, it was shown in [44]
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3.2. Systems of Heat Equations with Nonlinear Coupled Boundary Conditions

that the blow-up rate estimates take the following form

c ≤ max
x∈Ω

u(x, t)(T − t)
p+1

2(pq−1) ≤ C, t ∈ (0, T ),

c ≤ max
x∈Ω

v(x, t)(T − t)
q+1

2(pq−1) ≤ C, t ∈ (0, T ).

In [11, 46], it was considered the solutions of the system (3.7) with expo-

nential Neumann boundary conditions model, namely

f(v) = epv, g(u) = equ, p, q > 0. (3.11)

Also it was showed that for any nonzero, nonnegative initial data, (u0, v0), the

solution blows up in finite time and the blow-up occurs only on the boundary,

moreover, the blow-up rate estimates take the following forms

C1 ≤ equ(R,t)(T − t)1/2 ≤ C2, C3 ≤ epv(R,t)(T − t)1/2 ≤ C4.

In this section, we study the blow-up solutions of problem (3.7), where f, g

are the exponential of power type functions, namely

ut = ∆u, vt = ∆v, (x, t) ∈ BR × (0, T ),
∂u
∂η

= ev|v|
p−1
, ∂v

∂η
= eu|u|

q−1
, (x, t) ∈ ∂BR × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ BR,

 (3.12)

for p, q > 1.

We prove that the upper blow-up rate estimates for problem (3.12) take the

following form

max
BR

u(x, t) ≤ logC1 −
α

2
log(T − t), 0 < t < T,

max
BR

v(x, t) ≤ logC2 −
β

2
log(T − t), 0 < t < T,

where α = p+1
pq−1

, β = q+1
pq−1

.

Moreover, we show that the blow-up occurs only on the boundary.
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3.2.1 Preliminaries

The local existence and uniqueness of classical solutions to problem (3.7) are

well known by the standard parabolic theory [40]. In case of the compatibility

conditions (3.8) being not satisfied, the local existence and uniqueness also hold

by the following theorem, which has been proved in [58].

Theorem 3.2.1. Let u0, v0 ∈ C2(BR) and nonnegative in BR, and positive on

∂Ω. Let f and g be strictly positive in R \ {0}, nondecreasing in (0,∞) with

f
′
, g
′

locally Lipschitz continuous in R \ {0}. There exists a unique maximal

classical solution to problem (3.7), (u, v). Let T ∗ = Tmax(u0, v0) be the time of

existence of the maximal solution. Then

lim
t→T ∗

||u(·, t)||L∞(BR) =∞,

lim
t→T ∗

||v(·, t)||L∞(BR) =∞.

Remark 3.2.2. Theorem 3.2.1 shows that if T ∗ is finite, then (u, v) blows up

simultaneously.

In the following lemma we study some properties of the classical solutions

of problem (3.12). We denote for simplicity u(r, t) = u(x, t), v(r, t) = v(x, t).

Lemma 3.2.3. Let (u, v) be a classical unique solution of (3.12). Then

(i) (u, v) blows up in finite time and the blow-up set contains ∂BR.

(ii) u, v are positive, radial. Moreover, ur, vr ≥ 0 in [0, R]× (0, T ).

(iii) ut, vt > 0 in BR × (0, T ). Moreover, if ∆u0 ≥ a > 0,∆v0 ≥ b > 0 in BR,

then ut ≥ a, vt ≥ b, in BR × [0, T ).

Proof. The proof of (i) follows from the comparison principle (Proposition

B.2.2) and the known blow-up results of problem (3.7) with (3.10).

The proofs of (ii), (iii) are similar to the proof of Lemma 3.1.2, so they are

omitted here.

Remark 3.2.4. When u0(x) ≡ v0(x), p = q, the problem (3.12) can be reduced

to a scalar problem discussed in the first section of this chapter.
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3.2.2 Rate Estimates

In order to study the upper blow-up rate estimates for problem (3.7), we need

to recall some results from [22, 44].

Lemma 3.2.5. ([44]) Let A(t) and B(t) be positive C1 functions in [0, T ) and

satisfy

A
′
(t) ≥ c

Bp(t)√
T − t

, B
′
(t) ≥ c

Aq(t)√
T − t

for t ∈ [0, T ),

A(t) −→ +∞ or B(t) −→ +∞ as t −→ T−,

where p, q > 0, c > 0 and pq > 1. Then there exists C > 0 such that

A(t) ≤ C(T − t)−α/2, B(t) ≤ C(T − t)−β/2, t ∈ [0, T ),

where α = p+1
pq−1

, β = q+1
pq−1

.

Lemma 3.2.6. ([22]) Let x ∈ BR. If 0 ≤ a < n − 1. Then there exist C > 0

such that ∫
SR

dsy
|x− y|a

≤ C.

Theorem 3.2.7. (Jump relation, [22]) Let Γ(x, t) be the fundamental solu-

tion of heat equation, namely

Γ(x, t) =
1

(4πt)(n/2)
exp[−|x|

2

4t
]. (3.13)

Let ϕ be a continuous function on SR × [0, T ]. Then for any x ∈ BR, x
0 ∈

SR, 0 < t1 < t2 ≤ T, for some T > 0, the function

U(x, t) =

∫ t2

t1

∫
SR

Γ(x− y, t− z)ϕ(y, z)dsydτ

satisfies the jump relation

∂

∂η
U(x, t)→ −1

2
ϕ(x0, t) +

∂

∂η
U(x0, t), as x→ x0.

Theorem 3.2.8. Let (u, v) be a solution of (3.12) which blows up in finite time

T. Then there exist positive constants C1, C2 such that

max
BR

u(x, t) ≤ logC1 −
α

2
log(T − t), 0 < t < T,

max
BR

v(x, t) ≤ logC2 −
β

2
log(T − t), 0 < t < T.
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Proof. We follow the idea of [44], define the functions M and Mb as follows

M(t) = max
BR

u(x, t), and Mb(t) = max
SR

u(x, t).

Similarly,

N(t) = max
BR

v(x, t), and Nb(t) = max
SR

v(x, t).

Due to Lemma 3.2.3, both of M,Mb are monotone increasing functions, and

since u is a solution of heat equation, it cannot attain interior maximum without

being constant, therefore,

M(t) = Mb(t). Similarly N(t) = Nb(t).

Moreover, since u, v blow up simultaneously, we have

M(t) −→ +∞, N(t) −→ +∞ as t −→ T−. (3.14)

As in [36, 44], for 0 < z1 < t < T and x ∈ BR, depending on the second

Green’s identity with assuming the Green function:

G(x, y; z1, t) = Γ(x− y, t− z1),

where Γ is defined in (3.13), the integral equation to problem (3.12) with respect

to u can be written as follows

u(x, t) =

∫
BR

Γ(x− y, t− z1)u(y, z1)dy +

∫ t

z1

∫
SR

ev
p(y,τ)Γ(x− y, t− τ)dsydτ

−
∫ t

z1

∫
SR

u(y, τ)
∂Γ

∂ηy
(x− y, t− τ)dsydτ,

As in [36], letting x→ SR and using the jump relation (Theorem 3.2.7) for the

third term on the right hand side of the last equation, it follows that

1

2
u(x, t) =

∫
BR

Γ(x− y, t− z1)u(y, z1)dy +

∫ t

z1

∫
SR

ev
p(y,τ)Γ(x− y, t− τ)dsydτ

−
∫ t

z1

∫
SR

u(y, τ)
∂Γ

∂ηy
(x− y, t− τ)dsydτ,

for x ∈ SR, 0 < z1 < t < T.
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Depending on Lemma 3.2.3 we notice that u, v are positive and radial.Thus∫
BR

Γ(x− y, t− z1)u(y, z1)dy > 0,∫ t

z1

∫
SR

ev
p(y,τ)Γ(x− y, t− τ)dsydτ =

∫ t

z1

ev
p(R,τ)[

∫
SR

Γ(x− y, t− τ)dsy]dτ.

This leads to

1

2
M(t) ≥

∫ t

z1

eN
p(τ)[

∫
SR

Γ(x− y, t− τ)dsy]dτ

−
∫ t

z1

M(τ)[

∫
SR

| ∂Γ

∂ηy
(x− y, t− τ)|dsy]dτ, x ∈ SR, 0 < z1 < t < T.

It is known that (see Ch.5, Lemma 1,[22]) for some σ ∈ (0, 1) and for any

1− σ
2
< µ < 1,there exist C0 > 0, such that Γ satisfies

| ∂Γ

∂ηy
(x− y, t− τ)| ≤ C0

(t− τ)µ
· 1

|x− y|(n+1−2µ−σ)
, x, y ∈ SR.

From Lemma 3.2.6, there exist C∗ > 0 such that∫
SR

dsy
|x− y|(n+1−2µ−σ)

< C∗.

Moreover, for 0 < t1 < t2 and t1 is close to t2, there exists c > 0, such that∫
SR

Γ(x− y, t2 − t1)dsy ≥
c√

t2 − t1
,

Thus
1

2
M(t) ≥ c

∫ t

z1

eN
p(τ)

√
t− τ

dτ − C
∫ t

z1

M(τ)

|t− τ |µ
dτ.

Since

C

∫ t

z1

M(τ)

|t− τ |µ
dτ ≤ CM(t)

∫ t

z1

dτ

|t− τ |µ
=

C

1− µ
M(t)|t− z1|1−µ

≤ C

1− µ
M(t)|T − z1|1−µ,

it follows that the last equation becomes

1

2
M(t) ≥ c

∫ t

z1

eN
p(τ)

√
T − τ

dτ − C∗1M(t)|T − z1|1−µ.
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Similarly, for 0 < z2 < t < T, we have

1

2
N(t) ≥ c

∫ t

z2

eM
q(τ)

√
T − τ

dτ − C∗2N(t)|T − z2|1−µ.

Taking z1, z2 so that

C∗1 |T − z1|1−µ ≤ 1/2, C∗2 |T − z2|1−µ ≤ 1/2,

it follows

M(t) ≥ c

∫ t

z1

eN
p(τ)

√
T − τ

dτ, N(t) ≥ c

∫ t

z2

eM
q(τ)

√
T − τ

dτ. (3.15)

Since both of M,N increasing functions and from (3.14), we can find T ∗ in

(0, T ) such that

M(t) ≥ q
1

(q−1) , N(t) ≥ p
1

(p−1) , for T ∗ ≤ t < T,

which leads to

eM
q(t) ≥ eqM(t), eN

p(t) ≥ epN(t), T ∗ ≤ t < T.

Therefore, if we choose z1, z2 in (T ∗, T ), then (3.15) becomes

eM(t) ≥ c

∫ t

z1

epN(τ)

√
T − τ

dτ ≡ I1(t), eN(t) ≥ c

∫ t

z2

eqM(τ)

√
T − τ

dτ ≡ I2(t).

Clearly,

I
′

1(t) = c
epN(t)

√
T − t

≥ cIp2√
T − t

, I
′

2(t) = c
eqM(t)

√
T − t

≥ cIq1√
T − t

.

By Lemma 3.2.5, it follows that

I1(t) ≤ C

(T − t)α2
, I2(t) ≤ C

(T − t)β2
, t ∈ (max{z1, z2}, T ). (3.16)

On the other hand, for t∗ = 2t − T (assuming that t is close to T such that

t ∈ (max{z1, z2}, T )), we have

I1(t) ≥ c

∫ t

t∗

epN(τ)

√
T − τ

dτ ≥ cepN(t∗)

∫ t

2t−T

dτ√
T − τ

= 2c(
√

2− 1)
√
T − tepN(t∗).
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Combining the last inquality with (3.16) yields

eN(t∗) ≤ C

2c(
√

2− 1)(T − t)
p+1

2p(pq−1)
+ 1

2p

=
2

q+1
2(pq−1)C

2c(
√

2− 1)(T − t∗)
q+1

2(pq−1)

.

Thus, there exists a constant c1 > 0 such that

eN(t∗)(T − t∗)
q+1

2(pq−1) ≤ c1.

In the same way we can show

eM(t∗)(T − t∗)
p+1

2(pq−1) ≤ c2.

This leads to that there exist C1, C2 > 0 such that

max
BR

u(x, t) ≤ logC1 −
α

2
log(T − t), 0 < t < T, (3.17)

max
BR

v(x, t) ≤ logC2 −
β

2
log(T − t), 0 < t < T. (3.18)

Remark 3.2.9. It is clear that qα, pβ > 1, which leads to

α

2
>

1

2q
,

β

2
>

1

2p
.

Therefore, the blow up rate estimates, which have been shown in Theorem

3.2.8, are greater (more singular) than those known for problem (3.7), where

f, g take the forms of (3.11), while they are less (less singular) than those known

for problem (3.7), where f, g take the forms of (3.10).

3.2.3 Blow-up Set

In order to show that the blow-up in problem (3.12) occurs only on the bound-

ary, we need to recall the following lemma from [46].

Lemma 3.2.10. Let w ∈ C2,1(BR × [0, T )) and satisfies

wt = ∆w, (x, t) ∈ BR × (0, T ),

w(x, t) ≤ C
(T−t)m , (x, t) ∈ SR × (0, T ), m > 0.

}
Then for any 0 < a < R,

sup{w(x, t) : 0 ≤ |x| ≤ a, 0 ≤ t < T} <∞.
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3.2. Systems of Heat Equations with Nonlinear Coupled Boundary Conditions

Proof. Set

h(x) = (R2 − r2)2, r = |x|,

z(x, t) =
C1

[h(x) + C2(T − t)]m
.

Clearly,

z ∈ C2,1(BR × [0, T )).

Also, we can show that:

∆h− (m+ 1)|∇h|2

h
= 8r2 − 4n(R2 − r2)− (m+ 1)16r2

≥ −4nR2 − 16R2(m+ 1),

zt −∆z =
C1m

[h(x) + C2(T − t)]m+1
(C2 + ∆h− (m+ 1)|∇h|2

h+ C2(T − t)
)

≥ C1m

[h(x) + C2(T − t)]m+1
(C2 − 4nR2 − 16R2(m+ 1)).

Let

C2 = 4nR2 + 16R2(m+ 1) + 1

and take C1 to be large such that

z(x, 0) ≥ w(x, 0), x ∈ BR.

Let C1 ≥ C(C2)m, which implies that

z(x, t) ≥ w(x, t) on SR × [0, T ).

Then from Proposition B.1.2, it follows that

z(x, t) ≥ w(x, t), (x, t) ∈ BR × (0, T )

and hence

sup{w(x, t) : 0 ≤ |x| ≤ a, 0 ≤ t < T} ≤ C1(R2 − a2)−2m <∞, 0 ≤ a < R.

Theorem 3.2.11. Let the assumptions of Theorem 3.2.8 be in force. Then

(u, v) blows up only on the boundary.
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Proof. Using equations (3.17), (3.18)

u(R, t) ≤ c1

(T − t)α2
, v(R, t) ≤ c2

(T − t)β2
, t ∈ (0, T ).

From Lemma 3.2.10, it follows that

sup{u(x, t) : (x, t) ∈ Ba × [0, T )} ≤ C1(R2 − a2)−α <∞,

sup{v(x, t) : (x, t) ∈ Ba × [0, T )} ≤ C1(R2 − a2)−β <∞,

for a < R.

Therefore, for (u, v), the blow-up occurs simultaneously only on the bound-

ary.
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Chapter 4

Neumann Problems for

Semilinear Parabolic Equations

The present chapter is motivated by the similarities between the problem (4.1)

and the two problems (2.1), (3.1), which we have studied in Chapter 2 and

Chapter 3, respectively, for special cases of f. We know the effect of f as the

reaction term in (2.1) and as the boundary term in (3.1) on blow-up properties

of solutions in a finite time. In this chapter we study how the boundary term

and the reaction term affect the blow-up rate estimates and the blow-up sets

for the problems of reaction diffusion equations with nonlinear boundary con-

ditions, defined in a ball. We show that the reactions terms induce important

effects on the upper blow-up rate estimates which become more singular than

those known for the case where the reaction terms are absent.

