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Abstract

Ions trapped in Paul traps provide a system which has been shown to exhibit most of

the properties required to implement quantum information processing. In particular, a

two-dimensional array of ions has been shown to be a candidate for the implementation

of quantum simulations. Microfabricated surface geometries provide a widely used tech-

nology with which to create structures capable of trapping the required two-dimensional

array of ions. To provide a system which can utilise the properties of trapped ions a

greater understanding of the surface geometries which can trap ions in two-dimensional

arrays would be advantageous, and allow quantum simulators to be fabricated and tested.

In this thesis I will present the design, set-up and implementation of an experimental

apparatus which can be used to trap ions in a variety of different traps. Particular focus will

be put on the ability to apply radio-frequency voltages to these traps via helical resonators

with high quality factors. A detailed design guide will be presented for the construction

and operation of such a device at a desired resonant frequency whilst maximising the

quality factor for a set of experimental constraints. Devices of this nature will provide

greater filtering of noise on the rf voltages used to create the electric field which traps

the ions which could lead to reduced heating in trapped ions. The ability to apply higher

voltages with these devices could also provide deeper traps, longer ion lifetimes and more

efficient cooling of trapped ions.

In order to efficiently cool trapped ions certain transitions must be known to a required

accuracy. In this thesis the 2S1/2 →2P1/2 Doppler cooling and 2D3/2 →2D[3/2]1/2 re-

pumping transition wavelengths are presented with a greater accuracy then previous work.

These transitions are given for the 170, 171, 172, 174 and 176 isotopes of Yb+.

Two-dimensional arrays of ions trapped above a microfabricated surface geometry

provide a technology which could enable quantum simulations to be performed allowing

solutions to problems currently unobtainable with classical simulation. However, the spin-

spin interactions used in the simulations between neighbouring ions are required to occur

on a faster time-scale than any decoherence in the system. The time-scales of both the
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ion-ion interactions and decoherence are determined by the properties of the electric field

formed by the surface geometry. This thesis will show how geometry variables can be

used to optimise the ratio between the decoherence time and the interaction time whilst

simultaneously maximising the homogeneity of the array properties. In particular, it

will be shown how the edges of the geometry can be varied to provide the maximum

homogeneity in the array and how the radii and separation of polygons comprising the

surface geometry vary as a function of array size for optimised arrays. Estimates of the

power dissipation in these geometries will be given based on a simple microfabrication.



ix

Acknowledgements

Due to nature of the work involved in designing, setting-up and implementing a working

ion trapping experiment from scratch parts of the work described in this thesis were carried

out as part of a team. Here I will outline the contributions of others:

Chapter 3: Yb+ ion trap experimental set-up

The ultra high vacuum system described was designed by Altaf Nizamani. It was con-

structed by Altaf Nizamani with help from James McLoughlin, Robin Sterling and Philippa

Young. The macroscopic linear Paul trapped used in this thesis was designed by Robin

Sterling and assembled by myself, Marcus Hughes, James McLoughlin and Robin Sterling.

The experimental laser set up was designed and set up by myself, Marcus Hughes, James

McLoughlin and Robin Sterling. The lasers themselves were built by James McLoughlin

and the 780nm Rb reference laser was built by Robin Sterling, both were based on designs

by Prof. Ted Hänsch.
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Chapter 1

Introduction

The first computers bearing a resemblance to today’s were created by Babbage in the 1820s

with the aim of tabulating polynomials. Turing then developed the idea of computing with

the concept of a universal machine which could be used to simulate any other system [4].

Since these initial steps, the computer has developed into a device used to solve all manner

of increasingly complex problems and, thus, revolutionise the world we live in. There exists,

however, despite the wide ranging use of these computers, limits to their efficient use as

their operation is governed by classical physics. These limits are reached when a classical

computer is used to simulate a quantum mechanical system. This is because the time

taken to simulate these systems grows exponentially with the size of the quantum system

[5]. In order to simulate a quantum system efficiently (with a simulation time which grows

linearly with the system size) one has to utilise quantum physics to build a new type of

computer.

The idea for a quantum computer was first put forward by Richard Feynman in 1982

who described how quantum bits could be used to perform calculations [5]. This idea was

then further developed by Deutsch who suggested that these quantum computers could be

used to perform some calculations more efficiently than their classical counterparts [6, 7].

In particular, Shor and Grover developed algorithms which utilised the greater efficiency

of quantum computers. The algorithms proved to be far more efficient at the factorisation

of numbers and the searching of databases compared with what classical computing would

allow [8, 9, 10]. Additionally, it was shown that quantum technology could allow the secure

encryption of information due to the impossibility of cloning quantum states [11, 12, 13].

With these developments a quantum computer has become a tantalising prospect for both

academic research and industry.

Trapped ion systems have been used to demonstrate many aspects required for quantum
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computing [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] and is currently

considered to be a leading technology with which to construct a quantum computer. One

application of arrays of such trapped ions, or indeed any other quantum technology, is

quantum simulation. Classical computers are thought to have the same exponential size

growth issue with the simulation of quantum systems as they do with factorising large

numbers and searching large databases, whereas quantum simulators feature polynomial

scaling. This means that a quantum simulator could provide a tool with which to effi-

ciently simulate a quantum system. Although quantum simulators would only provide

the limited ability to simulate quantum systems, and not fully fledged quantum computa-

tion, they present an achievable stepping stone between today’s classical computers and

the quantum computer. Devices of this nature would allow many aspects of physics to be

tested and discovered which could be extremely difficult with current classical computation

and simulation.

The incorporation of microfabrication techniques into the field of ion trapping provides

a way of designing and building large scale structures with which to trap multiple ions

[3, 31, 32]. The ability to be able to trap many ions with a microfabricated surface

geometry moves the possibility of building a quantum simulator a step closer. However,

in order to make quantum simulators a reality it will be necessary to implement and test

different types of ion traps, from macroscopic multi-layer traps to microfabricated surface

chip traps. To make this task easier an experimental set-up which can house this wide

variety of traps without any modification is required. Lasers must be locked to transition

wavelengths to provide efficient cooling of the trapped ions, and radio frequency high

voltages must be delivered to the trap electrodes. The work in this thesis shows the

development of such an experimental set-up with particular focus on efficiently applying

radio frequency voltages to ion traps using helical resonators and the development of

surface geometries capable of trapping two-dimensional arrays of ions.

In chapters 3 to 6 the design of an Yb+ ion trap experiment is described. This set-up

allows for the operation of both symmetric and asymmetric types of Paul traps with up to

90 electrical connects. The design includes the presence of a chip carrier which allows for

various designs of trap to be tested within a short turn around period without the need to

redesign parts of the vacuum system housing the experiment for each trap. This provides

an experimental base with which improvements in microfabricated chip trap designs can

be made. Included in these chapters is an in-depth discussion on the application of radio

frequency voltages to ion traps via a helical resonator. The theory behind the helical
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resonator is described along with a discussion on how to optimise the design of the helical

resonator to provide the highest quality factor for a given set of experimental constraints.

This is of importance as higher quality factors act to filter out noise on the rf voltages

required to trap ions in Paul type traps. It is thought that the presence of noise on these

voltages can contribute towards the heating of trapped ions which can lead to decoherence

in interactions required for quantum information processing.

Chapter 7 then describes the trapping of the 170, 171, 172, 174 and 176 Yb+ isotopes

with the experimental set-up described in chapters 3 to 6. Frequency measurements of

the 2S1/2 ↔2P1/2 and 2D3/2 ↔3D[3/2]1/2 transitions are made in this chapter with higher

precision that previous work [33]. Also in this chapter a heating rate measurement of a

174Yb+ ion is made in a macroscopic symmetric Paul trap compatible with the vacuum

system design, using a method described by [34].

Chapter 8 shows how a surface geometry, suitable for microfabrication, can be used to

trap a 2D array of ions. It is shown how geometries of this type can be optimised to increase

the homogeneity of interactions across the array whilst, simultaneously, maximising the

ratio between the decoherence time and the interaction time. This is important as a

homogeneous array allows the arrays to be scaled to larger sizes and interactions are

required to occur on a faster time-scale than the decoherence of the system in order

to allow simulations with a useful fidelity. A device of this nature would enable a 2D

array of ions to be used as a quantum simulator providing a computing tool which would

outperform even today’s most powerful classical computers.
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Chapter 2

The Yb+ ion

2.1 Introduction

This chapter will discuss the atomic structure of Yb+ ions and how this is exploited for

the purpose of their cooling and detection. The energy levels will be shown for all stable

isotopes (with the exception of 173). The effect of laser power and detuning from the

resonance of transitions will be discussed in terms of the effect on the ion’s scattering rate

and subsequent detection.

2.2 Creating Ions

Atomic ions are commonly created using either photo-ionisation or electron bombardment

of neutral atoms. The photo-ionisation process has the advantage of allowing for isotope

selective loading of ions without the need for expensive enriched neutral atom sources. It

also has the advantage that it can avoid charge build up occurring on insulating materials

close to the ion trap. This is a common source of stray electric fields which perturb the

trapping fields created by the trap electrode structures and, ultimately, affect trapping

properties. It should be noted, however, that UV lasers have also been found to cause

charge build up on some insulators due to the photoelectric effect. In terms of efficiency of

ionisation, photo-ionisation has been found to be around two to three times more efficient

when compared with electron bombardment [35]. This higher efficiency means that a

lower atomic flux can be used with a photo-ionisation technique compared to electron

bombardment, resulting in a reduction in coating of trap electrodes which is thought to

augment the trapping field leading to heating and other unwanted motional effects.

Figure 2.1 shows the specific photo-ionisation process for neutral Yb atoms which

requires the use of two photons. The first photon, at 399 nm, excites the atom from the
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Figure 2.1: Energy level diagram showing the photo-ionisation process for ionisation of

neutral Yb atoms.

6s2
1S0 ground state to the 6s6p 1P1 excited state. This first step is the isotope selective

part of the ionisation process as the transition frequency is dependent upon the isotope

being excited [36]. In order to complete the ionisation process, once in the excited state,

a second photon must be absorbed by the atom with a wavelength shorter than 394 nm

to remove the exited electron into the continuum. Typically with Yb a 369 nm (a laser

present for Doppler cooling of Yb+ ions) is used for this final step. However, due to the

presence of the electric trapping fields the ionisation threshold is reduced allowing a second

399 nm photon to ionise the excited neutral ytterbium atom [35].

2.3 Trapping charged particles

Earnshaw’s theorem [37] shows that it is impossible to trap an isolated charged object

in free space with the use of just static electric fields. However, charged objects can be

isolated and trapped in free space with the use of time dependant electric fields. In the

case of Paul type ion traps [38], one typically applies a radio frequency signal to trap

electrodes in order to obtain a suitable ponderomotive pseudopotential. Figure 2.2 shows

examples of different types of Paul trap designs. The electric quadrupole potential created

by the trap structure is given by

Ψ(t) =
V (t)η

2r2
(αx2 + βy2 + γz2) (2.1)

where V (t) is a time varying voltage applied to the electrodes given by V (t) = V0 cos Ωt+U

and r is the distance from the ion to the nearest electrode. η is a geometric efficiency

factor [39] (ranging between one and zero) which is equal to one for a perfectly hyperbolic

geometry (shown top left in figure 2.2) and decreases as the geometry strays from this
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perfect form. The Laplace condition, ∆Ψ = 0, requires that α + β + γ = 0. A simple

solution to this requirement occurs when α = −β = 1 and γ = 0 along with U = 0 and

results in a trapping potential given by

Ψ(t) =
V (t)η

2r2
(x2 − y2) (2.2)

The ponderomotive potential from this trapping potential can be shown to be [39, 40]

ψ =
e2

4mΩ2
|∇V (x, y)|2 (2.3)

yielding the pseudopotential

ψ =
e2V 2

0 η
2

4mΩ2r4

(
x2 + y2

)
(2.4)

where m and e are the mass and charge of the ion respectively, Ω is 2π times the drive

frequency in Hertz, r is the distance from the centre of the trap to the nearest electrode

and V0 is the amplitude of the RF voltage applied to the trap.

The secular motional frequency of an ion trapped inside this ponderomotive pseudo-

potential is then given by [39]

ω2 =
e2

4mΩ2

∂2

∂x2

(
|∇V (x, y)|2

)
(2.5)

yielding

ω =
eV0η√
2mΩr2

(2.6)

A two-dimensional trapping potential in the x and y direction can be created by

the linear trap structure shown top right in figure 2.2. This is achieved by applying a

time varying potential of V (t) = U + V0 cos Ωt. From the resultant electric potential the

equations of motion of an ion can be shown to be [38]

ẍ+
e

mr2
(U + V0 cos Ωt)x = 0 (2.7)

ÿ − e

mr2
(U + V0 cos Ωt)y = 0 (2.8)

There are conditions which exist that enable the trapped ion to have a stable motion

in both the x and y dimensions axes. The solutions to the equations of motion (equations

2.7 and 2.8) providing stable motion in both axes are given by the Mathieu equations,

which describe the motion of such a system, and are written as
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Figure 2.2: (a) Diagram showing a quadrupole Paul trap. The ponderomotive potential

due to the RF and static voltage electrodes provide confinement in all three dimensions.

All electrodes are hyperbolically shaped (b) A two layer linear Paul trap showing two rod

RF electrodes providing transverse confinement with static voltage rod electrodes present

to provide confinement in the axial direction of the trap. The static voltage electrodes in

this design can also be used to rotate the trapping potentials principle axis to optimise

laser interactions with trapped ions. (c) Diagram showing a five wire surface Paul trap.

Here the ion is confined in a potential created by the surface electrodes at the midpoint

between the two RF strips. Control static voltage electrodes are present to enable control

of the potential nil along the length of the trap. This enables ions to be shuttled along

the length of the trap.
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d2x

dτ2
+ (a+ q cos 2τ)x = 0 (2.9)

d2z

dτ2
− (a+ q cos 2τ)y = 0 (2.10)

and so by comparison with equations 2.7 and 2.8 the stability parameters a and q an be

found to be given by

a =
4eU

mr2Ω2
(2.11)

q =
2eV0

mr2Ω2
(2.12)

The stability of a trap depends upon these a and q parameters and figure 2.3 shows

the values which provide the stable trapping of an ion in the x direction (areas bounded

by solid lines) and the y direction (areas bounded by dashed lines). Figure 2.4 shows a

close up of the region useful to ion trapping, when stability is achieved in both the x and

y directions simultaneously.

Figure 2.3: Graph showing the values at which the a and q parameters provide stable

trapping of an ion in the x direction (area bounded by solid lines) and the y direction

(area bounded by dashed lines)

When a linear ion trap (as seen top right in figure 2.2) possesses a and q parameters

yielding stable trapping in both the x and y directions (the linear node of the trap) addi-

tional confinement along this node can be achieved by additional static voltages applied

to certain additional electrodes as shown in figure 2.2.
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Figure 2.4: Graph showing the values at which the a and q parameters provide stable

trapping of an ion in the x direction (area bounded by solid lines) and the y direction

(area bounded by dashed lines).

2.4 Ytterbium ion atomic structure

In total there are seven stable isotopes of Yb (168, 170, 171, 172, 173, 174 and 176).

During the work carried out in this thesis all the isotopes except 168 and 173 were ionised

and trapped. The reason for these exceptions is the low natural abundance of the 168

isotope (less than 1%) and the 173 isotope’s 5/2 spin which produces a hyperfine splitting

of energy levels which require a combination of laser frequencies which are challenging to

produce in order to cool the ion. The 171 isotope also has hyperfine structure, as shown

in figure 2.6, however in this case it is relatively simple to produce the laser frequecies

required to cool this isotope.

The energy level diagram of an even isotope Yb+ ion can be seen in figure 2.5. For the

purpose of detection and cooling a 369.5 nm laser beam is used to excite the ion from the

2S1/2 ground state to the 2P1/2 excited state, with spontaneous emission sending the ion

back to the ground state. When the ion is in the 2P1/2 state, a decay to the metastable

state of 2D3/2, with a branching ratio of around 0.005, can occur [41, 42]. Since this D-

state has a lifetime of around 52 ms a 935 nm laser beam is required to return the ion to

the 369.5 nm Doppler cooling cycle. This combination of 369 nm and 935 nm lasers form a

closed cooling cycle which produces ion fluorescence at 369 nm. However, even in an ultra

high vacuum, inelastic collisions with background gas particles can occur about once an

hour which can result in the ion being transferred to the F state, which has a lifetime of
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Figure 2.5: Diagram showing the energy levels in even Yb+ ions. More precise wavelength

data is shown in table 7.2.
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around 6 years [43]. A collision of this type will remove the ion completely from the cooling

cycle resulting in the ion heating, ceasing to fluoresce and, once hot enough, leaving the

trapping field altogether. This can be avoided by using 638 nm light to depopulate the F

state and allow decay back into the 369 nm and 935 nm cooling cycle. For the 171 isotope

either two 638 nm lasers at different wavelengths are required or, as in this work, a single

laser can be switched between the two wavelengths.

Figure 2.6: Diagram showing the energy levels in a 171 Yb+ ion. Here the hyperfine

splitting for the 2S1/2, 2P1/2, 2D3/2 and 3D [3/2]1/2 are 12.6 GHz, 2.1 GHz, 0.86 GHz and

2.20 GHz respectively. More precise wavelength data is shown in table 7.2.

The 171 isotope of Yb+ possesses hyperfine doublets which are a result of the ion’s spin

half nucleus and are shown in figure 2.6. The ground state levels 2S1/2 |F = 0,mF = 0〉

and |F = 1,mF = 0〉 can be used to represent the |0〉 and |1〉 qubits respectively, for use

in quantum information processing. Doppler cooling and fluorescence detection is carried

out on the 2S1/2 |F = 1〉 ↔2 P1/2 |F = 0〉 transition. It is possible for off-resonant coupling

to occur during this process resulting in a population of the 2S1/2 |F = 0〉 state. Selection

rules dictate that this state can only be de-populated via the 2S1/2 |F = 0〉 ↔2 P1/2 |F = 1〉

transition which is 14.7 GHz away from the 2S1/2 |F = 1〉 ↔2 P1/2 |F = 0〉 transition due

to the hyperfine splitting. As with the even isotopes the 2P1/2 manifold can decay to
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either the 2D3/2 |F = 1〉 or 2D3/2 |F = 2〉 states. Depopulation of these states is achieved

using the two transitions of 2D3/2 |F = 1〉 ↔3 D [3/2]1/2 |F = 0〉 and 2D3/2 |F = 2〉 ↔3

D [3/2]1/2 |F = 1〉, which are 3.06 GHz apart due to the hyperfine splitting. Again, as

with the even isotopes, collisions with background gas particles can cause the ion to be

transferred to the 2F7/2 manifold. This is de-populated via transitions at 638.610 nm and

638.616 nm used to excite the ion into the 1D [5/2]5/2 manifold from where it can decay

back into the cooling cycle [44].

2.5 Ion fluorescence and Doppler cooling of trapped ions

Many experiments in the field of quantum information processing require the trapped

ions to be well localised [17, 19, 45, 46, 47]. To achieve this localisation, cooling of the

trapped ions is required. Doppler cooling provides a simple method to implement this and,

although Doppler cooling alone may not leave the ion in the required motional state, it is

often a pre-requisite for cooling techniques used to provide further localisation [48, 49].

The scattering rate of a two level atomic system is given by [50]

γ =
sΓ

2

1 + s+
(

2∆
Γ

)2 (2.13)

where Γ is the linewidth of the transition, s is the saturation parameter and ∆ is the

detuning of the laser from the transition frequency. As the ion possesses a velocity, v̄, a

Doppler shift, ωD = kv̄, of the transition frequency occurs which affects the scattering

rate of the ion, giving a new scattering rate of

γD =
sΓ

2

1 + s+ (2(∆−ωD)
Γ )2

(2.14)

Photons have a momentum, ~k, and so an ion absorbing a photon recoils from the

photon source with equal momentum. This results in the ion feeling a force given by

FD = ~kγD (2.15)

Assuming a Doppler shift which is small in comparison to the detuning (∆ > ωD) it

is possible to Taylor expand equation 2.15 as

FD = F0 +
dFD
d∆
· kv̄ + . . . (2.16)

Setting F0 = 0 (as we are only interested in the change in energy and not the initial

conditions) the change in energy due to Doppler cooling can be expressed as
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dE

dt cool
≈ 2~k2sv̄2∆

Γ
(

1 + s+
(

2∆
Γ

)2)2 (2.17)

If the frequency of the cooling laser is red detuned from the ion’s resonant transition

frequency then the Doppler shift will act to cause the ion to scatter more photons when

its velocity, v̄, is in the direction of the photon source. This means that the laser applies

a force on the ion in the direction of the laser wave vector. A force is also felt by the

ion when a photon is emitted, returning it to its ground state, but as these photons are

scattered randomly in all directions the net force from these events will average to zero.

This means that, averaged over many photon scattering events, the net force felt by the ion

will be that given by equation 2.15. The energy associated with each of these spontaneous

scatter events is given by

E =

(
~k̄
)2

2m
(2.18)

where m is the mass of the ion. This energy can then be combined with the scatter rate in

equation 2.13 and the knowledge that both a photon absorption and emission event lead

to heating, to give the change in energy due to heating as

dE

dt heat
=

(~k)2sΓ

2m
(

1 + s+
(

2∆
Γ

)2) (2.19)

The limit of Doppler cooling is then found by equating the cooling and heating rates

in equations 2.17 and 2.19 yielding a minimum ion velocity in the Doppler limit of

v2 =
~Γ2

8m∆

(
1 + s+

(
2∆

Γ

)2
)

(2.20)

The temperature of the ion can be related to its velocity via mv̄2/2 = kBT/2 yielding

T =
mv̄2

kB
(2.21)

which, in the case when s� 1, gives a Doppler cooling temperature of

T =
~Γ2

8∆kB

(
1 +

(
2∆

Γ

)2
)

(2.22)

A minimum Doppler cooling temperature, TD, is achieved when the detuning is set to

∆ = Γ/2, resulting in

T =
~Γ

2kB
(2.23)
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This Doppler limit, TD, can be expressed in terms of the ions secular frequency, ωt,

and the thermal motional state in which the ion resides n̄ [50]

TD = ~ωtn̄D (2.24)

For a typical trapping secular frequency of ωt ≈1 MHz the minimal motional state

Yb+ ions can be cooled to is, therefore, n̄D ≈ 10.
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Chapter 3

Yb+ ion trap experiment set up

3.1 Introduction

In this chapter the ultra high vacuum system used to house the ion trap will be introduced.

This system has been specifically designed to cater for both surface and through chip traps

with the additional ability of fast turnaround times when changing between different chip

traps. The macroscopic trap fitted in the vacuum system used to initially trap and gain

vital knowledge of Yb+ ion wavelengths will be described. The optical apparatus used to

combine and focus various lasers into the trapping region of the vacuum system will also

be introduced and described along with the methods used to apply sidebands to the 935

nm and 369.5 nm lasers.

3.2 The ultra high vacuum system

A successful ion trap experiment requires the construction and operation of an ultra high

vacuum (UHV) system. This is required in order to reduce the probability of collisions

with other particles, which can cause the ions internal state to change and introduce

decoherence. A severe enough collision is capable of ejecting an ion from the trapping

potential. For these reasons it is desirable to design a vacuum system which is capable of

achieving pressures of ≈ 10−12 Torr. At this pressure the mean free path length of the

atoms and molecules is around 107 km resulting in ion lifetimes of hours to days. Another

requirement for the vacuum system is the ability to accommodate both surface and through

traps. This has been achieved with the use of a custom made chip bracket (shown in figure

3.1) designed to accommodate a commercially available chip carrier (Global Chip Material:

PGA10047002).

The use of the chip bracket arrangement in figure 3.1 allows different micro fabricated
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Figure 3.1: Diagram depicting the chip carrier, chip bracket and both surface and through

trap atomic ovens. Top left: The chip carrier is shown containing a hole allowing for

laser access for through traps. The chip bracket is shown along with the groove grabbers

(Kimball Physics: MCF450-GG-CT02-A) used to mount the bracket onto the inside of the

vacuum chamber hemisphere. Also visible are the atomic ovens used to supply an atomic

flux for surface traps. Top right: The underside of the chip bracket is shown. Visible

in this view are the pin receptacles from the chip carrier. These receptacles are used to

supply voltages to bond pads on the chip carrier. Also visible are the atomic ovens used to

produce an atomic flux for through traps. Again the surface trap atomic ovens are visible.

Bottom: A side view shows the chip carriers pin receptacles penetrating the chip bracket.

Also shown are the atomic ovens used to provide atomic flux for symmetric through type

traps.
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chip traps to be tested in UHV conditions with a short turnaround time (within two

weeks). It provides 90 electrical connects for applying voltages to traps being tested.

Eighty-eight of these connects are wired to two 50 pin feedthroughs which provide the

ability to controllably apply static voltages directly to each chip pin. The remaining two

connects are used to apply an RF voltage to the chip. This is done via connection to a

power feedthrough (Kurt J. Lesker: EFT0521052) by bare copper wires insulated with

ceramic beads. Initially Kapton insulated wires were used but were found to outgas and

electrically short when high RF voltages were applied (in the range of 500-1000 V).

