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Summary

Cosmic strings are topological defects appearing as extended solutions in many high
energy physics scenarios. Observation of signatures expected due to the presence
of cosmic string networks could provide critical evidence in distinguishing and con-
straining fundamental cosmological and particle physics theories.

Large scale evolution of cosmic string is well understood but the dynamics influ-
enced by small scale structure remains unclear. Radiation back-reaction is expected
to smooth strings, setting the scale of small structure and the size of loops pro-
duced. We undertake an investigation of cosmic strings numerically simulated from
their underlying field theories, in particular we use the U(1) gauge theory of the
Abelian-Higgs model which radiates to massive modes and the global U(1) theory
of the Goldstone model which additionally radiates into the massless mode of the
Goldstone field. By comparison to the emission of Goldstone bosons we can infer
the effects of gravitational radiation, a further important energy loss mechanism for
cosmological string, but difficult to simulate. We analyse the scaling properties of
the string tangent vector correlation function and loop number density distributions
which are expected to follow related power law forms and compare the results for
gauge and global strings with a view to deciphering the influence of a massless de-
gree of freedom on these attributes of network evolution. We find that the change
in correlation function due to a massless mode can be incorporated by an effect-
ive value for the exponent of time by which the scale factor evolves whereby the
smoothing due to back-reaction behaves like additional causal damping. From long
gauge strings we find no evidence for direct ‘core’-sized loop production, finding
instead that our simulations favour radiation into the gauge and Higgs modes and
fragmentation of horizon-sized loops.
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Chapter 1

Introduction

Despite the origins of time and space being shrouded in mystery, cosmology has

become a mature subject and we have many observationally consistent theories to

explain our beginnings. Much of what we know about cosmology comes from our un-

derstanding of gravitational physics on large astronomical/ cosmological scales. The

very high energies needed for experiments to verify theories of the early universe are

well out of reach of todays technology though with each passing decade we manage

to get closer. So we look to the skies for data. From observational cornerstones like

recession of galaxies, the smoothness of the cosmic microwave background (CMB)

and primordial abundances of the light elements we are able to confirm or exclude

our ideas. From such observations we are able to work with models that insist that

our universe is expanding, is close to homogeneous and isotropic, that it has under-

gone an accelerated expansion in the past and that the geometry of our spacetime

today is flat. The Einstein equations and our increasing collection of observations

lead us to the standard model of cosmology, based on the Big Bang theory, and a

working description of how our universe has evolved.

In the past when the universe was hotter, symmetries were unbroken and the

field theories of particle physics were united. As Wienberg-Salam-Glashow have

shown for the electroweak theory, the electromagnetic and weak forces are described

by a combined theory at high energy. As our universe cooled and expanded the

forces decoupled in a symmetry breaking phase transition and the bosons which

mediate the forces acquire mass by the Higgs mechanism. It is possible that there

is further unification in a single grand unified theory (GUT) at the energy scale
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where the quantised theory of electrodynamics (QED) and the strong interactions,

quantum chromodynamics (QCD) are expected to unite, 1016GeV . But we have

not been able to extend the classical theory of general relativity at very high energy

and microscopic length scales to fit the framework of a quantum theory so unifying

gravity with the rest of the forces would require a new formulation. For this string

theory is a strong contender, since all the forces and particles are encompassed and

quantised by the one theory.

In many cases the physics behind the unification of forces and Big Bang cosmo-

logy lead naturally to topological defects. The cosmic string is one such class. They

are extended solutions arising from the spontaneous symmetry breaking (SSB) of

a non-simply connected vacuum manifold and found in many field theory particle

physics and condensed matter models. In cosmology, the production of strings in

this manner is called the Kibble mechanism. In string theory, it has more recently

been recognised that the production of superstrings, shown to take on the role of

cosmic strings in our visible 1+3 dimensional spacetime, can occur at the end of

brane or hybrid inflationary models. As such, strings are a generic feature of the

physics we use to describe our universe and observation of string signatures can lead

to constraints on a variety of cosmological models and one of string theory’s possible

hopes of verification.

Cosmic strings have unique gravitational attributes which if detected could provide

a window to high energy theories. Many gravitational observation experiments, both

land and sky based, have and will be providing data over the coming years. From

observations we hope to distinguish between signals from cosmic strings and the

background of other gravitational perturbations but first we must identify what at-

tributes and strengths of signals to look for. Fortunately the gravitational effects of

strings are not model dependent so simple examples suffice as a starting point for

theorists.

Simple networks of strings are formed in SSB of gauge and global U(1) field

theories. They reach a scaling evolution where dynamical length scales evolve lin-

early with cosmic time so that the energy density in string becomes a constant small

fraction of the total energy density. It is widely accepted that the energy density

achieves this scaling regime through the formation of loops which detach from the
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long string network, oscillate and decay. Sharp cusps are formed at sites where loops

have broken off and kinks are formed when strings self intersect sending small waves

moving out along the string. Oscillations of decaying loops emit gravitational radi-

ation and their collapse produces bursts of particles, both providing possibilities for

detection and constraints for cosmological models. Gravitational radiation bursts

are also expected at cusps and as kinks of small scale structure interact.

Scaling is a very important aspect of cosmic string dynamics and evolution. One

implication is that the typical size of loops produced will be a fixed fraction of

the cosmological horizon but it is as yet inconclusive what this fraction is. If tiny

loops are produced by the interaction of small scale structure on long string then

the nature of the structure will determine the typical size and abundance of these

loops. Gravitational radiation back reaction is expected to smooth out small scale

structure on scales at a power of the dimensionless string tension Gµ determined by

the power spectrum of fluctuations on long strings, thus setting the scale for loop

production. Once the loop size distribution is established, a picture of the possible

observational signatures emerges. Overall, the large scale properties of simulated

string networks scale without needing to include gravitational effects and here we

develop a more precise understanding of small scale structure and the radiative

processes which determine how strings in a realistic cosmological background might

lose energy and reach a scaling evolution. From field theory simulations, that rely

on few approximations especially at small scales, we begin to discover differences

from this conventional scenario.

Motivated by the success of the approach by Polchinski and collaborators in

the analytic modelling of small scale structure [70, 35], we inspect the structure

of strings using field theory simulations that with ever improving computational

power are now able to attain useful dynamical range. We study gauge strings of the

Abelian Higgs model and global strings of the Goldstone model through the two-

point tangent vector correlator and the loop distribution function. We find excellent

agreement for the two-point tangent vector correlator for gauge strings, showing that

its slope at short distances and the mean square velocity are related as predicted

by their model. To increase our understanding of the radiative processes we look to

global string which produces a massive Higgs and a massless Goldstone boson. The
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backreaction from this massless radiation should be akin to effects from gravitons

emitted when cusps annihilate and kinks collide, making strings smoother. However

we are then intrigued by the similar nature of the small scale structure on global

strings to their gauge counterparts. An extension to this model by Refs.[26, 54],

hopes to explain the deviation at the smallest of scales found by other simulations

and we discuss this in the context of our results. We also investigate the speed with

which the network relaxes to scaling, and in particular how quickly the small scale

structure appears.

Radiation from loops is independent of their size so it is important to know how

many of them there are. For field theory simulations we calculate the number density

distributions of loops from which the loop production function can be derived. The

predicted form of the loop production function [70] is unfortunately less successful

than the tangent vector correlation function, even after taking into account the fact

that in field theory simulations loops lose energy and shrink at a constant rate.

Through their appearance in so many high energy physics and cosmological mod-

els there is a strong motivation on many fronts for a study of cosmic strings. We

proceed by reviewing some fundamental large scale physics; the Einstein equations

and some salient aspects of the standard model of cosmology which sets the scene

for the production and large scale evolution of topological defects. We then dis-

cuss the finer details of cosmic strings as learned from both a full field theoretic

approach and from useful approximations which help with analytic investigations

of these non-linear problems. Finally we present the results of small scale structure

and loop distributions in cosmic string networks able to radiate in both massive and

massless modes.

1.1 Particle Physics

Particle physics is very successfully described with field theories and symmetry

groups. The powerful Lagrangian formulation is commonly used to write down

such theories, from which the action and Euler-Lagrange equations of motion can

be calculated and particles are produced via the Higgs phenomenon, a symmetry

breaking mechanism. When a symmetric configuration becomes unstable due to
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a physical parameter reaching a critical value, the system moves to a new state

randomly chosen from a set of degenerate states which are related by a symmetry

transformation under which the Lagrangian density is invariant. In the broken sym-

metry state the fields are redefined and different physics is observable.

1.1.1 Topological Defects

Topological defects are formed if the vacuum manifold in a theory, the ground state

at the minimum of the potential, has certain topological properties described by

its homotopy groups. A homotopy group πn is a set of mathematical mappings of

an n-dimensional sphere onto the manifold. If πn is non-trivial then the group can

be spit into homotopy classes where the mappings can either be shrunk to a point

or not. Where paths cannot be shrunk, the manifold is not simply connected, and

defects can form where the path is trapped winding around the disconnected region.

The production of 1 dimensional strings will come from the symmetry breaking

of some group G to a smaller group H such that the manifold M = G/H has

a homotopy group π1 which maps a circle onto the manifold. π1 is non-trivial if

mappings of S1 can encircle a hole in the manifold space so the mapping cannot be

shrunk to a point and here the string is realised. π1(S
1) = Z since the mapping of

S1 on to the manifold can wind around the unconnected region an integer number

of times.

So, a string can form when a complex scalar field φ in a U(1) rotationally symmet-

ric potential acquires a non-zero expectation value. For a quartic potential like shown

in Fig. [1.1], the expectation value lies on a circle of degenerate minima, φ = ηeiθ.

But the phase, θ, is not invariant under the U(1) symmetry of the theory under

the transformation φ → eiαφ since θ → θ + α. Thus the symmetry is spontaneously

broken and the defect forms as the phase of the field winds through 2π with the

zeros of the field located in the middle forming an extended string-like configuration

Fig. [1.2]. Topological defects are real physical phenomena observed in condensed

matter systems, produced in spontaneous symmetry breaking (SSB) phase trans-

itions just as cosmological evolution may have experienced. The standard model of

particle physics is described by the gauge groups GSM = SU(3)C ×SU(2)L×U(1)Y

with our current vacuum state Gvac = SU(3)C × U(1)EM having gone through a
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Figure 1.1: A φ4 potential has a circular

manifold of degenerate minima mapping

trivially to S1.

Figure 1.2: The string is a flux tube

trapped as the phase of the field φ rotates

through 2π.

cosmological phase transition. Therefore some large grand unified particle phys-

ics group GGUT must be of at least rank four to undergo symmetry breaking into

GSM . A survey of grand unified gauge groups up to rank 8 showed that that all

phenomenologically acceptable ones lead to the production of cosmic strings, [45].

Field theory cosmic strings produced in spontaneous symmetry breaking are

solitonic, that is, objects which are solutions to the classical field equations. Their

mass per unit length is fixed by the symmetry breaking energy scale η. When

Abelian strings collide it is well established from studying the field theory dynamics

that they always break and rejoin with opposite partners, resulting in an intercom-

mutation. Thus their intercommutation probability is approximately unity. This

process is a key contributor to the scaling energy attribute since intercommutation

of a string with itself leads to the production of a loop which decays away.

The collision of cosmic superstrings on the other hand is a quantum-mechanical

process. The intercommutation probability is less than one and depends on relative

speed and angle. Despite this notable difference, cosmic superstrings have many

properties in common with their solitonic cousins, with similar foundations for their

dynamics and observational signatures.
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1.2 Cosmology

1.2.1 Observation

The basis of modern cosmology is the Hot Big Bang hypothesis which relies funda-

mentally on the Copernican or cosmological principle that no point in the universe

is in any way special. Galaxies outside our local group have been shown to be mov-

ing away from us and indeed all other points in space, which is the fundamental

observation behind the notion of cosmological expansion. That everything in the

universe is moving apart leads to the idea of a Big Bang.

The expansion of our universe is quantified by Hubble’s law which simply relates

the the velocity of the recession of a galaxy as proportional to the distance from its

observer with Hubble parameter H . From the Hubble law v = Hr for a distance r

comoving with the expansion rate r = a(t)x ⇒ H = 1
a
da
dt

where a is the scale factor

of the stretching. As the universe expands, the maximum distance that photons can

travel in a time t with a constant speed c = 1 is called the horizon distance and

defined by

dh = a(t)

∫ t

0

dt′

a(t′)
. (1.1)

It is the largest distance over which events can affect each other. On scales large

compared to dh, the universe is smooth, homogeneous and isotropic and feels the

effect of this expansion. On small scales that fall within the Hubble radius there is

an obvious gravitational clumping of matter. How this happened, holds the key to

our search for cosmological models today.

An important validation of hot big bang cosmology is its successful prediction

of the abundances of the light element isotopes, in a theory known as Big Bang

Nucleosynthesis (BBN). BBN marks the boundary of our testable knowledge of the

early universe, but is highly predictive, simple physics. The relic abundances depend

only on the baryon to photon ratio and the expansion rate at a temperature of around

1 MeV, and using wel-established nuclear physics, BBN predicts the abundances of

D, 3He and 4He with great accuracy and to a lesser extent, though within reasonable

bounds, 7Li.

Another important prediction of hot big bang cosmology is the cosmic microwave

background (CMB). At early times the universe was hot and ionised, and interactions
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were rapid enough to keep most species of particle in thermal equilibrium. As the

universe expanded and cooled, electrons and nuclei combined into neutral atoms

and the universe became transparent to radiation, leaving a black-body thermal

distribution of photons visible to us today at a temperature of 2.7K.

The CMB is smooth over the whole surface of last scattering which is far larger

than the horizon at that time, approximately 380,000 years after the Big Bang.

While justifying the homogeneity assumption of the cosmological principle, it is

a puzzle how this homogeneity came about. This puzzle, known as the horizon

problem, can be resolved by a period of accelerated expansion with ä > 0 or inflation.

This would have the effect of greatly increasing the horizon distance. To account for

the volume over which the photons have equilibrated at last scattering, the universe

must have inflated by about 60 e-folds, [56].

There are also small anisotropies in the CMB at a level of about 1 part in 105.

Describing our universe requires that we understand these deviations from homo-

geneity as it is likely that gravitational instability acting on small initial fluctuations

have generated cosmological structure. Inflation offers an explanation as it gener-

ates and amplifies scalar perturbations that could lead to structure formation and

tensor perturbations in the metric which produce relic gravitational waves. In try-

ing to determine these important signatures to understand inflation, it is vital to

distinguish signals from the perturbations generated by inflation from other sources

such as cosmic strings.

1.2.2 Friedmann-Robertson-Walker Universe

The spacetime of our universe is believed to follow the Einstein equations relating

local space-time curvature to the energy-momentum of a matter source.

Gµν = Rµν −
1

2
gµνR = 8πGTµν (1.2)

where the Ricci curvature tensor Rµν is defined as a summation over two indices of

the Riemann curvature tensor,

Rµν = Rα
µαν = ∂αΓ

α
µν − ∂νΓ

α
µα + Γα

βαΓ
β
µν − Γα

βνΓ
β
µα, (1.3)

The homogeneity of the universe coupled to the observed expansion leads directly

to the simplest model for the spacetime metric of the universe, the Friedmann-
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Robertson-Walker (FRW) metric

ds2 = dt2 − a2(t) dx2 (1.4)

where dx2 is the metric of a 3-dimensional space with constant curvature.

A matter source is well described by a perfect fluid, whose energy-momentum

tensor can be written T µν = diag(ρ,−p). The cosmological constant, Λ, can be

thought of as a contribution from some cosmological fluid with energy-momentum

tensor Tµν = Λgµν/(8πG), i.e. with negative pressure and equation of state p = −ρ.

Current observations indicate that our universe is presently in a state of accelerated

expansion, consistent with there being a non-zero cosmological constant.

CMB observations are also consistent with the 3-dimensional metric being flat,

so that the metric is gµν = diag(1,−a2,−a2,−a2). Substituting this metric into

the Einstein equations with a perfect fluid provides the cornerstone equations of

standard cosmological evolution. The time-time components give the Friedmann

equation
(

ȧ

a

)2

=
1

3
(8πGρ+ Λ) (1.5)

the space-space components give the acceleration equation,

ä

a
= −4πG

3
(ρ+ 3p) . (1.6)

and the covarient conservation of energy momentum is

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (1.7)

1.2.3 Inflation

As mentionsed in the previous section, inflation resolves the horizon problem, and

it can also explain why the universe is so flat. The simplest model of inflation

postulates that the energy-momentum of the universe was dominated at a very

early stage by a homogeneous scalar field or inflaton with potential V . Its equation

of motion is

φ̈+ 3Hφ̇+ V ′(φ) = 0 (1.8)

where the Hubble parameter H is determined by the Friedman equation, which takes

the form

H2 =
1

3m2
pl

(

1

2
φ̇+ V (φ)

)

. (1.9)
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When the friction term dominates, φ̈ ≪ 1, the inflation is slow and with a flat

enough potential the rolling time φ

φ̇
is long compared to the the expansion time 1

H
.

In this case the energy density of the scalar field is dominated by the potential. From

the Friedman equation it can be seen that the Hubble parameter is approximately

constant for a slowly changing field, and thus behaves as if it had a cosmological

constant (see Eq. (1.5)) of 8πGV and accelerates. The conditions for the potential

to be flat enough to allow so-called ’slow-roll’ inflation can be summarised as

ǫ =
m2

pl

16π

(

V ′

V

)2

≪ 1 and |η| =
∣

∣

∣

∣

m2
pl

8π

V ′′

V

∣

∣

∣

∣

≪ 1.

The number of e-folds, N , of inflation required to produce the observed smoothness

and flatness of the universe, must be at least about 60 as mentioned in the last

section.