In section one we consider the problem of heat equation with two exponential

terms; one appears in the equation as a reaction term and the another one

appears on the boundary. A semilinear reaction-diffusion system coupled in

both equations and boundary conditions is considered in section two.
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4.1. The Semilinear Heat Equation with a Nonlinear Boundary Condition

4.1 The Semilinear Heat Equation with a Non-

linear Boundary Condition

In this section, we consider the initial-boundary value problem:

ut = ∆u+ λf(u), (x, t) ∈ Ω× (0, T ),
∂u
∂η

= g(u), (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

 (4.1)

where Ω is a bounded domain, λ ∈ R, f, g ∈ C1([0,∞)) ∩ C2(0,∞) are non-

negative functions, u0 is nonnegative, radial, smooth function satisfying

∂u0

∂η
= g(u0), x ∈ ∂Ω, (4.2)

∆u0 + λf(u0) ≥ 0, u0r(|x|) ≥ 0, x ∈ ΩR. (4.3)

This problem has been studied by many authors (see for example [5, 70] in

the case of λ < 0, and [45] in the case of λ > 0). The crucial point of these

works was the question whether the reaction term in the semilinear equation

in (4.1) can prevent (affect) blow-up. For instance, in [5] it has been studied

the blow-up solutions of problem (4.1), where λ < 0 and

f(u) = up, g(u) = uq, p, q > 1, (4.4)

for n = 1 or Ω = BR. Particularly, it was shown that the exponent p = 2q − 1

is critical for blow-up in the following sense:

(i) If p < 2q−1 (or p = 2q−1 and −λ < q), then there exist solutions, which

blow up in finite time and the blow-up occurs only on the boundary.

(ii) If p > 2q− 1 (or p = 2q− 1 and −λ > q), then all solutions exist globally

and are globally bounded.

In [57] J. D. Rossi has proved for the case (i), where n = 1, Ω = [0, 1], that

there exist positive constants C, c such that the upper (lower) blow-up rate

estimates take the following forms

c ≤ max
[0,1]

u(·, t)(T − t)
1

2(q−1) ≤ C, 0 < t < T.
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4.1. The Semilinear Heat Equation with a Nonlinear Boundary Condition

In [45] it has been studied another special case of problem (4.1), where

λ = 1, f, g as in (4.4), Ω = [0, 1] or it is a bounded domain with C2 boundary.

It was proved that the solutions of this problem exist globally, if and only if

max{p, q} ≤ 1, otherwise, every solution has to blow up in finite time. More-

over, the blow-up occurs only on the boundary. The blow-up rate estimate for

this case has been studied in [45, 57]. For n = 1,Ω = [0, 1], it has been shown

that there exist positive constants c, C such that

c ≤ max
[0,1]

u(·, t)(T − t)α ≤ C, 0 < t < T,

where α = 1/(p− 1) if p ≥ 2q − 1, and α = 1/[2(q − 1)] if p < 2q − 1.

We observe that if p < 2q − 1, then the nonlinear term at the boundary

determines and gives the blow-up rate, while if p > 2q − 1, then the reaction

term in the semilinear equation dominates and gives the blow-up rate.

Later, in [70] it was considered a second special case of (4.1), where λ =

−a, a > 0, f, g are of exponential forms, namely

ut = ∆u− aepu, (x, t) ∈ Ω× (0, T ),
∂u
∂η

= equ, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

 (4.5)

where p, q > 0, u0 satisfies (4.2), (4.3).

It has been shown that in case where Ω is a bounded domain with smooth

boundary, the critical exponent can be given as follows

(i) If 2q < p, the solutions of problem (4.5) are globally bounded.

(ii) If 2q > p, the solutions of problem (4.5) blow up in finite time for large

initial data.

(iii) If 2q = p, the solutions may blow up in finite time for large initial data.

Moreover, in case where Ω = BR, the blow-up occurs only on the boundary

and there exist positive constants c, C such that the upper (lower) blow-up rate

estimate take the following form

logC1 −
1

2q
log(T − t) ≤ max

B
u(·, t) ≤ logC2 −

1

2q
log(T − t), 0 < t < T.
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We note that, the blow-up properties (blow-up location and bounds) of problem

(4.5) are the same as those of problem (4.5), where a = 0, see Chapter 3.

In this section we study the blow-up solutions of problem (4.1), where f, g

take the exponential forms as in problem (4.5), Ω = BR, namely

ut = ∆u+ λepu, (x, t) ∈ BR × (0, T ),
∂u
∂η

= equ, (x, t) ∈ ∂BR × (0, T ),

u(x, 0) = u0(x), x ∈ BR,

 (4.6)

where p, q, λ > 0. We consider the blow-up rate estimates and the blow-up set

for this problem.

4.1.1 Preliminaries

Since f(u) = λepu, g(u) = equ are smooth functions and problem (4.6) is

uniformly parabolic, also u0 satisfies the compatibility condition (4.2), it follows

that the existence and uniqueness of local classical solutions to problem (4.6)

are known by [1, 50] or by the standard existence theory [40]. On the other

hand, since f ∈ C∞(R), by regularity results (see [22]), we obtain that the

solutions of this problem are smooth in BR × (0, T ).

In this section we denote for simplicity u(x, t) = u(r, t).

The following lemma shows some properties of the classical solutions to

problem (4.6).

Lemma 4.1.1. Let u be a classical solution to problem (4.6), where u0 satisfies

the assumptions (4.2), (4.3).Then

(i) u > 0, radial in BR × (0, T ).

(ii) ur ≥ 0, in [0, R]× [0, T ).

(iii) ut > 0 in BR × (0, T ).

(iv) u blows up in finite time and the blow-up set contains ∂BR.
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Proof. Set f(u) = λepu, g(u) = equ. As in the proof of Lemma 2.1.1, the result

that u is radial follows from the assumptions (u0 is radial) and the uniqueness

of u, while the proof of u is positive in BR × (0, T ) follows from the positivity

of f and g, and that by applying Proposition B.1.1 to problem (4.6).

To prove (ii), set z(x, t) = ur(r, t). It is clear that z is the solution of the

following problem

zt −∆z = [−n−1
r2

+ f
′
(u)]z, in BR × (0, T ),

z(x, t) = g(u), on ∂BR × (0, T ),

z0(x) = u0r ≥ 0, in BR.


By Proposition B.1.3, we obtain that

z ≥ 0, in BR × (0, T ).

Next, we aim to prove (iii). Set w = ut. By differentiating (4.6) with respect

to time, it follows that

wt −∆w − f ′(u)w = 0, in BR × (0, T ),
∂w
∂η
− g′(u)w = 0, on ∂BR × (0, T ),

w0 = ∆u0 + f(u0) ≥ 0, in BR.

 (4.7)

It is well known that problem (4.7) has a unique nonnegative solution (see

[50]). Moreover, by applying Proposition B.1.5 to problem (4.7) yields that

w > 0, in BR × (0, T ).

To prove (iv), consider problem (3.1), where f(u) = equ. Clearly, in this

case, u is a supersolution to (3.1) (starting with the same initial condition).

Assume that v is the solution of problem (3.1), thus by the comparison

principle B.1.2, we obtain

v(·, t) ≤ u(·, t), 0 < t < T.

It is well known that v has to blow up in finite time and the blow-up occurs

only on the boundary (see Chapter 3), so, u blows up in finite time and ∂BR

is a subset of the blow-up set of problem (4.6).
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4.1.2 Blow-up Rate Estimates

Since ur ≥ 0, in [0, R]× (0, T ), it follows that

max
BR

u(·, t) = u(R, t), 0 < t < T.

Therefore, it is sufficient to derive the lower (upper) bounds of the blow-up

rate for u(R, t).

Theorem 4.1.2. Let u be a solution to problem (4.6), where u0 satisfies the

assumptions (4.2), (4.3), T is the blow-up time.Then there is a positive constant

c such that

log c− 1

2α
log(T − t) ≤ u(R, t), t ∈ (0, T ),

where α = max{p, q}.

Proof. Define

M(t) = max
BR

u(·, t) = u(R, t), for t ∈ [0, T ).

Clearly, M(t) is increasing in (0, T ) (due to ut > 0, for t ∈ (0, T ), x ∈ BR). As

in [70], for 0 < z < t < T, x ∈ BR, the integral equation of problem (4.6) with

respect to u, can be written as follows

u(x, t) =

∫
BR

Γ(x− y, t− z)u(y, z)dy + λ

∫ t

z

∫
BR

Γ(x− y, t− τ)epu(y,τ)dydτ

+

∫ t

z

∫
SR

Γ(x− y, t− τ)equ(y,τ)dsydτ

−
∫ t

z

∫
SR

u(y, τ)
∂Γ

∂ηy
(x− y, t− τ)dsydτ, (4.8)

where Γ is the fundamental solution of the heat equation, which was defined

in (3.13).

Since u(y, t) ≤ u(R, t) for y ∈ BR, the last equation becomes

u(x, t) ≤ u(R, z)

∫
BR

Γ(x− y, t− z)dy + λ

∫ t

z

epu(R,τ)

∫
BR

Γ(x− y, t− τ)dydτ.

+

∫ t

z

equ(R,τ)

∫
SR

Γ(x− y, t− τ)dsydτ

+

∫ t

z

u(R, τ)

∫
SR

| ∂Γ

∂ηy
(x− y, t− τ) | dsydτ.
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Since u is a continuous function on BR, the last inequality leads to

M(t) ≤ M(z)

∫
BR

Γ(x− y, t− z)dy + λepM(t)

∫ t

z

∫
BR

Γ(x− y, t− τ)dydτ

+eqM(t)

∫ t

z

∫
SR

Γ(x− y, t− τ)dsydτ

+M(t)

∫ t

z

∫
SR

| ∂Γ

∂ηy
(x− y, t− τ) | dsydτ. (4.9)

It is known from (Ch. 5, [22]) and (Ch. 2, [50]) that for 0 < t1 < t2, x, y ∈ Rn,

Γ satisfies ∫
BR

Γ(x− y, t2 − t1)dy ≤ 1.

Moreover, there exist positive constants k1, k2 such that

Γ(x− y, t2 − t1) ≤ k1

(t2 − t1)µ0
· 1

|x− y|n−2+µ0
, 0 < µ0 < 1,

| ∂Γ

∂ηy
(x− y, t2 − t1) |≤ k2

(t2 − t1)µ
· 1

|x− y|n+1−2µ−σ ,

for some σ ∈ (0, 1), and for any µ ∈ (1− σ
2
, 1).

If we choose µ0 = 1/2, then by Lemma 3.2.6, we deduce that there exist

positive constants d1, d2 such that∫
SR

dsy
|x− y|n−2+µ0

≤ d1,

∫
SR

dsy
|x− y|n+1−2µ−σ ≤ d2.

From above, it follows that there exist C1, C2 > 0 such that the inequality (4.9)

becomes

M(t) ≤M(z) + λepM(t)(t− z) + C1e
qM(t)
√
t− z + C2M(t)(t− z)1−µ.

Since t− z ≤ T − z, it follows that

M(t) ≤M(z) +λepM(t)
√
T − z+C1e

qM(t)
√
T − z+C2M(t)(T − z)1−µ, (4.10)

provided (T − z) ≤ 1.

Clearly,
M(t)

eαM(t)
−→ 0, when t→ T.
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Thus
M(t)

eαM(t)
≤ (T − z)

1
2
−(1−µ), for t close to T.

Therefore, the inequality (4.10) becomes

M(t) ≤M(z) + λepM(t)
√
T − z + C1e

qM(t)
√
T − z + C2e

αM(t)
√
T − z,

thus there is a constant C∗ such that

M(t) ≤M(z) + C∗eαM(t)
√
T − z, z < t < T, t close to T.

For any z close to T, we can choose z < t < T such that

M(t)−M(z) = C0 > 0,

which implies

C0 ≤ C∗eαM(z)+αC0
√
T − z.

Thus
C0

C∗e(αC0)
√
T − z

≤ eαu(R,z).

Therefore, there exist a positive constant c such that

log c− 1

2α
log(T − t) ≤ u(R, t), t ∈ (0, T ).

The next theorem shows similar results to Theorem 4.1.2 with adding more

restricted assumptions on q and u0. However, the proof relies on the maximum

principle rather than the integral equation and it is simpler than the proof of

Theorem 4.1.2.

Theorem 4.1.3. Let u be a solution to problem (4.6), where q ≥ 1, T is the

blow-up time, u0 satisfies the assumptions (4.2), (4.3), moreover, it satisfies

the following condition

u0r(r)−
r

R
eu0(r) ≥ 0, r ∈ [0, R]. (4.11)

Then there is a positive constant c such that

log c− 1

2α
log(T − t) ≤ u(R, t), t ∈ (0, T ),

where α = max{p, q}.
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Proof. Define the functions J in C2,1(BR× (0, T ))∩C(BR× [0, T )), as follows:

J(x, t) = ur(r, t)−
r

R
eu(r,t), x ∈ BR × (0, T ).

A direct calculation shows

Jt = urt −
r

R
eu[urr +

n− 1

r
ur + λpepu],

Jr = urr −
r

R
euur −

1

R
eu,

Jrr = [urt −
n− 1

r
urr +

n− 1

r2
ur − λpepuur]

− r
R

[euurr + euu2
r]−

2

R
euur.

From above, it follows that

Jt − Jrr −
n− 1

r
Jr = −n− 1

r2
[ur −

r

R
eu] + λpepu[ur −

r

R
eu] +

r

R
euu2

r +
2

R
euur.

Thus

Jt −∆J − bJ =
r

R
euu2

r +
2

R
euur ≥ 0,

for (x, t) ∈ BR × (0, T ) ∩ {r > 0}, where b = [λpepu − n−1
r2

].

Clearly, from (4.11), it follows that

J(x, 0) ≥ 0, x ∈ BR,

and

J(0, t) = ur(0, t) ≥ 0, J(R, t) = 0 t ∈ (0, T ).

Since

sup
(0,R)×(0,t]

b <∞, for t < T,

from above and maximum principle B.1.3, it follows that

J ≥ 0, (x, t) ∈ BR × (0, T ).

Moreover,
∂J

∂η
|∂BR ≤ 0.

This means

(urr −
r

R
euur −

1

R
eu)|∂BR ≤ 0.
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Thus

ut ≤ (
n− 1

r
ur + λpepu + euur +

1

R
eu)|∂BR ,

which implies that

ut(R, t) ≤
n− 1

R
equ(R,t) + λpepu(R,t) + e(1+q)u(R,t) +

2

R
eu(R,t), t ∈ (0, T ).

Thus, there exist a constant C such that

ut(R, t) ≤ Ce2αu(R,t), t ∈ (0, T ).

Integrate this inequality from t to T and since u blows up at R, it follows

c

(T − t) 1
2

≤ eαu(R,t), t ∈ (0, T )

or

log c− 1

2α
log(T − t) ≤ u(R, t), t ∈ (0, T ).

Remark 4.1.4. From Theorems 4.1.2 and 4.1.3 we observe that when q > p

the boundary term plays the dominating role and the lower blow-up rate takes

the form:

log c− 1

2q
log(T − t) ≤ u(R, t), t ∈ (0, T ),

moreover, this estimate is coincident with the lower blow-up rate estimate

known for problem (4.6), where λ = 0 (see Chapter 3), while when p > q the

reaction term is dominated and gives the lower blow-up rate as follows

log c− 1

2p
log(T − t) ≤ u(R, t), t ∈ (0, T ).

We next consider the upper bound.

Theorem 4.1.5. Let u be a solution of problem (4.6), where T is the blow-up

time, u0 satisfies the assumptions (4.2), (4.3) moreover, assume that

∆u0 + f(u0) ≥ a > 0, in BR. (4.12)

Then there is a positive constant C such that

u(R, t) ≤ logC − 1

q
log(T − t), t ∈ (0, T ). (4.13)
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Proof. Define the function J as follows

J(x, t) = ut(r, t)− εur(r, t), (x, t) ∈ BR × (0, T ).

Clearly,

J ∈ C2,1(BR × (0, T )) ∩ C(BR × [0, T )).

Since u0r is bounded in BR, and by (4.12), for some ε > 0, we have

J(x, 0) = ∆u0(r) + f(u0(r))− εu0r(r) ≥ 0, x ∈ BR.