The chip bracket is encased within a Magdeburg hemisphere attached to an octa-

gon (Kimball Physics: MCF450-MH10204/8-A and MCF450-SO20008-C respectively) as

shown in figure 3.2. The combination of the hemisphere and octagon provides simple

optical laser access to interact with trapped ions. Access for surface traps are provided

by six 11
3” fused quartz silica windows in the octagon whilst access for through traps are

provided by two 11
3” fused quartz silica windows in the hemisphere. All eight of these win-

dows are anti-reflection (AR) coated to maximise the amount of laser power that reaches

the trapping region. The AR coatings were specified to transmit 95% of incident light at

all the wavelengths used (369 nm, 399 nm, 935 nm and 638 nm).

To provide an atomic source, four ovens are mounted onto the chip bracket, as seen

in figure 3.1. These consist of ≈ 0.8 mm diameter stainless steel tubes connected to an

external current source via an electrical power feedthrough (Kurt J. Lesker: EFT0265063).

When ohmically heated by the current source, they provide a stream of divergent atomic

beams aimed at the centre of the chip bracket. Two of the ovens provide atoms for a surface

trap geometry whilst the other two provide atoms for a through trap. It is important to

know the angle between the atomic ovens and the path of the ionising lasers (the 399

nm laser) as the wavelength at which the lasers will be resonant with the oven atoms

is a function of the intersecting angle [36]. The change in the frequency, ∆f , from the

Doppler-free transition frequency, f , is given by

∆f =
fv

c
cos θ (3.1)

where v is the mean velocity of the atoms exciting the atomic ovens, θ is the angle between

the atomic motion and the intersecting laser beam and c is the speed of light. Using

equation 3.1 along with the knowledge of the angle between the atomic ovens and the

laser beam path it is possible to predict the shift in frequency from the Doppler-free

transition frequency required to ionise the ejected atoms for the particular system set up.
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Figure 3.2: Top Left: Vacuum system hemisphere with the chip carrier visible through

the main window of the octagon. Top right: The rear side of the hemisphere is shown.

Here the laser beam entrance windows can be seen which enable laser access through the

centre of the chip carrier for through traps. Bottom: A side view of the hemisphere and

octagon with the octagon beam entrant windows visible for access to surface traps. Visible

in all three views is the rf feedthrough used to apply radio frequency voltages to the trap

electrodes via the chip carrier.
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In the design used in this thesis the angle θ was ≈ 70◦ which resulted in the wavelength

of the 399 nm laser shifting by ≈ 220 MHz from the Doppler-free transition frequency for

the particular isotope required for ionisation.

Before the vacuum system is assembled the individual stainless steel parts must be

cleaned and baked. This is done to remove any dirt on the parts which may have accu-

mulated during their transportation and storage. The parts are baked for a period of one

week at a temperature of 200 ◦C and then cleaned again after this baking. The cleaning is

carried out by immersing the parts in acetone (with the exception of the viewports) and

placing them in an ultra-sonic bath, after which they are rinsed in methanol to remove any

of the acetone residue left from the bathing. The viewports, however, must not be cleaned

in this manner as acetone was found to degrade the anti reflection coating. Instead the

viewports must be cleaned by rinsing them in isopropanol only. It is advisable to use this

method of cleaning on any optical part with an anti reflection coating unless specifically

instructed by the manufacturer.

Once the vacuum system has been assembled the ion trap should be degassed. This is

done by pumping the system down to around 10−6 mbar using a roughing pump and then

attaching a quarter wave helical resonator (described in chapter 5) to the rf feedthrough

shown in figure 3.2. A voltage is then applied to the trap electrodes and slowly increased

up to the desired operating range whilst the pressure of the system is closely observed, as

a sudden increase in pressure could indicate a blown connection to the trap or electrical

short. It is advisable to measure the capacitance and resistance of the trap before and after

this procedure to help diagnose any electrical shorts that may have occurred. Carrying

out this procedure allows for any sharp points or edges present on the trap electrodes to

be smoothed and rounded.

3.2.1 Vacuum system baking and oven

After the degassing of the ion trap has been carried out and the electrical connections to

the trap have been verified the vacuum system is ready to be baked and pumped down

to a pressure of around 10−12 Torr. To reach this pressure the vacuum system must be

baked at around 200 ◦C for a period of about two weeks. This ensures that all the water

and other impurities present in the vacuum system are evaporated and pumped out of the

system. If this is not carried out significant out-gassing can occur which reduces the final

vacuum pressure achievable leading to reduced ion lifetimes due to an increased number

of collisions with background gas particles.
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The oven used to bake the system was an in-house built fan assisted system measuring

1 m by 1 m by 1.5 m and heated by eight 650 W ceramic elements (RS: FTE 650W 230V),

as shown in figures 3.3 and 3.4. The heating elements are mounted on four aluminium

pillars located in each corner of the oven (two per pillar) and are visible in figure 3.5.

The oven walls, ceiling and door were constructed out of rockwool (≈ 4 cm in thickness)

sandwiched between a ≈ 1 mm aluminium plate (outer side) and a ≈ 1 mm stainless steel

plate (inner side), a cut-through of which is shown in figure 3.3. Stainless steel was used on

the inner side of the oven as it deforms less under heating compared with aluminium, and

aluminium was used outside as it reduces the overall weight of the oven walls. Additional

≈ 3 mm thick aluminium edging was used to provide additional strength to the structure.

The floor of the oven is constructed out of ≈ 1.5 cm superlux heat-proof board with a ≈

1 mm thick aluminium cover.

Figure 3.3: Diagram showing a cut-through of the oven wall, ceiling and floor. This

consists of aluminium and stainless steel plates sandwiching a sheet of ≈ 4 cm rockwool.

In order to reach the baking temperature of 200 ◦C the temperature of the oven

must be ramped at a maximum of 15 ◦C an hour to make sure that any expansion of

the vacuum system and view ports does not cause any damage. The temperature ramp

is controlled by a temperature controller (Barber Colman: 7EC) and solid state relay

(Crydom: D53TP25D) which monitor the oven temperature via a type K thermocouple,

placed centrally in the oven. They then act to alter the duty cycle of the current supplied

to the heating elements in order to increase or decrease the oven’s temperature.

Whilst the fully assembled vacuum system is being baked an external roughing pump

is used to maintain the pressure at around 10−6 mbar until the oven temperature reaches
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Figure 3.4: Diagram showing the wiring used to control the temperature of the oven. A

three phase power line is used with live one and two (L1 and L2) used to power the heating

elements and live three (L3) used to power the temperature controller. The neutral line

(N) is also shown and is common to all the heating elements.
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200 ◦C. At this point the roughing pump is switched off and an external ion pump is used

to reduce the pressure further. After a few days this external ion pump is switched off and

the two external pumps are disconnected from the system with the pressure maintained

by the internal ion pump shown in figure 3.5. Once the baking is completed, the system

is removed from the oven and placed on the optical table where a titanium sublimation

pump (TSP) is used to reduce the pressure from 10−10 mbar to 10−12 mbar. This is done

by running the TSP for around one minute every two hours for a period of two days at a

current of 47 A.

Figure 3.5: Picture of the entire vacuum system housed inside the in house built oven.

Shown are the internal ion pump and the titanium sublimation pump, the hemisphere

and octagon containing the chip carrier and the 100 pin feedthrough used to apply static

voltages to the trap electrodes. Also shown is the oven fan and the ceramic heating

elements.

3.3 Macroscopic linear Paul trap design

A macroscopic linear Paul trap was designed and built to be compatible with the chip

bracket shown in figure 3.1. An initial macroscopic trap was chosen over an initial mi-
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crofabricated trap due its ability to provide deeper trapping potentials (up to ≈ 10 eV

compared with up to ≈ 1 eV), and robustness against static and RF voltage breakdown.

This trap was also designed to be capable of trapping long chains of ions by keeping the re-

sidual RF ponderomotive potential along the Z-axis to ≈ 0.4% of the radial ponderomotive

potential.

The basic structure of the trap is shown in figures 3.6 and 3.7 and consists of four

blade shaped electrodes. Two of these electrodes run the entire axial length of the trap

and are connected to the RF source. The other two are segmented into three pieces and

are connected to external static voltage supplies in order to provide axial confinement

fields and the ability to rotate the principle axes of the resulting static voltage and RF

ponderomotive potential. The blades are coated with a 5 µm layer of gold to increase

the surface smoothness. Additionally, two wire electrodes were placed between the blades

to provide additional static voltage fields to compensate for any stray fields present that

perturb the trapping field increasing the ions micromotion.

Figure 3.6: Picture showing the macroscopic linear Paul trap. The top level static elec-

trodes and rf electrode are visible whilst the bottom layer are hidden below the upper

layer. The Z axis of the trap is shown with the X and Y axis being perpendicular to this

and each other.
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The electric field produced by the trap structure was modelled using a boundary ele-

ment method (BEM) in CPO (Charged Particle Optics 1) to provided basis functions [51]

for each individual electrode. These basis functions can then be used to determine the

trap’s secular frequency, depth and centre when any set of arbitrary voltages are applied

to the electrodes. Initially the most important piece of information to be obtained from

the simulations is the trap centre, allowing lasers to be correctly aligned and focused to

the area in which the ion will be trapped and cooled. Additionally one can estimate the

trap depth and the applied rf voltage by using the static voltages applied to the trap

as inputs into the simulation and varying the rf voltage so the radial secular frequencies

match the experimentally measured values. As the trapping potential along the Z axis

is only given by the static voltages (as the residual rf ponderomotive potential along this

axis is ≈ 0.4%) the Z secular frequency will be correct given only the static voltage inputs.

Table 3.1 shows voltage configurations and trapping field specifications for a trap with a

depth of 1.6± 0.2 eV and an rf voltage of 400± 20 V.

Table 3.1: Trapping voltage configurations and trapping field specifications.

rf voltage 400± 20 V

Static voltage 1 1.5 V

Static voltage 2 0 V

End 1 0 V

End 2 6.5 V

End 3 5.2 V

End 4 0 V

Comp 1 60.5 V

Comp 2 11.9 V

Secular frequency in X 1.27± 0.07 MHz

Secular frequency in Y 1.34± 0.07 MHz

Secular frequency in Z 154± 1 KHz

Depth 1.6± 0.2 eV

Laser access for the trap, depicted in figure 3.8, is provided through the back of the

trap. This is accessible from the rear hemisphere windows shown in figure 3.2. This access

is made possible by the cut away section in the base of the trap, shown in figure 3.6. The

cut away section is large enough to allow the lasers to be directed onto all of the electrodes

1http://simion.com/cpo/
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Figure 3.7: Diagram showing the macroscopic linear Paul trap. Top view: The four end

cap electrodes (End 1 to 4) and both static voltage electrodes are shown. Dashed bordered

electrodes are located below solid bordered electrodes. Side view: The location of the

compensation electrodes (comp one and two) are shown. The electrode comp 1 consists

of a single wire bent into a “U” shape to allow laser access through its centre.
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in order to aid with their alignment. When aligned through the centre of the trap the laser

beams are then able to exit the vacuum system via the front window, narrowly avoiding

the imaging system.

3.4 Experimental laser set up

The lasers entering the vacuum system are focused to beam waists of between 50 µm and

100 µm by a series of telescoping and focusing optics placed in the beam paths of both

the individual lasers and the combined laser paths. A schematic of the optical apparatus

used to combine and focus the beams into the trapping region is shown in figure 3.8. The

369 nm and 935 nm beams are combined using a filter (Semrock: FF01-370/36-25) which

transmits the 369 nm beam and reflects the 399 nm beam. The combined 399 nm and 369

nm beams are then combined with the 638 nm beam with a dichroic mirror. As shown in

figure 3.8 telescoping lenses are used in some of the beam paths. The reason for this is

that the telescopes can be used to increase the beam diameter before passing through the

final focussing lens. By changing the beam diameter, the lasers beam waist at the focal

point of the final lens can be altered. The relation of focused beam waist, w, to initial

beam diameter, D, is the diffraction limited waist size given by:

w =
2λF

πD
(3.2)

where F is the focal length of the lens and λ the wavelength of light focused through the

lens.

Additionally, the telescopes are used to control the divergence of the beams which pass

through them altering their focal distance through the final focussing lens. This allows

beams of different wavelengths to be focussed to the same point by altering the individual

beam divergences. The combination of the beams is carried out after the individual laser’s

telescopes, enabling the divergence and diameter of each beam to be adjusted individually.

The individual laser wavelengths required for ionising Yb atoms and cooling Yb+ ions

can be determined from the ion’s energy level diagram shown in figures 2.5 and 2.6. The

wavelengths required are around 369 nm, 638 nm and 935 nm with a 399 nm laser required

for ionisation. An additional laser at 780 nm was also used in this work to provide a stable

reference for the other lasers, the process of which will be described in chapter 4. The light

source at 369 nm was created by frequency doubling the light from a 739 nm laser diode

(Toptica Photonics: TA-SHG). The remaining four light sources, the 399 nm (Sanyo: DL-

4146-301, 20 mW), 638 nm (Sanyo: DL-6148-030, 40 mW), 780 nm (Sharp: GH0781JA2C,
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Figure 3.8: Schematic diagram showing the vacuum chamber and trapping region. Outside

the laser paths are shown along with the optics used to focus and combine the lasers.
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120 mW) and 935 nm (Roithner: RLT940-100GS, 100 mW) were built in-house using an

external cavity diode laser (ECDL) design which utilises an external grating to provide

optical feedback to the diodes. In each laser the grating and diode were placed in a Litrow

[52] configuration as shown in figure 3.9 with the first order diffraction beam used to

provide feedback to the diode and the zeroth order used as the output beam. The angle

of the grating can be altered by the use of a piezo (PSt 150/4/5 bs) and is used to force

the diode to emit at the desired frequency, λ, given by

λ = d sin θ (3.3)

where d is the separation between the grooves on the diffraction grating and θ is the angle

between the laser beam and the normal of the grating as shown in figure 3.9.

Figure 3.9: Drawing showing the general set up of an ECDL used to provide laser beams

for the experiment.

As can be deduced from equation 3.3 the direction of the output beam is dependent on

the wavelength the diode outputs. This can cause alignment issues when first adjusting

the set up to provide the desired wavelength, but the problem is negligible once the laser

is running at the desired wavelength and feedback is provided to maintain this. Feedback

is also required to stabilise the temperature of the diode as the output wavelength is a
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function of the temperature of the diode. This is done with the use of a temperature trans-

ducer (Analogue devices: AD592ANZ), a Peltier element (Global Component Sourcing:

ETH-071-14-15-RS) and a temperature controller (Thorlabs: ITC 502). The temperature

transducer and Peltier element are placed near to the diode with a good thermal contact

to it. The temperature detected by the transducer can then be stabilised to the desired

set point by the PID in the temperature controller to around 0.01 ◦C.

As described in chapter 2 side-bands need to be applied to the 935 nm and 369.5 nm

lasers in order to access the hyperfine energy levels created by the non-integer spin of the

171Yb+ isotope. The sidebands required on the 369.5 nm light are created by frequency

doubling sidebands applied to the 739 nm laser light. The light emitted from the 739 nm

diode is phase modulated at 7.35 GHz with an electro-optic modulator (New-Focus: 4851)

and then passed through a doubling cavity, which is resonant with both the carrier and

the modulated sidebands, producing 14.7 GHz sidebands on the 369.5 nm beam. For these

experiments a doubling cavity with a free spectral range of 1.05 GHz was used (Toptica

Photonics: TA-SHG). The sidebands required for the 935 nm laser light, on the other

hand, are created simply by current modulation at 3.06 GHz via a bias-t (Mini Circuits:

ZFBT-4R2G+).
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Chapter 4

Laser locking using scanable

Fabry-Pérot cavities

4.1 Introduction

In this chapter the laser locking scheme along with the equipment used to execute the

scheme will be described. Locking the lasers described in chapter 2 is required initially

to maintain their frequencies close to the resonant frequency of a particular transition.

Drifting away from this resonant value will cause the fluorescence of the ion(s) to reduce

(the exact amount of fluorescence reduction is dependent on the power broadening of the

transition by the laser intensity at the ion). Additionally laser locking stops the 369 nm

laser frequency becoming blue detuned from resonance and heating the ion out of the

trapping field. In order to achieve this it is required to lock the lasers to within a few MHz

over the time frame of a few hours.

4.2 Background and optical set up

The long term stability of the lasers used to trap Yb+ ions (369 nm and 935 nm) is

achieved using a method described by Zhao et al. and Seymour-Smith et al. [53, 54].

This method uses a Fabry-Pérot cavity to transfer the stability of a master reference laser

to other lasers. A data acquisition card (DAQ) is used to scan the cavity length whilst

simultaneously reading the spectra produced by the cavity. Each time the cavity is scanned

the position of the fringes are measured relative to the stable reference laser’s fringes. An

error signal can then be produced to correct for the drift in the locked lasers.

The 369 nm laser light is created by frequency doubling 739 nm light from an ECDL
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diode laser (Toptica: TA-SHG 36) and, so, the stability of the 739 nm light is passed onto

the doubled light. 739 nm light was used in the locking scheme and not 369 nm light

as it offers an easier wavelength to use both in terms of reflection coatings for mirrors

and alignment (as the light is visible whereas 369 nm is not). The reference laser used

in our experimental set-up is a 780 nm laser locked to a 87Rb D2 transition line with a

stability of ≈ 1 MHz. To transfer this stability to the 935 nm and 369 nm lasers two

separate Fabry-Pérot cavities were built from curved mirrors with reflectivities of 99.9%

at the wavelengths required for use (739 nm, 780 nm and 935 nm). One cavity is designed

to receive the 780 nm reference laser and the 935 nm laser and the other to receive the

reference laser and the 739 nm laser. The beams are placed into the cavities forming a

figure of eight pattern between the mirrors, giving a free-spectral range of FSR = c/(4l)

(where c is the speed of light). The free spectral range of the two cavities built and

set up to accept 739 nm and 935 nm were ≈ 1 GHz and ≈ 750 MHz respectively. The

cavity length, l, is scanned with a piezo (Piezomechanik: HPST 150/14-10/12 with thread

adapter HAg) using a triangular waveform voltage obtaining a spectra of fringes related

to the scanning voltage, as shown in figure 4.1. The frequency of this scan was set at

57±1 Hz and, so, any noise on the lasers with a frequency greater than this will not be

compensated for. However, this frequency is sufficient to compensate for the long term

drift (several hours) of the laser wavelengths required for initial trapping of ions. Using

the fringes obtained from one scan of the cavity, two variables, a and b, can be obtained.

These variables are the separation between a reference peak and a locked laser peak, a,

and the distance between two of the reference peaks, b, and are shown in figure 4.1. A

computer programme can then be used to calculate the ratio a/b for each scan of the cavity

and produce an error signal which is used to adjust the angle of the locked lasers reflection

grating (shown in figure 3.9), altering its wavelength and keeping the ratio constant. The

wavelength of the locked laser can then be adjusted by changing the ratio a/b until the

laser is at the desired operating wavelength. Additionally it is possible to scan the locked

laser by scanning the ratio a/b in the computer programme. The reason for using the ratio

a/b to produce an error signal to lock the lasers is that any changes in the free spectral

range of the cavity is cancelled out in the ratio and, therefore, any changes are due to

drifts in the two laser wavelengths. If the distance from a reference peak to a locked laser

peak, a, was instead used this variable will change with a change in free spectral range as

well as a drift in frequency. This would result in the feedback trying to compensate for

both drifts instead of just frequency drifts.
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In figure 4.1 the variable a is shown as the distance between a 780 nm reference peak

and a locked laser peak in the next free spectral range. It is possible to use the locked

laser peak in the same free spectral range instead to calculate a value of a but, in this

case, the error on a will be greater. This is because the error on locating the position of a

peak is fixed and so increasing the value of a reduces the percentage error on a and will,

therefore, produce a more accurate error signal. Alternatively, a could be calculated using

a peak in a much further away free spectral range than shown in figure 4.1, but one must

ensure that it is not located too near the edge of a piezo scan as the piezo extension may

no longer be linear with the applied voltage at this point. In practice, however, little, if

any, difference was noted to the laser stability when calculating a using peaks in different

free spectral ranges.

Figure 4.1: Plot of the output from a cavity showing the variables a (distance from a

reference peak (Red) to a locked laser peak (Blue)) and b (the distance between two

reference peaks) shown in the inset.

Figure 4.2 shows the optical set-up used to transfer the stability of the 780 nm laser to

the 935 nm and 739 nm lasers via the two scanning cavities. The lasers are combined using

polarising beam splitters allowing light from two lasers to be simultaneously coupled into

a cavity at a time. Polarising beam splitters can then be used to separate the individual

lasers output from the cavity in order to be read into a DAQ via individual photodiodes.

This locking scheme will allow both laser signals to be detected on one photodiode, how-

ever, due to the different powers in the three lasers and the photodiodes efficiency varying

over the wavelength range it is experimentally easier to use a photodiode per laser. This

allows each signal to be individually optimised by adjusting the gain applied to each signal.

Figure 4.3 shows a photograph of the optical set up for transferring the stability of the

780 nm laser to the 739 nm laser. Shown is the cavity used along with the photodiodes,

beam splitters and a half wave plate is present to rotate the polarisation of the 739 nm
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light. By adjusting the beam’s polarisation the beam can be split between the cavity and

the wavemeter fibre coupler used to monitor the laser’s wavelength.

Figure 4.2: Diagram showing the optical set-up used to transfer the stability of the 780 nm

reference laser to the 935 nm and 739 nm lasers via two scanning cavities. The outputs of

the cavities are read into a DAQ via photodiodes and an error signal sent to the individual

lasers depending on the signal detected by the photodiodes.

The cavities are used without being thermally isolated from the environment and so

are subject to thermal drift in their length. This length change leads to the voltage driving

the piezo required to produce a reference peak at a specific position to change. In other

words the peaks, as seen displayed in figure 4.1, drift. This becomes a problem if one of

the peaks used to calculate the variables a and b drift off of the display. This is solved by

extending the process outlined by Zhao et al. [53] to include “thermal feedback” which

compensates for this drift. This feedback adjusts the dc offset of the scanning voltage in

order to keep the positions of the peaks from the reference laser constant in the display.
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Figure 4.3: Photograph of the cavity used to transfer the stability of the 780 nm reference

laser to the 739 nm laser. Shown are the polarising beam splitters, cavity and photodiodes.

The half-wave plate present in the 739 nm beam is used to split the beam between the

wavemeter fibre coupler (allowing wavelength measurements) and the cavity.

4.3 Locking electronics

In order to drive the cavities, read in photodiode signals and trigger the computer pro-

gramme used to create the error signals with the experimental set up shown in figure

4.2 some additional electronics is required. A square wave (57±1 Hz and 12.8±0.3 V)

is produced by a signal generator (GW Instek: GFG-8015G) which is used as a trigger

pulse for the locking program. For the cavities to scan synchronously with the computer

programme reading the photodiode signals, they must be driven with signals of the same

frequency and phase as the programme’s trigger pulse. The simplest way of achieving

this is to use the same signal, however, to produce sets of evenly spaced output peaks,

as shown in figure 4.1, a triangle wave has to be used to drive the cavity piezos. This is

because the extension of the piezo is linear with the voltage applied to it. An integrating

amplifier is used to transform the square wave used to trigger the computer program into

a triangle wave of the same frequency and phase. This can be done for any number of

cavities giving the design flexibility in how many cavities are used. Figure 4.4 shows the

layout of the electronics used to produce the signals used to trigger the computer program

and scan the cavities simultaneously. Figure 4.5 shows a more detailed circuit diagram
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showing the components used to make the summing and integrating amplifiers.

Figure 4.4: Diagram showing the drive signal used to simultaneously drive the cavities

and trigger the Labview program.

Figure 4.5: Diagram showing the circuit diagram of the two summing amplifiers and the

integrating amplifier used to convert the square wave trigger signal into a triangle wave.

The operational amplifier used in all the circuits is the LF411 and is powered with ±15

V.

It was found that simply scanning the cavity with a triangle wave resulted in a slow

drift of the cavity output peaks over a period of time. This becomes a problem when
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locking the lasers over a long period of time (over around 15 minutes) as the drift in peak

position is enough to cause the locking scheme to fail. The movement of the peaks was

thought to be caused by thermal drift in the cavity (length changes due to temperature)

and so additional electronics and feedback was used to stabilise this. To do this, the time a

specific peak occurs with respect to the start of the cavity scan is monitored and feedback

produced to keep this time constant. The error signal produced was then added to the

triangular driving signal via a summing amplifier, resulting in a dc offset to the driving

signal. This offset acts to increase or decrease the length of the cavity, opposing the length

change in the cavity caused by temperature drift. By doing this the peaks were kept stable

and the lasers could be locked for periods of several hours.

4.4 The Locking program

A LabVIEW 1 programme was written to process the cavity signals detected by the pho-

todiodes and produce the required error signals to be supplied to the laser diodes. The

programme was deployed and run on a PC using a LabVIEW real-time operating system

with the photodiode signals and trigger pulse read into the programme using a PCI card

(National Instruments: PCI-6143 S series). The error signals produced by the programme

are output using another PCI card (National Instruments: PCI-6722).