Near the minimum of the potential, the slow-roll conditions fail so the inflaton

overshoots and oscillates around the minimum. The oscillations of φ create particles

and add a damping term to the equations of motion of Γφφ̇ where Γφ is the total

decay width. The particles created as φ decays interact and thermalise, a process

known as reheating.

Inflation can also explain the origin of density fluctuations observed in the CMB.

Fluctuations produced by inflation are a mixture of scalar perturbations and gravit-

ational tensor perturbations to the spacetime metric, which in a suitable gauge can

be written, [13]

gij = a2[(1− 2R)δij + hij]

with hi
i = 0 and ∂ihij = 0. Here, R is called the curvature perturbation, describing

the scalar metric perturbation, and hij is the tensor perturbation.

The curvature perturbation measures the spatial curvature of a comoving slice

of spacetime and the power spectrum of fluctuations specifies the amplitude of each

mode as it crosses the horizon,

∆2
R(k) ≃

1

24π2

(

V

m4
pl

)

1

ǫ

∣

∣

∣

∣

∣

Nk

= ∆2
R(k0)

[

k

k0

]ns−1

(1.10)

where ns is the spectral index and k0 is a reference or ’pivot’ scale. The potential V

and ǫ are evaluated at the e-fold number when the scale of interest is equal to the

Hubble length (often called horizon-crossing), or k = aH(Nk).
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Gravitons are propagating modes associated with transverse (hii = 0) traceless

(∂jhij = 0) tensor metric perturbations and each of the two polarisations (h+ and

h×) behave like minimally coupled scalar fields. The equations of motion follow from

the Einstein equations and the two polarisations evolve independently according to

ḧ× + 3Hḣ× +

(

h

a

)2

h× = 0, (1.11)

and similarly for h+. The spectrum of tensor perturbations due to inflation is

∆2
T (k) ≃

2

3π2

(

V

m4
pl

)

= ∆2
T (k0)

[

k

k0

]nT

(1.12)

and the tensor to scalar ratio of perturbations r =
∆2

T
(k)

∆2
R
(k)

= 16ǫ.

The spectral index for the scalar modes is related to the slow roll parameters by

ns = 1− 6ǫ+ 2η ∼ 1 and for the tensor mode by nT = −2ǫ.

A curvature perturbation can be equivalently described as an adiabatic perturb-

ation in the energy density, where matter and radiation are effected equivalently. In

higher density regions when the matter and radiation are coupled, compressing the

radiation increases the temperature. The temperature of the universe is measurable

in the Cosmic Microwave Background (CMB), which is relic radiation from when the

matter and radiation decoupled: electrons and nuclei combined into neutral atoms,

became stable and the universe became transparent to radiation. Competing with

the instrinsic temperature fluctuations is the redshifting of photons as they climb

out of potential wells from the high density regions. These fluctuations in temper-

ature are seen as small perturbations in the intensity of the CMB, which are a very

sensitive probe of the parameters of inflation [52]. For example, observations show

that ns ∼ 1 [52], indicating that perturbations are scale invariant. This is consistent

with slow roll inflation. The tensor mode contributions, detectable in priciple from

CMB polarisation data, have not yet been seen and it is here that an understanding

of the contributions from cosmic strings will be important.

Inflation is important in the chronology of defect formation. If strings are formed

before inflation, they would be so dilute now that there would be little chance of

finding any within our Hubble volume or of detecting any effect from them. This is

a good thing for other topological defects such as domain walls or monoploes as they

do not lose energy like strings so their energy density would grow, tipping the scales
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of the Einstein equations to overclose the universe. Any symmetry breaking that

produces this kind of defect are constrained to have occurred before the inflationary

epoch. Conversely, a phase transition producing strings must be produced after

inflation.
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Chapter 2

Cosmic Strings

Cosmic strings formed as topological defects as a result of spontaneous symmetry

breaking are complicated non-linear systems fully described by their underlying field

theories. We will discuss two simple U(1) theories with a single complex scalar field,

one with a global symmetry and one with the scalar field coupled to a gauge field

whereby the symmetry is local. Studying the complexity of their evolution there-

after can be simplified by making approximations, a vital approach for simulations

before computing power was sufficient for full field theoretic evolutions with useful

dynamic range. Extensive analysis of the Nambu-Goto approximation for gauge

strings has yielded much understanding and here we bring together these results

with field theory simulations. We outline some aspects of string evolution for which

the approximations reflect the true evolution of the fields and where they seem to

differ.

2.1 Field Theories

2.1.1 The Goldstone Model

The underlying field theory of a simple global string network in a cosmology with

metric gµν is described by the Goldstone model with action,

SG =

∫

d4x
√−g [∂µφ∂

µφ∗ − V (φ)] , (2.1)
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for a complex scalar field φ in a potential V (φ) = λ
4
(|φ|2 − η2)2 where the self coup-

ling is λ. The action of this theory is invariant under the global transformation

φ → eiΛφ

for a constant Λ and has degenerate vacua with |φ| = η related by this global sym-

metry transformation. We say that the the vacuum state breaks the global sym-

metry. By decomposing φ into two real scalar fields, f and α such that φ = f(x)eiα,

we see that the Lagrangian density

L = (∂µf)
2 + f 2(∂µα)

2 − V (f) (2.2)

Fluctuations of f around 〈0|f |0〉 = η represent a massive field with m ∼
√
λη while

α is a massless Goldstone boson. In the solution representing a straight sting, the

phase of the field completes a ”winding” of 2π at large distances from the string, and

the sting is located where the field rises over the peak in the potential at |φ| = 0.

The region where the field departs from the minimumof the potential defines the

core of the string whose width δ is determined by the Compton wavelength of the

massive field m−1.

The mass per unit length µ of the string is given by

µ =

∫

d2xT00 (2.3)

where the energy momentum tensor is calculated by variation of the action with

respect to the metric

Tµν = −2
δ
√−gL
δgµν

(2.4)

= ∂µφ∂
∗
νφ− gµνL. (2.5)

Hence with large radius cut-off R

µ = η2 +

∫ R

0

dr 2πr

[

(

∂f

∂r

)2

+ V (f)

(

1

r

∂α

∂θ

)2
]

, (2.6)

where θ is the azimuthal angle. In the static string solution α = θ, and the third

term gives a dominant divergent piece, which is

µ ≃ 2πη2 ln

(

R

δ

)

(2.7)
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2.1.2 The Abelian Higgs Model

The Abelian Higgs model is the simplest gauge field theory to admit conventional

“solitonic” cosmic strings. The Lagrangian density is

L = (Dµφ)
∗(Dµφ)− 1

4g2
FµνF

µν − λ

4
(|φ|2 − η2)2, (2.8)

where φ is the complex scalar Higgs field, Aµ is the gauge field, Dµ = ∂µ + iAµ

is the gauge covariant derivative, Fµν = ∂µAν − ∂νAµ is the field strength tensor,

and λ and g are coupling constants. The Lagrangian is invarient under the gauge

transformation φ → eiΛ(x)φ.

We can define gauge invarient fields f = |φ| and αµ = Aµ + ∂µα in terms of

which the Lagrangian density can now be written

L = − 1

4g2
FµνF

µν +
1

2
η2AµA

µ(∂µf)
2 − V (f) (2.9)

which reveals the gauge field acquiring a mass via the Higgs mechanism.

String solutions in this model [64] are well known and well studied. The phase of

the Higgs field winds around 2πn (n ∈ Z
±) as a closed loop is traversed through space

and φ is forced to depart from the vacuum manifold over a tube of radius ∼ 1/
√
λη,

inversely proportional to the linear mass density which is finite for Abelian Higgs

string,

µ =

∫

d2xT00 ∼ η2. (2.10)

The gauge field, Aθ acts to compensate the winding, resulting in a pseudo-magnetic

flux tube of radius ∼ 1/gη. It is common to study the Abelian Higgs model at the

Bogomol’nyi value of the couplings λ = g2 [23] where the ratio of the scalar to vector

masses is unity. The Goldstone model can be viewed as the extreme limiting case

with the gauge coupling g going to 0.

The Euler-Lagrange equations of motion in a flat FRW universe,

gµν = a2diag(+1,−1,−1,−1),

are obtained from the variational principle in the temporal gauge, A0 = 0

φ̈+
2ȧ

a
φ−DjDjφ = −a2λ

2
φ
(

|φ|2 − η2
)

(2.11)

Ḟ0j − ∂iFij =
2g2

a2
Im (φDjφ

∗) (2.12)
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where differentiation is with respect to comoving coordinates.

Clearly, there is great significance in the value of η, which is the field expectation

value, the symmetry breaking scale and the string tension. As an example, strings

produced at the Grand Unification energy scale have η ∼ 1016GeV, and gravitational

coupling Gµ ∼ (η/mpl)
2 ∼ 10−6. Cosmic string models are heavily constrained by

their possible tensions with observations setting limits on the dimensionless para-

meter Gµ and therefore the symmetry breaking scale of the models in which they

are produced.

2.2 Effective Actions

2.2.1 Nambu-Goto Approximation

Ignoring radiation, relativistic gauge string can be described by the Nambu-Goto

equations if the width of the string is assumed much less than the radius of curvature.

On scales the size of the radius of curvature of the string, especially at later cos-

mological times, the string width is many orders of magnitude smaller. The action

can then be approximated by the worldsheet traced out by the trajectory of a one

dimensional object, the so-called Nambu-Goto action. Parameterising the world-

sheet by a conformal time coordinate τ and a spatial coordinate σ along the string

and denoting its spacetime coordinates Xµ(σ, τ), the proper area element is the

determinant of the worldsheet metric γab = gµν∂ax
µ∂bx

ν

dA =
√−γ dσdτ (2.13)

For example in a non-expanding spacetime with gµν = ηµν

γ = det





Ẋ2 Ẋ ·X ′

Ẋ ·X ′ X ′2





where dot is differentiation with respect to the time-like coordinate, prime denotes

differentiation with respect to the spatial coordinate and

dA =

√

Ẋ2 ·X ′2 − (Ẋ ·X ′)2 dσdτ.

A relativistic string with mass per unit length µ has tension T ∼ µ and the action

for the string is

SNG = −µ

∫

dA = −µ

∫

dσdτ
√−γ (2.14)
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Aligning the parameterisation so that the velocity Ẋ is tangent to lines of con-

stant σ, X′ and Ẋ are perpendicular and so Ẋ = v⊥. We adopt this transverse

gauge to allow the string trajectory to be written in terms of the 3-vector X. In a

flat spacetime the worldsheet metric is conformally flat

We may choose the parameterisation of the worldsheet such that the worldsheet

time τ = t, where t is the coordinate time, and the 3-velocity Ẋ is perpendicular to

the 3-tangent vector X′. In a flat spacetime we can also arrange that the interval

dσ has fixed energy µdσ, which turns out to be equivalent to Ẋ2 + X′2 = 1. The

flat spacetime action is then

SNG = −µ

∫

dσdt

√

(X′)2(1− Ẋ2) (2.15)

and the equations of motion found from varying the action is a simple wave equation

with constraints summarised as

Ẋ2 +X′2 = 1 (2.16)

Ẍ2 −X′′2 = 0 (2.17)

Ẋ ·X′ = 0 (2.18)

In an expanding FRW universe, it is not possible to maintain the condition 2.16

and the equations of motion in the transverse gauge Ẋ ·X′ = 0 are

Ẍ+ 2
ȧ

a

(

1− Ẋ2
)

Ẋ =
1

ǫ

(

X′

ǫ

)′

(2.19)

where

ǫ̇ = −2
ȧ

a
(1− Ẋ2)ǫ

The legitimacy of the Nambu-Goto action as an approximation can be established

more formally [39], with corrections only important when the extrinsic curvature is

of order the string width, for example at cusps.

2.2.2 Kalb-Ramond Effective Action

For global string the situation is more complicated since there is no Higgs mechanism

with the breaking of the global symmetry, leaving a long range interaction from the

massless Goldstone boson. The energy in the massless field is high and the energy

per unit length of the string is logarithmically divergent.
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The massless scalar field of the boson can be related to a 2-index antisymmetric

axion field [48, 55], Bλρ = −Bρλ via Eq. (2.20) which will behave like a gravitational

field.

η∂µα = 1/2 ǫµνλρ∂
νBλρ (2.20)

with field strength tensor

Hµνλ = ∂µB
νλ + ∂λB

µν + ∂νB
λµ (2.21)

and action

SH =
1

6

∫

d4xH2. (2.22)

Approximating the string as a zero width world-line X(σ, τ) in string coordinates σ

and τ , the Kalb-Ramond action describes global U(1)-string [48, 55, 99, 93]

S = SNG +
1

6

∫

d4xH2 + 2πη

∫

dσµνBµν (2.23)

where dσµν = ǫabXµ
,aX

ν
,bdσdτ , and the first term, SNG is the effective action for

Nambu-Goto string. This reveals that at large radius of curvature, the global string

action becomes that of a Nambu-Goto string interacting with a massless field.

2.3 Evolution of Gauge Strings

2.3.1 Scaling

Since the original string scenario was introduced [49, 50, 91] a broad picture of

the cosmological evolution of string networks has emerged, using a mixture of cal-

culation, numerical simulation, and analytic modelling. Local cosmic strings form

networks of infinitely long string and loops, where a string can be called “infin-

ite” in cosmological terms if it is larger than the horizon. Infinite string takes the

form of a random walk with correlation length ξ ∼ ξ. The network evolves in a

self-similar manner, keeping ξ at about the horizon scale, the important dynamical

feature known as scaling. Scaling means that the energy density of infinite strings

decreases as 1/t2, (t is cosmic time), and thus constitutes a constant fraction of the

total. Yet, a major unsolved problem is the eventual destination of the energy in

the infinite strings. This is of notable importance and greatly limits our ability to
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constrain string scenarios via their decay products, such as gravitational waves or

energetic particles. As the network evolves with string intersecting itself or cross-

ing other strings, intercommutation occurs leading to loops of string being chopped

out. Since the correlation length of the string is of order the horizon size, the loops

of string chopped from the network, typically thought to be a small fixed fraction

of the horizon size 〈l〉 = αt will proceed to oscillate and decay. The problem is

agreement on the value of α.It is often argued that it is determined by the typical

size of small-amplitude oscillations on the long string network, called small-scale

structure.1

Important generic features on strings are kinks and cusps. Kinks are sharp

changes in the tangent vector, which are formed when strings intercommute. These

discontinuities then resolve themselves into kinked waves travelling in both directions

away from the intercommutation site. Cusps are points where the string instantan-

eously reaches speed of light, |Ẋ| = 1, producing a singularity in the shape of the

string where the tangent vector vanishes, X′ = 0. The string is bent back on itself

and has the opportunity to interact with itself over the length of the cusp region.

A string moves in its own gravity field which will affect the motion, a process

known as back-reaction. The local self interactions result in a renormalisation of the

string tension, completely analogous to the classical electron mass renormalisation.

The remaining self interactions result in the emission of gravitational radiation and

the damping of high-frequency waves on the string, with the result that kinks are

rounded off, [41, 73]

2.3.2 Decay Mechanisms

Conventionally, three main energy loss mechanisms have been considered for gauge

strings, all of which take place on loops which have broken off from the long string

network.

The power emitted through gravitational radiation, Pg, from a sizeable oscillating

string loop of length l and mass m ∼ µl can be estimated from its quadrupole

moment I ∼ ml2 [98, 88].

Pg ∼ G
(d3I

dt3

)2

∼ Gω6I2 ∝ Gµ2. (2.24)

1We will return to this point repeatedly as the picture unfolds.
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A defect core is a state of unbroken symmetry or ‘false vacuum’ and everywhere

else the symmetry is broken. The Higgs and gauge fields are in their true vacuum

states. The ultra high energy ‘quanta’ of Higgs and gauge field in the string, with

ms =
√
λη and mv = gη respectively, are released from the string if the topological

stability of the string is removed causing the string to unwind. These conditions

can occur at intercommutation, as loops evaporate or as cusps annihilate. During

an intercommutation the string overlaps on a scale of order the width of the string

δ ∼ m−1, releasing energy µδ ∝ µm−1. Then since µ ∼ η2 the energy of 1
g2

particles

of mass gη is released per intercommutation. Thus the flux from this particular

mode is down to the rate of intercommutation. Similarly, 1
g2

particles are released

when a collapsing loop finally reaches a length l ∼ δ. The flux from this will depend

on the fragmentation of loops as they die. Loops born with high harmonic number

(e.g with kinks) are expected to rapidly fragment into core loop sized debris in a

timescale of order L = length of the loop produced.

Perturbative production of particles from the coupling to the Higgs field for

strings with m ≪ µ1/2 can be calculated to produce a flux of high energy particles

with power [83]

Pp = µ(ηl)−1, (2.25)

where l is the size of the loop.

Where string is overlapping in cusp regions, it can annihilate releasing energy in

the form of high energy particles. The energy released depends on the length of the

overlapping region which forms the cusp lc ∼ (Lδ)1/2 = (L/µ)1/2 creating a flux [22]

Pc ∝ µ(ηl)−1/2. (2.26)

Purely based on the length dependence of these relations for the power out-

put, gravitational radiation Pg is the dominant decay channel for loops of length

l > δ(Gµ)−2, where δ the string core width. Below this length, cusp annihilation

would be dominant. Much additional work has been done on the production of grav-

itational wave bursts at the sites of cusps on strings with and without additional

small scale structure [31, 32, 80, 81]. Cusps on strings with small-scale structure are

also sources of intense loop production [81, 35].

Numerical simulations using the Nambu-Goto approximation [4, 14, 5], seem to

support this picture. Copious loop production was observed at scales a small fraction
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of the cosmological horizon, 〈l〉 ∼ αt. In the standard scenario αst is determined

from the power emitted in gravity waves such that αst ∼ ΓGµ and also determines

the characteristic wavelength of the small scale structure along the string as found in

Nambu-Goto simulations in the presence of small-scale structure in the correlation

functions of the long string. The small-scale structure is related to the creation of

small-scale loops, but progress on understanding the connection has been slow.