A simple computation shows

Jt = urrt +
n− 1

r
urt + λpepuut − εurt,

Jr = utr − εurr,

Jrr = utrr − εutr + ε
n− 1

r
urr − ε

(n− 1)

r2
ur + ελpepuur.

From above, it follows that

Jt − Jrr −
n− 1

r
Jr − λpepuJ = ε

(n− 1)

r2
ur ≥ 0,

i.e.

Jt −∆J − λpepuJ ≥ 0, (x, t) ∈ BR × (0, T ).

Moreover,

∂J

∂η
|x∈∂BR = urt(R, t)− εurr(R, t)

= qequ(R,t)ut − ε[ut(R, t)−
n− 1

r
ur(R, t)− λepu(R,t)]

≥ [qequ(R,t) − ε]ut(R, t)

Since ut > 0 in BR × (0, T ), we obtain

∂J

∂η
≥ 0, on ∂BR × (0, T ),

provided ε ≤ qe{qu0(R)}.

Since epu is bounded on BR× (0, t] for t < T, from maximum principle B.1.1

and above, we have

J ≥ 0, (x, t) ∈ BR × (0, T ).
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In particular, J(x, t) ≥ 0 for x ∈ ∂BR, that is

ut(R, t) ≥ εur(R, t) = εequ(R,t), t ∈ (0, T ).

Upon integration the above inequality from t to T and since u blows up at R,

it follows that

equ(R,t) ≤ 1

qε(T − t)
, t ∈ (0, T ),

or

u(R, t) ≤ logC − 1

q
log(T − t), t ∈ (0, T ).

Remark 4.1.6. Theorem 4.1.5 can be proved without condition (4.12), and

that by using a different technique depending on the integral equation (4.8)

(see the proof of Theorem 4.2.4 in the next section).

Remark 4.1.7. The upper blow-up rate estimate for problem (4.6), which has

been derived in Theorem 4.1.5, is governed by the boundary term even in case

p > q. On the other hand, as we have mentioned in Chapter 3, the upper

blow-up bound for problem (4.6), where λ = 0 takes the form:

u(R, t) ≤ log
C

(T − t)
1
2q

.

This shows that the presence of the reaction term has an important effect on

the upper blow-up rate estimate.

4.1.3 Blow-up Set

We shall prove in this subsection that the blow-up in problem (4.6) occurs only

on the boundary, restricting ourselves to the special case p = q = 1 with some

certain assumptions on λ.

Theorem 4.1.8. Suppose that the function u(x, t) is C2,1(BR × [0, T )), and

satisfies

ut = ∆u+ λeu, (x, t) ∈ BR × (0, T ),

u(x, t) ≤ log C
(T−t) , (x, t) ∈ BR × (0, T ),

u(x, 0) = u0(x), x ∈ Ω,
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where C <∞ and

λ[4R2(n+ 1) + 1] ≤ min

{
1

C
,

4(n+ 1)

[R2 + 4(n+ 1)T ]
e−||u0||∞

}
. (4.14)

Then for any 0 ≤ a < R, there exist a positive constant A such that

u(x, t) ≤ log[
1

A(R2 − r2)2
] for 0 ≤ |x| ≤ a < R, 0 < t < T.

Proof. Let

v(x) = A(R2 − r2)2, r = |x|, 0 ≤ r ≤ R,

z(x, t) = z(r, t) = log
1

[v(x) +B(T − t)]
, in BR × (0, T ),

where B > 0, A ≥ λ.

Since z ∈ C2,1(BR × [0, T )), a direct calculation shows that

zt =
B

[v(x) +B(T − t)]
,

zr =
4rA(R2 − r2)

[v(x) +B(T − t)]
,

zrr =
[v(x) +B(T − t)][4A(R2 − 3r2)] + 16A2r2(R2 − r2)2

[v(x) +B(T − t)]2
.

Thus

zt − zrr − n−1
r
zr − λez

=
[B − 4A(n− 1)(R2 − r2)− λ][v(x) +B(T − t)]

[v(x) +B(T − t)]2

− [4A(R2 − 3r2)][v(x) +B(T − t)] + 16Ar2v(x)

[v(x) +B(T − t)]2

≥ [B − 4A(n− 1)(R2 − r2)− λ− 4A(R2 − 3r2)− 16Ar2]v(x)

[v(x) +B(T − t)]2

≥ [B − 4AR2n− 4AR2 − λ]v(x)

[v(x) +B(T − t)]2

≥ [B − 4AR2n− 4AR2 − A]v(x)

[v(x) +B(T − t)]2
≥ 0

provided

B ≥ A[4R2(n+ 1) + 1].
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4.2. Reaction Diffusion Systems Coupled in both Equations and Boundary Conditions

i.e.

zt −∆z − λez ≥ 0, in BR × (0, T )

Moreover,

z(x, 0) = log 1
[v(x)+BT ]

≥ log 1
[AR4+BT ]

≥ u(x, 0), x ∈ BR,

z(R, t) = log 1
B(T−t) ≥ log C

(T−t) ≥ u(R, t), t ∈ (0, T )

provided

B ≤ min

{
1

C
,

4(n+ 1)

R2 + 4(n+ 1)T
e−||u0||∞

}
.

From above and the comparison principle B.1.2, we obtain

z(x, t) ≥ u(x, t) in BR × (0, T ).

Thus

u(x, t) ≤ log[
1

A(R2 − r2)2
] <∞ for 0 ≤ |x| ≤ a < R, 0 < t < T.

Remark 4.1.9. For problem (4.6), where p = q = 1 and λ satisfies (4.14), it

follows from Theorem 4.1.8 and the upper blow-up rate estimate (4.13) that

the blow-up occurs only on the boundary. Moreover, we note that, in this case

if λ is small enough, then the blow-up set is the same as that of (4.6), where

λ = 0 (see Chapter 3).

4.2 Reaction Diffusion Systems Coupled in both

Equations and Boundary Conditions

In this section, we consider the following initial-boundary value problem

ut = ∆u+ λ1e
v, vt = ∆v + λ2e

u, (x, t) ∈ BR × (0, T ),
∂u
∂η

= ev, ∂v
∂η

= eu, (x, t) ∈ ∂BR × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ BR,

 (4.15)
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4.2. Reaction Diffusion Systems Coupled in both Equations and Boundary Conditions

where λ1, λ2 > 0, u0, v0 are nonnegative, radial, smooth functions satisfying

∂u0
∂η

= ev0 , ∂u0
∂η

= eu0 , x ∈ ∂BR,

∆u0 + ev0 ≥ 0, ∆v0 + eu0 ≥ 0, x ∈ BR,

u0r(|x|) ≥ 0, v0r(|x|) ≥ 0, x ∈ BR.

 (4.16)

The problems of semilinear systems coupled in both equations and boundary

conditions have been studied very extensively over past years in case the reac-

tion terms and boundary conditions are of power type functions. For instance

the following system which has been considered in [26]:

ut = uxx + vp1 , vt = vxx + up2 , (x, t) ∈ (0, 1)× (0, T ),

ux(1, t) = vq1 , vx(1, t) = uq2 , t ∈ (0, T ),

ux(0, t) = 0, vx(0, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, 1],

 (4.17)

where p1, p2, q1, q2 > 0, and u0, v0 are radially nondecreasing, positive smooth

functions, satisfying the conditions

u0x(0) = v0x(0) = 0, u0x(1) = vq10 (1), v0x(1) = uq20 (1).

It was shown that if

max{p1p2, p1q2, p2q1, q1q2} ≤ 1,

then the solutions of problem (4.17) exist globally, otherwise every solution

blows up in finite time. Moreover, the blow-up occurs only at x = 1 and the

blow-up rate estimates take the following form

C1(T − t)−α ≤ u(1, t) ≤ C2(T − t)−α, t ∈ (0, T ),

C3(T − t)−β ≤ v(1, t) ≤ C4(T − t)−β, t ∈ (0, T ),

where

α = α(p1, p2, q1, q2), β = β(p1, p2, q1, q2).

In [69], it was considered the critical exponents for a system of heat equa-

tions with inner absorption reaction terms and coupled boundary conditions of
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exponential type, namely

ut = ∆u− a1e
p1u, vt = ∆v − a2e

p2v, (x, t) ∈ Ω× (0, T ),
∂u
∂η

= eq1v, ∂v
∂η

= eq2u, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

 (4.18)

where Ω is a bounded domain with smooth boundary, p1, p2 ≥ 0, qi, ai > 0, i =

1, 2, u0, v0 are nonnegative functions, satisfying the conditions:

∂u0

∂η
= eq1v0 ,

∂u0

∂η
= eq2u0 , x ∈ ∂BR.

It was shown that if

1/τ1 > 0, or 1/τ2 > 0,

where

τ1 =
q1 + 1

2
p2

q1q2 − 1
4
p1p2

, τ2 =
q2 + 1

2
p1

q1q2 − 1
4
p1p2

,

then the solutions of problem (4.18) with large initial data blow up in finite

time.

The main purpose of this section is to derive formulas to the upper and lower

blow-up rate estimates for problem (4.15) and to study the blow-up set under

some restricted assumptions.

4.2.1 Preliminaries

Since the system (4.15) is uniformly parabolic, also the reaction and the bound-

ary conditions terms are smooth functions and the initial data satisfy the com-

patibility conditions, it follows that the local existence and uniqueness of the

classical solutions of problem (4.15) are known by standard parabolic theory

(see [1, 40]). On the other hand, for any initial data (u0, v0), the solution of this

system blows up simultaneously in finite time and the blow-up set contains the

boundary (∂BR). This can be shown by the comparison principle B.2.2 and

the known blow-up results of problem (3.7) with (3.11) discussed in Chapter 3.

In next lemma we denote for simplicity u(r, t) = u(x, t), v(r, t) = v(x, t).

Lemma 4.2.1. Let (u, v) be a classical solution to problem (4.15). Then

76



4.2. Reaction Diffusion Systems Coupled in both Equations and Boundary Conditions

(i) (u,v) is radial and u, v > 0 in BR × (0, T ).

(ii) ur, vr ≥ 0 in [0, R]× (0, T ).

(iii) ut, vt > 0, in BR × (0, T ).

This lemma can be proved in similar way to the proof of Lemma 4.1.1

with some modification and by using some comparison principles for parabolic

systems from Appendix B.

Next, we prove the following lemma which shows the relation between u and

v.

Lemma 4.2.2. Let (u, v) be a solution to problem (4.15), there exist µ > 1

such that

ev ≤ µeu, eu ≤ µev, (x, t) ∈ BR × [0, T ). (4.19)

Proof. Let

J(x, t) = µeu(r,t) − ev(r,t), (x, t) ∈ BR × (0, T ), r = |x|.

Since J ∈ C2,1(BR × [0, T )), a direct calculation shows

Jt = µeuut − evvt,

Jr = µeuur − evvr, (4.20)

Jrr = µeuurr + µeuu2
r − evvrr − evv2

r .

Thus

Jt − Jrr −
n− 1

r
Jr = µeuut − evvt − µeuurr − µeuu2

r + evvrr + evv2
r

−n− 1

r
µeuur +

n− 1

r
evvr

= µeu[ut − urr −
n− 1

r
ur]− ev[vt − vrr −

n− 1

r
vr]

−µeuu2
r + evv2

r

= µeu[λ1e
v]− ev[λ2e

u]− µeuu2
r + evv2

r .
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From (4.20), it follows that

ur =
1

µeu
[vre

v + Jr],

u2
r =

1

µ2e2u
[v2
re

2v + 2evvrJr + J2
r ].

Therefore,

Jt −∆J = (λ1µ− λ2)eu+v + [ev − e2v

µeu
]v2
r − [

2ev

µeu
vr +

1

µeu
Jr]Jr.

Clearly,

ev − e2v

µeu
= ev

J

µeu
.

Therefore, the last equation can be rewritten as follows:

Jt −∆J − bJr − cJ = (λ1µ− λ2)eu+v ≥ 0, (x, t) ∈ BR × (0, T )

provided µ > λ2/λ1, where,

b = −[
2ev

µeu
vr +

1

µeu
Jr], c =

ev

µeu
v2
r .

It is clear that, b, c are continuous functions and c is bounded in BR × (0, T ∗),

for T ∗ < T.

Moreover,

∂J

∂η
|x∈∂BR = [µeuur − evvr]

= µeu+v − eu+v = [µ− 1]eu+v > 0,

and

J(x, 0) = µeu0 − ev0 ≥ 0, x ∈ BR

provided µ is large enough.

From above and Proposition B.1.1, it follows that

J ≥ 0, in BR × [0, T ).

Similarly, we can show that the function H = µev − eu is nonnegative in

BR × [0, T ).
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4.2.2 Blow-up Rate Estimates

In this subsection we consider the upper and lower blow-up rate estimates for

the solutions of problem (4.15) with (4.16).

Theorem 4.2.3. Let u be a blow-up solution of problem (4.15) with (4.16),

λ1 = λ2 = λ, T is the blow-up time. Assume that u0, v0 satisfy

u0r(r)−
r

R
ev0(r) ≥ 0, v0r(r)−

r

R
eu0(r) ≥ 0, r ∈ [0, R]. (4.21)

Then there is a positive constant c such that

log c− 1

2
log(T − t) ≤ u(R, t), log c− 1

2
log(T − t) ≤ v(R, t), t ∈ (0, T ).

Proof. Define the functions J1, J2 ∈ C2,1(BR × (0, T )) ∩ C(BR × [0, T )), as

follows:

J1(x, t) = ur(r, t)−
r

R
ev(r,t), J2(x, t) = vr(r, t)−

r

R
eu(r,t).

A direct calculation shows

J1t = urt −
r

R
ev[vrr +

n− 1

r
vr + λeu],

J1r = urr −
r

R
evvr −

1

R
ev,

J1rr = [urt −
n− 1

r
urr +

n− 1

r2
ur − λevvr]

− r
R

[evvrr + evv2
r ]−

2

R
evvr.

From above, it follows that

J1t − J1rr −
n− 1

r
J1r = −n− 1

r2
[ur −

r

R
ev] + λev[vr −

r

R
eu] +

r

R
evv2

r +
2

R
evvr.

Since from Lemma 4.2.1, we have vr ≥ 0, it follows that

J1t −∆J1 +
n− 1

r2
J1 − λevJ2 =

r

R
evv2

r +
2

R
evvr ≥ 0,

for (x, t) ∈ BR × (0, T ) ∩ {r > 0}.
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In the same way we can show that

J2t −∆J2 +
n− 1

r2
J2 − λeuJ1 ≥ 0, (x, t) ∈ BR × (0, T ) ∩ {r > 0}.

Clearly, from (4.21) it follows that

J1(x, 0), J2(x, 0) ≥ 0 x ∈ BR.

And

J1(0, t) = ur(0, t) ≥ 0, J2(0, t) = vr(0, t) ≥ 0,

J1(R, t) = J2(R, t) = 0, t ∈ (0, T ).

Since in the domain BR × (0, t] for t < T the suprema of the functions

λeu, λev and 1−n
r2

are finite, from above and by the maximum principle B.2.1,

it follows that

J1, J2 ≥ 0, (x, t) ∈ BR × (0, T ).

Moreover,
∂J1

∂η
|∂BR ≤ 0.

This means

(urr −
r

R
evvr −

1

R
ev)|∂BR ≤ 0.

Thus

ut ≤ (
n− 1

r
ur + λev +

r

R
evvr +

1

R
ev)|∂BR ,

which implies that

ut(R, t) ≤
n− 1

R
ev(R,t) + λev(R,t) + ev(R,t)+u(R,t) +

1

R
ev(R,t), t ∈ (0, T ).

From the last inequality and Lemma 4.2.2, it follows

ut(R, t) ≤
n− 1

R
µeu(R,t) + λµeu(R,t) + µe2u(R,t) +

µ

R
eu(R,t), t ∈ (0, T ).

Thus, there exist a constant C such that

ut(R, t) ≤ Ce2u(R,t), t ∈ (0, T ).
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Integrate this inequality from t to T and since u blows up at R, it follows

c

(T − t) 1
2

≤ eu(R,t), t ∈ (0, T )

or

log c− 1

2
log(T − t) ≤ u(R, t), t ∈ (0, T ).

We can show in a similar way that

log c− 1

2
log(T − t) ≤ v(R, t), t ∈ (0, T ).