1http://www.ni.com/labview/
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Figure 4.6 shows the front panel of the locking programme. As two cavities are used

to lock the 935 nm laser and the 369 nm laser there is a set of controls relating to each

of the two cavities. The controls for the cavity locking the 739 nm laser (and thus the

369 nm laser) are highlighted in the yellow boxes, and the controls for the cavity locking

the 935 nm laser are highlighted in the red boxes. In order for the locking programme to

work successfully the 780 nm laser should be locked to the 87Rb D2 absorption line with

a stability of ≈ 1 MHz.

4.4.1 Detecting peaks

Figure 4.7 shows an enlarged view of the cavity signals that are detected by the locking

programme. In order for the programme to determine what is a peak and what is not,

a peak detection system is used. This defines a peak as signal which is below a certain

threshold and above a certain width. The controls for this detection system are shown in

figure 4.8. To set up the peak detection correctly the following steps should be followed:

• The peak threshold for each laser signal should be set to a value below the noise of

the signal but above the top of the smallest peak. It is preferable to set these values

as close to the noise level as possible (as shown in figure 4.7).

• The dials controlling the minimum peak width should now be turned up slowly until

the number of peaks detected is equal to the number of peaks displayed in the cavity

scan display.

• If the number of peaks detected differs from the number of peaks shown in the cavity

display then the peak width should be adjusted. If there is still a problem, the peak

threshold should be reduced/increased and the peak width adjusted again.

• The peak threshold and width should be adjusted until the number of peaks detected

equals the number on the display and does not vary randomly.

4.4.2 Thermally locking the cavities

Once the peak detection has been set, the thermal drift of the cavities must be compensated

to allow laser locking over the course of several hours. Figure 4.9 shows an enlarged view

of the controls which produce an error signal which is fed to cavities to compensate for

any thermal drift. To provide thermal feedback for the cavities the following steps should

be taken:
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Figure 4.7: Enlarged view of the cavity signal display on the LabVIEW programme.

Shown is the numbering system for the peaks (left to right and starting at zero) and the

threshold level chosen to detect the peaks.
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Figure 4.8: Enlarged view of the controls used to detect the cavity peaks. Here, the

threshold level above which a peak must pass along with the minimum width a peak above

the threshold must have in order to be counted by the programme can be adjusted. The

number of peaks detected by the programme is displayed allowing the user to determine

if the control settings are correct.

• Ensure that the polarity and integral time inputs are set to zero.

By setting all these values to zero it ensures that there is no error signal being created by

the programme and sent to the cavities when the thermal locking process is started.

• Enter the value in box called “80 thermal lock peak” into the “780 peak position”

box. This should be done for each cavity separately.

The box “780 thermal lock peak” displays the position of a selected cavity peak from the

780 nm laser, as shown in figure 4.7. The “780 peak position” box provides a set point

for the locking programme and so the programme will, given the correct settings, provide

feedback to keep the peak in the position provided in this box over successive cavity scans.

• For the 739 nm thermal lock a polarity of -10 should be entered.

• For the 935 nm thermal lock a polarity of 10 should be entered.

The magnitudes of the thermal lock polarities are not of exact importance as they simply

scale the generated error signal outputted by the programme. This scaling of the error

signal can also be achieved externally from the programme via the individual piezo’s

driving amplifiers (Piezomechanik: SVR 150/3). A larger magnitude than 10 can be used
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provided this does not cause the error signal to saturate the output card. The sign of the

polarity, however, is important as the wrong sign will cause the feedback to move the peak

position away from the set point instead of towards it. The differing signs of the 739 nm

and 935 nm thermal lock polarities arises from the use of a non-inverting and an inverting

summing amplifier to apply respective cavity error signals to their drive signal, as shown

in figure 4.5.

• For both cavities thermal locks, a value of 0.0001 should be entered in the integral

time box

• The cavities should now be thermally locked.

The number entered into the integral time box is the inverse of the gain factor for the

integral part of the PI feedback provided by the programme. The smaller the number the

faster the programme will act to move the peak towards the set point and vice versa. Care

must be taken if this number is reduced below that stated as high frequency noise on the

cavity will cause the thermal lock feedback to become unstable.

If the steps followed above are successful, nothing should visibly change in the cavity

display window. If the peaks move suddenly across the display, the polarity and integral

should be set to zero and the process followed again. If the problem persists a common

issue is that the polarity is of the wrong sign, and it is advised to try swapping this sign

when repeating the steps again.
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4.4.3 Locking the lasers

Once the peak detection and thermal locking of the cavities has been successfully imple-

mented feedback to transfer the stability of the 780 nm reference laser to the 739 nm and

935 nm lasers can be implemented. Figure 4.10 shows an enlarged view of the controls

which set up the error signals needed to lock the two lasers. To provide an error signal for

the lasers the following steps should be carried out:

• Ensure that the polarity and integral time of the two cavity controls are set to zero.

Setting the polarity and integral time of the cavity controls to zero ensures that no error

signal is being produced by the programme and being sent to the lasers at the beginning

of the locking procedure.

• For both cavities two adjacent 780 nm peaks should be selected using the “peak

selector” controls.

The 780 nm peaks chosen should not be the first two peaks of the scan but instead two

peaks located in the centre of a bunch of peaks. For the front panel image shown in figure

4.6 the 780 nm peaks 1 and 2 are used for the 739 nm and 780 nm cavity (red boxes) and

the peaks 2 and 3 are used for the 739 nm and 780 nm cavity (blue boxes). It is important

to note that the peaks are numbered left to right and starting at zero, as shown in figure

4.7.

• If the peak detection procedure and cavity thermal control procedure (given in sec-

tions 4.4.1 and 4.4.2 respectively) have been set up correctly the value displayed in

the boxes “739 Ratio” and “935 Ratio” should be stable. These values may drift but

they should not increase or decrease suddenly. If they are not stable (if the value

randomly varies) then it is likely that the peak detection has not been implemented

correctly.

The “739 ratio” and “935 ratio” boxes display the ratio of a (the distance from a reference

780 nm cavity peak to a locked 739 nm or 935 nm cavity peak, depending on the cavity in

question) to b (the distance between two 780 nm reference cavity peaks). This ratio can

be seen in figure 4.1.

• The ratio displayed in the “739 Ratio” should be placed into the “739 Set Point”

box.

• The ratio displayed in the “935 Ratio” should be placed into the “935 Set Point”

box.
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The programme will act to keep the ratio a/b of each cavity constant at their respective

values entered in the “739 Set Point” and “935 Set Point” boxes. If the values in these

boxes are altered, then the programme will provide an error signal which will act on the

739 nm and 935 nm lasers changing their frequencies in order to create the a/b ratio given

in the boxes.

• A polarity of -1 should be entered into the boxes “739 Polarity” and “935 Polarity”.

These values set the scaling of the error signal which the programme produces. The sign

of these values is important as the wrong sign can cause the laser frequencies to be sent

away from the desired set points by the error signal instead of towards them.

• In the PI settings the value 0.001 should be entered into the “integral time” box.

The number entered into the integral time box is the inverse of the gain factor for the

integral part of the PI feedback provided by the programme. The smaller the number

the faster the programme will act to alter the ratio a/b towards the desired set point by

changing the locked laser (935 nm or 739 nm lasers) frequency. Care must be taken if this

number is reduced below that stated as high frequency noise on the laser frequencies will

cause locking to become unstable.

• The wavelength of the 935 nm and 739 nm lasers should now be stable. Alterations

to the wavelength can be made by increasing/decreasing the third digit after the

decimal place in the “935 Set Point” and “638 Set Point” boxes.

• If one of the laser wavelengths at any point become unstable set the polarity and

integral time to 0 and repeat the locking procedure for the cavity in question.
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Chapter 5

The application of radio frequency

voltages to ion traps via helical

resonators

5.1 Introduction

Trapped ions are a powerful tool which have many applications such as mass spectrometry

[38] and frequency standards [55, 56], whilst also being recognised as a leading contender for

the practical implementation of quantum information processing [14, 26, 57] and quantum

simulations [58, 59, 60, 61]. To trap ions within a Paul trap a radio frequency high voltage

is applied to electrodes in order to produce the required pseudo potentials. A helical

resonator allows impedance matching between a radio frequency source and an ion trap

enabling high voltages while reducing the noise injected into the system. These properties

make the resonator an important device not only in ion trapping but also in a wide range

of physical sciences including ultra high frequency (UHF) mobile communication systems

[62], spin resonance spectroscopy [63] and measuring the dielectric properties of materials

[64].

An empirical study of shielded helical coil resonators was performed by Macalpine and

Schildknecht [65] who considered isolated operation with a self resonant frequency due

to the coil inductance and shield capacitance. In contrast this work considers a shielded

helical coil connected to an ion trap where the resonant frequency will be determined by

the whole system. Macalpine and Schildknecht [65] showed that, when tuning a resonator

with an external capacitance, the Q factor would vary with the tuned resonant frequency,

however, they did not predict this resonant frequency or the effect of a lossy (resistive)
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capacitance on the Q factor. Due to these limitations, when connecting an ion trap to

a helical resonator the predications of Macalpine and Schildknecht [65] for the resonant

frequency and Q factor can deviate by orders of magnitude from those observed. This

work will provide reliable predictions for the resonant frequency and Q factor for a shielded

helical coil connected to an ion trap impedance. A design guide which allows a helical

resonator to be constructed with the highest possible Q factor for the constraints of a

particular experiment will also be provided along with a discussion on the process of

impedance matching with a helical resonator and the voltage applied to the ion trap as

a function of the Q-factor, input power and the properties of the resonant circuit will be

predicted.

5.2 The Resonator: A radio frequency source

A common way of applying the radio frequency voltage to ion traps is via a helical quarter

wave resonator. This can be thought of, quite simply, as the commonly used coaxial

quarter wave resonator with the addition that its central conductor is wound into a helix.

The reason for such a winding is a space saving one, which can be demonstrated by

comparing the physical size of a helical resonator, with a resonant frequency in the tens

of MHz, with that of a coaxial resonator. In this case the respective sizes would be on

the order of 100 mm by 100 mm and 7620 mm by 76 mm [65]. In order to successfully

construct a resonator it is important to obtain a detailed understanding of its operation.

It is the aim of this section to give an overview of the main properties of the resonator in

order to familiarise the reader with the central workings of the device, namely impedance

matching, calculation of the output voltage and a list of equations used to help design a

resonator.

5.2.1 Output voltage

The application of high voltages must be limited to avoid either electrical breakdown or

experimentally intrusive temperatures due to the power dissipated in the ion trap. It is,

therefore, important to know the voltage being applied to the ion trap for a given input

power. A combined ion trap-resonator system can be represented as a series LCR circuit

with resonant frequency ω0 = 1√
LC

and Q = 1
R

√
L
C . The voltage across the ion trap will

be approximately equal to the voltage across the capacitor when the capacitance of the ion

trap dominates the overall capacitance of the circuit. At resonance the peak voltage over

the capacitor is equal to the peak voltage over the inductor. The instantaneous voltage of



51

the inductor is

V (t) = L
dIpeak sin(ω0t)

dt
= Lω0Ipeak cos(ω0t), (5.1)

where Ipeak is the peak current and L is the coil inductance. The peak voltage over

the inductor occurs when cos(ω0t) = 1, hence the peak voltage over the ion trap can be

approximated as

Vpeak ≈ LIpeakω0. (5.2)

Power is only dissipated in the system through the resistance R, thus the power dissipated

is

Pd = RI2
rms =

1

2
RI2

peak, (5.3)

where Irms = 1√
2
Ipeak is the root-mean-square current. Using these equations and Q =

1
R

√
L
C , we find that

Vpeak ≈ κ
√

2PdQ, (5.4)

where,

κ =

(
L

C

) 1
4

, (5.5)

and Vrms = Vpeak/
√

2 ≈ κ
√
PdQ. Here κ can be interpreted as a geometric factor as the

values of the capacitance, C, and the inductance, L, are given by the geometry of the

resonator which will be described in detail in section 5.3.3.

This shows the output voltage of a resonating system can be predicted given the input

power, P , the capacitance, C, inductance, L, and quality factor Q of the system. Applying

RF voltages via a high Q factor resonator reduces the power in unwanted frequencies being

applied, reducing their contribution to motional heating of ions [66] and also provides

higher voltages per input power, resulting in deeper trapping potentials and higher secular

frequencies.

The impedance of the ion trap and connections are typically large enough to contribute

to the response of the LCR resonator, and thus must be considered when designing a

resonator to operate at a given frequency. Considering ω0 = 1√
LC

and Q = 1
R

√
L
C , in order

to maximise the Q factor for a fixed frequency ω0 we must minimise C while maximising

L. The use of a helical coil allows for an inductor to be made with a low self capacitance
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and resistance, enabling the resistance and capacitance of the ion trap and connections to

dominate the R and C of the LCR resonator and thus maximising the Q factor.

5.3 Circuit model

5.3.1 Impedance matching via inductive coupling

RF voltages could be applied by direct connection from the ion trap to an RF amplifier;

however this can cause multiple issues. A mismatch of impedance between the amplifier

and the ion trap will cause the RF signal to be reflected from the ion trap, resulting in

power dissipated over the output impedance of the amplifier. This would require an RF

amplifier with a much greater power handling than for a matched system. The amplifier

also injects noise into the ion trap which can cause heating of the ion [66]. Passing the

output of the amplifier through a resonator filters this noise, reducing the contribution

to ion heating. In order to maximise the filtering of this noise the resonator must have

a high Q factor, and hence a narrow bandwidth. Direct connection of a resonator to

the amplifier will reduce the resonator’s Q factor due to the damping effect of the finite

output impedance of the amplifier. The RF amplifier can, however, be connected to the

resonator through a capacitive or inductive coupling, which decouples the resonator from

the resistive output impedance of the amplifier, allowing for a resonator with a high Q

factor. This technique also allows impedance matching of the ion trap and RF amplifier

by altering the coupling, thus reducing the reflected power, and hence the required power

for a given voltage.

For inductive coupling an antenna coil is attached to an end cap and placed directly

and centrally above the main helical coil as shown in figure 5.1. By altering the physical

properties of this coil, impedance matching between the resonator and the radio frequency

source can be achieved.

To understand how altering the physical properties of the antenna coil allows imped-

ance matching, the resonator is represented by two electrically isolated circuit loops as

shown in figure 5.2. Here the inductor, L1, represents the antenna coil and the inductor,

L2, represents the main coil. The voltage source Vs and impedance Z0 represent the out-

put of an RF amplifier. The two coils are placed in close proximity to each other creating

a coupling between the two circuit loops due to the mutual inductance.

The voltage in each circuit loop is given by
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Figure 5.1: A resonator end cap showing the antenna coil together with a diagram showing

its location in a fully constructed helical resonator.

V1/2 = iωL1/2I1/2 + iωMI2/1, (5.6)

where M = k
√
L1L2 is the mutual inductance of the two coils and k is the coupling. The

electrical equivalent circuit is given in figure 5.2(b) where the impedance Zin describes the

overall impedance of the resonator (and ion trap), which can be adjusted by altering the

physical parameters of the antenna coil enabling an impedance match to the RF amplifier

(Vs and Z0). The overall impedance, Zin, of the two circuits, as shown in figure 5.2, is

then

Zin = V1/I1 = iωL1 + iωM
I2

I1
. (5.7)

Using

V2 = −ZLI2 (5.8)

and equation 5.6 we obtain

(ZL + iωL2)I2 + iωMI1 = 0. (5.9)

Rearranging equation 5.9 for I2/I1 gives

I2

I1
=

−iωM
ZL + iωL2

. (5.10)
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Figure 5.2: (a) Circuit of a resonator with attached load (inside dashed box) and signal

generator (outside dashed box) represented as two physically separate circuit loops coupled

together by the antenna coil inductor, L1, and the main coil inductor, L2. The impedance

of the ion trap is shown as a load impedance, ZL. The source voltage and impedance

(outside dashed box) are shown as Vs and Z0 respectively. (b) The circuit from (a) is

represented as the Thévenin equivalent impedance, Zin, along with the source voltage and

impedance.
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Inserting equation 5.10 into equation 5.7 we can describe the overall impedance as

Zin = iωL1 +
ω2M2

iωL2 + ZL
. (5.11)

Approximating the antenna coil’s inductance L1 as µ0NA
τ , where τ , N and A are the

winding pitch, number of turns and cross sectional area of the coil respectively and µ0 is

the permittivity of vacuum, gives

Zin =
µ0NA

τ

(
iω +

k2L2ω
2

iωL2 + ZL

)
. (5.12)

This shows that the input impedance of the resonator can be altered by simply ad-

justing the physical parameters of the antenna coil and, thus, match it to that of the

voltage source. To illustrate how the physical parameters have to be altered to achieve

a matching, equation 5.12 has been plotted in figures 5.3 and 5.4 for two common cases.

The first case (solid black line) is when the combined resonator-ion trap load is high (a

resistance of 15 Ohm and a capacitance of 100 pF) and the second (dashed black line)

when the load is small (a resistance of 0.2 Ohm and a capacitance of 1 pF). In both cases

the traps are driven at a frequency of ω = 2π × 20 MHz. Figure 5.3 shows the ratio

of number of antenna turns to winding pitch as a function of the diameter of the coil

required to impedance match the load to a 50 Ohm source. Figure 5.4 then illustrates

how an existing antenna coil can be physically stretched (increasing the winding pitch of

the coil) to impedance match to a source load. In figure 5.4 the number of turns is kept

constant at three and the diameter is kept constant at 3 cm.

Figure 5.4 shows that in order to impedance match a source to a high impedance trap

load (solid line) the antenna coil must be stretched compared with that required to match

a low impedance trap load (dashed line).

5.3.2 Description of resonant frequency and Q factor using an LCR cir-

cuit model

In order to calculate the Q factor and resonant frequency, ω0, the resonator is modelled

as a lumped element circuit, shown in figure 5.5(a), which is simplified via figure 5.5(b)

to figure 5.5(c) by creating Thévenin equivalent impedances, where each component is

defined in the table in figure 5.5(d).

The coil impedance will depend on the mutual coupling, ZM , which can be written as

ZM = iXLc +
ω2M2

iωLa + Z0
(5.13)
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Figure 5.3: The ratio of number of antenna turns N to winding pitch τ , required to

impedance match the load to a 50 Ohm source is plotted as a function of the antenna coil

diameter. This is shown for the case when the combined resonator-ion trap load is high

(solid black line, a resistance of 15 Ohm and a capacitance of 100 pF), and for the case

when the load is small (dashed black line, a resistance of 0.2 Ohm and a capacitance of 1

pF). In both cases a resonant frequency of ω = 2π × 20 MHz is used.
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Figure 5.4: The resonator input impedance, Zin, is shown as a function of the winding

pitch, τ , of the antenna coil. This is shown for the case of a high combined resonator-ion

trap load (ZL given by a resistance of 15 Ohm and a capacitance of 100 pF) shown by the

solid black curve and for the case of a small load (ZL given by a resistance of 0.2 Ohm

and a capacitance of 1 pF) shown by the dashed black curve. In both cases a resonant

frequency of ω = 2π× 20 MHz is used and the number of turns and coil diameter are kept

constant at 3 and 3 cm respectively.
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Figure 5.5: Diagram showing the electrical equivalent of the overall resonant circuit. Part

(a) shows the lumped element model electrical equivalent. Part (b) shows the simplified

circuit. Part (c) shows the set of serial impedances the resonator can be represented as.
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by using the same method employed to arrive at equation 5.11, where XLc = Lcω is

the reactance due to the inductance of the main coil. However, with the typical values

required by ion trapping of RF drive frequency between ω ≈ 2π × 10 MHz and 2π × 50

MHz, Lc ≈ La ≈ 1 mH and Z0 = 50 Ohm it can be shown that |ZM | ≈ iXLc and, thus,

express:

Zcoil =

(
1

(iXLc +Rc)
+

1

iXCc

)−1

. (5.14)

Summing the trap capacitance and resistance in parallel with the wire capacitance and

shield capacitance we can write the ZE impedance as

ZE =

(
1

(iXCt +Rt)
+

1

iXCw
+

1

iXCs

)−1

, (5.15)

where XCt = 1
Ctω

is the reactance of the trap capacitance and XCw and XCs are the

reactance due to Cw and Cs respectively.

The total impedance of the resonator, Ztot, can then be expressed as

Ztot = Zcoil + ZE +Rs +Rj . (5.16)

with Zcoil = Rcoil + iXcoil and ZE = RE + iXE , where Rcoil and RE are the equivalent

series resistance of the coil and experimental system respectively and Xcoil and XE are the

equivalent series reactance for the coil and experimental system respectively. At resonance

Ztot will be purely resistive when

Xcoil +XE = 0. (5.17)

From the calculated Thévenin equivalent impedances from figure 5.5 it can be shown that

at resonance,

iω0LC
1− LCCCω2

0

+
1

iω0(Cs + Ct + Cw)
= 0. (5.18)

This equation can be used to calculate the resonant frequency:

ω0 =
1√

(Cs + Ct + Cw + CC)LC
. (5.19)

The Q factor is defined as Q ≡ ω0
Energy stored

Power dissipated . The energy stored in the resonator

will oscillate between the inductance of the coil and the combined capacitances in the

circuit. The total energy stored will be equal to the peak energy stored in the inductor

ELc = I2
peakLc/2 = I2

rmsLc and the power dissipated in the system is Pd = I2
rmsRESR
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where RESR is the equivalent series resistance of the circuit and is given by the real part

of equation 5.16. It can then be shown that the Q factor of a resonator is given by the

following:

Q =
XLc

RESR

. (5.20)

From equation 5.16, RESR can be derived as

RESR =
RcX

2
Cc

R2
c + (XCc +XLc)2

+
RtX

2
R

R2
t + (XR +XT )2

+Rs +Rj . (5.21)

For helical coils with a low self capacitance (XLc � XCc) and low resistance (Rc �

XCc), and for an ion trap with low resistance such that Rt � (XCt + XCw + XCs), this

can be approximated as

RESR ' Rj +Rc +Rs +Rtα
2, (5.22)

where α = a
a+1 , a = XR

XT
= Ct

Cs+Cw
is the ratio of the trap capacitance to the combined

capacitance due to the connecting wires and coil shield. For a → 0 the capacitance of

the shield and wires shunt the RF current and there is negligible contribution from the

resistance of the ion trap. For a→∞ the trap capacitance dominates giving a maximum

contribution of the ion traps resistance.

It should be noted that, as high Q factors are obtained when maximising the coil

inductance and minimising the system capacitance, the effect of wire and feed-through

inductance will be negligible compared to a typical coil inductance and, as such, has not

been included in the model. This is not true of stray capacitances which can be on the

same order of magnitude as the ion trap capacitance and can be treated as part of the

wire capacitance Cw.

5.3.3 Resonator Capacitance, Inductance and Resistance

In order to construct a resonator to operate at a desired frequency the capacitance of

the wires and ion trap CΣ = Cw + Ct, which depend on the configuration of the ion

trap and experimental setup, can be measured at the vacuum systems feed-through with

a capacitance meter. Once these are known we must construct a shielded coil with the

necessary capacitance Cc and Cs and inductance LC . All equations in this section assume

the use of SI units unless otherwise stated. It is also important to note that the predictive

power of this work depends on the following equations and so it is important to understand
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Figure 5.6: Outline design of a resonator showing the shield diameter D, shield height h,

coil diameter d, coil height b, winding pitch τ and the coil wire diameter d0

any approximations made by them. The self capacitance of the coil in units of farads, given

empirically by Medhurst, is [67]

CC ' (Hd)× 10−12 farads, (5.23)

where d is the diameter of the coil and H is given empirically by, H = 11.26 bd + 8 + 27√
b
d

farads/metre. This equation assumes a closely spaced coil which means that the pitch

angle is small. As the pitch angle increases the self capacitance will decrease until it

is that for a straight wire. This results in equation 5.23, at worst, producing an over

estimate of the self capacitance in the case of widely spaced coils. However, the use of

this overestimate still results in self capacitances which are small when compared to other

capacitances in the system and, so, approximations made later in this work for low self

capacitance are just as valid even in the case of widely spaced coils.

The capacitance present between the coil wire and the outer shield in units of farads

is given empirically by [65]

Cs ≈ bKCs (d,D) farads, (5.24)

where KCs (d,D) = 39.37 0.75
log(D

d )
× 10−12 farads/metre, d is the diameter of the coil, D the

inner shield diameter and b is the height of the coil.

The inductance of a coil inside a shield in units of henrys, for b/d ≥ 1, is given

empirically by [65]
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LC ≈ bKLc (d,D, τ) henrys, (5.25)

where KLc (d,D, τ) = 39.37
0.025d2(1−( d

D
)2)

τ2
×10−6 henrys/metre and τ is the winding pitch

of the coil. For both equations 5.24 and 5.25 an assumption is made that τ < d/2. In

order to invalidate this long coils with few turns would have to be made and would almost

cease to be helical in nature. This assumption is, therefore, valid for all cases considered

in this work.