It is crucial to establish the dominant length scale of loop production, as it

controls both the amplitude and frequency of the gravitational wave signal, and the

fraction of energy going into ultra-high energy cosmic rays. But there is a great deal

of uncertainty over the loop population of cosmic string networks and Minkowski

space Nambu-Goto simulations have been used to argue that loop production might

even peak on the scale of the string width [97]. In light of this controversy, the typical

loop length at birth is commonly parameterised by ǫ = α/αst so that 〈l〉 = ǫΓGµt

though it is still under debate whether ǫ is dimensionless or itself a function of Gµ

or time.

Although it is clear that in the presence of kinks and cusps, the Nambu-Goto

approximation is strictly not justified, it is assumed that gravitational radiation

back-reaction will act to smooth the strings on a scale l ∼ (Gµ)1+2χt [71], where χ is

a small parameter defined below, and that large-scale properties will be reproduced

correctly.

In the absence of back-reaction, Nambu-Goto simulations show that loops are

produced at a small constant physical scale, which is most likely the initial correl-

ation length of the network [75, 61, 67]. In Ref. [61] there is a claim that there

are signs that this scale is growing, while Ref. [67] emphasises the significance of an

apparently stable population of loops with sizes l ∼ 0.1t, arguing that the peak at

the initial correlation length will eventually disappear.

To resolve the kinks and cusps correctly, and include classical radiation as a form

of energy loss, one uses the underlying field theory. While the conventional argu-

ments given above emphasise gravitational radiation, omitted from all simulations,

one should be able to see the other forms of energy loss and to check their scaling

with loop size. However, previous field theory simulations [95, 62] found a scaling

infinite string network without a significant population of loops. There appears to
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be an energy-loss mechanism allowing the strings to scale, which has a different

length dependence to any of those outlined above.

To see this, consider a string network whose spatial distribution scales with the

horizon size such that the length of string in an horizon volume is ∼ t. The energy

density of the string network hence varies as ρs ∼ µ/t2, which then requires the

network to lose energy at a rate |ρ̇s| ∼ µ/t3. Hence the rate of energy loss from a

piece of string of size ∼ t is Ps ∼ µ. Thus a scaling network requires an energy loss

mechanism which is independent of the size of the string, like gravitational radiation,

but a factor (Gµ)−1 stronger. One implication of the mechanism is that the length

of a loop of string will shrink at a constant rate of order unity. This is verified in

Sec. [4.1.2] and illusrated in Fig. [4.2] for Abelian Higgs string.

The detailed mechanism for this strong energy loss is not well understood. At-

tention has been focused on the production of ‘core’ sized protoloops [95, 62], which

would nicely connect the Nambu-Goto and field theory simulations. Protoloops

produced at the size of the string core width would quickly evaporate into classical

radiation, and despite a large production rate would have a very low number dens-

ity, which is easily estimated to be a few per Hubble volume [62]. In this scenario,

field theory strings are behaving like Nambu-Goto strings in that loops are being

produced at the smallest physical scale, which is in one case the string width, and

the other the initial correlation length. While we see protoloops, we would expect

them to be associated with long string, and as we will show, we are unable to find

such a correlation. Their number density is also too low to account for the energy

loss from long string. It may be that energy is being broken off in lumps which are

too small to register as loops at all.

The idea of direct radiation raises a puzzle though. In order to create radiation

in a mode with mass M , the field must be oscillating at a frequency ω ∼ M . A

smooth string curved on the horizon scale H−1 is constructed from field modes

with frequencies ω ∼ H . In view of the mismatch it was argued that gauge and

Higgs radiation must be negligible [37]. Numerical simulations of smooth strings

[66] show that radiation is indeed suppressed by a factor exponential in the ratio of

the curvature radius to the string width. Nevertheless, simulations exhibit scaling

behaviour at times when the network length scale exceeds the string width by a factor
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Figure 2.1: The comoving network length scale ξ (roughly corresponding to the

radius of curvature of long string) for a 10243 lattice simulation in the matter era.

The linear behaviour with conformal time τ is evidence for scaling extending to

values of ξ nearly two orders of magnitude greater than the string width, which is

of order unity in simulation units.

∼ 50 [95, 62, 17], for example in Fig. [2.1] we see that this is confirmed to ∼ 100 in

our larger simulations. It should be noted that a similar puzzle was presented by the

small size (compared with the horizon scale) of loops in Nambu-Goto simulations.

Recent work by Polchinski and collaborators [70, 71, 35] has resolved the problem by

showing how small-scale structure can give rise both to apparently smooth strings

and to loop production at the small-scale cut-off on the string network.

Going beyond the Nambu-Goto approximation, which breaks down at the string

width scale, we calculate with the underlying theory which for solitonic strings is

its quantum field theory. Fortunately, quantum corrections appear to be small [24],

and classical field theory should be a good approximation. Numerical simulations

in the classical Abelian Higgs model [95, 62] showed that infinite string does indeed

scale by losing energy into gauge and Higgs radiation (see Fig. [2.2]), although it

was not established whether the decay proceeded via short-lived loops at the size of

the string core width, or directly from the long strings themselves. In any case, no

sign of copious loop production was found. In Ch.6 we present evidence that direct

radiation is much more important than small loop production for Abelian Higgs
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Figure 2.2: A snapshot from a simulation of a string network in the Abelian Higgs

model. Lines show the centres of the strings, and the shading on the top and bot-

tom faces represents magnetic field energy density and Higgs field potential energy

density respectively.

string networks.

2.3.3 Kinks, Cusps and the Back Reaction Scale

As mentioned above, the intercommutation process generates kinks where the tan-

gent vector changes sharply. Although the kinks are rounded off by Hubble friction

and radiation reaction, we would expect the long string to experience a build up of

small scale structure.

The interaction of the left and right moving ripples along the string are the

source of gravitational radiation. This is seen from the linearised Einstein equations

in the harmonic gauge gµνΓα
µν = 0, for a perturbation hµν to the flat metric

�h̄µν = −16πGT µν (2.27)

where h̄µν = hµν − 1/2ηµνh. The energy momentum tensor for Nambu-Goto string

as the source

T µν = µ

∫

dσ dτ
(

ẊµẊν +XµXν
)

δ4(x−X) (2.28)
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with Xµ(σ, τ) the string position parameterised by worldsheet coordinates σ and τ .

Introducing null coordinates u = σ − τ and v = σ + τ we can decompose the

string into left and right movers

Xµ =
1

2
(aµ(u) + bµ(v)) . (2.29)

The Fourier transform of the energy-momentum tensor for the wave vector kµ = (ω,k)

for a string loop of invariant length L(= E/µ) oscillating with period 2π/ω = L/2

is

T µν(k) =
µ

L

∫

du dv (∂uX
µ∂vX

ν + ∂vX
µ∂uX

ν)exp(−ik ·X)

and we see that the waveform can be factorised so that

T µν =
µ

2
(UµV ν + V µUν)

with

Uµ(k) =
2

L

∫ L

0

du∂uX
µexp(ik · a) (2.30)

and similarly

V ν(k) =
2

L

∫ L

0

dv∂vX
νexp(−ik · b) (2.31)

for the oppositely moving modes, which can be calculated separately.

Hence it is through the interaction of the left and right modes that gravitational

radiation is produced. It is also apparent from the form of Tµν that the length

scale of the loops produced by a string network determines both the amplitude and

frequency of the gravity waves produced.

The energy radiated per unit solid angle by a loop of string [77]

dP

dΩ
= 2Gω

(

T µν(k)T ∗
µν(k)−

1

2
|T (k)|2

)

(2.32)

then using the left and right mover equations Eqs. (2.30-2.31) this can be expressed

as [41]

dP

dΩ
=

Gµ2

16π2

∫ ∞

0

dω ω2{|U |2|V |2 + |U∗ · V |2 − |U · V |2} (2.33)

≃ Gµ2

16π2

∫ ∞

0

dω ω2|U |2|V |2 (2.34)

since the last two terms will cancel when averaged over the short scale structure for

real V µ.
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For an approximately straight infinite string the total power of gravitational

radiation per unit length of string emitted by two colliding perturbations with small

perturbations U⊥(ka) and V⊥(kb) of different wavelength with wavenumbers ka and

kb is then given by [77, 41]

dP

dl
≃ πGµ2

∫

dka
2π

∫

dkb
2π

(ka + kb)|U⊥(ka)|2|V⊥(kb)|2. (2.35)

and the sum of the wavenumbers can be split such that

dP

dl
=

dPa

dl
+

dPb

dl
, (2.36)

where
dPa

dl
= πGµ2

∫

dka
2π

ka|U⊥(ka)|2
∫

dkb
2π

|V⊥(kb)|2, (2.37)

with a similar expression for dPb/dl.

Defining the wavelength to amplitude ratios as

ε2U(ka) = |U(ka)|2, ε2V (kb) = |V (kb)|2 (2.38)

we see that

ε̇U(ka) ∼ −πGµkaεU(ka)ε̄
2
V . (2.39)

where ε̄2V = dkb
2π

ε2V (kb). A similar expression applies for ε̇V (ka). Comparing the

lifetime of these modes to the Hubble time in that

ε̇U
εU

∼ − 1

τg
, (2.40)

the mode with wavenumber kb will be damped by expansion if τg < t. If the

integration extends to kb ∼ 1/t where the amplitude and the wavelength are similar,

then ε2V ∼ 1, leading to the original naive estimate that only wavelengths λ >

O(Gµt) will survive.

This is inconsistent, however, as there is an implicit assumption in the formula

(2.35) that
ε2U2(ka)

kb

ka
≪ 1 ,

ε2V 2(kb)
kb

ka
≪ 1 (2.41)

otherwise gravitational radiation will be suppressed, [82]. This means that there is

a lower cut-off in the integral defining ε̄2V

Refs. [82] and [71] differ as to what the lower cut-off should be, and derived

λ > (ΓGµ)(1+2β)/2t (2.42)



27

λ < (Gµ)1+2χt (2.43)

respectively, where the indices β and χ are defined from the power spectra as

ε2U(ka) ∼ k2β
a or ε2U(ka) ∼ k1+2χ

a in the two approaches.

2.4 Evolution of Global String

Global string evolves very differently from Abelian Higgs string. Most of the global

string energy is contained in the Goldstone field rather than the string cores and

they are able to decay via massless boson radiation. They experience a long range

interaction with force ∝ 1
ξ
, since no gauge field is present to compensate.

A mixture of Kalb-Ramond effective action and small field theory simulations

[33, 29, 40, 101, 12] have established that dynamics of global string networks are

strongly influenced by massless radiation, with lower densities, faster decay rates

and higher velocities than Abelian Higgs string networks but that scaling was non-

the-less achieved. In simulations of Refs. [103, 100, 102], scaling was observed with

loops typically produced at ∼ 0.48t in both radiation and matter eras.

2.4.1 Local Back Reaction Approximation

There remains the question of the influence of back reaction on the string evolu-

tion. Numerical calculations of the power of massless radiation from long global

strings [9], show that strings emit radiation at the frequency at which they oscillate.

Analytically, one can use the Kalb-Ramond effective action

µ0∂a
(√−γγab∂bX

µ
)

= F µ = 2πηHµαβǫab∂aXα∂bXβ (2.44)

∂µH
µαβ = −2πη

∫

dσdτ ǫab∂aXα∂bXβ δ
4(x−X). (2.45)

By separating the force density, F µ = (f 0, f), into a radiation and self field in order

to absorb the self field, which diverges close to the string core, the equations of

motion can be renormalised [27, 30]. Battye et al [10, 11], then calculate a form for

the local back reaction force density due to the radiation field.

The massless scalar Green’s function satisfie �D = δ4(x) whereby the solution

to an equation of the form �F (x) = S(x) is given by

F (x) =

∫

d4x′D(x− x′)S(x′).
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In flat space one can define the retarded, Dret(x) = 1
2π
θ(x0)δ(x2), and advanced,

Dadv(x) = 1
2π
θ(−x0)δ(x2), functions on the backward and forward light cones re-

spectively where the Heavyside function θ(x0) = 1 for x0 > 0 and 0 otherwise. Since

the radiation field is ‘free’, a homogeneous Greens function can be used such that

Drad(x) =
1

2
(Dret(x)−Dadv(x)) =

1

4π

(

θ(x0)− θ(−x0)
)

δ(x2) (2.46)

and the self field

Dself(x) =
1

2
(Dret(x) +Dadv(x)) =

1

4π
δ(x2). (2.47)

In the Lorentz antisymmetric tensor gauge where ∂µB
µν = 0, �Bαβ = ∂µH

µαβ,

the form for the separated fields Hµαβ
self and Hµαβ

rad can be calculated and lead to

approximations for the force density:

f 0,rad ≃ 4π∆η2

3

[

ǫ2

(

(Ẋ · ...X)

1− Ẋ2

)]

(2.48)

f rad ≃ 4πη2∆

3

[

ǫ
...
X− 1

ǫ

(

(X′ · ...X)

1− Ẋ2

)

X′

]

(2.49)

f 0,self = −2πη2 log

(

∆

δ

)

ǫ̇ (2.50)

f self = −2πη2 log

(

∆

δ

)(

Ẍ− 1

ǫ

(

X′

ǫ

)′)

(2.51)

The equations of motion can then be redefined in terms of the renormalised string

tension

µ(∆) = µ0 + 2πη2 ln

(

∆

δ

)

(2.52)

for a cutoff of order the radius of curvature ∆. In the temporal transverse gauge,

X0 = τ , Ẋ · X′ = 0, the string equations of motion in flat spacetime, including

backreaction, become

µ(∆)

(

Ẍ− 1

ǫ

(

X′

ǫ

)′)

= f rad (2.53)

µ(∆)ǫ̇ = f 0, rad (2.54)

with energy

E =
µ(∆)

L

∫ L

0

dσǫ

and the power radiated can be approximated by

dP

dl
= −Ė =

1

L

∫ L

0

dσf 0, rad.

We will apply this formula to the global string dynamics demonstrated in our sim-

ulations in Section 5.4.
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Chapter 3

Detection

Testing for cosmic string is an indirect way to test high energy physics and cosmology

models. Actually finding cosmic string would be a more direct way of constraining

models but so far we have to be content with those arising from a distinct lack of

any cosmic string signal and bounds then placed on the dimensionless parameter

Gµ which determines string tension and the energy scale of string production.

Cosmic string, if found, is likely to reveal itself through distinctive gravitational

effects or by its radiated by products. Loops of string oscillate and decay, shrink-

ing due to their tension, an energy loss mechanism producing gravitational waves,

but we need to understand what is distinctive about a cosmic string compared to

strong signals arising from inflationary perturbations or other strong emitters of

gravitational waves.

Perturbations to the linearised metric due to a ‘stiff’ Tµν to describe the defect

can be decomposed into scalar, vector and tensor components which in turn decom-

poses the Einstein equations and all perturbation modes evolve independently.

Perturbations produced in the scalar modes by cosmic string produced at the

GUT scale with Gµ ∼ 10−6 were initially thought to provide the right amplitude

for large scale structure formation. Data from the CMB anisotropies subsequently

showed that string tensions were restricted to Gµ < 10−7 and that primordial dens-

ity perturbations were more likely seeded by inflation. If there is a cosmic string

presence it is likely they are formed at the end of SUSY hybrid inflation or Brane

inflation at energy scales determined by a range of allowed Gµ, set by the available

data and our understanding of possible string models. For instance, inflation that
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occurred in the radiation dominated epoch that produced loops of cosmic string that

decay predominantly gravitationally would have to have very low tensions to have

survived to the present day.

Strings also emit massive particles and the balance of decay mechanisms con-

strains possible values for Gµ. If the tension is very low and the strings are very

light, there is less gravitational radiation, bounded by avoiding overproduction of

massive particles whose flux must be consistent with cosmic ray observations and

BBN. Loops and long string causing vector perturbations in spacetime, could also

potentially be observed through gravitational lensing or induced anisotropies in the

CMB from vector and tensor perturbations.

There is a great deal of available and forthcoming astrophysical data to make

use of. CMB anisotropies (WMAP and the awaited Planck), gravitational wave

detectors (LIGO and LISA), weak lensing surveys (CLASS, LOFAR and SKA),

pulsar timing experiments and BBN. In this section we discuss how a variety of

data sets can be used to obtain constraints on possible string tensions. Here we

keep our focus on vanilla cosmic string with intercommutation probability p = 1

rather than cosmic superstrings since the model dependant parameters begin to

multiply. Even with these simple string models constraints are based on parameters

in string scenarios such as the typical size of loop production or density distributions

which remain ambiguous between models. The discrepancy in predictions for these

in Nambu-Goto and Abelian Higgs field theory strings means the constraints on Gµ

can differ between these models, highlighting the importance of continued work on

the basic but crucial aspects of these simple cosmic string models.

3.1 CMB

The Cosmic Microwave Background provides a window to the surface of last scat-

tering. Combined data from WMAP (Wilkinson Microwave Anisotropy Probe),

sub-orbital experiments and soon the Planck satellite can be mapped as a power

spectrum of amplitudes over multipole moment ℓ ≤ 3500. The amplitudes of fluc-

tuations perfectly describe the seeds for large scale structure formation with unique

features of scale invariance, near gaussianity and synchronicity of formation sup-
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porting the inflationary paradigm. Through seeking an insight into the energy scale

or era of the production of these seeds for structure formation, we may meet new

physics from GUTs, SUSY, dark energy, extra dimensions, quantum gravity or string

theory. So along the way we can draw upon the physics of cosmic strings and their

likelihood in so many of the predicted models for early universe evolution to help

constrain the plethora.