Next, we consider the upper bounds

Theorem 4.2.4. Let u be a blow-up solution of problem (4.15), (4.16), T is

the blow-up time. Then there is a positive constant C such that

u(R, t) ≤ logC − log (T − t), v(R, t) ≤ logC − log (T − t), t ∈ (0, T ).

Proof. Define

M(t) = max
BR

u(x, t), N(t) = max
BR

v(x, t).

Clearly, M(t), N(t) are increasing in (0, T ) due to the

ut, vt > 0, (x, t) ∈ BR × (0, T ).

As in Theorem 4.1.2, for 0 < z < t < T, x ∈ BR, the integral equation for

problem (4.15) with respect to u can be written as follows

u(x, t) =

∫
BR

Γ(x− y, t− z)u(y, z)dy + λ1

∫ t

z

∫
BR

Γ(x− y, t− τ)ev(y,τ)dydτ

+

∫ t

z

∫
SR

Γ(x− y, t− τ)ev(y,τ)dsydτ

−
∫ t

z

∫
SR

u(y, τ)
∂Γ

∂ηy
(x− y, t− τ)dsydτ,

where Γ is the fundamental solution of the heat equation, which was defined

in (3.13).
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Letting x→ ∂BR and using the jump relation (Theorem 3.2.7) for the fourth

term on the right hand side of the last equation, we obtain

1

2
u(x, t) =

∫
BR

Γ(x− y, t− z)u(y, z)dy + λ1

∫ t

z

∫
BR

Γ(x− y, t− τ)ev(y,τ)dydτ

+

∫ t

z

∫
SR

Γ(x− y, t− τ)ev(y,τ)dsydτ

−
∫ t

z

∫
SR

u(y, τ)
∂Γ

∂ηy
(x− y, t− τ)dsydτ,

for x ∈ ∂BR, 0 < z < t < T.

Since u, v are positive and radial, it follows that∫
BR

Γ(x− y, t− z)u(y, z)dy > 0,∫ t

z

∫
SR

ev(y,τ)Γ(x− y, t− τ)dsydτ ≥
∫ t

z

ev(R,τ)[

∫
SR

Γ(x− y, t− τ)dsy]dτ.

Thus

1

2
M(t) ≥

∫ t

z

eN(τ)[

∫
SR

Γ(x− y, t− τ)dsy]dτ

−
∫ t

z

M(τ)[

∫
SR

| ∂Γ

∂ηy
(x− y, t− τ)|dsy]dτ, x ∈ SR, 0 < z < t < T.

It is known that (see [22]) for 0 < t2 < t2, there is C∗ > 0 such that

| ∂Γ

∂ηy
(x− y, t2 − t1)| ≤ C∗

(t2 − t1)µ0
· 1

|x− y|(n+1−2µ0−σ)
, x, y ∈ SR, σ ∈ (0, 1).

Choose 1− σ
2
< µ0 < 1, by Lemma 3.2.6 there exist C1 > 0 such that∫

SR

dsy
|x− y|(n+1−2µ0−σ)

< C1.

Also, if t1 close to t2, then there exist a constant c such that∫
SR

Γ(x− y, t2 − t1)dsy ≥
c√

t2 − t1
.

Thus
1

2
M(t) ≥ c

∫ t

z

eN(τ)

√
t− τ

dτ − C
∫ t

z

M(τ)

|t− τ |µ0
dτ.
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Since

C

∫ t

z

M(τ)

|t− τ |µ0
dτ ≤ CM(t)

∫ t

z

dτ

|t− τ |µ0
=

C

1− µ0

M(t)|t− z|1−µ0

≤ C

1− µ0

M(t)|T − z|1−µ0 ,

it follows that there exist C∗1 > 0, such that

1

2
M(t) ≥ c

∫ t

z

eN(τ)

√
T − τ

dτ − C∗1M(t)|T − z|1−µ0 . (4.22)

Taking z so that C∗1 |T − z|1−µ0 = 1/2, it follows

M(t) ≥ c

∫ t

z

eN(τ)

√
T − τ

dτ ≡ A(t). (4.23)

Clearly,

A
′
(t) = c

eN(t)

√
T − t

.

From Lemma 4.2.2, there exist a constant µ > 1 such that the last equation

becomes

A
′
(t) ≥ c

µ

eM(t)

√
T − t

≥ c

µ

eA(t)

√
T − t

,

which leads to ∫ T

t

dA

eA
≥
∫ T

t

c

µ

dτ√
T − τ

.

Thus
1

eA(t)
− 1

eA(T )
≥
∫ T

t

c

µ

dτ√
T − τ

, (4.24)

where A(T ) = limt→T A(t) ≤ limt→T 2eN(t)(
√
T − z −

√
T − t) ≤ ∞.

Since A is positive function, we obtain

1

eA(t)
≥ 1

eA(t)
− 1

eA(T )

Thus (4.24) becomes
1

eA(t)
≥ 2c

µ

√
T − t.

Therefore, there exist a constant C0 > 0 such that

eA(t) ≤ C0√
T − t

, z < t < T. (4.25)
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On the other hand, for t0 = 2t− T (assuming that t is close to T ), we have

A(t) ≥ c

∫ t

t0

eN(τ)

√
T − τ

dτ ≥ ceN(t0)

∫ t

2t−T

dτ√
T − τ

= eN(t0)2c(
√

2− 1)
√
T − t.

Combining the last inequality with (4.25), yields

C0√
T − t

≥ eN(t0)2c(
√

2− 1)
√
T − t,

which leads to

eN(t0) ≤ C0

c(
√

2− 1)(T − t0)
.

Thus there exist a constant C such that

eN(t) ≤ C

(T − t)
, 0 < t < T

or

v(R, t) ≤ logC − log (T − t), t ∈ (0, T ).

In the same way we can show

u(R, t) ≤ logC − log (T − t), t ∈ (0, T ).

Remark 4.2.5. From Theorems 4.2.3 and 4.2.4, we observe that the upper

blow-up rate estimates of problem (4.15) are coincident with the upper blow-

up rate estimates of the Dirichlet problem for the semilinear system in (4.15)

considered in Chapter 2, while the lower blow-up rate estimates of problems

(4.15) are coincident with the lower blow-up rate estimates of problem (4.15),

where λ1 = λ2 = 0 (see Chapter 3).

4.2.3 Blow-up Set

We consider next the blow-up set for problem (4.15), under some certain as-

sumptions on λ1, λ2.
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4.2. Reaction Diffusion Systems Coupled in both Equations and Boundary Conditions

Theorem 4.2.6. Let (u, v) be a blow-up solution to problem (4.15). Assume

that the following condition is satisfied

λ[4R2(n+1)+1] ≤ min

{
1

C
,

4(n+ 1)

[R2 + 4(n+ 1)T ]
e−||u0||∞ ,

4(n+ 1)

[R2 + 4(n+ 1)T ]
e−||v0||∞

}
,

(4.26)

where T is the blow-up time, C is given in Theorem 4.2.4, λ = max{λ1, λ2}.
Then there exist a positive constant A such that

u(x, t) ≤ log[
1

A(R2 − r2)2
], v(x, t) ≤ log[

1

A(R2 − r2)2
],

for (x, t) ∈ BR × (0, T ).

Proof. Define the functions z1, z2 as follows

z1(x, t) = z2(x, t) = log 1
[Av(x)+B(T−t)] , (x, t) ∈ BR × (0, T ), (4.27)

where v(x) = (R2 − r2)2, r = |x|, B > 0, A ≥ λ.

Since z1, z1 ∈ C2,1(BR × [0, T )), a similar calculation to that in the proof of

Theorem 4.1.8 shows that

z1t −∆z1 − λ1e
z2 ≥ z1t −∆z1 − Aez2 ≥ 0, in BR × (0, T ),

z2t −∆z2 − λ2e
z1 ≥ z2t −∆z2 − Aez1 ≥ 0, in BR × (0, T )

}
(4.28)

provided

B ≥ A[4R2(n+ 1) + 1].

Moreover,

z1(x, 0) = log 1
[Av(x)+BT ]

≥ log 1
[AR4+BT ]

≥ u(x, 0), x ∈ BR,

z2(x, 0) = log 1
[Av(x)+BT ]

≥ log 1
[AR4+BT ]

≥ v(x, 0), x ∈ BR

}
(4.29)

and

z1(R, t) = z2(R, t) = log 1
B(T−t) ≥ log C

(T−t) , t ∈ (0, T ) (4.30)

provided

B ≤ min

{
1

C
,

4(n+ 1)

R2 + 4(n+ 1)T
e−||u0||∞ ,

4(n+ 1)

R2 + 4(n+ 1)T
e−||v0||∞

}
,
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4.2. Reaction Diffusion Systems Coupled in both Equations and Boundary Conditions

From (4.29), (4.30) and Theorem 4.2.4, it follows that

z1(R, t) ≥ u(R, t), z2(R, t) ≥ v(R, t), t ∈ (0, T ),

z1(x, 0) ≥ u(x, 0), z2(x, 0) ≥ v(x, 0), x ∈ BR.

}
(4.31)

From (4.28), (4.31) and Proposition B.2.3, it follows that

z1(x, t) ≥ u(x, t), z2(x, t) ≥ v(x, t), (x, t) ∈ BR × (0, T ).

Moreover, from (4.27)

u(x, t) ≤ log[
1

A(R2 − r2)2
], v(x, t) ≤ log[

1

A(R2 − r2)2
], (4.32)

for (x, t) ∈ BR × (0, T ).

Remark 4.2.7. For problem (4.15) with (4.26), from (4.32) we observe that

any point x ∈ BR cannot be a blow-up point, therefore, the blow-up occurs

only at the boundary. This means, if λ1, λ2 are small enough, then the blow-up

set is the same as that of (3.7) with (3.11), see Chapter 3.
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Chapter 5

Semilinear Parabolic Problems

with Gradient Terms

Chipot and Weissler introduced in [6] the interesting parabolic equation, which

is a semilinear heat equations with gradient term.Their motivation for studying

this equation came from earlier work of Levine [41] for the simpler equation in

which the gradient term was absent, and more particularly from their interest in

extending Levine’s work to the semilinear equation, which has a power function

of the solutions and a gradient term.

The main purpose of this chapter is to understand whether the gradient

terms affect the blow-up bounds. In the first section of this chapter we complete

the results of J. Bebernes and D. Eberly [3], considering the pointwise estimate

and the blow-up rate estimates for the problem of heat equation with the

exponential function of the solutions and a negative sign (dissipative) gradient

term, defined in a ball. Next we shall study in section two the blow-up rate

estimates for a system of semilinear heat equations with positive sign gradient

terms defined in a ball or the whole space.
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5.1. The Semilinear Heat Equation with a Gradient Term

5.1 The Semilinear Heat Equation with a Gra-

dient Term

Consider the following initial-boundary value problem

ut = ∆u− h(|∇u|) + f(u), (x, t) ∈ BR × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

u(x, 0) = u0(x), x ∈ BR,

 (5.1)

where f ∈ C1(R), h ∈ C1([0,∞)), f, h > 0, h
′ ≥ 0 in (0,∞), f(0) ≥ 0, h(0) =

h
′
(0) = 0,

|h(ξ)| ≤ O(|ξ|2), (5.2)

sh
′
(s)− h(s) ≤ Ksq, for s > 0, 0 ≤ K <∞, q > 1, (5.3)

u0 ≥ 0 is smooth, radially nonincreasing function, vanishing on ∂BR, this means

it satisfies the following conditions

u(x) = u0(|x|), x ∈ BR,

u0(x) = 0, x ∈ ∂BR,

u0r(|x|) ≤ 0, x ∈ BR.

 (5.4)

Moreover, we assume that

∆u0 + f(u0)− h(|∇u0|) ≥ 0, x ∈ BR. (5.5)

The special case

ut = ∆u− |∇u|q + u|u|p−1, p, q > 1 (5.6)

was introduced in [6] and it was studied and discussed later by many authors

(see for instance [17, 62]). The main issue in those works was to determine

for which p and q blow-up in finite time (in the L∞-norm) may occur. It is

well known that it occurs if and only if p > q (see [17]). Therefore, there is

a competition between the reaction term, which may cause blow-up as in the

problem (2.1), and the gradient term, which fights against blow-up. Equation

(5.6) in Rn was considered from similar point of view, in this case blow-up in

finite time is also known to occur when p > q, but unbounded global solutions
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5.1. The Semilinear Heat Equation with a Gradient Term

always exist (see [62]). For bounded domains, it has been shown in [8] for

equation (5.6) with general convex domain Ω that, the blow-up set is compact.

Moreover if Ω = BR, then x = 0 is the only possible blow-up point and the

upper pointwise estimate takes the following form

u ≤ c|x|−α, (x, t) ∈ BR \ {0} × [0, T ),

for any α > 2/(p − 1) if q ∈ (1, 2p/(p + 1)), and for α > q/(p − q) if q ∈
[2p/(p + 1), p). We observe that q/(p − q) > 2/(p − 1) for q > 2p/(p + 1),

therefore, the final blow-up profile of the solutions of equation (5.6) is similar

to that of ut = ∆u+ up as long as q < 2p/(p+ 1) (see Chapter 2), whereas for

q grater than this critical value, the gradient term induces an important effect

on the profile, which becomes more singular.

On the other hand, it was proved in [7, 8, 19, 63] that the upper (lower)

blow-up rate estimate in terms of the blow-up time T in the case q < 2p/(p+1)

and u ≥ 0, takes the following form

c(T − t)−1/(p−1) ≤ u(x, t) ≤ C(T − t)−1/(p−1).

J. Bebernes and D. Eberly have considered in [3] a second special case of

(5.1), where f(s) = es, h(ξ) = ξ2, namely

ut = ∆u− |∇u|2 + eu, (x, t) ∈ BR × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

u(x, 0) = u0(x), x ∈ BR.

 (5.7)

The semilinear equation in (5.7) can be viewed as the limiting case of the

critical splitting as p → ∞ in the equation (5.6). It has been proved that,

the solution of the above problem with u0 satisfies (5.4) may blow up in finite

time and the only possible blow-up point is x = 0. Moreover, if we consider the

problem in any general bounded domain Ω such that ∂Ω is analytic, then the

blow-up set is a compact set. On the other hand, they proved that, if x0 is a

blow-up point for problem (5.7) with the finite blow-up time T ; then

lim
t→T−

[u(x0, t) +m log(T − t)] = k,

89



5.1. The Semilinear Heat Equation with a Gradient Term

for some m ∈ Z+ and for some k ∈ R. The analysis therein is based on the

observation that the transformation v = 1 − e−u changes the first equation in

problem (5.7) into the linear equation vt = ∆v + 1, moreover, x0 is a blow-up

point for (5.7) with blow-up time T if and only if v(x0, T ) = 1.

In this section we consider problem (5.7) with (5.4), our aim is to derive the

upper pointwise estimate for the classical solutions of this problem and to find

a formula for the upper (lower) blow-up rate estimate.

5.1.1 Preliminaries

Set

F (u,∇u) = f(u)− h(|∇u|). (5.8)

Since F ∈ C1(R×Rn), the local existence and uniqueness of classical solutions

to problem (5.1), (5.4) is well known by [22, 40], and the regularity of these

solutions is guaranteed by [56]. Moreover, the gradient function ∇u is bounded

as long as the solution u is bounded due to (5.2) (see also [56]).

In order to show some properties of the classical solutions of problem (5.1)

with (5.4), we recall the following lemma, which has been proved in [56]. We

may denote for simplicity u(r, t) = u(x, t).

Lemma 5.1.1. Let u be a classical solution to the problem

ut = ∆u+H(u,∇u), x ∈ BR, t > 0,

u(x, t) = 0, x ∈ ∂BR, t > 0,

u(x, 0) = u0(x), x ∈ BR.


where

H = H(s, ξ) : R×Rn → R

such that H ∈ C1(R × Rn), H(s, ξ) = H∗(s, |ξ|) and H(0, 0) ≥ 0. Assume

u0 ≥ 0, such that u0 ∈ C2(BR) is nonnegative and satisfies (5.4) and moreover,

∆u0 +H(u0,∇u0) ≥ 0, x ∈ BR.