We can approximate the required height of a coil, b, for a resonator to operate at

frequency ω0, for chosen parameters of d, D and τ and for a set of measured capacitances

CΣ = Cw+Ct. The coil’s self capacitance, given by equation 5.23, significantly complicates

the solution for coil height, b, however a simpler solution can be found by approximating

the self capacitance as a linear equation. Examining equation 5.23 it can be seen that the

maximum of the non linear term 27√
b/d

occurs when b/d < 1. As we require that b/d ≥ 1 a

simple linear approximation for the coil self capacitance can be found by setting the
√
b/d

term to 1. This gives an overestimate of the self capacitance but allows for an approximate

solution for the coil height which will give a resonator with a resonant frequency typically

within 2% of the desired frequency. The linear approximation to the coil self capacitance

is, CC ' Kcbb + Kcd, where Kcb = 11.26 × 10−12 farads/metre and Kcd = 35d × 10−12

farads. Substituting this approximation with equations 5.25 and 5.24 into equation 5.19

and rearranging for b in units of metres, we obtain:

b ' CΣ +Kcd

KCs +Kcb

(√
KCs +Kcb

(CΣ +Kcd)2KLcω2
0

+
1

4
− 1

2

)
metres. (5.26)

In order to estimate the resistance of the resonator one must consider the path along

which the current flows and how it flows along this path. The current will flow along the

surface on its path with a depth, δ, given by the skin depth of the coil material (in this case

copper) at the resonant frequency of the resonator. This current is a result of a straight

up current in the shield flowing back to ground and an induced current flowing around

the circumference of the shield which acts to form an equal and opposite magnetic field

to that produced by the coil (Lenz’s Law). The distance around the shield the current

will travel, ls, can be calculated by equating the magnetic field, created by the coil at the

shields surface:

Bfield =
µIlc

4π(D − d)2
, (5.27)

to that created by the shield Bshield:
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Bshield =
µNsI

b
, (5.28)

where lc is the unwound length of the coil.

This can then be solved to find the number of turns the current undergoes in the shield,

Ns:

Ns =
blc

4π(D − d)2
. (5.29)

The distance the current will travel from the bottom of the shield to the top of the

shield can then be calculated as

ls = Ns

√
(π2D2) +

(
b

Ns

)2

. (5.30)

The resistance of the coil and the shield can now be calculated using the relationship

between resistance, R, and resistivity, ρ:

R =
ρls
A
, (5.31)

where l is the length along which the current travels and A the area through which the

current travels. The resistance of the coil and shield can now be described as

Rc =
ρlc
d0πδ

, (5.32)

Rs =

(
Nsρls
bδ

)
, (5.33)

where d0 is the diameter of the coil wire.

Additional resistances acquired by attaching the coil to the shield must also be taken

into account. The coils in this work are attached to the shield by soldering them onto a

BNC bulkhead located at a distance D
4 from the top of the shield as indicated in [65] and

figure 5.12. The solder joint created by this method will provide an additional resistance.

The resistance of the connection at an angular frequency, ωn is given by

Rn =
ρl

πdjδn
, (5.34)

where ρ is the resistivity of the material, l is the length through which the current flows, δn

is the skin depth at an angular frequency ωn and dj is the diameter of the solder joint. Due

to the effects of skin depth at high frequencies a simple DC resistance measurement of the
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joint connecting the coil to the shield is not useful. Instead an AC resistance measurement

must be made of the joint. Equipment exists (for example ISO-TECH: LCR819) which

can perform resistance measurements at frequencies of approximately 100 kHz and this

measurement can then be used to infer the resistance of the joint at a higher frequency,

in this case the resonant frequency of the resonator. The measurement frequency needs

to be chosen so that the skin depth is smaller then the radius of the joint. By defining

γ = (ρl)/(πdj) equation 5.34 can be re-written as

Rn =
γ

δn
. (5.35)

By using the frequency independent parameter, γ, it is possible to show for two different

angular frequencies, ω1 and ω2,

R1δ1 = R2δ2, (5.36)

and rearranging using δn =
√

(2ρ)/(ωnµ0) gives the resistance at a resonant angular

frequency ω0 in terms of the resistance measured at an angular frequency ω1:

R0 = R1

√
ω0

ω1
. (5.37)

This derivation is only valid in a frequency regime where the solder joint is larger

than the skin depth and when the resistivity, ρ, of the material is constant over the two

frequencies used. This is the case for the resonators made in this work as the skin depth

is of the order of 10 µm and the solder joint size is on the order of a few millimetres.

Equation 5.37 shows that by taking a resistance measurement at one frequency it

is possible to calculate the resistance at another frequency. This method was used to

calculate the resistance of the connection made between the main coil and the shield at

the resonators resonant frequency.

5.4 Resonator design guide and analysis

5.4.1 Design guide

This section will provide a design guide which will enable a helical resonator to be con-

structed with a Q factor close to that of the highest Q possible for a given set of parameters

consisting of the desired resonant frequency, ω0, ion trap capacitance, Ct, and resistance,

Rt, wire capacitance, Cw and the size constraints for the resonator. The helical reson-

ator may require different construction techniques depending on priorities set by these
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constraints, however there are some design issues universal to any resonator that must be

considered.

When designing a resonator it is important that certain constraints are met for the

resonant frequency and Q factor to be predicted by the theory. The resonant frequency

depends on the inductance, which is predicted by equation 5.25. For this equation to be

valid the coil height should be greater than the coil diameter, b ≥ d, and the coil diameter

should be greater than the wire diameter, d ≥ d0.

It can be seen from equation 5.25 that both the coil diameter and the winding pitch

have a strong (d2 and 1/τ2) effect on the inductance. It is important to ensure the coil is

made with precision for the winding pitch and the diameter of the coil to be constant along

its length. This dependence also requires that the coil is not susceptible to mechanical

vibrations. The strong effect the winding pitch, τ , has on the inductance will result in

vibrations of the coil causing the inductance and hence resonant frequency of the resonator

to become time dependent. In order to minimise vibrational effects the coil should be

constructed to be rigid and should be firmly mounted inside the shield. Finally, the

coil must be mounted centrally inside an outer shield of height B ≥ b + D/2 (typically

B = b+D/2 is recommended), where b is the coil height and D is the shield diameter, in

order to keep the coil fringe effects from reducing the coil’s inductance and increasing the

shield capacitance [68].

In order to achieve high Q factors the resonator must be built to minimise the resistance

of the shield, the coil and solder joints. The coil and shield should be made from a highly

conductive material (such as copper) which is thicker than the skin depth at the desired

operating frequency. Any solder junctions should be made with a clean oxide free surface

before soldering, with both parts of the joint reaching a sufficient temperature to ensure

good solder flow between them.

A low resistance for the helical coil can be obtained by ensuring the use of a large

diameter wire, d0. The effect of the wire diameter on the Q factor can be seen by plotting

the ‘largest’ Q factor vs wire diameter d0. The ‘largest’ Q factor available, Qlarge, is

defined for a given set of parameters, ω0, Ct, Cw, Rt and d0, as the coil diameter, d, and

shield diameter, D, which maximise the Q factor. Figure 5.7 shows a plot of Qlarge vs d0

for three traps of Ct = 5 pF and Rt = 5 Ohm, Ct = 20 pF and Rt = 15 Ohm, Ct = 50

pF and Rt = 15 Ohm all for a resonant frequency of ω0 = 2π × 10 MHz. There is an

asymptotic increase to higher Q factors for large values of d0. Even for high resistance, high

capacitance traps modest Q factors of ≈ 100 can be achieved; however this requires the
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Figure 5.7: Q factor for values of d and d/D that maximise the Q factor for varying

wire diameter, d0, for traps D (solid), H (dashed) and I (dot-dashed) from table 5.1 at

ω0 = 2π × 10 MHz

coil to be formed from a thick rod. The upper limit to d0 will result from an intersection

of the limits that the coil height must be larger than the coil diameter, b/d ≥ 1, and the

coil diameter must be larger than the wire diameter, d > d0. Increasing d0 will increase

the Q factor but will also increase the size of the resonator. It can be seen in figure 5.8

how the shield diameter required for Qlarge (solid line) rapidly increases with d0. However,

for a Q factor 90% of Qlarge, Q90%, a smaller shield diameter can be used. The minimum

D for Q90% is shown in figure 5.8 (dashed line). It is clear that making a resonator with

a Q factor of Q90% can reduce the size required for the resonator.

When designing a helical resonator for a specific experiment it is useful to examine

contour plots of the Q factor as a function of coil diameter, d, and the ratio of the coil

diameter to the shield diameter, d/D, as shown in figure 5.9 and 5.10. Using these plots

it is possible to choose values of d and d/D that will optimise the Q factor for a set of

parameters. These plots can be obtained using the parameters for ω0, Ct, Cw, Rt for a

given experiment and choosing values of d0, τ and measuring or estimating Rj . The Q

factor Q(d, d/D) can be obtained by calculating:

b(d, d/D) - The coil height - by using equation 5.26, KCs & KLc from equation 5.24 &
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Figure 5.8: D vs d0 for the D value that achieves a Q factor of Qlarge (solid line) and the

minimum D value that achieves a Q factor of Q90% (dashed line) for trap D from table

5.1 at ω0 = 2π × 10 MHz
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Figure 5.9: Contour plots for traps A, B and C (specifications in table 5.1) shown for

operation frequencies of ω0 = 2π × 10 MHz, ω0 = 2π × 30 MHz and ω0 = 2π × 50 MHz.

The grey areas indicate where b/d < 1 therefore invalidating the theory.
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Figure 5.10: Contour plots showing Q90% for each set of parameters corresponding to

traps D to I from table 5.1 for operating frequencies of ω0 = 2π × 10 MHz (solid lines),

ω0 = 2π × 30 MHz (dashed lines) and ω0 = 2π × 50 MHz (dotted lines). The grey areas

indicate where b/d < 1 therefore invalidating the theory. The value of Q90% is indicated

next to the contour line.

5.25 and Kcb & Kcd from the approximation for the coil capacitance.

Cs(d, d/D) - The coil to shield capacitance - by substituting b(d, d/D) into equation 5.24

Cc(d, d/D) - The coil self capacitance - by substituting b(d, d/D) into equation 5.24

Rs(d, d/D) - The shield resistance - by using equation 5.33

Rc(d, d/D) - The coil resistance - by using equation 5.32

RESR(d, d/D) - The total resistance - by using equation 5.22

Lc(d, d/D) - The coil inductance - by substituting b(d, d/D) into equation 5.25

Q(d, d/D) - The Q factor - by substituting Lc(d, d/D) & RESR(d, d/D) into equation 5.20

Figures 5.9 and 5.10 show contour plots for parameters corresponding to traps from

table 5.1 for three resonant frequencies with d0 = 5 mm and τ = 2d0. While larger values

of d0 would result in larger Q factors, and a larger Qlarge, the values for d0 and τ have been
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chosen as they are typical for a hand wound coil, which will be discussed in detail later.

Both plots feature a grey shaded region indicating where the condition that b/d ≥ 1 (from

equation 5.25) is not valid. Within this region the coil inductance will deviate from that

predicted by equation 5.25 resulting in a deviation from the predicted ω0 and Q factor.

An expansion to this theory for short helical coils or wire loops could be implemented by

utilising an appropriate equation for the inductance.

The experimental size restrictions will strongly dictate the achievable Q factor of the

resonator. The values of d and d/D must be chosen to ensure that the shield diameter, D,

and the shield height, B, will be within these size constraints, otherwise different values

for d, d/D or d0 will need to be chosen. Figure 5.9 for traps A to C show contour lines at

a range of Q factors (as labelled) enabling the values of d and D to be chosen to maximise

the Q factor for a given size constraint. Figure 5.10 for traps D to I shows contour lines

of Q90% for each set of parameters. The values of d and D can be chosen within the Q90%

contour line to optimise the Q factor (for a set of parameters ω0, Ct, Cw, Rt, Rj , τ and

d0), while enabling a choice of d and D that minimises the size of the resonator.

For traps A, B and C figure 5.9 shows that higher Q factors are achieved when the coil

diameter to shield diameter ratio, d/D, is close to 0. This corresponds to a large separation

between the coil and the shield and hence a small shield capacitance. At d/D = 0, the

shield diameter, D, would be infinite and the shield capacitance would be zero, indicating

the resonator is dominated by the trap capacitance. However, it can be seen in figure

5.10 that Q factors of Q90% can be achieved at values of d/D of order 0.5 with larger trap

capacitance enabling larger ratios and hence a smaller shield diameter D and higher shield

capacitance.

While figures 5.7 and 5.8 show that at large values of d0 high Q factors may be achieved

at a given size constraint, the construction of such resonators needs to be taken into

account. In order to construct a resonator without specialist machinery, a wire diameter

of approximately 5 mm is recommended. This wire size is sufficiently rigid not to be

susceptible to mechanical vibrations, while being flexible enough when heated to be wound

by hand into a coil. This can be achieved by winding the wire around a tube with notches

cut into it to help align the wire to a constant winding pitch. The size of the resonator can

be reduced by using a small winding pitch, however, a minimum winding pitch of τ = 2d0

is recommended when winding by hand in order to keep the error in the winding pitch

small. A higher Q factor could be achieved by using d0 = 10 mm, however, this would be

hard to wind by hand, which can result in large errors in the winding pitch.
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Coils can be constructed using large diameter wire but may require the use of specialist

machinery. It should be noted that coils could be constructed from tubular material as

current is only carried on the skin of the metal, however, this could affect the inductance of

the coil. Similarly a rectangular cross-section wire could be used to form a coil or formed by

cutting a tube into a coil. In order to predict ω0 and theQ factor reliably equation 5.25 may

need to be replaced with an expression for the inductance suitable for the desired geometry.

To summarise:

• A highly conducting material should be used to construct the resonator (for

example copper).

• The coil wire should be made reasonably thick to provide mechanical stability

and reduce coil resistance. If winding the coil by hand a wire on order of d0 ≈ 5

mm is suggested.

• The winding pitch should be as small and uniform as possible. If winding the

coil by hand a minimum of τ ∼ 2d0 is recommended.

• A contour plot of Q(d, d/D) can be used to determine appropriate parameters

for d and D within size constraints.

• The coil height is calculated from equation 5.26.

• The coil height must be greater than the coil diameter for equation 5.25 to be

valid.

• The shield height B should be b+D/2.

• The coil and shield should be connected as close to the vacuum system as

possible.

• Any solder joints made should be of low resistance.

5.4.2 Case study

Resonator construction and measurement

It will now be shown how a resonator for a typical ion trap experiment can be built

without the need for specialist equipment. Following this a discussion on how the resonant

frequency and Q factor can be measured, while ensuring impedance matching between the

RF source and the resonator will be presented.
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Table 5.1: Specifications of traps used for figures 5.9 and 5.10

Trap Resistance Capacitance

Ohm pF

A 0.1 5

B 0.1 20

C 0.1 50

D 5 5

E 5 20

F 5 50

G 15 5

H 15 20

I 15 50

The coil can be wound by hand by using an annealed copper wire of diameter, d0 ≈ 5

mm. The copper can be annealed by heating with a blow torch in order to give increased

flexibility. Once cooled, the copper can be wound, which will work harden the copper,

creating a rigid coil. To ensure all the turns are equally spaced, the copper should be

wound around a tube of diameter, d− d0, with notches cut into the tube to align the wire

when winding.

Once the coil is constructed it should be placed centrally inside the shield in order to

minimise the coil to shield capacitance Cs. To ensure this, it must be clamped in place

at the end of the coil before soldering the coil to a BNC bulkhead located in the shield

as shown in figure 5.12. This clamping must be kept in position until the joint to the

BNC is solid enough to support the coil on its own. This BNC bulkhead can be used to

electrically connect the coil to the shield by connecting a BNC shorting cap. The ground

rod is connected in the same way, although to the lower BNC bulkhead shown in figure

5.12. The ground rod must exit the resonator (as shown in figure 5.11) without coming

into contact with conducting material. The ground rod and main coil can be held in place

with the use of a non-conducting mesh, as shown in figure 5.11, to reduce the mechanical

stress applied to them from connection to a vacuum feed-through or other similar load.

The antenna coil used to couple the radio frequency source to the resonator can be

constructed out of 1.5 ± 0.5 mm wire and wound into 3 turns with a winding pitch of

10± 1 mm and diameter of 33± 1 mm. This, however, should be varied in order to match

the impedance of the resonator to the source, as described in figures 5.3 and 5.4 and
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Figure 5.11: (a) Picture showing the bottom end cap including the top hat used to connect

the resonator to a vacuum feed-through (in this case Kurt J. Lesker: EFT 0523052). The

main coil and ground rod can be seen exiting the resonator and are held in position by a

plastic mesh. The window in the top hat provides access for connecting the main coil and

ground rod to feed-through pins. (b) Picture showing the top end cap and antenna coil

(shown in further detail in figure 5.1).
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Figure 5.12: (a) Picture showing a coil and location of the solder joint used to make an

electrical connection to the shield. This is done with the use of a BNC bulkhead located

at a distance D
4 from the top of the shield where D is the diameter of the shield. The

grounding rod is also shown. (b) Picture showing a fully constructed resonator. The top

hat is shown on the bottom end cap and is designed to fit around a vacuum feed-through

(in this case Kurt J. Lesker: EFT 0523052) which connects the main coil and grounding

rod to the ion trap. A window is cut into the top hat to allow the connection between the

feed-through and the main coil and grounding rod to be made. The top end-cap shows

the BNC connection to the antenna coil, this is where the RF signal is applied to the

resonator.
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equation 5.12. To measure the resonant frequency of the resonator, a directional coupler

(Mini Circuits: ZDC-20-3) should be placed between the output source port and the RF

input port of a spectrum analyser’s tracking generator (Agilent: N9320B) as shown in

figure 5.13. Alternatively, the spectrum analyser can be replaced by an RF source and

an oscilloscope, as shown in grey in figure 5.13. The resonator should be connected to

the directional coupler and RF source via the end-cap that hosts the antenna coil shown

in figure 5.1. Using the experimental set up shown in figure 5.13 the resonant frequency

results in a minimum in the spectral response of the reflected signal detected by the

spectrum analyser. The pitch and diameter of the antenna coil should be altered until

less than 5% of the applied radio frequency signal is reflected back to the signal generator

from the resonator when on resonance. The Q factor of this resonance is simply measured

by dividing the resonant frequency, ω0, by the full width of the resonance at 1/
√

2 of the

maximum voltage reflection, δω0:

Q =
ω0

δω0
. (5.38)

Using the method described here it is possible to measure the resonant frequency and

Q factor of a resonator when the ion trap is unconnected, which corresponds to RT and

CT being equal to infinity and zero respectively. The resonant frequency and Q factor of

a resonator with an ion trap applied across the output can then be measured by adding

the required values of resistance and capacitance across the output of the resonator. The

stray capacitance CW created between the wires used to connect the trap resistance and

capacitance can be reduced by keeping these wires as short and as separated as possible.

Experimental analysis of typical resonators

Two resonators were constructed with a range of parameters as described in table 5.2.

The theoretical resonant frequencies of the resonators have been plotted in figure 5.14 as

a function of the trap capacitance, Ct. The theoretical Q factor for these resonators can

be seen in figure 5.15 plotted as a function of the trap capacitance, Ct, applied to the

resonator. All these are plotted for typical trap resistances, Rt, of 0.1 Ohm, 1 Ohm and

10 Ohm, which is representative of the typical range over which the resistance of an ion

trap can vary depending on what type of material and fabrication techniques are used.

Figures 5.14 and 5.15 show that the experimental measurement of the Q factor and

resonant frequency over a wide range of trap loads is consistent with the theory described in

this work. The Q factor of resonator A can be seen to be higher than that of resonator B as
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Figure 5.13: Experimental set up required to measure the resonant frequency, coupling

and Q factor of a resonator. The resonator is connected to a spectrum analyser with a

tracking generator via a directional coupler such that the reflected signal from the resonator

is displayed on the spectrum analyser. Alternative equipment can be used and is shown

in grey. This comprises of a signal generator and an oscilloscope.
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Table 5.2: Specifications of the resonators. The Q factors and frequencies quoted are

without the addition of an ion trap load.

Resonator A B

Shield diameter D [mm] 108±2 76±2

Shield height h [mm] 120±2 90±2

Coil diameter d [mm] 42±2 46±2

Coil wire diameter d0 [mm] 5.0±0.1 5.0±0.1

Winding pitch τ [mm] 9±1 15±1

Number of turns N 6.75±0.25 4.5±0.25

d/D ratio 0.4±0.2 0.6±0.2

Predicted frequency [MHz] 64+8
−6 78+10

−7

Measured frequency [MHz] 67± 0.5 83± 0.5

Predicted Q 1970+252
−374 689+46

−115

Measured Q 2176±200 631±60
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Figure 5.14: The resonant frequencies of resonator A (circles) and resonator B (squares)

are shown as a function of the trap capacitance they are attached to. The dashed curves

represent the error on this calculation based on the design errors stated in table 5.2. The

resonant frequencies were measured for a resistance of 1 Ohm, however, we note that they

are actually independent of the resistance.

Figure 5.15: The Q factor of resonator A (left) and resonator B (right) are shown as a

function of the trap capacitance. The dashed curves represent the error of the calculation

based on the design errors stated in table 5.2. The Q factor was measured for different

resistance loads shown by the triangles (0.1 Ohm), squares (1 Ohm) and diamonds (10

Ohm).
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Table 5.3: Specification of resonator used for κ measurements

Resonator C

Shield diameter, D [mm] 76± 1

Shield height, B [mm] 105± 1

Coil diameter, d [mm] 52± 2

Coil wire diameter, d0 [mm] 4.0± 0.1

Winding pitch, τ [mm] 7± 3

number of turns, N 73
4

it possesses specifications which are either optimum or nearer to optimum than resonator

B (depending on the trap load applied). It can be seen that although the resonator is not

optimum for the various ion trap impedances, the Q factor may still be sufficient for many

experiments. This shows that a new resonator does not necessarily have to be built if the

trap is altered slightly.

5.5 Experimental measurement of κ

It was shown in section 2 that the voltage output of a resonator is given by Vrms = κ
√
PQ,

where P is the power of the signal applied to the resonator, Q is the quality factor of the

resonator and κ = (L/C)
1
4 . Here an experimental measurement of the value of κ in

an ion trap experiment will be made. The value of κ is required in order to calculate

the voltage applied to the ion trap electrodes used to create a trapping potential. A

resonator, described in table 5.3, was electrically connected to an ion trap and vacuum

system with a capacitance and resistance measured to be 17 ± 2 pF and ≈ 0.1 Ohm

respectively. The resonant frequency and Q was then measured with this additional load

to be ω0 = 2π × 21.895± 0.010 MHz and Q = 477± 28 respectively.

A single 174Yb+ ion was trapped in the electric field created by the trap electrodes with

the resonator supplied with 1.0± 0.1 W at its resonant frequency. The secular frequencies

of the ion under these conditions were then measured and a boundary element method

(BEM) model of the trapping field was used to determine the RF voltage required to
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Figure 5.16: The factor κ from equation 5.5 is plotted as a function of the the trap

capacitance for the resonator described in section 5.5. The thick curve shows the value

of κ with the dashed curves showing the error on this calculation due to the uncertainty

of the resonator specifications and its imperfections. The data point shown is for the

resonator attached to a 17± 3 pF ion trap and vacuum system.

create such a field. This voltage was found to be 400±20 V which, when used in equation

5.5 along with the power used to trap the ion, results in a κ of 12.9 ± 1.4. This result is

compared with the theoretical prediction of κ (from equation 5.5) in figure 5.16. It is to

be noted that the value of κ depends on the impedance of the ion trap attached to the

resonator.

5.6 Conclusions

A detailed study of helical resonators for the use in applying high voltages at radio fre-

quencies to ion traps has been carried out. This has been done by modelling the resonator

as a lumped element circuit along with a detailed discussion on the losses present in helical

resonators connected to ion trap loads in order to arrive at an expression for the Q factor

and resonant frequency, ω0. It has been shown how a resonator and load can be impedance

matched to a frequency source by simply adjusting the physical parameters of an antenna

coil which inductively couples the two. A general expression for the voltage output of the
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resonating system has been derived in terms of the system’s Q factor, input power, P ,

and a κ factor which is a function of the system’s capacitance and inductance. The value

of this factor has been experimentally confirmed using a single trapped ion. The theory

described in this work has been confirmed by fabricating two resonators and measuring

their Q factor and resonant frequency, ω0, for a range of different trap loads (CT from 2

pF to 85 pF and RT from 0.1 Ohm to 10 Ohm).

A detailed design guide has been presented showing how a helical resonator can be

designed which provides the highest Q factor achievable for a desired resonant frequency

within the constraints of a particular experiment. Although high Q factors are currently

routinely achieved in the range of ≈ 50 to ≈ 500 [69, 70, 71], depending on the trap

used, it should be possible to produce resonators with Q factors 2-10 times greater using

the method described in this work. Producing a resonator with an optimised Q factor

allows the application of high voltages with optimised filtering. This will result in less

noise injected into the system which could reduce anomalous heating of the trapped ions.

The application of high voltages can give larger trap depths, leading to longer trapping

lifetimes, and increased secular frequencies. This technology plays a significant role in

many ion trapping experiments and should allow for progress in a variety of fields that

require trapped ions or high radio frequency voltages.
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Chapter 6

An imaging system design for ion

trap experiments

6.1 Introduction

This chapter will describe the optics, photon detection devices and layout of the imaging

system used to image single ions. In particular different types of photon detection devices

will be compared in terms of signal to noise ratios with a view to illustrating which device

provides the best signal to noise ratio under different experimental conditions.