Primordial gravity waves will appear as quadrupole anisotropies as they perturb

the space in which electrons and photons are interacting at recombination, leaving

an observable polarisation from Thompson scattering. Density perturbations can

only affect the E mode polarisation but the B mode is dominated by the gravita-

tional wave background with peaks in the spectrum at large angular scales and at

decoupling though the amplitude is as yet undetermined. Calculations show that a

distinctive signal due to cosmic strings in the polarisation B-mode is likely to peak

at multipole ℓ ∼ 600−1000 [16, 69] and cannot be confused with inflationary tensor

perturbations.

Cosmic strings can also create temperature variations though gravitational in-

teractions with radiation and matter. A cosmic string moving across the sky with

transverse velocity v will redshift protons moving in front of the string and blue shift

photons moving behind it causing a discontinuity in the CMB temperature, known

as the Gott-Kaiser-Stebbins effect Ref. [38, 46]

δT ∼ 8πGµvTCMB.

The spectrum produced by cosmic strings is wide and flat, clouded by contributions

from the inflation model which follows the shape of the CMB spectrum with a large

peak. However their total power contribution could account for as much as 10%

[18, 68].

A strong signal due to cosmic strings is expected at high ℓ ≈ 3500 as has been

recently calculated in [19] in light of forthcoming data at small angular scales from

Planck. New CMB data will also be able to detect non-guassianities from gravit-

ational instabilities evident in the bi- and tri-spectrum of temperature correlation

functions. Non-gaussianity in the CMB is measured in terms of the non-linearity

parameters fNL ∼ 〈ζζζ〉
〈ζζ〉2

for the bi-spectrum and τNL ∼ 〈ζζζζ〉
〈ζζ〉3

for the tri-spectrum

where ζ is the dimensionless primordial curvature fluctuation and these are ex-
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tremely small. Contributions due to a cosmic string presence is expected to be

strong [43, 42, 74] with non-linearities in the temperature correlation functions scal-

ing with Gµ as fNL ∝ (Gµ)−1 and τNL ∝ (Gµ)2.

3.2 Gravitational Waves

Loops, kinks and cusps are all sources of radiation. As the loops oscillate with

frequency inversely proportional to their radius they create a stochastic background

of gravitational waves and features like cusps and kinks emit radiation in bursts.

A stochastic background from the superposition of incoherent bursts at cusps and

kinks has also been calculated [65].

The power emitted in gravitational radiation by oscillating loops can be roughly

estimated from the quadrupole formula as outlined in Sec. [2.3.2] at a rate P = ΓGµ2

with Γ ∼ 50− 100 expected.

Bounds are placed on Gµ by finding a parameter space of excluded models de-

pending on loop size distribution at production 〈l〉 = ǫ(Gµ)t. ǫ is a parameter that

possibly depends on Gµ but with an exponent that is still a matter of contention as

discussed in Sec. [2.3.3] and essentially ǫ = 0 in field theory simulations.

Pulsar timing experiments are measures of gravitational waves through the Kaiser-

Stebbins effect induced by a string crossing the line of sight to a pulsar. Limits placed

on the string tension are model dependant on string loop densities and gravitational

radiation frequencies but data from Parkes Pulsar timing array, Arecibo and the

Green Bank telescope have been combined [72] for the latest constraint by direct

measure though this remains weak compared to the CMB constraints.

A cluster of small loops within the galactic halo could also create a gravitational

wave background in the sensitivity band for LISA (0.1Hz - 10mHz ) [34]

3.3 Lensing

Lensing due to strings can be classified either as strong lensing creating a variability

in flux from objects like Galaxies, Quasars and Compact Radio sources or weak

lensing in the vector modes which create image distortions or rotations.
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A conical deficit, with characteristic Einstein angle ΘE = 8πGµ, is produced

around a straight cosmic string since the spacetime is locally flat but globally conical.

Consequently, light from a source with a cosmic string in the way would be seen

around both sides of the string thus appearing as a double image with its flux

doubled. As the source passes through the Einstein angle, the flux varies. Due to

the unusual nature of flat space around a string (or nearly flat, due to some small

scale structure), the images would not be magnified plus further lensed objects

would likely be seen along the string and therefore distinguish cosmic string from

other gravitational lenses.

Lensing by loops depends on its size. If the loop is large compared to the defi-

cit angle then on scales comparable to the image separation, the string acts like a

straight string. For small loops much less than the size of the deficit angle, it acts like

a point source with a Schwartzchild metric. Low tension/light strings gravitation-

ally decay slower and therefore loops which decay predominantly by gravitational

radiation have a longer lifetime. Smaller loops of light string (Gµ < 10−12) with

lengths less than a galactic size ∼ 0.1dh will have their centre of motion damped

by the expansion and are predicted to cluster [53, 25] much like cold dark matter

and could exist in areas like the centres of galaxies with densities higher than their

cosmological average. Then stellar sources with small angular size compared to the

Einstein angle of the string will act as point sources with oscillations and relativ-

istic motion of the string inducing fluctuations in the observed brightness of those

stars. The latest results analysing variability in quasar brightness over many years

from the Sloan Digital Sky Survey SDSS [85] has found no cosmic string like signal;

setting a bound on Gµ < 2.3× 10−6 which is weak compared to other observations

but also set limits on the possible galactic density of loops at Ωloop < 0.01.

If clustering of loops increases densities sufficiently in the galactic halo then it

may be possible to detect them via radio interferometer, [57]. Detection of lensing

due to small cosmic string loops in the radio frequency by experiments like LO-

FAR and SKA could further constrain the parameter space of cosmic string models.

According to Ref.[57], CLASS already rules out a large swathe of parameter space

though their analysis relies on loop densities behaving according to the one scale

model which has been shown not to be predictive of loop densities in field theory
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simulations, [44].

A string with structure is longer than a smooth sting so that its mass per unit

length, µ is reduced. String with a smaller tension would still still induce a weak

lensing effect without the local spacetime around it being flat, causing a gravitational

potential near the string. This could be seen as an elliptical distortion in the shape

of background galaxies in the direction the projection of string onto the sky [36].

The distinctive vector perturbations of a moving wiggly string will also create

rotations in the lensed image of background galaxies and create a specific power

spectrum in the weak lensing of background galaxies that will not be generated by

standard density perturbations [84].

3.4 Cosmic Rays

Ultra high energy cosmic rays have been detected and their origin is undetermined.

Massive particles can be produced from string directly or during cusp and kink

annihilations as outlined in Sec. [2.3.3]. This decay of topological defects in the

early universe into massive particles which lose energy could account for some of

the cosmic ray flux as described by the ‘top-down’ model in [21]. Experiments

detecting cosmic rays, γ-rays and neutrinos can be used in comparisons to cosmic

string models to set bounds.

The tension of cosmic string appears in a simple rate equation describing the

flux of massive particles injected by string. The rate equation is model dependant

relying on the string tension, as mentioned, the fraction of energy lost to massive

particle production and the fractional size of the correlation length of the network

compared to the horizon.

For a string network in a scaling regime, the correlation length ξ = x∗t where

ξ̇ = x∗ is constant. The energy injection rate per unit volume released in the form

of particles emitted from cusps ρc as a fraction fc of the total radiation ρ̇T ∝ µξ̇
ξ3

is

Q(t) =
1

a3
d

dt

(

a3
)

∼ fcµ

t3x2
∗

(3.1)

The model

Q(t) = Q0

(

t

t0

)−4+p
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where

Q0 = µ

(

t30fc
x2
∗

)

(3.2)

⇒ p = 1 (3.3)

Digressing from vanilla string briefly, an important aspect of particle production

from superstring networks is baryon production. For instance the U(1) symmetry

breaking of B − L at a scale ηB−L to produce strings light enough to form particles

that can produce leptons in an out of thermal equilibrium CP1 asymmetric decay.

For ηB−L > 1011GeV and Yukawa coupling h1 > 0.01, the particles produced by

the strings have been shown to be able to account for the baryon asymmetry of the

universe.

1charge-parity
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Chapter 4

Simulations

The evolution of the equations of motion to simulate gauge and global string net-

works is outlined below. For the most part we show the intricate detail using the

more complicated Abelian Higgs model since the Goldstone model can be considered

as a limiting case with the gauge coupling set to zero. The code used to simulate

the strings on the lattice will be referred to as LAH (Lattice Abelian Higgs) [17].

From the simulations we investigate small scale structure by extracting, over time,

the values of the fields, the physical location on the lattice of zeroes in the scalar

field at coordinates of non-trivial winding and the transverse velocity here. From the

string coordinates we identify individual loops, calculating their lengths and number

density distribution. For the topological core loops which are the smallest lengths

of string that can be identified as a loop we calculate their proximity to other loops

and long string. For long string we calculate the decay rate and the tangent vector

correlations and fit them to the model of Eq. (5.17). We then compare the results for

gauge strings where there is no massless mode for radiative decay with global string

evolution which mimics gravitational effects through the ability to emit Goldstone

bosons and suffer massless radiation backreaction.

4.1 Gauge Strings

The two fixed physical length scales determining the width of the string core, 1/
√
λη

and 1/gη, must be resolved in any simulation of the string network but, in an

expanding Friedman-Robertson-Walker universe, they rapidly fall away from the
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other length scales that must also be resolved. Using comoving coordinates the

horizon size is given simply by the conformal time τ and is the relevant length

scale at which the super-horizon tangle of string begins to straighten and decay.

However, the comoving string width decays as the reciprocal of the cosmic scale

factor a and therefore as τ−1 in a radiation-dominated universe and τ−2 under

matter- domination. We therefore need to resolve two scales which diverge as τ 3

under matter domination, which would, in principle, limit us to very short periods

of simulation1.

However in Ref. [17], a technique was demonstrated via which the coupling con-

stants g and λ can be raised to time dependent variables:

λ = λ0a
−2(1−κ) (4.1)

g = g0a
−(1−κ) (4.2)

in order that the comoving string width r behaves as:

r ∝ a−κ. (4.3)

That is, κ = 1 gives the true dynamics while κ = 0 yields a comoving string width,

which is particularly convenient for simulation. The dynamical equations derived

upon variation of the action become

φ̈+ 2
ȧ

a
φ̇−DjDjφ = −a2κ

λ0

2
(|φ|2 − η2)φ (4.4)

Ḟ0j + 2(1− κ)
ȧ

a
F0j − ∂iFij = −2a2κg20 Im[φ∗Djφ] (4.5)

(in the gaugeA0 = 0) with theA0 variation yielding the quasi-Gauss’ Law constraint:

− ∂iF0i = −2a2κg20 Im[φ∗φ̇]. (4.6)

Although these field equations do not conserve energy if κ 6= 1 (because the action

is not time- translation invariant), the dynamics were shown in Ref. [17] to be

insensitive to κ. Indeed the difference in their results for the two-point correlation

1That our simulations resolve the string width limits them in size to being far smaller than the

horizon size at matter-radiation equality and therefore our simulations are also limited to much

earlier times. However, we can simulate a matter dominated universe at very early times and use

scaling to make statements about a matter dominated era at later times.
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functions of the energy-momentum tensor between κ = 1 and κ = 0 in the radiation

era, where κ = 1 was achievable, were found to be slight while their results for

the CMB power spectra, which are dominated by the matter era, were found to be

similarly insensitive to κ over the range 0 to 0.3, with the latter being the largest

value at which reliable CMB results could be obtained.

Here we use the equations of motion Eqs. (4.4) and (4.5) with κ = 0 throughout,

although we also check our results using simulations with κ = 1 for the radiation

era (only), and find changes that are negligible. Note also that our equations of

motion at κ = 0 are not precisely the same as those used in Ref. [62]. There the

coefficients in the equations of motion that depend on the scale factor are changed

independently but they do not relate those coefficients via a single parameter as we

do. They keep the coefficient for the F0j term fixed at 0.

4.1.1 Simulation Specifics

Eqs. (4.4) and (4.5) are discretised onto a lattice using the procedure described in

Ref. [17] and referred to here as LAH.

Scalar field values lie on the vertex of the lattice and the tensor field values lie

centred on the plaquette side joining two vertices. Time and space derivatives are

taken in a standard numerically discrete way, the space derivatives then also sit half

way along lattice sides. In the following, note that the index notation represents

position on the lattice. The covariant gauge derivative is calculated

Djφ
x+ 1

2
,j =

∑

j

φx+j − exp[i∆xA
x+ 1

2
j

j ]φx

∆x
(4.7)

∼
∑

j

(

φx+j − φx

∆x
− iA

x+ 1

2
j

j φx

)

. (4.8)

This approximation allows it to be written in terms of a phase rotation θ

θ
x+ 1

2
j,t

j = ∆xA
x+ 1

2
j,t

j , (4.9)

θ
x,t+ 1

2

0 = ∆tA
x,t+ 1

2

0 (4.10)
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so that in the temporal gauge with A0 = 0 the field strength terms become

F0j = ∂0Aj =
1

∆x

∑

j





θ
x+ 1

2
j,t+1

j − θ
x+ 1

2
j,t

j

∆t



 , (4.11)

Fij = ∂iAj =
1

∆x

∑

i

∑

j

[(

θx+
1

2
j+i − θx+

1

2
j

∆x

)

−
(

θx+
1

2
i+j − θx+

1

2
i

∆x

)]

=
1

(∆x)2

∑

i

∑

j

∆
x+ 1

2
i+ 1

2
j

ij . (4.12)

The product is written

FijFij ∼
2

(∆x)4

∑

i

∑

j

(1− cos∆ij) , (4.13)

since 1− cos x −→ x2 as x −→ 0. The discretised fields φ, Π, θ and ǫ where

Πx,t+ 1

2 =
φx,t+1 − φx,t

∆t
, (4.14)

ǫx+
1

2
j,t+ 1

2 =
θx+

1

2
j,t+1 − θx+

1

2
j,t

∆t
. (4.15)

comprise all the required components to evolve the system according to the equations

of motion using a ‘leap-frog’ algorithm outlined in Appendix A.

LAH is an extension from Minkowski space-time to flat FRW universes of the

standard approach of Ref. [63]. This preserves the Gauss’ law constraint to machine

precision. Initial conditions were chosen following Ref. [17] in order for a string

network to emerge rapidly and the Gauss constraint obeyed. To achieve the latter,

we set to zero the gauge field and the time derivatives of both the gauge and Higgs

fields. To achieve the former, we set the simulation start time such that the horizon

is comparable to the (uniform) lattice spacing ∆x and therefore the phase of the

scalar field is an independent random variable on each lattice site, while we set

|φ| = η. We employ periodic boundary conditions and therefore the fields can be

evolved forward reliably until the half-box crossing time for light.

We use a lattice spacing of ∆x = 0.5 and set η = 1, λ0 = 2 and g0 = 1, which

together guarantee that strings are resolved for all a when κ = 0 and for a . 1 in

the radiation era when we double ckeck against the true equations of motion with

κ = 1. Note that the above scalings leave the ratio λ/2g2 constant and we study the

model at the Bogomol’nyi value [23], which yields equal scalar and gauge masses.

The simulations were performed using the UK National Cosmology supercomputer
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[1], with parallel processing enabled via the LATfield library [15], using a lattice

size of 5123 for Abelian Higgs simulations and averaging over 20 realisations. Global

string and additional Abelian Higgs simulations using a 7683 lattice were performed

on the University of Sussex HPC Archimedes cluster.

We have been able to access a dynamic range of similar order to Nambu-Goto

simulations performed by other groups working on small scale structure issues but

due to the differences between the simulations the measures for dynamic range that

are suitable in one case are ambiguous in another, making this a difficult comparison.

On N3 lattice volumes with ∆x = 0.5, a network of strings of width δ ∼ 1 is fully

formed from conformal time τi ∼ 20 and is simulated until τf = N∆x/2, when

the periodic boundary conditions of the simulation volume can potentially be felt.

Checks of the full energy-momentum tensor indicate that scaling is achieved at

around τsc ∼ 64 for lattices with N = 512, [17].

One measure of dynamic range is ξ(τf)/δ ∼ 50, which contains measurable quant-

ities in our simulation. This can be compared with the ratio of the initial and final

correlation lengths, (∼ 100 [75, 67]) in Nambu-Goto simulations although the ini-

tial correlation length has no straightforward meaning in our simulation. Another

measure is the ratio of the final time to the time at which the network achieves

scaling. For us, τsc ∼ 64 gives us a dynamic range of about 2 (in conformal time)

for our 5123 simulations and about 3 for 7683 lattices. Nambu-Goto simulations [75]

estimate a dynamical range of 5 from the scaling of the energy density of long string

in the radiation era.

4.1.2 String length measurements

At intervals during the evolution we record the coordinates of lattice plaquettes

around which the phase of φ has a net winding number.2 As a first approximation

we then take it that a segment of string having length ∆x threads through each

plaquette of 2π winding and joins the centres of the lattice cells on either side.

From these segments we can then construct the path of the string, although since it

is composed of an array of perpendicular lengths the string length is overestimated.

2While a winding of the phase is gauge-invariant in the continuum, on a lattice it can be removed

by a finite gauge transform. Therefore we employ the gauge- invariant measure of Ref. [47].
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At this stage, we do not attempt to smooth the paths in order to compensate, as

in Refs. [95, 62, 20], but instead apply a Scherrer-Vilenkin correction of π/6 [79] to

such length measurements.This factor is the ratio between the lattice approximation

and the true length of the line φ = 0 for a two-component Gaussian random field

φ. The scalar field is not a Gaussian random field, and so the estimate will not

be completely accurate for our dynamic string network. However, the results for

the average string length density are in approximate agreement with that measured

using the Lagrangian density Fig. [4.1]. This second method makes use of the fact

that perturbative radiation makes zero contribution to L, while a static straight

string contributes at −µ per unit length density. Since L is a four-scalar and length

density picks up a γ-factor upon a Lorentz transform, then −
∫

Ld3x/µ is a measure

of the (invariant) string length [17].