Then
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(i) u ≥ 0 and it is radially nonincreasing in [0, R]×(0, T ). Moreover if u0 6≡ 0,

then ur < 0 in (0, R]× (0, T ).

(ii) ut ≥ 0 in BR × [0, T ).

Remark 5.1.2. It is clear that F (defined in (5.8)) satisfies all the assumptions

of H in Lemma 5.1.1, therefore, the classical solutions of problem (5.1) with

(5.4) and (5.5) satisfy (i) and (ii). Furthermore, by using Proposition B.1.5, it

follows directly that

u > 0, in BR × (0, T ).

Depending on above, the problem (5.1) with (5.4) can be rewritten as follows

ut = urr + n−1
r
ur − h(−ur) + f(u), (r, t) ∈ (0, R)× (0, T ),

ur(0, t) = 0, u(R, t) = 0, t ∈ [0, T ),

u(r, 0) = u0(r), r ∈ [0, R],

ur(r, t) < 0, (r, t) ∈ (0, R]× (0, T ).

 (5.9)

5.1.2 Pointwise Estimates

In order to derive a formula to the pointwise estimate for problem (5.9), we

need first to recall the following theorem, which has been proved in [8].

Theorem 5.1.3. Assume that, there exist two functions F ∈ C2([0,∞)) and

cε ∈ C2((0, R]), ε > 0, such that

cε(0) = 0 and cε > 0 otherwise, cε
′
, cε

′′ ≥ 0, (5.10)

F > 0, F
′
, F
′′ ≥ 0, in (0,∞), (5.11)

f
′
F − fF ′ − 2c

′

εF
′
F + c2

εF
′′
F 2 − 2q−1KcqεF

qF
′
+AF ≥ 0, u > 0, 0 < r < R,

(5.12)

where

A =
c
′′
ε

cε
+
n− 1

r

c
′
ε

cε
− n− 1

r2
,

cε(r)
r
→ 0 uniformly on [0, R] as ε→ 0, and

G(s) =

∫ ∞
s

du

F (u)
<∞, s > 0.
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Let u is a blow-up solution to problem (5.9), where u0 satisfies

u0r ≤ −δr, r ∈ (0, R], δ > 0. (5.13)

Suppose that, T is the blow-up time. Then the point r = 0 is the only blow-up

point, and there is ε1 > 0 such that

u(r, t) ≤ G−1(

∫ r

0

cε1(z)dz), (r, t) ∈ (0, R]× (0, T ). (5.14)

Proof. Since the function F in (5.8) is C1(R × Rn), by parabolic regularity

results (see [22]), we have

ur ∈ C2,1((0, R)× (0, T )) ∩ C([0, R]× [0, T )).

Set w = ur.

Differentiating the first equation in (5.9) with respect to r, it follows

wt −
n− 1

r
wr − wrr =

1− n
r2

w + f
′
(u)w + h

′
(−ur)urr.

Define the function

J = w + cε(r)F (u)

Since F ∈ C2([0,∞)), we have J ∈ C2,1((0, R)× (0, T ))∩C([0, R]× [0, T )).

Our aim is to show that J ≤ 0 in [0, R]× [0, T ).

We compute now the equation for J :

Jt −
n− 1

r
Jr − Jrr =

1− n
r2

w + f
′
(u)w + h

′
(−ur)urr + cεF

′
[f(u)− h(−ur)]

−2wc
′

εF
′
+ F [

1− n
r

c
′

ε − c
′′

ε ]− cεw2F
′′
.

Using the relations

ur = w = J − cεF, w2 = c2
εF

2 + (J − 2cεF )J

and

urr = Jr − c
′

εF − cεF
′
ur.
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A direct calculation shows

Jt − (
n− 1

r
+ h

′
(−ur))Jr − Jrr − b0J

= cε[F (−f ′ − c
′
ε

cε
h
′
(−ur) +

n− 1

r2
− c

′′
ε

cε
− n− 1

r

c
′
ε

cε
)

+F
′
(f − urh

′
(−ur)− h(−ur)) + 2c

′

εF
′
F − c2

εF
′′F 2],

where

b0 = f
′ − n− 1

r2
− 2c

′

εF
′ − cεF

′′
(J − 2cεF ).

From (5.3) it follows that

−urh
′
(−ur)− h(−ur) ≤ K(−ur)q = K(cεF − J)q ≤ 2q−1K(cqεF

q + |J |q).

From above and (5.12) and h
′
c
′
ε ≥ 0, it follows that

Jt − (
n− 1

r
+ h

′
(−ur))Jr − Jrr − bJ ≤ 0, (r, t) ∈ (0, R)× (0, T ),

where

b = b0 + 2q−1KcεF
′|J |q−2J.

Since ut ≥ 0 in (0, R)× (0, T ) and from the zero Dirichlet boundary condition,

it follows that

ur(R, t) ≤ u0r(R).

Thus, by (5.13), we obtain

J(R, t) ≤ u0r(R) + cε(R)F (0) ≤ −δR + cε(R)F (0) ≤ 0, t ∈ (0, T ),

J(r, 0) = u0r(r) + cε(r)F (u0(r)) ≤ −δr + cε(r)F (u0(r)) ≤ 0,

provided
cε(r)

r
≤ δ

max(0,R] F (u0)
, r ∈ [0, R].

Obviously, J(0, t) = 0, t ∈ [0, T ).

Since b is bounded above in ((0, R)× (0, t]) ∩ {(r, t) | J > 0} for any t < T,

from above and Proposition B.1.3 with Remark B.1.4, it follows that

J ≤ 0, in [0, R]× (0, T ).
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Thus

− ur
F (u)

≥ cε(r).

Since
d

dr
G(u) = − ur

F (u)
,

we get
d

dr
G(u) ≥ cε(r).

Integrating this inequality from 0 to r, we obtain

G(u(r, t)) ≥ G(u(r, t))−G(u(0, t)) ≥
∫ r

0

cε(z)dz. (5.15)

If for some r > 0, u(r, t) → ∞, as t → T, then G(u(r, t)) → 0, as t → T, a

contradiction to (5.15).

Since G is nonincreasing, it follows that

u(r, t) ≤ G−1(

∫ r

0

cε(z)dz), (r, t) ∈ (0, R]× (0, T ).

We are ready now to derive a formula to the pointwise estimate for the

blow-up solutions of problem (5.7) with (5.4).

Theorem 5.1.4. Let u be a blow-up solution to problem (5.7), assume that u0

satisfies (5.4) and (5.13).Then the upper pointwise estimate takes the following

form

u(r, t) ≤ 1

2α
[logC −m log(r)], (r, t) ∈ (0, R]× (0, T ),

where α ∈ (0, 1/2], C > 0,m > 2.

Proof. Let cε = εr1+δ, where δ ∈ (0,∞).

Clearly, the inequality (5.12) becomes

f
′
F − fF ′ − 2ε(1 + δ)rδF

′
F + ε2r2+2δF

′′
F 2

−2q−1Kεqrq+δqF qF
′
+
δ(n+ δ)

r2
F ≥ 0, u > 0, 0 < r < R. (5.16)

Note that for the semilinear equation in (5.7), K ≥ 1, and q = 2.
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To make use of Theorem 5.1.3 for problem (5.7), assume that

F (u) = e2αu, α ∈ (0, 1/2].

It is clear that F, and cε satisfy the assumptions (5.10) and (5.11), respectively.

With this choice of F the inequality (5.16) takes the form

(1− 2α)e(1+2α)u + 4α2ε2r2(1+δ)e6αu +
δ(n+ δ)

r2
e2αu ≥

4αε(1 + δ)rδe4αu + 4αε2r2(1+δ)e6αu, u ≥ 0, 0 < r ≤ R

provided α ≤ 1
2+4εRδ(1+δ)

.

Define the function G as in Theorem 5.1.3 as follows

G(s) =

∫ ∞
s

du

e2αu
=

1

2αe2αs
, s > 0.

Clearly,

G−1(s) = − 1

2α
log(2αs), s > 0.

Thus (5.14) becomes

u(r, t) ≤ 1

2α
[logC −m log(r)], (r, t) ∈ (0, R]× (0, T ),

where C = 2+δ
2εα

, m = 2 + δ.

Remark 5.1.5. Theorem 5.1.4 shows that, with choosing α = 1/2, the upper

pointwise estimate of problem (5.7) is the same as that of problem (2.1), where

f(u) = eu, which has been considered in [24] (see Chapter 2). Therefore, the

gradient term in problem (5.7) has no effect on the pointwise estimates.

5.1.3 Blow-up Rate Estimates

Since under the assumptions of Theorem 5.1.4, x = 0 is the only blow-up point

for the problem (5.7), in order to estimate the blow-up solution it is sufficient

to estimate only u(0, t). The next theorem considers the upper blow-up rate

estimate for the general problem (5.1).
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5.1. The Semilinear Heat Equation with a Gradient Term

Theorem 5.1.6. Let u be a blow-up solution to problem (5.1), where u0 ∈
C2(BR) and satisfies (5.4), (5.5). Assume that h

′
(s)
s

is continuous function in

R. Let T is the blow-up time and x = 0 is the only possible blow-up point. If

there exist a function, F ∈ C2([0,∞)) such that F > 0 and F
′
, F
′′ ≥ 0 in

(0,∞), moreover,

f
′
F −F ′f+F

′′|∇u|2−F ′ [h′(|∇u|)|∇u|−h(|∇u|)] ≥ 0, in BR× (0, T ), (5.17)

then the upper blow rate estimate takes the from

u(0, t) ≤ G−1(δ(T − t)), t ∈ (τ, T ),

where δ, τ > 0, G(s) =
∫∞
s

du
F (u)

.

Proof. To prove this theorem, we follow the procedures, which have been used

in [8].

Introduce the function

J = ut − δF (u), (x, t) ∈ BR × (0, T ), where δ > 0.

Since f
′
(s) and h

′
(s)/s are continuous functions, it can be shown that ut ∈

C2,1(BR × (0, T )) (see the regularity results in [56]).

Moreover, since F ∈ C2([0,∞)),

J ∈ C2,1(BR × (0, T )) ∩ C(BR × [0, T )).

A direct calculation shows

Jt −∆J = utt −∆ut − δF
′
[ut −∆u] + δF

′′|∇u|2

= f
′
[J + δF ]− h

′
(|∇u|)
|∇u|

∇u · (∇J + δF
′∇u)

−δF ′ [f − h(|∇u|)] + δF
′′|∇u|2

= f
′
J − h

′
(|∇u|)
|∇u|

∇u · ∇J + δf
′
F

−δF ′ [h′(|∇u|)|∇u| − h(|∇u|)]− δF ′f + δF
′′ |∇u|2.
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5.1. The Semilinear Heat Equation with a Gradient Term

Thus

Jt −∆J − cJ − b · ∇J = δD,

where c = f
′
(u), b = −h

′
(|∇u|)
|∇u| ∇u,

D = f
′
F − F ′f + F

′′ |∇u|2 − F ′ [h′(|∇u|)|∇u| − h(|∇u|)].

By (5.17), we have D ≥ 0 in BR × (0, T ).

It is clear that c is bounded function on BR × (0, t], for any t < T.

By Remark 5.1.2, ut ≥ 0 in BR × (0, T ), and since u blows up in finite time

at x = 0, there exists τ > 0, k0 > 0 such that

ut(0, t) > k0 > 0, t ∈ [τ, T ).

In fact, for small ε > 0, we have

ut(r, t) > k > 0, (r, t) ∈ [0, ε]× [τ, T ), k < k0. (5.18)

Also, since F is locally bounded function in BR × (0, T ), we can find δ > 0

such that

k ≥ δF (u(x, τ)), x ∈ Bε.

Thus

J(x, τ) ≥ 0, x ∈ Bε,

provided δ is small enough.

Clearly, F (u) is bounded in ∂Bε × (0, T ), there exists C0 such that

F (u(x, t)) ≤ C0 <∞, in ∂Bε × [τ, T ). (5.19)

Thus, by (5.18) and (5.19), it follows that

J(x, t) ≥ 0, (x, t) ∈ ∂Bε × (τ, T ), (5.20)

provided δ is small enough.

Applying Proposition B.1.3 (starting from τ instead of 0), we obtain

J ≥ 0, (x, t) ∈ Bε × (τ, T ),
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5.1. The Semilinear Heat Equation with a Gradient Term

which leads to

ut(0, t) ≥ δF (u(0, t)), for τ < t < T. (5.21)

Clearly, (5.21) implies that

−dG(u)

dt
=

ut
F (u)

≥ δ.

By integration,

G(u(0, t))−G(u(0, T )) ≥ δ(T − t).

It follows

G(u(0, t)) ≥ δ(T − t).

Since G is nonincreasing, we obtain

u(0, t) ≤ G−1(δ(T − t)), t ∈ (τ, T ). (5.22)

For problem (5.7), if one could choose a suitable function F that satisfies the

conditions, which have been stated in Theorem 5.1.6, then the upper blow-up

rate estimate for this problem would be held.

Theorem 5.1.7. Let u be a blow-up solution to problem (5.7), where u0 ∈
C2(BR) and satisfies (5.4), (5.13) and the monotonicity assumption

∆u0 + eu0 − |∇u0|2 ≥ 0, x ∈ BR,

suppose that T is the blow-up time.Then there exist C > 0 such that the upper

blow-up rate estimate takes the following form

u(0, t) ≤ 1

α
[logC − log(T − t)], 0 < t < T, α ∈ (0, 1].

Proof. Let

F (u) = eαu, α ∈ (0, 1].

It is clear that the inequality (5.17) holds because

(1− α)e(1+α)u + α2eαu|∇u|2 − αeαu|∇u|2 ≥ 0,
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5.1. The Semilinear Heat Equation with a Gradient Term

Set

G(s) =

∫ ∞
s

du

eαu
=

1

αeαs
, s > 0.

Clearly,

G−1(s) = − 1

α
log(αs), s > 0.

By Theorem 5.1.6, there is δ > 0 such that

u(0, t) ≤ 1

α
[log(

1

αδ
)− log(T − t)], τ < t < T.

Therefore, there exists a positive constant, C such that

u(0, t) ≤ 1

α
[logC − log(T − t)], 0 < t < T.

Next, we consider the lower blow-up rate for problem (5.7), which is much

easier than the upper bound.

Theorem 5.1.8. Let u be a blow-up solution to problem (5.7), where u0 sat-

isfies (5.4) and (5.13). Suppose that T is the blow-up time.Then there exist

c > 0 such that the lower blow-up rate estimate takes the following form

log c− log(T − t) ≤ u(0, t), 0 < t < T.

Proof. Define

U(t) = u(0, t), t ∈ [0, T ).

Since u attains its maximum at x = 0,

∆U(t) ≤ 0, 0 ≤ t < T.

From the semilinear equation in (5.7) and above, it follows that

Ut(t) ≤ eU(t) ≤ λeU(t), 0 < t < T, (5.23)

for λ ≥ 1. Integrate (5.23) from t to T, we obtain

1

λ(T − t)
≤ eu(0,t), 0 < t < T.

It follows that

log c− log(T − t) ≤ u(0, t), 0 < t < T,

where c = 1/λ.
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Remark 5.1.9. Theorem 5.1.8 (Theorem 5.1.7, where α = 1) show that, the

lower (upper) blow-up rate estimate of problem (5.7) is the same as that of

(2.1), where f(u) = eu, which has been considered in [24] (see Chapter 2).

Therefore, the gradient term in problem (5.7) has no effect on the blow-up rate

estimates.

5.2 Reaction Diffusion Coupled Systems with

Gradient Terms

In this section, we consider the Cauchy (Dirichlet) parabolic problem:

ut = ∆u+ |∇u|q1 + vp1 , vt = ∆v + |∇v|q2 + up2 in Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω,

}
(5.24)

where p1, p2,∈ (1,∞), q1, q2 ∈ (1, 2], u0, v0 ≥ 0 are nonzero, smooth and

bounded functions on Ω (not necessarily radial), Ω = Rn or BR. Moreover,

in case of Ω = BR, u, v are further required to satisfy the condition:

u(x, t) = 0, v(x, t) = 0, on ∂Ω× [0, T ). (5.25)

The problems of semilinear parabolic equations have been studied by many

authors, for instance, consider the Cauchy (Dirichlet) problem for the semilin-

ear heat equation:

ut = ∆u+ up, in Ω× (0, T ), (5.26)

where p > 1, Ω = Rn or BR. For this problem, it is well known that every

positive solution blows up in finite time, if the initial data are nonnegative and

suitably large [25, 37]. Moreover, it was proved in [24, 67] that the blow-up

rate estimate for (5.26) takes the following form

u(x, t) ≤ c(T − t)−
1
p−1 , (x, t) ∈ Ω× (0, T ).