6.2 Requirements of imaging system

The imaging system described in this thesis was required to be flexible enough to provide

imagining via a photo-multiplier tube (PMT) and charged coupled device (CCD) for two

separate ion trapping experiments without the need to re-image or change optical elements.

It was also required to switch quickly and simply between the PMT and CCD imaging

options. The basic design idea (shown in figure 6.1) to enable this simple switching was to

build two separate tube systems to house the individual experiments imaging optics and

then combine them with the use of a flipper mirror, allowing the switching between the

two systems. A flipper mirror can then be used to switch between the PMT and CCD. By

including separate arms for each experiment the optical elements can be adjusted for one

system without affecting the other. Each individual arm can then be controlled by an xyz

stage giving them the freedom to be manoeuvred in three dimensions allowing imaging of

various parts of the trap.

To provide successful imaging of ions in a trap the optics used must be able to resolve
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Figure 6.1: Basic imaging system layout. Shown are the CCD, PMT and two separate ion

trap experiments. Flipper mirrors are present to allow imaging flexibility between each

experiment and for switching between the CCD and PMT detection options.
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multiple ions confined in the trap’s oscillating electric field. The distance that two ions

are separated by in a trap can be calculated by equating the restoring force felt by an

ion in a trapping field Ftrap = mω2r and the Coulomb repulsion between the two ions

Fcoulomb = e2/(4πε0r
2) and solving for the distance between the ions r

r =

(
e2

4πε0mω2

) 1
3

, (6.1)

where ε0 is the permittivity of vacuum, ω is angular secular frequency of the trap in the

direction that the ions are separated, m is the mass of the ion and e is the charge of one

electron. The separation of two Yb+ ions in a trapping potential can now be calculated

as r = 2.7 µm, using a typical secular frequency of ω
2π = 1 MHz. It can be concluded

from this that the imaging system must at least be able to resolve two objects separated

by this distance.

6.3 The imaging optics

The optics used in the imaging system consists of a triplet lens formed from three separate

lenses placed in close proximity and a doublet lens formed of two lenses. This section will

describe both of these optical elements and explain how and why they are used for the

purpose of imaging single atomic ions. Triplet and doublet lenses are used in the imaging

system to reduce the effect of spherical aberrations on the produced image. Aberrations

are caused by deviations in a real optical path length and a theoretical path length.

Several types of aberrations can occur in optics including coma, spherical and chromatic.

Chromatic aberration is caused by light of differing wavelengths focussing to different

distances, and is not an issue in this system as we are only interested in the 369 nm

light emitted from the ion. Coma is caused by imperfections in lenses resulting in off-axis

sources being focused to different distances. Again, this is not considered an issue in this

system as the ion(s) is (are) located close to the optical axis. Spherical aberration is due

to the deviation from first order theory of light rays entering a lens from far off the optical

axis, which can be considered to be the case as photons are emitted in all directions by

the ion(s). By using a triplet lens the angle of the collected light is reduced and so reduces

the effect of spherical aberration.
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6.3.1 The triplet lens

The first optical element used in the imaging system is the triplet lens. This consists of

three separate lenses placed next to each other and contained within the same housing.

Two triplet lenses (Special Optics: 54-17-29-369 and CVI: UVO-20.0-10.0-355-532)

were found which provide the required resolution at a focal distance large enough to be

placed outside the vacuum system. The Special Optics lens provides a resolution of 0.85

µm and the CVI lens 1.13 µm enabling them both to be able to resolve single ions separated

by the coulomb interaction in a typical ion trap. The specifications of the two lenses are

shown in table 6.1.

Table 6.1: Specifications of the two triplet lenses

Lens Focal length Back focal Aperture F-number Magnification

[mm] length [mm] diameter [mm]

CVI 20 14.8 10 2.1 -19.2

Special Optics 30 21 17 1.7 -17.5

To conclude which of the two triplet lenses would be used in the experiment’s imaging

system the number of photons collected by each triplet was calculated and compared. To

do this, first, an expression for the number of photons collected by an aperture with a

diameter, D, at a distance, l, from an ion emitting photons spontaneously in all directions

should be derived. The photon flux density at a distance l from the ion is given by

F =
γ

4πl2
(6.2)

where γ is the number of photons emitted from the ion per second and 4πl2 is the surface

area of a sphere with a radius equal to that of the ion-aperture distance. The number of

photons that will be collected by the aperture can then be simply calculated by multiplying

the photon flux, F , from equation 6.2 by the surface area of the aperture,

γi =
( γ

4πl2

)(πD2

4

)
=
γD2

16l2
(6.3)

As there are other optical elements present in the system before the photon detection

devices it is important to arrive at an expression which gives the number of photons incid-

ent on these devices, φi. This can be found by multiplying equation 6.3 by a transmission

coefficient, T , which describes the transmission efficiency of the optics in the system.

φi =
γD2T

16l2
(6.4)
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By modelling the two triplet lenses in OSLO 1 it was found that the distance, l, the CVI

and Special Optics lenses had to be from the ion to provide a diffraction limited image

was 16.99 mm and 23.54 mm respectively. By estimating the transmission coefficient

as T = 0.9 the number of photons collected by the two lenses per second can now be

calculated in terms of the number of photons emitted by the ion(s) per second, γ. The

number of photons collected by the CVI triplet per second is

φcvi = 0.019γ (6.5)

and the number collected by the Special Optics triplet is

φso = 0.029γ (6.6)

From equations 6.5 and 6.6 the proportion of photons emitted from the ion(s) collected

by the triplet is greater in the Special Optics lens compared with the CVI triplet, however,

these photons will be spread out in an Airy pattern formed by the diffraction of the light

through the triplet. It is, therefore, required to define the better triplet lens in this set-up

as the one which collects the most photons per second in the central Airy ring. The image

pattern created by the triplet lenses was modelled in OSLO and the results are shown in

figures 6.7 and 6.8.

Figure 6.2: OLSO simulation of the magnified pattern created by the CVI triplet lens.

The OSLO simulations of the image patterns created by the two lenses show that the

CVI lens diffracts 98.32% of the collected photons into the central Airy spot whereas, the

Special Optics lens focusses 75.8% into the central spot. Figures 6.7 and 6.8 show the

magnified image patterns of the respective triplet lenses. These percentages can then be

1http://www.sinopt.com/
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Figure 6.3: OLSO simulation of the pattern created by the Special Optics triplet lens.

used to calculate the number of photons collected in the central Airy spot per second by

the CVI (φCV Ipeak) and Special Optics (φSOpeak) triplet lenses.

φCV Ipeak = 0.018γ (6.7)

φSOpeak = 0.022γ (6.8)

Equations 6.7 and 6.8 show that, in the optical set-up used in this thesis, the Special

Optics triplet will collect 2.2% of the ion’s emitted photons, whereas, the CVI triplet will

collect 1.8% of the emitted photons. It is for this reason that the Special Optics triplet

was chosen to be used in the imaging optical set-up.

6.3.2 The doublet lens

A doublet lens is utilised after the triplet lens in order to allow an easy alteration of

the overall magnification of the system by simply altering the two lenses. The total

magnification of the system can be calculated by multiplying the magnification of the

triplet, Mtr, with the magnification of the doublet, Mdu

Mtotal = MtrMdu = Mtr
S2du

S1du
(6.9)

where S1du and S2du are the object and image distances of the respective lenses shown

in figure 6.4. The triplet magnification, Mtr, cannot be calculated using its image and

object distance like the doublet lens magnification as the combination of the three lenses

means the thin lens approximation cannot be made. Instead the triplet lens magnification

is calculated by using an OSLO simulation.
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Figure 6.4: Basic ray trace diagram of the triplet and doublet showing relative positions

of the vacuum window, aperture and detector.

To determine what object and image distances should be used for the doublet the

overall magnification, Mtotal, the triplet magnification, Mtr, and the focal length of the

doublet, fdu, must be calculated. The triplet magnification was given in the OLSO simu-

lation of the triplet and for an object distance of 23.54 mm (corresponding to a diffraction

limited ion image) the magnification was found to be Mtr = −17.5 producing an image

distance of 549.7 mm. The total magnification can be calculated by determining how

much larger the desired ion image size is compared to the diffraction limit of the triplet

lens (1.13 µm). For example if an ion is required to cover 10 by 10 pixels (typical pixel

sizes for example are 10 µm) then a magnification of ≈ 88.5 is needed to map the 1.13 µm

diffraction limited ion onto the required 100 µm. By using a thin lens approximation the

focal length of a doublet can be estimated using the focal lengths of the composite lenses,

f1 and f2, by

fdu =

(
1

f1
+

1

f2

)−1

(6.10)

As the doublet consists of two thin lenses in very close proximity we can use the thin

lens formula to relate its focal length to its object and image distances, S1du and S2du

respectively

1

fdu
=

1

−S1du
+

1

S2du
(6.11)
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which, when rearranged in terms of the doublets image distance, S2du, gives

S2du =

(
1

fdu
− 1

S1du

)−1

(6.12)

It is important to note here that the minus sign in front of the doublet’s object distance,

S1du, occurs due to the convention that a distance from the lens to the object is in the

negative direction and a distance from the lens to the image is in the positive direction.

Equation 6.12 can then be substituted into equation 6.9 and rearranged to give the required

image distance of the doublet lens

S1du =

(
Mtr

Mtotal
− 1

)
fdu (6.13)

With this distance calculated the image distance of the doublet can then be calculated

from equation 6.12.

6.3.3 Imaging optics set up

To construct the imaging system the Special Optics triplet lens was attached to one inch

diameter lens tubing (Thor Labs: SM1L series) and the doublet lens mounted inside a

non-rotating adjustable tube (Thor Labs: SM1ZM). An iris (Thor Labs: SM1D12SZ) was

placed at a distance S2tr (the triplets image distance) and a distance of S1du from the

doublet (the doublets object distance). This can then be used to cut out any stray light

that may enter the system and focus to different points. For the experiments carried out

in this thesis a doublet lens consisting of a 30 cm and a 20 cm focal length lens with

an object distance of 18 cm and an image distance of 36 cm was used. This yields a

total magnification of 35 when the triplet is placed 23.54 mm from the ion with a resulting

image distance of 549.7 mm (the conditions required for the triplet to produce a diffraction

limited image of the ion). Using this set-up an area of ≈230 µm by ≈230 µm is imaged

onto the CCD or PMT.

Figure 6.5 shows a photograph of the constructed imaging system. The box housing

the CCD and PMT is covered in a black cloth to further increase the light tightness of the

box itself. A flipper mirror can be positioned inside the light tight box in the photograph

that allows switching to a second vacuum system.

6.3.4 Imaging system set up examples

Due to the vacuum system’s ability to house a range of different traps it is required to

have the ability to alter the area over which the optics image. This can simply be done by
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Figure 6.5: Labelled photo of constructed imaging system.

altering the doublet lens specifications (the individual focal lengths, object distance S1du

and image distance S2du). Table 6.2 shows three different examples of doublet specifica-

tions which can be used to image a range of different areas. Firstly a 30 µm by 30 µm area

is considered, where the ion is imaged to around 30 by 30 pixels. This type of imaging

can be useful for minimising photons collected which have scattered off of electrodes as

they are collected over a relatively small image area. The second case shows an example

for a case imaging a 300 µm by 300 µm area. This can be useful for imaging multiple ions

trapped over this area or to image shuttling of ions around a junction. The third case

shows imaging for a 1000 µm by 1000 µm area which can be used to image ions and their

surrounding trap structures (in symmetric traps) or shuttling around large junctions and

ion arrays.

The required magnifications for the doublet lenses, Mdu, in table 6.2 are calculated for

imaging the desired area onto an 8 mm by 8 mm CCD array (Andor: iXonEM+ 885). If a

different array size is to be used the magnification of the doublet will have to be adjusted

accordingly. As well as adjusting the doublet magnification depending on the CCD array,

different individual doublet lenses can be used to reduce (or increase) the distances S1du

and S2du (shown in figure 6.4) in order to fit the lens system in the experimental space

available. A reduction in these lengths can be achieved by reducing the focal length of the

doublet, given by equation 6.10. To achieve this one, or both, of the individual doublet

lens focal lengths can be reduced.
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Table 6.2: Examples of doublet specifications for three different imaging areas.

System Imaged area Mtot Mdu Doublet lens S1du S2du Ion size

[µm] focal lengths [cm] [cm] [cm] [pixels]

1 30 by 30 280 -16 10 cm and 5 cm 3.5 56.7 30 by 30

2 300 by 300 262
3 -1.5 20 cm and 30 cm 19.9 30.3 3 by 3

3 1000 by 1000 8 -0.45 20 cm and 40 cm 42.5 19.4 1 by 1

6.4 Photon detection devices

It is vitally important for many scientific applications to be able to collect and detect

as many photons from a source as possible in order to achieve a good signal to noise

ratio and, especially for low light applications, to be able to detect the source. In some

cases it is required to detect single photons above the noise floor of the devices readout.

There are three types of device which can provide the ability to detect and count single

photons emitted from a source, an intensified charged coupled device (ICCD), an electron

multiplication charge coupled device (EMCCD) and a photo-multiplier tube (PMT).

Charged coupled devices (CCDs) are arrays of photosensitive units (pixels) which,

when exposed to incident photons, will generate, store and transfer electrons. The gener-

ated charge in the CCD array is directly proportional to the number of photons incident

on the array. Due to the array nature of this type of device it is possible, via electronics

and digitisation, to create an electronic form of the collected photons. In order for the

device to do this the collected charge must be transferred to a readout amplifier, shown in

figure 6.6. This is achieved by shifting the charged stored in each individual pixel down

one row, by adjusting voltages which confine the charges to a particular pixel, resulting

in the bottom row moving into the readout register. From this register the charge in each

pixel can be sent through the readout amplifier and converted into an electronic signal

which can be used to form a picture of the charge distribution.

6.4.1 The EMCCD

Electron multiplication CCD arrays (sometimes referred to as on chip multiplication ar-

rays) use a signal amplification technique which takes place in an additional readout

register known as a multiplication register, shown in figure 6.7. This multiplication of the

collected signal takes place before the charge is converted into an electronic signal by the

readout amplifier and so, if the multiplication is great enough, reduces the noise of the

readout to negligible levels.
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Figure 6.6: Diagram showing the general layout of a CCD array, including the readout

register and the readout amplifier used to digitise the collected signal.

Figure 6.7: Diagram in which the multiplication register of an EMCCD array used to

amplify the collected signal above the readout amplifier’s noise floor is shown.
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The process of amplification that takes place in the multiplication register is created by

adjusting the size of the potential well in which each pixel stores its charge. These wells are

created and controlled by electrodes in each pixel and so, by adjusting the voltage on the

electrodes, the depth of the well can be changed. To create amplification, neighbouring

wells are made deeper than previous wells and the charge is shifted into the adjacent

deeper well. If the depth of the well is sufficient then there is a finite probability that

additional charge will be liberated from the conduction band of the pixel. The amount of

multiplication which occurs can be altered by varying the voltages (depth of the wells) in

the pixels.

6.4.2 The ICCD

Intensified CCDs amplify the collected signal before it arrives at the CCD array. This

is achieved with the use of an intensifier unit, shown in figure 6.8, which consists of a

phosphor screen, a photocathode and a micro-channel plate encased inside an evacuated

tube. The intensifier unit works by guiding incoming photons towards the photocathode

where it liberates a photoelectron. Electric fields created by voltages applied to the pho-

tocathode and micro-channel plate result in the photoelectron being controllably guided

into the micro-channel plate. This controllability is used to vary the gain applied to the

photoelectron as it traverses the micro-channel plate which consists of a maze of ≈10 µm

diameter glass channels covered in a resistive coating. When the photoelectron passes

through these channels it can liberate extra electrons proportional to its initial energy

when entering the channels. This results in the initial incident photon being amplified

into a cloud of photoelectrons which are then guided onto the phosphor screen emitting a

burst of photons related to the size of the photoelectron cloud. This photon burst is then

collected by the CCD array and processed by the readout amplifier. If the amplification

is sufficient the signal incident on the CCD can be large enough to consider the readout

noise as negligible.

6.4.3 The PMT

Photomultiplier tubes (PMTs) utilise the photoelectric effect along with the ability of

high velocity electrons to liberate additional electrons from a surface (known as secondary

emission). A general layout of a PMT is shown in figure 6.9 depicting a linear arrangement

of dynodes, however these can be arranged into any geometry. Incoming photons, incident

on the PMT’s photocathode, liberate photoelectrons which are accelerated by control
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Figure 6.8: Diagram showing the layout of an ICCD’s intensifier unit.

voltages towards a set of dynodes held at increasingly higher positive potentials. This

allows secondary emission of electrons from the initial incident electrons. After passing

through the series of dynodes the resulting cloud of electrons are collected at the anode

from where an electrical current can be detected.

The photon counting PMT used in the imaging set up (Hamamatsu: H8259-01) is one

which converts detected photons into TTL pulses which can then be counted by external

electronics. This was preferred to a non-photon counting PMT as external electronics

would have been required to convert the analogue signal created at the anode into pulses

for the purpose of counting. In order for the PMT to produce pulses, which allow the

number of photons detected to be counted, they must be spread out in time sufficiently.

The PMT used in this work has a pulse-pair resolution of 35 ns, which means that photons

arriving within 35 ns of each other will be counted as one photon. The width of the

individual pulses is specified to 30 ns (with 5 ns between two consecutive pulses), and

were measured to be 31±2 ns. The number of counts which the PMT detects is dependent

on the count sensitivity of the device, Cs. This is a measurement of how many counts

are detected per unit energy imparted onto the photocathode. By multiplying the count

sensitivity by the energy of a single photon the more traditional quantum efficiency can
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Figure 6.9: Diagram showing the general layout of a PMT. Shown is the photocathode

used to convert the incoming photons into electrons, the electrodes used to focus the

generated electrons onto the array of dynodes. The anode is also shown where the cloud

of electrons created by the dynodes can be converted into an electronic signal.

be calculated. For example, the PMT used in this work has a count sensitivity of 3.3×105

s−1 pW−1 at a wavelength of 400 nm, which yields a quantum efficiency of ≈ 18%.

6.5 Comparison of photon detection devices

This section will describe the various noises which occur in the photon detection devices

and then compare the signal to noise ratio of the various devices. This comparison will

be carried out over a range of experimental parameters including photon flux incident on

the detectors and then exposure time of the detectors to the incoming signal.

6.5.1 General noise

Shot Noise, Nshot

Shot noise is inherent in all devices which detect photon signals as it is a direct property

of the emission from an ion, as it obeys Poissonian statistics. Emission of this type will

have a noise associated with it given by
√
X if the mean number of photons emitted is X.

Because of this, the best a device can do in terms of noise is to approach this fundamental

limit.
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The shot noise, Nshot, of the signal detected by the photon detection devices is, there-

fore, given by

Nshot = FQ
√
φiτ (6.14)

where Q is the quantum efficiency of the device, φi is the rate of incident photons arriving

at the detector (given by equation 6.4) and τ is the time over which the signal is integrated

(for a camera this would be the exposure time of one frame). F is a noise factor of the

gain process and will vary slightly for each type of device but is generally in the range of

1.3 to 2 [72].

6.5.2 CCD noise

Dark noise, Ndark

Dark noise is associated with CCD arrays and is generated by thermally liberated electrons

in the pixel’s silicon structure. Camera specifications quote a dark current, Idark, measured

in photons per pixel per second and occurs regardless of any incoming signal. For this

reason, single photon sensitive devices are cooled in order to reduce this level of noise to an

acceptable level. Several techniques exist to cool CCD chips including water cooling and

liquid nitrogen cooling, which require bulky external equipment to carry out. However, a

simple solution is the use of a device similar to that of a Peltier cooler which can reduce the

operating temperature of the CCD array to -100 ◦C without the need for bulky external

equipment. The dark noise of a CCD camera can be obtained by multiplying the dark

current, Idark, by the number of pixels to be read out, P , and the time, τ , over which the

signal is integrated.

Ndark = IdarkτP (6.15)

However, it is important to note that, as the dark noise occurs on the pixel array, an

EMCCD is subject to the gain of the device as the dark noise occurs before the signal is

amplified. This is not the case in an ICCD, where the signal is amplified before the dark

noise occurs.

The dark noise of a PMT is simply given as the number of spurious events counted by

the device per second, Cdark. The dark noise of a PMT is, therefore, given by

NPdark = Cdarkτ (6.16)
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Readout noise, Nread

The collected signal must be amplified above this noise in order to be detectable. A device

can detect a single photon if the signal produced by one photon can be amplified above

this noise. The noise itself is generated by the electronic circuitry used to digitise the

signal and is strongly dependant on the speed at which this is performed and so a greater

signal to noise ratio can be achieved by reading out the signal slowly. However, many

applications require a fast readout and so the various gain mechanisms must be used to

increase the signal above this noise level to achieve single photon detection at high readout

rates. The readout noise is generally quoted per pixel and so the total readout noise for

a frame will be the number of pixels multiplied by the readout noise. This type of noise

has no relationship with the time over which the signal is integrated.

Clock induced charge, Nclock

Clock induced charge noise arises from the same process that creates the signal multiplic-

ation in an EMCCD when charge stored in one pixel is shifted to an adjacent pixel and

liberates electrons from the silicon structure. Because this noise occurs during the charge

transfer it is important to use the slowest charge transfer rate (the pixel shift rate) possible

for the detection in order to reduce this noise. Clock induced charge currents, Iclock, for

cameras are quoted per pixel resulting in a dependence on the number of pixels used in

the CCD, P .

Nclock = IclockP (6.17)

Again this noise is subject to gain in an EMCCD and not in an ICCD as the noise is

created in the pixel array.

Equivalent background illuminance, NEBI

The noise created by equivalent background illuminance is only applicable to the ICCD

and is caused by spurious noise events in the microchannel plate. These spurious events

are then collected by the CCD array and the equivalent background illuminance current,

IEBI , is quoted per pixel per second and, therefore, the noise created by this is given by

NEBI = IEBIPτ (6.18)
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6.5.3 Signal to noise comparison

From the discussion on what types of noise are present in the three devices (EMCCD,

ICCD and PMT) it is now possible to arrive at equations expressing the signal to noise

ratio of each device. From these equations the signal to noise ratio of the devices can be

compared under different experimental conditions in order to determine which device is

best suited for different applications. As the noises of the devices add in quadrature the

total noise for an exposure on the devices can be given as

NICCD =
√

(GNshot)2 + (Ndark)2 + (Nclock)2 + (GNEBI)2 +N2
read (6.19)

for the ICCD,

NEMCCD =
√

(GNshot)2 + (GNdark)2 + (GNclock)2 +N2
read (6.20)

for the EMCCD and,

NPMT =
√
N2
shot +N2

Pdark (6.21)

for the PMT.

The signal, SCCD, for the two types of CCD which is collected by the devices during

each exposure time, τ , is given by

SCCD = QGφτ (6.22)

where φ is the number of photons incident on the device every second, Q is the quantum

efficiency of the device and G is the gain of the device. The signal, SPMT , for the PMT

is calculated via the device’s count sensitivity, Cs. This is a measurement of how many

counts the PMT produces for a given input of photon energy. By calculating the energy of

a single photon, E, the number of output counts can be calculated by multiplication with

the count sensitivity, Cs, and so the total signal detected by the PMT can be expressed

as

SPMT = ECsφτ (6.23)

The signal to noise ratio of the three devices can then be expressed as

s/nICCD =
SCCD
NICCD

=
QGφτ√

(GNshot)2 + (Ndark)2 + (Nclock)2 + (GNEBI)2 +N2
read

(6.24)
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for the ICCD,

s/nEMCCD =
SCCD

NEMCCD
=

QGφτ√
(GNshot)2 + (GNdark)2 + (GNclock)2 +N2

read

(6.25)

for the EMCCD, and

s/nPMT =
SPMT

NPMT
=

ECsφτ√
N2
shot +N2

Pdark

(6.26)

for the PMT.