Rather than use the (comoving) string length density directly, we instead com-

pare with the network length scale ξ, defined as:

ξ =

√

V

L
, (4.16)

where V is the reference volume and L the string length within it. For a scaling

network ξ ∝ τ . In Fig. [4.1], we plot both the Lagrangian measure result ξL and

the winding measure result ξ (with no subscript since it is our default measure),

which reveal a linear behaviour ξ ∝ (τ − τξ=0) after an initial transient, consistent

with the expected scaling. As pointed out in Ref. [17], there is nothing fundamental

about the value of τξ=0 and it is simply an artefact of the initial conditions. Indeed,

this can be seen in Fig. [5.7], which shows additional results from two runs in which

an artificial damping phase (similar to that used in Ref. [96]) was employed for

an extended time. As can be seen in the figure, when the damping is released,

both these runs show ξ rapidly reverting to approximately the same gradient as the

undamped run. In Ref. [17] scaling with τ − τξ=0 was also observed in the two-point

correlation functions of the energy-momentum tensor, so there is no evidence from

the simulations that this scaling is a transient. These energy-momentum correlators

show that the network demonstrates scaling in a 5123 simulation over the conformal

time range 64 < τ < 128, which will be referred to as the scaling epoch.

We also verify that Abelian Higgs strings lose energy at a constant rate of order

unity by running 2563 radiation era simulations for a very long time until there
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Figure 4.1: Network length scale ξ in a radiation era simulation calculated from

Eq. (4.16) is in solid dark grey with fit over scaling times (τ ∈ [64, 128]) giving

dξ/dτ = 0.31 (the dotted line shows ξ before rescaling total string length using the

Scherrer-Vilenkin factor). ξL calculated directly from the Lagrangian is in solid light

grey with fit dξL/dτ = 0.29.
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Figure 4.2: Change of total comoving length of string l with conformal time τ for late

time Abelian Higgs simulations in the radiation era with box side size L = 256∆x

and ∆x = 0.5. The energy loss from a loop of string is linear with constant gradient

O(1) until the loop fragments and evaporates (examples shown in black). Once only

pairs of straight strings remain in the box (3 examples shown in grey), the linear

energy loss stops and the string length oscillates around the box crossing length; L,

L
√
2 or L

√
3 depending on the direction it wraps the box.
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Figure 4.3: Comparison of the simulations of Abelian Higgs string (left) and global

string (right) in the same size simulation after the same time

is only a single shrinking loop or a pair of straight strings winding around one or

more directions in the simulation volume, which has periodic boundary conditions.

The change in total comoving string length with conformal time is shown in Fig.

[4.2] to be linear. By inspection one can see that for strings that are shrinking,

dl/dτ ∼ O(1). Once two strings in the box become straight their length oscillates

around the box crossing distance, which is the behaviour expected in the Nambu-

Goto approximation.

4.2 Global Strings

The equations of motion for global string are the same as for the Abelian Higgs

model but with the gauge coupling set to zero. Using LAH, with g = 0, we need

only to remove the field configurations θ and ǫ in the discretised equations describing

the gauge field (Sec. [4.1.1]). This modification allows for larger simulations to be

performed as the gauge fields require large amounts of memory.

As expected, the density of global string is noticeably lower than gauge string

after the same evolution time Fig. [4.3]. The interstring distance, ξ, is therefore

larger for global string simulations and its linear growth with time during the scaling

regime is higher than gauge string networks, Fig. [4.4]. The correlation length ξ̄

defined in Eq. (5.19) is found to be lower for global strings such that the correlation
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Figure 4.4: Comparison of the network lengthscale ξ (solid lines) according to Eq.

(4.16) with Smith-Vilenkin smoothing and the correlation length ξ̄ (dash lines) cal-

culated from Eq. (5.19) for Abelian Higgs strings on a 5123 lattice (left) and global

strings on a 7683 lattice (right). Matter era is in red and radiation era in blue.

AH radiation AH matter G radiation G matter

dξ
dτ

0.29 0.28 0.57 0.55

dξ̄
dτ

0.30 0.28 0.32 0.32

Table 4.1: Summary of the evolution of the network lengthscale ξ and string correl-

ation length ξ̄ for Abelian Higgs (AH) and global (G) string networks. Values are

averaged over 5 simulation realisations.

lengths for gauge and global strings are very similar. Values for dξ/dτ and dξ̄/dτ

are summarised in Table. 4.1.

The increased rate of change in ξ indicates that Goldstone radiation is making a

considerable difference to the decay rate of global string. At late time when a single

loop or pair of straight strings remain wrapping the lattice, we find the rate of change

of string length with time to be considerably higher; O(10) as shown in Fig. [4.5].

The long range interaction between global strings causes them to eventually collide

and annihilate preceded by plateaux in the decay as the remaining strings move

toward their fate.

The proportion of energy density in the massless mode, ρG, is considerable,
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Figure 4.5: Change of comoving global string length, l, in late time radiation era

simulations with box side L = 256∆x and ∆x = 0.5. A single loop (black) shrinks

at a rate O(10). Plateaux are seen when pairs of straight strings of length L,

L
√
2 and L

√
3 remain then the long range interaction pulls the string together and

annihilation occurs.
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Figure 4.6: Proportion of energy density in the massless Goldstone mode and the

massive Higgs mode.

Fig. [4.6], compared to that in the Higgs mode, ρH where

ρtot = ρH + ρG = |φ̇|2 + |∇φ|2 + V (φ) (4.17)

for φ = f exp iα gives

ρH = ḟ 2 + (∇f)2 + V (f) (4.18)

and ρG = f 2(α̇2 + (∇α)2). (4.19)

We have not ascertained the confinement of the energy density that is associated

with the string but assume that a large proportion of the massless energy density

will be able to radiate. Significant emission of massless radiation contributes to the

higher rate of string decay in the Goldstone model and has the potential to mimic

the massless gravitational back reaction effect. We use these simulations to approach

the massless radiation backreaction problem. We compare the evolution of Abelian

Higgs strings in a field theory to the global strings where there is a massless mode

for radiation. We have established that the radiative effects of strings are realised

in the simulations and will proceed to compare any additional effects that are due

to the backreaction from a massless mode mode being introduced.
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Chapter 5

Small scale structure

To understand the behaviour of small scales on cosmic strings we apply data from

field theory simulations of Abelian Higgs and global strings to the predictions of

analytic models. The main object of the study will be

corrx(σ, τ) ≡
〈X′(σ1) ·X′(σ2)〉
〈X′(0) ·X′(0)〉

where σ = σ1 − σ2, and a dependence on τ is implied where not explicitly stated.

We calculate the exponent for the power law expected for gauge strings [70, 26]on

scales from the string core width up to the horizon. To understand the effects of

back reaction from radiation we also look at the tangent vector correlation function

for global strings which emit massless radiation in the form of Goldstone modes.

We find we can account for the modifications to the correlation function as due to

the self force found which we model on the ‘local back-reaction approximation’ [11].

To begin, we review the models for the tangent vector correlation function as

formulated for gauge strings and present our results for Abelian Higgs strings. Then

we introduce the modifications for global strings and demonstrate a new scaling

power law which quantifies the damping due to radiation reaction.

5.1 Gauge String Tangent Vector Correlators

The Nambu-Goto equations of motion

Ẍ+ 2
ȧ

a
(1− Ẋ

2
)Ẋ− 1

ǫ

(

X′

ǫ

)′

= 0 (5.1)
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and

ǫ̇ = −2
ȧ

a
(1− Ẋ

2
)ǫ (5.2)

can be reformulated using left and right moving unit vectors which we will call p and

q. Defined in terms of the position vector X(σ, τ) where σ is the string coordinate;

p(σ, τ) = Ẋ+ 1
ǫ
X′ and q(σ, τ) = Ẋ− 1

ǫ
X′. (5.3)

Dots are derivatives with respect to τ , primes with respect to σ and in the transverse

gauge where X′ · Ẋ = 0,

ǫ2 =
X′2

1− Ẋ
2 . (5.4)

The equations of motion then become [4]

ṗ− 1

ǫ
p′ = − ȧ

a
(q− (p · q)p) (5.5)

q̇ +
1

ǫ
q′ = − ȧ

a
(p− (p · q)q). (5.6)

For consistency with notation used elsewhere [70, 61] we denote

corrx(σ, τ) ≡
〈X′(σ1) ·X′(σ2)〉
〈X′(0) ·X′(0)〉 . (5.7)

where the angle brackets denote averaging over an ensemble of strings, which is

assumed to be equivalent to averaging over the string spatial coordinate. Since

X′
1 =

ǫ1
2
(p1 − q1) from the definitions of Eq. (5.3), with the subscript indicating

evaluation at σ1, we have

corrx(σ, τ) =
1
4
〈ǫ1ǫ2[(p1 · p2)− (p1 · q2)− (q1 · p2) + (q1 · q2)]〉

〈ǫ2(1− Ẋ
2
)〉

. (5.8)

By symmetry,

〈p1 · p2〉 = 〈q1 · q2〉 and 〈p1 · q2〉 = 〈q1 · p2〉

and to first order in the fluctuations we can replace epsilon by its average. Thus,

corrx(σ, τ) ≃
〈p1 · p2〉 − 〈p1 · q2〉

2(1− 〈Ẋ2〉)
. (5.9)

Correlations for opposite moving modes 〈p(σ1) ·q(σ2)〉 will be subdominant to those

moving in the same direction along the string 〈p(σ1) · p(σ2)〉. Identifying that

−p(σ) · q(σ) = 1− 2Ẋ
2
, allows an approximation to first order of −〈p(σ) · q(0)〉 =

1− 2〈Ẋ2〉 for σ small compared with the correlation length. Then

corrx(σ, τ) ≃
〈p(σ) · p(0)〉 − 1

2(1− 〈Ẋ2〉)
+ 1 (5.10)
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and thus

2(1− 〈Ẋ2〉)(1− corrx(σ, τ)) ≃ 1− 〈p(σ) · p(0)〉. (5.11)

By changing the string coordinates σ , τ to new variables u, τ̃ such that τ̃ = τ and

u̇ = 1
ǫ
u′, we see that

∂

∂τ
p(τ̃ , u) =

∂

∂τ̃
p(τ̃ , u) +

u′

ǫ

∂p

∂u
=

∂

∂τ̃
p(τ̃ , u) +

1

ǫ

∂p

∂σ
(5.12)

and hence
∂

∂τ̃
p = − ȧ

a
(q− (p · q)p). (5.13)

Dropping the tilde and using our approximation 〈p(σ) · q(0)〉 ≃ 2〈Ẋ2〉 − 1, we find

∂τ 〈1− p(σ) · p(0)〉 = −2ȧ

a
(1− 2〈Ẋ2〉)〈1− p(σ) · p(0)〉 (5.14)

which integrates to the form

〈1− p(s) · p(0)〉 = f(u)τ−2ν(1−2〈Ẋ
2
〉) (5.15)

with ν defined as scale factor a ∝ τ ν .

The correlator must be a function of s/τ , where s is the comoving distance along

the string, if it is to also exhibit scaling. Given that s = ǫσ, we need the time

dependence of of ǫ, (Eq. (5.4))

ǫ̇

ǫ
= −2

ȧ

a
Ẋ

2 ⇒ ǫ ∝ τ−2ν〈Ẋ
2
〉.

to show that
s

τ
=

ǫσ

τ
∝ στ−1−2ν〈Ẋ

2
〉.

Given that Eq. (5.15) has a power law form

〈1− p(s) · p(0)〉 ∝
(s

τ

)2χ

we find that in order to satisfy the scaling hypothesis, the exponent is

2χ =
2ν(1− 2〈Ẋ2〉)
1 + 2ν〈Ẋ2〉

. (5.16)

The tangent vector correlator should also scale, thus

1− corrx(s, τ) = A
(s

τ

)2χ

. (5.17)
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Having established the power law form for 〈p · p〉, we can determine a form for

the small fluctuation approximation which was used in Sec. [2.3.3] to estimate the

back reaction scale. Where left and right movers, p and q, are dominated by a large

part, P and Q so that P2(τ) = 1, we can define a small fluctuation w such that

P ·w = 0. p is expressed as an expansion in the small scale fluctuation;

p(σ, τ) = P(τ) +w(σ, τ)− 1

2
P(τ)w2(σ, τ) + · · ·

so the product

〈p(σ) · p(σ′)〉 ≃ 1− 1

2
〈[w(σ)−w(σ′)]

2〉

and we see from Eq. (5.17) 〈[w(σ)−w(σ′)]2〉 ∝
(

s
τ

)2χ
scales in the same way as the

tangent vector correlation function.

5.2 3 Scale Model

Much of the model follows in essence from the lengthy analysis of a 3 scale model

by Austin, Copeland and Kibble [6], based on the foundations of a two scale model

[51, 28], with length scales ξ, the mean inter-string distance and ξ̄, the persistence

length of correlations in direction where

ξ =
√

l/V (5.18)

ξ̄ = a

∫

ds 〈q(s) · q(s′)〉 = a

∫ ∞

0

〈X′(s) ·X′(s′)〉
〈X′2〉 . (5.19)

The two scale model depends on parameters k, determining the excess of kinks on

loops compared to long string and c, the efficiency of chopping a loop from the

network. It also relies on loops being chopped from long string in regions of high

kink density, reducing the overall kinkiness of long string and that loops would be

high in kink density. It was determined that both ξ and ξ̄ were of similar orders

of magnitude and both scaled, growing proportional to time but that there was a

smaller length scale ζ that remains small unless gravitational radiation smoothed

the strings, [6, 7].

While the parameter k, essentially defined by

k =
kinks on loops

kinks on long string
− 1,
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remains small with long string almost as kinky as loops, it is expected that the ratio

ζ/ξ̄ will remain small and shrink compared to the horizon size until it becomes of

order the gravitational radiation scale. At scales where backreaction has an effect,

the string is smoothed and k becomes large so that ζ ∼ ξ, ξ̄ and scales. In this

context, a build up of small scale structure implies a small k and that the effects

of gravitational radiation have not made an effect. In Abelian Higgs networks the

emission of massive radiation will also suppress the build up of structure.

By comparing their model to that of Polchinski et al in [26] they show that

there should be a critical scale sc below which there is only one kink contributing

to 〈p(0) · p(s)〉 in the correlation function which is described by a kink probability

distribution function such that

1− corrx ∝
(s

τ

)

, (5.20)

below sc. The power law of Eq. (5.17) is expected to hold down to sc and it is

suggested that Nambu-Goto strings may not be scaling on length scales below this

as there is no radiative mechanism for smoothing the string.

5.3 Calculating the Correlator from Simulated String

From the coordinate locations of the string extracted from LAH it is simple to

compare the Euclidean distance between 2 points on the string and the separation

along the string coordinate.

The longest string at a set of equally spaced times throughout the scaling epoch

in the simulation is isolated for analysis in both the radiation and matter dominated

eras. The comoving distance along the string s =
∫

ǫdσ along a string coordinate

length σ = σ1 − σ2 is compared to the Euclidean distance, r, between X(σ1) and

X(σ2). Around each loop, the coordinates are averaged over 10 lattice steps

along the string coordinate to smooth the lattice effect in addition of perpendicular

segments. The mean square Euclidean distance is then averaged over many starting

points a few string segments apart around the loop, thus creating a 2-point function,

〈r2(σ, τ)〉 =
∫ σ

0

∫ σ

0

dσ1dσ2 〈X′(σ1) ·X′(σ2)〉. (5.21)
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Recalling the definition

corrx(σ, τ) ≡
〈X′(σ1) ·X′(σ2)〉
〈X′(0) ·X′(0)〉

and the analytic form of Polchinski et al, [70, 35, 71] Eq. (5.17)

corrx(s, τ) = 1− A
(s

τ

)2χ

,

we can compare the two point function calculated from the simulation with the

predicted scaling form by taking its second derivative.