Later, in [38] it has been shown that if we add a positive gradient term to

the equation (5.26), namely

ut = ∆u+ |∇u|q + up, p, q > 1, (5.27)
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5.2. Reaction Diffusion Coupled Systems with Gradient Terms

then that enhancing blow-up, and the influence of the gradient term becoming

more important as the value of p decreases. In the case q = 2 for radial

positive solutions in Rn, it was shown in [29, 30] that blow-up solutions behave

asymptotically like the nonconstant self-similar blow-up solution of the first-

order Hamilton-Jacobi equation without diffusion (ut = |∇u|2 + up), which

takes the form

u(x, t) = (T − t)
−1
p−1w(

|x|
(T − t)m

), m = (p− 2)/2(p− 1),

where w ∈ C2(R) is a positive radial function, vanishing at a finite point

or at infinity. Clearly, m describes the range (−∞, 1/2) for p ∈ (1,∞). In

particular, this means the blow-up solutions of problem (5.27) blow up with

a rate O((T − t)
−1
p−1 ), which is the same as that of problem (5.26). However,

unlike to problem (5.26) (see [62]), this kind of self similar profile is singular for

any x ∈ Rn, where 1 < p < 2. On the other hand, the existence of nonnegative

global solutions to (5.27) is shown in [60] for small initial data.

In [13, 14], it was considered, the Cauchy (Dirichlet) problem for the follow-

ing semilinear system:

ut = ∆u+ vp1 , vt = ∆v + up2 , (x, t) ∈ Ω× (0, T ), (5.28)

where p1, p2 > 1, Ω = BR or Rn, with nonzero initial data u0, v0 ≥ 0, it was

shown that any positive solution of this problem blows up in finite time, if the

initial data are large enough. Moreover, for the Cauchy problem for (5.28), it

is well known [13] that every nontrival positive solution blows up in finite time,

if

max{α, β} ≥ n

2
, (5.29)

where

α =
p1 + 1

p1p2 − 1
, β =

p2 + 1

p1p2 − 1
. (5.30)

The blow-up rate estimates for this system was studied in [7, 11], it was proved

that there exist a positive constant C such that

u(x, t) ≤ C(T − t)−α, (x, t) ∈ Ω× (0, T ),
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5.2. Reaction Diffusion Coupled Systems with Gradient Terms

v(x, t) ≤ C(T − t)−β, (x, t) ∈ Ω× (0, T ).

In this section, for problem (5.24), under some certain assumptions, we

prove that the upper blow-up rate estimates of the positive solutions and their

gradient terms, take the following forms:

u(x, t) + |∇u(x, t)|
2(p1+1)

p1p2+2p1+1 ≤ C1(T − t)−α, (x, t) ∈ Ω× (0, T ),

v(x, t) + |∇v(x, t)|
2(p2+1)

p1p2+2p2+1 ≤ C2(T − t)−β, (x, t) ∈ Ω× (0, T ),

where C1, C2 > 0.

5.2.1 Preliminaries

Set

F1(v,∇u) = |∇u|q1 + vp1 , F2(u,∇v) = |∇v|q2 + up2 .

Since the system (5.24) is uniformly parabolic and its equations have the same

principle parts and F1, F2 are C1([0,∞) × Rn), moreover, the growth of the

nonlinearities F1 and F1 with respect to the gradient is sub-quadratic, it follows

that the local existence of the unique nonnegative classical solutions to the

Dirichlet problem for (5.24) is guaranteed by the standard parabolic theory [40]

(see also [52]). Futhermore, in case of Ω = Rn, assuming that the initial data

u0, v0 are smooth and bounded functions, according to [40] these existence and

uniqueness results can also be extended to the Cauchy problem for this system.

On the other hand, the following lemma shows that the positive solutions of

problem (5.24) may blow up in finite time.

Lemma 5.2.1. Let (u∗, v∗) and (u, v) are positive solutions of problems (5.24)

and (5.28) respectively, where both of them start with u0, v0 ≥ 0. If (u, v) blows

up in finite time T , then (u∗, v∗) blows up in finite time T ∗, where T ≥ T ∗.

Proof. set

f1(s1, s2) = s2|s2|p1−1, f2(s1, s2) = s1|s1|p2−1.

Since p, q > 1, it follows that f1, f2 are C1.

Clearly, sp12 ≡ s2|s2|p1−1, sp21 ≡ s1|s1|p2−1 for s1, s2 ≥ 0.
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Thus

ut −∆u− f1(u, v) = 0 ≤ |∇u∗|q1 = u∗t −∆u∗ − f1(u∗, v∗) in Ω× (0, T ),

vt −∆v − f2(u, v) = 0 ≤ |∇v∗|q2 = v∗t −∆v∗ − f2(u∗, v∗) in Ω× (0, T ).

}

By Proposition B.2.3 (which can also apply without changes to the case of

Cauchy problems), it follows that

u ≤ u∗, v ≤ v∗ in Ω× (0, T ).

Remark 5.2.2. Since the growth of the nonlinear terms in problem (5.24)

with respect to the gradients is sub-quadratic, the gradient functions ∇u,∇v
are bounded as long as the solution (u, v) is bounded (see [52]).

5.2.2 Blow-up Rate Estimates

In the next theorem, we establish the upper blow-up rate estimates for the

problem (5.24). Furthermore, without comparing the blow-up solutions of this

problem with those of problem (5.28), we show that the blow-up can only occur

simultaneously.

Theorem 5.2.3. If p1, p2, q1 and q2 satisfy the following conditions

(1) max{α, β} ≥ n
2
,

(2) 1 < q1 <
2α+2
2α+1

, 1 < q2 <
2β+2
2β+1

,

where α, β are given in (5.30), then for any positive blow-up solution (u, v) of

problem (5.24) there exist positive constants C1, C2 such that

u(x, t) + |∇u(x, t)|
2(p1+1)

p1p2+2p1+1 ≤ C1(T − t)−α, (5.31)

v(x, t) + |∇v(x, t)|
2(p2+1)

p1p2+2p2+1 ≤ C2(T − t)−β, (5.32)

in Ω× (0, T ), where T <∞ is the blow-up time.
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Proof. Let

Mu(t) = sup
Ω×(0,t]

[u(x, t) + |∇u(x, t)|
2(p1+1)

p1p2+2p1+1 ],

Mv(t) = sup
Ω×(0,t]

[v(x, t) + |∇v(x, t)|
2(p2+1)

p1p2+2p2+1 ],

for t ∈ (0, T ).

Clearly, Mu,Mv are positive, continuous and nondecreasing functions on

(0, T ). At least one of them diverges as t → T, due to (u, v) blows up at time

T.

We show later that there is δ ∈ (0, 1) such that

δ ≤M
− 1

2α
u (t)M

1
2β
v (t) ≤ 1

δ
, t ∈ (T/2, T ). (5.33)

So that, consequently, both Mu,Mv have to diverge as t→ T.

To establish the blow-up rate estimates, we use a scaling argument similar

as in [7].The proof is divided into several steps.

Step 1: Scaling

If Mu diverges as t→ T, the following procedure can be applied.

Given t0 ∈ (0, T ), choose (x∗, t∗) ∈ Ω× (0, t0] such that

u(x∗, t∗) + |∇u(x∗, t∗)|
2(p1+1)

p1p2+2p1+1 ≥ 1

2
Mu(t0). (5.34)

Let γ = γ(t0) = M
− 1

2α
u (t0) be a scaling factor. Define the rescaled functions

ϕγ1(y, s) = γ2αu(γy + x∗, γ2s+ t∗), (5.35)

ϕγ2(y, s) = γ2βv(γy + x∗, γ2s+ t∗), (5.36)

for (y, s) ∈ Ωγ × (−γ−2t∗, γ−2(T − t∗)), where

Ωγ = {y ∈ Rn : γy + x∗ ∈ Ω}.

Clearly,

Ωγ :=

{
Rn if Ω = Rn,

BR
γ

if Ω = BR.
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Next, we aim to show that (ϕγ1 , ϕ
γ
2) is a solution of the following system

ϕγ1s −∆ϕγ1 = γµ1 |∇ϕγ1 |q1 + (ϕγ2)p1 ,

ϕγ2s −∆ϕγ2 = γµ2|∇ϕγ2 |q2 + (ϕγ1)p2 ,

}
(5.37)

where µ1 = 2α + 2− (2α + 1)q1, µ2 = 2β + 2− (2β + 1)q2.

From the assumption (2), it follows that µ1, µ2 > 0.

Clearly,

ϕγ1s = γ2α+2u, ∇ϕγ1 = γ2α+1∇u, ∆ϕγ1 = γ2α+2∆u. (5.38)

From (5.24), (5.38), it follows

1

γ(2α+2)
ϕγ1s =

1

γ(2α+2)
∆ϕγ1 +

1

γq1(2α+1)
|∇ϕγ1 |q1 +

1

γ2p1β
(ϕγ2)p1 .

Multiply the last equation by γ(2α+2), we get the first equation of (5.37). In the

same way we can show that ϕγ2 satisfies the second equation in system (5.37).

Restrict s to s ∈ (−γ−2t∗, 0], our aim now is to show that

ϕγ1(y, s) + |∇ϕγ1(y, s)|
2(p1+1)

p1p2+2p1+1 ≤ 1, (5.39)

for (y, s) ∈ Ωγ × (−γ−2t∗, 0].

From (5.38), we obtain

|∇ϕγ1(y, s)|
2(p1+1)

p1p2+2p1+1 = γ
[
2(p1+1)
p1p2−1

+1][
2(p1+1)

p1p2+2p1+1
]|∇u|

2(p1+1)
p1p2+2p1+1 ,

= γ2α|∇u|
2(p1+1)

p1p2+2p1+1 . (5.40)

Clearly,

u(x, t) + |∇u(x, t)|
2(p1+1)

p1p2+2p1+1 ≤Mu(t0), (x, t) ∈ Ω× (0, t∗]. (5.41)

From (5.35), (5.40) and (5.41), we get (5.39).

Moreover,

ϕγ2 + |∇ϕγ2 |
2(p2+1)

p1p2+2p2+1 ≤M
− β
α

u (t0)Mv(t0), (5.42)

for (y, s) ∈ Ωγ × (−γ−2t∗, 0].
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On the other hand, from (5.34), we obtain

ϕγ1(0, 0) + |∇ϕγ1(0, 0)|
2(p1+1)

p1p2+2p1+1 ≥ 1

2
. (5.43)

If Mv diverges as t→ T we can proceed in the same way by changing the role

of u and v.

Step 2: Schauder’s estimates

We need interior Schauder’s estimates of the functions ϕ1, ϕ2 on the sets

SK = {y ∈ Ωγ, |y| ≤ K} × [−K,KL], K > 0, L = 0, 1.

Assume that ϕ1, ϕ2 satisfy in S2K the condition

0 ≤ ϕγ1 + |∇ϕγ1 |
2(p1+1)

p1p2+2p1+1 ≤ B, 0 ≤ ϕγ2 + |∇ϕγ2 |
2(p2+1)

p1p2+2p2+1 ≤ B. (5.44)

We claim that for any K > 0, B > 0 and σ > 0 small enough, there is a

constant C = C(K,B, σ) such that

||ϕγ1 ||C2+σ,1+σ2 (SK)
≤ C, ||ϕγ2 ||C2+σ,1+σ2 (SK)

≤ C. (5.45)

From (5.44) we deduce that each of ϕγ1 , ϕ
γ
2 ,∇ϕ

γ
1 ,∇ϕ

γ
2 , is uniformly bounded

function in S2K . Therefore, the functions (ϕγ1)p1 , (ϕγ2)p2 , |∇ϕγ1 |q1 , |∇ϕ
γ
2 |q2 are

uniformly bounded in S2K . So, the right hand sides of the two equations in

(5.37) are uniformly bounded functions in S2K , applying the interior reqular-

ity theory (see [40]), we obtain (locally) uniform estimates in C1+σ, 1+σ
2 -norms.

Consequently, by Lemma A.2.2, we obtian (locally) uniform estimates in Hölder

norms Cσ,σ
2 on the right hand sides of the both equations in (5.37).Thus the

parabolic interior Schauder’s estimates imply (5.45) (see [22, 40]).

Step 3: The proof of (5.33)

Suppose that this lower bound were false.Then there exist a sequence tj → T

such that

M
− 1

2α
u (tj)M

1
2β
v (tj) −→ 0, as j →∞. (5.46)

Then clearly Mu diverges as tj → T . For each tj in the role of t0 from Step 1,

we scale about the correspoinding point (x∗j , t
∗
j) for all j such that t∗j ≤ tj, with

the scaling factor

γj = γ(tj) = M
− 1

2α
u (tj).
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We obtain the corresponding rescaled solution (ϕ
γj
1 , ϕ

γj
2 ),

ϕ
γj
1 (y, s) = γ2α

j u(γjy + x∗j , γ
2
j s+ t∗j), (5.47)

ϕ
γj
2 (y, s) = γ2β

j v(γjy + x∗j , γ
2
j s+ t∗j). (5.48)

Clearly, (ϕ
γj
1 , ϕ

γj
2 ) satisfies (as in Step 1) the following problem

ϕ
γj
1s −∆ϕ

γj
1 = γµ1j |∇ϕ

γj
1 |q1 + (ϕ

γj
2 )p1 ,

ϕ
γj
2s −∆ϕ

γj
2 = γµ2j |∇ϕ

γj
2 |q2 + (ϕ

γj
1 )p2 ,

}
(5.49)

with

ϕ
γj
1 (0, 0) + |∇ϕγj1 (0, 0)|

2(p1+1)
p1p2+2p1+1 ≥ 1/2,

0 ≤ ϕ
γj
1 + |∇ϕγj1 |

2(p1+1)
p1p2+2p1+1 ≤ 1,

ϕ
γj
2 + |∇ϕγj2 |

2(p2+1)
p1p2+2p2+1 ≤M

− β
α

u (tj)Mv(tj),

 (5.50)

for (y, s) ∈ Ωγj × (−γ−2
j t∗j , 0], where

Ωγj :=

 Rn if Ω = Rn,

B R
γj

if Ω = BR.

Clearly,

Ωγj −→ Rn, as j →∞.

From (5.46), (5.50), we see that

ϕ
γj
2 + |∇ϕγj2 |

2(p2+1)
p1p2+2p2+1 −→ 0, as j →∞.

Thus ϕ
γj
2 ,∇ϕ

γj
2 are bounded in Ωγj × (−γ−2

j t∗j , 0], ∀j.

Using the uniform Schauder’s estimate derived in Step 2 to (ϕ
γj
1 , ϕ

γj
2 )

||ϕγj1 ||C2+σ,1+σ2 ({y∈Ωγj ,|y|≤K}×[−K,0])
≤ CK ,

||ϕγj2 ||C2+σ,1+σ2 ({y∈Ωγj ,|y|≤K}×[−K,0])
≤ CK ,

where CK is independent of j.

Since (ϕ
γj
1 , ϕ

γj
2 ) is defined on a compact set, by the Arzela-Ascoli theorem,

there exist a convergent subsequance, we still denote it by (ϕ
γj
1 , ϕ

γj
2 ).
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5.2. Reaction Diffusion Coupled Systems with Gradient Terms

Since µ1, µ2 > 0 and ∇ϕγj1 ,∇ϕ
γj
2 are bounded, it follows that, the limit point

(ϕ1, ϕ2) is a solution of the following system

ϕ1s = ∆ϕ1 + ϕp12 , ϕ2s = ∆ϕ2 + ϕp21 , in Rn × (−∞, 0]. (5.51)

Since ϕ
γj
2 → 0, as j →∞, it follows that ϕ2 ≡ 0, in Rn × (−∞, 0].