It is important to note here that as the gain is increased in the EMCCD and ICCD the

read-out noise becomes less important to the overall signal to noise ratio of the devices as

the noises with a dependence on the gain, G, dominate the overall noise. It can be seen

that when the gain is increased an ICCD will have a better signal to noise ratio compared

to that of an EMCCD as the shot noise and EBI dominates, whereas in the EMCCD the

combination of the shot, dark and clock noise is dominant. However, this is only the case

if the incident photon signal, φ, is small (of a value that results in the shot noise being less

than or equal to the dark and clock noise). If the incoming photon signal becomes large

enough (of a value that results in the shot noise being much greater the dark and clock

noise) then the shot noise will dominate over all the other noise terms and results in an

EMCCD having a higher signal to noise ratio compared to that of an ICCD:

s/nICCD ≈
QGφτ√

(GNshot)2 + (GNEBI)2
(6.27)

s/nEMCCD ≈
QGφτ√

(GNshot)2
(6.28)

The reason for this is that the dominant noise in the EMCCD will be the shot noise

whereas in the ICCD it will be the sum of the shot and EBI noises. This is illustrated

in figure 6.10 as below about 100 photons per second incident on the detectors the ICCD

has a superior signal to noise ratio compared to that of the EMCCD and after around 100

photons per second incident on the detectors the EMCCD has the superior signal to noise

ratio. The estimated photon flux from a single ion is indicated by the vertical dashed in

figure 6.10. Here it can be seen that the EMCCD has a slightly higher signal to noise

ratio (≈ 40) compared to that of the PMT and IMCCD (≈ 30). For this case, although

the EMCCD has the superior signal to noise ratio, all three types of detectors would be

capable of detecting the florescence of a single ion.
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Figure 6.10: Graph showing the signal to noise ratio for a 10 by 10 pixel ROI of a typical

EMCCD, PMT and ICCD as a function of the photons incident on the devices per second,

φ. Also shown is the ideal signal to noise ratio given simply by the limit obtained from

shot noise only. The vertical dashed line indicates the estimated approximate photon flux

from a single ion.
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6.5.4 Frame rate comparison

When carrying out an experiment with trapped ions it is important to choose the correct

detection device. If spatial resolution of the ions is required the CCD must be used as

the PMT does not offer this, but if spatial resolution is not an issue the device with the

highest signal to noise ratio should be chosen. The noise of the CCD is dependent on

the time over which the incident signal is integrated (the frame time), τ , and the number

of pixels, P , over which the signal is spread (the ROI) and so it follows that the device

with the highest signal to noise ratio will be dependent on these values. Figure 6.11 shows

the area (shaded) in which an EMCCD (Andor: iXonEM+ 885) has a higher signal to

noise ratio compared to that of a PMT as a function of the number of pixels in the CCDs

ROI and the number of photons incident on the detector per second. The graph shows

that, generally, as the number of incident photons per second is reduced the size of the

EMCCD ROI needed to provide a larger signal to noise ratio compared to that of the

PMT is reduced. The reason for this is that as the incident photon rate reduces so does

the shot noise error associated with the signal, becoming closer in value to the dark noise

and clock induced charge. The approximated signal to noise expression in equation 6.28

becomes less valid at low incident photon levels. This means that the noise of the CCD is

effected more by the devices dark noise, clock induced charge and readout noise, whereas,

the PMT is only ever effected by the shot noise and its dark noise. For a low photon flux

the expression for signal to noise given by equation 6.25 should be used. For the case of

detecting a single trapped ion, the number of photons emitted from an ion per second is

given by [50]

γ =
sΓ

2

1 + s+ (2∆
Γ )2

where Γ is the linewidth of the transition, s is the saturation parameter and ∆ is the

detuning of the laser from the transition frequency. For typical detection experiments s is

around one and the detuning is around 10 MHz, providing the number of photons emitted

from an ion per second as ≈ 330, 000. As the Special Optics triplet lens used collects

2.2% of the emitted photons (equation 6.8) and the transmission coefficient through the

imaging optics, T , is estimated at being ≈ 0.9 the total number of photons incident on

the detectors will be ≈ 6000 per second. Using this photon flux along with equations

6.25 and 6.26 the signal to noise ratio of the two devices can be calculated for different

exposure times. For the exposure times used in figure 6.11 the EMCCD can be seen to

have a superior signal to noise ratio when the image is spread over a pixel number shown
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in the figure by the shaded region. Under conditions when the signal to noise ratio of

the EMCCD is less than PMT but they both have a signal to noise ratio much larger

than one (meaning that an ion is easily noticeable above the noise in both detectors) the

EMCCD offers the advantage of spatial resolution whereas the PMT does not. This extra

information provides vital information when aligning the laser beams into the centre of the

trap and also of the position of the area being imaged in reference to the trap electrodes

which is not as easy to achieve with a PMT. For these reasons it is advisable to use an

EMCCD over a PMT to initially trap an ion. Additionally, the spatial resolution of the

EMCCD provides a tool with which measurements of fluorescence of multiple ions can be

made simultaneously, whereas the PMT would either not allow multiple ion measurement

or the measurement would have to be undertaken on each individual ion separately.

Binning is a process whereby several pixels are used together as one larger pixel.

The advantage of this is that fewer pixels need to be read out resulting in less readout

noise being added to the signal. The other noise sources remain at the same level as the

same total number of pixels is still in use. The disadvantage of binning, however, is the

degradation in spatial resolution and so this process is only an option in experiments which

require little spatial resolution (or can cope with a reduced resolution).
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Figure 6.11: (A): Graph showing the area (shaded) where an EMCCD has a superior signal

to noise ratio to a PMT. The signal to noise ratio for the EMCCD equalling 1 (dashed),

10 (dotted) are also shown. (B) Graph showing an inset of the graph in (A).
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Chapter 7

Experiments with trapped ions

7.1 Introduction

This section describes several experiments which have been performed using the experi-

mental apparatus introduced in this work. Initially the 174Yb+ isotope is ionised, trapped

and the secular frequencies of the ion experimentally determined. From this, the trap

depth can be deduced by using a BEM (boundary element method) simulation along with

the experimentally obtained frequencies. It was noted during this initial trapping proced-

ure that Yb+ ion transition frequencies were not available to the required accuracy for

successful trapping. For this reason the 170Yb, 171Yb, 172Yb, 174Yb and 176Yb isotopes

were ionised and trapped. Their transition frequencies were then found to an accuracy of

120 MHz. Heating rate measurements of Yb+ ions in a Paul trap were undertaken and

shown to not be any higher than other elements used for ion trapping.

7.2 Initial trapping, secular frequency and trap depth de-

termination

Using the experimental apparatus described in this thesis both single Yb+ ions and Yb+

ion crystals can be trapped, as shown in figures 7.1 and 7.2. The initial trapping of Yb+

ions was carried out using the blade trap described in section 3.3 and figure 3.6 with static

voltages and an rf voltage and frequency shown in table 7.1.

Once a single ion of Yb+ was trapped, its secular frequencies were measured by apply-

ing a small amplitude (between 1 to 10 volts) ac voltage to one of the end cap electrodes.

The frequency of this voltage was then scanned and, when equal to a secular frequency,

causes the ion to be driven in that particular axis of motion. This excitation can be de-
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Table 7.1: Experimentally measured trapping voltages for the macroscopic trap shown in

figure 3.7

.

rf voltage 680± 10 V

rf frequency 21.48± 0.05 MHz

Static voltage 1 0± 0.01 V

Static voltage 2 7.36± 0.01 V

End 1 148.88± 0.01 V

End 2 25.03± 0.01 V

End 3 167.76± 0.01 V

End 4 0± 0.01 V

Comp 1 169.22± 0.01 V

Comp 2 −2.70± 0.01 V

tected as a visible distortion to the image of the ion on the EMCCD picture. The error

on the secular frequency using this method corresponds to the frequency range over which

the trapped ion’s image is observed to distort. Using this method of detection the secular

frequencies, (ωx, ωy, ωz)/2π, of a single trapped 174Yb+ ion were measured as (2.069,

2.110, 1.030) ±0.001 MHz respectively.

Figure 7.1: Left: A single Yb+ ion is shown using an EMCCD. The slightly less noisy

background on the right hand side indicates the position of an electrode. Right: A six

ion multi isotope Yb+ chain is shown. The gap in the chain indicates the presence of an

isotope of Yb which is not resonant with the cooling laser. This demonstrates the set-up’s

ability to trap different isotopes towards performing sympathetic cooling.

Measuring the positions of the trap electrodes using the imaging system enables a
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Figure 7.2: Left: An EMCCD image of a chain of four Yb+ ions. Right: The same

chain of four ions are shown in a zig-zag configuration. This is achieved by increasing the

axial secular frequency with respect to the radial secular frequencies.

boundary element method (BEM) simulation of the electric field created by the actual trap

constructed (as opposed to a simulation using the designed perfect electrode positions).

By doing this a more accurate rf null position can be obtained aiding initial trapping.

The rf voltage cannot be directly measured, however, it can be inferred from the BEM

simulation of the trapping field by finding the rf voltage required to create the measured

secular frequencies. Using this inferred rf voltage the trap depth can also be inferred from

the field simulation. For the voltages shown in table 7.1, the trap depth was calculated to

be 4.9± 0.2 eV. With these trapping conditions ion lifetimes of hours are observed, even

without the presence of optical cooling.

7.3 Yb+ transition frequency measurements

Previous works [33] have used hollow cathode lamps to measure the Yb+ Doppler broadened

absorption line at 369.525 nm with a width and accuracy around 3 GHz in order to

frequency stabilise lasers. This accuracy, however, is not sufficient to determine the

wavelengths required to cool the various Yb+ isotopes as they are required to be known

to within a few tens of MHz. For this reason it was the aim of this work to measure the

absorption lines of the individual isotopes to a precision which allows this. To initially

trap ions, the wavelengths of the lasers were systematically varied within the previous

work’s Doppler broadened measurement until an ion of the desired species was trapped

and cooled. The 398.9 nm ionisation laser was set to the specific ion’s transition frequency

for an angle of 63◦ to the atomic oven flux [36]. Once an ion was visible the 369.5 nm

cooling laser’s frequency was increased until the detected florescence of the ion dropped

suddenly back to that of the background noise level. This indicates that the frequency

was now blue detuned from resonance and the ion was being heated by the laser. It can

be assumed that resonant frequency of the transition is the one which corresponds to the
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peak ion florescence. This process was carried out for the 170, 171, 172, 174 and 176 Yb

isotopes and the wavelengths for each are shown in table 7.2. The wavelengths were meas-

ured using a wavemeter (High Finesse: WS7). For the even isotopes no external magnetic

field was applied but for 171Yb+ ions an external 0.5 mT magnetic field was applied in

order to remove the degeneracy within this isotope’s Zeeman levels.

Table 7.2: Table showing the transition wavelengths of neutral Yb (1S0 ↔ 1P1) for the

purpose of ionisation. Also show are the Yb+ ion wavelengths needed for cooling (2S1/2 ↔
2P1/2) and re-pumping (2D3/2 ↔ 3D[3/2]1/2).

Yb isotope 1S0 ↔ 1P1
2S1/2 ↔ 2P1/2

2D3/2 ↔ 3D[3/2]1/2

wavelength [nm] wavelength [nm] wavelength [nm]

170 398.91051(6) 369.52364(6) 935.19751(20)

171 398.91070(6) 369.52604(6) 935.18768(20)

172 398.91083(6) 369.52435(6) 935.18736(20)

174 398.91114(6) 369.52494(6) 935.17976(20)

176 398.91144(6) 369.52550(6) 935.17252(20)

During the measurements of the ion transition wavelengths, the intensities of the 369

nm and 935 nm lasers were set at 0.4 Wcm−2 and 0.02 Wcm−2 respectively. By setting

the beam intensities to these values, any effects on the transition frequency due to power

broadening and the ac Stark shift can be ignored. Once the 369 nm transition has been

determined by observing the point at which the ion fluorescence drops back to background

noise levels the wavelength of the 935 nm laser can be optimised. This is done by varying

the 935 nm laser and observing the wavelength when the fluorescence from the ion peaks

to a maximum. Precise measurements of the 638 nm (2F7/2 ↔ 1D[5/2]5/2) transition are

difficult to obtain due to the infrequent population of the F state. For this reason the

transition was power broadened by applying an intensity of 120W cm−2 using 638.618 nm

for the even isotopes and scanning between 638.610 nm and 638.616 nm for the 171 isotope

in order to account for the hyperfine states [44]. These values were found to produce no

obvious interruptions in the ion fluorescence indicating that the wavelengths used are close

enough to immediately remove the ion from the F state.

The errors associated with the 369 nm and 935 nm laser wavelengths quoted in table

7.2 are due to the accuracy of the wavemeter, which is specified to be 200 MHz below

370 nm and 60 MHz between 370 nm and 1100 nm. To reduce the 200 MHz error on the

369 nm wavelength, the wavelength of the 739 nm (with an error of 60 MHz) laser can be



109

measured resulting in a 369 nm error of 120 MHz. To eliminate any systematic offsets of

the wavemeter and to reduce any drift in the wavemeter over the course of the wavelength

data collection the wavemeter was calibrated using a 780 nm laser locked to a 87Rb D2 line

and confirmed with a He-Ne laser (both with a frequency accurate to below 1 MHz) before

each measurement. The errors associated with the 399 nm laser wavelengths are due to

the error associated with aligning florescence spots from counter propagating beams in a

bell jar with neutral atomic flux present as described in [36].

7.4 Heating rate measurement

Quantum computation and simulation rely on interactions between ions and lasers to

prepare, entangle, manipulate and read-out atomic states which are dependent on the

motional state of the ions. Because of this it is important to know how much uncontrolled

heating occurs in a particular trap structure. In the procedures required for quantum

computation, any uncontrolled heating of the ion motion provides a limiting factor on

the fidelity of the procedures and, therefore, the overall fidelity of the computation. This

section will describe the basic theory and method used to measure the heating rate of a

single Yb+ ion in the blade trap described in this thesis in chapter 3 and based on that

proposed by J. H. Wesenberg et al [34].

A single trapped Yb+ ion is not cooled by removing the 369 nm Doppler cooling laser

using an acousto-optic modulator (AOM (Isomet: 1212-2-949)) for periods of 1, 3, 5 and

7 seconds. The response time of the AOM was specified to be on the order of ≈ 100 ns

which means that it can be ignored when considering the amount of time the cooling light

is removed for. Once the 369 nm laser is switched back on, the fluorescence of the ion

is measured for 4 ms, split into 50 µs bins. For the method described in [34] the ion’s

energy change is required to be dominated by heating along one axis of motion only. As

it is known that the heating rate of an ion obeys a 1/ω2 law [66, 73] (where ω is the

angular secular frequency), the secular frequencies (ωx, ωy, ωz)/2π were set to (2.069,

2.110, 0.178)±0.001 MHz respectively. The timing of the experiment, shown in figure 7.3,

was controlled using a LabVIEW FPGA module implemented on an NI-Compact RIO

(National Instruments: PXI-1033) and an NI-PXI-7842R card. The reason for the overlap

between the cooling laser switch off phase and the photon detection on phase was to ensure

that all the ion florescence was collected correctly in the event of delayed detection.

When the ion is subject to heating, its velocity, v, increases as well as its instantaneous

Doppler shift, ∆D = −kv, where k is the wave vector of the cooling laser. The maximum
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Figure 7.3: Diagram showing the timing of the heating experiment.

instantaneous Doppler shift is denoted as ∆max. The probability of the ion experiencing

a particular ∆D can be described by the probability density PD(∆D) [34] and so the

scattering rate of the ion is affected by the overlap of PD(∆D) with the Lorentzian line

profile, L(∆). When in a situation where the ion is hot (where ∆max � |Γ| + |∆| with

∆ being the detuning of the cooling laser from resonance) the Doppler shift probability

and the Lorentzian line profile overlap poorly, as seen in figure 7.4(a), resulting in low

scattering rates. When in the situation where the ion is cold, as shown in figure 7.4(b), the

probability density overlaps well with the Lorentzian line profile resulting in an increased

scatter rate.

The energy change of an ion during one period of oscillation in the trapping potential

is much less than the total energy change during the whole of the re-cooling experiment.

This allows the energy over an oscillation (and hence the scatter rate) to be averaged and

given by [34]

〈
dN

dt

〉
=

∫
dN

dt
PD(∆D)d∆D (7.1)

where dN/dt is the instantaneous scatter rate of the ion. In the case of a hot ion, figure

7.4 (a), the probability density, PD(∆D), can be approximated as being uniform over the
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Figure 7.4: Diagram of Doppler overlap with the Lorentzian line profile. (a) Shows the

case of a hot ion where there is a poor overlap between the Doppler shift probability and

the Lorentzian line profile, L(∆). (b) Shows the case for a cold ion, where the Doppler

shift probability overlaps well with the Lorentzian line profile, L(∆).
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Lorentzian line profile. The probability density can then be factored out and the scatter

rate of the ion can be expressed in terms of the ion’s energy at time t, E(E0, t), and energy

before cooling, E0, [34]

〈
dN

dt

〉
(E(E0, t)) =

1√
E(E0, t)

sΓ2

2

√
2
mkz(1 + s)

3
2

(7.2)

where m is the ion mass, kz is the Z component of the laser beam vector, Γ is the

observed transition linewidth and s is the saturation parameter. Using a one-dimensional

Maxwell-Boltzmann distribution [34] to describe the thermal distribution of the ion before

re-cooling, E0, the average scattering rate for the ion is then [34]

〈
dN

dt

〉
E0

=

∫ ∞
0

PB(E0)

〈
dN

dt

〉
(E(E0, t))dE0 (7.3)

where PB(E0) is the 1D Maxwell-Boltzmann distribution [34].

For the heating measurements carried out a detuning of ∆ = 6± 2 MHz, a saturation

parameter of s = 1.0 ± 0.2 and the Z-component of the laser beam vector of kz = 0.45k

were used. With these parameters the linewidth, Γ, of a trapped 174Yb+ was measured as

40 ± 5 MHz and is assumed to be broadened due to the effects of power broadening and

any uncompensated micromotion. Each heating measurement, described by figure 7.3, was

repeated 500 times and averaged for each delay time due to the thermal distribution of

the ions initial energy, E0. Equation 7.3 can then be fitted to the average ion fluorescence

by using E0 as a free fitting parameter, as shown in figure 7.5.

The ion energy can be converted into motional quanta via 〈n〉 = E/~ω and so the

change in motional quanta after the different delay periods can be calculated, and are

shown in figure 7.6. This process was then repeated at different secular frequencies, (178,

287, 355)±1 KHz and the heating rate as a function of this secular frequency was shown

to obey the predicted 1/ω2 relationship [66, 73]

〈ṅ〉 =
q2

4m~ωz
SE(ωz) (7.4)

where q is the charge of an ion, m the mass of an ion and SE(ωz) is the electric field noise

density and is proportional to ω−1 [66]. The results for the heating rate as a function of

secular frequency are shown in figure 7.7.

Figure 7.6 shows an offset of ∆n. This offset is thought to be caused, primarily, by two

processes. Firstly, any micromotion present will act to heat the ion and raise the initial n.

As micromotion was only very crudely compensated for in this experiment it is likely that
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Figure 7.5: Graph showing a result for the ion fluorescence during the photon detection

phase described in figure 7.3 after being subjected to heating as a result of the cooling

laser being switched off for five seconds. Time zero corresponds to when the cooling laser

was turned on again after heating. This result was achieved with a secular frequency of

ωz = 180 kHz.

this process has a significant effect on the offset in figure 7.6. Secondly, it is possible that

the ion is displaced from the exact trapping centre by radiation pressure from the cooling

laser. When this laser is turned off, to allow heating to occur, the ion will move back to

the centre of the trap, effectively heating the ion and causing an offset in figure 7.6.

Figure 7.6: Graph showing the change in motional quanta after heating periods of 1,3,5

and 7 seconds. Each result is an average of 500 measurements.

Figure 7.8, taken from [3], shows current published experimental results of the product

of electric field noise spectral density SE(ω) and the secular frequency, ω, versus ion-
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Figure 7.7: Graph showing the heating rate of a 174Yb+ as a function of secular frequency.

electrode distance, r, taken at both room and cryogenic temperatures obtained in other

ion-trapping experiments. The result obtained in this work is indicated by the dashed

box. The dashed line shows a 1/r4 trend though the data taken at room temperature.

The product of electric field noise spectral density and the secular frequency found in this

work is shown to be consistent with existing experimental results at room temperature.
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Chapter 8

Two-dimensional ion trap surface

array design optimisation for an

analogue quantum simulation

8.1 Introduction

Trapped ions possess long lived addressable internal states and can be highly decoupled

from their environment. This makes them an important tool in the development of

quantum information processing [57, 89] and quantum simulation [90, 91, 92, 93, 94].

When used for quantum simulation they enable complex spin systems, among others, to

be investigated beyond the practical limitations of classical computation. For example,

trapped ions have been used for quantum simulations of the evolution of paramagnetic

into (anti-)ferromagnetic order in a spin system, [95, 96] and frustrated anti-ferromagnetic

Ising interactions, [97, 98]. These first simulations were carried out using one-dimensional

trapping arrays and state dependant forces applied using laser beams.

More complex simulations will require ions trapped in 2D arrays and interaction

schemes compatible with these. Advances towards 2D trapping arrays suitable for quantum

simulations have been made by trapping ions in a millimetre-scale mechanically fabricated

metal mesh [61] and by the successful implementation of microfabrication techniques for

ion traps [3]. In addition, interaction schemes based on large oscillating or static magnetic

field gradients have been proposed [99, 100] and demonstrated in an on-chip microwave

gate [29, 101]. With the recent advances in the field, ion trap quantum simulations using

large scale 2D ion trap lattices are within the reach of current technology.

In order to create a 2D array of trapped ions a repeating 2D surface geometry is re-
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quired. Decoherance due to anomalous heating is a major issue for large scale quantum

simulations. As this heating scales approximately as r−4 [66], where r is the ion height

above the trapping surface, it is advantageous for ions to be trapped high above the

surface. However, when individual surface microtraps are placed together so that their

separation is less than around twice the ion height the individual electric fields start to

overlap and distort the resulting trapping fields [102]. In extreme cases this can lead to

the traps combining to produce a singular trapping zone. To compensate for this the

electrode structure has to be altered when operating within this regime [102]. Schmied et

al. [102] have investigated surface-electrode geometries and developed an algorithm that

optimises geometries to maximise the electric field curvatures of individual trapping sites

for arbitrary ion heights and separations. Individual trapping sites shown in [102, 103]

were optimised using this algorithm leading to non-intuitive electrode patterns which can

contain many isolated radio-frequency (rf) and static voltage electrodes. Another pro-

posal [104] working outside this regime uses rf electrodes with controllable rf voltages

to lower trap frequencies and decrease ion-ion distances and, therefore, increase interac-

tion strengths. However, this requires the use of multiple independent rf electrodes and

individually controllable rf voltages posing an additional experimental complication.

This works presents an optimisation process for ion trap topologies based on a single rf

electrode island, reducing the requirement for buried rf wires and multiple rf electrodes. A

focus is made on the development of an optimum lattice geometry where the ratio of coup-

ling rate to the decoherence rate due to ion heating is maximised and made homogeneous

across the lattice. This is achieved by minimising the secular frequencies of the trapping

sites whilst, simultaneously, keeping the trapping depths above a minimum trap depth

(for illustrative purposes we use 0.1eV) to allow for successful operation of the proposed

2D lattice designs. We will concentrate on the optimum lattice topology for hexagonal,

square and centred rectangle lattices. An investigation is also carried out on how optimal

geometries depend on the overall lattice size, and we discuss the choice of and scaling for

experimental parameters such as rf voltage, drive frequency, ion mass and electric field

noise density.

Additionally it is possible that two-dimensional ion arrays of this type could also be

used for quantum computation. For example, cluster state quantum computation could

be carried out in such a system [105, 106]. However, additional constraints may also have

to be taken into account.
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8.2 Ion-ion interactions and Lattice Geometry

8.2.1 Ion-ion interactions

Two-dimensional lattices of ions can be used as a quantum simulator for many body spin-

1/2 systems [59]. Forces such as the trapping potential, FT = −mω2
i , and the coulomb

force, FC = −e2/(4πε0A
2), between the individual ions determine the equilibrium position.

Laser beams or magnetic field gradients can be used to impart an additional force to the

ions which displace the ion(s) depending on its internal state. This displacement leads to

a change in the coulomb force and thereby displaces the neighbouring ion(s) dependent

on their own internal state. This state dependant coupling is given by [59]

J =
βF 2

mω2
(8.1)

where m is the mass of an ion, F is the magnitude of the state dependant force applied

to each ion and ω is the trap’s secular frequency. Exactly how this force is applied will

be discussed later in the chapter. β is the ratio of the change in the Coulomb force to

the change in the restoring force due to the displacement of the ions caused by the state

dependant force and is given by [59]

β =
e2

2πε0mω2A3
, (8.2)

where A is the ion-ion spacing. There are two cases to consider, when β > 1 the change

in the Coulomb force, δFC , due to the displacement of an ion is dominant over the change

in the restoring force, δFT . This results in an interaction over a large number of trapping

sites. When β < 1, the opposite is true resulting in an interaction which decays rapidly

across the array. Trapping ions in a 2D array of microtraps makes it possible to satisfy

the condition that β < 1 allowing systems with short range interactions to be simulated.

An illustration of this system is shown in figure 8.1.

It is important to consider sources of decoherence when designing a 2D ion trap array.

The internal state of an ion can remain coherent for 10’s of seconds [22, 107]. However,

motional decoherence due to anomalous heating of ions will be an important factor during

quantum operations within small scale ion traps as the implementation of spin dependant

couplings involves the use of motional states of the ion. The coupling, J , will be observable

if the coupling time, TJ = 1/J , is less than the motional decoherence time in the system

and, therefore, the ratio of these two times is an important parameter of the system and

is given by
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Figure 8.1: Pictorial diagram of three ions in adjacent traps. The ions feel a Coulomb

force indicated by the springs between each ion and can be placed in two different states

indicated by their colour. (a) Pictorial diagram showing the case with no state dependent

force present. (b) Pictorial diagram showing how the system reacts to the presence of a

state dependent force, F . Here the ions feel a change in the Coulomb force, δFC , due to

the displacement of the ions and a change in the restoring force, δFT .