1

2

∂2〈r2〉
∂σ2

= 〈X′ ·X′〉
(

1−A
(s

ξ

)2χ)

. (5.22)

In order to test the prediction, the second derivative of the 2-point function 〈r2(s, τ)〉
is taken numerically. A least squares fit is used to optimise the parameters in the

function for

1− corrx = 1− 1

2〈X′ ·X′〉
∂2〈r2〉
∂σ2

= A
(s

ξ

)2χ

taking a nominal standard deviation equivalent to the length s to weight smaller

s appropriately on the logarithmic scale. Noise is reduced by averaging the main

results for the Abelian Higgs and Goldstone models over 20 simulations with different

initialisations of the Gaussian random field. It should be noted that the smoothing

process of averaging the coordinates was not found to alter the parameters or the

shape of the 1− corrx function, notably at small s, but allowed the least squares fit

to converge more quickly. Other smoothing methods were tested but this method

is most consistent with the averages taken in the definition of the tangent vector

correlator. As the strings become a random walk on horizon scales, the correlation

function vanishes. The gradient of the correlation function demonstrates full scaling

below the correlation length. The results are shown in Fig. [5.1] for the radiation era

and Fig. [5.2] for the mater era and the average values found from the least square

fit for the parameters 2χ, 〈X′ ·X′〉 and A are listed in Table. [5.1]. Once established

that 〈X′ ·X′〉 = 1 to a high degree of accuracy, the fit to the data can more quickly

be made by finding just the two remaining parameters and these values are also

given in Table. [5.1].
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Figure 5.1: Solid lines indicate 2 point tangent vector correlation functions for

Abelian Higgs string on a 5123 lattice in the radiation era for 7 equally spaced

times throughout the scaling epoch (τ ∈ [64, 128]) with dashed lines showing the 3

parameter fits. The parameters are calculated by fitting the data from the smallest

scales up to log(s/ξ) = 0.
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Figure 5.2: Tangent vector correlations and fit for Abelian Higgs string in the matter

era as in Fig. [5.1].
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Era (ν) Fitting Procedure 2χ A 〈X′ ·X′〉

1 (Rad) Fit to 1− corrx:

3 Parameter Fit 0.80± 0.03 0.63± 0.01 1.03± 0.02

2 Parameter Fit 0.83± 0.04 0.62± 0.01 fixed to 1

Fit to Fractal Dimension:

−0.7 < log(s/ξ) < 0.4 1.03± 0.03

−1.4 < log(s/ξ) < −0.7 1.36± 0.03

Fit to Velocity:

〈Ẋ2〉G 1.07

〈Ẋ2〉Y 0.35

1.5 Fit to 1− corrx:

2 Parameter Fit 0.93

Fit to Fractal Dimension: 1.06

Fit to Velocity:

〈Ẋ2〉G 1.63

〈Ẋ2〉Y 0.74

2 (Matter) Fit to 1− corrx:

3 Parameter Fit 0.99± 0.04 0.60± 0.03 1.01± 0.003

2 Parameter Fit 1.01± 0.03 0.61± 0.02 fixed to 1

Fit to Fractal Dimension

−1.4 < log(s/ξ) < −0.4 1.20± 0.03

Fit to Velocity:

〈Ẋ2〉G 2.05

〈Ẋ2〉Y 0.78

Table 5.1: Summary of parameters fitting the correlation function for Abelian Higgs

string averaged over 7 times throughout the scaling epoch with standard deviation

between times quoted. The 3 parameter fit follows Eq. (5.17) and the 2 parameter

fit is found setting 〈X′ ·X′〉 = 1. These are both fitted up to the correlation length,

log(s/ξ) < 0. The fractal dimension fit follows Eq. (5.25). The velocity estimates

〈Ẋ2〉G and 〈Ẋ2〉Y are defined in Section 5.5 and given in Table [5.3].
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5.3.1 Fractal Dimension

We can further verify these results by calculating the fractal dimension of the string

df defined

1

df
=

1

2

d log〈r2〉
d log s

(5.23)

which measures the smoothness of the string. For a perfectly smooth string df = 1

and a string following a random walk where s ∝ 〈r2〉, df = 2.

By integrating the model for the 2-point function 〈r2〉, Eq. (5.21) we see that

〈r2〉 = s2
(

1− A

(2χ+ 1)(2χ+ 2)

( s

τ

)2χ
)

(5.24)

and arrive at a model for the fractal dimension for small s in terms of the 2χ

parameter

df ≃ 1 +
Aχ

(2χ+ 1)(2χ+ 2)

( s

τ

)2χ

+O
(s

τ

)4χ

. (5.25)

As such 2χ can be thought of as parameterising the deviation of the string from

straightness.

Although Eq. (5.25) relies on an expansion to approximate, this method for

calculating 2χ is advantageous as only one numerical differentiation of our data is

required. As such, noise is minimal and no further ’smoothing’ is required. The

scaling exhibited is clear and unambiguous and, as shown in Fig. [5.4], extends bey-

ond the correlation length to larger s up to horizon scales. Values for 2χ calculated

using this method are summarised in Table. [5.1]. At very small scales, Eq. (5.25)

fails to provide a consistent value for 2χ but this is reasonable given its definition as

s and r approach zero, neither does it lend much support to the hypothesis of Ref.

[26] that 2χ ∼ 1 for s < sc despite the change in gradient evident in the radiation

era correlation function.

5.3.2 Validity Tests

Gaussianity

The 4-point correlation functions 〈r2(s, τ)〉2 and 〈(r2(s, τ))2〉 are also calculated to

test for gaussianity.
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Figure 5.3: 2χ calculated from the fractal dimension model Eq. (5.25) for radiation

era simulations of Abelian Higgs string where 2χ is the gradient of the slope shown.

The fractal dimension model appears to scale beyond the correlation length, right

up to horizon length scales ∼ τ , indicated with dashed line. There is a feature at

log(s/ξ) ∼ −0.7 where the gradient changes.
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Figure 5.4: 2χ calculated from the fractal dimension model Eq. (5.25) for matter

era simulations of Abelian Higgs string.
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Figure 5.5: The ratio of the four-point correlation functions to the Gaussian predic-

tion in the radiation-dominated era is shown against the dimensionless parameter

s/ξ for a spread of times throughout the scaling epoch. A Gaussian four-point

correlation would be indicated by this ratio being 1: Gaussianity is therefore not

evident at any scale.

Denoting each spatial component of r as ∆i ≡ Xi(σ1) − Xi(σ2), with σ1 some

initial base point for the measurement, the fourth moments formula is written

〈(r2(s, τ))2〉 = 〈(∆ ·∆)2〉

= δijδkl(〈∆i∆j〉〈∆k∆l〉+ 〈∆i∆k〉〈∆j∆l〉+ 〈∆i∆l〉〈∆j∆k〉)

Then gaussianity would allow contraction on all pairs from Wick’s Theorem so that

〈(∆i∆j)〉 = 1
3
δij〈∆2〉 and the ratio of the 4 point functions should behave as

〈(r2(s, τ))2〉 = 5

3
〈r2(s, τ)〉2 (5.26)

Fig. [5.5] shows for the radiation era that on all scales the ratio of the 4 point

correlations is not constant and not 5/3. The 4-point correlators in the matter era

(not plotted) behave in a similar way, as do both radiation and matter era simula-

tions of global strings. In the model for loop production proposed by Polchinski and

collaborators [70, 35, 71], it is argued that non-gaussianity does not affect the power

laws derived for the 2-point correlation function or the loop production function. We

have confirmed that the 2-point correlation function is in accord with their model,

but in the next section we will see that the loop production function is not. If we
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accept the arguments of Polchinski et al, which are based on scaling, another reason

must be found to account for the difference.

It has further been argued [89, 90] that the tangent vector correlation function

will not obey a power law but should infact be exponential at very small scales. The

explanation for this model relies explicitly on the gaussianity of the tangent vectors

which is refuted here.

Growing core width

Simulations conducted in the radiation era are possible with the true equations of

motion using κ = 1 in Eqs. (4.4)-(4.5) where the string width does not grow with the

lattice. Correlation function results for an average of 5 simulations with κ = 1 are

tested against our standard results for simulations with a comoving core width using

κ = 0 in the equations of motion. Fig. [5.6] shows a comparison of the correlations

at two different times in the simulation for both the κ = 0 and the κ = 1 cases, using

the smoothing technique of Ref. [44]. The difference in the results is surprisingly

insignificant for this calculation and no correction is felt necessary.

Initial Conditions

It is important to test for any dependence of our results upon the initial conditions

chosen and to fully explore the approach to scaling. To achieve these two goals we

have performed additional simulations of Abelian Higgs strings with an initial phase

in which the Hubble damping term 2ȧ/a in Eqs. (4.4) and (4.5) is replaced by a

constant, which we set to unity. This initial phase of artificial damping continues

until a time when the Hubble damping would have been far smaller and hence string

velocities are heavily reduced by the time we switch over to normal Hubble damping

to complete the simulation. This gives us an alternative initial condition in which

the string network is smooth and slowly moving, while radiation is negligible. The

effects on the network length scale ξ for simulations on 5123 lattices, seen in Fig.

[5.7], shows the rate of growth of ξ is heavily retarded during the initial phase with

ξ ∝ τ 1/2 as expected for over-damped motion [60] and observed in condensed matter

defect networks.

In the velocity one scale (VOS) model a frictional damping term is introduced to
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Figure 5.6: Testing the string core width approximation shows that the correlation

function is not sensitive to the value of κ. The string coordinate averaging procedure

used to calculated the tangent vector correlation function for this figure follows that

used in Ref. [44]. The top figure shows the difference in 1 − corrx at time τ = 85

and the lower figure at time τ = 115 with grey plotting the usual κ = 0 comoving

width approximation and black plotting the true κ = 1 version.
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Figure 5.7: Network length scale ξ, showing linear behaviour with conformal time

once the network settles into a scaling regime and memory of initial conditions is

lost. ξ (black) and ξL (grey) are shown for radiation era simulations according to

Eqs. (4.4) and (4.5) with parameters as stated in Sec. [4.1.1]. Curves for smaller

ξ from simulations with a constant damping term which is not switched off until

τ = 75 and τ = 100 respectively showing the speed with which the network length

scale resumes the same scaling evolution with dξ/dτ = 0.3 .
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the Nambu-Goto equations of motion countering the acceleration due to curvature,

[60]. The frictional force, [94]

F = −µ

lf

ν√
1− v2

of a network moving at velocity defined by

v2 = 〈 ẋ2〉 =
∫

ẋ2ǫdσ
∫

ǫdσ
(5.27)

at a damping length scale

lf =











µ

βT 3
... gauge

µ

βT 3
ln2(Tδ) ... global

at some background temperature T , introduces the friction term and the equations

of motion in a FRW cosmology become

Ẍ+

(

2
ȧ

a
+

a

lf

)

(

1− Ẋ2
)

Ẋ =
1

ǫ

(

X′

ǫ

)′

(5.28)

ǫ̇+

(

2
ȧ

a
+

a

lf

)

Ẋ2ǫ = 0 (5.29)

for gauge string.1 Then the evolution of the energy density ρ ∝ E/a3 for string with

energy E = µa
∫

ǫdσ and thus the correlation length ξ2 = µ/ρ can be determined

to evolve as

2
dξ

dt
= 2

ȧ

a
ξ(1 + v2) +

ξ

lf
v2 + c̃v2, (5.30)

where the last term accounts for energy lost due to loop production.

As pointed out in [58], the effects of damping on a cosmological network of strings

would only be relevant soon after production and the scaling regime in the damped

epoch a transient. Once the constant damping used in our simulations to set up the

alternative initial conditions is switched back to Hubble damping, the evolution of

ξ quickly transitions to the same growth rate seen in the primary simulations.

In the damped epoch, strings are expected to be smooth. The lower velocities are

expected to reduce intercommutation, suppressing the production of kinks, and the

formation of cusps. The tangent vector correlation functions for radiation era gauge

string simulations on a 7683 lattice with an initial constant damping term are shown

1For global string in a homogeneous background H
ijk
ext

=
√
ρhǫ

ijk induces a relativistic magnus

force, adding a further term proportional to
√
ρh

ǫµ
Ẋ×X

′ to the left hand side of Eq. (5.28).



62

−1.5 −1 −0.5 0 0.5 1

−2.5

−2

−1.5

−1

−0.5

0

0.5

log(s/ ξ)

lo
g

(1
−

c
o

rr
x
)

−2 −1.5 −1 −0.5 0 0.5 1

−2.5

−2

−1.5

−1

−0.5

0

0.5

log(s/ ξ)

lo
g

(d
f 
−

1
)

Figure 5.8: Correlation functions for a (768∆x)3 simulation in the radiation era with

constant damping term added to the equations of motion until τ = 100 shown at

times τ = 84 (before Hubble damping resumes, red) and then at evenly spaced times

throughout the evolution until τ = 192. The gradients of the plots shown indicate

the parameter 2χ and we see the change from a steep slope whilst the strings are

heavily damped to a flatter slope as the string relaxes into the usual regime. The

values for 2χ are plotted in Fig. [5.9]

in Fig. [5.8]. Whilst the strings are damped, they are smoother corresponding to a

higher value of 2χ, but once the damping is removed at τ = 100, the strings quickly

develop small scale structure. The time-scale of relaxation to the scaling regime

is depicted in Fig. [5.9] where we show the change in the 2χ parameter with time

for a set of simulations with the constant damping term reverted back to Hubble

damping after different periods of time, τoff.

5.3.3 Between Eras

It is of interest to discuss the transition from radiation to matter dominated eras es-

pecially in the context of calculating cosmological phenomena. Although a contrived

and oversimplified estimate, we calculate the tangent vector correlation function for

simulations in ‘intermediate eras’ by setting the scale factor to scale with τ as a ∝ τ ν

ν = 1.5. The average parameter values for the fit to Eq. (5.17) are given in Table.

[5.1] and the comparison to the squared network velocities are shown in Fig. [5.13].
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Figure 5.9: 2χ changes over time once damped simulations of abelian Higgs strings

on a 7683 lattice have their constant damping term turned off. Shown for simulations

with different lengths of damping period τoff.

5.4 Small Scale Structure and Backreaction on

Global Strings

Due to backreaction, the equations of motion for global strings as defined by the

Kalb-Ramond effective action Sec. [2.2.2], have additional interaction terms such

that

Ẍ+
ȧ

a
(1− Ẋ)Ẋ− 1

ǫ

(

X′

ǫ

)′

=
f

µ
(5.31)

ǫ̇

ǫ
= −2

ȧ

a
Ẋ+

1

ǫ

f 0,rad

µ
. (5.32)

where µ is the effective tension and f is the string self energy per unit length as

outlined in Sec. [2.4.1] but now in an expanding background. In Ref.[11] it is shown

that

frad ≃ fradflat +
ȧ

a
g (5.33)

f 0,rad ≃ f 0,rad
flat +

ȧ

a
g0 (5.34)

where (g0, g) is a correction to the self force due to the expansion in both radiation

and matter eras.
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Figure 5.10: Tangent vector correlation function for 768∆x3 simulation of global

strings in the radiation era.

By rewriting the equations of motion Eq. (5.31) in terms of the unit left and

right moving vectors p and q

ṗ− 1
ǫ
p′ = − ȧ

a
(q− (p · q)p) + fp

µ
(5.35)

q̇− 1
ǫ
q′ = − ȧ

a
(q− (q · q)q) + fq

µ
(5.36)

where

f =
1

2µ
(fp + fq),

we see that the evolution of the correlation function 1− corrx ∝ 1− 〈p(σ1) · p(σ2)〉
for the tangent vectors should take the form

∂

∂τ
(1− corrx) = − ȧ

a
(1− 2〈Ẋ2〉)(1− corrx)−

1

µ
[〈fp(σ1) · p(σ2)〉+ 〈fp(σ2) · p(σ1)〉] .

(5.37)

However the tangent vector correlator for global string appears to be strongly con-

sistent with a power law of the original form (Eq. (5.17)) as evident from Figs. [5.10]

and [5.11] for the radiation and matter dominated eras respectively and Fig. [5.12]

for the fractal dimension model. In view of this, we note that if the self force has

a scaling form

1

µ
[〈fp(σ1) · p(σ2)〉+ 〈fp(σ2) · p(σ1)〉] ∝

1

τ
(1− corrx) (5.38)
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Figure 5.11: Tangent vector correlation function for 768∆x3 simulation of global

strings in the matter era.
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Figure 5.12: 2χ calculated from the fractal dimension model Eq. (5.25) for global

string in the radiation era (left) and matter era (right) where 2χ is the gradient of

the slope. Values for 2χ are summarised in Table. [5.2].
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then on integrating Eq. (5.37), the effect is to change the expression for the exponent

2χ, which will now be demonstrated.

We will first neglect the correction, (g0, g) due to expansion, so we can use the

local backreaction approximations for the force density provided in Eqns. (2.48-

2.51). Then for ǫ as defined in Eq. (5.4), ∆ ∝ radius of curvature cut-off and δ of

order the string width, f of Eq. (5.31) is given by

frad

µ(∆)
≃ 2

3

∆

ln ∆
δ

[

ǫ
...
X− 1

ǫ

(

(X′ ·
...
X)

1− Ẋ
2

)

X′

]

=
2

3

∆

ln ∆
δ

ǫ

[

...
X− (X′ ·

...
X)

X′2 X′

]

(5.39)

and

f 0,rad

µ(∆)
=

2

3

∆

ln ∆
δ

[

ǫ2

(

(Ẋ ·
...
X)

1− Ẋ
2

)]

(5.40)

where the evolution of ǫ is altered by the string self energy loss f 0 according to Eq.

(2.54).

We can validate the the emergence of the power law form for the tangent vector

correlations by firstly making some assumptions about f. First we observe that that

f

µ
=

2

3

∆

ln ∆
δ

ǫ

[

...
X− (X′ ·

...
X)

X′2 X′

]

(5.41)

takes the part of
...
X is orthogonal to X′/ǫ and thus writing u = Ẋ ∧X′/ǫ = 2p ∧ q

for an unnormalised basis vector orthogonal to X′/ǫ and Ẋ,

f

µ
≃ 2

3

∆

ln ∆
δ

ǫ

[

(Ẋ ·
...
X)

Ẋ
2 Ẋ+

(u ·
...
X)

u2
u

]

, (5.42)

We will assume we can drop the part proportional to u, as we will be taking the

scalar product with p(0) when calculating the equations of motion of the correlation

functions, which gives zero as σ → 0. Hence

f

µ
≃ 2

3

∆

ln ∆
δ

ǫ

[

(Ẋ ·
...
X)

Ẋ
2 Ẋ

]

. (5.43)

We now proceed to identify the components of the forces acting on p and q.