Consequently, from the second equation in (5.51), we obtain that

ϕ1 ≡ 0, in Rn × (−∞, 0].

This means

ϕ1(0, 0) + |∇ϕ1(0, 0)|
2(p1+1)

p1p2+2p1+1 = 0,

which contradicts with (5.50). Thus, the lower bound is held.

To prove the upper bound of (5.33) we proceed similarly as in the proof of

lower bound with changing the role of u and v.

Step 4: Estimate on doubling of Mu

As Mu is continuous and diverges as t→ T, for any t0 ∈ (0, T ) we define t+0

by

t+0 = max{t ∈ (t0, T ) : Mu(t) = 2Mu(t0)}.

Clearly,

u(x, t) + |∇u(x, t)|
2(p1+1)

p1p2+2p1+1 ≤ 2Mu(t0), (x, t) ∈ Ω× (0, t+0 ]. (5.52)

Take γ = γ(t0) = M
− 1

2α
u (t0).

We claim that

γ−2(t0)(t+0 − t0) ≤ A, t0 ∈ (
T

2
, T ),

where the constant A ∈ (0,∞) is independent of t0. Suppose that this estimate

were false, then there would exist a sequence tj → T such that

γ−2
j (tj)(t

+
j − tj)→∞,

where

t+j = max{t ∈ (tj, T ) : Mu(t) = 2Mu(tj)}. (5.53)
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5.2. Reaction Diffusion Coupled Systems with Gradient Terms

For each tj we scale about the corresponding point (x∗j , t
∗
j) such that

0 < t∗j ≤ tj,
T

2
< tj < t+j < T, ∀j

with the scaling factor

γj = γ(tj) = M
− 1

2α
u (tj).

As in Step 3, we obtain the corresponding rescaled functions (ϕ
γj
1 , ϕ

γj
2 ), which

satisfies (5.49) with the following conditions

ϕ
γj
1 (0, 0) + |∇ϕγj1 (0, 0)|

2(p1+1)
p1p2+2p1+1 ≥ 1/2,

0 ≤ ϕ
γj
1 + |∇ϕγj1 |

2(p1+1)
p1p2+2p1+1 ≤ 2,

ϕ
γj
2 + |∇ϕγj2 |

2(p2+1)
p1p2+2p2+1 ≤M

− β
α

u (tj)Mv(t
+
j ),

 (5.54)

for (y, s) ∈ Ωγj × (−γ−2
j t∗, γ−2

j (t+j − t∗j)].

From (5.53) and (5.54), it follows that

ϕ
γj
2 + |∇ϕγj2 |

2(p2+1)
p1p2+2p2+1 ≤ 2

β
αM

− β
α

u (t+j )Mv(t
+
j ). (5.55)

From (5.33), we have

Mv(t) ≤ δ−2βM
β
α
u (t), t ∈ (

T

2
, T ).

Therefore, (5.55) becomes

ϕ
γj
2 + |∇ϕγj2 |

2(p2+1)
p1p2+2p2+2 ≤ 2

β
α

δ2β
.

By using the Schauder’s estimates derived in Step 2 for (ϕ
γj
1 , ϕ

γj
2 ) we get a

convergent subseguence in C
2+σ,1+σ/2
loc (Rn×R) to the solution of system (5.51)

in Rn × R. This is a contradiction because all the nontrival positive solutions

of system (5.51), under the assumption (1), blow up in finite time (see [13]).

Thus, there is A > 0 such that

γ−2(t0)(t+0 − t0) ≤ A, t0 ∈ (
T

2
, T ). (5.56)

Step 5: Rate estimates
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5.2. Reaction Diffusion Coupled Systems with Gradient Terms

As in Step 4, for any t0 ∈ (T/2, T ) we define

t1 = t+0 ∈ (t0, T ) such that Mu(t1) = 2Mu(t0).

Due to (5.56),

(t1 − t0) ≤ AM
− 1
α

u (t0).

We can use t1 as a new t0 and obtain t2 ∈ (t, T ) such that

Mu(t2) = 2Mu(t1) = 4Mu(t0),

(t2 − t1) ≤ AM
− 1
α

u (t1) = 2−
1
αAM

− 1
α

u (t0).

Continuing this process we obtain a sequence tj → T such that

(tj+1 − tj) ≤ 2−
j
αAM

− 1
α

u (t0), j = 0, 1, 2, . . .

If we add these inequalities we get

(T − t0) ≤
∑
j≥0

2−
j
αAM

− 1
α

u (t0).

Thus

(T − t0) ≤ (1− 2−
1
α )−1AM

− 1
α

u (t0)

From using (5.33) we obtain

Mv(t0) ≤ δ−2βM
β
α
u (t0), t0 ∈ (T/2, T ).

Thus

Mv(t0) ≤ δ−2β(1− 2−
1
α )−βAβ(T − t0)−β, t0 ∈ (T/2, T ).

From above there exist two constants C∗1 , C
∗
2 such that

Mu(t0) ≤ C∗1(T − t0)−α, t0 ∈ (
T

2
, T ),

Mv(t0) ≤ C∗2(T − t0)−β, t0 ∈ (
T

2
, T ).

From the last two equations and the definitions of Mu,Mv, it follows that there

exist constants C1, C2 such that

u(x, t) + |∇u(x, t)|
2(p1+1)

p1p2+2p1+1 ≤ C1(T − t)−α,

v(x, t) + |∇v(x, t)|
2(p2+1)

p1p2+2p2+1 ≤ C2(T − t)−β,

for (x, t) ∈ Ω× (0, T ).
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5.2. Reaction Diffusion Coupled Systems with Gradient Terms

Remark 5.2.4. If u0 ≡ v0, p = p1 = p2, q = q1 = q2, then problem (5.24) can

be reduced to a scalar Dirichlet (Cauchy) problem for (5.27). Moreover, if

1 < p ≤ 1 +
2

n
, 1 < q <

2p

1 + p
, (5.57)

then in a similar way to the proof of Theorem 5.2.3, we can show that, for a

nontrivial positive blow-up solution u, there exist C > 0 such that

u(x, t) + |∇u(x, t)|
2
p+1 ≤ C(T − t)

1
p−1 , in Ω× (0, T ), (5.58)

i.e.

u(x, t) ≤ C(T − t)
1
p−1 , in Ω× (0, T ). (5.59)

A similar estimate to (5.58) has been shown in [53, 56] to a large class of

semilinear heat equations with gradient terms including (5.6) and (5.27). As

we have mentioned before, the rate estimate (5.59) is also known for the blow-

up solutions of equations (5.6) and (5.26). Therefore, if p, q satisfy (5.57), then

the positive and negative gradient terms which appear in equation (5.27) and

(5.6), respectively, do not affect the blow-up rate estimates of these problems.

A similar observation holds for problem (5.24) by Theorem 5.2.3, which shows

that the upper rate estimates of the Cauchy or Dirichlet problem for system

(5.24) are the same as those known for the system (5.28). Therefore, under

the assumptions of Theorem 5.2.3, the gradient terms in system (5.24) have no

effect on the blow-up rate estimates.

5.2.3 Blow-up Set

It is well known that for the semilinear system (5.28) defined in a ball, under

some restricted assumptions on u0, v0 (nonnegative, radially decreasing func-

tions), that the only blow-up point is the centre of that ball (see [61]), while it

is unknown whether this holds for the system (5.24). However, for the radial

solutions of the single equation (5.27) defined in Ω, in case q = 2, there is global

blow-up, if 1 < p < 2, Ω = BR or Rn, and regional blow-up, if p = 2, Ω = Rn,

while a single blow-up point, if p > 2, Ω = BR (see [56, 62] and the references

therein).The proof relies on the transformation v = eu − 1, which converts
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5.2. Reaction Diffusion Coupled Systems with Gradient Terms

(5.27) into the semilinear heat equation vt = ∆v+ (1 + v) logp(1 + v). We note

that, these results are much different from those known for equation (5.26)

(see [56]), because for any p > 1, Ω = BR or Rn, only a single blow-up point

is known to occur for that problem, where the initial date are nonnegative,

radially nonincreasing and bounded function.
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Chapter 6

Conclusions and Further Studies

In this thesis, we studied the blow-up properties of second order parabolic

problems defined in a ball. Namely, we consider the nature of blow-up set and

the rate of blow-up for some problems of the following types:

1. Dirichlet problems for semilinear heat equations,

2. Neumann problems for heat (semilinear heat) equations,

3. Dirichlet (Cauchy) problems for semilinear heat equations with gradient

terms.

From this work, we can conclude the following points

• For the Dirichlet problem for the semilinear heat equation (2.1), with

nonnegative radially nonincreasing initial data, where the reaction term

is the power or the exponential function, it has been shown in [24] that

the only possible blow-up point is the centre of the ball. This can be ex-

tended to the case where the reaction term grows faster than these types

of functions for large values of solutions. Namely, where the reaction

term is the exponential of a power type function. Moreover, for this case

the upper blow-up rate estimate obtained in Chapter 1, is the same as

that known for problem (2.1) where the reaction term is the exponential
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function of solutions. Similarly, the last conclusion holds for the problem

of the heat equation with a nonlinear boundary condition (3.1), while for

the system of two heat equations with coupled nonlinear boundary condi-

tions (3.7), in case of the boundary terms are of this type of nonlinearity,

the upper blow-up rate estimates obtained in Chapter 3 are greater (more

singular) than those known for problem (3.7) where the boundary terms

are of exponential type functions of the solutions, but they are less (less

singular) than those known for problem (3.7) where the boundary terms

are of power type functions. Furthermore, for this case, as in the previous

studied cases, the blow-up occurs only on the boundary.

• For the Neumann problem for the semilinear heat equation (4.6), we

showed that the presence of the reaction term has an important effect

on the upper (lower) blow-up rate estimates in case of the power p of

the exponential function that appears in the reaction term is larger than

the power q of that appears in the boundary term, otherwise the effect

occurs only on the upper bound. Moreover, for the special case p = q = 1,

and for small enough values of λ, that appears in the reaction term, the

blow-up can occur only on the boundary, this means in this case, the

reaction term has no effect on the blow-up set. In fact the last conclusion

can be extended to the system (4.15), which is coupled in both equations

and boundary conditions. Moreover, we conclude that the upper blow-up

rate estimates for system (4.15) take the same forms as those considered

in Chapter 2 for the Dirichlet problem for this system, while the lower

estimates are the same as those known for the problem where the reaction

terms are absent.

• For the Dirichlet problem for the semilinear heat equation with negative

sign quadratic gradient term (5.7), and nonnegative radially nonincreas-

ing initial data, we showed that the gradient term has no effect neither on

the poistwise estimate nor on the blow-up rate estimates for this problem.

In other words, these bounds depend only on the exponential function,

that appears in the semilinear equation (5.7). A similar conclusion also
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holds for the Dirichlet (Cauchy) problem for the coupled system of two

semilinear heat equations with positive sign gradient terms (5.24). Un-

der certain assumptions on the powers of the nonlinear functions which

appear in the equations of the system (5.24), we showed that the up-

per blow-up rate estimates are the same as those known for the problem

where the gradient terms are absent.

We now outline possible directions for future studies

• One may try to find formulas to the blow-up rate estimates and study

the blow-up set for the coupled system (2.24), where the reaction terms

take the forms as in the scalar problem (2.6).

• It would be interesting to investigate whether, for large values of the

parameter λ, or for any p, q > 0, which appear in problem (4.6), the

blow-up can occur only on the boundary. A similar question can be

asked for the system (4.15).

• The blow-up rate estimates (5.31) and (5.32) have been derived under

restricted assumptions. We may try to study the blow-up rate estimates

for problem (5.24), in case of one or both of the assumptions (1) and (2)

of Theorem 5.2.3 are not satisfied.

• It is well known for the Dirichlet problem for the system (5.24) with

radially nonincreasing initial data, where the gradient terms are absent,

that the blow-up set has only a single point (see [61]). Therefore, it would

be really interesting to investigate whether this can be extended to this

problem, where the gradient terms are present.
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Appendix A

Notation and Definitions

In this appendix we introduce the domains notation and symbols used in this

thesis. Furthermore, we review the standard function spaces and the defini-

tions of radial and superlinear functions. Moreover, the definition of uniformly

parabolic equations is given in this appendix. Finally, we recall the meaning

of maximal classical and weak solutions of parabolic problems.

A.1 Notation for Domains

Let Ω ⊆ Rn, we say that Ω is a domain, if it is a nonempty, connected, open

set, we refer to the boundary of Ω by ∂Ω and to its closure by Ω. The unit

outward normal vector on ∂Ω at the point x ∈ ∂Ω is denoted by η = η(x), and

the outer normal derivative by ∂
∂η
.

Definition A.1.1. We say that ∂Ω is Ck, if for each point x0 ∈ ∂Ω there exist

r > 0 and a Ck function γ : Rn−1 → R such that

Ω ∩B(x0, r) = {x ∈ B(x0, r) | xn > γ(x1, . . . , xn−1)},

where B(x0, r) is a ball in Rn with centre x0 and radius r.

Likewise, ∂Ω is smooth, if the function γ is smooth (infinitely differentiable).
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A.2. Notation for Functions

We denote by BR the open ball in Rn with centre zero and radius R, namely

BR := {x ∈ Rn : |x| < R},

where

|x| =
√
x2

1 + x2
2 + · · ·+ x2

n.

Moreover, we refer to the boundary of BR by ∂BR or SR, which is defined as

follows

∂BR := {x ∈ Rn : |x| = R}.

The surface measure on ∂BR will be denoted by ds.

Definition A.1.2. We say that a domain Ω is symmetric, if either Ω = Rn, or

Ω = BR, or Ω = {x ∈ Rn : R1 < |x| < R2}, where 0 < R1 < R2 ≤ ∞.

A.2 Notation for Functions

Throughout this section we introduce the notation for the functions, which

defined in the domain, Ω × I ⊂ Rn+1, where Ω be a bounded domain in Rn,

I ⊂ R. Similarly, we can define the same notations for the functions, which are

defined in the domain Ω, so they are omitted here.

A.2.1 Function Spaces

Let α ∈ (0, 1), k ∈ Z+, we define some classical and parabolic function spaces:

Uniform space:

L∞(Ω× I) := {u : Ω× I → R | ||u||∞ <∞},

where

||u||∞ = sup
(x,t)∈Ω×I

|u(x, t)|.

Lp-spaces:

For 1 ≤ p <∞, define
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A.2. Notation for Functions

Lp(Ω× I) := {u : Ω× I → R | u is measurable and ||u||p <∞},

where

||u||p = (

∫
I

∫
Ω

|u|pdxdt)
1
p .

Hölder spaces:

Cα,α
2 (Ω× I) := {u ∈ C(Ω× I) | [u]

Cα,
α
2 (Ω×I) <∞},

where

[u]
Cα,

α
2 (Ω×I) := sup

x,y∈Ω,x 6=y;t,s∈I,t 6=s

|u(x, t)− u(y, s)|
|x− y|α + |t− s|α2

.

Moreover, the space Cα,α
2 ((Ω× I)) can be equipped with the norm

||u||
Cα,

α
2 (Ω×I) := ||u||∞ + [u]

Cα,
α
2 (Ω×I).

Lemma A.2.1. Let u ∈ Cβ,β
2 (Ω× I), where α < β ≤ 1. Then

u ∈ Cα,α
2 (Ω× I).

Lemma A.2.2. Let u ∈ Cα,α
2 (Ω×I), where Ω ⊂ Rn be an open convex bounded

set and p > 1. Then

up ∈ Cα,α
2 (Ω× I).

Ck,k
2 -spaces:

The two spaces C1, 1
2 , C2,1 are defined as follows

C1, 1
2 (Ω×I) := {u : Ω×I → R | u is C

1
2 in t, uxiexist and continuous, i = 1, 2, ...n},

C2,1(Ω×I) := {u : Ω×I → R | uxi , uxixj , and ut exist and continuous, i, j = 1, 2, ...n},

Assuming that u and its partial derivatives are continuous on Ω× I, the spaces

C1, 1
2 (Ω× I), C2,1(Ω× I) can be equipped with the norms

||u||
C1, 12 (Ω×I)

:= ||u||∞ +
n∑
i=1

||uxi ||∞,

||u||C2,1(Ω×I) := ||u||∞ + ||ut||∞ +
n∑
i=1

||uxi ||∞ +
n∑

i,j=1

||uxixj ||∞,
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respectively.