Ksim =
Tṅ
TJ

(8.3)

where [66],

Tṅ =
4mω~
e2SE(ω)

. (8.4)

Here SE(ω) is the electric field noise density [3, 66]. In order for an interaction to occur

on faster time-scales than the decoherence in the system, it is required that Ksim > 1 and

it is the aim of the optimisation process presented in this work to optimise the geometry

in order to maximise this parameter. To acquire an understanding of how a geometry can

affect Ksim it is necessary to determine its form with respect to the geometry variables.

The form of TJ can be found by substituting equation 8.2 into 8.1 and is given by

TJ =
2πε0m

2ω4A3~
e2F 2

. (8.5)

The Ksim parameter can then be expressed as

Ksim =
2F 2

SE(ω)πε0mω3A3
. (8.6)

The secular frequency, ω, of a trapped ion [39] can be expressed as a function of α defined

as
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α =
V

Ω
(8.7)

where V is the amplitude of the rf voltage applied to the trap and Ω is 2π times the drive

frequency in Hz, yielding,

ω =
eV ηgeo√
2mΩr2

=
eαηgeo√

2mr2
(8.8)

where r is the height of an ion above the surface, e is the charge of an electron and ηgeo is

an efficiency factor which can range between zero and one depending on the form of the

geometry [39].

The secular frequency given in equation 8.8 can then be used along with SE(ω) =

Ξr−4ω−1, where Ξ is a coefficient that can be experimentally obtained and depends on the

temperature and surface of the trap electrodes (see [3] for a listing) to re-express equation

8.6 in the form

Ksim =
4F 2mr8

Ξα2η2
geoπε0A

3
. (8.9)

To further understand how the geometry effects the Ksim value the parameters of a lattice

geometry will now be introduced and related to equation 8.9.

8.2.2 Two-dimensional ion trap lattice geometry

A lattice is a regular tiling of a space by a primitive unit cell. Previous works [61, 104]

concentrate on lattices created from square unit cells. In total there exist five types of

cell which can be used to form a 2D lattice: centred rectangular, hexagonal and square

as shown in figure 8.2, and rectangular and oblique [108]. The rectangular and oblique

structures are not considered in this work due to their non-uniform ion-ion distances.

Figure 8.2 shows the polygon-polygon separation which is equal to the ion-ion distance,

A, in equation 8.9. The polygon radius, R, along with the separation, will determine the

height above the surface at which the ion is trapped, r, with larger polygon radii yielding

higher ion heights. Another variable to be considered is the gap between the outer polygon

in the array to the edge of the rf electrode, g. This can be used to alter the homogeneity

of the individual trapping sites within the array. In general a non-homogeneous system

results in spin dependant coupling rates which are a function of the lattice site, posing a

significant problem for the scalability of such an array [109].
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Figure 8.2: Diagrams showing the polygon radii R, the separation between the polygon

centrers, A, and the distance between the last polygon and the edge of the rf electrode

(shown in grey), g. (a) Diagram showing a three by four ion trap surface array consisting of

six sided polygons arranged with square unit cells. (b) Diagram showing a similar surface

array arranged into hexagonal unit cells. (c) Diagram showing a surface array arranged

into centred rectangular unit cells. The unit cells are indicated by dashed lines.

8.3 Simulation of lattices

To determine the electric field produced by a two-dimensional array a method based on

the Biot-Savart like law described by Oliveira and Miranda [2] was used. This method

calculates the electric field produced by an arbitrarily shaped two-dimensional electrode

which is held at a potential V whilst the rest of the plane is held at a potential of zero.

The electric field observed at a given point, X, in space due to such an area held at a

potential and bounded by a path C is given by [2]

E(X) =
V

2π

∮
C

(x− x′)× ds
|x− x′|3

(8.10)

where the curve, C, bounds the electrode and x′ and x are vectors that locate the source

point and field point respectively. By calculating the electric field in this manner an

assumption is made that there is no gap between the areas held at the potential, V , and

the areas held at zero. In microfabricated surface traps, gaps between the electrodes are

required and typically range from 3µm - 10µm [3]. If, however, these gaps are small in

comparison to the electrode structures they will not alter the trapping fields significantly

[1, 85, 110]. The electric fields of individual electrodes can then be combined to determine

potential nils and, therefore, trapping positions in the 2D trap arrays, using the numerical

Gauss-Newton algorithm. The secular frequencies, trap depths and ion heights at these

positions can then be determined.

To calculate the error of the numerical integration simulations of five wire symmetric

surface trap geometries with different central static electrode and rf rail widths in the
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gapless plane approximation using the method of Oliveira and Miranda [2] were compared

to results obtained with analytical equations described by House [1]. In all the geometries

simulated the two rf rails were of equal width. Similarly to House, the outer static voltage

electrodes were approximated as an infinitely long ground plane although the length of the

inner rails were set to 3000 µm instead of infinite. A selection of these simulation results

are shown in table 8.1.

Electrode parameters Simulations House equations

rf width central static rf Volt. rf freq. r ω r ω

[µm] electrode width [V] [MHz] [µm] [MHz] [µm] [MHz]

[µm]

100 50 250 75 55.8 6.86 55.9 6.87

100 50 500 60 55.8 4.29 55.9 4.29

200 100 250 30 110.1 2.17 111.8 2.20

200 100 500 40 110.1 3.26 111.8 3.30

500 150 250 20 165.4 1.48 167.7 1.52

500 150 500 25 165.4 2.37 167.7 2.43

Table 8.1: Table showing the secular frequency, ω, and ion height, r, for different five wire

surface trap geometries as calculated by the analytical method in House [1] and simulated

by the method used in this work based on the Biot-Savart like law [2].

In these results a general error for the ion heights and secular frequencies of less than

2% and 3% respectively was found, which leads to a maximum error in Ksim of 10%. For

the following simulations it is therefore assumed that the maximum Ksim error is 10%.

Additionally, numerical simulations of the geometries were carried out using methods

described in [111], which indicate similar errors and trends for the ion height and secular

frequency as the results obtained with the Biot-Savart like method.

8.4 Lattice geometry optimisation

In this section it will be shown how the parameters of the lattice geometry (discussed

in section 8.2.2) can be optimised to achieve the highest possible Ksim value across the

array for a given set of experimental parameters. To do this, it is first shown how the

homogeneity of individual site properties over an array can be maximised by varying the

distance between the outer polygon in the array to the edge of the rf electrode, g, and

then shown how this scales with lattice size. These homogeneous arrays will then be used
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to calculate the optimum number of sides, n, a polygon within the array should possess

in order to maximise Ksim. A method will then be outlined describing the optimisation

of the polygon radii, R, and separation, A, of an array and show how these vary with

increased lattice size and ion mass.

8.4.1 Increasing the homogeneity of Ksim across the array

This is achieved by ensuring homogeneous secular frequencies, ion heights and trap depths

across all the array sites. As shown in figure 8.3 the Ksim of trapping sites in an array can

be altered to approach a common value if the distance, g, between the edge of the outer

polygon and the edge of the rf electrode containing the polygon array is adjusted. As

the value of g is increased, the Ksim value of the sites towards the centre drop, however,

the outer sites Ksim value rises, resulting in the properties converging towards each other.

If the distance g is increased further beyond the point at which maximum homogeneity

occurs the outer site properties drift away from those of the central sites and, therefore,

decrease the homogeneity of the array.

To provide a value of g which is universal for all lattice sites, its value is given in units

of lattice side length, L. The lattice side length is determined by the polygon separation,

A, and radius, R, and can be expressed as

L = (M − 1)A+ 2R, (8.11)

where M is the number of lattice sites along one side of an array.

In order to quantify the array’s homogeneity, H is defined as the average deviation of Ksim

of each lattice site from the Ksim of the central site and is given by

H =
1

N

N∑
n=1

∣∣∣∣1− Ksimn

Ksimcentre

∣∣∣∣ (8.12)

where N is the total number of trapping sites in the lattice.

Figure 8.4 shows H for a five by five square type unit cell lattice for 0 < g/L < 1.5.

The maximum homogeneity, and thus the optimum g/L, is found when H is minimised.

The error associated with H is given by

σH =

√
N(σKsim)2 +N(σKsimcentre)

2

N
(8.13)

where the error on all Ksim values is 10%, as shown in section 8.3. This yields an overall

percentage error on H of 0.13/
√
N%.
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Figure 8.3: Diagram showing the effect of varying the distance g on the scaled Ksim value

of the individual trapping sites. The Ksim values shown are scaled with that of the central

site. (a) Representation of a 5 by 5 square type lattice array indicating the axis labelling.

(b) Slices across the array (indicated by the dotted line in (a)) for g/L values of 0.1, 0.2,

0.5 and 1.

Figure 8.4: Graph showing the average deviation of the Ksim of each lattice site from the

Ksim of the central site, H, for a five by five square type unit cell lattice for 0 < g/L < 1.5.

The error on H is given by 0.13√
N
H and the error of the minimum of H is determined by

observing the spread of g/L which agrees, within error, with the minimum position.
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Lattice Type a b B

Square 0.20±0.01 5.21±0.38 0.74±0.03

Hexagonal 0.39±0.08 3.76±1.40 0.54±0.14

Centre Rectangular 0.31±0.04 7.84±2.43 0.76±0.11

Table 8.2: Table showing a and b values for the fits which describe g/L as a function of

the number of sites in the lattice.

Figure 8.5 shows the optimum g/L for hexagonal, central rectangular and square unit

cell lattices of different sizes. The curves are found to be described by an equation of the

form g/L = a + bN−B with a, b and B values for different lattice types shown in table

8.2. For large lattices, g/L is independent of N , as trapping sites close to the edge of

the lattice are influenced only by the electric field created by that edge. In small lattices,

however, the optimum g/L increases as the effect of the electric field from the opposite

edge of the lattice increases.

Figure 8.5: Graph showing the optimum g/L as a function of the total number of trapping

sites, N, for square lattices (square markers), hexagonal lattices (circular markers) and

centre rectangular lattices (diamond markers). The curves are given by g/L = a+ bN−B

with a, b and B values for different lattice types shown in table 8.2.

8.4.2 Optimising the number of polygon sides

An investigation will now be carried out to find the optimum number of polygon sides,

n, which provide the highest Ksim value on the central trapping site (located above the
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central polygon) of a lattice. This is important as the time taken to simulate a geometry

is a function of the number of sides in a polygon. It is, therefore, advantageous from

a simulations point of view to keep the number of polygon sides to a minimum without

compromising the functionality of the resultant geometry.

To ensure the results are universal for all lattice geometries, g/L is set to the value

which maximises the homogeneity of each array, and all other parameters are scaled by

normalising Ksim to that of an identical geometry with polygons of 100 sides. This also

allows comparison between the different types of lattices.

Figure 8.6: Graph showing the relationship between the number of polygon sides and

Ksim for square (square markers), hexagonal (circular markers) and central rectangular

(diamond markers) unit cell lattices. The dashed lines show the values of 1 and 0.95 of

the scaled Ksim value.

Figure 8.6 shows the scaled Ksim for the central site as the number of polygon sides is

varied. As the number of sides is increased the value of Ksim approaches an asymptote,

shown by the upper dashed line. This indicates that the best geometry will be made from

circular electrodes. However, simulation times grow with increasing polygon side number

and so it is advantageous to reduce this number to a minimum. It is shown that 95% of

the maximum achievable Ksim (indicated by the lower dashed line) can be achieved with

around ≥ 25-30 sides in the polygons.

8.4.3 Optimisation method for polygon separation and radius

In this section it will be shown how to maximise the Ksim of any arbitrary geometry.

Optimum geometries will then be determined and it will be shown how they scale and,



128

ultimately, are determined by α = V/Ω. In all the geometries discussed here the value of g

used is that determined in section 8.4.1 in order to provide the maximum Ksim homogeneity

across the lattice, and the number of polygon sides is set to 25 as this provides a good

approximation to the optimum circular geometry while keeping the simulation time at a

minimum, as shown in section 8.4.2.

When considering any fixed arbitrary geometry, equation 8.9 shows that Ksim can be

maximised by reducing the value of α. However, the minimum achievable α is limited by

the lowest usable trap depth, as the trap depth is proportional to α2 and is given by

TD =
ζe2α2

π2m
(8.14)

where e is the charge of an ion and ζ is a geometrical factor which is a function of A and

R [1].

Optimal geometries, which we define as geometries which yield the highest value of

Ksim for a given value of α, will now be found. This will be carried out by fixing the

trap depth at a reasonable minimum value (0.1 eV is used here for illustration purposes)

which, as discussed above, provides the maximum Ksim for a given geometry, and then

investigating the dependence of polygon radius, separation and ion height with α. To

determine these dependencies a Ksim contour plot is made by calculating the Ksim over

a range of polygon separation, A, and radius, R, with a resolution of 1µm. The range of

polygon radius and separation used should not create traps with inter-well barriers of less

than the minimum trap depth value, and to ensure this the polygon radius was kept to less

than a third of the polygon separation. For each combination of polygon separation and

radius a value of α is found which yields the minimum trap depth and, thus, maximises the

Ksim of the particular geometry. By following this method one can obtain the α required

to achieve the minimum trap depth, the ion height, r, and Ksim for each geometry. From

the resulting data the polygon separation and radius which yields the highest Ksim for a

given α (the optimum geometry) can then be found. A graphical example of such data is

shown in figure 8.7.

It can be seen from this method and the example data in figure 8.7 that the highest

Ksim will be achieved with an infinite value of α, R and A. However, other effects may

limit the magnitude of α. In order to determine a limit on α it is, therefore, necessary

to describe the various array and trapping field dependant properties (such as secular

frequency, ion height and Ksim) in terms of α.

By plotting these optimum parameters (polygon radius, separation and ion height) as
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Figure 8.7: Example graph showing how the Ksim (absolute values indicated by numbers

on contour lines) varies as a function of polygon radius and separation. The graph also

indicates that the value of α increases as the radius and separation are increased. This

data was obtained using the method described in section 8.4.3 with a polygon separation

and radius resolution of 1µm and a minimum trap depth of 0.1 eV. The value of α in

the figure ranges from zero to 5/π VMHz−1. The impossible region describes geometries

where individual trapping sites start to combine to a single one and so possess a polygon

radius, R, greater than or equal to a third of the polygon separation, A.

a function of α, as shown in figures 8.8(a), (b) and (c), linear relationships of the form

r = krα (8.15)

A = kAα (8.16)

and

R = kRα (8.17)

are found for the optimal geometries. The values of kr, kA and kR are dependant on the

number of trapping sites in an array, as shown in figures 8.9(a),(b) and (c) respectively,

for lattices made from square type unit cells of polygons.

It is important to stress that equations 8.15, 8.16 and 8.17 are only valid in the case

of optimal geometries, which depend solely on α. With this in mind, it is now possible

to re-express the secular frequency in equation 8.8 to describe the secular frequency of an

optimised geometry as:

ω =
eηgeo√
2k2

rmα
. (8.18)
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Figure 8.8: Graphs showing the ion height (a), polygon separation (b) and polygon radius

(c) of an optimised lattice as a function of the ratio α. In all cases the plots are shown

using α = V/Ω where Ω is 2π times the drive frequency in Hz, and for arrays made from

square type unit cells of polygons with 81 sites and for 171Yb+ ions.
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Figure 8.9: Graphs showing the value of kr (a), kA (b) and kR (c) as a function of the

number of trapping sites, N . In all cases the plots are shown using α = V/Ω where Ω is

2π times the drive frequency in Hz and are for arrays made from square type unit cells of

polygons using 171Yb+ ions.
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Ksim in equation 8.9 can also be re-expressed to describe that of an optimised geometry:

Ksim =
4F 2mk8

rα
3

Ξη2
geoπε0k

3
A

. (8.19)

Equation 8.19 shows that, for optimal geometries, Ksim is proportional to α3 (as the

value of α determines the electrode dimensions to be used) and so, to produce an array

with a high Ksim for a given number of lattice sites (as kr and kA are a function of the

number of trapping sites), a large value of α is preferable. Equations 8.16 and 8.17 show

that the optimum geometry size is proportional to α. It, therefore, follows that larger

lattice geometries will produce larger values of Ksim. This effect is illustrated in figure

8.7 which shows the Ksim as a function of polygon radius and separation. For optimised

lattices, the optimal radius and separation will fall on a line described by A = (kA/kR)R,

with higher values of α required for higher values of separation and radius as shown in

equations 8.16 and 8.17 respectively.

The heating rate in ion traps has a strong dependency on the ion height (∝ 1/r4) [66].

A large Ksim is achieved with large values of α, resulting in large ion heights, as shown in

equation 8.15. It, therefore, can be concluded that a different scaling of the heating rate

(for example in cryogenic systems) does not change the optimisation process and optimal

geometries.

It has now been shown that the optimal geometry for a given minimum trap depth

and ion mass is determined solely by the value of α.

Optimal geometries and their Ksim values (in units of 1/α3) can now be found by

creating contour plots (such as shown in figure 8.7) for different values of lattice size, N ,

lattice unit cell type and ion mass, m. The error on the Ksim value, calculated from

equation 8.9, was determined to be ±10% by comparing the secular frequency and ion

heights obtained using the program with those predicted by House’s analytical solutions

for a five wire surface trap geometry [1].

8.5 Optimisation results and analysis

In this section, optimum polygon separations, A, and radii, R, are obtained using the

method outlined above for square, hexagonal and centre rectangular unit cell type lat-

tices. These are shown as function of lattice sizes and ion masses with the experimental

constraint, α, scaled out. Throughout this optimisation example, 171Yb+ ions will be used

unless otherwise stated.
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Lattice Type c d E

Square -5±1 101±7 0.29±0.03

Hexagonal 1±3 85±6 0.40±0.08

Centre Rectangular -2±2 68±6 0.34±0.05

Table 8.3: Table showing c, d and E values for the fits which describe R/α as a function

of the number of sites in the lattice.

Figure 8.10 shows how the optimum scaled radius, R/α, and separation, A/α, of

polygons vary as a function of lattice size for 171Yb+ ions. As explained in the previous

section a minimum trap depth of 0.1 eV has been assumed for illustrative purposes. It

can be seen from this figure that as the size of the lattice increases, the optimum polygon

radius and separation asymptotically tend towards values representative of an infinitely

large lattice. This is expected as once a lattice becomes large enough, the addition of

extra lattice sites will represent only a small change in the overall electrode geometry and,

therefore, produce a small change in the electric field produced by the geometry. When

the lattice is small however, additional lattice sites will represent a larger change in the

geometry and will, therefore, cause a larger change in the electric field. Figure 8.11 shows

how the scaled Ksim/(F 2α3) scales as a function of the number of lattice sites, N , using

scaled optimum polygon radii, R/α, and separations, A/α. The state dependant force

F will be considered in more detail in section 8.6.2. Due to the dependency of Ksim on

the geometry, the relationship between Ksim/(F2α3) and the number of sites is expected

to be of similar form to that for optimal polygon radii, R/α, and separation, A/α, with

the maximum Ksim/(F2α3) asymptotically tending towards a value representative of an

infinitely large lattice.

Using the data shown in figures 8.10(a), 8.10(b) and 8.11 the optimum radii and

separation of the polygons as a function of number of sites, N , were found to follow a

c + dN−E and f + gN−G relationship, respectively, while the maximum Ksim/(F2α3)

follows a k + lN−Q trend. The values of c, d, E, f , g, G k, l, and Q are shown in tables

8.3, 8.4 and 8.5.

Using the data shown in figures 8.12(a) and 8.12(b) the optimum radii and separation

of the polygons as a function of mass were found to follow a o + pm−0.5 and q + sm−0.5

relationship, respectively, with values of o, p, q and s shown in tables 8.6 and 8.7. Figure

8.13 shows how the optimum Ksim/(F2α3) varies as a function of the mass of the trapped

ion, m, for 220 (square type unit cells) and 225 (hexagonal and centre rectangular type
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Lattice Type f g G

Square -136±7 457±5 0.15±0.01

Hexagonal 13±24 547±288 0.48±0.21

Centre Rectangular 40±15 831±282 0.57±0.13

Table 8.4: Table showing f and g and G values for the fits which describe A/α as a

function of the number of sites in the lattice.

Lattice Type k l Q

Square -(2.69±2.97)×1034 (3.09±1.31)×1036 (0.61±0.13)

Hexagonal (0.52±6.00)×1033 (3.51±1.54)×1036 (0.86±0.12)

Centre Rectangular -(3.09±6.12)×1035 (5.23±5.11)×1037 (0.65±0.26)

Table 8.5: Table showing k, l and Q values for the fits which describe Ksim/(F2α3) as a

function of the number of sites in the lattice.

Figure 8.10: (a) Graph showing how the optimum polygon radius, R/α, varies as a function

of the number of sites. (b) Graph showing how the optimum polygon separation, A/α,

varies as a function of the number of sites. For both (a) and (b) the results shown are for

square (square markers), hexagonal (circular markers) and centre rectangular (diamond

markers) unit cell lattices with 171Yb+ ions.
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Figure 8.11: Graph showing how the optimum Ksim/(F2α3) varies as a function of the

number of sites for optimum lattices with 171Yb+ ions. This is shown for square (square

markers), hexagonal (circular markers) and centre rectangular (diamond markers) unit

cell lattices. Here F is a state dependant force applied to the ions in the lattice.

Lattice Type o p

Square -56±6 138±10

Hexagonal -34±7 88±11

Centre Rectangular -48±3 110±6

Table 8.6: Table showing o and p values for the fits which describe R/α as a function of

ion mass.

unit cells) trapping sites. It is found that the optimum Ksim/(F2α3) scales as u+ vm−0.5,

with the values of u and v shown in table 8.8.

It should be noted, as shown in figure 8.12, that as the mass of the ion is increased,

the polygon radii and separation will have to be decreased in order to provide trapping

regions with a depth of above 0.1 eV for a given α for 220 (square type unit cells) and

225 (hexagonal and centre rectangular type unit cells) trapping sites. It is also clear to

see that ions with lighter masses will provide higher Ksim/(F
2α3) values but will require

larger lattice geometries compared to heavier ions.

8.6 Constraints on α

In this section the considerations which could limit the value of α will be discussed. To

do this it will be shown how the power dissipation in a chip trap, the quantum simulation



136

Lattice Type q s

Square -176±47 489±65

Hexagonal -311±15 678±22

Centre Rectangular -402±28 911±51

Table 8.7: Table showing q and s values for the fits which describe A/α as a function of

ion mass.

Figure 8.12: (a) Graph showing how the optimum polygon radius varies as a function of

the ion mass for 220 (square type unit cells) and 225 (hexagonal and centre rectangular

type unit cells) trapping sites. (b) Graph showing how the optimum polygon separation

varies as a function of the ion mass. In both graphs this is shown for square (square

markers), hexagonal (circular markers) and centre rectangular (diamond markers) unit

cell lattices and the polygon radii and separations are scaled with α.

Lattice Type u v

Square -(5.25±3.00)×1035 (7.96±1.72)×1036

Hexagonal -(1.25±0.60)×1035 (5.08±1.29)×1036

Centre Rectangular -(2.56±1.28)×1034 (3.27±0.86)×1036

Table 8.8: Table showing u and v values for the fits which describe Ksim/(F2α3) as a

function of the ion mass.
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Figure 8.13: Graph showing how the optimum Ksim/(F2α3) varies as a function of the

ion mass for 220 (square type unit cells (circular markers)) and 225 (hexagonal and centre

rectangular type unit cells (square markers and diamond markers respectively)) trapping

sites.

error and the interaction time vary as a function of α. This is important as from this a

value of α can be determined for a given experiment, which will be shown in section 8.7.

8.6.1 Power dissipation in optimised arrays

The power dissipation of an ion trap chip is determined by the voltage, V , frequency, Ω, as

well as the capacitance and resistance of the trap itself. This may, for a given capacitance

and resistance, affect the value of α (the ratio between the rf voltage and drive frequency)

which can be used. As the value of α is used to determine the optimum polygon radii

and separation of a geometry, as shown in figure 8.10, for a given number of sites, N ,

and stability parameter, q, it is important to know how the power dissipation varies as a

function of α.

The power dissipation of a chip is approximately given by [3]

PD ≈
1

2
V 2C2RΩ2, (8.20)

where C and R are the capacitance and resistance of the chip. It is not possible to apply

any combination of V and Ω to a geometry as they must be chosen so that the ion is

stably trapped with a stability parameter given by [39, 61]

q =
2eηgeoV

mr2Ω2
=

2eηgeoα

mr2Ω
(8.21)
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between zero and 0.9, where e is the charge of an electron.

The ion height, r, of ions trapped in the optimised lattices shown in this work have

been found to be linearly proportional to α. This relationship is shown in figure 8.8 (a)

with the constant of proportionality, kr found to be = 63(4) mV−1s−1 for the example

case of square type lattice with 81 sites using 171Yb+ ions. Considering one particular ion

height, r0, and substituting for r0 = krα0 and rearranging equation 8.21 for Ω yields

Ω0 =
2eηgeo
mk2

rα0q
. (8.22)

This equation can be re-expressed for V0 by noting that V0 = Ω0α0:

V0 =
2eηgeo
mk2

rq
. (8.23)

Equations 8.22 and 8.23 show that, for a given ion mass, m, ion height, r0, stability

parameter, q, and number of trapping sites in the array (as kr is a function of the number

of trapping sites), there is one unique voltage, V0, and unique parameter α0. This means

that a given ion height (and, therefore, a chosen value of α) determines both the voltage

and drive frequency to be applied to the trap.