Differentiating the definitions of the unit vectors Eq. (5.3) and substituting into the
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equations of motion Eq. (5.31) to find

1

2µ
(fp − fq) =

ǫ̇

ǫ

X′

ǫ
− 2

ȧ

a

X′Ẋ
2

ǫ
(5.44)

= −
(

X′

ǫ

)

f 0

ǫµ
(5.45)

= −
(

β

2τ

)

(q− p+ q · p(q− p)) (5.46)

where we define

β =
τ

3

∆

ln ∆
δ

ǫ

[

(Ẋ ·
...
X)

Ẋ
2
(1− Ẋ

2
)

]

(5.47)

β is dimensionless, so if the string is scaling it will on average be constant. With

Eq. (5.43) we also have

1

2µ
(fp + fq) =

f

µ
(5.48)

=

(

β

2τ

)

(1− Ẋ
2
)Ẋ (5.49)

=

(

β

2τ

)

(1− p · q)(p+ q), (5.50)

leading to

fp

µ
=

(

β

2τ

)

(q− p(p · q)). (5.51)

Hence the equation of motion for the correlation function with local back-reaction

becomes
∂

∂τ
(1− corrx) = −

(

ȧ

a
+

β

τ

)

(1− 2〈Ẋ2〉)(1− corrx) (5.52)

whose solution can again be written

1− corrx = A
(s

τ

)2χ

(5.53)

where now the exponent is modified

2χ =
2νeff(1− 2〈Ẋ2〉)
1 + 2νeff〈Ẋ

2〉
(5.54)

with

νeff = ν + β. (5.55)

Thus backreaction has the same effect on the correlation function as Hubble damp-

ing.
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Era (ν) Fitting Procedure 2χ A 〈X′ ·X′〉

1 (Rad) Fit to 1− corrx:

3 Parameter Fit 0.94± 0.02 0.83± 0.01 1.01± 0.01

2 Parameter Fit 0.99± 0.01 0.85± 0.01 fixed to 1

Fit to Fractal Dimension:

−1.5 < log(s/ξ) < 0.2 1.15± 0.01

2 (Matter) Fit to 1− corrx:

3 Parameter Fit 1.11± 0.02 0.86± 0.01 1.00± 0.004

2 Parameter Fit 1.16± 0.01 0.89± 0.01 fixed to 1

Fit to Fractal Dimension:

−1.5 < log(s/ξ) < 0.2 1.32± 0.01

Table 5.2: Summary of mean parameters fitting the tangent vector correlation func-

tion and fractal dimension expansion for global string networks taken at 12 times in

the scaling epoch and the standard deviation between times quoted.

Taking account of the correction to the self force due to expansion, we should

in principle recalculate with the additional terms proportional to the Hubble para-

meter which appear in the expressions for (f 0, f) and ǫ. This involves multiplying

a complicated expression with string coordinates and their derivatives to obtain a

consistent expression for Eq. (5.51). However, scaling tells us that the result will

also be proportional to 1/τ . Hence it is reasonable to assert that the general form

of νeff should be

νeff = ν(1 + γ) + β. (5.56)

where γ is a constant.

Calculating
...
X is a hugely difficult computational task and we have not quantified

this value but we can compare the fixed value of ν with νeff as calculated from 2χ

for global strings and their network velocities 〈Ẋ2〉. We discuss the calculation of

network velocity in the next section and return to this point later.
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5.5 Velocities

The parameter 2χ provides an estimate for the average network velocity squared

〈Ẋ2〉 via Eq. (5.16) and its value can be cross-checked with that calculated directly

from the simulation Fig. [5.5].

Due to the difficulty in estimating the network velocity, we apply a number

of methods. One uses the electric E and magnetic B components from the field

strength tensor and the other the canonical momentum and spatial gradients of the

field, Π = φ̇ and Dφ = ∇ + iAφ. Denoting the estimators 〈Ẋ2〉F and 〈Ẋ2〉G, we
have

γ2
F 〈Ẋ

2〉F =
E2

L

B2
L

(5.57)

and

γ2
G〈Ẋ

2〉G =
Π2

L

(Dφ)2L
, (5.58)

where γ2
F and γ2

G are the Lorentz factors calculated using 〈Ẋ2〉F and 〈Ẋ2〉G respect-

ively, and the subscript L denotes a Lagrangian weighting of a field Y according

to

YL =

∫

d3x Y L
∫

d3x L . (5.59)

Applying this weighting ensures points on the lattice containing string are selec-

ted since the Lagrangian density is negative where there is string and vanishes for

small amplitude radiation, as outlined in Sec. [4.1.2]. The consistency between the

Lagrangian weighting method and the average over winding sites method is demon-

strated in the results shown in Fig. [5.13]. Alternatively one can calculate the the

velocity at sites of non-trivial winding and average over sites which we will refer to

as a plaquette weighting.

The third method is to calculate the velocity averaged over the sites of non-trivial

winding in the network according to the velocity operator [102]

〈Ẋ〉Y =
Π∇φ∗ −Π∗∇φ

|∇φ×∇φ∗| (5.60)

Fig. [5.13] shows that the measured velocities in Abelian Higgs simulations agree

with those inferred from the slope of the correlation function, with the exception of

the velocity operator (5.60), which is higher and fluctuates wildly. The rest of the
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Figure 5.13: Mean square velocities 〈Ẋ2〉 of Abelian Higgs string networks. ‘Gradi-

ent’ velocity calculated via Eq. (5.58), (red; dotted lines for Lagrangian weighted

and solid lines for winding plaquette weighted). ‘Gauge’ velocity calculated via Eq.

(5.57), (magenta; solid and dashed as above). ‘Operator’ velocity calculated via Eq.

(5.60), (green). Velocities from 2χ found according to Eq. (5.16) as derived from

the tangent vector correlation function (black x) and the fractal dimension model

(blue x) at the times during scaling for which they have been calculated.
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Figure 5.14: Mean square velocities 〈Ẋ2〉 of global string networks calculated from

field gradients via Eq. (5.58) in red (dashed red indicates Lagrangian weighted),

from the velocity operator via Eq. (5.60) in green and from 2χ according to Eq.

(5.16) marked as x at times during scaling for which the tangent vector correlation

function (black) and the fractal dimension expansion model (blue) are calculated by

fixing ν = 1 for the radiation era and ν = 2 in the matter era.

data is good evidence that the model of [70] describes the dynamics of long string

in the Abelian Higgs model well.

We also note that the plaquette weighted RMS velocities are approximately

0.4 for both the radiation and the matter era. These are significantly lower than

measured in Nambu-Goto simulations, about 0.66 in the radiation era and 0.61 in

the matter era. This is likely to be a result of backreaction from massive radiation,

not included in Nambu-Goto simulations. Global string network velocities have been

calculated using the velocity operator of Eq. (5.60). Ref. [103], finds 〈Ẋ2〉 = 0.5 in

the radiation era for field theory simulations on an Eulerian mesh. Our results are
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shown in Fig. [5.14] and consistently find the velocity operator giving much higher

values for the RMS velocity than those found by taking gradients of the Higgs field.

We were interested to learn that the ratio of Lagrangian weighted gradients gave a

very similar velocity to finding the gradient velocity at the zeroes. This apparent

localisation of the Lagrangian density near the global string core would be interesting

to follow up on at a later date.

The relationship between 2χ, the velocity and ν is non-linear but simplistically

in some fixed era, increasing smoothness of the string and resulting increase in 2χ

should be observed as a decrease in mean square velocity. Fig. [5.14] shows the mean

square velocities of the network if no correction is made to the expression for 2χ

under the local back reaction damping model of Sec. [5.4] but it is not apparent from

the disparate values of the velocity calculated by different means as to the nature

νeff.

The results of these numerous velocity calculations are summarised in Table. [5.3]

and indicates the difficulty in calculating a consistent value for the velocity of the

network. As expected the network velocity calculated from the actual simulation of

a string network in the matter era is less than in the radiation era - due to additional

background damping. The additional damping and smoothing is replicated in an

increasing value for 2χ; though we should note care should be taken in comparing

across eras. The trend in velocities for increasing ν, as calculated from the value of

2χ, is to increase which is inconsistent with both global and gauge network velocities.

Global strings are expected to have substantial back reaction damping but there

seems to be evidence of sufficient back reaction in the gauge string networks for a

correction to be necessary. We can compare the velocities and calculate a νeff in

each case. We will compare to both the gradient velocity and the operator velocity

to try to determine which is the better estimate. In general the gradient velocity

tells us that the network is slower than predicted by 2χ and the operator velocity

comes out faster. The values are computed according to

νeff =
χ

1− 2〈Ẋ2〉(1 + χ)
(5.61)

and tabulated in Table. [5.4]. We see that the velocity operator estimate for the

RMS velocity gives nonsensical results, casting doubt on its utility.
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Gauge Strings Global Strings

ν = 1 ν = 1.5 ν = 2 ν = 1 ν = 2

〈Ẋ2〉cx 0.24 0.23 0.27 0.18 0.23

〈Ẋ2〉df 0.17 0.21 0.22 0.13 0.20

〈Ẋ2〉G (Lag) 0.13 0.11 0.11 − −
〈Ẋ2〉G (Plq) 0.15 0.13 0.12 0.16 0.12

〈Ẋ2〉F (Lag) 0.21 0.19 0.18 − −
〈Ẋ2〉F (Plq) 0.20 0.17 0.16 − −
〈Ẋ2〉Y 0.35 0.28 0.29 0.41 0.29

Table 5.3: Summary of velocities. 〈Ẋ2〉cx and 〈Ẋ2〉df are inferred from the values of

2χ found by fitting the tangent vector correlation function to 1 − corrx, Eq. (5.17)

and the fractal dimension expansion, Eq. (5.25), respectively. The rest are calcu-

lated from the simulation directly as described in Sec. [5.5]. With (Lag) denoting

Lagrangian weighting and (Plq) denoting velocities are found only at plaquettes

threaded by string.

νeff

〈Ẋ2〉G 〈Ẋ2〉Y
AH radiation χcx = 0.40 0.69 19.4

χdf = 0.52 0.96 −7.8

AH matter χcx = 0.50 0.78 3.8

χdf = 0.60 0.97 8.3

G radiation χcx = 0.47 0.89 −2.3

χdf = 0.58 1.16 −2.0

G matter χcx = 0.56 0.89 5.7

χdf = 0.66 1.09 17.4

Table 5.4: Values for νeff for gauge (AH) and global (G) string in matter and ra-

diation eras calculated from Eq. (5.61) using observed network velocities from field

gradients Eq. (5.58) and from the operator velocity Eq. (5.60).



74

5.6 Summary

The two point tangent vector correlation function Eq. (5.17) and fractal dimension

expansion model Eq. (5.25) are predicted in Ref. [70] to obey a power law form.

We calculate the functions for cosmic string networks formed in local and gauge

field theories and find strong evidence of a power law. There is general agreement

between the power law and the predicted form of the exponent, Eq. (5.16) which is

calculated from the average network velocity and the scale factor’s exponent with

time, ν.

Taking into account a radiation field creating a back reaction effect on the string

we show that the scaling principle behind the form for the tangent vector correlation

function can be reconciled with a smoothing of the string that behaves in the same

way as Hubble damping so that the exponent for the power law can be redefined

in terms of an effective ν. Numerical simulations are performed for both local and

global strings, but the velocity measurements are not reliable enough to demonstrate

an effect.
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Chapter 6

Loops

In the standard lore, a network of strings with scaling energy density ρ ∝ t−2 that

loses energy by the production of loops at a typical size of order the horizon, t,

must produce those loops at a rate ṅ ∝ t−4 [86]. But loop production in cosmic

string networks is still a subject of some debate despite a number of recent numerical

investigations using the Nambu-Goto approximation [75, 67, 61], taking advantage

of improvements in computational facilities and algorithms, and focusing on small

scale structure and loop production rates.

The crucial quantities in question are the loop (length) distribution function

and the loop production function. Unfortunately, different groups measure different

quantities, and emphasise different features, so the results are difficult to compare.

Those that measure the loop production function [67, 61] find that it peaks at a

small scale, with a power law rise [67], and a less prominent feature at about a tenth

of the horizon length, t. The identity of the small scale peak is not clear, but on

inspection of the data [61, 67], it appears to be related to (and at least no greater

than) the initial comoving correlation length. Full scaling requires that the only

scale in the distribution and production functions should be t: the peak therefore

does not scale. Furthermore, it is found that the amplitude of the power law does

not scale either [67].

Measurements of the loop distribution function on the other hand [75], show a

peak at the initial numerical cut-off, and scaling at intermediate scales. The peak

is understandable as a transient from the initial evolution, but as the distribution

function is essentially the time integral of the production function, the intermediate
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range scaling is a puzzle.

It has been suggested that the non-scaling of the loop production function is a

transient effect [61, 67], and that the peak should eventually disappear altogether [67]

or start scaling if only a large enough simulation could be performed [61]. However,

the evidence that a power law with a small scale cutoff is a real feature of Nambu-

Goto string networks has been strengthened thanks to the agreement with Polchinski

and collaborators’ model of loop production [70, 71, 35]. There is also no evidence

for scaling of the peak in the loop production function from visual inspection of the

graphs in Refs. [61, 67].

Accepting the emergence of a power law form for the loop production function, a

small scale cut-off is required to keep the total energy loss finite. The conventional

string scenario demands full scaling, and invokes gravitational radiation reaction to

change the loop production scale to a constant fraction of the horizon size, which

is (Gµ)1+2χt, according to Ref. [71] and outlined in Sec. [2.3.3]. However, there are

no network simulations including gravitational radiation reaction so this is still a

conjecture. It could equally well be that loop production really does not scale as the

Nambu-Goto simulations suggest; this does not prevent the energy density of the

long string network from scaling. Furthermore, if the small scale cut-off is the string

width [97], it is necessary to perform field theory simulations in order to include the

true small scale physics.

Previous field theory simulations of the Abelian Higgs model [95, 62] have not

studied the loop distributions in any detail, but it is already clear that their prop-

erties are very different from the Nambu-Goto versions. The number of loops in

the simulation volume is substantially less, which prompted the suggestion [95] that

the network could lose energy to classical radiation directly rather than via the pro-

duction and eventual decay of loops. Arguing in favour of loop production, it was

pointed out in [62] that even if all the energy is lost to “core” or “proto”-loops (loops

whose length is of order the string width) that the number density would be very

low anyway, approximately t−3. It was also conjectured that these protoloops would

eventually grow if a large enough simulation could be performed.

Global strings in field theory simulations [100, 103, 102] have been found to
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produce loops at horizon scale according to the one-scale model with

n =
v

t2(l + κt)2

in the matter era with κ ∼ 0.48 and

n =
v

t3/2(l + κt)5/2

in the radiation era with κ ∼ 0.5. Initially it was argued that horizon scale loops

produced by global string networks would have to fragment in order to preserve

scaling as their higher velocities due to the long range force would cause reconnection

probabilities to be high. It was found however that the timescale of boson emission

causes parent loops to shrink before the need to fragment and scaling is maintained.

Lack of fragmentation is evident from our results outlined below.

6.1 Protoloop Distributions

The Polchinski model shows how the small scale structure accounts for the produc-

tion of loops at the small scale cut off in Nambu-Goto simualtions. We are led to

investigate loop distributions in field theory simulations also, and to try to connect

small scale structure and energy loss by looking for core width sized protoloops.

In the first part of this section we test the hypothesis that a substantial fraction

of the energy loss from long strings is in the form of protoloops. The impression

given by visualisations such as Fig. [2.2] is that direct radiation appears to be very

important, although it is very difficult to tell the difference between a large amplitude

excursion by the Higgs field and a core loop. However, if energy loss into protoloops

is important we would expect to find protoloops near long strings, and our first test

is to look for these correlations.

We define a protoloop to be made from the minimum number of lattice segments

to create a closed loop (i.e. 4 linked segments, located as described in Sec. [4.1.2].

With the choice of constants for our theory as given in Sec. [4.1.1], the protoloop

length is approximately the string width. We then measure the distance from pro-

toloops to the closest point on a neighbouring piece of string and the length of the

string to which it is closest. The results are shown in Fig. [6.1]. Interestingly, for

Abelian Higgs networks, it is seen that protoloops lie close to other very small loops
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and that these clusters or isolated protoloops lie at distances of order half the cor-

relation length from long string; between two long strings. As loops collapse they

appear to fragment into clusters of very small loops but the lack of protoloops close

to long strings argues against small loop production being a significant source of

energy loss from long strings.

In contrast with it particularly clear in the radiation era, the protoloops in global

string simulations are local to other small loops but also found near long string. This

indicates that both energy loss channels are at play. If massive radiation is somehow

suppressed in global string decay since they are smoother, it may be that the wiggles

on the strings are of large enough amplitude to form small loops.

We can also check the hypothesis by looking at the number distribution of loops

in field theory simulations, using a large number of runs. The length scales of interest

are the string width (protoloops) and the network correlation length, ξ, defined as

Eq. (4.16). Fig. [6.2] shows cumulatively the number densities of loops per horizon

in the radiation era of Abelian Higgs simulations over the conformal time range

64 < τ < 128 when the network is scaling. The loops are divided into those of

length 4 links (protoloops), those up to length ξ, and those longer than ξ. In each

of these classes the number density of loops per horizon appears to be constant with

protoloops seen to occupy a very small fraction, of order 0.1.

We can estimate whether this is consistent with protoloops being a significant

channel of energy loss for long strings. If an Abelian Higgs network with comoving

length scale ξ = βτ decays into loops of size l̄, then their lifetime should also

be l̄, given the shrinking mechanism outlined in Ch.4. By conservation of energy

− d
dt
(ξ−2) ∼ n(τ, l̄), so the number of loops per horizon volume n(τ, l̄)τ 3 should

be ∼ β−2. Given that β ∼ 0.3 (Fig. [4.1]), there are roughly 100 times too few

protoloops if they were to take a significant amount of energy away from long strings

in Abelian Higgs networks.