Ck+α,k+α
2 -spaces:

The spaces C1+α, 1+α
2 , C2+α,1+α

2 can be defined as follows:

C1+α, 1+α
2 (Ω× I) =: {u | u is C

1+α
2 in t, uxi ∈ Cα,α

2 (Ω× I), i = 1, 2, ...n},

C2+α,1+α
2 (Ω× I) =: {u ∈ C2,1(Ω× I) | uxixj , ut ∈ Cα,α

2 (Ω× I), i, j = 1, 2, ...n}.

Moreover, the spaces C1+α, 1+α
2 (Ω× I), C2+α,1+α

2 (Ω× I) are equipped with the

norms

||u||
C1+α, 1+α2 (Ω×I)

:= ||u||
C1, 12 (Ω×I)

+
n∑
i=1

[uxi ]Cα,
α
2 (Ω×I),

||u||
C2+α,1+α2 (Ω×I) := ||u||C2,1(Ω×I) + [ut]Cα,

α
2 (Ω×I) +

n∑
i,j=1

[uxixj ]Cα,
α
2 (Ω×I).

C(I,X(Ω))-space:

Define

C(I,X(Ω)) := {u : I → X(Ω) | u is continuous},

where X is a Banach space of functions defined in Ω, such as: Lp, L∞, Ck.

A.2.2 Superlinear Functions

Definition A.2.3. Let f = f(u), where f : [0,∞) → R. f is said to be

superlinear, if it is non dissipative and grow larger than linearly for large values

of u. That is, there exist ε, A > 0 such that

uf(u) ≥ (2 + ε)

∫ u

0

f(v)dv > 0, ∀ u ≥ A.

A.2.3 Radial Functions

Definition A.2.4. Let Ω be a symmetric domain. The function u : Ω×I → R,

is called radially symmetric or simply radial, if it satisfies, for each (x, t) ∈ Ω×I,

u(x, t) = u(x
′
, t), ∀x′ ∈ Ω, such that |x′ | = |x|.

Moreover, it is called radially nonincreasing if u is radial and nonincreasing as

a function of r = |x|.
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Lemma A.2.5. u is radial if and only if

u(x, t) = u((|x|, 0, 0, . . . , 0), t), ∀(x, t) ∈ Ω× I.

A.3 Uniformly Parabolic Equations

Consider the differential equation

ut =
n∑

i,j=1

ai,j(x, t)
∂2u

∂xi∂xj
+ f(x, t, u,∇u), (x, t) ∈ Ω× (0, T ), (A.1)

where ai,j, i, j = 1, 2, . . . n are defined functions in Ω × (0, T ), f is defined

function in Ω × (0, T ) × R × Rn. If the matrix (ai,j) is positive definite in

Ω× (0, T ); that is, for every vector ξ = (ξ1, . . . , ξn) ∈ Rn, ξ 6= 0,

n∑
i,j=1

ai,j(x, t)ξiξj > 0, (x, t) ∈ Ω× (0, T ),

then we say that (A.1) is of parabolic type in Ω×(0, T ). Moreover, if there exist

positive constants λ1, λ2 such that, for every vector ξ = (ξ1, . . . , ξn) ∈ Rn,

λ1|ξ|2 ≤
n∑

i,j=1

ai,j(x, t)ξiξj ≤ λ2|ξ|2, (x, t) ∈ Ω× (0, T ),

then we say that (A.1) is uniformly parabolic in Ω × (0, T ). Similarly, we can

define the uniformly elliptic equations.

A.4 Classical and Weak Solutions

For any second order parabolic problem defined in {x ∈ Ω, t > 0}, with the

initial function u0 ∈ C2(Ω) and for given T ∈ (0,∞], by u ∈ C([0, T ), C2(Ω)) is

a classical solution or a solution (for short) in [0, T ), we mean that u satisfies

the problem for t ∈ (0, T ), u(·, 0) = u0 and

u ∈ C2,1(Ω× [0, T )).
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A.4. Classical and Weak Solutions

If Ω is unbounded, then we also require that u,∇u,∆u and ut are bounded on

Ω× [0, t], for every t < T.

Moreover, we say that the problem is well-posed in C2(Ω) if, for given u0 ∈
C2(Ω), there exist T > 0 and a unique classical solution in [0, T ].

A.4.1 Maximal Solutions

Definition A.4.1. Suppose that we have a parabolic problem such that for

each u0 ∈ C2(Ω), there exist a unique classical solution u on the interval [0, T ],

where T = T (||u0||C2(Ω)). If there exist Tmax = Tmax(u0) ∈ (T,∞] with the

following properties:

(i) The solution u can be continued (in a unique way) to a classical solution

on the interval [0, Tmax),

(ii) If Tmax <∞, then u cannot be continued to a classical solution on [0, τ)

for any τ > Tmax,

(iii) Either Tmax =∞ or limt→Tmax ||u(x, t)||C2(Ω) =∞,

then we call u the maximal classical solution starting from u0 and Tmax its

maximal existence time.

A.4.2 Weak Solutions

By weak solutions of parabolic problems, we mean the functions, which may not

be continuously differentiable or even continuous, but they satisfy the problem

in weak sense. For example, consider the following problem

ut = ∆u+ f(u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

 (A.2)

where 0 ≤ u0 ∈ L∞(Ω), Ω is a bounded domain.
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Definition A.4.2. The function u is a weak solution of (A.2) on [0, T ] if

(i) u ∈ C([0, T ], L1(Ω)),

(ii) f(u) ∈ L1(Ω× (0, T )),

(iii)

∫
Ω

u(x, t2)φ(x, t2)dx−
∫

Ω

u(x, t1)φ(x, t1)dx−
∫ t2

t1

∫
Ω

uφtdxdt

=

∫ t2

t1

∫
Ω

(u∆φ+ fφ)dxdt

for every φ ∈ C2,1(Ω× [0, T ]) with φ = 0 on ∂Ω, 0 ≤ t1 ≤ t2 ≤ T.

The function u is a global weak solution, if it is a weak solution on [0, T ] for

every T > 0.

122



Appendix B

Maximum and Comparison

Principles

Maximum and comparison principles are considered a very useful tool in the

study of parabolic problems of scalar equations and systems. Many of the

arguments applied in this thesis rely on application of the maximum principles

for parabolic equations. In this appendix we recall from ([26, 34, 50, 54, 56, 58])

some maximum and comparison principles, which we frequently use in this

thesis.

B.1 Maximum and Comparison Principles for

Parabolic Equations

We start with the following maximum principle, which is applicable to the clas-

sical solutions of the problems of Dirichlet, Neumann and mixed-type boundary

type conditions.

Proposition B.1.1. Let u ∈ C2,1(Ω× (0, T )) ∩ C(Ω× [0, T )) be such that

ut − Lu+ cu ≥ 0, (x, t) ∈ Ω× (0, T ),

α∂u
∂η

+ βu ≥ 0, (x, t) ∈ ∂Ω,

u(x, 0) ≥ 0, x ∈ Ω,
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B.1. Maximum and Comparison Principles for Parabolic Equations

where Ω is a bounded domain, L is a uniformly elliptic operator given by

Lu ≡
n∑

i,j=1

ai,j(x, t)
∂2u

∂xi∂xj
+

n∑
j=1

bj(x, t)
∂u

∂xj
,

where ai,j, bj, i, j = 1, 2, . . . n, and c are continuos functions in Ω × (0, T ),

moreover, c is bounded in Ω × (0, t] for any t < T, and α, β are nonnegative

continuous functions, such that α + β > 0 on ∂Ω× (0, T ). Then

u(x, t) ≥ 0, (x, t) ∈ Ω× (0, T ).

Moreover

u(x, t) > 0, (x, t) ∈ Ω× (0, T ) unless u ≡ 0.

As an application of Proposition B.1.1 we have the following comparison

principle between the classical solutions u, v of the respective parabolic initial-

boundary value problems

ut − Lu = f1(x, t, u), vt − Lv = f2(x, t, v), (x, t) ∈ Ω× (0, T ),

α∂u
∂η

+ βu = h1(x, t), α ∂v
∂η

+ βv = h2(x, t), (x, t) ∈ ∂Ω,

u(x, 0) = u0, v(x, 0) = v0, x ∈ Ω,

 (B.1)

where f1, f2 are continuous functions in Ω× (0, T ), u0, v0 are smooth function,

α, β and L are defined as in Proposition B.1.1.

Proposition B.1.2. Assume that either ∂f1(x,t,s)
∂s

or ∂f2(x,t,s)
∂s

is continuous in

s ∈ R and that

f1(x, t, s) ≤ f2(x, t, s), (x, t) ∈ Ω× (0, T ),

h1(x, t) ≤ h2(x, t), (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) ≤ v(x, 0), x ∈ Ω.


If u, v are the respective solution of (B.1), then

u ≤ v, (x, t) ∈ Ω× (0, T ).

Moreover, either

u = v, or u < v, (x, t) ∈ Ω× (0, T ).
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The following proposition is a basic maximum principle for classical solu-

tions.

Proposition B.1.3. Let Ω be an arbitrary bounded domain in Rn, T > 0,

b : Ω× (0, T )→ Rn, c : Ω× (0, T )→ R,

sup
Ω×(0,t)

c <∞, for any t < T.

Assume that

v ∈ C2,1(Ω× (0, T )) ∩ C(Ω× [0, T )),

and
vt −∆v ≤ b · ∇v + cv, (x, t) ∈ Ω× (0, T ),

v(x, t) ≤ 0, (x, t) ∈ ∂Ω× (0, T ),

v(x, 0) ≤ 0, x ∈ Ω.

 (B.2)

Then

v(x, t) ≤ 0, (x, t) ∈ Ω× (0, T ).

Remark B.1.4. In Proposition B.1.3 it is sufficient to assume that the first

inequality in (B.2) holds in the set {(x, t) ∈ Ω× (0, T ) | v(x, t) > 0}.

The following proposition is a version of the strong comparison principle for

general semilinear parabolic equations.

Proposition B.1.5. Let Ω be a bounded domain in Rn of class C2. And

u, v ∈ C2,1(Ω× (0, T )) ∩ C(Ω× [0, T )),

for some T > 0. Assume that

ut −∆u− F (x, t, u,∇u) ≤ vt −∆v − F (x, t, v,∇v), (x, t) ∈ Ω× (0, T ),

where F = F (x, t, s, ξ) : Ω× [0, T )×R×Rn → R is continuous in x, t and C1

in s, ξ. Moreover, if F depends on ξ, assume also that

∇u,∇v ∈ L∞(Ω× (0, t)), for any t < T.

Let

u(x, 0) ≤ v(x, 0), x ∈ Ω (u(·, 0) 6≡ v(·, 0)),
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and

u(x, t) ≤ v(x, t), (x, t) ∈ ∂Ω× (0, T ),

or
∂u

∂η
+ bu ≤ ∂v

∂η
+ bv, on ∂Ω× (0, T ), (B.3)

where b ∈ C1(∂Ω). Then

u < v in Ω× (0, T ).

In addition, if u(x0, t0) = v(x0, t0) for some x0 ∈ ∂Ω and t0 ∈ (0, T ), then

∂u(x0, t0)

∂η
>
∂v(x0, t0)

∂η
.

If (B.3) is true, then u < v in Ω× (0, T ).

Finally, we state the following comparison principle for (3.1) (the problem

of the heat equation with a nonlinear boundary condition).

Proposition B.1.6. Let ui ∈ C2,1(BR×[0, Ti)), i = 1, 2 be solutions of problem

(3.1) with initial data u0
1, u

0
2 and boundary condition given by the functions fi.

Suppose that

f1 ≥ f2, and u0
1 > u0

2, x ∈ BR.

If f1 or f2 are strictly increasing, then

u1 > u2, in BR × [0,min{T1, T2}).

B.2 Maximum and Comparison Principles for

Parabolic Systems

We first give extensions of the previous maximum principle (Proposition B.1.3),

to systems of cooperative type.
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Proposition B.2.1. Let 0 < T <∞, Ω be an bounded domain in Rn,

aij : Ω× (0, T ) −→ R, for i, j ∈ {1, 2}, such that a12, a21 ≥ 0,

sup
Ω×(0,t)

aij <∞, for any t < T, i, j ∈ {1, 2},

b1, b2 : Ω× (0, T ) −→ Rn. Assume that for i = 1, 2, the function vi satisfies

vi ∈ C2,1(Ω× (0, T )) ∩ C(Ω× [0, T )),

v1t −∆v1 + b1 · ∇v1 ≤ a11v1 + a12v2, in Ω× (0, T ),

v2t −∆v2 + b2 · ∇v2 ≤ a21v1 + a22v2, in Ω× (0, T ),

}
such that

v1(x, t) ≤ 0, v2(x, t) ≤ 0, (x, t) ∈ ∂Ω× (0, T ),

v1(x, 0) ≤ 0, v2(x, 0) ≤ 0, x ∈ Ω.

}
Then

v1(x, t), v2(x, t) ≤ 0 (x, t) ∈ Ω× (0, T ).

Next, we state a comparison principle to the system of heat equations with

Neumann boundary conditions.

Proposition B.2.2. Let (u, v) be a nonnegative supersolution to problem

(3.7), where u, v ∈ C2,1(BR×(0, T ))∩C(BR×[0, T )). This means (u, v) satisfies

the following problem

ut ≥ ∆u, vt ≥ ∆v, BR × (0, T ),
∂u
∂η
≥ f(v), ∂v

∂η
≥ g(u), (x, t) ∈ SR × (0, T ),

u(x, 0) ≥ u0(x), v(x, 0) ≥ v0(x), x ∈ BR.


If (u∗, v∗) is a nonnegative solution of problem (3.7), starting with the same

initial data (u0, v0), then

u∗ ≤ u, v∗ ≤ v, (x, t) ∈ BR × [0, T ).

Let (u1, v1) be a nonnegative solution of problem (3.7), starting with (u10, v10),

where

u10 < u0, v10 < v0, x ∈ BR.

Then

u1 < u, v1 < v, (x, t) ∈ BR × [0, T ).
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The following proposition is a comparison principle for cooperative systems

of the form

ut = ∆u+ f1(u, v), vt = ∆v + f2(u, v). (B.4)

Proposition B.2.3. Let 0 < T <∞, Ω be an arbitrary domain in Rn, and let

fi = fi(s1, s2) : R2 → R, i = 1, 2, be C1 functions such that

∂f1

∂s2

≥ 0,
∂f2

∂s1

≥ 0.

Let

u, v, u∗, v∗ ∈ C2,1(Ω× (0, T )) ∩ C(Ω× [0, T )),

and

u ≤ u∗, v ≤ v∗ in Ω× {0}, ∂Ω× (0, T ),

moreover,

ut −∆u− f1(u, v) ≤ u∗t −∆u∗ − f1(u∗, v∗) in Ω× (0, T ),

vt −∆v − f2(u, v) ≤ v∗t −∆v∗ − f2(u∗, v∗) in Ω× (0, T ).

}
i.e. (u∗, v∗) is a supersolution to the system (B.4). Then

u ≤ u∗, v ≤ v∗ in Ω× (0, T ).

Finally, we state the following maximum principle for rection diffusion sys-

tems coupled in both equations and boundary conditions.

Proposition B.2.4. Let

w, z ∈ C2,1(Ω× (0, T )) ∩ C(Ω× [0, T )),

where, Ω = (0, R), R > 0 and T > 0, such that

wt − wrr − n−1
r
wr ≥ az, zt − zrr − n−1

r
zr ≥ bw (r, t) ∈ Ω× (0, T ),

wr(0, t) ≤ 0, zr(0, t) ≤ 0, 0 < t < T,

wr(R, t) ≥ c(R, t)z(R, t), zr(R, t) ≥ d(R, t)w(R, t), 0 < t < T,

w(r, 0) ≥ 0, z(r, 0) ≥ 0, r ∈ Ω,


where, a, b, c and d are bounded functions in [0, R] × [0, t], for any t < T, we

assume also that a, b are nonnegative functions. Then

w, z ≥ 0, in Ω× [0, T ).
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