To express the power dissipation, PD, in terms of α equations 8.22 and 8.23 can be

substituted into equation 8.20 giving

PD =
8η4
geoe

4C2R

k8
rm

4q4α2
. (8.24)

Equation 8.24 shows that as α is increased, the power dissipated is reduced. This means

that the power dissipation is low for high values of α and, as high values of α provide high

values of Ksim (see figures 8.11 and 8.13), power dissipation will not impact on producing

high values of Ksim in optimised geometries. However, a low value of α will result in a

high power dissipation in the chip and, so, the maximum allowable power dissipation in a

chip will determine the lowest α which can be applied to a geometry.

8.6.2 Quantum simulation error

An upper limit on the value of α can be obtained from an estimation of the error of a

quantum simulation using the method described in [112], where the error for the Ising

model is given by

E0 ≈
1

2
η2
∑
j

(2n+ 1)
〈[[

O(t), σzj (t)
]
, σzj (t)

]〉
. (8.25)
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Here n is the mean radial phonon number of the ions, O is the observable of the quantum

simulation and η is a parameter which characterises phonon displacement caused by the

state dependant force and is given by [112]

η =
F
√

~/(2mω)

~ω
(8.26)

where m is the mass of a trapped ion and ω/2π is its secular frequency.

If O is an M -site observable then there exist M non-vanishing commutators (for ex-

ample a two-site correlation function (M = 2) or a spin average (M = 1)) and so the error

on the simulation will not be dependant on the number of ions, N , in the array [112]. The

error in equation 8.25 can now be re-written as

E0 ≈
F 2M(n+ 1

2)

2~mω3
. (8.27)

Equations 8.19 and 8.27 show that both the Ksim and the error of the simulation, E0,

are proportional to the square of the state dependant force, F . It follows that the way

in which this force is applied to the ions will determine the dependence of the simulation

error on α. A discussion on the possible effects of the heating rate on the error can be

found in Appendix A. In this work we will consider applying this state dependant force

via laser beams and magnetic field gradients.

To calculate the laser power required to achieve a force, F , it is assumed, for illustrative

purposes, that the laser beam is focused to a sheet given by 25 µm multiplied by the width

of the array. The laser intensity required to provide a state dependant force, F , can be

provided by a laser beam of power, P . If the output power of the laser used is assumed

to be constant, then the force applied to the ions will be dependant on α. This is because

the lattice size will increase with increasing α and, therefore, so will the spacial area of

the beam required to impart a force onto the ions. It is, therefore, required to express this

force as a function of α. The intensity of a beam required to provide a state dependant

force, F , is given by [113]

I0 =
3F∆λIsat

2π~γ2
(8.28)

where ∆ is the detuning of the laser from resonance, λ is the wavelength of the laser, Isat

is the saturation intensity of the ion and γ is 2π times the transition linewidth. The power

of a laser beam is given by

P = I0a (8.29)
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where a is the spacial area to which the beam is focused. In this work the beam is assumed

to be focused to form a light sheet across the array with an area given by a = (ns−1)AW =

(ns − 1)kAαW , where ns is the number of trapping sites (or polygons) along one side of

the array and W is the width of the light sheet. By using equations 8.28 and 8.29 the

force applied to the ions by a laser power, P , can be expressed as

F =
2π~Pγ2

3a∆λIsat
. (8.30)

The form of E0 for the case of lasers applying the state dependant force can now be

found by using equations 8.18, 8.30 and the general error equation 8.27 yielding

E0laser =
4
√

2

9

π2~
e3

Mk6
rγ

4m2P 2α(n+ 1
2)

η3
geo(ns − 1)2k2

AW
2∆2λ2I2

sat

. (8.31)

It follows that both the Ksim and simulation error E0 will decrease with increasing laser

detuning, ∆. Therefore, the optimum detuning, for a given laser power and α, corresponds

to the lowest detuning which provides the required Ksim. The optimum detuning to achieve

the lowest simulation error for 171Yb+ will be discussed in section 8.6.3.

Magnetic fields can also be used to provide the state dependant force, F , and is given

by [91]

Fî =

(
~
2

)
∂iω

〈
σ(̂i)
〉

(8.32)

where ω = γgbi is the position dependant spin resonance frequency with γg = e/me the

gyromagnetic ratio and i is the x, y or z direction. The magnetic field gradient b is

assumed to arise from a magnetic field of the form B = B0 + b̂i, where B0 is a constant

magnetic field offset. From this, the state dependant force, Fî, produced from a magnetic

field gradient, bî, is found to be

Fî ≈
~ebî
2me

(8.33)

where me and e is the mass and charge of an electron respectively. If one assumes the

magnetic field is created by a current carrying wire located on the surface of a polygon,

at a distance a from the centre of the polygon and making an angle of 45◦ with respect to

the x-axis then the magnetic field gradient will be of the form

br′ =
µ0I

2πr′2
. (8.34)
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Here µ0 is the permeability of free space, I is the current flowing through the wire and r′2

is the distance squared of the ion from the current carrying wire and is equal to r2 + a2

where r is the ion height. It is assumed, for simplicity, that the distance a scales linearly

with α with a constant of proportionality of ka in order to keep the angle of r′ to the

x-z plane, θ, independent of α. As the ion height is known to scale linearly with α, from

equation 8.15, it is possible to express the magnetic field gradient along r′ as

br′ =
µ0I

2πα2 (k2
r + k2

a)
. (8.35)

The component of this magnetic field gradient in the x-z plane can now be shown to be

bx,z =
µ0I cos θ

4πα2 (k2
r + k2

a)
. (8.36)

The form of Ksim for the case of magnetic field gradients applying the state dependant

force can be found by using equations 8.18, 8.33, 8.36 and the general error equation 8.27

yielding

E0mag =

√
2

64

~µ0

π2m2
ee

k6
rm

2I2 cos2 θM
(
n+ 1

2

)
η3
geo (k2

r + k2
a)

2 α
. (8.37)

Equations 8.31 and 8.37 show that the quantum simulation error is proportional to α

for a state dependant force created by a laser beam and proportional to α−1 for a magnetic

field gradient created by current carrying wires. For the case of laser beams the α scaling

implies that as α is increased (yielding larger Ksim values and geometries as shown in

section 8.4.3) the quantum simulation error will rise and, therefore, provide an upper limit

on the value of α. For the magnetic field gradient case the upper limit on α comes from

the current creating the gradient. While the α scaling for the quantum simulation error

using magnetic field gradients implies that a larger α is advantageous, the current required

to achieve a given magnetic field gradient scales as α2 as can be deduced from equation

8.35. The maximum current that one can apply to the lattice therefore provides an upper

limit for α.

It is also interesting at this point to note the different scaling with α of the laser and

magnetic field gradient forces given in equations 8.30 and 8.32. The laser force can be

seen to be ∝ α−1 as it is a function of the inverse of laser sheet cross section, a, which is

∝ α1. The magnetic gradient force, on the other hand, is ∝ α−2 as it is a function of the

magnetic field gradient br′ which is ∝ α−2 due to r′ having a linear relationship with α in

the geometry considered.
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8.6.3 Spontaneous emission

When applying the state dependant force to the ions using a laser beam additional deco-

herence will occur via spontaneous emission. The spontaneous emission rate is given by

[114, 115]

S =
γg2

6

(
1

∆2
+

2

(∆fs −∆)2

)
(8.38)

where γ is 2π times the linewidth in Hz, ∆ is the laser detuning from resonance, ∆fs is

the fine structure splitting of the ion (approximately 100 THz for 171Yb+) and g is the

single photon Rabi frequency given by

g = γ

√
I0

2Isat
. (8.39)

Here, I0 is the laser intensity and Isat is the saturation intensity of the ion. It is possible to

express the single photon Rabi frequency in terms of the laser power, P , by using equation

8.29 giving

g = γ

√
P

2(ns − 1)kAαWIsat
. (8.40)

It is now possible to describe an additional parameter, Lsim, which describes the ratio

of interaction rate to the spontaneous emission rate as

Lsim =
TS
TJ

(8.41)

where

TS =
1

S
. (8.42)

It has been shown that the detuning which minimises the effect of spontaneous emission

is approximately 33 THz for 171Yb+ [116]. It, therefore, follows that the value of Lsim will

be maximised with this detuning. This additional parameter is analogous to the parameter

Ksim in equation 8.3 and is also required to be greater than unity, just like the original

Ksim, when considering a state dependent force created using laser light. If magnetic field

gradients are to be used to apply the state dependent force then Lsim is no longer relevant.

8.6.4 Other considerations

It is important to note here that an increase in α will increase the time taken for ion-ion

interactions to take place in optimised lattice structures, as will be shown in equation 8.44.
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Equation 8.5 gives an expression for the time taken for an ion-ion interaction to occur in

any given fixed lattice structure. This can be expressed for optimised lattice structures by

including the expressions for the ion-ion separation (polygon separation, A) and secular

frequency, ω, from equations 8.16 and 8.18 respectively, to yield

TJ =
e2πε0~

2

η4
geok

3
A

k8
rF

2m2α
. (8.43)

An expression to give the interaction time in optimised lattices as a function of α can

now be arrived at by using equations 8.30 and 8.43,

TJ =
9

8

e2ε0
π~

η4
geok

3
A((ns − 1)kAW )2∆2λ2I2

satα

k8
rγ

4P 2m2
. (8.44)

Equation 8.44 clearly shows that as α is increased the time taken for an ion-ion interaction

will increase and, so, it may be preferable to limit the magnitude of α after taking into

account the effects on Ksim. A similar equation can also be derived for the use with

magnetic field gradients. It is also important to note here that increasing the laser power,

P , will increase the value of Lsim as the spontaneous emission rate is proportional to

P whereas the coupling rate is proportional to P 2 as shown in equations 8.38 and 8.44

respectively.

With the use of the equations derived in this section, optimal geometries can be calcu-

lated given certain experimental parameters and will be described in the following section.

8.7 Example case study

In this section, an example case will be presented to show how a 2D lattice for the use

in quantum simulations can be designed using the work in this paper, whose successful

operation is within reach of current technology when using lasers. It will then go on to

show that while magnetic field gradients can be used to create a state dependant force

their use may be more challenging.

From equation 8.23 we can see that there is a unique voltage for a given mass, m, lattice

type and stability parameter, q. For this example case we choose a lattice comprised of

square type unit cells with 9 trapping sites for 171Yb+ ions with a stability parameter

q = 0.5. Using these parameters the voltage can now be determined by calculating kr.

kr can be found by plotting the ion height of an optimised lattice against α, as shown in

figure 8.8 (a), and finding the gradient of this linear relationship. For this example case

kr = 98(5) mV−1s−1. Using this result and equation 8.23 the unique voltage is found to
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be 33(2) V where ηgeo has been calculated to be 0.14(1).

The α dependant polygon radius and separation can be calculated by producing the

corresponding graphs in figure 8.10, using the method described in section 8.4.3, for the

lattice type and ion to be used. For this example case the optimum radius and separation

of the polygons in terms of α is 45(1)α µm and 174(1)α µm respectively.

The next step is to choose a laser detuning from resonance and a maximum acceptable

error, E0, to be used. For 171Yb+, as explained in section 8.6.3, the optimum detuning

is approximately 33 THz giving a wavelength of 355 nm which is therefore used in this

example case together with a maximum acceptable error of 0.25. Note that in this example

case the array is assumed to be at cryogenic temperatures which correspond to an electric

field noise density three orders of magnitude less than at room temperature. It can see from

equation 8.31 that α needs to be minimised in order to keep the quantum simulation error

low. The minimum α is determined by the lowest ion height one can easily achieve which

for this example case is chosen to be equal to 30 µm. For this case α is found to be 0.30(2)

VMHz−1. Having determined α the optimum radius and separation are found to be equal

to 14(1) µm and 52(3) µm respectively. To calculate the laser power required equation

8.31 should be set to the maximum acceptable error and solved for the laser power, which

is found to be 7(1) W assuming the ions to be cooled to n � 1 and M = 1 (one site

average observable). These conditions provide a coupling rate, J , of 530±110 Hz with a

β = (2.8±0.2)×10−5. This laser power can, for example, be achieved using a commercially

available diode pumped solid state (Coherent Paladin range) or fibre (Coherent Talisker

range) laser system. Table 8.9 summarises all parameters for this example case study.

Figure 8.14 shows the effect a change of α and laser power, P , has on the quantum

simulation error (solid curves), Ksim (dashed curves) and Lsim (dotted lines). The cross

corresponds to the 2D lattice designed in this example case which represents the optimum

case in terms of achieving the highest Ksim and Lsim for a maximum quantum simulation

error of 0.25. It should be noted at this point that the main limitations in achieving

lower quantum simulation errors stem from the lowest achievable ion height (lowest α)

and magnitude of electric field noise density. Figure 8.14 also shows that higher values

of Ksim and Lsim can be achieved with any given geometry (given by the value of α)

by simply increasing the power of the laser. However, this can only be achieved at the

expense of higher quantum simulation errors.

State dependant forces can also be created using magnetic field gradients as described

in section 8.6.2. Figure 8.15 shows the Ksim (solid curves) and the quantum simulation
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α R [µm] A [µm] ∆ [THz] P [W] M Ksim Lsim E0

0.30(2) 14(1) 52(3) 33 7(1) 1 35 1.5 0.25

Table 8.9: Table summarising the parameters for a 3 by 3 square type unit cell lattice at

cryogenic temperature as shown in the example case study

Figure 8.14: Graph showing the quantum simulation error (solid curves), Ksim (dashed

curves) and Lsim (dotted lines) for a three by three square type unit cell lattice with

171Yb+ ions as a function of α and laser power. Here traps are operated at cryogenic

temperature. The cross indicates the example case.
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error (dashed curves) as a function of the magnetic field gradient, b, and α for traps

operated at cryogenic temperature. Here 171Yb+ ions are used in a three by three square

unit cell array. As described in section 8.6.2, E0 ∝ α−1 indicating that a large α is

advantageous. The limit on the maximum α is dependant on the maximum current one

can apply to the geometry. Using equation 8.35 it is possible to calculate the current

required to create a desired magnetic field gradient. In order to illustrate the magnitude

of currents required we assume ka = kr, which will result in an angle θ = 45◦ (refer to

section 8.6.2 for more information). The value of α is set to 0.30(2) VMHz−1, determined

by the lowest achievable ion height which, for illustration purposes, we have set to 30 µm.

The reason for choosing the minimum α value can be seen when considering equation 8.35

which clearly shows that, for a given magnetic field gradient, I ∝ α2. In the magnetic

field gradient case, the chosen α sets Ksim and E0. For this case, again, the value of

M is chosen to be one, n � 1, Ksim = 2 and E0 = 0.01 which requires a magnetic

field gradient of 30,500±3500 Tm−1 and is indicated by the cross on figure 8.15. This

is achievable with a current of approximately 1,200 A yielding a coupling rate, J , of 240

Hz and a β = (2.8 ± 0.2) × 10−8. From this simple example case one can conclude that

using magnetic field gradients to provide state dependant forces for the use in quantum

simulations using the methods and trap designs shown in this work is quite challenging.

However, geometries trapping ions in chains allow for sizeable magnetic gradient induced

couplings [117] and, so, a detailed investigation into optimising the wires used for producing

magnetic field gradients in the geometries discussed in this work could improve results.

8.8 Conclusion

Two-dimensional arrays of surface ion traps have the potential to provide a technology

with which quantum simulations can be performed. In order for ion traps to be used suc-

cessfully for this purpose a greater understanding is required of how the various geometry

parameters affect the ions trapped above them. Throughout this work square, hexagonal

and centre rectangular unit cell arrays of microtraps have been modelled in the gap-less

plane approximation using the Biot-Savart like law in electrostatics [2]. Decoherence due

to motional heating [66] was then compared to the ion-ion interaction [59] to provide a

ratio used to describe how much faster an ion-ion interaction occurs in comparison to the

motional decoherence, Ksim. This work investigates how various parameters in the array

can be adjusted in order to optimise the device’s ability to perform quantum simulations

and shows how the interactions can be made as homogeneous as possible over the device.
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Figure 8.15: Graph showing the quantum simulation error (dashed curves) and the Ksim

(solid curves) of a three by three square type unit cell lattice with 171Yb+ ions as a function

of α and magnetic field gradient. Here traps are operated at cryogenic temperatures.
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It has been shown how the homogeneity of the Ksim across an array can be altered by

varying the distance from the outer polygon to the edge of the rf electrode. The distance

required to maximise the Ksim homogeneity is also shown to vary as a function of the

total size of the lattice. The number of polygon sides, n, required to maximise Ksim has

also been found.

It has been shown that the Ksim of a given lattice geometry can be maximised by

reducing the value of α. However, as α reduces so does the trap depth. This results in the

conclusion that the maximum Ksim of a geometry can be achieved by reducing the value

of α until the trap depth reaches a reasonable minimum value.

Using this information, optimal geometries as a function of α are presented. This has

been achieved by finding the relationships of polygon separation and radius with α for

optimal geometries. It was found that, for these optimal geometries, Ksim scales as α3.

The individual polygon separation and radius were found to possess a linear relationship

with α and, therefore, larger geometries have been found to produce larger values of Ksim.

Therefore, the optimal lattice geometry is dependent solely on the value of α for a given

ion mass and number of trapping sites in the array.

A case study for determining an optimum geometry consisting of 9 trapping sites

arranged into square type unit cells for 171Yb+ ions has been presented. It has been

shown how the value of α can be chosen (and, therefore, the geometry dimensions) by

taking into account the laser power (or static magnetic field gradient) required to produce

a state dependant force acting on the ions, the Ksim and the error on the simulation. From

this it has been found that to carry out quantum simulations with reasonable Ksim and

error values it is preferable to use traps held at cryogenic temperatures as this reduces

decoherence due to heating effects on the ions. Other methods known to significantly

decrease the anomalous heating rate include pulsed laser electrode cleaning [118] and

Argon-ion beam electrode cleaning [119].

The scaling of anomalous heating has not yet been fully understood and is thought

to possess a dependence with the ion height, r, of between r−4 and r−2. In this work we

have used r−4 however, if the anomalous heating is found to possess a relationship with

ion height nearer r−2 then the equations in this work can be adjusted and this is discussed

in more detail in Appendix B.

The relationships between lattice size and α with the polygon radii and separation

obtained using the method described in this work will allow for the construction of two-

dimensional surface trap lattice arrays with high ratios of ion-ion interaction rates to
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decoherence rates, providing a system which could be used to perform quantum simula-

tions.
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Chapter 9

Conclusion

In this thesis the design, set-up and implementation of an Yb+ ion trapping experiment,

capable of housing both symmetric and asymmetric ion traps with up to 90 electrical

connects, has been described. This includes details on the vacuum system used to house

the macroscopic ion trap presented along with descriptions of the lasers and associated

electronics required to provide frequency stable light sources. The optics and detectors

used to image trapped ions is presented along with signal to noise calculations that show

under what conditions a PMT or EMCCD is the preferred photon detection device. An

experimental set-up of this type allows for the implementation and testing of a wide range

of ion traps with short turnaround times as the vacuum system housing the trap does not

need to be redesigned for each trap used.

A detailed study is presented on the application of high voltages at radio frequencies

to ion traps using helical resonators. This has been carried out by modelling a helical

resonator connected to an ion trap load as a lumped element circuit allowing expressions

for the quality factor of resonance and the resonant frequency to be deduced. A design

guide for helical resonators attached to ion trap loads has been presented. This study and

design guide enables a resonator to be constructed which will optimise the device’s quality

factor and increase the radio frequency noise filtering of a given experiment resulting in

less noise injected into the system. This reduction in noise could lead to increased ion

lifetimes and secular frequencies and more efficient cooling of trapped ions.

The successful trapping of the 170, 171, 172, 174 and 176 Yb+ isotopes has been

presented. It was noted during this initial trapping procedure that Yb+ ion transition

frequencies were not available to the required accuracy for successful trapping. For this

reason the transition frequencies for each isotope trapped have been measured to an accur-

acy of 120 MHz. By measuring these transition frequencies the initial trapping procedure
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for future Yb+ ion trap experiments will be made much simpler. Additionally, heating

rate measurements of 174Yb+ ions confined in a linear macroscopic Paul trap are presen-

ted and shown not to be unusually high. This shows that the Yb+ ion is not subject to

abnormally high heating rates as feared due to coating of electrodes and cements its place

as a leading candidate for performing quantum information processing with trapped ions.

Two-dimensional arrays of trapped ions provide a system with which quantum sim-

ulations can be carried out. Quantum simulators provide an attainable stepping stone

between current classical computing and fully fledged quantum computing. However, in

order to develop technology capable of this goal a greater understanding of the geometries

required to trap two-dimensional arrays of ions is required. In this work it is shown how

arrays of static voltage islands in a radio frequency surface electrode can be used to trap

two-dimensional arrays of ions. It is shown how varying the space at the edge of this sur-

face array can affect the homogeneity of the individual trapping sites above these islands.

The number of sides in the polygons which make up the islands has been investigated and

it has been shown that polygons with over 25 sides produce a Ksim within 95% of that of

a circular shaped island. Below this value the value of Ksim is shown to drop markedly.

Providing trapping fields which allow decoherence times to be greater than interaction

times (with a Ksim > 1) is important, if this is not the case then any simulations carried

out will be subject to low fidelities. With the aim of maximising the ratio between deco-

herence times and interaction times a method has been presented which shows how the

radii and centre-centre separation of polygons in surface geometries can be optimised. It

is then shown that the optimal surface geometry is dependant on the value of α (the ratio

of rf voltage to drive frequency) for a given ion mass and number of trapping sites.

It has been shown how the value of α can be chosen (and, therefore, the optimum

geometry dimensions) by taking into account the laser power (or static magnetic field

gradient) required to produce a state dependant force acting on the ions, the Ksim and

the error on the simulation. From this it has been found that to carry out quantum

simulations with reasonable Ksim and error values it is preferable to use traps held at

cryogenic temperatures as this reduces decoherence due to heating effects on the ions. A

case study is presented which describes the optimisation process for a geometry with 9

trapping sites and 171Yb+ ions. By showing how the homogeneity and ratio of decoher-

ence time to interaction time can be maximised in two-dimensional surface trap arrays a

geometry optimised for the purpose of performing quantum simulations can be conceived

bringing the technology of quantum simulators within our reach.
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Jost, D. P. Pappas, D. Leibfried, and D. J. Wineland. Reduction of anomalous

heating in an in-situ-cleaned ion trap. arXiv:1112.5419v1, 2011. Cited on 148



165

Appendix A

Additional calculations for

including motional heating rate in

simulation error

The simulation error in equation 8.27 can be adjusted to take into account the heating of

the ions during a simulation. If this occurs the mean radial phonon number n will become

time dependent, n(t). It, therefore, follows that the error will also become time dependent

and is given by

E0(t) ≈
F 2M(n(t) + 1

2)

2~mω3
. (A.1)

The time dependent mean radial phonon number will be a function of the heating rate

ṅ, the interaction time, TJ , and the initial mean phonon number, n0 and is given by

n(TJ) = n0 + ṅTJ (A.2)

yielding an error given by

E0(TJ) ≈
F 2M(n0 + ṅTJ + 1

2)

2~mω3
. (A.3)

It should be noted here that ṅTJ = 1/Ksim and so the error can be expressed as

E0(TJ) ≈
F 2M(n0 + 1

Ksim
+ 1

2)

2~mω3
. (A.4)
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Equation A.4 shows that as Ksim increases the error will tend towards that in equation

8.27 in section 8.6.2 for the case of n̄ � 1. This is because higher values of Ksim mean

that less heating takes place during an interaction until the mean radial phonon number

can be approximated as constant.
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Appendix B

Ksim with alternate heating rate

scaling

In the work presented we have used a motional heating rate, ṅ, which has an r−4 scaling,

where r is the ion height. However the scaling of this anomalous heating has not yet

been fully understood and so it is conceivable that a different scaling will be required to

describe the effect. For this reason it is the aim of this appendix to outline the steps and

main expressions required to obtain an optimised two-dimensional ion trap array with an

anomalous heating rate which possess an arbitrary scaling with the ion height r−x.

For the case of optimising the homogeneity of Ksim across an array the results shown

in section 8.4.1 will hold for any scaling of the heating rate with ion height. This is because

this optimisation aims to give each trapping site in the array the same properties and this

is independent of the heating rate. The same applies to the optimisation of the number

of polygon sides described in section 8.4.2.

Equation 8.19 describing Ksim for an optimised geometry can be altered to take into

account a different scaling of the heating rate with ion height. For an arbitrary scaling

r−x this equation can be expressed as

Ksim =
4F 2mk

(4+x)
r α(x−1)

Ξη2
geoπε0k

3
A

. (B.1)

It can be seen in equation B.1 that the Ksim is proportional to α(x−1). The values of

kr, kA and kR (described in section 8.4.3) are independent of the value of x and, so, the

optimum geometry for a given α will be the same regardless of the scaling of the heating

rate with ion height. Using this procedure optimum geometries can be computed for an
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arbitrary scaling of the anomalous heating with the ion height, r−x.
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