Our result seems to be in contradiction to Ref. [62], who use a fit to the Velocity-

dependent One-Scale model [59] to argue that loop production is significant in their

field theory simulations. However, their algorithm for the equations of motion differ

from ours in the rescaling of the coupling constants plus they do not give absolute

values of the loop distribution function, so it is not possible to compare the results
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Figure 6.1: Distance of protoloops to other Abelian Higgs string (left) in the ra-

diation era in the top plot and matter era in the lower plot. Small loops lie close

together in clusters in the voids between long strings at about half the average in-

terstring distance, ∼ ξ/2. Emission of protoloops directly from long string is not

evident. In contrast, particularly for the radiation era, Global string protoloops

(right) are located near string of all lengths indicating no preference for direct pro-

duction, shrinking or fragmentation.
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Figure 6.2: Number of abelian-Higgs string loops per horizon volume (shown cu-

mulatively) in the radiation era over the scaling epoch 64 < τ < 128 of 5123∆x

simulations (average of 20 runs) with data smoothed by further averaging results

over blocks of 10τ . Black represents proportion by number of protoloops of size the

order of the string core width, δ; dark grey represents loops up to the size of the

average interstring distance, ξ(τ); light grey represents all string that is greater in

length than ξ and considered to be infinite string.

directly. One possible resolution, explored in more detail below, is that horizon-size

loops with lifetime ∼ t are carrying away an appreciable fraction of the energy.

Fig. [6.3] shows the number density distribution of global string loops, again in

the radiation era. These simulations are comfortably performed on a larger lattice

as no gauge fields are required so we observe the same 3 length scales of loops over

the longer conformal time range 96 < τ < 192. We see that there are significantly

fewer strings in global string simulations, of order 1 per horizon in total, but the

density of protoloops per horizon is still of order 0.1.

Global string loops shrink faster than Abelian Higgs loops due to Goldstone

boson emission and have a decay rate O(10), as verified in Sec. [4.2]. By the con-

servation of energy argument above with β ∼ 0.6 for global string, the production

of protoloops is potentially another significant energy loss mechanism. It is possible

that the importance of protoloops could be coupling constant dependant as global

string networks are an extreme case of the coupling constant ratio. This scenario
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Figure 6.3: Number of global string loops per horizon volume in the radiation era

over the scaling epoch 96 < τ < 192 of (768∆x)3 simulations (average of 6 runs)

with data smoothed by averaging results over blocks of 10τ . The colour grading is

the same as in Fig. [6.2] for the 3 bands of loop lengths.

has been explored by Ref. [2].

6.2 Loop Distribution Function

6.2.1 Gauge Strings

To study the loop distribution and production functions in more detail, we must

model both the production and shrinking of loops. We denote the loop distribution

function in terms of the cosmic time t and physical length lp as np(t, lp), where

lp = a(t)l and l is the comoving loop length, which is given in terms of the string

variables ǫ and σ by l =
∫

ǫdσ. We denote the comoving loop distribution function

in conformal time as n(τ, l). Then the number density of loops np(t, lp)dlp in physical

length interval [lp, lp+dlp] is related to the comoving number density of loops n(τ, l)dl

in interval [l, l + dl] by

n(τ, l)dl = a3np(t, lp)dlp

⇒ n(τ, l) = a4np(t, lp) (6.1)
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The equation governing the loop distribution function, [3] is

∂np

∂t
+ 3Hnp +

∂lp
∂t

∂np

∂lp
= Pp(t, lp) (6.2)

where H = 1
a
da
dt

and we introduce the loop production function in physical units

Pp. We also take into account energy loss from loops which we shall assume takes

place at a constant rate such that ∂lp
∂t

= −λ. We estimate λ ∼ O(1) for Abelian

Higgs string from the properties of the energy loss mechanism outlined in Sec. 2.3.21.

Using Eq. (6.1) we can relate the comoving number density distribution and the loop

production function in comoving units

∂n

∂τ
− ȧ

a
n− λ

∂n

∂l
= P (τ, l) (6.3)

where P (τ, l) = a5Pp(t, lp).

Assuming scaling, the comoving loop production function and number density

distribution behave as [92]

n(τ, l) = 1
τ4
N(x) and P (τ, l) = 1

τ5
f(x)

for functions N and f of the dimensionless ratio of loop length to horizon size

x = l/τ . Rewriting Eq. (6.3) in terms of N and f one obtains (with a ∝ τ ν),

(x+ λ)N ′(x) + (ν + 4)N(x) = −f(x)

with solution

N(x) = (x+ λ)−(ν+4)

∫ ∞

x

f(x′)(x′ + λ)ν+3 dx′. (6.4)

Numerical simulations suggest a power law for loop production, f ∝ xα below x ∼ 1.

If radiative effects can be neglected (x ≫ λ), and making the reasonable assumption

that f vanishes for x ≫ 1, we have from Eq. (6.4)

N ∝ f ∝ xα. (6.5)

For length scales where radiative effects are strong (x ≪ λ)

N ∝ xα+1. (6.6)

1Gravitational radiation would give λ ∼ ΓGµ were it to be included
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Figure 6.4: Number density distribution of loop lengths, N , against x ∝ l/τ for

Abelian Higgs strings in the radiation era. The slope predicted by the model of

Ref. [35], α = 2χ − 3, including radiative effects at small scales as in Eq. (6.6)

is shown with α + 1 = 2χ − 2 = −1.2 in red, where α is the power of the loop

production function. At longer length scales where radiative effects can reasonably

be ignored we show the slope α = −2.2 in green. Combining the model of Ref. [54]

at small scales the power for the loop production function becomes α′ = 2χ − 2.

With radiative effects included we show the slope of α′ + 1 = −0.2 in blue. Values

for 2χ taken from the 3 parameter fit to the correlation function given in Table. 5.1.

To make our measurement we define the comoving loop number density in a length

interval ∆l = l

∆n =

∫ 2l

l

n(τ, l′)dl′.

Figs. [6.4] and [6.5] show an estimate for

N(x) = τ 4
∆n

∆l

taken from the average of 20 runs in radiation and matter eras respectively. The

solid black line in Fig. [6.6] shows the initial loop distribution function, in good

agreement with the expected power law of slope −5/2, [87]. For a network that

has reached scaling, the analytic model of Ref. [70], further refined by Dubath et al
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Figure 6.5: Number density of loops, N , of Abelian Higgs string in the matter era

with slope α+ 1 = −1 (red) predicted by the model of Ref. [35] including radiative

effects at small scales as in Eq. (6.6). Without radiative effects, at longer length

scales, we show α = −2 (green). Ref. [54] predicts Nα′

with α′ = 2χ − 2 at small

length scales and we show comparison to α′+1 = 0 (blue) for when radiative effects

are also added.
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in [35], proposes that loop density is dominated by recently produced loops. They

derive a function for loop production which they extrapolate to loop number density

distribution under the assumption that radiative effects can be ignored and obtain

f ∝
( l

τ

)2χ−3

(6.7)

with χ defined in Eq. (5.16). If radiative effects are considered the exponent for the

number density distribution function will be higher by +1 at small length scales by

the arguments from Eqs. (6.4) and (6.6). This is also consistent with the analytic

findings of Rocha in Ref. [76] where the loop distribution model is enhanced by

including of the effects of gravitational radiation. From the values of 2χ calculated

from our simulation results and given in Table. 5.1, this would give exponents of

αR + 1 ∼ −1.2 in the radiation era and αM + 1 ∼ −1.0 in the matter era which

are compared to our data in Figs. [6.4] and [6.5]. The agreement remains less than

convincing, particularly for the radiation era.

Olum et al [67] calculate the loop production function f(x) from their Nambu-

Goto simulations. The function drops from a small scale peak with a power law

consistent with the model proposed by Dubath et al [35]: f ∝ x2χ−3. The exponent

is calculated using Eq. (5.16) with velocities taken from simulations of Ref. [62];

vR = 0.63 and vM = 0.57. No fit values for the gradient of log f are quoted in

Ref. [67] but pictures showing average gradients of their loop production function

in the matter and radiation era are used in Ref. [35] to demonstrate their model.

Exponents are listed in Table. 6.1.

Number densities can also be compared with Nambu-Goto simulations of Ref.

[75] who quote a length distribution,

xN(x) ∝ xp (6.8)

They find a consistent power law over the whole range of their Nambu-Goto sim-

ulation with exponents p = −1.6 for the radiation dominated era and p = −1.4 in

the matter era. Given that there is no radiative decay mechanism in Nambu-Goto

simulations we can infer slopes for the loop production function of α = −2.6 and

α = −2.4 for radiation and matter eras respectively, in good agreement with the

values predicted by the model [35] for Nambu-Goto strings. However, even if radiat-

ive effects are taken into consideration these results are steeper than those predicted
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for our Abelian Higgs strings, (see Table. 6.1), which are already too steep to fit our

data.

The flatter power law for loop distributions found in the field theory examina-

tion Figs. [6.4] and [6.5] can be better explained by invoking loop production and

fragmentation at horizon scales combined with energy loss at small scales. From

Ref. [78] it is predicted that unusual power laws for the production of loops can be

explained by loop fragmentation probabilities, q, with f ∝ l−2q. For small loops

where radiative effects are strong, number density distribution functions will take

the form N ∝ x−2q+1. Then the steepest slope possible at these small length scales

would be −1 when the fragmentation probability is of order unity.

We also see evidence of loop production at the horizon scale in the small feature

visible in the loop distribution function at log x ≃ 0.5, which has some similarity

to the Nambu-Goto simulations of [67]. It is straightforward to check that the

production of one such loop per horizon volume per Hubble time is sufficient to

remove a significant fraction of the energy in long strings. Given that these loops

are losing length at a rate of order 1 as well as fragmenting, this is consistent with

our observation of order one loop per horizon volume at any time. The correlation

of protoloops with other small loops shown Fig. [6.1] can also be explained by loop

fragmentation.

A further explanation for the flatter distribution has been put forward by Ref.

[54]. They construct a continuous number density distribution function which ex-

hibits different scaling over 3 domains of x. The power α = 2χ− 3 has been shown

to be reasonable on scales x ≫ xd = − dl
dτ
. In the length scale range from the gravit-

ational cutoff, xc, to xd the power law for the number density distribution has been

shown to follow

N(xc<x≪xd) ∝
x2χ−2

xd
(6.9)

Since our lower cutoff for the smallest loops produced can be taken as the string

width and for our simulations xd = O(1), this coincides with the range of scales

where radiative effects are also strong so overall our number density power law

should then be consistent with α + 2. This value is shown in Figs. [6.4] and [6.5]

against the measured number density distributions in Abelian Higgs simulations.

Finally, we note that the large x = l/τ behaviour in our number density analysis
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αR αM

Abelian Higgs Prediction −2.2 −2.0

Nambu-Goto Prediction −2.8 −2.5

Nambu-Goto Measurement −2.6 −2.4

Table 6.1: Table to show comparison of simulation results for the exponent α ob-

tained for a power law model for loop production as Eq. (6.7) in both radiation (R)

and matter (M) eras. The first line shows our values calculated using the velocities

〈ẋ2〉2χ from Table 5.3. The second line shows the exponent predictions calculated

using velocities obtained from Ref. [61] which fits well to Nambu-Goto simulations of

Ref. [67]. The last line shows exponents derived from measured length distributions

in Nambu-Goto simulations by Ref. [75].

remains a puzzle, as it departs from the -2.5 slope expected outside the horizon.

It may be that the loop distribution at these much longer length scales is quite

sensitive to the finite volume of the simulation [8].

6.2.2 Global Strings

For global string networks the loop number density distribution function is shown

in Fig. [6.7]. The distribution becomes very flat at small scales but the power law

seems steeper and more consistent over a wider range of scales than for Abelian

Higgs networks. That the power law is constant to longer length scales is reasonable

since according to our model for including radiation effects in the number density

distribution Eq.(6.6), the lengthscales in question are x ≪ λ and for global strings

we have found that λ ∼ O(10). Like Abelian Higgs strings though, since there are

so few loops, a fit to our data is unreliable. A comparison to slopes calculated from

the 2χ model are shown as an indicator and shows this model with radiation taken

additionally into consideration to have reasonable success.
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Figure 6.6: The loop number density N = τ 4∆n/∆l, per comoving logarithmic bin

length ∆l is shown for 7 equally spaced times throughout the scaling epoch of the

radiation era against the dimensionless ratio l/ξ ∝ x. This is compared with the

very early time τ = 10 case in solid black which is compatible for l ≫ τ with slope

-5/2 (shown dashed) as predicted in [87].
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Figure 6.7: The loop number density distribution for global string networks in the

radiation era. Using the value for 2χ taken from the 3 parameter fit to the correlation

function given in Table. 5.2 we show the slopes for α = 2χ− 3 (green) and α+ 1 =

2χ− 2 (red).
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Chapter 7

Summary and Conclusions

We have analysed cosmic string networks from Abelian Higgs and Goldstone field

theory simulations in order to establish the significance of small scale structure on

their dynamics. A cosmic string network settles into to a scaling evolution whereby

the mean interstring distance, ξ, remains a fixed fraction of the horizon size O(τ),

where τ is conformal time.

By continuing the efforts made in Kibble’s 3 scale model [6] in terms of correla-

tions in the tangent vectors along the string, Polchinski et al [70] reveal that a power

law can be expected for scaling evolutions of gauge string in a correlation function

defined by

1− corrx(σ, τ) = A
(s

ξ

)2χ

We confirm that this correlation function is valid and scales for string networks in

both the Abelian Higgs and Goldstone models with non-guassianity of the systems

not seeming to effect the qualitative agreement. The parameter 2χ is evaluated and,

despite the difficulties in measuring network velocities 〈̇x2〉, the formula

2χ =
2ν(1− 2〈ẋ2〉)
1 + 2ν〈ẋ2〉

is found to be generally consistent with our data for ν defined by scale factor a = τ ν .

Scaling in the tangent vector correlator is an attractor solution as evident from an

over-damped system rapidly relaxing to a scaling evolution once additional damping

is removed and there is no evidence of memory of initial conditions with the value for

2χ settling to the same value in spite of the length of the interval of over-damping.

The fractal dimension of long string can also be formulated in terms of a power
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law in 2χ

df ≃ 1 +
Aχ

(2χ+ 1)(2χ+ 2)

( s

τ

)2χ

+O
(s

τ

)4χ

.

making the relationship between 2χ and ‘smoothness’ clear. We find a clear indica-

tion of scaling in this definition though the values for 2χ and A are slightly elevated

for a match to the correlation function.

For global strings the correlation function also scales according to the same

formula with the value for 2χ greater than for Abelian Higgs strings indicating

they are indeed smoother, as expected. We calculate the effect due to backreaction

from a radiation field using the local backreaction approximation of Battye et al

[11] and under the scaling assumption, we find that the power law will change

rather than necessarily introduce a small scale cut off in the correlation function.

We demonstrate how the power, 2χ, is changed due to the additional damping by

radiative back reaction from the Goldstone field, finding that the effect behaves in a

similar way to Hubble damping that can be incorporated into the formula with an

effective ν. Due to construction using an anti-symmetric tensor field in the Kalb-

Ramond action is it reasonable to expect that gravitational radiation damping will

also act like a Hubble damping.

Small scale structure is significant in determining the size of loops emitted from

the long string network which is a key contributor to cosmic strings achieving the

scaling regime. The loop production function is linked to the correlation function

by the proposed model of Polchinski and collaborators via a power law distribution

for the number density of loops in terms of the parameter 2χ

N ∝
( s

τ

)2χ−3

.

The observed power law for loop distributions for our field theory simulations do

not agree well with the prediction from this model, even taking into account the

radiative decay channel open to field theory strings for which we make a simple

modification and show the power law is decreased by 1 on scales where radiative

effects will be significant. An enhancement to the model by Ref. [54] suggests that

the power for small scales should be 2χ − 2 even for Nambu strings, but this still

provides a less than convincing fit to our data.

A further mechanism effecting decay of loops is their fragmentation to smaller

loops as they continue to self intersect until they are small enough to evaporate.
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Evidence shows that core sized protoloops in Abelian Higgs networks are not located

near long strings but are likely produced in fragmentation of horizon sized loops.

Further, there are not enough of them, roughly 0.1 per horizon volume, to be a

significant direct energy loss channel for the long string network. A model for loop

distributions with a flat fragmentation probability q explored by Sherrer et al [78]

N ∝ l−2q

is more consistent with our loop production data.

Since Abelian Higgs strings are not found to directly produce many small loops,

the graviational radiation from string networks will be suppressed so that it is un-

likely that the gravitational wave signatures from the early universe will be influ-

enced to any great extent by the presence of strings. It would appear that detecting

strings will rely on the analysis of cosmic ray signals however the types of particle

produced by strings is model dependant.

In global string networks we find that there is a spatial correlation between long

string and protoloops plus an appreciable amount of energy is lost to loops of the

smallest length scales. We conclude that the smoothness of global strings, evident

from a higher 2χ, could be enough to raise the amplitude of small scale structure

to allow the formation of recognisable loops instead of energy being released into

massive radiation as favoured by gauge strings.

The results presented in Chapter 5 can be used to provide an explanation to the

scale separation problem: how massive radiation of frequency around the inverse

string width is produced from fields which are apparently changing with a frequency

of about the Hubble rate. It was established from the tangent vector correlation

function that there is small-scale structure on all scales between the Hubble length

and the string width. This means that strings are not smooth on scales near the

string width, and hence there are oscillation modes with frequency of order the

inverse string width, which is sufficient to generate massive radiation. For smoother

strings where the small amplitude fluctuations are damped, recognisable loops at

the string width scale can be formed. We also explain why the correlation function

and loop production functions for string networks scale without including the effects

from radiative back reaction in that he value for 2χ incorporates the damping effects

of a massless radiation field which behaves like Hubble damping. To quantify the
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effect requires a technically difficult calculation of the third derivative of the position

vector and we leave this as an open question for future investigation.
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Appendix A

Leap-Frog Algorithm

The algorithm for the equations of motion of the Abelian Higgs model are found

from variation of the discretised action
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where φ is the Higgs field and θ is the phase associated with the gauge field.

From the Euler-Lagrange equations of motion we calculate the evolution of each

field from one time step to the next where Π is the time derivative of φ, and ǫ the

time derivative of θ and ∆ij is defined in Eq. 4.12
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